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On the Point of this Book

In which our heroes decide, possibly encouraged by a requirement for
graduation, to set out to explore the world.



102 CHAPTER 1. ON THE POINT OF THIS BOOK

Why You Might Care

Just because some of us can read and write and do a
little math, that doesn’t mean we deserve to conquer
the Universe.

Kurt Vonnegut (1922–2007)
Hocus Pocus (1990)

This book is designed for an undergraduate student who has taken a computer sci-
ence class or three—most likely, you are a sophomore or junior prospective or current
computer science major taking your first non-programming-based CS class. If you
are a student in this position, you may be wondering why you’re taking this class (or
why you have to take this class!). Computer science students taking a class like this one
sometimes don’t see why this material has anything to do with computer science—
particularly if you enjoy CS because you enjoy programming.

I want to be clear: programming is awesome! I get lost in code all the time—let’s
not count the number of hours that I spent writing the code to draw the fractals in
Figure 5.1 in LATEX, for example. (LATEX, the tool used to typeset this book, is the stan-
dard typesetting package for computer scientists, and it’s actually also a full-fledged, if
somewhat bizarre, programming language.)

But there’s more to CS than programming. In fact, many seemingly unrelated prob-
lems rely on the same sorts of abstract thinking. It’s not at all obvious that an optimiz-
ing compiler (a program that translates source code in a programming language like C
into something directly executable by a computer) would have anything important in
common with a program to play chess perfectly. But, in fact, they’re both tasks that are
best understood using logic (Chapter 3) as a central component of any solution. Simi-
larly, filtering spam out of your inbox (“given a message m, should m be categorized as
spam?”) and doing speech recognition (“given an audio stream s of a person speaking
in English, what is the best ‘transcript’ reflecting the words spoken in s?”) are both
best understood using probability (Chapter 10).

And these, of course, are just examples; there are many, many ways in which we
can gain insight and efficiency by thinking more abstractly about the commonalities of
interesting and important CS problems. That is the goal of this book: to introduce the
kind of mathematical, formal thinking that will allow you to understand ideas that are
shared among disparate applications of computer science—and to make it easier for
you to make your own connections, and to extend CS in even more new directions.

How To Use This Book

Read much, but not many Books.

Benjamin Franklin (1706–1790)
Poor Richard’s Almanack (1738)

The brief version of the advice for how to use this book is: it’s your book; use it how-
ever you’d like. (Will Shortz, the puzzle editor of The New York Times, gives the anal-
ogous advice about crossword puzzles when he’s asked whether Googling for an
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answer is cheating.) But my experience is that students do best when they read ac-
tively, with scrap paper close by; most people end up with a deeper understanding of a
problem by trying to solve it themselves first, before they look at the solution.

I’ve assumed throughout that you’re comfortable with programming in at least one
language, including familiarity with recursion. It doesn’t much matter which particu-
lar programming language you know; we’ll use features that are shared by almost all
modern languages—things like conditionals, loops, functions, and recursion. You may
or may not have had more than one programming-based CS course; many, but not all,
institutions require Data Structures as a prerequisite for this material. There are times
in the book when a data structures background may give you a deeper understanding
(but the same is true in reverse if you study data structures after this material). There
are similarly a handful of topics for which rudimentary calculus background is valu-
able. But knowing/remembering calculus will be specifically useful only a handful of
times in this book; the mathematical prerequisite for this material is really algebra and
“mathematical maturity,” which basically means having some degree of comfort with
the idea of a mathematical definition and with the manipulation of a mathematical
expression. (The few places where calculus is helpful are explicitly marked.)

2

3

4

5

6 7 8 9 11

10

data types

logic

proofs

induction

analysis of
algorithms

number
theory

relations counting

probability

graphs/trees

There are 10 chapters after this one in the book.
Their dependencies are as shown at right. Aside from
these dependencies, there are some occasional refer-
ences to other chapters, but these references are light.
If you’ve skipped Chapter 6—many instructors will
choose not cover this material, as it is frequently in-
cluded in a course on Algorithms instead of this one—
then it will still be useful to have an informal sense of
O, Ω, and Θ notation in the context of the worst-case
running time of an algorithm. (You might skim Sec-
tions 6.1 and 6.6 before reading Chapters 7–11.)

I’ve tried to include some helpful tips for problem
solving in the margins throughout the book, along with
a few warnings about common confusions and some
notes on terminology/notation that may be helpful in
keeping the words and symbols straight. There are also two kinds of extensions to the
main material. The “Taking it Further” blocks give more technical details about the
material under discussion—an alternate way of thinking about a definition, or a way
that a concept is used in CS or a related field. You should read the “Taking it Further”
blocks if—but only if!—you find them engaging. Each section also ends with one or
more boxed-off “Computer Science Connections” that show how the core material can
be used to solve a wide variety of (interesting, I hope!) CS applications. No matter how
interesting the core technical material may be, I think that it is what we can do with it
that makes it worth studying.
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What This Book Is About

All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei (1564–1642)

This book focuses on discrete mathematics, in which the entities of interest are dis-
tinct and separate. Discrete mathematics contrasts with continuous mathematics, as Be careful; there

are two different
words that are pro-
nounced identically:

discrete, adj.: indi-
vidually separate
and distinct.

discreet, adj.: care-
ful and judicious
in speech, espe-
cially to maintain
privacy or avoid
embarrassment.

You wouldn’t read a
book about discreet
mathematics;
instead, someone
who trusts you
might quietly share
it while making
sure no one was
eavesdropping.

in calculus, which addresses infinitesimally small objects, which cannot be separated.
We’ll use summations rather than integrals, and we’ll generally be thinking about
things more like the integers (“1, 2, 3, . . .”) than like the real numbers (“all numbers
between π and 42”). Because this book is mostly focused on non-programming-based
parts of computer science, in general the “output” that you produce when solving a
problem will be something different from a program. Most typically, you will be asked
to answer some question (quantitatively or qualitatively) and to justify that answer—
that is, to prove your answer. (A proof is an ironclad, airtight argument that convinces
its reader of your claim.) Remember that your task in solving a problem is to persuade
your reader that your purported solution genuinely solves the problem. Above all, that
means that your main task in writing is communication and persuasion.

There are three very reasonable ways of thinking about this book.
View #1 is that this book is about the mathematical foundations of computation.

This book is designed to give you a firm foundation in mathematical concepts that are
crucial to computer science: sets and sequences and functions, logic, proofs, probabil-
ity, number theory, graphs, and so forth.

View #2 is that this book is about practice. Essentially no particular example that
we consider matters; what’s crucial is for you to get exposure to and experience with
formal reasoning. Learning specific facts about specific topics is less important than
developing your ability to reason rigorously about formally defined structures.

View #3 is that this book is about applications of computer science: it’s about error-
correcting codes (how to represent data redundantly so that the original information
is recoverable even in the face of data corruption); cryptography (how to communi-
cate securely so that your information is understood by its intended recipient but not
by anyone else); natural language processing (how to interpret the “meaning” of an
English sentence spoken by a human using an automated customer service system);
and so forth. But, because solutions to these problems rely fundamentally on sets and
counting and number theory and logic, we have to understand basic abstract struc-
tures in order to understand the solutions to these applied problems.

In the end, of course, all three views are right: I hope that this book will help to in-
troduce some of the foundational technical concepts and techniques of theoretical
computer science, and I hope that it will also help demonstrate that these theoretical
approaches have relevance and value in work throughout computer science—in topics
both theoretical and applied. And I hope that it will be at least a little bit of fun.

Bon voyage!



2
Basic Data Types

In which our heroes equip themselves for the journey ahead, by taking on
the basic provisions that they will need along the road.
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2.1 Why You Might Care

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859–1930),
A Scandal in Bohemia (1892)

This chapter will introduce concepts, terminology, and notation related to the most
common data types that recur throughout this book, and throughout computer sci-
ence. These basic entities—the Booleans (True and False), numbers (integers, rationals,
and reals), sets, sequences, functions—are also the basic data types we use in modern
programming languages. Essentially every common primitive data type in programs
appears on this list: a Boolean, an integer (or an int), a real number (or a float), and
a string (an ordered sequence of characters). Ordered sequences of other elements are
usually called arrays or lists. If you’ve taken a course on data structures, you’ve proba-
bly worked on several implementations of sets that allow you to insert an element into
an unordered collection and to test whether a particular object is a “member” of the
collection. And functions that map a given input to a corresponding output are the
basic building blocks of programs.

Virtually every interesting computer science application uses these basic data types
extensively. Cryptography, which is devoted to the secure storage and transmission
of information in such a way that a malicious third party cannot decipher that infor-
mation, is typically based directly on integers, particularly large prime numbers. A
ubiquitous task in machine learning is to “cluster” a set of entities into a collection of
nonoverlapping subsets so that two entities in the same subset are similar and two en-
tities in different subsets are dissimilar. In information retrieval, where we might seek
to find the document from a large collection that is most relevant to a given query, it
is common to represent each document by a vector (a sequence of numbers) based on
the words used in the document, and to find the most relevant documents by identify-
ing which ones “point in the same direction” as the query’s vector. And functions are
everywhere in CS, from data structures like hash tables to the routing that’s done for
every packet of information on the internet.

In this chapter, we’ll describe these basic entities and some standard notation that’s
associated with them. Some closely related topics will appear later in the book, as
well. Chapter 7, on number theory, will discuss some subtler properties of the inte-
gers, particularly divisibility and prime numbers. Chapter 8 will discuss relations,
a generalization of functions. But, really, every chapter of this book is related to this
chapter: our whole enterprise will involve building complex objects out of these simple
ones (and, to be ready to understand the more complex objects, we have to understand
the simple pieces first). And before we launch into the sea of applications, we need
to establish some basic shared language. Much of the basic material in this chapter
may be familiar, but regardless of whether you have seen it before, it is important and
standard content with which it is important to be comfortable.
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2.2 Booleans, Numbers, and Arithmetic

Everything you can imagine is real.

Pablo Picasso (1881–1973)

We start with the most basic types of data: Boolean values (True and False), integers
(. . . ,−2,−1, 0, 1, 2, . . .), rational numbers (fractions with integers as numerators and de-
nominators), and real numbers (including the integers and all the numbers in between
them). The rest of this section will then introduce some basic numerical operations:
absolute values and rounding, exponentiation and logarithms, summations and prod-
ucts. Figure 2.1 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False

The most basic unit of data is the bit: a single piece of information, which either takes
on the value 0 or the value 1. Every piece of stored data in a digital computer is stored
as a sequence of bits. (See Section 2.4 for a formal definition of sequences.)

We’ll view bits from several different perspectives: 1 and 0, on and off, yes and no,
True and False. Bits viewed under the last of these perspectives have a special name,
the Booleans: Booleans are

named after George
Boole (1815–
1864), a British
mathematician,
who was the first
person to think
about True as 1 and
False as 0.

Definition 2.1 (Booleans)
A Boolean value is either True or False.

The Booleans are the central object of study of Chapter 3, on logic. In fact, they are
in a sense the central object of study of this entire book: simply, we are interested in
making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals

We’ll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2 (Integers, Reals, and Rationals)
• The integers, denoted by Z, are those numbers with no fractional part: 0, the positive

integers (1, 2, . . .), and the negative integers (−1,−2,−3, . . .).

• The real numbers, denoted by R, are those numbers that can be (approximately)
represented by decimal numbers; informally, the reals include all integers and all numbers
“between” any two integers.

• The rational numbers, denoted by Q, are those real numbers that can be represented as a
ratio n

m of two integers n and m, where n is called the numerator and m 6= 0 is called the
denominator. A real number that is not rational is called an irrational number.

Here are a few examples of each of these types of numbers:

The superficially
unintuitive notation
for the integers,
the symbol Z, is a
stylized “Z” that
was chosen because
of the German
word Zahlen, which
means “numbers.”
The name rationals
comes from the
word ratio; the
symbol Q comes
from its synonym
quotient. (Besides,
the symbol R was
already taken by
the reals, so the
rationals got stuck
with their second
choice.)
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Booleans True and False
Z integers (. . . ,−3,−2,−1, 0, 1, 2, 3, . . .)
Q rational numbers
R real numbers
[a, b] those real numbers x where a ≤ x ≤ b
(a, b) those real numbers x where a < x < b
[a, b) those real numbers x where a ≤ x < b
(a, b] those real numbers x where a < x ≤ b
|x| absolute value of x: |x| := −x if x < 0; |x| := x if x ≥ 0
⌊x⌋ floor of x: x rounded down to the nearest integer
⌈x⌉ ceiling of x: x rounded up to the nearest integer
bn b multiplied by itself n times
b1/n, or n√b a number y such that yn = b (where y ≥ 0 if possible), if one exists
bm/n (b1/n)m
logb x logarithm: logb x is the value y such that by = x, if one exists
n mod k modulo: n mod k := the remainder when dividing n by k
k | n k (evenly) divides n
∑ summation: ∑n

i=1 xi := x1 + x2 + · · · + xn
∏ product: ∏n

i=1 xi := x1 · x2 · · · · · xn

Figure 2.1: Sum-
mary of the basic
mathematical nota-
tion introduced in
Section 2.2.

Example 2.1 (Integers, reals, and rationals)
The following are all examples of integers: 1, 42, 0, and −17.

All of the following are real numbers: 1, 99.44, the ratio of the circumference
of a circle to its diameter π ≈ 3.141592653 · · · , and the so-called golden ratio
φ = (1 +

√
5)/2 ≈ 1.61803 · · · .

Examples of rational numbers include 3
2 , 9

5 , 16
4 , and 4

1 . (In Chapter 8, we’ll talk
about the familiar notion of the equivalence of two rational numbers like 1

2 and 2
4 ,

or like 16
4 and 4

1 , based on common divisors. See Example 8.36.) Of the example real
numbers above, both 1 and 99.44 are rational numbers; we can write them as 1

1 and
4972
50 , for example. Both π and φ are irrational.

Here are a few useful points relating these three types of numbers:

• All integers are rational numbers (with denominator equal to 1).
• All rational numbers are real numbers.
• But not all rational numbers are integers and not all real numbers are rational: for

example, 3
2 is not an integer, and

√
2 is not rational. (We’ll prove that

√
2 is not

rational in Example 4.21.)

Taking it further: Definition 2.2 specifies Z, Q, and R somewhat informally. To be completely rigor-
ous, one can define the nonnegative integers as the smallest collection of numbers such that: (i) 0 is an
integer; and (ii) if x is an integer, then x + 1 is also an integer. See Section 5.4.1. (Of course, for even this
definition to make sense, we’d need to give a rigorous definition of the number zero and a rigorous def-
inition of the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define
the rationals as ratios of integers. But formally defining the real numbers is surprisingly challenging; it
was a major enterprise of mathematics in the late 1800s, and is often the focus of a first course in analysis
in an undergraduate mathematics curriculum.

Virtually every programming language supports both integers (usually known as ints) and real
numbers (usually known as floats); see p. 217 for some discussion of the way that these basic numerical
types are implemented in real computers. (Rational numbers are much less frequently implemented as
basic data types in programming languages, though there are some exceptions, like Scheme.)
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In addition to the basic symbols that we’ve introduced to represent the integers, the
rationals, and the reals (Z, Q, and R), we will also introduce special notation for some
specific subsets of these numbers. We will write Z≥0 and Z≤0 to denote the nonnega-
tive integers (0, 1, 2, . . .) and nonpositive integers (0,−1,−2, . . .), respectively. Generally,
when we write Z with a superscripted condition, we mean all those integers for which
the stated condition is true. For example, Z 6= 1 denotes all integers aside from 1. Sim-
ilarly, we write R>0 to denote the positive real numbers (every real number x > 0).
Other conditions in the superscript of R are analogous.

0 1 2 3 4 5
(a) The interval (1, 4)

0 1 2 3 4 5
(b) The interval [1, 4]

0 1 2 3 4 5
(c) The interval [1, 4)

0 1 2 3 4 5
(d) The interval (1, 4]

Figure 2.2: Number
lines representing
real numbers
between 1 and 4,
with 1 included in
the range in (b, c),
and 4 included in
the range in (b, d).

We’ll also use standard notation for intervals of real numbers, denoting all real
numbers between two specified values. There are two variants of this notation, which
allow “between two specified values” to either include or exclude those specified val-
ues. We use round parentheses to mean “exclude the endpoint” and square brackets
to mean “include the endpoint” when we denote a range:

• (a, b) denotes those real numbers x for which a < x < b.
• [a, b] denotes those real numbers x for which a ≤ x ≤ b.
• (a, b] denotes those real numbers x for which a < x ≤ b.
• [a, b) denotes those real numbers x for which a ≤ x < b.

Sometimes (a, b) and [a, b] are, respectively, called the open interval and closed inter-
val between a and b. These four types of intervals are also sometimes denoted via
a number line, with open and closed circles denoting open and closed intervals; see
Figure 2.2 for an example. For two real numbers x and y, we will use the standard
notation “x ≈ y” to denote that x is approximately equal to y. This notation is defined
informally, because what counts as “close enough” to be approximately equal will
depend heavily on context.

2.2.3 Absolute Value, Floor, and Ceiling

In the remaining subsections of Section 2.2, we will give definitions of some standard
arithmetic operations that involve the numbers we just defined. We’ll start in this
subsection with three operations on a real number: absolute value, floor, and ceiling.

The absolute value of a real number x, written |x|, denotes how far x is from 0, disre-
garding the sign of x (that is, disregarding whether x is positive or negative):

Definition 2.3 (Absolute Value)
The absolute value of a real number x is |x| :=





x if x ≥ 0
−x otherwise.

For example, |42.42| = 42.42 and | − 128| = 128. (Definition 2.3 uses standard notation
for defining “by cases”: the value of |x| is x when x ≥ 0, and the value of |x| is −x
otherwise—that is, when x < 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which
are called the floor and ceiling of x, respectively:
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Definition 2.4 (Floor and ceiling)
The floor of a real number x, written ⌊x⌋, denotes the largest integer that is less than or equal
to x. The ceiling of a real number x, written ⌈x⌉, denotes the smallest integer that is greater
than or equal to x.

Note that Definition 2.4 defines the floor and ceiling of negative numbers, too; the
definition doesn’t care whether x is greater than or less than 0.

Here are a few examples of floor and ceiling:

Example 2.2 (Floor and ceiling)
We have ⌊

√
2⌋ = ⌊1.4142 · · ·⌋ = 1, ⌊2π⌋ = ⌊6.28318 · · ·⌋ = 6, and ⌊3⌋ = 3. For ceilings,

we have ⌈
√

2⌉ = 2, ⌈2π⌉ = 7, and ⌈3⌉ = 3.
For negative numbers, ⌊−

√
2⌋ = ⌊−1.4142 · · ·⌋ = −2, and ⌈−

√
2⌉ = −1.

−2 −1 0 1 2 3

Figure 2.3: The floor
and ceiling of −

√
2,√

2, and 3.

The number line may give an intuitive way to think about floor and ceiling: ⌊x⌋ de-
notes the first integer that we encounter moving left in the number line starting at
x; ⌈x⌉ denotes the first integer that we encounter moving right from x. (And x itself
counts for both definitions.) See Figure 2.3.

2.2.4 Exponentiation

We next consider raising a number to an exponent or power.

Definition 2.5 (Raising a number to an integer power)
For a real number b and a nonnegative integer n, the number bn denotes the result of
multiplying b by itself n times:

b0 := 1 and, for n ≥ 1, bn := b · b · · · b︸ ︷︷ ︸
n times

.

The number b is called the base and the integer n is called the exponent.

For example, 20 = 1, 22 = 2 · 2 = 4, 25 = 2 · 2 · 2 · 2 · 2 = 32, and 52 = 5 · 5 = 25.
Note again that b0 = 1 for any base b, including b = 0. (The case of 00 is tricky: one is

tempted to say both “0 to the anything is 0” and “anything to the 0 is 1.” But, of course,
these two statements are inconsistent. For us, the latter trumps the former, and 00 = 1,
as in Definition 2.5.)

Raising a base to nonintegral exponents
Consider the expression bx for an exponent x > 0 that is not an integer. (It’s all too

easy to have done this calculation by typing numbers into a calculator without actually
thinking about what the expression actually means!) Here’s the definition of bm/n

when the exponent m
n is a rational number:
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Definition 2.6 (Raising a number to a positive rational power)
For any real number b and for any positive integers m and n 6= 0:

• b1/n denotes the number y such that yn = b. The value b1/n is called the nth root of b, and
it can also be denoted by n√b. If there are two values y such that yn = b, then by b1/n we
mean the number y ≥ 0 such that yn = b. If there are no such values y, then we’ll treat
b1/n as undefined.

• bm/n denotes the mth power of b1/n: that is, bm/n := (b1/n)m.

Here are a few examples:

Example 2.3 (Some fractional exponents)
• 161/2 is the value y such that y2 = 16, so 161/2 = 4 (because 42 = 16). Similarly,

161/4 = 2 because 24 = 16.

• The value of 51/2 is roughly 2.2360679774, because 2.23606797742 ≈ 5. (But note
that this value of 51/2 is only an approximation, because actually 2.23606797742 =
4.99999999955372691076 6= 5.)

• As the definition implies, there may be more than one y such that yn = b. For
example, consider 41/2. We need a number y such that y2 = 4—and either y = 2 or
y = −2 satisfies this condition. By the definition, if there are positive and negative
values of y satisfying the requirement, we choose the positive one. So 41/2 = 2.

• For (−8)1/3, we need a value y such that y3 = −8. No y ≥ 0 satisfies this condition,
but y = −2 does. Thus (−8)1/3 = −2.

• For (−8)1/2, we need a value y such that y2 = −8. No y ≥ 0 satisfies this condition,
and no y ≤ 0 does either. Thus we will treat (−8)1/2 as undefined.

Taking it further: Definition 2.6 presents difficulties if we try to compute, say,
√
−1: the definition tells

us that we need to find a number y such that y2 = −1. But y2 ≥ 0 if y ≤ 0 and if y ≥ 0, so no real number
y satisfies the requirement y2 = −1. To handle this situation, one can define the imaginary numbers,
specifically by defining i :=

√
−1. (The name “real” to describe real numbers was chosen to contrast with

the imaginary numbers.)
We will not be concerned with imaginary numbers in this book, although—perhaps surprisingly—

there are some very natural computational problems in which imaginary numbers are fundamental
parts of the best algorithms solving them, such as in signal processing and speech processing (transcrib-
ing English words from a raw audio stream) or even quickly multiplying large numbers together.

When we write
√

b without explicitly indicating which root is intended, then we
are talking about the square root of b. In other words,

√
b := 2√b denotes the y such that

y2 = b. An integer n is called a perfect square if
√

n is an integer.

Definition 2.7 (Raising a number to a negative power)
When the exponent x is negative, then bx is defined as 1

b−x .

For example, 2−4 = 1
24 = 1

16 and 25−3/2 = 1
253/2 = 1

(251/2)3 = 1
53 = 1

125 .
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23 = 8

231/10 = 8.5741 · · ·
2314/100 = 8.8815 · · ·

23141/1000 = 8.8213 · · ·
231415/10000 = 8.8244 · · ·

2314159/100000 = 8.8249 · · ·
...

Figure 2.4: Ap-
proximating 2π .

For an irrational exponent x, the value of bx is approximated arbitrarily
closely by choosing a rational number m

n sufficiently close to x and computing
the value of bm/n.

Taking it further: A fully rigorous treatment of irrational powers requires a formal definition
of the real numbers and an (ε, δ)-style proof as in calculus; we will omit the details as they are
tangential to our purposes in this book. The basic idea is to choose a rational number m/n that
approximates x to within a small error—for example, approximate r by the first k digits of its
decimal expansion (which can be written as m/10k )—and approximate bx by bm/n. For example, 2π
is approximated by the sequence shown in Figure 2.4; the value of 2π is the limit of this sequence
of approximations.

While essentially every modern programming language supports exponentiation—including
positive, fractional, and negative powers—in some form, often in a separate math library, the actual
behind-the-scenes computation is rather complicated. See p. 218 for some discussion of the underlying
steps that are done to compute a quantity like

√
x.

Here are a few useful facts about exponentiation:

Theorem 2.1 (Properties of exponentials)
For any real numbers a and b, and for any rational numbers x and y:

b0 = 1 (2.1.1)
b1 = b (2.1.2)

bx+y = bx · by (2.1.3)
(bx)y = bxy (2.1.4)
(ab)x = ax · bx (2.1.5)

These properties follow fairly straightforwardly from the definition of exponentiation.
(The properties of Theorem 2.1 carry over to irrational exponents, though the proofs
are less straightforward.)

2.2.5 Logarithms

The logarithm (or log) is the inverse operation to exponentiation: the value of an expo-

Problem-solving
tip: I have found
many CS students
scared, and scarred,
by logs. The fear
appears to me to
result from students
attempting to
memorize facts about
logs without trying
to think about
what they mean.
Mentally translating
between logs and
exponentials can
help make these
properties more
intuitive and can
help make them
make sense. Often
the intuition of
a property of
exponentials
is reasonably
straightforward to
grasp.

nential by is the result of multiplying a number b by itself y times, while the value of a
logarithm logb x is the number of times we must multiply b by itself to get x.

Definition 2.8 (Logarithm)
For a positive real number b 6= 1 and a real number x > 0, the logarithm base b of x, written
logb x, is the real number y such that by = x.

Here are a few simple examples:

Example 2.4 (Some logs)
• The quantity log3 81 is the power to which we must raise 3 to get 81—and thus

log3 81 = 4, because 34 = 3 · 3 · 3 · 3 = 81.
• Similarly, log4 16 = 2, because 42 = 16.
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• Because 2 =
√

4 = 41/2, we have log4 2 = 0.5.
• 1280 = 1, so log128 1 = 0.
• 21.5849625 = 2.999999998 ≈ 3, so log2 3 ≈ 1.5849625.

200 400 600 800 1000

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Figure 2.5: A graph
of log10 x.

For any base b, note that logb x does get larger as the value of x
increases, but it gets larger very slowly. Figure 2.5 illustrates the
slow rate of growth of log10 x as x grows.

For a real number x ≤ 0 and any base b, the expression logb x is
undefined. For example, the value of log2(−4) would be the num-
ber y such that 2y = −4—but 2y can never be negative. Similarly,
logarithms base 1 are undefined: log1 2 would be the number y
such that 1y = 2—but 1y = 1 for every value of y.

Logarithms show up frequently in the analysis of data structures and algorithms,
including a number that we will discuss in this book. Several facts about logarithms
will be useful in these analyses, and are also useful in other settings. Here are a few:

Theorem 2.2 (Properties of logarithms)
For any real numbers b > 1, c > 1, x > 0, and y > 0, the following properties hold:

logb 1 = 0 (2.2.1)

logb b = 1 (2.2.2)

logb xy = logb x + logb y log of a product (2.2.3)

logb
x
y = logb x − logb y log of a quotient (2.2.4)

logb xy = y logb x (2.2.5)

logb x =
logc x
logc b

“change of base” formula (2.2.6)

These properties generally follow directly from the analogous properties of exponen-
tials in Theorem 2.1. You’ll explore some properties of logarithms (including many of
the properties from Theorem 2.2) in the exercises.

We will make use of one standard piece of notational shorthand: often the expres-
sion log x is written without an explicit base. When computer scientists write the ex-
pression log x, we mean log2 x. One other base is commonly used in logarithms: the
natural logarithm ln x denotes loge x, where e ≈ 2.718281828 · · · is defined from calculus
as e := limn→∞(1 + 1

n )n.

Throughout this
book (and through-
out computer
science), the as-
sumed base of
log x is 2. (Some
computer scien-
tists write lg x to
denote log2 x; we’ll
simply write log x.)
But be aware that
mathematicians or
engineers may treat
the default base to
be e or 10.

2.2.6 Moduli and Division

So far, we’ve discussed multiplying numbers (repeatedly, to compute exponentials); in
this subsection, we turn to the division of one number by another. When we consider
dividing two integers—64 by 5, for example—there are several useful values to con-
sider: regular-old division ( 64

5 = 12.8), what’s sometimes called integer division giving
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“the whole part” of the fraction (⌊ 64
5 ⌋ = 12), and the remainder giving “the leftover

part” of the fraction (the difference between 64 and 12 · 5, namely 64− 60 = 4).
We will return to these notions of division in great detail in Chapter 7, but we’ll

begin here with the formal definitions for the notions related to remainders:

Definition 2.9 (Modulus (remainder))
For any integers k > 0 and n, the integer n mod k is the remainder when we divide n by k.
Using the “floor” notation from Section 2.2.3, the value n mod k is defined as
n mod k := n − k ·

⌊ n
k
⌋
.

Here are examples of the value of a few integers mod 3:

Example 2.5 (Three values mod 3)
• 8 mod 3 = 2, because 8 is 2 more than a multiple of 3, namely 6. (Or because⌊

8
3

⌋
= ⌊2.6666 · · ·⌋ = 2, and 8 − 2 · 3 = 8− 6 = 2.)

• 28 mod 3 = 1, as
⌊

28
3

⌋
= 9, and 28 − 9 · 3 = 28− 27 = 1.

• 48 mod 3 = 0, because
⌊

48
3

⌋
= ⌊16⌋ = 16, and 48− 16 · 3 = 0.

Taking it further: In many programming languages, the / operator performs integer division when
its arguments are both integers, and performs “real” division when either argument is a floating point
number. So the expression 64 / 5 will yield 12, but 64.0 / 5 and 64 / 5.0 and 64.0 / 5.0 will all
yield 12.8. In this book, though, we will always mean “real” division when we write x/y or x

y .
The n mod k operation is a standard one in programming languages—it’s written as n % k in many

languages, including Java, Python, and C/C++, for example.

In Definition 2.9, we allowed n to be a negative integer, which may stretch your
intuition about remainders a bit. Here’s an example of this case of the definition:

Example 2.6 (A negative integer mod 5)
We’ll compute −3 mod 5 simply by following the definition of mod from Defini-
tion 2.9:

−3 mod 5 = (−3)− 5 ·
⌊−3

5

⌋
= (−3) − 5 · (−1) = (−3) + 5 = 2.

Viewed from an appropriate perspective, this calculation should actually be very
intuitive: the value r = n mod k gives the amount r by which n exceeds its closest
multiple of k. (And −3 is 2 more than a multiple of 5, namely −5, so −3 mod 5 = 2.)

Notice that the value of n mod k is always at least 0 and at most k − 1, for any n and
any k > 0; the remainder when dividing by k can never be k or more. At one of these
extreme points, when n

k has zero remainder, then we say that k (evenly) divides n:

Definition 2.10 (Integer k (evenly) divides integer n)
For any integers k > 0 and n, we say that k divides n, written k | n, if n

k is an integer. Notice
that k | n is equivalent to n mod k = 0.



2.2. BOOLEANS, NUMBERS, AND ARITHMETIC 211

Here’s a simple example:

Example 2.7 (What 5 divides)
Because 5 · ⌊ 10

5 ⌋ = 5 · 2 = 10 = 10, we know 5 | 10. But 5 · ⌊ 9
5⌋ = 5 · 1 = 5 6= 9, so 5 6 | 9.

By rearranging the floor-based definition from Definition 2.9 when n mod k = 0, we
can see that the condition k | n is also equivalent to the condition k · ⌊ n

k
⌋

= n.

Some special numbers: evens, odds, primes, composites
A few special types of integers are defined in terms of their divisibility—specifically

based on whether they are divisible by 2 (evens and odds), or whether they are divisible
by any other integer except for 1 (primes and composites).

Definition 2.11 (Even, odd, and parity)
A nonnegative integer n is even if n mod 2 = 0, and n is odd if n mod 2 = 1. The parity of
n is its “oddness” or “evenness.”

For example, we have 17 mod 2 = 1 and 42 mod 2 = 0, so 17 is odd and 42 is even.

Taking it further: If we view 0 as False and 1 as True (see Section 2.2.1), then the value n mod 2 can be
interpreted as a Boolean value. In fact, there’s a deeper connection between arithmetic and the Booleans
than might be readily apparent. The “exclusive or” of two Boolean values p and q (which we will en-
counter in Section 3.2.3) is denoted p ⊕ q, and the expression p ⊕ q is true when one but not both of p and
q is true. The exclusive or is sometimes referred to as the parity function, because p + q is odd (viewing p
and q as numerical values, 0 or 1) exactly when p ⊕ q is true (viewing p and q as Boolean values, False or
True).

Definition 2.12 (Prime and composite numbers)
A positive integer n > 1 is prime if the only positive integers that evenly divide n are 1 and n
itself. A positive integer n > 1 is composite if it is not prime.

Notice that the definition of prime numbers does not include 0 and 1, and neither does
the definition of composite numbers: in other words, 0 and 1 are neither composite nor
prime. Here are a few examples of prime and composite numbers:

Example 2.8 (Prime numbers)
Problem: Is 77 prime? What about 7?

Solution: 77 is not prime, because it is evenly divisible by 7. In other words, because
77 mod 7 = 0 (and the integer 7 that evenly divides 77 is neither 1 nor 77 itself), 77
is composite.

On the other hand, 7 is prime. Convincing yourself that something is prime
is harder than convincing yourself that something is not prime, but we can see it
by trying all the possible divisors, namely every positive integer except 1 and 7:
7 mod 2 = 1 and 7 mod 3 = 1 and 7 mod 4 = 3 and 7 mod 5 = 2 and 7 mod 6 = 1,
and furthermore 7 mod d = 7 for any d ≥ 8. None of these remainders is zero, so 7
is prime.
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Example 2.9 (Small primes and composites)
The first ten prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. The first ten composite
numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18.

Chapter 7 is devoted to the properties of modular arithmetic, prime numbers, and the
like. These quantities have deep and important connections to cryptography, error-
correcting codes, and other applications that we’ll explore later.

2.2.7 Summations and Products

There is one final piece of notation related to numbers that we need to introduce: a
simple way of expressing the sum or product of a collection of numbers. We’ll start with
the compact summation notation that allows us to express the result of adding many
numbers:

Definition 2.13 (Summation notation)
Let x1, x2, . . . , xn be a sequence of n numbers. We write ∑n

i=1 xi (usually read as “the sum for i
equals 1 to n of xi”) to denote the sum of the xis:

n
∑
i=1

xi := x1 + x2 + · · · + xn.

The variable i is called the index of summation or the index variable.
Note that ∑0

i=1 xi = 0: when you add nothing together, you end up with zero.

Here are a few very simple examples:

Example 2.10 (Some simple summations)
Let a1 = 2, a2 = 4, a3 = 8, and a4 = 16, and let b1 = 1, b2 = 2, b3 = 3, and b4 = 4. Then

4
∑
i=1

ai = a1 + a2 + a3 + a4 = 2 + 4 + 8 + 16 = 30

4
∑
i=1

bi = b1 + b2 + b3 + b4 = 1 + 2 + 3 + 4 = 10

1: result := 0
2: for i := 1, 2, . . . , n
3: result := result + xi
4: return result

Figure 2.6: A for
loop that returns
the value of ∑n

i=1 xi .

We can interpret this summation notation as if it expressed a for loop, as shown
in Figure 2.6. The for loop interpretation might help make the “empty sum” more
intuitive: the value of ∑0

i=1 xi = 0 is simply 0 because result is set to 0 in line 1, and it
never changes, because n = 0 (and therefore line 3 is never executed).

In general, instead of just adding xi in the ith term of the sum, we can add any ex-
pression involving the index of summation. (We can also start the index of summation
at a value other than 1: to denote the sum xj + xj+1 + · · · + xn, we write ∑n

i=j xi.) Here are
a few examples:
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Example 2.11 (Some sums)
Let a1 = 2, a2 = 4, a3 = 8, and a4 = 16. Then

∑4
i=1 ai = 2 + 4 + 8 + 16 = 30

∑4
i=1(ai + 1) = (2 + 1) + (4 + 1) + (8 + 1) + (16 + 1) = 34

∑4
i=1 i = 1 + 2 + 3 + 4 = 10

Example 2.12 (Some more sums)
Problem: As above, let a1 = 2, a2 = 4, a3 = 8, and a4 = 16. What are the values of the

following expressions?
1. ∑4

i=1 i2 2. ∑4
i=2 i2 3. ∑4

i=1(ai + i2) 4. ∑4
i=1 5

Solution: Here are the values of these sums:

1. ∑4
i=1 i2 = 12 + 22 + 32 + 42 = 30

2. ∑4
i=2 i2 = 22 + 32 + 42 = 29

3. ∑4
i=1(ai + i2) = (2 + 12) + (4 + 22) + (8 + 32) + (16 + 42) = 60

4. ∑4
i=1 5 = 5 + 5 + 5 + 5 = 20

Two special types of summations arise frequently enough to have special names. A
geometric series is ∑n

i=1 α
i for some real number α; an arithmetic series is ∑n

i=1 i · α for a
real number α. See Section 5.2.2 for more on these types of summations.

We will very occasionally consider an infinite sequence of numbers x1, x2, . . . , xi, . . .;
we may write ∑∞

i=1 xi to denote the infinite sum of these numbers.

Example 2.13 (An infinite sum)
Define xi := 1/2i, so that x1 = 1/2, x2 = 1/4, x3 = 1/8, and so forth. We can write
∑∞

i=1 xi to denote 1/2 + 1/4 + 1/8 + 1/16 + · · · . The value of this summation is 1: each
term takes the sum halfway closer to 1.

While the for loop in Figure 2.6 would run forever if we tried to apply it to an infinite
summation, the idea remains precisely the same: we successively add the value of
each term to the result variable. (We will discuss this type of infinite sum in detail in
Section 5.2.2, too.)

Reindexing summations
Just as in a for loop, the “name” of the index variable in a summation doesn’t mat-

ter, as long as it’s used consistently. For example, both ∑5
i=1 ai and ∑5

j=1 aj denote the
value of a1 + a2 + a3 + a4 + a5.

We can also rewrite a summation by reindexing it (also known as using a change of
index or a change of variable), by adjusting both the limits of the sum (lower and upper)
and what’s being summed while ensuring that, overall, exactly the same things are
being added together.
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Example 2.14 (Shifting by two)
The sums ∑n

i=3 i and ∑n−2
j=1 (j + 2) are equal, because both express 3 + 4 + 5 + · · · + n. (We

have applied the substitution j := i − 2 to get from the first summation to the second.)

Example 2.15 (Counting backward)
The following two summations have the same value:

n
∑
i=0

(n − i) and
n
∑
j=0

j.

We can produce one from the other by substituting j := n − i, so that i = 0, 1, . . . , n
corresponds to j = n − 0, n − 1, . . . , n − n (or, more simply, to j = n, n − 1, . . . , 0).

Reindexing can be surprisingly helpful when we’re confronted by ungainly summa-
tions; doing so can often turn the given summation into something more familiar.

Nested sums
We can sum any expression that depends on the index variable—including sum-

mations. These summations are called double summations or, more generally, nested
summations. Just as with nested loops in programs, the key is to read “from the inside
out” in simplifying a summation. Here are two examples:

Example 2.16 (A double sum)
Let’s compute ∑6

i=1

[
∑i

j=1 5
]
.

Observe that, for any fixed value of i ≥ 0, the value of ∑i
j=1 5 is just 5i, because we

are summing i different copies of the number 5. Therefore

6
∑
i=1

[
i

∑
j=1

5
]

=
6
∑
i=1

5i = 5 + 10 + 15 + 20 + 25 + 30 = 105.

Example 2.17 (A slightly more complicated double sum)
Problem: What is ∑6

i=1

[
∑i

j=1 j
]
?

Solution: Observe that the inner sum (∑i
j=1 j) has the following value, for each

1 ≤ i ≤ 6:

• ∑1
j=1 j = 1

• ∑2
j=1 j = 1 + 2 = 3

• ∑3
j=1 j = 1 + 2 + 3 = 6

• ∑4
j=1 j = 1 + 2 + 3 + 4 = 10

• ∑5
j=1 j = 1 + 2 + 3 + 4 + 5 = 15

• ∑6
j=1 j = 1 + 2 + 3 + 4 + 5 + 6 = 21

Thus ∑6
i=1 ∑i

j=1 j = 1 + 3 + 6 + 10 + 15 + 21 = 56.
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1 2 3 4
1 7 5 6 5
2 5 5 1 7
3 3 5 8 3

(a) A small table with some
arbitrarily chosen numbers.

j = 1 2 3 4 5 6 7 8
i = 1 −1 −1 −2 −2 −3 −3 −4 −4

2 1 1 2 2 3 3 4 4
3 −1 −1 −2 −2 −3 −3 −4 −4
4 1 1 2 2 3 3 4 4
5 −1 −1 −2 −2 −3 −3 −4 −4
6 1 1 2 2 3 3 4 4
7 −1 −1 −2 −2 −3 −3 −4 −4
8 1 1 2 2 3 3 4 4

(b) The terms of ∑n
i=1 ∑n

j=1
(
(−1)i · ⌈ j

2 ⌉
)
,

for n = 8.

Figure 2.7: Two
tables whose
elements we’ll sum
“row-wise” and
“column-wise.”

When you’re programming and need
to write two nested loops, it sometimes
ends up being easier to write the loops
with one variable in the outer loop
rather than the other variable. Sim-
ilarly, it may turn out to be easier to
think about a nested sum by revers-
ing the summation—that is, swapping
which variable is the “outer” summa-
tion and which is the “inner.” If we have
any sequence ai,j of numbers indexed by two variables i and j, then ∑n

i=1 ∑n
j=1 ai,j and

∑n
j=1 ∑n

i=1 ai,j have precisely the same value.
Here are two examples of reversing the order of a double summation, for the tables

shown in Figure 2.7:

Problem-solving tip:
When you’re look-
ing at a complicated
double summation,
try reversing it; it
may be much easier
to analyze the other
way around.

Example 2.18 (A simple sum)
Consider the table in Figure 2.7(a). Write ai,j to denote the element in the ith row and
jth column of the table. Then the sum of elements in the table is, by summing the
row-sums,

3
∑
i=1

[
4
∑
j=1

ai,j

]
=

3
∑
i=1

the sum of elements in row i = 23 + 18 + 19 = 60.

And, by summing the column-sums, the sum of elements in the table is also

4
∑
j=1

[
3
∑
i=1

ai,j

]
=

4
∑
j=1

the sum of elements in column j = 15 + 15 + 15 + 15 = 60.

Example 2.19 (A double sum, reversed)
Problem: Let n = 8. What is the value of the following sum?

n
∑
i=1

n
∑
j=1

[
(−1)i ·

⌈
j
2

⌉]

Solution: We are computing the sum of all the values contained in the table in Fig-
ure 2.7(b). The hard way to add up all of these values is by computing the row
sums, and then adding them all up. (The given equation expresses this hard way.)
The easier way is reverse the summation, and to instead compute

n
∑
j=1

n
∑
i=1

[
(−1)i ·

⌈
j
2

⌉]
.

For any value of j, observe that ∑n
i=1(−1)i · ⌈ j

2⌉ is actually zero! (This value is just
(⌈ j

2⌉) n
2 + (−⌈ j

2⌉) n
2 .) In other words, every column sum in the table is zero. Thus

the value of the entire summation is ∑n
j=1 0, which is just 0.
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Note that computing the sum from Example 2.19 when n = 100 or n = 100,000 remains
just as easy if we use the column-based approach: as long as n is an even number,
every column sum is 0, and thus the entire summation is 0. (The row-based approach
is ever-more painful to use as n gets large.)

Here’s one more example—another view of the double sum ∑6
i=1 ∑i

j=1 j from Exam-
ple 2.17—where reversing the summation makes the calculation simpler:

1 2 3 4 5 6
1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3 4 5
6 1 2 3 4 5 6

Figure 2.8: The
terms of ∑6

i=1 ∑i
j=1 j.

We seek the sum
of all entries in the
table.

Example 2.20 (A double sum, redone)
The value of ∑6

i=1 ∑i
j=1 j is the sum of all the numbers in the table in Figure 2.8. We

solved Example 2.17 by first computing ∑i
j=1 j, which is the sum of the numbers in the

ith row. We then summed these values over the six different values of i to get 56.
Alternatively, we can compute the desired sum by looking at columns instead of

rows. The sum of the table’s elements is also ∑6
j=1

[
∑6

i=j j
]
, where ∑6

i=j j is the sum of
the numbers in the jth column. Because there are a total of (7 − j) terms in ∑6

i=j j, the
sum of the numbers in the jth column is precisely j · (7 − j). (For example, the 4th
column’s sum is 4 · (7 − 4) = 4 · 3 = 12.) Thus the overall summation can be written as

6
∑
i=1

i
∑
j=1

j =
6
∑
j=1

[
j · (7 − j)

]
= (1 · 6) + (2 · 5) + (3 · 4) + (4 · 3) + (5 · 2) + (6 · 1)

= 6 + 10 + 12 + 12 + 10 + 6 = 56.

Products
The ∑ notation allows us to express repeated addition of a sequence of numbers;

there is analogous notation to represent repeated multiplication of numbers, too:

The summation and
product notation
have a secret
mnemonic to help
you remember
what each means:
“Σ” is the Greek
letter Sigma, which
starts with the same
letter as the word
sum. And “Π” is
the Greek letter Pi,
which starts with
the same letter as
the word product.

Definition 2.14 (Product notation)
Let x1, x2, . . . , xn be a sequence of n numbers. We write ∏n

i=1 xi (usually read as “the product
for i equals 1 to n of xi”) to denote the product of the xis:

n
∏
i=1

xi := x1 · x2 · · · · · xn.

1: result := 1
2: for i := 1, 2, . . . , n
3: result := result · xi
4: return result

Figure 2.9: A for
loop that returns
the value of ∏n

i=1 xi .

There are direct analogues between the notions regarding ∑ and corresponding
notions for ∏: the for loop interpretation (Figure 2.9), infinite products, reindexing,
and nested products. One slight difference worthy of note: the value of ∏0

i=1 xi is 1;
when we multiply by nothing, we’re multiplying by one.

Example 2.21 (Some products)
Here are a few simple products:

∏4
i=1 i = 1 · 2 · 3 · 4 = 24

∏4
i=0 i = 0 · 1 · 2 · 3 · 4 = 0

∏4
i=1 i2 = 12 · 22 · 32 · 42 = 576

∏4
i=1 5 = 5 · 5 · 5 · 5 = 625
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Computer Science Connections

Integers and ints, Reals and floats

Every modern programming language has types that correspond to the
integers and the real numbers, often called something like int (short for
“integer”) and float (short for floating-point number; more about this name
and the floating point representation is below).

In most programming languages, though, these types differ from Z and
R in important ways. Every piece of data stored on a computer is stored
as a sequence of bits, and typically the bit sequence storing a number has
some fixed length. For example, an int stored using 7 bits can range from
0000000 (the number 0 represented in binary) to 1111111 (the number 27 − 1 =
127 represented in binary). Typically, the first bit in an int’s representation
is reserved as the sign bit (set to True for a negative number and False for
a positive number), and the remaining bits store the value of the number.
(See Figure 2.10.) Thus there’s a bound on the largest int, depending on the
number of bits used to represent ints in a particular programming language:
32,767 in Pascal (= 215 − 1, using 16 bits per int: 1 sign bit and 15 data bits),
and 2,147,483,647 in Java (= 231 − 1; 32 bits, of which 1 is a sign bit). Similar
constraints apply to the set of real numbers representable as a float.

A crucial point about Z and R is that they are infinite: there is no small-

sign bit
data bits

0 0 1 1 0 0 1 1
+ 0 32 16 0 0 2 1+ + + + + + = 51

0 1 0 1 0 1 0 0
+ 64 0 16 0 4 0 0+ + + + + + = 84

Figure 2.10: The integers 51 and 84,
represented in binary as 8-bit signed
integers.

est integer, there’s no biggest real number, and there isn’t even a biggest real
number that is smaller than 1. In almost every programming language, how-
ever, there is a smallest int, a biggest float, and a biggest float that’s smaller
than 1: after all, there are only finitely many possible floats (perhaps 264

different values), and one of these 264 values is the smallest float.
The finite nature of these programming language data types can cause

some subtle bugs in programs. There are issues related to integer overflow if we
try to store “too large” an integer: for example, when we compute 32767 + 1
in Pascal, the result is −32768. And there are bugs related to underflow if we
try to store “too small” a floating-point number: for example, if we compute
(0.0000000001)33 in Python, the result is 0.0. (But (0.0000000001)32 is, correctly,
10−320.) Similarly, there are also rounding errors implicit in floating point
representations of numbers: because there are only finitely many different
floats, the infinitely many real numbers cannot all be stored exactly. For
example, when I type 0.0006 - 0.0004 == 0.0002 into a Python interpreter, I
get False as output. (That’s because, according to Python, 0.0006 - 0.0004 is
0.00019999999999999993, not 0.0002.)

The name float originates with a clever idea that’s used to mitigate (though
not solve) the issues above: we allow the decimal point to “float” in the repre-
sentation of different numbers. Consider decimal numbers like

x = 0.000000000000000000000000000000000000000000000000001
y = 1929192919291929192919291929192919291929192919291929.5.

If, say, we represent these numbers using a total of 64 bits, most of the 64 bits
representing x are devoted to the part after decimal point, whereas most of the
64 bits representing y are devoted to the part before the decimal point.1

You can learn more about the details
of how numerical values are stored on
computers in a course on computer
architecture. In addition to the floating-
point standard, other interesting details
include 2’s complement storage of inte-
gers, which allows a single representa-
tion of positive and negative integers so
that addition “just works” the same way,
even with a sign bit. You can learn more
about this material in a good computer
architecture textbook, such as
1 David A. Patterson and John L. Hen-
nessy. Computer Organization and Design:
the Hardware/Software Interface. Morgan
Kaufmann, 4th edition, 2008.
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Computer Science Connections

Computing Square Roots, and Not Computing Square Roots

Programs can make use of numerical operations in surprisingly com-
plex ways. Many programmers just happily use these numerical operations
without thinking about how they’re implemented—but a little knowledge of
what’s happening behind the scenes can actually help speed up our programs.
Computer hardware can directly and efficiently execute basic arithmetic op-
erations like addition and multiplication and division, but more complex
operations may require many of these basic operations.

Consider the task of computing
√

x, given an input value x, for example.
The basic idea is to use some kind of iterative improvement algorithm: we
start with a guess y0 of the value of

√
x, and then update our guess to a new

guess y1 (by observing in some way whether y0 was too big or too small). We
continue to improve our guess until we’ve reached a value y such that y2 is
“close enough” to x. (We can specify the tolerance of the algorithm—that is,
how close counts as “close enough.”)

A simple implementation of this idea is called Heron’s method, named af-

Input: A positive real number x.
Output: A real number y such that

y2 ≈ x.

1: Let y0 be arbitrary, and let i := 0.
2: while (yi)2 is too far from x:

3: let yi+1 :=
yi+ x

yi
2 and i := i + 1

4: return yi

For example, here’s the computation of
the square root of x = 42, using x

2 as the
initial guess:

i yi
0 21
1 11.5
2 7.576086956 · · ·
3 6.559922961 · · ·
4 6.481218587 · · ·
5 6.480740716 · · ·
6 6.480740698 · · ·

Figure 2.11: Heron’s method for com-
puting square roots, and an example.

ter the 1st-century Greek mathematician Heron of Alexandria and shown
in Figure 2.11. It relies on the nonobvious fact that the average of y and x

y is
closer to

√
x than y was. (Unless y is exactly equal to

√
x, of course; in that

case, the new guess is identical to the old guess: the average of
√

x and x√
x

is still
√

x.) Almost two millennia later, Isaac Newton developed a general
technique for computing values of numerical expressions involving exponen-
tials, among other things. This technique, known as Newton’s method, involves
calculus—specifically, using derivatives to figure out how far to move from
a current guess yi in making the next guess yi+1. Like Heron’s method, New-
ton’s method is an example of a technique in scientific computing, the subfield
of computer science devoted to efficient computation of numerical values,
often for the purposes of simulating a complex system.2 Many interesting questions and tech-

niques are used in scientific computing;
one outstanding, and classic, reference
for some of this material is the book

2 William Press, Saul Teukolsky, William
Vetterling, and Brian Flannery. Nu-
merical Recipes: The Art of Scientific
Computing. Cambridge University Press,
3rd edition, 2007.

Work in scientific computing has improved the efficiency of numerical
computation. But even better is to be aware of the fact that operations like
square roots require significant computation “under the hood,” and to avoid
them when possible. To take one particular example, consider applying a blur
filter to an image: replace each pixel p by the average of all pixels within a
radius-r circle centered at p in the original image. To compute the blurred ver-
sion of a particular pixel p, we might look at every pixel q within ±r rows or
columns and compute whether p and q are within distance r. (See Figure 2.12.)
There are two natural ways to compute whether the two pixels p and q are
within distance r:

1. the “obvious” way: test whether
√

(px + qx)2 + (py + qy)2 ≤ r.
2. the “other” way: test whether (px + qx)2 + (py + qy)2 ≤ r2.

While there is no important mathematical difference between these two for-
mulas (we’ve simply squared both sides in the “other” way), there is a com-
putational difference. Because square roots are expensive to compute, it turns
out that in my Python implementation of a blur filter, using the “other” way
was about 12% faster than using the “obvious” way.

p

Figure 2.12: Implementing a blur filter.
We wish to average all pixels within the
circle to compute the new pixel p.
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2.2.8 Exercises

What are the smallest and largest integers that are . . .
2.1 . . . in the interval (111, 202)? 2.2 . . . in the interval [111, 202)?
2.3 . . . in the interval (17, 42) but not in the interval (39, 99]?
2.4 . . . in the interval [17, 42] but not in the interval [39, 99)?

Explain your answers to the following questions.
2.5 If x and y are integers, is x + y necessarily an integer?
2.6 If x and y are rational numbers, is x + y necessarily rational?
2.7 If x and y are irrational numbers, is x + y necessarily irrational?

What is the value of each of the following expressions?
2.8 ⌊2.5⌋ + ⌈3.75⌉ 2.9 ⌊3.14159⌋ · ⌈0.87853⌉ 2.10 (⌊3.14159⌋)⌈3.14159⌉

2.11 Most programming languages provide two different functions called floor and truncate to trim
real numbers to integers. In these languages, floor(x) is defined exactly as we defined ⌊x⌋, and trunc(x)
is defined to simply delete any digits that appear after the decimal point in writing x. So trunc(3.14159) =
3 .14159 = 3. Explain why programming languages have both floor and trunc—that is, explain under what
circumstances floor(x) and trunc(x) give different values.

Using floor, ceiling, and standard arithmetic notation, give an expression for a real number x . . .
2.12 . . . rounded to the nearest integer. (“Round up” for a number that’s exactly between two integers—
for example, 7.5 rounds to 8.)
2.13 . . . rounded to the nearest 0.1.
2.14 . . . rounded to the nearest 10−k , for an arbitrary number k of digits after the decimal point.
2.15 . . . truncated to k digits after the decimal point—that is, leaving off the (k + 1)st digit and beyond.
(For example, 3.1415926 truncated with 3 digits is 3.141, and truncated with 4 digits is 3.1415.)

Taking it further: Many programming languages provide a facility for displaying formatted output,
particularly numbers, in the style of Example 2.15. For example, printf("%.3f", x) says to “print
(formatted)” the value of x with only 3 digits after the decimal point. (The “f” of “printf” stands for
formatted; the “f” of "%.3f" stands for float.) This style of printf command appears in many languages:
C, Java, Python, and others.

2.16 For what value(s) of x in the interval [2, 3] is x − ⌊x⌋+⌈x⌉
2 the largest?

2.17 For what value(s) of x in the interval [2, 3] is x − ⌊x⌋+⌈x⌉
2 the smallest?

Let x be a real number. Rewrite each of the following as simply as possible:
2.18 ⌊⌊x⌋⌋ 2.19 ⌈⌈x⌉⌉ 2.20 ⌊⌈x⌉⌋ 2.21 ⌈⌊x⌋⌉

2.22 Are |⌊x⌋| and ⌊|x|⌋ always equal? Explain.
2.23 Are 1 + ⌊x⌋ and ⌊1 + x⌋ always equal? Explain.
2.24 Are ⌊x⌋ + ⌊y⌋ and ⌊x + y⌋ always equal? Explain.
2.25 Let x be a real number. Describe (in English) what 1 + ⌊x⌋ − ⌈x⌉ represents. Explain.

2.26 In performing a binary search for x in a sorted n-element array A[1 . . . n] (see Figure 6.17(a)), the
first thing we do is to compare the value of x and the value of A

[
⌊ 1+n

2 ⌋
]
. Assume that all elements of A are

distinct. How many elements of A are less than A
[
⌊ 1+n

2 ⌋
]
? How many are greater? Write your answers as

simply as possible.

2.27 Which is bigger, 310 or 103?

What is the value of each of the following expressions?
2.28 48

2.29 (1/4)8
2.30 (−4)8

2.31 (−4)9
2.32 2561/4

2.33 81/4
2.34 83/4

2.35 (−9)1/4

What is the value of each of the following expressions?
2.36 log2 8 2.37 log2(1/8) 2.38 log8 2 2.39 log1/8 2
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2.40 Which is bigger, log10 17 or log17 10?

Each of the following statements are general properties of logarithms (from Theorem 2.2), for any real numbers b, c > 1
and x, y > 0. Using the definition of logarithms and the properties of exponentials from Theorem 2.1, justify each of
these properties.
2.41 logb 1 = 0
2.42 logb b = 1
2.43 logb xy = y logb x

2.44 logb xy = logb x + logb y
2.45 logb x = logc x

logc b

Using the properties from Theorem 2.2 that you just proved, and the fact that logb x = logb y exactly when x = y (for
any base b > 1), justify the following additional properties of logarithms:
2.46 For any real numbers b > 1 and x > 0, we have that b[logb x] = x.
2.47 For any real numbers b > 1 and a, n > 0, we have that n[logb a] = a[logb n].
2.48 Prove (2.2.4) from Theorem 2.2: for any b > 1 and x, y > 0, we have that logb

x
y = logb x − logb y.

2.49 Using notation defined in this chapter, define the “hyperceiling” ⌈n⌉ of a positive integer n, where
⌈n⌉ is the smallest exact power of two that is greater than or equal to n. (That is, ⌈n⌉ denotes the smallest
value of 2k where 2k ≥ n and k is a nonnegative integer.)

2.50 Similar to the last exercise: when writing down an integer n on paper using standard decimal
notation, we need enough columns for all the digits of n (and perhaps one additional column for a “−” if
n < 0). Write down an expression indicating how many columns we need to represent n. (Hint: use the case
notation introduced in Definition 2.3, and be sure that your expression is well defined—that is, it doesn’t “generate any
errors”—for all integers n.)

What are the values of the following expressions?
2.51 202 mod 2
2.52 202 mod 3
2.53 202 mod 10

2.54 −202 mod 10
2.55 17 mod 42
2.56 42 mod 17

2.57 17 mod 17
2.58 −42 mod 17
2.59 −42 mod 42

>>> 3 % 5

3

>>> -3 % 5

2

>>> 3 % -5

-2

>>> -3 % -5

-3

Figure 2.13:
Python’s imple-
mentation of %
(“mod”). (The
value of the expres-
sion written after
>>> is shown on the
next line.)

2.60 Observe the Python behavior of the % operator (the Python notation for mod) that’s shown in
Figure 2.13. The first two lines (3 mod 5 = 3 and −3 mod 5 = 2) are completely consistent with the definition
that we gave for mod (Definition 2.9), including its use for n mod k when n is negative (as in Example 2.6).
But we haven’t defined what n mod k means for k < 0. Propose a formal definition of % in Python that’s
consistent with Figure 2.13.

What is the smallest positive integer n that has the following characteristics?
2.61 n mod 2 = 0, n mod 3 = 0, and n mod 5 = 0
2.62 n mod 2 = 1, n mod 3 = 1, and n mod 5 = 1
2.63 n mod 2 = 0, n mod 3 = 1, and n mod 5 = 0
2.64 n mod 3 = 2, n mod 5 = 3, and n mod 7 = 5
2.65 n mod 2 = 1, n mod 3 = 2, n mod 5 = 3, and n mod 7 = 4

2.66 (programming required) Write a program to determine whether a given positive integer n is prime
by testing all possible divisors between 2 and n − 1. Use your program to find all prime numbers less than
202.

2.67 (programming required) A perfect number is a positive integer n that has the following property: n
is equal to the sum of all positive integers k < n that evenly divide n. For example, 6 is a perfect number,
because 1, 2, and 3 are the positive integers less than 6 that evenly divide 6—and 6 = 1 + 2 + 3. Write a
program that finds the four smallest perfect numbers.

2.68 (programming required) Write a program to find all integers between 1 and 1000 that are evenly
divisible by exactly three different integers.
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Compute the values of the following summations and products.
2.69 ∑6

i=1 6
2.70 ∑6

i=1 i2

2.71 ∑6
i=1 22i

2.72 ∑6
i=1 i · 2i

2.73 ∑6
i=1(i + 2i)

2.74 ∏6
i=1 6

2.75 ∏6
i=1 i2

2.76 ∏6
i=1 22i

2.77 ∏6
i=1 i · 2i

2.78 ∏6
i=1(i + 2i)

Compute the values of the following nested summations.
2.79 ∑6

i=1 ∑6
j=1(i · j)

2.80 ∑6
i=1 ∑6

j=i(i · j)
2.81 ∑6

i=1 ∑i
j=1(i · j)

2.82 ∑8
i=1 ∑8

j=i i
2.83 ∑8

i=1 ∑8
j=i j

2.84 ∑8
i=1 ∑8

j=i(i + j)
2.85 ∑4

i=1 ∑4
j=i(ji)
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2.3 Sets: Unordered Collections

History is a set of lies agreed upon.

Napoleon Bonaparte (1769–1821)

Section 2.2 introduced the primitive types of objects that we’ll use throughout the
book. We turn now to collections of objects, analogous to lists and arrays in program-
ming languages. We start in this section with sets, in which objects are collected with-
out respect to order or repetition. (Section 2.4 will address sequences, which are collec-
tions of objects in which order and repetition do matter.) The definitions and notation
related to sets are summarized in Figure 2.14.

Definition 2.15 (Sets)
A set is an unordered collection of objects.

Here are a few simple examples: Sets are typi-
cally denoted by
uppercase let-
ters (generically
S, T, U, A, B, . . .), of-
ten by a mnemonic
letter: S for a set of
students, D for a
set of documents,
etc. As we saw,
the common sets
from mathematics
defined in Sec-
tion 2.2.2 are often
written using a
“blackboard bold”
font: Z, R, and Q.

Example 2.22 (Some sets)
Here are three sets: the set of bits {0, 1}, the set of prime numbers {2, 3, 5, 7, 11, . . .},
and the set of basic arithmetic operators {+,−, ·, /}. (We’ve written these sets using
standard notation by listing the objects in the set between curly braces { and }.)

Set membership—that is, the question is the object x one of the objects in the collection S?, for
a particular object x and a particular set S—is the central notion for sets:

Definition 2.16 (Set membership)
For a set S and an object x, the expression x ∈ S is true when x is one of the objects contained
in the set S. When x ∈ S, we say that x is an element or member of S or, more simply, that x
is in S.

The expression x /∈ S is the negation of the expression x ∈ S: that is, x /∈ S is true
whenever x is not an element of S (and thus whenever x ∈ S is false).

Example 2.23 (Some set memberships)
The integer 0 is an element of the set of bits, and + is in the set of basic arithmetic
operators. But 1 is not an element of the set of prime numbers, and 8 is not in the set
of bits.

A second key concept about a set is its cardinality, or size:

Definition 2.17 (Set cardinality)
The cardinality of a set S, denoted by |S|, is the number of distinct elements in S.
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set membership x ∈ S x is one of the elements of S
cardinality |S| the number of distinct elements in the set S
set enumeration {x1, x2, . . . , xk} the set containing elements x1 , x2 , . . . , xk
set abstraction {x ∈ U : P(x)} the set containing all x ∈ U for which P(x) is true;

U is the “universe” of candidate elements
empty set {} or ∅ the set containing no elements
complement ∼S := {x ∈ U : x /∈ S} the set of all elements in the universe U that aren’t in S;

U may be left implicit if it’s obvious from context
union S ∪ T := {x : x ∈ S or x ∈ T} the set of all elements in either S or T (or both)
intersection S ∩ T := {x : x ∈ S and x ∈ T} the set of all elements in both S and T
set difference S − T := {x : x ∈ S and x /∈ T} the set of all elements in S but not in T
set equality S = T every x ∈ S is also in T, and every x ∈ T is also in S
subset S ⊆ T every x ∈ S is also in T
proper subset S ⊂ T S ⊆ T but S 6= T
superset S ⊇ T every x ∈ T is also in S
proper superset S ⊃ T S ⊇ T but S 6= T
power set P(S) the set of all subsets of S

Figure 2.14: A
summary of set
notation.

Example 2.24 (Some set sizes)
The cardinality of the set of bits is 2, because there are two distinct elements of that
set (namely 0 and 1).

The cardinality of the set S of prime numbers between 10 and 20 is |S| = 4: the four
elements of S are 11, 13, 17, and 19.

Chapter 9 is devoted entirely to the apparently trivial problem of counting—given a
(possibly convoluted) description of a set S, find |S|—which turns out to have some
interesting and useful applications, and isn’t as easy as it seems.

Taking it further: In this book, we will be concerned almost exclusively with the cardinality of finite sets,
but one can also ask questions about the cardinality of sets like Z or R that contain an infinite number
of distinct elements. For example, it’s possible to prove that |Z| = |Z≥0|, which is a pretty amazing
result: there are as many nonnegative integers as there are integers! (And that’s true despite the fact that
every nonnegative integer is an integer!) But it’s also possible to prove that |Z| 6= |R|: . . . but there are
more real numbers than integers! More amazingly, one can use similar ideas to prove that there are fewer
computer programs than there are problems to solve, and that therefore there are some problems that
are not solved by any computer program. This idea is the central focus of the study of computability and
uncomputability. See Section 4.4.4 and the discussion on p. 937.

2.3.1 Building Sets from Scratch

There are two standard ways to specify a set “from scratch”: by simply listing each of
the elements of the set, or by defining the set as the collection of objects for which a
particular logical condition is true.

Set definition via exhaustive enumeration
A set can be specified using an exhaustive listing its elements—that is, by writing a

complete list of its elements inside the curly braces { and }. Here are a few examples:

Example 2.25 (Some exhaustively enumerated sets)
• The set of even prime numbers is {2}.
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• The set of prime numbers between 10 and 20 is {11, 13, 17, 19}.
• The set of 2-digit perfect squares is {81, 64, 25, 16, 36, 49}.
• The set of bits is {0, 1}.
• The set of Turing Award winners between 1984 and 1987 inclusive is

{Niklaus Wirth, Richard Karp, John Hopcroft, Robert Tarjan, John Cocke}.

Taking it further: The Turing Award is the most prestigious award given in computer science—the “No-
bel Prize of CS,” it’s sometimes called. Niklaus Wirth developed a number of programming languages,
including Pascal. Richard Karp made major contributions to the study of computational complexity,
in particular with respect to the understanding of NP-Completeness. John Hopcroft and Robert Tar-
jan made massive early contributions in designing and analyzing algorithms and data structures for
problems. John Cocke was a leader in compilers and computer architecture and is often credited with
inventing the RISC architecture, which changed the way that computer chips and their corresponding
instruction sets were designed.

Recall that a set is an unordered collection, and thus the order in which the elements
are listed doesn’t matter when specifying a set via exhaustive enumeration. Any repe-
tition in the listed elements is also unimportant. For example:

Example 2.26 (The same set, three ways)
The set {2 + 2, 2 · 2, 2/2, 2 − 2} is precisely identical to the set {0, 1, 4}, both of
which are precisely identical to {4, 0, 1}. Also note that |{2 + 2, 2 · 2, 2/2, 2 − 2}| = 3;
despite there being four entries in the list of elements, there are only three distinct
objects in the set.

It’s important to remember that the integer 2 and the set {2} are two entirely different
kinds of things. For example, note that 2 ∈ {2}, but that {2} /∈ {2}; the lone element in
{2} is the number two, not the set containing the number two.

Set definition via set abstraction
Instead of explicitly listing all of a set’s elements, we can also define a set in terms of

a condition that is true for the elements of the set and that’s false for every object that
is not an element of the set. Defining a set this way uses set abstraction notation:

The colon in the
notation for set
abstraction is read
as “such that,” so
the set in Definition
2.18 would be read
“the set of all x in U
such that P of x.”

Definition 2.18 (Set Abstraction)
Let U be a set of possible elements, called the universe. Let P(x) be a condition (also called a
predicate) that, for every x ∈ U, is either true or false. Then

{x ∈ U : P(x)}

denotes the set of all objects x ∈ U for which P(x) is true.

That is, for any candidate element y ∈ U, the element y is in the set {x ∈ U : P(x)}
when P(y) = True, and y /∈ {x ∈ U : P(x)} when P(y) = False. (A fully proper version of
Definition 2.18 requires functions, described in Section 2.5.)
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Example 2.27 (Most of Example 2.25, redone)
• The set of even prime numbers is {x ∈ Z>1 : x is prime and x is even} .
• The set of 2-digit perfect squares is

{
n ∈ Z :

√
n ∈ Z and 10 ≤ n ≤ 99

}
.

• The set of bits is
{

b ∈ Z : b2 = b
}

.

For this set abstraction notation to meaningfully define a set S, we must specify the
universe U of candidates from which the elements of S are drawn. We will permit
ourselves to be sloppy in our notation, and when the universe U is clear from context
we will allow ourselves the liberty of writing {x : P(x)} instead of {x ∈ U : P(x)}.3

For more on these
and other para-
doxes, see
3 R. M. Sainsbury.
Paradoxes. Cam-
bridge University
Press, 3rd edition,
2009.

Taking it further: The notational sloppiness of omitting the universe in set abstraction will be a
convenience for us, and it will not cause us any trouble—but it turns out that one must be careful! In
certain strange scenarios when defining sets, there are subtle but troubling paradoxes that arise if we
allow the universe to be anything at all. The key problem can be seen in Russell’s paradox, named after
the British philosopher/mathematician Bertrand Russell; Russell’s discovery of this paradox revealed an
inconsistency in the commonly accepted foundations of mathematics in the early 20th century.

Here is a brief sketch of Russell’s Paradox. Let X denote the set of all sets that do not contain them-
selves: that is, let X := {S : S /∈ S}. For example, {2} ∈ X because {2} /∈ {2}, and R ∈ X because R is not
a real number, so R /∈ R. On the other hand, if we let T∗ denote the set of all sets, then T∗ /∈ X: because
T∗ is a set, and T∗ contains all sets, then T∗ ∈ T∗ and therefore T∗ /∈ X.

Here’s the problem: is X ∈ X? Suppose that X ∈ X: then X ∈ {S : S /∈ S} by the definition of X, and
thus X /∈ X. But suppose that X /∈ X; then, by the definition of X, we have X ∈ X. So if X ∈ X then
X /∈ X, and if X /∈ X then X ∈ X—but that’s absurd!

One standard way to escape this paradox is to say that the set X cannot be defined—because, to be
able to define a set using set abstraction, we need to start from a defined universe of candidate elements.
(And the set T∗ cannot be defined either.) The Liar’s Paradox, dating back about 3000 years, is a simi-
lar paradox: is “this sentence is false” true (nope!) or false (nope!)? In both Russell’s Paradox and the
Liar’s Paradox, the fundamental issue relates to self-reference; many other mind-twisting paradoxes are
generated through self-reference, too.3

Definition 2.18 lets us write {x ∈ U : P(x)} to denote the set containing exactly those
elements x of U for which P(x) is True. We will extend this notation to allow ourselves
to write more complicated expressions to the left of the colon, as in the following ex-
ample:

Example 2.28 (2-digit perfect squares, again)
We can write the set of 2-digit perfect squares as

{
x2 : x ∈ Z and 10 ≤ x2 ≤ 99

}
or as{

x2 : x ∈ {4, 5, 6, 7, 8, 9}
}

=
{

42, 52, 62, 72, 82, 92}.

To properly define this extended form of the set-abstraction notation, we again need
the idea of functions, which are defined in Section 2.5.1. See Definition 2.47 for a proper
definition of this extended notation.

Taking it further: Almost all modern programming languages support the use of lists to store a collec-
tion of objects. While these lists store ordered collections, there are some very close parallels between
these lists and sets. In fact, the ways we’ve described building sets have very close connections to ideas
in certain programming languages like Scheme and Python; see p. 233 for some discussion.

The empty set
One particularly useful set—despite its simplicity—is the empty set, also sometimes

called the null set:
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Definition 2.19 (The empty set ∅)
The empty set, denoted {} or ∅, is the set that contains no elements.

The definition of the empty set as {} is an exhaustive listing of all of the elements of
the set—though, because there aren’t any elements, there are no elements in the list.

Alternatively, we could have used the set abstraction notation to define the empty
set, as ∅ := {x : False}. This definition may seem initially confusing, but it’s in fact a
direct application of Definition 2.18: the condition P for this set is P(x) = False (that
is: for every object x, the value of P(x) is False), and we’ve defined ∅ to contain every
object y such that P(y) = True. But there isn’t any object y such that P(y) = True—
because P(y) is always false—and thus there’s no y ∈ {x : P(x)}.

Notice that, because there are zero elements in ∅, its cardinality is zero: in other
words, |∅| = 0. One other special type of set is defined based on its cardinality; a sin-
gleton set is a set S that contains exactly one element—that is, a set S such that |S| = 1.

2.3.2 Building Sets from Other Sets

There are a number of ways to create new sets from two given sets A and B. We will
define these operations formally, but it is sometimes more intuitive to look at a more
visual representation of sets called a Venn diagram, which are drawings that represent

Venn diagrams
are named after
the 19th-century
British logician/
philosopher John
Venn.

sets as circular “blobs” that contain points (elements), enclosed in a rectangle that
denotes the universe.

Example 2.29 (Venn diagram of odds and primes)
Let U := {1, 2, . . . , 10}. Let P := {2, 3, 5, 7} denote the set of primes in U, and let
O := {1, 3, 5, 7, 9} denote the set of odd numbers in U.

A Venn diagram illustrating these sets is shown in Figure 2.15: 3, 5, and 7 are
elements of both P and O; 2 is in P but not O; 1 and 9 are in O but not P; and 4, 6, and
8 are in neither P nor O.

We will now define four standard ways of building a new set in terms of one or two

U
P O

3
5
7

2 1
9

4
6
8

Figure 2.15: A Venn
diagram for the set
O of odd numbers
and the set P of
prime numbers
between 1 and 9.existing sets: complement, union, intersection, and set difference.

Definition 2.20 (Set complement)
The complement of a set A with respect to the universe U, written ∼A (or sometimes A), is
the set of all elements not contained within A. Formally, ∼A := {x ∈ U : x /∈ A} . (When the
universe is obvious from context, we will leave it implicit.)

Figure 2.16 shows a Venn diagram illustrating the complement of A.
For example, if the universe is {1, 2, . . . , 10}, then ∼{1, 2, 3} = {4, 5, 6, 7, 8, 9, 10} and

U

A

Figure 2.16: The
complement of a
set A. The shaded
region represents
the set ∼A with
respect to the
universe U.

∼{3, 4, 5, 6} = {1, 2, 7, 8, 9, 10}.
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Definition 2.21 (Set union)
The union of two sets A and B, denoted A ∪ B, is the set of all elements in either A or B (or
both). Formally, A ∪ B := {x : x ∈ A or x ∈ B} . Analogously to summation and product
notation (∑ and ∏), we will sometimes write

⋃n
i=1 Si to denote S1 ∪ S2 ∪ · · · ∪ Sn.

Figure 2.17 shows a Venn diagram illustrating the union of A and B.
For example, {1, 2, 3} ∪ {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}.

A B

Figure 2.17: The
union A ∪ B of two
sets A and B.

Definition 2.22 (Set intersection)
The intersection of two sets A and B, denoted A ∩ B, is the set of all elements in both A and
B. Formally, A ∩ B := {x : x ∈ A and x ∈ B} . We will sometimes write

⋂n
i=1 Si to denote

S1 ∩ S2 ∩ · · · ∩ Sn.

Figure 2.18 shows a Venn diagram illustrating A ∩ B.
For example, {1, 2, 3} ∩ {3, 4, 5, 6} = {3}.

A B

Figure 2.18: The
intersection A ∩ B of
sets A and B.

Definition 2.23 (Set difference)
The difference of two sets A and B, denoted A − B, is the set of all elements contained in the
set A but not in the set B. Formally, A − B := {x : x ∈ A and x /∈ B} . (Some people write
A \B instead of A − B to denote set difference.)

Figure 2.19 shows a Venn diagram illustrating the set difference of A and B. Note that
A − B and B − A are different sets; both are illustrated in Figure 2.19. For example,
{1, 2, 3} − {3, 4, 5, 6} = {1, 2} and {3, 4, 5, 6}− {1, 2, 3} = {4, 5, 6}.

In more complicated expressions that use more than one of these set operators, the

A B

A B

Figure 2.19: The
difference of two
sets A and B. The
shaded region
in the first panel
represents the set
A − B, and the
shaded region in
the second panel
represents B −A.

∼ operator “binds tightest”—that is, in an expression like ∼S ∪ T, we mean (∼S) ∪ T
and not ∼(S ∪ T). We use parentheses to specify the order of operations among ∩, ∪,
and −. Here’s a slightly more complicated example that combines set operations:

Example 2.30 (Combining odds and primes)
Problem: As in Example 2.29, define U := {1, 2, . . . , 10}, the set P := {2, 3, 5, 7} of

primes in U, and the set O := {1, 3, 5, 7, 9} of odd numbers in U. What are the
following sets?

1. P ∩∼O
2. ∼(P ∪ O)
3. ∼P −∼O

Solution: For each part, we simply plug in the definitions:

1. The set P ∩∼O is the set of all prime numbers that are also not odd.

P ∩∼O = {2, 3, 5, 7}∩ ∼ {1, 3, 5, 7, 9}
= {2, 3, 5, 7}∩ {2, 4, 6, 8, 10}
= {2} .
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2. The set ∼(P ∪ O) consists of everything that is not an element of P ∪ O—that is,
∼(P ∪ O) contains only nonprime even numbers.

∼(P ∪ O) = ∼({2, 3, 5, 7}∪ {1, 3, 5, 7, 9})
= ∼ {1, 2, 3, 5, 7, 9}
= {4, 6, 8, 10} .

3. The set ∼P −∼O consists of all elements of ∼P except those that are elements
of ∼O—in other words, all nonprime numbers that aren’t nonodd, or, more
simply stated, all nonprime odd numbers:

∼P −∼O = ∼{2, 3, 5, 7}−∼ {1, 3, 5, 7, 9}
= {1, 4, 6, 8, 9, 10}− {2, 4, 6, 8, 10}
= {1, 9} .

A B

C
(a) (B ∪ C) −A

A B

C
(b) (A − B) ∩C

A B

C
(c) A ∩ (B ∪ C)

Figure 2.20: Some
three-set Venn
diagrams.

Of course, we can also combine more than two sets in
expressions using these set operators—for example,
A ∪ B ∪ C denotes the set {x : x ∈ A or x ∈ B or x ∈ C}.
We can use Venn diagrams to visualize set operations
that involve more than two sets; see Figure 2.20 for a few
examples.

Arithmetic operations on sets
We’ll end this subsection with a few pieces of notation that allow us to perform

mathematical operations on the elements of a set. In Section 2.2.7, we introduced
summation and product notation, so that we could write

n
∑
i=1

xi and
n

∏
i=1

xi

to represent x1 + x2 + · · · + xn and x1 · x2 · · · · · xn. We will also sometimes wish to
represent the sum or product of the elements of a particular set (instead of a sequence
of values like x1, x2, . . . , xn). It will also sometimes be handy to refer to the smallest or
largest element in a set.

Definition 2.24 (Sum, product, minimum, and maximum of a set)
Let S be a set. Then the expressions

∑
x∈S

x, ∏
x∈S

x, min
x∈S

x, and max
x∈S

x

respectively denote the sum of the elements of S, the product of the elements of S, the smallest
element in S, and the largest element in S.

For example, for the set S := {1, 2, 4, 8}, we have that the sum of the elements of S is
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∑x∈S x = 15; the product of the elements of S is ∏x∈S x = 64; the minimum of S is
minx∈S x = 1; and the maximum of S is maxx∈S x = 8.

2.3.3 Comparing Sets

In the same way that two numbers x and y can be compared (we can ask questions
like: does x = y? is x ≤ y? is x ≥ y?), we can also compare two sets A and B. Here, we
will define the analogous notions of comparison for sets. We’ll begin by defining what
it means for two sets to be equal:

Definition 2.25 (Set equality)
Two sets A and B are equal, denoted A = B, if A and B have exactly the same elements. (In
other words, sets A and B are not equal if there’s an element x ∈ A but x /∈ B, or if there’s an
element y ∈ B but y /∈ A.)

This definition formalizes the idea that order and repetition don’t matter in sets: for
example, the sets {4, 4} and {4} are equal because there is no element x ∈ {4, 4} where
x /∈ {4} and there is no element y ∈ {4} where y /∈ {4, 4}. This definition also implies
that the empty set is unique: any set containing no elements is identical to ∅.

Taking it further: Definition 2.25 is sometimes called the axiom of extensionality. (All of mathematics,
including a completely rigorous definition of the integers and all of arithmetic, can be built up from
a small number of axioms about sets, including this one.) The point is that the only way to compare
two sets is by their “externally observable” properties. For example, the following two sets are exactly
the same set: {x : x > 10 is an even prime number}, and {y : y is a country with a 128-letter name}.
(Namely, both of these sets are ∅.)

The other common type of comparison between two sets A and B is the subset rela-
tionship, which expresses that every element of A is also an element of B:

Definition 2.26 (Subset)
A set A is a subset of a set B, written A ⊆ B, if every x ∈ A is also an element of B. (In other
words, A ⊆ B is equivalent to A − B = {}.)

For example, {1, 3, 5} ⊆ {1, 2, 3, 4, 5}, because 1 ∈ {1, 2, 3, 4, 5} and 3 ∈ {1, 2, 3, 4, 5}
and 5 ∈ {1, 2, 3, 4, 5}.

Notice that {} ⊆ S for any set S: it’s impossible for there to be an x ∈ {} that
satisfies x /∈ S, because there is no element x ∈ {} in the first place—and if there’s no
x ∈ {} at all, then there’s certainly no x ∈ {} such that x /∈ S.

Definition 2.27 (Proper subset)
A set A is a proper subset of a set B, written A ⊂ B, if A ⊆ B and A 6= B. In other words,
A ⊂ B whenever A ⊆ B but B 6⊆ A.

For example, let A := {1, 2, 3}. Then A ⊆ {1, 2, 3, 4} and A ⊆ {1, 2, 3} and A ⊂ {1, 2, 3, 4},
but A is not a proper subset of {1, 2, 3}.

When A ⊂ B or A ⊆ B, we refer to A as the (possibly proper) subset of B; we can
also call B the (possibly proper) superset of A:
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Definition 2.28 (Superset and proper superset)
Let A be a set. A set B is a superset of A, written B ⊇ A, if A ⊆ B. The set B is a proper
superset of A, written B ⊃ A, if A ⊂ B.

Figure 2.21 illustrates subsets, proper subsets, supersets, and proper supersets. Here’s
an example involving these relationships:

B
A

Figure 2.21: Two
sets satisfying
A ⊆ B and, equiv-
alently, B ⊇ A.
The sets satisfy
A ⊂ B (and B ⊃ A)
if there’s at least
one element in
the darker shaded
region, and they
satisfy A = B if
there’s no element
in that region.

Example 2.31 (Subsets and supersets)
Problem: Let A := {3, 4, 5} and B := {4, 5, 6}. Identify a set C satisfying the following

conditions, or state that the requirement is impossible to achieve and explain why.

1. A ⊆ C and C ⊇ B
2. A ⊇ C and C ⊆ B
3. A ⊇ C and C ⊇ B

Solution: The first two conditions are achievable, but the third isn’t.

1. Let C := {3, 4, 5, 6}; both A and B are (proper) subsets of this set.

2. We can choose C := {4, 5}, because {4, 5} ⊆ A and {4, 5} ⊆ B.

3. It’s impossible to satisfy {3, 4, 5} ⊇ C and C ⊇ {4, 5, 6} simultaneously. If 6 ∈ C
then we don’t have {3, 4, 5} ⊇ C, but if 6 /∈ C we don’t have C ⊇ {4, 5, 6}. We
can’t have 6 ∈ C and we can’t have 6 /∈ C, so we’re stuck with an impossibility.

We’ll end the section with one last piece of terminology. Two sets A and B are called
disjoint if they have no elements in common:

Definition 2.29 (Disjoint sets)
Two sets A and B are disjoint if there is no x ∈ A where x ∈ B—in other words, if
A ∩ B = {}.

For example, the sets {1, 2, 3} and {4, 5, 6} are disjoint because {1, 2, 3} ∩ {4, 5, 6} = {},
but the sets {2, 3, 5, 7} and {2, 4, 6, 8} are not disjoint because 2 is an element of both.
See Figure 2.22 for a diagram of two disjoint sets.

BA

Figure 2.22: Disjoint
sets A and B.

2.3.4 Sets of Sets

Just as we can have a list of lists in a programming language like Scheme or Java, we
can also consider a set that has sets as its elements. (After all, sets are just collections of
objects, and one kind of object that can be collected is a set itself.)

Example 2.32 (Set of sets of numbers)
The set A := {Z, R, Q} of the sets defined in Section 2.2.2 is itself a set. This set has
cardinality |A| = 3, because A has three distinct elements—namely Z and R and
Q. (Of course, all three of these elements of A are themselves sets, and each of these
three elements of A has infinite cardinality.)
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Example 2.33 (A set of smaller sets)
Consider the set B := {{} , {1, 2, 3}}. Note that |B| = 2: B has two elements, namely {}
and {1, 2, 3}. Therefore {} ∈ B because {} is one of the two elements of B. How-
ever 1 /∈ B, because 1 is not one of the two elements of B—that is, 1 6= {} and
1 6= {1, 2, 3}—although 1 is an element of one of the two elements of B.

There are two important types of sets of sets that we will define in the remainder of
this section, both derived from a base set S.

Partitions
The first interesting use of a set of sets is to form a partition of S into a set of disjoint

subsets whose union is precisely S.

Definition 2.30 (Partition)
A partition of a set S is a set {A1, A2, . . . , Ak} of nonempty sets A1, A2, . . . , Ak, for some
k ≥ 1, such that:

• A1 ∪A2 ∪ · · · ∪ Ak = S; and
• for any distinct i, j ∈ {1, . . . , k}, the sets Ai and Aj are disjoint.

A useful way of thinking about a partition of a set S is that we’ve divided S up into
several (nonoverlapping) subcategories. See Figure 2.23 for an illustration of a partition
of a set S. Here’s an example of one set partitioned many different ways:

(a) The set S.

(b) S partitioned
into 5 subsets.

Figure 2.23: A
visualization of
partitioning a set
S into disjoint
nonempty subsets
whose union equals
S itself.

Example 2.34 (Several partitions of the same set)
Consider the set S := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Here are some different ways to parti-
tion S:

{{1, 3, 5, 7, 9} , {2, 4, 6, 8, 10}} (evens and odds)
{{1, 2, 3, 4, 5, 6, 7, 8, 9} , {10}} (one- and two-digit numbers)
{{1, 4, 7, 10} , {2, 5, 8} , {3, 6, 9}} (x mod 3 = 0 and = 1 and = 2)
{{1} , {2} , {3} , {4} , {5} , {6} , {7} , {8} , {9} , {10}} (all separate)
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}} (all together)

In each case, each of the 10 numbers from S is in one, and only one, of the listed sets
(and no elements not in S appear in any of the listed sets).

It’s worth noting that the last two ways of partitioning S in Example 2.34 genuinely
are partitions. For the partition {{1} , {2} , {3} , {4} , {5} , {6} , {7} , {8} , {9} , {10}},
we have k = 10 different disjoint sets whose union is precisely S. For the partition
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}, we have k = 1: there’s only one “subcategory” in the par-
titioning, and every x ∈ S is indeed contained in one (the only one!) of these “subcat-
egories.” (And no two distinct subcategories overlap, because there aren’t even two
distinct subcategories at all!)
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Taking it further: One way to helpfully organize a massive set S of data—for example, students or
restaurants or web pages—is to partition S into small clusters. The idea is that two elements in the same
cluster will be “similar,” and two entities in different clusters will be “dissimilar.” (So students might be
clustered by their majors or dorms; restaurants might be clustered by their cuisine or geography; and
web pages might be clustered based on the set of words that appear in them.) For more about clustering,
see the discussion on p. 234.

Power sets
Our second important type of a set of sets is the power set of a set S, which is the set

of all subsets of S:

Definition 2.31 (Power set)
The power set of a set S, written P(S), denotes the set of all subsets of S: that is, a set A is
an element of P(A) precisely if A ⊆ S. In other words, P(S) := {A : A ⊆ S}.

Here are some simple examples, and one example that’s a bit more complicated:

The power set of S
is also occasionally
denoted by 2S, in
part because—
as we’ll see in
Chapter 9—|P(S)|
is 2|S|. The name
“power set” also
comes from this
fact: the cardinality
of P(S) is 2 to the
power of |S|.

Example 2.35 (Some small power sets)
Here are the power sets of {0}, {0, 1}, and {0, 1, 2}:

P({0}) = {{} , {0}}
P({0, 1}) = {{} , {0} , {1} , {0, 1}}

P({0, 1, 2}) = {{} , {0} , {1} , {2} , {0, 1} , {0, 2} , {1, 2} , {0, 1, 2}}

A quick check for the second of these examples: there are four elements in P({0, 1}):
the empty set, two singleton sets {0} and {1}, and the two-element set {0, 1} itself,
because {0, 1} ⊆ {0, 1} is a subset of itself.

Example 2.36 (P(P({0, 1})))
The power set of the power set of {0, 1} is

P(P({0, 1}))
= P(

{
{} , {0} , {1} , {0, 1}

}
)

=





{}
, 1 set with 0 elements

{
{}

}
,
{
{0}

}
,
{
{1}

}
,
{
{0, 1}

}
, 4 sets with 1 element

{
{} , {0}

}
,
{
{} , {1}

}
,
{
{} , {0, 1}

}
, 6 sets with 2 elements{

{0} , {1}
}

,
{
{0} , {0, 1}

}
,
{
{1} , {0, 1}

}
,

{
{0} , {1} , {0, 1}

}
,
{
{} , {1} , {0, 1}

}
, 4 sets with 3 elements{

{} , {0} , {0, 1}
}

,
{
{} , {0} , {1}

}
,

{
{} , {0} , {1} , {0, 1}

}
1 set with 4 elements





.
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Computer Science Connections

Set Building in Languages

Programming languages like Python, Scheme, or ML make heavy use of
lists and also allow higher-order functions (functions that take other functions
as parameters); if you have experience programming in these languages,
the set-construction notions from Section 2.3.1 may seem familiar. These
mechanisms for building sets in mathematical notation closely parallel built-in
functionality for building lists in programs in these languages:

• build a list from scratch by writing out its elements.

• build a list from an existing list using the function filter, which takes two
parameters (a list U, corresponding to the universe, and a function P) and
returns a new list containing all x ∈ U for which P(x) is true.

• build a list from an existing list using the function map, which takes two
parameters (a list U and a function f) and returns a new list containing f(x)
for every element x of U.

Unlike sets, the map function can
cause repetitions in the stored list:
map(square,L) where L contains both
2 and −2 will lead to 4 being present
twice. (Some languages, including
Python, also have syntax for sets in-
stead of lists, creating an unordered,
duplicate-free collection of elements.)

Python has filter and map built in; some versions of Scheme have filter and
map either built in or in a standard library. In Python, there’s even an explicit
list comprehension syntax to create a list without using filter or map, which
even more closely parallels the set-abstraction notation from Definitions 2.18
and 2.47. Here are some examples:

In set notation: In Python: In Scheme:

L = {1, 2, 4, 8, 16}
M = {x ∈ L : x < 10}
N = {x ∈ L : x is even}
O = {x2 : x ∈ L}
P = {x2 : x ∈ L and x is even}
Q = {x ∈ L : False}

def even(x): return x % 2 == 0
def square(x): return x**2
def false(x): return False

L = [1,2,4,8,16]
M = [x for x in L if x < 10]
N = filter(even, L)
O = map(square, L)
P = [square(x) for x in L if even(x)]
Q = [x for x in L if false(x)]

(define even?
(lambda (x) (= (modulo x 2) 0)))

(define square (lambda (x) (* x x)))
(define false? (lambda (x) #f))

(define L (list 1 2 4 8 16))
;;; no simple Scheme is analogous to M in Python
(define N (filter even? L))
(define O (map square L))
(define P (map square (filter even? L)))
(define Q (filter false? L))

L = {1, 2, 4, 8, 16}
M = {1, 2, 4, 8}
N = {2, 4, 8, 16}
O = {1, 4, 16, 64, 256}
P = {4, 16, 64, 256}
Q = {}

>>> L
[1, 2, 4, 8, 16]
>>> M
[1, 2, 4, 8]
>>> N
[2, 4, 8, 16]
>>> O
[1, 4, 16, 64, 256]
>>> P
[4, 16, 64, 256]
>>> Q
[]

> L
(1 2 4 8 16)

> N
(2 4 8 16)
> O
(1 4 16 64 256)
> P
(4 16 64 256)
> Q
()

While the technical details are a bit different, the basic idea underlying map

forms half of a programming model called MapReduce that’s become increas-
ingly popular for processing very large datasets.4 MapReduce is a distributed- 4 Jeffrey Dean and Sanjay Ghemawat.

MapReduce: simplified data processing
on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

computing framework that processes data using two user-specified functions:
a “map” function that’s applied to every element of the dataset, and a “re-
duce” function that collects together the outputs of the map function. Imple-
mentations of MapReduce allow these computations to occur in parallel, on a
cluster of machines, vastly speeding processing time.
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Computer Science Connections

Clustering

Partitioning a set is a task that arises frequently in various applications,
usually with a goal like clustering a large collection of data points. The goal
is that elements placed into the same cluster should be “very similar,” and
elements in different clusters should be “not very similar.”5 Why might we You can read more about clustering, and

clustering algorithms, in a data-mining
book like
5 Jure Leskovec, Anand Rajaraman,
and Jeff Ullman. Mining of Massive
Datasets. Cambridge University Press,
2nd edition, 2014.

want to perform clustering on a data set? For example, we might try to cluster
a set N of news articles into “topics” C1, C2, . . . , Ck , where any two articles
x, y that are both in the same cluster Ci are similar (say, with respect to the
words contained within them), but if x ∈ Ci and y ∈ Cj 6=i then x and y are
not very similar. Or we might try to cluster the people in a social network
into communities, so that a person in community c has a large fraction of her
friends who are also in community c. Understanding these clusters—and
understanding what properties of a data point “cause” it to be in one cluster
rather than another—can help reveal the structure of a large data set, and can
also be useful in building a system to react to new data. Or we might want to
use clusters for anomaly detection: given a large data set—for example, of user
behavior on a computer system, or the trajectory of a car on a highway—we
might be able to identify those data points that do not seem to be part of a
normal pattern. These data points may be the result of suspicious behavior
that’s worth further investigation (or that might trigger a warning to the
driver of the car that he or she has strayed from a lane).

Here’s one (vastly simplified) example application for clustering: speech Figure 2.24: A spectrogram generated by
Praat of me pronouncing the sentence “I
prefer agglomerative clustering.” There
are essentially no acoustic correlates
to the divisions between words, which
is one reason speech recognition is so
difficult.

processing. Software systems that interact with users as they speak in natu-
ral language—that is, as they talk in English—have developed with rapidly
increasing quality over the last decade. Speech recognition—taking an audio
input, and identifying what English word is being spoken from the acoustic
properties of the audio signal—turns out to be a very challenging problem.
Figure 2.24 illustrates some of the reasons for the difficulty, showing a spec-
trogram generated by the Praat software tool.6 In a spectrogram, the x-axis is 6 Paul Boersma and David Weenink.

Praat: doing phonetics by computer.
http://www.praat.org, 2012. Version
5.3.22.

time, and the y-axis is frequency; a darkly shaded frequency f at time t shows
that the speech at time t had an intense component at frequency f . But we
can partition a training set of many speakers saying a collection of common
words into subsets based on which word was spoken, and then use the av-
erage acoustic properties of the utterances to guess which word was spoken.
Figure 2.25 shows the frequencies of the two lowest formants—frequencies of
very high intensity—in the utterances of a half-dozen college students pro-
nouncing the words bat and beat. First, the formants’ frequencies are shown
unclustered; second, they are shown partitioned by the pronounced word.
The centroid of each cluster (the center of mass of the points) can serve as a
prototypical version of each word’s acoustics.

“bat”

“beat”
Figure 2.25: The frequencies of the
first two formants in utterances by six
speakers saying the words beat and bat.
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2.3.5 Exercises

Let H := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f} denote the set of hexadecimal digits.
2.86 Is 6 ∈ H?
2.87 Is h ∈ H?

2.88 Is a70e ∈ H?
2.89 What is |H|?

Let S := {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 · 0, 0 · 1, 1 · 0, 1 · 1} be the set of results of adding any two bits together or
multiplying any two bits together.
2.90 Which of 0, 1, 2, and 3 are elements of S? 2.91 What is |S|?

Let T := {n ∈ Z : 0 ≤ n ≤ 20 and n mod 2 = n mod 3}. Let H := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f} and
S := {0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 · 0, 0 · 1, 1 · 0, 1 · 1}, as in the previous blocks of exercises.
2.92 Identify at least one element of H that is not an element of T.
2.93 Identify at least one element of T that is not an element of H.
2.94 Identify at least one element of T that is not an element of S.
2.95 Identify at least one element of S that is not an element of T.
2.96 What is |T|?

Rewrite the following sets by exhaustively listing their elements:
2.97 {n ∈ Z : 0 ≤ n ≤ 20 and n mod 5 = n mod 7}
2.98 {n ∈ Z : 10 ≤ n ≤ 30 and n mod 5 = n mod 7}

Let A := {1, 3, 4, 5, 7, 8, 9} and let B := {0, 4, 5, 9}. What are the following sets?
2.99 A ∩ B
2.100 A ∪ B

2.101 A − B
2.102 B −A

Assume the universe is the set U := {0, 1, 2, . . . , 9}. Define C := {0, 3, 6, 9}, and let A := {1, 3, 4, 5, 7, 8, 9} and
B := {0, 4, 5, 9} as before. What are the following sets?
2.103 ∼B
2.104 A ∪∼C

2.105 ∼C −∼B
2.106 C −∼C

2.107 ∼(C −∼A)

A B

A B

Figure 2.26: In
general, the sets
A − B and B − A are
different.

2.108 In general, A − B and B − A do not denote the same set. (See Figure 2.26.) But your friends Evan
and Yasmin wander by and tell you the following. Let E denote the set of CS homework questions that Evan
has not yet solved. Let Y denote the set of CS homework questions that Yasmin has not yet solved. Evan and
Yasmin claim that E − Y = Y − E. Is this possible? If so, under what circumstances? If not, why not? Justify
your answer.

Let D and E be arbitrary sets. For each set given below, indicate which of the following statements is true:
• the given set must be a subset of D (for every choice of D and E);
• the given set may be a subset of D (for certain choices of D and E); or
• the given set cannot be a subset of D (for any choice of D and E).
If you answer “must” or “cannot,” justify your answer (1–2 sentences). If you answer “may,” identify an example
D1, E1 for which the given set is a subset of D1, and an example D2, E2 for which the given set is not a subset of D2.
2.109 D ∪ E
2.110 D ∩ E

2.111 D − E
2.112 E −D

2.113 ∼D

Let F := {1, 2, 4, 8}, let G := {1, 3, 9}, and let H := {0, 5, 6, 7}. Let U := {0, 1, 2, . . . , 9} be the universe. Which of the
following pairs of sets are disjoint?
2.114 F and G
2.115 G and ∼F

2.116 F ∩ G and H
2.117 H and ∼H

Let S and T be two sets, with n = |S| and m = |T|. For each of the following sets, state the smallest cardinality that the
given set can have. Give examples of the minimum-sized sets for each part. (You should give a family of examples—
that is, describe a smallest-possible set for any values of n and m.)
2.118 S ∪ T 2.119 S ∩ T 2.120 S− T
Repeat the last three exercises for the largest set: for two sets S and T with n = |S| and m = |T|, state the largest
cardinality that the given set can have. Give a family of examples of the largest-possible sets for each part.
2.121 S ∪ T 2.122 S ∩ T 2.123 S− T
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In a variety of CS applications, it’s useful to be able to compute the similarity of two sets A and B. (More about one of
these applications, collaborative filtering, below.) There are a number of different ideas of how to measure set similarity,
all based on the intuition that the larger |A ∩ B| is, the more similar the sets A and B are. Here are two basic measures
of set similarity that are sometimes used:
• the cardinality measure: the similarity of A and B is |A∩ B|.
• the Jaccard coefficient:7 the similarity of A and B is |A∩B|

|A∪B| .

The Jaccard coeffi-
cient is named after
the Swiss botanist
Paul Jaccard, from
around the turn of
the 20th century,
who was interested
in how similar
or different the
distributions of
various plants were
in different regions.
7 P. Jaccard. Dis-
tribution de la
flore alpine dans le
bassin des dranses
et dans quelques
régions voisines.
Bulletin de la So-
ciété Vaudoise des
Sciences Naturelles,
37:241–272, 1901.

2.124 Let A := {chocolate, hazelnut, cheese}; B := {chocolate, cheese, cardamom, cherries}; and
C := {chocolate}. Compute the similarities of each pair of these sets using the cardinality measure.
2.125 Repeat the previous exercise for the Jaccard coefficient.

Suppose we have a collection of sets A1, A2, . . . , An. Consider the following claim:
Claim: Suppose that the set Av is the most similar set to the set Au in this collection (aside from Au itself).
Then Au is necessarily the set that is most similar to Av (aside from Av itself).

2.126 Decide whether you think this claim is true for the cardinality measure of set similarity, and
justify your answer. (That is, argue why it must be true, or give an example showing that it’s false.)
2.127 Repeat the previous exercise for the Jaccard coefficient.

Taking it further: A collaborative filtering system, or recommender system, seeks to suggest new products
to a user u on the basis of the similarity of u’s past behavior to the past behavior of other users in the
system. Collaborative filtering systems are mainstays of many popular commercial online sites (like
Amazon or Netflix, for example). One common approach to collaborative filtering is the following. Let
U denote the set of users of the system, and for each user u ∈ U, define the set Su of products that u has
purchased. To make a product recommendation to a user u ∈ U:
(i) Identify the user v ∈ U − {u} such that Sv is the set “most similar” to Su.
(ii) Recommend the products in Sv − Su to user u (if any exist).
This approach is called nearest-neighbor collaborative filtering, because the v found in step (i) is the other
person closest to u. The measure of set similarity used in step (i) is all that’s left to decide, and either car-
dinality or the Jaccard coefficient are reasonable choices. The idea behind the Jaccard coefficient is that
the fraction of agreement matters more than the total amount of agreement: a {Cat’s Cradle, Catch 22}
purchaser is more similar to a {Slaughterhouse Five, Cat’s Cradle} purchaser than someone who bought
every book Amazon sells.

For each of the following claims, decide whether you think the statement is true for all sets of integers A, B, C. If it’s true
for every A, B, C, then explain why. (A Venn diagram may be helpful.) If it’s not true for every A, B, C, then provide an
example for which it does not hold.
2.128 A ∩ B = ∼(∼A ∪∼B)
2.129 A ∪ B = ∼(∼A ∩∼B)

2.130 (A − B)∪ (B −C) = (A ∪ B) −C
2.131 (B −A) ∩ (C −A) = (B ∩ C) −A

2.132 List all of the different ways to partition the set {1, 2, 3}.

A
lic

e

Bo
b

Ch
ar

lie

D
av

id

Ev
e

Fr
an

k
Alice 0.0 1.7 1.2 0.8 7.2 2.9
Bob 1.7 0.0 4.3 1.1 4.3 3.4

Charlie 1.2 4.3 0.0 7.8 5.2 1.3
David 0.8 1.1 7.8 0.0 2.1 1.9

Eve 7.2 4.3 5.2 2.1 0.0 1.9
Frank 2.9 3.4 1.3 1.9 1.9 0.0

Figure 2.27: Some
distances between
people.

Consider the table of distances shown in Figure 2.27 for a set P = {Alice, . . . , Frank} of
people. Suppose we partition P into subsets S1, . . . , Sk . Define the intracluster distance
as the largest distance between two people who are in the same cluster:

max
i

[
max
x,y∈Si

distance between x and y
]

.

Define the intercluster distance as the smallest distance between two people who are in
different clusters:

min
i,j 6=i

[
min

x∈Si,y∈Sj
distance between x and y

]
.

In each of the following questions, partition P into . . .
2.133 . . . 3 or fewer subsets so that the intracluster distance is ≤ 2.0.
2.134 . . . subsets S1, . . . , Sk so the intracluster distance is as small as possible. (You choose k.)
2.135 . . . subsets S1, . . . , Sk so the intercluster distance is as large as possible. (Again, you choose k.)

2.136 Define S := {1, 2, . . . , 100}. Let W := {x ∈ S : x mod 2 = 0}, H := {x ∈ S : x mod 3 = 0}, and
O := S − H −W. Is {W, H, O} a partition of S?

What is the power set of each of the following sets?
2.137 {1, a} 2.138 {1} 2.139 {} 2.140 P(1)
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2.4 Sequences, Vectors, and Matrices: Ordered Collections

Watch out for the fellow who talks about putting
things in order! Putting things in order always means
getting other people under your control.

Denis Diderot (1713–1784)
Supplément au voyage de Bougainville (1796)

In Section 2.3, we introduced sets—collections of objects in which the order of those
objects doesn’t matter. In many circumstances, though, order does matter: if a Java
method takes two parameters, then swapping the order of those parameters will usu-
ally change what the method does; if there’s an interesting site at longitude x and lati-
tude y, then showing up at longitude y and latitude x won’t do. In this section, we turn
to ordered collections of objects, called sequences. A summary of the notation related to
sequences is given in Figure 2.29.

Definition 2.32 (Sequence, list, and tuple)
A sequence—also known as a list or tuple—is an ordered collection of objects, typically
called components or entries. When the number of objects in the collection is 2, 3, 4, or n,
the sequence is called an (ordered) pair, triple, quadruple, or, n-tuple, respectively.

We’ll write a sequence inside angle brackets, as in 〈Northfield, Minnesota〉 or 〈0, 1〉.
(Some people use parentheses instead of angle brackets, as in (128, 128, 0) instead of
〈128, 128, 0〉.) For two sets A and B, we frequently will refer to the set of ordered pairs
whose two elements, in order, come from A and B:

The Cartesian prod-
uct is named after
René Descartes, the
17th-century French
philosopher/
mathematician.
(The English ad-
jectival form uses
only the cartes part
of his last name
Descartes.)

Definition 2.33 (Cartesian product)
The Cartesian product of two sets A and B, denoted A × B, is the set

A × B = {〈a, b〉 : a ∈ A and b ∈ B}

containing all ordered pairs where the first component comes from A and the second from B.

For example, {0, 1} × {2, 3} is the set {〈0, 2〉, 〈0, 3〉, 〈1, 2〉, 〈1, 3〉}. We can also view any
particular cell in a 2-dimensional grid—like a cell in a spreadsheet, or a square on a
chess board—as a sequence:

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2.28: The
squares of a chess
board, written
using Algebraic
notation.

Example 2.37 (Chess positions)
A chess board is an 8-by-8 grid. Chess players use what’s called “Algebraic nota-
tion” to refer to the columns (which they call files) using the letters a through h, and
they refer to the rows (which they call ranks) using the numbers 1 through 8. (See
Figure 2.28.)

Thus the square containing the white queen Q is 〈d, 1〉; the full set of squares of
the chess board is {a, b, c, d, e, f, g, h}× {1, 2, 3, 4, 5, 6, 7, 8} ; and the squares containing
knights—the N pieces (both white and black)—are {〈b, 1〉, 〈g, 1〉, 〈b, 8〉, 〈g, 8〉}. The
set of squares with knights could also be written as {b, g} × {1, 8}.
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sequence/ordered tuple 〈a1, a2 , . . . , an〉
Cartesian product A× B := {〈a, b〉 : a ∈ A and b ∈ B}
the set of all n-element sequences of S Sn := S × S × · · · × S (n times)
vector x ∈ Rn

vector length, for x ∈ Rn ‖x‖ :=
√

∑n
i=1 x2

i
vector addition, for vectors x, y ∈ Rn x + y := 〈x1 + y1, x2 + y2, . . . , xn + yn〉
scalar product, for a ∈ R and x ∈ Rn ax := 〈a · x1, a · x2, . . . , a · xn〉
dot product, for vectors x, y ∈ Rn x • y := ∑n

i=1 xi · yi
matrix M ∈ Rn×m

identity matrix a matrix I ∈ Rn×n where I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




scalar multiplication, for α ∈ R and M ∈ Rn×m a matrix N ∈ Rn×m where Ni,j := α · Mi,j
matrix addition, for M, M′ ∈ Rn×m a matrix N ∈ Rn×m where Ni,j := Mi,j + M′

i,j
matrix multiplication, for A ∈ Rn×m and B ∈ Rm×p a matrix M ∈ Rn×p where Mi,j = ∑m

k=1 Ai,kBk,j
matrix inverse, for M ∈ Rn×n a matrix M−1 ∈ Rn×n where MM−1 = I (if any such M−1 exists)

Figure 2.29: A sum-
mary of notation for
sequences, vectors,
and matrices.

Here’s another example, about color representation on computers:

violet 〈128, 0, 128〉
indigo 〈74, 0, 130〉
blue 〈0, 0, 255〉
green 〈0, 255, 0〉
yellow 〈255, 255, 0〉
orange 〈255, 128, 0〉
red 〈255, 0, 0〉

Figure 2.30: A
few RGB values of
colors.

Example 2.38 (RGB color values)
The RGB color space represents colors as ordered triples, where each component is
an element of {0, 1, . . . , 255}. RGB stands for red–green–blue; the three components
of a color c, respectively, represent how red, how green, and how blue the color c is.
Formally, a color c is an element of {0, 1, . . . , 255} × {0, 1, . . . , 255}× {0, 1, . . . , 255}.

The order of these components matters; for example, the color 〈0, 0, 255〉 is pure
blue, while the color 〈255, 0, 0〉 is pure red. See Figure 2.30 for a few examples.

Taking it further: An annoying pedantic point: we are being sloppy with notation in Example 2.38;
we only defined the Cartesian product for two sets, so when we write S × S × S we “must” mean
either S × (S × S) or (S × S) × S. We’re going to ignore this issue, and simply write statements like
〈0, 1, 1〉 ∈ {0, 1} × {0, 1} × {0, 1}—even though we ought to instead be writing statements like
〈0, 〈1, 1〉〉 ∈ {0, 1} × ({0, 1} × {0, 1}). (A similar shorthand shows up in programming languages
like Scheme, where pairing—“cons”ing—a single element 3 with a list (2 1) yields the three-element list
(3 2 1), rather than the two-element pair (3 . (2 1)), where the second element is a two-element list.)

Beyond the “obvious” sequences like Examples 2.37 and 2.38, we’ve also already
seen some definitions that don’t seem to involve sequences, but implicitly are about
ordered tuples of values. One example is the rational numbers (see Section 2.2.2):

Example 2.39 (Rational numbers as sequences)
We can define the rational numbers (also known as fractions) as the set Q := Z × Z>0.
Under this view, a rational number would be represented as a pair 〈n, d〉 ∈ Z × Z>0,
with a numerator n and a denominator d.

For example, the fractions 1
2 and 202

808 would be represented as 〈1, 2〉 and 〈202, 808〉,
respectively. (To flesh out the details of this representation, we also have to consider
reducing fractions to lowest terms, to establish the equivalence of fractions like 〈2, 4〉
and 〈1, 2〉. In Example 8.36, we’ll formalize this equivalence.)
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We will often consider sequences of elements that are all drawn from the same set,
and there is special notation for such a sequence:

Definition 2.34 (Sequences of elements from the same set)
For a set S and a positive integer n, we write Sn to denote

Sn := S × S × . . .× S︸ ︷︷ ︸
n times

.

-4
-3
-2
-1
0
1
2
3
4

〈1, 3〉

〈3, 1〉

〈−3,−2〉

Figure 2.31: Three
points in R2. The
first component
represents the x-
axis (horizontal)
position; the second
component rep-
resents the y-axis
(vertical) position.

Thus Sn denotes the set of all sequences of length n where each component of the
sequence is an element the set S. For example, the RGB values from Example 2.38
are elements of {0, 1, . . . , 255}3, and {0, 1}3 denotes the set

{〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉} .

This notation also lets us write R × R, called the Cartesian plane, as R2—the way
you might have written it in a high school algebra class. (See Figure 2.31.)

Taking it further: René Descartes, the namesake of the Cartesian product and the Cartesian plane, was
a major contributor in mathematics, particularly geometry. But Descartes is probably most famous as
a philosopher, for the cogito ergo sum (“I think therefore I am”) argument, in which Descartes—after
adopting a highly skeptical view about all claims, even apparently obviously true ones—attempts to
argue that he himself must exist.

In certain contexts, sequences of elements from the same set (as in Definition 2.34)
are called strings. For a set Σ, called an alphabet, a string over Σ is an element of Σn for
some nonnegative integer n. (In other words, a string is any element of

⋃
n∈Z≥0 Σn.)

The length of a string x ∈ Σn is n. For example, the set of 5-letter words in English
is a subset of {A, B, . . . , Z}5. We allow strings to have length zero: for any alphabet
Σ, there is only one sequence of elements from Σ of length 0, called the empty string;
it’s denoted by ε, and for any alphabet Σ, we have Σ0 := {ε}. When writing strings,
it is customary to omit the punctuation (angle brackets and commas), so we write
ABRACADABRA ∈ {A, B, . . . , Z}11 and 11010011 ∈ {0, 1}8.

2.4.1 Vectors

As we’ve already seen, we can create sequences of many types of things: we can view
sequences of letters as strings (like ABRACADABRA ∈ {A, B, . . . , Z}11), or sequences of
three integers between 0 and 255 as colors (like 〈119, 136, 153〉 ∈ {0, 1, . . . , 255}3, offi-
cially called “light slate gray”). Perhaps the most pervasive type of sequence, though,
is a sequence of real numbers, called a vector.

Taking it further: Vectors are used in a tremendous variety of computational contexts: computer
graphics (representing the line-of-sight from the viewer’s eye to an object in a scene), machine learning
(a feature vector describing which characteristics a particular object has, which can be used in trying to
classify that object as satisfying a condition or failing to satisfy a condition), among many others. The
discussion on p. 248 describes the vector-space model for representing a document d as a vector whose
components correspond to the number of times each word appears in d.

Vectors and matrices (the topics of this and the next subsection) are the main focus of a math course
in linear algebra. In these subsections, we’re only mentioning a few highlights of vectors and matrices;
you can find much more in any good textbook on linear algebra.
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Definition 2.35 (Vector)
A vector (or n-vector) x is a sequence x ∈ Rn, for some positive integer n. For a vector
x ∈ Rn and for any index i ∈ {1, 2, . . . , n}, we write xi to denote the ith component of x.

For example, 〈0, 1〉, 〈1, 0〉, and 〈 1√
2
, 1√

2
〉 are all vectors in R2. For the vector x :=

A warning for C or
Java or Python (or
. . . ) programmers:
notice that our vec-
tors’ components
are indexed starting
at one, not zero. For
a vector x ∈ Rn,
the expression xi is
meaningless unless
i ∈ {1, 2, . . . , n}. In
particular, the ex-
pression x0 doesn’t
mean anything.

〈1/2,
√

3/2〉, we have x1 = 1/2 and x2 =
√

3/2.
Vectors are sometimes contrasted with scalars, which are just numbers: that is, a

scalar is an element of R. Vectors are also sometimes written in square brackets, so
we may see an n-vector x written as x = [x1, x2, . . . , xn]. We may encounter vectors in
which the components are a restricted kind of number—for example, integers or bits.
Elements of {0, 1}n are often called bit vectors or bitstrings.

Here’s an example of using vectors to compute distances between points:

2 3 4 5 6 7 8 9 10
32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

2 3 4 5 6 7 8 9 10
32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

? ?

Figure 2.32: Illustra-
tions of Manhattan
train stations. In
the second panel,
the dark shaded
points are closer (in
walking distance)
to 〈4, 42〉 than to
〈8, 33〉. The white
shaded points are
closer to 〈8, 33〉 than
to 〈4, 42〉.

Example 2.40 (Train stations in Manhattan)
Problem: Let’s (very roughly!) represent a location in Manhattan as a vector—

specifically, as a point 〈x, y〉 ∈ R2 representing the intersection of xth Avenue
and yth Street. Define the walking distance between points p and q in Manhattan as
|p1 − q1| + |p2 − q2|: the number of east–west blocks between p and q plus the num-
ber of north–south blocks between p and q. (Note that walking distance is different
from the straight-line distance between the points!)

1. The two major train stations in Manhattan are Penn Station, located at s :=
〈8, 33〉, and Grand Central Station, located at g := 〈4, 42〉. What’s the walking
distance between Penn Station and Grand Central?

2. Describe the set of all points that are closer (in walking distance) to Penn Sta-
tion than to Grand Central.

Solution: 1. The distance between s = 〈8, 33〉 and g = 〈4, 42〉 is |s1 − g1| + |s2 − g2| =
|8 − 4| + |33− 42| = 4 + 9 = 13.

2. Let’s compute some points that are equidistant to the two stations. (Those
points are on the boundary of the region of points closer to g and the region
of points closer to s.) For example, a point 〈4, y〉 has distances |42 − y| and
4 + |y − 33| to the stations; these distances are both equal to 6.5 when y = 35.5.
More generally, let’s think about a point whose x-coordinate falls between 4 and
8. For any offset 0 ≤ δ ≤ 4, the distance between the point 〈4 + δ, y〉 and the two
stations are δ + |42 − y| and 4 − δ + |y − 33|. These two values are both equal to
6.5 when y = 35.5 + δ. (For example, when δ = 4, then y = 39.5.) Thus the points
〈4 + 0, 35.5 + 0〉 = 〈4, 35.5〉 and 〈4 + 4, 35.5 + 4〉 = 〈8, 39.5〉 are both equidistant to s
and g, as are all points on the line segment between them. (See Figure 2.32.)
The remaining cases of the analysis—figuring out which points with x-
coordinate less than 4 or greater than 8 are closer to s or g (the regions marked
with “?” in Figure 2.32)—are left to you in Exercises 2.184 and 2.185.
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Taking it further: The measure of walking distance between points that we used in Example 2.40 is
used surprisingly commonly in computer science applications—and, appropriately enough, it’s actually
named after Manhattan. The Manhattan distance between two points p, q ∈ Rn is defined as ∑n

i=1 |pi − qi|.
(We’re summing the number of “blocks” of difference in each of the n dimensions; we take the absolute
value of the difference in each component because we care about the difference in each dimension rather
than which point has the higher value in that component.)

Here’s one more useful definition about vectors:

Definition 2.36 (Vector length)
The length of a vector x ∈ Rn is defined as ‖x‖ :=

√
∑n

i=1(xi)2.

For example, ‖〈2, 8〉‖ =
√

22 + 82 =
√

4 + 64 =
√

68 ≈ 8.246. If we draw a vector x ∈ R2

in the Cartesian plane, then ‖x‖ denotes the length of the line from 〈0, 0〉 to x. (See
Figure 2.33.) A vector x ∈ Rn is called a unit vector if ‖x‖ = 1.

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
〈1, 9〉

√ 82

〈−3,−5〉

√ 34

Figure 2.33:
Two vector
lengths: ‖〈1, 9〉‖
is
√

1 + 81 =
√

82,
and ‖〈−3,−5〉‖ is√

9 + 25 =
√

34.

Vector arithmetic
We will now define basic arithmetic for vectors: vector addition, which is performed

component-wise (adding the corresponding elements of the two vectors), and two
forms of multiplication—one for multiplying a vector by a scalar (also component-
wise) and one for multiplying two vectors together. We’ll start with addition:

Definition 2.37 (Vector addition)
The sum of two vectors x, y ∈ Rn, written x + y, is a vector z ∈ Rn, where for every index
i ∈ {1, 2, . . . , n} we have zi := xi + yi. (Note that the sum of two vectors with different sizes is
meaningless.)

For example, 〈1.1, 2.2, 3.3〉+ 〈2, 0, 2〉 = 〈3.1, 2.2, 5.3〉.
The first type of multiplication for vectors is scalar multiplication, when we multiply

a vector by a real number. As with vector addition, scalar multiplication acts on each
component independently, by rescaling each component by the same factor:

Definition 2.38 (Scalar product)
Given a vector x ∈ Rn and a real number α ∈ R, the scalar product αx is a vector z ∈ Rn,
where zi := αxi for every index i ∈ {1, 2, . . . , n}.

For example, we have 3 · 〈1, 2, 3〉 = 〈3, 6, 9〉. Similarly −1.5 · 〈1,−1〉 = 〈−1.5, 1.5〉 and
0 · 〈1, 2, 3, 5, 8〉 = 〈0, 0, 0, 0, 0〉.

The second type of vector multiplication, the dot product, takes two vectors as input
and multiplies them together to produce a single scalar as output: As with vector

addition, the
dimensions of the
vectors in a dot
product have to
match up: if x ∈ Rn

and y ∈ Rm are
vectors where
n 6= m, then x • y is
meaningless.

Definition 2.39 (Dot product)
Given two vectors x, y ∈ Rn, the dot product of x and y, denoted x • y, is given by summing
the products of the corresponding components:

x • y =
n
∑
i=1

xi · yi.
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For example, 〈1, 2, 3〉 • 〈4, 5, 6〉 = 1 · 4 + 2 · 5 + 3 · 6 = 4 + 10 + 18 = 32.
Intuitively, the dot product of two vectors measures the extent to which they point

in the “same direction.” Here’s an example with a few unit vectors:

-1 0 1
-1

0

1 a

b

c

d

Figure 2.34: Four
unit vectors.

Example 2.41 (Dot products of unit vectors)
Consider the unit vectors a := 〈0, 1〉, b := 〈1, 0〉, c := 〈1/

√
2, 1/

√
2〉, and d := 〈0,−1〉.

(See Figure 2.34.) Here is the dot product of c with each of these vectors:

c • a
= c1 · a1 + c2 · a2

= 1√
2
· 0 + 1√

2
· 1

= 1√
2
.

c • b
= c1 · b1 + c2 · b2

= 1√
2
· 1 + 1√

2
· 0

= 1√
2
.

c • c
= c1 · c1 + c2 · c2

= 1√
2
· 1√

2
+ 1√

2
· 1√

2

= 1
2 + 1

2 = 1.

c • d
= c1 · d1 + c2 · d2

= 1√
2
· 0 + 1√

2
· −1

= − 1√
2
.

Here are two examples using dot products for simple applications:

Example 2.42 (Common classes)
Let C := 〈CS1, CS2, . . . , CS8〉 denote the list of all courses offered by a (somewhat
narrowly focused) university. For a particular student, let the bit vector u represent
the courses taken by that student, so that ui := 1 if the student has taken course ci
(and ui := 0 otherwise). For example, a student who’s taken only CS1 and CS8 would
be represented by x := 〈1, 0, 0, 0, 0, 0, 0, 1〉, and a student who’s taken everything
except CS3 would be represented by y := 〈1, 1, 0, 1, 1, 1, 1, 1〉.

The dot product of two student vectors represents the number of common courses
that they’ve taken. For example, the number of common classes taken by x and y is

x • y =
8
∑
i=1

xiyi = 1 · 1 + 0 · 1 + 0 · 0 + 0 · 1 + 0 · 1 + 0 · 1 + 0 · 1 + 1 · 1

= 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 2.

Specifically, the two common courses taken by x and y are CS1 and CS8.

Example 2.43 (GPAs)
Let g ∈ Rn be an n-vector where gi denotes the grade (measured on the grade point
scale) that you got in the ith class that you’ve taken in your college career. Let c ∈ Rn

be an n-vector where ci denotes the number of credit hours for the ith class you took
in your college career. Then your grade point average (GPA) is given by g•c

∑n
i=1 ci

.
For example, suppose your school gives grade points on the scale 4.0 = A, 3.7 = A-,

3.3 = B+, 3.0 = B, etc. Suppose you took CS 111 (6 credits), CS 201 (6 credits), and
Mbira Lessons (4 credits), and got grades of B+, A-, and B, respectively. Then
g = 〈3.3, 3.7, 3.0〉 and c = 〈6, 6, 4〉, and your GPA is given by

g • c
∑3

i=1 ci
= 3.3 · 6 + 3.7 · 6 + 3.0 · 4

6 + 6 + 4 = 19.8 + 22.2 + 12.0
16 = 54

16 = 3.375.
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2.4.2 Matrices



M1,1 M1,2 . . . M1,m
M2,1 M2,2 . . . M2,m

...
...

. . .
...

Mn,1 Mn,2 . . . Mn,m




Figure 2.35: A
matrix M.

If a vector is analogous to an array of numbers, then a matrix is analogous to
a two-dimensional array of numbers:

Definition 2.40 (Matrix)
An n-by-m matrix M is a two-dimensional table of real numbers containing n
rows and m columns. The 〈i, j〉th entry of the matrix appears in the ith row and jth
column, and we denote that entry by Mi,j, as shown in Figure 2.35. Such a matrix M is an
element of Rn×m, and we refer to M as having size or dimension n-by-m.

Here are a few very small example matrices: The plural of matrix
is matrices (which
rhymes with the
word “cheese”).Example 2.44 (Three matrices)

Here are three matrices. (The 〈2, 1〉st entry is circled in each.)

A =
[

3 1 4
9 7 2

]
B =




5 3
4 8
6 9


 I =




1 0 0
0 1 0
0 0 1


 .

In these examples, A is a 2-by-3 matrix, B is a 3-by-2 matrix, and I is a 3-by-3 matrix.

One can think of a two-dimensional array in a programming language as a one-
dimensional array of one-dimensional arrays. Similarly, if you prefer, you can think of




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




(a) A matrix. (b) A bitmapped image.

Figure 2.36: A
matrix representing
a black-and-white
bitmapped image,
and the image.

an n-by-m matrix as a
sequence of n vectors,
all of which are ele-
ments of Rm. This view
of an n-by-m matrix is
as an element of (Rn)m.
One simple application
of matrices is as an easy
way to represent images:

Example 2.45 (Bitmaps)
A black-and-white image can be represented as a matrix with all entries in {0, 1}:
each 1 entry represents white in the corresponding pixel; each 0 represents black. For
example, the matrix in Figure 2.36(a) could represent the image in Figure 2.36(b).

Taking it further: The picture shown in Figure 2.36 is a simple black-and-white image, but we can use
the same basic structure for grayscale or color images. Instead of just an integer in {0, 1} as each entry
in the matrix, a grayscale pixel could be represented using a real number in [0, 1]—or, more practically, a
number in { 0

255 , 1
255 , . . . , 255

255}. For color images, each entry would be an RGB triple (see Example 2.38).
These matrix-based representations of an image are often called bitmaps. Bitmaps are highly in-

efficient ways of storing images; most computer graphics file formats use much cleverer (and more
space-efficient) representations.
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Here are few other examples of the pervasive applications of matrices in computer science. A term–
document matrix can be used to represent a collection of documents: the entry Md,k of the matrix M stores
the number of times that keyword k appears in document d. An adjacency matrix (see Chapter 11) can
represent the page-to-page hyperlinks of the web in a matrix M, where Mi,j = 1 if web page i has a
hyperlink to web page j (and Mi,j = 0 otherwise). A rotation matrix can be used in computer graphics to
re-render a scene from a different perspective; see p. 249 for some discussion.

A matrix M ∈ Rm×n is called square if m = n. For a square matrix M ∈ Rn×n, we may
say that the size of M is n (rather than saying that its size is n-by-n). A square matrix
M is called symmetric if, for all indices i, j ∈ {1, 2, . . . , n}, we have Mi,j = Mj,i. The main
diagonal of a square matrix M ∈ Rn×n is the sequence consisting of the entries Mi,i for
i = 1, 2, . . . , n. For example:




1 2 3

4 5 6

7 8 9




Figure 2.37: A
matrix M with the
entries of the main
diagonal circled.

Example 2.46 (Main diagonal)
Consider the 3-by-3 square matrix M shown in Figure 2.37. The main diagonal of M
is 〈M1,1, M2,2, M3,3〉 = 〈1, 5, 9〉.

One special square matrix that will arise frequently is the identity matrix, which has
ones on the main diagonal and zeros everywhere else (see Figure 2.38):

Definition 2.41 (Identity matrix)
The n-by-n identity matrix is the matrix I ∈ Rn×n whose entries satisfy

Ii,j =
{

1 if i = j
0 if i 6= j.

Note that there is a different n-by-n identity matrix for every n ≥ 1:




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




Figure 2.38: The
identity matrix I.

Example 2.47 (The smallest identity matrices)
Here are the identity matrices of size up to 5:

[
1
] [

1 0
0 1

] 


1 0 0
0 1 0
0 0 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




As with vectors, we will need to define the basic arithmetic operations of addition
and multiplication for matrices. Just as with vectors, adding two n-by-m matrices or
multiplying a matrix by a scalar is done component by component.

Definition 2.42 (Matrix addition and scalar multiplication)
Given two matrices M, M′ ∈ Rn×m and a real number α ∈ R:

• The product αM is a matrix N ∈ Rn×m where Ni,j := αMi,j for all indices
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}.
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• The sum M + M′ is a matrix N ∈ Rn×m where Ni,j := Mi,j + M′
i,j for all indices

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}.

Again, just as with vectors, adding two matrices that are not the same size is meaning-
less. Here are some small examples:

Example 2.48 (Simple matrix arithmetic)
Consider the following matrices:

A :=




0 2 2
2 0 2
2 2 0


 B :=




1 2 3
0 0 6
0 0 4


 I :=




1 0 0
0 1 0
0 0 1




Then we have:

A + B =




1 4 5
2 0 8
2 2 4


 4B =




4 8 12
0 0 24
0 0 16




A + 3I =




3 2 2
2 3 2
2 2 3


 A − 3I =



−3 2 2
2 −3 2
2 2 −3




Matrix multiplication
Multiplying matrices is a bit more complicated than the other vector/matrix op-

erations that we’ve seen so far. The product of two matrices is a matrix, rather than a
single number: the entry in the ith row and jth column of AB is derived from the ith
row of A and the j column of B. More precisely:

Definition 2.43 (Matrix multiplication)
The product AB of two matrices A ∈ Rn×m and B ∈ Rm×p is an n-by-p matrix M ∈ Rn×p

whose entries are, for any i ∈ {1, 2, . . .n} and j ∈ {1, 2, . . . , p},

Mi,j :=
m
∑
k=1

Ai,kBk,j.

