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Preface

Applied Mathematics, Modelling and Computational Science (AMMCS)-2013 was
an interdisciplinary international conference, the second in a series of AMMCS
meetings held in Waterloo, Ontario, Canada and hosted at Wilfrid Laurier Univer-
sity’s Waterloo campus. The series aims at promoting interdisciplinary research and
collaboration involving mathematical and computational sciences, and highlighting
recent advances in AMMCS. AMMCS-2013 was held on August 26–30, 2013 and
was organized in cooperation with AIMS and SIAM, with support from the Fields
Institute in Toronto. The AMMCS-2013 book of abstracts can be found online at
http://www.ammcs2013.wlu.ca/ and on behalf of all conference organizers and par-
ticipants we wish to extend a heartfelt thanks to Mr. Dalibor D. Dvorski who devoted
an enormous amount of time to edit it.

The first conference in the AMMCS series was held on July 25–29, 2011 and
hosted at Wilfrid Laurier University’s Waterloo campus. The AMMCS-2011 book
of abstracts can be found online at http://www.ammcs2011.wlu.ca/ and on behalf
of all conference organizers and participants we wish to extend a heartfelt thanks
to Mr. Cameron Davidson-Pilon who devoted an enormous amount of time to edit
it. The proceedings of AMMCS-2011 have been published in Advances in Math-
ematical and Computational Methods: Addressing Modern Challenges of Science,
Technology, and Society, Ilias Kotsireas, Roderick Melnik, Brian West (Editors), AIP
Conference Proceeding 1368, (2011). Selected papers received from the AMMCS-
2011 plenary speakers have been published in Advances in Applied Mathematics,
Modelling, and Computational Science, edited by Roderick Melnik and Ilias Kot-
sireas (Fields Institute Communications, 66, Springer, NewYork; Fields Institute for
Research in Mathematical Sciences, Toronto, 2013).

The AMMCS series of conferences is meant to provide a platform of interaction
between applied scientists at all levels in various fields and aims to keep the very
interdisciplinary nature of its content and sessions as its distinctive mark. There were
many young scientists at AMMCS-2013, both as presenters and organizers. There
was a poster session with specific prizes to encourage young trainees in the modelling
field towards honing their communication skills on topics from their areas. AMMCS-
2013 also managed to successfully pair this infusion of young researchers with an
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extensive list of prestigious plenary and semi-plenary speakers, whose presence
added an enthusiastic layer of interaction between all participants.

AMMCS-2013 featured 42 special sessions and 10 contributed sessions with a to-
tal of 650 participants from 40 countries. The program of the conference was rich and
varied with over 550 talks and posters being presented. Highlights were the invited
plenary talks given by Peter Carr (Morgan Stanley), Emily Carter (Princeton Univer-
sity), Ronald Coifman (Yale University), Marty Golubitsky (Ohio State University),
Vaughan Jones (Vanderbilt University), Lila Kari (Western University), Dimitris Gi-
annakis and Andrew Majda (New York University), George Papanicolau (Stanford
University), Panos Pardalos (University of Florida), Michael Sigal (University of
Toronto), and Godfried Toussaint (NYUAD/M.I.T./McGill).

The present proceedings contains 78 refereed papers that were submitted to the
AMMCS-2013 Editorial Team after the conference. The papers in this volume were
carefully screened and we are grateful to a number of researchers around the world
that acted as referees, offering pertinent referee reports to the authors of submitted
papers.

We thank all the people who participated in the AMMCS-2013 conference and
presented excellent talks, as well as all who contributed to the organization of the
conference. We appreciate the help of students during the conference. We gratefully
acknowledge the financial support for the conference by the Fields Institute and the
Office of Research Services of Wilfrid Laurier University. Finally, we want to express
our gratitude to Springer-Verlag for publishing this volume.

Waterloo, Ontario, Canada Monica G. Cojocaru
July 2014 Ilias S. Kotsireas

Roman N. Makarov
Roderick V. N. Melnik

Hasan Shodiev
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Exact Solutions and Conservation Laws of the
Joseph-Egri Equation with Power Law
Nonlinearity

Abdullahi Rashid Adem and Chaudry Masood Khalique

Abstract In this chapter we obtain exact solutions of the Joseph-Egri equation with
power law nonlinearity, which arises in various problems in many scientific appli-
cations. The Lie group analysis and simplest equation method are used to carry out
the integration of this equation. The solutions obtained are travelling wave solu-
tions. Moreover, the conservation laws for the Joseph-Egri equation with power law
nonlinearity are constructed by using the multiplier method.

1 Introduction

Nonlinear differential equations and, in particular, nonlinear evolution equations
(NLEEs) are widely used as models to describe physical phenomena in many fields
of science. Therefore, it is imperative that their solutions be found. However, finding
exact solutions of NLEEs is not an easy task and during the past few decades, many
methods have been developed by researchers to find explicit solutions for such equa-
tions. Some of the methods commonly used in the literature are the inverse scattering
transform method, the Lie group method, the variational iteration method, the exp-
function method, the sine-cosine method and the (G′/G)-expansion method. See,
for example, [1] and references therein.

In this chapter we study one such NLEE, namely the Joseph-Egri equation with
power law nonlinearity that is given by

ut + ux + αunux + βuxtt = 0. (1)
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Here, in (1) α, β and n are real valued nonzero constants. For n = 1, a 1-soliton and
2-soliton solutions have been found in [8] for the Joseph-Egri equation. See also [4].

In this chapter, Lie group analysis [5, 7] in conjunction with the simplest equation
method [6] is employed to obtain some exact solutions of (1). In addition to this,
conservation laws will be derived for (1) using the multiplier method [2].

2 Exact Solutions Using Lie Group Analysis

First we find the Lie point symmetries of (1) and latter use them to construct exact
solutions.

2.1 Lie Point Symmetries

A Lie point symmetry of a partial differential equation (PDE) is an invertible
transformation of the dependent and independent variables that leaves the equa-
tion unchanged. The symmetry group of the Joseph-Egri equation with power law
nonlinearity (1) will be generated by the vector field of the form

Γ = ξ 1(t , x, u)
∂

∂t
+ ξ 2(t , x, u)

∂

∂x
+ η(t , x, u)

∂

∂u
. (2)

Applying the third prolongation pr(3)Γ [7] to (1), we obtain an overdetermined system
of linear PDEs. Then solving this resultant system of linear PDEs one obtains the
following two Lie point symmetries:

Γ1 = ∂

∂t
, Γ2 = ∂

∂x
.

2.2 Exact Solutions

We now use the two symmetries to obtain exact solution of (1). The combination
Γ1 + νΓ2, of the two symmetries Γ1 and Γ2 yields the two invariants

z = x − νt, F = u,

which gives rise to a group invariant solution F = F (z) and then using these invari-
ants, (1) is transformed into the nonlinear third-order ordinary differential equation
(ODE)

βν2F
′′′

(z) + αF (z)nF ′(z) − νF ′(z) + F ′(z) = 0. (3)
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Integrating the above equation and taking the constant of integration to be zero we
obtain the second-order ODE

βν2F ′′(z) + αF (z)n+1

n+ 1
+ (1 − ν)F (z) = 0. (4)

Now multiplying Eq. (4) byF ′, integrating once and taking the constant of integration
to be zero, we obtain the first-order variable separable ODE

1

2

{
βν2F ′(z)2 − (ν − 1)F (z)2

}+ αF (z)n+2

(n+ 1)(n+ 2)
= 0. (5)

Integrating and reverting back to the original variables, we obtain the following
group-invariant solution of (1), for arbitrary values of n, in the form:

u(x, t) =
[
P1

{
tanh2

(
1

2
(± P2(x − νt) + P3)

)
− 1

}]1/n

, (6)

where

P1 = − (1 + n)(2 + n)(− 1 + ν)

2α
,

P2 = n
√
β(ν − 1)

βν
,

P3 = −n√(1 + n)(2 + n)( − 1 + ν)C.

3 Exact Solutions Using Simplest Equation Method

In this section we use the simplest equation method, which was introduced by
Kudryashov [6] to solve the third-order ODE (3). We will use the Bernoulli and
Ricatti equations as our simplest equations. It is well-known that their solutions can
be written in elementary functions [1].

Let us consider the solution of (3) in the form

F (z) =
M∑

i=0

Ai(H (z))i , (7)

where H (z) satisfies the Bernoulli or the Ricatti equation, M is a positive integer
that can be determined by balancing procedure and A0, · · · ,AM are parameters to
be determined.
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3.1 Solutions of (1) Using the Bernoulli Equation as the Simplest
Equation

The balancing procedure, in this case, yields M = 2 so the solutions of (3) are of
the form

F (z) = A0 + A1H + A2H
2. (8)

Substituting (8) into (3) and making use of the Bernoulli equation

H ′(z) = aH (z) + bH 2(z)

and then equating all coefficients of the functionsHi to zero, we obtain an algebraic
system of equations in terms of A0,A1 and A2. On solving this system of algebraic
equations, with the help of Mathematica, we obtain

A0 = −a2βν2 + ν − 1

α
,

A1 = −12abβν2

α
,

A2 = −12b2βν2

α
.

As a result, a solution of (1) is

u(t , x) = A0 + A1a
{ cosh [a(z + C)] + sinh [a(z + C)]

1 − b cosh [a(z + C)] − b sinh [a(z + C)]

}

+ A2a
2
{ cosh [a(z + C)] + sinh [a(z + C)]

1 − b cosh [a(z + C)] − b sinh [a(z + C)]

}2
, (9)

where z = x − νt and C is a constant of integration.

3.2 Solutions of (1) Using Riccati Equation as the Simplest
Equation

The balancing procedure yieldsM = 2 so the solutions of (3) are of the form

F (z) = A0 + A1H + A2H
2. (10)

Substituting (10) into (3) and making use of the Riccati equation

H ′(z) = aH 2(z) + bH (z) + c,
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we obtain a system of algebraic equations in terms of A0,A1,A2, as before. Solving
these algebraic equations, with the aid of Mathematica, we obtain

A0 = −8aβcν2 − b2βν2 + ν − 1

α
,

A1 = −12abβν2

α
,

A2 = −12a2βν2

α
.

Thus, as a result, solutions of (1) are

u(t , x) = A0 + A1

{
− b

2a
− θ

2a
tanh

[1

2
θ (z + C)

]}

+ A2

{
− b

2a
− θ

2a
tanh

[1

2
θ (z + C)

]}2
(11)

and

u(t , x) = A0 + A1

{
− b

2a
− θ

2a
tanh

(1

2
θz
)
+

sech
(
θz
2

)

C cosh
(
θz
2

)
− 2a

θ
sinh
(
θz
2

)
}

+ A2

{
− b

2a
− θ

2a
tanh

(1

2
θz
)
+ sech

(
θz
2

)

C cosh
(
θz
2

)− 2a
θ

sinh
(
θz
2

)
}2

, (12)

where z = x − νt and C is a constant of integration.

3.3 Construction of Conservation Laws for (1)

We now construct conservation laws for the Joseph-Egri equation with power law
nonlinearity (1) in this section. The multiplier method will be employed [2]. See also
[3]. The zeroth-order multiplier for (1) is, Λ(t , x, u) that is given by

Λ = C1u + C2

whereC1 andC2 are arbitrary constants. Thus, corresponding to the above multiplier
we have the following two conserved vectors:

Φt1 = 1

6

{
4βuutx + 3u2 − 2βutux

}
,

Φx1 = 1

6(n+ 2)

{
2βnutextt tu + 4βutextt tu + 6αun+2 + 3nu2 + 6u2 − βnu2

t − 2βu2
t

}



6 A. R. Adem and C. M. Khalique

and

Φt2 = 1

3

{
3u + 2βutx

}
,

Φx2 = 1

3(n+ 1)

{
3αun+1 + 3nu + 3u + βnutextt t + βutextt t

}
.

4 Concluding Remarks

In this chapter we obtained the exact solutions of the Joseph-Egri equation with
power law nonlinearity by employing the Lie group analysis and the simplest equation
method. Moreover, we also derived the conservation laws for the underlying equation
by using the multiplier method.

Acknowledgement Abdullahi Rashid Adem thanks the NRF for financial support. Chaudry
Masood Khalique would like to thank the Organizing Committee of “International Conference:
AMMCS-2013,” Waterloo, Canada for their kind hospitality during the conference.
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ML-α-Deconvolution Model in a Bounded
Domain with a Vertical Regularization

Hani Ali

Abstract In this chapter, we consider the deconvolution modified Leray alpha (ML-
α-deconvolution) model with fractional filter acting only in one variable A3,θ =
I + α2θ

3 (−∂3)2θ , where 0 ≤ θ ≤ 1 controls the degree of smoothing in the filter.
We study the global existence and uniqueness of solutions to the vertical ML-α-
deconvolution model on a bounded product domain of the type D = Ω × (−π ,π ),
where Ω is a smooth domain with homogeneous Dirichlet boundary conditions on
the boundary ∂Ω × (−π ,π ), and with periodic boundary conditions in the vertical
variable. To present the model, we define the vertical N th Van Cittert deconvolution
operator by DN ,θ = ∑N

i=0 (I − A
−1
3,θ )

i . The vertical ML-α-deconvolution model is
then defined by replacing the nonlinear term in the Navier–Stokes equations (v · ∇)v
by (v · ∇)DN ,θ (v) where v is the velocity, and v = A

−1
3,θ (v) is the smoothed velocity.

We adapt the ideas from (H. Ali, Approximate Deconvolution Model in a bounded
domain with a vertical regularization. J Math Anal Appl 408, 355–363 (2013)) to
prove that the vertical ML-α-deconvolution model which is derived by using A3,θ ,
has a unique weak solution for any θ > 1

2 .

1 Introduction

In this chapter, we consider the deconvolution modified Leray alpha (ML-α-
deconvolution) model with fractional filter acting only in one variable

A3,θ := I + α2θ
3 (−∂3)2θ , 0 ≤ θ ≤ 1, (1)

where θ controls the degree of smoothing in the filter.
This filter is less memory consuming than the classical one (see, e.g., [3, 5, 7, 8]).

Moreover, there is no need to introduce artificial boundary conditions for Helmholtz
operator. It was shown in [4] that the Large Eddy Simulation models which are
derived by using A3,θ for any θ > 1

2 , are well posed. Motivated by this work [4],
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we study the global existence and uniqueness of solutions to the vertical ML-α-
deconvolution model on a bounded product domain of the type D = Ω × (−π ,π ),
where Ω is a smooth domain with homogeneous Dirichlet boundary conditions on
the boundary ∂Ω × (−π ,π ), and with periodic boundary conditions in the vertical
variable. To present the model, we define the vertical N th Van Cittert deconvolution
operator by

DN ,θ =
N∑

i=0

(I − A
−1
3,θ )

i . (2)

The vertical ML-α-deconvolution model is then defined, for some fixed θ > 0, with
a filtering radius α3 > 0, a kinematic viscosity ν > 0, a deconvolution orderN ≥ 0,
and an initial velocity v0 as follows,

∂tv + (v · ∇)DN ,θ (v) − νΔv + ∇p = f , (3)

∇ · v = 0, (4)

v(0) = v0, (5)

where v and p are the velocity and the pressure, v = A
−1
3,θ (v) is the smoothed velocity,

and f is a forcing term.
For simplicity, we consider the domainD={x ∈R

3, x2
1 + x2

2 <d , −π <x3<π}
with 2π periodicity with respect to x3. Therefore, the deconvolution model in this
chapter is chosen to model the flow through a cylinder or a pipe with periodic bound-
ary conditions with respect to x3. We note that the filter is acting only in the vertical
variable, that is why it is possible to require the periodicity only in x3. Moreover, we
consider the unfiltered function with homogeneous Dirichlet boundary conditions
on the boundary ∂D = ∂Ω × (−π ,π ). These boundary conditions of the unfiltered
function are supposed to be the same as the filtered ones, in order to prevent from
introducing artificial boundary conditions. In order to state our main result, let us
define the following spaces:

L2(D) := {v ∈ L2(D)3, 2π -periodic in x3
}
, (6)

H := {v ∈L2(D), such that ∇ · v = 0 and v · n= 0 on ∂Ω × (−π ,π )
}
, (7)

V := {v ∈ H , such that ∇v ∈ L2(D) and v = 0 on ∂Ω × (−π ,π )
}
. (8)

Next, we give a definition of what is called a weak solution to the vertical ML-α-
deconvolution model.

Definition 1 Letf ∈ L2(0, T ;H ) and v0 ∈ H . For any 0 ≤ θ ≤ 1 and 0 ≤ N <∞,
the couple (v,p) is called a weak solution to (3)–(5) if

v ∈ Cw(0, T ;H ) ∩ L2(0, T ;V ), (9)
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and the couple (v,p) fulfills

∫ T

0
〈∂tv,ϕ〉 − 〈DN ,θ (v) ⊗ v,∇ϕ〉 + ν〈∇v,∇ϕ〉 + 〈∇p,ϕ〉 dt

=
∫ T

0
〈f ,ϕ〉 dt for all ϕ ∈ C∞

c ([0, T ] ×D).
(10)

Moreover,

v(0) = v0. (11)

Our main result is the following.

Theorem 1 Assume f ∈ L2(0, T ;H ) and v0 ∈ H . let 0 ≤ N <∞ be a given and
fixed number and let θ > 1

2 . Then problem (3)–(5) has a unique weak solution.
This result holds also true on the whole space R

3 and on the torus T3. The vertical
ML-α-deconvolution withN = 0 becomes the modified Leray alpha (ML-α) model
of turbulence [2, 6] with filter acting only in one variable. Consequently, Theorem
1 gives us also existence and uniqueness of solutions to the vertical ML-α model of
turbulence on the bounded domain D. Other α models, with partial filter, will be
reported in a forthcoming paper.

2 Notation and Auxiliary Result

In this section, we introduce relevant function spaces and we recall an auxiliary result
used in the proof of the main result.

Let 1 < p ≤ +∞ and 1 < q ≤ +∞.We denote by LqvL
p

h (D) = Lq((−π ,+π );
Lp(Ω)) the space of functions g such that (

∫ +π
−π (
∫
Ω
|g(x1, x2, x3)|pdx1dx2)q/pdx3)1/q

< +∞.
We denote by ‖v‖2 := ∫

D
v · v dx the usual norm in L2(D)3.

The following lemma will play an important role [4].

Lemma 1 There exists a positive constant C > 0 such that, for any s > 1
2 and for

any smooth enough divergence-free vector fields u, v, and w, the following estimate
holds,

|((u · ∇)v, w)| ≤ C‖u‖ 1
2
2 ‖∇u‖ 1

2
2

(
‖∇v‖1− 1

2s
2 ‖∂s3∇v‖ 1

2s
2 + ‖∇v‖2

)
‖w‖ 1

2
2 ‖∇w‖ 1

2
2 .

3 The Vertical Filter and the Vertical Deconvolution Operator

In this section, we record some properties of the vertical filter and of the
vertical deconvolution operator. Let v be a smooth function of the form
v = ∑

k3∈Z\{0} ck3 (x1, x2)ei k3x3 . The action of the vertical filter on v(x) =
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∑
k3∈Z\{0} ck3 (x1, x2)ei k3x3 can be written as A3,θ (v) = ∑k3∈Z\{0} Aθ (k3)ck3 (x1, x2)

ei k3x3 , where the symbol with respect to x3 of the vertical filter is given by

Aθ (k3) = (1 + α2θ |k3|2θ
)
. (12)

Therefore, by using the Parseval’s identity with respect to x3 we get,

‖A

1
2
3,θv‖2

2 = ‖v‖2
2 + α2θ‖∂θ3 v‖2

2 = (A3,θv, v
)
. (13)

The deconvolution operator DN ,θ = ∑N
i=0 (I − A

−1
3,θ )

i is constructed by using the
vertical filter with fractional regularization (1). For a fixed N > 0 and for θ = 1, we
recover a vertical operator form from the Van Cittert deconvolution operator.

A straightforward calculation yields

DN ,θ

⎛

⎝
∑

k3∈Z\{0}
ck3 (x1, x2)ei k3x3

⎞

⎠ =
∑

k3∈Z\{0}
DN ,θ (k3)ck3 (x1, x2)ei k3x3 , (14)

where for k3 ∈ Z \ {0} and θ ≥ 0, DN ,θ (k3) verifies:

D0,θ (k3) = 1, (15)

1 ≤ DN ,θ (k3) ≤ N + 1 for each N > 0, (16)

and DN ,θ (k3) ≤ A3,θ for a fixed α > 0. (17)

From the previous hypothesis, one can prove the following Lemma by adapting the
results summarized in the isotropic case in [1]:

Lemma 2 For all s ≥ −1, θ ≥ 0, k3 ∈ Z \ {0} and for each N > 0, there exists a
constant C > 0 such that for all v sufficiently smooth we have

‖v‖s,2 ≤ ‖DN ,θ (v) ‖s,2 ≤ (N + 1)‖v‖s,2, (18)

‖A3,θ
− 1

2D
1
2
N ,θ (v)‖s,2 ≤ ‖v‖s,2, (19)

‖A
− 1

2
3,θ (v)‖2

s,2 = ‖v‖2
s,2 + α2θ

3 ‖∂θ3 v‖2
s,2. (20)

4 Sketch of the Proof of the Main Result

We briefly present the main ideas of the proof of Theorem 1. The proof follows from
the following a priori estimates with a Galerkin method.

For further information, we refer the reader to [1, 4] and the references therein.

Proof Multiplying (3) with DN ,θ (v) integrating over time from 0 to t , for all t ∈
[0, T ], and using standard manipulations lead to the a priori estimate

1

2
‖A

− 1
2

θ D
1
2
N ,θ (v)‖2

2 + ν
∫ t

0
‖∇A

− 1
2

θ D
1
2
N ,θ (v)‖2

2 ds

=
∫ t

0
〈A− 1

2
θ D

1
2
N ,θ (f ), A

− 1
2

θ D
1
2
N ,θ (v)〉 ds + 1

2
‖A

− 1
2

θ D
1
2
N ,θ (v0)‖2

2.

(21)
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By using the duality norm combined with Young inequality and inequality (19), we
conclude from (21) that

sup
t∈[0,T ]

‖A
− 1

2
θ D

1
2
N ,θ (v)‖2

2 + ν
∫ T

0
‖∇A

− 1
2

θ D
1
2
N ,θ (v)‖2

2 dt

≤ ‖v0‖2
2 + C

ν

∫ T

0
‖f ‖2

2 dt.

(22)

We deduce from (22) and (20) that

v and ∂θ3 v ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ). (23)

Thus, it follows from (18) that

DN ,θ (v
n) and ∂θ3DN ,θ (v

n) ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ). (24)

Multiplying (3) with v we conclude that

1

2

d

dt
‖v‖2

2 + ν‖∇v‖2
2 ≤ ∣∣((v · ∇)DN ,θ (v), v

)∣∣+ |〈f , v〉| . (25)

For θ > 1
2 we have

∣∣((v · ∇)DN ,θ (v), v
)∣∣ ≤ C‖v‖2‖∇v‖2

×
(
‖∇DN ,θ (v)‖1− 1

2θ
2 ‖∂θ3 ∇DN ,θ (v)‖ 1

2θ
2 + ‖∇DN ,θ (v)‖2

)

≤ C
(
‖∇DN ,θ (v)‖2− 1

θ

2 ‖∂θ3 ∇DN ,θ (v)‖ 1
θ

2 + ‖∇DN ,θ (v)‖2
2

)

× ‖v‖2
2 + ν

4
‖∇v‖2

2, (26)

where we have used Lemma 1 and the Young inequality.
The second term in right hand side of (25) is estimated by

|〈f , v〉| ≤ C‖f ‖2‖∇v‖2 ≤ C‖f ‖2
2 + ν

4
‖∇v‖2

2. (27)

Thus, (26) and (27) lead to the conclusion that

d

dt
‖v‖2

2 + ν‖∇v‖2
2 ≤

C

(
‖∇DN ,θ (v)‖2− 1

θ

2 ‖∂θ3 ∇DN ,θ (v)‖ 1
θ

2 + ‖∇DN ,θ (v)‖2
2

)
‖v‖2

2 + C‖f ‖2
2.

(28)

Integrating (28) over time from 0 to T and using Gronwall’s Lemma and (24) lead
to the following estimate

sup
t∈[0,T ]

‖v‖2
2 + ν

∫ T

0
‖∇v‖2

2 dt ≤ C. (29)
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We deduce from (29) that

v ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ). (30)

Finally, we check the question of the uniqueness of the solution. Let θ > 1
2 and

let (v1,p1) and (v2,p2) be any weak solutions of (3)–(5) on the interval [0, T ], with
initial values v1(0) and v2(0). Let us denote by δv = v2 − v1 and δDN ,θ (v) =
DN ,θ (v2) − DN ,θ (v1). We subtract the equation for v1 from the equation for v2 and
test it with δv, we formally get:

d

dt
‖δv‖2

2 + ν‖∇δv‖2
2

≤ C‖∇DN ,θ (v1)‖2− 1
θ

2 ‖∂θ3 ∇DN ,θ (v1)‖ 1
θ

2 ‖δv‖2
2 + C‖v2‖2

2‖∇v2‖2
2‖δv‖2

2

(31)

where we have used Lemma 1, theYoung inequality and the fact that ‖∇δDN ,θ (v)‖2 ≤
C‖∇δv‖2 and ‖∇∂θ3 δDN ,θ (v)‖2 ≤ C‖∇δv‖2.

Since ‖∇DN ,θ (v1)‖2− 1
θ

2 ‖∂θ3 ∇DN ,θ (v1)‖ 1
θ

2 + ‖v2‖2
2‖∇v2‖2

2 ∈ L1([0, T ]), we con-
clude by using Gronwall’s inequality the continuous dependence of the solutions on
the initial data in the L∞(0, T ;H ) norm. In particular, if δv0 = 0 then δv = 0 and
the solutions are unique for all t ∈ [0, T ]. �
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Solving the Linear Transportation Problem
by Modified Vogel Method

D. Almaatani, S.G. Diagne, Y. Gningue and P. M. Takouda

Abstract In this chapter, we propose a modification of the Vogel Approximation
Method (VAM) used to obtain near optimal solutions to linear transportation prob-
lems. This method, called Modified Vogel Method (MVM), consists of performing
the row and column reduction of the cost matrix and then applying the classical
Vogel method to the equivalent transportation problem with the reduced cost matrix.
We prove that when no further reduction of a cost matrix is required, we do obtain
an optimal solution, not an approximate one. We identify some cases when such a
behavior occurs and provides rules that allow for fast new reductions and penalty
calculations when needed. The method also allows us to make multiple assignments
of variables. Numerical tests run on small tests show that the MVM over performs
the original one in all instances while requiring comparable computing times. The
tests also support the intuition that the new method provides optimal solutions almost
all the time, making it a viable alternative to the classical transportation simplex.

1 Linear Transportation Problem

The linear transportation problem (LTP) consists in shipping a commodity from
supply centers, called sources, to receiving centers, called destinations, while min-
imizing the total distribution cost. Assuming that we have m sources i = 1, · · · ,m
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and n destinations j = 1, · · · , n, we denote by Cij the cost of shipping one unit of
commodity from source i to destination j , by ai the capacity of source i and by bj
the demand at destination j , Then, the LTP can be formulated as follows.

LTP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min CT =
m∑

i=1

n∑

j=1
Cij Xij

n∑

j=1
Xij = ai ; i = 1, · · ·m

m∑

i=1
Xij = bj ; j = 1, · · · n

Xij ≥ 0 ; i = 1, · · ·m ; j = 1, · · · n

(1)

It is a linear program with n+m constraints and n×m variables, Xij
representing the quantity shipped from source i to destination j . The costs
Ci,j form a matrix C = (Ci,j )i,j called the cost matrix of the problem.

LPT is usually optimally solved using the transportation simplex algorithm (see
[3]). This algorithm has to be provided a starting basic feasible solution. Several
methods exist that compute such starting points. One of the most efficient is the
Vogel Approximation Method (VAM) [6]. Indeed, VAM produces good near optimal
solutions, which reduce the number of iterations that the transportation simplex has
to perform. Assuming for the rest of this chapter that a line in a matrix refers to
either a row and a column in the matrix, the VAM runs as follows. For each line (row
or column) of the cost matrix, compute its penalty, which is the difference between
the two least costs of the line. Then, locate the line with the largest penalty (called
the penalty line), and in that line, look for the lowest shipping cost (this cost is at
the intersection of the penalty line and another one called the complementary line).
Assign to the corresponding variable X the maximum quantity of commodity that
can be shipped at that cost. Update corresponding demand and supply informations.
One of these informations will be updated to 0. The corresponding line is said to be
saturated and is removed from the cost matrix (which is shrinked). The process is
repeated until all the demands have been satisfied. Some additional rules exist that
helps deal with special situations such as the occurrence of several largest penalties
or degeneracy (when the two penalty and complementary lines are saturated at the
same time before the end of the algorithm). The interested reader should refer [6].

Modifications of the original VAM have been proposed, most of them for unbal-
anced transportation problems. For balanced ones, one variant proposed consisting
in modifying the cost matrix as follows: from the cost matrix, obtain the row (re-
spectively column) opportunity cost matrix by subtracting in each row (respectively
column) the smallest cost of the row (column) from all entries in the row (column);
then add the two row and column opportunity cost matrices to obtain a new cost ma-
trix on which the original VAM is applied. In addition, some additional tie-breaking
rules are proposed. These variants are proposed and analyzed in [5] and [7]. Our
modification of the VAM extends the one proposed in [4] and is called the Modified
Vogel Method (MVM).
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The rest of the chapter is organized as follows. Next section presents the MVM.
Then the method is illustrated on an example with four sources and five destinations
in Sect. 3. Numerical tests are presented in Sect. 4 followed by concluding remarks
in Sect. 5.

2 The Modified Vogel Method

The MVM can be described as follows. First, compute the reduced cost matrix, R,
by applying successively a row and a column reduction on the cost matrix C and
define a reduced transportation problem (RTP) by replacing C in LTP by R. Then,
apply the VAM to RTP. At each iteration, the new shrunk matrix is reduced if needed.

A reduced cost matrix has a zero in each line. Therefore, penalties in MVM are
simply the second lowest costs of the line. Due to the row and column reductions, each
entry of the reduced cost matrix already contains information about gaps between
the original costs in each row and column. Hence, the associated Vogel penalties are
qualitatively better than the ones in VAM. Note also that using MVM, we compute
solutions where some of the assigned variables are associated with zero reduced costs
of the LTP. This makes them particularly appealing for the simplex transportation
algorithms [4]. In fact, in several instances, the transportation simplex algorithm [2]
is not needed: MVM is guaranteed to provide the optimal solutions.

Theorem 1 The reduced transportation problem (RTP) is equivalent to the linear
transportation problem (LTP), and if its optimal cost is zero, then the optimal solution
of RTP is optimal for LTP.

Proof The row and column reductions that have been applied to the cost matrix to
obtain the reduced cost matrix are admissible transformations as defined in [1].

At each iteration of MVM, one line of the current reduced matrix is removed.
The remaining shrunk matrix may not be in a reduced form. However, if the highest
penalty is nonzero, the penalty line is saturated, and the penalty of the complementary
line is zero, then, the shrunk cost matrix remains reduced. Indeed, all the lines parallel
to the penalty line are unaltered. They stay reduced, and their penalties are unchanged.
Then, the highest penalty being nonzero, there was only one zero entry on the penalty
and that zero is also on the complementary line. Crossing the penalty do not remove
a zero on the lines parallel to the complementary line. Hence, they stay reduced and
their penalty would change only if their penalty was on crossed line. In such a case,
the new penalty is simply the next smallest nonzero cost. Finally, the complementary
line, since its penalty is 0, had at least two zero entries. Therefore, it has at least one
zero remaining and stays reduced and its penalty has to be recalculated. As a result,
only a few penalties have to be recalculated.

If the penalty of the complementary line was not zero, all the previous remarks
are still valid except for the complementary line which is now not reduced. Again, it
is easy to reduce: subtract its penalty from all the entries. Note that such an operation
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is equivalent to applying an admissible transformation (see [1]) to the reduced cost
matrix to solve an equivalent problem in which the complementary line has a zero
penalty. In summary, when the saturated line is the penalty line, the shrunk matrix
is always reduced, up to an admissible transformation. Hence, the following results
hold.

Theorem 2 During the application of MVM, we have the two following assertions.

1. If no new reduction is necessary during the iterations, the solution obtained is
optimal for LTP.

2. If all the successive line removals are associated to a unique largest penalty, then
LTP is optimal.

Remark 1 The only time we require the use of the transportation algorithm to obtain
the optimal solution is when we have ties for the largest penalty and we had to do
new matrix reduction. In the MVM algorithm, we keep track of the occurrences of
tied largest penalties and new reductions.

The MVM algorithm is hence described as follows.

Modified Vogel Algorithm

Step 0. Compute the reduced cost matrix (R).
Set Nred := 1; TieLpen := 0 and UniqueLpen := 1.

Step 1. Penalty Determination
Determine the penalties pi for each row i and q j for each column j.
Find the largest penalty max{pi,q j} = Lpen.
If there is a tie for the largest penalty then set TieLpen := 1.

Step 2. Assigning Variable
Find a zero reduced cost in the line of Lpen: Rkr . Xkr will be assigned a value.

Step 3. Updating: assign the value of Xkr , updates ak and br .
Eliminate the saturated line (supply or demand fully satisfied)

Step 4. Stopping Test If there is one remaining line then fill it and go to step 6
Step 5. New Reduction of Remaining Matrix

Reduce the remaining matrix then set Nred := Nred +1.
If TieLpen := 1 then set UniqueLpen := 0 and go to step 1.

Step 6. Otpimality Test
If Nred := 1 then the MVM solution is optimal.
elseif UniqueLpen := 1 the MVM solution is optimal.

else
find the dual variables and test the optimality.
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3 Illustrative Example

Let’s illustrate the MVM on the following transportation problem.

1 3 8 7 6 15

8 10 7 9 6 25

2 11 6 8 9 10

5 9 8 7 7 16

10 15 12 14 15

In each row, we identify the smallest cost and subtract it from all the row’s entries.
As a result, there is a zero in each row. We say that the row is reduced. We obtain the
following matrix.

0 2 7 6 5 15

2 4 1 3 0 25

0 91 4 6 7 10

0 4 3 2 2 16

10 15 12 14 15

Since columns 1 and 5 already have a zero, they are already reduced. We reduce
columns 2, 3, and 4 (again by subtracting the least cost in the entry from all the
column’s entries). Then, we compute the penalties for each row (column 7) and
column (row 6) and we start the MVM.

0 0 6 4 5 15 p1 = 0 p1 = 4

2 2 0 1 0 25 p2 = 0 p2 = 0 p2 = 0

0 7 3 4 7 10 p3 = 3

0 2 2 0 2 16 p4 = 0 p4 = 2 p4 = 2

10 15 12 14 15
q1 = 0 q2 = 2 q3 = 2 q4 = 1 q5 = 2

q2 = 2 q3 = 2 q4 = 1 q5 = 2
q3 = 2 q4 = 1 q5 = 2
q3 = 2 q4 = 1 q5 = 2
q3 = 2 q4 = 1



18 P. M. Takouda et al.

Iteration 1 Lpen = 3 leading to X3,1 = 10. No ties for Lpen. Both lines are
saturated. Remove the line of largest penalty (row 3). Then, using the least initial
costs in column 1, assign X11 = 0 and remove column 1. No new reduction needed.

Iteration 2 Lpen = 4 leading to X12 = 15. No ties for Lpen. Both lines are
saturated. Remove the line of largest penalty (row 1). Again, the least initial cost in
column 2 leads to X41 = 0 and remove column 2. No new reduction needed.

Iteration 3 Lpen = 2, and we have a three way tie: row 4, columns 3, 5. Lowest
cost break the tie: assign X25 = 15, remove column 5. No new reduction.

Iteration 4 We assign X44=14 and fill the last line. We obtain the op-
timal solution: X11=0; X12=15; X23=10; X25=15; X31=10; X44=14;
X43=2, with the total cost equal to T C = 339.

The solution is optimal for the LPT since no new reduction was ever required.
Note that in general, we will need to test the optimality by evaluating the dual

variables and the reduced cost for the nonbasic variables.

4 Numerical Tests

We run some tests to compare VAM and MVM. Both codes were written in Java. We
solved two sets of randomly generated LTPs. The first set consists of 12 problems
having the same number (5, 10, 15) of sources and destinations. The second set con-
tains 15 transportation problems with different number of sources and destinations.
There were three to five sources and destinations.

The MVM has outperformed the VAM in all the cases. The improvement rate,
measuring by how much MVM has improved the solution obtained by VAM, ranged
from 0 to 20.92 %. At the same time, MVM has required less computing time: 11.17 s
in average for VAM, compared to 9.72 s for MVM.

In all these problems, the MVM provides a better solution than the VAM. We
noticed also that the MVM solution is optimal when it equals the VAM. This
confirms results from the literature [5,7]: VAM provides an optimal solution at least
80 % of the times [5,7]. Our test suggests that MVM should provide the optimal
solutions in a higher proportion of time. It is our next objective: compare the MVM’s
solutions with LTP optimal ones.

5 Conclusion

We introduced with MVM a new algorithm to compute approximate solutions to LTPs
based onVAM. MVM always outperformsVAM without requiring significantly more
time. It provides qualitatively better starting points to the transportation algorithms.
It is proven to provide optimal solutions in several cases, and this optimality can
be checked directly in the MVM algorithm. In the future, we would like to identify
more of, if not all, the cases where we have a guarantee that MVM provides optimal
solutions. It would allow MVM to become a viable alternative to the transportation
simplex.
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Input-to-State Stability of Large-Scale
Stochastic Impulsive Systems with Time Delay
and Application to Control Systems

M. S. Alwan, X. Z. Liu and W.-C. Xie

Abstract This chapter deals with large-scale nonlinear delay stochastic systems
where the system states are subject to impulsive effects and perturbed by some
disturbance input having bounded energy. The interest is to develop a comparison
principle and establish input-to-state stability (ISS) in the mean square (m.s.) using
vector Lyapunov function and Razumikhin technique. Impulses are being viewed as
perturbation to stable systems, and they have a stabilizing role to unstable systems.

1 Introduction

Technology has been producing a new generation of high-dimensional, structurally
sophisticated dynamical systems, known as large-scale systems. Typically, a large-
scale system is described by a large number of variables, nonlinearities, and
uncertainties. Nowadays, large-scale systems, as a tool, have been used to model
numerous processes in many fields in science and engineering, such as large electric
power network systems, control systems, aerospace systems, solar systems, nuclear
reactors, chemistry, biology, and ecology systems. Readers may consult [5, 8].

A large class of systems in natural science and engineering are subjected to state
changes over short time periods. The durations of these changes are often negligible
when compared to the duration of the system process, so that these changes can be
approximated as instantaneous changes of states or impulses. The resulting systems
are called impulsive systems [4].

If time delay and random noise are considered in the later systems, we are led to
stochastic impulsive systems with time delay [1, 2].
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Input-to-state stability (ISS) is essential in modern nonlinear feedback and con-
trol system design. Generally, ISS studies the response of the forced system to a
disturbance input where the underlying unforced system is asymptotically stable
[3, 6, 7].

2 Problem formulation

Denote by N the set of natural numbers, R+ the set of nonnegative real numbers,
R
n the n-dimensional real space with the Euclidean norm ‖ · ‖, and R

n×m the set
of n × m matrices. If g ∈ R

n×m, its induced norm is ‖g‖ = √trace(gT g). Let
r > 0 be the time delay, C([− r , 0], Rn) (PC([− r , 0], Rn)) be space of continuous
(piecewise continuous) functions φ mapping [− r , 0] into R

n. If x is a function from
[t − r ,∞) to R

n, then xt = x(t + s) for s ∈ [− r , 0] mapping [− r , 0] into R
n, and

‖xt‖r = supt−r≤θ≤t ‖x(θ )‖. Define xt− ∈ PC([− r , 0], Rn) by xt− (s) = x(t + s) for
s ∈ [− r , 0] and xt− (s) = x(t−) for s = 0. Let W (t ,ω) denote an m-dimensional
Wiener process.

Typically, an interconnected system with decomposition Di may have the form

Di :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dwi(t) = fi(t , wit )dt + gi(t , w1
t , w2

t , · · ·, wlt )dt

+∑l
j=1 σij (t , wjt )dWj (t), t �= τk ,

�wi(t) = Ii(t , wi
t− ), t = τk ,

wit0 = φi(s), s ∈ [− r , 0],

(1)

where k ∈ N and i = 1, 2, · · · l for some l ∈ N. wi (or wit ) ∈ R
ni is an ni-dimensional

vector state (or deviated state) and n = ∑l
i ni for some ni ∈ N. fi : R+ × R

ni →
R
ni , gi : R+ × R

n → R
ni , σij : R+ × R

nj → R
ni×mj , m = ∑l

i mi for some
mi ∈ N, Ii : T × R

ni → R
ni with T = {τk| k = 1, 2, · · · } with impulsive moments

0 < τ1 < τ2 < · · · , and limk→∞ τk = ∞, and φi : [− r , 0] → R
ni . Define the

isolated subsystems Si by

Si :

⎧
⎪⎪⎨

⎪⎪⎩

dwi(t) = fi(t , wit )dt + σii(t , wit )dWi(t), t �= τk ,
�wi(t) = Ii(t , wi

t− ), t = τk ,
wit0 = φi(s), s ∈ [− r , 0].

(2)

For x ∈ R
n, let xT = [(w1)T , (w2)T , · · ·, (wl)T ], and define f : R+ × R

n →
R
n by f T (t , xt ) = [f T1 (t , w1

t ), f
T
2 (t , w2

t ), · · ·, f Tl (t , wlt )], g : R+ × R
n → R

n

by gT (t , xt ) = [gT1 (t , xt ), gT2 (t , xt ), · · ·, gTl (t , xt )], σ : R+ × R
n → R

n×m by
σ (t , xt ) = [σij (t , wjt )], W : R+ → R

m by WT = [WT
1 ,WT

2 , · · ·,WT
l ], where

Wi : R+ → R
mi , and impulsive functional I : T × R

n → R
n by IT (t , xt− ) =

[IT1 (t , w1
t− ), IT2 (t , w2

t− ), · · ·, ITl (t , wl
t− )].
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Then, the composite (or interconnected) system can be written in the form S

S :

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = F (t , xt )dt + σ (t , xt )dW (t), t �= τk ,
�x(t) = I(t , xt− ), t = τk ,
xt0 = �(s), s ∈ [− r , 0],

(3)

whereF (t , xt ) = f (t , xt )+g(t , xt ), and�T = [φT1 ,φT2 , · · ·,φTl ] with E[‖�‖2] <∞.

Definition 1 A function α ∈ C(R+; R+) is said to belong to K (briefly, α ∈ K) if
α(0) = 0 and it is strictly increasing; it is said to belong to K1 (or K2) if α ∈ K and it
is convex (or concave). A function β ∈ C([0, a) ×R+; R+) is said to belong to class
KL if, for each fixed s, the mapping β(·, s) ∈ K, and, for each fixed r , the mapping
β(r , ·) is decreasing and β(r , s) → 0 as s → ∞.

Definition 2 System (3) is said to be ISS in mean square (m.s.) if there exist
functions β ∈ KL and γ ∈ K such that, for any xt0 and bounded input u, the solution
x satisfies

E[‖x(t)‖2] ≤ β(E[‖xt0‖2
r ], t − t0)+ γ

(
sup
t0≤θ≤t

‖u(θ )‖).

If, moreover, β(E[‖xt0‖2
r ], t−t0) = KE[‖xt0‖2

r ]e
−λ(t−t0), for some positive constants

K and λ, then system (3) is said to be exponential ISS in the m.s.

Definition 3 The isolated subsystem Si in (2) is said to possess Property A if there
exist functions ci ∈ K1 and ai ∈ C([τk−1, τk) × R+ × R

q ; R), where ai(t , v, u) is
concave in v for all t ∈ R+ and u ∈ PC(R+; R

q), and lim(t ,y,v)→(τ−k ,x,u) ai(t , y, v) =
ai(τ

−
k , x, u), and V i ∈ C

1,2([− r ,∞) × R
n; R+), which is decrescent and satisfies

(i) ∀(t ,ψi(0)) ∈ [− r ,∞) × R
n, ci(‖ψi(0)‖2) ≤ V i(t ,ψi(0)), (a.s.), and, ∀t �= τk ,

ψi ∈ PC([− r , 0]; R
n), and u ∈ PC(R+; R

q),

LiV i(t ,ψi , u) ≤ ai(t ,V i(t ,ψi(0)), u(t)), (a.s.),

provided that V i(t + s,ψi(s)) ≤ q̄V (t ,ψi(0)) for some q̄ > 1 and s ∈ [− r , 0];
(ii) for any τk ∈ T and ψi ∈ PC([− r , 0]; R

n),

V i(τk ,ψ
i(0) + Ii(τk ,ψi(τ−k ))) ≤ α(dk)V

i(τ−k ,ψi(0)), (a.s.),

where ψi(0−) = ψi(0) and
∏∞
k=1 α(dk) <∞ with α(dk) > 1 for all k.

3 Main results

Theorem 1 Comparison principle. Assume that the following assumptions hold:

(i) Every isolated subsystem Si has Property A;
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(ii) For any i = 1, 2, · · ·, l, there exist a function b̄i ∈ C([τk−1, τk) × R+ × R
q ; R)

and b̄i is quasi monotone nondecreasing such that

gTi (t ,ψ , u)V i
ψi (0)(t ,ψ

i(0)) + 1

2

l∑

j=1,i �=j
tr[σTij (t ,ψj , u)

× V i
ψi (0)ψi (0)(t ,ψ

i(0))σij (t ,ψ
j , u)] < b̄i(t ,V (t ,ψ(0)), u),

where V T (t , x) = (V 1(t , w1), · · ·,V l(t , wl));
(iii) Let aT (·) = (a1(·), a2(·), · · ·, al(·)) and b̄T (·) = (b̄1(·), b̄2(·), · · ·, b̄l(·)), where
ai(·) and b̄i(·) are defined in (i) and (ii), respectively, and assume that

|a(t , v′, u′) + b̄(t , v′, u′)|2 ≤ h1(t) + h2(t)κ(‖v′‖2),

|a(t , v′, u′) + b̄(t , v′, u′) − a(t , v′′, u′′) − b(t , v′′, u′′)| ≤ K(‖v′ − v′′‖ + ‖u′ − u′′‖),
where t ∈ R+, h1 and h2 are PC(R+, R+) functions, κ : R+ → R+ is continuous,
increasing, concave function, v′ and v′′ ∈ R

l+, u′ and u′′ ∈ R
q , and K > 0;

(iv) There exists a function p : R+ × R
l × R

q → R such that

sup
V (t ,x)≤v

l∑

i,j=1

‖σTij (t ,ψj , u)Vψi (0)i (t ,ψi (0))(t ,ψ
i(0))‖2 ≤ p(t , v, u)

≤ h2(t)κ(‖v‖2) + γ (‖u‖).

Then, V (t0, x0) < v0 implies that V (t , x(t)) < v(t) = (v1, · · ·, vl)T , where
⎧
⎨

⎩
dv = [a(t , v, u) + b̄(t , v, u)]dt + VdW (t), ∀ t ≥ t0, t �= τk ,
�v(t) = αM (dk)v(t−), t = τk ,

(4)

with V = [vij ]l×l , ‖V‖2 ≤ p(t , v, u), and αM (·) = maxi{αi(·)}.
Proof Define V T (t , x(t)) = (V 1(t , w1), · · ·,V l(t , wl)), where V i is the Lyapunov
function of ith subsystem. Then, dV T (t , x(t)) = (dV 1(t , w1), · · ·, dV l(t , wl)), where

dV i(t , wi) < [ai(t ,V
i(t , wi), u) + bi(t ,V i(t , wi), u)]dt +

l∑

ij

yij dWi(t),

with yij = V iT
wi

(t , wi)σij (t , wjt , u). It follows that, for all t ∈ [τk−1, τk), k = 1, 2, · · · ,

dV (t , x(t)) < [a(t ,V (t , x(t)), u(t)) + b(t ,V (t , x(t)), u(t))]dt + YdW (t).
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At t = τk , one can get V T (t , x(t)) ≤ αM (dk)V T (t−, x(t−)). Particularly, for t ∈
[τ0, τ1), we have V i(t0, wi(t0)) < y0 and

dV i(t , wi)−dyi <
{
[ai(t ,V

i(t , wi), u)−ai(t , yi , u)]+[bi(t ,V
i(t , wi), u)−bi(t , yi , u)]

}
dt.

By Theorem 4.5.2 in [5], V i(t , wi(t)) < yi(t) ∀t ∈ [τ0, τ1), and, at t = τ1, we have

V i(τ1, wi(τ1))− yi(τ1) < αM (dk)
[
V i(τ−1 , wi(τ−1 )) − yi(τ−1 )

]
< 0,

i.e., V i(τ1, wi(τ1)) < yi(τ1). Similarly, for k = 1, 2, · · · and t ∈ [τk−1, τk),
V i(t , wi(t)) < yi(t) and, at t = τk , V i(τk , wi(τk)) < yi(τk). Therefore, for all
t ≥ t0, and i = 1, 2, · · ·, l, Vi(t , wi(t)) < yi(t), which implies that V (t , x(t)) < y(t),
∀ t ≥ t0, as required.

Theorem 2 Stability results. Suppose that the assumptions of Theorem 1 hold,
and there exist α ∈ K2, c ∈ K1, a function h̄ ∈ C([τk , τk−1) × R

l ; R+), z ∈ R
l , and

U ∈ C
1,2([τk , τk−1) × R

l : R+) which is decrescent, U (t , 0) = 0, and satisfies

(i) For all t ∈ R+ and y ∈ PC(R+; R
l), α(‖y‖2) ≤ U (t , y), zT Uyy(t , y)z ≤

h̄(t , y)‖z‖2, and

Ut (t , y) + Uy(t , y)[a(t , y, u) + b(t , y, u)] + 1

2
h(t , y)p(t , y, u) ≤ −c(‖y‖)

whenever ‖y‖ > V i(t , wi) ≥ ρ(‖u‖) for some ρ ∈ K and i;
(ii) For any τk ∈ T and y ∈ PC(R+; R

l), U (τk , y(τk)) = α(dk)U (τ−k , y(τ−k )).

Then, comparison system (4), and hence composite system (3) are ISS in m.s.

Proof Let y ≥ 0 be the solution of (4). Applying the Itô formula to U gives

LU (t , y, u) ≤ −c(‖y‖), whenever ‖y‖ ≥ ρ(‖u‖).

By the previous analysis, (4) has the desired stability property. As for the composite
system (3), we have shown in Theorem 1 that V (t , x(t)) < y(t) holds for all t ≥ t0,
and, from (i), we obtain ‖y‖ > ‖V (t , x)‖ ≥ V i(t , wi) ≥ ρ(‖u‖). It follows that

c(‖x(t)‖2) ≤ [
l∑

i=1

c2
i (‖wi‖2)

]1/2 ≤ ‖V (t , x(t))‖ < ‖y(t)‖, c ∈ K1.

Taking the mathematical expectation and applying c−1 implies the desired result.

3.1 Application. Control system

Example 1 Consider the control system, which describes the longitudinal motion
of an aircraft. This example is a modification of Example 4.6.1 in [5].
⎧
⎨

⎩
dx = Axdt + bf (y)dt + σ11(x(t − 1))dW1 + σ12(y)dW2, t �= τk ,
dy = (− ζy − ξf (y) + u)dt + aT xdt + σ21(x)dW1 + σ22(y(t − 1))dW2, t �= τk ,

(5)



26 M. S. Alwan et al.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

E[||x(t)||2]

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

E[||x(t)||2]

Fig. 1 Mean square input-to-state stability (left) and stabilization (right) of (xT, y)T where u(t) =
sin (t).

where xT = (x1, x2, x3, x4) is the system state, y ∈ R is the controller (i.e., n1 =
4, n2 = 1), A ∈ R

4×4, b ∈ R
4, ζ , ξ ∈ R, f ∈ R is continuous for all y ∈ R,

f (y) = 0 if and only if y = 0, and 0 < yf (y) < k|y|2 for all y �= 0 and k > 0,
u ∈ R, a ∈ R

4, σ11 ∈ R
4×4, σ12 ∈ R

1×1, σ21 ∈ R
4×1, σ22 ∈ R

1×1, W1 ∈ R
4, and

W2 ∈ R. Let

A =

⎛

⎜⎜⎜⎜⎜
⎝

−5 0 0 0

0 −6 0 0

0 0 −8 0

0 0 0 −10

⎞

⎟⎟⎟⎟⎟
⎠

, σ11 = 0.01

⎛

⎜⎜⎜⎜⎜
⎝

sin x1(t − 1) 0 x2(t−1)
1+x2

4
0

0 x2(t−1)
1+x2

1
0 −x2

3 (t − 1)

0 0 x3(t − 1) 0

0 0 0 −x4(t − 1)

⎞

⎟⎟⎟⎟⎟
⎠

,

bT = (1, 1, 1, 1), aT = (1, 1, 1, 1), ζ = 5, ξ = 2, σ12 = 0.01y
1+y2 , σT21 = 0.01

(x2, x1, x4, x3), σ22 = 0.01 sin y(t −1), and u(t) = sin (t). The impulses are given by
⎧
⎨

⎩
�x(τk) = I1(τk , x(τ−k )) = 1

k2 (− 2x1(τ−k ),−2x2(τ−k ), 2x3(τ−k ), 0)T ,

�y(τk) = I2(τk , y(τ−k )) = − 1
1+k2 y(τ−k ).

(6)

Let V 1(x) = ‖x‖2 and V 2(y) = y2. One can show the conditions are satisfied
with τk+1 − τk ≥ 0.6 [2], i.e., (xT, y)T ≡ (0T , 0) is exponentially stable in the m.s.
Applying the disturbance u(t) = sin (t), the composite system is ISS in m.s. See
Fig. 1 (left).
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Example 2 Reconsider the control composite continuous system (5) with unstable
state subsystem in which the entry a11 of matrixA is changed to 5, and the impulsive
difference equations are defined by �x(τk) = − 5

4x(τ−k ),�y(τk) = − 5
4y(τ−k ). Then,

one gets τk − τk−1 < 0.33 for all k. That is, the solution has been stabilized by the
impulsive effects. See Fig. 1 (right).
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Replicator Dynamics of Axelrod’s Norms Games

Michael Andrews, Edward Thommes and Monica G. Cojocaru

Abstract We create pure strategy versions of Robert Axelrod’s well-known norms
and metanorms games. Our findings show that the only evolutionarily stable strategy
(ESS) in the norms game is one in which a player defects and is lenient. This result
is derived using classic game theoretical tools, and we conclude that Axelrod’s orig-
inal statement that the norms game always collapses holds. The metanorms game,
however, has two evolutionarily stable strategies. The first is a repeat from the norms
game, while the other is one in which a player follows the norm and punishes those
who are lenient and those who defect.

1 Introduction

In a social setting, a norm can be defined as an established set of rules or behaviors
that individuals are expected to follow, and be punished for not following [2]. The
concept of social norms has become an increasingly popular topic over the last two
decades, given that they are an essential part of group living [3–5, 12]. Thus, studying
norms and their establishment in a society may allow us to understand group behavior
on a more fundamental level [8]. Axelrod first introduced a game-theoretic approach
to the social sciences [1], and in his well cited paper [2], he constructs two n-player
evolutionary games that seek to model the establishment of norms.

The goal of evolutionary game theory is to model the behavior of an evolving
population of players from generation to generation. Much like classical game theory,
an evolutionary approach involves a player employing a chosen strategy in some
contest against one or more adversaries. The rules of this contest, or game, dictate
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⎛⎜⎜⎜⎜⎜⎝

NP NL DP DL
NP 0 0 CE+H CE+H
NL 0 0 H H
DP T

NPop +CP T
NPop

T
NPop +CP+CE+H T

NPop +CE+H

DL T
NPop +CP T

NPop
T
NPop +CP+H T

NPop +H

⎞⎟⎟⎟⎟⎟⎠

the payoff, or fitness, each player receives when these strategies are played against
one another.

Axelrod chose to analyze his norms games using agent-based model (ABM) sim-
ulations [2]. In his original game, the norms game, players in a population (of
constant size NPop) can choose to defect, and also choose to punish those they have
seen defecting. Players who defect not only receive a temptation payoff of 3 (T = 3)
but also have a chance of being caught (C), which is chosen to be uniform between
0 and 1. We decide to use the expected value of this variable (C = 0.5) in our anal-
ysis. The players who are caught have a chance of being punished for a payoff of
−9 (P = −9) by all of those who see them. However, each player that chooses to
punish must pay an enforcement cost of −2 (E = −2). Players that do not defect
(i.e., follow the norm) will get hurt by all those that do, receiving a payoff of −1
(H = −1) each time.

In this game, players choose to defect or punish based on their boldness (B) and
vengefulness (V ), respectively. A high boldness corresponds to a high probability of
a player defecting, and a high vengefulness corresponds to a high probability of a
player punishing another player they have seen defecting.

Recently, Axelrod’s games have been subject to more rigorous testing, once again
using the approach ofABM simulations. For examples of this, see Mahmoud et al. [9],
and Galan and Izquierdo [6]. In our work, we recreate Axelrod’s norm establishment
games using a pure strategy analytical approach. We begin in Sect. 2 by utilizing
these pure strategy mechanics to analyze Axelrod’s norms game. Then, in Sect. 3,
we take a similar approach with Axelrod’s metanorms game. We then end in Sect. 4
with discussion and concluding remarks.

2 Evolutionary Norms Game

We can view Axelrod’s norms game as one with four possible pure strategies to
play. These are to follow the norm and punish (NP), follow the norm and be lenient
(NL), defect and punish (DP ), and defect and be lenient (DL). The payoff matrix
corresponding to this game can be written as follows if we consider a scenario where
two players from the population play against one another

We note that this game is symmetric. That is, all players have the same strategy set
and payoffs. We also note that defectors receive a payoff of T

NPop
. This reflects Axel-

rod’s construction of his game, where instead of two players competing against each
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other, one player will play against the entire population. For example, in his simula-
tions, it is possible for a defector to be punished by all other players at once. If this
happens, the payoffs of this game dictate that the defector will obtain the full temp-
tation payoff T, but also receive punishment from every other player, (NPop − 1)P .
We choose to replaceNPop −1 withNPop, which will become a better approximation
when NPop is large. In fact, this approximation, even with Axelrod’s relatively small
original population size of 20, does not significantly change our results.

2.1 Replicator Dynamics of the Norms Game

In this section, we analyze the matrix game above using the continuous replicator
equations [15].

The payoffs corresponding to each of the four possible strategies are

πNP =H (SDP + SDL)NPop + CE(SDP + SDL)NPop (1)

πNL =H (SDP + SDL)NPop

πDP = T + CP(SNP + SDP)NPop + CE(SDP + SDL)NPop +
H (SDP + SDL)NPop

πDL = T + CP(SNP + SDP)NPop +H (SDP + SDL)NPop,

where SNP is the fraction of the population that plays strategy NP, SNL is the fraction
of the population that plays strategy NL and so forth. Our differential equation
system then looks as follows:

ṠNP = SNP[πNP − π̄ ]

ṠNL = SNL[πNL − π̄ ]

ṠDP = SDP[πDP − π̄ ]

ṠDL = SDL[πDL − π̄ ] (2)

with π̄ denoting the average payoff of the population in a given state. Also, we note
that SNP + SNL + SDP + SDL = 1, with each fraction taking values between 0 and
1. In order to remain consistent with Axelrod [2], we wish to convert our strategies
into the terms of vengefulness and boldness. Thus, we define V = SNP + SDP and
B = SDP + SDL. Moreover, we apply the fact that all fractions sum to 1 and obtain
the relation

SNL = 1 − V − B + SDP.

Our differential equation system (3) transforms into

Ḃ = SDPBCENPop + BT + BVCPNPop − B2VCENPop − B2T − B2VCPNPop
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V̇ = VBCENPop − V 2BCENPop − VBT − V 2BCPNPop + SDPT + SDPVCPNPop

ṠDP = −SDP(−T − CPVNPop − CEBNPop + VBCENPop + BT + BVCPNPop),
(3)

with the constraints

0 ≤ B + V − SDP ≤ 1 (4)

0 ≤ B − SDP ≤ 1

0 ≤ V − SDP ≤ 1

0 ≤ B,V , SDP ≤ 1

We find from using both analytic results and observing simulations of this system
that the only locally asymptotically stable equilibrium point corresponds to B = 1,
V = 0, SDP = 0. This equilibrium directly corresponds to the population playing
strategyDL. By the folk theorem of evolutionary game theory [7], we claim that this
state is a Nash equilibrium [10, 11]. Moreover, by using the game’s payoff matrix
we observe that DL is a strict Nash equilibrium. Once again by the folk theorem, it
is thus locally asymptotically stable under the replicator dynamics (3). We see that
DL is an evolutionarily stable strategy (ESS) [13, 14].

Using the definition of an ESS along with our norms game payoff matrix and the
folk theorem, we see that the population playing strategyDL is in fact evolutionarily
stable. Thus, we have verified Axelrod’s original claim which he gathered from his
simulation results by using a classical game theory approach.

3 Evolutionary Metanorms Game

We now consider Axelrod’s second game, his so-called metanorms game. In this
version, players have similar strategies and payoffs as the norms game, but now
also have the opportunity to punish a non-punisher, provided that they are seen not
punishing. Axelrod makes the assumption that a player who will punish a defector
will also punish a non-punisher. Similarly, a player who is lenient toward defectors
will also be lenient toward non-punishers. We note that without these restrictions,
the metanorms game ESS dynamics break down to be identical to that of the norms
game.

The payoffs for the metanorms game are as follows. The punishment a player
receives for being lenient toward defectors is denoted P ′, and the enforcement cost
associated with punishing non-punishers is E′. Similar to Axelrod’s research, we
simply use P ′ = P and E′ = E. The symmetric game matrix for the metanorms
game is then:

We note here that in the payoff matrices for both the norms and metanorms games,
the addition of the payoff H in the DP and DL columns does not impact either the
ESS structure or the replicator dynamics in any way. Thus, identical results would
be obtained if H is removed entirely.
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⎛⎜⎜⎜⎜⎜⎝

NP NL DP DL
NP 0 CE ′ CE+H CE+CE ′ +H
NL CP′ 0 CP′ +H H
DP T

NPop +CP T
NPop +CE ′ T

NPop +CP+CE+H T
NPop +CE+CE ′ +H

DL T
NPop +CP+CP′ T

NPop
T
NPop +CP+CP′ +H T

NPop +H

⎞⎟⎟⎟⎟⎟⎠.

3.1 Replicator Dynamics of the Metanorms Game

Using the same process and change of variables as in the regular norms game, we
obtain the same feasible region (4), and our differential equation system in terms of
V , B, and SDP becomes

Ḃ =SDPCENPop − VBCENPop + SDPBCENPop − SDPVCENPop + BVCPNPop −
SDPVCPNPop + V 2BCPNPop + V 2BCENPop −
B2VCENPop − B2VCPNPop + BT − B2T

V̇ = − CPV 2NPop + CPV 3NPop + CEV 3NPop + CEVNPop − 2CEV 2NPop −
VBT + VBCENPop + SDPVCPNPop − V 2BCPNPop −
V 2BCENPop + SDPT

ṠDP = − SDP(−CENPop − T − CPV 2NPop − CEBNPop + 2CEVNPop −
CEV 2NPop + VBCENPop + BVCPNPop + BT ) (5)

In this game, analytic results and simulations of the system show that bistability exists
between two locally asymptotically stable equilibrium points. These correspond to
pointsB = 1,V = 0, SDP = 0 andB = 0,V = 1, SDP = 0. By the folk theorem [7],
we state that these strategies are Nash equilibria. Moreover, from the payoff matrix
we can see that NP andDL are strict Nash equilibria and thus locally asymptotically
stable under (3.1) and are therefore both ESS’s.

Again, we bring quantitative evidence that supports Axelrod’s original claims on
the behavior of his metanorms game. In this case, we show that two evolutionarily
stable states exist.

4 Discussion and Conclusions

We have reanalyzed Axelrod’s norms and metanorms games using a pure strategy
game theoretical approach. We have found from using this analysis that one ESS
exists in the norms game corresponding to a complete norm collapse. We also note
that an equilibrium in which the boldness of a population is 0, or there is a mix of
strategies NL and NP being played, is unstable and will ultimately lead to a norm
collapse over time.
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In addition, Axelrod’s metanorms game has two ESSs. The first is a repeat from
the norms game, that is, a player defects and is always lenient. The other is one in
which a player follows the norm and punishes those who are lenient and those who
defect. Given certain initial conditions, the population of players can either evolve
to a state in which the norm collapses, or to a state in which the norm is established.
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Computing Least Squares Condition Numbers
on Hybrid Multicore/GPU Systems

M. Baboulin, J. Dongarra and R. Lacroix

Abstract This chapter presents an efficient computation for least squares condition-
ing or estimates of it. We propose performance results using new routines on top
of the multicore-GPU library MAGMA. This set of routines is based on an efficient
computation of the variance–covariance matrix for which, to our knowledge, there
is no implementation in current public domain libraries LAPACK and ScaLAPACK.

1 Introduction

Linear least squares (LLS) is a classical linear algebra problem in scientific comput-
ing, arising for instance in many parameter estimation problems [5]. We consider
the overdetermined full rank linear least squares problem minx∈Rn‖Ax − b‖2, with
A ∈ R

m×n,m ≥ n and b ∈ R
m.

In addition to computing LLS solutions efficiently, an important issue is to assess
the numerical quality of the computed solution. The notion of conditioning provides
a theoretical framework that can be used to measure the numerical sensitivity of a
problem solution to perturbations. Similarly to [2, 3], we suppose that the perturba-
tions on data are measured using the Frobenius norms for matrices and the Euclidean
norm for vectors. Then we can derive simple formulas for the condition number of
the LLS solution x or its components using theR factor (from the QR decomposition
of A), the residual and x. We can also use the variance–covariance matrix.
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In this chapter, we propose algorithms to compute LLS condition numbers in a
computational time that is affordable for large-scale simulations, in particular using
the variance–covariance matrix. We also compute statistical condition estimates that
can be obtained cheaply (O(n2) operations) and with a satisfying accuracy using
an approach similar to [6, 8]. For these algorithms, we describe an implementa-
tion for LLS conditioning using the MAGMA library [4, 10], which is a dense
linear algebra library for heterogeneous multicore-GPU architectures with inter-
face similar to LAPACK. Our implementation takes advantage of current hybrid
multicore-GPU systems by splitting the computational work between the GPU and
the multicore host. We present performance results, and these results are compared
with the computational cost for computing the LLS solution itself.

2 Closed Formulas and Statistical Estimates

In this section, we recall some existing formulas to compute or estimate the condition
number of an LLS solution x or of its components. We suppose that the LLS problem
has already been solved using a QR factorization (the normal equations method is
also possible but the condition number is then proportional to cond(A)2). Then the
solution x, the residual r = b−Ax, and the factorR ∈ R

n×n of the QR factorization
of A are readily available.

From [3], we obtain a closed formula for the absolute condition number of the
LLS solution as

κLS = ‖R−1‖2
(‖R−1‖2

2‖r‖2
2 + ‖x‖2

2 + 1
) 1

2 , (1)

where x, r and R are exact quantities.
We can also compute κLS , statistical estimate of κLS that is obtained using the

condition numbers of zTi x where z1, z2, ..., zq are q random orthogonal vectors of
R
n, obtained for instance via a QR factorization of a random matrix Z∈R

n×q . The
condition number of zTi x can be computed using the expression given in [3] as

κi =
(‖R−1R−T zi‖2

2‖r‖2
2 + ‖R−T zi‖2

2(‖x‖2
2 + 1)

) 1
2 . (2)

Then κ̄LS is computed using the expression κ̄LS = ωq

ωn

√∑q

j=1 κ
2
j withωq =

√
2

π (q− 1
2 )
.

As explained in [6], choosing q = 2 random vectors enables us to obtain a satisfying
accuracy.

By considering in Eq. (2) the special case where zi = ei where ei is a canonical
vector of R

n, we can express the condition number of the component xi = eTi x in
Eq. (3). Then we can calculate a vector κCW ∈ R

n with components κi being the
exact condition number of xi and expressed by

κi =
(‖R−1R−T ei‖2

2‖r‖2
2 + ‖R−T ei‖2

2(‖x‖2
2 + 1)

) 1
2 . (3)

We can also find in [6, 8] a statistical estimate for each κi .
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3 Variance–Covariance Matrix

In many physical applications, LLS problems are expressed using a statistical model
often referred to as linear statistical model where we have to solve

b = Ax + ε, A ∈ R
m×n, b ∈ R

m,

with ε being a vector of random errors having expected value 0 and variance-
covariance σ 2

b I . The matrixA is called the regression matrix and the unknown vector
x is called the vector of regression coefficients. Following the Gauss–Markov theo-
rem [11], the least squares estimate x̂ is the linear unbiased estimator of x satisfying
x̂ = argminx∈Rn‖Ax − b‖2,

with minimum variance–covariance equal to
C = σ 2

b (ATA)−1.
The diagonal elements cii of C give the variance of each component x̂i . The

off-diagonal elements cij , i �=j give the covariance between x̂i and x̂j . Then in-
stead of computing condition numbers (which are notions more commonly handled
by numerical linear algebra practitioners) physicists often compute the variance-
covariance matrix whose entries are intimately correlated with condition numbers κi
and κLS mentioned previously.

When the variance–covariance matrix has been computed, the condition numbers
can be easily obtained. Indeed, we can use the fact that

∥∥R−1
∥∥2

2 = ‖C‖2
σ 2
b

, ‖R−T ei‖2
2 =

cii
σ 2
b

, and ‖R−1R−T ei‖2 = ‖Ci‖2
σ 2
b

where Ci and cii are respectively the ith column and

the ith diagonal element of the matrix C. Then by replacing respectively in Eqs. (1)
and (3), we get the formulas

κLS = ‖C‖1/2
2

σ b
((m− n)‖C‖2 + ‖x‖2

2 + 1)1/2, (4)

and

κi = 1

σ b
((m− n)‖Ci‖2

2 + cii(‖x‖2
2 + 1))1/2. (5)

Note that, when m > n, 1
m−n ‖r‖2

2 is an unbiased estimate of σ 2
b [7, p. 4].

4 Implementation Details

We developed a set of routines that compute the following quantities using the
MAGMA library (release 1.2.1):

• Variance–covariance matrix C
• κLS , condition number of x
• κCW , vector of the κi , condition numbers of the solution components
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• κ̄LS , statistical estimate of κLS
• κ̄CW , vector of the statistical estimates κi

The variance–covariance computation requires inverting a triangular matrix and mul-
tiplying this triangular matrix by its transpose (similarly to the LAPACK routine
DPOTRI [1, p. 26] that computes the inverse of a matrix from its Cholesky factor-
ization). These operations use a block algorithm, which, for the diagonal blocks,
is performed recursively. The recursive part is performed by the CPU for sake of
performance while the rest of the algorithm is executed on the GPU.

The computation of the exact condition number κLS from the variance–covariance
using Eq. (4) involves the computation of the spectral norm of C which is generally
computed via an SVD. However, since A is a full-rank matrix, C is symmetric
positive definite and its singular values coincide with its eigenvalues. Then we use
an eigenvalue decomposition of C which is faster than an SVD because it takes into
account the symmetry of C. The tridiagonalization phase is performed on the GPU
while the subsequent eigenvalue computation is performed on the CPU host.

The statistical estimates require the generation and orthonormalization of random
vectors followed by two triangular solves. The random generation and the triangular
solves are performed on the GPU. The orthonormalization is performed on the CPU
because it is applied to small matrices (small number of samples).

5 Performance Results

Our experiments have been achieved on a multicore processor Intel Xeon E5645
(2 sockets × 6 cores) running at 2.4 GHz (the cache size per core is 12 MB and
the size of the main memory is 48 GB). This system hosts two GPU NVIDIA Tesla
C2075 running at 1.15 GHz with 6 GB memory each. MAGMA was linked with
the libraries MKL 10.3.8 and CUDA 4.1, respectively, for multicore and GPU. We
consider random LLS problems obtained using the method given in [9] for generating
LLS test problems with known solution x and residual norm.

We plot in Fig. 1, the CPU time to compute LLS solution and condition numbers
using 12 threads and 1 GPU. We observe that the computation of the variance–
covariance matrix and of the components conditioning κi are significantly faster than
the cost for solving the problem with respectively a time factor larger than 3 and 2,
this factor increasing with the problem size. The κi are computed using the variance-
covariance matrix via Eq. (5). The time overhead between the computation of the κi
and the variance–covariance computation comes from the computation of the norms
of the columns (routine cublasDnrm2) which has a nonoptimal implementation.

As expected, the routines SCE_LLS and SCE_LLS_CW that compute statistical
condition estimates for the solution and all solution components, respectively, outper-
form the other routines. Note that we did not mention on this graph the performance
for computing κLS using Eq. (4). Indeed this involves an eigenvalue decomposi-
tion of the variance–covariance matrix (MAGMA routine magma_dsyevd_gpu),
which turns out to be much slower than the LLS solution (MAGMA routine
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Fig. 1 Performance for computing LLS condition numbers with MAGMA

magma_dgels3_gpu) in spite of a smaller number of flops (O(n3) vs O(mn2)) which
shows that having an efficient implementation on the targeted architecture is essential
to take advantage of the gain in flops.

We can illustrate this by comparing in Fig. 2 the time for computing an LLS solu-
tion and its conditioning using LAPACK and MAGMA. We observe that MAGMA
provides faster solution and condition number but, contrary to LAPACK, the com-
putation of the condition number is slower than the time for the solution, in spite of
a smaller flop count. This shows the need for improving the Gflop/s performance of
eigensolvers or SVD solvers for GPUs, but it also confirms the interest of considering
statistical estimates on multicore-GPU architectures to get fast computations.

6 Conclusion

We proposed new implementations for computing LLS condition numbers using
the software libraries LAPACK and MAGMA. The performance results that we
obtained on a current multicore-GPU system confirmed the interest of using statistical
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Fig. 2 Time for LLS solution and condition number

condition estimates. New routines will be integrated in the next releases of LAPACK
and MAGMA to compute the variance–covariance matrix after a linear regression.
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Coupled Spin Torque Nano-Oscillators: Stability
of Synchronization

K. Beauvais, A. Palacios, R. Shaffer, J. Turtle, V. In and P. Longhini

Abstract In this work we explore the use of spin torque nano-oscillators (STNOs)
to produce a spintronics voltage oscillator in the microwave range. STNOs are quite
small—on the order of 100 nm—and frequency agile. However, experimental results
till date have produced power outputs that are too small for practical use. We attempt
to increase power output by investigating the dynamics of a system of electrically-
coupled STNOs. Transverse Lyapunov exponents are used to quantitatively measure
the local stability of synchronized limit cycles. The synchronized solution is found
to be stable for a large region of two-parameter space. However, a two-parameter
bifurcation diagram reveals a competing out-of-phase solution, causing bistability.

1 Introduction

Spin torque nano-oscillators (STNO) are a ferromagnet-based electronics compo-
nent. In certain steady states, the magnetic moment precesses causing component
resistance to oscillate [12]. Based on this oscillating resistance, an STNO can be uti-
lized as a microwave-range voltage oscillator (see Fig. 1). However, STNOs tested
till date have yet to produce adequate power. STNOs need to output at least 1 mW to
be applicable [11]. The microwave power generated by an STNO was first measured
in 2010 on the order of 1 nW [5]. One solution to increasing power is to electri-
cally couple multiple oscillators. However, in experiments it has been proven that it
is difficult to synchronize even two STNOs [8]. Thus, we have begun to study the
dynamics of coupled STNOs to determine conditions for synchronization. In this
chapter we describe the model in Cartesian coordinates and then project to complex

A. Palacios ( ) · K. Beauvais · R. Shaffer · J. Turtle
Nonlinear Dynamical Systems Group, Department of Mathematics,
San Diego State University, San Diego, CA 92182, USA
e-mail: apalacios@mail.sdsu.edu

V. In · P. Longhini
Space and Naval Warfare Systems Center, Code 2363, 53560 Hull Street,
San Diego, CA 92152-5001, USA

© Springer International Publishing Switzerland 2015 43
M. G. Cojocaru et al. (eds.), Interdisciplinary Topics in Applied Mathematics, Modeling
and Computational Science, Springer Proceedings in Mathematics & Statistics 117,
DOI 10.1007/978-3-319-12307-3_7



44 K. Beauvais et al.

Fig. 1 Series arrayed STNOs
with input current IDC and
output resistance Rc. The
fixed ferromagnetic layer is
green with magnetic moment
M. The free ferromagnetic
layer is red and its magnetic
moment is modeled by m

stereographic coordinates. Next, we numerically analyze the local stability of syn-
chronized limit cycles using transverse Lyapunov exponents (TLE). Following TLEs,
we investigate global behavior by creating a two-parameter bifurcation diagram.

2 The Model

Magnetization in the free ferromagnetic layer is described by the Landau–Lifshitz
equation with Gilbert damping and Slonczewski–Berger spin-torque term (LLGS)
[1, 2, 4, 6, 13]

dm
dt

=
precession
︷ ︸︸ ︷
−γm × Heff +

damping
︷ ︸︸ ︷

λm × dm
dt

−
spin transfer torque

︷ ︸︸ ︷
γ a g(P , m · M)m × (m × M) , (1)

where m represents the magnetization of the free ferromagnetic layer in Cartesian
coordinates, γ is the gyromagnetic ratio, and Heff is the effective external field. λ
serves as the magnitude of the damping term. In the spin-torque term, a has units
Oe and is proportional to the electrical current density [10]. g is a scalar function
of the polarization factor P , m, and the fixed-layer magnetization direction M. To
determine the change of field direction with respect to time, we must consider three
different classes of torques acting on the field direction m: effective external magnetic
field Heff, damping λ, and spin transfer torque. Heff is the sum of several factors that
can be effectively represented as external fields. The factors that we consider in
this fashion are exchange, anisotropy, and demagnetization. The actual external, or
applied, field rounds out the sum

Heff = Hexchange + Hanisotropy + Hdemagnetization + Happlied.

We model the free layer as a single particle who’s magnetization m represents the
average of the layer. Thus, there is no exchange with adjacent magnetic moments
Hexchange = 0.
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Complex Stereographic Projection
A spherical surface can be projected onto a plane by using the complex variable ω
and the following relationships:

ω = mx + imy
1 +mz

⇒ m =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

ω + ω̄
1 + |ω|2

−i (ω − ω̄)
1 + |ω|2

1 − |ω|2
1 + |ω|2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2)

Here ω̄ is the complex conjugate of ω. This projection maps the sphere’s north pole
to the origin and the south pole to infinity. Building on [9, 10], we reduce Eq. (1) to
the form

ω̇ = γ

1 − iλ
(
− aω + iha3ω + ha2

2
(1 + ω2)

+ im‖κ
[

cos θ‖ω − 1

2
sin θ‖

(
eiφ‖ − ω2e−iφ‖)

]

− i4πSo
(1 + |ω|2)

[
N3(1 − |ω|2)ω − N1

2
(1 − ω2 − |ω|2)ω (3)

− N2

2
(1 + ω2 − |ω|2)ω − (N1 −N2)

2
ω̄
])

,

where ha2 is the magnitude of the applied field in the y-direction and ha3 is the
magnitudes of the applied field in the z-direction. κ is the anisotropy magnitude
who’s direction is determined by the spherical-coordinate parameters θ‖ and φ‖. The
anisotropy is scaled by m‖ = m · e‖ where

e‖ =

⎡

⎢⎢
⎣

sin θ‖ cosφ‖
sin θ‖ sin φ‖

cos θ‖

⎤

⎥⎥
⎦ .

S0 is the saturation magnetization. Finally, N1,N2, and N3 describe the effective
demagnetization field resulting from the shape of the free layer and are constrained
by the relationship N1 + N2 + N3 = 1. The magnetic moment of an STNO is now
described by two dimensions and in a polynomial-like form.

Coupling
Coupling is achieved by modeling a simple electrical circuit with STNOs arrayed in
series or parallel. Figure 1 depicts the series configuration. The resistance of each
STNO Ri is a function of the angle θi between M (fixed layer-green) and m (free
layer-red):

Ri = R0i −�Ri cos θi .
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Fig. 2 Sum of the transverse Lyapunov exponents calculated over two parameters, the electrical
current IDC and the angle of the applied field θh, with the applied field varying from 0 to π

2 (left)
and from π

2 to π (right). Extreme red indicates no oscillations

Here, R0 is the median resistance of an STNO and �R is the maximum variance in
resistance.

3 Transverse Lyapunov Exponents

Transverse Lyapunov exponents allow us to quantify the local stability of a synchro-
nized orbit [3, 7]. Specifically, TLEs use the linearized system to measure how a
small perturbation transverse to the synchronization manifold (zs = z1 = · · · = zn)
grows or contracts. Figure 2 depicts the result of numerically calculating TLEs for
two serially-coupled and identical STNOs. Here we vary the electrical current IDC
with a grid step size �IDC = 10 and the applied field angle θh with a step size
�θh = 0.05. Initial conditions are on the synchronization manifold and close to
the expected steady state. In this case, the sum of TLEs is a good representation of
stability, hence the plot is color coded accordingly. A negative sum indicates stable
while a positive sum indicates instability of the synchronized orbit. Additionally, the
uniform red color represents areas where no oscillations were detected. These results
indicate large regions of parameter space where the synchronized solution is stable.
Further, there are distinct boundaries of oscillations that may trace the locus of Hopf
bifurcations.

4 Numeric Bifurcation Diagram

We have shown that synchronized oscillations are locally stable for a large param-
eter space. However, simulations in the same parameter space using random initial
conditions show out-of-phase steady-state behaviors [14]. Using the software pack-
age XPPAUT, we have created a two-parameter bifurcation diagram (Fig. 3) that
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Fig. 3 Two-parameter bifurcation diagram plotting input current IDC v applied field angle θh.
Dashed black lines trace saddle-node bifurcations, while solid lines are Hopfs. Green solid lines are
Hopfs that spawn synchronized limit cycles and solid blue lines are Hopfs that spawn out-of-phase
oscillations

includes the parameter spaces from Fig. 2. The diagram reveals a number of back-
to-back Hopf bifurcations that are consistent with the boundary of oscillations in
Fig. 2. Additionally, each pair of back-to-back Hopfs spawns one synchronized and
one out-of-phase limit cycle. One-parameter bifurcation diagrams in IDC (θh fixed)
indicate that the out-of-phase solution is also locally stable for most of the oscillating
region. Hence, the region of interest exhibits bistability where we expect the initial
conditions to determine synchronized or out-of-phase steady-state behavior.

5 Remarks

The LLGS Eq. (1) is a nonlinear first-order ordinary differential equation confined
to the unit sphere ‖m‖2 = 1. We are able to reduce the dimension of the system
one third using complex-stereographic coordinates. Not only does this increase the
efficiency of numerics but also simplifies integration by fixing the magnitude of m
by the nature of the coordinate system.

The calculation of TLEs in Fig. 2 gives the positive result of stable synchro-
nized oscillations in a large parameter space. However, the TLE measurement is
inherently local, and therefore does not necessarily reflect global behavior. Using
XPPAUT to create a two-parameter bifurcation diagram, we discover the existence
of an out-of-phase limit cycle that is also locally stable. This bistability indicates that
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synchronization can only be achieved if the initial conditions fall within the basin of
attraction of the synchronized solution.

In future work we are interested in calculating the basins of attraction, but we
are also interested in the behavior of the system for many more STNOs. As we
increase the number of oscillatorsN , we expect a nonlinear increase in the number of
oscillatory steady states. We intend to leverage the symmetry-group representation of
the coupling to predict the type, existence, and stability of out-of-phase oscillations.
Combined with the TLE computation, this will allow us to determine if a region
exists where the synchronized solution is globally stable.

References

1. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev.
B 54(13), 9353–9358 (1996). doi:10.1103/PhysRevB.54.9353

2. Bertotti, G., Mayergoyz, I., Serpico, C.: Analytical solutions of Landau-Lifshitz equation for
precessional dynamics. Phys. B 343(1–4), 325–330 (2004)

3. Chitra, R., Kuriakose, V.: Phase effects on synchronization by dynamical relaying in delay-
coupled systems. Chaos: Interdiscip. J. Nonlinear Sci. 18(2), 023,129–023, 129 (2008)

4. d’Aquino, M.: Nonlinear magnetization dynamics in thin-films and nanoparticles. Ph.D. thesis,
Universitá degli Studi di Napoli Federico II, Naples, Italy (2004)

5. Demidov, V., Urazhdin, S., Demokritov, S.: Direct observation and mapping of spin waves
emitted by spin-torque nano-oscillators. Nat. Mater. 9(12), 984–988 (2010)

6. Gilbert, T.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans.
Magn. 40(6), 3443–3449 (2004)

7. Krasovskiı̆, N.N.: Stability of Motion: Applications of Lyapunov’s Second Method to
Differential Systems and Equations with Delay. Stanford University Press (1963)

8. Li, D., Zhou, Y., Zhou, C., Hu, B.: Global attractors and the difficulty of synchronizing serial
spin-torque oscillators. Phys. Rev. B 82(14), 140,407 (2010)

9. Murugesh, S., Lakshmanan, M.: Bifurcation and chaos in spin-valve pillars in a periodic
applied magnetic field. Chaos 19, 043,111 (2009)

10. Murugesh, S., Lakshmanan, M.: Spin-transfer torque induced reversal in magnetic domains.
Chaos Solitons Fractals 41, 2773–2781 (2009)

11. Persson, J., Zhou, Y., Akerman, J.: Phase-locked spin torque oscillators: impact of device
variability and time delay. J. Appl. Phys. 101(9), 09A503 (2007)

12. Slavin, A., Tiberkevich, V.: Nonlinear auto-oscillator theory of microwave generation by spin-
polarized current. IEEE Trans. Magn. 45(4), 1875–1918 (2009)

13. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.
159(1–2), L1–L7 (1996)

14. Turtle, J;.A.: Numerical exploration of the dynamics of coupled spin torque nano oscillators.
M.S. thesis, San Diego State University, San Diego, CA (2012).



Nonlinear Robust Control and Regulation
Problems for Biomedical Dynamical Systems

Aziz Belmiloudi

Abstract Motivated by topics and issues critical to human health, and safety and
efficacy of medical treatment practices, this communication investigates a nonlinear
robust control approach of some uncertain biomedical nonlinear complex systems.
The concept consists in setting the problem in the worst-case disturbances, which
leads to the game theory in which controls and disturbances (which destabilize the
dynamical behavior of the system) play antagonistic roles. The proposed strategy
consists in controlling these instabilities by acting on certain parameters and data
to maintain the system in a desired state (see Stabilization, Optimal and Robust
Control, Springer, London (2008)). This approach is applied to two problems: first,
controlling and regulating the blood glucose level in subjects with type 1 diabetes
and predicting the dosages of insulin administered, and second, controlling and
stabilizing the thermal distribution and damage during the treatment of cancer, in
order to eradicate tumor while preserving the surrounding health tissues.

1 Introduction and Outline

The problem studied in this chapter derives from the modeling, stabilizing control,
and regulation of the dosage of drug and thermal required for optimal therapy of
various diseases and injuries of the human body. To ensure effective treatment and
improve the lives of patients, it is necessary not only to have reliable mathematical
models, but also, despite the complexity of the systems, to have nonlinear control
methods capable to ensure safety and stability under all circumstances with a ro-
bust stability and performance. Consequently, this has greatly emphasized the need
for sophisticated mathematical models of dynamic systems and methodologies ca-
pable of predicting, understanding, and optimizing different complex phenomena
occurring in these fields, despite different sources of uncertainty like the absence of
complete or reliable data, neglected dynamics, or intrinsic physical variability. The
challenge here is, e.g., to reduce the uncertainty and increase the reliability of model
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predictions about the performance of these complex and realistic systems. Motivated
by the above discussion, the goal of our contribution is to study time-dependent iden-
tification, regulation, and stabilization problems related to the nonlinear phenomena
of transport and transformation occur in biomedical domain, by using new and mod-
ern robust control theory developed in [2]. For this, we consider two important
applications, which refer to two high impact diseases namely cancer with thermother-
apy and diabetes with insulin therapy. Thermal conductivities in living tissues and
glucose metabolism are nonlinear and very complex processes which use differ-
ent phenomenological mechanisms including conduction, convection, metabolism,
evaporation, etc., and subject to various perturbations and physiological and patho-
physiological variations. An analysis of automated-treatment taking into account
these parameters will be very beneficial for dosage distribution, treatment planning
and control of the treatment outcome. The organization of the paper is as follows.
In Sect. 2, we present our approach of the modern robust control theory. In Sect. 3
we study the two diseases: the controlling and regulating of the blood glucose level
in subjects with type 1 diabetes and predicting the dosages of insulin administered,
and second, controlling and stabilizing the thermal dose distribution in tissue and
damage during thermotherapy.

2 From Models to Regulation Problems: Terminology
and Process

To predict the response of dynamic systems from given parameters, data and source
terms requires a mathematical model of the behavior of the process under inves-
tigation and a physical theory linking the state variables of the model to data and
parameters. This prediction of the observation constitutes the so-called direct (or
primal) problem and it is usually defined by one or more coupled integral, ordinary
or partial differential systems and sufficient boundary and initial conditions for each
of the main fields (such as temperature, concentration, velocity, wave, etc.). Initial
and/or boundary conditions are essential for the design and characterization of any
model systems. If any of the conditions necessary to define a direct problem are
unknown or rather badly known, an inverse (or control) problem results. The res-
olution of the inverse problems thus provides them essential information, which is
necessary to the comprehension of the various processes which can intervene in these
models. This resolution needs some partial information of some unknown parame-
ters and fields (observations) given, for example, by experiment measurements. The
inverse problem is used for systems where uncertainties are neglected. But it is well
known that many uncertainties occur in the most realistic studies, e.g., of life science
problems. The presence of these uncertainties may induce complex behaviors, e.g.,
oscillations, instability, bad performances, etc. So, if uncertainties, stability, and
performance validation occur, a robust control problem results. The fundament of
robust control theory is to take into account these uncertain behaviors and to ana-
lyze how the control system can deal with this problem. The uncertainty can be of
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two types: first, the errors (or imperfections) coming from the model and, second,
the unmeasured noises and fluctuations that act on the systems. The goal of robust
control theory is to control these instabilities, either by acting on some parameters
to maintain the system in a desired state (target), or by calculating the limit of these
parameters before the system becomes unstable (“predict to act”). Our robust control
approach consists in setting the problem in the worst-case disturbances which leads
to the game theory in which controls and disturbances play antagonistic roles. For
more details on this new approach and its application to different models describing
realistic physical and biological process, see the book [2]. The essential data used in
our robust control approach are the following.

• A known nonlinear operator G which represents the dynamical system:

∂tU + G(x, t ; f, g,U ) = 0, with the initial condition : U (t = 0) = U0, (1)

where (x, t) are the space-time variables, ∂tU denotes ∂U
∂t

, (U0, f , g) ∈ X is the
input of the system ((f , g) is, e.g., boundary conditions, source terms, parameters
and others), and U ∈ Z is the state of the system, where X and Z are two spaces of
input data and output solutions, respectively.
• A “control” variable ϕ in Uad ⊂ U1 (set of “admissible controls”) and a “dis-
turbance” variable ψ = (ψ1,ψ2) in Vad ⊂ U2 = U21 × U22 (set of “admissible
disturbances”), with U1 and U2 two spaces of controls and disturbances, respec-
tively.
• For a chosen control-disturbance (ϕ,ψ), the perturbation problem, which models
fluctuations (ψ1,ϕ,ψ2, u) to the target (U0, f, g,U ), is given by

∂tu + G̃(x, t ;ϕ,ψ2, u) = 0, with u(t = 0) = ψ1, (2)

where the perturbation of the model G is given by G̃(.;ϕ,ψ2, u) = G(.; f +B1ϕ, g+
B2ψ2,U + u) − G(.; f, g,U ), and B1 (respectively B2) is a bounded linear operator
from U1 (respectively U2) into Z . In the sequel we denote by u = F(ϕ,ψ) the
solution of the direct problem (2).
• An “observation” uobs which is supposed to be known (for example the desired
tolerance for the perturbation or the offset given by measurements).
• A “cost” (or “objective”) functional J which is defined from a real-valued and
positive function L by J (ϕ,ψ) := L((ϕ,ψ); F(ϕ,ψ)). The goal is to find a saddle
point of J , i.e., a solution (ϕ∗,ψ∗) ∈ Uad × Vad (subject to (2)) of

J (ϕ∗,ψ) ≤ J (ϕ∗,ψ∗) ≤ J (ϕ,ψ∗), ∀(ϕ,ψ) ∈ Uad × Vad. (3)

• Then, we have to determine the gradient of J and the necessary conditions of op-
timality by differentiating F and introducing an adjoint model. The adjoint problem
is in the form (G∗ is linear on the state ũ)

−∂t ũ + G∗(ϕ,ψ , F(ϕ,ψ), uobs ; ũ) = 0, with final condition : ũ(t = T ) = ũT .
(4)

• Define an algorithm allowing to solve numerically the control problem.
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3 Biomedical Applications: Two High Impact Diseases

In clinical practice, measurements, material data, behavior of patients, and other
process are highly disturbed and affected by noises and errors. Consequently, in order
to obtain a solution robust to the noises and fluctuations, it is necessary to incorporate
theses in the modeling and to analyze the robust regulation of the deviation of the
model from the desired dose distribution target, due to fluctuations. In this section,
we formulate the robust control problem in the case of two high impact diseases
namely diabetes and cancer therapies.

3.1 Blood Glucose and Type 1 Diabetic Patient

The goal here is to regulate and stabilize the injection of insulin via blood glucose
sensor. This is motivated by the development of reliable and feasible control strate-
gies for patients which automatically connect continuous glucose sensor and insulin
injection, without patient intervention. For this we consider Bergman type model

dtX = M(t ,X) + F (t) in [0, T ], with X(0) = X0, (5)

where X = (G,H , I ,U ), dt denotes d
dt

, G is the blood glucose, H is the remote
insulin, I is the blood insulin,U is the insulin in the skin and F (t) = (h(t), 0, 0, f (t))
with h, e.g., the glucose flow due to the consumption of a meal and f the injected
insulin flow. The operator M = (Mi)i=1,4 is such that

M1(t ,X) = −P1(G−Gb) −H G+ h, M2(t ,X) = −P2H + P3(I − Ib),
M3(t ,X) = −P4 I + P5 U , M4(t ,X) = −P6 U + f, (6)

where Pi , i = 1, 6 are system parameters andGb (resp. Ib) is a base value of plasma
glucose (respectively insulin). All data are assumed to be in L∞(0, T). For some
details about mathematical modeling, see e.g., [5, 6]. The well-posedness of system
(5) can be obtained by the contraction of the operator X −→ X0 + ∫ T0 (M(t ,X) +
F (t))dt , the Lipschitz condition and linear growth of M and Gronwall lemma.
Now we formulate the robust control problem. First, we develop the perturbation
problem, which models fluctuations x to the targetX, i.e., we assume thatX satisfies
(5) and (6) with data (X0, f ,h) and X + x satisfies (5) and (6) with the data (X0 +
x0, f + ϕ,h+ ψ). Hence, we consider the following system in [0, T ] (where K =
P1 +H )

dtx1 = −K x1 −G x2 − x1 x2 + ψ , dtx2 = −P2 x2 + P3 x3,

dtx3 = −P4 x3 + P5 x4, dtx4 = −P6x4 + ϕ,

x(0) = x0,

under pointwise constraints :τ1 ≤ ψ ≤ τ2, and δ1 ≤ ϕ ≤ δ2.

(7)
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Let now Vad={ψ ∈ L2(0, T ) : τ1 ≤ ψ ≤ τ2}, Uad={ϕ ∈ L2(0, T ) : δ1 ≤ ϕ ≤ δ2},
the operator solution of (7) denote by F : (ϕ,ψ)∈Uad × Vad −→ x=F(ϕ,ψ) ∈ Z
and observation Gobs be given (difference between a measurement reading and the
true value of that measurement). Our problem is to find a saddle point (ϕ∗,Ψ ∗) of
J (ϕ,ψ) = 1

2 ‖ x1−Gobs ‖ 2
L2(0,T )+ α

2 ‖ ϕ ‖ 2
L2(0,T )− β

2 ‖ ψ ‖ 2
L2(0,T ) subject to

(7), with α > 0 and β > 0. The arguments of [2] extend directly to the present work.
So, we have the following existence result and first-order optimality conditions.

Theorem 1 For α and β sufficiently large, there exists an optimal solution
(ϕ∗,Ψ ∗) ∈ Uad × Vad and x∗ = F(ϕ∗,Ψ ∗) ∈ Z such that (ϕ∗,Ψ ∗) is a saddle
point of J . Moreover (ϕ∗,ψ∗, x∗) can be characterized by

∂J
∂ϕ

(ϕ∗,Ψ ∗).(ϕ−ϕ∗)=
∫ T

0
(x̃4 + αϕ∗)(ϕ − ϕ∗)dt ≥ 0, ∀ϕ ∈ Uad

∂J
∂Ψ

(ϕ∗,Ψ ∗).(Ψ−Ψ ∗)=
∫ T

0
(x̃1 − βψ∗)(ψ − ψ∗)dt ≤ 0, ∀ψ ∈ Vad

(8)

where x̃ = F̃(ϕ∗,Ψ ∗) is the solution of the adjoint model

−dt x̃1 = −(K + x∗2 )x̃1 + (x∗1 −Gobs), −dt x̃2 = −(G+ x∗1 )x̃1 − P2x̃2,

−dt x̃3 = P3x̃2 − P4x̃3, −dt x̃4 = P5x̃3 − P6x̃4, with x̃(T ) = 0.
(9)

3.2 Temperature Distribution and Cancer Therapy

The goal here is to regulate the effects of thermal physical properties on the tran-
sient temperature of tissues via the online temperature measurements by magnetic
resonance imaging. This is motivate by the fact that heating the cell up to high
temperatures, the tumor cells don’t repair themselves as well, hence they are more
susceptible to the effects of thermotherapy. To treat the system of motion in living
body, we consider the transient bioheat transfer type model in a form as follows

c(x)∂tU=div(κ(x)∇U ) − P (U − Ua) − (�ϑ.∇)U + f + g in Q = Ω×(0, T ),

subjected to the heat-flux boundary condition and the initial condition

(κ∇U ).n = −q(U − Ub) − λ(x)(L(U ) − L(Ub)) + h in Σ = ∂Ω×(0, T ),

U (0) = U0 in Ω , (10)

where U is the temperature distribution, L(U ) =| U |3 U , T > 0 is a given
final time, the body Ω is an open bounded domain in IRm, m ≤ 3 with a smooth
boundary Γ = ∂Ω , n is the unit outward normal to Γ, P ∈ L∞(Q) is the blood
perfusion rate and q ∈ L∞(Σ) is the heat transfer coefficient. The conductivity
of tissue κ satisfies ν ≥ κ = σ 2 ≥ μ > 0 (where ν and μ are constants). The
term �ϑ is the blood flow velocity. The term f is a distributed energy source such as
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focused ultrasound and laser beams, and g is the energy generated by the metabolic
processes. The term h is the heat flux due to evaporation. The functionsUa ∈ L∞(Q)
and Ub ∈ L∞(Σ) are the blood and the bolus temperatures, respectively. The term
λ = σBεe is assumed to be inL∞(Γ ) where σB is Stefan–Bolzmann’s constant and εe
is the effective emissivity. For more details about modeling and mathematical analysis
see [1, 3, 4]. Now we formulate the robust control problem. First, we introduce
the perturbation problem, which models fluctuations u to the target temperature U .
Assume that U satisfies (10) with data (U0,P , f, g,h) and U + u satisfies (10) with
data (U0+u0,P +ϕ1, f +ϕ2, g+ψ1,h+ψ2). Then, u satisfies (where ua = U−Ua)

c(x)∂tu − div(κ(x)∇u) = −ϕ1(u − ua) − Pu − (�ϑ.∇)u + ϕ2 + ψ1 in Q,

(κ(x)∇u).n = −qu − λ(x)(L(u + U ) − L(U )) + ψ2 in Σ ,

u(0) = u0 in Ω ,

under pointwise constraints τ1 ≤ ϕ1 ≤ τ2 a.e. in Q. (11)

Let (Ki)i=1,2 (resp. K3) be convex, closed, nonempty and bounded subset of L2(Q)
(resp. L2(Σ)), Uad = {ϕ ∈ L2(Q) : τ1 ≤ ϕ ≤ τ2 in Q} × K1, Vad = K2 × K3,
F : (φ,Ψ ) ∈ Uad × Vad −→ u = F(φ,Ψ ) ∈ Z be the operator solution of (11) and
observation mobs be given (via MRI measurements). Our problem is to find a saddle
point (X∗,Y ∗) of J (ϕ,ψ) = 1

2 ‖ (γ u+δϕ1)−mobs ‖ 2
L2(Q)+α

2 ‖ Nφ ‖ 2
L2(Q)−β

2 ‖
MΨ ‖ 2

L2(Q)×L2(Σ), subject to (11) (withα,β > 0 constants and γ , δ > 0 inL∞(Q)),
where the matrices M = diag(

√
m1,

√
m2) and N = diag(

√
n1,

√
n2) are such that

m1 + m2 �= 0, n1 + n2 �= 0. The arguments of [2] extend directly to the present
work. So, we have the following existence result and first-order optimality conditions.

Theorem 2 For α and β sufficiently large, there exists an optimal solution
(φ∗,Ψ ∗) ∈ Uad × Vad and u∗ = F(φ∗,Ψ ∗) ∈ Z such that (φ∗,Ψ ∗) is a saddle point
of J . Moreover (φ∗,Ψ ∗, u∗) can be characterized by (for all (φ,Ψ ) ∈ Uad × Vad )

∂J
∂φ

(φ∗,Ψ ∗).(φ−ϕ∗)=
∫ ∫

Q
(αn1ϕ

∗
1 + (u∗ − ua)ũ + δ(M∗ − mobs))(ϕ1 − ϕ∗

1 )dxdt

+
∫

Ω

(αn2ϕ
∗
2 − ũ)(ϕ2 − ϕ∗

2 )dxdt ≥ 0,

∂J
∂Ψ

(ϕ∗,Ψ ∗).(Ψ−Ψ ∗)=−
∫ ∫

Q
(ũ + βm1ψ

∗
1 )(ψ1−ψ∗

1 ) dxdt

−
∫ ∫

Σ

(ũ+βmψ∗
2 )(ψ2−ψ∗

2 )dΓdt ≤ 0,

whereM∗ = γ u∗ + δϕ∗
1 and ũ = F̃(φ∗,Ψ ∗) is the solution of the adjoint problem

−c(x)∂t ũ − div(κ∇ũ) − div(ũ�ϑ)+(ϕ∗
1 + P )ũ+γ (M∗ − mobs)=0 in Q,

−κ∇ũ.n = qũ + λ(x)L′(u∗ + U )ũ + ũ�ϑ.n inΣ ,

and the final condition ũ(T ) = 0 in Ω

with L′(•) = 4|•|3.
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Remark 1 This chapter concerns the real-time control and robust stabilization
problems for predicting and regulating the dosages of insulin and temperature ad-
ministrate, via the online desired states provided by sensor measurements. It is clear
that we can consider other control, disturbance and observation functions and obtain
the same results by using the same techniques. For other models in realistic situa-
tions we can refer for thermal and insulin therapy, e.g., to [4] and [7] and references
therein. For numerical resolution of robust control problems see [2].
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A Model of Heat and Water Transport in Frozen
Porous Media and Fractured Rock Masses

Michal Beneš, Lukáš Krupička and Radek Štefan

Abstract In this contribution, the model of heat and water transport in frozen porous
media and fractured rock masses in conditions of freezing and thawing is analyzed.
We present results concerning the existence of the numerical solution. Numerical
scheme is based on semi-implicit discretization in time. The spacial discretization is
carried out by the finite element method (FEM) and it is implemented in MATLAB.
We also present an illustrative numerical example.

1 Governing Equations

Phenomena involving partially frozen porous media or fractured rock masses are im-
portant in agriculture, civil or transport engineering, ecological and natural systems,
and much attention is focused on the modeling of their behavior. According to the
main physical processes in porous media under freezing–thawing conditions, some
hypotheses are proposed, including that: (i) Darcy’s law applies to water movement
in both unfrozen and frozen soil, (ii) porous media is undeformable, (iii) the influence
of soil water vapor migration on unfrozen water and heat flow transfers is ignored,
(iv) all processes are single valued, i.e., hysteresis is not present in the characteristic
curves, and (v) ice is immovable.

The governing equations of the model are as follows:
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the conservation equation for total mass of liquid water and ice:

∂ (ρ! θ!)

∂t
+ ∂ (ρi θi)

∂t
= ∇ · (ρ! θ!Kh∇(h! + z)); (1)

the energy conservation equation:

cp
∂ϑ

∂t
+ Lf ∂ (ρi θi)

∂t
= ∇ · (λ∇ϑ)+ c!p ρ! θ! Kh∇(h! + z) · ∇ϑ. (2)

In (1) and (2), h! = h!(x, t) [m] and ϑ = ϑ(x, t) [K] (single-valued functions of
the time t and the spatial position x ∈ Ω) are the pressure head and temperature,
θ! = θ!(h!) [-] is the liquid water content, θi = θi(ϑ ,h!) [-] is the ice water con-
tent, Kh = Kh(h!) [m s−1] represents the hydraulic conductivity, cp = cp(ϑ ,h!)
[J m−3 K−1] is the effective heat capacity and λ = λ(ϑ ,h!) [W m−1 K−1] is the
thermal conductivity. Material constant parameters are the volumetric heat capacity
of water c!p (4.181×106 Jm−3 K−1), the density of liquid water ρ! (approximately
1000.0 kg m−3), the density of ice ρi (918 kg m−3), and Lf is the latent heat of
fusion (3.34 × 105 J kg−1).

2 Constitutive and Thermodynamic Relationships

Water in pores does not freeze at 273.15 K, but is subject to a freezing-point depres-
sion caused by interaction between water, particles, and solutes. The generalized
Clapeyron equation is used to describe the condition for the coexistence of water and
ice [6]:

dp!
dϑ

= ρ!Lf

ϑ
, (3)

where p! is the liquid water pressure [Pa], ρ! the density of liquid water (approx-
imately 1000.0 kg m−3), and Lf is the latent heat of fusion (3.34 × 105 J kg−1).
Define h! [m], h!ρ!g = p!, as the matric potential corresponding to the liquid water
content θ! [-] and the matric potential hw [m], hwρ!g = pw, corresponding to the
total water content θw [-] (liquid and ice). Here, g is the acceleration due to gravity
(9.81 m s−2).

Let ϑ0 = 273.15 K be the freezing temperature at the saturation pressure p! = 0
Pa. If the porous media is unsaturated (at the pressure p! < 0), the surface tension at
the water/air interface decreases the water freezing/melting temperature to ϑf/m <
273.15 K. When ϑ � ϑf/m, all water is unfrozen. When ϑ < ϑf/m, the porous
media is under freezing conditions and the liquid water pressure p! depends on
the intensity of freezing condition provided by ϑ . Denote by pw the total water
pressure corresponding to the total water content (liquid and ice). Above the freezing
temperature ϑf/m all of ice melted and the total water pressure pw and the liquid
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water pressure p! coincide. Consequently, solving (3) we deduce that for the total
water pressure pw the freezing/melting temperature corresponds to

ϑf/m = ϑ0 exp

(
pw

ρ!Lf

)
= ϑ0 exp

(
hwg

Lf

)
≈ ϑ0 + gϑ0

Lf
hw. (4)

The formulation of the liquid water matric potential can be determined from (3) using
the Heaviside function as

h! = hw +
(
Lf

g
ln
∣∣ ϑ
ϑ0

∣∣− hw

)
H (ϑf/m − ϑ)

≈ hw +
(
Lf

g

ϑ − ϑ0

ϑ0
− hw

)
H (ϑf/m(hw) − ϑ)

︸ ︷︷ ︸
ψ(hw ,ϑ)

= hw + ψ(hw,ϑ). (5)

The amount of water present at a certain matric potential of the porous medium
is characterized by the water retention curve Θ(·). In particular, θw = Θ(hw) and
θ! = Θ(h!). Here, we use the relation proposed by van Genuchten [5] Θ(ξ ) =
θr + (θs − θr ) [1 + |αξ |n]−m, where θs is the saturated water content [-], θs is the
residual water content [-], α [m−1], m and n are parameters. When ϑ � ϑf/m all
water is unfrozen and, taking into account (5), hw = h! and θw = θ!. Whenever
ϑ < ϑf/m, the ice fraction θi [-] can be expressed as θi = θw − θ! [-]. The total
water content θM as derived by the fraction of total mass of liquid water and ice reads
θM = θ! + ρi

ρ!
θi .

