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PREFACE

This a research monograph about logic.
Logic is both part of and has rôles in many disciplines, including, inter alia,

mathematics, computing, and philosophy. Our topic in this monograph, the
mathematical theory of reductive logic and proof-search, draws upon the tech-
niques and culture of all three disciplines but is mainly about mathematics and
computation.

Since its earliest presentations, mathematical logic has been formulated as
a formalization of deductive reasoning: given a collection of hypotheses, a con-
clusion is derived. However, the advent of computational logic has emphasized
the significance of reductive reasoning: given a putative conclusion, what are
sufficient premisses? Whilst deductive systems typically have a well-developed
semantics of proofs, reductive systems are typically well-understood only opera-
tionally. Typically, a deductive system can be read as a corresponding reductive
system. The process of calculating a proof of a given putative conclusion, for
which non-deterministic choices between premisses must be resolved, is called
proof-search and is an essential enabling technology throughout the computa-
tional sciences. We suggest that the reductive view of logic is (at least) as
fundamental as the deductive view and discuss some of the problems which must
be addressed in order to provide a semantics of proof-searches of comparable
value to the corresponding semantics of proofs. Just as the semantics of proofs
is intimately related to the model theory of the underlying logic, so too should
be the semantics of reductions and of proof-search. We discuss how to solve the
problem of providing a semantics for proof-searches in intuitionistic logic which
adequately models not only the logical but also, via an embedding of intuition-
istic reductive logic into classical reductive logic, the operational aspects, that
is, control of proof-search, of the reductive system. We conclude with a naturally
motivated example of our semantics of proof-search: a class of games.

In summary, then, the principal contributions of this monograph are the ones
listed below.

• In Chapter 1, we introduce our perspective on reductive logic and proof-
search, starting from a motiviation and explanation of the basic concepts.
We also provide a discussion of the mathematical prerequisites for readers of
this monograph. Specifically, we cover key basic topics in logic and algebra.
In logic, we cover basics of classical logic, intuitionism, and axiomatic proof
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systems; in algebra, we begin with basic ordered structures but focus mostly
on category theory.

• In Chapter 2, we provide an explanation of natural deduction proof systems
and their corresponding λ-calculi. Beginning with the necessary basics of
natural deduction systems for intuitionistic logic and the simply-typed λ-
calculus, we then present the λµ-calculus, giving both the basic definitions
and essential metatheory, before proceeding with a discussion of the (delicate
matter of the) addition of disjunction to λµ, based on recent papers of the
authors [97, 108, 111].

• We begin Chapter 3 with an account of the semantics of intuitionisitic nat-
ural deduction proof, based on models of the simply-typed λ-calculus. Here
we introduce a new form of games semantics which forms the basis for a
running example throughout the monograph. Our games combine features
of the games of Lorenzen [28, 72], used to model intuitionistic provability,
and of the games used by Hyland and Ong [64] to interpret fragments of
linear logic, and Ong [89] to interpret terms of the λµ-calculus. We then
present the semantics of classical natural deduction proofs via recently-
developed models of the λµ-calculus [89, 97], and its disjunctive extenstions
[97], based on fibrations of models of simply-typed calculi. We consider also
continutations in this context, adumbrating some of our concerns in later
chapters.

• In Chapter 4, we provide a systematic account of reductive proof theory.
Beginning with a somewhat historical account of (automated and interact-
ive) theorem proving, we provide a systematic account of sequent calculi,
including a summary of their essential meta-theory and their representation
in the classical λ-calculus [111]. We then provide a systematic account of
reductive proof theory, based on the sequent calculus and classical λ-calculi,
including a rational reconstruction of Mints’ intuitionitic resolution [82].

• In Chapter 5, we provide a systematic model-theoretic account of reductive
logic. Here the challenge is to provide semantic structures that are rich
enough to account not only for the space of proofs but also for the (larger)
space of reductions—all proofs may be seen as successful reductions whereas
many reductions fail to determine proofs. Our techniques are those of cat-
egorical model theory and categorical proof theory, and we make essential use
of the interplay between the semantics of proofs given by algebraic realizers
and the meaning of propositions given by Kripke’s account of truth-functional
semantics.

• Finally, in Chapter 6, we provide a semantics for proof-search in reductive
logic which properly incorporates the semantics of the principal control mech-
anism for proof-search, namely backtracking, within the model theory of the
logic. Here our focus is on proof-search in intuitionistic reductive logic, and
we exploit an embedding of intuitionistic proofs within classical proofs as a
framework within which control structures may be represented.
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A file of ‘Errata and Remarks’, giving corrections to any known errors in this
monograph, and providing clarifications and other remarks for this monograph,
will be maintained at the following:

http://www.cs.bath.ac.uk/˜pym/reductive-logic-errata.html
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FOREWORD

The relationship between logic and computation is historically complex and
varied, ranging from the traditional use of mechanical procedures in the basic
definition of a formal system, to the classification of computable functions via
first-order and type-theoretic logical systems.

In recent years the link between principles of assertion and comprehension
on the one hand, and of operation and application on the other, has brought
logical techniques to centre stage in the mathematical analysis of programming
languages and their features. Central to this study has been links forged between
systems of logic and systems of typed λ-calculi. These links, sustained at both
syntactic and semantic levels, provide an element of revisionist insight into both
formalist and intuitionist perspectives on logic, and at the same time provide
a framework for semantic study of programming language features sensitive to
some degree to operational concerns.

But logic has not only been a significant tool for analysis but also a mech-
anism for problem representation and direct solution. This latter application
rests on semi-decision procedures for natural systems of logic such as first-order
predicate calculus and its non-classical variants, and on computer assisted proof
construction environments. The former is typically organized around ‘reductive’
formalisms such as sequent calculi, and systems of tableaux has been a standard
part of artificial intelligence and computer problem solving since the birth of
modern computers; the latter has been mainly used to support human reasoning
about programs and program schemes.

In the early 1980s in Edinburgh—building on earlier work of Gordon, Milner,
and Plotkin in LCF, de Bruijn, Constable, and Martin-Löf in systems of intui-
tionistic logic and language—the Logical Frameworks (LF) initiative provided a
focus for the development of systems of logical language suitable for the direct
representation of formal proofs in natural form. LF aimed to provide a sys-
tematic linguistic and practical basis to working with a multiplicty of program-
ming logics—a formalized meta-logic—around which syntactic, semantic, and
programmatic approaches to working with formal systems could be organized.

It is fair to say that this project and its international counterparts around the
world, have had a major influence on subsequent investigations in semantics and
syntax of programming logic(s) on the one hand, and computer-assisted formal
proof environments on the other. Research on the representational elements of
this programme, and then subsequently on the semantic elements that grew out
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of the increasing understanding of typed λ-calculi and their categorical semantics
today forms a major branch of theoretical computer science.

Much less developed and explored was one of the original motivations for LF:
the practical calculation of proofs. This book goes some way to summarizing the
progress that has been made using the LF approach in the last decade or so.

Whereas it is traditional in automated deduction to motivate techniques such
as sequent calculi and unification in semantic terms—Löwenheim-Skolem, model
properties, etc.—this type of semantics gives little insight into the role these
mechanisms play in organizing systematic search and structuring the search
space. This has hindered, and continues to hinder, the improvement of tech-
niques of automated deduction and their application across the spectrum of
formal systems used for practical representation and reasoning.

By adopting a type-theoretic framework inspired by LF and successor sys-
tems, Pym and Ritter are in a position to represent the meta-language of
reductive formulations of logic such as sequent calculi, and reduction-oriented
operations such as unification. When rendered in this form, these meta-linguistic
techniques are laid open to proof-theoretical and ultimately a semantic analysis
every bit as refined as that conducted for programming languages, and in many
cases using similar techniques.

Thus one finds a representation of sequent calculi as type systems classifying
terms in a typed λ-calculus (λµν) for the representation of natural deductions.
The substitutional treatment of indeterminates in this setting provides a uniform
view of the notion of partiality or partial proof, the natural space of values that
proof-search algorithms work with. The search for (individual) terms and the
search for subproofs, traditionally separated in a classical treatment, in this
setting can be elegantly unified.

While these syntactical advances are presented in detail, the most significant
parallel development concerns the semantic approach to the interpretation of the
type-theoretic languages that extend the treatment beyond proofs to the larger
space of reductions, and hence to an analysis of reduction systems as methods
for calculating proofs. Though this is by far the most complex part of this text,
requiring of the reader significant mathematical maturity, it contains the main
motivation for the earlier syntactic studies, and ultimately will come to be seen
as the main contribution of this line of research.

This text thus provides the reader with an introduction, albeit at a soph-
isticated level, to new approaches to the semantic investigation of syntactic
re-formulations of logical systems that designed to support efficient search for
proofs in formal logics.

Lincoln Wallen
Witney, Oxfordshire

October, 2003
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1

DEDUCTIVE LOGIC, REDUCTIVE LOGIC, AND
PROOF-SEARCH

1.1 Introduction

Axiomatizations of logics as formal systems are usually formulated as calculi
for deductive inference. Deductive inference proceeds from established, or sup-
posed, premisses, or hypotheses, to a conclusion, regulated by the application of
inference rules, R,

⇓ Premiss1 . . .Premissm

Conclusion
R

A proof is constructed, inductively, by applying instances of rules of this form
to proofs of established premisses, thereby constructing a proof of the given
conclusion.

A conceptually valuable semantics of proofs is provided by a correspond-
ence between the propositions and proofs of a logic, the types and terms of a
λ-calculus [54], and the objects and arrows of a category [70], q.v. Fig. 1.1, in
which (e.g., natural deduction) proofs correspond to (e.g., typed λ-terms) which
correspond to classes of arrows in categories with specified structure.

The leading examples of this form of semantics arise in intuitionistic logic
[129], in which natural deduction proofs correspond to simply-typed λ-terms
and to arrows in Cartesian closed categories [70], in intuitionistic linear logic—
in which natural deduction proofs correspond to linear λ-terms and to the arrows
of symmetric monoidal closed categories [15]—and bunched logic [88, 102, 105]—
in which natural deduction proofs correspond to αλ-terms and to arrows
of doubly closed categories. Another example, which we exploit extensively
in this monograph, is provided by classical natural deduction and the λµν-
calculus [90, 97, 111]. Although of great value, particularly from the point of
view of our development here, the propositions-as-types relationship between
classical proofs and λµν-terms requires a commitment to a particular choice
(call-by-value) of reduction strategy in normalization. In this propositions-as-
types setting, normalization provides a notion of computation corresponding to
function evaluation.

Theorem proving, or algorithmic proof-search, is both an essential enabling
technology within the computational sciences and of independent philosophi-
cal interest. More specifically, in computing, many problems are formulated as
judgements about formal texts, typically representable in logical formalisms.
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Fig. 1.1. Propositions-as-types-as-objects

For example, well-formedness (parsing), well-typedness (type-checking), as well
as logical consequence (e.g., for specification and correctness) itself.

There are, indeed, many useful formal languages and, for each language,
typically many useful procedures for judging properties of sentences. As the
complexity of the languages and their properties increases, the possibility of
obtaining efficient, total procedures recedes, but partial procedures which fail
quickly are of great value and interactive theorem provers, such as the Boyer–
Moore system [18], the logic for computable functions (LCF) system [43], and
its derivatives, such as Paulson’s Isabelle system [85], as well as more complex
systems, such as Coq [23], based on dependent type theory [77] are used in a
wide range of system-critical applications (e.g., [115]).1

With widely varying complexity and efficiency characteristics, these systems
have, however, a common underlying logical basis: reductive inference.

Reductive inference proceeds from a putative (i.e., supposed [1]) conclusion
to sufficient premisses, regulated by reduction operators, OR,

⇑ Sufficient Premiss1 . . .Sufficient Premissm

Putative Conclusion
OR,

corresponding to (admissible) inference rules, R, read from conclusion to
premisses.2 Here the idea is the following:

1. The putative conclusion is an assertion, or a goal , such as a sequent Γ � ∆,
the endsequent , in our chosen logic. We should like to know whether or
not the sequent is provable in our chosen logic. Often, we write

Γ ?- ∆,

1The literature on mechanical and interactive theorem proving is large and rich. The
citations we give here are intended only to be representative. More comprehensive discussions
are provided in, for example, [134], which provides a more technical perspective on a range of
technical issues in first-order theorem proving for both classical and non-classical systems, [36],
which provides a more up-to-date view, and broadens the perspective to include type-theoretic
languages, and [75], which provides a quite comprehensive and fairly well-balanced history, as
well as discussing a range of current issues and challenges.

2Henceforth we refer to just R rather than OR.
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borrowing a notation from Prolog [22], to indicate Γ � ∆ as a putative
conclusion;

2. Here we are assuming that our given logic comes along with a proof system.3

Each inference rule in the system, including any admissible rules, gives rise to
a reduction operator. To apply a reduction operator to particular assertion
we must find an instance of a reduction operator such that instance of the
putative conclusion matches the assertion;

3. The assertions which must be proved in order to have a proof of the initial
assertion, or subgoals, are then given by the corresponding instances of the
sufficient premisses of the operator.

We believe that this idea of reduction was first explained in these terms by
Kleene [65].

As well as being a natural form of logical reasoning for humans and the
basis of wide variety of reasoning tools, reductive proof can also be seen as
a basis for logic programming [7, 67, 80]. Although formulated as deductive
systems for refutation, the resolution calculi upon which Prolog and many of its
derivations are based can be systematically reformulated as reductive systems
(see Chapter 4). Indeed, the notion of computation provided by reduction is not
the evaluation of functions but the calculation of (evidence for the) membership
of the provability relation �.

So, in reductive logic, an attempt to construct a proof, that is, a reduction,
proceeds, inductively, by applying instances of reduction operators of this form
to putative conclusions of which a proof is desired, thereby yielding a collection
of sufficient premisses, proofs of which would be sufficient to imply the existence
of a proof, obtainable by deduction, of the putative conclusion.

Note, however, that a reduction may fail to yield a proof: having removed all
of the logical structure, that is, the connectives, by reduction, we may be left
with p ?- q, for distinct atoms p and q.

The inherent partiality of reductions presents a clear semantic difficulty:
we must be able to interpret those reductions which cannot be completed to
be proofs. In particular, we aim to recover a semantics for proofs of utility
comparable to that of the propositions-as-types-as-objects triangle for proofs.

The desired set-up is summarized in Fig. 1.2, in which Γ ?- φ denotes a
sequent which is a putative conclusion and Φ⇒ Γ ?- φ denotes that Φ is a search
with root Γ ?- φ. The judgement [Γ] |∼ [Φ] : [φ] indicates that [Φ] is a realizer of
[φ] with respect to assumptions [Γ].

The provision of a model-theoretically adequate such framework is non-
trivial. The main difficulty is that the objects constructed during a reduction
are—in contrast to the objects, that is, proofs, constructed during deduction—
inherently partial. Whilst any deduction proceeds from axioms to a guaranteed

3We could, however, formulate much of our subsequent analysis purely semantically.
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Fig. 1.2. Reductions-as-realizers-as-arrows

conclusion and so constructs a proof, reductions proceed from a putative con-
clusion to sufficient premisses. At any intermediate stage, it may be that it is
impossible to complete the reduction so as to obtain a proof, that is, all possible
reductions lead to trees in which there are leaves of the form φ ?- ψ in which
the formulæ φ and ψ are both distinct and irreducible.4

Suppose, then, that we have a deductive system D which is interpreted in a
category C. Consider the interpretation of an axiom sequent, φ � φ, given by

[[φ]] Id−→ [[φ]],

the identity arrow from [[φ]] to itself. Proof trees over D have the property that
all leaves have this form (or something very like it).

Now consider the reductive system R(D), obtained by reading each of D’s
inference rules as reduction operators. Reduction trees over R(D) can have leaves
of the form φ � ψ, where φ and ψ are distinct, irreducible formulæ, so that there
is no way to reduce the leaf to an axiom of the deductive system. A semantics
of reductions in R(D) must interpret leaves of this form. One solution is to
interpret searches not in the category C but in the polynomial category C[α] over
an indeterminate α.5

[Aside: If A and B are objects of a category C, we can adjoin an indeter-
minate A

α−→ B by forming the polynomial category C[α]. The objects of C[α]
are the objects of C and the arrows of C[α] are formed freely from the arrows
of C together with the new arrow α. The basic ideas may be found in [70].
Although much of the detailed theory which we develop in this chapter will rely
on the Cartesian and Cartesian closed structure of our underlying categories, the
essential idea of using the polynomial structure should, we conjecture, work for
monoidal and monoidal closed underlying categories and so be candidate for a
basis for a semantics for proof-search in substructural logics.]

4We say that an occurrence of a formula φ, in a search tree over a system S, is irreducible
if it is not the principal formula of an instance of any reduction operator of S.

5In general, the polynomial over a set of indeterminates.
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Then the interpretation of a leaf of the form p ?- q, where p and q denote
propositional letters,6 can be defined as follows:

[[p]] α−→ [[q]],

The corresponding language of realizers (cf. Fig. 1.2) is the internal language
of C[α].

Whilst polynomials over categories of proofs provide a place within which
reductions can be interpreted, they are deficient in several ways. Firstly, whilst
it is an adequate framework for interpreting natural deduction reductions, it
is not adequate for interpreting the computationally far more desirable sequent
calculus proofs (because of a loss of critical information in the interpretation;
see Chapter 5 for a detailed explanation). Secondly, the interpretation available
provides no scope for modelling the key computational feature which takes us
from reductive logic to proof-search, namely control : there is much more to
consider in the semantics of proof-search. In computing the existence of a proof,
one must make choices: for example, choose which component of a disjunction
to work on, which implication on the left to reduce next, etc.. Some of these
choices will lead to a proof, some not. Upon failure, one must backtrack and
make a different choice. How are we to account for these control operations
within our semantics?

The first problem is solved by moving to a framework based not merely
on indeterminates but also on a notion of Kripke world which maintains the
otherwise lost information: thus we take seriously the view that the search process
is a constructive one in which the agent performing the computation increases
its knowledge as computation proceeds.

For example, as illustrated in Fig. 1.3, suppose we have, in intuitionistic logic,
the endsequent

φ, φ ⊃ ψ, φ ⊃ χ � (ψ ∨ ψ′) ∧ (χ ∨ χ′),

in which φ, ψ, ψ′, χ, and χ′ are atomic. Informally, we can provide a semantics
in which worlds represent the state of the computation which is attempting to
construct a proof of the endsequent. To see this, we can borrow an idea from
computational logic, namely the Herbrand base, and consider the ‘established
facts’ in the computation to be the atomic formulæ in the hypotheses, that is,
on the left of the turnstile, �.

At the root world, w1, the only atomic proposition established on the left,
and so potentially capable, in the presence of a matching φ on the right, of
forming an axiom sequent φ � φ, is φ.7

The next two reductions, ∧R and ∨R, take us to worlds w2 and then w3
and w4 without adding to the atomic propositions established on the left. Next

6We call such a leaf atomic.
7Our use of just atoms to form axioms should be considered analogous to the use of atoms

in a least Herbrand model [7, 130].
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Fig. 1.3. Reduction semantics as Kripke semantics

comes a ⊃ L, with principal formula φ ⊃ ψ. This step adds ψ to the atomic
formulæ established on the left, and so capable of contributing to axioms. As
before, the accession to worlds w6 and w7, via an ∨R, adds no atoms to the left.
Finally, the ⊃ L leading to w8 adds χ to the collection of formulæ established
on the left.

We can use this declarative point of view as way of including, via worlds, a
notion of state within our semantics (cf. O’Hearn and Tennant’s possible worlds
semantics of state [86]), and our use, in Chapters 5 and 6, of possible worlds
takes a rather more general form than that suggested by this example.

The second problem is solved, for intuitionistic logic, by embedding intuition-
istic reductions inside classical reductions and exploiting the classical structure to
model the control of the intuitionistic search. Here, the control structure on which
we concentrate is backtracking . We show how to represent a failed intuition-
istic reduction and the one obtained by backtracking within the same classical
reduction. We give a semantic account of when backtracking can potentially
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occur by incorporating a suitable notion of world into the semantic structures
used in our mathematical framework.

Our chosen mathematical framework is a representation of classical logic
consequences as families of intuitionisitic consequences as provided by the λµν-
calculus, which we introduce in Chapter 2, and its categorical models, which we
introduce in Chapter 3.

Our semantic account of backtracking is given by adding to the categorical
semantics for the λµν-calculus structures which capture the Kripke worlds dis-
cussed above. We also provide a games model for intuitionistic proof-search,
using the intuition that Opponent (Proponent)-questions are challenges to
provide evidence for conclusion and premiss, respectively. Again, intuitionistic
searches can be seen as special cases of classical searches, and backtracking
can be identified as additional disjunctive choices by Proponent which are
not available in intuitionistic searches. These disjunctive choices correspond to
backtracking points identified in the semantic account established in an earlier
chapter.

1.2 Logical prerequisites

This research monograph is intended for readers who are either established
researchers and teachers or graduate students, working in logic and related sub-
jects. Administratively, they might, for example, be working in the mathematical
sciences, computing sciences, or philosophy departments of universities, or in the
more mathematical parts of industrial research laboratories.

A certain background in basic mathematical, logical and compuational topics
is assumed but beyond that we intend the monograph to be essentially self-
contained. The assumed background is summarized in this and the next section,
although some key basic concepts are nevertheless explained in some detail as
and when they are required.

Readers who are familiar with natural deduction, the λµ-calculus, and its
categorical models may wish to proceed directly to Chapter 4, referring to spe-
cific parts of the next two sections on logical and algebraic prerequisites, and
Chapters 2 and 3, such as those parts describing recently-published research on
the λµν-calculus and its semantics, and the description of our class of games, as
required.

1.2.1 Basics of classical logic

Logic may be seen as the study of consequences, that is, assertions that the truth
of a given proposition follows from the truth of a given collection of propositions.
Propositions are declarative statements. We can give a simple definition, as



8 DEDUCTION, REDUCTION, AND PROOF-SEARCH

described in Hodges [51], as follows:

A proposition is that situation which is described by an English phrase which may be
substituted for X in

It is the case that X.

so as to give a grammatically correct English sentence.

Examples are phrases like ‘the sky is blue’, ‘the sea is green’, or ‘the program
terminates’. Mathematically, propositions are denoted by the formulæ of a formal
language.

Logic is about more than propositions, however; it is also about reasoning.
In classical logic, reasoning is captured by the idea of a consequence relation
[10, 116, 125]

φ1, . . . , φm � ψ1, . . . , ψn

between finite sequences of propositions. It should be read as follows: If all of
the φs hold, then at least one of the ψs holds.

Formally, a consequence relation on set of formulæ is a binary relation �
between finite sequences of formulæ such that:

1. Reflexivity: for every formula φ, φ � φ;
2. Transitivity (or Cut): if Γ � ∆, φ and φ,Γ′ � ∆′, then Γ,Γ′ � ∆,∆′;
3. Exchange: if Γ � ∆, then ρ(Γ) � σ(∆), for permutations ρ and σ;
4. Weakening: if Γ � ∆, then Γ,Γ′ � ∆,∆′;
5. Contraction: if Γ,Θ,Θ,Γ′ � ∆, then Γ,Θ,Γ′ � ∆ and if Γ � ∆,Θ,Θ,∆′,

then Γ � ∆,Θ,∆′.

Consequence relations may be realized both model-theoretically and proof-
theoretically. In classical logic, the key semantic notion is truth. Explanations of
truth in mathematical logic usually begin with the idea of a truth table in which a
proposition is assigned a truth value, 0 (false) or 1 (true). The assignment of truth
values is performed by induction on the structure of propositions, connective by
connective. For example, the truth table for classical implication is the following:

φ ψ φ ⊃ ψ

0 0 1
0 1 1
1 0 0
1 1 1

Here the idea is that we assume, inductively, that we have assignments of
truth values for φ and ψ—there are four possible combinations—and proceed to
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assign a value to φ ⊃ ψ in each case. We can write similar tables for conjunction,
∧, disjunction, ∨, and negation, ¬, as follows:

φ ψ φ ∧ ψ

0 0 0
0 1 0
1 0 0
1 1 1

φ ψ φ ∨ ψ

0 0 0
0 1 1
1 0 1
1 1 1

φ ¬φ

0 1
1 0

From these tables, the de Morgan Laws,

¬(φ ∨ ψ)= (¬φ) ∧ (¬ψ)
¬(φ ∧ ψ)= (¬φ) ∨ (¬ψ)

φ ⊃ ψ=(¬φ) ∨ ψ

may be obtained.
Mathematically, we think of such an assignment of truth values, or model ,

sometimes called an interpretation, as a function

I : Prop→ {0, 1}

from the set of atomic propositions, that is, propositional letters, p, q, etc., to
the two-element set. Then we can define I |= φ, read as ‘I satisfies φ’, by

I |= p iff I(p) = 1.

Using the relation |=, we can now express the meanings of the classical
connectives as follows:

I |= p iff I(p) = 1
I |= φ ∧ ψ iff I |= φ and I |= ψ
I |= φ ∨ ψ iff I |= φ or I |= ψ
I |= φ ⊃ ψ iff I |= φ implies I |= ψ.

Starting from this point, we can define the notion of semantic consequence for
truth in a given model I:

φ1, . . . , φm |=I φ iff I |= φi, for each 1 ≤ i ≤ m,
implies I |= φ.

A stronger notion is semantic consequence for validity, defined as follows:

φ1, . . . , φm |= φ iff for all I, I |= φi, for each 1 ≤ i ≤ m,
implies I |= φ.
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These ideas form the starting point for classical model theory, the area of logic
which has been developed in the deepest integration with mainstream pure
mathematics.

Instead of building all of our logical structure out of atomic propositional let-
ters, we can work with a richer notion of atomic propostion, built from predicate
letters, p, q, etc., and terms, t, u, etc. A predicate letter p comes along with an
arity, or number of arguments. A term t is built up from function symbols, f , g,
etc, which have arities, and variables, x, y, etc. A function symbol of arity 0 is
a constant and a predicate letter of arity 0 is a propositional letter.

By adding quantifiers, such as ∀, or ‘for all’, and ∃, or ‘there exists’, and
theories, or collections of special symbols and axioms, to the analysis described
above, model theory is able to provide a logical study of important mathematical
structures.

For example, the model theory of fields is a major area in its own right. Its
axioms include propositions such as

∀x.(x+ 0 = x), ∀x.∀y.∀z.(x× (y + z) = x× y + x× z)

and
∀x.((x �= 0) ⊃ ∃y.(x× y = 1))

where +, 0,×, and 1 are function symbols used to build the terms of the logic,
and = is a special predicate symbol, taken in addition to the logical connectives
and quantifiers. The equality symbol, =, is used to build the atomic propositions
by predicating terms: if s and t are terms we can form the proposition that they
are equal by writing = (s, t) or, more simply, s = t. Similarly, we write s �= t
as a shorthand for ¬(s = t). From this point of view, a field is a model, which
satisfies these (and some other) axioms.

The semantics of classical propositions can be extended to classical predicate
logic. Roughly, each predicate p letter of arity m is interpreted as an m-ary
relation [[p]] on a set D, called the domain of the model I. Similarly, each function
symbol f of arity n is interpreted as a function [[f ]] from Dn to D. Finally, we take
an environment, also denoted, [[−]], which assigns to each variable an element
[[x]] ∈ D. Then we have the following semantics for predicates and first-order
quantifiers:

I |= p(t1, . . . , tm) iff 〈[[t1]], . . . , [[tm]]〉 ∈ [[p]]
I |= ∀x.φ iff for all t, I |= φ[t/x]
I |= ∃x.φ iff for some t, I |= φ[t/x].

The formulæ of classial logic may be written in certain normal forms
[20, 34, 79]. The following sequence is a useful way to think of the possibilities:

• Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF):
formulæ are, respectively, conjunctions of disjunctions of literals, that is,
atoms or negated atoms, and disjunctions of conjunctions of literals;
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• Prenex Normal Form (PNF): formulæ have quantifiers outermost, that is,
not dominated by any propositional connective;

• Skolem Normal Form (SNF): formulæ have all quantifiers removed, and
replaced by variables and function symbols;

• Clausal Form (CF): conjunctions are removed from formulæ, leaving sets of
disjunctions of literals.

With a little care about interpretations [20, 34], we can obtain that any formula
has a classically equivalent CNF, DNF, PNF, SNF, and CF.

1.2.2 Basics of intuitionistic logic

Consider the following familiar theorem (see, for example, [26]):

Theorem 1.1 There exist irrational numbers a and b such that ab is rational.

Proof Set a = b =
√
2 and proceed by cases. Either (

√
2)

√
2
is rational or it

is not.

1. Suppose not. Then (
√
2)

√
2
is irrational. Then set a = (

√
2)

√
2
, b =

√
2 and

consider
(
(
√
2)

√
2)√

2
, we have

(
(
√
2)

√
2
)√

2

=(
√
2)

(
√

2)2

=(
√
2)

2

=2,

which is rational.

2. Otherwise, (
√
2)

√
2
is rational.

In either case, we are done.

This proof is not acceptable to intuitionists because it is not constructive,
that is, it fails to construct specific irrationals a and b such that ab is rational.

The proof fails to be constructive because it makes essential use of a classical
principle, the Law of the Excluded Middle: for any proposition φ, either φ or ¬φ
is true.

In the absence of the Law of the Excluded Middle, or any equivalent principle,
the relationship between classical implication and disjunction

I |= φ ⊃ ψ iff I |= (¬φ) ∨ ψ

for any model, I, breaks down. But now we have a problem. The definition of
the truth of φ ⊃ ψ relative to a model I is given by

I |= φ ⊃ ψ iff I |= φ implies I |= ψ.
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Here, the bold face implies is implication in the classical metatheory, expressed
in English. We can therefore rewrite the definiens as

(not(I |= φ)) or I |= ψ.

But, by our earlier definitions, this implies

I |= φ ⊃ ψ iff I |= (¬φ) ∨ ψ.

Intuitionistic logic avoids this contradiction by changing the semantics of
implication. The idea, attributed to Saul Kripke [69], is simple and beautiful
and has deep consequences. Kripke’s solution abandons the idea that proposi-
tions have absolute truth values. Rather, truth is defined relative to a state of
knowledge, possible world. Possible worlds, denoted v, w, etc., are related by a
pre-order, denoted �, with w � v being interpreted as ‘v is a state of know-
ledge which is greater than or equal to v’.8 The intuition here is that an agent,
the creative subject [129] explores the set of possible worlds by travelling up
the ordering, increases his knowledge at each step. We require the monotonicity
condition that travelling up the ordering does not decrease knowledge.

The meaning of implication is then that φ ⊃ ψ holds at world w iff, for every
world v which is greater than or equal to w, that is, at every increased state of
knowledge, if φ holds at v implies ψ holds at v. Formally,

w |= φ ⊃ ψ iff for all w � v, v |= φ implies v |= ψ,

where w |= φ is read as ‘w forces φ’. Note that the metatheoretic ‘implies’ here is,
as before, the classical one. But the definition of implication has been relativized
to a world. If there is just one world, or if the order is discrete, then classical
and intuitionistic implication coincide.

The Kripke semantics of intuitionistic logic can be extended to predicate logic
by generalizing the extension of models of classical propositional logic to classical
predicate logic to account for the ordered worlds. There is a domain D(w) at each
world w and the key point is to extend the monotonicity conditions to ensure
that the collection of true predicates increases with the ordering on worlds. The
semantics of the first-order universal quantifier is then given by

w |= ∀x.φ iff for all w � v and all t such that [[t]] ∈ D(v), v |= φ[t/x],

with that of the existential being the same as the classical one at given world.
Finally, since the definition of classical negation ensures that it is dualizing,

that is, ¬¬φ is equivalent to φ, we must also provide an intuitionistic version
of negation. We define ¬φ to be φ ⊃ ⊥, where is ⊥ the absurd proposition,
intuitionistically.

8A pre-order is a relation relexive and transitive. Some treatments of Kripke’s semantics
use a partial order (which is also anti-symmetric).
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1.2.3 Basics of proof systems

In our summary of the prerquisites for this monograph so far, we have described
the elementary semantics of classical and intuitionistic logic. We now turn to
formal systems for these logics. We begin with Hilbert-type systems.

A Hilbert-type system consists of collections of axioms, rules, and definitions.
Beginning with propositional classical logic, we have a collection of axioms

involving just implication an negation, and the single rule of modus ponens. We
then recover, following Dummett’s style of presentation [26] the other connectives
via definitions.

1. Classical axioms
(i) φ ⊃ (ψ ⊃ φ)
(ii) φ ⊃ (ψ ⊃ χ) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ χ))
(iii) ((¬φ) ⊃ (¬ψ)) ⊃ (((¬ψ) ⊃ φ) ⊃ ψ)

2. Classical rules

(i)
φ φ ⊃ ψ

ψ
MP

3. Classical definitions
(i) (φ ∧ ψ) ::= ¬(φ ⊃ ¬ψ)
(ii) (φ ∨ ψ) ::= (¬φ) ⊃ ψ

Turning to predicate logic and the first-order quantifiers, we need one axiom,
one rule, and one definition.

1. Classical predicate axioms
(i) ∀x.φ(x) ⊃ φ(t)

2. Classical predicate rules

(i)
χ ⊃ φ(y)

χ ⊃ ∀x.φ(x)
(y not free in χ) G

3. Classical predicate definitions
(i) ∃x.φ ::= ¬∀x.(¬φ)

We call the Hilbert-type system for classical logic HK.

Turning to intuitionistic logic, in which the connectives are not interdefinable,
we need many more axioms and rules but, of course, no definitions.

1. Intuitionistic axioms
(i) φ ⊃ (ψ ⊃ φ)
(ii) φ ⊃ (ψ ⊃ (φ ∧ ψ))
(iii) (φ ∧ ψ) ⊃ φ

(iv) (φ ∧ ψ) ⊃ ψ

(v) φ ⊃ (φ ∨ ψ)
(vi) ψ ⊃ (φ ∨ ψ)
(vii) (φ ∨ ψ) ⊃ ((φ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ χ))
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(viii) (φ ⊃ ψ) ⊃ ((φ ⊃ (ψ ⊃ χ)) ⊃ (φ ⊃ χ))
(ix) (φ ⊃ ψ) ⊃ ((φ ⊃ (ψ ⊃ ⊥)) ⊃ (φ ⊃ ⊥))
(x) φ ⊃ ((φ ⊃ ⊥) ⊃ ψ)

2. Intuitionistic rules

(i)
φ φ ⊃ ψ

ψ
MP

As for classical logic, the Hilbert-type system for intuitionistic logic can be
extended to intuitionistic predicate logic:
1. Intuitionistic predicate axioms

(i) ∀x.φ(x) ⊃ φ(t)
(ii) φ(t) ⊃ ∃x.φ(x)

2. Intuitionistic predicate rules

(i)
χ ⊃ φ(y)

χ ⊃ ∀x.φ(x)
(y not free in χ) G

(ii)
φ(y) ⊃ χ

∃x.φ(x) ⊃ χ
(y not free in χ) G

We call the Hilbert-type system for intuitionistic logic HJ.
In both HK and HJ, we have the following key theorem, originally due, in

the classical case, to Herbrand:

Theorem 1.2 (deduction theorem) If Γ, φ � ψ, then Γ � φ ⊃ ψ.

It is important to understand the nature of rules in Hilbert-type systems [10].
They are rules of proof , that is, the premisses must be axioms or consequences of
axioms, so that a judgement Γ � φ in Hilbert-type systems is a not a judgement
about hypothetical consequence. Rather, it asserts that φ is provable and gives
a record, in Γ, of the axioms used. Of course, given a collection of axioms Γ, one
can add a collection ∆ of hypotheses as temporary axioms and use a Hilbert-type
system to prove ∆ � φ by proving Γ,∆ � φ [10].

In contrast, the rules of natural deduction systems are rules of inference, or
rules of deduction, that is, the premisses may be hypotheses, or assumptions, so
that a judgement Γ � φ in a natural deduction system asserts that φ is provable
from assumptions Γ. For example, in the disjunction elimination rule,

[φ1] [φ2]
...

...
...

φ1 ∨ φ2 ψ ψ ∨E,
ψ

which may be seen as reasoning by cases, we assume proofs of φ1∨φ2, of ψ from
φ1, and of ψ from φ2, all relative, implicitly, to a set of proofs of propositions
χ1, . . . , χm. The ∨E rule may then be written as

Γ � φ1 ∨ φ2 Γ, φ1 � ψ Γ, φ2 � ψ

Γ � ψ
,
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where Γ= {χ1, . . . , χm }. Corresponding to the ∨E rule is the rule for introducing
disjunction, ∨I:

Γ � φi

Γ � φ1 ∨ φ2
(i = 1, 2) ∨I.

This pattern of introduction and elimination on the right-hand side of con-
sequences is the defining characteristic of natural deduction systems [95, 121].

Although we expect that most of our readers will have already encountered
natural deduction, we provide a brief introduction in Chapter 2. Those familiar
with natural deduction will immediately see the relationship between the HJ
and the natural deduction rules for intuitionistic logic. For example, the ∨E rule
corresponds directly to Intuitionistic Axiom (vii).

Much of the proof-theoretic analysis of this monograph is concerned with the
sequent calculus, introduced by Gentzen [37]. The basic difference between the
sequent calculus and natural deduction is that the former replaces the latter’s
elimination rules with introduction rules on the left-hand side. For example, ∨E
is replaced by

Γ, φ � χ Γ, ψ � χ

Γ, φ ∨ ψ � χ
∨ L.

We make no assumption of any detailed knowledge of sequent calculi, which we
introduce Chapter 4.

Both natural deduction systems and sequent calculi can be extended to
predicate logic.

The relationship between formal systems of the kind we have described in
this section, and others, and the semantics we described in the previous section
is summarized by soundness and completeness theorems; see, for example, [26,
79, 128].

1.3 Algebraic prerequisites

As well as some basic logical background, as sketched above, we also need to
assume some basic ideas about categories. We assume that the reader is familiar
with the basics of sets with algebraic structure. For example, we assume that
the reader has encountered structures such as the following:

1. A lattice, that is, a set with two associative, commutative, idempotent ,
absorptive9 binary operations, ∨ and ∧;

2. A distributive lattice, that is, a lattice such that ∨ distributes over ∧ and ∧
distributes over ∨;

3. We can define a partial order, �, on a lattice by x � y, for elements x and
y, by x � y iff x ∨ y = y or, equivalently, x ∧ y = x;

9For all x and y, x ∧ (x ∨ y) = x = x ∨ (x ∧ y).
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4. A Boolean lattice is a distributive lattice with distinguished elements, 0 and
1, which are neutral elements for ∨ and ∧, respectively, and a unary com-
plementation operation, ¬, which is involutive and satisfies the de Morgan
Laws for ∨ and ∧.

For consistency with categorical ideas (see below), it is common to include the
neutral elements 0 and 1 in the definition of a distributive lattice (see, for
example, Chapter 3).

Let A = (A,∨,∧) and B = (B,⊕,⊗) be lattices. A lattice homomorphism
from A to B is map f : A→ B such that

f(a1 ∨ a2) = f(a1)⊕ f(a2) and f(a1 ∧ a2) = f(a1)⊗ f(a2).

1.3.1 Basics of categories

Turning to categories, we provide a very brief summary of what we need, adding
a few ideas later on in the monograph as and when they are required.

This section is not intended to be a tutorial in category theory. Rather, it
is a summary of the basic ideas from category theory required in order to read
this monograph; it also serves to fix some notation. A few good references which
cover all that is required and much more besides are the following:

• S. Mac Lane and G. Birkhoff, Algebra [76];
• S. Vickers, Topology via Logic [132];
• S. Mac Lane, Categories for the Working Mathematician [74];
• M. Barr and C. Wells, Categories for Computing Science, First and Second
Editions [12, 13];

• J. Lambek and P. Scott. Introduction to Higher-Order Categorical Logic [70];
• A. Asperti and G. Longo. Categories, Types and Structure: An Introduc-

tion to Category Theory for the Working Computer Scientist, MIT Press,
1991 [9].

Nevertheless, we introduce additional ideas in the text as they are required.

Definition 1.3 A category, C, consists of the following data:
1. A collection, Obj(C), of objects, denoted A, B, C, . . . ;
2. A collection, Arr(C), of arrows or morphisms, denoted f, g, h, . . . ;
3. Two operations, dom and cod, which assign to each arrow, f , two objects,

respectively called the domain and co-domain of f ;
4. An operation, Id, which assigns to each object, A, an arrow called the

identity on A, IdA, such that cod(IdA) = dom(IdA) = A;
5. An operation, ◦, which assigns to each pair of arrows, f and g, with

dom(f) = cod(g) an arrow, f ◦ g, called the composition of f and g such
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that dom(f ◦ g) = dom(g) and cod(f ◦ g) = cod(f); such that identity
and composition satisfy the following conditions:
(i) Identity: for all arrows, f and g, such that cod(f) = A = dom(g),

IdA ◦ f = f and g ◦ IdA = g;
(ii) Associativity: for all arrows, f , g, and h, such that dom(f) = cod(g)

and dom(g) = cod(h), (f ◦ g) ◦ h = f ◦ (g ◦ h).

We have the evident notion of subcategory. For any category, C, we have the
dual category , Cop, which has the same objects as C (Aop = A) but in which the
arrows (fop) are reversed. It follows that (Cop)op = C.

We denote by homC(A, B) the set of arrows from A to B in C. Such a set is
called a hom set.10

We shall often express categorical properties in diagrammatic notation. For
example, to require that the diagram

A
f1 � B

C

g1

�

f2

� D

g2

�

commutes is to require that g2 ◦ f1 = f2 ◦ g1.
Examples of categories which are of relevance to this monograph include:

• Pos: Objects are partially ordered sets and arrows are order-preserving maps;
• Lat: Objects are lattices and arrows are lattice homomorphisms;
• Set: Objects are sets and arrows are functions.

Definition 1.4 Let A and B be objects of the category C.
1. An arrow f :A→ B is an epimorphism iff g ◦ f = h ◦ f implies g = h.
2. An arrow f :A→ B is a monomorphism iff f ◦ g = f ◦ h implies g = h.
3. An arrow f :A → B is an isomorphism iff there is some g :B → A such

that f ◦ g = IdA = g ◦ f . The f and g are said to be inverses in the
evident way.

10We suppress any discussion of issues about the size of categories. See [74] for a discussion.
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Two objects, A and B, of a category C are said to be isomorphic (written as
A ∼= B) iff there is an isomorphism f ∈ homC(A, B).

Homomorphisms between categories are called functors.

Definition 1.5 Let C and D be categories. A covariant functor F : C → D
is a pair of maps FObj : Obj(C)→ Obj(D) and FArr : Arr(C)→ Arr(D) such
that, for every f : A→ B and g : B → C in C,
• FArr(f) : FObj(A)→ FObj(B),
• FArr(g ◦ f) = FArr(g) ◦ FArr(f), and
• FArr(IdA) = IdFArr(A).

Similarly, a contravariant functor F : C → D is a pair of maps FObj :
Obj(C) → Obj(D) and FArr : Arr(C) → Arr(D) such that, for every
f : A→ B and g : B → C in C,
• FArr(f) : FObj(B)→ FObj(A),
• FArr(g ◦ f) = FArr(f) ◦ FArr(g), and
• FArr(IdA) = IdFArr(A).

The subscripts Obj and Arr are usually suppressed.

For example, the covariant powerset functor, ℘ : Set → Set, takes
each set A to its powerset ℘(A) and each function f :A→B to the function
℘(f) : ℘(A)→ ℘(B) given by, for all A′ ⊆ A,

℘(f)(A′) = { y ∈ B | there is x ∈ A′ s.t. y = f(x) }.

A contravariant powerset functor may also be defined.
For another example, the duality functor (−)op : C→Cop, such that (A)op = A

and (f)op = fop, is contravariant.
Hom sets give rise to hom functors:

homC(−, B) : C → C and homC(A,−) : C → C,

in the evident notation.

Definition 1.6 Let F, G : C → D be functors with the same domain and
co-domain. A natural transformation τ : F → G is given by a family of maps
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τA : F (A)→ G(A), for each A ∈ Obj(C), such that

A F (A)
τA� G(A)

B

f

�
F (B)

F (f)

�

τB

� G(B)

G(f)

�

commutes. The set of natural transformations from F to G is denoted
Nat(F, G).

A natural transformation τ : F → G is a natural isomorphism, written τ : F ∼= G,
if every component , τA, of τ has an inverse in D.

Further examples of categories which are of relevance to this monograph
include:11

• Cat: Objects are categories and arrows are functors;
• The functor category [C,D]: objects are functors F : C → D and arrows are
natural transformations τ : F → G.

Categories may carry additional structure. Let C be a category.
1. An object 0 of C is initial iff, for all A∈Obj(C), there is a unique

f ∈ homC(0, A). For example, the empty set is the initial object in Set.
Initial objects are unique up to isomorphism.

2. An object 1 of C is terminal iff, for all A∈Obj(C), there is a unique
f ∈ homC(A, 1). For example, the one element set {∗} is terminal in Set.
Terminal objects are unique up to isomorphism, and are dual to initial
objects: 0op = 1 and 1op = 0.

3. The categorical product of A and B is an object A × B together with two
arrows π1 : A × B → A and π2 : A × B → B, and, for every object C, and
all f : A → B, g : B → C, there is a unique 〈f, g〉 : C→A × B such that
the diagram

C

��
�

�
�

�
�

f

�
�

�
�

�
�

g

�
A �

π1
A×B

〈f, g〉
�

π2

� B

11Again, we suppress any discussion of issues about the size of these categories. See [74]
for a discussion.
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commutes, that is, π1 ◦〈f, g〉 = f , π2 ◦〈f, g〉 = g, and, for all h : C → A×B,
〈π1 ◦ h, π2 ◦ h〉. In Set, the product is given by

A×B = { 〈x, y〉 | x ∈ A and y ∈ B }.

Categories with all products are said to be Cartesian. Terminal objects are
nullary products. A functor is Cartesian if it preserves products.12

4. Co-products, denoted A + B in the evident notation, are dual to products.
Initial objects are nullary co-products. Categories with both products and
co-products are said to be bi-Cartesian.

For example, functor categories [C,Set] have terminal objects and products.
Just as the categorical product generalizes the set-theoretic product, so there

is a generalization of set-theoretic function spaces.

Definition 1.7 Let C and D be categories and let F : C → D and G :D → C
be functors. Then F is a left adjoint to G (written F � G) and G is a right
adjoint to F (written G � F ) if there is a natural transformation η : Id→ G◦F
between the identity functor on C and the functor G ◦ F : C → C such that,
for every object B ∈ Obj(D) and every arrow f :A→ G(B), there is a unique
arrow f̂ such that the diagram

A
�

�
�

�
�

�

f

�
G(F (A))

ηA

�

G(f̂)
� G(B)

F (A)
f̂

� B

commutes.

The natural transformation η is called the unit of the adjunction (and we
have evident notion of co-unit, ε : F ◦G→ Id).

Examples of adjunctions are found in closed categories. For us, the construc-
tion in Cartesian categories will suffice.

12Generally, we say a functor is X if it preserves Xs. Often this notion is taken up to
isomorphism, necessitating coherence conditions [74].
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Definition 1.8 Let A and B be objects of a Cartesian category, C. The
exponent of A and B is an object BA of C, together with a map evalA,B :
BA × A → B, such that there is a unique Λ(f) : C → BA such that the
diagram

BA ×A
evalA,B� B

�
�

�
�

�
�

f

�

C ×A

Λ(f)× IdA

	

commutes.

Exponents provide and example of an adjunction. Let C be Cartesian. Then
the functor (−)A : C → C is a right adjoint to the functor (−) × A : C → C.
So there is an isomorphism,

homC(A×B, C) ∼→ homC(A, CB),

which is natural in A, B, and C.13 In Chapter 3, we show that functor categories
[C,Set] have exponents.

Categories with products and exponents are said to be Cartesian closed,
categories with products, exponents, and co-products are said to be bi-Cartesian
closed.

Functors and natural transformations, which compose in the evident way,
may be combined to describe structure systematically [70, 74].

Definition 1.9 Let C be a category. A monad on C is a functor T : C → C
together with natural transformations η : 1C → T and µ : T 2 → T such that
the diagrams

T
Tη � T 2 T 3 µT � T 2

�
�

�
�

�
�

1T

�
T 2

ηT

�

µ
� T

µ

�
T 2

Tµ

�

µ
� T

µ

�

commute.

13That is, for each of A, B, and C, there is a natural isomorphism between each evident
pair of hom functors, such as homC(− × B, C) and homC(−, CB).
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If F : C → D is left adjoint to G : D → C, with unit and co-unit η and ε,
respectively, then

(G ◦ F, η, G ε F )

is monad on C [70].

Definition 1.10 Let (T, η, µ) be a monad on C. Then the Kleisli category CT
is defined as follows:

• Obj(CT ) = Obj(C);
• The arrows A→ B in CT are arrows A→ T (B) in C. The composition in
CT of two arrows f : A → T (B) and g : B → T (C), g ∗ f : A → T (C), is
given by

g ∗ f : µ(C)(T (g)) ◦ f .

The identity is given by η(A) : A→ T (A).

We shall also use the dualized version of a Kleisli-category, the so-called
co-Kleisli category. Co-Kleisli categories are based on the notion of co-monad,
which is again the dualization of the notion of a monad. The details are as
follows:

Definition 1.11 Let C be a category. A co-monad on C is a functor U : C → C
together with natural transformations ε : U → 1C and δ : T → T 2 such that
the diagrams

T
δ � T 2 T

δ � T 2

�
�

�
�

�
�

1T

�
T 2

δ

�

Tε
� T

εT

�
T 2

δ

�

δT
� T 3

Tδ

�

commute.

If F : C → D is left adjoint to G : D → C, with unit and co-unit η and ε,
respectively, then

(F ◦G, ε, FηG)

is co-monad on C [70].
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Definition 1.12 Let (U, ε, δ) be a co-monad on C. Then the co-Kleisli
category CU is defined as follows:

• Obj(CT ) = Obj(C);
• The arrows A→ B in CT are arrows U(A)→ B in C. The composition in
CT of two arrows f : U(A)→ B and g : U(B)→ C, g ∗ f : U(A)→ C, is
given by

g ∗ f = g ◦ U(f) ◦ δA .

The identity is given by ε(A) : UA→ A.

1.4 Outline of the monograph

In Chapter 2, we first introduce the natural deduction proof theory of intui-
tionisitic logic, giving both graphical and sequential systems, and giving a brief
account of the simply-typed λ-calculus, with products and sums, which provides
a language of realizers for intuitionistic consequences. Then we move on to clas-
sical logic, discussing how a graphical system and a sequential system, based on
the idea of free deduction, may be obtained. Finally, we give a language, the
λµν-calculus, of realizers for sequential classical natural deduction and develop
its proof-theoretic properties.

In Chapter 3, we provide semantics for the systems introduced in Chapter 2.
Specifically, we set up categorical models of both the simply-typed λ-calculus, by
way of background, and the λµν-calculus, using our recent research, providing
a range of metatheory and examples which is appropriate for our subsequent
development. In particular, we begin our running example, that of games models,
by providing games models of both intuitionistic and, as represented by the
λµν-calculus, classical proofs.