As usual, if the dimensions of the matrices A and B don’t match—if the number of
columns in A is different from the number of rows in B—then AB is undefined.

Example 2.49 (Multiplying some small matrices)
Let’s compute the product of a sample 2-by-3 matrix and a 3-by-2 matrix:

[
1 2 3
4 5 6

]
·




7 8
1 3
9 0
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Note that, by definition, the result will be a 2-by-2 matrix. Let’s compute its entries:

[
1 2 3
4 5 6

]
·




7 8
1 3
9 0


 =

[
1 · 7 + 2 · 1 + 3 · 9 1 · 8 + 2 · 3 + 3 · 0
4 · 7 + 5 · 1 + 6 · 9 4 · 8 + 5 · 3 + 6 · 0

]

=
[

7 + 2 + 27 8 + 6 + 0
28 + 5 + 54 32 + 15 + 0

]

=
[

36 14
87 47

]
.

For example, the 14 in 〈row #1, column #2〉 of the result was calculated by succes-
sively multiplying the first matrix’s first row 〈1, 2, 3〉 by the second matrix’s second
column 〈8, 3, 0〉. Alternatively, here’s a visual representation of this multiplication:


 1 2 3

4 5 6


 ·




7 8

1 3

9 0


 =




36 14

87 47





 1 2 3

4 5 6


 ·




7 8

1 3

9 0


 =




36 14

87 47





 1 2 3

4 5 6


 ·




7 8

1 3

9 0


 =




36 14

87 47





 1 2 3

4 5 6


 ·




7 8

1 3

9 0


 =




36 14

87 47


 .

More compactly, we could write matrix multiplication using the dot product from
Definition 2.39: for two matrices A ∈ Rn×m and B ∈ Rm×p, the 〈i, j〉th entry of AB is
the value of Ai,(1...m) • B(1...m),j.

Problem-solving tip:
To help keep matrix
multiplication
straight, it may
be helpful to
compute the 〈i, j〉th
entry of AB by
simultaneously
tracing the ith row
of A with the index
finger of your left
hand, and the jth
column of B with
the index finger of
your right hand.
Multiply the two
numbers that you’re
pointing at, and
add the result to a
running tally; when
you’ve traced the
whole row/column,
the running tally is
(AB)i,j .Be careful: matrix multiplication is not commutative—that is, for matrices A and

B, the values AB and BA are generally different! (This asymmetry is unlike numeri-
cal multiplication: for x, y ∈ R, it is always the case that xy = yx.) In fact, because
the number of columns of A must match the number of rows of B for AB to even be
meaningful, it’s possible for BA to be meaningless or a different size from AB.

Example 2.50 (Multiplying the other way around)
If we multiply the matrices from Example 2.49 in the other order, we get




7 8
1 3
9 0


 ·

[
1 2 3
4 5 6

]
=




39 54 69
13 17 21
9 18 27




This matrix differs from the result in Example 2.49—it’s not even the same size!

You’ll show in the exercises that, for any n-by-m matrix A, the result of multiplying A
by the identity matrix I yields A itself: that is, AI = A. You’ll also explore the inverse of
a matrix A: that is, the matrix A−1 such that AA−1 = I (if any such A−1 exists).

Here’s another example of using matrices, and matrix multiplication, to combine
different types of information:
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Example 2.51 (Programming language knowledge)
Problem: Let A be an n-by-m matrix where Ai,j = 1 if student i has taken class j (and

Ai,j = 0 otherwise). Let B be an m-by-p matrix where Bj,k = 1 if class j uses pro-
gramming language k (and Bj,k = 0 otherwise). What does the matrix AB repre-
sent?

Solution: First, note that the resulting matrix AB has n rows and p columns; that is,
its size is (number of students)-by-(number of languages). For a student i and a
programming language k, we have by definition that

(AB)i,k =
m
∑
j=1

Ai,jBj,k

=
m
∑
j=1

[{
1 if student i took class j and j uses language k
0 otherwise

]

because 0 · 0 = 0 · 1 = 1 · 0 = 0, so the only terms of the sum that are 1 occur
when both Ai,j (“student i took class j?”) and Bj,k (“class j uses language k?”) are
true (that is, 1). Thus (AB)i,k denotes the number of classes that use language k that
student i took.

Example 2.52 (A concrete example of Example 2.51)
Concretely, consider these 3 students, 5 courses, and 7 programming languages:

A :=




in
tr

o

da
ta

st
ru

ct
ur

es

or
g/

ar
ch

pr
og

la
ng

s

th
eo

ry
of

co
m

p

Alice 0 1 1 1 1
Bob 1 1 0 1 0

Charlie 1 0 0 0 1


 B :=




Pe
rl

Py
th

on

C Ja
va

A
ss

em
bl

y

C+
+

Sc
he

m
e

intro 0 1 0 0 0 0 0
data struct 0 1 0 1 0 0 0

org/arch 0 0 1 0 1 0 0
prog lang 0 1 1 1 1 1 1

theory of comp 0 0 0 0 0 0 0




.

For these matrices, we have

AB =




Pe
rl

Py
th

on

C Ja
va

A
ss

em
bl

y

C+
+

Sc
he

m
e

Alice 0 2 2 2 2 1 1
Bob 0 3 1 2 1 1 1

Charlie 0 1 0 0 0 0 0


.

(For example, the Alice/C cell is computed by 〈0, 1, 1, 1, 1〉 • 〈0, 0, 1, 1, 0〉—the dot
product of Alice’s row of A with C’s column of B—which has the value

0 · 0 + 1 · 0 + 1 · 1 + 1 · 1 + 1 · 0 = 2.

This entry reflects the fact that Alice has taken two classes that use C: organization/
architecture and programming languages.)
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Computer Science Connections

The Vector Space Model

Here’s a classic application of vectors, taken from information retrieval, the
subfield of computer science devoted to searching for information relevant to
a given query in large datasets. We start with a large corpus of documents—for
example, transcripts of all email messages that you’ve sent in your entire life.
(The word corpus comes from the Latin for “body”; it simply means a body
of texts.) Tasks involving the corpus might include clustering the documents
into subcollections (“which of my email messages are spam?”), or finding the
stored documents most similar to a given query (“find me the 10 emails most
relevant to ‘good restaurants in Chicago’ in my archives”).

The vector space model is a standard approach to representing text docu-
ments for the purposes of information retrieval. We choose a list of n terms
that might appear in a document. We then represent a document d as an n-
vector x of integers, where xi is the number of times that the ith term appears
in the document d. See Figure 2.39 for an example.

Because documents that are about similar topics tend to contain similar

d1 Three is one of the loneliest
numbers.

d2 A one and a two and a one,
two, three.

d3 One, two, buckle my shoe.
↓

d1 [1, 0, 1]
d2 [2, 2, 1]
d3 [1, 1, 0]

(a) Three documents translated
into vectors using the keywords
‘one’, ‘two’, and ‘three’.

(b) A plot of the three documents in R3

Figure 2.39: An example from the
vector-space model.

vocabulary, we can judge the similarity of documents d and d′ based on “how
similar” their corresponding vectors x and x′ are:

• A first stab at measuring similarity between x and x′ is to compute the dot
product x • x′; this approach counts the number of times any word in d
appears in d′. (And if a word appears twice in d, then each appearance in d′
counts twice for the dot product.)

• This first approach has an issue in that it favors longer documents: a docu-
ment that lists all the words in the dictionary would correspond to a vector
[1, 1, 1, 1, 1, . . .]—which would therefore have a large dot product with all
documents in the corpus. To compensate for the fact that longer documents
have more words, we normalize these vectors so that they have the same
length, by using x/‖x‖ and x′/‖x′‖ to represent the documents. It turns
out that the dot product of the normalized vectors computes the cosine of
the angle between these representations of the documents.

• This second approach suffers from counting common occurrences of the
word the and the word normalize as equally indicative of the similarity
of documents. Information retrieval systems apply different weights to
different terms in measuring similarity; one common approach is called
term frequency–inverse document frequency (TFIDF), which downweights
terms that appear in many documents in the corpus.

It’s worth noting that real information retrieval systems are usually quite a lot
more complicated than we’ve discussed so far. For example, a document that
talks about sofas would be judged to be completely unrelated to a document
that talks about couches, which seems like a naïve judgement. Handling syn-
onyms requires a more complicated approach, often based around analyzing
the term–document matrix that simultaneously represents the entire corpus.
(For example, if documents that discuss sofas use very similar other words to
documents that discuss couches—like change and cushion and nap—then we
might be able to infer something about sofas and couches.)8

For much more on information retrieval,
see the excellent text
8 Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cam-
bridge University Press, 2008.
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Computer Science Connections

Rotation Matrices

When an image is rendered (drawn) using computer graphics, we typically
proceed by transforming a 3-dimensional representation of a scene, a model
of the world, into a 2-dimensional image fit for a screen. The scene is typically
represented by a collection of points in R3, each defining a vertex of a poly-
gon. The camera (the eye from which the scene is viewed) is another point in
R3, with an orientation describing the direction of view. We then project the
polygons’ points into R2. This computation is done using matrix multiplica-
tions, by taking into account the position and direction of view of the camera,
and the position of the given point. While a full account of this rendering al-
gorithm isn’t too difficult, we’ll stick with a simpler problem that still includes
the interesting matrix computations.9 We’ll instead consider the rotation of a

You can learn more about way that the
full-scale computer graphics algorithms
work in a textbook like
9 John F. Hughes, Andries van Dam,
Morgan McGuire, David F. Sklar,
James D. Foley, Steven K. Feiner, and
Kurt Akeley. Computer Graphics: Princi-
ples and Practice. Addison-Wesley, 3rd
edition, 2013.

set of points in R2 by an angle θ. (The full-scale problem requires thinking
about the angle of view with two parameters, akin to “azimuth” and “ele-
vation” in orienteering: the direction θ in the horizontal plane and the angle
ϕ away from a straight horizontal view.) Suppose that we have a scene that
consists of a collection of points in R2. As an example, Figure 2.40 shows a
collection of hand-collected points in R2 that represent the borders of the state
of Nevada.

Suppose that we wish to rotate a point 〈x, y〉 by an angle θ around the point

Figure 2.40: The 10 points in R2 repre-
senting the boundaries of Nevada.

〈0, 0〉. You should be able to convince yourself with a drawing that we can ro-
tate a point 〈x, 0〉 around the point 〈0, 0〉 by moving it to 〈x cos θ, x sin θ〉. More
generally, the point 〈x, y〉 becomes the point 〈x cos θ− y sin θ, x sin θ + y cos θ〉
when it’s rotated.

Suppose we wish to rotate the points 〈x1, y1〉, . . . , 〈xn, yn〉 by angle θ. Write
a matrix with the ith column corresponding to the ith point, and perform
matrix multiplication as follows:
[

cos θ − sin θ

sin θ cos θ

] [
x1 x2 · · · xn
y1 y2 · · · yn

]
=
[

x1 cos θ− y1 sin θ x2 cos θ− y2 sin θ · · · xn cos θ− yn sin θ

x1 sin θ + y1 cos θ x2 sin θ + y2 cos θ · · · xn sin θ + yn cos θ

]

(The matrix R =
[

cos θ − sin θ

sin θ cos θ

]
is called a rotation matrix.)

The result is that we have rotated an entire collection of points—arranged
in the 2-by-n matrix M—by multiplying M by this rotation matrix. In other
words, RM is a 2-by-n matrix of the rotated points. See Figure 2.41.

Figure 2.41: Nevada, as above and
rotated by three different angles.
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2.4.3 Exercises
2.141 What is {1, 2, 3} × {1, 4, 16}?
2.142 What is {1, 4, 16} × {1, 2, 3}?

2.143 What is {1} × {1} × {1}?
2.144 What is {1, 2} × {2, 3} × {1, 4, 16}?

2.145 Suppose A × B = {〈1, 1〉, 〈2, 1〉}. What are A and B?

Let S := {1, 2, 3, 4, 5, 6, 7, 8}, and let T be an unknown set. From the following, what can you conclude about T? Be as
precise as possible: if you can list the elements of T exhaustively, do so; if you can’t, identify any elements that you can
conclude must be (or must not be) in T.
2.146 |S × T| = 16 and 〈1, 2〉, 〈3, 4〉 ∈ S × T
2.147 S × T = ∅

2.148 (S × T) ∩ (T × S) = {〈3, 3〉}
2.149 S × T = T × S

Recall that Algebraic notation denotes the squares of the chess board as {a, b, c, d, e, f ,g, h} × {1, 2, 3, 4, 5, 6, 7, 8},
as in Figure 2.42. For each of the following questions, identify sets S and T such that the set of cells containing the
designated pieces can be described as S × T. 8 rmblkans

7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2.42: The
squares of a chess
board, written
using Algebraic
notation.

2.150 the white rooks (R)
2.151 the bishops (B, white or black)

2.152 the pawns (p, white or black)
2.153 no pieces at all

Write out the elements of the following sets.
2.154 {0, 1, 2}3 2.155 {A, B} × {C, D}2 × {E} 2.156

⋃3
i=1 {0, 1}i

Let Σ := {A, B, . . . , Z} denote the English alphabet. Using notation from this chapter, give an expression that denotes
each of the following sets. It may be useful to recall that Σk denotes the set of strings consisting of a sequence of k
elements from Σ, so Σ0 contains the unique string of length 0 (called the empty string, and typically denoted by ε—or
by "" in most programming languages).
2.157 The set of 8-letter strings.
2.158 The set of 5-letter strings that do not contain any vowels {A, E, I, O, U}.
2.159 The set of 6-letter strings that do not contain more than one vowel. (So GRITTY, QWERTY, and
BRRRRR are fine; but EEEEEE, THREAT, STRENGTHS, and A are not.)
2.160 The set of 6-letter strings that contain at most one type of vowel—multiple uses of the same vowel
are fine, but no two different vowels can appear. (So BANANA, RHYTHM, and BOOBOO are fine; ESCAPE and STRAIN

are not.)

Recall that the length of a vector x ∈ Rn is given by ‖x‖ =
√

∑n
i=1 x2

i . Considering the vectors a := 〈1, 3〉, b := 〈2,−2〉,
c := 〈4, 0〉, and d := 〈−3,−1〉, state the values of each of the following:
2.161 ‖a‖
2.162 ‖b‖
2.163 ‖c‖

2.164 a + b
2.165 3d
2.166 2a + c − 3b

2.167 ‖a‖ + ‖c‖ and ‖a + c‖
2.168 ‖a‖ + ‖b‖ and ‖a + b‖
2.169 3‖d‖ and ‖3d‖

2.170 Explain why, for an arbitrary vector x ∈ Rn and an arbitrary scalar a ∈ R, ‖ax‖ = a‖x‖.
2.171 For any two vectors x, y ∈ Rn, we have ‖x‖ + ‖y‖ ≥ ‖x + y‖. Under precisely what circumstances
do we have ‖x‖ + ‖y‖ = ‖x + y‖ for x, y ∈ Rn? Explain briefly.

Still considering the same vectors a := 〈1, 3〉, b := 〈2,−2〉, c := 〈4, 0〉, and d := 〈−3,−1〉, what are the following?
2.172 a • b 2.173 a • d 2.174 c • c

Recall that the Manhattan distance between vectors x, y ∈ Rn is defined as ∑n
i=1 |xi − yi |. The Euclidean distance

between two vectors x, y ∈ Rn is
√

∑n
i=1(xi − yi)2. What is the Manhattan/Euclidean distances between the following

pairs of vectors?
2.175 a and b 2.176 a and d 2.177 b and c

Suppose that the Manhattan distance between two vectors x, y ∈ R2 is 1. Justify your answers:
2.178 What’s the largest possible Euclidean distance between x and y?
2.179 What’s the smallest possible Euclidean distance between x and y?
2.180 What’s the smallest possible Euclidean distance between x and y if x, y ∈ Rn (not just n = 2)?

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 2.43: The
plane.

Consider Figure 2.43, and sketch the following sets:
2.181

{
x ∈ R2 : the Euclidean distance between x and 〈0, 0〉 is at most 2

}
.

2.182
{

x ∈ R2 : the Manhattan distance between x and 〈0, 0〉 is at most 2
}

.



2.4. SEQUENCES, VECTORS, AND MATRICES: ORDERED COLLECTIONS 251

2 3 4 5 6 7 8 9 10
32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

(a) The unscaled version.
2 3 4 5 6 7 8 9 10

32
33
34
35
36
37
38
39
40
41
42
43
44

〈8, 33〉

〈4, 42〉

(b) The scaled version.

Figure 2.44: Man-
hattan train sta-
tions.

In Example 2.40, we considered two train stations located at
points s := 〈8, 33〉 and g := 〈4, 42〉. (See Figure 2.44(a).)
In that example, we showed that, for an offset δ ∈ [0, 4],
the Manhattan distance between the point 〈4 + δ, y〉 and s
is smaller than the Manhattan distance between the point
〈4 + δ, y〉 and g when y < 35.5 + δ.
2.183 Show that the point 〈16, 40〉 is closer to one
station under Manhattan distance, and to the other
under Euclidean distance.

Let δ ≥ 0. Under Manhattan distance, describe the values of y
for which the following point is closer to s than to g:
2.184 〈8 + δ, y〉
2.185 〈4− δ, y〉

2.186 In the real-world island of Manhattan, the east–west blocks are roughly twice the length of the
north–south blocks. As such, the more accurate picture of distances in the city is shown in Figure 2.44(b).
Assuming it takes 1.5 minutes to walk a north–south (up–down) block and 3 minutes to walk an east–west
(left–right) block, give a formula for the walking distance between 〈x, y〉 and Penn Station, at s := 〈8, 33〉.

A Voronoi diagram—named after the 20th-century Russian mathematician Georgy Voronoy—is a decomposi-
tion of the plane R2 into regions based on a given set S of points. The region “belonging” to a point x ∈ S is{

y ∈ R2 : d(x, y) ≤ minz∈S d(z, y)
}

, where d(·, ·) denotes Euclidean distance—in other words, the region “belong-
ing” to point x is that portion of the plane that’s closer to x than any other point in S.
2.187 Compute the Voronoi diagram of the set of points {〈0, 0〉, 〈4, 5〉, 〈3, 1〉}. That is, compute:
• the set of points y ∈ R2 that are closer to 〈0, 0〉 than 〈4, 5〉 or 〈3, 1〉 under Euclidean distance;
• the set of points y ∈ R2 that are closer to 〈4, 5〉 than 〈0, 0〉 or 〈3, 1〉 under Euclidean distance; and
• the set of points y ∈ R2 that are closer to 〈3, 1〉 than 〈0, 0〉 or 〈4, 5〉 under Euclidean distance.
2.188 Compute the Voronoi diagram of the set of points {〈2, 2〉, 〈8, 1〉, 〈5, 8〉}.
2.189 Compute the Voronoi diagram of the set of points {〈0, 7〉, 〈3, 3〉, 〈8, 1〉}.
2.190 (programming required) Write a program that takes three points as input and produces a represen-
tation of the Voronoi diagram of those three points as output. 10

10 Mark de Berg,
Marc van Krev-
eld, Mark Over-
mars, and Otfried
Schwarzkopf. Com-
putational Geometry.
Springer-Verlag,
2nd edition, 2000.

Taking it further: Voronoi diagrams are used frequently in computational geometry, among other areas
of computer science. (For example, a coffee-shop chain might like to build a mobile app that is able to
quickly answer the question What store is closest to me right now? for any customer at any time. Voronoi
diagrams can allow precomputation of these answers.)

Given any set S of n points, it’s reasonably straightforward to compute (an inefficient representation
of) the Voronoi diagram of those points by computing the line that’s equidistant between each pair of
points, as you saw in the last few exercises. But there are cleverer ways of computing Voronoi diagrams
more efficiently; see a good textbook on computational geometry for more.10

Consider the following matrix:

M =




3 9 2
0 9 8
6 2 0
7 5 5
7 2 4
1 6 7




2.191 What size is M?
2.192 What is M3,1?

2.193 List every 〈i, j〉 such that Mi,j = 7.
2.194 What is 3M?

Considering the following matrices, what are the values of the given expressions (if they’re defined)?

A =




0 8 0
9 6 0
2 3 3


 B =




5 8
7 5
3 2


 C =




7 2 7
3 5 6
1 2 5


 D =

[
3 1
0 8

]
E =

[
8 4
3 2

]
F =

[
1 2 9
5 4 0

]

(If the given quantity is undefined, say so—and say why.)
2.195 A + C
2.196 B + F
2.197 D + E

2.198 A + A
2.199 −2D
2.200 0.5F

2.201 AB
2.202 AC
2.203 AF

2.204 BC
2.205 DE
2.206 ED
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Consider the matrices

A =




1 0 0
1 0 0
1 1 0


 and B =




0 0 0
0 1 0
1 1 1


 .

2.207 What is 0.25A + 0.75B? 2.208 What is 0.5A + 0.5B?
2.209 Identify two other matrices C and D with the same average—that is, such that {A, B} 6= {C, D} but
0.5A + 0.5B = 0.5C + 0.5D.

Figure 2.45: Clubs
to hearts (0%, 20%,
40%, 60%, 80%, and
100%).

2.210 (programming required) A common computer graphics effect in the spirit of the last few exercises
is morphing one image into another—that is, slowly changing the first image into the second. There are
sophisticated techniques for this task, but a simple form can be achieved just by averaging. Given two
n-by-m images represented by matrices A and B—say grayscale images, with each entry in [0, 1]—we can
produce a “weighted average” of the images as λA + (1 − λ)B, for a parameter λ ∈ [0, 1]. See Figure 2.45.

Write a program, in a programming language of your choice, that takes three inputs—an image A, an
image B, and a weight λ ∈ [0, 1]—and produces a new image λA + (1 − λ)B. (You’ll need to research an
image-processing library to use in your program.)

2.211 Let A be an m-by-n matrix. Let I be the n-by-n identity matrix. Explain why the matrix AI is
identical to the matrix A.

If M is an n-by-n matrix, then the product of M with itself is also an n-by-n matrix. We write matrix powers in the
normal way that we defined powers of integers (or of the Cartesian product of sets): Mk = M · M · · ·M, multiplied k
times. (M0 is the n-by-n identity matrix I.) What are the following? (Hint: M2k = (Mk)2.)

2.212
[
2 3
1 1

]3
2.213

[
1 1
1 0

]2
2.214

[
1 1
1 0

]4
2.215

[
1 1
1 0

]9

Taking it further: The Fibonacci numbers are defined recursively as the sequence f1 := 1, f2 := 1, and
fn := fn−1 + fn−2 for n ≥ 3. The first several Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, . . .. As we’ll see in Exer-
cises 5.56 and 6.99, there’s a very fast algorithm to compute the nth Fibonacci number based on computing the nth
power of the matrix from Exercises 2.213–2.215.

Let A by an n-by-n matrix. The inverse of A, denoted A−1, is also an n-by-n matrix, with the property that AA−1 = I.
There’s a general algorithm that one can develop to invert matrices, but in the next few exercises you’ll calculate
inverses of some small matrices by hand.

2.216 Note that
[
1 1
2 1

]
·
[
x y
z w

]
=
[

x + z y + w
2x + z 2y + w

]
. Thus

[
1 1
2 1

]−1
is the matrix

[
x y
z w

]
, where the

following four conditions hold: x + z = 1 and y + w = 0 and 2x + z = 0 and 2y + w = 1. Find the values of x, y,
w, and z that satisfy these four conditions.

Using the same approach as the last exercise, find the inverse of the following matrices:

2.217
[
1 2
3 4

]
2.218

[
0 1
1 0

]
2.219

[
1 0
0 1

]

2.220 Not all matrices have inverses—for example,
[
1 1
1 1

]
doesn’t have an inverse. Explain why not.

An error-correcting code (see Section 4.2) is a method for redundantly encoding information so that the information
can still be retrieved even in the face of some errors in transmission/storage. The Hamming code is a particular error-
correcting code for 4-bit chunks of information. The Hamming code can be described using matrix multiplication:
given a message m ∈ {0, 1}4, we encode m as mG mod 2, where

G =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 .

(Here you should interpret the “mod 2” as describing an operation to each element of the output vector.) For example,
[1, 1, 1, 1] · G = [1, 1, 1, 1, 3, 3, 3], so we’d encode [1, 1, 1, 1] as [1, 1, 1, 1, 3, 3, 3] mod 2 = [1, 1, 1, 1, 1, 1, 1]. What is the
Hamming code encoding of the following messages?
2.221 [0, 0, 0, 0] 2.222 [0, 1, 1, 0] 2.223 [1, 0, 0, 1]
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2.5 Functions

There is no passion like that of a functionary for his
function.

Georges Clemenceau (1841–1929)

A function transforms an input value into an output value; that is, a function f takes
an argument or parameter x, and returns a value f (x). Functions are familiar from both
algebra and from programming. In algebra, we frequently encounter mathematical
functions like f (x) = x + 6, which means that, for example, we have f (3) = 9 and
f (4) = 10. In programming, we often write or invoke functions that use an algorithm to
transform an input into an output, like a function sort—so that sort(〈3, 1, 4, 1, 5, 9〉) =
〈1, 1, 3, 4, 5, 9〉, for example.

In this section, we will give formal definitions of functions and of some terminol-
ogy related to functions, and also discuss a few special types of functions. (Functions
themselves are a special case of relations, and we will revisit the definition of functions
in Chapter 8 when we discuss relations.)

2.5.1 Basic Definitions

We start with the definition of a function itself:

Definition 2.44 (Function)
Let A and B be sets. A function f from A to B, written f : A → B, assigns to each input
value a ∈ A a unique output value b ∈ B; the unique value b assigned to a is denoted by f (a).
We sometimes say that f maps a to f (a).

Note that A and B are allowed to be the same set; for example, a function might have
inputs and outputs that are both elements of Z.

Here are two simple examples. First, we define a function not for Boolean inputs

x not(x)
True False
False True

Figure 2.46: The
function not.

that maps True to False, and False to True:

Example 2.53 (Not function)
The function not : {True, False} → {True, False} can be defined with the table in
Figure 2.46. Given an input x, we find the output value not(x) by locating x in the
first column of the table and reading the value in that row’s second column. Thus
not(True) = False and not(False) = True.

As another simple example, we can also define a function square that returns its input
multiplied by itself:

Example 2.54 (Square function)
The function square : R → R can be defined as square(x) := x2: for any input x ∈ R,
the output is the real number x2. Thus, for example, square(8) = 64, because the
function square assigns the output 82 = 64 to the input 8.
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Note, too, that a function f : A → B might have a set A of inputs that are pairs; for
example, the function that takes two numbers and returns their average is the function
average : R × R → R, where average(〈x, y〉) := (x + y)/2. (We interpret R × R → R as
(R × R) → R.) When there is no danger of confusion, we drop the angle brackets and
simply write, for example, average(3, 2) instead of average(〈3, 2〉).

As we’ve already seen in Examples 2.53 and 2.54, the rule by which a function as-
signs an output to a given input can be specified either symbolically—typically via an
algebraic expression—or exhaustively, by giving a table describing the input/output
relationship. The table-based definition only makes sense when the set of possible
inputs is finite; otherwise the table would have to be infinitely large. (And it’s only
practical to define a function with a table if the set of possible inputs is pretty small!)

Here’s an example of specifying the same function in two different ways, once sym-
bolically and once using a table:

Example 2.55 (Doubling function)
Let’s define the function double that doubles its input value, for any input in
{0, 1, . . . , 7}. (That is, we are defining a function double : {0, 1, . . . , 7} → Z.)

We can write double symbolically by defining

double(x) := 2 · x.

To define double using a table, we specify the output corresponding to every one of
the 8 possible inputs, as shown in Figure 2.47.

The functions that we’ve discussed so far are all fairly simple, but even simple func-

x double(x)
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14

Figure 2.47: The
double function,
specified using a
table.tions can have some valuable applications. Here’s an example of another simple func-

tion that can be used in compressing images so that they take up less space:

Example 2.56 (Reducing the colorspace of an image)
The pixels in a grayscale image are all elements of {0, 1, . . . , 255}. To reduce the space
requirements for a large image, we can consider a form of lossy compression (that is,
compression that loses some amount of data) by replacing each pixel with one chosen
from a smaller list of candidate colors. That is, instead of having 256 different shades
of gray, we might have 128 or 64 or even fewer shades.

Define quantize : {0, 1, . . . , 255} → {0, 1, . . . , 255} as follows:

quantize(n) :=





26 if 0 ≤ n ≤ 51
78 if 52 ≤ n ≤ 103
130 if 104 ≤ n ≤ 155
182 if 156 ≤ n ≤ 207
234 if 208 ≤ n ≤ 255.

We can apply quantize to every pixel in a grayscale image, and then use a much
smaller number of bits per pixel in storing the resulting image. See Figure 2.48 for
an example.
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(a) The function
quantize.

(b) An image of a house. (c) The same image, compressed to use
only 5 shades of gray using the quantize
function.

Figure 2.48: A
visual repre-
sentation of the
color-mapping
function (each input
color in the left
column is assigned
the corresponding
color in the right
column), applied to
an example image.
In PNG format, the
file for the second
image takes up less
than 14% of the
space consumed by
the first image.

Taking it further: A byte is a sequence of 8 bits. Using 8 bits, we can represent the numbers from
00000000 to 11111111—that is, from 0 to 255. Thus a pixel with {0, 1, . . . , 255} as possible grayscale
values in an image requires one byte of storage for each pixel. If we don’t do something cleverer, a mod-
erately sized 2048-by-1536 image (the size of an iPad) requires over 3 megabytes even if it’s grayscale.
(A color image requires three times that amount of space.) Techniques similar to the compression func-
tion from Example 2.56 are used in a variety of CS applications—including, for example, in automatic
speech recognition, where each sample from a sound stream is stored using one of only, say, 256 different
possible values instead of a floating-point number, which requires much more space.

Domain and codomain
The domain and codomain of a function are its sets of possible inputs and outputs:

Definition 2.45 (Domain/codomain)
For a function f : A → B, the set A is called the domain of the function f : A → B, and the
set B is called the codomain of the function f : A → B.

Let’s identify the domain and codomain from the previous examples of this section:

Example 2.57 (Some domains and codomains)
For the functions from Examples 2.53–2.56, we have:

function domain codomain
not (Example 2.53) {True, False} {True, False}
square (Example 2.54) R R

double (Example 2.55) {0, 1, . . . , 7} Z

quantize (Example 2.56) {0, 1, . . . , 255} {0, 1, . . . , 255}

Note that for three of these functions, the domain and codomain are actually the
same set; for the function double : {0, 1, . . . , 7} → Z, they’re different.
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When the domain and codomain are clear from context (or they are unimportant for
the purposes of a discussion), then they may be left unwritten.

Taking it further: This possibility of implicitly representing the domain and codomain of a function
is also present in code. Some programming languages (like Java) require the programmer to explicitly
write out the types of the inputs and outputs of a function; in some (like Python), the input and output
types are left implicit. In Java, for example, one would write an isPrime function with the explicit
declaration that the input is an integer (int) and the output is a Boolean (boolean). In Python, one would
write the function without any explicit type information.

boolean isPrime(int n) {

/* code to check primality of n */

}

def isPrime(n):

# code to check primality of n

But regardless of whether they’re written out or left implicit, these functions do have a domain (the set of
valid inputs) and a codomain (the set of possible outputs).

Range/Image
For a function f : A → B, the set A (the domain) is the set of all possible inputs, and

the set B (the codomain) is the set of all possible outputs. But not all of the possible
outputs are necessarily actually achieved: in other words, there may be an element
b ∈ B for which there’s no a ∈ A with f (a) = b. For example, we defined square : R → R

in Example 2.54, but there is no real number x such that square(x) = −1. The range or
image defines the set of actually achieved outputs:

Definition 2.46 (Range/image)
The range or image of a function f : A → B is the set of all b ∈ B such that f (a) = b for some
a ∈ A. Using the notation of Section 2.3, the range of f is the set

{y ∈ B : there exists at least one x ∈ A such that f (x) = y} .

We’ll start with the four functions defined earlier in this section:

Example 2.58 (Some ranges)
For the functions from Examples 2.53–2.56, we have:

function range
not (Example 2.53) {True, False}
square (Example 2.54) R≥0

double (Example 2.55) {0, 2, 4, 6, 8, 10, 12, 14}
quantize (Example 2.56) {26, 78, 130, 182, 234}

For not, double, and quantize, the range is easy to determine: it’s precisely the set of
values that appear in the “output” column of the table defining the function.

For square, it’s clear that the range includes no negative numbers, because there’s
no y ∈ R such that y2 < 0. In fact, the range of square is precisely R≥0: for any
x ∈ R≥0, there’s an input to square that produces x as output—specifically

√
x.

Here’s another example, for a slightly more complex function:
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Example 2.59 (The smallest divisor function)
Problem: Define a function sd : Z≥2 → Z≥2 as follows. Given an input n ∈ Z≥2, the

value of sd(n) is the smallest integer k ≥ 2 that evenly divides n. For example:

• sd(2) = 2 (because 2 | 2);
• sd(3) = 3 (because 3 | 3 but 2 6 | 3);
• sd(4) = 2 (because 2 | 4); and
• sd(121) = 11 (because 11 | 121 but 2 6 | 121, 3 6 | 121, . . ., 10 6 | 121).

What are the domain, codomain, and range of sd?

Solution: The domain and codomain of sd are easy to determine: they are both Z≥2.
Any integer n ≥ 2 is a valid input to sd, and we defined the function sd as produc-
ing an integer k ≥ 2 as its output. (The domain and codomain are simply written
in the function’s definition, before and after the arrow in sd : Z≥2 → Z≥2.) The
range is a bit harder to see, but it turns out to be the set P of all prime numbers.
Let’s argue that P is the range of sd by showing that (i) every prime number p ∈ P
is in the range of sd, and (ii) every number p in the range of P is a prime number.

(i) Let p ∈ Z≥2 be any prime number. Then sd(p) = p: by the definition of pri-
mality, the only integers than evenly divide p are 1 and p itself (and 1 ≥ 2 isn’t
true!). Therefore every prime number p is in the range of sd, because there’s an
input to sd such that the output is p.

(ii) Let p be any number in the range of sd—that is, suppose sd(n) = p for some n.
We will argue that p must be prime. Imagine that p were instead composite—
that is, there is an integer k satisfying 2 ≤ k < p that evenly divides p. But
then sd(n) = p is impossible: if p evenly divides n, then k also evenly divides n,
and k < p, so k would be a smaller divisor of n. (For example, if n were evenly
divisible by the composite number 15, then n would also be evenly divisible by 3
and 5—two factors of 15—so sd(n) 6= 15.) Therefore every number in the range
of sd is prime.

Putting together the facts from (i) and (ii), we conclude that the range of sd is
precisely the set of all prime numbers.

Problem-solving
tip: Example 2.59
illustrates a useful
general technique
if we wish to show
that two sets A
and B are equal.
One nice way to
establish that A = B
is to show that
A ⊆ B and B ⊆ A.
That’s what we
did to establish
the range of sd in
Example 2.59:
• define P as the

set of all prime
numbers.

• define R as the
range of sd.

We showed in (i)
that every element
of P is in R (that is,
P ⊆ R); and in (ii)
that every element
of R is in P (that is,
R ⊆ P). Together
these facts establish
that R = P.

We will also introduce a minor extension to the set-abstraction notation from Sec-
tion 2.3.1 that’s related to the range of a function. (We used this notation informally
in Example 2.28.) Consider a function f : A → B and a set U ⊆ A. We denote by
{f (x) : x ∈ U} the set of all output values of the function f when it’s applied to the
elements x ∈ U:

Definition 2.47 (Set abstraction using functions)
For a function f : A → B and a set U ⊆ A, we write {f (x) : x ∈ U} as shorthand for the set
{b ∈ B : there exists some u ∈ U for which f (u) = b}.

Remember that order and repetition of elements in a set don’t matter, which means
that the set {f (x) : x ∈ A} is precisely the range of the function f : A → B.



258 CHAPTER 2. BASIC DATA TYPES

A visual representation of functions
The table-based and symbolic representations of functions that we’ve discussed

fully represent a function, but sometimes a more visual representation of a function
is clearer. Consider a function f : A → B. We can give a picture representing f by
putting the elements of A into one column, the elements of B into a second column,
and drawing an arrow from each a ∈ A to the value of f (a) ∈ B. Notice that the
definition of a function guarantees that every element in the first column has one and only
one arrow going from it to the second column: if f : A → B is a function, then every a ∈ A is
assigned a unique output f (a) ∈ B. Here’s a simple example:

Example 2.60 (A picture of a function)
Figure 2.49 displays a function f : {1, . . . , 5} → {10, . . . , 15}, where f (1) = 10 and
f (2) = f (4) = 11 and f (3) = 12 and f (5) = 13.

We can read the domain, codomain, and range directly from this picture: the do-

1

2

3

4

5

10

11

12

13

14

15

A B
f

Figure 2.49: A
picture of a function
f : A → B, where
A = {1, . . . , 5} and
B = {10, . . . , 15}.

main is the set of elements in the first column; the codomain is the set of elements in
the second column; and the range is the set of elements in the second column for which
there is at least one incoming arrow. For instance, the range of f from Example 2.60 is
{10, 11, 12, 13}. (There are no arrows pointing to 14 or 15, so these two numbers are in
the codomain but not the range of f .)

Function composition
Suppose we have two functions f : A → B and g : B → C. Given an input a ∈ A, we

can find f (a) ∈ B, and then apply g to map f (a) to an element of C, namely g(f (a)) ∈ C.
This successive application of f and g defines a new function, called the composition of
f and g, whose domain is A and whose codomain is C:

Definition 2.48 (Function composition)
For two functions f : A → B and g : B → C, the function g ◦ f : A → C maps an element
a ∈ A to g(f (a)) ∈ C. The function g ◦ f is called the composition of f and g.

Notice a slight oddity of the notation: g ◦ f applies the function f first and the function
g second, even though g is written first.

Here’s an example of the functions that result from composing two simple functions
in four different ways:

Example 2.61 (Function composition, four ways)
Let f : R → R and g : R → R be defined by f (x) := 2x + 1 and g(x) := x2.

1. The function g ◦ f , given an input x, produces output

g(f (x)) = g(2x + 1) = (2x + 1)2 = 4x2 + 4x + 1.

2. The function f ◦ g maps x to f (g(x)) = f (x2) = 2x2 + 1.
3. The function g ◦ g maps x to g(g(x)) = g(x2) = (x2)2 = x4.
4. The function f ◦ f maps x to f (f (x)) = f (2x + 1) = 2(2x + 1) + 1 = 4x + 3.
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Figure 2.50: A
picture of functions
f : A → B and
g : B → C, first
separately and then
pasted together.
The third panel
shows g ◦ f , based
on successively
following two
arrows from the
second panel.

As with many function-
related concepts, the visual
representation of functions
gives a nice way of thinking
about function compo-
sition: the function g ◦ f
corresponds to the “short-
circuiting” of the pictures of
the functions f and g. Here
is a small example of this
visualization:

Example 2.62 (Function composition, by picture)
Figure 2.50 shows functions f : A → B and g : B → C. Their composition g ◦ f is given
by following two arrows in the diagram. For example, the value of (g ◦ f )(1) is g(f (1)),
which is g(11) because f (1) = 11. And g(11) = 24 because of g’s arrow from 11 to 24.

2.5.2 Onto and One-to-One Functions

We now turn to two special categories of functions—onto and one-to-one functions—
that are distinguished by how many different input values (always at least one? never
more than one?) are mapped to each output value.

Onto functions
A function f : A → B is onto if every possible output in B is, in fact, an actual output:

Definition 2.49 (Onto functions)
A function f : A → B is called onto if, for every b ∈ B, there exists at least one a ∈ A for
which f (a) = b. An onto function is also sometimes called a surjective function.

Alternatively, using the terminology of Section 2.5.1, a function f is onto if f ’s codomain
equals f ’s range. As an example, here are two of our previous functions, one of which
is onto and one of which isn’t:

Example 2.63 (An onto function)
The function not : {True, False} → {True, False} is onto: there’s an input value that
produces True (namely False), and there’s an input value that produces False (namely
True). Every element of the codomain is “hit” by not, so the function is onto.

Example 2.64 (A non-onto function)
The function quantize : {0, 1, . . . , 255} → {0, 1, . . . , 255} from Example 2.56 is not onto.
Recall that the only output values achieved were {26, 78, 130, 182, 234}. For example,
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then, there is no value of x for which quantize(x) = 42. Thus 42 is not in the range of
quantize, and therefore this function is not onto.

Here is a collection of a few more examples, where we’ll try to construct onto and
non-onto functions meeting a certain description:

Example 2.65 (Sample onto/non-onto functions)
Problem: Let A := {0, 1, 2} and B := {3, 4}. Give an example of a function that satisfies

the following descriptions; if there’s no such function, explain why it’s impossible.

1. an onto function f : A → B.
2. a function g : A → B that is not onto.
3. an onto function h : B → A.

Solution: The first two are possible, but the third is not:

1. Define f (0) := 3, f (1) := 4, and f (2) := 4.
2. Define g(0) := 3, g(1) := 3, and g(2) := 3.
3. Impossible! A function h whose domain is {3, 4} only has two output values,

namely h(3) and h(4). For a function whose codomain is {0, 1, 2} to be onto, we
need three different output values to be achieved. These two conditions cannot
be simultaneously satisfied, so there is no onto function from B to A.
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Figure 2.51: An
onto function
f : {0, 1, 2} → {3, 4}
and a non-
onto function
g : {0, 1, 2} → {3, 4}.

It may be easier to think about onto functions using the
visual representation that we just introduced: a function f
is onto if there’s at least one arrow pointing at every element in
the second column. Figure 2.51 illustrates the functions from
Example 2.65.1 and Example 2.65.2; the fact that f is onto and
g is not onto is immediately visible.

One-to-one functions
An onto function f : A → B guarantees that every element b ∈ B is “hit at least

once” by f —that is, that b = f (a) for at least one a ∈ A. A one-to-one function f : A → B
guarantees that every element b ∈ B is “hit at most once” by f :

Definition 2.50 (One-to-one functions)
A function f : A → B is called one-to-one if, for any b ∈ B, there is at most one a ∈ A such
that f (a) = b. A one-to-one function is also sometimes called an injective function.

(Terminologically, a one-to-one function sits in contrast to a many-to-one function, in
which many different input values map to the same output value. Thinking about
what a many-to-one function would mean may help to make the name “one-to-one”
more intuitive.)
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Taking it further: One of the many places that functions are used in computer science is in designing
the data structure known as a hash table, discussed on p. 267. The idea is that we will store a piece of data
called x in a location h(x), for some function h called a hash function. We want to choose h to ensure that
this function is “not-too-many-to-one” so that no location has to store too much information.

As an example, we’ll consider two of our previous functions, double and quantize,

x double(x)
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14

Figure 2.52: The
double function.

and evaluate whether they are one-to-one:

Example 2.66 (A one-to-one function)
The function double : {0, 1, . . . , 7} → Z, defined in Example 2.55, is one-to-one.
By examining the table of outputs for the function (reproduced in Figure 2.52), we
see that no number appears more than once in the second column. Because every
element of the codomain is “hit” by double at most once, the function is one-to-one.

Observe that double : {0, 1, . . . , 7} → Z is not onto, because there are elements of the
codomain that are “hit” zero times—but it is one-to-one, because no element of the
codomain is hit twice. Here’s an example of a function that is not one-to-one:

Example 2.67 (A non–one-to-one function)
The function quantize : {0, 1, . . . , 255} → {0, 1, . . . , 255} from Example 2.56 is not
one-to-one. Recall that quantize(42) = 26 and quantize(17) = 26. Thus 26 is the output
for two or more distinct inputs, and therefore this function is not one-to-one.
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Figure 2.53: A one-
to-one function f
and a non–one-
to-one function g.

As with the definition of onto, it may be easier to think
about one-to-one functions using our visual two-column
representation: a function f is one-to-one if there’s at most
one arrow pointing at every element in the second column. Here
are two simple examples using this visual perspective: the
function f in Figure 2.53 is one-to-one, because no element
of B has multiple incoming arrows. But the function g is not
one-to-one, because 4 ∈ B has two incoming arrows.

One-to-one and onto functions
One way of restating the definitions of onto and one-to-one functions is as follows.

Let f : A → B be a function. Then

• f is onto if, for every b ∈ B, we have |{a ∈ A : f (a) = b}| ≥ 1.
• f is one-to-one if, for every b ∈ B, we have |{a ∈ A : f (a) = b}| ≤ 1.

Therefore a function f : A → B that is both one-to-one and onto guarantees that
|{a ∈ A : f (a) = b}| = 1— that is, for any b ∈ B, there is exactly one element a ∈ A
so that f (a) = b. (There is at most one such a because f is one-to-one, and at least one
such a because f is onto.) A function with both of these properties is called a bijection:
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Definition 2.51 (Bijection)
A function f : A → B is called a bijection if f is one-to-one and onto—that is, if
|{a ∈ A : f (a) = b}| = 1 for every b ∈ B.

Here are two examples of bijections:

Example 2.68 (Two bijections)
The function not : {True, False} → {True, False} from Example 2.53 and the function
f : R → R defined by f (x) := x − 1 are both bijections.

For not, there’s exactly one input value whose output is True, namely False; and
there’s exactly one input value whose output is False, namely True.

Similarly, for f , for every b ∈ R, there is exactly one a such that f (a) = b: specifically,
the value a = b + 1.

If f : A → B is a bijection, then every input in A is assigned by f to a unique value in
B. We can define a new function, denoted f −1, that reverses this assignment—given
b ∈ B, the function f −1(b) identifies the a ∈ A to which b was assigned by f . This
function f −1 called the inverse of f :

Definition 2.52 (Function inverses)
Let f be a bijection. Then f −1 : B → A is a function called the inverse of f , where f −1(b) = a
whenever f (a) = b.

Here is an example of finding inverses of a few functions:

Example 2.69 (Three inverses)
Problem: What is the inverse of each of the following functions?

1. f : R → R, where f (x) = x
2 .

2. square : R≥0 → R≥0, where square(x) = x2.
3. not : {True, False} → {True, False}.

Solution: 1. We can find the function f −1, the inverse of f , by solving the equation
y = x

2 for x. We see that 2y = x. Thus the function f −1 : R → R is given by
f −1(y) = 2y. For any real number x ∈ R, we have that f (x) = x

2 and f −1( x
2 ) = x.

(For example, f (3) = 1.5 and f −1(1.5) = 3.)

2. Notice that square : R≥0 → R≥0 is a bijection—otherwise this problem wouldn’t
be solvable!—because the domain and the codomain are both the equal to the
set of nonnegative real numbers. (For example, 32 = 9 and (−3)2 = 9; if we
had allowed both negative and positive inputs, then square would not have been
one-to-one. And there’s no x ∈ R such that x2 = −9; if we had allowed negative
outputs, then square would not have been onto.) The inverse of square is the
function square−1(y) = √y.

3. Note that not(not(True)) = not(False) = True and not(not(False)) = not(True) =
False. Thus the inverse of the function not is the function not itself!
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If f : A → B is a bijection, then, for any a ∈ A, observe that applying f −1 to f (a) gives a
back as output: that is, f −1(f (a)) = a. In other words, the function f −1 ◦ f is the identity
function, defined by id : A → A where id(a) := a.
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Figure 2.54: A bijec-
tion f : {0, 1, 2, 3} →
{4, 5, 6, 7} and
its inverse
f −1 : {4, 5, 6, 7} →
{0, 1, 2, 3}.

A bijection f : A → B has exactly one arrow coming into
every element in the second column, and by definition it
also has exactly one arrow leaving every element in the first
column. The inverse of f is precisely the function that results
from reversing the direction of each arrow. (The fact that
every right-hand column element has exactly one incoming
arrow under f is precisely what guarantees that reversing the
direction of each arrow still results in the arrow diagram of a
function.)

Figure 2.54 shows an example of a bijection and its inverse illustrated in this man-
ner. This picture-based approach should help to illustrate why a function that is not
onto or that is not one-to-one fails to have an inverse. If f : A → B is not onto, then
there exists some element b∗ ∈ B that’s never the value of f , so f −1(b∗) would be unde-
fined. On the other hand, if f is not one-to-one, then there exists b† such that f (a) = b†

and f (a′) = b† for a 6= a′; thus f −1(b†) would have to be both a and a′, which is forbidden
by the definition of a function.

2.5.3 Polynomials

We’ll turn now to polynomials, a special type of function whose input and output are
both real numbers, and where f (x) is the sum of powers of x:

Definition 2.53 (Polynomial)
A polynomial is a function f : R → R of the form

f (x) = a0 + a1x + a2x2 + · · · + akxk

where each ai ∈ R and ak 6= 0, for some k ∈ Z≥0. (More compactly, we can write this
function as f (x) = ∑k

i=0 aixi.)
The real numbers a0, a1, . . . , ak are called the coefficients of the polynomial, and the values

a0, a1x, a2x2, . . . , akxk being added together are called the terms of the polynomial.

Here are a few examples:

Figure 2.55: A
graph of the poly-
nomial h(x) = x2 − 2.

Example 2.70 (Some polynomials)
Here are a few polynomials: f (x) = 7x, g(x) = x202 − 201x111, and h(x) = x2 − 2.
The function h is graphed in Figure 2.55—in other words, for every x ∈ R, the point
〈x, h(x)〉 is drawn.

There are two additional definitions related to polynomials that will be useful. The
first is the degree of the polynomial p(x), which is the highest power of x in p’s terms:
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Definition 2.54 (Degree)
The degree of a polynomial f (x) = ∑k

i=0 aixi is the largest index i such that ai 6= 0—that is,
the highest power of x with a nonzero coefficient.

Here are a few examples:

Example 2.71 (Some degrees)
For the polynomials f (x) = x + x3 and g(x) = x9, the degree of f is 3 and the degree
of g is 9. For the polynomial p(x) with a0 = 1, a1 = 3, and a2 = 0, the degree of p is 1,
because p(x) = 1 + 3x + 0x2 = 1 + 3x.

(a) Degree 0. (b) Degree 1. (c) Degree 2. (d) Degree 3. (e) Degree 4.

Figure 2.56: Graphs
of some polynomi-
als of degree 0, 1, 2,
3, and 4.

Some more examples of
polynomials with small
degrees (namely 0, 1, 2,
3, and 4) are shown in
Figure 2.56.

The second useful
notion about a polyno-
mial p(x) is a root, which
is a value of x where the graph of p crosses the x axis:

Definition 2.55 (Roots)
The roots of a polynomial p(x) are the values in the set {x ∈ R : p(x) = 0}.

Here are a few simple examples:

Example 2.72 (Some roots)
The roots of the polynomial f (x) = x + x2 are 0 and −1. For the polynomial g(x) = x9,
the only root is 0.

A useful general theorem relates the number of different roots for a polynomial to
its degree: a polynomial p with degree k has at most k different values of x for which
p(x) = 0 (unless p is always equal to 0):

Theorem 2.3 ((Nonzero) polynomials of degree k have at most k roots)
Let p(x) be a polynomial of degree at most k. Then p has at most k roots unless p(x) is zero
for every value x ∈ R.

When p(x) is zero for every value x ∈ R, we sometimes write p(x) ≡ 0 and say that p is
identically zero.

We won’t give a formal proof of Theorem 2.3, but here’s one way to convince your-
self of the basic idea. Think about how many times a polynomial of degree k can
“change direction” from increasing to decreasing or from decreasing to increasing.
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Observe that a polynomial p must change directions between any two roots. (Draw a
picture!) A polynomial of degree 0 never changes direction, so it’s either always zero
or never zero. A polynomial p(x) of degree d ≥ 1 can change directions only at a point
where its slope is precisely equal to zero—that is, a point x where the derivative p′ of
p satisfies p′(x) = 0. Using calculus, we can show that the derivative of a polynomial
of degree d ≥ 1 is a polynomial of degree d − 1. The idea of a proof by mathematical
induction is to combine the above intuition to prove the theorem.

Taking it further: Here’s some more detailed intuition of how to prove Theorem 2.3 using a proof by
mathematical induction; see Chapter 5 for much more detail on this form of proof.

Think first about a degree-zero polynomial—that is, a constant function p(x) = a. The theorem is
clear for this case: either a = 0 (in which case p(x) ≡ 0); or a 6= 0, in which case p(x) 6= 0 for any x. (See
Figure 2.56(a).)

Now think about a degree-1 polynomial—that is, p(x) = ax + b for a 6= 0. The derivative of p is a
constant function—namely p′(x) = a 6= 0. Imagine what it would mean for p to have two roots: as we
move from smaller x to larger x, at some point r we cross the x-axis, say from p(r − ε) < 0 to p(r + ε) > 0.
(See Figure 2.56(b).) In order to find another root larger than r, the function p would have to change from
increasing to decreasing—in other words, there would have to be a point at which p′(x) = 0. But we just
argued that a degree-zero polynomial like p′(x) that is not identically zero is never zero. So we can’t find
another root.

Now think about a degree-2 polynomial—that is, p(x) = ax2 + bx + c for a 6= 0. After a root, p will have
to change direction to head back toward the x-axis. That is, between any two roots of p, there must be a
point where the derivative of p is zero: that is, there is a root of the degree-one polynomial p′(x) = 2ax + b
between any two roots of p. But p′ has at most one root, as we just argued, so p has at most two roots.

And so forth! We can apply the same argument for degree 3, then degree 4, and so on, up to any
degree k. (See Chapter 5.)

2.5.4 Algorithms

While functions are a valuable mathematical abstraction, computer scientists are fun-
damentally interested in computing things. So, in addition to the type of functions that
we’ve discussed so far in this section, we will also often talk about mapping an in-
put x to a corresponding output f (x) in the way that a computer program would, by
computing the value of f (x) using an algorithm:

Definition 2.56 (Algorithm)
An algorithm is step-by-step procedure to transform an input into an output.

In other words, an algorithm is function—but specified as a sequence of simple oper-
ations, of the type that could be written as a program in your favorite programming
language; in fact, these step-by-step procedures are even called functions in many pro-
gramming languages. (It’s probably worth noting that it’s unusual for a book like this
one to introduce algorithms in the context of functions. But, because the point of an
algorithm really is to transform inputs into outputs, it can be helpful to think of an
algorithm as a description a function f that specifies how to calculate the output f (x)
from a given input x, instead of simply describing what the value f (x) is.)

We will write algorithms in pseudocode, rather than in any particular programming
language. In other words, we will specify the steps of the algorithm in a style that is
neither Python nor Java nor English, but something in between; it’s written in a style
that “looks” like a program, but is designed to communicate the steps to a human
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reader, rather than to a computer executing the code. We will aim to write pseudocode
that can be interpreted straightforwardly by a reader who has used any modern pro-
gramming language; we will always try to avoid getting bogged down in detailed
syntax, and instead emphasize trying to communicate algorithms clearly. Translating
the pseudocode for an algorithm into any programming language should be straight-
forward.

We will make use of the standard elements of any programming language in our
pseudocode: conditionals (“if”), loops (“for” and “while”), function definitions and
function calls (including recursive function calls), and functions returning values. We
will use the symbol “:=” to denote assignment and the symbol “=” to denote equality

Our notation of
:= for assignment
and = for equality
testing is borrowed
from the program-
ming language
Pascal. In a lot of
other programming
languages, like
C and Java and
Python, assignment
is expressed using =

and equality testing
is expressed using
==.testing, so that x := 3 sets the value of x to be 3, and x = 3 is True (if x is 3) or False

(if x is not 3). We assume a basic familiarity with these basic programming constructs
throughout the book.

findMaxIndex(L):
Input: A list L with n ≥ 1 elements L[1], . . . , L[n].
Output: An index i such that L[i] is the maximum value in L.

1: maxIndex := 1
2: for i := 2 to n:
3: if L[i] > L[maxIndex] then
4: maxIndex := i
5: return maxIndex

Figure 2.57: An
algorithm to find
the index of the
maximum element
of a list.

We will spend significant energy later in the
book on proving algorithms correct (Chapters 4
and 5)—that is, showing that an algorithm com-
putes the correct output for any given input—and
on analyzing the efficiency of algorithms (Chap-
ter 6). But here is one simple example to get us
started:

Example 2.73 (Max finder)
An algorithm to find the index of the maximum element of a list is shown in Fig-
ure 2.57. (More properly, this algorithm finds the index of the first maximum ele-
ment.)
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Computer Science Connections

Hash Tables and Hash Functions

Consider the following scenario: we have a set S of elements that we must
store, each of which is chosen from a universe U of all possible elements. We
need to be able to answer the question “is x in S?” quickly. (We might also
have data associated with each x ∈ S, and seek to find the associated data
rather than just determining membership.) Furthermore, the set S might
change over time, either by insertion of a new element or deletion of an ex-
isting element. How might we efficiently organize the data to support these
operations?

A hash table, one of the most frequently used data structures in computer
science, is designed to store a set like S, as follows:

• we define a table T[1 . . . n].
• we choose a hash function h : U → {1, . . . , n}.
• each element x ∈ S is stored in the cell T[h(x)].

There are several different choices about how to handle collisions, when we try
to store two different elements in the same cell, but for simplicity let’s assume
that we store them all in that cell, in a list. For example, see the hash function
and hash table in Figure 2.58:

1 2 3 4 5 6 7 8 9 10

h(x) := (x2 mod 10) + 1

(a) A hash table with hash function h.

1 2 3 4 5 6 7 8 9 10
420 2

8

(b) The table, filled with 4, 2, 8, and 20.

1 2 3 4 5 6 7 8 9 10

0
10
20
30
40
50
60
70
80
90

1
9
11
19
21
29
31
39
41
49
51
59
61
69
71
79
81
89
91
99

2
8
12
18
22
28
32
38
42
48
52
58
62
68
72
78
82
88
92
98

5
15
25
35
45
55
65
75
85
95

4
6
14
16
24
26
34
36
44
46
54
56
64
66
74
76
84
86
94
96

3
7
13
17
23
27
33
37
43
47
53
57
63
67
73
77
83
87
93
97

(c) The table filled with {0, 1, . . . , 99}.

Figure 2.58: A hash table, empty and
filled. If we’re asked to store 4 and 2
and 20 and 8, they would go into cells
h(4) = (16 mod 10) + 1 = 7 and h(2) = 5
and h(20) = 1 and h(8) = 5. Panel (c)
shows every element from the universe
{0, 1, . . . , 99}; the fact that the number
of elements per cell is so variable means
that this hash function does a poor job
of spreading out its inputs across the
table.

To insert a value x into the table, we merely need to compute h(x) and place
the value into the list in the cell T[h(x)]. Answering the question “is x stored in
the table?” is similar; we compute h(x) and look through whatever entries are
stored in that list. As a result, the performance of this data structure is almost
entirely dependent on how many collisions are generated—that is, how long
the lists are in the cells of the table.

A “good” hash function h : U → {1, . . . , n} is one that distributes the pos-
sible values of U as evenly as possible across the n different cells. The more
evenly the function spreads out U across the cells of the table, the smaller
the typical length of the list in a cell, and therefore the more efficiently the
program would run. (Figure 2.58(c) says that the above hash function is not a
very good one.) Programming languages like Python and Java have built-in
implementations of hash tables, and they use some mildly complex iterative
arithmetic operations in their hash functions. But designing a good hash
function for whatever kind of data you end up storing can be the difference
between a slow implementation and a blazingly fast one.

Incidentally, there are two other concerns with efficiency: first, the hash
function must be able to be computed quickly, and there’s also some clever-
ness in choosing the size of the table and in deciding when to rehash every-
thing in the table into a bigger table if the lists get too long (on average).
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2.5.5 Exercises

Consider the function f : {0, 1, . . . 7} → {0, 1, . . . 7} defined by f (x) := (x2 + 3) mod 8.
2.224 What is f (3)?
2.225 What is f (7)?

2.226 For what x is f (x) = 3?
2.227 Redefine f using a table.

quantize(n) :=





26 if 0 ≤ n ≤ 51
78 if 52 ≤ n ≤ 103
130 if 104 ≤ n ≤ 155
182 if 156 ≤ n ≤ 207
234 if 208 ≤ n ≤ 255

Figure 2.59: The
function from
Example 2.56.

2.228 In Example 2.56, we introduced a function quantize for compressing
a grayscale image to use only five different shades of gray. (See Figure 2.59 for a
reminder of the function.) Using basic arithmetic notation (including ⌊ ⌋ and/or ⌈ ⌉ if
appropriate), redefine quantize without using cases.

Let’s generalize the quantization idea from the previous exercise to be a two-argument func-
tion, so that quantize(n, k) takes an input color n ∈ {0, 1, . . . , 255} and a number k of
“quanta.” (We insist that 1 ≤ k ≤ 256.) In other words, k is the number of different equally
spaced output values, and the input color n is translated to the closest of these k values. (The
ranges associated with the quanta are only approximately equal because of issues of integrality: for example, in the
k = 5 case from Figure 2.59, the first four quanta correspond to 52 different colors; the last quantum corresponds to only
256 − 52 · 4 = 48 different colors.)
2.229 What are the domain and range of quantize(n, k)?
2.230 Repeat Exercise 2.228 for quantize(n, k). You should ensure that quantize(n, 5) yields the func-
tion from Figure 2.59. (Hint: first determine how big a range of colors should be mapped to a particular quantum,
rounding the size up. Then figure out which quantum the given input n corresponds to.)
2.231 A function f : A → B is said to be c-to-1 if, for every output value b ∈ B, there are exactly c
different values a ∈ A such that f (a) = b. (These functions are useful in counting; see the Division Rule in
Theorem 9.11.) For what values of k is it possible to define a c-to-1 (for some integer c) quantizing function
that transforms into {0, 1, . . . , 255} into a set of k quanta?
2.232 (programming required) Implement quantization for image files, in a programming language of
your choice. Specifically, implement quantize(n, k), and apply it to every pixel of a given image. (You’ll need
to research an image-processing library to use in your program.)

Many of the pieces of basic numerical notation that we’ve introduced can be thought of as functions. For each of the
following, state the domain and range of the given function.
2.233 f (x) = |x|
2.234 f (x) = ⌊x⌋
2.235 f (x) = 2x

2.236 f (x) = log2 x

2.237 f (x) = x mod 2
2.238 f (x) = 2 mod x
2.239 f (x, y) = x mod y
2.240 f (x) = 2 | x

2.241 f (x) = ‖x‖
2.242 f (θ) = 〈cos θ, sin θ〉

2.243 Let T = {1, . . . , 12} × {0, 1, . . . , 59} denote the set of numbers that can be displayed on a digital
clock in twelve-hour mode. Define a function add : T × Z≥0 → T so that add(t, x) denotes the time that’s x
minutes later than t. Do so using only standard symbols from arithmetic.

Define the functions f (x) := x mod 10, g(x) := x + 3, and h(x) := 2x. What are the following? (That is, rewrite
the definition of the given function using a single algebraic expression. For example, the function g ◦ g is given by the
definition (g ◦ g)(x) = g(g(x)) = x + 6.)
2.244 f ◦ f
2.245 h ◦ h

2.246 f ◦ g
2.247 g ◦ h

2.248 h ◦ g
2.249 f ◦ h

2.250 f ◦ g ◦ h

Let f (x) := 3x + 1 and let g(x) := 2x. Identify a function h such that . . .
2.251 . . . g ◦ h and f are identical. 2.252 . . . h ◦ g and f are identical.

Which of the following functions f : {0, 1, 2, 3} → {0, 1, 2, 3} are onto?
2.253 f (x) = x
2.254 f (x) = x2 mod 4
2.255 f (x) = x2 − x mod 4

2.256 f (0) = 3, f (1) = 2, f (2) = 1, f (3) = 0
2.257 f (0) = 1, f (1) = 2, f (2) = 1, f (3) = 2

Which of the following functions f : {0, 1, 2, 3} → {0, 1, . . . , 7} are one-to-one?
2.258 f (x) = x2 mod 8
2.259 f (x) = x3 mod 8
2.260 f (x) = (x3 − x) mod 8

2.261 f (x) = (x3 + 2x) mod 8
2.262 f (0) = 3, f (1) = 1, f (2) = 4, f (3) = 1
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Figure 2.60: A
maximum heap,
as a tree and as an
array.

A heap is a data structure that is used to represent a collection of items, each of which has an associated
priority. (See p. 529.) A heap can be represented as a complete binary tree—a binary tree with no “holes”
as you read in left-to-right, top-to-bottom order—but a heap can also be stored more efficiently as an array,
in which the elements are stored in that same left-to-right and top-to-bottom order. (See Figure 2.60.) To
do so, we define three functions that allow us to compute the index of the parent of a node; the index of the
left child of a node; and the index of the right child of a node. (For example, the parent of the node labeled
8 in Figure 2.60 is labeled 9, the left child of the node labeled 8 is labeled 3, and the right child is labeled 5.)
Here are the functions: given an index i into the array, we define

parent(i) :=
⌊

i
2

⌋
left(i) := 2i right(i) := 2i + 1.

For example, the node labeled 8 has index 2 in the array, and parent(2) = 1 (the index of the node labeled
9); left(2) = 4 (the index of the node labeled 3); and right(2) = 5 (the index of the node labeled 5).
2.263 Suppose that we have a heap stored as an array A[1 . . . n]. State the domain and range of the
function parent. Is parent one-to-one?
2.264 State the domain and range of left and right for the heap as stored in A[1 . . . n]. Are left and right
one-to-one?

Give both a mathematical description and an English-language description of the meanings of the following heap-
related functions. Assume for the purposes of these questions that the array A is infinite (that is, don’t worry about the
possibility of encountering an i such that left(i) or right(i) is undefined).
2.265 parent ◦ left
2.266 parent ◦ right

2.267 left ◦ parent
2.268 right ◦ parent

What are the inverses of the following functions?
2.269 f : R → R, where f (x) = 3x + 1.
2.270 g : R≥0 → R≥0, where g(x) = x3.

2.271 h : R≥0 → R≥1, where h(x) = 3x .

2.272 Why doesn’t the function f : {0, . . . , 23} → {0, . . . , 11} where f (n) = n mod 12 have an inverse?

What are the degrees of the following polynomials?
2.273 p(x) = 3x3 + 2x2 + x + 0
2.274 p(x) = 9x3

2.275 p(x) = 4x4 + x2 − (2x)2

Suppose that p and q are polynomials, both with degree 7. What are the smallest and largest possible degrees of the
following polynomials?
2.276 f (x) = p(x) + q(x)
2.277 f (x) = p(x) · q(x)

2.278 f (x) = p(q(x))

Give an example of a polynomial p of degree 2 such that . . .
2.279 . . . p has exactly 0 roots.
2.280 . . . p has exactly 1 root.

2.281 . . . p has exactly 2 roots.

2.282 The median of a list L of n numbers is the number in the “middle” of L in sorted order. Describe an
algorithm to find the median of a list L. (Don’t worry about efficiency.) You may find it useful to make use of
the algorithm in Figure 2.57.
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2.6 Chapter at a Glance

Booleans, Numbers, and Arithmetic

A Boolean value is True or False. The integers Z are {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. The
real numbers R are the integers and all numbers in between. The closed interval [a, b]
consists of all real numbers x where a ≤ x ≤ b; the open interval (a, b) excludes a and b.
The rational numbers Q are those numbers that can be represented as a/b for integers a
and b 6= 0. Here is some useful notation involving numbers:

• exponentiation: bk is b · b · · · · · b, where b is multiplied k times;
• logarithms: logb x is the number y such that by = x;
• absolute value: |x| is x for x ≥ 0, and |x| = −x for x < 0;
• floor and ceiling: ⌊x⌋ is the largest integer n ≤ x; ⌈x⌉ is the smallest integer n ≥ x;
• modulus: n mod k is the remainder when n is divided by k.

If n mod d = 0, then d is a factor of n or evenly divides n, written d |n. If 2 |n for a positive
integer n, then n is even (“has even parity”); otherwise n is odd. An integer n ≥ 2 is
prime if it has no positive integer factors other than 1 and n; otherwise n is composite.
(Note that 0 and 1 are neither prime nor composite.)

For a collection of numbers x1, x2, . . . , xn, their sum x1 + x2 + · · · + xn is written
formally as ∑n

i=1 xi, and their product x1 · x2 · · · · · xn is written ∏n
i=1 xi.

Sets: Unordered Collections

A set is an unordered collection of objects called elements. A set can be specified by
listing its elements inside braces, as {x1, x2, . . . , xn}. A set can also be denoted by
{x : P(x)}, which contains all objects x such that P(x) is true. The set of possible val-
ues x that are considered is the universe U, which is sometimes left implicit.

Standard sets include the empty set {} (also written ∅), which contains no elements;
the integers Z; the real numbers R; and the booleans {True, False}. We write Z≥0 =
{0, 1, 2, . . .} and Z<0 = {−1,−2, . . .}, etc. For a set A and an object x, the expression
x ∈ A (“x is in A”) is true whenever x is in the set A. (So y ∈ {x : P(x)} whenever
P(y) = True, and y ∈ {x1, x2 . . . , xn} whenever xi = y for some i.) The cardinality of a set
A, written |A|, is the number of distinct elements in A.

Given two sets A and B, the union of A and B is A ∪ B = {x : x ∈ A or x ∈ B}. The
intersection of A and B is A ∩ B = {x : x ∈ A and x ∈ B}. The set difference of A and
B is A − B = {x : x ∈ A and x /∈ B}. The complement of a set A is ∼A = U − A =
{x : x ∈ U and x 6∈ A}, where U is the universe.

A subset of a set B is a set A such that every element of A is also an element of B;
this relationship is denoted by A ⊆ B. If A is a subset of B, then B is a superset of A,
written B ⊇ A. A proper subset of B is a set A that is a subset of B but A 6= B, written
A ⊂ B. Such a set B is a proper superset of A, written B ⊃ A. Two sets A and B are
disjoint if A ∩ B = ∅. A partition of a set S is a collection of sets A1, A2, . . . , Ak, where
A1 ∪ A2 ∪ · · · ∪ Ak = S and, for any distinct i and j, the sets Ai and Aj are disjoint.

The power set of a set A, written P(A), is the set of all subsets of A.
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Sequences, Vectors, and Matrices: Ordered Collections

A sequence (or tuple, (ordered) pair, triple, quadruple, . . . , n-tuple, . . . ) is an ordered col-
lection of objects called components or entries, written inside angle brackets. The set
A × B = {〈a, b〉 : a ∈ A and b ∈ B} is the Cartesian product of sets A and B; the set A × B
contains all pairs where the first component comes from A and the second from B. For
a set S and a number n ≥ 0, the set Sn denotes the n-fold Cartesian product of S with
itself: Sn = S × S × . . .× S, where S occurs n times in this product.

A vector (or n-vector) is an element of Rn, for some positive integer n ≥ 2. (An
element of R1 = R is called a scalar.) A bit vector is an element of {0, 1}n. Vectors are
sometimes written in square brackets: x = [x1, x2, . . . , xn]. For a vector x, write xi to
denote the ith component of x. (But xi is meaningless unless i ∈ {1, 2, . . . , n}.) The size
or dimensionality of x ∈ Rn is n.

For a vector x ∈ Rn and a real number α ∈ R, the scalar product αx is a vector where
(αx)i = αxi. For two vectors x, y ∈ Rn, the sum of x and y is a vector x + y, where
(x + y)i = xi + yi. The dot product of two vectors x, y ∈ Rn is x • y = ∑n

i=1 xiyi. Both x + y
and x • y are meaningless unless x and y have the same dimensionality.

M =




M1,1 M1,2 . . . M1,m
M2,1 M2,2 . . . M2,m

...
...

. . .
...

Mn,1 Mn,2 . . . Mn,m




Figure 2.61: A
matrix.

An n-by-m matrix M is an element of (Rn)m, which is also sometimes
written Rn×m. Such a matrix M has n rows and m columns, as in Fig-
ure 2.61. A matrix M ∈ Rn×m is square if n = m. For a size n, the identity
matrix is I ∈ Rn×n has ones on the main diagonal (the entries Ii,i = 1) and
zeros everywhere else.

Given a matrix M ∈ Rn×m and a real number α ∈ R, the matrix αM is specified by
(αM)i,j = αMi,j. Given two matrices M, M′ ∈ Rn×m, the matrix M + M′ is specified by
(M + M′)i,j = Mi,j + M′

i,j. (The sum M + M′ is meaningless if M and M′ have different
dimensions.) The product of two matrices A ∈ Rn×m and B ∈ Rm×p is a matrix
AB ∈ Rn×p whose components are given by (AB)i,j = ∑m

k=1 Ai,kBk,j. (More compactly,
(AB)i,j = Ai,(1...m) • B(1...m),j.) If the number of rows in A is different from the number
of columns in B then AB is meaningless. The inverse of M is a matrix M−1 such that
MM−1 = I (if any such matrix M−1 exists).

Functions

A function f : A → B maps every element a ∈ A to some element f (a) ∈ B. The
domain of f is A and the codomain is B. The image or range of f is {f (x) : x ∈ A}, the set
of elements of the codomain “hit” by some element of A according to f .

The composition of a function f : A → B and g : B → C is written g ◦ f : A → C, and
(g ◦ f )(x) = g(f (x)). A function f : A → B is one-to-one or injective if f (x) = f (y) implies
that x = y. The function f is onto or surjective if the image is equal to the codomain. If
f : A → B is one-to-one and onto, it is bijective. For a bijection f : A → B, the function
f −1 : B → A is the inverse of f , where f −1(b) = a when f (a) = b.

A polynomial p : R → R is a function p(x) = a0 + a1x + · · · + akxk, where each ai ∈ R is
a coefficient. The degree of p is k. The roots of p are {x : p(x) = 0}. A polynomial of degree
k that is not always zero has at most k different roots.

An algorithm is a step-by-step procedure that transforms an input into an output.
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Key Terms and Results

Key Terms

Booleans, Numbers, Arithmetic

• booleans, integers, reals, rationals
• open intervals, closed intervals
• absolute value |x|, floor ⌊x⌋, ceiling ⌈x⌉
• exponentiation, logarithms
• modulus, remainder, divides
• even, odd, prime, parity
• summation ∑, product ∏
• nested summations, nested products

Sets

• set, element, membership, cardinality
• exhaustive enumeration
• set abstraction, universe
• the empty set ∅ = {}
• Venn diagram
• complement ∼, union ∪, intersection ∩
• set difference −
• (proper) subset, (proper) superset
• disjoint sets
• partitions
• power set

Sequences, Vectors, Matrices

• sequence, list, ordered pair, n-tuple
• Cartesian product
• vector, dot product
• matrix, identity matrix
• matrix multiplication
• matrix inverse

Functions

• domain, codomain, image/range
• function composition
• one-to-one, onto functions
• bijection, inverse
• polynomial, degree, roots
• algorithm

Key Results

Booleans, Numbers, and Arithmetic

1. The value of bn is b · b · · · b, multiplied together n times. If
n < 0, then bn = 1/(b−n). For rational exponents, b1/m is
the number x such that xm = b, and bn/m = (b1/m)n.

2. For a positive real number b 6= 1 and a real number x > 0,
the quantity logb x (the log base b of x) is the real number
y such that by = x.

3. Consider integers k > 0 and n. Then k | n (“k divides n”) if
n
k is an integer—or, equivalently, if n mod k = 0.

4. As long as the terms being added remain unchanged, we
can reindex a summation (for example, shifting the
variable over which the sum is taken, or reversing the
order of nested sums) without affecting the total value of
the sum. The same is true for products.

Sets: Unordered Collections

1. A set can be specified using exhaustive enumeration (a
list of its elements), or by abstraction (a condition
describing when an object is an element of the set).

2. Two sets S and T are equal if every element of S is an
element of T and every element of T is an element of S.

Sequences, Vectors, and Matrices

1. For vectors x, y ∈ Rn, the dot product of x and y is
x • y = ∑n

i=1 xiyi.

2. The product AB of two matrices A ∈ Rn×m and B ∈ Rm×p

is an n-by-p matrix M ∈ Rn×p whose components are
given by Mi,j = ∑m

k=1 Ai,kBk,j.

Functions

1. A one-to-one and onto function f : A → B has an inverse
function f −1 : B → A, where f (a) = b precisely when
f −1(b) = a.

2. A polynomial of degree k that is not always zero has at
most k different roots.



3
Logic

In which our heroes move carefully through the marsh, making sure that
each step follows safely from the one before it.
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3.1 Why You Might Care

How fondly dost thou reason!

William Shakespeare (1564–1616)
The Comedy of Errors

Logic is the study of truth and falsity, of theorem and proof, of valid reasoning in
any context. In this chapter, we focus on formal logic, in which it is the “form” of the
argument that matters, rather than the “content.” This chapter will introduce the two
major types of formal logic:

• propositional logic (Sections 3.2 and 3.3), in which we will study the truth and falsity
of statements, how to construct logical statements from basic logical operators (like
and and or), and how to reason about those statements.

• predicate logic (Sections 3.4 and 3.5), which gives us a framework to write logical
statements of the form “every x . . .” or “there’s some x such that . . ..”

One of our main goals in this chapter will be to define a precise, formal, and unam-
biguous language to express reasoning—in which writer and reader agree on what
each word means.

Logic is the foundation of all of computer science; it’s the reasoning that you use
when you write the condition of an if statement or when you design a circuit to add
two 32-bit integers or when you design a program to beat a grandmaster at chess. Be-
cause logic is the study of valid reasoning, any endeavor in which one wishes to state
and justify claims rigorously—such as that of this book—must at its core rely on logic.
Every condition that you write in a loop is a logical statement. When you sit down to
write binary search in Python, it is through a (perhaps tacit) use of logical reasoning
that you ensure that your code works properly for any input. When you use a search
engine to look for web pages on the topic “beatles and not john or paul or george or
ringo” you’ve implicitly used logical reasoning to select this particular query. Solving
a Sudoku puzzle is nothing more and nothing less than following logical constraints
to their conclusion. The central component of a natural language processing (NLP)
system is to take an utterance by a human user that’s made in a “natural” language
like English and “understand” what it means—and understanding what a sentence
means is essentially the same task as understanding the circumstances under which
the sentence is true, and thus is a question of logic.

And these are just a handful of examples; for a computer scientist, logic is the basis
of the discipline. Indeed, the processor of a computer is built up from almost un-
thinkably simple logical components: wires and physical implementations of logical
operations like and, or, and not. Our main goal in this chapter will be to introduce the
basic constructs of logic. But along the way, we will encounter applications of logic to
natural language processing, circuits, programming languages, optimizing compilers,
and building artificially intelligent systems to play chess and other games.
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3.2 An Introduction to Propositional Logic

Everyone wishes to have truth on his side, but not
everyone wishes to be on the side of truth.

Richard Whately (1787–1863)

A proposition is a statement that is either true or false—In December 2012, Facebook
had over one billion users or Java is a programming language that uses indentation to denote
block structure, for example. Propositional logic is the study of propositions, including
how to formulate statements as propositions, how to evaluate whether a proposition
is true or false, and how to manipulate propositions. The goal of this section is to
introduce propositions—including related terminology, standard notation, and some
techniques for reasoning about propositions.

3.2.1 Propositions and Truth Values

We’ll begin, briefly, with propositions themselves:

Definition 3.1 (Propositions and Truth Values)
A proposition is a statement that is either true or false. For a particular proposition p, the
truth value of p is its truth or falsity.

A proposition is also sometimes called a Boolean expression or a Boolean formula. (See
Section 2.2.1.) A proposition is written in English as a declarative sentence, the kind of
sentence that usually ends with a period. (Questions and demands—like Did you try
binary search? or Use quicksort!—aren’t the kinds of things that are true or false, and so
they’re not propositions.) Here are a few examples:

Example 3.1 (Some sample propositions)
The following statements are all propositions:

1. 2 + 2 = 4.
2. 33 is a prime number.
3. Barack Obama is the 44th person to be president of the United States.
4. Every even integer greater than 2 can be written as the sum of two prime num-

bers.

(The last of these propositions is called Goldbach’s conjecture; it’s more complicated
than the other propositions in this example, and we’ll return to it in Section 3.4.)

Let’s determine the above propositions’ truth values:

Example 3.2 (Determining truth values)
Problem: What are the truth values of the propositions from Example 3.1?

Solution: These propositions’ truth values are
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1. True. It really is the case that 2 + 2 equals 4.

2. False. The integer 33 is not a prime number because 33 = 3 · 11. (Prime numbers
are evenly divisible only by 1 and themselves; 33 is evenly divisible by 3 and 11.)

3. False. Although Barack Obama is called president #44, Grover Cleveland was
president #22 and #24. So Barack Obama is actually the 43rd person to be presi-
dent of the United States, not the 44th.

4. Unknown (!). Goldbach’s conjecture was first made in 1742, but has thus far
resisted proof—or disproof! It’s easy to check that particular small even integers
can be written as the sum of two prime numbers; for example, 4 = 2 + 2, 6 =
3 + 3, 8 = 3 + 5, 10 = 3 + 7, and so on. But is it true for all even integers greater
than 2? We simply don’t know! Many even integers have been tested, and no
violation has been found in any of these tests. But, as far as we know, the next
even integer we test can’t be written as the sum of two primes. See Example 3.47
and Exercises 3.178–3.181.

Before we move on from Example 3.2, there’s an important point to make about state-
ments that have an unknown truth value. Even though we don’t know the truth value
of Goldbach’s conjecture, it is still a proposition and thus it has a truth value. That is,
Goldbach’s conjecture is indeed either true or false; it’s just that we don’t know which
it is. (Like the proposition The person currently sitting next to you is wearing clean under-
wear: it has a truth value, you just don’t know what truth value it has.)

Taking it further: Goldbach’s conjecture stands in contrast to declarative sentences whose truth is ill-
defined—for example, This book is boring and Logic is fun. Whether these claims are true or false depends
on the (imprecise) definitions of words like boring and fun. We’re going to de-emphasize subtle “shades
of truth” questions of this form throughout the book, but see p. 314 for some discussion, including the
role of ambiguity in software systems that interact with humans via English language input and output.

There is also a potentially interesting philosophical puzzle that’s hiding in questions about the truth
values of natural-language utterances. Here’s a silly (but obviously true) statement: The sentence “snow is
white” is true if and only if snow is white. (Of course!) This claim becomes a bit less trivial if the embedded
proposition is stated in a different language—Spanish or Dutch, say: The sentence “La nieve es blanca” is
true if and only if snow is white; or The sentence “Sneeuw is wit” is true if and only if snow is white. But there’s
a troubling paradox lurking here. Surely we would like to believe that the English sentence x and the
French translation of the English sentence x have the same truth value. For example, Snow is white and
La neige est blanche surely are both true, or they’re both false. (And, in fact, it’s the former.) But this belief
leads to a problem with certain self-referential sentences: for example, This sentence starts with a ‘T’ is
true, but Cette phrase commence par un ‘T’ is, surely, false.1

1

For more on para-
doxes and puzzles
of translation, see
1 Douglas Hofs-
tadter. Le Ton Beau
de Marot: In Praise
of the Music of Lan-
guage. Basic Books,
1998; and R. M.
Sainsbury. Para-
doxes. Cambridge
University Press,
3rd edition, 2009.

3.2.2 Atomic and Compound Propositions

We will distinguish between two types of propositions, those that cannot be broken
down into conceptually simpler pieces and those that can be:

Definition 3.2 (Atomic and compound propositions)
An atomic proposition is a proposition that is conceptually indivisible. A compound
proposition is a proposition that is built up out of conceptually simpler propositions.
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Here’s a simple example of the difference:

Example 3.3 (Atomic and compound propositions)
The University of Minnesota’s mascot is the Badger is an atomic proposition, because it is
not conceptually divisible into any simpler claim.

The University of Washington’s mascot is the Duck or the University of Oregon’s mascot
is the Duck is a compound proposition, because it is conceptually divisible into two
simpler claims—namely The University of Washington’s mascot is the Duck and The
University of Oregon’s mascot is the Duck.

Atomic propositions are also sometimes called Boolean variables; see Section 2.2.1. A
compound proposition that contains Boolean variables p1, . . . , pk is sometimes called a
Boolean expression or Boolean formula over p1, . . . , pk.

Example 3.4 (Password validity as a compound proposition)
A certain small college sends the following instructions to its users when they are
required to change their password:

Your password is valid only if it is at least 8 characters long, you have not previously
used it as your password, and it contains at least three different types of characters
(lowercase letters, uppercase letters, digits, non-alphanumeric characters).

This compound proposition involves seven different atomic propositions:

• p: the password is valid
• q: the password is at least 8 characters long
• r: the password has been used previously by you
• s: the password contains lowercase letters
• t: the password contains uppercase letters
• u: the password contains digits
• v: the password contains non-alphanumeric characters

The form of the compound proposition is “p, only if q and not r and at-least-three-
of {s, t, u, v} are true.” (Later we’ll see how to write this compound proposition in
standard logical notation; see Example 3.15.)

3.2.3 Logical Connectives

Logical connectives are the glue that creates the more complicated compound proposi-
tions from simpler propositions. Here are definitions of our first three of these logical
connectives—not, and, and or:

Definition 3.3 (Negation (not): ¬)
The proposition ¬p (“not p,” called the negation of the proposition p) is true when the
proposition p is false, and is false when p is true.
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Definition 3.4 (Conjunction (and): ∧)
The proposition p∧ q (“p and q,” the conjunction of the propositions p and q) is true when
both of the propositions p and q are true, and is false when one or both of p or q is false.

The prefix con-
means “together”
and dis- means
“apart.” (Junct
means “join.”) The
conjunction p ∧ q is
true when p and q
are true together;
the disjunction p ∨ q
is true when p is
true “apart from”
q, or the other way
around.

To help keep the
symbols straight,
it may be helpful
to notice that the
symbol ∧ is the
angular version
of the symbol ∩
(intersection), while
the symbol ∨ is the
angular version
of the symbol ∪
(union). The set
S ∩ T is the set of all
elements contained
in S and T; the set
S ∪ T is the set of all
elements contained
in S or T.

Definition 3.5 (Disjunction (or): ∨)
The proposition p∨ q (“p or q,” the disjunction of the propositions p and q) is true when one
or both of the propositions p or q is true, and is false when both p and q are false.

In the conjunction p ∧ q, the propositions p and q are called conjuncts; in p ∨ q, they are
called disjuncts. Here’s a simple example:

Example 3.5 (Some simple compound propositions)
Let p denote the proposition Ohio State’s mascot is the Buckeye and let q denote the
proposition Michigan’s mascot is the Wolverine. Then:

• ¬q denotes the proposition Michigan’s mascot is not the Wolverine.
• p ∧ q denotes the proposition Ohio State’s mascot is the Buckeye, and Michigan’s mascot

is the Wolverine.
• p ∨ q denotes the proposition Ohio State’s mascot is the Buckeye, or Michigan’s mascot

is the Wolverine.

Here’s an example of translating some English statements that express compound
propositions into standard logical notation:

Example 3.6 (From English statements to compound propositions)
Problem: Translate each of the following statements into logical notation. (Name the

atomic propositions using appropriate Boolean variables.)

1. Carissa is majoring in computer science and studio art.
2. Either Dave took a formal logic class, or he is a quick learner.
3. Eli broke his hand and didn’t take the test as scheduled.
4. Fred knows Python or he has programmed in both C and Java.

Solution: Let’s first name the atomic propositions within these English statements:

p = Carissa is majoring in computer science.
q = Carissa is majoring in studio art.
r = Dave took a formal logic class.
s = Dave is a quick learner.

t = Eli broke his hand.
u = Eli took the test as scheduled.
v = Fred knows Python.
w = Fred has programmed in C.
x = Fred has programmed in Java.

We can now translate the four given statements as: (1) p∧ q; (2) r ∨ s; (3) t∧¬u; and
(4) v ∨ (w ∧ x).

Implication (if/then)
Another important logical connective is ⇒, which denotes implication. It expresses

a familiar idea from everyday life, though one that’s not quite captured by a single
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English word. Consider the sentence If you scratch my back, then I’ll scratch yours. It’s
easiest to think of this sentence as a promise: I’ve promised that I’ll scratch your back
as long as you scratch mine. I haven’t promised anything about what I’ll do if you fail
to scratch my back—I can abstain from back scratching, or I might generously scratch
your back anyway, but I haven’t guaranteed anything. (You’d justifiably call me a liar if
you scratched my back and I failed to scratch yours in return.) This kind of promise is
expressed as an implication in propositional logic: One initially con-

fusing aspect of
logical implica-
tion is that the
word “implies”
seems to hint at
something about
causation—but
p ⇒ q doesn’t ac-
tually say anything
about p causing q,
only that p being
true implies that q
is true (or, in other
words, p being true
lets us conclude that q
is true).

Definition 3.6 (Implication: ⇒)
The proposition p ⇒ q is true when the truth of p implies the truth of q. In other words,
p ⇒ q is true unless p is true and q is false.

In the implication p ⇒ q, the proposition p is called the antecedent or the hypothesis, and
the proposition q is called the consequent or the conclusion.

Here are a few examples of statements involving implication:

Example 3.7 (Some implications)
The following propositions are all true:

• 1 + 1 = 2 implies that 2 + 3 = 5. (“True implies True” is true.)
• 2 + 3 = 4 implies that 2 + 2 = 4. (“False implies True” is true.)
• 2 + 3 = 4 implies that 2 + 3 = 6. (“False implies False” is true.)

But the following proposition is false:

• 2 + 2 = 4 implies that 2 + 1 = 5. (“True implies False” is false.)

This last proposition is false because 2 + 2 = 4 is true, but 2 + 1 = 5 is false.

“p implies q”
“if p, then q”
“p only if q”
“q whenever p”

“q, if p”
“q is necessary for p”
“p is sufficient for q”

Figure 3.1: Some
ways of expressing
p ⇒ q in English.

There are many different ways to express the proposition p ⇒ q
in English, including all of those in Figure 3.1.

Here is an example of the same implication being stated in
English in many different ways:

Example 3.8 (Expressing implications in English)
According to United States law, people who can legally vote must be American citi-
zens, and they must also satisfy some other various conditions that vary from state
to state (for example, registering in advance or not being a felon). Thus the following
compound proposition is true:

you are a legal U.S. voter ⇒ you are an American citizen.

All of the following sentences express this proposition in English:

If you are a legal U.S. voter, then you are an American citizen.
You being a legal U.S. voter implies that you are an American citizen.
You are a legal U.S. voter only if you are an American citizen.
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You are an American citizen if you are a legal U.S. voter.
You are an American citizen whenever you are a legal U.S. voter.
You being an American citizen is necessary for you to be a legal U.S. voter.
You being a legal U.S. voter is sufficient for you to be an American citizen.

Most of these sentences are reasonably natural ways to express the stated implication,
though the last phrasing seems awkward. But it’s easier to understand if we slightly
rephrase it as “You being a legal U.S. voter is sufficient for one to conclude that you are an
American citizen.”

Here’s another example of restating implications:

Example 3.9 (More implications in English)
Consider the proposition

The nondisclosure agreement is valid︸ ︷︷ ︸
p

only if you signed it︸ ︷︷ ︸
q

.

(This statement is different from “if you signed, then the agreement is valid”: for
example, the agreement might not be valid because you’re legally a minor and thus
not legally allowed to sign away rights.) We can restate p ⇒ q as “if p then q”:

If the nondisclosure agreement is valid, then you signed it.

We can also restate this implication equivalently—and perhaps more intuitively—
using the so-called contrapositive ¬q ⇒ ¬p (see Example 3.21):

The nondisclosure agreement is invalid if you didn’t sign it.

“Exclusive or” and “if and only if”
The four logical connectives that we have defined so far (¬, ∨, ∧, and ⇒) are the

ones that are most frequently used, but we’ll define two other common connectives
too. The first is exclusive or: The connective ⊕ is

usually pronounced
like “ex ore” (a
former significant
other + some rock
with high precious-
metal content).

Definition 3.7 (Exclusive or: ⊕)
The proposition p⊕ q (“p exclusive or q” or, more briefly, “p xor q”) is true when one of the
propositions p or q is true, but not both. Thus p ⊕ q is false when both p and q are true, and
when both p and q are false.

When we want to emphasize the distinction between ∨ and ⊕, we refer to ∨ as inclusive
or. This terminology highlights the fact that p ∨ q includes the possibility that both p
and q are true, while p ⊕ q excludes that possibility. Unfortunately, the word “or” in
English can mean either inclusive or exclusive or, depending on the context in which
it’s being used. When you see the word “or,” you’ll have to think carefully about which
meaning is intended.

Here’s an example of distinguishing inclusive and exclusive or:
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Example 3.10 (Inclusive versus exclusive or in English)
Problem: Translate these statements from a cover letter for a job into logical notation:

You may contact me by email or by phone. I am available for an on-site day-long
interview on October 8th in Minneapolis or Hong Kong.

Use the following Boolean variables:

p = you may contact me by phone
q = you may contact me by email
r = I am physically available for an interview in Minneapolis
s = I am physically available for an interview in Hong Kong

Solution: The “or” in “email or phone” is inclusive, because you could receive both an
email and a call. However, the “or” in “Minneapolis or Hong Kong” is exclusive,
because it’s not physically possible to be simultaneously present in Minneapolis
and Hong Kong. Thus a correct translation of these statements is (p∨ q) ∧ (r ⊕ s).

We are now ready to define our last logical connective: Sometimes you’ll
see ⇔ abbreviated
in sentences as
“iff” as shorthand
for “if and only
if.” We’ll avoid
this notation in
this book, but you
should understand
it if you see it
elsewhere.

Definition 3.8 (If and only if: ⇔)
The proposition p ⇔ q (“p if and only if q”) is true when the propositions p or q have the
same truth value (both p and q are true, or both p and q are false), and false otherwise.

The reason that ⇔ is read as “if and only if” is that p ⇔ q means the same thing
as the compound proposition (p ⇒ q) ∧ (q ⇒ p). (We’ll prove this equivalence in
Example 3.23.) Furthermore, the propositions p ⇒ q and q ⇒ p can be rendered,
respectively, as “p only if q” and “p, if q.” Thus p ⇔ q expresses “p if q, and p only
if q”—or, more compactly, “p if and only if q.” (The connective ⇔ is also sometimes
called the biconditional, because an implication can also be called a conditional.)

Unfortunately, just like with “or,” the word “if” is ambiguous in English. Some-
times “if” is used to express an implication, and sometimes it’s used to express an
if-and-only-if definition. When you see the word “if” in a sentence, you’ll need to think
carefully about whether it means ⇒ or ⇔. Here’s an example:

Example 3.11 (“If” versus “if and only if” in English)
Problem: Think of a number between 10 and 1,000,000. Let

p := your number is prime.
q := your number is even.
r := your number is evenly divisible by an integer other than 1 and itself.

Now translate the following two sentences into logical notation:

1. If the number you’re thinking of is even, then it isn’t prime.
2. The number you’re thinking of isn’t prime if it’s evenly divisible by an integer

other than 1 and itself.

Solution: The “if” in (1) is an implication, and the “if” in (2) is “if and only if.” A
correct translation of these sentences is (1) q ⇒ ¬p; and (2) ¬p ⇔ r.
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3.2.4 Combining Logical Connectives

negation ¬p “not p” highest precedence
conjunction p ∧ q “p and q”
disjunction p ∨ q “p or q”
exclusive or p ⊕ q “p xor q”
implication p ⇒ q “if p, then q” or “p implies q”
if and only if p ⇔ q “p if and only if q” lowest precedence

Figure 3.2: Sum-
mary of notation for
propositional logic.

The six standard logical connectives
that we’ve defined so far (¬, ∧, ∨,
⇒, ⊕, and ⇔) are summarized in
Figure 3.2. The logical connective ¬
is a unary operator, because it builds a
compound proposition from a single
simpler proposition. The other five connectives are binary operators, which build a
compound proposition from two simpler propositions. (We’ll encounter the full list of
binary logical connectives later; see Exercises 4.66–4.71.)

Taking it further: The unary-vs.-binary categorization of logical connectives based on how many
“arguments” they accept also occurs in other contexts—for example, arithmetic and programming. In
arithmetic, for example, one might distinguish between “unary minus” and “binary minus”: the former
denotes negation, as in −3; the latter subtraction, as in 2 − 3.

In programming languages, the number of arguments that a function takes is called its arity. (The
arity of length is one; the arity of equals is two.) You will sometimes encounter variable arity functions
that can take a different number of arguments each time they’re invoked. Common examples include the
print functions in many languages—C’s printf and Python’s print, for example, can take any number
of arguments—or arithmetic in prefix languages like Scheme, where you can write an expression like
(+ 1 2 3 4) to denote 1 + 2 + 3 + 4 (= 10).

Order of operations
A full description of the syntax of a programming language always includes a ta- The word “prece-

dence” (pre before,
cede go) means
“what comes first,”
so precedence rules
tell us the order of
which the operators
“get to go.” For
example, consider
a proposition like
p∧ q ⇒ r. If ∧ “goes
first,” the proposi-
tion is (p ∧ q) ⇒ r;
if ⇒ “goes first,” it
means p ∧ (q ⇒ r).
Figure 3.2 says that
the former is the
correct interpreta-
tion.

ble of the precedence of operators, arranged from “binds the tightest” (highest prece-
dence) to “binds the loosest” (lowest precedence). These precedence rules tell us when
we have to include parentheses in an expression to make it mean what we want it
to mean, and when the parentheses are optional. In the same way, we’ll adopt some
standard conventions regarding the precedence of our logical connectives:

• Negation (¬) binds the tightest.
• After negation, there is a three-way tie among ∧, ∨, and ⊕. (We’ll always use paren-

theses in propositions containing more than one of these three operators, just as we
should in programs.)

• The trifecta (∧, ∨, and ⊕) is followed by ⇒.
• ⇒ is followed finally by ⇔.

The horizontal lines in Figure 3.2 separate the logical connectives by their precedence,
so that operators closer to the top of the table have higher precedence. For example:

Example 3.12 (Precedence of logical connectives)
The propositions p ∨ ¬q and p∨ q ⇒ ¬r ⇔ p mean, respectively,

p∨ (¬q) and
(

(p∨ q) ⇒ (¬r)
)
⇔ p,

which we can see by simply applying the relevant precedence rules (“¬ goes first,
then ∨, then ⇒, then ⇔”).
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Taking it further: The precedence rules that we’ve described here match the precedence rules in most
programming languages. In Java, for example, the condition !p && q—that’s “not p and q” in Java
syntax—will be interpreted as (!p) && q, because not/¬/! binds tighter than and/∧/&&.

The precedence rules for operators tell us the order in which two different operators
are applied in an expression. For a sequence of applications of the same binary opera-
tor, we’ll use the convention that the operator associates to the left. For example, p∧ q ∧ r
will mean (p∧ q) ∧ r and not p∧ (q ∧ r).

Example 3.13 (Precedence of logical connectives)
Problem: Fully parenthesize each of the following propositions. (In other words, add

parentheses around each operator without changing the meaning.)

1. p∨ q ⇔ p
2. p⊕ p⊕ q⊕ q
3. ¬p ⇔ p ⇔ ¬(p ⇔ p)
4. p∧ ¬q ⇒ r ⇔ s
5. p ⇒ q ⇒ r ∧ s

Solution: Using the precedence rules from Figure 3.2 and left associativity, we get:

1. (p∨ q) ⇔ p
2. ((p⊕ p)⊕ q) ⊕ q
3. ((¬p) ⇔ p) ⇔ (¬(p ⇔ p))
4. ((p∧ (¬q)) ⇒ r) ⇔ s
5. (p ⇒ q) ⇒ (r ∧ s)

The choice that logical operators associate to the left (instead of associating to the
right) won’t matter for most of the logical connectives anyway. For example, the propo-
sitions (p ∧ q) ∧ r and p∧ (q ∧ r) are true under exactly the same circumstances, as we’ll
see shortly. In fact, of the binary operators {∧,∨,⊕,⇒,⇔}, the only one for which the
order of application matters is implication. See Exercises 3.45–3.47.

Writing tip: Because
the order of appli-
cation does matter
for implication, it’s
considered good
style to include the
optional parenthe-
ses so that it’s clear
what you mean.

3.2.5 Truth Tables

In Section 3.2.3, we described the logical connectives ¬, ∧, ∨, ⇒, ⊕, and ⇔, but we
can more systematically define these connectives by using a truth table that collects the
value yielded by the logical connective under every truth assignment.

Definition 3.9 (Truth assignment)
A truth assignment for a proposition over variables p1, p2, . . . , pk is a function that assigns a
truth value to each pi.

For example, the function f where f (p) = T and f (q) = F is a truth assignment for the
proposition p ∨ ¬q. (Each “T” abbreviates a truth value of true; each “F” abbreviates a
truth value of false.)
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For any particular proposition and for any particular truth assignment f for that
proposition, we can evaluate the proposition under f to figure out the truth value of
the entire proposition. In the previous example, the proposition p ∨ ¬q is true under
the truth assignment with p = T and q = F (because T ∨ ¬F is T ∨ T, which is true). A
truth table displays a proposition’s truth value (evaluated in the way we just described)
under all truth assignments:

Definition 3.10 (Truth table)
A truth table for a proposition lists, for each possible truth assignment for that proposition
(with one truth assignment per row in the table), the truth value of the entire proposition.

For example, the truth table that defines ∧ is shown in Figure 3.3. A few words

p q p ∧ q
T T T
T F F
F T F
F F F

Figure 3.3: The
truth table for ∧.

about this truth table are in order:

• Columns #1 and #2 correspond to the atomic propositions p and q. There is a row
in the table corresponding to each possible truth assignment for p ∧ q—that is, for
every pair of truth values for p and q. (So there are four rows: TT, TF, FT, and FF.)

• The third column corresponds to the compound proposition p ∧ q, and it has a T
only in the first row. That is, the truth value of p ∧ q is false unless both p and q are
true—just as Definition 3.4 said.

p ¬p
T F
F T

p q p ∧ q p ∨ q p ⇒ q p ⊕ q p ⇔ q
T T T T T F T
T F F T F T F
F T F T T T F
F F F F T F T

Figure 3.4: Truth
tables for the basic
logical connectives.

The truth tables for the six basic logical
connectives (negation, conjunction, disjunc-
tion, exclusive or, implication, and “if and
only if”) are shown in Figure 3.4. It’s worth
paying special attention to the column for
p ⇒ q: the only truth assignment under which p ⇒ q is false is when p is true and q is
false. False implies anything! Anything implies true! For example, both of the following
are true propositions:

If 2 + 3 = 4, then you will eat tofu for dinner. (if false, then anything)
If you are your own mother, then 2 + 3 = 5. (if anything, then true)

To emphasize the point, observe that the first statement is true even if you would never
eat tofu if it were the last so-called food on earth; the hypothesis “2 + 3 = 4” of the
proposition wasn’t true, so the truth of the proposition doesn’t depend on what your
dinner plans are.

For more complicated compound propositions, we can fill in a truth table by re-
peatedly applying the rules in Figure 3.4. For example, to find the truth table for
(p ⇒ q) ∧ (q ∨ p), we compute the truth tables for p ⇒ q and q ∨ p, and put a “T” in
the (p ⇒ q)∧ (q∨ p) column for precisely those rows in which the truth tables for p ⇒ q
and q ∨ p both had “T”s. Here’s a simple example, and a somewhat more complicated
one:

Example 3.14 (A small truth table)
Here is a truth table for the proposition (p ∧ q) ⇒ ¬q:
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p q p ∧ q ¬q (p ∧ q) ⇒ ¬q
T T T F F
T F F T T
F T F F T
F F F T T

This truth table shows that the given proposition (p ∧ q) ⇒ ¬q is true precisely when
at least one of p and q is false.

Example 3.15 (Three (or more) of four, formalized)
In Example 3.4 (on the validity of passwords), we had a sentence of the form

“p, only if q and not r and at-least-three-of {s, t, u, v} are true.”

Let’s translate this sentence into propositional logic. The tricky part will be translat-
ing “at least three of {s, t, u, v} are true.” There are many solutions, but one relatively
simple way to do it is to explicitly write out four cases, one corresponding to allowing
a different one of the four variables {s, t, u, v} to be false:

(s ∧ t ∧ u) ∨ (s ∧ t ∧ v)∨ (s ∧ u ∧ v) ∨ (t ∧ u ∧ v)

We can verify that we’ve gotten this proposition right with a (big!) truth table, shown
in Figure 3.5. Indeed, the five rows in which the last column has a “T” are exactly the
five rows in which there are three or four “T”s in the columns for s, t, u, and v.

To finish the translation, recall that “x only if y” means x ⇒ y, so the given sen-
tence can be translated as p ⇒ q∧ ¬r ∧ (the proposition above)—that is,

p ⇒ q∧ ¬r ∧
(

(s ∧ t ∧ u) ∨ (s ∧ t ∧ v) ∨ (s ∧ u ∧ v) ∨ (t∧ u ∧ v)
)

.
Figure 3.5: A
truth table for
Example 3.15.

s t u v s ∧ t ∧ u s ∧ t ∧ v s ∧ u ∧ v t ∧ u ∧ v

(s ∧ t ∧ u)
∨ (s∧ t ∧ v)
∨ (s∧ u ∧ v)
∨ (t ∧ u ∧ v)

T T T T T T T T T
T T T F T F F F T
T T F T F T F F T
T T F F F F F F F
T F T T F F T F T
T F T F F F F F F
T F F T F F F F F
T F F F F F F F F
F T T T F F F T T
F T T F F F F F F
F T F T F F F F F
F T F F F F F F F
F F T T F F F F F
F F T F F F F F F
F F F T F F F F F
F F F F F F F F F

Taking it further: It’s worth pondering
why there are five different rows of the
truth table in Figure 3.5 in which the last
column is true: there are four different
truth assignments corresponding to
exactly three of {s, t, u, v} being true
(stu, suv, stv, tuv), and there is one
truth assignment corresponding to all
four being true (stuv). In Chapter 9, on
counting, we’ll re-encounter this style of
question. (And, actually, precisely the
same reasoning as in this example will
allow us to prove something interesting
about error-correcting codes—see
Section 4.2.5.)
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Computer Science Connections

Natural Language Processing, Ambiguity, and Truth

Our main interest in this book is in developing (and understanding) precise
and unambiguous language to express mathematical notions; in this chap-
ter specifically, we’re thinking about the truth values of completely precise
statements. But thinking about the truth of ambiguous or ill-defined terms
is absolutely crucial to any computational system that’s designed to interact
with users via natural language. (A natural language is one like English or
French or Xhosa; these languages contrast with artificial languages like Java or
Python or, arguably, Esperanto or Klingon.)

Natural language processing (NLP) (or the roughly similar computational
linguistics) is the subfield of computer science that lies at the discipline’s inter-
face with linguistics.2 In NLP, we work to develop software systems that can

For more, you can look for a textbook on
NLP like
2 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.

interact with users in a natural language. A necessary step in an NLP system
is to take an utterance made by the human user and “understand it.” (“Under-
standing what a sentence means” is more or less the same as “understanding
the circumstances under which it is true”—which is fundamentally a question
of logic.)

One major reason that NLP is hard is that there is a tremendous amount

A: Do you prefer coffee or tea?
B: Do you prefer cream or sugar?
C: We ate cake with walnuts.
D: We ate cake with forks.

Figure 3.6: Examples of lexical (A and
B) and syntactic ambiguity (C and D).
The or of A/B can be either inclusive
or exclusive; simply answering “yes”
is a reasonable response to question
B, but a bizarre one to question A. The
with of C/D can either attach to the cake
or the eating; the sentences’ structures
are consistent with using walnuts
as an eating utensil in C, or the cake
containing forks as an ingredient in D.

of ambiguity in natural-language utterances. We can have lexical ambiguity, in
which two different words are spelled identically but have two different mean-
ings; we have to determine which word is meant in a sentence. Or there’s
syntactic ambiguity, in which a sentence’s structure can be interpreted very
differently. (See Figure 3.6.) But there are also subtleties about when a state-
ment is true, even if the meaning of each word and the sentence’s structure are
clear.

Consider, for example, designing and implementing a conversational

User: I want to fly from MSP to
BOS on 28 December.

System: Delta #1927 is a nonstop
flight from MSP to BOS on
Delta Airlines for $472 that
leaves at 8:45am.

User: Is there a slightly later
flight that isn’t too much more
expensive?

Figure 3.7: A sample dialogue. Suppose
that Delta #2931 is a second nonstop
flight from MSP to BOS that leaves at
10:33am and costs $529.

system designed to assist with travel planning. (Many airlines or train com-
panies have such systems.) Such a system might engage in a dialogue like the
one in Figure 3.7 with a human user. There’s no hard-and-fast rule for what
other flights should count as “slightly later” and “too much more expensive.”
This conversational system has to be able to decide the truth of statements
like Delta #2931 is slightly later than Delta #1927 and Delta #2931 isn’t too much
more expensive than Delta #1927, even though the “truth” of these statements
depends on heavy use of conversational context and pragmatic reasoning.
Of course, even though one cannot unambiguously determine whether these
sentences are true or false, they’re the kind of statement made continually in
natural language. So systems that process natural language must deal with
this issue with great frequency.

One approach for handling these statements whose truth value is ambigu-
ous is called fuzzy logic, in which each proposition has a truth value that is
a real number between 0 and 1. (So 10:33a is slightly later than 8:45a is “more
true” than 12:19p is slightly later than 8:45a—so the former might have a truth
value of 0.74, while the latter might have a truth value of 0.34. But 7:30a is
slightly later than 8:45a would have a truth value of 0.00, as 7:30a is unambigu-
ously not slightly later than 8:45a.)
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3.2.6 Exercises

What are the truth values of the following propositions?
int x = 202;

while (x > 2) {

x = x / 2;

}

Figure 3.8: Snippet
of C code. Note
that x/2 denotes
integer division; for
example, 7/2 = 3.

3.1 22 + 32 = 42

3.2 The number 202 is written 11010010 in binary.
3.3 After executing the C code fragment in Figure 3.8 (shown at right), the variable x has the value 1.

Consider the following atomic propositions:

p : x + y is valid Python
q : x * y is valid Python
r : x ** y is valid Python
s : x * y is a list
t : x + y is a list

u : x is a numeric value
v : y is a numeric value
w : x is a list
z : y is a list

Using these atomic propositions, translate the following (true!) statements about legal Python programs into logical
notation. (Note that these statements do not come close to fully characterizing the set of valid Python statements, for
several reasons: first, they’re about particular variables—x and y—rather than about generic variables. And, second,
they omit some important common-sense facts—for example, it’s not simultaneously possible to be both a list and a
numeric value. That is, for example, we have ¬v ∨ ¬z.)
3.4 x ** y is valid Python if and only if x and y are both numeric values.
3.5 x + y is valid Python if and only if x and y are both numeric values, or they’re both lists.
3.6 x * y is valid Python if and only if x and y are both numeric values, or if one of x and y is a list
and the other is numeric.
3.7 x * y is a list if x * y is valid Python and x and y are not both numeric values.
3.8 if x + y is a list, then x * y is not a list.
3.9 x + y and x * y are both valid Python only if x is not a list.

3.10 True story: a 29-year-old friend of mine who does not have an advance care directive was asked
the following question on a form at a doctor’s office. What should she answer?

If you’re over 55 years old, do you have an advance care directive? Circle one: YES NO

In Example 3.15, we constructed a proposition corresponding to “at least three of {s, t, u, v} are true.” Generalize this
construction by building a proposition . . .
3.11 . . . expressing “at least 3 of {p1, . . . , pn} are true.”
3.12 . . . expressing “at least n − 1 of {p1, . . . , pn} are true.”

The identity of a binary operator ⋄ is a value i such that, for any x, the expressions {x, x ⋄ i, i ⋄ x} are all equivalent.
The zero of ⋄ is a value z such that, for any x, the expressions {z, x ⋄ z, z ⋄ x} are all equivalent. For an example from
arithmetic, the identity of + is 0, because x + 0 = 0 + x = x for any number x. And the zero of multiplication is 0,
because x · 0 = 0 · x = 0 for any number x. For each of the following, identify the identity or zero of the given logical
operator. Justify your answer. Some operators do not have an identity or a zero; if the given operator fails to have the
stated identity/zero, explain why it doesn’t exist.
3.13 What is the identity of ∨?
3.14 What is the identity of ∧?
3.15 What is the identity of ⇔?
3.16 What is the identity of ⊕?

3.17 What is the zero of ∨?
3.18 What is the zero of ∧?
3.19 What is the zero of ⇔?
3.20 What is the zero of ⊕?

Because ⇒ is not commutative (that is, because p ⇒ q and q ⇒ p mean different things), it is not too surprising that
⇒ has neither an identity nor a zero. But there are a pair of related definitions that apply to this type of operator:
3.21 The left identity of a binary operator ⋄ is a value iℓ such that, for any x, the expressions x and
iℓ ⋄ x are equivalent. The right identity of ⋄ is a value ir such that, for any x, the expressions x and x ⋄ ir
are equivalent. (Again, some operators may not have left or right identities.) What are the left and right
identities of ⇒ (if they exist)?
3.22 The left zero of a binary operator ⋄ is a value zℓ such that, for any x, the expressions zℓ and zℓ ⋄ x
are equivalent; similarly, the right zero is a value zr such that, for any x, the expressions zr and x ⋄ zr are
equivalent. (Again, some operators may not have left or right zeros.) What are the left and right zeros for ⇒
(if they exist)?
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In many programming languages, the Boolean values True and False are actually stored as the numerical values 1 and
0, respectively. In Python, for example, both 0 == False and 1 == True are True. Thus, despite appearances, we can
add or subtract or multiply Boolean values! Furthermore, in many languages (including Python), anything that is not
False (in other words, anything other than 0) is considered True for the purposes of conditionals. For example, in many
programming languages, including Python, code like if 2 print "yes" else print "no" will print “yes.”

Suppose that x and y are two Boolean variables in a programming language, like Python, where True and False
are 1 and 0, respectively—that is, the values of x and y are both 0 or 1. Each of the following code snippets includes a
conditional statement based on an arithmetic expression using x and y. For each, rewrite the given condition using the
standard notation of propositional logic.
3.23 if x * y ...

3.24 if x + y ...

3.25 if 1 - x ...

3.26 if (x * (1 - y)) + ((1 - x) * y) ...

We can use the common programming language features described in in the previous block of exercises to give a simple
programming solution to Exercises 3.11–3.12. Assume that {p1, . . . , pn} are all Boolean variables in Python—that is,
their values are all 0 or 1. Write a Python conditional expressing the condition that . . .
3.27 . . . at least 3 of {p1, . . . , pn} are true.
3.28 . . . at least n− 1 of {p1, . . . , pn} are true.

In addition to purely logical operations, computer circuitry has to be built to do simple arithmetic very quickly. Here
you’ll explore some pieces of using propositional logic and binary representation of integers to express arithmetic
operations. (It’s straightforward to convert your answers into circuits.)

Consider a number x ∈ {0, . . . , 15} represented as a 4-bit binary number, as shown in Figure 3.9. Denote by x0 the
least-significant bit of x, by x1 the next bit, and so forth. For example, for the number x = 12 (written 1100 in binary)
would have x0 = 0, x1 = 0, x2 = 1, and x3 = 1). For each of the following conditions, give a proposition over the Boolean
variables {x0 , x1, x2, x3} that expresses the stated condition. (Think of 0 as false and 1 as true.)

x3 x2 x1 x0

0 0 1 1

0 0 2 1+ + + = 3

x3 x2 x1 x0

1 1 0 0

8 4 0 0+ + + = 12

Figure 3.9:
Representing
x ∈ {0, . . . , 15}
using 4-bits.

3.29 x is greater than or equal to 8.
3.30 x is evenly divisible by 4.
3.31 x is evenly divisible by 5. (Hint: use a truth table, and then build a proposition from the table.)
3.32 x is an exact power of two.

3.33 Suppose that we have two 4-bit input integers x and y, represented as in Exercises 3.29–3.32. Give
a proposition over {x0, x1, x2, x3, y0, y1 , y2 , y3} that expresses the condition that x = y.
3.34 Given two 4-bit integers x and y as in the previous exercise, give a proposition over the Boolean
variables {x0 , x1 , x2 , x3 , y0, y1, y2, y3} that expresses the condition that x ≤ y.

3.35 Suppose that we have a 4-bit input integer x, represented by four Boolean variables {x0 , x1 , x2 , x3}
as in Exercises 3.29–3.32. Let y be the integer x + 1, represented again as a 4-bit value {y0, y1, y2, y3}. (For the
purposes of this question, treat 15 + 1 = 0—that is, we’re really defining y = (x + 1) mod 16.) For example, for
x = 11 (which is 1011 in binary), we have that y = 12 (which is 1100 in binary). For each i ∈ {0, 1, 2, 3}, give a
proposition over the Boolean variables {x0, x1, x2 , x3} that expresses the value of yi .

The remaining problems in this section ask you to build a program to compute various facts about a given proposition
ϕ. To make your life as easy as possible, you should consider a simple representation of ϕ, based on representing We’ll occasionally

use lowercase
Greek letters,
particularly ϕ
(“phi”) or ψ (“psi”),
to denote not-
necessarily-atomic
propositions.

any compound proposition as a list. In such a list, the first element will be the logical connective, and the remaining
elements will be the subpropositions. For example, the proposition p ⇒ (¬q) will be represented as

["implies", ["or", "p", "r"], ["not", "q"]]

Now, using this representation of propositions, write a program, in a programming language of your choice, to accom-
plish the following operations:
3.36 (programming required) Given a proposition ϕ, compute the set of all atomic propositions con-
tained within ϕ. The following recursive formulation may be helpful:

variables(p) := {p} variables(¬ϕ) := variables(ϕ)
variables(ϕ ⋄ψ) := variables(ϕ) ∪ variables(ψ) for any connective ⋄ ∈ {∧,∨,⇒,⇔,⊕, . . .}

3.37 (programming required) Given a proposition ϕ and a truth assignment for each variable in ϕ,
evaluate whether ϕ is true or false under this truth assignment.
3.38 (programming required) Given a proposition ϕ, compute the set of all truth assignments for the
variables in ϕ that make ϕ true. (One good approach: use your solution to Exercise 3.36 to compute all the
variables in ϕ, then build the full list of truth assignments for those variables, and then evaluate ϕ under
each of these truth assignments using your solution to Exercise 3.37.)
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3.3 Propositional Logic: Some Extensions

Against logic there is no armor like ignorance.

Laurence J. Peter (1919–1990)

With the definitions from Section 3.2 in hand, we turn to a few extensions: some
special types of propositions, and some special ways of representing propositions.

3.3.1 Tautology and Satisfiability

Several important types of propositions are defined in terms of their truth tables: those
that are always true (tautologies), sometimes true (satisfiable propositions), or never true
(unsatisfiable propositions). We will explore each of these types in turn.

Tautologies
We’ll start by considering propositions that are always true: Etymologically,

the word tautology
comes from taut
“same” (to + auto)
+ logy “word.”
Another meaning
for the word “tau-
tology” (in real life,
not just in logic) is
the unnecessary
repetition of an
idea: “a canine
dog.” (The ety-
mology and the
secondary street
meaning are not
totally removed
from the usage in
logic.)

Definition 3.11 (Tautology)
A proposition is a tautology if it is true under every truth assignment.

One reason that tautologies are important is that we can use them to reason about
logical statements, which can be particularly valuable when we’re trying to prove a
claim.

Examples 3.16 and 3.17 illustrate two important tautologies. The first of these tau-
tologies is the proposition p ∨ ¬p, which is called the law of the excluded middle: for any
proposition p, either p is true or p is false; there is nothing “in between.”

Example 3.16 (Law of the Excluded Middle)
Here is the truth table for the proposition p ∨ ¬p:

p ¬p p ∨ ¬p
T F T
F T T

The third column is filled with “T”s, so p∨ ¬p is a tautology.

The second tautology is the proposition p ∧ (p ⇒ q) ⇒ q, called modus ponens: if we Modus ponens
rhymes with “goad
us phone-ins”;
literally, it means
“the mood that
affirms” in Latin.

know both that (a) p is true and that (b) the truth of p implies the truth of q, then we
can conclude that q is true.

Example 3.17 (Modus Ponens)
Here is the truth table for p ∧ (p ⇒ q) ⇒ q (with a few extra columns of “scratch
work,” for each of the constituent pieces of the desired final proposition):

p q p ⇒ q p ∧ (p ⇒ q) p ∧ (p ⇒ q) ⇒ q
T T T T T
T F F F T
F T T F T
F F T F T
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There are only “T”s in the last column of this truth table, which establishes that
modus ponens is a tautology.

(p ⇒ q)∧ p ⇒ q Modus Ponens
(p ⇒ q)∧ ¬q ⇒ ¬p Modus Tollens
p ∨ ¬p Law of the Excluded Middle
p ⇔ ¬¬p Double Negation
p ⇔ p
p ⇒ p ∨ q
p ∧ q ⇒ p
(p ∨ q) ∧ ¬p ⇒ q
(p ⇒ q)∧ (¬p ⇒ q) ⇒ q
(p ⇒ q)∧ (q ⇒ r) ⇒ (p ⇒ r)
(p ⇒ q)∧ (p ⇒ r) ⇔ p ⇒ q ∧ r
(p ⇒ q)∨ (p ⇒ r) ⇔ p ⇒ q ∨ r
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
p ⇒ (q ⇒ r) ⇔ p ∧ q ⇒ r

Figure 3.10: Some
tautologies.

Figure 3.10 contains a number of tautologies
that you may find interesting and occasionally
helpful. (Exercises 3.60–3.72 ask you to build
truth tables to verify that these propositions
really are tautologies.)

One terminological note from Figure 3.10:
modus tollens is the proposition (p ⇒ q) ∧ ¬q ⇒
¬p, and it’s the counterpoint to modus ponens: if
we know both that (a) the truth of p implies the
truth of q and that (b) q is not true, then we can
conclude that p cannot be true either. (Modus
tollens means “the mood that denies” in Latin.)

Satisfiable and unsatisfiable propositions
We now turn to propositions that are sometimes true, and those propositions that

are never true:

Definition 3.12 (Satisfiable propositions)
A proposition is satisfiable if it is true under at least one truth assignment.

If f is a truth assignment under which a proposition is true, then we say that the
proposition is satisfied by f .

Definition 3.13 (Unsatisfiable propositions/contradictions)
A proposition is unsatisfiable if it is not satisfiable. Such a proposition is also called a
contradiction.

Thus a proposition is satisfiable if it is true under at least one truth assignment, and
unsatisfiable if it is false under every truth assignment. (And it’s a tautology if it is
true under every truth assignment.) Here are some examples:

Example 3.18 (Contradiction of p ⇔ q and p⊕ q)
Here is the truth table for (p ⇔ q) ∧ (p⊕ q):

p q p ⇔ q p ⊕ q (p ⇔ q)∧ (p ⊕ q)
T T T F F
T F F T F
F T F T F
F F T F F

Because the column of the truth table corresponding to the given proposition has no
“T”s in it, the proposition (p ⇔ q) ∧ (p⊕ q) is unsatisfiable.
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Though it might not have been immediately apparent when they were defined, the
logical connectives ⊕ and ⇔ demand precisely opposite things of their arguments:
the proposition p ⊕ q is true when p and q have different truth values, while p ⇔ q is
true when p and q have the same truth values. Because p and q cannot simultaneously
have the same and different truth values, the conjunction (p ⇔ q) ∧ (p ⊕ q) is a
contradiction.

Example 3.19 (Demanding satisfaction)
Problem: Is the proposition p ∨ q ⇒ ¬p∧ ¬q satisfiable?

Solution: We’ll answer the question by building a truth table for the given proposi-
tion:

p q p ∨ q ¬p ¬q ¬p ∧ ¬q p ∨ q ⇒ ¬p∧ ¬q
T T T F F F F
T F T F T F F
F T T T F F F
F F F T T T T

Because there is at least one “T” in the last column in the truth table, the proposi-
tion is satisfiable. Specifically, this proposition is satisfied by the truth assignment
p = False, q = False. (Under this truth assignment, the hypothesis p ∨ q is false;
because false implies anything, the entire implication is true.)

Let ϕ be any proposition. Then ϕ is a tautology exactly when ¬ϕ is unsatisfiable: ϕ As we said in
Section 3.2.6,
we occasionally
denote generic
propositions by
lowercase Greek
letters, particularly
ϕ (“phi”) or ψ
(“psi”).

is a tautology when the truth table for ϕ is all “T”s, which happens exactly when the
truth table for ¬ϕ is all “F”s. And that’s precisely the definition of ¬ϕ being unsatisfi-
able!

Taking it further: While satisfiability seems like a pretty precise technical definition that wouldn’t mat-
ter all that much, the satisfiability problem—given a proposition ϕ, determine whether ϕ is satisfiable—
turns out to be at the heart of the biggest open question in computer science today. If you figure out how
to solve the satisfiability problem efficiently (or prove that it’s impossible to solve efficiently), then you’ll
be the most famous computer scientist of the century. See the discussion on p. 326.

3.3.2 Logical Equivalence

We’ll now turn to a special type of pairs of propositions. When two propositions
“mean the same thing” (that is, they are true under precisely the same circumstances),
they are called logically equivalent:

Definition 3.14 (Logical equivalence)
Two propositions ϕ and ψ are logically equivalent, written ϕ ≡ ψ, if they have exactly
identical truth tables (in other words, their truth values are the same under every truth
assignment).

To state it differently: propositions ϕ and ψ are logically equivalent whenever ϕ ⇔ ψ is
a tautology. Here’s a simple example of logical equivalence:
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Example 3.20 (¬(p∧ q) ≡ (p∧ q) ⇒ ¬q)
In Example 3.14, we found that (p ∧ q) ⇒ ¬q is true except when p and q are both
true. Thus ¬(p∧ q) is logically equivalent to (p∧ q) ⇒ ¬q, as this truth table shows:

p q (p ∧ q) ⇒ ¬q ¬(p ∧ q)
T T F F
T F T T
F T T T
F F T T

Writing tip: Now
that we have a
reasonable amount
of experience
in writing truth
tables, we will
permit ourselves
to skip columns
when they’re both
obvious and not
central to the point
of a particular
example. When
you’re writing
anything—whether
as a food critic or a
Shakespeare scholar
or a computer
scientist—you
should always think
about the intended
audience, and
how much detail
is appropriate for
them.

Implication, converse, contrapositive, inverse, and mutual implication
We’ll now turn to an important question of logical equivalence that involves the

proposition p ⇒ q and three other implications derived from it:

Definition 3.15 (Converse, Contrapositive, and Inverse)
Consider an implication p ⇒ q. Then:

• The converse of p ⇒ q is the proposition q ⇒ p.
• The contrapositive of p ⇒ q is the proposition ¬q ⇒ ¬p.
• The inverse of p ⇒ q is the proposition ¬p ⇒ ¬q.

proposition converse contrapositive inverse
p q p ⇒ q q ⇒ p ¬q ⇒ ¬p ¬p ⇒ ¬q
T T T T T T
T F F T F T
F T T F T F
F F T T T T

Figure 3.11: The
truth table for an
implication and
its contrapositive,
converse, and
inverse.

These three new implications de-
rived from the original implication
p ⇒ q—particularly the converse
and the contrapositive—will arise
frequently. Let’s compare the three
new implications to the original in
light of logical equivalence:

Example 3.21 (Implications, contrapositives, converses, inverses)
Problem: Consider the implication p ⇒ q. Which of the converse, contrapositive, and

inverse of p ⇒ q are logically equivalent to the original proposition p ⇒ q?

Solution: To answer this question, let’s build the truth table; see Figure 3.11. Thus the
proposition p ⇒ q is logically equivalent to its contrapositive ¬q ⇒ ¬p, but not to
its inverse or its converse.

Here’s a real-world example to make these results more intuitive: Thanks to Jeff
Ondich for Exam-
ple 3.22.Example 3.22 (Contrapositives, converses, and inverses)

Consider the following (true!) proposition, of the form p ⇒ q:

If you were President of the U.S. in 2006︸ ︷︷ ︸
p

, then your name is George︸ ︷︷ ︸
q

.

The contrapositive of this proposition is ¬q ⇒ ¬p, which is also true:
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If your name isn’t George, then you weren’t President of the U.S. in 2006.

But the converse q ⇒ p and the inverse ¬p ⇒ ¬q are both blatantly false:

If your name is George, then you were President of the U.S. in 2006.
If you weren’t President of the U.S. in 2006, then your name isn’t George.

Consider, for example, George Clooney, Saint George, George Lucas, and Curious
George—all named George, and none the President in 2006.

For emphasis, let’s summarize the results from Example 3.21. Any implication p ⇒ q
is logically equivalent to its contrapositive ¬q ⇒ ¬p, but it is not logically equivalent to
its converse q ⇒ p or its inverse ¬p ⇒ ¬q. You might notice, though, that the inverse of
p ⇒ q is the contrapositive of the converse of p ⇒ q (!), so the inverse and the converse
are logically equivalent to each other.

Here’s another example of the concepts of tautology and satisfiability, as they relate
to implications and converses:

Example 3.23 (Mutual implication)
Problem: Consider the conjunction of the implication p ⇒ q and its converse: in other

words, consider (p ⇒ q) ∧ (q ⇒ p). Is this proposition a tautology? Satisfiable?
Unsatisfiable? Is there a simpler proposition to which it’s logically equivalent?

Solution: We can answer this question with a truth table:

p q p ⇒ q q ⇒ p (p ⇒ q) ∧ (q ⇒ p)
T T T T T
T F F T F
F T T F F
F F T T T

Because there is a “T” in its column, (p ⇒ q) ∧ (q ⇒ p) is satisfiable (and thus
isn’t a contradiction). But that column does contain an “F” as well, and therefore
(p ⇒ q) ∧ (q ⇒ p) is not a tautology.

Notice that the truth table for (p ⇒ q) ∧ (q ⇒ p) is identical to the truth table for
p ⇔ q. (See Figure 3.4.) Thus p ⇔ q and (p ⇒ q) ∧ (q ⇒ p) are logically equivalent.
(And ⇔ is called mutual implication for this reason: p and q imply each other.)

Some other logically equivalent statements
Figure 3.12 contains a large collection of logical equivalences. These equivalences

may use some unfamiliar terminology, which we’ll define here. Informally, an operator
is commutative if the order of its arguments doesn’t matter; an operator is associative
if the way we parenthesize successive applications doesn’t matter; and an operator
is idempotent if applying it to the same argument twice gives that argument back. (In Latin: idem “same”

+ potent “strength.”addition to these definitions, there are two other frequently discussed concepts: the
identity and the zero of the operator; logical equivalences involving identities and zeros
were left to you, in Exercises 3.13–3.22.) For each equivalence in Figure 3.12, it’s worth
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Commutativity p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p
p ⊕ q ≡ q ⊕ p

p ⇔ q ≡ q ⇔ p
Associativity p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r
p ⊕ (q⊕ r) ≡ (p ⊕ q)⊕ r

p ⇔ (q ⇔ r) ≡ (p ⇔ q) ⇔ r
Idempotence p ∨ p ≡ p

p ∧ p ≡ p

Distribution of ∧ over ∨ p ∧ (q∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Distribution of ∨ over ∧ p ∨ (q∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Contrapositive p ⇒ q ≡ ¬q ⇒ ¬p
p ⇒ q ≡ ¬p ∨ q

p ⇒ (q ⇒ r) ≡ p ∧ q ⇒ r
p ⇔ q ≡ ¬p ⇔ ¬q

Mutual Implication (p ⇒ q) ∧ (q ⇒ p) ≡ p ⇔ q
De Morgan’s Laws ¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Figure 3.12: Some
logically equivalent
propositions.