3 Complete Mathematical Model

Let T > 0 be the fixed value andΩ be the Lipschitz domain in R
N ,N = 1, 2, 3, with

boundary Γ. Denote I = (0, T ),ΩT = Ω × I , and ΓT = Γ × I . The mathematical
model consists of the following initial boundary value problem:

∂θM

∂t
= ∇ · (Kh∇ (hw + z + ψ)) in ΩT , (6)

ca
∂ϑ

∂t
+ Lf ρ! ∂θi

∂t
= ∇ · (λ∇ϑ)+ c!p ρ! Kh∇(hw + z + ψ) · ∇ϑ in ΩT , (7)

−Kh∇(hw + ψ) · n = q!, −λ∇ϑ · n = αc(ϑ − ϑ∞) + qH in ΓT , (8)

hw = (hw)0, ϑ = ϑ0 in Ω. (9)

This system describes the coupled water flow and heat transport involving freezing–
thawing processes in porous media. Equations (6) and (7) represent conservation
laws for mass and energy, the Eq. (8) prescribes boundary conditions of Neumann
type and the Eq. (9) represents appropriate initial conditions. In (6–9), hw and ϑ
are the primary unknowns. Further, ca = cp − ρ!

ρi

dθi
dϑ

[J m−3 K−1] is the so-called
apparent heat capacity and q!, qH , ϑ∞, (hw)0, and ϑ0 are given smooth functions.
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4 Structural Conditions and Assumptions on Physical
Parameters

Let us present some properties and additional assumptions on physical parameters
introduced in the model.

(A1) The parametersρ!, ρi , θs , θr , c!p,Lf , andαc are real positive constants, ρi < ρw.
(A2) The thermal conductivity λ, apparent thermal capacity ca , and hydraulic con-

ductivityKh are assumed to be positive continuous functions of their arguments
(see [2] for specific examples). In addition, 0 < ca � c

#
a < +∞ (c#a =

const > 0).
(A3) Θ(·) is positive, nondecreasing, continuous, and bounded function such that

θr � Θ(ξ ) � θs ∀ξ ∈ R.

Consequently, θM is a positive continuous function such that

0 < θM (ξ , ζ ) = ρi

ρw
θw(ξ ) +

(
1 − ρi

ρ!

)
θ!(ζ ) � θs for all ξ , ζ ∈ R.

5 The Approximate Solution

Albeit the coupled problem (6–9) is essentially nonstationary in its nature, we shall
formulate and analyze a weak form of the stationary problem. It has a significant
mathematical interest because the time discretization of the evolution problem leads,
in each time step, to a coupled system of stationary equations. Let 0 = t0 < t1 <

· · · < tN = T be an equidistant partitioning of time interval [0; T ] with stepΔt . Set
a fixed integer n such that 0 � n � N − 1. In what follows, we abbreviate φ(z, tn)
by φn (≡ φ(z)n) for any function φ. The time discretization of the continuous model
is accomplished through a semi-implicit difference scheme. Consequently, we have
to solve, successively for n = 0, . . .,N − 1, the following semi-linear system with
primary unknowns [ϑn+1,hn+1

w ]

θn+1
M − θnM
Δt

= ∇ · (Knh∇hn+1
w

)+ ∇ · (Knh∇(ψn + z)
)

, (10)

cna
ϑn+1 − ϑn
Δt

+ Lf ρ! θ
n+1
M − θnM
Δt

= ∇ · (λn∇ϑn+1
)

+c!pρ!Knh∇(hnw + z + ψn) · ∇ϑn, (11)

−Knh∇(hn+1
w + ψn) · n = qn+1

! onΓ , (12)

−λn∇ϑn+1 · n = αc(ϑn+1 − ϑn+1
∞ ) + qn+1

H onΓ. (13)

Here, we assume that the functions hnw and ϑn are known and we put Knh =
Kh(ϑn,hnw), λn = λ(ϑn,hnw), cna = ca(ϑn,hnw). In what follows, we study the prob-
lem of the existence of the variational solution ϑn+1 and hn+1

w : to find the couple
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[ϑn+1,hn+1
w ] ∈ W 1,r (Ω)2, r > 2, such that

1

Δt

∫

Ω

(
θn+1
M − θnM

)
φ1 + cna

(
ϑn+1 − ϑn)φ2 + Lf ρ!

(
θn+1
M − θnM

)
φ2dΩ

+
∫

Ω

Knh∇hn+1
w · ∇φ1dΩ +

∫

Ω

Knh∇ψn · ∇φ1dΩ +
∫

Ω

∇Knh · ez φ1dΩ

+
∫

Ω

λn∇ϑn+1 · ∇φ2dΩ −
∫

Ω

c!pρ!K
n
h∇(hnw + z + ψn) · ∇ϑn φ2 dΩ

+
∫

Γ

qn+1
! φ1 dS +

∫

Γ

αc(ϑ
n+1 − ϑn+1

∞ )φ2 + qn+1
H φ2 dS = 0 (14)

holds for every [φ1,φ2] ∈ W 1,r ′ (Ω)2, r ′ = r/(r − 1), and

ϑ0(x) = ϑ0(x) and h0
w(x) = (hw)0(x) in Ω.

Theorem 1 Assume that [hnw,ϑn] ∈ W 1,s(Ω)2 with some s > 2 is known and let
the assumptions (A1–A3) be satisfied. Then, there exists the variational solution
[ϑn+1,hn+1

w ] ∈ W 1,r (Ω)2 with some r > 2, of the problem (10–13).

Remark 1 (Remark to the proof) The problem can be associated with the operator
equation A([ϑn+1,hn+1

w ]) = f . It can be shown that the operator A : W 1,2(Ω)2 →
[W 1,2(Ω)2]∗ is pseudomonotone and coercive. Now [4, Theorem 3.3.42] yields the
existence of the solution [ϑn+1,hn+1

w ] ∈ W 1,2(Ω)2 to the equation A([ϑn+1,hn+1
w ]) =

f for every f ∈ [W 1,2(Ω)2]∗. It can be shown that for [hnw,ϑn] ∈ W 1,s(Ω)2 with some
s > 2, we have f ∈ [W 1,s′ (Ω)2]∗, s ′ = s/(s − 1). Now the regularity of the solution
[ϑn+1,hn+1

w ] ∈ W 1,r (Ω)2 with some r > 2 follows from [1, Theorem 2].

6 Example

By means of the model described above, we briefly present the numerical simulation
of benchmark experiment in [3]. The soil thickness in the numerical simulation for
the one-dimensional vertical transport is 0.2 m. The initial uniform temperature is set
to 279.85 K and the uniform water content to 0.33. The top of the column is exposed
to the temperature 267.15 K; hence, it is subjected to freezing from top to down. All
boundaries are hydraulic insulated. Physical properties of soil are taken from [2, 5]
and the basic material constants are summarized in Table 1. The spatial discretization
of the system (10–13) is carried out by means of the finite element method. This
resulting system is solved using the well-known Newton method at each time step
withΔt = 1 s. The progress of water and ice content and temperature at 12 h based on
numerical simulation is shown in Figs. 1 and 2. Simulated results demonstrate a trend
that water moves toward the freezing front as commonly observed by experimental
phenomena (see [3]). The total water content in the frozen region increases and liquid
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Table 1 Constant parameters

Constant Value Dimension Description

ρ! 1000.0 kg m−3 Density of liquid water

ρi 918.0 kg m−3 Density of ice

θs 0.535 m3 m−3 Saturated water content

θr 0.05 m3 m−3 Residual water content

c!p 4.181×106 J m−3 K−1 Volumetric heat capacity of liquid water

Lf 3.34×105 J kg−1 Latent heat of fusion

αc 28.0 W m−2 K−2 Convection heat transfer coefficient

Fig. 1 Distribution of water
and ice at 12 h
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Fig. 2 Distribution of
temperature at 12 h

 270
 271
 272
 273
 274
 275
 276
 277
 278

0 40 80 120 160 200

Te
m

pe
ra

tu
re

 [K
]

z - coordinate (positive upwards) [mm]

Temperature - simulated

water from lower region moves upward and increases the contribution of ice at the
upper surface.



A Model of Heat and Water Transport in Frozen Porous Media and Fractured Rock Masses 63

Acknowledgments This research was supported by the project GAČR 13-18652S (M. Beneš). In
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Set-valued Nonlinear Fredholm Integral
Equations: Direct and Inverse Problem

M.I. Berenguer, H. Kunze, D. La Torre and M. Ruiz Galán

Abstract In this chapter we study a set-valued nonlinear Fredholm integral inclusion.
We prove the existence of a solution and provide a numerical method based on the
Steiner selection and Schauder bases to determine an approximated solution. We
then discuss an inverse problem. Numerical results are also provided to show how
the method works practically.

1 Set-valued Fredholm Integral Equation

We consider the following set-valued Fredholm integral equation

x(t) ∈ f0(t) + ∫ 1
0 F (t , s, x(s))ds (1)

where f0 : [0, 1] ⇒ R
N and F : [0, 1]× [0, 1]×R

N ⇒ R
N are set-valued mappings,

and x : [0, 1] → R
N is the unknown solution that has to be determined. Such integral

inclusions arise in modeling systems for which we have no complete description.
In order to handle (1), we consider the so-called Steiner selection of the involved

set-valued mappings. To be more precise, let us recall that for any subset K ⊂ R
N ,

the support function is defined as supp(K ,p) := sup{<p, x> : x ∈ K}, (p ∈ R
N ),

(<·, ·> denotes the usual inner product) and its subdifferential ∂(supp(K ,p)) is
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given by ∂(supp(K ,p)) = {x ∈ K :< p, x >= supp(K ,p)}. For any nonempty,
compact, and convex subset K of R

N , the Steiner point of K is defined by (see
[1, § 9.4.1]) sN (K) := 1

vol(BN )

∫
BN
m(∂(supp(K ,p)))dp, where m(∂(supp(K ,p)))

denotes the element of minimal norm in supp(K ,p) and vol(BN ) is the measure of
the N-dimensional unit ball BN of R

N , both for the Euclidean norm ‖ · ‖2. We also
need the following standard metric concept: if K and L are compact subsets of R

N

then their Hausdorff distance is given by

dH (K ,L) := max
{
maxx∈Kminy∈L‖x − y‖2, maxy∈Lminx∈K‖x − y‖2

}
.

First, we present an existence result for the solution to the set-valued integral (1).
Observe that in terms of the integral operator T : C([0, 1], RN ) −→ C([0, 1], RN )
defined for each x ∈ C([0, 1], RN ) and t ∈ [0, 1] as

T x(t) := sN (f0(t)) + ∫ 1
0 sN (F (t , s, x(s)))ds, (2)

when F and f0 are continuous set-valued mappings in the Hausdorff metric taking
nonempty, compact, and convex values, the problem

x(t) = sN (f0(t)) + ∫ 1
0 sN (F (t , s, x(s)))ds, (3)

is equivalent to finding a fixed point x ∈ C([0, 1], RN ) of the operator T where
sN (f0(t)) and sN (F (t , s, x(s))) are the Steiner points in f0(t) and F (t , s, x(s)), re-
spectively. In the next result we derive, under suitable assumptions, the existence
of one and only one solution of (3); hence that the set-valued integral (1) admits a
continuous solution.

Proposition 1 Let f0 : [0, 1] ⇒ R
N and F : [0, 1]× [0, 1]×R

N ⇒ R
N be contin-

uous set-valued mappings in the Hausdorff metric taking nonempty, compact, and
convex values. Let us also assume that F is c−Lipschitz in its third variable w.r.t. the
Hausdorff distance, i.e., t , s ∈ [0, 1], y1, y2 ∈ R

N ⇒ dH (F (t , s, y1),F (t , s, y2)) ≤
c‖y1 − y2‖2, and that cN := c(N )3/2 < 1. Then the integral operator T defined
in (2) admits a unique solution x̂ ∈ C([0, 1], RN ). Moreover, for any function

x ∈ C([0, 1], RN ) and any j ≥ 1, ‖T jx − x̂‖ ≤ c
j
N

1−cN ‖T x − x‖.
Proof According to Banach’s fixed point theorem, it suffices to prove that the op-
erator T is cN -contractive, when endowing the space C([0, 1], RN ) with its sup-sup
norm ‖ · ‖. So, let x, y ∈ C([0, 1], RN ). Then, given t , s ∈ [0, 1], the chain of
inequalities

‖T x(t) − Ty(t)‖∞ ≤ ∫ 1
0 ‖sN (F (t , s, x(s))) − sN (F (t , s, y(s)))‖∞ds

≤ ∫ 1
0 ‖sN (F (t , s, x(s))) − sN (F (t , s, y(s)))‖2ds

≤ N ∫ 1
0 dH (F (t , s, x(s)),

F (t , s, y(s)))ds (by [1, Theorem 9.4.1])

≤ cN ∫ 1
0 ‖x(s) − y(s)‖2ds (by the lipschitzianity of F )

≤ c(N )3/2
∫ 1

0 ‖x(s) − y(s)‖∞ds ≤ c(N )3/2‖x − y‖
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clearly implies ‖T x − Ty‖ ≤ cN‖x − y‖, and the proof is complete.
In order to develop an algorithm to approximate the unique solution of (3), and

then for the integral inclusion (1), we turn to a certain kind of biorthogonal system,
more precisely Schauder bases, in the Banach spaces C([0, 1]) = C([0, 1], R) and
C([0, 1]2) = C([0, 1]2, R), equipped with their usual sup norms, in the next section.

2 Numerical Solution via Schauder Bases

Let us recall that ifE is a real Banach space with topological dual spaceE∗, a family
{(xi , x∗i )}i∈N in E × E∗ is said to be a Schauder basis for E provided that for all
x ∈ E, there is a unique sequence {λi}i≥1 of real numbers such that x =∑i≥1 λixi .
The ith biorthogonal functional x∗i is given at such an x by x∗i (x) = λi and the
corresponding ith projectionΠi byΠi(x) =∑i

j=1 λjxj . In particular, for all x ∈ E
we have that

lim
i≥1

‖Πix − x‖ = 0. (4)

It is a well-known fact that, as a consequence of the open mapping theorem, the
biorthogonal functionals and the projections are linear and continuous (see for in-
stance [6, Theorem 3.1]). Since the biorthogonal functionals of a Schauder basis are
completely determined by the sequence {xi}i≥1, for simplicity the notation {xi}i≥1 is
often used instead of {(xi , x∗i )}i≥1.

For the Banach spaces C([0, 1]) and C([0, 1]2) the so-called usual bases can be
considered: let {ti}i≥1 be a sequence of distinct points in [0, 1] such that t1 = 0
and t2 = 1. We define the Schauder basis {bi}i≥1 of C([0, 1]) as b1(t) := 1,
t ∈ [0, 1], and for i ≥ 1, bi is the piecewise linear continuous function on [0, 1]
with nodes at {tj : 1 ≤ j ≤ i}, given by bi(ti) = 1 and bi(tj ) = 0 for j < i.
We denote by {b∗i }i≥1 and {Pi}i≥1, respectively, their sequences of biorthogonal
functionals and projections. The Schauder basis {Bi}i≥1 in C([0, 1]2) is the
corresponding bivariate tensor basis of {bi}i≥1 ([8] and [11]): if for a real number
a, [a] denotes its integer part, and σ : N −→ N×N is the bijective mapping given by

σ (i) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
√
i,
√
i), if [

√
i] = √

i

(i − [
√
i]2, [

√
i] + 1), if 0 < i − [

√
i]2 ≤ [

√
i]

([
√
i] + 1, i − [

√
i]2 − [

√
i]), if [

√
i] < i − [

√
i]2

,

then Bi(t , s) := bp(t)bq(s), t , s ∈ [0, 1], whenever σ (i)= (p, q). {B∗
i }i≥1 and {Qi}i≥1

stand for the respective sequences of biorthogonal functionals and projections.
The iterative method derived from Proposition 1 for calculating the unique solution

x̂ of the Eq. (3), equivalently, the unique fixed point of T in (2), presents an obvious
limitation if we want to implement it: given x̂ ∈ C([0, 1], RN ), the calculations that
lead to determining each iteration T mx are not possible, in general, in an explicit
way. In order to avoid this disadvantage, we emphasize a certain property of the
usual Schauder basis of the Banach space C([0, 1]2). Their projections allow us to
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discretize each of the mentioned iterations, deriving an approximation of them and
making feasible their calculations, in view of the specific form of the operator T and
the following property ([8, 11]), which is remarkable from a computational view
point: for all z ∈ C([0, 1]2) we have that B∗

1 (z) = z(t1, t1) and

i ≥ 2
σ (i)=(p,q)

}
⇒ B∗

i (z) = z(tp, tq) −
i−1∑

j=1

B∗
j (z)Bj (tp, tq).

Let us now introduce the numerical method for approximating the solution of (3).
Starting from x ∈ C([0, 1], RN ) and i1, i2, · · · , we define recursively the continuous
functions for j ∈ N and t ∈ [0, 1],

xj (t) := sN (f0(t)) +
[∫ 1

0 Qij (Ψj−1,1(t , s))ds, . . . ,
∫ 1

0 Qij (Ψj−1,N (t , s))ds
]T

, (5)

where x0(t) := x(t), (t ∈ [0, 1]), and, for t , s ∈ [0, 1],

Ψj−1(t , s) = sN (F (t , s, xj−1(s))) = [Ψj−1,1(t , s), . . . ,Ψj−1,N (t , s)]T . (6)

Let us consider the simple but intrinsic bounding ‖xj−x̂‖ ≤ ‖T jx−xj‖+‖T jx−x̂‖,
whose second right hand term has been controlled in Proposition 1. For the first one
we have the inequality below:

Proposition 2 Let f0 : [0, 1] ⇒ R
N and F : [0, 1] × [0, 1] × R

N ⇒ R
N be

set-valued mappings satisfying the assumptions in Proposition 1, let cN := c(N )3/2

and let x̂ be the unique fixed point of the integral operator T given in 2. Then the
inequality
‖T jx − xj‖ ≤∑j

k=1 c
j−k
N ‖T xk−1 − xk‖ is valid whenever x ∈ C([0, 1], RN ).

Proof If x ∈ C([0, 1], RN ) and j ≥ 1, then

‖T jx − xj‖ ≤ ‖T jx − T xj−1‖ + ‖T xj−1 − xj‖
≤ cN‖T j−1x − xj−1‖ + ‖T xj−1 − xj‖

≤ cN
(‖T j−1x − T xj−2‖ + ‖T xj−2 − xj−1‖

)+ ‖T xj−1 − xj‖
≤ c2

N‖T j−2x − xj−2‖ + cN‖T xj−2 − xj−1‖ + ‖T xj−1 − xj‖
≤ c2

N

(‖T j−2x − T xj−3‖ + ‖T xj−3 − xj−2‖
)+ cN‖T xj−2 − xj−1‖

+ ‖T xj−1 − xj‖ ≤ · · ·
≤∑j

k=1 c
j−k
N ‖T xk−1 − xk‖, and we are done.

Now we can show that for a suitable choice of j ≥ 1 and i1, i2, · · · , ij , xj is as close
as desired to the fixed point x̂ of the operator T :

Theorem 1 Let f0 : [0, 1] ⇒ R
N and F : [0, 1] × [0, 1] × R

N ⇒ R
N satisfy the

assumptions in Proposition 1 and let x̂ be the unique solution of (3). Then for each
ε > 0 and each x ∈ C([0, 1], RN ), there exist j ≥ 1 and i1, i2, · · · < ij such that
‖xj − x̂‖ < ε, where xj is the approximate function defined by (5) and (6).
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Table 1 Absolute errors for Example 1

ij = 9 for j = 1, . . ., 6 ij = 17 for j = 1, . . ., 6 ij = 33 for j = 1, . . ., 6

t |x6(t) − x̂(t)| |x6(t) − x̂(t)| |x6(t) − x̂(t)|
0. 1.5 × 10−3 3.9 × 10−4 9.9 × 10−5

0.2 1.9 × 10−3 4.6 × 10−4 1.2 × 10−4

0.4 1.8 × 10−3 4.9 × 10−4 1.1 × 10−4

0.6 1.8 × 10−3 4.9 × 10−4 1.1 × 10−4

0.8 1.9 × 10−3 4.6 × 10−4 1.2 × 10−4

1 1.5 × 10−3 3.9 × 10−4 9.9 × 10−5

Proof For each ε > 0, we first choose j ≥ 1 with
c
j
N

1−cN ‖T x−x‖ < ε
2 , since cN < 1.

On the other hand, the convergence property (4) for {Bi}i≥1 guarantees the existence
of i1, i2, · · · , ij such that

∑j

k=1 c
j−k
N ‖T xk−1 − xk‖ < ε

2 . Finally, it follows from the
two bounds and Propositions 1 and 2 that ‖xj − x̂‖ ≤ ‖T jx−xj‖+‖T jx− x̂‖ < ε.
Example 1 Let us consider the set-valued Fredholm integral equation
x(t) ∈ [− 59

20 + 2t + 9
5 t

2 + 2
3 t

3, 5
2

]+ ∫ 1
0

[
1
5 s

2 + 1
10x(s), 1

5 t
2 + 3

5 s
2 + 1

10x(s)
]
ds

where x̂(t) = s3

3 + s2 + s is the unique fixed point of the associate operator T
defined in (2). In order to construct the Schauder basis {Bi}i≥1 in C([0, 1]2, R), we
consider t1 = 0, t2 = 1 and for n ∈ N ∪ {0}, tj+1 = 2k+1

2n+1 if j = 2n + k + 1 where
0 ≤ k < 2n are integers. To define the sequence {xj }j≥1, we take x0(t) = sN (f0(t)).
We include the results when we approximate the unique solution of the operator T
associated defined by (2) by the forth iteration, taking ij = 9, 17 or 33 for j = 1, 2, 3
and 4. The algorithms associated with the numerical method were performed using
Mathematica 7. The results are shown in Table 1.
It is worth mentioning that the numerical method introduced above extends the
scalar and single-valued case developed in [2], and that Schauder bases have been
successfully used in the numerical study of different integral, differential, and
integro-differential problems (see [3–5, 7]).

3 Inverse Problem

An inverse problem consists of estimating the values of unknown parameters in a
model by using an empirical target solution. Kunze et al. [9] present a framework for
solving the inverse problem of estimating f in the Fredholm integral equation (1)
given x; we aim to extending it to the set-valued Fredholm integral inclusion. Starting
from a target x, and a parameter-dependent family of set-valued integral Fredholm
operators taking the form

Tλ : x ∈ C([0, 1]) → f0(t) + ∫ 1
0 Fλ(t , s, x(s))ds (7)
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we seek a parameter value λ ∈ Λ ⊂ R
s such that d(x, Tλx) is small enough, where

d is the distance point-to-set. Let us notice that the hypotheses on all Fλ imply
that the function t → f0(t) + ∫ 1

0 Fλ(t , s, x(s))ds takes compact and closed values.
Proposition 3 states a collage-type result for problem (7). We need the following
Lemma.

Lemma 1 [10] Let a, b ∈ R
n, andC,D ⊂ R

n be two compact sets. Then ‖a−b‖ ≤
d(a,C) + d(b,D) + dH (C,D), where d(a,C) is the distance point-to-set and dH is
the Hausdorff distance.

Proposition 3 Let f0 : [0, 1] ⇒ R
N and Fλ : [0, 1] × [0, 1] × R

N ⇒ R
N be

continuous set-valued mappings in the Hausdorff metric taking nonempty, compact,
and convex values. Let us also assume that Fλ is a contraction with contractiv-
ity factor cλ < 1 in its third variable w.r.t. the Hausdorff distance, i.e., t , s ∈
[0, 1], y1, y2 ∈ R

N ⇒ dH (Fλ(t , s, y1),Fλ(t , s, y2)) ≤ cλ‖y1 − y2‖, and that
(cλ)N := cλ(N )3/2 < 1. Let x̂λ be a solution to the following Fredholm integral
inclusion x̂λ(t) ∈ f0(t)+∫ 1

0 Fλ(t , s, x̂λ(s))ds for all t ∈ [0, 1], and x be a continuous

target. Then ‖x − x̂λ‖∞ ≤ 1
1−cλ supt∈[0,1] dH

(
x(t), f0(t) + ∫ 1

0 Fλ(t , s, x(s))ds
)

Proof By computing we have for all t ∈ [0, 1],

‖x̂λ(t) − x(t)‖ ≤ d(x̂λ(t), Tλx̂λ(t)) + d(x(t), Tλx(t)) + dH (Tλxλ(t), Tλx(t))

≤ 0 + d(x(t), Tλx(t)) + cλ‖x − x̂λ‖∞
≤ dH (x(t), Tλx(t)) + cλ‖x − x̂λ‖∞,

which implies the thesis. The last inequality comes from the following calculations:

dH (Tλxλ(t), Tλx(t)) = supp∈S1 |supp(p, Tλxλ(t)) − supp(p, Tλx(t)|
≤ supp∈S1

∣∣∣supp
(
p,
∫ 1

0 Fλ
(
t , s, x̂λ(s)

)
ds
)

−supp
(
p,
∫ 1

0 Fλ(t , s, x(s))ds
)∣∣∣

≤ supp∈S1

∣∣∣
∫ 1

0 supp(p,Fλ
(
t , s, x̂λ(s)

)
ds)

− ∫ 1
0 supp(p,Fλ(t , s, x(s))ds

∣∣∣

≤ ∫ 1
0 dH

(
Fλ
(
t , s, x̂λ(s)

)
,Fλ(t , s, x(s))

) ≤ cλ‖x̂λ − x‖∞,

where supp(p, S) is the support function in the direction p.
Given a family of set-valued mappings Fλ, λ ∈ Λ, each satisfying the hypotheses of
Proposition 3, provided all cλ are bounded away from 1, the Proposition allows us to
control the error in approximating the x by the inclusion solution x̂λ via minimizing
the collage distance portion of the right hand side of (1) W.r.t. λ ∈ Λ. In the case
that the set-valued functions Fλ take compact interval-values [(Fλ)min, (Fλ)max], this
calculation reduces to the minimization of the collage distances between the target
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x and integral operators which just depend on (Fλ)min and (Fλ)max. We illustrate this
observation in the following example.
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2. Berenguer, M.I., Fernández Muñoz, M.V., Garralda-Guillem, A.I., Ruiz Galán M.: Numerical

treatment of fixed point applied to the nonlinear Fredholm integral equation. Fix. Point Theory
Appl. 2009, 8 pp. (2009) (Article ID 735638)

3. Berenguer, M.I., Gámez, D., Garralda-Guillem, A.I., Serrano Pérez, M.C.: Nonlinear Volterra
integral equation of the second kind and biorthogonal systems. Abstract Appl. Anal. 2010,
11 pp. (2010) (Article ID 135216)

4. Berenguer, M.I., Garralda-Guillem,A.I., Ruiz Galán, M.:An approximation method for solving
systems of Volterra integro-differential equations. Numer. Math. 67, 126–135 (2013)

5. Calió, F., Garralda-Guillem, A.I., Marchetti, E., Ruiz Galán, M.: About some numerical
approaches for mixed integral equations. Appl. Math. Comput. 219, 464–474 (2012)

6. Carothers, N.L.: A short course on Banach space theory. Lond. Math. Soc. Student Texts 64,
Cambridge University Press, 2004.

7. Gámez, D., Garralda-Guillem, A.I., Ruiz Galán, M.: High-order nonlinear initial-value
problems countably determined. J. Comput. Appl. Math. 228, 77–82 (2009)

8. Gelbaum, B., Gil de Lamadrid, J.: Bases on tensor products of Banach spaces. Pacific J. Math.
11, 1281–1286 (1961)

9. Kunze, H.E., La Torre, D., Lever, K.M., Vrscay, E.R.: Solving inverse problems for Hammer-
stein integral equation and its random analog using the “collage method” for fixed points. Int.
J. Pure Appl. Math. 60, 393–408 (2010)

10. Kunze, H.E., La Torre, D., Lever, K.M., Vrscay, E.R.: Fractal Based Methods in Analysis.
Springer, Berlin (2012)

11. Semadeni, Z.: Product Schauder bases and approximation with nodes in spaces of continuous
functions. Bull. Acad. Polon. Sci. 11, 387–391 (1963)



Stabilizing Role of Predators in Niche
Construction Modeling

Faina S. Berezovskaya and Georgiy P. Karev

Abstract In this chapter a question of “how much over-consumption a renewable
resource can tolerate” is addressed using a mathematical model, where a consumer
population competes for the common resource, can contribute to resource restoration,
and is subject to attacks of predators. The bifurcation analysis of the system shows
that well-adapted predators can keep the system in a stable equilibrium even for
“strong” prey over-consumption, when the initial system of resource–consumer goes
to extinct. Thus, predators may extend the domain of total model system coexistence
in niche.

1 Introduction

Modeling of the predator–prey interaction of populations has long history beginning
from classical works of V. Volterra [6] (see also [2, 5] etc.). In this work we consider
dynamics of the model where a prey population, being a subject of predator attacks,
consumes the renewable resource in such a way that can contribute to resource
restoration [3, 4]. The model reads:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dN
dt

= N (c − N
z − p)

dp

dt
= βp(N −m)

dz
dt

= γ − δz + e(1−c)N
N+z

(1)

where N ,p, z are normalized densities of prey/consumers, predators, and resource,
correspondingly. Parameters of this model are γ , δ, which characterize a natural
restoration and decay rates of resource, m > 0, β ≤ 1, which are a level of a stable
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coexistence of predators and preys and a coefficient of the transformation of a prey
to predator biomass, correspondingly. Parameters c > 0, e > 0, characterize the
initial (Malthusian) growth rate of consumers and efficiency of resource restoration.
The consumers contribute to restoration of a resource if c < 1 and exhaust it if c > 1
(they are called over-consumers in the latter case), such that the value e(1− c) is the
“order of contribution” of consumers to resource.

2 A Model of Consumers-Renewable Resource

The dynamics of the model “consumers-renewable resource”
⎧
⎨

⎩

dN
dt

= N (c − N
z

)

dz
dt

= γ − δz + e(1−c)N
N+z

(2)

has been investigated in [3]. For all considering parameters the system has nonnega-
tive equilibria: non-hyperbolic pointO2(0, 0), whose structure depends on parameter
variation, and saddle pointB2(N = 0, z = γ

δ
); for 0 ≤ γ

e
< c(c−1)

c+1 the system also has

nontrivial topological node A2(N = c
δ
(γ + ec(c−1)

c+1 ), z = 1
δ
(γ + ec(c−1)

c+1 )). System (2)
demonstrates a wide range of behaviors when parameters vary. Bifurcation diagram
of the system is schematically presented in Fig. 1 in the form of (c, γ

e
)-parameter and

(N , z)-phase portraits. The bifurcation boundaries are presented in Table 1. As the
value of c increases the equilibriumA2 goes through Domain 1 where it is a globally
stable node, then through domains of bistability 2,3, where two equilibria A2 and
originO2 are locally stable and share the basins of attraction;A2 loses stability due to
the subcritical Hopf bifurcation when it intersects the boundary between Domains 3
and 4 or by the supercritical Hopf bifurcation when intersects the boundary between
Domains 3 and 6. The latter event is accompanied by the appearance of a stable limit
cycle in Domain 6. Finally the equilibrium A2 enters Domain 5 yielding an elliptic
sector (a family of homoclinic trajectories such that every trajectory tends to the
origin point O2 as t → ±∞).

3 Predator-Induced and Predator-Free Equilibria.
Bifurcation Diagram of Model (1) in (c, m)-Plane

System (1) can have up to five equilibrium points. Three of them,

O(0, 0, 0), B
(
N = 0, p = 0, z = γ

δ

)
,

A

(
N = c

δ

(
γ + ec(c − 1)

c + 1

)
, p = 0, z = 1

δ

(
γ + ec(c − 1)

c + 1

))
,
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Fig. 1 Bifurcation diagram of system (1) for parameters (c, γ /e) and variables (N , z) at fixed e = 1
and positive δ. Equilibrium A2 is globally stable in Domain 1; it shares basins of attraction with
equilibriumO2 in Domains 2 and 3. Only equilibriumO2 is globally stable in Domains 4 (containing
an unstable nontrivialA2), in Domain 5O2 contains an elliptic sector in its vicinity. Domain 6 exists
only for certain region of it has stable equilibrium O2 and stable limit cycle that contains inside
unstable equilibrium, their basins are separated by the unstable limit cycle. The boundaries between
domains areK , S,H ,Nul,C; they correspond, respectively, to the appearance of an attractive sector
close to O2, an unstable limit cycle containing A2 inside, the change of stability of A2 via Hopf
bifurcations, merging of A2 and O2 and saddle-node bifurcation of limit cycles (see Table 1)

Table 1 Domain boundaries of the model bifurcation

Domains Boundary Bifurcation

1,2 K: γ

e
= cb − 1 Appearance of stable parabolic sector in a

positive neighborhood of equilibrium O2

2,3 S :c(γ ) = cs no analytical descrip-
tion

Unstable heteroclinics of B2 and O2 separa-
trixes

3,4 small δ H+ : γ

e
= ch(ch−1)(ch(ch+1)+δ(ch+2))

(ch+1)2(ch+δ)
The first Lyapunov value is positive

Subcritical Hopf bifurcation of equilibrium A2

3,6 big δ H− : γ

e
= ch(ch−1)(ch(ch+1)+δ(+2))

(ch+1)2(ch+δ)
The first Lyapunov value is negative

Supercritical Hopf bifurcation of equilibrium
A2

6,4 C :c(γ ) = cc no analytical descrip-
tion

Fold bifurcation of limit cycles

4,5 Null : γ

e
= c0(c0−1)

(c0+1) Merging of equilibria A2 and O2

have the same (N , z)-coordinates as the corresponding points of system (2). In what
follows we use the notations N (A), p(A), z(A) for corresponding coordinates of the
point A. System (1) can have up to two predator-induced equilibria

C±
(
N = m,p = c − m

z±
, z = z±

)

with

z± = γ − δm±√
D

2δ
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satisfying the equation

δz2 − (γ − δm)z −m(e(1 − c) + γ ) = 0.

The domain where C±-equilibria exist is defined by the condition

D = (γ + δm)2 + 4eδm(1 − c) ≥ 0;

the union of branches m+
Δ

⋃
m−
Δ, where

m±
Δ : m = 2

√
(c − 1)e((c − 1)e − γ ) ± (c − 1)e((c − 1)e − γ )

δ

is the boundary D = 0 of this domain. Now define the curve

mN (A) : m = c

δ

(
γ + ec(c − 1)

c + 1

)

with 0 < c < c0, where c0 is a positive root of the equation

γ

e
= c(c − 1)

c + 1

(see Fig. 2 and Table 1). For c = c0 the equilibria A2 and O2 of system (2) merge,
A2 leaves the positive quadrant if c > c0 (see Fig. 1, Domain 5). The curve mN (A)

and the branch m−
Δ of the boundary D = 0 have a common point a (cd ,md) where

cd is a positive root of the equation

γ

e
= c(c − 1)(c + 2)

(c + 1)2

and

md = cd

δ

(
γ + ecd (cd − 1)

cd + 1

)
.

LetDC1 be the domain in positive part of (c,m)-plane bounded by the curvesmN (A)

and the interval of axis c: 0 < c < c0. Next, let us define the curve

M(c,m) =
⎧
⎨

⎩
mN (A) c < c < cd

m−
Δ c > cd

⎫
⎬

⎭
.

Denote DC the domain in the positive quadrant (c > 0,m > 0) bounded by the
curveM(c,m) and the c-axes; let DC2 = P \DC1, DA = R2+ \DC (see Fig. 2).

Let the positive parameters γ , e,β, δ are fixed. The structures of equilibria of the
system are described by the following statements.
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Fig. 2 Schematically presented (N , z)-cut of bifurcation diagram of system (1) in (m, c)-parameter
plane. The axis c is partitioned by the points cb, ch, c0, which correspond to bifurcations in model
(1; see Table 1 and Fig. 1). The parametric portrait of the system consists of six domains with
qualitatively different stable behaviors; the domains are denoted by the integer and subindex A or
C, where index A means that equilibrium A is stable and index C means that equilibrium C is
stable. The (N , z)-phase portraits of the system are presented in the lower panel. Portraits 3A and
3C are computed as β = γ = δ = e = 1, c = 3, and m = 0.2, m = 0.1, correspondingly

Theorem 1

1. Equilibrium B is unstable;
2. Equilibrium A is stable for (c,m) ∈ DA if 0 < c < ch, is unstable for (c,m) ∈
DA if ch < c < c0 and for (c,m) ∈ DC1, it leaves nonnegative octant if c > c0;

3. Equilibrium C+ is positive and stable only for (c,m) ∈ DC;
4. Equilibrium C− is positive and unstable for (c,m) ∈ DC2, C− is negative or

does not exist for (c,m) /∈ DC2;
5. Equilibrium O is non-hyperbolic, projection of its neighborhood to the plane
p = 0 contains only hyperbolic sector for 0 < c < cb, contains hyperbolic and
stable parabolic sectors for cb < c < c0, contains elliptic sector for c > c0 [1].

Based on Theorem 1 and computer analysis we present the bifurcation diagram of
system (1) in Fig. 2. It shows only stable modes in the (N , z)-phase portraits of the
model.
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Theorem 2

1. The parameter domainDA in (c,m)-plane is dividing into three subdomains 1A,
2A, 3A. The equilibrium A is globally stable in 1A, does not exist in Domain 3A
where O is a single equilibrium and has elliptic sector in its positive neighbor-
hood; Domain 2A is a domain of bistability, where either equilibriumA or a limit
cycle is stable and share basins with equilibrium O.

2. The parameter domainDC in (c,m)-plane is dividing into three subdomains 1C,
2C and 3C of different (3D)-phase portraits. The equilibriumC is globally stable
in 1C; it shares basins with O in 2C. In Domain 3C (N , z)-phase portrait of system
(1) contains the stable equilibriumC+ and equilibriumO,which has an attractive
sector and/or elliptic sector in its neighborhood.

4 Discussion and Conclusion

Our analysis of the “consumer–predator-renewable resource” model 1 shows that
predators can essentially change the dynamics and steady states of “predator-free”
system. Predators do not change essentially the dynamics of the consumer-renewable
resource system when the level of over-consumption is not too large (see Domains
1, 2 in Fig. 2). In contrast, predators are able to keep a stable equilibrium with
nonzero amounts of preys and resource even when the level of over-consumption is
large so that the “predator-free” consumer–resource system get extinction (Domain
3C in Fig. 2). Note that the amount of predators in this equilibrium increases as the
parameter c increases. The equilibrium point has a bounded basin and trajectories
starting out this basin tend to O, i.e., the system goes to extinct.

Computer experiments revealed that even small amount of predators in the system
increases the duration of the system “existence” even in the case when in the “final”
equilibrium the amount of predators is zero.

Overall, we may conclude that the model reveals possible “positive” influence
of predators which can increase sustainability of the system and prevent it from
extinction. It is our hope that the model and the results of its studying may be
interpreted in terms of social–economical systems, but it is out of the scope of this
work.

References

1. Berezovskaya, F.S., Novozhilov, A.S., Karev, G.P.: Population models with singular
equilibrium. Math. Biosci. 208(1), 270–299 (2007)

2. Hardin, G.: The tragedy of the commons: Science 162(5364), 1243–1248 (1968)
3. Kareva, I., Berezovskaya, F., Castillo-Chavez, C.. Transitional regimes as early warning signals

in resource dependent competition models, Math. Biosci. 240, 114–123 (2012)



Stabilizing Role of Predators in Niche Construction Modeling 79

4. Krakauer, D.C., Page, K.M., Erwin, D.H.: Diversity, dilemmas, and monopolies of niche
construction. Am. Nat. 173(1), 26–40 (2009)

5. Odling-Smee, F.J., Laland, K.N., Feldman, M.W.: Niche Construction: The Neglected Process
in Evolution (MPB-37). Princeton University Press (2003)

6. Volterra, V.: Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villare,
Paris (1931).



Strip Saturation Yield Model for a Piezoelectric
Plate: A Study on Influence of Change in Poling
Direction

R.R. Bhargava and Kamlesh Jangid

Abstract A study on the influence of change in poling direction is carried for me-
chanical and electric strip yield model for a transversely isotropic piezoelectric plate
cut along two equal collinear semipermeable cracks. Solution is obtained using
Stroh formalism and complex variable technique. An illustrative numerical example
is considered for a poled PZT-5H ceramic plate to show the effect of change in poling
direction on energy release rate (ERR).

1 Introduction

A vast variety of crack problems for piezoelectric ceramics have been investigated
considering impermeable, permeable electric conditions on the crack faces. It is
noted that these conditions give higher and lower estimate of energy release rate
(ERR), respectively. But empirically it is observed that semipermeable crack face
boundary condition give more accurate results. Semipermeable boundary conditions
may be defined as (given by Hao and Shen [5])

D+
2 = D−

2 , D+
2 (u+

2 − u−
2 ) = εa(φ− − φ+), (1)

where D2, u2, φ, and εa , respectively, denote the electric-displacement, mechanical
displacement components perpendicular to the crack, electric potential, and per-
mittivity of media inside crack gap. The superscripts + and − denote the value of
quantity over upper and lower faces of the cracks.

A simple model for a slit arrest under small scale mechanical yielding proposed
by Dugdale [3] was also extended for both mechanical and electric saturation model
for piezoceramics. Shen et al. [8] obtained solution for a strip electric saturation
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Fig. 1 Schematic configuration of the problem

and mechanical yielding model for an interface crack between ferroelectric–plastic
bimaterials. A mechanical and electric yield model for impermeable crack in a
piezoelectric ceramic had been investigated by Loboda et al. [6].

More recently, we [1] have given the solution of strip-electromechanical model
for piezoelectric plate cut along two semipermeable collinear cracks. The influence
of poling direction and electric boundary conditions on fracture behavior of a finite
crack in two-dimensional infinite piezoelectric medium had been studied by Fan and
Zhao [4].

Very few studies are available for changing poling direction. Therefore, we address
this paucity, studying the influence of change in poling direction on a piezoelectric
media cut along two equal collinear straight cracks under in-plane electrical and
mechanical loads.

2 Statement and Solution of the Problem

A transversely isotropic poled piezoelectric plate weakened by two equal collinear
semipermeable cracks, which occupy the region x2 = 0, d ≤ |x| ≤ c in x1ox2

plane. The poling direction makes an angle θ with x1-axis. The remote boundary of
the plate is subjected to in-plane normal, uniform constant tension σ22 = σ∞

22 , and
electrical displacementD2 = D∞

2 , consequently cracks open in self-similar fashion
forming a strip yield and saturation zone of equal length ahead each tip of the crack.
The developed zones at the cracks tips c, d ,−d , and −c, occupy the respective
intervals [c, a], [b, d], [−d ,−b], and [−a,−c] on ox1-axis. To stop the crack from
further opening, the rims of the developed zones are subjected to uniform constant
normal cohesive yield point stress σ22 = σs and saturation limit in-plane electric
displacement D2 = Ds . The schematic representation of the problem is depicted in
Fig. 1.
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The physical boundary conditions stated above may mathematically be written as

(i) σ+
22 = σ−

22 = 0, D2 = D, on L = ∪2
1Li

(ii) σ22 = σ∞
22 , D2 = D∞

2 , for |x2| → ∞
(iii) σ+

22 = σ−
22 = σs ,D+

2 = D−
2 = Ds , forb ≤ |x1| ≤ d , c ≤ |x1| ≤ a

(iv) Φ+
,1 (x1) = Φ−

,1 (x1) = −V, V = [0, σ∞
22 , 0,D∞

2 ]T on d < |x1| < c,
whereD is the electric flux through the crack regions [−c,−d] and [d , c], determined
using Eq. (1).

According to Stroh formalism, the solution of the problem may be given as

u,1 = AF(z) + AF(z), (2)

Φ,1 = BF(z) + BF(z). (3)

The methodology presented here is recapitulated from Bhargava and Kamlesh [2] to
make the chapter self-sufficient for a reader.

The continuity of Φ,1(x1) on the whole real axis implies that

[BF(x1) − BF(x1)]+ − [BF(x1) − BF(x1)]− = 0. (4)

According to Muskhelishvili [7], its solution may be written as

BF(z) = BF(z) = h(z)(say). (5)

Boundary condition (iv) together with Eqs. (3) and (5) yield following Hilbert
problem

h+(x1) + h−(x1) = V0 − V, V0 = [0, 0, 0,D]T , d < |x1| < c. (6)

Introducing a new complex function vector Ω(z) = [Ω1,Ω2,Ω3,Ω4]T as Ω(z) =
HRBF(z), which, using Eq. (5), gives the relation h(z) = ΛΩ(z), whereΛ = [HR]−1,
HR = 2ReY, Y = iAB−1.

Consequently, Eq. (6) may be written in component form forΩ2(z) andΩ4(z), as

Λ22[Ω+
2 (x1) +Ω−

2 (x1)] +Λ24[Ω+
4 (x1) +Ω−

4 (x1)] = −σ∞
22 , d < |x1| < c,

(7)

Λ42[Ω+
2 (x1) +Ω−

2 (x1)] +Λ44[Ω+
4 (x1) +Ω−

4 (x1)] = D −D∞
2 , d < |x1| < c.

(8)

The solution of above Hilbert problems may be written, using Muskhelishvili [7], as

Ω2(z) = Λ44σ
∞
22 +Λ24(D −D∞

2 )

2Δ

{
z2 − a2λ2

2

X2(z)
− 1

}
− Λ44σs +Λ24(D −Ds)

πΔX2(z)
R,

(9)

Ω4(z) = Λ42σ
∞
22 +Λ22(D −D∞

2 )

2Δ

{
1 − z2 − a2λ2

2

X2(z)

}
+ Λ42σs +Λ22(D −Ds)

πΔX2(z)
R,

(10)
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Fig. 3 Energy release rate (ERR) versus poling angle

where X2(z) = √(z2 − a2)(z2 − b2), Δ = Λ22Λ44 −Λ24Λ42,
R = {(z2 − a2λ2

2)(π2 − ϑd + ϑc) −X2(z)(π2 − υd + υc) + R1
}
,

R1 = da (E(ϑd , k2) − λ2
2F (ϑd , k2)

)− ca (E(ϑc, k2) − λ2
2F (ϑc, k2)

)− (a2 − b2)
( sin ϑd cosϑd − sin ϑc cosϑc),
k2

2 = 1 − (b/a)2, λ2
2 = E(k2)/F (k2), sin2 ϑd = (a2 − d2)/(a2 − b2),

sin2 ϑc = (a2 − c2)/(a2 − b2),

υd = tan−1
√

(b2−z2)(a2−d2)
(a2−z2)(d2−b2) , υc = tan−1

√
(b2−z2)(a2−c2)
(a2−z2)(c2−b2) .

3 Applications

The size of developed zones is obtained under the Dugdale hypothesis of stresses,
σ22(x1), and electric displacement, D2(x1), remain finite at the tips x1 = b and
x1 = a, then one obtains nonlinear equations to determine b and a from

(
b2

a2
− λ2

2

)(π
2
L− ϑdc

)
− R1

a2
= 0, (11)

(1 − λ2
2)
(π

2
L− ϑdc

)
− R1

a2
= 0, (12)

where L = σ∞
22 /σs or (D −D∞

2 )/(D −Ds), and ϑdc = π
2 − ϑd + ϑc.
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The relative opening of the crack faces, �u2 at the tips d and c may be given as

�u2(d) = −Λ44σs +Λ24(D −Ds)
πΔ

{
R2 − 2R1

a2
F (ξd , k2) + 2aϑdcR3 + R4

}

+ aΛ44σ
∞
22 +Λ24(D −D∞

2 )

Δ

(
R3 − λ2

2F (ξd , k2)
)
, (13)

�u2(c) = Λ44σs +Λ24(D −Ds)
πΔ

{
R5 + R6 − 2R1

a2
F (ϑc, k2) + 2aϑdcE(ϑc, k2)

}

− aΛ44σ
∞
22 +Λ24(D −D∞

2 )

Δ

(
E(ϑc, k2) − λ2

2F (ϑc, k2)
)
. (14)

Also, the jump in electric potential across the two faces of the cracks at tips d and c
may be given as

�u4(d) = Λ42σs +Λ22(D −Ds)
πΔ

{
R2 − 2R1

a2
F (ξd , k2) + 2aϑdcR3 + R4

}

− aΛ42σ
∞
22 +Λ22(D −D∞

2 )

Δ

(
R3 − λ2

2F (ξd , k2)
)
, (15)

�u4(c) = −Λ42σs +Λ22(D −Ds)
πΔ

{
R5 + R6 − 2R1

a2
F (ϑc, k2) + 2aϑdcE(ϑc, k2)

}

+ aΛ42σ
∞
22 +Λ22(D −D∞

2 )

Δ

(
E(ϑc, k2) − λ2

2F (ϑc, k2)
)
, (16)

whereR2 = −d ln
(
a2−d2

a2−b2 + a2(b2−d2)
d2(a2−b2)

)
+ 2b2

a

√
a2−d2

d2−b2

(
F (ξd , k2) −Π (ξd , d

2−b2

d2 , k2)
)

,

R3 = E(ξd , k2) − k2
2 sin ξd cos ξd√

1−k2
2 sin2 ξd

, sin2 ξd = a2(d2−b2)
d2(a2−b2) ,

R4 = d ln

(√
(d2−b2)(a2−c2)+

√
(a2−d2)(c2−b2)√

(d2−b2)(a2−c2)−
√

(a2−d2)(c2−b2)

)
− 2b2

a

√
a2−c2

c2−b2Π (ξd , c2k2
2

c2−b2 , k2),

R5 = −c ln
(

(a2−c2)(c2−b2)
c2(a2−b2) + 1

)
+ 2

a

√
c2−b2

a2−c2

(
F (ϑc, k2) − c2Π (ϑc, a

2−c2

a2 , k2)
)

,

R6 = − 2
a

√
(d2 − b2)(a2 − d2)

(
F (ϑc, k2) + d2

a2−d2Π (ϑc, a
2−b2

a2−d2 , k2)
)

+ c ln

(√
(c2−b2)(a2−d2)+

√
(a2−c2)(d2−b2)√

(c2−b2)(a2−d2)−
√

(a2−c2)(d2−b2)

)
.

To find the value of electric flux D, the quadratic equation is obtained from Eq. (1)
by substituting �u2(x1) and �u4(x1) for two collinear equal cracks problem, as

η1D
2 + η2D + η3 = 0, (17)

where η1 = Λ24, η2 = Λ44σ
∞
22 −D∞

2 Λ24 − εaΛ22, η3 = −εa(Λ42σ
∞
22 −D∞

2 Λ22).
The value ofD is chosen for which �u2(x1) is positive, and the ERR at the interior

and exterior tips of the crack is calculated using

J (d) = σs�u2(d) +Ds�u4(d), J (c) = σs�u2(c) +Ds�u4(c). (18)
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4 Results and Discussions

Figure 2a depicts the variation of ERR versus prescribed electrical load, D∞
2 , for

PZT-5H ceramic at the interior tip d . It may be noted that ERR decreases even
as D∞

2 is increased for all poling direction. However, the ERR is minimum when
poling is along the length of the crack, while it is maximum when poling direction is
perpendicular to crack length. A similar variation is plotted in Fig. 2b at the exterior
tip c. It is important to note the ERR (at exterior) is less vis-a-vis that at interior.

Figure 3a and b show the ERR variation with respect to poling direction angle for
different poled piezoceramics at the interior and exterior crack tips. This variation is
useful for the selection of desired ceramic for the specific work.

5 Conclusions

It is seen that poling direction has a definite effect on ERR, consequently on crack
opening arrest. ERR is minimum when poling direction is along crack length and as
it is changed to 90◦ to crack length, the ERR is increased.
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Strip-Saturation-Induction Model Mode-III
Solution for Piezoelectromagnetic Strip

R. R. Bhargava and Pooja Raj Verma

Abstract Using Fourier cosine integral transform technique, mode-III strip-
induction-saturation model is proposed for a cracked transversely isotropic piezo-
electromagnetic strip. Strip edges are subjected to combined anti-plane mechanical
and in-plane electromagnetic loadings. Analytical closed-form expressions are de-
rived for developed zones, field intensity factors, and energy release rates. Four
impermeable/permeable electromagnetic crack-faces boundary conditions are con-
sidered. Results are plotted forBaT iO3–CoFe2O4 ceramic to show the influence of
electromagnetic fields on local energy release rate (LERR) and global energy release
rate(GERR).

1 Introduction

Due to intrinsic coupling among elastic, electric, and magnetic field, magnetoelec-
troelastic (MEE) ceramic is widely used in medical and industrial engineering as
sensor, actuators or transducers, etc.

The fracture behavior of MEE depends on applied loading as well as electro-
magnetic crack-faces boundary conditions. Electromagnetic crack-face boundary
conditions are the most important and basic issues in studying the facture behav-
ior of MEE materials. Electromagnetic crack-face boundary conditions for MEE
ceramic are given by Wang and Mai [1].

A strip-electric saturation model proposed by Gao et al. [2] for a piezoelectric
ceramic. And this model extended for both electrically and mechanically yield model
by Shen et al. [3]. More recently, Ma et al. [4] proposed a contact zone model for
two dissimilar MEE materials, with electrically impermeable (EI) and magnetically
permeable (MP) crack-face boundary conditions.
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In this chapter, we have obtained mode-III strip-induction-saturation mathemat-
ical model solution for cracked piezoelectromagnetic strip. The crack-faces are
assumed to be mechanically traction free. Also, the inside crack gap media is as-
sumed to be (a) electromagnetically impermeable, (b) electrically permeable (EP)
and magnetically impermeable (MI), (c) EI and MP, and (d) electromagnetically
permeable.

2 Statement and Solution of the Problem

Consider a MEE strip occupies the region −h2 ≤ y ≤ h1 and |x| <∞ in xoy-plane
and is thick enough in z-direction to allow anti-plane deformation. The strip is both
electrically and magnetically poled along z-direction. The MEE strip is weakened
by a non-centric crack which occupies the region y = 0,−a ≤ x ≤ a and oriented
parallel to the strip edges. Uniform constant anti-plane mechanical load, σzy = τ0,
in-plane electrical, Dy = D0, and magnetic loads, By = B0, are prescribed on
edges of the strip, opens the crack in self-similar fashion. Consequently, under
small-scale-electromagnetic yielding, saturation and induction zones develop ahead
of each crack tips (which are assumed to be of equal length), occupy the interval
c ≤ |x| ≤ a on ox-axis. Rims of the developed zones are subjected to in-plane
normal cohesive saturation limit electric-displacementDy = Ds and induction limit
magnetic induction By = Bs , to stop the crack from further opening.

Under mode-III deformation, the constitutive equations for MEE media may be
written as
σzy = c44γzy + e15φ,y + h15ψ,y ,Dy = e15γzy − ε11φ,y − d11ψ,y ,
By = h15γzy − d11φ,y − μ11ψ,y ,
where φ,ψ , γzy , c44, e15, ε11, h15, and μ11 are electric potential, magnetic potential,
strain, elastic constant, piezoelectric constant, dielectric constant, piezomagnetic
coefficient, and electromagnetic coefficient, respectively.

The MEE boundary conditions combined over the extended crack surfaces using
superposition principle and continuity conditions along the line y = 0 may be written
as

(i) τzy(1)(x, 0+) = τzy(2)(x, 0−) = −τ0, 0 ≤ x ≤ a,
(ii) Dy(1)(x, 0+) = Dy(2)(x, 0−) = −D0(1 −D) +DsH (x − a), 0 ≤ x ≤ c,

(iii) By(1)(x, 0+) = By(2)(x, 0−) = −B0(1 − B) + BsH (x − a), 0 ≤ x ≤ c,
(iv) w(1)(x, 0+) = w(2)(x, 0−), τzy(1)(x, 0+) = τzy(2)(x, 0−), |x| > a,
(v) φ(1)(x, 0+) = φ(2)(x, 0−), Dy(1)(x, 0+) = Dy(2)(x, 0−), |x| > c,

(vi) ψ(1)(x, 0+) = ψ(2)(x, 0−), By(1)(x, 0+) = By(2)(x, 0−), |x| > c,
where H (.) denotes Heaviside function. D and B are the electric and magnetic flux
inside the crack [ − a, a] with zero value for impermeable crack and approximately
one for permeable crack. Subscripts (1) and (2) refer to MEE material layers for upper
0 < y ≤ h1 and lower −h2 ≤ y < 0 regions of the strip, respectively. Because of
the symmetry in geometry and loading, it is sufficient to consider the problem for
0 ≤ x <∞ region only.
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For convenience of mathematics, we introduce two new potential functions
Φ(x, y) and Ψ (x, y) as

φ(x, y) = Φ(x, y) +m1Ψ (x, y) +m2w(x, y), (1)

ψ(x, y) = Ψ (x, y) +m3Φ(x, y) +m4w(x, y), (2)

where m1 = − d11
ε11

, m2 = d11h15−e15μ11

d2
11−μ11ε11

, m3 = − d11
μ11

, and m4 = d11e15−ε11h15
d2

11−μ11ε11
.

The governing equations for the problem may be written as

∇2w(x, y) = 0,∇2Φ(x, y) = 0,∇2Ψ (x, y) = 0,

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is a two-dimensional Laplacian operator.
The solution of Laplace equations may be written using Fourier integral transform

technique as

w(i)(x, y) =
∫ ∞

0
[A(i)(ξ ) cosh (yξ ) + B(i)(ξ ) sinh (yξ )] cos (xξ )dξ , (3)

Φ(i)(x, y) =
∫ ∞

0
[C(i)(ξ ) cosh (yξ ) + E(i)(ξ ) sinh (yξ )] cos (xξ )dξ , (4)

Ψ(i)(x, y) =
∫ ∞

0
[F(i)(ξ ) cosh (yξ ) +G(i)(ξ ) sinh (yξ )] cos (xξ )dξ , (5)

Where i = 1, 2 represents the upper and lower region of the MEE strip, respectively.
Using boundary conditions (i–vi) into constitutive Eqs. (1) and (2), we obtain

three set of dual integral equations that can be further reduced into three Fredholm
integral equation of the seconds kind

Ω1(x) +
∫ 1

0
K1(x, t)Ω1(t)dt

= √
x
ε11μ11τ0 + μ11e15D0(1 −D) + ε11h15B0(1 − B)

c44μ11ε11
, (6)

Ω2(x)+
∫ 1

0
K2(x, t)Ω2(t)dt =

√
x

ε11
D0(1 −D) − 2

√
x

πε11
Ds cos−1

( a
cx

)
, 0 ≤ x ≤ c,

(7)

Ω3(x) +
∫ 1

0
K3(x, t)Ω3(t)dt =

√
x

μ11
B0(1 − B) − 2

√
x

πμ11
Bs cos−1

( a
cx

)
, 0 ≤ x ≤ c,

(8)

by introducing A(1)(ξ ), C(1)(ξ ), and F(1)(ξ ) in term of new auxiliary function Ω1(.),
Ω2(.), and Ω3(.), respectively, as

A(1)(ξ ) = 2a2

[1 +M12(ξ )]

∫ 1

0

√
uΩ1(u)J0(auξ )du, (9)



92 R. R. Bhargava and P. R. Verma

Fig. 1 Schematic representation of the problem

C(1)(ξ ) = − 2c2

[1 +M12(ξ )]

∫ 1

0

√
uΩ2(u)J0(cuξ )du, (10)

F(1)(ξ ) = − 2c2

[1 +M12(ξ )]

∫ 1

0

√
uΩ3(u)J0(cuξ )du, (11)

where J0(.) be modified zero-order Bessel function of the first kind. The ker-
nels K1(x, t), K2(x, t), and K3(x, t) are given as K1(x, t) = √

xt
∫∞

0 y[η(y/a) −
1]J0(xy)J0(ty)dy, K2(x, t) = K3(x, t) = √

xt
∫∞

0 y[η(y/c) − 1]J0(xy)J0(ty)dy,
and η(y) = 2 tanh (h1ξ )

1+tanh (h1ξ ) coth (h2ξ ) .

3 Applications and Case Study

Stress intensity factor, KτIII , strain intensity factor, KγIII , electric displacement in-
tensity factor, KDIV , electric field intensity factor, KEIV , magnetic induction intensity
factor, KBV , and magnetic field intensity factor, KHV , are obtained as

KτIII = lim
x→a+

√
2π (x − a)τzy(x, 0) = c44

√
πaΩ1(1), (12)

K
γ

III = lim
x→a+

√
2π (x − a)γzy(x, 0) = √

πaΩ1(1), (13)

KDIV = lim
x→c+

√
2π (x − c)Dy(x, 0) = ε11

√
πcΩ2(1), (14)

KEIV = lim
x→c+

√
2π (x − c)Ey(x, 0) = √

πcΩ2(1), (15)

KBV = lim
x→c+

√
2π (x − c)By(x, 0) = μ11

√
πcΩ3(1), (16)
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Fig. 2 Variation in global energy release rate (GERR) with respect to a λD and b λB

KHV = lim
x→c+

√
2π (x − c)Hy(x, 0) = √

πcΩ3(1). (17)

The following relation gives the condition of magnetic and electric forces required
to produce equal electric and magnetic yielding

B0Ds(1 − B) −D0Bs(1 −D) − μ11R1Ds + ε11R2Bs = 0, (18)

where R1 = ∫ 1
0 K3(1, t)Ω3(t)dt and R2 = ∫ 1

0 K2(1, t)Ω2(t)dt .

c44 = c44 + 2h15d11e15−ε11h
2
15−μ11e

2
15

d2
11−μ11ε11

, e15 = e15 − d11h15
μ11 , and ε11 = ε11 − d2

11
μ11

.

Local,GL, and global,GB , energy release rates at the crack tip, x = a, may be
respectively, given as

GL = (KτIIIK
γ

III )/2 = [c44(πa){Ω1(1)}2]/2, (19)

GB = {KτIIIKγIII −KDIVKEIV −KBV KHV }/2
= [c44(πa){Ω1(1)}2 − ε11(πc){Ω2(1)}2 − μ11(πc){Ω3(1)}2]/2. (20)

A numerical case study is presented for a transversely isotropic BaT iO3–CoFe2O3

material to investigate the effects of different types of crack-face boundary conditions
on local energy release rate (LERR) and global energy release rate (GERR). The
prescribed mechanical load and crack length are assumed to be 100 MPa and 20 mm,
respectively.

The material constants for BaT iO3–CoFe2O3 are given as c44 = 44 GPa, e15 =
5.8 C/m2, h15 = 275 N/Am, ε11 = 5.367 × 10−9 Ns/VC, μ11 = ×10−4 Ns/Vm,
and d11 = 2.97 × 10−12 Ns2C2.
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Fig. 3 Variation in local energy release rate (LERR) with respect to a λD and b λB

Figures 2(a) and 2(b), respectively, depicts the behavior of GERR with respect to
the variation in the nondimensional electrical, λD = c44D0/e15τ0, and magnetic load-
ing coefficient λB = c44B0/h15τ0 for different electromagnetic crack-face boundary
conditions. In Fig. 2(a) for case (EI and MI) and (EI and MP), it is pointed that GERR
decreases symmetrically for λD ≈ 1. And in Fig. 2(b), GERR is symmetrical about
λB ≈ 10 for case (EP and MI) and (EP and MI). This shows that GERR is indepen-
dent of the direction of the applied electrical as well as magnetic loads. This is not
in agreement of the experimental findings. Therefore, GERR cannot be considered
as a fracture parameter. It is also pointed that GERR is lower for (EP and MP) case.

The LERR is plotted with respect to λD and λB for different electromagnetic
crack-face boundary conditions in Figs. 3(a) and 3(b), respectively. Figures 3(a) and
3(b) show that the LERR always increases by increasing electrical loads, λD , and
magnetic loads, λB , respectively. It is in agreement with the experimental findings
that negative and positive electrical and magnetic loadings always produce a shielding
and unshielding effect on crack growth, respectively. It is also noted from Fig. 3(a)
that LERR is uniform for the case (EP and MI) and (EP and MP). And from Fig. 3(b)
that LERR is uniform for the case (EI and MP) and (EP and MP). Same as GERR,
LERR is lower for (EP and MP) case too.
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4 Conclusions

From the numerical studies, it is concluded that GERR cannot be considered as
a fracture parameter because GERR is not confirming the experimental evidence.
And also the numerical case study affirm that considered different crack models are
capable to crack arrest for electrically and MP case under small-scale electromagnetic
yielding.
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Adaptive Matrix Transpose Algorithms
for Distributed Multicore Processors

John C. Bowman and Malcolm Roberts

Abstract An adaptive parallel matrix transpose algorithm optimized for distributed
multicore architectures running in a hybrid OpenMP/MPI configuration is presented.
Significant boosts in speed are observed relative to the distributed transpose used in
the state-of-the-art adaptive FFTW library. In some cases, a hybrid configuration al-
lows one to reduce communication costs by reducing the number of message passing
interface (MPI) nodes, and thereby increasing message sizes. This also allows for
a more slab-like than pencil-like domain decomposition for multidimensional fast
Fourier transforms (FFT), reducing the cost of, or even eliminating the need for, a sec-
ond distributed transpose. Nonblocking all-to-all transfers enable user computation
and communication to be overlapped.

1 The Matrix Transpose

The matrix transpose is an essential primitive of high-performance parallel comput-
ing. In contrast to the situation on serial and shared-memory parallel architectures,
where the use of memory strides in linear algebra and fast Fourier transform (FFT)
libraries allows matrices to be accessed in transposed order, many distributed com-
puting algorithms rely on a global matrix transpose. This requires so-called all-to-all
communication, where every process must communicate with all of the other pro-
cesses to swap each matrix column with its corresponding row. For example,
multidimensional FFT algorithms use a matrix transpose to localize the compu-
tation within individual processes. For efficiency, all data corresponding to a given
direction must be made available locally for processing with the divide-and-conquer
subdivision strategy of the FFT.
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Writing an efficient implementation of a matrix transpose is surprisingly difficult.
Even on serial and shared-memory machines there are implementation issues. While
the storage savings afforded by in-place matrix transposition is often desirable, in-
place matrix transposition on a serial machine is nontrivial for nonsquare matrices.

For example, transposing

[
0 1 2 3
4 5 6 7

]

requires that the elements, stored linearly

in memory, be permuted according to the cycles (0), (1, 4, 2), (3, 5, 6), and (7).
Algorithms for out-of-place matrix transposition are much simpler. Nevertheless,

efficient implementation of out-of-place transposes still requires detailed knowledge
of the cache size and layout, unless a recursive cache-oblivious algorithm is used [1].
For a review of serial in- and out-of-place matrix transposition algorithms, see [2].

On distributed memory architectures, a number of different matrix transposition
algorithms have been proposed. For instance, Choi et al. [3] identified, in order of
increasing speed, the rotation, direct communication, and binary exchange algo-
rithms. However, the relative performance of these transposition algorithms depends
on many factors, including communication latency, bandwidth, network congestion,
packet size, local cache size, and network topology. Since it is hard to estimate the
relative importance of these factors at compilation time, an adaptive algorithm, dy-
namically tuned to take advantage of these specific architectural details, is desirable.
Al Na’Mneh et al. [4] have previously described an adaptive transposition algorithm
for symmetric multiprocessors that share a common memory pool and exhibit low-
latency interprocess communication. At the other extreme are adaptive algorithms
optimized for distributed memory architectures with high-latency communication,
like those implemented in the widely used FFTW library [5].

Modern high-performance computer architectures consist of a hybrid of the shared
and distributed paradigms: distributed networks of multicore processors. The hy-
brid paradigm marries the high bandwidth low-latency interprocess communication
featured by shared-memory systems with the massive scalability afforded by dis-
tributed computing. In this chapter, we describe recent efforts to exploit modern
hybrid architectures, using the popular message passing interface (MPI) to com-
municate between distributed nodes and the OpenMP multithreading paradigm to
communicate between the individual cores of each processor.

One of the obvious advantages of exploiting hybrid parallelism is the reduction
in communication relative to the pure-MPI approach since messages no longer have
to be passed between threads sharing a common memory pool. Another advantage is
that some algorithms can be formulated, through a combination of memory striding
and vectorization, so that local transposition is not required within a single MPI node
(e.g., the multidimensional FFT1). The hybrid approach also allows smaller problems
to be distributed over a large number of cores. This is particularly advantageous for
3D FFTs: the reduced number of MPI processes allows for a more slab-like than
pencil-like domain decomposition, reducing the cost of, or even eliminating the

1 However, the recent availability of serial cache-oblivious in-place transposition algorithms in
some cases tips the balance in favor of local transposition, if transposed output is acceptable.
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need for, a second transpose. A final reason in favor of the hybrid paradigm is that
it is compatible with the modern trend of decreasing memory/core: the number of
cores on recent microchips is growing faster than the total available memory. This
restricts the memory available to individual pure-MPI processes.

Since the multicore nodes in modern hardware are typically connected to the
distributed network via a single socket, message passing typically does not directly
benefit from multithreading. However, we show in this chapter that message pass-
ing can benefit from the increased communication block lengths associated with
the hybrid model. In addition, the necessary local transposes in and out of the
communication buffer can benefit somewhat from multithreading.

The most popular algorithms for transposing anN ×N matrix distributed over P
processes are the direct communication (all-to-all) and recursive binary exchange
(butterfly) algorithms. Direct communication transmits each block of data directly to
its final destination in the matrix transpose, without any intermediate steps. It is most
efficient for P � N , when the message sizes are large. However, its performance
degrades for P ≈ N , when the message size N2/P 2 becomes small. To avoid this
degradation, the binary exchange algorithm first groups messages together to reduce
communication latency, by recursively subdividing the transpose into smaller block
transposes.

The FFTW [5] library contains algorithms for both direct communication and
binary exchange.

However, the FFTW implementation of an adaptive matrix transpose has been
optimized for distributed memory architectures with high-latency communication. It
does not effectively exploit the larger communication block sizes that are available
with hybrid decompositions. It is also not multithreaded.

We have developed an efficient hybrid algorithm in the open-source library
FFTW++ [6]. It uses direct communication when the message sizes are large and
a two-stage block transpose in latency bound cases. In the latter case, we divide
the total number of processes P into a blocks each containing b processes. A block
transpose expresses an N ×M matrix as an a × a matrix of N/a ×M/a blocks.
Here, we only discuss the case where P = ab dividesN andM; the general case can
be handled with minor technical modifications. The transpose of each N/a ×M/a
blocks is computed first, followed by the transpose of the a × a matrix of blocks.
Grouping is used to increase the message sizes in the first transpose from NM/P 2 to
aNM/P2.

The binary exchange algorithm performs recursive block transposes. In practice,
only one level (at most) of recursion is actually necessary to increase the commu-
nication message sizes. After that single recursion, direct communication typically
becomes optimal since the message sizes have now been multiplied by a factor of
a in the first phase and b in the second phase. We show theoretically in Sect. 2 that
the communication costs are minimized for a = b = √

P . In practice, the optimal
value will lie somewhere near this value, but may vary due to other considerations,
such as cache configuration and network topology.

Block transposition is illustrated for the case N = M = 8, a = 4, and b = 2 in
Fig. 1. In (a), the transpose of each 2 × 2 block is computed. The communications
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a b

c d

Fig. 1 An 8 × 8 block transpose over eight processes for the case a = 4 and b = 2

between pairs (2n, 2n+1) of processes are grouped together by first doing an out-of-
place local transpose of the data, considered as a 4 × 2 matrix, on each process. The
pairs of processors then exchange data, as indicated by the arrows. This is followed by
separate all-to-all communications between the even processes (b) and odd processes
(c), again grouping the data bound for identical processors, to obtain the transposed
matrix in (d).

The block transposition algorithm may be stated as follows:

1. Inner transpose:
a. Locally transpose N/b × b matrix of blocks ofM/P elements.
b. All-to-all communicate over teams of b processes, using block size aNM/P 2.

2. Outer transpose:
a. Locally transpose N/a × a matrix of blocks ofM/P elements.
b. All-to-all communicate over teams of a processes, using block size bNM/P 2.

3. Locally transpose N ×M/P matrix (optional).
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Step 2 is omitted when a = 1 (the nonlatency bound case); the algorithm then reduces
to direct communication. Step 3 can be omitted if local transposition of the output
data is not required. We designed our algorithm to use nonblocking communications
(MPI_Ialltoall, available in MPI 3.0), to allow the user to overlap computation with
one or even both communication phases. Overlapping computation with communi-
cation has been observed to yield modest speedups (roughly 10 %) for computing
3D implicitly dealiased convolutions [6, 7], where a natural parallelism between
communication and computation arises.

2 Communication Costs

Direct transposition of an N × M matrix distributed over P processes, involves
P −1 communications per process, each of size NM/P 2, for a total per-process data
transfer of (P −1)NM/P 2. For large P , this cost asymptotically approaches NM/P .

For a block transpose, one exploits a factorization P = ab to perform the trans-
form in two stages. First, one groups the processes into a teams of b according to the
quotient of their rank and b. Over each team of b processes, one computes the inner
transpose of the a individual N/a ×M/a matrices, grouping all a communications
with the same source and destination together. This requires b − 1 messages per
process, each of size (NM/a)/b2 = aNM/P 2, for a total per-process data transfer
of (b− 1)aNM/P 2. One then regroups the processes into b teams of a according to
their rank modulo b. Over each team of a processes, the outer transpose of the a× a
matrix of N/a ×M/a blocks requires a − 1 communications per process, each of
size (NM/b)/a2 = bNM/P 2, for a total per-process data transfer of (a−1)bNM/P 2.

Each process performing a block transpose must therefore send (a−1) + (b−1)
= a + P/a − 2 messages, for a total per-process transfer of

[(b − 1)a + (a − 1)b]
NM

P 2
=
(

2P − a − P

a

)
NM

P 2
.

Let τ! be the typical latency of a message and τd be the time required to send each
matrix element. The time required to perform a direct transpose is

TD = τ! (P − 1)+ τd P − 1

P 2
NM = (P − 1)

(
τ! + τd NM

P 2

)
,

whereas a block transpose requires

TB(a) = τ!
(
a + P

a
− 2

)
+ τd

(
2P − a − P

a

)
NM

P 2
.

Since

TD − TB = τd
(
P + 1 − a − P

a

)(
L− NM

P 2

)
,

where L = τ!/τd is the effective communication block length, we see that a direct
transpose is preferred when NM ≥ P 2L, while a block transpose should be used
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Fig. 2 Wall-clock times for distributed transposes with the fastest Fourier transform in the west
(FFTW) library vs. our implementation

when NM < P 2L. To determine the optimal value of a for a block transpose, consider

T ′
B(a) = τ!

(
1 − P

a2

)
+ τd

(
−1 + P

a2

)
NM

P 2
= τd

(
1 − P

a2

)(
L− NM

P 2

)
.

For NM < P 2L, we see that TB is convex, with a global minimum value at a = √
P

of

2τd
(√
P − 1

)(
L+ NM

P 3/2

)
∼ 2τd

√
P

(
L+ NM

P 3/2

)
, P � 1.

The global minimum of TB over both a and P is then seen to occur at P ≈
(2NM/L)2/3. If the matrix dimensions satisfy NM > L, as is typically the case, this
minimum occurs above the transition value (NM/L)1/2. For P � 1, we note that
TD ∼ τd (PL + NM/P ) has a global minimum of 2τd (NML)1/2 at P = (NM/L)1/2,
precisely at the transition between the two algorithms. Provided NM > L, the op-
timal choice of P is thus (2NM/L)2/3. On a multicore parallel run over S sockets,
with C cores per socket, the optimal number of OpenMPI threads to use is then
T = min(SC/(2NM/L)2/3,C), with P = SC/T MPI nodes. We benchmarked our
hybrid implementation against the FFTW transpose for 1024×1024 and 4096×4096
complex matrices on the Dell Zeus C8220 Cluster at the Texas Advanced Computer
Center, using S = 128 sockets and C = 8 cores. In Fig. 2, we see that our imple-
mentation typically outperforms FFTW, in some cases by nearly a factor of 2. We
measured the value ofL to be roughly 4096 bytes for this machine. This predicts that
the optimal number of threads is T = 8 for Fig. 2a and T = 2 for Fig. 2b, precisely
as observed.

Acknowledgments The authors gratefully acknowledge Professor Wendell Horton for providing
access to state-of-the-art computing facilities at the Texas Advanced Computer Center.
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Accounting for Temperature when Modeling
Population Health Risk Due to Air Pollution

Wesley S. Burr and Hwashin H. Shin

Abstract Air Health Indicator (AHI) is a joint Health Canada/Environment Canada
initiative. A component in the indicator is an estimate of the time-dependent pop-
ulation health risk due to short-term (acute) effects of air pollution. The standard
approach for this risk estimation uses a generalized additive model (GAM) frame-
work, which includes one or more air pollutants and one or more temperature terms
as covariates, as well as a smooth function of time. In this risk-modeling framework,
the temperature is not the primary focus, but is included to ensure that common
structure between the mortality (response), the pollutant(s), and the temperature is
not included in the risk attribution.

We examine the smooth function link that is commonly used when including
temperature. We show that for a single lag of temperature, the traditional J-, U-,
or V -shaped relationship between temperature and mortality is largely a function of
low-frequency mortality structure and is thus accounted for by the smooth function of
time typically included in risk models. We further compare and contrast the first two
primary lags of temperature in the context of these findings, and demonstrate differ-
ences in their structure, advocating the inclusion of only the first (lag-0) parametric
temperature series in the model.

1 Introduction

Health Canada has recently developed a new methodology, the Air Health Indicator
(AHI), for assessing the effects on daily mortality of short-term exposure to air pol-
lution as they may vary dynamically over space and time in response to changes in
air quality. Hundreds of time-series studies of daily mortality have now been pub-
lished worldwide, and are critical components of the scientific evidence supporting
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a causal relationship between air pollution and public health. The AHI provides time
trends in annual risks at city-specific, regional, and national levels such as an in-
creasing, decreasing, or constant trend over a time period. The AHI can be used in
policy analysis, with potentially important applications to the assessment of the pub-
lic health impacts of air quality regulation. The AHI is computed by using a standard
generalized additive model (GAM) framework, of which temperature is an integral
part.

The GAM formulation for estimation of risk due to air pollution includes temper-
ature as a predictor as it is known to be one of the strongest (and quite clearly causal)
predictors of daily mortality. Since the classic response relationship [4, 9] between
mortality and temperature is concave up (i.e., J-, U-, or V -shaped), this has been
the impetus behind including temperature as a nonparametric-smoothed predictor.
However, after accounting for long-timescale variation in the model, the response
curve changes behavior dramatically to be approximately monotonically increasing.
Additionally, when considering temperature, a common concern (see, e.g., [1]) is
determining the most appropriate lag (or lags) for the included term(s). Considering
the previous point, we examine the interplay between the response and parametric
temperature and add slightly to the evidence for lag-0 temperature alone being the
sensible choice.

2 Model Used

For the purposes of the AHI, the model used links the response (mortality counts) to
the air pollutant predictor of interest (e.g., Ozone, NO2) via an additive model struc-
ture. Specifically, a GAM is used with a Poisson or quasi-Poisson family assumed.
This family has a logarithmic function link, with all predictors entering additively.
The predictors used are a single air pollutant, one or more temperature terms, a day-
of-week (DOW) factor term, and a smooth function of time. The smooth function
of time is included to remove slowly varying long-timescale structure from the re-
sponse, and to control the autoregressive relationship that is inherent in a time series
of observations. Formally,

log (μt ) = γ0xt + γ1DOW +
K∑

j=1

βjSj (Tj ,t , dof = dj ) + SK+1(time, dof = 14/year)

(1)

where the Sj (·), j = 1, · · ·,K are possible identity links, and SK+1 is a cubic regres-
sion spline smoother. Note that the typical choice of dof for such a smooth function
of time is 7/year, an unfortunate misunderstanding that has crept into the literature—
to correctly remove structure of longer timescale than 7 cycles/year, it is necessary
to use 14 dof /year instead [11]. The DOW is the day-of-week factor term, xt is the
pollutant of interest, and Tj ,t is the j th temperature term, typically consisting of
some combination of separate lags of daily mean temperature.
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2.1 Previous Understanding

Previously published works (see especially [4, 10]) have emphasized the necessity
of including temperature via a smooth function link. In the words of Dominici et al.
[4] (p. 268):

. . . we also fitted smooth functions of the same day temperature (temp0), the average tem-
perature for the three previous days (temp1−3), each with 6 degrees of freedom . . . [in] US
cities, mortality decreases smoothly with increases in temperature until reaching a relative
minimum and then increases quite sharply at higher temperature. 6 degrees of freedom were
chosen to capture the highly non-linear bend near the relative minimum as well as possible.

This behavior can clearly be seen in Fig. 1, where temperature at various lags is
shown fit to all-cause daily mortality via cubic regression splines with the specified
dof. All models are fit using theR programming language [8] using themgcv [12] and
spsmooth [3] packages. As clearly seen in nine panels of this figure, the nonlinear
“bend” mentioned by [4] is present. However, this figure does not tell the whole
story, as this relationship is between raw log mortality and daily mean temperature
(at some lag). When considered in the context of a larger population health risk
model, we must remember that temperature is not fit to the raw log mortality, but
rather to the filtered log mortality (via the influence of the smooth function of time).
We consider this in the next section.

2.2 Results Inside the Model

Rather examining the relationship between raw log mortality and temperature in
order to determine how best to include the temperature in the model, we expand
the context slightly and consider the presence of the smooth function of time. When
considered from a signal processing or time series point of view, the smooth function
of time is (when included as a fixed-dof spline) quite simple: a linear filter. Linear
filters are particularly easy to understand, and in this case can be interpreted as
capturing a portion of the variation of the response, leaving the residual to be fit
by the temperature term via its function link. If 14 dof /year are used, as discussed
previously in this section, then effectively the filter (or smooth function of time) will
capture the bulk of the power in the response that varies on timescales longer than
7 cycles/year, or roughly 52 days. Then, the temperature will be smoothed against
the residual from this filtering operation, or equivalently, the power in the response
that varies on timescales shorter than 7 cycles/year. The results of this can be seen
in Fig. 2, where a clear change is observed.
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Fig. 1 Nine smooths of daily mean temperature against daily all-cause mortality are shown for
the city of Toronto, Ontario using data from 1981 through 2007. Going down in rows, each row
represents a particular choice of temperature term: lag-0, lag-1, and the averages of lags 1, 2, and
3. Going across, each column represents a different choice of dof for the cubic regression spline
smoother function link. The model used was a simple single-predictor GAM with Poisson link to
simulate the logarithmic function link that is used in the full health risk model

2.3 Interpretation

The plots from the previous two sections show a clear change when the smooth
function of time is taken under consideration. Accordingly, the rationale for includ-
ing temperature via a smooth function link is somewhat suspect. After all, if the
justification is that we wish to capture a nonlinear bend in the relationship between
the two, and the nonlinear bend effectively disappears when we consider the model
properly in context, then the justification is moot. The approximately monotonic
relationship shown in the top six panels of Fig. 2 imply that including temperature in
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Fig. 2 Nine smooths of daily mean temperature against daily all-cause mortality are shown for the
city of Toronto, Ontario using data from 1981 through 2007. All layout concerns are identical to
Fig. 1, but the model linking the two terms has an additional smooth function of time added

the model parametrically may be equivalent (as a parametric inclusion corresponds
to a smooth function link with 1 dof, i.e., a straight line). Further examination of the
larger scale model of Eq. (1) as applied to 24 large urban centers in Canada (with
the AHI dataset) show that the risk estimates obtained using smooth function links
with 3 dof are comparable and share similar structure to estimates obtained using a
simple parametric inclusion. As parametric terms are simpler (parsimony) and allow
for more straightforward interpretation, these results lead us to advocate for their
inclusion to be parametric for the AHI, and similar metrics.
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3 Considering Different Lags

The previous section showed that including temperature via a smooth function link
is unnecessary when also including a smooth function of time (filter) term in additive
models such as we are considering for the AHI. What remains uncertain is what this
finding implies for the choice of lag for temperature. Previous models have used
multiple terms so as to capture as much of the temperature–mortality relationship as
possible. Examples include the additive combination of lag-0 and lag-1 (AHI), lag-0
and the average of lags 1, 2, and 3 (Dominici et al. [4, 7]), and the more sophisticated
distributed-lag nonlinear model approach of Gasparrini and Armstrong [5, 6].

For sake of brevity, we will consider only the AHI form of including lags 0 and
1 as separate terms in the model. While this form was chosen via standard metrics
(e.g., Akaike Information Criterion (AIC)), previously there has been little work
done on considering the effect of including the second term in the model. Note that
by “second term,” we acknowledge that any reasonable model of air pollution and
health effects must include lag-0 temperature as a critical component in the model, as
it is the most efficacious of any possible choice. Note that the findings of Gasparrini
[5] suggest that while temperature and mortality can be related out to lag 20 days
and higher, the majority of the relationship occurs in the first three to four lags (i.e.,
lags 0 to 3).

Now, consider Fig. 3, in which we show the prediction (coefficient multiplied by
series) of lag-0 and lag-1 temperature for Toronto, again between 1981 and 2007. The
two predictions are almost perfectly in-phase. This is a curious result, as a roughly
equivalent effect can be obtained by simply including lag-0 alone with a slightly
larger coefficient.

We compared the mean risk (coefficient of the air pollutant of interest) across
24 Canadian urban centers for models with only lag-0 temperature, only lag-1, no
temperature at all, and both lag-0 and lag-1. In order, from the lowest average risk
magnitude to highest, the choices are: lag-0 alone, lag-0, and lag-1 (comparable to
lag-0), then lag-1, and finally no temperature term at all. The lag-1 models have risks
that are comparable to the no-temperature term models, while the lag-0 and lag-1
models together are marginally higher than the lag-0. These results indicate that by
including temperature lag-1 together in a model with lag-0, the temperature term
actually captures less of the variation in the mortality, resulting in slightly higher
average coefficients for the air pollution term. Thus, from the point of view that says
that we should account for as much of the variation in the mortality as possible before
attributing the residual to air pollution, the best model to use, drops temperature lag-1
entirely, leaving only a parametric inclusion of temperature lag-0.

4 Conclusion

A reconsideration of the inclusion of temperature in models of population health risk
due to air pollution shows that when considered in the context of the overall model,
the smooth function link used for temperature lacks rationale for its use. Accordingly,
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Fig. 3 Comparison of the predictions for lag-0 and lag-1 temperature for Toronto between 1981–
2007. The model fit is in the form of Eq. 1 with K = 2, and the temperature terms are included
parametrically. The correlation between the two temperature predictions is 0.95, indicating that
they are almost perfectly in-phase with one another

models may include temperature parametrically, leading to the increased intuition
and ease of implementation. Considering the first two lags of temperature, we have
further demonstrated that, for Canadian urban centers, lag-1 seemingly adds no value
to models which also include lag-0. This result suggests that mortality for Canada
is driven by near-instantaneous temperature, with recent historical exposure being
insignificant in comparison.
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Discrete Prolate Spheroidal Sequences as Filters
in Generalized Additive Models

Wesley S. Burr and Hwashin H. Shin

Abstract Air Health Indicator (AHI) is a joint Health Canada/Environment Canada
initiative that seeks to model the Canadian national population health risk due to short-
term (acute) effects of air pollution. The commonly accepted model in the field uses
cubic spline-based temporal smoothers embedded in generalized additive models
(GAMs) to account for seasonal and long-term variations in the response. From a
spectral point of view, it is natural to think of these smooth, long-term variations as
low-frequency components, and the temporal smoother as a linear filter.

Examining the frequency response of the filters typically used, we show that
the performance leaves much to be desired. Adapting the discrete prolate spheroidal
sequences as filters, taking inspiration from their similar use in the multitaper method,
we are able to significantly improve the frequency response of the smoother. We
conclude with a discussion of the implications for controlling bias from the long
timescale structure of parametric covariates, and suggest a prefiltering stage to such
models.

1 Introduction

Health Canada has recently developed a new methodology, the Air Health Indicator
(AHI), for assessing the effects on daily mortality of short-term exposure to air pollu-
tion as they may vary dynamically over space and time in response to changes in air
quality. Hundreds of time-series studies of daily mortality have now been published
worldwide, and are critical components of the scientific evidence supporting a causal
relationship between air pollution and public health. The AHI provides time trends
in annual risks at city-specific, regional and national levels such as an increasing,
decreasing, or constant trend over a time period. The AHI can be used in policy anal-
ysis, with potentially important applications to the assessment of the public health
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impacts of air quality regulation. The AHI is computed by using a standard general-
ized additive model (GAM) framework, of which a smooth function of time (linear
filter) is an integral part.

2 Model Used

For the purposes of the AHI and similar estimates of population health risk (e.g.,
NMMAPS [4, 9]) the model used links the response (mortality counts) to the air
pollutant predictor of interest (e.g., Ozone and NO2) via an additive model structure.
Specifically, a GAM is used with a Poisson or quasi-Poisson family assumed. This
effectively sets the functional link to be logarithmic, with all predictors entering
additively. The predictors used are a single air pollutant, one or more temperature
terms, a day-of-week factor term, and a smooth function of time. The smooth func-
tion of time is included to remove slowly varying long timescale structure from the
response, and to control the autoregressive relationship that is inherent in a time
series of observations. Formally:

log (μt ) = γ0xt + γ1DOW +
K∑

j=1

βjSj (Tj ,t , df = dj ) + SK+1(time, df = 14/year),

(1)

where the Sj (·), j = 1, . . .,K are possible identity links, and SK+1 is a cubic regres-
sion spline smoother. Note that the typical choice of degrees-of-freedom (dof) for
such a smooth function of time is 7/year, an unfortunate misunderstanding that has
crept into the literature. We will discuss this further below. The DOW is the day-of-
week factor term, xt is the pollutant of interest, and Tj ,t is the j th temperature term,
typically consisting of some combination of separate lags of daily mean tempera-
ture. The notation used is similar to that of Dominici et al. [2], and the models are
implemented and computed in the R [8] programming language.

2.1 Rationale for Including the Smooth Function of Time

The smooth function of time is traditionally included in these models [2, 5] to ac-
count for unmeasured confounding. Mortality has a strong seasonal variation, which
in Canada and the USA is largely driven by the seasons of the continental and subtrop-
ical climates. There are any number of causal factors that contribute to nonaccidental
cardiovascular or cardiopulmonary mortality, many of which are not measured rou-
tinely, or in some cases, easily. In many of these causal risk factors, long timescale
structure is also present, e.g., influenza epidemic cycles peak in midwinter for the
northern hemisphere, and demographic shifts vary on multiyear or decadal time
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scales. Accordingly, the standard model includes a smooth function of time to ac-
count for these unmeasured factors. Additionally, the smooth function of time is
included so as to account for any additional temporal correlation in the log-mortality
count series. The intention is to allow for the risk (coefficient of the pollutant) to be
estimated using only short-term variations in mortality and air pollution.

In practice, this inclusion effectively filters the response, capturing much of the
variation in the low frequency range, leaving only high frequency structure. Of
course, the bandwidth of the filter is depends upon the choice of smoother, which
in the commonly accepted model is 6 or 7 dof /year. Unfortunately, the prior in-
formation used to select this dof value suggests that the bandwidth should account
for the variation at periods 6 weeks and greater, yet the choice of 7 dof /year for a
cubic regression spline smoother equates [11] to almost twice that level: periods of
approximately 4 months and greater.

3 Transfer Functions: Splines and Prolates

In the default model, cubic regression splines with a fixed number of basis vectors
(equating to dof ) are primarily used due to issues [7] with concurvity, the nonpara-
metric analogue of multicollinearity. As an example, consider a model using 10
years of data with a smooth function of time chosen to have 7 dof /year (70 dof to-
tal). This equates to a smoother matrix with 70 basis vectors, and is thought [3, 2, 5]
(among many others) to capture variation corresponding to periods longer than 7 cy-
cles/year (52.2 days). Unfortunately, 70 basis functions actually corresponds [10, 11]
to roughlyW = 70/2N or 0.00958 Hz, a period of roughly 100 days. Thus, the ac-
tual bandpass of this smoother is not what was intended, and further, the magnitude
response performance of the filter is also decidedly suboptimal (see Fig. 1).

Instead by using a filter composed of discrete prolate spheroidal sequences (Slepi-
ans for short, due to the contributions of David Slepian [10, 11]), significant
improvements can be seen in both pass-band performance and out-of-band power
suppression. This choice is based on the earlier work of Papoulis [6] in which mod-
ifications are presented for the default Slepian tapers. Furthermore, there is a direct
link between a desired bandwidthW for the smoother and the number of basis vec-
tors (hence, dof ) required to adequately represent the subspace in question. Thus, by
using a priori information and selecting a desired passband of periods 50 days and
longer, (for our previously chosen example) we immediately deduce that no more
thanM = 2 NW = 2 · 10 · 365 · 1/50 = 146 basis vectors will be required. Further,
Slepian’s work [11] indicates thatM ≈ 2 NW−2 or 144 basis vectors can be chosen
so that all are sufficiently concentrated in the appropriate passband. Note that this is
approximately twice the number of dof thought necessary by previous work.
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vectors were used for the prolate smoother, as  2 NW! ≈ 139

4 Residual Effective Response: Internal Model Comparison

As mentioned above, included in the rationale for including a smooth function of
time in models for estimation of population health risk is a justification for capturing
long timescale variation in the response (typically log mortality). However, there is
a misunderstanding in the literature which implies that more than this is inherently
possible. Taken from [5]:

. . . the smooth function of time services as a linear filter on the mortality and pollution
series and removes any seasonal or long-term trends in the data . . .

It is difficult to see how this quote can imply anything but what it clearly says:
that the smooth function of time acts as an effective filter not only on the response
(by capturing the long timescale variation, it acts as a high-pass filter, leaving the
short timescale variation untouched for the rest of the model) but also on the pollutant
series, which is typically included parametrically. Unfortunately, while this statement
may be true in a situation where the effective model-fitting paradigm caused the
response to be filtered once and then never modified, all GAM fitting algorithms
instead use a form of iteratively reweighted least squares, with emphasis on the
iteratively. As such, due to the application of the filter to the response after accounting
for the other predictors (which we call the residual effective response) the implied
filtering effect on the pollutant is not fully realized.
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Fig. 2 Power spectrum estimates for both log mortality and the residual effective mortality as
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that the pollutant will be fit to as a portion of the regression. Part of this power is due to poor choice
of time smoother (cubic regression splines with 7 dof /year), and part due to bleed-over from the
long timescale portion of the primary covariate (ozone)

A typical pollutant in a population health risk model is a full-spectrum time series
of daily measurements. Accordingly, each iteration of the GAM solver will apply
the smooth function of time filter to a residual effective mortality consisting of a
high-pass filtered series plus a scaled copy of the pollutant series, among possible
others. The subsequent iterations will then filter this residual effective series, and no
matter how well the filter may work, there will always be a portion of the residual
effective response as observed by the pollutant that will contain a scaled copy of the
pollutant itself—see Fig. 2 for a demonstration of this using an all-ages variant of
the model of Dominici et al. ([2], p. 278). Simplified models which contain only a
parametric pollutant term and a time filter suggest that the coefficient obtained by
the model solver is scaled by 1/(1 − r), where r is the percentage of variation in the
pollutant below the chosen smooth function filter bandwidth W . Thus, to suggest
that the smooth function of time acts as an effective linear filter on the pollutant is
incorrect, although the underlying expectation is a useful goal. In the next section,
we present an alternative which meets the stated goal.
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5 Discussion and Conclusion

With some understanding of the behavior of the iterative solvers inherent in GAMs,
we propose an alternative approach which meets the suggestion of the quote of Peng
et al. [5] (above). Rather than trust the smooth function of time to account for all long
timescale variation in the model (both in the response and pollutant), we propose
applying a prior stage to the model, in effect capturing the long timescale variation
in the pollutant before introducing it in the model. This can be done in a number of
ways, including a second application of GAMs, but the easiest way is to simply apply
a linear filter using the same construction as is used for creation of the model/basis
matrix for a time smoother.

Applying this prior-stage filter to the pollutant series prevents any contamination
from the long timescale structure of the same, and ensures that the coefficient ob-
tained truly represents whatever a priori timescale was chosen. For example, using a
bandwidth of 7 cycles/year results in both a residual effective mortality and a pollu-
tant which simultaneously have little structure at periods longer than 52 days. This
ensures that any iterative process used to estimate risk fits only the short timescale
portion of the pollutant to a short timescale-focused residual effective response. The
early results are quite promising, and while the process does add a computational bur-
den (due to the extra stage), protecting risk estimates from bias due to long timescale
pollutant bleed-over seems to be a worthy goal. We feel that completion of this work
will correct for the issues noted in this chapter.

In summary, examining GAMs used for estimation of population health risk due
to air pollution, we were able to show that a misunderstanding exists in the literature.
To fully capture long timescale variation in the response, it is necessary to use a
correct≈ 2 NW basis vectors for a time-based smoother. Further moving from a cubic
regression spline smoother to a discrete prolate spheroidal sequence smoother results
in improved pass-band performance and a sharper band-edge, with no loss in dof but
with some increase in computational burden. Examining the estimation of models
using the improved prolate time-based smoothers gives improved intuition regarding
the interaction of parametric and filter terms in such models, and suggests that a
prior-stage filtering for pollution covariates will reduce bias in coefficient estimates.

Acknowledgment The authors gratefully acknowledge discussion with Professor Glen Takahara,
Queen’s University. Some material contained in this chapter has been previously published as part
of the PhD thesis of Wesley S. Burr [1].
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Time Series Analysis and Calibration to Option
Data: A Study of Various Asset Pricing Models

Giuseppe Campolieti, Roman N. Makarov and Arash Soleimani Dahaj

Abstract In this chapter, we study three asset pricing models for valuing financial
derivatives; namely, the constant elasticity of variance (CEV) model, the Bessel-K
model, derived from the squared Bessel (SQB) process, and the unbounded Ornstein–
Uhlenbeck (UOU) model, derived from the standard OU process. All three models
are diffusion processes with linear drift and nonlinear diffusion coefficient functions.
Specifically, the Bessel-K and UOU models are constructed based on a so-called
diffusion canonical transformation methodology (Campolieti and Makarov, Int J
Theor Appl Financ 10:1–38, 2007; Solvable Nonlinear Volatility Diffusion Models
with Affine Drift, 2009; Math Finance 22:488–518, 2012). The models are calibrated
to market prices of European options on the S&P500 index. It follows from the
calibration analysis that the Bessel-K, UOU, and CEV models provide the best fit
for pricing options that mature in 1 month, 3 months, and 1 year, respectively. The
UOU model captures option data with a pronounced smile and hence it can be better
calibrated to option data with short maturities. The CEV model provides a skewed
local volatility and hence it works best for options with longer maturities. Moreover,
we demonstrate that the CEV model is reasonably consistent through recalibration
analysis on time series data in comparison with the Black–Scholes implied volatility.

1 Introduction

The Black–Scholes (BS) pricing formula for a standard call option is one of the
most well-known formulae in mathematical finance. Regardless of its simplicity
and reputation among scholars, it is a widely accepted fact that using it for pricing
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derivatives gives biased results due to its idealized assumptions such as log-returns
being normally distributed and the volatility of the underlying stock price being
constant. Evidences of extreme movements such as stock market crashes as well
as volatility smiles and smirks greatly contradict the log-normality and constant
volatility assumptions.

Local volatility models are one of the substitutes for the BS model. In local
volatility models (known also as state-dependent volatility models), the volatility σ
is itself a function of the current asset price S. This chapter studies three local
volatility models namely the constant elasticity of variance (CEV), the Bessel-K, and
the unbounded Ornstein–Uhlenbeck (UOU) [2–4]. The comparison of the models is
done through the calibration process, which involves searching for parameter vectors
that specify optimal dynamics of the models. The parameter values are found by
minimizing the gap between market and model-generated call option prices [6]. To
perform numerical tests we used Matlab with the optimization toolbox.

2 Data Extraction

Calibration of asset pricing models requires market option price data. Bloomberg
Professional service which is a specialized software environment that allows its user
to access and analyze real-time financial market data movements and place trades
on the electronic trading platform [1], was used to extract historical option prices.
Any financial instrument in Bloomberg has a specific Ticker by which it is known
in the software. A Bloomberg terminal does not have any prespecified routine to
automatically extract a time series of historical option prices in a required format.
The appropriate syntax for locating an expired option is

TICKER: MM/YY OPTION TYPE <C> or<P> STRIKE <Yellow Key><GO>

So, as one can see, to find a specific expired option, the month and year of expiration,
the type of option (Call or Put), and the strike should be provided. Upon loading the
desired options, built-in Bloomberg functions can be used to get more information
and also extract the historical prices of selected options. In this chapter, the historical
option prices for SPDR S&P 500 ETF options (SPY) have been obtained and used for
the calibration of the local volatility models. To extract and process expired option
prices automatically, we wrote a code in Visual Basic (with the use of Bloomberg
libraries) that allows us to connect to the Bloomberg Server and extract the data.

3 Asset Price Models

Consider a multiparameter diffusion model for the nonnegative asset price process
{St }t≥0 with the infinitesimal generator (Gf )(S) ≡ 1

2σ
2(S)S2f ′′(S)+rSf ′(S), where

σ (S) is a nonlinear (local) volatility function and r ≥ 0 is a risk-free interest rate.
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For each model considered the discounted asset price is a martingale and hence we
have no-arbitrage derivative pricing under each model.

The CEV diffusion has the power-type volatility function σ (S) = δSβ with two
parameters: δ > 0 and β < 0. The point S = ∞ is hence a natural boundary for
the process on [0,∞). For β < −1/2, the point S = 0 is a regular boundary, which
we specify as killing, and for −1/2 ≤ β < 0 it is an exit boundary (see [7] for the
boundary classification of diffusion processes). The dynamics of the CEV process
relates to the non-central χ2 probability distribution. The (risk-neutral) transition
density has the known explicit representation:

pS(t ; S0, S) = e−rt (e
−rtS)−2β− 3

2 S
1
2

0

δ2|β|τt e
− (e−rt S)−2β+S−2β

0
2δ2β2τt I 1

2|β|

(
(e−rtS)−βS−β

0

δ2β2τt

)

, (1)

for S0, S, t > 0, τt = 1
2rβ

(
e2rβt − 1

)
if r �= 0 and τt = t if r = 0. This PDF

involves Iα(z) which is the modified Bessel function of the first kind of order α and
argument z.

The four-parameter BesselK-family arises from a squared Bessel (SQB) process
obeying the SDE dXt = λ0dt + ν√XtdWt , where we shall assume positive param-
eters μ ≡ 2γ0

ν2 − 1 and ν. The transition PDF pS for the Bessel-K diffusion is related
to the transition PDF pX for the underlying SQB process as follows:

pS(t ; S0, S) = ν
√

X(S)

σ (S)S

uρ (X(S))

uρ (X(S0))
e−ρtpX(t ; X(S0), X(S)). (2)

Here, X ≡ F−1 is the unique inverse of the map F(x) = c Iμ(2
√

2(ρ+r)x/ν)
Kμ(2

√
2ρx/ν)

, and uρ(x) =
x−μ/2Kμ

(
2
√

2ρx/ν
)

with ρ > 0 is the so-called generating function. The volatility
function is expressed in term of the modified Bessel functions I and K (see [3] and
[4] for more details); it has the following asymptotic properties:

σ (S) ∝ S− 1
2μ , as S → 0, and σ (S) → Constant, as S → ∞.

By choosing the Ornstein-Uhlenbeck (OU) diffusion (solving the SDE dXt =
(λ0 − λ1Xt )dt + ν0dWt ) as an underlying diffusion, we obtain the (OU) families
of diffusions with four parameters. For details, see [3] and [4]. The volatility of the
UOU model has the following asymptotic behavior:

σ (S) ∝ √| ln S|, as S → 0, and σ (S) ∝ √
ln S, as S → ∞.

4 Calibration of Asset Price Models

Model calibration consists of finding an optimal parameter vector, denoted by ξ , that
specifies the asset price model such as the CEV, Bessel-K, or the UOU model. To
measure the distance between market and model prices, we use the mean square error
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Table 1 Comparing models calibrated based on single maturity SPY market option data on
“19/10/2007.” The residuals ε are reported

Maturity date CEV Bessel-K UOU

11/17/2007 (nearest to 1 month) 0.411 0.079 0.126

3/22/2008 (nearest to 6 months) 0.208 0.185 0.064

9/20/2008 (nearest to 1 year) 0.169 0.377 0.338

(MSE) in a loss function to calibrate the vector of model parameters ξ . Consider
a standard call option with strike Ki and time to maturity Ti having an observed
market price V mkt

i , while its value under the specified model is V (Ki , Ti , ξ ), where
i = 1, 2, . . .,N . Here, N is total number of data contracts used in the calibration.
The loss function is then

F (ξ ) =
N∑

i=1

(V (Ki , Ti , ξ ) − V mkt

i )2. (3)

Consequently, the vector ξ̂ of calibrated model parameters minimizes the function
F (ξ ),

ξ̂ = arg min
ξ

{F (ξ )} . (4)

The residual F (ξ̂ ) is then converted to ε =
√
F (ξ̂ )/N and the later is used in

comparing the calibration results for different underlying assets (or indices), dates,
and models.

The parameter vector of the CEV model to be calibrated is ξ = (β, σ0), where
σ0 ≡ δSβ0 denotes the instantaneous volatility at the spot S0. For the Bessel-K model,
we have a four-parameter vector ξ = (μ, ν, ρ, c). After performing test runs on the
Bessel-K model, we found that ν is a redundant parameter, so we simply set ν = 2.
The four-parameter vector for the UOU model is ξ = (ρ, υ, κ , c). Likewise, after
performing several test runs on the UOU model, we found that κ is a redundant
parameter so we set κ = 1.

4.1 Comparison of the Models

It makes more sense that each model can capture a specific type of skewness of
local volatility. The local volatility of the Bessel-K is more skewed and that of the
UOU model has a pronounced smile shape. Similarly, the BS implied volatility for
short maturities is more smile-like and for long maturities it is more skewed. Table 1
presented below shows that the Bessel-K model fits the best for the nearest to 1 month
maturity options, the UOU model fits the best for nearest to 6 months maturity, and
the CEV model fits slightly better than the Bessel-K and UOU models for nearest to
1 year maturity.
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Table 2 Calibration results of the constant elasticity of variance (CEV) model of the underlying
SPY based on 06/1/2006 data

Date S0 β̂ σ̂ δ̂ ε

06/1/2006 128.46 −0.0918 0.1137 0.1776 0.8229

Fig. 1 SPY weekly recalibration results: β̂ time series

4.2 Recalibration of the CEV Model

The recalibration essentially means doing the calibration on time series of arrays of
option data. The starting points for each element of the time series of option data is
the calibrated parameter vector from the preceding element of the time series:

ξ sn+1 = ξ̂n, n = 1, 2, 3, . . . (5)

where ξ sn+1 is the starting parameter vector in the (n + 1)th iteration, and ξ̂n is the
calibrated parameter vector in the nth iteration. We used weekly call option data for
the underlying SPY starting at “06/1/2006,” first Friday of 2006, to “6/4/2010.”