In Chapter 4, we provide our main explanation of reductive proof.
Specifically:

1. We introduce Gentzen’s sequent calculus, explaining its relationship with
natural deduction and its significance as a basis for reductive proof;

2. We provide a summary of the conceptual and technical background to our
proof-theoretic perspective;

3. We provide a representation of sequent calculus proofs in the λµν-calculus
with explicit substitutions, λµνε;

4. We then provide a systematic analysis of the analytic view of resolution
provided by the notion of uniform proof by Miller et al. [80].

5. In particular, we use our characterization intuitionistic proof within the
λµν-calculus to provide a rational reconstruction of Mints’ intuitionistic
resolution [82].
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6. We conclude with a brief discussion of the computational complexity of
our representation methods, and some remarks upon the rôle of the control
régimes to be considered in Chapter 6.

In Chapter 5, we define a class of (categorical) models for reductions.
Specifically:

1. We consider appropriate structures for modelling the reductions which
properly generalize the structures used to provide models of proofs. These
include polynomial constuctions over categories of proofs and fibrations;

2. We define models for both intuitionistic and classical reduction;
3. We ensure that the chosen structures are able to interpret sequent calculi

without suppressing the structure of left rules;
4. We establish that our models are non-trivial, with significant examples.

We prove an appropriate soundness theorem for reductions and, via a term model
construction, obtain completeness.

Finally, in Chapter 6, we bring together all of the ideas of this monograph
by considering the addition of algorithmic control régimes to reductive proof,
thereby obtaining proof-search. We consider proof-search in intuitionistic logic by
embedding intuitionistic reduction inside classical reduction. Models of classical
reduction require extra structure which we use to interpret the control regimes
required for proof-search in intuitionistic logic. Thus, for intuitionistic logic, we
provide a semantics which properly captures the slogan,

Proof-search = Reduction + Control.

Following our running example, we conclude with a detailed description of a
games model of proof-search in intuitionistic logic.

1.5 Discussion

This work is a research monograph. Nevertheless, its presentation requires the
inclusion of a good deal of quite familiar, established material, as well as some
minor developments of established ideas. We therefore provide a brief summary,
with locations, of the research contributions made herein.

1. In this chapter, we have introduced our perspective on reductive logic and
proof-search, starting from a motiviation and explanation of the basic con-
cepts. We have also provided a discussion of the mathematical prerequisites
for readers of this monograph.

2. In Chapter 2, we provide an explanation of natural deduction proof sys-
tems and their corresponding λ-calculi. Beginning with the necessary basics
of natural deduction systems for intuitionistic logic and the simply-typed
λ-calculus, we then present the λµ-calculus, giving both the basic defini-
tions and essential metatheory, before proceeding with a discussion of the
(delicate matter of the) addition of disjunction to λµ, based on recent papers
of the authors [97, 108, 111].



DISCUSSION 25

3. We begin Chapter 3 with an account of the semantics of intuitionisitic nat-
ural deduction proof, based on models of the simply-typed λ-calculus. Here
we introduce a new form of games semantics which forms the basis for a run-
ning example throughout the monograph. Our games combine features of
the games of Lorenzen [28, 72], used to model intuitionistic provability, and
of the games used by Hyland and Ong [64] to interpret fragments of linear
logic, and Ong [89] to interpret terms of the λµ-calculus. We then present the
semantics of classical natural deduction proofs via recently-developed mod-
els of the λµ-calculus [89, 97], and its disjunctive extenstions [97], based on
fibrations of models of simply-typed calculi. We consider also continutations
in this context, adumbrating some of our concerns in later chapters.

4. In Chapter 4, we provide a systematic account of reductive proof theory.
Beginning with a somewhat historical account of (automated and interact-
ive) theorem proving, we provide a systematic account of sequent calculi,
including a summary of their essential metatheory and their representation
in the classical λ-calculus [111]. We then provide a systematic account of
reductive proof theory, based on the sequent calculus and classical λ-calculi,
including a rational reconstruction of Mints’ intuitionitic resolution [82].

5. In Chapter 5, we provide a systematic model-theoretic account of reduct-
ive logic. Here the challenge is to provide semantic structures that are rich
enough to account not only for the space of proofs but also for the (lar-
ger) space of reductions—all proofs may be seen as successful reductions
whereas many reductions fail to determine proofs. Our techniques are those
of categorical model theory and categorical proof theory, and we make
essential use of the interplay between the semantics of proofs given by algeb-
raic realizers and the meaning of propositions given by Kripke’s account of
truth-functional semantics.

6. Finally, in Chapter 6, we provide a semantics for proof-search in reduct-
ive logic which properly incorporates the semantics of the principal control
mechanism for proof-search, namely backtracking, within the model theory
of the logic. Here, our focus is on proof-search in intuitionistic reductive
logic, and we exploit an embedding of intuitionistic proofs within classical
proofs as a framework within which control structures may be represented.

Turning to further developments of the work we have presented in this mono-
graph, we can readily identify a few possibilities, in order of likely increasing
conceptual significance:

1. A complete development of the theory presented here in the presence of
predicates with first- and higher-order quantifiers;14

2. A complete treatment of the other aspects of the control of proof-search, as
discussed briefly in the conclusion to Chapter 6;

14We provide brief sketches of how to handle the first-order case throughout our present
development.
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3. A re-development of our existing analysis for a range of substructural logics.
Of particular interest would be the following:
(i) Various fragments of linear logic [42];
(ii) The bunched logic, BI [8, 35, 88, 101, 102, 105], and its applied vari-

ants, including the Reynolds’ Separation Logic [109] and Ishtiaq and
O’Hearn’s Pointer Logic [58]. A semantic analysis of Harland and
Pym’s ‘Resource-distribution via Boolean constraints’, which systemat-
ically and tractably characterizes the relationship between the different
branches of reductions in substructural systems with multiplicative rules
[45], would be a worthwhile challenge;

4. A reconstruction of our analysis using the categorical semantics of classical
proofs provided by Führmann and Pym [30];

5. The development of a clear understanding of the relationship between our
semantics of reductive logic and proof-search, and Girard’s ‘Ludics’ [25, 41].
Informally, Girard claims that Ludics is closely related to proof-search.15

More formally, Hyland and Faggian [27, 56] have given an explicit explana-
tion of Ludics in terms of games semantics. A first step would be to relate
our games models of reductive logic and proof-search to their account.

It would seem that the last two points are in fact conceptually rather closely
related.

1.6 Errata and remarks

A file of ‘Errata and Remarks’, giving corrections to any known errors and provid-
ing clarifications and other remarks for this monograph, will be maintained at
the following:

http://www.cs.bath.ac.uk/˜pym/reductive-logic-errata.html
http://www.cs.bham.ac.uk/˜exr/reductive-logic-errata.html

or via http://www.oup.co.uk/isbn/0-19-852633-4

15It is unclear whether Girard means reductive logic or proof-search, or whether he intends
no distinction.

http://www.cs.bath.ac.uk/%CB%9Cpym/reductive-logic-errata.html
http://www.cs.bham.ac.uk/%CB%9Cexr/reductive-logic-errata.html
http://www.oup.co.uk/isbn/0-19-852633-4


2

LAMBDA-CALCULI FOR INTUITIONISTIC AND
CLASSICAL PROOFS

2.1 Introduction

We have explained, in Chapter 1, our overall purpose in this monograph: To
provide a proof theory and semantics for reductive proof of value compar-
able to the well-established semantics for deductive proof. In this chapter, we
provide our view of the deductive proof theory of intuitionistic and classical proof
theory, concentrating on the relationship between natural deduction proof and
the λ-calculus.

In Section 2.2, we introduce the usual natural deduction (ND) systems for
intuitionistic logic. We start with the more familiar, graphical treatment and
explain its sequentialization. Then, in Section 2.3, we introduce the simply-
typed λ-calculus, with product and sum types, as representation of the proofs of
propositional intuitionistic logic. We provide a summary of its basic metatheory.
In Section 2.4, we recall how the graphical presentation of intuitionistic natural
deduction may be strengthened to classical logic by adding appropriate rules for
classical negation. We then proceed to discuss the issues that arise in provid-
ing sequentialized version of classical natural deduction. This discussion leads us
naturally, in Section 2.5, to a presentation of a family of classical λ-calculi, start-
ing from Parigot’s λµ-calculus and adding disjunction, in two alternative forms,
and explicit substitutions. We provide a detailed account of the metatheory of
these calculi.

2.2 Intuitionistic natural deduction

Natural deduction systems were introduced in Gerhard Gentzen’s paper from
1934, ‘Untersuchungen über das logische Schliessen’ (‘Investigations into logical
deduction’) [37]. Natural deduction systems for classical logic and intuitionistic
logic are described by pairs of rules which manipulate proofs by either intro-
ducing a connective into a proof or eliminating it from a proof [95]. Proofs are
constructed by starting with assumptions and deriving conclusions. As such, that
process may be represented as a tree.

A good example is provided by the formulation in natural deduction of
reasoning by cases, which may be summarized as follows:

• Let φ1, φ2, and ψ be propositions;
• Suppose (i) that we have a proof of ψ assuming φ1, and (ii) that we have a
proof of ψ assuming φ2;
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• Suppose (iii) we have a proof that φ1 ∨ φ2 holds;
• From (i), (ii), and (iii), we can construct a proof of ψ.

In a natural deduction presentation of classical logic, this argument is described
by the rule of ∨-elimination, ∨E for short, in contrast to its corresponding
∨-introduction rules:

[φ1] [φ2]
...

...
φ1 ∨ φ2 ψ ψ ∨E

ψ

φ1 ∨I1
φ1 ∨ φ2

φ2 ∨I2.
φ1 ∨ φ2

Notice that we have discharged our assumptions φ1 and φ2: given that we have
a proof of φ1 ∨ φ2, we need not retain the assumptions in order to get a proof of
the conclusion.

We can also give similar rules for conjunction:

Note, however, that the ∧E may be written in the less systematic but rather
simpler ‘projective’ form

φ1 ∧ φ2

φ1

φ1 ∧ φ2

φ2
.

The rules for implication provide another example:

φ φ ⊃ ψ ⊃ E
ψ

[φ]
...
ψ ⊃ I.

φ ⊃ ψ

So suppose that we have proofs of ψ from either φ1 or φ2 and that we have a
proof of χ assuming ψ. Then the following is an example of a proof of χ assuming
φ1 ∨ φ2:

(2.1)
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So we can see that the assumptions made in a proof are represented as the
undischarged leaves of the tree—in this case, just φ1 ∨ φ2.

The pairing of rules for introducing and eliminating connectives is the key
characteristic of natural deduction. The natural deduction system for intuition-
istic logic that we have sketched here was introduced by Gentzen [37] and is
called NJ. The modus ponens (MP) rule of a Hilbert-type system corresponds
to ⊃-elimination.

The key property which a natural deduction system may have is normaliza-
tion. Normalization comes in several parts.

1. Firstly, in any natural deduction proof, all occurrences of an introduction
rule immediately16 followed by the elimination rule for the same occurrence
of the same connective may be eliminated from the proof, so as to yield a
proof in NJ of the same conclusion from the same assumptions. For example,

(2.2)

is a proof of ψ assuming φ. However, such a proof is what we started out
with in the right-hand branch of the proof tree. The ⊃ I rule is immediately
followed by the ⊃ E rule, which gets us back to a proof of ψ assuming φ.
The introduction followed by the corresponding elimination is a ‘pointless
detour’: we could have just used our original proof. Eliminating all such
pointless detours leads us to the β-normal form of a proof.

2. Secondly, we may have elimination rules immediately preceding introduction
rules. For example, if Φ is a proof in NJ of φ ∧ ψ, then the proof

which first eliminates ∧ from two copies of φ ∧ ψ only to eliminate it again,
can be considered to reduce to Φ. Performing all such reductions leads us to
the η-normal form of a proof.

3. Finally, the form of the elimination rule for ∨, known as Prawitz’s gen-
eralized form [95], introduces the possibility of a third form of reduction.

16Up to some permutabilities of rules [65].
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For example, consider the proof figure

where R is any applicable rule. This figure can be reorganized by permuting
R above ∨E to give

Performing all such reductions, which are also known as commuting conversions,
leads us to the ζ-normal form of a proof.

The third class of reductions considered above requires a little more consid-
eration. For, whereas the β- and η- reductions may readily be seen to reduce the
conceptual complexity of proofs,17 by removing pointless steps, the same is not
true of ζ-reductions: They are driven by the syntax of propositions (proofs) and
so seem somewhat arbitrary.

We call two natural deduction proofs Φ and Ψ βηζ-equal if they have the
same βηζ-normal form. We refer to this equality also as the extensional equality
between proofs.

2.2.1 Sequential natural deduction

The consequences established using natural deduction rules may be represented
as sequents (from the German ‘Sequenzen’) and natural deduction rules may
be represented in sequential or linearized form, in which the assumptions made
globally, at the leaves of the proof tree, are represented locally within the rules.
For example, the ∨-elimination and ∨-introduction rules go as follows:

Γ � φ1 ∨ φ2 Γ, φ1 � ψ Γ, φ2 � ψ

Γ � ψ
∨ E

and
Γ � φ1

Γ � φ1 ∨ φ2
∨ I1

Γ � φ2

Γ � φ1 ∨ φ2
∨ I2.

17It is quite possible—fortunately—to devise measures which are diminished by
ζ-reductions.
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For example, the proof in (2.1) is represented as

(2.3)

Two important things may be seen from this example.
1. Firstly, that discharge corresponds to removing formulæ from the left-hand

side of �. Note that we can see two versions of this, one in which the dis-
charged formula simply moves to form part of the right-hand side (⊃ I)
and one in which the discharged formulæ are witnessed by a formula on the
right-hand side ∨E.

2. Secondly, that the rôle of the Γ is somewhat arbitrary. In particular, we
could replace Γ with Γ,Γ′, that is, do a Weakening operation,

Γ � φ

Γ,Γ′ � φ
Weakening,

and still have a perfectly good proof of φ, with more (unused) assumptions.
A related structural is that of Contraction,

Γ,∆,∆,Γ′ � φ

Γ,∆,Γ′ � φ
Contraction,

in which duplications of assumptions are removed.

2.2.2 Natural deduction for intuitionistic predicate logic

Natural deduction rules may also be written for intuitionistic predicate logic with
the existential and universal quantifiers. The propositional rules are unchanged.
Each quantifier comes along with an introduction rule and an elimination rule:

φ(x)
∀x.φ(x)

∀I ∀x.φ(x)
φ(t)

∀E,

φ(t)
∃x.φ(x)

∃I
[φ(x)]

∃x.φ(x) ψ

ψ
∃E,

where, in ∀I and ∃E, x does not occur freely in any assumption upon which the
conclusion depends.

The generalization, G, rule of a Hilbert-type system corresponds to
∀-introduction.

The analysis of reduction rules, equations, and normal forms, as well as
sequentialization, for propositional natural deduction extends straightforwardly
to the quantifiers [42].
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Table 2.1. Sequential intuitionistic propositional natural
deduction: SNJ

Identity and structure

φ � φ
Ax

Γ, φ, ψ, Γ′ � χ

Γ, ψ, φ, Γ′ � χ
Exchange

Γ � φ

Γ, Γ′ � φ
W

Γ, ∆, ∆, Γ′ � φ

Γ, ∆, Γ′ � φ
C

Operational rules

〈〉 � � � I

Γ � φ Γ � ψ

Γ � φ ∧ ψ
∧I

Γ � φ ∧ ψ

Γ � φ
∧E

Γ � φ ∧ ψ

Γ � ψ
∧E

Γ, φ � ψ

Γ � φ ⊃ ψ
⊃ I

Γ � φ ⊃ ψ Γ � φ

Γ � ψ
⊃ E

Γ � ⊥
Γ � φ

⊥ E

Γ � φ

Γ � φ ∨ ψ
∨I

Γ � ψ

Γ � φ ∨ ψ
∨I

Γ � φ ∨ ψ Γ, φ � χ Γ, ψ � χ

Γ � χ
∨E

2.3 The simply-typed λ-calculus

The proof trees generated by sequential intuitionistic natural deduction proofs
may be represented as terms of the simply-typed λ-calculus, in addition to the
basic function types, also product and sum types may be added. Formally, the
simply-typed λ-calculus with product and sum types stands in propositions-as-
types correspondence [11, 54] with natural deduction proofs.

We call the system described below the simply-typed λ-calculus with products
and sums. Rather than give an explicit presentation of the propositions-as-types
correspondence, we take the types of the simply-typed λ-calculus to be given
directly by the formulæ of intuitionistic propositional logic. The general set-up
is, however, quite easy to see. If Φ is an intuitionistic natural deduction proof of
φ from assumptions φ1, . . . , φm,

Φ : φ1, . . . , φm � φ,

then there is a λ-term tΦ such that

x1 : φ1, . . . , xm : φm � tΦ : φ,

where each xi is variable of the λ-calculus, is provable in the natural deduction
calculus for the λ-calculus. The xis are understood to stand for proofs of the
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φis and tΦ is a realizer of φ relative to these assumptions. Moreover, this
correspondence is bijective in the evident sense.

The raw types, raw terms, and raw contexts of the simply-typed λ-calculus
with products and sums are then given by the following grammars:

1. Types
φ ::= p | � | φ ∧ φ | ⊥ | φ ∨ φ | φ ⊃ φ,

where p ranges over atoms;
2. Terms

t ::= x | � | 〈t, u〉 | π1t | π2t
| ⊥φ(t) | in1t | in2t | case t of in1 (x)⇒ t or in2 (y)⇒ t
| λx : φ.t | t t,

where x ranges over variables, the first line gives the evident terms for
products, the second line the terms for sums, and the third line the terms
for function types;

3. Contexts
Γ ::= x : φ variables

| Γ, x : φ extension
| 〈〉 unit (empty context).

We associate distinct variables with each proposition that occurs in a
context.

The natural deduction rules for the simply-typed λ-calculus with
products and sums are given in Table 2.2, in which ⊥φ(t) is the canon-
ical term of type φ constructed from any term t of type ⊥. Substitution of
the term u for the variable x in the term t is denoted by t[u/x]. A term t is
said to be well-typed , with type φ, if Γ � t : φ is provable in this system.

We usually omit the notation 〈〉 for the empty context provided no
confusion is possible;

4. Reduction
Next, we turn to reduction of λ-terms. As λ-terms correspond to SNJ-proofs
there are also three classes of normalizations, called reductions, correspond-
ing to the three classes of normalization of SNJ-proofs. We will write t � s
if t reduces to s in one or more steps, and t �∗ s if t reduces to s in 0 or
more steps. The β- and η-reductions are listed in Table 2.3.

To state the ζ-reductions, we adopt the notion of a term context , or a term
with holes. Such a term C with holes of type φ is a λ-term which may have
also the additional term constructor with the rule Γ � : φ,∆. The term C(u)
denotes the term C with the holes textually (with possible variable capture)
replaced by u. The ζ-reductions may now be stated as in Table 2.4.18

18Recall that the necessity of the ζ-reductions for, say, disjunction may be understood as
a consequence of the failure of ∨E to be suitably ‘syntax-directed’.
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Table 2.2. Natural deduction for the simply-typed λ-calculus with
products and sums

Identity and structure

Γ, x : φ, Γ′ � x : φ
Axiom

Units

Γ � t : ⊥
Γ � ⊥φ(t) : φ

⊥ E

〈〉 � � : � � I

Operational rules

Γ, x : φ � t : ψ

Γ � λx : φ . t : φ ⊃ ψ
⊃ I

Γ � t : φ ⊃ ψ Γ � u : φ

Γ � tu : ψ
⊃ E

Γ � t : φ Γ � u : ψ

Γ � 〈t, u〉 : φ ∧ ψ
∧ I

Γ � t : φ ∧ ψ

Γ � π1t : φ

Γ � t : φ ∧ ψ

Γ � π2t : ψ
∧ E

Γ � t : φi

Γ � ini(t) : φ1 ∨ φ2
(i = 1, 2) ∨ I

Γ � t : φ ∨ ψ Γ, x : φ � u : χ Γ, y : ψ � v : χ

Γ � case t of in1 (x) ⇒ u or in2 (y) ⇒ v : χ
∨ E

Table 2.3. βη-reductions

β-reductions η-reductions

(λx : φ . t)u � t[u/x] λx : φ.tx � t (x �∈ FV(t))

π1〈t1, t2〉 � t1 〈π1t, π2t〉 � M

π2〈t1, t2〉 � t2

(case in1(t) of in1 (x) ⇒ u1 or in2 (y) ⇒ u2) t � case t of
� u1[t/x] in1(x)⇒in1(x) or in2(y)⇒in2(y)

(case in2(t) of in1 (x) ⇒ u1 or in2 (y) ⇒ u2)
� u2[t/y]

Equality of λ-terms is defined in terms of reductions. Firstly, we take the
obvious α-reductions. Secondly, we write t = t′ as the smallest congruence rela-
tion containing � and satisfying Γ � t = t′ : φ for Γ � t : φ. We shall be
concerned throughout with βηζ-equality and βηζ-normal forms. We say that an
λ-term is well-typed in Γ if there is a φ such that Γ � t : φ is provable.
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Table 2.4. ζ-reductions

ζ-reductions for ∨

C(case t of in1 (x) ⇒ u or in2 (y) ⇒ v) �

case t of in1 (x) ⇒ C(u) or in2 (y) ⇒ C(v)

There are no term constructors in the simply-typed λ-calculus for the struct-
ural rules of Weakening, Exchange, and Contraction nor for Cut. All structural
rules are admissible, and Cut is arises as substitution.

Lemma 2.1 (admissibility of structural rules) The following rules are
admissible in the simply-typed λ-calculus:
Exchange:

Γ, x1 : φ1, x2 : φ2 � t : φ

Γ, x2 : φ2, x1 : φ1 � t : φ

Contraction:
Γ, x : φ, y : φ � t : ψ

Γ, x : φ � t[x/y] : ψ

Weakening:
Γ � t : ψ

Γ, x : φ � t : ψ

Cut:
Γ, x : φ � t : ψ Γ � u : φ

Γ � t[u/x] : ψ
.

Moreover, the context Γ in the judgement Γ � t : φ can be restricted to the
variables occurring freely in t. This property is called strengthening :

Lemma 2.2 (strengthening) If Γ, x : φ � t : ψ is provable and if x �∈ FV(t),
then Γ � t : ψ is provable.

Another important theorem states that reduction preserves typing. This
should hold, as reduction only simplifies proofs but does not construct new
proofs.

Theorem 2.3 (subject reduction) If Γ � t : φ is provable and t � t′, then
Γ � t′ : φ is provable.

Proof By induction on the structure of the derivation of the reduction t � t′,
using Lemma 2.1.

For example, the base case for β-reduction (e.g., for ⊃) has ⊃ E,

Γ � λx : φ.t : φ ⊃ ψ Γ � u : φ

Γ � (λx : φ.t)u : ψ

as the last inference in the derivation (possibly followed by instances of structural
rules). Hence we have Γ, x : φ � t : ψ and so, by Lemma 2.1, Γ � t[u/x] : ψ.

The other cases are similar. �
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2.3.1 Normalization and subject reduction

We give a sketch of the proof of the strong normalization (SN) theorem for
β-reduction for the simply-typed λ-calculus, with the usual functional (⊃) and
conjunctive (∧) types. This basic result, which states that all reduction sequences
t � t1 � t2 � · · · for every term t are finite, including the extension
to disjunctive (∨) types is well-documented, with [95, 96] and [42] being the
most accessible.19 The extension to η-reduction is more complex, though quite
straightforward. Note, however, that in order to give a categorical semantics to
the system with disjunctive types, which are then interpreted as co-products,
care must be taken to handle the ζ-reductions, or commuting conversions, prop-
erly [38, 61]. All of these issues arise, and are handled in detail, in our treatment
of the λµν-calculus in subsequent sections and chapters. For now, by way of an
introduction to these techniques, we content ourselves with sketch in a simple,
restricted setting.

The basic idea of the proof of strong normalization is Tait’s [122] notion
of reducibility, taken together with Girard’s [40] notion of neutrality, which
facilitates a technical improvement of Tait’s proof.

For the remainder of this section, we confine our attention to λ-terms without
∨ (or ⊥). However, the methods discussed in [61, 95, 97, 111] can be used to
extend strong normalization and subject reduction to ∨ (and ⊥). We follow the
excellent, and very concise, presentation in [42].

The basic idea of reducibility is to structure the reductions of terms according
to the structure of their types. Without ∨, we define the set Red(φ), of reducible
terms of type φ, relative to a given context, by induction over the structure of φ
as follows:20

1. If t has atomic type, p, then t ∈ Red(p) if it is strongly normalizing;
2. If t has type φ1 ∧ φ2, then t ∈ Red(φ1 ∧ φ2) if both π1t ∈ Red(φ1) and

π2t ∈ Red(φ2);
3. If t has type φ ⊃ ψ, then t ∈ Red(φ ⊃ ψ) if, for every u ∈ Red(φ), tu ∈

Red(ψ).

The basic idea of neutrality is to pick out those terms which are not immedi-
ately constructed by introduction rules. In the absence of ∨ (and ⊥), the neutral
terms are those of the form x, π1t, π2t, tu.

The key technical lemma is then that the sets Red(φ) satisfy the following
conditions:

CR1 If t ∈ Red(φ), then t is SN;
CR2 If t ∈ Red(φ) and t � t′, then t′ ∈ Red(φ);

19The details for ⊃ and ∧ are provided in [42]; definitions are provided for ∨ but for the
extension of the proof of SN to ∨ one is referred to [96] (see also [126]), which is formulated in
terms of natural deduction proof trees rather than a term calculus.

20Throughout this section, which is intended as a sketch, we neglect the unit � (similarly
⊥, for disjunction). It is a degenerate case of ∧.
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CR3 If t is neutral and every redex in t reduces to a term t′ ∈ Red(φ), then
t ∈ Red(φ);

CR4 If t is both neutral and normal, then t ∈ Red(φ).

Note that CR4 is a special case of CR3. This lemma is proved by induction on
the structure of types and on a measure ν(t), which bounds the length of every
reduction sequence beginning with t.

The proof of SN now proceeds, by an induction on the structure of terms,
to show that all terms are reducible. The argument uses the following lemma
(q.v. [42]):

Lemma 2.4 Let t be any, not necessarily reducible, term with free variables
among x1 : φ1, . . . , xm : φm. If u1, . . . , um are reducible terms of type φ1, . . . , φm,
then t[u1/x1, . . . , um/xm] is reducible.

Theorem 2.5 (strong normalization) All well-typed λ-terms are strongly
normalizing, that is, all reduction sequences terminate.

2.3.2 λ-calculi and intuitionistic predicate logic

The correspondence between the λ-calculus and natural deduction proofs extends
quite naturally to predicate quantifiers. Although Howard’s paper [54] explains
this correspondence in the simply-typed setting, with quantifiers handle point-
wise, it is perhaps most naturally seen in the setting of dependent types
[77, 100, 106].

The basic idea of dependent types is that types are not merely built up using
‘propositional’ type constructors, such as ⊃ and ∧, but rather may be dependent
upon terms, just as first-order (or, indeed, higher-order) predicates may depend
upon terms. Thus a dependently-typed sequent has the form

x1 : A1, x2 : A2(x1), . . . , xm : Am(x1, . . . , xm−1) � t(x1, . . . , xm) : A(x1, . . . , xm).

So, given a context Γ = x1 : A1, x2 : A2(x1), . . . , xm : Am(x1, . . . , xm−1), we
have a rule

Γ, x : A � t : B

Γ � λx : A.t : Πx : A.B
,

which introduces the ‘Π-type’. Here both t and B may depend upon x and is
described as the ‘dependent product’ or ‘dependent function space’. In the case
in which x does not occur freely in B, the dependent type Πx : A.B amounts to
just the simple type A ⊃ B.

Restricting our attention, for simplicity, to just the (⊃,∀)-fragment, we then
get the following propositions-as-types correspondence between constructions:

Γ, φ � ψ

Γ � φ ⊃ ψ
⊃ I and

Γ, x : φ � t : ψ

Γ � λx : φ.t : φ ⊃ ψ
ΠI, (2.4)
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where x is not free in ψ, and

Γ � φ(x)
Γ � ∀x.φ(x)

∀I and
Γ, x : A � t : ψ

Γ � λx : A.t : Πx : A.ψ
ΠI (2.5)

in general. Note that there is quite a lot going on here. In (2.4), the variable
x which is bound by the λ-abstraction stands for a proof of the proposition φ.
In (2.5), however, the variable x is a first-order variable in the occurring in the
predicate φ (and must not occur free in other propositions in Γ). With respect
to the propositions-as-types correspondence, dependently-typed contexts contain
variables of both sorts.21

2.4 Classical natural deduction

The system NJ can be made classical by adding stronger rules for negation.
Typically, one of the following three rules is added:

• The Law of the Excluded Middle Axiom:

φ ∨ ¬φ

• The Double-negation Rule:
¬¬φ

φ

• The Reductio Ad Absurdum (RAA) Rule:

[¬φ]
...
⊥
φ

.

We call the resulting system NK .
Classical logic may, in a certain sense, be translated into intuitionistic logic.

The following translation, −◦, is called the Gödel translation or ¬¬ translation:

⊥◦ :=⊥
p◦ :=¬¬p

(φ ∧ ψ)◦ :=φ◦ ∧ ψ◦

(φ ∨ ψ)◦ :=¬(¬(φ)◦ ∧ ¬(ψ)◦)
(φ ⊃ ψ)◦ :=φ◦ ⊃ ψ◦.

21See [98, 100, 106] for an account of the proof theory of the λΠ-calculus.
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Extending the translation −◦ to sets of formulæ via Γ◦ = {φ◦ | φ ∈ Γ }, we
then have, with some small abuse of notation, the following:

Theorem 2.6 (Gödel translation) Γ � φ is provable in NK if and only if
Γ◦ � φ◦ is provable in NJ.

The Gödel translation and the associated theorem extend to the quantifiers
without difficulty:

(∀x.φ)◦ :=∀x.φ◦

(∃x.φ)◦ :=¬∀x.¬(φ)◦.
Note that the intuitionistic interpretation of the classical ∨ (and ∃) by the

Gödel translation is quite weak. The asymmetry introduced by the transla-
tion corresponds to λµν’s call-by-value reduction strategy and, indeed, to the
semantics of classical Cut-reduction provided by continuations. We return to this
point briefly in Chapter 3, where we discuss ‘Lafont’s example’.

Just as for intuitionistic natural deduction, so classical natural deduction
can be sequentialized, and the evident single-conclusioned system, adding,
respectively, one of the following rules, is equivalent to NK:

• The Law of the Excluded Middle:

Γ � φ ∨ ¬φ
LEM

• The Double-negation Rule:

Γ � ¬¬φ

Γ � φ
¬¬

• The Reductio Ad Absurdum Rule:

Γ,¬φ � ⊥
Γ � φ

RAA.

Not only is the system so obtained equivalent to NK, it retains the major
defect of both NJ and NK, namely the necessity of taking the ζ-rules (i.e., the
commuting conversions) in order to obtain an extensional equality on proofs.

The βη-equality defined for intuitionistic natural deduction extends to this
system.

In the classical setting, however, we can do a bit better. A sequential system
of classical natural deduction, with multiple-conclusioned sequents and which
requires no ζ-reductions, has been introduced by Parigot [90].

In this setting, we have a choice of forms for ∨I. Following the pattern of
intuitionistic natural deduction,

Γ � φ

Γ � φ ∨ ψ

Γ � ψ

Γ � φ ∨ ψ
∨ I
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Table 2.5. Sequential natural deduction for classical propositional
logic: FNK

Γ, φ � φ, ∆
Ax

Γ, φ � ∆
Γ � ¬φ, ∆

¬I
Γ � ¬φ, ∆ Γ � φ, ∆

Γ � ∆
¬E

Γ � �, ∆
no elimination rule

Γ � φ, ∆ Γ � ψ, ∆
Γ � φ ∧ ψ, ∆

∧ I
Γ � φ1 ∧ φ2, ∆

Γ � φi, ∆
(i = 1, 2) ∧ E

Γ, φ � ψ, ∆
Γ � φ ⊃ ψ, ∆

⊃ I
Γ � φ ⊃ ψ, ∆ Γ � φ, ∆

Γ � ψ, ∆
⊃ E

is available. However, given that we have multiple conclusions in our sequents,
the following form is available:

Γ � φ, ψ,∆
Γ � φ ∨ ψ,∆

∨ I. (2.6)

Turning to ∨E, having multiple conclusions allows us to use a form which
avoids the need for ζ-equalities (commuting conversions) in addition to the
βη-equalities:

Γ � φ ∨ ψ,∆
Γ � φ, ψ,∆

∨ E. (2.7)

To see the point here, informally, consider that the ζ-redex

and its reduct (the rule R may be pushed up the two right-hand branches) in
the system which follows the intuitionistic form corresponds to the derivation

where R′ is the rule corresponding to R and ∆ results from applying R′ with
the principal formula in ∆, which is not a redex.
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Table 2.6. Sequential natural deduction for classical propositional
logic: FNK

no ⊥I rule
Γ � ⊥, ∆
Γ � φ, ∆

⊥E

Γ � φ, ψ, ∆
Γ � φ ∨ ψ, ∆

∨ I
Γ � φ ∨ ψ, ∆
Γ � φ, ψ, ∆

∨ E

The rules for falsity are straightforward:

no introduction rule
Γ � ⊥,∆
Γ � φ,∆

⊥E.

Call the system consisting of the rules above, in Table 2.6, with (2.6) for ∨I
and (2.7) for ∨-elimination, in Table 2.6, FNK.

Then we have the following:

Proposition 2.7 (classical natural deduction) If φ is provable from assump-
tions Γ in NJ, then Γ � φ is provable in FNK. Conversely, if Γ � φ1, . . . , φm is
provable in FNK, then φ1 ∨ · · · ∨ φm is provable from assumptions Γ in NK.

Just as the simply-typed λ-calculus, extended with product and sum types
as required, provides a representation of intuitionistic natural deduction proofs,
so a representation of classical natural deduction proofs is provided by the λµ-
calculus [90], extended as required with products and a suitable treatment of
disjunction [97, 108, 111].

2.5 The λµ-, λµ⊕-, λµν-, and λµνε-calculi

2.5.1 Proof-objects and realizers

As we have seen in the previous sections, natural deductions Φ of SNJ can be
seen as proof-objects realizing consequences Γ �Φ φ and can be represented by
a λ-term, t, satisfying Γ � t : φ. Φ describes how to obtain natural deduction
proofs of φ from natural deduction proofs of the formulæ in Γ.

This correspondence, between natural deduction proofs and λ-terms on the
one hand and propositions and types on the other, does not hold for classical
natural deduction. It turns out that, in the presence of any one of the three
extensions of intuitionistic natural deduction to give classical natural deduction,
βη-equality leads to the identification of all of the proofs of any given con-
sequence. This result is best understood in the context of categorical models of
the λ-calculus and is given in detail in Chapter 3.

However, Parigot’s λµ-calculus [90] provides an elegant language of proof-
objects based on an algorithmic interpretation of FNK. The proof-objects are
realizers for multiple-conclusioned sequents Γ � φ,∆, where, critically, φ is
a distinguished, or active, formula. λµ-terms provide realizers for the sequents
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Γ � φ,∆ of FNK and the equational theory does not identify all such realizers
of a given sequent provided φ is treated as a distinguished formula. The trick,
then, is to treat Γ � φ as a kind of intuitionistic consequence within the classical
context provided by ∆.22 Consequently, the form of the typing judgement in
the λµ-calculus is Γ � t : φ,∆, where Γ is a context familiar from the typed λ-
calculus and ∆ is a context containing types indexed by names, α, β, . . ., which
are distinct from variables. The idea is that each λµ-sequent has exactly one
principal formula, φ, on the right-hand side, the leftmost one, which is the for-
mula upon which all introduction and elimination rules operate. This formula is
the type of the term t.

2.5.2 The λµ-calculus

We begin by introducing a minor variation on Parigot’s λµ-calculus [90]. In
addition to implicational types, we include conjunctive types. We then proceed
to add disjunctive types and then explicit substitutions u{t/x}. The last are
used in the analysis of search below to give suitable representatives for possibly
incompletable sequent derivations. Parigot presents in [90] only a λµ-calculus
with implicational types and β-reductions. The addition of conjunctive types
is straightforward, but the addition of disjunctive types is more problematic as
there are two main alternatives, which we will briefly discuss below. To model
the transition from a given proof to a uniform proof we also need η-expansions.
We show that strong normalization and confluence still hold for this extended
calculus but the reducibility proof needs careful reworking as the η-expansions
give rise to additional reduction rules.

We present this calculus in four steps: firstly, we introduce the λµ-calculus
with implicational types, conjunctive types, and β-reductions. Secondly, we add
disjunctive types and, thirdly, we add η-expansion and prove strong normal-
ization and confluence for this system. Finally, we add explicit substitutions,
showing that normalization and confluence are preserved.

2.5.3 Implication and conjunction

The raw terms of the λµ-calculus with conjunction are given by the following
grammar:

t ::= x | λx : φ . t | tt | µα.t | [α]t | µ⊥.t | [⊥]t | 〈t, t〉 | π(t) | π′(t).

We assume that the scope of the bracket operator [α]t extends as far to the right
as possible, that is, the term [α]ts is implicitly bracketed as [α](ts). The rules for
well-formed λµ-terms are given in Table 2.7. The second instances of the rules
[ ] and µ model Contraction and Weakening, respectively.

22Later, in Chapter 4, we shall see that this formulation is closely related to Dummett’s
multiple-conclusioned intuitionistic sequent calculus [26].
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Table 2.7. Well-formed λµ-terms

Γ, x : φ � x : φ, ∆
Ax

Γ, x : φ � t : ψ, ∆
Γ � λx : φ.t : φ ⊃ ψ, ∆

⊃ I
Γ � t : φ ⊃ ψ, ∆ Γ � s : φ, ∆

Γ � ts : ψ, ∆
⊃ E

Γ � t : φα, ∆
Γ � µα.t : φ, ∆

µ
Γ � t : φ, ∆

Γ � [α]t : φα, ∆
[ ]

Γ � t : ∆
Γ � µα.t : φ, ∆

µ
Γ � t : φ, φα, ∆
Γ � [α]t : φα, ∆

[ ]

Γ � t : ∆
Γ � µ⊥.t : ⊥, ∆

⊥I
Γ � t : ⊥, ∆
Γ � [⊥]t : ∆

⊥E

Γ � t : φ, ∆ Γ � s : ψ, ∆
Γ � 〈t, s〉 : φ ∧ ψ, ∆

∧ I
Γ � t : φ ∧ ψ, ∆
Γ � π(t) : φ, ∆

∧ E
Γ � t : φ ∧ ψ, ∆
Γ � π′(t) : ψ, ∆

∧ E

The definition of the reduction rules requires not only the standard sub-
stitution t[s/x], but also a substitution for names t[s/[α]u], which intuitively
indicates the term t with all occurrences of a subterm of the form [α]u replaced
by s. Again, we need the notion of a term with holes, adapted for the λµ-calculus.
Such a term C with holes of type φ is a λµ-term which may have also the addi-
tional term constructor with the rule Γ � : φ,∆. The term C(u) denotes the
term C with the holes textually (with possible variable capture) replaced by u.
Then we define t[C(u)/[α]u], where α is a name and u is a metavariable, by

x[C(u)/[α]u] =x
([α]t)[C(u)/[α]u] = C(t[C(u)/[α]u])

and defined on all other expressions by pushing the replacement inside.
Again, there are three kinds of reduction rules: β-, η-, and ζ-rules. The

β- and η-rules have the same purpose as the β- and η-rules in the simply-typed
λ-calculus. The ζ-rules of the λµν-calculus are variants of the β-rules, where
the Exchange is applied to the right-hand side before a β-rule is applied. This
is different from the simply-typed λ-calculus, where ζ-rules model permuting
reductions over ∨E-rules. The reduction rules are given in Table 2.8.

The term [α]t realizes the introduction of a name. The term µα.[β]t realizes
the Exchange operation: if φα was part of ∆ before the Exchange, then φ is
the principal formula of the succedent after the Exchange. Taken together, these
terms also provide a notation for the realizers of Contractions and Weaken-
ings on the right of a multiple-conclusioned calculus. It is also easy to detect
whether a formula ψβ in the right-hand side is, in fact, superfluous, that is,
that there is a derivation of Γ � t : φ,∆′ in which ∆′ does not contain ψ; it
is superfluous if β is not a free name in t. This observation is exploited in the
sequel.
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Table 2.8. Reduction rules for the λµ-calculus

β (λx : φ.t)s� t[s/x]

ζ⊃ (µαφ⊃ψ .t)s� µβψ .t[[β]us/[α]u]
(µαφ⊃⊥.t)s� µ⊥.t[[⊥]us/[α]u]

ηµ µα.[α]s� s if α not free in s

βµ [γ](µα.s)� s[γ/α]

η⊥ µ⊥.[⊥]t� t

β⊥ [⊥]µ⊥.t� t

ζ∧ π(µαφ∧ψ .s)� µβφ.s[[β]π(u)/[α]u]
π′(µαφ∧ψ .s)� µγψ .s[[γ]π′(u)/[α]u]
π(µα⊥∧ψ .s)� µ⊥.s[[⊥]π(u)/[α]u]
π′(µαφ∧⊥.s)� µ⊥.s[[⊥]π′(u)/[α]u]

β∧ π(〈t, s〉)� t

π′(〈t, s〉)� s

The λµ-calculus has a special formula ⊥ and treats the formula ¬φ as φ ⊃ ⊥.
The ⊥I- and ⊥E-rule model the fact that the formula ⊥ can be freely added
to the right-hand side of each derivation. As these two rules suggest, we treat ⊥
as a special name, and when we have a generic term µα.t with Γ � t : ψ, φα,∆,
we always include the case µ⊥.t.

2.5.3.1 Remark Note that in the version of the λµ-calculus presented above
the term [α]t has no principal type. The intuition behind this is that this term
occurs only as a subterm in a term like µβ.[α]t, which models structural rules
on the right-hand side. It is possible to give a different, semantically motivated,
presentation of the λµ-calculus in which all terms have a principal type. This is
done by choosing the principal type ⊥ for the term [α]t. Hence the rules for µα.t
and [α]t are changed to

Γ � t : φ,∆
Γ � [α]t : ⊥, φα,∆ and

Γ � t : ⊥, φα,∆
Γ � µα.t : φ,∆ .

It follows that there is no need in such a system for the terms µ⊥.t and [⊥]t
or their corresponding rules, ⊥I and ⊥E, because these terms were introduced
solely as realizers for ⊥I and ⊥E. Because, in our system, we have µ⊥.[⊥]t = t
and [⊥]µ⊥.t = t, the two systems are equivalent in the sense that there exist
translations between them, which preserve equality and which are inverse up to
equality. Similar rules express Weakening and Contraction in this way. We use
the version outlined above because the algorithms for proof-search rely on the
fact that the application of structural rules on the right-hand side is indicated
by a term µα.[β]t, where α or β might be ⊥.
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2.5.4 Disjunctive types: The λµν-calculus

The key point in the addition of disjunctive types is naturally explained in the
setting of the natural deduction calculus for classical logic, FNK. The details of
our analysis, using the ‘λµν-calculus’, were originally presented by Pym, Ritter,
and Wallen in [97, 108, 111].

One possible formulation, with a single minor formula in the premiss, follows
the rules for disjunction in SNJ,

Γ � φi,∆
Γ � φ1 + φ2,∆

i = 1, 2, (2.8)

yielding the usual addition of sums (co-products) to the realizing λ-terms:

t ::= in1(t) | in2(t) | case t of in1(x)⇒ t or in2(y)⇒ t.

An alternative formulation [26] exploits the presence of multiple conclusions,
as in FNK:

Γ � φ1, φ2,∆
Γ � φ1 ∨ φ2,∆

. (2.9)

Later, in Chapters 4 and 6, we shall see that this formulation is the more desir-
able as basis to model reduction operators for proof-search because it maintains
a local representation of the global choice between φ1 and φ2: Given a local rep-
resentation, we can hope to avoid backtracking to this point in the search space.
In particular, this form of disjunction can be exploited to improve the efficiency
of certain formulations of logic programming. These points are discussed in more
detail in Chapters 4 and 6.

For the λµ-calculus, however, this latter formulation presents a new difficulty.
Suppose the λµ-sequent Γ � t : φ, ψβ ,∆ is to be the premiss of an application
of the ∨I rule. In forming the disjunctive active formula φ ∨ ψ, we move the
named formula ψβ from the context to the active position. Consequently, ∨I is
formulated as a binding operation on names and we add the following constructs
to λµ, to form the grammar of λµν-terms [108, 111]:

t ::= 〈β〉t | νβ . t. (2.10)

The term νβ . t introduces a disjunction and the term 〈β〉t eliminates one. The
associated inference rules are as follows:

Γ � t : φ, ψβ ,∆
Γ � νβ.t : φ ∨ ψ,∆ ∨ I

Γ � t : φ ∨ ψ,∆
Γ � 〈β〉t : φ, ψβ ,∆ ∨ E

Γ � t : φ,∆
Γ � ν⊥.t : φ ∨ ⊥,∆ ∨I⊥

Γ � t : φ ∨ ⊥,∆
Γ � 〈⊥〉t : φ,∆ ∨E⊥.
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To avoid variable capture, we have to add a special clause for the mixed
substitution:

(〈α〉t)[[C(u)/[α]u]] = µγ.C(µα.[γ]〈α〉t[C(u)/[α]u]),

where γ is a fresh name. If we had pushed the substitution through, the substi-
tution lemma fails: the term µβ.[α]〈α〉x is well-formed if x is of type φ∨(ψ ⊃ χ).
If the term (µβ.[α]〈α〉x)[[α′]us/[α]u] is defined as µβ.[α′](〈α〉xs), we obtain an
ill-formed term.

The corresponding reduction rules are

β∨ 〈β〉(να.s)� s[β/α]
ζ∨ 〈β〉µγ.t � µα.t[[α]〈β〉s/[γ]s]
β∨

⊥ 〈β〉µγ⊥∨ψ.t � µ⊥.t[[⊥]〈β〉s/[γ]s]
ζ∨
⊥ 〈⊥〉µγφ∨⊥.t � µα.t[[α]〈⊥〉s/[γ]s].

The rules ∨I⊥, ∨E⊥, β∨
⊥, and ζ∨

⊥ are special cases of ∨I, ∨E, β∨, and ζ∨,
respectively. They are included as convenient abbreviations and need not be
analysed separately.

2.5.4.1 Remark To avoid loops during reduction, all ζ-rules do not apply if
the term t in which the name α is changed is equal to 〈α〉t′, and α does not
occur in t′.

Although the FNK-like ∨ can be derived from the SNJ-like + (and vice versa)
via Weakening, they are not ‘isomorphic’; that is, there does not exist a bijection
between

{t | Γ � t : φ1 + φ2,∆ is provable}
and

{t | Γ � t : φ1 ∨ φ2,∆ is provable},
which respects the congruence induced on terms induced by normalization.
Indeed, the imposition of a bijection forces for every Γ, ∆, t, and φ, the set

{t | Γ � t : φ,∆ is provable}

to have at most one element. The proper formulation of this result requires
semantic techniques which make essential use of fibred structure. Such a
formulation is provided in Chapter 3.

2.5.5 The η-rules, strong normalization, and confluence

Parigot gives only reduction rules for β-reduction. For both proof-theoretic and
semantic reasons, we also need extensionality, that is, we must have the η-rules.
We will work with long η-normal forms in the sequel.
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We introduce them here as expansions; that is, each term of functional type
is transformed into a λ-abstraction, each term of product type into a product
and each term of sum type into a term νβ.t′. These rules are

η⊃ t � λx : φ.tx
η∧ t � 〈π(t), π′(t)〉
η∨ t � να.〈α〉t.

In these rules, we assume that t is neither a λ-abstraction, nor a product, nor
a term να.t′, nor that t occurs as the first argument of an application, or as
the argument of a projection π or π′ or of some term 〈β〉 . In the η⊃-, η∧-, and
η∨-rules, we also assume that t is of function type, product type, and sum type
respectively.

These η-rules generate critical pairs,23 which give rise to additional reduction
rules. As an example, consider the term t = [α]µα.s, where α is a name of
type φ ⊃ ψ. This term can reduce via an η-expansion to [α]λx : φ.(µα.s)x, and
via a µν-rule to t. The reduction from [α]λx : φ.(µα.s)x to t can be seen as a
generalized renaming operation. This operation is denoted by t {β} and is defined
as follows:

Definition 2.8 Define the generalized renaming of a λµν-term t by a name
β, written t {β}, by induction over the type of the name β as follows:

Atomic type: (µα.t) {β} = t[β/α];
φ ⊃ ψ: (λx : φ.t) {β} = t {β′} [[β]λx : φ.u/[β′]u] for some fresh name β′ if x
occurs in t {β′} only within the scope of [β′]u, otherwise (λx : φ.t) {β} is
undefined;

φ ∧ ψ: If t = 〈t1, t2〉 and for some names β1 and β2 of type φ and ψ, respect-
ively, t2 {β2} arises from t1 {β1} by replacing each subterm [β1]s1 recursively
by some subterm [β2]s2, then t {β} = t1 {β1} [[β]〈s1, s2〉/[β1]s1];

φ ∨ ψ: (να.t) {β} = t {β′} [[β]να.u/[β′]u] for some fresh name β′ if α occurs
in t {β′} only within the scope of [β′]u, otherwise (να.t) {β} is undefined.

The additional reduction rule, which is called ζµ, can now be stated as:

ζµ [α]t � t {α} . (2.11)

Note that this reduction rule specializes to the rule βµ, if α is a name of atomic
type. Because the outermost bindings µα. of names of atomic type disappear

23A formal definition of critical pairs may be found in J. W. Klop’s comprehensive reference
article on term rewriting systems [66]. Informally, the idea is that critical pairs are those pairs
of terms upon which the normalization and confluence properties of a rewriting system depend.
That is, pairs 〈t1, t2〉 such that there is a term t such that t1 � t and t2 � t.



48 CLASSICAL PROOFS AND λ-CALCULI

by an application of the ζµ-rule, this rule cannot give rise to reduction sequences
t �∗ t. Logically, the ζµ-rule amounts to taking an introduction rule and moving
it above a structural rule (i.e., Weakening, Contraction) applied to its principal
formula.

Our first lemma gives the local confluence of λµν, extending Parigot’s result
for λµ [90].

Lemma 2.9 The notion of reduction in the λµν-calculus is locally confluent.

Proof We show that all critical pairs can be completed. For critical pairs arising
from the rules β, ζ⊃, and βµ this is part of the confluence of Parigot’s λµ-calculus.