De Morgan’s Laws
are named after
Augustus De
Morgan, a 19th-
century British
mathematician.

taking a few minutes to think about why the two propositions are logically equivalent.
See also Exercises 3.73–3.82.

Taking it further: There are at least two ways in which the types of logical equivalences shown in Fig-
ure 3.12 play an important role in programming. (See the discussion on p. 327.) First, most modern
languages have a feature called short-circuit evaluation of logical expressions—they evaluate conjunc-
tions and disjunctions from left to right, and stop as soon as the truth value of the logical expression is
known—and programmers can exploit this feature to make their code cleaner or more efficient. Second,
in compiled languages, an optimizing compiler can make use of logical equivalences to simplify the
machine code that ends up being executed.

3.3.3 Representing Propositions: Circuits and Normal Forms

Now that we’ve established the core concepts of propositional logic, we’ll turn to some
bigger and more applied questions. We’ll spend the rest of this section exploring two
specific ways of representing propositions: circuits, the wires and connections from
which physical computers are built; and two normal forms, in which the structure of
propositions is restricted in a particular way.

The approach we’re taking with normal forms is a commonly used idea to make
reasoning about some language L easier: we define a subset S of L, with two goals:
(1) any statement in L is equivalent to some statement in S; and (2) S is “simple” in
some way. Then we can consider any statement from the “full” language L, which we
can then “translate” into a simple-but-equivalent statement of S. Defining this subset
and its accompanying translation will make it easier to accomplish some task for all
expressions in L, while still making it easy to write statements clearly.

Taking it further: The idea of translating all propositions into a particular form has a natural analogue
in designing and implementing programming languages. For example, every for loop can be expressed
as a while loop instead, but it would be very annoying to program in a language that doesn’t have for
loops. A nice compromise is to allow for loops, but behind the scenes to translate each for loop into a
while loop. This compromise makes the language easier for the “user” programmer to use (for loops
exist!) and also makes the job of the programmer of the compiler/interpreter easier (she can worry
exclusively about implementing and optimizing while loops!).

In programming languages, this translation is captured by the notion of syntactic sugar. (The phrase
is meant to suggest that the addition of for to the language is a bonus for the programmer—“sugar on
top,” maybe—that adds to the syntax of the language.) The programming language Scheme is perhaps
the pinnacle of syntactic sugar; the core language is almost unbelievably simple. Here’s one illustration:
(and x y) (Scheme for “x ∧ y”) is syntactic sugar for (if x y #f) (that’s “if x then y else false”). So a
Scheme programmer can use and, but there’s no “real” and that has to be handled by the interpreter.

Circuits
We’ll introduce the idea of circuits by using the proposition (p ∧ ¬q) ∨ (¬p∧ q) as an
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example. (Note, by the way, that this proposition is logically equivalent to p ⊕ q.)

∨

∧

q¬

p

∧

¬

q

p

Figure 3.13: A
tree-based view of
(p ∧ ¬q) ∨ (¬p ∧ q).

Observe that the stated proposition is a disjunction of two smaller proposi-
tions, p ∧ ¬q and ¬p ∧ q. Similarly, p ∧ ¬q is a conjunction of two even simpler
propositions, namely p and ¬q. A representation of a proposition called a tree
continues to break down every compound proposition embedded within it.
(We’ll talk about trees in detail in Chapter 11.) The tree for (p ∧ ¬q) ∨ (¬p ∧ q)
is shown in Figure 3.13. The tree-based view isn’t much of a change from our
usual notation (p ∧ ¬q) ∨ (¬p ∧ q); all we’ve done is use the parentheses and order-of-
operation rules to organize the logical connectives. But this representation is closely
related to a very important way of viewing logical propositions: circuits.

Figure 3.14 shows the same proposition redrawn as a collection of wires and gates.
Wires carry a truth value from one physical location to another; gates are physical
implementations of logical connectives. We can think of truth values “flowing in” as

p

q

∧
∧¬

¬
∨

Figure 3.14: A
circuit-based view.

inputs to the left side of each gate, and
a truth value “flowing out” as output
from the right side of the gate. (The
only substantive difference between
Figures 3.13 and 3.14—aside from
which way is up—is whether the two
p inputs come from the same wire, and
likewise whether the two q inputs do.)

Example 3.24 (Using and and not for or)
Problem: Build a circuit for p ∨ q using only ∧ and ¬ gates.

Solution: We’ll use one of De Morgan’s Laws, which says that p∨ q ≡ ¬(¬p∧ ¬q):

p

q

¬

¬
∧ ¬

This basic idea—of replacing one logical connective by another one (or by multiple
other ones)—is a crucial part of the construction of computers themselves; we’ll return
to this idea in Section 4.4.1.

Conjunctive and Disjunctive Normal Forms
In the rest of this section, we’ll consider a way to simplify propositions: conjunctive

and disjunctive normal forms, which constrain propositions to have a particular format.
To define these restricted types of propositions, we need a basic definition: a literal is a
Boolean variable (a.k.a. an atomic proposition) or the negation of a Boolean variable.
(So p and ¬p are both literals.)
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Definition 3.16 (Conjunctive normal form)
A proposition is in conjunctive normal form (CNF) if it is the conjunction of one or more
clauses, where each clause is the disjunction of one or more literals.

Definition 3.17 (Disjunctive normal form)
A proposition is in disjunctive normal form (DNF) if it is the disjunction of one or more
clauses, where each clause is the conjunction of one or more literals.

Less formally, a proposition in conjunctive normal form is “the and of a bunch of ors,”
and a proposition in disjunctive normal form is “the or of a bunch of ands.”

Taking it further: In computer architecture and digital electronics, people usually refer to a proposition
in CNF as being a product of sums, and a proposition in DNF as being a sum of products. (There is a deep
way of thinking about formal logic based on ∧ as multiplication, ∨ as addition, 0 as False, and 1 as True;
see Exercises 3.23–3.26.)

Here is a simple example of both CNF and DNF:

Example 3.25 (Simple propositions in CNF and DNF)
The proposition (¬p ∨ q ∨ r) ∧ (¬q ∨ ¬r) ∧ (r) is in conjunctive normal form. It has
three clauses: ¬p∨ q ∨ r and ¬q∨ ¬r and r.

The proposition (¬p ∧ q ∧ r) ∨ (¬q ∧ ¬r) ∨ (r) is in disjunctive normal form, again
with three clauses: ¬p∧ q∧ r and ¬q ∧ ¬r and r.

While conjunctive and disjunctive normal forms seem like heavy restrictions on the
format of propositions, it turns out that every proposition is logically equivalent to a
CNF proposition and to a DNF proposition:

Theorem 3.1 (All propositions are expressible in CNF)
For any proposition ϕ, there is a proposition ϕcnf over the same Boolean variables and in
conjunctive normal form such that ϕ ≡ ϕcnf.

Theorem 3.2 (All propositions are expressible in DNF)
For any proposition ϕ, there is a proposition ψdnf over the same Boolean variables and in
disjunctive normal form such that ϕ ≡ ψdnf.

These two theorems are perhaps the first results that we’ve encountered that are un-
Problem-solving tip:
A good strategy
when you’re trying
to prove a not-at-all-
obvious claim is to
test out some small
examples, and then
try to start to figure
a general pattern.

expected, or at least unintuitive. There’s no particular reason for it to be clear that
they’re true—let alone how we might prove them. But we can, and we will: we’ll prove
both theorems in Section 4.4.1 and again in Section 5.4.3, after we’ve introduced some
relevant proof techniques. But, for now, here are a few examples of translating propo-
sitions into DNF/CNF.
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Example 3.26 (Translating basic connectives into DNF)
Problem: Give propositions in disjunctive normal form that are logically equivalent to

each of the following:

1. p∨ q
2. p∧ q
3. p ⇒ q
4. p ⇔ q

Solution: 1 & 2. These questions are boring: both propositions are already in DNF,
with 2 clauses (p and q) and 1 clause (p∧ q), respectively.

3. Figure 3.12 tells us that p ⇒ q ≡ ¬p∨ q, and ¬p ∨ q is in DNF.

4. The proposition p ⇔ q is true when p and q are either both true or both false,
and false otherwise. So we can rewrite p ⇔ q as (p ∧ q) ∨ (¬p ∧ ¬q). We can
check that we’ve gotten this proposition right with a truth table:

p q p ∧ q ¬p ∧ ¬q (p ∧ q) ∨ (¬p ∧ ¬q) p ⇔ q
T T T F T T
T F F F F F
F T F F F F
F F F T T T

And here’s the task of translating basic logical connectives into CNF:

Example 3.27 (Translating basic connectives into CNF)
Problem: Give propositions in conjunctive normal form that are logically equivalent

to each of the following:

1. p ⇒ q
2. p ⇔ q
3. p⊕ q

(Note that, as with DNF, both p ∨ q and p ∧ q are already in CNF.)

Solution: 1. As above, we know that p ⇒ q ≡ ¬p∨ q, and ¬p ∨ q is also in CNF.

2. We can rewrite p ⇔ q as follows:

p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p) mutual implication (Example 3.23)

≡ (¬p∨ q) ∧ (¬q∨ p) x ⇒ y ≡ ¬x ∨ y (Figure 3.12), used twice

The proposition (¬p∨ q) ∧ (¬q∨ p) is in CNF.

3. Because p ⊕ q is true as long as one of {p, q} is true and one of {p, q} is false, it’s
easy to verify via truth table that p ⊕ q ≡ (p ∨ q) ∧ (¬p∨ ¬q), which is in CNF.

We’ve only given some examples of converting a (simple) proposition into a new
proposition, logically equivalent to the original, that’s in either CNF or DNF. We will
figure out how to generalize this technique to any proposition in Section 4.4.1.
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Computer Science Connections

Computational Complexity, Satisfiability, and $1,000,000

Complexity theory is the subfield of computer science devoted to under-
standing the resources—time and memory, usually—necessary to solve partic-
ular problems. It’s the subject of a great deal of fascinating current research in
theoretical computer science.3 Here is a central problem of complexity theory,

You can read more about complexity
theory in general, and the P-versus-NP
question addressed here in particular, in
most books on algorithms or the theory
of computing. Some excellent places to
read more are:
3 Thomas H. Cormen, Charles E. Leis-
ersen, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009; Jon Kleinberg
and Éva Tardos. Algorithm Design.
Addison–Wesley, 2006; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.

the satisfiability problem:

Given: A Boolean formula ϕ over variables p1, p2, . . . , pn.
Output: Is ϕ satisfiable?

The satisfiability problem is pretty simple to solve. In fact, we’ve implicitly
described an algorithm for this problem already:

• construct the truth table for the n-variable proposition ϕ; and
• check to see whether there are any “T”s in ϕ’s column of the table.

But this algorithm is not very fast, because the truth table for ϕ has lots and
lots of rows—2n rows, to be precise. (We’ve already seen this for n = 1, for
negation, and n = 2, for all the binary connectives, with 21 = 2 and 22 = 4 rows
each; in Chapter 9, we’ll address this counting issue formally.) And then even
a moderate value of n means that this algorithm will not terminate in your
lifetime; 2300 exceeds the number of particles in the known universe.

So, it’s clear that there is an algorithm that solves the SAT problem. What’s
not clear is whether there is a substantially more efficient algorithm to solve
the SAT problem. It’s so unclear, in fact, that nobody knows the answer,
and this question is one of the biggest open problems in computer science
and mathematics today. (Arguably, it’s the biggest.) The Clay Mathematics
Institute will even give a $1,000,000 prize to anyone who solves it.

Why is this problem so important? The reason is that, in a precise technical
sense, SAT is just as hard as a slew of other problems that have a plethora of
unspeakably useful applications: the traveling salesman problem, protein
folding, optimally packing the trunk of a car with suitcases. This slew is a
class of computational problems known as NP (“nondeterministic polynomial
time”), for which it is easy to “verify” correct answers. In the context of SAT,
that means that whenever you’ve got a satisfiable proposition ϕ, it’s very easy
for you to (efficiently) convince me that ϕ is satisfiable. Here’s how: you’ll
simply tell me a truth assignment under which ϕ evaluates to true. And I
can make sure that you didn’t try to fool me by plugging and chugging: I
substitute your truth assignment in for every variable, and then I make sure
that the final truth value of ϕ is indeed True.

One of the most important results in theoretical computer science in the
20th century—that’s saying something for a field that was founded in the 20th
century!—is the Cook–Levin Theorem:4 if one can solve SAT efficiently, then one can 4 Stephen Cook. The complexity of

theorem proving procedures. In
Proceedings of the Third Annual ACM
Symposium on Theory of Computing,
pages 151–158, 1971; and Leonid Levin.
Universal search problems. Problems of
Information Transmission, 9(3):265–266,
1973. In Russian.

solve any problem in NP efficiently. The major open question is what’s known as
the P-versus-NP question. A problem that’s in P is easy to solve from scratch.
A problem that’s in NP is easy to verify (in the way described above). So the
question is: does P = NP? Is verifying an answer to a problem no easier than
solving the problem from scratch? (It seems intuitively “clear” that the answer
is no—but nobody has been able to prove it!)
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Computer Science Connections

Short-Circuit Evaluation, Optimization, and Modern Compilers

The logical equivalences in Figure 3.12 may seem far removed from “real”
programming, but logical equivalences are actually central in modern pro-
gramming. Here are two ways in which they play an important role: if (2 > 3 && x + y < 9) {

...

} else {

...

}

Figure 3.15: A snippet of Java code. In
Java, && denotes ∧ and || denotes ∨.
The second conjunct of the if condition
will actually never be evaluated, because
2 > 3 is false, and False ∧ anything ≡
False.

Short-circuit evaluation: In most modern programming languages, a logical
expression involving ands and ors will only be evaluated until the truth
value of the expression can be determined. For an example in Java, see
Figure 3.15. Like most modern languages, Java evaluates an ∧ expression
from left to right and stops as soon as it finds a false conjunct. Similarly,
Java evaluates an ∨ expression from left to right and stops as soon as
it finds a true disjunct, because True ∨ anything ≡ True. This style of
evaluation is called short-circuit evaluation.
Two slick ways in which programmers can take advantage of short-circuit

1 if (x == 0

2 || (x-1) / x > 0.5) {

3 ...

4 }

5

6 if (simpleOrOftenFalse(x)

7 && complexOrOftenTrue(x)) {

8 ...

9 }

Figure 3.16: Two handy ways to rely on
short-circuit evaluation.

evaluation are shown in Figure 3.16.

• Lines 1–4 use short-circuit evaluation to avoid deeply nested if state-
ments to handle exceptional cases. When x = 0, evaluating the second
disjunct would cause a divide-by-zero error—but the second disjunct
isn’t evaluated when x = 0 because the first disjunct was true!

• Lines 6–9 use short-circuit evaluation to make code faster. If the sec-
ond conjunct typically takes much longer to evaluate (or if it is much
more frequently true) than the first conjunct, then careful ordering of
conjuncts avoids a long and usually fruitless computation.

Compile-time optimization: For a program written in a compiled language like
C, the source code is translated into machine-readable form by the compiler.
But this translation is not verbatim; instead, the compiler streamlines your
code (when it can!) to make it run faster.
One of the simplest types of compiler optimizations is constant folding: if
some of the values in an arithmetic or logical expression are constants—
known to the compiler at “compile time,” and thus unchanged at “run
time”—then the compiler can “fold” those constants together. Using the
rules of logical or arithmetic equivalence broadens the types of code that
can be folded in this way. For example, in C, when you write an assign-
ment statement like y = x + 2 + 3, most compilers will translate it into
y = x + 5. But what about z = 7 * x * 8? A modern compiler will op-
timize it into z = x * 56, using the commutativity of multiplication.
Because the compiler can reorder the multiplicands without affecting
the value, and this reordering allows the 7 and 8 to be folded into 56, the
compiler does the reordering and the folding.
An example using logical equivalences is shown in Figure 3.17. Because

if (p || !p) { /* "p or not p" */

x = 51;

} else {

x = 63;

}

x = 51;

Figure 3.17: Two snippets of C code.
When this code is compiled on a mod-
ern optimizing compiler (gcc 4.3.4, with
optimization turned on), the machine
code that is produced is exactly identical
for both snippets.

p ∨ ¬p is a tautology—the law of the excluded middle—no matter what the
value of p, the “then” clause is executed, not the “else” clause. Thus the
compiler doesn’t even have to waste time checking whether p is true or
false, and this optimization can be applied.
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3.3.4 Exercises

The operators ∧ and ∨ are idempotent (see Figure 3.12)—that is, p ∧ p ≡ p ∨ p ≡ p. But ⇒, ⊕, and ⇔ are not
idempotent. Simplify—that is, give as-simple-as-possible propositions that are logically equivalent to—the following:
3.39 p ⇒ p 3.40 p ⊕ p 3.41 p ⇔ p

Consider the proposition p ⇒ ¬p ⇒ p ⇒ q. Add parentheses to this proposition so that the resulting proposition . . .
3.42 . . . is logically equivalent to True (that is, the result is a tautology).
3.43 . . . is logically equivalent to q.
3.44 Give as simple as possible a proposition logically equivalent to the (unparenthesized) original.

Unlike the binary connectives {∧,∨,⊕,⇔}, implication is not associative. In other words, p ⇒ (q ⇒ r) and
(p ⇒ q) ⇒ r are not logically equivalent. The next few exercises explore the non-associativity of ⇒.
3.45 Prove that implication is not associative by giving a truth assignment in which p ⇒ (q ⇒ r) and
(p ⇒ q) ⇒ r have different truth values.
3.46 Consider the propositions p ⇒ (q ⇒ q) and (p ⇒ q) ⇒ q. One of these is a tautology; one of them
is not. Which is which? Prove your answer.
3.47 Consider the propositions p ⇒ (p ⇒ q) and (p ⇒ p) ⇒ q. Is either one a tautology? Satisfiable?
Unsatisfiable? What is the simplest proposition to which each is logically equivalent?

On an exam, I once asked students to write a proposition logically equivalent to p ⊕ q using only the logical connectives
⇒, ¬, and ∧. Here are some of the students’ answers. Which ones are right?
3.48 ¬(p ∧ q) ⇒ (¬p ∧ ¬q)
3.49 (p ⇒ ¬q)∧ (q ⇒ ¬p)
3.50 (¬p ⇒ q)∧ ¬(p ∧ q)
3.51 ¬

[
(p ∧ ¬q ⇒ ¬p ∧ q)∧ (¬p ∧ q ⇒ p ∧ ¬q)

]

3.52 Write a proposition logically equivalent to p ⊕ q using only the logical connectives ⇒, ¬, and ∨.

The following code uses nested conditionals, or compound propositions as conditions. Simplify each as much as possi-
ble. (For example, if p ⇒ q, it’s a waste of time to test whether q holds in a block where p is known to be true.)
3.53

if (x > 20

or (x <= 20 and y < 0))

then foo(x,y)

else bar(x,y)

3.54
if (y >= 0

or y <= x

or (x - y) * y >= 0)

then foo(x,y)

else bar(x,y)

3.55
if (x % 12 == 0):

then if not (x % 4 == 0):

then foo(x)

else bar(x)

else if (x == 17):

then baz(x)

else quz(x)

(Note that x % k == 0 is true when x mod k = 0, also
known as when k | x.)

Simplify the following propositions as much as possible.
3.56 (¬p ⇒ q)∧ (q ∧ p ⇒ ¬p)
3.57 (p ⇒ ¬p) ⇒ ((q ⇒ (p ⇒ p)) ⇒ p)

3.58 (p ⇒ p) ⇒ (¬p ⇒ ¬p) ∧ q

3.59 Is the following claim true or false? Prove your answer.
Claim: Every proposition over the single variable p is either logically equivalent to p or it is logically equiva-

lent to ¬p.

Show using truth tables that these propositions from Figure 3.10 are tautologies:
3.60 (p ⇒ q) ∧ ¬q ⇒ ¬p (Modus Tollens)
3.61 p ⇒ p ∨ q
3.62 p ∧ q ⇒ p
3.63 (p ∨ q) ∧ ¬p ⇒ q
3.64 (p ⇒ q) ∧ (¬p ⇒ q) ⇒ q

3.65 (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)
3.66 (p ⇒ q) ∧ (p ⇒ r) ⇔ p ⇒ q ∧ r
3.67 (p ⇒ q) ∨ (p ⇒ r) ⇔ p ⇒ q ∨ r
3.68 p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
3.69 p ⇒ (q ⇒ r) ⇔ p ∧ q ⇒ r
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Show that the following propositions are tautologies:
3.70 p ∨ (p ∧ q) ⇔ p
3.71 p ∧ (p ∨ q) ⇔ p

3.72 p ⊕ q ⇒ p ∨ q

Prove De Morgan’s Laws:
3.73 ¬(p ∧ q) ≡ ¬p ∨ ¬q 3.74 ¬(p ∨ q) ≡ ¬p ∧ ¬q

Show the following logical equivalences regarding associativity using truth tables:
3.75 p ∨ (q∨ r) ≡ (p ∨ q) ∨ r
3.76 p ∧ (q∧ r) ≡ (p ∧ q) ∧ r

3.77 p ⊕ (q ⊕ r) ≡ (p ⊕ q) ⊕ r
3.78 p ⇔ (q ⇔ r) ≡ (p ⇔ q) ⇔ r

Show using truth tables that the following logical equivalences hold:
3.79 p ⇒ q ≡ ¬p ∨ q
3.80 p ⇒ (q ⇒ r) ≡ p ∧ q ⇒ r

3.81 p ⇔ q ≡ ¬p ⇔ ¬q
3.82 ¬(p ⇒ q) ≡ p ∧ ¬q

3.83 On p. 327, we discussed the use of tautologies in optimizing compilers. In particular, these
compilers will perform the following optimization, transforming the first block of code into the second:

if (p || !p) { /* "p or not p" */
x = 51;

} else {
x = 63;

}

x = 51;

The compiler performs this transformation because p ∨ ¬p is a tautology—no matter what the truth value of
p, the proposition p ∨ ¬p is true. But there are situations in which this code translation actually changes the
behavior of the program, if p can be an arbitrary expression (rather than just a Boolean variable)! Describe such
a situation. (Hint: why do (some) people watch auto racing?)

p
q
r

unknown ≤ 3-gate circuit

Figure 3.18: A
circuit with at most
3 gates.

The unknown circuit in Figure 3.18 takes three inputs {p, q, r}, and either
turns on a light bulb (output of the circuit = true) or leaves it off (output =
false). For each of the following, draw a circuit—using at most three ∧, ∨,
and ¬ gates—that is consistent with the listed behavior. The light’s status is
unknown for unlisted inputs. (If multiple circuits are consistent with the given
behavior, draw any one them.)
3.84 The light is on when the true inputs are {q} or {r}. The light is off when the true inputs are {p}
or {p, q} or {p, q, r}.
3.85 The light is on when the true inputs are {p, q} or {p, r}. The light is off when the true inputs are
{p} or {q} or {r}.
3.86 The light is off when the true inputs are {p} or {q} or {r} or {p, q, r}.
3.87 The light is off when the true inputs are {p, q} or {p, r} or {q, r} or {p, q, r}.

3.88 Consider a simplified class of circuits like those from Exercises 3.84–3.87: there are two inputs
{p, q} and at most two gates, each of which is ∧, ∨, or ¬. There are a total of 24 = 16 distinct propositions
over inputs {p, q}: four different input configurations, each of which can turn the light on or leave it off.
Which, if any, of these 16 propositions cannot be expressed using up to two {∧,∨,¬} gates?

3.89 (programming required) Consider the class of circuits from Exercises 3.84–3.87: inputs {p, q, r}, and
at most three gates chosen from {∧,∨,¬}. There are a total of 28 = 256 distinct propositions over inputs
{p, q, r}: eight different input configurations, each of which can turn the light on or leave it off. Write a
program to determine how many of these 256 propositions can be represented by a circuit of this type. (If
you design it well, your program will let you check your answers to Exercises 3.84–3.88.)

3.90 Consider a set S = {p, q, r, s, t} of Boolean variables. Let ϕ = p ⊕ q ⊕ r ⊕ s ⊕ t. Describe briefly
the conditions under which ϕ is true. Use English and, if appropriate, standard (nonlogical) mathematical
notation. (Hint: look at the symbol ⊕ itself. What’s p + q + r + s + t, treating true as 1 and false as 0 as in Exercises
3.23–3.26?)
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1 for y = 1 ... height:
2 for x = 1 ... width:
3 if P[x,y] is more white than black:
4 error = "white" - P[x,y]
5 P[x,y] = "white"
6
7 if x > 1:
8 if x < width and not (y < height):

9 add 7
16 · error to P[x+1,y] (E)

10 else if x < width and y < height:
11 add 5

16 · error to P[x,y+1] (S)

12 add 3
16 · error to P[x+1,y+1] (SE)

13 add 1
16 · error to P[x-1,y+1] (SW)

14 add 7
16 · error to P[x+1,y] (E)

15 else if y < height
16 and not (x < width):

17 add 5
16 · error to P[x,y+1] (S)

18 add 1
16 · error to P[x-1,y+1] (SW)

19 else:
20 do nothing
21 else:
22 if x < width and not (y < height):

23 add 7
16 · error to P[x+1,y] (E)

24 else if x < width and y < height:
25 add 5

16 · error to P[x,y+1] (S)

26 add 3
16 · error to P[x+1,y+1] (SE)

27 add 7
16 · error to P[x+1,y] (E)

28 else if y < height
29 and not (x < width):

30 add 5
16 · error to P[x,y+1] (S)

31 else:
32 do nothing
33
34 else: # P[x,y] is closer to "black"
35 error = "black" - P[x,y]
36 P[x,y] = "black"
37
38 if x > 1:
39 if x < width and not (y < height):

40 add 7
16 · error to P[x+1,y] (E)

41 else if x < width and y < height:
42 add 5

16 · error to P[x,y+1] (S)

43 add 3
16 · error to P[x+1,y+1] (SE)

44 add 1
16 · error to P[x-1,y+1] (SW)

45 add 7
16 · error to P[x+1,y] (E)

46 else if y < height
47 and not (x < width):

48 add 5
16 · error to P[x,y+1] (S)

49 add 1
16 · error to P[x-1,y+1] (SW)

50 else:
51 do nothing
52 else:
53 if x < width and not (y < height):

54 add 7
16 · error to P[x+1,y] (E)

55 else if x < width and y < height:
56 add 5

16 · error to P[x,y+1] (S)

57 add 3
16 · error to P[x+1,y+1] (SE)

58 add 7
16 · error to P[x+1,y] (E)

59 else if y < height
60 and not (x < width):

61 add 5
16 · error to P[x,y+1] (S)

62 else:
63 do nothing

Figure 3.19: Some dithering code.

3.91 Dithering is a technique for converting grayscale images to black-and-
white images (for printed media like newspapers). The classic dithering algorithm
proceeds as follows. For every pixel in the image, going from top to bottom
(“north to south”), and from left to right (“west to east”):
• “Round” the current pixel to black or white. (If it’s closer to black, make it

black; if it’s closer to white, make it white.)
• This alteration to the current pixel has created “rounding error” x (in other

words, we have added x > 0 “whiteness units” by making it white, or x < 0
“whiteness units” by making it black). We compensate for this adding a total
of −x “whiteness units,” distributed among the neighboring pixels to the
“east” (add −7x/16 to the eastern neighboring pixel) “southwest” (−3x/16),
“south” (−5x/16) and “southeast” (−x/16). If any of these neighboring pixels
don’t exist (because the current pixel is on the border of the image), simply
ignore the corresponding fraction of −x (and don’t add it anywhere).

I assigned a dithering exercise in an introductory CS class, and I got, more or
less, the code in Figure 3.19 from one student. This code is correct, but it is very
repetitious. Reorganize this code so that it’s not so repetitive. In particular, rewrite
lines 7–63 ensuring that each “distribute the error” line (9, 11, 12, and 13) appears
only once if your solution.

Recall Definition 3.16: a proposition ϕ is in conjunctive normal form (CNF) if ϕ is
the conjunction of one or more clauses, where each clause is the disjunction of one or
more literals, and where a literal is an atomic proposition or its negation. Further, recall
Definition 3.17: ϕ is in disjunctive normal form (DNF) if ϕ is the disjunction of one or
more clauses, where each clause is the conjunction of one or more literals.

Give a proposition in disjunctive normal form that’s logically equivalent to . . .
3.92 ¬(p ∧ q) ⇒ r
3.93 p ∧ (q∨ r) ⇒ (q ∧ r)
3.94 p ∨ ¬(q ⇔ p ∧ r)
3.95 p ⊕ (¬p ⇒ (q ⇒ r)∧ ¬r)

Give a proposition in conjunctive normal form that’s logically equivalent to . . .
3.96 ¬(p ∧ q) ⇒ r
3.97 p ∧ (q ⇒ (r ⇒ q ⊕ r))
3.98 (p ⇒ q) ⇒ (q ⇒ r ∧ p)
3.99 p ⇔ (q ∨ r ∨ ¬p)

A CNF proposition ϕ is in 3CNF if each clause contains exactly three distinct literals.
(Note that p and ¬p are distinct literals.) In terms of the number of clauses, what’s the
smallest 3CNF formula . . .
3.100 . . . that’s a tautology?
3.101 . . . that’s not satisfiable?

Consider the set of 3CNF propositions over the variables {p, q, r} for which no clause
appears more than once. (Exercises 3.102–3.104 turn out to be boring without the restric-
tion of no repeated clauses; we could repeat the same clause as many times as we please:
(p ∨ q ∨ r) ∧ (p ∨ q ∨ r) ∧ (p ∨ q ∨ r) · · · .) Two clauses that contain precisely the same
literals (in any order) do not count as distinct. (But recall that a single clause can contain
a variable in both negated and unnegated form.) In terms of the number of clauses, what’s
the largest 3-variable distinct-clause 3CNF proposition . . .
3.102 . . . at all (with no further restrictions)?
3.103 . . . that’s a tautology?
3.104 . . . that’s satisfiable?

A proposition ϕ is in 3DNF if it is the disjunction of one or more clauses, each of which is
the conjunction of exactly three distinct literals. In terms of the number of clauses, what’s
the smallest 3DNF formula . . .
3.105 . . . that’s a tautology?
3.106 . . . that’s not satisfiable?
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3.4 An Introduction to Predicate Logic

But the fact that some geniuses were laughed at does
not imply that all who are laughed at are geniuses.
They laughed at Columbus, they laughed at Fulton,
they laughed at the Wright brothers. But they also
laughed at Bozo the Clown.

Carl Sagan (1934–1996)
Broca’s Brain: Reflections on the Romance of Science (1979)

Propositional logic, which we have been discussing thus far, gives us formal nota-
tion to encode Boolean expressions. But these expressions are relatively simple, a sort
of “unstructured programming” style of logic. Predicate logic is a more general type of
logic that allows us to write function-like logical expressions called predicates, and to
express a broader range of notions than in propositional logic.

3.4.1 Predicates

Informally, a predicate is a property that a particular entity might or might not have;
for example, being a vowel is a property that some letters do have (A, E, . . .) and some
letters do not have (B, C, . . .). A predicate isn’t the kind of thing that’s true or false, so
predicates are different from propositions; rather, a predicate is like a “proposition
with blanks” waiting to be filled in. For example:

Example 3.28 (Some predicates)
• “The integer is prime.”
• “The string is a palindrome.”
• “The person costarred in a movie with Kevin Bacon.”
• “The string is alphabetically after the string .”
• “The integer evenly divides the integer .”

Once the blanks of a predicate are filled in, the resulting expression is a proposition.
Here are some examples of propositions—some true, some false—derived from the
predicates in Example 3.28:

Example 3.29 (Some propositions derived from Example 3.28)
• “The integer 57 is prime.”
• “The string TENET is a palindrome.”
• “The person Sean Connery costarred in a movie with Kevin Bacon.”
• “The string PYTHON is alphabetically after the string PYTHAGOREAN.”
• “The integer 17 evenly divides the integer 42.”

We can now give a formal definition of predicates:
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Definition 3.18 (Predicate)
A predicate P is a Boolean-valued function—that is, P is a function P : U → {True, False}
for a set U. The set U is called the universe or the domain of discourse, and we say that P
is a predicate over U.

When the universe U is clear from context, we will allow ourselves to be sloppy with
notation by leaving U implicit.

Although we didn’t use the name at the time, we’ve already encountered predicates,
in Chapter 2. Definition 2.18 introduced the notation {x ∈ U : P(x)} to denote the set
of those objects x ∈ U for which P is true. The set abstraction notation “selects” the
elements of U for which the predicate P is true.

Example 3.30 (Some example predicates)
Here are a few more sample predicates based on arithmetic:

1. isPrime(n): the positive integer n is a prime number.
2. isPowerOf (n, k): the integer n is an exact power of k: n = ki for some i ∈ Z≥0.
3. onlyPowersOfTwo(S): every element of the set S is a power of two.
4. Q(n, a, b): positive integer n satisfies n = a + b, and integers a and b are both prime.
5. sumOfTwoPrimes(n): positive integer n is equal to the sum of two prime numbers.

(To reiterate Definition 3.18, the isPrime predicate, for example, is a function isPrime :
Z>0 → {True, False}.)

Deriving propositions from predicates
Again, by plugging particular values into the predicates from Example 3.30, we get

propositions, each of which has a truth value:

Example 3.31 (Propositions derived from predicates)
Using the predicates in Example 3.30, let’s figure out the truth values of the proposi-
tions isPrime(261), isPrime(262), Q(8, 3, 5), and Q(9, 3, 6). For each, we’ll simply plug
the given arguments into the definition of the predicate and figure out the truth
value of the resulting proposition.

• A little arithmetic shows that 261 = 3 · 87; thus isPrime(261) = False.
• Similarly, we have 262 = 2 · 131, so isPrime(262) = False.
• To compute the truth value of Q(8, 3, 5), we simply plug n = 8, a = 3, and b = 5 into

the definition of Q(n, a, b). The proposition Q(8, 3, 5) requires that the positive integer
8 satisfies 8 = 3 + 5, and the integers 3 and 5 are both prime. All of the requirements are
met, so Q(8, 3, 5) = True.

• On the other hand, Q(9, 3, 6) = False because Q(9, 3, 6) requires that 9 = 3 + 6, and
that the integers 3 and 6 are both prime. But 6 isn’t prime.
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Just like the propositional logical connectives, each predicate takes a fixed number of
arguments. So a predicate might be unary (taking one argument, like the predicate
isPrime); or binary (taking two arguments, like isPowerOf ); or ternary (taking three
arguments, like Q from Example 3.30); and so forth. Here are a few more examples:

Example 3.32 (More propositions derived from predicates)
Problem: Using the predicates in Example 3.30, find the truth values of these proposi-

tions:

1. sumOfTwoPrimes(17) and sumOfTwoPrimes(34)
2. isPowerOf (16, 2) and isPowerOf (2, 16)
3. onlyPowersOfTwo({1, 2, 8, 128})

Solution: As before, we just plug the given arguments into the definition:

1. sumOfTwoPrimes(17) = False: the only way to get an odd number n by adding
two prime numbers is for one of those prime numbers to be 2—but 17 − 2 = 15,
and 15 isn’t prime. But sumOfTwoPrimes(34) = True, because 34 = 17 + 17, and 17
is prime. (And the other 17 is prime, too.)

2. isPowerOf (16, 2) = True because 24 = 16 (and the exponent 4 is an integer), but
isPowerOf (2, 16) = False because 161/4 = 2 (and 1/4 is not an integer).

3. onlyPowersOfTwo({1, 2, 8, 128}) = True because every element of {1, 2, 8, 128} is a
power of two: {1, 2, 8, 128} =

{
20, 21, 23, 27}.

These brief examples may already be enough to begin to give you a sense of the power
of logical abstraction that predicates grant us: we can now consider the same logical
“condition” applied to two different “arguments.” In a sense, propositional logic is
like programming without functions; letting ourselves use predicates allows us to
write two related propositions using related notation, and to reason simultaneously
about multiple propositions—just like writing a function in Java allows you to think
simultaneously about the same function applied to different arguments.

Taking it further: Predicates give a convenient way of representing the state of play of multiplayer
games like Tic-Tac-Toe, checkers, and chess. The basic idea is to define a predicate P(B) that expresses
“Player 1 will win from board position B if both players play optimally.” For more on this idea, and
on the application of logic (both predicate and propositional) to playing these kinds of games, see the
discussion on p. 344.

3.4.2 Quantifiers

We’ve seen that we can form a proposition from a predicate by applying that predicate
to a particular argument. But we can also form a proposition from a predicate using
quantifiers, which allow us to formalize statements like every Java program contains at
least four for loops (false!) or there is a proposition that cannot be expressed using only the
connectives ∧ and ∨ (true! See Exercise 4.71).

These types of statements are expressed by the two standard quantifiers, the univer-
sal (“every”) and existential (“some”) quantifiers (see Figure 3.20):
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∀x ∈ S : P(x) “for all”
(universal quantifier)

true if P(x) is true for every x ∈ S.

∃x ∈ S : P(x) “there exists”
(existential quantifier)

true if P(x) is true for at least one x ∈ S.

Figure 3.20: Sum-
mary of notation for
predicate logic.

Definition 3.19 (Universal quantifier (“for all”): ∀)
Let P be a predicate over the universe S. The proposition ∀x ∈ S : P(x) (“for all x in S, P(x)”)
is true if, for every possible x ∈ S, P(x) is true.

Definition 3.20 (Existential quantifier (“there exists”): ∃)
Let P be a predicate over the universe S. The proposition ∃x ∈ S : P(x) (“there exists an x in
S such that P(x)”) is true if, for at least one possible x ∈ S, we have that P(x) is true.

Here’s an example of two simple numerical propositions using these quantifiers:

The for all notation
is ∀, an upside-
down ‘A’ as in “all”;
the exists notation
is ∃, a backward
‘E’ as in “exists.”
(Annoyingly, they
had to be flipped in
different directions:
a backward ’A’ is
still an ’A,’ and an
upside-down ’E’ is
still an ’E.’)

Example 3.33 (Simple propositions using quantifiers)
Problem: What are the truth values of the following two propositions?

1. ∀n ∈ Z≥2 : isPrime(n)
2. ∃n ∈ Z≥2 : isPrime(n)

Solution: 1. False. This proposition says “every integer n ≥ 2 is prime.” This state-
ment is false because, for example, the integer 32 is greater than or equal to 2
and is not prime.

2. True. The proposition says “there exists an integer n ≥ 2 that is prime.” This
statement is true because, for example, the integer 31 (which is greater than or
equal to 2) is prime.

isPrime(n): n ∈ Z>0 is a
prime number.

isPowerOf (n, k): n ∈ Z is an
exact power of k.

onlyPowersOfTwo(S): every
element of S is a power
of two.

Q(n, a, b): n ∈ Z>0 satisfies
n = a + b, and a, b ∈ Z are
both prime.

sumOfTwoPrimes(n):
n ∈ Z>0 is equal to the
sum of two prime
numbers.

Figure 3.21: Re-
minder of the
predicates from
Example 3.30.

In addition, we can make
precise many intuitive
statements using quanti-
fiers. For example, we can
use quantifiers to formal-
ize the predicates from
Example 3.30. (See Figure 3.21 for a reminder.)

Example 3.34 (Some example predicates, formalized)
isPrime(n): An integer n ∈ Z>0 is prime if and only if n ≥ 2 and the only integers

that evenly divide n are 1 and n itself. Thus we are really expressing a condition on
every candidate divisor d: either d ∈ {1, n}, or d doesn’t evenly divide n. Using the
“divides” notation from Definition 2.10, we can formalize isPrime(n) as

n ≥ 2∧
[
∀d ∈ Z≥1 :

(
d | n ⇒ d = 1 ∨ d = n

)]
.

isPowerOf (n, k): We can formalize this predicate as ∃i ∈ Z≥0 : n = ki.
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onlyPowersOfTwo(S): Because isPowerOf (n, 2) expresses the condition that n is a
power of two, we can formalize this predicate as ∀x ∈ S : isPowerOf (x, 2).

Q(n, a, b): Formalizing Q actually doesn’t require a quantifier at all; we can simply
write Q(n, a, b) as (n = a + b) ∧ isPrime(a) ∧ isPrime(b).

sumOfTwoPrimes(n): This predicate requires that there exist prime numbers a and b
that sum to n. Given our definition of Q, we can write sumOfTwoPrimes(n) as

∃〈a, b〉 ∈ Z × Z : Q(n, a, b).

(“There exists a pair of integers 〈a, b〉 such that Q(n, a, b).”) Or we could write
sumOfTwoPrimes(n) as ∃a ∈ Z : [∃b ∈ Z : Q(n, a, b)], by nesting one quantifier
within the other. (See Section 3.5.)

Here’s one further example, regarding the prefix relationship between two strings:

Example 3.35 (Prefixes, formalized)
A binary string x ∈ {0, 1}k is a prefix of the binary string y ∈ {0, 1}n, for n ≥ k, if y is x
with some extra bits added on at the end. For example, 01 and 0110 are both prefixes
of 01101010, but 1 is not a prefix of 01101010. If we write |x| and |y| to denote the
length of x and y, respectively, then we can formalize isPrefixOf (x, y) as

|x| ≤ |y| ∧
[
∀i ∈ {i ∈ Z : 1 ≤ i ≤ |x|} : xi = yi

]
.

In other words, y must be no shorter than x, and the first |x| characters of y must
equal their corresponding characters in x.

Quantifiers as loops
1: for x in S:
2: if not P(x) then
3: return False
4: return True

(a) A loop corresponding to ∀x ∈ S : P(x).

1: for x in S:
2: if Q(x) then
3: return True
4: return False

(b) A loop corresponding to ∃x ∈ S : Q(x).

Figure 3.22: Two
for loops that
return the value of
∀x ∈ S : P(x) and
∃x ∈ S : Q(x).

One useful way of thinking about these quantifiers is by
analogy to loops in programming. If we ever encounter an
x ∈ S for which ¬P(x) = True, then we immediately know
that ∀x ∈ S : P(x) is false. Similarly, any x ∈ S for which
Q(x) = True is enough to demonstrate that ∃x ∈ S : Q(x)
is true. But if we “loop through” all candidate values of x
and fail to encounter an x with ¬P(x) or Q(x), we know that
∀x ∈ S : P(x) is true or ∃x ∈ S : Q(x) is false. By this analogy,
we might think of the two standard quantifiers as executing
the programs in Figure 3.22(a) for ∀, and Figure 3.22(b) for ∃.

Another intuitive and useful way to think about these quantifiers is as a supersized
version of ∧ and ∨:

∀x ∈ {x1, x2, . . . , xn} : P(x) ≡ P(x1) ∧ P(x2) ∧ · · · ∧ P(xn)
∃x ∈ {x1, x2, . . . , xn} : P(x) ≡ P(x1) ∨ P(x2) ∨ · · · ∨ P(xn)
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The first of these propositions is true only if every one of the P(xi) terms is true; the
second is true if at least one of the P(xi) terms is true.

There is one way in which these analogies are loose, though: just as for ∑ (summa-
tion) and ∏ (product) notation (from Section 2.2.7), the loop analogy only makes sense
when the domain of discourse is finite! The Figure 3.22(a) “program” for a true propo-
sition ∀x ∈ Z : P(x) would have to complete an infinite number of iterations before
returning True. But the intuition may still be helpful.

Precedence and parenthesization
As in propositional logic, we’ll adopt standard conventions regarding order of op-

erations so that we don’t overdose on parentheses. We treat the quantifiers ∀ and ∃ as
binding tighter than the propositional logical connectives. Thus

∀x ∈ S : P(x) ⇒ ∃y ∈ S : P(y)

will be understood to mean
[
∀x ∈ S : P(x)

]
⇒

[
∃y ∈ S : P(y)

]
.

To express the other reading (which involves nested quantifiers; see Section 3.5), we
can use parentheses explicitly, by writing ∀x ∈ S :

[
P(x) ⇒ ∃y ∈ S : P(y)

]
.

Free and bound variables
Consider the variables x and y in the expressions

3 | x and ∀y ∈ Z : 3 | y.

Understanding the first of these expressions requires knowledge of what x means,
whereas the second is a self-contained statement that can be understood without any
outside knowledge. The variable x is called a free or unbound variable: its value is not
fixed by the expression. In contrast, the variable y is a bound variable: its value is de-
fined within the expression itself. We say that the quantifier binds the variable y, and
the scope or body of the quantifier is the part of the expression in which it has bound
y. (We’ve encountered bound variables before; they arise whenever a variable name
is assigned a value within an expression. For example, the variable i is bound in the
arithmetic expression ∑10

i=1 i2, as is the variable n in
{

n ∈ Z : |n| ≤ |n2|
}

.)
A single expression can contain both free and bound variables: for example, the

expression ∃y ∈ Z≥0 : x ≥ y contains a bound variable y and a free variable x. Here’s
another example:

Example 3.36 (Free and bound variables)
Problem: Which variables are free in the following expression?

[
∀x ∈ Z : x2 ≥ y

]
∧
[
∀z ∈ Z : y = z ∨ zy = 1

]

Solution: The variable y doesn’t appear as the variable bound by either of the quan-
tifiers in this expression, so y is a free variable. Both x and z are bound by the
universal quantifiers. (Incidentally, this expression is true if and only if y = 0.)
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To test whether a particular variable x is free or bound in an expression, we can
(consistently) replace x by a different name in that expression. If the meaning stays the
same, then x is bound; if the meaning changes, then x is free. For example:

Example 3.37 (Testing for free and bound variables)
Consider the following pairs of propositions:

∃x ∈ S : x > 251 and ∃y ∈ S : y > 251 (A)
x ≥ 42x and y ≥ 42y (B)

The expressions in (A) express precisely the same condition, namely: some element of S
is greater than 251. Thus, the variables x and y in these two expressions are bound.

But the expressions in (B) mean different things, in the sense that we can construct
a context in which these two statements have different truth values (for example,
x = 3 and y = −2). The first expression states a condition on the value of x, and the
latter states a condition on the value of y. So x is a free variable in “x ≥ 42x.”

Taking it further: The free-versus-bound-variable distinction is also something that may be familiar
from programming, at least in some programming languages. There are some interesting issues in the
design and implementation of programming languages that center on how free variables in a function
definition, for example, get their values. See the discussion on p. 345.

An expression of predicate logic that contains no free variables is called fully quan-
tified. For expressions that are not fully quantified, we adopt a standard convention
that any unbound variables in a stated claim are implicitly universally quantified. For
example, consider these claims:

Claim A: If x ≥ 1, then x2 ≤ x3.
Claim B: For all x ∈ R, if x ≥ 1, then x2 ≤ x3.

When we write a (true) claim like Claim A, we will implicitly interpret it to mean
Claim B. (Note that Claim B also explicitly notes R as the domain of discourse, which
was left implicit in Claim A.)

3.4.3 Theorem and Proof in Predicate Logic

Recall that a tautology is a proposition that is always true—in other words, it is true
no matter what each Boolean variable p in the proposition “means” (that is, whether
p is true or false). In this section, we will be interested in the corresponding notion
of always-true statements of predicate logic, which are called theorems. A statement
of predicate logic is “always true” when it’s true no matter what its predicates mean.
(Formally, the “meaning” of a predicate P is the set of elements of the universe U for
which the predicate is true—that is, {x ∈ U : P(x)}.)

Definition 3.21 (Theorems in predicate logic)
A fully quantified expression of predicate logic is a theorem if and only if it is true for every
possible meaning of each of its predicates.
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Analogously, two fully quantified expressions are logically equivalent if, for every possi-
ble meaning of their predicates, the two expressions have the same truth values.

We’ll begin with a simple example of a theorem and a nontheorem:

Example 3.38 (A theorem of predicate logic)
Let S be any set. The following claim is true regardless of what the predicate P denotes:

∀x ∈ S :
[
P(x)∨ ¬P(x)

]
.

Indeed, this claim simply says that every x ∈ S either makes P(x) true or P(x) false.
And that assertion is true if the predicate P(x) is “x ≥ 42” or “x has red hair” or
“x prefers programming in Python to playing Parcheesi”—indeed, it’s true for any
predicate P.

Example 3.39 (A nontheorem)
Let’s show that the following proposition is not a theorem:

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : ¬P(x)

]
.

A theorem must be true regardless of P’s meaning, so we can establish that this
proposition isn’t a theorem by giving an example predicate that makes it false. Here’s
one: let P be isPrime (where S is Z). Observe that ∀x ∈ Z : isPrime(x) is false because
isPrime(4) = False; and ∀x ∈ Z : ¬isPrime(x) is false because ¬isPrime(5) = False. Thus
the given proposition is false when P is isPrime, and so it is not a theorem.

Note the crucial difference between Example 3.38, which states that every element of
S either makes P true or makes P false, and Example 3.39, which states that either every
element of S makes P true, or every element of S makes P false. (Intuitively, it’s the difference
between “Every letter is either a vowel or a consonant” and “Every letter is a vowel or
every letter is a consonant.” The former is true; the latter is false.)

Example 3.39 establishes that the proposition [∀x ∈ S : P(x)]∨ [∀x ∈ S : ¬P(x)] isn’t
true for every meaning of the predicate P, but it may be true for some meanings. For
example, if P(x) is the predicate x2 ≥ 0 and S is the set R, then this disjunction is true
(because ∀x ∈ R : x2 ≥ 0 is true).

The challenge of proofs in predicate logic
The remainder of this section states some theorems of predicate logic, along with an

initial discussion of how we might prove that they’re theorems. (A proof of a statement
is simply a convincing argument that the statement is a theorem.) Much of the rest of
the book will be devoted to developing and writing proofs of theorems like these, and
Chapter 4 will be devoted exclusively to some techniques and strategies for proofs.
(This section will preview some of the ideas we’ll see there.) Some theorems of pred-
icate logic are summarized in Figure 3.23; we’ll prove a few of them here, and you’ll
return to some of the others in the exercises.
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∀x ∈ S :
[
P(x) ∨ ¬P(x)

]

¬
[
∀x ∈ S : P(x)

]
⇔

[
∃x ∈ S : ¬P(x)

]
De Morgan’s Laws (quantified form)

¬
[
∃x ∈ S : P(x)

]
⇔

[
∀x ∈ S : ¬P(x)

]

[
∀x ∈ S : P(x)

]
⇒

[
∃x ∈ S : P(x)

]
if the set S is nonempty

∀x ∈ ∅ : P(x) Vacuous quantification
¬∃x ∈ ∅ : P(x)

∃x ∈ S :
[
P(x) ∨ Q(x)

]
⇔

[
∃x ∈ S : P(x)

]
∨
[
∃x ∈ S : Q(x)

]

∀x ∈ S :
[
P(x) ∧ Q(x)

]
⇔

[
∀x ∈ S : P(x)

]
∧
[
∀x ∈ S : Q(x)

]

∃x ∈ S :
[
P(x) ∧ Q(x)

]
⇒

[
∃x ∈ S : P(x)

]
∧
[
∃x ∈ S : Q(x)

]

∀x ∈ S :
[
P(x) ∨ Q(x)

]
⇐

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : Q(x)

]

[
∀x ∈ S : P(x) ⇒ Q(x)

]
∧
[
∀x ∈ S : P(x)

]
⇒

[
∀x ∈ S : Q(x)

]

[
∀x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∀x ∈ S : P(x) ⇒ Q(x)

]

[
∃x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∃x ∈ S : P(x)∧ Q(x)

]

ϕ ∧
[
∃x ∈ S : P(x)

]
⇔

[
∃x ∈ S : ϕ∧ P(x)

]
if x does not appear as a free variable in ϕ

ϕ ∨
[
∀x ∈ S : P(x)

]
⇔

[
∀x ∈ S : ϕ∨ P(x)

]
if x does not appear as a free variable in ϕ

Figure 3.23: A few
theorems involving
quantification.

While predicate logic allows us to express claims that we couldn’t state without
quantifiers, that extra expressiveness comes with a cost! For a quantifier-free proposi-
tion (like all propositions in Sections 3.2–3.3), there is a straightforward—if tedious—
algorithm to decide whether a given proposition is a tautology: first, build a truth
table for the proposition; and, second, check to make sure that the proposition is true
in every row. It turns out that the analogous question for predicate logic is much more
difficult—in fact, impossible to solve in general: there’s no algorithm that’s guaranteed
to figure out whether a given fully quantified expression is a theorem! Demonstrating
that a statement in predicate logic is a theorem will require you to think in a way that
demonstrating that a statement in propositional logic is a tautology did not.

Taking it further: See the discussion on p. 346 for more about the fact that there’s no algorithm guaran-
teed to determine whether a given proposition is a theorem. The absence of such an algorithm sounds
like bad news; it means that proving predicate-logic statements is harder, because you can’t just plug-
and-chug into a simple algorithm to figure out whether a given statement is actually always true. But
this fact is also precisely the reason that creativity plays a crucial role in proofs and in theoretical com-
puter science more generally—and why, arguably, proving things can be fun! (For me, this difference is
exactly why I find Sudoku less interesting than crossword puzzles: when there’s no algorithm to solve a
problem, we have to embrace the creative challenge in attacking it.)

3.4.4 A Few Examples of Theorems and Proofs

In the rest of this section, we will see a few further theorems of predicate logic, with
proofs. As we’ve said, there’s no formulaic approach to prove these theorems; we’ll
need to employ a variety of strategies in this endeavor.
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Negating quantifiers: a first example
Suppose that your egomaniacal, overconfident partner from Intro CS wanders into

the lab and says For any array A that you give me, partner, my implementation of insertion
sort correctly sorts A. You know, though, that your partner is wrong. (You spot a bug
in his egomaniacal code.) What would that mean? Well, you might reply, gently but
firmly: There’s an array A for which your implementation of insertion sort does not correctly
sort A. The equivalence that you’re using is a theorem of predicate logic:

Example 3.40 (Negating universal quantifiers)
Let’s prove the equivalence you’re using to debunk your partner’s claim:

¬
[
∀x ∈ S : P(x)

]
⇔

[
∃x ∈ S : ¬P(x)

]
.

Perhaps the easiest way to view this claim is as a quantified version of the tautology
¬(p∧ q) ⇔ ¬p∨ ¬q, which was one of De Morgan’s Laws from propositional logic. If
we think of ∀x ∈ S : P(x) as P(x1)∧ P(x2) ∧ P(x3) ∧ · · · , then

¬
[
∀x ∈ S : P(x)

] ∼∼∼ ¬
[
P(x1) ∧ P(x2)∧ P(x3) ∧ · · ·

]

≡ [¬P(x1) ∨ ¬P(x2) ∨ ¬P(x3) ∨ · · · ]

∼∼∼ ∃x ∈ S : ¬P(x),

where the second line follows by the propositional version of De Morgan’s Laws.
There is something slightly more subtle to our claim because the set S might be
infinite, but the idea is identical. If there’s an a ∈ S such that P(a) = False, then
∃x ∈ S : ¬P(x) is true (because a is an example) and ∀x ∈ S : P(x) is false (because a
is a counterexample). And if every a ∈ S has P(a) = True, then ∃x ∈ S : ¬P(x) is false
and ∀x ∈ S : P(x) is true.

The analogous claim for the negation of ∃x ∈ S : P(x) is also a theorem:

Example 3.41 (Negating existential quantifiers)
Let’s prove that this claim is a theorem, too:

¬[∃x ∈ S : P(x)
] ⇔ [∀x ∈ S : ¬P(x)

]
.

To see that this claim is true for an arbitrary predicate P, we start with the claim
from Example 3.40, but using the predicate Q(x) := ¬P(x). (Note that Q is also a
predicate—so Example 3.40 holds for Q too!) Thus we know that

¬[∀x ∈ S : Q(x)
] ⇔ [∃x ∈ S : ¬Q(x)

]
,

and, because p ⇔ q ≡ ¬p ⇔ ¬q, we therefore also know that

[∀x ∈ S : Q(x)
] ⇔ ¬[∃x ∈ S : ¬Q(x)

]
.
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But Q(x) is just ¬P(x) and ¬Q(x) is just P(x), by definition of Q, and so we have

[
∀x ∈ S : ¬P(x)

]
⇔ ¬

[
∃x ∈ S : P(x)

]
.

Thus we’ve now shown that the desired claim is true for any predicate P, so it is a
theorem.

All implies some: a proof of an implication
The entirety of Chapter 4 is devoted to proofs and proof techniques; there’s lots

more there about how to approach proving or disproving new claims. But here we’ll
preview a particularly useful proof strategy for proving an implication, and use it to
establish another theorem of predicate logic. Here’s the method of proof:

Definition 3.22 (Proof by assuming the antecedent)
Suppose that we must prove an implication ϕ⇒ ψ. Because the only way for ϕ⇒ ψ to fail
to be true is for ϕ to be true and ψ to be false, to prove that the implication ϕ ⇒ ψ is always
true, we will rule out the one scenario in which it wouldn’t be. Specifically, we assume that ϕ
is true, and then prove that ψ must be true too, under this assumption.

(Recall from the truth table of ⇒ that the only way for the implication ϕ ⇒ ψ to be
false is when ϕ is true but ψ is false. Also recall that the proposition ϕ is called the
antecedent of the implication ϕ ⇒ ψ; hence this proof technique is called assuming
the antecedent.) Here are two examples of proofs that use this technique, one from
propositional logic and one from arithmetic:

• Let’s prove that p ⇒ p ∨ q is a tautology: we assume that the antecedent p is true,
and we must prove that the consequent p ∨ q is true too. But that’s obvious, because
p is true (by our assumption), and True ∨ q ≡ True.

• Let’s prove that if x is a perfect square, then 4x is a perfect square: assume that x is a
perfect square, that is, assume that x = k2 for an integer k. Then 4x = 4k2 = (2k)2 is a
perfect square too, because 2k is also an integer.

Finally, here’s a theorem of predicate logic that we can prove using this technique:

Problem-solving
tip: When you’re
facing a statement
that contains a lot
of mathematical
notation, try to
understand it by
rephrasing it as an
English sentence.
Restating the
assertion from
Example 3.42 in
English makes it
pretty obvious that
it’s true: if everyone
in S satisfies P—
and there’s actually
someone in S—then
of course someone in
S satisfies P!

Example 3.42 (If everybody’s doing it, then somebody’s doing it)
Consider the following proposition, for an arbitrary nonempty set S:

[
∀x ∈ S : P(x)

]
⇒

[
∃x ∈ S : P(x)

]
.

We’ll prove this claim by assuming the antecedent. Specifically, we assume
∀x ∈ S : P(x), and we need to prove that ∃x ∈ S : P(x).

Because the set S is nonempty, we know that there’s at least one element a ∈ S. By
our assumption, we know that P(a) is true. But because P(a) is true, then it’s immedi-
ately apparent that ∃x ∈ S : P(x) is true too—because we can just pick x := a.
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Vacuous quantification
Consider the proposition All even prime numbers greater than 12 have a 3 as their last

digit. Write P to denote the set of all even prime numbers greater than 12; formalized,
then, this claim can be written as ∀n ∈ P : n mod 10 = 3. Is this claim true or false?
It has to be true! The point is that P actually contains no elements (there are no even
prime numbers other than 2, because an even number is by definition divisible by 2).
Thus this claim says: for every n ∈ ∅, something-or-other is true of n. But there is no n
in ∅, so the claim has to be true! The general statement of the theorem is

∀x ∈ ∅ : P(x).

Quantification over the empty set is called vacuous quantification; this proposition is
said to be vacuously true.

Here’s another way to see that ∀x ∈ ∅ : P(x) is a theorem, using the De Morgan–like
view of quantification. The negation of ∀x ∈ ∅ : P(x) is ∃x ∈ ∅ : ¬P(x), but there
never exists any element x ∈ ∅, let alone an element x ∈ ∅ such that ¬P(x). Thus
∃x ∈ ∅ : ¬P(x) is false, and therefore its negation ¬∃x ∈ ∅ : ¬P(x), which is equivalent
to ∀x ∈ ∅ : P(x), is true.

Disjunctions and quantifiers
Here’s one last example, where we’ll figure out when the “or” of two quantified

statements can be expressed as one single quantified statement:

Problem-solving
tip: In thinking
about a question
like whether (A)
from Example 3.43
is a theorem, it’s
often useful to
get intuition by
plugging in a few
sample values for S,
P, and Q.

Example 3.43 (Disjunctions and quantifiers)
Consider the following two propositions, for an arbitrary set S:

∀x ∈ S :
[
P(x)∨ Q(x)

]
⇔

[
∀x ∈ S : P(x)

]
∨

[
∀x ∈ S : Q(x)

]
(A)

∃x ∈ S :
[
P(x)∨ Q(x)

]
⇔

[
∃x ∈ S : P(x)

]
∨

[
∃x ∈ S : Q(x)

]
(B)

Problem: Is either (A) or (B) a theorem? Prove your answers.

Solution: Claim (B) is a theorem. To prove it, we’ll show that the left-hand side
implies the right-hand side, and vice versa. (That is, we’re proving p ⇔ q
by proving both p ⇒ q and q ⇒ p, which is a legitimate proof because
p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p).) Both proofs will use the technique of assuming
the antecedent.

• First, suppose that ∃x ∈ S : [P(x)∨ Q(x)] is true. Then there is some particular
x∗ ∈ S for which either P(x∗) or Q(x∗). But in either case, we’re done: if P(x∗)
then ∃x ∈ S : P(x)—in particular, x∗ satisfies the condition; if Q(x∗) then
∃x ∈ S : Q(x).

• Conversely, suppose that [∃x ∈ S : P(x)] ∨ [∃x ∈ S : Q(x)] is true. Thus either
there’s an x∗ ∈ S such that P(x∗) or an x∗ ∈ S such that Q(x∗). That x∗ suffices to
make the left-hand side true.
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On the other hand, (A) is not a theorem, for much the same reason as in Exam-
ple 3.39. (In fact, if Q(x) := ¬P(x), then Examples 3.38 and 3.39 precisely show
that (A) is not a theorem.) The set Z and the predicates isOdd and isEven make (A)
false: the left-hand side is true (“all integers are either even or odd”) but the right-
hand side is false (“either (i) all integers are even, or (ii) all integers are odd”).

Although (A) from this example is not a theorem, one direction of it is; we’ll prove this
implication as another example:

Example 3.44 (Disjunction, quantifiers, and one-way implications)
The ⇐ direction of (A) from Example 3.43 is a theorem:

∀x ∈ S :
[
P(x)∨ Q(x)

]
⇐

[
∀x ∈ S : P(x)

]
∨
[
∀x ∈ S : Q(x)

]
.

To convince yourself of this claim, observe that if P(x) is true for an arbitrary x ∈ S,
then it’s certainly true that P(x)∨ Q(x) is true for an arbitrary x ∈ S too. And if Q(x) is
true for every x ∈ S, then, similarly, P(x)∨ Q(x) is true for every x ∈ S.

To prove this claim, we assume the antecedent [∀x ∈ S : P(x)]∨ [∀x ∈ S : Q(x)].
Thus either [∀x ∈ S : P(x)] or [∀x ∈ S : Q(x)], and, in either case, we’ve argued that
P(x)∨ Q(x) is true for all x ∈ S.

You’ll have a chance to consider a number of other theorems of predicate logic in the
exercises, including the ∧-analogy to Examples 3.43–3.44 (in Exercises 3.130–3.131).
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Computer Science Connections

Game Trees, Logic, and Winning Tic-Tac(-Toe)

In 1997, Deep Blue, a chess-playing program developed by IBM,5 beat the 5 Murray Campbell, A. Joseph Hoane
Jr., and Feng-hsiung Hsu. Deep Blue.
Artificial Intelligence, 134:57–83, 2002.

chess Grandmaster Garry Kasparov in a six-match series. This event was a
turning point in the public perception of computation and artificial intelli-
gence; it was the first time that a computer had outperformed the best humans
at something that most people tended to identify as a “human endeavor.”
Ten years later, a research group developed a program called Chinook, a per-
fect checkers-playing system: from any game position arising in its games,
Chinook chooses the best possible legal move.6

6 Jonathan Schaeffer, Neil Burch, Yngvi
Bjornsson, Akihiro Kishimoto, Martin
Muller, Rob Lake, Paul Lu, and Steve
Sutphen. Checkers is solved. Science,
317(5844):1518–1522, 14 September 2007.

While chess and checkers are very complicated games, the basic ideas
of playing them—ideas based on logic—are shared with simpler games.
Consider Tic-Tac, a 2-by-2 version of Tic-Tac-Toe. Two players, O and X, make

Thanks to Jon Kleinberg for suggesting
this game.

alternate moves, starting with O; a player wins by occupying a complete row
or column. Diagonals don’t count, and if the board is filled without O or
X winning, then the game is a draw. Note that—unless O is tremendously
dull—O will win the game, but we will use a game tree (Figure 3.24), which
represents all possible moves, to systematize this reasoning.

Here’s the basic idea. Define P(B) to be the predicate

|
|

O |
|

| O
|

|
O |

|
| O

X | O
|

| O
X |

| O
| X

X | O
O |

X | O
| O

O | O
X |

| O
X | O

O | O
| X

| O
O | X

X | O
O | X

X | O
O | X

Figure 3.24: 25% of the Tic-Tac game
tree. (The missing 75% is rotated, but
otherwise identical.)

P(B) := “Player O wins under optimal play starting from board B.”

For example, P( X |
O | O

) = True because O has already won; and P( O | X
X | O

) = False
because it’s a draw. The answer to the question “does O win Tic-Tac if both
players play optimally?” is the truth value of P( |

|
). If it’s O’s turn in board

B, then P(B) is true if and only if there exists a possible move for O leading to
a board B′ in which P(B′); if it’s X’s turn, then P(B) is true if and only if every
possible move made by X leads to a board B′ in which P(B′). So

P( | O
|

) = P( X | O
|

) ∧ P( | O
X |

) ∧ P( | O
| X

)
and P( |

|
) = P( O |

|
) ∨ P( | O

|
) ∨ P( |

O |
) ∨ P( |

| O
).

The game tree, labeled appropriately, is shown in Figure 3.25. If we view the
truth values from the leaves as “bubbling up” from the bottom of the tree,
then a board B gets assigned the truth value True if and only if Player O can
guarantee a win from the board B.

Some serious complications arise in writing a program to play more com-
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F F

Figure 3.25: The game tree, with each
win for O labeled by T, each loss/draw
by F, ∨ if it’s Player O’s turn, and ∧ if it’s
Player X’s turn.

plicated games like checkers or chess. Here are just a few of the issues that
one must confront in building a system like Deep Blue or Chinook:7

For more on game trees and algorithms
for exploring large search spaces, see a
good artificial intelligence (AI) text like
7 Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

• There are ≈ 500,000,000,000,000,000,000 different checkers positions—and
≈ 1040 chess positions!—so we can’t afford to represent them all. (Luckily,
we can choose moves so most positions are never reached.)

• Approximately one bit per trillion is written incorrectly merely in copying
data on current hard disk technologies. So a program constructing a massive
structure like the checkers game tree must “check its work.”

• For a game as big as chess, we can’t afford to compute all the way to the
bottom of the tree; instead, we estimate the quality of each position after
computing a handful of layers deep in the game tree.
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Computer Science Connections

Nonlocal Variables and Lexical vs. Dynamic Scoping

In a function f written in a programming language—say, C or Python—we
can use several different types of variables that store values:

• local variables, whose values are defined completely within the body of f;
• parameters, inputs to f whose value is specified when f is invoked;
• nonlocal variables, which get their value from other contexts. The most

common type of these “other” variables is a global variable, which persists
throughout the execution of the entire program.

For an example function (written in C and Python as illustrative examples)

int addB(int a) {

return a + b;

}

def addB(a):

return a + b

Figure 3.26: A function addB written
in C and analogous function addB

written in Python. Here addB takes
one (integer) parameter a, accesses a
nonlocal variable b, and returns a + b.

that uses both a parameter and a nonlocal variable, see Figure 3.26. In the
body of this function, the variable a is a bound variable; specifically, it is bound
when the function is invoked with an actual parameter. But the variable b is
unbound. (Just as with a quantified expression, an unbound variable is one for
which the meaning of the function could change if we replaced that variable
with a different name. If we changed the a to an x in both lines 1 and 2, then
the function would behave identically, but if we changed the b to a y, then the
function would behave differently.)

In this function, the variable b has to somehow get a value from some-
where if we are going to be able to invoke the function addB without causing
an error. Often b will be a global variable, but it is also possible in Python or
C (with appropriate compiler settings) to nest function definitions—just as
quantifiers can be nested. (See Section 3.5.)

One fundamental issue in the design and implementation in programming
languages is illustrated in Figure 3.27.8 Suppose x is an unbound variable in

For more about lexical versus dynamic
scope, and other related issues, see a
textbook on programming languages.
(One of the other interesting issues
is that there are actually multiple
paradigms for passing parameters to a
function; we’re discussing call-by-value
parameter passing, which probably is
the most common.) Some good books
on programming languages include

8 Michael L. Scott. Programming Lan-
guage Pragmatics. Morgan Kaufmann
Publishers, 3rd edition, 2009; and
Kenneth C. Louden and Kenneth A.
Lambert. Programming Languages: Prin-
ciples and Practices. Course Technology,
3rd edition, 2011.

the definition of a function f. Generally, programming languages either use
lexical scope, where x’s value is found by looking “outward” where f is defined;
or dynamic scope, where x’s value is found by looking where f is called. Almost
all modern programming languages use lexical scope, though macros in C
and other languages use dynamic scope. While we’re generally used to lexical
scope and therefore it feels more intuitive, there are some circumstances in
which macros can be tremendously useful and convenient.

int b = 17;

int addB(int a) { return a + b; }

/* a FUNCTION in C finds values for unbound */

/* variables in the *defining* environment */

int test() {

int b = 128;

return addB(3);

}

test(3); /* returns 20 */

int b = 17;

#define addB(a) a + b

/* a MACRO in C finds values for unbound */

/* variables in the *calling* environment */

int test() {

int b = 128;

return addB(3);

}

test(3); /* returns 131 */

Figure 3.27: Two C snippets defining
addB, where the nonlocal variable b gets
its value from different places.



346 CHAPTER 3. LOGIC

Computer Science Connections

Gödel’s Incompleteness Theorem

Given a fully quantified proposition ϕ, is ϕ a theorem? This apparently simple
question drove the development of some of the most profound and mind-
numbing results of the last hundred years. In the early 20th century, there was
great interest in the “formalist program,” advanced especially by the German
mathematician David Hilbert. The formalist approach aimed to turn all of
mathematical reasoning into a machine: one could feed in a mathematical
statement ϕ as input, turn a hypothetical crank, and the machine would spit
out a proof or disproof of ϕ as output. But this program was shattered by two
closely related results—two of the greatest intellectual achievements of the
20th century.

The first blow to the formalist program was the proof by Kurt Gödel, in
1931, of what became known as Gödel’s Incompleteness Theorem. Gödel’s in-
completeness theorem is based on the following two important and desirable
properties of logical systems:

• A logical system is consistent if only true statements can be proven. (In
other words, if there is a proof of ϕ in the system, then ϕ is true.)

• A logical system is complete if every true statement can be proven. (In other
words, if ϕ is true, then there is a proof of ϕ in the system.)

Gödel’s Incompleteness Theorem is the following troubling result:

Theorem 3.3 (Gödel’s (First) Incompleteness Theorem)
Any sufficiently powerful logical system is either inconsistent or incomplete.

(Here “sufficiently powerful” just means “capable of expressing multiplica-
tion”; predicate logic as described here is certainly “sufficiently powerful.”)

If the system is inconsistent, then there is a false statement ϕ that can be
proven (which means that anything can be proven, as false implies anything!).
And if the system is incomplete, then there is a true statement ϕ that cannot
be proven. Gödel’s proof proceeds by constructing a self-referential logical
expression ϕ that means “ϕ is not provable.” (So if ϕ is true, then the system
is incomplete; and if ϕ is false, then the system is inconsistent.)

The second strike against the formalist program was the proof of the un-
decidability of the halting problem, shown independently by Alan Turing and
Alonzo Church in the 1930s. We can think of the halting problem as asking
the following question: given a function f written in Python and an input x,
does running f (x) get stuck in an infinite loop? (Or does it eventually termi-
nate?) The undecidability of this problem means that there is no algorithm that
solves the halting problem. A corollary of this result is that our problem—given
a fully quantified proposition ϕ, is ϕ a theorem?—is also undecidable. We’ll
discuss uncomputability in more detail in Chapter 4.

Undecidability, incompleteness, and their profound consequences are the
focus of a number of excellent textbooks on the theory of computation9—and

See, for example:
9 Dexter Kozen. Automata and Com-
putability. Springer, 1997; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.

also Douglas Hofstadter’s fascinating masterpiece Gödel, Escher, Bach,10 which
10 Douglas Hofstadter. Gödel, Escher,
Bach: An Eternal Golden Braid. Vintage,
1980.is all-but-required reading for computer scientists.



3.4. AN INTRODUCTION TO PREDICATE LOGIC 347

3.4.5 Exercises

paradigm typing scope
C imperative weak lexical
C++ object-oriented weak lexical
Java object-oriented strong lexical
LATEX scripting weak dynamic
ML functional strong lexical
Pascal imperative strong lexical
Perl scripting weak either
Scheme functional weak either

Figure 3.28: Some
programming
languages.

Figure 3.28 lists some well-known programming languages, with some characteristics.
Using these characteristics, define a predicate that’s true for each of the following lists
of languages, and false for every other language in the table. For example, the predicate
P(x) = “x has strong typing and x is not functional” makes P(Pascal) and P(Java) true,
and makes P(x) false for every x ∈ {C, C++, LATEX, ML, Perl, Scheme}.
3.107 Java
3.108 ML, Perl
3.109 Pascal, Scheme, Perl
3.110 LATEX, Java, C++, Perl
3.111 C, Pascal, ML, C++, LATEX, Scheme, Perl

Examples 3.4 and 3.15 construct a proposition corresponding to “the password contains at least three of four character
types (digits, lowercase letters, uppercase letters, other).” In that example, we took “the password contains at least
one digit” (and its analogues for the other character types) as an atomic proposition. But we could give a lower-level
characterization of valid passwords. Let isDigit, isLower, and isUpper be predicates that are true of single characters
of the appropriate type. Use standard arithmetic notation and these predicates to formalize the following conditions on a
password x = 〈x1, . . . , xn〉, where xi is the ith character in the password:
3.112 x is at least 8 characters long.
3.113 x contains at least one lowercase letter.
3.114 x contains at least one non-alphanumeric character. (Remember that isDigit, isLower, and isUpper
are the only predicates available!)

3.115 (Inspired by a letter to the editor in The New Yorker by Alexander George from 24 December 2007.) Steve
Martin, the great comedian, reports in Born Standing Up: A Comic’s Life that, inspired by Lewis Carroll, he
started closing his shows with the following line.11 (It got big laughs.) 11 Steve Martin.

Born Standing Up: A
Comic’s Life. Simon
& Schuster, 2008.

I’m not going home tonight; I’m going to Bananaland, a place where only two things are true, only two things:
One, all chairs are green; and two, no chairs are green.

Steve Martin describes the joke as a contradiction—but, in fact, these two true things are not contradictory!
Describe how it is possible for both “all chairs in Bananaland are green” and “no chairs in Bananaland are
green” to be simultaneously true.

As a rough approximation, we can think of a database as a two-dimensional table, where rows correspond to individual
entities, and columns correspond to fields (data about those entities). A database query defines a predicate Q(x) that
consists of tests of the values from various columns, joined by the basic logical connectives. The database system then
returns a list of rows/entities for which the predicate is true. We can think of this type of database access as involving
predicates: in response to query Q, the system returns the list of all rows x for which Q(x) is true.

name GPA CS? home · · ·
Alice 4.0 yes Alaska · · ·
Bob 3.14 yes Bermuda · · ·
Charlie 3.54 no California · · ·
Dave 3.8 yes Delaware · · ·

...

Figure 3.29: A
sample database.

See Figure 3.29 for an example; here, to find a list of all students with grade point
averages over 3.4 who have taken at least one CS course if and only if they’re from Hawaii,
we could query GPA(x) ≥ 3.4 ∧

(
CS?(x) = yes ⇔ home(x) = Hawaii

)
. For this

database, this query would return Charlie (and not Alice, Bob, or Dave).
Each of the following predicates Q(x) uses tests on particular columns in x’s row. For

each, give a logically equivalent predicate in which each column’s name appears at
most once. You may also use the symbols {True, False,∧,∨,¬,⇒} as many times as
you please. Use a truth table to prove that your answer is logically equivalent to the given
predicate.
3.116 [age(x) < 18] ∨ (¬[age(x) < 18] ∧ [gpa(x) ≥ 3.0)]
3.117 cs(x) ⇒ ¬(hawaii(x) ⇒ (hawaii(x) ∧ cs(x)))
3.118 (hasMajor(x) ∧ ¬junior(x) ∧ oncampus(x)) ∨ (hasMajor(x) ∧ ¬junior(x) ∧ ¬oncampus(x))

∨ (hasMajor(x) ∧ junior(x) ∧ ¬oncampus(x))

3.119 Following the last few exercises, you might begin to think that any query can be rewritten with-
out duplication. Can it? Consider a unary predicate that is built up from the predicates P(x) and Q(x) and
the propositional symbols {True, False,∧,∨,¬,⇒}. Decide whether the following claim is true or false, and
prove your answer:

Claim: Every such predicate is logically equivalent to a predicate that uses only the following symbols: (i)
{True, False,∧,∨,¬,⇒}, all of which can be used as many times as you please; and (ii) the predicates
{P(x), Q(x)}, which can appear only one time each.
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Modern web search engines allow users to specify Boolean conditions in their queries. For example, “social OR net-
works” will return only web pages containing either the word “social” or the word “networks.” You can view a query
as a predicate Q; the search engine returns (in some order) the list of all pages p for which Q(p) is true. Consider the
following queries:
A: “java AND program AND NOT computer”
B: “(computer OR algorithm) AND java”
C: “java AND NOT (computer OR algorithm OR program)”
Give an example of a web page—or a sentence—that would be returned . . .
3.120 . . . by query A but not by B or C.
3.121 . . . by query B but not by A or C.

3.122 . . . by query C but not by A or B.

3.123 Prove or disprove: ∀n ∈ Z : isPrime(n) ⇒ n
2 /∈ Z.

3.124 Translate this Groucho Marx quote into logical notation: It isn’t necessary to have relatives in Kansas
City in order to be unhappy. Let P(x) be “x has relatives in Kansas City” and Q(x) be “x is unhappy,” and view
the statement as implicitly making a claim that a particular kind of person exists.

Write an English sentence that expresses the logical negation of each given sentence. (Don’t just say “It is not the case
that ...”; give a genuine negation.) Some of the given sentences are ambiguous in their meaning; if so, describe all of the
interpretations of the sentence that you can find, then choose one and give its negation.
3.125 Every entry in the array A is positive.
3.126 Every decent programming language denotes block structure with parentheses or braces.
3.127 There exists an odd number that is evenly divisible by a different odd number.
3.128 There is a point in Minnesota that is farther than ten miles from a lake.
3.129 Every sorting algorithm takes at least n log n steps on some n-element input array.

In Examples 3.43 and 3.44, we proved that

∃x ∈ S :
[
P(x)∨ Q(x)

]
⇔

[
∃x ∈ S : P(x)

]
∨

[
∃x ∈ S : Q(x)

]

∀x ∈ S :
[
P(x)∨ Q(x)

]
⇐

[
∀x ∈ S : P(x)

]
∨

[
∀x ∈ S : Q(x)

]

are theorems. Argue that the following ∧-analogies to these statements are also theorems:
3.130 ∃x ∈ S :

[
P(x)∧ Q(x)

]
⇒

[
∃x ∈ S : P(x)

]
∧

[
∃x ∈ S : Q(x)

]

3.131 ∀x ∈ S :
[
P(x)∧ Q(x)

]
⇔

[
∀x ∈ S : P(x)

]
∧

[
∀x ∈ S : Q(x)

]

Explain why the following are theorems of predicate logic:
3.132

[
∀x ∈ S : P(x) ⇒ Q(x)

]
∧
[
∀x ∈ S : P(x)

]
⇒

[
∀x ∈ S : Q(x)

]

3.133
[
∀x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∀x ∈ S : P(x) ⇒ Q(x)

]

3.134
[
∃x ∈ {y ∈ S : P(y)} : Q(x)

]
⇔

[
∃x ∈ S : P(x) ∧Q(x)

]

Explain why the following propositions are theorems of predicate logic, assuming that x does not appear as a free
variable in the expression ϕ (and assuming that S is nonempty):
3.135 ϕ⇔

[
∀x ∈ S : ϕ

]

3.136 ϕ ∨
[
∀x ∈ S : P(x)

]
⇔

[
∀x ∈ S : ϕ ∨ P(x)

]

3.137 ϕ ∧
[
∃x ∈ S : P(x)

]
⇔

[
∃x ∈ S : ϕ ∧ P(x)

]

3.138
(
ϕ⇒

[
∃x ∈ S : P(x)

])
⇔

[
∃x ∈ S : ϕ⇒ P(x)

]

3.139
([

∃x ∈ S : P(x)
]
⇒ ϕ

)
⇔

[
∀x ∈ S : P(x) ⇒ ϕ

]

3.140 Give an example of a predicate P, a nonempty set S, and an expression ϕ containing x as a free
variable such that the proposition from Exercise 3.136 is false. Because x has to get its meaning from some-
where, we will imagine a universal quantifier for x wrapped around the entire expression. Specifically, give
an example of P, ϕ, and S for which

∀x ∈ S :
[
ϕ ∨ [∀x ∈ S : P(x)

]]
is not logically equivalent to ∀x ∈ S :

[[∀x ∈ S : ϕ ∨ P(x)
]]

.
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3.5 Predicate Logic: Nested Quantifiers

Everybody hates me because I’m so universally liked.

Peter De Vries (1910–1993)

Just as we can place one loop inside another in a program, we can place one quanti-
fied statement inside another in predicate logic. In fact, the most interesting quantified
statements almost always involve more than one quantifier. (For example: during every
semester, there’s a computer science class that every student on campus can take.) In formal
notation, such a statement typically involves nested quantifiers—that is, multiple quanti-
fiers in which one quantifier appears inside the scope of another.

We’ve encountered statements involving nested quantification before, although
so far we’ve discussed them using English rather than mathematical notation. The
definition of a partition of a set (Definition 2.30) or of an onto function (Definition 2.49)
are two examples. (To make the latter definition’s quantifiers more explicit: an onto
function f : A → B is one where, for every element of B, there’s an element of A such
that f (a) = b: that is, ∀b ∈ B :

[∃a ∈ A : f (a) = b
]
.) Here are two other examples:

Example 3.45 (No unmatched elements in an array)
Let’s express the condition that every element of an array A[1 . . . n] is a “double”—
that is, appears at least twice in A. (For example, the array [3, 2, 1, 1, 4, 4, 2, 3, 1] sat-
isfies this condition.) This condition requires that, for every index i, there exists an-
other index j such that A[i] = A[j]. We can express the requirement as follows:

∀i ∈ {1, 2, . . . , n} :
[
∃j ∈ {1, 2, . . . , n} : i 6= j ∧ A[i] = A[j]

]
.

“Sorting alphabet-
ically” is usually
called lexicographic
ordering in com-
puter science. This
ordering reflects the
way that words are
listed in the dictio-
nary (also known as
the lexicon).

Example 3.46 (Alphabetically later)
Let’s formalize the predicate “The string is alphabetically after the string ”
from Example 3.28. For two letters a, b ∈ {A, B, . . . , Z}, write a < b if a is earlier in
the alphabet than b; we’ll use this ordering on letters to define an ordering on strings.
Let x and y be strings over {A, B, . . . , Z}. There are two ways for x to be alphabetically
later than y:

• y is a (proper) prefix of x. (See Example 3.35.) For example, FORTRAN is after FORT.
• x and y share an initial prefix of identical letters, and the first i for which xi 6= yi

has xi later in the alphabet than yi. For example, PASTOR comes after PASCAL.

Formally, then, x ∈ {A, B, . . . , Z}n is alphabetically after y ∈ {A, B, . . . , Z}m if
[
m < n ∧ [∀j ∈ {1, 2 . . . , m} : xj = yj]

]
y is a proper prefix of x . . .

∨
[
∃i ∈ {1, . . . , min(n, m)} : xi > yi ∧ [∀j ∈ {1, 2 . . . , i − 1} : xi = yi]

]

. . . or x1,...,i−1 = y1,...,i−1 and xi > yi .
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Here is one more example of a statement that we’ve already seen—Goldbach’s
conjecture—that implicitly involves nested quantifiers; we’ll formalize it in predicate
logic. (Part of the point of this example is to illustrate how complex even some ap- Writing tip: Just as

with nested loops
in programs, the
deeper the nesting
of quantifiers,
the harder an
expression is
for a reader to
follow. Using well-
chosen predicates
(like isPrime, for
example) in a
logical statement
can make it much
easier to read—
just like using
well-chosen (and
well-named)
functions makes
your software easier
to read!

parently simple concepts are; there’s a good deal of complexity hidden in words like
“even” and “prime,” which at this point seem pretty intuitive!)

Example 3.47 (Goldbach’s Conjecture)
Problem: Recall Goldbach’s conjecture, from Example 3.1:

Every even integer greater than 2 can be written as the sum of two prime numbers.

Formalize this proposition using nested quantifiers.

Solution: Using the sumOfTwoPrimes predicate from Example 3.34, we can write this
statement as either of the following:

∀n ∈ {n ∈ Z : n > 2 ∧ 2 | n} : sumOfTwoPrimes(n) (A)

∀n ∈ Z :
[
n > 2 ∧ 2 | n ⇒ sumOfTwoPrimes(n)

]
(B)

In (B), we quantify over all integers, but the implication n > 2 ∧ 2 | n ⇒
sumOfTwoPrimes(n) is trivially true for an integer n that’s not even or not greater
than 2, because false implies anything! Thus the only instantiations of the quanti-
fier in which the implication has any “meat” is for even integers greater than 2. As
such, these two formulations are equivalent. (See Exercise 3.133.) Expanding the
definition of sumOfTwoPrimes(n) from Example 3.34, we can also rewrite (B) as

[
∀n ∈ Z : n > 2 ∧ 2 | n ⇒
∃p ∈ Z : ∃q ∈ Z :

[
isPrime(p)∧ isPrime(q) ∧ n = p + q

]
]

(C)

We’ve also already seen that the predicate isPrime implicitly contains quantifiers too
(“for all potential divisors d, it is not the case that d evenly divides p”)—and, for that
matter, so does the “evenly divides” predicate |. In Exercises 3.178, 3.179, and 3.180,
you’ll show how to rewrite Goldbach’s Conjecture in a few different ways, including
using yet further layers of nested quantifiers.

3.5.1 Order of Quantification

In expressions that involve nested quantifiers, the order of the quantifiers matters! As
a frivolous example, take the title of the 1947 hit song “Everybody Loves Somebody”
(sung by Dean Martin). There are two plausible interpretations of the title:

∀x : ∃y : x loves y and ∃y : ∀x : x loves y.

The former is the more natural reading; it says that every person x has someone that
he or she loves, but each different x can love a different person. (As in: “every child
loves his or her mother.”) The latter says that there is one single person loved by every
x. (As in: “Everybody loves Raymond.”) These claims are different!
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Taking it further: Disambiguating the order of quantification in English sentences is one of the most
daunting challenges in natural language processing (NLP) systems. (See p. 314.) Compare Every student
received a diploma and Every student heard a commencement address: there are, surely, many diplomas and
only one address, but building a software system that understands that fact is tremendously challenging!
There are many other vexing types of ambiguity in NLP systems, too. A classic example of ambiguity
in natural language is the sentence I saw the man with the telescope. Is the man holding a telescope? Or
did I use one to see him? Human listeners are able to use pragmatic knowledge about the world to
disambiguate, but doing so properly in an NLP system is very difficult.

(a) ∀r : ∀c : P(r, c),
or, equivalently,
∀c : ∀r : P(r, c)

(b) ∃r : ∃c : P(r, c),
or, equivalently,
∃c : ∃r : P(r, c)

(c) ∀c : ∃r : P(r, c)

(d) ∀r : ∃c : P(r, c) (e) ∃r : ∀c : P(r, c) (f) ∃c : ∀r : P(r, c)

Figure 3.30: An
illustration of order
of quantification.
Let r index a row
of the grid, and let
c index a column.
If P(r, c) is true in
each filled cell, then
the corresponding
proposition is true.

Figure 3.30 shows a visual repre-
sentation of the importance of this
order of quantification. Compare
Figure 3.30(d) and Figure 3.30(f), for
example: ∀r : ∃c : P(r, c) is true
if every row has at least one col-
umn with a filled cell in it, whereas
∃c : ∀r : P(r, c) requires that there be
a single column so that every row has
that column’s cell filled. The propo-
sition ∃c : ∀r : P(r, c) is not true in
Figure 3.30(d)—though the propo-
sition ∀r : ∃c : P(r, c) is true in both
Figure 3.30(d) and Figure 3.30(f).

Here’s a mathematical example
that illustrates the difference even more precisely.

Example 3.48 (The largest real number)
Problem: One of the following propositions is true; the other is false. Which is which?

∃y ∈ R : ∀x ∈ R : x < y (A)
∀x ∈ R : ∃y ∈ R : x < y (B)

Solution: Translating these propositions into English helps resolve this question.
(A) says that there is a real number y for which the following property holds:
every real number is less than y. (“There is a largest real number.”) But there
isn’t a largest real number! So (A) is false. (If someone tells you that y∗ satisfies
∀x ∈ R : x < y∗, then you can convince him he’s wrong by choosing x = y∗ + 1.)
On the other hand, (B) says that, for every real number x, there is a real number
greater than x. And that’s true: for any x ∈ R, the number x + 1 is greater than x.

In fact, (B) is nearly the negation of (A). (Before you read through the deriva-
tion, can you figure out why we had to say “nearly” in the last sentence?)

≡¬
[
∃y ∈ R : ∀x ∈ R : x < y

]
negation of (A)

≡ ∀y ∈ R : ¬[∀x ∈ R : x < y
]

De Morgan’s Laws (quantified form)

≡ ∀y ∈ R : ∃x ∈ R : ¬(x < y) De Morgan’s Laws (quantified form)

≡ ∀y ∈ R : ∃x ∈ R : y ≤ x ¬(x < y) ⇔ y ≤ x

≡ ∀x ∈ R : ∃y ∈ R : x ≤ y. renaming the bound variables
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So (B) and the negation of (A) are almost—but not quite—identical: the latter has a
≤ where the former has a <. But both (B) and ¬(A) are theorems!

Although the order of quantifiers does matter when universal and existential quan-
tifiers both appear in a proposition, the order of consecutive universal quantifiers
doesn’t matter, nor does the order of consecutive existential quantifiers. (Using our
previously defined terminology—see Figure 3.12—these quantifiers are commutative.)
Thus the following statements are theorems of predicate logic:

∀x ∈ S : ∀y ∈ T : P(x, y) ⇔ ∀y ∈ T : ∀x ∈ S : P(x, y) (∗)
∃x ∈ S : ∃y ∈ T : P(x, y) ⇔ ∃y ∈ T : ∃x ∈ S : P(x, y) (∗∗)

The point is simply that the left- and right-hand sides of (∗) are both true if and only
if P(x, y) is true for every pair 〈x, y〉 ∈ S × T, and the left- and right-hand sides of
(∗∗) are both true if and only if P(x, y) holds for at least one pair 〈x, y〉 ∈ S × T. See
Figure 3.30(a) and Figure 3.30(b): both sides of (∗) require that all the cells be filled and
both sides of (∗∗) require that at least one cell be filled. Because of these equivalences,
as notational shorthand we’ll sometimes write ∀x, y ∈ S : P(x, y) instead of writing
∀x ∈ S : ∀y ∈ S : P(x, y). We’ll use ∃x, y ∈ S : P(x, y) analogously.

Nested quantification and nested loops
Just as it can be helpful to think of a quantifier in terms of a corresponding loop,

it can be helpful to think of nested quantifiers in terms of nested loops. And a use-
ful way to think about the importance of the order of quantification is through the
way in which changing the order of nested loops changes what they compute. In Ex-
ercises 3.191–3.196, you’ll get a chance to do some translations between quantified
statements and nested loops.

1: for j = 1 to m:
2: for i = 1 to n:
3: if A[i, j] then
4: return True
5: return False

1: for i = 1 to n:
2: for j = 1 to m:
3: if A[i, j] then
4: return True
5: return False

Figure 3.31:
Two nested for
loops that re-
turn the value of
∃i : ∃j : A[i, j] ≡
∃j : ∃i : A[i, j], by
looping in row-
or column-major
orders.

Here’s one example about how thinking
about the nested-loop analogy for nested
quantifiers can be helpful. Imagine writing a
nested loop to examine every element of a 2-
dimensional array. As long as iterations don’t
depend on each other, it doesn’t matter whether we proceed through the array in row-
major order (“for each row, look at all columns’ entries”) or column-major order (“for each
column, look at all rows’ entries”). Figure 3.31 illustrates a loop-based view of the log-
ical equivalence expressed by (∗∗), above: both code segments always have the same
return value. (The graphical view is that both check every cell of the “grid” of possible
inputs to A, as in Figure 3.30(b), just in different orders.)

3.5.2 Negating Nested Quantifiers

Recall the rules for negating quantifiers found earlier in the chapter:

¬∀x ∈ S : P(x) ⇔ ∃x ∈ S : ¬P(x)
¬∃x ∈ S : P(x) ⇔ ∀x ∈ S : ¬P(x)
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Informally, these theorems say that “everybody is P is false” is equivalent to “somebody
isn’t P”; and, similarly, “somebody is P is false” is equivalent to “everybody isn’t P.”

(a) ∃r : ∃c : P(r, c) (b) ¬(∃r : ∃c : P(r, c)) (c) ∀r : ∀c : ¬P(r, c))

Figure 3.32: Negat-
ing nested quanti-
fiers: what it means
for (a) a filled cell
to exist; (b) it not to
be the case that a
filled cell exists; and
(c) that every cell is
unfilled.

Here we will consider negating a
sequence of nested quantifiers. Negat-
ing nested quantifiers proceeds in
precisely the same way as negating
a single quantifier, just acting on one
quantifier at a time. (We already saw
this idea in Example 3.48, where we
repeatedly applied these quantified
versions of De Morgan’s Laws to a sequence of nested quantifiers.) For example:

Example 3.49 (No cell is filled ≡ every cell is empty)
Observe that ∃r : ∃c : P(r, c) is true if any r and c makes P(r, c) true—that is, visually,
that any cell in the grid in Figure 3.32(a) is filled. For ∃r : ∃c : P(r, c) to be false
(Figure 3.32(b)), then we need:

¬(∃r : ∃c : P(r, c)) ≡ ∀r : ¬(∃c : P(r, c)) ≡ ∀r : ∀c : ¬P(r, c).

That is, P(r, c) is false for every r and c—that is, visually, every cell in the grid is unfilled
(Figure 3.32(c)). Similarly,

¬∃r : ∀c : P(r, c) ≡ ∀r : ¬∀c : P(r, c) ≡ ∀r : ∃c : ¬P(r, c).

Thus ¬∃r : ∀c : P(r, c) expresses that it’s not the case that there’s a row with all columns
filled; using the above equivalence, we can rephrase the condition as every row has at
least one unfilled column.

Example 3.50 (Triple negations)
Here’s an example of negating a sequence of triply nested quantifiers:

¬∃x : ∀y : ∃z : P(x, y, z) ≡ ∀x : ¬∀y : ∃z : P(x, y, z)
≡ ∀x : ∃y : ¬∃z : P(x, y, z)
≡ ∀x : ∃y : ∀z : ¬P(x, y, z).

Here’s a last example, which requires translation from English into logical notation:

Example 3.51 (Negating nested quantifiers)
Problem: Negate the following sentence:

For every iPhone user, there’s an iPhone app that every one of that user’s iPhone-using friends
has downloaded.

Solution: First, let’s reason about how the given statement would be false: there
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would be some iPhone user—we’ll call him Steve—such that, for every iPhone
app, Steve has a friend who didn’t download that app.

Write U and A for the sets of iPhone users and apps, respectively. In
(pseudo)logical notation, the original claim looks like

∀u ∈ U : ∃a ∈ A : ∀v ∈ U :
[
(u, v friends) ⇒ (v downloaded a)

]
.

To negate this statement, we apply the quantified De Morgan’s laws, once per
quantifier:

≡¬∀u ∈ U : ∃a ∈ A : ∀v ∈ U : [(u, v friends) ⇒ (v downloaded a)]
≡ ∃u ∈ U : ¬∃a ∈ A : ∀v ∈ U : [(u, v friends) ⇒ (v downloaded a)]
≡ ∃u ∈ U : ∀a ∈ A : ¬∀v ∈ U : [(u, v friends) ⇒ (v downloaded a)]
≡ ∃u ∈ U : ∀a ∈ A : ∃v ∈ U : ¬[(u, v friends) ⇒ (v downloaded a)].

Using ¬(p ⇒ q) ≡ p∧ ¬q (Exercise 3.82), we can further write this expression as:

≡ ∃u ∈ U : ∀a ∈ A : ∃v ∈ U : [(u, v friends) ∧ ¬(v downloaded a)].

This last proposition, translated into English, matches the informal description
above as to why the original claim would be false: there’s some person such that, for
every app, that person has a friend who hasn’t downloaded that app.

3.5.3 Two New Ways of Considering Nested Quantifiers

We’ll close this section with two different but useful ways to think about nested quan-
tification. As a running example, consider the following (true!) proposition

∀x ∈ Z : ∃y ∈ Z : x = y + 1, (†)

which says that the number that’s one less than every integer is an integer too. We’ll
discuss two ways of thinking about propositions like (†) with nested quantifiers: as
a “game with a demon” in which you battle against an all-knowing demon to try to
make the innermost quantifier’s body true;12 and as a single quantifier whose body is

Thanks to Dexter
Kozen for teaching
me this way of
thinking of nested
quantifiers. See:
12 Dexter Kozen.
Automata and
Computability.
Springer, 1997.

a predicate, but a predicate that just happens to be expressed using quantifiers.

Nested quantifiers as demon games
One way to think about any proposition involving nested quantifiers is as a “game”

played between you and a demon. Here are the rules of the game:

• Your goal is to make the innermost statement—x = y + 1 for our running example
(†)—turn out to be true; the demon’s goal is to make that statement false.

• Every “for all” quantifier in the expression is a choice that the demon makes; every
“there exists” quantifier in the expression is a choice that you get to make. (That
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is, in the expression ∀a ∈ S : · · · , the demon chooses a particular value of a ∈ S,
and the game continues in the “· · · ” part of the expression. And in the expression
∃b ∈ S : · · · , you choose a particular value of b ∈ S, and, again, the game continues
in the “· · · ” part.)

• Your choices and the demon’s choices are made in the left-to-right order (from the
outside in) of the quantifiers.

• You win the game—in other words, the proposition in question is true—if, no mat-
ter how cleverly the demon plays, you make the innermost statement true.

Here are two examples of viewing quantified statement as demon games, one for a
true statement and one for a false statement:

Example 3.52 (Showing that (†) is true)
We’ll use a “game with the demon” to argue that ∀x ∈ Z : ∃y ∈ Z : x = y + 1 is true.

1. The outermost quantifier is ∀, so the demon picks a value for x ∈ Z.
2. Now you get to pick a value y ∈ Z. A good choice for you is y := x − 1.
3. Because you chose y = x − 1, indeed x = y + 1. You win!

(For example, if the demon picks 16, you pick 15. If the demon picks −19, you pick
−20. And so forth.) No matter what the demon picks, your strategy will make you
win—and therefore (†) is true!

By contrast, consider (†) with the order of quantification reversed:

Example 3.53 (A losing demon game)
Consider playing a demon game for the proposition

∃y ∈ Z : ∀x ∈ Z : x = y + 1.

Unfortunately, the ∃ is first, which means that you have to make the first move. But
when you pick a number y, the demon then gets to pick an x—and there are an infini-
tude of x values that the demon can choose so that x 6= y + 1. (You pick 42? The de-
mon picks 666. You pick 17? The demon picks 666. You pick 665? The demon picks
616.) Therefore you can’t guarantee that you win the game, so we haven’t established
this claim.

By the way, you could win a demon game to prove the negation of the claim in Exam-
ple 3.53:

¬(the claim from Example 3.53) ≡ ∀y ∈ Z : ∃x ∈ Z : x 6= y + 1.

First, the demon picks some unknown y ∈ Z. Then you have to pick an x ∈ Z such
that x 6= y + 1—but that’s easy: for any y the demon picks, you pick x = y. You win!
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Nested quantifiers as single quantifiers
In our running example—∀x ∈ Z : ∃y ∈ Z : x = y + 1—what kind of thing is

the underlined piece of the expression? It can’t be a proposition, because x is a free
variable in it. But once we plug in a value for x, the expression becomes true or false.
In other words, the expression ∃y ∈ Z : x − 1 = y is itself a (unary) predicate: once we
are given a value of x, we can compute the truth value of the expression. Similarly, the
expression x − 1 = y is also a predicate—but a binary predicate, taking both an x and y
as arguments. Let’s define two predicates:

• P(x, y) denotes the predicate x − 1 = y.
• hasIntPredecessor(x) denotes the predicate ∃y ∈ Z : x − 1 = y.

Using this notation, we can write (†) as

∀x ∈ Z :

hasIntPredecessor(x)︷ ︸︸ ︷

∃y ∈ Z :

P(x,y)︷ ︸︸ ︷
x − 1 = y ≡ ∀x ∈ Z : ∃y ∈ Z : P(x, y)

≡ ∀x ∈ Z : hasIntPredecessor(x). (‡)

One implication of this view is that negating nested quantifiers is really just the same
as negating non-nested quantifiers. For example:

Example 3.54 (Negating nested quantifiers)
We can view the negation of (†), as written in (‡), as follows:

¬(†) ≡ ¬∀x ∈ Z : hasIntPredecessor(x)
≡ ∃x ∈ Z : ¬hasIntPredecessor(x).

And, re-expanding the definition of hasIntPredecessor and again applying the quanti-
fied De Morgan’s Law, we have that

¬hasIntPredecessor(x) ≡ ¬∃y ∈ Z : P(x, y)
≡ ∀y ∈ Z : ¬P(x, y)
≡ ∀y ∈ Z : x − 1 6= y.

Together, these two negations show

¬(†) ≡ ∃x ∈ Z : ¬hasIntPredecessor(x)
≡ ∃x ∈ Z : ∀y ∈ Z : ¬P(x, y)
≡ ∃x ∈ Z : ∀y ∈ Z : x − 1 6= y.

Taking it further: This view of nested quantifiers as a single quantifier whose body just happens to
express its condition using quantifiers has a close analogy with writing a particular kind of function
in a programming language. If we look at a two-argument function in the right light, we can see it as a
function that takes one argument and returns a function that takes one argument. This approach is called
Currying; see p. 357 for some discussion.
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Computer Science Connections

Currying

Consider a binary predicate P(x, y), as used in a quantified expression like
∀y : ∀x : P(x, y). As we discussed, we can think of this expression as first
plugging in a value for y, which then yields a unary predicate ∀x : P(x, y)
which then takes the argument x.

There’s an interesting parallel between this view of nested quantifiers and

fun sum a b = a + b; (* ML *)

def sum(a,b): # Python
return a + b

(define sum ; Scheme
(lambda (a b)

(+ a b)))

Figure 3.33: Implementations of
sum(a, b) = a + b in three languages.

a way of writing functions in some programming languages. For concreteness,
let’s think about a very simple function that takes two arguments and returns
their sum. Figure 3.33 shows implementations of this function in three dif-
ferent programming languages: ML, Python, and Scheme. A few notes about
syntax:

• For ML: fun is a keyword that says we’re defining a function; sum is the
name of it; a b is the list of arguments; and that function is defined to
return the value of a + b.

• For Scheme: (lambda args body) denotes the function that takes ar-
guments args and returns the value of the function body body. Ap-
plying the function f to arguments arg1, arg2, . . . , argN is expressed as
(f arg1 arg2 ... argN). For example, (+ 1 2) has the value 3.

We can then use the function sum to actually add numbers; see Figure 3.34.
But now suppose that we wanted to write a new function that takes one

sum 2 3; (* returns 5 *)
sum 99 12; (* returns 111 *)

sum(2,3) # returns 5
sum(99,12) # returns 111

(sum 2 3) ; returns 5
(sum 99 12) ; returns 111

Figure 3.34: Using sum in all three
languages.

argument and adds 3 to it. Can we make use of the sum function to do so?
(The analogy to predicates is that taking a two-argument predicate and ap-
plying it to one argument gives one-argument predicate; here we’re trying
to take a two-argument function in a programming language and apply it to
one argument to yield a one-argument function.) It turns out that creating the
“add 3” function using sum is very easy in ML: we simply apply sum to one
argument, and the result is a function that “still wants” one more argument.
See Figure 3.35.

A function like sum in ML, which takes its multiple arguments “one at a

(* define a "value" add3 as sum
applied to 3, making add3 a
1-argument function *)

val add3 = sum 3;

add3 0; (* returns 3 *)
add3 108; (* returns 111 *)
add3 199; (* returns 202 *)

Figure 3.35: Applying sum to one of two
arguments in ML, and then applying the
resulting function to a second argument.

time,” is said to be Curried—in honor of Haskell Curry, a 20th-century Ameri-
can logician. (The programming language Haskell is also named in his honor.)
Thinking about Curried functions is a classical topic in the study of the struc-
ture of programming languages.13 While writing Curried functions is almost For more, see the classic text

13 Harold Abelson and Gerald Jay Suss-
man with Julie Sussman. Structure and
Interpretation of Computer Programs. MIT
Press/McGraw-Hill, 2nd edition, 1996.

automatic in ML, one can also write Curried functions in other programming
languages, too. Examples of a Curried version of sum in Python and Scheme
are in Figure 3.36; it’s even possible to write Curried functions in C or Java,
though it’s much less natural than in ML/Python/Scheme.

def sum(a):
def sumA(b):

return a + b
return sumA

sum(3)(2) # returns 5
add3 = sum(3)
add3(2) # returns 5

(define sum ;; define sum as
(lambda (a) ;; the function taking argument a and returning

(lambda (b) (+ a b))) ;; [the function taking argument b and returning a+b]

((sum 3) 2) ;; returns 5
(define add3 (sum 3))
(add3 2) ;; returns 5

Figure 3.36: Python/Scheme Currying.
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3.5.4 Exercises

Let F denote the set of all functions f : R → R taking real numbers as input and producing real numbers as output.
(For one example, plusone(x) = x + 1 is a function plusone : R → R, so plusone ∈ F.) Are the following propositions
true or false? Justify your answers, including a description of the function(s) if they exist.
3.141 ∀c ∈ R :

[∃f ∈ F : f (0) = c
]

3.142 ∃f ∈ F :
[
∀c ∈ R : f (0) = c

] 3.143 ∀c ∈ R :
[∃f ∈ F : f (c) = 0

]

3.144 ∃f ∈ F :
[
∀c ∈ R : f (c) = 0

]

Under many operating systems, users can schedule a task to be run at a specified time in the future. In Unix-like
operating systems, this type of scheduled job is called a cron job. (For example, a backup might run nightly at 2:00am, Greek: chron-

“time.”and a scratch drive might be emptied out weekly on Friday night at 11:50pm.)
Let T = {1, 2, . . . , tmax} be a set of times (measured in minutes, let’s say), and let J be a set of jobs. Let scheduledAt

be a predicate so that scheduledAt(j, t) is true if and only if job j is scheduled at time t. (Assume that jobs do not last
more than one minute.) Formalize the following conditions using only standard quantifiers, arithmetic operators,
logical connectives, and the scheduledAt predicate.
3.145 There is never more than one job scheduled at the same time.
3.146 Every job is scheduled at least once.
3.147 Job A is never run twice within two minutes.
3.148 Job B is run at least three times.
3.149 Job C is run at most twice.
3.150 Job D is run sometime after the last time that Job E is run.
3.151 Job F is run at least once between consecutive executions of Job G.
3.152 Job H is run at most once between consecutive executions of Job I.

Let P[1 . . . n, 1 . . . m] be a 2-dimensional array of the pixels of a black-and-white image: for every x and y, the value of
P[x, y] = 0 if the 〈x, y〉th pixel is black, and P[x, y] = 1 if it’s white. Translate these statements into predicate logic:
3.153 Every pixel in the image is black.
3.154 There is at least one white pixel.
3.155 Every row has at least one white pixel.
3.156 There are never two consecutive white pixels in the same column.

Figure 3.37: A
sample American
crossword puzzle.

A standard American crossword puzzle is a 15-by-15 grid, which can be represented as a two-dimensional 15-
by-15 array G, where G[i, j] = True if and only if the cell in the ith row and jth column is “open” (a.k.a. unfilled,
a.k.a. not a black square). Maximal contiguous horizontal or vertical sequences of two or more open squares are
called words. For any i ≤ 0, i > 15, j ≤ 0, or j > 15, treat G[i, j] = False.

Taking it further: The assumption that the 〈i, j〉th cell of G is False except when 1 ≤ i, j ≤ 15 can be re-
expressed as us pretending that our real grid is surrounded by black squares. In CS, this style of structure is
called a sentinel, wherein we introduce boundary values to avoid having to write out verbose special cases.

There are certain customs that G must obey to be a standard American puzzle. (See Figure 3.37, for example.)
Rewrite the informally stated conditions that follow as fully formal definitions.
3.157 no unchecked letters: every open cell appears in both a down word and an across word.
3.158 no two-letter words: every word has length at least 3.
3.159 rotational symmetry: if the entire grid is rotated by 180◦ , then the rotated grid is identical to
the original grid.
3.160 overall interlock: for any two open squares, there is a path of open squares that connects the
first to the second. (That is, we can get from here to there through words.) Your answer should formally
define a predicate P(i, j, x, y) that is true exactly when there exists is a path from 〈i, j〉 to 〈x, y〉: “there
exists a sequence of open squares starting with 〈i, j〉 such that . . .”.)

3.161 Definition 2.30 defines a partition of a set S as a set {A1, A2, . . . , Ak} of sets such that (i) A1, A2 , . . . , Ak
are all nonempty; (ii) A1 ∪ A2 ∪ · · · ∪ Ak = S; and (iii) for any distinct i, j ∈ {1, . . . , k}, the sets Ai and Aj are
disjoint. Formalize this definition using nested quantifiers and basic set notation.

3.162 Consider the “maximum” problem: given an array of numbers, return the maximum element of
that array. Complete the formal specification for this problem by finishing the specification under “output”:

Input: An array A[1 . . . n], where each A[i] ∈ Z.
Output: An integer x ∈ Z such that . . .
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Let T = {1, . . . , 12} × {0, 1, . . . , 59} denote the set of numbers that can be displayed on a digital clock in twelve-hour
mode. (A clock actually displays a colon between the two numbers.) We can think of a clock as a function c : T → T, so
that when the real time is t ∈ T, then the clock displays the time c(t). (For example, if fastby7 runs seven minutes fast,
then fastby7(12:00) = 12:07.)

For several of these questions, it may be helpful to make use of the function add : T × Z≥0 → T so that add(t, x)
denotes the time that’s x minutes later than t. See Exercise 2.243.

Formalize each of the following predicates using only the standard quantifiers and equality symbols.
3.163 A clock is right if it always displays the correct time. Formalize the predicate right.
3.164 A clock keeps time if there’s some fixed offset by which it is always off from being right. (For
example, fastby7 above correctly keeps time.) Formalize the predicate keepsTime.
3.165 A clock is close enough if it always displays a time that’s within two minutes of the correct time.
Formalize the predicate closeEnough.
3.166 A clock is broken if there’s some fixed time that it always displays, regardless of the real time.
Formalize the predicate broken.
3.167 “Even a broken clock is right twice a day,” they say. (They mean: “even a broken clock displays
the correct time at least once per T.”) Formalize the adage and prove it true.

A classic topic of study for computational biologists is genomic distance measures: given two genomes, we’d like to
report a single number that represents how different those two genomes are. These distance computations are useful in,
for example, reconstructing the evolutionary tree of a collection of species.

Consider two genomes A and B of bacterium. Let’s label the n genes that appear in A’s chromosome, in order, as
πA = 1, 2, . . . , n. The same genes appear in a different order in B—say, in the order πB = r1, r2, . . . rn. A particular
model of genomic distance will define a specific way in which this list of numbers can mutate; the question at hand is to
find the minimum-length sequence of these mutations that are necessary to explain the difference between the orders πA
and πB. One type of biologically motivated mutation is the prefix reversal—in which some prefix of πB is reversed, as
in 〈3, 2, 1, 4, 5〉 → 〈1, 2, 3, 4, 5〉. It turns out that this model is exactly the pancake-flipping problem, the subject of
the lone academic paper with Bill Gates as an author.14 (See Figure 3.38.)

14 W. H. Gates and
C. H. Papadim-
itriou. Bounds for
sorting by prefix
reversals. Dis-
crete Mathematics,
27:47–57, 1979.

foo
(a) Two pancake-flipping instances. Given a stack of pancakes, with radii labeled from top to bottom, we
must sort the pile by radius. We sort with a sequence of flips: turn the top k pancakes upside down, for
some k, and replace them (inverted) on top of the remaining pancakes. The left instance is 〈4, 3, 2, 1, 5〉;
the right is 〈5, 4, 3, 1, 2〉. They require 1 and 2 flips, respectively, to solve (as shown).
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a b c

(b) A biological view. Think of a chromosome as a sequence of genes. If, in the course of cell activity,
one end of the chromosome comes in contact with a point in the middle of the chromosome, a loop
forms. If the loop untangles itself “the other way around,” the effect is to reverse the order of the genes
in that loop. This transformation effects a prefix reversal on those genes. Here 123456789abc becomes
987654321abc.

Figure 3.38: The
pancake-flipping
problem, and
its biological
significance.

Suppose that you are given a stack of pancake radii r1, r2, . . . , rn, arranged from top to bottom, where {r1, r2, . . . , rn} =
{1, 2, . . . , n} (but not necessarily in order). Write down a fully quantified logical expression that expresses the condi-
tion that . . .
3.168 . . . the given pancakes are sorted.
3.169 . . . the given pancakes can be sorted with exactly one flip (see Figure 3.38).
3.170 . . . the given pancakes can be sorted with exactly two flips. (Hint: writing a program to verify that
your indices aren’t off by one is a very good idea!)

Let P be a set of people, and let T be a set of times. Let friends(x, y) be a predicate denoting that x ∈ P and y ∈ P are
friends. Let bought(x, t) be a predicate denoting that x ∈ P bought an iPad at time t ∈ T.
3.171 Formalize this statement in predicate logic: “Everyone who bought an iPad has a friend who
bought one previously.”
3.172 Is the claim from Exercise 3.171 true (in the real world)? Justify your answer.
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In programming, an assertion is a logical statement that announces (“asserts”) a condition ϕ that the programmer
believes to be true. For example, a programmer who is about to access the 202nd element of an array A might assert that
length(A) ≥ 202 before accessing this element. When an executing program in languages like C and Java reaches an
assert statement, the program aborts if the condition in the statement isn’t true.

foo(A[1...n]):

last = 0

for index = 1 ... n-1:

if A[index] > A[index+1]:

last = index

assert(last >= 1 and last <= n-1)

swap A[last], A[last+1]

bar(A[1...n]):

total = A[1]

i = 1

for i = 2 ... n-1:

if A[i+1] > A[i]:

total = total + A[i]

assert(total > A[1])

return total

baz(A[1...n]):

for start = 1 ... n-1:

min = start

for i = start+1 ... n:

assert(start == 1

or A[i] > A[start-1])

if A[min] > A[i]:

min = i

swap A[start], A[min]

Figure 3.39: Some
functions using
assert statements.

For the following, give a nonempty input array A that would cause the stated
assertion from Figure 3.39 to fail (that is, for the asserted condition to be false).
3.173 foo

3.174 bar

3.175 baz

Taking it further: Using assertions can be an extremely valuable way of doc-
umenting and debugging programs, particularly because liberally including
assertions will allow the revelation of unexpected data values much earlier in the
execution of a program. And these languages have a global toggle that allows
the testing of assertions to be turned off, so once the programmer is satisfied
that the program is working properly, she doesn’t have to worry about any
running-time overhead for these checks.

While the quantifiers ∀ and ∃ are by far the most common, there are some other quanti-
fiers that are sometimes used. For each of the following quantifiers, write an expression
that is logically equivalent to the given statement that uses only the quantifiers ∀ and ∃;
standard propositional logic notation (∧,¬,∨,⇒); standard equality/inequality notation
(=,≥,≤,<,>); and the predicate P in the question.
3.176 Write an equivalent expression to ∃! x ∈ Z : P(x) (“there exists a
unique x ∈ Z such that P(x)”), which is true when there is one and only one
value of x in the set Z such that P(x) is true.
3.177 Write an equivalent expression to ∃∞ x ∈ Z : P(x) (“there exist
infinitely many x ∈ Z such that P(x)”), which is true when there are infinitely
many different values of x ∈ Z such that P(x) is true.

Here are two formulations of Goldbach’s conjecture (see Example 3.47):

∀n ∈ Z :
[

n > 2 ∧ 2 | n ⇒ (∃p ∈ Z : ∃q ∈ Z :
[
isPrime(p) ∧ isPrime(q) ∧ n = p + q

]) ]

∀n ∈ Z : ∃p ∈ Z : ∃q ∈ Z :
[

n ≤ 2 ∨ 2 6 | n ∨
[
isPrime(p) ∧ isPrime(q) ∧ n = p + q

] ]
.

3.178 Prove that these two formulations of Goldbach’s conjecture are logically equivalent.
3.179 Rewrite Goldbach’s conjecture without using isPrime—that is, using only quantifiers, the | predi-
cate, and standard arithmetic (+, ·, ≥, etc.).
3.180 Even the | predicate implicitly involves a quantifier: p | q is equivalent to ∃k ∈ Z : p · k = q. Rewrite
Goldbach’s conjecture without using the | predicate either—that is, use only quantifiers and standard
arithmetic symbols (+, ·, ≥, etc.).

3.181 (programming required) As we discussed, the truth value of Goldbach’s conjecture is currently
unknown. As of April 2012, the conjecture has been verified for all even integers from 4 up to 4 × 1018 ,
through a massive distributed computation effort led by Tomás Oliveira e Silva. Write a program to test
Goldbach’s conjecture, in a programming language of your choice, for even integers up to 10,000.

Most real-world English utterances are ambiguous—that is, there are multiple possible interpretations of the given
sentence. A particularly common type of ambiguity involves order of quantification. For each of the following
English sentences, find as many different logical readings based on order of quantification as you can. Write down those
interpretations using pseudological notation, and also write a sentence that expresses each meaning unambiguously.
3.182 A computer crashes every day.
3.183 Every prime number except 2 is divisible by an odd integer greater than 1.
3.184 Every student takes a class every term.
3.185 Every submitted program failed on a case submitted by a student.

3.186 You should have found two different logical interpretations in Exercise 3.183. One of these inter-
pretations is a theorem, and one of them is not. Decide which is which, and prove your answers.
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Let S be an arbitrary nonempty set and let P be an arbitrary binary predicate. Decide whether the following statements
are always true (for any P and S), or whether they can be false. Prove your answers.
3.187

[
∃y ∈ S : ∀x ∈ S : P(x, y)

]
⇒

[
∀x ∈ S : ∃y ∈ S : P(x, y)

]

3.188
[∀x ∈ S : ∃y ∈ S : P(x, y)

] ⇒ [∃y ∈ S : ∀x ∈ S : P(x, y)
]

Consider any unary predicate P(x) over a nonempty set S. It turns out that both of the following propositions are
theorems of propositional logic. Prove them both.
3.189 ∀x ∈ S :

[
P(x) ⇒

(
∃y ∈ S : P(y)

)]

3.190 ∃x ∈ S :
[
P(x) ⇒

(
∀y ∈ S : P(y)

)]

The following blocks of code use nested loops to compute some fact about a predicate P. For each, write a fully quantified
statement of predicate logic whose truth value matches the value returned by the given code. (Assume that S is a finite
universe.)
3.191
for x in S:

for y in S:

flag = False

if P(x) or P(y):

flag = True

if flag:

return True

return False

3.192
for x in S:

flag = False

for y in S:

if not P(x,y):

flag = True

if flag:

return True

return False

3.193
for x in S:

flag = True

for y in S:

if not P(x,y):

flag = False

if flag:

return True

return False

3.194
for x in S:

flag = False

for y in S:

if not P(x,y):

flag = True

if not flag:

return False

return True

3.195
for x in S:

for y in S:

if P(x,y):

return False

return True

3.196
flag = False

for x in S:

for y in S:

if P(x,y):

flag = True

return flag

3.197 As we’ve discussed, there is no algorithm that can decide whether a given fully quantified propo-
sition ϕ is a theorem of predicate logic. But there are several specific types of fully quantified propositions
for which we can decide whether a given statement is a theorem. Here you’ll show that, when quantification
is only over a finite set, it is possible to give an algorithm to determine whether ϕ is a theorem. Suppose that
you are given a fully quantified proposition ϕ, where the domain for every quantifier is a finite set—say
S = {0, 1}. Describe an algorithm that is guaranteed to figure out whether ϕ is a theorem.



362 CHAPTER 3. LOGIC

3.6 Chapter at a Glance

Propositional Logic

negation ¬p “not p”
disjunction (inclusive: “p, q, or both”) p ∨ q “p or q”
conjunction p ∧ q “p and q”
implication p ⇒ q “if p, then q” or “p implies q”
equivalence p ⇔ q “p if and only if q”
exclusive or (“p or q, but not both”) p ⊕ q “p xor q”

Figure 3.40: Logical
connectives.

A proposition is the kind of thing
that is either true or false. An
atomic proposition (or Boolean
variable) is a conceptually indi-
visible proposition. A compound
proposition (or Boolean formula)
is one built up using a logical connective and one or more simpler propositions. The
most common logical connectives are the ones shown in Figure 3.40. A proposition
that contains the atomic propositions p1, . . . , pk is sometimes called a Boolean formula
over p1, . . . , pk or a Boolean expression over p1, . . . , pk.

p ¬p
T F
F T

p q p ∧ q p ∨ q
T T T T
T F F T
F T F T
F F F F

p q p ⇒ q
T T T
T F F
F T T
F F T

p q p ⊕ q p ⇔ q
T T F T
T F T F
F T T F
F F F T

Figure 3.41: Truth
tables for the basic
logical connectives.

The truth value of a proposition is its truth or falsity. (The truth value of a
Boolean formula over p1, . . . , pk is determined only by the truth values of each
of p1, . . . , pk.) Each logical connective is defined by how the truth value of
the compound proposition formed using that connective relates to the truth
values of the constituent propositions. A truth table defines a connective by
listing, for each possible assignment of truth values for the constituent propo-
sitions, the truth value of the entire compound proposition. See Figure 3.41.
Observe that the proposition p ⇒ q is true if, whenever p is true, q is too. So
the only situation in which p ⇒ q is false is when p is true and q is false. False
implies anything! Anything implies true!

Consider a Boolean formula over variables p1, . . . , pk. A truth assignment
is a setting to true or false for each variable. (So a truth assignment corre-
sponds to a row of the truth table for the proposition.) A truth assignment
satisfies the proposition if, when the values from the truth assignment are
plugged in, the proposition is true. A Boolean formula is a tautology if every
truth assignment satisfies it; it’s satisfiable if some truth assignment satisfies
it; and it’s unsatisfiable or a contradiction if no truth assignment does. Two
Boolean propositions are logically equivalent if they’re satisfied by exactly the
same truth assignments (that is, they have identical truth tables).

Consider an implication p ⇒ q. The antecedent or hypothesis of the implication is
p; the consequent or conclusion of the implication is q. The converse of the implication
p ⇒ q is the implication q ⇒ p. The contrapositive is the implication ¬q ⇒ ¬p. Any im-
plication is logically equivalent to its contrapositive. But an implication is not logically
equivalent to its converse!

A literal is a Boolean variable or the negation of a Boolean variable. A proposition is
in conjunctive normal form (CNF) if it is the conjunction (and) of a collection of clauses,
where a clause is a disjunction (or) of a collection of literals. A proposition is in disjunc-
tive normal form (DNF) if it is the disjunction of a collection of clauses, where a clause
is a conjunction of a collection of literals. Every proposition is logically equivalent to a
proposition that is in CNF, and to another that is in DNF.
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Predicate Logic

A predicate is a statement containing some number of variables that has a truth value
once values are plugged in for those variables. (Alternatively, a predicate is a Boolean-
valued function.) Once particular values for these variables are plugged in, the result-
ing expression is a proposition. A proposition can also be formed from a predicate
through quantifiers:

• The universal quantifier ∀ (“for all”): the proposition ∀x ∈ U : P(x) is true if, for every
x ∈ U, we have that P(x) is true.

• The existential quantifier ∃ (“there exists”): the proposition ∃x ∈ U : P(x) is true if, for
at least one x ∈ U, we have that P(x) is true.

The set U is called the universe or domain of discourse. When the universe is clear from
context, it may be omitted from the notation.

In the expression
[∀x :

]
or

[∃x :
]
, the scope or body of the quantifier is the un-

derlined blank, and the variable x is bound by the quantifier. A free or unbound variable
is one that is not bound by any quantifier. A fully quantified expression is one with no
free variables.

A theorem of predicate logic is a fully quantified expression that is true for all possi-
ble meanings of the predicates in it. Two expressions are logically equivalent if they are
true under precisely the same set of meanings for their predicates. (Alternatively, two
expressions ϕ and ψ are logically equivalent if ϕ ⇔ ψ is a theorem.) Two useful theo-
rems of predicate logic are De Morgan’s laws: ¬∀x ∈ S : P(x) ⇔ ∃x ∈ S : ¬P(x) and
¬∃x ∈ S : P(x) ⇔ ∀x ∈ S : ¬P(x).

There is no general algorithm that can test whether any given expression is a theo-
rem. If we wish to prove that an implication ϕ ⇒ ψ is an theorem, we can do so with a
proof by assuming the antecedent: to prove that the implication ϕ ⇒ ψ is always true, we
will rule out the one scenario in which it wouldn’t be; specifically, we assume that ϕ is
true, and then prove that ψ must be true too, under this assumption.

A vacuously quantified statement is one in which the domain of discourse is the
empty set. The vacuous universal quantification ∀x ∈ ∅ : P(x) is a theorem; the
vacuous existential quantification ∃x ∈ ∅ : P(x) is always false.

Quantifiers are nested if one quantifier is inside the scope of another quantifier.
Nested quantifiers work in precisely the same way as single quantifiers, applied in
sequence. A proposition involving nested quantifier like ∀x ∈ S : ∃y ∈ T : R(x, y)
is true if, for every choice of x, there is some choice of y (which can depend on the
choice of x) for which R(x, y) is true. Order of quantification matters in general; the
expressions ∀x : ∃y : R(x, y) and ∃y : ∀x : R(x, y) are not logically equivalent.
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Key Terms and Results

Key Terms

Propositional Logic

• proposition
• truth value
• atomic and compound propositions
• logical connectives:

– negation (¬)
– conjunction (∧)
– disjunction (∨)
– implication (⇒)
– exclusive or (⊕)
– if and only if (⇔)

• truth assignments and truth tables
• tautology
• satisfiability/unsatisfiability
• logical equivalence
• antecedent and consequent
• converse, contrapositive, and inverse
• conjunctive normal form (CNF)
• disjunctive normal form (DNF)

Predicate Logic

• predicate
• quantifiers:

– universal quantifier (∀)
– existential quantifier (∃)

• free and bound variables
• fully quantified expression
• theorems of predicate logic
• logical equivalence in predicate logic
• proof by assuming the antecedent
• vacuous quantification
• nested quantifiers

Key Results

Propositional Logic

1. We can build a truth table for any proposition by re-
peatedly applying the definitions of each of the logical
connectives, as shown in Figure 3.4.

2. Two propositions ϕ and ψ are logically equivalent if and
only if ϕ ⇔ ψ is a tautology.

3. An implication p ⇒ q is logically equivalent to its contra-
positive ¬q ⇒ ¬p, but not to its converse q ⇒ p.

4. There are many important propositional tautologies
and logical equivalences, some of which are shown in
Figures 3.10 and 3.12.

5. We can show that propositions are logically equivalent by
showing that every row of their truth tables are the same.

6. Every proposition is logically equivalent to one that is
in disjunctive normal form (DNF) and to one that is in
conjunctive normal form (CNF).

Predicate Logic

1. We can build a proposition from a predicate P(x) by plug-
ging in a particular value for x, or by quantifying over x
as in ∀x : P(x) or ∃x : P(x).

2. Unlike with propositional logic, there is no algorithm
that is guaranteed to determine whether a given fully
quantified predicate-logic expression is a theorem.

3. There are many important predicate-logic theorems,
some of which are shown in Figure 3.23.

4. The statements ¬∀x : P(x) and ∃x : ¬P(x) are logically
equivalent. So are ¬∃x : P(x) and ∀x : ¬P(x).

5. We can think of nested quantifiers as a sequence of single
quantifiers, or as “games with a demon.”



4
Proofs

In which our heroes build ironclad scaffolding to support their claims,
thereby making them impervious to any perils they might encounter.
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4.1 Why You Might Care

By far the best proof is experience.

Sir Francis Bacon (1561–1626)

A proof is a convincing argument that establishes a particular claim as fact. That
claim might be something explicitly computational: Bubble Sort performs fewer com-
parisons than Merge Sort when the input array is already sorted, for example. Or the claim
might be noncomputational, at least superficially: a property of an operating system,
a structural fact about the minimum-length sequence of flips to sort pancakes, the
impossibility of designing a voting system with a certain set of properties.

Generally speaking, our goal—in this chapter, in this book—is to establish new
facts. And that’s precisely the point of a proof: to derive a new fact from old facts,
while persuading the reader that the new fact is, indeed, a fact. (For example, we can
derive a new fact using Modus Ponens: if we know both p and p ⇒ q, then we can
conclude that q is a fact, too.) In Section 4.3, the technical meat of this chapter, we will
develop a toolbox of techniques to use in proofs, and some strategies for choosing
among these techniques. (In Section 4.5, we’ll also catalogue some common types
of mistakes in purported proofs, so that you can avoid them—and recognize bogus
proofs when others attempt them.) We’ll illustrate these proof techniques throughout
Section 4.3 with a hefty collection of examples about arithmetic.