The starting parameter values are derived by applying the CEV calibration routine
for the first element (i.e., first date) of the time series and the results of the calibration
can be found in Table 2.

The recalibration results for β̂ can be seen in Fig. 1, which shows that volatility
steepness parameter β̂ in the CEV model through the time series varies considerably.

The recalibration results for σ̂0 can be seen in Fig. 2. Since σ̂0 is the calibrated local
volatility at the money, we compare σ̂0 with the BS implied volatility at the money
with the maturity nearest to 1 year. We observe that the CEV model calibration
captures σ̂0 well enough, as the local volatility of the CEV model at S0. The BS
implied volatility also follows the same trend.
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Fig. 2 SPY weekly recalibration results: σ̂0 time series (solid line). The BS implied volatility at
the money with maturity 1 year is given by a dashed line
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An Application of the Double Skorokhod
Formula

Cristina Canepa and Traian A. Pirvu

Abstract This chapter considers the problem of borrowing and lending federal funds
by a bank. The goal of the bank is to find the optimal borrowing/lending transaction
policy while maintaining the reserve requirements. Within the model of [3] and [6] we
describe the optimal net transaction amount using the Skorokhod formula developed
in [8]. This formula provides a fast way of computing the optimal net transaction
amount.

1 Introduction

Assume an economy with only one bank and the Federal Reserve Bank; the bank’s
task is to derive an optimal transaction amount to minimize the cost of buying and
selling funds from the Federal Reserve Bank, while meeting the reserve requirements.
The reserve requirements are determined by the demand deposit flow. The bank meets
its reserve requirements if the excess reserve process (i.e. the difference between the
reserves and the required reserves) remains positive. We assume that during the
business day, the bank can increase/decrease its level of federal funds through direct
transactions, which involve transaction costs. The net deposit flow is exogenously
specified and is modelled as a Brownian motion with drift. We assume that the bank
is a price-taker in the federal funds market and can obtain sufficient credit from the
Federal Reserve Bank. The bank’s objective is to choose the federal fund purchases
and sales in order to minimize the cost function. The optimal net transaction amount
is expressed by the Skorokhod formula developed in [4].

C. Canepa ( )
Faculty of Mathematics, University of Bucharest,
Bulevardul Regina Elisabeta 4-12, Bucharest, Romania
e-mail: elenacristina2@gmail.com

T. A. Pirvu
Math and Stat Department, McMaster University,
1280 Main St W, Hamilton, ON, Canada.
e-mail: tpirvu@math.mcmaster.ca

© Springer International Publishing Switzerland 2015 127
M. G. Cojocaru et al. (eds.), Interdisciplinary Topics in Applied Mathematics, Modeling
and Computational Science, Springer Proceedings in Mathematics & Statistics 117,
DOI 10.1007/978-3-319-12307-3_18



128 C. Canepa and T. A. Pirvu

2 The Model

This section describes the model employed. The inputs are described together with
the mathematical framework.

There are two levels of uncertainty, corresponding to the macro level and the
micro level. The economy is characterized by A, a random variable that describes the
asset sizes, following the distribution fA. A macroeconomical policy is characterized
by a set of strictly positive parameters (λ, q), where:

1. λ > 0 is the target interest rate imposed by the Federal Reserve Bank; it is used
as a discount rate in the model.

2. q ∈ [0, 1] is the fraction of the deposits that are required to be kept as reserves.

At the micro level, one bank is characterized by:

1. An asset size A, which is a realization of the random variable A.
2. An exogeneously given demand deposit process (Dt )t≥0.
3. A required reserve process (Rt )t≥0, where Rt = qDt at every time t ≥ 0.
4. An excess reserve process (Xt )t≥0, where Xt = (1 − q)Dt for every time t .
5. A net purchase amount process (Wt )t≥0, which is the result of an optimal control

problem.

We are interested in a model that connects the excess reserve process to the optimal
transaction amount that a bank proposes to buy or sell.

2.1 Mathematical Framework

In this subsection the mathematica setup is described. The deposit process is driven
by a Brownian motion with drift.

Let (Ω , F,P ) be a probability space on which we consider the asset size ran-
dom variable A and the continuous excess reserves process (Xt )t≥0 (which are not
necessarily independent). The probability measure P is the real world probability
measure. We consider F = (Ft )t≥0 to be the completion of the augmented filtration
generated by X (so that (Ft )t≥0 satisfies the usual conditions). Therefore, the bank
observes nothing except the sample path ofX. We assumeX0 = x ≥ 0 with probabil-
ity 1. A larger filtration is given by the regulator’s filtration, (Gt )t≥0, where Gt is the
completion of the σ -algebra generated by Ft and A. A standard, one-dimensional,
Brownian motion is a continuous, adapted process B = (Bt , Ft , 0 ≤ t ≤ ∞), with
the property that Bt − Bs is independent of Fs and normally distributed of mean 0
and variance t− s. We consider that the deposit process that corresponds to one bank
is exogeneously given and it follows a Brownian motion with drift:

dDt = μ̃dt + σ̃ dBt . (1)

The exogeneously given market is characterized by: (α,β,h, μ̃, σ̃ ), where:

1. (α,β,h) are deterministic functions of the asset sizeA that express the transactions
costs for buying, selling and holding funds, respectively.
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2. (μ̃, σ̃ ) are deterministic functions of the asset size A that express the Brownian
motion parameters driving the deposit processes.

Correspondingly, the excess reserve process follows a Brownian motion with drift
with modified parameters:

dXt = μdt + σdBt . (2)

The parameters μ, σ are also deterministic functions of the asset size A1. It is con-
sidered that banks/financial companies incur three types of costs in managing their
excess reserve positions:

1. A proportional transaction cost α of buying funds.
2. A proportional transaction cost β of selling fed funds.2

3. A continuous holding cost, incurred at the rate hXt .

It is assumed that α+β > 0 for, otherwise, the bank would be allowed to have profit
without taking any risk, thus giving rise to arbitrages. In addition, we also assume
that β < h/λ for otherwise it is never optimal to sell.

3 Problem Formulation

In this section we formulate the objective of this chapter. The policies are defined
and the goal is to minimize a cost function over the set of feasible policies.

Let us start with the following formal definition.

Definition 1 A policy is defined as a pair of processes L and U such that

L,U are F − adapted, right-continuous, increasing and positive. (3)

In the context of the federal funds market, Lt and Ut are the cumulative increases
(federal funds purchases) and decreases (federal funds sales) that the bank undertakes
up to time t , in order to satisfy the reserve requirements and to maximize its profit.

Definition 2 A controlled process associated to the policy (L,U ) is a process Z =
X + L− U .

In our model for the federal funds market, Zt is the amount of excess funds in the
bank’s reserve account.

Definition 3 The policy (L,U ) is said to be feasible if

L0− = U0− = 0, (4)

1 Since Xt = (1 − q)Dt we can express the parameters μ, σ in terms of μ̃, σ̃ and q
2 The proportional adjustment costs, α and β, are due to spreads between bid and ask prices,
brokerage fees, the lack of availability of a transaction partner and other service charges which vary
with the volume of the transaction, as in [2].
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Px {Zt ≥ 0, ∀t} = 1, ∀x ≥ 0, (5)

Ex

[∫ ∞

0
e−λtdL

]
<∞, ∀x ≥ 0, (6)

and

Ex

[∫ ∞

0
e−λtdU

]
<∞, ∀x ≥ 0. (7)

We denote by S̃(x) the set of all feasible policies associated with the continuous
process X that starts at x.

Definition 4 The cost function associated to the feasible policy (L,U ) is

kL,U (x) ≡ Ex
[∫ ∞

0
e−λt (hZtdt + αdL+ βdU )

]
, x ≥ 0. (8)

Definition 5 The control (L̂, Û ) is said to be optimal if kL̂,Û (x) is minimal among
the cost functions kL,U (x) associated with feasible policies (L,U ), for each x ≥ 0.

As in [3], by restricting to barrier type policies and by assuming a given upper
barrier b > 0, the bank’s problem is to find the transaction amount that keeps
the controlled excess reserve process Z between 0 and b. Therefore, the problem
connects to the double Skorokhod map.

3.1 Double Skorokhod Map

In this section we give a short background on the double Skorokhod map.
Let D[0,∞) be the space of positive, right-continuous functions with left limits

mapping [0,∞) into R.

Definition 6
The double Skorokhod map Γ0,b is the mapping of D[0,∞) into itself such that

for every ψ ∈ D[0,∞), Γ0,b(ψ) takes values in [0, b] and has the decomposition

*0,b(ψ) = ψ + ηl − ηu.

Here ηl , ηu are nondecreasing functions in D[0,∞) so that the triple
(Γ0,b(ψ), ηl , ηu) satisfies the complementary conditions

∫ ∞

0
IΓ0,b(ψ)(s)>0dηl(s) = 0,

∫ ∞

0
IΓ0,b(ψ)(s)<bdηu(s) = 0. (9)

An explicit formula for the double Skorokhod map Γ0,b on the space D[0,∞) was
recently obtained in [4],

Γ0,b(ψ)(t) = ψ(t) − [(ψ(0) − b)+ ∧ inf
u∈[0,t]

ψ(u)] ∨ sup
s∈[0,t]

[(ψ(s) − b) ∧ inf
u∈[s,t]

ψ(u)]

(10)
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3.2 The Optimal Net Transaction Amount

This subsection contains the main result of the chapter. It provides the optimal net
transaction amount by means of the Double Skorokhod Formula.

According to [1] and [3] (Chapter ‘Solving the Linear Transportation Problem by
Modified Vogel Method’), the optimal strategy turns out to be a barrier strategy, i.e.

1. (L̂, Û ) continuous on (0,∞), increasing, L̂0− = Û0− = 0,
2. Zt ≡ Xt + L̂t − Ût ≥ 0, ∀t ≥ 0,
3.
∫ t

0 IZt>0dL̂t = 0,
∫ t

0 IZt<bdÛt = 0.

The upper barrier b solves the equation

g(−b) = g(0)
h+ λα
h− λβ . (11)

Here the function g is defined by

g(x) ≡ γ1e
γ2x + γ2e

−γ1x , (12)

and γ1, γ2 are the roots of

σ 2γ 2/2 + μγ − λ = 0.

The next theorem is our main result.

Theorem 1 The bank’s optimal net transaction amount L̂− Û is given by

L̂t − Ût = −[(X0 − b)+ ∧ inf
u∈[0,t]

Xu] ∨ sup
s∈[0,t]

[(Xs − b) ∧ inf
u∈[s,t]

Xu]. (13)

Proof Double Skorokhod Formula of [4] gives (13). �
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Multitaper Smoothed Minimum Statistics Noise
Power Estimation

Ricardo Castellanos, Nurgun Erdol and Hanqi Zhuang

Abstract Speech communication devices and digital hearing aids must perform in
the presence of high levels of ambient noise. Speech enhancement is a denoising
process where Wiener-like filters are developed that require the estimation of the
background noise spectrum from an additive combination of speech and noise. To
follow statistical variations over time, the processes must be performed over short and
overlapping frames of data resulting in time varying filters and spectra. We propose a
novel algorithm to track the noise power of each frequency bin as it evolves over time.
The proposed method uses an adaptation of the multitaper autoregressive spectral
estimate. The resulting spectral components are smooth, low bias, and low variance
and show superior tracking of the time-variation of the spectra.

1 Introduction

Noise power estimation is an essential task in the speech-enhancement process.
Speech enhancement has become increasingly important as speech-processing de-
vices, such as mobile phones and hearing aids, have risen in popularity, and users
expect them to work everywhere under many different conditions where acoustic
disturbances may degrade the quality of audio leading to user discomfort.

The performance of the speech-enhancement system depends on the accurate esti-
mation of the noise spectrum that shows the distribution of its power over frequency.
When the system overestimates the noise power, speech components are distorted
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degrading the intelligibility of the speech and often introducing musical noise which
is considered to be annoying. Underestimating the noise power that falls short of the
desired noise-reduction goal, may impair intelligibility and introduce stress.

Speech enhancement systems using a single-microphone have over three decades
of research. Some methods are based on voice activity detectors (VAD) where the
noise estimate is updated during speech absence moments, that is, the noise power
estimate is given by the mean of the noisy signal over speechless segments. This
approach is highly dependent on the speech power so its performance and reliability
can be seriously reduced at low-input signal to noise ratio (SNR). Other methods
based on histograms in the power spectral domain require a lot of computational
power and memory resources and their performance is poor at low SNR conditions.

A method based on minimum statistics for noise estimation obtains the noise
estimate tracking the minima of a smoothed power spectral estimate of the noisy
signal. However, it is required to multiply the estimate by a factor to compensate for
bias, and the variance of the estimate is high and very sensitive to outliers.

A more recent method called improved minima controlled recursive averaging
(IMCRA) combines the minimum tracking approach with recursive averaging of the
past spectral estimates using a smoothing parameter that is adapted frame by frame
by the probability of speech presence in different frequency subbands. Even though
the algorithm performance is good for enhancing speech, the recursive averaging
falls short of tracking the spectral minima.

In this chapter, we propose a method to track the noise power by adapting the
multitaper autoregressive (MTAR) spectral estimation algorithm. The adaptation
fits an autoregressive (AR) spectrum on the fixed frequency component of a time-
frequency data obtained by a spectrogram. The estimate has low bias and variance
and tracks changes in the noise spectrum more closely than its predecessor methods.
The method also eliminates the need to estimate the probability of speech presence,
which is not highly reliable.

This chapter is organized as follows: Sects. 2 and 3 present review of speech en-
hancement and MTAR spectral estimation. The adaptation of the MTAR to smoothing
the time evolution of the spectral components is presented in Sect. 4. Experimental
results and conclusions are given in Sect. 5.

2 Speech Enhancement

Let x[n] and d[n] represent samples, respectively, of the speech and noise signals
at the nth sampling point. Prevalent and reasonable assumptions are that speech
and noise combine additively to form the noisy speech signal and are uncorrelated.
Speech signals are always and noise is frequently nonstationary which necessitates
that they be analyzed and processed in short time frames over which stationarity
assumptions are more or less true. The observed noisy speech data are organized
in overlapping frames of the average length of a phoneme and are analyzed by the
short-time Fourier transform (STFT) given by
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Y [k, l] =
N−1∑

n=0

y [n+ lM]h [n] e−j
2π
N
nk (1)

Here k corresponds to the frequency bin index, l is the frame number, h[n] is the
analysis window of size N , and M is the framing step. The short time spectral
amplitude estimate of the clean speech is given by the action of the gain function
G [k, l] on the Fourier transform of the noisy speech as given by

X̂[k, l] = G[k, l]Y [k, l] (2)

The gain function produces an estimate of the spectral components of the enhanced
speech X̂[k, l] from the given noisy spectral components Y [k, l]. The success of the
enhancement process is critically dependent on the estimation of the noise power
spectrum.

A commonly used approach is to compute or update noisy statistics over non-
speech segments that are detected by voice activity or a speech pause detectors.
Impediments to success are decline in detection reliability under conditions of low
segmental SNR and the low number of segments or frames that are completely speech
free.

The minimum statistics approach is based on the observation that even during
speech activity the power spectral density of the noisy speech repeatedly decays to
values that are comparable to the noise power level [5]. Therefore, by tracking the
minimum of the noisy speech, the system can derive an estimate of the noise power
within a finite window. The method offered in [5] is sensitive to outliers and has
variance. Cohen et al [1, 2] proposed the minima controlled recursive averaging
method that averages past spectral values using a recursive smoothing filter. The
filter coefficients are adjusted by the probability of speech presence in the segment.

Our approach derives the recursive smoothing filter coefficients using an adapta-
tion of the MTAR [3] spectral estimator on the spectral components as they evolve
through time. The result is a low-bias and low-variance smoothing of the spectrum
without the cumbersome computation of speech probabilities.

3 Multitaper Autoregressive Spectral Estimate

The multitaper autoregressive (MTAR) Spectral Estimate

ŜMTAR(ω) = G
∣∣∣∣∣
1 −

p∑

k=1

ake
−jωk
∣∣∣∣∣

−2

(3)

uses the multitaper autocorrelation (MTAC) estimates of lags up to orderp to estimate
the coefficients {G, a1, . . . , ak} of (3). The filter coefficients are found by solving the
Yule–Walker equations

a = R−1r (4)
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where R [j , k] = r̂ [|j − k|] and r [k] = r̂ [k] for {j , k = 1, 2, . . . ,p} are the MTAC
estimated from the data {x[n], n = 0, 1, . . . ,N − 1}. The MTAC are derived from
the MT spectral estimate [6,1] which is the average of direct estimates |Xk(ω)|2

Ŝ(ω) = 1

K

K−1∑

k=0

|Xk(ω)|2 (5)

whereXk(ω) =∑N−1
n=0 x[n]vk[n]e−jωn is the discrete-time Fourier transform (DTFT)

of data sequence multiplied by the taper vk[n] . The tapers are typically vectors of a
complete basis inRN , the space ofN -length vectors andK<<N . The original tapers
used by Thomson are the discrete prolate spheroidal or Slepian sequences (DPSS).
Minimum-bias and their approximate sine tapers have also been used successfully [3].

The MTAC estimate r̂[n] is the inverse transform (IDTFT) of the MTSE Ŝ(ω) (5)
[3, 4] and is given by

r̂[n] =
N−1∑

m=0

x[m]x[m− n]αK ,N [m, n] (6)

Where αK ,N [m, n] = 1
K

∑K−1
k=0 vk[m]vk[m− n]. The expected value of the MTAC

(6) yields

r[n] = rsx[n]w[n] (7)

where

w[n] =
N−1∑

m=0

αK ,N [m, n] (8)

is the lag window and rsx[n] = E {x [m] x [m− n]} is the autocorrelation of the
stationary process. The lag window is the average of deterministic autocorrelations
and therefore it is symmetric and has a nonnegative Fourier spectrum. The prop-
erties of the estimator are analyzed in a companion paper [4] and are shown to be
asymptotically consistent for lags n < N/K . K is adjusted for the desired spectral
concentration bandwidth of the DPSS tapers. It is a small number, typically 3–4 for
a data length of 100. MTAR spectral estimation uses the MTAC estimates of lags
determined by the system order

4 Smoothing of the Time Evolutionary Spectra by the Adapted
MTAR Algorithm

The contribution of this work is related to the way the spectral estimator is evaluated
from the spectrogram of the noisy speech. We take advantage of the low bias and
variance of the MTAR estimate and its capability to represent a smoothed version
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of the periodogram by taking horizontal cross sections of the spectrogram that cor-
respond to the periodogram of a specific frequency bin as it changes over frames.
With reference to (1), let Sl [k] = |Y [k, l]|2 be the periodogram estimate of frame
as a function of the frequency bin index k. Alternatively, we can represent the spec-
trogram by S̃k [l] = |Y [k, l]|2 for a fixed frequency bin k as a function of the frame
number or corresponding time. It is shown in the plot directly.

Even though it is a function of time, S̃k [l] , l = 0, 1, . . . ,L−1 has all the properties
of a spectrum except the symmetric component for negative values of l. In a step
we call spectrizing, we create the symmetric sequence φk [l] = φk [−l] = S̃k [l]
that is a spectrum. Its inverse discrete Fourier transform (DFT) is an autocorrelation
sequence rk [l] , l = 0,±1, . . . ± L − 1. We multiply by the AC sequence with the
multitaper lag window (8) to obtain

ρk [l] = w [l] rk [l] (9)

and use ρk [l] , l = 0, 1, . . . ,p in the Yule–Walker (YW) equations (4). The solution
to the YW equations yields the coefficients of an all-pole filter and a gain constant.
The spectral estimate is then obtained in accordance with (3).

5 Experiments, Results and Conclusions

In order to test the effectiveness of the MTAR estimates, we substituted the esti-
mate given by the IMCRA algorithm by the MTAR estimate so it was possible to
analyze the performance of the estimator in comparison with the IMCRA method.
Additionally, MTAR estimates were evaluated under different configurations:

• MTARfull: Using the whole set of data points (full frame size) when applying the
“spectrize” approach so the MTAR estimate corresponds to the whole sequence
for every single frequency bin in the spectrogram using a filter order of 50 and 4
tapers.

• MTARwin: Using a windowed approach with overlapping frames of 15 samples
with 14 overlapping samples using a filter order of 3 and 4 tapers.

• Using four different types of tapers: Sine tapers, Slepian sequences, Slepian
sequences with twice the number of data samples (2N) but truncated toN samples,
and Slepian sequence combined with Sine tapers.

The input signals for noise belong to the Noisex92 database which comprises White
Gaussian Noise (GWN), Car noise, and F16 cockpit noise among others. The input
signals for speech belong to the TIMIT database. Speech was degraded with noise
at different SNR values in the range of −5 to 5
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The capability of the MTAR estimator to track the changes better in the smoothed
spectrum compared to the IMCRA estimator has been illustrated. In both cases,
MTARfull and MTARwin were able to follow the changes of the periodogram with
higher accuracy being capable to reach higher and lower local values.

The improvement of the MTAR estimates having lower segmental error for all the
different tapers was tested. The combination of Slepian sequences with Sine tapers
showed better results for both MTARfull and MTARwin estimates.
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Design Considerations for Thermal
Management of Electronics Enclosures

Rachele Cocks, David Clendenen and Ludovic Chretien

Abstract This study focuses on the design and optimization of an electronics en-
closure intended for operation in an outdoor commercial heating, ventilation, and
air conditioning, HVAC, application. In particular the design was optimized for a
high ambient environment without the aid of forced air cooling. As electronically
controlled motor drive systems are increasing in use, designs need to operate in new
challenging environments, reach higher power density, and enable higher levels of
system integration. Computational fluid dynamics, CFD, was used for design, anal-
ysis, and optimization and correlated with test data. A design of experiments, DOE,
was used to evaluate the sensitivity of the final design to the operating environment. A
constrained optimization was performed to determine the optimal fin spacing, height,
angle, and thickness of the enclosure geometry for thermal dissipation of the heat
from the power electronics. Various fin topologies were also analyzed to evaluate
the impact of increased surface area and enhanced thermal mixing effects. After a
thorough review of the design space, general design recommendations are made and
an optimized design reviewed.

1 Introduction

As electronically controlled motor drives are increasing in use, designs need to
operate in new challenging environments, reach higher power density, and enable
higher levels of system integration.

This chapter focuses on the design and optimization of an electronic enclosure
intended for operation in an outdoor commercial heating, ventilation, and air condi-
tioning application. The first section of the chapter will explore the characteristics
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of the electronic drive components as well as the machine control strategy and the
impact on power losses and therefore thermal performance. The later section will
present the results of the enclosure optimization through design of experiment (DOE)
and use of computational fluid dynamics (CFD).

2 Design Space and Application

A motor for heating ventilation, and air conditioning (HVAC) systems is considered
in this study. This particular motor is to be used in large condenser fan units that
comprise a compressor, evaporation coils, and the fan motor. These units can be
arranged in single fan or multiple fan configurations. The operating environment
can reach up to 60 ◦C when the units are placed on rooftops, and depending on the
climate of the region of installation.

Also to be considered is the ingress protection (IP) rating of the motor, as well as
its construction. Some motors can be totally enclosed fan cooled (TEFC), with the
fan being located either inside or outside the enclosure.

In addition to the application environmental requirements, the motor construction
topology as well as the ingress protection rating significantly impacts the system ther-
mal characteristics. For our study, the motor is TEFC, with an internal fan providing
cooling for machine and electronics.

3 Thermal Management of Electronics

While focusing on the thermal management of the electronic drive, it is necessary
to evaluate the thermal characteristics of the electric machine as the motor assembly
combines machine and electronics in an integrated package.

3.1 Drive Overview

The typical heat producing and heat sensitive components of an electronic drive are
represented in Fig. 1. Amongst these components are the inrush NTC, used to limit
the amount of current drawn from theAC line when the DC capacitors are completely
discharged, the inductance part of the input filter used to mitigate electromagnetic
interferences (EMI), and the power devices: low speed diodes for the AC/DC section
of the drive, and IGBT/Diodes used for the DC/AC conversion to drive the machine
windings.
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Fig. 1 Principal heat sources
and heat sensitive components

3.2 Passive Components

The inrush NTC, unless taken out of the circuit by some mechanical means (relay)
or electronic device (solid state switch), can operate at temperatures reaching up to
125 ◦C, and significantly affect the internal ambient of the electronic drive.

The electronics internal ambient can have a critical impact on performance and
long term reliability. For example, the operating temperature of the main electrolytic
capacitors determines how long they will last in the application. From a performance
standpoint, the operating temperature of the EMI choke needs to be kept low enough
to avoid saturation and a decrease in its filtering capability.

3.3 Power Devices and Motor Control Strategy

Careful selection of the electronic controller power devices is necessary to ensure
adequate thermal performance. Thermal performance of these devices is related to the
losses they have to dissipate. In the case of a passive diode bridge rectifier, the losses
equation is described in Eq. 1, where Vf is the forward voltage drop of the diode and
If is the current flowing through the device. The bridge losses can be affected by the
technology of the diodes used (different Vf ), as well as the line impedance feeding
the system. Indeed, different line impedance can affect the system power factor and
cause it to vary.

P = 1

T

∫
Vf (t) · If (t)dt (1)

The losses for the IGBT/Diode inverter devices can be divided in two categories:
conduction losses and switching losses. The IGBT conduction losses are described
in Eq. 2, and depend on the collector to emitter saturation voltage of the component,
as well as the current flowing through it. The conduction losses should be evaluated
at machine peak operating current.

P = 1

T

∫
Vcesat(t) · If (t)dt (2)

The IGBT switching losses are described in Eq. 3. These losses occur when the
current flow changes from a lower switch to an upper switch (and inversely) within
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Fig. 2 Standard
SVPWM(space vector pulse
width modulation) switching
pattern

an inverter leg.Eon andEoff represent the energy seen in the IGBT at turn on and turn
off. Theses energies depend on the values of voltage and current being commutated
by the power device. As such, the peak motor current and maximum operating
voltage of the machine need to be considered. Finally, it can be seen in Eq. 3 that the
switching losses are directly proportional to the switching frequency of the power
devices. Usually, the switching frequency is a compromise between efficiency and
audible noise as lower frequencies tend to generate noise from the machine windings.

P = (Eon + Eoff
) fs

2
(3)

Besides the characteristics of the power devices (Vcesat) and the system switching
frequency, the control strategy used for the machine can impact the amount of losses
from the inverter stage. Figure 2 depicts the standard space vector pulse width mod-
ulation (SVPWM) used to control a 3 phase machine with sinusoidal current. Using
this pattern, there are 6 switching events each PWM period. By contrast, the switch-
ing pattern in Fig. 3, also known as low loss 2 phase switching PWM, can generate
the same current waveforms as the pattern form Fig. 2, but only introduces 4 switch-
ing events per PWM period. However, it is important to notice that this technique
introduces imbalance in the sharing of losses between upper and lower switches of
the inverter stage.

With knowledge of the power devices electrical characteristics, the system switch-
ing frequency, and the machine control strategy, it is possible to map the electronic
drive losses versus winding current as can be seen in Fig. 4.

Finally, after characterization of the electronics losses, the packaging, mounting
options, as well as heat transfer methods are addressed. This information, including
thermal grease or thermal pads, needs consideration in thermal simulations.
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Fig. 3 Low loss PWM(pulse
width modulation) switching
pattern

Fig. 4 Inverter losses
breakdown

4 CFD Thermal Analysis

After design considerations for thermal losses in the electronics have been accounted
for, CFD can be used to evaluate the thermal performance of the finalized electronics
layouts and enclosures as well as their system sensitivity. Types of thermal analysis
that can be performed through CFD include conduction, convection (forced and
natural), phase change, and radiation. Natural convection was considered for the
enclosure and conduction for the electronic components.



146 R. Cocks et al.

Fig. 5 Cooling fin design
parameters

5 Optimization Methods

Optimization methods for thermal management of electronics can focus on proper
positioning of the electronics in the enclosure, effective heat sink design, and overall
thermal performance of the enclosure within the system. In this study an enclosure
design was evaluated in an elevated ambient environment with no forced air over or
inside of the enclosure. The individual characteristics of the enclosure were optimized
independently and the final enclosure was evaluated to ensure performance require-
ments were met. More detail will follow regarding the individual fin optimization
and the final design of the electronics enclosure.

6 Cooling Fin Optimization Results

A goal driven optimization was performed on a single fin intended to be used on the
outer surface of the electronics enclosure. Only natural convection heat transfer was
considered. The simulation accounted for full buoyancy and boundary layer effects.
The fin material used for the optimization was aluminum, but material variation was
also considered to account for material variation and porosity. Steady state analysis
was used with the K-Epsilon realizable turbulence model.

The heat generation rate used in the simulation was set for the component with
the highest generation rate. The fin geometrical parameters can be viewed below
in Fig. 5. The various sections and the bottom radius are the parameters that were
optimized. Height was fixed to prevent the trivial solution of an infinitely large fin.
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Fig. 6 Fin optimization
parameters impact on
objective function

The relation of the length in the fin sections to the objective function, optimization
of heat transfer, can be viewed in Fig. 6. The optimized geometry would have a second
section larger than the first and third sections with a small radius. Three candidate
points were compared in the overall electronics enclosure design.

A finalized control cover design using the optimized fin topology was designed.
Three dimensional characteristics of the fin design were also analyzed and side
cooling channels along the perimeter of the electronics drive enclosure were added
to assist natural convection. A validation test was then performed through thermal
imaging to confirm CFD results and method.

Many design aspects require consideration for thermal management of electron-
ics cooling including component choice, software, and enclosure thermodynamics.
Design and optimization of the individual design characteristics of the electronics
enclosure and system have been considered. Future research will focus on full system
optimizations using combined physics simulations. Inclusion of radiation models and
various material options will also be considered. Sensitivity to ambient conditions
and design tolerance will also be addressed.
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A CFD Optimization of Airflow Efficiency for an
Electric Motor Driven Centrifugal Fan System
for Residential HVAC Applications

Rachele Cocks and Joshua Westhoff

Abstract This study focuses on the design and optimization of an electronics en-
closure intended for use in a centrifugal fan being driven by an electric motor for
the residential heating, ventilating, and air conditioning(HVAC) market. Typically
in these systems the motor is mounted directly in the airstream of the centrifugal fan,
but in this case the Regal Beloit’s axial motor technology allows for the minimization
of this obstruction to the airflow. In the system analyzed the axial motor is mounted
in the center of the centrifugal fan and the electronics used to drive the system is
enclosed and mounted to the axial motor. This enclosure has been optimized for
system airflow efficiency and thermal management of the electronics. A sensitivity
analysis was also performed to understand the optimized design’s performance under
various application environments. Computational fluid dynamics (CFD) was used
as a test platform and tool for optimization. The CFD analysis was driven by goal
optimization software to explore the design space and lead to an optimized design for
overall efficiency. Results were validated to test data and test visualization methods.
This presentation will cover the design requirements and details of the application,
the optimization and CFD techniques used, and the criteria used for CFD model
validation.

1 Introduction

Regal Beloit Corporation has applications and products in the commercial, indus-
trial, and residential air moving markets. These products require a strong focus on
efficiency while maintaining current functionality levels. In order to provide increas-
ingly optimized and enhanced product offerings in these markets, Regal Beloit has
been using computational tools including computational fluid dynamics (CFD) to
support the design process and create innovative products.
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Fig. 1 Blower housing
assembly with centrifugal fan,
radial motor, and mounting
arms and assembly

Fig. 2 Radial motor
construction with integrated
control electronics

2 System Overview and Design Strategy

The system being analyzed and designed in this study is a traditional centrifugal
fan blower system used in the residential heating, ventilating, and air condition-
ing (HVAC) market. An image of a typical blower housing system may be viewed
in Fig. 1. The blower is used to force air across a heat exchanger and distribute
conditioned air.

The most efficient motors today drive the fan using electronic circuits to control
motor operation. These products have been designed similar to the preceding per-
manent split capacitor technology motors which utilize a radial air gap construction.
These motors are designed with a cylindrical form and are assembled with mount-
ing arms to one of the inlet plates of the blower housing with a shaft set-screw to
assemble onto the blower wheel. An example of radial motor with integrated control
electronics and cover may be viewed below in Fig. 2.

The trade-off for achieving the increased efficiency by using an electronic control
is not only the cost but also is the restriction provided by the geometry of its cylindrical
form with flat plate cross section. When assembling the motor into one of the inlet
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orifices, the motor significantly restricts the amount of air entering the fan in the
blower

Legislation and overall market demand for improved energy efficiency have been
Regal Beloit’s drive to continuously improve their air moving products. Keeping with
the traditional radial motor form limits the capabilities of the HVAC blower system.
There are critical qualities that are required by customers developed as part of the
baseline product that must be maintained, the primary of those being serviceability
and reliability. Keeping those in mind as well as optimizing the system efficiency, the
Regal Beloit engineering team has created a new innovation for the HVAC market

3 Enabling Technology

The Regal Beloit engineering team has enabled improvements to blower system
efficiency by developing a new design for this application which uses axial flux
motor technology. This technology changes the form of the motor to one of a larger
diameter, flat plate. Along with Regal Beloit’s patented motor construction, the axial
flux technology reduces the overall product length to greatly reduce the amount of
air flow restriction. A topology comparison of a standard radial motor system to axial
motor system may be viewed below in Fig. 3.

Considering the new axial motor form factor, the mechanical construction for
the electronic control was redesigned. The layout allows for a new geometric form
that provides environmental protection, minimizes air restriction, and improves air
flow attachment on its surface to aid in heat transfer and cooling of the motor and
electronic components

3.1 CFD Methods and Validation

Various levels of system complexity and fidelity can be modeled to support the inno-
vation and design process. CFD can be used to analyze the thermal and aerodynamic
performance of air-moving products such as the previously detailed blower and fan
system. The characteristics that enhance thermal performance and aerodynamic per-
formance are not always consistent. This requires various trade off studies to arrive
at the right design for the product. In this particular case the thermal analysis was
secondary to the aerodynamic performance as the aerodynamic performance is es-
sential to the system efficiency. In order to provide designs that will provide real
world performance, complex CFD validation models that simulated an actual test set
up were performed with the addition of mesh refinement.

In the CFD validation case, an airflow test based on the AMCA 210 test stan-
dard was used and matched to the actual test set up. An example of the simulation
model can be viewed in Fig. 4 bellow. Multiple operation points were evaluated, and
predicted airflow was within 2 percent.
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Fig. 3 Comparison of radial motor and axial motor construction for centrifugal blower application

Fig. 4 Geometry outline for
CFD validation case
including airflow test chamber
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Fig. 5 CFD results for
example CFD sub model

The validation case started with a mesh refinement study to evaluate solution
dependence on mesh spacing. As the nature of the system is time dependant, a
transient simulation was used with a moving reference frame modeling the movement
of the centrifugal fan. Prism layers were used on the blades to capture boundary layer
effects and the realizable K-Eplson turbulence model was utilized. These results
provided satisfactory values and measured trends between configurations were also
satisfactory

3.2 Optimization Methods and System Sensitivity.

Sub models using the same mesh spacing and set up as the validation model were
created which modeled the blower system using the outlet conditions that were
measured at the inlet of the test chamber simulation. This model can be viewed in
Fig. 5. This was used to improve the computational efficiency of the simulation model
and allow the design team to look at a greater number of tradeoffs in a shorter time.
Component level simulations were also used in order to initially optimize the designs
before modeling them in the blower system model. Optimization methods included
the use of the adjoint method to examine surfaces changed that would minimize force
over the control cover and minimize pressure drop through the system. Goal driven
optimization of simplified 2D models were also used early on in the design process
to evaluate overall control cover topology trends inside of the design space. Special
attention was taken to the boundary layer over shape variation.

This study focused on the specific optimization of the electronics control cover
positioned in the center of an HVAC centrifugal fan blower system. The control cover
restricts and disrupts airflow as it enters radially into the centrifugal fan.

Consideration was also given to the thermal performance of the design in order to
ensure adequate cooling of the electronics. Once the optimized design was complete,
a sensitivity analysis was performed to evaluate the design’s robustness to its appli-
cation space. Sensitivity to wall proximity, operating points, and ambient conditions
were considered. Future research would focus on variation due to manufacturing
tolerances.
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Fig. 6 Final optimized electronics control cover

3.3 Conclusion and Future Research

The finalized control cover with detailed characteristics can be viewed below in
Fig. 6. The openings that provide efficient cooling have been positioned to minimize
disruption to the airflow while allowing air into the enclosure to adequately cool
the electronics. The overall topology of the cover has been optimized using elliptical
forms and the external fins on top of the cover have been designed to enhance cooling
while locally directing airflow. The transition at the base of the control cover, which
is in close proximity to the entrance of the centrifugal fan, has been designed to
prevent flow detachment before entering the fan.

Future research for the optimization of components of the centrifugal fan blower
system will focus on optimization at the system level versus component level. In-
teraction between components will be considered and optimized to further enhance
performance. System sensitivity to manufacturing tolerances will also be considered.
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Adoption of New Products with Global and Local
Social Influence in a 2D Characteristics Space

M. G. Cojocaru, C. Hogg, C. Kuusela and E. W. Thommes

Abstract We present here an agent-based model (ABM) of adoption of new products
including: dynamic consumer preferences and product demands, a 2D characteris-
tics space where products are placed, global and local (nearest neighbours) social
influence. The ABM model is built from a continuous time model of the market
(Cojocaru et al., Environ Model Softw, 2013), driven by agents’ heterogeneity and
their local connections. We find that consumer populations where a large fraction of
population is sensitive to product popularity displays higher adoption levels of a new
product, especially when local social connections are taken into account.

1 Introduction

This chapter looks to better understand the dynamics of social influence on adoption
of new product variants ranked by two of their shared characteristics. Consumers
are faced with numerous new products today and thus it is of interest to know what
influences them to purchase or not, outside of the obvious pricing and quality features.
Desirable new products to be adopted are for instance eco-products: variants of
known products with environmentally friendly features.

In this work we study the effects of social interaction as a component of new
product adoption. Consumers seek advice from friends, and/or consult consumer
reviews to help their decision making process. Sociologically this is described as “a
process by which an innovation is communicated over time through a social network”
[2, 11]. Consumers are often described as: innovators and imitators. Imitators are
influenced by the timing of adoption and decisions made by members of a social
network. Innovators feel no social pressure to adopt new products, but rather do it
based on the products intrinsic qualities and/or their novelty. Consumer behaviour
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modelling evolved in several main directions over the past decades, two of which
are: continuous time models [2, 8, 9] and discrete models, including individual
based ones [3, 6, 7, 15]. Both approaches give valuable information about consumer
behaviour on their own. A review of adoption models and their modelling paradigms
can be found in [5].

There is important information to be gained from a model that regards the popu-
lation from a more homogenized point of view, as we do in [5, 12]. Its counterpart,
developed as an agent-based model (ABM) here (similarly see [10, 13]), adds new
insights based on heterogeneity of consumers and neighbour interactions. We thus
model here a dynamic adoption process of a variant ranked via two shared character-
istics, with two consumer groups innovators and imitators using a time-dependent
version of the model [1, 3]. We investigate the effects of including local influence
and overall popularity of a product variant on the adoption of the variant via sensi-
tivity analysis of the ABM model. The chapter is organized as follows: we present
the differentiated product model and our previous continuous time model below. In
Sect. 2 we analyze the 2D dynamic adoption model and we introduce local influence
over a preferential attachment network among consumers. We close with a few brief
remarks.

Differentiated Product Market Model We present the original model as in
[1, 11]. A product hasm characteristics, giving the characteristics space R

m; n prod-
ucts are placed here at locations z1, ..., zn where zi = (xi1, ..., xim), i = {1, ..., n} and
where zj , j > 1 represent variants of the base product z1. Consumer preferences are
distributed according to a positive density function f (x) where

∫
Rm
f (x)dx = N , the

total consumer population. Each consumer purchases the variant that yields them the
greatest utility (we assume each consumer buys one of the products). For a consumer
located at z, the utility of purchasing variant i is given by:

Ui(z) = Vi −
m∑

k=1

‖z − zi‖2, i = 1, ..., n, (1)

where Vi = αi − pi , pi the price of i, and αi a quality index of i. Vi can be seen as
an objective measure of the value of i, which all consumers agree upon, whereas the
second term is the disutility in purchasing a product other then the most preferred
one. We define the market space of i asMi = {z ∈ R

2 :Ui(z) ≥ Uj (z), j �= i}, and
define the demand for i as Xi =

∫
Mi
f (x)dx

Previous Work In [5] we introduced and analyzed a model of dynamic consumer
preferences for two products (base and 1 variant), with social influence, via a partial
differential equation model in one characteristic, namely:

ft (z, t) + (v(z, t)f (z, t))z = βfzz(z, t). (2)

To ensure the number of consumers remains constant, we imposed boundary condi-
tions:

∫ L
0 [ft + vz −βfzz]dz = 0 which required v(0) = v(L) and fz(0, t) = fz(L, t).

We modelled two types of consumers: Innovators and Imitators, whose preferences
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evolve differently. Thus, each group has its own preference density so that the total
population’s density is f (z, t) = fInnov(z, t)+fImit (z, t). The densities for each group
are solutions to a PDE (1.2), with velocities of preference change vInnov �= vImit , and
different coefficients β. The velocities of preference change are taken to be:

vInnov(z, t) = zk
z(z − zk)(z − L)

((z − zk)2 + L)2
;

vImit (z, t) = e1(σ )
z(z − z1)(z − L)

((z − z1)2 + L)2
+ e2(σ )

z(z − z2)(z − L)

((z − z2)2 + L)2
. (3)

We consider that vImit is scaled by a coefficient ei(σ ) = σXi(z, t) + (1 − σ ) · 1,
i ∈ {1, ..., k} where σ ∈ [0, 1] is called the social influence parameter. It is the
weight an average consumer in Imit class places on the popularity of the product,
vs. the attributes of the product. The investigation of the 1D PDE model showed the
effects of the global social influence, σ , and the proportion of innovators sInnov, on
the adoption the variant. The adoption level was higher for either σ → 0 and sInnov

small (between 2 and 5 %) or σ → 1 and sInnov higher (15–20 %).

2 Two Dimensional Adoption Model with Local Social Influence

We can extend our previous work in two ways: a 2D PDE of type (1.2)—currently un-
der investigation— and/or a 2D ABM of the consumer market. Our approach here is
to build the 2D ABM model, assuming consumers’preferences evolve independently
along each characteristic. This model (implemented in NetLogo) consists of simulat-
ing its individuals with a set of parameters representing their attributes: most preferred
product, class, intrinsic prefence change, number of neighbours, etc. We keep the
two groups as before, Innov and Imit, we discretize the consumer preference density
function over the space of product characteristics and we compute market spaces and
demands for the variant. At each time step, a consumer k evaluates its utility of adopt-
ing the variant according to (1); the rate of change of its preference is given by solving
dzk
dt

= Fk(zk , t) where Fk,j (z, t): = vj (z, t) + βk , βk: = √
βdt , j ∈ {Innov, Imit},

β drawn from normal distributions with mean 0.05 and standard deviation of 1,
and vj as in (1.3). Initial preference densities are given independently on x and y
characteristics: fImit (x, 0), gImit (y, 0) are normal distributions with mean x1, respec-
tively, y1 and with variance 0.2 respectively 0.3. Similarly fInnov(x, 0), gInnov(y, 0)
are normal distributions with mean x2, respectively, y2 and with standard devi-
ation 1. We next start to investigate this model. We first investigate the effect
of the number of consumers on the adoption of the variant. The following pa-
rameter values are kept constant throughout the simulations: L1 = L2: = 10,
(x1, x2) = (4, 4), (y1, y2) = (6, 7). The second product is introduced on the mar-
ket at tintro = 9 and simulations are run to T > 0 (usually T = 250) until there is
no change in the variant’s market share.

Populations where this number is larger display smoother adoption processes as
in Fig. 1. The curves have a more concave shape as the social influence coefficients
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Fig. 1 Adoption withN ∈ {500, ..., 5000}, averaged over 80 runs, σx , σy are 1—left, and 0 —right

σx , σy increase (i.e. the imitators weigh the popularity of the products more heavily).
Also note that larger σ values lead to higher end-of-time adoption levels in the
population. However, as N increases, there are no qualitative differences in the
adoption process, thus to investigate the sensitivity to other parameters we run all
further simulations with 1500 agents.

Similar to analysis into the 1D model, if here we vary sInnov−x ∈ [0.05, 0.2]
and σx ∈ [0, 1], while σy = 0.3 and sInnov−y = 0.1 (see Fig. 2—left panel) we
see that the regions σx ≥ 0.6 and sInnov ∈ [0.15, 0.2] give higher adoption levels.
To further test this scenario, we vary σx , σy ∈ [0, 1] and sInnov−x ∈ [0, 0.2] (see
Fig. 2—right panel) . We see that the region σx , σy ≥ 0.5 and sInnov ∈ [0.15, 0.2]
give higher adoption levels. This again seems to indicate that adoption of the
variant is higher in populations where Innovators are beyond 10 % (in each
characteristic), and the popularity of the products weighs more in the decision of
the Imitators. It is interesting to see that, unlike the 1D model [5], in the D case,
low levels of σx , σy , and low initial fractions of Innov on x lead to low adoption levels.

Local Influence Effects on Adoption of Variants. A further refinement of this
model is to consider the consumer population linked over a social network, of a
preferential attachment (PA) type [6, 14].

We then consider that a consumer k’s immediate link neighbours who adopted the
variant exercise an influence over k. We denote one such neighbour by aik , while a
non-adopting neighbour is denoted by nik . We assume every neighbour’s influence is
equally weighted by consumer k. To test the effect of the local influence on adoption,
we modify the velocity of preference changes of Imitators from formula (1.3) to add

the terms
∑
i a
ij

∑
i a
ik+nij

( (x2,y2)−(x1,y1)
||(x2,y2)−(x1,y1)||

)
.

We set next sInnov−x = sInnov−y = 0.05 and vary both global social influence pa-
rameters σx , σy ∈ [0, 1]. The overall adoption levels with and without the neighbour
influence are plotted in Fig. 3 left panel. For varying sInnov−x = sInnov−y ∈ [0.05, 0.2]
and σx = σy = 0.5, adoption levels with and without local influence are plotted in
Fig. 3 right panel.

We see that at low levels of Innov on both characteristics, local social influence
has a bigger impact (leads to higher adoption levels) whenever the popularity of
the products weighs heavily in Imit decision (σx = σy approach 1). In general,
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Fig. 3 Left panel shows adoption levels for σxσy ∈ [0, 1], sInnov−x , sInnov−y = 0.05. Right panel
represents the adoption fractions for sInnov−x , sInnov−y ∈ [0.05, 0.2] and σx = σy = 0.5. The levels
were calculated from end-of-time (equilibrium) values over 125 runs

for these parameter values, adding the local influence helps the adoption process
(albeit by small margins) as seen in Fig. 3. In the case where Imit weigh equally
popularity of products and their characteristics (σx = σ0.5 Fig. 3 right panel), the
local influence does not lead, in general, to a clear increase in adoption levels as we
vary the fraction of Innov in both characteristics.

Concluding Remarks This chapter shows the first investigations into the behaviour
of consumer populations with dynamic preferences in a 2D characteristics space of
differentiated products, built from [5]. Its purpose is to identify parameter ranges
for global σ and local (neighbour) social influence affecting the adoption of a newer
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product. We saw that in consumer populations where Imit class weighs popularity
of products more heavily, local and global social influence work towards increasing
the overall adoption levels of the newer product. The sensitivity analysis here is the
basis for extended future work on populations with σx , y ≥ 0.5, sInnov ≈ 0.05 and
more refined modelling of local social influence weights.
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On the Group Analysis of a Modified Novikov
Equation

Priscila Leal da Silva and Igor Leite Freire

Abstract In this work, we study a modified Novikov equation using group methods.
A complete group classification is carried out. Then from the point symmetry gener-
ators, we find the one-parameter group of local diffeomorfisms which preserves the
equation. From the Lie symmetry generators, we also obtain exact solutions to the
considered equation. It is also proved that only one nontrivial conservation law can
be established using Ibragimov’s recent developments.

1 Introduction

In a recent paper [10] the new integrable equation

ut − utxx + 4u2ux − 3uuxuxx − u2uxxx = 0, (1)

with cubic nonlinearities was discovered by V. S. Novikov and is currently known as
Novikov equation. Since then, many papers have been dedicated to study different
properties of (1). In particular, in [9] it was introduced the modified Novikov equation

H := ut − utxx + (b + 1)u2ux − buuxuxx − u2uxxx = 0, (2)

where b is a real parameter. Clearly such equation generalizes (1).
More recently, Bozhkov, Freire, and Ibragimov studied (1) from the point of

view of Lie symmetries. They showed that (1) admits a 5D symmetry Lie algebra.
Explicit solutions were obtained. In addition, conservation laws were investigated
using recent developments due to Nail Ibragimov in [5, 6, 7]. For further details, see
[3].
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In the present work we carry out a complete group classification of Eq. (2). We
show that for any b �= 3, the symmetries are given by the spatial and time translations

G1 : (x, t , u) %→ (x + ε, t , u), G2 : (x, t , u) %→ (x, t + ε, u), (3)

respectively, and by the dilation

G3 : (x, t , u) %→ (x, e2εt , e−εu). (4)

Whenever b = 3, in addition to the mentioned symmetries, we have two other
transformations preserving solutions:

G4 : (t , x, u) %→
(
t , −1

2
ln (e−2x − 2ε),

u√
1 − 2εe2x

)
(5)

and

G5 : (t , x, u) %→
(
t ,

1

2
ln (e2x − 2ε),

u√
1 − 2εe−2x

)
. (6)

We observe that the discrete symmetry (x, t , u) %→ (−x, t , u) maps the transformation
(4) into (6).

Once having these transformations we can easily construct solutions. This is done
in Sect. 3. Moreover, in the same section we construct some invariant solutions using
the Lie point symmetry generators.

Next, in Sect. 4 we establish conserved currents for the investigated equation.
In [3], it was shown that the nonlinear self-adjointness implies in the strict self-
adjointness. Then in this chapter, we look for necessary and sufficient condition in
order to Eq. (2) be strictly self-adjoint. Then it is obtained a remarkable fact, given
by the following

Theorem 1 Equation (2) is strictly self-adjoint if and only if b = 3.
This theorem will be proved in Sect. 4. Then, in the next, we derive a local

conserved current obtained using Ibragimov’s approach. The only nontrivial local
conservation law established is C = (C0,C1), whose components are

C0 = u2 + u2
x , C

1 = 2u4 − 2u3uxx − 2uutx . (7)

Physically speaking, the component C0 corresponds to the conserved density while
C1 is the conserved flux.

2 Lie Symmetries

Let x = (x1, x2, . . ., xn) and u = u(x) be, respectively, n independent variable and a
smooth function. A Lie point symmetry of the differential equation (DE)

F (x, u, u(1), . . ., u(n)) = 0, (8)
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where u(i) denotes the set of derivatives of order i, is a one-parameter transformation
group that leaves (8) invariant. For each symmetry one can associate a unique operator

X = ξ i(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
, (9)

called Lie point symmetry operator. Here, the summation over the repeated indices
is presupposed.

A necessary and sufficient condition for (9) to be a Lie point symmetry operator
of (8) is

X(n)F = λ(x, u, u(1), . . ., )F , (10)

where X(n) is the nth prolongation of X, given by

X(n) = X + ζ (1)
i1

∂

∂ui1
+ . . .+ ζ (n)

i1i2...in

∂

∂ui1 ui2 . . .uin
,

where ζ (0) = η, ζ (k)
i1i2...ik

= Diζ (k−1) − uiDiξ , 1 ≤ k ≤ n, and

Di = ∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · ·

is the total derivative operator with respect to variable xi . We guide the diligent reader
to [1, 2, 4, 11] for further details.

Consider Eq. (2). Applying condition (10) to (2), and considering the generator

X = ξ (x, t , u)
∂

∂x
+ τ (x, t , u)

∂

∂t
+ η(x, t , u)

∂

∂u
,

we conclude that τ = τ (t), η = α(x, t)u + β(x, t), ξxx = 2αx and

2(b + 1)uη − ξt + (b + 1)u2(ηu − ξx) − buηxx − u2(3ηxxu − ξxxx) +
− (2ηxtu − ξxxt ) = λ(b + 1)u2,

ηu − τt − ηxxu = λ, buηx + 3u2(ηxu − ξxx) + 2ηtu − 2ξxt = 0,

2ηxu − ξxx = 0, 2uη + u2(ηu − 3ξx) − ξt = λu2,

η+ u(2ηu − 3ξx) = λu, λ = ηu − 2ξx − τt , (b+ 1)u2ηx + ηt − u2ηxxx − ηtxx = 0

The solution of the system reads

X1 = ∂

∂x
, X2 = ∂

∂t
, X3 = 2t

∂

∂t
− u

∂

∂u
, (11)
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if b �= 3, and whenever b = 3, along with generators (11),

X4 = e2x ∂

∂x
+ e2xu

∂

∂u
, X5 = −e−2x ∂

∂x
+ e−2xu

∂

∂u
,

reobtaining the 5D Lie algebra found in [3].
Now, in order to obtain the corresponding point transformations, we employ the

exponential map. In fact, if X is a Lie point symmetry generator, then

eεX(x, t , u) :=
⎛

⎝
∞∑

j=0

εj

j
Xjx,

∞∑

j=0

εj

j
Xj t ,

∞∑

j=0

εj

j
Xju

⎞

⎠, (12)

where ∞∑

j=0

εj

j
Xjx = x +Xx + e2

2
X(Xx) + · · ·,

SubstitutingX1, X2, X3, X4, X5 into (12), the transformations (1)–(6) are obtained.

3 Invariant Solutions

Here we employ the characteristic method for finding some solutions to (2). For
further details, see [1, 2, 4, 11].

For the modified Novikov equation (2), we shall only consider here the construc-
tion of solutions for b �= 3 with generators (11). The invariant solutions for b = 3
can be found in [3].

Considering X3 = 2t ∂
∂t

− u ∂
∂u and using ξ 1 = 0, ξ 2 = 2t , η = −u in the

characteristic equations
dx

ξ 1
= dt

ξ 2
= du

η
,

we obtain the invariant

u(x, t) = φ(x)√
t
. (13)

Once it has to be a solution of (2), using the respective derivatives, one obtains the
ordinary differential equations (ODE) − 1

2φ+ 1
2φ

′′+(b+1)φ2φ′−bφφ′φ′′−φ2φ′′′ =
0, which has φ(x) = αe±x as a family of solutions.

Now acting the translational transformation groups generated by X1 and X2, we
obtain the 3-parameter family of solutions

uα,δ,γ (x, t) = αe±x+δ√
t + γ .
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4 Strict Self-Adjointness and Local Conservation Laws

A vector field C = (C0,C1) is called conserved vector or conserved current to the
Eq. (2) if the following relation holds on the solutions of (2)

DtC
0 +DxC1

∣∣
F=0 = 0. (14)

In [5] Ibragimov states that if Eq. (8) admits a symmetry operator (9), then the
quantity

Ci = ξ iL +W δL
δui

+
∑

s≥1

Di1 . . .Dis (W )
δL

δuii1...is
, (15)

withW = η − ξ iui , i = 1, . . ., n, provides a conservation law for the system
⎧
⎨

⎩
F = 0,

F ∗ = 0,
(16)

where L = vF is called formal Lagrangian,

F ∗ = δL
δu

is called adjoint equation to (8) and

δ

δu
= ∂

∂u
+

∞∑

j=1

(−1)jDi1 · · ·Dij
∂

∂ui1···ij

is the Euler–Lagrange operator.
A DE F = 0 is said to be nonlinearly self-adjoint if

F ∗∣∣
v=φ(x,u) = σF (17)

holds for certain functions φ and σ , where this last function may depend on t , x, u
and u derivatives. In particular, whenever φ = u, equationF = 0 is said to be strictly
self-adjoint. For further details, see [5, 6, 7].

Consider the modified Novikov equation (2). Its adjoint equation H ∗ is given by

H ∗ = −vt + vtxx + v(6 − 3b)uxuxx+
+vx
[
(−b + 6)uuxx − (b + 1)u2 + (6 − 2b)u2

x

]+ vxx(−b + 6)uux + u2vxxx.

On the one hand, it is easy to check that when b = 3, Eq. (2) is strictly self-adjoint. On
the other hand, assuming that the modified Novikov equation is strictly self-adjoint,
from the coefficient of ut we conclude that σ = −1 and then b = 3. This not only
proves Theorem 1 but also implies that Ibragimov’s theorem can only be used to find
local conservation laws for (2) if b = 3.
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In [3] it was proved that the nonlinear self-adjointness of the Eq. (1) is equivalent
to the strict self-adjointness. For this reason it is sufficient to study the strict self-
adjointness of Eq. (1).

Consider the generator X3 and L = vH . Then using W = −u − 2tut and the
respective derivatives of L in (15), we obtain

C̃0 = u2 + u2
x +Dx (B) , C̃1 = 2u4 − 2u3uxx − 2uutx −Dt (B),

where B = 4
3 tuutx − 2

3 tutux − 2
3 uux + 2tu3uxx − 2tu4.

We can eliminate the terms Dt (−B) and Dx(B) since it correspond to a null
divergence. Therefore, the components of the conservation law C are given by (7).

By a similar calculation, one can prove that the conservation laws for generators
X1,X2,X4, and X5 are trivial, i.e., C = (0, 0).

Acknowledgement The authors would like to thank FAPESP for financial support, project
numbers 2012/22725-4 and 2011/19089-6.
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Implication of Stochastic Resonance
on Neurological Disease Quantification

T. K. Das, N. Rajakumar and M. Jog

Abstract This presents an application of stochastic resonance in a data-driven nonlin-
ear bistable system, in which inhibitory and excitatory electrophysiological neuronal
activity in the prefrontal cortex (PFC) is quantified in a control and a putative ro-
dent model of schizophrenia brains. An empirical mode decomposition protocol
was applied for processing and analyzing the spike data. Within the different ex-
perimental conditions, we extracted different asymmetric shapes of bistable model
potentials using the Fokker–Planck equation (FPE). Our analyses in control brains
suggest that neuronal firing, along with noise (e.g., synaptic activity) before and
after amphetamine administration provide asymmetries with phase transition in the
bistable model allowing bidirectional information flow. Such transitions appear to
be impaired in the disease model.

1 Introduction and heoretical oncepts

Naturally governed stochastic resonance (SR) exists on the basis of cooperative
behavior between “noise” and “nonlinear dynamics” and acquires an enhanced sen-
sitivity in the presence of any small internal/external time dependent forcing [1, 2].
Despite decades of research on “SR” and its widespread multidisciplinary appli-
cations, including biological systems (e.g., gene expression, neural systems, etc.)
[36], the positive role of “noise” in any neuronal network (either healthy or disease
case) for evolving the brain mechanism invivo during “neural encoding/decoding”
is mostly ignored by neuroscientists [7]. The mechanism of “SR” is important in
this scheme in [3] that it describes the possible occurrence of asymmetry inside the
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double-well potential when any time-dependent forcing exists and probable infor-
mation flow can occur between two different dynamic states with noise. Since noise
may in fact be an important contributor to understanding neuronal firing, the “SR”
phenomena needs to be studied and such analysis methods need to be applied to
neuronal data.

The positive (hallucinations, thought disorders) and negative symptoms (apathy,
withdrawal) and cognitive deficits in schizophrenia have a significant impact on the
patient. However, mechanisms underlying negative and cognitive symptoms are not
clear. An important contribution to this problem may include the lack of adequate
animal models to investigate these negative symptoms. Studies in human and non-
human primates have suggested that a possible origin of the cognitive and negative
symptoms may be within the prefrontal cortex (PFC) [8]. A rodent model has been
developed using human recombinant nerve growth factor (hrNGF) injections in the
neonates, showing adult onset dopaminergic hyperactivity, social interaction deficits
and a number of structural features described in postmortem brains of patients with
schizophrenia [9, 10]. A histological study on the hrNGF rat model shows that partial
ablation of subplate and GABAergic synaptic abnormalities of the PFC are respon-
sible in altering dopaminergic activity (DA) [11]. However, electrophysiological
properties of this model have not been adequately studied.

Recently, using “SR,” Zheng et. al. presented a bistable model in order to ex-
plore bimodality in stochastic gene expression with additive and/or multiplicative
external noise [6]. In contrast to earlier studies, we applied a significantly modified
version of the Zheng methodology to extract bimodal distribution functions from
invivo electrophysiological data to study the stochastic bistable potential wells of the
Fokker–Planck equation (FPE) [12] in the control and hrNGF rodent model.

2 Experimental Methodology

A group of seven Sprague Dawley male rodent pups received neonatal injections of
hrNGF into the developing PFC on postnatal day 1. Another group of seven male
pups received identical injections of saline in parallel (control). All experiments
(animals 600 g each) were carried out under approval of UWO animal ethics com-
mittee. Through the EthoVision behavioral monitoring system at 14 weeks of age, the
hrNGF lesioned rats demonstrated significantly reduced social interaction, compared
to the control group rats [11]. These animals underwent in vivo electrophysiological
recordings using accepted methods [13, 14]. Twelve tetrodes for extracellular record-
ings were independently inserted and moved until the PFC (AP 2.2, L 0.8, DV 3.4 mm
from Bregma) is reached. Followed by the baseline recording at10 min, an excita-
tory type stimulation, d-amphetamine (AMPH) was injected intraperitoneally in both
control and hrNGF rodents. Electrophysiological recordings were accomplished for
3 min duration at the time moments 15, 60, and 180 min after injection.
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3 Numerical Methodology

3.1 Data Analysis

Current state-of-the-art of data analysis uses either timeseries based analysis or fre-
quency based Fourier transformation and/or timefrequency analysis based on the
Hilbert transform or the complex wavelet transform of the signals [15]. All these
methods have shown limited applications in the linear and/or stationary regime due
to the lack of mathematical rigor. Here, we applied an adaptive multivariate Hilbert–
Huang ransform (HHT) that mostly preserves transient and nonlinear features of
the data. Our overall data analysis can be divided into two steps(1) the empirical
mode decomposition (EMD) and (2) the Hilbert transformation. Followed by an es-
tablished method [15, 16], the process of EMD starts with proper data sampling on
m-hyperspheres using Quasi-Monte Carlo (QMC) based low-discrepancy sequences.
This iterative process allows the decomposition of spike signal locally and differenti-
ates the input signal into a finite set of zero-mean “Intrinsic-Mode-Functions (IMF)”
components. It is important to mention that the frequency of oscillations decreases
with increasing the number of IMFs until it reaches to a residue signal. Each IMF
fulfills the requirement of analytic quadrature of any input signal, and a Hilbert rans-
form of individual IMF components is eventually applied to extract instantaneous
quantities like amplitudes (A), phases (Φ) and frequencies (Ω).

3.2 Mathematical Model Analysis

To investigate the characteristics of stochastic resonance on spatiotemporal aspects
of neuronal dynamics in presence/absence of external stimulations, any experimen-
tal observable “Φ” with possible inherent noise contribution satisfies the Langevin
equation

∂Φ

∂t
= −δU(Φ)

δΦ
+Φγ (t) + ε(t) (1)

Here U(Φ) denotes the stochastic potential function, describing the states of neuronal
dynamics in PFC. Also, γ (t)and ε(t) define the contribu of Gaussian white noise in
multiplicative and additive ways, which has zero mean and correlations

<γ (t)γ (t ′) >= 2αmδ(t − t ′)
<ε(t)ε(t ′) >= 2αaδ(t − t ′) (2)

< γ (t)ε(t ′) > =<ε(t)γ (t ′) >= 2βδ(t − t ′)
where αm and αa represent multiplicative and additive noise intensities, respectively.
Also β measures the strength of correlation between these two types of noise.
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Due to the random fluctuation in the experimental phase variable (Φ), the prob-
ability distribution function, W(Φ, t) of such variable is calculated, which satisfies
the associated FPE [12] of Eq. (1) as

∂W (Φ, t)

∂t
= − ∂

∂Φ
{A1(Φ)W (Φ, t)} + ∂2

∂Φ2 {A2(Φ)W (Φ, t)} (3)

with corresponding coefficients as

A1(Φ) = −δU(Φ)

δΦ
+ αmΦ + 2β

√
αmαa (4)

A2(Φ) = αmΦ2 + 2β
√
αmαaΦ + αa

In the steady state, the solution of FPE governs the form

Ws(Φ) = B exp{−U(Φ)} (5)

where B is an arbitrary constant and is normalized to be unity. In contrast to earlier
studies on stochasticity in gene expression [6], the corresponding potential function,
U(Φ) that includes all possible noise contributions has been extracted from our
experimental data driven steady state probability distribution function, Ws(Φ).

4 Results and Discussion

In the control case, depicted bimodal distributions in baseline, recorded from PFC,
are mostly localized in the range of phase, 0≤Φ≤0.03, as in Fig. 1a. The resultant
asymmetric double-well potential function, which is calculated from Fig. 1a, is
shown in Fig. 2a for characterizing stochastic resonance via phase transitions (or
switching). The mode location at lowΦ-value shows stronger distribution and more
stable synchronized dynamic state than that of its distribution and dynamic state at
high Φ-value. This could be interpreted as weak connectivity in the PFC network,
which could open in order to exchange information between these bistable states.
After 15 min of giving excitatory type perturbation (AMPH), a strong phase-shift
with the switching mechanism of synchronized states is observed (see Figs. 1b and
2b). This symmetry breaking transition could be occurring due to excitatory type
perturbation resulting in self-organization of spontaneous neuronal activities. An
important component adding to this is the increased amount of noise produced by
nonlinear interactions of large number of dopaminergic synapses invivo. The bimodal
probability distribution as well as its respective potential function remain the same
at the 60 min recording with previous existing phase localiations (see in Figs. 1c
and 2c). However, shapes of W(Φ) and U(Φ) at 180 min recording are intended to
relax towards the shape of baseline state (near equilibrium) with shifting phases (see
Figs. 1d and 2d). This could happen due to dominant cooperation between balanced
excitatory and inhibitory neuronal activities in PFC rather than just competition
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Fig. 1 Phase probability distribution, W(Φ) versus phase, Φ from a multichannel tetrode spike
recordings in prefrontal cortex (PFC) of control rats at recording labels a baseline b 15 min c
60 min and d 180 min after injecting amphetamine (AMPH)

itself. Besides, the metastable dynamic phase at 15 and 60 min recordings, which is
induced by excitatory type perturbation (AMPH), could be conjectured to represent
the temporary coordination based memory formation in the healthy control brain.

On the other hand, the bimodal distribution function W(Φ) and the potential func-
tion U(Φ), calculated in the baseline recording of hrNGF groups, are populated in the
range of phase, −0.3≤Φ≤0 (see Figs. 3a and 4a). Moreover, the location of mode
distribution at high Φ-value is found to be stronger, compared to its distribution at
lowΦ-value. The corresponding highly stable synchronized dynamic state at higher
phase value and weakly synchronized dynamic state at low phase could be inter-
preted as the rigid (strong) network connectivity in the hrNGF case due to increased
GABAergic synaptic abnormalities in the thalamocortical pathways. The resultant
phase distribution functions and the potential functions at 15, 60, and 180 min are
shown in Fig. 3b, c, d and in Fig. 4b, c, d respectively. Inability of symmetry break-
ing bistable dynamic states in presence of excitatory perturbation could be due to
excessive GABAergic synaptic abnormalities and loss of dopamine fiber densities in
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Fig. 2 Calculations of corresponding bistable potential function, U(Φ) as a function of phase, Φ
from a multichannel tetrode spike recordings in prefrontal cortex (PFC) of control rats at a baseline
b 15 min c 60 min and d 180 min after injecting AMPH

hrNGF model [11]. This could imply unidirectional information flow with/without
excitatory perturbation.

5 Conclusions

Our analyses on spatiotemporal aspects of neuronal dynamics suggest that sponta-
neous neuronal activity, resulting from internally driven neuronal network force (such
as synaptic connectivity) and source of physical noise, may provide asymmetries in
our bistable model potential that has a strong influence on stochastic resonance effect
in order to quantify bistable brain dynamic phase transitions. These may help to char-
acterize dopamine agonist and/or antagonist activities and to demonstrate inability
of bidirectional information flow in hrNGF model. The reduced stochastic resonance
in dynamic phase space and its relation to potential GABAergic synaptic overactiv-
ity in disease states may represent hypofrontality [17] in the hrNGF rat model. Our
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Fig. 3 Same as in Fig. 1, but from a multichannel tetrode spike recordings in prefrontal cortex
(PFC) of human recombinant nerve growth factor (hrNGF) rats

analyses in Sect.4 showed that the use of AMPH alone, which increased dopamine
levels, was not enough to improve the dynamic brain state of this hypofrontal rat
model, and evidence against the dopaminergic hyperactivity as the sole contributor.
Experiments with coadministration of GABAergic inhibitors and AMPH may help
to mimic the corrected dynamic state as well as the characterization of “negative
symptoms” in our hrNGF rodent model. Also, our analyses in control and disease
model suggested that the degree of spontaneous symmetry breaking could be quan-
tified as severity of neurological disease. Further study on dynamic multistabilities
and corresponding phase transitions may shed light on decision making in the PFC,
which may be absent in the disease states.
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Fig. 4 Same as in Fig. 2, but from a multichannel tetrode spike recordings in refrontal cortex (PFC)
of human recombinant nerve growth factor (hrNGF) rats
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Impact of Excess Mortality on the Dynamics
of Diseases Spread by Ectoparasites

Attila Dénes and Gergely Röst

Abstract In this chapter, we generalize our earlier model for the spread of ectopar-
asites and diseases transmitted by them by including disease-induced mortality. The
qualitative behavior of the system is similar to that of the original model: three
reproduction numbers determine which of the four possible equilibria is globally
asymptotically stable. We conclude that a moderate mortality decreases the size of
the population, while a high mortality leads to the eradication of the infection. The
main tools used for the proofs include persistence theory, Lyapunov–LaSalle theory
and Dulac’s criteria.

1 Introduction, Basic Properties of the Model

Ectoparasites are present in several regions of the world. Besides the problems caused
by the infestation, they are also responsible for the transmission of several diseases
like relapsing fever or murine typhus (for details see, e.g., [1]). The spread of these
diseases is different from other vector-borne diseases, as in this case, the vectors
themselves are transmitted like a disease through the human contact network. In [2],
we established a basic model for the spread of ectoparasites and diseases transmitted
by them and completely described the global dynamics of the model. Our basic
model does not include disease mortality, however, as several ectoparasite-borne
diseases are lethal (e.g., epidemic typhus or plague), it is a natural question to ask
what happens if we also incorporate disease-induced mortality. In this chapter, we
study the model with disease-induced mortality showing that the modified system has
a similar behavior as the original one. Some of the proofs in [2] can be applied in an
analogous way, however, several of them need some additional ideas or completely
different methods.
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The present model is for one ectoparasite species, which might be a vector for
a disease as well. The population is divided into three compartments: susceptibles
(i.e., those who are not infested, denoted by S(t)), those who are infested by nonin-
fectious parasites (T (t)) and those who are infested by infectious parasites (Q(t)).
In the following, we will call an individual from compartment S (resp. T , Q) an S-
(resp. T -,Q-) individual. A T -individual might infest an S-individual with noninfec-
tious parasites, while a Q-individual might infest an S-individual or a T -individual
with parasites which carry the disease. We assume that a person is infected by the
disease, if and only if, he is infested by infectious parasites. We denote the trans-
mission rate from Q to S and T by βQ, while βT stands for the transmission rate
from T to S. The disinfestation rate is denoted by θ for compartment T and by μ for
compartment Q. We denote by b the recruitment and removal rate, and d denotes
disease-induced mortality. With these assumptions we obtain the following system
of differential equations:

S ′(t) = −βT S(t)T (t) − βQS(t)Q(t) + θT (t) + μQ(t) + b − bS(t),

T ′(t) = βT S(t)T (t) − βQT (t)Q(t) − θT (t) − bT (t), (1)

Q′(t) = βQS(t)Q(t) + βQT (t)Q(t) − μQ(t) − bQ(t) − dQ(t).

It is easy to see that all solutions are bounded and solutions with nonnegative initial
values remain nonnegative.

Letting S∗ = (b+d)θ−bμ+bβQ
(b+d)βT

, the four equilibria can be calculated as:

ES = (1, 0, 0), EQT =
(
S∗, b+d+μ

βQ
− S∗,

b(βQ−(b+d+μ))
(b+d)βQ

)
,

ET =
(
b+θ
βT

, 1 − b+θ
βT

, 0
)

, EQ =
(
b+d+μ
βQ

, 0,
b(βQ−(b+d+μ))

(b+d)βQ

)
.

By introducing a single infested, respectively, infested and infected individual into
one of the equilibriaES ,ET , andEQ, we obtain three different reproduction numbers.
By introducing a T -, resp.Q-individual into ES , we get the reproduction numbers

R1 = βT

b + θ , resp.R2 = βQ

b + d + μ. (2)

If we introduce a Q-individual into ET , we get the same reproduction number R2

again. Finally, by introducing a T -individual into EQ, we obtain the reproduction
number

R3 = βT (b + d)(b + d + μ)

βQ(b(βQ + θ − μ) + dθ )
. (3)

The following proposition can easily be checked.

Proposition 1 Equilibrium ES always exists. Equilibrium ET exists if and only if
R1 > 1. Equilibrium EQ exists if and only if R2 > 1. Equilibrium EQT exists if and
only if R2 > 1 and R3 > 1.
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Proposition 2 Local stability of the four possible equilibria is determined by the
reproduction numbers in the following way.

(i) ES is locally asymptotically stable (LAS) if R1 < 1 and R2 < 1, and unstable
if R1 > 1 or R2 > 1.

(ii) ET is LAS if R1 > 1 and R2 < 1, and unstable if R2 > 1.
(iii) EQ is LAS if R2 > 1 and R3 < 1, and unstable if R3 > 1.
(iv) EQT is LAS if R2 > 1 and R3 > 1 (i.e., always when it exists).

Proof (i) Calculating the eigenvalues of the Jacobian of the linearized equation
around the equilibriumES we obtainλS1 = −b, λS2 = −b−θ+βT = (b+θ )(R1−1),
and λS3 = −b − d − μ + βQ = (b + d + μ)(R2 − 1). All of the eigenvalues are
negative if R1 < 1 and R2 < 1, while at least one of them is positive if R1 > 1 or
R2 > 1.

(ii) If we linearize around the equilibrium ET , we find the eigenvalues λT1 = λS1 ,
λT2 = −λS2 , and λT3 = λS3 , thus we can argue similarly as in case (i).

(iii) Linearization around the equilibrium EQ yields the three eigenvalues λQ1 =
B(μ− βQ)/(b + d) + (b + d + μ)βT /βQ − θ and

λQ2,3 =
b(μ− βQ) ±

√
b(4μ(b + d)2 + βQ

(−4(b + d)2 − 2bμ+ bβQ
)+ 4(b + d)3 + bμ2)

2(b + d)
.

R2 > 1 is needed for the existence of EQ. If we add the terms in λQ1 , it is easy
to see that the numerator of the fraction is the difference of the numerator and the
denominator of the reproduction number R3, which means that it is negative if and
only ifR3 < 1. The absolute value of the term under the square root in the nominator
of λQ2 , resp. λQ3 is less than that of the first term which itself is negative as βQ > μ
follows from R2 > 1. Thus, the last two eigenvalues always have negative real parts
if R2 > 1.

(iv) Linearizing aroundEQT , we get the eigenvalues λQT 1 = −λQ1 , λQT 2 = λQ2 ,
and λQT 3 = λQ3 , from which the assertion follows. �

2 Persistence and Global Stability

We shall use some notions and theorems from [3].

Definition 1 LetX be a nonempty set and ρ : X→ R+. A semiflow φ : R+×X→
X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t , x)) > ε ∀x ∈ X, ρ(x) > 0.

Φ is called uniformly (strongly) ρ-persistent if there exists some ε > 0 such that

lim inf
t→∞ ρ(Φ(t , x)) > ε ∀x ∈ X, ρ(x) > 0.

A set M ⊆ X is called weakly ρ-repelling if there is no x ∈ X such that ρ(x) > 0
and Φ(t , x) → M as t → ∞.
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System (1) generates a continuous flow on the state spaceX := {(S, T ,Q) ∈ R
3+}.

Theorem 1 S(t) is always uniformly persistent. T (t) is uniformly persistent ifR1 >

1 andR2 < 1 as well as ifR2 > 1 andR3 > 1.Q(t) is uniformly persistent ifR2 > 1.

Proof The proof of the first assertion can be performed similarly as in [2, Theorem
4.3]. To prove the assertions about the persistence of T (t) and Q(t), we need some
further theory from [3].

For the state of the system, we will use the notation x = (S, T ,Q) ∈ X. We define
the ω-limit set of a point x ∈ X as usual by

ω(x) := {y ∈ X : ∃{tn}n≥1 such that tn → ∞,Φ(tn, x) → y as n→ ∞}.
Let ρ(x) = T . Consider the invariant extinction spaceXT := {x ∈ X : ρ(x) = 0} =
{(S, 0,Q) ∈ R

3+}. The case R1 > 1 and R2 < 1 can be handled exactly as in [2,
Theorem 4.3].

Let us now suppose that R2 > 1 and R3 > 1 hold. Following [3, Chap. 8], we
examine the set Ω := ∪x∈XT ω(x) for which in this case we have Ω = {ES ,EQ

}
.

First we show weak ρ-persistence. To apply Theorem 8.17 of [3], we letM1 = {ES}
and M2 = {EQ

}
. We have Ω ⊂ M1 ∪M2 and {M1,M2} is acyclic and M1 and M2

are isolated, invariant and compact. We have to show that M1 and M2 are weakly
ρ-repelling, then by [3, Chap. 8], the weak persistence follows.

Let us first assume thatM1 is not weakly ρ-repelling, i.e., there exists a solution
with limt→∞ (S(t), T (t),Q(t)) = (1, 0, 0) such that T (t) > 0. By R2 > 1 and
R3 > 1,

R2R3 = (b + d)βT
dθ + b(βQ + θ − μ)

> 1,

i.e., βT > θ + (βQ − μ)b/(b + d). For t large enough we have S(t) > 1 − ε and
Q(t) < ε, so we can give the following estimation for T (t):

T ′(t) = T (t)(βT S(t) − βQQ(t) − θ − b) > T (t)(βT − βT ε − βQε − θ − b)

> T (t)

(
b

b + d (βQ − μ) − ε(βT + βQ) − b
)

= T (t)

(
b

b + d (βQ − μ− b − d) − ε(βT + βQ)

)
,

which is positive for ε small enough, since R2 > 1 implies βQ > μ + b + d, thus
T (t) → 0 cannot hold.

Now we assume that M2 is not weakly ρ-repelling, thus, there exists a solution
with limt→∞ (S(t), T (t),Q(t)) = (b+d+μ)/βQ, 0, b(βQ−b−d−μ)/(βQ(b+d))
and T (t) > 0. For any ε, for t large enough we can give the following estimations
for T ′(t):

T ′(t) = T (t)(βT S(t) − βQQ(t) − θ − b)

> T (t)

(
βT

(
b + d + μ
βQ

− ε
)

− βQ
(
b(βQ − b − d − μ)

(b + d)βQ
+ ε
)

− θ − b
)
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= T (t)

(
βT (b + d + μ)

βQ
− b(βQ − b − d − μ)

b + d − θ − b − ε(βT + βQ)

)
,

which is positive for ε small enough, since R3 > 1.
The persistence of Q(t) for R2 > 1 can be proved using the same methods. The

steps are analogous to those of the corresponding part of [2, Theorem 4.3] with only
a slight modification needed. �

Using our theorem about persistence, in this section, we show that our LAS results
extend to global asymptotic stability (GAS) results.

Theorem 2 Equilibrium ES is GAS if R1 ≤ 1 and R2 ≤ 1.

Proof The proof is analogous to that of [2, Theorem 5.1] �

Theorem 3 Equilibrium ET is GAS stable on X \ XT if R1 > 1 and R2 ≤ 1. On
XT , ES is globally asymptotically stable.

Proof The proof is analogous to that of [2, Theorem 5.2] �

Theorem 4 Let us suppose R2 > 1. Then the following statements hold:

(i) If R3 ≤ 1 and R1 ≤ 1, then EQ is GAS onX \XQ and ES is GAS onXQ where
XQ := {x ∈ X : {(S, T , 0) ∈ R

3+}, i.e., the extinction space ofQ.
(ii) If R3 ≤ 1 and R1 > 1, then EQ is GAS on X \XQ and ET is GAS on XQ.

(iii) If R3 > 1, then EQT is GAS on X \ (XQ ∪XT ), ET is GAS on XQ, EQ is GAS
on XT .

Proof Let us introduce the notation F (t) := S(t)+T (t). With this notation, we can
transcribe system (1) to the two-dimensional system

F ′(t) = −βQF (t)Q(t) + μQ(t) + b − bF (t),

Q′(t) = βQF (t)Q(t) − μQ(t) − bQ(t) − dQ(t). (4)

This system has the two positive equilibria (1, 0) and

(F ∗,Q∗) :=
(
b + d + μ
βQ

,
b(βQ − b − d − μ)

βQ(b + d)

)
.

To show that the limit of each solution of this system is one of these two equilibria,
according to the Poincaré–Bendixson theorem, all we have to prove is that system
(4) does not have any periodic solutions. To show this, we apply Dulac’s criterion
using the Dulac function D(Q, J ) = 1/Q. We have

∂

∂F

−βQQF + μQ+ b − bF
Q

+ ∂

∂Q

−bQ− dQ+ βQFQ − μQ
Q

= −b +QβQ
Q

< 0.

From the previous section, we know that Q(t) is persistent for R2 > 1; thus, the
limit of each solution started in X \XQ is a subset of the set {x ∈ X : {(S, T ,Q∗) ∈
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R
3+ : S + T = F ∗}. Thus, on the limit set the equation for T (t) takes the form

T ′(t) = βT (F ∗ − T (t))T (t) − βQT (t)Q∗ − θT (t) − bT (t) = −βT T 2(t) + γ T (t),

where γ = βT F
∗ − βQQ∗ − θ − b. The solution started from T (0) = 0 is the

function T (t) ≡ 0. The nontrivial solutions of this logistic equation are T (t) =
γCeγ t/βT Ce

γ t + 1 for C ∈ R+. It is easy to see that γ > 0 if and only if R3 > 1.
Thus, for R3 ≤ 1, limt→∞ T (t) = 0 and the limit of solutions started in X \ XQ is
EQ.

In the case R3 > 1, we have

lim
t→∞ T (t) = γ

βT
= b + d + μ

βQ
− θ (b + d) − bμ+ bβQ

(b + d)βT
,

thus we obtain that the limit of solutions started inX \ (XT ∪XQ) is EQT . Solutions
started in XT tend to EQ.

The limit set of solutions of Eq. (4) started inXQ is the equilibrium (1, 0). Thus, in
this case, the equation forT (t) on the limit set has the formT ′(t) = −βT T 2(t)+δT (t)
with δ = βT − (θ + b). Similarly to the previous case, the nontrivial solutions of
this equation have the form T (t) = δCeδt/βT Ceδt + 1 for C ∈ R+. We have δ > 0
if and only if R1 > 1. Thus, for R1 ≤ 1, T (t) → 0 (t → ∞) and the limit of
solutions started in XQ is ES , while for R1 > 1 we obtain limt→∞ T (t) = δ/βT =
1 − (θ + b)/βT , i.e., solutions started in XQ tend to ET . To complete the proof of
the theorem, we notice that R2 > 1 and R3 > 1 imply R1 > 1:

1 < R2R3 = βT

b + θ
(b + d)(b + θ )

dθ + b(βQ + θ − μ)
= R1

b2 + db + bθ + dθ
dθ + bθ + bβQ − bμ < R1.

�

Finally, we comment on the impact of the disease-induced mortality d. For d = 0
we retrieve the results of [2]. Increasing d first decreases the total population without
changing the qualitative dynamics. Sufficiently large d drives R2 below 1. In this
case, the disease dies out and the persistence of the parasites is determined by R1.
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Temperature Induced Cubic-to-Tetragonal
Transformations in Shape Memory Alloys Using
a Phase-Field Model

R. Dhote, H. Gomez, R. Melnik and J. Zu

Abstract Shape memory alloys (SMAs) exhibit hysteresis behaviors upon stress-
and temperature-induced loadings. In this chapter, we focus on numerical simulations
of microstructure evolution of cubic-to-tetragonal martensitic phase transformations
in SMAs in 3D settings under the dynamic loading conditions. A phase-field (PF)
model has been developed to capture coupled dynamic thermo-mechanical behavior
of such SMA structures and the system of governing equations have been solved nu-
merically using the isogeometric analysis. Temperature induced reverse and forward
transformations have been applied to a cubic SMA specimen, starting with evolved
accommodated martensitic microstructure. We have observed that during the forward
transformation, the martensitic variants nucleate abruptly. The transient microstruc-
tures are aligned along [110] planes, which is in accordance with the crystallographic
theory and experimental results.

1 Introduction

Shape memory alloys (SMAs) have been widely used in commercial applications
and studied in the research community for their interesting shape recovering, hys-
teretic properties, and complex microstructure morphology [1–3]. Most of these
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studies/applications have been developed to model/utilize static or quasistatic behav-
iors of SMAs. There exists a number of areas (e.g., energy absorption and vibration
damping, to just name a few) where the dynamic behavior of SMAs is essential. Our
better understanding of microstructure evolution and its effect on SMA properties,
upon dynamic loading, will help in the development of better models and devices.

In this contribution, we present a 3D model to study cubic-to-tetragonal phase
transformations in SMAs. The model is developed based on a phase-field approach
and the phenomenological Ginzburg–Landau theory [4–6]. A Ginzburg–Landau free
energy functional is defined in terms of two (deviatoric) strain based order parame-
ters, whose roots define a phase in a system at a particular temperature. The austenite
phase is represented by a cubic arrangement of atoms which occur at higher temper-
atures. The tetragonal arrangement of atoms occur at lower temperatures resulting
in martensitic variants, which are energetically equivalent. The governing equations
of the mathematical model are derived from the conservation laws of mass, momen-
tum, and energy [7]. The developed model has highly nonlinear hysteretic behavior,
bidirectional thermomechanical coupling and higher (fourth) order spatial differen-
tial terms [6]. The fourth-order differential terms define a smoothly varying diffuse
interface between austenite and martensite variants or between martensite variants.
Traditionally, such higher-order differential models have been numerically solved
using a finite difference, spectral methods, etc. [5]. These methods have known limi-
tations in terms of geometric flexibility of a domain. An isogeometric analysis (IGA)
is a geometrically flexible method that can be used to study real-world devices of
complex shape. IGA offers advantages in exact geometric representations, higher-
order continuity, accuracy, and robustness [8]. In [6], we first reported the use of
IGA methodology to study microstructure evolution for the 3D cubic-to-tetragonal
phase transformations in SMAs. In this chapter, we study microstructure evolution
in SMAs under temperature-induced transformations.

In Sect. 2, we present the phase-field model describing the cubic-to-tetragonal
transformations in SMAs and its numerical implementation based on the IGA.
In Sect. 3, we study microstructure evolution in a SMA domain under reverse
and forward transformations starting with accommodated twinned microstructures.
Conclusions are discussed in Sect. 4.

2 Mathematical Model and Numerical Implementation

The following three-well Ginzburg-Landau free energy functional can be used
to describe cubic-to-tetragonal phase transformations in SMAs. The functional is
expressed in terms of strain-based order parameters and temperature, as

F =a31

2

[
e2

1

]+ a36

2

[
e2

4 + e2
5 + e2

6

]+ a32

2
τ (e2

2 + e2
3) + a33

2
e3(e2

3 − 3e2
2)

+ a34

2
(e2

2 + e2
3)2 + kg

2

[
(∇e2)2 + (∇e3)2

]
, (1)
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where aij , kg are the material parameters and τ is the temperature coefficient [4–6].
The strain e1 represents bulk strain, e2 and e3 represent deviatoric strains, and e4, e5,
and e6 represent shear strains. The ei strains are defined using the Cauchy–Lagrange
strain tensor as eij = [(∂ui/∂xj

)+ (∂uj /∂xi
)]
/2 (using the repeated index con-

vention), where u = {ui}|i=1,2,3 are the displacements along x, y, and z directions,
respectively. The first and second terms in the functional represent bulk and shear
energy, respectively. The next three terms represent the Landau energy that define
phase transformations between austenite and martensites and between martensite
variants. The last term represents the gradient energy that describes nonlocal elastic
behavior. The Landau energy has three minima having equal energies, correspond-
ing to the three martensitic variants, below the critical temperature, one minima,
corresponding to the austenite phase, above the critical temperature. The system has
degenerate state near the critical temperature.

The mathematical model is described by conservation laws of mass, momentum,
and energy [6, 7] as

u̇ = v, (2)

ρv̇ = ∇ · σ + ∇ · σ ′ + f , (3)

ρė − σT : (∇v) + ∇ · q = g, (4)

where ρ is the mass density, q is the Fourier heat flux vector, f and g are external
mechanical and thermal loadings. The stress tensors σ and dissipation stress tensors
σ ′ are defined as

σ = ∂F
∂eij

, σ ′ = ∂R
∂ėij

. (5)

The Rayleigh dissipation energy functional R = η/2∑ ė2
i is added to stabilize the

microstructure quickly, where η is the dissipation coefficient.
The developed model has highly nonlinear hysteretic behavior, thermomechanical

coupling, and fourth-order spatial differential terms. The weak form of the governing
Eqs. (2)–(4) are obtained by multiplying them with weighting functions and trans-
forming them by using the integration by parts. We implement the weak form of the
governing equations in the IGA for numerical solution. The semidiscrete formula-
tion, where the space is discretized using the Galerkin finite element scheme and
time is treated as continuous has been described in [6].

3 Numerical Simulations

The simulations in this section are conducted on a cubic domain with 80 nm side. All
the simulations have been performed on the Sharcnet clusters utilizing 64 processors
(4 processors each in three directions) with 1 GB memory each. The decomposed
domain, in each processor, is discretized with 16 quadratic C1-continuous nonuni-
form rational basis spline (NURBS) basis in each direction. The periodic boundary
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a b c

Fig. 1 (Color online) Self accommodated microstructure in a cube domain with a M1, b M2, c M3

martensitic variants (red color represent Mi variant, blue represent the remaining two variants Mj

and Mk , and green color represents austenite (A) phase)

conditions have been used in the structural physics and insulated for the thermal
physics. The material parameters are identical to those used in [5]. The simulations
have been carried out to study microstructure evolution under temperature induced
reverse and forward phase transformations, without application of a mechanical load.

We first obtain the accommodated twinned microstructure in a domain by allowing
the system to evolve, starting with initial random conditions in displacement u and
temperature coefficient τ = −1.2. The system minimizes its energy and stabilizes
into accommodated twinned martensitic variants. Figure 1 shows the three variants of
martensites M1, M2, and M3 corresponding to martensite phase (tetragonal) aligned
along the x, y, and z directions, respectively. The microstructures are characterized by
the axial strain values (e.g., martensite M1 is represented by ε11 > 0, i.e., tetragonal
variant elongated along the x-direction). The red color in each subplot of Fig. 1
represents Mi variant and blue represents the remaining two variants, as shown in
the color spectrum in the figures. The competition between bulk, shear, and gradient
energy results in three variants accommodated in a herringbone structure with domain
walls aligned along [110] planes, which is in accordance with the crystallographic
theory and experimental results [1, 9].

Next, we perform a temperature-induced reverse transformation (RT, martensite
→ austenite) starting with the evolved microstructure in the previous step. The
thermal loading is applied on a domain with ḡ = 0.05t̄ in the dimensionless units
(bar shows the dimensionless variable). Figure 2 shows the time snapshot of the
microstructure at intermediate time (first row) and at the end of unloading (second
row). The domain walls no longer remain distinct and sharp, as compared to Fig. 1,
and extinct at the end of thermal loading. This observation is in accordance with the
experimental evidence [3].

Finally, we use the evolved austenite microstructure at the end of loading cycle
as the initial condition to the forward transformation (FT, austenite → martensite)
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a b c

Fig. 2 (Color online) Microstructure evolution during RT: the first row shows the microstructure at
t̄ = 950 and the second row at the end of loading cycle t̄ = 1080 (red color represents Mi variant,
blue represents the remaining two variants Mj and Mk , and green color represents austenite (A)
phase). RT reverse transformation

by applying the thermal loading on a domain with ḡ = −0.1t̄ in the dimensionless
units. The martensitic microstructure evolve abruptly at τ ≈ −5 at approximately
1500 time units during unloading. The transient martensitic variants on nucleation
are shown in Fig. 3.

The average temperature coefficient τ evolution in SMA domain during mi-
crostructure evolution, RT, and FT are shown in Fig.4. The nucleation of martensitic
variant from austenite during FT is seen with a jump in τ at approximately 1500 time
units.
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Fig. 3 (Color online) Transient microstructure at t̄ ≈ 1500 during the FT (red color represents Mi

variant, blue represents the remaining two variants Mj and Mk , and green color represents austenite
(A) phase). FT forward transformation

Fig. 4 (Color online)Average temperature coefficient τ plot during microstructure evolution (blue),
RT (red), and FT (black)
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4 Conclusions

The fully coupled thermomechanical model to describe cubic-to-tetragonal phase
transformations in SMAs has been developed and numerically implemented in the
IGA.

We have numerically analyzed the temperature induced reverse and forward phase
transformations in SMAs. It has been found that the domain walls between martensite
variants are aligned in accordance with the crystallographic theory and experimental
results. We have also captured the abrupt nucleation of martensitic variants during
the reverse transformation.

Acknowledgments This work was made possible with the facilities of the Shared Hierarchical
Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul
Canada. Support of NSERC and CRC program is also gratefully acknowledged.

References

1. Bhattacharya, K.: Microstructure of Martensite: why it forms and how it gives rise to the
shape-memory effect. Oxford University Press, ISBN: 9780198509349 (2003)

2. Otsuka, K., Wayman, C.: Shape Memory Materials. Cambridge University Press, ISBN:
052144487 (1999)

3. Lagoudas, D.: Shape MemoryAlloys: Modeling and EngineeringApplications. Springer, ISBN:
9780387476858 (2008)

4. Barsch, G., Krumhansl, J.: Twin boundaries in ferroelastic media without interface dislocations.
Phys. Rev. Lett. 53(11), 1069–1072 (1984)

5. Ahluwalia, R., Lookman, T., Saxena, A.: Dynamic strain loading of cubic to tetragonal
martensites. Acta Materialia 54(8), 2109–2120 (2006)

6. Dhote, R., Gomez, H., Melnik, R., Zu, J.: Isogeometric analysis of coupled thermo-mechanical
phase-field models for shape memory alloys using distributed computing. Procedia Comput.
Sci. 18, 1068–1076 (2013)

7. Melnik, R., Roberts, A., Thomas, K.: Computing dynamics of copper-based SMA via centre
manifold reduction of 3D models. Comput. Mater. Sci. 18(3), 255–268 (2002)

8. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and
FEA. John Wiley & Sons, ISBN: 9780470748732 (2009)

9. Sapriel, J.: Domain-wall orientations in ferroelastics. Phys. Rev. B 12(11), 5128 (1975)



A Study of Brain Biomechanics Using Hamilton’s
Principle: Application to Hydrocephalus

Corina S. Drapaca and Justin A. Kauffman

Abstract Hydrocephalus is a serious neurological disorder characterized by ab-
normalities in the circulation of cerebrospinal fluid (CSF) within the brain. Unfortu-
nately, the response of the patients who have been treated for hydrocephalus continues
to be poor and thus better therapy protocols are desperately needed. Mathematical
models of CSF dynamics and CSF–brain interactions could play important roles in
the design of improved, patient-specific treatments. To capture some of brain’s dy-
namics during the evolution of hydrocephalus we propose a new mathematical model
using Hamilton’s principle. We assume the existence of current healthy healing and
abnormal inflammation states and investigate the relationship between these states
using volumetric data of healthy and untreated hydrocephalic mice.

1 Introduction

Hydrocephalus is a brain disease caused by abnormalities in the cerebrospinal fluid
(CSF) circulation resulting in ventricular dilation, brain compression, and in some
cases an increase in the intracranial pressure. The treatment is based on CSF flow
diversion and continues to suffer from poor outcomes [8]. Therefore, there is an
urgent need to design better therapy protocols for hydrocephalus. An important step
in this direction is the development of predictive mathematical models that better
explain the fundamental science behind hydrocephalus. While modern models that
focus on how best to relate brain’s mechanics to its biochemistry are essential in
enhancing our understanding of mechanisms of hydrocephalus (and brain biome-
chanics in general), the lack of experimental data needed by these models as well as
the complexity of the corresponding computations make these models difficult to use
in clinical applications for now. In this chapter, we propose a mathematical model
using Hamilton’s principle that captures some of the brain’s dynamics during the
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evolution of hydrocephalus. We define current healthy healing and abnormal inflam-
mation states and investigate the relationship between these states using volumetric
data of healthy and untreated hydrocephalic mice reported in [3].

2 Mathematical Model

In this section, we present a one-dimensional model for brain dynamics using Hamil-
ton’s principle. For simplicity, we assume that in the healthy state only small
macro-deformations (linear kinematics) can occur in the brain tissue and the me-
chanical response of the tissue at the macroscopic level is linear viscoelastic of
Kelvin–Voight type. The one-dimensional brain tissue of length L has one fixed
boundary (x = 0) at the interface with the meninges surrounding the brain and one
moving boundary (x = L) at the interface with the ventricular CSF which under-
goes macroscopic displacements caused by the heart pulsations and healthy aging.
We assume further that there are two biological processes that influence brain’s
functionality:

1. A microstructural healthy healing of brain controlled by functional microglial
cells [5] and we denote by ψh(x, t) the current healing state function, and

2. A microstructural sustained inflammation of brain caused by some dysfunctional
microglial cells [5] that progresses slowly throughout the entire life and we denote
by ψi(x, t) the current inflammation state function.

Our second assumption is based on clinical studies [5, 7] that have shown that
prolonged inflammation plays an important role in the process of normal aging
and neurodegeneration diseases. We suggest excessive inflammation of the choroid
plexus (anatomical structure located at the interface between the brain tissue and the
ventricular CSF which is involved in the CSF production) as one possible mechanism
for the onset of postinfectious and posthemorrhagic pediatric hydrocephalus, as well
as for the onset of normal pressure hydrocephalus in some older people.

In what follows, we generalize the theoretical concepts introduced in [1] and adapt
them to our model’s assumptions. We propose a Lagrangian of the form:

L =
∫ L

0

[
1

2
mu̇2 + 1

2
mα
(
ψ̇2
h + ψ̇2

i

)
− 1

2
Ē(ψh,ψi)Au′2 − 1

2
β
(
ψ ′ 2
h + ψ ′ 2

i

)]
dx

(1)

where m is the mass density of the one-dimensional brain tissue of length L and
constant cross-sectional area A, u(x, t) is the macroscopic displacement, Ē is the
effective macroscopic elastic modulus, α and β are positive constants. We notice
that we work with a special Lagrangian, since, in general, the coefficients of the
terms ψ̇h

2
, ψ̇2

i , ψ ′ 2
h , ψ ′ 2

i in Eq. (1) do not need to be the same. For simplicity,
we denote by u̇ = ∂u

∂t
, u′ = ∂u

∂x
. The second and fourth terms of Eq. (1) represent

microstructural kinetics and, respectively, energies caused by the evolution of the
brain’s microstructure due to normal healing and prolonged inflammation.
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As in [1], we define the virtual work done by nonconservative forces as:

δW =
∫ L

0

[
f δu − cu̇′δu′ − Ψh(ψh, ψ̇h,ψ ′

h)δψh − Ψi(ψi , ψ̇i ,ψ ′
i )δψi

]
dx + Fδu|L

(2)

where f is a body force per unit length, cu̇′ is the linear damping term of the Kelvin–
Voight model with c the viscosity, and Ψh, Ψi are generalized forces that are work
conjugates of the evolution variables ψh, ψi . We denote by F the concentrated load
on the ventricular CSF–brain interface. In order for (2) to be thermodynamically
consistent, we apply Clausius–Duhem inequality and obtain (for details see [2]):

c ≥ 0, Ψhψ̇h ≥ 0, Ψiψ̇i ≥ 0 (3)

The nonconservative form of Hamilton’s principle:
∫ t2
t1

(δL + δW)dt = 0, for the
independent variables δu, δψh, δψi that vanish at arbitrary times t1, t2, gives the
following system of partial differential equations:

−mü + A (Ēu′)′ + f + cu̇′′ = 0 (4)

−mαψ̈h − 1

2
Au′ 2 ∂Ē

∂ψh
+ βψ ′′

h − Ψh = 0 (5)

−mαψ̈i − 1

2
Au′ 2 ∂Ē

∂ψi
+ βψ ′′

i − Ψi = 0. (6)

To system (4)–(6) we add initial conditions, Dirichlet and/or Neumann boundary
conditions at x = 0, L for ψh, ψi , and u(0, t) = 0, AĒu′(L, t) + cu̇′(L, t) = F .
We start our analysis in the following simpler case: Ψh = Ψi = F = f = 0, ψh =
ψh(t), ψi = ψi(t). We assume that the brain tissue becomes stiffer during the healthy
healing period but slowly softer due to aging [6] (the softening of the tissue might
facilitate abnormal inflammatory processes). Taking into account these facts and the
approach proposed in [1] to study damage mechanics, we introduce the following
expression for the dynamics of brain’s effective elastic modulus Ē: Ē = λψh(1−ψi)
for ψh ≥ 1, 0 < ψi < 1. The case ψh = 1 corresponds to no healing. With these
simplifications, system (4)–(6) reduces to:

ψ̈h = − λ

2mα
Au′ 2(1 − ψi), ψ̈i = λ

2mα
Au′ 2

ψh (7)

Our model has not been experimentally and/or clinically validated yet.
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Table 1 Calculated Jacobians J from brain volumetric data [3]

Time (days) J for healthy mice (Jnm) J for hydrocephalic mice (Jhm)

18 1 1

22 1.032 1.090

23 1.039 1.268

28 1.071 1.280

85 1.250 1.424

3 Application to Hydrocephalus

To make some progress in understanding how inflammation could contribute to the
onset and evolution of hydrocephalus using our model, we used brain volumetric
data for healthy and untreated hydrocephalic mice published in [3]. For simplicity
we took λ

2mα = 1 in Eq. (7). Since we consider the one-dimensional case, the strain
was calculated as follows:

u′ = J − 1 (8)

where the Jacobian of the deformation J is a measure of volume change during
the deformation. Table 1 shows values of J calculated as the ratio of current brain
volume over the initial brain volume.

We used the built-in Matlab function polyfit to find two quadratic fitting functions
Jnm(t), Jhm(t) for the data shown in Table 1 for healthy and, respectively, hydro-
cephalic mice. We replaced formula (8) into system (7) and obtained the following
system of first-order linear ordinary differential equations:

ψ̇h = vh, ψ̇i = vi , v̇h = −(J − 1)2(1 − ψi), v̇i = (J − 1)2ψh (9)

The solution to system (9) must however satisfy the following constraints:

ψh ≥ 1, 0 < ψi < 1, −∞ < vh <∞, −∞ < vi <∞ (10)

We denote bydt the step of a equally-spaced time discretization, and [ψnh ,ψni , vnh, vni ]
T

the solution corresponding to the discrete time point tn. By applying an implicit
scheme for the discretization of system (9), we obtained the following system of
linear algebraic equations:

⎡

⎢⎢⎢⎢⎢
⎣

1 0 −dt 0

0 1 0 −dt
0 −dt(J (tn+1) − 1)2 1 0

−dt(J (tn+1) − 1)2 0 0 1

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

ψn+1
h

ψn+1
i

vn+1
h

vn+1
i

⎤

⎥⎥⎥⎥⎥
⎦
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Fig. 1 Inflammation functions for healthy (nm) and hydrocephalic (hm) mice for the initial condition
[ψ0
h ,ψ0

i , v0
h, v0

i ] = [1, 0, 0, 0]

=

⎡

⎢⎢⎢⎢⎢
⎣

ψnh

ψni

vnh − dt(J (tn+1) − 1)2

vni

⎤

⎥⎥⎥⎥⎥
⎦

(11)

Problems (11) and (10) are a mixed complementarity problem and were solved sepa-
rately for J = Jnm and J = Jhm using Matlab and the function pathlcp of the PATH
solver [4] at each time step. We show results for two sets of initial conditions: (1)
[ψ0
h ,ψ0

i , v0
h, v0

i ] = [1, 0, 0, 0] and (2) [ψ0
h ,ψ0

i , v0
h, v0

i ] = [1, 0, 2, 0]. In the first case,
the healing function remains constant equal to unity for healthy and hydrocephalic
mice, while the inflammation increases slightly for healthy mice and a lot more for
hydrocephalic mice (Fig. 1). For the second set of initial conditions where the ini-
tial healing speed is nonzero, the inflammation and healing functions increase much
more for hydrocephalic mice than for healthy ones (Fig. 2). These results suggest
that inflammation may be one possible mechanism for hydrocephalus. In addition,
it appears that in hydrocephalus normal healing alone is not enough to reduce the
excessive inflammation.
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Fig. 2 Healing (top) and inflammation (bottom) functions for healthy (nm) and hydrocephalic (hm)
mice for the initial condition [ψ0

h ,ψ0
i , v0

h, v0
i ] = [1, 0, 2, 0]

4 Conclusion

In this chapter, we proposed a mathematical model using Hamilton’s principle to
study hydrocephalus. We used volumetric data of healthy and untreated hydro-
cephalic mice to investigate possible relationships between healthy healing and
prolonged inflammation states. Next we plan to validate our model and study different
treatment effects.

Acknowledgments The first author would like to thank her colleagues Drs. Cusumano, Schiff,
and Costanzo for insightful discussions and comments on this work.

References

1. Cusumano, J.P., Roy, A., Li, Q.: Damage dynamics, rate laws, and failure statistics via
Hamilton’s principle. Meccanica, 50(1), 77–98 (2015)

2. Kauffman, J.: Mathematical models of brain and cerebrospinal fluid dynamics: application to
hydrocephalus, Master’s Thesis, Pennsylvania State University (2013)



A Study of Brain Biomechanics Using Hamilton’s Principle 197

3. Mandell, J., Neuberger, T., Drapaca, C., Webb, A., Schiff, S.: The dynamics of brain and
cerebrospinal fluid growth in normal versus hydrocephalic mice. J. Neurosurg. Pediatr. 6, 1–10
(2010)

4. Ferris, M.C., Munson, T.S. Interfaces to PATH 3.0: Design, Implementation and Usage.
Computational Optimization and Applications 12(1–3), 207–227 (1999)

5. Rivest, S.: Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–439
(2009)

6. Sack, I., Beierbach, B., Wuerfel, J., Klatt, D., Hamhaber, U., Papazoglou, S., Martus, P., Braun,
J.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3), 652–657 (2009)

7. Singh, T., Newman, A.B.: Inflammatory markers in population studies of aging. Ageing Res.
Rev. 10(3), 319–329 (2011)

8. Tuli, S., Alshail, E., Drake, J.: Third ventriculostomy versus cerebrospinal fluid shunt as a first
procedure in pediatric hydrocephalus. Pediatr. Neurosurg. 30(1), 11–15 (1999)



A Mathematical Model for Treatment
Selection Literature

G. Duncan and W. W. Koczkodaj

Abstract Business intelligence (BI) tools and techniques, when applied to a data
store of bibliographical references, can provide a researcher with valuable informa-
tion and metrics. In contrast to specialized research platforms that provide a number
of analysis tools, such as the Web of KnowledgeTM (WOK) or PubMedTM, the tech-
niques discussed in this chapter provide a more generalized approach that can be
used with most bibliographical data sets as well as with a number of different anal-
ysis tools. As a point of reference, the system utilizes the WOK’s Web of Science
(WOS) database schema, chosen because it provides a comprehensive number of
bibliographical information fields. This chapter will discuss how to transform WOK
formatted data into an online analytical processing (OLAP) cube as well as provide
a few examples of using this technology to analyze bibliographical information.