We show only a few characteristic cases for the rule ζµ (2.11). The first case
is an overlap with the βµ-rule. The term

u = (µα. · · · [α](λx : φ. · · ·µα′. · · · [α′]t · · · ) · · · )s

can reduce via ζ⊃ to

µα′. · · · [α′](λx : φ. · · ·µα′. · · · [α′]t · · · )s · · · ,

which in turn reduces via β and βµ to µα′. · · · [α′]t[s/x] · · · . The other reduction
sequence via the additional rule is

u
ζµ

� (µα. · · · [α]λx : φ.t · · · )s
βµ

� µα′. · · · [α′](λx : φ.t)s · · ·
β
� µα′. · · · .[α′]t[s/x] · · · .

The second case we consider is the overlap of the βµ-rule with the η-expansion.
This is the case which gives rise to the additional reduction rule ζµ. For this,
consider the term w = [α]µα.t, which can be reduced via the βµ-rule to t. The
reduction sequence via the rule ζµ is as follows:

w
η⊃
� [α](λx : φ.(µα.t)x)
βµ

� [α]λx : φ.µα′.t[[α′]ux/[α]u]
ζµ

� t[[α]λx : φ.ux/[α]u],

which is t modulo some η-expansions and/or β-reductions. �

The choice of a distinguished formula on the right-hand side of the sequent
is required to ensure strong normalization and confluence. We use Parigot’s
proof [90] and extend it to the conjunctive and disjunctive types and explicit
substitution.

We now give the proof of strong normalization for λµν. Our proof is a com-
bination of Parigot’s proof of strong normalization for the λµ-calculus and of
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the SN-proof for the simply-typed λ-calculus with η-expansions, which handles
also the ζ-rules by Ghani and Jay [61]. As we consider only a first-order cal-
culus and not a second-order calculus as Parigot, we do not need the notion of
reducibility candidates but can define the sets of reducible terms by induction
over the type structure. We extend the result to include explicit substitutions
in Section 2.5.6. This two-step argument is possible because we do not have
composition of substitutions.

Definition 2.10 Suppose Γ � t : φ,∆. By induction over the structure of
types in φ and ∆ we define sets of reducible λµν-terms of type φ,∆, written
Red(φ,∆), and for each term Γ � t : φ,∆ closure terms of type φ,∆, written
clφ,∆(t) or cl(t) for short, as follows:

• If φ and ∆ are all atomic types or ⊥, then

Red(φ,∆) = {t | Γ � t : φ,∆ and t is SN}

and clφ,∆(t) = ∅;
• If one of the types in φ or ∆ is not an atomic type or ⊥, define Red(φ,∆)
to be the set of all terms Γ � t : φ,∆ such that all terms in cl(t) are
reducible;
• The set of closure terms clφ,∆(t) is defined as the union of the sets

{ts | s ∈ Red(ψ,∆)} if φ = ψ ⊃ χ
{π(t), π′(t)} if φ = ψ ∧ χ

{µα.[β]〈α〉t, 〈α〉t} if φ = ψ ∨ χ
{(µα.[β]t)s | s ∈ Red(ψ,∆)} if αψ⊃χ ∈ ∆
{π(µα.[β]t)), π′(µα.[β]t)} if αψ∧χ ∈ ∆

{µγ.[δ]〈γ〉µα.[β]t, 〈γ〉µα.[β]t} if αψ∨χ ∈ ∆.

Next we define the closure properties of the set of reducible terms. We define
clnφ,∆(t) to be the set of all terms tn such that there exists a sequence t0, t1, . . . , tn
with ti ∈ cl(ti−1) and t = t0, for all 1 ≤ i ≤ n.

Lemma 2.11 Every set of reducible λµν-terms has the following properties:

S1. If t is reducible, then t is strongly normalizing;
S2. For all variables x, each element in cln(x) is reducible;
S3. (i) If t[s/x] is reducible, so is each element of cln(λx : φ.t);

(ii) If t and s are reducible, so is each element of cln(〈t, s〉);
(iii) If t[β/α] is reducible, so is each element of cln(να.t).

S4. If t is reducible, so is cln(µα.[β]t).
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Proof We split each of conditions S2, S3, and S4 into two conditions, which
we prove by induction, and which together imply the original conditions. We
use simultaneous induction over the types of φ and ∆ to show the following
properties:

S1. If t with Γ � t : φ,∆ for some Γ is reducible, then t is strongly normalizing;
S2′. If for any element t of cln(x) with Γ � t : φ,∆ for some Γ all elements of

clm(t) are SN for any m ≥ 0, then t is reducible;
S2′′. If Γ � x : φ,∆ for some Γ, then all elements of clm(x) are SN for any

m ≥ 0;
S3′. (i) If all elements of clm(λx : φ.t) are SN for all m ≥ 0, then each element

of cln(λx : φ.t) is reducible if Γ � cln(λx : φ.t) : ψ,∆, for some Γ;
(ii) If all elements of clm(t) and clm(s) are SN for all m ≥ 0, then each

element of cln(〈t, s〉) is reducible if Γ � cln(〈t, s〉) : φ,∆, for some Γ;
(iii) If all elements of clm(να.t) are SN, then each element of cln(να.t) is

reducible if Γ � cln(να.t) : φ,∆, for some Γ;
S3′′. (i) If Γ � λx : ψ.t : φ,∆ for some Γ and t[s/x] is reducible for all reducible

Γ � s : ψ,∆, then each element of clm(λx : ψ.t) is SN;
(ii) If Γ � 〈t, s〉 : φ,∆ for some Γ and t and s are reducible, then each

element of clm(〈t, s〉) is SN;
(iii) If Γ � να.t : φ,∆ for some Γ and t[β/α] is reducible for each name β,

then each element of clm(να.t) is SN;
S4′. If t is reducible and clm(µα.[β]t) is SN for all m ≥ 0, then cln(µα.[β]t) is

reducible if Γ � µα.[β]t : φ,∆ for some Γ;
S4′′. If Γ � t : φ,∆ for some Γ and t is reducible, then clm(µα.[β]t) is SN for

all m ≥ 0.

The induction proceeds now as follows:

S1. If φ and ∆ are all atomic or ⊥, then t is SN by definition. If not, one does
a case analysis of φ and ∆. We consider here only the cases of φ = ψ ∨ χ
and φ = ψ ⊃ χ. In the first case, if t �∗ t′, then either 〈α〉t �∗ 〈α〉t′,
or t′ = να.〈α〉t′′, and t � t′′ via all reduction rules except top-level η-
expansions. Hence any infinite reduction sequence starting with t can be
extended to an infinite reduction sequence of 〈α〉t. This is a contradiction
because by the induction hypothesis, 〈α〉t is SN. Now suppose φ = ψ ⊃ χ.
Choose a variable x of type ψ that does not occur freely in t. By S2′′ and
S2′, x is reducible. Hence, by definition, tx is reducible, and SN by S1
by the induction hypothesis. Hence all reduction sequences of t which do
not involve outermost η-expansions terminate. The case of an outermost
η-expansion is treated in the same way as in the case of φ = ψ ∨ χ;

S2′. If φ and ∆ are all atomic or ⊥, the claim is trivial. If not, we have to show
that all elements of cln+1(x) are reducible. This follows directly from the
induction hypothesis;
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S2′′. Here we do an induction over m and use the fact that, by the induc-
tion hypothesis, for all reducible terms s which occur in clm(x), clk(s)
is SN for all k. In particular, the restriction of the ζ-rules mentioned in
Section 2.5.4.1 prevents an infinite loop in the term (µα.[β]〈α〉x)s;

S3′. Same argument as for S2′;
S3′′. Here we again use induction over m. We consider only one case; all other

cases are similar. Consider a reduction sequence

(µα.[β](λx : ψ.t)s)u � µα′[β](λx : ψ.t[[α′]wu/[α]w])s[[α′]wu/[α]w]
� µα′.[β]t[[α′]wu/[α]w][s[[α′]wu/[α]w]/x]
= µα′.[β]t[s/x][[α′]wu/[α]w],

for an element of cl2(λx : φ.t). By the induction hypothesis (S1),

(µα.[γ]s)u, (µα.[β](λx : φ.t)x)u and µα′.[β]t[s/x][[α′]wu/[α]w]

are SN. Hence the term (µα.[β](λx : ψ.t)s)u is SN;
S4′. Same argument as for [S2′];
S4′′. One shows that any infinite reduction sequence for s ∈ clm(µα.[β]t) yields

an infinite reduction sequence for an element of clm(t), which is SN by
the induction hypothesis (S1). �

The key theorem states that every term is reducible. For this we need a gener-
alized induction hypothesis which includes all possible substitutions of reducible
terms for free variables and all mixed substitutions for free names. Mixed sub-
stitutions arise as contracta of the ζ-rules in the same way as the ordinary
substitution arises as a contractum of the β-rule.

Theorem 2.12 For each λµν-term t such that Γ � t : φ,∆ and reducible terms
si and ui, all terms

t[si/xi, [α′
j ]wuj/[αj ]w, [α′

k]π(u)/[αk]u,
[α′

m]π′(u)/[αm]u, [α′
n]〈βn〉u/[αn]u, βr/αr],

are reducible, where the names αj, αk, αm, and αn range over all subsets
of names in ∆ of implication type, conjunction type, and disjunction type,
respectively, and each of the αm is different from each of the αk. The names
αr form some subset of the names in ∆.

Proof We write f for the substitution

[si/xi, [α′
j ]wuj/[αj ]w, [α′

k]π(u)/[αk]u,

[α′
m]π′(u)/[αm]u, [α′

n]〈βn〉u/[αn]u, βr/αr]

and write t[f ] for the application of the substitution f to t. The proof proceeds
by induction over the derivation of t.
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xi: Obvious, as xi[f ] = si, which is reducible by assumption.
λx : φ.t: By the induction hypothesis t[f, s/x] is reducible for every reducible

term s, hence (λx : φ.t)[f ] is reducible by S3.
ts: By the induction hypothesis, t[f ] and s[f ] are reducible, hence by

definition of reducibility t[f ]s[f ] = (ts)[f ] is reducible.
µαφ.t: By the induction hypothesis, t[f ] is reducible. Hence by S4, µα.t[f ]

is reducible as well.
[αφ]t: If α occurs in f only as part of a substitution [β/α] or not at all,

then ([α]t)[f ] = [α](t[f ]) or [β](t[f ]), depending whether α occurs
in f or not. By the induction hypothesis all elements of cl(t[f ])
are reducible. Because cl([α](t[f ])) ⊆ cl(t[f ]) and cl([β](t[f ])) ⊆
cl(t[f ]), respectively, [α]t[f ] is reducible. So now assume that α
does occur in f in a different position. In this case µγ.(([α]t)[f ]) is
an element of cl(t[f ]), hence it is reducible by induction hypothesis.

〈t, s〉: By the induction hypothesis, t[f ] and s[f ] are reducible, hence by
S3, 〈t[f ], s[f ]〉 is reducible.

π(t), π′(t): By induction hypothesis, t[f ] is reducible, hence π(t[f ]) and π′(t[f ])
are reducible by definition.

να.t: By induction hypothesis, t[f, β/α] is reducible. Hence property S3
now implies the claim.

〈β〉t: By induction hypothesis, t[f ] is reducible, and hence by definition
〈β〉t[f ] is reducible, too. �

Finally, we obtain the desired result as a corollary.

Corollary 2.13 All well-typed λµν-terms are SN.

Now we are in a position to deduce confluence from local confluence and
termination via Newman’s Lemma [66].

Theorem 2.14 The λµν-calculus is confluent.

Proof The proof is a straightforward application of Newman’s Lemma [66], which
states that a locally confluent and terminating notion of reduction is confluent.
�

2.5.6 Explicit substitutions: The λµνε-calculus

Our final extension of the λµ-calculus involves adding a form of explicit
substitution.

The presentation of the λµ-calculus in [90] and of λµν herein is as a system of
linearized natural deduction with multiple conclusions, with implicational types
both introduced and eliminated on the right-hand side. An alternative formula-
tion of Parigot’s system, not affecting the structure of the derivable terms, would
be as a sequent calculus, with the elimination of implicational types on the right
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replaced by the introduction of implicational types on the left, as follows:24

λµ ⊃ L
Γ, w : ψ � t : χ,∆ Γ � s : φ,∆
Γ, x : φ ⊃ ψ � t[xs/w] : χ,∆

.

Such a rule is admissible in Parigot’s system since the Cut rule,

λµCut
Γ � s : φ,∆ Γ, w : φ � t : ψ,∆

Γ � t[s/w] : ψ,∆
,

is also admissible. In these rules, the substitution [t/x] is the usual implicit,
metatheoretic one. An analysis such as this for a system of first-order dependent
function types is presented in [100] and exploited as a basis for a theory of
proof-search in [106].

The rule (εL),

Γ, w : ψ � t : χ,∆ Γ � s : φ,∆
Γ, x : φ ⊃ ψ � t {xs/w} : χ,∆ εL, (2.12)

which introduces the explicit substitution u{xs/w}, corresponds exactly to the
usual left rule for implication, but with explicit substitution replacing implicit
substitution. The λµε-calculus contains this left rule for explicit substitution
together with the usual introduction and elimination rules for the implication.
Similarly, we use explicit substitutions for the ∨L-rule. We call a term u
a substitution term if it occurs as a subterm of u′ in the term s {u′/x}.

λµνε-terms are thus λµν-terms enriched by the presence of explicit substi-
tutions. More precisely, the grammar of λµνε-terms is the grammar for the
λµν-calculus with the added clause

t ::= t {t/x} . (2.13)

If the substitution were implicit, and so evaluated when introduced, some parts of
a derivation would not be represented by the corresponding term. This happens
if the variable being replaced does not occur in the term. The rule for explicit
substitution εL can thus be used to model the ⊃ L-rule of the classical sequent
calculus directly. In [107], a similar analysis is provided for a proof system for
SLD-resolution over propositional implicational Horn clauses. Herbelin [44] also
uses explicit substitutions, for a similar reason, in his version of a translation
of intuitionistic sequent calculus (LJ) into a modified λ-calculus. His concern,
however, is to restrict LJ so as obtain a bijective correspondence between λ-terms
and LJ-derivations.

24For details of this system, see Chapter 4.
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Now we extend strong normalization and confluence to the λµνε-calculus.
The reduction rules corresponding to εL are as follows, where we assume standard
variable capture rules [11]:

(λx : φ.t){s/z}� λx : φ.t{s/z}
(ts){u/z}� t{u/z}s{u/z}

(µα.t){s/z}� µα.t{s/z}
([α]t){s/z}� [α]t{s/z}
〈t, s〉{u/z}� 〈t, {u/z}, s{u/z}〉
π(t){u/z}� π(t{u/z})
π′(t){u/z}� π′(t{u/z})

(να.t){u/z}� να.t{u/z}
(〈α〉t){u/z}� 〈α〉.t{u/z}.

(2.14)

Intuitively, these rules push substitutions under all term constructors but do
not include the rule x {s/x} � s, which actually carries out the substitution.
Note also that the rules for explicit substitution distribute substitutions only to
variables and allow no interactions between the substitutions themselves. Hence
termination is ensured as the execution of substitution rules cannot create any
redexes that were not present in the term with all substitutions eliminated.
The precise formulation of this idea uses tree-orderings to ensure that non-
substitution redexes do not create a possibility of an infinite reduction sequences
by copying redexes of substitution rules. The following metatheorems are exten-
ded to λµνε, as defined by adding the rule (2.12), the syntax (2.13), and the
reductions (2.14) to λµν:

Theorem 2.15 The λµνε-calculus is strongly normalizing.

Proof Define the height of a term t inductively by

h(x) = 0

h(α) = 0

h(C(t)) = h(t) + 1 for any unary term constructor

h(C(t1, t2)) = max(h(t1), h(t2)) + 1 for any binary term constructor.

Now we assign a complexity tree T (t) to each term t. The nodes of the tree are
labelled by a pair of natural numbers. The first number is ν(te), where te is the
term t with all explicit substitutions deleted, and the second number indicates
the height of the term t in a subexpression t {u/x}. This tree is inductively
defined as follows:

x: T (x) is the tree which consists only of the root with the label (0, 0);
α: T (α) is the tree, which consists only of the root with the label (0, 0);
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C(t): If the root of T (t) is labelled (n, h), then T (C(t)) is the tree T (t)
with the label of the root changed to (ν(C(t)e, h);

C(t1, t2): T (C(t1, t2)) is the tree with the root labelled (ν(C(t1, t2))e, 0) and
where the children of the root are the trees T (t1) and T (t2);

(t {u/x}): The tree T (t {u/x}) is the tree with the root labelled (ν(te), h(t))
with children T (t) and T (u).

We order these trees by the tree-ordering: The tree t1 is smaller than the tree
t2 if any node of t2 can be mapped to a node of t1 such that the root of t2 is
greater than the node of t1 to which it is mapped and that all other nodes of
t2 are mapped to nodes which are not bigger and that a child of a node in t2
is mapped to some grandchild (including itself) of the image of the parent. The
ordering of the nodes is the lexicographic ordering on natural numbers.

It is well-known that this tree-ordering is a well-ordering, so for the termina-
tion proof it suffices to check that whenever t � t′, the term t is bigger than t′ in
the tree-ordering. Firstly, consider any non-substitution reduction t � t′. If the
redex that is contracted occurs in a substitution term s, say u {s/x}, then only
the subtree T (s) is affected by the reduction t � t′, so we can assume without
loss of generality that the redex that is contracted in t is not a substitution
term in t. Hence the first component of the root T (t) decreases when the redex
is contracted. Any substitution term u is unaffected by the reduction t � t′.
Hence we can use the simple mapping which maps any nodes that correspond
to non-substitution terms to the root and maps the subtree corresponding to
substitution terms u to the same subtree in T (t). Secondly, consider any substi-
tution reduction t � t′. In this case the decrease in the tree-ordering results from
the decrease of the second component of the node as the height of the subtree
where the substitution occurs decreases. �

Confluence follows from strong normalization and local confluence by
Newman’s Lemma [66], as usual.

Theorem 2.16 The λµνε-calculus is confluent.

Proof Again, it suffices to check local confluence. Because the λµν-calculus is
confluent it suffices to consider only overlaps between explicit substitution rules
or an explicit substitution rule and a rule which does not involve explicit substi-
tution. There are no critical pairs in the first case. For the second case, one has
to show a substitution lemma. This lemma states that

t[s/x] {u/z}�∗ t {u/z} [s {u/z} /x].

As an example for the completion of the critical pairs, consider the redex

((λx : φ.t)s) {u/z} .
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It can reduce to t[s/x] {u/z}, and to ((λx : φ.t {u/z})s {u/z}). The substitution
lemma now implies that t[s/x] {u/z} �∗ t {u/z} [s {u/z} /x]. This term is also
the contractum of ((λx : φ.t {u/z})s {u/z}) via β-reduction. �

2.6 Discussion

We remark that Parigot [90] shows that λµ’s analysis of classical proofs extends
to predicate logic with the universal quantifier, ∀. We conjecture that the results
we have presented in this chapter also extend to the quantifiers.



3

THE SEMANTICS OF INTUITIONISTIC
AND CLASSICAL PROOFS

3.1 Introduction

In this chapter, we establish the semantics for intuitionistic and classical logic
which we shall use in the remainder of this monograph. Much of our presentation
is of familiar background material, but two points perhaps deserve a little more
attention:

1. In Section 3.6, we give the semantics of the λµν-calculus. This summarizes
quite recently published work of the authors [97], building on the disjunction-
free work in [89];

2. In Section 3.4, we provide a games semantics for intuitionistic proofs which is
not constructed via a games semantics for linear logic. Then, in the conclud-
ing part of Section 3.6, we generalize this semantics to the representation of
classical proofs provided by the λµν-calculus.

We begin, in Section 3.2, with the semantics for intuitionistic proofs. We first
consider Heyting algebras, which model provability but not proofs, and then
move on to bi-Cartesian closed categories, which do model proofs. Next we
present a categorical version of Kripke models—we have summarized the basic
ideas in Chapter 1—for intuitionistic logic, showing that Kripke models can
capture both truth and proof, and finish this section with a games model for
intuitionistic logic.

Section 3.5, reviews categorical structures used for modelling structures with
parameters, so-called fibred (or indexed) categories. We use them in this
monograph to model the embedding of intuitionistic logic into classical logic.

Afterwards, in Section 3.6, we describe the semantics for classical logic and
relate it to the corresponding semantics for intuitionistic logic. We start by defin-
ing Boolean algebras and then show that bi-Cartesian closed categories cannot
be extended to model classical proofs. Next we present categorical models for
the λµν-calculus which are based on an embedding of intuitionistic into clas-
sical logic. We finish with an extension of the games semantics of Section 3.4 to
classical logic.

3.2 The semantics of intuitionistic proofs

Intuitionism, as proposed by Brouwer, is built on a very different conception
from that of classical logic of what constitutes valid reasoning and, as we have
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seen, intuitionistic natural deduction does not include the law of the excluded
middle. Semantically, this rejection of reasoning by contradiction amounts to a
requirement that an intuitionistic proof of a theorem must construct sufficient
evidence for that theorem.

Heyting [50] and Kolmogorov [2] provided a meaning for the syntactic
formalism of intuitionistic proof which captures this evidential character of
reasoning. The idea both simple and beautiful, and is usually termed Brouwer–
Heyting–Kolmogorov, or BHK, semantics. We start from a primitive judgement
that a primitive object P is proof of an atomic proposition p, given by a
construction:25

P proves p

The meaning of complex proofs is then given by the following inductive
clauses:

1. There is a unique construction of �;
2. A proof of a conjunction φ0 ∧ φ1 is a pair 〈Φ0,Φ1〉, where Φ0 is a proof of

φo and Φ1 is a proof of φ1;
3. There is no construction of ⊥;
4. A proof of a disjunction φ0 ∨ φ1 is a pair 〈b,Φi〉, where b is a Boolean, Φi

is a proof of φi, and i = 0 if b = 0 and i = 1 if b = 1;
5. A proof of φ ⊃ ψ is a construction f which converts a proof Φ of φ into a

proof f(Φ) of ψ.

The BHK semantics of intuitionistic propositional proofs extends to intuition-
istic predicate proofs, over a given language of terms, quite straightforwardly:

1. For atomic predicates p(x), there is for every term, t, which is well-formed
in the language and for which p(t) is provable, a construction P (t) which
proves p(t);

2. A proof of ∀x.φ(x) is a function, f , which maps every term, t, which is
well-formed in the language, to a proof, f(t), of φ[t/x];

3. A proof of ∃x.φ(x) is a pair, 〈t,Φ〉, in which t is a term which is well-formed
in the language and Φ is a proof of φ[t/x].

An algebraic account of BHK semantics (for intuitionistic logic) may be given
in terms of bi-Cartesian closed categories [54]. Before providing a summary of
this set-up, in a form which is suitable for the purposes of this monograph,
we begin, for developmental completeness, with a brief account of intuition-
istic semantics in Heyting algebras, the intuitionistic counterpart to Boolean
algebras.

25We do not discuss here what constitutes an acceptable notion of construction. The
usual choice is based on the theory of recursive functions but this definition is amenable to
relativization.
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3.2.1 Heyting algebras

We start by recalling the definition of Heyting algebras, which may be used to
interpret intuitionistic propositional logic. Heyting algebras are special cases of
distributive lattices, which we begin by recalling.

Definition 3.1 A distributive lattice (A,∨,∧, 0, 1) is given by a set A, two
binary operations, ∨ and ∧, and two distinguished elements 0 and 1 of A,
such that

(i) ∨ and ∧ are associative and commutative;
(ii) ∨ and ∧ are idempotent: x ∨ x = x and x ∧ x = x for all x ∈ A;
(iii) 0 and 1 are neutral elements for ∨ and ∧, respectively: x∨0 = 0∨x = x

and x ∧ 1 = 1 ∧ x = x for all x ∈ A;
(iv) ∨ and ∧ are absorptive: x ∧ (x ∨ y) = x = x ∨ (x ∧ y) for all x, y ∈ A;
(v) ∧ distributes over ∨ and ∨ distributes over ∧: x∧(y∨z) = (x∧y)∨(x∧z)

and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ A.

On every lattice we define a partial order by x ≤ y iff x ∨ y = y or equivalently
iff x ∧ y = x.

Definition 3.2 A Heyting algebra is a distributive lattice (A, 0, 1,∧,∨)
together with a binary operation ⊃ on A such that, for all x, y, z ∈ A, x ≤
(y ⊃ z) iff x ∧ y ≤ z.26

In any Heyting algebra one can define a negation by ¬x = x ⊃ 0. This negation
does satisfy ¬x ∧ x = 0, but not necessarily other familiar laws like ¬¬x = x or
x ∨ ¬x = 1.

We give several examples of Heyting algebras. The first one consists of the
powerset of a given set A. The operation ∧ and ∨ are intersection and union of
sets respectively, the partial order ≤ is set inclusion, X ⊃ Y is defined as the
union of Y and the complement of X, and 0 and 1 are the empty set and A,
respectively. The set ¬X is the complement of X relative to A.

The second example is given by the set of open sets of a topological space.
∨ and ∧ are union and intersection, respectively. ¬X is the interior of the
complement of X, and X ⊃ Y is defined as ¬X ∨ Y . Note that in this example
X ∨ ¬X is not necessarily equal to 1, which is the whole space.

26Such a lattice is said to be residuated.
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Formulæ of intuitionistic logic modulo logical equivalence27 provide another
example of a Heyting algebra. The operations ∨, ∧, and ⊃ are the logical
operations ∨, ∧, and ⊃, respectively, and φ ≤ ψ holds iff φ ⊃ φ is valid in
intuitionistic logic. This example shows that Heyting algebras provide models
which do not distinguish between proofs: any proof of φ ⊃ ψ gives rise to an
inequality φ ≤ ψ in this algebra.

3.2.2 Bi-Cartesian closed categories

The next class of models interprets not only formulæ and provability but also
distinguishes different proofs. We describe here suitable categorical structures,
which provide very rich models for intuitionistic logic and its proofs. We present
here bi-Cartesian closed categories, which are widely used to model intuitionistic
logic and its proofs.

Definition 3.3 A bi-Cartesian closed category C is a category with finite
products, finite sums, and a right adjoint GA to the functor −×A.

We write 1 for the terminal object, 0 for the initial object, A × B for the
product, A+B for the co-product, A⇒ B for GA(B), CurA(f) for the morphism
obtained from f : C×A→ B by applying the bijection between hom-sets defining
G and AppA,B : (A ⇒ B) × A → B for the co-unit of this adjunction. We call
objects A⇒ B function spaces.

An example of a bi-Cartesian closed category is the category of sets and
functions, where the objects are sets and the morphisms between A and B are
the set-theoretic functions from A to B. The product of two sets A and B is the
set of tuples (a, b), where a ∈ A and b ∈ B. The co-product of two sets A and B
is the disjoint union of A and B, and the set A ⇒ B is the set of all functions
from A to B.

Another example is given by any Heyting algebra. A Heyting algebra

(A,∨,∧,⊃, 0, 1),

can be regarded as a bi-Cartesian closed category where the objects are the
elements of A, and product and co-product of two elements a and b are given by
a∧ b and a∨ b, respectively. There is at most one morphism between two objects
a and b, and it exists iff a ≤ b. The defining condition for the operator ⊃ in a
Heyting algebra is exactly the natural isomorphism defining the function spaces
in the case of a Heyting algebra.

Natural deduction proofs of intuitionistic formulæ can be interpreted in a
bi-Cartesian closed category via a map [[−]] which maps formulæ to objects and

27Two formulæ φ and ψ are said to be logically equivalent iff both � φ ⊃ ψ and � ψ ⊃ φ
are provable.
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natural deduction proofs of ψ using assumptions φ1, . . . , φn to morphisms

[[φ1]]× · · · × [[φn]]→ [[ψ]].

This map is defined as follows:

Definition 3.4 Let C be any bi-Cartesian closed category and consider
any map ρ from propositional atoms to objects of C. Then define a map [[ ]]
extending ρ from formulæ to objects and from natural deduction proofs of
intuitionistic logic to morphisms by induction over the definition of formulæ
and proofs as follows:

1. On formulæ:
(i) Atoms: [[p]] = ρ(p);
(ii) Conjunction [[φ ∧ ψ]] = [[φ]]× [[ψ]];
(iii) Disjunction: [[φ ∨ ψ]] = [[φ]] + [[ψ]];
(iv) Implication: [[φ ⊃ ψ]] = [[φ]]⇒ [[ψ]].

2. On proofs: (Let Γ = φ1, . . . , φn and let A = [[φ1]]× · · · × [[φn]])

Axiom: Suppose Φ is the axiom Γ, φ � φ. Then [[Φ]] is the projection π from
A× [[φ]] to [[φ]];

⊃ I: Suppose the proof Φ is given by

Ψ : Γ, φ � ψ

Φ : Γ � φ ⊃ ψ
⊃ I

and suppose that f = [[Ψ]]. Then [[Φ]] = Cur[[φ]](f);
⊃ E: Suppose the proof Φ is given by

Φ1 : Γ � φ ⊃ ψ Φ2 : Γ � φ

Φ : Γ � ψ
⊃ E.

Then [[Φ]] = App ◦ 〈[[Φ1]], [[Φ2]]〉;
∧I: Suppose the proof Φ is given by

Φ1 : Γ � φ Φ2 : Γ � ψ

Φ : Γ � φ ∧ ψ
∧ I.

Then [[Φ]] = 〈[[Φ1]], [[Φ2]]〉;
∧E: Suppose the proof Φ is given by

Ψ : Γ � φ ∧ ψ

Φ : Γ � φ
∧ E
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and suppose that f = [[Ψ]]. Then [[Φ]]=π, where π is the projection
from [[φ]]× [[ψ]] to [[φ]]. The semantic of the other case of ∧-elimination
is similar;

∨I: Suppose the proof Φ is given by

Ψ : Γ � φ

Φ : Γ � φ ∨ ψ

and suppose that f = [[Ψ]]. Then [[Φ]] = inl ◦ f. The other case of the
∨I-rule is similar;

∨E: Suppose the proof Φ is the proof

Φ1 : Γ � φ ∨ ψ Φ2 : Γ, φ � χ Φ3 : Γ, ψ � χ

Φ : Γ � χ
∨E.

Then [[Φ]] = [[Φ3]]◦([[Φ1]]+[[Φ2]])◦f , where f is the canonical morphism
from A× ([[φ]] + [[ψ]]) to (A× [[φ]]) + (A× [[ψ]]).

The equality in bi-Cartesian closed categories is extensional which, for the
interpretation of proofs, means that two extensionally equal proofs Φ and Ψ are
also mapped to the same morphism.

Let C denote a bi-Cartesian closed category. We write Γ |=C Φ = Ψ : φ iff

[[Γ]]
[[Φ]]−→ [[φ]] = [[Γ]]

[[Ψ]]−→ [[φ]]

in C. We write Γ |= Φ = Ψ : φ iff, for all C, Γ |=C Φ = Ψ : φ.
This semantics is sound; in other words, the mapping [[ ]] maps proofs into

the corresponding parts of the categorical structure:

Theorem 3.5 (bi-CCC model soundness) Consider any bi-Cartesian closed
category C and an interpretation [[ ]] of intuitionistic logic in C. If Φ1 and Φ2 are
extensionally equal natural deduction proofs with assumptions φ1, . . . , φn, then
Γ |=C Φ = Ψ : φ.

Proof By induction over the structure of proofs. The argument is straight-
forward. See, for example, [24, 38, 42, 61, 70].

We have also completeness: bi-Cartesian closed categories are sufficiently rich
to capture those equalities between proofs which hold and those which do not:

Theorem 3.6 (bi-CCC model existence) Two natural deduction proofs Φ1
and Φ2 of φ, with assumptions Γ, are extensionally equal iff Γ |= Φ = Ψ : φ.
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We need the following lemma:

Lemma 3.7 (bi-CCC model existence) There is a bi-Cartesian closed cat-
egory T and an interpretation [[ ]] of propositional intuitionistic natural deduction
such that if Γ �� φ in propositional intuitionistic natural deduction, then there is
no morphism with domain [[Γ]] and codomain [[φ]].

Proof The proof works, as usual, by the construction of a term model. In other
words, T is based on formulæ and proofs.

The objects of C are all propositional formulæ; product, co-product, and
function spaces of two objects φ and ψ are given by φ ∧ ψ, φ + ψ, and φ ⊃ ψ,
respectively. The terminal and initial object are � and ⊥ respectively.

Morphisms from φ to ψ are the natural deduction proofs Φ : φ � ψ modulo
extensional equality. Composition of two morphisms Φ : φ � ψ and Ψ : ψ � ω is
given by Cut, and the identity morphism is the axiom φ � φ. The product of two
morphisms Φ and Ψ is given by (Φ,Ψ);∧R, the projections are defined by the
∧E-rule. For any morphism Φ : φ × ψ → ω, the morphism Cur(Φ) is the proof
((Axφ, Axψ);∧I,Φ);Cut;⊃ I and the application morphism App is defined by
the ⊃ E-rule.

We omit the verifications that this indeed defines a bi-Cartesian closed
category.

For this term model, we have the following: for any proofs Φ and Ψ, [[Φ]]
and [[Ψ]] are equal morphisms iff Φ and Ψ are extensionally equal proofs. By
assumption, [[Φ1]] and [[Φ2]] are equal in the term model, hence also Φ1 and Φ2
are extensionally equal proofs.

Now we get a proof of completeness:

Proof Suppose we do not have Γ |= Φ = Ψ : φ. Then Lemma 3.7 yields a
contradiction.

3.3 Kripke semantics and functor categories

The semantics for intuitionistic natural deduction proofs given above is quite
abstract. In this section we consider (i) a more concrete, truth-functional
semantics, (ii) its representation in functor categories, and (iii) that the functor
category representation provides a unifying framework for both BHK and Kripke
semantics.

The picture we organize in this section, together with the subsequent sections
on games and fibred categories, forms the basis for the semantics of reductive
logic and proof-search in Chapter 5.

3.3.1 Kripke semantics

As we have seen in Chapter 2, intuitionistic natural deduction rejects the law of
the excluded middle, and any equivalent classical principle. We have explained
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that a solution, attributed to Saul Kripke [68, 69], is provided by moving to a
semantics based on the idea of possible worlds.

This semantics is made precise by the notion of a Kripke model of
intuitionistic logic [70, 128].

Definition 3.8 A Kripke structure for propositional intuitionistic logic, over
the language L of proposition letters, is an ordered quadruple

S = 〈W,�, F, [[−]]−〉,

where W is a set of worlds, preordered by �; F is a function which assigns
to each world w ∈W a set F (w) of basic facts at w, such that, for all w � v,
F (w) ⊆ F (v); and for each world w and propositional letter p, [[p]]w is the
interpretation of p at world w.

A Kripke model for propositional intuitionistic logic, over the language L
of proposition letters, is an ordered pair

K = 〈S, |=〉

of a Kripke structure S and a satisfaction (or forcing) relation, |=⊆W×P(L),
such that the following conditions hold:

w |= p iff [[p]]w ∈ F (w)

w |= � for all w

w |= φ ∧ ψ iff w |= φ and w |= ψ

w |= ⊥ for no w

w |= φ ∨ ψ iff w |= φ or w |= ψ

w |= φ ⊃ ψ iff for all w � v, w |= φ implies v |= φ.

Further, we require that the Kripke monotonicity (or hereditary) property
holds:

for all w � v, if w |= φ, then v |= φ.

We write w |= Γ iff w |= φΓ, where the formula φΓ is obtained from Γ by
replacing each comma by ∧. We write the following notations:
• w |=K φ to emphasize that the satisfaction is within the model K;
• Γ |=K φ iff, for all worlds w in K, w |=K Γ implies w |=K φ;
• Γ |= φ iff, for all Kripke models K, Γ |=K φ.
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Theorem 3.9 (soundness) If Γ � φ is provable in propositional intuitionistic
natural deduction, then Γ |= φ.

Proof By induction on the structure of natural deduction proofs of Γ � φ.

Lemma 3.10 (model existence) There is a Kripke model T such that if Γ �� φ
in propositional intuitionistic natural deduction, then there is a world w in T
such that w |= Γ and w �|= φ.

Proof We construct T as a term model. There are various possible approaches;
see, for example [129].

We can construct a preorder of worlds from contexts Γ, ordered by extension.
Care must be taken to ensure that all contexts are extended to prime contexts,
that is, contexts with the property that if φ∨ψ ∈ Γ, then φ ∈ Γ or ψ ∈ Γ (and a
similar property for existentials in the predicate case; see below). F (Γ) is then,
essentially, the set of all natural deduction proofs of the form Φ : Γ � φ, for
some φ.

Theorem 3.11 (completeness) Γ |= φ implies Γ � φ.

Proof By the contrapositive. Suppose Γ �� φ. Then there is a world w in T such
that w |= Γ and w �|= φ.

Kripke models can be extended to account for predicate logic too. In addition
to the set of basic facts, F (w), at each world, we must take a domain of expres-
sions, D(w), at each world, in which terms are interpreted. We require also the
monotonicity condition that, for all w � v, D(w) ⊆ D(v). Predicate symbols of
arity m are interpreted at world w as m-ary relations on D(w). We then have
the following clauses for atomic predicates, for terms t over the usual language
of function symbols and variables:

w |= p(t1, . . . , tm) iff 〈[[t1]]w, . . . , [[tm]]w〉 ∈ [[p]]w.

Abusing notation slightly, the quantifiers then follow the pattern for disjunc-
tion and implication, respectively, as follows:

w |= ∃x.φ iff for some [[t]]w ∈ D(w), w |= φ(t)

w |= ∀x.φ iff for all w � v and all [[t]]v ∈ D(v), v |= φ(t).

The soundness and completeness theorem extend to intuitionistic predicate
logic quite straightforwardly [82, 128].

A set of formulæ, Γ, has the disjunction property (DP) if Γ � φ ∨ ψ implies
Γ � φ or Γ � ψ. In predicate logic, Γ has the existence property (EP) if Γ � ∃x.φ
implies Γ � φ[t/x], for some closed term t. Whilst classical logic has neither the
DP nor the EP, Kripke models can be used to establish the DP and EP for
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intuitionistic logic as follows [129]:

1. Intuitionistic propositional logic and predicate logic without predicate sym-
bols have the disjunction property as follows: if � φ ∨ ψ, then � φ
or � ψ;

2. Suppose the language of intuitionistic predicate logic contains at least one
constant and no function symbols, then the existence property holds as
follows: if � ∃x.φ, then � φ[t/x], for some closed term t.

So we have now seen two semantics for intuitionistic logic:

• BHK semantics of proofs; and
• Kripke truth-functional semantics.

In fact, for propositional intuitionistic logic, a categorical treatment of Kripke
semantics, based on functor categories, provides a setting within which these two
semantic perspectives can be handled simultaneously.

The important point is that we interpret formulæ not as objects in a
bi-Cartesian closed category but as functors from a category of worldsW to Set.
This is possible because the functor category [W,Set] inherits lots of structure
from Set. In the next subsection we give the details of this interpretation.

3.3.2 Functor categories

Given two categories, C and D, we denote the category of functors from C to D
by [C,D].28
Theorem 3.12 For any category W, the functor category [W,Set] is
bi-Cartesian closed.

Proof Let F and G be two functors from W to Set. Then the product of these
functors is given by (F × G)(A) = FA × GA, the terminal object is given by
the functor assigning the one-element set to every object of W and the identity
morphism to any morphism in W, the co-product is given by (F + G)(A) =
FA + GA, the initial object is given by the functor assigning the empty set
to every object of W and the identity morphism to any morphism in W. The
function space (F ⇒ G) is the functor which assigns to each object A of W the
set Nat(hom(−, A)×F, G), and to the morphism f : C → B the map which maps
the natural transformation η into the natural transformation ι with components
ιA : (g, a) �→ ηA(f ◦ g, a).

The special case of a Kripke model arises if the category of worlds is a pre-
order. If we write W , V , etc., for the objects of W in this case, an intuitionistic
formula φ is interpreted as a functor from W to Set, which can be thought of as
mapping each world W to the set of formulæ φ such that W |= φ. The definition
of the function space in the functor category captures the Kripke semantics of
implication: a formula φ ⊃ ψ is forced at a world W iff, for all worlds V which are

28We sometimes write DC .
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extensions of W at which φ is forced (captured by a morphism from W to V ),
ψ is also forced.

In this setting, we can interpret a formula φ as an object of [W,Set],

[[φ]] :W → Set.

Then a morphism from [[φ]] to [[ψ]], which interprets a proof Φ: φ � ψ, is a
natural transformation parametrized by worlds. The theory of ‘Kripke λ-models’
has been described quite elegantly by Mitchell and Moggi [83].

We conclude by remarking that functor categories are not an adequate setting
for combining the BHK and truth-functional semantics of intuitionistic predicate
logic: for that we require fibred (or indexed) categories (cf. Section 3.5).

3.4 Games

We conclude our basic discussion of the semantics of intuitionistic proofs
with a games model. Games models have been used successfully as models for
various computational effects. We present here a version which will turn out
to be suitable basis for games models of both reductive intuitionistic logic and
proof-search.

We consider games played between two players, Proponent, P , and Oppon-
ent, O. In such games for a formula φ the aim of Opponent is to falsify the
given formula φ, and the aim of Proponent is to prove it. A game starts by
Opponent challenging the given formula. Proponent wins a game when he can
answer Opponent’s initial challenge, otherwise he loses. The possible moves of
both players in a game for φ are determined by the structure of φ. A proof
of a formula corresponds to a winning strategy for Proponent. Such a winning
strategy for a formula φ is a function, which for every legal O-move in a game
for φ produces a legal P -move such that if P uses this strategy to determine his
moves he wins every game for φ. Such games for proofs have been described for
a variety of logics, including classical and intuitionistic logic [28, 72]. Usually,
in games for classical logic Proponent and Opponent are dual to each other,
whereas this is not true for games for intuitionistic logic.

These game models for proofs have been adapted to give models of sequen-
tial computations in programming languages [3, 4, 32, 64]. Here, the intuition
is that Opponent asks for the value of a computation, and Proponent performs
the computation to produce values as answers. In such games there is usually
a strict alternation between moves by Proponent and Opponent, corresponding
to the absence of concurrent computation. As computations have a clear direc-
tion (from inputs to outputs) there is usually no duality between Proponent and
Opponent in these games.

The key conceptual difference between the games for proofs and the games
for computations is that in logic not all propositions are provable, so that in
these games not all propositions have strategies, whereas in the programming
languages considered, however, all types are inhabited, so that these games have
strategies for every type.
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The details of how to present game models differ widely, both within games
for proofs and within games for computations. The definition of the games
considered in this monograph uses elements of both approaches. We use one
important technical notion from the games introduced by Hyland and Ong,
namely the notion of an arena: for each formula φ the possible moves for a
game for φ are listed in a forest29 called an arena, and the rules of the game
use this forest extensively. Ong [89] introduces also the notion of a scratchpad
to model the multiple conclusions in the λµ-calculus. Scratchpads are additional
games, which Proponent may start at will. For a detailed explanation of these
scratchpads, see Chapter 6.

This idea of games semantics in the context of proof theory was introduced by
Lorenzen [28, 72]. For games semantics as a semantics of programming languages
see [3, 4, 32, 64]. A comprehensive summary is provided in [63]. The use of game-
theoretic methods in model theory, however, has a rather longer history, begin-
ning with Ehrenfeucht–Fräıssé games, in which the back and forth equivalence of
models is used to analyze completeness properties of (first-order) theories [52].

Hyland [63] provides a useful general comparison, in terms of categorical
composition, of the correspondences between λ-calculus, proofs, algorithms, and
strategies:

Object Map Composition
Type Proof Application in context
Proposition Proof Composition via the Cut rule
Type Algorithm Composition with hiding
Game Strategy Scratchpad composition

This organization captures the main themes of this monograph, all of which are
expressed within the structures of categorical logic:
• The propositions-as-types (Curry-Howard-de Bruin) correspondence;
• The programs-as-proofs correspondence; and
• Games as a semantics for both proofs and computations.

3.4.1 Games for intuitionistic proofs

We introduce a class of games which combines ideas from those for intuitionistic
provability and those for programming languages to give a class which models
intuitionistic proofs directly.30 Moreover, our games extend cleanly not only
to the semantics of classical proofs provided by models of the λµν-calculus,
described in Section 3.6 but also to the structures required to interpret reductive
logic and proof-search.

29A forest is a set of trees.
30Games models of intuitionistic proof can be recovered from games models of linear

proofs [4] by the exponential ! and, for example, Girard’s translation of intuitionistic logic
into linear logic.
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We start the definition of our games semantics by defining arenas. For each
formula φ, we define an arena, which is a forest, used to characterize legal moves
by both players in our games.

Definition 3.13 An arena of type φ is a forest with nodes having possibly
labels defined inductively by the following:

1. The arena of � is the empty forest;
2. The arena of ⊥ is the forest with one node labelled ⊥;
3. The arena for a propositional atom p is a forest with one node labelled p;
4. The arena for φ ∧ ψ is the disjoint sum of the arenas for φ and ψ;
5. Suppose A1, . . . ,An are the trees of the arena for φ and B1, . . . ,Bm are

the trees of the arena for ψ. Then the arena for φ ∨ ψ is given by

A1 An B1 Bm... ...

L R

Note that there are two special nodes called L and R. In the special case
that the arena for φ or the arena for ψ is empty, the arena for φ ∨ ψ is
the empty arena too. The root node of the arena for φ ∨ ψ is labelled ∨.

6. Suppose A1, . . . ,An are the trees of the arena for φ and B1, . . . ,Bm are
the trees of the arena for ψ. Then the arena for φ ⊃ ψ is the disjoint
union of the following trees

P

An

P

A1

O

Bi

...

In the special case that the arena for φ is empty, the arena for φ ⊃ ψ is the
arena for ψ. All nodes in the arena for φ ⊃ ψ which are root nodes in the
arena of ψ are labelled ⊃ in addition to any other label they might have.
We call all root nodes in an arena O-nodes, and all children of O-nodes,
P -nodes, and all children of P -nodes, O-nodes.
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Fig. 3.1. Arena for p ⊃ (p ⊃ q) ⊃ (q ⊃ r) ⊃ (r ∨ s)

Arenas are used to define possible plays. The definition of moves and plays
makes this precise.

We illustrate games for intuitionistic proofs using the formula

p ⊃ (p ⊃ q) ⊃ (q ⊃ r) ⊃ (r ∨ s).

The arena for this formula is given in Fig. 3.1. Note that we have also labelled
all O-nodes with O and all P -nodes with P .

Next, we define possible moves in our games. Each move for a game for φ is
associated with a node in the arena for φ.

There are several types of moves. Firstly, we have moves by Proponent and
Opponent, and secondly there are question and answer moves. Questions which
correspond to O-(P -)nodes are played by Opponent (Proponent), and answers
which correspond to O-(P -)nodes are played by Proponent (Opponent). The
definition is as follows:

Definition 3.14 A move m for an arena A is a node which is classified as
either question or answer. Questions which correspond to O-(P -)nodes
are moves by Opponent (Proponent), and answers which correspond to
O-(P -)nodes are moves by Proponent (Opponent). We call a move by
Proponent a P -move and a move by Opponent an O-move.



GAMES 71

Next, we define plays, which are instances of the game. Each play con-
sists of a sequence of moves satisfying certain conditions. The intuition is that
Opponent starts the play by challenging Proponent to verify the given for-
mula. Proponent responds by asking the Opponent to justify the assumptions
which Proponent can make in a natural deduction proof of φ. Conjunctive choices
are made by Opponent, and disjunctive choices by Proponent. Proponent wins
a particular game if he can answer Opponent’s initial question.

The moves in a play for φ follow the structure of arena of φ closely: An O-(P -)
question can be played only if there was already a P -(O-) question corresponding
to the parent node. An answer can only be given if a question with the same
associated node has already been made.

The precise conditions for a play are as follows:

Definition 3.15 A play for an arena A is a sequence of moves m1, . . . , mn

such that:

1. There exists an index I ≥ 1 such that all moves m1, . . . , mI are
O-questions with position 1, . . . , I, respectively, and the correspond-
ing nodes are roots in the forest for A. These moves are called initial
questions;

2. For each question mi, with i > I, there exists a question mk, with k < i,
such that the node corresponding to mk is the immediate predecessor of
the node corresponding to mi in the arena A. We call mk the justifying
question for mi;

3. For each answer mi, with i > I, there exists a question mk, with k < i,
such that mk and mi are the same node in A. If mj is the justifying
question for mk, we call mj the justifying question for mi;

4. Each question can be answered at most once;
5. Any initial questions can only be answered if all non-initial questions have

already been answered;
6. For any P -answer mi there exists a move mj such that mj is an O-answer

with the same label or ⊥ and j < i and that the nodes corresponding to
mi and mj in the arena are on a path which does not contain a P -node
n labelled ⊃ such that the nodes corresponding to mi and mj are its
children or identical to it;

7. If m is an O-question labelled ∨, then at most one P -question is justified
by m.

Condition 6 of this definition merits an explanation. During plays we have
to ensure that Proponent can answer questions of Opponent only if this answer
corresponds to an assumption which Opponent has provided. This matters in
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the case of Proponent asking a question labelled ⊃, which corresponds to using
an assumption of type φ ⊃ ψ. The rules of the game work in such a way that in
this case two proofs are constructed: one of the original formula using ψ as an
additional assumption, and the second one of φ. Now we need to ensure that ψ
is not available as an assumption during the proof of φ. Condition 6 ensures this
by making sure that any O-answer for φ cannot be used by Proponent.

Conditions 7 and 6 ensure that these games capture intuitionistic proofs: con-
dition 7 enforces the disjunction property of intuitionistic logic, and condition 6
makes sure that only one specific formula can be proved at any one given time.

A possible play for the arena for

p ⊃ (p ⊃ q) ⊃ (q ⊃ r) ⊃ (r ∨ s)

starts by Opponent asking the initial question. Here, this means that Opponent
is asking for a proof of the formula. Now Proponent has various choices: he can
either ask questions labelled L or R, thereby deciding whether to prove r or s
respectively, or to ask Opponent for evidence for the assumptions by asking any
other question. Let us assume that Proponent asks the question corresponding
to the node labelled L. Now Opponent will ask the question labelled r, thereby
asking Proponent to prove r. Proponent now needs to use the assumptions.
Let us assume that Proponent asks the question labelled r, thereby challenging
Opponent to provide evidence for the assumption q ⊃ r. Next, Opponent asks
the question labelled q and challenges Proponent to prove the formula r in turn,
which is the hypothesis in the implication q ⊃ r. Proponent now asks in a sim-
ilar way the question labelled q, and Opponent asks the question p. Proponent
now asks for the final assumption p. Opponent now has no choice but to answer
this question, thereby making it possible for Proponent to answer outstanding
questions by Opponent. Now Proponent can use this answer and answer Oppon-
ent’s question p. Again, Opponent is now forced to answer the question q. This
process of answering previously asked questions goes on until finally Opponent
is forced to answer the question labelled L, and Proponent can answer the initial
question. In this example the condition on paths in clause 6 is not relevant.

The key notion of games semantics is that of a strategy . A strategy describes
how Proponent responds to arbitrary Opponent moves. Intuitively, a strategy
describes how Proponent answers challenges from Opponent to prove the given
formula.