While the proof techniques themselves are the “point” of this chapter, in many cases
the fact that we’re proving is at least as interesting as the proof of that fact. Through-
out our tour of proof techniques, we’ll encounter a variety of examples of (fingers
crossed!) interesting facts: about propositional logic, including the fact that we need
only one logical connective (“nand”) to express every proposition; about geometry
(the Pythagorean theorem); about prime numbers; and about uncomputability (there
are problems that cannot be solved by any computer!). We begin in Section 4.2 with
an extended exploration of error-correcting codes, systems that allow for the reliable
transmission and storage of information even in environments that corrupt data as it’s
stored/transmitted/received/retrieved. (For example, CDs/DVDs are susceptible to
scratches, and deep-space satellites’ transmissions are susceptible to radiation.) This
section will merely scratch the surface of error-correcting codes, but it will serve as a
nice introduction to error-correcting codes—and to proofs.

Why are proofs useful in computer science? First, proofs help prevent bugs. Whether
or not she writes down in full detail a proof that her code is correct, a good software
developer is always reasoning carefully about whether a function performs the task it’s
supposed to perform, or whether a particular optimization continues to meet the given
specification. For a theoretical computer scientist, proofs are bread and butter: proofs
of correctness for novel algorithms, or proofs of the hardness of solving a particular
problem. For both theoretically and practically oriented computer scientists, a proof
often yields great insight that can avoid a brute force solution, improve the efficiency
of the code, or unearth some structural property of a problem that reveals that the
problem doesn’t even need to be solved in the first place.
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4.2 An Extended Application with Proofs: Error-Correcting Codes

Irrationally held truths may be more harmful than
reasoned errors.

Thomas H. Huxley (1825–1895)

This section introduces error-correcting codes, a way of encoding data so that it can
be transmitted correctly even in the face of (a limited number of) errors in transmis-
sion. These codes are used widely—for example, on DVDs/CDs and in file transfer
protocols—and they’re interesting to study on their own. But, despite appearances,
they are not the point of this section! Rather, they’re mostly an excuse to introduce a
technical topic with some interesting (and nonobvious) results—and to persuade you
of a few of those results. In other words, this section is really about proofs.

Error-detecting and error-correcting codes: the basic idea
Visa and Mastercard use 16-digit numbers for their credit and debit cards, but it

turns out that there are only 1015 valid credit-card numbers: a number is valid only
if a particular arithmetic calculation on the digits—more or less, adding up the digits
and taking the result modulo 10—always turns out to be zero. (See Exercises 4.1–4.5
for details of the calculation.) Or, to describe this fact in another way: if you get a
(mildly gullible) friend to read you any 15 digits of his or her credit-card number,
you can figure out the 16th digit. Less creepily, this system means that there’s an error-
detection mechanism built into credit-card numbers: if any one digit in your number is
mistranscribed, then a very simple algorithm can reject that incorrect card number as
invalid (because the calculation above will yield an answer other than zero).

In this section, we’ll explore encoding schemes with this sort of error-handling ca-
pability. Suppose that you have some binary data that you wish to transmit to a friend
across an imperfect channel—that is, one that (due to cosmic rays, hardware failures,
or whatever) occasionally mistransmits a 0 as a 1, or vice versa. (When we refer to an
error in a bitstring x, what we mean is a “substitution error,” where some single bit in
x is flipped.) The fundamental idea will be to add redundancy to the transmitted data;
if there is enough redundancy relative to the number of errors, then enough correct
information will be transmitted to allow the receiver to reconstruct the original mes-
sage. We’ll explore both error-detecting codes that are able to recognize whether an error
has occurred (at least, as long as there aren’t too many errors) and error-correcting codes
that can fix a small number of errors. To reiterate the above, though: although we’re
focusing on error-correcting and error-detecting codes in this section, the fundamental
purpose of this section is to introduce proof techniques. Along the way, we’ll see some
interesting results about error-correcting codes, but the takeaway message is really
about the methods that we’ll use to prove those results.

Taking it further: Aside from credit-card numbers, other examples of error-detecting or error-correcting
codes include checksums on a transferred file—we might break a large file we wish to transmit into 32-bit
blocks, transmit those blocks individually, and transmit as a final 32-bit block the XOR of all previously
transmitted blocks—as a way to check that the file was transmitted properly. Error-correcting codes are
also used in storing data on media (hard disks and CDs/DVDs, for example) so that one can reconstruct
stored data even in the face of hardware errors (or scratches on the disc).
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The idea of error detection appears in other contexts, too. UPC (“universal product code”) bar codes
on products in supermarkets use error checking similar to that in credit-card numbers. There are error-
detection aspects in DNA. And “the buddy system” from elementary school field trips detects any one
“deletion error” among the group (though two “deletions” may evade detection of the system).

4.2.1 A Formal Introduction

Imagine a sender who wishes to transmit a message m ∈ {0, 1}k to a receiver. A code C is a
subset of {0, 1}n, listing the set of legal codewords; each k-bit message m is encoded as an
n-bit codeword c ∈ C . The codeword is then transmitted to the receiver, but it may be
corrupted during transmission. The recipient of the (possibly corrupted) n-bit string c′

decodes c′ into a new message m′ ∈ {0, 1}k. The goal is that, so long as the corruption
is limited, the decoded message is identical to the original message—in other words,
that m = m′ as long as c′ ≈ c. (We’ll make the meaning of “≈” precise soon.) Figure 4.1
shows a schematic of the process.

m ∈ {0, 1}k

encode
c ∈ C

C ⊆ {0, 1}n
corruption

c′ ∈ {0, 1}n

decode
m′ ∈ {0, 1}k

sender receiver
Figure 4.1: A
schematic view of
error-correcting
codes. The goal
is that, as long as
there isn’t too much
corruption, the
received message
m′ is identical to the
sent message m.

(For an error-detecting code, the receiver still receives the bitstring c′, but determines
whether the originally transmitted codeword was corrupted instead of determining which
codeword was originally transmitted, as in an error-correcting code.)

Measuring the distance between bitstrings
Before we get to codes themselves, we need a way of quantifying how similar or

different two bitstrings are: The Hamming dis-
tance is named after
Richard Hamming,
a 20th-century
American mathe-
matician/computer
scientist who was
the third winner of
the Turing Award.

Definition 4.1 (Hamming distance)
Let x, y ∈ {0, 1}n be two n-bit strings. The Hamming distance between x and y, denoted by
∆(x, y), is the number of positions in which x and y differ. In other words,

∆(x, y) :=
∣∣∣
{

i ∈ {1, 2, . . . , n} : xi 6= yi
}∣∣∣ .

(Hamming distance is undefined if x and y don’t have the same length.)

For example, ∆(011, 101) = 2 because 011 and 101 differ in bit positions #1 and #2, and
∆(0011, 0111) = 1 because 0011 and 0111 differ in bit #2. Similarly, ∆(0000, 1111) = 4
because all four bits differ, and ∆(10101, 10101) = 0 because all five bits match.

In Exercise 4.6, you’ll show that the Hamming distance is a metric, which means that
it satisfies the following properties, for all bitstrings x, y, z ∈ {0, 1}n:
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• “reflexivity”: ∆(x, y) = 0 if and only if x = y;
• “symmetry”: ∆(x, y) = ∆(y, x); and
• “the triangle inequality”: ∆(x, y) ≤ ∆(x, z) + ∆(z, y). (See Figure 4.2.)

Informally, the fact that ∆ is a metric means that it generally matches your intuitions
about geometric (Euclidean) distance.

x

y

z
∆(x, y)

∆(x, z)

∆(z, y)

Figure 4.2: The
triangle inequality.
The distance from x
to y isn’t decreased
by “stopping off” at
z along the way.

Error-detecting and error-correcting codes

Definition 4.2 (Codes, messages, and codewords)
A code is a set C ⊆ {0, 1}n, where |C| = 2k for some integer 1 ≤ k ≤ n. Any element of
{0, 1}k is called a message, and the elements of C are called codewords.

(It might seem a bit strange to require that the number of codewords in C be a precise
power of two—but doing so is convenient, as it allows us to consider all k-bit strings as
the set of possible messages, for k := log2 |C|.) Here’s an example of a code:

Example 4.1 (A small code)
The set C := {000000, 101010, 000111, 100001} is a code. Because |C| = 4 = 22, there
are four messages, namely the four elements of {0, 1}2 = {00, 01, 10, 11}. And because
C ⊆ {0, 1}6, the codewords—the four elements of the set C—are elements of {0, 1}6.

We can think of a code as being defined by a pair of operations:

• encoding: given a message m ∈ {0, 1}k, which codeword in C should we transmit?
(We’d break up a longer message into a sequence of k-bit message chunks.)

• decoding: from a received (possibly corrupted) bitstring c′ ∈ {0, 1}n, what message
should we infer was sent? (Or, if we trying to detect errors rather than correct them:
from a received bitstring c′ ∈ {0, 1}n, do we say that an error occurred, or not?)

For the moment, we’ll consider a generic (and slow) way of encoding and decoding.
Given C , we build a table mapping messages to codewords, by matching up the ith-
largest message with the ith-largest codeword (with both the messages from {0, 1}k

and the codewords in C sorted in numerical order):

• We encode a message m by the codeword in row m of the table.
• We detect an error in a received bitstring c′ by reporting “no error” if c′ appears in

the table, and reporting “error” if c′ does not appear in the table.
• We decode a received bitstring c′ by identifying the codeword c ∈ C that’s closest

to c′, measured by Hamming distance. We decode c′ as the message in row c of the
table. (If there’s a tie, we choose one of the tied-for-closest codewords arbitrarily.)

m
es

sa
ge

co
de

w
or

d

00 000000
01 000111
10 100001
11 101010

Figure 4.3: The
message/codeword
table for the code
from Example 4.1.

Example 4.2 (Encoding and decoding with a small code)
Recall the code {000000, 101010, 000111, 100001} from Example 4.1. Sorting the four
codewords (and the messages from {0, 1}2), we get the table in Figure 4.3.
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For example, we encode the message 10 as the codeword 100001.
If we receive the bitstring 111110, we report “error” because 111110 is not in C .
To decode the received bitstring 111110, we see that ∆(111110, 000000) = 5,

∆(111110, 000111) = 4, ∆(111110, 100001) = 5, and ∆(111110, 101010) = 2. The last
of these distances is smallest, so we would decode 111110 as the message 11 (corre-
sponding to codeword 101010).

The danger in error detection is that we’re sent a codeword c ∈ C that’s corrupted
into a bitstring c′, but we report “no error” because c′ ∈ C . (Note that we’re never
wrong when we report “error.”) The danger in error correction is that we report an-
other codeword c′′ ∈ C because c′ is closer to c′′ than it is to c. (As we’ll see soon,
these dangers are really about Hamming distance between codewords: we might make a
mistake if two codewords in C are too close together, relative to the number of errors.)
Here are the precise definitions of error-detecting and error-correcting codes:

Definition 4.3 (Error-detecting and error-correcting codes)
Let C ⊆ {0, 1}n be a code, and let ℓ ≥ 1 be any integer.

We say that C can detect ℓ errors if, for any codeword c ∈ C and for any sequence of up to
ℓ errors applied to c, we can correctly report “error” or “no error.”

The code C can correct ℓ errors if, for any codeword c ∈ C and for any sequence of up to ℓ
errors applied to c, we can correctly identify that c was the original codeword.

Here’s an example, for our small example code:

c′ ∆(
c′

,0
00

00
0)

∆(
c′

,0
00

11
1)

∆(
c′

,1
00

00
1)

∆(
c′

,1
01

01
0)

000000∗ 0 3 2 3
000001† 1 2 1 4
000010 1 2 3 2
000011 2 1 2 3
000100 1 2 3 4
000101 2 1 2 5
000110 2 1 4 3
000111∗ 3 0 3 4
001000 1 4 3 2
001001 2 3 2 3
001010 2 3 4 1
001011 3 2 3 2
001100 2 3 4 3
001101 3 2 3 4
001110 3 2 5 2
001111 4 1 4 3
010000 1 4 3 4
010001 2 3 2 5
010010 2 3 4 3
010011 3 2 3 4
010100 2 3 4 5
010101 3 2 3 6
010110 3 2 5 4
010111 4 1 4 5
011000 2 5 4 3
011001 3 4 3 4
011010 3 4 5 2
011011 4 3 4 3
011100 3 4 5 4
011101 4 3 4 5
011110 4 3 6 3
011111 5 2 5 4
100000† 1 4 1 2
100001∗ 2 3 0 3
100010 2 3 2 1
100011 3 2 1 2
100100 2 3 2 3
100101 3 2 1 4
100110 3 2 3 2
100111 4 1 2 3
101000 2 5 2 1
101001 3 4 1 2
101010∗ 3 4 3 0
101011 4 3 2 1
101100 3 4 3 2
101101 4 3 2 3
101110 4 3 4 1
101111 5 2 3 2
110000 2 5 2 3
110001 3 4 1 4
110010 3 4 3 2
110011 4 3 2 3
110100 3 4 3 4
110101 4 3 2 5
110110 4 3 4 3
110111 5 2 3 4
111000 3 6 3 2
111001 4 5 2 3
111010 4 5 4 1
111011 5 4 3 2
111100 4 5 4 3
111101 5 4 3 4
111110 5 4 5 2
111111 6 3 4 3

Figure 4.4: The
Hamming distance
of every 6-bit string
to all codewords
from Example 4.1.

Example 4.3 (Error detection and correction in a small code)
Recall C = {000000, 101010, 000111, 100001} from Example 4.1. Figure 4.4 shows every
bitstring x ∈ {0, 1}6, and the Hamming distance between x and each codeword in C .

There are 24 single-bit errors that can happen to codewords in C : there are 4
choices of codeword, and, for each, 6 different one-bit errors that can occur:

no errors: 000000 101010 000111 100001
one error: 100000 001010 100111 000001

010000 111010 010111 110001
001000 100010 001111 101001
000100 101110 000011 100101
000010 101000 000101 100011
000001 101011 000110 100000

This code can detect one error, because the 24 bitstrings below the line are all differ-
ent from the 4 bitstrings above the line; we can correctly report whether the bitstring
in question is a codeword (no errors) or one of the 24 non-codewords (one error). Or,
to state this fact in a different way: the four starred lines of Figure 4.4 corresponding
to uncorrupted codewords are not within one error of any other codeword. On the
other hand, C cannot detect two errors. If we receive the bitstring 000000, we can’t
distinguish whether the original codeword was 000000 (and no errors occurred) or
whether the original codeword was 100001 (and two errors occurred, in 000000).
(Receiving the bitstring 100001 creates the same problem.)
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The code C also cannot correct even one error. Consider the bitstring 100000. We
cannot distinguish (i) the original codeword was 000000 (and one error occurred)
from (ii) the original codeword was 100001 (and one error occurred). Or, to state this
fact differently: the two lines of Figure 4.4 marked with † are only one error away
from two different codewords. (That is, 100000 appears twice in the list of 24 bitstrings
below the line.)

4.2.2 Distance and Rate

Our goal with error-correcting codes is to ensure that the decoded message m′ is iden-
tical to the original message m, as long as there aren’t too many errors in the transmis-
sion. At a high level, we will achieve this goal by ensuring that the codewords in our
code are all “very different” from each other. If every pair of distinct codewords c1 and
c2 are far apart (in Hamming distance), then the closest codeword c to the received
transmission c′ will correspond to the original message, even if “a few” errors occur.
(We’ll quantify “very” and “a few” soon.)

Intuitively, this desire suggests adding a lot of redundancy to our codewords, by
making them more redundant. But we must balance this desire for robustness against
another desire that pulls in the opposite direction: we’d like to transmit a small num-
ber of bits (so that the number of “wasted” non-data bits is small). There’s a seem-
ing trade-off between these two measures of the quality of a code: increasing error
tolerance suggests making the codewords longer (so there’s room for them to differ
more); increasing efficiency suggests making the codewords shorter (so there are fewer
wasted bits). Let’s formally define both of these measures of code quality:

Definition 4.4 (Minimum distance)
The minimum distance of a code C is the smallest Hamming distance between two distinct
codewords of C : that is, the minimum distance of C is min {∆(x, y) : x, y ∈ C and x 6= y}.

(Quiz question: if we hadn’t restricted the minimum in this definition to be only over
pairs such that x 6= y, what would the minimum distance have been?)

Definition 4.5 (Rate)
The rate of a code C is the ratio between message length and codeword length. That is, if C is a
code where |C| = 2k and C ⊆ {0, 1}n, then the rate of C is the ratio k

n .

Let’s compute the rate and minimum distance for our running example: 00
00

00
00

01
11

10
00

01
10

10
10

000000 0 3 2 3
000111 3 0 3 4
100001 2 3 0 3
101010 3 4 3 0

Figure 4.5: The
Hamming distance
between code-
words of C from
Example 4.1.

Example 4.4 (Distance and rate in a small code)
Recall the code C = {000000, 101010, 000111, 100001} from Example 4.1.

The minimum distance of C is 2, because ∆(000000, 100001) = 2. You can check
Figure 4.4 (or see Figure 4.5) to see that no other pair of codewords is closer.

The rate of C is 2
6 , because |C| = 4 = |{0, 1}2|, and the codewords have length 6.
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Relating minimum distance and error detection/correction
We have now defined enough of the concepts that we can state a first nontrivial

theorem, which characterizes the error-detecting and error-correcting capabilities of a
code C in terms of the minimum distance of C . Here is the statement:

Theorem 4.1 (Relationship of minimum distance to detecting/correcting errors)
Let t ≥ 0 be any integer. If the minimum distance of a code C is 2t + 1, then C can detect 2t
errors and correct t errors.

We’re now going to try to prove Theorem 4.1—that is, we’re going to try to generate
a convincing argument that this statement is true. As with any statement that you try

Problem-solving tip:
Step #1 in proving
any claim is to un-
derstand what it’s
saying! (You can’t
persuade someone
of something you
don’t understand.)
One good way to
start to do so is by
plugging particular
values into the
statement.

to prove, our first task is to understand what exactly the claim is saying. In this case, the
theorem makes a statement about a generic nonnegative integer t and a generic code C .
Plugging in particular values for t can help make the claim clearer:

• If the minimum distance of a code C is 9—that is, the minimum distance is 2t + 1 for
t = 4—then the claim says C can detect 2t = 2 · 4 = 8 errors and correct t = 4 errors.

• Suppose the minimum distance of C is 7. Writing 7 = 2t + 1 for t = 3, the claim states
that C can detect 6 errors and correct 3 errors.

• If the minimum distance of C is 5, then C can detect 4 errors and correct 2 errors.
• If the minimum distance of C is 3, then C can detect 2 errors and correct 1 error.
• If the minimum distance of C is 1, then C can detect 0 errors and correct 0 errors.

Now that we have a better sense of what the theorem says, let’s prove it: Problem-solving tip:
Draw a picture to
help you clarify/
understand the
statement you’re
trying to prove.

Proof of Theorem 4.1. First we’ll prove the error-detection condition. We must argue
for the following claim: if a code C has minimum distance 2t + 1, then C can detect
2t errors. In other words, for an arbitrary codeword c ∈ C and an arbitrary received
bitstring c′ with ∆(c, c′) ≤ 2t, our error-detection algorithm must be correct. (If
∆(c, c′) > 2t, then we’re not obliged to correctly state that an error occurred, because
we’re only arguing that we can detect 2t errors.) Recall that our error-detection algo-
rithm reports “no error” if c′ ∈ C , and it reports “error” if c′ /∈ C . Thus:

• If ∆(c, c′) = 0, then no error occurred (because the received bitstring matches the
transmitted one). In this case, our error-detection algorithm correctly reports “no
error”—because c′ ∈ C (because c′ = c, and c was a codeword).

• On the other hand, suppose 1 ≤ ∆(c, c′) ≤ 2t—so an error occurred. The only
way that we’d fail to detect the error is if the received bitstring c′ is itself another
codeword. But this situation can’t happen, by the definition of minimum distance:
for any codeword c ∈ C , the set {c′ : ∆(c, c′) ≤ 2t} cannot contain any elements of
C—otherwise the minimum distance of C would be 2t or smaller.

It may be helpful to think about this proof via Figure 4.6.

c
2t

2t + 1

Figure 4.6: If
the minimum
distance is 2t + 1,
no codewords are
within distance 2t
of each other.

For the error-correction condition, suppose that x ∈ C is the transmitted code-
word, and the received bitstring c′ satisfies ∆(x, c′) ≤ t. We have to persuade our-
selves that x is the codeword closest to c′ in Hamming distance. Let y ∈ C − {x}
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be any other codeword. We’ll start from the triangle inequality, which tells us that
∆(x, y) ≤ ∆(x, c′) + ∆(c′, y) and therefore that ∆(c′, y) ≥ ∆(x, y)− ∆(x, c′), and prove that
c′ is closer to x than it is to y:

∆(c′, y) ≥ ∆(x, y)− ∆(x, c′) triangle inequality

≥ (2t + 1)− ∆(x, c′) ∆(x, y) ≥ 2t + 1 by definition of minimum distance

≥ (2t + 1)− t ∆(x, c′) ≤ t by assumption

= t + 1
> t
≥ ∆(x, c′). ∆(x, c′) ≤ t by assumption

This chain of inequalities shows c′ is closer to x than it is to y. (Pedantically speak-

x

y

> t

t

2t + 1

Figure 4.7: If the
minimum distance
is 2t + 1, a bitstring
within distance t
of one codeword is
more than t away
from every other
codeword.

ing, we’re also relying on the symmetry of Hamming distance here: ∆(c′, y) = ∆(y, c′).
Again, see Exercise 4.6.) Because y was a generic codeword in C − {x}, we can con-
clude that the original codeword x is the one closest to c′. (See Figure 4.7.)

Before we move on from the theorem, let’s reflect a little bit on the proof. (We’ll
concentrate on the error-correction half.) The most complicated part was unwinding

Problem-solving tip:
When you’re trying
to prove a claim of
the form p ⇒ q, try
to massage p to look
as much like q as
possible. A good
first step in doing
so is to expand out
the definitions of
the premises, and
then try to see what
additional facts you
can infer.

the definitions in the theorem statement, in particular of “C has minimum distance
2t + 1” and “C can correct t errors.” Eventually, we had to argue for the claim

for every x ∈ C, y ∈ C − {x}, and c′ ∈ {0, 1}n: if ∆(x, c′) ≤ t then ∆(x, c′) < ∆(y, c′).

(In other words, if c′ is within t errors of x, then c′ is closer to x than to any other code-
word.) In the end, we were able to state the proof as a relatively simple sequence of
inequalities. After proving a theorem, it’s also worth briefly reflecting on what the the-
orem does not say. Theorem 4.1, for example, only addresses codes with a minimum
distance that’s an odd number. You’ll be asked to consider the error-correcting and
error-detecting properties of a code C with an even minimum distance in Exercise 4.13.
We also didn’t show that we couldn’t do better: Theorem 4.1 says that a code C with
minimum distance 2t + 1 can correct t errors, but the theorem doesn’t say that C can’t
correct t + 1 (or more) errors. (But, in fact, it can’t; see Exercise 4.12.)

It is customary to
mark the end of
one’s proofs typo-
graphically; here,
we’re using a tradi-
tional box symbol:

. Other people
may write “QED,”
short for the Latin
phrase quod erat
demonstrandum
(“that which was to
be demonstrated”).

Outline of the remainder of the section
Intuitively, rate and minimum distance are measures of the inherent tension in an

error-correcting code. A code that has a higher distance means that we are more ro-
bust to errors: the farther apart codewords are, the more corruption can occur before
we’re unable to reconstruct the original message. A code that has a higher rate means
that we are “wasting” fewer bits in providing this robustness: the larger the rate, the
more our codeword contains “data” rather than “redundancy.” In the rest of this sec-
tion, we’re going to prove several more theorems about error-correcting codes, explor-
ing the trade-off between rate and distance. (But it’s also worth noting that it’s not a
strict trade-off: sometimes we can improve in one measure without costing ourselves
in the other!) And, as we go, we’ll continue to try to reflect on the proof techniques
that we use to establish these claims.

Here are the three main theorems that we’ll prove in the rest of this section:
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Theorem 4.2 (Good news)
There exists a code with 4-bit messages, minimum distance 3, and rate 1

3 .

Theorem 4.3 (Better news)
There exists a code with 4-bit messages, minimum distance 3, and rate 4

7 .

Theorem 4.4 (Bad news)
There does not exist a code with 4-bit messages, minimum distance 3, and any rate strictly
better than 4

7 .

Notice that the first two of these results say that a code with particular properties
exists, while the third result says that it’s impossible to create a code with a different
set of properties. Also notice that Theorem 4.3 is an improvement on Theorem 4.2:
we’ve made the rate better (higher) without making the minimum distance worse.
(When we can, we’ll prove more general versions of these theorems, too, not limited to
4-bit messages with minimum distance 3.)

We’ll prove Theorem 4.2 and Theorem 4.3 “by construction”—specifically, by build-
ing a code with the desired parameters. But, because Theorem 4.4 says that a code
with certain properties fails to exist, we’ll prove the result with a proof by contradiction:
we assume that a code with 4-bit messages with distance 3 and rate strictly better than
4
7 does exist, and reasoning logically from that assumption, we will derive a false state-
ment (a contradiction). Because p ⇒ False ≡ ¬p, we can conclude that the assumption
must have been false, and no such code can exist.

4.2.3 Repetition Codes

Intuitively, a good error-correcting code will amplify even a small difference between
two different messages—a single differing bit—into a larger difference between the
corresponding codewords. Perhaps the most obvious implementation of this idea
is simply to encode a message m by repeating the bits of m several times. This idea
gives rise to a simple error-correcting code, called the repetition code. (Actually, there
are many different versions of the repetition code, depending on how many times we
repeat m in the codeword.) Here’s the basic definition:

Definition 4.6 (Repetition code)
Let ℓ ∈ Z≥2. The Repetitionℓ code for k-bit messages consists of the codewords

{
m m · · · m︸ ︷︷ ︸

ℓ times

: m ∈ {0, 1}k
}

.

That is, the codeword corresponding to a message m ∈ {0, 1}k is the ℓ-fold repetition of the
message m, so each codeword is an element of {0, 1}kℓ.

Here are some small examples of encoding/decoding using repetition codes:
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Example 4.5 (Some codewords for the repetition code)
If we encode the message 00111 using the Repetition3 code, we get the codeword
00111 00111 00111. If we encode the same message using the Repetition5 code, we get
the codeword 00111 00111 00111 00111 00111.

For an example of decoding, suppose that we receive the (possibly corrupted)
bitstring c′ = 0010 0110 0010 under the Repetition3 code. We detect that an error
occurred: c′ is not a codeword, because the only codewords are 12-bit strings where
all three 4-bit thirds are identical. For error correction, note that the closest codeword
to c′ is 0010 0010 0010, so we decode c′ as corresponding to the message 0010.

The message/codeword table for the Repetition3 code for 4-bit messages is shown

m c
0000 0000 0000 0000
0001 0001 0001 0001
0010 0010 0010 0010
0011 0011 0011 0011
0100 0100 0100 0100
0101 0101 0101 0101
0110 0110 0110 0110
0111 0111 0111 0111
1000 1000 1000 1000
1001 1001 1001 1001
1010 1010 1010 1010
1011 1011 1011 1011
1100 1100 1100 1100
1101 1101 1101 1101
1110 1110 1110 1110
1111 1111 1111 1111

Figure 4.8: The
Repetition3 code for
4-bit messages.

in Figure 4.8. The distance and rate properties of the repetition code are relatively easy
to see (from the definition or from this style of table):

Lemma 4.5 (Distance and rate of the repetition code)
The Repetitionℓ code has rate 1

ℓ and minimum distance ℓ.

Proof. Recall that the rate of a code is the ratio k
n , where k is the length of the mes-

sages and n is the length of the codewords. A k-bit message is encoded as a (kℓ)-bit
codeword (ℓ repetitions of k bits), and so the rate of this code is k

kℓ = 1
ℓ .

For the minimum distance, consider any two distinct messages m, m′ ∈ {0, 1}k

with m′ 6= m. We know that m and m′ must differ in at least one bit position, say bit
position i. (Otherwise m = m′.) But if mi 6= m′

i , then

the codeword corresponding to m = m′ m′ · · · m′ and
the codeword corresponding to m′ = m′ m′ · · · m′

︸ ︷︷ ︸
ℓ times

differ in at least one bit in each of the ℓ “blocks” (in the ith position of the block)—for a
total of at least ℓ differences. Furthermore, the Repetitionℓ encodings of the messages
000 · · · 0 and 100 · · · 0 differ in only ℓ places (the first bit of each “block”). Thus the
minimum distance of the Repetitionℓ code is exactly ℓ.

Lemma 4.5 says that the Repetition3 code on 4-bit messages (see Figure 4.8) has
minimum distance 3 and rate 1

3 . Thus we’ve proven Theorem 4.2: we had to show that
a code with these parameters exists, and we did so by explicitly building such a code.
This proof is an example of a “proof by construction”: to show that an object with a
particular property exists, we’ve explicitly built an object with that property.

Problem-solving tip:
When you’re trying
to prove a claim of
the form ∃x : P(x),
try using a proof by
construction first.
(There are other
ways to prove an
existential claim,
but this approach
is great when it’s
possible.)

It’s also worth noticing that we started out by describing a generic way to do encod-
ing and decoding for error-correcting codes in Section 4.2: after we build the table (like
the one in Figure 4.8), we encode a message by finding the corresponding codeword
in the table, and we decode a bitstring c′ by looking at every codeword and identify-
ing the one closest to c′. For particular codes, we may be to give a much more efficient
algorithm—and, indeed, we can do so for repetition codes. See Exercise 4.21.
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4.2.4 Hamming Codes

When we’re encoding 4-bit messages, the Repetition3 code achieves minimum distance
3 with 12-bit codewords. (So its rate is 1

3 .) But it turns out that we can do better by
defining another, cleverer code: the Hamming code1 maintains the same minimum

The Hamming
code, like the
Hamming distance,
is named after
Richard Hamming,
who invented this
code in 1950. (He
was frustrated
that programs he
started running
on Friday nights
often failed over the
weekend because of
a single bit error in
memory.)
1 R. W. Hamming.
Error detecting and
error correcting
codes. The Bell Sys-
tem Technical Journal,
XXIX(2):147–160,
April 1950.

distance, while improving the rate from 1
3 to 4

7 .
The basic idea of the Hamming code is to use an extra bit that, like the 16th digit

of a credit card number, redundantly reports a value computed from the previous
components of the message. Concretely, we could tack a single bit b onto the message
m, where b reports the parity of m—that is, whether there are an even or odd number
of bits set to 1 in m. If a single error occurs in the message, then b would be inconsis-
tent with the message m, and we’d detect that error. (See Exercise 4.19.) In fact, for
the Hamming code, we’ll use several different parity bits, corresponding to different
subsets of the bits of m.

The parity of a and
b can be denoted
as a ⊕ b, because
if you think of
a, b ∈ {0, 1}, where
True = 1 and
False = 0, then
parity(a, b) is the
XOR of a and b.

Definition 4.7 (Parity function)
The parity of a sequence 〈a1, a2, . . . , ak〉 of bits is denoted either parity(a1, a2, . . . , ak) or
a1 ⊕ a2 ⊕ · · · ⊕ ak, and its value is

a1 ⊕ a2 ⊕ · · · ⊕ ak :=
{

1 if there are an odd number of i such that ai = 1
0 if there are an even number of i such that ai = 1.

(We could also have defined this function as parity(a1, . . . , ak) := [∑k
i=1 ai] mod 2.)

Hamming’s insight was that it’s possible to achieve good error-correction properties

m c
0000 0000000
0001 0001111
0010 0010110
0011 0011001
0100 0100101
0101 0101010
0110 0110011
0111 0111100
1000 1000011
1001 1001100
1010 1010101
1011 1011010
1100 1100110
1101 1101001
1110 1110000
1111 1111111

Figure 4.9: The
Hamming code for
4-bit messages.

by using three different parity bits, corresponding to different subsets of the message
bits. It’s easiest to think of this code in terms of its encoding algorithm:

Definition 4.8 (Hamming code)
The Hamming code is defined via the following encoding function. We will encode a 4-bit
message 〈a, b, c, d〉 as the following 7-bit codeword:

〈 a, b, c, d,︸ ︷︷ ︸
message bits

b ⊕ c ⊕ d, a ⊕ c ⊕ d, a ⊕ b ⊕ d︸ ︷︷ ︸
parity bits

〉.

Applying this encoding to every 4-bit message yields the table of messages and their
corresponding codewords shown in Figure 4.9; here are a few examples in detail:

Example 4.6 (Sample Hamming code encodings)

message codeword
a, b, c, d a, b, c, d, (b⊕ c ⊕ d), (a⊕ c ⊕ d), (a⊕ b ⊕ d)
0, 0, 0, 0 0, 0, 0, 0, (0⊕ 0⊕ 0), (0⊕ 0 ⊕ 0), (0⊕ 0 ⊕ 0) = 0000000
1, 0, 0, 0 1, 0, 0, 0, (0⊕ 0⊕ 0), (1⊕ 0 ⊕ 0), (1⊕ 0 ⊕ 0) = 1000011
1, 1, 1, 0 1, 1, 1, 0, (1⊕ 1⊕ 0), (1⊕ 1 ⊕ 0), (1⊕ 1 ⊕ 0) = 1110000.
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(We could have described encoding for the Hamming code using matrix multiplication
instead; see Exercises 2.221–2.223.)

Before we analyze the rate and minimum distance of the Hamming code, let’s start
to develop some intuition by looking at a few received (possibly corrupted) code-
words. (We’ll also begin to work out an efficient decoding algorithm as we go.)

Recall that, for a
message a, b, c, d,
the bits of the
uncorrupted
codeword are:
1. a
2. b
3. c
4. d
5. b ⊕ c ⊕ d
6. a ⊕ c ⊕ d
7. a ⊕ b⊕ d

Example 4.7 (Some Hamming code decoding problems)
Problem: You receive the following (possibly corrupted) Hamming code codewords.

Find the original message, assuming at most one error occurred in transmission.

1. 0000010
2. 1000000
3. 1011010
4. 1110111

Solution: 1. We’ve received message bits 0000 and parity bits 010. Everything in the
received codeword is consistent with the message being m = 0000, except for
the second parity bit. So we infer that the second parity bit was corrupted, the
transmitted codeword was 0000000, and the message was 0000.
Could there have been a one-bit error in message bits instead? No: these parity
bits are consistent only with a message 〈a, b, c, d〉 with a 6= b (because the first
two received parity bits differ), and therefore with d = 1 (because a 6= b implies
that a ⊕ b ⊕ d = 1 ⊕ d = ¬d, and the third parity bit a ⊕ b ⊕ d is 0). But 10?1 and
01?1 are both at least two errors away from the received message 0000.

2. We’ve received message bits 1000 and parity bits 000. If the message bits were
uncorrupted, then the correct parity bits would have been 011. But then we
would have to have suffered two transmission errors in the parity bits, and we’re
assuming that at most one error occurred. Thus the error is in the message bits;
the original message is 0000, and the first bit of the message was corrupted.

3. The parity bits for the message 1011 are indeed 010, so 1011010 is itself a legal
codeword for the message 1011, and no errors occurred at all.

4. These received bits are consistent with the message 1111 with parity bits 111,
where the fourth bit of the message was flipped.

From this example, the basic approach to decoding the Hamming code should start to
coalesce. Briefly, we compute what the parity bits should have been, supposing that the
received message bits (the first four bits of the received codeword) are correct; com-
paring the computed parity bits to the received parity bits allows us to deduce which,
if any, of the transmitted bits were erroneous. (More on efficient decoding later.) Why
does this approach to decoding work? (And, relatedly, why were the parity bits of the
Hamming code chosen the way that they were?) Here are two critical properties in the
Hamming code’s parity bits:

• every message bit appears in at least two parity bits. Thus any error in a received parity
bit is distinguishable from an error in a received message bit: an erroneous message
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bit will cause at least two parity bits to look wrong; an erroneous parity bit will
cause only that one parity bit to look wrong.

• no two message bits appear in precisely the same set of parity bits. Thus any error in a
received message bit has a different “signature” of wrong-looking parity bits: an
error in bit a affects parity bits #2 and #3; b affects parity bits #1 and #3; c affects #1
and #2; and d affects all three parity bits. Because all four of these signatures are
different, we can distinguish which message bit was corrupted based on which set of
two or more parity bits look wrong.

Rate and minimum distance of the Hamming code
Let’s use the intuition that we’ve developed so far to establish the rate and mini-

mum distance for the Hamming code:

Lemma 4.6 (Distance and rate of the Hamming code)
The Hamming code has rate 4

7 and minimum distance 3.

Proof. The rate is straightforward to compute: we have 4-bit messages and 7-bit code-
words, so the rate is 4

7 by definition.
There are several ways to convince yourself that the minimum distance is 3—

perhaps the simplest way (though certainly the most tedious) is to compute the Ham-
ming distance between each pair of codewords in Figure 4.9. (There are only 16 code-
words, so we just have to check that all (16 · 15)/2 = 120 pairs of distinct codewords
have Hamming distance at least three.) You’ll write a program to verify this claim in
Exercise 4.24. But here’s a different argument.

Consider any two distinct messages m ∈ {0, 1}4 and m′ ∈ {0, 1}4. We must establish
that the codewords c and c′ associated with m and m′ satisfy ∆(c, c′) ≥ 3. We’ll argue
for this fact by looking at three separate cases, depending on ∆(m, m′):

Case I: ∆(m, m′) ≥ 3. Then we’re done immediately: the message bits of c and c′ differ
in at least three positions (even without looking at the parity bits).

Case II: ∆(m, m′) = 2. Then at least one of the three parity bits contains one of the bit
positions where mi 6= m′

i but not the other. (This fact follows from the second crucial
property above, that no two message bits appear in precisely the same set of parity
bits.) Therefore this parity bit differs in c and c′. Thus there are two message bits
and at least one parity bit that differ, so ∆(c, c′) ≥ 3.

Case III: ∆(m, m′) = 1. Then at least two of the three parity bits contain the bit position
where mi 6= m′

i. (This fact follows from the first crucial property above, that every
message bit appears in at least two parity bits.) Thus there are at least two parity
bits and one message bit that differ, and ∆(c, c′) ≥ 3.

Note that ∆(m, m′) must be 1, 2, or ≥ 3—it can’t be zero because m 6= m′—so, no matter
what ∆(m, m′), we’ve established that ∆(c, c′) ≥ 3.

Because, for the codewords corresponding to messages 0000 and 1110, we have
∆(0000000, 1110000) = 3, the minimum distance is in fact exactly equal to three.
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Lemma 4.6 says that the Hamming code encodes 4-bit messages with minimum
distance 3 and rate 4

7 ; thus we’ve proven Theorem 4.3. Let’s again reflect a little on
the proof. Our proof of the minimum distance in Lemma 4.6 was a proof by cases: we
divided pairs of codewords into three different categories (differing in 1, 2, or ≥ 3 bits),
and then used three different arguments to show that the corresponding codewords
differed in ≥ 3 places. So we showed that the desired distance property was true in all
three cases—and, crucially, that one of the cases applies for every pair of codewords.

Problem-solving tip:
If you discover that
a proposition seems
true “for different
reasons” in different
circumstances (and
those circumstances
seem to cover all
possible scenarios!),
then a proof by
cases may be a good
strategy to employ.

Although we’re mostly omitting any discussion of the efficiency of encoding and
decoding, it’s worth a brief mention here. (The speed of these algorithms is a big deal
for error-correcting codes used in practice!) The algorithm for decoding under the
Hamming code is suggested by Figure 4.10: we calculate what the parity bits would
have been if the received message bits were uncorrupted, and identify which received
parity bits don’t match those calculated parity bits. Figure 4.10 tells us what inference
to draw from each constellation of mismatched parity bits.
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1:

b⊕
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d
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t#

2:
a⊕

c⊕
d
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t#
3:

a⊕
b⊕

d

location
of error
no error!

✗ parity #1
✗ parity #2

✗ parity #3
✗ ✗ bit c
✗ ✗ bit b

✗ ✗ bit a
✗ ✗ ✗ bit d

Figure 4.10: Decod-
ing the Hamming
code. We conclude
that the stated
error occurred if
the received parity
bits and those cal-
culated from the
received message
bits mismatch in the
listed places.

Why does this decoding algorithm allow us to correct any single error? First, a
low-level answer: the Hamming code has a minimum distance of 3 = 2 · 1 + 1, so
Lemma 4.1 tells us that we can correct up to one error. So we know that a decoding
scheme is possible. At a higher level, the reason that this decoding procedure works
properly is that there are eight possible “≤ 1 error” corruptions of a codeword x—
namely one 0-error string (x itself) and seven 1-error strings (one corresponding to
an error in each of the seven bit positions of x)—and furthermore there are eight
different subsets of the three parity bits that can be “wrong.” The Hamming code
works by carefully selecting the parity bits in a way that each of these eight bitstrings
corresponds to a different one of the eight parity-bit subsets. In Exercises 4.25–4.28,
you’ll explore longer versions of the Hamming code (with longer messages and more
parity bits) with the same relationship.

Taking it further: As we’ve said, our attention here is mostly on the proofs and the proof techniques
that we’ve used to establish the claims in this section, rather than on error-correcting codes themselves.
But see p. 418 for an introduction to Reed–Solomon codes, the basis of the error-correcting codes used in
CDs/DVDs (among other applications).

4.2.5 Upper Bounds on Rates

In the last two sections, we’ve constructed two different codes, both for 4-bit messages
with minimum distance 3: the repetition code (rate 4

12 ) and the Hamming code (rate
4
7 ). Because the message lengths and minimum distances match, and because higher
rates are better, the Hamming code is better. Here we’ll consider whether we can im-
prove the rate further, while still encoding 4-bit messages with minimum distance 3.
(In other words, can we make the codewords shorter than 7 bits?) The answer turns
out to be “no”—and we’ll prove that it’s impossible.

“Balls” around codewords
We’ll start by thinking about “balls” around codewords in a general code. (The ball

of radius r around x ∈ {0, 1}n is the set {x′ : ∆(x, x′) ≤ r}—that is, the set of all points
that are within Hamming distance r of x.) Here’s a first observation:
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Lemma 4.7 (The size of a ball of radius 1 in {0, 1}n)
Let x ∈ {0, 1}n, and define X :=

{
x′ ∈ {0, 1}n : ∆(x, x′) ≤ 1

}
. Then |X| = n + 1.

Proof. The bitstring x itself is an element of X, as are all bitstrings x′ that differ from
x in exactly one position. There are n such strings x′: one that is x with the first bit
flipped, one that is x with the second bit flipped; . . .; and one that is x with the nth bit
flipped. Thus there are 1 + n total bitstrings in X.

Here’s a second useful fact about these balls: in a code C , the balls around code-
words (of radius related to the minimum distance of C) cannot overlap.

Lemma 4.8 (Balls around codewords are disjoint)
Let C ⊆ {0, 1}n be a code with minimum distance 2t + 1. For distinct codewords x, y ∈ C , the
sets

{
x′ ∈ {0, 1}n : ∆(x, x′) ≤ t

}
and

{
y′ ∈ {0, 1}n : ∆(y, y′) ≤ t

}
are disjoint.

Proof. Suppose not: that is, suppose that the sets X :=
{

x′ ∈ {0, 1}n : ∆(x, x′) ≤ t
}

and Y :=
{

y′ ∈ {0, 1}n : ∆(y, y′) ≤ t
}

are not disjoint. We will derive a contradiction
from this assumption—that is, a statement that can’t possibly be true. Thus we’ll have
proven that X ∩ Y 6= ∅ ⇒ False, which allows us to conclude that X ∩ Y = ∅, because
¬p ⇒ False ≡ p. That is, we’re using a proof by contradiction.

To start again from the beginning: suppose that X and Y are not disjoint. That is, x

y

t

t

2t + 1

Figure 4.11: If the
minimum distance
is 2t + 1, the “balls”
of radius t around
each codeword are
disjoint.

suppose that there is some bitstring z ∈ {0, 1}n such that z ∈ X and z ∈ Y. In other
words, by definition of X and Y, there is a bitstring z ∈ {0, 1}n such that ∆(x, z) ≤ t and
∆(y, z) ≤ t. But if ∆(x, z) ≤ t and ∆(y, z) ≤ t, then, by the triangle inequality, we know

∆(x, y) ≤ ∆(x, z) + ∆(z, y) ≤ t + t = 2t.

Therefore ∆(x, y) ≤ 2t—but then we have two distinct codewords x, y ∈ C with
∆(x, y) ≤ 2. This condition contradicts the assumption that the minimum distance
of C is 2t + 1. (See Figure 4.11.)

We could have used Lemma 4.8 to establish the error-correction part of Theo-
rem 4.1—a bitstring corrupted by ≤ t errors from a codeword c is closer to c than to
any other codeword—but here we’ll use it, plus Lemma 4.7, to establish a upper bound
on the rate of codes. But, first, let’s pause to look at a similar argument in a different
(but presumably more familiar) domain: normal Euclidean geometry.

Problem-solving tip:
When you’re facing
a problem in a less
familiar domain,
try to find an
analogous problem
in a different, more
familiar setting to
help gain intuition.

In a circle-packing problem, we are given an enclosing shape, and we’re asked to

Figure 4.12: Circles
packed in a square.

place (“pack”) as many nonoverlapping unit circles (of radius 1) into that shape as
possible. (Sphere packing—what grocers have to do with oranges—is the 3-dimensional
analogue.) How many unit circles can we fit into a 6-by-6 square, for example? (See
Figure 4.12.) Here’s an argument that it’s at most 11: a unit circle has area π · 12 = π,
and the 6-by-6 square has area 36; thus we certainly can’t fit more than 36

π ≈ 11.459
nonoverlapping circles into the square. There isn’t room for 12. (In fact, we can’t even
fit 10, because the circles won’t nestle together without wasting space “in between.”
Thus, in this case we’d say that the area-based bound is loose.)
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Using packing arguments to derive bounds on error-correcting codes
Now, let’s return to error-correcting codes, and use the circle-packing intuition (and

the last two lemmas) to prove a bound on the number of n-bit codewords that can “fit”
into {0, 1}n with minimum distance 3:

Lemma 4.9 (The “sphere-packing bound”: distance-3 version)
Let C ⊆ {0, 1}n be a code with minimum distance three. Then |C| ≤ 2n/(n + 1).

Proof. For each x ∈ C , let Sx :=
{

x′ ∈ {0, 1}n : ∆(x′, x) ≤ 1
}

be the ball of radius 1
around x. Lemma 4.7 says that |Sx| = n + 1 for each x. Further, Lemma 4.8 says that
every element of {0, 1}n is in at most one Sx because the balls are disjoint. Therefore,

| {x′ ∈ {0, 1}n : x′ is in one of the Sx balls
} | = ∑

x∈C
|Sx| = ∑

x∈C
(n + 1) = |C| · (n + 1).

Also observe that every element of any Sx is an n-bit string. There are only 2n different
n-bit strings, so therefore

|
{

x′ ∈ {0, 1}n : x′ is in one of the Sx balls
}
| ≤ 2n.

Putting together these two facts, we see that |C| · (n + 1) ≤ 2n. Solving for |C| yields the
desired relationship: |C| ≤ 2n

n+1 .

Corollary 4.10 (The Hamming code is optimal)
Any code with messages of length 4 and minimum distance 3 has codewords of length ≥ 7.
(Thus the Hamming code has the best possible rate among all such codes.)

Proof. By Lemma 4.9, we know that |C| ≤ 2n/(n + 1). With 4-bit messages we have
|C| = 16, so we know that 16 ≤ 2n/(n + 1), or, equivalently, that 2n ≥ 16(n + 1). And
27 = 16(7 + 1), while for any n < 7 this inequality does not hold.

Corollary 4.10 implies Theorem 4.4, so we’ve now proven the three claims that
we set out to establish. Before we close, though, we’ll mention a few extensions.
Lemma 4.8 was general, for any code with an odd minimum distance. But Lemma 4.7
was specifically about codes with minimum distance 3. To generalize the latter lemma,
we’d need techniques from counting (see Chapter 9, specifically Section 9.4.)

Another interesting question: when is the bound from Lemma 4.9 exactly achiev-
able? If we have k-bit messages, n-bit codewords, and minimum distance 3, then
Lemma 4.9 says that 2k ≤ 2n/(n + 1), or, taking logs, that k ≤ n − log2(n + 1). Be-
cause k has to be an integer, this bound is exactly achievable only when n + 1 is an exact
power of two. (For example, if n = 9, this bound requires us to have 2k ≤ 29/10 =
512/10 = 51.2. In other words, we need k ≤ log2 51.2 ≈ 5.678. But, because k ∈ Z,
in fact we need k ≤ 5. That means that this bound is not exactly achievable for n = 9.)
However, it’s possible to give a version of the Hamming code for n = 15 and k = 7 with
minimum distance 3, as you’ll show in Exercise 4.26. (In fact, there’s a version of the
Hamming code for any n = 2ℓ − 1; see Exercise 4.28.)
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Computer Science Connections

Reed–Solomon Codes

The error-correcting codes that are used in CDs and DVDs are a bit more
complicated than Repetition or Hamming codes, but they perform better.
We’ll leave out a lot of the details, but here is a brief sketch of how they work.
These codes are called Reed–Solomon codes, and they’re based on polynomials
and modular arithmetic. First, we’re going to go beyond bits, to a larger “al-

Reed–Solomon codes are named after
Irving Reed and Gustave Solomon, 20th-
century American mathematicians who
invented them in 1960.

phabet” of characters in our messages and codewords: instead of encoding
messages from {0, 1}k , we’re going to encode messages from {0, 1, . . . , q}k , for
some integer q. Here’s the basic idea: given a message m = 〈m1, m2, . . . , mk〉,
we will define a polynomial pm(x) as follows, with the coefficients of the polyno-
mial corresponding to the characters of the message:

pm(x) :=
k
∑
i=1

mixi .

To encode the message m, we will evaluate the polynomial for several values
of x: encode(m) := 〈pm(1), pm(2), . . . , pm(n)〉. See Figure 4.13 for an example.

Suppose that we use a k-character message and an n-character output.

Consider the message m = 〈1, 3, 2〉.
Then pm(x) = x + 3x2 + 2x3. If we
choose n = 6, then the encoding of this
message will be

〈1(1) + 3(1)2 + 2(1)3 ,

1(2) + 3(2)2 + 2(2)3 ,

1(3) + 3(3)2 + 2(3)3 ,

1(4) + 3(4)2 + 2(4)3 ,

1(5) + 3(5)2 + 2(5)3 ,

1(6) + 3(6)2 + 2(6)3〉
=〈6, 30, 84, 180, 330, 546〉.

Alternatively, consider the message
m′ = 〈3, 0, 3〉. Then pm′ (x) = 3x + 3x3 .
Again for n = 6, the encoding of m′ is

〈3(1) + 3(1)3 ,

3(2) + 3(2)3 ,

3(3) + 3(3)3 ,

3(4) + 3(4)3 ,

3(5) + 3(5)3 ,

3(6) + 3(6)3〉
=〈6, 30, 90, 204, 390, 666〉.

Figure 4.13: An example Reed–Solomon
encoding.

It’s easy enough to compute that the rate is k
n . But what about the minimum

distance? Consider two distinct messages m and m′. Note that pm and pm′

are both polynomials of degree at most k. Therefore f (x) := pm(x) − pm′ (x)
is a polynomial of degree at most k, too—and f (x) 6≡ 0, because m 6= m′.
Notice that {x : f (x) = 0} = {x : pm(x) = pm′ (x)}. And |{x : f (x) = 0}| ≤ k,
by Lemma 2.3 (“degree-k polynomials have at most k roots”). Therefore
|{x : f (x) = 0} ∩ {1, 2, . . . , n}| ≤ k: there are at most k values x for which
pm(x) = pm′ (x). We encoded m and m′ by evaluating pm and pm′ on n differ-
ent inputs, so there are at least n − k inputs on which these two polynomials
disagree. Thus the minimum distance is at least n − k. For example, if we pick
n = 2k, then we achieve rate 1

2 and minimum distance k.
How might we decode Reed–Solomon codes? Efficient decoding algo-
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Figure 4.14: Decoding a received (cor-
rupted) Reed–Solomon codeword.

rithms rely on some results from linear algebra, but the basic idea is to find
the degree-k polynomial that goes through as many of the given points as pos-
sible. As a simple example, suppose you’re looking for a 2-character message
(that is, something encoded as a quadratic), and you receive the codeword
〈2, 6, 12, 13, 30, 42〉. What was the original message? Plot the codeword and
see! See Figure 4.14: all but one of the components of the received codeword
is consistent with the polynomial pm(x) = x + x2, so you can decode this
codeword as the message 〈1, 1〉.

We’ve left out several important details of actual Reed-Solomon codes here.
One is that our computation of the rate was misleading: we only counted the
number of slots, rather than the “size” of those slots. (Figure 4.13 shows that
the numbers can get pretty big!) In real Reed–Solomon codes, every value
is stored modulo a prime. See p. 731 for discussion of how (and why) this fix
works. There’s also a clever trick used in the physical layout of the encoded
information on a CD/DVD: the bits for a particular codeword are spread out
over the disc, so that a single physical scratch doesn’t cause errors all to occur
in the same codeword.
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4.2.6 Exercises

cc-check(n):
Input: a 16-digit credit-card number n ∈ {0, 1, . . . , 9}16

1: sum := 0
2: for i = 1, 2, . . . , 16:
3: if i is odd then
4: di := 2 · ni
5: else
6: di := ni
7: Increase sum by the ones’ and tens’ digits of di . (That is, sum := sum + (di mod 10) + ⌊di/10⌋ .)
8: return True if sum mod 10 = 0, and False otherwise.

Figure 4.15: An
algorithm for
testing the validity
of credit-card
numbers.

The algorithm for testing whether a given credit-card number is valid is shown in Figure 4.15. Here’s an example of the
calculation that cc-check(4471 8329 · · · ) performs:

(original number) 4 4 7 1 8 3 2 9...

(odd-indexed digits doubled) 8 4 14 1 16 3 4 9...

(digits summed) 4 + 8 + 1+4 + 1 +1+6 + 3 + 4 + 9...

(Try executing cc-check from Figure 4.15 on a few credit-card numbers, to make sure that you’ve understood the
algorithm correctly.) This code can detect any one substitution error, because

0, 2, 4, 6, 8, 1 = 1 + 0, 3 = 1 + 2, 5 = 1 + 4, 7 = 1 + 6, 9 = 1 + 8

are all distinct (so, even in odd-indexed digits, changing the digit changes the overall value of sum).

4.1 (programming required) Implement cc-check in a programming language of your choice. Extend
your implementation so that, if it’s given any 16-digit credit/debit-card number with a single digit replaced
by a "?", it computes and outputs the correct missing digit.

4.2 Suppose that we modified cc-check so that, instead of adding the ones digit and (if it exists) the tens
digit to sum in Line 7 of the algorithm, we instead simply added the ones digit. (That is, replace Line 7 by
sum := sum + di .) Does this modified code still allow us to detect any single substitution error?

4.3 Suppose that we modified cc-check so that, instead of doubling odd-indexed digits in Line 4 of
the algorithm, we instead tripled the odd-indexed digits. (That is, replace Line 4 by di := 3 · ni .) Does this
modified code still allow us to detect any single substitution error?
4.4 What if we replace Line 4 by di := 5 · ni?

4.5 There are simpler schemes that can detect a single substitution error than the one in cc-check: for
example, we could simply ensure that the sum of all the digits themselves (undoubled) is divisible by 10.
(Just skip the doubling step.) The credit-card encoding system includes the more complicated doubling step
to help it detect a different type of error, called a transposition error, where two adjacent digits are recorded
in reverse order. (If two digits are swapped, then the “wrong” digit is multiplied by two, and so this kind of
error might be detectable.) Does cc-check detect every possible transposition error?

A metric space consists of a set X and a function d : X × X → R≥0, called a distance function, where d obeys the
following three properties:

• reflexivity: for any x and y in X, we have d(x, x) = 0, and d(x, y) 6= 0 whenever x 6= y.
• symmetry: for any x, y ∈ X, we have d(x, y) = d(y, x).
• triangle inequality: for any x, y, z ∈ X, we have d(x, y) ≤ d(x, z) + d(z, y).

When it satisfies all three conditions, we call the function d a metric.
4.6 In this section, we’ve been measuring the distance between bitstrings using the Hamming dis-
tance, which is a function ∆ : {0, 1}n × {0, 1}n → Z≥0, denoting the number of positions in which x and y
differ. Prove that ∆ is a metric. (Hint: think about one bit at a time.)
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The next few exercises propose a different distance function d : {0, 1}n × {0, 1}n → Z≥0. For each, decide whether you
think the given function d is a metric or not, and prove your answer. (In other words, prove that d satisfies reflexivity,
symmetry, and the triangle inequality; or prove that d fails to satisfy one or more of these properties.)

4.7 For x, y ∈ {0, 1}n, define d(x, y) as the smallest i ∈ {0, 1, . . . , n} such that xi+1,...,n = yi+1,...,n. For
example, d(01000, 10101) = 5 and d(01000, 10100) = 3 and d(01000, 10000) = 2 and d(11010, 01010) = 1. (This
function measures how far into x and y we must go before the remaining parts match; we could also define
d(x, y) as the largest i ∈ {0, 1, . . . , n} such that xi 6= yi , where we treat x0 6= y0.) Is d a metric?

4.8 For x, y ∈ {0, 1}n, define d(x, y) as the length of the longest consecutive run of differing bits in
corresponding positions of x and y—that is, d(x, y) := max {j − i : for all k = i, i + 1, . . . , j we have xk 6= yk} . For
example, d(01000, 10101) = 3 and d(00100, 01010) = 3 and d(01000, 10000) = 2 and d(11010, 01000) = 1. Is d a
metric?

4.9 For x, y ∈ {0, 1}n, define d(x, y) as the difference in the number of ones that appears in the
two bitstrings—that is, d(x, y) :=

∣∣∣ |{i : xi = 1}| − |{i : yi = 1}|
∣∣∣. (The vertical bars here are a little con-

fusing: the bars around |{i : xi = 1}| and |{i : yi = 1}| denote set cardinality, while the outer vertical bars
denote absolute value.) For example, d(01000, 10101) = |1 − 3| = 2 and d(01000, 10100) = |1 − 2| = 1 and
d(01000, 10000) = |1 − 1| = 0 and d(11010, 01010) = |2 − 2| = 0. Is d a metric?

4.10 The distance version of the Sørensen index (a.k.a. the Dice coefficient) defines the distance based on The Sørensen/Dice
measure is named
after independent
work by two ecolo-
gists from the 1940s,
the Danish botanist
Thorvald Sørensen
and the American
mammalogist Lee
Raymond Dice.

the fraction of ones in x or y that are in the same positions. Specifically,

d(x, y) := 1 − 2 ∑i xi · yi
∑i xi + yi

.

For example, d(01000, 10101) = 1 − 2·0
1+3 = 1 − 0

4 = 1 and d(00100, 01110) = 1 − 2·1
1+3 = 1 − 2

4 = 1/2 and
d(01000, 11000) = 1 − 2·1

1+2 = 1 − 2
3 = 1/3 and d(11010, 01010) = 1 − 2·2

3+2 = 1 − 2
5 = 3/5. Is d a metric?

4.11 For x, y ∈ {0, 1}n, define d(x, y) as the difference in the numbers that are represented by the
two strings in binary. Writing this function formally is probably less helpful (particularly because the
higher powers of 2 have lower indices), but here it is: d(x, y) :=

∣∣∑n
i=1 xi · 2n−i − ∑n

i=1 yi2n−i∣∣ . For example,
d(01000, 10101) = |8 − 21| = 13 and d(01000, 10100) = |8 − 20| = 12 and d(01000, 10000) = |8 − 16| = 8 and
d(11010, 01010) = |26 − 10| = 16. Is d a metric?

4.12 Show that we can’t improve on the parameters in Theorem 4.1: for any integer t ≥ 0, prove that a
code with minimum distance 2t + 1 cannot correct t + 1 or detect 2t + 1 errors.

4.13 Theorem 4.1 describes the error-detecting and error-correcting properties for a code whose
minimum distance is any odd integer. This exercise asks you to give the analogous analysis for a code whose
minimum distance is any even integer. Let t ≥ 1 be any integer, and let C be a code with minimum distance
2t. Determine how many errors C can detect and correct, and prove your answers.

Let c ∈ {0, 1}n be a codeword. Until now, we’ve mostly talked about substitution errors, in which a single bit of c is
flipped from 0 to 1, or from 1 to 0. The next few exercises explore two other types of errors.

An erasure error occurs when a bit of c isn’t successfully transmitted, but the recipient is informed that the
transmission of the corresponding bit wasn’t successful. We can view an erasure error as replacing a bit ci from c with
a ‘?’ (as in Exercise 4.1, for credit-card numbers). Thus, unlike a substitution error, the recipient knows which bit was
erased. (So a codeword 1100110 might become 1?0011? after two erasure errors.) When codeword c ∈ {0, 1}n is sent,
the receiver gets a corrupted codeword c′ ∈ {0, 1, ?}n and where all unerased bits were transmitted correctly (that is, if
c′i ∈ {0, 1}, then c′i = ci).

A deletion error is like a “silent erasure” error: a bit fails to be transmitted, but there’s no indication to the
recipient as to where the deletion occurred. (So a codeword 1100110 might become 10011 after two deletion errors.)
4.14 Let C be a code that can detect t substitution errors. Prove that C can correct t erasure errors.
4.15 Let C be a code that can correct t deletion errors. Prove that C can correct t erasure errors.
4.16 Give an example of a code that can correct one erasure error, but can’t correct one deletion error.
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Consider the following codes. For each, determine the rate and minimum distance of this code. How many errors can it
detect/correct?
4.17 the “code” where all n-bit strings are codewords. (That is, C := {0, 1}n.)
4.18 the trivial code, defined as C := {0n, 1n}.
4.19 the parity-check code, defined as follows: the codewords are all n-bit strings with an even number
of bits set to 1.

4.20 Let’s extend the idea of the parity-check code, from the previous exercise, as an add-on to any
existing code with odd minimum distance.

Let C ⊆ {0, 1}n be a code with minimum distance 2t + 1, for some integer t ≥ 0. Consider a new code C ′,
in which we augment every codeword of C by adding a parity bit, which is zero if the number of ones in the
original codeword is even and one if the number is odd, as follows:

C ′ :=
{
〈x1, x2, . . . , xn, (∑n

i=1 xi) mod 2〉 : x ∈ C
}

.

Then the minimum distance of C ′ is 2t + 2. (Hint: consider two distinct codewords x, y ∈ C. You have to argue that
the corresponding codewords x′, y′ ∈ C have Hamming distance 2t + 2 or more. Use two different cases, depending on
the value of ∆(x, y).)

4.21 Show that we can correctly decode the Repetitionℓ code as follows: given a bitstring c′, for each
bit position i, we take the majority vote of the ℓ blocks’ ith bit in c′, breaking ties arbitrarily. (In other words,
prove that this algorithm actually gives the codeword that’s closest to c′.)

In some error-correcting codes, for certain errors, we may be able to correct more errors than Theorem 4.1 suggests: that
is, the minimum distance is 2t + 1, but we can correct certain sequences of > t errors. We’ve already seen that we can’t
successfully correct every such sequence of errors, but we can successfully handle some sequences of errors using the
standard algorithm for error correction (returning the closest codeword).
4.22 The Repetition3 code with 4-bit messages is only guaranteed to correct 1 error. What’s the largest
number of errors that can possibly be corrected successfully by this code? Explain your answer.
4.23 In the Hamming code, we never correct more than 1 error successfully. Prove why not.

4.24 (programming required) Write a program, in a programming language of your choice, to verify that
any two codewords in the Hamming code differ in at least three bit positions.

Let’s find the “next” Hamming code, with 7-bit messages and 11-bit codewords and a minimum distance of 3. We’ll use
the same style of codeword as in Definition 4.8: the first 7 bits of the codeword will simply be the message, and the next
4 bits will be parity bits (each for some subset of the message bits).

4.25 To achieve minimum distance 3, it will suffice to have parity bits with the following properties:
(a) each bit of the original message appears in at least two parity bits.
(b) no two bits of the original message appear in exactly the same set of parity bits.
Prove that these conditions are sufficient. That is, prove that any set of parity bits that satisfy conditions (a)
and (b) ensure that the resulting code has minimum distance 3.
4.26 Define 4 parity bits for 11-bit messages that satisfy conditions (a) and (b) from Exercise 4.25.
4.27 Define 5 parity bits for 26-bit messages that satisfy conditions (a) and (b) from Exercise 4.25.
4.28 Let ℓ ∈ Z>0, and let n := 2ℓ − 1. Prove that a code with n-bit codewords, minimum distance 3,
and messages of length n − ℓ is achievable. (Hint: look at all ℓ-bit bitstrings; use the bits to identify which message
bits are part of which parity bits.)

4.29 You have come into possession of 8 bottles of “poison,” except, you’ve learned, 7 are fake poison
and only 1 is really poisonous. Your master plan to take over the world requires you to identify the poison
by tomorrow. Luckily, as an evil genius, you have a small collection of very expensive rats, which you can use
for testing. You can give samples from bottles to multiple rats simultaneously (a rat can receive a mixture
of samples from more than one bottle), and then wait for a day to see which ones die. Obviously you can
identify the real poison with 8 rats (one bottle each), or even with 7 (one bottle each, one unused bottle; if
all rats survive then the leftover bottle is the poison). But how many rats do you need to identify the poison?
(Make the number as small as possible.)



422 CHAPTER 4. PROOFS

1: S := ∅
2: for x ∈ {0, 1}23 (in numerical order):
3: if ∆(x, y) ≥ 7 for all y ∈ S then
4: add x to S
5: return S.

Figure 4.16: The
“greedy algorithm”
for generating the
Golay code.

Let c ∈ {0, 1}23. A handy fact (which you’ll show in Exercise 9.132, after we’ve
developed the necessary tools for counting to figure out this quantity): the number of
23-bit strings c′ with ∆(c, c′) ≤ 3 is exactly 2048 = 211 = 223−12. This fact means
that (according to a generalization of Lemma 4.9) it might be possible to achieve the
following code parameters:
• 12-bit messages;
• 23-bit codewords; and
• minimum distance 7.
In fact, these parameters are achievable—and a code that achieves these parameters is surprisingly simple to construct.
The Golay code is an error-correcting code that can be constructed by the following so-called “greedy” algorithm
in Figure 4.16. (The loop should consider the strings x in lexicographic order: first 00 · · · 00, then 00 · · · 01, then
00 · · · 10, going all the way up to 11 · · · 11. Notice that therefore the all-zero vector will be added to S in the first
iteration of the while loop; a hundred and twenty-seven iterations later, 00000000000000001111111 will be the second
element added to S, and so forth.)

4.30 (programming required) Write a program, in a language of your choice (but see the warning be-
low), that implements the algorithm in Figure 4.16, and outputs the list of the 212 = 4096 different 23-bit
codewords of the Golay code in a file, one per line. The Golay code

is named after
Marcel Golay, a
Swiss researcher
who discovered
them in 1949, just
before Hamming
discovered what
would later be
called the Ham-
ming code. A slight
variant of the Golay
code was used by
NASA around 1980
to communicate
with the Voyager
spacecraft as they
traveled to Saturn
and Jupiter.

Implementation hint: suppose you represent the set S as an array, appending each element that passes
the test in Line 3 to the end of the array. When you add a bitstring x to S, the very next thing you do is to
consider adding x + 1 to S. Implementing Line 3 by starting at the x-end of the array will make your code
much faster than if you start at the 00000000000000000000000-end of the array. Think about why!

Implementation warning: this algorithm is not very efficient! We’re doing 223 iterations, each of which
might involve checking the Hamming distance of as many as 212 pairs of strings. On a mildly aging laptop,
my Python solution took about ten minutes to complete; if you ignore the implementation hint from the pre-
vious paragraph, it took 80 minutes. (I also implemented a solution in C; it took about 10 seconds following
the hint, and 100 seconds not following the hint.)

4.31 You and six other friends are imprisoned by an evil genius, in a room filled with eight bubbling
bottles marked as “poison.” (Though, really, seven of them look perfectly safe to you.) The evil genius,
though, admires skill with bitstrings and computation, and offers you all a deal.

You and your friends will each have a red or blue hat placed on your heads randomly. (Each hat has a
50% chance of being red and 50% chance of being blue, independent of all other hats’ colors.) Each person
can each see all hats except his or her own. After a brief moment to look at each others’ hats, all of you must
simultaneously say one of three things: red, blue, or pass. The evil genius will release all of you from
your imprisonment if:
• everyone who says red or blue correctly identifies their hat color; and
• at least one person says a color (that is, not everybody says pass).
You may collaborate on a strategy before the hats are placed on your heads, but once the hat is in place, no
communication is allowed.

An example strategy: all 7 of you pick a random color and say it. (You succeed with probability (1/2)7 =
1/128 ≈ 0.0078.) Another example: you number yourselves 1, 2, . . . , 7, and person #7 picks a random color
and says it; everyone else passes. (You succeed with probability 1/2.)

Can you succeed with probability better than 1/2? If so, how?

4.32 In Section 4.2.5, we proved an upper bound for the rate of a code with a particular minimum
distance, based on the volume of “spheres” around each codeword. There are other bounds that we can
prove, with different justifications.

Suppose that we have a code C ⊆ {0, 1}n with |C| = 2k and minimum distance d. Prove the Singleton
bound, which states that k ≤ n − d + 1. (Hint: what happens if we delete the first d − 1 bits from each codeword?)

Confusingly, the
Singleton bound
is named after
Richard Singleton,
a 20th-century
American computer
scientist; it has
nothing to do with
singleton sets (sets
containing only one
element).
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4.3 Proofs and Proof Techniques

Arguments are to be avoided; they are always vulgar
and often convincing.

Oscar Wilde (1854–1900)

In Section 4.2, we saw a number of claims about error-correcting codes—and, more
importantly, proofs that those claims were true. These proofs used several different
styles of argument: proofs that involved straightforward reasoning by starting from
the relevant definitions; proofs that used “case-based” reasoning; and proofs “by
contradiction” that argued that x must be true because something impossible would
happen if x were false. Indeed, whenever you face a claim that you need to prove, a
variety of different strategies (including these strategies from Section 4.2) are possible
approaches for you to employ. This section is devoted to outlining these and some
other common proof strategies. We’ll first catalogue these techniques in Section 4.3.1,
and then, in Section 4.3.2, we’ll reflect briefly on the strategies and how to choose
among them—and also reflect on the writing part of writing proofs.

What is a proof?
This chapter is devoted to techniques for proving claims—but before we explore

proof techniques, let’s spend a few words discussing what a proof actually is:

Definition 4.9 (Proof)
A proof of a proposition is a convincing argument that the proposition is true.

Definition 4.9 says that a proof is a “convincing argument,” but it doesn’t say to whom
the argument should be convincing. The answer is: to your reader. This definition may
be frustrating, but the point is that a proof is a piece of writing, and—just like with
fiction or a persuasive essay—you must write for your audience.

Taking it further: Different audiences will have very different expectations for what counts as “convinc-
ing.” A formal logician might not find an argument convincing unless she saw every last step, no matter
how allegedly obvious or apparently trivial. An instructor of early-to-mid-level computer science class
might be convinced by a proof written in paragraph form that omits some simple steps, like those that
invoke the commutativity of addition, for example. A professional CS researcher reading a publication
in conference proceedings would expect “elementary” calculus to be omitted.

Some of the debates over what counts as convincing to an audience—in other words, what counts as
a “proof”—were surprisingly controversial, particularly as computer scientists began to consider claims
that had previously been the exclusive province of mathematicians. See the discussion on p. 437 of the
Four-Color Theorem, which triggered many of these discussions in earnest.

To give an example of writing for different audiences, we’ll give several proofs of
the same result. Here’s a claim regarding divisibility and factorials. (Recall that n!,
pronounced “n factorial,” is defined as n! := n · (n − 1) · (n − 2) · · · 1.) Before reading
further, spend a minute trying to convince yourself why (†) is true:

Let n be a positive integer and let k be any integer satisfying 2 ≤ k ≤ n.
Then n! + 1 is not evenly divisible by k. (†)
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We’ll prove Claim (†) three times, using three different levels of detail:

Example 4.8 (Factorials: Proof I)
Proof (heavy detail). By the definition of factorial, we have that n! = ∏n

i=1 i, which can
be rewritten as n! =

[
∏k−1

i=1 i
]
· k · [∏n

i=k+1 i
]

. Let m =
[
∏k−1

i=1 i
]
· [∏n

i=k+1 i
]
. Thus we

have that n! = k · m and m ∈ Z, because the product of any finite set of integers is also
an integer.

Observe that n! + 1 = mk + 1. We claim that there is no integer ℓ such that kℓ = n! + 1.
First, there is no ℓ ≤ m such that kℓ = n! + 1, because kℓ ≤ km = n! < n! + 1.
Second, there is no ℓ ≥ m + 1 such that kℓ = n! + 1, because k ≥ 2 implies that
kℓ ≥ k(m + 1) = n! + k > n! + 1. Because there is no such integer ℓ ≤ m and no such
integer ℓ > m, the claim follows.

Example 4.9 (Factorials: Proof II)
Proof (medium detail). Define m = n!/k, so that n! = mk and n! + 1 = mk + 1. Because k is
an integer between 2 and n, the definition of factorial implies that m is an integer. But
because k ≥ 2, we know mk < mk + 1 < (m + 1)k. Thus mk + 1 is not evenly divisible
by k, because this quantity is strictly between two consecutive integral multiples of k,
namely m · k and (m + 1) · k.

Example 4.10 (Factorials: Proof III)
Proof (light detail). Note that k evenly divides n!. The next integer evenly divisible by
k is n! + k. But k ≥ 2, so n! < n! + 1 < n! + k. The claim follows immediately.

Which of the three proofs from Examples 4.8, 4.9, and 4.10 is best? It depends! The right

Writing tip: As you
study the material
in this book, you
will frequently
be given a claim
and asked to prove
it. To complete
this task well,
you must think
about the question
of for whom you
are writing your
proof. A reasonable
guideline is that
your audience
for your proofs is
a classmate or a
fellow reader of this
book who has read
and understood
everything up to
the point of the
claim that you’re
proving, but hasn’t
thought about this
particular claim at
all.

level of detail depends on your intended reader. A typical reader of this book would
probably be happiest with the medium-detail proof from Example 4.9, but it is up to
you to tailor your proof to your desired reader.

Taking it further: It turns out that one can encode literally all of mathematics using a handful of set-
theoretic axioms, and a lot of patience. It’s possible to write down everything in this book in ultraformal
set-theoretic notation, which serves the purpose of making arguments 100% airtight. But the high-
level computer science content can be hard to see in that style of proof. If you’ve ever programmed in
assembly language before, there’s a close analogy: you can express every program that you’ve ever
written in extremely low-level machine code, or you can write it in a high-level language like C or Java
or Python or Scheme (and, one hopes, make the algorithm much more understandable for the reader).
We’ll prove a lot of facts in this book, but at the Python-like level of proof. Someone could “compile” our
proofs down into the low-level set-theoretic language—but we won’t bother. (Lest you underestimate the
difficulty of this task: a proof that 2 + 2 = 4 would require hundreds of steps in this low-level proof!)

There are subfields of computer science (“formal methods” or “formal verification,” or “automated
theorem proving”) that take this ultrarigorous approach: start from a list of axioms, and a list of infer-
ence rules, and a desired theorem, and derive the theorem by applying the inference rules. When it is
absolutely life-or-death critical that the proof be 100% verified, then these approaches tend to be used: in
verifying protocols in distributed computing, or in verifying certain crucial components of a processor,
for example.
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4.3.1 Proof Techniques

We will describe three general strategies for proofs:

• direct proof: we prove a statement ϕ by repeatedly inferring new facts from known
facts to eventually conclude ϕ. (Sometimes we’ll divide our work into separate cases
and give different proofs in each case. And if ϕ is of the form p ⇒ q, we’ll generally
assume p and then try to infer q under that assumption.)

• proof by contrapositive: when the statement that we’re trying to prove is an implica-
tion p ⇒ q, we can instead prove ¬q ⇒ ¬p—the contrapositive of the original claim.
The contrapositive is logically equivalent to the original implication, so once we’ve
proven ¬q ⇒ ¬p, we can also conclude p ⇒ q.

• proof by contradiction: we prove a statement ϕ by repeatedly assuming ¬ϕ, and prov-
ing something impossible—that is, proving ¬ϕ ⇒ False. Because ¬ϕ therefore

“When you have
eliminated the im-
possible, whatever
remains, however
improbable, must
be the truth.”
— Sir Arthur Conan
Doyle (1859–1930),
The Sign of the Four
(1890).

cannot be true, we can conclude that ϕ must be true.

We’ll give some additional examples of each proof technique as we go, proving some
purely arithmetic claims to illustrate the strategy.

Almost every claim that we’ll prove here—or that you’ll ever need to prove—will be
a universally quantified statement, of the form ∀x ∈ S : P(x). (Often the quantification
will not be explicit: we view any unquantified variable in a statement as being implic-
itly universally quantified.) To prove a claim of the form ∀x ∈ S : P(x), we usually
proceed by considering a generic element x ∈ S, and then proving that P(x) holds.
(Considering a “generic” element means that we make no further assumptions about
x, other than assuming that x ∈ S.) Because this proof establishes that an arbitrary
x ∈ S makes P(x) true, we can conclude that ∀x ∈ S : P(x).

Direct proofs
The simplest type of proof for a statement ϕ is a derivation of ϕ from known facts.

This type of argument is called a direct proof :

Definition 4.10 (Direct Proof)
A direct proof of a proposition ϕ starts from known facts and implications, and repeatedly
applies logical deduction to derive new facts, eventually leading to the conclusion ϕ.

Most of the proofs in Section 4.2 were direct proofs. Here’s another, simpler example:

Example 4.11 (Divisibility by 4)
Let’s prove the correctness of a simple test of whether a given integer is divisible by 4:

Claim: Any positive integer n is divisible by 4 if and only if its last two digits are
themselves divisible by 4. (That is, n is divisible by 4 if and only if n’s last two
digits are in {00, 04, 08, . . . , 92, 96}.)
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Proof. Let dk, dk−1, . . . , d1, d0 denote the digits of n, reading from left to right, so that

n = d0 + 10d1 + 100d2 + 1000d3 + · · · + 10kdk,

or, dividing both sides by 4,

n/4 = (d0 + 10d1)/4 + 25d2 + 250d3 + · · · + 25 · 10k−2dk. (∗)

The integer n is a divisible by 4 if and only if n/4 is an integer, which because of (∗)
occurs if and only if the right-hand side of (∗) is an integer. And that’s true if and
only if (d0 + 10d1)/4 is an integer, because all other terms in the right-hand side of (∗)
are integers. Therefore 4 | n if and only if 4 | (d0 + 10d1). The last two digits of n are
precisely d0 + 10d1, so the claim follows.

Note that this argument considers a generic positive integer n, and establishes the
result for that generic n. The proof relies on two previously known facts: (1) an integer
n is divisible by 4 if and only if n/4 is an integer; and (2) for an integer a, we have that
x + a is an integer if and only if x is an integer. The argument itself uses these two basic
facts to derive the desired claim.

Let’s give another example, this time for an implication. The proof strategy of as-
suming the antecedent, discussed in Definition 3.22 in Section 3.4.3, is a form of direct
proof. To prove an implication of the form ϕ ⇒ ψ, we assume the antecedent ϕ and
then prove ψ under this assumption. This proof establishes ϕ ⇒ ψ because the only
way for the implication to be false is when ϕ is true but ψ is false, but the proof shows
that ψ is true whenever ϕ is true. Here’s an example of this type of direct proof, for a
basic fact about rational numbers. (Recall that a number x is rational if and only if there
exist integers n and d 6= 0 such that x = n

d .)

Example 4.12 (The product of rational numbers is rational)
Claim: If x and y are rational numbers, then so is xy.
Proof. Assume the antecedent—that is, assume that x and y are rational. By the def-
inition of rationality, then, there exist integers nx, ny, dx 6= 0, and dy 6= 0 such that
x = nx

dx
and y = ny

dy
. Therefore

xy = nx
dx

· ny
dy

=
nxny
dxdy

.

Both nxny and dxdy are integers, because the product of any two integers is also an
integer. And dxdy 6= 0 because both dx 6= 0 and dy 6= 0. Thus xy is a rational number, by
the definition of rationality.

Proof by cases
Sometimes we’ll be asked to prove a statement of the form ∀x ∈ S : P(x) that indeed

seems true for every x ∈ S—but the “reason” that P(x) is true seems to be different for
different “kinds” of elements x. For example, Lemma 4.6 argued that the Hamming
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distance between two Hamming-code codewords was at least three, based on three
different arguments based on whether the corresponding messages differed in 1, 2, or
≥ 3 positions. This proof was an example of a proof by cases:

Definition 4.11 (Proof by cases)
To give a proof by cases of a proposition ϕ, we identify a set of cases and then prove two
different types of facts: (1) “in every case, ϕ holds”; and (2) one of the cases has to hold.

(Proofs by cases need not be direct proofs, but plenty of them are.) Here are two sim-
ple examples of proofs by cases:

Example 4.13 (Certain squares)
Claim: Let n be any integer. Then n · (n + 1)2 is even.
Proof. We’ll give a proof by cases, based on the parity of n:

• If n is even, then any multiple of n is also even, so we’re done.
• If n is odd, then n + 1 must be even. Thus any multiple of n + 1 is also even, so

we’re done again.

Because the integer n must be either even or odd, and the quantity n · (n + 1)2 is an
even number in either case, the claim follows.

Example 4.14 (An easy fact about absolute values)
Claim: Let x ∈ R. Then −|x| ≤ x ≤ |x|.
Proof. Observe that x ≥ 0 or x ≤ 0. In both cases, we’ll show the desired inequality:

• For the case that x ≥ 0, we know −x ≤ 0 ≤ x. By the definition of absolute value,
we have |x| = x and −|x| = −x. Thus −|x| = −x ≤ 0 ≤ x = |x|.

• For the case that x < 0, we know x ≤ 0 ≤ −x. By the definition of absolute value,
we have |x| = −x and −|x| = x. Thus −|x| = x ≤ 0 ≤ −x = |x|.

Note that a proof by cases is only valid if the cases are exhaustive—that is, if every
situation falls into one of the cases. (If, for example, you try to prove ∀x ∈ R : P(x) with
the cases x > 0 and x < 0, you’ve left out x = 0—and your proof isn’t valid!) But the
cases do not need to be mutually exclusive (that is, they’re allowed to overlap), as long
as the cases really do cover all the possibilities; in Example 4.14, we handled the x = 0
case in both cases x ≥ 0 and x ≤ 0. If all possible values of x are covered by at least one
case, and the claim is true in every case, then the proof is valid.

Here’s another slightly more complex example, where we’ll prove the triangle in-
equality for the absolute value function. (See Figure 4.2.)

The phrase “with-
out loss of gen-
erality” indicates
that we won’t ex-
plicitly write out
all the cases in the
proof, because the
omitted ones are
virtually identical
to the ones that we
are writing out. It
allows you to avoid
cut-and-paste-and-
search-and-replace
arguments for two
very similar cases.

Example 4.15 (Triangle inequality for absolute values)
Claim: Let x, y, z ∈ R. Then |x − y| ≤ |x − z| + |y − z|.
Proof. Without loss of generality, assume that x ≤ y. (If y ≤ x, then we simply swap
the names of x and y, and nothing changes in the claim.)
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Because we’re assuming x ≤ y, we must show that |x− z|+ |y− z| ≥ |x− y| = y− x.
We’ll consider three cases: z ≤ x, or x ≤ z ≤ y, or y ≤ z. See Figure 4.17.

Case I: z ≤ x. Then

|x − z| + |y − z| ≥ |y − z| |x − z| ≥ 0 by the definition of absolute value.

= y − z x ≤ y by assumption and z ≤ x in Case I, so z ≤ y too.

≥ y − x. z ≤ x in Case I, so −z ≥ −x.

Case II: x ≤ z ≤ y. Then

|x − z| + |y − z| = (z − x) + |y − z| definition of absolute value and x ≤ z in Case II.

= (z − x) + (y − z) definition of absolute value and z ≤ y in Case II.

= y − x. algebra/rearranging terms.

Case III: y ≤ z. Then

|x − z| + |y − z| ≥ |x − z| |y − z| ≥ 0 by the definition of absolute value.

= z − x x ≤ y by assumption and y ≤ z in Case III, so x ≤ z too.

≥ y − x. z ≥ y in Case III.

In all three cases, we’ve shown that |x − z| + |y − z| ≥ y − x, so the claim follows.

Notice the creative demand if you choose to develop a proof by cases: you have to

x y

case I

z
+

x y

case II

z
+

x y

case III

z
+

Figure 4.17: The
three cases for
Example 4.15: z can
fall to the left of x,
between x and y,
or to the right of
y. In each case, we
argue that the sum
of the lengths of the
dashed lines is at
least y − x.

choose which cases to use! The proposition itself does not necessarily make obvious an
appropriate choice of which different cases to use.

Proof by contrapositive
When we seek to prove a claim ϕ, it suffices to instead prove any proposition that

is logically equivalent to ϕ. (For example, a proof by cases with two cases q and ¬q
corresponds to the logical equivalence p ≡ (q ⇒ p) ∧ (¬q ⇒ p).) A valid proof
of any logically equivalent proposition can be used to prove that ϕ is true, but a few
logical equivalences turn out to be particularly useful. A proof by contrapositive is a very
common proof technique that relies on this principle:

Definition 4.12 (Proof by contrapositive)
To give a proof by contrapositive of an implication ϕ ⇒ ψ, we instead give a proof of the
implication ¬ψ ⇒ ¬ϕ.

Recall from Section 3.4.3 that an implication p ⇒ q is logically equivalent to its con-
trapositive ¬q ⇒ ¬p. (An implication is true unless its antecedent is true and its con-
clusion is false, so ¬q ⇒ ¬p is true unless ¬q is true and ¬p is false, which is precisely
when p ⇒ q is false.) Here are two simple examples of proofs using the contrapositive,
one about absolute values and one about rational numbers:
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Example 4.16 (The sum of the absolute values vs. the absolute value of the sum)
Claim: If |x| + |y| 6= |x + y|, then xy < 0.
Proof. We’ll prove the contrapositive:

If xy ≥ 0, then |x| + |y| = |x + y|. (∗)

To prove (∗), assume the antecedent; that is, assume that xy ≥ 0. We must prove
|x| + |y| = |x + y|. Because xy ≥ 0, there are two cases: either both x ≥ 0 and y ≥ 0, or
both x ≤ 0 and y ≤ 0.

Case I: x ≥ 0 and y ≥ 0. Then |x| + |y| = x + y, by the definition of absolute value. And
|x + y| = x + y too, because x ≥ 0 and y ≥ 0 implies that x + y ≥ 0 as well.

Case II: x ≤ 0 and y ≤ 0. Then |x| + |y| = −x + −y, by the definition of absolute value.
And |x + y| = −(x + y) = −x + −y too, because x ≤ 0 and y ≤ 0 implies that
x + y ≤ 0 as well.

Writing tip: Help
your reader figure
out what’s going
on! If you’re going
to use a proof by
contrapositive, say
you’re using a proof
by contrapositive!
Don’t leave ’em
guessing. This
tip applies for all
proof techniques:
your job is to
convince your
reader, so be kind
and informative to
your reader.

Example 4.17 (Irrational quotients have an irrational numerator or denominator)
Claim: Let y 6= 0. If x/y is irrational, then either x is irrational or y is irrational.
Proof. We will prove the contrapositive:

If x is rational and y is rational, then x/y is rational. (†)

(Note that, by De Morgan’s Laws, ¬ (x is irrational or y is irrational) is equivalent to x
being rational and y being rational.)

To prove (†), assume the antecedent—that is, assume that x is rational and y is
rational. By definition, then, there exist four integers nx, ny, dx 6= 0, and dy 6= 0 such
that x = nx

dx
and y = ny

dy
. Thus x

y = nxdy
dxny

. (By the assumption that y 6= 0, we know that
ny 6= 0, and thus dxny 6= 0.) Both the numerator and denominator are integers, so x

y is
rational.

Of course, you can always reuse previous results in any proof—and Example 4.12 is
particularly useful for the claim in Example 4.17. Here’s a second, shorter proof:

Example 4.18 (Irrational quotients, Version B)
Claim: Let y 6= 0. If x/y is irrational, then either x is irrational or y is irrational.
Proof. We prove the contrapositive. Assume that x and y are rational. By definition,
then, y = n

d for some integers n and d 6= 0. Therefore 1
y = d

n is rational too. (By the
assumption that y 6= 0, we know that n 6= 0.) But x

y = x · 1
y , and both x and 1

y are
rational. Therefore Example 4.12 implies that x

y is rational too.

Here’s one more example of a proof that uses the contrapositive. When proving
an “if and only if” statement ϕ ⇔ ψ, we can instead give proofs of both ϕ ⇒ ψ and
ψ ⇒ ϕ, because ϕ ⇔ ψ and (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ) are logically equivalent. This type
of proof is sometimes called a proof by mutual implication. (We can also prove ϕ ⇔ ψ
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by giving a chain of logically equivalent statements that transform ϕ into ψ, but it is
often easier to prove one direction at a time.) Here’s an example of a proof by mutual
implication, which also uses the contrapositive to prove one of the directions:

Example 4.19 (Even integers (and only even integers) have even squares)
Claim: Let n be any integer. Then n is even if and only if n2 is even.
Proof. We proceed by mutual implication.

First, we will show that if n is even, then n2 is even too. Assume that n is even.
Then, by definition, there exists an integer k such that n = 2k. Therefore n2 = (2k)2 =
4k2 = 2 · (2k2). Thus n2 is even too, because there exists an integer ℓ such that n2 = 2ℓ.
(Namely, ℓ = 2k2.)

Second, we will show the converse: if n2 is even, then n is even. We will instead
prove the contrapositive: if n is not even, then n2 is not even. Assume that n is not
even. Then n is odd, and there exists an integer k such that n = 2k + 1. Therefore
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Thus n2 is odd too, because there exists
an integer ℓ such that n2 = 2ℓ + 1. (Namely, ℓ = 2k2 + 2k.)

Proofs by contradiction
The proof techniques that we’ve described so far establish a claim ϕ by arguing

that ϕ must be true. Here, we’ll look at the other side of the coin, and prove ϕ has to
be true by proving that ϕ cannot be false. This approach is called a proof by contradic-
tion: we prove that something impossible must happen if ϕ is false (that is, we prove
¬ϕ⇒ False); thus the assumption ¬ϕ led us to an absurd conclusion, and we must
reject the assumption ¬ϕ and instead conclude its negation ϕ: A proof by contra-

diction is also called
reductio ad absurdum
(Latin: “reduction
to an absurdity”).

Definition 4.13 (Proof by contradiction)
To prove ϕ using a proof by contradiction, we assume the negation of ϕ and derive a
contradiction; that is, we assume ¬ϕ and prove False.

(This proof technique is based on the logical equivalence of ϕ and the proposition
¬ϕ ⇒ False.) We used a proof by contradiction in Lemma 4.8: to show that two par- As my grandfather

always used to say:
“If the conclusion
is obviously false,
reexamine the
premises.”
— Jay Liben (1913–
2006)

ticular sets X and Y were disjoint, we assumed that there was an element z ∈ X ∩ Y
(that is, we assumed that X and Y were not disjoint), and we showed that this assump-
tion led to a violation of the assumptions in the definitions of X and Y. Here’s another
simple example:

Example 4.20 (15x + 111y = 55057 for integers x and y?)
Claim: Suppose 15x + 111y = 55057, for two real numbers x and y. Then either x or y

(or both) is not an integer.
Proof. Suppose not: that is, suppose that x and y are integers with 15x + 111y = 55057.
But 15x + 111y = 3 · (5x + 37y), so 55057

3 = 5x + 37y. But then 55057
3 must therefore

be an integer, because 5x + 37y is—but 55057
3 = 18352.333 · · · /∈ Z. Therefore the
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assumption that both x ∈ Z and y ∈ Z was false, and at least one of x and y must be
nonintegral.

Here is another example of a proof by contradiction, for a classical result showing that
there are numbers that aren’t rational: Writing tip: It’s

always a good idea
to help your reader
with “signposts”
in your writing.
In a proof by
contradiction,
announce at the
outset that you’re
assuming ¬ϕ
for the purposes
of deriving a
contradiction;
when you reach a
contradiction, say
that you’ve reached
a contradiction,
and declare that
therefore the
assumption ¬ϕ was
false, and ϕ is true.

Example 4.21 (The irrationality of
√

2)
Claim:

√
2 is not rational.

Proof. We proceed by contradiction.
Assume that

√
2 is rational. Therefore, by the definition of rationality, there exist

integers n and d 6= 0 such that n/d =
√

2, where n and d are in lowest terms (that is,
where n and d have no common divisors).

Squaring both sides yields that n2/d2 = 2, and therefore that n2 = 2d2. Because 2d2

is even, we know that n2 is even. Therefore, by Example 4.19 (“n is even if and only if
n2 is even”) we have that n is itself even.

Because n is even, there exists an integer k such that n = 2k, which implies that
n2 = 4k2. Thus n2 = 4k2 and n2 = 2d2, so 2d2 = 4k2 and d2 = 2k2. Hence d2 is even,
and—again using Example 4.19—we have that d is even.

But now we have a contradiction: we assumed that n/d was in lowest terms, but
we have now shown that n and d are both even! Thus the original assumption that√

2 was rational was false, and we can conclude that
√

2 is irrational.

Note again the structure of this proof: suppose that
√

2 is rational; therefore we can write√
2 = n/k where n and k have no common divisors, and (a few steps later) therefore n

and k are both even. Because n and k cannot both have no common divisors and also
both be even, we’ve derived an absurdity. The only way we could have gotten to this
absurdity is via our assumption that

√
2 was rational—so we conclude that this as-

sumption must have been false, and therefore
√

2 is irrational.
Note that, when you’re trying to prove an implication ϕ ⇒ ψ, a proof by contraposi-

tive has some similarity to a proof by contradiction:

• in a proof by contrapositive, we prove ¬ψ ⇒ ¬ϕ, by assuming ¬ψ and proving ¬ϕ.
• in a proof by contradiction, we prove False under the assumption ¬(ϕ ⇒ ψ)—that

is, under the assumption that ϕ ∧ ¬ψ. (Note that there’s an extra creative demand
here: you have to figure out which contradiction to derive—something that’s not
generally made immediately clear by the given claim.)

Proofs by contrapositive are generally preferred over proofs by contradiction when
a proof by contrapositive is possible. A proof by contradiction can be hard to follow
because we’re asking the reader to temporarily accept an assumption that we’ll later
show to be false, and there can be a mental strain in keeping track of what’s been as-
sumed and what was previously known. (Notice that the claim in Example 4.21 wasn’t
an implication, so a proof by contrapositive wasn’t an option. The proofs of Lemma 4.8
and Example 4.20, though, could have been rephrased as proofs by contrapositive.)
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Proofs by construction and disproofs by counterexample
So far we’ve concentrated on proofs of universally quantified statements, where

you are asked to show that some property holds for all elements of a given set. (Every
example proof in this section, except the two proofs by contradiction about the irra-
tionality of

√
2 and the infinitude of primes, were proofs of a “for all” statement—and,

actually, even those two claims could have been phrased as universal quantifications.
For example, we could have phrased Example 4.21 as the following claim: for all inte-
gers n and d, we have n 6= d ·

√
2.) Sometimes you’ll confront a universally quantified

statement that’s false, though. The easiest way to prove that ∀x ∈ S : P(x) is false is
using a disproof by counterexample:

Definition 4.14 (Disproof by counterexample)
A counterexample to a claim ∀x ∈ S : P(x) is a particular element y ∈ S such that P(y) is
false. A disproof by counterexample of ¬∀x ∈ S : P(x) is such a counterexample y ∈ S,
together with a proof that P(y) is false.

Finding a counterexample for a claim requires creativity: you have to think about why
a claim might not be true, and then try to construct an example that embodies that
reason. Here is a simple example:

Problem-solving tip:
One way you might
try to identify coun-
terexample to a
claim is by writing
a program: write
a loop that tries a
bunch of examples;
if you ever find one
for which the claim
is false, then you’ve
found a counterex-
ample. Just because
you haven’t found
a counterexample
with your program
doesn’t mean that
there isn’t one—
unless you’ve tried
all the elements of
S—but if you do
find a counterex-
ample, it’s still a
counterexample
no matter how you
found it!

Example 4.22 (Unique sums of squares)
Claim: Let n be a positive integer such that n = a2 + b2 for positive integers a and b.

Then n cannot be expressed as the sum of the squares of two positive integers ex-
cept a and b. (Alternatively, this claim could be written more tersely as: No positive
integer is expressible in two different ways as the sum of two perfect squares.)

The claim is false, and we will prove that it is false by counterexample. We can
start trying some examples. One easy class of potential counterexamples is a2 + 1 for
an integer a. 12 + 12 = 2 can’t be expressed a different way. What about 5? 10? 17?
26? 37? 50? 65? 82? By testing these examples, we find that 65 is a counterexample to
the claim. Observe that 12 + 82 = 1 + 64 = 65, and 42 + 72 = 16 + 49 = 65. Another
counterexample is 50, as 50 = 52 + 52 = 12 + 72.

What about when you’re asked to prove an existential claim ∃x : P(x)? One ap-
proach is to prove the claim by contradiction: you assume ∀x : ¬P(x), and then derive
some contradiction. This type of proof is called nonconstructive: you have proven that
an object with a certain property must exist, but you haven’t actually described a par-
ticular object with that property. In contrast, a proof by construction actually identifies a
specific object that has the desired property:

Definition 4.15 (Proof by construction)
A constructive proof or proof by construction for a claim ∃x ∈ S : P(x) actually builds an
object satisfying the property P: first, we identify a particular element y ∈ S; and, second, we
prove P(y).
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For example, here’s a simple claim that we’ll prove twice, once nonconstructively and
once constructively:

Example 4.23 (The last two digits of some squares)
Claim: There exist distinct integers x, y ∈ {1901, 1902, . . . , 2014} such that the last

two digits of x2 and y2 are the same. (In other words, x2 mod 100 = y2 mod 100.)
Nonconstructive. There are 114 different numbers in the set {1901, 1902, . . . , 2014}.
There are only 100 different possible values for the last two digits of numbers. Thus,
because there are 114 elements assigned to only 100 categories, there must be some
category that contains more than one element.

Constructive. Let x = 1986 and y = 1964. Both numbers’ squares have 96 as their last
two digits: 19862 = 3,944,196 and 19642 = 3,857,296.

It’s generally preferable to give a constructive proof when you can. A constructive
proof is sometimes harder to develop than a nonconstructive proof, though: it may
require more insight about the kind of object that can satisfy a given property, and
more creativity in figuring out how to actually construct that object.

Taking it further: A constructive proof of a claim is generally more satisfying for the reader than a
nonconstructive proof. A proof by contradiction may leave a reader unsettled—okay, the claim is true,
but what can we do with that?—while a constructive proof may be useful in designing an algorithm, or
it may suggest further possible claims to try to prove. (There’s even a school of thought in logic called
constructivism that doesn’t count a proof by contradiction as a proof!)

4.3.2 Some Brief Thoughts about Proof Strategy

So far in this section, we’ve concentrated on developing a toolbox of proof techniques.
But when you’re confronted with a new claim and asked to prove it, you face a difficult
task in figuring out which approach to take. (It’s even harder if you’re asked to for-
mulate a claim and then prove it!) As we discussed in Chapter 3, there’s no formulaic
approach that’s guaranteed to work—you must be creative, open-minded, persistent.
You will have to accept that you will explore approaches that end up being dead ends.
This section will give a few brief pointers about proof strategy—some things to try
when you’re just starting to attack a new problem. We’ll start with some concrete
advice in the form of a three-step plan, largely inspired by an outstanding book by
George Pólya.2 (I highly recommend Pólya as further reading!) 2 George Pólya.

How to Solve It.
Doubleday, Garden
City, NY, 1957.

1. Understand what you’re trying to do. Read the statement that you’re trying to prove.
Reread it. What are the assumptions? What is the desired conclusion? (That is,
what are you trying to prove under the given assumptions?) Remind yourself of
any unfamiliar notation or terminology. Pick a simple example and make sure the
alleged theorem holds for your example. (If not, either you’ve misunderstood some-
thing or the claim is false.) Reread the statement again.

If you’re not given a specific claim—for example, you’re asked to prove or dis-
prove a given statement, or if you’re asked for the “best possible” solution to a
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problem—then it’s harder but even more important to understand what you’re
trying to do. Play around with some examples to generate a sense of what might
be plausibly true. Then try to form a conjecture based on these examples or the
intuition that you’ve developed.

2. Do it. Now that you have an understanding of the statement that you’re trying to
prove, it’s time to actually prove it. You might start by trying to think about slightly
different problems to help grant yourself insight about this one. Are there results
that you already know that “look similar” to this one? Can you solve a more general
problem? Make the premises look as much like the conclusion as possible. Expand
out the definitions; write down what you know and what you have to derive, in
primitive terms. Can you derive some facts from the given hypotheses? Are there
easier-to-prove statements that would suffice to prove the desired conclusion?

Look for a special case: add assumptions until the problem is easy, and then
see if you can remove the extra assumptions. Restate the problem. Restate it again.
Make analogies to problems that you’ve already solved. Could those related prob-
lems be directly valuable? Or could you use a similar technique to what you used Problem-solving tip:

If you’re totally
stuck in attempting
to prove a statement
true, switch to
trying to prove
it false. If you
succeed, you’re
done—or, by
figuring out why
you’re struggling
to construct a
counterexample,
you may figure out
how to prove that
the statement is
true.

in that setting? Try to use a direct proof first; if you’re finding it difficult to construct
a direct proof of an implication, try working on the contrapositive instead. If both of
these approaches fail, try a proof by contradiction. When you have a candidate plan
of attack, try to execute it. If there’s a picture that will help clarify the steps in your
plan, draw it. Sketch out the “big” steps that you’d need to make the whole proof
work. Make sure they fit together. Then crank through the details of each big step.
Do the algebra. Check the algebra. If it all works out, great! If not, go back and try
again. Where did things go off the rails, and can you fix them?

Think about how to present your proof; then actually write it. Note that what
you did in figuring out how to prove the result might or might not be the best way to
present the proof.

3. Think about what you’ve done. Check to make sure your proof is reasonable. Did you
actually use all the assumptions? (If you didn’t, do you believe the stronger claim
that has the smaller set of assumptions?) Look over all the steps of your proof. Turn
your internal skepticism dial to its maximum, and reread what you just wrote. Ask
yourself Why? as you think through each step. Don’t let yourself get away with
anything.

Problem-solving tip:
Check your work!
If your claim says
something about
a general n, test it
for n = 1. Compare
your answer to a
plot, or the output
of a quick program.

After you’re satisfied that your proof is correct, work to improve it. Can you
strengthen the result by making the conclusion stronger or the assumptions weaker?
Can you make the proof constructive? Simplify the argument as much as you can.
Are there unnecessary steps? Are there unnecessarily complex steps? Are there
subclaims that would be better as separate lemmas?

It’s important to be willing to move back and forth among these steps. You’ll try to
prove a claim ϕ, and then you’ll discover a counterexample to ϕ—so you go back and
modify the claim to a new claim ϕ′ and try to prove ϕ′ instead. You’ll formulate a
draft of a proof of ϕ′ but discover a bug when you check your work while reflecting
on the proof. You’ll go back to proving ϕ′, fix the bug, and discover a new proof that’s
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bugfree. You’ll think about your proof and realize that it didn’t use all the assumptions
of ϕ′, so you’ll formulate a stronger claim ϕ′′ and then go through the proof of ϕ′′ and
reflect again about the proof.

Taking it further: One of the most famous—and prolific!—mathematicians of modern times was Paul
Erdős (1913–1996), a Hungarian mathematician who wrote literally thousands of papers over his career,
on a huge range of topics. Erdős used to talk about a mythical “Book” of proofs, containing the perfect
proof of every theorem (the clearest, the most elegant—the best!). See p. 438 for some more discussion of
The Book, and of Paul Erdős himself.

4.3.3 Some Brief Thoughts about Writing Good Proofs

When you’re writing a proof, it’s important to remember that you are writing. Proofs,
like novels or persuasive essays, form a particular genre of writing. Treat writing a
proof with the same care and attention that you would give to writing an essay.

Writing tip: Draft.
Write. Edit. Rewrite.

Make your argument self-contained; include definitions of all variables and all
nonstandard notation. State all assumptions, and explain your notation. Choose your
notation and terminology carefully; name your variables well. Here’s an example.

Example 4.24 (Pythagorean Theorem, stated poorly)
Theorem: a2 + b2 = c2.

This formulation is a terrible way of phrasing the theorem: the reader has no idea what
a, b, and c are, or even that the theorem has anything whatsoever to do with geometry.
(The Pythagorean Theorem, from geometry, states that the square of the hypotenuse
of a right triangle is equal to the sum of the squares of its legs.) Here’s a much better
statement of the Pythagorean Theorem:

a

b

c

Figure 4.18: A right
triangle.

Thanks to Josh
Davis for suggest-
ing Examples 4.24
and 4.25.

Example 4.25 (Pythagorean Theorem, stated well)
Theorem: Let a and b denote the lengths of the legs of a right triangle, and let c denote

the length of its hypotenuse. Then a2 + b2 = c2.

If you are worried that your audience has forgotten the geometric terminology from
this statement, then you might add the following clarification:

As reminder from geometry, a right triangle is a 3-sided polygon with one 90◦ angle,
called a right angle. The two sides adjacent to the right angle are called legs and the third
side is called the hypotenuse. Figure 4.18 shows an example of a right triangle. Here the
legs are labeled a and b, and the hypotenuse is labeled c. As is customary, the right angle
is marked with the special square-shaped symbol ✷.

Because the “standard” phrasing of the Pythagorean Theorem—which you might
have heard in high school—calls the length of the legs a and b and the length of the
hypotenuse c, we use the standard variable names. Calling the leg lengths θ and φ and
the hypotenuse r would be hard on the reader; conventionally in geometry θ and φ are
angles, while r is a radius. Whenever you can, make life as easy as possible for your reader.
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(By the way, we’ll prove the Pythagorean Theorem in Example 4.14, and you’ll prove it
again in Exercise 4.75.)

Above all, remember that your primary goal in writing is communication. Just as Writing tip: In
writing a proof,
keep your reader
informed about
the status of every
sentence. And
make sure that
everything you
write is a sentence.
For example, every
sentence contains
a verb. (Note that
a symbol like “=”
is read as “is equal
to” and is a verb.)
Is the sentence an
assumption? A
goal? A conclusion?
Annotate your
sentences with
signaling words
and phrases to
make it clear what
each statement
is doing. For
example, introduce
statements that
follow logically
from previous
statements with
words like hence,
thus, so, therefore,
and then.

when you are programming, it is possible to write two solutions to a problem that
both “work,” but which differ tremendously in readability. Document! Comment
your code; explain why this statement follows from previous statements. Make your
proofs—and your code!—a pleasure to read.
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Computer Science Connections

Are Massive Computer-Generated Proofs Proofs?

As we’ve said, what we mean by a “proof” is an argument that convinces
the audience that the claim is true. What, then, is the status of the so-called
proof of the claim Checkers is a draw when both players play optimally? The
“proof” of this claim that we discussed on p. 344 hinged on showing that the
software system Chinook can never lose at checkers—which was established
via massive computation to perform a large-scale search of the checkers game
tree.3 Is that “proof” convincing? Can such a proof ever be convincing? It’s 3 Jonathan Schaeffer, Neil Burch, Yngvi

Bjornsson, Akihiro Kishimoto, Martin
Muller, Rob Lake, Paul Lu, and Steve
Sutphen. Checkers is solved. Science,
317(5844):1518–1522, 14 September 2007.

clear that a human reader cannot accommodate the 5 × 1020 checkers board
positions in his or her brain, so it’s not convincing in the sense that a reader
would be able to verify every step of the argument. But, on the other hand, a
reader could potentially be convinced that Chinook’s code is correct, even if
the output is too big for a reader to find convincing.

The philosophical question about whether a large-scale computer-generated
proof “counts” actually as a proof first arose in the late 1970s, when the Four-
Color Theorem was first proven(?).4 Here is the theorem: 4 Kenneth Appel and Wolfgang Haken.

Solution of the four color map problem.
Scientific American, 237(4):108–121,
October 1977.

Any “map” of contiguous geometric regions can be colored using four colors
so that no two adjacent regions share the same color.

Two quick notes: first, adjacent means sharing a positive-length border; two re-
gions meeting at a point don’t need different colors. Second, the requirement
of regions being contiguous means the map can’t require two disconnected
regions (like the Lower 48 States and Alaska) to get the same color.

The computational proof of four-color theorem given by Appel and Haken

Figure 4.19: A four-colored map of the
87 counties in Minnesota.

proceeds as follows. Appel and Haken first identified a set of 1476 different
map configurations and proved (in the traditional way, by giving a convincing
argument) that, if the four-color theorem were false, it would fail on one of
these 1476 configurations. They then wrote a computer program that showed
how to color each one of these 1476 configurations using only four colors.
The theorem follows (“if there were a counterexample at all, there’d be a
counterexample in one of the 1476 cases—and there are no counterexamples
in the 1476 cases”).

A great deal of controversy followed the publication of Appel and Haken’s
work. Some mathematicians felt strongly that a proof that’s too massive for
a human to understand is not a proof at all. Others were happy to accept the
proof, particularly because the four-colorability question had been posed,
and remained unresolved, for centuries. Computer scientists, by our nature,
tend to be more accepting of computational proof than mathematicians—but
there are still plenty of interesting questions to ponder. For example, as we
discussed on p. 344, some errors in the execution of the code that generates
Chinook’s proof are known to have occurred, simply because hardware errors
happen at a high enough rate that they will arise in a computation of this size.
Thus bit-level corruption may have occurred, without 100% correction, in
Chinook’s proof that checkers is a draw under optimal play. So is Chinook’s
“proof” really a proof? (Of course, there are also plenty of human-generated
purported proofs that contain errors!)
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Computer Science Connections

Paul Erdős, “The Book,” and Erdős Numbers

After you’ve completed a proof of a claim—and after you’ve celebrated
completing it—you should think again about the problem. In programming,
there are often many fundamentally different algorithms to solve a particular
problem; in proofs, there are often many fundamentally different ways of
proving a particular theorem. And, just as in programming, some approaches
will be more elegant, more clear, or more efficient than others.

Paul Erdős, a prolific and world-famous mathematician who published ap-
proximately 1500 papers before his death in 1996 (including papers on math,
physics, and computer science), used to talk about “The Book” of proofs. “The
Book” contains the ideal proof of each theorem—the most elegant, insightful,
and beautiful proof. (If you believe in God, then The Book contains God’s
proofs.) There’s even a non-metaphorical book called Proofs from The Book that
collects some of the most elegant known proofs of some theorems.5 Proving 5 Martin Aigner and Günter Ziegler.

Proofs from The Book. Springer, 4th
edition, 2009.

a theorem is great, but giving a beautiful proof is even better. Strive for the
“book proof” of every theorem.

Erdős was one of the most respected mathematicians of his time—and
one of the most eccentric, too. (He forswore most material possessions, and
instead traveled the world, crashing in the guest rooms of his research collab-
orators for months at time.) Because of Erdős’s prolific publication record and
his great respect from the research community, a measure of a certain type of
fame for researchers has sprung up around him. A researcher’s Erdős num-
ber is 1 if she has coauthored a published paper with Erdős; it’s 2 if she has
coauthored a published paper with someone with an Erdős number of one;
and so forth. For example, Bill Gates has an Erdős number of 4: he wrote a
paper on the pancake-flipping problem with Christos Papadimitriou, who has
coauthored a paper with someone (Xiao Tie Deng) who wrote a paper with
someone (Pavol Hell) who wrote a paper with Paul Erdős.

If you’re more of a movie person than a peripatetic mathematician person,
then you may be more familiar with a very similar notion from the entertain-
ment world, the so-called Bacon game. The goal here is to connect a given actor
to Kevin Bacon via the shortest possible chain of intermediaries, where two
actors are linked if they have appeared together in a movie. The Erdős Number Project, maintained

at http://www.oakland.edu/enp by
Jerry Grossman of Oakland University,
is a good place to look for more infor-
mation. You can see more about the
Bacon game at the Oracle of Bacon, at
http://oracleofbacon.org.

It is a source of great pride for researchers to have small Erdős numbers.
And, although Erdős numbers themselves are really nothing more than a
nerdy source of amusement, the ideas underlying them are fundamental in
graph theory, the subject of Chapter 11. A closely related topic is the small-
world phenomenon, also known as “six degrees of separation,” the principle
that almost any two people are likely to be connected by a short chain of
intermediate friends. The “six degrees of separation” phrase came from an
important early paper by the social psychologist Stanley Milgram;6 it has 6 Stanley Milgram. The small world

problem. Psychology Today, 1:61–67, May
1967.

spawned a massive amount of recent research by computer scientists, who
have begun working to analyze questions about human behavior that have
only become visible in the “Facebook era” in which it is now possible to study
collective decision making on an massive scale.
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4.3.4 Exercises

Prove the following claims about divisibility.
4.33 The binary representation of any odd integer ends with a 1.
4.34 A positive integer n is divisible by 5 if and only if its last digit is 0 or 5.
4.35 Let k be any positive integer. Then any positive integer n is divisible by 2k if and only if its last k
digits are divisible by 2k . (This exercise is a generalization of Example 4.11.)

Prove the following claims about rationality.
4.36 If x and y are rational numbers, then x − y is also rational.
4.37 If x and y are rational numbers and y 6= 0, then x

y is also rational.

4.38 One of the following statements is true and one is false:

• If xy and x are both rational, then y is too.
• If x − y and x are both rational, then y is too.

Decide which statement is true and which is false, and give proof/disproof of both.

4.39 Let n be any integer. Prove by cases that n3 − n is evenly divisible by 3.
4.40 Let n be any integer. Prove by cases that n2 + 1 is not evenly divisible by 3.

4.41 Prove that |x| + |y| ≥ |x + y| for any real numbers x and y.
4.42 Prove that |x| − |y| ≤ |x − y| for any real numbers x and y.
4.43 Prove that the product of the absolute values of x and y is equal to the absolute value of their
product—that is, prove that |x| · |y| = |x · y| for any real numbers x and y.
4.44 Suppose that x, y ∈ R satisfy |x| ≤ |y|. Prove that |x+y|

2 ≤ |y|.

4.45 Let A and B be sets. Prove that A × B = B × A if and only if A = ∅ or B = ∅ or A = B. Prove the
result by mutual implication, where the proof of the ⇐ direction proceeds by contrapositive.

Let x ≥ 0 and y ≥ 0 be arbitrary real numbers. The arithmetic mean of x and y is (x + y)/2, their average. The
geometric mean of x and y is √xy.
4.46 First, a warm-up exercise: prove that x2 ≥ 0 for any real number x. (Hint: yes, it’s easy.)
4.47 Prove the Arithmetic Mean–Geometric Mean inequality: for x, y ∈ R≥0, we have √xy ≤ (x + y)/2.
(Hint: (x − y)2 ≥ 0 by Exercise 4.46. Use algebraic manipulation to make this inequality look like the desired one.)
4.48 Prove that the arithmetic mean and geometric mean of x and y are equal if and only if x = y.

Input: A positive real number x
Output: A real number y where y2 ≈ x

Let y0 be arbitrary, and let i := 0.
while (yi)2 is too far away from x

let yi+1 :=
yi+ x

yi
2 , and let i := i + 1.

return yi

Figure 4.20: A re-
minder of Heron’s
method for com-
puting square roots.

In Chapter 2, when we defined square roots, we introduced Heron’s method, a
first-century algorithm to compute

√
x given x. See p. 218, or Figure 4.20 for a

reminder. Here you’ll prove two properties that help establish why this algorithm
correctly computes square roots:
4.49 Assume that y0 ≥ √

x. Prove that, for every i ≥ 1, we have
yi ≥

√
x. In other words, prove that if y ≥ √

x then (y + x
y )/2 ≥ √

x too.

4.50 Suppose that y >
√

x. Prove that x
y is closer to

√
x than y is—that

is, prove that | x
y −√

x| < |y −√
x|. (Hint: show that |y −√

x| − |√x − x
y | > 0.)

Now, using this result and Exercise 4.44, prove that yi+1 as computed in Heron’s Method is closer to
√

x
than yi , as long as yi >

√
x.

The second property that you just proved (Exercise 4.50) shows that Heron’s method improves its estimate of
√

x in
every iteration. (We haven’t shown “how much” improvement Heron’s method achieves in an iteration, or even that
this algorithm is converging to the correct answer—let alone quickly!—but, in fact, it is.)

Prove the following claims using a proof by contrapositive.
4.51 Let n ∈ Z≥0. If n mod 4 ∈ {2, 3}, then n is not a perfect square.
4.52 Let n and m be integers. If nm is not evenly divisible by 3, then neither n nor m is evenly divisible
by 3. (In fact, the converse is true too, but you don’t have to prove it.)
4.53 Let n ∈ Z≥0. If 2n4 + n + 5 is odd, then n is even.
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Prove the following claims using a proof by mutual implication, using a proof by contrapositive for one direction.
4.54 Let n be any integer. Then n3 is even if and only if n is even.
4.55 Let n be any integer. Then n is divisible by 3 if and only if n2 is divisible by 3.

Prove the following claims using a proof by contradiction.
4.56 Let x, y be positive real numbers. If x2 − y2 = 1, then x or y (or both) is not an integer.
4.57 Suppose 12x + 3y = 254, for real numbers x and y. Then either x or y (or both) is not an integer.
4.58 Adapt Example 4.21 to prove that 3√2 = 21/3 is irrational. (You may find Exercise 4.54 helpful.)
4.59 Adapt Example 4.21 to prove that

√
3 is irrational. (You may find Exercise 4.55 helpful.)

4.60 Consider an array A[1 . . . n]. A value x is called a strict majority element of A if strictly more than
half of the elements in A are equal to x—in other words, if

∣∣∣ {i ∈ {1, 2, . . . , n} : A[i] = x}
∣∣∣ > n

2
.

Give a proof by contradiction that every array has at most one strict majority element.

In Example 4.12, Exercise 4.36, and Exercise 4.37, we proved that if x and y are both rational, then so are all three
of xy, x − y, and x

y . The converse of each of these three statements is false. Disprove the following claims by giving
counterexamples:
4.61 If xy is rational, then x and y are rational.
4.62 If x − y is rational, then x and y are rational.
4.63 If x

y is rational, then x and y are rational.

4.64 In Example 4.22, we disproved the following claim by giving a counterexample:
Claim 1: No positive integer is expressible in two different ways as the sum of two perfect squares.

Let’s consider a related claim that is not disproved by our counterexamples from Example 4.22:
Claim 2: No positive integer is expressible in three different ways as the sum of two perfect squares.

Disprove Claim 2 by giving a counterexample.

4.65 Leonhard Euler, an 18th-century Swiss mathematician to whom the idea of an abstract formal
model of networks (graphs; see Chapter 11) is due, made the observation that the polynomial

f (n) = n2 + n + 41

yields a prime number when it’s evaluated for many small integers n: for example, f (0) = 41 and f (1) = 43
and f (2) = 47 and f (3) = 53, and so forth. Prove or disprove the following claim: the function f (n) yields a prime
for every nonnegative integer n.
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4.4 Some Examples of Proofs

Few things are harder to put up with than the
annoyance of a good example.

Mark Twain (1835–1910)
Pudd’nhead Wilson (1894)

We’ve now catalogued a variety of proof techniques, discussed some strategies for
proving novel statements, and described some ideas about presenting proofs well.
Section 4.3 illustrated some proof techniques with a few simple examples each, entirely
about numbers and arithmetic. In this section, we’ll give a few “bigger”—and perhaps
more interesting!—examples of theorems and proofs.

4.4.1 A Proof about Propositional Logic: Conjunctive/Disjunctive Normal Form

We’ll start with a result about propositional logic, namely showing that any proposi-
tion is logically equivalent to another proposition that has a “simpler” structure. Recall
the definitions of conjunctive and disjunctive normal form:

Definition 4.16 (Reminder: Conjunctive/Disjunctive Normal Form)
In propositional logic, a literal is a Boolean variable or its negation (like p or ¬p).

A proposition ϕ is in conjunctive normal form (CNF) if ϕ is the conjunction of one or
more clauses, where each clause is the disjunction of one or more literals.

A proposition ϕ is in disjunctive normal form (DNF) if ϕ is the disjunction of one or
more clauses, where each clause is the conjunction of one or more literals.

Here are two small examples of CNF and DNF:

(¬p∨ q ∨ ¬r) ∧ (¬q∨ r) (conjunctive normal form)
(¬p∧ ¬q ∧ r) ∨ (¬q∧ ¬r ∨ s) ∨ (r). (disjunctive normal form)

Back in Chapter 3, we claimed that every proposition is logically equivalent to one in
CNF and one in DNF, but we didn’t prove it. Here we will.

First, though, let’s recall an example from Chapter 3 and brainstorm a bit about how
p q p

⇔
q

p
∧

q

¬p
∧
¬q

T T T T F
T F F F F
F T F F F
F F T F T

Figure 4.21: Truth
table for p ⇔ q
and the clauses
for converting it to
DNF.

to generalize that result into the desired theorem. In Example 3.26, we converted p ⇔ q
into DNF as the logically equivalent proposition (p ∧ q) ∨ (¬p ∧ ¬q). Note that this
expression has two clauses p ∧ q and ¬p∧ ¬q, each of which is true in one and only one row
of the truth table. And our full proposition (p ∧ q) ∨ (¬p ∧ ¬q) is true in precisely two
rows of the truth table. (See Figure 4.21.)

Can we make this idea general? Yes! For an arbitrary proposition ϕ, and for any
particular row of the truth table for ϕ, we can construct a clause that’s true in that row
and only in that row. We can then build a DNF proposition that’s logically equivalent
to ϕ by “or”ing together each of the clauses corresponding to the rows in which ϕ is
true. And then we’re done!

(Well, we’re almost done! There is one subtle bug in the proof sketch in the previous
paragraph—can you find it? We’ll fix the issue in the last paragraph of the proof below.)
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Theorem 4.11 (All propositions are expressible in DNF (Theorem 3.2))
For any proposition ϕ, there exists a proposition ψdnf in disjunctive normal form such that
ϕ ≡ ψdnf.

Proof. Let ϕ be an arbitrary proposition, say over the Boolean variables p1, . . . , pk.
For any particular truth assignment ρ for the variables p1, . . . , pk, we’ll construct

a conjunction cρ that’s true under ρ and false under all other truth assignments. Let
x1, x2, . . . , xℓ be the variables assigned true by ρ, and y1, y2, . . . , yk−ℓ be the variables
assigned false by ρ. Then the clause

cρ := x1 ∧ x2 ∧ · · · ∧ xℓ ∧ ¬y1 ∧ ¬y2 ∧ · · · ∧ ¬yk−ℓ

is true under ρ, and cρ is false under every other truth assignment.
We can now construct a DNF proposition ψdnf that is logically equivalent to ϕ by

“or”ing together the clause cρ for each truth assignment ρ that makes ϕ true. Build
the truth table for ϕ, and let Sϕ denote the set of truth assignments for p1, . . . , pk under
which ϕ is true. If the truth assignments in Sϕ are {ρ1, ρ2, . . . , ρm}, then define

ψdnf := cρ1 ∨ cρ2 ∨ · · · ∨ cρm . (∗)

It’s easy to see that ψdnf is true under every truth assignment ρ under which ϕ was
true (because the clause cρ is true under ρ). And, for a truth assignment ρ under which
ϕ was false, every disjunct in ψdnf evaluates to false, so the entire disjunction is false
under such a ρ, too. Thus ϕ ≡ ψdnf.

There’s one thing we have to be careful about: what happens if Sϕ = ∅—that is,
if ϕ is unsatisfiable? (This issue is the minor bug we mentioned before the theorem
statement.) The construction in (∗) doesn’t work, but it’s easy to handle this case too:
we simply choose an unsatisfiable DNF proposition like p ∧ ¬p as ψdnf.

Note that, although we didn’t phrase it as such from the beginning, our proof of
Theorem 4.11 was actually a proof by cases, with two cases corresponding to ϕ being
unsatisfiable and ϕ being satisfiable.

Problem-solving
tip: Be on the
lookout for special
cases (like an
unsatisfiable ϕ in
Theorem 4.11), and
see whether you
can handle them
separately from the
argument for the
“typical” case.

As an illustration, let’s use the construction from Theorem 4.11 to transform an
example proposition into DNF:

Example 4.26 (Converting p ⇒ (q∧ r) to DNF)
Problem: Find a proposition in DNF logically equivalent to p ⇒ (q∧ r).

Solution: To convert p ⇒ (q ∧ r) to DNF, we start from the truth table, and then “or”
together the propositions corresponding to each row that’s marked with as True:

p q r q ∧ r p ⇒ (q ∧ r)
T T T T T p ∧ q∧ r
T T F F F p ∧ q∧ ¬r
T F T F F p ∧ ¬q∧ r
T F F F F p ∧ ¬q∧ ¬r
F T T T T ¬p ∧ q ∧ r
F T F F T ¬p ∧ q ∧ ¬r
F F T F T ¬p ∧ ¬q ∧ r
F F F F T ¬p ∧ ¬q ∧ ¬r
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Our DNF proposition will therefore have five clauses, one for each of the five truth
assignments under which this implication is true:

(p∧ q ∧ r)︸ ︷︷ ︸
TTT

∨ (¬p∧ q ∧ r)︸ ︷︷ ︸
FTT

∨ (¬p∧ q∧ ¬r)︸ ︷︷ ︸
FTF

∨ (¬p∧ ¬q∧ r)︸ ︷︷ ︸
FFT

∨ (¬p∧ ¬q ∧ ¬r)︸ ︷︷ ︸
FFF

.

Conjunctive normal form
Now that we’ve proven that we can translate any proposition into disjunctive nor-

mal form (the “or of ands”), we’ll turn our attention to conjunctive normal form (the
“and of ors”).

Theorem 4.12 (All propositions are expressible in CNF)
For any proposition ϕ, there exists a proposition ϕcnf in conjunctive normal form such that
ϕ ≡ ϕcnf.

Though it’s not initially obvious, Theorem 4.12 actually turns out to be easy to prove
by making use of the DNF result. The crucial idea—and, once again, it’s an idea that Problem-solving

tip: Try being
lazy first! Think
about whether
there’s a way to
use a previously
established result
to make the current
problem easier.

requires some genuine creativity to come up with!—is that it’s fairly simple to turn the
negation of a DNF proposition into a CNF proposition. So, to build a CNF proposition
logically equivalent to ϕ, we’ll construct a DNF proposition that is logically equivalent
to ¬ϕ; we can then negate that DNF proposition and use De Morgan’s Laws to convert
the resulting proposition into CNF. Here are the details:

Proof. If ϕ is a tautology, the task is easy; just define ϕcnf = p ∨ ¬p.
Otherwise, ϕ is a nontautology, say over the variables p1, . . . , pk. Using Theo-

rem 4.11, we can construct a DNF proposition ψ that is logically equivalent to ¬ϕ.
(Note that, using our construction from Theorem 4.11, the proposition ψ will have k
literals in every clause, because ¬ϕ is satisfiable.) Thus the form of ψ will be

ψ = (c1
1 ∧ · · · ∧ c1

k ) ∨ (c2
1 ∧ · · · ∧ c2

k )∨ · · · ∨ (cm
1 ∧ · · · ∧ cm

k )

for some m ≥ 1, where each cj
i is a literal. Recall that ψ ≡ ¬ϕ, so we also know that

¬ψ ≡ ϕ. Let’s negate ψ:

¬ψ = ¬
[
(c1

1 ∧ · · · ∧ c1
k )∨ (c2

1 ∧ · · · ∧ c2
k) ∨ · · · ∨ (cm

1 ∧ · · · ∧ cm
k )
]

≡ ¬(c1
1 ∧ · · · ∧ c1

k) ∧ ¬(c2
1 ∧ · · · ∧ c2

k) ∧ · · · ∧ ¬(cm
1 ∧ · · · ∧ cm

k )
De Morgan’s Law: ¬(p ∨ q) ≡ ¬p ∧ ¬q

≡ (¬c1
1 ∨ · · · ∨ ¬c1

k) ∧ (¬c2
1 ∨ · · · ∨ ¬c2

k) · · · ∧ (¬cm
1 ∨ · · · ∨ ¬cm

k ).
De Morgan’s Law: ¬(p ∧ q) ≡ ¬p ∨ ¬q, applied once per clause

But this expression is in CNF once we remove any doubly negated literals—that is, we
replace any occurrences of ¬¬p by p instead. Thus we’ve constructed a proposition in
conjunctive normal form that’s logically equivalent to ¬ψ ≡ ϕ.
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As an illustration of this construction, let’s convert p ⇒ (q∧ r)—which we converted
to DNF in Example 4.26—to conjunctive normal form too:

Example 4.27 (Converting p ⇒ (q∧ r) to CNF)
In Example 4.26, we converted the proposition ϕ = p ⇒ (q ∧ r) into DNF. Here we’ll
convert it into CNF, using Theorem 4.12. Again, we start from the truth table for ¬ϕ:

ϕ ¬ϕ
p q r q ∧ r p ⇒ (q ∧ r) ¬(p ⇒ (q ∧ r))
T T T T T F p ∧ q ∧ r
T T F F F T p ∧ q ∧ ¬r
T F T F F T p ∧ ¬q∧ r
T F F F F T p ∧ ¬q∧ ¬r
F T T T T F ¬p ∧ q∧ r
F T F F T F ¬p ∧ q∧ ¬r
F F T F T F ¬p ∧ ¬q∧ r
F F F F T F ¬p ∧ ¬q∧ ¬r

We first construct a DNF proposition equivalent to ¬ϕ. This proposition has three
clauses, one for each of the truth assignments under which ¬ϕ is true (and ϕ is false):

¬ϕ ≡ (p∧ q ∧ ¬r)︸ ︷︷ ︸
TTF

∨ (p ∧ ¬q ∧ r)︸ ︷︷ ︸
TFT

∨ (p∧ ¬q∧ ¬r)︸ ︷︷ ︸
TFF

We negate this proposition and use De Morgan’s Laws to push around the negations:

ϕ ≡ ¬ [
(p ∧ q ∧ ¬r) ∨ (p∧ ¬q∧ r) ∨ (p ∧ ¬q∧ ¬r)

]

≡ ¬(p∧ q ∧ ¬r) ∧ ¬(p∧ ¬q∧ r) ∧ ¬(p∧ ¬q ∧ ¬r) De Morgan

≡ (¬p∨ ¬q∨ ¬¬r) ∧ (¬p∨ ¬¬q∨ ¬r) ∧ (¬p∨ ¬¬q∨ ¬¬r) De Morgan

≡ (¬p∨ ¬q∨ r) ∧ (¬p∨ q ∨ ¬r) ∧ (¬p∨ q ∨ r). Double Negation

So (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ ¬r) ∧ (¬p ∨ q ∨ r) is a CNF proposition that’s logically
equivalent to p ⇒ (q∧ r). We can verify via truth table that this proposition is indeed
logically equivalent to p ⇒ (q∧ r).