1 Introduction

Business intelligence (BI) “is a set of theories, methodologies, processes, archi-
tectures, and technologies that transform raw data into meaningful and useful
information” [1]. Coined in 1958 by IBM researcher Hans Peter Luhn, BI has since
seen broad acceptance by the business world. BI provides a number of important
applications in the enterprise, including measurement, analytics and reporting [1].
The core of BI is in utilizing large stores of data (referred to as data marts or data
warehouses) to enable adhoc analysis, measurement metrics and data mining which
can then be used in order to influence and guide business decisions. While BI has
found a home in a number of business sectors such as in the financial and healthcare
industries, using it to aid in the meta-analysis of reference information is virtually
unknown. In general, BI can be applied to any relational data set.
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The sample implementation discussed within this chapter is based on Microsoft’s
standard information management and software development offerings. The database
used will be SQL 2008R2 and standard TSQL, the front-end system is implemented
in C# under Microsoft Visual Studio 2012 and analysis/OLAP services will be
provided by Structured Query Language (SQL) Server Business Intelligence De-
velopment Studio 2008 deployed to an SQL Server Analysis Services server (SQL
2008R2). The choice of platform was made due to familiarity to the author.

Summary

The proposed system will be described in the following steps:

1. Extract and transform the bibliographical data such it conforms to the Web of
Knowledge (WOK) format.

2. Serialize the transformed data into an SQL database.
3. Transform the serialized SQL data into data dimensions and a fact table arranged

in a star schema.
4. Define the OLAP cube’s data dimensions’ measures and their inter-relationships.
5. Create an OLAP cube from the data and deploy the cube to an analysis server.

Once the data is deployed, standard BI and OLAP tools (such as Microsoft Excel,
Microsoft SQL Server Business Intelligence Development Studio or Tableau) can
be used in order to analyze the cube. Manual analysis of the cube via the use of
Data Mining Extensions (DMX) or Multidimensional Expressions (MDX) will be
considered out of scope in this document.

2 Extract and Transform

The WOK allows the user to download search results into a variety of formats, as
does PubMed. Once downloaded, this data may need to be transformed into an in-
termediate format so that it’s compatible with the underlying database schema (or at
least compatible with the tools being used to import the data into the database). In
order to perform such a transform of the data, the example implementation utilizes
Extensible Markup Language (XML), a standards-based markup language that de-
fines rules for encoding information in a human and machine readable format [4],
and Extensible Stylesheet Language Transformations (XSLT) a language for trans-
forming XML documents [5]. XML is an extremely well-supported format; it is
the format of choice for many Internet data interchange protocols (see, for instance,
[3]), which makes it particularly suitable as an intermediary format for extract and
transform operations. See Fig. 1 for an overview of the process.
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RD

TE

XML (unknown format)

Filesystem

XSLT file

Next

WOS compliant XML

Fig. 1 Extract and transform Data Flow Diagram (DFD). The user downloads Extensible Markup
Language (XML) from the reference database (RD) and sends it to the transform engine (TE).
The appropriate Extensible Stylesheet Language Transformations (XSLT) files is loaded from the
file system, and the transform is applied, creating an XML document compliant with the desired
schema/format

Fig. 2 Serializing the
transformed data to a
database. The transform
engine (TE) sends the
Extensible Markup Language
(XML) to the process that
issues Transact-SQL (TSQL)
commands to insert the
information into the SQL
database

TE

Adds

SQL Database

XML

XML

3 Serializing to a Database

Once the data is in the necessary format, the next step is to serialize it to a database.
In the case of the example implementation, the data is placed into an SQL database
table that mimics the schema of it’s input data. This database will form the basis of
the data warehouse from which the analysis services will query. It’s not necessary
that this database be normalized. See Fig. 3 for a description of the process.
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Fig. 3 Example implementation fact and dimension tables (data warehouse). Notice the “star”
pattern of the layout

4 Data Dimensions, Fact Table, and the Star Schema

In order to create the OLAP cube, the data must be cut into dimensions and one
or more fact tables must be created. The collection of dimensions, fact tables, and
data tables is collectively called the “data warehouse.” A data dimension is a “data
set composed of individual, non-overlapping data elements,” the primary purpose
of which is to provide “filtering, grouping and labeling” [2]. A fact table is a table
that joins all the relationships between the various dimensions. The exact methods
used to create the dimension and fact tables will vary depending on the a number of
factors, such as the granularity of the fact tables and dimensions and the number and
types of dimensions.

It is important to consider the data type and content, since some may not be very
appropriate as dimensions. In some cases, the data may have to be broken up or
otherwise manipulated in order to enable sufficient levels of granularity for effective
analysis. For example, in Web of Science (WOS) formatted records, author and email
information are each stored as semicolon separated lists (“email1@domain.com;
email2@domain.com”). In order for this field to be used as a data dimension, it is first
necessary to separate out the individual values from their collated representations,
and then individually insert them into the dimensional table. It is also important to
consider how to key the dimensional information, (particularly the primary key, as
this key will define one or more columns of the fact table). The typical technique is
used to define the table’s primary key as an integer “identity” column. This provides
for each row to be unique by definition. Other methods include the use of multipart
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keys or object guides. Recall that the definition of a data dimension specifies that the
data contained therein be nonoverlapping and thus distinct.

Once the data dimensions have been defined and created, the next step is to create
one or more fact tables from this data. The fact table provides one row for each valid
combination of the dimension tables’ values.

The fact table is composed of all the foreign keys from each of the dimensional
tables, along with any nondimensional data from the basis table.

Figure 3 presents the entity relationship diagram created for the example imple-
mentation, notice it’s arrangement in the “star” pattern, where all dimensional tables
are arranged around the central fact table.

4.1 Fact and Dimension Table Choices in the Example
Implementation

For the example implementation, the following WOK record columns were chosen:

AU Authors information
TI Title
SO Full source title
PD Publication date
PY Publication year
AB Abstract
PT Publication type
EM Email addresses

These columns were chosen on the basis of their importance in terms of semantic
content as well as the fact that they tended to be the most populated of all the
WOK/WOS fields. Of special note are the AU, EM, and AB fields.

Authors and Email Addresses Dimensions

Within the WOK/WOS schema (as mentioned previously), AU and EM information
is encoded into a semicolon separated list. Thus given two authors for a paperA1, A2,
theAU field would contain: “A1; A2.” In order to properly analyze this information, it
must be decoded and each separate entity is inserted individually into the dimension
table.

Abstract Dimension

In order to process the occurrence of certain words within the abstract, the entire
abstract of each WOK record is treated as a collection of individual terms, separated
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by blank space, punctuation, and parentheses. Using the same concept as with the
AU and EM dimensions, each word and it’s associated WOK record are stored in the
dimension table.

All together, the data warehouse for the example implementation is depicted in
Fig. 3. The number of rows in the fact table (which depends on the granularity of
the dimensional tables) can grow to be quite large. For instance, a WOS search
that returned 296 rows, which, when properly dimensioned, produced a fact table
consisting of 253,067 rows.

5 Conclusion

BI tools and techniques can greatly simplify the analysis of large amounts of data.
By utilizing a common schema format defined in XML, the “WOSToDB” tool is able
to serialize any conforming data to an SQL database. From this, data is constructed
an online analytical processing cube, which can then be used to quickly and effi-
ciently analyze the data. While the implementation of a BI project requires a certain
amount of knowledge about data management tools and techniques, the end result
is a reusable system able to provide efficient and complex data analysis suitable to
many varied problem domains.
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New Exceptional Orthogonal Polynomials
(EOPs) and Nonlinear Algebras Associated to
the Quantum System

D. Dutta

Abstract Past few years have witnessed a considerable level of research activity in
the field of exceptional orthogonal polynomials (EOPs), which are new complete
orthogonal polynomial systems, and these are first observed as a result of the devel-
opment of a direct approach to exact or quasi-exact solvability for spectral problems
in quantum mechanics that would go beyond the classical Lie algebraic formulations.
We have discovered new EOP families associated to such kind of above systems in
the framework of supersymmetric quantum mechanics. We have studied thoroughly
some fundamental properties of those EOP families. We also have been able to prove
completeness of few such EOP categories in weighted Hilbert space, associated with
solutions of certain conditionally exactly solvable potentials obtained via unbroken as
well as broken supersymmetry. Some important key properties of such polynomials,
e.g, recurrence relation, Rodrigues formula, ladder operators, differential equations,
etc., have been obtained.

1 Introduction

It is known to us that the classical orthogonal polynomials (COP), i.e., Hermite,
Jacobi, Laguerre, etc., have wide application in applied mathematics and physics.
Especially bound state solutions of some standard quantum mechanical problems
admit COPs. On the other hand, one of the most interesting development in recent
years is to construct new exactly solvable potentials in connection with the appearance
of families of exceptional orthogonal polynomials (EOP). We aimed at re-examining
some earlier results [1, 2] related to conditionally exactly solvable potentials [3, 4]
in the regime of EOPs, supersymmetry and polynomial algebras. In our study, we
have considered solutions of conditionally exactly solvable partners of the radial
and the linear oscillator potential with broken as well as unbroken supersymmetry.
More interestingly, the polynomial algebras have been treated over the whole/part
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of the space of such EOPs. Some important key properties of these polynomials,
e.g, generating function, Rodrigues type formula, etc., could have found. Moreover,
we applied new approach to demonstrate completeness of few EOP families in the
associated Hilbert space.

2 EOPs Associated to Broken Supersymmetry

We recall that a pair of Hamiltonians for spherical oscillator of the form [5, 6]

H± = A±A∓ = 1

2

[
− d2

dr2
+ V±(r)

]
(1)

V±(r) = W 2(r) ±W ′(r)

where A± are described by

A+ = 1√
2

(
d

dr
+W (r)

)
, A− = 1√

2

(
− d

dr
+W (r)

)
(2)

form a supersymmetric system and by construction the above Hamiltonians are
isospectral except perhaps the zero energy state (which if it exists is assumed to
belong to H−). In this case, supersymmetry is referred to be unbroken and the re-
lationship between the energies and the eigenfunctions of these Hamiltonians are
given by

E−
0 = 0, E−

n+1 = E+
n > 0 (3)

ψ−
0 = N e−

∫
W (r)dr , ψ+

n = 1
√
E−
n+1

A+ψ−
n+1, ψ−

n+1 = 1
√
E+
n

A−ψ+
n . (4)

In other words the zero energy ground state is a singlet while the excited states are
doubly degenerate. On the other hand, if neither ofψ±

0 = e± ∫ W (r)dr is normalizable,
then supersymmetry is broken and we have

E+
n = E−

n > 0, ψ+
n = 1

√
E−
n

A+ψ−
n , ψ−

n = 1
√
E+
n

A−ψ+
n . (5)

Thus, in this case the ground as well as the excited states are doubly degenerate.
Here, we shall consider isospectral partner of the radial oscillator system. Let us

first consider the case of broken supersymmetry. In this case, the superpotential is
given by [2]

W (r) = r + γ + 1

r
+ u′

u
, 0 < r <∞ (6)
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where u(r2) is suggested as

u(r2) = 1F1

(
1 − ε

2
, γ + 3

2
,−r2

)
. (7)

It can be easily verified that neither ofψ±
0 = (u)±1r±(γ+1)e± r2

2 is normalizable which
lead to the fact that supersymmetry is spontaneously broken. In this case the partner
potentials are given by

V+(r) = r2

2
+ γ (γ + 1)

2r2
+ ε + γ + 1

2
(8)

V−(r) = r2

2
+ (γ + 1)(γ + 2)

2r2
+ u′(r2)

u(r2)

(
2r + 2

γ + 1

r
+ u′(r2)

u(r2)

)
− ε + γ + 3

2
.

(9)

The potential in (8) represents the standard radial oscillator potential whose energy
and eigenfunctions are given by

E+
n = 2n+ 2γ + 2 + ε, ψ+

n =
√

2(n)

Γ (n+ γ + 3
2 )
rγ+1L

γ+ 1
2

n (r2) e−
r2
2 , (10)

n = 0, 1, 2, . . . .

Note that in this case V− is a nonshape-invariant potential (or more precisely a
conditionally exactly solvable one [3, 4]) and has the same spectrum as V+. It’s
eigenfunctions may be obtained using (5) and are given by

ψ−
n (r) =

√
2(n)

(4n+4γ+4+2ε)Γ (n+γ+ 3
2 )

e
− r22 rγ+2

u(r2)

[
u′(r2)
r
L
γ+ 1

2
n (r2)

+2u(r2)L
γ+ 3

2
n (r2)

]
.

(11)

Now we intend to identify the expression inside the square bracket as the EOP pn(r2)
and the prefactor as the square root of the weight function w(r2), i.e,

pn(r
2) =

[
u′(r2)

r
L
γ+ 1

2
n (r2) + 2u(r2)L

γ+ 3
2

n (r2)

]
(12)

w(r2) = e−r2
r2γ+4

u2(r2)
. (13)

It is clear that for pn(r2) to be a polynomial, one has to choose the parameter ε such
that u(r2) is a polynomial. First few members of this family are given by
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p0(r2) = u′(r2)

r
+ 2u(r2),

p1(r2) = 1

2
[(2γ + 3 − 2r2)

u′(r2)

r
+ 2(2γ + 5 − 2r2)u(r2)] (14)

We shall now explore some properties of these polynomials which can be studied
without having to specify γ and ε. First we note that

〈
ψ+
m |ψ+

n

〉 = δmn (15)

and consequently using (5) we find that

∫ ∞

0
w(r2)pm(r2)pn(r

2)dr = (2n+ 2γ + 2 + ε)Γ (n+ γ + 3
2 )

n
δmn, (16)

i.e, the polynomials pn(r2) are orthogonal with respect to weight function w(r2) on
the positive half line. We obtain a closed form of the generating function for the
EOPs (12)

F (r , z) = e
r2z
z−1

(1 − z)γ+5/2

[
(1 − z)

u′(r2)

r
+ 2u(r2)

]
(17)

Now we shall obtain another result, namely, a Rodrigues type formula for these
polynomials. Before obtaining this it may be noted that there exists quantum number
independent raising (L†) and lowering operators (L) for the wave functions ψ−

n (r)
given by [2, 7]

L = A†cA, L† = A†c†A, (18)

where c = a2 − γ (γ+1)
2r2 , c† = (a+)2 − γ (γ+1)

2r2 , and a†, a being the standard harmonic
oscillator raising and lowering operators while A,A† are defined by (2).

Now denoting the raising and lowering operators for pn(r) by L† and L it can be
shown using (5) that

Lpn(r2) = −2(2n+ 2γ + 2 + ε)√(2n+ 2γ + 1)(2n+ 2γ + 3) pn−1(r2)

L†pn(r2) = −2(n+ 1)(2n+ 2γ + 2 + ε)
√

2n+2γ+5
2n+2γ+3 pn+1(r2) (19)

It can be seen that the ladder operators do not depend on the order of the polynomials.
From (19) it follows that

pn(r
2) =

(
−1

4

)n Γ (γ + 1 + ε
2 )

nΓ (n+ γ + 1 + ε
2 )

√
(γ + 3

2 )

(n+ γ + 3
2 )

(L†)np0(r2). (20)

The relation (20) is a Rodrigues type formula for the EOPs pn(r2).
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It is well known that different Lie algebras can be realized in the space of or-
thogonal polynomials. Here, it will be shown that a type of cubic algebra can be
realized over space of EOPs. It can be shown that the operators L†, L, and h satisfy
the following commutation relations:

[L†,h] = 4L†

[L,h] = −4L
[L, L†] = −h[2(h+ 4γ + 2ε + 4)2 − (h+ 4γ + 2ε + 4)(2ε + 10γ + 9)

+4γ ε + 10ε + 8γ 2 + 36γ + 40]. (21)

2.1 ε = 3

Consider simplest possible ε = 3, the lowest value of ε for which u given by (7) is
a polynomial. In this case using (8) we find that

V+(r) = r2

2
+ γ (γ + 1)

r2
+ γ + 7

2
(22)

V−(r) = r2

2
+ (γ + 1)(γ + 2)

2r2
− 4

2r2 + 2γ + 3
+ 16r2

(2r2 + 2γ + 3)2
+ (2γ + 5).

(23)

Also from (7) we get1

u(x) = 1

(γ + 3
2 )

(
x + γ + 3

2

)
. (24)

From (12) some members of the polynomial family can be found to be

p0(x) = 1

(γ + 3
2 )
(2x + 2γ + 5),

p1(x) = 1

(γ + 3
2 )

(
2γ 2 + 10γ + 21

2
− 2x2

)
. (25)

Also the weight function in this case becomes

w(x) = 1

2

e−xxγ+ 3
2

u2(x)
(26)

1 We now consider EOPs in terms of the variable x = r2 ∈ [0,∞).
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3 Conclusion

We have been able to invent new EOPs and study various properties of two such types
of EOP families associated to some conditionally exactly solvable but nonshape-
invariant system, namely supersymmetric partner potentials of the radial and linear
oscillator potentials. For specific choices of ε we would get the EOP. Interestingly,
EOPs may be reproduced with the help of higher-order Darboux transformation
[8, 9, 10]. Point to be noted that, in general, ladder operators for the EOPs may not
be obtained unless the symmetry of the original problem (in the present case it is
the radial oscillator potential) is known. Once if it is known then one can establish
various formulas, e.g, Rodrigues type formula without much formidability. In such
cases the polynomials form the representation space of polynomial algebras. We
would like to point out that in the present case the ladder operators are independent
of the order of polynomial. We have observed that the ladder operators and the
differential operator for the polynomial may still form a cubic algebra, emerging
from a particular physical system, namely the radial oscillator.
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Avoiding the Coordinate Singularity Problem in
the Numerical Solution of the Dirac Equation in
Cylindrical Coordinates

F. Fillion-Gourdeau, E. Lorin and A.D. Bandrauk

Abstract A new numerical method is developed for the solution of the Dirac equation
for 3D axisymmetric geometries using cylindrical coordinates. It is based on a split-
step scheme in coordinate space, which can be parallelized very efficiently. A new
technique to circumvent the coordinate singularity at r = 0 using Poisson’s integral
solution of the wave equation for the radial operator is used. The general strategy is to
interpolate the solution using cubic Hermite polynomials and to integrate exactly the
Poisson solution. The result of this procedure gives a nonstandard finite difference
scheme on a time staggered grid. The numerical method is then utilized to evaluate
the ground state of an electron bound in a Coulomb potential.

1 Introduction

The Dirac equation is one of the pillars of theoretical physics as it describes rela-
tivistic fermions, which are ubiquitous in nature. As a consequence, this equation is
required in the theoretical investigation of many observables in quantum mechanics
and quantum field theory such as electron–positron production, vacuum polarization,
heavy molecules spectra, molecular ionization rates, and many others. Its wide range
of applicability is now well established and it now finds applications in many areas
of physics. However, it is well known that solving this equation is a challenging
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problem, both from the analytical and the numerical sides. Therefore, a lot of efforts
were devoted to the development of new numerical methods to solve this equation.
For instance, existing numerical schemes have been studied in [1–8] and include dif-
ferent approaches such as split-operator, spectral, finite element, and finite difference
methods.

Recently, a new split-step scheme was developed based on the method of char-
acteristics [9, 10]. It was demonstrated that this scheme can be parallelized very
efficiently. The main goal of this chapter is to present an extension of this numerical
scheme to cylindrical coordinates and new applications for physical systems having
an azimuthal symmetry.

2 Numerical Method

The main equation considered in this work is the Dirac equation in cylindrical
coordinates, which is given by

i∂tψ(t , r , z) =
{
αx

[
− ic∂r − ic 1

2r
− eAr (t , r , z)

]
+ αy

[
c
jz

r
− eAθ (t , r , z)

]

+ αz

[
− ic∂z − eAz(t , r , z)

]
+ βmc2 + eV (t , r , z)

}
ψ(t , r , z). (1)

where the radial distance is r = √
x2 + y2 ∈ R

+. Also, we have ψ(t , r , z) ∈
L2(R+, R+, R) ⊗ C

4 is the time and coordinate-dependent four-spinor, A(t , r , z)
represents the three space components of the electromagnetic vector potential,
V (t , r , z) = A0(t , r , z) is the scalar potential, e is the electric charge, In is the n by n
unit matrix and αi ,β are the Dirac matrices. Finally, jz = ...,− 5

2 ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , ...

is the angular momentum, obtained by factorizing the azimuthal part (we are assum-
ing here that the potential does not depend on θ , the polar angle). This equation
describes physically the relativistic dynamics of a single electron subject to an
external electromagnetic field with azimuthal symmetry. The Dirac matrices are

αi :=
⎡

⎣ 0 σi

σi 0

⎤

⎦ , β :=
⎡

⎣ I2 0

0 −I2

⎤

⎦ . (2)

The σi are the usual 2 × 2 Pauli matrices.
We are then interested in the Cauchy problem where Eq. (1) is solved with the

initial condition ψ(tn, r , z) = ψn(r , z). An operator splitting scheme is used to reach
this goal, which is given by

i∂tψ
(1)(t) = Âψ (1)(t), ψ (1)(tn) = ψn, t ∈ [tn, tn+1)

i∂tψ
(2)(t) = B̂ψ (2)(t), ψ (2)(tn) = ψ (1)(tn+1), t ∈ [tn, tn+1)

i∂tψ
(3)(t) = D̂ψ (3)(t), ψ (3)(tn) = ψ (2)(tn+1), t ∈ [tn, tn+1)

and ψn+1 = ψ (3)(tn+1)

(3)
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where the upper subscript in parenthesis on the wave function denotes the splitting
step number. The numerical error scales likeO(δt2) where we denote δt := tn+1 − tn
(higher order can also be obtained [10]). The operators are defined as

Â := −icαx∂r − icαx 1

2r
+ cαy jz

r
, (4)

B̂ := −icαz∂z, (5)

D̂ := βmc2 + eI4V (t , r , z) − eαxAr (t , r , z) − eαyAθ (t , r , z) − eαzAz(t , r , z). (6)

The second step of the splitting can be solved exactly using the method of character-
istics [9, 10]. Then, by choosing a space discretization such that cδt = δz, the time
evolution for this step is exact and given by

ψ (2)(tn+1, j , k) = 1

2

{
[I4 + αz]ψ

(2)(tn, j , k − 1) + [I4 − αz]ψ
(2)(tn, j , k + 1)

}
.

(7)

Here, j , k label the points on the grid for r and z coordinates, respectively.
In the last step of the splitting, there also exists a formal solution given in terms of

a time-ordered exponential. The latter can be approximated to an order of accuracy
O(δt3) by

ψ (3)(tn+1, j , k) = U (j , k) exp
[
−ieV n+ 1

2 (j , k)
]
ψ (3)(tn, j , k), (8)

where

U (j , k) = e
−ieδt

[

β mc
2
e

− αxAn+
1
2

r (j ,k) − αyAn+
1
2

θ (j ,k) − αzA
n+ 1

2
z (j ,k)

]

(9)

is a 4 × 4 matrix that can be evaluated explicitly.
There also exists an analytical solution for the first step of the splitting. First, the

spinor components (a = 1, · · · , 4, b = 4, · · · , 1) have to be decoupled, which yields
the following Cauchy problem
⎧
⎨

⎩
∂2
t ψ

(1)
a (t , r , z) = c2

[
∂2
r + 1

r
∂r − μ2

a

r2

]
ψ (1)
a (t , r , z),

ψ (1)
a (tn, r , z) = ga(r , z), ∂tψ (1)

a (tn, r , z) = ha(r , z) = c [−∂r − μb
r

]
gb(r , z)

(10)

where μa = μ1,2 for a = 1, 3 and a = 2, 4, respectively, and μb = −μ1 for b = 1, 3
and μb = μ2 for b = 2, 4. One immediately recognizes the wave equation in polar
coordinates which has an integral solution given by Poisson’s formula [11]
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Fig. 1 Description of the staggered mesh in radial coordinates. The red circle is the integration
region B. The lines represent the stencil of the scheme

ψ (1)
a (tn+1, r , z) = 1

2πcδt

∫

B(r ,cδt)
RdRdθ

1
√
c2δt2 − [R2 + r2 − 2Rr cos (θ )]

×
{

cos (μaθ ) [ga(R, z) + δtha(R, z) + [R − r cos (θ )]∂Rga(R, z)]

− sin (μaθ )
r

R
μa sin (θ )ga(R, z)

}
. (11)

Here, the integration region B(r , cδt) is a disk of radius cδt centered at r in the
r − θ -plane (it is depicted in Fig. 1). The last part of this section is devoted to the
approximation of this integral. The strategy to perform this task is now summarized:

• At t = tn, the grid points are chosen on the boundaries of the integration regionB,
in the radial direction, with δr = 2cδt . Automatically, the grid points at t = tn+1

will be staggered (see Fig. 1) to be consistent with Poisson’s formula, which yields
the value of the wave function at the center of the integration region.

• An approximation of the wave function at t = tn between grid points is obtained by
cubic Hermite polynomial interpolation. This is required to perform the integral
on the integration region.

• Substituting the polynomial approximation in Poisson’s formula, we obtain
integrals of this form:

Il(r) =
∫ θmax

−θmax

dθ

∫ R+

R−
dR

f (θ )Rl
√
a2 − [R2 + r2 − 2Rr cos (θ )]

, (12)

where l is an integer while θmax and R± characterize the integration region B.
These integrals can be computed analytically and were implemented on a symbolic
algebra language software.
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The resulting numerical scheme can then be written in a form reminiscent of a
nonstandard finite difference scheme (this is depicted in Fig. 1):

ψ (1)
a (tn+1, j , k) =A1(j )ψ (1)

a (tn, j − 3/2, k) + A2(j )ψ (1)
a (tn, j − 1/2, k)

+ A3(j )ψ (1)
a (tn, j + 1/2, k) + A4(j )ψ (1)

a (tn, j + 3/2, k)

+ B1(j )ψ (1)
b (tn, j − 3/2, k) + B2(j )ψ (1)

b (tn, j − 1/2, k)

+ B3(j )ψ (1)
b (tn, j + 1/2, k) + B4(j )ψ (1)

b (tn, j + 3/2, k) (13)

where the finite difference coefficients A,B can be evaluated explicitly and depend
on the radial position. Also, this scheme is well defined at r = 0, even if the Dirac
operator had singular terms (like 1/r).

3 Numerical Results

The first test being considered in this study concern Gaussian wave packets, where the

initial wave function is given byψ1(t = 0, r) = r |μ1|e−
r2

4Δ2 , whereΔ characterizes the
Gaussian width. Physically, this corresponds to a free electron. The results are shown
in Fig. 2 for the time evolution of the wave packet (with a comparison to an analytical
solution) and the order of convergence. The next benchmark tests concern the time
evolution of bound states of the regularized Coulomb potential1. It is possible to
compute time-independent wave functions from a time-dependent numerical scheme
by using the well-known Feit–Fleck method [12]. The bound state of a hydrogen-like
atom is given in Fig. 2 along with its power spectrum obtained from the Feit–Fleck
method. The ground state energy isEground ≈ 18710.3 a.u.. This value is close to the
analytical Coulomb ground state energy given by Eground ≈ 18729.9, with a relative
difference of δrel ≈ 0.1 %. This numerical ground state can now serve as an initial
state for the study of relativistic ionization by adding an external laser field. This will
be the topic of future investigations.

1 The Coulomb singularity is regularized by using a constant distribution of charge inside the
nucleus
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Fig. 2 a Results for the nonzero components of the Gaussian wave packet with an initial width
of Δ = 0.1, evaluated at time t = 0.143 a.u. The theoretical and calculated curves overlap. b
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Symmetry Reductions and Exact Solutions
of a Generalized Fisher Equation

M. L. Gandarias, M. Rosa and M. S. Bruzon

Abstract In this chapter, we study a generalized Fisher equation based on the theory
of symmetry reductions in partial differential equations. Optimal systems and re-
duced equations are obtained. We derive some travelling wave solutions by applying
the (G′/G)-expansion method to one of these reduced equation.

1 Introduction

The Fisher–Kolmogorov equation, proposed for population dynamics in 1930, shows
the spread of an advantageous gene into a population. As described by Britton [2],
generalizations of this equation are needed to more accurately model complex diffu-
sion and reaction effects found in many biological systems. The equation analyzed in
this chapter is a generalized Fisher equation in which g(u) is the diffusion coefficient
depending on the variable u, x and t being the independent variables, and f (u) an
arbitrary function

ut = f (u) + (g(u)ux)x (1)

Equation (1) is also known as the density-dependent diffusion-reaction equation
which is mentioned by J. D. Murray in [7]. Reaction-diffusion equations arise from
modeling densities of particles such as substances and organisms which disperse
through space as a result of the irregular movement of every particle.

Due to the interest of these equations, a lot of attention has been paid to the use of
Lie point symmetry methods to exploit the invariance of the generalized equation [4]
and references therein. In [5], we determined the subclasses of these equations which
are nonlinear self-adjoint. By using a general theorem on conservation laws proved
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by Nail Ibragimov and the symmetry generators we found conservation laws for these
partial differential equations. There is no existing general theory for solving nonlinear
partial differential equations (PDEs) and the machinery of the Lie group theory
provides the systematic method to search for the special group-invariant solutions.
The knowledge of the optimal system of subalgebras gives the possibility to construct
the optimal system of solutions and permits the generation of new solutions starting
from invariant or noninvariant solutions.

Due to the great advance in computation in the last few years, a great progress has
been made in the development of methods and their applications for finding solitary
travelling-wave solutions of nonlinear evolution equations [3, 9, 6]. For (1) the list
of nontrivial Lie generators were derived in [4] by combining the standard method
of group classification and the form-preserving transformation.

The aim of this chapter is to study the density-dependent diffusion-reaction Eq. (1)
from the point of view of the theory of symmetry reductions in partial differential
equations. We construct the reductions from the optimal system of subalgebras.

Then, due to the fact that Eq. (1) admits groups of space and time translations,
we search for travelling wave solutions of the density-dependent diffusion-reaction
Eq. (1), with physical interest, when the diffusion coefficient g(u) follows a power
law. In order to do that we apply the well known G′

G
-expansion method [3, 9], to the

reduced equation.

2 Symmetry Reductions

The Lie classical method applied to (1) yields (see [4]):
For f (u) and g(u) arbitrary, the only symmetry that is admitted by (1) is

v2 = ∂

∂t
.

For some special choices of the functions f (u) and g(u) it can also be extended to
the cases listed below:

1. For f (u) = um and g(u) = un(m �= n+ 1) we obtain the following generators:

v2, v1 = x ∂
∂x

+ 2(m− 1)

n−m+ 1

∂

∂t
+ 2u

n−m+ 1

∂

∂u

2. For f (u) = un+1

n+1 and g(u) = un (n �= 0 and n �= −1) we obtain the following
generators:

v2, v3 = nt ∂
∂t

− u
∂

∂u

3. For f (u) = 3 c1u
4 + c2

u
1
3

and g(u) = u− 4
3 we obtain the following generators:

v2, v4 = 4 ec1t
∂

∂t
+ 3 c1e

c1tu
∂

∂u
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4. For f (u) = − c1 u
n

and g(u) = un (n �= 0) we obtain the following generators:

v2, v5 = nx ∂
∂x

+ 2u
∂

∂u
, v6 = n ec1t

∂

∂t
− c1e

c1tu
∂

∂u

5. For f (u) = c1u and g(u) = u−1 we obtain the following generators:

v2, v5, v6, v7 = (x log (x)− x) ∂
∂x

− 2u log (x) ∂
∂u

6. For f (u) = c2e
nu − c1

n
and g(u) = denu (n �= 0 ) we obtain the following

generators:

v2, v8 = nec1t
∂

∂t
− c1e

c1t
∂

∂u

7. For f (u) = − c1
n

and g(u) = denu (n �= 0) we obtain the following generators:

v2, v8, v9 = nx ∂
∂x

+ 2
∂

∂u

8. For f (u) = c2e
nu and g(u) = denu(n �= 0) we obtain the following generators:

v2, v10 = nt ∂
∂t

− ∂

∂u

2.1 Optimal Systems and Reductions

The corresponding generators of the optimal system of subalgebras, [8] are:

1. For f (u) = un and g(u) = um

av1 + v2, v3.

2. For f (u) = enu and g(u) = emu

av1 + v2, v4.

3. For f (u) = c2un+1 − c1u
n

and g(u) = un

av1 + v2, v5.

4. For f (u) = u− 1
3 and g(u) = u− 4

3

av1 + v2, bv1 + v3, cv3 + v6, dv3 + v7,

where a, b, c, d ∈ R are arbitrary.
In the following, reductions of Eq. (1) to ordinary differential equations (ODEs)

are obtained by using the generators of the optimal system.



222 M. L. Gandarias et al.

Reduction 1 Generator v1 + v2. Substituting the similarity variable and similarity
solution:

z = x − c t , u = h (z)
into (1) we obtain:

g hzz + gh (hz)
2 + c hz + f = 0 (2)

Reduction 2 Generator v3. Substituting the similarity variable and similarity
solution:

z = t
n−m+1
2m−2 x, u = h x

2
n−m+1

into (1) we obtain:

hn (n−m+ 1)2
(
hz

2 n+ hhzz
)

z2 + 4 hn+1 hz (n+ 1) (n−m+ 1) z

+2 hn+2 (n+m+ 1)+ hm+1 (n−m+ 1)2 = 0

Reduction 3 Generator v4. Substituting the similarity variable and similarity
solution with n �= m:

z = t n−m2m x, u = 2 log(x)
n−m + h

into (1) we obtain:

hzz (n−m)2 e
hn2+hm2

n−m z
2 n+m
n−m +2 + hz

2 n (n−m)2 e
hn2+hm2

n−m z
4 n−m
n−m

+
(
(2 n+ 2m) e

hn2+hm2

n−m + (n2 − 2mn+m2
)
e

2 hmn
n−m

)
z

2 n+m
n−m

+ 4 hz n (n−m) e
hn2+hm2

n−m z
3 n
n−m = 0

Reduction 4 Generator v5. Substituting the similarity variable and similarity
solution with n �= 0:

z = x, u = h e− c1 t
n

into (1) we obtain:

hn (hz)
2 n+ c2 h

n+2 + hn+1 hzz = 0

Reduction 5 Generator bv1 + v5. Substituting the similarity variable and similarity
solution:

z = 8 x−3 b log t
8 , u = h t 3

4

into (1) we obtain:

−12 hhzz + 16 (hz)
2 − 9 b h

7
3 hz

2 + 9h
10
3 − 12 h2 = 0

Reduction 6 Generator cv3 + v6. Substituting the similarity variable and similarity
solution:

z = − 4 c e
− 2 x√

3√
3

− log t , u = h e−
√

3 c e
− 2 x√

3 −√
3 x

into (1) we obtain:

27h
7
3 hz e

z + 192 c2 hhzz − 256 c2 (hz)
2 − 96 c2 hhz − 36 c2 h2 = 0
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3 Travelling Wave Solutions

We are interested in finding exact travelling wave solutions for Eq. (1) when the
diffusion coefficient follows a power law g(u) = um. From generators v1 and v2 we
can obtain travelling wave solutions for Eq (1).

To apply the G′
G

-expansion method to Eq. (2) we suppose that the solutions can

be expressed by a polynomial in G′
G

in the form

h =
n∑

i=0

ai

(
G′

G

)i
, (3)

where G = G(z) satisfies the linear second order ODE

G′′(z) + ωG′(z) + ζG(z) = 0, (4)

with ai , i = 0, . . . , n, ω and ζ constants to be determined later and an �= 0. The
general solutions are well known.

The homogeneous balance between the leading terms provides us with the value
of n [6]. Considering the homogeneous balance between h′′ and h2 in (2), we require
that nm+ n+ 2 = n(m− 1) + (n+ 1)2 ⇒ n = 1, we can write (3) as

h = a0 + a1

(
G′

G

)
, a1 �= 0. (5)

From the general solutions of (4), setting without loss of generality a0 = a1 = 1, we
obtain for

g(h) = hm,

f (h) = (h2 − 2 h+ 2
) (
λ− 2 hm+1 + 2 hm

)− 2 hm−1
(
h2 − 2 h+ 2

)2
m

the solution

h1(z) = c1 cos z − c2 sin z

c1 sin z + c2 cos z
+ 1.

The corresponding solution for the generalized Fisher equation is

u1 = c2 sin (t λ− x)+ c1 cos (t λ− x)
c2 cos (t λ− x)− c1 sin (t λ− x) + 1.

For
g(u) = um

f (u) = (u − 2) u
(
λ− um+1m+ 2 um m− 2 um+1 + 2 um

)
,

the corresponding solution for the generalized Fisher equation is

u2 = c2 sinh (x − λt) + c1 cosh (x − λt)
c1 sinh (x − λt) + c2 cosh (x − λt) + 1. (6)
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Fig. 1 Kink solution (7), c1 = c2 = ω = 1, λ = −1

Considering the case ζ = 0, ω �= 0, for

g(u) = um

f (u) = −um+1mω2 − um+1 ω2 − 2 um+2mω − 3 um+2 ω

+ c hω − um+3m− 2 um+3 + c u2

u(x − λt) = − c2 ω e
−ω (x−λt)

c2 e−ω (x−λt) + c1
, (7)

which is a kink solution (Fig. 1).

Acknowledgments The authors acknowledge the financial support from Junta deAndalucía group
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Numerical Simulation of Potential Maxwell’s
Equations in the Harmonic Regime

María Teresa González Montesinos and Francisco Ortegón Gallego

Abstract The aim of this work is to perform some numerical experiments for the
resolution of a strongly coupled parabolic–elliptic system that describes the heating
induction–conduction industrial process of a steel workpiece, whose unknowns are
the electric potential, the magnetic vector potential, and the temperature. In order to
make the numerical simulations lighter, and taking into account the different time
scales between the potentials and the temperature, a new system of nonlinear partial
differential equations (PDEs) has been constructed that describes the heating process
in the harmonic regime.

1 Introduction

In this work we are concerned with the following nonlinear partial differential
equations (PDEs) system

−∇ · (σ (θ )∇ϕ) = iλω∇ · (σ (θ ) A)+ f in ΩT = Ω × (0, T ), (1)

ϕ = 0 on Γ0 × (0, T ),
∂ϕ

∂n
= −iλωA · n on Γ1 × (0, T ), (2)

iωσ (θ )A + L(A) = −σ (θ )∇ϕ in DT = D × (0, T ), (3)

A = 0 on ∂D × (0, T ), (4)

ρcεθ,t − ∇ · (κ(θ )∇θ) = σ (θ )

2
|iωA + ∇ϕ|2 +G in ΩT , (5)

∂θ

∂n
= 0 on ∂Ω × (0, T ), θ (·, 0) = θ0 in Ω. (6)
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This system describes the heating stage of the induction–conduction industrial proce-
dure applied to a steel workpiece [3–9]. In this framework,Ω , D ⊂ R

3 are bounded
open sets such that Ω̄ ⊂ D, Γ1 is a relative open set in ∂Ω , Γ0 = ∂Ω \Γ1; also these
sets and boundaries are supposed to be smooth enough. Also, T > 0 is the final time
of the heating process, and the unknowns are the electric potential, ϕ, the magnetic
vector potential, A, and the temperature, θ ; σ and κ are the electric and thermal
conductivities, respectively, ω is the angular frequency, θ0 the initial temperature, i
stands for the imaginary unit, λ ∈ [0, 1] is a parameter, G is a source term coming
from phase transitions of steel and mechanical deformations, ρ is the density, and cε
is the specific heat at constant pressure.

Problems (1)–(6) are referred to as the harmonic regime [1, 2, 5, 6]. In this
way, if φ : Ω × [0, T ] %→ R and A : Ω × [0, T ] %→ R are the electric and the
magnetic vector potentials in the original problem, respectively, we may write φ =
Re[exp (iωt)ϕ(x, t)] and A = Re[exp (iωt)A(x, t)], where ϕ and A are complex–
valued fields, and they are called in the same way by abuse of language. Finally,
L ∈ L(W,W′) is some elliptic operator, being W a suitable Hilbert space.

In the original model is λ = 1, but in most numerical simulations the value
λ = 0 is taken which yields to an enormous reduction of computational cost. In
[7], the authors have shown the existence of a weak solution to (1)–(6) in the range
0 ≤ λ < 1 − 1

ω
, so that λ = 1 is not attainable!

We have carried out some numerical experiments for the resolution of the linear
system ϕ–A for a given temperature for different values of the parameter λ. We have
used a Crank–Nicolson like iterative scheme. The numerical results show a strong
relation between λ and the rate of convergence of this scheme: the closer the value
of λ to the critical value 1 − 1/ω, the more number of iterations are needed. These
results have been obtained using the FreeFem++ software (see [8]).

2 Notation and Assumptions on Data

Let V and W be Hilbert spaces such that H 1
0 (Ω) ⊂ V ⊂ H 1(Ω), where Poincaré’s

inequality is fulfilled, and H 1
0 (D)3 ⊂ W ⊂ H 1(D)3.

The following hypotheses are assumed on data:

(H.1) σ , κ : Ω×R %→ R are Carathéodory functions and there exist some constant
values σ1, σ2 κ1, κ2 such that

0 < σ1 ≤ σ (x, s) ≤ σ2, 0 < κ1 ≤ κ(x, s) ≤ κ2,

almost everywhere x ∈ Ω and for all s ∈ R.
(H.2) L ∈ L(W,W′) is such that, for some constant value α > 0,

〈L(w̄), w̄〉W′,W ≥ α‖w‖2
H 1(D)3 , for all w̄ ∈ W. (7)

(H.3) λ ∈ [0, 1 − 1
ω

)
.
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(H.4) f ∈ L2(V ′).
(H.5) G ∈ L1(ΩT ) and θ0 ∈ L1(Ω).

Also, the space W will be defined depending on the linear operator L described in
(H.2). For instance, we may consider

1. W = H 1
0 (D)3 and L is given by

L(w) = ∇×
(

1

μ
∇×w

)
− δ∇ (∇·w), (8)

where μ is the magnetic permeability and δ > 0 is a small parameter, or

L(w) = −Δw. (9)

2. W = {w ∈ H 1(D)3 /∇·w = 0 in D, w × n = 0 on ∂D} with ∂D ∈ C1,1 and

L(w) = ∇×
(

1

μ
∇×w

)
. (10)

3 An Existence Result

Now we state an existence result related to system (1)–(6) (see [7]).

Theorem 1 Under hypotheses (H.1)–(H.5) problem (1)–(6) has a weak solution
(ϕ, A, θ ). Moreover, for any λ ∈ [0, 1 − 1

ω
), there exists a constant Cλ such that

∫

Ω

σ (θ )|∇ϕ|2 +
∫

D

σ (θ )|ωA|2 ≤ Cλ,

where
lim

λ→(1−1/ω)−
Cλ = +∞.

4 Numerical Scheme and Some Results

In what follows, the elliptic operator L is given by (8), and θ is a fixed temperature.
In order to analyze the sensitivity of (ϕ, A) with respect to λ as λ→ 1−1/ω, we have
performed some numerical simulations for the resolution of the linear system (1)–(4)
for some values of λ. We consider a Crank–Nicolson like scheme to approximate the
solution (ϕ, A) as follows.

Initialization. The functions ϕ0 and A0 are given by the solution of the
respective variational equations

∫

Ω

σ∇ϕ0∇ v̄ = 〈f , v̄〉V ′,V , for all v ∈ V , (11)
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Fig. 1 Description of the domains considered in the numerical resolution. In this setting, Ω is the
set of conductors, that is, the gear (steel) and the coil (copper). Here, the boundary Γ0 is the two
opposite square faces in the coil. On the other hand, the domain D, where is defined the magnetic
vector potential A is the big box containing the workpiece together with the coil

iω

∫

Ω

σA0w̄ + 〈L (A0
)
, w̄
〉
W′,W = −

∫

Ω

σ∇ϕ0w̄, for all w ∈ W. (12)

For n ≥ 0: Assume (ϕn, An) is known and compute ϕ̃n+1 then Ã
n+1

according to

∫

Ω

ϕ̃n+1 − ϕn
k/2

v̄ +
∫

Ω

σ∇ϕ̃n+1∇ v̄ = −iωλ
∫

Ω

σAn∇ v̄ + 〈f , v̄〉V ′,V , v ∈ V ,

(13)

∫

D

Ã
n+1 − An

k/2
w̄ + iω

∫

D

σÃ
n+1

w̄ +
〈
L
(

Ã
n+1
)

, w̄
〉

W′,W

= −
∫

Ω

σ∇ϕ̃n+1w̄, for all w ∈ W. (14)

and the new iteration is given by ϕn+1 = 2ϕ̃n+1 − ϕn, An+1 = 2Ã
n+1 − An. If

‖ϕn+1 − ϕn‖ < ε, STOP: We keep (ϕn+1, An+1) as an approximation to (ϕ, A).
On the other hand, we focus our attention in a specific domain, namely, a helical

gear, as it is shown in Fig. 1. This particular setting is usually found in the industrial
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Table 1 Tetrahedralization
data of the domains
considered in the numerical
simulations

Gear Coil Box

No. vertices 5317 6924 26,468

No. edges 8560 6528 27,432

No. tetrahedra 18,881 30,937 159,809

heating process by induction [10]. Here, the frequency is 900 Hz, ω = 2π × 900 =
5, 654.88 . . . and thus, 1 − 1/ω = 0.999823 . . . . The numerical resolution of the
variational formulations (11)–(14) has been obtained by means of the finite element
method using a P1-Lagrange approximation for both ϕ and the three components
of A. Table 1 gives some data of the tetrahedralization of the domains considered
in this numerical simulation. Figure 2a shows the strong sensitivity of the rate of
convergence of the approximate solutions with respect to the parameter λ: The closer
the value of λ to 1 − 1/ω the more iterations are needed to achieve convergence.
In Fig. 2b, we consider the values λ = 0.999 and λ = 0.9999. Here we show the
normalized error for 400 iterations of the algorithm (13)–(14); notice that at about
200 iterations, this algorithm becomes numerically unstable so that convergence is
not guaranteed.

5 Conclusions

We have carried out some numerical experiments in order to approximate the solution
to a nonlinear coupled system of PDEs describing the heating industrial process of
a steel workpiece by induction. This system depends on a parameter λ for which
the mathematical analysis assures the existence of a weak solution for λ ∈ [0, 1
−1/ω) such that the associated energy blows up as λ→ (1 − 1/ω)−. In accordance
with these theoretical results, the numerical experiments show a strong sensitivity
with respect to λ. Indeed, for values of λ close to the upper bound 1 − 1/ω the
numerical algorithm becomes unstable since the computed normalized difference of
two consecutive iterations develops fluctuations.
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Fig. 2 a Normalized difference of two consecutive iterations of the sequence (ϕn) according to
the numerical scheme (11)–(14) for some values of the parameter λ, namely λ = 0.2, 0.4, 0.5,
0.6, 0.8, 0.9, 0.99, and 0.999. We carried out 50 iterations in every case. The closer the value of
λ to 1 − 1/ω the worse the rate of convergence. b The same normalized difference for λ = 0.999
and λ = 0.9999. Here we have carried out 400 iterations without attaining convergence. At about
n = 200 fluctuations seem to develop. Notice that the value λ = 0.9999 is outside the interval
[0, 1 − 1/ω) so that neither the existence of a solution from Theorem 1 nor the convergence of the
scheme (11)–(14) are assured
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Supply Chain Flexibility Metrics Evaluation

Mujde Erol Genevois, Ugur Gure and Kaya Ocakoglu

Abstract The markets in which manufacturers and service firms compete are in-
creasingly influenced by intense foreign competition, rapid technological change,
and shorter product life cycles. In this new scenario, flexibility may be one of the
most important capabilities needed for firms to achieve competitive advantage. The
possible behaviors of the company to the problems it faces are called levers of flex-
ibilities. In a supply chain, the flexibility of one entity is highly dependent on the
flexibility of upstream entities. It is a natural area for metrics. A metric is a stan-
dard of measurement of performance and gives the basis on which to evaluate the
performance of processes in the supply chain. Thus, the purpose of the study is to
determine and evaluate the supply chain flexibility levers in order to calculate the
benefit of preferring a flexibility lever to another one. The analytic network process
(ANP) technique is used for prioritizing evaluated flexibility levers. We are handling
the automotive sector for the study.

1 Introduction

Automobile manufacturers today compete in an increasingly global environment.
An important part of the equation for competing in today’s automotive industry is
flexibility. Cadences are tightening to respond to market demands, but manufactur-
ers need to be even more flexible than that. Inflexibility equals lost opportunities.
Today’s manufacturing line needs to be flexible and agile, which has come about
through configurability, distributed control and plug-and-play capabilities. Obvi-
ously, the exibility is deployed more often in segments with higher proportion of
exible competitors.
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This study is focused on passenger cars and on segments which are most preferred
by customers according to sales numbers. Only four segments will be investigated:
A—Basic, B—Small, C—Lower Medium, D—Upper Medium. For a clear under-
standing, Ford Ka is an example to A class, Volkswagen Polo is an example to B
class, Toyota Auris is an example to C class, and BMW 3 series is an example to D
class cars.

In this chapter, customer expectations satisfaction via adapting automotive in-
dustry flexibility will be studied. Flexibility is defined as the capacity of responding
against uncertainties created by various causes in the environment. Possible actions
to ensure flexibility are called as levers of flexibility and their performance evaluation
tools are called metrics of flexibility. First, automotive industry will be briefly pre-
sented via its three actors expectations; supplier, producer, and customer. Second, the
concept of flexibility and its importance will be investigated. Third, the methodology
including the analytic network process (ANP) technique for prioritizing evaluated
flexibility levers by a group of experts will be presented. Finally, the outcome will
be discussed according to the results, the metrics to evaluate the system performance
will be defined, and possible investments will be proposed.

2 Automotive Sector’s Expectations and Related Metrics

Every supply chain has three aspects which are customer, producer, and supplier. In
automotive sector, all these three aspects have distinctive and also some common ex-
pectations such as cost-minimizing, efficiency, technological advance, sustainability,
environmentally friendly production, endurance, reliability, etc.

Customer expectations are considered as customization, high responsiveness, de-
livery reliability, right quality, and after sales services. Manufacturing firms aim
to achieve the highest levels of performance along areas such as quality, flexibil-
ity, delivery, and costs [1]. In this study main producer and supplier expectations
are considered as process optimization, supply reliability, loyal customer, minimum
consumption of resources, and effective risk management.

Metrics are tools for measuring performance. Supply chain operation reference
(SCOR) model provides a measure of supply chain performance by dividing it into
four parts: plan, source, make, and deliver [2]. According to the literature survey and
experts feedback, suitable metrics for ASCI are: forecast accuracy, in-stock avail-
ability, perfect order fulfillment, materials quality, weekly/monthly plan keeping,
production lead time track, days of inventory track, capacity utilization, output/input
ratio, labor performance, and vendor lead time track [3].

3 Flexibility Management in Automotive Sector

Investment channels of the automotive sector are broad and multinational. Also,
automotive sector has a high ratio of supply chain cost to revenue. Various drivers
should cooperate to ensure efficiency in a supply chain. A key dimension of supply
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chain performance is flexibility, i.e., the ability to be adapted to internal and external
capabilities or a reaction to environmental uncertainty [4].

In literature, it is easy to find various previous studies on flexibility in automo-
tive sector. Barad and Sapir in 2003 [5] studied logistics flexibility. They presented
flexibility types and quantitatively investigated one of the dimensions. Sanchez and
Perez in 2005 [6] studied supply chain flexibility and firm performance. They clearly
defined supply chain flexibility and its subdivisions. Erol Genevois and Gurbuz
in 2009 [7] studied flexibility in automotive sector and utilized fuzzy hierarchical
process method to determine flexibility levers which can best meet the customer
satisfaction.

To prevent confrontations between flexibility levers, we grouped levers under five
main parts. These are a supply chain’s vital components: mix, volume, delivery,
quick-design change, and adaptation levers.

We define mix flexibility as actions against uncertainty as to which products
customers will accept leads to the strategic objective of product diversity. Mix flex-
ibility spans modification flexibility (MF) which allows a manufacturing process
to implement minor design changes in a given product, decision-making flexibility
(DMF) which is an intangible lever ensured by intelligent management of the sys-
tem. According to us and experts, DMF is the core of the effective management,
planning/scheduling flexibility (P/SF), and sequencing flexibility (SF).

Volume flexibility permits increases or decreases in the aggregate production
level. It spans labor flexibility (LF), material flexibility which is the ability of the
manufacturing function to handle unexpected variations in inputs, DMF, P/SF, SF,
and routing flexibility (RF) which is the capability of processing a part through
varying routes, or in other words by using alternative machines [8].

Delivery flexibility permits to construct systems that ease to meet true demand in
true place and at true time. Delivery flexibility spans transport/shipping flexibility
(T/SF), access flexibility (AF) which is demanded for responding customer needs
agile as possible, DMF, P/SF, and SF.

Quick design change flexibility is required to ensure company’s continuous com-
petitiveness in the market. Banking flexibility is also possible [9]. Quick design
change flexibility spans launch flexibility (LchF), design development flexibility
(D/DF), changeover flexibility (CF), DMF, and job design flexibility (JDF).

The capability of a manufacturing system that enables it to adapt rapidly and in-
expensively to changes in its internal and external operating environment is called
adaptation flexibility [10]. Adaptation flexibility spans process/technology flexi-
bility (P/TF), machine/equipment flexibility (M/EF), material flexibility (MatF),
employee’s willingness to change flexibility (EWF), managerial perception change
flexibility (MPCF), LF, layout flexibility (LayF), expansion flexibility (EF), financial
resources flexibility (FRF), and organizational structure flexibility (OSF).
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Fig. 1 1 The analytic network process (ANP) network scheme of the decision problem

4 Methodology

ANP is a multi criteria decision making tool considered to be an extension of analytic
hierarchy process (AHP) [11]. Whereas AHP models a decision making framework
using a unidirectional hierarchical relationship among decision levels, ANP allows
for more complex interrelationships among the decision levels and components, like
a network [12].

Step 1: The first step is defining our decision problem and then model to be evalu-
ated is constructed. The main objective of the problem is to evaluate the satisfaction
degree of automotive sector actors’ expectations via attributed flexibility levers. This
model has three clusters and their nodes are: expectations (supplier expectations,
producer expectations, and customer expectations), flexibility types (mix flexibility,
volume flexibility, quick design change flexibility, delivery flexibility, adaptation
flexibility) and flexibility levers (MF, DMF, P/SF, SF, LF, MatF, RF, T/SF, AF, LchF,
D/DF, CF, JDF, P/TF, M/EF, EWF, MPCF, LayF, EF, FRF, OSF).

Step 2: Given this model, the relevant criteria and alternatives are structured in the
form of a simple network by the decision makers. Interdependencies are represented
by the arrows among the clusters (outer dependence) and a looped arc within the
same cluster (inner dependence). The direction of the arc signifies dependence. Arcs
emanate from a controlling attribute to other attributes that may influence it. All the
relations among criteria and sub-criteria, and the network of the model can be seen
in Fig. 1.



Supply Chain Flexibility Metrics Evaluation 239

Table 1 Final results Flexibility levers Normal

Decision making flexibility 0.1604

Planning/scheduling flexibility 0.1526

Material flexibility 0.1084

Financial resources flexibility 0.0983

Design/development flexibility 0.0926

Transport/shipping flexibility 0.0762

Changeover flexibility 0.0723

Process/technology flexibility 0.0647

Sequencing flexibility 0.0405

Expansion flexibility 0,0895

Others 0,0762

Step 3: In this step of the ANP methodology, comparison sets between clus-
ters and elements are set. To build the comparison matrices, clusters and their
elements are compared with respect to a control criterion. To reflect interde-
pendencies in this simple network model, pairwise comparisons among all the
clusters/elements/alternatives are performed and these relationships are evaluated.
As for the evaluation of the alternatives and criteria, the fundamental comparison
scale (1 to 9) is used.

The ANP method is able to handle interdependencies among elements through the
calculation of composite weights as developed in a supermatrix. After completing
all the pairwise comparisons, the derived priorities of the unweighted supermatrix
are obtained for each control criterion. Then, using the cluster weights matrix, the
priorities of all factors in each cluster are weighted. The weighted supermatrix, each
of whose columns sums to one, is known as a column stochastic matrix. The weighted
supermatrix is then raised to limit powers to obtain the final priorities of all elements
in the limit matrix. Then the results are synthesized through addition for the entire
control criterion. These synthesized results of the priorities are normalized to select
the highest priority alternative. The supermatrix and its powers are the fundamental
tools needed to lay out the functions of the ANP [13].

Step 4–5–6: The experts’ opinions are used to fill in the pairwise comparison
matrices for all clusters and then the supermatrix is built according to these pairwise
comparison matrices by using the Super Decisions software. Pairwise comparisons
tables are completed in consensus by five experts who work in automotive industry.

Step 7: Given the comparison matrices, the Super Decisions software computed
the unweighted, weighted, and limit supermatrices. The synthesized results and the
priorities are provided.

Step 8: Finally, the first ranking flexibility levers are synthesized and are shown
in Table 1. DMF, P/SF, and Mat F have the highest rankings in our final result.
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5 Conclusion

In this study, a decision-making model, based on ANP is developed. The needs for
DMF, P/SF, and MatF are highly important in the automotive sector. DMF has 16%
importance in all levers because its the key factor for quick response to uncertainties
and satisfies expectations. It must be ensured with metrics such as forecast accuracy,
inventory turnover, and planning cycle time analysis. P/SF has 15% importance.
This lever is very important for mix and delivery flexibilities which are essential for
satisfying customer and producer expectations. Weekly/daily plan keeping analysis,
production lead time track, capacity on time shipment ratio, and on time delivery
ratio metrics can be utilized for measuring P/SF. An average car has 12,000 different
parts. Thats why MatF has a crucial role in a flexible supply chain. Material quality,
input/output ratio are possible metrics to measure this flexibility. For the future works,
the study will be developed with a metrics quantification dimension.
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Estimation of Abundance from a Correlated
Binary Time Series

Julie Horrocks, Matthew Rueffer, David Hamilton and Sarah Wong

Abstract In the face of increasing extinction rates, it is vital to have estimates of
relative and absolute species abundance and their relationship to important factors.
For species that live in the oceans or large lakes, this can be a difficult task. Here, we
present a method for estimating absolute abundance from a single binary acoustic
time series. The dependence in the series is exploited to allow the estimation of
abundance when some animals remain hidden, and in the face of uncertainty about
the range over which sounds carry. Simulations show that the method works well,
even when some assumptions are violated. The method is illustrated using data on
sperm whales in the Sargasso Sea.

1 Introduction

For the purposes of conservation biology, estimating the abundance of wild ani-
mals is critical to monitor the status of populations. Determining the relationship
between abundance and various external factors is particularly important for the
development of conservation and management strategies, especially in the face of
increasing pressures from habitat fragmentation, environmental degradation, and
global warming.
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2 General Methods for Estimating Abundance

Methods for estimating abundance or relative abundance can be categorized as
follows (see [2]):

• Random sampling of areas: divide a closed area into sectors, take a random
sample of sectors, and count the number of animals in each sector. If all animals
which are present are detected, an accurate estimate of density and hence absolute
abundance of animals in the area can be made.

• Distance sampling: record the number of animals detected along a transect within
a strip of a given width and estimate the distance from the transect for each
individual. This method operates under the assumption that animals close to the
transect are perfectly detected, while detectability decreases as distance from the
transect increases. A detectability function is estimated from the data, and density
and absolute abundance can be estimated.

• Effort methods: these methods operate under the assumption that the more effort
one puts into looking for animals, the more animals will be detected. They are
generally used to estimate relative abundance.

• Capture recapture: in a closed population, a random sample of animals is selected,
marked, and released back into the population and allowed to mix. A second
sample is taken, which will presumably include some of the previously marked
individuals. Assuming that the proportion of marked animals in the second sample
equals the proportion of marked animals in the whole population, the size of the
population can be estimated. Various modifications of this method exist, allowing
for open populations, more than two samples, etc. These methods can be used to
estimate absolute abundance.

Here, we will describe a particular method for estimating abundance of aquatic
animals from acoustic data which could be considered a capture recapture method.

3 Estimating Abundance from Correlated Binary Acoustic Data

The survey method described here was developed by Whitehead [3], who used it
to estimate abundance of whales from acoustic data, using a method-of-moments
estimator. This was generalized to maximum likelihood by Horrocks et al. [1], as we
will now describe.

Imagine that a researcher sails along a transect and listens for whales at regular
intervals. While an expert can distinguish sperm whale vocalizations from other
species, it is not possible to discern which individual is vocalizing or even how many
individuals are vocalizing. Therefore at each interval, the researcher records either a
1 (if whales were heard) or a 0 (if no whales were heard).

In order to estimate absolute abundance from such imprecise data, it is necessary
to make some assumptions. We will assume that, if a whale is present within a circle
of radius r with the researcher at the center and it vocalizes, then it may be detected
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by the researcher, but if it is outside this “listening circle” it cannot be detected. As
the researcher moves along the transect, a series of listening circles is defined. The
distance between the centroids of the listening circles is assumed to be known and
constant across the survey. Further assumptions are as follows:

• Individuals (or groups) are distributed according to a Poisson process with
constant intensity α. This amounts to assuming that individuals are uniformly
distributed in space.

• Individuals move slowly with respect to the boat; i.e., do not follow or avoid it.
• Range of detection r is constant during the survey.
• Probability of vocalization/detection μ is constant during the survey.
• Vocalizations are independent between and within individuals (or groups). We are

assuming that individuals may vocalize multiple times.

Violations of these assumptions were examined by simulation. There are three
parameters which must be estimated (α, μ, and r) but our main interest is in α.

Our method exploits dependence in the data to estimate the three parameters. If
no listening circles overlapped, we would have independent binary data, and could
estimate only one parameter, namely, the proportion of listening circles in which
whales were heard. Our method requires that listening circles overlap so that a single
whale can be heard more than once. Thus, the method can be considered as a sort of
capture recapture method, where a “capture” corresponds to hearing a whale and a
“recapture” corresponds to hearing the same whale more than once. The overlapping
of the listening circles creates dependence in the data and allows us to estimate
more than one parameter. As observations are not independent, the likelihood is
constructed as a product of conditional probabilities. We used a second-order Markov
approximation to the likelihood:

L(α,μ, r) =
N∏

t=3

[
P (Yt |Yt−1,Yt−2)

]
P (Y2,Y1),

where Yt is the binary outcome at time t , P (Yt |Yt−1,Yt−2) is the probability of the
outcome at time t given the outcomes at times t − 1 and t − 2, P (Y2,Y1) is the joint
probability of the outcomes at times 1 and 2, andN is the number of listening circles.

Since the parameters α, μ, and r are assumed to be constant over time, the
probabilities are also independent of time and the likelihood simplifies to

L(α,μ, r) =
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where Pij = P (Yt−1 = i,Yt = k) and Pijk = P (Yt−2 = i,Yt−1 = j ,Yt = k) for
t = 3, 4, . . .,N , and nijk equals the number of triplets where yt−2 = i, yt−1 = j ,
and yt = k. Here i, j , k can take values 0 or 1. Expressions for the Pijk depend on
the geometry of overlapping parts of circles, and are given in Horrocks et al. [1].
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Fig. 1 Bias in α when assumptions are satisfied, for varying values of d, the distance between lis-
tening circles, which induces varying numbers of overlapping circles. The true value of α(0.00162)
is shown as a horizontal line

We conducted extensive simulations to study the performance of the method.
First, we examined the effect of different spacings between the listening circles,
when all assumptions are satisfied. We generated the positions of individuals over a
rectangular area from a Poisson process with density α. A sequence of N listening
circles (t = 1, 2, . . . N) with radius r and distance between centroids of d were then
generated. If an individual fell within the t th listening circle, we assumed it was
detected with probability μ, in which case yt was set to 1, else yt = 0. We simulated
a total of 10,000 data sets.

Figure 1 shows results when α = 0.00162, μ = 0.9, and r = 10. Points with the
same value of d have been shifted slightly in the horizontal direction for clarity.

The method performs well even when the number of overlapping circles is not 3.
For N = 350, bias is approximately −7 % when only two listening circles overlap,
and+ 5 % when six overlap. In all situations, bias decreases as the number of listening
circles increases. For more details, see Horrocks et al. [1].

We also examined various violations of the assumptions including nonconstant
distance between listening circles, nonconstant range of detection, nonconstant den-
sity, nonuniform distribution of whales, and nonconstant probability of detection.
Here, N = 1000, d = 5, r = 10, μ = 0.9, and α = 0.001 and there were 10,000
simulated data sets. The greatest bias in the estimation of α occurs under violation of
the Poisson assumption, i.e., when individuals are not uniformly distributed across
space, as occurs when density varies (scenario 6) and when individuals avoid each
other (scenario 8). These results are shown in Fig. 2. For more details, see Horrocks
et al. [1].
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Fig. 2 Bias in α under (1) standard assumptions, (2) nonconstant distance, (3) r varies across
individuals, (4) r varies across listening circles, (5) r varies across individuals and circles, (6) α
varies by a factor of 2, (7) α varies by a factor of 1.5, (8) whales within a distance r avoid each
other, (9) whales within r/2 avoid each other, (10) whales attract each other, (11) μ varies. The true
value of α(0.001) is shown as a horizontal line

We now illustrate the model using data collected as part of an acoustic survey
conducted in the western part of the Sargasso Sea between February 24 and March
5, 2008. The Sargasso Sea is an oceanic gyre bounded by ocean currents. It lies in
the middle of the North Atlantic Ocean between 20–25◦ N and 30–70◦ W, extending
westward to the Gulf Stream. As reported in [3], a hydrophone was towed behind
a 12.5 m sailing vessel and was monitored approximately every half hour. Here we
analyze data on sperm whales. There were 332 listening circles over approximately
1952 km, and 28 of the listening circles were positive, i.e., sperm whales were heard.
Sperm whales are generally found either in groups of adult females and immatures
or as single adult males. The data reported here are for groups of adult females and
immatures only. Thus for these data, α will be interpreted as the number of groups
of sperm whales per km2.

We used profile likelihood to obtain 95 % confidence intervals. We obtained a
maximum likelihood estimate (MLE) for α of 0.00036 groups of whales per km2

with 95 % confidence interval (0.00016, 0.00074). The probability of detection and
vocalization, μ, was estimated as 0.9 (0.64, 1) and the radius of detection, r , was
estimated as 9.29 km (6.95, 15.14). An estimate of the mean group size for adult
females and immature sperm whales in the Sargasso Sea is 12 individuals [4]. Given
this, we estimated the density of sperm whales in this area to be 4.32 whales per
1000 km2.
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4 Conclusions

In this chapter, we have presented a method for estimating abundance of aquatic
species from an acoustic binary time series. The binary data arises because it is
not possible to tell how many whales are vocalizing or if the same whale is being
heard more than once, and thus only imprecise data are available, namely, binary
presence/absence data. In order to estimate absolute abundance from such imprecise
data, it is necessary to make parametric assumptions. Due to the special design of the
survey, successive observations are dependent, and this independence is exploited to
allow the estimation of up to three parameters. Biological knowledge about the habits
of the species, namely that they travel in groups, was used to develop an estimate of
the abundance of individuals.
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Design, Fabrication, and Testing of Hybrid
Energy Harvesting Units

Mohammed Ibrahim and Armaghan Salehian

Abstract The increasing usage of mobile electrical units demands higher energy
efficiencies for these devices. Self-sustaining units that harvest various forms of am-
bient energy can help significantly with their regular battery replacements. In this
chapter two hybrid energy harvesting units are proposed that employ piezoelectric,
magnetostrictive, and electromagnetic technologies to capture ambient vibrational
energy. The first harvester is made of piezoelectric and magnetostrictive materials
while the second harvester is composed of a piezoelectric layer and a magnet. Both
proposed harvesters employ a spiral piezoelectric layer in order to reduce the com-
pliance of the piezoelectric unit. The advantages of the first design is that it allows
for more efficient harvesting over a wider range of frequencies than traditional har-
vesting units while the second design reduces the natural frequency of the system
that results in better energy harvesting at low frequencies.

1 Introduction

Energy harvesting is becoming more important as energy sources become increas-
ingly scarce and expensive. With recent advancements in electronic technology,
sensors require less power to operate, thus ambient energy harvesting methods
become potential solution for powering sensors.

This chapter focuses on harvesting ambient vibrations. Piezoelectric [1, 2], elec-
tromagnetic [3, 4], electrostatic [5, 6], and magnetostrictive [7, 8] technologies are
commonly used for harvesting vibration energy.

Karimi et al. [9] designed an analytical model for vibrations analysis of spiral
beams. It was concluded that the movement of the beam due to vibration is primarily
torsional. Hu et al. [10] made a spiral shaped piezoelectric harvester that is actuated
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Fig. 1 Schematic of the spiral piezoelectric bimorph unit and polarization direction. Dimensions
are in meter

by a 1 mN force and is fixed at the center. After optimization the resulting har-
vester had its first natural frequency at 50 Hz, which is relatively high for capturing
ambient vibrations energy. Wang and Yuan [11] fabricated a cantilever beam with
eight magnetostrictive laminates to harvest vibrations energy through Faraday’s law
of induction via a pickup coil. It was found that magnetostrictive material has the
capability to compete with piezoelectric material for energy harvesting. Wischke et
al. [12] added a magnet at the tip of a piezoelectric cantilever beam to further reduce
its natural frequency while actively contribute to the harvesting.

In this chapter, consideration is given to a spiral design as well different har-
vesting technologies to achieve a hybrid unit with improved harvesting capabilities.
The piezoelectric–magnetostrictive (PMSM) harvester uses both piezoelectric and
magnetostrictive materials to achieve a wide band harvester. The piezoelectric–
electromagnetic (PMAG) harvester uses piezoelectric material with a central
magnet.

2 Spiral Piezoelectric Design

A schematic of the dimensions of the spiral used in this work is shown in Fig. 1. The
spiral is made of two sets of half circles that have an offset center. The piezoelectric
spiral is in a bimorph configuration. During vibrations, one layer is in tension while
the other is in compression. Fig. 1 depicts the two layers of the piezoelectric bimorph
in a series connection and the arrows indicate the directions of polarization.
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Fig. 2 a Schematic of the piezoelectric-magnetostrictive (PMSM) harvester and the coils. b PMAG
harvester

3 Experiment

3.1 Piezoelectric–Magnetostrictive Harvester

The PMSM is made of two separate piezoelectric and magnetostrictive layers as
shown in Fig. 2a. The magnetostrictive material, magnetic alloy 2605SA1 from Met-
glas Incorporated was used. The piezoelectric material, PSI-5A4E, was purchased
from Piezo Systems.

The magnetostrictive material is fabricated using 25μm laminate sheets. Through
experimentation it was observed that combining multiple layers strengthens the mag-
netic field of the material; therefore 100 layers were used in order to produce larger
voltage output. The MSM layers were cut into spiral shape using electric discharge
machining (EDM) in the same geometries as the piezoelectric material except for the
thickness. The magnetostrictive spiral was then annealed in an oven under a magnetic
field in order to align the poles of the 100 layers. The layers were subsequently epox-
ied together. When subjected to vibrations, the magnetostrictive material produces a
variable magnetic field that may be harvested in the form of electricity using a coil.
A 3000 turn copper coil was employed for this purpose.

3.2 Piezoelectric–Electromagnetic Harvester

The PMAG harvester is composed of the piezoelectric unit discussed in Section 2
and a magnet attached to the center of the unit as shown in Fig. 2b. The Central
magnet helps with reduction at the fundamental natural frequency while acting as an
active harvesting unit.
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Fig. 3 Testing equipment

3.3 Testing Equipment

The test setup used for both harvesters can be seen in Fig. 3. The harvesting units
were mounted on the shaker and a constant 0.3 g acceleration was held through a
frequency sweep of 10–100 Hz. The data was measured through the LMS SCADA
MOBILE V data acquisition system (DAS) and recorded through the Sine control
module of the Test Lab software.

4 Results and Discussion

4.1 PMSM

The experimental power output for the PMSM harvester is presented in Fig. 4. The
piezoelectric material has its first resonance at 24 Hz with a power output of about
6 μW. The magnetostrictive material has its first resonance at 17 Hz with a power
output of 3.1μW. The solid line in Fig. 4 indicates the total power output of the hybrid
device, As shown, the frequency range for which useful energy can be harvested is
wider in comparison to each material separately. This wider frequency bandwidth
along with use of 2 materials for active harvesting can aid in better designs to improve
harvesting capability.

4.2 PMAG

The experimental results of the PMAG harvester are presented in Fig. 5. The harvester
shows a fundamental resonant frequency of 21 Hz. The piezoelectric material has
a power output of about 6 μW and the magnet has a power output of 10 μW. The
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Fig. 4 Power output for
PMSM harvester

Fig. 5 Power output for
PMAG harvester

experimental results indicate that even though the PMAG harvester is capable of
harvesting more it has a smaller frequency bandwidth when compared to the PMSM.

5 Conclusion

Two hybrid energy harvester units are developed. One, PMSM that, operates over
a wider range of frequencies compared to the piezoelectric spiral unit. The other,
PMAG, has smaller natural frequency than the piezoelectric spiral while using both
magnet and the spiral piezoelectric for harvesting. smaller natural frequencies are
always advantages for harvesting from ambient due to small frequencies available in
ambient vibrations. Experimental results indicate that combining two energy harvest-
ing technologies results in more practical devices for harvesting ambient vibrations
with higher power density.

Future work involves optimization of the spiral geometry for piezoelectric and
magnetostrictive units to increase the power output.

Acknowledgments The authors are grateful for support of NSERC funding agency NSERC-DG
371472-2009. They also sincerely thank Dr. Raafat Mansour from the Electrical and Computer



252 M. Ibrahim and A. Salehian

Engineering department at the University of Waterloo for allowing access to his lab facilities. In
addition, they would like to thank Saman Nazari for his help with annealing the magnetostrictive
material.

References

1. Gilbert, J.M., Balouchi, F.: Comparison of energy harvesting systems for wireless sensor
networks. Int. J. Autom. Comput. 05(4), 334–347 (2008)

2. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for
wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

3. Williams, C.B., Shearwood, C., Harradine, M.A., et al.: Development of an electromagnetic
microgenerator. IEE Proc. Circuits Devices Syst. 148(6), 337–342 (2001)

4. Khaligh, A., Zeng, P., Zheng, C.: Kinetic energy harvesting using piezoelectric and elec-
tromagnetic technologies, state of the art. IEEE Trans. Ind. Electron. 57(3), 850–860
(2010)

5. Mahmoud, M.A.E., Abdel-Rahman, E.M., El-Saadany, E.F., et al.: Electromechanical coupling
in electrostatic micro-power generators. Smart Mater. Struct. 19(2), 1–8 (2010)

6. Roundy, S., Wright, P.K., Pister, K.: Micro-electrostatic vibration-to-electricity converters.
IMECE2002, November 17–22, 2002, New Orleans, 39309. ASME. (2002)

7. Wu, G., Zhang, R., Li, X., et al.: Resonance magnetoelectric effects in disk-ring (piezoelectric-
magnetostrictive) composite structure. J. Appl. Phys. 110(12), 124103 (2011)

8. Li, L., Lin, Y.Q., Chen, X.M.: CoFe2O4/Pb(Zr052Ti0.48)O3 disk-ring magnetoelectric
composite structures. J. Appl. Phys. 102(6), 064103 (2007)

9. Karimi, M.A., Yardimoglu, B., Inman, D.: Coupled out of plane vibrations of spiral beams for
micro-scale applications. J. Sound Vib. 329(26), 5584–5599 (2010)

10. Hu, H., Xue, H., Hu, Y.: A spiral-shaped harvester with an improved harvesting element and
an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(6), 1177–1187
(2007)

11. Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater.
Struct. 17(4), 1–14 (2008)

12. Wischke, M., Masur, M., Goldschmidtboeing, F., et al.: Electromagnetic vibration harvester
with piezoelectrically tunable resonance frequency. J. Micromech. Microeng. 20(3), 1–7 (2010)



Markov Chain Monte Carlo Analysis of Trophic
Cascade in Yellowstone after Reintroduction of
Wolves

Darryl Johnson, David J. Klinke, Qing Wang, Morgan Condon
and Zhijun Wang

Abstract In this chapter, we update a mathematical model based on the Lotka-
Volterra predator–prey model to describe the elk–coyote–wolf interactions after the
reintroduction of wolf in Yellowstone in 1995. A Markov Chain Monte Carlo al-
gorithm is applied to calibrate the model parameters based on data compiled since
wolves were released in the park. Our model predictions match the published exper-
imental data very well. The objective of this study is to predict the impact of wolf
reintroduction into the Yellowstone National Park on elk and coyote population.

1 Introduction

Population growth models have been widely investigated due to their great potential
in aiding adaptive management for conservation purposes [1–3, 11]. Influence of
harvest, climate, and wolf predation on Yellowstone elk was investigated in [12].
Valey and Boyce developed a discrete predator–prey model to describe the impact
of the reintroduction of wolf in Yellowstone in 1995 on the elk population [11].
Berge and Case [3] tested the hypothesis that interference competition with wolves
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limits the distribution and abundance of coyotes, and the extirpation of wolves is often
invoked to explain the expansion in coyote range throughout much of NorthAmerica.
Predation, as reported by Forrester and Wittmer [5], was the primary proximate cause
of mortality for all age classes, and was an important source of summer fawn mortality
and of mortality in multi-prey, multi-predator systems. While coyote is also a major
predator of calf elks, its population is greatly impacted by the reintroduction of wolf
[4, 10]; there have been very few models that investigate all three species (wolf, elk,
and coyote). In this study, we updated the Lotka–Volterra predator–prey model to
describe the interactions between wolf, coyote, and elk inYellowstone National Park
after the release of wolves in 1995.

On the other hand, a typical ordinary differential equation (ODE) model for a
biological process or phenomenon often contains dozens of parameters to be fitted
against experimental data. Isolating a single parameter and attempting to ascertain its
likely value is a difficult and often impossible task in a complicated system, reducing
the efficacy of ODE models in describing the relationship among the postulated
elements of the system from the observed data. Markov Chain Monte Carlo (MCMC)
algorithms is a wide class of methods seeking to sample a probability distribution
that corresponds to the distribution of likely parameter values, given the observed
data and the model using a random walk in parameter space. Inclusion of a new
point in the walk is conditioned on how well the corresponding model predictions
match the observed data. Here, we use a variant of a widely used MCMC method, the
Metropolis–Hastings algorithm, and apply it to calibrate our updated predator–prey
model using published population data.

The rest of the chapter is organized as follows. Section 2 presents the modi-
fied predator–prey model with a set of assumptions incorporated into the traditional
Lotka–Volterra predator–prey model. In Sect. 3, we briefly state the MCMC algo-
rithms and the Gelman–Rubin diagnostic to determine the convergence of Markov
chains. Section 4 presents numerical simulations of the proposed model with param-
eters calibrated against published elk–coyote–wolf population data using MCMC
techniques. In Sect. 3, we discuss the conclusions of our findings based on the
posterior distributions in the model parameters and predictions.

2 The Model

An ecological example involving the MCMC method is the examination of the trophic
cascade that followed the reintroduction of wolves to the Yellowstone National Park
in 1995. We use a model similar to the Lotka–Volterra model but with three species.
In the equations below, E is the number of elks in thousands, C is the number of
coyotes,W is the number of wolves, and t represents time in years.

A revised version of the Lotka–Volterra predator–prey model is described as
follows:

dE

dt
= kp1E − pecEC − pewEW (1)
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dC

dt
= −kd1C + kp2EC − kd2CW (2)

dW

dt
= −kd3W + kp3EW , (3)

where kp1 is the rate of growth of the elk, pec is the predation rate of coyotes on elk,
pew is the predation rate of wolves on elk, kd1 is the natural decay rate of coyotes given
lack of food, kp2 is the proliferation rate of coyotes, kd2 represents hostile incidents
between wolves and coyotes that have occurred since the wolves reintroduction, kd3

is the natural decay rate of wolves given lack of food, and kp3 is the proliferation
rate of the wolves given sustenance. The model assumes that

• The elks have an unlimited food supply and follow an exponential growth pattern
in the absence of predators.

• The coyotes and wolves undergo exponential decay due to either natural death or
emigration in the absence of prey.

• The coyotes get killed by wolves in the competition in elk-predation.
• Population sizes of coyotes and wolves increase due to elk-predation.

3 The MCMC Algorithms

MCMC algorithms are a wide class of methods seeking to sample a probability
distribution from a Markov chain whose equilibrium is the probability distribution we
are seeking. We use a variant of a widely used MCMC method [6, 7], the Metropolis–
Hastings algorithm, and apply it to a revised predator–prey model.

The algorithm is briefly described by

1. Choose a point xj , j = 0 in parameter space, preferably close to a realistic value.
2. Calculate the likelihood P (Y |M(x0)), that you would observe experimental data

similar to the simulated data based on these parameters.
3. Take a random step xprop from this point that is distributed according to the

proposal function, f (X).
4. Calculate the probability P (Y |M(xprop)) that the experimental data can be

simulated with these new parameters.
5. Calculate acceptance probability as the ratio of the proposed step and the current

step: h = P (Y |M(xprop))
P (Y |M(xj )) .

6. Accept the new step with probability min(h, 1). If accepted xj+1 = xprop, If not
accepted xj+1 = xj .

7. Go to 3.

The proposal function, f (X), can incorporate prior information about parameter
ranges and correlation among the parameters. Alternatively, the proposal function
can be estimated empirically from the correlation among the parameters obtained
from the cumulative Markov chain [7]. Subsequent steps can be proposed that reflect
this parameter structure. If the adaptation of the proposal distribution diminishes in
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the limit of a long chain, the distribution obtained by the Markov chain converges
toward the target distribution, the posterior probability in the model parameters
P (X). By focusing on parameter combinations that provide predictions consistent
with the observed data, convergence of the Markov chain to the target distribution
can be achieved more rapidly. If the proposal function is symmetric and re-centered
at each proposed step, the Markov chain is considered reversible and the acceptance
probability is defined by the likelihood ratio, as shown above. Here, we used a
uniform prior, meaning that parameters could take any value between 10−10 and
1010, and a symmetric proposal distribution, that is a square gaussian matrix with
the same values for the variance along the diagonal and the off-diagonal elements
were set to zero. The proposal distribution was multiplied by a scalar value, where
the scalar value was determined such that 20 % of the proposed steps were accepted.

To test whether a partial chain has ran long enough to hold properties suffi-
ciently similar to the equilibrium distribution we must analyze its convergence. There
are many ways to analyze convergence of Markov chains the simplest being the
Gelman–Rubin diagnostic, which compares several chains starting from different
initial configurations and compares their variances [7]. The driving principle be-
hind the test is that after convergence, the behavior of some part of the chain (e.g.,
variance, etc.) should be similar to the whole.

4 Numerical Simulations by the MCMC Algorithm

In this section, we compare our model against observed data on the population
numbers of wolf, elk, and coyote in the Northern Range of Yellowstone National
Park [8]. The total number of coyotes in the park is unknown; however, we have
been given two observations of their population trends specifically in the Lamar
Valley [4]. We use this data and the assumption that the coyotes in other regions of
the park have followed similar trends to the coyotes in the Lamar Valley.

We take as the dimensions of the configuration space the unknown parameters
of our model. If an observation is given by Yj and the corresponding differential
equation response given the model parameter x is Mj (x), then π (x), the likelihood
to observe Yj givenMj (x), is proportional to:

n∏

j=1

[ (Yj −Mj (x))T (Yj −Mj (x))

Max(Yj )2

]−Nobs,j
2

,

whereNobs,j is the total number of observations in experiment j and n is the number
of experiments [7].

Figures 1, 2, and 3 illustrate calibration results via the MCMC algorithms.
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Fig. 1 This graph shows the projection of the parameter vector on each of the planes in parameter
logspace. Each color (blue, green, and red) represents a different, independent chain. Each chain
was run for 100 thousand iterations with an equal burn-in period and a thinning coefficient of 40

Fig. 2 The Gelman–Rubin diagnostic shows that most of the parameters in the three chains are
converegent

Fig. 3 Simulated results (lines) are compared against the experimental observations (boxes) used
to calibrate the mathematical model. The uncertainty in the model predictions are represented by
three lines: the most likely prediction is represented by the solid lines and the dashed lines represent
the 95th and 5th percentile of the predicted response. The initial population are 1.67 × 104 for elk,
80 for coyote, and 21 for wolf. The parameter values of the most likely prediction are kp1 = 0.467,
pec = 7.88 × 10−3, pew = 7.16 × 10−3, kd1 = 0.4251, kp2 = 2.56 × 10−4, kd2 = 4.96 × 10−7,
kd3 = 2.81 × 10−7, and kp3 = 0.015

5 Discussions and Conclusions

This study updated the Lotka–Volterra predator–prey model whose parameters were
calibrated against published experimental data using the MCMC techniques and
Gelman–Rubin diagnostic. With the parameters derived from taking the means of
three Markov chains, our model predictions match the published experimental data



258 Q. Wang et al.

very well (see Fig. 3). The model suggested a sharp decrease of elk population after
the release of wolves in 1995 and a slow recovery in elk population in the Northern
Range Yellowstone after year 2025 with a risk of extinction. The model predicted
an increase in wolf population in the Northern Range Yellowstone after the release
possibly due to plenty of prey and a slowdown or decrease in number because of the
decrease of prey population. Our model also indicated a rapid extinction of coyotes;
this would be a result of lack of good data for coyotes. With only two data points
for coyotes in the Lamar Valley found in the literature, we merely predicted a 50 %
decrease over the course of 2 years in a very specific subset of the population with
no available experimental data showing any recovery trend after the rapid decrease.
Future work would consider the impact of human interference and animal migration.
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Discovering Forward Invariant Sets for
Nonlinear Dynamical Systems

James Kapinski and Jyotirmoy Deshmukh

Abstract We describe a numerical technique for discovering forward invariant sets
for discrete-time nonlinear dynamical systems. Given a region of interest in the state
space, our technique uses simulation traces originating at states within this region to
construct candidate Lyapunov functions, which are in turn used to obtain candidate
forward invariant sets. To vet a candidate invariant set, our technique samples a finite
number of states from the set and tests them. We derive sufficient conditions on
the sample density that formally guarantee that the candidate invariant set is indeed
forward invariant. Finally, we present a numerical example illustrating the efficacy
of the technique.

1 Introduction

Model-based design (MBD) is a mathematical and visual process for designing,
implementing, and testing embedded software designs for real-time control systems.
MBD is rapidly becoming the pervasive design paradigm in many sectors such as
automotive and avionics, but the problem of checking correctness of such designs
is a highly challenging task. Of particular interest is the problem of ensuring that
the system satisfies safety constraints, which are usually associated with a region of
the state space. Analysis techniques from dynamical systems theory can be applied
to such designs to verify system properties, such as those for checking stability or
estimating performance bounds (see, e.g., Chap. 4 of [3]); however, these are rarely
used in any but the earliest stages of the MBD process.

It is well known that a sublevel set of a Lyapunov function is a forward invari-
ant set. The existence of a forward invariant set that properly contains the set of
initial states, while excluding the unsafe region proves that the system is safe for
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all time. Thus, it is clear that identifying such invariant sets helps us to address the
safety verification problem. A significant obstacle to this approach is that Lyapunov
functions of arbitrary (nonlinear or hybrid) systems are notoriously hard to discover.
Further, industrial models are often in formats lacking an analytic representation of
the dynamics.

We now give a brief overview of our technique. We use an iterative procedure
to construct candidate Lyapunov functions using simulation traces. The candidate
Lyapunov functions are restricted to the class of polynomial functions, similar to
the sum of squares (SoS) techniques described in [5]. This restriction allows us to
compute a candidate forward invariant set by solving a linear program (LP). We then
verify the validity of the candidate invariant set by testing over a finite number of
system states. Note that, alternatively, if an analytic representation of the dynamics
is given, one could verify the validity of the candidate invariant set using arithmetic
solvers, as we describe in [2].

Our work builds largely on [6], where forward orbits (which are often called
simulations or simulation traces) are used to seed a procedure to estimate the region of
attraction (ROA) for a dynamical system. We provide the following extensions to that
work: (a) we provide a procedure that uses a global optimizer to iteratively improve
the quality of the candidate Lyapunov functions (by seeking initial conditions that
falsify each intermediate candidate) and (b) Our technique is not restricted to the
class of systems with polynomial dynamics.

2 Problem Statement

We consider autonomous nonlinear discrete-time dynamical systems of the form:

xk+1 = f (xk). (1)

Here x represents state variables that take values in R
n and f is a nonlinear, locally

Lipschitz-continuous vector field. We call x̂ the successor of x if x̂ = f (x). We
assume that the system has a stable equilibrium point, which is, without loss of
generality, at the origin. We address the following problem. Given the dynamical
system (1), and a closed and bounded domain of interest D ⊆ R

n, identify a forward
invariant set S ⊆ D such that for all x ∈ S, f (x) ∈ S. We present a procedure that
can identify such a set, without explicit knowledge of the vector field f ( · ). The
following section describes the procedure.

3 Algorithm for Computing Invariant Sets

The procedure consists of three steps: (1) identify a candidate Lyapunov function
for (1) within D; (2) use the candidate Lyapunov function to compute a candidate
invariant set; (3) certify that the candidate invariant set is a forward invariant set. We
now describe each step in the process.
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Identifying a Candidate Lyapunov Function Ideally, we want to discover a
differentiable function v that ∀x ∈ D satisfies:

v(x) ) 0 (2)

v(x) − v(x̂) > 0, ∀x ∈ D \ {0}, v(0) = 0. (3)

Here, v(x) ) 0 means that v is positive definite, i.e., ∀x �= 0, v(x) > 0, and v(0) = 0.
The problem of identifying such a function v for the general case is of infinite di-
mension. We relax the problem by restricting the form of v as v(x) = zTPz, where
z is some vector of m monomials in x (e.g., z = [x1 x

2
1x2 x

2
2 ]T ) and P ∈ R

m × R
m.

We use a collection of state/successor pairs to automatically produce candidate
Lyapunov functions for the system. Given M pairs of points xi , x̂i , where i ∈
{1, 2, . . .,M} and xi �= 0 for all i, we formulate the following LP:

max
P,γ

γ (4)

s.t. γ > 0, and ∀i ∈ {1, . . .,M},
v(xi) > 0

v(xi) − v(x̂i) > γ ‖xi‖2.

Any feasible solution to (4) results in a candidate Lyapunov function v that satisfies
M necessary conditions for (2) and (3). We note that we could strictly enforce (2)
by requiring that P ) 0, but this would require that a more expensive semidefinite
program (SDP) be solved instead of an LP.

Once a candidate Lyapunov function is obtained from (4), we employ a falsifier
to select state/successor pairs that can be used to improve the candidate Lyapunov
function. The falsifier is a global optimizer that attempts to solve the following
optimization problem:

min
x∈D

v(x) − v(x̂) (5)

s.t. x̂ = f (x).

If the solution to (5) is less than zero, then the optimal x is a witness that falsifies the
Lyapunov condition (3). This witness is added to the collection of state/successor
pairs and (4) is solved again. This procedure continues until no falsifying witness
can be found by solving (5). For our experiments, we use a simulated annealing
algorithm to implement the falsifier. Figure 1 illustrates our iterative procedure.

We note that if both (a) the falsifier is capable of computing a global minimum and
(b) the procedure in Fig. 1 halts, then the resulting candidate Lyapunov function v(·) is
a Lyapunov function for (1). Practical falsifiers cannot reliably find a global minimum
in general. Hence, we still need to verify the soundness of the forward invariant set
computed using a candidate Lyapunov function obtained from this procedure, and
we present a technique to do so later in this section.
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Fig. 1 Procedure to create a candidate Lyapunov function for system (1)

Computing a Candidate Invariant Set Once we obtain a candidate Lyapunov
function for (1), we can use it to obtain a forward invariant set. We formulate a convex
optimization problem to maximize l such that the sublevel set S = {x|v(x) ≤ l} is
within D. If we assume that D is a sublevel set of a polynomial, then standard
numerical techniques can be used to obtain the optimal l, as in [1].

Verifying Soundness of the Candidate Invariant Set Below we show how to
verify the soundness of the candidate invariant set computed in the previous step.
The technique requires that a Lyapunov-like condition be satisfied at a finite sampling
of the points in the set. First, we define a notion of sampling for a set.

Definition 1 [Delta Sampling] Given a δ ∈ R>0, a δ-sampling of set S ⊂ R
n is

a finite set Sδ such that the following holds: Sδ ⊂ S; for any x ∈ S, there exists a
xδ ∈ Sδ such that ‖x − xδ‖ < δ.

The following theorem allows us to test whether a given set is forward invariant
by testing a finite subset of points within the set.

Theorem 1 [Invariant Soundness] Consider system (1), where f is locally Lipschitz
with constantKf over D. Let S = {x|g(x) ≤ l}, whereg : R

n → R≥0 is a C1 function
that is locally Lipschitz with constant Kg over S, and let Sδ be a δ-sampling of S. If
there exists a γ ∈ R>0 such that δ < γ

Kg ·Kf and ∀xδ ∈ Sδ , g(f (xδ)) ≤ l − γ , then S
is a forward invariant set.

Proof We prove by contradiction. Assume that δ < γ

Kg ·Kf and for all xδ ∈ Sδ ,
g(f (xδ)) ≤ l − γ holds, but S is not forward invariant. Then it is true that for some
x ∈ S, f (x) /∈ S. Consider the point xδ in Sδ closest to x. The Lipschitz constant
for the function composition g ◦ f is Kg ·Kf . Applying the definition of Lipschitz
continuity, we have ‖g(f (x)) − g(f (xδ))‖ ≤ Kg · Kf · ‖x − xδ‖. By the definition
of δ-sampling, ‖x − xδ‖ < δ, thus we have

‖g(f (x)) − g(f (xδ))‖ < δ ·Kg ·Kf . (6)

Sincef (x) /∈ S, g(f (x)) > l, i.e., −g(f (x)) < −l. By assumption, g(f (xδ)) ≤ l−γ ;
adding the two inequalities, we get g(f (xδ)) − g(f (x)) < −γ . By the triangle
inequality, we have ‖g(f (xδ)) − g(f (x))‖ > γ . Combining with (6) we get:

γ < ‖g(f (xδ)) − g(f (x))‖ < δ ·Kg ·Kf . (7)
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This contradicts our assumption that δ < γ

Kg ·Kf . �
As both δ and γ cannot be selected simultaneously, we propose an iterative pro-

cedure to determine whether the γ thus computed satisfies the condition δ < γ

Kg ·Kf .
First, a δ value is selected randomly and used to create a δ-sampling of the candidate
forward invariant set S. Next, the minimum value of γ = l− v(f (xδ)) over the finite
set Sδ is computed:

γ ∗ = min
xδ∈Sδ

l − v(f (xδ)). (8)

If the γ ∗ < 0, then the candidate S is not a forward invariant set (since the xδ that
minimizes (8) is such that v(f (xδ)) > l). If γ ∗ > 0 and δ < γ ∗

K·Kf , then by Theorem

1 the candidate S is a forward invariant set. If γ ∗ > 0 but δ �< γ ∗
K·Kf , then we select

a smaller δ such that δ < γ ∗
K·Kf and repeat the process.

4 Example for Computing an Invariant Set

We now present an example demonstrating the technique in Sect. 3. The following
dynamical system was taken from LaSalle [4]:

f (x) =
⎡

⎢
⎣

α · x2

1 + x2
1

β · x1

1 + x2
2

⎤

⎥
⎦ .

For this exercise, we fix α = 1.0, β = 0.9. Fig. 2a shows the result of the procedure
illustrated in Fig. 1; for the selected quadratic Lyapunov function template (i.e.,
z = [x1 x2]T ), the procedure terminates in 5.59 s1, giving the following candidate
Lyapunov function:

vLaSalle(x) = [x1 x2]

⎡

⎣ 368.0 −36.0

−36.0 396.0

⎤

⎦

⎡

⎣ x1

x2

⎤

⎦ .

Next, the candidate Lyapunov function is used to candidate invariant S =
vLaSalle(x) ≤ 343.3 (as shown in Fig. 2a); the corresponding convex program takes
2.22 s. Finally, S is shown to be invariant using the iterative procedure from Sect. 3.
The procedure halts after two iterations (i.e., γ ∗ is computed twice), after 5.82 s and
a cumulative total of 57, 877 sample points. Fig. 2b shows the results of this step for
the example.

1 Runtime measured on an Intel Xeon E5606 2.13 GHz Dual Processor machine, with 24 GB RAM,
running Windows 7, SP1.
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Fig. 2 LaSalle example results

5 Conclusions

We describe a numerical technique for discovering forward invariant sets for nonlin-
ear dynamical systems using simulation traces, leveraging techniques from Lyapunov
analysis, global optimization, and convex programming. The set of samples from
the candidate invariant set required for verifying validity of the candidate can be
prohibitively large. In future work, we will investigate satisfiability modulo theories
(SMT) and interval constraint propagation solvers to symbolically test the validity
of candidate invariants.
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Investigation of Salts Behavior at Liquid–Liquid
Interfaces

N. P. Khiabani, A. Bahramian, M. Soltani, P. Pourafshary, K. Sarikhani,
P. Chen and M. R. Ejtehadi

Abstract We have used molecular dynamics simulation to investigate hydrophilic–
hydrophobic interfaces between calcium chloride (CaCl2) aqueous solutions and
normal hexane. The results demonstrate the increasing impact of salt concentration on
the liquid–liquid interfacial tension, hence, negative adsorption of CaCl2 according to
Gibbs adsorption isotherm. Moreover, we calculated the density profiles of hexane,
water, and the counter ions. The results reveal an electrical double layer near the
interface and the less affinity of calcium cations toward the interface than that of
chloride anions. Orientation of water molecules at the studied concentrations may
result in developing a positively charged interface and, consequently, accumulation
of anions close to the charged interface. Our calculations show that the interfacial
width decreases by increasing salt concentration. Therefore, consistent with the
calculated interfacial tension (IFT) data, aqueous salt solutions are less miscible in
normal hexane at higher salt concentrations.
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1 Introduction

Surface thermodynamics is one of the important branches of science because two
immiscible phases of materials may come together in many processes. Many stud-
ies have dealt with the characterization of liquid–liquid interfaces because of their
relevance in a lot of industrial applications such as oil industry, drug delivery, and
nanoparticle synthesis. For instance, the interfacial tension of an oil–water interface
is crucial to analyze the enhancement of oil recovery in petroleum reservoirs. Also,
due to the existence of brine in a lot of reservoirs [1], the analysis of aqueous salts’
effect on the oil–water interfacial tension is necessary. Additionally, a detailed un-
derstanding of microscopic structure of all species at these interfaces is important
to optimize the relevant processes such as oil recovery methods. There is a chance
to investigate molecular mechanisms as well as interpret many experimental re-
sults using molecular simulation. However, literature shows there are relatively few
molecular simulation results have been established to the question of what happen at
liquid-liquid interfaces in the existence of counter ions. Benjamin studied ion trans-
fer dynamics across two immiscible liquids. The results are in reasonable agreement
compared to the results of a diffusion equation solution for an ion moving in an
external field [2]. Recently, Zhang and Carloni [3] looked into the effect of sodium
chloride (NaCl) and potassium chloride (KCl) on oil–water interface via molecular
dynamics (MD) simulation. They presented the effect of the ions on first and second
layers of water at the interface, the residence time of the ions also the interfacial
tension. They found: although NaCl has no effect on the interfacial structure, KCl
can change it. Also, they showed that the effect of these salts on the interfacial tension
and residence time of the interfacial molecules are almost the same.

In this study, we investigate the effects of calcium chloride (CaCl2) as a typical
bivalent salt on the interfacial behavior of water–hydrophobic interfaces. Hexane was
selected as a hydrophobic liquid. We begin with an overview of our MD simulation
details, followed by the estimation of the aqueous salts solutions–hexane interfacial
tension and the description of density profiles.

2 Simulation Details

In this study, all MD simulations were carried out with the large-scale
atomic/molecular massively parallel simulator (LAMMPS) code [4]. The total
potential energy was applied as follows:

Etotal = EvdW + EQ + Ebond + Eangle + Etorsion (1)

where Etotal, EvdW, EQ, Eangle, and Etorsion are the total energy, the van der Waals,
electrostatic, bond-stretching, angle-bending, and torsion-energy components, re-
spectively. The selected force field parameters are according to literature data
[5–7].
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Fig. 1 A typical molecular
dynamics simulation box:
hexane, green and yellow
particles, water, white points,
salt counterions, blue and red
particles

The integration of the equations of motion was performed using the Verlet algo-
rithm [8] with a time step of 1.0 fs. The temperature was set 25◦C. To control the
temperature, a Nose–Hoover type thermostat [9, 10] was used. Also, the barostat
type to set a 1 atm pressure was Nose–Hoover. The particle–particle particle–mesh
Ewald (PPPM) method was used to calculate the long-range electrostatic interac-
tions. The cutoff distance is considered 10 Å for both Lennard-Jones and electrostatic
interactions.

3 Results and Discussion

In this section, we present both our interfacial tension results. We also discuss on
the density profiles of all species in our studied systems as well as the interfacial
thicknesses.

3.1 Interfacial Tension

At a liquid–liquid interface arises from the difference between normal and tangential
components of pressure at the interface compared to the bulk for each liquid. In
this study, we calculated the interfacial tension at our aqueous salt solution–hexane
interface perpendicular to the z-axis using its mechanical definition [11] as follows:

σ = 1

2

〈
Pzz − 1

2
(Pxx + Pyy)

〉
Lz (2)

wherePxx ,Pyy , andPzz are the components of pressure tensor andLz is the simulation
box length in the direction perpendicular to the interface (Fig. 1).

The interfacial tension results (Fig. 2) show an increasing trend versus salt con-
centration increasing which is in agreement with experimental data [12]. In order to
explain this phenomena, we can use the traditional Gibbs adsorption equation [13].
Using the Gibbs adsorption equation at constant temperature and the definition of
chemical potential in electrochemical systems [14] we can conclude that the Gibbs
adsorption isotherms would have a negative slope in case of our studied systems.
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Fig. 2 Molecular dynamics
simulation results of calcium
chloride solution-hexane:
Interfacial tension and
Interfacial thickness

The fact directly evident according to the interfacial tension results (Fig. 2) and
Gibbs adsorption isotherms is the negative adsorption of CaCl2. The slope of in-
terfacial tension values versus the salt concentrations is positive. So, according to
the negative slope of Gibbs adsorption isotherms, CaCl2 has negative adsorption at
hexane–water interface and is not a surface active agent. We think that the negative
adsorption of CaCl2 should be related to the hrydration energy of ions. According to
the continuum Born theory [15], the excess free energy of hydrated ions embedded
in a liquid increases as the dielectric constant of the liquid media decreases. On the
other hand, the dielectric constant of liquid solutions is lower at the interface com-
pared to the bulk [16]. This means that ions are not interested to dissolve into the
interface less interested to dissolve at the interface. Therefore, the ions with negative
excess free energy of hydration such as the ions in this study [17] have negative
adsorption.

3.2 Density Profiles

To obtain the density profiles of our simulated systems, we divided the simulation
box into 1 Å thick slabs parallel to the xy plane and determined all the above species
distribution functions in each slab. This could be a satisfied definition of the density
profiles. Typically, the distribution function curve of hexane–1 molar CaCl2 solution
is presented in Fig. 3. It is clear that the simulated systems consist of two immiscible
fluids. Another noticeable point in Fig. 3 is the existence of two peaks close to the
hexane–water interfaces. The peaks are related to the counter ions net charge of the
systems. They show the construction of an electrical double layer near the interface.
In other words, at the studied concentrations, anions are accumulated closer to the
interface than cations. Water molecules at hydrophobic interfaces are rearranged
[18]. We think the asymmetric water molecules with the new arrangement may lead
to the construction of an electrical double layer.
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Fig. 3 Histograms of hexane, water, and the net charge of simulated hexane–1 molar CaCl2 solution
system

The results of the hexane–salt solution interfacial width (Fig. 2) at different salt
concentrations demonstrate decreasing the interfacial thickness with increasing salt
concentration. This result is consistent with the interfacial tension results and show
more miscibility of hexane–salt solution at lower concentrations.

4 Conclusion

We have reported some molecular dynamics simulation results of CaCl2 effect on
hexane–water interface. The results at concentrations above 0.25 molar of CaCl2
demonstrate the increasing of hexane–water interfacial tension. The comparison
between IFT results and Gibbs adsorption equation show a negative absorption of
this salt above 0.25 molar of salt concentration. The density profiles of all species at
the studied interfaces show an existence of two immiscible fluids water solution and
hexane, also a creation of a double layer closer to hexane–water interface. So we can
conclude that the arrangements of water molecules near the interface might lead to
a nonzero charge at the interface. Hence, there should be a competition between all
the counter ions in these systems to be closer to the interface. The results show us
that in the studied systems, anions are closer to the interface. Also, consistent with
the interfacial tension results, the interfacial thickness decreases with the increasing
of salt concentration.
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Monte Carlo Study of the Random Image Area
Estimation by Pairwise Comparisons

W.W. Koczkodaj, A. Almowanes, T. Kakiashvili and G. Duncan

Abstract This study presents experimental results of gaining the accuracy of 18.4 %
when the pairwise comparisons method was used instead of the direct method for
area estimation of random images. Random images were produced by deblurring the
Gaussian blur applied to randomly generated polygons. Participants were asked to
estimate the areas of five random images by using an online questionnaire. Images
have been compared to a provided unit of measure and in pairs. Our intensive Internet
searches could not find another Monte Carlo experimentation for 2D case conducted
in the past.

1 Introduction

Random images with smooth-looking edges were used in our Monte Carlo study.
Such random images that were not too difficult to estimate their area. For it, we
used a simple heuristic for generating these placated nice random images based on a
modified technique in [9] posted in 2008. In reality, no one can categorically say what
a nice image is. However, we can recognize nice images once we see them and more
importantly, we can generate them. Smoothing the edges by deblurring help us to
generate such images. However, this study is about accuracy, not the random image
generation and the “quality” of randomness was not the subject of our investigation.

The pairwise comparisons is a useful method especially for processing subjective
data. Its main goal is to establish the relative preference of n stimuli in situations
where it is impractical to provide estimates for the stimuli [3]. The pairwise compar-
isons method can always be used to reach final conclusions elegantly. This method
is of considerable importance in situations where direct measurements are impossi-
ble to perform. It provides a natural and a powerful tool for decision making. It is
a natural approach for processing subjectivity, although objective data can also be
processed this way. By common sense, and for any type of comparisons, taking two
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criteria or alternatives at a time works better than taking all of them at once. Evidently,
handling multiple things at once is more difficult. The pairwise comparisons method
is often used to subjectively compare objects. In particular, this method is used to
compare objects that are difficult or impossible to measure. For example, there is no
defined measure unit for the public satisfaction. The pairwise comparisons method
is used for ranking all kinds of preferences and decision making. In some situations,
it is the only feasible method where subjectivity is a dominant factor for a decision
making.

To perform the random image Monte Carlo accuracy testing of pairwise com-
parisons, an online questionnaire was implemented and acted as our data collection
method. Participants were asked to estimate areas of five images using a provided
unit. In addition, they were asked to compare the images in pairs. The average error
rate was then calculated for both and compared. The results were encouraging as the
gain of accuracy reached 18.4 % when the pairwise comparisons method was used.
To our own knowledge and based on an intensive search, this is the first Monte Carlo
study for 2D accuracy testing of pairwise comparisons.