Definition 3.16 A strategy is a function from plays m1, . . . , mk, where mk

is an O-move, to a sequence of moves mk+1, . . . , mn such that m1, . . . , mk,
mk+1, . . . , mn is a play, and the sequence mk+1, . . . , mn is non-empty if
the sequence m1, . . . , mk contains no unanswered P -move which could be
answered by Opponent in the next move according to Definition 3.15.
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Note that this definition makes it possible to force Opponent to answer any
unanswered questions by Proponent if such a move was allowed by choosing
the empty sequence as a result of the function for sequences with unanswered
questions by Proponent.

Intuitively, O- and P -questions are challenges for Opponent and Proponent to
provide evidence for conclusions and assumptions, respectively.O-answers provide
evidence for an assumption, and P -answers provide evidence for a conclusion.

In the example, a strategy for Proponent would be to answer the initial
question by asking the question labelled L and then play as indicated above in
response to any Opponent move. Note that the choice of asking the question
labelled R will not lead to a winning play: Proponent will be unable to answer
Opponent’s question s.

Next we show that each strategy for the arena corresponding to a formula
φ gives rise to a natural deduction proof of φ. Note that several strategies give
rise to the same proof: games make significantly finer distinctions than natural
deduction proofs.

Theorem 3.17 For any formula φ and strategy Φ for φ there exists a natural
deduction proof of φ.

We have to show a stronger version of this theorem, namely:

Lemma 3.18 Given any set A of O-answers with labels p1, . . . , pn and a strategy
for a formula φ where Proponent can answer in addition any O-question with
label p1, . . . , pn there is a natural deduction proof of

p1 ∧ . . . ∧ pn ⊃ φ.

We call such a strategy an A-strategy.

Proof By induction over the structure of φ. Let Γ be the formula p1 ∧ · · · ∧ pn.
Atom p: All possible strategies start with a p-question by Opponent. If p

is amongst the labels p1, . . . , pn of A, then the axiom p � p followed by a ⊃-
introduction rule provides the desired derivation. There is no other strategy for
such an arena;

φ ∧ ψ: Because every question and answer of a strategy for φ and ψ has to
be justified eventually by an initial move for φ and ψ it is possible to obtain
one strategy for φ and one strategy for ψ from the given strategy. Hence by the
induction hypothesis we obtain natural deduction proofs of Γ ⊃ φ and Γ ⊃ ψ.
Hence one obtains also an natural deduction proof of Γ ⊃ (φ ∧ ψ);

φ ⊃ ψ: There are several subcases.
Firstly, suppose φ = φ1∧φ2. Then (φ1∧φ2) ⊃ ψ is equivalent to φ1 ⊃ φ2 ⊃ ψ,

and the arenas for

(φ1 ∧ φ2) ⊃ ψ and φ1 ⊃ φ2 ⊃ ψ

are identical. Hence we consider the case φ1 ⊃ φ2 ⊃ ψ instead.
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Secondly, suppose φ = σ ∨ τ . Now define two A-strategies Φ1 and Φ2 for
σ ⊃ ψ and τ ⊃ ψ, respectively, where the moves of both players in Φ1 and Φ2
are the moves of Φ which are justified by moves not hereditarily justified by τ
or σ, respectively. By considering an O-strategy which does not ask the nodes
marked L or R corresponding to the disjunction in σ ∨ τ , one can show that the
A-strategies Φ1 and Φ2 are well-defined. By the induction hypothesis, we obtain
natural deduction proofs of Γ ⊃ (σ ⊃ ψ) and Γ ⊃ (τ ⊃ ψ). Hence there is also a
natural deduction proof of Γ ∧ (σ ∨ τ) ⊃ ψ.

Thirdly, suppose φ = σ ⊃ τ . Again, define A-strategies Φ1 for τ ⊃ ψ and Φ2
for σ where the moves of both players are the ones not hereditarily justified by σ
or τ , respectively. Clause 6 of Definition 3.15 ensure that these A-strategies Φ1
and Φ2 are well-defined. By the induction hypothesis we obtain natural deduction
proofs of Γ ⊃ τ ⊃ ψ and Γ ⊃ σ. Hence there is also a natural deduction proof of
Γ ⊃ (σ ⊃ τ) ⊃ ψ.

Finally, suppose that φ is an atom p. Again, there are two cases. Consider
an A-strategy for p ⊃ ψ without a P -question corresponding to p. In this case,
the A-strategy for p ⊃ ψ is in fact a strategy for ψ, and by the induction
hypothesis there is an ND proof of Γ ⊃ ψ, hence also a proof of Γ ⊃ p ⊃ ψ.
Now suppose there is a P -question corresponding to p. Clause 6 of Definition 3.15
ensures that the strategy which removes the P -question and O-answer for p is an
A∪ {p}-strategy of ψ. By the induction hypothesis, there is a natural deduction
proof of (Γ ∧ p) ⊃ ψ.

φ∨ψ: By Clause 7 of Definition 3.15, an A-strategy for φ∨ψ gives rise either
to an A-strategy for φ or an A-strategy for ψ, depending whether Proponent
plays the L- or the R-node. By the induction hypothesis there is either a natural
deduction proof of Γ � φ or of Γ � ψ. Hence in both cases there is also a natural
deduction proof of Γ � φ ∨ ψ.

3.5 Fibred categories

In this section, we introduce fibred categories to the extent needed in this
monograph. For a detailed exposition see [12, 60].

Fibred (or indexed) categories model families of mathematical structures
which are indexed by elements of some index set. The intuition is that the
index set is modelled by a base category B and for each object of B there is a
category modelling the structure indexed by this object. Morphisms in the base
category model functions between indices, and hence for each such a morph-
ism a fibration (defined formally below) provides a so-called reindexing functor
between the categories associated to domain and co-domain of this function. We
will consider only structures where the index set consists of certain elements of
the mathematical structure.

We give here both the definition of indexed categories and fibrations. These
concepts are equivalent but the precise formulation of the equivalence is rather
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complicated. For details see [14, 60]. We start by defining indexed categories, in
the particular way we need them in this monograph.

Definition 3.19 A strict indexed category with terminal objects is a functor
E : Bop → Cat such that the following conditions are satisfied:

1. B has a terminal object called �;
2. Each fibre E(Γ) has a terminal object 1 which is stable under applying

the functor E(f) for any morphism f in the base category. We often write
f∗ for the functor E(f).

As an example, consider functions with parameters. We define the base cat-
egory B to be Set, and the functor E by letting E(X) be the category which has
as objects sets again and as morphisms between objects Y and Z functions from
X ×Y to Z. The identity morphism is the projection from X ×Y to Y , and the
composition g ◦ f of two morphisms f : Y1 → Y2 and g : Y2 → Y3 is the function
g ◦ 〈Id, f〉. For a morphism f between X1 and X2, the functor E(f) is defined as
the identity on objects and as mapping the function g to the function g ◦ 〈f, Id〉,
in other words replacing a parametrization over X2 with a parametrization over
X1 via pre-composing with f .

To capture extensions of parameters in indexed categories, we need additional
structure which makes it possible to construct morphisms in the base category
out of morphisms in the fibre, thereby modelling the addition of a new, locally
defined, parameter.

Definition 3.20 Let E : Bop → Cat be a strict indexed category with
terminal objects.

1. Define the Grothendieck completion Gr(E) to be the category whose
objects are pairs (Γ, A), where Γ is an object of B and A an object
of E(Γ), and morphisms from (Γ, A) to (∆, B) are pairs of morphisms
(f, g) where f is a morphism from Γ to ∆ and g is a morphism from A
to E(f)(B).

2. A strict indexed category with terminal objects is called a strict indexed
category with comprehension if the functor I :B → Gr(E) sending the
object Γ to (Γ, 1) and the morphism f to (f, 1) has a right adjoint G.

In the above example of functions with parameters, comprehension models
extension of parameters: the object X · Y is the product X × Y , modelling the
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f = 〈f1(x)/y1, f2(x)/y2〉
Y = {(y1, y2)}X = {x}

h′ : (z, x) �→
h(z, (f1(x), f2(x))) f∗

h : Z × Y →Y

Fig. 3.2. Parametrized sets as an indexed category

additional parameter Y , and the universal property of comprehension is given by
the universal property of products, which says a substitution for the parameters
in X × Y is given by a substitution for the parameters in X and a substitution
for the parameters in Y . See Fig. 3.2 for an illustration.

Next we present an alternative definition of fibred categories. The definition
of a fibration takes the Grothendieck completion of an indexed category as a
primitive and axiomatizes its properties. To understand the following definition
of a fibration (which is a functor p : E → B with special properties), the reader
is encouraged to think of Gr(E) as the category E in the definition of a fibration:

Definition 3.21 Let p : E → B be a functor.

1. A morphism f : X → Y in B is called Cartesian over the morphism
u : I → J in E if pf = u and for every morphism g : Z → Y in E such
that pg = u ◦w for some w : pZ → I, there exists a unique h : Z → X in
B such that pw = h and f ◦ h = g.

2. The functor p : E → B is called a fibration if for every object Y of E and
morphism u : I → pY in B there exists a Cartesian morphism f : X → Y
in E above u.

For a fibration p : E → B and object I of B define the fibre EI as the category
whose objects are all objects X such that pX = I and whose morphisms from
X to Y are all morphisms h in E such that ph = Id.

For each indexed category E : Bop → Cat one can obtain a fibration p :
F → B by letting F to be Gr(E), p to be the projection functor mapping (Γ, A)
to Γ and a morphism (f, g) to the morphism f . A Cartesian morphism over a
morphism f in B is the morphism (f, Id).

In fact, the fibration arising from a strict indexed category is a special fibra-
tion where the mapping from a morphism f in the base category to the Cartesian
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morphism (f, id) is functorial in a very strong sense. Such a fibration is called a
split fibration. To state the definition of a split fibration, suppose there exists a
choice of Cartesian morphism u(X) for each morphism u : I → J and object X
such that pX = J . Then define a functor u∗ : EJ → EI by letting u∗(X) to be
the domain of the map u(X), and for a morphism f : X → Y by defining u∗(f)
as the unique map g such that u(Y ) ◦ g = f ◦ u(X).

Definition 3.22 A split fibration is a fibration p : E → B such that there
exists a choice of Cartesian morphism u(X) for which the canonical natural
transformations Id⇒ Id∗ and u∗v∗ ⇒ (u ◦ v)∗ are identities.

The importance of split fibrations and strict indexed categories for our pur-
poses is that the functors E(f), for an indexed category, and u∗, for a fibration,
model substitution. The conditions for a strict indexed category and a split fibra-
tion state that substitutions compose, and hence iterated substitutions can be
modelled by the composition of these substitution functors. Without the addi-
tional conditions one requires coherence conditions to be able to model iterated
substitutions.

A fibration with comprehension is defined in the same way as an indexed
category with comprehension:

Definition 3.23 A fibration p : E → B with a terminal object functor
1 : B → E has comprehension if the functor 1 has a right adjoint.

As another example of indexed categories, consider the so-called hyperdoc-
trines, which are models for intuitionistic predicate logic [71]. This indexed
category is based on the idea that models for propositional intuitionistic logic
are parametrized by the free variables of a formulæ. The precise definition is as
follows:

Definition 3.24 A hyperdoctrine is an indexed category E : Bop → Cat
such that the following conditions are satisfied:

1. B is a Cartesian category;
2. Each fibre E(D) is a bi-Cartesian closed category and each functor f∗

preserves the bi-Cartesian closed structure on the nose;
3. Each Weakening functor Fst∗ : E(D×E)→ E(D) has a right adjoint Π;
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4. The following Beck-Chevalley condition is satisfied: For every morphism
f : D → E, and objects A in E(E) and B in E(E × A), the canonical
morphism between f∗(Π(A.B)) and Π(f∗A, (f ·Id)∗B) is an isomorphism.

5. Each Weakening functor Fst∗ : E(D × E)→ E(D) has a left adjoint Σ.
6. The following Beck-Chevalley condition is satisfied: For every morphism

f : D → E, and objects A in E(E) and B in E(E × A), the canonical
morphism between Σ(f∗A, (f ·Id)∗B) and f∗(Σ(A.B)) is an isomorphism.

First-order multi-sorted intuitionistic logic is interpreted in a hyperdoctrine.
The base category B interprets the sorts and functions between sorts; in par-
ticular there is an object D of B for each sort. Each formula φ with free
variables x1, . . . , xn of sort A1, . . . , An respectively is interpreted as an object in
E(D1×· · ·×Dn), where Di is the object in B interpreting the sort Ai. The logical
operators except quantifiers are interpreted in the fibres using their bi-Cartesian
closed structure. The adjunction defining Π models universal quantifiers: the
formula ∀x : A.φ is interpreted as Π(A, B), where B is the interpretation of φ.
The universal property of the adjunction says that a proof of ∀x : A.φ is equi-
valent to a proof of φ with an additional parameter x which does not occur in
any of the hypotheses. The formula ∃x : A.φ is similarly interpreted by Σ(A, B),
where B is the interpretation of φ. The universal property of the adjunction
captures the fact that using an assumption ∃x : φ to prove a formula ψ which
does not contain x free is equivalent to proving ψ using the assumption φ. The
Beck-Chevalley conditions for Π and Σ ensure that substitution in formulæ with
quantifiers is modelled correctly, that is, that applying a substitution for the free
variables of a quantified formula is the same as quantifying the formula to which
that substitution has been applied.

3.6 The semantics of classical proofs

In this section, we present the semantics of classical proofs. As classical logic
can be seen as intuitionistic logic with either the double-negation elimination
rule or the law of the excluded middle added, a semantics for intuitionistic logic
with additional clauses for double-negation or excluded middle should give rise
to a semantics for classical logic. We will follow this idea as much as possible
in this section, with one important exception: The näıve addition of a clause
for double-negation to bi-Cartesian closed categories yields a category which has
at most one morphism between any two objects; in other words, the semantics
becomes proof-irrelevant.

Instead, we present here a semantics which is closely linked to the λµν-
calculus: the embedding of the λ-calculus (which provides realizers for intuition-
istic proofs) into the λµν-calculus is modelled by a fibration where each fibre is
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a Cartesian closed category modelling proofs with a given right-hand side and
the base category models the change of the right-hand side.

3.6.1 Boolean algebras

Boolean algebras arose, historically, as algebras describing the manipulation of
truth of logical statements. In the context of this monograph, they are perhaps
best seen as special cases of Heyting algebras:

Definition 3.25 A Boolean algebra is a Heyting algebra such that, for all
elements x, ¬¬x = x.

The usual first example of a Boolean algebra is the algebra of truth val-
ues. The elements 0 and 1 are ⊥ and �, respectively, and the operations ∧, ∨,
and ⊃ are logical conjunction, disjunction, and implication, respectively. ¬ is
logical negation, and the extra condition ¬¬0 = 1 says that ⊥ and � are logical
complements.

Not all examples of Heyting algebras mentioned in Section 3.2.1 are also
examples of Boolean algebras. The powerset of a set A is a Boolean algebra, as
the complement of the empty set is the whole set and vice versa. The algebra of
open sets of a topological space X is not necessarily a Boolean algebra as ¬¬A,
for an open set A, is always included in A but not necessarily equal to A. The
formulæ of intuitionistic logic modulo provable equivalence do not provide an
example of a Boolean algebra, as ¬¬φ is not necessarily equivalent to φ. This
is true in classical logic, and indeed formulæ of classical logic modulo provable
equivalence provide an example of a Boolean algebra.

Boolean algebras also satisfy some other well-known identities from clas-
sical logic:

Lemma 3.26 In any Boolean Algebra (A, 0, 1,∨,∧,≤) the following equa-
tions hold:

x ∨ ¬x = 1

¬(x ∨ y) = ¬x ∧ ¬y

¬(x ∧ y) = ¬x ∨ ¬y

x ⊃ y = ¬x ∨ y.

A consequence of this lemma is that in a Boolean algebra once negation
and either disjunction or conjunction are defined, all other connectives can be
uniquely defined. The second and third equalities are called the De Morgan laws.
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3.6.2 Models of classical proofs

As we have seen, Boolean algebras are proof-irrelevant. Here we describe the
rather more complex structures which are models for classical proofs. The näıve
first attempt is to generalize the bi-Cartesian closed categories described in the
previous section. However, this attempt fails even if we simply add the expected
condition that ¬¬A is isomorphic to A:

Proposition 3.27 Any bi-Cartesian closed category such that ¬¬A is iso-
morphic to A for any object A is a pre-order [70].

Proof We start by showing that hom(A, 0) is either a singleton set or empty. Let
ιA be the unique morphism from 0 to any object A. In any bi-Cartesian closed
category we have

hom(A× 0, C)∼= hom(0, A⇒ C)

and hence hom(A × 0, C) is a one-element set. Hence the morphism ιA×0 ◦ π′,
where π′ is the projection from A× 0 to 0, is the identity.

Now assume there is a morphism f : A→ 0. Then we have

π ◦ ιA×0 ◦ π′ ◦ 〈Id, f〉 = π ◦ 〈Id, f〉 = Id

but also
π ◦ ιA×0 ◦ π′ ◦ 〈Id, f〉 = ιA ◦ f.

As also f ◦ ιA = Id, A ∼= 0, and hence hom(A, 0) is a one-element set.
Now we can show the claim

hom(A, B) ∼= hom(A, (B ⇒ 0)⇒ 0) ∼= hom(A× (B ⇒ 0), 0),

and as we have just shown, the last set is either empty or a singleton. Hence the
category C is a pre-order.

In [42], it is stated that there are just two possible solutions: one is to decom-
pose the formulæ and arrive, for example, at linear logic, the other one is to
weaken the equational theory and consider fewer equalities between classical
proofs. The semantics we will present later follows the latter approach: We
consider classical logic as an extension of intuitionistic logic—as a family of intui-
tionistic consequence relations—in which the equality between classical proofs
is an extension of the equality between intuitionistic proofs and does not satisfy
certain equalities arising from simplifying classical proofs.

Note, however, that recent work has shown that the view expressed in [42] is
mistaken. Recent work of Führmann and Pym [30] has solved the problem of
giving non-trivial categorical models of classical proofs without recourse to non-
symmetric systems with restricted equality. In our work in this monograph,
however, we exploit the asymmetry of the view of classical logic as an extension
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of intuitionistic logic and so their solution, which we describe very briefly in
Section 3.8, is not appropriate for our purposes.

With all this background in mind, we recall the Ong-Ritter models described
in [89], beginning with a sketch of the basic idea. We must interpret λµν-
sequents, of the form

Γ � t : φ , ∆ .

Such a sequent represents, as the term t via the propositions-as-types correspond-
ence [90], a proof of the classical sequent Γ � φ,∆, in which we forget variables
and names. Now, sequents Γ � t : φ, which represent, via the propositions-
as-types correspondence [42], proofs in intuitionistic propositional logic, can be
interpreted in a bi-Cartesian closed category [70]. However, it is well-known
that any attempt to extend this interpretation to classical sequents by adding
an involutive negation must fail because bi-CCCs with involutions collapse to
Boolean algebras, thereby causing the interpretation to identify all proofs of
a given sequent. The solution adopted in Ong-Ritter models [89] is to use a
fibration, as follows:

1. The base B, which is a category with finite products, interprets the named
part of the sequent, ∆. Its arrows f : [[∆]] −→ [[∆′]] interpret compositions
of Weakenings, Contractions, and Permutations;

2. The fibre E[[∆]] over each object [[∆]] of the base is Cartesian closed. It
interprets sequents of the form Γ � φ, with side-formulæ ∆;

3. Finally, we must add sufficient structure to interpret the structural opera-
tions, including negation. In particular, we must be able to interpret the
Exchange rule

Γ � t : ψ, φα,∆
Γ � µα.[β]t : φ, ψβ ,∆

,

described in Section 2.5. The key point here is that we move from the fibre
over φα,∆ to the fibre over ψβ ,∆ and must have sufficient structure in
the fibration, corresponding to the interpretation of µ and [−], to interpret
this swap.

It follows that the appropriate categorical definitions of models of λµ, λµ⊕,
and λµν are as fibrations with universally-defined extra structure corresponding,
respectively, to each additional logical connective, ⊕ or ∨.

Such models, because they are fibrations, require Beck-Chevalley conditions
[59, 117] for each connective which is to be interpreted. These conditions interpret
the ζ-rules for the corresponding type-constructors, ensuring the interpreta-
tion of the connectives is stable with respect to change of base (cf. the use
of Beck-Chevalley conditions to ensure that substitution is modelled correctly in
hyperdoctrines, Definition 3.24). The requisite definitions follow.
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Definition 3.28 A λµ-structure is a split fibration p : E → B satisfying the
following conditions:

1. p : E → B is a fibred Cartesian closed category, that is, each fibre is
Cartesian closed and re-indexing, that is, applications of functors f∗,
preserves products and function spaces on the nose;

2. The fibre E1 over the terminal object 1 in B is canonical: that is, for any
object D of B, there is a bijection between the objects of ED and E1, with
one direction given by re-indexing along the terminal arrow !D : D → 1,
that is, applications of the functor !D∗;

3. The base category B is the free category with finite products generated
from the set of objects of the canonical fibre E1 less a distinguished object
⊥ and all objects isomorphic to it (note that all arrows in B, a free cat-
egory with finite products, are compositions of Weakening, Contractions,
and Permutations);

4. For each projection
wA : D ×A→ D,

in the base, there is an isomorphism

ED(C, A) ∼= ED×Aα(wA
∗(C),⊥),

written as s
[−]�→ [αA]s and µαA . t

µ←� t, natural in C and D;
5. For any object A of a category C with finite products, the flat fibre CA is

the category whose objects are objects of C and the morphisms from B
to C are morphisms from B×A to C. The previous conditions imply the
existence of a bijection ζ : EΓ

∆×A→B(C, D) ∼→ EΓ×A
∆×B(C, D). We require the

action ζ to be functorial, natural in Γ and ∆, and to make the following
diagram commute:

EΓ
∆×A→B(C, D)

ζ∆;A,B � EΓ×A
∆×B(C, D)

EΓ
∆×A→B×D(C, ⊥)

[δD]

�

ζ∆×D;A,B

� EΓ×A
∆×B×D(C, ⊥)

[δD]

�

6. A Beck-Chevalley condition holds for ⇒: for each contraction map

c : ∆× (A⇒ B)→ ∆× (A⇒ B)× (A⇒ B)
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in B we require the following diagram to commute:

EΓ
∆×A⇒B×A⇒B

ζ ◦ ζ� EΓ×A×A
∆×B×B

EΓ
∆×A⇒B

c∗
A⇒B

�

ζ
� EΓ×A

∆×B

c∗
B ◦ c∗

A

�

Note that in the composite arrow c∗
B · c∗

A, and subsequent similar situ-
ations, we overload our notation (as in [89]) by writing c∗

A for re-indexing
along the relevant ‘contraction map’ in the flat fibration over E∆×B×B ;

7. A Beck-Chevalley condition holds for products: for the canonical iso-
morphism and the contraction functor, namely

φ : E∆×(A×B) → E∆×A × E∆×B and cA : E∆×A×A → E∆×A,

the two functors

(c∗
A × 〈〉 × 〈〉 × c∗

B) ◦ (φ× φ) ◦ φ : E∆×A×B×A×B → E∆×A × E∆×B

and
φ ◦ c∗

A×B : E∆×A×B×A×B → E∆×A × E∆×B

are equal.

Definition 3.29 A λµ-model is a pair P = 〈p, [[−]]〉, where p : E → B is
a λµ-structure and the interpretation [[−]] : Lλµ → p is a function from the
syntax of λµ (denoted Lλµ) to (the components of) p such that [[∆]] is an
object of B and Γ � t : A,∆ is interpreted as morphism [[t]] : [[Γ]] → [[A]] in
the fibre over [[∆]]. The interpretations of variables, pairs, and λ-abstractions
are given in the usual way via projections, products, and the exponentials
in the fibres, respectively. The terms µα.t and [α]t are interpreted by the
isomorphism given in Definition 3.28 (4).

We will sometimes write EP(D) for the fibre over D in the model P and BP
for the base in the model P. Also, we will sometimes write [[−]]P to denote inter-
pretation in the model P. We extend structures to account for each of the two
forms of disjunction in the next two definitions. In each case, the corresponding
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definition of model requires an interpretation [[−]], extended to Lλµ⊕ and Lλµν ,
respectively, as in Definition 3.29.

Definition 3.30 A λµ-structure is called a λµ⊕-structure if each fibre has a
co-product which is stable under re-indexing, that is, applications of the func-
tor f∗, where f is any morphism of B. Additionally, we require the following
Beck-Chevalley condition: the diagram

EΓ×(A+B)
∆×C (w∗

CE,⊥) µ � EΓ×(A+B)
∆ (E, C)

EΓ×A
∆×C(w

∗
CE,⊥)× EΓ×B

∆×C(w
∗
CE,⊥)

ι(A+B)

�

µ× µ
� EΓ×A

∆ (E, C)× EΓ×B
∆ (E, C)

ι(A+B)

�

commutes, where ι(A+B) is the defining isomorphism for the co-product in the
fibres. The definition of interpretation [[−]] can be adapted to λµ⊕-structures
in order to give λµ⊕-models as follows: the term constructors case, in1, and
in2 are interpreted by the corresponding co-product constructions.

Given this definition of λµ⊕-models, we can establish soundness and
completeness for λµ⊕ quite straightforwardly.

Definition 3.31 A λµ-structure is a called a λµν-structure if each Weaken-
ing functor w∗

∆,A : E∆ � E∆×A has a right adjoint. We denote by ν the defining
isomorphism

ν : homE(∆×B)(Γ, A) ∼→ homE(∆)(Γ, A ∨B).

We also ask for this adjunction to satisfy a Beck-Chevalley condition, that is,
that the diagram

E∆×A∨B×A∨B
ζ∨ ◦ ζ∨� E∆×A×B×A×B

E∆×A∨B

c∗

�

ζ∨
� E∆×A×B

c∗ ◦ c∗

�
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commutes, where ζ∨ is the functor given by assigning each morphism
f : C � D in E∆×A∨B the morphism µγ.[α](ν−1(µβ.[γ]f)). The definition
of interpretation [[−]] can be adapted to λµν-structures in order to give λµν-
models as follows: the interpretation of terms να.t and 〈α〉t uses the defining
isomorphism for ∨.

3.6.3 Soundness and completeness for λµν

We take an explicit definition of satisfaction.

Definition 3.32 (satisfaction) Let P = 〈p, [[−]]〉, where p : E → B, be a
λµν-model. Define

P,∆ |= (t : φ)[Γ]

if and only if there is an arrow [[t]] : [[Γ]] � [[φ]] in E[[∆]] and satisfaction respects
the structure of t : φ (i.e. |= must be consistent with the reduction relation
Red of Definition 2.10. For example, if t = uv, then we must have P,∆ |=
(u : ψ ⊃ φ)[Γ] and P,∆ |= (v : ψ)[Γ], etc.). If, for every λµν-model P, P,∆ |=
(t : φ)[Γ], then we write Γ |= t : φ,∆.

Proposition 3.33 (soundness) Let P = 〈p, [[−]]〉, where p : E � B, be a λµν-
model. If Γ � t : φ,∆ is provable in the λµν-calculus and if each of [[Γ]], [[∆]],
[[φ]], and [[t]] is defined in P, then P,∆ |= (t : φ)[Γ]. Moreover, if t ↔∗ s and t
and s are well-formed, then [[t]] = [[s]].

Proof By induction on the structure of proofs in the λµν-calculus. As usual, we
need substitution lemmas for each kind of substitution. The standard one states
that substitution for variables is given by categorical composition. For the mixed
substitution, we show that if Γ � t : χ, (φ ⊃ ψ)α,∆, and Γ � s : φ,∆, then
[[t[[β]us/[α]u]]] is given by ζ([[t]])◦〈Id, [[s]]〉. Similarly, if Γ � t : χ, (φ∧ψ)α,∆, then
[[t[[β]π(u)/[α]u]]] = π(φ([[t]])), and if Γ � t : χ, (φ∨ψ)α, then [[t[[α′]〈β〉u/[α]u]]] =
ζ∨([[t]]). Note the rôle of the Beck-Chevalley conditions here.

For example, we give the constructions for να.t. Suppose we are given a
term Γ � t : A, Bβ ,∆ and let [[t]] : [[Γ]]→ [[A]] be the corresponding morphism in
E[[B×∆]] which, by the induction hypothesis, exists. By using the isomorphism ν,
we obtain a morphism t′ : Γ → [[φ ∨ ψ]] which is equal to [[να.t]], and hence we
have P,∆ |= (t : φ ∨ ψ)[Γ]. The other cases are similar.

Lemma 3.34 (model existence) If Γ �� t : φ,∆, then there is a λµν-model
T = 〈τ, [[−]]T 〉 such that T ,∆ �|= (t : φ)[Γ].
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Proof As usual, T is the term model. Hence, define the split fibration
τ : ET → BT as follows.

The objects of BT are succedents ∆. The arrows of BT are terms s that
are compositions of the basic terms for Permutation, p : ∆ → Θ, ‘Weakening’,
wφ : ∆×φ→ ∆, and ‘Contraction’, cφ : ∆×φ→ ∆×φ×φ. The mapping [[−]]T
is then simply [[∆]]T = ∆, etc..

The fibre over each ∆ has as objects lists of types and as morphisms from Γ
to Γ′ = (φ1, . . . , φn) tuples (t1, . . . , tn) of normal forms such that Γ � ti : φi,∆.
The λ-abstraction provides exponentiation in the fibres.

The isomorphism between E∆(C, A) and E∆×A(w∗
A(C),⊥) is given by the

term constructors µ and [−]. The isomorphism defining disjunctions is given by
the term constructors for disjunction.

Proposition 3.35 (completeness)

Γ � t : φ,∆ iff Γ |= t : φ,∆

Proof The (only if) is just soundness (Proposition 3.33). For the (if), we suppose
that Γ �� t : φ,∆. Then Lemma 3.34 yields a contradiction.

It follows that we can regard λµν as the internal language of a λµν-structure.
We remark upon the similarity of the soundness and completeness arguments

for λµν and λµ⊕ (see the paragraph after Definition 3.30). Because both the λµν-
calculus and the λµ⊕-calculus are confluent, they provide, respectively, instances
of λµν- and λµ⊕-structures which are non-degenerate, that is, in which not all
hom-sets have only one element. However, the existence of non-trivial instances
of models of both disjunctions reveals much about the semantic structure of
classical proofs. This is the subject of Section 3.7.

3.6.4 Continuations: Concrete, computational models

In the denotational semantics of programming languages, for example, [93, 114],
in which programs are given a functional interpretation over structures such as
the category of complete partial orders, an important technique is to interpret
not only the linguistic constructs of the programming language but also its con-
trol régime. The semantic structures commonly used for this purpose are called
continuations.

The idea is that a continuation models a change of control during the eval-
uation of a program with respect to given data: we temporarily suspend the
current computation, carry out another, subsidiary, one and after a while resume
the original one. Thus a continuation describes how to complete the subsidiary
computation and return to the original computation. Continuations are com-
monly used to describe, inter alia, backtracking [48, 114], co-routines [114] and
evaluation strategies [92]. A survey of the various origins of the idea can be found
in [110].
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Rather than attempt a general definition, we describe a category of continu-
ations, introduced by Hofmann and Streicher [53], which can be extended so as
to correspond to a semantics of classical proofs as represented by the terms of
the λµν-calculus.

The λµ-calculus can be used to describe continuations as follows: a continua-
tion of type φ is described as the type ¬φ. The intuition is that a continuation
expects a term of type φ and produces some value which is never used because
the control context changes. One could take any type R (for responses) for the
type of these values, but as it is never used, the λµ-calculus uses ⊥ for the type of
these values. The creation of a continuation is then described by a term of type
φ ⊃ ¬¬φ because it transforms a value of type φ into a continuation ¬φ. The
other direction, namely the evaluation of a continuation, gives a term of type
¬¬φ ⊃ φ. With these two control operators it is possible to define an operational
semantics which treats each term as a continuation rather than having a value.

This syntactic view has a semantic counterpart: Hofmann and Streicher define
a category of continuations as a category C with a distinguished class T of
objects of C called type objects and a distinguished type object R of responses.
In addition, there is a chosen Cartesian product Γ ·φ for every object Γ and
type φ, and chosen terminal objects [ ] and 1 ∈ T . Moreover, for each type
object φ there is a chosen exponential Rφ ∈ T , and for any two type objects φ
and ψ a chosen Cartesian product Rφ ·ψ ∈ T of Rφ and ψ. A λµ-term Γ � t : ψ,∆
is interpreted in such a category as a map R[[Γ]] · [[∆]]→ R[[φ]].

To interpret conjunctions, we ask in addition for sums of types in the
category, and can then define [[φ ∧ ψ]] = [[φ]] + [[ψ]], and use standard isomorph-
isms involving sums, products, and exponentials to define the interpretation of
λµ-terms involving products or projections.

The classical disjunction requires the closure of T under products φ · ψ for
every φ, ψ ∈ T : we can define

[[φ ∨ ψ]] = [[φ]] · [[ψ]]

and use the natural isomorphism between

hom(R[[Γ]] · [[∆]], R[[φ]]·[[ψ]]) and hom(R[[Γ]] · [[∆]] · [[B]], R[[φ]])

as the categorical counterpart of the introduction and elimination rules for
disjunction.

A similar construction for the intuitionistic disjunction ⊕ seems to be more
difficult to obtain. For the soundness theorem we require

hom(R[[φ⊕ψ]] · [[∆]], R[[χ]]) ∼= hom(R[[φ]] × [[∆]], R[[χ]]) · hom(R[[ψ]] · [[∆]], R[[χ]])

but there is no obvious way of defining [[φ ⊕ ψ]] in a Cartesian closed category
such that R[[φ⊕ψ]] ∼= R[[φ]] +R[[ψ]]. As we will see in the next section intuitionistic
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and classical disjunction do not coincide proof-theoretically: we show that a
λµν-calculus in which classical and intuitionistic disjunction coincide is trivial
in the sense that all terms of the same type are equal.

Hofmann and Streicher prove completeness for λµ-categories by defining a
continuation category C from the syntax of the λµ-calculus. Objects are (con-
tinuation) contexts ∆ = φα1

1 , . . . , φαm
m ; a morphism from ∆ to φ is a certain

λµ-term t such that � t : φ ⊃ ⊥,∆. The intuition is that t transforms the name
αi of type φi to a continuation of type φ, which is the type φ ⊃ ⊥. The condi-
tion on the term is that for any observer o (any λµ-term of type ¬¬φ) the two
possible terms for execution of the continuations t by the observer, namely ot
and t(µαφ.o(λx : φ . [α]x)), are equal. The type of responses is fixed as ⊥ ⊃ ⊥. It
follows from the naturality of their definitions, that is, they respect substitution,
that the completeness result can be extended to cover conjunction and classical
disjunction.

Hofmann and Streicher also prove that the continuation categories are univer-
sal for the λµ-calculus in the sense that for each λµ-theory (i.e. a λµ-calculus with
some additional judgemental equalities between terms) there is a continuation
category (namely the term model) such that there is a map from this model to
any other λµ-model which respects the interpretation of λµ-terms in both mod-
els. Again, it follows from the naturality of their definitions, that is, they respect
substitution, that the universality result can be extended to cover conjunction
and classical disjunction.

The completeness of our categorical model implies that we must be able to
transform each continuation category into a λµν-structure. For this construction,
we view this category as a category of display maps [57]; then we exploit a stand-
ard construction which transforms categories of display maps into fibrations [59].
We sketch this construction, but omit the detailed verification that the structure
we define is indeed a λµν-structure, as follows:

1. The base category B has as objects the objects of C and all morphisms
necessary to make C a Cartesian category;

2. Objects of the fibre E∆ are projection morphisms ∆ · φ→ ∆;
3. Morphisms from ∆ · φ → ∆ to ∆ · ψ → ∆ are morphisms f in C such that

πψ ◦ f = πφ, where πψ and πφ are the projections corresponding to ∆ · ψ
and ∆ · φ, respectively;

4. Given a morphism f : Γ→ ∆ the functor E(f) transforms an object ∆ ·A→
∆ to Γ · φ → Γ and a morphism h into π′ ◦ (Id × h) ◦ (Id × f), where π′ is
the projection from Γ ·∆ · ψ to Γ · ψ;

5. The object ⊥ is R;
6. The isomorphism between E∆(χ, φ) and E∆ · φ(χ,⊥) is captured by the

bijection between hom(∆ · φ, R) and hom(∆, Rφ) in C;
7. The naturality and Beck-Chevalley condition of the bijection ζ follow from

the fact that E(f) is defined by composition.
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The verification that interpretations of λµν are indeed well-defined in this
structure, so yielding our definition of a λµν-model, is routine.

Finally, we remark that Hofmann and Streicher also show that the inter-
pretation of a λµ-term t in the syntactic continuation category is obtained by
replacing each object variable x by a term which describes the execution of a
continuation given by a new name α. This interpretation transforms each term
into a continuation. This property too extends to λµν.

3.6.5 Games: Another concrete model

We extend the games considered in Section 3.4 to games for classical logic. The
main difference between the games for intuitionistic logic and those for clas-
sical logic is a consequence of the fact that for classical logic we are working
with sequents with multiple conclusions, Γ � ∆, with the intuitive meaning
that (at least) one of the formulæ in ∆ must to be proved, whereas in intu-
itionistic logic we work with only one conclusion. This means that, in classical
games, when Opponent challenges a formula φ in ∆, Proponent might choose
to defend a different formula ψ in ∆, which has to be accepted also as a valid
defence of φ.

The definitions of arenas, moves, and justification for classical games are the
same as those for intuitionistic games. We call a strategy (play) classical if it is
the one for classical games. Otherwise we call the strategy (play) intuitionistic.

The conditions for classical plays are not as strong as the conditions for intui-
tionistic plays. In particular, the rules for disjunction have been changed to allow
Proponent to select both disjuncts, thereby possibly violating the disjunction
property of intuitionistic logic. More precisely, we have relaxed Clause 6 and
Clause 7. We drop the latter clause, and replace the former as follows:

Definition 3.36 A play for an arena A is a sequence of moves m1, . . . , mn

such that conditions 1–5 for intuitionistic plays, and the following additional
condition are satisfied:

6. For any P -answer mi there exists an O-question mk and an O-answer mj

such that mi is hereditarily justified by mk, mj is an O-answer with the
same label as mk or ⊥ and k < j < i, and that the nodes corresponding to
mk and mj in the arena are on a path which does not contain a P -node
n labelled ⊃ such that the nodes corresponding to mi and mj are its
children or identical to it.

This relaxation captures the possibility of pending O-questions (arising from
the multiple conclusions on the right-hand side) being answered as well as the
immediate justifying question.
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This games semantics is sound for classical logic:

Theorem 3.37 For any formula φ and classical strategy Φ for φ there exists a
classical natural deduction proof of φ.

The proof follows the same line as the proof for the corresponding theorem for
intuitionistic games (Theorem 3.17). Again, we have to show a stronger version
of the theorem with a stronger notion of strategy.

Definition 3.38 For a set A, of propositional atoms or ⊥, and a sequence
φ1, . . . , φk of formulæ, define an A, φ1, . . . , φk-strategy for the formula φ to be
any strategy for φ where both players may make additional moves according
to the arenas for φ1, . . . , φk.

The key lemma is now the following:

Lemma 3.39 Given formulæ φ1, . . . , φk and any set A of O-answers with labels
p1, . . . , pn and an A, φ1, . . . , φk-strategy for a formula φ there is a classical proof
of p1, pn � φ, φ1, . . . , φk.

Proof By induction over the structure of φ, φ1, . . . , φk. As the definition of
A, φ1, . . . , φk-strategy is invariant under permutation of any of the φi’s and φ
and natural deduction admits the Exchange rule, it suffices to do a case ana-
lysis regarding the structure of φ. We will write ∆ for the sequence of formulæ
φ1, . . . φk and Γ for the sequence p1, . . . , pn.

Atoms. Firstly, assume φ = p for some propositional atom p, and
φ1, . . . , φk = q1, . . . , qk, where all qi’s are atoms or ⊥. Any possible strategy
starts by Opponent asking at least one question labelled p or q1, . . . , qk. Pro-
ponent only has an answer if either pi = p, for some i, or pi = qj , for some i
and j. In both cases, the classical axiom p1, . . . , pn � p, q1, . . . , qk is the desired
natural deduction proof;

ψ1 ∨ ψ2. Any possible strategy starts with Opponent asking question cor-
responding to the root of the arena for ψ1 ∨ ψ2. There are now several cases.
If Opponent never asks any initial question for the arenas ψ1 and ψ2, then the
given strategy is also a strategy for φ1, . . . , φk. Hence, there is a natural deduc-
tion proof of Γ � ∆ and hence also of Γ � ψ1 ∨ ψ2,∆. If Proponent never
asks the question corresponding to the node labelled R(L) of this disjunction
or Opponent never asks any of the initial questions of the arena for ψ2 (ψ1)
then the given strategy is also a strategy for ψ1 (ψ2). By induction hypothesis
there is a natural deduction proof of Γ � ψ1,∆ (Γ � ψ2,∆) and hence also a
natural deduction proof of Γ � ψ1 ∨ ψ2,∆. If Opponent asks any initial ques-
tions for both arenas ψ1 and ψ2, then the strategy has to consider all initial
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moves for ψ1 and ψ2. Hence by induction hypothesis for ψ1, ψ2,∆ there exists a
natural deduction proof Γ � ψ1, ψ2,∆ and hence also a natural deduction proof
of Γ � ψ1 ∨ ψ2,∆;

ψ1 ∧ ψ2. Because every question and answer of a strategy for ψ1 and ψ2
has to be justified eventually by an initial move for ψ1 and ψ2 it is possible to
obtain one strategy for ψ1 and one strategy for ψ2 from the given strategy. Hence
by induction hypothesis we obtain natural deduction proofs for Γ � ψ1,∆ and
Γ � ψ2,∆. Hence one obtains also a natural deduction proof for Γ � ψ1 ∧ ψ2,∆;

φ′ ⊃ ψ. There are several subcases. Firstly, assume φ′ = ψ1 ∧ ψ2. Then
(ψ1 ∧ ψ2) ⊃ ψ is equivalent to φ1 ⊃ ψ2 ⊃ ψ, and the arenas for (ψ1 ∧ ψ2) ⊃ ψ
and ψ1 ⊃ ψ2 ⊃ ψ are identical. Hence we consider the case ψ1 ⊃ ψ2 ⊃ ψ
instead.

Secondly, assume φ′ = σ ∨ τ . Now define two A,∆-strategies Φ1 and Φ2 for
σ ⊃ ψ and τ ⊃ ψ, respectively, where the moves of both players in Φ1 and Φ2
are the moves of Φ which are justified by moves not hereditarily justified by
τ or σ, respectively. By the induction hypothesis, we obtain natural deduction
proofs for

Γ � (σ ⊃ ψ),∆ and Γ � τ ⊃ ψ,∆ .

Hence there is also a natural deduction proof for Γ � (σ ∨ τ) ⊃ ψ,∆.
Thirdly, suppose φ′ = σ ⊃ τ . Again, define A,∆-strategies Φ1 for τ ⊃ ψ and

Φ2 for σ where the moves of both players are the ones not hereditarily justified
by σ or τ , respectively. By induction hypothesis we obtain natural deduction
proofs for Γ � τ ⊃ ψ,∆ and Γ � σ,∆. Hence there is also a natural deduction
proof for Γ � (σ ⊃ τ) ⊃ ψ,∆.

Fourthly, suppose φ′ is an atom p. Again, there are two cases. Consider
an A,∆-strategy for p ⊃ ψ without a P -question corresponding to p. In this
case, the A,∆-strategy for p ⊃ ψ is in fact a strategy for ψ, and by induction
hypothesis there is a natural deduction proof of Γ � ψ,∆, hence also a proof
of Γ � p ⊃ ψ,∆. Now suppose there is a P -question corresponding to p. Then
the strategy that removes the P -question and O-answer for p is an A ∪ {p},
∆-strategy for ψ. By induction hypothesis there is a natural deduction proof for
Γ, p � ψ,∆ and hence also for Γ � p ⊃ ψ,∆.

Finally, suppose φ′ = ⊥. In this case there is always a natural deduction proof
of Γ,⊥ � ψ,∆, and hence also a proof of Γ � ⊥ ⊃ ψ,∆.

3.7 Comparing the disjunctions; De Morgan Laws

The ‘intuitionistic’ (i.e. single-conclusioned) and ‘classical’ (i.e. multiple-
conclusioned) versions of classical disjunction have the same proof-theoretic
strength. However, when we consider the semantics of proof-terms, the two dis-
junctions are fundamentally different in the sense that their identification leads
to a model in which any provable sequent has at most one proof, that is, a model
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in which (the interpretations of) ⊕ and ∨ are isomorphic must be such that each
fibre is a Boolean algebra. This can be seen very easily using the notion of model
we have given.

Theorem 3.40 Let p be a λµ-structure. If p is also both a λµ⊕-structure and
a λµν-structure and if the objects 1 + 1 and 1 ∨ 1 are isomorphic in each fibre,
then each fibre of p is a Boolean algebra.

Proof There is exactly one map 1→ 1∨ 1 in any fibre E∆, namely the map cor-
responding to the unique map ! : 1→ 1 in E∆×1 under the adjunction defining ∨.
Because 1∨ 1 and 1+ 1 are isomorphic by assumption, there is exactly one map
1→ 1 + 1, and hence

in1 = in2 : 1→ 1 + 1.

We have to show that there is at most one morphism between any two objects
in any given fibre. So suppose f : A → B and g : A → B are two morphisms in
any fibre. Because each fibre is Cartesian closed, it suffices to show that for the
curried morphisms we have

f̂ = ĝ : 1→ A⇒ B.

As in1 = in2, we obtain the following sequence of equations:

f̂ = (f̂ + ĝ) ◦ in1

= (f̂ + ĝ) ◦ in2

= ĝ.

Note that this argument relies critically on extensionality: it does not apply
to non-extensional systems. Because it is difficult to define the intuitionistic
disjunction in the continuations model, this theorem indicates that the classical
disjunction is the more appropriate one for the λµ-calculus: it has a natural inter-
pretation in both the fibred and the continuations model, whereas it is difficult
to reconcile the intuitionistic disjunction with the continuations interpretation.

Proof-theoretically, this result asserts the non-triviality of the structural
rules. At the level of consequence, the equivalence of ⊕ and ∨ relies on the
structural rules of LK. Forcing the interpretations of ⊕ and ∨ to be isomorphic,
forces the interpretation of the structural rules to be too trivial and collapse
follows.

Some classical identities also work at the level of provability. One example is
the classical equivalence between ¬φ ∨ ψ and φ ⊃ ψ and one of the De Morgan
laws, namely ¬(φ ∧ ψ) ∼= ¬φ ∨ ¬ψ. For brevity, we will abuse notation and use
logical expressions to denote the corresponding categorical structures, thereby
facilitating proofs via the internal language of λµν-structures.



COMPARING THE DISJUNCTIONS; DE MORGAN LAWS 93

Theorem 3.41 In any λµν-structure, we have ¬φ ∨ ψ ∼= φ ⊃ ψ.

Proof We use the internal language for the proof. Consider the λµν-terms

f : φ ⊃ ψ � νβψ.λa : φ.[β]fa : ¬φ ∨ ψ,

which we will abbreviate by t, and

v : ¬φ ∨ ψ � λa : φ.µβ.(〈β〉v)a : φ ⊃ ψ,

which we will abbreviate by u. These two terms show that ¬φ ∨ ψ and φ ⊃ ψ
are isomorphic.

Firstly, we calculate t[u/f ], with

v : ¬φ ∨ ψ � t[v/f ] : ¬A ∨B,

then:

t[u/f ] = (νβ.λa : A.[β]fa)[λa : A.µβ.(〈β〉v)a/f ]

= νβ.λa : A.(〈β〉v)a
= νβ.〈β〉v
= v.

Secondly, we calculate the other direction, u[t/v], with

f : φ ⊃ ψ � u[t/v] : φ ⊃ ψ,

then:

u[t/v] = (λa : φ.µβ.(〈β〉v)a)[νβ.λa : φ.[β]fa/v]

= λa : φ.µβ.(〈β〉νβ.λa : φ.[β]fa)a

= λa : φ.µβ.[β].fa

= f.

The equivalence of this theorem can also be shown semantically using the con-
tinuation category: We have [[¬φ ∨ ψ]] = R[[φ]] · [[ψ]] = [[φ ⊃ ψ]]. Note that this
result does not imply that we can use ∨ to define ⊃ or vice versa. Because we do
not have ¬¬φ∼=φ, we do not have φ∨ψ ∼= ¬φ ⊃ ψ. As we have defined negation
¬φ as φ ⊃ ⊥, we cannot eliminate ⊃ either.

The absence of ¬¬φ ∼= φ also makes it impossible to infer statements about
the De Morgan dualities from the previous two theorems. In fact, one of the
dualities holds proof-theoretically, the other one does not. Again, we give both
an argument in the internal language and using the continuations category.
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Theorem 3.42 In any λµν-structure, we have ¬(φ ∧ ψ) ∼= ¬φ ∨ ¬ψ but not in
general ¬(φ ∨ ψ) ∼= ¬φ ∧ ¬ψ.

Proof First, we give the arguments using the internal language. For the iso-
morphism between ¬(φ ∧ ψ) and ¬φ ∨ ¬ψ, consider the terms

t = f : ¬(φ ∧ ψ) � νβ.λa.[β]λb.f〈a, b〉

and

u = λc : φ ∧ ψ.(µβ.(〈β〉h)πc)π′c.

We must show that u[t/h] and t[u/f ] are f and h, respectively:

u[t/h] = λc : φ ∧ ψ.(µβ.(〈β〉νβ.λa.[β]λb.f〈a, b〉)πc)π′c

= λc.(µβ[β]λb.f〈πc, b〉)π′c

= λc.f〈πc, π′c〉
= f.

t[u/f ] = νβ.λa.[β]λb.(λc : φ ∧ ψ.(µβ.(〈β〉h)πc)π′c)〈a, b〉
= νβ.λa.[β]λb.(µβ.(〈β〉h)a)b
= νβ.λa.(〈β〉h)a
= h.

Now consider the terms t = h : ¬(φ ∨ ψ) � 〈λa.h(νβ.a), λb.h(νβ.µα.[β]b〉 and
u = d : ¬φ ∧ ¬ψ � λc.π′d(µβ.πd(〈β〉c)). We have

t[u/h] = 〈λa.(λc.π′d(µβ.πd(〈β〉c)))(νβ.a), λb.(λc.π′d(µβ.πd(〈β〉c)))(νβ.µα.[β]b)〉
= 〈λa.π′d(µβ.(πd)a), λb.π′d(µβ.(πd)µα.[β]b)〉.

u[t/d] = λc.(λb.h(νβ.µα.[β]b))(µβ.(λa.h(νβ.a))(〈β〉c))
= λc.(λb.h(νβ.µα.[β]b))(µβ.hc)

= λc.h(νβ.µα.hc).