One last comment about these proofs: it’s worth emphasizing again that there’s gen-
uine creativity required in proving these theorems. Through the strategies from Sec-
tion 4.3.2 and through practice, you can get better at having the kinds of creative ideas
that lead to proofs—but that doesn’t mean that these results should have been “obvi-
ous” to you in advance. It takes a real moment of insight to see how to use the truth
table to develop the DNF proposition to prove Theorem 4.11, or how to use the DNF
formula of the negation to prove Theorem 4.12.

Taking it further: Theorems 4.11 and 4.12 said that “a proposition ψ (of a particular form) exists for
every ϕ”—but our proofs actually described an algorithm to build ψ from ϕ. (That’s a more computa-
tional way to approach a question: a statement like “such-and-such exists!” is the kind of thing more
typically proven by mathematicians, and “a such-and-such can be found with this algorithm!” is a claim
more typical of computer scientists.) Our algorithms in Theorems 4.11 and 4.12 aren’t very efficient,
unfortunately; they require 2k steps just to build the truth table for a k-variable proposition. We’ll give
a (sometimes, and somewhat) more efficient algorithm in Chapter 5 (see Section 5.4.3) that operates
directly on the form of the proposition (“syntax”) rather than on using the truth table (“semantics”).
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Some other results about propositional logic
In the exercises, you’ll be asked to prove a large collection of other facts about

propositional logic. We’ll highlight one of them, which is similar in spirit to the the-
orems about DNF and CNF: you’ll show that any proposition ϕ is logically equivalent
to a simpler proposition that uses only one kind of logical connective, called “nand.”
For reasons of physics, building the physical circuitry for the logical connective nand—
as in “not and,” where p nand q means ¬(p ∧ q)—is much simpler than other logical
connectives. (The physical reasons relate specifically to the way that transistors—the
most basic building blocks for digital circuits—work.) The truth table for nand—also
known as the Sheffer stroke |—appears in Figure 4.22.

The Sheffer stroke |
is named after the
early-20th-century
logician Henry
Sheffer.

It turns out that every (every!) logical connective can be expressed in terms of |. In
p q p | q p ↓ q
T T F F
T F T F
F T T F
F F T T

Figure 4.22: The
truth table for nand
(also known as the
Sheffer stroke |),
and nor (also
known as Peirce’s
arrow ↓).

other words, if you have enough nand gates, then you will be able to build any logical
circuit that you want. Here is a theorem that formally states this result:

Theorem 4.13 (All propositions are expressible using only |)
For any Boolean formula ϕ over p1, . . . , pk, there exists a proposition ψnand-only such that (i)
ϕ ≡ ψnand-only, and (ii) ψnand-only contains only p1, . . . , pk and the logical connective |.

The theorem follows from Exercise 4.69, where you’ll show that every logical connec-
tive can be expressed in terms of |. (To give a fully rigorous proof, we will need to use
mathematical induction, the subject of Chapter 5. Mathematical induction will essen-
tially allow us to apply the results of Exercise 4.69 recursively to translate an arbitrary
proposition ϕ into ψnand-only.)

Taking it further: Indeed, real circuits are typically built exclusively out of nand gates, using logical
equivalences to construct and/or/not gates from a small number of nand gates. Although it may be
initially implausible if this is the first time that you’ve heard it, the processor of a physical computer is
essentially nothing more than a giant circuit built out of nand gates and wires. With some thought, you
can build a circuit that takes two integers (represented in binary, as a 64-bit sequence) and computes
their sum. Similarly, but more thought-provokingly, you can build a circuit that takes an instruction (add
these numbers; compare those numbers; save this thing in memory; load the other thing from memory)
and performs the requested action. That circuit is a computer!

Incidentally, all of the logical connectives can also be defined in terms of the logical
connective known as Peirce’s arrow ↓ and also known as nor, as in “not or.” (You’ll

Peirce’s arrow
is named after
the 18th-century
logician Charles
Peirce. Its truth
table is also shown
in Figure 4.22.

prove the analogous result to Theorem 4.13 for Peirce’s arrow in Exercise 4.70.)

4.4.2 The Pythagorean Theorem

Example 4.24 presented the Pythagorean Theorem, which you probably once saw in
a long-ago geometry class: the square of the length of hypotenuse of a right trian-
gle equals the sum of the squares of the lengths of the legs. Let’s prove it. In brain-

The original for-
mulation of the
Pythagorean The-
orem is attributed
to Pythagoras, a
Greek mathemati-
cian/philosopher
who lived around
500 bce.

storming about this theorem, here’s an idea that turns out to be helpful. Because the
statement of Pythagorean theorem involves side lengths raised to the second power
(“squared”), we might be able to think about the problem using geometric squares,
appropriately configured. Here’s a proof that proceeds using this geometric idea:
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Theorem 4.14 (The Pythagorean Theorem)
Let a and b denote the lengths of the legs of a right triangle, and let c denote the length of its
hypotenuse. Then a2 + b2 = c2.

a

b

c

(a) The right triangle.

a

b

c

(b) . . . with an added square.

a

b

c

(c) . . . and three added triangles.

Figure 4.23: Illustra-
tions for the proof
of the Pythagorean
Theorem, Theo-
rem 4.14.

Proof. Starting with the
given right triangle in Fig-
ure 4.23(a), draw a square
with side length c, where
one side of the square coin-
cides with the hypotenuse
of the given triangle, as in
Figure 4.23(b). Now draw
three new triangles, each
identical to the first. Place
these three new triangles symmetrically around the square that we just drew, so that
each side of the square coincides with the hypotenuse of one of the four triangles, as
in Figure 4.23(c). Each of these four triangles has leg lengths a and b and hypotenuse c.
Including both the c-by-c square and the four triangles, the resulting figure is a square
with side length a + b.

To complete the proof, we will account for the area of Figure 4.23(c) in two different
ways. First, because a square with side length x has area x2, we have that

area of the enclosing square = (a + b)2 = a2 + 2ab + b2.

Second, this enclosing square can be decomposed into a c-by-c square and four identi-
cal right triangles with leg lengths a and b. Because the area of a right triangle with leg
lengths x and y is xy/2, we also have that

area of the enclosing square = 4 · (area of one triangle) + c2

= 4 · 1
2ab + c2

= 2ab + c2.

But the area of the enclosing square is the same regardless of whether we count it all
together, or in its five disjoint pieces. Therefore a2 + 2ab + b2 = 2ab + c2. The theorem
follows by subtracting 2ab from both sides.

There are many proofs of the Pythagorean theorem—in fact, hundreds! There is
a classic proof attributed to Euclid (see p. 447), and many subsequent and different
proof approaches followed over the millennia. There’s even a book that collects over
350 different proofs of the result!7 There’s an important lesson to draw from the many

7 Elisha Scott
Loomis. The
Pythagorean Propo-
sition. National
Council of Teachers
of Mathematics,
June 1968.

proofs of this theorem: there’s more than one way to do it. Just as there are usually many “There’s more than
one way to do it” is
also the motto of
the programming
language Perl.

fundamentally different algorithms for the same problem (think about sorting, for
example), there are usually many fundamentally different techniques that can prove
the same theorem. Keep an open mind; there is absolutely no shame in proving a
result using a different approach than the “standard” way!
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4.4.3 Prime Numbers

We’ll return to arithmetic for our next set of examples, a pair of proofs about the prime
numbers. Recall that a positive integer n ≥ 2 is prime if and only if the only positive
integers that divide n evenly are 1 and n itself. Also recall that a positive integer n ≥ 2
that is not prime is called composite. (That is, the integer n is composite if and only if
there exists a positive integer k /∈ {1, n} such that k divides n evenly.)

We’ll start with another example of a proof by contradiction:

A similar proof
to the one for
Theorem 4.15
dates back around
2300 years. It’s
due to Euclid,
the ancient Greek
mathematician after
whom Euclidean
geometry—and
the Euclidean
algorithm (see
Section 7.2.4)—is
named.

Theorem 4.15 (An infinitude of primes)
There are infinitely many prime numbers.

Proof. We proceed by contradiction.
Suppose, for the purposes of deriving a contradiction, that there are only finitely

many primes. This assumption means that there is a largest prime number, which we
will call p. Consider the integer p!, the factorial of this largest prime p. Let’s consider
two separate cases: either p! + 1 is prime, or p! + 1 is not prime.

• If p! + 1 is prime, then we have a contradiction of the assumption that p is the largest
prime, because p! + 1 > p is also prime.

• If p! + 1 is not prime, then by definition it is evenly divisible by some integer k sat-
isfying 2 ≤ k ≤ p!. But we proved in Example 4.8 that p! + 1 is not evenly divisible
by any integer between 2 and p, inclusive. Thus the smallest integer k that evenly
divides p! + 1 must exceed p. Further, this integer k must be prime—otherwise some
2 ≤ k′ < k divides k and therefore divides p! + 1, but k was the smallest divisor of
p! + 1. Thus k > p is prime, and again we have a contradiction of the assumption that
p is the largest prime.

In either case, we have a contradiction! Thus the original assumption—there are only
finitely many prime numbers—is false, and so there are infinitely many primes.

We’ll now turn to another result about prime numbers, relating to the primality
testing problem: you are given a positive integer n, and you have to determine whether
n is prime. The definition of primality says that n is composite if there’s an integer
k ∈ Z−{1, n} such that k |n, but it should be easy to see that n is composite if and only
if there’s an integer k ∈ {2, 3, . . . , n− 1} such that k | n. (That is, the largest possible
divisor of n is n − 1.) But we can do better, strengthening this result by shrinking the
largest candidate value of k:

Theorem 4.16 (A composite number n has a factor ≤√
n)

A positive integer n ≥ 2 is evenly divisible by some other integer k ∈ {2, 3, . . . , ⌈√n⌉} if and
only if n is composite.

Proof. We’ll proceed by mutual implication.
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The forward direction is easy: if there’s some integer k ∈ {2, 3, . . . , ⌈√n⌉} with k 6= n
such that k evenly divides n, then by definition n is composite. (That integer k satisfies
k | n and k /∈ {1, n}.)

For the other direction, assume that the integer n ≥ 2 is composite. By definition
of composite, there exists a positive integer k /∈ {1, n} such that n mod k = 0—that is,
there exist positive integers k /∈ {1, n} and d such that dk = n, so d | n and k | n. We
must have that d 6= 1 (otherwise dk = 1 · k = k = n, but k < n) and d 6= n (otherwise
dk = nk > n, but dk = n). Thus there exist positive integers d, k /∈ {1, n} such that
dk = n. But if both d >

√
n and k >

√
n, then dk >

√
n · √n = n, which contradicts the

fact that dk = n. Thus either d ≤ √
n or k ≤ √

n.

Taking it further: Generating large prime numbers (and testing the primality of large numbers) is a
crucial step in many modern cryptographic systems. See the discussion on p. 454 for some discussion
of algorithms for testing primality suggested by these proofs, and a bit about the role that they play in
modern cryptographic systems.

4.4.4 Uncomputability

We’ll close this section with one of the most important results in computer science,
dating from the early 20th century: there are problems that cannot be solved by computers.
At that time, great thinkers were pondering some of the most fundamental questions
that can be asked in CS. What is a computer? What is computation? What is a pro-
gram? What tasks can be solved by computers/programs? One of the deepest and
most mind-numbing results of this time was a proof, developed independently by
Alan Turing and by Alonzo Church, that there are uncomputable problems. That is,
there is a problem P for which it’s possible to give a completely formal description of
the right answer—but it’s not possible to write a program that solves P.

Here, we’ll prove this theorem. Specifically, we’ll describe the halting problem, and
prove that it’s uncomputable. (Informally, the halting problem is: given a function p
written in Python and an input x, does p get stuck in an infinite loop when it’s run on x?) The
result is a great example of a proof by contradiction, where we will exploit the abyss of
self-reference to produce the contradiction.

Problems
Before we address the computability of the halting problem, we have to define pre-

cisely what we mean by a “problem” and “computable.” A problem is the kind of task
that we wish to solve with a computer program. We will focus on yes–no problems,
called decision problems:

Definition 4.17 (Problem)
A problem is a description of a set of valid inputs, and a specification of the corresponding
output for each them. A decision problem is one where the output is either “yes” or “no.”

(In other words, a decision problem is specified by a description of a set of possible
inputs, along with a description of those inputs for which the correct answer is “yes.”)
We’ve already encountered several decision problems:
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Example 4.28 (Some sample decision problems)
• primality: the set of possible inputs is the set of positive integers; the set of “yes”

inputs is the set of prime numbers. (The “no” inputs are 1 and the composites.)

• satisfiability: any propositional-logic proposition ϕ is a valid input, and ϕ is a
“yes” input if and only if ϕ is satisfiable.

An instance of a problem is a valid input for that problem. (An invalid input is one
that isn’t the right “kind of thing” for that problem.) We will refer to an instance x of
a problem P as a yes-instance if the correct output is “yes,” and as a no-instance if the
correct output is “no.” For example, 17 or 18 are both instances of primality; 17 is a
yes-instance, while 18 is a no-instance; p∨ ¬p is an invalid input.

Computability
Problems are the things that we’ll be interested in solving via computer programs.

Informally, problems that can be solved by computer are called computable and those
that cannot be solved by computer are called uncomputable. It’ll be easiest to think of
computability in terms of your favorite programming language, whatever it may be.
For the sake of concreteness, we’ll pretend it’s Python, though any language would do.

Taking it further: The original definition of computability given by Alan Turing used an abstract device
called a Turing machine; a programming language is called Turing complete if it can solve any problem that
can be solved by a Turing machine. Every non-toy programming language is Turing complete: Java, C,
C++, Python, Ruby, Perl, Haskell, BASIC, Fortran, Assembly Language, whatever.

Formally, we’ll define computability in terms of the existence of an algorithm,
which we will think of as a function written in Python:

Definition 4.18 (Computability)
A decision problem P is computable if there exists a Python function A that solves P. That
is, P is computable if there exists a Python function A such that, on any input x:

(i) A terminates when run on x.
(ii) A(x) returns true if and only if x is a yes-instance of P.

Notice that we insist that the Python function A must actually terminate on any input
x: it’s not allowed to run forever. Furthermore, running A(x) returns True if x is a yes-
instance of P and running A(x) returns False if x is a no-instance of P.

The decision problems from Example 4.28 are both computable:

Example 4.29 (Computability of some sample decision problems)
• primality is computable: both isPrime and isPrimeBetter (p. 454) are algorithms

that could be implemented as a Python function that (i) terminates when run on
any positive integer, and (ii) returns True on input n if and only if n is prime.
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• satisfiability is computable, too: as we discussed in Section 3.3.1, we can ex-
haustively try all truth assignments for ϕ, checking whether any of them satis-
fies ϕ. This algorithm is slow—if ϕ has n variables, there are 2n different truth
assignments—but it is guaranteed to terminate for any input ϕ, and correctly de-
cides whether ϕ is satisfiable.

Programs that take source code as input
def commentedTester(sourceCode):

for character in sourceCode:

if character == "#"

and isn’t inside quotes:

return True

return False

def absoluteValue(n):

if n > 0:

return n

else:

return -1 * n

def isEven(n):

# % is Python’s mod operator

if n % 2 == 0:

return True # n is even

else:

return False # n is odd

Figure 4.24: Python
source code for
three functions.

The inputs to the problems or programs that we’ve talked
about so far have been integers (for primality) or Boolean
formulas (for satisfiability). Of course, other input types
like rational numbers or lists are possible, too. Programs that
take programs as input are a particularly important category.

Taking it further: Although you might not have thought about them in
these terms, you’ve frequently encountered programs that take programs as
input. For example, in any introductory CS class, you’ve seen one frequently:
the Python interpreter python, the Java compiler javac, and the C compiler
gcc all take programs (written in Python or Java or C, respectively) as input.

It’s easy to think up some decision problems where the
input is a Python program. Here’s one, about comment-
ing code. (For example, it’s not hard to imagine an Intro
CS instructor setting up an automated grading system for
programs that gives an automatic zero to any submitted
assignment that contains no comments.)

Example 4.30 (The commented decision problem)
Define the decision problem commented as follows:

Input: the Python source code s for a function
Output: “yes” if s contains at least one comment; “no” otherwise.

In Python, a comment starts with # and goes until the end of the line, so as long as a
# appears somewhere in the source code s—and not inside quotation marks—then s
is a yes-instance of commented; otherwise s is a no-instance.

The commented problem is computable: testing whether s is a yes-instance can be
done by looking at the characters of s one by one, and testing to see whether any
one of those characters starts a comment. A Python program commentedTester

that solves commented is shown in Figure 4.24. (The details of testing whether
character is inside quotes are omitted from the source code, but otherwise the code
for commentedTester is valid, runnable Python code.)

Consider running commentedTester on the other instances shown Figure 4.24. Ob-
serve that absoluteValue is a no-instance of commented, because it doesn’t contain
the comment character # at all, and isEven is a yes-instance of commented, because
it contains three comments. As desired, if we ran commentedTester on these two
pieces of source code, the output would be False and True, respectively.
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def commentedTester(sourceCode):

for character in sourceCode:

if character == "#"

and isn’t inside quotes:

return True

return False

Figure 4.25: A
reminder of
the Python
source code for
commentedTester.

Example 4.30 showed that the decision problem commented is
computable by giving a Python function commentedTester that solves
commented. Because we can run commentedTester on any piece of
Python source code we please, let’s do something a little bizarre: let’s
run commentedTester on the source code for commentedTester itself (!).
There weren’t any comments in commentedTester—the only # in the
code is inside quotes—so the source code of commentedTester is a no-instance of
commented. Put a different way, if sct denotes the source code of commentedTester,
then running sct on sct returns False. This idea of taking some source code s and run-
ning s on s itself will be essential in the rest of this section.

The Halting Problem
The key decision problem that we’ll consider is the halting problem:

Definition 4.19 (The Halting Problem)
Define the decision problem haltingProblem as follows:

Input: a pair 〈s, x〉, where s is the source code of a syntactically valid Python function that
takes one argument, and x is any value;

Output: “yes” if s terminates when run on input x; “no” otherwise.

That is, 〈s, x〉 is a yes-instance of haltingProblem if s(x) terminates (doesn’t get stuck in
an infinite loop), and it’s a no-instance if s(x) does get stuck in an infinite loop.

We can now use the idea of running a function with itself as input to show that the
Halting Problem is uncomputable, by contradiction:

Theorem 4.17 (Uncomputability of the Halting Problem)
haltingProblem is uncomputable.

Proof. We give a proof by contradiction. Suppose for the sake of contradiction that the
Halting Problem is computable—that is, assume

There’s a Python function Ahalting solving the Halting Problem. (1)

(In other words, for the Python source code s of a one-argument function, and any
value x, running Ahalting(s, x) always terminates, and returns True if and only if run-
ning s on x does not result in an infinite loop.)

makeSelfSafe(s): # the input s is the Python source

# code of a one-argument function.

safe = Ahalting(s,s)

if safe:

run s on input s

return True

Figure 4.26: The
Python code for
makeSelfSafe.

Now consider the Python function makeSelfSafe in
Figure 4.26. The function makeSelfSafe takes as input
the Python source code s of a one-argument function,
tests whether running s on s itself is “safe” (does not
cause an infinite loop), and if it’s safe then it runs s on
s. We claim that makeSelfSafe never gets stuck in an infinite loop:

For any Python source code s, makeSelfSafe(s) terminates. (2)
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To see that (2) is true, observe that Step 1 of the algorithm always terminates, by as-
sumption (1). Step 2 of the algorithm ensures that s is called on input s if and only
if Ahalting(s, s) said that s terminates when run on s. And, by assumption, Ahalting is
always correct. Thus s is run on input s only if s terminates when run on input s. So
Step 2 of the algorithm always terminates. And Step 3 of the algorithm doesn’t do
anything except return, so it terminates immediately. Thus (2) follows.

Write smss to denote the Python source code of makeSelfSafe. Because smss is itself
Python source code, Fact (2) implies that

makeSelfSafe(smss ) terminates. (3)

In other words, running smss on smss terminates. Thus, by the assumption (1) that
Ahalting is correct, we can conclude that

Ahalting(smss, smss) returns true. (4)

But now consider what happens when we run makeSelfSafe on its own source code—
that is, when we compute makeSelfSafe(smss ). Observe that safe is set to true in Step 1
of the algorithm, by Fact (4). Thus Step 2 calls makeSelfSafe(smss ) recursively! But
therefore makeSelfSafe(smss ) calls makeSelfSafe(smss ), which calls makeSelfSafe(smss ),
and so on, ad infinitum. In other words,

makeSelfSafe(smss ) does not terminate. (5)

But (3) and (5) are contradictory! Thus the only assumption that we made, namely (1),
was false. Therefore there does not exist a correct always-terminating algorithm for the
Halting Problem. That is, the Halting Problem is uncomputable.

To summarize Theorem 4.17: we showed that the assumption of the existence of
an algorithm for the halting problem leads to a contradiction, and therefore we con-
clude that such an algorithm cannot exist. The contradiction is, at its heart, about
self-reference—an algorithmic version of the Liar’s Paradox: This sentence is false.

Taking it further: Computability theory is the study of what problems can and cannot be solved by com-
puters. Computability was a primary focus of theoretical computer science from the 1930s through
roughly the 1970s. (After that time, the focus of theoretical computer scientists began to shift to com-
plexity theory, which addresses the question of what problems can and cannot be solved efficiently by
computers.) You can read more about the halting problem in any textbook on computability theory, and
in Douglas Hofstadter’s amazing book Gödel, Escher, Bach.8 For extra amusement, you can even find a full
proof of Theorem 4.17 in poem form, in Figure 4.27. And see p. 455 for a discussion of some practically
relevant problems that are also uncomputable.

8 9

8 Dexter Kozen.
Automata and Com-
putability. Springer,
1997; Michael
Sipser. Introduction
to the Theory of Com-
putation. Course
Technology, 3rd
edition, 2012; and
Douglas Hofstadter.
Gödel, Escher, Bach:
An Eternal Golden
Braid. Vintage, 1980.
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Scooping the Loop Snooper: A proof that the Halting Problem is undecidable
Geoffrey K. Pullum

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behavior occurs.

If there will be no looping, then P prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then P reports ‘Bad!’—which means you’re in the soup.

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here’s the trick that I’ll use—and it’s simple to do.
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success
to stir up a terrible logical mess.

For a specified program, say A, one supplies,
the first step of this program called Q I devise
is to find out from P what’s the right thing to say
of the looping behavior of A run on A.

If P’s answer is ‘Bad!’, Q will suddenly stop.
But otherwise, Q will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called Q wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behavior of Q run on Q?

If P warns of infinite loops, Q will quit;
yet P is supposed to speak truly of it!
And if Q’s going to quit, then P should say ‘Good.’
Which makes Q start to loop! (P denied that it would.)

No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.
Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

I’ve created a paradox, neat as can be—
and simply by using your putative P.
When you posited P you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?
I don’t have to tell you; I’m sure you must know.
A reductio: There cannot possibly be
a procedure that acts like the mythical P.

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!

Figure 4.27: A proof
of Theorem 4.17, in
poetic form, from
9 Geoffrey K. Pul-
lum. Scooping
the loop snooper:
A proof that the
halting problem is
undecidable. Math-
ematics Magazine,
73(4):319–320, 2000.
Used by permis-
sion of Geoffrey
K. Pullum.
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Computer Science Connections

Cryptography and the Generation of Prime Numbers

As we’ll see in Section 7.5, prime numbers are used extensively in cryptog-
raphy. The RSA cryptosystem—named after the first letters of its inventors’ last
names10—uses as a primary step the generation of two large prime numbers, 10 R. L. Rivest, A. Shamir, and L. Adle-

man. A method for obtaining digital
signatures and public-key cryptosys-
tems. Communications of the ACM,
21:120–126, February 1978.

perhaps ≈128-bit integers.
The primary reason that prime numbers are useful in cryptography is an

asymmetry in the apparent difficulty of two directions of a problem. If you
are given two (big) prime numbers p and q, then computing their product pq is
easy. But if you are given a number n that is guaranteed to be the product of
two prime numbers, finding those two numbers—factoring n—appears to be
much harder. For example, if you’re told that n = 504,761, it will probably take
you a long time to figure out that n = 251 · 2011. But if you’re told that p = 251
and q = 2011, then you should be able to calculate pq = 504,761 in just a few
seconds.

A crucial step in RSA, then, is the generation of large prime numbers. This

isPrime(n):
1: k := 2
2: while k < n:
3: if n is evenly divisible by k

then
4: return False
5: k := k + 1
6: return True

Figure 4.28: Slow primality testing.

step can be accomplished by choosing a random integer of the appropriate
size and then testing whether that number is prime. (We keep retrying until
the random number turns out to be prime.)

A little consideration of the definition of primality implies that we can

isPrimeBetter(n):
1: k := 2
2: while k ≤

⌈√
n
⌉
:

3: if n is evenly divisible by k and
n 6= k then

4: return False
5: k := k + 1
6: return True

Figure 4.29: Faster primality testing.
(We could further save roughly another
factor of two by checking only k = 2 and
odd k ≥ 3.)

test whether an integer n is prime using the algorithm in Figure 4.28, which
tests all candidate divisors between 2 and n − 1. This algorithm requires us
to do roughly n divisibility checks (actually, to be precise, n − 2 divisibility
checks). Using Theorem 4.16, the algorithm can be improved to do only about√

n divisibility checks, as Figure 4.29.
We can test these two algorithms empirically. A Python implementation

using n − 1 calls to isPrime to find all primes in the integers {2, . . . , n} took
about three minutes for n = 65,536 on a 2010-era laptop. For the same n,
isPrimeBetter took about a second. This difference is a nice example of the
way in which theoretical, proof-based techniques can improve actual widely
used algorithms.

In part because of its importance to cryptography, there has been signifi-
cant work on algorithms for primality testing over recent decades—improving
far beyond the roughly

√
n division tests of isPrimeBetter. In general, an

efficient algorithm for a number n should require a number of steps propor-
tional to log n rather than proportional to n or even

√
n. (For example, when

you add two 10-digit numbers by hand, you want to do about 10 operations,
rather than about 1,000,000,000 operations.) Thus isPrimeBetter is still not as
efficient as we’d like.

There are some very efficient randomized algorithms for primality testing
which are actually used in real cryptosystems, including the Miller-Rabin
test.11 This randomized algorithm performs a (randomly chosen) test that all

11 Gary L. Miller. Riemann’s hypothesis
and tests for primality. Journal of Com-
puter and System Sciences, 13(3):300–317,
1976; and Michael O. Rabin. Proba-
bilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128–138,
1980.

prime numbers pass and most composite numbers fail; repeating with many
different randomly chosen tests decreases the probability of getting a wrong
answer to an arbitrarily small number. (See p. 742.) And more recently, three
researchers gave the first theoretically efficient algorithm for primality testing
that’s not randomized.12

12 Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena. Primes is in P. Annals of
Mathematics, 160:781–793, 2004.
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Computer Science Connections

Other Uncomputable Problems (That You Might Care About)

The Halting Problem may seem like a purely abstract problem, and there-
fore one that doesn’t matter in the real world—sure, it’d be nice to have an
infinite-loop detector in your Python interpreter or Java compiler, but would
it just be a vaguely helpful feature for students in Intro CS classes but nobody
else? The answer is a resounding no: while the Halting Problem itself may
seem obscure, there are many uncomputable problems that, if solved, would
vastly improve operating systems or compilers. But they’re uncomputable,
and therefore the desired improvements cannot be made.

Here’s one example. Modern operating systems use virtual memory for

RAM Hard Disk
1 2 6

3,4,5,7,8,. . .

(a) Initial configuration, with pages
#1,2,6 in memory, and remaining
pages on disk.

RAM Hard Disk
1 2 6

3,4,5,7,8,. . .

(b) Program requests data on page #2.
It’s in memory, so it’s just fetched;
nothing else happens.

RAM Hard Disk
4 2 6

1,3,5,7,8,. . .

(c) Program requests data on page #4.
It’s on disk, so it’s fetched and
replaces some page in RAM—say, #1.

RAM Hard Disk
4 2 1

3,5,6,7,8,. . .

(d) Program requests data on page #1.
It’s on disk, so it’s fetched and
replaces some page in RAM—say, #6.

Figure 4.30: A sample sequence of
memory fetches in a paged memory
system.

their applications. The physical computer has a limited amount of physical
memory—say, eight gigabytes of RAM—that applications can use. But the
operating system “pretends” that it has a much larger amount of memory,
so that the word processor, web browser, Java compiler, and solitaire game
can each act as though they had even more than eight gigabytes of memory
that they don’t have to share. Memory (both virtual and real) is divided into
chunks of a fixed size, called pages. The operating system stores pages that
are actively in use in physical memory (RAM), and relegates some of the not-
currently-used pages to the hard drive. At every point in time, the operating
system’s paging system decides which pages to leave in physical memory, and
which pages to “eject” to the hard drive. (This idea is the same as what you do
when you’re cooking several dishes in a kitchen with limited counter space:
you have to relegate some of the not-currently-being-prepared ingredients
to the fridge. And at every moment you have to decide which ingredients to
leave on the counter, and which to “eject” to the fridge.) See Figure 4.30.

Here’s a problem that a paging system would love to solve: given a page p
of memory that an application has used, will that application ever access the
contents of p again? Let’s call this problem willBeUsedAgain. When the
paging system needs to eject a page, ideally it would eject a page that’s a no-
instance of willBeUsedAgain, because it will never have to bring that page
back into physical memory. (When you’re out of counter space, you would of
course prefer to put away some ingredient that you’re done using.)

Unfortunately for operating system designers, willBeUsedAgain is
uncomputable. There’s a very quick proof, based on the uncomputability of
the Halting Problem. Consider the algorithm:

1. run the Python function f on the input x.

2. if f (x) terminates, then access some memory from page p.

This algorithm accesses page p if and only if 〈f , x〉 is a yes-instance of the
Halting Problem.

Therefore if we could give an algorithm to solve the willBeUsedAgain prob-
lem, then we could give an algorithm to solve the Halting Problem. But we already
know that we can’t give an algorithm to solve the Halting Problem. If p ⇒ q
and ¬q, then we can conclude ¬p; therefore willBeUsedAgain is uncom-
putable.
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4.4.5 Exercises

Figure 4.31 shows the truth tables for all 16 different binary logical operators, with each column named if it’s a logical
operator that we’ve already seen:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p q True p ∨ q p ⇐ q p p ⇒ q q p ⇔ q p ∧ q p | q p ⊕ q ¬q ¬p p ↓ q False
T T T T T T T T T T F F F F F F F F
T F T T T T F F F F T T T T F F F F
F T T T F F T T F F T T F F T T F F
F F T F T F T F T F T F T F T F T F

Figure 4.31: The full
set of binary logical
operators.A set S of binary operators is said to be universal if every binary logical operation can be expressed using some combi-

nation of the operators in S. Formally, a set S is universal if, for every Boolean expression ϕ over variables p1, . . . , pk ,
there exists a Boolean expression ψ that is logically equivalent to ϕ where ψ uses only the variables p1, . . . , pk and the
logical connectives in S.
4.66 Prove that the set {∨,∧,⇒,¬} is universal. (Hint: To do so, you need to show that, for each column 1
through 16 of Figure 4.31, you can build a Boolean expression ϕi over the variables p and q that uses only the operators
{∨,∧,⇒,¬}, and such that ϕi is logically equivalent to p i q.)
4.67 Prove that the set {∨,∧,¬} is universal. (Hint: once you’ve done Exercise 4.66, all you have to do is
show that you can express ⇒ using {∨,∧,¬}.)
4.68 Prove that {∨,¬} and {∧,¬} are both universal.
4.69 Prove that the set {|}—the set containing just the Sheffer stroke, that is, nand—is universal.
4.70 Prove that the singleton set {↓} is universal.
4.71 Prove that the set {∧,∨} is not universal. (Hint: what happens under the all-true truth assignment?)

4.72 Let ϕ be a fully quantified proposition of predicate logic. Prove that ϕ is logically equivalent
to a fully quantified proposition ψ in which all quantifiers are at the outermost level of ψ. In other words, the
proposition ψ must be of the form

∀/∃ x1 : ∀/∃ x2 : · · · ∀/∃ xk : P(x1, x2, . . . , xk),

where each ∀/∃ is either a universal or existential quantifier. (The transformation that you performed in
Exercise 3.178 put Goldbach’s Conjecture in this special form.) (Hint: you might find the results from Exer-
cises 4.66–4.71 helpful. Using these results, you can assume that ϕ has a very particular form.)

4.73 Prove that, for any integer n ≥ 1, there is an n-variable logical proposition ϕ in conjunctive
normal form such that the truth-table translation to DNF (from Theorem 4.11) yields an DNF proposition
with exponentially more clauses than ϕ has.

4.74 Prove that the area of a right triangle with legs x and y is xy/2.

c

c

c

cb
a

(a) Another way to prove the
Pythagorean Theorem.

x
y

(b) Using the Pythagorean Theorem for the
Arithmetic Mean/Geometric Mean inequality.

Figure 4.32: More
on the Pythagorean
Theorem.

4.75 Use Figure 4.32(a)
as an outline to give a differ-
ent proof of the Pythagorean
theorem.

4.76 Exercise 4.47
asked you to prove (via
algebra) the Arithmetic Mean–
Geometric Mean inequality:
for x, y ∈ R≥0, we have√xy ≤ (x + y)/2. Here
you’ll reprove the result
geometrically. Suppose that
x ≥ y, and draw two circles
of radius x and y tangent to
each other, and tangent to a horizontal line. See Figure 4.32(b). Considering the right triangle shown in that
diagram, and using the Pythagorean theorem and the fact that the hypotenuse is the longest side of a right
triangle, prove the result again.
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Let x, y ∈ R2 be two points in the plane. As usual, denote their coordinates by x1 and x2, and y1 and y2, respectively.
The Euclidean distance between these points is the length of the line that connects them:

√
(x1 − y1)2 + (x2 − y2)2.

The Manhattan distance between them is |x1 − y1| + |x2 − y2|: the number of blocks that you would have to walk
“over” plus the number that you’d have to walk “up” to get from one point to the other. Denote these distances by
deuclidean and dmanhattan.
4.77 Prove that deuclidean(x, y) ≤ dmanhattan(x, y) for any two points x, y.
4.78 Prove that there exists a constant a such that both
• dmanhattan(x, y) ≤ a · deuclidean(x, y) for all points x and y; and
• there exist points x∗, y∗ such that dmanhattan(x∗ , y∗) = a · deuclidean(x∗ , y∗)

A positive integer n is called a perfect number if it is equal to the sum of all positive integer factors 1 ≤ k < n
of n. For example, the number 14 is not perfect: the numbers less than 14 that evenly divide 14 are {1, 2, 7}, but
1 + 2 + 7 = 10 6= 14.
4.79 Prove that at least one perfect number exists.
4.80 Prove that, for any prime integer p, the positive integer p2 is not a perfect number.

4.81 Let n ≥ 10 be any positive integer. Prove that the set {n, n + 1, . . . , n + 5} contains at most two
prime numbers.
4.82 Let n be any positive integer. Prove or disprove: any set of ten consecutive positive integers
{n, n + 1, . . . , n + 9} contains at least one prime number.

4.83 (Thanks to the NPR radio show Car Talk, from which I learned this exercise.) Imagine a junior high
school, with 100 lockers, numbered 1 through 100. All lockers are initially closed. There are 100 students,
each of whom—brimming with teenage angst—systematically goes through the lockers and slams some
of them shut and yanks some of them open. Specifically, in round i := 1, 2, . . . , 100, student #i changes the
state of every ith locker: if the door is open, then it’s slammed shut; if the door is closed, then it’s opened.
(So student #1 opens them all, student #2 closes all the even-numbered lockers, etc.) Which lockers are open
after this whole process is over? Prove your answer.

4.84 We proved the following claim in Theorem 4.16: A positive integer n ≥ 2 is evenly divisible by
some other integer k ∈

{
2, 3, . . . ,

⌈√
n
⌉}

if and only if n is composite. If we delete the word “other,” this claim
becomes false. Prove that this modified claim is false.
4.85 Prove that the unmodified claim (retaining the word “other”) remains true if the bounds on k are
changed from k ∈ {

2, 3, . . . ,
⌈√

n
⌉}

to k ∈ {⌈√
n
⌉

, . . . , n − 1
}

.
4.86 Prove that the bound cannot be changed from k ∈

{
2, 3, . . . ,

⌈√
n
⌉}

to k ∈
{⌊√

n/2
⌋

, . . . ,
⌊
3
√

n/2
⌋}

.
That is, prove that the following claim is false: A positive integer n ≥ 2 is evenly divisible by some other integer
k ∈

{⌊√
n/2

⌋
, . . . ,

⌊
3
√

n/2
⌋}

if and only if n is composite.

4.87 Let n be any positive integer, and let pn denote the smallest prime number that evenly divides n.
Prove that there are infinite number of integers n such that pn ≥ √

n. (This fact establishes that we cannot
change the bound in the aforementioned theorem to anything smaller than

√
n.)
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4.5 Common Errors in Proofs

Mistakes were made.

Ron Ziegler (1939–2003), press secretary for President
Richard Nixon during Watergate

We’ve now spent considerable time establishing a catalogue of proof techniques
that you can use to prove theorems, along with some examples of these techniques in
action. We’ll close this chapter with a brief overview of some common flaws in proofs,
so that you can avoid them in your own work (and be on the lookout for them in the
work of others). Recall that a proof consists of a sequence of logical inferences, deriv-
ing new facts from assumptions or previously established facts. A valid inference is one
whose conclusion is always true as long as the facts that it relies on were true. (That
is, a valid step never creates a false statement from true ones.) An invalid inference
is one in which the conclusion can be false even if the premises are all true. An invalid
argument can also be called a logical fallacy, a fallacious argument, or just a fallacy. In a
correct proof, of course, every step is valid. Here are a few examples of a single logical
inference, some of which might be fallacious:

Problem-solving
tip: To make the
logical structure
of an argument
clearer, consider an
abstract form of the
argument in which
you use variables
to name the atomic
propositions.

Example 4.31 (Some (valid and invalid) logical inferences)
Problem: Here are several inferences. In each case, there are two premises, and a

conclusion that is claimed to follow logically from those premises. Which of these
inferences are valid, and which are fallacies?

1. Premises: (a) All software is buggy. (b) Windows is a piece of software.
Conclusion: Therefore, Windows is buggy.

2. Premises: (a) All people are annoying sometimes. (b) Mark Zuckerberg is a
person.

Conclusion: Therefore, Mark Zuckerberg is annoying sometimes.

3. Premises: (a) If you handed in an exam without your name on it, then you got a
zero. (b) You handed in an exam without your name on it.

Conclusion: Therefore, you got a zero.

4. Premises: (a) If you handed in an exam without your name on it, then you got a
zero. (b) You handed in an exam with your name on it.

Conclusion: Therefore, you didn’t get a zero.

Solution: We abstract away from buggy software and annoying people by rewriting
these arguments in purely logical form:

1. Assume a ∈ S and assume ∀x ∈ S : P(x). Conclude P(a).
2. Assume a ∈ S and assume ∀x ∈ S : P(x). Conclude P(a).
3. Assume p ⇒ q and assume p. Conclude q.
4. Assume p ⇒ q and assume ¬p. Conclude ¬q.

In this format, we see first that (1) and (2) are actually the same logical argument
(with different meanings for the symbols), and they’re both valid. Argument (3) is
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precisely an invocation of Modus Ponens (see Chapter 3), and it’s valid. But (4) is a
fallacy: the fact that p ⇒ q and ¬p is consistent with either q or ¬q, so in particular
when p = False and q = True the premises are true but the conclusion is false.

Each of these examples purports to convince its reader of its conclusion, under the
assumption that the premises are true. Valid arguments will convince any (reasonable)
reader that their conclusion follows from their premises. Fallacious arguments are
buggy; a vigilant reader will not accept the conclusion of a fallacious argument even if
she accepts the premises.

Taking it further: A useful way to think about validity and fallacy is as follows. An argument with
premises p1, p2, . . . , pk and conclusion c is valid if and only if p1 ∧ p2 ∧ · · · ∧ pk ⇒ c is a theorem. If
there is a circumstance in which p1 ∧ p2 ∧ · · · ∧ pk ⇒ c is false—in other words, where the premises
p1 ∧ p2 ∧ · · · ∧ pk are all true but the conclusion c is false—then the argument is fallacious.

Some of the most famous disasters in the history of computer science have come from some bugs that
arose because of an erroneous understanding of some property of a system—and a lack of valid proof of
correctness for the system. These bugs have been costly, with both lives and many dollars lost. See p. 464
for a few highlights/lowlights.

Your main job in proofs is simple: avoid fallacies! But that can be harder than it
sounds. The remainder of this section is devoted to a few types of common mistakes in
proofs—that is, some common types of fallacies.

a broken proof
The most common mistake in a purported proof is simple but insidious: a single

statement is alleged to follow logically from previous statements, but it doesn’t. Here’s

Problem-solving tip:
The kind of mistake
in Example 4.32,
in which there’s
a single step that
doesn’t follow from
the previous step,
can sometimes be
difficult to sniff out.
But it’s the kind
of bug that you
can spot by simply
being überskeptical
of everything
that’s written in a
purported proof.

a somewhat subtle example:

Example 4.32 (What’s wrong with this logic?)
Problem: Find the error in this purported proof, and give a counterexample to the

claim.

False Theorem: Let Fn =
{

k ∈ Z≥1 : k | n
}

denote the factors of an integer n ≥ 2.
Then |Fn| is even.

Proof. Let Fsmall ⊆ F be the set of factors of n that are less than
√

n. Let Fbig ⊆ F
be the set of factors of n that are greater than

√
n. Observe that every d ∈ Fsmall

has a unique entry n/d corresponding to it in Fbig. Therefore |Fsmall| = |Fbig|. Let
k = |Fsmall| = |Fbig|. Note that k is an integer. Thus Fn contains precisely k elements
less than

√
n and k elements greater than

√
n, and so |Fn| = 2k, which is an even

number.

Solution: The problem comes right at the end of the proof:
Thus Fn contains precisely k elements less than

√
n and k elements greater than

√
n, and so

|Fn| = 2k.

The problem is that this statement discounts the possibility that
√

n itself might be
in F. For an integer n that’s a perfect square, we have that

√
n ∈ F, and therefore

|F| = 2k + 1. For example, the integer 9 is a counterexample, because F9 = {1, 3, 9}
and |F9| = 3.
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But while an error of this form—one step in the proof that doesn’t actually fol-
low from the previously established facts—may be the most common type of bug
in a proof, there are some other, more structural errors that can arise. Most of these
structural errors come from errors of propositional logic—namely by proving a new
proposition that’s not in fact logically equivalent to the given proposition. Here are a
few of these types of flawed reasoning.

Fallacy: proving true
We are considering a claim ϕ. We proceed as follows: we assume ϕ, and (correctly)

prove True under that assumption. (Usually, for some reason, the “proof” writer puts
a little check mark in their alleged proof at this point: X.) What can we conclude about
ϕ? The answer is: absolutely nothing! The reason: we’ve proven that ϕ ⇒ True, but
anything implies true. (Both True ⇒ True and False ⇒ True are true implications.)
Here’s a classical example of a bogus proof that uses this fallacious reasoning:

Example 4.33 (What’s wrong with this logic?)
Problem: Find the error in this purported proof.

False Theorem: 1 = 0.
Proof. Suppose that 1 = 0. Then:

1 = 0
therefore, multiplying both sides by 0 0 · 1 = 0 · 0

and therefore, 0 = 0. X

And, indeed, 0 = 0.
Thus the assumption that 1 = 0 was correct, and the theorem follows.

Solution: We have merely shown that (1 = 0) ⇒ (0 = 0), which does not say anything
about the truth or falsity of 1 = 0; anything implies true.

Fallacy: affirming the consequent
We are considering a claim ϕ. We prove (correctly) that ϕ ⇒ ψ, and we prove (cor-

Writing tip: When
you’re trying
to prove that
two quantities a
and b are equal,
it’s generally
preferable to
manipulate a until
it equals b, rather
than “meeting
in the middle”
by manipulating
both sides of the
equation until
you reach a line
in which the two
sides are equal.
The “manipulate
a until it equals b”
style of argument
makes it clear to
the reader that you
are proving a = b
rather than proving
(a = b) ⇒ True.

rectly) that ψ. We then conclude ϕ. (Recall that ψ is the consequent of the implication
ϕ ⇒ ψ, and we have “affirmed” it by proving ψ.) This “proof” is wrong because it
confuses necessary and sufficient conditions: when we prove ϕ ⇒ ψ, we’ve shown that
one way for ψ to be true is for ϕ to be true. But there might be other reasons that ϕ is
true! Here’s an example of a fallacious argument that uses this bogus logic:

Example 4.34 (What’s wrong with this logic?)
Problem: Find the error in this argument:

Premises: (1) If it’s raining, then the computer burning will be postponed.
(2) The computer burning was postponed.

Conclusion: Therefore, it’s raining.
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Solution: This fallacious argument is an example of affirming the consequent. The
first premise here merely says that the computer burning will be postponed if it
rains; it does not say that rain is the only reason that the burning could be post-
poned. There may be many other reasons why the burning might be delayed:
for example, the inability to find a match, the sudden vigilance of the health and
safety office, or a last-minute stay of execution by the owner of the computer.

Fallacy: denying the hypothesis
Denying the hypothesis is a closely related fallacy to affirming the consequent: we

prove (correctly) that ψ ⇒ ϕ, and we prove (correctly) that ¬ψ; we then (fallaciously)
conclude ¬ϕ. This logic is buggy for essentially the same reason as affirming the
consequent. (In fact, denying the hypothesis is the contrapositive of affirming the
consequent—and therefore a fallacy too, because it’s logically equivalent to a fallacy.)
The implication ψ ⇒ ϕ means that one way of ϕ being true is for ψ to be true, but
it does not mean that there is no other way for ϕ to be true. Here’s an example of a
fallacious argument of this type:

Example 4.35 (What’s wrong with this logic?)
Problem: Find the error in this argument:

Premises: (1) If you have resolved the P-versus-NP question, then you are famous.
(2) You have not resolved the P-versus-NP question.

Conclusion: Therefore, you are not famous.

Solution: This fallacious argument is an example of denying the hypothesis. The first
premise says that one way to be famous is to resolve the P-versus-NP question (see
p. 326 for a brief description of this problem), but it does not say that resolving
the P-versus-NP question is the only way to be famous. For example, you could be
famous by being the President of the United States or by founding Google.

Fallacy: false dichotomy
A false dichotomy or false dilemma is a fallacious argument in which two nonexhaus-

tive alternatives are presented as exhaustive (without acknowledgement that there are
any unmentioned alternatives).

Example 4.36 (False Dichotomy)
The flawed step in Example 4.32 can be interpreted as a false dilemma: implicitly, that
proof relied on the assertion that if k evenly divides n, then

k ∈ Fsmall =
{

factors of n that are less than
√

n
}

or
k ∈ Fbig =

{
factors of n that are greater than

√
n
}

.

But of course the third unmentioned possibility is that k =
√

n.
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(The classical false dichotomy, often found in political rhetoric, is “either you’re with
us or you’re against us”: actually, you might be neutral on the issue, and therefore
neither “with” nor “against” us!)

Fallacy: begging the question
We wish to prove a proposition ϕ. A purported proof of ϕ that begs the question is

one that assumes ϕ along the way. That is, the “proof” assumes precisely the thing
that it purports to prove, and thus actually proves ϕ ⇒ ϕ. Although this type of
fallacious reasoning sounds ridiculous, the assumption of the desired result can be
very subtle; you must be vigilant to catch this type of error. Here’s an example of a
fallacious argument of this kind:

Example 4.37 (What’s wrong with this logic?)
Problem: Find the error in this proof:

False Theorem: Let n be a positive integer such that n + n2 is even. Then n is odd.

Proof. Assume the antecedent—that is, assume that n + n2 is even. Let k be the
integer such that n = 2k + 1. Then

n + n2 = 2k + 1 + (2k + 1)2

= 2k + 1 + 4k2 + 4k + 1
= 4k2 + 6k + 2
= 2 · (2k2 + 3k + 1),

which is even because it is equal to 2 times an integer. But n2 = (2k + 1)2 =
4k2 + 4k + 1 is odd (because 4k2 and 4k are both even). Therefore

n = n + n2
︸ ︷︷ ︸

even by the above argument

− n2
︸︷︷︸

odd by the above argument

.

An even number less an odd number is an odd number, which implies that n must
be odd too.

Solution: The problem comes very early in the “proof,” in the sentence
Let k be the integer such that n = 2k + 1.

But this statement implicitly assumes that n is an odd integer; an integer k such
that n = 2k + 1 exists only if n is odd. So the proof begs the question: it assumes
that n is odd, and—after some algebraic shenanigans—concludes that n is odd.

Other fallacies
We have discussed a reasonably large collection of logical fallacies into which some

Problem-solving
tip: Even without
identifying the
specific bug in
Example 4.37, we
could notice that
there’s something
fishy by doing
the post-proof
plausibility check
to make sure that
all premises were
actually used. The
“proof” states that
it is assuming the
antecedent, but
we actually derived
the fact that n + n2

is even. So we
never used that
assumption in the
“proof.” (In fact,
n + n2 is even for
any positive integer
n.) But, because
we didn’t use the
assumption, the
same proof works
just as well without
it as an assumption,
so we could use the
same “proof” to
establish this claim
instead:

Patently
False The-
orem: Let n
be a positive
integer. Then
n is odd.

Given that this new
claim is obviously
false, there must be
a bug in the proof.
The only challenge
is to find that bug.

less-than-careful or less-than-scrupulous proof writers may fall. But there are many
other types of flaws in arguments that more typically arise in informal contexts; these
are the kinds of flawed arguments that are—sadly—often used in politics. (Some of
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them have analogues in more mathematical settings, too.) Here are a few examples of
other types of fallacies that you may encounter in “real-world” arguments:

• Confusing correlation and causation. Phenomena A and B are said to be (positively)
correlated if they occur together more often than their individual frequencies would
predict. (See Chapter 10.) But just because A and B are correlated does not mean
that one causes the other! For example, the user population of Facebook is much
younger than is the population at large. We could say, correctly, that Being young
is correlated with using Facebook. But Using Facebook makes you young is an obviously
absurd conclusion. (Some correlation-versus-causation mistakes are subtler; your
reaction to Being young makes you use Facebook is probably less virulent, but it is
equally unsupported by the facts that we’ve cited here.) Always be wary when
attempting to infer causal relationships!

• Ad hominem attacks. An ad hominem attack ignores the logical argument and speaks Latin ad hominem:
“to the man.”to the arguer: Bob doesn’t know the difference between contrapositive and converse, and he

says that n is prime. So n must be composite.

• Equivocation or shifting language. This type of argument relies on changes in the
meanings of the words/variables in an argument. This shift can be grammatical:
Time waits for no man, and no man is an island; therefore, time waits for an island. Or it
can be in the semantics of a particular word: 1024 is a prime example of an exact power
of two, and prime numbers are evenly divisible only by 1 and themselves; therefore, 1024 is
not divisible by 4. A similar type of fallacy can also occur when a variable in a proof
is introduced to mean two different things.13

For example,
13 Madsen Pirie.
How to Win Every
Argument: The Use
and Abuse of Logic.
Continuum, 2007.

Taking it further: This listing is just a brief outline of some of the many invalid techniques of persua-
sion/propaganda; a much more extensive and thorough list is maintained by Gary Curtis at http://
www.fallacyfiles.org/. You might also be interested in books that catalogue fallacious techniques of
argument.13

It is always your job to be vigilant—both when reading proofs written by others,
and in developing your own proofs—to avoid fallacious reasoning.
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Computer Science Connections

The Cost of Missing Proofs: Some Famous Bugs in CS

There’s an apocryphal story that the first use of the word “bug” to refer to
a flaw in a computer system was in the 1940s: Grace Hopper, a rear admiral
in the US Navy and a pioneer in early programming, found a moth (a literal,
physical moth) jamming a piece of computer equipment and causing a mal-
function. (The story is true, but the Oxford English Dictionary reports uses of
“bug” to refer to a technological fault dating back to Thomas Edison in the
late 1800s.) But there are many other stories of bugs that are both more impor-
tant and more true. When a computer system “almost” works—when there’s
no proof that it works correctly in all circumstances—there can be grave reper-
cussions, in dollars and lives lost. Here are a few of the most famous, and
most costly, bugs in history:14

For a list of one person’s view of the ten
worst bugs in history, including these
three and some other sordid tales, see:
14 Simpson Garfinkel. History’s worst
software bugs. Wired Magazine, 2005.The Pentium division bug: In 1994, Thomas Nicely, at the time a math pro-

fessor, discovered a hardware bug in Intel’s new Pentium chip that caused
incorrect results when some floating-point numbers were divided by certain
other floating-point numbers. The flaw resulted from a lookup table for the
division operation that was missing a handful of entries. Although the range
of numbers that were incorrectly divided was limited, the resulting brouhaha
led to a full Pentium recall and about $500 million in losses for Intel.15

For more information on these bugs and
their aftermath, see:
15 Ivars Peterson. MathTrek: Pentium
bug revisited. MAA Online, May 1997.The Ariane 5 rocket: The European Space Agency’s rocket, carrying a

$400,000,000 payload of satellites, exploded 40 seconds into its first flight,
in 1996. The rocket had engaged its self-destruct system, which was correctly
triggered when it strayed from its intended trajectory. But the altered trajec-
tory was caused by a sequence of errors, including an integer overflow error:
the rocket’s velocity was too big to fit into the 16-bit variable that was being
used to store it.16 (An Ariane 5 rocket was much faster than the Ariane 4

16 J. L. Lions. Ariane 5 flight 501 failure
report: Report by the enquiry board,
1996.

Figure 4.33: Image of the Therac-25.
Reprinted with permission from

rockets for which the code was originally developed.)
Embarrassingly, the overflow caused a subsystem to
output a diagnostic error code that was interpreted as
navigation data. More embarrassingly still, this entire
subsystem played no role in navigation after liftoff, and
would have caused no harm if it were just turned off.

The Therac-25: The Therac-25 was a medical de-
vice in use in the mid-1980s that treated tumors with
a focused beam of radiation. The device fired a con-
centrated X-ray beam of extremely high dosage into
a diffuser that would reduce the beam’s intensity to
the desired levels before it was directed at the patient.
But it turned out that a particularly fast touch-typing
operator could cause the high-intensity beam to be
fired without the diffuser in place: hitting enter at the
precise moment that an internal variable reset to zero
caused the undiffused beam to be fired. (This kind of bug is called a race con-
dition, in which the output of a system depends crucially on the precise timing
of events like operator input.) At least five patients were killed by radiation
overdoses.17

17 Nancy Leveson. Safeware: System Safety
and Computers. Pearson Education, Inc.,
New York, 1995.
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4.5.1 Exercises

Identify whether the following arguments are valid or fallacious. Justify your answers.

4.88 Premises: (a) Every programming language that uses garbage collection is slow; and (b) C does not
use garbage collection.

Conclusion: Therefore, C is slow.

4.89 Premises: (a) If a piece of software is written well, then it was built with its user in mind; and (b)
The Firefox web browser is a piece of software that was written with its user in mind.

Conclusion: Therefore, the Firefox web browser is written well.

4.90 Premises: (a) If a processor overheats while multiplying, then it overheats while computing square
roots; and (b) The xMax processor does not overheat while computing square roots.

Conclusion: Therefore, the xMax processor does not overheat while multiplying.

4.91 Premises: (a) Every data structure is either slow at insertions or lookups; and (b) The data struc-
ture called the Hackmatack tree is slow at insertions.

Conclusion: Therefore, the Hackmatack tree is slow at lookups.

4.92 Premises: (a) Every web server has an IP address; and (b) www.cia.gov is a web server.
Conclusion: Therefore, www.cia.gov has an IP address.

4.93 Premises: (a) If a computer system is hacked, then there was user error or the system had a design
flaw; and (b) A computer at NASA was hacked; and (c) That computer did not have a design flaw.

Conclusion: Therefore, there was user error.

In the next several problems, you will be presented with a false claim and a bogus proof of that false claim. For each,
you’ll be asked to (a) identify the precise error in the proof, and (b) give a counterexample to the claim. (Note that saying
why the claim is false does not address (a) in the slightest—it would be possible to give a bogus proof a true claim!)

False Claim #1: Let n be a positive integer and let p, q ∈ Z≥2, where p and q are prime. If n is evenly
divisible by both p and q, then n is also evenly divisible by pq. (FC-1)

Bogus proof of (FC-1). Because p | n, there exists a positive integer k such that n = pk. Thus, by assumption,
we know that q | pk. Because p and q are both prime, we know that p does not evenly divide q, and thus the
only way that q | pk can hold is if q | k. Hence k = qℓ for some positive integer ℓ, and thus n = pk = pqℓ.
Therefore pq | n.

4.94 State precisely what’s wrong with the proof of (FC-1).
4.95 Give a counterexample to (FC-1).

False Claim #2: 721 is prime. (FC-2)
Bogus proof of (FC-2). In Example 4.8, we proved that n! + 1 is not evenly divisible by any k satisfying
2 ≤ k ≤ n. Observe that 6! = 720. Therefore, 721 = 6! + 1 isn’t evenly divisible by any integer between 2
and 720 inclusive, and therefore 721 is prime.

4.96 State precisely what’s wrong with the proof of (FC-2).
4.97 Without using a calculator, disprove (FC-2).
4.98 Without using a calculator, find an integer n such that n! + 1 is prime.

False Claim #3:
√

2/4 and 8/
√

2 are both rational. (FC-3)
Bogus proof of (FC-3). In Example 4.12, we proved that if x and y are rational then xy is rational too. Here, let
x =

√
2/4 and y = 8/

√
2. Then xy =

√
2

4 · 8√
2

= 8
√

2
4
√

2
= 2. So xy = 2 is rational, and x and y are too.

4.99 State precisely what’s wrong with the proof of (FC-3).
4.100 Prove that 8/

√
2 isn’t rational.
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False Claim #4: Let n be any integer. Then 12 | n if and only if 12 | n2. (FC-4)
Bogus proof of (FC-4), similar to Example 4.19. We proceed by mutual implication.
• First, assume that 12 | n. Then, by definition, there exists an integer k such that n = 12k. Therefore

n2 = (12k)2 = 12 · (12k2). Thus 12 | n2 too.
• Second, we must show the converse: if 12 | n2, then 12 | n. We prove the contrapositive. Assume that

12 6 | n. Then there exist integers k and r ∈ {1, . . . , 11} such that n = 12k + r. Therefore n2 = (12k + r)2 =
144k2 + 24kr + r2 = 12(12k2 + 2kr) + r2. Because r < 12, adding r2 to a multiple of 12 does not result in
another multiple of 12. Thus 12 6 | n2.

4.101 State precisely what’s wrong with the proof of (FC-4).
4.102 Disprove (FC-4).

False Claim #5:
√

4 is irrational. (FC-5)
Bogus proof of (FC-5). We’ll follow the same outline as Example 4.21. Our proof is by contradiction.

Assume that
√

4 is rational. Therefore, there exist integers n and d 6= 0 such that n/d =
√

4, where n and d
have no common divisors.

Squaring both sides yields that n2/d2 = 4, and therefore that n2 = 4d2. Because 4d2 is divisible by 4,
we know that n2 is divisible by 4. Therefore, by the same logic as in Example 4.19, we have that n is itself
divisible by 4.

Because n is divisible by 4, there exists an integer k such that n = 4k, which implies that n2 = 16k2 . Thus
n2 = 16k2 and n2 = 4d2, so d2 = 4k2 . Hence d2 is divisible by four.

But now we have a contradiction: we assumed that n/d was in lowest terms, but we have now shown that
n2 and d2 are both divisible by 4, and therefore both n and d must be even! Thus the original assumption was
false, and

√
4 is irrational.

4.103 State precisely what’s wrong with the proof of (FC-5).

False Claim #6: 3 ≤ 2. (FC-6)
Bogus proof of (FC-6). Let x and y be arbitrary nonnegative numbers. Because y ≥ 0 implies −y ≤ y, we can
add x to both sides of this inequality to get

x − y ≤ x + y. (1)

Similarly, adding y − 3x to both sides of −x ≤ x yields

y − 4x ≤ y − 2x. (2)

Observe that whenever a ≤ b and c ≤ d, we know that ac ≤ bd. So we can combine (1) and (2) to get

(x − y)(y − 4x) ≤ (x + y)(y − 2x). (3)

Multiplying out and then combining like terms, we have

xy − 4x2 − y2 + 4xy ≤ xy − 2x2 + y2 − 2xy, and (4)

6xy ≤ 2x2 + 2y2 . (5)

This calculation was valid for any x, y ≥ 0. For x = y =
√

1/2, we have xy = x2 = y2 = (
√

1/2)2 = 1/2.
Plugging into (5), we have

(6/2) ≤ (2/2) + (2/2). (6)

In other words, we have 3 ≤ 2.

4.104 State precisely what’s wrong with the proof of (FC-6).
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Computer vision is the subfield of computer science devoted to developing algorithms that can “understand” images.
For example, some security systems use facial recognition software to decide whether to grant access to a particular
person. We desire to maximize the probability that the vision algorithm we choose gets the answer right—that is, grants
access to the person if and only if that person is authorized to enter.

Suppose that we have two algorithms, A and B, that we have employed on two different cameras in a test run.
Suppose that algorithm A is deployed on Camera I. It makes the correct decision on 75% of the CS majors at Camera
I and 60% of philosophy majors at Camera I. (That is, when a CS major arrives at Camera I, algorithm A correctly
decides whether to grant her access 75% of the time.) Algorithm B, deployed at Camera II, makes the correct decision on
70% of CS majors and 50% of philosophy majors. The following claim seems obvious, because Algorithm A performed
better for both philosophy majors and CS majors:
Claim: Algorithm A is right a higher fraction of the time (overall, combining both majors) than Algorithm B.
But the claim is false, as you’ll show!
4.105 The falsehood of this claim (for example, in the scenario illustrated by the next exercise) is called
Simpson’s Paradox because the behavior is so counterintuitive. State precisely where the following argument
goes wrong:

Observe that Algorithm A had a better success probability with CS majors, and also had a better success
probability with philosophy majors. Therefore Algorithm A was right a higher fraction of the time (in total, for
both philosophy majors and CS majors) than Algorithm B.

4.106 Suppose that there were 100 CS majors and 100 philosophy majors who went by Camera I. Sup-
pose that 1000 CS majors and 100 philosophy majors went by Camera II. Calculate the success rate for
Algorithm A at Camera I, over all people. Do the same for Algorithm B at Camera II.

4.107 Here is an obviously false theorem, together with a (nonobviously) bogus proof. Identify pre-
cisely the flaw in the argument and explain where the proof fails.

False Theorem: 1 = 0.
Proof. Consider the four shapes in Figure 4.34(a), and the two arrangements thereof in Figure 4.34(b). (See
below.)

The area of the triangle in the first configuration is 13 · 5/2 = 65/2, as it forms a right triangle with height
5 and base 13. But the second configuration also forms a right triangle with height 5 and base 13 as well, and
therefore it too has area 65/2. But the second configuration has one unfilled square in the triangle, and thus
we have

0 = 65
2 − 65

2
= area of the second bounding triangle − area of the first bounding triangle
= (1 + area of four constituent shapes) − (area of four constituent shapes)
= 1.

Thus 0 = 1.

(a) The shapes.

(b) Two configurations.

Figure 4.34: Some
shapes and their
arrangements, for
Exercise 4.107.
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The following two statements are theorems from geometry that you may recall from high school:
• the angles of a triangle sum to precisely 180◦ .

• if the three angles of triangle T1 are precisely equal to the three angles of T2, then T1 and T2 are similar, and their
sides are in the same ratios. (That is, if the side lengths of T1 are a, b, c and the side lengths of T2 are x, y, z, then
a/x = b/y = c/z.)

These statements are theorems, but they’re used in the following utterly bogus “proof” of the Pythagorean Theorem
(actually one that was published, in 1896!).
4.108 State precisely what’s wrong with the following purported proof of the Pythagorean Theorem.

a

b

c
θ

φ

(a)

a

b

c
θ

φ

(b)

a
θ

φ
x

y

b

φθ

x
z

(c) Note that c = y + z.

Figure 4.35: Dia-
grams for Exercise
4.108.

Proof. Consider an arbitrary right triangle. Let the two legs and hypotenuse, respectively,
have length a, b, and c, and let the angles between the legs and the hypotenuse be given
by θ and φ = 90◦ − θ. (See Figure 4.35(a).) Draw a line perpendicular to the hypotenuse
to the opposite vertex, dividing the interior of the triangle into two separate sections,
which are shaded with different colors in Figure 4.35(b). Observe that the unlabeled angle
within the smaller shaded interior triangle must be φ = 90◦ − θ, because the other angles
of the smaller shaded interior triangle are (just like for the enclosing triangle) 90◦ and
θ. Similarly, the unlabeled angle within the larger shaded interior triangle must be θ.
Therefore we have three similar triangles, all with angles 90◦ , θ, and φ. Call the lengths of
the previously unnamed sides x, y, and z as in Figure 4.35(c). Now we can assemble our
known facts. By assumption,

a2 = x2 + y2, b2 = x2 + z2 , and (y + z)2 = a2 + b2,

which we can combine to yield

(y + z)2 = 2x2 + y2 + z2. (1)

Expanding (y + z)2 = y2 + 2yz + z2 and subtracting common terms from both sides, we have

2yz = 2x2, (2)

which, dividing both sides by two, yields

yz = x2. (3)

But (3) is immediate: we know that

x/y = z/x (4)

because the two shaded triangles are similar, and therefore the two triangles have the
same ratio of the length of the hypotenuse to the length of the longer leg. Multiplying
both sides of (4) by xy gives us x2 = yz, as desired.
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4.6 Chapter at a Glance

Error-Correcting Codes

Although the main purpose of this section was to introduce proofs, here’s a brief sum-
mary of the results about error-correcting and error-detecting codes, too.

A code is a set C ⊆ {0, 1}n, where |C| = 2k for some integer 1 ≤ k ≤ n. A message is
an element of {0, 1}k ; the elements of C are called codewords. Consider any codeword
c ∈ C and for any sequence of up to ℓ errors applied to c to produce c′. The code C
can detect ℓ ≥ 0 errors if we can always correctly report “error” or “no error,” and can
correct ℓ errors if we can always correctly identify that c was the original codeword.

The Hamming distance between strings x, y ∈ {0, 1}n, denoted ∆(x, y), is the num-
ber of positions i in which xi 6= yi. The minimum distance of a code C is the smallest
Hamming distance between two distinct codewords of C . The rate of a code with k-bit
messages and n-bit codewords is k/n. If the minimum distance of a code C is 2t + 1 for
an integer t, then C can detect 2t errors and correct t errors.

The Repetitionℓ code creates codewords via the ℓ-fold repetition of the message. This
code has rate 1/ℓ and minimum distance ℓ. The Hamming code creates 7-bit codewords
from 4-bit messages by adding three different parity bits to the message. This code has
rate 4/7 and minimum distance 3. Any code with messages of length 4 and minimum
distance 3 has codewords of length ≥ 7. (Thus the Hamming code has the best possible
rate among all such codes.) We can prove this result via a “sphere-packing” argument
and a proof by contradiction.

Proofs and Proof Techniques

A proof of a claim ϕ is a convincing argument that ϕ is true. (A proof should be writ-
ten with its audience in mind.) A variety of useful proof techniques can be employed
to prove a given claim ϕ:

• direct proof: we prove ϕ by repeatedly inferring new facts from known facts to even-
tually conclude ϕ. (Sometimes we divide a proof into multiple cases, or “assume the
antecedent,” where we prove p ⇒ q by assuming p and deriving q.)

You may also prove ϕ by proving a claim logically equivalent to ϕ:

• proof by contrapositive: to prove p ⇒ q, we instead prove ¬q ⇒ ¬p.

• proof by contradiction (or reductio ad absurdum): to prove ϕ, we instead prove that
¬ϕ⇒ False—that is, we prove that ¬ϕ leads to an absurdity.

We say that y ∈ S with ¬P(y) is a counterexample to the claim ∀x ∈ S : P(x). A proof by
construction of the claim ∃x ∈ S : P(x) proceeds by constructing a particular y ∈ S and
proving that P(y). A nonconstructive proof establishes ∃x ∈ S : P(x) without giving an
explicit y ∈ S for which P(x)—for example, by proving ∃x ∈ S : P(x) by contradiction.

The process of developing a proof requires persistence, open-mindedness, and
creativity. Here’s a helpful three-step plan to use when developing a new proof: (1)
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understand what you’re trying to do (checking definitions and small examples); (2) do
it (by trying the proof techniques catalogued here, and thinking about analogies from
similar problems that you’ve solved previously); and (3) think about what you’ve done
(reflecting on and trying to improve your proof). Remember that writing a proof is a
form of writing! Be kind to your reader.

Some Examples of Proofs

We can use these proof techniques to establish a wide variety of facts—about arith-
metic, propositional logic, geometry, prime numbers, and computability. For more
extensive examples, see Section 4.4. We’ll highlight one result: there are problems that
we can formally define, but that cannot be solved by any computer program; these
problems (including the Halting Problem) are called uncomputable.

Common Errors in Proofs

A valid inference is one whose conclusion is always true as long as the facts that it
relies on were true. An invalid inference is one in which the conclusion can be false
even if the premises are all true. An invalid, or fallacious, argument can also be called a
logical fallacy or just a fallacy. In a correct proof, of course, every step is valid.

Perhaps the most common error in a proof is simply asserting that a fact ϕ follows
from previously established facts, when actually ϕ is not implied by those facts. Other
common types of fallacious reasoning are structural errors that involve purporting to
prove a statement ϕ, but instead proving a statement that is not logically equivalent to
ϕ. (For example, the fallacy of proving true: a “proof” of ϕ that assumes ϕ and proves
True. But ϕ ⇒ True is true regardless of the truth of ϕ, so this purported proof proves
nothing.) Be vigilant; do not let anyone—yourself or others!—get away with fallacious
reasoning.
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Key Terms and Results

Key Terms

Error-Correcting Codes

• Hamming distance
• code, message, codeword
• error-detecting/correcting code
• minimum distance, rate
• repetition code
• Hamming code

Proofs and Proof Techniques

• proof
• proof techniques:

– direct proof
– proof by contrapositive
– proof by contradiction

• counterexample
• constructive/nonconstructive proof

Some Examples of Proofs

• conjunctive/disjunctive normal form
• uncomputability
• the Halting Problem

Valid and Fallacious Arguments

• valid argument
• fallacious/invalid argument; fallacy
• fallacy: proving true
• fallacy: affirming the consequent
• fallacy: denying the hypothesis
• fallacy: false dichotomy
• fallacy: begging the question

Key Results

Error-Correcting Codes

1. If the minimum distance of a code C is 2t + 1 for an inte-
ger t ≥ 0, then C can detect 2t errors and correct t errors.

2. For 4-bit messages and minimum distance 3, there exist
codes with rate 1

3 (such as the Repetition3 code) and with
rate 4

7 (such as the Hamming code), but not with rate
better than 4

7 .

Proofs and Proof Techniques

1. You can prove a claim ϕ with a direct proof, or by instead
proving a different claim that is logically equivalent to ϕ.
Examples include proofs by contrapositive and proofs by
contradiction.

2. A useful three-step process for developing proofs is: (1)
understand what you’re trying to do; (2) do it; and (3)
think about what you’ve done. All three steps are impor-
tant, and doing each will help with the other steps.

3. Writing a proof is a form of writing.

Some Examples of Proofs

1. All logical propositions are equivalent to propositions in
conjunctive/disjunctive normal form, or using only nand.

2. There are infinitely many prime numbers.

3. There are problems that can be specified completely for-
mally that are uncomputable (that is, cannot be solved
by any computer program). The Halting Problem is one
example.

Valid and Fallacious Arguments

1. There are many common mistakes in proofs that are
centered on several types of fallacious reasoning. These
fallacies are essentially all the result of purporting to
prove a statement ϕ by instead proving a statement ψ,
where ψ fails to be logically equivalent to ϕ.





5
Mathematical Induction

In which our heroes wistfully dream about having dreams about dreaming
about a very simple and pleasant world in which no one sleeps at all.
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5.1 Why You Might Care

Each problem that I solved became a rule which
served afterwards to solve other problems.

René Descartes (1596–1650)

Recursion is a powerful technique in computer science. If we can express a solution
to problem X in terms of solutions to smaller instances of the same problem X—and
we can solve X directly for the “smallest” inputs—then we can solve X for all inputs.
There are many examples. We can sort an n-element array A by sorting the left half
of A and the right half of A and merging the results together; 1-element arrays are
trivially sorted. (That’s merge sort.) We can build an efficient data structure for storing
and searching a set of keys by selecting one of those keys k, and building two such
data structures for keys < k and for keys > k; to search for a key x, we compare x to k
and search for x in the appropriate substructure. And a trivial empty data structure
can store an empty set of keys. (That’s a binary search tree.) And many other things are
best understood recursively: factorials, the Fibonacci numbers, fractals (see Figure 5.1),
and finding the median element of an unsorted array, for example.

Figure 5.1: The Von
Koch Snowflake
fractal, shown at
levels {0, 1, 2, 3, 4}.
A level-ℓ snowflake
consists of three
level-ℓ lines. A
level-0 line is

; a level-ℓ
line consists of four
level-(ℓ − 1) lines
arranged in the
shape .

Mathematical induction is a technique for proofs that is directly analogous to recur-
sion: to prove that P(n) holds for all nonnegative integers n, we prove that P(0) is true,
and we prove that for an arbitrary n ≥ 1, if P(n − 1) is true, then P(n) is true too. The
proof of P(0) is called the base case, and the proof that P(n − 1) ⇒ P(n) is called the
inductive case. In the same way that a recursive solution to a problem relies on solu-
tions to a smaller instance of the same problem, an inductive proof of a claim relies on
proofs of a smaller instance of the same claim.

A full understanding of recursion depends on a thorough understanding of mathe-
matical induction. And many other applications of mathematical induction will arise
throughout the book: analyzing the running time of algorithms, counting the number
of bitstrings that have a particular form, and many others.

In this chapter, we will introduce mathematical induction, including a few varia-
tions and extensions of this proof technique. We will start with the “vanilla” form of
proofs by mathematical induction (Section 5.2). We will then introduce strong induction
(Section 5.3), a form of proof by induction in which the proof of P(n) in the induc-
tive case may rely on the truth of all of P(0), P(1), . . . , and P(n − 1) instead of just on
P(n − 1). Finally, we will turn to structural induction (Section 5.4), a form of inductive
proof that operates directly on recursively defined structures like linked lists, binary
trees, or well-formed formulas of propositional logic.
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5.2 Proofs by Mathematical Induction

So if you find nothing in the corridors open the doors,
if you find nothing behind these doors there are more
floors, and if you find nothing up there, don’t worry,
just leap up another flight of stairs. As long as you
don’t stop climbing, the stairs won’t end, under your
climbing feet they will go on growing upwards.

Franz Kafka (1883–1924)
Fürsprecher (Advocates) (c. 1922)

5.2.1 An Overview of Proofs by Mathematical Induction

The principle of mathematical induction says the following: to prove that a statement
P(n) is true for all nonnegative integers n, we can prove that P “starts being true” (the
base case) and that P “never stops being true” (the inductive case). Formally, a proof by
mathematical induction proceeds as follows:

Definition 5.1 (Proof by mathematical induction)
Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by
mathematical induction of ∀n ∈ Z≥0 : P(n), we prove the following:

1. the base case: prove P(0).
2. the inductive case: for every n ≥ 1, prove P(n − 1) ⇒ P(n).

When we’ve proven both the base case and the inductive case as in Definition 5.1, we
have established that P(n) holds for all n ∈ Z≥0. Here’s an example to illustrate how
the base case and inductive case combine to establish this fact:

Example 5.1 (Proving P(5) from a base case and inductive case)
Problem: Suppose we’ve proven both the base case (P(0)) and the inductive case

(P(n − 1) ⇒ P(n), for any n ≥ 1) as in Definition 5.1. Why do these two facts
establish that P(n) holds for all n ∈ Z≥0? For example, why do they establish P(5)?

Solution: Here is a proof of P(5), using the base case once and the inductive case five
times. (At each stage we make use of modus ponens—which, as a reminder, states
that from p ⇒ q and p, we can conclude q.)

We know P(0) base case (5.1)
and we know P(0) ⇒ P(1) inductive case, with n = 1 (5.2)

and thus we can conclude P(1). (5.1), (5.2), and modus ponens (5.3)

We know P(1) ⇒ P(2) inductive case, with n = 2 (5.4)
and thus we can conclude P(2). (5.3), (5.4), and modus ponens (5.5)

We know P(2) ⇒ P(3) inductive case, with n = 3 (5.6)
and thus we can conclude P(3). (5.5), (5.6), and modus ponens (5.7)
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We know P(3) ⇒ P(4) inductive case, with n = 4 (5.8)
and thus we can conclude P(4). (5.7), (5.8), and modus ponens (5.9)

We know P(4) ⇒ P(5) inductive case, with n = 5 (5.10)
and thus we can conclude P(5). (5.9), (5.10), and modus ponens (5.11)

This sequence of inferences established that P(5) is true. We can use the same
technique to prove that P(n) holds for an arbitrary integer n ≥ 0, using the base
case once and the inductive case n times.

The principle of mathematical induction is as simple as in Example 5.1—we apply
the base case to get started, and then repeatedly apply the inductive case to conclude
P(n) for any larger n—but there are several analogies that can help to make proofs by
mathematical induction more intuitive; see Figure 5.2.

Dominoes falling: We have an infinitely long line of dominoes, numbered 0, 1, 2, . . . , n, . . .. To convince
someone that the nth domino falls over, you can convince them that

• the 0th domino falls over, and
• whenever one domino falls over, the next domino falls over too.

(One domino falls, and they keep on falling. Thus, for any n ≥ 0, the nth domino falls.)

Climbing a ladder: We have a ladder with rungs numbered 0, 1, 2, . . . , n, . . .. To convince someone that a
climber climbing the ladder reaches the nth rung, you can convince them that

• the climber steps onto rung #0.
• if the climber steps onto one rung, then she also steps onto the next rung.

(The climber starts to climb, and the climber never stops climbing. Thus, for any n ≥ 0, the climber
reaches the nth rung.)

Whispering down the alley: We have an infinitely long line of people, with the people numbered
0, 1, 2, . . . , n, . . .. To argue that everyone in the line learns a secret, we can argue that

• person #0 learns the secret.
• if person #n learns the secret, then she tells person #(n + 1) the secret.

(The person at the front of the line learns the secret, and everyone who learns it tells the secret to the
next person in line. Thus, for any n ≥ 0, the nth person learns the secret.)

Falling into the depths of despair: Consider the Pit of Infinite Despair, which is filled with nothing but
despair and goes infinitely far down beneath the surface of the earth. (The Pit does not respect
physics.) Suppose that:

• the Evil Villain is pushed into the pit (that is, She is in the Pit zero meters below the surface).
• if someone is in the Pit at a depth of n meters beneath the surface, then She falls to depth n + 1

meters beneath the surface.

(The Villain starts to fall, and if the Villain has fallen to a certain depth then She falls another meter
further. Thus, for any n ≥ 0, the Evil Villain eventually reaches depth n in the Pit.)

Figure 5.2: Some
analogies to make
mathematical
induction more
intuitive.

Taking it further: “Mathematical induction” is somewhat unfortunately named because its name
collides with a distinction made by philosophers between two types of reasoning. Deductive reasoning
is the use of logic (particularly rules of inference) to reach conclusions—what computer scientists would
call a proof. A proof by mathematical induction is an example of deductive reasoning. For a philosopher,
though, inductive reasoning is the type of reasoning that draws conclusions from empirical observations.
If you’ve seen a few hundred ravens in your life, and every one that you’ve seen is black, then you might
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conclude All ravens are black. Of course, it might turn out that your conclusion is false, because you
haven’t happened upon any of the albino ravens that exist in the world; hence what philosophers call
inductive reasoning leads to conclusions that may turn out to be false.

A first example: summing powers of two
Let’s use mathematical induction to prove a simple arithmetic property:

Theorem 5.1 (A formula for the sum of powers of two)
For any nonnegative integer n, we have

n
∑
i=0

2i = 2n+1 − 1.

As a plausibility check, let’s test the given formula for some small values of n: Problem-solving tip:
Do this kind of
plausibility check,
and test out a claim
for small values of
n before you try to
prove it. Often the
process of testing
small examples
either reveals a
misunderstanding
of the claim or helps
you see why the
claim is true in
general.

n = 1 : 20 + 21 = 1 + 2 = 3 22 − 1 = 3
n = 2 : 20 + 21 + 22 = 1 + 2 + 4 = 7 23 − 1 = 7
n = 3 : 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 24 − 1 = 15

These small examples all check out, so it’s reasonable to try to prove the claim. Here is
our first example of a proof by induction:

Example 5.2 (A proof of Theorem 5.1)
Let P(n) denote the property

n
∑
i=0

2i = 2n+1 − 1.

We’ll prove that ∀n ∈ Z≥0 : P(n) by induction on n.

base case (n = 0): We must prove P(0). That is, we must prove ∑0
i=0 2i = 20+1 − 1. But

this fact is easy to prove, because both sides are equal to 1: ∑0
i=0 2i = 20 = 1, and

20+1 − 1 = 2 − 1 = 1.

inductive case (n ≥ 1): We must prove that P(n − 1) ⇒ P(n), for an arbitrary integer
n ≥ 1. We prove this implication by assuming the antecedent—namely, we assume
P(n− 1) and prove P(n). The assumption P(n− 1) is

n−1
∑
i=0

2i = 2(n−1)+1 − 1. (∗)

We can now prove P(n)—under the assumption (∗)—by showing that the left-hand
and right-hand sides of P(n) are equal:

n
∑
i=0

2i =
[

n−1
∑
i=0

2i
]

+ 2n by the definition of summations

=
[
2(n−1)+1 − 1

]
+ 2n by (∗), a.k.a. by the assumption that P(n − 1)

= 2n − 1 + 2n by algebraic manipulation

= 2 · 2n − 1
= 2n+1 − 1.
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We’ve thus shown that ∑n
i=0 2i = 2n+1 − 1—in other words, we’ve proven P(n).

We’ve proven the base case P(0) and the inductive case P(n − 1) ⇒ P(n), so by the
principle of mathematical induction we have shown that P(n) holds for all n ∈ Z≥0.

Taking it further: In case the inductive proof doesn’t feel 100% natural, here’s another way to make the
result from Example 5.2 intuitive: think about binary representations of numbers. Written in binary, the
number ∑n

i=0 2i will look like 11 · · · 111, with n + 1 ones. What happens when we add 1 to, say, 11111111
(= 255)? It’s a colossal sequence of carrying (as 1 + 1 = 0, carrying the 1 to the next place):

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
+ 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0.

In other words, 2n+1 − 1 is written in binary as a sequence of n + 1 ones—that is, 2n+1 − 1 = ∑n
i=0 2i .

Example 5.2 follows the standard outline of a proof by mathematical induction. We
will always prove the inductive case P(n − 1) ⇒ P(n) by assuming the antecedent
P(n − 1) and proving P(n). The assumed antecedent P(n − 1) in the inductive case of
the proof is called the inductive hypothesis. You may see “in-

ductive hypothesis”
abbreviated as IH.

A second example, and a template for proofs by induction
Here’s another proof by induction, with the parts of the proof carefully labeled:

Warning! P(n)
denotes a proposi-
tion—that is, P(n) is
either true or false.
(We’re proving that,
in fact, it’s true for
every n.) Despite its
apparent tempta-
tion to people new
to inductive proofs,
it is nonsensical
to treat P(n) as a
number.

Example 5.3 (Summing powers of −1)
Claim: For any integer n ≥ 0, we have that

n
∑
i=0

(−1)i =





1 if n is even
0 if n is odd.

Proof.
Step #1: Clearly state the claim to be proven. Clearly state that the proof will be by
induction, and clearly state the variable upon which induction will be performed.

Let P(n) denote the property

n
∑
i=0

(−1)i =
{

1 if n is even
0 if n is odd.

We’ll prove that ∀n ∈ Z≥0 : P(n) by induction on n.

Step #2: State and prove the base case.

base case (n = 0): We must prove P(0). But ∑0
i=0(−1)i = (−1)0 = 1, and 0 is even.

Step #3: State and prove the inductive case. Within the statement and proof of the
inductive case . . .

. . . Step #3a: state the inductive hypothesis.

inductive case (n ≥ 1): We assume the inductive hypothesis P(n− 1), namely

n−1
∑
i=0

(−1)i =
{

1 if n − 1 is even
0 if n − 1 is odd.
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. . . Step #3b: state what we need to prove.

We must prove P(n).

. . . Step #3c: prove it, making use of the inductive
hypothesis and stating where it was used.

n
∑
i=0

(−1)i =
[

n−1
∑
i=0

(−1)i
]

+ (−1)n definition of summations

=
{

1 + (−1)n if n − 1 is even
0 + (−1)n if n − 1 is odd.

inductive hypothesis

=
{

1 + (−1)n if n is odd
0 + (−1)n if n is even.

n is odd ⇔ n − 1 is even

=
{

1 + −1 if n is odd
0 + 1 if n is even.

(−1)n = ±1, depending on whether n is even; see Exercise 5.3.

=
{

0 if n is odd
1 if n is even.

Thus we have proven P(n), and the theorem follows.

We can treat the labeled pieces of Example 5.3 as a checklist for writing proofs by

Writing tip: In the
inductive case
of a proof of an
equality—like
Example 5.3—start
from the left-hand
side of the equality
and manipulate it
until you derive
the right-hand
side of the equality
exactly. If you work
from both sides
simultaneously,
you’re at risk of the
fallacy of proving
true—or at least the
appearance of that
fallacy!

induction. You should ensure that when you write an inductive proof, you include
each of these steps. These steps are summarized in Figure 5.3.

Checklist for a proof by mathematical induction:
1. A clear statement of the claim to be proven—that is, a clear definition of the property P(n) that

will be proven true for all n ≥ 0—and a statement that the proof is by induction, including
specifically identifying the variable n upon which induction is being performed. (Some claims
involve multiple variables, and it can be confusing if you aren’t clear about which is the
variable upon which you are performing induction.)

2. A statement and proof of the base case—that is, a proof of P(0).

3. A statement and proof of the inductive case—that is, a proof of P(n− 1) ⇒ P(n), for a generic
value of n ≥ 1. The proof of the inductive case should include all of the following:

(a) a statement of the inductive hypothesis P(n− 1).
(b) a statement of the claim P(n) that needs to be proven.
(c) a proof of P(n), which at some point makes use of the assumed inductive hypothesis.

Figure 5.3: A
checklist of the
steps required
for a proof by
mathematical
induction.

The sum of the first n integers
We’ll do another simple example of an inductive proof of an arithmetic property, by

showing that the sum of the integers between 0 and n is n(n+1)
2 . (For example, for n = 4

we have 0 + 1 + 2 + 3 + 4 = 10 = 4(4+1)
2 .) Here’s a proof:

Example 5.4 (Sum of the first n integers)
Problem: Show that 0 + 1 + · · · + n is n(n+1)

2 , for any integer n ≥ 0.
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Solution: First, we must phrase this problem in terms of a property P(n) that we’ll
prove true for every n ≥ 0. For a particular integer n, let P(n) denote the claim that

n
∑
i=0

i = n(n + 1)
2 .

We will prove that P(n) holds for all integers n ≥ 0 by induction on n.

base case (n = 0): Note that ∑0
i=1 i = 0 and 0(0+1)

2 = 0 too. Thus P(0) follows.

inductive case (n ≥ 1): Assume the inductive hypothesis P(n − 1), namely

n−1
∑
i=0

i = (n − 1)((n− 1) + 1)
2 .

We must prove P(n)—that is, we must prove that ∑n
i=0 i = n(n+1)

2 . Here is the
proof:

n
∑
i=0

i =
[

n−1
∑
i=0

i
]

+ n definition of summations

= (n − 1)((n− 1) + 1)
2 + n inductive hypothesis

= (n − 1)n + 2n
2 putting terms over common denominator

= n(n − 1 + 2)
2 factoring

= n(n + 1)
2 .

Thus we’ve shown P(n) assuming P(n − 1), which completes the proof.

Problem-solving
tip: Your first task
in giving a proof
by induction is
to identify the
property P(n) that
you’ll prove true
for every integer
n ≥ 0. Sometimes
the property is
given to you more
or less directly and
sometimes you’ll
have to formulate
it yourself, but
in any case you
need to identify the
precise property
you’re going to
prove before you
can prove it!

Taking it further: While the summation that we analyzed in Example 5.4 may seem like a purely arith-
metic example, it also has direct applications in CS—particularly in the analysis of algorithms. Chapter 6 is
devoted to this topic, and there’s much more there, but here’s a brief preview.

A basic step in analyzing an algorithm is counting how many steps that algorithm takes, for an input
of arbitrary size. One particular example is Insertion Sort, which sorts an n-element array by repeatedly
ensuring that the first k elements of the array are in sorted order (by swapping the kth element backward
until it’s in position). The total number of swaps that are done in the kth iteration can be as high as
k − 1—so the total number of swaps can be as high as ∑n

k=1 k − 1 = ∑n−1
i=0 i. Thus Example 5.4 tells us that

Insertion Sort can require as many as n(n − 1)/2 swaps.

Generating a conjecture: segments in a fractal
In the inductive proofs that we’ve seen thus far, we were given a problem statement

that described exactly what property we needed to prove. Solving these problems
“just” requires proving the base case and the inductive case—which may or may not
be easy, but at least we know what we’re trying to prove! In other problems, though,
you may also have to first figure out what you’re going to prove, and then prove it.
Obviously this task is generally harder. Here’s one example of such a proof, about the
Von Koch snowflake fractal from Figure 5.1:
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Figure 5.4: Von
Koch lines of level
0, 1, . . . , 5. (A Von
Koch snowflake
consists of three
Von Koch lines,
all of the same
level, arranged
in a triangle; see
Figure 5.1.)

Example 5.5 (Vertices in a Von Koch Line)
Problem: A Von Koch line of level 0 is a straight line segment; a Von Koch line of level
ℓ ≥ 1 consists of four Von Koch lines of level (ℓ− 1), arranged in the shape . (See
Figure 5.4.) Conjecture a formula for the number of vertices (that is, the number of
segment endpoints) in a Von Koch line of level ℓ. Prove your formula by induction.

Solution: Our first task is to formulate a conjecture for the number of vertices in a
Von Koch line of level ℓ. Let’s start with a few small examples, based on Figure 5.4:
• a level-0 line has 2 endpoints (and 1 segment).
• a level-1 line has 5 endpoints (and 4 segments): the two at the far left and far

right, plus the three in the start, middle, and end of the “bump” in the center.
• a level-2 line—after some tedious counting in the picture in Figure 5.4—turns

out to have 17 endpoints (and 16 segments).
There are a few ways to think about this pattern. Here’s one that turns out to be
helpful: a level-ℓ line contains 4 lines of level (ℓ− 1), so it contains 16 lines of level
(ℓ− 2). And thus, expanding it all the way out, the level-ℓ line contains 4ℓ lines of
level 0. The number of endpoints that we observe is 2 = 40 + 1, then 5 = 41 + 1,
then 17 = 42 + 1. (Why the “+1?” Each segment starts where the previous segment
ended—so there is one more endpoint than segment, because of the last segment’s
second endpoint.)

So it looks like there are 4ℓ + 1 endpoints in a Von Koch line of level ℓ. Let’s turn
this observation into a formal claim, with an inductive proof:
Claim: For any ℓ ≥ 0, a Von Koch line of level ℓ has 4ℓ + 1 endpoints.
Proof. Let P(ℓ) denote the claim that a Von Koch line of level ℓ has 4ℓ + 1 endpoints.
We’ll prove that P(ℓ) holds for all integers ℓ ≥ 0 by induction on ℓ.
base case (ℓ = 0): We must prove P(0). By definition, a Von Koch line of level 0 is a

single line segment, which has 2 endpoints. Indeed, 40 + 1 = 1 + 1 = 2.
inductive case (ℓ ≥ 1): We assume the inductive hypothesis, namely P(ℓ − 1),

and we must prove P(ℓ). The key observation is that a Von Koch line of level
ℓ consists of four Von Koch lines of level (ℓ− 1)—and the last endpoint of line
#1 is identical to the first endpoint of line #2; the last endpoint of #2 is the first
of #3, and the last endpoint of #3 is the first of #4. Therefore there are three
endpoints that are shared among the four lines of level (ℓ− 1). Thus:

the number of endpoints in a Von Koch line of level ℓ

= 4 ·
[
the number of endpoints in a Von Koch line of level (ℓ− 1)

]
− 3

by the definition of a Von Koch line, and by the above discussion

= 4 ·
[
4ℓ−1 + 1

]
− 3 by the inductive hypothesis

= 4ℓ + 4 − 3 multiplying through

= 4ℓ + 1. algebra

Thus P(ℓ) follows, completing the proof.
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A note and two variations on the inductive template
The basic idea of induction is simple: the reason that P(n) holds is that P(n− 1) held,

and the reason that P(n − 1) held is that P(n − 2) held—and so forth, until eventually
the proof finally rests on P(0), the base case. A proof by induction can sometimes look

Warning! If you
do not use the in-
ductive hypothesis
P(n− 1) in the proof
of P(n), then some-
thing is wrong—or,
at least, your proof
is not actually a
proof by induction!

superficially like it’s circular reasoning—that we’re assuming precisely the thing that
we’re trying to prove. But it’s not! In the inductive case, we’re assuming P(n − 1) and
proving P(n)—we are not assuming P(n) and proving P(n).

Taking it further: The superficial appearance of circularity in a proof by induction is equivalent to the
superficial appearance that a recursive function in a program will run forever. (A recursive function
f will run forever if calling f on n results in f calling itself on n again! That’s the same circularity that
would happen if we assumed P(n) and proved P(n).) The correspondence between these aspects of
induction and recursion should be no surprise; induction and recursion are essentially the same thing.
In fact, it’s not too hard to write a recursive function that “implements” an inductive proof by outputting
a step-by-step argument establishing P(n) for an arbitrary n, as in Example 5.1.

Our proofs so far have shown ∀n ∈ Z≥0 : P(n) by proving P(0) as a base case. If we
instead want to prove ∀n ∈ Z≥k : P(n) for some integer k, we can prove P(k) as the base
case, and then prove the inductive case P(n − 1) ⇒ P(n) for all n ≥ k + 1.

Another variation in writing inductive proofs relates to the statement of the induc-
tive case. We’ve proven P(0) and P(n − 1) ⇒ P(n) for arbitrary n ≥ 1. Some writers
prefer to prove P(0) and P(n) ⇒ P(n + 1) for arbitrary n ≥ 0. The difference is merely
a reindexing, not a substantive difference: it’s just a matter of whether one thinks of
induction as “the nth domino falls because the (n − 1)st domino fell into it” or as “the
nth domino falls and therefore knocks over the (n + 1)st domino.”

In the remainder of this section, we’ll give some more examples of proofs by math-
ematical induction, following the template of Figure 5.3. While the examples that
we’ve used so far have almost all related to summations, the same style of inductive
proof can be used for a wide variety of claims. We’ll encounter many inductive proofs
throughout the book, and you’ll find inductive proofs ubiquitous throughout com-
puter science. We’ll start with some more summation-based proofs, and then move on
to inductive proofs of some other types of statements.

5.2.2 Some Numerical Examples: Geometric, Arithmetic, and Harmonic Series

We’ll now introduce three types of summations that arise frequently in computer
science: geometric sequences (1, 2, 4, 8, 16, . . .); arithmetic sequences (2, 4, 6, 8, 10, . . .);
and the harmonic sequence (1, 1

2 , 1
3 , 1

4 , 1
5 , . . .). Summations involving all of these types

of sequences can be analyzed inductively, and we’ll address all three of them here
and in the exercises. (The statements we’ll prove are both useful facts to know about
geometric/arithmetic/harmonic sequences, and good practice with induction.)

Geometric series

Definition 5.2 (Geometric sequences and series)
A geometric sequence is a sequence of numbers where each number is generated by
multiplying the previous entry by a fixed ratio α ∈ R, starting from an initial value x0.
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(Thus the sequence is 〈x0, x0 · α, x0 · α2, x0 · α3, . . .〉.) A geometric series or geometric
sum is ∑n

i=0 x0α
i.

Examples include 〈2, 4, 8, 16, 32, . . .〉; or 〈1, 1
3 , 1

9 , 1
27 , . . .〉; or 〈1, 1, 1, 1, 1, . . .〉.

It turns out that there is a relatively simple formula expressing the sum of the first n
terms of a geometric sequence:

Theorem 5.2 (Analysis of geometric series)
Let α ∈ R where α 6= 1, and let n ∈ Z≥0. Then

n
∑
i=0
αi = αn+1 − 1

α− 1 .

(If α = 1, then ∑n
i=0 α

i = n + 1.)

(For simplicity, we stated Theorem 5.2 without reference to x0. Because we can pull a
constant multiplicative factor out of a summation, we can use the theorem to conclude
that ∑n

i=0 x0α
i = x0 · ∑n

i=0 α
i = x0 · α

n+1−1
α−1 .)

We will be able to prove Theorem 5.2 using a proof by mathematical induction:

Problem-solving
tip: The inductive
cases of many
inductive proofs
follow the same
pattern: first, we
use some kind of
structural definition
to “pull apart” the
statement about
n into something
kind of statement
about n − 1 (plus
some “leftover”
other stuff), then
apply the inductive
hypothesis to
simplify the n − 1
part. We then
manipulate the
result of using
the inductive
hypothesis plus the
leftovers to get the
desired equation.

Example 5.6 (Geometric series)
Proof of Theorem 5.2. Consider a fixed real number α with α 6= 1, and let P(n) denote
the property that

n
∑
i=0
αi = αn+1 − 1

α− 1 .

We’ll prove that P(n) holds for all integers n ≥ 0 by induction on n.

base case (n = 0): Note that ∑0
i=0 α

i = α0 and α0+1−1
α−1 both equal 1. Thus P(0) holds.

inductive case (n ≥ 1): We assume the inductive hypothesis P(n− 1), namely

n−1
∑
i=0

αi = αn − 1
α− 1 ,

and we must prove P(n). Here is the proof:

n
∑
i=0
αi = αn +

n−1
∑
i=0

αi definition of summation

= αn + αn − 1
α− 1 inductive hypothesis

= αn(α− 1) + αn − 1
α− 1 putting the fractions over a common denominator

= αn+1 − αn +αn − 1
α− 1 multiplying out

= αn+1 − 1
α− 1 . simplifying

Thus P(n) holds, and the theorem follows.
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Notice that Examples 5.2 and 5.3 were both special cases of Theorem 5.2. For the
former, Theorem 5.2 tells us that ∑n

i=0 2i = 2n+1−1
2−1 = 2n+1 − 1; for the latter, this theorem

tells us that
n
∑
i=0

(−1)i = (−1)n+1 − 1
−1 − 1 = 1 − (−1)n+1

2 =
{

1−(−1)
2 = 1 if n is even

1−1
2 = 0 if n is odd.

A corollary of Theorem 5.2 addressing infinite geometric sums will turn out to be
useful later, so we’ll state it now. (You can skip over the proof if you don’t know calcu-
lus, or if you haven’t thought about calculus recently.)

Corollary 5.3
Let α ∈ R where 0 ≤ α < 1, and define f (n) = ∑n

i=0 α
i. Then:

1. ∑∞
i=0 α

i = 1
1−α , and

2. For all n ≥ 0, we have 1 ≤ f (n) ≤ 1
1−α .

Proof. The proof of (1) requires calculus. Theorem 5.2 says that f (n) = αn+1−1
α−1 , and we

take the limit as n → ∞. Because α < 1, we have that limn→∞ αn+1 = 0. Thus as n → ∞
the numerator αn+1 − 1 tends to −1, and the entire ratio tends to 1/(1− α).

For (2), observe that ∑n
i=0 α

i is definitely greater than or equal to ∑0
i=0 α

i (because
α ≥ 0 and so the latter results by eliminating n nonnegative terms from the former).
Similarly, ∑n

i=0 α
i is definitely less than or equal to ∑∞

i=0 α
i. Thus:

f (n) = ∑n
i=0 α

i ≥ ∑0
i=0 α

i = α0 = 1
f (n) = ∑n

i=0 α
i ≤ ∑∞

i=0 α
i = 1

1−α .

Arithmetic series

Definition 5.3 (Arithmetic sequences and series)
An arithmetic sequence is a sequence of numbers where each number is generated by adding
a fixed step-size α ∈ R to the previous number in the sequence. The first entry in the
sequence is some initial value x0 ∈ R. (Thus the sequence is
〈x0, x0 +α, x0 + 2α, x0 + 3α, . . .〉.) An arithmetic series or sum is ∑n

i=0(x0 + iα).

Examples include 〈2, 4, 6, 8, 10, . . .〉; or 〈1, 1
3 ,− 1

3 ,−1,− 5
3 , . . .〉; or 〈1, 1, 1, 1, 1, . . .〉. You’ll

prove a general formula for an arithmetic sum in the exercises.

Harmonic series

Definition 5.4 (Harmonic series)
A harmonic series is the sum of a sequence of numbers whose kth number is 1

k . The nth
harmonic number is defined by Hn := ∑n

k=1
1
k .

Thus, for example, we have H1 = 1, H2 = 1 + 1
2 = 1.5, H3 = 1 + 1

2 + 1
3 ≈ 1.8333, and

H4 = 1 + 1
2 + 1

3 + 1
4 ≈ 2.0833.
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Giving a precise equation for the value of Hn requires a bit more work, but we can
very easily prove upper and lower bounds on Hn by induction. (If you’ve had calculus,
then there’s a simple way for you to approximate the value of Hn, as The name “har-

monic” comes from
music: when a note
at frequency f is
played, overtones
of that note—other
high-intensity
frequencies—can be
heard at frequencies
2f , 3f , 4f , . . .. The
wavelengths of the
corresponding
sound waves are
1
f , 1

2f , 1
3f , 1

4f , . . ..

Hn =
n
∑
x=1

1
x
≈
∫ n

x=1

1
x

dx = ln n.

But we’ll do a calculus-free version here.) We will be able to prove the following,
which captures the value of Hn to within a factor of 2, at least when n is a power of 2:

Theorem 5.4 (Bounds on the (2k)th harmonic number)
For any integer k ≥ 0, we have k + 1 ≥ H2k ≥ k

2 + 1.

We’ll prove half of Theorem 5.4 (namely k + 1 ≥ H2k ) by induction in Example 5.7,
leaving the other half to the exercises. We will also leave to the exercises a proof of
upper and lower bounds for Hn when n is not an exact power of 2.

Example 5.7 (Inductive proof that k + 1 ≥ H2k )
Proof. Let P(k) denote the property that k + 1 ≥ H2k . We’ll use induction on k to prove
that P(k) holds for all integers k ≥ 0.

base case (k = 0): We have that H2k = H20 = H1 = 1, and k + 1 = 0 + 1 = 1 as well.
Therefore H2k = 1 = k + 1.

inductive case (k ≥ 1): Let k ≥ 1 be an arbitrary integer. We must prove P(k)—that
is, we must prove that k + 1 ≥ H2k . To do so, we assume the inductive hypothesis
P(k − 1), namely that k ≥ H2k−1. Consider H2k :

H2k =
2k

∑
i=1

1
i

definition of the harmonic numbers

=
[

2k−1

∑
i=1

1
i

]
+
[

2k

∑
i=2k−1+1

1
i

]
splitting the summation into parts

= H2k−1 +
[

2k

∑
i=2k−1+1

1
i

]
definition of the harmonic numbers, again

≤ H2k−1 +
[

2k

∑
i=2k−1+1

1
2k−1

]
every term in the summation ∑2k

i=2k−1+1
1
i is smaller than 1

2k−1

≤ H2k−1 + 2k−1 · 1
2k−1 there are 2k−1 terms in the summation

= H2k−1 + 1 1
x · x = 1 for any x 6= 0

≤ k + 1. inductive hypothesis

Thus we’ve proven that H2k ≤ k + 1—that is, we’ve proven P(k). This proof com-
pletes the inductive case, and the theorem follows.
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The proof in Example 5.7 is perhaps the first time in this chapter in which we
needed some serious insight and creativity to establish the inductive case. The struc-
ture of a proof by induction is rigid—we must prove a base case P(0); we must prove
an inductive case P(n − 1) ⇒ P(n)—but that doesn’t make the entire proof totally
formulaic. (The proof of the inductive case must use the inductive hypothesis at some
point, so its statement gives you a little guidance for the kinds of manipulations to try.)
Just as with all the other proof techniques that we explored in Chapter 4, a proof by
induction can require you to think—and all of strategies that we discussed in Chapter 4
may be helpful to deploy.

5.2.3 Some More Examples

We’ll close this section with a few more examples of proofs by mathematical induc-
tion, but we’ll focus on things other than analyzing summations. Some of these exam-
ples are still about arithmetic properties, but they should at least hint at the breadth of
possible statements that we might be able to prove by induction.

Comparing algorithms: which is faster?
Suppose that we have two different candidate algorithms that solve a problem re-

lated to a set S with n elements—a brute-force algorithm that tries all 2n possible subsets
of S, and a second algorithm that computes the solution by looking at only n2 subsets
of S. Which would be faster to use? It turns out that the latter algorithm is faster, and
we can prove this fact (with a small caveat for small n) by induction:

n 2n n2

0 1 0
1 2 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36
7 128 49

n = 4

2n n2

Figure 5.5: Small
values of 2n and n2,
and a plot of the
functions.

Example 5.8 (2n vs. n2)
We’d like to prove that 2n ≥ n2 for all integers n ≥ 0—but it turns out not to be
true! (See Figure 5.5.) Indeed, 23 < 32. But the relationship appears to begin to hold
starting at n = 4. Let’s prove it, by induction:

Claim: For all integers n ≥ 4, we have 2n ≥ n2.

Proof. Let P(n) denote the property 2n ≥ n2. We’ll use induction on n to prove that
P(n) holds for all n ≥ 4.

base case (n = 4): For n = 4, we have 2n = 16 = n2, so the inequality P(4) holds.

inductive case (n ≥ 5): Assume the inductive hypothesis P(n − 1)—that is, assume
2n−1 ≥ (n − 1)2. We must prove P(n). For n ≥ 4, note that n2 ≥ 4n (by multiplying
both sides of the inequality n ≥ 4 by n). Thus n2 − 4n ≥ 0, and so

2n = 2 · (2n−1) definition of exponentiation

≥ 2 · (n − 1)2 inductive hypothesis

= 2n2 − 4n + 2 multiplying out

= n2 + (n2 − 4n) + 2 rearranging

≥ n2 + 0 + 2 by the above discussion, we have n2 − 4n ≥ 0

> n2.
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Thus we have shown 2n > n2, which completes the proof of the inductive case. The
claim follows.

Taking it further: In analyzing the efficiency of algorithms, we will frequently have to do the type of
comparison that we just completed, to compare the amount of time consumed by one algorithm versus
another. Chapter 6 discusses this type of comparison in much greater detail, but here’s one example of
this sort.

Let X be a sequence. A subsequence of X results from selecting some of the entries in X—for exam-
ple, TURING is a subsequence of OUTSOURCING. For two sequences X and Y, a common subsequence is a
subsequence of both X and Y. The longest common subsequence of X and Y is, naturally, the common
subsequence of X and Y that’s longest. (For example, TURING is the longest common subsequence of
DISTURBINGLY and OUTSOURCING.)

Given two sequences X and Y of length n, we can find the longest common subsequence fairly easily
by testing every possible subsequence of X to see whether it’s also a subsequence of Y. This brute-force
solution takes requires testing 2n subsequences of X. But there’s a cleverer approach to solving this
problem using an algorithmic design technique called dynamic programming (see p. 959 or a textbook
on algorithms) that avoids redoing the same computation—here, testing the same sequence of letters
to see if it appears in Y—more than once. The dynamic programming algorithm for longest common
subsequence requires only about n2 steps.

Proving algorithms correct: factorial
fact(n):
1: if n = 1 then
2: return 1
3: else
4: return n · fact(n − 1)

Figure 5.6: Pseu-
docode for factorial:
given n ∈ Z≥1, we
wish to compute
the value of n!.

We just gave an example of using a proof by induction to
analyze the efficiency of an algorithm, but we can also use
mathematical induction to prove the correctness of a recursive
algorithm. (That is, we’d like to show that a recursive algo-
rithm always returns the desired output.) Here’s a simple
example, for the natural recursive algorithm to compute factorials (see Figure 5.6):

Example 5.9 (Factorial)
Consider the recursive algorithm fact in Figure 5.6. For a positive integer n, let P(n)
denote the property that fact(n) = n!. We’ll prove by induction on n that, indeed, P(n)
holds for all integers n ≥ 1.

base case (n = 1): Observe that fact(1) returns 1 immediately. And 1! = 1 by defini-
tion. Thus P(1) holds.

inductive case (n ≥ 2): We assume the inductive hypothesis P(n − 1), namely that
fact(n − 1) returns (n − 1)!. We want to prove that fact(n) returns n!. But this claim
is easy to see:

fact(n) = n · fact(n − 1) by inspection of the algorithm

= n · (n − 1)! by the inductive hypothesis

= n! by definition of !

Therefore the claim holds by induction.

In fact, induction and recursion are basically the same thing: recursion “works” by
leveraging a solution to a smaller instance of a problem to solve a larger instance of
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the same problem; a proof by induction “works” by leveraging a proof of a smaller
instance of a claim to prove a larger instance of the same claim. (Actually, one common
use of induction is to analyze the efficiency of a recursive algorithm. We’ll discuss this
type of analysis in great depth in Section 6.4.)

Taking it further: While induction is much more closely related to recursive algorithms than nonrecur-
sive algorithms, we can also prove the correctness of an iterative algorithm using induction. The basic
idea is to consider a statement, called a loop invariant, about the correct behavior of a loop; we can prove
inductively that a loop invariant starts out true and stays true throughout the execution of the algorithm.
See the discussion on p. 517.

Divisibility
We’ll close this section with one more numerical example, about divisibility: Writing tip: Exam-

ple 5.10 illustrates
why it is crucial
to state clearly
the variable upon
which induction is
being performed.
This statement
involves two vari-
ables, k and n, but
we’re performing
induction on only
one of them!

Example 5.10 (kn − 1 is evenly divisible by k − 1)
Claim: For any n ≥ 0 and k ≥ 2, we have that kn − 1 is evenly divisible by k − 1.

(For example, 7n − 1 is always divisible by 6, as in 7 − 1, 49 − 1, and 343 − 1. And
k2 − 1 is always divisible by k − 1; in fact, factoring k2 − 1 yields k2 − 1 = (k− 1)(k + 1).)

Proof. We’ll proceed by induction on n. That is, let P(n) denote the claim

For all integers k ≥ 2, we have that kn − 1 is evenly divisible by k − 1.

We will prove that P(n) holds for all integers n ≥ 0 by induction on n.

base case (n = 0): For any k, we have kn − 1 = k0 − 1 = 1 − 1 = 0. And 0 is evenly
divisible by any positive integer, including k − 1. Thus P(0) holds.

inductive case (n ≥ 1): We assume the inductive hypothesis P(n− 1), and we need to
prove P(n). Let k ≥ 2 be an arbitrary integer. Then:

kn − 1 = kn − k + k − 1 antisimplification: x = x + k − k.

= k · (kn−1 − 1) + k − 1 factoring

By the inductive hypothesis, kn−1 − 1 is evenly divisible by k − 1. In other words,
by the definition of divisibility, there exists a nonnegative integer a such that
a · (k − 1) = kn−1 − 1. Therefore

kn − 1 = k · a · (k − 1) + k − 1
= (k − 1) · (k · a + 1).

Because k · a + 1 is a nonnegative integer, (k − 1) · (k · a + 1) is by definition evenly
divisible by k − 1. Thus kn − 1 = (k − 1) · (k · a + 1) is evenly divisible by k − 1. Our
k was arbitrary, so P(n) follows.

Problem-solving
tip: In inductive
proofs, try to
massage the expres-
sion in question
into something—
anything!—that
matches the form
of the inductive hy-
pothesis. Here, the
“antisimplification”
step is obviously
true but seems
completely bizarre.
Why did we do it?
Our only hope in
the inductive case is
to somehow make
use of the inductive
hypothesis. Here,
the inductive hy-
pothesis tells us
something about
kn−1 − 1—so a
good strategy is to
transform kn − 1
into an expression
involving kn−1 − 1,
plus some leftover
stuff.
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Computer Science Connections

Loop Invariants

In Example 5.9, we saw how to use a proof by induction to establish that
a recursive algorithm correctly solves a particular problem. But proving the
correctness of iterative algorithms seems different. An approach—pioneered
in the 1960s by Robert Floyd and C. A. R. Hoare1—is based on loop invariants, 1 Robert W. Floyd. Assigning meanings

to programs. In Proceedings of Symposia
in Applied Mathematics XIX, American
Mathematical Society, pages 19–32,
1967; and C. A. R. Hoare. An axiomatic
basis for computer programming.
Communications of the ACM, 12(10):576–
585, October 1969.

and can be used to analyze nonrecursive algorithms. A loop invariant for a
loop L is logical property P such that (i) P is true before L is first executed;
and (ii) if P is true at the beginning of an iteration of L, then P is true after that
iteration of L. The parallels to induction are clear; property (i) is the base case,
and property (ii) is the inductive case. Together, they ensure that P is always
true, and in particular P is true when the loop terminates.

insertionSort(A[1 . . . n]):
1: i := 2
2: while i ≤ n:
3: j := i
4: while j > 1 and A[j] > A[j − 1]:
5: swap A[j] and A[j − 1]
6: j := j − 1
7: i := i + 1

Figure 5.7: Insertion Sort.

Here’s an example of a sketch of a proof of correctness of Insertion Sort
(Figure 5.7) using loop invariants. (Many proofs using loop invariants would
proceed with more formal detail.) We claim that the property

P(k) := A[1 . . . k + 1] is sorted after completing k iterations of the outer while loop

is true for all k ≥ 0. (That is, P is a loop invariant for the outer while loop.)

Proof (sketch). For the base case (k = 0), we’ve completed zero iterations—that
is, we have only executed line 1. But A[1 . . . k + 1] is then vacuously sorted,
because it contains only the lone element A[1].

For the inductive case (k ≥ 1), we assume the inductive hypothesis
P(k − 1)—that is, A[1 . . . k] was sorted before the kth iteration. The kth iter-
ation of the loop executed lines 2–7, so we must show that the execution of
these lines extended the sorted segment A[1 . . . k] to A[1 . . . k + 1]. A formal
proof of this claim would use another loop invariant, like

Q(j) := both A[1 . . . j − 1] and A[j . . . i] are sorted, and A[j − 1] < A[j + 1]

but for this proof sketch we’ll be satisfied by concluding the desired conclu-
sion by inspection of the algorithm’s code.

Because P(n − 1) is true (after n − 1 iterations of the loop), we know that
A[1 . . . (n − 1) + 1] = A[1 . . . n] is sorted, as desired.

Loop invariants can also be extremely valuable as part of the development

binarySearch(A[1 . . . n], x):
// output: is x in the sorted array A?
1: lo := 1
2: hi := n
3: while lo ≤ hi:
4: middle := ⌊ lo+hi

2 ⌋
5: if A[middle] = x then
6: return True
7: else if A[middle] > x then
8: hi := middle − 1
9: else

10: lo := middle + 1
11: return False
Figure 5.8: Binary Search.

of programs. For example, many people end up struggling to correctly write
binary search—but by writing down loop invariants before actually writing
the code, it’s actually easy. If we think about the property

if x is in A, then x is one of A[lo, . . . , hi]

as a loop invariant as we write the program, binary search becomes much
easier to get right. Many programming languages allow programmers to
use assertions to state logical conditions that they believe to always be true
at a particular point in the code. A simple assert(P) statement can help a
programmer identify bugs earlier in the development process and avoid a
great deal of debugging trauma later.
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5.2.4 Exercises

Prove that the following claims hold for all integers n ≥ 0, by induction on n:

5.1
n

∑
i=0

i2 = n(n + 1)(2n + 1)
6

5.2
n

∑
i=0

i3 = n4 + 2n3 + n2

4

5.3 (−1)n =
{

1 if n is even
−1 if n is odd

5.4
n

∑
i=1

1
i(i + 1) = n

n + 1

5.5
n

∑
i=1

2
i(i + 2)

= 3
2
− 1

n + 1
− 1

n + 2

5.6
n
∑
i=1

i · (i!) = (n + 1)! − 1

5.7 In a typical optical camera lens, the light that enters the lens (through the opening called the
aperture) is controlled by a collection of movable blades that can be adjusted inward to narrow the area
through which light can pass. (There are two effects of narrowing this opening: first, the amount of light
entering the lens is reduced, darkening the resulting image; and, second, the depth of field—the range of
distances from the lens at which objects are in focus in the image—increases.) Although some lenses allow
continuous adjustment to their openings, many have a sequence of so-called stops: discrete steps by which
the aperture narrows. (See Figure 5.9.) These steps are called f -stops (the “f” is short for “focal”), and they
are denoted with some unusual notation that you’ll unwind in this exercise. The “fastest” f -stop for a lens
measures the ratio of two numbers: the focal length of the lens divided by the diameter of the aperture of
the lens. (For example, you might use a lens that’s 50mm long and that has a 25mm diameter, which yields
an f -stop of 50mm/25mm = 2.) One can also “stop down” a lens from this fastest setting by adjusting the
blades to shrink the diameter of the aperture, as described above. (For example, for the 50mm-long lens with
a 25mm diameter, you might reduce the diameter to 12.5mm, which yields an f -stop of 50mm/12.5mm = 4.)

f /1

f /1.4

f /2

f /2.8

f /4

f /5.6

Figure 5.9: A par-
ticular lens of a
camera, shown at
several different
f -stops. These con-
figurations are only
an approximation—
the real blades are
shaped somewhat
differently than is
shown here.

Consider a camera lens with a 50mm focal length, and let d0 := 50mm denote the diameter of the lens’s
aperture diameter. “Stopping down” the lens by one step causes the lens’s aperture diameter to shrink by a
factor of 1√

2
—that is, the next-smaller aperture diameter for a diameter di is defined as

di+1 := di√
2

, for any i ≥ 0.

Give a closed-form expression for dn—that is, give a nonrecursive numerical expression whose value is equal
to dn (where your expression involves only real numbers and the variable n). Prove your answer correct by
induction on n. Also give a closed-form expression for two further quantities:

• the “light-gathering” area (that is, the area of the aperture) of the lens when its diameter is set to dn.
• the f -stop fn of the lens when its diameter is set to dn.

(Using your formula for fn, can you explain the f -stop names from Figure 5.9?)

5.8 What is the sum of the first n odd positive integers? First, formulate a conjecture by trying a few
examples (for example, what’s 1 + 3, for n = 2? What’s 1 + 3 + 5, for n = 3? What’s 1 + 3 + 5 + 7, for n = 4?).
Then prove your answer by induction.
5.9 What is the sum of the first n even positive integers? Prove your answer by induction.

5.10 Let α ∈ R and let n ∈ Z≥0, and consider the arithmetic sequence 〈x0, x0 + α, x0 + 2α, . . .〉. (Recall
that each entry in an arithmetic sequence is a fixed amount more than the previous entry. Three examples
are 〈1, 3, 5, 7, 9, . . .〉, with x0 = 1 and α = 2; 〈25, 20, 15, 10, . . .〉, with x0 = 25 and α = −5; and 〈5, 5, 5, 5, 5, . . .〉,
with x0 = 5 and α = 0.) An arithmetic sum or arithmetic series is the sum of an arithmetic sequence. For the
arithmetic sequence 〈x0, x0 + α, x0 + 2α, . . .〉, formulate and prove correct by induction a formula expressing
the value of the arithmetic series

n

∑
i=0

(x0 + iα).

(Hint: note that ∑n
i=0 iα = α ∑n

i=0 i = αn(n+1)
2 , by Example 5.4.)

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0M0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 5.10: A
chess board. The
knight can move to
any of the marked
positions.

5.11 In chess, a knight at position 〈r, c〉 can move in an L-shaped pattern to any of eight positions:
moving over one row and up/down two columns (〈r ± 1, c ± 2〉), or two rows over and one column
up/down (〈r ± 2, c ± 1〉). (See Figure 5.10.) A knight’s walk is a sequence of legal moves, starting from a
square of your choice, that visits every square of the board. Prove by induction that there exists a knight’s
walk for any n-by-n chessboard for any n ≥ 4. (A knight’s tour is a knight’s walk that visits every square only
once. It turns out that knight’s tours exist for all even n ≥ 6, but you don’t need to prove this fact.)
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5.12 (programming required) In a programming language of your choice, implement your proof from
Exercise 5.11 as a recursive algorithm that computes a knight’s walk in an n-by-n chessboard.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0S0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 5.11: A rook
can move to any
of the positions
marked with a
circle.

5.13 In chess, a rook at position 〈r, c〉 can move in a straight line either horizontally or vertically (to
〈r ± x, c〉 or 〈r, c ± x〉, for any integer x). (See Figure 5.11.) A rook’s tour is a sequence of legal moves, starting
from a square of your choice, that visits every square of the board once and only once. Prove by induction that
there exists a rook’s tour for any n-by-n chessboard for any n ≥ 1.

Figure 5.12 shows three different fractals. One is the Von Koch snowflake (Figure 5.12(a)), which we’ve already seen: a
Von Koch line of size s and level 0 is just a straight line segment; a Von Koch line of size s and level ℓ consists of four
Von Koch lines of size (s/3) and level (ℓ − 1) arranged in the shape ; a Von Koch snowflake of size s and level ℓ
consists of a triangle of three Von Koch lines of size s and level ℓ.

The other two fractals in Figure 5.12 are new. Figure 5.12(b) shows the Sierpinski triangle: a Sierpinski triangle
of level 0 and size s is an equilateral triangle of side length s; a Sierpinski triangle of level (ℓ + 1) is three Sierpinski tri-
angles of level ℓ and side length s/2 arranged in a triangle. Figure 5.12(c) shows a related fractal called the Sierpinski
carpet, recursively formed from 8 smaller Sierpinski carpets (arranged in a 3-by-3 grid with a hole in the middle); the
base case is just a filled square.

The Von Koch
snowflake is named
after Helge von
Koch, a 19th/20th-
century Swedish
mathematician;
the Sierpinski
triangle/carpet
are named after
Wacław Sierpiński,
a 20th-century Pol-
ish mathematician.

Suppose that we draw each of these fractals at level ℓ and with size 1. What is the perimeter of each of these fractals?
(By “perimeter,” we mean the total length of all boundaries separating regions inside the figure from regions outside—
which includes, for example, the boundary of the “hole” in the Sierpinski carpet. For the Sierpinski fractals as drawn
here, the perimeter is precisely the length of lines separating colored-in from uncolored-in regions.) In each case,
conjecture a formula and prove your answer correct by induction.
5.14 Von Koch snowflake 5.15 Sierpinski triangle 5.16 Sierpinski carpet
Draw each of these fractals at level ℓ and with size 1. What is the enclosed area of each of these fractals? (Again, for the
Sierpinski fractals as drawn here, the enclosed area is precisely the area of the colored-in regions.)
5.17 Von Koch snowflake 5.18 Sierpinski triangle 5.19 Sierpinski carpet

In the last few exercises, you computed the fractals’ perimeter/area at level ℓ. But what if we continued the fractal-
expansion process forever? What are the area and perimeter of an infinite-level fractal? (Hint: use Corollary 5.3.)
5.20 Von Koch snowflake 5.21 Sierpinski triangle 5.22 Sierpinski carpet

(a) The Von Koch snowflake, at levels 0, 1, 2, 3, and 4.

(b) The Sierpinski triangle, at levels 0, 1, 2, 3, and 4.

(c) The Sierpinski carpet, at levels 0, 1, 2, and 3.

Figure 5.12: Three
fractals: the Von
Koch snowflake, the
Sierpinski triangle,
and the Sierpinski
carpet.



520 CHAPTER 5. MATHEMATICAL INDUCTION

5.23 (programming required) Write a recursive function sierpinskiTriangle(level, length, x, y), in a
language of your choice, to draw a Sierpinski triangle of side length length at level level with bottom-left
coordinate 〈x, y〉. (You’ll need to use some kind of graphics package with line-drawing capability.)

Write your function so that—in addition to drawing the fractal—it returns both the total length and total
area of the triangles that it draws. Use your function to verify some small cases of Exercises 5.15 and 5.18.

5.24 (programming required) Write a recursive function sierpinskiCarpet(level, length, x, y), in a pro-
gramming language of your choice, to draw a Sierpinski carpet. (See Exercise 5.23 for the meaning of the
parameters.) Write your function so that—in addition to drawing the fractal—it also returns the area of the
boxes that it encloses. Use your function to verify some small cases of your answer to Exercise 5.19. 4 9 2

3 5 7
8 1 6

Figure 5.13: A
Magic Square.

5.25 An n-by-n magic square is an n-by-n grid into which the numbers 1, 2, . . . , n2 are placed, once each.
The “magic” is that each row, column, and diagonal must be filled with numbers that have the same sum. For
example, a 3-by-3 magic square is shown in Figure 5.13. Conjecture and prove a formula for what the sum of
each row/column/diagonal must be in an n-by-n magic square.

Recall from Section 5.2.2 the harmonic numbers, where Hn := ∑n
i=1

1
i is the sum of the reciprocals of the first n

positive integers. Further recall Theorem 5.4, which states that k + 1 ≥ H2k ≥ k
2 + 1 for any integer k ≥ 0.

5.26 In Example 5.7, we proved that k + 1 ≥ H2k . Using the same type of reasoning as in the example,
complete the proof of Theorem 5.4: show by induction that H2k ≥ k

2 + 1 for any integer k ≥ 0.
5.27 Generalize Theorem 5.4 to numbers that aren’t necessarily exact powers of 2. Specifically, prove
that log n + 2 ≥ Hn ≥ (log n− 1)/2 + 1 for any real number n ≥ 1. (Hint: use Theorem 5.4.)

odd?(n):
1: if n = 0 then
2: return False
3: else
4: return not odd?(n − 1)

sum(n, m):
1: if n = m then
2: return m
3: else
4: return n + sum(n + 1, m)

Figure 5.14: Two
algorithms.

5.28 Prove Bernoulli’s inequality: let x ≥ −1 be an arbitrary real number. Prove by induction
on n that (1 + x)n ≥ 1 + nx for any positive integer n.

Prove that the following inequalities f (n) ≤ g(n) hold “for sufficiently large n.” That is, identify an integer
k and then prove (by induction on n) that f (n) ≤ g(n) for all integers n ≥ k.
5.29 2n ≤ n!
5.30 bn ≤ n!, for an arbitrary integer b ≥ 1
5.31 3n ≤ n2

5.32 n3 ≤ 2n

5.33 Prove that, for any nonnegative integer n, the algorithm odd?(n) returns True if and
only if n is odd. (See Figure 5.14.)
5.34 Prove that the algorithm sum(n, m) returns ∑m

i=n i (again see Figure 5.14) for any m ≥ n.
(Hint: perform induction on the value of m − n.)
5.35 Describe how your proof from Exercise 5.34 would change if Line 4 from the sum
algorithm in Figure 5.14 were changed to return m + sum(n, m − 1) instead of n + sum(n + 1, m).

5.36 Prove by induction on n that 8n − 3n is divisible by 5 for any nonnegative integer n.
5.37 Conjecture a formula for the value of 9n mod 10, and prove it correct by induction on n. (Hint: try
computing 9n mod 10 for a few small values of n to generate your conjecture.)
5.38 As in the previous exercise, conjecture a formula for the value of 2n mod 7, and prove it correct.

5.39 Suppose that we count, in binary, using an n-bit counter that goes from 0 to 2n − 1. There are
2n different steps along the way: the initial step of 00 · · · 0, and then 2n − 1 increment steps, each of which
causes at least one bit to be flipped. What is the average number of bit flips that occur per step? (Count the
first step as changing all n bits.) For example, for n = 3, we have 000 → 001 → 010 → 011 → 100 → 101 →
110 → 111, which has a total of 3 + 1 + 2 + 1 + 3 + 1 + 2 + 1 = 14 bit flips. Prove your answer.

dog

dog

dog

Figure 5.15: A
configuration of
fences, and a valid
way to deploy my
dogs.

5.40 To protect my backyard from my neighbor, a biology professor who is sometimes a little over-
friendly, I have acquired a large army of vicious robotic dogs. Unfortunately the robotic dogs in this batch
are very jealous, and they must be separated by fences—in fact, they can’t even face each other directly
through a fence. So I have built a collection of n fences to separate my backyard into polygonal regions,
where each fence completely crosses my yard (that is, it goes from property line to property line, possibly
crossing other fences). I wish to deploy my robotic dogs to satisfy the following property:

For any two polygonal regions that share a boundary (that is, are separated by a fence segment), one of
the two regions has exactly one robotic dog and the other region has zero robotic dogs.

(See Figure 5.15.) Prove by induction on n that this condition is satisfiable for any collection of n fences.
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5.3 Strong Induction

It’s not true that life is one damn thing after another; it
is one damn thing over and over.

Edna St. Vincent Millay (1892–1950)

In the proofs by induction in Section 5.2, we established the claim ∀n ∈ Z≥0 : P(n)
by proving P(0) [the base case] and proving that P(n − 1) ⇒ P(n) [the inductive case].
But let’s think again about what happens in an inductive proof, as we build up facts
about P(n) for ever-increasing values of n. (Glance at Example 5.1 again.)

1. We prove P(0).
2. We prove P(0) ⇒ P(1), so we conclude P(1), using Fact #1.

Now we wish to prove P(2). In a proof by induction like those from Section 5.2, we’d
proceed as follows:

3. We prove P(1) ⇒ P(2), so we conclude P(2), using Fact #2.

In a proof by strong induction, we allow ourselves to make use of more assumptions:
namely, we know that P(1) and P(0) when we’re trying to prove P(2). (By way of con-
trast, we’ll refer to proofs like those from Section 5.2 as using weak induction.) In a
proof by strong induction, we proceed as follows instead:

3′. We prove P(0)∧ P(1) ⇒ P(2), so we conclude P(2), using Fact #1 and Fact #2.