2 The Survey Design

Our 2D Monte Carlo experimentation for testing the pairwise comparisons method
accuracy is based on using random images. The former 1D experiment in [7] was
based on randomly generated bars. In [1], random images were used but of equal
area. Participants related the areas of five randomly generated images of equal area. A
reference unit area was also displayed along with the images. Respondents’ average
error when estimating the area using the unit square was 25.75 %. Nevertheless, the
error went down to 5.51 % when the images were compared in pairs. It is a much
better improvement percentage than the 1D case where bars were used [7]. The
experiment demonstrated in [1] is the first 2D statistical experiment showing that the
pairwise comparisons method improves accuracy but it was conducted for random
images equal in size. In [1], a sample of 179 participated in the study. In the first part
of that experiment, they were asked to estimate the area of five randomly generated
images of equal areas in units. Of course, respondents were not told that the images
were equal in area. The images were presented in an overhead screen and participants
took, on average, 10–15 s to estimate the area of each image. In the second part,
the images were shown in pairs. Ten pairs were shown and similarly it took 10–15 s
to compare each pair. For each pair, participants were asked which image is larger.
They also had the option to respond if they believed that a pair was equal.

Generating random images is based on deblurring in [4, 5]. In 2008, an imple-
mentation in Photoshop has been posted on the Internet [9]. A “graphical” type of a
questionnaire has been designed, implemented, and programmed in Hypertext Pre-
processor (PHP). The questionnaire was posted on a web page for the data collection
process. The following section provides a detailed description of the data acquisition.
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Fig. 1 Randomly generated images with unequal area sizes

2.1 Data Acquisition Application

There are 93 recorded observations used in this experiment. There was no particular
procedure for selecting participants. Only the date, time, and participants’ answers
were recorded. The email was also recorded only if participants asked for the results
to be sent to them when the study will be completed. No Internet Protocols (IPs) or
any personal identification were stored. In the first part of the experiment, participants
were asked to choose 5 images from a pool of 70 images similar to the images shown
in Fig. 1. They were rescaled to a smaller size (63 × 63) to make all 70 images fit
the screen.

Users were asked to put in order the five randomly generated images from the
largest to the smallest, where the largest gets the value of 1 and the smallest gets 5.
This is to ensure that the user is able to distinguish the visible size difference among
the images. In addition, it gives the ability to be consistent in the way the pair of
images is displayed on the ten pairwise comparisons screens. The system allows the
user to proceed to the area estimation in units page only if the ordering is correct.
Otherwise, they would need to select five new images. We decided for the square
unit, used in the direct method, to be of size 1600 pixels. That is a 40 × 40 unit
square. The user can only input valid numeric values. If the user inputs an invalid
value, an appropriate error message will be shown. If a value is valid and the submit
button is clicked, the user will be taken to the next page. In the last part of the
experiment, participants were shown two of the five random images side by side
(pairwise comparisons). The larger image is always displayed on the left side. There
were ten unique pairs that can be formed from the five images. So, ten comparisons
were performed.

Polygons are then generated and filled with black and a Gaussian blur is applied to
make rough edges smooth. Afterward, a threshold to transform gray pixels to black
or white is used. The next step was to scale all 70 images to make them equal in area
with < 0.1% margin at most. The areas are then recorded and saved to a MySQL
database for easy access through PHP. We also needed to be sure that the five selected
images are displayed to the user in 1–5 ratio from largest to smallest. That is why
we performed the previous step of rescaling all images to approximately equal in
area images and then applying a new random scale to have the five images in a 1–5
ratio. This can be done by manipulating how the image is displayed in the browser.
Next, images are displayed on the ranking screen in no particular order. The user
then orders them from largest to smallest.
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Fig. 2 A pie chart that shows
the average time taken to
complete each task in minutes

2.2 Computing the Survey Results

The collected data have been transformed into a pairwise comparisons matrixM of
the size 5 by 5:

M =

⎡

⎢⎢⎢⎢⎢
⎣

1 m12 · · · m1n

1
m12

1 · · · m2n

...
...

. . .
...

1
m1n

1
m2n

· · · 1

⎤

⎥⎥⎥⎥⎥
⎦
.

We used the theory presented in [6] as the distance-based inconsistency, extended in
[2], and finally simplified in [8] as:

ii = 1 − min(x ∗ z/y, y/x/z), (1)

for a triad (x, y, z) with all strictly positive coordinates.
The average error rate when estimating the area of random images in units (direct

method), is 30.3 % for the 93 observations. On the other hand, the average error
rate is only 11.96 % when the pairwise comparisons method is used, and this can
be seen in Fig. 3. The gain of accuracy here is approximately 18.4 %. The results
are highly encouraging. The drop of estimation error, from 30.3 to 11.96 % (see
Fig. 4), is even more spectacular than the 1D case reported in [7]. It is evident
that the accuracy improves when random images’ area estimation using the pairwise
comparisons method is enforced.

As shown in Fig. 2, the total average time that the participants needed to complete
all tasks, is approximately 9 min. Although the average time taken to complete both
the direct and pairwise comparisons methods are similar, the accuracy improves
dramatically when the pairwise comparisons method is used.
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Fig. 3 Histogram showing the average error when using the pairwise comparisons method

Fig. 4 Comparing the average error rate when using the pairwise comparisons and the direct
methods for area estimation of random images

3 Conclusion

The results of our Monte Carlo experiment strongly favor the pairwise comparisons
method over the direct method. The average error for the pairwise comparisons is
nearly 11.96 versus 30.3 % when the direct method is used. The gain of accuracy,
which is the difference between the errors derived from the direct method and the
pairwise comparisons method, is around 18.4 %. It is even more impressive than the
1D case reported in [7] conducted 18 years ago. It is also worth mentioning that the
average time taken to complete both the direct and pairwise comparisons methods
was close, but the accuracy improves dramatically when the pairwise comparisons
method is used.
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Controllability of Second Order Impulsive
Differential Systems in Banach Spaces

Meili Li and Jungang Tian

Abstract This chapter shows the controllability of second order impulsive differ-
ential systems in Banach spaces. Sufficient conditions for the controllability are
obtained by using the theory of strong continuous cosine families and the contraction
mapping principle. Particularly, the compactness of the cosine family of operators is
not needed in this chapter.

1 Introduction

In this chapter, we study the controllability of second order impulsive differential
systems of the form

x ′′(t) = Ax(t) + Bu(t) + f (t , x(t), x ′(t)), t ∈ J , t �= tk ,
Δx|t=tk = I 1

k (x(tk)), k = 1, · · ·,m,

Δx ′|t=tk = I 2
k (x ′(t+k )), k = 1, · · ·,m,

x(0) = x0, x ′(0) = y0,

(1)

where J = [0, b], the state x(·) takes values in Banach space X with the norm ‖ · ‖,
u(·) ∈ L2(J ,U ) is the control function, U is a Banach space, A is the infinitesimal
generator of a strongly continuous cosine family {C(t) : t ∈ R} on X, B : U → X

is a bounded linear operator. The functions 0 = t0 < t1 < · · · < tm < tm+1 =
b, Δx|t=tk = x(t+k ) − x(t−k ), Δx ′|t=tk = x ′(t+k ) − x ′(t−k ), and I jk : X → X, j =
1, 2, f : J ×X×X→ X are appropriate continuous functions to be specified later.

The theory of impulsive differential systems has become an important area of
investigation in recent years, stimulated by their numerous applications to problems
from mechanics, electrical engineering, medicine, biology, ecology, etc. (see [1, 6]
and references therein).
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The problem of controllability of second order differential systems and inclusions
has been studied by many researchers [2–5, 7, 8]. Kang et al. [5] studied the
controllability of second order differential inclusion in Banach spaces. With the
help of a fixed point theorem for condensing maps due to Martelli, the authors
considered the damped term x ′(·) and found a control u(·) in L2(J ,U ) such that
the solution satisfies x(b) = x1 and x ′(b) = y1. Chang et al. [3] investigated the
controllability of second order differential and integrodifferential inclusions without
assuming the compactness condition on the cosine family {C(t) : t ∈ R} and sine
family {S(t) : t ∈ R}. Balachandran et al. [2] pointed out an error in the paper
[5]. They derived an additional condition for the controllability of second order
differential inclusion in Banach spaces. Sakthivel et al. [8] studied the controllability
of second order nonlinear impulsive differential systems using a fixed point analysis
approach. Motivated by Balachandran et al. [2], we study the controllability for the
second order impulsive differential systems in a Banach space. The method similar
to that of Balachandran et al. [2]. Thus, our results extend those of Balachandran et
al. [2], Chang et al. [5] and Sakthivel et al. [8].

2 Preliminaries

Definition 1 (see [9, 10]). A one parameter family {C(t) : t ∈ R}, of bounded
linear operators in the Banach spaceX is called a strongly continuous cosine family
iff (i) C(s + t) +C(s − t) = 2C(s)C(t) for all s, t ∈ R; (ii) C(0) = I ; (iii) C(t)x
is strongly continuous in t on R for each fixed x ∈ X.

The strongly continuous sine family {S(t) : t ∈ R}, associated with {C(t) : t ∈ R},
is defined by S(t)x = ∫ t0 C(s)xds, x ∈ X, t ∈ R. Throughout this chapter, A is
the infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R},
of bounded linear operators from X into itself. Moreover, M and N are positive
constants such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ N for every t ∈ J. [D(A)]
is the space D(A) = {x ∈ X : C(t)x is twice continuously differentiable in t},
endowed with the norm ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A). Define E = {x ∈
X : C(t)x is once continuously differentiable in t}. E endowed with the norm
‖x‖E = ‖x‖ + sup0≤t≤1 ‖AS(t)x‖, x ∈ E, is a Banach space. The operator-valued

function H(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of bounded linear op-

erators on the space E × X generated by the operator A =
[

0 I
A 0

]
defined on

D(A) × E. From this, it follows that AS(t) : E → X is a bounded linear operator
and that AS(t)x → 0 as t → 0 for each x ∈ E.

Define PC(J ,X) = {u : J → X, u(t) is continuous for t ∈ J , t �= tk , and
u(t+k ), u(t−k ) exist and u(tk) = u(t−k ), k = 1, · · ·,m}.

PC1(J ,X) = {u ∈ PC(J ,X), u(t) is continuous differential for t ∈ J , t �= tk ,
and u′(t+k ), u′(t−k ) exist and u′(tk) = u′(t−k ), k = 1, · · ·,m}.
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Obviously, PC(J ,X) is a Banach space with the norm ‖u‖PC = supt∈J ‖u(t)‖,
andPC1(J ,X) is also a Banach space with the norm‖u‖PC1 = max{‖u‖PC , ‖u′‖PC},
where ‖ · ‖ is any norm of X.

Definition 2 A function x ∈ PC1(J ,X) is said to be a mild solution of (1) if the
impulsive conditions in (1) are satisfied and

x(t) = C(t)x0 + S(t)y0 + ∫ t0 S(t − s)[Bu(s) + f (s, x(s), x ′(s))]ds

+ ∑

0<tk<t
C(t − tk)I 1

k (x(tk)) + ∑

0<tk<t
S(t − tk)I 2

k (x ′(t+k )), t ∈ J. (2)

Definition 3 System (1) is said to be exactly controllable on the interval J , if for
every x0 ∈ E, y0 ∈ X and x1, y1 ∈ X, there exists a control u ∈ L2(J ,U ) such that
the mild solution x(·) of (1) satisfies x(b) = x1 and x ′(b) = y1.

To establish our results, we introduce the following assumptions on system (1):
(H1) f : J × X × X → X is a continuous function and there exist positive

constants k1 and k2 such that ‖f (t , x1, y1)−f (t , x2, y2)‖ ≤ k1‖x1−x2‖+k2‖y1−y2‖
for every x1, x2, y1 and y2 ∈ X.

(H2) The functions I jk : X→ X are continuous and there exist positive constants
L(I jk ), j = 1, 2 such that ‖I jk (x1) − I jk (x2)‖ ≤ L(I jk )‖x1 − x2‖ for each x1, x2 ∈ X.

(H3) The linear operator G1 : L2(J ,U ) → X defined by G1u = ∫ b0 S(b − s)
Bu(s)ds and there exists abounded inverse operator G−1

1 : L2(J ,U )/kerG1 → X

and a positive constantM1 such that ‖G−1
1 ‖ ≤ M1.

(H4) The linear operator G2 : L2(J ,U ) → X defined by G2u = ∫ b0 C(b − s)
Bu(s)ds and there exists abounded inverse operator G−1

2 : L2(J ,U )/kerG2 → X

and a positive constantM2 such that ‖G−1
2 ‖ ≤ M2.

(H5) G1G
−1
2 = G2G

−1
1 = 0.

(H6) Let μ1 = (N + M)β̃k1b + (M + Nη̃ + Ñ + Mη̃)
∑m
k=1 L(I 1

k ) and
μ2 = (N + M)β̃(k2b +∑m

k=1 L(I 2
k )), where β̃ = 1 + Kb(M1N + M2M), η̃ =

Kb(M1M +M2Ñ ), Ñ = supt∈J ‖AS(t)‖L(E,X).

3 Controllability Result

Theorem 1 If the conditions (H1) − (H6) and max{μ1,μ2} < 1 are satisfied, then
the second order impulsive system (1) is exactly controllable on J .

Proof Let ‖B‖ ≤ K . In order to prove the exact controllability result, we define the
control function by

u(t) = G−1
1 [x1 − C(b)x0 − S(b)y0 − ∫ b0 S(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
C(b − tk)I 1

k (x(tk)) −
m∑

k=1
S(b − tk)I 2

k (x ′(t+k ))](t)

+G−1
2 [y1 − AS(b)x0 − C(b)y0 − ∫ b0 C(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
AS(b − tk)I 1

k (x(tk)) −
m∑

k=1
C(b − tk)I 2

k (x ′(t+k ))](t)

(3)
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Let Z = PC × PC be the space Z = {(x, z) : x, z ∈ PC(J ,X) and x ′(t) =
z(t) for t �= tk} provided with the norm ‖(x, z)‖Z = max{‖x‖PC , ‖z‖PC}. For (x, z) ∈
Z, define the nonlinear operator Φ(x, z) = (Φ1(x, z),Φ2(x, z)), where

Φ1(x, z)(t)

= C(t)x0 + S(t)y0 + ∫ t0 S(t − s)f (s, x(s), x ′(s))ds + ∫ t0 S(t − s)B
·{G−1

1 [x1 − C(b)x0 − S(b)y0 − ∫ b0 S(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
C(b − tk)I 1

k (x(tk)) −
m∑

k=1
S(b − tk)I 2

k (x ′(t+k ))](s)

+G−1
2 [y1 − AS(b)x0 − C(b)y0 − ∫ b0 C(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
AS(b − tk)I 1

k (x(tk)) −
m∑

k=1
C(b − tk)I 2

k (x ′(t+k ))](s)}ds

+ ∑

0<tk<t
C(t − tk)I 1

k (x(tk)) + ∑

0<tk<t
S(t − tk)I 2

k (x ′(t+k )),

(4)

Φ2(x, z)(t)

= AS(t)x0 + C(t)y0 + ∫ t0 C(t − s)f (s, x(s), x ′(s))ds + ∫ t0 C(t − s)B
·{G−1

1 [x1 − C(b)x0 − S(b)y0 − ∫ b0 S(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
C(b − tk)I 1

k (x(tk)) −
m∑

k=1
S(b − tk)I 2

k (x ′(t+k ))](s)

+G−1
2 [y1 − AS(b)x0 − C(b)y0 − ∫ b0 C(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
AS(b − tk)I 1

k (x(tk)) −
m∑

k=1
C(b − tk)I 2

k (x ′(t+k ))](s)}ds

+ ∑

0<tk<t
AS(t − tk)I 1

k (x(tk)) + ∑

0<tk<t
C(t − tk)I 2

k (x ′(t+k )).

(5)

Substituting the control (3) in (4) and using the hypothesis (H5), we get

Φ1(x, z)(b)

= C(b)x0 + S(b)y0 + ∫ b0 S(b − s)f (s, x(s), x ′(s))ds + ∫ b0 S(b − s)B
·{G−1

1 [x1 − C(b)x0 − S(b)y0 − ∫ b0 S(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
C(b − tk)I 1

k (x(tk)) −
m∑

k=1
S(b − tk)I 2

k (x ′(t+k ))](s)

+G−1
2 [y1 − AS(b)x0 − C(b)y0 − ∫ b0 C(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
AS(b − tk)I 1

k (x(tk)) −
m∑

k=1
C(b − tk)I 2

k (x ′(t+k ))](s)}ds

+
m∑

k=1
C(b − tk)I 1

k (x(tk)) +
m∑

k=1
S(b − tk)I 2

k (x ′(t+k )) = x1
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and from (5) we get

Φ2(x, z)(b)

= AS(b)x0 + C(b)y0 + ∫ b0 C(b − s)f (s, x(s), x ′(s))ds + ∫ b0 C(b − s)B
·{G−1

1 [x1 − C(b)x0 − S(b)y0 − ∫ b0 S(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
C(b − tk)I 1

k (x(tk)) −
m∑

k=1
S(b − tk)I 2

k (x ′(t+k ))](s)

+G−1
2 [y1 − AS(b)x0 − C(b)y0 − ∫ b0 C(b − s)f (s, x(s), x ′(s))ds

−
m∑

k=1
AS(b − tk)I 1

k (x(tk)) −
m∑

k=1
C(b − tk)I 2

k (x ′(t+k ))](s)}ds

+
m∑

k=1
AS(b − tk)I 1

k (x(tk)) +
m∑

k=1
C(b − tk)I 2

k (x ′(t+k )) = y1.

Hence, the system (1) is controllable provided the operatorΦ has a fixed point in Z.
The proof is based on the classical fixed point theorem for contractions. It follows
from the assumptions that eachΦi , i = 1, 2 is well defined and continuous. In order
to prove that Φ is a contraction mapping on Z, we take (x, z), (v, w) ∈ Z. From the
conditions (H1) − (H4), we get

‖Φ1(x, z)(t) −Φ1(v, w)(t)‖
≤ ∫ b0 N (k1‖x − v‖ + k2‖x ′ − v′‖)ds

+NKb{M1[
∫ b

0 N (k1‖x − v‖ + k2‖x ′ − v′‖)ds

+
m∑

k=1
ML(I 1

k )‖x(tk) − v(tk)‖ +
m∑

k=1
NL(I 2

k )‖x ′(t+k ) − v′(t+k )‖]

+M2[
∫ b

0 M(k1‖xs − vs‖ + k2‖x ′s − v′
s‖)ds

+
m∑

k=1
ÑL(I 1

k )‖x(tk) − v(tk)‖ +
m∑

k=1
ML(I 2

k )‖x ′(t+k ) − v′(t+k )‖]}

+
m∑

k=1
ML(I 1

k )‖x(tk) − v(tk)‖ +
m∑

k=1
NL(I 2

k )‖x ′(t+k ) − v′(t+k )‖
≤ {N [1 + Kb(M1N +M2M)]k1b+

[M + NKb(M1M +M2Ñ )]
m∑

k=1
L(I 1

k )}‖x − v‖

+N [1 +Kb(M1N +M2M)][k2b +
m∑

k=1
L(I 2

k )]‖z − w‖.

(6)
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Similarly, we have

‖Φ2(x, z)(t) −Φ2(v, w)(t)‖
≤ ∫ b0 M(k1‖x − v‖ + k2‖x ′ − v′‖)ds

+MKb{M1[
∫ b

0 N (k1‖x − v‖ + k2‖x ′ − v′‖)ds

+
m∑

k=1
ML(I 1

k )‖x(tk) − v(tk)‖ +
m∑

k=1
NL(I 2

k )‖x ′(t+k ) − v′(t+k )‖]

+M2[
∫ b

0 M(k1‖x − v‖ + k2‖x ′ − v′‖)ds

+
m∑

k=1
ÑL(I 1

k )‖x(tk) − v(tk)‖ +
m∑

k=1
ML(I 2

k )‖x ′(t+k ) − v′(t+k )‖]}

+
m∑

k=1
ÑL(I 1

k )‖x̃(tk) − ṽ(tk)‖ +
m∑

k=1
ML(I 2

k )‖x̃ ′(t+k ) − ṽ′(t+k )‖
≤ {M[1 + Kb(M1N +M2M)]k1b+

[Ñ + MKb(M1M +M2Ñ )]
m∑

k=1
L(I 1

k )}‖x − v‖

+M[1 +Kb(M1N +M2M)][k2b +
m∑

k=1
L(I 2

k )]‖z − w‖.

(7)

The above inequalities (6) and (7) and the assumption max{μ1,μ2} < 1 imply that
Φ is a contraction mapping. Hence there exists a unique fixed point (x, z) ∈ Z.
Then function x in PC1(J ,X) is a mild solution of (1). Thus, system (1) is exactly
controllable. �
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SIAC Filtering for Nonlinear Hyperbolic
Equations

Xiaozhou Li and Jennifer K. Ryan

Abstract We present the results of the symmetric and one-sided smoothness-
increasing accuracy-conserving (SIAC) filter applied to a discontinuous Galerkin
(DG) approximation for two examples of nonlinear hyperbolic conservation laws.
The traditional symmetric SIAC filter relies on having a translation invariant
mesh, periodic boundary conditions, and linear equations. However, for practi-
cal applications that are modeled by nonlinear hyperbolic equations, this is not
feasible. Instead we must concentrate on a filter that allows error reduction for
nonuniform/unstructured meshes and nonperiodic boundary conditions for nonlin-
ear hyperbolic equations. This proceedings is an introductory exploration into the
feasibility of these requirements for efficient filtering of nonlinear equations.

1 Introduction and Motivation

In this chapter, we consider the usefulness of superconvergence extraction techniques
for discontinuous Galerkin (DG) approximations to nonlinear hyperbolic equations
of the form

ut +
d∑

i=1

f (u)xi = 0, (x, t) ∈ Ω × (0, T ], (1)

u(x, 0) = uo(x), x ∈ Ω. (2)

The specific extraction technique that we consider is smoothness-increasing
accuracy-conserving (SIAC) filtering. We consider this technique as it is known for
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reducing the oscillations in the DG error as well as the error itself, while increasing
the continuity of the numerical approximation.

Mathematically, the symmetric SIAC filter relies on having a translation in-
variant mesh, periodic boundary conditions, and a linear equation. However, for
practical applications that are modeled by nonlinear hyperbolic equations, this is
not feasible. Instead we must concentrate on a filter that allows error reduction for
nonuniform/unstructured meshes and nonperiodic boundary conditions for nonlin-
ear hyperbolic equations. The question we seek to answer is how feasible are these
requirements for efficient filtering of nonlinear equations.

2 Background

2.1 Discontinuous Galerkin Methods

In this section, we merely summarize the important properties of the discontinu-
ous Galerkin method that are useful in superconvergence extraction. More on these
methods can be found in [2, 3].

The useful properties are:

• An approximation space that consists of piecewise polynomials of degree ≤ k
• Weak continuity at element interfaces
• A variational formulation

((uh)t ,ψ)Ω +
d∑

i=1

(

−(fi(uh),ψxi )Ω +
∑

K

∫

∂K

f̂i(u
L
h , uRh )νiψ ds

)

= 0, (3)

where the summation is over all elements in our discretized domain.

These properties allow us to obtain the following error estimates for the DG
solution for linear hyperbolic equations:

• u − uh ∼ O(hk+1) in L2 for sufficiently smooth initial data, u0

• u − uh ∼ O(h2k+1) in a negative order norm

We emphasize that these estimates rely on having smooth enough initial data and
a linear equation so that information propagates along characteristics. In the case
of nonlinear hyperbolic equations, the initial data may be smooth enough, but
characteristics may intersect, forming a shock.

2.2 Smoothness-Increasing Accuracy-Conserving (SIAC)
Filtering

The SIAC filter is a form of superconvergence extraction that filters out oscillations
in the error. It is performed by convolving the DG solution with a B-spline kernel at
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the final time,

u+h(x) = (K2(k+1),k+1
h + uh(·, T ))(x). (4)

Using a SIAC filter on linear hyperbolic equations, one may show that

‖u −K2(k+1),k+1
h + uh‖0,Ω0 ≤ C h2k+1, (5)

for a translation invariant mesh. This is based upon the works of [1, 4, 7, 8].
The symmetric convolution kernel is a central B-spline kernel given by

K (r+1,!)(x) =
r∑

γ=0

c(r+1,!)
γ ψ (!)

(
x − xγ

)
, (6)

where K (r+1,!)
H (x) = 1

H
K (r+1,!)

(
x
H

)
, xγ = − r

2 + γ , and generally r = 2k and
! = k + 1.We note that ψ (!) is a central B-spline of order !, and H is generally the
translation invariance of the mesh. The weighting coefficients of the B-splines are
given by the linear system

K (r+1,!) + p = p, p = 1, x2, . . ., xr. (7)

Note that convolving the DG solution with such a kernel produces an approximation
that is a polynomial of degree r + 1 ≤ 2k + 1 with continuity of ! − 2 ≤ k − 1.
Further, note that the postprocessing stencil width is of length (r + !)H.

2.3 Boundary Filtering

The kernel given in Eq. (6) is for postprocessing smooth regions, away from bound-
aries. However, when near a boundary or discontinuity, this needs to be sufficiently
modified to balance accuracy constraints with error reduction and computational
efficiency. It has recently been shown [6] that a suitable modification is given by

K (r+1,!)(x) =
r∑

γ=0

c(!)
γ ψ

(!)(x − xγ − λ(x))

︸ ︷︷ ︸
Shifted filter

+ c(!)
r+1(x − (x̄ − 1))!−1χ[x̄−1,x̄]︸ ︷︷ ︸

Special B-spline

. (8)

This kernel uses r + 1 central B-splines that are shifted to accommodate a nonsym-
metric support near a boundary or discontinuity along with a general B-spline that
aids in improving the computational efficiency and reducing the errors in regions
where one-sided filters are necessary.

At the price of computational efficiency and error reduction, we have had to give
up the property of superconvergence for ! − 1 ≥ 2. In the interior, we achieve
superconvergence of order r + 1 ≤ 2k + 1, but still only have convergence of order
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! − 1 ≤ k + 1 at the boundaries. However, in the case of linear approximations
and k = 1, we still achieve a global superconvergence order of three, even in the
boundary regions. This clearly shifts our focus to error reduction and hence allows
us to more closely examine how the SIAC filter could aid in error reduction for
nonlinear equations whose solution contains a discontinuity.

3 SIAC Filtering for Nonlinear Hyperbolic Equations

There has been previous work in SIAC filtering for nonlinear hyperbolic equations.
However, the work was restricted to nonlinear equations with a smooth solution. In
[5], the following theorem was given:

Theorem 1 Assume we have a smooth solution to Eq. (1) whose DG approximate
is given by uh. If |f ′′

i | ≤ M , then

‖(u − uh)(T )‖−(k+1),Ω ≤ Ch2k+m, (9)

where m = 0, 1
2 , 1, depends on the numerical flux and k > d

2 .

As a consequence of this higher order convergence in the negative-order norm, we
then have O(h2k+m) convergence of the postprocessed solution in the L2-norm.

4 Numerical Examples

Although the theory has been established for smooth solutions, it is interesting to
investigate the application of the SIAC filter to nonsmooth solutions. To demonstrate
the possibilities of the SIAC filtered solution for such solutions, we present two ex-
amples: First, a one-dimensional Burgers equation after the shock has developed; and
second, the double Mach reflection problem of the two-dimensional Euler equations.

The steps of the filtering process are as follows:

• Calculate the DG approximation to the equation at the final time t = T
• Identify “troubled cells,” i.e., where there is a discontinuity
• Calculate the SIAC filtered solution

– Use a symmetric filter in smooth regions, a distance of at least r+!2 h away from
boundaries or discontinuities

– In “troubled cell regions,” use a boundary filter

4.1 One-Dimensional Burgers Equation

For the first example, we consider the equation

ut + uux = 0, u(x, 0) = sin (x), x ∈ [0, 2π ], T = 1. (10)
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Table 1 The L2-error of the DG solution and the SIAC filtered DG solution for P
2 and P

3 using the
boundary filter in the appropriate regions. Errors are calculated away from the shock

DG SIAC DG DG SIAC DG

Mesh L2 error order L2 error order L2 error order L2 error order

P
2

P
3

40 1.02E-05 – 5.28E-06 – 4.89E-08 – 5.18E-08 –

60 3.29E-06 2.80 1.61E-06 2.94 1.07E-08 3.74 1.59E-09 8.60

80 1.46E-06 2.83 6.94E-07 2.92 3.08E-09 4.33 1.61E-10 7.96

100 7.84E-07 2.78 3.63E-07 2.90 1.33E-09 3.76 3.40E-11 6.96

Fig. 1 Plots of pointwise errors of the DG solution and the SIAC filtered DG solution for P
2 using

the boundary filter in the appropriate regions

Note that this equation contains a shock at x = π.We have implemented the sym-
metric filter in smooth regions and the boundary filter in the elements next to the
boundaries and shocks. No filter is implemented in the element that contains the
shock. The results for the errors are presented in Table 1 and Fig. 1.

4.2 Two-Dimensional Double Mach Reflection

In this example, we apply the SIAC filter, including the boundary filter, to the two-
dimensional Euler equations for the double Mach reflection problem. We use the
multiwavelet-troubled cell indicator of Vuik [9] and plot the results for a zoomed-
in region of the solution in Fig. 2. Note that from the results given for Burgers
equation, we expect that the difference when we examine the two solutions will be
small. However, we do observe some reduced oscillations with the SIAC filtered DG
approximation.
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Fig. 2 Results for the DG approximation and SIAC filtered DG approximation when applied to the
double Mach reflection problem

5 Conclusions and Future Work

SIAC filtering holds promise in applications to nonlinear equations, although their
exact usefulness remains unclear. Traditionally, SIAC filtering uses B-splines to
induce smoothness on the DG field and enhance accuracy. This traditionally allows
order improvement from O(hk+1) to O(h2k+m) for smooth regions. At the boundaries,
order is reduced for improved computational efficiency. For nonlinear equations, their
usefulness depends on the boundedness of the flux function and the chosen numerical
flux. From our observations, the filtering appears to reduce oscillations in regions
where applied. How exactly it should be applied is the subject of on-going research.

Acknowledgement Portions of this research are supported by the European Office of Aerospace
Research and Development under grant numbers FA8655-09-1-3055 and FA8655-13-1-3017. We
would like to thank Liangyue Ji (Minnesota) for useful discussions and Thea Vuik (TU Delft) for
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Structural Analysis and Dummy Derivatives:
Some Relations

R. McKenzie and J. Pryce

Abstract Differential algebraic equations (DAEs) appear frequently in applications
involving equation based modeling, from robotics to chemical engineering. A com-
mon way of making a DAE amenable to numerical solution is by reducing the index
to obtain a corresponding ordinary differential equations (ODE) and using an ODE
solution method. The signature matrix method developed by Pryce does not rely on
an index reduction step and instead solves the DAE directly via Taylor series. The
chapter draws comparisons between these two different approaches and shows the
signature matrix method is in some sense equivalent to the dummy derivative index
reduction method developed by Mattsson and Söderlind. The ideas are illustrated
via a DAE from Campbell and Griepentrog that models a robot arm. The authors
acknowledge G. Tan and N. Nedialkov at McMaster University, Hamilton, Canada
for their support in this chapter and the talk that accompanied it at AMMCS-2013.

1 An Overview of the Structural Analysis Method

We present a short explanation of the structural analysis (SA) method, which is used
in Sect. 3 to compare the SA approach and dummy derivative (DD) approach.

We are given a system of n equations fi = 0 in n unknown functions xj of time
t , where the equations may contain derivatives of the n unknowns. We form the
problem’s signature matrix Σ , with entries of the form:

σij =
⎧
⎨

⎩
order of highest derivative of xj in fi if xj occurs in fi ,

−∞ if not .
(1)
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We then find a highest value transversal (HVT) for our problem. This is found by
taking one finite entry in each row and column ofΣ such that the total sum is greater
than that of any other choice of finite entry in each row and column. If this is possible
the problem is called structurally well-posed (SWP); if not it is called structurally
ill-posed (SIP).

We look for nonnegative integer valued offset vectors, c and d satisfying:

σij ≤ dj − ci , (2)

with equality on a HVT and minici = 0.
We then form the n× n Jacobian matrix J with entries

Jij = ∂fi

∂x
(dj−ci )
j

=
⎧
⎨

⎩

∂fi

∂x
(σij )

j

if dj − ci = σij
0 elsewhere

and solve the equations to obtain Taylor coefficients in steps numbered as k, using
equations

f
(k+ci )
i = 0 ∀i such that k + ci ≥ 0 (3)

to solve for variables

x
(k+dj )
j ∀j such that k + dj ≥ 0 (4)

at each step. The initial step number is equal to −maxj dj . If rows and columns of
J are ordered by descending offset values, then at each stage of the solution process
the Jacobian (Jk) is a submatrix of J, the Jacobian at stage 0, see [6].

2 An Overview of the DD Method

We define some notation used for the DD method in [3]. Write the original problem
as Fx = 0, where F is a (column n-vector) differential–algebraic operator (DAO).

1. ν(F), a column n-vector of nonnegative integers, containing the minimum
number of differentiations of each equation to derive an ODE.

2. Dν = diag

(
dν

dtν
, . . .,

dνn

dtνn

)
, regarded as a DAO.

3. The differentiated problem is Gx = Dν(F )Fx = 0.

We can now present the main steps of the dummy derivative algorithm:

1. Find ν(F) (by Pantelides’ method or SA).
2. Obtain a differentiated problem Gx = 0.
3. Permute the Jacobian of Gx to block lower-triangular form.
4. Perform the index reduction algorithm. Loop through steps that select derivatives

to be considered as algebraic variables in the solution process.
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We need to make several assumptions and define a way of indexing over blocks before
coming to the main index reduction step (item 4) of the algorithm. Let gi represent
the ith diagonal block in G, and let zi be the vector of highest-order derivatives
(HODs) of block gi . Assume that G is in block lower-triangular form with only one
block. Also assume the equations (and variables) have been sorted into descending
order with respect to number of differentiations. We consider each step in turn by
the superscript [j ]. The index reduction part of the algorithm is:

1. Initialize z[0], g[0](z[0]), j = 0, G[0] = ∂g[0]

∂z[0]
.

2. While g[j ] has m differentiated equations, with m > 0:
3. Let H [j ] be the first m rows of G[j ].
4. Choose m columns of H [j ] to get a square nonsingular matrix G[j+1].
5. Set the corresponding derivatives of the variables considered in G[j+1] to be

dummy derivatives.
6. Omit one differentiation.
7. Set j = j + 1.
8. End while.

Now collect all original and differentiated equations used, in original variables and
dummy derivatives, to get a new square system of index 1.

3 A Comparison Between the Two Methods

There are many similarities between the two methods. First, ν(F) found in DDs
is the same as c in SA. This is apparent because from [6] we see that Pantelides’
algorithm [4] and SA can be used interchangeably. Therefore we have that Dν =
diag

(
dc1

dtc1
, . . .,

dcn

dtcn

)
. Now we have the following equalities:

Gx = Fνx = Dν(F )Fx = DcFx, (5)

and thus the differentiated problem can be written as (f (ci )
i (x) = 0)ni=1. Hence, the

first stage system in DDs is the k = 0 stage system in SA. We are differentiating the
ith equation ci times, so the maximum derivative for each variable xj in Gx = 0 will
be equal to maxi(σij+ci). From (2) this is dj . Hence we have z[1] = (x(d1)

1 , . . ., x(dn)
n ).

The formula for the DD Jacobian matrixG[0] can now be written in this SA-based
notation to show it equals the SA Jacobian J.

G[0] = ∂g
[1]
i

∂z[1]
i

= ∂f
(ci )
i

∂x
(dj )
j

= J. (6)

We note that going to the next step in DDs by reducing the order of differentiation
by one is equivalent to reducing the offset vector c by 1 in positions where it is > 0
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(and consequently reducing d by 1 correspondingly). Therefore at step 2 in DDs
we consider the equations used in step −1 of SA, since SA increases the order of
differentiation by one at each step. Because of this we renumber the DD method for
the remainder of this section to be 0, 1, . . . . A proof of both methods using the same
equations at each step follows.

Proof We have already shown that at stage 0 both methods use the same equations. In
DDs we now remove any equation such that ci = 0. We then omit one differentiation
and repeat. Hence at step 1 we remove equations such that ci − 1 = 0 and so on.
That is, at subsequent step k remove equations such that ci − k = 0. From (3) this
gives exactly the equations considered at step −k in SA. �

Before we go in to any deeper comparisons we need the following lemma.

Lemma 1 If a square nonsingular DAE has 0 D.O.F. and a HVT on the main
diagonal of Σ then d = cT .

Proof If we have 0 D.O.F. this is equivalent to
∑
j dj −

∑
i ci = 0 from [6] and by

(2) di − ci ≥ 0, ∀i. Hence, di ≥ ci and so both must be equal. �

Let us now assume we have 0 D.O.F. and have organized the BTF so that there is
a HVT on the main diagonal. We already have G[0] = J0. Let us prove this equality
extends to further steps. Let mk be the number of variables at the end of each step
(the number of DDs). At step k, the nonsquare matrix H [k] has mk equations in
mk−1 variables. The mk−1 − mk equations removed in going from G[k] to H [k] all
had ci − k = 0, so from the lemma there must also be mk−1 − mk variables with
dj − k = 0. If 1 ≤ i ≤ mk and j > mk then −k + ci > 0 and −k + dj ≤ 0, hence
dj − ci < 0 and thus cannot be equal to σij , so that J−k,ij = 0. Since we have
equality at the initial step in DDs this means G[0]

ij = 0 and by induction G[k]
ij = 0.

Thus columns with dj = 0 must be removed to form G[k+1] for structural reasons,
i.e., we do not consider undifferentiated variables. This leaves us looking at variables
such that −k+dj > 0 at each stage, which is equivalent to all differentiated variables
solved for in SA at the equivalent step, i.e., G[k] = J−k .

Unfortunately we cannot be as certain as to which variables will become dummy
derivatives once degrees of freedom are introduced. Of course, we can always know
the total number of dummy derivatives introduced will be

∑
i ci .As to which variables

become dummy derivatives, the best we can say at present is the following.
At each step the variables that become dummy derivatives are a subset of the

variables that became dummy derivatives at the previous step (necessarily excluding
those with k − dj = 0), of size mk , with each variable being differentiated one time
less than in the previous step. So, the dummy derivatives will be a subset of the
variables found at the equivalent step of SA. More formally, index the set of dummy
derivatives at step k asD[k]. Then, regarding variables and their derivatives as distinct
symbols

D[k] ⊂
{
x

(−k+dj )
j | (− k + dj ) > 0, j = 1, . . ., n

}
(7)
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where the D[k] must be chosen in such a way that the set:

X[k] =
{
xj | x(l)

j ∈ D[k], for some l
}

(8)

decreases as k increases.

4 An Example

Consider the robot arm DAE, introduced in [1] and reformulated to give a structurally
nonsingular Jacobian in [5]. We shall use the 6 × 6 formulation introduced in [5],
where the equations are given in full. For our purposes, it is enough to give its
structural Jacobian, signature matrix and offsets (with a HVT marked by • and −∞
entries left blank):

Σ =

x1 x3 w x2 u2 u1 ci⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

G 0• 0 4
H 0 0• 4
D 2 1 0• 0 2
F 1 2 0 0• 2
E 1 1 0 2 0• 0
K 0 0 0• 0
d j 4 4 2 2 0 0

, J =

x(4)
1 x(4)

3 w′′ x′′2 u2 u1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
G(4) Gx1 Gx3 0 0 0 0
H(4) Hx1 Hx3 0 0 0 0
D′′ Dx′′1 0 Dw Dx2 0 0
F ′′ 0 Fx′′3 Fw Fx2 0 0
E 0 0 0 Ex′′2 Eu2 0
K 0 0 0 0 Ku2 Ku1

.

Working through the dummy derivative algorithm yields ν(F) = (4, 4, 2, 2, 0, 0),
The vector of HODs is z[0] = (x(4)

1 , x(4)
3 , w′′, x ′′2 , u2, u1)T and g[0] = (G(4),H (4),D(2),

F (2),E,K)T.
Thus we have a dummy derivative Jacobian of the form:

∂g[0]

∂ z[0] = G[0] =

x(4)
1 x(4)

3 w′′ x′′2 u2 u1 ci⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G(4) G(4)

x(4)
1
G(4)

x(4)
3

0 0 0 0 4

H(4) H(4)

x(4)
1
H(4)

x(4)
3

0 0 0 0 4

D′′ D′′
x(4)

1
0 D′′

w′′ D′′
x′′2

0 0 2

F ′′ 0 F ′′
x(4)

3
F ′′
w′′ F ′′

x′′2
0 0 2

E 0 0 0 Ex′′2 Eu2 0 0
K 0 0 0 0 Ku2 Ku1 0
d j 4 4 2 2 0 0

.

By Griewank’s Lemma [2] this is equivalent to J.
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Removing equations with ci = 0 yields the under-determined system:

H [0] =

x(4)
1 x(4)

3 w′′ x′′2 u2 u1 ci⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
G(4) G(4)

x(4)
1
G(4)

x(4)
3

0 0 0 0 4

H(4) H(4)

x(4)
1
H(4)

x(4)
3

0 0 0 0 4

D′′ D′′
x(4)

1
0 D′′

w′′ D′′
x′′2

0 0 2

F ′′ 0 F ′′
x(4)

3
F ′′
w′′ F ′′

x′′2
0 0 2

d j 4 4 2 2 0 0

.

We are now forced to remove the last two columns to get a nonsingular matrix:

G[1] =

x(4)
1 x(4)

3 w′′ x′′2 ci⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
G(4) G(4)

x(4)
1
G(4)

x(4)
3

0 0 4

H(4) H(4)

x(4)
1
H(4)

x(4)
3

0 0 4

D′′ D′′
x(4)

1
0 D′′

w′′ D′′
x′′2

2

F ′′ 0 F ′′
x(4)

3
F ′′
w′′ F ′′

x′′2
2

d j 4 4 2 2

.

We thus makex(4)
1 , x(4)

3 , w′′, x ′′2 dummy derivatives, reduce the order of differentiation
and repeat the process. We end up at the following scheme, with the SA stages listed
alongside for comparison:

DD stage SA stage Equations being used Variables being found DDs selected

4 −4 G,H x1, x3 N/A

3 −3 G′,H ′ x ′1, x ′3 x ′1, x ′3
2 −2 G′′,H ′′,D,F x ′′1 , x ′′3 , w, x2 x ′′1 , x ′′3
1 −1 G(3),H (3),D′,F ′ x

(3)
1 , x(3)

3 , w′, x ′2 x
(3)
1 , x(3)

3 , w′, x ′2
0 0 G(4),H (4),D′′,F ′′,E,K x

(4)
1 , x(4)

3 , w′′, x ′′2 , u2, u1 x
(4)
1 , x(4)

3 , w′′, x ′′2

The dummy derivatives are equivalent to the differentiated variables solved for at
each step in SA as expected, due to the 0 D.O.F. in this example.

5 Conclusions

We have shown the index reduction algorithm in [3] produces a near identical solution
scheme to that of SA in some situations, and in any case the SA will provide a set
of variables that could be chosen as dummy derivatives at a step. In future work we
aim to extend our results to the cases where D.O.F are present.
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On the Exact Solutions of the
Klein–Gordon–Zakharov Equations

Isaiah Elvis Mhlanga and Chaudry Masood Khalique

Abstract In this chapter we study a coupled system of nonlinear partial differential
equations (PDEs), namely, the Klein–Gordon–Zakharov equations. The travelling
wave hypothesis approach along with the simplest equation methods are utilized to
obtain exact solutions of this system.

1 Introduction

The Klein–Gordon–Zakharov (KGZ) equations [1]

utextt t − uxx + u + uv + |u|2u = 0, (1a)

vtextt t − vxx − (|u|2)xx = 0, (1b)

are a coupled system of nonlinear partial differential equations (PDEs) by two func-
tions u(x, t) and v(x, t). This model describes the interaction of the Langmuir wave
and the ion acoustic wave in plasma. The function u(x, t) denotes the fast time scale
component of electric field raised by electrons and the function v(x, t) denotes the
deviation of ion density from its equilibrium. Here u(x, t) is a complex function and
v(x, t) is a real function. Note that if we remove the term |u|2u, then this system
reduces to the classical Klein–Gordon–Zakharov system regime [2]

utextt t − uxx + u + uv = 0,

vtextt t − vxx − (|u|2)xx = 0. (2)
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Up to now, a number of studies have been conducted only for this system (2) in
different time space [3–7]. Chen Lin [8] considered orbital stability of solitary waves
for the KGZ equations (1), while Shi et al. [2] employed the sine–cosine method and
the extended tanh method to construct exact wave solutions of the KGZ equations
(1).

In this chapter, we employ the travelling wave variable approach along with the
simplest equation to obtain exact solutions of the KGZ equations (1).

2 Solution of (1) Using the Travelling Wave Variable Approach

The travelling wave variable approach converts the system of nonlinear PDEs into a
nonlinear ordinary differential equation which we then solve to obtain exact solutions
of the system.

In order to solve the KGZ equations (1), we first transform it to a system of
nonlinear ordinary differential equations which can then be solved in order to obtain
its exact solutions.

We make the wave variable transformation

u = eiφu(z), v = v(z), φ = px + rt , z = kx + dt , (3)

where p, r , k and d are real constants, d �= k. Using this transformation,
(1) transforms to

(p2 − r2 + 1)u + i(2rd − 2pk)u′ + (d2 − k2)u′′ + uv + u3 = 0, (4a)

(d2 − k2)v′′ − (u2)
′′ = 0. (4b)

Integrating (4b) twice and taking the constants of integration to be zero we obtain

v = u2

d2 − k2
. (5)

Now substituting (5) into (4a) we get

u′′ =
( r2 − p2 − 1

d2 − k2

)
u +
(d2 − k2 + 1

(d2 − k2)2

)
u3, (6)

which can be written in the form

u′′ = Au + Bu3, (7)

where
A = r2−p2−1

d2−k2 and B = d2−k2+1
(d2−k2)2 .

Solving (7), with the aid of Mathematica, we obtain the solution

u(z) = ± 1

P2
i sn(P1|ω), (8)
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where sn(P1|ω) is a Jacobian elliptic function of the sine-amplitude [9],

P1 =

√(√
A2 − 2Bc1 − A

)
(z + c2) 2

√
2

, P2 =
√

B
√
A2 − 2Bc1 + A

and

ω =
−Bc1 + A

(√
A2 − 2Bc1 + A

)

Bc1

is the modulus of the elliptic function with 0 < ω < 1. Here c1 and c2 are constants
of integration. Reverting back to our original variables, we can now write the solution
of our Klein–Gordon–Zakharov equations as

u(x, t) = ±e
i(px+rt)

P2
i sn(P1|ω), (9)

where

P1 =

√(√
A2 − 2Bc1 − A

)
(kx + dt + c2) 2

√
2

,

ω and P2 are as above.
Now v(x, t) can be obtained from (5).
It should be noted that the solution (9) is valid for 0 < ω < 1 and asω approaches

zero, the solution becomes the normal sine function, sin z, and as ω approaches 1,
the solution tends to the tanh function, tanh z.

The profile of the solution (9) is given in the Fig. 1.

3 Solution of (6) Using the Simplest Equation Method

We now use the simplest equation method [10] to solve (6). The simplest equations
that will be used are the Bernoulli and Riccati equations.
Let us consider the solutions of (6) in the form

u(z) =
M∑

i=0

Ai(G(z))i , (10)

whereG(z) satisfies the Bernoulli or Riccati equation.M is a positive integer that can
be determined by the balancing procedure and Ai , (i = 0, 1, · · · ,M), are parameters
to be determined.

We first consider the Bernoulli equation

G′(z) = aG(z) + bG2(z), (11)
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Fig. 1 3D plot of solution (9)

where a and b are constants.
The balancing procedure yieldsM = 1, so the solution of (6) is of the form

u(z) = A0 + A1G(z). (12)

Substituting (12) into (6) and making use of the Bernoulli equation (11) and then
equating all coefficients of the function G′ to zero, we obtain

2A1k
4b2 − k2A1

3 + d2A1
3 − 4A1d

2k2b2 + A1
3 + 2A1d

4b2 = 0,

3A1k
4ab + 3 d2A0A1

2 − 3 k2A0A1
2 − 6A1d

2k2ab + 3A0A1
2 + 3A1d

4ab = 0,

p2A0d
2 − p2A0k

2 − r2A0d
2 + r2A0k

2 − A0k
2 + d2A0

3 − k2A0
3 + A0d

2 + A0
3 = 0,

A1d
2 + 3 d2A0

2A1 − p2A1k
2 + r2A1k

2 + p2A1d
2 + A1d

4a2 − 3 k2A0
2A1 + A1k

4a2

+ 3A0
2A1 − 2A1d

2k2a2 − r2A1d
2 − A1k

2 = 0.

Solving this system of algebraic equations with the aid of Maple, we obtain

A0 = a(d2 − k2)
√

2(k2 − d2 − 1)
, A1 =

√
2b(d2 − k2)

k2 − d2 − 1
,

p =
√
r2d2 − r2k2 + k2 − d2A0

2 + k2A0
2 − d2 − A0

2

d2 − k2
.



On the Exact Solutions of the Klein–Gordon–Zakharov Equations 305

Fig. 2 3D plot of solution (13)

As a result a solution of (1) using the Bernoulli equation as the simplest equation is

u(x, t) =ei(px+rt)
[ √

2ab
(
d2 − k2

)
( cosh (a(kx + dt + c)) + sinh (a(kx + dt + c)))√

k2 − d2 − 1(1 − b cosh (a(kx + dt + c)) − b sinh (a(kx + dt + c)))

+ a
(
d2 − k2

)

√
2(k2 − d2 − 1)

]
, (13)

where c is a constant of integration.
The profile of the solution (13) is given in the Fig. 2.
Similarly for the Riccati equation

G′(z) = aG2(z) + bG(z) + c, (14)

where a, b and c are constants.
The balancing procedure yieldsM = 1, so the solution of (6) is of the form

u(z) = A0 + A1G(z). (15)

Similar calculations yield the following set of values

A0 = b(d2 − k2)
√

2(k2 − d2 − 1)
, A1 = −

√
2a(d2 − k2)

√
k2 − d2 − 1

d2 − k2 + 1
,

c = −
√

2(k2 − d2 − 1)(d2b2 − k2b2 − 2 − 2p2 + 2r2)

4A1(d2 − k2 + 1)
.
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So using Ricatti as the simplest equation, the solutions of the Klein–Gordon–
Zakharov equations (1) are

u(t , x) = eiφ
[
A0 + A1

{
− b

2a
− θ

2a
tanh

[
1

2
θ (z + C)

]}]
(16)

and

u(t, x) =eiφ
[
A0 + A1

{
− b

2a
− θ

2a
tanh

(
1

2
θz

)

+ sech
(
θz
2

)

C cosh
(
θz
2

)− 2a
θ

sinh
(
θz
2

)
}]

, (17)

where φ = px + rt and z = kx + dt. θ is given by
√
b2 − 4ac, C is a constant of

integration, and A0 and A1 are as obtained above.

4 Conclusion

In this chapter we constructed exact solutions of the Klein–Gordon–Zakharov equa-
tions via two different methods; the travelling wave approach and the simplest
equation method. Firstly, we transformed the system of partial differential equa-
tions (PDEs) to a system of ordinary differential equations (ODEs) which we solved
to obtain exact solutions of the KGZ equations given by (1) using three different
approaches. The solutions obtained were travelling wave solutions.

Acknowledgments IEM and CMK would like to thank the Organizing Committee of ‘International
Conference: AMMCS-2013’, Waterloo, Canada for their kind hospitality during the conference.
IEM also thanks the Faculty Research Committee of FAST, North-West University, Mafikeng
Campus for financial support.

References

1. Wang, T., Chen, J., Zhang, L.: Conservative difference methods for the Klein–Gordon–
Zakharov equations. J. Comput. Appl. Math. 205, 430–452 (2007)

2. Shi, Q., Xiao, Q., Liu, X.: Extended wave solutions for a nonlinear Klein–Gordon–Zakharov
system. Appl. Math. Comput. 218, 9922–9929 (2012)

3. Guo, B.L., Yuan, G.W.: Global smooth solution for the Klein–Gordon–Zakharov equations. J.
Math. Phys. 36 (8), 4119–4124 (1995)

4. Ozawa, T., Tsutaya, K., Tsutsumi, Y.: Normal form and global solutions for the Klein–Gordon–
Zakharov equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 12 (4), 459–503 (1995)

5. Tsutaya, K.: Global existence of small amplitude solutions for the Klein–Gordon–Zakharov
equations. Nonlinear Anal. TMA. 27 (12), 1373–1380 (1996)



On the Exact Solutions of the Klein–Gordon–Zakharov Equations 307

6. Adomian, G.: Non-perturbative solution of the Klein–Gordon–Zakharov equation. Appl. Math.
Comput. 81 (1), 89–92 (1997)

7. Shang, Y., Huang, Y., Yuan, W.: New exact traveling wave solutions for the Klein–Gordon–
Zakharov equations. Comput. Math. Appl. 56, 1441–1450 (2008)

8. Chen, L.: Orbital stability of solitary waves for the Klein–Gordon–Zakharov equations. Acta.
Math. Appl. Sin. (English Ser.) 15 (1), 54–64 (1999)

9. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic,
New York, (2007)

10. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential
equations. Chaos Soliton Fract. 24, 1217–1231 (2005)



Collision Effects of Solitary Waves for the
Gardner Equation

Abdus Sattar Mia

Abstract We study the physical and collision properties of the combined KdV–
mKdV solitons given by the Gardner equation which possess solitary wave solution
characterized by sech function. A collision of the two solitary waves produces
2-soliton solution. We make a physical form of the 2-soliton solution where the
fast soliton moves with speed c1 and the slow soliton moves with speed c2. In the
collision described by the 2-soliton solution, the solitary waves preserve their shapes
and speeds, but get a shift in position where the fast soliton overtakes the slow soliton
if their speeds have same direction, and two solitons cross head-on if their speeds
have opposite direction. For a collision there exist three different types of interactions
which depend on the relative ratio c1/c2 of speeds and the relative orientation of the
two solitary waves.

1 Introduction

The Gardner Eq. [5] also known as combined KdV–mKdV equation is given by

ut + 2auux + 3bu2ux + uxxx = 0 (1)

where a, b are any arbitrary real constants and u(x, t) is the amplitude of the ocean
waves in shallow seas. The Eq. (1) is completely integrable [5, 10] with a Lax pair and
inverse scattering transformation [1], and admits solitary-wave solution [4, 9, 10].
Wazwaz has derived multi-soliton solutions of the Gardner equation in his book
[10] in an exponential form. In the 2-soliton solution, the solitary waves undergo a
collision. We found that three types of collision exist: (I) a fast right-moving soliton
with speed c1 > 0 overtakes a slow right-moving soliton with speed c2 > 0, (II) a fast
left-moving soliton with speed c1 ∈ (− 3/2, 0) overtakes a slow left-moving soliton
c2 ∈ (−3/2, 0), and (III) a right-moving soliton with speed c1 > 0 and a left-moving
soliton c2 ∈ (− 3/2, 0) collide head-on. We carry out an asymptotic analysis of the
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2-soliton solution to analyze the collision. For types (I) and (III), we find that the net
effect of the collision is to produce a respective forward and backward shift in the
positions of the fast and slow waves while for type (II) these shifts interchange the
direction. In particular, these shifts are found to depend only on the speeds of the
two waves.

We express the 2-soliton solution in the physical form that exhibits different
interactions of two solitary waves during collision. Interactions have been classified
in three categories depending on the speeds ratio and relative orientations of the
solitary waves.

2 Gardner Solitary-Wave Solution

With the suitable values of the coefficients (a = 3, b = 2), the Gardner equation (1)
becomes

ut + 6uux + 6u2ux + uxxx = 0 (2)

Using a transformation u(x, t) = v(x, t) − 1/2, the Eq. (2) can be written as

vt − 3

2
vx + 6v2vx + vxxx = 0 (3)

which has the soliton solution of the rational form (see [3, 6–8])

v(x, t) = G/F (4)

with G = 2(fxg − gxf ), F = f 2 + g2

Then the 1-soliton solution for the Eq. (3) is given by (f = eθ , g = 1)

v(x, t) = 2κkekξ /(1 + e2kξ ), κ = ±1 (5)

where ξ = x − ct is a travelling-wave coordinate centered at initial position x = 0
and moves with a speed c = k2 − 3/2. So the 1-soliton solution for the Gardner
equation:

u = −1/2 + κλ sech(λ(x − ct)) (6)

with λ = k = √
c + 3/2. For k ∈ R, we see that c ≥ −3/2.

This solution describes a stable travelling-wave that is single-spiked with up (or
down) faced orientation for κ = 1 (κ = −1). Its height relative to u = −1/2 is
proportional to ±√

c + 3/2, and its width is proportional to
√

2/
√

2c + 3. The first
four conserved quantities of (2) are given by

M =
∫ ∞

−∞
u dx, P =

∫ ∞

−∞
u2 dx, E = 1

4

∫ ∞

−∞
(u4 + 2u3 − u2

x) dx (7)

C =
∫ ∞

−∞
x(u + u2) − t(3u4 + 6u3 + 3u2 + 3uuxx) dx (8)

first three of which are analogous to the KdV mass, momentum, and energy.
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3 Gardner 2-Soliton Solution

The Hirota ansatz [10] for the 2-soliton solution of (3) are given by

f = eθ1 + eθ2 , g = 1 − Aeθ1+θ2 (9)

in terms of θ1 = k1ξ1 and θ2 = k2ξ2, k1, k2 ∈ R, where the travelling-wave
coordinates are given by ξ1 = x − c1t , ξ2 = x − c2t with speeds c1 = k2

1 − 3/2,
c2 = k2

2 − 3/2, and where A is given by (see [8, 10])

A = (k1 − k2)2/(k1 + k2)2 (10)

The 2-soliton solution of (3) can be written in the rational form (4) in terms of

G = 2(κ1λ1 exp (λ1ξ1)(1 + A exp (2λ2ξ2)) + κ2λ2 exp (λ2ξ2)(1 + A exp (2λ1ξ1)))
(11)

F = 1 + 2κ1κ2(1 − A) exp (λ1ξ1 + λ2ξ2) + exp (2λ1ξ1) + exp (2λ2ξ2)

+ A2 exp (2(λ1ξ1 + λ2ξ2)) (12)

with λ1 = k1 = √
c1 + 3/2, λ2 = k2 = √

c2 + 3/2, κ1 = ±1, κ2 = ±1, and
where ξ1 = x − c1t − a1, ξ2 = x − c2t − a2 are fast and slow travelling-wave
coordinates having initial positions at x = a1 and x = a2 respectively.

3.1 Asymptotic Analysis

We study the asymptotic analysis of the 2-soliton solution (4, 11, 12) for both positive
and negative directions (t → ±∞).

For Positive Speeds and for Opposite Speeds (c1 > 0, c2 ∈ (− 3/2, 0)) . We keep
the fast coordinate ξ1 fixed and take ξ2 = ξ1 + η in terms of ξ1 and η = tΔc −Δa,
where

Δc = c1 − c2 > 0 (13)

is the resultant speed andΔa = a2 −a1 is the separation of the initial positions of the
travelling-wave coordinates. Thus t → ±∞ implies that η→ ±∞. The asymptotic
expansion of F and G, by neglecting the dominated terms, yields

G *
{

2κ1λ1A exp (λ1ξ1) exp (2λ2ξ1) exp (2λ2η) when η→ +∞
2κ1λ1 exp (λ1ξ1) when η→ −∞

F *
{

exp (2λ2ξ1) exp (2λ2η)(1 + A2 exp (2λ1ξ1)) when η→ +∞
1 + exp (2λ1ξ1) when η→ −∞

Hence, by (4), v *
{

2κ1λ1A exp (λ1ξ1)/(1 + A2 exp (2λ1ξ1)), η→ +∞
2κ1λ1 exp (λ1ξ1)/(1 + exp (2λ1ξ1)), η→ −∞
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Thus asymptotic future (t → +∞) and past (t → −∞) solutions are of the form of
1-soliton solution (5) with travelling-wave coordinates ξ±1 = ξ1 − b±1 , where b±1 , the
position shifts of the waves, are given by

b+1 = − ln (|A|)/λ1 and b−1 = 0. (14)

For an expansion in terms of ξ2, we keep the slow coordinate ξ2 be fixed and take
ξ1 = ξ2 − η where η = tΔc − Δa. Thus, t → ±∞ implies that η → ±∞. The
asymptotic expansion of F and G, by neglecting the dominated terms, yields

G *
{

2κ2λ2 exp (λ2ξ2) when η→ +∞
2κ2λ2A exp (λ2ξ2) exp (2λ1ξ2) exp ( − 2λ1η) when η→ −∞

F *
{

1 + exp (2λ2ξ2) when η→ +∞
exp (2λ1ξ2) exp ( − 2λ1η)(1 + A2 exp (2λ2ξ2)) when η→ −∞

Hence, by (4), v *
{

2κ2λ2 exp (λ2ξ2)/(1 + exp (2λ2ξ2)), η→ +∞
2κ2λ2A exp (λ2ξ2)/(1 + A2 exp (2λ2ξ2)), η→ −∞

Thus, asymptotic future and past solutions are of the form of 1-soliton solution (5)
with travelling-wave coordinates ξ±2 = ξ2 − b±2 , where b±2 , the position shifts of the
waves, are given by

b+2 = 0 and b−2 = − ln (|A|)/λ2. (15)

For Negative Speeds (c1 < c2 < 0) . Since Δc < 0, we see that t → ±∞ implies
that η → ∓∞. The analysis require similar expansion as we did in previous case,
but the asymptotic results are getting interchange with future (t → +∞) and past
(t → −∞). Thus, the asymptotic future and past solutions are of the form of 1-soliton
solution (5) with travelling-wave coordinates ξ±1 = ξ1 − d±1 , where

d+1 = 0 and d−1 = − ln (|A|)/λ1, the position shifts of the waves (16)

In the expansion of ξ2, the asymptotic future and past solutions are of the form of
1-soliton solution (5) with travelling-wave coordinates ξ±2 = ξ2 − d±2 , where

d+2 = − ln (|A|)/λ2 and d−2 = 0. (17)

3.1.1 Asymptotic Results

From the above asymptotic analysis we see that the solitary waves, for all cases,
preserve their shapes and speeds, aside from getting a shift in position given by the
formula in Theorem 3.1.1 and 3.1.2.

Theorem 3.1.1 For an overtake collision with positive speeds, c1 > c2 > 0, or for
a head-on collision with c1 > 0, c2 ∈ (− 3/2, 0), the fast and slow solitary waves
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undergo a respective forward and backward shift in position given by

Δxi = b+i − b−i = (− 1)i
2
√

2√
2ci + 3

ln

(√
2c1 + 3 −√

2c2 + 3√
2c1 + 3 +√

2c2 + 3

)
, i = 1, 2

(18)

Theorem 3.1.2 For an overtake collision with positive speeds, c1 < c2 < 0, the
fast and slow solitary waves undergo a respective backward and forward shift in
position given by

Δxi = d+i − d−i = (− 1)i+1 2
√

2√
2ci + 3

ln

(√
2c1 + 3 −√

2c2 + 3√
2c1 + 3 +√

2c2 + 3

)
, i = 1, 2

(19)

4 Physical Solution and Interaction Properties

We use suitable time and space translations t → t̃−ε, x → x̃−ε to shift the centers
of the moving coordinates ξ1, ξ2 to the initial positions a1 = 0, a2 = 0, and then
rewrite the 2-soliton solution (u = − 1

2 +G/F ) in the physical form as

u(x, t) := −1

2
+

√
2α(κ1

√
2c1 + 3 cosh(θ2) + κ2

√
2c2 + 3 cosh(θ1))

κ1κ2(1 − α2) + α2 cosh(θ1 + θ2) + cosh(θ1 − θ2)
(20)

in terms of θ1 = √
c1 + 3/2 (x − c1t) and θ2 = √

c2 + 3/2 (x − c2t)
where, α = (

√
2c1 + 3−√

2c2 + 3)/(
√

2c1 + 3+√
2c2 + 3).The physical solution

(20) is invariant under a combined space and time reflection x → −x, t → −t . Since
u(− x) = u(x) when t = 0, the fast and slow soliton will have maximum interaction
at t = 0. There are two cases to discuss.

(1) For an overtake collision: In the case of positive speeds, the 2-soliton solution
u(x, 0) will have either a single spike at x = 0 if c1/c2 > 18, a critical value, or a
double spike about x = 0 if c1/c2 < 18. For a single spike, the fast and slow solitary
waves interact by first merging together at x = t = 0 and then splitting apart, while
in the case of a double spike, the fast and slow solitons interact by interchanging
shapes and speeds at x = t = 0. The first one is called a merge-split [2] and we call
the second one an inward–exchange interaction. These interactions are seen in the
figures MS-1 to MS-3 and IE-1 to IE-3 respectively. For opposite orientations, the
interaction shows that the slow solitary wave being first devoured continuously by
the contacted end of the fast wave and then emitted from the other end of the fast
wave. This is called an absorb–emit interaction [2]. See figures from AE-1 to AE-3.

(2) For a head-on collision: The 2-soliton solution u(x, 0) has either a single
spike at x = 0 if |c1/c2| > 10, or double spikes about x = 0 if |c1/c2| < 10. In this
case, the interaction is the merge–split type at x = t = 0 for |c1/c2| > 10 while
the interaction is the inward–exchange type at x = t = 0 for |c1/c2| < 10. For an
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opposite orientation, the 2-soliton solution u(x, 0) has an up- or down-faced spike at
x = 0 with an exponentially diminishing end. The interaction between the fast and
slow solitons, in this case, is the absorb–emit type at x = t = 0 for any speed ratio.

References

1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse
Scattering. Cambridge University Press, Cambridge (1991)

2. Anco, S.: http://lie.math.brocku.ca/sanco/solitons/mkdv
3. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge Texts in Applied

Mathematics. Cambridge University Press, Cambridge (1989)
4. Fu, Z., Liu, S., Liu, S.: New kinds of solutions to Gardner equation. Chaos, Solitons & Fractals

20(2), 301–309 (2004)
5. Slyunaev, A.V., Pelinovski, E.N.: Dynamics of large-amplitude solitons. J. Exp. Theor. Phys.

89(1), 173–181 (1999)
6. Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. II.

mKdV-type bilinear equations. J. Math. Phys. 28(9), 2094–2101 (1987)
7. Hirota, R.: Exact solutions of the Korteweg-deVries equation for multiple collisions of solitons.

Phys. Rev. Lett. 27(18), 1192–1194 (1971)
8. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge

(2004)
9. Wazwaz, A.M.: New solitons and kink solutions for the Gardner equation. Commun. Nonlinear

Sci. Numer. Simul. 12(8), 1395–1404 (2007)
10. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Higher Education

Press, Beijing (2009)



Conservation Laws for a Generalized Coupled
Boussinesq System of KdV–KdV Type

Tshepo Edward Mogorosi, Ben Muatjetjeja and Chaudry Masood Khalique

Abstract In this chapter, we consider a generalized coupled Boussinesq system of
KdV–KdV type, which belongs to the class of Boussinesq systems modeling two-
way propagation of long waves of small amplitude on the surface of an ideal fluid. We
obtain conservation laws for this system using Noether theorem. Since this system
does not have a Lagrangian, we increase the order of the partial differential equations
by using the transformations u = Ux , v = Vx and convert the Boussinesq system
to a fourth-order system in U , V variables, which has a Lagrangian. Consequently,
we find infinitely many nonlocal conserved quantities for our original Boussinesq
system of KdV–KdV type.

1 Introduction

We consider the generalized coupled Boussinesq system of KdV–KdV type [11],

ut + vx + uxv + uvx + avxxx = 0,

vt + ux + vvx + cuxxx = 0, (1)

where a and c are arbitrary constants. The space and time variables x and t represent
the position and the elapsed time, respectively along the channel, where v(x, t) is the
deviation of the free surface from its rest position and u(x, t) is the horizontal velocity.
System (1) is known to be a valid approximation of the full, two-dimensional Euler
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equations for fluid motion under the influence of gravity in suitably small amplitude,
long wavelength regimes [1]. This system (1) falls under the family of Boussinesq
systems derived in [2] and reduces to a symmetric hyperbolic system when the
dispersive terms are dropped. The numerical solutions for Boussinesq systems have
been investigated in [3, 4] using the standard Galerkin-finite element method.

In this chapter, we derive conservation laws for system (1). It is well-known that
the conservation laws play a vital role in the study of nonlinear partial differential
equations (PDEs). For variational problems the conservation laws can be constructed
by means of Noether theorem [9]. Of course, the application of Noether theorem
depends upon the existence of a Lagrangian. However, there are methods such as the
Laplace direct method [7] and characteristics method [12] to obtain conservation laws
for partial differential equations that do not have a Lagrangian. See also [5, 6, 10, 13].
Our system (1) does not have a Lagrangian. To use Noether theorem we increase the
order of the system (1) such that it has a Lagrangian [8].

2 Conservation Laws for the Boussinesq System

Consider the generalized coupled Boussinesq system of KdV–KdV type

ut + vx + uxv + uvx + avxxx = 0,

vt + ux + vvx + cuxxx = 0, (2)

where a and c are arbitrary constants. This system does not have a Lagrangian. In
order to apply Noether theorem we increase the order of this system by using the
transformations u = Ux , v = Vx . Then the system (2) transforms to

Utx + Vxx + UxxVx + UxVxx + aVxxxx = 0,

Vxt + Uxx + VxVxx + cUxxxx = 0 (3)

and has a Lagrangian. Since L given by

L = 1

2

{
cU 2

xx + aV 2
xx − U 2

x − V 2
x − UxV 2

x − UtVx − UxVt
}

(4)

satisfies the Euler–Lagrange equations

δL

δU
= 0 and

δL

δV
= 0, (5)

we infer that L is a second-order Lagrangian for (3). Here δ/δU and δ/δV are the
Euler–Lagrange operators defined by

δ

δU
= ∂

∂U
−Dt ∂

∂Ut
−Dx ∂

∂Ux
+D2

t

∂

∂Utexttt
+D2

x

∂

∂Uxx
+DxDt ∂

∂Utx
− · · ·

(6)
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and

δ

δV
= ∂

∂V
−Dt ∂

∂Vt
−Dx ∂

∂Vx
+D2

t

∂

∂Vtexttt
+D2

x

∂

∂Vxx
+DxDt ∂

∂Vtx
− · · ·.

(7)

We now find Noether point symmetries for system (3) corresponding to L. Recall
that the vector field

X = ξ 1(t , x,U ,V )
∂

∂t
+ ξ 2(t , x,U ,V )

∂

∂x
+ η1(t , x,U ,V )

∂

∂U
+ η2(t , x,U ,V )

∂

∂V
(8)

is a Noether point symmetry corresponding to the Lagrangian L if there exists gauge
functions B1(t , x,U ,V ) and B2(t , x,U ,V ) such that

X[2](L) + {Dt (ξ 1) +Dx(ξ 2)}L = Dt (B1) +Dx(B2). (9)

Here X[2] denotes the second prolongation of X and is defined as

X[2] = ξ 1(t , x,U ,V )
∂

∂t
+ ξ 2(t , x,U ,V )

∂

∂x
+ η1(t , x,U ,V )

∂

∂U

+ η2(t , x,U ,V )
∂

∂V
+ ζ 1

t

∂

∂Ut
+ ζ 2

t

∂

∂Vt
+ ζ 1

x

∂

∂Ux
+ ζ 2

x

∂

∂Vx
+ · · ·, (10)

where

ζ 1
t = Dt (η1) − UtDt (ξ 1) − UxDt (ξ 2), ζ 1

x = Dx(η1) − UtDx(ξ 1) − UxDx(ξ 2),

ζ 2
t = Dt (η2) − VtDt (ξ 1) − VxDt (ξ 2), ζ 2

x = Dx(η2) − VtDx(ξ 1) − VxDx(ξ 2)

and

Dt = ∂

∂t
+ Ut ∂

∂U
+ Vt ∂

∂V
+ Utexttt ∂

∂Ut
+ Vtexttt ∂

∂Vt
+ Utx ∂

∂Ux
+ Vtx ∂

∂Vx
+ · · ·,

Dx = ∂

∂x
+ Ux ∂

∂U
+ Vx ∂

∂V
+ Uxx ∂

∂Ux
+ Vxx ∂

∂Vx
+ Utx ∂

∂Ut
+ Vtx ∂

∂Vt
+ · · ·.

Inserting the value of L from (4) into Eq. (9) yields

− 1

2
Vx
[
η1
t + Utη1

U + Vtη1
V − Utξ 1

t − U 2
t ξ

1
U − UtVtξ 1

V − Uxξ 2
t

− UtUtξ
2
U − UxVtξ 2

V

]− 1

2
Ux
[
η2
t + Utη2

U + Vtη2
V − Vtξ 1

t − UtVtξ 1
U

−V 2
t ξ

1
V − Vxξ 2

t − UtVxξ 2
U − VtVxξ 2

V

]

−
(
Ux + 1

2
V 2
x + 1

2
Vt

) [
η1
x + Uxη1

U + Vxη1
V

−Utξ 1
x − UtUxξ 1

U − UtVxξ 1
V − Uxξ 2

x − U 2
x ξ

2
U − UxVxξ 2

V

]
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−
(
Vx + 1

2
Ut + UxVx

) [
η2
x + Uxη2

U + Vxη2
V − Vtξ 1

x − UxVtξ 1
U

− VtVxξ
1
V − Vxξ 2

x − UxVxξ 2
U − V 2

x ξ
2
V

]+ cUxx
[
D2
xη

1 − UtD2
xξ

1

− UxD2
xξ

2 − 2Utx
(
ξ 1
x + Uxξ 1

U + Vxξ 1
V

)− 2Uxx
(
ξ 2
x + Uxξ 2

U + Vxξ 2
V

)]

+ aVxx[D2
xη

2 − VtD2
xξ

1 − VxD2
xξ

2 − 2Vtx
(
ξ 1
x + Uxξ 1

U + Vxξ 1
V

)

− 2Vxx
(
ξ 2
x + Uxξ 2

U + Vxξ 2
V

)]

+ 1

2

[
cU 2

xx + aV 2
xx − U 2

x − V 2
x − UxV 2

x − UtVx − UxVt
] [
ξ 1
t + Utξ 1

U

+ Vtξ
1
V + ξ 2

x + Uxξ 2
U + Vxξ 2

V

]

= B1
t + UtB1

U + VtB1
V + B2

x + UxB2
U + VxB2

V . (11)

The splitting of (11) with respect to different combinations of derivatives of U and
V results in an over-determined system of PDEs for ξ 1, ξ 2, η1, η2, B1, and B2. After
some tedious calculations, the solution of the system yields the following Noether
point symmetries and gauge terms:

ξ 1 = c1,

ξ 2 = c2,

η1 = H (t),

η2 = J (t),

B1 = w(t , x),

B2 = −1

2
UJ ′(t) − 1

2
VH ′(t) + z(t , x),

wt + zx = 0. (12)

We can set w = 0, z = 0 as they contribute to the trivial part of the conserved vector.
Recall that the formulae for the conserved vector (T 1, T 2) for the second-order

Lagrangian L [8, 9] are given by

T 1 = −B1 + ξ 1L+W 1

[
∂L

∂Ut
−Dt ∂L

∂Utexttt
−Dx ∂L

∂Utx
. . .,

]

+W 2

[
∂L

∂Vt
−Dt ∂L

∂Vxt
−Dx ∂L

∂Vtexttt
. . .,

]

+Dt (W 1)
∂L

∂Utexttt
+Dt (W 2)

∂L

∂Vtexttt
, (13)



Conservation Laws for a Generalized Coupled Boussinesq System of KdV–KdV Type 319

T 2 = −B2 + ξ 2L+W 1

[
∂L

∂Ux
−Dt ∂L

∂Uxt
−Dx ∂L

∂Uxx
. . .,

]

+W 2

[
∂L

∂Vx
−Dt ∂L

∂Vxt
−Dx ∂L

∂Vxx
. . .,

]

+Dx(W 1)
∂L

∂Uxx
+Dx(W 2)

∂L

∂Vxx
, (14)

whereW 1 = η1−Utξ 1−Uxξ 2 andW 2 = η2−Vtξ 1−Vxξ 2 are the Lie-characterictic
functions.

Thus, Eqs. (13) and (14) together with (12) and u = Ux , v = Vx yield the
following independent conserved vectors for system (2):

T 1
1 = cu2

x

2
+ av2

x

2
− u2

2
− v2

2
− uv2

2
,

T 2
1 = u

∫
ut dx + v

∫
vt dx + uv

∫
vt dx + v2

2

∫
ut dx +

∫
ut dx

∫
vt dx

+ cuxx
∫

ut dx + avxx

∫
vt dx − cutux − avtvx ; (15)

T 1
2 = uv,

T 2
2 = cuuxx + avvxx − cu2

x

2
− av2

x

2
+ uv2 + u2

2
+ v2

2
(16)

and for the arbitrary functions H (t) and J (t)

T 1
(E,F ) = − v

2
H (t) − u

2
J (t),

T 2
(E,F ) = −H (t)

[
u + v2

2
+ cuxx

]
− J (t) [v + uv + avxx] − 1

2
J (t)
∫

ut dx

− 1

2
H (t)

∫
vt dx + 1

2
J ′(t)

∫
udx + 1

2
H ′(t)

∫
vdx. (17)

Notice that the conserved vector (16) is a local conserved vector and (15) is a non-
local conserved vector for the system (2). We can obtain two special cases from the
conserved vector (17) by letting H (t) = 1 and J (t) = 0, which gives a nonlocal
conserved vector

T 1
3 = − v

2
,

T 2
3 = −u − v2

2
− cuxx − 1

2

∫
vt dx,
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and for H (t) = 0 and J (t) = 1, which also gives a nonlocal conserved vector

T 1
4 = −u

2
,

T 2
4 = −v − uv − avxx − 1

2

∫
ut dx.

We note that since the functions H (t) and J (t) are arbitrary, one obtains infinitely
many nonlocal conservation laws for the system (2).

3 Conclusion

In this chapter, we studied the third-order generalized coupled Boussinesq system
of KdV–KdV type. In order to apply Noether theorem, the transformations u = Ux ,
v = Vx were utilized. The system was transformed to the fourth-order system in
U , V variables, which admitted a Lagrangian. Noether’s approach was then used to
derive the conservation laws in U , V variables. Finally, the inverse transformations
U = ∫ udx, V = ∫ vdx were used to obtain the conservation laws for the original
coupled Boussinesq systems of KdV–KdV type. The conservation laws obtained
consist of one local and infinite number of nonlocal conserved vectors.
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Exact Solutions of a Coupled Boussinesq
Equation

Dimpho Millicent Mothibi and Chaudry Masood Khalique

Abstract In this chapter, (G′/G)-expansion method is employed to derive new exact
solutions of a coupled Boussinesq equation. Three types of solutions are obtained,
namely, hyperbolic function solutions, trigonometric function solutions and rational
solutions. These solutions are travelling wave solutions.

1 Introduction

Many physical phenomena in science and engineering are modelled by nonlinear
evolution equations. Also many nonlinear phenomena lead to coupled nonlinear
evolution equations. In the past few decades various methods have been developed
by scientists to find exact solutions of nonlinear evolution equations and coupled non-
linear evolution equations. These include the inverse scattering transform method [1],
Bäcklund transformation [2], Darboux transformation [3], Hirota’s bilinear method
[4], the (G′/G)-expansion method [5], the reduction mKdV equation method [6],
the sine–cosine method [7], the Jacobi elliptic function expansion method [8, 9],
the F-expansion method [10], the exp-function expansion method [11] and the Lie
symmetry method [12–15].

In this chapter, we study the coupled Boussinesq equation [16]

ut + uux + vx + auxxt = 0,

vt + (uv)x + buxxx = 0, (1)

where u and v are real-valued scalar functions, t is time and x is a spatial variable and
derive the travelling wave solutions of (1) by using the (G′/G)-expansion method.
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2 Exact Solutions of a Coupled Boussinesq Equation

In this section we employ the (G′/G)-expansion method and construct the travelling
wave solutions of the coupled Boussinesq equation (1).

As a first step we transform the coupled Boussinesq equations (1) to nonlinear
ordinary differential equations (ODEs) using the travelling wave variable

u(t , x) = U (ξ ), v(t , x) = V (ξ ), where ξ = x − ct. (2)

Using the above transformations, equations (1) transform to the nonlinear ODEs

acU ′′′ + cU ′ − UU ′ − V ′ = 0,

bU ′′′ − cV ′ + VU ′ + UV ′ = 0, (3)

where the primes denote the derivative with respect to ξ.
The (G′/G)-expansion method assumes the solutions of equations (3) to be of

the form

U (ξ ) =
M∑

i=0

αi(G
′/G)i and V (ξ ) =

M∑

i=0

βi(G
′/G)i , (4)

where αi , βi , i = 0, 1, · · · ,M are parameters to be determined and G(ξ ) satisfies
the second-order linear ODE with constant coefficients, viz.,

G′′ + λG′ + μG = 0, (5)

where λ and μ are constants.
The balancing procedure yields M = 2, so the solutions of the ODEs (3) are of

the form

U (ξ ) = α2(G′/G)2 + α1(G′/G) + α0,

V (ξ ) = β2(G′/G)2 + β1(G′/G) + β0. (6)

Substituting (6) into (3) and making use of (5), and then collecting all terms with
same powers of (G′/G) and equating each coefficient to zero, yields a system of
algebraic equations. Solving this system of algebraic equations, using Mathematica,
we obtain the following solutions:

α0 = 2ac2(aλ2 + 8aμ+ 1) + b
2ac

, α1 = 12acλ, α2 = 12ac,

β0 = b2 − 2a2bc2λ2 − 16a2bc2μ

4a2c2
, β1 = −6bλ, β2 = −6b.

Substituting the values of α’s and β’s and the corresponding solutions of ODE (5)
into (6), we obtain the following three types of travelling wave solutions of equation
(1):



Exact Solutions of a Coupled Boussinesq Equation 325

Case 1: When λ2 − 4μ > 0, we obtain the hyperbolic function solutions

u1(t , x) = 2ac2(aλ2 + 8aμ+ 1) + b
2ac

+ 12acλ

[
−λ

2
+ δ1

(
C1 sinh (δ1ξ)+ C2 cosh (δ1ξ)

C1 cosh (δ1ξ)+ C2 sinh (δ1ξ)

)]

+ 12ac

[
−λ

2
+ δ1

(
C1 sinh (δ1ξ)+ C2 cosh (δ1ξ)

C1 cosh (δ1ξ)+ C2 sinh (δ1ξ)

)]2

,

v1(t , x) = b2 − 2a2bc2λ2 − 16a2bc2μ

4a2c2

− 6bλ

[
−λ

2
+ δ1

(
C1 sinh (δ1ξ)+ C2 cosh (δ1ξ)

C1 cosh (δ1ξ)+ C2 sinh (δ1ξ)

)]
,

− 6b

[
−λ

2
+ δ1

(
C1 sinh (δ1ξ)+ C2 cosh (δ1ξ)

C1 cosh (δ1ξ)+ C2 sinh (δ1ξ)

)]2

,

where ξ = x − ct , δ1 = 1
2

√
λ2 − 4μ, C1 and C2 are arbitrary constants.

Case 2: When λ2 − 4μ < 0, we obtain the trigonometric function solutions

u2(t , x) = 2ac2(aλ2 + 8aμ+ 1) + b
2ac

+ 12acλ

[
−λ

2
+ δ2

−C1 sin (δ2ξ)+ C2 cos (δ2ξ)

C1 cos (δ2ξ)+ C2 sin (δ2ξ)

]

+ 12ac

[
−λ

2
+ δ2

−C1 sin (δ2ξ)+ C2 cos (δ2ξ)

C1 cos (δ2ξ)+ C2 sin (δ2ξ)

]2

,

v2(t , x) = b2 − 2a2bc2λ2 − 16a2bc2μ

4a2c2

− 6bλ

[
−λ

2
+ δ2

−C1 sin (δ2ξ)+ C2 cos (δ2ξ)

C1 cos (δ2ξ)+ C2 sin (δ2ξ)

]

− 6b

[
−λ

2
+ δ2

−C1 sin (δ2ξ)+ C2 cos (δ2ξ)

C1 cos (δ2ξ)+ C2 sin (δ2ξ)

]2

,

where ξ = x − ct , δ2 = 1
2

√
4μ− λ2, C1 and C2 are arbitrary constants.
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Case 3: When λ2 − 4μ = 0, we obtain the rational solutions

u3(t , x) = 2ac2(aλ2 + 8aμ+ 1) + b
2ac

+ 12acλ

[
−λ

2
+ C2

C1 + C2ξ

]

+ 12ac

[
−λ

2
+ C2

C1 + C2ξ

]2

,

v3(t , x) = b2 − 2a2bc2λ2 − 16a2bc2μ

4a2c2
− 6bλ

[
−λ

2
+ C2

C1 + C2ξ

]

− 6b

[
−λ

2
+ C2

C1 + C2ξ

]2

,

where ξ = x − ct , C1 and C2 are arbitrary constants.
It should be noted that the solutions obtained in this chapter by (G′/G)-expansion

method are more general than the solutions obtained in [16].

3 Conclusion

In this chapter, we analysed a coupled Boussinesq equation that appears in many
scientific fields. The (G′/G)-expansion method was effectively used to derive exact
travelling wave solutions of the coupled Boussinesq equation. The solutions ob-
tained were expressed in the form of hyperbolic function, trigonometric function
and rational solutions.
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Recent Advances in Error Control B-spline
Gaussian Collocation Software for PDEs

Paul Muir and Jack Pew

Abstract In this chapter we briefly review recent advances in Error Control B-
spline Gaussian Collocation software for the numerical solution of 1D parabolic
partial differential equations (PDEs). BACOL and BACOLR, two packages of this
type, developed over the last decade, have been shown to be efficient, reliable,
and robust, especially for problems having solutions with sharp moving layers and
for stringent tolerances. These packages use high order methods in time and space
and feature adaptive control of high order estimates of the temporal and spatial
errors. The spatial error estimates require the computation of a second collocation
solution, which introduces a substantial computational overhead. In order to address
this issue, a new software package, called BACOLI, has recently been developed
(through a substantial modification of BACOL) in which the computation of the
second collocation solution is replaced by the computation of a high order interpolant.
Numerical results have shown that BACOLI computes spatial error estimates that
are generally of comparable quality to those computed by BACOL and that the new
code is generally substantially more efficient than BACOL.

1 Introduction

In this chapter we review recent work on new adaptive Error Control B-spline
Gaussian Collocation software for the efficient numerical solution of systems of
1D parabolic PDEs. BACOL [11] and BACOLR [13], two packages of this type,
developed over the last decade, use high order methods in time and space and fea-
ture adaptive control of high order estimates of the temporal and spatial errors.
They have been shown to be efficient, reliable, and robust, especially for problems
having solutions with sharp moving layers and for stringent tolerances [12]. These
packages employ adaptive Error Control B-spline Gaussian Collocation for the spa-
tial discretization of the partial differential equations (PDEs), leading to a system of
time-dependent differential–algebraic equations (DAEs), which is solved in BACOL
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using DASSL [5] and in BACOLR using RADAU5 [8]. Control of estimates of the
temporal error is handled by the DAE solver. Control of spatial error estimates is
handled using adaptive spatial mesh refinement based on high order estimates of
the spatial error. These spatial error estimates are obtained by computing a second
collocation solution (at substantial additional cost). Recent work to address this cost
issue has focused on interpolation based schemes that allow a spatial error estimate
to be obtained without the need for the computation of a second collocation solu-
tion. These schemes, called the superconvergent interpolant (SCI) scheme [1] and
the lower order interpolant (LOI) scheme [3], have been implemented in the re-
cently developed software package, BACOLI [10], obtained through a substantial
modification of BACOL.

The problem class assumed by BACOL, BACOLR, and BACOLI has the form

ut (x, t) = f (x, t, u(x, t), ux(x, t), uxx(x, t)), (1)

with initial and boundary conditions of the form

u(x, t0) = u0(x), bL(t, u(a, t), ux(a, t)), bR(t, u(b, t), ux(b, t)), (2)

where u, f, u0, bL, and bR are vector functions with NPDE components (where
NPDE is the number of PDEs).

This chapter is organized as follows. In Sect. 2, we briefly review the adaptive
Error Control B-spline Gaussian Collocation algorithm implemented in BA-
COL/BACOLR.

Section 3 briefly describes the SCI and LOI schemes employed in the new BA-
COLI code while Sect. 4 presents numerical results comparing the accuracy of the
BACOL and BACOLI error estimates and the overall efficiency of the codes.

2 BACOL/BACOLR Error Control B-spline Gaussian
Collocation

Assuming a spatial mesh of NINT subintervals that partitions [a, b], the B-spline
collocation algorithm employed by BACOL/BACOLR assumes that the colloca-
tion solution, U (x, t), is represented as a (vector) linear combination of known
C1-continuous piecewise polynomials of degree p on each spatial subinterval
(represented in terms of a B-spline basis [6]) having the form

U (x, t) =
NC∑

i=1

y
i
(t)Bi(x), (3)

where Bi(t) is the ith B-spline basis function, y
i
(t) is the vector of corresponding

B-spline coefficients, and NC = NINT(p − 1) + 2. The coefficients, y
i
(t), are

determined by requiring the collocation solution to satisfy the boundary conditions
(at x = a and x = b) and the PDE at p−1 collocation points per subinterval that are
the images of the set of p− 1 Gauss points [4] on [0, 1]. This gives the DAE system
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0 = bL(a, t,U (a, t),Ux(a, t)), (4)

Ut (ξj, t) = f (ξj, t,U (ξj, t),Ux(ξj, t),Uxx(ξj, t)), (5)

0 = bR(b, t,U (b, t),Ux(b, t)), (6)

where ξj is the j th collocation point. As mentioned in the previous section, this DAE
system is solved in BACOL using DASSL and in BACOLR using RADAU5. The
spatial error estimate is obtained by using the same B-spline collocation algorithm,
with a B-spline basis of degree p + 1, to obtain a second (higher order) collocation
solution, Ū (x, t). At the end of each timestep (let t be the current time), a norm of the
difference betweenU (x, t) and Ū (x, t) is computed to provide a spatial error estimate
for U (x, t) over [a, b]. BACOL/BACOLR accepts U (x, t) provided that this spatial
error satisfies the user tolerance. If it does not, the codes compute a second spatial
error estimate, again based on the difference between the two collocation solutions,
giving an estimate of the spatial error on each spatial subinterval, which is then used
as the basis for a spatial remeshing, and the timestep is repeated. See [11] for further
details.

As mentioned in the previous section, the computation of the second collocation
solution represents a significant computational cost, essentially doubling the overall
cost of the algorithm.

3 Review of the SCI/LOI Schemes and BACOLI

In order to improve the efficiency of the BACOL/BACOLR spatial error estimate,
[1] and [3] consider, respectively, the SCI and LOI schemes, in which one of the two
collocation solutions computed by BACOL/BACOLR is replaced with an interpolant.

The SCI scheme is based on theoretical results [7] that prove that, for (1), the
collocation solution and its first spatial derivative are superconvergent at the spa-
tial mesh points. Furthermore, based on similar theory for collocation methods for
boundary value ordinary differential equations (ODEs)—see, e.g., [4]—and from
experimental results for (1) [2], it is apparent that there are several (known) points
internal to each subinterval, where the collocation solution is also superconvergent.
The SCI scheme replaces the higher order collocation solution with aC1-continuous
piecewise polynomial, of the same order, specified on each subinterval by requiring
it to interpolate the superconvergent meshpoint collocation solution and derivative
values, the internal superconvergent collocation solution values, and the closest su-
perconvergent collocation solution values from within each adjacent subinterval.
Because the SCI interpolates at points from multiple subintervals, the interpolation
error can be large when adjacent subinterval size ratios are large. See [1] for further
details.

In contrast, the LOI scheme replaces the lower order collocation solution with a
C1-continuous piecewise polynomial specified on each subinterval by requiring it to
interpolate the higher order collocation solution and its first spatial derivative at the
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mesh points and collocation solution at certain points within each subinterval such
that the interpolation error of the resultant interpolant agrees asymptotically with the
collocation error of the lower order collocation solution. See [9] for related work and
[3] for further details.

As mentioned earlier, these schemes are implemented in the new code, BACOLI,
in which only one collocation solution is computed and there is the option to obtain
the spatial error estimate using either the SCI or LOI scheme. When BACOLI uses
the SCI scheme it computes the lower order collocation solution and controls an
error estimate for this solution; this is called standard (ST) error control mode. The
original BACOL code also uses ST error control mode. When BACOLI uses the
LOI scheme, it computes the higher order collocation solution but controls an error
estimate for the lower order collocation solution; this is known as local extrapolation
(LE) error control mode. If the original BACOL code were to be modified slightly
to return the higher order collocation solution rather than the lower order collocation
solution, it would be using LE error control mode.

4 Numerical Results

A standard test problem of the form (1) is the One Layer Burgers’ Equation (OLBE):

ut = εuxx − uux , (7)

1st Burgers, Eps = 10−3, Bac. Controlled, KCOL = 3, TOL = 10−4, Time = 0.999261, NINT = 14, Remeshes = 88

Fig. 1 BACOL, SCI, LOI error estimates and the true error for OLBE (ε = 10−3) at t = 1, with
p = 4, tol = 10−4. (BACOL error estimates control the mesh.) The error estimates are in good
agreement with each other and the true error except for the SCI estimates on subintervals for which
the adjacent subinterval size ratios are large
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Fig. 2 Accuracy vs. time for OLBE (ε = 10−3) at t = 1, for BACOL in ST and LE error control
modes (BAC/ST, BAC/LE) and BACOL in SCI/ST and LOI/LE error control modes (SCI/ST,
LOI/LE), p = 5. SCI/ST and LOI/LE are about twice as fast as BAC/ST and BAC/LE

with an initial condition at t = 0 and boundary conditions at x = 0 and x = 1 taken
from the exact solution

u(x, t) = 1

2
− 1

2
tanh

(
x − t

2 − 1
4

4ε

)

,

where ε is a problem dependent parameter. In Fig. 1, we compare the BACOL, SCI,
and LOI error estimation schemes with the true error, for the OLBE (ε = 10−3) at
t = 1, with p = 4 and a tolerance, tol = 10−4. (BACOL error estimates control the
mesh.)

We see that the error estimates are generally in good agreement with the true
error except for the SCI scheme on subintervals where an adjacent subinterval ratio
is large. However, this issue is less significant when the SCI error estimates are used
to control the mesh. See additional results in [2].

In Fig. 2, we compare BACOL in ST and LE modes (BAC/ST, BAC/LE) with
BACOLI in SCI/ST and LOI/LE modes (SCI/ST, LOI/LE) with respect to efficiency.
We again consider the OLBE (ε = 10−3) with final time t = 1. We consider p = 5
and a set of 91 tol values over the range from 10−1 to 10−11.
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We see that BAC/ST and BAC/LE have comparable execution times and that these
times are significantly greater than the BACOLI code in either SCI/ST or LOI/LE
mode. However BACOLI in SCI/LOI mode has 14 failures over the 91 test cases.
See [10] for additional results. An examination of the relative execution times for
this problem (see [10]), averaged over tol = 10−4, 10−6, 10−8 and p = 4, . . ., 11,
gives BAC/LE

BAC/ST = 0.93, SCI/ST
BAC/ST = 0.57, LOI/LE

BAC/ST = 0.62, and LOI/LE
SCI/ST = 1.16.

The BACOLI webpage, where the source code for BACOLI, a number of
examples, and a Fortran 95 wrapper for the package are posted, is
http://cs.smu.ca/∼muir/BACOLI-3_Webpage.htm.
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Downscaling of Regional Climate Scenarios
within Agricultural Areas Across Canada with a
Multivariate, Multisite Model

Nathaniel K. Newlands, Weixun Lu and Tracy A. Porcelli

Abstract Better methods are needed to statistically downscale climate variability to
agricultural ecosystem impact scales and to reduce uncertainty in regional climate
model (RCM) predictions. We present a multivariate, multisite model for downscal-
ing climate to the 10 km scale for agricultural areas across Canada. Scenario data was
obtained from NARCCAP (North American Regional Climate Change Assessment
Program). This method employs variable-selection for a multivariate set of regional
climate model predictors, and may offer a rapid (automated) and reliable (cross-
validated) way to generate high-resolution climate surfaces for use in agricultural
decision-making. We provide selected results that show the model can significantly
reduce bias in mean precipitation.

1 Introduction

Crop yield forecasting and the integrated assessment of environmental and economic
risks of agricultural production both require detailed information on historical and
future impacts and variability of climate trends to reliably capture the broad spec-
trum of potential cumulative impacts of a changing global climate on soil, water and
air quality. Typically, higher-resolution downscaled climate information (1–10 km,
daily) is required by agroecosystem models and operational monitoring support sys-
tems to guide agricultural decision-making. Better methods are needed to statistically
downscale climate variability to agricultural ecosystem impact scales and to reduce
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uncertainty in regional climate model (RCM) predictions [1, 2]. At the 10 km scale,
changes in orography, large water bodies, land vegetation cover and other evapo-
transpiration land-air feedbacks enact a strong regional-scale influence on seasonal
changes in climate. Yet, downscaling models often rely on a single predictor variable
and generate predictions at single sites without incorporating finer-scale physical in-
fluences on climate that change the spatial covariance of precipitation, temperature
and other climate variables [3]. In this chapter, we present a multivariate, multi-
site model for downscaling climate to the 10 km scale for agricultural areas across
Canada. Scenario data was obtained from NARCCAP (North American Regional
Climate Change Assessment Program) [4]. This method employs variable-selection
for a multivariate set of regional climate model predictors. We provide selected results
that show the model can significantly reduce bias in mean precipitation.

2 Methodology

2.1 Multisite and Multivariate Selection

A set of representative agricultural areas were selected for validating the statistical
downscaling model (Fig. 1), based on the following considerations: (1) span the ma-
jor agricultural activities and crops, (2) be situated within agricultural land census
ecumene boundary, (3) primarily contain agricultural land (Agricultural Land Cover
for Canada, circa 2000), (4) reside fully within distinct eco-zones, so that each region
is distinguishable based on climate conditions/characteristics (Ecological Framework
for Canada), (5) contain a maximum number of high-quality, long-term climate mon-
itoring stations (Meteorological Service of Canada), supplemented with medium
quality stations where needed to increase climate time-series data, (6) contain a
maximum number of climate model scenario evaluation grid points and (7) contain a
maximum number of historical climate interpolation grid points. These data quality
and sample size considerations were evaluated using geospatial cross-referencing,
layer intersect, other spatial analysis routines provided by ESRITM ArcGISTM (Ver-
sion 10). We superimposed digital elevation satellite imagery (Landsat X, 2010,
GoogleEarthTM) on spatially-referenced maps to assess the proportion of agricul-
tural land, number of 50 km regional climate model scenario nodes and climate,
elevation and land-form characteristics of the 7 validation areas.

The technique used to obtain estimates from the imagery data was point-based
extraction. The size of these areas ranged from 1530 to 46,712 km2. The number
of scenario points ranged between 1 to a maximum of 23, with 14-481 historical
climate reference grid-points (10 km grid). Scenario node locations that were situ-
ated in each of the geo-referenced validation agricultural regions were determined
by point-referencing in ArcGIS. Scenario data at the X, Y locations identified was
then extracted from the 50 km resolution gridded data of CGCM3–CRCM3 model
(Coupled Canadian Global Climate Model Version 3 with Regional Climate Model
Version 3 boundary conditions) output, using available netCDF extraction routines
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Fig. 1 Validation areas (ecodistricts) representative of different climate, landscape and soil zones

that call a given X, Y coordinate. Climate stations were selected by defining a ra-
dial buffer around each scenario location. Within each ecodistrict, an initial number
of sites for the nearest-neighbour sampling was determined by selecting a set of
historical observation stations with high quality data (i.e. sufficient length of data
record and minimal data gaps) that are located nearby every regional climate model
scenario point in each validation region (Fig. 2). The station selection and maximum
radius of influence was optimized based on separation distance criterion only, using
a K-means clustering algorithm. This determined the minimum radius around all the
scenario points that lie within a given validation region, whereby each radial zone
contained a relatively homogeneous number of stations, without any overlap. The K-
nearest neighbours algorithm uses this initial multisite selection (prior distribution)
to generate a conditional probability distribution function. This provides enhanced
spatio-temporal continuity in the model simulations, by referencing more than just
one climate station neighbouring the scenario reference location. Combining more
stations than just one provides more input data of measured climate variability across
the area of interest. The multisite station data is then used to identify other atmo-
spheric variables that significantly influence the temperature field and rainfall spatial
distribution.

The model considers an extended set of atmospheric variables (as higher-order
predictors of regional climate variability) and the ranking of their importance or
relative influence on precipitation and temperature, such as surface wind speed, sur-
face specific humidity, sea level pressure, incident and reflected shortwave radiation,
sensible and latent heat flux, surface evaporation, geopotential height (500 hpa) and
atmospheric boundary layer thickness.
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Fig. 2 British Columbia’s Fraser Valley (region 1), showing the distribution of observation climate
stations (red with blue IDs), and regional climate model (RCM) scenario downscaling location
(green with black IDs)

2.2 Statistical Model

The conditional distributionp(R|X) can be estimated using kernel density estimation
(KDE) or nearest neighbours bootstrap resampling [5]. Here we apply the nearest
neighbour approach that can be applied both to linear and non-linear relationships
between predictor variables. We define Rt as the climate (e.g. rainfall) response or
predictands vector, and At a vector of atmospheric predictor variables at time t. Xt
is a feature vector of predictor variables (atmospheric or other indices) at time t. The
conditional cumulative distribution function (CDF) is given by,

p(Rt |Xt ) = p(Rt ,Xt )

p(Xt )
(1)

The conditional probability can be expressed as a sum of weighted probabilities
associated with an observation at time i, based on a measure of proximity of Xt to
Xi (or Xj ), given by,

p(Rt |Xt ) =
∑

i

pi =
∑

i

ψ(Xt −Xi)∑
j ψ(Xj −Xi) (2)

We specify an inverse spatial correlation (proximity) function, with k as the number
of observations with Euclidean distance toXt being less than or equal to the distance
between Xt and Xi in the historical data, and K is the maximum value of k,

ψ(Xt −Xi) =
⎧
⎨

⎩

1
k
k ≤ K

0 k > K
(3)

The distance between Xt and Xi is,

δt ,i =
√√√√

m∑

j=1

(sjβj (Xj ,i −Xj ,t ))2 (4)
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where Xi consists of m predictor variables Xj ,i , j = (1, ...,m), and sj is the scaling
weight and βj , the influence weight associated with the jth predictor. The downscal-
ing method uses least-angle regression (LARS) to optimize the selection of variables
to be included in the feature vector (X). The set of model parameters are: the scal-
ing weight vector (s), number of nearest neighbours (K), influence weights (β) and
length of the moving window (days) (τ). The estimation ofK and τ is data and loca-
tion specific, and is obtained via sensitivity analysis. The influence weights specify
the relative influence each predictor variable has on the CDF, and are determined
via leave-one-out cross validation to minimize residual error. Scaling weights were
specified as the reciprocal of the sample standard deviation of each predictor variable.

3 Numerical Results

Selected results presented demonstrate that our model corrects significant error in
the seasonal-averaged scenario distribution of precipitation in regional climate model
output. The change in summer precipitation pattern, hindcasted or backcasted for
1971–2000 having large spatial variability (−1.0 to +0.5 mm/day) across different
regions of Canada. Summer rainfall in the southern Canadian Prairies and Ontario
is predicted to decrease, relative to recent historical levels. Results obtained in-
dicate that rainfall in the Fraser Valley is significantly correlated to previous day
rainfall, incident radiation, geo-potential height, sea-level pressure, whereas, in the
Atlantic Maritime, sensible surface heat flux, specific humidity and wind speed
explain regional rainfall variance.

Downscaled predictions from the model of seasonally-averaged CDFs for precip-
itation indicate improved accuracy with 6 total predictors within the Fraser Valley
region, with K = 4 nearest neighbours and τ = 3 days (Fig. 3). The model corrects
bias in the CGCM3-CRCM3 summer and winter predictions, especially important
when higher amounts of precipitation typically occur.

4 Summary

Results show the statistical downscaling model successfully corrects bias in the sta-
tistical distribution moments of daily, monthly, seasonal and annual climate variables
(i.e. temperature and precipitation) using addititional climate predictors and histori-
cal climate reference data. These findings indicate that 4 neighbours, a window size
of 3 days and 6 atmospheric variable predictors can significantly reduce bias in mean
precipitation. A sensitivity analysis of higher-order atmospheric variables and sub-
grid spatial correlation will help to further explain spatial variance in the observed
climate trend and improve the accuracy of scenario data at finer (i.e. 10 km) spatial
resolutions. This work will provide corrections of regional climate scenario data in
generating more reliable forecasts of agricultural crop yield and production across
Canada.
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Fig. 3 Downscaling of CGCM3-CRCM3 output for precipitation (x 0.01 mm units) in the Fraser
Valley, BC. The blue line refers to historical observational data, black line is based on 50 km scenario
output, and red line is the predicted downscaling model. K = 4 neighbours, τ = 3 days. Cross-
validated mean-squared error (MSE) decreases from 0.137 to 0.027 mm for 1 and 6 predictors,
respectively
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Iterative Techniques for Nonlinear Periodic
Boundary Value Problems (PBVPs) via Initial
Value Problems

David H. Dezern and Sudhakar G. Pandit

Abstract We develop constructive methods for solving periodic boundary value
problems (PBVPs) associated with a nonlinear first order scalar differential equation
in a unified setting. The method of generalized quasilinearization which we employ
yields rapid convergence of monotone iterates to the solution of the PBVP. The
monotone iterates in our approach are solutions of linear initial value problems
(IVPs) as opposed to the linear PBVPs which appear in conventional methods. We
provide graphical and numerical illustrations of our results.

1 Introduction

For J = [0, T ], T > 0, consider the periodic boundary value problem (PBVP)

u′ = f (t , u) + g(t , u), u(0) = u(T ), t ∈ J. (1)

We employ the IVP approach to develop a generalized quasilinear technique for
the PBVP (1). This new approach allows us to dispense with some of the stringent
conditions required in the conventional approach, wherein the monotone iterates
are solutions of appropriate linear PBVPs (see [3]). We shall use natural lower–
upper solutions in the development of our techniques. With suitable modifications,
coupled lower–upper solutions can also be used to construct the monotone iterates.
Finally, we provide numerical and graphical illustrations which indicate that the rate
of convergence of the iterates in our methods is more rapid than in the monotone
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iterative technique developed earlier in [4]. See [2] for the details about monotone
iterative techniques for a variety of nonlinear problems. Some recent developments
about monotone iterative techniques for unified problems are given in [1, 5, 6].
Antiperiodic problems are discussed in [7]. We shall suppress the details in the proof
of our main result.

2 Main Result

We begin with the following definition.

Definition 1 Functions v, w ∈ C1[J , R], where v ≤ w on J , are said to be natural
lower–upper solutions relative to the PBVP (1) on J if

v′ ≤ f (t , v) + g(t , v) v(0) ≤ v(T ), t ∈ J ;

w′ ≥ f (t , w) + g(t , w) w(0) ≥ w(T ), t ∈ J.
For v0, w0 ∈ C1[J , R] with v0 ≤ w0 on J , we define the sector , bounded by the
functions v0 and w0:

, = {u ∈ C1[J , R] : v0(t) ≤ u(t) ≤ w0(t), t ∈ J}.
Our main result below concerns the PBVP (1).

Theorem 1 Assume that

(i) v0, w0 ∈ C1[J , R], where v0 ≤ w0 on J , with v0 and w0 being natural lower–
upper solutions relative to the PBVP (1) on J

(ii) f , g ∈ C2[J × R, R], with fuu ≥ 0 and guu ≤ 0 for t ∈ J and u ∈ ,
Then there exist two convergent sequences in ,, a nondecreasing sequence {vn(t)}
and a nonincreasing sequence {wn(t)} such that vn → v, wn → w uniformly on
J , where v and w are the minimal and the maximal solutions, respectively, of the
PBVP (1) on J .