Both terms are irreducible and so not the identity.
In continuation categories we can reason as follows:

[[¬(φ ∧ ψ)]] = R[[φ]]+[[ψ]] ∼= R[[φ]] ·R[[ψ]] = [[¬φ ∨ ¬ψ]]
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and

[[¬(φ ∨ ψ)]] = R[[φ · ψ]] �∼= R[[φ]] +R[[ψ]] = [[¬φ ∧ ¬ψ]].

3.8 Discussion

Girard, Lafont, and Taylor’s claim [42] that classical logic is algorithmically
inconsistent arises from the following example of a classical Cut-reduction, due
to Lafont [42, 127], in which the Cut redex has two possible reducts:31

If we try to enforce equality of the two choices of reduct, Φ1 and Φ2, then we find
that, as described in [42], all proofs of a classical sequent Γ � ∆ are identified.
This corresponds to the collapse to the näıve categorical models, as discussed in
Section 3.6.2. The loss of the symmetry of the (sequent) calculus forced by λµν’s
choice of ¬¬-translation, and the corresponding choice of fibred model, admits
only the reduction to Φ2. In functional programming jargon, ¬¬-transforms
are called continuation-passing-style (CPS) transforms [92], and the transform
chosen above validates equalities (between λµν-terms) typical for call-by-name.
A call-by-value CPS transform would admit only the reduction to Φ1.

As we remarked, in Section 3.6.2, recent work of Führmann and Pym [30]
has solved the problem of giving non-trivial categorical models of classical
proofs without recourse to non-symmetric systems with restricted equality. Start-
ing from a convenient formulation of the well-known categorical semantics of
linear classical sequent proofs, and from Robinson’s classical proof nets [112],
Führmann and Pym give models of Weakening and Contraction that do not col-
lapse. Cut-reduction is interpreted by a partial order between morphisms. Their
models make no commitment to any translation of classical logic into intuition-
istic logic and distinguish non-deterministic choices of Cut-elimination. They
establish soundness and completeness via initial models built from proof nets,
and describe models built from sets and relations.

However, is hard to reconcile Führmann and Pym’s semantics with the view
of a classical system as a family of intuitionistic systems. Since we exploit this
structural perspective, in full recognition of its shortcomings, in order to give

31This proof figure is actually defined in the classical sequent calculus, LK, which we do
not introduce formally until Chapter 4. However, readers who are unfamiliar with the sequent
calculus may understand this figure in terms of the sequentialized classical natural deduction
system, FNK, introduced in Chapter 2.
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a semantics for intuitionistic proof-search, we do not consider the models given
in [30] any further.

Finally, we conjecture that the results of this chapter may be extended to
predicate logic with first-order quantifiers. The basic idea is to take our λµν-
models and fibre them over a category which is suitable for interpreting first-order
terms (cf. the hyperdoctrines discussed in Section 3.5).



4

PROOF THEORY FOR REDUCTIVE LOGIC

4.1 Introduction

As we have seen in the introduction, reductive logic is based not on deductive
rules,

Premiss1 . . .Premissm
Conclusion

R,

read from premisses to conclusion, but rather on reduction operators,

Sufficient Premiss1 . . .Sufficient Premissm
Putative Conclusion

OR,

read from putative conclusion to sufficient premisses. Clearly, an inference rule
may be read as a reduction operator, and reduction operators correspond to
admissible rules.32 We believe that this idea of reduction was first explained in
these terms by Kleene [65].

As we have seen, an attempt to construct a proof, that is, a reduction, pro-
ceeds, inductively, by applying instances of reduction operators of this form to
putative conclusions of which a proof is desired, thereby yielding a collection of
sufficient premisses, proofs of which would be sufficient to imply the existence
of a proof, obtainable by deduction, of the putative conclusion. We emphasize
again, however, that a reduction may fail to yield a proof: having removed all of
the logical structure, that is, the connectives, by reduction, we may be left with
p � q, for distinct atoms p and q.

In the previous two chapters, we have introduced systems of natural deduc-
tion (ND) for intuitionistic and classical logics. We have also provided sequential
presentations, and given semantics for these systems via classes of categorical
models for which soundness and completeness theorems are available.

Semantically, we have introduced both truth-functional semantics, in the
tradition of Boole and Tarski, and proof-functional semantics, in the tradition of
Brouwer, Heyting, and Kolmogorov, and have discussed the appropriate math-
ematical structures for their formulation, including a range of examples. In
particular, we have presented a novel formulation of games semantics which
provides a unifying theme throughout this monograph and which will provide
our most convincing semantics for proof-search.

Thus we have given definitions of intuitionistic and classical proofs as deduct-
ive systems. In this chapter, we consider how Gentzen’s sequent calculus [37]

32Henceforth we refer to just R rather than OR.
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provides an appropriate basis for reductive proof and consider its use as basis
for uniform proof [80] and resolution proof, and hence for logic programming, in
both classical [108, 111, 112] and intuitionistic logic [82, 108, 111].

Whilst the natural deduction systems we have presented are a very convenient
basis for deductive proof, they are seriously defective as a basis for reductive
proof. The problem is that natural deduction rules fail, in general, to have the
subformula property [26, 84]:

An inference rule
Γ1 � ∆1 . . .Γm � ∆m

Γ � ∆
has the subformula property if every subformula of each Γi � ∆i, for 1 ≤ i ≤ m,
is also a subformula of Γ � ∆. We apply the same definition to reduction
operators.33

For example, the intuitionistic ND rule of ⊃E,

Γ � φ Γ � φ ⊃ ψ

Γ � ψ
,

fails to have the subformula property because φ need not, in general, be a
subformula of Γ � ψ.

Systems for proof-search based on rules which fail to have the subformula
property are defective as bases for reductive proof because the transition from
the putative conclusion to the sufficient premisses requires the executing agent
to generate, or discover, any subformula of the sufficient premisses which is
not already a subformula of the putative conclusion. For example, faced with
constructing a proof of Γ � ψ using the ⊃ E operator, one must generate,
or discover, the subformula φ in order to generate the sufficient premisses. In
general, this is computationally very expensive.

An alternative characterization of intuitionistic and classical proofs is
provided by Gentzen’s sequent calculus [37]. The intuitionistic sequent calculus,
LJ, is presented in Table 4.1 and the classical sequent calculus, LK, is presented
in Table 4.2.

The sequent calculus has two introduction rules, right and left, for each
connective. The right-rules introduce the connective on the right-hand side of
the sequent; for example,

Γ � φ,∆ Γ′ � ψ,∆
Γ,Γ′ � φ ∧ ψ

∧R,

and reproduce exactly the introduction rules of the corresponding natural
deduction systems.

33It is quite common (e.g. see, [84]) to define the subformula property for complete proofs.
It should be evident, however, that the property may be defined for rules, from which the
property for proofs may be derived.
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Table 4.1. Intuitionistic sequent calculus: LJ

φ � φ
Ax

Γ, ψ � φ Γ′ � ψ

Γ, Γ′ � φ
Cut

Γ, ψ, χ, Γ′ � φ

Γ, χ, ψ, Γ′ � φ
E

Γ, Γ′ � φ

Γ, ψ, Γ′ � φ
W

Γ, ψ, ψ, Γ′ � φ

Γ, ψ, Γ′ � φ
C

⊥ � ⊥L � � �R

Γ, ψ, ψ′, Γ′ � φ

Γ, ψ ∧ ψ′, Γ′ � φ
∧L

Γ � φ Γ′ � φ′

Γ, Γ′ � φ ∧ φ′ ∧R

Γ � φ Γ′, ψ � χ

Γ, Γ′, φ ⊃ ψ � χ
⊃ L

Γ, φ � ψ

Γ � φ ⊃ ψ
⊃ R

Γ, φ � ψ Γ′, φ′ � ψ

Γ, Γ′, φ ∨ φ′ � ψ
∨L

Γ � φ

Γ � φ ∨ φ′
Γ � φ′

Γ � φ ∨ φ′ ∨R

Table 4.2. Classical sequent calculus: LK

φ � φ
Ax

Γ, φ � ∆ Γ′ � φ, ∆′

Γ, Γ′ � ∆, ∆′ Cut

Γ, φ, ψ, Γ′ � ∆
Γ, ψ, φ, Γ′ � ∆

EL
Γ � ∆, φ, ψ, ∆′

Γ � ∆, ψ, φ, ∆′ ER

Γ, Γ′ � ∆
Γ, φ, Γ′ � ∆

WL
Γ � ∆, ∆′

Γ � ∆, φ, ∆′ WR

Γ, φ, φ, Γ′ � ∆
Γ, φ, Γ′ � ∆

CL
Γ � ∆, φ, φ, ∆′

Γ � ∆, φ, ∆′ CR

Γ � φ, ∆
Γ, ¬φ � ∆

¬L
Γ, φ � ∆

Γ � ¬φ, ∆
¬R

Γ, φ, φ′, Γ′ � ∆
Γ, φ ∧ φ′, Γ′ � ∆

∧L
Γ � φ, ∆ Γ′ � φ′, ∆′

Γ, Γ′ � φ ∧ φ′, ∆, ∆′ ∧R

Γ � φ, ∆ Γ′, ψ � ∆′

Γ, Γ′, φ ⊃ ψ � ∆, ∆′ ⊃ L
Γ, φ � ψ, ∆

Γ � φ ⊃ ψ, ∆
⊃ R

Γ, φ � ∆ Γ′, φ′ � ∆′

Γ, Γ′, φ ∨ φ′ � ∆, ∆′ ∨L
Γ � φ, ∆

Γ � φ ∨ φ′, ∆
Γ � φ′, ∆

Γ � φ ∨ φ′, ∆
∨R

The left-rules introduce the connective on the left-hand side of the sequent;
for example,

Γ, φ, ψ,Γ′ � ∆
Γ, φ ∧ ψ,Γ′ � ∆ ∧L.
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The left-rules replace the elimination rules of the corresponding natural deduc-
tion systems.

In both LJ and LK, the set of side-formulæ of the left-hand side of the
putative conclusion of binary rules is the union of the sets of side-formulæ of
the sufficient premisses. This is unsatisfactory from the point of proof-search
as it requires to split the side-formulæ during proof-search, thereby introducing
another possible point of failure by choosing a splitting which cannot lead to a
proof. This way of combining side-formulæ is called multplicative. Because both
intuitionistic and classical logic have Weakening and Contraction, it is possible
to present a variation of both LJ and LK in which the side-formulæ of the left-
hand side of putative conclusions of binary rules are also the side-formulæ of the
left-hand side of the sufficient premisses. This way of combining side-formulæ is
called additive. With an additional change of the axiom rule to allow arbitrary
formulæ on the left-hand side and also on the right-hand side for classical logic,
the rules of Weakening and Contraction become admissible and may be omitted
from the system. Hence no splitting of side-formulæ is required during proof-
search. We call these systems LJ′ and LK′, respectively. They are presented in
Tables 4.3 and 4.4, respectively. From now on we will use only LJ′ and LK′.

The relationship between natural deduction and sequent calculus may be
understood in terms of the Cut rule,

Γ � φ,∆ Γ, φ � ∆
Γ � ∆,∆′ Cut.

We explain the translations between natural deduction and sequent calculus by
giving examples, from which the general pattern should be apparent. Firstly,
we describe the mapping L from natural deduction proofs to sequent calculus
proofs. Consider, for example, that a proof which ends with the intuitionistic
natural deduction rule of ∨E,

maps under L to the LJ proof
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Table 4.3. Modified intuitionistic sequent calculus: LJ′

Γ, φ � φ
Ax

Γ, ψ � φ Γ � ψ

Γ � φ
Cut

Γ, ψ, χ, Γ′ � φ

Γ, χ, ψ, Γ′ � φ
E

Γ, ⊥ � ⊥L
Γ � � �R

Γ, ψ, ψ′ � φ

Γ, ψ ∧ ψ′ � φ
∧L

Γ � φ Γ � φ′

Γ � φ ∧ φ′ ∧R

Γ � φ Γ, ψ � χ

Γ, φ ⊃ ψ � χ
⊃ L

Γ, φ � ψ

Γ � φ ⊃ ψ
⊃ R

Γ, φ � ψ Γ, φ′ � ψ

Γ, φ ∨ φ′ � ψ
∨L

Γ � φ

Γ � φ ∨ φ′
Γ � φ′

Γ � φ ∨ φ′ ∨R

Table 4.4. Modified classical sequent calculus: LK′

Γ, φ, Γ′ � ∆, φ, ∆′ Ax
Γ, φ � ∆ Γ � φ, ∆

Γ � ∆
Cut

Γ, φ, ψ, Γ′ � ∆
Γ, ψ, φ, Γ′ � ∆

EL
Γ � ∆, φ, ψ, ∆′

Γ � ∆, ψ, φ, ∆′ ER

Γ � φ, ∆
Γ, ¬φ � ∆

¬L
Γ, φ � ∆

Γ � ¬φ, ∆
¬R

Γ, φ, φ′, Γ′ � ∆
Γ, φ ∧ φ′, Γ′ � ∆

∧L
Γ � φ, ∆ Γ � φ′, ∆

Γ � φ ∧ φ′, ∆
∧R

Γ � φ, ∆ Γ, ψ � ∆
Γ, φ ⊃ ψ � ∆

⊃ L
Γ, φ � ψ, ∆

Γ � φ ⊃ ψ, ∆
⊃ R

Γ, φ � ∆ Γ, φ′ � ∆
Γ, φ ∨ φ′ � ∆

∨L
Γ � φ, φ′, ∆

Γ � φ ∨ φ′, ∆
∨R

Secondly, we describe the mapping N from sequent calculus proofs to natural
deduction. Consider, for example, a proof which ends with the intuitionistic
sequent calculus rule of ⊃ L,
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Under N , this proof maps to the natural deduction proof

Thus we obtain the following:

Theorem 4.1 (equivalence of ND and SC) Γ � φ has a natural deduction
(sequentialized NJ) proof if and only if it has a proof in LJ.

A similar result obtains for our natural deduction (sometimes described as
free deduction [90]) formulation of classical logic using the λµν-calculus and its
relationship with LK. Note, however, that these correspondences can be obtained
only for provability. The relationship between proofs—see Section 4.2—is much
more complex and represents a substantial part of our subsequent analysis of
reductive proof methods.

Although the Cut rule does not have the subformula property, we have the
Cut-elimination theorem for both classical and intuitionistic sequent calculus
[37, 126]:

Theorem 4.2 (Cut-elimination) If Γ � ∆ is provable in either LK or LJ with
the Cut rule, then it is also provable in either LK or LJ, respectively, without
the Cut rule.

In the classical predicate case, the Cut-elimination theorem has a so-called
sharpened form, sometimes known as the midsequent theorem[34, 37], in which
the resulting Cut-free proof is divided into a purely propositional upper part and
a purely quantificational lower part. This result is closely related to an earlier
result of Herbrand [49], which may be formulated as follows:

Theorem 4.3 (Herbrand’s Theorem) Let ∆ be a set of formulæ in prenex
normal form. Then � ∆ is provable in LK iff there is a quantifier-free formula
H(∆), consisting of a disjunction of substitution instances of the formulæ in ∆,
such that � H(∆) is provable in LK.

The force of Herbrand’s Theorem is, essentially, to reduce the problem of
finding proofs of consequences in classical predicate logic to that of finding proofs
of consequences in classical propositional logic.

The propositional classical sequent calculus not only enjoys Cut-elimination,
but also a rather strong permutation theorem:

Theorem 4.4 (permutation [65]) Let Φ be a proof in propositional LK of the
sequent Γ � ∆. Let R and R′ be any two inferences (i.e. instances of rules) in
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Φ such that the conclusion of R′ is a premiss of R. Then there is a proof Φ′ in
propositional LK of Γ � ∆ in which the conclusion of R is a premiss of R′.

For example, in

the ∨R can be permuted below the ∨L, to give

However, the permutation theorem fails to hold for the intuitionistic sequent
calculus, LJ. To see this, consider the following proof in propositional LJ:

Here the ∨L must occur below the ∨Rs. In a classical, LK, proof of the same
consequence, the ∨R-rule may be permuted below the ∨L because both disjuncts
occur in its premiss.

In fact, a permutation theorem for LJ is available only for a rather restricted
class of sequents, which we will consider in the sequel; see Section 4.4. The
strength of the permutation theorem for the classical sequent calculus, LK,
together with Cut-elimination (see above) and the subformula property, render
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LK to be more desirable as a basis for reductive logic than LJ. Briefly:

1. The subformula property ensures the analyticity of the construction process:
when applying a reduction operator,

Sufficient Premiss1 . . .Sufficient Premissm
Putative Conclusion

OR,

all of the formulæ required to generate the sufficient premisses are present
in the putative conclusion;

2. The full permutation theorem for propositional LK ensures that, at any
given application of an operator, the construction makes the least possible
commitment to a particular decomposition of the putative conclusion: any
operator which was applicable to the putative conclusion remains applicable
to (all of) the sufficient premisses;

3. LJ can be embedded in LK so, provided we can find a computationally
acceptable characterization of LJ-provability for LK, the computational
advantages of LK may be exploited for constructing proofs in LJ. This is
the topic of Section 4.4.

The embedding of LJ into LK raises one important issue to which we
now turn. The calculus LJ′ is single-conclusioned whereas the calculus LK′ is
multiple-conclusioned.34 In a multiple-conclusioned calculus both subformulæ
of the principal formula φ ∨ ψ occur in the sufficient premiss, whereas in the
single-conclusioned calculus only one of them occurs. Such multiple-conclusioned
systems normally have stronger permutability theorems for inference rules. This
is also true for Dummett’s multiple-conclusioned intuitionistic sequent calculus
[26] which we call LM (see Table 4.5). LM is identical to LK except for the rules
⊃ R which has only formula on the right-hand side of the sufficient premiss.
Hence all other rules except ⊃ R are freely permutable, which is not true for LJ.

LM is a multiplicative calculus. As with LJ and LK, for search purposes we
will use the additive version of LM. In this way we obtain a calculus LM′, which
is given in Table 4.6. Both LM and LM′ enjoy Cut-elimination.

Now we consider how to embed derivations in LM′ into LK′. In general,
every intuitionistic derivation arises as a subderivation of a classical derivation.
Because the ⊃ R-rule allows multiple succedents in its premiss, two different
intuitionistic sequent derivations, which are not identical up to a permutation
of inference rules, can be subderivations of the same classical sequent deriva-
tion up to a choice of axioms. For example, consider the two intuitionistic
derivations in LM′

34Later in this work, when we consider proof-search, the form of ∨R-rule that is available
in the multiple-conclusioned calculus will be of computational value.
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Table 4.5. Multiple-conclusioned sequent calculus for
intuitionistic logic: LM

φ � φ
Ax

Γ1 � φ, ∆1 Γ2, φ � ψ, ∆2

Γ1, Γ2 � ψ, ∆1, ∆2
Cut

Γ, φ, ψ, Γ′ � ∆
Γ, ψ, φ, Γ′ � ∆

EL
Γ � ∆, φ, ψ, ∆′

Γ � ∆, ψ, φ, ∆′ ER

Γ, Γ′ � ∆
Γ, φ, Γ′ � ∆

WL
Γ � ∆, ∆′

Γ � ∆, φ, ∆′ WR

Γ, φ, φ, Γ′ � ∆
Γ, φ, Γ′ � ∆

CL
Γ � ∆, φ, φ, ∆′

Γ � ∆, φ, ∆′ CR

Γ, φ, ψ � ∆
Γ, φ ∧ ψ � ∆

∧ L
Γ1 � φ, ∆1 Γ2 � ψ, ∆2

Γ1, Γ2 � φ ∧ ψ, ∆1, ∆2
∧ R

Γ1, φ � ∆1 Γ2, ψ � ∆2

Γ1, Γ2, φ ∨ ψ � ∆1, ∆2
∨ L

Γ � φ, ψ, ∆
Γ � φ ∨ ψ, ∆

∨ R

Γ1 � φ, ∆1 Γ2, ψ � ∆2

Γ1, Γ2, φ ⊃ ψ � ∆1, ∆2
⊃ L

Γ, φ � ψ

Γ � φ ⊃ ψ, ∆
⊃ R

Γ � φ, ∆
Γ, ¬φ � ∆

¬L
Γ, φ �

Γ � ¬φ, ∆
¬R

Table 4.6. Modified multiple-conclusioned intuitionistic
sequent calculus: LM′

Γ, φ � φ, ∆
Ax

Γ � φ, ∆ Γ, φ � ψ, ∆
Γ � ψ, ∆

Cut

Γ, φ, ψ, Γ′ � ∆
Γ, ψ, φ, Γ′ � ∆

EL
Γ � ∆, φ, ψ, ∆′

Γ � ∆, ψ, φ, ∆′ ER

Γ, φ, ψ � ∆
Γ, φ ∧ ψ � ∆

∧ L
Γ � φ, ∆ Γ � ψ, ∆

Γ � φ ∧ ψ, ∆
∧ R

Γ, φ � ∆ Γ, ψ � ∆
Γ, φ ∨ ψ � ∆

∨ L
Γ � φ, ψ, ∆

Γ � φ ∨ ψ, ∆
∨ R

Γ � φ, ∆ Γ, ψ � ∆
Γ, φ ⊃ ψ � ∆

⊃ L
Γ, φ � ψ

Γ � φ ⊃ ψ, ∆
⊃ R

Γ � φ, ∆
Γ, ¬φ � ∆

¬L
Γ, φ �

Γ � ¬φ, ∆
¬R
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and

They arise as restrictions to intuitionistic logic from the following classical
derivation:

In this case, both derivations are proofs even in intuitionistic logic, and hence the
order in which the ⊃ R-rules are executed does not matter. In general, however,
this order matters [134]. As an easy example, consider the sequent

ψ � φ ⊃ ψ, σ ⊃ τ.

If the formula φ ⊃ ψ is reduced first working from root to leaves then the reduc-
tion succeeds, otherwise it fails. However, in classical logic the order does not
matter. So it becomes apparent already that the reduction in the classical sequent
calculus, when viewed as a reduction for intuitionistic proofs, proceeds in parallel:
one classical sequent derivation may have many intuitionistic subderivations
which are not permutations of each other.

The classical ∨R-rule gives rise to another instance of parallelism. The reason
is that in the classical rule both disjuncts are side-formulæ, whereas the single-
conclusioned intuitionistic ∨R-rule keeps only one of the disjuncts. So a classical
derivation may contain two completely different intuitionistic subderivations. An
example is

(4.1)

This derivation contains two intuitionistic subderivations, one for the sequent
φ, χ � ψ ⊃ φ and the other for the sequent φ, χ � σ ⊃ χ. These two derivations
are obtained by applying the two possible versions of the single-conclusioned
intuitionistic ∨R-rule to the sequent φ, χ � (ψ ⊃ φ) ∨ (σ ⊃ χ).

Although inferences in classical logic can be freely permuted, the property
of a classical sequent derivation having an intuitionistic subderivation is not



INTRODUCTION 107

always invariant under permutation. Examples of this phenomenon are a bit
more complicated. Consider the sequent

x : φ ⊃ ψ, y : (φ ⊃ ψ) ⊃ ψ � ψ ,

where we have attached variables to the antecedents to make it easier to refer to
a specific formula. If first x is reduced and then y, there is no way of identifying
an intuitionistic subderivation. However, if we reduce first y, and then x, then
we obtain an intuitionistic derivation. Both derivations are shown in Figs 4.1
and 4.2 respectively (see page 130).

However, our perspective in this monograph is to draw a distinction between
the structural proof theory of reductive logic, that is, the formulation of systems
of operators and the analysis of their declarative properties, and the algorithms
used in attempts to construct proofs of specific putative conclusions. In this
chapter, our focus is on the structural, proof-theoretic, properties of systems of
reduction operators. The addition of algorithmic control to reductive proof, to
give proof-search, is considered in Chapter 6.

As usual, before moving on with our main development we pause briefly to
consider the issues which arise in extending our analysis to first-order predicate
logic. See, for example, [95] or [42] for a suitably systematic treatment of the
proof theory of classical and intuitionistic first-order predicate logic.

Most of the analysis we have discussed so far in this chapter extends straight-
forwardly to first-order predicate logic. The permutation theorem, however, does
not. To see this, consider, following Wallen [134], the (LJ- and LK-provable)
sequent

� ∃w.∀x.p(w, x) ⊃ ∀y.∃z.p(z, y) .

Starting from this endsequent, the only reduction operator that is applicable is
⊃ R, giving

(4.2)

At this point, we must choose to proceed either with a ∃L or with a ∀R.
In either case, we must introduce a parameter. Suppose we proceed with ∃L,
introducing the parameter a, then we get

(4.3)

Here we have observed a side-condition on the ∃L-rule: the parameter must not
occur free in the leaf of (4.3).
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At this stage in our reduction, we must choose between ∀L and ∀R for the
next step. Suppose we proceed with ∀L, introducing the parameter b, then we get

(4.4)

Note that there is no restriction on the choice of parameter for a universal on
the left.

We now have no choice. We must proceed with ∀R, for which we must choose
a parameter which does not occur free in the leaf of (4.4), that is, neither a nor b.
Choosing a parameter c, we get

(4.5)

Now, the only remaining possibility is ∃R. But any reduction via ∃R will
lead to a sequent of the form

p(a, b) � p(d, c),

for some parameter d. The choice of d is not restricted, so we can choose d = a,
but even with this choice there is no way to achieve an axiom: c must be different
from b, and the reduction we have described fails to construct a proof.

The endsequent is, however, provable. Here is a correct proof:

(4.6)

So we can see that there is an order dependence between the quantifier rules
which obstructs the permutation theorem. It is, however, possible to recover
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a weaker permutation via the idea or a reduction ordering . The details of this
technique, described in detail in [134], are beyond our present scope. However,
the basic idea is quite straightforward. Briefly, for a given reduction, we identify
two orderings:

1. ! is the formula ordering : roughly, φ! ψ just in case φ is subformula of ψ;
2. � is the substitution ordering : roughly, � represents the ordering con-

straints on the introduction of parameters.

Clearly, ! and � can be formulated over a common set of labels.
The reduction ordering, �, is then given by the transitive closure of the union

of the formula ordering and the substitution ordering:

� = (! ∪ �)+.

Now, recall that (4.5) could not be completed to a proof because of the side-
conditions about the choice of parameters. In the absence of the side-conditions,
the reduction could have been completed to give a leaf p(a, b) � p(a, b):

(4.7)

However, by abandoning the side-conditions, in general, we lose the soundness
of the quantifier rules. The reduction ordering provides a solution: we perform
a reduction using the quantifier rules without their side-conditions but, for the
completed reduction, calculate the reduction ordering, �. If � is acyclic, then
the reduction determines a proof. If it is cyclic, then it does not [134].

For example, not only is (4.6) acyclic but so is (4.7). The acyclic reduction
ordering determines an equivalence class of reductions, which includes the cor-
rect proof and those permutation variants of it which fail to be proofs merely
because the choice of substitution of parameters is inconsistent with the choice
of the order of quantifier reductions, but for which a consistent choice of order
of quantifier reductions, that is, a reordering of the given choice, exists.

4.2 Reductive proof theory

We are now ready to begin our proof-theoretic and semantic studies of reduct-
ive logic. Recall that our concern is to provide a framework for the semantics
of intuitionistic and classical reductive logic and their associated proof-search
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procedures which is of comparable value to that which is available for the
corresponding deductive systems. That is, there should be a ‘Curry-Howard’
correspondence between proofs, functional terms, and their interpretations
in a suitable algebraic—here categorical—structure. Moreover, the categor-
ical semantics of reductions should, as far as possible, be formulated within
a framework which properly generalizes the existing categorical account of
truth-functional semantics [70].

As we have explained, this view may summarized by the diagram

in which the top left-hand corner denotes reductions in an appropriate calculus,
the top right-hand corner denotes the corresponding typing of functional terms,
and the bottom corner denotes the categorical semantics.

In this chapter, we are concerned with two parts of this picture, the judge-
ments Φ ⇒ Γ ?- φ and [Γ] |∼ [Φ] : [φ]. Recall that the turnstile ?- is used,
in the judgement

Φ : Γ ?- φ ,

to denote that Φ is a reduction of φ from Γ, that is, Φ denotes a derivation tree,
regulated by reduction operators, with root node Γ ?- φ and leaf nodes, which
need not be axioms. In fact, in this chapter, we will not be concerned directly
with the manipulation or semantics of uncompleted reductions. Accordingly, we
will work with the more familiar notation Φ ⇒ Γ � φ rather than Φ ⇒ Γ ?- φ,
which will be indispensible in Chapters 5 and 6.

4.2.1 Background

The significance of reductive logic derives from a desire among a broad com-
munity of logicians, mathematicians, and computing scientists to use mathem-
atical logic, and the vast range of formal languages inspired by its development,
as a basis for automated reasoning or, more prosaically, automated theorem
proving .

One could argue for many different starting points for this line of enquiry.
However, a prerequisite is the late nineteenth century advancement of logic
from its mediæval form to a mathematical theory.35 So, taking the view that

35It was once said by Immanuel Kant that logic was the only science that had made no
progress at all since antiquity [131]. We suggest, however, that this view was mistaken: there is
a substantial sense of much of modern logic in the work of the scholastics; see, for example, [19].
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mathematical logic is a essentially prior development, one sensible point of depar-
ture is perhaps a pair of papers consisting of Löwenheim’s (1915) On possibilities
in the calculus of relatives [73], and of Skolem’s (1920) Logico-combinatorial
investigations in the satisfiability or provability of mathematical propositions: A
simplifed proof of a theorem by L. Löwenheim and generalizations of the theorem
[118]. These papers both explore the determination of the validity of formulæ.
A second pair of papers then marks a significant advance. Skolem’s (1928) On
mathematical logic [119] and Herbrand’s (1930) Investigations in proof theory:
The properties of true propositions [49]. These two papers develop two important
ideas. Firstly, that the arrangement of the connectives in a formula is significant
for understanding and calculating with a formula and, secondly, that proofs are
suitable objects for mathematical investigation. Herbrand’s article also marks
the starting point for what we now understand as the resolution method (which
we consider at length in the sequel).

In particular, ‘Herbrand’s Theorem’ (Theorem 4.3; see, for example, [34] for a
detailed explanation) provides a basis for a mechanical proof procedure for first-
order logic, implemented by Gilmore in 1960 [39], of manageable complexity.
As Bundy [20] remarks, Gilmore’s work established the feasibility of automated
theorem proving. However, perhaps the most significant development in the
1960s was Julia Robinson’s resolution procedure [113]. For formulæ in a certain,
functionally complete, clausal form the resolution rule is, together with the use of
unification [34] to calculate terms, both computationally appealing and logically
complete. The resolution procedure, together with a control régime for selecting
to which clauses from a set the resolution rule should next be applied, forms
the basis of the programming language Prolog [21, 22], and Kowalski’s famous
dictum,

Programming = Logic+ Control.

In recent years, Miller et al. [46, 80, 104] have provided more systematic accounts
of logic programming via the sequent calculus, and the proof-theoretic basis
of that work provides a point of departure for much of our analysis in this
mongraph.

Considering once again not logic programming but rather automated theo-
rem proving in general, and from a more systematic perspective, it is standard
practice to draw a distinction between local methods, inspired historically by
technique’s such as the resolution calculus [113] and Maslov’s inverse method
[78], and global methods, inspired by the Gentzen’s sequent calculi, as discussed
above, and Smullyan’s tableaux systems [120]. Of course, local methods may
have global characterizations, and vice versa. For example, adumbrating much
of our forthcoming analysis, the sequent calculus may be used to characterize
resolution.

Local methods have the advantage of deriving small independent objects
like clauses bearing a simple logical relationship to their parents and allowing
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wholesale dynamic simplification of the ‘search space’36 using operations such as
subsumption.

Global methods, in contrast, are typically analytic [29], that is, essentially all
formulæ used in the search procedure are subformulæ of the formula to be proved.
These global methods benefit from complex implementation methods [6, 16] and
produce search spaces which are deep but well-focussed on the shortest proof
available; proofs which are, nevertheless, exponentially longer that the shortest
proofs available in their local, non-analytic counterparts [17].

The characterization outlined above is broadly coherent for classical proposi-
tional and predicate logic. For non-classical logics, in particular for intuitionistic
logic, global methods are more easily developed [108] and, as Mints points out
in [82], many attempts to formulate local methods for non-classical systems
fail to preserve the essential properties of local methods for classical systems.
Indeed, he goes on to formulate a list of criteria by which system can qualify as
‘resolution’.

A major development since the 1970s and 1980s has been away from fully
automated theorem provers into interactive theorem provers. These have been
developed in response to the so-called combinatorial explosion. These systems
essentially derive from LCF [43, 91],37 developed at Stanford and Edinburgh,
based on Scott’s higher-order logic PPλ. Examples include Isabelle [85], LEGO
[94], and Coq [31].

The basic idea of interactive theorem provers is based directly on the idea of
reduction. Faced with a putative conclusion, or goal , say

φ1, . . . , φm � ψ1, . . . , ψn ,

the user must perform an action which is application to the sequent. Typ-
ically, this will be an application of either a single reduction operator, or a
tactic, that is, a program which systematically applies a combination of reduc-
tion operators, or a tactical , that is, a program which systematically applies
a combination of tactics, to some choice of φs and ψs. The result of such an
action will be either success, failure, or a new collection of goals (or subgoals).
In LCF and its derivatives, tactics and tacticals are written in the programming
language ML [81].

4.2.2 Our perspective

Our perspective in this chapter, perhaps novelly within this area of logic, is not
historical, and not merely technical. Rather, it is foundational. That is, we are
concerned with the underlying structure of reductive systems, with the choices

36This idea is discussed in detail in Chapter 6 but the basic idea is that the search space
is the space of possible constructions which may be explored when trying to construct a proof.

37LCF stands for ‘Logic for Computable Functions’.
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that are possible in the design of systems, and with the mathematical analysis
of these ideas.

Given that our approach is foundational, it is convenient to restrict our atten-
tion to propositional systems, without the added complications of predication
and quantification. Whilst such a restriction might, at first sight, seem to elim-
inate key difficulties, it is in fact essentially harmless. It will be evident that our
analyses extend to first-order settings without difficulty.38 As in the preceding
chapters, we shall discuss briefly the extension of the analyses in this chapter to
first-order systems.

As we have already explained, in Chapter 1, our guiding theme is the rôle
of classical logic as a meta-logic for intuitionistic logic. Thus the focus of our
foundational perspective is on the use of classical calculi to construct intuition-
istic proofs. Our technical starting point is the sequent calculus, as discussed in
Section 4.1, but before we embark on our technical development, we consider, in
this section its place within the range of local and global approaches to reductive
proof.

We begin our technical development, in Section 4.3, with a representation
of proofs in the classical sequent calculus, LK, as terms of the λµνε-calculus.
This representation provides a language of realizers for classical consequences
and allows, in Section 4.4, a characterization, via the λµνε-calculus, of those LK
derivations which determine intuitionistic proofs.

We proceed, in Section 4.5, with a development which is inspired by the
notion of uniform proof, introduced by Miller et al. in the context of logic pro-
gramming [80]. We introduce a larger class of proofs, called weakly uniform,
which is sufficient to characterize intuitionistic provability within the classical
calculus. This section concludes with an application to a restricted class of
uniform proofs called analytic resolution proofs.

Having set-up our basic analytic theory, we come to our main application, the
analysis of classical and intuitionistic resolution. Although used as the found-
ation not only for the logic programming language Prolog but also for many
automated theorem provers, resolution is formulated not as a reductive system
but as a deductive system for deriving inconsistency, that is, as a refutation
system.

The basic idea, formulated in classical logic, is as follows:39

1. We have a set of formulæ in clausal form;40

2. Suppose we have two clauses C1 ∨ p and C2 ∨ ¬p, where C1 is a disjunction
of m1 literals and C2 is a disjunction of m2 literals, and where p and ¬p
are literals. Then the resolution rule for C1 ∨ p and C2 ∨¬p is the following

38Indeed, even a restriction to first-order is largely unnecessary.
39Our technical development, in Section 4.6, uses a more sophisticated formulation.
40A set of formulæ is in clausal form if and only each formula is a clause. A clause is a

disjunction of literals. A literal is an atomic proposition or a negated atomic proposition.
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inference:
C1 ∨ p C2 ∨ ¬p

C1 ∨ C2
. (4.8)

Here, the conclusion is called the resolvant and the two premisses are called
its parents, within which p and ¬p are called the complementary literals.
Note that, in each resolution step, an occurrence of a literal is eliminated
from the set of clauses;

3. If a clause is a disjunction of 0 literals, then it is logically equivalent to ⊥
and is said to be empty.41 If m1 = m2 = 0, then the resolvant is logically
equivalent to ⊥ and we have derived a refutation;

4. Thus, if Γ is a set of clauses and if p is a literal, then to determine whether
the sequent Γ � p has a proof we seek to deduce a refutation of Γ ∪ {¬p };

5. In predicate logic, we may have clauses C1 ∨ p1 and C2 ∨¬p2, together with
a substitution σ for the first-order variables in p1 and p2 such that, where
≡ denotes syntactic identity, p1σ ≡ p2σ.42

The leading application of (predicate) resolution is, perhaps, the logic pro-
gramming language Prolog [21, 22]. Prolog is based on classical resolution for
Horn clauses, named after Alfred Horn, who first identified them. Here we
consider just the propositional case.

A (propositional) Horn clause is a clause with at most one unnegated literal,
that is, it has the following form:43

Horn clause: p1 ∧ · · · ∧ pm ⊃ φ, where φ is atomic or ⊥.
A Horn clause is definite if φ is not ⊥. A program, P, consists of a finite set of
definite clauses. A goal or query, G, consists of a finite set of atomic formulæ
{G1, . . . , Gm}, with each Gi �= ⊥ and the corresponding goal formula is the
formula

∧G = G1 ∧ · · · ∧Gm.
The following use of the resolution rule is called (propositional) SLD

resolution44 and derives a goal, G,G′, from a program, P:
G, p ∧G′ ⊃ p

G,G′ .

where
∧G′ ⊃ p is a clause in P. In general, SLD resolution is defined for predicate

Horn clauses and requires a clause
∧G′ ⊃ q ∈ P. and a substitution θ (which

can be calculated by unification) such that pθ = qθ.

41The empty clause is sometimes written �.
42In first-order predicate logic, such a substitution may be calculated using a unification

algorithm (see [113] for a discussion). For higher-order systems, weaker results are available
[55, 62, 99].

43Note that here we adopt the so-called Kowalski form [20, 67] in which a clause ¬p1 ∨
· · · ¬pm ∨ q1 ∨ · · · ∨ qn is written in the form (p1 ∧ · · · ∧ pm) ⊃ (q1 ∨ · · · ∨ qn).

44SLD stands for Selected Literal for Definite clauses.
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The following theorem characterizes classical resolution:

Theorem 4.5 (soundness and completeness of SLD resolution) SLD
resolution is sound and complete with respect to the classical sequent calculus: if
Γ is a set of clauses, then Γ has an SLD resolution proof iff Γ � ⊥ is provable
in the classical sequent calculus.

In this chapter, we show that resolution for classical logic may be charact-
erized as a reductive system via our treatment of uniform and weakly uniform
proofs. Further, we show that Mints’ intuitionistic resolution calculus [82] may
be reconstructed from classical resolution together with our characterization of
intuitionistic proof within the classical calculus. Thus we provide a systematic,
analytic, reductive treatment of classical and intuitionistic resolution via uniform
and weakly uniform proofs.

We emphasize once again, however, that at this stage we pay no attention to
any of the algorithmic aspects of the construction of reductions. Such issues are
treated in Chapter 6.

4.3 Representation of sequent derivations in λµνε

In this section, we describe the use of the λµνε-calculus, introduced in
Chapter 2, to represent sequent proofs. Below, we show how to use this repres-
entation to formulate a condition on classical derivations to determine when they
have intuitionistic subderivations. This is formulated as a condition on a λµνε-
term that interprets the classical derivation (see Definition 4.9). Subsequently,
we show how transformations on the λµνε-terms can be used to characterize
the search space over a given endsequent (see Theorem 4.16). We prove the
completeness of a particular search strategy for classical logic with respect to
intuitionistic provability. Again, the formulation of this strategy uses λµνε-terms
(see Theorem 4.23).

Turning to the formal representation, then, we start by giving the translation
from classical sequent derivations into the λµνε-calculus. Note that the classical
sequent derivations have to be suitably annotated for the definition. Firstly,
each sequent has one principal formula in the succedent together with an arbit-
rary number of additional formulæ. We introduce a name for each additional
formula in the succedent and a variable for each formula in the antecedent.
Secondly, the translation has to take the explicit exchange rule in the λµνε-
calculus into account. For example, the axiom Γ, x : φ � φ, ψβ can be translated
to the variable x; the axiom Γ, x : φ � ψ, φα, however, must be translated to the
λµνε-term µα.[β]x.

We shall use the following notation: if Φ is a derivation whose last rule is R
applied to the derivations Φ1, . . . ,Φn, we write (Φ1, . . . ,Φn);R for Φ.
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Definition 4.6 Let Φ: Γ � φ,∆ be a classical sequent derivation and suppose
that each occurrence of a formula in Γ and ∆ has a label, that is, the contexts
Γ and ∆ satisfy Γ = x1 : φ1, . . . , xn : φn and ∆ = ψβ1

1 , . . . , ψβm
m . (These labels

turn into variables and names in the λµνε-calculus, hence we also use them for
the derivations.) We define a λµνε-term φ satisfying Γ � [[Φ]] : φ,∆ by induc-
tion over the structure of φ as follows (note the clause for the exchange rule):

Axiom: Suppose Φ : Γ, x : φ � φ,∆ is an axiom, then [[Φ]] def= x;
Exchange: Suppose Φ: Γ � φ, ψβ ,∆, and

φ′ = φ; E : Γ � ψ, φα,∆.

We define [[Φ′]] to be the normal form of the term µβ.[α][[Φ]] with respect to
the rules βµ and ηµ;
∧L: Suppose we have the derivation

then the corresponding λµνε-term is

[[Φ;∧L]] def= [[Φ]][π(z)/x, π′(z)/y];

∧R: Suppose we have the derivation

then we define
[[(Φ,Ψ);∧R]] def= 〈[[Φ]], [[Ψ]]〉;

⊃ L: Suppose we have the derivation

then we define [[(Φ,Ψ);⊃ L]] to be the normal form of

µγ.[γ][[Ψ]] {x[[Φ]]/w}

with respect to the reduction rules βµ and ηµ;
⊃ R: Suppose we have the derivation
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then we define [[Φ;⊃ R]] to be λx : φ.[[Φ]];
¬L: Suppose we have the derivation

then we define [[Φ;¬L]] to be the normal form of µγ.[⊥]w {x[[Φ]]/w} by the
reduction rules βµ and η⊥;
¬R: Suppose we have the derivation

then we define [[Φ;¬R]] to be the normal form of λx : φ.µ⊥.[β][[Φ]] via the
reduction rules βµ and η⊥;
∨L: Suppose we have the derivation

we define [[(Φ,Ψ);∨L]] to be the normal form of

µγ.[γ][[Ψ]] {µα.[γ][[Φ]] {〈α〉z/y} /x}

with respect to the reduction rules βµ and ηµ;
∨R: Suppose we have aderivation

then we define [[Φ;∨R]] = νβ.[[Φ]].

The labelling of the assumptions has one important consequence, namely that
there are several possible translations for the same classical sequent derivation.
As an example, take the sequent derivation

There are two possible λµνε-terms corresponding to this derivation, namely

λx : φ.µβ.[γ]λy : χ.µδ.[β]b
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and
λx : φ.µβ.[γ]λy : χ.b ,

where we use the name b to denote the variable corresponding to the formula ψ
on the left-hand side. The first proof-term uses the second occurrence of ψ at
the leaf for the axiom, whereas the second uses the first occurrence of ψ in the
succedent. In this case the difference does not matter—both derivations contain
intuitionistic subderivations—but this is not generally true.

4.4 Intuitionistic provability

In this section, we describe how to use the translation of classical LK′-derivations
given in the previous section to give a criterion when a classically provable
sequent is in fact also intuitionistically provable.

In deciding when a classical derivation indicates that its endsequent is
intuitionistically provable, the requirement is to detect superfluous inferences.
Consider again the sequent ψ � φ ⊃ ψ, σ ⊃ τ . This sequent has an intuitionistic
proof in which φ ⊃ ψ is reduced first. There is also the following classical proof
of this sequent:

We want to be able to detect that the use of the ⊃ R-rule to reduce the
formula σ ⊃ τ is superfluous by using the λµνε-term corresponding to this
proof. We can then conclude that there is an intuitionistic proof of this sequent.
The λµνε-term representing this derivation is

λx : φ.µβ.[γ]λy : σµε.[β]b ,

and the detection amounts to determining when a subterm (here the λ-
abstraction over σ) models Weakening on the right. This example motivates
the following definition:

Definition 4.7 We define Weakening terms and Weakening occurrences of
names by induction over the structure of terms as follows:

1. µα.t is a Weakening term if all occurrences of α in t are Weakening
occurrences;

2. A term t of type ⊥ is always a Weakening term;
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3. 〈t, s〉 is a Weakening term if t and s are Weakening terms;
4. λx : φ.t is a Weakening term if t is a Weakening term and if x has only

Weakening occurrences in t;
5. The outermost occurrence of α in [α]t and 〈α〉t is a Weakening occurrence

if t is a Weakening term;
6. να.t is a Weakening term if t is a Weakening term and all occurrences of

α are Weakening occurrences;
7. All occurrences of ⊥ in t are Weakening occurrences;
8. The occurrence of the variable x in tx is a Weakening occurrence if t is

a Weakening term and x is not free in t. In this case, the term tx is a
Weakening term as well;

9. t {u/x} is a Weakening term if t is a Weakening term.

As an example, consider the term

λx : φ.µβ.[γ]λy : σ.µε.[β]b ,

which we considered before this definition. The term λy : σ.µε.[β]b is a Weakening
term, and the only occurrence of γ is a Weakening occurrence. The occurrence
of β is not a Weakening occurrence.

Lemma 4.8 Let t be a term of type Γ � t : φ, ψβ ,∆. If β has only Weakening
occurrences in t, then every term s such that µβ.[α]t �∗ s is a Weakening term.

Proof It is obvious that µβ.[α]t is a Weakening term. Show by considering each
reduction rule that first reductions of t to t′ only delete occurrences of α or insert
new Weakening occurrences of α but never create non-Weakening instances of a
name, second, that any contractum of a Weakening term is a Weakening term,
and third that reduction of a term which contains only Weakening occurrences
of x yields a term with only Weakening occurrences of x. We just present a
few cases here. If the term is µα.t, then either µα.t � µα.t′ with t � t′, and
then α has only Weakening occurrences by the first statement. If the reduction
was λx : φ.(µα.t)x � λx : φ.µβ.t[[β]ux/[α]u], then the only occurrences of x
and β are Weakening occurrences by the first two statements, and hence t′ is
a Weakening term. The case 〈t, s〉 follows from the second statement, the case
λx : φ.t from the second and third, and the case να.t follows from the first and
second statement.

Now we can define our first criterion for when a classical sequent derivation
determines the existence of an intuitionistic one.
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Definition 4.9 Call a λµνε-term intuitionistic if in any subterm λx : φ . t,
which is not a Weakening term, all occurrences of free names are Weakening
occurrences.

Let us reconsider the examples at the beginning of this section. There are
two λµνε-terms corresponding to the two derivations of ψ � φ ⊃ ψ, σ ⊃ τ . The
first one, which corresponds to reducing φ ⊃ ψ first, is the term

λx : φ.µβ.[γ]λy : σ.µε.[β]b ,

and the second one, which corresponds to reducing σ ⊃ τ first, is the term

λy : σ.µδ.[α]λx : φ.b .

In both cases we have an intuitionistic λ-term because the λ-abstraction over
σ is a Weakening term. This example shows the parallelism obtained by using
a classical sequent calculus: both intuitionistic subderivations of either of the
classical proofs are considered simultaneously without any need for backtracking.

In the same way, there are two λµνε-term for the classical proof of the
sequent φ, χ � (ψ ⊃ φ) ∨ (σ ⊃ χ), given as an example (4.1) in Section 4.1. The
first one, namely νδ.λx : ψ.µα.[δ]λy : σ.µγ.[α]a, corresponds to the axiom φ � φ
and the second one, namely νδ.λx : ψ.µα.[δ]λy : σ.c, corresponds to the axiom
χ � χ. Both terms are intuitionistic and incorporate the two single-conclusioned
subderivations simultaneously without the need for backtracking.

As an example of a non-intuitionistic term, consider the formula ¬φ∨φ. The
classical proof is

and the corresponding λµνε-term is να.λx : φ.µ⊥.[α]x. This term is not intuition-
istic because the name α and the variable x have a non-Weakening occurrence
in the λ-abstraction. For another example of a non-intuitionistic term, consider
Peirce’s formula, ((φ ⊃ ψ) ⊃ φ) ⊃ φ. The classical proof of this formula is
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If this proof is translated into the λµνε-calculus, the term obtained is

λx : (φ ⊃ ψ) ⊃ φ.µα.[α]a {x(λy : φ.µβ.[α]y)/a} .

The name α has a non-Weakening occurrence in the λ-abstraction over φ; hence
this term is not intuitionistic.

Next, we show the correctness of the criterion. The crucial point is that
a Weakening term corresponds to a superfluous subderivation. The following
lemma makes this precise.

Lemma 4.10 Let Φ be a derivation Φ: Γ, φ1, . . . , φn � φ, ψ1, . . . , ψm,∆
such that

Γ, a1 : φ1, . . . , an : φn � [[Φ]] : φ, ψβ1
1 , . . . , ψβm

m ,∆

holds. If the variables ai and names βj have only Weakening occurrences in
[[Φ]], then there is a procedure to construct a sequent derivation of Γ � φ,∆.
Moreover, if [[Φ]] is a Weakening term, then there is a procedure to construct
a derivation of Γ � ∆. These procedures transform sequent derivations which
have an intuitionistic subderivation, as described in Table 4.6, into those with
the same property.

Proof By induction over the structure of sequent derivations. We give the case of
a ⊃ L-rule to illustrate the argument. Suppose we are given a proof ending with

and suppose that its λµνε-term is µα.[α]t {xs/w}. The only interesting case
arises if this term is a Weakening term. In this case, the name α has only
Weakening occurrences in t and in s, and t is a Weakening term. By the induction
hypothesis, we obtain derivations of Γ � χ,∆ and Γ, σ � ∆ and hence also a
derivation of Γ, χ ⊃ σ � ∆.

Now we are in a position to show the correctness of the criterion.

Theorem 4.11 Let Φ: Γ � φ,∆ be a classical sequent derivation. If [[Φ]] is
an intuitionistic λµνε-term, then there exists an intuitionistic derivation of the
sequent Γ � φ,∆.

Proof We proceed by induction over the structure of derivations of sequents.
Suppose the last rule is the rule ⊃ R to obtain a sequent Γ � φ ⊃ ψ,∆. By the
induction hypothesis, we have an intuitionistic sequent derivation of Γ, φ � ψ,∆.
Let [[Φ]] = λa : φ.t. Either [[Φ]] is a Weakening term, in which case Lemma 4.10
implies that there is also an intuitionistic derivation of Γ � ∆, and hence also of
Γ � φ ⊃ ψ,∆. If [[Φ]] is not a Weakening term, then there are no free names in
[[Φ]] that have a non-Weakening occurrence. Hence, by Lemma 4.10 again, there
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is an intuitionistic derivation Γ, φ � ψ. Now the intuitionistic ⊃ R-rule yields the
result.