In a proof by strong induction, in the inductive case we prove P(n) by assuming n
different inductive hypotheses: P(0), P(1), P(2), . . . , and P(n − 1). Or, less formally: in
the inductive case of a proof by weak induction, we show that if P “was true last time”
then it’s still true this time; in the inductive case of a proof by strong induction, we show
that if P “has been true up until now” then it’s still true this time.

5.3.1 A Definition and a First Example

Here is the formal definition of a proof by strong induction:

Definition 5.5 (Proof by strong induction)
Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by strong
induction of ∀n ∈ Z≥0 : P(n), we prove the following:

1. the base case: prove P(0).
2. the inductive case: for every n ≥ 1, prove [P(0)∧ P(1)∧ · · · ∧ P(n − 1)] ⇒ P(n).

Generally speaking, using strong induction makes sense when the “reason for” P(n) is
that P(k) is true for more than one index k ≤ n − 1, or that P(k) is true for some index
k ≤ n − 2. (For weak induction, the “reason for” P(n) is that P(n − 1) is true.)

Strong induction makes the inductive case easier to prove than weak induction,
because the claim that we need to show—that is, P(n)—is the same, but we get to
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use more assumptions in strong induction: in strong induction, we’ve assumed all
of P(0) ∧ P(1) ∧ . . . ∧ P(n − 1); in weak induction, we’ve assumed only P(n − 1). We
can always ignore those extra assumptions, so it’s never harder to prove something by
strong induction than with weak induction. (Strong induction is actually equivalent

Writing tip: While
anything that can
be proven using
weak induction
can also be proven
using strong induc-
tion, you should
still use the tool
that’s best suited to
the job—generally,
the one that makes
the argument easi-
est to understand.

to weak induction; anything that can be proven with one can also be proven with the
other. See Exercises 5.75–5.76.)

A first example: a simple algorithm for parity
In the rest of this section, we’ll give several examples of proofs by strong induction.

We’ll start here with a proof of correctness for a blazingly simple algorithm that com-
putes the parity of a positive integer. (Recall that the parity of n is the “evenness” or
“oddness” of n.) See Figure 5.16 for the parity algorithm.

parity(n): // assume that n ≥ 0 is an integer.
1: if n ≤ 1 then
2: return n
3: else
4: return parity(n − 2)

Figure 5.16: A
simple parity
algorithm.

We’ve already used (weak) induction to prove the cor-
rectness of recursive algorithms that, given an input of size
n, call themselves on an input of size n − 1. (That’s how we
proved the correctness of the factorial algorithm fact from
Example 5.9.) But for recursive algorithms that call them-
selves on smaller inputs but not necessarily of size n − 1, like parity, we can use strong
induction to prove their correctness.

Example 5.11 (The correctness of parity)
Claim: For any nonnegative integer n ≥ 0,

parity(n) = n mod 2.

Proof. Write P(n) to denote the property that parity(n) = n mod 2. We proceed by
strong induction on n to show that P(n) holds for all n ≥ 0:

base cases (n = 0 and n = 1): By inspection of the algorithm, parity(0) returns 0 in
Line 2, and, indeed, 0 mod 2 = 0. Similarly, we have parity(1) = 1, and 1 mod 2 = 1
too. Thus P(0) and P(1) hold.

inductive case (n ≥ 2): Assume the inductive hypothesis P(0)∧ P(1)∧ · · · ∧ P(n − 1).
Namely, assume that

for any integer 0 ≤ k < n, we have parity(k) = k mod 2.

We must prove P(n)—that is, we must prove parity(n) = n mod 2:

parity(n) = parity(n − 2) by inspection (specifically because n ≥ 2 and by Line 4)

= (n − 2) mod 2 by the inductive hypothesis P(n − 2)

= n mod 2,

where (n − 2) mod 2 = n mod 2 by Definition 2.9. (Note that the inductive hypoth-
esis applies for k := n − 2 because n ≥ 2 and therefore 0 ≤ n − 2 < n.)
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There are two things to note about the proof in Example 5.11. First, using strong
induction instead of weak induction made sense because the inductive case relied on
P(n − 2) to prove P(n); we did not show P(n − 1) ⇒ P(n). Second, we needed two
base cases: the “reason” that P(1) holds is not that P(−1) was true. (In fact, P(−1) is
false—parity(−1) isn’t equal to 1! Think about why.) The inductive case of the proof in
Example 5.11 does not correctly apply for n = 1, and therefore we had to handle that
case separately.

5.3.2 Some Further Examples of Strong Induction

We’ll continue this section with several more examples of proofs by strong induction.
We’ll first turn to a proof about prime factorization of integers, and then look at one
geometric and one algorithmic claim.

Prime factorization
Recall that an integer n ≥ 2 is called prime if the only positive integers that evenly

divide it are 1 and n itself. It’s a basic fact about numbers that any positive integer can
be uniquely expressed as the product of primes: The prime factor-

ization theorem
is also sometimes
called the Funda-
mental Theorem of
Arithmetic.

Theorem 5.5 (Prime Factorization Theorem)
Let n ∈ Z≥1 be a positive integer. Then there exist k ≥ 0 prime numbers p1, p2, . . . , pk such
that n = ∏k

i=1 pi. Furthermore, up to reordering, the primes p1, p2, . . . , pk are unique.

While proving the uniqueness requires a bit more work (see Section 7.3.3), we can give a
proof using strong induction to show that a prime factorization exists.

Example 5.12 (Prime factorization)
Let P(n) denote the first part of Theorem 5.5, namely the claim

there exist k ≥ 0 prime numbers p1, p2, . . . , pk such that n =
k

∏
i=1

pi.

We will prove that P(n) holds for any integer n ≥ 1, by strong induction on n.

base case (n = 1): Recall that the product of zero multiplicands is 1. (See Section
2.2.7.) Thus we can write n as the product of zero prime numbers. Thus P(1) holds.

inductive case (n ≥ 2): We assume the inductive hypothesis—namely, we assume
that P(n′) holds for any positive integer n′ where 1 ≤ n′ ≤ n − 1. We must prove
P(n). There are two cases:

• If n is prime, then there’s nothing to do: define p1 := n, and we’re done immedi-
ately. (We’ve written n as the product of 1 prime number.)

• If n is not prime, then by definition n can be written as the product n = a · b, for
positive integers a and b satisfying 2 ≤ a ≤ n − 1 and 2 ≤ b ≤ n − 1. (The
definition of (non)primality says that n = a · b for a /∈ {1, n}; it should be easy to
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convince yourself that neither a nor b can be smaller than 2 or larger than n − 1.)
By the inductive hypotheses P(a) and P(b), we have

a = q1 · q2 · · · · · qℓ and b = r1 · r2 · · · · · rm (∗)

for prime numbers q1, . . . , qℓ and r1, . . . , rm. By (∗) and the fact that n = a · b,

n = q1 · q2 · · · · · qℓ · r1 · r2 · · · · · rm.

Because each qi and ri is prime, we have now written n as the product of ℓ + m
prime numbers, and P(n) holds. The theorem follows.

primeFactor(n):
1: if n = 1 then
2: return 〈〉 or “P(1) is true!”
3: else
4: if n is prime then
5: return 〈n〉 or “P(n) is true!”
6: else
7: find factors a, b where 2 ≤ a ≤ n − 1 and 2 ≤ b ≤ n − 1 such that n = a · b.
8: 〈q1, ..., qk〉 := primeFactor(a)
9: 〈r1, ..., rm〉 := primeFactor(b)

10: return 〈q1, ..., qk , r1, ..., rm〉 or “P(n) is true, because P(a) ∧ P(b)!”

Figure 5.17: The
proof of Exam-
ple 5.12, interpreted
as a recursive
algorithm.

Taking it further: As with any
inductive proof, it may be useful to
view the proof from Example 5.12
as a recursive algorithm, as shown
in Figure 5.17. (Notice that there’s
some magic in the “algorithm,” in
the sense that Line 7 doesn’t tell
us how to find the values of a and
b—but we do know that such values
exist, by definition.) We can think
of the inductive case of an inductive
proof as “making a recursive call” to
a proof for a smaller input.

For example, primeFactor(2) returns 〈2〉 and primeFactor(5) returns 〈5〉, because both 2 and 5
are prime. For another example, the result of primeFactor(10) is 〈2, 5〉, because 10 is not prime, but
we can write 10 = 2 · 5 and primeFactor(2) returns 〈2〉 and primeFactor(5) returns 〈5〉. The re-
sult of primeFactor(70) could be 〈7, 2, 5〉, because 70 is not prime, but we can write 70 = 7 · 10 and
primeFactor(7) returns 〈7〉 and primeFactor(10) returns 〈2, 5〉. Or primeFactor(70) could be 〈7, 5, 2〉
because 70 = 35 · 2, and primeFactor(35) returns 〈7, 5〉 and primeFactor(2) returns 〈2〉. (Which ordering
of the values is the output depends on the magic of Line 7. The second part of Theorem 5.5, about the
uniqueness of the prime factorization, says that it is only the ordering of these numbers that depends on
the magic; the numbers themselves must the same.)

Triangulating a polygon

Figure 5.18: A
polygon. The dots
are called vertices;
the lines connecting
them are the sides;
and the shaded
region (excluding
the boundary) is the
interior.

We’ll now turn to a proof by strong induction about a geometric question,
instead of a numerical one. A convex polygon is, informally, the points “inside” a
set of n vertices: imagine stretching a giant rubber band around n points in the
plane; the polygon is defined as the set of all points contained inside the rubber
band. See Figure 5.18 for an example. Here we will show that an arbitrary convex
polygon can be decomposed into a collection of nonoverlapping triangles.

Example 5.13 (Decomposing a polygon into triangles)
Problem: Prove the following claim:

Claim: Any convex polygon P with k ≥ 3 vertices can be decomposed into a set of
k − 2 triangles whose interiors do not overlap.

(For an example, and an outline of a possible proof, see Figure 5.19.)
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(a) The original polygon P.
u

v

A
B

(b) Two vertices u, v of P, and P
divided into A and B (above
and below the 〈u, v〉 line).

(c) The subpolygons A and B
divided into triangles, using
the inductive hypothesis.

Figure 5.19: An
example of the
recursive decompo-
sition of a polygon
into interior-disjoint
triangles.

Solution: Let Q(k) denote the claim that any k-vertex polygon can be decomposed
into a set of k − 2 interior-disjoint triangles. We’ll give a proof by strong induction
on k that Q(k) holds for all k ≥ 3. (Note that strong induction isn’t strictly neces-
sary to prove this claim; we could give an alternative proof using weak induction.)

base case (k = 3): There’s nothing to do: any 3-vertex polygon P is itself a trian-
gle, so the collection {P} is a set of k − 2 = 1 triangles whose interiors do not
intersect (vacuously, because there is only one triangle). Thus Q(3) holds.

inductive case (k ≥ 4): We assume the inductive hypothesis: any convex polygon
with 3 ≤ ℓ < k vertices can be decomposed into a set of ℓ− 2 interior-disjoint
triangles. (That is, we assume Q(3), Q(4), . . . , Q(k − 1).) We must prove Q(k).

Let P be an arbitrary k-vertex polygon. Let u and v be any two nonadjacent
vertices of P. (Because k ≥ 4, such a pair exists.) Define A as the “above the
〈u, v〉 line” piece of P and B as the “below the 〈u, v〉 line” piece of P. Notice that
P = A ∪ B, both A and B are convex, and the interiors of A and B are disjoint.
Let ℓ be the number of vertices in A. Observe that ℓ ≥ 3 and ℓ < k because u
and v are nonadjacent. Also observe that B contains precisely k − ℓ + 2 vertices.
(The “+ 2” is because vertices u and v appear in both A and B.) Note that both
3 ≤ ℓ ≤ k − 1 and 3 ≤ k − ℓ + 2 ≤ k − 1, so we can apply the inductive
hypothesis to both ℓ and k − ℓ + 2.

Therefore, by the inductive hypothesis Q(ℓ), the polygon A is decomposable
into a set S of ℓ− 2 interior-disjoint triangles. Again by the inductive hypothesis
Q(k − ℓ + 2), the polygon B is decomposable into a set T of k − ℓ + 2 − 2 = k − ℓ

interior-disjoint triangles. Furthermore because A and B are interior disjoint, the
triangles of S ∪ T all have disjoint interiors. Thus P itself can be decomposed
into the union of these two sets of triangles, yielding a total of ℓ− 2 + k − ℓ =
k − 2 interior-disjoint triangles.

We’ve shown both Q(3) and Q(3) ∧ · · · ∧ Q(k − 1) ⇒ Q(k) for any k ≥ 4, which
completes the proof by strong induction.

Taking it further: The style of triangulation from Example 5.13 has particularly important implications in
computer graphics, in which we seek to render representations of complicated real-world scenes using
computational techniques. In many computer graphics applications, complex surfaces are decomposed
into small triangular regions, which are then rendered individually. See p. 528 for more discussion.
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quickSort(A[1 . . . n]):
1: if n ≤ 1 then
2: return A
3: else
4: choose pivot ∈ {1, . . . , n}, somehow.
5: L := 〈〉
6: R := 〈〉
7: for i ∈ {1, . . . , n} with i 6= pivot:
8: if A[i] < A[pivot] then
9: append A[i] to L

10: else
11: append A[i] to R
12: L := quickSort(L)
13: R := quickSort(R)
14: return L + 〈A[pivot]〉 + R

(a) The pseudocode.

7 2 4 3 1 6 5 8 9 choose 3 as the pivot value

2 1︸︷︷︸
L

3 7 4 6 5 8 9︸ ︷︷ ︸
R

partition into L and R

1 2︸︷︷︸
L, sorted

3 4 5 6 7 8 9︸ ︷︷ ︸
R, sorted

recursively sort L and R

(b) An example of quick sort. Starting from an array
724316589, we (through whatever mechanism) choose 3
as the pivot value, divide the array into the elements < 3
and those > 3, and recursively sort those two pieces.

Figure 5.20: Quick
Sort: pseudocode,
and an example.

Proving algorithms correct: Quick Sort
We’ve now seen a proof of correctness by strong induction for a simple recursive al-

gorithm (for parity), and proofs of somewhat more complicated non-algorithmic prop-
erties. Here we’ll prove the correctness of a somewhat more complicated algorithm—
the recursive sorting algorithm called Quick Sort—again using strong induction.

The idea of the Quick Sort algorithm is to select a pivot value x from an input array
A; we then partition the elements of A into those less than x (which we then sort re-
cursively), then x itself, and finally the elements of A greater than x (which we again
sort recursively). We also need a base case: an input array with fewer than 2 elements
is already sorted. (See Figure 5.20(a) for the algorithm.) For example, suppose we wish
to sort all 43 U.S. Presidents by birthday. (Grover Cleveland will appear only once.) Even without two

Grover Cleveland
entries in the array,
the simplifying
assumption that
we’re making
about distinct
elements actually
doesn’t apply for
the U.S. Presidents:
James Polk and
Warren Harding
were both born on
November 2nd.
(Think about how
you’d modify the
proof that follows to
handle duplicates.)

Barack Obama’s birthday is August 4th. If we choose him as the pivot, then Quick Sort
would first divide all the other presidents into two lists, of those with pre–August 4th
and post–August 4th birthdays,

before[1 . . . 23] := 〈George Washington [February 22nd], . . . , George W. Bush [July 6th]〉
after[1 . . . 19] := 〈John Adams [October 30th], . . . , Bill Clinton [August 19th]〉,

and then recursively sort before and after. Then the final sorted list will be

before in sorted order Barack Obama after in sorted order
prez[1], . . . , prez[23], prez[24], prez[25], . . . , prez[43]

(See Figure 5.20(b) for another example of Quick Sort.)
While the efficiency of Quick Sort depends crucially on how we choose the pivot

value (see Chapter 6), the correctness of the algorithm holds regardless of that choice.
For simplicity, we will prove that Quick Sort correctly sorts its input under the as-
sumption that all the elements of the input array A are distinct. (The more general
case, in which there may be duplicate elements, is conceptually no harder, but is a bit
more tedious.) It is easy to see by inspection of the algorithm that quickSort(A) re-
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turns a reordering of the input array A—that is, Quick Sort neither deletes or inserts
elements. Thus the real work is to prove that Quick Sort returns a sorted array:

pi
vo

t

L R

1. x
2. y
3. x, y
4. x, y
5. x y
6. y x

Figure 5.21: The
cases of the proof in
Example 5.14.

Example 5.14 (Correctness of Quick Sort)
Claim: For any array A with distinct elements, quickSort(A) returns a sorted array.

Proof. Let P(n) denote the claim that quickSort(A[1 . . .n]) returns a sorted array for
any n-element array A with distinct elements. We’ll prove P(n) for every n ≥ 0, by
strong induction on n.

base cases (n = 0 and n = 1): Both P(0) and P(1) are trivial: any array of length 0 or 1
is sorted.

inductive case (n ≥ 2): We assume the inductive hypothesis P(0), . . . , P(n − 1): for
any array B[1 . . . k] with distinct elements and length k < n, quickSort(B) returns
a sorted array. We must prove P(n). Let A[1 . . .n] be an arbitrary array with dis-
tinct elements. Let pivot ∈ {1, . . . , n} be arbitrary. We must prove that x appears
before y in quickSort(A) if and only if x < y. We proceed by cases, based on the
relationship between x, y, and A[pivot]. (See Figure 5.21.)

Case 1: x = A[pivot]. The elements appearing after x in quickSort(A) are precisely
the elements of R. And R is exactly the set of elements greater than x. Thus x
appears before y if and only if y appears in R, which occurs if and only if x < y.

Case 2: y = A[pivot]. Analogously to Case 1, x appears before y if and only if x
appears in L, which occurs if and only if x < y.

Case 3: x < A[pivot] and y < A[pivot]. Then both x and y appear in L. Because
A[pivot] does not appear in L, we know that L contains at most n − 1 ele-
ments, all of which are distinct because they’re a subset of the distinct ele-
ments of A. Thus the inductive hypothesis P(|L|) says that x appears before y
in quickSort(L) if and only if x < y. And x appears before y in quickSort(A) if
and only if x appears before y in quickSort(L).

Case 4: x > A[pivot] and y > A[pivot]. Then both x and y appear in R. An analo-
gous argument to Case 3 shows that x appears before y if and only if x < y.

Case 5: x < A[pivot] and y > A[pivot]. It is immediate both that x appears before y
(because x is in L and y is in R) and that x < y.

Case 6: x > A[pivot] and y < A[pivot]. It is immediately apparent that x does not
appear before y and that x 6< y.

In all six cases, we have established that x < y if and only if x appears before y in the
output array; furthermore, the cases are exhaustive. The claim follows.

Taking it further: In addition to proofs of correctness for algorithms, like the one for quickSort that
we just gave, strong induction is crucial in analyzing the efficiency of recursive algorithms; we’ll see
many examples in Section 6.4. And strong induction can also be fruitfully applied to understanding (and
designing!) data structures—for example, see p. 529 for a discussion of maximum heaps.
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Computer Science Connections

Triangulation, Computer Graphics, and 3D Surfaces

Figure 5.22: Three strategies for refining
a triangulation of a rabbit. Reprinted,
with permission, from:

Here is a typical problem in computer graphics: we are given
a three-dimensional scene consisting of a collection of objects of
various shapes and sizes, and we must render a two-dimensional
image that is a visual display of the scene. (Computer graphics
uses a lot of matrix computation to facilitate the projection of a
3-dimensional shape onto a 2-dimensional surface.)

A typical approach—to simplify and speed the algorithms for
displaying these scenes—approximates the three-dimensional
shapes of the objects in the scene using triangles instead of ar-
bitrary shapes. Triangles are the easiest shape to process com-
putationally: the “real” triangle in the scene can be specified
completely by three 3-dimensional points corresponding to the
vertices; and the rendered shape in the image is still a triangle
specified completely by 2-dimensional points corresponding to the
vertices’ projections onto the image. Specialized hardware called a
graphics processing unit (GPU) makes these computations extremely
fast on many modern computers.

When rendering a scene, we might compute a single color c that
best represents the color of a given triangle in the real scene, and
then display a solid c-colored (projected) triangle in the image.
We can approximate any three-dimensional shape arbitrarily well
using a collection of triangles, and we can refine a triangulation by
dividing splitting one triangle into two pieces, and then properly
rendering each constituent triangle:

Note that there are many different ways to subdivide a given
triangle into two separate triangles. Which subdivision we pick
might depend on the geometry of the scene; for example, we
might try to make the subtriangles roughly similar in size, or
maximally different in color.

The larger the number of triangles we use, the better the match
between the real 3-dimensional shape and the triangulated ap-
proximation. But, of course, the more triangles we use, the more
computation must be done (and the slower the rendering will
be). By identifying particularly important triangles—for exam-
ple, those whose colors vary particularly widely, or those at a
particularly steep angle to their neighbors, or those whose angles
to the viewer are particularly extreme—we can selectively refine
“the most important parts” of the triangulation to produce higher
quality images.2 (See Figure 5.22.)

2 Tobias Isenberg, Knut Hartmann, and
Henry König. Interest value driven
adaptive subdivision. In Simulation and
Visualisation (SimVis), pages 139–149.
SCS European Publishing House, 2003.
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Computer Science Connections

Max Heaps

When we design data structures to support particular operations, it is often
the case that we wish to maintain some properties in the way that the data
are stored. Here’s one example, for an implementation of priority queues, that
we’ll establish using a proof by mathematical induction. A priority queue is a
data structure that stores a set of jobs, each of which has a priority; we wish to
be able to insert new jobs (with specified priorities) and identify/extract the
existing job with the highest priority.

A maximum heap is one way of implementing priority queues. A maxi-

x

≤ x ≤ x

Figure 5.23: The maximum heap prop-
erty. For a node with value x, the
children must have values ≤ x.

mum heap is a binary tree—see Section 5.4 or Chapter 11—in which every
node stores a job with an associated priority. Every node in the tree satisfies
the (maximum) heap property (see Figure 5.23): the priority of node u must be
greater than or equal to the priorities of each of u’s children. (A heap must
also satisfy another property, being “nearly complete”—intuitively, a heap
has no “missing nodes” except in the bottommost layer; this “nearly com-
plete” property is what guarantees that heaps implement priority queues very
efficiently.) An example of a heap is shown in Figure 5.24.

It’s easy to check that the topmost node (the root) of the maximum heap in
8

5

4

2

1

7

6 3

Figure 5.24: A maximum heap.

Figure 5.24 has the highest priority. Heaps are designed so that the root of the
tree contains the node with the highest priority—but this claim requires proof.
Here is a proof by induction:

Claim: In any binary tree in which every node satisfies the maximum heap
property, the node with the highest priority is the root.

Proof. We’ll proceed by strong induction on the number of layers of nodes in
the tree. (This proof is an example of a situation in which it’s not immediately
clear upon what quantity to perform induction, but once we’ve chosen the
quantity well, the proof itself is fairly easy.) Let P(ℓ) denote the claim

In any tree containing ℓ layers of nodes, in which every node satisfies
the maximum heap property, the node with the highest priority is the
root of the tree.

We will prove that P(ℓ) holds for all ℓ ≥ 1 by strong induction on ℓ.

base case (ℓ = 1): The tree has only one level—that is, the root is the only
node in the tree. Thus, vacuously, the root has the highest priority, because
there are no other nodes.

inductive case (ℓ ≥ 2): We assume the inductive hypothesis P(1), . . . , P(ℓ− 1).
Let x be the priority of the root of the tree. If the root has only one child,
say with priority a, then by the inductive hypothesis every element y be-
neath a satisfies y ≤ a. (There are at most ℓ− 1 layers in the tree beneath a,
so the inductive hypothesis applies.) By the heap property, we know a ≤ x,
and thus every element y satisfies y ≤ x. If the root has a second child, say
with priority b, then by the inductive hypothesis every element z beneath b
satisfies z ≤ b. (There are at most ℓ− 1 layers in the tree beneath b, so the
inductive hypothesis applies again.) Again, by the heap property, we have
b ≤ x, so every element z satisfies z ≤ x.

x

a

x

a b
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5.3.3 Exercises

parity(n): // assume that n ≥ 0 is an integer.
1: if n ≤ 1 then
2: return n
3: else
4: return parity(n − 2)

toBinary(n): // assume that n ≥ 0 is an integer.
1: if n ≤ 1 then
2: return 〈n〉
3: else
4: 〈bk, . . . , b0〉 := toBinary(⌊n/2⌋)
5: x := parity(n)
6: return 〈bk, . . . , b0, x〉

Figure 5.25: A
reminder of the
parity algorithm
(from Figure 5.16),
and an algorithm to
convert an integer
to binary.

5.41 In Example 5.11, we showed the correctness of the parity function
(see Figure 5.25)—that is, for any n ≥ 0, we have that parity(n) = n mod 2.
Prove by strong induction on n that the depth of the recursion (that is, the
total number of calls to parity made) for parity(n) is 1 + ⌊n/2⌋.

5.42 Consider the algorithm in Figure 5.25, which finds the binary
representation of a given integer n ≥ 0. For example, toBinary(13) =
〈1, 1, 0, 1〉, and 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 8 + 4 + 0 + 1 = 13.

Prove the correctness of toBinary by strong induction—that is, prove that
for any n ≥ 0, we have ∑k

i=0 bi2i = n where toBinary(n) = 〈bk, . . . , b0〉.

Your proof of the correctness of toBinary(n) establishes that any nonnegative inte-
ger can be represented in binary. Now you’ll show that this binary representation is
unique—or, at least, unique up to leading zeros. (For example, we can represent 7
in binary as 111 or 0111 or 00111, but only 111 has no leading zeros.)
5.43 Prove that every nonnegative integer n that can be represented as a k-bit string is uniquely repre-
sented as a k-bit bitstring. In other words, prove the following claim, for any integer k ≥ 1:

Let a := 〈ak, ak−1, . . . , a0〉 and b := 〈bk, bk−1, . . . , b0〉 be two k-bit sequences.
If ∑k

i=0 ai2i = ∑k
i=0 bi2i , then for all i ∈ {k, k − 1, . . . , 0} we have ai = bi .

Your proof should be by (weak) induction on k.

In Chapter 7, we’ll talk in a great deal more detail about modular arithmetic, and we’ll discuss a more general algorithm
for converting from one base to another on p. 714. In Chapter 7, we’ll do most of the computation iteratively; here you’ll
fill in a few pieces recursively.
5.44 Generalize the parity(n) algorithm to remainder(n, k) to recursively compute the number
r ∈ {0, 1, . . . , k − 1} such that remainder(n, k) = n mod k. Assume that k ≥ 1 and n ≥ 0 are both inte-
gers, and follow the same algorithmic outline as in Figure 5.25. Prove your algorithm correct using strong
induction on n.
5.45 Generalize the toBinary(n) algorithm to baseConvert(n, k) to recursively convert the integer n
to base k. Assume that k ≥ 2 and n ≥ 0 are both integers, and follow the same algorithmic outline as
in Figure 5.25. Prove using strong induction on n that if baseConvert(n, k) = 〈bℓ, bℓ−1, . . . , b0〉 with each
bi ∈ {0, 1, . . . , k − 1}, then n = ∑ℓ

i=0 kibi .

5.46 Prove by strong induction on n that, for every integer n ≥ 4, it is possible to make n dollars using
only two- and five-dollar bills. (That is, prove that any integer n ≥ 4 can be written as n = 2a + 5b for some
integer a ≥ 0 and some integer b ≥ 0.)
5.47 Consider a sport in which teams can score two types of goals, worth either 3 points or 7 points.
For example, Team Vikings might (theoretically speaking) score 32 points by accumulating, in succession,
3, 7, 3, 7, 3, 3, 3, and 3 points. Find the smallest possible n0 such that, for any n ≥ n0, a team can score exactly
n points in a game. Prove your answer correct by strong induction.

starting
configuration:

your turn:

crony’s turn:

your turn:

You win!

Figure 5.26: You
start with n = 5
cards on the table,
and you make the
first move. You win
because you took
the last card.

5.48 You are sitting around the table with a crony you’re in cahoots with. You and the crony decide
to play the following silly game. (The two of you run a store called the Cis-Patriarchal Pet Shop that sells
nothing but vicious robotic dogs. The loser of the game has to clean up the yard where the dogs roam—not
a pleasant chore—so the stakes are high.) We start with n ∈ Z≥1 stolen credit cards on a table. The two
players take turns removing cards from the table. In a single turn, a player can choose to remove either one
or two cards. A player wins by taking the last credit card. (See Figure 5.26.)

Prove (by strong induction on n) that if n is divisible by three, then the second player to move can guar-
antee a win, and if n is not divisible by three, then the first player to move can guarantee a win.

Consider the following modifications of the game from Exercise 5.48. The two players start with n cards on the table,
as before. Determine who wins the modified game: conjecture a condition on n that describes precisely when the first
player can guarantee a win under the stated modification, and prove your answer.
5.49 Let k ≥ 2 be any integer. As in the original game, the player who takes the last card wins—but
each player is now allowed to take any number of cards between 1 and k in any single move.
5.50 As in the original game, players can take only 1 or 2 cards per turn—but the player who is forced
to take the last card loses (instead of winning by managing to take the last card).
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Define the Fibonacci numbers by the sequence f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. Thus the first
several Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .. (We’ll see a lot more about the Fibonacci numbers in
Section 6.4.) Prove each of the following statements by induction (weak or strong, as appropriate) on n: The Fibonacci num-

bers are named
after Leonardo of
Pisa (also some-
times known as
Leonardo Bonacci
or just as Fibonacci),
a 13th-century Ital-
ian mathematician.

5.51 fn mod 2 = 0 if and only if n mod 3 = 0. (That is, every third Fibonacci number is even.)
5.52 fn mod 3 = 0 if and only if n mod 4 = 0.

5.53
n

∑
i=1

fi = fn+2 − 1 5.54
n

∑
i=1

(fi)2 = fn · fn+1

5.55 Prove Cassini’s identity: fn−1 · fn+1 − (fn)2 = (−1)n for any n ≥ 2.
5.56 For a k-by-k matrix M, the matrix Mn is also k-by-k, and its value is the result of the n-fold multi-
plication of M by itself: MM · · ·M. Or we can define matrix exponentiation recursively: M0 := I (the k-by-k
identity matrix), and Mn+1 := M · Mn. With this definition in mind, prove the following identity:

[
1 1
1 0

]n−1
·
[
1
0

]
=
[

fn
fn−1

]
for any n ≥ 2.

You may use the associativity of matrix multiplication in your answer: for any matrices A, B, and C of the
appropriate dimensions, we have A(BC) = (AB)C.

The Lucas numbers
and Jacobsthal
numbers are named
after Édouard Lu-
cas, a 19th-century
French mathemati-
cian, and Ernst
Jacobsthal, a 20th-
century German
mathematician,
respectively.

Define the Lucas numbers as L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3. (The Fibonacci numbers are a much
more famous cousin of the Lucas numbers; the Lucas numbers follow the same recursive definition as the Fibonacci
numbers, but start from a different pair of base cases.) Prove the following facts about the Lucas numbers, by induction
(weak or strong, as appropriate) on n:
5.57 Ln = fn + 2fn−1 5.58 fn = Ln−1 + Ln+1

55.59 (Ln)2 = 5(fn)2 + 4(−1)n
(Hint: for Exercise 5.59, you may need to conjecture a second property relating Lucas and Fibonacci numbers to
complete the proof of the given property P(n)—specifically, try to formulate a property Q(n) relating LnLn−1 and
fnfn−1, and prove P(n) ∧Q(n) with a single proof by strong induction.)

Define the Jacobsthal numbers as J1 = 1, J2 = 1, and Jn = Jn−1 + 2Jn−2 for n ≥ 3. (Thus the Jacobsthal numbers are a
more distant relative of the Fibonacci numbers: they have the same base case, but a different recursive definition.) Prove
the following facts about the Jacobsthal numbers by induction (weak or strong, as appropriate) on n:
5.60 Jn = 2Jn−1 + (−1)n−1, for all n ≥ 2. 5.61 Jn = 2n − (−1)n

35.62 Jn = 2n−1 − Jn−1, for all n ≥ 2.

(a) The empty 2-by-n grid, plus the
1-by-2 domino (in both orientations)
and the 2-by-2 square.

(b) The five ways to tile the n = 4 grid using dominoes.

(c) The six additional tilings for the n = 4 grid when we
also allow the use of the square tiles.

Figure 5.27: A tiling
problem, using
1-by-2 dominoes and
2-by-2 squares.

The next two problems are previews of Chapter 9, where we’ll talk about how to count the size of sets (often, sets that
are described in somewhat complicated ways). You should be able to attack these problems without the detailed results
from Chapter 9, but feel free to glance ahead to Section 9.2 if you’d like.
5.63 You are given a 2-by-n grid that you must tile, using either 1-by-2 dominoes or 2-by-2 squares. The
dominoes can be arranged either vertically or horizontally. (See Figure 5.27.) Prove by strong induction
on n that the number of different ways of tiling the 2-by-n grid is precisely Jn+1. (Be careful: it’s easy to
accidentally count some configurations twice—for example, make sure that you count only once the tiling of
a 2-by-3 grid that uses three horizontal dominoes.)
5.64 Suppose that you run out of squares, so you can now only use dominoes for tiling. (See Fig-
ure 5.27(b).) How does your answer to the last exercise change? How many different tilings of a 2-by-n grid
are there now? Prove your answer.
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Figure 5.28: The Fi-
bonacci word fractal
s14, visualized as in
Exercise 5.68.

The Fibonacci word fractal defines a sequence of bitstrings using a similar recursive description to the Fibonacci
numbers. Here’s the definition:

s1 := 1 s2 := 0 for n ≥ 3, sn := sn−1 ◦ sn−2︸ ︷︷ ︸
the concatenation of sn−1 and sn−2

.

For example, we have s3 = s2 ◦ s1 = 01 and s4 = s3 ◦ s2 = 010 and s5 = s4 ◦ s3 = 01001 and s6 = s5 ◦ s4 = 01001010.
It turns out that if we delete the last two bits from sn, the resulting string is a palindrome (reading the same back-to-
front and front-to-back). Here you’ll prove a few slightly simpler properties, using strong induction on n:
5.65 The number of bits in sn is precisely fn (the nth Fibonacci number).
5.66 The string sn does not contain two consecutive 1s or three consecutive 0s.
5.67 Let #0(x) and #1(x) denote the number of 0s and 1s in a bitstring x, respectively. Show that, for all
n ≥ 3, the quantity #0(sn) − #1(sn) is a Fibonacci number.
5.68 (programming required) The reason that sn is called the “Fibonacci word fractal” is that it’s possi-
ble to visualize these “words” (strings) as a geometric fractal by interpreting 0s and 1s as “turn” and “go
straight,” respectively. Specifically, here’s the algorithm: start pointing east. For the ith symbol in sn, for
i = 1, 2, . . . , |sn|: if the symbol is 1 then do not turn; if the symbol is a 0 and i is even, turn 90◦ to the right;
and if the symbol is a 0 and i is odd, turn 90◦ to the left. In any case, proceed in your current direction by
one unit. (See Figure 5.28.) Write a program to draw a bitstring using these rules; then implement the recur-
sive definition of the Fibonacci word fractal and “draw” the strings s1, s2, . . . , s16. (For efficiency’s sake, you
may want to compute sn with a loop instead of recursively; see Figure 6.41 in Chapter 6 for some ideas.)

5.69 The sum of the interior angles of any triangle is 180◦ . Now, using this fact and induction, prove
that any polygon with k ≥ 3 vertices has interior angles that sum to 180k − 360 degrees. (See Figure 5.29.)

Figure 5.29: The
interior angles and
a diagonal for a
polygon.

5.70 A diagonal of a polygon is a line that connects two non-adjacent vertices. (See Figure 5.29.) How
many diagonals are there in a triangle? A quadrilateral? A pentagon? Formulate a conjecture for the num-
ber d(k) of diagonals in a k-gon, and prove your formula correct by induction. (Hint: consider lopping off a
triangle from the polygon.)

binarySearch(A[1 . . . n], x):
1: if n ≤ 0 then
2: return False
3: middle := ⌊ 1+n

2 ⌋
4: if A[middle] = x then
5: return True
6: else if A[middle] > x then
7: return binarySearch(A[1 . . . middle − 1], x)
8: else
9: return binarySearch(A[middle + 1 . . . n], x)

merge(X[1 . . . n], Y[1 . . . m]):
1: if n = 0 then
2: return Y
3: else if m = 0 then
4: return X
5: else if X[1] < Y[1] then
6: return X[1] followed by merge(X[2 . . . n], Y)
7: else
8: return Y[1] followed by merge(X, Y[2 . . . m])

mergeSort(A[1 . . . n]):
1: if n = 1 then
2: return A
3: else
4: L := mergeSort(A[1 . . .

⌊ n
2
⌋
])

5: R := mergeSort(A[
⌊ n

2
⌋

+ 1 . . . n])
6: return merge(L, R)

Figure 5.30: Binary
Search, Merge,
and Merge Sort,
recursively.

5.71 Prove that the recursive binary search algorithm shown in Fig-
ure 5.30 is correct. That is, prove that the following condition is true, by
strong induction on n: For any sorted array A[1 . . . n], binarySearch(A, x)
returns true if and only if x ∈ A.

5.72 Prove by weak induction on the quantity (n + m) that the merge
algorithm in Figure 5.30 satisfies the following property for any n ≥ 0 and
m ≥ 0: given any two sorted arrays X[1 . . . n] and Y[1 . . . m] as input, the
output of merge(X, Y) is a sorted array containing all elements of X and all
elements of Y.
5.73 Prove by strong induction on n that mergeSort(A[1 . . . n]), shown
in Figure 5.30, indeed sorts its input.

5.74 Give a recursive algorithm to compute a list of all permuta-
tions of a given set S. (That is, compute a list of all possible orderings of
the elements of S. For example, permutations({1, 2, 3}) should return
{〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉}, in some order.) Prove
your algorithm correct by induction.

Prove that weak induction, as defined in Section 5.2, and strong induction are
equivalent. (Hint: in one of these two exercises, you will have to use a differ-
ent predicate than P.)
5.75 Suppose that you’ve written a proof of ∀n ∈ Z≥0 : P(n) by
weak induction. I’m in an evil mood, and I declare that you aren’t allowed
to prove anything by weak induction. Explain how to adapt your weak-
induction proof to prove ∀n ∈ Z≥0 : P(n) using strong induction.
5.76 Now suppose that, obeying my new Draconian rules, you have
written a proof of ∀n ∈ Z≥0 : P(n) by strong induction. In a doubly evil
mood, I tell you that now you can only use weak induction to prove things.
Explain how to adapt your strong-induction proof to prove ∀n ∈ Z≥0 : P(n)
using weak induction.



5.4. RECURSIVELY DEFINED STRUCTURES AND STRUCTURAL INDUCTION 533

5.4 Recursively Defined Structures and Structural Induction

When a thing is done, it’s done. Don’t look back. Look
forward to your next objective.

George C. Marshall (1880–1959)

In the proofs that we have written so far in this chapter, we have performed induc-
tion on an integer: the number that’s the input to an algorithm, the number of ver-
tices of a polygon, the number of elements in an array. In this section, we will address
proofs about recursively defined structures, instead of about integers, using a version
of induction called structural induction that proceeds over the defined structure itself,
rather than just using numbers.

5.4.1 Recursively Defined Structures

A recursively defined structure, just like a recursive algorithm, is a structure defined
in terms of one or more base cases and one or more inductive cases. Any data type that
can be understood as either a trivial instance of the type or as being built up from
a smaller instance (or smaller instances) of that type can be expressed in this way.
For example, basic data structures like a linked list and a binary tree can be defined
recursively. So too can well-formed sentences of a formal language—languages like
Python, or propositional logic—among many other examples. In this section, we’ll
give recursive definitions for some of these examples.

Linked lists

1 7 7 6

Figure 5.31: An
example linked list.

A linked list is a commonly used data structure in which we
store a sequence of elements (just like the sequences from Sec-
tion 2.4). The reasons that linked lists are useful are best left to
a data structures course, but here is a brief synopsis of what a linked list actually is.
Each element in the list, called a node, stores a data value and a “pointer” to the rest of
the list. A special value, often called null, represents the empty list; the last node in
the list stores this value as its pointer to represent that there are no further elements in
the list. See Figure 5.31 for an example. (The slashed line in Figure 5.31 represents the
null value.) Here is a recursive definition of a linked list:

Example 5.15 (Linked list)
A linked list is either:

1. 〈〉, known as the empty list; or
2. 〈x, L〉, where x is an arbitrary element and L is a linked list.

For example, Figure 5.31 shows the linked list that consists of 1 followed by the
linked list containing 7, 7, and 6 (which is a linked list consisting of 7 followed by
a linked list containing 7 and 6, which is a linked list consisting of 7 followed by
the linked list containing 6, which is . . . ). That is, Figure 5.31 shows the linked list
〈1, 〈7, 〈7, 〈6, 〈〉〉〉〉〉.



534 CHAPTER 5. MATHEMATICAL INDUCTION

Binary trees

1

3

5

2

4

8

Figure 5.32: An
example binary
tree.

We can also recursively define a binary tree (see
Section 11.4.2). Again, deferring the discussion
of why binary trees are useful to a course on data
structures, here is a quick summary of what they
are. Like a linked list, a binary tree is a collection
of nodes that store data values and “pointers” to
other nodes. Unlike a linked list, a node in a binary
tree stores two pointers to other nodes (or null,
representing an empty binary tree). These two
pointers are to the left child and right child of the
node. The root node is the one at the very top of the
tree. See Figure 5.32 for an example; here the root
node stores the value 1, and has a left child (the binary tree with root 3) and a right
child (the binary tree with root 2). Here is a recursive definition:

Example 5.16 (Binary trees)
A binary tree is either:

1. the empty tree, denoted by null; or
2. a root node x, a left subtree Tℓ, and a right subtree Tr, where x is an arbitrary value

and Tℓ and Tr are both binary trees.

Taking it further: In many programming languages, we can explicitly define data types that echo these
recursive definitions, where the base case is a trivial instance of the data structure (often nil or None or
null). In C, for example, we can define a binary tree with integer-valued nodes as:

struct binaryTree {

int root;

struct binaryTree *leftSubtree;

struct binaryTree *rightSubtree;

}

The base case—an empty binary tree—is NULL; the inductive case—a binary tree with a root node—has
a value stored as its root, and then two binary trees (possibly empty) as its left and right subtrees. (In
C, the symbol * means that we’re storing a reference, or pointer, to the subtrees, rather than the subtrees
themselves, in the data structure.)

Define the leaves of a binary tree T to be those nodes contained in T whose left sub-
tree and right subtree are both null. Define the internal nodes of T to be all nodes that
are not leaves. In Figure 5.32, for example, the leaves are the nodes 5 and 8, and the
internal nodes are {1, 2, 3, 4}.

Taking it further: Binary trees with certain additional properties turn out to be very useful ways of
organizing data for efficient access. For example, a binary search tree is a binary tree in which each node
stores a “key,” and the tree is organized so that, for any node u, the key at node u is larger than all the
keys in u’s left subtree and smaller than all the keys in u’s right subtree. (For example, we might store the
email address of a student as a key; the tree is then organized alphabetically.) Another special type of a
binary search tree is a heap, in which each node’s key is larger than all the keys in its subtrees. These two
data structures are very useful in making certain common operations very efficient; see p. 529 (for heaps)
and p. 1160 (for binary search trees) for more discussion.
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Sentences in a language
In addition to data structures, we can also define sentences in a language using a re-

cursive definition—for example, arithmetic expressions of the type that are understood
by a simple calculator; or propositions (as in Chapter 3’s propositional logic):

Example 5.17 (Arithmetic expressions)
An arithmetic expression is any of the following:

1. any integer n;
2. −E, where E is an arithmetic expression; or
3. E ⊙ F, where E and F are arithmetic expressions and ⊙ ∈ {+,−, ·, /} is an operator.

Example 5.18 (Sentences of propositional logic)
A sentence of propositional logic (also known as a well-formed formula, or wff ) over the
propositional variables X is one of the following:

1. x, for some x ∈ X;
2. ¬P, where P is a wff over X; or
3. P ∨ Q, P ∧ Q, or P ⇒ Q, where P and Q are wffs over X.

We implicitly used the recursive definition of logical propositions from Example 5.18
throughout Chapter 3, but using this recursive definition explicitly allows us to ex-
press a number of concepts more concisely. For example, consider a truth assignment
f : X → {True, False} that assigns True or False to each variable in X. Then the truth
value of a proposition over X under the truth assignment f can be defined recursively
for each case of the definition:

• the truth value of x ∈ X under f is f (x);
• the truth value of ¬P under f is True if the truth value of P under f is False, and the

truth value of ¬P under f is False if the truth value of P under f is True;
• and so forth.

Taking it further: Linguists interested in syntax spend a lot of energy constructing recursive definitions
(like those in Examples 5.17 and 5.18) of grammatical sentences of English. But one can also give a
recursive definition for non-natural languages: in fact, another structure that can be defined recursively
is the grammar of a programming language itself. As such, this type of recursive approach to defining (and
processing) a grammar plays a key role not just in linguistics but also in computer science. See the
discussion on p. 543 for more.

5.4.2 Structural Induction

The recursively defined structures from Section 5.4.1 are particularly amenable to
inductive proofs. For example, recall from Example 5.16 that a binary tree is one of
the following: (1) the empty tree, denoted by null; or (2) a root node x, a left subtree
Tℓ, and a right subtree Tr, where Tℓ and Tr are both binary trees. To prove that some
property P is true of all binary trees T, we can use (strong) induction on the number n
of applications of rule #2 from the definition. Here is an example of such a proof:
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An (abbreviated)
reminder of the
recursive definition
of a binary tree:

Rule #1: null is a
binary tree;

Rule #2: if Tℓ and
Tr are binary trees,
then 〈x, Tℓ, Tr〉 is a
binary tree.

x

(a) The only
binary tree
produced by 1
application of
rule #2 has one
node, which is a
leaf.

x

Tℓ Tr

(b) If T was
produced by
≥ 2 applications
of rule #2, then
at least one of
Tℓ and Tr is not
null, and the
leaves of T are
precisely the
leaves of Tℓ plus
the leaves of Tr.

Figure 5.33: Il-
lustrations of the
inductive case for
Example 5.19.

Example 5.19 (Internal nodes vs. leaves in binary trees)
Recall that a leaf in a binary tree is a node whose left and right subtrees are both
empty; an internal node is any non-leaf node. Write leaves(T) and internals(T) to denote
the number of leaves and internal nodes in a binary tree T, respectively.

Claim: In any binary tree T, we have leaves(T) ≤ internals(T) + 1.

Proof. We proceed by strong induction on the number of applications of rule #2 used
to generate T. Specifically, let P(n) denote the property that leaves(T) ≤ internals(T) + 1
holds for any binary tree T generated by n applications of rule #2; we’ll prove that P(n)
holds for all n ≥ 0, which establishes the claim.

base case (n = 0): The only binary tree generated with 0 applications of rule #2 is the
empty tree null. Indeed, leaves(null) = internals(null) = 0, and 0 ≤ 0 + 1.

inductive case (n ≥ 1): Assume the inductive hypothesis P(0)∧ P(1)∧ · · · ∧ P(n − 1):
for any binary tree B generated using k < n applications of rule #2, we have
leaves(B) ≤ internals(B) + 1. We must prove P(n).

We’ll handle the case n = 1 separately. (See Figure 5.33(a).) The only way to make
a binary tree T using one application of rule #2 is to use rule #1 for both of T’s
subtrees, so T must contain only one node (which is itself a leaf). Then T contains
1 leaf and 0 internal nodes, and indeed 1 ≤ 0 + 1.

Otherwise n ≥ 2. (See Figure 5.33(b).) Observe that the tree T must have been
generated by (a) generating a left subtree Tℓ using some number ℓ of applications
of rule #2; (b) generating a right subtree Tr using some number r of applications
of rule #2; and then (c) applying rule #2 to a root node x, Tℓ, and Tr to produce T.
Therefore r + ℓ + 1 = n, and therefore r < n and ℓ < n. Ergo, we can apply the
inductive hypothesis to both Tℓ and Tr, and thus

leaves(Tℓ) ≤ internals(Tℓ) + 1 (1)
leaves(Tr) ≤ internals(Tr) + 1. (2)

Also observe that, because r + ℓ + 1 = n ≥ 2, either Tr 6= null or Tℓ 6= null, or
both. Thus the leaves of T are the leaves of Tℓ and Tr, and internal nodes of T are
the internal nodes of Tℓ and Tr plus the root x (which cannot be a leaf because at
least one of Tℓ and Tr is not empty). Therefore

leaves(T) = leaves(Tℓ) + leaves(Tr) (3)
internals(T) = internals(Tℓ) + internals(Tr) + 1. (4)

Putting together these facts, we have

leaves(T) = leaves(Tℓ) + leaves(Tr) by (3)

≤ internals(Tℓ) + 1 + internals(Tr) + 1 by (1) and (2)

= internals(T) + 1. by (4)

Thus P(n) holds, which completes the proof.
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Structural induction: the idea
The proof in Example 5.19 is perfectly legitimate, but there is another approach that

we can use for recursively defined structures, called structural induction. The basic idea
is to perform induction on the structure of an object itself rather than on some integer:
instead of a case for n = 0 and a case for n ≥ 1, in a proof by structural induction our
cases correspond directly to the cases of the recursive structural definition.

For structural induction to make sense, we must impose some restrictions on the re-
cursive definition. Specifically, the set of structures defined must be well ordered, which
intuitively ensures that every invocation of the inductive case of the definition “makes
progress” toward the base case(s) of the definition. (More precisely, a set of objects is
well ordered if there’s a “least” element among any collection of those objects.) For the
type of recursive definitions that we’re considering—where there are base cases in the
definition, and all instances of the structure are produced by a finite-length sequence
of applications of the inductive rules in the definition—structural induction is a valid
technique to prove facts about the recursively defined structure.

Taking it further: More formally, a set S of structures is well ordered if there exists a “smaller than”
relationship ≺ between elements of S such that, for any nonempty T ⊆ S, there exists a minimal element m
in T—that is, there exists m ∈ T such that no x ∈ T satisfies x ≺ m. (There might be more than one least
element in T.) For example, the set Z≥0 is well ordered, using the normal ≤ relationship. However, the
set R is not well ordered: for example, the set {x ∈ R : x > 2} has no smallest element using ≤. But the
set of binary trees is well ordered; the relation ≺ is “is a subtree of.”

One can prove that a set S is well ordered if and only if a proof by mathematical induction is valid on
a set S (where the base cases are the minimal elements of S, and to prove P(x) we assume the inductive
hypotheses P(y) for any y ≺ x).

Proofs by structural induction
Here is the formal definition of a proof by structural induction:

Definition 5.6 (Proof by structural induction)
Suppose that we want to prove that P(x) holds for every x ∈ S, where S is the (well-ordered)
set of structures generated by a recursive definition, and P is some property. To give a proof
by structural induction of ∀x ∈ S : P(x), we prove the following:

1. Base cases: for every x defined by a base case in the definition of S, prove P(x).
2. Inductive cases: for every x defined in terms of y1, y2, . . . , yk ∈ S by an inductive case in

the definition of S, prove that P(y1) ∧ P(y2) ∧ · · · ∧ P(yk) ⇒ P(x).

In a proof by structural induction, we can view both base cases and inductive cases
in the same light: each case assumes that the recursively constructed subpieces of
a structure x satisfy the stated property, and we prove that x itself also satisfies the
property. For a base case, the point is just that there are no recursively constructed
pieces, so we actually are not making any assumption.

Notice that a proof by structural induction is identical in form to a proof by strong
induction on the number of applications of the inductive-case rules used to generate the object.
For example, we can immediately rephrase the proof in Example 5.19 to use structural
induction instead. While the structure of the proof is identical, structural induction
can streamline the proof and make it easier to read:
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Example 5.20 (Internal nodes vs. leaves in binary trees, take II)
Claim: In any binary tree T, we have leaves(T) ≤ internals(T) + 1.
Proof. Let P(T) denote the property that leaves(T) ≤ internals(T) + 1 for a binary tree
T. We proceed by structural induction on the form of T.

base case (T = null): Then leaves(T) = internals(T) = 0, and indeed 0 ≤ 0 + 1.

inductive case (T has root x, left subtree Tℓ, and right subtree Tr): We assume the
inductive hypotheses P(Tℓ) and P(Tr), namely

leaves(Tℓ) ≤ internals(Tℓ) + 1 (1)
leaves(Tr) ≤ internals(Tr) + 1. (2)

• If x is itself a leaf, then Tℓ = Tr = null, and therefore leaves(T) = 1 and
internals(T) = 0, and indeed 1 ≤ 0 + 1.

• Otherwise x is not a leaf, and either Tr 6= null or Tℓ 6= null, or both. Thus the
leaves of T are the leaves of Tℓ and Tr, and internal nodes of T are the internal
nodes of Tℓ and Tr plus the root x. Therefore

leaves(T) = leaves(Tℓ) + leaves(Tr) (3)
internals(T) = internals(Tℓ) + internals(Tr) + 1. (4)

Putting together these facts, we have

leaves(T) = leaves(Tℓ) + leaves(Tr) by (3)

≤ internals(Tℓ) + 1 + internals(Tr) + 1 by (1) and (2)

= internals(T) + 1. by (4)

Thus P(n) holds, which completes the proof.

5.4.3 Some More Examples of Structural Induction: Propositional Logic

We’ll finish this section with two more proofs by structural induction, about proposi-
tional logic—using Example 5.18’s recursive definition.

Propositional logic using only ¬ and ∧
First, we’ll give a formal proof using structural induction of the claim that any

propositional logic statement can be expressed using ¬ and ∧ as the only logical con-
nectives. (See Exercise 4.68.)

Example 5.21 (All of propositional logic using ¬ and ∧)
Claim: For any logical proposition ϕ using the connectives {¬,∧,∨,⇒}, there exists

a proposition using only {¬,∧} that is logically equivalent to ϕ.
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Proof. For a logical proposition ϕ, let A(ϕ) denote the property that there exists a
{¬,∧}-only proposition logically equivalent to ϕ. We’ll prove by structural induction
on ϕ that A(ϕ) holds for any well-formed formula ϕ (see Example 5.18):

base case: ϕ is a variable, say ϕ = x. The proposition x uses no connectives—and
thus is vacuously {¬,∧}-only—and is obviously logically equivalent to itself. Thus
A(x) follows.

inductive case I: ϕ is a negation, say ϕ = ¬P. We assume the inductive hypothesis
A(P). We must prove A(¬P). By the inductive hypothesis, there is a {¬,∧}-only
proposition Q such that Q ≡ P. Consider the proposition ¬Q. Because Q ≡ P, we
have that ¬Q ≡ ¬P, and ¬Q contains only the connectives {¬,∧}. Thus ¬Q is a
{¬,∧}-only proposition logically equivalent to ¬P. Thus A(¬P) follows.

inductive case II: ϕ is a conjunction, disjunction, or implication, say ϕ = P1 ∧ P2,
ϕ = P1 ∨ P2, or ϕ = P1 ⇒ P2. We assume the inductive hypotheses A(P1) and
A(P2)—that is, we assume there are {¬,∧}-only propositions Q1 and Q2 with
Q1 ≡ P1 and Q2 ≡ P2. We must prove A(P1 ∧ P2), A(P1 ∨ P2), and A(P1 ⇒ P2).
Consider the propositions Q1 ∧ Q2, ¬(¬Q1 ∧ ¬Q2), and ¬(Q1 ∧ ¬Q2). By De Mor-
gan’s Law, and the facts that x ⇒ y ≡ ¬(x ∧ ¬y), P1 ≡ Q1, and P2 ≡ Q2:

Q1 ∧ Q2 ≡ Q1 ∧ Q2 ≡ P1 ∧ P2

¬(¬Q1 ∧ ¬Q2) ≡ Q1 ∨ Q2 ≡ P1 ∨ P2

¬(Q1 ∧ ¬Q2) ≡ Q1 ⇒ Q2 ≡ P1 ⇒ P2

Because Q1 and Q2 are {¬,∧}-only, our three propositions are {¬,∧}-only as well;
therefore A(P1 ∧ P2), A(P1 ∨ P2), and A(P1 ⇒ P2) follow.

We’ve shown that A(ϕ) holds for any proposition ϕ, so the claim follows.

Figure 5.34: Well-
formed formulas in
ML.

Taking it further: In the programming language ML, among others, a programmer can use both re-
cursive definitions and a form of recursion that mimics structural induction. For example, we can give
a simple implementation of the recursive definition of a well-formed formula from Example 5.18: a
well-formed formula is a variable, or the negation of a well-formed formula, or the conjunction of a
pair of well-formed formulas (wff * wff), or . . ..) In ML, we can also write a function that mimics the
structure of the proof in Example 5.21, using ML’s capability of pattern matching function arguments. See
Figure 5.34 for both the recursive definition of the wff datatype and the recursive function simplify,
which takes an arbitrary wff as input, and produces a wff that uses only And and Not as output.

datatype wff = Variable of string

| Not of wff

| And of (wff * wff)

| Or of (wff * wff)

| Implies of (wff * wff);

fun simplify (Variable var) = Variable var

| simplify (Not P) = Not(simplify P)

| simplify (And (P1, P2)) = And(simplify P1, simplify P2)

| simplify (Or (P1, P2)) = Not(And(Not(simplify P1), Not(simplify P2)))

| simplify (Implies (P1, P2)) = Not(And(simplify P1, Not(simplify P2)));
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Conjunctive and Disjunctive Normal Forms
Here is another example of a proof by structural induction based on propositional

logic, to establish Theorems 3.1 and 3.2, that any proposition is logically equivalent to
one that’s in conjunctive or disjunctive normal form.

(Recall that a proposition ϕ is in conjunctive normal form (CNF) if ϕ is the conjunction
of one or more clauses, where each clause is the disjunction of one or more literals. A
literal is a Boolean variable or the negation of a Boolean variable. A proposition ϕ is in
disjunctive normal form (DNF) if ϕ is the disjunction of one or more clauses, where each
clause is the conjunction of one or more literals.)

Theorem 5.6 (CNF/DNF suffice)
Let ϕ be a Boolean formula that uses the connectives {∧,∨,¬,⇒}. Then:

1. there exists ϕdnf in disjunctive normal form so that ϕ and ϕdnf are logically equivalent.
2. there exists ϕcnf in conjunctive normal form so that ϕ and ϕcnf are logically equivalent.

Perhaps bizarrely, it will turn out to be easier to prove that any proposition is logically
equivalent to both one in CNF and one in DNF than to prove either claim on its own. So
we will prove both parts of the theorem simultaneously, by structural induction.

Problem-solving tip:
Suppose we want
to prove ∀x : P(x)
by induction.
Here’s a problem-
solving strategy
that’s highly coun-
terintuitive: it is
sometimes eas-
ier to prove a
stronger statement
∀x : P(x) ∧ Q(x). It
seems bizarre that
trying to prove more
than what we want
is easier—but the
advantage arises
because the induc-
tive hypothesis is
a more powerful
assumption! For ex-
ample, I don’t know
how to prove that
any proposition ϕ
can be expressed
in DNF (Theorem
5.6.1) by induction!
But I do know how
to prove that any
proposition ϕ can
be expressed in both
DNF and CNF by in-
duction, as is done
in Example 5.22.

We’ll make use of some handy notation in this proof: analogous to summation and
product notation, we write

∧n
i=1pi to denote p1 ∧ p2 ∧ · · · ∧ pn, and similarly

∨n
i=1pi

means p1 ∨ p2 ∨ · · · ∨ pn. Here is the proof:

Example 5.22 (Conjunctive/disjunctive normal form)
Proof. We start by simplifying the task: we use Example 5.21 to ensure that ϕ con-
tains only the connectives {¬,∧}. Let C(ϕ) and D(ϕ), respectively, denote the prop-
erty that ϕ is logically equivalent to a CNF proposition and a DNF proposition, re-
spectively. We now proceed by structural induction on the form of ϕ—which now
can only be a variable, negation, or conjunction—to show that C(ϕ) ∧ D(ϕ) holds for
any proposition ϕ.

base case: ϕ is a variable, say ϕ = x. We’re done immediately; a single variable is
actually in both CNF and DNF. We simply choose ϕdnf = ϕcnf = x. Thus C(x) and
D(x) follow immediately.

inductive case I: ϕ is a negation, say ϕ = ¬P. We assume the inductive hypothesis
C(P)∧ D(P)—that is, we assume that there are propositions Pcnf and Pdnf such that
P ≡ Pcnf ≡ Pdnf, where Pcnf is in CNF and Pdnf is in DNF. We must show C(¬P)
and D(¬P).

We’ll first show D(¬P)—that is, that ¬P can be rewritten in DNF. By the defini-
tion of conjunctive normal form, we know that the proposition Pcnf is of the form
Pcnf =

∧n
i=1ci, where ci is a clause of the form ci =

∨mi
j=1cj

i , where cj
i is a variable or its

negation. Therefore we have
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¬P ≡ ¬Pcnf ≡ ¬



n∧

i=1




mi∨

j=1
ci
j




 inductive hypothesis C(P) and definition of CNF

≡



n∨

i=1
¬



mi∨

j=1
ci
j




 De Morgan’s Law

≡
n∨

i=1




mi∧

j=1
¬ci

j


 De Morgan’s Law

Once we delete double negations (that is, if cj
i = ¬x, then we write ¬cj

i as x rather
than as ¬¬x), this last proposition is in DNF, so D(¬P) follows.

The construction to show C(¬P)—that is, to give an CNF proposition logically
equivalent to ¬P—is strictly analogous; the only change to the argument is that we
start from Pdnf instead of Pcnf.

inductive case II: ϕ is a conjunction, say P ∧ Q. We assume the inductive hypothe-
ses C(P) ∧ D(P) and C(Q) ∧ D(Q)—that is, we assume that there are CNF proposi-
tions Pcnf and Qcnf and DNF propositions Pdnf and Qdnf such that P ≡ Pcnf ≡ Pdnf
and Q ≡ Qcnf ≡ Qdnf. We must show C(P ∧ Q) and D(P ∧ Q).

• The argument for C(P ∧ Q) is the easier of the two: we have propositions Pcnf
and Qcnf in CNF where Pcnf ≡ P and Qcnf ≡ Q. Thus P ∧ Q ≡ Pcnf ∧ Qcnf—and
the conjunction of two CNF formulas is itself in CNF. So C(P ∧ Q) follows.

• We have to work a little harder to prove D(P ∧ Q). Recall that, by the induc-
tive hypothesis, there are propositions Pdnf and Qdnf in DNF, where P ≡ Pdnf
and Q ≡ Qdnf. By the definition of DNF, these propositions have the form
Pdnf =

∨n
i=1ci and Qdnf =

∨m
j=1dj, where every ci and dj is a clause that is a con-

junction of literals. Therefore

P ∧ Q ≡ Pdnf ∧ Q ≡
(

n∨

i=1
ci

)
∧Q inductive hypothesis D(P) and definition of DNF

≡
n∨

i=1
(ci ∧ Q) distributivity of ∨ over ∧

≡
n∨

i=1


ci ∧

m∨

i=j
dj


 inductive hypothesis D(Q) and definition of DNF

≡
n∨

i=1

m∨

j=1

(
ci ∧ dj

)
. distributivity of ∨ over ∧

Because every ci and dj is a conjunction of literals, ci ∧ dj is too, and thus this last
proposition is in DNF! So D(P ∧ Q) follows—as does the theorem.
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The construction for a conjunction P ∧ Q in Theorem 5.22 is a little tricky, so let’s
illustrate it with a small example:

Example 5.23 (An example of the construction from Example 5.22)
Suppose that we are trying to transform a proposition ϕ ∧ ψ into DNF. Suppose that
we have (recursively) computed ϕdnf = (p ∧ t) ∨ q and ψdnf = r ∨ (s ∧ t). Then the
construction from Example 5.22 lets us construct a proposition equivalent to ϕ∧ ψ as:

ϕ∧ ψ ≡ ϕdnf ∧ ψdnf ≡
[

(p∧ t)︸ ︷︷ ︸
c1

∨ (q)︸︷︷︸
c2

]
∧
[

(r)︸︷︷︸
d1

∨ (s ∧ t)︸ ︷︷ ︸
d2

]

≡
[

(p∧ t)︸ ︷︷ ︸
c1

∧
[

(r) ∨ (s ∧ t)︸ ︷︷ ︸
d1∨d2

]
]
∨
[

(q)︸︷︷︸
c2

∧
[

(r)∨ (s ∧ t)︸ ︷︷ ︸
d1∨d2

]
]

≡
[

(p∧ t ∧ r)︸ ︷︷ ︸
c1∧d1

∨ (p∧ t ∧ s ∧ t)︸ ︷︷ ︸
c1∧d2

]
∨
[

(q∧ r)︸ ︷︷ ︸
c2∧d1

∨ (q∧ s ∧ t)︸ ︷︷ ︸
c2∧d2

]
.

Then the construction yields

(p∧ t ∧ r) ∨ (p∧ t ∧ s ∧ t) ∨ (q∧ r) ∨ (q∧ s ∧ t)

as the DNF proposition equivalent to ϕ∧ ψ.

5.4.4 The Integers, Recursively Defined

Before we end the section, we’ll close our discussion of recursively defined structures
and structural induction with one more potentially interesting observation. Although
the basic form of induction in Section 5.2 appears fairly different, that basic form of
induction can actually be seen as structural induction, too. The key is to view the
nonnegative integers Z≥0 as defined recursively:

Definition 5.7 (Nonnegative integers, recursively defined)
A nonnegative integer is either:

1. zero, denoted by 0; or
2. the successor of a nonnegative integer, denoted by s(x) for a nonnegative integer x.

Under this definition, a proof of ∀n ∈ Z≥0 : P(n) by structural induction and a proof of
∀n ∈ Z≥0 : P(n) by weak induction are identical:

• they have precisely the same base case: prove P(0); and
• they have precisely the same inductive case: prove P(n) ⇒ P(s(n))—or, in other

words, prove that P(n) ⇒ P(n + 1).
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Computer Science Connections

Grammars, Parsing, and Ambiguity

In interpreters and compilers—systems that translate input source code
written in a programming language like Python, Java, or C into a machine-
executable format—a key initial step is to parse the input into a format that
represents its structure. (A similar step occurs in systems designed to per-
form natural language processing.) The structured representation of such an
expression is called a parse tree, in which the leaves of the tree correspond to
the base cases of the recursive structural definition, and the internal nodes
correspond to the inductive cases of the definition. We can then use the parse
tree for whatever purpose we desire: evaluating arithmetic expressions, sim-
plifying propositional logic, or any other manipulation. (See Figure 5.35.)

In this setting, a recursively defined structure is written as a context-free

·

2 +

3 4
Figure 5.35: A parse tree for the arith-
metic expression 2 · (3 + 4).

grammar (CFG). A grammar consists of a set of rules that can be used to gener-
ate a particular example of this defined structure. We’ll take the definition of

This type of grammar is called context
free because the rules defined by the
grammar can be used any time—that is,
without regard to the context in which
the symbol on the left-hand side of the
rule appears.

propositions over the variables {p, q, r} (Example 5.18) as a running example.
Here is a CFG for propositions, following that definition precisely. (Here “→”
means “can be rewritten as” and “|” means “or.”)

S → p | q | r S can be a propositional variable . . .
| ¬S . . . or the negation of a proposition . . .
| S ∨ S | S ∧ S | S ⇒ S . . . or the ∧/∨/⇒ of two propositions.

An expression ϕ is a valid proposition over the variables {p, q, r} if and only if
ϕ can be generated by a finite-length sequence of applications of the rewriting
rules in the grammar. For example, ¬p ∨ p is a valid proposition over {p, q, r},
because we can generate it as follows:

S → S ∨ S → S ∨ p → ¬S ∨ p → ¬p ∨ p.

(We used the rule S → p twice, the rule S → ¬S once, and the rule S → S ∨ S
once.) The parse tree corresponding to this sequence of rule applications is
shown in Figure 5.36(a).

A complication that arises with the grammar given above is that it is

S

S

¬ S

p

∨ S

p

(a) The correct order of operations.

S

¬ S

S

p

∨ S

p
(b) The wrong order of operations.

Figure 5.36: Two parse trees for ¬p ∨ p.ambiguous: the same proposition can be produced using a fundamentally
different sequence of rule applications, which gives rise to a different parse
tree, shown in Figure 5.36(b):

S → ¬S → ¬S ∨ S → ¬p∨ S → ¬p ∨ p.

The parse tree in Figure 5.36(b) corresponds to ¬(p ∨ p) instead of (¬p) ∨ p,
which is the correct “order of operations” because ¬ binds tighter than ∨.

It’s bad news if the grammar of a programming language is ambiguous,
because certain valid code is then “allowed” to be interpreted in more than
one way. (The classic example is the attachment of else clauses: in code like
if P then if Q then X else Y, when should Y be executed? When P is true
and Q is false? Or when P is false?) Thus programming language designers
develop unambiguous grammars that reflect the desired behavior.3

More on context-free grammars and
parsing, and their relationship to
compilers and interpreters, can be found
in books like
3 Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Prentice
Hall, 2nd edition, 2006; Dexter Kozen.
Automata and Computability. Springer,
1997; and Michael Sipser. Introduction
to the Theory of Computation. Course
Technology, 3rd edition, 2012.
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5.4.5 Exercises
length(L): // assume L is a linked list.
1: if L = 〈〉 then
2: return 0
3: else if L = 〈x, L′〉 then
4: return 1 + length(L′)

sum(L): // assume L is a linked list containing integers.
1: if L = 〈〉 then
2: return 0
3: else if L = 〈x, L′〉 then
4: return x + sum(L′)

Figure 5.37: Two
algorithms on
linked lists.

5.77 Let L be a linked list (as defined in Example 5.15). Prove by
structural induction on L that length(L) returns the number of elements
contained in L. (See Figure 5.37 for the algorithm.)
5.78 Let L be a linked list containing integers. Prove by structural
induction on L that sum(L) returns the sum of the numbers contained in L.
(See Figure 5.37 for the algorithm.)

5.79 In Example 5.15, we gave a recursive definition of a linked list.
Here’s a variant of that definition, where we insist that the elements be in
increasing order. Define a nonempty sorted list as one of the following:

1. 〈x, 〈〉〉; or
2. 〈x, 〈y, L〉〉 where x ≤ y and 〈y, L〉 is a nonempty sorted list.

Prove by structural induction that in a nonempty sorted list 〈x, L〉, every element z in L satisfies z ≥ x.

A string of balanced parentheses (with a close parenthesis that matches every open parenthesis, and appears to its right)
is one of the following:

1. the empty string (consisting of zero characters);
2. a string [ S ] where S is a string of balanced parentheses; or
3. a string S1S2 where S1 and S2 are both strings of balanced parentheses.

For example, [[]][] is a string of balanced parentheses, using Rule 3 on [[]] and []. (Note that [] is a string of
balanced parentheses using Rule 2 on the empty string (Rule 1), and therefore [[]] is by using Rule 2 on [].)
5.80 Prove by structural induction that every string of balanced parentheses according to this defini-
tion has exactly the same number of open parentheses as close parentheses.
5.81 Prove by structural induction that any prefix of a string of balanced parentheses according to this
definition has at least as many open parentheses as it does close parentheses.

countLeaves(T):
1: if T = null then
2: return 0
3: else
4: TL, TR := the left and right subtrees of T
5: if TL = TR = null then
6: return 1
7: else
8: return countLeaves(TL) + countLeaves(TR)

Figure 5.38: An
algorithm to count
leaves in a binary
tree.

5.82 Recall from Definition 5.16 that we defined a binary tree as

1. an empty tree, denoted by null; or
2. a root node x, a left subtree Tℓ, and a right subtree Tr, where x is an arbi-

trary value and Tℓ and Tr are both binary trees.
Recall further that a leaf of a binary tree T is a node in T whose left subtree
and right subtree are both null. Prove by structural induction that the
algorithm countLeaves(T) in Figure 5.38 returns the number of leaves in a
binary tree T.

5.83 Recall that a binary search tree (BST) is a binary tree in which each
node stores a “key,” and, for any node u, the key at node u is larger than
all keys in u’s left subtree and smaller than all the keys in u’s right subtree.
(See p. 1160.) That is, a BST is either:
1. an empty tree, denoted by null; or
2. a root node x, a left subtree Tℓ where all elements are less than x, and a right subtree Tr, where all elements

are greater than x, and Tℓ and Tr are both BSTs.

Prove that the smallest element in a nonempty BST is the bottommost leftmost node—that is, prove that

the smallest element in a BST with root x and left subtree Tℓ =
{

x if Tℓ = null

the smallest element in Tℓ if Tℓ 6= null.

A heap is a binary tree where each node stores a priority, and in which every node satisfies the heap property: the
priority of a node u must be greater than or equal to the priorities of the roots of both of u’s subtrees. (The restriction
only applies for a subtree that is not null.)
5.84 Give a recursive definition of a heap.
5.85 Prove by structural induction that every heap is empty, or that no element of the heap is larger
than its root node. (That is, the root is a maximum element.)
5.86 Prove by structural induction that every heap is empty, or it has a leaf u such that u is no larger
than any node in the heap. (That is, the leaf u is a minimum element.)
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A 2–3 tree is a data structure, similar in spirit to a binary search tree (see Exercise 5.83)—or, more precisely, a bal-
anced form of BST, which is guaranteed to support fast operations like insertions, lookups, and deletions. The name
“2–3 tree” comes from the fact that each internal node in the tree must have precisely 2 or 3 children; no node has a
single child. Furthermore, all leaves in a 2–3 tree must be at the same “level” of the tree.
5.87 Formally, a 2–3 tree of height h is one of the following:
1. a single node (in which case h = 0, and the node is called a leaf ); or
2. a node with 2 subtrees, both of which are 2–3 trees of height h − 1; or
3. a node with 3 subtrees, all three of which are 2–3 trees of height h − 1.
Prove by structural induction that a 2–3 tree of height h has at least 2h leaves and at most 3h leaves. (There-
fore a 2–3 tree that contains n leaf nodes has height between log3 n and log2 n.)
5.88 A 2–3–4 tree is a similar data structure to a 2–3 tree, except that a tree can be a single node or a
node with 2, 3, or 4 subtrees. Give a formal recursive definition of a 2–3–4 tree, and prove that a 2–3–4 tree of
height h has at least 2h leaves and at most 4h leaves.

(a + b) + c = a + (b + c) Associativity of Addition

a + b = b + a Commutativity of Addition

a + 0 = 0 + a = a Additive Identity

(a · b) · c = a · (b · c) Associativity of Multiplication

a · b = b · a Commutativity of Multiplication

a · 1 = 1 · a = a Multiplicative Identity

a · 0 = 0 · a = 0 Multiplicative Zero

Figure 5.39: A few
elementary-school
facts about addition
and multiplication.

The next few exercises give recursive definitions of some familiar arithmetic operations which
are usually defined nonrecursively. In each, you’re asked to prove a familiar property by
structural induction. Think carefully when you choose the quantity upon which to perform
induction, and don’t skip any steps in your proof! You may use the elementary-school facts
about addition and multiplication from Figure 5.39 in your proofs:
5.89 Let’s define an even number as either (i) 0, or (ii) 2 + k, where k is an even
number. Prove by structural induction that the sum of any two even numbers is an
even number.
5.90 Let’s define a power of two as either (i) 1, or (ii) 2 · k, where k is a power of
two. Prove by structural induction that the product of any two powers of two is itself
a power of two.
5.91 Let a1 , a2, . . . , ak all be even numbers, for an arbitrary integer k ≥ 0. Prove that

[
k

∑
i=1

ai

]
is also an

even number. (Hint: use weak induction and Exercise 5.89.)

In Chapter 2, we defined bn (for a base b ∈ R and an exponent n ∈ Z≥0) as denoting the result of multiplying b by
itself n times (Definition 2.5). As an alternative to that definition of exponentiation, we could instead give a recursive
definition with integer exponents: b0 := 1 and bn+1 := b · bn, for any nonnegative integer n.
5.92 Using the associativity/commutativity/identity/zero properties in Figure 5.39, prove by induc-
tion that bmbn = bm+n for any integers n ≥ 0 and m ≥ 0. Don’t skip any steps.
5.93 Using the facts in Figure 5.39 and Exercise 5.92, prove by induction that (bm)n = bmn for any
integers n ≥ 0 and m ≥ 0. Again, don’t skip any steps.

Recall Example 5.18, in which we defined a well-formed formula (a “wff”) of propositional logic as a variable; the
negation (¬) of a wff; or the conjunction/disjunction/implication (∧, ∨, and ⇒) of two wffs. Assuming we allow the
corresponding new connective in the following exercises as part of a wff, give a proof using structural induction (see
Example 5.21 for an example) that any wff is logically equivalent to one using only . . .
5.94 Sheffer stroke |, where p | q ≡ ¬(p ∧ q) 5.95 Peirce’s arrow ↓, where p ↓ q ≡ ¬(p ∨ q)
(programming required) In the programming language ML (see Figure 5.34 for more), write a program to translate
an arbitrary statement of propositional logic into a logically equivalent statement that has the following special form.
(In other words, implement the proof of Exercises 5.94 and 5.95 as a recursive function.)
5.96 | is the only logical connective 5.97 ↓ is the only logical connective

5.98 Call a logical proposition truth-preserving if the proposition is true under the all-true truth assign-
ment. That is, a proposition is truth-preserving if and only if the first row of its truth table is True.) Prove
the following claim by structural induction on the form of the proposition:

Any logical proposition that uses only the logical connectives ∨ and ∧ is truth-preserving.
(A solution to this exercise yields a rigorous solution to Exercise 4.71—there are propositions that cannot be
expressed using only ∧ and ∨. Explain.)

5.99 A palindrome is a string that reads the same front-to-back as it does back-to-front—for example,
RACECAR or (ignoring spaces/punctuation) A MAN, A PLAN, A CANAL--PANAMA! or 10011001. Give a recursive
definition of the set of palindromic bitstrings.
5.100 Let #0(s) and #1(s) denote the number of 0s and 1s in a bitstring s, respectively. Using your recur-
sive definition from the previous exercise, prove by structural induction that, for any palindromic bitstring s,
the value of [#0(s)] · [#1(s)] is an even number.
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5.5 Chapter at a Glance

Proofs by Mathematical Induction

Suppose that we want to prove that a property P(n) holds for all n ∈ Z≥0. To give a
proof by mathematical induction of the claim ∀n ∈ Z≥0 : P(n), we prove the base case P(0),
and we prove the inductive case: for every n ≥ 1, we have P(n − 1) ⇒ P(n).

When writing an inductive proof of the claim ∀n ∈ Z≥0 : P(n), include each of the
following steps:

1. A clear statement of the claim to be proven—that is, a clear definition of the prop-
erty P(n) that will be proven true for all n ≥ 0—and a statement that the proof is by
induction, including specifically identifying the variable n upon which induction
is being performed. (Some claims involve multiple variables, and it can be confus-
ing if you aren’t clear about which is the variable upon which you are performing
induction.)

2. A statement and proof of the base case—that is, a proof of P(0).

3. A statement and proof of the inductive case—that is, a proof of P(n − 1) ⇒ P(n), for
a generic value of n ≥ 1. The proof of the inductive case should include all of the
following:

(a) a statement of the inductive hypothesis P(n− 1).
(b) a statement of the claim P(n) that needs to be proven.
(c) a proof of P(n), which at some point makes use of the assumed inductive hy-

pothesis P(n − 1).

We can use a proof by mathematical induction on arithmetic properties, like a formula
for the sum of the nonnegative integers up to n—that is, ∑n

i=0 i = n(n+1)
2 for any integer

n ≥ 0—or a formula for a geometric series:

if α ∈ R where α 6= 1, and n ∈ Z≥0, then
n
∑
i=0
αi = αn+1 − 1

α− 1 .

(If α = 1, then ∑n
i=0α

i = n + 1.) We can also use proofs by mathematical induction to
prove the correctness of algorithms, particularly recursive algorithms.

Strong Induction

Suppose that we want to prove that P(n) holds for all n ∈ Z≥0. To give a proof by strong
induction of ∀n ∈ Z≥0 : P(n), we prove the base case P(0), and we prove the inductive
case: for every n ≥ 1, we have [P(0)∧ P(1) . . .∧ P(n − 1)] ⇒ P(n). Strong induction is
actually completely equivalent to weak induction; anything that can be proven with
one can also be proven with the other.

Generally speaking, using strong induction makes sense when the “reason” that
P(n) is true is that P(k) is true for more than one value of k < n (or a single value
of k < n with k 6= n − 1). (For weak induction, the reason that P(n) is true is just
P(n − 1).) We can use strong induction to prove many claims, including part of the
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Prime Factorization Theorem: if n ∈ Z≥1 is a positive integer, then there exist k ≥ 0
prime numbers p1, p2, . . . , pk such that n = ∏k

i=1 pi.

Recursively Defined Structures and Structural Induction

A recursively defined structure, just like a recursive algorithm, is a structure defined
in terms of one or more base cases and one or more inductive cases. Any data type that
can be understood as either a trivial instance of the type or as being built up from a
smaller instance (or smaller instances) of that type can be expressed in this way. The
set of structures defined is well ordered if, intuitively, every invocation of the inductive
case of the definition “makes progress” toward the base case(s) of the definition (and,
more formally, that every nonempty subset of those structures has a “least” element).

Suppose that we want to prove that P(x) holds for every x ∈ S, where S is the
(well-ordered) set of structures generated by a recursive definition. To give a proof
by structural induction of ∀x ∈ S : P(x), we prove the following:

1. Base cases: for every x defined by a base case in the definition of S, prove P(x).
2. Inductive cases: for every x defined in terms of y1, y2, . . . , yk ∈ S by an inductive case

in the definition of S, prove that P(y1) ∧ P(y2) . . .∧ P(yk) ⇒ P(x).

The form of a proof by structural induction that ∀x ∈ S : P(x) for a well-ordered set
of structures S is identical to the form of a proof using strong induction. Specifically,
the proof by structural induction looks like a proof by strong induction of the claim
∀n ∈ Z≥0 : Q(n), where Q(n) denotes the property “for any structure x ∈ S that is
generated using n applications of the inductive-case rules in the definition of S, we
have P(x).”
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Key Terms and Results

Key Terms

Proofs by Mathematical
Induction

• proof by mathematical induction
• base case
• inductive case
• inductive hypothesis
• geometric series
• arithmetic series
• harmonic series

Strong Induction

• strong induction
• prime factorization

Recursively Defined Structures and
Structural Induction

• recursively defined structures
• structural induction
• well-ordered set

Key Results

Proofs by Mathematical Induction

1. Suppose that we want to prove that P(n) holds for all
n ∈ Z≥0. To give a proof by mathematical induction of
∀n ∈ Z≥0 : P(n), we prove the following:

(a) the base case P(0).
(b) the inductive case: for every n ≥ 1, we have

P(n− 1) ⇒ P(n).

2. For any integer n ≥ 0, we have 1 + 2 + . . . + n = n(n+1)
2 .

3. Let α ∈ R where α 6= 1, and let n ∈ Z≥0. Then

n
∑
i=0
αi = αn+1 − 1

α− 1 .

(If α = 1, then ∑n
i=0 α

i = n + 1.)

Strong Induction

1. Suppose that we want to prove that P(n) holds for all
n ∈ Z≥0. To give a proof by strong induction of
∀n ∈ Z≥0 : P(n), we prove the following:

(a) the base case P(0).
(b) the inductive case: for every n ≥ 1, we have

[P(0)∧ P(1) . . .∧ P(n − 1)] ⇒ P(n).

2. The prime factorization theorem: let n ∈ Z≥1 be a
positive integer. Then there exist k ≥ 0 prime numbers
p1, p2, . . . , pk such that n = ∏k

i=1 pi. Furthermore, up to
reordering, the prime numbers p1, p2, . . . , pk are unique.

Recursively Defined Structures and Structural
Induction

1. To give a proof by structural induction of ∀x ∈ S : P(x), we
prove the following:

(a) the base cases: for every x defined by a base case in the
definition of S, we have that P(x).

(b) the inductive cases: for every x defined in terms of
y1, y2, . . . , yk ∈ S by an inductive case in the definition
of S, we have that P(y1) ∧ P(y2) . . .∧ P(yk) ⇒ P(x).



6
Analysis of Algorithms

In which our heroes stay beyond the reach of danger, by calculating precise
bounds on how quickly they must move to stay safe.
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6.2.1 Big O

Consider two functions f and g. To reiterate, our goal is to compare the rates at which
these functions grow. We’ll start by defining what it means for the function f (n) to
grow no faster than g(n), written f (n) = O(g(n)). The “=” in

“f (n) = O(g(n))”
is odd notation,
but it’s also very
standard. This
expression means
f (n) has the property
of being O(g(n)) and
not f (n) is identical to
O(g(n)).

Taking it further: Philosophers sometimes distinguish between the “is” of identity and the “is” of pred-
ication. In a sentence like Barbara Liskov is the 2008 Turing Award winner, we are asserting that Barbara
Liskov and the 2008 Turing Award Winner actually refer to the same thing—that is, they are identical. In a
sentence like Barbara Liskov is tall, we are asserting that Barbara Liskov (the entity to which Barbara Liskov
refers) has the property of being tall—that is, the predicate x is tall is true of Barbara Liskov. One should
interpret the “=” in f (n) = O(g(n)) as an “is of predication.”

One reasonably accurate way to distinguish these two uses of is is by considering what happens
if you reverse the order of the sentence: The 2008 Turing Award Winner is Barbara Liskov is still a (true)
well-formed sentence, but Tall is Barbara Liskov sounds very strange. Similarly, for an “is of identity” in
a mathematical context, we can say either x2 − 1 = (x + 1)(x − 1) or (x + 1)(x − 1) = x2 − 1. But, while
“f (n) = O(g(n))” is a well-formed statement, it is nonsensical to say “O(g(n)) = f (n).”

Here is the formal definition:

Definition 6.1 (“Big O”)
Consider two functions f : R≥0 → R≥0 and g : R≥0 → R≥0. We say that f grows no
faster than g if there exist constants c > 0 and n0 ≥ 0 such that

∀n ≥ n0 : f (n) ≤ c · g(n).

In this case, we write “f (n) is O(g(n))” or “f (n) = O(g(n)).”

O is pronounced
“big oh.”

f (x) = x f (x) = 2x f (x) = x + 8 f (x) = 10 f (x) =
{

25 − x2 if x < 3.5
0.5x + 11 if x ≥ 3.5

Figure 6.2: Five
functions that
are all O(n). For
any x beyond the
gray box, we have
f (x) ≤ 3x.

The intuition of the defini-
tion is that f (n) = O(g(n)) if,
for large enough n, we have
f (n) ≤ constant · g(n). Fig-
ure 6.2 shows five different
functions f : R≥0 → R≥0

that all satisfy f (n) = O(n).
(In the figure, the value of
x is “large enough” once x is outside of the gray box, and the multiplicative constant is
equal to 3 in each subplot. For a function like f (x) = 4x, we’d show that f (n) = O(n) by
choosing some c ≥ 4 as the multiplicative constant.)

More quantitatively, here are two simple examples of functions that are O(n2):

Example 6.2 (A square function)
Problem: Prove that the function f (n) = 3n2 + 2 is O(n2).

Solution: To prove that f (n) = 3n2 + 2 satisfies f (n) = O(n2), we must identify constants
c > 0 and n0 ≥ 0 such that ∀n ≥ n0 : 3n2 + 2 ≤ c · n2. Let’s select c = 5 and n0 = 1.
For all n ≥ 1, observe that 2n2 ≥ 2. Therefore, for all n ≥ 1, we have

f (n) = 3n2 + 2 ≤ 3n2 + 2n2 = 5n2 = c · n2.
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Example 6.3 (Another square function)
Problem: Prove that the function g(n) = 4n is also O(n2).

Solution: We wish to show that 4n ≤ c · n2 for all n ≥ n0, for constants c > 0 and
n0 ≥ 0 that we get to choose. The two functions g(n) and q(n) := n2 are shown in
Figure 6.3. Because the functions cross (with no constant multiplier), we can pick
c = 1. Observe that 4n ≤ n2 if and only if n2 − 4n = n(n − 4) ≥ 0—that is, for n ≤ 0
or n ≥ 4. Thus c = 1 and n0 = 4 suffice.

Note that, when f (n) = O(g(n)), there are many choices of c and n0 that satisfy the
n = 4

g(n) = 4n

q(n) = n2

Figure 6.3: A plot
of g(n) = 4n and
q(n) = n2.

definition. For example, we could have chosen c = 4 and n0 = 1 in Example 6.3. (See
Exercise 6.15.)

Example 6.4 (One nonsquare)
Problem: Prove that the function h(n) = n3 is not O(n2).

Solution: To show that h(n) = n3 is not O(n2), we need to argue that, for all constants
n0 and c, there exists an n ≥ n0 such that h(n) > c · n2—that is, that n3 > c · n2.

Fix a purported n0 and c. Let n := max(n0, c + 1). Then n > c by our definition of
n, so, by multiplying both sides of n > c by the nonnegative quantity n2, we have
n3 = n · n2 > c · n2. But we also have that n ≥ n0 by our definition of n, and thus we
have identified an n ≥ n0 such that n3 > c · n2.

Because n0 and c were generic, we have shown that no such constants can exist,
and therefore that h(n) = n3 is not O(n2).

Some properties of O(·)
Now that we’ve seen a few specific examples, let’s turn to some more general re-

sults. There are many useful properties of O(·) that will come in handy later; we’ll start
here with a few of these properties, together with a proof of one. (The other proofs are
left to you in Exercises 6.18–6.20.)

Lemma 6.1 (Asymptotic equivalence of max and sum)
We have f (n) = O(g(n) + h(n)) if and only if f (n) = O(max(g(n), h(n))).

Proof. We proceed by mutual implication. For the forward direction, suppose f (n) =
O(g(n) + h(n)). Then by definition there exist constants c > 0 and n0 ≥ 0 such that

for all n ≥ n0 f (n) ≤ c · [g(n) + h(n)]. (1)

For any a, b ∈ R, we know that a ≤ max(a, b) and b ≤ max(a, b), so (1) implies

for all n ≥ n0 f (n) ≤ c · [max(g(n), h(n)) + max(g(n), h(n))]
= 2c max(g(n), h(n)). (2)

But (2) is the definition of f (n) = O(max(g(n), h(n))), using constants n′
0 = n0 and c′ = 2c.
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Conversely, suppose f (n) = O(max(g(n), h(n))). Then there exist constants c > 0 and
n0 ≥ 0 such that

for all n ≥ n0 f (n) ≤ c · max(g(n), h(n)). (3)

For any a, b ∈ R≥0 we know max(a, b) ≤ max(a, b) + min(a, b) = a + b; thus (3) implies

for all n ≥ n0 f (n) ≤ c · [g(n) + h(n)]. (4)

Thus (4) implies that f (n) = O(g(n) + h(n)), using the same constants, n′
0 = n0 and

c′ = c.

Problem-solving
tip: Don’t force
yourself to prove
more than you have
to! For example,
when proving
that an asymptotic
relationship like
f (n) = O(g(n)) holds,
all we need to do
is identify some
pair of constants
c, n0 that satisfy
Definition 6.1.
Don’t work too
hard! Choose
whatever c or n0
makes your life
easiest, even if
they’re much bigger
than necessary.
For asymptotic
purposes, we care
that the constants c
and n0 exist, but we
don’t care how big
they are.

Lemma 6.2 (Transitivity of O(·))
If f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

Lemma 6.3 (Addition and multiplication preserve O(·)-ness)
If f (n) = O(h1(n)) and g(n) = O(h2(n)), then:

• f (n) + g(n) = O(h1(n) + h2(n)).
• f (n) · g(n) = O(h1(n) · h2(n)).

Asymptotics of polynomials
So far, we’ve discussed properties of O(·) that are general with respect to the form

of the functions in question. But because we’re typically concerned with O(·) in the
context of the running time of algorithms—and we are generally interested in algo-
rithms that are efficient—we’ll be particularly interested in the asymptotics of poly-
nomials. The most salient point about the growth of a polynomial p(n) is that p(n)’s
asymptotic behavior is determined by the degree of p(n)—that is, the polynomial
p(n) = a0 + a1n + a2n2 + · · · + aknk behaves like nk, asymptotically:

Lemma 6.4 (Asymptotics of polynomials)
Let p(n) = ∑k

i=0 aini be a polynomial. Then p(n) = O(nk).

(If ak > 0, then indeed p(n) = O(nk), and it is not possible to improve this bound—that
is, in the notation of Section 6.2.2, we have that p(n) = Θ(nk).)

The proof of Lemma 6.4 is deferred to Exercise 6.21, but we have already seen the
intuition in previous examples: every term aini satisfies aini ≤ |ai| · nk, for any n ≥ 1.

Asymptotics of logarithms and exponentials
We will also often encounter logarithms and exponential functions, so it’s worth

identifying a few of their asymptotic properties. Again, we’ll prove one of these prop-
erties as an example, and leave proofs of many of the remaining properties to the
exercises. The first pair of properties is that logarithmic functions grow more slowly
than polynomials, which grow more slowly than exponential functions:
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Lemma 6.5 (log n grows slower than n0.0000001)
Let ε > 0 be an arbitrary constant, and let f (n) = log n. Then f (n) = O(nε).

Lemma 6.6 (n1000000 grows slower than 1.0000001n)
Let b > 1 and k ≥ 0 be arbitrary constants, and let p(n) = ∑k

i=0 aini be any polynomial. Then
p(n) = O(bn).

The second pair of properties is that two logarithmic functions loga n and logb n grow
at the same rate (for any bases a > 1 and b > 1) but that two exponential functions an

and bn do not (for any bases a and b 6= a):

Lemma 6.7 (The base of a logarithm doesn’t matter, asymptotically)
Let b > 1 and k > 0 be arbitrary constants. Then f (n) = logb(nk) is O(log n).

Proof of Lemma 6.7. Using standard facts about logarithms, we have that

logb(nk) = k · logb(n) (2.2.5): logb xy = y logb x

= k · log n
log b . change of base formula (2.2.6): logb x = logc x

logc b

Thus, for any n ≥ 1, we have that f (n) = k
log b · log n. Thus f (n) = O(log n) using the

constants n0 = 1 and c = k
log b .

Lemma 6.8 (The base of an exponential does matter, asymptotically)
Let b ≥ 1 and c ≥ 1 be arbitrary constants. Then f (n) = bn is O(cn) if and only if b ≤ c.

Lemma 6.7 is the reason that, for example, binary search’s running time is described
as O(log n) rather than as O(log2 n), without any concern for writing the “2”: the base
of the logarithm is inconsequential asymptotically, so O(log√

2 n) and O(log2 n) and
O(ln n) all mean exactly the same thing. In contrast, for exponential functions, the
base of the exponent does affect the asymptotic behavior: Lemma 6.8 says that, for
example, the functions f (n) = 2n and g(n) = (

√
2)n do not grow at the same rate. (See

Exercises 6.25–6.28.)

Taking it further: Generally, exponential growth is a problem for computer scientists. Many compu-
tational problems that are important and useful to solve seem to require searching a very large space
of possible answers: for example, testing the satisfiability of an n-variable logical proposition seems to
require looking at about 2n different truth assignments, and factoring an n-digit number seems to require
looking at about 10n different candidate divisors. The fact that exponential functions grow so quickly
is exactly why we do not have algorithms that are practical for even moderately large instances of these
problems.

But one of the most famous exponentially growing functions actually helps us to solve problems:
the amount of computational power available to a “standard” user of a computer has been growing
exponentially for decades: about every 18 months, the processing power of a standard computer has
roughly doubled. This trend—dubbed Moore’s Law, after Gordon Moore, the co-founder of Intel—is
discussed on p. 613.
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6.2.2 Other Asymptotic Relationships: Ω, Θ, ω, and o

g(n)

Ω(g(n))

O(g(n))

Figure 6.4: A
function g(n), a
function that’s Ω(g)
(grows no slower
than g), and a
function that’s O(g)
(grows no faster
than g).

There are several basic asymptotic notions (with accompanying notation), based
around two core ideas (see Figure 6.4):

f (n) grows no faster than g(n): In other words, ignoring small inputs, for all n we have
that f (n) ≤ constant · g(n). This relationship is expressed by the O(·) notation:
f (n) = O(g(n)). We can also say that g is an asymptotic upper bound for f : if we plot n
against f (n) and g(n), then g(n) will be “above” f (n) for large inputs.

f (n) grows no slower than g(n): The opposite relationship, in which g is an asymp-
totic lower bound on f , is expressed by Ω(·) notation. Again, ignoring small inputs,

Ω is the Greek letter
Omega written in
upper case; ω is the
same Greek letter
written in lower
case.

f (n) = Ω(g(n)) if for all n we have that f (n) ≥ constant · g(n). (Notice that the inequal-
ity swapped directions from the definition of O(·).)

Formal definitions
Here are the formal definitions of four other relationships based on these notions:

Definition 6.2 (“Big Omega”)
A function f grows no slower than g, written f (n) = Ω(g(n)), if there exist constants d > 0
and n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≥ d · g(n).

The two fundamental asymptotic relationships, O(·) and Ω(·), are dual notions; they
are related by the property that f (n) = O(g(n)) if and only if g(n) = Ω(f (n)). (The proof
is left as Exercise 6.30.)

There are three other pieces of asymptotic notation, corresponding to the situations
in which f (n) is both O(g) and Ω(g), or O(g) but not Ω(g), or Ω(g) but not O(g):

Definition 6.3 (“Big Theta”)
A function f grows at the same rate as g, written f (n) = Θ(g(n)), if f (n) = O(g(n)) and
f (n) = Ω(g(n)).

Definition 6.4 (“Little o”)
A function f grows (strictly) slower than g, written f (n) = o(g(n)), if f (n) = O(g(n)) but
f (n) 6= Ω(g(n)).

Definition 6.5 (“Little omega”)
A function f grows (strictly) faster than g, written f (n) = ω(g(n)), if f (n) = Ω(g(n)) but
f (n) 6= O(g(n)).

This notation is summarized, in two different ways, in Figure 6.5.
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if f (n) = O(g(n)) . . . if f (n) 6= O(g(n)) . . .
. . . and f (n) = Ω(g(n)) . . . . . . then f (n) = Θ(g(n)) . . . then f (n) = ω(g(n))
. . . and f (n) 6= Ω(g(n)) . . . . . . then f (n) = o(g(n)) —

∃c > 0, n0 ≥ 0 such that
∀n ≥ n0 : f (n) ≤ c · g(n)

∃d > 0, n0 ≥ 0 such that
∀n ≥ n0 : f (n) ≥ d · g(n)

f (n) = O(g(n)) yes don’t care f grows no faster than g
f (n) = Ω(g(n)) don’t care yes f grows no slower than g
f (n) = Θ(g(n)) yes yes f grows at the same rate as g
f (n) = o(g(n)) yes no f grows strictly slower than g
f (n) = ω(g(n)) no yes f grows strictly faster than g

Figure 6.5: Sum-
mary of notation
for asymptotic
notation, in two
different ways.

Example 6.5 (f = (n))
Problem: Let f (n) = 3n2 + 1. Is f (n) = O(n)? Ω(n)? Θ(n)? o(n)? ω(n)? Prove your

answers.

Solution: Once we determine whether f (n) = O(n) and whether f (n) = Ω(n), we can
answer all parts of the question using Figure 6.5(a).

• f (n) = Ω(n). For n ≥ 1, we have n ≤ n2 ≤ 3n2 + 1 = f (n). Thus selecting d = 1 and
n0 = 1 satisfies Definition 6.2.

• f (n) 6= O(n). Let c > 0 be arbitrary. For any n ≥ c
3 , we have 3n2 + 1 > 3n2 ≥ c · n.

Therefore, for any n0 > 0, there exists an n ≥ n0 such that f (n) > c · n. (Namely,
for n = max(n0, c/3), we have n ≥ n0 and f (n) > c · n.)
Thus, every constant c > 0 fails to satisfy the requirements of Definition 6.1, and
therefore f (n) 6= O(n).

Assembling f (n) = Ω(n) and f (n) 6= O(n) with Figure 6.5(a), we can also conclude
that f (n) = ω(n), f (n) 6= Θ(n), and f (n) 6= o(n).

Taking it further: We’ve given definitions of O(·), Ω(·), Θ(·), o(·), and ω(·) that are based on nested
quantifiers: there exists a multiplicative constant such that, for all sufficiently large n, . . .. For those with
a more calculus-based mindset, we could also give an equivalent definition in terms of limits:
• f (n) = O(g(n)) if limn→∞ f (n)/g(n) is finite;
• f (n) = Ω(g(n)) if limn→∞ f (n)/g(n) is nonzero;
• f (n) = Θ(g(n)) if limn→∞ f (n)/g(n) is finite and nonzero;
• f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0; and
• f (n) = ω(g(n)) if limn→∞ f (n)/g(n) = ∞.

For the function f (n) = 3n2 + 1 in Example 6.5, for example, observe that limn→∞
f (n)
n = ∞. Thus

f (n) = Ω(n) and f (n) = ω(n), but none of the other asymptotic relationships holds.

A (possibly counterintuitive) example
Intuitively, the asymptotic symbols O, Ω, Θ, o, and ω correspond to the numerical

comparison symbols ≤, ≥, =, <, and >—but the correspondence isn’t perfect, as we’ll
see in this example:
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f 6= Θ(g), f 6= o(g), and f 6= ω(g).)
Let a and b be real numbers. The two inequalities a ≤ b and b ≤ a can be true and

false in different combinations:

• When a ≤ b and b ≤ a, then a = b.
• When a ≤ b and b 6≤ a, then a < b.
• When a 6≤ b and b ≤ a, then a > b.
• (It is not possible to have both a 6≤ b and b 6≤ a.)

Intuitively, the relationship f (n) = O(g(n)) means (approximately!) that

“the growth rate of f ≤ the growth rate of g.′′ (A)

And, again, intuitively, f (n) = Ω(g(n)) means (approximately)

“the growth rate of f ≥ the growth rate of g.′′ (B)

So Definitions 6.3, 6.4, and 6.5 correspond to these three combinations: (A) and (B) is
Θ; (A) but not (B) is o; and (B) but not (A) is ω. But be careful! For a, b ∈ R, it’s true
that either a ≤ b or a ≥ b must be true. But it’s possible for both of the inequalities (A)
and (B) to be false! The functions g(n) = n2 and the function f (n) from Example 6.6 that
equals either n3 or n depending on the parity of n are an example of a pair of functions
for which neither (A) nor (B) is satisfied.

Taking it further: The real numbers satisfy the mathematical property of trichotomy (Greek: “di-
vision into three parts”): for a, b ∈ R, exactly one of {a < b, a = b, a > b} holds. Functions com-
pared asymptotically do not obey trichotomy: for two functions f and g, it’s possible for none of
{f = o(g), f = Θ(g), f = ω(g)} to hold.

Before we begin to apply asymptotic notation to the analysis of algorithms, we’ll
close this section with a few notes about the use (and abuse) of asymptotic notation.

Using asymptotics in arithmetic expressions
It is often convenient to use asymptotic notation in arithmetic expressions. We per-

mit ourselves to write something like O(n log n) + O(n3) = O(n3), which intuitively
means that, given functions that grow no faster than n log n and n3, their sum grows
no faster than n3 too. When asymptotic notation like O(n2) appears on the left-hand
side of an equality, we interpret it to mean an arbitrary unnamed function that grows
no faster than n2. For example, making log n calls to an algorithm whose running time
is O(n) requires log n · O(n) = O(n log n) time.

Using asymptotics with multiple variables
It will also occasionally turn out to be convenient to be able to write asymptotic

expressions that depend on more than one variable. Giving a precise technical def-
inition of multivariate asymptotic notation is a bit subtle, but the intuition precisely
matches the univariate definitions we’ve already given. We’ll use the notation g(n, m) =
O(f (n, m)) to mean “for all sufficiently large n and m, there exists a constant c such
that g(n, m) ≤ c · f (n, m).” For example, the function f (n, m) = n2 + 3m − 5 satisfies
f (n, m) = O(n2 + m).
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A common mistake and some meaningless language
There is a widespread—and incorrect—sloppy use of asymptotic notation: it is un-

fortunately common for people to use O(·) when they mean Θ(·). You will sometimes
encounter claims like:

“I prefer f to g, because f (n) = O(n2) and g(n) = O(n3).” (1)

But this statement doesn’t make sense: O(·) defines only an upper bound, so either of f
or g might grow more slowly than the other! Saying (1) is like saying

“Alice is richer than Bob,
because Alice has at most $1,000,000,000 and Bob has at most $1,000,000.” (2)

(Alice might be richer than Bob, but perhaps they both have twenty bucks each, or
perhaps Bob has $1,000,000 and Alice has nothing.) Use O(·) when you mean O(·), and
to use Θ(·) when you mean Θ(·)—and be aware that others may use O(·) improperly.
(And, gently, correct them if they’re doing so.)

There’s a related imprecise use of asymptotics that leads to statements that don’t
mean anything. For example, consider statements like “f (n) is at least O(n3)” or “f (n) is
at most Ω(n2).” These sentences have no meaning: they say “f (n) grows at least as fast
as at most as fast as n3” and “f (n) grows at most as fast as at least as fast as n2.” (?!?) Be
careful: use upper bounds as upper bounds, and use lower bounds as lower bounds!
Again, by analogy, consider the sentences Thanks to Tom

Wexler for suggest-
ing (5).“My weight is more than ≤ 100 kilograms” (3)

or “I am shorter than some person who is taller than 4 feet tall.” (4)
or “You could save up to 50% or more!” (5)

None of these sentences says anything!
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Computer Science Connections

Moore’s Law

In 1965, Gordon Moore, one of the co-founders of Intel, published an arti-
cle making a basic prediction—and it’s been reinterpreted many times—that
processing power would double roughly once every 18–24 months.2 (It’s 2 Gordon E. Moore. Cramming more

components onto integrated circuits.
Electronics, 38(8), April 1965.

been debated and revised over time, by, for example, interpreting “processing
power” as the number of transistors—the most basic element of a processor,
out of which logic gates like AND, OR, and NOT are built—rather than what
we can actually compute.) This prediction later came to be known as Moore’s
Law—it’s not a real “law” like Ohm’s Law or the Law of Large Numbers, of
course, but rather simply a prediction. That said, it’s proven to be a remark-
ably robust prediction: for something like 40 to 50 years, it has proven to be
a consistent guide to the massive increase in processing power for a typical
computer user over the last decades. (See Figure 6.7.)
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Figure 6.7: A plot of the number of
transistors per processor, for about 15
Intel brand processors introduced over
the last 50 years. (Data are from an
Intel press release celebrating the 40th
anniversary of the original publication
of Moore’s Law.) The dashed line
indicates the rate of growth we’d see if
the number of transistors per processor
doubled every two years (starting with
the Intel 4004 in 1971).

Claims that “Moore’s Law is just about to end!” have been made for many
decades—we’re beginning to run up against physical limits in the size of
transistors!—and yet Moore’s Law has still proven to be remarkably accurate
over time. Its imminent demise is still predicted today, and yet it’s still a pretty
good model of computing power.3 One probable reason that Moore’s Law has 3 Gordon E. Moore. No exponential is

forever: but “forever” can be delayed!
In International Solid-State Circuits
Conference, 2003.

held for as long as it has is a little bizarre: the repeated publicity surround-
ing Moore’s Law! Because chip manufacturing companies “know” that the
public generally expects processors to have twice as many transistors in two
years, these companies may actually be setting research-and-development tar-
gets based on meeting Moore’s Law. (Just as in a physical system, we cannot
observe a phenomenon without changing it!)
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6.2.3 Exercises

Part of the motivation for asymptotic analysis was that algorithms are typically analyzed ignoring constant factors.
Ignoring constant factors in analyzing an algorithm may seem strange: if algorithm A runs twice as fast as B, then A
is way faster! But the reason we care more about asymptotic running time is that even an improvement by a factor of 2
is quickly swamped by an asymptotic improvement for even slightly larger inputs. Here are a few examples:
6.1 Suppose that linear search can find an element in a sorted list of n elements in n steps on a par-
ticular machine. Binary search (perhaps not implemented especially efficiently) requires 100 log n steps. For
what values of n ≥ 2 is linear search faster?

Alice implements Merge Sort so, on a particular machine, it requires exactly ⌈8n log n⌉ steps to sort n elements. Bob
implements Heap Sort so it requires exactly ⌈5n log n⌉ steps to sort n elements. Charlie implements Selection Sort so it
requires exactly 2n2 steps to sort n elements. Suppose that Alice can sort 1000 elements in 1 minute.
6.2 How many elements can Bob sort in a minute? How many can Charlie sort in a minute?
6.3 What is the largest value of n that Charlie can sort faster than Alice?
6.4 Charlie, devastated by the news from the last exercise, buys a computer that’s twice the speed of
Alice’s. What is the largest value of n that Charlie can sort faster than Alice now?
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f (n) = 9n + 3

g(n) = 3n3 − n2
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Figure 6.8: Two sets
of functions, for
Exercises 6.5–6.11
and 6.12–6.14.

Let f (n) = 9n + 3 and let g(n) = 3n3 − n2. (See the first plot in
Figure 6.8.)
6.5 Prove that f (n) = O(n).
6.6 Prove that f (n) = O(n2).
6.7 Prove that f (n) = O(g(n)).
6.8 Prove that g(n) = O(n3).
6.9 Prove that g(n) = O(n4).
6.10 Prove that g(n) is not O(n2).
6.11 Prove that g(n) is not O(n3−ε), for any ε > 0.

Prove that the following functions are all O(n2). (See the
second plot in Figure 6.8.)
6.12 f (n) = 7n
6.13 g(n) = 3n2 + sin n
6.14 h(n) = 202

The next few exercises ask you to explore the definition of O(·) in a little more detail.
6.15 Suppose f (n) = O(g(n)). Explain why there are infinitely many choices of c and infinitely many
choices of n0 that satisfy the definition of O(·).

Consider two functions f , g : Z≥0 → Z≥0. We defined O(·) notation as follows:

• f (n) = O(g(n)) if there exist constants c > 0 and n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≤ c · g(n).

It turns out that both c and n0 are necessary to the definition. Define the following two pieces of alternative asymptotic
notation, leaving out c (using c = 1) and n0 (using n0 = 1) from the definition:

• f (n) = P(g(n)) if there exists a constant n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≤ g(n).
• f (n) = Q(g(n)) if there exists a constant c > 0 such that ∀n ≥ 1 : f (n) ≤ c · g(n).

Prove that P(·) and Q(·) are both different from O(·)—that is, we can’t just use either of the new definitions without
changing what we meant. Specifically, prove that there exist functions f and g such that . . .
6.16 . . . either (i) f = O(g) but f 6= P(g), or (ii) f 6= O(g) but f = P(g).
6.17 . . . either (i) f = O(g) but f 6= Q(g), or (ii) f 6= O(g) but f = Q(g).

The next several exercises ask you to prove some of properties of O(·) that we stated without proof earlier in the section.
(For a model of a proof of this type of property, see Lemma 6.1 and its proof in this section.)
6.18 Prove Lemma 6.2, the transitivity of O(·): if f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).

Prove Lemma 6.3: if f (n) = O(h1(n)) and g(n) = O(h2(n)), then . . .
6.19 . . . prove that f (n) + g(n) = O(h1(n) + h2(n)).
6.20 . . . prove that f (n) · g(n) = O(h1(n) · h2(n)).
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6.38 Prove or disprove: the all-zero function f (n) = 0 is the only function that is Θ(0).
6.39 Give an example of a function f (n) such that f (n) = Θ(f (n)2).

6.40 Let k ∈ Z≥0 be any constant. Prove that nk = o(n!).
6.41 Let f : Z≥0 → Z≥0 be an arbitrary function. Define the function g(n) = f (n) + 1. Prove that
g(n) = O(f (n)) if and only if f (n) = Ω(1).
6.42 Fill in each blank in the following table with an example of a function f that satisfies the stated
conditions, or argue that it’s impossible to satisfy both conditions:

f (n) is . . . o(n2) 6= o(n2)
. . . and ω(n2)
. . . and 6= ω(n2)

6.43 Let f and g be arbitrary functions. Prove that at most one of the three properties f (n) = o(g(n)) and
f (n) = Θ(g(n)) and f (n) = ω(g(n)) can hold.

6.44 Complete the proof in Example 6.6: prove that f (n) 6= Ω(n2), where f (n) is the function

f (n) =
{

n3 if n is even
n if n is odd.

Many of the properties of O(·) also hold for the other four asymptotic notions. Prove the following transitivity proper-
ties for arbitrary functions f , g, and h:
6.45 If f (n) = Ω(g(n)) and g(n) = Ω(h(n)), then f (n) = Ω(h(n)).
6.46 If f (n) = Θ(g(n)) and g(n) = Θ(h(n)), then f (n) = Θ(h(n)).
6.47 If f (n) = o(g(n)) and g(n) = o(h(n)), then f (n) = o(h(n)).

For each of the following purported properties related to symmetry, decide whether you think the statement is true or
false, and—in either case—prove your answer.
6.48 Prove or disprove: if f (n) = Ω(g(n)), then g(n) = Ω(f (n)).
6.49 Prove or disprove: if f (n) = Θ(g(n)), then g(n) = Θ(f (n)).
6.50 Prove or disprove: if f (n) = ω(g(n)), then g(n) = ω(f (n)).

Do the same for the following purported properties related to reflexivity:
6.51 Prove or disprove: f (n) = O(f (n)).
6.52 Prove or disprove: f (n) = Ω(f (n)).
6.53 Prove or disprove: f (n) = ω(f (n)).

6.54 Consider the false claim (FC-6.1) below, and the bogus proof that follows. Where, precisely, does
the proof of (FC-6.1) go wrong?

False Claim: The function f (n) = n2 satisfies f (n) = O(n). (FC-6.1)
Bogus proof of (FC-6.1). We proceed by induction on n:
base case (n = 1): Then n2 = 1. Thus f (1) = O(n) because 1 ≤ n for all n ≥ 1. (Choose c = 1 and n0 = 1.)

inductive case (n ≥ 2): Assume the inductive hypothesis—namely, assume that (n − 1)2 = O(n). We must
show that n2 = O(n). Here is the proof:

n2 = (n − 1)2 + 2n − 1 by factoring

= O(n) + 2n − 1 by the inductive hypothesis

= O(n) + O(n) by definition of O(·) and Lemma 6.3

= O(n).
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6.3 Asymptotic Analysis of Algorithms

If everything seems under control, you’re just not
going fast enough.

Mario Andretti (b. 1940)

The main reason that computer scientists are interested in asymptotic analysis is for
its application to the analysis of algorithms. When, for example, we compare different
algorithms that solve the same problem—say, Merge Sort, Selection Sort, and Insertion
Sort—we want to be able to give a meaningful answer to the question which algorithm is
the fastest? (And different inputs may trigger different behaviors in the algorithms un-
der consideration: when the input array is sorted, for example, Insertion Sort is faster
than Merge Sort and Selection Sort; when the input is very far from sorted, Merge Sort
is fastest. But typically we still would like to identify a single answer to the question of
which algorithm is the fastest.)

When evaluating the running time of an algorithm, we generally follow asymptotic
principles. Specifically, we will generally ignore constants in the same two ways that
O(·) and its asymptotic siblings do:

isPrime-tunedForDoubleDigits(n):
1: if n ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} then
2: return True
3: else if n ≤ 100 then
4: return False
5: else
6: return isPrime(n), from Figure 4.28.

Figure 6.10: A
trivially faster
algorithm for
testing primality.

• First, we don’t care much about what happens for
small inputs: there might be small special-case inputs for
which an algorithm is particularly fast, but this fast per-
formance on a few special inputs doesn’t mean that the
algorithm is fast in general. For example, consider the al-
gorithm for primality testing in Figure 6.10. Despite its speed
on a few special cases (n < 100), we wouldn’t consider
isPrime-tunedForDoubleDigits a faster algorithm for primality testing in general than
isPrime. We seek general answers to the question which algorithm is faster?, which leads
us to pay little heed to special cases.

• Second, we typically evaluate the running time of an algorithm not by measuring
elapsed time on the “wall clock,” but rather by counting the number of steps that the
algorithm takes to complete. (How long a program takes on your laptop, in terms of
the wall clock, is affected by all sorts of things unrelated to the algorithm, like whether
your virus checker is running while the algorithm executes.) We will generally ignore
multiplicative constants in counting the number of steps consumed by an algorithm.
One reason is so that we can give a machine-independent answer to the which algorithm
is faster? question; how much is accomplished by one instruction on an Intel processor
may be different from one instruction on an AMD processor, and ignoring constants
allows us to compare algorithms in a way that doesn’t depend on grungy details about
the particular machine.

Definition 6.6 (Running time of an algorithm on a particular input)
Consider an algorithm A and an input x. The running time of algorithm A on input x is
the number of primitive steps that A takes when it’s run on input x.

For example, we can consider the running time of the algorithm binarySearch on the
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input x = 〈[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31], 4〉. The precise number of primitive steps in
this execution depends on the particular machine on which the algorithm is being run,
but it involves successively comparing 4 to 13, then 5, then 2, and finally 3.

Taking it further: Definition 6.6 is intentionally vague about what a “primitive step” is, but it’s probably
easiest to think of a single machine instruction as a primitive step. That single machine instruction might
add or compare two numbers, increment a counter, return a value, etc. Different hardware systems
might have different granularity in their “primitive steps”—perhaps a Mac desktop can “do more”
in one machine instruction than an iPhone can do—but, as we just indicated, we’ll look to analyze
algorithms independently of this detail.

We typically evaluate an algorithm’s efficiency by counting asymptotically of the number of primitive
steps used by an algorithm’s execution, rather than by using a stopwatch to measure how long the
algorithm actually takes to run on a particular input on a particular machine. One reason is that it’s very
difficult to properly measure this type of performance; see p. 627 for some discussion about why.

In certain applications, particularly those in scientific computing (the subfield of CS devoted to pro-
cessing and analyzing real-valued data, where we have to be concerned with issues like accumulated
rounding errors in long calculations), it is typical to use a variation on asymptotic analysis. Calcu-
lations on integers are substantially cheaper than those involving floating point values; thus in this
field one typically doesn’t bother counting integer operations, and instead we only track floating point
operations, or flops. Because flops are substantially more expensive, often we’ll keep track of the constant
on the leading (highest-degree) term—for example, an algorithm might require 3

2 n2 + O(n log n) flops or
2n2 + O(n) flops. (We’d choose the former.)

6.3.1 Worst-Case Analysis

We will generally evaluate the efficiency of an algorithm A by thinking about its per-
formance as the input gets large: what happens to the number of steps consumed by A
as a function of the input size n? Furthermore, we generally assume the worst: when
we ask about the running time of an algorithm A on an input of size n, we are inter-
ested in the running time of A on the input of size n for which A is the slowest.

Definition 6.7 (Worst-case running time of an algorithm)
The worst-case running time of an algorithm A is

TA(n) = max
x:|x|=n

[
the number of primitive steps used by A on input x

]
.

We will be interested in the asymptotic behavior of the function TA(n).

When we perform worst-case analysis of an algorithm—analyzing the asymptotic behav-
ior of the function TA(n)—we seek to understand the rate at which the running time of
the algorithm increases as the input size increases. Because a primary goal of algorith-
mic analysis is to provide a guarantee on the running time of an algorithm, we will be
pessimistic, and think about how quickly A performs on the input of size n that’s the
worst for algorithm A.

Taking it further: Occasionally we will perform average-case analysis instead of worst-case analysis: we
will compute the expected (average) performance of algorithm A for inputs drawn from an appropriate
distribution. It can be difficult to decide on an appropriate distribution, but sometimes this approach
makes more sense than being purely pessimistic. See Section 6.3.2.

It’s also worth noting that using asymptotic, worst-case analysis can sometimes be misleading. There
are occasions in which an algorithm’s performance in practice is very poor despite a “good” asymptotic
running time—for example, because the multiplicative constant suppressed by the O(·) is massive. (And
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conversely: sometimes an algorithm that’s asymptotically slow in the worst case might perform very well
on problem instances that actually show up in real applications.) Asymptotics capture the high-level
performance of an algorithm, but constants matter too!

worst-case
running time

sample algorithm(s)

Θ(1) push/pop in a stack
Θ(log n) binary search
Θ(

√
n) isPrimeBetter (p. 454)

Θ(n) linear search, isPrime
Θ(n log n) merge sort
Θ(n2) selection sort, insertion sort, bubble sort
Θ(n3) naïve matrix multiplication
Θ(2n) brute-force satisfiability algorithm

Figure 6.11: The
running time
of some sample
algorithms.

Figure 6.11 shows a sampling of worst-case run-
ning times for a number of the algorithms you may
have encountered earlier in this book or in previous
CS classes. In the rest of this section, we’ll prove
some of these results as examples.

Some examples: sorting algorithms
We’ll now turn to a few examples of worst-case

analysis of several different sorting and searching
algorithms. We’ll start with three sorting algorithms, illustrated in Figure 6.13:

• Selection Sort: repeatedly find the minimum element in the unsorted portion of A;
then swap that minimum element into the first slot of the unsorted segment of A.

• Insertion Sort: maintain a sorted prefix of A (initially consisting only of the first
element); repeatedly expand the sorted prefix by one element, by continuing to swap
the first unsorted element backward in the array until it’s in place.

selectionSort(A[1 . . . n]):
1: for i := 1 to n:
2: minIndex := i
3: for j := i + 1 to n:
4: if A[j] < A[minIndex] then
5: minIndex := j
6: swap A[i] and A[minIndex]

Figure 6.12: Selec-
tion Sort.

• Bubble Sort: make n left-to-right passes through A; in
each pass, swap each pair of adjacent elements that are out of
order.

We’ll start our analysis with Selection Sort, whose pseu-
docode is shown in Figure 6.12. (The pseudocode for the
other algorithms will accompany their analysis.)

Example 6.7 (Selection Sort)
Problem: What is the worst-case running time of Selection Sort?

Solution: The outer for loop’s body (lines 2–6) is executed n times, once each for
i = 1 . . . n. We complete the body of the inner for loop (lines 4–5) a total of n − i
times in iteration i. Thus the total number of times that we execute lines 4–5 is

n
∑
i=1

n − i = n2 −
n
∑
i=1

i = n2 − n(n + 1)
2 = n2 − n

2 ,

where ∑n
i=1 i = n(n+1)

2 by Lemma 5.4.
Notice that the only variation in the running time of Selection Sort based on

the particular input array A[1 . . . n] is in line 5; the number of times that minIndex
is reassigned can vary from as low as 0 to as high as n − i. The remainder of the
algorithm behaves precisely identically regardless of the input array values.

Thus, for some constants c1 > 0 and c2 > 0 the total number of primitive steps
used by the algorithm is c1n + c2n2 (for lines 1, 2, 3, 4, and 6), plus some number
x of executions of line 5, where 0 ≤ x ≤ ∑n

i=1 n − i ≤ n2, each of which takes
a constant c3 number of steps. Thus the total running time is between c1n + c2n2

and c1n + (c2 + c3)n2. The asymptotic worst-case running time of Selection Sort is
therefore Θ(n2).
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3 5 2 1 4

1 5 2 3 4

1 2 5 3 4

1 2 3 5 4

1 2 3 4 5

(a) Selection Sort

3 5 2 1 4

3 5 2 1 4

2 3 5 1 4

1 2 3 5 4

1 2 3 4 5

(b) Insertion Sort

3 5 2 1 4
3 5 2 1 4
3 2 5 1 4
3 2 1 5 4
3 2 1 4 5
2 3 1 4 5
2 1 3 4 5
2 1 3 4 5
2 1 3 4 5
1 2 3 4 5

...
1 2 3 4 5

(c) Bubble Sort

Figure 6.13: Three
sorting algorithms
applied to the list
3, 5, 2, 1, 4. Selection
Sort repeatedly
finds the minimum
element in the
unsorted segment
and swaps it into
place. Insertion
Sort repeatedly
extends a sorted
prefix by swapping
the next element
backward into
position. Bubble
Sort repeatedly
compares adjacent
elements and swaps
them if they’re out
of order.

We are generally interested in the asymptotic performance of algorithms, so the
particular values of the constants c1, c2, and c3 from Example 6.7, which reflect the
number of primitive steps corresponding to each line of the pseudocode in Figure 6.12,
are irrelevant to our final answer. (One exception is that we may sometimes try to
count exactly the number of comparisons between elements of A, or swaps of elements
of A; see Exercises 6.55–6.63.)

insertionSort(A[1 . . . n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j − 1]:
4: swap A[j] and A[j − 1]
5: j := j − 1

Figure 6.14: Inser-
tion Sort.

We’ll now turn to our second sorting algorithm, Insertion
Sort (Figure 6.14). Insertion Sort proceeds by maintaining
a sorted prefix of the given array (initially the sorted prefix
consists only of the first element); it then repeatedly expands
the sorted prefix one element at a time, by continuing to
swap the first unsorted element backward.

Example 6.8 (Insertion Sort)
Insertion Sort is more sensitive to the structure of its input than Selection Sort: if A
is in sorted order, then the while loop in lines 3–5 terminates immediately (because
the test A[j] > A[j − 1] fails); whereas if the input array is in reverse sorted order, then
the while loop in lines 3–5 completes i − 1 iterations. In fact, the reverse-sorted array
is the worst-case input for Insertion Sort: there can be as many as i − 1 iterations of
the while loop, and there cannot be more than i − 1 iterations. If the while loop goes
through i − 1 iterations, then the total amount of work done is

n
∑
i=1

c + (i − 1)d = (c − d)n +
n
∑
i=1

id

= (c − d)n + d · n(n+1)
2

= (c − d
2 )n + d

2 n2,

where c and d are constants corresponding to the work of lines 1–2 and 3–5, respec-
tively. This function is Θ(n2), so Insertion Sort’s worst-case running time is Θ(n2).



6.3. ASYMPTOTIC ANALYSIS OF ALGORITHMS 621

bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: for j := 1 to n − i:
3: if A[j] > A[j + 1] then
4: swap A[j] and A[j + 1]

Figure 6.15: Bubble
Sort.

Finally, we will analyze a third sorting algorithm: Bubble
Sort (Figure 6.15), which makes n left-to-right passes through
the array; in each pass, adjacent elements that are out of
order are swapped. Bubble Sort is a very simple sorting algo-
rithm to analyze. (But, in practice, it is also a comparatively
slow sorting algorithm to run!)

Example 6.9 (Bubble Sort)
Bubble Sort simply repeatedly compares A[j] and A[j + 1] (swapping the two elements
if necessary) for many different values of j. Every time the body of the inner loop,
Lines 3–4, is executed, the algorithm does a constant amount of work: exactly one
comparison and either zero or one swaps. Thus there are two constants c > 0 and
d > 0 such that any particular execution of Lines 3–4 takes an amount of time t
satisfying c ≤ t ≤ d. Therefore the total running time of Bubble Sort is somewhere
between ∑n

i=1 ∑n−i
j=1 c and ∑n

i=1 ∑n−i
j=1 d. The summation ∑n

i=1 n − i is Θ(n2), precisely as
we analyzed in Example 6.7, and thus Bubble Sort’s running time is Ω(cn2) = Ω(n2)
and O(dn2) = O(n2). Therefore Bubble Sort is Θ(n2).

Problem-solving tip:
Precisely speak-
ing, the number
of primitive steps
required to execute,
for example, Lines
3–4 of Bubble Sort
varies based on
whether a swap
has to occur. In
Example 6.9, we
carried through the
analysis considering
two different con-
stants representing
this difference.
But, more sim-
ply, we could say
that Lines 3–4 of
Bubble Sort take
Θ(1) time, without
caring about the
particular constants.
You can use this
simpler approach
to streamline argu-
ments like the one
in Example 6.9.

Before we close, we’ll mention one more sorting algorithm, Merge Sort, which pro-
ceeds recursively by splitting the input array in half, recursively sorting each half, and
then “merging” the sorted subarrays into a single sorted array. But we will defer the
analysis of Merge Sort to Section 6.4: to analyze recursive algorithms like Merge Sort,
we will use recurrence relations which represent the algorithm’s running time itself as a
recursive function.

Some more examples: search algorithms
We will now turn to some examples of search algorithms, which determine whether

a particular value x appears in an array A. We’ll start with Linear Search (see Figure
6.16), which simply walks through the (possibly unsorted) array A and successively
compares each element to the sought value x.

linearSearch(A[1 . . . n], x):
Input: an array A[1 . . . n] and an element x
Output: is x in the (possibly unsorted) array A?
1: for i := 1 to n:
2: if A[i] = x then
3: return True
4: return False

Figure 6.16: Linear
Search.

Unless otherwise specified (and we will rarely specify
otherwise), we are interested in the worst-case behavior of
algorithms. This concern with worst-case behavior includes lower
bounds! Here’s an example of the analysis of an algorithm
that suffers from this confusion:

Example 6.10 (Linear Search, unsatisfactorily analyzed)
Problem: What is incomplete or incorrect in the following analysis of the worst-case

running time of Linear Search?
The running time of Linear Search is obviously O(n): we at most iterate over every
element of the array, performing a constant number of operations per element. And
it’s obviously Ω(1): no matter what the inputs A and x are, the algorithm certainly
at least does one operation (setting i := 1 in line 1), even if it immediately returns
because A[1] = x.
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Solution: The analysis is correct, but it gives a looser lower bound than can be shown:
specifically, the running time of Linear-Search is Ω(n), and not just Ω(1). If we call
linearSearch(A, 42) for an array A[1 . . . n] that does not contain the number 42,
then the total number of steps required by the algorithm will be at least n, because
every element of A is compared to 42. Performing n comparisons takes Ω(n) time.

Taking it further: When we’re analyzing an algorithm A’s running time, we can generally prove several
different lower and upper bounds for A. For example, we might be able to prove that the running time
is Ω(1), Ω(log n), Ω(n), O(n2), and O(n3). The bound Ω(1) is a loose bound, because it is superseded by the
bound Ω(log n). (That is, if f (n) = Ω(log n) then f (n) = Ω(1).) Similarly, O(n3) is a loose bound, because it
is implied by O(n2).

We seek asymptotic bounds that are as tight as possible—so we always want to prove f (n) = Ω(g(n))
and f (n) = O(h(n)) for the fastest-growing function g and slowest-growing function h that we can. If
g = h, then we have proven a tight bound, or, equivalently, that f (n) = Θ(g(n)). Sometimes there are
algorithms for which we don’t know a tight bound; we can prove Ω(n) and O(n2), but the algorithm
might be Θ(n) or Θ(n2) or Θ(n log n log log log n) or whatever. In general, we want to give upper and
lower bounds that are as close together as possible.

Here is a terser writeup of the analysis of Linear Search:

Example 6.11 (Linear Search)
The worst case for Linear Search is an array A[1 . . . n] that doesn’t contain the element
x. In this case, the algorithm compares x to all n elements of A, taking Θ(n) time.

binarySearch(A[1 . . . n], x):
Input: a sorted array A[1 . . . n]; an element x
Output: is x in the (sorted) array A?
1: lo := 1
2: hi := n
3: while lo ≤ hi:
4: middle := ⌊ lo+hi

2 ⌋
5: if A[middle] = x then
6: return True
7: else if A[middle] > x then
8: hi := middle − 1
9: else

10: lo := middle + 1
11: return False

(a) The code.