Further, if f and g satisfy either of the following conditions:

(C1) f (t , u1)−f (t , u2) ≤ −M1(u1−u2) and g(t , u1)−g(t , u2) ≥ −M2(u1−u2) for
t ∈ J whenever u1 ≥ u2 with constantsM1 andM2 such thatM1 > M2 > 0;
or

(C2)
∫ T

0 [fu(s,α(s)) − gu(s,β(s))]ds �= 0 for any α, β ∈ ,;

then v ≡ w ≡ u and consequently the PBVP (1) has a unique solution in ,.

Proof Our proof, which is constructive, differs from the conventional one (see [3]).
For n = 1, 2, 3, . . ., define the iterates

vn(t) = e−Dn−1(t)

(
vn−1(T ) +

∫ t

0
Bn−1(s) · e−Dn−1(s)ds

)
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and

wn(t) = e−Dn−1(t)

(
wn−1(T ) +

∫ t

0
Cn−1(s) · e−Dn−1(s)ds

)

where

An(t) = −fu(t , vn(t)) − gu(t , vn(t));

Bn(t) = f (t , vn(t)) + g(t , vn(t)) + An(t)vn(t);
Cn(t) = f (t , wn(t)) + g(t , wn(t)) + An(t)wn(t);

and Dn(t) =
∫ t

0
An(s)ds.

By the Ascoli–Arzelà theorem, it follows that there exist limit functions v and w in
, such that limn→∞ vn(t) = v(t) and limn→∞ wn(t) = w(t) uniformly, monotoni-
cally, and quadratically, where v and w are the minimal and the maximal solutions,
respectively, of the PBVP (1) and v ≤ w on J . To establish uniqueness of v and
w, it remains to show that w ≤ v on J . To this end, let p(t) = w(t) − v(t), and
suppose that condition (C1) holds. Then p′(t) = w′(t) − v′(t) ≤ −Mp(t), where
M = M1 −M2. This yields p(t) ≤ p(0) · e−Mt for t ∈ J . Setting t = T we obtain
p(0) = p(T ) ≤ p(0) · e−MT . Since M and T are both positive, this implies that
p(0) ≤ 0 and consequently p(t) ≤ 0 on J .

If condition (C2) holds, then by the mean value theorem we have p′(t) =
fu(t ,α(t)) · p(t) for t ∈ J for some α ∈ , (for which v0 ≤ α ≤ w0). This im-
plies p(t) = p(0) · exp (

∫ t
0 fu(s,α(s))ds). Setting t = T we obtain, as before, that

p(0) = p(T ) · exp (
∫ T

0 fu(s,α(s))ds). By condition (C2), this implies p(0) = 0 and
hence p(t) ≡ 0 on J , which completes the proof of the theorem. �

3 An Illustrative Example

Here we provide an example to illustrate Theorem 1. For J = [0, 1] consider the
unified PBVP

u′ = f (t , u) + g(t , u), u(0) = u(1), t ∈ J , (2)

where

f (t , u) =

⎧
⎪⎪⎨

⎪⎪⎩

−1.25 sin u if 0 ≤ u ≤ π
2

−1.25 if u > π
2

0 if u < 0

and

g(t , u) =

⎧
⎪⎪⎨

⎪⎪⎩

cos u if 0 ≤ u ≤ π
2

0 if u > π
2

1 if u < 0.
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Table 1 Monotone iterative
technique

n u(t) − vn(t) wn(t) − u(t) wn(t) − vn(t)

1 0.312510 0.443268 0.755778

2 0.152541 0.221977 0.374518

3 0.070070 0.103175 0.173245

4 0.031330 0.046227 0.077557

5 0.014027 0.020697 0.034724

6 0.006292 0.009285 0.015577

7 0.002821 0.004164 0.006986

8 0.001265 0.001867 0.003132

9 0.000567 0.000838 0.001404

10 0.000254 0.000376 0.000630

Table 2 Generalized
quasilinear technique

n u(t) − vn(t) wn(t) − u(t) wn(t) − vn(t)

1 0.312510 0.443268 0.755778

2 0.144803 0.211611 0.356414

3 0.053225 0.079179 0.132404

4 0.015224 0.022731 0.037955

5 0.003618 0.005407 0.009025

6 0.000771 0.001152 0.001922

7 0.000157 0.000236 0.000393

8 0.000032 0.000048 0.000080

9 0.000006 0.000010 0.000016

10 0.000001 0.000002 0.000003

Let v0(t) ≡ 0 and w0(t) ≡ π
2 . Then v0 and w0 form a pair of natural lower–upper

solutions for the PBVP (2) and we havefuu ≥ 0 andguu ≤ 0 on,. Forn = 1, 2, 3, . . .,
define vn and wn as in Theorem 1. For t = 0.75, numerical results are shown in Table 2
above. For the same value of t , Table 1 shows corresponding results given by the
monotone iterative technique, in which the mode of convergence of the iterates is
linear. Graphical results for the generalized quasilinear technique and the monotone
iterative technique are displayed in Fig. 1 and Fig. 2, respectively. It is readily seen
that the convergence of iterates in the generalized quasilinear technique is more rapid
than in the monotone iterative technique.

We note in passing that the exact solution of the PBVP (2) is tan−1
(

4
5

)
.
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Fig. 1 The figure includes plots of the natural lower–upper solutions v0, w0 for the PBVP (2)
together with the first ten iterates vn, wn generated by the generalized quasilinear technique, as well
as a plot of the known exact solution u = tan−1 ( 4

5 ). The plots of the iterates are alternately solid or
dashed, and to reduce clutter, explicit references to iterates vn or wn for n > 3 have been removed
from the legend, even though the points on the graphs have faithfully been plotted
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Fig. 2 The figure includes plots of the natural lower–upper solutions v0, w0 for the PBVP (2)
together with the first ten iterates vn, wn generated by the monotone iterative technique, as well as
a plot of the known exact solution u = tan−1 ( 4

5 ). The plots of the iterates are alternately solid or
dashed, and to reduce clutter, explicit references to iterates vn or wn for n > 3 have been removed
from the legend, even though the points on the graphs have faithfully been plotted
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Fast and Stable Algorithms for Discrete Sine
Transformations having Orthogonal Factors

Sirani M. Perera and Vadim Olshevsky

Abstract In this chapter we derive fast, recursive, and numerically stable radix-
2 algorithms for discrete sine transformations (DST) having sparse and orthogonal
factors. These real radix-2 stable algorithms are completely recursive, fast, and based
on the simple orthogonal factors. Comparing to the known bulky and mostly unstable
DST algorithms, our algorithms are easy to implement and use only permutations,
scaling by constants, butterfly operations, and plane rotations/rotation-reflections.

For a given vector x, we also analyze error bounds of computing y = Sx for
the presented DST algorithms: S. Finally a classification of these real radix-2 DST
algorithms enables us to establish the excellent forward and backward stability based
on the sparse and orthogonal factors.

1 Introduction

Discrete Fourier transforms (DFT) have numerous applications in sciences and en-
gineering especially in applied mathematics and electrical engineering. There are
real versions of the DFT called the discrete sine transform and the discrete cosine
transform of main variants I–IV, and they have been studied by several authors, see,
e.g., [1–5].

The four main variants of DST can be denoted by

SIn−1 =
√

2
n

[
sin (j+1)(k+1)π

n

]n−2

j ,k=0
, SIIn =

√
2
n

[
εn(j + 1)sin (j+1)(2k+1)π

2n

]n−1

j ,k=0
,

SIIIn = [SIIn
]T

, SIVn =
√

2
n

[
sin (2j+1)(2k+1)π

4n

]n−1

j ,k=0
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where εn(0) = εn(n) =
√

2
2 , εn(j ) = 1 for j ∈ {1, 2, · · ·, n − 1} and n ≥ 2 is an

integer. In Sect. 2 we use a permutation matrix and trigonometric identities to derive
orthogonal and sparse factors for DST I–IV. We state algorithms for DST I–IV and
declare that the cost is O(nlogn) operations in Sect. 3. In Sect. 4 we show that our
factors for DST I–IV are numerically stable and derive error bounds.

2 Sparse and Orthogonal Factors for DST I–IV

This section introduces a complete factorization for DST I–IV having sparse, or-
thogonal, rotation/rotation-reflection, and butterfly matrices. Before deriving the
factorizations let’s introduce a vector in R

n by x = [
x0, x1, · · ·, xn−1

]
, an invo-

lution matrix Ĩn by Ĩnx = [
xn−1, xn−2, · · ·, x0

]T , a block diagonal matrix, i.e.,
blkdiag(M ,N ) by [M ,N ] and, for n ≥ 3 an even–odd permutation matrix Pn by

Pnx =
⎧
⎨

⎩

[
x0, x2, · · ·, xn−2, x1, x3, · · ·, xn−1

]T
for even n,

[
x0, x2, · · ·, xn−1, x1, x3, · · ·, xn−2

]T
for odd n.

Lemma 1 Let n ≥ 4 be an even integer. The matrix SIIn can be factored in the form

SIIn = PTn
[
SIVn

2
, SIIn

2

]
Hn where Hn = 1√

2

⎡

⎣ I
n
2
Ĩ n

2

I n
2

−Ĩ n
2

⎤

⎦. (1)

Proof Permuting the rows in SIIn gives

√
2

n

⎡

⎢⎢
⎣

[
sin (2j+1)(2k+1)π

2n

] n
2 −1

j ,k=0

[
sin (2j+1)(n+2k+1)π

2n

] n
2 −1

j ,k=0
[
εn(2j + 2)sin (2j+2)(2k+1)π

2n

] n
2 −1

j ,k=0

[
εn(2j + 2)sin (2j+2)(n+2k+1)π

2n

] n
2 −1

j ,k=0

⎤

⎥⎥
⎦

=
√

2

n

⎡

⎢⎢
⎣

[
sin (2j+1)(2k+1)π

2n

] n
2 −1

j ,k=0

[
sin (2j+1)(n−2k−1)π

2n

] n
2 −1

j ,k=0
[
ε n

2
(j + 1)sin (j+1)(2k+1)π

n

] n
2 −1

j ,k=0
−
[
ε n

2
(j + 1)sin (j+1)(n−2k−1)π

n

] n
2 −1

j ,k=0

⎤

⎥⎥
⎦

= 1√
2

⎡

⎣
SIVn

2
SIVn

2
Ĩ n

2

SIIn
2

−SIIn
2
Ĩ n

2

⎤

⎦ =
[
SIVn

2
, SIIn

2

]
Hn.
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Lemma 2 Let n ≥ 4 be an even integer. The matrix SIn−1 can be factored in the
form

SIn−1 = PTn−1

[
SIIIn

2
, SIn

2 −1

]
Ĥn−1 where Ĥn−1 = 1√

2

⎡

⎢⎢
⎣

I n
2 −1 Ĩ n

2 −1√
2

I n
2 −1 −Ĩ n

2 −1

⎤

⎥⎥
⎦.

Proof The proof of lemma 2 follows the silmilar lines as the proof of lemma 1.

Remark 1 By the transpose of (1), DST III is given by SIIIn =
HT
n

[
SIVn

2
, SIIIn

2

]
Pn.

Proposition 1 Let n ≥ 2 be an integer. Then:

ĨnC
II
n = SIIn Dn,DnSIIn = SIIn Ĩn,DnCIIn = CIIn Ĩn (2)

where CIIn =
√

2
n

[
εn(j )cos j (2k+1)π

2n

]n−1

j ,k=0
and Dn = diag

(
(−1)k

)n−1
k=0 .

The straightforward proof of (2) is given by matrix multiplication. One can use (2)
and simple trigonometric identities to derive factors for the DST IV.

Lemma 3 Let n ≥ 4 be an even integer. The matrix SIVn can be factored in the form

SIVn = PTn Vn
[
SIIn

2
, SIIn

2

]
Qn (3)

where

Vn =
⎡

⎣1 , 1√
2

⎡

⎣ I
n
2 −1 −I n

2 −1

−I n
2 −1 −I n

2 −1

⎤

⎦, −1

⎤

⎦[Ĩ n
2
,Dn

2

]
,

Cn
2
=
(

cos
(2k + 1)π

4n

) n
2 −1

k=0

, Sn
2
=
(

sin
(2k + 1)π

4n

) n
2 −1

k=0

, (4)

Qn = [Dn
2
, I n

2

]
⎡

⎣ diagSn
2

(
diagCn

2

)
Ĩ n

2

−Ĩ n
2

(
diagCn

2

)
diag

(
Ĩ n

2
Sn

2

)

⎤

⎦.

Proof Apply the matrix Pn to SIVn to permute rows

PnS
IV
n =

√
2

n

⎡

⎢⎢
⎣

[
sin (4j+1)(2k+1)π

4n

] n
2 −1

j ,k=0

[
sin (4j+1)(n+2k+1)π

4n

] n
2 −1

j ,k=0
[
sin (4j+3)(2k+1)π

4n

] n
2 −1

j ,k=0

[
sin (4j+3)(n+2k+1)π

4n

] n
2 −1

j ,k=0

⎤

⎥⎥
⎦ (5)
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By the (1,1) block in (5) and (2)

√
2

n

[
sin
j (2k + 1)π

n
cos

(2k + 1)π

4n
+ cos

j (2k + 1)π

n
sin

(2k + 1)π

4n

] n
2 −1

j ,k=0

(6)

= 1√
2

(
Zn

2
SIIn

2
(diagCn

2
) + I ′n

2
CIIn

2
(diagSn

2
)
)

= 1√
2

(
Zn

2
Dn

2
SIIn

2
Ĩ n

2
(diagCn

2
) + I ′n

2
CIIn

2
(diagSn

2
)
)

where I ′n
2
=
[√

2 , I n
2 −1

]
, Zn

2
t = [0, t0, t1, · · ·, t n

2 −2
]T

and t = [tj
] n

2 −1
j=0 .

Using the same procedure as in (6) with the difference of angles formula for sine and
(2), the (2,1) block in (5) can be expressed by

√
2

n

[
sin

(4j + 3)(2k + 1)π

4n

] n
2 −1

j ,k=0

= 1√
2

(
I ′′n

2
Dn

2
SIIn

2
Ĩ n

2
(diagCn

2
) − ZTn

2
CIIn

2
(diagSn

2
)
)

(7)

where I ′′n
2
=
[
I n

2 −1 , √
2
]
.

The (1,2) block in (5) can be restated as
√

2

n

[
(−1)j sin

j (2k + 1)π

n
sin

(n− 2k − 1)π

4n

+(−1)jcos
j (2k + 1)π

n
cos

(n− 2k − 1)π

4n

] n
2 −1

j ,k=0

(8)

= 1√
2

(
Dn

2
Zn

2
SIIn

2
(diag(Ĩ n

2
Sn

2
)) +Dn

2
I ′n

2
CIIn

2
(diag(Ĩ n

2
Cn

2
))
)

= 1√
2

(
−Zn

2
Dn

2
SIIn

2
(diag(Ĩ n

2
Sn

2
)) + I ′n

2
CIIn

2
Ĩ n

2
(diag(Ĩ n

2
Cn

2
))
)

Here we used Dn
2
I ′n

2
= I ′n

2
Dn

2
, −Dn

2
Zn

2
= Zn

2
Dn

2
and (2).

Finally, using the same procedure as in (8) with the difference of angles formula for
sine, Dn

2
I ′′n

2
= I ′′n

2
Dn

2
, −Dn

2
Zn

2
= Zn

2
Dn

2
and (2), results in

√
2

n

[
sin

(4j + 3)(n+ 2k + 1)π

4n

] n
2 −1

j ,k=0

= − 1√
2

(
I ′′n

2
Dn

2
SIIn

2
(diag(Ĩ n

2
Sn

2
))

+ ZTn
2
CIIn

2
Ĩ n

2
(diag(Ĩ n

2
Cn

2
))
)

(9)
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By using (6), (7), (8), (9), and (2)

PnS
IV
n = 1√

2

⎡

⎢
⎣
I ′n

2
Ĩ n

2
−Z n

2
Dn

2

−ZTn
2
Ĩ n

2
−I ′′n

2
Dn

2

⎤

⎥
⎦
[

SIIn
2

, SIIn
2

]
⎡

⎢
⎣
Dn

2

(
diagS n

2

)
Dn

2
Ĩ n

2

(
diag

(
Ĩ n

2
C n

2

))

−Ĩ n
2

(
diagC n

2

)
diag

(
Ĩ n

2
S n

2

)

⎤

⎥
⎦ (10)

where the first matrix with the scaling factor 1√
2

in the RHS of (10) is the same as

Vn in (4). Using Ĩ n
2

(
diag

(
Ĩ n

2
Cn

2

)) = (diagCn
2

)
Ĩ n

2
results in SIVn .

Remark 2 Following (4), one can perceive that VnV Tn = QnQ
T
n = In. Moreover

Vn is a sparse matrix having only two upside V-structures and Qn is a combination
of a rotation and rotation–reflection matrices having a butterfly structure.

3 Fast and Recursive Algorithms for DST I–IV

The complete recursive algorithms for DST II and IV can be obtained by (1) and (3).
We state this via algorithms [1] and [2]. A recursive algorithm for DST III is given
by remark 1, [1], and [2]. For DST I the recursive algorithm is given by lemma 2,
remark 1, [1], and [2].

Let nk = 2t−k(t ≥ 2) where k(0 ≤ k ≤ t − 1) is the step number. By (Fig. 1)
when k = i(1 ≤ i ≤ t − 2), each SIIni and SIVni has to be subdivided into SIVni+1

, SIIni+1

and SIIni+1
, SIIni+1

respectively to produce the total of 2i+1 nodes. Continuing (Fig. 1)
recursively, one can obtainO(nlogn) algorithm for DST II and, similarly for DST I,
III, and IV.

4 Error Bounds and Numerical Stability of DST I–IV

The stability and error bound of computing the matrix-vector product y = Sx where
S stands for SIn−1, SIIn , SIIIn , and SIVn is the main concern in this section.

Theorem 1 Let n = 2t (t ≥ 2). The error bound for y = SIIn x is given by

‖y − ŷ‖2

‖y‖2
≤ [(1 − 5u)1−t − 1

]
(11)

where ŷ = f l(SIIn x) and u is the unit roundoff.

Proof By recursively applying DST II (1) we obtain

SIIn = (PT0 V0
) (

PT1 V1
) · · · (PTt−2Vt−2

)
St−1 (Ht−2) (Ht−3) · · · (H0)
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Algorithm 1 Discrete Sine Transformation II (DSTII(x ,n))
Input: n= 2t(t ≥ 1), n1 = n

2 , x ∈ R
n.

1. If n= 2, then

y :=
1√
2

[
1 1
1 −1

]
x.

2. If n≥ 4, then

[u j]n−1
j=0 := Hn x, z1 := DSTIV

(
[u j]n1−1

j=0 ,n1

)
, z2 := DSTII

(
[u j]n−1

j=n1
,n1

)
,

y := PTn z1T , z2T
)T .

Output: y = SIIn x.

Algorithm 2 Discrete Sine Transformation IV (DSTIV (x ,n))
Input: n= 2t(t ≥ 1), n1 = n

2 , x ∈ R
n.

1. If n= 2, then

y :=
[

sin π
8 cos π

8
cos π

8 −sin π
8

]
x.

2. If n≥ 4, then

[u j]n−1
j=0 := Qn x, z1 := DSTII

(
[u j]n1−1

j=0 ,n1

)
, z2 := DSTII

(
[u j]n−1

j=n1
,n1

)
,

w :=Vn z1T , z2T
)T , y := PTn w.

Output: y = SIVn x.

Fig. 1 This shows the first couple of factorization steps of SIIn . The complete factorization for SIIn
can be obtained by applying the divide and conquer technique and the cost is only O(nlogn)
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where

P0 := Pn, Pk := ,2k

{
P n

2k

}
,V0 := In,Vk := ,2k

{
I n

2k
,V n

2k

}
,

St−1 := ,2t−1

{
SII2 , SIV2

}
,

H0 := Hn, Hk := ,2k

{
H n

2k
,Q n

2k

}
,,∗{ } := no. of block diagonals in the set,

k = 1, 2, · · ·, t − 2.

Using floating point arithmetic for y = SIIn x

ŷ = (PT0 (V0 +ΔV0)
) (

PT1 (V1 +ΔV1)
) · · · (PTt−2(Vt−2 +ΔVt−2)

)
(St−1 +ΔSt−1)

(Ht−2 +ΔHt−2)(Ht−3 +ΔHt−3) · · · (H0 +ΔH0)x.

Each row in Vk has at most two non zero entries with most 1’s and each row in Hk

and St−1 has at most two non zero entries so

|ΔV0| = 0, |ΔVk| ≤ γ2 |Vk|, |ΔH0| ≤ γ2 |H0|, |ΔHk| ≤ γ3 |Hk|,
|ΔSt−1| ≤ γ3 |St−1| , for k = 1, 2, · · ·, t − 2.

Hence

|y − ŷ| ≤ [(1 + γ5)t−1 − 1
]

PT0 |V0|PT1 |V1| · · ·
PTt−2 |Vt−2| |St−1| |Ht−2| |Ht−3| · · · |H0| |x|.

By γ5 := 5u
1−5u , ‖Vk‖2 = ‖St−1‖2 = ‖Hk‖2 = 1 and orthogonality of SIIn (i.e.,

‖y‖2 = ‖x‖2), we get (11).

Corollary 1 The error bound for y = SIIIn x is the same as in (11).

Theorem 2 The error bound for y = Sx is given by ‖y−̂y‖2
‖y‖2

≤ [(1 − 5u)−t − 1
]

where S stands for SIn−1 and SIVn , n = 2t (t ≥ 2), u is the unit roundoff and ŷ =
f l(Sx).

Proof The proof of theorem 2 follows similar lines as in the proof of theorem 1.

Corollary 2 y = Sx where S stands for SIn−1, SIIn , SIIIn , and SIVn are forward and
backward stable.

Proof By theorem 1, the radix-2 DST II yields a tiny forward error provided that
sin rπ4n and cos rπ4n (r = 1, 3 · · ·, n − 1) are computed stably. It follows that the com-

putation is backward stable as ŷ = SIIn x +Δy = SIIn (x +Δx) with ‖Δx‖2
‖x‖2

= ‖Δy‖2
‖y‖2

.

If we form y = SIIn x by usual multiplication, then ‖y−̂y‖2
‖y‖2

≤ γn := nu
1−nu . Hence SIIn

has an error bound smaller than that for usual multiplication by the same factor as
the reduction in complexity method, so DST II is perfectly stable. By theorem 2, the
stability of DST I and IV follow the same line. Stability of DST III easily follows by
the transpose.
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Interactive Computational Search Strategy of
Periodic Solutions in Essentially Nonlinear
Dynamics

Lev F. Petrov

Abstract We consider essentially nonlinear autonomous and nonautonomous dy-
namic systems described by ordinary differential equations. In such systems, for the
same parameters of the system and forcing, different stable and unstable periodic so-
lutions of different periods can exist. In addition, along with the ordered movements,
the existence of a strange attractor is known. In such circumstances, the search for
periodic solutions and their stability analysis is not a trivial problem. In order to
find periodic solutions of the dynamical systems, we offer an interactive computer
algorithm based on finding the initial conditions corresponding to the periodic so-
lutions with the possibility of interactive intervention and operational control of the
computing process. We demonstrate the algorithm and various numerical examples
of finding new and complex stable and unstable periodic solutions in strongly non-
linear dynamical systems with one and two degrees of freedom. We also consider the
mutual influence of oscillations in multidimensional nonlinear dynamic systems.

1 Introduction

We consider nonlinear autonomous and nonautonomous dynamical systems of gen-
eral form described by ordinary differential equations. Such dynamical systems
correspond to forced, parametric, and self-excited vibration, where oscillations are
generated by a combination of these modes. We also consider dynamical systems
with several degrees of freedom. In such systems, depending on the values of the sys-
tem parameters and external factors, diverse solutions exist. One of these solutions
is a deterministic chaos [1]—chaotic behavior of solutions for the fully determin-
istic dynamic system parameters and external influences. However, stable periodic
solutions of simple form (similar to the solutions of linear models of dynamic sys-
tems) are also possible. Typically, gradually changing parameters of the system lead
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to a bifurcation, lose stability of solutions, leading to new solutions [2]. Other ex-
amples are known [3], while in the area of system parameters corresponding to a
strange attractor, a stable periodic solution is found. We present a numerical algo-
rithm for finding and analyzing the stability of a variety of periodic solutions of
strongly nonlinear systems of ordinary differential equations. This algorithm allows
us to investigate the evolution of periodic solutions when changing the parameters
of the system. Such organization of work allows us to search for diverse stable and
unstable periodic solutions for a variety of strongly nonlinear systems of ordinary
differential equations including the area of deterministic chaos.

2 Problem Statement

Find the periodic solution of a strongly nonlinear dynamic system and check its
stability.

2.1 Nonautonomous System: Finding of Periodic Solutions

For a system of differential equations of the form

dxi

dt
= Xi(x1, x2, ..., xn, t), i = 1, 2, 3, ..., n, (1)

Xi(x1, x2, ..., xn, t) = Xi(x1, x2, ..., xn, t + T ) where T is a known period (2)

find a kT -periodic solution of (1)

ϕi(t) = ϕi(t + kT ) (k is a given number, k = 1, 2, . . .,K). (3)

In this case, the problem is reduced to finding the initial conditions Yi = ϕi(0)
(i = 1, . . ., n), corresponding to a periodic solution (3). To solve this problem, we
have a system of nonlinear algebraic equations of the form

Yi − xi(kT ) = 0, i = 1, 2, . . ., n. (4)

This system is solved using the Newton method.

2.2 Nonautonomous System: Stability of Periodic Solutions

To analyze the stability of the found kT -periodic solutions (3) the variational sys-
tem is constructed. This is a linear system of ordinary differential equations with
kT -periodic coefficients. This system is constructed by the analytically explicit func-
tions Xi in system (1). Next, use the Floquet theorem, the monodromy matrix, and
multipliers and calculate the characteristic Lyapunov exponents. These calculations
allow us to determine the stability of the found kT -periodic solutions.
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2.3 Autonomous Systems: Finding of Periodic Solutions

For a system differential equations of the form

dxi

dt
= Xi(x1, x2, . . ., xn), i = 1, 2, 3, . . ., n, (5)

find the T -periodic solution

ϕi(t) = ϕi(t + T ) (6)

and identify its period T . This problem is reduced to finding the initial conditions
Yi = ϕi(0) (i = 1, . . ., n − 1), Yn = 0, corresponding to the periodic solution, and
period of solution T . To solve this problem, we have a system of nonlinear algebraic
equations of the form

Yi − xi(T ) = 0, i = 1, 2, . . ., n− 1, xn(T ) = 0. (7)

This system can also be solved using the Newton method.

2.4 Autonomous Systems: Stability of Periodic Solutions

To analyze the stability of the found T -periodic solutions (6) of autonomous system
(5) the variational system and determined multipliers are constructed.

For an autonomous system (5), we use the theorem of Andronov–Witt. If the
periodic solution (6) ϕi(t) �= 0, then the periodic solution is asymptotically stable if
all the modules of multipliersMi < 1 and with oneMj = 1.

In both variants 2.1 and 2.2 the dimension of systems algebraic Eqs. (4) and (7)
is n, the algorithm for finding periodic solutions is iterative, the algorithm stability
analysis is closed.

3 Realization of the Algorithm

Periodic solutions of these nonlinear dynamical systems can be complex, polyhar-
monic and have different periods for nonautonomous systems. The behavior of
solutions by changing parameters is multivariate. In this situation, the interactive
form of the algorithm can implement a search for various periodic solutions and
analyze their evolution.

The scheme of algorithm is shown in Fig. 1. Interim results of the search of
solutions are displayed in online mode. Users can interrupt the calculation process
and realize a variety of control methods of the algorithm:
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Fig. 1 Scheme of interactive computational algorithm search strategy of periodic solutions in
essentially nonlinear dynamics

• Change searching strategy to move from the search, the initial conditions for
periodic solutions to the Cauchy problem for a large time (a few periods of required
solution), and vice versa

• Change any parameters of the system of differential equations
• Go back by steps to the parameters of the system
• Change the accuracy of all the used numerical methods
• Manage changes in the parameters of the system
• Operate a generator of random numbers for the initial conditions
• Manage the report generation and construction of phase trajectories, and so on
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4 Examples of New Solutions

4.1 System Prototype

In the study of the system

d2x(t)

dt2
− 10x + dx

dt
+ 100x3 = W cos 3.76t , (8)

P. Holmes [3] found a strange attractor, and in the zone of attractor, he found a stable
5T -periodic solution. This system is obtained in the study of transverse vibrations
of the beam-hopping with one vibration mode.

4.2 Additional New Solutions

In addition to the periodic solutions found by Holmes in the area of strange attractor
periodic solutions, we represent a new stable 3T -periodic solution of the same system
with 1.6 < W < 1.7 (Fig. 2).

We also consider examples of the bifurcation of periodic solutions on the boundary
of the strange attractor [4].

4.3 The Generalization of the Model (8) with Several Degrees
of Freedom

ẍj (t) + j 2(k2j 2 +D)xj (t) + xj (t)j
2

4

(
N∑

m=1

m2x2
m(t)

)

+ δ1ẋj (t) = Qj (t), (9)

Qj (t) = Qj (t + T ), j = 1, 2, . . .,N (10)

Fig. 2 Stable 3T -periodic solution of system (8)
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Fig. 3 The phase portraits of stable periodic solutions of the system (9) for N = 2

This system is obtained in the study of transverse vibrations of the beam-hopping with
several forms of oscillations. The proposed interactive search algorithm for periodic
solutions allows to find the complex dynamical modes in a multi-dimensional system
(9). It is found that the interplay of various forms of oscillations changes the range of
existence of deterministic chaos. Figure 3 shows the phase portraits of stable periodic
solutions of the system (9) for N = 2.

5 Conclusion

The proposed interactive computational algorithm for the search of periodic solutions
in an essentially nonlinear dynamics is effective in a variety of situations, including
the field of deterministic chaos.
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Explosive Behavior in the Black–Derman–Toy
Model

Dan Pirjol

Abstract We consider the simulation of the Black–Derman–Toy (BDT) model with
log-normally distributed rates in the spot measure, in discrete time and with a contin-
uous state variable. We note an explosive behavior in the Eurodollar futures convexity
adjustment at a critical value of the volatility, which depends on maturity, rate tenor,
and simulation time step size. In the limit of a very small time step, this singularity
appears for any volatility, and reproduces the Hogan–Weintraub singularity, which
is generic for short-rate interest rate models with lognormally distributed rates. The
singular behavior arises from a region in the state space which is usually truncated
off in finite difference and tree methods, or is very poorly sampled in Monte Carlo
methods, and thus is not observed under usual simulation methods.

1 Introduction

The dynamics of interest rate models with log-normal volatility specification in con-
tinuous time is known to display singular behavior. This was first noticed in the
context of the short-rate models by Hogan and Weintraub [7], who observed that
Eurodollar futures convexity adjustments are infinite in the Dothan model [4], see
also [1, 15]. This model is defined by the short-rate process

drt = σrtdWt + artdt , (1)

with a, σ real constants. A similar divergence is observed in the Black–Karasinski
model [7].

Similar singular behavior was observed in HJM models [6] with log-normal
volatility structure. The forward rates in such models become infinite with nonzero
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probability [6], which implies zero prices for certain financial instruments which
have only positive payoffs, such as zero coupon bonds.

In order to avoid these issues, modified versions of interest rate models with
log-normal volatility specification have been proposed. For short-rate models, a
modification of the Dothan model was proposed by Sandmann and Sondermann
[15], which replaces the assumption of log-normality of the short rate r with that of
log-normality of the effective annualized rate re defined as r = log (1+re). Assuming
dre,t = σre,t dWt leads to the short-rate model

drt = (1 − e−rt )σdWt − 1

2
σ 2(1 − e−rt )2dt. (2)

For small rates rt → 0 the short rate is log-normally distributed, while for very
large rates rt � 1 the volatility specification becomes normal. For this model the
divergence observed in the Dothan model disappears, and the Eurodollar future prices
are finite [15] .

Similar modifications of the log-normal HJM model that avoid the singular behav-
ior connected with the explosion of the forward instantaneous rate were proposed in
[5]. These models replace the volatility specification of the log-normal HJM model
with the assumption of log-normality of the forward effective rate fe(t , T) with com-
pounding period δ, defined byf (t, T) = 1

δ
log (1+fe(t, T)δ). This avoids the explosion

of the forward rates [5]. The recognition of this fact led to the formulation of the
modern log-normal Libor market model [3, 9, 10], which is defined in terms of the
process for the set of finite tenor nonoverlapping simple forward rates f (t , T , T +δ).

In practice, most interest rate models are used in a discrete time implementation.
We study here the emergence of the singular behavior in the discrete-time version
of short-rate models with log-normally distributed rates. Using the example of the
Black–Derman–Toy (BDT) model [2] with continuous state variable, we show the
appearance of a sharp transition in the Eurodollar future convexity adjustment at a
certain critical value of the volatility. At this point, this convexity adjustment has an
explosive behavior, which thus introduces a limit on the applicability of the model.

2 Short-Rate Models

An important class of interest rate models used in financial practice is the class of
the short-rate models. These models are defined by specifying a stochastic process
for the short rate rt of the form

drt = σ (t , rt)dWt + μ(t , rt)dt. (3)

Some of the most popular models of this type are the Vasicek–Hull–White model,
the CIR model and the Black–Karasinski models [1].

In practical applications, these models are usually simulated in a discrete time
approach, on a tenor of dates 0 = t0 < t1 < · · · < tn. We assume for simplicity
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that the simulation times are uniformly spaced ti+1 − ti = τ. The state variable rt is
either discretized (e.g., in finite difference or tree methods), or treated as a continuous
variable (e.g., in Monte Carlo methods or analytical methods). We will consider here
the second method, and will allow the state variable to be continuous and unbounded.

The price at time ti of a European claim with payoff X at time tj is given by the
discrete time version of the fundamental pricing formula

Vi = 1

1 + Liτ E

[
X

(1 + Li+1τ ) · · · (1 + Lj−1τ )

∣∣Fi
]
. (4)

The expectation value is taken in the so-called spot measure, with numeraireMi given
by the discrete-time analog of the money market accountMi = Πi−1

k=0(1 + Lkτ). We
will assume the use of the spot measure everywhere in the following.

The simplest claims are the zero coupon bonds, which correspond to X = 1.
Denote Pi,j the price of a zero coupon bond at time ti paying 1 at time tj . The
Libor rate Li,j for the time period (ti , tj ) is related to the zero coupon bond prices as
Li,j = 1

tj−ti
(
P−1
i,j − 1

)
. We denote the single-period rate as Li,i+1 = Li .

2.1 BDT Model: Discrete-time, Continuous-State Implementation

The BDT model [2] is defined by the log-normal distributional assumption for the
Libor rates Li for the (ti , ti+1) period in the spot measure

Li = L̃ieσixi− 1
2 σ

2
i ti , i = 0, 1, . . ., n− 1, (5)

where L̃i , σi are constants and xi ≡ xti is a standard Brownian motion sampled at
the simulation times ti . The parameters L̃i , σi are calibrated such that the model
reproduces a given initial yield curve P0,i and appropriate rate volatilities [8].

For the purpose of the simulation of the model, the zero coupon bonds Pi,j (xi)
must be computed as functions of the stochastic driver xi at the time ti . The zero
coupon bonds are given by (4) as conditional expectation values

Pi,j (xi) = 1

1 + Liτ E

[
1

Π
j−1
k=i+1(1 + Lkτ )

|Fti
]

= 1

1 + Liτ E
[
Pi+1,j |Fti

]
. (6)

This can be conveniently computed in a backward recursion in i. Introducing the
functions πi,j (xi) defined as

Pi,j (xi) = 1

1 + Li(xi)τ πi,j (xi), (7)

and the second equality in (6) gives the recursion relation

πi,j (xi) =
∫ ∞

−∞
dxi+1√

2πτ
e−

1
2τ (xi+1−xi )2 πi+1,j (xi+1)

1 + Li+1(xi+1)τ
(8)
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Fig. 1 Left plot: The Eurodollar future convexity adjustment in the BDT model for the Libor rate
L(T , T + δ) set at T = 5 and paid at T + δ = 7.5 as a function of the volatility σ in a simulation
with time step τ = 0.25. Solid black curve: continuous state variable, solid blue curve: binomial
tree implementation. The dashed curves show analytical upper (red) and lower (blue) bounds [14].
Right plot: the same convexity adjustment vs σ for several time discretizations. The number of
simulation time steps spanned by δ is nδ = 2, 4, 6, 8, 10 (from right to left). Both plots correspond
to uniform forward rate Lfwd

i = 5% and L̃i = Lfwd
i (no calibration)

with initial condition πj−1,j (x) = 1. The expectation value in (6) is expressed as an
integral over the probability transition for the Brownian motion p(xti+1 |xti ), which
is the heat kernel of the one-dimensional heat equation. The recursive integrations
in (8) can be performed numerically using a precise method proposed in [13].

3 Eurodollar Future Pricing in the BDT Model

Consider the price Vt of a Eurodollar future on the rateL(T , T +δ). Assuming future
settlement at discrete times ti this is given by

Vt = 100(1 − E[L(T , T + δ)|Ft ]δ). (9)

The tenor of the Eurodollar future is δ (typically 3M), and its delivery time is T > t .
We will compute the expectation of the Libor rateL(T , T +δ) in the spot measure;

this can be parameterized in terms of a convexity adjustment κ defined as

E [L(T , T + δ)] = κ(T , δ, nδ)L
fwd(T , T + δ). (10)

This expectation can be reduced to the calculation of the integral

E

[
P−1
i,j (xi)

]
=
∫ ∞

−∞
dxi√
2πti

e
− 1

2ti
x2
i (1 + Li(xi)τ )

1

πi,j (xi)
. (11)

We show in Fig. 1 typical results for the convexity adjustment κ vs. the volatility σ in
the BDT model with uniform volatility σi = σ and flat yield curve Lfwd

i = 5%. The
left plot shows κ both for the exact continuous state (solid black curve) and the usual
binomial tree implementation of the BDT model (solid blue curve). They agree well
for small σ , but diverge for larger volatility where the continuous state result has a
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Fig. 2 The integrand in the expectation value (11) for the Eurodollar future convexity adjustment
for the Libor rate L(T , T + δ) with T = 5, δ = 2.5 for several values of the volatility σ around the
critical value σcr = 47 %. The simulation has quarterly time steps τ = 0.25 and Lfwd

i = 5 %

sharp increase at a critical value σcr ∼ 47 %. This shows that the usual simulation
methods can miss the correct explosive behavior of the model. The emergence of
the sharp transition as the number of simulation time steps nδ = δ/τ spanned by the
Libor tenor increases is seen in the right plot of Fig. 1.

In order to investigate the origin of this singularity, we show in Fig. 2 the integrand
of the expectation value (11) for several values of the volatility around the transition
point σcr * 47 %. For small volatility below the critical value, the integrand is
peaked around the origin with width ∼√ti * 2.24. This is the region covered well
in usual tree and finite difference implementations. Around the critical volatility the
integrand develops a second peak at a very large value of x ∼ 24, which rapidly
increases in size as the volatility crosses the critical value. Above σcr the integral
(11) is dominated by the second peak. The latter lies at about 10 standard deviations
of xi from origin, in a region which is assumed to be unimportant in practice, and is
truncated off in usual implementations of the model. Accounting for the contribution
of the secondary peak at x ∼ 24 requires a very high precision of the simulation; at
this point, the denominator in (11) is equal to πi,j (x) ∼ 10−21 (for σ = 47 %).

A similar phenomenon was observed in models with log-normally distributed
rates in the terminal measure [11, 12]. In these models, certain expectation values
and convexity adjustments were shown to have a sharp transition and explosive
behavior as the function of volatility. As in the case considered here, the effect is due
to a contribution to the expectation values from a region in the state variable that is
assumed to be unimportant and is truncated off in usual simulation methods.
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4 Conclusions

We report the results of an investigation of the BDT model with continuous state
variable in discrete time. The main conclusions of this study are:

• In discrete time, the Eurodollar convexity adjustment for rates spanning suffi-
ciently many simulation steps has a singular behavior at a finite but nonzero value
of the volatility. At this point, the convexity adjustment explodes to unphysically
large values, which limits the applicability of the model.

• The singular behavior arises from a region in the state space which is usually
truncated off in finite difference and tree methods, or very poorly sampled in
Monte Carlo methods, and thus is not observed under usual simulation methods.

• The critical volatility decreases with the time step and approaches zero in the
continuous time limit, in agreement with the Hogan–Weintraub result [7, 15].
This is suggested by numerical simulation (e.g., in Fig. 1 (right panel)) and is
confirmed by an analytical lower bound on κ [14].
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Exploiting Block Triangular form for Solving
DAEs: Reducing the Number of Initial Values

J. Pryce, N. Nedialkov, G. Tan and R. McKenzie

Abstract The authors have written two codes to solve differential algebraic equations
(DAEs) by structural analysis (SA). The first is written in C++ (Daets) and deals with
the solution of DAE initial value problems, using SA. Upon seeing how informative
the SA could be the authors wrote Daesa (in Matlab) to do only the structural
analysis. These codes rely on exploiting the block triagular form (BTF) of a DAE,
this chapter explains how.

1 Overview of the Structural Analysis (SA) Method

Both Daets and Daesa handle a DAE in n state variables xj (t), j = 1, . . ., n, of the
general (possibly nonlinear) form

fi(t , the xj and derivatives of them) = 0, i = 1, . . ., n,

which includes the case of a fully implicit or purely algebraic system. The numerical
solution scheme used in Daets is via Taylor series, in steps over a range, using
automatic differentiation, analogous to a Taylor series method for ODEs.

The method starts by forming the n× n signature matrix Σ = (σij ), where

σij =
⎧
⎨

⎩
highest order of derivative to which xj occurs in fi

−∞ if it does not occur.
(1)
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A highest value transversal (HVT) is found, which comprises n finite entries, one
in each row and column of Σ , such that the total of these entries is maximised. We
assume the problem is structurally well-posed, meaning that such an HVT exists.
Valid non-negative integer valued offset vectors c = (c1, . . ., cn) and d = (d1, . . ., dn)
are found, where valid means

dj − ci ≥ σij for all i, j , with equality on a HVT, (2)

normalised by the constraint minici = 0. There are unique element-wise smallest
vectors c, d, which we call the canonical offsets; these are used from now on.
However, any choice of valid offsets specifies a solution scheme by which to find
Taylor coefficients in batches. Namely for stage k = k∗, k∗ + 1, . . . where k∗ =
−maxj dj ≤ 0, solve the equations

f
(k+ci)
i = 0 ∀i such that k + ci ≥ 0 (3)

for the variables

x
(k+dj )
j ∀j such that k + dj ≥ 0. (4)

Consider the simple pendulum DAE, in variables x(t), y(t), λ(t) and parameters
length L and gravity G. We find its Σ matrix, HVT (two, one marked by • the
other by ◦) and offsets

0 = A = x′′ + xλ
0 = B = y′′ + yλ −G
0 =C = x2 + y2 −L2

Σ =

x y λ ci[ ]A 2• −∞ 0◦ 0
B −∞ 2◦ 0• 0
C 0◦ 0• −∞ 2
d j 2 2 0

This specifies a solution scheme of the form

Stage k Solve For ‘batch’ Kind

−2 0 = C = x2 + y2 − L2 x, y 1by2 nonlinear

−1 0 = C ′ = 2xx ′ + 2yy ′ x ′, y ′ 1by2 linear

0 0 = A,B,C ′′ x ′′, y ′′, λ 3by 3linear

1 0 = A′,B ′,C ′′′ x ′′′, y ′′′, λ′ 3by3 linear

(5)

and so on for later stages. At each stage, treat items found previously as ‘known’.
A key object is the n× n system Jacobian matrix J, with entries

Jij = ∂fi

∂x
(dj−ci )
j

=
⎧
⎨

⎩

∂fi

∂x
(σij )

j

if dj − ci = σij
0 otherwise, including where σij = −∞
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The solution scheme succeeds [3] iff J is non-singular, for example, for the pendulum,

J =

⎡

⎢⎢
⎣

∂A/∂x ′′ 0 ∂A/∂λ

0 ∂B/∂y ′′ ∂B/∂λ

∂C/∂x ∂C/∂y 0

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 x

0 1 y

2x 2y 0

⎤

⎥⎥
⎦

is non-singular, since det (J) = −2(x2 + y2) = −2L2 �= 0 at a consistent point.

2 An IV Paradox and Its Explanation

IVs, Naive Version
Solution scheme (3), (4) gives a simple recipe, in terms of the offsets, for what

initial values (IVs) must be provided: namely these comprise all x(r)
j such that

⎧
⎨

⎩
0 ≤ r < dj , if the DAE is quasilinear (see below), so

∑
j djvalues in all;

0 ≤ r ≤ dj , otherwise, so n+∑j djvalues in all.

(6)

For example, the simple pendulum is quasilinear with d = (2, 2, 0), so the recipe is:
in scheme (5), give IVs for x, x ′; y, y ′. Note: we call them IVs but they are really a set
of trial values from which a nearby initial consistent point can always be computed
in a numerically stable way. Since this DAE has 2 degrees of freedom (DOF) one
could specify such a point choosing just two of these values, say x, x ′, instead of
four; but any such choice is numerically unstable for some initial position of the
pendulum.

IVs, Exploiting DAE Structure When applied to DAEs having structure, the simple
recipe (6) leads to paradoxes. Namely, if one subsystem of the DAE drives another
but is itself undriven, (6) can make the driving subsytem need more IVs than it would,
were it stand-alone. An example is the coupled two pendula system

0 = A= x′′ + xλ ,
0 = B= y′′ + yλ −G,
0 =C = x2 + y2 −L2,
0 = D= u′′ +uμ ,
0 = E = v′′ + vμ −G,
0 = F = u2 + v2 − (L+ cx′)2 .

c is a constant .

Σ =

x y λ u v μ ci⎡⎢⎢⎣
⎤⎥⎥⎦

A 2 0 1
B 2 0 1
C 0 0 3
D 2 0 0
E 2 0 0
F 1 0 0 2
d j 3 3 1 2 2 0

, (7)

where a blank in the Σ means −∞. The first three equations model one pendulum,
and the second three model a second (coupled) pendulum. Pendulum 1 drives pen-
dulum 2 in that x ′ appears in equation F (horizontal velocity of pendulum 1 affects
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length of pendulum 2), see entry in position (F , x) of Σ ; but there’s no reverse
influence.

Yet, pendulum 1’s offsets have increased by 1 while pendulum 2’s are unchanged.
Hence, pendulum 1 now needs IVs for x ′′, y ′′ and λ, which as a stand-alone system
it did not. Clearly something is wrong here.

To clarify what is going on, consider Table 1, which lists the stages in the
uncoupled and coupled system solution processes.

Uncoupled pendula
k find

−2 x, y, u, v
−1 x′, y′, u′, v′

0 x′′, y′′, λ , u′′, v′′,μ
(a)

Coupled pendula
k find

−3 x, y
−2 x′, y′, u, v
−1 x′′, y′′, λ , u′, v′

0 x′′′, y′′′, λ ′, u′′, v′′,μ
(b)

Uncoupled pendula

k find in parallel

−2 x, y u, v
−1 x′, y′ u′, v′

0 x′′, y′′, λ u′′, v′′,μ
(a)

Coupled pendula
local k∗ global k
= k+1 find then find

−2 x, y −3
−1 x′, y′ −2 u, v

0 x′′, y′′, λ −1 u′, v′
1 x′′′, y′′′, λ ′ 0 u′′, v′′,μ

(b)

Table1 Stages in solving the uncoupled and coupled 2-pendula systems.

Table2 Explanation in terms of local stage counter k∗ for first pendulum.

With coupling, you can’t find u, v at same time as x, y, because u, v satisfy 0 = F =
u2 + v2 − (L + cx ′)2, which uses x ′ which hasn’t been found yet. And so on. The
raised offsets say, in effect, ‘Shift pendulum 1 a stage earlier, so its derivatives are
ready when pendulum 2 needs them’. Their apparent effect of increasing the number
of IVs needed is mistaken, and due to (6) not telling the whole story.

The explanation comes from considering pendulum 1 to have a local stage counter
k∗ = k + 1. (Pendulum 2 also has one, but it is the same as the global counter k.)
Introducing k∗ into Table 1 gives Table 2.

In the coupled system each global stage solves for pendulum 1 data first and then
uses this to solve for pendulum 2 data. Relative to its local stages, pendulum 1 has
local offsets (̂c, d̂) = (0, 0, 2; 2, 2, 0), the same as when it is stand-alone. And it is
clear from the solution scheme in Table 2b that pendulum 1 requires the same IVs
x, y, x ′, y ′ as when it is stand-alone—which is as it should be.
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3 The Benefits of BTF

The paradox in the previous section arose because the DAE had a nontrivial block
triangular form (BTF), and the explanation came from recognising this.
A BTF is a property of a sparsity pattern, in this case a subset S of {1, 2, . . ., n}2, the
n× n positions in the signature matrix or Jacobian. Write a × in the positions (i, j )
that belong to S, and leave the others blank.

If we can permute rows and columns so S looks like the example below, then we
have put S in (upper) block triangular form.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

× × × × ×
× × × ×

× × ×
× × ×
× × × ×

× ×
× ×
× ×

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Namely, there are square diagonal blocks that are themselves irreducible (cannot be
split into a finer BTF) and the below-diagonal blocks are empty. Such a BTF can
always be found if S is structurally non-singular, i.e. contains some transversal; and
it is unique up to ordering of the diagonal blocks [1].

In the DAE structural analysis context we have two choices of sparsity pattern to
use. A natural one is the sparsity pattern of Σ :

S = {(i, j ) | σij > −∞}
We call the BTF based on this sparsity pattern the coarse BTF. A more informative
BTF is found by using the sparsity pattern of the Jacobian J:

S0 = S0(c, d) = {(i, j )|dj − ci = σij }
We call the resulting BTF the fine BTF since S0 ⊆ S and it usually gives a strict
refinement of the BTF that S generates. Though S0 depends on the (c, d) chosen, the
resulting set of blocks is independent of (c, d) up to possible reordering [2].

Each diagonal block of the BTF defines a subsystem of the DAE: its equations
(rows) and variables (columns) form a free-standing DAE, if one counts any other
variables that occur in these equations as external driving functions.

Let there be p blocks of sizes N1, . . .,Np summing to n. As we are using upper
BTF, each block depends only on those below it, the bottom block being independent
of all others. It can be proved that for the fine BTF, there is a well-defined notion that
the !th block has a local stage counter

k! = k +K!, ! = −1, . . .,p,



372 J. Pryce et al.

where k is the global stage counter and K! is an integer ≥ 0, the lead time of that
block. The local offsets given by

ĉi = ci −K!, d̂j = dj −K!
are thus the offsets of the !th block as a free-standing DAE in the sense described
above.

As an example, the coupled two pendula DAE (7) has the following fine BTF:

Σ =

u v μ x y λ ci ĉi⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

F 0 0 1 2 2
E 2 0 0 0
D 2 0 0 0
C 0 0 3 2
B 2 0 1 0
A 2 0 1 0
d j 2 2 0 3 3 1
d j 2 2 0 2 2 0

, J =

u v μ x y λ⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

F 2u 2v ξ
E 1 v
D 1 u
C 2x 2y
B 1 y
A 1 x‹

where ξ = −2c(L+cx ′). Hence we have a lead time K1 = 0 for the first block and
K2 = 1 for the 2nd block.

4 Initial Values Revisited

Initial (or trial) values are numbers a user must supply, to specify an initial consistent
point of the DAE from which to propagate a numerical solution. Of course one would
like to demand as few IVs as possible. The BTF theory outlined above (see [2] for
more detail) shows the IVs needed are determined, not by the naive recipe (6) using
global offsets, but by the corresponding formula using local offsets d̂j . Namely
within a block they comprise all x(r)

j such that:

⎧
⎨

⎩
0 ≤ r < d̂j , if the block is quasilinear (see below);

0 ≤ r ≤ d̂j , otherwise;
(9)

where quasilinear (QL) means the equations in the block are jointly linear in their
leading derivatives, x

(dj−ci )
j . With blocks of size N! and lead timesK!, ! = 1, . . .,p,

this needs
∑p

!=1N!K! fewer IVs than recipe (6). This is before considering an
important effect: experience suggests that small blocks are far more likely to be QL
than are large ones. As a result, BTF and QL analysis work together to reduce the
number of IVs needed.
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5 Conclusions and Future Work

Structural analysis based on BTF promises to reduce the work of solving a DAE IVP
numerically, especially by simplifying the linear algebra involved. As yet, Daets
does not use such methods, whereas some other simulation tools based on DAE
models do use some form of SA to reduce work.

The coarse rather than fine, BTF can be exploited to solve IVPs in parallel by
pipelining the solution process block-wise: this also deserves study.

We believe that our theory is the most powerful available, for doing this sort of
analysis, but other tools are currently ahead of Daets in putting SA into practice.
Thus, we wish to study other simulation tools’ use of SA in numerical solution.
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Analysis and Visualization of a Many-Objective
Optimization Landscape Design Problem

Luis A. Rivera-Zamarripa, Steven A. Roberts and Nareli Cruz-Cortés

Abstract A general methodology to analyze the solution of a many-objective opti-
mization problem (MOOP) to landscape design is presented. The landscape design
problem consists on assigning different types of land use to specific areas identified
as candidate sites to be changed. Some local and global ecological criteria are con-
sidered. In order to gain some clarity during the analysis of the solutions that conform
to an optimal set some clustering strategies are usually utilized. In this chapter, we
use a simple strategy called favour ranking to place similar solutions together. Then,
the solutions are visualized using a state-of-the-art technique.

1 Introduction

The multiobjective optimization problems have been widely studied for the case of
two or three objectives during the last decades. However, the case of four or more
objectives has been heavily explored only during the last few years, they are called
many-objective optimization problems (MOOPs). In these cases, some important
problems are usually faced, for instance, the approximation of the optimal solution set
(Pareto optimal solution set), visualization, and decision-making. According to the
Pareto optimal definition for MOOP, all the solutions in the Pareto set (incomparable
solutions) are considered as the same rank. However, for optimization methods
such as the evolutionary algorithms, most of the time it is necessary to make a
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distinction between them. Several strategies have been proposed to address this
problem (for a comprehensive survey see [3]). For example, in [2], the authors
used the relation favour to distinguish between solutions. The relation favour makes
comparable solutions which are incomparable under Pareto dominance.

On the other hand, plotting a set of Pareto solutions for four or more objectives is
a difficult task, therefore analyzing and choosing a solution from that set are difficult
tasks too. Some published works have suggested the use of clustering techniques
to place similar solutions together. These techniques usually give low clarity and
are time consuming. Further, in some cases, the motivation to place solutions to-
gether is unclear. The work published in [9] suggested the usage of heatmaps as a
very convenient alternative to visualize Pareto Front (PF∗) with high dimensional-
ity. Mainly because they do not lose any information, and their efficiency is largely
unaffected by the problem dimensionality. However, some interpretation problems
arise if the solutions and objectives are placed in an arbitrary order [9]. The Pareto
optimality definition allows the existence of solutions where a small improvement
in only one objective can occur, while a large deterioration is present in some other
objectives. The relation favour fixes, to certain degree, this problem also by consid-
ering the quantity of objectives where a solution is better than other. Further, giving
a particular hierarchy to the solutions could help the decision-maker on his/her task
by providing a clue on how the solutions are related. Therefore, when ordering ac-
cording to favour, some optimal solutions would be considered better than others.
Additionally, this ordering will place together those solutions that behave similar,
e.g., solutions with a large number of functions with higher values, and vice versa.
In this chapter, we propose using the relation called favour to impose an ordering to
the solutions. The results can then be visualized using a heatmap.

In some problem domains such as Greenland System design, the statement of
design problems using multiple objectives has arisen. It allows the trial and incorpo-
ration of different configurations based on ecological principles. Also, the analysis
of qualitative and quantitative regional landscape structures in land-use planning [5].
The work published in [5] presented the statement of eight objective functions to
find the best configuration for some portion land considered as sites candidates to be
changed. A new statement for the problem is presented in [6] where the objectives
were redesigned, and some of them established as constraints. In this chapter, we
present the analysis of this multiobjective landscape design problem.

2 Multiobjective Optimization Problems

2.1 Basic Definitions

The task of a MOOP is to find the vector of variables x∗ = [x∗1 , x∗2 , x∗3 , . . ., x∗n]T such
that it optimizes the k objective functions f (x) = [f1(x), f2(x), . . ., fk(x)]T subject
to inequality and equality constraints. The solutions that fulfill the constraints define
the set of feasible solutionsΩ . The vector variables x can be continuous, discrete or
a combination of both kind of values.
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Pareto dominance definition A solution u = [u1, u2, . . ., uk]T ∈ Ω dominates a
solution v = [v1, v2, . . ., vk]T ∈ Ω (denoted as u - v), if and only if, u is partially
less than v, that is, ∀i ∈ {1, 2, . . ., k} : ui ≤ vi ∧ ∃i ∈ {1, 2, . . ., k} : ui < vi .

Optimal Pareto set Given a MOOP f (x), the Pareto optimal set (P ∗) is defined as:
P ∗ = {x ∈ Ω | ¬∃x ′ ∈ Ω : f (x ′) - f (x)}.
Pareto optimal front The PF ∗ is defined as: PF ∗ = {u = F (x) | x ∈ P ∗}.

Then, the MOOP solution is comprised of set of compromise solutions (instead
of only one point), which is precisely the optimal Pareto set. The difficulties faced
when dealing with MOOP are mainly: high computational cost, poor scalability of
most existing evolutionary algorithms, and difficulty to visualize the solutions. To
deal with these high-dimension MOOP, the next steps should be followed:

• To approximate the optimal PF ∗
• To remove the redundant objectives
• To apply some clustering technique to the solutions
• To visualize the solutions to choose one

2.2 Objective Reduction

To deal with the scalability problem, some authors have proposed reducing the num-
ber of objective functions, in which case, most of the mentioned difficulties will be
diminished or eliminated.

Only few published works related to objective reduction in MOOP can be found
[4, 8]. Some approaches assume the existence of some redundant objectives that can
be removed from the objective set without affecting the Pareto relations [1]. On the
other hand, other authors [7] consider that the objectives elimination must guarantee
the preservation of the global correlation structure (instead of the Pareto relations).
In [7], it is proposed an algorithm based on principal component analysis to denoise
and reduce the number of objectives.

2.3 Visualization

Some techniques for visualization have been applied to MOOP fronts such as, scatter
plots, pairwise coordinate plots, neuroscale, parallel coordinate plots, among others.
According to the study presented in [9], heatmaps seem to be a convenient option.

3 Many-Objective Landscape Design Problem

In this chapter, we consider a MOOP combinatorial problem defined in [5, 6] where
there are some land areas considered as candidates to be changed. The goal is to de-
fine, for each candidate site, which would be the best option to be changed considering
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one out of the three next values: natural, agricultural and urban. Each land configu-
ration is evaluated according to seven objective functions that consider local as well
as global ecological criteria. These objective functions are summarized next:

• F1: It rewards solutions with a few large patches of natural vegetation (core areas)
• F2: This function favors connected structures of natural features across the

landscape by maximizing the vegetated corridors between core areas
• F3: It rewards the formation of stepping stones of natural vegetation between

large natural areas
• F4: It maximizes the number of natural–urban neighbors in urban areas
• F5: It maximizes the number of agricultural–agricultural neighbors
• F6: This function favors agricultural areas considering soil capability
• F7: It maximizes the number of urban–urban neighbors

Further details related to these objective functions, and their ecological support can
be found in [5, 6]. The case of study is the area located within the Greater Toronto
Area, Ontario, Canada, where eight candidate sites were found.

Obtaining the optimal PF ∗ Taking advantage of the relatively small search space,
the optimal PF ∗ was obtained by enumeration. The whole search space is composed
by 38 = 6561 possible solutions. From there, it was found that the optimal PF ∗ is
conformed by PF ∗ = 47 solutions.

Objective reduction Based on the idea presented in [1] an objective reduction was
applied. So, each objective was removed at a time and the Pareto relations computed
and compared against the original ones. If the Pareto relations changed then, that
objective is considered as essential. The next was found:

• Redundant objectives: F2 and F4
• Essential objectives: F1, F3, F5, F6, and F7.

3.1 Visualization Using a Ranking Based on Favour

In this chapter, we use the relation called favour to order the solutions to be shown in
a heatmap. The relation favour is able to compare solutions which are incomparable
using the relation dominance [2] (assuming the minimization case). The relation
favour is defined as follows: let be two nondominated solutions u and v, defined in
the objective space with k objective functions u = [u1, . . ., uk] and v = [v1, . . ., vk].
It is said that u is better than v, (u <f v), if it is higher the number of objectives in
which u is less than v, or more formally:

u <f v ⇔ |{i : fi(u) < fi(v), 1 ≤ i ≤ k}| > |{j : fj (v) < fj (u), 1 ≤ j ≤ k}|.
For each solution u its score s(u) is computed as the number of times that u is better
than all other solutions in the front (u <f m), wherem ∈ PF and PF is the current
PF ∗ approximation. The process of determining the score s has a complexity O(kn2),
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Fig. 1 Heatmap for the studied landscape design problem solution (color online)

where n is the number of individuals conforming the PF ∗, and k is the number of
objectives.

The solutions in PF are ordered according to their score s( · ). The solutions with
highest scores are placed at the top of the list, and vice versa. Notice that some ties
can be found, that is, two solutions u and v could have the same score (s(u) = s(v)).

Ties are solved by considering not only the number of times that the solutions are
better than other solutions, but the number of objectives in which it wins too. In this
case, we say that u is better than v if the next condition is satisfied:

{i : fi(u) < fi(m), u <f m, ∀m ∈ PF } > {j : fj (v) < fj (m), v <f m, ∀m ∈ PF },
where 1 ≤ i, j ≤ k.

The ordered solutions are then presented in a heatmap. For the studied problem,
the solutions (without constraints) are presented next. The heatmap shows the so-
lutions in the rows and the objectives at the top (see Fig. 1). The colors inside the
heatmap represent the number of times that the solution wins to other solutions for
the corresponding objective. Thus, the values for all the objectives are in the same
scale.
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4 Conclusions

Defining a design problem as multiobjective gives the possibility of exploring and
analysing new configurations, without giving any objective preference before the
optimization process. In such case, the decision-maker can consider all the possi-
bilities. The application of some strategy to order the nondominated solutions gives
a clue to the decision-maker to make an easier process. Ordering the solutions ac-
cording to the relation favour, introduces some bias to the decision-making process.
Actually, in this case, it is considered that the best solutions are those with highest
values for more objective functions, which implies that they have a very low value in
at least one objective. This clustering process does not need to define any similarity
functions or user-defined parameters. Instead, it only compares each solution against
the others to count the number of times that it is better in terms of the relation favour.
Clearly, it is a simpler process than the one presented in [9] where a similarity matrix
is conformed by obtaining its eigenvalues.
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Evolutionary Multiobjective Optimization
(EOM) Design for Peri-urban Greenlands
Systems: Metric Implementations

S. A. Roberts, Nareli Cruz-Cortés and G. B. Hall

Abstract Habitat fragmentation and loss is a key issue for land-use planning and
environmental policy implementation. Greenlands Systems have been proposed as
one solution to this issue. This chapter discusses aspects of implementation of an evo-
lutionary multiobjective optimization (EMO) methodology for a Greenlands System
design. The application of landscape ecology principles via EMO, combined with
analysis of the Pareto front of nondominated solutions and the measure of favor of
these solutions provides a methodology to address the deterioration of ecological
function in urban fringe areas and insights into the steps that can be taken to promote
sustainable peri-urban landscapes. The results of particular landscape metrics using
a real-world data set of a small study area bring into relief issues concerning the
interplay between the mathematization of landscape ecology principles of design
and the resulting set of estimates of the Pareto optimal solutions.

1 Introduction

Some spatial decision support problems can be framed as configuration optimization
problems, a combinatorial problem. Greenlands System design is such a problem. A
promising way to solve such problems is via evolutionary multiobjective optimization
(EMO) methodologies.

Habitat fragmentation and loss, particularly in the urban fringe, is a key issue for
land-use planning and environmental policy implementation. Greenlands Systems
have been proposed as one solution to this issue [6]. The application of landscape
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ecology principles via EMO combined with a hierarchical clustering methodology
are described in [12]. The EMO methodology and data set structure—primal dual
multi-valued vector map (PDMVVM)—are addressed in more detail in [13]. Land-
scape ecologists recognize the importance to ecological function of regional scale
spatial patterns of features across the landscape and they have catalogued a lexicon
of spatial configurations of natural features that allow for, or promote, beneficial
ecological functioning, or conversely spawn degradation of existing systems. Some
of the configurations, taken from Dramstad et al. [3], that address the goal of sus-
tainable ecological function under the threat of disruption due to urban expansion
are reviewed below.

A general overview of EMO for spatial decision making is provided in Xiao
[16]. Roberts et al. [13] provide theoretical and applied foundations for extending
EMO into the landscape optimization domain. Other papers have assessed different
aspects of the general problem domain. For example, a raster-based nondominated
sorting genetic algorithm (NSGA) for forest management optimization is discussed
in Ducheyne et al. [5]. Wei and Murray [14] describe EMO for facility dispersion.
Finding better approximations of Pareto optimality for multiobjective solutions to
routing problems are addressed in Huang et al. [7], and Huang et al. [8] introduce a
related EMO methodology, artificial immune systems, for Pareto optimization of a
land use allocation problem.

Path or corridor optimization problems are another area where multicriteria
methods have been introduced. For example, Matisziw and Murray discuss spa-
tial association optimization for nature reserve design [10]. EMO is used for path
optimization in Mooney and Winstanley [11]. EMO is applied to the corridor loca-
tion problem in Zhang and Armstrong [17]. Connectivity for natural reserve design
using genetic algorithms (GAs) is described in Loonen et al. [9].

This research, and that presented in this chapter suggests that EMO-based
methodologies are emerging as important tools for addressing issues of landscape
configuration and decision support.

2 Configuration Design Process

Now a small spatial design problem is introduced and a sketch of how EMO tech-
niques can be used is presented. The source data sets comprise four primal planar
attributed graphs of respectively, property cadastre, soils, groundwater recharge, and
ecological land classification. These inputs are combined to create the initial primal
planar attributed multivalued graph and its dual. The primal graph was generated via
a sequence of spatial union operations. The dual graph was created using the primal
graph’s pseudocentroids as vertices and the primal polygon topology to generate the
adjacency edges.

Finally, preprocessing was applied to implement some design goals to create an
initial data set as shown in Fig. 1, see also Table 1 for a listing of the preprocessing
functions applied. The initial land-use classes have been aggregated into four classes.
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Fig. 1 The preprocessed example data set, primal planar graph (left) and dual graph (right)

Note that eight candidate sites for reassignment to create the potential design solu-
tions were defined based on a subset of the initial land-use types that represent
transitioning landscapes, mostly abandoned farmland. This makes ecological sense
and considerably narrows (to 38 = 6561 possible solutions) the search space for the
design problem.

We coded the design problem as a many-objective optimization problem to be
solved by an evolutionary multiobjective solver (see Fig. 2), in this case NSGA-II [2]
which incorporates the notion of Pareto dominance to deal with multiple, potentially
conflicting objectives. This methodology is enhanced by sorting the first nondomi-
nated front via a ranking based on favor ([4], chapter “Analysis and Visualization of
a Many Objective Optimization Landscape Design Problem”).

Formally,<d , defines the relation, solutionx dominates solutiony and is described
for a minimization problem as follows,

x <d y : ⇔ (∃i : fi(x) < fi(y)) ∧ (∀j �= i : fj (x) ≤ fj (y)) (1)

The set of all nondominated solutions forms the Pareto-optimal set. Further, the
relation favour <f is defined as follows [4],

x <f y ⇔ |{i : fi(x) < fi(y)}| > |{i : fi(x) < fi(y)}| (2)

In our implementation we generated our ranking of the nondominated solutions by
scoring each solution based on the number of other solutions it is more favoured
than.

3 Evolution of Metrics and Full Enumeration Solution Results

The original alphabet of four potential partition labels: No change, Natural, Agricul-
ture, Urban, was revised to three by dropping the first label because when examining
the complete enumeration of solutions, solutions that contained the No change label
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Fig. 2 A simplified example of problem coding for Genetic Algorithm solution using a binary
alphabet and one objective function that measures the number of Black–Black joins

Table 1 Operationalizing Greenlands design objectives 1 (pag ≡ primal attributed graph)

Specific design
objective

Constraint function or
preprocessing

Name Data Operations on data

Include areas of natural
vegetation

(Area natural)/(area
total) ≥ minn

C1 pag Calculate area

Include areas of
agri/silviculture

(Area
agri/silviculture)/(area
total)≥ mina

C2 pag Calculate area

Include areas of urban
use

(Area urban)/(area
total) ≥ minu

C3 pag Calculate area

Vegetated riparian cor-
ridors

Preprocessed PP1 pag “Bottomland” soil to
natural

Areas of wet soil pre-
served as wetlands

Preprocessed PP2 pag “Muck” and “Organic”
soil to wetland

Vegetated ground water
recharge areas

Preprocessed PP3 pag Candidate sites over
ground water recharge
areas to natural

were all Pareto dominated. Testing with an objective reducing methodology ([1],
chapter “Analysis and Visualization of a Many Objective Optimization Landscape
Design Problem”) we found the area-based objective functions overwhelmed the
other topological or structural objective functions that were key to embodying the
design principles. So these objectives were recast as minimum area constraints. We
also added two new objective functions related to agricultural uses (see Table 2).
Further, we note that for the small study area objective F4 could only be one value
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Table 2 Operationalizing Greenlands design objectives 2 (dag ≡ dual attributed graph)

Specific design objec-
tive

Objective function to
maximize

Name Data Operations on data

A few large patches of
natural vegetation (core
areas)

Mean of top 5 core
area’s Area Weighted
Inverse Mean Shape
Index

F1 p/dag calculate area &
perimeter,find
subgraphs

Vegetated corridors be-
tween core areas

Mean of top 5 core
area’s number of
vertices normalized by
the total number of
natural vertices

F2 p/dag find subgraph, number
of vertices

Stepping stones of nat-
ural vegetation between
top 5 core areas

Number of natural
vertices normalized by
the total number of
vertices along 10
shortest paths between
top 5 core areas

F3 p/dag find subgraph, find
graph centre, shortest
path, number of
vertices

Natural patches in ur-
ban areas

Number of
natural–urban
neighbors in urban
areas

F4 dag natural-urban join
count & find subgraph

Contiguous agricultural
areas

Number of
agricultural–
agricultural
neighbors

F5 dag agric.-agric. join count

Suitable agricultural ar-
eas

Score candidate sites
coded for agriculture
based on soil capability

F6 dag find subgraph, assign
score

Clustered urban devel-
opment

Number of
urban–urban neighbors

F7 dag urban-urban join count

and F2 was restricted to only two values so these objectives were considered redun-
dant by the formal analysis. However, earlier analysis suggests that this will not be
the case for larger study areas.

Based on a complete enumeration (not possible with larger study areas) there are
6561 possible solutions, 47 nondominated solutions, and 9 nondominated and con-
strained solutions. Figure 3 displays the results of applying the optimization metrics
of nondomination and favour to the complete enumerated solution space. The top
three solutions using our proposed Pareto and favor ranking all display character-
istics reflecting the desired design goals. Specifically, this included maintaining or
expanding spatial contiguity within each of the three land-use classes and discovering
and connecting “core” natural areas.



386 S. A. Roberts et al.

3

46

4

56

67

55

70

8

27

33
39

31

35

60

38

16

2

71

20

28

7

42 47

51

9

29

21
24

14

54

17

61
63

22 25

49

59

50

13

12
10

18

57

23

37

15

44

52

40

56

41

69

48
45

62

11

65

26

53

32

58

66

34

19

36

64

30

43

3

46

4

56

67

55

70

8

27

33
39

31

35

60

38

16

2

71

20

28

7

42 47

51

9

29

21
24

14

54

17

61
63

22 25

49

59

50

13

12
10

18

57

23

37

15

44

52

40

56

41

69

48
45

62

11

65

26

53

32

58

66

34

19

36

64

30

43

3

46

4

56

67

55

70

8

27

33
39

31

35

60

38

16

2

71

20

28

7

42 47

51

9

29

21
24

14

54

17

61
63

22 25

49

59

50

13

12
10

18

57

23

37

15

44

52

40

56

41

69

48
45

62

11

65

26

53

32

58

66

34

19

36

64

30

43

3

46

4

56

67

55

70

8

27

33
39

31

35

60

38

16

2

71

20

28

7

42 47

51

9

29

21
24

14

54

17

61
63

22 25

49

59

50

13

12
10

18

57

23

37

15

44

52

40

56

41

69

48
45

62

11

65

26

53

32

58

66

34

19

36

64

30

43

1409 2139 680 3578

F1

F2
F3

F4

F5

F6
F7

1409 2139 680 3578

Fig. 3 Top 3 and bottom nondominated and constrained solutions, favor ranking in brackets. Note:
objective function values have been normalized to the maximum values in the nondominated set to
help to highlight the favor ranking results in the star plots
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Fig. 4 Anti-cut-set vertices as a basis for “directed mutation”
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4 Conclusions

We have described in this chapter the results of applying recently developed tools
for objective function reduction analysis and favor ranking to enhance both prob-
lem definition and solution techniques for EMO approaches to the configuration
optimization problem of Greenlands System design. We will be testing our revised
objectives, again using NSGA-II, to compare the GA’s performance in finding the
true Pareto front that is explicitly available with our small data set but will not be for
larger problem domains. In progress is implementation of anti-cut-set vertex based
“directed mutation” (see Fig. 4). This variation is meant to more explicitly utilize the
topological information of the coded solutions than the current approach. Next, is
revising code to parallelize the implementation of NSGA-II and include favor rank-
ing to run on general purpose graphics processor unit (GPGPU) based computer and
testing with larger data sets.
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Effect of Boundary Absorption on Dispersion
of a Solute in Pulsatile Casson Fluid Flow

B. T. Sebastian and P. Nagarani

Abstract The generalized dispersion model is used to study the dispersion process
in unsteady flow in a tube with wall absorption by modeling the flowing fluid as
Casson fluid. According to this model, the entire dispersion process is expressed in
terms of three transport coefficients viz., the absorption, convection, and dispersion
coefficients. This study brings out the effects of pulsatility, yield stress and wall
absorption on these three transport coefficients. It is observed that the convection
and the dispersion coefficients are dependent on absorption parameter, yield stress,
pressure fluctuating component, and frequency parameter whereas the absorption
coefficient depends only on wall absorption parameter. This study can be used to
understand dispersion process in blood flows.

1 Introduction

The longitudinal dispersion of a tracer in a tube has many applications in the fields of
chemical engineering, environmental dynamics, and biomedical engineering. Taylor
[6] was first to initiate the study on contaminant dispersion in a circular tube flow and
showed that when a soluble substance is introduced into a fluid moving slowly and
steadily through a circular tube it spreads out due to the combined action of molecular
diffusion and the variation of velocity over the cross section. Aris [1] extended this
by the method of moments including the effect of axial molecular diffusion. These
theories are applicable only for large time after the introduction of solute and did not
provide any idea about variation of the dispersion coefficient immediately after the
injection of solute. Gill and Sankarasubramanian [3] developed a method to study
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the dispersion of a solute in a tube and this model is widely called as a generalized
dispersion model, which holds for all times after the solute injection. Later this model
is extended in the case of wall absorption by Sankarasubramanian and Gill [4]. They
showed that the three effective transport coefficients namely absorption, convection,
and dispersion coefficient are affected by interphase mass transfer. Dash et al. [2]
gave a model to understand the dispersion process in a Casson fluid by considering
the flowing fluid as steady and showed that the dispersion coefficient in the case of
Cason fluid depends not only on time but also on yield stress. They also discussed the
applications of their study in understanding the dispersion process in blood flows.

The existed models in the literature explain the effects of non-Newtonian rheology
on dispersion of solute but not the other properties of blood flow. Blood flow in
arteries and veins exhibits not only the non-Newtonian nature but also many other
fluid dynamic complexities such as pulsatility, curvature, branching, and elasticity of
the walls. The dispersion of any solute in blood flow is affected by these phenomena
as well as the wall reaction mechanisms and the multiphase character of the blood.
Hence, in this chapter, an attempt is made to study the dispersion process in a tube
with wall absorption by considering the flow as unsteady and flowing fluid as Casson
fluid. The purpose of this study is to explore the combined effects of yield stress,
Womersley parameter, fluctuating pressure component, and absorption parameter on
dispersion coefficient in a Casson fluid flowing through a tube.

2 Mathematical Formulation

we considered axisymmetric, fully developed, pulsatile flow in a pipe of radius “a” by
modeling the flow as a Casson fluid flow. We assumed that the rate of disappearance
of solute at the tube wall is due to an irreversible first-order reaction catalyzed by
the wall and is proportional to the solute concentration of the wall. The unsteady
convective diffusion equation that describes the local concentration C of a solute as
a function of axial distance z, radial distance r , and time t in the nondimensional
form can be written as follows:

∂C

∂t
+ w(r , t)

∂C

∂z
=
(

1

r

∂

∂r
(r
∂

∂r
) + 1

Pe2

∂2

∂z2

)
C (1)

with the nondimensional variables as follows:

C = C

C0
, w = w

w0
, r = r

a
, z = Dmz

a2w0
, t = Dmt

a2
,Pe = aw0

Dm
(2)

where w is the nondimensional axial velocity of the fluid, Dm is the coefficient of
molecular diffusion (molecular diffusivity) which is assumed to be constant, C0 is
the reference concentration, w0 is the characteristic velocity and Pe is the Peclet
number. The variables with bar indicate the corresponding variables in dimensional
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form. For the slug input of solute length zs under consideration, the initial and
boundary conditions in dimensionless form for the given model will be of the form:

C(0, z, r) =
⎧
⎨

⎩
1 if |z| ≤ zs

2

0 |z| > zs
2 ,

(3)

∂C

∂r
(t , z, 0) = 0, (4)

∂C

∂r
(t , z, 1) = −βC, (5)

C (t ,∞, r) = 0, (6)

where β is the wall absorption parameter.
The constitutive equation for a Casson fluid relating the stress (τ) and shear rate(

∂w
∂r

)
in nondimensional form is given by

τ
1
2 = τ

1
2
y +

(
−∂w

∂r

)1
2

if τ ≥ τy , (7)

∂w

∂r
= 0 if τ ≤ τy , (8)

where τy = τ y

μ(w0/a)
and τ = τ

μ(w0/a)
are the nondimensional yield stress and shear

stress, respectively. The above relations correspond to vanishing of velocity gradient
in the region where the shear stress is less than the yield stress which implies a plug
flow for τ ≤ τy . The nondimensional velocity distribution for axisymmetric, fully
developed, unsteady flow of a Casson fluid in tube is given by [5] as follows:

w = w− = wp = 1

2
p(t)

{

1 − 8

3
r

1
2
p + 2rp − 1

3
r2
p

}

− α2p
′(t)
32

{

3 − 1144

147
r

1
2
p + 320

63
rp + 4

3
r2
p − 16

9
r

5
2
p + 65

441
r4
p

}

if 0 ≤ r ≤ rp, (9)
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w = w+ = 1

2
p(t)
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(
1 − r2

)− 8

3
r

1
2
p

(
1 − r 3

2

)
+ 2rp (1 − r)

}

− α2

2
p

′
(t)

⎧
⎨

⎩
3
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− r2

16

(
4 − r2

)− r

1
2
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− 16

3

(
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+ 424
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]

+ rp

16

[
320

63
+ 128

63
r3 − 64

9
r

3
2

]
⎫
⎬

⎭
if rp ≤ r ≤ 1, (10)

where rp = τy

p(t)
is the dimensionless plug radius and p(t) = 1 + e cosα2Sct . Also

the subscripts “−” and “+” corresponds the values for plug flow and shear flow, re-

spectively and α =
√
ωa2

ν
represents the Womersley parameter, Sc = ν

Dm
represents

the Schmidt number, e is the amplitude of the pressure fluctuating component.
The solution of the convective diffusion Eq. (1) along with the given set of initial

and boundary conditions (3–6) by following the analysis of [3] can be assumed as
follows:

∞∑

i=0

fi(t , r)
∂iCm

∂zi
, (11)

where the dimensionless mean concentration Cm is defined as follows:

Cm = 2
∫ 1

0
Cr dr. (12)

Multiplying Eq. (1) by 2r and integrating with respect to r from 0 to 1, we get

∂Cm

∂t
=

∞∑

i=0

Ki(t)
∂iCm

∂zi
(13)

with transport coefficients Ki’s as function of time t and

Ki(t) = ∂i2

Pe2
− 2
∫ 1

0
fi−1(t , r)w(t , r)r dr + 2

∂fi

∂r
(t , 1), i = 0, 1, 2, 3 . . . , (14)

where δij denotes Kronecker delta and K0(t),K1(t), and K2(t) are called as the ab-
sorption coefficient, convection coefficient, and dispersion coefficient, respectively.
Also the following set of differential equations for fn is obtained as follows:

∂fn

∂t
= 1

r

∂

∂r

(
r
∂fn

∂r

)
− w(t , r)fn−1 + 1

Pe2
fn−2 −

n∑

i=0

Kifn−i n = 0, 1, 2, . . . .

(15)
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The initial and boundary conditions are obtained from Eqs. (3–6) as follows:

fn(0, r) =
⎧
⎨

⎩
1 for n = 0

0 for n = 1, 2, 3 . . . ,
(16)

∂fn

∂r
(t , 0) = 0, (17)

∂fn

∂r
(t , 1) = −βfn(t , 1). (18)

In order to solve the transport coefficient one has to solve fns simultaneously. These
coupled equations are not conformable to an analytic solution, so a finite difference
scheme is used to study the dispersion phenomena and is explained in Sect. 3. By ne-
glecting terms involvedK3,K4, etc., in Eq. (13) and solving we can get the expression
for Cm.

3 Numerical Scheme

Equation (15) for n = 0, 1, 2 for fn’s are discretized in radial direction r and time
t . The Crank–Nicolson method is applied for each time step. The finite difference
scheme for derivatives and other terms are written at the mesh (i, j ), where 0 ≤ j ≤ m
and 0 ≤ i ≤ n. The resultant finite difference equations become linear simultaneous
equations with a tridiagonal matrix in the formAifn(i+1, j +1)+Bifn(i, j +1)+
Cifn(i − 1, j + 1) = Di , where Ai ,Bi ,Ci , and Di are the matrix elements. This
tridiagonal matrices can be solved by using the Gauss Seidel method with the help
of initial and boundary conditions.

4 Results and Discussion

The effect of yield stress, Womersley parameter, fluctuating pressure component, and
absorption parameter on dispersion coefficient is analyzed. From Fig. 1a–d, it can be
seen that due to the oscillatory flow the dispersion coefficient changes cyclically and
initially increase with time. From Fig. 1b, c one can observe that fluctuations and the
magnitude of K2 increase with e and also as β increases the dispersion coefficient
K2 decreases. We also observed that as the yield stress increases the amplitude of
the fluctuations of K2 decreases.
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Fig. 1 Variation of dispersion coefficient K2with t when Pe = Sc = 1000 for different a τy for
e = 0.1, β = 1, andα = 0.1 b e for τy = 0.02, β = 1, and α = 0.1 cβ for τy = 0.05, e = 0.2, and
α = 0.1 d α for τy = 0.05, e = 0.2, and β = 1

5 Conclusions

The expression for dispersion coefficient is obtained for dispersion of a solute in
Casson fluid flow with wall absorption by using the generalized dispersion model.
The dispersion coefficient has been found to depend on yield stress, absorption
parameter, frequency parameter, and the fluctuating component.
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Stability Analysis of a Human–Phlebotomus
papatasi–Rodent Epidemic Model

Schehrazad Selmane

Abstract Cutaneous leishmaniasis (CL) represents a serious public health problem
in Algeria. In the aim to understand the transmission dynamics of CL in the human–
Phlebotomus papatasi–rodent cycle, and to improve the preventive strategies set up
in Algeria, we developed a deterministic model for the transmission dynamics of
the disease. The model includes an incidental host for human which acts only as a
sink of infection, a primary reservoir host for rodent which acts as a source and a
sink of infection, and a secondary reservoir host for P. papatasi which have a role in
transmission by acting as the liaison between incidental host and primary reservoir.
The global stability of the equilibria of the proposed model shows that the threshold
conditions for disease persistence are completely determined by the reproduction
number and do not explicitly include parameters relating to the dynamic transmission
in the incidental hosts, which means that the disease becomes endemic if it persists
endemically in the primary reservoir hosts, and therefore the control measures should
be directed towards reservoir hosts. This is illustrated via numerical simulations of
the model using parameters generated from data from M’Sila province in Algeria.

1 Introduction

Leishmaniasis is a disease caused by protozoan parasites that belong to the genus
Leishmania and is transmitted by the bite of certain species of sandflies. The only
proven vectors of human disease are female sandflies (Phlebotomus species in the
Old World, Lutzomyia species in the New World). They acquire Leishmania para-
sites and infection starts when they feed on an infected mammalian host in search of
a blood meal. The leishmaniases can be grouped into two broad categories according
to the source of human infection: zoonotic leishmaniases, in which the reservoir
hosts are wild animals, commensals or domestic animals, and anthroponotic leish-
maniases, in which the reservoir host is human. There are four main types of the
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disease: cutaneous leishmaniasis (CL), the most common form of leishmaniasis; dif-
fuse cutaneous leishmaniasis (DCL), a chronic form of leishmaniasis and difficult to
treat; mucocutaneous leishmaniasis (MCL), the most feared form of CL because it
produces destructive and disfiguring lesions of the face; and visceral leishmaniasis
(VL), also known as kala-azar, if left untreated can have a fatality rate as high as
100 % within 2 years [4].

Leishmaniasis is endemic in 98 countries, spread over four continents, with more
than 350 million people at risk. An estimated incidence of 2 million new cases per year
(0.5 million of VL and 1.5 million of CL). VL causes an estimated over 50,000 deaths
annually, a rate surpassed among parasitic diseases only by malaria. More than 90 %
of the burden ofVL is concentrated in Bangladesh, Brazil, Ethiopia, India, Nepal, and
Sudan. Up to 90 % of cases of CL occur inAfghanistan, Algeria, the Islamic Republic
of Iran, Saudi Arabia and the Syrian Arab Republic and in Bolivia, Brazil, Colombia,
Nicaragua, and Peru. Climatic, socioeconomic and other environmental changes
could expand the geographical range of the vectors and leishmaniasis transmission
in the future [4].

CL represents a serious public health problem in Algeria; three CL outbreaks
occurred between 2004 and 2006, with, respectively, 14,822, 25,511, and 14,714
cases [5]. In 1984–1985, only few cases were reported, probably because of the
application of the insecticide dichlorodiphenyltrichloroethane (DDT) in 1983 against
malaria, but since 1986, the number of cases has risen to over more than 2000 cases
yearly. The disease used to be mainly endemic in the sub-Saharan steppe, however, a
geographical spread towards the north and west has taken place recently. The human
infection is caused Phlebotomus papatasi, Phlebotomus perniciosus, Phlebotomus
sergenti, and Phlebotomus perfiliewi and the disease occurs in two clinical forms:
VL and CL. The notification of leishmaniasis became mandatory in 1979, and is
under surveillance since 1985. A national leishmaniasis control program for VL and
CL has been set in place in 2006 and care for leishmaniasis are provided for free in
high incidence regions [1].

In the aim to understand the transmission dynamics of CL in the human–P. pa-
patasi–rodent cycle, and to improve the preventive strategies set up in Algeria, we
present a deterministic model. The model includes an incidental host for human, a
primary reservoir host for rodent, and a secondary reservoir host for P. papatasi.
The global stability of the equilibria of the proposed model is carried out in Sect.
2. Numerical simulations of the model using parameters generated from data from
M’Sila province in Algeria and conclusion are reported in Sect. 3.

2 Model : Interactions in CL

The model includes:

• an incidental host for human which acts only as a sink of infection, that is, human
cannot transmit the disease
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Fig. 1 Flows between the compartments of the model

• a primary reservoir host for rodent which acts as a source and a sink of infection,
that is, rodent can transmit the pathogen to new hosts

• a secondary reservoir host for P. papatasi, which has a role in transmission by
acting as liaison between incidental host and primary reservoir.

The dynamics of transmission is bidirectional between vectors and reservoir hosts,
that is, they are all both source and sink of infection. The model is schematically
illustrated in Fig. 1; the interactions of the six compartments are specified by the
normalized system of nonlinear differential Eq. (1), and parameters are described in
Table 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
SH = bH − βVHmHIV SH + γH IH − μHSH
·
IH = βVHmHIV SH − (γH + μH) IH
·
SV = bV − βRV SV IR − μV SV
·
IV = βRV SV IR − μV IV
·
SR = bR − βVRmRIV SR + γRIR − μRSR
·
IR = βVRmRIV SR − (γR + μR) IR ,

(1)

where mH = NV
NH

and mR = NV
NR
.

System (1) has one disease-free equilibrium (DFE): E∗
0 =
(
bV
μV

, 0, bH
μH

, 0, bR
μR

, 0
)

.

The basic reproduction number is computed using the next generation operator [2]

R0 =
√(

bR

μR

mRβRV

(γR + μR)
)(

bV

μV

βVR

μV

)
.

By analyzing the linear part of system (1), the local stability properties are estab-
lished. The stability of the DFE is achieved through the determination of the sign of
the eigenvalues of the jacobian matrix of system (1) evaluated at DFE; four negative
eigenvalues are straightforwardly determined −μH , −γH −μH , −μV , −μR and the
two remaining satisfy:

λ2 + (μV + γR + μR) λ+ (1 − R2
0

)
μV (γR + μR) = 0.
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As μV + γR + μR > 0, thus according to the Routh–Hurwitz criterion, if R0 < 1
the roots are with negative real parts and thus the DFE is locally asymptotically
stable. Otherwise, the DFE is unstable and an epidemic is triggered. Moreover, the
conditions (H1) and (H2) [2] are met, hence, the DFE is globally asymptotic stable
whenever R0 < 1.

Setting the derivatives equal to zero in system (1) and solving the corresponding al-
gebraic system, one gets a unique endemic equilibriumE∗ = (S∗

H , I ∗H , S∗
V , I ∗V , S∗

R , I ∗R)

S∗
V = bV

μV
− I ∗V S∗

H = bH
μH

1
1+k1I

∗
V

S∗
R = bR

μR

1
1+k2I

∗
V

I ∗V = μRμV
k2(bRβRV+μRμV )

(
R2

0 − 1
)

I ∗H = bH
μH

k1I
∗
V

1+k1I
∗
V

I ∗R = bR
μR

k2I
∗
V

(1+k2I
∗
V )

where k1 = βVHmH
γH+μH and k2 = βVRmR

γR+μR if R0 > 1, and no equilibria with positive

coordinates if R0 ≤ 1. All the eigenvalues of the Jacobian at the endemic equilibrium
E∗ are negative real whenever R0 > 1, which ensure the local asymptotic stability of
E∗. Indeed, four negative eigenvalues are straightforwardly determined −μH , −μV ,
−μR , −γH − μH − βVHmHI ∗V and the two remaining eigenvalues satisfy:

λ2 +
[

(γR + μR)
(
1 + k2I

∗
V

)+ βRV bRk2I
∗
V

μR
(
1 + k2I

∗
V

) + μV
]

λ

+ (γR + μR)μV
(
R2

0 − 1
) = 0.

As the coefficients are positive for R0 > 1, thus according to the Routh–Hurwitz
criterion, the roots are with negative real parts.
The global stability of the endemic equilibrium E∗ was established using the
following Lyapunov function V := V (SH , IH , SV , IV , SR , IR)

V =
(
SH − S∗

H − S∗
H log

SH

S∗
H

)
+
(
IH − I ∗H − I ∗H log

IH

I ∗H

)
+
(
SV − S∗

V − S∗
V log

SV

S∗
V

)

+
(
IV − I ∗V − I ∗V log

IV

I ∗V

)
+
(
SR − S∗

R − S∗
R log

SR

S∗
R

)
+
(
IR − I ∗R − I ∗R log

IR

I ∗R

)
.

Using system (1) and substituting SH = SH − S∗
H , SV = SV − S∗

V , SR = SR − S∗
R ,

IH = IH − I ∗H , IV = IV − I ∗V , IR = IR − I ∗R , the Lyapunov derivative takes this
form: dV

dt
= A+ B where

A = −
(
SH − S∗

H

)2

SH

(
βVHmH

(
IV − I ∗V

)+ μH
)− (γH + μH)

(
IH − I ∗H

)2

IH

−
(
SV − S∗

V

)2

SV

(
βRV
(
IR − I ∗R

)+ μV
)− μV

(
IV − I ∗V

)2

IV

−
(
SR − S∗

R

)2

SR

(
βVRmR

(
IV − I ∗V

)+ μR
)− (γR + μR)

(
IR − I ∗R

)2

IR
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Table 1 Values of parameters used in the simulations

Parameter Sandflies Humans Rodents

Biting rate βRV = 1/14 βVH = 0.3/14 βVR = 1/14

Recovery rate – γH = 1/6 per week γR = 1/4 per year

Death rate μV = 0.42 per day μH = 1/70 per year μR = 1/5 per year

Total population NV = 5000 NH = 918557 NR = 500

Birth rate bV = a0 sin 2π
365 (t − a1) + a2 bH = μH bR = μR

B =SH − S∗
H

SH

[
bH + γH

(
IH − I ∗H

)]+ IH − I ∗H
IH

βVHmH
(
IV − I ∗V

) (
SH − S∗

H

)

+ bV SV − S∗
V

SV
+ IV − I ∗V

IV
βRV
(
SV − S∗

V

) (
IR − I ∗R

)

+ SR − S∗
R

SR

[
bR + γR

(
IR − I ∗R

)]+ IR − I ∗R
IR

βVRmR
(
IV − I ∗V

) (
SR − S∗

R

)
.

It follows that dV
dt

≤ 0 if and only if B ≤ 0; thus, the largest compact invariant set
in {(SH , IH , SV , IV , SR , IR) ∈ Ω : dV

dt
= 0} is a singleton {E∗} and hence E∗ is

globally asymptotically stable in the region Ω = {(SH , IH , SV , IV , SR , IR) ∈ R
6+ :

SH + IH = SV + IV = SR+ IR = 1}.

3 Numerical Simulation and Conclusion

The global stability of the equilibria of the proposed model shows that the threshold
conditions for disease persistence are completely determined by the basic repro-
duction number R0. The latter do not explicitly include parameters relating to the
dynamic transmission in human population, which means that the disease becomes
endemic if it persists endemically in the primary reservoir hosts. This is to be ex-
pected, because the introduction of infected incidental hosts will not cause infections
in susceptible vectors, and therefore, will not produce new infections neither in sus-
ceptible incidental hosts nor in primary hosts. Consequently, the control measures
should be rather directed towards reservoir hosts, namely, sandflies and rodents. An-
other consequence of results is the inadequacy of the definition of R0 as the number
of secondary cases produced by the introduction of a primary case in multispecific
systems where not all populations play the role of both source and sink of parasites.
That is, in host populations that only act as sinks of parasites, the generation of new
infections necessarily depends on the hosts that act as reservoirs of the parasites.

The obtained results are illustrated via numerical simulations of the model using
parameters presented in Table 1; some of which were generated from data from
M’Sila province, and others were taken from related works. We ran the simulations
with the initial conditions: IH = 0, IV = 0, and IR = 50/NR . A bifurcation diagram
describing bifurcation at R0 = 1 is depicted in Fig. 2, and the general behavior of
the model is shown in Fig. 3.
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Fig. 2 The diagram of
forward bifurcation
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Fig. 3 The proportion of susceptible and infected hosts is plotted as function of time for a0 = 1/8,
a1 = 90 − (365/4), a2 = 1/8
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Computational Thinking and Simulation
in Teaching Science and Mathematics

Hasan Shodiev

Abstract Characteristics of scientific phenomenon are commonly investigated using
mathematical tools in science and engineering to develop our conceptual understand-
ing. However, computational thinking (CT) and modeling with simulations can result
in a more advanced understanding of scientific concepts and offer an effective learn-
ing experience for students with various backgrounds. In this chapter, we show how
a simulation tool, Scratch, can be used to unfold the abstract side of science through
project-based visualizations in fun and engaging ways. It can be an effective ap-
proach in attracting young talented students to science and technology by motivating
their natural imagination to probe scientific abstraction.

1 Introduction

The educational system is lacking in progress in implementing the computational
approach to understand nature and technology. However, the science community has
developed a novel method of solving problems by simulating various phenomena
in many science and engineering disciplines. This offers us new answers to scien-
tific questions that are different from theory and experimentation. Computational
thinking (CT) in addition to critical thinking is very important when utilizing the
computational approach. This can be illustrated in Fig. 1, where the diagram shows
a CT path parallel to critical thinking as an integral part of obtaining solutions.

CT emerged as a new paradigm alongside mathematical, physical, musical, and
other types of thinking after the availability of computers. CT in problem solving
was first introduced by Dr. Seymour Papert [4]. In 1971, Dr. Papert showed the use
of CT in performing noncomputational activities. In his work, he forged ideas that
are at least as explicative as the Euclid-like constructions and turtle geometry but
more accessible and more powerful [5].

He defined CT as a problem-solving method that uses computer science techniques
and concepts. Jeanette Wing [8] recently started reviving CT and emphasizing its
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Fig. 1 2D Problem solving model

Fig. 2 Scratch
graphical blocks

role across all disciplines. She argued that CT is a fundamental skill for everyone, not
just for students majoring in computer science. She initiated a profound engagement
with the core questions of what computer science is and what it might contribute
to solving problems across the spectrum of human inquiry. We argue that advances
in educational technologies allow us to bring CT and effectively use it in secondary
and postsecondary school levels. We intend to help bridge the gap between the K-12,
noncomputer science disciplines and the computer science education communities
by investigation of relevant age appropriate resources for science, music [6], art [1],
and video games [2]. In this chapter, we propose embedding CT concepts with a
universal tool called Scratch [7]. A key component to employing CT with Scratch is
the possibility to visualize the phenomena which allows enhanced understanding of
the concept. There is no clear evidence of using Scratch by young women. The US
National Center for Women and Information Technology (NCWIT) in a case study
about Scratch, calls Scratch a promising practice for increasing gender diversity in
information technology [3]. Programs in Scratch can be created by simply snapping
together graphical blocks, much like LEGO bricks or puzzle pieces (see Fig. 2).

There is less focus on syntax, so one is not required to add semicolons or square
brackets. The blocks are designed to fit together only in ways that make sense, so
there are no syntax errors as in traditional programming languages. In this study,
we show an example of how Scratch can be used to simulate projectile motion in
physics. A projectile is any object projected into space by the exertion of a force, i.e.,
a thrown basketball. In addition to projectile motion, we can simulate other physical
phenomena in our immediate surroundings such as the motion of colliding spheres,
conservation of momentum and others. Depending on the level of mathematics ob-
tained in secondary school, we can create the simulation with and without algebraic
tools. This simulation allows students not only to improve their CT through tinker-
ing but also to focus on physics concepts themselves. Asking students to explain the
concept can be preceded by asking them to simulate the projectile motion.
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Fig. 3 Vertical distance change due to change of the launch angle

2 Method

Simulation without complex algebra allows us to focus on results—visualization of
physical phenomena such as projectile motion. Students can play with scratch code
by tinkering to get parabolic trajectory. This can be done by either changing the angle
to the horizontal or the vertical distance.

2.1 Changing the Angle of Launching

Suppose the projectile is launched in a direction defined by an initial angle with
respect to the horizontal shown in Fig. 3a. This angle can be decreased by a certain
amount after each iteration to reach a peak and then ultimately return to the initial
y-position. In the example in Fig. 3b, the angle is decreased by 1◦ after every ten
steps. Simulations for three different launch angles are shown in Fig. 3.

Vertical distance change due to change of the launch angle is

Yn+1 = Yo − Yθ (1)

so distance Y changes incrementally as the angle changes incrementally. The steps
are made up of both horizontal and vertical components such that the projectile rise
reaches a peak and falls with a trajectory that is symmetrical to the path toward
the peak. Calculating the time of flight, the horizontal range, and the height of the
projectile can be avoided at this level.
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Fig. 4 Vertical distance change due to change of the vertical displacement

2.2 Changing the Vertical Displacement

We can also visualize the trajectory by changing the vertical displacement each
iteration until it reaches the initial y-position as shown in Fig. 4a.

In Fig. 4b, the vertical displacement of each iteration, which is made up of ten
steps, is decreased by 1 units. To utilize the entire screen of the scratch interface we
set the initial x-position to − 240 and y-position to − 166 as (0,0). The iteration stops
once a condition of reaching the y-position of − 166 once again is met.

2.3 Mathematical Modeling with Algebra

At a higher level of mathematics, algebra can be applied to describe the behavior
of a projectile. This can be done in terms of its kinematics motion without dealing
with force or energy as a function of time. We assume that the initial and final y-
positions of the projectile are the same. We will use the simplest example of a ball
launched upward into the air at an initial angle with respect to the horizontal and
velocity. In this case, we can calculate: (1) vertical displacement of the projectile at its
peak, (2) horizontal displacement of the projectile, and (3) the launch angle that will
result in the largest travel distance. We can then use these scalars and determine the
speed and acceleration of the projectile. Visualization of projectile motion helps us
to understand the dynamics of the motion. Once we visualize the motion, it becomes
much easier to answer above questions and calculate them. This visualization using
Scratch leads us to understand the concept of projectile motion in 2D. As a result the
following benefits can be gained: (1) advanced understanding of the concept and (2)
advanced problem solving skills. In this simulation, DX and DYchanges along the
X- and Y -axis, respectively. So using mathematics we can determine these vertical
and horizontal changes at different points in time.

DY = V xt (2)
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Fig. 5 Vertical distance change due to change of the vertical displacement

DY = Vyt + 1

2
gt2, (3)

where Vx and Vy are x and y components of velocity, respectively. As shown, the
horizontal component of velocity is constant and vertical component of velocity is
varying with time. The initial velocities can be calculated by multiplying the initial
velocity by the cosine or sine of the launch angle

V x = V cos θ (4)

Vy = V sin θ. (5)

It is known that the projectile reaches the highest point when the Vy component of
velocity is 0 m/s. The total time of travel is two times the time it takes to reach the
peak vertical point. We can also determine the height H from (4) and maximum
horizontal distance traveled R from Eq. (5). Scratch code for this example is shown
in Fig. 5.

R = V 2 sin 2θ

g
. (6)

3 Conclusion

Understanding basic Scratch commands and control tools can help to implement
more trajectories and generative algorithms by creating and manipulating sequences
of graphical commands. Using real-life science phenomena as an example, we can
create innovative and interactive visualizations to tap into the imagination of students
who might never have considered science as fun and playful. Students from various
backgrounds tend to be intimidated by the terminology used in science. However,
with more exposure to interesting projects, students can start thinking computa-
tionally and actively. CT with a hands-on scratch graphical approach gives them
necessary confidence.
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Mathematical and Computational Modeling
of Noise Characteristics of Channel Amplifiers

Alla Shymanska

Abstract This work is devoted to computational modeling of stochastic processes
of the electron multiplication in electron amplifiers in order to reduce the noise
factor which is a measure of the loss of available information. The effects of the
processes, arising when a layer with increased secondary emission yield is formed
at the entrance of the channel, are investigated.

A computational method for simulation of stochastic processes of an electron
multiplication in microchannel electron amplifiers is developed. It is based on 3D
Monte Carlo (MC) simulations and theorems about serial and parallel amplification
stages proposed by the author. Splitting a stochastic process into a number of dif-
ferent stages, enables a contribution of each stage to the entire process to be easily
investigated. The method provides a high calculation accuracy with minimal cost of
computations. The computational model easily implements new experimental data
without any changes in the algorithm.

1 Introduction

Channel electron multipliers are widely used in many areas as single devices and
in microchannel plate (MCP), which is an array of single parallel channels (Fig. 1)
[1, 2, 5, 7]. However, statistical fluctuations in the gain of the channels increase a
noise factor which is a measure of the loss of available information. Investigations
dealing with reduction of the noise factor are of considerable practical interest.

This work is devoted to the computational modeling of stochastic processes of the
electron multiplication in the electron amplifiers in order to reduce the noise factor.
The effects of the processes, arising when a layer with increased secondary emission
is formed at the entrance of the channel, are investigated.
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Fig. 1 Electron multiplication in the channel

The following real physical picture was considered in the modeling. The electrons
of a primary parallel monochromatic beam entering the channel hit the walls at
different incidence coordinates and angles, producing secondary electrons which
are multiplied until they leave the channel. The secondary emission yield (SEY) of
the first collision and the length along which subsequent amplification occurs in the
channel are different. Therefore, amplitude distributions produced by single primary
electrons are very different what increases the noise factor. Different incidence angles
of the primary electrons affect SEY of the first collision and, consequently, the noise
factor.

After the first collision, the primary electrons produce secondary electrons with
different emission energy and directions. The secondary electrons are multiplied
until they leave the channel. When all the electrons have emerged from the channel,
the yield of the individual pulse is known. The gain of individual pulses is fluctuated
considerably what increases the noise factor.

The high-efficiency emitter is deposited on the top of the contact conducting layer
at the entrance of a channel with the purpose to increase the SEY and, therefore,
to reduce the noise factor. The electrostatic field inside the channel and contact
conducting layer create a nonuniform electrostatic field at the entrance of the channel,
and the conditions for the movement of secondary electrons in this region are different
from the motion of electrons in a uniform field inside the channel. Due to the spread in
the collision coordinates, the input electrons bombard the high-efficiency emitter and
the wall of the channel not coated with the high-efficiency emitter. The area covered
by the input electron beam depends on the incidence angle of the primary electrons.
All these factors and parameters are taken into account in the computational model
developed here.

The computational method is based on 3D Monte Carlo (MC) simulations and
theorems about serial and parallel amplification stages [6]. Splitting a stochastic
process into a number of different stages enables a contribution of each stage to
the entire process to be easily investigated. The method preserves all advantages
of the MC simulations which are used only once for one simple stage. The use of
the theorems allows to conduct any further investigations and optimizations without
additional MC simulations. The method provides a high calculation accuracy with
minimal cost of computations. The computational model easily implements new
experimental data without any changes in the algorithm.
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2 Computational Model

The entire multiplication process can be split into sequential stages and/or parallel
multiplication paths, and how it is done depends on particular investigation. If the
input signal amplification is represented as a sequence of transformations (each of
which is characterized by a mean and a variance), then one can speak of serial
amplification stages. If mk is the mean and dk is the variance of the probability
distribution of the number of particles at the output of the k- stage, produced by one
particle at its input, then, using logarithmic generating functions, we can obtain the
meanM , and variance D of the amplitude distribution after the N th stage [6]:

M =
N∏

k=0

mk , (1)

D =
N∑

k=0

dk

k−1∏

i=0

mi

N∏

j=k+1

m2
j . (2)

The expressions (1) and (2) constitute the theorem of serial amplification stages.
If the primary particle is multiplied along one of n possible parallel paths, and if

each path gives an average of gk particles at the output with a variance of vk , then the
meanG and the variance V of the amplitude distribution at the output of the system
with some parallel amplification paths, can be obtained as:

G =
n∑

k=1

ρkgk , (3)

V =
n∑

k=1

ρkvk +
n∑

k=1

ρkg
2
k −G2, (4)

where ρk is the probability of choosing the kth path. Equations (3) and (4), constitute
the theorem of parallel amplification paths [6].