Finally we show the other direction: each intuitionistic sequent derivation
Γ � ∆ gives rise to an intuitionistic λµνε-term Γ � t : φ,∆′, where ∆ is a
permutation of φ,∆′. To show this, we use the standard inclusion of the
multiple-conclusioned LJ-calculus into the LK-calculus: for each ⊃ R-rule

in a multiple-conclusioned LJ-derivation add ∆ to all sequents in the LK-
derivation corresponding to Φ and now use the ⊃ R-rule of LK. The same
procedure is followed for the ¬R-rule.

Theorem 4.12 Let Φ: Γ � ∆ be a multiple-conclusioned LJ-sequent derivation.
Then the term [[Ψ]] of the corresponding LK-derivation Ψ is an intuitionistic
λµνε-term.

Proof Show by induction over the structure of Φ that [[Ψ]] satisfies the typing
judgement Γ � [[Ψ]] : φ,∆′, where φ,∆′ is a permutation of ∆ and that [[Ψ]] is
intuitionistic. The only interesting cases are the ⊃ R-rule and ¬R-rule. In the
first case, the derivation is

Let Ψ′ be the corresponding LK-derivation. By induction hypothesis, we have
Γ, x : φ � [[Ψ′]] : ψ, and Ψ′ is intuitionistic and contains no free name. We also
have also Γ � [[Ψ′]] : ψ,∆, and hence the term Γ � λx : φ.[[Φ′]] : φ ⊃ ψ,∆ is an
intuitionistic λµνε-term. The case of the ¬R-rule is similar.

4.5 Uniform proof and analytic resolution

In this section, we specialize the results of the previous section to a special class
of sequent proofs and show that a certain classical proof procedure is sound
and complete for intuitionistic provability of sequents of propositional hereditary
Harrop formulæ. The proof procedure is based on an extension of the notion of
uniform proof to multiple-conclusioned systems by Miller et al. [80] (e.g., see
also [47]).

4.5.1 Uniform proofs

A uniform proof [80] is a sequent derivation in which, when read from root to
leaves, all right rules are applied whenever it is possible so to do, except for
axioms with non-atomic principal formulæ.45 We call a proof fully uniform if

45An axiom is said to be atomic just in case its principal formula is atomic.
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right-rules are preferred even over axioms. The notion of a uniform proof leads
to a simple, highly deterministic search algorithm: first apply all possible right-
rules; then select an appropriate left-rule. Note that Miller et al. define uniform
proofs for the full, single-conclusioned calculus LJ [37]. In this case, not every
LJ-provable propositional sequent has a uniform proof. The reason is that it may
be necessary to apply the ∨L-rule before the ∨R-rule to obtain a proof. As an
example in the multiple-conclusioned calculus consider the sequent

φ ∨ ψ � χ ⊃ φ, ψ.

The only intuitionistic proof of this sequent reduces the formula φ ∨ ψ first. If
the formula χ ⊃ φ is reduced first in multiple-conclusioned LJ, we obtain the
(intuitionistically unprovable) sequent χ, φ ∨ ψ � φ.

However, for the fragment of intuitionistic logic consisting only of heredit-
ary Harrop formulæ this is true. Hence in this section we restrict ourselves to
hereditary Harrop formulæ.

The definition of propositional hereditary Harrop formulæ (cf. [80, 104]) is
as follows:

Definition 4.13 Define goal formulæ G and definite formulæ D by

G ::= p | G ∧G | D ⊃ G | G ∨G

D ::= p | G ⊃ p | D ∧D,

where p is atomic. Call a sequent Γ � ∆ hereditary Harrop if Γ consists of
just D-formulæ and ∆ consists of just G-formulæ.

It is not the case that each uniform proof in the sense of [80] is a uniform
proof in the sense above. The reason is the ∨R-rule: in the single-conclusioned
calculus, the antecedent throws away one of the disjuncts, whereas both are kept
in the multiple-conclusioned calculus. Hence we must expand both formulæ in a
uniform proof as defined for the multiple-conclusioned calculus. As an example,
consider the derivation of the sequent φ, χ � (ψ ⊃ φ) ∨ (σ ⊃ χ), given on
p. 106. This derivation is uniform in our sense, and the uniform proof in the
single-conclusioned calculus, LJ, is
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The uniform derivation in the multiple-conclusioned calculus cannot be obtained
by simply adding the formula σ ⊃ χ to all right-hand sides and then applying
the multiple-conclusioned ∨R-rule instead.

We make the relation between the two notions of uniform proof precise at
the end of the next subsection, after we have studied the effect of permutations
on classical uniform proofs.

4.5.2 Permutations

The analysis of permutations in proofs is important because there are (well-
known) non-permutabilities in intuitionistic logic. We have seen examples of this
already, namely with the sequents

ψ � φ ⊃ ψ, σ ⊃ τ

and
(φ ⊃ ψ) ⊃ ψ, φ ⊃ ψ � ψ.

The first case covers the exchange of two right-rules. There, the order in which
the two right-rules were executed did not matter. The second case concerns the
exchange of ⊃ L-rules. Whereas in the first case there is a general strategy
which renders an exhaustive search of all permutation variants superfluous, in
the second case we do have to take into account all possible permutations of
⊃ L-rules for completeness. The invariance under right-rules is covered by the
following lemma:

Lemma 4.14 Let Φ be a classical sequent derivation such that [[Φ]] is an
intuitionistic λµνε-term.

1. If Ψ is the derivation resulting from interchanging any two right-rules apart
from an ⊃ R-rule and an ∧R-rule in Φ, then [[Ψ]] is an intuitionistic term.

2. If Φ is the derivation

then the derivation Ψ obtained by permuting the ⊃ R-rule over the ∧R-rule,
towards the leaves, has an intuitionistic λµνε-term [[Ψ]]. Conversely, if we
start with a Ψ such that [[Ψ]] is an intuitionistic λµνε-term, and permute the
rules other way around, then at least one of the λµνε-terms that results from
a different choice of axioms in the permuted derivation is intuitionistic.

Proof

1. We show the permutation of a ⊃ R-rule over a ∨R-rule as an example. The
other cases are similar. So assume we are given a derivation Φ
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with [[Φ]] = µε.[η]λz : χ.µδ.[ε]νβ.t. There are two cases, depending whether
[[Φ]] is a Weakening term or not. We consider only the first case here. In this
case the variable z has only Weakening occurrences in t, and the name δ
has only Weakening occurrences in t. These conditions are enough to ensure
that the λµνε-term of the permuted derivation Ψ,

which is [[ψ]] = νβ.µα.[η]λz : χ.µδ.[α]t is an intuitionistic λµνε-term.
2. The statement about permuting the ⊃ R-rule towards the leaves is shown

in the same way as in 1. The additional statement holds because if the term
λx : φ.µβ.[γ]t is not a Weakening term, then in [γ]t the name γ has only
Weakening occurrences. Now Lemma 4.10 implies that in this case Γ, φ � ψ
has a intuitionistic sequent proof. The derivation is now obvious.

There are cases in which moving an ⊃ R-rule below a ∧R-rule can lead to a
derivation which has no intuitionistic λµνε-term assigned to it. As an example,
consider the (permuted) derivation

the second leaf sequent, the resulting λµνε-term is not intuitionistic. However,
with the other choice, namely the axiom with principal formula ψ, we do obtain
an intuitionistic proof.

The key point for the completeness proof of the classical search proced-
ure even for intuitionistic provability below is that the restriction to hereditary
Harrop formulæ implies that we can prove a stronger version of the disjunction
property. In general, we have only that if a formula φ ∨ ψ is intuitionistically
provable, then at least one of φ and ψ is intuitionistically provable. Here we can
strengthen this property to hold also if there are additional hypotheses under
which φ∨ψ is provable. When we consider a multiple-conclusioned intuitionistic
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calculus, we obtain the following lemma:

Lemma 4.15 Let the sequent Γ � ∆ be intuitionistically provable and hereditary
Harrop. Then there exists a formula φ ∈ ∆ such that Γ � φ is intuitionistically
provable too. Moreover, there exists a sequent derivation Φ: Γ � φ,∆ such that
[[Φ]] has no free names and that in all applications of the ⊃ L-rule in which the
principal formula is G ⊃ p, the right branch is the axiom Γ, p � p.

Proof By assumption, there exists a normal λ-term t with Γ � t : φ1 ∨ · · · ∨φn if
∆ = φ1, . . . , φn. Because the formulæ in Γ and ∆ are hereditary Harrop formulæ,
the term t is derivable by the grammar

t ::= in1(t) | in2(t) | λx : φ.t | π1(· · ·πm(x) · · · )t1 . . . tn | 〈t, t〉,

where π1, . . . , πm is any combination of π and π′. Note that in case m, n = 0,
the fourth clause reduces to a variable.

Now construct, by induction over the structure of t, a sequent derivation
Φ: Γ � φ,∆ such that [[Φ]] has no free names and such that in all applications
of the ⊃ L-rule the right branch is the axiom Γ, p � p, in which G ⊃ p is the
principal formula of the ⊃ L-rule. We consider just the case of a term Γ �
in1(t) : φ∨ψ. By induction hypothesis we have a sequent derivation Φ ending in
Γ � p with all the desired properties. Now consider the derivation Φ′ which is Φ
with ψ added to the right-hand side of all sequents. We have [[Φ]] = [[Φ′]], and Φ′

has all desired properties as well. It is now easy to see that the derivation Φ′;∨R
with [[Φ′;∨R]] = νβ.[[Φ]] has all desired properties.

Now we are in a position to obtain completeness.

Theorem 4.16 If the hereditary Harrop sequent Γ � φ,∆ is intuitionistically
provable, then, for any possible order of right-rules applied to the succedent, there
exists a fully uniform (classical) proof Ψ of the sequent with this order of right
rules such that [[Ψ]] is intuitionistic.

Proof The sequent Γ � φ,∆ is intuitionistically provable; so, by Lemma 4.15,
there exists a formula ψ in φ,∆ such that Φ is a fully uniform LJ-proof of Γ � ψ
in which each leaf of Φ is atomic. Moreover, [[Φ]] has no free names. Now show
by a double induction over the derivation Φ and the structure of formulæ on the
right-hand side of Φ that for any such derivation Φ and any antecedent Γ′ and
succedent ∆′, any order of right rules applied to ψ,∆′, there is a fully uniform
proof Ψ : Γ,Γ′ � ψ,∆′, with the order of the right rules such that the following
three conditions are met:

1. [[Ψ]] is intuitionistic;
2. Ψ has only Weakening occurrences of free names except possibly a name

for the formula ψ, and all subterms corresponding to right rules reducing
formulas in ∆′ are Weakening terms;

3. The variables occurring in Γ′ do not occur in [[Ψ]].
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We consider here only the case of the last rule in Φ being a ⊃ R-rule, and the
case of the formula ψ ⊃ χ ∈ ∆′. In the first case, suppose that Φ = Φ′;⊃ R
and that φ ⊃ ψ is the principal formula of the ⊃ R-rule. Then, by the induction
hypothesis, there exists a derivation Ψ′ : Γ, x : φ,Γ′,� ψ,∆,∆′, where in [[Ψ′]] all
free names and all free variables in Γ′ have only Weakening occurrences. Hence
the derivation Ψ′;⊃ R : Γ,Γ′ � φ ⊃ ψ,∆ satisfies the desired properties. Now we
turn to the case of ψ ⊃ χ ∈ ∆′. Here, by the induction hypothesis, there exists a
derivation Ψ′ : Γ,Γ′, x : ψ � φ, χγ ,∆,∆′ such that x and γ have only Weakening
occurrences in [[Ψ′]]. So the derivation Ψ′;⊃ R with [[Ψ′;⊃ R]] = λx : ψ.µγ.[α][[Ψ′]]
has the desired properties. The proof is concluded by setting ∆′ = ∆′′, where
∆′′ is obtained from ∆ by possible exchange of φ and ψ.

Note that the proof of the theorem also shows the way in which the multiple-
conclusioned notion of uniform classical proof generalizes the corresponding
notion for single-conclusions: each uniform proof in the single-conclusioned sense
corresponds to a normal λ-term, and the above proof shows how to construct a
multiple-conclusioned uniform proof from this λ-term which contains the original
proof as a subproof. As an example, consider the sequent

φ, χ � (ψ ⊃ φ) ∨ (σ ⊃ χ).

One uniform derivation in the single-conclusioned calculus LJ is given in
Section 4.5.1. The construction in the above proof yields exactly the multiple-
conclusioned uniform derivation given in Section 4.10.

Hence to check intuitionistic provability of a sequent with hereditary Harrop
formulæ it is enough to construct a uniform proof and then to check, for all
possible axiom instances and for all possible exchanges of ⊃ L- and ¬L-rules,
whether any of the corresponding λµνε-terms are intuitionistic.

The last two theorems are not true for intuitionistic logic with arbitrary
disjunction. In fact, we obtain meaningful results only if we weaken the definition
of uniform proof and ask for ∨L-rules to occur as close to the root as possible.

Definition 4.17 We define a weakly uniform proof to be a proof in which
all possible ∨L-rules are as close to the root as possible. In addition, all
axioms are only of ground types, and the rightmost branch of an ⊃ L-rule
with principal formula φ ⊃ ψ is always an axiom if ψ is an atom. Moreover,
if the principal formula is (φ ⊃ χ) ⊃ ψ or (φ ∧ χ) ⊃ ψ, then the rule directly
preceding the ⊃ L-rule on the left branch is a ⊃ R- or ∧R-rule respectively.

We obtain only the existence of a weakly uniform proof, but not the additional
statement that there exists a weakly uniform proof for every order of right-rules.
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Theorem 4.18 If Γ � ∆ is intuitionistically provable, then there exists a weakly
uniform classical proof Φ such that [[Φ]] is intuitionistic.

Proof Γ � ∆ is intuitionistically provable, hence there exists a term t in the
simply-typed λ-calculus, with product and sum types,46 in long βη-normal form
with Γ � t : ψ, where ψ = φ1 ∨ · · · ∨ φn and φ1, . . . , φn are all formulæ of ∆.
By induction over the structure of this normal form construct a weakly uniform
classical sequent proof φ such that [[φ]] is intuitionistic. This is a special case
of the translation of natural deduction into sequent calculus, so we just list the
case of an application xs1 · · · sn with x of type φ1 ⊃ · · · ⊃ φn ⊃ ψ with ψ atomic.
By the induction hypothesis, we have weakly uniform derivations

φi : Γ � φi,1, . . . , φi,ki
,∆ and Γ � si : φi,1 ∨ · · · ∨ φi,ki

.

Then we construct the following derivation

The additional constraints on the ⊃ L-rule follow from the fact that if φi is a
function type, then si is a λ-abstraction and if φi is a product type, then si

is a product. Hence the translation of si into sequent derivations ends with a
⊃ R-rule and a ∧R-rule, respectively. The fact that we consider a λ-term in long
βη-normal form ensures that each subterm Γ, z : φ ∨ ψ � s : χ is actually a term
Γ � case z of in1(x) ⊃ t(x) or in2(y) ⊃ s(y) : χ. Hence the translation of this
subterm ends with an ∨L-rule.

4.5.3 Application to (hereditary Harrop) analytic resolution

In this section, we apply the results developed above to an analytic resolution
procedure for intuitionistically provable hereditary Harrop formulæ based on the
⊃L rule. The key point is that in an application of a ⊃ L-rule to the formula
ψ ⊃ φ, the formula φ is always atomic, and hence can be matched with a formula

46Recall that the typing rules for sum types are given by

∨I
Γ � t : φ

Γ � in1(t) : φ ∨ ψ
∨ I

Γ � t : ψ

Γ � in2(t) : φ ∨ ψ

and

∨E Γ � t : φ ∨ ψ Γ, x : φ � s : χ Γ, y : ψ � u : χ
Γ � case t of in1(x) ⇒ s or in2(y) ⇒ u : χ

.
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in the succedent. We show that there is no loss of generality in this restriction,
which greatly simplifies the structure proofs.

Definition 4.19 A sequent derivation is called a resolution derivation if it
satisfies the following constraints for rule applications:

1. A ∧R-rule is applied only if no formula on the right-hand side is a
disjunction;

2. A ⊃ R-rule is applied only if no formula on the right-hand side is a
conjunction or a disjunction;

3. A ⊃ L-rule, with principal formula G ⊃ φ, is applied only if all formulæ
on the right-hand side are atomic and φ occurs on the right-hand side;

4. A ∧L-rule is applied only if all formulæ on the right-hand side are atomic;
5. A ∨L-rule is applied only if no formula on the left-hand side is a

conjunction.

We include condition (4) only for consistency with the usual definition [80, 104].
It is inessential for the analysis presented here.

The primary difference between a fully uniform proof and a resolution proof
is the requirement in the latter that the atomic matrix of the principal formula
of each ⊃L rule match with an atom on the succedent of the conclusion of the
rule. Note also that the application of both the left and right rules has to be in
a specified order—conjunction first—in the case of the latter.

Lemma 4.14 implies that if the restricted order in which the right rules are
applied does not succeed in obtaining an intuitionistic proof, then no other order-
ing will. Moreover, resolution proofs are complete for intuitionistic provability of
propositional hereditary Harrop formulæ.

Corollary 4.20 If Γ � ∆ is an intuitionistically provable hereditary Harrop
sequent, then there exists a resolution proof ψ of this sequent such that [[ψ]] is
intuitionistic.

Proof The derivation constructed in Theorem 4.16 is in fact not only a uniform
proof but also a resolution proof.

So, in order to search for an intuitionistic proof of the sequent Γ � ∆ it is
enough to construct a resolution proof and then check, for all possible axiom
instances and all possible exchanges of ⊃ L-rules, whether the corresponding
λµνε-terms are intuitionistic. Working on the λµνε-terms, the first step consists
in replacing a variable x by µα.[β]y or vice versa. The second step is a lot more
complicated to capture. The reason is that the ⊃ L-rules introduce arbitrarily
complex formulæ in the succedent: these formulæ must be decomposed.
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Fig. 4.1. Example derivation before permutation

Fig. 4.2. Example derivation after permutation

To see the necessity of exchanging ⊃ L-rules, consider the sequent

x : φ ⊃ ψ, y : (φ ⊃ ψ) ⊃ ψ � ψ .

One possible derivation is given by Fig. 4.1, in which x is reduced first. The
derivation in Fig. 4.2 is obtained from the first one by exchanging the two occur-
rences of the ⊃ L-rule, that is, exchanging the order of reduction of x and y,
and then pushing the right-rules to the root of the derivation, thereby obtaining
a uniform derivation. The corresponding λµνε-terms are

µβ.[β]b {x(µα.[β]b {y(λa : φ.µθ.[α]a)/b})/b} and b {y(λa : φ.b {xa/b})/b} .

The first is not an intuitionistic λµνε-term because the λ-abstraction over φ is not
a Weakening term, and yet the occurrence of [α] is not a Weakening occurrence.
The second one is an intuitionistic λµνε-term because there are no names (in
fact, it is the uniform derivation in the single-conclusioned calculus LJ).

Note that both derivations are not only uniform but are also resolution deriva-
tions. This implies that the second premiss in the ⊃ L-rule is always an axiom.
However both premisses of the ⊃ L-rule are important for determining when a
resolution derivation is intuitionistic. The reason is that the choice of the axiom
at the right-hand premiss matters. This is not the case for single-conclusioned
intuitionistic resolutions.

A description of the effects of exchanging two ⊃ L-rules requires an opera-
tional characterization of the normal form of a λµνε-term, which is given in the
following definition. We use the notion of a term with holes, as introduced in
Section 2.5.3.
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Definition 4.21 For any type φ defined by induction over the structure of
φ, the uniform term-with-holes Uφ to be a λµνε-term with holes h1, . . . , hn

as follows:

1. If φ is a base type, then Uφ = h, where h is a hole;
2. For a function type φ ⊃ ψ, define Uφ⊃ψ to be λx : φ.Uψ;
3. For a product type φ∧ ψ, define Uφ∧ψ to be 〈Uφ,Uψ〉, where all holes in
Uφ are different from all holes in Uψ;

4. For a sum type φ ∨ ψ, define Uφ∨ψ to be νβ.Uφ.

For each term Γ � t : φ,∆, we define the the list of parameters Pφ(t) by
induction over the structure of φ as follows:

1. If φ is a base type, then Pφ(t) = s, where s is the normal form of t;
2. For a function type φ ⊃ ψ, define Pφ⊃ψ(t) to be Pψ(tx);
3. For a product type φ∧ψ, define Pφ∧ψ(t) to be the list t11, . . . , t

1
n, t21, . . . , t

2
m,

where Pφ(π1(t)) = t11, . . . , t
1
n and Pφ(π2(t)) = t21, . . . , t

2
m;

4. For a sum type φ ∨ ψ, define Pφ∨ψ(t) to be Pφ(〈β〉t).

We write Uφ(t1, . . . , tn) for the term obtained by (textually) substituting ti
for the hole hi. The intuition is that the term Uφ lists all the outermost term
constructors in a long βη-normal form of type φ. Hence for any term t the long
βη-normal form is equal to Uφ(t1, . . . , tn), where Pφ(t) = t1, . . . , tn.

Next we show that the construction of a uniform term corresponds to
normalization.

Lemma 4.22 Let Φ be the sequent derivation

Φi : Γ, ψ,Γi � φi, ψ,∆
...R∗

Γ, ψ � φ, ψ,∆,

where all formulæ in φi and in ∆ are atoms and all the right-rules have φ or
subformulae of it as prinicipal formulæ. Then [[Φ]] = Uφ([[Φ1]], . . . , [[Φn]]), and if
all terms [[Φi]] are in normal form, [[Φ]] is a normal form as well. Moreover, if
Φi is the proof Γ, b : ψ � φi, ψ,∆ using only the axiom rule for ψ, then [[Φ]] is the
long βη-normal form of µα.[β]b.

Proof By induction over the structure of φ.

Now we describe the exchange in detail. Consider Figs 4.3 and 4.4. The former
is intended to be a classically valid uniform derivation. The latter is intended
to be an intuitionistically valid uniform derivation obtained from the former by
permuting ⊃L-rules with respect to one another and by inserting any right-rules
so induced.
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Fig. 4.3. Derivation before permutation

Fig. 4.4. Derivation after permutation

Theorem 4.23 Let φ be the uniform derivation given in Figure 4.1, let

s1, . . . , sn = Pφ(µα.[δ]v)

and let
w

{
x(Uφ(si {yUχ(ui,j)/v}))/w

}
be the corresponding λµνε-term. Then the λµνε-term corresponding to the
exchanged derivation, given in Figure 4.2, is the term

v
{
y(Uχ(tj

{
xUφ(µαi.[γ]ui,j)/w

}
))/v

}
,

where Pχ(µγ.[β]w) = (t1, . . . , tm). If the first derivation is a resolution deriva-
tion, so is the second one.

Proof An easy consequence of Lemma 4.22.

4.6 Classical resolution

We have introduced resolution in classical logic, informally, as a deductive
refutation system based on the rule
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for clauses C1 and C2 and atom p, as given in Equation 4.8. As the reader might
suspect, however, the resolution rule may be formulated as a sequential rule.
Indeed, Mints’ [82] has given explicit translations between resolution systems
and the sequent calculus. The basic idea is quite simple and is most readily seen
as being based on the multiplicative formulation of the Cut rule,

in the classical sequent calculus. Given a set Γ of clauses which contains the
clauses C1∨p, C2∨¬p ∈ Γ, we have the following derivation of the resolution rule:

In this section, we show that, under inessential modifications, Mints’ trans-
lations between resolution systems and the sequent calculus establish tight
connections between weakly uniform proofs and resolution derivations in clas-
sical logic. The results of Section 4.5 then give realizers for classical resolution
derivations.

The key point relies on the following definition of weakly hereditary Harrop
formulæ, or ‘whHfs’, in which, as usual, p ranges over atoms:

D ::= p | D ∧D | ¬(p ∧ p) | p ∨ p | G ⊃ H
G ::= p | ¬p | G ∧G | G ∨G | D ⊃ G
H ::= p | p ∨ p.

Weakly uniform proofs are complete for weakly hereditary Harrop conse-
quences D1, . . . , Dm � G1, . . . , Gn.47

Note that the extensions to the usual class of hereditary Harrop formulæ [80]
are the inclusion of binary disjunctions of atomic formulæ in implicational goal
formulæ, negated atoms in goal formulæ, and negated binary conjunctions of
atoms in definite formulæ. These extensions are required if we are to inter-
pret resolution proofs for clauses that include disjunctions as weakly uniform
proofs because the translation of Definition 4.27 (at least its modification in
Section 4.7.2) make essential use of them. In the absence of disjunction, the
simpler notions of uniform proof and hereditary Harrop formula [108, 111] will
suffice. We also show that, for classical logic, permutations in the space of resol-
ution proofs correspond to permutations in the space of sequent calculus proofs
(Proposition 4.31).

47Indeed, weakly uniform proofs are complete for a slightly larger class than this.
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We begin by recalling from [82] the construction of a set of clauses of bounded
complexity from an arbitrary propositional formula.

Definition 4.24 A formula φ is a classical clause if it is either ⊥ or a
disjunction l1 ∨ · · · ∨ lm, with m > 0 and each li, 1 ≤ i ≤ n, a literal. Clauses
which differ only in the numbering or order of literals are identified.

We say that a classical clause l1 ∨ · · · ∨ lm, for m > 0, has length m and that
⊥ has length 0.

Lemma 4.25 For any propositional formula φ, a set Xφ of clauses of length
≤ 3 can be constructed in linear space and time (in the length of φ) such that φ
is valid if and only if Xφ is inconsistent.

Proof It is enough to show this for formulæ constructed using only of negation
and disjunction.

We construct, by induction over the structure of φ, a set of clauses for the
formulæ ¬X ∨ φ and ¬φ ∨ X, where X is a propositional variable. If φ is an
atom, we simply take these two formulæ.

For the case of a disjunction φ∨ψ, we introduce new propositional variables φ′

or ψ′ for non-atomic formulæ φ or ψ, otherwise let φ′ or ψ′ be φ or ψ respectively.
We add to the clauses obtained by the induction hypothesis applied to ¬φ′ ∨ φ,
¬φ ∨ φ′, ¬ψ′ ∨ ψ, and ¬ψ ∨ ψ′ the clauses ¬X ∨ φ′ ∨ ψ′, ¬φ′ ∨X, and ¬ψ′ ∨X.

For a negation ¬φ, let φ′ be a new propositional variable if φ is not atomic;
otherwise let φ′ be φ. Add to the clauses obtained by the induction hypothesis
applied to ¬φ′ ∨ φ and ¬φ ∨ φ′ the clauses ¬X ∨ ¬φ′ and φ′ ∨X. It is easy to
see that the set Xφ, defined as the element ¬X together with the clauses for the
formulæ ¬X ∨ φ and ¬φ ∨X as constructed above, satisfies the claims.

Resolution is defined as a calculus for deriving a judgement Γ � C, where
Γ is a set of clauses and C is a clause. The precise definition follows below.

Definition 4.26 Let Γ be a set of clauses, let C be a clause and let p and q
be atoms. A resolution derivation of a judgement Γ � C is given by:

where C1, . . . , Cn are clauses. In the last case, we call the formula p1∨· · ·∨pn

the input formula of the resolution rule. We identify the clause C ∨⊥ with C
in the above rules.
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Note that Weakening is admissible in this system: whenever Γ � C and also
Γ ⊆ Γ′, then also Γ′ � C. We call a clause C a Weakening clause in a derivation
if it is not introduced by one of the rules.

Mints [82] proves the following:

Theorem (Mints) A formula φ is classically provable if and only if there is a
resolution derivation Xφ � ⊥.

This is proved by transforming a resolution derivation into a sequent deriva-
tion in which the formulæ consist only of disjunction and negation and vice versa.

We start our proof of this theorem, which we will later generalize to intui-
tionistic logic, with a translation of a resolution proof into a derivation in the
classical sequent calculus LK without Cut. This translation is essentially the one
given in [82].

Definition 4.27 We define the concatenation of the n sequents Γ1 � ∆1, . . . ,
Γn � ∆n to be the sequent Γ1, . . . ,Γn � ∆1, . . . ,∆n.

1. By induction over the structure of clauses we define a sequent derivation
of Γ � ∆, for each clause C with a polarity {+,−} (defined as in tableaux
calculi). A clause has positive (negative) polarity if it is part of ∆ (Γ). If C
is the clause C+

1 ∨C+
2 , then we define [[C+

1 ∨C+
2 ]] to be the concatenation

of the two sequents [[C+
1 ]] = Γ1 � ∆1 and [[C+

2 ]] = Γ2 � ∆2. For the
remainder of the clauses the definition is as follows (as usual, p and q are
atomic):

[[(¬p ∨ ¬q ∨ ¬C)−]] =¬(p ∧ q ∧ C) �
[[(¬p ∨ ¬q ∨ C)−]] = (p ∧ q) ⊃ C �
[[(¬p ∨ q ∨ C)−]] = p ⊃ (q ∨ C) �
[[(p ∨ q ∨ C)−]] = (p ∨ q ∨ C) �
[[(¬p ∨ ¬q)−]] =¬(p ∧ q) �
[[(¬p ∨ q)−]] = p ⊃ q �
[[(p ∨ q)−]] = (p ∨ q) �
[[(¬p)−]] =� p
[[(p)−]] = p �

[[(¬p)+]] = p �
[[(p)+]] =� p.

2. If X is a set of clauses C1, . . . , Cn and C is a clause, we denote the
sequence resulting from concatenation of [[C−

1 ]], . . . , [[C
−
n ]] and [[C+]] by

[[X−]] � [[C+]]. By induction over the derivation of X � C, we define a
classical sequent derivation of [[X−]] � [[C+]] as follows:
(i) With each axiom Γ, C,Γ′ � C, associate the appropriate sequent

derivation from the axioms;
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(ii) With each axiom X � p ∨ ¬p, associate the sequent derivation
consisting of the axiom [[X−]], p � p;

(iii) If the input formula is ¬p∨¬q and if we have resolution derivations
of X � p∨C1 and X � q∨C, then we construct the following sequent
derivation:

(iv) If the input formula is ¬p1 ∨ ¬p2 ∨ ¬p3, then the construction is
similar;

(v) If the input formula is ¬p∨¬q ∨C and if we have resolution deriva-
tions of X � p∨C1, X � q∨C2, and X � ¬C∨C3, then we construct
the following sequent derivation:

(vi) If the input formula is ¬p∨ (q∨C) and if we have resolution deriva-
tions of X � p ∨ C, X, q � C2, and X � ¬C ∨ C3, then we construct
the following sequent derivation:

(vii) If the input formula is ¬p ∨ q and we have resolution derivations of
X � p∨C1 and X � ¬q∨C2, then we construct the following sequent
derivation:

(viii) If the input formula is p ∨ q and if we have resolution derivations
of X � ¬p ∨ C1 and X � ¬q ∨ C2, we obtain the following sequent
derivation:
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(ix) If the input formula is p1 ∨ p2 ∨ p3, then the construction is similar;

(x) If the input formula is p and if we have a resolution derivation of
X � ¬p ∨ C, then we have a sequent derivation of [[X−]], p � [[C+]],
by assumption, which we simply take;

(xi) If the input formula is ¬p and if we have a resolution derivation of
X � p∨C, then we have a sequent derivation of [[X−]] � p, [[C+]], by
assumption, which we simply take.

By applying the translation of sequent derivations into λµνε-terms, as given
in [108], we obtain a λµνε-term for each resolution derivation. Moreover, this
sequent derivation is weakly uniform.

Theorem 4.28 The sequent derivation associated with a resolution derivation
is weakly uniform.

Proof Note that the right-hand side of all root sequents of such a sequent deriva-
tion is atomic. Furthermore any intermediate non-atomic formula on the right is
reduced as soon as it occurs. Hence the sequent derivation is weakly uniform.

For example, we give the resolution derivation and the corresponding λµνε-
term for the formula p ⊃ p. According to Lemma 4.25 the set Xp⊃p is

{¬X ∨ ¬p ∨ p, p ∨X,¬p ∨X,¬X} .

A resolution derivation of the empty clause from a subset of these clauses can
be obtained as follows:

The corresponding sequent derivation is

The corresponding λµνε-term, which is obtained by using the translation of
Definition 4.6, is µγ.[γ]y{〈γ〉x/y}.

Observe that the sequent derivations obtained by translating resolution
derivations do not use Weakening. Moreover, these derivations can be rewrit-
ten in such a way that the axioms have the form p � p, but at the expense
of introducing Weakening at the root of the derivation. These properties are
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a consequence of the absence of a Weakening rule in the resolution calculus.
A translation of classical sequent derivations into resolution derivations can be
given only for sequents without Weakening in the middle of the derivation. Mints
[82] gives such a translation. Because every sequent derivation where all formulæ
are either clauses or elements of [[X−]] can be transformed into one in which
Weakening occurs at the root of the derivation only, for each derivable sequent
Γ � ∆ with this property there is a subsequent Γ′ � ∆′ which has a resolution
proof. This translation is part of the following theorem:

Theorem 4.29 Consider a weakly uniform sequent derivation of [[X−]],∆1 � ∆2
such that (i) ∆1 and ∆2 consist of atoms; (ii) all Weakenings occur only at the
root of the derivation; and (iii) all axioms have the form p � p. Then there is a
resolution derivation of X � ¬∆′

1 ∨∆′
2, in which ∆′

1 and ∆′
2 are subsets of ∆1

and ∆2, respectively. Furthermore, all of the formulæ in ∆1 and ∆2 that are not
obtained by Weakening are in ∆′

1 and ∆′
2, respectively. As usual, p and q denote

atoms and Cs denote clauses.

Proof Let Ψ be the subderivation above the last Weakening rule; proceed by
induction over Ψ. It is necessary to strengthen the induction hypothesis and
construct a resolution derivation Y � ¬∆′

1 ∨ ∆′
2, where Y is a subset of X,

∆′
1 and ∆′

2 are as above and Y contains no Weakening formula. Moreover, we
show that all formula in [[X−]] which were not obtained by Weakening are in Y .
Because Weakening is an admissible rule in the resolution calculus, this statement
implies the claim.

Suppose the last rule in Ψ is an axiom p � p. If both atoms are part of ∆1
and ∆2 respectively, then the axiom X � ¬p ∨ p yields the claim. If both atoms
are part of [[X−]], then the derivation

p � p
p,¬p � ⊥ ,

yields the claim. If only one atom, say the one on the left-hand side, is part of
[[X−]], then take the resolution axiom p � p. If the one atom is the atom on the
right-hand side, take the resolution axiom ¬p � ¬p.

Suppose the last rule in Ψ is a ¬L-rule, with the principal formula ¬(p ∧ q)
or ¬(p1 ∧ p2 ∧ p3). We consider the case of a formula ¬(p ∧ q); the other one is
similar. The weakly uniform derivation looks like

where, by hypothesis, neither p nor q is obtained by Weakening. Note that
Γ1,Γ2,¬(p ∧ q) � Γ′

1,Γ
′
2 is the sequent [[X ′−, (¬p ∨ ¬q)−]],∆1 � ∆2, where X ′ ∪

{¬p ∨ ¬q} is a subset of X. Furthermore, neither p nor q is an element of [[X ′−]].
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The induction hypothesis applied to the sequents Γ1 � p,Γ′
1 and Γ2 � q,Γ′

2 yields
resolution derivations Y ′ � p ∨ C1 and Y ′ � q ∨ C2 respectively, where Y ′ is a
subset of X ′. Hence we can construct the following derivation:

Next we consider the case that the last rule in Ψ is an ⊃ L-rule. We start with
the case where the principal formula is p ⊃ q. The weakly uniform derivation
looks like

where, by hypothesis, p is not obtained by Weakening. The induction hypothesis
applied to the sequent Γ � p,∆ yields a resolution derivation X ′ � p ∨C, where
X ′ ∪ {¬p ∨ q} is a subset of X. The following resolution derivation now yields
the claim:

Now consider the case in which the principal formula is p ⊃ (q ∨ r). The
weakly uniform derivation looks like

where, by hypothesis, neither p nor q ∨ r are obtained by Weakening. The
induction hypothesis yields resolution derivations Y � p ∨ D1, Y, q � D2 and
Y, C � D3, where the Ds denotes clauses. Hence we obtain the following
resolution derivation:

The remaining case is that we have an ∨L-rule as the last rule. The case of a
principal formula p∨q is similar to the case of a principal formula p ⊃ q, and the
case of a principal formula p ∨ q ∨ r is similar to the case of a principal formula
p ⊃ (q ∨ r).

Mints’ Theorem can now be obtained as a corollary:

Corollary 4.30 A formula φ is classically provable if and only if there is a
resolution derivation Xφ � ⊥.
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Proof Suppose φ is classically provable. By Lemma 4.25, the set Xφ is inconsist-
ent, hence there is a derivation of [[X−

φ ]] � . Theorem 4.29 implies the existence
of a resolution derivation Xφ � ⊥.

Conversely, given a resolution derivation of Xφ � ⊥. The second part of
definition 4.27 yields a derivation [[X−

φ ]] � ; hence Xφ is inconsistent. So φ is
provable.

One of our central concerns has been to investigate when permutations trans-
form a weakly uniform sequent derivation which is non-intuitionistic into an
intuitionistic derivation. We now show how permutations in the sequent calcu-
lus are related to the choice of input formulæ in the resolution calculus. Later
on we will transfer this connection to intuitionistic logic. Because the formulæ
occurring in sequent derivations arising from resolution derivations have a rather
simple structure, it suffices to consider exchanges of ⊃ L-, ¬L-, and ∨L-rules.
These are the only rules whose exchange leads from a weakly uniform derivation
to another weakly uniform derivation. The details are contained in the following
proposition:

Proposition 4.31 As usual, let ps and qs denote atoms and let Cs and Ds
denote clauses.

1. Let

be a resolution derivation and let

be the derivation in which the application of the two instances of the resolu-
tion rule are exchanged. The translation of the second resolution derivation
into a sequent derivation is obtained by exchanging the two left-rules to which
the two applications of the resolution rule are translated.

2. Conversely, given a weakly uniform sequent derivation of a sequent Γ � ∆,
where Γ consists only of clauses and ∆ only of atoms, the exchange of ¬L
and ⊃ L-rules corresponds to the exchange of two resolution rules.

Proof For first part, check each resolution formula in turn. For the second part,
calculate the resolution derivations for all possible exchanges.

Intuitively, this proposition indicates that the search for a weakly uniform
derivation of a sequent with formulæ in clausal form is as complicated as the
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search for a resolution derivation of the corresponding clauses. In other words,
this proposition shows that the essential aspect of the resolution method is
the transformation of formulæ into clausal form; the complexity of finding the
right input formula in a resolution derivation is the same as finding the right
permutation in the sequent derivation.

This analysis carries over to the intuitionistic case (see Section 4.7), includ-
ing the case of a resolution formula p ⊃ q ⊃ r. This is important because,
in contrast to the classical case, in intuitionistic logic permutations of infer-
ences do matter. Classically, but not intuitionistically, any permutation of a
sequent derivation transforms a proof only into a proof and a non-proof only
into a non-proof. Moreover, Egly [133] shows that the transformation of sequents
into clausal form decreases the complexity of proof-search in intuitionistic logic
significantly.

4.7 Intuitionistic resolution

In intuitionistic logic, in the absence of classical negation, the definition of a
resolution calculus is less straightforward than in the classical setting, for which
the idea was originally developed. A candidate definition of intuitionistic resolu-
tion has been proposed by Mints [82]. Mints’ calculus is ingenious but lacks the
conceptual clarity of the classical system. However, the coincidence of classical
and intuitionistic provability for Horn clauses [34] leads us to hope for a notion
of intuitionistic resolution of value comparable to that of classical resolution.
Maslov [78] and Tammet [123, 124] have also studied these topics.

In this section, we give a systematic development of a resolution calculus for
intuitionistic logic based on the ideas in the preceding sections of this chapter.
The idea is to retain the resolution calculus for classical logic, because this
calculus has no constraints on the order in which input formulæ are taken. The
translation of such resolution derivations into λµνε-terms is used to decide when
the derivation provides sufficient evidence that the formula is intuitionistically
provable.

We show that our calculus characterizes the provability of exactly the same
intuitionistic formulæ via exactly the refutations of exactly the same clauses.

4.7.1 Mints’ intuitionistic resolution

Mints [82] defines a resolution calculus for intuitionistic logic. It is important
to note that Mints’ calculus is not a restriction of classical resolution, but has
special rules for each connective of the logic.

We begin, for convenience and completeness, with a description of Mints’
calculus. We adopt Mints’ notation. The rules of Mints’ resolution calculus are
given in Table 4.7. Clauses are formulæ of the form p ⊃ q∗ ⊃ r, p ⊃ q ∨ r and
p1, . . . , pn ⊃ q∗ with n ≤ 3, where all formulæ are propositional variables and
q∗ means either a propositional variable or the symbol ⊥ (falsehood). Similarly,
each of s∗, s∗∗, and s∗∗∗ is either a propositional variable or ⊥.
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Table 4.7. Mints’ resolution calculus

X, Φ � Φ X �⊥⊃ p X � p ⊃ p

X � (Γ, po ⊃ q∗∗)
X, ((p ⊃ q∗) ⊃ r) � Γ ⊃ r

(⊃−)
X � Γ ⊃⊥
X � Γ ⊃ r

(⊥)

X � Γ1 ⊃ p X � (Γ2, q ⊃ s∗) X � (Γ3, q ⊃ s∗∗)
X, (p ⊃ q ∨ r) � (Γ1, Γ2, Γ3 ⊃ s∗∗∗)

(∨−)

X � Γ1 ⊃ p X � Γ2 ⊃ q

X, (p, q ⊃ r∗) � (Γ1, Γ2 ⊃ r∗)
(c)

X � Γ ⊃ p

X, (p ⊃ q) � Γ ⊃ q

In these rules, Φ is a clause, p, q, r are atoms, Γ1, Γ2, and Γ3 are sets of
atoms, the superscript 0 means possible absence of the corresponding formula
and in the rule (⊃−) it is required that either q∗∗ = q∗ or (q∗∗ =⊥�= q∗ and
q0 = q); similarly in (∨−), s∗∗∗ = s∗ if at least one of s∗,s∗∗ is s, and s∗∗∗ =⊥,
if s∗ = s∗∗ =⊥. The rule (⊥) is allowed only as the last rule in the derivation.
Mints constructs, for every formula φ, a set of clauses Xφ, the translation of
these clauses into one formula Yφ and an atom F such that φ is intuitionistically
provable if and only if Yφ � F is provable in LJ.

Mints then gives translations between resolution derivations and LJ deriva-
tions with Weakening pushed down to the root as much as possible, and obtains
as a corollary that a formula φ is intuitionistically provable if and only if Xφ � ⊥
is derivable in the resolution calculus.48

The rules for implication and negation cannot be obtained as special cases of
the rules for classical resolution, hence it is not immediately possible to transfer
the implementations of classical resolution to the intuitionistic case. The reason
is that derivations may contain Weakening at places other than at their roots.
For example, consider the LK-derivation

where the Weakening of the formula p cannot be pushed to the root of the
derivation. Because the construction of Theorem 4.29 works only for derivations
where Weakening is applied only as the last rule of the derivation, there can be

48It may be seen that Mints’ calculus corresponds to constructing a version of weakly
uniform proofs in LJ, with Weakening present and pushed as close to the root as much as
possible.



INTUITIONISTIC RESOLUTION 143

no resolution derivation corresponding to this sequent derivation. Indeed, the
method of the previous section, which uses the (classical) equivalence

(p ⊃ q) ⊃ r ≡ (p ∨ r) ∧ (¬q ∨ r),

yields only the following resolution derivation:

where ∆ is interpreted as the disjunction of its members, and the input formula
p ∨ r is added by Weakening at the end and not obtained by a resolution step.

4.7.2 The intuitionistic force of classical resolution

In this section, we exploit the results given in the preceding sections to assess
the intuitionistic force of classical resolution. In particular, we establish that
the association of λµνε-terms with resolution derivations, as developed in the
previous sections, can be used to determine intuitionistic provability for classical
resolution proofs. Thus we give a characterization of intuitionistic resolution
within our systematic reductive framework.

The translation of formulæ into clauses, referred to in Lemma 4.25, produces
clauses given by the grammar

C ::= p1 ∨ p2 | ¬p1 ∨ p2 | ¬p1 ∨ ¬p2 ∨ p3 | ¬p1 ∨ ¬p2 | ¬p1 ∨ p2 ∨ p3,

where p1, p2, p3 are all atomic. In the sequel we restrict attention to such clauses.
Note that the transformations leading from formulæ to the clauses arising in the
sequent derivations are no longer equivalences: the formula (p∨r)∧(q ⊃ r) implies
(p ⊃ q) ⊃ r, but not the other way round. In all other cases, the transformations
that lead from formulæ to clauses are intuitionistic equivalences.

The translation of resolution derivations into λµνε-terms leads directly to a
criterion for when a resolution derivation gives rise to an intuitionistic proof.

Definition 4.32 A resolution derivation is said to be intuitionistic if it
translates into an intuitionistic λµνε-term.

We want to transfer the soundness theorem for classical resolution to the
intuitionistic case. As stated this does not work because the implications

(p ∨X) ∧ (q ⊃ X) ⊃ ((p ⊃ q) ⊃ X)
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and
(p ∨X) ⊃ ¬p ⊃ X

have the wrong order: for the classical proof to go through we need that the
formula with implication implies the clausal form and not vice versa. We address
the first case by restricting the class of resolution derivations under consideration
and modify the translation of resolution derivations into sequent derivations.
We permit for clauses p ∨ r,¬q ∨ r, arising from the translation of the formula
(p ⊃ q) ⊃ r into clauses, only derivations of the form

Such a resolution derivation is translated into

For the second case, that is, the clause p ∨ q, we change its translation into
[[(p ∨ q)−]] = ¬p ⊃ q �. We allow for this clause only resolution derivations of
the form

X � ¬p ∨∆ X � ¬q ∨ q
X, p ∨ q � q ∨∆ ,

which we translate into the sequent derivation

Next we want to show soundness for the translation. The key point is
contained in the following Lemma, which is a modification of Lemma 4.25.

Lemma 4.33 A formula φ is intuitionistically provable if there is an intuition-
istic sequent derivation of [[X−

φ ]] � .

Proof Induction over the structure of φ.

The soundness theorem for the translation is as follows:

Theorem 4.34 A formula φ is intuitionistically provable if there is a resolution
derivation of Xφ � ⊥ such that the λµνε-term corresponding to the modified
translation into the sequent calculus is intuitionistic.
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Proof The translation of the resolution derivation produces a derivation [[X−
φ ]] �.

By assumption the λµνε-term corresponding to this derivation is intuitionistic,
hence there is an intuitionistic derivation of this sequent (Theorem 4.11. Now
Lemma 4.33 yields the claim.

Looking at the example of the resolution derivation for the formula p ⊃ p
again, we see that the modified translation yields a derivation

with the λµνε-term w(λa : p.a), which is in fact a λ-term and hence an
intuitionistic λµνε-term.

We need one extra step for the proof of completeness of the intuitionistic
resolution procedure defined prior in this section. Earlier (Theorem 4.18) we
have shown that a sequent Γ � ∆ is intuitionistically provable if there is a
weakly uniform classical sequent derivation such that the corresponding λµνε-
term is intuitionistic. We now strengthen this theorem and show that under the
same hypothesis there is also an intuitionistic resolution derivation of the same
sequence.

Theorem 4.35 Suppose we have a weakly uniform classical sequent derivation of
a sequent [[X−]],∆1 � ∆2 such that the corresponding λµνε-term is intuitionistic,
all formulæ in X are clauses, all formulæ in ∆1 and ∆2 are atoms, Weakening
is pushed as far as possible to the root of the derivation, and all axioms have the
form p � p. Then there is an intuitionistic resolution derivation X � ¬∆′

1 ∨∆′
2,

where ∆′
1 and ∆′

2 are subsets of ∆1 and ∆2, respectively. Moreover, all of the
formulæ in ∆1 and ∆2 that are not obtained by Weakening are in ∆′

1 and ∆′
2

respectively.

Proof We use the proof of Theorem 4.29 to construct a resolution derivation
except for the case of the principal formulæ ¬p∨ r and ¬q ∨ r, if they arise from
the translation of (p ⊃ q)∨ r, and for p∨ q. So assume we are given a derivation

The Weakening assumption implies that at most one of p and q can be obtained
by Weakening. Note also that neither p nor q can be contained in [[X−]]. If neither
p nor q is obtained by Weakening, we have the following resolution derivation:
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If p is obtained by Weakening, then the resolution derivation is

and if q is obtained by Weakening, the resolution derivation is

The modified translation ensures that the translation of the constructed
resolution derivation is also an intuitionistic sequent derivation.

Lastly, we have to consider the case of the modification for the clause p ∨ q.
So assume we are given a derivation

The Weakening assumption implies that p is not obtained by Weakening.
Then we construct the following resolution derivation:

The modification ensures that the translation of the constructed resolution
derivation is also an intuitionistic sequent derivation.

Soundness and completeness now follow in exactly the same way as shown
for classical logic.

Corollary 4.36 A formula φ is intuitionistically provable if and only if there is
an intuitionistic resolution derivation of Xφ � ⊥.

Proof One direction has already been shown; see Theorem 4.34. For the other,
the argument as in Corollary 4.30 works for the modified translation.

Now we turn to the connection between the choice of input formulæ in the
resolution calculus and permutations in the sequent calculus.

Consider the translation of a resolution derivation and examine all the per-
mutations of ⊃ L- and ¬L-rules. If one permutation yields an intuitionistic
λµνε-term, then permutation of the order of introducing the input formulæ
yields the image of an intuitionistic resolution derivation under the translation.
Hence, the soundness and completeness properties (Corollary 4.36) imply that
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the search for an intuitionistic resolution derivation amounts essentially to the
search for a permutation of the ⊃ L- and ¬L-rules which yields an intuitionistic
λµνε-term.

As an example of this phenomenon, consider the formula

(p ⊃ q ∧ (p ⊃ q) ⊃ q) ⊃ q.

This example demonstrates how a permutation can transform a classical sequent
derivation with no intuitionistic force into one with such force. The crucial point
is that in order to obtain a weakly uniform intuitionistic proof, the ⊃ L-rule
with principal formula (p ⊃ q) ⊃ q has to be the rule closest to the root of
the derivation. This is also true for the resolution derivation of the formula
(p ⊃ q ∧ (p ⊃ q) ⊃ q) ⊃ q in that the resolution step that uses the input formula
corresponding to (p ⊃ q) ⊃ q must occur as late as possible; this gives rise to a
λµνε-term which is intuitionistic.

4.8 On complexity

Although we have not emphasized this aspect of our work, the reductive proof
systems we have described determine decision procedures for the logics for
which they are formulated (and determine semi-decision prcocedures for the
corresponding predicate systems).