1
⌊

n+1
2

⌋
n

⌈n/2⌉ − 1 ⌊n/2⌋

When lo = 1 and hi = n, then
middle = ⌊(n + 1)/2⌋. Because
⌊(n + 1)/2⌋ = ⌈n/2⌉, there are
⌈n/2⌉ − 1 elements before middle and
⌊n/2⌋ elements after middle.

(b) An illustration of the split.

Figure 6.17: Binary
Search.

Binary Search (see Fig-
ure 6.17(a)) is another
search algorithm for locat-
ing a value x in an array
A[1 . . . n], if the array is
sorted. It proceeds by
defining a range of the
array in which x would be
found if it is present, and
then repeatedly halving
the size of that range by
comparing x to the middle
entry in that range. Let’s
analyze the running time of Binary Search.

Example 6.12 (Binary Search)
The intuition is fairly straightforward. In every iteration of the while loop in lines
3–10, we halve the range of elements under consideration—that is, | {i : lo ≤ i ≤ hi} |.
We can halve a set of size n only log2 n times before there’s only one element left,
and therefore we have at most 1 + log2 n iterations of the while loop. Each of those
iterations takes a constant amount of time, and therefore the total running time is
O(log n).
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To translate this intuition into a more formal proof, suppose that the range of
elements under consideration at the beginning of an iteration of the while loop is
A[lo, . . . , hi], which contains k = hi − lo + 1 elements. There are ⌈k/2⌉ − 1 elements in
A[lo, . . . , middle− 1] and ⌊k/2⌋ elements in A[middle + 1, . . . , hi]. Then, after comparing
x to A[middle], one of three things happens:

• we find that x = A[middle], and the algorithm terminates.

• we find that x < A[middle], and we continue on a range of the array that contains
⌈k/2⌉ − 1 ≤ k/2 elements.

• we find that x > A[middle], and we continue on a range of the array that contains
⌊k/2⌋ ≤ k/2 elements.

In any of the three cases, we have at most k/2 elements under consideration in the
next iteration of the loop. (See Figure 6.17(b).)

Initially, the number of elements under consideration has size n. Therefore after
i iterations, there are at most n/2i elements left under consideration. (This claim
can be proven by induction.) Therefore, after at most log2 n iterations, there is only
one element left under consideration. Once the range contains only one element,
we complete at most one more iteration of the while loop. Thus the total number of
iterations is at most 1 + log2 n. Each iteration takes a constant number of steps, and
thus the total running time is O(log n).

Notice that analyzing the running time of any single iteration of the while loop in
the algorithm was easy; the challenge in determining the running time of binarySearch
lies in figuring out how many iterations occur.

Here we have only shown an upper bound on the running time of Binary Search;
in Example 6.26, we’ll prove that, in fact, Binary Search takes Θ(log n) time. (Just as
for Linear Search, the worst-case input for Binary Search is an n-element array that
does not contain the sought value x; in this case, we complete all logarithmically many
iterations of the loops, and the running time is therefore Ω(log n) too.)

6.3.2 Some Other Types of Analysis

So far we have focused on asymptotically analyzing the worst-case running time of
algorithms. While this type of analysis is the one most commonly used in the analy-
sis of algorithms, there are other interesting types of questions that we can ask about
algorithms. We’ll sketch two of them in this section: instead of being completely pes-
simistic about the particular input that we get, we might instead consider either the
best possible case or the “average” case.

Best-case analysis of running time
Best-case running time simply replaces the “max” from Definition 6.7 with a “min”:
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Definition 6.8 (Best-case running time of an algorithm)
The best-case running time of an algorithm A on an input of size n is

Tbest
A (n) = min

x:|x|=n

[
the number of primitive steps used by A on input x

]
.

Best-case analysis is rarely used; knowing that an algorithm might be fast (on inputs

“Optimism, n. The
doctrine or belief
that everything is
beautiful, including
what is ugly.”
— Ambrose Bierce
(1842–≈1913), The
Devil’s Dictionary
(1911)

for which it is particularly well tuned) doesn’t help much in drawing generalizable
conclusions about its performance (on the input that it’s actually called on).

Average-case analysis of running time
The “average” running time of an algorithm A is subtler to state formally, because

“average” means that we have to have a notion of which values are more or less likely
to be chosen as inputs. (For example, consider sorting. In many settings, an already-
sorted array is the most common input type to the sorting algorithm; the programmer
just wanted to “make sure” that the input was sorted, even though he might have been
pretty confident that it already was.) The simplest way to do average-case analysis is
to consider inputs that are chosen uniformly at random from the space of all possible
inputs. For example, for sorting algorithms, we would consider each of the n! different
orderings of {1, 2, . . . , n} to be equally likely inputs of size n.

Definition 6.9 (Average-case running time of an algorithm)
Let X denote the set of all possible inputs to an algorithm A. The average-case running
time of an algorithm A for a uniformly chosen input of size n is

Tavg
A (n) = 1

| {y ∈ X : |y| = n} | · ∑
x∈X:|x|=n

[
number of primitive steps used by A on x

]
.

Taking it further: Let ρn be a probability distribution over {x ∈ X : |x| = n}—that is, let ρn be a function
such that ρn(x) denotes the fraction of the time that a size-n input to A is x. Definition 6.9 considers the
uniform distribution, where ρn(x) = 1/| {x ∈ X : |x| = n} |.

The average-case running time of A on inputs of size n is the expected running time of A for an input x
of size n chosen according to the probability distribution ρn. We will explore both probability distribu-
tions and expectation in detail in Chapter 10, which is devoted to probability. (If someone refers to the
average case of an algorithm without specifying the probability distribution ρ, then they probably mean
that ρ is the uniform distribution, as in Definition 6.9.)

We will still consider the asymptotic behavior of the best-case and average-case
running times, for the same reasons that we are generally interested in the asymptotic
behavior in the worst case.

Best- and average-case analysis of sorting algorithms
We’ll close this section with the best- and average-case analyses of our three sorting

algorithms. (See Figure 6.18 for a reminder of the algorithms.)
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case of Insertion Sort is virtually invisible along the x-axis. On the other hand, Fig-
ure 6.19(b) suggests that Selection Sort’s performance does not seem to depend very
much on the structure of its input. Let’s analyze this algorithm formally:

Example 6.14 (Selection Sort, best- and average-case)
In Selection Sort (see Figure 6.18), the only effect of the input array’s structure is the
number of times that line 5 is executed. (That’s why the reverse-sorted input tends
to perform ever-so-slightly worse in Figure 6.19(b).) Thus the best- and average-
case running time of Selection Sort is Θ(n2), just like the worst-case running time
established in Example 6.7.

Figure 6.19(c) suggests that Bubble Sort’s performance varies only by a constant factor;
indeed, the worst-, average-, and best-case running times are all Θ(n2):

Example 6.15 (Bubble Sort, best- and average-case)
Again, the only difference in running time based on the structure of the input array is
in how many times line 4 is executed—that is, how many swaps occur. (The number
of swaps ranges between 0 for a sorted array and n(n − 1)/2 for a reverse-sorted
array.) But line 3 is executed Θ(n2) times in any case, and Θ(n2) + 0 and Θ(n2) + n2 are
both Θ(n2).

More careful examination of Bubble Sort shows that we can improve the algorithm’s
best-case performance without affecting the worst- and average-case performance
asymptotically; see Exercise 6.65. 4

For some of the
research from
an architecture
perspective on
power-aware
computing, see
4 Stefanos Kaxi-
ras and Margaret
Martonosi. Com-
puter Architecture
Techniques for Power-
Efficiency. Morgan
Claypool, 2008.

Taking it further: The tools from this chapter can be used to analyze the consumption of any resource
by an algorithm. So far, the only resource that we have considered is time: how many primitive steps are
used by the algorithm on an particular input? The other resource whose consumption is most commonly
analyzed is the space used by the algorithm—that is, the amount of memory used by the algorithm.
As with time, we almost always consider the worst-case space use of the algorithm. See the discussion
on p. 628 for more on the subfield of CS called computational complexity, which seeks to understand the
resources required to solve any particular problem.

While time and space are the resources most frequently analyzed by complexity theorists, there are
other resources that are interesting to track, too. For example, randomized algorithms “flip coins” as they
run—that is, they make decisions about how to continue based on a randomly generated bit. Generating
a truly random bit is expensive, and so we can view randomness itself as a resource, and try to mini-
mize the number of random bits used. And, particularly in mobile processors, power consumption—and
therefore the amount of battery life consumed, and the amount of heat generated—may be a more lim-
iting resource than time or space. Thus energy can also be viewed as a resource that an algorithm might
consume.4
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Computer Science Connections

Time, Space, and Complexity

Computational complexity is the subfield of computer science devoted to the
study of the resources required to solve computational problems. Computa-
tional complexity is the domain of the most important open question in all
of computer science, the P-versus-NP problem. That problem is described
elsewhere in this book (see p. 326), but here we’ll describe some of the basic
entities that are studied by complexity theorists.

A complexity class is a set of problems that can be solved using a given
constraint on resources consumed. Those resources are most typically the
time or space used by an algorithm that solves the problem. For example, the
complexity class EXPTIME includes precisely those problems solvable in
exponential time—that is, O(2nk ) time for some constant integer k.

One of the most important complexity classes is P, which denotes the set of
all problems Π for which there is a polynomial-time algorithm A that solves
Π. In other words,

Π ∈ P ⇔ there exists an algorithm A and an integer k ∈ Z≥0 such that
A solves Π and the worst-case running time of A on an input of size n is O(nk).

Although the practical efficiency of an algorithm that runs in time Θ(n1000) is
highly suspect, it has turned out that essentially any (non-contrived) problem
that has been shown to be in P has actually also had a reasonably efficient
algorithm—almost always O(n5) or better. As a result, one might think of
the entire subfield of CS devoted to algorithms as really being devoted to
understanding what problems can be solved in polynomial time. (Of course,
improving the exponent of the polynomial is always a goal!)

Other commonly studied complexity classes are defined in terms of the

EXPSPACE

EXPTIME

PSPACE

P

L

Figure 6.21: A few complexity classes,
and their relationships.

space (memory) that they use:

• PSPACE: problems solvable using a polynomial amount of space;
• L: problems solvable using O(log n) space (beyond the input itself); and
• EXPSPACE: problems solvable in exponential space.

While a great deal of effort has been devoted to complexity theory over the
last half century, surprisingly little is known about how much time or space
is actually required to solve problems—including some very important prob-
lems! It is reasonably easy to prove the relationships among the complexity
classes shown in Figure 6.21, namely

L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.

Although the proofs are trickier, it has also been known since the 1960s that
P 6= EXPTIME (using the “time hierarchy theorem”), and that both L 6=
PSPACE and PSPACE 6= EXPSPACE (using the “space hierarchy theorem”).
But that’s just about all that we know about the relationship among these
complexity classes! For example, for all we know L = P or P = PSPACE—
but not both, because we do know that L 6= PSPACE. These foundational
complexity-theoretic questions remain open—awaiting the insights of a new
generation of computer scientists!5

For more, see any good textbook on
computational complexity (also known
as complexity theory). For example,
5 Michael Sipser. Introduction to the The-
ory of Computation. Course Technology,
3rd edition, 2012; and Christos H. Pa-
padimitriou. Computational Complexity.
Addison Wesley, 1994.
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6.3.3 Exercises

selectionSort(A[1 . . . n]):
1: for i := 1 to n:
2: minIndex := i
3: for j := i + 1 to n:
4: if A[j] < A[minIndex] then
5: minIndex := j
6: swap A[i] and A[minIndex]

insertionSort(A[1 . . . n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j − 1]:
4: swap A[j] and A[j − 1]
5: j := j − 1

bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: for j := 1 to n − i:
3: if A[j] > A[j + 1] then
4: swap A[j] and A[j + 1]

Figure 6.22: An-
other reminder of
the sorting algo-
rithms.

A comparison-based sorting algorithm reorders its input array A[1 . . . n] with two
fundamental operations:

• the comparison of a pair of elements (to determine which one is bigger); and
• the swap of a pair of elements (to exchange their positions in the array).

See Figure 6.22 for another reminder of three comparison-based sorting algorithms:
Selection, Insertion, and Bubble Sorts. For each of the following problems, give an
exact answer (not an asymptotic one), and prove your answer. For the worst-case
input array of size n, how many comparisons are done by these algorithms?
6.55 selectionSort
6.56 insertionSort
6.57 bubbleSort

We’ll now turn to counting swaps. In these exercises, you should count as a “swap”
the exchange of an element A[i] with itself. (So if i = minIndex in Line 6 of
selectionSort, Line 6 still counts as performing as swap.) For the worst-case input
array of size n, how many swaps are done by these algorithms?
6.58 selectionSort
6.59 insertionSort
6.60 bubbleSort

Repeat the previous exercises for the best-case input: that is, for the input array
A[1 . . . n] on which the given algorithm performs the best, how many compar-
isons/swaps does the algorithm do? (If the best-case array for swaps is different from
the best-case array for comparisons, say so and explain why, and analyze the number of comparisons/swaps in the two
different “best” arrays.) In the best case, how many comparisons and how many swaps are done by these algorithms?
6.61 selectionSort
6.62 insertionSort
6.63 bubbleSort

early-stopping-bubbleSort(A[1 . . . n]):
1: for i := 1 to n:
2: swapped := False
3: for j := 1 to n − i:
4: if A[j] > A[j + 1] then
5: swap A[j] and A[j + 1]
6: swapped := True
7: if swapped = False then
8: return A

forward-backward-bubbleSort(A[1 . . . n]):
1: Construct R[1 . . . n], the reverse of A, where

R[i] := A[n − i + 1] for each i.
2: for i := 1 to n:
3: Run one iteration of lines 2–8 of

early-stopping-bubbleSort on A.
4: Run one iteration of lines 2–8 of

early-stopping-bubbleSort on R.
5: if either A or R is now sorted then
6: return whichever is sorted

Figure 6.23: Bubble
Sort, improved.

Two variations of the basic bubbleSort algorithm are shown in Figure 6.23. In the
next few exercises, you’ll explore whether they’re asymptotic improvements.
6.64 What’s the worst-case running time of
early-stopping-bubbleSort?
6.65 Show that the best-case running time of
early-stopping-bubbleSort is asymptotically better than the best-case
running time of bubbleSort.

6.66 Show that the running time of forward-backward-bubbleSort
on a reverse-sorted array A[1 . . . n] is Θ(n). (The reverse-sorted input is the
worst case for both bubbleSort and early-stopping-bubbleSort.)

Prove that the worst-case running time of forward-backward-bubbleSort is . . .
6.67 . . . O(n2).
6.68 . . . Ω(n2) (despite the apparent improvement!). To
prove this claim, explicitly describe an array A[1 . . . n] for which
early-stopping-bubbleSort performs poorly—that is, in Ω(n2) time—on
both A and the reverse of A.
6.69 (programming required) Implement the three versions of Bubble
Sort (including the two in Figure 6.23) in a programming language of your
choice.
6.70 (programming required) Modify your implementations from Ex-
ercise 6.69 to count the number of swaps and comparisons each algorithm
performs. Then run all three algorithms on each of the 8! = 40,320 different orderings of the elements
{1, 2, . . . , 8}. How do the algorithms’ performances compare, on average?
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countingSort(A[1 . . . n]):
// assume each A[i] ∈ {1, 2, . . . , k}

1: for v := 1 to k:
2: count[v] := 0
3: for i := 1 to n:
4: count[A[i]] := count[A[i]] + 1
5: i := 1
6: for v := 1 to k:
7: for t := 1 to count[v]:
8: A[i] := v
9: i := i + 1

Figure 6.24: Count-
ing Sort.

In Chapter 9, we will meet a sorting algorithm called Counting Sort that
sorts an array A[1 . . . n] where each A[i] ∈ {1, 2, . . . , k} as follows:
for each possible value x ∈ {1, 2, . . . , k}, we walk through A to compute
cx := | {i : A[i] = x} |. (We can compute all k values of c1, . . . , ck in a single
pass through A.) The output array consists of c1 copies of 1, followed by
c2 copies of 2, and so forth, ending with ck copies of k. (See Figure 6.24.)
Counting sort is particularly good when k is small.
6.71 In terms of n, what is the worst-case running time of
countingSort on an input array of n letters from the alphabet (so
k = 26, and n is arbitrary)?
6.72 (programming required) Implement Counting Sort and one
of the Θ(n2)-time sorting algorithms from this section. Collect some
data to determine, on a particular computer, for what values of k you’d generally prefer Counting Sort over
the Θ(n2)-time algorithm when n = 4096 = 212 elements are each chosen uniformly at random from the set
{1, 2, . . . , k}.
6.73 Radix Sort is a sorting algorithm based on Counting Sort that proceeds by repeatedly applying
Counting Sort to the ith-most significant bit in the input integers, for increasing i. Do some online research
to learn more about Radix Sort, then write pseudocode for Radix Sort and compare its running time (in
terms of n and k) to Counting Sort.

quickSort(A[1 . . . n]):
1: if n ≤ 1 then
2: return A
3: else
4: Choose pivotIndex ∈ {1, . . . , n}, somehow.
5: Let less (those elements smaller than A[pivotIndex]),

same and greater be empty arrays.
6: for i := 1 to n:
7: compare A[i] to A[pivotIndex], and append A[i] to

the appropriate array less, same, or greater.
8: return quickSort(less) + same + quickSort(greater).

Figure 6.25: A high-
level reminder of
Quick Sort.

In Example 5.14, we proved the correctness of Quick Sort, a recursive
sorting algorithm (see Figure 6.25 for a reminder, or Figure 5.20(a) for more
detail). The basic idea is to choose a pivot element of the input array A, then
partition A into those elements smaller than the pivot and those elements
larger than the pivot. We can then recursively sort the two “halves” and
paste them together, around the pivot, to produce a sorted version of A. The
algorithm performs very well if the two “halves” are genuinely about half the
size of A; it performs very poorly if one “half” contains almost all the elements
of A. The running time of the algorithm therefore hinges on how we select the
pivot, in Line 4. (A very good choice of pivot is actually a random element of
A, but here we’ll think only about deterministic rules for choosing a pivot.)
6.74 Suppose that we always choose pivotIndex := 1. (That is, the
first element of the array is the pivot value.) Describe (for an arbitrary
n) an input array A[1 . . . n] that causes quickSort under this pivot rule to make either less or greater empty.
6.75 Argue that, for the array you found in Exercise 6.74, the running time of Quick Sort is Θ(n2).
6.76 Suppose that we always choose pivotIndex := ⌊n/2⌋. (That is, the middle element of the array is
the pivot value.) What input array A[1 . . . n] causes worst-case performance (that is, one of the two sides of
the partition—less or greater—is empty) for this pivot rule?
6.77 A fairly commonly used pivot rule is called the Median of Three rule: we choose pivotIndex ∈
{1, ⌊n/2⌋ , n} so that A[pivotIndex] is the median of the three values A[1], A[⌊n/2⌋], and A[n]. Argue that
there is still an input array of size n that results in Ω(n2) running time for Quick Sort.

early-stopping-linearSearch(A[1 . . . n], x):
1: for i := 1 to n:
2: if A[i] = x then
3: return True
4: else if A[i] < x then
5: return False
6: return False

countZ(s):
1: z := 0
2: while there exists i such that si = Z:
3: z := z + 1
4: remove si from s

(that is, set s := s1 . . . si−1si+1 . . . sn)
5: return z

Figure 6.26: Lin-
ear Search and
counting ZZZs.

6.78 Earlier we described a linear-search algorithm that looks
for an element x in an array A[1 . . . n] by comparing x to A[i] for each
i = 1, 2, . . . n. (See Figure 6.16.) But if A is sorted, we can determine
that x is not in A earlier, as shown in Figure 6.26: once we’ve passed
where x “should” be, we know that it’s not in A. (Our original version
omitted lines 4–5.) What is the worst-case running time of the early-
stopping version of linear search?

6.79 Consider the algorithm in Figure 6.26 for counting the
number of times the letter Z appears in a given string s. What is the
worst-case running time of this algorithm on an input string of length
n? Assume that testing whether Z is in s (line 2) and removing a letter
from s (line 4) both take c · |s| time, for some constant c.
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6.4 Recurrence Relations: Analyzing Recursive Algorithms

Democracy is the recurrent suspicion that more than
half of the people are right more than half the time.

E. B. White (1899–1985)

The nonrecursive algorithms in Section 6.3 could be analyzed by simple counting
and manipulation of summations. First we figured out the number of iterations of
each loop, and then figured out how long each iteration takes. By summing this work
over the iterations and simplifying the summation, we were able to compute the run-
ning time of the algorithm. Determining the running time of a recursive algorithm is
harder. Instead of merely containing loops that can be analyzed as above, the algo-
rithm’s running time on an input of size n depends on the same algorithm’s running
time for inputs of size smaller than n.

mergeSort(A[1 . . . n]):
1: if n = 1 then
2: return A
3: else
4: L := mergeSort(A[1 . . .

⌊ n
2
⌋
])

5: R := mergeSort(A[
⌊ n

2
⌋

+ 1 . . . n])
6: return merge(L, R)

Figure 6.27: Merge
Sort. The merge
function takes
two sorted arrays
and combines
them into a single
sorted array. (See
Exercise 5.72 or
6.100.)

We’ll use the classical recursive sorting algorithm Merge
Sort (Figure 6.27) as an example. Merge Sort sorts an array
by recursively sorting the first half, recursively sorting the
second half, and finally “merging” the resulting sorted lists.
(On an input array of size 1, Merge Sort just returns the array
as is.) You’ll argue in Exercise 6.100 that merging two n

2 -
element arrays takes Θ(n) time, but what does that mean for the overall running time
of Merge Sort? We can think about Merge Sort’s running time by drawing a picture of
all of the work that is done in its execution, in the form of a recursion tree:

Definition 6.10 (Recursion tree)
The recursion tree for a recursive algorithm A is a tree that shows all of the recursive calls
spawned by a call to A on an input of size n. Each node in the tree is annotated with the
amount of work, aside from any recursive calls, done by that call.

Figure 6.28 shows the recursion tree for Merge Sort. For ease, we will assume that
n is an exact power of 2. We denote by c · n the amount of time needed to process an
n-element array aside from the recursive calls—that is, the time to split and merge.
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Figure 6.28: The
recursion tree for
Merge Sort. The
size of the input
itself is shown
in the shaded
square node; the
Θ(n) amount of
time required
for splitting and
merging an n-
element input is
shown in the oval
adjacent to that
node, as c · n.
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There are many different ways to analyze the total amount of work done by Merge
Sort on an n-element input array, but one of the easiest is to use the recursion tree:

Example 6.16 (Analyzing Merge Sort via recursion tree)
Problem: How quickly does Merge Sort run on an n-element input array? (Assume

that n is a power of two.)

Solution: The total amount of work done by Merge Sort is precisely the sum of the
circled values contained in the tree. (At the root, by definition the total work aside
from the recursive calls is c · n; inductively, the work done in the recursive calls is
the sum of the circled values in the left and right subtrees.)

The easiest way to sum up the work in the tree is to sum “row-wise.” (See Fig-
ure 6.29.) The first “row” of the tree (one call on an input of size n) generates cn
work. The second row (two calls on inputs of size n/2) generates 2 · (cn/2) = cn
work. The third row (four calls on inputs of size n/4) generates 4 · (cn/4) = cn
work. In general, row #k of the tree contains 2k−1 calls on inputs of size n/2k−1,
and generates 2k−1 · c · n/2k−1 = cn work—that is, the work at the kth level of the
tree is cn, independent of the value of k.

There are 1 + log2 n rows in the tree, and so the total work in this tree is

1+log2 n

∑
k=1

2k−1 · c · n
2k−1 =

1+log2 n

∑
k=1

cn

= cn(1 + log2 n)

and thus is Θ(n log n) in total.

Taking it further: Here’s a different argument as to why Merge Sort requires Θ(n log n) time: every
element of the input array is merged once in an array of size 1, once in an array of size 2, once in an array
of size 4, once in an array of size 8, etc. So each element is merged log2 n times, so thus the total work is
Θ(n · log2 n).
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1 · cn = cn.

2 · (cn/2) = cn.

4 · (cn/4) = cn.

n · (c) = cn.

Figure 6.29: The
row-wise sum
of the tree in
Figure 6.28.
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6.4.1 Recurrence Relations

Recursion trees are an excellent way to gain intuition about the running time of a
recursive algorithm, and to analyze it. We now turn to another way of thinking about
recursion trees, which suggests a rigorous (and in many ways easier to use) approach
to analyzing recursive algorithms: the recurrence relation. Because at least one of the
steps in a recursive algorithm A is to call A on a smaller input, the running time of A
on an input of size n depends on A’s running time for inputs of size smaller than n.
We will therefore express A’s running time recursively, too:

A recurrence re-
lation is called a
recurrence relation
because T recurs
(“occurs again”)
on the right-hand
side of the equation.
That’s the same rea-
son that recursion is
called recursion.

Definition 6.11 (Recurrence relation)
A recurrence relation (sometimes simply called a recurrence) is a function T(n) that is
defined (for some n) in terms of the values of T(k) for input values k < n.

Here’s a first example, about compounding interest in a bank account:

Example 6.17 (Compound interest)
Suppose that, in year #0, Alice puts $1000 in a bank account that pays 2% annual
compound interest. Writing A(n) to denote the balance of Alice’s account in year #n,
we have

A(0) = 1000 A(n) = 1.02 · A(n − 1).

If Bob opens a bank account with the same interest rate, and deposits $10 into the
account each year (starting in year #0), then Bob’s balance is given by the recurrence

B(0) = 10 B(n) = 1.02 · B(n − 1) + 10.

fact(n):
1: if n = 1 then
2: return 1
3: else
4: return n · fact(n − 1)

Figure 6.30: A
recursive algorithm
for factorial.

In computer science, the most common type of recurrence
relation that we’ll encounter is one where T(n) denotes the
worst-case number of steps taken by a particular recursive
algorithm on an input of size n. Here are a few examples:

Example 6.18 (Factorial)
Let T(n) denote the worst-case running time of fact (Figure 6.30). Then:

T(1) = d
T(n) = T(n − 1) + c

where c is a constant denoting the work of the comparison–conditional–
multiplication–return, and d is a constant denoting the work of the comparison–
conditional–return.
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Example 6.19 (Merge Sort)
Let T(n) denote the worst-case running time of Merge Sort (Figure 6.27) on an input
array containing n elements. Then, for a constant c, we have:

T(1) = c
T(n) = T(⌊ n

2 ⌋) + T(⌈ n
2 ⌉) + cn.

Just as for nonrecursive algorithms, we will generally be interested in the asymptotic
running times of these recursive algorithms, so we will usually not fret about the par-
ticular values of the constants in recurrences. We will often abuse notation and use a
single constant to represent different Θ(1)-time operations, for example.

binarySearch(A[1 . . . n], x):
1: if n ≤ 0 then
2: return False
3: middle := ⌊ 1+n

2 ⌋
4: if A[middle] = x then
5: return True
6: else if A[middle] > x then
7: return binarySearch(A[1 . . . middle − 1], x)
8: else
9: return binarySearch(A[middle + 1 . . . n], x)

Figure 6.31: Binary
Search, recursively.

In Example 6.19, for instance, we are being sloppy in our
recurrence, using a single variable c to represent two dif-
ferent values. The use of one constant to have two different
meanings (plus the ‘=’ sign) is an abuse of notation, but
when we care about asymptotic values, this abuse doesn’t
matter. We will even sometimes write 1 to stand for this
constant. (See Exercise 6.126.)

Here’s another recurrence relation, for the recursive
version of Binary Search:

Example 6.20 (Binary Search)
Let T(n) denote the worst-case running time of the recursive binarySearch (Fig-
ure 6.31) on an n-element array. Then:

T(0) = c

T(n) =
{

T( n
2 ) + c if n is even

T( n−1
2 ) + c if n is odd.

Although our interest in recurrence relations will be almost exclusively about the
running times of recursive algorithms, there are other interesting recurrence relations,
too. The most famous of these is the recurrence for the Fibonacci numbers (which will
turn out to have some interesting CS applications, too):

Example 6.21 (Fibonacci numbers)
The Fibonacci numbers are defined by

f1 = 1
f2 = 1
fn = fn−1 + fn−2 for n ≥ 3

The first several Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . ..
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6.4.2 Solving Recurrences: Induction

When we solve a recurrence relation, we find a closed-form (that is, nonrecursive)
equivalent expression. Because recurrence relations are recursively defined quantities,
induction is the easiest way to prove that a conjectured solution is correct. (The hard
part is figuring out what solution to conjecture, as we’ll see.)

In the remainder of this section, we will solve all of the recurrences from Sec-
tion 6.4.1—starting with Alice and Bob and their bank accounts:

Example 6.22 (Compound interest)
Recall the recurrences from Example 6.17:

A(0) = 1000 A(n) = 1.02 · A(n − 1) (Alice)

B(0) = 10 B(n) = 1.02 · B(n − 1) + 10. (Bob)

The recurrence for Alice is the easier of the two to solve: we can prove relatively
straightforwardly by induction that A(n) = 1000 · 1.02n for any n ≥ 1.

For Bob, the analysis is a little trickier. Here’s some intuition: at time n, Bob has
had $10 sitting in his account since year #0 (earning interest for n years); $10 in his
account since year #1 (earning interest for n − 1 years); etc. A $10 deposit that has
accumulated interest for i years has, as with Alice, grown to 10 · 1.02i. Thus the total
amount of money in Bob’s account in year #n will be

n
∑
i=0

[
10 · 1.02i

]
= 10 ·

[
n
∑
i=0

1.02i
]

= 10 · 1.02n+1 − 1
1.02− 1 = 510 · 1.02n − 500

where the second equality follows from Theorem 5.2 (the analysis of a geometric
series). Let’s prove the property that B(n) = 510 · 1.02n − 500, by induction on n:

base case (n = 0): Then B(0) = 10, and indeed 510 · 1.020 − 500 = 510− 500 = 10.
inductive case (n ≥ 1): We assume the inductive hypothesis B(n − 1) =

510 · 1.02n−1 − 500; we must show that B(n) = 510 · 1.02n − 500. Then:

B(n) = 1.02 · B(n − 1) + 10 definition of B(n)

= 1.02 ·
[
510 · 1.02n−1 − 500

]
+ 10 inductive hypothesis

= 1.02 · 510 · 1.02n−1 − 1.02 · 500 + 10 multiplying through

= 510 · 1.02n − 510 + 10 simplifying

= 510 · 1.02n − 500,

precisely as desired.

Taking it further: As Example 6.22 suggests, some familiar kinds of summations like arithmetic and
geometric series can be expressed using recurrence relations. Other familiar summations can also
be expressed using recurrence relations; for example, the sum of the first n integers is given by the
recurrence T(1) = 1 and T(n) = T(n − 1) + n. (See Section 5.2 for some closed-form solutions.)
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Factorial n
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Figure 6.32: The
(agonizingly
simple) recursion
tree for fact.

One good way to generate a conjecture that we then prove correct by induction is
by “iterating” the recurrence: expand out a few layers of the recursion to see what the
values of T(n) are for a few small values of n. We’ll illustrate this technique with the
simplest recurrence from the last section, for the recursive factorial function.

Problem-solving
tip: Try iterating
a recurrence to
generate its first
few values. Once
we have a few
values, we can often
conjecture a general
solution (which we
then prove correct
via induction).

Example 6.23 (Factorial)
Problem: Recall the recurrence from Example 6.18:

T(1) = d T(n) = T(n − 1) + c.

Give an exact closed-form (nonrecursive) solution for T(n).

Solution: See Figure 6.32 for the recursion tree, which may help give some intuition.
Let’s iterate the recurrence a few times:

• T(1) = d
• T(2) = c + T(1) = c + d
• T(3) = c + T(2) = 2c + d
• T(4) = c + T(3) = 3c + d.

From these small values, we conjecture that T(n) = (n − 1)c + d.
Let’s prove this conjecture correct by induction. For the base case (n = 1), we

have T(1) = d by definition of the recurrence, which is 0 · c + d, as desired. For the
inductive case, assume the inductive hypothesis T(n − 1) = (n− 2)c + d. We want to
show that T(n) = (n − 1)c + d. Here’s the proof:

T(n) = T(n − 1) + c by definition of the recurrence

= (n − 2)c + d + c by the inductive hypothesis

= (n − 1)c + d. by algebraic manipulation

Thus T(n) = (n − 1)c + d.

Merge Sort
Recall the Merge Sort recurrence, where T(n) = T(⌈ n

2 ⌉) + T(⌊ n
2 ⌋) + cn and T(1) = c.

It will be easier to address the case in which n is an exact power of 2 first (so that the
floors and ceilings don’t complicate the picture), so we’ll start with that case first, and
generalize later:

Example 6.24 (Merge Sort, for powers of 2)
Problem: Recall the Merge Sort recurrence from Example 6.19:

T(1) = c T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + cn.

For convenience, assume that n is an exact power of two. Give an exact closed-
form (nonrecursive) solution for T(n).
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Solution: Because n is an exact power of two, we can write n = 2k for some k ∈ Z≥0.
(Note that for n = 2k we have ⌈ n

2 ⌉ = ⌊ n
2 ⌋ = n

2 = 2k−1.) Define R(k) = T(2k); then
R(0) = T(1) = c and R(k) = T(2k) = 2 · T(2k−1) + c · 2k = 2 · R(k − 1) + c · 2k, so we can
instead solve the recurrence

R(0) = c R(k) = 2 · R(k − 1) + c · 2k.

Iterating R a few times, we see

• R(0) = c
• R(1) = c · 21 + 2 · R(0) = 4c
• R(2) = c · 22 + 2 · R(1) = 12c
• R(3) = c · 23 + 2 · R(2) = 32c

We conjecture

R(k) = (1 + k)2k · c (∗)

(How might we get to this conjecture? The pattern from iterating R matches
it. Alternatively, looking at the recursion tree might help: there are k + 1 levels of
the tree, and there are 2k−i copies of 2i · c work in the ith row of the tree—so that’s
(k + 1)2k−i2ic = (k + 1)2kc. Or, we’d expect a solution that’s the product of ≈ k and
≈ 2k so that we get T(n) ≈ n log n. And if we check the k = 0 case—R(0) = 1—it
looks like we’d better multiply by k + 1 rather than k.)

Let’s prove (∗), by induction on k. In the base case, R(0) = c and indeed we have
that (1 + 0)20 · c = 1 · 1 · c. In the inductive case, we have

R(k) = 2R(k − 1) + c · 2k by definition of the recurrence

= 2(1 + k − 1)2k−1 · c + c · 2k by the inductive hypothesis

= 2k · 2k−1 · c + 2k · c
= (k + 1)2k · c.

Thus R(k) = (k + 1)2k · c, completing the inductive case—and the proof of (∗).

Because we defined R(k) = T(2k), we can conclude that T(n) = R(log2 n), by
substituting. Thus T(n) = (1 + log2 n) · 2log2 n · c = n(1 + log2 n) · c.

Problem-solving tip:
A useful technique
for solving recur-
rences is to do a
variable substitution.
If you can express
the recurrence in
terms of a different
variable and solve
the new recurrence
easily, you can then
substitute back
into the original
recurrence to solve
it. Transforming an
unfamiliar recur-
rence into a familiar
one will make life
easy!

Thinking only about powers of two in Example 6.24 made our life simpler, but it
leaves a hole in the analysis: what is the running time of Merge Sort when the input
array’s length is not precisely a power of two? The more general analysis is actually
simple, given the result we just derived:

Example 6.25 (Merge Sort, for general n)
Problem: Solve the Merge Sort recurrence (asymptotically), for any integer n ≥ 1:

T(1) = c T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + cn.
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Solution: We’ll use the fact that T(n) ≥ T(n′) if n ≥ n′—that is, T is monotonic. (See
Exercise 6.101.) So let k be the nonnegative integer such that 2k ≤ n < 2k+1. Then

T(n) ≥ T(2k) monotonicity

= ((log2 2k) + 1)2k · c Example 6.24

> (log2
n
2 + 1) · n

2 · c. definition of k: we have n
2 < 2k

Thus we know T(n) = Ω(n log n). Similarly,

T(n) < T(2k+1) monotonicity

= ((log2 2k+1) + 1)2k+1 · c Example 6.24

≤ (log2 2n + 1) · 2n · c. definition of k: we have 2n ≥ 2k+1

Thus T(n) = O(n log n). Combining these facts yields that T(n) = Θ(n log n).

Binary Search
There is a very simple intuitive argument for why Binary Search takes logarithmic

time, which we used in Example 6.12:

In the worst case, when the sought item x isn’t in the array, we repeatedly compare x to
the middle of the valid range of the array, and halve the size of that valid range. We can
halve an n-element range exactly log2 n times, and thus the running time of Binary Search
is logarithmic.

While this intuitive argument is plausible, there’s a subtle but nontrivial issue: the so-
called “halving” in this description isn’t actually exactly halving. If there are n elements
in the valid range, then after comparing x to the middle element of the range, we will
end up with a valid range of size either n

2 or n−1
2 , depending on the parity of n—not

exactly n
2 . (We have already shown that Binary Search’s worst-case running time is

O(log n), in Example 6.12, because if there are n elements in the valid range, then after
so-called halving we end up with a valid range of size at most n

2 . The issue here is
that we have not ruled out the possibility that the running time might be faster than
Θ(log n), because we’ve “better-than-halved” at every stage.)

We can resolve this issue by rigorously analyzing the correct recurrence relation—
and we can prove that the running time is in fact Θ(log n).

Example 6.26 (Binary Search)
Problem: Solve the Binary Search recurrence:

T(0) = 1 T(n) =
{

T( n
2 ) + 1 if n is even

T( n−1
2 ) + 1 if n is odd.

(Note that we’ve changed the additive constants to 1 instead of c; changing it back
to c would only have the effect of multiplying the entire solution by c.)
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Solution: We conjecture that T(n) = ⌊log2 n⌋ + 2 for all n ≥ 1. We’ll prove the conjec-
ture correct by strong induction on n.

For the base case (n = 1), we have T(1) = T(0) + 1 = 1 + 1 = 2 by definition of the
recurrence, and indeed 2 = ⌊0⌋ + 2 = ⌊log2 1⌋ + 2.

For the inductive case (n ≥ 2), assume the inductive hypothesis, that T(k) =
⌊log2 k⌋ + 2 for any k < n. We’ll proceed in two cases:

• If n is even:

T(n) = T( n
2 ) + 1 by definition of the recurrence

= ⌊log2( n
2 )⌋ + 2 + 1 by the inductive hypothesis

= ⌊(log2 n) − 1⌋ + 3 because log( a
b ) = log a − log b, and log2 2 = 1

= ⌊log2 n⌋ + 2. because ⌊x + 1⌋ = ⌊x⌋ + 1

• If n is odd:

T(n) = T( n−1
2 ) + 1 by definition of the recurrence

= ⌊log2( n−1
2 )⌋ + 2 + 1 by the inductive hypothesis

= ⌊log2(n − 1)⌋ + 2 by the same manipulations as in the even case

= ⌊log2 n⌋ + 2. because ⌊log2(n − 1)⌋ = ⌊log2 n⌋ for any odd integer n > 1

Because we’ve shown that T(n) = ⌊log2 n⌋ + 2 in either case, we’ve proven the
claim. Therefore T(n) = Θ(log n).

Problem-solving tip:
When solving a
new recurrence,
we can try to gen-
erate conjectures
(to prove correct
via induction) by
iterating the recur-
rence, drawing out
the recursion tree,
or by straight-up
guessing a solution
(or recognizing a
similar pattern to
previously seen
recurrences). To
generate my con-
jecture for Exam-
ple 6.26, I actually
wrote a program
that implemented
the recurrence. I
ran the program for
n ∈ {1, 2, . . . , 1000}
and printed out the
smallest integer n
for which T(n) = 1,
then the smallest for
which T(n) = 2, etc.
(See Figure 6.33.)
The conjecture
followed from the
observation that the
breakpoints all hap-
pened at n = 2k − 1
for an integer k.

As a general matter, the appearance of floors and ceilings inside a recurrence won’t
matter to the asymptotic running time, nor will small additive adjustments inside
the recursive term. For example, T(n) = T(⌈ n

2 ⌉) + 1 and T(n) = T(⌊ n
2 ⌋ − 2) + 1 both

have T(n) = Θ(log n) solutions. Intuitively, floors and ceilings don’t change this type
of recurrence because they don’t affect the total depth of the recursion tree by more
than a Θ(1) number of calls, and a Θ(1) difference in depth is asymptotically irrelevant.
Typically, understanding the running time for the “pure” version of the recurrence will
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T(512 . . . 1023) = 11

T(256 . . . 511) = 10

T(128 . . . 255) = 9

n

T(
n)

Figure 6.33: A plot
of n versus T(n) for
the binary search
recurrence.
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give a correct understanding of the more complicated version. As such, we’ll often
be sloppy in our notation, and write T(n) = T( n

2 ) + 1 when we really mean T(⌊ n
2 ⌋) or

T(⌈ n
2 ⌉). (This abuse of notation is fairly common.)

Taking it further: There’s a general theorem called the “sloppiness” theorem, which states conditions
under which it is safe to ignore floors and ceilings in recurrence relations. (As long as we actually prove
inductively that our conjectured solution to a recurrence relation is correct, it’s always fine in generating
conjectures.) As a rough guideline, as long as T(n) is monotonic (n ≤ n′ ⇒ T(n) ≤ T(n′)) and doesn’t
grow too quickly (T(n) is O(nk) for some constant k), then this “sloppiness” is fine. The details of the
theorem, and its precise assumptions, are presented in many algorithms textbooks.

6.4.3 The Fibonacci Numbers

We’ll close with another example of a recurrence relation—the Fibonacci recurrence—
that we will analyze using induction. But this time we will solve the recurrence exactly
(that is, nonasymptotically):

Example 6.27 (The Fibonacci Numbers)
Problem: Recall the Fibonacci numbers, defined by the recurrence

f1 = 1 f2 = 2 fn = fn−1 + fn−2.

Prove that fn grows exponentially: that is, prove that there exist a ∈ R>0 and
r ∈ R>1 such that fn ≥ arn.

Brainstorming: Let’s start in the middle: suppose that we’ve somehow magically
figured out values of a and r to make the base cases (n ∈ {1, 2}) work, and we’re in the
middle of an inductive proof. (There are two base cases because f2 6= f1 + f0 ; f0 isn’t even
defined!) We’d be able to prove this:

fn = fn−1 + fn−2 ≥ arn−1 + arn−2 = arn−2(r + 1). inductive hypothesis/algebra

But what we want to prove is fn ≥ arn. So we’d be done if only r + 1 = r2—that is, if
r2 − r − 1 = 0. But we get to pick the value of r (!). Using the quadratic formula, we
find that there are two solutions to this equation, which we’ll name φ and φ̂:

φ = 1 +
√

5
2 φ̂ = 1 −

√
5

2 .

Let’s use r = φ. To get the base cases to work, we would need to have f1 = 1 ≥ aφ and
f2 = 1 ≥ aφ2 = a(1 + φ). Because 1 + φ > φ, the latter is the harder one to achieve. To
ensure that a(1 + φ) ≤ 1, we must have

a ≤ 1
1 + φ

= 1
1 + 1+

√
5

2

= 2
3 +

√
5

.

Figure 6.34: Some
brainstorming for
Example 6.27.

Problem-solving tip:
Sometimes starting
in the middle of a
proof helps! You
still need to go back
and connect the
dots, but imagining
that you’ve gotten
somewhere may
help you figure out
how to get there.

Example 6.27 (The Fibonacci Numbers, continued)
Solution: Based on the brainstorming in Figure 6.34 (which identifies a value φ such

that φ + 1 = φ2 and a corresponding value for a), we’ll prove the following claim:

Claim: fn ≥ 2
3+

√
5
· φn, where φ = 1+

√
5

2 .

Proof (by strong induction on n). There are two base cases:
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• For n = 1, we have 2
3+

√
5
· φ1 = 2

3+
√

5
· 1+

√
5

2 = 1+
√

5
3+

√
5
< 1 = f1.

• For n = 2: we have

2
3+

√
5
· φ2 = 2

3+
√

5
· (1 + φ) we chose φ so that φ + 1 = φ2

= 2
3+

√
5
· 3+

√
5

2 = 1 = f2.

For the inductive case (n ≥ 3), we assume the inductive hypothesis, namely that
fk ≥ 2

3+
√

5
· φk for 1 ≤ k ≤ n − 1. Then:

fn = fn−1 + fn−2 definition of the Fibonaccis

≥ 2
3+

√
5
· φn−1 + 2

3+
√

5
· φn−2 inductive hypothesis, twice

= 2
3+

√
5
· φn−2 · (φ + 1) factoring

= 2
3+

√
5
· φn−2 · φ2 we chose φ so that φ + 1 = φ2

= 2
3+

√
5
· φn.

Therefore the claim follows by induction.

Taking it further: The value φ = 1+
√

5
2 ≈ 1.61803 · · · is called the golden ratio. It has a number of inter-

esting characteristics, including both remarkable mathematical and aesthetic properties. For example, a
rectangle whose side lengths are in the ratio φ-to-1 can be divided into a square and a rectangle whose
side lengths are in the ratio 1-to-φ. That’s because, for these rectangles to have the same ratios, we need
φ
1 = 1

φ−1 —that is, we need φ(φ− 1) = 1, which means φ2 − φ = 1. (See Figure 6.35.) The golden ratio, it
has been argued, describes proportions in famous works of art ranging from the Acropolis to Leonardo
da Vinci’s drawings.

φ

1

1 φ− 1
(a) A rectangle with sides in
ratio φ-to-1, with a 1-by-1
square inscribed.

(b) Repeatedly inscribing a
square in the “leftover”
rectangle.

(c) The same rectangles,
rotated and shifted to share
a lower-left corner.

Figure 6.35: Some
golden rectangles.

A closed-form formula for the Fibonaccis
While Example 6.27 establishes a lower bound on the Fibonacci numbers—in

asymptotic notation, it proves that fn = Ω(φn)—we have not yet established a closed-
form solution for the nth Fibonacci number. Here’s a solution that does so, based on
the following ideas. The trick will be to make use of φ̂. The inductive case would go
through perfectly, just as in Example 6.27, if we tried to prove fn = aφn + bφ̂n, for con-
stants a and b. But what about the base cases? For f1, we would need 1 = aφ + bφ̂; for f2,
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we would need 1 = aφ2 + b(φ̂2) = a(1 +φ) + b(1 + φ̂). That’s two linear equations with two
unknowns, and some algebra will reveal that a = 1√

5
and b = −1√

5
solves these equations.

Let’s use these ideas to give a closed-form solution for the Fibonaccis, and a proof:

Example 6.28 (A closed-form solution for the Fibonaccis)
Problem: Prove the following claim:

Claim: fn = φn−φ̂n
√

5
, where φ = 1+

√
5

2 and φ̂ = 1−
√

5
2 .

Solution: Proof (by strong induction on n). For the base cases (n = 1 and n = 2):

• For n = 1, we have

φ1−φ̂1
√

5
=

1+
√

5
2 − 1−

√
5

2√
5

definition of φ and φ̂

=
2
√

5
2√
5

algebra

= 1
= f1.

• For n = 2, we have that

φ2−φ̂2
√

5
= 1+φ−(1+φ̂)√

5
φ2 = 1 + φ and φ̂2 = 1 + φ̂

= 1 by the previous case

= f2.

For the inductive case (n ≥ 3), we assume the inductive hypothesis: for any
k < n, we have fk = φk−φ̂k

√
5

. Then:

fn = fn−1 + fn−2 definition of the Fibonaccis

= φn−1−φ̂n−1
√

5
+ φn−2−φ̂n−2

√
5

inductive hypothesis

= φn−2(φ+1)−φ̂n−2(φ̂+1)√
5

factoring

= φn−2φ2−φ̂n−2φ̂2
√

5
φ + 1 = φ2 and φ̂ + 1 = φ̂2

= φn−φ̂n
√

5
.

Taking it further: The Fibonacci numbers show up all over the place in nature—and in computation.
One computational application in which they’re relevant is in the design and analysis of a data structure
called an AVL tree, a form of binary search tree that guarantees that the tree supports all its operations
efficiently. See the discussion on p. 643.
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Computer Science Connections

AVL Trees

A binary search tree is a data structure that allows us to store a dynamic set
of elements, supporting Insert, Delete, and Find operations. (We’ll discuss
binary search trees themselves in Chapter 11.) A binary search tree consists of
a root node at the top; each node u can have zero, one, or two children directly
attached beneath u. (A node with no children is called a leaf.)

The height of a node in a tree is the number of levels of nodes beneath it.
(Again, see Chapter 11 for more.) A single node has height 1; a node with one
or two children that are leaves has height 2; etc. (We think of a nonexistent
tree has having height 0.)

An AVL tree is a special type of binary search tree that ensures that the
tree is “balanced” and therefore supports its operations very efficiently.6 The AVL trees were developed by two

Russian computer scientists in 1962:
6 A. Adelson-Velskii and E. M. Landis.
An algorithm for the organization of
information. Proceedings of the USSR
Academy of Sciences, 146:263–266, 1962.
Since then, a number of other schemes
for maintaining balanced binary search
trees have been developed, most promi-
nently red–black trees.

whole point of a balanced binary search tree is that the height of the tree is
supposed to be “small,” because the cost of almost every operation on binary
search trees is proportional to the height of the tree. (The height of the tree is
the height of the root.)

An AVL tree is a binary search tree in which, for any node u, the height of
u’s left child and the height of u’s right child can only differ by one. Alterna-
tively, we can define AVL trees recursively:

Definition 6.12 (AVL trees)
Any empty tree (consisting of zero nodes) is an AVL tree of height 0.

A tree of height h ≥ 1 is an AVL tree if

(i) the subtrees rooted at the two children of the root are both AVL trees; and
(ii) the heights of the root’s children are either both h − 1, or one is h − 1 and the

other is h − 2.

In other words, for any node u in an AVL tree, the height hℓ of u’s left subtree
and the height hr of u’s right subtree must satisfy |hℓ − hr | ≤ 1.

A few examples of AVL trees are shown in Figure 6.36. If you studied AVL

Figure 6.36: Three AVL trees. Take any
node u in any of the three trees; one can
verify that the number of layers beneath
u’s left child and u’s right child differ by
at most one.

trees before, you were probably told “AVL trees have logarithmic height.”
Here, we’ll prove it.

An upper bound
Consider an AVL tree T of height h. After a little contemplation, it should

be clear that T will contain the maximum possible number of nodes (out of all
AVL trees of height h) when both of the children of T’s root node have height
h − 1, and furthermore that both subtrees of the root have as many nodes as
an AVL tree of height h − 1 can have.

Let M(h) denote the maximum number of nodes that can appear in an AVL
tree of height h. There can be only one node in a height 1 tree, so M(1) = 1. For
h ≥ 2, the discussion in the previous paragraph shows that

M(h) = M(h− 1)︸ ︷︷ ︸
the left subtree

+ M(h− 1)︸ ︷︷ ︸
the right subtree

+ 1︸︷︷︸
the root node

. (∗)
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Computer Science Connections

AVL Trees, continued

Claim: M(h) = 2h − 1.
Proof. The proof is straightforward by induction. For the base case (h = 1), we
have M(h) = 1 by definition, and 21 − 1 = 2 − 1 = 1. For the inductive case, we
have M(h) = 2M(h) + 1 = 2 · 2(2h−1 − 1) + 1 by (∗) and the inductive hypothesis.
Simplifying yields M(h) = 2h − 2 + 1 = 2h − 1.

A lower bound
Let’s now analyze the other direction: what is the fewest nodes that can

Figure 6.37: The fullest-possible AVL
trees of height h ∈ {1, 2, 3, 4}, respec-
tively containing 1 = 21 − 1, 3 = 22 − 1,
7 = 23 − 1, and 15 = 24 − 1 nodes.

appear in an AVL of height h? (We can transform this analysis into one that
finds the largest possible height of an AVL tree with n nodes.)

Define N(h) as the minimum number of nodes in an AVL tree of height h.

Figure 6.38: The emptiest-possible AVL
trees of height h ∈ {1, 2, 3, 4, 5}, which
contain 1, 2, 4, 7, and 12 nodes.

As before, any height 1 tree has one node, so N(1) = 1. It’s also immediate
that N(2) = 2. It’s easy to see that the minimum number of nodes in an AVL
tree is achieved when the root has one child of height h − 1 and one child of
height h − 2—and furthermore when the root’s subtrees contain as few nodes
as legally possible. That is,

N(h) = N(h − 1)︸ ︷︷ ︸
the left subtree

+ N(h − 2)︸ ︷︷ ︸
the right subtree

+ 1︸︷︷︸
the root node

. (†)

Observe that N(h) = 1 + N(h − 1) + N(h − 2) ≥ 1 + 2 · N(h − 2) because
N(h − 1) ≥ N(h − 2). Therefore N(h) ≥ 2h/2 − 1.

We can do better, though, with a bit more work. Define P(h) = 1 + N(h).
Adding one to both sides of (†), in this new notation, we have that P(h) =
P(h− 1) + P(h− 2). (This recurrence should look familiar: it’s the same recur-
rence as for the Fibonacci numbers!) Because P(1) = 1 + N(1) = 2 = f3 and
P(2) = 1 + N(2) = 3 = f4, we can prove inductively that P(h) = fh+2.

Claim: N(h) ≥ φh − 1.
Proof. Using the definition of P, the proof in Example 6.27, and the fact that
1
φ2 = 2

3+
√

5
, we have

N(h) = P(h) − 1 = fh+2 − 1 ≥ 2
3+

√
5
· φh+2 − 1 = φh − 1.

Putting it all together
The analysis above will let us prove the following theorem:

Theorem 6.9
The height h of any n-node AVL tree satisfies logφ(n + 1) ≥ h ≥ log2(n + 1).

Proof. By the first claim above, we have 2h − 1 = M(h) ≥ n. Thus 2h ≥ n + 1,
and—taking logs of both sides—we have h ≥ log2(n + 1).

By the second claim above, we have φh − 1 = N(h) ≤ n. Thus φh ≤ n + 1,
and—taking logφ of both sides—we have h ≤ logφ(n + 1).

By changing log bases, we have

logφ(x) = log2(x)/ log2(φ)

≈ log2(x)/0.69424 · · ·
≈ 1.4404 · log2(x)

Thus this theorem says that an n-node
AVL tree has height between log2(n + 1)
and 1.44 log2(n + 1). In fact, there are
AVL trees whose height is as large as
1.44 log2(n + 1), so this analysis is tight.
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fibNaive(n):
1: if n = 0 or n = 1 then
2: return 1
3: else
4: return fibNaive(n − 1) +

fibNaive(n − 2)

fibMatrix(n):
1: Compute (using repeated

squaring)
[
x
y

]
:=
[
1 1
1 0

]n
·
[
1
1

]
.

2: return x

fibMedium(n):
1: 〈fn, fn−1〉 := helper(n)
2: return fn

helper(n):
1: if n = 0 then
2: return 〈1, undefined〉
3: else if n = 1 then
4: return 〈1, 1〉
5: else
6: 〈fn−1, fn−2〉 := helper(n − 1)
7: return 〈fn−1 + fn−2, fn−1〉

fibClever(n):
1: return exp(φ,n)−exp(φ̂,n)√

5

exp(b, n):
1: if n = 0 then
2: return 1
3: else
4: s := exp(b,

⌊ n
2
⌋
)

5: if n is odd then
6: return b · s · s
7: else
8: return s · s

Figure 6.41: Four
algorithms for the
Fibonaccis. The
values φ and φ̂

satisfy fn = φn−φ̂n√
5

;
see Example 6.28.

Recall that the Fibonacci numbers are defined by the recurrence f1 = f2 = 1 and fn = fn−1 + fn−2. The next several
exercises refer to this recurrence and the algorithms for computing the Fibonacci numbers in Figure 6.41.
6.95 First, a warmup unrelated to the algorithms in Figure 6.41: prove by induction that fn ≤ 2n.
6.96 Prove that fibNaive(n − k) appears a total of fk+1 times in the call tree for fibNaive(n).
6.97 Write down and solve a recurrence for the running time of helper (and therefore fibMedium).
6.98 Write down and solve a recurrence for the running time of exp (and therefore fibClever).
6.99 The reference to “repeated squaring” in fibMatrix is precisely the same as the idea of exp. Imple-
ment fibMatrix using this idea in a programming language of your choice. (See Exercise 5.56.)

merge(X[1 . . . n], Y[1 . . . m]):
1: if n = 0 then
2: return Y
3: else if m = 0 then
4: return X
5: else if X[1] < Y[1] then
6: return X[1] followed by merge(X[2 . . . n], Y)
7: else
8: return Y[1] followed by merge(X, Y[2 . . . m])

Figure 6.42: The
“merging” of two
sorted arrays.

6.100 Recall from Chapter 5 (or see Figure 6.42) an algorithm that
merges two sorted arrays into a single sorted array. Give a recurrence relation
T(n) describing the running time of merge on two input arrays with a total
of n elements, and prove that T(n) = Θ(n).
6.101 Consider the recurrence for the running time of mergeSort
(again, see Figure 6.42):

T(1) = c and T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + cn.
Prove that T(n) ≤ T(n′) if n ≤ n′—that is, T is monotonic.

6.102 Here is a recurrence relation for the number of comparisons done by mergeSort on an input array
of size n (once again, see Figure 6.42):

C(1) = 0 and C(n) = 2C(n/2) + n − 1.
(For ease, we’ll assume that n is a power of two.) Explain the recurrence relation, and then prove that
C(n) = n log n − n + 1 by induction.

f(n):
1: if n ≤ 1 then
2: return n
3: else
4: return f(n − 2)

g(n):
1: if n ≤ 1 then
2: return n
3: else
4: x := 1
5: while n ≥ 2x:
6: x := 2 · x
7: return g(n − x)

Figure 6.43: Two
algorithms.

The next few exercises refer to the algorithms in Figure 6.43, both which solve the
same problem.
6.103 Give and solve (using induction) a recurrence relation for the
running time of f.
6.104 Give a recurrence relation for g, and use it to prove that g(n) runs
in O(log2 n) time.
6.105 Describe the set of input values n that cause the worst-case
behavior for g(n).
6.106 What problem do f and g solve? Prove your answer.

Two copies of an out-of-print book were listed online by Seller A and Seller B. Their prices were over $1,000,000 each—
and the next day, both prices were over $2,000,000, and they kept going up. By watching the prices over several days, it
became clear that the two sellers were using algorithms to set their prices in response to each other.

Exercises 6.107–
6.108 are based
on a story from
Michael Eisen’s
blog post “Ama-
zon’s $23,698,655.93
book about flies.”

Let an and bn be the prices on day n by Seller A and Seller B, respectively. The prices were set by two (badly
conceived) algorithms such that an = α · bn−1 and bn = β · an where α = 0.9983 and β = 1.27059.
6.107 Suppose that b0 = 1. Find the closed form solution for an and bn. Prove your answer.
6.108 State a necessary and sufficient condition on α, β, and b0 such that an = Θ(1) and bn = Θ(1).
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6.5 Recurrence Relations: The Master Method

In order to become the master, the politician poses as
the servant.

Charles de Gaulle (1890–1970)

In the remainder of this section, we’ll turn to a more formulaic method, called the
Master Method, of solving recurrence relations that have a certain form: in analyzing
algorithms, we will frequently encounter recurrences that look like

T(n) = aT
( n

b
)

+ c · nk ,

for four constants a ≥ 1, b > 1, c > 0, and k ≥ 0.
Why do these recurrences come up frequently? Consider a recursive algorithm that

has the following structure: if the input is small—say, n = 1—then we compute the
solution directly; otherwise, to solve an instance of size n:

• we make a different recursive calls on inputs of size n
b ; and

• to construct the smaller instances and then to reconstruct the solution to the given
instance from the recursive solutions, we spend Θ(nk) time.

(These algorithms are usually called divide-and-conquer algorithms: they “divide” their
input into a pieces, and then recursively “conquer” those subproblems.) To be precise,
the recurrence often has ceilings and floors as part of its recursive calls, but for now
assume that n is exact power of b, so that the floors and ceilings don’t matter.

Here are a few examples of recursive algorithms with recurrences of this form:

Example 6.29 (Binary Search)
We spend c = Θ(1) time to compare the sought element to the middle of the range; we
then make one recursive call to search for the element in the appropriate half of the
array. If n is an exact power of two, then the recurrence is

T(n) = T( n
2 ) + c.

(So a = 1, b = 2, and k = 0, because c = c · 1 = c · n0.)

Example 6.30 (Merge Sort)
We spend Θ(1) time to divide the array in half. We make two recursive calls on the
left and right subarrays, and then spend Θ(n) time to merge the resulting sorted
subarrays into a single sorted array. If n is an exact power of two, then the recurrence
is

T(n) = 2T( n
2 ) + c · n.

(So a = 2, b = 2, and k = 1.)
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Figure 6.44: The
recursion tree
for a recurrence
relation T(n) =
aT( n

b ) + c · nk , of the
master method’s
form. Assume that
n is an exact power
of b.

6.5.1 The Master Method: Some Intuition

The Master Method is a technique that allows us to solve any recurrence relation of
the form T(n) = aT( n

b ) + c · nk very easily. The Master Method is based on examining
the recursion tree for this recurrence (see Figure 6.44), and the Master Theorem (Theo-
rem 6.10) that describes the total amount of work represented by this tree.

Here’s the intuition for the Master Method. Let’s think about the ith level of the
recursion tree (again, see Figure 6.44)—in other words, the work done by the recursive
calls that are i levels beneath the root of the recursion tree. Observe the following:

There are ai different calls at level i. There is 1 = a0 call at the 0th level, then a = a1 calls at
1st level, then a2 calls at the 2nd level, and so forth.

Each of the the calls at the ith level operates on an input of size n
bi . The input size is n

1 = n at
the 0th level, then n

b at the 1st level, then n
b2 at the 2nd, and so forth.

Thus the total amount of work in the ith level of the tree is ai · c · ( n
bi )k. Or, simplifying, the

total work at this level is cnk · ( a
bk )i.

Thus the total amount of work contained within the entire tree is

∑
i

[
cnk ·

( a
bk

)i
]

= cnk ·∑
i

[( a
bk

)i
]

. (∗)

(We’ll worry about the bounds on the summation later.)
Note that (∗) expresses the total work in the recursion tree as a geometric sum ∑i ri,

in which the ratio between terms is given by r := a
bk . (See Section 5.2.2.) As with any

geometric sum, the critical question is how the ratio compares to 1: if r < 1, then the
terms of the sum are getting smaller and smaller as i increases; if r > 1, then the terms
of the sum are getting bigger and bigger as i increases. (And if r = 1, then each term is
simply equal to 1.)

The Master Theorem has three cases, each of which corresponds to one of these
three natural cases for the summation in (∗): its terms increase exponentially with i, its



6.5. RECURRENCE RELATIONS: THE MASTER METHOD 649

terms decrease exponentially with i, or its terms are constant with respect to i. In these
cases, respectively, almost all of the work is done at the leaves of the tree; almost all of
the work is done at the root of the tree; or the work is spread evenly across the levels
of the tree. (Here “almost all the work” means “a constant fraction of the work,” which
means that the total work in the tree is asymptotically equivalent to the work done
solely at the root or at the leaves.)

A trio of examples
Before we prove the general theorem, we’ll solve a few recurrences that illustrate

the cases of the Master Method, and then we’ll prove the result in general. The three
example recurrences are

T(n) = 2T( n
2 ) + 1

T(n) = 2T( n
2 ) + n

and T(n) = 2T( n
2 ) + n2,

all with T(1) = 1. Figure 6.45 shows the recursion trees for these recurrences.
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Figure 6.45: The
recursion trees
for three different
recurrences: T(n) =
2T( n

2 ) + f (n), for
f (n) ∈

{
1, n, n2}.

The annotation in
each row of the
tree shows both
the number of
calls at that level of
the tree, plus the
additional work
done by each call at
that level.

In each of these recurrences, we divide the input by two at every level of the recur-
sion. Thus, the total depth of the recursion tree is log2 n. (Assume n is an exact power
of two.) In the recursion tree for any one of these recurrences, consider the ith level of
the tree beneath the root. (The root of the recursion tree has depth 0.) We have divided
n by 2 a total of i times, and thus the input size at that level is n

2i . Furthermore, there
are 2i different calls at the ith level of the tree.

Solving the three recurrences
To solve each recurrence, we will sum the total amount of work generated at each

level of the tree. The recursion trees for each of these three recurrences are shown in
Figures 6.46, 6.47, and 6.48.
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Example 6.31 (Solving T(n) = 2T( n
2 ) + 1)

Figure 6.46 shows the recursion tree for this recurrence. There are 2i different calls
at the ith level, each of which is on an input of size n

2i —and we do 1 unit of work for
each of these 2i calls. Thus the total amount of work at level i is 2i. The total amount
of work in the entire tree is therefore

T(n) =
log2 n

∑
i=0

2i = 21+log2 n − 1
2 − 1 = 2 · 2log2 n = 2n

by Theorem 5.2. And, indeed, T(n) = Θ(n).

Example 6.32 (Solving T(n) = 2T( n
2 ) + n)

Figure 6.47 shows the recursion tree. There are 2i calls at the ith level of the recursion
tree, on inputs of size n

2i . We do n
2i units of work at each call, so the total work at the

ith level is 2i · ( n
2i ) = n. Note that the amount of work at level i is independent of the

level i. The total amount of work in the tree is therefore

T(n) =
log2 n

∑
i=0

n
︸︷︷︸

work at level #i

= n ·
log2 n

∑
i=0

1 = n(1 + log2 n) = Θ(n log n).

Example 6.33 (Solving T(n) = 2T( n
2 ) + n2)

Figure 6.48 shows the recursion tree. There are 2i calls at the ith level of the tree, and
we do ( n

2i )2 work at each call at this level. Thus the work represented by the ith row
of the recursion tree is ( n

2i )2 · 2i = n2

2i . The total amount of work in the tree is therefore

T(n) =
log2 n

∑
i=0

( 1
2 )in2 = n2 ·

log2 n

∑
i=0

( 1
2 )i.

Notice that ∑
log2 n
i=0 ( 1

2 )i = 1 + 1
2 + 1

4 + · · · + 1
2log2 n , which is certainly at least 1. But, by

the fact that 1 + 1
2 + 1

4 + . . . + 1
2ℓ < 2 (see Theorem 5.2), we also know ∑

log2 n
i=0 ( 1

2 )i ≤ 2.
Therefore n2 ≤ T(n) ≤ 2n2, which allows us to conclude that T(n) = Θ(n2).

6.5.2 The Master Method: The Formal Statement and a Proof

Examples 6.31, 6.32, and 6.33 were designed to build the necessary intuition about
the three different cases of the master method: work increases exponentially across
levels of the recursion tree; work stays constant across levels; or work decreases expo-
nentially across levels. Precisely the same intuition will yield the proof of the Master
Theorem. Here is the formal statement of the Master Theorem, which generalizes the
idea of these examples to all recurrences of the form T(n) = aT( n

b ) + cnk:
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Theorem 6.10 (Master Theorem)
Consider the recurrence

T(1) = c
T(n) = a · T(n/b) + c · nk

for constants a ≥ 1, b > 1, c > 0, and k ≥ 0. Then:

Case (i), “the leaves dominate”: if bk < a, then T(n) = Θ(nlogb(a)).

Case (ii), “all levels are equal”: if bk = a, then T(n) = Θ(nk · log n).

Case (iii), “the root dominates”: if bk > a, then T(n) = Θ(nk).

(As we discussed previously, we are abusing notation by using c to denote two differ-
ent constants in this theorem statement. Again, as you’ll prove in Exercise 6.126, the
recurrence T(1) = d with a constant d > 0 possibly different than c has precisely the
same asymptotic solution.)

Proving the theorem
While the Master Theorem holds even when the input n is not an exact power of

b—we just have to fix the recurrence by adding floors or ceilings so that it still makes
sense—we will prove the result for exact powers of b only.7 We will show that the total

A full proof of the
Master Theorem,
including for the
case when n is not
an exact power of b,
can be found in
7 Thomas H. Cor-
men, Charles E.
Leisersen, Ronald L.
Rivest, and Clifford
Stein. Introduction
to Algorithms. MIT
Press, 3rd edition,
2009.

amount work contained in the recursion tree is

T(n) = cnk ·
logb n

∑
i=0

( a
bk

)i
. (†)

As before, the formula (†) should make intuitive the fact that a = bk (that is, a
bk = 1) is

the critical value. The value of a
bk corresponds to whether the work at each level of the

tree is increasing ( a
bk > 1), steady ( a

bk = 1), or decreasing ( a
bk < 1). The summation in (†)

is a geometric sum, and as we saw in Chapter 5 geometric sums behave fundamentally
differently based on whether their ratio is less than, equal to, or greater than one.

Proof of Theorem 6.10 (for n an exact power of b). For all three cases, we begin by exam-
ining the recursion tree (Figure 6.44). Summing the total amount of work in the tree
“row-wise,” we see that there are ai nodes at the ith level of the tree (where, again, the
root is at level zero), each of which corresponds to an input of size n/bi and therefore
contributes c · (n/bi)k work to the total. The tree continues until the inputs are of size
1—that is, until n/bi = 1, or when i = logb n. Thus the total amount of work in the tree
is

T(n) =
logb n

∑
i=0

ai · c ·
( n

bi

)k
= cnk

logb n

∑
i=0

( a
bk

)i
.

(See the note at the end of this proof for another justification for this summation, or see
Exercise 6.127.) We’ll examine this summation in each of the three cases, depending on
the value of a

bk —and we’ll handle the cases in order of ease, rather than in numerical
order:
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Case (ii): If a = bk , then (†) says that

T(n) = cnk
logb n

∑
i=0

( a
bk

)i
= cnk

logb n

∑
i=0

1 = cnk(1 + logb n).

Thus the total work is Θ(nk log n).

Case (iii): If a < bk, then (†) is a geometric sum whose ratio is strictly less than 1.
Corollary 5.3 states that any geometric sum whose ratio is strictly between 0 and
1 is Θ(1). (Namely, the summation ∑

logb n
i=0 ( a

bk )i is lower-bounded by 1 and upper-
bounded by 1

1−a/bk , both of which are positive constants when a < bk .) Therefore:

T(n) = cnk
logb n

∑
i=0

( a
bk

)i

= cnk · Θ(1). by Corollary 5.3

Therefore the total work is Θ(nk).

Case (i): If a > bk , then (†) is a geometric sum whose ratio is strictly larger than one.
But we can make this summation look more like Case (iii), using a little algebraic
manipulation. Notice that, for any α 6= 0, we can rewrite ∑m

i=0 α
i as follows:

m
∑
i=0
αi = αm ·

m
∑
i=0
αi−m = αm ·

m
∑
i=0

(
1
α

)m−i
= αm ·

m
∑
j=0

(
1
α

)j
(‡)

where the last equality follows by reindexing the summation (so that we set j = m − i).
Applying this manipulation to (†), we have

T(n) = cnk
logb n

∑
i=0

( a
bk

)i
by (†)

= cnk ·
( a

bk

)logb n
·

logb n

∑
j=0

(
bk

a

)j

by (‡)

= nk ·
( a

bk

)logb n
· Θ(1) Corollary 5.3, because bk

a < 1.

= nk · alogb n

(bk)logb n · Θ(1)

= nk · alogb n

nk · Θ(1) (bk)logb n = bk logb n = blogb nk = nk

= alogb n · Θ(1).

Therefore the total work is Θ(alogb n). And alogb n = nlogb a, which we can verify by log
manipulations:

alogb n = blogb[alogb n] = b[logb n]·[logb a] = b[logb a]·[logb n] = blogb[nlogb a] = nlogb a.

Therefore the total work in this case is Θ(alogb n) = Θ(nlogb a).
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Taking it further: Another way to make the formula (†)—which was the entire basis of the Master
Theorem—a little more intuitive is to consider iterating the recurrence a few times:

T(n) = cnk+ a · T( n
b ) =

0
∑
i=0

cai
(

n
bi

)k
+ aT

( n
b
)

= cnk+ a
[
c
( n

b
)k + aT( n

b2 )
]

= cnk+ ac
( n

b
)k + a2T( n

b2 ) =
1

∑
i=0

cai
(

n
bi

)k
+ a2T

(
n
b2

)

= cnk+ ac
( n

b
)k + a2

[
c
(

n
b2

)k
+ aT( n

b3 )
]

= cnk+ ac
( n

b
)k + a2c

(
n
b2

)k
+ a3T( n

b3 ) =
2

∑
i=0

cai
(

n
bi

)k
+ a3T

(
n
b3

)
.

At every iteration, we generate another term of the form cai(n/bi)k . Eventually n/bi will equal 1—
specifically when i = logb n—and the recursion will terminate. By iterating the recurrence logb n times,
we would get to

T(n) =
(logb n)−1

∑
i=0

cai
( n

bi

)k
+ alogb nT

(
n

blogb n

)
. (6.10.1)

Because T(n/blogb n) = T(1) = c = 1kc = (n/blogb n)kc, from (6.10.1) we can conclude

T(n) =
(logb n)−1

∑
i=0

cai
( n

bi

)k
+ alogb n(n/blogb n)kc =

logb n

∑
i=0

cai
( n

bi

)k
,

which is precisely the summation (†).

The Master Method: a few examples
We’ll conclude with a few easy examples using the Master Method, reproducing the

recursion-tree analysis of Examples 6.31, 6.32, and 6.33:

Example 6.34 (Solving T(n) = 2T(n/2) +
{

1, n, n2})
Recall the recurrences

T(n) = 2T( n
2 ) + 1 (1)

T(n) = 2T( n
2 ) + n (2)

T(n) = 2T( n
2 ) + n2, (3)

all with T(1) = 1.
For (1), we have a = 2, b = 2, c = 1, and k = 0; because bk = 20 = 1 < 2 = a, case (i) of

the Master Method says that T(n) = Θ(nlog2 2) = Θ(n).
For (2), we have a = 2, b = 2, c = 1, and k = 1; because bk = 21 = 2 = a, case (ii) of the

Master Method says that T(n) = Θ(n1 log n) = Θ(n log n).
For (3), we have a = 2, b = 2, c = 1, and k = 2; because bk = 22 = 4 > 2 = a, case (iii)

of the Master Method says that T(n) = Θ(n2).

Taking it further: Although we’ve mostly presented “algorithmic design” and “algorithmic analysis” as
two separate phases, in fact there’s interplay between these pieces. See p. 655 for a discussion of a partic-
ular computational problem—matrix multiplication—and algorithms for it, including a straightforward
but slow algorithm and another that (with inspiration from the Master Method) improves upon that
slow algorithm.
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Computer Science Connections

Divide-and-Conquer Algorithms and Matrix Multiplication

Matrix multiplication (see Definition 2.43) is a fundamental operation
with wide-ranging applications throughout CS: in computer graphics, in data
mining, and in social-network analysis, just to name a few. Often the matrices
in question are quite large—perhaps a matrix of hyperlinks among thousands
or millions of web pages, for example. Thus asymptotic improvements to
matrix multiplication algorithms have potential practical importance, too.
For simplicity, we’ll concentrate on multiplying square (n-by-n) matrices. The
obvious algorithm for matrix multiplication simply follows the definition:
separately for each of the n2 entries in the output matrix, perform the Θ(n)
multiplications/additions to compute the entry. (See Figure 6.49.) But, in the
spirit of this section, what might we be able to do with a recursive algorithm?

There is indeed a nice way to think about matrix multiplication recursively.

matmult(M ∈ Rn×n, N ∈ Rn×n):
1: for i = 1, 2, . . . n:
2: for j = 1, 2, . . . , n:
3: Pi,j := 0
4: for k = 1, 2, . . . , n:
5: Pi,j := Pi,j + Mi,kNk,j
6: return P

Figure 6.49: The naïve algorithm for ma-
trix multiplication for n-by-n matrices.
For matrices M ∈ Rn×n and N ∈ Rn×n,
the product is a matrix P ∈ Rn×n where
Pi,j := ∑n

k=1 Mi,kNk,j .
To multiply two n-by-n matrices M and N, divide M and N each into four
quarters, which we can label M11, M12, . . ., as follows:

M =
[

M11 M12

M21 M22

]
, N =

[
N11 N12

N21 N22

]
.

Each of these quarters M11, M12, . . . is an n
2 -by- n

2 matrix. It turns out that

MN =
[

(MN)11 (MN)12

(MN)21 (MN)22

]
=
[

M11N11 + M12N21 M11N12 + M12N22

M21N11 + M22N21 M21N12 + M22N22

]
.

This fact suggests a recursive, divide-and-conquer algorithm for multiplying
matrices, with the recurrence T(n) = 8T( n

2 ) + n2. (It takes c · n2 time to combine
the result of the recursive calls.) By the Master Method (a = 8, b = 2, k = 2;
case (i)), we have T(n) = Θ(nlog2(8)) = Θ(n3)—so not an improvement over
Figure 6.49 at all!

But, in a major algorithmic breakthrough, in 1969 Volker Strassen found
a way to use seven recursive calls instead of eight. (See Figure 6.50.) This
change makes the recurrence T(n) = 7T( n

2 ) + n2; now the Master Method
(a = 7, b = 2, k = 2; still case (i)), says that T(n) = Θ(nlog2 7) = Θ(n2.8073···)—a nice
improvement! (For example, 1000log2 7 is only about 25% of 10003 .)

Once the Master Method–style recurrence is in mind, one can investigate

Compute these values recursively:

A := (M11 + M22)(N11 + N22)

B := (M21 + M22)N11

C := M11(N12 − N22)

D := M22(N21 − N11)

E := (M11 + M12)N22

F := (M21 − M11)(N11 + N12)

G := (M12 − M22)(N21 + N22).

Then compute MN as
[
A + D − E + G C + E

B + D A − B + C + F

]
.

Figure 6.50: The multiplications for
Strassen’s Algorithm. After we com-
pute A, B, . . . , G recursively, we then
add/subtract the results as indicated.
(This addition/subtraction takes c · n2

time.)other Strassen-like algorithms (making fewer recursive calls, and combining
them more cleverly). In 1978, Victor Pan gave a further running-time improve-
ment using this style of algorithm—though more complicatedly!—using a
total of 143,640 recursive calls on inputs of size n

70 (!), plus Θ(n2) additional
work. Using the Master Method, that algorithm yields a running time of
Θ(nlog70 143,640) = Θ(n2.7951···). Algorithms continued to improve for several
years, culminating in 1990 with an Θ(n2.3754···)-time algorithm due to Don
Coppersmith and Shmuel Winograd. That algorithm was the best known
for two decades, but in the last few years some new researchers with new
insights have come along, and the exponent is now down to 2.373. For what-
ever it’s worth, many people think that there might be an Θ(n2) algorithm for
multiplying n-by-n matrices—but no one has found it yet!8

For more about matrix multiplication
and the recent algorithmic improve-
ments, see the following survey paper
by Virginia Vassilevska Williams, one
of the researchers responsible for the
reinvigorated progress in improving this
exponent:
8 Virginia Vassilevska Williams. An
overview of the recent progress on
matrix multiplication. ACM SIGACT
News, 43(4), December 2012.
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6.5.3 Exercises

The following recurrence relations follow the form of the Master Method. Solve each.
6.109 T(n) = 4T(n/3) + n2

6.110 T(n) = 3T(n/4) + n2

6.111 T(n) = 2T(n/3) + n4

6.112 T(n) = 3T(n/3) + n
6.113 T(n) = 16T(n/4) + n2

6.114 T(n) = 2T(n/4) + 1
6.115 T(n) = 4T(n/2) + 1
6.116 T(n) = 3T(n/3) + 1

6.117 T(n) = 2T(n/2) + n2

6.118 T(n) = 2T(n/2) + n
6.119 T(n) = 2T(n/4) + n2

6.120 T(n) = 2T(n/4) + n
6.121 T(n) = 4T(n/2) + n2

6.122 T(n) = 4T(n/2) + n
6.123 T(n) = 4T(n/4) + n2

6.124 T(n) = 4T(n/4) + n

6.125 Solve the recurrence T(1) = 1 and T(n) = 1 + 4T(n/4) (see Exercise 6.82, regarding the number of
regions defined by quadtrees), using the Master Method.

6.126 Prove that the recurrences T(n) = aT( n
b ) + c · nk and T(1) = d and S(n) = aS( n

b ) + nk and S(1) = 1
have the same asymptotic solution, for any constants a ≥ 1, b > 1, c > 0, d > 0, and k ≥ 0.

6.127 Consider the Master Method recurrence T(n) = aT( n
b ) + nk and T(1) = 1. Using induction, prove

the summation (†) from the proof of the Master Theorem: prove that

T(n) = nk ·
logb n

∑
i=0

( a
bk

)i

for any n that’s an exact power of b.

6.128 The Master Method does not apply for the recurrence T(n) = 2T( n
2 ) + n log n, but the same

idea—considering the summation of all the work in the recursion tree—will still work. Prove that T(n) =
Θ(n log2 n) by analyzing the summation analogous to (†).

Each of the following problems gives a brief description of an algorithm for an interesting problem in computer science.
(Sometimes the recurrence relation is explicitly written; sometimes it’s up to you to write down the recurrence.) For
each, state the recurrence (if it’s missing) and give a Θ-bound on the running time. If the Master Method applies, you
may use it. If not, give a proof by induction.

6.129 The Towers of Hanoi is a classic puzzle, as follows. There are three posts (the “towers”); post A
starts with n concentric discs stacked from top-to-bottom in order of decreasing radius. We must move all
the discs to post B, never placing a disc of larger radius on top of a disc of smaller radius. The easiest way to
solve this puzzle is with recursion: (i) recursively move the top n − 1 discs from A to C; (ii) move the nth disc
from A to B; and (iii) recursively move the n − 1 discs from C to B. The total number of moves made satisfies
T(n) = 2T(n − 1) + 1 and T(1) = 1. Prove that T(n) = 2n − 1.

6.130 Suppose we are given a sorted array A[1 . . . n], and we wish to determine where in A the element
x belongs—that is, the index i such that A[i − 1] < x ≤ A[i]. (Binary Search solves this problem.) Here’s a
sketch of an algorithm rootSearch to solve this problem:
• if n is small (say, less than 100), find the index by brute force. Otherwise:
• define mileposts := A[

√
n], A[2

√
n], A[3

√
n], . . . , A[n] to be a list of every (

√
n)th element of A.

• recursively, find post := rootSearch(mileposts, x).
• return rootSearch(A[(post − 1)

√
n, . . . , post

√
n], x).

(Note that rootSearch makes two recursive calls.) Find a recurrence relation for the running time of this
algorithm, and solve it.

6.131 A van Emde Boas tree is a recursive data structure (with somewhat similar inspiration to the
previous exercise) that allows us to insert, delete, and look up keys drawn from a set U = {1, 2, . . . , u} quickly.
(It solves the same problem that binary search trees solve, but our running time will be in terms of the size
of the universe U rather than in terms of the number of keys stored.) A van Emde Boas tree achieves a
running time given by T(n) = T(

√
n) + 1 and T(1) = 1. Solve this recurrence. (Hint: define R(k) := T(2k). Solving

R(k) is easy!)
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6.6 Chapter at a Glance

Asymptotics

Asymptotic analysis considers the rate of growth of functions, ignoring multiplicative
constant factors and concentrating on the long-run behavior of the function on large
inputs.

Consider two functions f : R≥0 → R≥0 and g : R≥0 → R≥0. Then f (n) = O(g(n)) (“f
grows no faster than g”) if there exist c > 0 and n0 ≥ 0 such that f (n) ≤ c · g(n) for all
n ≥ n0. Some useful properties of O(·):

• f (n) = O(g(n) + h(n)) if and only if f (n) = O(max(g(n), h(n))).
• if f (n) = O(g(n)) and g(n) = O(h(n)), then f (n) = O(h(n)).
• if f (n) = O(h1(n)) and g(n) = O(h2(n)), then f (n) + g(n) = O(h1(n) + h2(n)) and

f (n) · g(n) = O(h1(n) · h2(n)).
• a polynomial p(n) = aknk + · · · a1n + a0 satisfies p(n) = O(nk).
• log n = O(nε) for any ε > 0.
• for any base b and exponent k, we have logb(nk) = O(log n).
• for constants b, c ≥ 1, we have bn = O(cn) if and only if b ≤ c.

There are several other forms of asymptotic notation, to capture other relationships
between functions. A function f grows no slower than g, written f (n) = Ω(g(n)), if there
exist constants d > 0 and n0 ≥ 0 such that ∀n ≥ n0 : f (n) ≥ d · g(n). Two functions f and
g satisfy f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

A function f grows at the same rate as g, written f (n) = Θ(g(n)), if f (n) = O(g(n)) and
f (n) = Ω(g(n)); it grows (strictly) slower than g, written f (n) = o(g(n)), if f (n) = O(g(n)) but
f (n) 6= Ω(g(n)); and it grows (strictly) faster than g, written f (n) = ω(g(n)), if f (n) = Ω(g(n))
but f (n) 6= O(g(n)). Many of the properties of O have analogous properties for Ω, Θ, o,
and ω. One possibly surprising point is that there are functions that are incomparable:
there are functions f and g such that neither f (n) = O(g(n)) nor f (n) = Ω(g(n)).

Asymptotic Analysis of Algorithms

Our main interest in asymptotics is in the analysis of algorithms, so that we can make
statements about which of two algorithms that solve the same problem is faster. The
running time of an algorithm is a count of the number of primitive steps that the algo-
rithm takes to complete on a particular input. (Think of one machine instruction as a
primitive step.)

We generally evaluate the efficiency of an algorithm A using worst-case analysis: as
a function of n, how many primitive steps does A take on the input of size n for which A
is the slowest. (A primary goal of algorithmic analysis is to provide a guarantee on the
running time of an algorithm, so we will be pessimistic.) We can also analyze the space
used by an algorithm, in the same way. Sometimes we will instead consider average-
case running time of an algorithm A, which computes the running time of A, averaged
over all inputs of size n. Almost never will we consider an algorithm’s running time on
the input of size n for which A is the fastest (known as best-case analysis); this type of
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analysis is rarely used.

Recurrence Relations: Analyzing Recursive Algorithms

Typically, for nonrecursive algorithms, we compute the running time by inspecting
the algorithm and writing down a summation corresponding to the operations done
in each iteration of each loop, summed over the iterations, and then simplifying. For
recursive algorithms, we typically record the work using a recurrence relation that ex-
presses the (worst-case) running time on inputs of size n in terms of the (worst-case)
running time on inputs of size less than n. (For small inputs, the running time is a
constant—say, T(1) = c.) For example, ignoring floors and ceilings, T(1) = c and
T(n) = 2T( n

2 ) + cn is the recurrence relation for Merge Sort. (Almost always, we can
safely ignore floors and ceilings.)

A solution to a recurrence relation is a closed-form (nonrecursive) expression for
T(n). Recurrence relations can be solved by conjecturing a solution and proving that
conjecture correct by induction.

n

n
2

n
2

n
4

n
4

n
4

n
4

...

1 1

2 2

· · · · · ·

. .
. . . .

1 1

1
+

lo
g 2

n
le

ve
ls

A recurrence relation can be rep-
resented using a recursion tree, where
each node is annotated with the
work that is performed there, aside
from the recursive calls. Recurrence
relations can also be solved by sum-
ming up all of the work contained
within the recursion tree.

Recurrence Relations: The Master Method

A particularly common type of recurrence relation is one of the form

T(n) = aT( n
b ) + c · nk,

for constants a ≥ 1, b > 1, c > 0, and k ≥ 0. This type of recurrence arises in divide-
and-conquer algorithms that solve an instance of size n by making a different recursive
calls on inputs of size n

b , and reconstructing the solution to the given instance in Θ(nk)
time. The Master Theorem states that the solution to any such recurrence relation is
given by:

1. if bk < a, then T(n) = Θ(nlogb(a)). “The leaves dominate.”
2. if bk = a, then T(n) = Θ(nk · log n). “All levels are equal.”
3. if bk > a, then T(n) = Θ(nk). “The root dominates.”

The proof follows by building the recursion tree, and summing the work at each level
of the tree; the cases correspond to whether the work increases exponentially, de-
creases exponentially, or stays constant across levels of the tree.
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Key Terms and Results

Key Terms

Asymptotics

• asymptotic analysis
• O (big oh)
• Ω (big omega)
• Θ (big theta)
• ω (little omega)
• o (little oh)

Analysis of Algorithms

• running time
• worst-case analysis
• average-case analysis
• best-case analysis

Recurrence Relations

• recurrence relation
• recursion tree
• iterating a recurrence

Master Method

• Master Theorem
• “the leaves dominate”
• “all levels are equal”
• “the root dominates”

Key Results

Asymptotics

1. Some sample useful properties of O(·):
• f (n) = O(g(n) + h(n)) ⇔ f (n) = O(max(g(n), h(n))).
• O(·) is transitive.
• any degree-k polynomial satisfies p(n) = O(nk).
• log n = O(nε) for any ε > 0.
• if f (n) = O(g(n)) then log f (n) = O(log g(n)).
• for any b and k, we have logb(nk) = O(log n).
• for constants b, c ≥ 1, we have bn = O(cn) ⇔ b ≤ c.

2. Two functions f and g satisfy f (n) = O(g(n)) if and only if
g(n) = Ω(f (n)).

3. There are pairs of functions f and g such that neither
f (n) = O(g(n)) nor f (n) = Ω(g(n)).

Analysis of Algorithms

1. We generally evaluate the efficiency of an algorithm A
using worst-case analysis: what happens (asymptotically)
to the number of steps consumed by A as function of the
input size n on the input of size n for which A is the slowest?

2. Typically we can analyze the running time of a
nonrecursive algorithm by simple counting and
manipulation of summations.

Recurrence Relations

1. The running time of a recursive algorithm can be
expressed using a recurrence relation, which can be
solved by figuring out a conjecture of a closed-form
formula for the relation, and then verifying by induction.

Master Method

1. Recurrence relations of the form T(n) = aT( n
b ) + cnk (and

T(1) = c) can be solved using the Master Method:

Case 1: if bk < a, then T(n) = Θ(nlogb(a)).
Case 2: if bk = a, then T(n) = Θ(nk · log n).
Case 3: if bk > a, then T(n) = Θ(nk).





7
Number Theory

In which, after becoming separated, our heroes arrange a place to meet, by
sending messages that stay secret even as snooping spies listen in.
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7.1 Why You Might Care

When you can measure what you are speaking about,
and express it in numbers, you know something about
it; but when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind.

Sir William Thomson, Lord Kelvin (1824–1907)

A chapter about numbers (particularly when it’s so far along in this book!) proba-
bly seems a little bizarre—after all, what is there to say about numbers that you didn’t
figure out by elementary school?!? But, more so than any other chapter of the book,
the technical material in this chapter leads directly to a single absolutely crucial (and
ubiquitous!) modern application of computer science: cryptography,which deals with cryptography

(Greek): kryptos
“concealed/secret”
+ graph “writing.”

protocols to allow multiple parties to communicate securely, even in the presence of
eavesdropping adversaries (or worse!). Cryptographic systems are used throughout
our daily lives—both in the security layers that connect us as users to servers (for ex-
ample, in banking online or in registering for courses at a college), and in the backend
systems that, we hope, protect our data even when we aren’t interacting with it.

Our goal in this chapter will be to build up the technical machinery necessary to
define and understand the RSA cryptosystem, one of the most commonly used crypto-
graphic systems today. (RSA is named after the initials of its three discoverers, Rivest,
Shamir, and Adleman.) By the end of the chapter, in Section 7.5, we’ll be able to give
a full treatment of RSA, along with sketched outlines of a few other important ideas
from cryptography. (Later in the book, in Chapter 9, we’ll also encounter the histori-
cal codebreaking work of Alan Turing and colleagues, which deciphered the German
encryption in World War II—a major part of the allied victory. See p. 960.)

To get there, we’ll need to develop some concepts and tools from number theory.
(“Number theory” is just a slightly fancy name for “arithmetic on integers.”) Our focus
will be on modular arithmetic: that is, the numbers on which we’ll be doing arithmetic
will be a set of integers {0, 1, 2, . . . , n− 1}, where—like on a clock—the numbers “wrap
around” from n− 1 back to 0. In other words, we’ll interpret numerical expressions
modulo n, always considering each expression via its remainder when we divide by
n. We begin in Section 7.2 with formal definitions of modular arithmetic, and the
adaptation of some basic ideas from elementary-school arithmetic to this new setting.
We’ll then turn in Section 7.3 to primality (when a number has no divisors other than
1 and itself) and relative primality (when two numbers have no common divisors other
than 1). Modular arithmetic begins to diverge more substantially when we start to
think about division: there’s no integer that’s one fifth of 3 . . . but, on a clock where
we treat 12:00 as 0, there is an integer that’s a fifth of 3—namely 5, because 5 + 5 + 5 is
3 (because 3:00pm is 15 hours after midnight—so 5 · 3 is 3, modulo 12). In Section 7.4,
we’ll explore exactly what division means in modular arithmetic—and some special
features of division that arise when n is a prime number.

As we go, we’ll see a few other applications of number theory: to error-correcting
codes, secret sharing, and the apparently unrelated task of generating all 4-letter se-
quences (AAAA to ZZZZ). And, finally, we’ll put the pieces together to explore RSA.
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7.2 Modular Arithmetic

Among those whom I like or admire, I can find no
common denominator, but among those whom I love,
I can: all of them make me laugh.

W. H. Auden (1907–1973)

We will start with a few reminders of some basic arithmetic definitions from Chap-
ter 2—about multiplication, division, and modular arithmetic—as these concepts are
the foundations for all the work that we’ll do in this chapter. We’ll also introduce a few
algorithms for computing these basic arithmetic quantities, including one of the oldest
known algorithms: the Euclidean algorithm, from about 2300 years ago, which com-
putes the greatest common divisor of two integers n and m (that is, the largest integer
that evenly divides both n and m).

7.2.1 Remainders: A Reminder

Let’s start with a few simple facts about integers. Every integer is 0 or 1 more than
some even number. Every integer is 0, 1, or 2 more than a multiple of three. Every
integer is at most 3 more than a multiple of four. And, in general, for any integer k ≥ 1,
every integer is r more than a multiple of k, for some r ∈ {0, 1, . . . , k− 1}. We’ll begin
with a precise statement and proof of the general version of this property:

Theorem 7.1 (Floors and Remainders: “The Division Theorem”)
Let k ≥ 1 and n be integers. Then there exist integers d and r such that (i) 0 ≤ r < k, and (ii)
kd + r = n. Furthermore, the values of d and r satisfying (i) and (ii) are unique.

Before we prove the theorem, let’s look at a few examples of what it claims:

Example 7.1 (Some examples of the Division Theorem)
For k = 202 and n = 379, the theorem states that there exist integers r ∈ {0, 1, . . . , 201}
and d with 202d + r = 379. Specifically, those values are r = 177 and d = 1, because
202 · 1 + 177 = 379.

Here are a few more examples, still with k = 202:

n = 55057 n = 507 n = 177 n = 404 n = −507 n = −404
d = 272 d = 2 d = 0 d = 2 d = −3 d = −2
r = 113 r = 103 r = 177 r = 0 r = 99 r = 0

You can verify that, in each of these six columns, indeed we have 202d + r = n.

Now let’s give a proof of the general result:

Proof of Theorem 7.1. Consider a fixed integer k ≥ 1. Let P(n) denote the claim

P(n) := there exist integers d and r such that 0 ≤ r < k and kd + r = n.
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We must prove that P(n) holds for all integers n. We’ll first prove the result for nonneg-
ative n (by strong induction on n), and then show the claim for n < 0 (making use of
the result for nonnegative n).

Problem-solving
tip: To prove that
a property is true
for all inputs, it
often turns out to
be easier to first
prove a special case
and then use that
special case to show
that the property
holds in general.
(Another example:
it’s probably easier
to analyze the
performance of
Merge Sort on
inputs whose
size is an exact
power of 2, and
to then generalize
to arbitrary input
sizes.)

Case I: n ≥ 0. We’ll prove that P(n) holds for all n ≥ 0 by strong induction on n.

• For the base cases (0 ≤ n < k), we simply select d := 0 and r := n. Indeed, these
values guarantee that 0 ≤ r < k and kd + r = k · 0 + n = 0 + n = n.

• For the inductive case (n ≥ k), we assume the inductive hypotheses—namely, we
assume P(n′) for any 0 ≤ n′ < n—and we must prove P(n). Because n ≥ k and
k > 0, it is immediate that n′ := n− k satisfies 0 ≤ n′ < n. Thus we can apply the
inductive hypothesis P(n′) to conclude that there exist integers d′ and r′ such that
0 ≤ r′ < k and kd′ + r′ = n′. Select d := d′ + 1 and r := r′. Thus, indeed, 0 ≤ r < k
and

kd + r = k(d′ + 1) + r′ definition of d and r

= kd′ + k + r′ distributive property

= n′ + k n′ = kd′ + r′, by definition

= n. definition of n′ = n− k

Case II: n < 0. To show that P(n) holds for an arbitrary n < 0, we will make use of
Case I. Let r′ and d′ be the integers guaranteed by P(−n), so that kd′ + r′ = −n. We
consider two cases based on whether r′ = 0:

Case IIA: r′ 6= 0. Then let d := −d′ − 1 and let r := k− r′. (Because k > r′ > 0, we have
0 < k− r′ < k.) Thus

kd + r = k(−d′ − 1) + k− r′ definition of d and r

= −kd′ − k + k− r′

= −(kd′ + r)
= −(−n) = n. definition of d′ and r′

Case IIB: r′ = 0. Then let d := −d′ and r := r′ = 0. Therefore

kd + r = −d′k + r′ definition of d and r

= −(−n) = n. definition of d′ and r′

We have thus proven that P(n) holds for all integers n: Case I handled n ≥ 0, and Case
II handled n < 0. (We have not yet proven the uniqueness of the integers r and d; this
proof of uniqueness is left to you in Exercise 7.4.)

This theorem now allows us to give a more careful definition of modular arithmetic.
(In Definition 2.9, we gave the slightly less formal definition of n mod k as the remain-
der when we divide n by k.)
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Definition 7.1 (Modulus (reprise))
For integers k > 0 and n, the quantity n mod k is the unique integer r such that 0 ≤ r < k
and kd + r = n for some integer d (whose existence is guaranteed by Theorem 7.1).

Incidentally, the integer d whose existence is guaranteed by Theorem 7.1 is ⌊n/k⌋: for
any k ≥ 1, we can write the integer n as

n =
⌊n
k

⌋
· k + (n mod k).

Taking it further: One of the tasks that we can accomplish conveniently using modular arithmetic is
base conversion of integers. We’re used to writing numbers in decimal (“base 10”), where each digit is
“worth” a factor of 10 more than the digit to its right. (For example, the number we write “31” means
1 · 100 + 3 · 101 = 1 + 30.) Computers store numbers in binary (“base 2”) representation, and we can
convert between bases using modular arithmetic. For more, see the discussion on p. 714.

7.2.2 Computing n mod k and
⌊ n
k
⌋

So far, we’ve taken arithmetic operations for granted—ignoring how we’d figure out
the numerical value of an arithmetic expression like 21024 − 3256 · 5202, which is simple
to write—but not so instantaneous to calculate. (Quick! Is 21024 − 3256 · 5202 evenly di-
visible by 7?) Indeed, many of us spent a lot of time in elementary-school math classes
learning algorithms for basic arithmetic operations like addition, multiplication, long
division, and exponentiation (even if back then nobody told us that they were called
algorithms).

mod-and-div(n, k):
Input: integers n ≥ 0 and k ≥ 1
Output: n mod k and ⌊n/k⌋
1: r := n; d := 0
2: while r ≥ k:
3: r := r − k; d := d + 1
4: return r, d

Figure 7.1: An algo-
rithm to compute
n mod k and ⌊n/k⌋.

Thinking about algorithms for some basic arithmetic op-
erations will be useful, for multiple reasons: because they’re
surprisingly relevant for proving some useful facts about
modular arithmetic, and because computing them efficiently
turns out to be crucial in the cryptographic systems that we’ll
explore in Section 7.5.

We’ll start with the algorithm shown in Figure 7.1 that
computes n mod k (and simultaneously computes ⌊n/k⌋ too). The very basic idea for
this algorithm was implicit in the proof of Theorem 7.1: we repeatedly subtract k from
n until we reach a number in the range {0, 1, . . . , k− 1}.

Some programming
languages—Pascal,
for one (admittedly
dated) example—
use div to denote
integer division, so
that 15 div 7 is 2.

Example 7.2 (An example of mod-and-div)
Let’s compute mod-and-div(64, 5). We start with r := 64 and d := 0, and repeatedly
decrease r by 5 and increase d by 1 until r < 5. Here are the values in each iteration:

r 64 59 54 49 44 39 34 29 24 19 14 9 4
d 0 1 2 3 4 5 6 7 8 9 10 11 12 .

Thus mod-and-div(64, 5) returns 4 and 12—and, indeed, we can write 64 = 12 · 5 + 4,
where 4 = 64 mod 5 and 12 = ⌊64/5⌋.

Similarly, mod-and-div(20, 17) starts with d = 0 and r = 20, and executes one (and
only one) iteration of the loop, returning d = 1 and r = 3.
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7.2.3 Congruences, Divisors, and Common Divisors

We argued in Lemma 7.2 that mod-and-div(n, k), which repeatedly subtracts k from
n in a loop, correctly computes the value of n mod k. We gave a proof by induction
in Lemma 7.2, but we could have instead argued for the correctness of the algorithm,
perhaps more intuitively, via the following fact:

For any integers a ≥ 0 and k ≥ 1, we have (a + k) mod k = a mod k.

That is, the remainder when we divide an integer a by k isn’t changed by adding an
exact multiple of k to a. This property follows from the definition of mod, but it’s also
a special case of a useful general property of modular arithmetic, which we’ll state
(along with some other similar facts) in Theorem 7.3. Here are a few examples of this
more general property:

Example 7.3 (The mod of a sum, and the sum of the mods)
Consider the following expressions of the form (a + b) mod k.

• (17 + 43) mod 7 = 60 mod 7 = 4. (Note 17 mod 7 = 3, 43 mod 7 = 1, and 3 + 1 = 4.)
• (18 + 42) mod 9 = 60 mod 9 = 6. (Note 18 mod 9 = 0, 42 mod 9 = 6, and 0 + 6 = 6.)
• (25 + 25) mod 6 = 50 mod 6 = 2. (Note 25 mod 6 = 1, 25 mod 6 = 1, and 1 + 1 = 2.)

At this point it might be tempting to conjecture that (a + b) mod k is always equal to
(a mod k) + (b mod k), but be careful—this claim has a bug, as this example shows:

• (18 + 49) mod 5 = 67 mod 5 = 2. (Note 18 mod 5 = 3, 49 mod 5 = 4, but 3 + 4 6= 2.)

Instead, it turns out that (a + b) mod k = [(a mod k) + (b mod k)] mod k—we had to
add an “extra” mod k at the end.

Here are some of the useful general properties of modular arithmetic:

Theorem 7.3 (Properties of modular arithmetic)
For integers a and b and k > 0:

k mod k = 0 (7.3.1)
a + b mod k = [(a mod k) + (b mod k)] mod k (7.3.2)
ab mod k = [(a mod k) · (b mod k)] mod k (7.3.3)
ab mod k = [(a mod k)b] mod k. (7.3.4)

We’ll omit proofs of these properties, though we could give a formal proof based on
the definitions of mod. (Exercise 7.17 asks you to give a formal proof for one of these
properties, namely (7.3.2).) Again notice the “extra” mod k at the end of the last three
of these equations—it is not the case that ab mod k = (a mod k) · (b mod k) in general.
For example, 14 mod 6 = 2 and 5 mod 6 = 5, but (2 · 5) mod 6 = 4 6= 2 · 5.

In the cryptographic applications that we will explore later in this chapter, it will
turn out to be important to perform “modular exponentiation” efficiently—that is,
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we’ll need to compute be mod n very quickly, even when e is fairly large. Fortunately,
(7.3.4) will help us do this computation efficiently; see Exercises 7.23–7.25.

Congruences
We’ve now talked a little bit (in Theorem 7.3, for example) about two numbers a and

b that have the same remainder when we divide them by k—that is, with a mod k =
b mod k. There’s useful terminology, and notation, for this kind of equivalence:

Typically a ≡k b
is read as “a is
equivalent to
b mod k” or “a is
congruent to b mod
k.” If you’re reading
the statement a ≡k b
out loud, it’s polite
to pause slightly,
as if there were a
comma, before the
“mod k” part.

Definition 7.2 (Congruence)
Two integers a and b are congruent mod k, written a ≡k b, if a mod k = b mod k.

Taking it further: Some people write a ≡k b using the notation

a ≡ b (mod k).

This notation is used to mean the same thing as our notation a ≡k b, but note the somewhat unusual
precedence in this alternate notation: it says that

[
a ≡ b

]
(mod k)

(and it does not, as it might appear, say that the quantity a and the quantity [b mod k] are equivalent).

Divisors, factors, and multiples
We now return to the divisibility of one number by another, when the first is an

exact multiple of the second. As with the previous topics in this section, we gave some
preliminary definitions in Chapter 2 of divisibility (and related terminology), but we’ll
again repeat the definitions here, and also go into a little bit more detail.

Definition 7.3 (Divisibility, Factors, and Multiples (reprise))
For two integers k > 0 and n, we write k | n to denote the proposition that n mod k = 0. If
k | n, we say that k divides n (or that k evenly divides n), that n is a multiple of k, and that
k is a factor of n.

(For example, we can say that 42 | 714, that 6 and 17 are factors of 714, and that 714 is a
multiple of 7.) Here are a few useful properties of division:

Theorem 7.4 (Properties of divisibility)
For integers a and b and c:

a | 0 (7.4.1)
1 | a (7.4.2)
a | a (7.4.3)

a | b and b | c ⇒ a | c (7.4.4)
a | b and b | a ⇒ a = b or a = −b (7.4.5)
a | b and a | c ⇒ a | (b + c) (7.4.6)

a | b ⇒ a | bc (7.4.7)
ab | c ⇒ a | c and b | c (7.4.8)
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These properties generally follow fairly directly from the definition of divisibility.
A few are left to you in the exercises, and we’ll address a few others in Chapter 8,
which introduces relations. (Facts (7.4.3), (7.4.4), and a version of (7.4.5) are certain
standard properties of some relations that the “divides” relation happens to have:
reflexivity, transitivity, and so-called antisymmetry. See Chapter 8.) To give the flavor of
these arguments, here’s one of the proofs, that ab | c implies that a | c and b | c:
Proof of (7.4.8). Assume ab | c. Then, by definition of mod (and by Theorem 7.1), there
exists an integer k such that c = (ab) · k. Taking both sides mod a, we have

c mod a = abk mod a k is the integer such that c = (ab) · k

= [(a mod a) · (bk mod a)] mod a (7.3.3)

= [0 · (bk mod a)] mod a (7.3.1)

= 0 mod a 0 · x = 0 for any x

= 0. 0 mod a = 0 for any a

Thus c mod a = 0, so a | c. Analogously, because b · (ak) = c, we have that b | c too.

Greatest common divisors and least common multiples
We now turn to our last pair of definitions involving division: for two integers, we’ll

be interested in two related quantities—the largest number that divides both of them,
and the smallest number that they both divide.

Definition 7.4 (Greatest Common Divisor (GCD))
The greatest common divisor of two positive integers n and m, denoted gcd(n,m), is the
largest d ∈ Z≥1 such that d | n and d |m.

Definition 7.5 (Least Common Multiple (LCM))
The least common multiple of two positive integers n and m, denoted lcm(n,m), is the
smallest d ∈ Z≥1 such that n | d and m | d.

Here are some examples of both GCDs and LCMs, for a few pairs of small numbers:

Example 7.4 (Examples of GCDs)
The GCD of 6 and 27 is 3, because 3 divides both 6 and 27 (and no integer k ≥ 4
divides both). Similarly, we have gcd(1, 9) = 1, gcd(12, 18) = 6, gcd(202, 505) = 101,
and gcd(11, 202) = 1.

Example 7.5 (Examples of LCMs)
The LCM of 6 and 27 is 54, because 6 and 27 both divide 54 (and no k ≤ 53 is divided
by both). Similarly, we have lcm(1, 9) = 9, lcm(12, 18) = 36, lcm(202, 505) = 1010, and
lcm(11, 202) = 2222.
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Both of these concepts should be (at least vaguely!) familiar from elementary school,
specifically from when you learned about how to manipulate fractions:

• We can rewrite the fraction 38
133 as 2

7 , by dividing both numerator and denominator
by the common factor 19—and we can’t reduce it further because 19 is the greatest
common divisor of 38 and 133. (We have “reduced the fraction to lowest terms.”)

• We can rewrite the sum 5
12 +

7
18 as 15

36 +
14
36 (which equals 29

36 ) by rewriting both frac-
tions with a denominator that’s a common multiple of the denominators of the two
addends—and we couldn’t have chosen a smaller denominator, because 36 is the
least common multiple of 12 and 18. (We have “put the fractions over the lowest
common denominator.”)

In the remainder of this section, we’ll turn to the task of efficiently computing the great-
est common divisor of two integers. (Using this algorithm, we can also find least
common multiples quickly, because GCDs and LCMs turn out to be closely related
quantities: for any integers a and b, we have lcm(a, b) · gcd(a, b) = a · b.)

7.2.4 Computing Greatest Common Divisors
Euclid(n,m):
Input: positive integers n and m ≥ n
Output: gcd(n,m)
1: if m mod n = 0 then
2: return n
3: else
4: return Euclid(m mod n, n)

Figure 7.2: The Eu-
clidean algorithm
for GCDs.

The “obvious” way to compute the greatest common di-
visor of two positive integers n and m is to try all candidate
divisors d ∈ {1, 2, . . . , min(n,m)} and to return the largest
value of d that indeed evenly divides both n and m. This
algorithm is slow—very slow!—but there is a faster way to
solve the problem. Amazingly, a faster algorithm for com-
puting GCDs has been known for approximately 2300 years:
the Euclidean algorithm, named after the Greek geometer Euclid, who lived in the 3rd
century bce. (Euclid is also the namesake of the Euclidean distance between points in
the plane—see Exercise 2.174—among a number of other things in mathematics.) The
algorithm is shown in Figure 7.2.1

1 Donald E. Knuth.
The art of computer
programming:
Seminumerical
algorithms (Volume
2). Addison-Wesley
Longman, 3rd
edition, 1997.

Taking it further: Euclid described his algorithm in his book Elements, from c. 300 bce, a multivolume
opus covering the fundamentals of mathematics, particularly geometry, logic, and proofs. Most people
view the Euclidean algorithm as the oldest nontrivial algorithm that’s still in use today; there are some
older not-quite-fully-specified procedures for basic arithmetic operations like multiplication that date
back close to 2000 bce, but they’re not quite laid out as algorithms.

Donald Knuth—the 1974 Turing Award winner, the inventor of TEX (the underlying system that was
used to typeset virtually all scholarly materials in computer science—and this book!), and a genius of
expository writing about computer science in general and algorithms in particular—describes the history
of the Euclidean algorithm (among many other things!) in The Art of Computer Programming,1his own
modern-day version of a multivolume opus covering the fundamentals of computer science, particularly
algorithms, programming, and proofs.

Among the fascinating things that Knuth points out about the Euclidean algorithm is that Euclid’s
“proof” of correctness only handles the case of up to three iterations of the algorithm—because, Knuth
argues, Euclid predated the idea of mathematical induction by hundreds of years. (And Euclid’s version
of the algorithm is quite hard to read, in part because Euclid didn’t have a notion of zero, or the idea that
1 is a divisor of any positive integer n.)

Here are three small examples of the Euclidean algorithm in action:

“Knuth” rhymes
with “Duluth” (a
city in Minnesota
that Minnesotans
make fun of for
having harsh
weather): the “K” is
pronounced.
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Example 7.6 (GCDs using the Euclidean Algorithm)
Let’s compute the GCD of 17 and 42.

Euclid(17, 42) = Euclid(42 mod 17︸ ︷︷ ︸
=8

, 17) 42 mod 17 = 8 6= 0, so we’re in the else case.

= Euclid(17 mod 8︸ ︷︷ ︸
=1

, 8) 17 mod 8 = 1 6= 0, so we’re in the else case again.

= 1. 8 mod 1 = 0, so we’re done, and we return 1.

Indeed, the only positive integer that divides both 17 and 42 is 1, so gcd(17, 42) = 1.
Here’s another example, for 48 and 1024:

Euclid(48, 1024) = Euclid(1024 mod 48︸ ︷︷ ︸
=16

, 48) 1024 mod 48 = 16 6= 0, so we’re in the else case.

= 16. 48 mod 16 = 0, so we return 16.

And here’s one last example (written more compactly), for 91 and 287:

Euclid(91, 287) = Euclid(287 mod 91︸ ︷︷ ︸
=14

, 91) = Euclid(91 mod 14︸ ︷︷ ︸
=7

, 14) = 7.

Before we try to prove the correctness of the Euclidean algorithm, let’s spend a
few moments on the intuition behind it. The basic idea is that any common divisor
of two numbers must also evenly divide their difference. For example, does 7 divide
both 63 and 133? If so, then it would have to be the case that 7 | 63 and that 7 also
divides the “gap” between 133 and 63. (That’s because 63 = 7 · 9, and if 7k = 133,
then 7(k − 9) = 133 − 63.) More generally, suppose that d is a common divisor of
n and m ≥ n. Then it must be the case that d divides m − cn, for any integer c where
cn < m. In particular, d divides m− ⌊mn ⌋ · n; that is, d divides m mod n. (We’ve only
argued that if d is a common divisor of n and m then d must also divide m mod n, but
actually the converse holds too; we’ll formalize this fact in the proof.) See Figure 7.3 for
a visualization of this idea.

133
63

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135

63 63 · 2 = 126

Figure 7.3: The
intuition behind
the Euclidean
algorithm: d is a
common divisor
of 63 and 133 if
and only if d also
divides 133− 63
and 133− 63 · 2 =
133− 126. Indeed
d = 7 is a common
divisor of 63 and
133, but 9 is not
(because 9 does not
divide 133− 126 =
7).

Making the intuition formal
We will now make this intuition formal, and give a full proof of the correctness of

the Euclidean algorithm: that is, we will establish that Euclid(n,m) = gcd(n,m) for any
positive integers n and m ≥ n, with a proof by induction. There’s a crucial lemma that
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we’ll need to prove first, based on the intuition we just described: we need to show
that for any n and m ≥ n where m mod n 6= 0, we have gcd(n,m) = gcd(n,m mod n).
We will prove this fact by proving that the common divisors of {n,m} are identical to the
common divisors of {n,m mod n}. (Thus the greatest common divisor of these two pairs
of integers will be identical.)

Lemma 7.5 (When n 6 |m, the same divisors of n divide m and m mod n)
Let n and m be positive integers such that n ≤ m and n 6 |m. Let d | n be an arbitrary divisor
of n. Then d |m if and only if d | (m mod n).

Here’s a concrete example before we prove the lemma:

Example 7.7 (An example of Lemma 7.5)
Consider n = 42 and m = 98. Then n ≤ m and n 6 | m, as Lemma 7.5 requires. The
divisors of 42 are {1, 2, 3, 6, 7, 14, 21, 42}. Of these divisors, the ones that also divide
98 are {1, 2, 7, 14}.

The lemma claims that the common divisors of 42 and 98 mod 42 = 14 are also
precisely {1, 2, 7, 14}. And they are: because 14 | 42, all divisors of 14—namely, 1, 2, 7,
and 14—are common divisors of 14 and 42.

Proof of Lemma 7.5. By the assumption that d | n, we know that there’s an integer a such
that n = ad. Let r := m mod n, so that m = cn + r for an integer c (as guaranteed by
Theorem 7.1). We must prove that d |m if and only if d | r.

For the forward direction, suppose that d |m. (We must prove that d | r.) By defini-
tion, there exists an integer b such that m = bd. But n = ad and m = bd, so

m = cn + r ⇔ bd = c(ad) + r ⇔ r = (b− ac)d

for integers a, b, and c. Thus r is a multiple of d, and therefore d | r.
For the converse, suppose that d | r. (We must prove that d | m.) By definition, we

have that r = bd for some integer b. But then n = ad and r = bd, so

m = cn + r = c(ad) + bd = (ac + b)d

for integers a, b, and c. Thus d |m.

Corollary 7.6
Let n and m ≥ n be positive integers where n 6 |m. Then gcd(n,m) = gcd(m mod n, n).

Proof. Lemma 7.5 establishes that the set of common divisors of 〈n,m〉 is identical to
the set of common divisors of 〈n,m mod n〉. Therefore the maxima of these two sets of
divisors—that is, gcd(n,m) and gcd(m mod n, n)—are also equal.

Putting it together: the correctness of the Euclidean algorithm
Using this corollary, we can now prove the correctness of the Euclidean algorithm:
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Theorem 7.7 (Correctness of the Euclidean algorithm)
For arbitrary positive integers n and m with n ≤ m, we have Euclid(n,m) = gcd(n,m).

Proof. We’ll proceed by strong induction on n, the smaller input. Define the property

P(n) := for any m ≥ n, we have Euclid(n,m) = gcd(n,m).

We’ll prove that P(n) holds for all integers n ≥ 1.

Base case (n = 1): P(1) follows because both gcd(1,m) = 1 and Euclid(1,m) = 1: for
any m, the only positive integer divisor of 1 is 1 itself (and indeed 1 | m), and thus
gcd(1,m) = 1. Observe that Euclid(1,m) = 1, too, becausem mod 1 = 0 for any m.

Inductive case (n ≥ 2): We assume the inductive hypotheses—that P(n′) holds for any
1 ≤ n′ < n—and must prove P(n). Let m ≥ n be arbitrary. There are two subcases,
based on whether n |m or n 6 |m:

• If n | m—that is, if m = cn for an integer c—then m mod n = 0 and thus, by
inspection of the algorithm, Euclid(n,m) = n. Because n | n (and there is no d > n
that divides n evenly), indeed n is the GCD of n and m = cn.

• If n 6 |m—that is, if m mod n 6= 0—then

Euclid(n,m) = Euclid(m mod n, n) by inspection of the algorithm

= gcd(m mod n, n) by the inductive hypothesis P(m mod n)

= gcd(n,m). by Corollary 7.6

Note that (m mod n) ≤ n − 1 by the definition of mod (anything mod n is less
than n), so we can invoke the inductive hypothesis P(m mod n) in the second step
of this proof.

Theorem 7.7 establishes the correctness of the Euclidean algorithm, but we intro-
duced this algorithm because the brute-force algorithm (simply testing every candi-
date divisor d) was too slow. Indeed, the Euclidean algorithm is very efficient:

Problem-solving tip:
In Theorem 7.8,
it’s not obvious
what quantity upon
which to perform
induction—after
all, there are two
input variables, n
and m. It is often
useful to combine
multiple inputs into
a single “measure
of progress” toward
the base case—
perhaps performing
induction on the
quantity n +m or
the quantity n ·m.

Theorem 7.8 (Efficiency of Euclidean Algorithm)
For arbitrary positive integers n and m with n ≤ m, the recursion tree of Euclid(n,m) has
depth at most log n + logm.

(The ability to efficiently compute gcd(n,m) using the Euclidean algorithm—assuming
we use the efficient algorithm to compute m mod n from Exercises 7.11–7.16, at least—
will be crucial in the RSA cryptographic system in Section 7.5.) You’ll prove Theo-
rem 7.8 by induction in Exercise 7.34—and you’ll show that the recursion tree can be as
deep as Ω(log n + logm), using the Fibonacci numbers, in Exercise 7.37.
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Computer Science Connections

Converting Between Bases, Binary Representation, and Generating Strings

For a combination of historical and anatomical reasons—we have ten fin-
gers and ten toes!—we generally use a base ten, or decimal, system to represent
numbers. Moving from right to left, there’s a 1’s place, a 10’s place, a 100’s Latin: decim “ten.” Note that digit is

ambiguous in English between “place in
a number” and “finger or toe.”

place, and so forth; thus 2048 denotes 8 · 1 + 4 · 10 + 0 · 100 + 2 · 1000. This rep-
resentation is an example of a positional system, in which each place/position
has a value, and the symbol in that position tells us how many of that value
the number has. Some ancient cultures used non-decimal positional sys-
tems, some of which survive to the present day: for example, the Sumarians
and Babylonians used a base 60 system—and, even today, 60 seconds make a
minute, and 60 minutes make an hour.

In general, to represent a number n in base b ≥ 2, we write a sequence of
elements of {0, 1, . . . , b− 1}—say [dkdk−1 · · · d2d1d0]b. (We’ll write the base
explicitly as a subscript, for clarity.) Moving from right to left, the ith position
is “worth” bi, so this number’s value is ∑k

i=0 bidi . For example,

[1234]5 = 4 · 50 + 3 · 51 + 2 · 52 + 1 · 53 = 4 + 15 + 50 + 125 = 194
[1234]8 = 4 · 80 + 3 · 81 + 2 · 82 + 1 · 83 = 4 + 24 + 128 + 512 = 668.

We can use modular arithmetic to quickly convert from one base to an-

baseConvert(n, b):
Input: integers n and b ≥ 2
Output: n, represented in base b
1: i := 0
2: while n > 0:
3: di := n mod b
4: n := (n− di)/b
5: i := i + 1
6: return [didi−1 · · · d1d0]b

Figure 7.4: Base conversion algorithm,
from base 10 to base b.

other. For simplicity, we’ll describe how to convert from base 10 into an ar-
bitrary base b, though it’s not that much harder to convert from an arbitrary
base instead. To start, notice that (∑k

i=0 bidi) mod b = d0. (The value bidi is
divisible by b for any i ≥ 1.) Therefore, to represent n in base b, we must
have d0 := n mod b. Similarly, (∑k

i=0 bidi) mod b2 = bd1 + d0; thus we must
choose d1 := n−d0

b mod b. (Note that n− d0 must be divisible by b, because
of our choice of d0.) An algorithm following this strategy is shown in Fig-
ure 7.4. (We could also have written this algorithm without using division;
see Exercise 7.5.) For example, to convert 145 to binary (base 2), we execute
baseConvert(145, 2). Here are the values of n, i, and di in each iteration:

n 145 72 36 18 9 4 2 1 0
i 0 1 2 3 4 5 6 7 8

di := n mod 2 1 0 0 0 1 0 0 1 — .

Thus 145 can be written as [10010001]2 .
We can use the base conversion algorithm in Figure 7.4 to convert decimal

numbers (base 10) into binary (base 2), the internal representation in comput-
ers. Or we can convert into octal (base 8) or hexadecimal (base 16), two other
frequently used representations for numbers in programming. But we can
also use baseConvert for seemingly unrelated problems. Consider the task of
enumerating all 4-letter strings from the alphabet. The “easy” way to write a
program to accomplish this task, with four nested loops, is painful to write—
and it becomes utterly unwieldy if we needed all 10-letter strings instead.
But, instead, let’s count from 0 up to 264 − 1—there are 264 different 4-letter
strings—and convert each number into base 26. We can then translate each
number into a sequence of letters, with the ith digit acting as an index into the
alphabet that tells us which letter to put in position i. See Figure 7.5.

n in
base 10 → base 26 → string
0 → [0 0 0 0]26 → AAAA

1 → [0 0 0 1]26 → AAAB

2 → [0 0 0 2]26 → AAAC
...

25 → [0 0 0 25]26 → AAAZ

26 → [0 0 1 0]26 → AABA

27 → [0 0 1 1]26 → AABB
...

1234 → [0 1 21 12]26 → ABVM
...

456,974 → [25 25 25 24]26 → ZZZY

456,975 → [25 25 25 25]26 → ZZZZ

Figure 7.5: Generating all 4-letter
strings. For each n = 0, n = 1, . . . ,
n = 456,975, we convert n to a number
in base 26; we then interpret each digit
[i]26 ∈ {0, 1, . . . , 25} as an element of
{A, B, . . . , Z}.
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7.2.5 Exercises

Using paper and pencil only, follow the proof of Theorem 7.1 or use mod-and-div (see Figure 7.6a) to compute
integers r ∈ {0, 1, . . . , k− 1} and d such that kd + r = n, for:

7.1 k = 17, n = 202 7.2 k = 99, n = 2017 7.3 k = 99, n = −2017
7.4 When we proved Theorem 7.1, we showed that for integers k ≥ 1 and n, there exist integers r and
d such that 0 ≤ r < k and kd + r = n. We stated but did not prove that r and d are unique. Prove that they
are—that is, prove the following, for any integers k ≥ 1, n, r, d, r′, and d′: if 0 ≤ r < k and 0 ≤ r′ < k and
n = dk + r = d′k + r′, then d′ = d and r′ = r.

7.5 The algorithm baseConvert on p. 714, which performs base conversion, is written using division.
Modify the algorithm so that it uses only addition, subtraction, mod, multiplication, and comparison.

A repdigitb is a number n that, when represented in base b, consists of the same symbol written over and over, re-
peated at least twice. (See p. 714.) For example, 666 is a repdigit10 : when you write [666]10, it’s the same digit (“6”)
repeated (in this case, three times). One way of understanding that 666 is a repdigit10 is that 666 = 6 + 60 + 600 =
6 · 100 + 6 · 101 + 6 · 102. We can write [40]10 as [130]5 because 40 = 0 + 3 · 5 + 1 · 52, or as [101000]2 because
40 = 1 · 23 + 1 · 25. So 40 is not a repdigit10 , repdigit5 , or repdigit2 . But 40 is a repdigit3 , because 40 = [1111]3 .
7.6 Prove that every number n ≥ 3 is a repdigitb for some base b ≥ 2, where n = [11 · · · 1]b.
7.7 Prove that every even number n > 6 is a repdigitb for some base b ≥ 2, where n = [22 · · · 2]b.
7.8 Prove that no odd number n is a repdigitb of the form [22 · · · 2]b, for any base b.
7.9 Write R(n) to denote the number of bases b, for 2 ≤ b ≤ n− 1, such that n is a repdigitb. Conjec-
ture a condition on n such that R(n) = 1, and prove your conjecture.

mod-and-div(n, k):
Input: integers n ≥ 0 and k ≥ 1
Output: n mod k and ⌊n/k⌋
1: r := n; d := 0
2: while r ≥ k:
3: r := r− k; d := d + 1
4: return r, d

mod-and-div-faster(n, k):
Input: integers n ≥ 0 and k ≥ 1
Output: n mod k and ⌊n/k⌋
1: lo := 0; hi := n + 1.
2: while lo < hi− 1:
3: mid :=

⌊
lo+hi

2

⌋

4: if mid · k ≤ n then
5: lo := mid
6: else
7: hi := mid
8: return (n− k · lo), lo

Figure 7.6: A re-
minder of the
algorithm to com-
pute n mod k and
⌊n/k⌋, and a faster
version.

Recall the mod-and-div(n,m) algorithm, reproduced in Figure 7.6(a), that com-
putes n mod k and ⌊n/k⌋ by repeatedly subtracting k from n until the result is less
than k.
7.10 As written, the mod-and-div algorithm fails when given a neg-
ative value of n. Follow Case II of Theorem 7.1’s proof to extend the algo-
rithm for n < 0 too.

The mod-and-div algorithm is slow—this algorithm computes an integer d such
that nd ≤ m < n(d + 1) by performing linear search for d. A faster version of this
algorithm, called mod-and-div-faster, finds d using binary search instead; see
Figure 7.6(b).
7.11 The code for mod-and-div-faster as written uses division, by
averaging lo and hi. Modify the algorithm so that it uses only addition,
subtraction, multiplication, and comparison.
7.12 The code for mod-and-div-faster as written uses hi := n + 1
as the initial upper bound. Why is this assignment an acceptable for the
correctness of the algorithm? Explain briefly.
7.13 Describe an algorithm that finds a better upper bound hi, by
repeatedly doubling hi until it’s large enough.
7.14 Let k be arbitrary. Describe an input n for which the doubling
search from the last exercise yields a significant improvement on the run-
ning time of the algorithm for inputs k and n.
7.15 (programming required) Implement, in a programming language of your choice, all three of these
algorithms (mod-and-div, mod-and-div-faster, and the doubling-search tweaked version of mod-and-div-faster
from the previous exercises) to compute n mod k and ⌊n/k⌋.
7.16 Run the three algorithms from the previous exercise to compute the following values: 232 mod 202,
232 mod 2020, and 232 mod 315. How do their speeds compare?

7.17 Prove (7.3.2): for integers k > 0, a, and b, we have a + b mod k = [(a mod k) + (b mod k)] mod k.
Begin your proof as follows: We can write a = ck + r and b = dk + t for r, t ∈ {0, . . . , k− 1} (as guaranteed by
Theorem 7.1). Then use mod-and-div and Lemma 7.2.

Prove the following properties of modular arithmetic and divisibility, for any positive integers a, b, and c:
7.18 a mod b = (a mod bc) mod b
7.19 (7.4.1): a | 0
7.20 (7.4.2): 1 | a

7.21 (7.4.6): if a | b and a | c, then a | (b + c).
7.22 (7.4.7): if a | c, then a | bc.
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mod-exp(b, e,n):
Input: integers n ≥ 1, b, and e ≥ 0
Output: be mod n
1: if e = 0 then
2: return 1
3: else if e is even then
4: result := mod-exp(b, e

2 , n)
5: return (result · result) mod n
6: else
7: result := mod-exp(b, e− 1, n)
8: return (b · result) mod n

Figure 7.7: Modular
exponentiation via
repeated squaring.

Consider the “repeated squaring” algorithm for modular exponentiation shown in
Figure 7.7. Observe that this algorithm computes be mod n with a recursion tree of
depth Θ(log e).
7.23 Use this algorithm to compute 380 mod 5 without using a calculator.
(You should never have to keep track of a number larger than 5 except for
the exponent itself when you’re doing these calculations!)
7.24 Write down a recurrence relation representing the number of
multiplications done by mod-exp(b, e, n). Prove, using this recurrence, that
the number of multiplications done is between log e and 2 log e.
7.25 (programming required) Implement mod-exp in a programming
language of your choice. Also implement a version of mod-exp that com-
putes be and then, after that computation is complete, takes the result
mod n. Compare the speeds of these two algorithms in computing 3k mod 5,
for k = 80, k = 800, k = 8000, . . . , k = 8,000,000. Explain.