For variations in the collision coordinates of the electrons of the primary beam,
the portion of the channel from an elementary area at its input, where the collision
occurred, to the output of the channel can be considered as the amplification path.
The varianceD and the average gainG at the output of the multiplier can be defined
using (3) and (4), where sums should be replaced by integrals over the surface of
the channel, bombarded by the electrons of the primary beam (or, correspondingly,
from discrete distributions to probability densities):

G =
∫

s

ψ(s)g(s)ds, (5)
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D =
∫

s

ψ(s)d(s)ds +
∫

s

ψ(s)g2(s)ds −G2, (6)

where s is the surface area stroked by particles, ψ is the probability density for the
particle to strike the elementary surface ds, g(s) is the average number of particles
with variance d(s) at the output of the path.

In the model, the multiplication process of a single electron, emitted at the be-
ginning of the channel, is simulated by 3D MC methods in a homogeneous field
along the effective channel length. It is defined in [6] as a part of the channel where
the amplitude distribution is stabilized (the Poisson distribution at the beginning of
the channel changes to the negative exponential function). The mean gain g(z) and
variance d(z) as functions of the coordinate z along the channel axis are calculated
for the single electron on the effective length, and then, using the theorems of serial
and parallel amplification stages, these functions are obtained on the entire channel
length.

The trajectory of each electron is calculated in three dimensions from the ballistic
equations, and the position, energy, and angle of the subsequent collisions are deter-
mined. The result of each collision is calculated as before and the process is repeated
for each secondary electron generated. The nonuniform field at the entrance of the
channel is calculated by the finite difference method for the Laplace equation. The
trajectories of the electrons in the nonuniform field are calculated by the Runge–Kutta
method. The part of the channel with nonuniform field is considered as a separate
stage.

The actual number of secondaries generated by the particular collision is a random
sample taken from the Poisson distribution:

P (ν) = σ νe−σ

ν
, (7)

where ν is the number of secondary electrons produced, σ is the SEY. The variation
of the SEY is defined by a secondary emission function [3].

The energy distribution is described by p(ε) = 2.1ε̄−3/2√εexp(−1.5ε/ε̄), where
ε̄ is the mean energy [8].

Each secondary electron is assigned two emission angles chosen from Lambert’s
law: p1(θ ) = sin 2θ and p2(ϕ) = 1/2π , where θ is the angle between the normal to
the surface and emission direction, and ϕ is the azimuthal angle.

The functions g(z) and d(z) and the theorems about serial and parallel amplifica-
tion stages are used to calculate the mean G and the variance D of the distribution
at the output of a channel, and thus determine the noise factor F of the channel
multiplier [3, 6]:

F = 1

γ

(
1 + D

G2

)
, (8)

where γ is the fraction of the front surface of the multiplier exposed to electrons.
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3 Effects of a High-Efficiency Emitter

To reduce a noise factor, a high-efficiency emitter with high SEY is deposited onto
the entrance of the channels. However, in some cases it does not bring the expected
result, and the noise factor can even increase [4].

If the layer with high SEY is not intact (as a result, for example, of not smooth
walls inside a channel), then there would be random fluctuations of SEY along the
layer of high-efficiency emitter which should affect the noise factor.

Consider two emitters with σ1 and σ2 randomly distributed along the layer with
high SEY due to its nonuniformity, where two SEYs relate to the high-efficiency
layer and the channel material. Let areas occupied by these two sections be s1 and
s2, respectively. Probability p that primary electron enters the section with σ1 can be
defined as s1

s1+s2 , then the probability to enter section with σ2 is (1 − p). Therefore,
the probability p can be interpreted as the relative fraction of the area occupied by
the emitter with average value of σ1 when the average SEY of the rest of the surface
is σ2. Using the Eq. (7), we obtain the expression for the distribution P (ν) of the
number of electrons ν knocked out by one primary electron entering a channel for
the case of a nonuniform emitter:

P (ν) = pσ
ν
1 e

−σ1

ν
+ (1 − p)

σ ν2 e
−σ2

ν
, (9)

where the mean and variance can be obtained as m = pσ1 + (1 − p)σ2 and d =
p(1 − p)(σ1 − σ2)2 +m correspondingly.

Figure 2 shows the computational results of the dependence of the noise factor F
on level of nonuniformity of the emitterp for different values of σ1 (σ2 is constant). It

Fig. 2 The dependence of the
noise factor F on level of
nonuniformity of the
emitter p
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Fig. 3 The dependence of the
noise factor on the length of
the layer with the high
secondary emission yield
(SEY)

can be shown that the maximum ofF (p) is determined by the condition (G2
1−G2

2) >
D1 + D2, where G1 and D1 are the mean gain and the variance of the amplitude
distribution, obtained with only σ1 (p = 1), andG2 andD2 are the mean gain and the
variance with only σ2 (p = 0). Therefore, F (p) has a maximum if the distributions
corresponding to uniform emitters are sufficiently “far away” from one another. In
this case, the spectrum of pulses, generated by emission from sections with σ2,
transforms as p increases into the spectrum with σ1, and for some p the maximum
width of the total distribution is greater than the width of each of the distributions.

Figure 3 shows the computational results of the dependence of the noise factor
F on the length h of the layer with the high SEY for the different incident angles
θ of the primary electron beam. The increase of the noise factor, when a high-
efficiency emitter is deposited on the entrance part of a channel, is due to the “effect
of the nonuniform emitter” described above. The amplitude distribution at the output
of the channel is the result of a superposition of two distributions: of electrons
bombarding the high-efficiency emitter and electrons bombarding the walls of the
channel not coated with the high-efficiency emitter. This case is analogous to that
considered earlier but here the regions with different SEYs are spatially localized.
The noise factor can increase or decrease, depending on the fraction of the area of the
high-efficiency emitter with respect to the area covered by the input electron beam.

It is seen from the graph that an increase of the coverage depth beyond 5d, where
d = 10μm is the channel diameter, does not lead to a decrease in the noise factor,
and for a big θ it leads even to an increase in the noise factor.

The results, obtained here, enable one to choose optimal regimes of a microchan-
nel amplifier in terms of the noise factor.
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4 Conclusions

The method for calculation of the stochastic processes has been developed which is
based on two theorems of the sequential and parallel amplification stages, proved by
the author.

The method have been used to describe the effects of the high-efficiency emitter
on the noise factor when the spread in incidence coordinates of the primary electrons
and nonuniform electrostatic field at the entrance of the channel are taken into account
in the model. The conducted investigation shows the effectiveness of the method of
serial and parallel stages in calculations of stochastic processes.
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Parameter Range Reduction in ODE Models
in the Presence of Partial Data Sets

Andrew Skelton and Allan R. Willms

Abstract The problem of estimating parameters from time series data is considered.
A parameter range reduction scheme is employed to quickly reduce a priori ranges
of parameters. The effectiveness of the scheme is tested in the presence of partial
data sets using an SIR model test case. The algorithm is shown to make substantial
reductions of parameter ranges when limited time series data is available. Such
reductions are shown to be of benefit to traditional parameter estimation techniques.

1 Introduction

We consider an ordinary differential equation model for some physical or biological
process and the inverse problem of determining appropriate model parameter values
from time series data. This goal is typically achieved by selecting a set of parameter
values, numerically integrating the model equations and comparing the result to the
time series data. A cost function such as weighted least squares gives a measure of
the optimality of these parameters and new parameter values continue to be chosen
until the cost function has been minimized.

It is often the case that little is known a priori about the parameter values, so
making an initial guess can be difficult. If the initial choice must be made from a
very large region of parameter space, it is possible that this selection will result in a
system which cannot be numerically integrated over the observation time window. If
the cost function has multiple local minima, or large flat regions in parameter space,
it may be difficult for the procedure to converge to a reasonable minimum. To combat
this problem, one could employ a multistart method (such as the methods presented
in [2]) in which a large number of initial parameter choices are made to better identify
the global minimum. Most of the computational time of such an approach, however,
is spent numerically integrating the model, so multistart methods can add significant
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computational time. A variety of techniques have been developed to combat these
problems (see [1, 5] for summaries of various methods), but all can suffer when
processing large regions of parameter space.

In [8, 9], the authors developed a parameter range reduction method. If each
parameter is known to lie initially within an a priori range, the algorithm quickly
prunes regions of parameter space, removing boxes of parameter values that are
deemed to be inconsistent with the data. The final output is a collection of consistent
boxes from which a better initial parameter set can be chosen.

The original method assumed that time series data was available for all model
variables. In [9], the scheme was applied to a real-world problem modelled by
a five-dimensional, seven-parameter pharmacokinetic system [4, p. 152]. An al-
gebraic equation associated with the model was used to eliminate an unmeasured
variable and the parameter range reduction algorithm was applied to the resulting
four-dimensional system. The algorithm was only able to make small reductions to
some of the parameter ranges. We believed that more progress might be possible
if the unmeasured variable was kept in the system of equations and its occurrences
treated as additional parameters to be reduced. Since the true parameter values for
this system are not known, we test this hypothesis using a simpler system.

2 Problem

If S, I ,R denote respectively the number of susceptible, infected and recovered
individuals in a population of size N , and α, γ represent the infection and recovery
rates, we obtain the standard Susceptible-Infected-Recovered (SIR) model

S ′ = −αSI , (1)

I ′ = αSI − γ I , (2)

R′ = γ I , (3)

N = S + I + R. (4)

We are interested in estimating the values of α and γ , given time series data of some
subset of model variables. Data were simulated by numerically integrating Eqs. (1–3)
with true parameter values (α, γ ) = (0.05, 0.5) and initial conditions (S0, I0,R0) =
(49, 1, 0). We sampled 40 equally spaced data points on the time interval [0, 20].
Normally distributed noise with mean 0 and standard deviation σ = 0, 1, 3 was then
added to the data. Negative simulated data values were reset to half their true value.

The estimation algorithm requires all discrete time series data to be transformed
to continuous representations. We used the algorithm developed in [7] to enclose the
data with continuous piecewise-linear curves. The results of this banding procedure
for the infected data (I ) are shown in Fig. 1 for each data set. We have been overly
conservative in our banding to reflect the inherent uncertainty in the data themselves.
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Fig. 1 Continuous bands applied to infected (I) time series data. The plots from left to right show
the continuous bands applied to simulated data with noise levels σ = 0, 1, 3 respectively

3 Algorithm

The parameter range reduction algorithm is fully described in [9], so we provide
only a brief overview here. For a single parameter box, the algorithm loops through
discretization time windows [t0, tn] and at each window, applies a specific fam-
ily of (n + 1)-step linear multistep discretizations to each equation. We define a
discretization of Eq. (2) to be of the form

F := I 0 − I n + h
n∑

i=0

βi
(
αSiI i − γ I i) , (5)

where Si and I i are approximations to the true solution at time t i = t0 + ih, and
each βi ≥ 0 is chosen as described in [9]. Since each parameter (α, γ ) and variable
(Si , I i) is known to be contained in a given interval, occurrences of each quantity
can be replaced by their interval-valued counterparts. Using interval arithmetic, we
can obtain an enclosure [F, F] of the true range of F over its domain. Depending on
the form of the discretization equation, this enclosure interval may be wider than the
true range [6], but techniques can be used to sharpen the enclosure [3].

For the given parameter intervals to be valid, the enclosure
[
F, F
]

must contain
0. If it does not, then the parameter box can be discarded as inconsistent with the
data. The algorithm then attempts to find regions of parameter space on which F > 0
or F < 0. Such regions can then be discarded. If no such region can be found, the
algorithm splits the parameter box along its widest edge and processes the resulting
boxes independently. A cap on the total number of boxes is set.

If a model variable is unmeasured, we treat each occurrence of that variable in the
discretization equation as an additional parameter that can be reduced. For example,
if the susceptible population is unmeasured in Eq. (5) the algorithm regardsS0, . . ., Sn

as (n+1) additional parameters that can also be reduced. Since arbitrary discretization
windows can be chosen, a naive implementation would lead to an unacceptable
number of new parameters that must be stored. We instead store unmeasured variable
ranges at a fixed number of control time points. Intervals required by the discretization
are then linearly interpolated from the band, and any reductions are carefully applied
to the nearest control points. Details of this have been omitted from this chapter due
to space considerations and will be reported elsewhere.
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4 Methods and Results

For each data set, we applied the range reduction algorithm to the four-equation SIR
model in Eqs. (1–4), and the equivalent model obtained by rearranging Eq. (4) to
eliminate the S variable as follows:

I ′ = α(N − I − R)I − γ I , (6)

R′ = γ I. (7)

The parameter estimation problem for each model was considered in three scenarios.
First, the case in which all model variables were measured. Second, then the case
in which the infected population I and recovered population R were measured, and
finally the case in which only the infected population I was measured. We tested the
algorithm for all values of the step size, h, from 0.05 to 1.00 in increments of 0.05,
and for all values of the discretization parameter s from 1 to 16. The values ofα, γ and
N were assumed to initially lie respectively in the intervals [0.01, 200], [10−6, 103],
and [25, 75].

The success of the algorithm was measured as follows. For each of the parameters
α and γ (notN since it is not required to simulate the original SIR model), we found
the hull of all valid parameter boxes and determined the fraction of parameter space
represented by this hull. The geometric mean of these two fractions, μ was used
as a measure of algorithm performance. For readability, this was reported below
as − log (μ). We also computed the centre of mass of all non-discarded parameter
boxes and tested the validity of this value as an initial parameter guess for a traditional
parameter estimation algorithm. We used the matrix laboratory (MATLAB) function
fminsearch with a least-squares cost function to search parameter space for a
valid parameter set (α, γ and all three initial conditions). As a control, we first ran
the search using the true parameter values and the midpoint of each continuous band
as the initial parameter choices. We then ran the search using the centre of mass
value of α and γ and the centre of the reduced box if any variables were unmeasured.
If the output parameter estimate differed by not more than 0.0001, 0.001, 0.1, 0.1
(values selected heuristically and proportionally to the true values), respectively in
their approximations of α, γ , S0 and I0, then the approximation is deemed to be in
the same basin of attraction as the true value and is highlighted in Table 1. Heuristic
analysis indicated that the optimization algorithm was insensitive to the value of R0

and a poor estimate did not appear to affect the results.
When time series data was available for all three model variables, using the

four-equation model allowed the algorithm to make more significant reductions in
parameter space. For almost all cases, the centre of mass approximation was an
excellent starting point for a traditional minimization routine. When the susceptible
population was unmeasured, it can be seen that the four-equation model still out-
performs the reduced model. Thus, it appears that treating unmeasured variables as
additional parameters is a better strategy than attempting to remove such quanti-
ties from the model. It would appear that the increased algebraic complexity of the
equations in the reduced model is a serious hindrance to parameter range reduction.
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Table 1 Results. The algorithm outputs a set of consistent boxes. We calculate the hull and centre
of mass of this set of boxes for each parameter and unmeasured initial conditions. We also report
− log (μ), a measure of the size of the hull relative to the initial size of parameter space

This complexity affects the monotonicity of the equation which results in decreased
sharpness in the interval computations. In the case when only the infected population
is measured, the four-equation model dramatically outperforms the reduced model.
It is worth noting, however, that neither model was able to immediately provide a
good enough starting guess for the minimization routine. We were, however, able to
significantly reduce the amount of parameter space a traditional algorithm would be
required to search.

This procedure is computationally very fast. When all three variables are mea-
sured, the algorithm typically finished in approximately 0.1 clock seconds. When
only the infected population was measured, the algorithm typically finished in less
than 0.5 clock seconds. Simulations were conducted with a 2.4-GHz Intel Core i5
processor.

When the algorithm failed to provide a good starting value, it was often due to
the poor estimation of the initial conditions. In this chapter, while the unmeasured
variables were treated as parameters in the context of the reduction scheme, to avoid
a combinatorial explosion of boxes, these unmeasured variable intervals were not
allowed to be split. When we use the four-equation model with no-noise data in the
scenario in which only the infected population is measured, allowing all unmeasured
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variable intervals to be split into five subintervals at each time step allows us to
obtain the vastly improved starting estimate S0 = 42.294 and R0 = 6.564. This
improvement, however, causes the run time of the algorithm to increase from 0.38
clock seconds to 38.55 clock seconds. We are currently working on a method by
which these ranges can be split without adding significant computational time.

5 Conclusion

In this chapter, we tested the parameter range reduction algorithm on a standard SIR
model. We found that the scheme worked better on models with a larger number of
simpler equations, even if time series data was unavailable for some model variables.
We found that in most cases, the algorithm was able to substantially reduce the size
of the valid parameter box and in many cases was also able to produce an excellent
starting point for a traditional parameter estimation scheme. The considerably smaller
parameter box provides a much smaller region for a global minimizer to search, thus
providing a significant computational savings.
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Stabilization of Impulsive Systems
via Open-Loop Switched Control

Peter Stechlinski and Xinzhi Liu

Abstract In this chapter, the stabilization of nonlinear impulsive systems under time-
dependent switching control is investigated. In the open-loop approach, the switching
rule is programmed in advance and the switched system is composed entirely of
unstable subsystems. Sufficient conditions are found that establish the existence
of stabilizing time-dependent switching rules using the Campbell–Baker–Hausdorff
formula and Lyapunov stability theory.

1 Introduction

Recently there has been increased interest in switched systems, which are systems
governed by a combination of continuous/discrete dynamics and logic-based switch-
ing and have applications in many real-world problems (for example, see [1–3] and
the references therein). The current literature on the stabilization of unstable con-
tinuous systems using switching control can be separated into two categories: the
first is the closed-loop switched control problem, which involves the construction
of a stabilizing state-dependent switching rule (first studied by Wicks et al. in [4]
and further in, for example, [5–8]). The second is the open-loop switched control
problem, which has been studied much less extensively, and entails the construction
of a stabilizing time-dependent switching rule calculated a priori and hence pre-
programmed into the data. The authors Bacciotti and Mazzi [9] studied nonlinear
switched systems and found sufficient conditions for the existence of a solution to
the open-loop problem. Stabilization of nonlinear systems to a compact set using a
time-dependent switching rule was considered by Mancilla-Aguilar and Garcia in
[10]. In [11], Bacciotti and Mazzi investigated eventually periodic switching rules
for the linear switched problem.
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Impulsive control was considered in [12, 13] for the state-dependent switching
rule approach; however, to the best of the authors’ knowledge there has been no
work done on the open-loop approach with impulses present. Hence, the objective
of the present report is to extend the current literature by considering stabilization of
nonlinear impulsive systems using high-frequency time-dependent switching. The
main contributions are verifiable conditions for the existence of a stabilizing time-
dependent switching rule for both disturbance impulses and stabilizing impulses.
The rest of the chapter is outlined as follows: in Sect. 2, the open-loop switched
control problem with impulses is presented. Then, in Sect. 3, sufficient conditions
are proved which guarantee the existence of a stabilizing time-dependent switching
rule. An example is given in Sect. 4 and some discussions done in Sect. 5.

2 Problem Formulation

Let R
n denote the Euclidean space of n-dimensions equipped with the Euclidean

norm ‖ · ‖ and letD ⊂ R
n be an open set. Let R+ denote the set of nonnegative real

numbers. Consider the following class of functions for later use:

K = {w ∈ C(R+, R+) : w is strictly increasing and w(0) = 0}.
Consider the following switched impulsive system

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = fσ (x), t �= τk ,
Δx = gk(x), t = τk ,
x(0) = x0, k = 1, 2, . . .

(1)

where x ∈ R
n is the state vector; σ : (tk−1, tk] → {1, 2, . . . ,m}, wherem is a positive

integer greater than one, is the switching rule with switching instances tk that satisfy
0 < t1 < t2 < . . . < tk−1 < tk < . . . with tk → ∞ as k → ∞; {fi}mi=1 is a
family of sufficiently smooth functions that satisfy fi : D → R

n and fi(0) = 0 for
i = 1, . . . ,m. Here, Δx := x(t+) − x(t) and x(t+) := lima→0+ x(t + a) and the
impulsive moments τk satisfy 0 < τ1 < . . . < τk−1 < τk < . . . with τk → ∞ as
k → ∞. The impulsive functions {gk}∞k=1 are continuous and satisfy x + gk(x) ∈ D
for all x ∈ D. Note that system (1) can be derived from a control system perspective
(see, for example, [12, 14]).

The goal of the open-loop switched control problem is as follows: given a set of
vector fields {fi}mi=1 such that each subsystem ẋ = fi(x) is unstable, stabilizing or
disturbance impulses {gk}∞k=1 with associated impulsive moments {τk}∞k=1, and initial
condition x0, find a time-dependent switching rule σ (t) a priori such that the trivial
solution of (1) is asymptotically stable.
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3 Main Results

In order to give the main results a lemma is first required, which follows from the
Campbell–Baker–Hausdorff formula (see [15]).

Lemma 1 [9]
Let H be the space of all bounded, analytic, vector fields on the open ball Br (0) (for
some constant r > 0), equipped with an appropriate norm so that it is a Banach space.
Suppose that f1, f2 ∈ H and let α1,α2 be positive constants such that α1 + α2 = 1.
Then there exists a positive constant T̄ such that for all T < T̄ and for all x ∈ Br (0),
the series

h(x) =(α1f1(x) + α2f2(x))T + α1α2

2
T 2[f1, f2](x) + . . .+ cn(x) + . . . (2)

converges where [f1, f2](x) := (df1)xf2(x) − (df2)xf1(x) denotes the Lie product,
dfx is the Jacobian matrix of the vector field f , and the nth term in the series cn(x) =
cn(x; T ,α1,α2) is defined recursively.1 Furthermore, ϕ1(α1T ,ϕ2(α2T , x)) =
ϕh(1, x), where ϕh is the flow generated by the vector field h.

We are now in a position to present the first stability result, which considers
stabilizing switching control and impulsive disturbances. The theorem (and proof)
is an extension of the work in [9] and is based on the existence of a stable convex
combination of the subsystems.

Theorem 1 Assume that there exist constants αi > 0 for i = 1, . . . ,m satisfying∑m
i=1 αi = 1, constants λ, ak , εk > 0, 0 < δk < 1, and functions w1, w2 ∈ K, and

V ∈ C1[Rn, R+] such that for k = 1, 2, . . . ,

(i) w1(‖x‖) ≤ V (x) ≤ w2(‖x‖) for all x ∈ D;
(ii) V̇ ≤ −λV along solutions of ẋ =∑m

i=1 αifi(x);
(iii) V (x + gk(x)) ≤ (1 + ak)V (x) for all x ∈ D;
(iv) ln (1 + ak) − (1 − εk)(τk − τk−1)λ < ln δk .

Then there exists a time-dependent switching rule, possibly dependent on the initial
condition, such that the trivial solution of (1) is asymptotically stable.

Proof Consider the casem = 2 (to extend the proof tom > 2, see the comments in
[9]). For any constant c > 0, define Li to be the connected component of the level
set {x : V (x) < c

∏i
j=0 δj } where δ0 = 1. Without loss of generality, consider a

value of c and r > 0 such that: the closure of L0, denoted cl(L0), is contained in the
basin of attraction of x = 0; cl(L0) ⊂ Br (0) ⊂ D; and x0 ∈ cl(L0) \ L1.

By Lemma 1 there exists a constant T0 > 0 such that h(x) in Eq. 2 converges for
all T ∈ [0, T0] and x ∈ cl(L0). Then, along solutions of ẋ = h(x),

1 See Chap. 2 in [15] for the details.
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V̇ =∇V · [(α1f1(x) + α2f2(x))T +
(α1α2

2
[f1, f2](x)

)
T 2 + . . .],

=∇V · T
2∑

i=1

αifi(x) + ∇V ·
[(α1α2

2
[f1, f2](x)

)
T 2 + . . .

]
,

≤ − λV T + R(x)T 2,

where R(x) is a continuous function. Define the closed set V0 := cl(L0) \ L1 and
choose T ′ > 0 sufficiently small so that

∣∣∣∣max
x∈V0

R(x)

∣∣∣∣ T
′ ≤ ε1λmin

x∈V0
w1(‖x‖).

Thus, V̇ ≤ −λV T + ε1λV T = −λ(1 − ε1)V T for all T ∈ [0, min{T0, T ′}] and x ∈
V0. In particular, V̇ ≤ −λ(1−ε1)V T1 for x ∈ V0, whereT1 is chosen so that 0 < T1 ≤
min{T0, T ′} and mod(τ1, T1) = 0. Let η1 be the positive integer such that η1T1 = τ1

then V (ϕh(η1; x0)) ≤ V0e
−(1−ε1)λη1T1 . Define ΦT1 (x) := ϕ2(α2T1,ϕ1(α1T1, x)) and

let Φη1
T1

(x) indicate η1 iterations of the mapping, that is, ΦT1 (ΦT1 (. . . (x)) . . .) (η1

times). Then, by Lemma 1, V (Φη1
T1

(x0)) ≤ V0e
−(1−ε1)λη1T1 . Hence,

V (x(η1T1; x0)) ≤ V0e
−(1−ε1)λη1T1

along solution trajectories of (1).
An impulse is applied to the switched system state trajectory at τ1 = η1T1:

V (x(η1T
+

1 ; x0)) ≤(1 + a1)V (x(η1T1; x0)) ≤ (1 + a1)V0e
−(1−ε1)λη1T1 .

Condition (iv) implies that V (x(η1T
+

1 ; x0)) < δ1V0 < δ1c for all x0 ∈ V0. The first
segment of the switching rule can then be constructed as

σ (t ; x0) =
{

1, t ∈ (jT1, jT1 + α1T1], j = 0, 1, . . . , η1 − 1,

2, t ∈ (jT1 + α1T1, (j + 1)T1].

Set x1 = x(η1T
+

1 ; x0) then x1 ∈ V1 := cl(L1) \ L2 and by the above arguments it
can be shown that there exist a positive constant T2 and a positive integer η2 such
that η2T2 = τ2 − τ1 and V (x(η2T

+
2 ; x1)) < δ1δ2c for all x1 ∈ V1. By repeating the

process,
V (x(ηkT

+
k ; xk−1)) < δ1δ2 · · · δkc

for all xk−1 ∈ Vk−1 := cl(Lk−1) \ Lk for some constant Tk > 0 and positive integer
ηk satisfying ηkTk = τk − τk−1. The result follows. �

For stabilizing impulses, the following result can be applied.

Theorem 2 Assume that there exist constants αi > 0 for i = 1, . . . ,m satisfying∑m
i=1 αi = 1, constants λ, ak , εk > 0, 0 < δk < 1, and functions w1, w2 ∈ K, and

V ∈ C1[Rn, R+] such that for k = 1, 2, . . . ,
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(i) w1(‖x‖) ≤ V (x) ≤ w2(‖x‖) for all x ∈ D;
(ii) V̇ ≤ λV along solutions of ẋ =∑m

i=1 αifi(x);
(iii) V (x + gk(x)) ≤ akV (x) for all x ∈ D;
(iv) ln ak + (1 + εk)(τk − τk−1)λ < ln δk .

Then there exists a time-dependent switching rule, possibly dependent on the initial
condition, such that the trivial solution of (1) is asymptotically stable.

Proof The proof is similar to the proof of Theorem 1.

4 Example

Consider system (1) with m = 2, impulsive moments τk = 2k for k = 1, 2, . . . ,

f1(x1, x2) =
⎛

⎝5x1 + 2x5
2 − x2

2e
sinx1

−3x2 − 2x1x
4
2

⎞

⎠, f2(x1, x2) =
⎛

⎝ −6x1 − x5
2

2x2 + x1x
4
2 + x1x2e

sinx1

⎞

⎠,

g2k(x1, x2) =
⎛

⎝
sin(x1)

√(
1 + 1

e2k

)
(x2

1 + x2
2 ) − x1

cos(x1)
√(

1 + 1
e2k

)
(x2

1 + x2
2 ) − x2

⎞

⎠, g2k−1(x1, x2) =
⎛

⎝0.224 x1

0.224 x2

⎞

⎠.

Note that both df1x (0) and df2x (0) have eigenvalues with positive real part. Take
α1 = α2 = 0.5 then

2∑

i=1

αifi(x1, x2) = 1

2

⎛

⎝ −x1 + x5
2 − x2

2e
sinx1

−x2 − x1x
4
2 + x1x2e

sinx1

⎞

⎠.

Consider the Lyapunov function V = x2
1 + x2

2 , then along ẋ = α1f1(x) + α2f2(x),
V̇ = −(x2

1 + x2
2 ) = −V . At the impulsive times, x1(τ+2k)2 + x2(τ+2k)2 ≤ (1 +

1
e2k )(x1(τ2k)2 +x2(τ2k)2) and x1(τ+2k−1)2 +x2(τ+2k−1)2 ≤ 1.5(x1(τ2k−1)2 +x2(τ2k−1)2).
Let w1(‖x‖) = w2(‖x‖) = ‖x‖2, λ = 1, ε2k = ε2k−1 = 0.01, a2k = 1/e2, and
a2k−1 = 0.5. Then, the conditions of Theorem 1 are satisfied with δk = 0.5 and
hence there exists a stabilizing time-dependent switching rule. From the simulations
(see Fig. 1), it is apparent that the origin is asymptotically stable if the systems are
switched every 0.05 time units (periodic switching rule with T = 0.1) or 0.5 time
units (T = 1).

5 Conclusions

Although motivated from a control problem, the analysis in the present chapter is
more general since the impulses can be considered as disturbances or can be sta-
bilizing forces. In both cases, we have given sufficient conditions for the existence
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a b

Fig. 1 Simulation of (1) with x0 = (− 2, 3)

of a stabilizing time-dependent switching rule. There are many reasons why a time-
dependent switching rule may be desired over a state-dependent one [9]: for example,
with a time-dependent approach, chattering, sliding motions, and Zeno behaviours
can be avoided (see [1, 8]). Since the time-dependent switching rule is prepro-
grammed into the data, sensors are not as vital. There are some drawbacks to this
approach: currently there is no explicit formula for the time-dependent switching
rule (a possible direction for future work). The number of switches required in this
approach might be unrealistic physically (see the example above).
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Mathematics-in-Industry Study Group Projects
from Australia and New Zealand in the Past
Decade

Winston L. Sweatman

Abstract Mathematics in Industry Study Groups (MISG) have been an annual
event in Australia and New Zealand since 1984. Projects from the last decade
are considered. Among the industries involved are those of steel, electricity and
agriculture.

1 Introduction

The Mathematics in Industry Study Group (MISG) workshops in Australia and New
Zealand were initiated by Australia’s national science agency (CSIRO) in 1984.
At present, the workshops occur annually as a special interest group meeting of
the Australia and New Zealand Industrial and Applied Mathematics (ANZIAM)
organisation. During the last decade the workshops have been hosted in turn by
Massey University, New Zealand (2004, 2005, 2006), University of Wollongong,
Australia (2007, 2008, 2009), Royal Melbourne Institute of Technology (RMIT)
University, Australia (2010, 2011, 2012) and Queensland University of Technology
(QUT), Australia (2013) [1].

Each workshop lasts for one week (in late January or early February). The week
begins with presentations from industry representatives, during which they describe
their project. Thereafter, small teams of participants work on each individual project
led by two (or sometimes three) moderators. Continuing interaction and discussion
with the industry representatives helps to further formulate and make progress with
the project. As well as coordinating their group, the moderators are responsible for
reporting on progress during presentations mid-week and at the end of the week, and
afterwards in written reports published after the conclusion of the workshop.

During the 10-year period (2004–2013), each of the workshops involved between
4 and 7 industry projects. A total of 57 projects were considered in the decade.
Several of the industrial partners returned to the workshops on multiple occasions.
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The projects have been varied. Some of the kinds of projects tackled and industrial
partners involved are:

• Steel: New Zealand Steel and Bluescope Steel Research
• Electric power: Transpower, Integral Energy
• Whiteware: Fisher and Paykel
• Agriculture: Plant Protection Chemistry New Zealand, Fonterra, NRM/Tegel,

Compac Sorting Equipment
• Ecological: Environment Canterbury, Australian Institute of Marine Science
• Medical: Brain Research Institute, Kirby Institute
• Others: Geoscience Australia, Australian Bureau of Statistics, Defence Science

and Technology Organisation, Department of Transport and Main Roads

In the following sections, some of the projects are described in more detail. The
author was a MISG team member on these ten projects and was also a moderator for
them all except for the first (in 2004).

2 New Zealand MISG Projects 2004, 2005, 2006

The MISG 2004–2006 were the first to be based in New Zealand. Six or seven projects
were brought in each year.

Modelling of a Poultry Shed: NRM/Tegal Ltd., 2004 This related to the large
barns in which chickens are raised for meat over a 6-week period. During this time,
water and food is fed to the birds. The chickens themselves produce moisture and
heat, which are removed from the shed by ventilation. The project involved modelling
this flow of mass and energy. Among diverting considerations were the appropriate
surface areas of chickens when standing or seated (spheres or hemispheres) [2].

Implementing Lanier’s Patents: Backyard Technology, 2005 Behind this project
was the idea that aeroplanes would fly better with appropriate ‘holes’ in their wings
that Lanier expressed in the 1930s. Unfortunately, there was no data to work with, the
closest thing being a few patents and photographs from the 1930s. This made things
rather challenging. However, the MISG team did assess and summarise what infor-
mation there was in the patents, and also conducted simple analyses and numerical
simulations relating to the conjectures [3].

Process Driven Models for Spray Retention of Plants: Plant Protection Chem-
istry NZ, 2006 Modelling the deposit of horticultural sprays onto plant leaves can
be helpful for designing the implementation to be more effective. A number of pro-
cesses can be modelled separately such as the transit of the spray from the spray
nozzle to the plant, the impact of an individual droplet on a leaf and the flow of
droplets across leaves. In the second of these processes, the droplet may leave the
leaf through the two different mechanisms of rebound and shatter (possibly to return
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to the leaf for additional impacts) or the droplet may remain on the leaf. The group
collected these processes together to form a composite model of the process [4]. A
continuation of research after the MISG considered the leaf impaction in more detail
[5].

Further to the project at MISG 2006, Plant Protection Chemistry NZ were involved
in the MISG in 2005 and 2013, these projects involving the passage of spray through
porous barriers (hedges) and the uptake of agrichemicals through leaves.

3 Electric Power Projects

During the decade, Transpower Ltd., who manage the New Zealand electricity net-
work, brought seven projects to the workshops. The projects included ones relating
to maintaining electricity supply, electricity price structures, and issues relating to
wind power. Integral Energy also brought electric power projects.

Operating and Planning an Electricity Transmission Grid to Maximise the Con-
tribution of Wind: Transpower/EECA NZ, 2007 Increasing use of wind power
brings new challenges because of its variable nature: at some times there may not
be any wind and at other times the wind may be too powerful to be safe to use. In
this project the group considered two issues. One related to how to ensure electricity
supply with other power sources, when utilising a large amount of intermittent wind
power. The other considered the allowances that require to be made to provide suf-
ficient line capacity, when supply is moving between wind power and other power
sources. Both studies considered the project in the context of both the financial and
electric grid used in New Zealand [6, 7].

How Far can a Simplified Network Rights Auction be Extended?: Transpower,
2012 Financial options are to be introduced to complement the existing pricing
structure for electricity at different locations in New Zealand. These are sold by
auction and enable the purchaser to buy power at one point in the electricity network
and to be supplied with it at another point in the network. The initial scheme will
operate on a subset of the nodes already used for spot pricing. The MISG team
considered the kind and number of constraints involved in ensuring a workable
system and the feasibility of their computation. Further, an approach was suggested
for generating the feasible set [8].

4 Steel Projects

Eight projects were brought to the MISGs by New Zealand Steel and Bluescope Steel
Research. These considered the steel-making production from initial processes with
raw iron through to the final products.
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Cold Point Determination in Heat Treated Steel Coils: New Zealand Steel, 2008
Annealling is required following the production of steel sheets by rolling. This re-
forms the crystalline structure by a period of heating in a furnace. The steel sheets are
in the form of cylindrical coils. The team considered the process of heating within
these rolls and the location of the point that takes the longest to heat. It is difficult to
measure temperatures within a furnace. An initial stage of the modelling was to de-
cide upon appropriate boundary conditions for the coil which is heated by a mixture
of conduction, convection and radiation. Also, within a coil, the conduction of heat is
not isotropic because of the gaps between layers of the steel sheet. A series solution
was found for the partial differential equations that describe the coil temperatures
[9–11].

Coating Deformation in the Jet Stripping Process: Bluescope Steel Research,
2009 Steel sheets are galvanised by passing the sheet through a bath of molten
coating and then controlling the thickness with air knives. Recent changes in the
coating mixture has led to some potential issues to tackle with the quality of the final
coating. There is a potential problem with deformations in the coating in the form of
pock marks and the like. The process had been mathematically modelled previously
[12]. This model was recovered but with the addition of a term due to shear stress.
Numerical models indicated how potential deformations may grow [13–15].

Recovery of Vanadium During Steel Manufacturing: New Zealand Steel, 2011
In New Zealand, raw iron is produced from iron sand. The molten iron contains a
number of metalloids including vanadium. These must be removed before the steel-
making process and these are also valuable by-products. The removal is done by
oxidising the metalloids using oxygen blown into the molten iron and added solid
iron oxides. The metalloid oxides rise to the surface of the raw iron from whence
they can be scraped into another vessel. The MISG team built up a representative
set of differential equations to describe the constituent substances present and the
temperature. Special care must be taken of the residual carbon both as this is required
later for making steel and because carbon oxidation can be a runaway process leading
to carbon boil in which the molten iron is splattered everywhere [16].

5 Further Projects

Two other projects were moderated by the author. Both of the organisations: the
Australian Defence Science and Technology Organisation (DSTO) and Fonterra Co-
operative Group Ltd. (Fonterra) supported the workshops in multiple years.

Influence Diagrams to Support Decision Making: DSTO, 2010 The 2010 MISG
team considered influence diagrams. These can be used in a variety of ways, they
indicate links (arrows) between events or actions (boxes) as a support for decision
making. The team spent a great deal of time exploring the possibilities for these ap-
proaches in their discussion. They visualised the approach being used in a hierarchical
fashion where detail in sub-influence diagrams could be hidden until required within
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larger networks. A computational simulator was created that used colour shades to
show the state of different events and this was helpful for visualising the progress of
influence through a system [17].

Can we Predict How Cheese Matures?: Fonterra, 2013 Cheddar cheese is sam-
pled soon after production before storage for ripening. The MISG team produced
a differential equations model for key processes involved including ones for the
breakdown and consumption of proteins, fats and carbohydrates by bacteria and
enzyme-catalysed reactions. Data from the literature was fitted with this simple
model. Further to this, data from the Fonterra factory was analysed. The evolution
of acidity in the process was also modelled [18].

6 Concluding Remarks

The MISG over the last decade have tackled varied projects. Key points of a selec-
tion of these have been presented. The workshops continue to be a productive and
instructive venture for participants from both industry and academia.

Acknowledgement The author is grateful to the many MISG participants over the decade: Di-
rectors, Industry Representatives, Moderators and Group Members. It has been instructive and
enjoyable!
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Symmetric Four-Body Problems

Winston L. Sweatman

Abstract The gravitational N-body problem has long been a source of theoretical
investigation with application to astronomical systems. There is a rich and varied dy-
namics. With systems of four bodies arranged symmetrically, the symmetry tends to
reduce the complexity of the system so that it is perhaps more similar to one with three
bodies, although such systems also provide a starting point for our understanding of
more general four-body systems.

1 Introduction

The gravitational N-body problem, where a number of point masses move under a
mutual force between them, is of interest both as a dynamical system and because
of its application to astronomy. If we take the number of bodies to be just four, then
the system may be taken to represent the interaction of two binary objects, perhaps
two stars with accompanying planets or alternatively a pair of binary stars.

N-body systems that begin with a symmetric set of masses, positions, and veloc-
ities, remain symmetrical for all time. This enables us to consider the symmetrical
systems as a subclass of the full N-body systems.

The appeal in considering a gravitational system which is symmetric is partially
due to its greater simplicity than a general N-body system. It can, however, provide
insight and ideas. Some important orbits in the general problem are symmetric and
can initially be found and studied more readily in a symmetric context. Symmetric
orbits can be rather beautiful!
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Fig. 1 The Caledonian four-body problem

2 The Caledonian Four-Body Problem

In Fig. 1, a simple symmetric four-body system in the plane is presented. The system
has a rotational symmetry about its centre of mass. Mass m3 is equal to and the
image of mass m1, and mass m4 is equal to and the image of mass m2. Relative
to the centre of mass, which we fix at the origin, the state of the system is fully
described by the positions and momenta of the two masses m1 and m2. This system
has been named the Caledonian four-body problem [4, 5, 9, 10]. Another system
with a similar complexity can be obtained by using a reflective rather than rotational
symmetry. Further, if two perpendicular lines of symmetry and four identical bodies
are used, then a system results whose state is captured by the position of a single
mass.

3 The Symmetrical Collinear Four-Body Problem

Apart from symmetry, another simplification occurs by considering N-body systems
in a lower dimensional space. In particular, the Caledonian four-body problem re-
duces to the symmetrical four-body problem (Fig. 2) when the orbits of all masses
lie on a fixed line [11, 12]. If the initial positions and velocities are all collinear then
again, as with symmetry, the orbit will retain this special property for all time. A
further property is that the order of the masses on the line does not change.

If we denote the (one dimensional) positions of masses m1 and m2 relative to the
centre of mass by x1 and x2, respectively, their conjugate momenta are w1 = 2m1ẋ1

and w2 = 2m2ẋ2 and the Hamiltonian for the symmetrical four-body system is given
by

H = 1

4m1
w2

1 + 1

4m2
w2

2 − m2
1

2x1
− m2

2

2x2
− 2m1m2

x1 + x2
− 2m1m2

x1 − x2
. (1)

A singularity will occur whenever two or more masses collide and such collisions
are inevitable in the collinear problem. However, collisions between pairs of masses
can be readily regularised. As eccentricity tends to unity, the natural limiting orbit of
a planar encounter between a pair of masses is an elastic bounce. For the numerical
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Fig. 2 The collinear four-body problem

position  

 xi 

time   t 

Fig. 3 A collinear four-body orbit. The different lines represent different masses

integration scheme, such encounters can be regularised by changing position coor-
dinates to ones corresponding to the square-root of the inter-mass distances, using
conjugate momenta, and an appropriate rescaling of time [11, 12]. A similar regu-
larisation also works for removing pairwise collision singularities in the Caledonian
four-body problem [8]. In general, collisions involving more than two masses lead
to singularities that cannot be regularised.

Figure 3 illustrates a symmetrical collinear four-body orbit. This particular portion
of the orbit is quite regular. The outer masses in this case are relatively small compared
with the central masses (they are smaller by a factor of just over 26). As a result the
motion of the central masses is primarily a binary motion about one another. The
outer masses are orbiting this binary.

The total energy of the illustrated system (Fig. 3) is negative. Any encounter
between four masses with a positive energy must result in prompt scattering of
the component masses. In these circumstances, the four masses cannot even be
temporarily bound. With a negative total energy, most orbits can be categorised into
three types. In some orbits the masses come together in essentially a single encounter
involving all the masses and spend the rest of time apart as subsystems. In other
orbits there are multiple encounters involving all the masses which temporarily form
subsystems between the encounters and permanently separate into subsystems after
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all the encounters are finished. In the third type, all the masses remain bound together
for all time in periodic and quasiperiodic orbits. Various symmetrical collinear four-
body orbits, in particular for the equal masses case and the Schubart-like orbits, have
been presented previously [11, 12].

4 Initial Conditions and Poincaré Section Surfaces

The state of a symmetrical collinear four-body system is characterised by four pa-
rameters representing the positions and momenta of massesm1 andm2. However, if
we fix energy E = −1, then the orbits lie in three-dimensional space and, by choos-
ing a specific point or time on each orbit, the orbits can be parameterised by just two
quantities within a Poincaré section [11, 12]. To define this surface we require the
ratio of the position coordinates (x2/x1) take a fixed value α. A good choice for α
is the value which corresponds to the homothetic orbit (in which orbit the masses
remain in an invariant configuration leading to a quadruple collision). The surface
can be parametrised by coordinates relating to position and momentum which we
shall denote ρ and θ . These are based on coordinates used in the similar case of
the collinear three-body problem [2, 3]. (An alternative but equivalent parameteri-
sation for the equal masses case has been given in [7].) The position coordinate, ρ,
is the separation of the outer bodies as a fraction of their maximum possible sepa-
ration while on the surface x2/x1 = α. The momentum coordinate, θ , chosen to be
independent of R, satisfies the implicit equation

tan (θ ) =
√
m1m2 (ẋ2 − αẋ1)

αm2ẋ2 +m1ẋ1
. (2)

The value of θ is taken to be within [0◦, 180◦) for ẋ1 > 0 (i.e., the outer masses
moving apart) and within [180◦, 360◦) for ẋ1 < 0. Momentum coordinates differing
by 180◦ relate to the same orbit but with the directions of the velocities reversed.
The values θ = 0◦ and θ = 180◦ correspond to the homothetic orbit which is,
respectively, expanding and (then) contracting.

Such surfaces have been used for studying the equal masses case [7, 11]. Poincaré
sections are formed by the crossing points of the surface by orbits from a grid of
initial conditions. Alternatively a set of initial conditions may be taken within the
surface and shaded according to the nature of the orbit.

Figure 4 shows a Poincaré section for a different case to the previous studies. In this
case, the outer masses are nine times larger than the inner ones. This figure is one of a
large number of such surfaces generated for the complete range of masses, they will be
reported on in a subsequent publication. Figure 4 shows the typical structure of such
sections. The regions containing the circular structures correspond to bound four-
body systems. In the centre of these circles is a regular periodic orbit analogous to the
collinear three-body orbit found by Schubart [6] and extended to the general-mass
three-body case by Hénon [1]. Such orbits have also been found for the general-
mass symmetrical four-body family [12]. Around these regions lies another region
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Fig. 4 A Poincaré section for which the outer masses are nine times larger than the inner masses

where the four masses remain temporarily bound undergoing a multiple number of
four-body encounters before eventually separating. The systems that rapidly separate
after a single encounter occur in the arches (or scallops) at the base of the figure.

5 Concluding Remarks

The four-body problem has been considered for the special case where there is
symmetry. A rotational symmetry about the centre of mass leads to the Caledonian
four-body problem, a system parameterised by just two position coordinates and
their corresponding momenta. A further restriction to one dimension leads to the
symmetrical collinear four-body problem. In this latter case the system can be de-
scribed by just four variables. The orbits for this case are readily viewed as graphs
of the positions of the masses against time. With a fixed value of the total energy, a
Poincaré section has been presented which can be used to study the two-dimensional
families of orbits.
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A Simple Method for Quasilinearity
Analysis of DAEs

Guangning Tan, Nedialko S. Nedialkov and John D. Pryce

Abstract We present a simple method for quasilinearity (QL) analysis of differential-
algebraic equations (DAEs). It uses the signature matrix and offsets computed by
Pryce’s structural analysis and determines if a DAE is QL in its leading derivatives.
Our method is suitable for an implementation through operator overloading or source
code translation.

1 Introduction

We are interested in solving initial value problems in DAEs of the general form

fi(t , the xj and derivatives of them) = 0, i = 1, . . ., n, (1)

where the xj (t), j = 1, . . ., n are state variables, and t is the time variable.
Based on Pryce’s structural analysis (SA) [4], we solve (1) numerically using

Taylor series, as implemented in the DAETS solver [2]. On each integration step,
we compute Taylor coefficients for the solution up to some order, where we solve
systems of equations for these coefficients in stages. Up to stage zero, a system can be
linear or nonlinear in the variables being solved for, and after this stage, the systems
are always linear.

We present a simple method for deciding if such a system is linear in the unknown
derivatives, respectively Taylor coefficients. We refer to such systems as quasilinear
(QL). If the unknowns appear nonlinearly, we have a nonquasilinear (NQL) system.
Such information is used to determine what solver to use and the minimum number
of variables and derivatives of them that need initial conditions; for details see [5].
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Section 2 summarizes Pryce’s SA. Sect. 3 gives the definitions needed for our
method. It is described in Sect. 4 and illustrated in an example in Sect. 5. Conclusions
are given in Sect. 6.

2 Summary of Pryce’s SA

This SA [4] constructs for (1) an n× n signature matrix Σ = (σij ) such that

σij =
⎧
⎨

⎩
the highest order of the derivative to which xj occurs in fi ; or

−∞ if xj does not occur in fi .

A highest value transversal (HVT) is a set of n positions (i, j ) with one entry in
each row and each column, such that the sum of these entries is maximized over
all transversals. From Σ , we find a HVT and equation and variable offsets c and d,
respectively, which are non-negative integer n-vectors satisfying

dj − ci ≥ σij for all i, j with equality on an HVT.

When the SA succeeds [1, 4], using these offsets, we can determine structural index
(which is an upper bound for the differentiation index, and often they are the same),
degrees of freedom, and a solution scheme for computing derivatives of the solution.

They are computed in stages k = kd , kd + 1, . . ., where kd = −maxj dj . Denote

xJk =
{
x

(dj+k)
j | dj + k ≥ 0

}
, xJ<k =

{
x

(r)
j | dj + k > r ≥ 0

}
, and

fIk =
{
f

(ci+k)
i | ci + k ≥ 0

}
.

At stage k, we solve a system of equations fIk (t , xJ<k , xJk ) = 0 for xJk , where xJ<k
are computed at earlier stages. A system at stage k = kd , kd + 1, . . ., 0 can be QL or
NQL, while for stages k > 0 the systems are always linear.

Example 1 We show below for the simple pendulum (PEND), an index-3 DAE, the
signature matrix and offsets. (The state variables are x, y, and λ; G is gravity, and
L > 0 is the length of the pendulum.) There are two HVTs, marked with • and ∗,
respectively.

0 = f1 = x′′ + xλ
0 = f2 = y′′ + yλ −G
0 = f3 = x2 + y2 −L2

→ Σ =

x y λ ci

f1 2• 0∗ 0
f2 2∗ 0• 0
f3 0∗ 0• 2

d j 2 2 0
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The equations for stages k = −2,−1, 0 are

k fIk (t , xJ<k , xJk ) xJ<k xJk Linearity

−2 f3 = x2 + y2 − L2 − x, y NQL

−1 f ′
3 = 2xx ′ + 2yy ′ x, y x ′, y ′ QL

f1 = x ′′ + xλ
0 f2 = y ′′ + yλ−G x, x ′, y, y ′ x ′′, y ′′, λ QL

f ′′
3 = 2(xx ′′ + x ′2 + yy ′′ + y ′2)

Obviously, at k = −2 we have a NQL problem, and then two QL problems.

3 Quasilinearity at Stage k

Definition 1 The system

fIk (t , xJ<k , xJk ) = 0 (2)

is QL, if xJk appears linearly in it, and NQL otherwise.

Definition 2 A DAE is QL, if at stage k = 0, (2) is QL, and NQL otherwise.

Definition 3 Equation i at stage k is QL, if f (k+ci )
i = 0 is linear in the xJk occurring

in it, and NQL otherwise.
If ci + k > 0, then f (k+ci )

i = 0 is always QL. For example, in PEND at stage
k = −1, f ′

3 = 2xx ′ + 2yy ′ = 0 is QL in x ′ and y ′.
At stage k, consider equations i for which ci + k = 0. If each such fi = 0 is QL,

then (2) is QL. If at least one such fi = 0 is NQL, then (2) is NQL; cf. in PEND at
stage k = −2.

Therefore, to determine quasilinearity at stage k, we need to check for QL only
the fi = 0 for which ci + k = 0.

4 Algorithm

For simplicity in our exposition, we consider the code list for evaluating the fi’s
as consisting of assignment, unary, and binary operators. This is the case when
executing the function for evaluating the DAE through operator overloading. Our
algorithm consists of initialization and propagation of offset and type data through
the code list as described below.

Initialization We derive from Σ the n× n offset matrix Θ = (θij ) as

θij =
⎧
⎨

⎩
σij if σij = dj − ci
+∞ otherwise,
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and derive from Θ the n× n type matrix T = (Tij ) as

Tij =

⎧
⎪⎪⎨

⎪⎪⎩

L (Linear) if θij = 0

U (Undetermined) if 0 < θij < +∞
C (Constant) if θij = +∞.

Then we associate with each xj an offset vector γ (xj ) being the j th column of Θ ,
and a type vector T(xj ) being the j th column of T.

Propagation We propagate these vectors through the code list of the DAE according
to the following rules.

R1. If v = +u or v = −u, then

γ (v) = γ (u) and T(v) = T(u).

R2. If v = g(u) is nonlinear, then

γ (v) = γ (u) and Ti(v) =
⎧
⎨

⎩
N (Nonlinear) if Ti(u) = L

Ti(u) otherwise.

R3. If w = g(u, v), then for all i = 1, . . . n,

γi(w) = min {γi(u), γi(v)} and

Ti(w) =
⎧
⎨

⎩
N if Ti(u) = Ti(v) = L&g nonlinear

max {Ti(u),Ti(v)} otherwise.

Here we use the ordering

C < U < L < N.

R4. Consider w = g(u, v). If u is a constant or the time variable t while v is not, then

γ (w) = γ (v) and T(w) = T(v).

Similarly, if v is a constant or the time variable t while u is not, then

γ (w) = γ (u) and T(w) = T(u).

R5. If v = dpu/dtp (where p > 0), then

γi(v) = γi(u) − p and Ti(v) =

⎧
⎪⎪⎨

⎪⎪⎩

L if γi(v) = 0

U if 0 < γi(v) < +∞
C if γi(v) = +∞.

After executing the code list for an fi and using R1–R5, we conclude that fi = 0 is
QL at stage k = −ci if Ti(fi) = L, and NQL if Ti(fi) = N.
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5 Example

We illustrate the above method on the following index-7 DAE

0 = f1 = x ′′ + xλ
0 = f2 = y ′′ + yλ+ (x ′)3 −G
0 = f3 = x2 + y2 − L2 (3)

0 = f4 = u′′ + uμ

0 = f5 = (w′′′)2 + wμ−G
0 = f6 = u2 + w2 − (L+ cλ)2 + λ′′

derived from a two-coupled pendula problem, an index-5 DAE, with originally

f2 = y ′′ + yλ−G, f5 = w′′ + wμ−G, f6 = u2 + w2 − (L+ cλ)2.

State variables are x, y, λ, u, w, and μ; G is gravity, L > 0 is the length of the first
pendulum, and c > 0 is a constant.

We wish to determine if the DAE (3) is QL; that is, if (3) is QL at stage k = 0.
The corresponding matrices are

x y λ u w μ ci
f1 2 0 4
f2 1 2 0 4
f3 0 0 6
f4 2 0 0
f5 3 0 0
f6 2 0 0 2
d j 6 6 4 2 3 0

x y λ u w μ ci
2 0 4

2 0 4
0 0 6

2 0 0
3 0 0

2 0 2
d j 6 6 4 2 3 0

x y λ u w μ

U L
U L

L L
U L

U L
U L

.

Σ , blanks denote − ∞ Θ , blanks denote + ∞ T, blanks denote C

Note that d1 − c2 > σ2,1 and d5 − c6 > σ6,5; hence these σ ’s do not appear in Θ .
Since ci = 0 for Eqs. 4 and 5, we need to examine only these two equations. (The

remaining f (ci+k)
i = 0 are QL since ci > 0 for i = 1, 2, 3, 6.)

Consider f5 = (w′′′)2 + wμ−G = 0 with unknowns w′′′ and μ. We initialize

γ5(w) = 3, T5(u) = U and γ5(μ) = 0, T5(μ) = L,

and propagate.
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Code list Evaluates γ5(v) T5(v) Applying

v4 = Dif(w, 3) = w′′′ 0 L R5

v5 = v2
4 = (w′′′)2 0 N R2

v6 = w ∗ μ = wμ 0 L R3

v7 = v5 + v6 = (w′′′)2 + wμ 0 N R3

f5 = v8 = v7 −G = (w′′′)2 + wμ−G 0 N R4

Since T5(f5) = N, f5 is NQL. Hence this DAE is NQL.

6 Conclusion

We presented a simple method for quasilinearity analysis when solving a DAE by
stages determined from Pryce’s SA. Our method is implemented in the DAESA
tool [3] for SA of DAEs and the DAETS solver [2]. In DAESA, we also construct
a block-triangular form (BTF) of the DAE, and with this analysis, we determine
the smallest number of variables and their derivatives that need initial values for a
consistent initialization [3]. In DAETS, this method is used to select the appropriate
solver when solving up to stage zero.

When applied block-wise to a BTF, our method considers variables that occur
in positions outside diagonal blocks as constants. As a result, we need to set the
corresponding off-diagonal entries inΘ to +∞ and in T to C. The propagation rules
do not change.

The proof of correctness of our algorithm and a detailed description of how it
works in the case of BTFs will be presented in a future work.

References

1. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (II):
computing the system Jacobian. BIT. 47(1), 121–135 (2007)

2. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (III): the
DAETS code. JNAIAM 3(1–2), 61–80 (2008)

3. Nedialkov, N.S., Pryce, J.D., Tan, G.: DAESA—a MATLAB tool for structural analysis of
DAEs: software. ACM Trans. Math. Softw. (2013). Accepted for publication

4. Pryce, J.D.: A simple structural analysis method for DAEs. BIT 41(2), 364–394 (2001)
5. Pryce, J.D., Nedialkov, N.S., Tan, G.: DAESA—a MATLAB tool for structural analysis of

DAEs: Theory. To appear in ACM Transactions on Mathematical Software (2014)



Nondeterministic Fuzzy Operators

Fairouz Tchier

Abstract We consider that nondeterministic programs behave as badly as they can
and loop forever whenever they have the possibility to do so. We deal with a relational
algebra model to define a nondeterministic refinement fuzzy ordering (nondeter-
ministic fuzzy inclusion) and also the associated fuzzy operations which are fuzzy
nondeterministic join (/ fuz), fuzzy nondeterministic meet (0 fuz), and fuzzy nonde-
terministic composition (� fuz). We also give some properties of these operations and
illustrate them with simple examples.

1 Fuzzy Relations

Fuzzy relations are fuzzy subsets ofA×B, that is, mapping fromA→ B. They have
been studied by a number of authors, in particular by Zadeh [12, 13], Kaufmann [6],
and Rosenfeld [10]. Applications of fuzzy relations are widespread and important.

Definition 1 LetA,B ∈ U be universal sets, a fuzzy relation R̃ onA×B is defined
by:
R̃ = {((x, y),μR̃(x, y) | (x, y) ∈ A× B,μR̃(x, y) ∈ [0, 1]}.
Let R̃ and S̃ be two fuzzy relations on A×B. Then, the following operations are

defined:

• Union: μR̃∪S̃(x, y) = μR̃(x, y) ∨ μS̃(x, y)
• Intersection: μR̃∩S̃(x, y) = μR̃(x, y) ∧ μS̃(x, y)
• Max-min composition:
R̃ ◦ S̃ = {[(x, z),∨y{μR̃(x, y) ∧ μS̃(y, z)}]}.
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Definition 2 Let R̃ be a fuzzy relation on A× A.Most of these notions are taken
from [6, 13]

• R̃ is reflexive iff μR̃(x, x) = 1 ∀x ∈ A
• R̃ is transitive iff μR̃(x, z) ≥ μR̃(x, y) ∧ μR̃(y, z), ∀x, y, z ∈ A
• R̃ is symmetric iff R̃(x, y) = R̃(y, x)
• R̃ is antisymmetric iff for x �= y either μR̃(x, y) �= μR̃(y, x) or μR̃(x, y) =
μR̃(y, x) = 0 , ∀x, y ∈ A

• R̃ is equivalence iff R̃ is reflexive, transitive, and symmetric
• R̃ is order iff R̃ is reflexive, transitive, and antisymmtric

The following properties have been proved to hold for fuzzy relations (see [7, 8]);

Theorem 1
Let R̃, S̃ and T̃ be fuzzy relations. Then:

(a) R̃(S̃T̃ ) = (R̃S̃)T̃
(b) R̃(S̃ ∪ T̃ ) = (R̃S̃) ∪ (R̃T̃ )
(c) R̃(S̃ ∩ T̃ ) ⊆ (R̃S̃) ∩ (R̃T̃ )
(d) S̃ ⊆ T̃ 1⇒ R̃S̃ ⊆ R̃T̃
(e) S̃ ⊆ T̃ 1⇒ S̃R̃ ⊆ T̃ R̃
(f) R̃Ĩ = Ĩ R̃ = R̃ for all fuzzy relation R̃
(g) (R̃S̃) -= S̃ - R̃ -

(h) R̃ --= R̃
(i) (R̃ ∪ S̃) -= R̃ - ∪S̃ -
(j) (R̃ ∩ S̃) -= R̃ - ∩S̃ -
(k) R̃ ⊆ S̃ 1⇒ R̃ -⊆ S̃ -

2 A Nondeterministic Order Refinement

We will give the definition of our ordering.

Definition 3 A relationQ refines a relation R [9], denoted byQ 2 R, iff
RL ⊆ QL andQ∩RL ⊆ R, or equivalently, iffQ∪QL ⊆ R∪RL andQL ⊆

RL.

Theorem 2 The relation 2 is a partial order.
In the following, we will present nondeterministic operators and also some of

their properties. For more details see [4, 11]. To clarify the ideas, take two relations
Q and R:

• Their supremum is:Q / R = (Q ∪ R) ∩QL ∩ RL,
and satisfies (Q / R)L = QL ∩ RL. Then, Q / R is exactly the relational
expression of the nondeterministic union as defined by [1, 2] (which explains the
word nondeterministic of /-semilattice (BR ,2 )).
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• Their infimum, if it exists, isQ 0 R = (Q ∪QL) ∩ (R ∪ RL) ∩ (QL ∪ RL)

= Q ∩ R ∪Q ∩ RL ∪ R ∩QL,
and it satisfies (Q0R)L = QL∪RL. The operator 0 is called nondeterministic
intersection. ForQ0R to exist, we have to verifyL ⊆ ((Q ∪QL)∩(R ∪ RL))L.
This condition is equivalent toQL ∩ RL ⊆ (Q ∩ R)L, which can be interpreted
as follows: the existence condition simply means on the intersection of their
domains,Q and R have to agree for at least one value.

In what follows, we will give the definition of nondeterministic composition [1–3].

• The binary operator 3, called relative implication, is defined as follows:

Q 3 R def=QR.
• The nondeterministic composition of relationsQ and R is

Q �R = QR ∩Q 3 RL.
The nondeterministic operators 0,/, and � have the same properties as ∩,∪, and (;),
but the nondeterministic intersections have to be defined. Let us give some of them.

Theorem 3 Let P ,Q, and R be relations. Then,

(a) P 0 (Q / R) = (P 0Q) / (P 0 R)
(b) P / (Q 0 R) = (P /Q) 0 (P / R)
(c) R � I = I �R = R
(d) Q 2 R ⇒ P �Q 2 P �R

(e) P 2 Q⇒ P �R 2 Q �R

(f) P � (Q / R) = P �Q / P �R

(g) (P /Q) �R = P �R /Q �R

(h) P � (Q 0 R) 2 P �Q 0 P �R

(i) P � (Q �R) = (P �Q) �R

(j) (P 0Q) �R 2 P �R 0Q �R

(k) Q deterministic ⇒ Q �R = QR
(l) P deterministic ⇒ P � (Q 0 R) = PQ 0 PR

(m) R total ⇒ Q �R = QR
(n) PL ∩QL = Ø ⇒ (P ∪Q) �R = P �R ∪Q �R

(o) PL ∩QL = Ø ⇒ P 0Q = P ∪Q

3 A Nondeterministic Fuzzy Order Refinement

We will give the definition of domain of fuzzy relations R̃.

Definition 4 The domain of R̃ is supremum of value in first row of the ma-
trix, and the image of R̃ is supremum of value in first column of the matrix.
Formally, dom(R̃)d ef=supy∈B{((x, y),μR̃(x, y)) | ∀x ∈ A}, img(R̃)d ef=supx∈A
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{((x, y),μR̃(x, y)) | ∀y ∈ B}. • The vectors R̃L̃ and R̃ - L̃ are particular vectors
characterizing, respectively, the domain and codomain of R̃.

Now, we will give the definition of fuzzy ordering.

Definition 5 We say that a fuzzy relation Q̃ fuzzy refines a fuzzy relation R̃, de-
noted by Q̃ 2 fuz R̃, iff R̃L̃ ⊆ Q̃L̃ and Q̃ ∩ R̃L̃ ⊆ R̃, i.e, (∨y∈B{μR̃(x, y)} ≤
∨y∈B{μQ̃(x, y)}) and (μQ̃(x, y) ∧ (∨y∈B{μR̃(x, y)}) ≤ μR̃(x, y)).

In other words, Q̃ refines R̃, if and only if, the prerestriction of Q̃ to the domain
of R̃ is included in R̃. This means that Q̃must not produce results not allowed by R̃
for those states that are in the domain of R̃.

Theorem 4 The relation 2 is a partial order.
We will present fuzzy nondeterministic operators and also some of their properties.
To clarify the ideas, take two relations Q̃ and R̃:

• Their supremum is Q̃ / fuz R̃ = (Q̃ ∨ R̃) ∧ Q̃L̃ ∧ R̃L̃,
⇐⇒ μ(Q̃/ fuzR̃)(x, y) = min{max{μQ̃(x, y),μR̃(x, y)},
maxy(μQ̃(x, y)),maxy(μR̃(x, y))} and satisfies (Q̃ / fuz R̃)L̃ = Q̃L̃ ∩ R̃L̃.
Then, Q̃ / fuz R̃ is exactly the relational expression of the fuzzy nondeterministic
union.

• Their infimum, if it exists, is Q̃ 0 fuz R̃ = (Q̃∧R̃) ∨ (Q̃∧ 1 −R̃L̃) ∨ (R̃∧1−Q̃L̃)
⇐⇒ μ(Q̃0 fuzR̃)(x, y) = max{min{μQ̃(x, y),μR̃(x, y)},
min{μQ̃(x, y), 1 −maxy(μR̃(x, y))},min{μR̃(x, y),

1−maxy(μQ̃(x, y))}} and it satisfies (Q̃0 fuz R̃)L̃ = Q̃L̃ ∪ R̃L̃.The operator 0 fuz

is called fuzzy nondeterministic intersection. For Q̃ 0 fuz R̃ to exist, we have to

verify L̃ ⊆ (Q̃ ∪ ¯̃
QL̃ ∩ R̃ ∪ ¯̃

RL̃). This condition is equivalent to Q̃L̃ ∩ R̃L̃ ⊆
(Q̃ ∩ R̃)L̃, which can be interpreted as follows: the existence condition simply
means that on the intersection of their domains, Q̃ and R̃ have to agree for at least
one value.

In what follows, we will give the definition of the fuzzy nondeterministic
composition.

Definition 6 The fuzzy nondeterministic composition of relations Q̃ and R̃ is:

Q̃ � fuzR̃ = Q̃R̃ ∧ 1 − Q̃R̃L̃
⇐⇒

μ(Q̃ � fuzR̃)(x, y) =
min[maxy{min{μQ̃(x, y),μR̃(y, z)}}, 1−maxy{min{μQ̃(x, y), 1−maxy(μR̃(x, y))
}}].

The fuzzy nondeterministic operators 0 fuz,/ fuz, and � fuz, have the same proper-
ties as 0,/, and � , but the fuzzy nondeterministic intersections have to be defined.
Let us give some of them.
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Theorem 5 Let P̃ , Q̃ and R̃ be fuzzy relations. Then,

• P̃ 0 fuz (Q̃ / fuz R̃) = (P̃ 0 fuz Q̃) / fuz (P̃ 0 fuz R̃)
• P̃ / fuz (Q̃ 0 fuz R̃) = (P̃ / fuz Q̃) 0 fuz (P̃ / fuz R̃)
• R̃ � fuz Ĩ = Ĩ � fuzR̃ = R̃
• Q̃ 2 fuz R̃ ⇒ P̃ � fuzQ̃ 2 fuz P̃ � fuzR̃

• P̃ 2 fuz Q̃⇒ P̃ � fuzR̃ 2 fuz Q̃ � fuzR̃

• P̃ � fuz(Q̃ / fuz R̃) = P̃ � fuzQ̃ / fuz P̃ � fuzR̃

• (P̃ / fuz Q̃) � fuzR̃ = P̃ � fuzR̃ / fuz Q̃ � fuzR̃

• P̃ � fuz(Q̃ 0 fuz R̃) 2 fuz P̃ � fuzQ̃ 0 fuz P̃ � fuzR̃

• P̃ � fuz(Q̃ � fuzR̃) = (P̃ � fuzQ̃) � fuzR̃

• (P̃ 0 fuz Q̃) � fuzR̃ 2 fuz P̃ � fuzR̃ 0 fuz Q̃ � fuzR̃

Proposition 1

• Q̃ deterministic ⇒ Q̃ � fuzR̃ = Q̃R̃
• P̃ deterministic ⇒ P̃ � fuz(Q̃ 0 fuz R̃) = P̃ Q̃ 0 fuz P̃ R̃

• R̃ total ⇒ Q̃ � fuzR̃ = Q̃R̃
• P̃ L̃ 0 fuz Q̃L̃ = Ø ⇒ (P̃ / fuz Q̃) � fuzR̃ = P̃ � fuzR̃ ∪ Q̃ � fuzR̃

• P̃ L̃ 0 fuz Q̃L̃ = Ø ⇒ P̃ 0 fuz Q̃ = P̃ ∪ Q̃
There are many properties achieved for relations, but not fulfilled for fuzzy relations.
For instance, if Q̃ and R̃ are fuzzy relations, then:

(a) Q̃ / fuz R̃ �= Q̃ 0 fuz R̃

(b) Q̃ 0 fuz R̃ �= Q̃ / fuz R̃

(c) (Q̃ 0 fuz R̃) / fuz R̃ �= Q̃ / fuz R̃

(d) Q̃ 2 fuz R̃ �⇒ R̃ �2 fuz Q̃

Example Let Q̃ =
⎛

⎝0.1 0

1 0.2

⎞

⎠, R̃ =
⎛

⎝0.2 0.3

0.4 0.8

⎞

⎠

• Q̃ / fuz R̃ =
⎛

⎝0.9 0.9

0.2 0.2

⎞

⎠ but Q̃ 0 fuz R̃ =
⎛

⎝0.8 0.7

0.2 0.6

⎞

⎠

• Q̃ 0 fuz R̃ =
⎛

⎝0.8 0.7

0.4 0.8

⎞

⎠ but Q̃ / fuz R̃ =
⎛

⎝0.8 0.8

0.4 0.4

⎞

⎠

• (Q̃ 0 fuz R̃) / fuz R̃ =
⎛

⎝0.3 0.3

0.4 0.2

⎞

⎠ but Q̃ / fuz R̃ =
⎛

⎝0.1 0.1

0.4 0.2

⎞

⎠
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• Let Q̃ =
⎛

⎝0.1 0

1 0.2

⎞

⎠ , R̃ =
⎛

⎝0.1 0.1

0.4 0.4

⎞

⎠ then Q̃ 2 fuz R̃ but R̃ �2 fuz Q̃

because

Q̃L̃ =
⎛

⎝ 1

0.8

⎞

⎠ �⊆
⎛

⎝0.9

0.6

⎞

⎠ = R̃L̃.

References

1. Berghammer, R.: Relational Specification of Data Types and Programs. Technical report 9109,
Fakultät für Informatik, Universität der Bundeswehr München, Germany, Sept. (1991)

2. Berghammer, R., Schmidt, G.: Relational specifications. In: Rauszer, C. (ed.) Proc. XXXVIII
Stefan Banach Seminar on Algebraic Methods in Logic and Their Computer Science Appli-
cations, Vol. 28, pp. 167–190. Banach Center Publications, Institute of Mathematics, Polish
Academy of Sciences, Warsaw (1993)

3. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and nondetermin-
istic programs. Theor. Comput. Sci. 43, 123–147 (1986)

4. Desharnais, J., Tchier, F.: Demonic relational semantics of sequential programs. Rapport de
recherche DIUL-RR-9406, Departement d’Informatique, Universite Laval, Quebec, Canada,
decembre (1995)

5. Desharnais, J., Belkhiter, N., Ben Mohamed Sghaier, S., Tchier, F., Jaoua, A., Mili, A.,
Zaguia, N.: Embedding a demonic semilattice in a relation algebra. Theor. Comput. Sci.
149(2):333–360 (1995)

6. Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets, Vol. 1. Elements of Basic Theory,
Masson, Paris (1973); Vol. 2. Applications to Linguistics, Logic and Semantics, Masson, Paris
(1975); Vol. 3. Applications to Classification and Pattern Recognition, Automata and Systems,
and Choice of Criteria, Masson, Paris (1975); also English translation of Vol. 1, Academic,
New York (1975)

7. Kaufmann, A.: Introduction à la Théorie des Sous-Ensembles Flous, Vol. IV. Masson, Paris
(1977)

8. Kawahara,Y., Furusawa, H.: An algebraic formatisation of fuzzy relations. Presented at Second
International Seminar on Relational Methods in Computer Science, Rio, Brazil, July (1995)

9. Mili, A., Desharnais, J., Mili, F.: Relational heuristics for the design of deterministic programs.
Acta Inf. 24(3), 239–276 (1987)

10. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L. A., Fu, K. S., Shimura, M. (eds.) Fuzzy Sets and
Their Applications, pp. 77–95. Academic Press, New York, NY, USA (1975)

11. Tchier, F.: Sémantiques relationnelles démoniaques et vérification de boucles non détermin-
istes. Theses of doctorat, Département de Mathématiques et de statistique, Université Laval,
Canada (1996)

12. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
13. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–206 (1971)



The Ideal Free Distribution and Evolutionary
Stability in Habitat Selection Games
with Linear Fitness and Allee Effect

Ross Cressman and Tan Tran

Abstract Fretwell and Lucas [3] introduced the Ideal Free Distribution (IFD) to
predict how birds establish themselves among habitats. It has been shown that the
IFD is an evolutionarily stable strategy (ESS) of the habitat selection game when
fitness is a decreasing function of patch density. We develop a formula for the IFD
when there are an arbitrary number of habitats, and fitness functions are linearly
decreasing in the population size (i.e., density) in each habitat. We also explore
the IFD when fitness functions increase with population size until some maximum
threshold is reached (Allee Effect) and examine whether an IFD still is an ESS in
this case.

1 Habitat Selection Games with Linear Fitness

Fretwell and Lucas [3] initially consider habitats with decreasing suitability (i.e.,
fitness) as the density in a given habitat increases. They prove that, for a fixed total
population size, a unique Ideal Free Distribution (IFD) exists but do not provide
a formula for the IFD. In this section, we develop a formula when the suitability
functions are linear and decreasing. Suppose fitness fi in the ith habitat is given by

fi(xi) = bi − aixi . (1)

The notation in this equation is:

• bi is the basic suitability for the ith habitat
• ai is the factor for linear decrease for the ith habitat
• xi is the density for the ith habitat (cannot be negative)
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Let N denote the total population density. Then, when there are H habitats in total,
N = x1 + x2 + x3 + ...+ xH and pi = xi

N
is the proportion of the population in the

ith habitat.

Definition 1 (Ideal Free Distribution) When total density is fixed atN , the IFD is a
distribution for which the fitness in all occupied patches is the same and at least as
high as the fitness in any unoccupied patch. That is, the IFD satisfies

fi(xi) = fj (xj ) if xi , xj > 0 and

fi(xi) ≥ fj (xj ) if xi > 0 and xj = 0.

This definition is equivalent to defining the IFD as a Nash equilibrium (NE) of the
H -strategy habitat selection game. This is a game between an individual and the
population average strategy [1, 7]. In fact, it has been shown that the IFD is unique
for fixed population density N [3] and that the IFD is also an ESS [2] when fitness
is a decreasing function of density in each habitat.

When fitness is linearly decreasing as in (1), the habitat selection game is
represented by the H ×H payoff matrix A given by

A =

⎡

⎢⎢⎢⎢⎢
⎣

b1 −Na1 b1 b1 ... b1

b2 b1 −Na2 b2 ... b2

... ... ... ... ...

bH bH bH ... bH −NaH

⎤

⎥⎥⎥⎥⎥
⎦
. (2)

That is, with ei the unit vector whose ith component is 1 and all others are 0,

ei · Ap = bi(p1 + ...+ pN ) −Naipi = bi − aixi = fi(xi). (3)

This matrix notation for fitness proves useful in the remainder of the section.

Example 1 (Two Habitats) Let f1(x1) = 2−3x1 and f2(x2) = 1−2x2 be the fitness
functions in the two habitats. Their graphs are given in Fig. 1a. Here we follow
Fretwell and Lucas [3] in that the basic suitability in habitat 1 is larger than that of
habitat 2 (i.e., b1 > b2). Since patch 1 is the better habitat (i.e., b1 > b2) at low
densities, all individuals will go to patch 1 until total population size reaches some
threshold level. To find this thresholdN∗, we solve when the fitness in patch 1 equals
that in an unoccupied patch 2 (i.e., e1 · Ap = e2 · Ap where p = (p∗

1 ,p∗
2) = (1, 0)).

Since A =
[

2 − 3N 2

1 1 − 2N

]

in (2), we find that

[1 0 ]

⎡

⎣2 − 3N 2

1 1 − 2N

⎤

⎦

⎡

⎣ 1

0

⎤

⎦ = [0 1]

⎡

⎣2 − 3N 2

1 1 − 2N

⎤

⎦

⎡

⎣ 1

0

⎤

⎦⇔ N = 1

3
.

Therefore, above the threshold N∗ = 1
3 , the species occupy both patch 1 and patch 2

in order to equalize fitness in both habitats. For N > N∗, from e1 · Ap∗ = e2 · Ap∗
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and p∗
2 = 1 − p∗

1 , we find that p∗
1 = 1+2N

5N and p∗
2 = 3N−1

5N . That is, the IFD (p∗
1 ,p∗

2)
is given as follows in terms of N :

p∗
1 =

⎧
⎪⎪⎨

⎪⎪⎩

1, N ≤ 1

3
1 + 2N

5N
, N >

1

3

and p∗
2 =

⎧
⎪⎪⎨

⎪⎪⎩

0, N ≤ 1

3
3N − 1

5N
, N >

1

3

(4)

These are plotted in Fig. 1b. In this example, it is interesting to note that as N
increases (specifically forN > 2), more of the population is in patch 2 than in patch
1 (i.e., p∗

2 > p
∗
1) even though patch 1 is better than patch 2 at low densities.

Note that in this example and throughout the article, fractional values appear for
N and pi . An integer number of individuals arise in each patch if population sizes
are measured in large units (e.g., in thousands).

The method in Example 1 can be generalized to H ≥ 2 habitats and arbitrary
b1 > b2 > b3 > . . . > bH . Using (2) and solving e1 ·Ap = e2 ·Ap = . . . = eM ·Ap
forN withp = (p∗

1 ,p∗
2 , . . .,p∗

M−1, 0, . . ., 0) andM = 2, 3, . . .,H yields the threshold
N∗
M given in (5) for the species to begin to occupy habitatM .

N∗
M =

M∑

i=1

(bi − bM )

ai
(5)

Moreover, for N∗
M < N < N

∗
M+1, the IFD is (p∗

1 ,p∗
2 ,p∗

3 , ...,p∗
H ) where

p∗
k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
ak

·
[
M∑

i=1

1
ai

(bk−bi )
]

·
[
M∏

j=1
aj

]

+ N
ak

M∏

j=1
aj

N

[
M∑

i=1
(
M∏

j=1

aj
ai

)

] , 1 ≤ k ≤ M

0, k > M.

(6)

Note that, if we define N∗
1 = 0 and N∗

H+1 = ∞, then (6) is the IFD for any fixed
population size N > 0. Also, in Example 1, N∗

2 = b1−b2
a1

= 1
3 and (6) simplifies

to (4). From (6), it is also clear what happens when population size becomes large.
Eventually, all habitats are occupied and the proportion in the kth habitat approach
p∗∞
k = 1/ (ak

∑H
i=1

1
ai

). Since ak measures the density (or logistic) effect in habitat k,
we see that the proportion of the population in habitat k decreases as this density effect
becomes more pronounced. In particular, there will eventually be more individuals
in the patch with the smaller ai as in Example 1 where a2 < a1 (See Fig. 1b).

2 Allee Effect—Two Habitat System

Fretwell and Lucas [3] also briefly considered what happens when there are two
patches and an Allee Effect (i.e., when patch fitness increases to some threshold
K for lower patch density before it decreases as patch density gets higher). In this
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a b

Fig. 1 Example 1. Panel (a) plots the suitability functions. Panel (b) is the Ideal Free Distribution
as a function of N

section, we examine this question when patch fitness is a piecewise linear function, a
continuous function that increases to some maximum value and decreases thereafter.

The general piecewise linear two-habitat model with Allee Effect has fitness
functions of the form

f1(x1) =
⎧
⎨

⎩
m11x1 + b1 0 ≤ x1 ≤ K1−b1

m11

K1 +m12(K1−b1−x1m11
m11

) x1 ≥ K1−b1
m11

f2(x2) =
⎧
⎨

⎩
m21x2 + b2 0 ≤ x2 ≤ K2−b2

m21

K2 +m22(K2−b2−x2m21
m21

) x2 ≥ K2−b2
m21

,

where the threshold Ki > bi in each patch and b1 > b2 so that patch 1 is still the
better patch at low density (See Fig. 2a). As stated in Sect. 1, a NE of this two-patch
habitat selection game at fixed total population sizeN is given by Definition 1. These
can occur when both patches are occupied (i.e., f1(x1) = f2(x2) where x1 +x2 = N )
or where the species is all in one patch (i.e., either f1(N ) ≥ f2(0) or f2(N ) ≥ f1(0)).
These criteria are applied to the following example.

Example 2 Letting b1 = 2, b2 = 1,K1 = 5,K2 = 5,m11 = 1,m12 = 1,m22 = 2,
m21 = 2 yields the fitness functions

f1(x1) =
⎧
⎨

⎩
x1 + 2 0 ≤ x1 ≤ 3

8 − x1 x1 ≥ 3
and f2(x2) =

⎧
⎨

⎩
2x2 + 1 0 ≤ x2 ≤ 2

9 − 2x2 x2 ≥ 2
.

A tedious calculation produces the following NE shown in Fig. 2b.
If 0 ≤ N ≤ 7, then p∗ = (1, 0) is a NE. If 1

2 ≤ N ≤ 7
2 , then p∗ = (0, 1) is a NE.
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a b c

Fig. 2 Suitability functions (a), Nash Equilibrium (b) and fieldplot for the replicator equation (c)
for Example 2 and total population size between 0 and 10

If 7
2 ≤ N ≤ 7, then p∗ = ( 2N−7

N
, 7−N
N

) is a NE. If N ≥ 1
2 , then p∗ = ( 2N−1

3N , N+1
3N ) is

a NE.
Similar to Sect. 1, only the better patch is occupied at low population size

(0 ≤ N < 1
2 ) and there is a unique NE with both patches occupied when this

size is large enough (N > 7). These properties remain true for all two habitat models
with or without the Allee Effect. However, at intermediate population sizes, models
with the Allee Effect display two new phenomena. First, a NE can occur where only
the worse patch is occupied ( 1

2 ≤ N ≤ 7
2 ) and the NE is not always unique for a

fixed population size ( 1
2 ≤ N ≤ 7). In this example, there are up to three NE at a

fixed N .
Whenever an evolutionary game has multiple NE, the question of their stabilities

arises. Typically, only those that are either an ESS or dynamically stable under
an evolutionary game dynamics are considered to be selected as the evolutionary
outcome [9]. Since the habitat selection game at fixed N of this section is a two-
strategy population game, a strategy p∗ is an ESS if and only if it is dynamically
stable under the replicator equation [4] given by the (one-dimensional) differential
Eq. (7) where 0 ≤ p1 ≤ 1.

ṗ1 = p1(1 − p1)(f1(Np1) − f2(Np2)) (7)

Figure 2c shows the fieldplot (i.e., the direction of the vector field) of (7) at each fixed
N for Example 2. For 1

2 ≤ N ≤ 7, there are exactly two ESS’s given by the top curve
p∗ = (1, 0) and the piecewise-defined bottom curve in Fig. 2b, c. Otherwise, there
is a unique ESS with all individuals in the better patch (p∗ = (1, 0) for 0 < N < 1

2 )
or both patches are occupied with p∗ = ( 2N−1

3N , N+1
3N ) for N > 7. In fact, it has been

shown [5] that up to three ESSs can coexist in a two-patch model with Allee Effect
if parameters are chosen properly (e.g., b1 = −0.375, b2 = −1.05,K1 = 259

136 ,K2 =
129
80 ,m11 = 0.25,m12 = 7

40 ,m21 = 0.3,m22 = 0.1).
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3 Discussion

It is well-known [3] that the IFD p∗ = (p∗
1 , . . .,p∗

H ) is unique when population
density N is fixed and fitness is a decreasing function of density in each patch.
However, an explicit formula for p∗ in terms of N has only been given for two-
habitat models (i.e., H = 2) and fitness functions that correspond to logistic density
dependence in that they are linearly decreasing [6]. Section 1 extends this result to
an arbitrary number of habitats with linear fitness by providing the threshold density
(5) at which each patch begins to be occupied and describing how the population
is distributed (6) among the occupied patches at a given N . These equations show
explicitly how basic suitabilities (i.e., the fitness of an unoccupied patch) and differing
patch carrying capacities affect the IFD.

According to the original definition of Fretwell and Lucas [3] (see Definition 1
in Sect. 1), an IFD corresponds to a NE of the habitat selection game [2]. As shown
in Sect. 2 where fitness is piecewise linear, several such IFD can already emerge at
the same population density in two-habitat models. In fact, the patch that is better at
low density may be completely unoccupied at such an IFD. On the other hand, it has
also been recognized [3, 8] that these NE may be unstable since, if one individual
shifts to the other patch when the population is at one of the NE distributions, more
will follow since their fitness will increase by doing so.

A similar phenomenon in two-species habitat selection models led Krivan et al.
[6] to define an IFD to be a distribution that is stable under an evolutionary dynamics
that models the consequences of these perturbations from NE. Applied to our two-
habitat single species, this amounts to selecting IFD’s as the NEs that are stable
under the replicator Eq. (7) (see also [5]). These also correspond to the ESSs of the
habitat selection game (Sect. 2). A different approach to the stability issue was taken
by Fretwell and Lucas [3] and Morris [8]. They start at low density and allow this
to increase by introducing one new individual at a time. The stable distribution is
then determined by finding which patch this new individual would choose to occupy
and what cascading effect (if any) this has on choices of individuals currently in
the population. This method provides some of the dynamically stable NE, but not
necessarily all of them. For example, Morris ([8]; Fig. 2) finds a unique stable NE
for each population density whereas another ESS emerges by starting the population
in the patch that is worse at low density. Extensions to more than two patches that
include Allee Effects add further complications to defining and determining the IFDs
that are beyond the scope of this chapter.
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An Input–Output Analysis Approach in Waste
of Electrical and Electronic Equipments

Ziya Ulukan, Emre Demircioglu and Mujde Erol Genevois

Abstract The disposal of waste of electrical and electronic equipments (WEEE)
represents the loss of large amounts of valuable resources, in particular metals and
plastics. If these were to be recycled, it would not only divert the waste from dis-
posal by limiting waste flows damage but would also reduce the need to use virgin
raw materials. In this study, we focus on waste management and we concentrate on
the recycling of mobile phones. Mobile phone components and their requirements
in production phases such as energy, labor, and know-how are depicted in a matrix
form inspired from the seminal work of Leontief and input–output (I–O) method-
ology which appears to be appropriate for analyzing waste management problem is
presented. Thus, we propose numerically static I–O solutions in order to demonstrate
the contribution of recycling of mobile phones into the economy. Particularly, we
concentrate on the monetary IO table (MIOT) and environmental IO table (EIOT)
with recycling and balance equations. By defining waste outputs as a new vector
class, the classical I–O model has been improved.

1 Introduction

Input–output (I–O) analysis is a method of systematically quantifying the mutual
interrelationships among the various sectors of a complex economic system. In prac-
tical terms, the economic system to which it is applied may be as large as a nation
or even the entire world economy, or as small as the economy of a metropolitan area
or even a single enterprise [1].

I–O models have some major extensions in literature as a physical IO table (PIOT),
monetary IO table (MIOT), waste IO table (WIOT) and environmental IO table
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(EIOT). The first one provides a framework in which all physical flows associated
with an economy can be recorded, while the second gives an insight into the value
of economic transactions between different sectors. The third represents the interde-
pendence between the flow of goods and the flow of wastes and the last emphasizes a
suitable tool for estimating the short-term response of emissions and resource usage
to changes in production induced by economic growth [2].

2 Methodology

This work is conducted by MIOT. It can be seen that both for metals in a mobile
phone and for labor force required in manufacturing process, the general terms must
be monetary.

Our model is based on the equations of the static multisector I–O model [1]. Its
basic notation and fundamental relationships are given by:

Xi =
n∑

j=1

(mij) + Yi , f or i = 1, 2, ..., n (1)

where Xi denotes the total output of sector i, mij represents the flow of input from
sector i to sector j , and Yi shows the final demand for sector i’s production. Equa-
tion (1) guarantees that the total output of any sector are consumed by either itself
or other sectors and also used up by the demand in that economic system.

By determination a technical coefficient as aij = mij/Xj , Eq. (1) can be modified
and rewritten as follows:

Xi −
n∑

j=1

(aij) = Yi , f or i = 1, 2, ..., n (2)

The last equation can be transformed in a matrix form as below:

(I − A).X = Y (3)

and so,

X = (I − A)−1.Y (4)

where A is the technical coefficient matrix with coefficients aij that identifies the
percentage of the total inputs of a sector required to be purchased from another
sector and I is the identity matrix of size n. (I −A)−1 is a square matrix commonly
designated as Leontief inverse, if it exists.

The main difference of the modified version is that the inputs of a manufacturing
process do not necessarily have to be equal to the outputs. Namely, some outputs are
defined as waste, assuming that there is no way to reuse them. The second difference
is that as we focus on a manufacturing process, the structure of the I–O analysis needs
to be modified and the factors in a matrix must be expressed in monetary units [3].
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Table 1 Monetary input –output table of a manufacturing process

Outputs

S∗
1 S∗

2 ... S∗
j ... S∗

n Y1 Y2 ... Yj ... Ym

Inputs S1 c11 c12 ... c1j ... c1n w11 w12 ... w1j ... w1m

S2 c21 c22 ... c2j ... c2n w21 w22 ... w2j ... w2m

... ... ... ... ... ... ... ... ... ... ... ... ...

Si ci1 ci2 ... cij ... cin wi1 wi2 ... wij ... wim

... ... ... ... ... ... ... ... ... ... ... ... ...

Sn cn1 cn2 ... cnj ... cnn wn1 wn2 ... wnj ... wnm

Within a manufacturing process based on the mass conservation, there are n
inputs, denoted by S1 through Sn and n+m outputs denoted by S∗

1 through S∗
n with

Y1 through Ym. Among the outputs, S∗ are the original substance form obtained by
a process, while Yn are the new substances referred as a waste. This transaction can
be depicted as shown in Table 1 where cij (arise from cost) signifies the amount of
money of the substance Si that is used for substance S∗

j , while wij (arise from waste
cost) signifies the amount of money of waste Yj that is transformed from substance
Si after the manufacturing process.

Assuming that there is a linear relationship between inputs and outputs, the
following equation can be formulated:

Xi =
n∑

j=1

(cij) +
m∑

j=1

(wij), f or i = 1, 2, ..., n (5)

where xi stands for an amount of money of the substance i. aij and bij can be stated
as original outputs and waste outputs, respectively, that are indicated below:

aij = cij

xj
and bij = wij

yj
f or j = 1, 2, ...,m (6)

where yj stands for an amount of money of waste j . Note that both xj and yj are
computed as a total amount of money for substance j (S1 through Sn) and waste j
(Y1 through Yn), respectively.

Using the relationships from the last two equations, following equation system
can be hold:

Xi =
n∑

j=1

(aij.xj ) +
m∑

j=1

(bij.yj ), f or i = 1, 2, ..., n (7)

which can be reformulated in matrix form:

X = A.X + B.Y (8)

Hence,

(I − A).X = B.Y (9)
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where X = [x1 x2 ... xn]T , Y = [y1 y2 ... ym]T ,
A and B are technical coefficient matrices that characterize material flow in the

process. For instance, a11 indicates the ratio of the substance S1 which is used for
the same substance as an output S∗

1 and if this coefficient is less than 1, this means
that any waste as an output will be created. Note that for every i and j , the technical
coefficients have to be nonnegative and less than or equal to 1. Since A is a square
matrix and assuming that (I − A) is invertible, the inputs X can be calculated in
terms of money as long as the waste outputs Y are known a priori, as below:

X = (I − A)−1.B.Y (10)

An input can remain unchanged in its amount during the process. In other words, in
case any substance is entirely consumed, no waste will be generated. Hence, if this
situation occurs, then I − A will become singular where its inverse does not exist.
For such a case, unchanged input can be removed from I–O table so that invertibility
is guaranteed and Eq. (10) can be computed. Moreover, Eq. (10) can be modified as
follows:

Y = B−1(I − A).X (11)

It should be denoted that matrix B has to be square and invertible in Eq. (11).
Condition that square matrix B will become singular commonly occurs by adding
an output column that no waste is generated. Then, we apply a new formula as:

Ȳ = (BT B)−1.BT .(I − A).X (12)

if BT B is non-singular [3].

3 Case Study for a Mobile Phone’s Manufacturing Process

We can now implement our methodology based on an I–O analysis in order to
demonstrate numerically the impact of recycling of a typical mobile phone during
its manufacturing process with respect to MIOT.

For simplicity, components of a typical mobile phone are basically divided into
four groups: valuable metals, other metal components, plastics, paint. We also take
into consideration other requirements such as energy, water, tools, and labor.

where x1 through x8 represent the unit cost of valuable metals, other metal com-
ponents, plastics, paint, energy, water, tools, and labor and y1 through y8 represent
scrap, fuel, waste chemicals, waste paint, CO2, waste H2O, steam, and loss of
energy/labor for a typical mobile phone manufacturing process.

Based on a data acquired from a mobile phone firm, Table 2 depicts the inputs
and outputs from a manufacturing system of a mobile phone. The values are in terms
of money for a typical mobile phone that costs totally 100 monetary units.
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Using the data in Table 2 owing to Eq. (6), the coefficients matrices A and B
respectively are obtained as:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.81 0 0 0 0 0 0 0

0 0.91 0 0 0 0 0 0

0 0 0.76 0 0 0 0 0

0 0 0 0.12 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.36 0 0.35 0 0 0 0 0

0.18 0 0.32 0 0 0 0 0

0 1 0.29 0 0.23 0 0 0

0 0 0 1 0 0 0 0

0 0 0.03 0 0.77 0 0 0.21

0 0 0 0 0 1 1 0

0.46 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.79

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Thus, the relation between X (inputs–outputs) and Y (outputs) is given by Eq. (10)
as :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.87 0 1.83 0 0 0 0 0

1.93 0 3.45 0 0 0 0 0

0 4.15 1.2 0 0.95 0 0 0

0 0 0 1.13 0 0 0 0

0 0 0.03 0 0.77 0 0 0.21

0 0 0 0 0 1 1 0

0.46 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.79

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

y1

y2

y3

y4

y5

y6

y7

y8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(13)

Considering Eq. (13), the relationships between any output(s) and total input can be
revealed. For instance, if it is desirable to reduce CO2 emissions, the relationship
between corresponding inputs can be modified (Table 3).
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4 Conclusion

The scope of this chapter and the aim of proposed model were to apply I–O anal-
ysis in waste management. This model is referred as monetary environmental I–O
model for a manufacturing process and it is the first study for conducting a recycling
assessment of mobile phones focusing on its manufacturing process, so there is no
chance to compare with any solutions in the literature. In other words, integrating
the manufacturing process, the monetary I–O analysis and the recycling of a mobile
phone are original parts of this work. As a future work, we attempt to analyze the
life cycle of a mobile phone by using the dynamic Leontief model.
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A Free Boundary Approach to Solve the
Equilibrium Equations of a Membrane

Giuseppe Viglialoro, Álvaro González and Juan Murcia

Abstract This chapter deals with a mathematical problem related to the equilibrium
analysis of a membrane with rigid and cable boundary. The membrane and its bound-
ary are respectively identified with a regular surface and a set of regular curves. The
equilibrium is directly expressed by means of an elliptic problem, in terms of the
shape of the membrane and its stress tensor; therefore, a free boundary numerical
resolution procedure is presented and applied in a particular case.

1 Introduction

This work studies the bi-dimensional and continuous equilibrium of a membrane for
the prestressing phase; more exactly, a new membrane technology for footbridges is
being developed in Spain and a membrane footbridge prototype has been built (see
Fig. 1a). The prestressing is introduced and obtained by means of the membrane’s
boundaries, that are one-dimensional elements defined by spatial curves; herein both
rigid and cable boundaries will be considered.
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In particular, the equilibrium is directly defined by partial differential equations
in terms of the shape and the stresses of the membrane, respectively, identified with
a negative Gaussian curvature surface and a positive second-order tensor; therefore,
we will discuss the following problem: once the stress tensor is given find the shape
of the membrane that balances these same stresses.

Along with the equilibrium equations, the boundary conditions must be defined;
these conditions depend on the used boundary elements. Contrary to the rigid bound-
aries (see [5]), the shapes of the membrane and its corresponding cable are linked by
an unusual relation (see, for instance, [4] and [3]); as a consequence, a not common
boundary problem is obtained and a free boundary approach (see [1]) is proposed to
solve the general equilibrium equations.

2 Equilibrium Equations of a Membrane

Let us identify the membrane with a surface S with a negative Gaussian curvature;
S is the graph of a regular function z = z(x, y), defined in a domain D ⊂ R

2. If
σ := Nαβ = Nαβ(x, y), with α, β = x or y, represents the projected stress tensor of
the membrane, the membrane equilibrium equations in terms of Nαβ , neglecting its
weight and considering no external load, are expressed by (see Fig. 1b and [4] for
the details)1:

⎧
⎪⎪⎨

⎪⎪⎩

Nxx,x +Nxy,y = 0 in D, (1a)

Nxy,x +Nyy,y = 0 in D, (1b)

Nxxz,xx + 2Nxyz,xy +Nyyz,yy = 0 in D. (1c)

In this way, once in system (1) a positive tensor σ is fixed the unknown function z
has to solve an elliptic equation; this is the problem we want to analyze.

3 Boundary Equilibrium Equations

Once the membrane equilibrium equations are given (system (1)), the problem has
to be completed by defining the corresponding boundary conditions on Γ = ∂D,
and in particular on Γ r and Γ c (see Fig. 1c and d).

1 If f (x, y) is a function, we will write f,x = ∂f

∂x
, f,y = ∂f

∂y
, f,xx = ∂2f

∂x2
and so on.
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Fig. 1 Main characterizations of a membrane footbridge. We remark that even if the boundary on
the model of c is totally composed by cable elements (obtained by using guitar strings), in d we
suppose, without loss of generality, that only the portion corresponding to the curved black lines of
the same c are associated to a cable boundary; it simplifies the formulation of the problem and makes
easier the computation of the example in Sect. 5. a Picture of a real membrane footbridge built in
Spain; see [2] for some interesting technological aspects. b Equilibrium equations of a membrane:
differential element of a membrane. Ñαβ and Nαβ represent the natural and the projected stresses
of the membrane, respectively. c A model of a membrane footbridge. The black line represents
the projection of the boundary of the membrane, and define the domain of the general equilibrium
problem (see d). d Typical projected domain for a footbridge. Γ r is the (projected) rigid boundary
and Γ c the (projected) cable boundary; we suppose that Γ c is parameterized by the functions
y = −y(x) and y = y(x). Of course ∂D = Γ = Γ r ∪ Γ c

3.1 The Rigid Boundary: Equilibrium Equations

Let us consider the equilibrium on Γ r; as Γ r has bending stiffness, it can assume
any shape and moreover, its shape depends neither on the membrane’s stresses σ

nor on its shape z. In this case, the corresponding boundary equilibrium returns the
usual Dirichlet condition z = g on Γ r, g being the value of z on the same Γ r, that
represents the vertical elevation of the rigid boundary of the membrane.



476 G. Viglialoro et al.

3.2 The Cable Boundary: Equilibrium Equations

Let us consider the equilibrium on Γ c; contrary to the rigid boundary, a cable has
no bending stiffness because it works only by means of tensions. Therefore, its
shape (necessarily convex) depends on both the membrane’s stresses σ and its shape
z; more exactly, the boundary equilibrium leads to the following cable-membrane
compatibility equation: z,xx+2z,xyy

′ + z,yyy
′2 = 0 on Γ c, y(x) being as in Fig. 1d.

4 Definition and Properties of the Mathematical Problem

4.1 Mathematical Problem: the Equilibrium Equations

Let Nαβ be a positive and symmetric second-order tensor such that both (1a) and
(1b) are verified. Find the surface z, such that

⎧
⎪⎪⎨

⎪⎪⎩

z,xxNxx + 2z,xyNxy + z,yyNyy = div (σ · ∇z) = 0 in D,

z = g on Γ r,

z,xx + 2z,xyy
′ + z,yyy

′2 = 0 on Γ c,

(2)

where g is a given function on Γ r and y(x), depending on σ , is the function
representing Γ c; moreover, Γ r ∪ Γ c is the boundary of D (see Fig. 1d).

As shown in [4], one can prove the uniqueness of the solution of system (2); on
the other hand, the corresponding existence problem is still an open question.

4.2 Mathematical Problem: A Free Boundary Approach

It can be checked in [3] that problem (2) is equivalent to find z and h, such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

div (σ · ∇z) = 0 in D, (3a)

z = g on Γ r, (3b)

z = h on Γ c, (3c)

z,yy
′′ = h′′ on Γ c. (3d)

With the aim of solving (3), let us split it into the following problems:

A :

⎧
⎪⎪⎨

⎪⎪⎩

div (σ · ∇z) = 0 in D,

z = g on Γ r,

z = h on Γ c,

(4)
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Fig. 2 Some data used in the numerical example and the free boundary scheme. a Domain chosen
for the analysis of the numerical example (top). At the bottom, the mesh characterization ofD, used
to solve problem A); moreover, the step size of problem B is 0.1 (corresponding to 100 nodes). b
Scheme of the proposed free boundary algorithm; h0 is the only initial input we need to generate
the sequences hi and zi

B :

⎧
⎨

⎩
h′′ = z,yy

′′ on Γ c,

+ b. c.
(5)

We interpret the function h(x) = z(x, y(x)) as the free boundary of system (3).
In this way, we can consider the iterative method consisting of fixing a function
h0(x) and finding z0(x, y) solving (4); successively, z0(x, y) is used as a datum of
(5), whose output is another function h1(x), generally different to the previous one,
that represents the new input of (4). This recursive process, schematized in Fig. 2b,
generates two sequenceshi(x) and zi(x, y) whose limitsh(x) and z(x, y) make system
(3) compatible and determinate.

Remark 1 Of course, it is not possible to fix also the function h(x) in system (3); in
fact, in this case (3a–c) would represent a classical Dirichlet problem whose unique
solution z would not generally solve also (3d). Consequently the function h(x) has
to be an unknown too.

5 A Numerical Example

Let Nxx = 10 kN/m, Nxy = 0, Nyy = 4 kN/m, and g = 6 − 26
43 |x| + 72

43 |y| be
the fixed stress tensor and the vertical elevation of the rigid boundary, respectively.
As we justified previously, the domain D is represented at the top of Fig. 2a; Γ c is

composed by both the graphs of −y(x) and +y(x), with y(x) = 9
2 −
√

49
4 − 2

5x
2,
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Fig. 3 The free boundary approach: numerical results (all the lengths are expressed in meters). a
Case h0 convex; h0 = 1 + 3

34 (x2 + y2) on Γ c. Evolution of the vertical projection of hi and its
displacement d. b Case h0 straight; h0 = 4 on Γ c. Evolution of the vertical projection of hi and
its displacement d. c Case h0 concave; h0 = 7 − 3

34 (x2 + y2) on Γ c. Evolution of the vertical
projection of hi and its displacement d. d Numerical result of the final shape of the membrane

and Γ r is defined in the same figure. Therefore, we have to solve these two coupled
problems:

A :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

10z,xx + 4z,yy = 0 in D,

z = 0 on Γ r
1 ,

z = g on Γ r
2 ,

z = h on Γ c,

B :

⎧
⎨

⎩
h′′ = z,yy

′′,

h( ∓ a,∓b) = g( ∓ a,∓b).

More exactly, we will apply three times the scheme of Fig. 2b to solve both A and
B, analyzing the corresponding solution in terms of the choice of the initial data h0;
moreover, we will use a finite element method to obtain zi(x, y) (problem A) and a
finite difference method to compute hi(x, y) (problem B). The results summarized
in Fig. 3(a–c), show that the procedure is fast and unconditioned; for instance,
independently by the initial datum h0(x), the displacement d of hi , that model the
different shapes of the vertical projections of the cable, approaches to a fixed value
when i increases, and in particular at the forth step the final displacement is 0.42 m.
On the other hand, in Fig. 3d, we can appreciate the numerical solution of the shape
of the surface z representing the membrane.
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Approximations to Intractable Spatial
Econometric Models and Their Solutions
Through Global Optimization

Renata Wachowiak-Smolíková, Mark P. Wachowiak
and Jonathan Zimmerling

Abstract Parameter estimation (inverse) problems are ubiquitous in many fields,
including spatial econometrics. Global optimization can provide good parameter
estimates for many such problems for which traditional, analytic estimation meth-
ods fail, or that are otherwise intractable. Stochastic global methods inspired by
natural processes have recently gained popularity for difficult optimization prob-
lems characterized by imprecise measurements or local optima. In this chapter, one
such approach, particle swarm optimization (PSO), is used to estimate parameters
of the time series cross-sectional spatiotemporal autoregressive model, a particulary
difficult and computationally intensive problem arising in spatial econometrics. Pre-
liminary results are promising, and suggest that stochastic global approaches, and
global optimization in general, can successfully address some of these intractable
problems.

1 Introduction

Spatial econometrics focuses on how spatial relationships factor into economic mod-
els. Spatial factors are geographic and include Euclidean distance, cultural, and
political relationships. To be useful, spatial models must adequately fit observations.
Accurate parameter estimates not only aid in understanding the effects of spatial rela-
tionships but also enhance the model’s predictive power. For many models, optimal
parameter estimation can be performed by well-known, analytic methods. However,
for other very complex models, analytic solutions are not always available, and in
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some cases no known exact estimator exists. Despite this, there is a continued shift
toward increasing complexity in spatial econometric models [6].

In the absence of analytic solutions or tractable approximations, optimization
may provide acceptable parameter estimates. Global optimization methods have
achieved success in determining optimal (or at least very good) solutions to pre-
viously intractable problems. For problems characterized by noisy observations,
multiple local optima, high dimensionality or time-complexity, or for those whose
derivatives are unavailable or estimates inaccurate, nature-based stochastic tech-
niques, such as genetic algorithms and evolutionary algorithms have been gaining
popularity. In this chapter, another such method, particle swarm optimization (PSO),
was adapted to estimate parameters of a difficult spatial econometrics model. PSO is
relatively straightforward, with few parameters to tune [7]. In contrast to competitive
evolutionary methods, the paradigm for PSO is cooperation (e.g., birds flocking while
searching for food). PSO has been applied to many parameter estimation problems,
including those in econometrics [10]. Furthermore, PSO is inherently parallel, which
can increase efficiency for time-intensive problems [9]. Specifically, PSO is applied
to the time series cross-sectional spatiotemporal autoregressive model for which no
known analytic estimator exists [4]. PSO parameter estimation for this model was
previously investigated [11]. In the current chapter, the robustness of PSO in opti-
mizing a computationally intensive cost function involving linear algebra operations
is demonstrated with a practical example using imprecise, real data.