The decision procedures presented in this chapter differ significantly in their
computational complexity. Egly [133] shows that the general decision pro-
cedure of Section 4.4, and also the procedure for weakly uniform proofs of
Section 4.5, have a much higher complexity than the analytic resolution presen-
ted in Section 4.7. The reason is that the analytic resolution simulates analytic
Cuts that is, Cuts in which the Cut-formula is a subformula of the principal
formula, and intuitionistic logic with analytic Cuts has significantly lower com-
plexity. The translation of resolution derivations back into sequent derivations
preserves these analytic Cuts by turning them into implications.

4.9 Discussion

We have seen that reductive proof theory—in particular, that weakly uniform
and uniform proof—provides a systematic basis not only for proof procedures
for the sequent calculus but also for resolution systems for both classical and
intuitionistic logic. Moreover, we conjecture that our analyses may be extended,
mutatis mutandis, to other calculi, such as tableaux systems [120], that are
closely related to the sequent calculus.

The definition of uniform proof, though expressed structurally, marks our
first consideration of the algorithmic aspects of reductive proof: To construct a
uniform proof, we must apply the rules in an order which is constrained by the
occurrences of connectives on the left- and right-hand sides of the sequent. So the
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algorithmic content of our development, though suppressed by our analysis so
far, is already quite substantial. In our semantic work in subsequent chapters,
in Chapter 6 in particular, capturing the algorithmic content of uniform and
weakly uniform proof within our analysis will be an objective (which we shall
achieve via a games model).

There are, however, many algorithmic choices not specified by the definition
of uniform proof yet which have consequences for the structure of the resulting
proofs, in addition to any consequences they might have for the complexity of
the computation. We identify four main points.

1. Firstly within the context of uniform proof, a sequent

φ1, . . . , φm � ψ1, . . . , ψn,

may be reducible in a number of ways: there may be several ψ’s which are not
atomic; even if all the ψ’s are atomic, there may be several φ’s to which left
rules are applicable. This situation obtains even if we restrict to hereditary
Harrop resolution.

2. Secondly, after the reduction of a sequent Γ � ∆ using an operator R,

Γ1 � ∆1 . . . Γm � ∆m

Γ � ∆ ,

a choice of the order in which to reduce the premisses must be made.
3. Thirdly, in predicate settings, a reduction may depend upon a choice of

unifier.49

4. Finally, we must handle failure. Having made a choice of reduction, in one of
the points of above, we may find that even though our sequent is provable,
we have made the wrong choice, leading to a failed proof. In these circum-
stances, we must return to the point at which we made our choice and try
a different one. This procedure is known as backtracking .

Although all of these aspects of the construction of proofs are important,
perhaps the most challenging to understand, because it is the least structural,
or logical, is backtracking.

Given its central rôle in the construction of proofs, and the sense in which it
is the paradigmatic control régime, we shall seek, in Chapter 6, a semantics for
proof-search which gives not only a model-theoretically adequate semantics for
reductive proof, which we develop in Chapter 5, but also a model-theoretically
adequate semantics for backtracking.

We conclude this chapter with a few remarks on predicate logic. We have
already remarked, at the end of Chapter 2, that Parigot’s original presentation

49First-order terms have most general unifiers but higher-order terms do not [55, 62].
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of λµ includes the universal quantifier. We conjecture that the analysis of this
chapter can be extended to the quantifiers but emphasize that the permutability
analysis required in the predicate case is somewhat more complex than in the
propositional setting, requiring the idea of a reduction ordering, discussed in
Section 4.1. In the setting of dependent types, an analysis of permutability via
reduction ordering is provided in [106].
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SEMANTICS FOR REDUCTIVE LOGIC

5.1 Introduction

So far, we have considered the proof-theoretic properties of various calculi as
bases for reduction. Moreover, we have shown that reductive proof, based on
the ideas of uniform and weakly uniform proof, provides a systematic basis for
resolution systems in classical and intuitionistic logic. In this chapter, we turn
to the semantics of reductive proof.

As we have seen in the introduction, an attempt to construct a proof, that is,
a reduction, proceeds, inductively, by applying instances of reduction operators
to putative conclusions of which a proof is desired, thereby yielding a collection of
sufficient premisses, proofs of which would be sufficient to imply the existence of
a proof, obtainable by deduction, of the putative conclusion. We have seen that
a reduction may fail to yield a proof: having removed all of the logical structure,
that is, the connectives, by reduction, we may be left with p ?- q, for distinct
atoms p and q. This inherent partiality of reductions presents a clear semantic
difficulty: we must be able to interpret those reductions that cannot be completed
to be proofs. In particular, we aim to recover a semantics for proofs of utility
comparable to that of the propositions-as-types-as-objects triangle for proofs.

Recall that the desired set-up is summarized in Fig. 5.1, in which Γ ?- φ
denotes a sequent which is a putative conclusion and

Φ⇒ Γ ?- φ

denotes that Φ is a search with root Γ ?- φ. The judgement

[Γ] |∼ [Φ] : [φ]

Fig. 5.1. Reductions-as-realizers-as-arrows
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indicates that [Φ] is a realizer of [φ] with respect to assumptions [Γ]. The main
objective of this chapter is to describe the bottom corner of this triangle, namely
the semantics of reductions.

5.2 Semantics for intuitionistic reductive logic

In this section, we describe a semantics for propositional intuitionistic logic
viewed as a reductive system. Building on the wealth of proof-theoretic stud-
ies of proof-search in intuitionistic logic [36, 98, 106, 108, 111, 134], we take
as our point of departure a minor variant of Gentzen’s sequent calculus, LJ′,
introduced in Section 4.1 and given in Table 5.1, in which Contraction and
Weakening are built into the other rules. However, for technical reasons, we
include, and emphasize, ExchangeL. For convenience, we shall simply refer to
this system as LJ.

The principal virtues of LJ’s presentation of intuitionistic proofs as a basis for
mechanical proof-search are that it admits Cut-elimination and, in contrast to
natural deduction systems, has, in the absence of Cut, the subformula property .
Note that although Cut forms the basis of the resolution procedure used by
Prolog [67, 113, 130], one can simulate the analytic Cuts used in resolution by
implication in LJ (see Section 4.7) hence it is possible to use LJ also as a calculus
to study analytic resolution. However, for proof-search either wholly or partially
by humans, the Cut rule is very useful because it allows the use of lemmas in
proofs and leads to shorter proofs [17, 126].

An LJ-reduction is a tree regulated by the operators of LJ, that is, the
inference rules of LJ read as reduction operators, from conclusion to premisses.
As usual, the sequent Γ ?- ∆ at the root of a tree is called an endsequent . We use

Table 5.1. Intuitionistic sequent calculus

Γ, φ � φ
Ax

Γ, ψ � φ Γ � ψ

Γ � φ
Cut

Γ, φ, ψ � ∆
Γ, ψ, φ � ∆

ExchangeL

Γ, ⊥ � φ
⊥L

Γ � � �R

Γ, ψ, ψ′ � φ

Γ, ψ ∧ ψ′ � φ
∧L

Γ � φ Γ � φ′

Γ � φ ∧ φ′ ∧R

Γ � φ Γ, ψ � χ

Γ, φ ⊃ ψ � χ
⊃ L

Γ, φ � ψ

Γ � φ ⊃ ψ
⊃ R

Γ, φ � ψ Γ, φ′ � ψ

Γ, φ ∨ φ′ � ψ
∨L

Γ � φ

Γ � φ ∨ φ′
Γ � φ′

Γ � φ ∨ φ′ ∨R
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the following notations for reductions: We write R1, . . . , Rn for a reduction with
operators R1, . . . , Rn applied in which the putative conclusion of every Ri, i ≥ 2,
is one of the sufficient premisses of some operator Rj , for j < i.

As we have explained in the introduction, a major difference between reduc-
tions and proofs is that reductions need not have axiom sequents at their leaves.
Whereas all of the leaves of a proof are of the form Γ, φ,Γ′ � φ, reductions may
have leaves of the form p ?- q, where p and q are distinct propositional letters.
Although a branch with such a leaf cannot be extended so as to obtain just
axioms at its leaves, a semantics of reductions must nevertheless give meaning
to reductions of this form.

In order to give a semantics for reductions, we start by reviewing our first
main tool, namely polynomial categories. These polynomical categories are used
to model partial reductions.

Definition 5.1 Let C be a bi-Cartesian closed category, and let A, B be two
objects of C. The polynomial category C(ξ) over an indeterminate ξ : A→ B
is the free bi-Cartesian closed category over the graph of C with an additional
edge ξ with source A and target B modulo the equations in C.

Polynomial categories have a universal property similar to polynomials over
the natural numbers [70]:

Theorem 5.2 Let C be a bi-Cartesian closed category and C(ξ) be the polynomial
category over the indeterminate ξ : A→ B.

1. For every bi-Cartesian closed functor F : C → D and any morphism
f : FA→ FB in D, there is a bi-Cartesian closed functor F̂ : C(ξ)→ D.

2. Any bi-Cartesian closed functor G : C(ξ) → D is equal to F̂ for some bi-
Cartesian closed functor F : C → D and morphism f : FA→ FB in D such
that F̂ (ξ) = f .

Proof Direct consequence of the freeness of a polynomial category.

We write C(ξ1, . . . , ξn) for (· · · ((C(ξ1))(ξ2)) · · · )(ξn). We call a functor

F̂ : C(ξ)→ C(ξ1, . . . , ξn),

obtained by the universal property from the inclusion functor C → C(ξ1, . . . , ξn)
and a morphism f in C(ξ1, . . . , ξn), a substitution functor and write Sξ(f) for
such a functor. This functor is the analogue to substitution of natural numbers
for indeterminates in polynomials over natural numbers.

The polynomial category can be defined in more standard categorical terms
if the indeterminate ξ is a morphism ξ : 1→ A, where the domain is the terminal
object. Such a morphism is called a global section, and in the case of C = Set
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corresponds to an element of the set A. This restriction does not cause a loss of
generality: an indeterminate ξ : A → B corresponds via the universal property
defining function spaces to an indeterminate ξ′ : 1 → A ⇒ B. The equivalent
definition using standard terms is as follows:

Proposition 5.3 Suppose C is a bi-Cartesian closed category. Each polynomial
category C(ξ) with an indeterminate ξ : 1 → A is isomorphic to the co-Kleisli
category D for the endofunctor (−×A) on C.
Proof Firstly, it is a routine check that the co-Kleisli category is bi-Cartesian
closed and that the inclusion C → D is a bi-Cartesian closed functor. Secondly,
one checks that the co-Kleisli category D satisfies the universal property of
Theorem 5.2. In particular, given any bi-Cartesian closed functor F : C → E
and any morphism g : 1→ FA, the extension F̂ : D → E is given by

F̂ (A) = F (A) and F̂ (f) = F (f) ◦ 〈Id, g〉.
In the rest of the chapter, we will only consider indeterminates ξ : 1 → A. We
write ‘ξ is an indeterminate of type A’ for such an indeterminate.

Next we show how to use polynomial categories to model reductions. The
idea is that a reduction with non-atomic leaves Γi � φi for 1 ≤ i ≤ n is an
element of the category C(ξ1, . . . , ξn), where C(ξ1, . . . , ξn) is the category C with
indeterminates of type [[Γi]] ⇒ [[φi]] adjoined, where ⇒ denotes the internal
hom.50 If C is the free bi-Cartesian closed category over an infinite set of basic
objects representing the propositional atoms, then there exists a morphism 1→
[[φ]] in C if and only if the formula φ is provable in LJ. If C is not the free category,
a morphism 1→ [[φ]] exists in C if the formula φ is provable in LJ with possible
non-logical axioms added.

Each reduction operator is interpreted as a functor between the appropriate
polynomial categories, and we show that a reduction is completeable to a proof
when there exist morphisms fi in C(ξ1, . . . , ξi−1) such that there is a functor
Sξ1(f1) ◦ · · · ◦ Sξn

(fn) : C(ξ1, . . . , ξn)→C.
Before we can state the semantics of LJ-reductions we fix some notation

about categorical morphisms. Suppose f : A × B × C → D is a morphism in
C. Then we denote by CurB(f) : A × C → B ⇒ D the morphism obtained by
applying the definition of exponentials to f . We denote by App the morphism
A × (A ⇒ B) → B. Furthermore, we denote the projections by π : A × B → B
and π′ : A × B → B, respectively. More generally, projections are denoted by
πAi : A1 × · · · ×Ai × · · · ×Am → Ai.

Before we give the definition of the translation from LJ-sequent reductions
into morphisms in the polynomial category, we present an example. To state
the example and the translation, for each indeterminate ξ of type [[Γ]]⇒ [[φ]], ξ′

denotes the morphism App ◦ 〈ξ ◦ 〈〉, Id〉 : [[Γ]]→ [[φ]].

50Note that we use indeterminates to witness reductions for arbitrary leaves rather than
just atomic leaves.
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The morphism for the sequent reduction

φ ?- φ φ, ψ ?- ψ

φ, φ ⊃ ψ ?- ψ
⊃ L

will be interpreted by a functor H : C(ξ)→ C, where ξ is the indeterminate of type
[[(φ ∧ (φ ⊃ ψ))]]. In fact, H is the substitution functor Sξ(Cur[[φ∧(φ⊃ψ)]](App)).
This functor arises in two stages. Firstly, we have the functor F with domain
C(ξ) and co-domain C(ξ1, ξ2), where ξ1 is an indeterminate of type [[φ ⊃ φ]] and
ξ2 an indeterminate of type [[φ ∧ ψ ⊃ ψ]], respectively, such that F =Sξ(ξ′

2 ◦
〈π, App ◦ 〈π′, ξ′

1 ◦ π〉〉). The functor F is the semantics of the inference rule
⊃L, which is basically the application morphism and describes how to obtain
a reduction for the sequent φ, φ ⊃ ψ ?- ψ corresponding to the indeterminate
ξ from the two reductions for the sequents φ ?- φ and φ, ψ ?- ψ corresponding
to the indeterminates ξ1 and ξ2. As the reductions for the latter two sequents
are axioms, they are represented by the functors G1 = Sξ1(Cur[[φ]](Id)) and G2 =
Sξ2(Cur[[φ∧ψ]](π[[ψ]])). The functor H is obtained by essentially composing F with
G1 and G2.

After this example we give the definition of the translation.51

Definition 5.4 Let C be a bi-Cartesian closed category. The interpretation
of each unary LJ-reduction operator

∆ ?- ψ

Γ ?- φ

in C is a functor C(ξ)→ C(ζ), where ξ is an indeterminate of type [[Γ]]⇒ [[φ]]
and ζ is an indeterminate of type [[∆]]⇒ [[ψ]]. The interpretation of a binary
reduction operator

∆1 ?- ψ1 ∆2 ?- ψ2

Γ ?- φ

in C is a functor C(ξ) → C(ξ1, ξ2), where ξ1, ξ2, and ξ are indeterminates
of types [[∆1]] ⇒ [[ψ1]], [[∆2]] ⇒ [[ψ2]], and [[Γ]] ⇒ [[φ]], respectively. These
functors are defined as follows:

Axiom: If the reduction operator is

Γ, φ ?- φ,

then [[Ax]] = Sξ(Cur[[Γ]]×[[φ]](π[[φ]]));

51Note that we include a clause for the Cut-rule. We need it for the completeness of the
categorical semantics we are considering later in this chapter.
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Cut: If the reduction operator is

Γ, ψ ?- φ Γ ?- ψ

Γ, ?- φ

and ξ, ξ1, and ξ2 are indeterminates of type [[Γ]] ⇒ [[φ]], [[Γ, ψ]] ⇒ [[φ]], and
[[Γ]]⇒ [[ψ]], respectively, then we have [[Cut]] = Sξ(Cur(ξ′

2 ◦ (〈Id, ξ′
1〉)));

Exchange L: If the reduction operator is

Γ, φ2, φ1 ?- φ

Γ, φ1, φ2 ?- φ
,

then [[Exchange L]] = Sξ(Cur[[Γ,φ1,φ2]](ζ
′ ◦ 〈π[[Γ]], π[[φ2]], π[[φ1]]〉)) ;

⊥L: If the reduction operator is

Γ,⊥ ?- φ
,

then [[⊥L]] = Cur[[Γ]]×0(Sξ(ι◦π)), where ι is the initial morphism 0→ [[φ]] and
π is the projection from [[Γ]]× 0 to 0;
�R: If the reduction operator is

Γ ?- �
,

then [[�R]] = Cur[[Γ]](Sξ(!)), where ! is the unique morphism with the terminal
object 1 as the co-domain;
∧L: [[∧L]] = Sξ(ζ);
∧R: If the reduction operator is

Γ ?- φ Γ ?- ψ

Γ ?- φ ∧ ψ

and ξ, ξ1, and ξ2 are indeterminates of type [[Γ]] ⇒ ([[φ]] × [[ψ]]), [[Γ]] ⇒ [[φ]]
and [[Γ]]⇒ [[ψ]], respectively, then we have

[[∧R]] = Sξ(f ◦ 〈ξ1, ξ2〉)

where f is the canonical morphism with domain ([[Γ]] ⇒ [[φ]]) × ([[Γ]] ⇒ [[ψ]])
and co-domain [[Γ]]⇒ ([[φ]]× [[ψ]]);
∨L: If the reduction operator is

Γ, φ ?- σ Γ, ψ ?- σ

Γ, φ ∨ ψ ?- σ
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and ξ1 and ξ2 are indeterminates of type ([[Γ]]× [[φ]])⇒ [[σ]] and ([[Γ]]× [[ψ]])⇒
[[σ]] respectively, then we have

[[∨L]] = Sξ(f ◦ (Cur[[φ]]+[[ψ]](Cur[[Γ]](ξ′
1) + Cur[[Γ]](ξ′

2)))),

where f is the canonical isomorphism between ([[φ]] + [[ψ]])⇒ [[Γ]]⇒ [[σ]] and
([[Γ]]× ([[φ]] + [[ψ]]))⇒ [[σ]];
∨R: If the reduction operator is

Γ ?- φ

Γ ?- φ ∨ ψ

and suppose ζ is an indeterminate of type [[Γ]]⇒ [[φ]], then we have

[[∨R]] = Sξ(Cur[[Γ]](in1 ◦ ζ ′)).

The other case is similar;
⊃ L: If the reduction operator is

Γ ?- φ Γ, ψ ?- σ

Γ, φ ⊃ ψ ?- σ

and ξ1, ξ2, and ξ are indeterminates of type [[Γ]] ⇒ [[φ]], ([[Γ]] × [[ψ]]) ⇒ [[σ]],
and ([[Γ]]× ([[φ]]⇒ [[ψ]]))⇒ [[σ]], respectively, then we have

[[⊃ L]] = Sξ(ξ′
2 ◦ 〈π,App ◦ 〈π′, ξ′

1 ◦ π〉〉);

⊃ R: If the reduction operator is

Γ, φ ?- ψ

Γ ?- φ ⊃ ψ

and ζ is an indeterminate of type ([[Γ]]× [[φ]])⇒ [[ψ]], then we have

[[⊃ R]] = Sξ(Cur[[Γ]](Cur[[φ]](ζ ′))).

The interpretation of an LJ-reduction R1 ; . . . ; Rk for Γ ?- φ, where ;
denotes the composition of operators and where the non-axiom leaves are
Γi ?- ψi (0 ≤ i), is given by a functor H : C(ξ) → C(ξ1, . . . , ξn), where ξ
is an indeterminate of type [[Γ]] ⇒ [[φ]] and ξi are indeterminates of type
[[Γi]]⇒ [[φi]] defined inductively as follows:

1. If k = 1, then H is the interpretation of the reduction operator R1;
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2. If k > 1 and R1; . . . ;Rk−1 is inductively interpreted as a functor

H : C(ξ)→ C(ξ1, . . . , ξl, η)

and the reduction operator Rk is interpreted as the substitution functor
Sη(f) for some indeterminate η and morphism f in C(ξ1, . . . , ξl), then
the reduction R1; . . . ;Rk is interpreted as the functor G ◦H, where G is
the functor obtained by the universal property of polynomial categories
applied to the maps

ξi �→ ξi and η �→ f.

A way of grouping all these polynomial categories together is as an indexed
category, E : Bop → CCC, for which in the setting we have been considering B
is a category with finite products, and the functor E constructs a (semantic)
category of reductions parametrized by indeterminates. This indexed category
has extra structure. In particular, it has comprehension, which interprets the
addition of fresh indeterminates as reduction proceeds.

An example will help to explain how this definition works. Consider the
following reduction, which has one non-axiom leaf σ, τ ?- φ :

where X is the reduction

If πσ denotes the projection with co-domain [[σ]], then the semantics of the
reduction X is the morphism

Sξ1(Cur[[σ]]×[[σ⊃τ ]](χ′ ◦ 〈πσ,Appσ,τ 〉))
where χ is an indeterminate of type [[σ ∧ τ ]] ⇒ [[φ]], and the semantics for the
reduction of the sequent σ, σ ⊃ τ ?- τ is the morphism

Sξ2(Cur[[σ]]×[[σ⊃τ ]](App ◦ 〈πσ, πσ⊃τ 〉)).
The semantics for the whole derivation is then

Sξ(Cur[[Γ]](Appσ,τ ◦ 〈πσ, πσ⊃τ 〉 ◦ 〈πσ, πσ⊃τ ,Appφ,ψ

◦ 〈χ′ ◦ 〈πσ,Appσ,τ ◦ 〈πσ, πσ⊃τ 〉〉, πφ⊃ψ〉〉))
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which is via projection-equalities equal to

Sξ(Cur[[Γ]](Appσ,τ ◦ 〈πσ, πσ⊃τ 〉)),

where Γ is the context σ, φ ⊃ ψ, σ ⊃ τ . This is unsatisfactory: the left-
hand side of the reduction is ignored in the semantics; in other words any
reduction with the same right-hand side but a different left-hand side has the
same semantics.

The problem is that our semantics implicitly uses a translation from sequent
calculus into natural deduction, as there is a direct correspondence between
introduction and elimination rules of natural deduction and the categorical
constructions. As the translation of sequent calculus into natural deduction
identifies sequent calculus derivations up to certain permutations and some Cut-
eliminations (see [135] for details), some sequent calculus derivations have the
same semantics. In this particular case, the translation of ⊃ L into natural
deduction makes essential use of a Cut. Because it is a Cut with a weakened for-
mula, after Cut-elimination the two derivations have identical natural deduction
translation, and hence identical semantics.

5.2.1 Intuitionistic reduction models

We solve the problem of information loss described above by introducing a
Kripke-world structure in which worlds are intended to record the history of
application of reduction operators. Hence each application of a reduction oper-
ator gives rise to an extension of worlds. In the key case (cf. the example above)
of ⊃ L, worlds may therefore be seen as recording increasing propositional
‘knowledge’ in hypotheses (or, in sequents, antecedents).

In Section 4.3, we used the λµνε-calculus, which is the λµν-calculus with
explicit substitutions added, as a calculus of realizers for LK′-derivations. We
added the explicit substitutions to overcome the same problem of information
loss in a syntactic way. It is possible to treat the explicit substitutions semantic-
ally via a Kripke-world structure where the worlds do not contain all reduction
operators but reductions corresponding to sufficient premisses of the ⊃ L and
∨L-rules which gave rise to explicit substitutions. The setting described below is
more uniform, as it regards application of all reduction operators as an increase
of knowledge. This is certainly appropriate for models of proof-search.

The categorical model we use to model this Kripke-world structure is a vari-
ant of the setting of a categorical semantics for intuitionistic logic described
earlier (see Sections 3.3.1 and 3.3.2 for an introduction to this semantics): For
deductions, one considers an indexed category with comprehension F : W →
CCC, where W is a partial order of worlds regarded as a category, and the
functor F assigns to each world W a category F (W ) which models all deriva-
tions which have additional assumptions given by W . In our setting, worlds
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represent histories of which reductions have been applied.52 Hence we modify
this semantics to require that the co-domain of the functor F is not the cat-
egory of bi-Cartesian closed categories but rather a category which represents
indeterminates. For each set of indeterminates, we require a bi-Cartesian closed
category which models all reductions which use that set of indeterminates. An
appropriate categorical structure for this modelling of indeterminates is given by
an indexed category with comprehension. The base category models the inde-
terminates and the fibre over an object models the polynomial category over the
indeterminates corresponding to this object. The universal properties of compre-
hension correspond to the universal property of the polynomial categories. The
notion of an indexed category with comprehension is as follows (see Section 3.5
for an introduction into fibred categories):

Definition 5.5 An indexed category with comprehension is a functor

E : Bop→Cat

such that, subject to the usual coherence conditions [14], the following
conditions are satisfied:

1. B has a terminal object called �;
2. Each fibre E(Γ) has a terminal object 1, which is stable under re-indexing;
3. If we denote by Gr(E) the category whose objects are pairs (Γ, A), where

Γ is an object of B and A an object of E(Γ), and morphisms from (Γ, A)
to (∆, B) are pairs of morphisms (f, g) where f is a morphism from Γ to
∆ and g is a morphism from A to E(f)(B), then the functor I : B→Gr(E)
sending the object Γ to (Γ, 1) and the morphism f to (f, 1) has a right
adjoint G.

We denote the object G(Γ, A) by Γ · A and by 〈f, g〉 the part of the bijection
between hom-sets given by the adjunction I � G sending a morphism f : Γ→∆
in B and a morphism g : 1→E(f)A in E(Γ) to a morphism from Γ to ∆ ·A.

Now we explain how to set-up indeterminates in an indexed categorical set-
ting. An indeterminate of type A is modelled by an object �·A, and a morphism
in C(ξ1, . . . , ξn) is modelled by a morphism in E(� ·A1 · . . . ·An). The universal
property of polynomial categories is captured as follows: if f is a morphism in
C(ξ1, . . . , ξn) corresponding to a morphism f ′ in E(� · A1 · . . . · An) and ξ is

52We can also think of worlds as representing the propositions which have been added
to the hypotheses by the reduction, the key point being that the ⊃ L-operator replaces a
hypothesis φ ⊃ ψ with ψ, together with a proof obligation (for φ) which may be further
reduced. This view is discussed briefly in [103].
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an indeterminate of type A, the substitution functor Sξ(f) is modelled by the
functor 〈Id, f ′〉.

With all this technology set up, we can give a definition of a reduction struc-
ture, that is, a semantic structure within which intuitionistic (LJ) reductions
may be interpreted. A few points are noteworthy:
1. As we have seen, the interpretation of LJ-reductions in polynomials over a

bi-Cartesian closed category is inadequate. Consequently the interpretation
of (Cut-free) LJ-reductions exploits a Kripke-world structure which records
the history of the reduction;

2. There is no equality in the semantics: We interpret only Cut-free reductions
and do not consider any equality induced by Cut-elimination.

Definition 5.6 (reduction structure) Let W be a small category (of
‘worlds’) with finite products. A reduction structure (E , F ) is given by
1. a strict indexed category E : Bop → Cat with comprehension such that
B has finite products53 and each fibre E(Γ) is a bi-Cartesian closed cat-
egory and each functor E(f) preserves the bi-Cartesian closed structure
on the nose;

2. a functor F : W → B which preserves finite products.

Next we present a set-theoretic example of a reduction structure.
Example 5.7 (set-theoretic reduction structure) Let W be the category of

sets and functions. Let E be the indexed category arising from the flat fibration
over Set (i.e., B is Set again, and E(S) is the co-Kleisli category of Set with
respect to the functor −× IdS). We define the functor F as the identity functor
from Set to Set.

Note that in this example, indeterminates and the state of knowledge given
by worlds coincide, as the functor F is the identity. This is not necessarily true
in general.

We now describe the interpretation of reduction operators and reductions in
a reduction category. This interpretation depends on the worlds of the reduction
category. The details are given in the following definition:

Definition 5.8 (interpretation) Let (E , F ) be a reduction structure. A
function [[−]], which is parametrized by a list of indeterminates Θ and a
world W , mapping reductions and their syntactic constituents to elements
of a reduction structure is called an interpretation if it satisfies the following

53If the functor E(f) is constant on objects then comprehension gives rise to finite products
in B. This is the case for all the reduction structures we consider in this monograph.
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mutually recursive conditions:

1. [[Θ]]W is an object of B and [[Θ]]W =A if Θ is the empty list of
indeterminates and F (W )=A;

2. For any formula φ, [[φ]]WΘ is an object of the category E([[Θ]]W );
3. For any context Γ=φ1, . . . , φn, [[Γ]]WΘ is equal to (A1 × · · · ×An), where

[[φi]]WΘ =Ai;
4. For a reduction Φ: Γ ?- φ with indeterminates in Θ, [[Φ]]WΘ is a pair

(W ′, g), where W ′ is a world and g a morphism from [[Γ]]WΘ to [[φ]]WΘ
such that g= 〈Id, F (a)〉∗f for some morphisms f : [[Γ]]W

′
Θ → [[φ]]W

′
Θ and

a : W →W ′54;
5. For all reduction operators R, there exists a world WR and a morphism

aR : 1→WR;
6. For a reduction Φ;R with unary reduction operator R and reduction Φ

for the putative premiss of R,

[[Φ;R]]WΘ =(W ′, 〈Id, F (a)〉∗(Cur−1
[[Γ]]W ×WR

Θ

(App ◦ 〈Cur[[Γ1]]
W ×WR
Θ

(f1),Snd〉)))

where W ′ =W1 × W × WR and furthermore [[Φ]]W×WR

Θ =(W ′
1, f1) and

W ′
1 =W ×WR ×W1 and a : W →W ′;

7. For a reduction (Φ1,Φ2);R with binary reduction operator R and
reductions Φ1 and Φ2 for the putative premisses of R,

[[(Φ1,Φ2);R]]WΘ =(W ′, 〈Id, F (aW ′)〉∗(Cur−1
[[Γ]]W ×WR

Θ

(App ◦ 〈〈Cur[[Γ1]]
W ×WR
Θ

(f1),Cur[[Γ1]]
W ×WR
Θ

(f2)〉〉,Snd)))

where W ′ =W1×W2×W×WR and [[Φi]]W×WR

Θ =(W ′
i , fi) and W ′

i =W×
WR ×Wi;

8. If Θ=Θ′, ξ, where ξ is an indeterminate for φ1, . . . , φn ?- φ, then [[Θ]]W

is equal to [[Θ′]]W · [[(φ1 ∧ · · · ∧ φn) ⊃ φ]]WΘ′ .

This definition only specifies which elements of a reduction structure are used
to interpret a given syntactic constituent of a reduction: each reduction oper-
ator gives rise to a change of worlds (Clause 5), and the functor F describes
how extensions of worlds give rise to change of indeterminates corresponding to
reduction operators. Clauses 6 and 7 say that the semantics of a reduction Φ is
given by a pair (a, f), where a is an extension of worlds induced by the reduction

54Here −∗ denotes the usual inverse image functor.



162 SEMANTICS FOR REDUCTIVE LOGIC

operators of Φ, and f is the morphism obtained by applying the changes of inde-
terminates induced by the reduction operators to the indeterminates representing
the premisses of the reduction.

However, this definition does not specify how to interpret the logical con-
nectives and operators in a reduction. As we use bi-Cartesian closed categories
for interpreting reductions, this can be done in a canonical way for the logical
connectives and operators of intuitionistic logic. In this way, we obtain a canon-
ical interpretation which is a specific function from syntactic constitutents of a
reduction to elements of a reduction structure.

Definition 5.9 (canonical interpretation) Let (E , F ) be a reduction
structure. The following function [[−]] is an interpretation, called the canonical
interpretation, where Θ is a list of indeterminates:

1. [[⊥]]WΘ def= 0;

2. [[�]]WΘ def= 1;

3. [[φ ⊃ ψ]]WΘ
def= [[φ]]WΘ ⇒ [[ψ]]WΘ ;

4. [[φ ∧ ψ]]WΘ
def= [[φ]]WΘ × [[ψ]]WΘ ;

5. [[φ ∨ ψ]]WΘ
def= [[φ]]WΘ + [[ψ]]WΘ ;

6. For all reduction operators R, F (aR) = 〈Id1, f〉, where Sξ(f) is the inter-
pretation of R according to Definition 5.4, where the category C is the
category E(1).

Note that this definition ensures that for each world WR the object F (WR) is
the object ([[Γ1]] ⇒ [[φ1]]) ⇒ [[Γ]] ⇒ [[φ]] for a unary reduction operator R with
sufficient premiss Γ1 ?- φ1 and putative conclusion Γ ?- φ and F (WR) is the
object (([[Γ1]] ⇒ [[φ1]]) × ([[Γ2]] ⇒ [[φ2]])) ⇒ ([[Γ]] ⇒ [[φ]]) for a reduction oper-
ator R with sufficient premisses Γ1 ?- φ1 and Γ2 ?- φ2 and putative conclusion
Γ ?- φ. For each reduction operator R, we denote by ξR the indeterminate of
the above type, and with AR the corresponding object.

As mentioned before, the interpretation does not enforce any equality
between reductions: The reason is that the semantics of a reduction is a pair
(f, g), where f is a morphism between worlds, and it is possible that each reduc-
tion gives rise to a different morphism f . Two different reductions might give
rise to the same morphism g, however.

Now let us reconsider our earlier example. We need to be precise and indicate
carefully the changes of the worlds involved in the reduction. We construct the
semantics of the whole reduction, [[Φ]]1χ, where χ is an indeterminate of type
[[σ∧τ ]]⇒ [[φ]] and A the corresponding object in the base category, step by step.
We start with the reduction X. Following Clause 7 of Definition 5.8, we have to
calculate [[X]]W⊃L

χ . We obtain [[X]]W⊃L
χ = (aX , fX), where aX is the extension of
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worlds from the world W⊃L to W⊃L ×W⊃L ×WAx and fX is the morphism

h ◦ 〈πσ,Appσ,τ 〉

in the fibre E(AW⊃L
×A), where h is the morphism App ◦ 〈Id,Snd◦!〉.

Next, we have to calculate [[Φ]]W⊃L
χ , where Φ is the reduction of the sequent

σ, σ ⊃ τ ?- τ . Again, [[Φ]]W⊃L
χ is a pair (aΦ, fΦ), where aΦ is the extension

of worlds from the world W⊃L to W⊃L×W⊃L×WAx×WAx, and fΦ is the
morphism

App ◦ 〈πσ, πσ⊃τ 〉
in the fibre E(AW⊃L

× A). The semantics for the whole reduction Ψ is a pair
(aΨ, fΨ), where aΨ is the world extension from the empty world (the terminal
object in the categoryW) to the world W⊃L×W⊃L×WAx×W⊃L×WAx×WAx,
and fΨ is the morphism

Appσ,τ ◦ 〈πσ, πσ⊃τ 〉 ◦ 〈πσ, πσ⊃τ ,Appφ,ψ ◦ 〈h ◦ 〈πσ,Appσ,τ ◦ 〈πσ, πσ⊃τ 〉〉, πφ⊃ψ〉〉

in the fibre E(A), which is via projection-equalities equal to

Appσ,τ ◦ 〈πσ, πσ⊃τ 〉,

where Γ is the context σ, φ ⊃ ψ, σ ⊃ τ .
The semantics of the reduction Ψ does not ignore the reduction X: the world

extension aΦ explicitly mentions the reduction operators in X, thereby recording
the increase of knowledge obtained by the reduction X.

Our objective has been to establish a semantics of reductive logic of compar-
able value to that which is available for deductive logic. To this end, we now
establish soundness and completeness theorems relating reductions and their
semantics. We begin with the appropriate semantic judgement,

W |=Θ (Φ : φ)[Γ],

between worlds, W , indeterminates in Θ, sequents Γ ?- φ and reductions, Φ.
This judgement is formulated as a constraint on reduction structures which is
required in order to interpret reductions correctly in reduction structures.

Definition 5.10 (reduction model) A reduction model,

R = 〈(E , F ), [[−]], |=〉,

is given by the following:

1. A reduction structure (E , F );
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2. An interpretation [[−]] of reduction operators and reductions;

3. A forcing relation W |=Θ (Φ: φ)[Γ], where W is a world, Θ and Γ are
contexts, φ a formula and Φ a reduction with endsequent Γ ?- φ with
indeterminates contained in Θ, such that

[[Γ]]WΘ
[[Φ]]WΘ−→ [[φ]]WΘ

is a morphism in the reduction structure, and which satisfies the following
conditions:
(i) If W |=Θ (Φ: φ)[Γ] and a : W → W ′ is a morphism in W for some

world W ′, then also W ′ |=Θ (Φ: φ)[Γ];
(ii) W |=Θ (Ax : φ)[Γ, φ];
(iii) W |=Θ,ξ (ξ : φ)[Γ] if ξ is an indeterminate of type Γ ?- φ;
(iv) If R is a reduction operator with premisses Γ1 ?- φ1 and Γ2 ?- φ2

and conclusion Γ ?- φ, then W |=Θ ((Φ1,Φ2);R)[Γ, φ] if W ×
WR |=Θ (Φi)[Γi, φi];

(v) If R is a reduction operator with premiss Γ1 ?- φ1 and conclusion
Γ ?- φ, then W |=Θ (Φ1;R)[Γ, φ] if W ×WR |=Θ (Φ1)[Γ1, φ1].

Substitutivity for indeterminates is a property of the forcing relation:

Lemma 5.11 If W |=Θ,ξ (Φ: φ)[Γ], W |=Θ (Ψ: ψ)[∆] and ξ is an indeterminate
of type ∆ ?- ψ, then also W |=Θ (Φ[Ψ/ξ] : φ)[Γ].

Proof By induction over the structure of Φ.

Now, we can establish soundness: the existence of a reduction Φ of Γ ?- φ
implies that φ is forced at every world W in a reduction model and, consequently,
that reduction Φ is interpreted as a realizer of the interpretation of φ from the
interpretation of Γ.

Theorem 5.12 (soundness) Consider any reduction structure (E , F ). Suppose
Φ is a reduction of Γ ?- φ with indeterminates ξ1, . . . , ξn of type Γi ?- φi. Then,
for any world W , W |=Θ (Φ: φ)[Γ], where Θ = {ξ1, . . . , ξn} .

Proof We use induction over the structure of φ. The case of an indeterminate
and an axiom are trivial. Now, consider the case of a reduction (Φ1,Φ2);R.
By induction hypothesis, W ×WR |=Θ (Φi)[Γi, φi]. Hence, by Clause (3.iv) of
Definition 5.10, W |=Θ ((Φ1,Φ2);R)[Γ, φ]. The case of a unary reduction rule is
similar.
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Turning to completeness, we must first establish a notion of validity . We say
that the judgement Φ : φ is valid with respect to Γ and Θ, and write

Γ |=Θ Φ : φ,

if and only if, for all worlds, W , in all reduction models, R,

W |=R
Θ (Φ : φ)[Γ].

With respect to this, quite straightforward, notion of validity, we are able to
establish completeness. The first step is a model existence lemma based on the
construction of a term model.

Lemma 5.13 (model existence) There exists a reduction model

T = 〈F, [[−]], |=Θ〉,

such that if 1 |=T
Θ (Φ : φ)[Γ], then Γ ?- ΘΦ : φ.

Proof We construct a term model from reductions in the calculus LJ. We begin
by defining a reduction structure (E , F ).

The category of worlds is the free Cartesian category where

1. the ground objects are reduction operators R with sufficient premisses
Γ1 ?- φ1 and Γ2 ?- φ2, for binary operators, and Γ′ ?- φ′, for unary
operators, and putative conclusion Γ ?- φ, and

2. for each reduction operator, there is a ground morphism aR : 1→ R.

The objects of the category B are finite sequences of indeterminates ξ1, . . . , ξn

of type φ1, . . . , φn, and a morphism from (ξ1, . . . , ξn) to (ξ′
1, . . . , ξ

′
m) is a list

(f1, . . . , fm) of reductions such that fi is a reduction of − ?- φ′
i, possibly using

the indeterminates ξ1, . . . , ξn, where φ′
i is the type of the indeterminate ξ′

i.
Composition is given by substitution of reductions for indeterminates. For each
sequence of indeterminates (ξ1, . . . , ξn), we define the category E((ξ1, . . . , ξn)) to
be the category where the objects are formulæ and morphisms from φ to ψ are
reductions with premiss φ and conclusion ψ with indeterminates amongst the
ones in (ξ1, . . . , ξn) up to βη-equivalence. Composition in this category is given
by Cut. There is no equivalence on propositions, as we do not consider any type
dependency.

As W is the free Cartesian category over the reduction operators R and
morphisms aR, it suffices to define the action of F on reduction operators and
morphisms aR.

For a binary reduction operator, the functor F is given by F (R) = ξ, where
ξ is an indeterminate of type ((Γ1 ⊃ φ1) ∧ (Γ2 ⊃ φ2)) ⊃ (Γ ⊃ φ),55 where

55Here we abuse notation slightly and write, where Γ = ψ1, . . . , ψm, just Γ ⊃ φ to denote
the formula (ψ1 ∧ . . . ∧ ψm) ⊃ φ.
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the reduction operator with sufficient premisses Γ1 ?- φ1 and Γ2 ?- φ2, and
putative conclusion Γ ?- φ, and F (aR) = h, where Sξ(h) is the interpretation of
R in the polynomial categories.

For a unary reduction operator, we define F (R) = ξ, where ξ is an indeter-
minate of type (Γ′ ⊃ φ′) ⊃ (Γ ⊃ φ) for a reduction operator with sufficient
premiss Γ′ ?- φ′ and putative conclusion Γ ?- φ.

Now consider the morphism aR for the reduction operator with sufficient
premisses Γ1 ?- φ1 and Γ2 ?- φ2 and putative conclusion Γ ?- φ. Let ΦR be
sequent reduction

where Ψ is the sequent reduction of Γ1 ⊃ φ1,Γ2 ⊃ φ2,Γ2 ?- φ2 similar to the
reduction of Γ1 ⊃ φ1,Γ2 ⊃ φ2,Γ1 ?- φ1. Now we define F (aR) = ΦR. Intuitively,
the additional reduction steps in ΦR are just book-keeping steps to ensure the
typing of F (aR) matches the typing of the corresponding indeterminate.

Next, we show that, for this reduction structure with the obvious interpreta-
tion [[−]] of operators and reductions, the relation defined by W |=Θ (Φ: φ)[Γ] iff
Φ is a reduction of Γ ?- φ with indeterminates in Θ such that [[Φ]]WΘ is a morph-
ism from [[Γ]]WΘ to [[φ]]WΘ is a forcing relation, and the triple ((E , F ), [[−]], |=) is a
reduction model.

In the usual way, we now obtain the following:

Theorem 5.14 (completeness) If Γ |=Θ Φ: φ, then Γ ?- Φ : φ.

Proof Suppose Γ |=Θ Φ: φ, then, for all worlds W in all reduction models R,
W |=R

Θ (Φ : φ)

This holds also for the term model constructed in Lemma 5.13. By construction
of this model, we have Γ ?- Φ : φ.

Under stronger conditions, namely that there exists a canonical interpreta-
tion, we can show more, namely for each reduction structure and interpretation
there exists a canonical forcing relation:

Lemma 5.15 Suppose (E , F ) is a reduction structure with a canonical inter-
pretation [[−]]. Then the relation R defined by W |=Θ (Φ: φ)[Γ] iff Φ is a
reduction of Γ ?- φ with indeterminates in Θ such that [[Φ]]WΘ is a morphism from
[[Γ]]WΘ to [[φ]]WΘ is a forcing relation, and the triple ((E , F ), [[−]], |=) is a reduction
model. Moreover, the forcing relation |= of Lemma 5.13 is such a relation.
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Proof We have to check that the relation R is a forcing relation. For this, one
shows that Clause 6 of Definition 5.9 implies that [[Φ]]WΘ is indeed a morphism
from [[Γ]]WΘ to [[φ]]WΘ .

Now we consider the translation in the other direction. As the reduction
category is not necessarily the free category over some ground objects, we cannot
define such a translation inductively but only specify constraints which such a
translation should satisfy. If the reduction structure happens to a free structure,
the conditions turn out to define a translation uniquely. We define this translation
first for polynomial categories and then generalize it to reduction structures.

Definition 5.16 Let C be any bi-Cartesian category. A translation (−)s
assigning morphisms f : Γ→A in C(ξ1, . . . , ξn) to reductions with non-atomic
endsequents contained in ξi : Γi ?- Ai is called sound if:

(π)s = Ax, where π is any projection
(ξi)s = ξi

(g ◦ f)s = ((f)s, (g)s); Cut
(〈f, g〉)s = ((f)s, (g)s);∧R
(CurM)s = (M)s;⊃ R
(App)s = ⊃ L
(in1)s = ∨R
(in2)s = ∨R

(f ⊕ g)s = ((f)s, (g)s);∨L

Lemma 5.17 Suppose C is the free bi-Cartesian closed category over some set
of objects G. Then there is a sound translation assigning to each morphism
f : Γ→A in C(ξ1, . . . , ξn) reductions with non-atomic endsequents contained in
ξi : Γi ?- Ai.

Proof The translation is given in the canonical way by using the Curry–Howard
correspondence to derive natural deductions for morphisms, and then translating
them into reductions.

Now we generalize this translation to the translation of morphisms of reduc-
tion structures to reductions. Again, we list first conditions which such a
translation should satisfy.

Definition 5.18 A translation (−)s from morphisms f : Γ → A in E(Θ) of
a reduction structure (E , F ) to reductions Γ→ A where Θ = � ·A1 · · · · ·An
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and ξi is an indeterminate with type (Ai)s is sound if:

(π)s = Ax, where π is any projection

(Fstk ∗ Snd)s = ξk

(g ◦ f)s = ((f)s, (g)s); Cut

(〈f, g〉)s = ((f)s, (g)s);∧R

(CurM)s = (M)s;⊃ R

(App)s = ⊃ L

(in1)s = ∨R

(in2)s = ∨R

(f ⊕ g)s = ((f)s, (g)s);∨L

Again, when we have the initial reduction structure these conditions are
sufficient to guarantee the existence of such a translation.

Lemma 5.19 Suppose (E , F ) is a reduction structure such that Gr(E) is the free
comprehension category over some set of objects G. Then there is a sound trans-
lation assigning to each morphism f : Γ→A in E(Θ) a reduction with non-atomic
endsequents contained in ξi : Γi ?- Ai, where Θ is the context corresponding to
the indeterminates ξ1, . . . , ξn.

Proof Direct transfer of the previous lemma.

Now we can show that a reduction can be completed if and only if there
exists a functor from the corresponding polynomial category into the ground
category.

Theorem 5.20 Suppose (E , F ) is the free reduction structure over a set of
objects G. A reduction Φ of Γ ?- φ with leaves Γi ?- φi which are not axioms
can be completed to a proof iff there exists a morphism f such that there is
a functor E(〈!, f〉) : E(Θ)→E(1) where Θ is the context corresponding to the
indeterminates ξ1, . . . , ξn. Moreover, the completion of a Cut-free reduction is
Cut-free.

Proof If there exists a completion, the soundness theorem guarantees the exist-
ence of a morphism f . In the other direction, given such a morphism, the previous
lemma provides the sequent derivations, which complete the reduction to a proof.
As Cut-elimination holds for LJ without indeterminates, there is also a Cut-free
sequent which provides the completion.
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5.2.2 Games for intuitionistic reductions

We now describe how to extend our games model of intuitionistic proofs, intro-
duced in Chapter 3, to be a model of intuitionistic reductions. There are two
issues which we need to consider. Firstly, we need to consider games for sequent
calculus, not for natural deduction, as in Section 3.4, and, secondly, we have to
model indeterminates.

We begin with the first issue. It turns out that the games described in
Section 3.4 give rise to a very natural interpretation of reductions in the
sequent calculus. Intuitively, O- and P -questions are challenges for Opponent
and Proponent to provide evidence for conclusions and premisses, respectively.
O-answers provide evidence for a premiss, and P -answers provide evidence for a
conclusion. Conjunctive choices are made by Opponent and disjunctive choices
are made by Proponent.

As usual, left-operators involve operations on the premisses: they are initiated
by P -questions. Similarly, right-operators involve operations on the conclusions:
they are initiated by O-questions.

We need additional structure to model indeterminates. The key idea is to
introduce additional plays which Proponent may start at will.

Definition 5.21 A strategy with oracle of type φ is a strategy where, in
addition, Proponent is allowed to play using an additional arena for φ. The
justifying question for the root nodes of φ is an initial question.

Substitution of reductions for indeterminates is modelled by substitution of
strategies for oracles.

Definition 5.22 Suppose Ψ is a strategy with oracle of type φ and Φ is a
strategy of type φ. We define the substitution of Φ for the oracle in Ψ to be
the strategy Ψ except that we replace every answer which is a move given
by the arena for φ by the move obtained by using Φ to answer Ψ’s move in
φ, then using Ψ to answer this move and so on until Ψ answers with a move
outside the arena for φ.

Substitution of strategies for oracles is well-defined:

Lemma 5.23 Let Ψ be a strategy for the arena for σ with oracle of type ψ and
Φ is strategy for the arena for ψ with an oracle of type φ. Then the substitution
of Φ for the oracle in Ψ is a strategy for the arena for σ with oracle of type φ.

Proof By induction over the structure of σ.
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A proof with indeterminate of type φ is now modelled as a strategy with
oracle of type Φ. More precisely, the proof of ?- φ using only an indeterminate
of type φ is modelled by the copy-cat strategy, where Proponent simply replays
each O-question in the arena for φ in the additional arena for φ he may use.

Theorem 3.17, presented in Chapter 3, can be extended to games with inde-
terminates and stated intuitionstic reductions (based not on natural deduction
but on the sequent calculus):

Theorem 5.24 For any formula φ and strategy Φ for φ with oracles of type
ψ1, . . . , ψm there exists a intuitionistic reduction of φ with indeterminates of
types ψ1, . . . , ψm.

Proof By Theorem 3.17 we obtain a reduction of (ψ1∧ · · · ∧ψm) ⊃ ψ and hence
also a reduction of ψ1 ∧ · · · ∧ ψm ?- ψ. Now we use Cuts with the reduction
(· · · (Ψ1,Ψ2);∧R · · · ),Ψm);∧R where Ψi is the reduction consisting only of an
indeterminate of type ψi.

At this point, we have achieved our first objective. We have a class of abstract
structures which supports the triangle of Fig. 1.2. The top left-hand corner rep-
resents the basic calculus of queries; the top right-hand corner stands formal
language of reductions, built using a class of variables corresponding to indeterm-
inates; and the bottom corner is given by the interpretation of reduction models.
However, we do not as yet have a declarative, or truth-functional, semantics of
search. As we have seen, in the setting of reductive logic, such a semantics can
be understood in terms of state.

We will now develop a semantics of proof-search for intuitionistic logic by
considering the class of intuitionistic reductions to be embedded in the class of
classical reductions, using the techniques introduced in [97, 108, 111]. To this
end, we extend our semantics of reduction to the formulation of classical logic
based on the λµν-calculus [97, 108, 111].