2 Time Series Cross-sectional Autoregressive Model

Many spatiotemporal autoregressive models exist (see [11] for a brief review) whose
parameters can be estimated with ordinary least squares (OLS), tractable maximum
likelihood estimators (MLEs), or the generalized method of moments (GMM). This
chapter is primarily concerned with the time series cross-sectional spatiotemporal
autoregressive model [5], expressed as:

yt = βXt + κWyt + φyt−1 + εt (1)

As spatial dependence modeling requires a representation of spatial arrangement,
relative spatial positions are represented by W, anN×N matrix (N is the number of
units), with wij = 1 when i and j are neighbors, and 0 otherwise. W is typically row-
standardized so that all rows sum to 1. X is a matrix of observations, ε are temporally
independent error terms, and β, κ , and φ are parameters to be estimated. The κ Wyt
term indicates that spatial lag is instantaneous, a condition known as simultaneity
bias, in which a variable x is dependent upon a variable y that is itself dependent
upon x. Common estimators such as OLS and GMM do not perform well in models
with simultaneity bias, and hence two MLE approximations were proposed: those of
Bhargava and Sargan (BS) and Nerlove and Balestra (NB) [5]. Their parameters are
very difficult to estimate, as the derivative of the likelihood function is practically
unattainable, and therefore numerical iterative methods are required. Very little work
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has been done to determine suitable methods for maximizing these likelihoods, as
the literature is focused on simpler models, and investigations to determine which
of these approximations is preferable, and under what conditions, have been scant
[11]. Building upon previous work by the authors on simulated data [11], PSO is
employed to estimate the parameters of maximum likelihood functions for these
approximations for a model involving real data.

Only a brief summary of the BS and NB approximations can be presented here
(see [5] for a full development). For a time series, assume N observations for each
time period t , t = 1, ..., T . Let X be the N × 1 column vector of observations. Now,
let B = IN − κWt and A = φB−1 − IN . Let Vb be an N ×N matrix, where

Vb = IN +A(IN − φ2(B′B)−1)−1A′ −Aφm−1B−(m−1) (2)

× (IN − φ2(B′ B)−1)−1φm−1B′−(m−1)A′ + φm−1B−(m−1)φm−1 B′−(m−1)

Let HV be the NT ×NT matrix defined as:

HV ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

V −I 0 . . . 0 0

−I 2I −I . . . 0 0

0 −I 2I · · · 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2I −I

0 0 0 . . . −I 2I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

where V is anN×N matrix, I ≡ IN , and 0 is anN×N matrix of zeros. The estimates
of the residuals are denoted by the column vector ε̂ (see [5] for full calculation details).
Further, letm ≥ 2 denote the number of time units the process has undergone before
observation began, and define VBS ≡ IN + Vb. Given these defintions, the BS
maximum likelihood approximation is:

ln L = − NT

2
ln (2πσ 2) + T

N∑

i=1

ln (1 − κwi) − 2 ln
[
1 − T + 2T (1 − κwi)

1 − κwi + φ

× (1 + ( φ

1 − κwi

)2m−1 + T φ2
)]− 1

2σ 2
Δε′H−1

VNB
Δε (3)

Now let the covariance matrix of ΔX be denoted as ΣΔX, and define VNB ≡ Vb +
σ−2V ar[X], where V ar[X] is an estimate of the variance of X. The NB maximum
likelihood approximation is:
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ln L = − NT

2
ln (2πσ 2) + T

N∑

i=1

ln (1 − κwi) − 1

2σ 2
Δε′H−1

VNB
Δε

− 1

2

N∑

i=1

ln

[
1 − T + 2T (1 − κwi)

(1 − κwi + φ)

(
1 +
( φ

1 − κwi

)2m−1)
(4)

+ T
βΣΔXβ(1 − κwi + φ)2

σ 2(1 − κwi)2

(
1 −
( φ

1 − κwi
)m)2

]

In both approximations, σ can be replaced by its first-order maximizing condition
σ̂ 2 = (NT )−1Δε̂′H−1

Vb
Δε̂ [5].

3 Methods

3.1 Particle Swarm Optimization

PSO is an iterative, stochastic global optimization method to determine x∗ =
arg minf (x)∀ x ∈ ΩD , where ΩD is the D-dimensional search space [7]. D-D
positions of N independent “particles” searchΩD for an optimum solution. In each
iteration, the positions of the particles are updated from search results. The best
position found by each particle xi is its “personal best,” xbesti . gbest represents the
globally best position in the entire population. Both values are updated during the
search. For each particle i = 1, ...,N , vi at time t + 1 is updated as:

vi(t + 1) = χ [vi(t) + C1r1(t)(xbesti (t) − xi(t)) + C2r2(t)(gbest (t) − xi(t))], (5)

C1 andC2 are local and global acceleration constants, respectively, whereC1+C2 ≈
4, r1, r2 ∼ U (0, 1) are stochastic factors to maintain population diversity, and χ is
a constriction factor to decrease the effect of particles’ previous velocities, and is
generally set to χ ≈ 0.729 [2]. The position of each particle xi is then updated
as xi(t + 1) = xi(t) + vi(t). Many application-specific PSO variations have been
proposed [3, 8]. Here, PSO is used to maximize the BS and NB MLEs (Eqs. 3, 4).

3.2 Model Based on Real Data

Pooled panel data (observations of multiple phenomena obtained over multiple time
periods) were obtained on per capita income and cigarette sales from N = 46 states
spanning 30 years (T = 29) (http://www.wiley.co.uk/baltagi) [1]. A three-parameter
model was constructed for cigarette sales in those states [1]: yi,t = xi,tβ + φyi,t−1 +
κWyi,t + εi,t , where xi,t is the per capita disposable income. W is an N ×N binary
contiguity matrix with columns wi , i = 1, ...,N . wi,j = 1 if states i and j share
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a border, or 0 otherwise, yielding a symmetric matrix that is invariant over the
time. Each row of W was normalized unit sum, allowing the search to be confined
to |κ̂| < 1. The yt are dependent upon the disposable income of the residents of
this state, the previous year’s value of y in that state, and the current value of y in
all other states with which it shares a border. For the experiment, yi,0 ∼ U(0, 4).
Additionally, “ground-truth” values were empirically calculated based on extensive
experimentation to yield the best fit of the data to the model: β = −1.8, φ = 0.8,
and κ = 0.5. It was also assumed that the spatial component occurs away from the
per capita income variable. The income of workers in one state will be linked to the
income of workers in others, but as these are exogenous variables, spatial effects
need not be considered. No data were recorded for Alaska, Hawaii, Colorado, or
North Carolina. Parameters are therefore estimated for a “real/simulated” hybrid, as
real-world economic panel data for Eq. 1 is challenging to produce; although, the
model is very useful [5], real data sets are not readily available.

PSO was run with 500 particles initially distributed randomly throughout the 3-D
search space. For each approximation, PSO ran for a 1000 iterations, or until the
average distance between the particles and the centroid was less than 0.001. The
programs for the experiments were written in MATLAB (The Mathworks, Natick,
MA). Coefficients of determination (R2 ∈ [0, 1]) were calculated by comparing the
ground truth data with those predicted by the model with the estimated parameters.
A trial was considered a “success” if R2 is close to 1, where R2 = 1 indicates that
the parameterized model perfectly fits the observed data.

4 Results

The success of the optimization is principally reflected in the R2 values, as the pa-
rameters are applied to “real” disposable incomes to predict “real” cigarette sales.
Although, the “ground-truth” parameter values are themselves empirical estimates
obtained to best fit the selected model, comparison of these values with those ob-
tained from the optimization also provide some indication of PSO performance. The
estimates β̂, κ̂ , and φ̂ from the PSO experiments on the real/simulated cigarette data
model are shown in Table 1. Although promising R2 values are obtained, there is a
significant bias in the estimation of β, as shown in Table 1. The BS approximation
generally outperformed the NB approximation, as was observed with previous ex-
periments on simulated data [11]. The better R2 for BS is likely due to NB relying
on the sample covariance matrix of X, which is prone to computation inaccuracies.
It is also assumed that X is a stationary process for each state. In reality, per capita
income will likely change over time.

The relatively high bias values, especially for β̂, can be attributed to the global
PSO algorithm becoming entrapped in a local minimum. However, as evidenced
by R2 > 0.7 for both approximations, the parameter estimates returned by PSO
were good, although (from the observed biases) not optimal. The complexity of
the cost function (Eqs. 3 and 4), the difficult landscape of the cost function, error



486 R. Wachowiak-Smolíková et al.

Table 1 Results for the Nerlove–Balestra (NB) and Bhargara–Sargan (BS) approximations

β̂ Bias β̂ κ̂ Bias κ̂ φ̂ Bias φ̂ R2

NB − 3.7031 − 1.9031 0.3002 − 0.1998 1.1196 0.3196 0.7205

BS − 2.4560 − 0.6516 0.1727 − 0.3273 1.3236 0.5262 0.9597

propagation through the lengthy f (x) computation, and the imperfect representation
of the demand data by the cross-sectional model all contributed to this nonoptimality
[11].

5 Conclusion

Experimental results confirm that PSO can be used to accurately estimate parameters
of complex spatial econometrics models with real data. Each experiment required
about 7 h on a 2.8 GHz Intel®Xeon®CPU. Efficiency can be greatly improved
by parallelization on multicore CPUs or graphics processors, as PSO is inherently
parallel (each particle i evaluates f (xi) simultaneously in each iteration) [9]. In
future work, in addition to parallelization, enhancements to PSO and combination
with deterministic local methods will reduce entrapment in local minima and will
better refine final estimates.

Global optimization approaches for parameter estimation of large, complex mod-
els, including the cross-sectional autoregressive model presented here, appear to be
very good options. For even simple spatial econometrics models, global optimization
should at least be considered, as local approaches fail, and because the good initial
guesses required for MLE and GMM application are often unavailable.

Acknowledgments The authors thank Mr. Devin Rotondo for his assistance. M.P.W. is supported
by the Natural Sciences and Engineering Research Council of Canada (NSERC 386586-2011).
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Application of Advanced Diagonalization
Methods to Quantum Spin Systems

Jie Yu Wang and Ralf Meyer

Abstract In this work, the Block Davidson and the residual minimization-direct
inversion in the iterative subspace (RMM-DIIS) algorithms are used to diagonalize
the Hamilton matrices arising from antiferromagnetic spin- 1

2 Heisenberg models.
The results show that both algorithms find reliably the lowest eigenvalues but the
computational costs are smaller for the RMM-DIIS method. In addition to this, the
authors show that the new Intel Xeon Phi coprocessor can be used efficiently for this
type of problems.

1 Introduction

Quantum spin models play an important role in theoretical condensed matter physics
and quantum information theory. A numerical technique that is frequently used to
study quantum spin systems is exact diagonalization. In this approach, numerical
methods are used to find the lowest eigenvalues and corresponding eigenvectors of
the Hamilton matrix that describes the quantum system. The computational problem
is thus to determine the lowest eigenpairs of an extremely large, sparse matrix. An
overview of the exact diagonalization technique is given in [12].

Although many sophisticated iterative techniques for the determination of a small
number of lowest eigenpairs can be found in the literature, most exact diagonalization
studies of quantum spin systems have employed the Lanczos algorithm. In contrast
to this, other methods have been applied very successfully to the similar quan-
tum mechanics problem of electronic structure calculations. The well-known VASP
code [4], for example, provides an implementation of the Block Davidson method
[3, 5, 7] as well as the residual minimization-direct inversion in the iterative subspace
algorithm (RMM-DIIS) [9, 10, 13].
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In this work, we study the efficiency of the Block Davidson and RMM-DIIS
method when applied to quantum spin models like the spin- 1

2 Heisenberg chain,
ladder, and dimerized ladder [1, 6, 8, 11]. Results are presented that allow a com-
parison of the algorithms based on the number of iterations to achieve convergence
and the required computational time. An important aspect of state-of-the-art scien-
tific calculations is the parallel performance on current high-performance computing
equipment. To this end we have tested our RMM-DIIS implementation on an Intel
Xeon Phi coprocessor and show the resulting parallel speedups.

2 Computational Methods

The Davidson method was introduced by E. R. Davidson as a method for the solu-
tion of large eigenvalue problems in quantum chemistry [3]. Subsequently, it was
improved by Liu [5] and Murray et al. [7]. In this work we use the generalized
(block) formulation by Crouzeix et al. [2]. Each iteration of the method consists of
a Rayleigh–Ritz step followed by the application of a preconditioner and a modi-
fied Gram–Schmidt orthogonalization procedure. We follow the original Davidson
method and use a simple diagonal preconditioner of the form Ck,i = (λk,iI −D)−1

where λk,i is the approximation of the ith eigenvalue at the kth step and D is the
diagonal part of the matrix A whose lowest eigenvalues are sought.

The RMM-DIIS method was originally proposed by Pulay [9]. Wood and Zunger
were the first to apply the method to the eigenvalue problems in electronic structure
calculations [13]. An advantage of the RMM-DIIS method is that it does not require a
computationally expensive explicit orthogonalization step at each iteration. Since the
method is based on the minimization of the residual vector, the trial vectors converge
to the eigenvectors with eigenvalues closest to the current trial eigenvalues. In our
implementation we periodically perform a Ritz projection of the lowest eigenvectors
in order to separate the eigenvectors of degenerate eigenvalues.

Since the RMM-DIIS method converges toward eigenpairs close to the current
trial eigenvalues, some care has to be taken at the beginning of the computations
when there are no good trial eigenvalues. We tested two approaches: In the first
method we started the calculation with the Block Davidson method and switched to
the RMM-DIIS method after 60 iterations or when the norms of all residual vectors
were below 5×10−2. In the second approach we immediately started with the RMM-
DIIS method. However, in order to avoid convergence toward higher eigenvalues, we
included all intermediate steps in the periodic Ritz projection (we call this variant of
the algorithm maximum-V). This enlarges the search space of the Ritz projection and
leads, in all of our calculations, to a convergence toward the lowest eigenvalues. As
in the first approach, we switched to the normal variant of the RMM-DIIS algorithm
(which we call minimum-V) after 60 iterations or when the norms of all residual
vector were below 5 × 10−2.

Our implementations of the Block Davidson and RMM-DIIS algorithms can be
run in parallel on shared-memory computers. To this end, the program makes heavy
use of Intel’s Math Kernel Library (MKL). In particular, multiplications of the sparse
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Hamilton matrix with a vector are performed with the help of the MKL. Additionally,
we used OpenMP in order to parallelize some vector operations not performed with
the MKL. All calculations described in this work were performed on an Intel Xeon
Phi coprocessor 5110P. This coprocessor integrates 60 core with 4 hardware threads
per core.

3 Results

To compare the efficiency of the Block Davidson and RMM-DIIS method for the
exact diagonalization of quantum spin models, we have used different types of an-
tiferromagnetic Heisenberg models with spin S = 1

2 [8]. Each of these models
represents a system of N interacting spins that can only take the values ± 1

2 . The
dimension of the state space of these models is 2N and they are characterized by a
Hamilton matrix of dimension 2N × 2N . The symmetries of the Heisenberg models
allow, however, a block-diagonalization of the matrix. In this work, we exploit the
conservation of the z-component of the spin to reduce the dimension of the problem

to
(

N
(N/2)(N−N/2)

)
. The dimension of the eigenvalue problem is thus 12,870, 48,620,

184,756, 705,432, 2,704,155, and 10,400,600 for N = 16, 18, 20, 22, 24, and 26
spins, respectively.

The first models that we used for our tests are a simple Heisenberg chain [8]
and a two-leg ladder [1] with the ratio between the coupling along the rungs and
the coupling along the legs J⊥/J‖ = 1. In addition to this, we employed dimerized
two-leg ladder models [6, 11] with a dimerization parameter γ = 0.5 (cf. [6]) and
J⊥/J‖ = 1 and 0.5 (Ladder 215 and 255). Finally, we applied the algorithms to
dimerized three-leg ladder systems with γ = 0.5 and J⊥/J‖ = 1 (Ladder 315). For
the dimerized ladder systems, we considered both the columnar and the staggered
dimerization patterns.

Tables 1, 2, and 3 show the number of iterations and the execution time of the
Block Davidson method as well as both variants of the RMM-DIIS methods for
three of our benchmark models withN=24. Iterations were stopped when the norms
of all residual vectors were below 5×10−4. The results show that except for the chain
model, the number of iterations to reach convergence from random start vectors is not
very different between the three methods. However, the execution time clearly favors
the RMM-DIIS method due to the lower number of expensive orthogonalization
steps.

In Fig. 1, we show the parallel speedup obtained with the RMM-DIIS method
on the Intel Xeon Phi coprocessor for the dimerized two-leg Heisenberg ladder
215 model for various system sizes N . We tested two settings of the environment
variable KMP_THREAD_AFFINITY. This variable affects the binding of the threads
to processor cores for OpenMP and the MKL on the coprocessor. If set to “scatter”
(left panel) the runtime system distributes the threads over as many cores as possible
whereas “compact” (right panel) uses as few cores as possible. The figure shows that
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Table 1 Heisenberg chain, N = 24, lowest six eigenvalues

Method Block size Iterations Convergent Time (s) Memory (MB)

Block Davidson 4 125 Yes 378.5 17878

Block Davidson- 4 39 Yes 118.7 17878

RMM-DIIS minimum V 4 69(23) Yes 131.8 17733

RMM-DIIS maximum V 4 51(17) Yes 14.3 18208

RMM-DIIS minimum V 4 30(10) Yes 20.2 17733

Table 2 Heisenberg ladder, N = 24, lowest eight eigenvalues

Method Block size Iteration Convergent Time (s) Memory (MB)

Block Davidson 4 169 Yes 743.2 18376

Block Davidson- 4 60 No 263.2 18376

RMM-DIIS minimum V 4 72(24) Yes 300.1 18149

RMM-DIIS maximum V 4 60(20) No 28.6 18810

RMM-DIIS minimum V 4 120(40) Yes 38.8 18149

Table 3 Dimerized two-leg Heisenberg ladder (Ladder 215), N = 24, lowest eight eigenvalues

Method Block size Iteration Convergent Time (s) Memory MB

Block Davidson 4 125 Yes 504.1 18392

Block Davidson- 4 47 Yes 194.1 18392

RMM-DIIS minimum V 4 72(24) Yes 214.2 18133

RMM-DIIS maximum V 4 60(20) No 25.7 18814

RMM-DIIS minimum V 4 87(29) Yes 49.9 18133

for the small systems with N = 16, 18, and 20, the coprocessor is inefficient with
maximum speedups far below what would be expected from a 60 core device. For
N = 22, a maximum speedup of 30 is reached at 120 threads whereas forN = 24 and
26, the speedup rises continuously until p = 240 threads. The maximum speedups
forN = 24 and 26 range from 50 to 60. It can also be seen that for the larger systems
compact core binding gives better speedups than scattered.

In Table 4, we compare the parallel speedups obtained for all our benchmark
models with N = 24 on the Xeon Phi coprocessor for different numbers of threads.
As in Fig. 1 we have considered both types of thread binding. For thread numbers
p up to 60, the speedups are similar for all models and correspond to a parallel
efficiency of about 33 %. As the number of threads p goes beyond 60 (i.e., more
than one thread per core), the speedup continues to increase but differences between
the models appear. This is best seen at p = 240. The highest speedup is obtained
by the three-leg dimerized ladder systems. All two-leg ladder models have slightly
lower speedups followed by the chain system. The data show that the speedup is
determined by the number of legs of the model. All two-leg ladders have (nearly)
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Fig. 1 Parallel speedup of the dimerized Heisenberg ladder model (Ladder 215) with N = 16, 18,
20, 22, 24, and 26 on an Intel Xeon Phi coprocessor with KMP_THREAD_AFFINITY set to scatter
(left) and compact (right)

Table 4 Parallel speedup of the RMM-DIIS algorithm on an Intel Xeon Phi coprocessor for different
models with N = 24

Type Thread 1 30 60 90 120 150 180 210 240

Chain Scatter 1.0 10.3 18.1 23.1 29.7 33.6 36.2 40.4 43.9

Compact 1.0 8.7 16.2 23.0 28.8 33.8 38.8 43.0 46.3

Ladder Scatter 1.0 10.3 18.6 24.6 31.3 36.5 38.7 42.8 47.8

Compact 1.0 9.2 17.2 24.7 31.0 36.9 42.3 47.1 51.3

Ladder 215 Scatter 1.0 10.1 18.5 25.9 31.1 35.1 38.1 43.9 48.0

Columnar Compact 1.0 9.3 17.2 24.7 31.0 36.8 42.4 47.2 51.4

Ladder 215 Scatter 1.0 10.0 18.1 24.0 30.2 35.8 37.7 43.6 47.9

Staggered Compact 1.0 9.3 17.3 24.7 31.0 37.0 42.4 47.1 51.3

Ladder 255 Scatter 1.0 9.8 17.6 25.8 30.4 35.1 38.5 43.7 47.8

Columnar Compact 1.0 9.3 17.3 24.7 31.0 36.8 42.3 47.1 51.3

Ladder 255 Scatter 1.0 9.9 18.5 25.2 30.3 34.9 37.0 43.7 47.5

Staggered Compact 1.0 9.3 17.3 24.7 31.0 36.9 42.3 47.0 51.3

Ladder 315 Scatter 1.0 10.2 18.1 24.8 31.4 35.2 39.3 43.6 48.5

Columnar Compact 1.0 9.0 17.6 25.1 31.6 37.4 43.4 48.3 52.6

Ladder 315 Scatter 1.0 9.9 19.4 25.6 31.0 35.8 39.1 43.8 48.6

Staggered Compact 1.0 9.4 17.5 25.1 31.6 37.4 43.3 48.2 52.7

the same speedups independent of the other parameters. The same is true for the
three-leg models. This indicates that the speedup is determined by the sparsity of
the matrix. The number of nonzero entries per row is 13, 19, and 21 for the chain,
two-leg and three-leg models, respectively.
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4 Summary and Conclusions

In this work, we study the efficiency of the Block Davidson method and the RMM-
DIIS algorithm for the exact diagonalization of quantum spin models. The results
show clearly that the RMM-DIIS algorithm performs better for these systems since it
does not require explicit orthogonalization of the trial eigenvectors at each iteration.

On an Intel Xeon Phi coprocessor (60 cores, 4 hardware threads per core) we
obtained good parallel speedups of more than 50 for larger systems with at least
N = 24 spins. The highest speedup was obtained on this machine for the three-leg
ladder models. The results suggest the parallel performance of the coprocessor in
these calculations is limited by the extreme sparsity of the matrices of our models.
We expect therefore even higher speedups for models with a less sparse matrix.
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The Effects of Body Fluid on Cheyne–Stokes
Respiration

Marianne Wilcox and Allan R. Willms

Abstract A compartmental model of the human circulatory system that illustrates
Cheyne–Stokes respiration (CSR) is presented. Clinical evidence suggests that pa-
tient body position can influence the likelihood of experiencing CSR, and this model
is analyzed to see if blood fluid shifts associated with body position could be the
means of this influence. It is shown that lying down causes a shift in the location of
the Hopf bifurcation curve associated with the onset of CSR, making it more likely.

1 Introduction

Cheyne–Stokes respiration (CSR) is a form of central sleep apnea (CSA) character-
ized by an abnormal breathing pattern cycling between apnea (temporary breathing
cessation) and hyperpnea (rapid and deep breathing). In contrast to obstructive sleep
apneas (OSAs), which are caused by pharynx collapse to varying degrees, CSAs are
neurological in origin. In particular, CSR is associated with the brain’s monitoring of
carbon dioxide (CO2) levels in the blood. The fundamental features causing the pe-
riodic breathing associated with CSR are the sensitivity of the chemoreceptors in the
neck to CO2 levels and the delay in the signal from the lungs to the receptors. CSR is
analogous to trying to get warm water from the end of a long hose by adjusting a very
responsive hot water faucet. The water is too cold so you open the hot faucet more,
but then it is too hot so you close the faucet some, and so on. CSR is common among
patients with congestive heart failure and is correlated with increased mortality [7].

Clinical evidence suggests that the likelihood of experiencing CSR is dependent
on body position [9], being more likely to occur in patients who are in a supine
rather than a sitting or upright position. It is hypothesized that blood volume shifts
in response to body position are responsible for this increased likelihood [10].
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Fig. 1 Circulatory system compartments and CO2 exchange

This chapter develops and analyzes a compartment model of the human circulatory
system to investigate whether blood volume shifts can have the effect of increasing
the likelihood of CSR [12]. The model is a generalization of one studied by Langford
and others [1, 2], where a number of the compartments have been further divided to
allow separation of the legs, abdomen and thorax, and neck and head.

2 Model

The model has 15 compartments with blood flowing between them (see Fig. 1).
The volume of compartment i (in L) will be denoted vi . Let ci denote the concen-

tration of CO2 in compartment i, measured in mL of CO2 at standard temperature
and pressure, dry (STPD) per L of blood. The overall blood flow rate Q (L/min) is
divided into three portions corresponding to the flow to the legs (JL), the abdomen
and thorax (JA), and the neck and head (JN ), so JL + JA + JN = 1. Similarly, the
overall metabolic rateM (mL of CO2 at STPD/min) is divided into these three main
body areas with the fractionsKL,KA, andKN , withKL+KA+KN = 1. Metabolism
adds CO2 to the blood in the systemic capillaries (compartments 9, 10, and 11) and
CO2 is removed from the blood in the pulmonary capillaries (compartment 15). The
rate of removal of CO2 is governed by the ventilation rate V̇ (L/min), which in turn
is controlled by the CO2 sensors located in the neck arterioles (compartment 6). This
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control function is modeled as the Hill function

V̇ = f (c6) = V̇ 2cn6
an + cn6

, (1)

where V̇ is the half-maximal ventilation rate (≈ 5 L/min), n > 0 is the Hill function
power, anda is the CO2 concentration in the neck arterioles at which the half-maximal
ventilation rate occurs.

The governing equations for the model are then

v1
dc1

dt
= Q(c15 − c1), v9

dc9

dt
= JNQ(c6 − c9) +KNM ,

v2
dc2

dt
= Q(c1 − c2), v10

dc10

dt
= JAQ(c7 − c10) +KAM ,

v3
dc3

dt
= Q(c2 − c3), v11

dc11

dt
= LLQ(c7 − c11) +KLM ,

v4
dc4

dt
= JNQ(c3 − c4), v12

dc12

dt
= JNQ(c9 − c12),

v5
dc5

dt
= (JL + JA)Q(c3 − c5), v13

dc13

dt
= Q(JAc10 + JLc11 − (JL + JA)c13),

v6
dc6

dt
= JNQ(c4 − c6), v14

dc14

dt
= Q(JNc12 + (JL + JA)c13 − c14),

v7
dc7

dt
= JAQ(c5 − c7), v15

dc15

dt
= Q(c14 − c15) −D V̇

VG
(pA − pI ) ,

v8
dc8

dt
= JLQ(c5 − c8).

In the above, VG is the alveolar gas volume, pA is the alveolar partial pressure of CO2,
pI is the partial pressure of CO2 of inspired air, and D is a dissociation conversion
factor for CO2 given by

D = VGTS

PSTB
,

where TS and TB are the standard and body temperatures, andPS is standard pressure.
An empirical relationship,

pA = c15

8
− 20, (2)

relates the alveolar partial pressure of CO2 with the concentration of CO2 in the
pulmonary capillaries [2].

Base-line values for the volumes of the compartments and the metabolic and
blood flow proportions were taken or extrapolated from various sources [3–6, 11].
The total volume of blood was normalized to 5 L. These values and the values of
other parameters in the model are given in Table 1.
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Table 1 Model parameter values

Symbol Name Value Units

v1 Volume of pulmonary veins 0.25 L

v2 Volume of left heart 0.2 L

v3 Volume of aorta 0.1 L

v4 Volume of carotid arteries 0.025 L

v5 Volume of other main arteries 0.375 L

v6 Volume of arterioles neck and head 0.01 L

v7 Volume of arterioles abdomen and thorax 0.0275 L

v8 Volume of arterioles legs 0.0125 L

v9 Volume of capillaries neck and head 0.025 L

v10 Volume of capillaries abdomen and thorax 0.175 L

v11 Volume of capillaries legs 0.05 L

v12 Volume of jugular vein 0.2 L

v13 Volume of systemic veins 3.05 L

v14 Volume of right heart and pulmonary arteries 0.4 L

v15 Volume of pulmonary capillaries 0.1 L

Q Blood flow rate 5 L/min

JL Blood flow fraction legs 0.15

JA Blood flow fraction abdomen and thorax 0.69

JN Blood flow fraction neck and head 0.16

M Metabolic CO2 production rate 200 mL CO2 at STPD/min

KL Metabolic fraction legs 0.12

KA Metabolic fraction abdomen and thorax 0.65

KN Metabolic fraction neck and head 0.23

VG Alveolar gas volume 3 L

pI Partial pressure CO2 inspired 0.3 mmHg

PS Standard pressure 760 mmHg

TS Standard temperature 273 K

TB Body temperature 310 K

The model has a single equilibrium point, which is easily computed. The value
of the Hill function coefficient a is chosen so that the equilibrium values in com-
partments c1 through c8 and c15 are all equal to the typically measured arterial value
of 480 mL/L. The equilibrium value of c14 is M/Q larger than that in the arterial
compartments, giving the typical value of 520 mL/L. The remaining compartments’
equilibrium values lie between these two values and are dictated by the J and K
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Table 2 Average normalized
blood volume shifts (mL) Legs Abdomen Thorax Neck

Males −145 23.5 63 58.5

Females −365 42 270.8 52.2

fractions. This equilibrium point undergoes a supercritical Hopf bifurcation as ei-
ther the gain, defined by μ = n/4a, or the half-maximal ventilation/perfusion ratio,

r = V̇ /Q, is increased. When these values are low, the equilibrium point is globally
asymptotically stable, representing normal and steady breathing. However, when ei-
ther of these parameters is increased sufficiently, the equilibrium becomes unstable
and a stable limit cycle appears, representing the cyclic breathing of CSR.

3 Blood Volume Shifts

Fluid volumes were measured in seven patients. Electrical impedance was recorded
from electrodes on one side of the patient’s body and converted to fluid volumes
in four areas: legs, abdomen, thorax, and neck/head [8]. These measurements were
taken after standing for 5 min and then again after lying down for 90 min. Blood
volume shifts were computed by normalizing these measurements to 5 L of fluid
for the whole body, and then taking the difference (supine minus standing) in each
of the four body areas. The averaged results for males and females are shown in
Table 2. Each of the 15 compartments of the model were distributed between the
four measured body areas, as indicated in Table 3. The base-line volumes of Table 1
were used for the standing volumes. The computed blood volume shifts were applied
proportionately to the 15 compartments and these shifted volumes were added or
subtracted from the base-line volumes to yield supine volumes.

Figure 2 shows the Hopf bifurcation curves for the data averaged by gender. The
axes for these plots are the two unknown parameters: The gain and the half-maximal
ventilation/perfusion ratio. The former measures the sensitivity of the feedback con-
trol mechanism, while the latter is a relative measure of the average breathing rate.
Below the Hopf curves, the model is at a steady equilibrium, while for parameter
values above the curve the stable solution to the model is a limit cycle representing
CSR. In both males and females, the supine Hopf curve lies below the standing
curve, indicating that CSR is more likely to occur for patients in the supine position.

Table 3 Proportion of each compartment in the four body areas

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Legs 0 0 0 0 0.5 0 0 1 0 0 1 0 0.79 0 0

Abdomen 0 0 0 0 0.2 0 1 0 0 1 0 0 0.1 0 0

Thorax 1 1 1 0.2 0.3 0 0 0 0 0 0 0.2 0.11 1 1

Neck 0 0 0 0.8 0 1 0 0 1 0 0 0.8 0 0 0
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Fig. 2 Hopf bifurcation curves by gender

The difference between these curves is small but is more pronounced in males than
females, which is in accord with clinical evidence. Therefore, the clinical hypothesis
that fluid shifts are associated with body position can account for a higher likelihood
of experiencing CSR is corroborated by the model.

Acknowledgement Fluid volumes were measured by Azadeh Yadollahi, a member of Dr. T.D.
Bradley’s Sleep Lab at the Toronto Rehabilitation Institute.
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Solving a Large-Scale Thermal Radiation
Problem Using an Interoperable Executive
Library Framework on Petascale
Supercomputers

Kwai Wong, Eduardo D’Azevedo, Zhiang Hu, Andrew Kail and Shiquan Su

Abstract We present a novel methodology to compute the transient thermal condition
of a set of objects in an open space environment. The governing energy equation and
the convective energy transfer are solved by the sparse iterative solvers. The average
radiating energy on a set of surfaces is represented by a linear system of the radiosity
equations, which is factorized by an out-of-core parallel Cholesky decomposition
solver. The coupling and interplay of the direct radiosity solver using graphics pro-
cessing units (GPUs) and the CPU-based sparse solver are handled by a light weight
software integrator called Interoperable Executive Library (IEL). IEL manages the
distribution of data and memory, coordinates communication among parallel pro-
cesses, and also directs execution of the set of loosely coupled physics tasks as
warranted by the thermal condition of the simulated object and its surrounding
environment.

1 Introduction

The thermal content of an object sitting in an open space environment is governed
by the principle of conservation of energy and its conjugating boundary conditions.
As the number of thermally active surfaces of an object increases, computing the
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energy balance related by conduction, convection, and radiation can be challenging
and certainly can utilize the capability of a parallel computer. The complexity of the
underlying formulations also makes it difficult for a single computer code to handle
every aspect of the simulation. In this chapter, we introduce a light weight software
integrator called Interoperable Executive Library (IEL) that is used to manage, coor-
dinate, and execute the set of governing multiphysics tasks. To compute the thermal
content of an object, the energy equation and the convection energy transfer are for-
mulated by the finite element method (FEM) and solved by the sparse iterative solvers
given in Trilinos [7]. The amount of radiating energy on a set of surfaces is mod-
eled by a linear system of the radiosity equations and solved by a newly developed
parallel dense matrix Cholesky decomposition procedure. The derived methodology
exploits the high-throughput capability of the emergent supercomputers composed
of CPUs and graphics processing units (GPUs). The radiosity matrix requires the
computation of the view factors. Based on a serial view factor algorithm derived by
Walton [8], we have extended the algorithms to compute the view factors on a parallel
computer equipped with GPUs. The coupling and interplay of the direct radiosity
solver using GPUs and the CPU-based FEM sparse solvers are handled by the IEL.
The goal of the IEL is to efficiently incorporate physics solvers in a modular fashion
and provides a simple application programming interface (API) for handling data
transfer and scheduling. The results of a benchmark test performed on Keeneland,
a GPU-based supercomputer at the National Institute for Computational Sciences
(NICS)1, is presented.

2 The Interoperable Executive Library

The IEL is a software framework used for multiphysics simulations and is designed
to execute and schedule in parallel a series of physics solvers. In these multiphysics
simulations, domain interaction is a common occurrence and therefore requires data
and information exchange on points called shared boundaries.

Beyond its scheduling and data managing capabilities the IEL also makes use of
common scientific libraries, such as the Trilinos [7], MAGMA [3], and ScaLAPACK
[6] libraries. Other tools for grid generation using Cubit [1] and visualization with
Paraview [5] have also been utilized. Integration of third-party solvers as modules
extends the scope of the application of the library.

Figure 1 is an overview of a simulation using the IEL during runtime. A
user-specific driver program initiates the execution of the simulation by passing a
configuration file to the executive that starts the sequence of simulation. The IEL con-
sists of three components: the configuration file, communicator library (COMMLIB),
and executive. The configuration file defines the functionality of each simulation, the
number of shared boundary conditions between different modules, and the number

1 Web site at http://keeneland.gatech.edu/.

http://keeneland.gatech.edu/
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Fig. 1 An overview of the Interoperable Executive Library (IEL) showing the interaction between
the driver, configuration file, executive and communicator library (COMMLIB)

of processors that will be assigned for the parallel simulation. The second component
is the COMMLIB that is built as a wrapper for the message passing interface (MPI)
and handles the transfer of the data on the shared boundaries between modules. The
third component is the executive that schedules and manages the workflow of a set
of physics simulation prescribed in the configuration file.

Solving a multiphysics problem using the loosely coupled method alleviates the
burden of creating a monolithic single purpose code. The IEL utilizes this method,
which uses the shared boundaries as points of data exchange between any two
physics solvers. Doing so allows the IEL to incorporate any independently con-
structed physics codes to run a multiple series of simulations, either simultaneously
or in sequence, for scaling and parametric studies.
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Fig. 2 A workflow diagram of the thermal fluid simulation

3 Thermal and Fluid Flow Calculations

The thermal module used in this simulation is built to simulate conjugate heat transfer
on 2D surfaces in 3D space to reduce the complexity of the system and allow for
generation of very complex structures such as vehicles and buildings. Figure 2 shows
the workflow of the thermal fluid simulation scheduled by the IEL.

The thermal module solves the energy equations, Eqs. (1) and (2).

ρCp
∂T

∂t
− ∇ · [k(x)∇T ] − s(x, t) = 0, (1)

k∇T · n+ hconv(T − Tatm) + σε(T 4 − T 4
ref ) + f (t) · n = 0, (2)

where ρ, Cp, k, ε, and σ denote density, specific heat, conductivity, thermal emis-
sivity, and the Stefan–Boltzmann constant, respectively. The convective terms in
Eq. (2) are handled through a series of correlations that depend on the surface velocity
distribution calculated by the fluid flow simulation.

The fluid module solves the potential equations, Eqs. (3) and (4), for the elemental
surface velocity used by the thermal module to calculate the convective properties.

∇2φ = 0, (3)

∂φ

∂xi
= vi , 1 ≤ i ≤ n. (4)

Both the thermal and the fluid flow simulation are formulated by the FEM and solved
by sparse iterative solvers provided by the Trilinos scientific library developed at the
Sandia National Laboratories.
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4 Radiation Calculations

Assuming a gray diffuse environment, the amount of average radiating energy to and
from an object can be represented by a system of radiosity equations, Eqs. (5) and
(6).

εiRiAi = EiAi + ρj
n∑

j=1

RjAjFij , for each i = 1, 2, . . .,N , (5)

Ei = εσT 4
i , (6)

where i is the surface which the radiosity is being calculated, j represents a single
surface,E is the emitted energy, ρ is the the reflectivity, ε is the emissivity and equals
to (1 − ρ), and Fij is the view factor between surface i and j .

Equation (5) can be rewritten as follows:

Gx = (δijAi − φiAiFij )Ri = σT 4
i = b, (7)

which is a system of linear equation, Gx = b, in which G is a symmetric positive
definite matrix because of the reciprocity property of the view factors, AiFij =
AjFji .

The radiosity matrix requires the computation of the view factors, which depends
only on the geometry and orientation of the two interacting surfaces. Walton [8]
has listed several commonly used algorithms to compute the view factors in his
View3D code. Calculating the view factors is a compute intensive process but can
be done in parallel. Based on the serial view factor algorithms listed by Watson, we
have extended the View3D code to compute the view factors on a parallel computer
equipped with GPU accelerators. View3D applies modified area integration methods
to calculate the partially obstructed surfaces. Every processor calculates the portion
of view factors arranged in the distributed 2D block cyclic data decomposition used
in ScaLAPACK. The Cholesky factorization is then used to solve the system of
the radiosity equations. A GPU-based out-of-core scheme using cuBLAS [4] and
ScaLAPACK library has been developed to perform the Cholesky factorization of
matrix G.

Out-of-core factorization methods have been studied in the past [2]. The method
uses the secondary memory, in here the host memory in the CPU node, to augment the
storage and solving of a large matrix which exceeds the limit of the primary memory,
here the memory of a GPU. In this chapter, we adapt the left-looking out-of-core
algorithm for the Cholesky factorization that seeks to minimize the data transfer
between the CPU host and the GPU device memory. Central to this algorithm is also
an in-core parallel factorization method that operates primarily on the GPU with
minimal communication between GPUs. The primary variant is that we assume that
the portion of the matrix G belonging to a CPU processor is too large to be fully held
entirely in GPU device memory. Thus, some data movement of the matrix between
the CPU and the GPU will be necessary, but must be minimized to achieve good
performance.
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Table 1 Speed up of L-shape test on kraken

Nnumber of processors (M) Time(s) for potential obstruction Time(s) for view factor
detecting + computing

View factor computing

4 140.95 113.22

8 101.59 56.85

16 74.99 29.34

32 60.41 14.42

64 53.24 7.14

128 49.80 3.69

256 48.13 1.78

1024 47.25 0.44

Table 2 Performance of Cholesky factorization using 12 cores per node with 12 MPI tasks per node
and block size NB = 128

Processor grid Matrix size N Performance per GPU (unit: GFlops/s)

6 × 6 57,600 165

12 × 12 116,736 145

24 × 24 216,576 140

5 Results and Discussions

We used a simple L-shape benchmark test to examine the speed up of the parallelized
View3D code. There are 20,000 surfaces in the L-shape plate. Table 1 shows the speed
up is almost linear in computing the view factors. However, the time to construct the
list of obstruction is almost constant for the L-shape. Because there is no obstruction
in the L-shape test, the algorithm requiresO(N2) instructions to complete the check
list. Table 2 shows the performance of the parallel out-of-core Cholesky factorization
reaches 160 Gflops/s per GPU on Keeneland.

Acknowledgment This research project was supported by the National Science Foundation and
the Department of Energy under Contract No. DE-AC05-00OR22725.
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Optimal Transport and Placental Function

Qinglan Xia, Carolyn Salafia and Simon Morgan

Abstract The human newborn is a reflection of the entirety of nutrients transferred
from the maternal to the fetal circulation across the placenta during gestation. By
extension, birth weight and newborn health depend on placental function. The goal
of this chapter is to introduce the use of optimal transport modeling to study the
expected effects of (i) placental size, (ii) placental shape (separate from size), and
(iii) the position of insertion of the umbilical cord, on birth weight and placental
functional efficiency. For each placenta (N = 1110), a total transport cost based on all
measurements (i), (ii), and (iii) is given by the model. This computed cost is highly
correlated with measured birth weight, placenta weight, the fetal–placental weight
ratio (FPR), and the metabolic scaling factor beta. Next, a shape factor is calculated
in a model of the total transport cost if each placenta were rescaled to have a unit area
chorionic plate (thus separating shape from size). This shape factor is also highly
correlated with birth weight, and after adjustment for placental weight, is highly
correlated with the metabolic scaling factor beta.

1 Introduction

The human newborn is the reflection of the sum total of oxygen and nutrients trans-
ferred from the maternal to the fetal circulation across the placenta during gestation.
By extension, birth weight depends on placental function. The goal of this chapter
is to apply optimal transport modeling to quantify effects of (i) placental size, (ii)
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placental shape, and (iii) the position of insertion of the umbilical cord on the chori-
onic disk surface, on birth weight. This size, shape, and position data was readily
available from measurements from photographs of 1110 placentas from a University
of North Carolina birth cohort collected in the middle of the last decade, which has
been extensively studied in e.g., [3, 11] and references therein.

The measures, (i),(ii), and (iii) above have expected effects on the energy required
to pump blood across the placenta. Generally in any transport, and we assume also
in the placenta, the less distance the blood has to travel, the less energy needs to
be expended to pump it. Therefore, the predicted optimum shape for the chorionic
plate to minimize transportation energy is a circle with a centrally inserted umbilical
cord. If the umbilical cord insertion point is eccentric within a circular chorionic
plate, then overall the blood will have farther to travel to and from to the umbilical
cord. Also if the chorionic plate is not circular, but elliptical or lobated, then again,
overall, the blood will have farther to travel and so more energy expenditure will be
needed. Thus, one may expect that placental shape and location of umbilical cord
are important factors in determining the energy needed to pump blood across the
fetal–placental circulation. From this, one would also assume that given a larger
placenta, more blood would be transported over a longer distance, with more energy
required for pumping.

In this chapter we simulate a vascular tree structure for each placenta, in a sim-
plified form by an idealized optimal transport network. For this network there is
an associated total transport cost C computed by the model. This cost C represents
the total work done by the heart of the fetus to pump blood across the placenta.
We find a high correlation between C and measured birth weight, placenta weight,
the fetal–placental weight ratio (FPR) and the metabolic scaling factor beta. Also,
a shape factor S is computed by the model which would be the total transport cost
if a placenta was rescaled to have a unit area chorionic plate. This shape factor S is
also highly correlated with birth weight, and after adjustment for placental weight,
is highly correlated with the metabolic scaling factor beta.

2 Modeling Method

The optimal transportation problem aims at finding an optimal way to transport ma-
terials from the source to the target. An optimal transport path introduced in [7] is
a mathematical concept used to model tree-shaped branching transport networks.
Transport networks with branching structures are observable not only in nature as in
trees, blood vessels, river channel networks, lightning, etc. but also in efficiently de-
signed transport systems such as used in railway configurations and postage delivery
networks. Recently, mathematicians (e.g., [1, 2, 4, 7]) have shown great interest in
modeling these transport networks with branching structures. Applications of optimal
transport paths may be found in [8] and [9]. A related interesting approach is given
in [5] which investigates thermodynamic properties of optimal transport networks
while [6] investigates thermodynamic properties of measured human placenta major
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blood vessel networks. In this chapter, we will model the blood vessel structure of a
placenta via an optimal transport path.

As stated in [11], 1110 placentas were collected by an academic health center in
central North Carolina. For each placenta, a trained observer captured a series of x,y
coordinates that marked the site of the umbilical cord insertion and the perimeter
of the fetal surface. To simulate vascular structures for the placentas, we apply the
modeling method of ramified optimal transportation to each placenta.

An idealized transport network, which simulates an optimal vascular structure for
that placenta, is computed based on the measurements of the placenta. This branched
network provides a means of transporting blood between the whole chorionic plate
surface and the umbilical cord. This single network for a placenta may be viewed
as a representation of either an optimal vein network or, by reversing directions of
flow, an optimal arterial network. In the absence of more detailed information about
blood supply, we assume a uniform supply of blood per unit area over the whole
surface of the placenta. We also model the placenta by a region in the plane because
the data is from photographs of the placenta flat on a table, rather than in the curved
inside surface of the uterus. The idealized transport network is a branched network
of straight segments ei each with a capacity weighting wi and a direction of flow. For
each branch point, the sum of flows in must equal the sum of flows out. Since there
are many ways to construct a transport network, we need to find an optimal network
which minimizes the amount of work done in pumping blood through the network.
In the model of ramified optimal transportation, we use the cost function (wi)αli for
each edge ei of length li where α is a branching parameter (0 ≤ α < 1). Technically,
as xα is strictly concave for this range of α, this ensures that branched structures
will emerge and corresponds to the general principle of favoring transportation in
groups and branched vessel structures. The total cost for each transport network,
which reflects the work done to pump the blood, is the sum of the costs for each
edge. Using algorithms stated in [10], for any fixed α we can build an approximating
optimal transport path for a placenta using its measurements (e.g., Fig. 1, left with
α = 0.85). Then we may calculate the associated total transport cost

C =
∑

(wi)
αli

for that placenta.
For the calculations, we chose the value of α = 0.85 so that, for a round placenta

with a centrally inserted umbilical cord, six branches will emerge from the umbilical
cord. This is consistent with the typical observation that four to six branches emerge
from the umbilical cords in normal round placentas. We also used the uniformly
distributed point sources as shown on the left of Fig. 1. This choice was made
because if random distributions of point sources were used, the model would give
different values of total transport cost C for the same placenta each time the model
was run. The total transport cost C for each placenta depends upon shape, size, and
umbilical cord position. We want to investigate the effect of the shape and umbilical
cord position independently from size. To do it, we consider

S = C

A0.5+α ,



512 Q. Xia et al.

Fig. 1 Examples of modeling blood vessels of a placenta by a nearly optimal transport network
from the placenta surface to the umbilical cord. The distribution of the blood source over the surface
of the placenta is uniform over lattice points of a fine regular grid in the example on the left, and is
on randomly placed points in the example on the right

where A is the area of the placenta. Note that, the value of S is a function of shape
and cord position, and is independent of size. Indeed, suppose D1 and D2 are two
placentas of the same shape. ThenD1 can be viewed as a rescale of D2 with a length
scaling factor λ > 0. Thus, Area (D1) = λ2Area (D2) . Let G1 and G2 be the
corresponding optimal transport networks for D1 and D2. One may also show that
the total cost C1 for G1 is the total cost C2 for G2 multiplied by λ2α+1. As a result,

S1 = C1

A0.5+α
1

= λ2α+1C2
(
λ2A2

)0.5+α = C2

A0.5+α
2

= S2.

We call S the shape factor of the placenta. As a result, the total transport cost C can
be expressed as the product of two independent variables: C = S ∗ A0.5+α .

3 Results

For each of the 1110 placentas, the associated birth weightB of the fetus and placental
weight P are also available. We applied the above method to calculate the total
transport cost C and the shape factor S. Placental functional efficiency is typically
measured either by the FPR= B

P
or by the metabolic scaling factor beta, β = lnB

lnP .
As shown in Table 1, total transport cost is highly correlated with birth weight,

placental weight, FPR, and beta. Total transport cost C is positively correlated with
birth weight as expected given thatC primarily reflects placental size, and on average
will vary with larger and smaller placental and fetal weights.

On the other hand, the shape factor S is negatively correlated with birth weight
as we would expect consistent with our hypothesis that a high S (and therefore
an irregular shape with greater deviations of cord location and/or irregularities of
perimeter) significantly impairs placental efficiency for nutrient transportation under
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Table 1 Pearson’s correlations

Birth weight Placental weight FPR Beta

Pearson correlation 0.421 0.489 −0.154 0.272

Total transport cost C Sig. (2 tailed) 0.000 −0.000 0.000 0.000

Pearson Correlation −0.080 −0.020 −0.056 0.039

Shape factor S Sig. (2 tailed) 0.008 0.508 0.062 0.192

Table 2 Regression coefficients (point estimate of effect) for total transport cost and shape factor
on birth weight (Model 1) and after adjustment for placental weight (Model 2)

Unstandardized coefficients

Model Birth weight Std. error t Sig.

(Constant) 2483.951 54.964 45.193 0.000

1 Total transport cost C 0.590 0.038 15.400 0.000

(Constant) 1546.922 64.502 23.983 0.000

2 Total transport cost C 0.210 0.037 5.639 0.000

Placental weight 3.307 0.158 20.958 0.000

(Constant) 3693.731 152.020 24.298 0.000

1 Shape factor −594.053 222.689 −2.668 0.008

(Constant) 1985.163 134.301 14.781 0.000

2 Shape factor −501.411 173.258 −2.894 0.004

Placental weight 3.734 0.139 26.837 0.000

the conditions of an optimal transport network. In this sample the effect of shape
factor S on birth weight is not paralleled by a correlation of abnormal shape with
placental weight, with only trends to correlations with FPR and beta.

After adjustment for placental weight in regression analysis, the significant rela-
tionships of both total transport cost and the shape factor on birth weight remained
(see Table 2). Both variables were also highly correlated with the metabolic scaling
factor beta after adjustment for placental weight (see Table 3).

For total transport cost, we do not expect model 2 to be greatly better than model
1, since placental area is factored into total transport cost and thus total transport
cost in isolation includes placental size. However, the shape factor S does not reflect
placental size. Therefore, we do expect the inclusion of placental weight into model
2 to make a large difference as compared with model 1. The shape factor does not
factor in placental area, and so does not reflect placental size. Model 1 includes
shape factor S only, and thus no influence of placental size. Model 2 (which includes
placental weight as a covariate) does. In both models shape factor S has a significant
point estimate of effect on birth weight. The second model has a somewhat reduced
point estimate of effect for shape factor S, with a smaller standard error, making this
slightly smaller estimate of effect more precise.
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Table 3 Regression coefficients (point estimate of effect) for total transport cost and shape factor
on beta (Model 1) and after adjustment for placental weight (Model 2)

Unstandardized coefficients

Model Beta Std. error t Sig.

(Constant) 0.731 0.002 334.290 0.000

1 Total transport cost 1.43E-005 0.000 9.374 0.000

(Constant) 0.680 0.002 324.002 0.000

2 Total transport cost −6.2E − 006 0.000 −5.104 0.000

Placental weight 0.000 0.000 34.606 0.000

(Constant) 0.743 0.006 130.033 0.000

1 Shape factor 0.011 0.008 1.306 0.192

(Constant) 0.667 0.004 152.921 0.000

2 Shape factor 0.015 0.006 2.670 0.008

Placental weight 0.000 0.000 36.544 0.000

Table 3 shows the same models of total transport cost and shape factor S predict-
ing beta. Total transport cost is correlated with beta (placental functional efficiency).
Model 2 includes placental weight; the distribution of beta varies with placental
weight (heteroscedastic). Therefore, even though beta is calculated from placental
weight, it is reasonable to include placental weight as a covariate. The point estimate
of effect is reduced after adjustment for placental weight but remains highly statis-
tically significant. Shape factor S is uncorrelated with beta in univariate regression,
consistent with the results of correlation. Placental surface shape in isolation, out of
context of other parameters of the placenta, would hardly be expected to be a pre-
dictor of placental functional efficiency. However, the more regular the shape for a
given placental weight (Model 2) the less the beta, and the larger the placenta relative
to the birth weight (reflecting poorer functional efficiency). Thus, while shape does
not have independent effects on beta, the rounder any placenta is (the lower the shape
factor S) at a given weight, the more efficient the placenta.
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Localized Band-Limited Representation and
Robust Interpolative Image Manipulation

H. Xiao, M. C. Gonzalez and N. Fugate

Abstract In this chapter, we describe an image representation framework based on
which a robust, nonparametric interpolation method for filling in “missing” infor-
mation of an image can be performed. As in an earlier work, this approach utilizes
a class of localized band-limited functions that are compact in both image and fre-
quency domains. However, the current algorithm may be carried without a statistical
classifier such as a K-means algorithm, which was employed in our previous work.
After a brief description of our approach, results are given to show its efficacy in a
few use cases.

1 Introduction

With the rapid development of imaging devices and ever increasing computational
power, a wide variety of interesting image analysis problems have arisen in fields
ranging from medicine, chemistry, geophysics, satellite imagery, and remote sensing
to digital photography. Whether for the purpose of segmenting cancerous cells from
healthy ones via hyperspectral imaging, or reconstructing a three-dimensional model
of proteins from two-dimensional slices, features of objects in an image often need
to be modeled, detected, extracted, enlarged, and cataloged. The effectiveness of
the approaches generally depends upon the underlying mathematical model used for
representing the images.
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Although images are seldom truly band-limited (i.e., have compactly supported
Fourier transforms), they are generally considered “piece-wise smooth” and are
frequently modeled locally as such by polynomials and trigonometric functions.
In particular, image representation and band-limited functions are no strangers to
one another. Indeed, discrete cosine transform (DCT) is part of the popular image
format JPEG; many other algorithms in image processing (filtering, encoding, edge
detection, texture analysis, etc.) use Fourier analysis as a basic tool. Since image
features such as edges, corners, shadows, etc., are limited in the spatial domain,
the ideal representation should also be localized in spatial domains. In other words,
the ideal bases for image representation should be simultaneously compact in both
image and frequency domains.

In this chapter, we present a mathematical framework for representing images in
localized band-limited functions, in particular, with prolate spheroidal wave func-
tions (PSWFs). We first present relevant mathematical facts of the PSWFs in Sect. 2,
and introduce our representation framework and the interpolation algorithm in Sect. 3.
Results of using this approach without the combination of a statistical classifier for
filling in missing data of an image are shown in Sect. 4. Finally, we give conclusions
in Sect. 5.

2 A Localized Band-Limited Basis

In this section, we introduce a basis of band-limited functions, the PSWFs. We
summarize relevant facts of PSWFs below; for more detailed discussion about these
functions, see, for example, [1–3, 6].

PSWFs ψcn are eigenfunctions of the finite Fourier integral operator Fc : L2

[−Ω ,Ω] → L2[−T/2, T/2] defined by the formula

Fc(ϕ)(t) =
∫ Ω

−Ω
eicts ϕ(s) ds (1)

with c = Ω T/2. To be more specific, for any integer n ≥ 0, there exists a complex
number λcn and a corresponding real valued function ψcn such that

λcn ψ
c
n(t) =

∫ Ω

−Ω
eicts ψcn(s) ds (2)

for all t ∈ [−T/2, T/2]. Simple algebraic manipulations show that ψcn are also
eigenfunctions of the “sinc” integral operator Qc : L2[−Ω ,Ω] → L2[−T/2, T/2]
given by the formula

Qc(ϕ)(t) = 1

π

∫ Ω

−Ω
sin c (t − s)
t − s ϕ(s) ds. (3)

In other words,

μcn ψ
c
n(t) = 1

π

∫ Ω

−Ω
sin c (t − s)
t − s ψcn(s) ds (4)
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where μcn are real positive numbers (see, for example [4]). For all c > 0 and all
integer n, 0 < μcn < 1. Ordering μcn to be strictly decreasing such that μc0 > μ

c
1 >

. . . > μcn . . ., we denote byψc0 ,ψc1 , . . .,ψcn , . . . the corresponding functions, and call
ψcn the n-th order PSWFs.

It is well known that the PSWFs form an orthonormal basis for band-limited
functions on the real line. In addition, {ψcn} form a basis for all functions that are
square integrable on the interval [−T/2, T/2]. That is, for any function φ defined on
the interval [−T/2, T/2] such that

∫ T/2

−T/2
|φ(t)|2dt <∞,

we have

φ(t) =
∞∑

n=0

αn ψ
c
n(t), (5)

for any c > 0. We call (5) the Prolate series of φ.
Suppose that φ is a “smooth” function. It has been shown that the expansion

coefficient αn is proportional to μn in (3) for sufficiently large c, and μn decays
exponentially for n being sufficiently large (see [6]). The prolate series of φ can then
be truncated to any desirable precision.

3 Image Representation and Interpolation with Localized
Band-Limited Functions

The theory of band-limited functions based on PSWFs in one-dimension is com-
pletely generalizable to domains in higher dimensions. This theory is briefly
summarized in this section. Due to space limitation, we omit all proofs.

For image representation, we are interested in rectangular regions, which are
Cartesian separable. One can construct a basis on such domains using the tensor
product rule. For example, suppose that {ψcm(x),m = 1, 2, . . .,} and {ψcn(y), n =
1, 2, . . .,} are each a PSWF basis defined on the interval [−1, 1] with band-limited c.
Then the two dimensional functions φm,n defined as

φm,n(x, y) = ψcm(x)ψcn(y)

for all (x, y) ∈ [−1, 1] × [−1, 1] and all natural m’s and n’s are the tensor products
of {ψcm(x)} and {ψcn(y)}. In Fig. 1, we show a collection of such functions.

It can be easily shown that {φm,n(x, y)} form a basis for all functions that are
square-integrable on [−1, 1] × [−1, 1]. In addition, their Fourier transforms are
compactly supported. Therefore, they are also a basis for band-limited functions.
Parallel to the situation in one-dimension, the prolate series

f (x, y) =
∞∑

m,n=0

αm,n φm,n(x, y), (6)
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Fig. 1 A part of a Cartesian
separable bandlimited basis.
Here, c = 9, 0 ≤ m, n ≤ 5.
The basis functions are
evaluated on a 11×11 grid

of the two-dimensional function f may be truncated for sufficiently large m and n.
Considering an intensity image as the evaluations of a continuous function Ī (x, y)

at discrete locations x = k and y = l, where Ī (k, l) are the pixel values of the image
at horizontal and vertical pixel indices k and l, the image value at an arbitrary location
(k′, l′) may be evaluated (or interpolated), as soon as the truncated expansion (6) is
found. This interpolation is stable in this representation framework, as long as the
basis functions “well represent” the given image. In the event that some of the image
pixels are “corrupted” or otherwise become difficult to represent with the said basis,
we should expect jumps between the image and the “interpolated image”, where
there is “missing information.” Therefore, we can use a thresholding method to
“predict” which pixels have likely been corrupted. We will then use a second pass of
the interpolation algorithm without the “corrupted” pixels to finally interpolate our
image. Using this procedure, no statistical classification methods or explicit masks
for identifying the locations of the missing data are needed, which were required in
our previous work [5]. As before, we process the image in nonoverlapping blocks,
as no Gibbs phenomenon will be present, and the procedure is still nonparametric.

4 Results

We implemented our two phase interpolation algorithm described above. To illustrate
the effectiveness of the approach, we show in Fig. 2 an example of the algorithm
“denoising” an image of the eye. We introduced an additive Gaussian noise (with
the average μ relative to the average pixel intensity and σ being 0.2μ) to about 10 %
of the pixels of the image. Our algorithm correctly identified 9.080 % of the pixels
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Fig. 2 From left to right: a the original image, b the corrupted image of the eye with 10 % noise,
c the interpolated image of the eye with c = 6, and d the reconstructed image of the eye with a
median filter

as being corrupted when 9.718 % of the pixels were actually corrupt. Our algorithm
also identified 0.797 % of the pixels as corrupted when they were not. In comparison,
we also implemented a simple median deblur-filter, which alters every pixel indis-
criminately. The reconstructed image of our algorithm is noticeably sharper than
that of the deblur-filter, especially in areas with more textures (e.g., near the iris).
We further tested our method on additional cases of the Gaussian additive noise with
severalμ’s and σ ’s. We list the results in Table 1. For each case, the additive Gaussian
noise was created with the mean (relative to the average image intensity value) and
standard deviation (relative to the mean) given by μ and σ , respectively. The mean
squared errors (MSEs) and peak signal-to-noise ratios (PSNRs) are reported for the
corrupted images and the revised image in columns 5 and 11, and columns 6 and 12,
respectively. Throughout the experiment, we set c = 7 and set blocksize to 13. The
% Noise values describe the targeted percentages of the pixel locations that were
altered by the corruption process. As can be seen, the reconstruction from the noisy
images is robust, and is satisfactory in general regardless of the local texture around
the missing pixels. In Fig. 3, we show a result of the algorithm for “in-painting” the
missing region of the image of a girl, with the missing pixel location not given.

5 Conclusions

We describe an approach for representing images in band-limited functions that
are also spatially concentrated. Using this approach, we develop an interpolation
procedure with two phases, which can be used in supplying missing (or corrupted)
image data, without prior knowledge or explicit statistical classifications of missing
pixel locations. We show that, in a range of noisy environments, the algorithm
performs effectively. Therefore, in the event that noise does not overlap significantly
with the original image in its frequency profile, our method is simple and effective.

Acknowledgments The authors of this work were in part supported by NSF DMS-1016712.
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Table 1 Mean squared error (MSE) and peak signal-to-noise ratio (PSNR) of corrupted, and revised
images using our method, and a deblurring method for several parameter settings

μ σ %Noise Type MSE PSNR μ σ %Noise Type MSE PSNR

1.0 0.2 05 Corrupted 0.014 25.378 0.5 0.2 05 Corrupted 0.004 29.318
Revised 0.001 36.506 Revised 0.001 35.233

10 Corrupted 0.025 22.488 10 Corrupted 0.009 26.189
Revised 0.003 33.867 Revised 0.025 32.098

15 Corrupted 0.038 20.538 15 Corrupted 0.0143 24.478
Revised 0.006 30.163 Revised 0.0035 30.553

20 Corrupted 0.053 19.412 20 Corrupted 0.0194 23.150
Revised 0.010 27.494 Revised 0.0054 28.704

1.0 0.3 05 Corrupted 0.0164 24.335 4.0 0.1 05 Corrupted 0.162 13.926
Revised 0.001 34.495 Revised 0.0002 43.713

10 Corrupted 0.029 21.291 10 Corrupted 0.359 10.466
Revised 0.004 29.525 Revised 0.001 33.987

15 Corrupted 0.048 19.307 15 Corrupted 0.521 8.845
Revised 0.009 26.519 Revised 0.008 26.770

20 Corrupted 0.0617 18.217 20 Corrupted 0.700 7.569
Revised 0.0133 24.859 Revised 0.025 21.971
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Fig. 3 Reconstruction of Lena (256×256) after a line scratch. Left The image with a scratch of
about 3-pixel in width. Right The reconstructed image with c = 6, and M, N both being 7. The
blocksize is 15
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A Monte Carlo Measure to Improve Fairness
in Equity Analyst Evaluation

John Robert Yaros and Tomasz Imieliński

Abstract The Wall Street Journal’s “Best on the Street,” StarMine and many other
systems measure analyst stock-rating performance using variations on a method we
term the “portfolio method,” whereby a synthetic portfolio is formed to track the
analyst’s ratings. At the end of the evaluation period, analysts are compared by their
respective portfolio returns. Of the pitfalls to this method, one most troubling is that
the analysts are generally covering different sets of stocks over different time periods.
Thus, each analyst has access to different opportunities and just comparing portfolio
values is unfair. In response, we present a Monte Carlo (MC) method where, for
each analyst, we generate numerous “pseudo-analysts” with the same coverage over
the same time periods as the real analyst. Using this method, we are better able to
compare analysts, adjusted for their individual opportunities. We draw comparisons
between our results and the results from existing systems, showing that those systems
are less precise in reflecting analyst performance.

1 Introduction

Numerous systems for evaluating stock analysts have emerged over the years. This
reflects the investor’s desire to know which analysts are the best predictors of future
stock behavior. Good predictions can mean the investor can achieve higher returns,
so s/he is willing to pay substantially for such advice as long as s/he perceives
it to be the most accurate. At the same time, measuring analyst performance is
not straightforward. Each analyst likely covers a subset of stocks, such as major
pharmaceutical companies, and the subsets of stocks are nearly always different
across research firms employing different analysts. For example, one “retail” analyst
may cover Walmart, Target, and Costco, while a retail analyst at another firm covers
Walmart, Best Buy, and RadioShack. Moreover, the stocks covered by each analyst
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may vary in time, so making comparisons for a specified interval can be difficult since
the composition of stocks covered can change frequently throughout the interval.

The de facto approach1 to handling these challenges has been the “portfolio
method,” where a synthetic portfolio is created to track ratings made by the ana-
lyst. For example, when the analyst gives a positive rating, the portfolio goes long
one unit of that stock. For negative ratings, a short unit is added to the portfolio.
These positions are exited when the rating ends, such as when the analyst stops cov-
erage. The intent is that the portfolio value will reflect the accuracy of the analyst’s
decisions. At the end of a given time period, analysts can be ranked with the belief
that the most accurate analyst will have the highest portfolio value.

We find three inter-related shortcomings. First, each analyst covers different stocks
and, thus, has access to different opportunities. So, the portfolio return for one
analyst may be higher than another analyst simply because his/her stocks have greater
price changes. Second, while positive and negative ratings have counterpart actions
of buying and selling in the portfolio, neutral ratings do not have a clear action.
A frequent approach is to simply ignore them. Another approach is to invest in a
benchmark asset such that returns of the overall portfolio are diluted. It is true that
returns may be lowered by missed opportunity, but again considering that not all
analysts cover the same stocks, the missed opportunity may not be reflected when
comparing to other analysts if few or no other analysts covered that stock. Third, to
interpret portfolio return, one must have reference to the movement of the underlying
stocks. For example, suppose an analyst covering only one stock has a portfolio
return of 5 %. This might be excellent if perfect predictions would lead to a 6 %
return overall during the period but would be much weaker if 60 % was possible.

In recognition of these issues, we present a MC approach that harks back to a
1933 study by Cowles [2], who wanted to measure the accuracy of the stock market
predictors of his time. To do so, he generated several time series of predictions by
simply drawing from a stack of cards labeled “positive,” “negative,” etc. Using these,
he could determine if analysts were truly making predictions better than chance.
Similarly, we judge analysts in reference to “pseudo-analysts,” which we generate
such that they cover the same stock at the same time. So, against the pseudo-analysts,
the real analyst has access to the same opportunities. Based on stock returns during the
period, we compute the analyst’s percentile score against the pseudo-analysts. These
percentile scores are a much fairer means of comparison than simply comparing raw
portfolio returns. Moreover, our result allows for a more interpretable statement like
“the analyst beat 60 % of pseudo-analysts,” rather than a statement from the portfolio
method like “the analyst generated a + 5 % return” where interpretation is difficult
without a great deal of context.

1 Another approach is to use surveys, such as Institutional Investor’s annual awards, where experts,
such as brokerage clients, are asked to rank analysts. They have been called “beauty contests” [2]
since they can lack objectivity. Surveys can also be expensive and require expert participation.
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2 Background

Since 1993, the Wall Street Journal (WSJ) has published its “Best on the Street”
ranking of analysts. The methodology states: “For a stock rated a buy, a positive total
return yielded a positive score on that stock, but a negative return produced a negative
score. Similarly, for a stock rated sell, a negative total return yielded a positive score
while a positive return resulted in a negative score. Hold recommendations did not
affect the score” [1]. Consider the 2007 Pharmaceuticals Sector [7]:

BEING ON THE RIGHT side of huge swings in small companies helped propel Jonathan
Aschoff into the No.1 spot among pharmaceutical analysts . . . Mr. Aschoff . . . upgraded
shares of Adolor(c) Corp. to buy from hold in early February, the day its shares surged 41 %
. . . Mr. Aschoff downgraded the stock to sell in early September, the day the shares plunged
45 % . . . . He benefited from the methodology of this survey, which calculates returns from
the closing the day before the recommendation change, scoring for both the 58 % return
while he rated the stock a buy and a nearly 73 % decline during his sell recommendation.

Two shortcomings are evident. First, the previous day’s close is considered the
starting point of the rating. In two instances, the largest portion of return came from
stock movement occurring before the rating and, thus, does not reflect predictive
ability. Second, unless the other analysts had access to stocks with similar “huge
swings,” they would be unable to have a high rank, even if they were highly accurate
on their lower opportunity stocks. As discussed in Sect. 1, analysts typically have
limited control of their coverage, so the rankings can involve luck as much as skill.

StarMine has recognized some of these issues. The 2010 US award methodology
states “The portfolio return is opportunity adjusted to facilitate a fair comparison of
analyst performance regardless of their coverage universe.” The adjustment method
is not specified, but there is strong evidence [8, 9] that they normalize by the volatility
of the covered stocks. This can help, but volatility really measures noise rather than
opportunity. Consider Fig. 1. Stocks A and B have standard deviations 5.2 and 5.7 %,
respectively. StarMine’s methodology suggests stock B has greater opportunity. Yet,
stock B essentially has noise around an upward path, while stock A has a sequence of
returns that we might reasonably expect a good analyst could label so that an investor
would know when to be long or short.

StarMine’s methodology also states “Holds invest one unit in the benchmark (i.e.,
for an excess return of zero).” Consider Fig. 2. Suppose an analyst covers one of the
stocks and issues a hold. Regardless of whether the stock is C or D, his/her portfolio
return would be identical under the StarMine methodology. Yet, the analyst would
clearly be less correct about C than D (assuming a benchmark return of 0 %).

3 Data and Method

We use the Center for Research in Security Prices (CRSP)’s daily total return for each
stock which includes not only price changes but all payouts (e.g., cash dividends).
Values after delisting are also used, which prevents upward biases.
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0 10 20 30 40 50

0%

20%

40%

Time

C
um

ul
at

iv
e 

R
et

ur
n

Stock A
Stock B

Fig. 1 Equal predictive opportunity

0 10 20 30 40 50

0%

10%

20%

Time

C
um

ul
at

iv
e 

R
et

ur
n

Stock C
Stock D

Fig. 2 Equal reward for Hold ratings

We use the Capital Asset Pricing Model (CAPM) to calculate abnormal return,
which is the difference between a stock’s actual and expected return. Abnormal return
reflects the job of the analyst, which is usually not to predict if a stock will go up or
down in absolute, but to predict its performance relative to the market or peers [5].
For a stock s over time period T , we calculate abnormal return R̂s,T as

R̂s,T = Rs,T − Rf ,T + βs,T · (Rm,T − Rf ,T ), (1)

where Rs,T , Rm,T and Rf ,T are the returns over time period T of stock s, the US
market and a risk-free instrument, respectively. Market and risk-free returns are
obtained from [4]. The sensitivity of stock s to the market is denoted by βs,T , which
is calculated immediately prior to time period T using the regression

rs,t − rf ,t = α + βs,T · (rm,t − rf ,t ) + εt , (2)

where rs,t , rm,t and rf ,t are 20-trading-day returns for the stock, market and a risk-
free instrument at time t , respectively, and εt is the error at time t . The interval of
20 trading days is approximately 1 calender month and we regress over a 500-day
period, so the regression is over 25 points.
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BUY BUY SELLHOLD

2008 20092007
t0

Fig. 3 An example timeline of analyst ratings for a single stock are shown on top. The lengths
considered for the year’s returns calculations are shown on bottom

For ratings, we use the I/B/E/S US dataset, which assigns each analyst a unique
identifier that remains constant even if s/he switches firms. I/B/E/S also standardizes
each firm’s ratings into a five-level system of 1-Strong Buy, 2-Buy, 3-Hold, 4-
Underperform, and 5-Sell. For simplicity, we use 1 and 2 as “Buy,” 3 as “Hold,”
and 4 and 5 as “Sell.” Once an analyst makes a rating, we consider it active until
(1) the analyst issues a new rating for the stock, (2) a different analyst at the same
firm issues a new rating (i.e., stock was reassigned), (3) a stop coverage is issued by
the firm, (4) the stock is delisted, or (5) 250 trading days (approx. 1 calendar year)
elapses.

WSJ and StarMine awards are annual. Correspondingly, we break our data into
years. For a single stock s in a single year, suppose an analyst has ratings with time
periods T1, T2, ..., Tn. We compute the cumulative abnormal return as

R̄s =
n∑

k=1

dk · R̂s,Tk , (3)

where dk corresponds to the rating at Tk , where Buy is +1, Hold is 0 and Sell is −1.
As Fig. 3 exemplifies, returns are only counted within the measurement year.

Let Fy denote the set of all ratings of all analysts on all stocks where the ratings
overlapped the measurement year, y. To evaluate a single analyst on a single stock
over year y, we generate multiple pseudo-analysts where each analyst begins on
the start date of the analyst’s earliest rating that overlaps year y (t0 in Fig. 3). We
then randomly sample from Fy to generate a sequence of rating lengths until the
end of the measurement year is reached or exceeded. Buy, Hold and Sell levels are
subsequently applied by again sampling from Fy . Thus, both the length and level
distributions come directly from the real analyst population, matching our desire that
the pseudo-analysts replicate the real analysts. This helps avoid biases (dis)favoring
the real analysts, although it replicates their behavior, even if irrational (e.g., analysts
tend to issue more buys than sells [6]).

For each pseudo-analyst, abnormal return is calculated in the same manner as the
real analyst. We then compute a percentile value ps , which is the fraction of pseudo-
analysts that had lower abnormal return R̄s than the real analyst. We compute a
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composite score over all stocks S in the analyst’s coverage as

p̄s =
∑
s∈S !s · ps∑
s∈S !s

, (4)

where !s is the number of days stock s was covered during the year. Analysts can be
ranked and compared by p̄s . As stated in Sect. 1, p̄s is easily interpretable since it
indicates how many random analysts the real analyst outperformed.

We recognize contention may exist over some aspects of our approach (e.g., returns
should use a sector benchmark rather than a market benchmark, Strong Buy should
be differentiated from Buy, etc.). These aspects can be altered for particular situations
and tastes, yet, the shift to a MC approach is a significant structural improvement. For
example, in the case of holds, lost opportunity is truly captured in the MC method
because pseudo-analysts will have higher returns if a buy or sell rating was more
appropriate. In the portfolio method, it is unclear if other analysts will have higher
portfolio return since few others may be covering the same stock.

4 Experimental Results

WSJ and StarMine award analysts were collected from their respective websites
for years 2001–2009 (award years 2002–2010). Analysts were manually linked to
I/B/E/S using their names, firm at award time and textual descriptions. For each
stock covered by each analyst in a given year, we generate 10,000 pseudo-analysts.
Average percentile values for all real analysts and for WSJ and Starmine analysts are
shown in Table 4. As can be seen in the All analysts column, the median percentile
value is near 0.5, indicating that the average analyst tends to do no better than an
average pseudo-analyst. With statistical significance at the 5 % level for all years
using a Mann–Whitney U test, WSJ award analysts tend to do better than analysts
without a WSJ award. The same is true of StarMine analysts. This is expected since
an analyst with higher score under the MC approach would tend to have higher value

Table 1 Median Monte Carlo
percentiles Year All analysts WSJ StarMine

2001 0.474 0.498 0.497

2002 0.487 0.545 0.543

2003 0.495 0.539 0.560

2004 0.505 0.560 0.556

2005 0.509 0.570 0.570

2006 0.500 0.540 0.551

2007 0.521 0.569 0.584

2008 0.494 0.523 0.528

2009 0.508 0.526 0.538
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under the portfolio method. Yet, as seen in Fig. 4, the WSJ and StarMine awards
do not capture many of the best analysts identified by the MC method. In analyzing
the results, we find this may occur in some instances because an analyst with high
MC score did not meet certain WSJ or StarMine requirements, such as covering a
sufficient number of stocks in a particular industry. However, we find that it occurs
frequently when an analyst has less opportunity to capture large returns. It also occurs
when an analyst is outranked by other analysts with erroneous hold ratings but were
not penalized for those rating under the WSJ and StarMine methodologies.

These results support our claim that the popular portfolio method does not properly
capture analyst performance. We suggest the presented MC method alleviates the
identified issues and offers a fairer representation of analyst accuracy.
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Wake Topology for Steady Flow Past an Inclined
Elliptic Cylinder

Peter J. S. Young

Abstract The steady flow of an incompressible viscous fluid past an elliptic cylinder
with minor-to-major axis ratio of 0.2 and at incidence to the free stream is considered.
Numerical results for Reynolds number up to 450 and inclination angle varying from
0◦ to 20◦ are presented which permit completion of a bifurcation diagram describing
the wake topology behind the cylinder in terms of three regions: Region I with no
separation; Region II with a single recirculatory region attached to the cylinder; and
Region III with two recirculatory regions, one attached and one unattached.

1 Introduction

Numerical studies of the steady flow of an incompressible viscous fluid past an
elliptic cylinder at inclination to the free stream have identified a wake topology
defined by the presence of recirculatory regions behind the cylinder. Dennis and
Young [3], in considering an elliptic cylinder with minor-to-major axis ratio of 0.2,
identified three regions: Region I where there is no flow separation; Region II where
there is a single recirculatory region attached to the cylinder; and Region III where
there are two recirculatory regions, one attached and one unattached. Their results
were summarised in a bifurcation diagram showing region boundaries as functions
of Re and α for Re up to 40 and α varying from 0◦ to 90◦. Sen et al. [6] confirmed
this behaviour and predicted non-monotonic behaviour for the Region I–II boundary
curve for Re in the range 184–205 and 0◦ ≤ α ≤ 50.

The objective of the work reported here has been to extend numerical solutions
of the flow past an inclined elliptic cylinder to higher Re to thereby complete the
bifurcation diagram presented by [3]. This has been achieved through numerical
solutions obtained for Re up to 450 and α varying from 0◦ to 20◦.
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2 Problem Formulation

An elliptic cylinder with major and minor axis lengths of 2a and 2b is placed with its
centre at the origin of Cartesian coordinates (x, y) and its major axis in the direction
of x. The undisturbed stream has velocity U at angle α to the positive direction of
x. The problem is formulated in the following elliptic coordinates (ξ , η):

x = cosh ξ cos (η + α), y = sinh ξ sin (η + α) (1)

The cylinder surface is associated with ξ = ξ0 where ξ0 = tanh−1 (b/a).
The flow field is described by the two-dimensional Navier Stokes equations. Using

a stream function Ψ , vorticity ζ formulation, the non-dimensional Navier Stokes
equations in elliptic coordinates are given by:

∂2Ψ

∂ξ 2
+ ∂2Ψ

∂η2
+ 1

2 (cosh 2ξ − cos 2(η + α))ζ = 0 (2)

∂2ζ

∂ξ 2
+ ∂2ζ

∂η2
= Re

2

(
∂Ψ

∂η

∂ζ

∂ξ
− ∂Ψ

∂ξ

∂ζ

∂η

)
(3)

where Re = (2Ua cosh ξ0)/ν is the Reynolds number based on the half-length a of
the major axis for the elliptic cylinder and ν is the dynamic viscosity of the fluid.

The boundary conditions, reflecting no slip on the cylinder surface, velocities
approaching the free stream at far distances from the cylinder, and continuity with
respect to the angular coordinate, are the following:

Ψ = ∂Ψ

∂ξ
= 0 when ξ = ξ0, (4)

e−ξ ∂Ψ
∂ξ

→ 1
2 sin η, exp−ξ ∂Ψ

∂η
→ 1

2 cos η, ζ → 0 as ξ → ∞, (5)

Ψ (ξ , η) = Ψ (ξ , η + 2π ), ζ (ξ , η) = ζ (ξ , η + 2π ). (6)

One difficulty in obtaining numerical solutions to this problem is the handling of the
far wake with imposition of suitable boundary conditions for Ψ and ζ as ξ→∞.
Imai [5] has obtained the leading terms of the asymptotic solution for this region,
a key characteristic of which is ζ becomes singular in the far wake as ξ→∞.
Outside of the far wake ζ is zero and the solution is governed by Laplace’s equation
for Ψ . The asymptotic problem has also been formulated by Dennis [1] using a
Hermite polynomial expansion for ζ to eliminate the angular coordinate and reduce
the problem to a set of ordinary differential equations.Young [7] obtained the leading
term solutions to these equations and confirmed their agreement with [5].
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Fig. 1 Numerical grids: a (z, η) grid in black and (z,φ) grid in blue showing asymptotic nature of
ζ as z → 0; b (z, η) and (z,φ) grid lines in elliptic coordinates

The following variables are used to transform the Navier Stokes equations to
enable the asymptotic solution for Ψ and ζ to be used:

z = e−ξ/2, φ = η

2k eξ/2 where k =
√

2
R

, (7)

where R is the Reynolds number related to Re by R = Re/ cosh ξ0. The variable φ
takes on the range (−∞,∞) as z → 0, this corresponding to ξ → ∞. The far wake,
where the vorticity is nonzero, therefore becomes singular about η = 0.

3 Numerical Considerations

The Navier Stokes equations are approximated using central differences and solved
using an iterative Gauss–Seidal approach. Two numerical grids are employed, Grid
1 in (z, η) space that covers the full flow domain and Grid 2 in (z,φ) space that maps
onto the wake region behind the cylinder. These grids are shown in Fig. 1. Grid 2
has been adopted to capture the singular behaviour of the vorticity in the far wake as
z → 0, this being illustrated in Fig. 1a. Suitably transformed versions of the Navier
Stokes equations are used for each of these grids.

Grid 1 is defined for the region z0 ≤ z ≤ zN and −π ≤ η ≤ π but with the Grid 2
subregion excluded. For Grid 1, the far field boundary condition for Ψ is applied at
z = z0 and the cylinder surface is specified at z = zN . Grid 2 is defined for the region
z0 ≤ z ≤ zA and φMin ≤ φ ≤ φMax , where the far field boundary conditions for ζ
and Ψ are applied at z = z0. The Grid 1–2 boundary closer to the cylinder is defined
at z = zA, and φMax = π/2kzA (corresponding to η = π ), with φMin = −φMax . The
boundaries between the Grid 1 variable η and Grid 2 variable φ vary as a function of z
given by ηφMax = 2kzφMax , with ηφMin = −ηφMax . A numerical matching between
Grids 1 and 2 is performed at these boundaries.
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Boundary conditions are also required forΨ and ζ at the cylinder surface z = zN .
Equation (4) is used for Ψ while a condition for ζ is obtained through a finite
difference approximation at the cylinder surface based on Eqs. (2) and (4).

4 Results

Numerical results have been obtained for the elliptic cylinder with minor-to-major
axis ratio of 0.2 for Re up to 450 and inclinations varying from 0◦ to 20◦, with
higher inclinations for Re up to 150. Validation of the numerical method has been
performed through consideration of the symmetrical flow past a circular cylinder for
Re up to 300, and for the asymmetric flow past an inclined elliptic cylinder for Re
1–40 and inclinations varying from 0◦ to 90◦. The numbers of grid points taken for
the z and η coordinates were N = 160 and M = 160. Results were also obtained
using coarser grids in order to investigate grid dependence of the results.

Numerical results obtained for the symmetric flow past a circular cylinder
favourably compare with Fornberg [4], e.g. present results using a 160 × 160 grid
(for 0 ≤ η ≤ π ) at Re = 300 give CD = 0.723 compared with CD = 0.729 from
[4], and a wake bubble length of 40.61 compared with 40.4 estimated from Fig. 10
of [4].

A comparison of results for the flow past an elliptic cylinder atRe = 20 and 40 and
α varying from 0◦ to 90◦ was made with [3, 6]. At Re = 20 there is good agreement
across all results with discrepancies in the order of 1%. Greater discrepancies were
found for results at Re = 40. Drag coefficient results were in good agreement with
[6], discrepancies being 1–2 %. A comparison of lift coefficient results with [6] found
discrepancies of 8 % at α = 10◦, this reducing to 1 % for α ≥ 40◦. A comparison of
drag coefficient results with [3] found discrepancies in the order of 1 % for α ≤ 30◦,
this increasing to 14 % at α = 90◦. For the lift coefficient, differences with [3] varied
between 3 % at α = 30◦ to 22 % at α = 80◦. The streamline patterns obtained
by [6] for Re= 40 and α≥ 45◦, when 2 recirculatory regions are present, always
had the upper bubble attached to the cylinder. In contrast, [3] found for α ≥ 57◦
the streamline pattern transitioned to having the lower bubble attached. The results
obtained in the present study are consistent with [6] on this.

Completion of the bifurcation diagram required determination ofRe at which sep-
aration first occurs for the elliptic cylinder at 0◦ incidence. Solutions were obtained
at Re = 190 (no separation) and 195 (separation) from which initial separation is
estimated at Re = 192. This is in close agreement with Dennis and Chang [2] who
estimated initial separation to occur at some Re near but less than 200, and [6] with
prediction Re = 184.75. Further numerical solutions were obtained at various Re
and α to permit completion of the bifurcation diagram, which is presented in Fig. 2.
The immediate observation from this is the non-monotonic behaviour for Re ≥ 192
and 0◦ ≤ α ≤ 17◦. Such behaviour was predicted by [6] for the Region I–II curve
shown in Fig. 2, this being based on a linearity property of eddy length with Re.
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Fig. 2 Bifurcation diagram showing separation of Regions in (Re,α) space

Given the symmetric flow at some Re just above 192, introduction of a small
angle of incidence results in the flow transitioning to Region III topology with a
single attached upper separation bubble complemented by a second unattached lower
bubble. The sizes of these recirculatory regions are found to decrease with increasing
α until the unattached bubble disappears thereby giving a Region II topology. The
attached bubble continues to decrease in size with further increases in α until it
also disappears yielding Region I topology. Further increases in α then lead to the
behaviour reported by [3]. This behaviour is illustrated in Fig. (3) forRe = 220. The
range of α over which this occurs decreases with increasing Re until, at some Re in
the range 230–240, the wake topology transitions to the flow being separated for all
α. The Region II–III curve in Fig. 2 closes at some Re just greater than 420, above
which the flow pattern consists of 2 recirculatory regions for all α > 0◦.

Results for the lift and drag coefficients obtained forRe in the range 200–450 and
0◦ ≤ α ≤ 20◦ are shown in Figs. 4 and 5.

5 Conclusions

Numerical results for the steady flow past an elliptic cylinder have been obtained
for Re up to 450 at various inclinations. These results have permitted completion of
the bifurcation diagram presented by [3], which characterises flow solutions on the
basis of recirculatory regions behind the cylinder. The trend of the findings are in
agreement with predictions by [6] of a non-monotonicity in the relationship between
incidence angle and Re for initial separation. The non-monotonic behaviour for
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Fig. 3 Streamlines for Re = 220, inclinations: a α = 0.1◦ b α = 0.2◦ c α = 1.1◦, d α = 5.0◦, e.
α = 10.0◦, f. α = 15.0◦

Fig. 4 Drag coefficients
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Fig. 5 Lift coefficients

Re ≥ 192 with incidence angle increasing from 0◦ is of interest, particularly in how
the separated bubble initially decreases in size and disappears before reappearing
again.
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Leading Unstable Linear Systems to Chaos by
Chaos Entanglement

Hongtao Zhang, Xinzhi Liu and Xianguo Li

Abstract Chaos entanglement is a new approach to systematically generate chaotic
dynamics by entangling two or multiple stable linear systems with periodic nonlin-
ear coupling functions such that each of them evolves in a chaotic manner. In this
study, chaos entanglement is extended to unstable linear systems by introducing a
well-defined bound function to guarantee the boundedness of each unstable linear
system. A novel 6-scroll attractor is obtained by entangling three identical unstable
linear systems with sine function. It is verified that this attractor possesses a posi-
tive Lyapunov exponent and its trajectories are bounded. The Lyapunov spectra and
bifurcation diagram reveal the chaotic behaviors of this new attractor.

1 Introduction

Chaos phenomena, characterized by the so-called “butterfly effect”, have been found
in many fields such as physics, biology, philosophy, economics, and engineering.
Significant attention is attracted due to the deterministic characteristic and unpre-
dictable essence of chaotic systems. Specifically, since the pioneering work by Pecora
and Carroll [16], chaotic systems have become useful tools in engineering applica-
tions, for instance, the carrier for secure communication, the random bit generator,
and the chaotic radar (see [5, 9, 15, 18, 21, 28] and references therein).

Methods to construct new chaotic attractors mainly focus on extending and gen-
eralizing existing chaotic systems such as Lorenz system [11], Chua’s circuit [14],
and Mackey-Glass equation [13]. Starting from Lorenz system, a simplified math-
ematical model for atmospheric convection, Chen attractor was presented [3]. A
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general canonical form of Lorenz system was established [2]. Multi-scroll Chen at-
tractor was generated [10]. Starting from Chua’s circuit, the first real-world chaotic
circuit, multi-scroll chaotic/hyperchaotic (with more than one positive Lyapunov
exponent) attractors were reported such as a n-double scroll attractor [19], a multi-
grid attractor [24], a multi-scroll and hypercube attractor [22], a 3-D multi-scroll
chaotic attractor [12], and a multi-folded torus chaotic attractor [25]. Starting from
Mackey–Glass equation, a physiological control system with time delay, a mod-
ified attractor with a piecewise nonlinearity is obtained [20]. More results were
presented such as a n-scroll chaotic attractor from a delay differential equation [23],
the simplest delay differential equation to generate chaotic attractors [17], a family
of novel chaotic/hyperchaotic attractors from a first-order delay differential equa-
tion with sine function [26], and a delay dynamical system with hyperbolic tangent
function [1]. Also, some new technologies were adapted to construct new chaotic
attractors, for instance, nonautonomous techniques [7], switching approaches [8],
and fractional differential equations [6]. A considerable success has been achieved in
creating new chaotic attractors by above methods. However, some problems arise due
to the similarity of relative attractors, for instance, the security of chaos-based secure
communication. Chaos entanglement was presented by [27] as a bridge to connect
linear systems to chaos, by entangling two or multiple stable linear systems to form
an artificial chaotic system/network such that each of them evolves in a chaotic man-
ner. Variable strange attractors and abundant dynamical behaviors reveal that this
approach possesses the potential to create various desired chaotic attractors without
similarity. Unfortunately, it is validated only applicable to stable linear systems. For
unstable linear systems, it fails as the periodic entanglement functions could not
guarantee the boundedness of the entire system, which is a necessary condition for
generating chaos.

The objective of this study is to further explore the potential of chaos entanglement,
extending it to unstable linear systems. First, a piecewise bound function is well
defined and introduced to each unstable linear system. Furthermore, a 6-scroll strange
attractor is achieved by entangling three identical unstable linear systems with sine
function. The remainder of this paper is organized as follows. In Sect. 2, the new
chaotic attractor is described in detail. Lyapunov spectra and bifurcation are analyzed
in Sect. 3. Conclusions are given in Sect. 4.

2 New Attractor

Chaos entanglement is to entangle two or multiple linear systems to form an artificial
chaotic system/network such that each subsystem evolves in a chaotic manner. There
are two conditions required: one is that each subsystem should be stable while the
other is that the entanglement function is periodic [27]. Consider three identical
unstable linear subsystems as follows,

ẋi(t) = k1xi(t), for i = 1, 2, 3, (1)
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Fig. 1 Chaotic attractor given by system (3) with k1 = 0.12, k2 = −3, x0 = 5, and bi = 5
(i = 1, 2, 3) starting from (1,−2, 3)

where xi(t) (i = 1, 2, 3) is the state variable. For k1 > 0, all three subsystems are
unstable. A bound function is defined as,

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(k2 − k1)(x − x0), x > x0;

0, |x| ≤ x0;

(k2 − k1)(x + x0), x < −x0.

(2)

where x0 is a positive constant, k2 is a negative real number. Adding this bound
function to each subsystem and entangling them by sine function gives

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = k1x1(t) + g(x1(t)) + b1 sin (x2(t))

ẋ2(t) = k1x2(t) + g(x2(t)) + b2 sin (x3(t))

ẋ3(t) = k1x3(t) + g(x3(t)) + b3 sin (x1(t))

, (3)

where bi (i = 1, 2, 3) is the entanglement coefficient and sin (.) is the entanglement
function. For k1 = 0.12, k2 =−3, x0 = 5, and bi= 5 (i=1, 2, 3), a 6-scroll attractor
is obtained as shown in Fig. 1. Numerical computation confirms that this chaotic
system possesses a positive Lyapunov exponent with λ = 0.2743.
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Fig. 2 The bifurcation diagram of x1 versus k1 with k1 ranging in [0, 3], k2 = −3, x0 = 5, and
bi = 5 (i = 1, 2, 3)

3 Bifurcation and Lyapunov Spectra

The Lyapunov exponents of system (3) are calculated as λ1 = 0.2743, λ2 = 0, and
λ3 = −4.4946 for k1 = 0.12, k2 = −3, x0 = 5, and bi = 5 (i = 1, 2, 3). Since the
largest one is positive, combining with its boundedness, it could be said that system
(3) is chaotic. Furthermore, its Lyapunov dimension (Kaplan–Yorke dimension) is
calculated as

DKY = k +
j∑

i=1

λi

λk+1
= 2 + λ1 + λ2

|λ3| = 2.0610,

where k is the maximum integer such that the sum of the k largest exponents is still
nonnegative. If k = 0, let DKY = 0.

Next, we study the bifurcation diagram and Lyapunov spectra of system (3). Fix
k2 = −3, x0 = 5, and bi = 5 (i = 1, 2, 3) and let k1 vary in [0, 3]. Figure 2 is the
bifurcation diagram of x1 versus k1. The Lyapunov spectra is shown in Fig. 3. The
uppermost curve (the blue) denotes its maximal Lyapunov exponent, which is an
indication of chaos. When this blue curve goes into the upper half plane, system (3)
turns into chaos. The chaotic regions mainly distribute in (0, 0.3). In addition, it can
be observed whenever the uppermost curve becomes positive, the middle one (the
green) rapidly approaches to zero, which is in coincidence with the fact that at least
one Lyapunov exponent vanishes (equal to 0) if the trajectory of an attractor does
not contain a fixed point [4].
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Fig. 3 The Lyapunov spectra with k1 ranging in [0, 3], k2 = −3, x0 = 5, and bi = 5 (i = 1, 2, 3)

4 Conclusion

In this present study, chaos entanglement has been extended to unstable linear sys-
tems by introducing a piecewise bound function to guarantee the boundedness of each
system. A 6-scroll strange attractor has been achieved. Numerical computation has
confirmed that this attractor possesses a positive Lyapunov exponent. Furthermore, its
chaotic behaviors have been observed by the bifurcation diagram and Lyapunov spec-
tra. To further improve this method, there are two outstanding issues open to study
now. One is to find out the necessary and sufficient conditions for chaos entanglement
while the other is to generate hyper-chaos by chaos entanglement. Specifically, to
further explore possible connections between linear systems and chaotic attractors
will be our future work.
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Impulsive Control and Synchronization of
Spatiotemporal Chaos in the Gray–Scott Model

Kexue Zhang, Xinzhi Liu and Wei-Chau Xie

Abstract This chapter investigates the impulsive control and synchronization prob-
lem of spatiotemporal chaos in the Gray–Scott model. Based on the Lyapunov
function method, a class of pinning impulsive controller is designed to stabilize
and synchronize the spatiotemporal chaos in the Gray–Scott model. The approach
allows us to analyze the stability and synchronization problem of other spatiotem-
poral chaotic systems with the same structure. Numerical simulations are provided
to illustrate the theoretical results.

1 Introduction

The theory of impulsive differential equations (IDEs) has been a very active research
area for the past decades, since IDEs provide a framework for us to handle the
mathematical modeling of many real-world dynamical systems which subject to
abrupt changes of the states at some discrete times. Based on the theory of IDEs, the
impulsive control method, the idea of which is to control the states of a system by
using small impulses at discrete moments, has been widely used in various control
problems.

Since the impulsive control method has been successfully used for systems mod-
eled by ordinary differential equations, it is natural for us to consider the impulsive
control problems of systems described by partial differential equations. In [2], the
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Fig. 1 Spatiotemporal evolutions of u1(t , x) and u2(t , x)

impulsive control method was first introduced to the control problem of spatiotem-
poral chaotic systems represented by partial differential equations. Impulsive control
problem of Kuramoto–Sivashinsky equation and impulsive synchronization problem
of Gray–Scott model have been reported. Inspired by the pinning impulsive control
method in [5], we shall extend the application of the pinning impulsive control
method to the synchronization problem of the Gray–Scott model.

The Gray–Scott model is one of the typical reaction–diffusion systems which has
a wide variety of spatiotemporal structures [1]:

∂u1

∂t
= −u1u2

2 + a(1 − u1) + d1∇2u1,

∂u2

∂t
= u1u2

2 − (a + b)u2 + d2∇2u2, (1)

where u1 and u2 are the concentrations of chemical species U1 and U2, respectively,
a is the flow rate, a + b is the removal rate of U2 from the reaction, and d1 and d2

are the diffusion coefficients of the two species.
In this chapter, we consider the one-dimensional version of the Gray–Scott model

with a = 0.028, b = 0.053, d1 = 2 × 10−5, and d2 = 10−5. Since E0 = (1, 0)
is a trivial steady state, it is necessary to add certain perturbation to it to obtain
nontrivial pattern from the initial state (1, 0). The initial conditions are chosen to be
(u1(0, x), u2(0, x))T = (1, 0)T with strong perturbations in the center region, and the
periodic boundary conditions are given by u1(t , 0) = u1(t ,L) = 1 and u2(t , 0) =
u2(t ,L) = 0. The spatiotemporal chaotic evolutions of the 1-D system (1) are shown
in Fig. 1. For more details about the Gray–Scott model and its chaotic dynamics,
please refer to [3] and [6].
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2 Impulsive Synchronization of Spatiotemporal Chaos

In this section, we shall discuss the impulsive synchronization of one-dimensional
Gray–Scott model with another identical system starting from different initial states.

Let the following one-dimensional Gray–Scott model serve as the drive system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u1
∂t

= −u1u2
2 + a(1 − u1) + d1

∂2u1
∂x2 ,

∂u2
∂t

= u1u2
2 − (a + b)u2 + d2

∂2u2
∂x2 ,

u(0, x) = u0(x), x ∈ [0,L],

u(t , 0) = u(t ,L) = h(t), t ∈ R
+,

(2)

where u(t , x) = (u1(t , x), u2(t , x))T , and the response system is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v1
∂t

= −v1v2
2 + a(1 − v1) + d1

∂2v1
∂x2 , t �= tk ,

∂v2
∂t

= v1v2
2 − (a + b)v2 + d2

∂2v2
∂x2 , t �= tk ,

Δv(t , x) = Ik(e(t , x)), t = tk , x ∈ [0,L], k = 1, 2, ...,

v(0, x) = v0(x), x ∈ [0,L],

v(t , 0) = v(t ,L) = h(t), t ∈ R
+,

(3)

where a, b, d1, and d2 are chosen as in the previous section, L = 2.5, v(t , x) =
(v1(t , x), v2(t , x))T , u0 and v0 are different initial conditions, h(t) is the periodic
boundary condition for both systems. Since the Gray–Scott model exhibits chaotic
behaviors, the same Gray–Scott systems will evolve differently if they have different
initial conditions.

In (3), Ik : R
2 → R

2, Δv(t , x) = v(t+, x) − v(t−, x), where v(t+, x) and v(t−, x)
denote the right limit and left limit of v(t , x) at t , respectively. e(t , x) = u(t , x) −
v(t , x) denotes the error state of the drive system and response system. The sequence
{tk} satisfies 0 = t0 < t1 < t2 < ... < tn < ..., and limn→∞ tn = ∞.

According to (2) and (3), the error system will be given
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂e1
∂t

= −u1u2
2 + v1v2

2 − ae1 + d1
∂2e1
∂x2 , t �= tk ,

∂e2
∂t

= u1u2
2 − v1v2

2 − (a + b)e2 + d2
∂2e2
∂x2 , t �= tk ,

Δe(t , x) = Ik(e(t , x)), t = tk , x ∈ [0,L], k = 1, 2, ...,

e(0, x) = e0(x), x ∈ [0,L],

e(t , 0) = e(t ,L) = 0, t ∈ R
+,

(4)

where e0(x) = u0(x) − v0(x).

Definition 1 Suppose that u(t , x) : R
+ × [0,L] → R

m for some m > 0, where
u is of class L2[0,L] with respect to x. Then ‖ · ‖2 is defined by ‖u(t , x)‖2 :=[ ∫ L

0 ‖u(t , x)‖2dx
]1/2

, where ‖ · ‖ is the Euclidean norm.
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Definition 2 We say that synchronization of the drive system (2) and the response
system (3) are achieved under impulsive controller {tk , Ik} if limt→∞ ‖u(t , x) −
v(t , x)‖2 = 0.

Clearly, exploring the synchronization of the two systems (2) and (3) is equivalent
to investigating the attractive property of the error states limt→∞ ‖e(t , x)‖2 = 0.

In order to force the response system (3) to synchronize with the drive system (2),
we design the following impulsive controller:

Ik(e(tk , x)) =
⎧
⎨

⎩
−qei(tk , x), i = Dk ,
0, i �= Dk ,

(5)

where the constant q ∈ (0, 1] is the impulsive strength to be designed, and the index
Dk is defined as follows: for the impulsive instant tk , one can reorder the error states
e1(tk , x) and e2(tk , x) such that ‖ej1 (tk , x)‖2 ≥ ‖ej2 (tk , x)‖2, then the index Dk is
defined as Dk = j1. We can see that the controller is only added to one state of the
response system (3) at each impulsive instant tk .

In [2], sufficient conditions about uniform impulsive controller are designed,
which require an upper bound for each impulsive interval. In order to improve these
sufficient conditions, we introduce the following definition.

Definition 3 ([4] Average Impulsive Interval) The average impulsive interval of
impulsive sequence ζ = {tk} is less than Ta , if there exist a positive integer N0

and a positive number Ta , so that Nζ (T , t) ≥ T−t
Ta

− N0, ∀T ≥ t ≥ 0, where
Nζ (T , t) denotes the number of impulsive times of the impulsive sequence ζ in the
time interval (t , T).
According to this definition, there is no requirement on the upper bound of each
impulsive interval, which is necessary for the impulsive control scheme in [2].

Now we are in the position to introduce the main result to guarantee the
synchronization of the drive system (2) and the response system (3).

Theorem 1 Suppose the average impulsive interval of the impulsive sequence ζ =
{tk} is less than Ta . Let ρ = 1 − q(q − 2)/2, and β = 4β2

√
β2

1 + 4β2
2 − 2a, where

βi := max{ supt∈R+ |ui(t , x)|, supt∈R+ |vi(t , x)|} for i = 1, 2. If ln ρ
Ta

+ β < 0, then
the synchronization of the drive system (2) and the response system (3) is achieved.

Remark 1 The idea of the proof for Theorem 1 is as follows: choose the Lyapunov
functionV (t) = 1

2‖e(t , x)‖2
2; based on the idea of the proof for Theorem 2 in [2], show

that V ′(t) ≤ βV (t) on each impulsive interval. For t = tk , we can follow the idea in

[5] to get V (t+k ) ≤ ρV (tk). Therefore, we can have V (t) ≤ V (t0)ρ−N0e
( ln ρ
Ta

+β)(t−t0),
which implies that the synchronization can be realized exponentially with the
convergence rate − 1

2 ( ln ρ
Ta

+ β).

Remark 2 Based on Lyapunov function method, the impulsive synchronization
criterion has been established. Compared with the existing result in [2], there are
two improvements of this criterion: we derived an upper bound for the average
impulsive interval, which is less conservative than the criterion in [2], since there is
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no strict restriction on the upper bound of each impulsive interval; pinning impulsive
controller is designed which is added to one state of the Gray–Scott model at each
impulsive instant. Let Ta be the upper bound of each impulsive interval and control
all the states of the system (3) at each time; then Theorem 1 will reduce to a special
case of the result in [2].

Remark 3 The criterion presented in Theorem 1 is closely related to the system
parameters, the average impulsive interval Ta and the impulsive strength q. From
Theorem 1, we can get the upper bound for the average impulsive interval:

Ta <
1

β
ln (1 − q(q − 2)/2). (6)

However, the criterion in Theorem 1 is a sufficient condition, which means that the
synchronization of the drive system (2) and the system (3) can be realized even if (6)
does not hold.

Remark 4 The chaotic behavior of the Gray–Scott model guarantees the existence
of βi , that is, boundedness of |ui | and |vi |. Therefore, even with slight perturbations
in system parameters, if the system exhibits chaotic behaviors, then our impulsive
control approach is still applicable to achieve the synchronization of the chaotic
system.

3 Impulsive Stabilization of Spatiotemporal Chaos

Since E0 = (1, 0)T is a trivial state of the Gray–Scott model, if we choose u0(x) =
h(t) = (1, 0)T , then, from the system (2), (u1(t , x), u2(t , x))T ≡ (1, 0)T .

Therefore, the synchronization problem of the drive system (2) and the response
system (3) reduces to the stability problem of the equilibrium E0 of the following
impulsive partial differential system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v1
∂t

= −v1v2
2 + a(1 − v1) + d1

∂2v1
∂x2 , t �= tk ,

∂v2
∂t

= v1v2
2 − (a + b)v2 + d2

∂2v2
∂x2 , t �= tk ,

Δv(t , x) = Ik(v(t , x)), t = tk , x ∈ [0,L], k = 1, 2, ...,

v(0, x) = v0(x), x ∈ [0,L],

v(t , 0) = v(t ,L) = h, t ∈ R
+,

(7)

where h = (h1,h2)T = (1, 0)T .
The impulsive controller is designed as follows:

Ik(v(tk , x)) =
⎧
⎨

⎩
−q(hi − vi(tk , x)), i = Dk ,
0, i �= Dk ,

(8)
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Fig. 2 Uniform impulsive intervals

where the index Dk is defined the same as in the controller (5) with e(t , x) = h −
v(t , x).

We have the following stability result about the impulsive system (7), the proof
of which is similar to the proof of Theorem 1.

Theorem 2 Suppose the average impulsive interval of the impulsive sequence ζ =
{tk} is less than Ta . Let ρ = 1 − q(q − 2)/2 and β = 4β2

√
β2

1 + 4β2
2 − 2a, where

β1 := max{supt∈R+ |v1(t , x)|, 1} and β2 := supt∈R+ |v2(t , x)|. If ln ρ
Ta

+ β < 0, then
the equilibrium E0 of the impulsive system (7) is globally asymptotically stable.

Remark 5 From Theorem 2, we see that based on the Lyapunov function method the
states of the one-dimensional Gray–Scott model are driven to the equilibrium E0 =
(1, 0)T effectively by a pinning impulsive controller. Actually, form Remark 1, we
can see that the equilibrium E0 of the impulsive system (7) is globally exponentially
stable with the convergence rate− 1

2 ( ln ρ
Ta

+β). In the following numerical simulations,
we choose Ta = 0.1 and q = 0.78, which implies that all the conditions of Theorem
2 are satisfied. Uniform impulsive intervals are chosen in Fig. 2 with tk+1 − tk = 0.1,
while t2k − t2k−1 = 0.04 and t2k+1 − t2k = 0.16 > Ta are chosen in Fig. 3. We
can see from Figs. 2 and 3 that the equilibrium E0 of system (7) is asymptotically
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Fig. 3 Nonuniform impulsive intervals

stable. The numerical method used for Figs. 1–3 is the forward Euler integrations of
the finite-difference equations.
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