5.3 Semantics for classical reductive logic

In this section, we describe a semantics for propositional classical logic viewed
as a reductive system. Building on the wealth of proof-theoretic studies of proof-
search in classical logic—see, for example, [36, 98, 106, 108, 111, 134]—we take as
our point of departure a minor variant of Gentzen’s sequent calculus, LK, given
in Table 4.3. Contraction and Weakening are built into the other rules but, for
technical reasons, we include Exchange. Note also the absence of the usual rules
for negation,

Γ � φ,∆
Γ,¬φ � ∆ ¬L

Γ, φ � ∆
Γ � ¬φ,∆

¬R.

For technical reasons, it is simpler for our semantic purposes to define ¬φ as in
the intuitionistic style as φ ⊃ ⊥. In the presence of the classical ⊃ R rule,
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Table 5.2. Classical sequent calculus

Γ, φ � φ, ∆
Ax

Γ, φ � ∆ Γ � φ, ∆
Γ � ∆

Cut

Γ, φ, ψ, Γ′ � ∆
Γ, ψ, φ, Γ′ � ∆

ExchangeL
Γ � ∆, φ, ψ, ∆′

Γ � ∆, ψ, φ, ∆′ ExchangeR

Γ, ⊥ � ∆
⊥L

Γ � �, ∆
�R

Γ, ψ, ψ′ � ∆
Γ, ψ ∧ ψ′ � ∆

∧L
Γ � φ, ∆ Γ � φ′, ∆

Γ � φ ∧ φ′, ∆
∧R

Γ � φ, ∆ Γ, ψ � ∆
Γ, φ ⊃ ψ � ∆

⊃ L
Γ, φ � ψ, ∆

Γ � φ ⊃ ψ, ∆
⊃ R

Γ, φ � ∆ Γ, φ′ � ψ, ∆
Γ, φ ∨ φ′ � ψ, ∆

∨L
Γ � φ, φ′, ∆

Γ � φ ∨ φ′, ∆
∨R

¬L and ¬R are derivable. For convenience, we shall simply refer to this
system as LK.

As with the intuitionistic calculus, LJ, the principal virtues of LK’s present-
ation of intuitionistic proofs as a basis for proof-search are that it admits
Cut-elimination and, in the absence of Cut, has the subformula property. Note,
however, that the advantages of Cut discussed in Section 5.2 apply equally well
to classical logic.

Semantically, we aim to extend the definition of a reduction structure to
classical logic, that is, to LK proofs. To this end, we require a representation of
classical proofs for which a non-trivial semantics is available.56

The λµν-calculus [108, 111] is a representation of classical proofs, essentially
a multiple-conclusioned form of natural deduction, which has a non-trivial cat-
egorical semantics [97]. It is an extension of Parigot’s [90] λµ-calculus to account
for disjunction.

The relationship between λµν and LK is delicate. Some of the delicate issues
were discussed in detail in Chapter 4. Below we adapt the semantics of LK-proofs
in the λµν-calculus to deal with LK-reductions, in the same way as we changed
the semantics of LJ-proofs using bi-Cartesian closed categories to deal with LJ-
reductions.

5.3.1 Classical reduction models

Having established the semantics of λµν as a deductive system, and given our
general prescription for reading inference rules as reduction operators, we can

56That is, a semantics that does not identify all proofs of a given sequent.
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give the definition of a classical reduction structure. Such a structure arises from
a λµν-structure by introducing an additional fibration to model indeterminates
and introducing a category of worlds and a functor to the Grothendieck com-
pletion of the fibration as for reduction structures. Note that we can merge
the two fibrations (one for the formulæ on the right-hand side, and one for
indeterminates) into a fibration over a product.

Again, a few points are noteworthy:

1. The addition of indeterminates to models of λµν follows the same pattern
as for (intuitionistic) reduction structures but fibre-wise;

2. The structure of λµν-models reflects the fact that λµν is essentially a system
of natural deduction. Consequently, just as in the intuitionistic case, the
interpretation of (Cut-free) LK-reductions exploits a Kripke-world structure
which records the history of the reduction;

3. As before, there is no equality between reductions in the semantics: We
interpret only Cut-free reductions and do not consider any equality induced
by Cut-elimination. A non-trivial, symmetric categorical semantics of LK
(essentially in Gentzen’s original form [37]), which validates all (in)equalites
induced by Cut-elimination, has been introduced by Führmann and Pym
[30], but these ideas are beyond our present scope.

Definition 5.25 LetW be a small category (of ‘worlds’) with finite products.
A classical reduction structure (E , F ) is given by the following:

1. A strict indexed category E : (B×C)op → Cat with comprehension such
that B has finite products and each fibre E(Γ,∆) is a bi-Cartesian
closed category and each functor E(f, g) preserves the bi-Cartesian closed
structure on the nose; and

2. A functor F : W → B which preserves finite products
such that the following properties hold:
(i) There is a natural bijection between homB(A, B × C) and the pair

(homB(A, B), homE(A,1)(1, C));

(ii) For each object A of B, the functor E(IdA × −) is λµν-structure,
and for each morphism f : A→B in B, the natural transformation
E(f,−) preserves the structure of a λµν-structure on the nose.

We give a set-theoretic example of a classical reduction structure. This
example is an adaptation of the set-theoretic example of an intuitionistic
reduction structure.

Example 5.26 (set-theoretic classical reduction structure) Let E be the λµν-
structure of Chapter 3 defined using continuations, where the category C is
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the category of sets and functions. Let W be the category of sets and func-
tions. Let B be the category of sets and functions, and let F be the
indexed category defined by F(A, B) = E(A × B). The functor F is the
identity.

As each fibre E(A) in the continuation model is equivalent to the co-Kleisli
category for the functor A×−, we do not need to construct co-Kleisli categories
to model indeterminates, as we do for the set-theoretic example of intuition-
istic reduction structures. Also note that, in this example, indeterminates and
the states of knowledge given by worlds coincide, because the functor F is the
identity. Again, this is not necessarily true in general.

Next we describe how to interpret LK-reductions in a classical reduction
structure. In the same way as for intuitonistic logic, we first spell out the defining
conditions for such an interpretation.

Definition 5.27 (interpretation) Let (E , F ) be a classical reduction struc-
ture. A function [[−]], which is parametrized by a list of indeterminates Θ
and a world W , mapping reductions of LK and their syntactic constituents
to elements of a reduction structure is called an interpretation if it satisfies
the following mutually recursive conditions:

1. [[Θ]]W is an object of B and [[Θ]]W = A if Θ is the empty list of
indeterminates and F (W ) = A;

2. For any formula φ, [[φ]]WΘ is an object of the category E(([[Θ]]W , 1));
3. For any context Γ = φ1, . . . , φn, [[Γ]]WΘ is equal to (A1 × · · · ×An), where

[[φi]]WΘ = Ai;
4. For a reduction Φ: Γ ?- φ,∆ with indeterminates in Θ, [[Φ]]WΘ is a pair

(W ′, g), where W ′ is a world and g a morphism from [[Γ]]WΘ to [[φ]]WΘ in
E([[Θ]]W ′

, [[∆]]W
′

Θ ) such that g = (〈Id, F (a)〉, Id)∗f , for some morphisms

f : [[Γ]]W
′

Θ → [[φ]]W
′

Θ

and a : W →W ′;
5. For all reduction operators R, there exists a world WR and a morphism

aR : 1→WR;
6. For a reduction Φ;R, with unary reduction operator R, with sufficient

premiss Γ′ ?- φ′,∆′ and putative conclusion Γ ?- φ,∆,

[[Φ;R]]WΘ =(W ′, (〈Id, F (a)〉, Id)∗(ν−1
[[∆]]W ×WR

Θ

(Cur−1
[[Γ]]W ×WR

Θ

(App ◦ 〈Cur[[Γ1]]
W ×WR
Θ

(ν[[∆′]]W ×WR
Θ

(f1)),Snd〉)))),

where W ′ = W1 ×W ×WR and [[Φ]]W×WR

Θ = (W ′, f1) and a : W →W ′;
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7. For a reduction (Φ1,Φ2);R, with binary reduction operator R, with
sufficient premisses Γi ?- φi,∆i and with putative conclusion Γ ?- A,∆,

[[(Φ1,Φ2);R]]WΘ =(W ′, (〈Id, F (a)〉, Id)∗(ν−1
[[∆]]W ×WR

Θ

(Cur−1
[[Γ]]W ×WR

Θ

(App ◦ 〈〈Cur[[Γ1]]
W ×WR
Θ

(ν[[∆1]]W ×WRΘ(f1)),

Cur[[Γ1]]
W ×WR
Θ

(ν[[∆2]]W ×WRΘ(f2))〉,Snd〉)))),

where W ′ = W1×W2×W ×WR, a : W →W ′ and [[Φi]]W×WR

Θ = (W ′
i , fi)

and W ′
i = W ×WR ×Wi;

8. Suppose Θ = Θ′, ξ, where ξ is an indeterminate φ1, . . . , φn ?- φ. Then
[[Θ]]W is equal to [[Θ′]]W × [[(φ1 ∧ · · · ∧ φn) ⊃ φ]]WΘ′ .

We can now give the canonical interpretation of LK-reductions in classical
reduction structures.

Definition 5.28 (canonical interpretation) Let (E , F ) be a classical
reduction structure. The following interpretation, [[−]], where Θ is a list
of indeterminates, is called the canonical interpretation (where ass is the
associativity isomorphism between (φ ∨ ψ) ∨∆ and φ ∨ (ψ ∨∆)):
1. [[⊥]]WΘ def= 0;

2. [[�]]WΘ def= 1;

3. [[φ ⊃ ψ]]WΘ
def= [[φ]]WΘ ⇒ [[ψ]]WΘ ;

4. [[φ ∧ ψ]]WΘ
def= [[φ]]WΘ × [[ψ]]WΘ ;

5. [[φ ∨ ψ]]WΘ
def= [[φ]]WΘ ∨ [[ψ]]WΘ ;

6. For all reduction operators R except ⊃ L, ∨L, ∨R, and ExchangeR,
F (aR) = 〈Id1, f〉, where Sξ(f) is the interpretation of R according to
Definition 5.4, where the category C is the category E(1, 1);

7. For the remaining reduction operators, F (aR) is defined as follows:
ExchangeR : Consider the reduction operator

Γ ?- ψ, φ,∆
Γ ?- φ, ψ,∆

and let φ′ be the formula Γ ⊃ ψ ∨ φ ∨∆. Then

Fa(ExchangeR) = 〈Id,Cur(ν(µα.[β]App ◦ 〈ν−1(π[[φ′]]), π[[Γ]]〉))〉;
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⊃ L: Consider the reduction operator

Γ ?- φ, σ,∆ Γ, ψ ?- σ,∆
Γ, φ ⊃ ψ ?- σ,∆

and let φ1 be the formula (Γ ⊃ φ ∨ σ ∨∆), φ2 be (Γ ∧ ψ) ⊃ σ ∨∆, and
let π1 be the projection

[[φ1 ∧ φ2 ∧ Γ ∧ (φ ⊃ ψ)]]1∅ → [[φ1]]1∅,

and π2 be the projection

[[φ1 ∧ φ2 ∧ Γ ∧ (φ ⊃ ψ)]]1∅ → [[φ2]]1∅.

Then

F (a⊃L)= 〈Id1,Cur(µγ.c∗([γ](ν−1(Cur−1(π2))
◦〈Id, π[[Γ]],App ◦ 〈π[[φ⊃ψ]]1∅

, ν−1(Cur−1(π1)) ◦ 〈Id, π[[Γ]]〉〉〉))〉;

∨L: Consider the reduction operator

Γ, φ ?- σ,∆ Γ, ψ ?- σ,∆
Γ, φ ∨ ψ ?- σ,∆

and let φ1 be the formula (Γ ∧ φ) ⊃ σ ∨∆, φ2 be (Γ ∧ ψ) ⊃ σ ∨∆, and
let π1 be the projection

[[φ1 ∧ φ2 ∧ Γ ∧ (φ ∨ ψ)]]1∅ → [[φ1]]1∅

and π2 be the projection

[[φ1 ∧ φ2 ∧ Γ ∧ (φ ∨ ψ)]]1∅ → [[φ2]]1∅.

Then

F (a∨L)= 〈Id1,Cur(µγ.c∗[γ](w∗π2 ◦ 〈Id, π[[Γ]]1∅
, µβ.[γ]

(w∗Cur−1π1 ◦ 〈Id, π[[Γ]]1∅
, ν−1(π[[σ∨τ ]]1∅

)〉)〉))〉

∨R: F (a∨R)= 〈Id1,Cur(ν(ass ◦ ν−1(App ◦ 〈π[[Γ]]1∅
, π[[Γ⊃A∨B∨∆]]1∅

〉)))〉.
(Because reduction structures are derived from λµν-structures, in the
cases for ⊃ L and ∨L, the formula σ is distinguished in order to define
the interpretation.)
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Note that also in the classical case the definition of interpretation does not
force any two reductions to be equal. The reason is the same as for (intuitionistic)
reduction structure: No equality between worlds or morphisms between them is
forced by the interpretation.

Note that the the semantics of the reduction operators which involve struc-
tural rules on the right-hand side or change the side formulæ on the right-hand
side involve a change of base C. This is obviously true for ExchangeR, but also
⊃ L, ∨L, and ∨R involve such a change of base: for ⊃ L and ∨L it is given by
a contraction on the right-hand side, and for ∨L by the isomorphism used for
modelling ∨.

We can now define classical reduction models, which generalize the (intu-
itionistic) reduction models established in Definition 5.10.

Definition 5.29 (classical reduction model) A classical reduction model,

R = 〈(E , F ), [[−]], |=〉,

is given by the following:

1. A classical reduction structure (E , F );
2. An interpretation [[−]] of reduction operators and searches for LK;
3. A forcing relation W |=Θ (Φ: φ)[Γ;∆], where W is a world, Θ and Γ,∆

are contexts, φ a formula and Φ a reduction with endsequent Γ ?- φ,∆
with indeterminates contained in Θ, such that

[[Γ]]WΘ
[[Φ]]WΘ−→ [[φ,∆]]WΘ

is a morphism in the reduction structure, and which satisfies the following
conditions:
(i) If W |=Θ (Φ: φ)[Γ;∆] and a : W →W ′ is a morphism inW for some

world W ′, then also W ′ |=Θ (Φ: φ)[Γ;∆];
(ii) W |=Θ (Ax : φ)[Γ, φ; ∆];
(iii) W |=Θ,ξ (ξ : φ)[Γ;∆] if ξ is an indeterminate of type Γ ?- φ; ∆;
(iv) If R is a reduction operator with premisses Γ1 ?- φ1,∆1

and Γ2 ?- φ2,∆2 and conclusion Γ ?- φ,∆, then W |=Θ
((Φ1,Φ2);R)[Γ, φ; ∆] if

W ×WR |=Θ (Φi)[Γi, φi; ∆i];

(v) If R is a reduction operator with premiss Γ1 ?- φ1,∆1 and con-
clusion Γ ?- φ,∆, then W |=Θ (Φ1;R)[Γ, φ; ∆] if W × WR |=Θ
(Φ1)[Γ1, φ1; ∆1];
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Soundness and completeness carry over from the intuitionistic case.

Theorem 5.30 (soundness) Consider any classical reduction structure (E , F ).
Suppose Φ is a LK-reduction of Γ ?- φ,∆ with indeterminates ξ1, . . . , ξn of
type Γi ?- φi,∆i. Then W |=Θ (Φ: φ)[Γ;∆] for any world W , where Θ =
{ξ1, . . . , ξn} .

Proof The proof is essentially the same as for Theorem 5.12.

Again, we write Γ |=Θ Φ: φ; ∆ if for all worlds W and all classical reduction
models, we have W |=Θ (Φ: φ)[Γ;∆]. Then we have also completeness:

Theorem 5.31 (completeness) If Γ |=Θ Φ: φ,∆, then Γ ?- Φ : φ,∆.

Proof The term model construction for the intuitionistic case can be extended
easily to give a term model for a classical reduction structure. For the category
C choose the free Cartesian category over the atomic formulæ, and now follow
the intuitionistic case in constructing a term model out of reductions.

We also obtain completeness with respect to searches:

Theorem 5.32 Suppose (E , F ) is the free classical reduction structure over a
set of objects G. A reduction Φ of Γ ?- φ,∆ with leaves Γi ?- φi,∆i which are
not axioms can be completed to a proof iff there exists a morphism f such that
there is a functor E(〈!, f〉) : E(Θ)→E(1), where Θ is the context corresponding to
the indeterminates ξ1, . . . , ξn. Moreover, the completion of a Cut-free reduction
is Cut-free.

Proof The proof can be transferred directly from the intuitionistic case.

5.4 Discussion

We have now provided, in the intuitionistic and classical settings, a semantics for
reductive proof which satisfies our triangular criterion, summarized by Fig. 5.2.

However, we have not yet provided a semantics for proof-search. Following
our slogan,

Proof-search = Reductive Proof + Control,

Fig. 5.2. Reductions-as-realizers-as-arrows
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we must now pay attention to control. Following our discussion at the end of
Chapter 4, we shall provide, in Chapter 6, a semantics for backtracking.

We conjecture that the semantics for reductive proof given in this chapter
can be easily extended to predicate logic and quantifiers: we have previously
described how to use fibrations to obtain models for predicate logic. It should be
possible to combine these fibrations in a modular way with the fibrations used to
describe reduction structures, so as to produce reduction structures for predicate
logic.



6

INTUITIONISTIC AND CLASSICAL PROOF-SEARCH AND
THEIR SEMANTICS

6.1 Introduction

So far we have presented reductive logic and its semantics from a wholly
extensional perspective. More specifically, when considering reduction operators,
such as ∧R, ∨L, or ⊃L, which have multiple premisses, we have not considered
any strategy, for the development of the different branches, that is, for the explor-
ation of the search space [67]. We now develop a more intensional perspective,
which will emphasize the rôle and form of control.

For example, consider again the notions of uniform and weakly uniform proof
explained in Chapter 4. Recall that the basic idea is that right rules are preferred
over left rules wherever possible (though weakly uniform allows ∨Ls to occur as
close to the root of the reduction as possible). So, given a putative conclusion,

φ1, . . . , φm ?- ψ1, . . . , ψn,

the attempted construction of, that is, the search for, a uniform proof requires
that

(1) the structure of the right-hand side be analysed, then,
either a choice of one of the ψis is made and reduction operator is applied,
or

(2) the structure of the left-hand side is analysed, then
either a choice of one of the φjs is made and a reduction operator is applied,
or

(3) the search fails;
(4) and so on.

We should like our semantics of proof-search to capture at least this level of
algorithmic detail.

However, as we have already explained in the discussion that concludes
Chapter 4, there are many algorithmic choices not specified by the definition
of uniform proof yet which have consequences for the structure of the resulting
proofs, in addition to any consequences they might have for the complexity of
the computation.
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We have identified four main points.

1. Firstly, within the context of uniform proof, a sequent

φ1, . . . , φm � ψ1, . . . , ψn

may be reducible in a number of ways: There may be several ψs which are
not atomic; even if all the ψs are atomic, there may be several φs to which
left rules are applicable. This situation obtains even if we restrict ourselves
to hereditary Harrop resolution.

2. Secondly, after the reduction of a sequent Γ � ∆ using an operator R,

Γ1 � ∆1 . . . Γm � ∆m

Γ � ∆ ,

a choice of the order in which to reduce the premisses must be made.
3. Thirdly, in predicate settings, a reduction may depend upon a choice of

unifier.57

4. Finally, we must handle failure. Having made a choice of reduction, in one
of the above points, we may find that even though our sequent is provable,
we have made the wrong choice, leading to a failed proof. In these circum-
stances, we must return to the point at which we made our choice and try
a different one. This procedure is known as backtracking .

We would suggest that the last point is conceptually the most significant and,
perhaps, technically the most challenging.

In summary, we concentrate, in this chapter, on providing a semantics for
proof-search in intuitionistic (propositional) logic which captures, within the
framework of models of reductive logic set up in Chapter 5, uniform and weakly
uniform proof and backtracking. We achieve this aim firstly, by providing a
characterization in classical reduction models of where backtracking can occur
in intuitionistic proof-search and, secondly, by constructing a specific games
model within which both backtracking and the uniform proof strategies may be
understood quite naturally.

Recall that our games models are within the general framework initiated by
Hyland and Ong [64] but are generalized to allow the interpretation not only
of natural deduction proof but also the sequent calculus. Consequently, we are
able to interpret reductive proof in sufficient generality to encompass the whole
analysis of this monograph.

In Section 6.2, we give a semantics of backtracking using the semantics of
reductions defined in Chapter 5. In Section 6.3, we describe how to model back-
tracking in the games semantics we introduced earlier. In Section 6.4, we show
how to use the games semantics to give a semantics for uniform proofs.

57First-order terms have most general unifiers but higher-order terms do not [55, 62].
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6.2 Towards a semantics of control: Backtracking

Given a system of reduction operators, R, the search space of R, Space(R), may
be described graphically as an and–or tree as follows:58

1. Nodes of the tree are labelled by problems, Γ ?- ∆. The root is labelled by
the initial problem;

2. Nodes are connected by arcs labelled by instances of reduction operators,

Γ1 ?- ∆1 . . . Γm ?- ∆m

Γ ?- ∆
R,

which may be denoted

Γ ?- ∆

Γ1 ?- ∆1 Γm ?- ∆m. . .

R

in which arcs are directed (traditionally) down the page. The collection of
arcs from a node labelled by some problem Γ ?- ∆ to the nodes labelled by
the problems

Γ1 ?- ∆1 . . . Γm ?- ∆m,

determined by such an instance of a reduction operator, R, and connected
by the curved arc in the figure, is called an R-bundle;59

3. A problem may be the origin of several different bundles, corresponding to
different reduction operators and giving the disjunctive (or) structure of the
space. If n different reduction operators Ri,

Γi1 ?- ∆i1 . . . Γim ?- ∆im

Γ ?- ∆
Ri,

58In [98, 106], the search space for an intuitionistic sequent calculus is defined to carry
the ‘subderivation ordering’, : For reductions R, S, R  S if R is a labelled subtree of S.
In this chapter, we shall make no use of this ordering but remark that orderings of this kind
may provide a suitable basis modelling control régimes such as formula-selection strategies. For
example, Prolog programs may be seen as antecedents of sequents, ordered from left to right
in order to impose the ‘leftmost first’ strategy.

59Whilst this graphical notation is useful for defining search spaces, it is not convenient
for performing specific reductions, for which we revert to the use of ‘proof trees’.
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for 1 ≤ i ≤ n, are applicable to a problem Γ ?- ∆, then the corresponding
arcs in the search space may be denoted

Γ ?- ∆

(Γ1j ?- ∆1j)nj=1 (Γnj ?- ∆nj)nj=1,. . .

R1 Rn
Ri

that is, a disjunction of Ri-bundles;
4. Paths through Space(R) thus correspond to compositions of instances of

reduction operators.

Within a bundle, the search space has conjunctive (and) structure. For example,
the problem

φ ∧ ψ ?- φ ∨ ψ,

in the search space Space(LK), is the root of bundles arising from ∧R, with two
branches, and ∨R, with one branch. In the search space Space(LJ), two distinct
bundles, each with one branch, arise from ψ ∨ ψ.

Thus the exploration of a search space requires navigation between disjunctive
choices: one might make a choice, such as between the two branches of Space(LJ)
generated by the two cases of the ∨R operator, explore that branch of the search
space, and perhaps fail. One then backtracks to the point at which the choice was
made, and tries the other branch. Thus backtracking is a key, and we suggest
perhaps the prototypical, control mechanism in proof-search. Indeed, the lack
of a full permutation theorem for intuitionistic propositional sequent calculus
[65, 108, 111], with the consequence that the order of the propositional rules used
is criticial in the finding of a proof, renders backtracking an essential component
of the control of a search for a proof in LJ. To see this, consider the following
example, in which first the use of ⊃L on p ⊃ q leaves the subsequent development
of the left-hand branch of the reduction doomed to failure, even though the
endsequent is provable:60

60We adopt the notation Rφ to denote the instance of the operator O generated by the
formula φ, for example, ⊃Lp⊃q .
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After the first ⊃L, we can see that the left-hand branch will fail, and we must
backtrack to (1) and make a different choice of reduction. We might try ⊃Lr⊃s

instead. Such a control step lies outside the logical structure we have so far
established but we can give a logical account of it by considering the intuitionistic
calculus LJ to be embedded in the classical sequent calculus, LK. We quickly
review the main points from Chapters 2 and 4 in this context before proceeding
to characterize backtracking.

In general, every intuitionistic sequent derivation arises as a subderivation of
a classical sequent derivation via (e.g.) Dummett’s presentation of intuitionistic
logic as a multiple-conclusioned sequent calculus [26]. Because the classical ⊃ R-
rule allows multiple succedents in the premiss, two different intuitionistic sequent
derivations, which are not identical up to a permutation of inference rules, can
be subderivations of the same classical derivation up to a choice of axioms. For
example, consider the following two intuitionistic reductions:

They arise as restrictions to intuitionistic logic of the following classical
reduction:

Similarly, in LK viewed as reductive system, the ⊃L-rule has the form

Γ ?- φ,∆ Γ, ψ ?- ∆
Γ, φ ⊃ ψ ?- ∆

,

in which the ∆ is retained in both premisses. Using this operator instead of its
intuitionistic counterpart, we are able to restart the computation at (2), and
proceed to apply the necessary ⊃R:
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Note, in particular, the use of Exchange at (2). From the point of view of the λµν-
calculus, the necessary ⊃R-rule is applicable only if the implicational formula is
leftmost in the succedent.

A successful classical reduction for a problem Γ ?- φ yields a classical proof
but not necessarily an intuitionistic proof. So, in order to exploit the struc-
tural and combinatorial advantages of classical reduction for intuitionistic logic,
we must be able to calculate syntactically whether a given classical reduction
determines an intuitionistic proof.

To do this we represent the sequent calculus LK in the λµν-calculus (see
Chapter 4). More precisely, we represent LK in the λµνε-calculus, that is, the
λµν-calculus with explicit substitutions.

If we represent the classical sequent calculus in the λµνε-calculus, then we
can calculate whether a successful classical reduction determines the existence of
an intuitionistic proof by analyzing the structure of the λµνε-term which realizes
the classical proof (see Chapter 4).

We repeat here the basic idea. Consider the difference between the ⊃ R-rule
in the classical calculus, LK,

Γ, φ � ψ,∆
Γ � φ ⊃ ψ,∆

⊃ R,

and the form of its restriction to capture intuitionistic implication, as in
Dummett’s multiple-conclusioned calculus [26],

Γ, φ � ψ

Γ � φ ⊃ ψ,∆
⊃ R.

Here the key point is that a built-in Weakening,61 by ∆, is required. To see this,
consider the following reduction:

We need to be able to detect that the use of the ⊃ R operator to reduce the
formula θ ⊃ τ is superfluous, and so conclude that we could have simply deleted
θ ⊃ τ at the first ⊃ R reduction and so conclude that the initial problem,
ψ ?- φ ⊃ ψ, θ ⊃ τ has an intuitionistic proof.

61The Weakening rules are

Γ � ∆
Γ, Γ′ � ∆

WL and
Γ � ∆

Γ � ∆, ∆′ WR.
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Recall, from Chapter 4, the notion of an intuitionistic term in the λµνε-
calculus. The definition is complex but the basic idea is that intuitionistic terms
identify those implicational realizers, that is, terms of the form Γ � λx :φ.t :
φ ⊃ ψ,∆, in which all of the subterms of λx :φ.t corresponding to formulæ
in ∆ arise from Weakenings. In Chapter 4 we proved the following Theorem
(Theorem 4.11):

Theorem 6.1 (intuitionistic provability) Let Φ be an LK-proof of Γ � φ,∆
and let tΦ be the corresponding λµνε-term. Then tΦ is an intuitionistic term iff
Γ � φ,∆ is intuitionistically provable.

If we translate intuitionistic LJ-reductions into classical reductions, back-
tracking may occur at two points: firstly, at the ⊃ L-rule, and secondly, at the
∨R-rule. In both cases we lose potentially useful side formulæ, when we apply
the reduction operator. This can be captured semantically as follows:

Theorem 6.2 (backtracking) An intuitionistic reduction contains a possible
backtracking point before the reduction operator R if and only if for the translation
of the reduction into a classical reduction, the corresponding reduction operator
R with sufficient premisses Γi ?- φi,∆i and putative conclusion Γ ?- φ,∆, there
exists a j such that the fibres E(1, [[∆]]1∅) and E(1, [[∆j ]]1∅) are not identical.

Proof All left-operators except ⊃ L leave the right-hand sides of sequents
unchanged, and hence E(1, [[∆]]1∅) and E(1, [[∆j ]]1∅) are identical for all j. These
operators also do not give rise to a possible backtracking point. For the oper-
ator ⊃ L, E(1, [[∆]]1∅) and E(1, [[∆1]]1∅) are not identical, and indeed ⊃ L gives
rise to a backtracking point. All right-operators except ∨R do not modify the
side-formulæ on the right-hand side, and hence E(1, [[∆]]1∅) and E(1, [[∆j ]]1∅) are
identical for all j. These operators also do not give rise to a possible backtrack-
ing point. The ∨R-rule does change the side formulæ on the right-hand side
and models the intuitionistic ∨R-rule, which indeed gives rise to a backtracking
point. Also, E(1, [[∆]]1∅) and E(1, [[∆1]]1∅) are not identical.

6.3 A games semantics for proof-search

We conclude with an example of our semantics—of intuitionistic reduction with
backtracking, embedded in classical reduction—which corresponds closely to our
intuitions about the nature of constructing proofs: that is, a games semantics for
proof-search. Our semantics is based mutatis mutandis on the games semantics
for classical logic presented in [97], which in turn is based on the games of Hyland
and Ong [64].

The games semantics of Hyland and Ong [64] models natural deduction
proofs, whereas we must model the sequent calculus (and so reduction). This
implies significant, though we would argue rather natural, changes to the games
semantics introduced by Hyland and Ong. The main difference is that we permit
both players to make sequences of moves rather than single moves.
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In this section, we use the games semantics described in Section 3.6.5 to
model backtracking. We repeat here the definition of earlier chapters.

Definition 6.3 An arena of type φ is a forest with nodes having possibly
labels defined inductively by the following:

1. The arena of � is the empty forest;
2. The arena of ⊥ is the forest with one node labelled ⊥;
3. The arena for a propositional variable p is a forest with one node

labelled p;
4. The arena for φ ∧ ψ is the disjoint sum of the arenas for φ and ψ;
5. Suppose A1, . . . ,An are the trees of the arena for φ and B1, . . . ,Bm are

the trees of the arena for ψ. Then the arena for φ ∨ ψ is given by

A1 An B1 Bm... ...

L R

Note that there are two special nodes called L and R. In the special case
that the arena for φ or the arena for ψ is empty, the arena for φ ∨ ψ is
the empty arena too. The root node of the arena for φ ∨ ψ is labelled ∨;

6. Suppose A1, . . . ,An are the trees of the arena for φ and B1, . . . ,Bm are
the trees of the arena for ψ. Then the arena for φ ⊃ ψ is the disjoint
union of the following trees

P

An

P

A1

O

Bi

...

In the special case that the arena for φ is empty, the arena for φ ⊃ ψ is the
arena for ψ. All nodes in the arena for φ ⊃ ψ which are root nodes in the
arena of ψ are labelled ⊃ in addition to any other label they might have.

We call all root nodes in an arena O-nodes, and all children of O-nodes
P -nodes, and all children of P -nodes O-nodes.
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Arenas are used to define possible plays. The definition of moves and plays
makes this precise. Next, we define possible moves in our games. Each move for
a game for φ is associated with a node in the arena for φ.

There are several types of moves. Firstly, we have moves by Proponent and
Opponent, and secondly, there are question and answer moves. Questions which
correspond to O-(P -)nodes are played by Opponent (Proponent), and answers
which correspond to O-(P -)nodes are played by Proponent (Opponent). The
definition is as follows:

Definition 6.4 A move m for an arena A is a node that is classified as either
question or answer. Questions which correspond to O-(P -)nodes are moves
by Opponent (Proponent), and answers which correspond to O-(P -)nodes are
moves by Proponent (Opponent). We call a move by Proponent a P -move and
a move by Opponent an O-move.

Next, we define plays, which are instances of the game. Each play con-
sists of a sequence of moves satisfying certain conditions. The intuition is that
Opponent starts the play by challenging Proponent to verify the given formula.
Proponent responds by asking the Opponent to justify the assumptions which
Proponent can make in a sequent calculus proof of φ. Proponent wins a particular
game if he can answer Opponent’s initial question.

The moves in a play for φ follow the structure of arena of φ closely: An O-(P -)-
question can be played only if there was already a P -(O-)question corresponding
to the parent node. An answer can only be given if a question with the same
associated node has already been made.

The precise conditions for a play are as follows:

Definition 6.5 A play for an arena A is a sequence of moves m1, . . . , mn

such that

(1) there exists an index I ≥ 1 such that all moves m1, . . . , mI are
O-questions with position 1, . . . , I, respectively, and the correspond-
ing nodes are roots in the forest for A. These moves are called initial
questions;

(2) for each question mi with i > I there exists a question mk with k < i
such that the node corresponding to mk is the immediate predecessor of
the node corresponding to mi in the arena A. We call mk the justifying
question for mi;

(3) for each answer mi with i > I there exists a question mk with k < i
such that mk and mi are the same node in A. If mj is the justifying
question for mk, we call mj the justifying question for mi;
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(4) each question can be answered at most once;
(5) any initial questions can only be answered if all non-initial questions

have already been answered;
(6) for any P -answer mi there exists an O-question mk and an O-answer mj

such that mi is hereditarily justified by mk, mj is an O-answer with the
same label as mk or ⊥ and k < j < i and that the nodes corresponding
to mk and mj in the arena are on a path which does not contain a
P -node n labelled ⊃ such that the nodes corresponding to mk and mj

are its children or identical to it.

As we have seen, the key notion of games semantics is that of a strategy .
A strategy describes how Proponent responds to arbitrary Opponent moves.
Intuitively, a strategy describes how Proponent answers challenges from Oppon-
ent to prove the given formula.

Definition 6.6 A strategy is a function from plays m1, . . . , mk where
mk is an O-move, to a sequence of moves mk+1, . . . , mn such that
m1, . . . , mk, mk+1, . . . , mn is a play and the sequence mk+1, . . . , mn is non-
empty if m1, . . . , mk contains no unanswered P -move which could be answered
by Opponent in the next move according to Definition 6.5.

Now, we can explain how this semantics models searches in the sequent calcu-
lus. Intuitively, O- and P -questions are challenges for Opponent and Proponent
to provide evidence for conclusions and premisses, respectively. O-answers
provide evidence for a premiss, and P -answers provide evidence for a conclu-
sion. Conjunctive choices are made by Opponent, and disjunctive choices by
Proponent.

As usual left-operators involve operations on the premisses: they are initiated
by P -questions. Similarly, right-operators involve operations on the conclusions:
they are initiated by O-questions. The restriction in Clause 6 that Proponent
can answer questions only if Opponent has answered a P -question with the same
label before ensures that the axiom rule can be invoked only if there is the same
formula on both sides of the sequent.

Contraction is built in implicitly by allowing both players to ask the same
question several times. Moreover, Clause 2 of the definition of a play allows paral-
lel reductions in different branches of the search tree: a P -question with position
p · n1 · · ·nk · · ·m with k > 0 and p the position of the justifying O-question rep-
resents the application of ⊃ L in all branches which arise by playing moves with
position p · n1 · ni for i < k.
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Note that we allow both players to make several moves at once. This makes
it possible to model not only provability but also proofs by having different plays
for different sequences of reduction operators applied to a sequent. In particular,
the application of several left-operators requires Proponent to be able to make
several moves at the same time.

Note also that our games semantics is capable of representing detailed
information about how searches are done. The level of detail is sufficient not
only to model which reduction operators is applied but also in which order. Some
reduction operators are even modelled by several moves, with the possibility of
interleaving the moves corresponding to different reduction operators. Hence a
mapping from strategies to searches assigns the same search to several strategies.

Two rules are responsible for the fact that we model LK-reduction and not
only LJ-reductions. The first rule is the ability of Proponent to play arbitrary
moves labelled L and R. For modelling LJ-reductions, one would allow Proponent
to play only one switching move which is justified by a given O-question. The
second rule is the second part of Clause 6 of the definition of plays. This rule
models the possibility of having multiple formulæ on the right-hand side and
therefore being able to apply an axiom rule using any formula on the right-hand
side. If we omit these two rules, we obtain a representation of LJ-searches.

The games semantics Ong presents in [89] for the λµ-calculus (without dis-
junction) uses scratchpads to model classical logic. Scratchpads are separate
plays to be started by Proponent whenever he chooses. As we consider disjunc-
tion as well, we have extended the definition of an arena and introduced the
concept of switching moves (the moves labelled L and R) to model the λµν-
calculus. Proponent choosing a move labelled R corresponds to the switch of
fibres in the λµν-structures, which is captured by changing to a scratchpad in
Ong’s model.

Compared to a games semantics for natural deduction, we allow both Oppon-
ent and Proponent more freedom: both players can make several moves at a time,
which are subject to fewer restrictions. In this way, we capture the possibility of
applying reduction operators to several sequents independently. We also capture
the possiblity of sequences of blocks of left and right rules in a play.62

In Section 3.4.1, we gave an example of a play for a game for intuitionistic
logic. This play is repeated here.

A possible play for the arena for p ⊃ (p ⊃ q) ⊃ (q ⊃ r) ⊃ (r ∨ s) starts by
Opponent asking the initial question. Here, this means that Opponent is asking
for a proof of the formula. Now Proponent has various choices: he can either ask
questions labelled L or R, thereby deciding whether to prove r or s, respectively,
or to ask Opponent for evidence for the assumptions by asking any other ques-
tion. Let us assume that Proponent asks the question corresponding to the node
labelled L. Now Opponent will ask the question labelled r, thereby asking Pro-
ponent to prove r. Proponent now needs to use the assumptions. Let us assume
that Proponent asks the question labelled r, thereby challenging Opponent to

62This latter possibility is critical for modelling proof procedures such as resolution.
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provide evidence for the assumption q ⊃ r. Next, Opponent asks the question
labelled q and challenges Proponent to prove the formula r in turn, which is the
hypothesis in the implication q ⊃ r. Proponent now asks in a similar way the
question labelled q, and Opponent asks the question p. Proponent now asks for
the final assumption p. Opponent now has no choice but to answer this question,
thereby making it possible for Proponent to answer outstanding questions by
Opponent. Now Proponent can use this answer and answer Opponent’s question
p. Again, Opponent is now forced to answer the question q. This process of
answering previously asked questions goes on until finally Opponent is forced to
answer the question labelled L, and Proponent can answer the initial question.

This play corresponds to the reduction

where the reduction operators are applied in the order⊃ R;∧L;⊃ L3;⊃ L2;⊃ L1
followed by axioms. Note that the Proponent makes in the second move of the
play the (disjunctive) choice of which of the two conclusions, r and s, he wants
to prove. As this is the important aspect of the ∨R-rule, we choose this step to
say that a ∨R-rule has been applied.

If one substitutes arbitrary formulæ for propositional variables in a proof, one
still obtains a valid proof. This substitution lemma has an important analogon
for games:

Lemma 6.7 Suppose we have a strategy for the arena of a type φ which contains
a propositional variable A. Then there is also a strategy for the arena of type
φ[ψ/A], where ψ is any formula.

Proof We only sketch the proof here. By definition of plays, in all plays defined
by the strategies Opponent asks a question labelled A before Proponent does,
and Opponent’s answer is then used by Proponent to answer Opponent’s original
question. Hence Proponent can use a copy-cat strategy whenever the opponent
makes a move in the arena for ψ.

To model reductions, we use oracles, that is, additional plays which
Proponent may start at will.

Definition 6.8 A strategy with oracle of type φ is a strategy where in add-
ition Proponent is allowed to play using an additional arena for φ.
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The instantiation of non-axiom leaves of a reduction with reductions is
modelled by the substitution of strategies for oracles.

Definition 6.9 Suppose Ψ is a strategy with oracle of type φ and Φ is a
strategy of type φ. We define the substitution of Φ for the oracle in Ψ to be
the strategy Ψ except that we replace every answer which is a move given
by the arena for Φ by the move obtained by using Φ to answer Ψ’s move in
φ, then using Ψ to answer this move and so on until Ψ answers with a move
outside the arena for φ.

Before we can construct a classical reduction structure from games, we need
some preliminary notation.

Definition 6.10 Suppose C is the free Cartesian category over the set
of formulæ and assume π is a morphism from (φ1, . . . , φn) to (ψ1, . . . , ψm)
and assume that Φ is a strategy for ψ ∨ ψ1 ∨ · · · ∨ ψm. Furthermore, let
Bi,1, . . . , Bi,ki be the arenas of ψi and Aj,1, . . . , Aj,lj be the arenas of φj , and
let A1, . . . , An be the arenas of φ.

We define the strategy π∗(Φ) to be the strategy for ψ ∨ φ1 ∨ · · · ∨ φn

answering any question in the arena for ψ by the answer Φ would give to the
corresponding question, and by answering any Opponent move in the part of
the arena selecting a subarena for ψj by the Proponent move selecting the cor-
responding subarena for φi, where π maps φi to ψj , and answering any move
in any subarena ψj by the answer Φ gives to the corresponding subarena in φi.

We now describe how to construct a classical reduction structure from this
notion of game. Intuitively, the base category B of a reduction structure models
the collection of indeterminates. A reduction with indeterminates is modelled as
a game with oracles. Hence the category B consists of formulæ as objects (these
represent the available oracles) and of games with oracles as morphisms. The
indexing functor models substitution of games for oracles. As the category of
worlds, we take compositions of reduction operators, as in the construction of
the term models in Chapter 5.

The precise definition of the classical reduction structure obtained from games
is given in the proof of the following proposition:

Proposition 6.11 Games form a classical reduction structure.

Proof We present here only the definition of the categories involved; the natural
transformations are straightforward.
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The category C is the free Cartesian category over the set of formulæ.
The category B has as objects finite lists of formulæ, (φ1, . . . , φn) and as

morphisms from (φ1, . . . , φn) to (φ′
1, . . . , φ

′
m) finite lists (Φ1, . . . ,Φm) of strategies

such that Φi is a strategy for φ′
i possibly with oracles of type (φ1, . . . , φn). We

define composition of two morphisms (Φ1, . . . ,Φn) : (σ1, . . . , σk)→ (φ1, . . . , φn)
and (Ψ1, . . . ,Ψm) : (φ1, . . . , φn)→ (ψ1, . . . , ψm) in B as the list of strategies
(ψ′

1, . . . , ψ
′
m), where ψ′

i is the strategy ψi with every answer that arises from
the arena for φj . The answer for φj is replaced by the move obtained by first
using the strategy Φj to answer this move, then Ψ to answer this move, and so
on until ψi answers with a move outside the arena for φj .

For each pair of finite lists of formulæ, (φ1, . . . , φn) and (ψ1, . . . , ψm), we
define a category F((φ1, . . . , φn), (ψ1, . . . , ψm)), where the objects are formulæ
and the morphisms from φ to ψ strategies for φ ⊃ (ψ∨φ1∨· · ·∨φn), with oracles
of type ψ1, . . . , ψm. We define composition in the category

F((φ1, . . . , φn), (ψ1, . . . , ψm)),

in the same way as in the category B.
For a morphism (Φ1, . . . ,Φn) in B, and π in C, we define a functor

E((Φ1, . . . ,Φn), π)

by leaving the objects unchanged and assigning to each strategy Φ the
strategy π∗(Φ′), where Φ′

i is the strategy obtained by substituting Φi for the
indeterminate of type φi in Φ.

As the category of worlds, we take the free Cartesian category generated from
ground objects WR, where R is an LK-reduction operator, and ground morph-
ism aR : 1→WR for each reduction operator R. The functor F is defined as the
functor assigning to WR the object

((Γ1 ⊃ φ1 ∨∆1) ∧ · · · ∧ (Γn ⊃ φn ∨∆n)) ⊃ (Γ ⊃ φ ∨∆)

where R is a reduction operator with sufficient premisses Γi ?- φi,∆i and putat-
ive conclusion Γ ?- φ,∆, and to the morphism aR the canonical derivation given
by R.

Note that this highly intensional category is non-trivial: equality between
morphisms is essentially equality between partial functions. As the arenas for ⊥
and�, and for φ and ¬¬φ, are different, strategies for them cannot be equal. If we
were to try to define an extensional collapse of this category, we must be careful
to ensure that the arenas for ¬¬φ and φ be not identified under the collapse.

Now we explain how backtracking is modelled in our games semantics. Back-
tracking points are captured by the possibility of Proponent making disjunctive
choices which are not available when the moves are restricted to intuitionistic
games. This is the case when Proponent plays both switching moves and when
Proponent plays a P -question m corresponding to a node arising from a ⊃ L-
operator. In the first case, playing the other switching move is not allowed in
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Fig. 6.1. Arena for (p ⊃ q) ⊃ (r ⊃ s) ⊃ (s ⊃ t) ⊃ r ⊃ t

games for LJ, and in the second case no previously pending O-question can be
used to justify the P -answer to the O-question which is the immediate successor
to the P -question m.

Backtracking actually occurs when Proponent plays a different switching
move, or actually answers a question with a different label using Clause 6 of
the definition of a play.

To illustrate this point, consider an example of the previous section, namely
the reduction for the sequent

((p ⊃ q) ∧ (r ⊃ s) ∧ (s ⊃ t) ∧ r) ⊃ t.

The arena is given in Fig. 6.1. Then the following play corresponds to the second
reduction in the previous section:

OQ
t PQ

q OQ
r PQ

t OQ
s PQ

s OQ
r PQ

r OA
r PA

r OA
s PA

s OA
t PA

r OA
q PA

t ,

where moves by Opponent (Proponent) are denoted by the letter O (P ) with
subscripts and superscripts, and the subscript indicates the label of the move
and the superscript indicates whether the move is a question or an answer.

Note first the contraction involved in this play: the move PQ
t models both

instances of the ⊃ L-operator reducing s ⊃ t. The backtracking points are the
P -questions labelled q, s, and t, and backtracking is reached with the move PA

r :
this move is possible only in games for multiple-conclusioned LK, and models
the Exchange which is necessary to make the reduction succeed.

6.4 A concluding example: The semantics of uniform proof

Let us briefly review what we have achieved so far in this monograph.

1. Beginning with a review of the semantics of intuitionistic proofs, we have
shown how the mathematical framework used there can be extended to
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provide a semantics for classical proofs. We have discussed the failings of this
approach and have given a range of examples including, a games semantics
which combines ideas from the games semantics of intuitionistic provability
and the games semantics of linear proof and programming languages.

2. We have explained the notion of reductive proof. We have shown how, via
proof-theoretic analyses based on permutability and uniformity, the key
technology of resolution, for both classical and intuitionistic logic, may be
understood systematically as reductive systems.

3. We have explained the difficulties which arise in providing models for reduct-
ive proof which are of comparable value to those of deductive proof and
have explained how our models of intuitionistic and classical proof may be
enriched with a notion of indeterminate in order to interpret the inherent
partiality and uncompletability of reductions.

4. We have shown how the key control régime of proof-search, that is, back-
tracking, in the computation of reductive proofs, may be understood
semantically for intuitionistic logic by embedding models of intuitionistic
reduction in models of classical reduction. In particular, we have given a
game-theoretic example of this semantics.

Now, by way of a conclusion which ties together all of the key points in our
development, we describe how our games semantics captures uniform proof and
weakly uniform proof, that is, the classes of proofs which are the key to our
systematic characterization of resolution proof within the reductive framework.

Recall that a uniform proof in (single-conclusioned) LJ is a proof in which
right rules are preferred over left rules, so that a left rule is applied only if all
formulæ on the right-hand side are atomic. In our games semantics, right-rules
correspond to challenges by Opponent and left rules to challenges by Proponent,
so uniform proofs correspond to strategies in which Opponent always plays as
many rules as possible. The precise definition is as follows:

Definition 6.12 A strategy for φ in a game for intuitionistic or classical logic
is called a uniform strategy if the following conditions hold: (i) Opponent
always makes as many moves as possible; (ii) Proponent makes any move
labelled L or R if possible.

If we consider games for intuitionistic logic, then a uniform strategy corresponds
to a uniform proof in (single-conclusioned) LJ. If we consider games for classical
logic, then a uniform strategy corresponds to a uniform proof in classical LK.

Weakly uniform proofs can be characterized in the same way. Recall that a
weakly uniform proof is a uniform proof where, in addition to the conditions for
uniform proof, ∨L-rules are applied as close to the root as possible. This can be
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captured in the games semantics by defining a strategy to be a weakly uniform
strategy if

(i) it is uniform, and
(ii) moves by Proponent corresponding to the root node in the arena for the

interpretation of any formula φ ∨ ψ (on the left) are played in preference to
any other moves, and

(iii) moves by Opponent labelled L and R are played in preference to any other
move.

As we have seen earlier, the embedding of a uniform single-conclusioned
LJ-proof Φ in LK is not necessarily uniform, but there exists a uniform multiple-
conclusioned uniform LK-proof Φ′ which contains the LJ-proof as a subproof.
The parts of Φ′ that are not contained in Φ correspond to Weakening terms when
the translation of Φ′ into the λµνε-calculus is considered.

This has an analogue in games: Any strategy for intuitionistic games is also
a strategy for classical games. As Opponent has more possibilities of challenging
Proponent, a strategy which is uniform for intuitionistic games is not uniform for
classical games. However, any uniform strategy for intuitionistic games gives rise
in a canonical way to a uniform strategy for classical games: Proponent ignores
the additional questions by Opponent and considers only the questions Opponent
asked in the original strategy. Proponent is also able to use the answers he gave
in the intuitionistic strategy to answer the additional questions by Opponent.

6.5 Discussion

We have provided a semantics for intuitionistic proof-search, that is, intuitionistic
reductive proof with backtracking. In particular, we have provided a semantics
for weakly uniform and uniform proof. Thus our semantics accounts for the
principal structural aspects of reductive proof theory, which characterizes both
classical and intuitionistic resolution, as well as the principal control régime for
proof-search in these systems.

We have not, however, addressed all of the aspects of a control régime that
are necessary to define a deterministic proof-search procedure. Specifically, we
have not considered how to incorporate with our semantics a representation of
the selection of formulæ in a sequent and selection between the premisses of a
reduction operator. For example, given the sequent

Γ, φ1 ∨ φ2, ψ1 ∨ ψ2 ?- χ

we must choose a formula to drive the reduction. Suppose we choose φ1 ∨ φ2,
then, applying the ∨L operator, we obtain the premisses

Γ, φ1, ψ1 ∨ ψ2 ?- χ and Γ, φ2, ψ1 ∨ ψ2 ?- χ.

So we must choose which premiss to attack next.
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One approach to these issues might be to incorporate notions of ordering, cf.
domain theory [5], into the basic constructions of the semantics.

We conjecture that our semantics of proof-search (including the treatment of
backtracking) can be easily extended to predicate logic. The quantifiers can be
added easily to the λµν-calculus, and for the games semantics we should consider
games in which a universally quantified formula gives rise to a generic question by
Opponent and in which an existentially quantified formula to a generic question
by Proponent.
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