There’s a category of numerical tricks often called “divisibility rules” that you may have seen—quick ways of testing
whether a given number is evenly divisible by some small k. The test for whether an integer n is divisible by 3 is this:
add up the digits of n; n is divisible by 3 if and only if this sum is divisible by 3. For example, 6,007,023 is
divisible by 3 because 6 + 0 + 0 + 7 + 0 + 2 + 3 = 18, and 3 | 18. (Indeed 3 · 2,002,341 = 6,007,023.) This test relies on
the following claim: for any sequence 〈x0, x1, . . . , xn−1〉 ∈ {0, 1, . . . , 9}n, we have

[
n−1

∑
i=0

10ixi

]
mod 3 =

[
n−1

∑
i=0

xi

]
mod 3.

(For example, 6,007,023 is represented as x0 = 3, x1 = 2, x2 = 0, x3 = 7, x4 = 0, x5 = 0, and x6 = 6.)
7.26 Prove that the test for divisibility by 3 is correct. First prove that 10i mod 3 = 1 for any integer
i ≥ 0; then prove the stated claim. Your proof should make heavy use of the properties in Theorem 7.3.
7.27 The divisibility test for 9 is to add up the digits of the given number, and test whether that sum is
divisible by 9. State and prove the condition that ensures that this test is correct.

Using paper and pencil only, use the Euclidean algorithm to compute the GCDs of the following pairs of numbers:
7.28 n = 111,m = 202
7.29 n = 333,m = 2017
7.30 n = 156,m = 360

7.31 (programming required) Implement the Euclidean algorithm in a language of your choice.
7.32 (programming required) Early in Section 7.2.4, we discussed a brute-force algorithm to compute
gcd(n,m): try all d ∈ {1, 2, . . . , min(n,m)} and return the largest d such that d | n and d |m. Implement this
algorithm, and compare its performance to the Euclidean algorithm as follows: for both algorithms, find the
largest n for which you can compute gcd(n, n− 1) in less than 1 second on your computer.

Let’s analyze the running time of the Euclidean algorithm for GCDs, to prove Theorem 7.8.
7.33 Let n and m be arbitrary positive integers where n ≤ m. Prove thatm mod n ≤ m

2 . (Hint: what
happens if n ≤ m

2 ? What happens if m
2 < n ≤ m?)

7.34 Using the previous exercise, prove that the Euclidean algorithm terminates within O(log n + logm)
recursive calls. (Actually one can prove a bound that’s tighter by a constant factor, but this result is good
enough for asymptotic work.)

Now let’s show that, in fact, the Euclidean algorithm generates a recursion tree of depth Ω(log n + logm) in the worst
case—specifically, when Euclid(fn, fn+1) is run on consecutive Fibonacci numbers fn, fn+1.
7.35 Show that, for all n ≥ 3, we have fn mod fn−1 = fn−2, where fi is the ith Fibonacci number. (Recall
from Definition 6.21 that f1 := 1, f2 := 1 and fn := fn−1 + fn−2 for n ≥ 3.)
7.36 Prove that, for all n ≥ 3, Euclid(fn−1, fn) generates a recursion tree of depth n− 2.
7.37 Using the last exercise and the fact that fn ≤ 2n (Exercise 6.95), argue that the running time of the
Euclidean algorithm is Ω(log n + logm) in the worst case.
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7.3 Primality and Relative Primality

Why is it that we entertain the belief that for every
purpose odd numbers are the most effectual?

Pliny the Elder (23–79)

Now that we’ve reviewed divisibility (and the related notions of factors, divisors,
and multiples) in Section 7.2, we’ll continue with a brief review of another concept
from Chapter 2: the definition of prime numbers. We’ll then introduce the related no-
tion of relatively prime integers—pairs of numbers that share no common divisors aside
from 1—and a few applications and extensions of both definitions.

7.3.1 Primality (A Reminder) and Relative Primality (An Introduction)

We begin with a reminder of the definitions from Chapter 2:

Definition 7.6 (Primes and composites (reprise))
An integer p ≥ 2 is called prime if the only positive integers that evenly divide it are 1 and p
itself. An integer n ≥ 2 that is not prime is called composite. (Note that 1 is neither prime
nor composite.)

For example, the integers 2, 3, 5, and 7 are all prime, but 4 (which is divisible by 2) and
6 (which is divisible by 2 and 3) are composite. It’s also worth recalling two results that
we saw in previous chapters:

• There are infinitely many prime numbers: Example 4.15 gave a proof by contradic-
tion to show that there is no largest prime. (That result is attributed to Euclid—the
same Euclid whose algorithm we encountered in Section 7.2.)

• Theorem 4.16 showed that any composite number n ≥ 2 is divisible by some factor
d ≤ √

n. (That is, n ≥ 2 is prime if and only if d 6 | n for every d ∈ {
2, 3, . . . ,

√
n
}
.)

We used the latter result to give an algorithm for the primality testing problem—that is,
determining whether a given integer n ≥ 2 is prime or composite—that performs

√
n

divisibility tests. (This algorithm simply exhaustively tests whether n is divisible by
any of the candidate divisors between 2 and

√
n.)

Taking it further: The faster divisibility algorithm that you developed in Exercises 7.11–7.16 will allow
us to test primality in Θ(

√
n · logk n) steps, for some constant k: faster than the naïve algorithm, but

still not efficient. There are faster algorithms for primality testing that require only polylogarithmically
many operations—that is, O(logk n), for some fixed k—to test whether n is prime. See, for example, the
discussion on p. 742 of a randomized algorithm that efficiently tests for primality, which requires only
O(logk n) steps to test whether n is prime, although it does have a small (provably small!) probability of
making a mistake. There are also deterministic algorithms to solve this problem in polylogarithmic time,
though they’re substantially more complicated than this randomized algorithm.

Prime numbers turn out to be useful in all sorts of settings, and it will sometimes
turn out to be valuable to compute a large collection of primes all at once. Of course,
we can always generate more than one prime number by using a primality-testing
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algorithm (like the one we just suggested) more than once, until enough numbers have
passed the test. But some of the work that we do in figuring out whether n is prime
actually turns out to be helpful in figuring out whether n′ > n is prime. An algorithm
called the Sieve of Eratosthenes, which computes a list of all prime numbers up to a
given integer, exploits this redundancy to save some computation. The Sieve generates
its list of prime numbers by successively eliminating (“sieving”) all multiples of each
discovered prime: for example, once we know that 2 is prime and that 4 is a multiple
of 2, we will never have to test whether 4 | n in determining whether n is prime. (If n
isn’t prime because 4 | n, then n is also divisible by 2—that is, 4 is never the smallest
integer greater than 1 that evenly divides n, so we never have to bother testing 4 as a
candidate divisor.) See Exercises 7.38–7.42 and Figure 7.15. 2 The Sieve of Eratos-

thenes is named
after Eratosthenes,
a Greek mathemati-
cian who lived in
the 3rd century bce.
For more, see
2 Donald E. Knuth.
The art of computer
programming:
Seminumerical
algorithms (Volume
2). Addison-Wesley
Longman, 3rd
edition, 1997.

Taking it further: The Sieve of Eratosthenes is one of the earliest known algorithms, dating back to
about 200 bce. (The date isn’t clear, in part because none of Eratosthenes’s work survived; the algorithm
was reported, and attributed to Eratosthenes, by Nicomachus about 300 years later.) The Euclidean
algorithm for greatest common divisors from Section 7.2, which dates from c. 300 bce, is one of the few
older algorithms that are known.2

The distribution of the primes
For a positive integer n, let primes(n) denote the number of prime numbers less than

or equal to n. Thus, for example, we have

0 = primes(1)
1 = primes(2)
2 = primes(3) = primes(4)
3 = primes(5) = primes(6), and
4 = primes(7) = primes(8) = primes(9) = primes(10).

Or, to state it recursively: we have primes(1) := 0, and, for n ≥ 2, we have

primes(n) :=




primes(n− 1) if n is composite
1 + primes(n− 1) if n is prime.

Figure 7.8(a) displays the value of primes(n) for moderately small n. An additional
fact that we’ll state without proof is the Prime Number Theorem—illustrated in Fig-
ure 7.8(b)—which describes the behavior of primes(n) for large n:

Theorem 7.9 (Prime Number Theorem)
As n gets large, the ratio between primes(n) and n

ln n approaches 1.

Formal proofs of the Prime Number Theorem are complicated beasts—far more com-
plicated that we’ll want to deal with here!—but even an intuitive understanding of the
theorem is useful. Informally, this theorem says that, given an integer n, approximately
a 1

ln n fraction of the numbers “close to” n are prime. (See Exercise 7.45.)
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Figure 7.8: The
distribution of
primes. The Prime
Number Theorem
states that the ratio
primes(n)/ n

ln n ,
in (b), converges
(slowly!) to 1.

Example 7.8 (Using the Prime Number Theorem)
Problem: Using the estimate primes(n) ≈ n

ln n , calculate (approximately) how many
10-digit integers are prime.

Solution: By definition, there are exactly primes(999,999,999) primes with 9 or fewer
digits, and primes(9,999,999,999) primes with 10 or fewer digits. Thus the number
of 10-digit primes is

primes(9,999,999,999)− primes(999,999,999) ≈ 9,999,999,999
ln 9,999,999,999 − 999,999,999

ln 999,999,999
≈ 434,294,499− 48,254,956
= 386,039,543.

Thus, roughly 386 million of the 9 billion 10-digit numbers (about 4.3%) are prime.
(Exercise 7.46 asks you to consider how far off this estimate is.)

The density of the primes is potentially interesting for its own sake, but there’s also a

Problem-solving
tip: Back-of-the-
envelope calcu-
lations are often
great as plausibility
checks: although
the Prime Number
Theorem doesn’t
state a formal
bound on how dif-
ferent primes(n) and
n

ln n are, you can
see whether a so-
lution to a problem
“smells right” with
an approximation
like this one.

practical reason that we’ll care about the Prime Number Theorem. In the RSA cryp-
tosystem (see Section 7.5), one of the first steps of the protocol involves choosing two
large prime numbers p and q. The bigger p and q are, the more secure the encryption,
so we would want p and q to be pretty big—say, both approximately 22048. The Prime
Number Theorem tells us that, roughly, one out of every ln 22048 ≈ 1420 integers
around 22048 is prime. Thus, we can find a prime in this range by repeatedly choosing
a random integer n of the right size and testing n for primality, using some efficient
primality testing algorithm. (More about testing algorithms soon.) Approximately one
out of every 1420 integers we try will turn out to be prime, so on average we’ll only
need to try about 2840 values of n before we find primes to use as p and q.
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Prime factorization
Recall that any integer can be factored into the product of primes. For example, we

can write 2001 = 3 · 23 · 29 and 202 = 2 · 101 and 507 = 3 · 13 · 13 and 55057 = 55057.
(All of {2, 3, 13, 23, 29, 101, 55057} are prime.) The Fundamental Theorem of Arithmetic
(Theorem 5.5) states that any integer n can be factored into a product of primes—and
that, up to reordering, there is a unique prime factorization of n. (In other words, any
two prime factorizations of an integer n can differ in the ordering of the factors—for
example, 202 = 101 · 2 and 202 = 2 · 101—but they can differ only in ordering.) We
proved the “there exists” part of the theorem in Example 5.12 using induction; a bit
later in this section, we’ll prove uniqueness. (The proof uses some properties of prime
numbers that are most easily seen using an extension of the Euclidean algorithm that
we’ll introduce shortly; we’ll defer the proof until we’ve established those properties.)

Relative primality
An integer n is prime if it has no divisors except 1 and n itself. Here we will in-

troduce a related concept for pairs of integers—two numbers that do not share any
divisors except 1:

Definition 7.7 (Relative primality)
Two positive integers n and m are called relatively prime if gcd(n,m) = 1—that is, if 1 is the
only positive integer that evenly divides both n and m.

Here are a few small examples:

Example 7.9 (Some relatively prime integers)
The integers 21 and 25 are relatively prime, as 21 = 3 · 7 and 25 = 5 · 5 have no
common divisor (other than 1). Similarly, 5 and 6 are relatively prime, as are 17 and
35. (But 12 and 21 are not relatively prime, because they’re both divisible by 3.)

There will be a number of useful facts about relatively prime numbers that you’ll prove
in the exercises—for example, a prime number p and any integer n are relatively prime
unless p | n; and, more generally, two numbers are relatively prime if and only if their
prime factorizations do not share any factors.

Taking it further: Let f (x) be a polynomial. One of the special characteristics of prime numbers is that
f (x) has some special properties when we evaluate f (x) normally, or if we take the result of evaluating the
polynomial modp for some prime number p. In particular, if f (x) is a polynomial of degree k, then either
f (a) ≡p 0 for every a ∈ {0, 1, . . . , p− 1} or there are at most k values a ∈ {0, 1, . . . , p− 1} such that
f (a) ≡p 0. (We saw this property in Section 2.5.3 when we didn’t take the result modulo the prime p.) As
a consequence, if we have two polynomials f (x) and g(x) of degree k, then if f and g are not equivalent
modulo p, then there are at most k values of a ∈ {0, 1, . . . , p− 1} for which f (a) ≡p g(a).

We can use the fact that polynomials of degree k “behave” in the same way modulo p (with respect
to the number of roots, and the number of places that two polynomials agree) to give efficient solutions
to two problems: secret sharing, in which n people wish to “distribute” shares of a secret so that any k
of them can reconstruct the secret (but no set of k − 1 can); and a form of error-correcting codes, as we
discussed in Section 4.2. The basic idea will be that by using a polynomial f (x) and evaluating f (x) mod p
for a prime p, we’ll be able to use small numbers (less than p) to accomplish everything that we’d be able
to accomplish by evaluating f (x) without the modulus. See the discussions of secret sharing on p. 730
and of Reed–Solomon codes on p. 731.
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7.3.2 A Structural Fact and the Extended Euclidean Algorithm

Given an integer n ≥ 2, quickly determining whether n is prime seems tricky: we’ve
seen some easy algorithms for this problem, but they’re pretty slow. And, though
there are efficient but complicated algorithms for primality testing, we haven’t seen
(and, really, nobody knows) a genuinely simple algorithm that’s also efficient. On the
other hand, the analogous question about relative primality—given integers n and m, are
n and m relatively prime?—is easy. In fact, we already know everything we need to solve
this problem efficiently, just from the definition: n and m are relatively prime if and
only if their GCD is 1, which occurs if and only if Euclid(n,m) = 1. So we can efficiently
test whether n and m are relatively prime by testing whether Euclid(n,m) = 1.

We will start this section with a structural property about GCDs. (Right now it
shouldn’t be at all clear what this claim has to with anything in the last paragraph—
but stick with it! The connection will come along soon.) Here’s the claim:

Lemma 7.10 (There are multiples of n and m that add up to gcd(n,m))
Let n and m be any positive integers, and let r = gcd(n,m). Then there exist integers x and y
such that xn + ym = r.

Here are a few examples of the multiples guaranteed by this lemma:

Example 7.10 (Some examples of Lemma 7.10)
In Example 7.9, we saw that {5, 6} and {17, 35} are both relatively prime—that is,
gcd(5, 6) = gcd(17, 35) = 1—and that gcd(12, 21) = 3. Also note that gcd(48, 1024) = 16
(from Example 7.6), and gcd(16, 48) = 16. For these pairs, we have:

(−1) · 5 + 1 · 6 = −5 + 6 = 1 = gcd(5, 6)
33 · 17 + (−16) · 35 = 561− 560 = 1 = gcd(17, 35)
2 · 12 + (−1) · 21 = 24− 21 = 3 = gcd(12, 21)

(−21) · 48 + 1 · 1024 = −1008 + 1024 = 16 = gcd(48, 1024)
1 · 16 + 0 · 48 = 16 + 0 = 16 = gcd(16, 48).

Note that for the second example in the table, the pair {17, 35}, we could have chosen
−2 and 1 instead of 33 and −16, as −2 · 17 + 1 · 35 = 1 = 33 · 17 + (−16) · 35.

Note that the integers x and y whose existence is guaranteed by Lemma 7.10 are not
necessarily positive! (In fact, in Example 7.10 the only time that we didn’t have a neg-
ative coefficient for one of the numbers was for the pair {16, 48}, where gcd(16, 48) =
16 = 1 · 16 + 0 · 48.) Also, observe that there may be more than one pair of values for
x and y that satisfy Lemma 7.10—in fact, you’ll show in Exercise 7.58 that there are
always infinitely many values of {x, y} that satisfy the lemma.

Although, if you stare at it long enough, Example 7.10 might give a tiny hint about
why Lemma 7.10 is true, a proof still seems distant. But, in fact, we’ll be able to prove
the claim based what looks like a digression: a mild extension to the Euclidean al-
gorithm. For a little bit of a hint as to how, let’s look at one more example of the Eu-
clidean algorithm, but interpreting it as a guide to find the integers in Lemma 7.10:
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Example 7.11 (An example of Lemma 7.10, using the Euclidean algorithm)
Let’s find integers x and y such that 91x + 287y = gcd(91, 287).

By running Euclid(91, 287), we make the recursive calls Euclid(14, 91) and
Euclid(7, 14), which returns 7. Putting these calls into a small table—and using Defi-
nition 7.1’s implied equality m = ⌊mn ⌋ · n + (m mod n), slightly rearranged—we have:

m n m mod n ⌊mn ⌋ m mod n = m− ⌊mn ⌋ · n
287 91 14 3 14 = 287 − 3 · 91 (1)
91 14 7 6 7 = 91− 6 · 14 (2)
14 7 0

Notice that 7 = gcd(91, 287) = Euclid(91, 287). Using (1) and (2), we can rewrite 7 as:

7 = 91− 6 · 14 by (2)

= 91− 6 · (287− 3 · 91) = −6 · 287 + 19 · 91. by (1) and simplification

Thus x := −6 and y := 19 satisfy the requirement that 91x + 287y = gcd(91, 287).

The Extended Euclidean algorithm
extended-Euclid(n,m):
Input: positive integers n and m ≥ n.
Output: x, y, r ∈ Z where gcd(n,m) = r = xn + ym
1: if m mod n = 0 then
2: return 1, 0, n // 1 · n + 0 ·m = n = gcd(n,m)
3: else
4: x, y, r := extended-Euclid(m mod n, n)
5: return y−

⌊m
n
⌋
· x, x, r

Figure 7.9: The
Extended Euclidean
algorithm.

The Extended Euclidean algorithm, shown in Figure 7.9,
follows the outline of Example 7.11, applying these algebraic
manipulations recursively. Lemma 7.10 will follow from a
proof that this extended version of the Euclidean algorithm
actually computes three integers x, y, r such that gcd(n,m) =
r = xn+ ym. Here are two examples:

Example 7.12 (Running the Extended Euclidean Algorithm I)
Evaluating extended-Euclid(12, 18) recursively computes
extended-Euclid(6, 12) = 〈1, 0, 6〉, and then computes its result from 〈1, 0, 6〉 and the
values of n = 12 and m = 18:

extended-Euclid( 12, 18 ) (because 18 mod 12 6= 0, we make a recursive call).
extended-Euclid(18 mod 12︸ ︷︷ ︸

=6

, 12)

= 1, 0, 6 (because 12 mod 6 = 0).
= y− ⌊mn ⌋ · x, x, r where x = 1, y = 0, r = 6 and n = 12,m = 18 .

= 0− ⌊ 1812⌋ · 1, 1, 6
= −1, 1, 6.

The recursive call returned x = 1, y = 0, and r = 6, and the else case of the algorithm
tells us that our result is 〈y− ⌊mn ⌋ · x, x, r〉where m = 18 and n = 12. Plugging these
values into the formula for the result, we see that extended-Euclid(12, 18) returns
〈−1, 1, 6〉—and, indeed, gcd(12, 18) = 6 and −1 · 12 + 1 · 18 = 6.
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Example 7.13 (Running the Extended Euclidean Algorithm II)
For slightly more complicated example, let’s compute extended-Euclid(18, 30):

extended-Euclid( 18, 30 )
extended-Euclid(30 mod 18︸ ︷︷ ︸

=12

, 18)

extended-Euclid(18 mod 12︸ ︷︷ ︸
=6

, 12)

= 1, 0, 6
= −1, 1, 6 by Example 7.12.

= y− ⌊mn ⌋ · x, x, r where x = −1, y = 1, r = 6 and n = 18,m = 30 .

= 1− ⌊ 3018⌋ · (−1),−1, 6
= 1− 1 · (−1),−1, 6
= 2,−1, 6.

Again, as required, we have gcd(18, 30) = 6 and 2 · 18 +−1 · 30 = 36− 30 = 6.

We’re now ready to state the correctness of the Extended Euclidean algorithm:

Theorem 7.11 (Correctness of the Extended Euclidean Algorithm)
For arbitrary positive integers n and m with n ≤ m, extended-Euclid(n,m) returns three
integers x, y, r such that r = gcd(n,m) = xn + ym.

The proof, which is fairly straightforward by induction, is left to you as Exercise 7.60.
And once you’ve proven this theorem, Lemma 7.10—which merely stated that there Problem-solving

tip: A nice way,
particularly for
computer scientists,
to prove a theorem
of the form “there
exists x such that
P(x)” is to actually
give algorithm that
computes such an x!

exist integers x, y, rwith r = gcd(n,m) = xn + ym for any n and m—is immediate.
Note also that the Extended Euclidean algorithm is an efficient algorithm—you

already proved in Exercise 7.34 that the depth of the recursion tree for Euclid(n,m) is
upper bounded by O(log n + logm), and the running time of extended-Euclid(n,m)
is asymptotically the same as Euclid(n,m). (The only quantity that we need to use
in extended-Euclid that we didn’t need in Euclid is ⌊mn ⌋, but we already had to find
m mod n in Euclid—so if we used mod-and-div(n,m) to compute m mod n, then we
“for free” also get the value of ⌊mn ⌋.)

7.3.3 The Uniqueness of Prime Factorization

Lemma 7.10—that there are multiples of n and m that add up to gcd(n,m)—and the
Extended Euclidean algorithm (which computes those coefficients) will turn out to
be helpful in proving some facts that are apparently unrelated to greatest common
divisors. Here’s a claim about divisibility related to prime numbers in that vein, which
we’ll be able to use to prove that prime factorizations are unique:

Lemma 7.12 (When a prime divides a product)
Let p be prime, and let a and b be integers. Then p | ab if and only if p | a or p | b.
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Proof. We’ll proceed by mutual implication.
For the backward direction, assume p | a. (The case for p | b is strictly analogous.)

Then a = kp for some integer k, and thus ab = kpb, which is obviously divisible by p.
For the forward direction, assume that p | ab and suppose that p 6 | a. We must show

that p | b. Because p is prime and p 6 | a, we know that gcd(p, a) = 1 (see Exercise 7.47),
and, in particular, extended-Euclid(p, a) returns the GCD 1 and two integers n and m
such that 1 = pm + an. Multiplying both sides by b yields b = pmb + anb, and thus

b mod p = (pmb + anb) mod p
= (pmb mod p + anb mod p) mod p (7.3.2)

= (0 + anb mod p) mod p (7.4.7)

= (0 + 0) mod p p | ab by assumption, and (7.4.7) again

= 0.

That is, we’ve shown that if p 6 | a, then p | b. (And ¬x ⇒ y is equivalent to x ∨ y.)

We can use this fact to prove that an integer’s prime factorization is unique. (We’ll
prove only the uniqueness part of the theorem here; see Example 5.12 for the “there
exists a prime factorization” part.) Problem-solving tip:

When you define
something, you
genuinely get to
choose how to
define it! When you
can make a choice
in the definition
that makes your life
easier, do it!

Taking it further: Back when we defined prime numbers, we were very careful to specify that 1 is neither
prime nor composite. You may well have found this insistence to be silly and arbitrary and pedantic—after
all, the only positive integers that evenly divide 1 are 1 and, well, 1 itself, so it sure seems like 1 ought
to be prime. But there was a good reason that we chose to exclude 1 from the list of primes: it makes the
uniqueness of prime factorization true! If we’d listed 1 as a prime number, there would be many different
ways to prime factor, say, 202: for example, 202 = 2 · 101 and 202 = 1 · 2 · 101 and 202 = 1 · 1 · 2 · 101, and so
forth. So we’d have to have restated the theorem about uniqueness of prime factorization (“. . . is unique
up to reordering and the number of times that we multiply by 1”), which is a much more cumbersome
statement. This theorem is the reason that 1 is not defined as a prime number, in this book or in any
other mathematical treatment.

Theorem 7.13 (Prime Factorization Theorem (Reprise))
Let n ∈ Z≥1 be any positive integer. There exist k ≥ 0 prime numbers p1, p2, . . . , pk such
that n = ∏k

i=1 pi. Further, up to reordering, the prime numbers p1, p2, . . . , pk are unique.

Proof (of uniqueness). We’ll proceed by strong induction on n.
For the base case (n = 1), we can write 1 as the product of zero prime numbers—

recall that ∏i∈∅ i = 1—and this representation is unique. (The product of one or more
primes is greater than 1, as all primes are at least 2.)

For the inductive case (n ≥ 2), we assume the inductive hypotheses, namely that
any n′ < n has a unique prime factorization. We must prove that the prime factoriza-
tion of n is also unique. We consider two subcases:

Case I: n is prime. Then the statement holds immediately: the only prime factoriza-
tion is p1 = n. (Suppose that there were a different way of prime factoring n, as
n = ∏ℓ

i=1 qi for prime numbers 〈q1, q2, . . . , qℓ〉. We’d have to have ℓ ≥ 2 for this fac-
torization to differ from p1 = n, but then each qi satisfies qi > 1 and qi < n and
qi | n—contradicting what it means for n to be prime.)



7.3. PRIMALITY AND RELATIVE PRIMALITY 725

Case II: n is composite. Then suppose that p1, p2, . . . , pk and q1, q2, . . . , qℓ are two se-
quences of prime numbers such that n = ∏k

i=1 pi = ∏ℓ
i=1 qi . Without loss of

generality, assume that both sequences are sorted in increasing order, so that
p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ qℓ. We must prove that these two
sequences are actually equal.

• Case IIA: p1 = q1. Define n′ := n
p1

= n
q1

= ∏k
i=2 pi = ∏ℓ

i=2 qi as the product of all
the other prime numbers (excluding the primes p1 and q1 = p1). By the induc-
tive hypothesis, n′ has a unique prime factorization, and thus p2, p3, . . . , pk and
q2, q3, . . . , qℓ are identical.

• Case IIB: p1 6= q1. Without loss of generality, suppose p1 < q1. But p1 | n, and
therefore p1 | ∏ℓ

i=1 qi. By Lemma 7.12, there exists an i such that p1 | qi. But
2 ≤ p1 < q1 ≤ qi. This contradicts the assumption that qi was prime.

Taking it further: How difficult is it to factor a number n? Does there exist an efficient algorithm for
factoring—that is, one that computes the prime factorization of n in a number of steps that’s propor-
tional to O(logk n) for some k? We don’t know. But it is generally believed that the answer is no, that
factoring large numbers cannot be done efficiently. The (believed) difficulty of factoring is a crucial pillar
of widely used cryptographic systems, including the ones that we’ll encounter in Section 7.5. There are
known algorithms that factor large numbers efficiently on so-called quantum computers (see the discus-
sion on p. 1016)—but nobody knows how to build quantum computers. And, while there’s no known
efficient algorithm for factoring large numbers on classical computers, there’s also no proof of hard-
ness for this problem. (And most modern cryptographic systems count on the difficulty of the factoring
problem—which is only a conjecture!)

7.3.4 The Chinese Remainder Theorem

We’ll close this section with another ancient result about modular arithmetic, called
the Chinese Remainder Theorem, from around 1750 years ago. Here’s the basic idea. The name of the

Chinese Remainder
Theorem comes
from its early
discovery by the
Chinese mathemati-
cian Sun Tzu, who
lived around the
5th century. (This
Sun Tzu is a differ-
ent Sun Tzu from
the one who wrote
The Art of War about
800 years prior.)

If n is some nonnegative integer, then knowing that, say, when n is divided by 7 its
remainder is 4 gives you a small clue about n’s value: one seventh of integers have
the right value mod 7. Knowing n mod 2 and n mod 13 gives you more clues. The
Chinese Remainder Theorem says that knowing n mod k for enough values of k will
(almost) let you figure out the value of n exactly—at least, if those values of k are all
relatively prime. Here’s a concrete example:

Example 7.14 (An example of the Chinese Remainder Theorem)
Problem: What nonnegative integers n satisfy the following conditions?

n mod 2 = 0 n mod 3 = 2 n mod 5 = 1.

Solution: Suppose n ∈ {0, 1, . . . , 29}. Then there are only six possible values
for which n mod 5 = 1, namely {0 + 1, 5 + 1, 10 + 1, 15 + 1, 20 + 1, 25 + 1} =
{1, 6, 11, 16, 21, 26}. Of these, the only even values are 6, 16, and 26. And we have
6 mod 3 = 0, 16 mod 3 = 1, and 26 mod 3 = 2. Thus n = 26.

Notice that, for any integer k, we have k ≡b k + 30 for all three moduli b ∈
{2, 3, 5}. Therefore any n ≡30 26 will satisfy the given conditions.
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n 00 10 20 30 40 50 60 70 80 90 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
n mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
n mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
n mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

n 00 60 12 18 24 10 16 22 28 40 20 26 20 80 14 15 21 27 30 90 25 10 70 13 19 50 11 17 23 29
n mod 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n mod 3 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
n mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 7.10: The
remainders of all
n ∈ {0, 1, . . . , 29},
modulo 2, 3, and
5—sorted by n
(above) and by the
remainders (below).

The basic point of Example 7.14 is that every value of n ∈ {0, . . . , 29} has a unique
“profile” of remainders mod 2, 3, and 5. (See Figure 7.10.) Crucially, every one of the
30 possible profiles of remainders occurs in Figure 7.10, and no profile appears more
than once. (The fact that there are exactly 30 possible profiles follows from the Product
Rule for counting; see Section 9.2.1.)

The Chinese Remainder Theorem states the general property that’s illustrated in
these particular tables: each “remainder profile” occurs once and only once. Here is a
formal statement of the theorem. We refer to a constraint of the form x mod n = a as a
congruence, following Definition 7.2. We also write Zk := {0, 1, . . . , k− 1}.

Theorem 7.14 (Chinese Remainder Theorem: two congruences)
Let n and m be any two relatively prime integers. For any a ∈ Zn and b ∈ Zm, there exists
one and only one integer x ∈ Znm such that x mod n = a and x mod m = b.

Input: relatively prime n,m ∈ Z; a ∈ Zn; b ∈ Zm.
Output: x such that x mod m = a and x mod n = b.
1: c, d, r := extended-Euclid(n,m)
2: return x := (adm + bcn) mod nm

Figure 7.11: An
algorithm for the
Chinese Remainder
Theorem. (Ensure
that m ≥ n by
swapping n and m
if necessary.)

Proof. To show that there exists an integer x satisfying x mod
n = a and x mod m = b, we’ll give a proof by construction—
specifically, we’ll compute the value of x given the values of
{a, b, n,m}. The simple algorithm is shown in Figure 7.11.
We must argue that x mod n = a and x mod m = b. Note
that gcd(n,m) = 1 because n and m are relatively prime by assumption. Thus, by the
correctness of the Extended Euclidean algorithm, we have

cn + dm = 1. (∗)

Multiplying both sides of (∗) by a, we know that

acn + adm = a. (†)

Recall that we defined x := (adm + bcn) mod nm. Let’s now show that x mod n = a:

x mod n = (adm+ bcn) mod nm mod n definition of x

= (adm+ bcn) mod n Exercise 7.18

= (adm+ 0) mod n bcn mod n = 0 because n | bcn

= (adm+ acn) mod n acn mod n = 0 because n | acn too!

= a mod n (†)

= a. a ∈ {0, 1, . . . ,n− 1} by assumption, so a mod n = a



7.3. PRIMALITY AND RELATIVE PRIMALITY 727

We can argue that x = adm + bcn ≡m bdm + bcn ≡m b completely analogously, where the
last equivalence follows by multiplying both sides of (∗) by b instead.

Thus we’ve now established that there exists an x ∈ Znm with x mod n = a and
x mod m = b (because we computed such an x). To prove that there is a unique such x,
suppose that x mod n = x′ mod n and x mod m = x′ mod m for two integers x, x′ ∈
Znm. We will prove that x = x′—which establishes that there’s actually only one
element of Znm with this property. By assumption, we know that (x− x′) mod n = 0
and (x− x′) mod m = 0, or, in other words, we know that n | (x− x′) and m | (x − x′).
By Exercise 7.70 and the fact that n and m are relatively prime, then, we know that
nm | (x− x′). And because both x, x′ ∈ Znm, we’ve therefore shown that x = x′.

Some examples
Here are two concrete examples of using the Chinese Remainder Theorem (and,

specifically, of using the algorithm from Figure 7.11):

Writing tip: Now
that we’ve done a
lot of manipulations
with modular
arithmetic, in proofs
we will start to
omit some simple
steps that are by
now tedious—
like those using
(7.3.2) to say that
y + z mod n is equal
to

(
(y mod n) +

(z mod n)
)
mod n.

Example 7.15 (The Chinese Remainder Theorem, in action)
Let’s use the algorithm from the proof of the Chinese Remainder Theorem to find the
integer x ∈ Z30 that satisfies x mod 5 = 4 and x mod 6 = 5.

Note that 5 and 6 are relatively prime, and extended-Euclid(5, 6) returns 〈−1, 1, 1〉.
(Indeed, we have that 5 · −1 + 6 · 1 = 1 = gcd(5, 6).) Thus we compute x from the
values of 〈n,m, a, b, c, d〉 = 〈5, 6, 4, 5,−1, 1〉 as

adm + bcn = 4 · 1 · 6 + 5 · −1 · 5 = 24− 25 = −1.

Thus x := −1 mod 30 = 29. And, indeed, 29 mod 5 = 4 and 29 mod 6 = 5.

Example 7.16 (A second example of the Chinese Remainder Theorem)
Problem: We are told that x mod 7 = 1 and x mod 9 = 5. What is the value of x?

Solution: We find extended-Euclid(7, 9) = 〈4,−3, 1〉 by tracing the algorithm’s execu-
tion. The algorithm in Figure 7.11 computes x := adm + bcn mod nm, where n = 7
and m = 9 are the given moduli; a = 1 and b = 5 are the given remainders; and c = 4
and d = −3 are the computed multipliers from extended-Euclid. Thus

x := (1 · −3 · 9) + (5 · 4 · 7) mod 7 · 9 = −27 + 140 mod 63 = 113 mod 63 = 50.

Indeed, 50 mod 7 = 1 and 50 mod 9 = 5. Thus x ≡63 50.

Generalizing to k congruences
We’ve now shown the Chinese Remainder Theorem for two congruences, but Ex-

ample 7.14 had three constraints (x mod 2, x mod 3, and x mod 5). In fact, the gener-
alization of the Chinese Remainder Theorem to k congruences, for any k ≥ 1, is also
true—again, as long as the moduli are pairwise relatively prime (that is, any two of the
moduli share no common divisors).
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We can prove this generalization fairly directly, using induction and the two-
congruence case. The basic idea will be to repeatedly use Theorem 7.14 to combine
a pair of congruences into a single congruence, until there are no pairs left to combine.
Here’s a concrete example:

Example 7.17 (The Chinese Remainder Theorem, with 3 congruences)
Let’s describe the values of x that satisfy the congruences

x mod 2 = 1 x mod 3 = 2 x mod 5 = 4. (∗)

To do so, we first identify values of y that satisfy the first two congruences, ignor-
ing the third. Note that 2 and 3 are relatively prime, and extended-Euclid(2, 3) =
〈−1, 1, 1〉. Thus, y mod 2 = 1 and y mod 3 = 2 if and only if

y mod (2 · 3) = (1 · 1 · 3 + 2 · −1 · 2) mod (2 · 3) = 5.

In other words, y ∈ Z6 satisfies the congruences y mod 2 = 1 and y mod 3 = 2 if and
only if y satisfies the single congruence y mod 6 = 5. Thus the values of x that satisfy
(∗) are precisely the values of x that satisfy

x mod 6 = 5 x mod 5 = 4. (†)

And, in Example 7.15, we showed that values of x that satisfy (†) are precisely those
with x mod 30 = 29.

Now, using the idea from this example, we’ll prove the general version of the Chinese
Remainder Theorem:

Theorem 7.15 (Chinese Remainder Theorem: General version)
Let n1, n2, . . . , nk be a collection of pairwise relatively prime integers, for some k ≥ 1, and let
N := ∏k

i=1 ni.
For any 〈a1, . . . , ak〉 with each ai ∈ Zni , there exists one and only one integer x ∈ ZN such

that x mod ni = ai for all 1 ≤ i ≤ k.

Proof. We proceed by induction on k.

Base case (k = 1): Then there’s only one constraint, namely x mod n1 = a1, and obvi-
ously x := a1 is the only element of ZN = Zn1 that satisfies this congruence.

Inductive case (k ≥ 2): We assume the inductive hypothesis, namely that there exists a
unique x ∈ ZM satisfying any set of k− 1 congruences whose moduli have product
M. To make use of this assumption, we will convert the k given congruences into
k − 1 equivalent congruences, as follows: by Theorem 7.14, there exists a (unique)
value y∗ ∈ Zn1n2 such that y∗ mod n1 = a1 and y∗ mod n2 = a2. In Exercise 7.69
you’ll prove that n1n2 is also relatively prime to every other ni, and, in Exercise 7.79,
you will show that a value x ∈ ZN satisfies x mod n1 = a1 and x mod n2 = a2 if and
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only if x satisfies x mod n1n2 = y∗. More formally, given the A-constraints (on the
left), define the B-constraints (on the right):

x mod n1 = a1 (1A)
x mod n2 = a2 (2A)
x mod n3 = a3 (3A)
x mod n4 = a4 (4A)

...
x mod nk = ak. (kA)

x mod n1n2 = y∗ (1-and-2B)

x mod n3 = a3 (3B)
x mod n4 = a4 (4B)

...
x mod nk = ak. (kB)

Observe that the product of the moduli is the same for both the A-constraints and
the B-constraints: N := n1 · n2 · n3 · · · nk for A, and (n1n2) · n3 · · · nk for B. Thus:

• By Exercise 7.79, an integer x ∈ ZN satisfies the A-constraints if and only if x
satisfies the B-constraints.

• By the inductive hypothesis—which applies by Exercise 7.69—there’s a unique
x ∈ ZN that satisfies the B-constraints.

Therefore there is a unique x ∈ ZN that satisfies the A-constraints, as desired.

Here we gave an inductive argument for the general version of Chinese Remainder
Theorem (based on the 2-congruence version), but we could also give a version of the
proof that directly echoes Theorem 7.14’s proof. See Exercise 7.107.

Taking it further: One interesting implication of the Chinese Remainder Theorem is that we could
choose to represent integers efficiently in a very different way from binary representation, instead
using something called modular representation. In modular representation, we store an integer n as a
sequence of values of n mod b, for a set of relatively prime values of b. To be concrete, consider the set
{11, 13, 15, 17, 19}, and let N := 11 · 13 · 15 · 17 · 19 = 692,835 be their product. The Chinese Remainder
Theorem tells us that we can uniquely represent any n ∈ ZN as

〈n mod 11, n mod 13, n mod 15, n mod 17, n mod 19〉.
For example, 217 = 〈7, 6, 2, 2, 10〉, and 17 = 〈6, 4, 2, 0, 17〉. Perhaps surprisingly, the representation of
217 + 17 is 〈2, 10, 4, 2, 8〉 and 17 · 217 = 〈9, 11, 4, 0, 18〉, which are really nothing more than the result of
doing component-wise addition/multiplication (modulo that component’s corresponding modulus):

mod 11 13 15 17 19
〈 7, 6, 2, 2, 10 〉

+ 〈 6, 4, 2, 0, 17 〉
= 〈 13, 10, 4, 2, 27 〉
≡ 〈 2, 10, 4, 2, 8 〉

and

mod 11 13 15 17 19
〈 7, 6, 2, 2, 10 〉

· 〈 6, 4, 2, 0, 17 〉
= 〈 42, 24, 4, 0, 170 〉
≡ 〈 9, 11, 4, 0, 18 〉.

This representation has some advantages over the normal binary representation: the numbers in each
component stay small, and multiplying k pairs of 5-bit numbers is significantly faster than multiplying
one pair of 5k-bit numbers. (Also, the components can be calculated in parallel!) But there are some
other operations that are slowed down by this representation. (See Exercises 7.145–7.146.)
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Computer Science Connections

Secret Sharing

Although encryption/decryption is probably the most natural crypto-
graphic problem, there are many other important problems in the same gen-
eral vein. Here we’ll introduce and solve a different cryptographic problem—
using a solution due to Adi Shamir (the S of the RSA cryptosystem, which
we’ll see in Section 7.5).3 Imagine a shared resource, collectively owned by 3 Adi Shamir. How to share a secret.

Communications of the ACM, 22(11):612–
613, November 1979.

some group, that the group wishes to keep secure—for example, the launch
codes for the U.S.’s nuclear weapons. In the post-apocalyptic world in which
you’re imagining these codes being used, where many top officials are proba-
bly dead, we’ll need to ensure that any, say, k = 3 of the cabinet members (out
of the n = 15 cabinet positions) can launch the weapons. But you’d also like to
guarantee that no single rogue secretary can destroy the world!

In secret sharing, we seek a scheme by which we distribute “shares” of the
secret s ∈ S to a group of n people such that the following properties hold:

1. If any k of these n people cooperate, then—by combining their k shares of
the secret—they can compute the secret s (preferably efficiently).

2. If any k′ < k of these n people cooperate, then by combining their k′ shares
they learn nothing about the secret s. (Informally, to “learn nothing” about
the secret means that no k′ shares of the secret allow one to infer that s
comes from any particular S′ ⊂ S.)

(Note that just “splitting up the bits” of the secret violates condition 2.)
The basic idea will be to define a polynomial f (x), and distribute the value

of f (i) as the the ith “share” of the secret; the secret itself will be f (0). Why will
this be useful? Imagine that f (x) = ax + b. (The secret is thus f (0) = a · 0 + b = b.)
Knowing that f (1) = 17 tells you that a + b = 17, but it doesn’t tell you anything
about b itself: for every possible value of the secret, there’s a value of a that
makes a + b = 17. But knowing f (1) = 17 and f (2) = 42 lets you solve for
a = 25, b = −8. If f (x) = ax2 + bx + c, then knowing f (x1) and f (x2) gives you
two equations and three unknowns—but you can solve for c if you know the
value of f (x) for three different values of x. In general, knowing k values of a
polynomial f of degree k lets you compute f (0), but any k − 1 values of f are
consistent with any value of f (0). And this result remains true if, instead of
using the value f (x) as the share of the secret, we instead use f (x) mod p, for
some prime p. (See p. 731.) Here’s a concrete example, to distribute shares of a
secret m ∈ {0, 1, 2, 3, 4}:
• Choose a1, . . . , ak uniformly and independently at random from {0, 1, 2, 3, 4}.
• Let f (x) = m + ∑k

i=1 aixi. Distribute 〈n, f (n) mod 5〉 as “share” #n.
For example, let k := 3, and suppose you know that f (1) mod 5 = 1 and
f (2) mod 5 = 2. These facts don’t help you figure out f (0): there are polyno-
mials {f0, f1, . . . , f4} with fb(0) = b that are all consistent with those obser-
vations! (See Figure 7.12.) To put this fact another way, given points 〈x1, y1〉
and 〈x2, y2〉 for x1, x2 6= 0, for any y-intercept b, there exists an f (x) such that
f (x1) ≡p y1, f (x2) ≡p y2, and f (0) ≡p b. But three people can reconstruct the
secret! There’s only one quadratic that passes through three given points.

f0(x) = 0 + 1x + 0x2
f1(x) = 1 + 2x + 3x2
f2(x) = 2 + 3x + 1x2
f3(x) = 3 + 4x + 4x2
f4(x) = 4 + 0x + 2x2

0
1
2
3
4

0 1 2 3 4

f0(x)

0
1
2
3
4

0 1 2 3 4

f2(x)

0
1
2
3
4

0 1 2 3 4

f4(x)

Figure 7.12: Let f (x) := a + bx + cx2.
Even knowing f (1) ≡5 1 and f (2) ≡5 2,
we don’t know f (0) mod 5; there are
polynomials consistent with f (0) ≡5 m
for every m ∈ {0, 1, 2, 3, 4}. Here we see
fb(x) mod 5. (These polynomials can be
hard to visualize, because their values
“wrap around” from 5 to 0.)
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Computer Science Connections

Error Correction with Reed–Solomon Codes

Earlier (see Chapter 4), we discussed error-correcting codes: we encode a
message m as a codeword c(m), so that m is (efficiently) recoverable from c(m),
or even from a mildly corrupted codeword c′ ≈ c(m). (Note the difference in
motivation with cryptography: in error-correcting codes, we want a codeword
that makes computing the original message very easy; in cryptography, we
want a ciphertext that makes computing the original message very hard.)
The key property that we seek is that if m1 6= m2, then c(m1) and c(m2) are
“very different,” so that decoding c′ simply corresponds to finding the m that
minimizes the difference between c′ and c(m).

There, we discussed Reed–Solomon codes, one of the classic schemes for
error-correcting codes. Under Reed–Solomon codes, to encode a message
m ∈ Zk , we define the polynomial pm(x) := ∑k

i=1 mixi, and encode m as
〈pm(1), pm(2), . . . , pm(n)〉. (We choose nmuch bigger than k, to achieve the de-
sired error-correction properties.) For example, for the messagesm1 = 〈1, 3, 2〉
and m2 = 〈3, 0, 3〉, we have pm1 (x) = x + 3x2 + 2x3 and pm2 (x) = 3x + 3x3. For
n = 6, we have the codewords (for m1 and m2, respectively)

〈6, 30, 84, 180, 330, 546〉 and 〈6, 30, 90, 204, 390, 666〉.

The key point is that two distinct polynomials of degree k agree on at most k

Theorem 7.16
Let f (x) be a polynomial of degree k. Then
either f (a) = 0 for every a ∈ Z, or the
equation f (x) = 0 has at most k solutions
for x ∈ Z.

Corollary 7.17
Let f and g 6= f be polynomials of degree k.
Then | {x : f (x) = g(x)} | ≤ k.

Figure 7.13: The Fundamental The-
orem of Algebra. The corollary
follows because the polynomial
h(x) = f (x)− g(x) also has degree at
most k, and {x : f (x) = g(x)} is precisely
the set {x : h(x) = 0}.

inputs,which means that the codewords for m1 and m2 will be very different.
(Here pm1 (x) and pm2 (x) agree on x ∈ {1, 2}, but not on x ∈ {3, 4, 5, 6}.) The
theorem upon which this difference rests is important enough to be called the
Fundamental Theorem of Algebra; see Figure 7.13.

While this fact about Reed–Solomon codes is nice, it’s already evident
that the numbers in the codewords get really big—546 and 666 are very big
relative to the integers in the original messages! In real Reed–Solomon codes,
there’s another trick that’s used: every value is stored modulo a prime. Let q be
a prime. We’ll actually encode our messagem as

〈pm(1) mod q, pm(2) mod q, . . . , pm(n) mod q〉.

In fact, we now encode a messagem ∈ Zk
q with a codeword in Zn

q . And it
turns out that everything important about polynomials remains true if we
take all values modulo a prime q! (See Figure 7.14.)

Theorem 7.18
Let f (x) be a polynomial of degree k, and
let q be a prime number. Then either
f (a) mod q = 0 for every a ∈ Zq, or the
equation f (x) = 0 has at most k solutions
for x ∈ Zq.

Corollary 7.19
Let f and g 6= f be polynomials of degree k.
Then |

{
x : f (x) ≡q g(x)

}
| ≤ k.

Figure 7.14: The Fundamental Theorem
of Algebra, modulo a prime.

The combined message of Reed–Solomon error-correcting codes and the
Shamir secret-sharing scheme (p. 730) is the following. Suppose that there is
a degree-k polynomial p that is unknown to you, and suppose that you are
given the evaluation of this polynomial on n distinct points.

if n < k: Then you know nothing about the constant term of the polynomial.
(Secrets kept!)

if n = k: Then you can compute every coefficient of the polynomial, including
the constant term. (Secrets shared!)

if n > k: Then you can find the degree-k polynomial consistent with the
largest number of these points. (Errors corrected!)
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7.3.5 Exercises

The Sieve of Eratosthenes returns a list of all prime numbers up to a given integer n by creating a list of candidate
primes 〈2, 3, . . . ,n〉, and repeatedly marking the first unmarked number p as prime and striking out all entries in the
list that are multiples of p. See the Sieve in action in Figure 7.15.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

...

Figure 7.15: A few
iterations of the
Sieve of Eratos-
thenes. Primes
are underlined as
they’re discovered;
numbers are writ-
ten in light gray as
they’re crossed off.

7.38 Write pseudocode to describe the Sieve of Eratosthenes.
7.39 Run the algorithm, by hand, to find all primes less than 100.
7.40 (programming required) Implement the Sieve of Eratosthenes in a programming language of your
choice. Use your program to compute all primes up to 100,000. How many are there?
7.41 (programming required) Earlier, we suggested another algorithm to compute all primes up to
n := 100,000: for each i = 2, 3, . . . , n, test whether i is divisible by any integer between 2 and

√
i. Implement

this algorithm too, and compare their execution times. What happens for n := 500,000?
7.42 Assume that each number k is crossed off by the Sieve of Eratosthenes every time a divisor of it is
found. (For example, 6 is crossed off when 2 is the prime in question, and when 3 is the prime in question.)
Prove that the total number of crossings-out by sieve(n) is ≤Hn · n, where Hn is the nth harmonic number.
(See Definition 5.4.)

Use the Prime Number Theorem to . . .
7.43 . . . estimate the number of primes between 2127 + 1 and 2128 .
7.44 . . . estimate the 2128th-largest prime.
7.45 . . . argue that, roughly, the probability that a randomly chosen number close to n is prime is about
1/ ln n. (Hint: what does primes(n)− primes(n− 1) represent?)
7.46 Using the same technique as in Example 7.8, estimate the number of 6-digit primes. Then, using
the Sieve or some other custom-built program, determine how far off the estimate was.

Let p be an arbitrary prime number and let a be an arbitrary nonnegative integer. Prove the following facts.
7.47 If p 6 | a, then gcd(p, a) = 1.
7.48 For any positive integer k, we have p | ak if and only if p | a. (Hint: use induction and Lemma 7.12.)
7.49 For any integers n,m ∈ {1, . . . , p− 1}, we have that p 6 | nm.
7.50 For any integer m and any prime number q distinct from p (that is, p 6= q), we have m ≡p a and
m ≡q a if and only if m ≡pq a. (Hint: think first about the case a = 0; then generalize.)
7.51 If 0 ≤ a < p, then a2 ≡p 1 if and only if a ∈ {1, p− 1}. (You may use Theorem 7.18 from p. 731.)

Here are some pairs of integers. Using the brute force algorithm (test all candidate divisors) and paper and
pencil only, determine whether they are relatively prime.
7.52 54321 and 12345 7.53 209 and 323 7.54 101 and 1100

Using the Extended Euclidean algorithm, compute (by hand) gcd(n,m) and integers x, y such that xn + ym =
gcd(n,m) for the following pairs of numbers:
7.55 60 and 93 7.56 24 and 28 7.57 74 and 13

Prove the following extensions to Lemma 7.10:
7.58 There are infinitely many pairs of integers x, y such that xn + ym = gcd(n,m), for any nonnegative
integers n and m.
7.59 The extension to k ≥ 2 integers: if gcd(a1 , . . . , ak ) = d, then there exist integers x1, . . . , xk such that
∑k

i=1 aixi = d. (Define gcd(x1 , x2 , . . . , xk) := gcd(x1, gcd(x2, . . . , xk)) for k ≥ 3.)

7.60 Prove Theorem 7.11 (the correctness of the Extended Euclidean algorithm) by induction on n:
show that for arbitrary positive integers n and mwith n ≤ m, extended-Euclid(n,m) returns three integers
x, y, r such that r = gcd(n,m) = xn + ym.
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7.61 (programming required) Write a program that implements the Extended Euclidean algorithm. (Rec-
ommended: if you did Exercises 7.11–7.16, compute m mod n and ⌊m

n ⌋ with a single call to mod-and-div-faster(m, n).)

I have a friend named Nikki, who’s from New Zealand. Nikki and I went out to eat together, and I paid for both dinners.
She was going to pay me back, in cash—but she had only New Zealand dollars [NZD]. (I was happy to take NZDs.)
Nikki had a giant supply of 5NZD bills; I had a giant supply of 5 U.S. dollar [USD] bills. At the time, the exchange
rate was 5NZD = 3USD (or close enough to 5 : 3 for two friends to call it good).
7.62 Prove that Nikki can pay me exactly 4USD in value, through only the exchange of 5NZD and
5USD bills.
7.63 In Exercise 7.62, was there something special about the number 4? Identify for which nonnegative
integers x Nikki can pay me back exactly x USD in value, through only the exchange of 5NZD and 5USD
bills, and prove your answer.
7.64 In Exercises 7.62–7.63, was there something special about the number 3? Suppose that, due to
geopolitical turmoil and a skyrocketing of the price of wool, the 5NZD bill is now worth b USDs, for some
b ≡5 3. I still have many 5USD bills, and Nikki still has the equivalent of many b USD bills. What amounts
can Nikki now pay me? Prove your answer.
7.65 In an unexpected twist, I run out of U.S. dollars and Nikki runs out of New Zealand dollars. But I
discover that I have a giant supply of identical Israeli Shekel notes, each of which is worth k USD. And Nikki
discovers that she has a giant supply of identical Thai Baht notes, each of which is worth ℓ USD. (Assume k
and ℓ are integers.) What amounts can she pay me now? Again, prove your answer.

Prove the following facts about relative primality.
7.66 Two consecutive integers (n and n + 1) are always relatively prime.
7.67 Two consecutive Fibonacci numbers are always relatively prime.
7.68 Two integers a and b are relatively prime if and only if there is no prime number p such that p | a
and p | b. (Notice that this claim differs from the definition of relative primality, which required that there be
no integer n ≥ 2 such that n | a and n | b.)

Let a and b be relatively prime integers. Prove the following facts:
7.69 Let c ∈ Z≥1 be relatively prime to both a and b. Then c and ab are also relatively prime.
7.70 For any integer n, we have that both a | n and b | n if and only if ab | n.
7.71 For every integerm, there exist integers x and y such that ax + by = m.

For the following constraints, describe the set of all x ∈ Z≥0 that satisfies them. Describe this set as
{
a + bk : k ∈ Z≥0},

where a is smallest x satisfying the constraints, a + b is the next smallest, a + 2b is the next smallest, etc.
7.72 x mod 13 = 6 and x mod 19 = 2
7.73 x mod 21 = 3 and x mod 11 = 2
7.74 x mod 6 = 3 and x mod 7 = 3
7.75 x mod 5 = 4 and x mod 6 = 5 and x mod 7 = 2
7.76 x mod 5 = 4 and x mod 6 = 5 and x mod 7 = 3

Show that relative primality was mandatory for the Chinese Remainder Theorem. Namely, show that, for two integers n
and m that are not necessarily relatively prime, for some a ∈ Zn and b ∈ Zm . . .
7.77 . . . it may be the case that no x ∈ Znm satisfies x mod n = a and x mod m = b.
7.78 . . . it may be the case that more than one x ∈ Znm satisfies x mod n = a and x mod m = b.

7.79 Let n and m be relatively prime, and let a ∈ Zn and b ∈ Zm. Define y∗ to be the unique value in
Znm such that y∗ mod n = a and y∗ mod m = b, whose existence is guaranteed by Theorem 7.14. Prove that
an integer x ∈ Znm satisfies x mod n = a and x mod m = b if and only if x satisfies x mod nm = y∗.
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7.4 Multiplicative Inverses

Civilization is a limitless multiplication of unnecessary
necessities.

Mark Twain (1835–1910)

For any integer n ≥ 2, let Zn denote the set {0, 1, . . . , n− 1}. In this section, we’ll
discuss arithmetic over Zn—that is, arithmetic where we think of all expressions by
considering their value modulo n. For example, when n = 9, the expressions 4 + 6 and
8 · 7 are equivalent to 1 and 2, respectively, because 10 mod 9 = 1 and 56 mod 9 = 2.
When n = 10, the expressions 4 + 6 and 8 · 7 are equivalent to 0 and 6, respectively.

We have already encountered addition and multiplication in the world of modular
arithmetic (for example, in Theorem 7.3). But we haven’t yet defined subtraction or
division. (Theorem 7.3 also introduced exponentiation over Zn, and it turns out that,
along with division, exponentiation in modular arithmetic will form the foundation
of the RSA cryptographic system; see Section 7.5.) Subtraction turns out to be fairly
straightforward (see Exercise 7.81), but division will be a bit trickier than +, ·, and −.
In this section, we’ll introduce what division over Zn even means, and then discuss
algorithms to perform modular division.

7.4.1 The Basic Definitions

Before we introduce any of the technical definitions, let’s start with a tiny bit of intu-
ition about why there’s something potentially interesting going on with division in Zn.
For concreteness, here’s a small example in Z9:

2a a
0 0
1 5
2 1
3 6
4 2
5 7
6 3
7 8
8 4

Figure 7.16: For
each b ∈ Z9, the
value of a ∈ Z9
such that 2a = b.

Example 7.18 (Halving some numbers in Z9)
Problem: In Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, where every expression’s value is understood

mod 9, what element of Z9 is half of 6? Half of 8? Half of 5?

Solution: What number is half of 6? Well, easy: it’s obviously 3. (Why? Because 6 is
double 3, and therefore 3 is half of 6—or, in other words, 3 is half of 6 because 3 · 2
is 6.) And what number is half of 8? Easy again: it’s 4 (because 4 · 2 is 8).

Okay, what number is half of 5? The first temptation is to say that it’s 2.5 (or 5
2 ,

if you’re more of a fan of fractions)—but that doesn’t make sense as an answer:
after all, which element of {0, 1, 2, 3, 4, 5, 6, 7, 8} is 2.5?!? So the next temptation is
to say that there is no number that’s half of 5. (After all, in normal nonmodular
arithmetic, there is no integer that’s half of 5.) But that’s not right either: there is
an answer in Z9, even if it doesn’t quite match our intuition. The number that’s
half of 5 is in fact 7(!). Why? Because 7 · 2 is 5. (Remember that we’re in Z9, and
14 mod 9 = 5.) So, in Z9, the number 7 is half of the number 5. (See Figure 7.16.)

Example 7.18 illustrates the basic idea of division in Zn: we’ll define a
b as the number

k such that k · b is equivalent to a in Zn. To make this idea formal, we’ll need a few
definitions about modular arithmetic. But, first, we’ll go back to “normal” arithmetic,
for the real numbers, and introduce the two key concepts: identity and inverse.
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Multiplicative inverses in R

The number 1 is called the multiplicative identity, because it has the property that

Problem-solving
tip: When you
encounter a new
definition, it’s often
helpful to try it out
in a setting that you
already understand
well. For example,
it’s easier under-
stand Manhattan
distance in R2

(see Example 2.40)
before trying to
understand it for
general Rn. In
this case, you’ve
grasped division
in R since, what,
second grade—so,
before trying to
make sense of the
definitions for Zn,
try to consider the
analogy of each
definition for R.

x · 1 = 1 · x = x, for any x ∈ R.

(We’ve encountered identities in a number of contexts already. In Definition 2.41, we
introduced the identity matrix I, whereMI = IM = M for any matrix M. And Exercises
3.13–3.16 explored the identities of logical connectives; for example, the identity of ∨ is
False, because p∨ False ≡ False∨ p ≡ p for any proposition p.)

The multiplicative inverse of a number x is the number by which we have to multiply
x to get 1 (that is, to get the multiplicative identity) as the result. In other words, the
multiplicative inverse of x ∈ R is the real number x−1 such that x · x−1 = 1. (We
generally denote the multiplicative inverse of x as x−1, though it may be easier to think
about the multiplicative inverse of x as 1

x , because x · 1
x = 1. Actually the “−1” notation

is in general ambiguous between denoting inverse and denoting exponentiation with
a negative exponent—though these concepts match up perfectly for the real numbers.
Exercise 7.99 addresses negative exponents in modular arithmetic.) For example, the
multiplicative inverse of 8 is 1

8 = 0.125, because 8 · 0.125 = 1.
When we think of dividing y ∈ R by x ∈ R, we can instead think of this operation as

multiplying y by x−1. For example, we have 7/8 = 7 · 8−1 = 7 · 0.125 = 0.875.
Not every real number has a multiplicative inverse: specifically, there is no number

that yields 1 when it’s multiplied by 0, so 0−1 doesn’t exist. (And we can’t divide y by
0, because 0−1 doesn’t exist.) But for any x 6= 0, the multiplicative inverse of x does
exist, and it’s given by x−1 := 1

x .

Multiplicative inverses in Zn
Now let’s turn to the analogous definitions in the world of modular arithmetic, in

Zn. Notice that 1 is still the multiplicative identity, for any modulus n: for any x ∈ Zn,
it is the case that x mod n = 1 · x mod n = x · 1 mod n. The definition of the multiplica-
tive inverse in Zn is identical to the definition in R: Writing tip: Let

a ∈ Zn. The
notation a−1 doesn’t
explicitly indicate
the modulus n
anywhere, and the
value of nmatters!
If there’s any
ambiguity about
the value of n, then
be sure to specify
it clearly in your
words surrounding
the notation.

Definition 7.8 (Multiplicative Inverse)
Let n ≥ 2 be any integer, and let a ∈ Zn be arbitrary. Themultiplicative inverse of a in Zn
is the number a−1 ∈ Zn such that a · a−1 ≡n 1. If there is no element x ∈ Zn such that
ax ≡n 1, then a−1 is undefined.

(Note that Definition 7.8 describes the multiplicative inverse as “the” a−1 that has the
desired property. In Exercise 7.92, you’ll show that there can’t be two distinct values
b, c ∈ Zn where ab ≡n ac ≡n 1.) Here are a few examples of multiplicative inverses,
and of a case where there is no multiplicative inverse:

Example 7.19 (Some multiplicative inverses)
The multiplicative inverse of 2 in Z9 is 2−1 = 5, because 2 · 5 = 10 ≡9 1, and the
multiplicative inverse of 1 in Z9 is 1−1 = 1, because 1 · 1 ≡9 1. The multiplicative
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inverse of 7 in Z11 is 8 because 7 · 8 = 56 ≡11 1, and the multiplicative inverse of 7 in
Z13 is 2 because 7 · 2 = 14 ≡13 1.

Example 7.20 (A nonexistent multiplicative inverse)
The number 3 has no multiplicative inverse in Z9, as the following table shows:

3 · 0 = 0 ≡9 0
3 · 1 = 3 ≡9 3
3 · 2 = 6 ≡9 6

3 · 3 = 9 ≡9 0
3 · 4 = 12 ≡9 3
3 · 5 = 15 ≡9 6

3 · 6 = 18 ≡9 0
3 · 7 = 21 ≡9 3
3 · 8 = 24 ≡9 6.

All nine of these entries are not equivalent to 1 modulo 9, so there is no 3−1 in Z9.

Example 7.21 (Multiplicative inverses in Z7)
Problem: Find the values of 0−1, 1−1, 2−1, 3−1, 4−1, 5−1, and 6−1 in Z7.

Solution: The simplest way (though not necessarily the fastest way!) to solve this
problem is by building a multiplication table for Z7, as shown in Figure 7.17.
(The entry in row a and column b of the table is the value ab mod 7—for example,
4 · 5 = 20 = 2 · 7 + 6, so the entry in row 4, column 5 is the number 6.) For each row
a, the value a−1 we seek is the column that has a 1 in it, if there is such a column in
that row. (And there is a 1 in every row except a = 0.) Thus in Z7 we have 1−1 = 1,
2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3, and 6−1 = 6—and 0−1 is undefined.

Taking it further: The field of mathematics called abstract algebra focuses on giving and analyzing very
general definitions of structures that satisfy certain properties—allowing apparently disparate objects
(like Boolean logic and Rubik’s cubes) to be studied at the same time. For example, a group is a pair
〈G, ·〉, where G is a set of objects and · is a binary operator on G, where certain properties are satisfied:
• Closure: for any a, b ∈ G, we have a · b ∈ G.
• Associativity: for any a, b, c ∈ G, we have a · (b · c) = (a · b) · c.
• Identity: there is an identity element e ∈ Gwith the property that a · e = e · a = a for every a ∈ G.
• Inverse: for every a ∈ G, there exists b ∈ G such that a · b = b · a = e (where e is the identity element).
For example, 〈Z, +〉 is a group. As we’ll see, so too is 〈Zp − {0} , ·〉, where · denotes multiplication and
p is any prime integer. Despite the very abstract nature of these definitions—and other more general or
more specific algebraic structures, like semigroups, rings, and fields—they are a surprisingly useful way of
understanding properties of Zp. See any good textbook on abstract algebra for more detail.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Figure 7.17: The
multiplication table
for Z7 .

7.4.2 When Multiplicative Inverses Exist (and How to Find Them)

Examples 7.19, 7.20, and 7.21 might inspire you to ask a question that will turn out
to be both useful and reasonably simple to answer: under what circumstances does a
particular number a ∈ Zn have a multiplicative inverse? As we saw with arithmetic over
R, there’s never a multiplicative inverse for 0 in any Zn (because, for any x, we have
x · 0 = 0 6≡n 1)—but what happens for nonzero a?

To take one particular case, we just found that 2−1 = 5 in Z9 but that 3−1 does not
exist in Z9. It’s worth reflecting a bit on “why” 3−1 failed to exist in Z9. There are a lot
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of ways to think about it, but here’s one convenient way to describe what went wrong:
any multiple of 3 is (obviously!) divisible by 3, and numbers divisible by 3 are never
one more than multiples of 9. In other words, the only possible values of 3x mod 9 are
{0, 3, 6}—a set that fails to include 1. (Recall from Definition 7.8 that, for 3−1 to exist in
Z9, we’d have to have been able to find an x such that 3x ≡9 1.) Similarly, 6−1 doesn’t
exist in Z9: again, the only possible values of 6x mod 9 are {0, 3, 6}, which once again
does not include 1.

These observations should be reminiscent of the concepts that we discussed in Sec-
tion 7.3: for a number a ∈ Zn, we seem to be unable to find a multiplicative inverse a−1

in Zn whenever a and n share a common divisor d > 1. In other words, when a and n
are not relatively prime, then a−1 fails to exist in Zn. (That’s because any multiple xa of
a will also be divisible by d, and so xa mod n will also be divisible by d, and therefore
xa mod n will not equal 1.) In fact, not being relatively prime to n is the only way to fail
to have a multiplicative inverse in Zn, as we’ll prove. (Note that 0 ∈ Zn is not relatively
prime to n, because gcd(n, 0) 6= 1.)

Theorem 7.20 (Existence of Multiplicative Inverses)
Let n ≥ 2 and a ∈ Zn. Then a−1 exists in Zn if and only if n and a are relatively prime.

Proof. By definition, a multiplicative inverse of a exists in Zn precisely when there
exists an integer x such that ax ≡n 1. (The definition actually requires x ∈ Zn, not just
x ∈ Z, but see Exercise 7.98.) But ax ≡n 1 means that ax is one more than a multiple of
n—that is, there exists some integer y such that ax + yn = 1. In other words,

a−1 exists in Zn if and only if there exist integers x, y such that ax + yn = 1. (∗)

Observe that (∗) echoes the form of Lemma 7.10 (and thus also echoes the output of
the Extended Euclidean algorithm), and we can use this fact to prove the theorem.
We’ll prove the two directions of the implication separately:

If a−1 exists in Zn, then a and n are relatively prime. We’ll prove the contrapositive. Sup-
pose that a and n are not relatively prime—that is, suppose that gcd(a, n) = d for
some d > 1. We will show that a−1 does not exist in Zn. Because d | a and d | n, there
exist integers c and k such that a = cd and n = kd. But then, for any integers x and y,
we have that

ax + yn = cdx + ykd = d(cx + yk)

and thus d | (ax + yn). Thus there are no integers x, y for which ax + yn = 1 and
therefore, by (∗), a−1 does not exist in Zn.

If a and n are relatively prime, then a−1 exists in Zn. Suppose that a and n are relatively
prime. Then gcd(a, n) = 1 by definition. Thus, by the correctness of the Extended
Euclidean algorithm (Theorem 7.11), the output of extended-Euclid(a, n) is 〈x, y, 1〉
for integers x, y such that xa + yn = gcd(a, n) = 1. The fact that extended-Euclid(a, n)
outputs integers x and y such xa + yn = 1 means that such an x and y must exist—
and so, by (∗), a−1 exists in Zn.
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Note that this theorem is consistent with the examples that we saw previously: we
found 1−1 and 2−1 but not 3−1 in Z9 (Examples 7.19 and 7.20; 1 and 2 are relatively
prime to 9, but 3 is not), and we found multiplicative inverses for all nonzero elements
of Z7 (Example 7.21; all of {1, 2, . . . , 6} are relatively prime to 7).

Two implications of Theorem 7.20
There are two useful implications of this result. First, when the modulus is prime,

multiplicative inverses exist for all nonzero elements of Zn, because every nonzero
a ∈ Zn and n are relatively prime for any prime number n.

Corollary 7.21
If p is prime, then every nonzero a ∈ Zp has a multiplicative inverse in Zp.

(We saw an example of this corollary in Example 7.21, where we identified the multi-
plicative inverses of all nonzero elements in Z7.)

inverse(a, n):
Input: a ∈ Zn and n ≥ 2
Output: a−1 in Zn, if it exists
1: x, y, d := extended-Euclid(a, n)
2: if d = 1 then
3: return x mod n // xa + yn = 1, so xa ≡n 1.
4: else
5: return “no inverse for a exists in Zn.”

Figure 7.18: An
algorithm for com-
puting multiplica-
tive inverses using
the Extended Eu-
clidean algorithm.

The second useful implication of Theorem 7.20 is that,
whenever the multiplicative inverse of a exists in Zn, we can
efficiently compute a−1 in Zn using the Extended Euclidean
algorithm—specifically, by running the (simple!) algorithm
in Figure 7.18. (This problem also nicely illustrates a case in
which proving a structural fact vastly improves the efficiency
of a calculation—the algorithm in Figure 7.18 is way faster
than building the entire multiplication table, as we did in Example 7.21.)

Corollary 7.22
For any n ≥ 2 and a ∈ Zn, inverse(a, n) returns the value of a−1 in Zn.

Proof. We just proved that a−1 exists if and only if extended-Euclid(a, n) returns
〈x, y, 1〉. In this case, we have xa + yn = 1 and therefore xa ≡n 1. Defining a−1 :=
x mod n ensures that a · (x mod n) ≡n 1, as required. (Again, see Exercise 7.98.)

Here’s an example, replicating the calculation of 5−1 in Z7 from Example 7.21:

Example 7.22 (5−1 in Z7 , again)
To compute 5−1, we run the Extended Euclidean algorithm on 5 and 7:

extended-Euclid(5, 7)
extended-Euclid(

=2︷ ︸︸ ︷
7 mod 5, 5)

extended-Euclid(5 mod 2︸ ︷︷ ︸
=1

, 2)
= 1, 0, 1

= −2, 1, 1
= 3,−2, 1.

The Extended Euclidean algorithm returns 〈3,−2, 1〉, implying that 3 · 5 +−2 · 7 = 1 =
gcd(5, 7). Therefore inverse(5, 7) returns 3 mod 7 = 3. And, indeed, 3 · 5 ≡7 1.
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Example 7.23 (7−1 in Z9)
In Example 7.16, we saw that extended-Euclid(7, 9) = 〈4,−3, 1〉. Thus 7 and 9 are
relatively prime, and 7−1 in Z9 is 4 mod 9 = 4. And indeed 7 · 4 = 28 ≡9 1.

7.4.3 Fermat’s Little Theorem

We’ll now make use of the results that we’ve developed so far—specifically Corol-
lary 7.21—to prove a surprising and very useful theorem, called Fermat’s Little Theorem,
which states that ap−1 is equivalent to 1 mod p, for any prime number p and any a 6= 0.
(And we’ll see why this result is useful for cryptography in Section 7.5.) 4 Fermat’s Little

Theorem is named
after Pierre de
Fermat, a 17th-
century French
mathematician.

4 Simon Singh. Fer-
mat’s Last Theorem:
The Story of a Riddle
That Confounded
the World’s Greatest
Minds for 358 Years.
Fourth Estate Ltd.,
2002.

Taking it further: Fermat’s Little Theorem is the second-most famous theorem named after Pierre de
Fermat. His more famous theorem is called Fermat’s Last Theorem,which states the following:

For any integer k ≥ 3, there are no positive integers x, y, z satisfying xk + yk = zk .
There are integer solutions to the equation xk + yk = zk when k = 2—the so-called Pythagorean triples, like
〈3, 4, 5〉 (where 32 + 42 = 9 + 16 = 25 = 52) and 〈7, 24, 25〉 (where 72 + 242 = 49 + 576 = 625 = 252). But
Fermat’s Last Theorem states that there are no integer solutions when the exponent is larger than 2.

The history of Fermat’s Last Theorem is convoluted and about as fascinating as the history of any
mathematical statement can be. In the 17th century, Fermat conjectured his theorem, and scrawled—in
the margin of one of his books on mathematics—the words “I have discovered a truly marvelous proof,
which this margin is too narrow to contain . . ..” The conjecture, and Fermat’s assertion, were found
after Fermat’s death—but the proof that Fermat claimed to have discovered was never found. And it
seems almost certain that he did not have a correct proof of this claim. Some 350 years later, in 1995,
the mathematician AndrewWiles published a proof of Fermat’s Last Theorem, building on work by a
number of other 20th-century mathematicians.

The history of the Fermat’s Last Theorem—including the history of Fermat’s conjecture and the
centuries-long quest for a proof—has been the subject of a number of books written for a nonspecialist
audience; see, for example, the book by Simon Singh.4

Before we can prove Fermat’s Little Theorem itself, we’ll need a preliminary result.
We will show that, for any prime p and any nonzero a ∈ Zp, the first p − 1 nonzero
multiples of a—that is, {a, 2a, 3a, . . . , (p− 1)a}—are precisely the p − 1 nonzero ele-
ments of Zp. Or, to state this claim in a slightly different way, we will prove that the
function f : Zp → Zp defined by f (k) = ak mod p is both one-to-one and onto (and also
satisfies f (0) = 0). Here is a formal statement of the result:

Lemma 7.23 ({1, 2, . . .p− 1} and {1a, 2a, . . . (p− 1)a} are equivalent mod p)
For prime p and any a ∈ Zp where a 6= 0, we have

{1 · a mod p, 2 · a mod p, . . . , (p− 1) · a mod p} = {1, 2, . . . , p− 1} .

Before we dive into a proof, let’s check an example:

Example 7.24 ({ai mod 11} vs. {i mod 11})
Consider the prime p = 11 and two values of a, namely a = 2 and a = 5. Then, taking
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all results modulo 11, we have

i 1 2 3 4 5 6 7 8 9 10
2i 2 4 6 8 10 12 14 16 18 20

2i mod 11 2 4 6 8 10 1 3 5 7 9
5i 5 10 15 20 25 30 35 40 45 50

5i mod 11 5 10 4 9 3 8 2 7 1 6
.

Note that every number from {1, 2, . . . , p} appears (once and only once) in the
{2i mod 11} and {5i mod 11} rows of this table—exactly as desired. That is,

{1, 2, 3, . . . , 10} ≡11 {2, 4, 6, . . . , 20} ≡11 {5, 10, 15, . . . , 50} .

We can also observe examples of this result in the multiplication table for Z7. (See
Figure 7.19 for a reminder.) We can see that every (nonzero) row {a, 2a, 3a, 4a, 5a, 6a}
contains all six numbers {1, 2, 3, 4, 5, 6}, in some order, in the six nonzero columns.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Figure 7.19: The
multiplication table
for Z7 : a reminder.

Proof of Lemma 7.23. Consider any prime p, and any nonzero a ∈ Zp. We must prove
that {a, 2a, . . . , (p− 1)a} ≡p {1, 2, . . . , p− 1}.

We will first argue that the set {1 · a mod p, 2 · a mod p, . . . , (p− 1) · a mod p}
contains no duplicates—that is, the value of i · a mod p is different for every i. Let
i, j ∈ {1, 2, . . . , p− 1} be arbitrary. We will show that ia ≡p ja implies that i = j,
which establishes this first claim. Suppose that ia ≡p ja. Then, multiplying both
sides by a−1, we have that iaa−1 ≡p jaa−1, which immediately yields i ≡p j because
a · a−1 ≡p 1. (Note that, because p is prime, by Corollary 7.21, we know that a−1 exists
in Zp.) Therefore, for any i, j ∈ {1, 2, . . . , 1− p}, if i 6= j then ai 6≡p aj.

We now need only show that ia mod p 6= 0 for any i > 0. But that fact is straightfor-
ward to see: ia mod p = 0 if and only if p | ia, but p is prime and i < p and a < p, so p
cannot divide ia. (See Exercise 7.49.)

With this preliminary result in hand, we turn to Fermat’s Little Theorem itself:

Theorem 7.24 (Fermat’s Little Theorem)
Let p be prime, and let a ∈ Zp where a 6= 0. Then ap−1 ≡p 1.

As with the previous lemma, we’ll start with a few examples of this claim, and then
give a proof of the general result. (While this property admittedly might seem a bit
mysterious, it turns out to follow fairly closely from Lemma 7.23, as we’ll see.)

Example 7.25 (Some examples of Fermat’s Little Theorem)
Here are a few examples, for the prime numbers 7 and 19:

26 mod 7 = 64 mod 7 = (7 · 9 + 1) mod 7 = 1
36 mod 7 = 729 mod 7 = (104 · 7 + 1) mod 7 = 1
418 mod 19 = 68719476736 mod 19 = (3616814565 · 19 + 1) mod 19 = 1.
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The proof of Fermat’s Little Theorem
We’ll now turn to a proof of the theorem: for any prime p and any nonzero a ∈ Zp,

we have that ap−1 ≡p 1:

Proof of Fermat’s Little Theorem (Theorem 7.24). Note that, because p is prime, by Corol-
lary 7.21, the multiplicative inverses 1−1, 2−1, . . . , (p− 1)−1 all exist in Zp.

By Lemma 7.23, we know that {1 · a mod p, 2 · a mod p, . . . , (p− 1) · a mod p} and
{1, 2, . . . , p} are the same set, and thus have the same product:

1 · 2 · 3 · · · (p− 1)
≡p (1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a). (1)

Multiplying both sides of (1) by the product of all p − 1 multiplicative inverses of
{1, . . . , p− 1}—that is, multiplying by 1−1 · 2−1 · · · · · (p− 1)−1—we have

1 · 2 · 3 · · · (p− 1) · 1−1 · 2−1 · · · (p− 1)−1

≡p (1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a) · 1−1 · 2−1 · · · (p− 1)−1. (2)

Rearranging the left-hand side of (2) and replacing b · b−1 by 1 for each b ∈ {1, . . . , p− 1},
we simply get 1:

1 ≡p (1 · a) · (2 · a) · (3 · a) · · · ((p− 1) · a) · 1−1 · 2−1 · · · (p− 1)−1. (3)

Rearranging the right-hand side of (3) and again replacing each b · b−1 by 1, we are left
only with p− 1 copies of a:

1 ≡p ap−1.

Note that Fermat’s Little Theorem is an implication, not an equivalence. It states
that if p is prime, then for every a ∈ {1, . . . , p− 1}—that is, for every p relatively prime
to n—we have ap−1 ≡p 1. The converse does not always hold: if an−1 ≡n 1 for every
a ∈ Zn that’s relatively prime to n, we cannot conclude that n is prime. For example, Carmichael num-

bers are named
after Robert
Carmichael, an
American mathe-
matician who first
discovered these
numbers, in the
early 20th century.

a560 ≡561 1 for every a ∈ {1, 2, . . . , 560}with gcd(a, 561) = 1—but 561 is not prime! (See
Exercise 7.110.) A number like 561, which passes the test in Fermat’s Little Theorem
but is not prime, is called a Fermat pseudoprime or a Carmichael number.

Taking it further: Let n ≥ 2 be an integer, and suppose that we need to determine whether n is prime.
There’s a test for primality that’s implicitly suggested by Fermat’s Little Theorem—for “many” different
values of a ∈ Zn, test to make sure that an−1 mod n = 1—but this test sometimes incorrectly identifies
composite numbers as prime, because of the Carmichael numbers. (For speed, we generally test a few
randomly chosen values of a ∈ Zp instead of trying many of them—but of course testing fewer values of
a certainly can’t prevent us from incorrectly identifying Carmichael numbers as prime.) However, there
are some tests for primality that have a similar spirit but that aren’t fooled by certain inputs in this way.
See the discussion on p. 742 for a description of a randomized algorithm called theMiller–Rabin test that
checks primality using this approach.
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Computer Science Connections

Miller–Rabin Primality Test

bogus-isPrime?(n, k):
Input: n is a candidate prime number; k is a

“certainty parameter” telling us how many
tests to perform before giving up and reporting
n as prime.

1: repeat
2: choose a ∈ {1, 2, . . . , n− 1} randomly
3: until an−1 6≡n 1 or we’ve tried k times
4: return “prime” if every an−1 ≡n 1; else return

“composite”

Figure 7.20: A bogus primality tester
based on Fermat’s Little Theorem.

Fermat’s Little Theorem says that an−1 ≡n 1 for any prime n
and any nonzero a ∈ Zn, which makes the randomized algorithm
in Figure 7.20 tempting as a way to test for primality. It’s clear that
bogus-isPrime?(p) returns “prime” for any prime p—by Fermat’s
Little Theorem—but what’s not clear is the false negative probability.
Unfortunately, the probability can be terrible for particular values
of n: for example, n = 118,901,521 is not prime, but the only a for which
an−1 6≡n 1 are multiples of 271, 541, or 811—less than 0.7% of {1, 2, . . . ,n− 1}.
(See the discussion of Carmichael numbers, and Exercise 7.110. And Carmichael
numbers whose prime factors are all > 271 give even worse performance.)

We can, however, give a randomized primality test using modular arith-
metic that doesn’t get fooled for any particular input integer. The Miller–Rabin
primality test5 is based on the following fact (see Exercise 7.51):

The original version of this test, due to
Miller, is a nonrandom version of this
algorithm that relies on a (still!) un-
proven assumption in mathematics; it
was subsequently modified by Rabin to
remove the assumption (but at the cost
of making it random instead). See
5 Gary L. Miller. Riemann’s hypothesis
and tests for primality. Journal of Com-
puter and System Sciences, 13(3):300–317,
1976; and Michael O. Rabin. Proba-
bilistic algorithm for testing primality.
Journal of Number Theory, 12(1):128–138,
1980.

if p is prime, then x2 ≡p 1 if and only if x ∈ {1, p− 1}. (1)

Or, taking the contrapositive,

if a2 ≡n 1 for a /∈ {1,n− 1}, then n is not prime. (2)

The basic idea of Miller–Rabin is to look for an a ∈ Zn with this property. (See
Figure 7.21.) Consider a candidate prime number n ≥ 3. Thus n is odd, so
n− 1 is even, and we can write n− 1 = 2rd, where d is an odd number and
r ≥ 1. (For n = 561, for example, we can write n− 1 = 560 = 24 · 35—so r = 4
and d = 35.) Let a ∈ Zn with a 6= 0. Define the sequence

ad, (ad)2 = a2d, (a2d)2 = a4d, . . . , (a2r−1d)2 = a2rd = an−1, (3)

miller-rabin-isPrime?(n, k):
Input: n is a candidate prime number; k is a

“certainty parameter”
1: write n− 1 as 2rd for an odd number d
2: while we’ve done fewer than k tests:
3: choose a random a ∈ {1, . . . , n− 1}
4: σ := 〈ad , a2d , a4d , a8d , . . . , a2rd〉 mod n.
5: if σ 6= 〈. . . , 1〉 or if σ = 〈. . . , x, 1, . . .〉 for some

x /∈ {1, n− 1} then
6: return “composite”
7: return “prime”

Figure 7.21: Miller–Rabin primality test.

with each entry taken modulo n. For example, for n = 561 (so r = 4
and d = 35) and a = 4, this sequence (modulo n) would be

〈 166︸︷︷︸
ad≡n435≡n166

, 67︸︷︷︸
a2d≡n1662≡n67

, 1︸︷︷︸
a4d≡n672≡n1

, 1︸︷︷︸
a8d≡n12≡n1

, 1︸︷︷︸
a16d≡n12≡n1

〉.

By Fermat’s Little Theorem, we know n is not prime if an−1 6≡n 1.
Thus if (3) ends with something 6≡n 1, we know that n is not prime.
And if there’s a 1 that appears immediately after an entry x where
x mod n /∈ {1,n− 1} in (3), then we also know that n is not prime:
x2 ≡n 1 but x mod n /∈ {1,n− 1}, so by (2) we know that n is not
prime. The key fact, which we won’t prove here, is that many different
values of a ∈ Zn result in one of these two violations:6

For a proof of this fact, see
6 Thomas H. Cormen, Charles E. Leis-
ersen, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009.

Fact: If n is not prime, then for at least n−1
2 different nonzero values of

a ∈ Zn, the sequence (3) contains a 1 following an entry x /∈ {1, n− 1}
or the sequence (3) doesn’t end with 1.

This fact then allows us to test for n’s primality by trying k different randomly
chosen values of a; the probability that every one of these tests fails when n is
not prime is at most 1/2k .
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7.4.4 Exercises

7.80 Following Example 7.18, identify the numbers that are half of every element in Z9. (That is, for
each a ∈ Z9, find b ∈ Z9 such that 2b = a.)

We talked extensively in this section about multiplicative inverses, but there can be inverses for other operations, too.
The next few exercises explore the additive inverse in Zn. Notice that the additive identity in Zn is 0: for any a ∈ Zn,
we have a + 0 ≡n 0 + a ≡n a. The additive inverse of a ∈ Zn is typically denoted −a.
7.81 Give an algorithm to find the additive inverse of any a ∈ Zn. (Be careful: the additive inverse of a
has to be a value from Zn, so you can’t just say that 3’s additive inverse is negative 3!)

Given your solution to the previous exercise, prove the following properties:
7.82 For any a ∈ Zn, we have −(−a) ≡n a.
7.83 For any a, b ∈ Zn, we have a · (−b) ≡n (−a) · b.
7.84 For any a, b ∈ Zn, we have a · b ≡n (−a) · (−b).

In regular arithmetic, for a number x ∈ R, a square root of x is a number y such that y2 = x. If x = 0, there’s only one
such y, namely y = 0. If x < 0, there’s no such y. If x > 0, there are two such values y (one positive and one negative).
Consider the following claim, and prove or disprove it.
7.85 Let n ≥ 2 be arbitrary. Then (i) there exists one and only one b ∈ Zn such that b2 ≡n 0; and (ii) for
any a ∈ Zn with a 6= 0, there is not exactly one b ∈ Zn such that b2 ≡n a. (Hint: think about Exercise 7.81.)

Using paper and pencil (and brute-force calculation), compute the following multiplicative inverses (or state that the
inverse doesn’t exist):

7.86 4−1 in Z11
7.87 7−1 in Z11
7.88 0−1 in Z11

7.89 5−1 in Z15
7.90 7−1 in Z15
7.91 9−1 in Z15

7.92 Prove that the multiplicative inverse is unique: that is, for arbitrary n ≥ 2 and a ∈ Zn, suppose
that ax ≡n 1 and ay ≡n 1. Prove that x ≡n y.

Write down the full multiplication table (as in Figure 7.17) for the following:

7.93 Z5 7.94 Z6 7.95 Z8

For arbitrary n ≥ 2 and a ∈ Zn:

extended-Euclid(n,m):
Input: positive integers n and m ≥ n.
Output: x, y, r ∈ Z where gcd(n,m) = r = xn + ym
1: if m mod n = 0 then
2: return 1, 0, n // 1 · n + 0 ·m = n = gcd(n,m)
3: else
4: x, y, r := extended-Euclid(m mod n,n)
5: return y−

⌊m
n
⌋
· x, x, r

inverse(a, n):
Input: a ∈ Zn and n ≥ 2
Output: a−1 in Zn, if it exists
1: x, y, d := extended-Euclid(a, n)
2: if d = 1 then
3: return x mod n // xa + yn = 1, so xa ≡n 1.
4: else
5: return “no inverse for a exists in Zn.”

Figure 7.22: A
reminder of two
algorithms.

7.96 Prove or disprove the following: (n− 1)−1 = n− 1 in Zn.
7.97 Prove that (a−1)−1 = a: that is, a is the multiplicative inverse of the
multiplicative inverse of a.
7.98 Prove that there exists x ∈ Z with ax ≡n 1 if and only if there
exists y ∈ Zn with ay ≡n 1.
7.99 Suppose that the multiplicative inverse a−1 exists in Zn. Let
k ∈ Zn be any exponent. Prove that ak has a multiplicative inverse in Zn,
and, in particular, prove that the multiplicative inverse of ak is the kth power
of the multiplicative inverse of a. (That is, prove that (ak )−1 ≡n (a−1)k .)

Using paper and pencil and the algorithm based on the Extended Euclidean
algorithm, compute the following multiplicative inverses (or explain why they don’t
exist). See Figure 7.22 for a reminder.
7.100 17−1 in Z23
7.101 7−1 in Z25
7.102 9−1 in Z33

7.103 (programming required) Implement inverse(a, n) from Figure 7.18 in
a language of your choice.

7.104 Prove or disprove the converse of Corollary 7.21: if n is composite, then there exists a ∈ Zn (with
a 6= 0) that does not have a multiplicative inverse in Zn.
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7.105 Let p be an arbitrary prime number. What value does the quantity 2p+1 mod p have? Be as specific
as you can. Explain.
7.106 It turns out that 247248 mod 249 = 4. From this, you can conclude at least one of following: 247 is
not prime; 247 is prime; 249 is not prime; or 249 is prime. Which one(s)? Explain.

7.107 Reprove the general version of the Chinese Remainder Theorem with single constructive argu-
ment, as in the 2-congruence case, instead of using induction. Namely, assume n1, n2, . . . , nk are pairwise
relatively prime, and let ai ∈ Zni . Let N := ∏k

i=1 ni . LetNi := N/ni (more precisely, let Ni be the product of
all njs except ni) and let di be the multiplicative inverse of Ni in Zni . Prove that x := ∑k

i=1 aiNidi satisfies the
congruence x mod ni = ai for all 1 ≤ i ≤ k.

The totient function ϕ : Z≥1 → Z≥0, sometimes called Euler’s totient function after the 18th-century Swiss
mathematician Leonhard Euler, is defined as

ϕ(n) := the number of k such that 1 ≤ k ≤ n such that k and n have no common divisors.

For example, ϕ(6) = 2 because 1 and 5 have no common divisors with 6 (but all of {2, 3, 4, 6} do share a common
divisor with 6). There’s a generalization of Fermat’s Little Theorem, sometimes called the Fermat–Euler Theorem or
Euler’s Theorem, that states the following: if a and n are relatively prime, then aϕ(n) ≡n 1.

7.108 Using the Fermat–Euler theorem, argue that
(i) Fermat’s Little Theorem holds.
(ii) a−1 in Zn is aϕ(n)−1 mod n, for any a ∈ Zn that is relatively prime to n.
Verify the latter claim for the multiplicative inverses of a ∈ {7, 17, 31} in Z60.

7.109 (programming required) Implicitly, the Fermat–Euler theorem gives a different way to compute the
multiplicative inverse of a in Zn:
1. compute ϕ(n) [say by brute force, though there are somewhat faster ways—see Exercises 9.34–9.36]; and
2. compute aϕ(n)−1 mod n [perhaps using repeated squaring; see Figure 7.7].
Implement this algorithm to compute a−1 in Zn in a programming language of your choice.

Recall that a Carmichael number is a composite number that passes the (bogus) primality test suggested by Fermat’s
Little Theorem. In other words, a Carmichael number n is an integer that is composite but such that, for any a ∈ Zn
that’s relatively prime to n, we have an−1 mod n = 1.
7.110 (programming required) Write a program to verify that 561 is (a) not prime, but (b) satisfies
a560 mod 561 = 1 for every a ∈ {1, . . . , 560} that’s relatively prime to 561. (That is, verify that 561 is a
Carmichael number.)
7.111 Suppose n is a composite integer. Argue that there exists at least one integer a ∈ {1, 2, . . . ,n− 1}
such that an−1 6≡n 1. (In other words, there’s always at least one nonzero a ∈ Zn with an−1 6≡n 1 when n
is composite. Thus, although the probability of error in bogus-isPrime? from p. 742 may be very high for
particular composite integers n, the probability of success is nonzero, at least!)

The following theorem is due to Alwin Korselt, from 1899: an integer n is a Carmichael number if and only if n is
composite, squarefree, and for all prime numbers p that divide n, we have that p− 1 |n− 1. (An integer n is squarefree
if there is no integer d ≥ 2 such that d2 | n.)
7.112 (programming required) Use Korselt’s theorem (and a program) to find all Carmichael numbers less
than 10,000.
7.113 Use Korselt’s theorem to prove that all Carmichael numbers are odd.

7.114 (programming required) Implement the Miller–Rabin primality test (see p. 742) in a language of
your choice.
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7.5 Cryptography

Three may keep a secret, if two of them are dead.

Benjamin Franklin (1706–1790)

In the rest of this chapter, we will make use of the number-theoretic machinery that
we’ve now developed to explore cryptography. Imagine that a sender, named Alice, is Traditionally, cryp-

tographic systems
are described using
an imagined crew
of people whose
names start with
consecutive letters
of the alphabet.
We’ll stick with
these traditional
names: Alice, Bob,
Charlie, etc.

trying to send a secret message to a receiver, named Bob. The goal of cryptography
is to ensure that the message itself is kept secret even if an eavesdropper—named
Eve—overhears the transmission to Bob. To achieve this goal, Alice does not directly
transmit the message m that she wishes to send to Bob; instead, she encrypts m in some
way. The resulting encrypted message c is what’s transmitted to Bob. (The original
message m is called plaintext; the encrypted message c that’s sent to Bob is called the
ciphertext.) Bob then decrypts c to recover the original message m. A diagram of the
basic structure of a cryptographic system is shown in Figure 7.23.

plaintext m encrypt
(using
information
about Bob)

ciphertext c decrypt
(using Bob’s
private
information)

plaintext m

Alice Bob

Eve (trying to decrypt without Bob’s
private information)

Figure 7.23: The
outline of a cryp-
tographic system.

The two obvious crucial properties of a cryptographic system are that (i) Bob can
compute m from c, and (ii) Eve cannot compute m from c. (Of course, to make (i) and
(ii) true simultaneously, it will have to be the case that Bob has some information that
Eve doesn’t have—otherwise the task would be impossible!)

One-time pads
The simplest idea for a cryptographic system is for Alice and Bob to agree on a

shared secret key that they will use as the basis for their communication. The easiest
implementation of this idea is what’s called a one-time pad,which works as follows.

The pad in the
name comes from
spycraft—spies
might carry phys-
ical pads of paper,
where each sheet
has a fresh secret
key written on it.
The one-time in the
name derives from
the fact that this
system is secure
only if the same key
is never reused, as
we’ll discuss.

Alice and Bob agree in advance on an integer n, denoting the length of the message
that they would like to communicate. They also agree in advance on a secret bitstring
k ∈ {0, 1}n, where each bit ki ∈ {0, 1} is chosen independently and uniformly—so
that every one of the 2n different n-bit strings has a 1

2n chance of being chosen as k. To
encrypt a plaintext message m ∈ {0, 1}n, Alice computes the bitwise exclusive or of m
and k—in other words, the ith bit of the ciphertext is mi ⊕ ki. To decrypt the ciphertext
c ∈ {0, 1}n, Bob computes the bitwise XOR of c and k.
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Example 7.26 (A One-Time Pad)
• Alice and Bob agree (in advance) on the secret key k = 10111000.
• To transmit the message m = 01101110, Alice finds the bitwise XOR of m and k:

m 0 1 1 0 1 1 1 0
k 1 0 1 1 1 0 0 0
c = m⊕ k 1 1 0 1 0 1 1 0

.

• To decrypt the ciphertext c = 11010110, Bob finds the bitwise XOR of c and k:

c 1 1 0 1 0 1 1 0
k 1 0 1 1 1 0 0 0
c⊕ k 0 1 1 0 1 1 1 0

.

Observe that c⊕ k = 01101110 is indeed precisely m = 01101110, as desired.

The reason that Bob can decrypt the ciphertext to recover the original message m is

a b a⊕
b

(a
⊕

b)
⊕

b

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Figure 7.24: The
truth table for
(a⊕ b)⊕ b = a.

simple: for any bits a and b, it’s the case that (a⊕ b)⊕ b = a. (See Figure 7.24.) The fact
that Eve cannot recover m from c relies on the fact that, for any message m and every
ciphertext c, there is precisely one secret key k such that m⊕ k = c. (So Eve is just as
likely to see a particular ciphertext regardless of what the message is, and therefore she
gains no information about m by seeing c. See Exercise 7.116.) Thus the one-time pad
is perfectly secure as a cryptographic system—if Alice and Bob only use it once! If
Alice and Bob reuse the same key to exchange many different messages, then Eve can
use frequency analysis to get a handle on the key, and therefore can begin to decode
the allegedly secret messages. (See Exercises 10.72–10.76 or Exercise 7.117.)

Taking it further: One of the earliest encryption schemes is now known as a Caesar Cipher, after Julius
Caesar, who used it in his correspondence. It can be understood as a cryptographic system that uses a
one-time pad more than once. The Caesar cipher works as follows. The sender and receiver agree on a
shift x, an integer, as their secret key. The ith letter in the alphabet (from A = 0 through Z = 25) will be
shifted forward by x positions in the alphabet. The shift “wraps around,” so that we encode letter i as
letter (i + x) mod 26. For example, if x = 3 then A→D, L→O, Y→B, etc. To send a text message m consisting
of multiple letters from the alphabet, the same shift is applied to each letter. (For convenience, we’ll leave
nonalphabetic characters unchanged.) For example, the ciphertext XF BSF EJTDPWFSFE; GMFF BU PODF!

was generated with the shift x = 1 from the message WE ARE DISCOVERED; FLEE AT ONCE!. Because
we’ve reused the same shift x for each letter of the message, the Caesar Cipher is susceptible to being
broken based on frequency analysis. (In the XF BSF EJTDPWFSFE; GMFF BU PODF! example, F is by far
the most common letter in the ciphertext—and E is by far the most common letter in English text. From
these two facts, you might infer that x = 1 is the most probable secret key. See Exercise 7.117.)

Millennia later, the Enigma machines, the encryption system used by the Germans during World War
II, was—as with Caesar—a substitution cipher, but one where the shift changed with each letter. (But not
in completely unpredictable ways, as in a one-time pad!) See p. 960 for more.

Public-key cryptography
In addition to being single-use-only, there’s another strange thing about the one-

time pad: if Alice and Bob are somehow able to communicate an n-bit string securely—
as they must to share the secret key k—it doesn’t seem particularly impressive that
they can then communicate the n-bit string m securely.

Public-key cryptography is an idea to get around this oddity. Here is the idea, in a
nutshell. Every participant will have a public key and a private (or secret) key, which
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will somehow be related to the public key. A user’s public key is completely public—
for example, posted on the web. If Alice wishes to send a message m to Bob, then
Alice will (somehow!) encrypt her message to Bob using Bob’s public key, producing
ciphertext c. Bob, who of course knows Bob’s secret key, can decrypt c to reconstruct m;
Eve, not knowing Bob’s secret key, cannot decrypt c.

This idea sounds a little crazy, but we will be able to make it work. Or, at least, we
will make it work on the assumption that Eve has only limited computational power—and
on the assumption that certain computational problems, like factoring large numbers,
require a lot of computational power to solve. (For example, Bob’s secret key cannot be
easily computable from Bob’s public key—otherwise Eve could easily figure out Bob’s
secret key and then run whatever decryption algorithm Bob uses!)

7.5.1 The RSA Cryptosystem

The basic idea of public-key cryptography was discussed in abstract terms in the
1970s—especially by Whitfield Diffie, Martin Hellman, and Ralph Merkle—and, after
some significant contributions by a number of researchers, a cryptosystem successfully
implementing public-key cryptography was discovered by Ron Rivest, Adi Shamir,
and Leonard Adleman.7 The RSA cryptosystem, named after the first initials of their 7 R. L. Rivest,

A. Shamir, and
L. Adleman. A
method for ob-
taining digital
signatures and
public-key cryp-
tosystems. Com-
munications of the
ACM, 21:120–126,
February 1978.

three last names, is one of the most famous, and widely used, cryptographic protocols
today. The previous sections of this chapter will serve as the building blocks for the
RSA system, which we’ll explore in the rest of this section.8

8 Simon Singh. The
Code Book: The Secret
History of Codes
and Code-breaking.
Fourth Estate Ltd.,
1999.

Taking it further: The RSA cryptosystem is named after its three 1978 discoverers, and the Turing
Award—the highest honor in computer science, roughly equivalent to the Nobel Prize of computer
science—was conferred on Rivest, Shamir, and Adleman in 2002 for this discovery. But there is also a
“shadow history” of the advances in cryptography made in the second half of the 20th century.

The British government’s signal intelligence agency, called Government Communications Headquar-
ters (GCHQ), had been working to solve precisely the same set of research questions about cryptography
as academic researchers like R., S., and A. (GCHQ was perhaps best known for its success in World
War II, in breaking the Enigma Code of the German military; see p. 960 for more discussion.) And it
turned out that several British cryptographers at GCHQ—Clifford Cocks, James Ellis, and Malcolm
Williamson—had discovered the RSA protocol several years before 1978. But their discovery was classi-
fied by the British government, and thus we call this protocol “RSA” instead of “CEW.”

See the excellent book by Simon Singh for more on the history of cryptography, including both the
published and classified advances in cryptographic systems.8Also see the discussion on p. 753 of the
Diffie–Hellman key exchange protocol, one of the first (published) modern breakthroughs in cryptogra-
phy, which allows Alice and Bob to solve another apparently impossible problem: exchanging secret
information while communicating only over an insecure channel.

In RSA, as for any public-key cryptosystem, we must define three algorithmic com-
ponents. (These three algorithms for the RSA cryptosystem are shown in Figure 7.25;
an overview of the system is shown in Figure 7.26.) They are:

• key generation: how do Alice and Bob construct their public/private keypairs?
• encryption: when Alice wishes to send a message to Bob, how does she encode it?
• decryption: when Bob receives ciphertext from Alice, how does he decode it?

The very basic idea of RSA is the following. (The details of the protocols are in Fig-
ure 7.25.) To encrypt a numerical message m for Bob, Alice will compute c := me mod n,
where Bob’s public key is 〈e, n〉. To decrypt the ciphertext c that he receives, Bob will
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Key Generation:

1. Bob chooses two large primes, p and q, and defines n := pq.
2. Bob chooses e 6= 1 such that e and (p− 1)(q− 1) are relatively prime.
3. Bob computes d := e−1 modulo (p− 1)(q− 1).
4. Bob publishes 〈e, n〉 as his public key; Bob’s secret key is 〈d, n〉.

Encryption: If Alice wants to send message m to Bob,

1. Alice finds Bob’s public key, say 〈eBob, nBob〉, as he published it.
2. To send message m ∈ {0, . . . , nBob − 1}, Alice computes c := meBob mod nBob.
3. Alice transmits c to Bob.

Decryption: When Bob receives ciphertext c,

1. Bob computes m := cdBob mod nBob, where 〈dBob, nBob〉 is Bob’s secret key.
Figure 7.25: The
RSA cryptosystem.

compute cd mod n, where Bob’s private key is 〈d, n〉. (Of course, there’s an important
relationship among the quantities e, d, and n!)

An example of RSA key generation, encryption, and decryption
Later we will prove that the message that Bob decrypts is always the same as the

message that Alice originally sent. But we’ll start with an example. First, Bob generates
a public and private key, using the protocol in Figure 7.25. (All three phases can be im-
plemented efficiently, using techniques from this chapter; see Exercises 7.129–7.132.)

It may seem strange
that n is part of both
Bob’s secret key
and Bob’s public
key—it’s usually
done this way for
symmetry, but also
to support digital
signatures. When
Alice sends Bob a
message, she can
encrypt it using her
own secret key; Bob
can then decrypt
the message using
Alice’s public key to
verify that Alice
was indeed the
person who sent the
message.

Example 7.27 (Generating an RSA keypair for Bob)
For good security properties, we’d want to pick seriously large prime numbers p and
q, but to make the computation easier to see we’ll choose very small primes.

1. Suppose we choose the “large” primes p = 13 and q = 17. Then n := 13 · 17 = 221.

2. We now must choose a value of e 6= 1 that is relatively prime to (p− 1)(q− 1) =
12 · 16 = 192. Note that gcd(2, 192) = 2 6= 1, so e = 2 fails. Similarly gcd(3, 192) = 3
and gcd(4, 192) = 4. But gcd(5, 192) = 1. We pick e := 5.

3. We now compute d := inverse(e, (p− 1)(q− 1))—that is, d := e−1 in Z(p−1)(q−1):

extended-Euclid(5, 192)
extended-Euclid(192 mod 5 = 2, 5)
= −2, 1, 1 exactly as in Example 7.22

= y− ⌊mn ⌋ · x, x, r where x = −2, y = 1, r = 1 and m = 192, n = 5.
= 77,−2, 1.
Thus inverse(5, 192) returns 77 mod 192 = 77.

(Indeed, 5 · 77 = 385 = 192 · 2 + 1, so 5 · 77 ≡192 1.) Thus we set d := 77.

Thus Bob’s public key is 〈e, n〉 = 〈5, 221〉, and Bob’s secret key is 〈d, n〉 = 〈77, 221〉.
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Bob now publishes his public key somewhere, keeping his secret key to himself. If
Alice now wishes to send a message to Bob, she uses his public key, as follows:

Example 7.28 (Encrypting a message with RSA)
To send message m = 202 to Bob, whose public key is 〈e, n〉 = 〈5, 221〉, Alice computes

me mod n = 2025 mod 221 = 336,323,216,032 mod 221 = 206.

Thus she sends Bob the ciphertext c := 206.

When Bob receives an encrypted message, he uses his secret key to decrypt it:

Example 7.29 (Decrypting a message with RSA)
When Bob, whose secret key is 〈d, n〉 = 〈77, 221〉, receives the ciphertext c = 206 from
Alice, he decrypts it as

cd mod n = 20677 mod 221.

Computing 20677 mod 221 by hand is a bit tedious, but we can calculate it with
“repeated squaring” (using the fact that b2k mod n = (b2 mod n)k mod n and
b2k+1 mod n = b · (b2k mod n) mod n; see Exercises 7.23–7.25):

20677 mod 221 = 206 · (2062 mod 221︸ ︷︷ ︸
=4

)38 mod 221

= 206 · (42 mod 221︸ ︷︷ ︸
=16

)19 mod 221

= 206 · 16 · (162 mod 221︸ ︷︷ ︸
=35

)9 mod 221

= 206 · 16 · 35 · (352 mod 221︸ ︷︷ ︸
=120

)4 mod 221

= 206 · 16 · 35 · (1202 mod 221︸ ︷︷ ︸
=35

)2 mod 221

= 206 · 16 · 35 · (352 mod 221︸ ︷︷ ︸
=120

) mod 221

= 206 · 16 · 35 · 120︸ ︷︷ ︸
=13,843,200

mod221

= 202.

Thus Bob decrypts the ciphertext 206 as 202 = 20677 mod 221. Indeed, then, the
message that Bob receives is precisely 202—the same message that Alice sent!

We’ve now illustrated the full RSA protocol: generating a key, and encrypting and
decrypting a message. Here’s one more chance to work through the full pipeline:
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plaintext m
encrypt

ciphertext c := me mod n
decrypt

cd mod n

Alice Bob public key = 〈e, n〉
Bob private key = 〈d,n〉

Eve

Figure 7.26: A
schematic of the
RSA cryptosystem,
where n = pq and
de ≡(p−1)(q−1) 1, for
two prime numbers
p and q.

Example 7.30 (RSA, again, from end to end)
Problem: Bob generates a public/private keypair using the primes p = 11 and q = 13,

choosing the smallest valid value of e. You encrypt the message 95 to send to Bob
(using his generated public key). What ciphertext do you send to Bob?

Solution: For 〈p, q〉 = 〈11, 13〉, we have pq = 143 and (p− 1)(q− 1) = 120. Because
120 is divisible by 2, 3, 4, 5, and 6 but gcd(120, 7) = 1, we choose e := 7. We find
d := inverse(7, 120) = 103. Then Bob’s public key is 〈e, n〉 = 〈7, 143〉 and Bob’s
private key is 〈d, n〉 = 〈103, 143〉.

To send Bob the message m = 95, we compute me mod n = 957 mod 143,
which is 17. Thus the ciphertext is c := 17. (Bob would decrypt this ciphertext as
cd mod n = 17103 mod 143—which indeed is 95.)

7.5.2 The Correctness of RSA

Examples 7.27–7.29 gave one instance of the RSA cryptosystem working properly, in
the sense that decrypt(encrypt(m)) turned out to be the original message m itself—but,
of course, we want this property to be true in general. Let’s prove that it is. Before we
give the full statement of correctness, we’ll prove an intermediate lemma:

Lemma 7.25 (Correctness of RSA: decrypting the ciphertext, modulo p or q)
Suppose e, d, p, q, n are all as specified in the RSA key generation protocol—that is, n = pq for
primes p and q, and ed ≡(p−1)(q−1) 1. Let m ∈ Zn be any message. Then

m′ := [(me mod n)d mod n] (the decryption of the encryption of m)

satisfies both m′ ≡p m and m′ ≡q m.

Proof. We’ll prove m′ ≡p m; because p and q are symmetric in the definition, m′ ≡q m
follows immediately. Recall that we chose d so that ed ≡(p−1)(q−1) 1, and thus we have
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ed = k(p− 1)(q− 1) + 1 for some integer k. Hence

[(me mod n)d mod n] mod p
= (med mod n) mod p by (7.3.4)

= (mk(p−1)(q−1)+1 mod pq) mod p by definition of e, d, n, and k

= mk(p−1)(q−1)+1 mod p by Exercise 7.18

= [m ·mk(p−1)(q−1)] mod p ak+1 = a · ak

= [(m mod p) · (mk(p−1)(q−1) mod p)] mod p by (7.3.3)

= [(m mod p) · ((mk(q−1) mod p)p−1 mod p)] mod p. by (7.3.4)

Although it’s not completely obvious, we’re actually almost done: we’ve now shown
[
(me mod n)d mod n

]
mod p

=
[
(m mod p) · ((mk(q−1) mod p)p−1 mod p)

]
mod p. (∗)

If only the highlighted portion of the right-hand side of (∗) were equal to 1, we’d
have shown exactly the desired result, because the right-hand side would then equal
[(m mod p) · 1] mod p = m mod p mod p = m mod p—exactly what we had to prove!
And the good news is that the highlighted portion of (∗) matches the form of Fermat’s
Little Theorem: the highlighted expression is ap−1 mod p, where a := mk(q−1) mod p,
and Fermat’s Little Theorem tells us ap−1 mod p = 1 as long as a 6≡p 0—that is, as long
as p 6 | a. (We’ll also have to handle the case when a is divisible by p, but we’ll be able to
do that separately.) Here are the two cases: Problem-solving tip:

If there’s a proof
outline that will
establish a desired
claim except in one
or two special cases,
then try to “break
off” those special
cases and handle
them separately.
Here we handled
the “normal” case
a 6≡p 0 using
Fermat’s Little
Theorem, and
broke off the
special a ≡p 0
case and handled it
separately.

• If a ≡p 0, then notice that mk(q−1) mod p = 0 and thus that p |mk(q−1). Therefore:

[(me mod n)d mod n] mod p = [(m mod p) · ap−1 mod p] mod p by (∗)

= [(m mod p) · 0] mod p by the assumption that a ≡p 0

= 0
= m mod p,

where the last equality follows because p is prime and p |mk(q−1); thus Exercise 7.48
tells us that p |m as well.

• If a 6≡p 0, then we can use Fermat’s Little Theorem:

[(me mod n)d mod n] mod p = [(m mod p) · ap−1 mod p] mod p by (∗)

= [(m mod p) · 1] mod p by Fermat’s Little Theorem

= m mod p.

We’ve now established that [(me mod n)d mod n] mod p = m mod p in both cases, and
thus the lemma follows.

Using Lemma 7.25 to do most of the work, we can now prove the main theorem:
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Theorem 7.26 (Correctness of RSA)
Suppose that Bob’s RSA public key is 〈e, n〉 and his corresponding private key is 〈d, n〉. Let
m ∈ Zn be any message. Then decryptBob(encryptBob(m)) = m.

Proof. Note that decryptBob(encryptBob(m)) = (me mod n)d mod n. By Lemma 7.25,

(me mod n)d mod n ≡p m and (me mod n)d mod n ≡q m.

By Exercise 7.50, together these facts imply that (me mod n)d mod n ≡pq m as well.
Because n = pq and m < n, therefore (me mod n)d mod n = m mod n = m.

What about Eve?
When Alice encrypts a message m for Bob and transmits the corresponding RSA-

encrypted ciphertext, we’ve now shown in Theorem 7.26 that Bob is able to decrypt
to recover the original message m. What’s left to establish is that Eve cannot recover m
from what she knows—namely, from the ciphertext me mod n and from Bob’s public
key 〈e, n〉. (That’s the desired security property of the system!)

Unfortunately, not only are we unable to prove this property, it’s simply not true!
Eve is able to recover m from the me mod n and e and n, as follows: she factors n—that
is, finds the primes p and q such that pq = n—and then computes d precisely as Bob
did when he generated his RSA keys. (And Eve then computes the “secret” message
(me mod n)d mod n precisely as Bob did when he decrypted.)

But the fact that Eve has the information necessary to recover m doesn’t mean that RSA
is doomed: factoring large numbers (particularly those that are the product of two
large primes, perhaps) seems to be a computationally difficult problem. Even if you
know that n = 121,932,625,927,450,033 it will take you quite a while to find p and
q—and the best known algorithms for factoring are not fast enough for Eve. 9

See, for example,
9 Jonathan Katz and
Yehuda Lindell. In-
troduction to Modern
Cryptography. Chap-
man & Hall/CRC
Press, 2007.
Also see this book
for a discussion of
some of the ways
in which “textbook
RSA”—what we’ve
described here!—is
susceptible to all
sorts of attacks.
Industrial-level RSA
implementations
take all sorts of
precautions that we
haven’t even begun
to discuss.

Taking it further: The crucial property that we’re using in RSA is an asymmetry in two “directions” of
a problem. Taking two large prime numbers p and q and computing their product n = pq is easy (that
is, it can be done quickly, in polylogarithmic time). Taking a number n that happens to be the product
of two primes and factoring it into p · q appears to be hard (that is, nobody knows how to do it quickly).
Cryptographic systems have been built on a number of different problems with this kind of asymmetry;
see a good textbook on cryptography for much, much more.9

Notice, though, that Eve could break RSA another way, too: she only needs to find
m, and she knows both the ciphertext c = me mod n and Bob’s public key 〈e, n〉. So
Eve could discover m by computing the “eth root of c”—that is, the number x such
that xe = c. Unfortunately for Eve, the fact that she has to compute the eth root of
me mod n, and not just the eth root of me, is crucial; this problem also seems to be
computationally difficult. (See Exercise 7.139—though there’s some evidence that
choosing a small value of e, like e = 3, might weaken the security of the system.)

Note, though, that we have not proven that Eve is unable to efficiently break RSA
encryption—for all we know, a clever student of computational number theory (you!?)
will discover an efficient algorithm for factoring large numbers or computing eth roots
in Zn. (Or, for all we know, perhaps someone already has!)
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Computer Science Connections

Diffie–Hellman Key Exchange

Suppose that Alice and Bob wish to communicate to establish some shared
piece of secret information—perhaps to share a key to use in a one-time pad,
or to use for some other cryptographic protocol. But the only communication
channel available to Alice and Bob is insecure; Eve can listen to all of their
communication. This problem is called the key exchange problem: two parties
seek to establish a shared secret while they communicate only over an insecure chan-
nel. Like public-key cryptography (as in RSA), this task seems completely
impossible—and, also like public-key cryptography, despite its apparent
impossibility, this problem was solved in the 1970s. The solution that we’ll
describe here is called the Diffie–Hellman key exchange protocol.10

10 Whitfield Diffie and Martin Hellman.
New directions in cryptography. IEEE
Transactions on Information Theory, pages
644–654, November 1976.

Let p be prime. The key number-theoretic definition for Diffie–Hellman 21 22 23 24 25 26 27 28 29 210
= 2 4 8 16 32 64 . . .
≡11 2 4 8 5 10 9 7 3 6 1

51 52 53 54 55 56 57 58 59 510
≡11 5 3 4 9 1 5 3 4 9 1

71 72 73 74 75 76 77 78 79 710
≡11 7 5 2 3 10 4 6 9 8 1

Figure 7.27: Primitive roots of Z11. This
set has four different primitive roots
{2, 6, 7, 8}, two of which are shown here:
the first 10 powers of 2 and 7 (but not 5)
in Z11 produce all 10 nonzero elements
of Z11.

is what’s called a primitive root mod p,which is an element g ∈ Zp such that
every nonzero element of Zp is equivalent to a power of g. (In other words,{
g1, g2, . . . , gp−1} ≡p {1, 2, . . . , p− 1}.) See Figure 7.27 for some examples.

It’s a theorem of number theory that every Zp for prime p has at least one
primitive root. Here, then, is the protocol for Diffie–Hellman key exchange:

1. Alice and Bob agree on a prime p and a number g that’s a primitive root
mod p. They communicate p and g over the insecure channel.

2. Alice chooses a secret value a ∈ Zp randomly, computes A := ga mod p,
and sends A to Bob. Bob chooses a secret value b ∈ Zp randomly, computes
B := gb mod p, and sends B to Alice. (Note that A and B are sent over the
channel, but the values of a and b are never transmitted.)

3. Alice, who knows a (she picked it) and B = gb mod p (Bob sent it to her),
computes Ba mod p. Bob, who knows b (he picked it) and A = ga mod p
(Alice sent it to him), computes Ab mod p.

Note that Ab ≡p (ga)b = gab and Ba ≡p (gb)a = gab—so Alice and Bob now have
a shared piece of information, namely gab mod p. (And they can complete
their computations efficiently, as in RSA; see Exercise 7.132.)

But why is this shared piece of information a secret? Let’s look at the
protocol from Eve’s perspective: she observes the values of p, g, ga mod p, and
gb mod p. But it is generally believed that the problem of computing a from
the values of p, g, and ga mod p cannot be solved efficiently. (This problem is
called the discrete logarithm problem: it’s the modular analogy of computing y
from the values of x and xy—that is, computing logx(xy).) Most researchers
believe that the discrete log problem is difficult (as long as the prime p is
of appreciable size), and thus that Eve cannot feasibly figure out the value
gab mod p, shared by Alice and Bob.

It’s worth pointing out that, as we’ve stated the protocol, Diffie–Hellman is
susceptible to a so-calledman-in-the-middle attack: a malicious party (tradition-
ally calledMallory) who has control over the channel can impersonate Bob to
Alice, and impersonate Alice to Bob. (There are improvements to the protocol
that address this issue.) Doing so allows Mallory to intercept, decrypt, and
then reencrypt subsequent communications that Alice and Bob thought were
secure—and they’d never know that Mallory was involved.11

See any good book on cryptography,
such as the following, for much more on
this protocol (and the susceptibilities of
Diffie–Hellman and other protocols to
attacks like the man in the middle):
11 Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography.
Chapman & Hall/CRC Press, 2007.
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7.5.3 Exercises

7.115 In our encryption/decryption scheme for one-time pads, we used exclusive or: plaintext mwas
encrypted as m⊕ k, and ciphertext c was decrypted as c⊕ k. Because (m⊕ k)⊕ k is logically equivalent to
m, Bob always recovers the original plaintext. But there are actually three other Boolean operators that we
could have used instead of ⊕—that is, there are three other connectives ◦ such that (m ◦ k) ◦ k ≡ m. (See
Figure 4.31.) Identify those three other connectives. Why are these three connectives either uninteresting or
actively bad choices as alternatives to ⊕?

7.116 (Requires knowledge of probability; see Chapter 10.) For a one-time pad with an n-bit key, we have

Pr
[
ciphertext = c

]
= ∑

m

[
Pr

[
ciphertext = c|plaintext = m

]
· Pr

[
plaintext = m

]
]
.

Prove that the probability that the ciphertext is a particular c ∈ {0, 1}n is precisely 1/2n for any distribution
over plaintext messages.

7.117 (programming required) As we suggested, one-time pads are secure if they’re used only once, but
using the same key more than once compromises security. I took a (famous) document written in English,
and encoded it as follows: I converted each character to an ASCII value (in binary, 00000000 to 11111111),
and separated this bitstring into 40-bit chunks. (Each chunk contains 5 characters, with 8 bits each.) I gen-
erated a 40-bit key, and encoded each chunk using that key. (That is: I used a one-time pad more than one
time!) The encoded document starts like this:

1110111111011100100010011010000110111101
1110100011010101111110111010011110100001
1111010110111110100010011010100010000111

You can find the full encoding at http://cs.carleton.edu/faculty/dln/one-time-pad.txt. Figure out (a)
what 40-bit key I used, and (b) what the encoded document is.

7.118 (programming required) Implement one-time pads in a programming language of your choice.

7.119 Using the “large” primes p = 19 and q = 23, compute the RSA public and private keys. You may
have multiple valid choices for e—if so, choose the smallest e that you can.
7.120 Repeat for p = 31 and q = 37.
7.121 Repeat for p = 41 and q = 43.

Suppose that Bob’s public key is n = 221 and e = 5. (And so Bob’s private key is n = 221 and d = 77.)
7.122 Compute the RSA encryption to send Bob the message m = 42.
7.123 Repeat for the message m = 99.
7.124 If Bob receives the ciphertext c = 99, what message was sent to Bob?
7.125 Repeat for the ciphertext c = 17.

7.126 (programming required) Suppose that Charlie’s public key is 〈e = 3, n = 1,331,191〉, and the
ciphertext c = 441,626. Figure out the message that was sent to Charlie by factoring n.
7.127 Repeat for the public key 〈e = 11, n = 12,187,823〉, and the ciphertext c = 7,303,892.
7.128 Repeat for the public key 〈e = 5, n = 662,983,829〉, and the ciphertext c = 43,574,279.

In both key generation and encryption/decryption, the RSA cryptosystem completes a number of steps that require some
nonobvious ideas to make them efficient. Luckily, we’ve covered those ideas at various times in previous parts of the
chapter. For each of the following, explain how to compute the desired quantity efficiently (that is, with a number of
primitive arithmetic operations that’s O(logk n) for the value of n in the RSA protocol, for some constant k).

(For some of these problems, you’ll simply be able to cite a previously developed algorithm in a few words; in others,
you’ll need to combine more than one algorithm or use an algorithm in a nontrivial way.)
7.129 Find a large prime number: say, find the smallest prime number greater than a given number x.
7.130 Given primes p and q, find a number e 6= 1 such that e and (p− 1)(q− 1) are relatively prime.
7.131 Given primes p, q and e relatively prime to (p− 1)(q− 1), compute e−1 modulo (p− 1)(q− 1).
7.132 Given n, e, and m ∈ Zn, compute me mod n. (Similarly, given n, d, and c, compute cd mod n.)

7.133 Prove that, in the RSA key-generation protocol, the number e that we choose is always odd.
7.134 Prove that, in the RSA key-generation protocol, the number d that we choose is also always odd.
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Imagine the following modifications to the RSA key generation protocol. What goes wrong if we use change the algo-
rithm as described? Be precise. Is there a step of the protocol that can no longer be executed? Does Bob no longer have
the information necessary to decrypt the ciphertext? Does Eve now have the power to decrypt the ciphertext?
7.135 The protocol tells us to choose two large primes p, q. But, instead, we choose one prime p, and set
q := p.
7.136 The protocol tells us to choose two large primes p and q. But, instead, we choose two large num-
bers p and q that aren’t actually prime.
7.137 The protocol tells us to choose e 6= 1 that’s relatively prime to (p− 1)(q − 1). But, instead, we
choose e = 1.
7.138 The protocol tells us to choose e 6= 1 that’s relatively prime to (p− 1)(q − 1). But, instead, we
choose an e that is not relatively prime to (p− 1)(q− 1).

7.139 Explain precisely how to use binary search to find the eth root of me efficiently. Then explain
precisely why this binary-search approach doesn’t work to find the eth root of me mod n in general.

Implement the RSA cryptosystem in a programming language of your choice. Use the results from Exercises 7.129–
7.132 to make your solutions efficient. Your code should implement the following components:
7.140 (programming required) Key generation. Given two prime numbers p and q as input, produce a
public and private RSA keypair 〈e,n〉 and 〈d,n〉. (Hint: Exercises 7.31 and 7.103 will be helpful. To pick e, you
may wish to simply try all odd numbers and use Exercise 7.31—you could make this step faster, but generally speaking
this slightly slower approach will still be fast enough.)
7.141 (programming required) Encryption and decryption. For encryption, given a public key 〈e,n〉 and
a message m ∈ Zn, compute the corresponding ciphertext c := me mod n. Similarly, for decryption: given a
private key 〈d,n〉 and a ciphertext c ∈ Zn, compute m := cd mod n. (Hint: Exercise 7.25 will be helpful.)

Generally, a user of a cryptographic system will want to send text rather than a number, so you’ll need to add a
capacity for converting text into an integer. And RSA will only support encrypting elements of Zn, not Z, so you’ll
actually need to convert the text into a sequence of elements of Zn.
7.142 (programming required) Write a pair of functions string->intlist(s, n) and intlist->string(L, n)
that convert between strings of characters and a list of elements from Zn. You may do this conversion in
many ways, but it must be the case that these operations are inverses of each other: if string->intlist(s∗ ,n) =
L∗, then intlist->string(L∗, n) = s∗. (Hint: the easiest way to do this conversion is to view text encoded as a se-
quence of ASCII symbols, each of which is an element of {0, 1, . . . , 255}. Thus you can view your input text as a
number written in base 256. Your output is a number written in base n. Use baseConvert from p. 714.)

7.143 (programming required) Demonstrate that your implementations from Exercises 7.140, 7.141,
and 7.142 are working properly by generating keys, encrypting, and decrypting using the primes p =
5,277,019,477,592,911 and q = 7,502,904,222,052,693, and the message "THE SECRET OF BEING BORING IS

TO SAY EVERYTHING." (Voltaire (1694–1778)).

Complete the last missing piece of your RSA implementation:
7.144 (programming required) Prime generation. The key generation implementation from Exercise 7.140
relies on being given two prime numbers. Write a function that, given a (sufficiently large) range of possible
numbers between nmin and nmax, repeatedly does the following: choose a random integer between nmin and
nmax, and test whether it’s prime using the Miller–Rabin test (see Exercise 7.114).

The Chinese Remainder Theorem tells us that m ∈ Zpq is uniquely described by its value modulo p and q—that is,
m mod p and m mod q fully describe m. Here’s one way to improve the efficiency of RSA using this observation:
instead of computing m := cd mod pq directly, instead compute a := cd mod p and b := cd mod q. Then use the
algorithm implicit in Theorem 7.14 to compute the value m with m mod p = a and m mod q = b.
7.145 (programming required) Modify your implementation of RSA to use the above idea.
7.146 Actually, instead of computing a := cd mod p and b := cd mod q, we could have computed
a := cd mod p−1 mod p and b := cd mod q−1 mod q. Explain why this modification is valid. (This change can
improve the efficiency of RSA, because now both the base and the exponent may be substantially smaller
than they were in the regular RSA implementation.)
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7.6 Chapter at a Glance

Modular Arithmetic

Given integers k ≥ 1 and n, there exist unique integers d and r such that 0 ≤ r < k and
kd + r = n. The value of d is

⌊ n
k
⌋
, the (whole) number of times k goes into n; the value of

r is n mod k, the remainder when we divide n by k.
Two integers a and b are equivalent or congruent mod n,written a ≡n b, if a and b

have the same remainder when divided by n—that is, when a mod n = b mod n. For
expressions taken mod n, we can always freely “reduce” mod n (subtracting multiples
of n) before performing addition or multiplication. (See Theorem 7.3.)

Euclid(n,m):
Input: positive integers n and m ≥ n
Output: gcd(n,m)
1: if m mod n = 0 then
2: return n
3: else
4: return Euclid(m mod n, n)

Figure 7.28: The Eu-
clidean algorithm
for GCDs.

We write k | n to denote the proposition that n mod k = 0.
If k | n, we say that k (evenly) divides n, that k is a factor of
n, and that n is a multiple of k. See Theorem 7.4 for some
useful properties of divisibility: for example, if a | b then, for
any integer c, it’s also the case that a divides bc as well. The
greatest common divisor gcd(n,m) of two positive integers n
and m is the largest d that evenly divides both n and m; the
least common multiple is the smallest d ∈ Z≥1 that n and m both evenly divide. GCDs
can be computed efficiently using the Euclidean algorithm. (See Figure 7.28.)

Primality and Relative Primality

An integer p ≥ 2 is prime if the only positive integers that evenly divide it are 1 and p
itself; an integer n ≥ 2 that is not prime is called composite. (Note that 1 is neither prime
nor composite.) Let primes(n) denote the number of prime numbers less or equal than
n. The Prime Number Theorem states that, as n gets large, the ratio between primes(n)
and n

log n converges (slowly!) to 1. Every positive integer can be factored into a product
of zero or more prime numbers, and that factorization is unique up to the ordering of
the factors.

extended-Euclid(n,m):
Input: positive integers n and m ≥ n.
Output: x, y, r ∈ Z where gcd(n,m) = r = xn + ym
1: if m mod n = 0 then
2: return 1, 0, n // 1 · n + 0 ·m = n = gcd(n,m)
3: else
4: x, y, r := extended-Euclid(m mod n, n)
5: return y−

⌊m
n
⌋
· x, x, r

Figure 7.29: The
Extended Euclidean
algorithm.

Two positive integers n and m are called relatively prime
if they have no common factors aside from 1—that is, if
gcd(n,m) = 1. A tweak to the Euclidean algorithm, called the
Extended Euclidean algorithm, takes arbitrary positive integers
n and m as input, and (efficiently) computes three integers
x, y, r such that r = gcd(n,m) = xn + ym. (See Figure 7.29.) We
can determine whether n and m are relatively prime using
the (Extended) Euclidean algorithm.

Let n1, n2, . . . , nk be a collection of integers, any pair of which is relatively prime. Let
N := ∏k

i=1 ni. Writing Zm := {0, 1, . . . ,m− 1}, the Chinese Remainder Theorem states that,
for any sequence of values 〈a1, . . . , ak〉 with each ai ∈ Zni , there exists one and only one
integer x ∈ ZN such that x mod ni = ai for all 1 ≤ i ≤ k.
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Multiplicative Inverses

For any integer n ≥ 2, let Zn denote the set {0, 1, . . . , n− 1}. Let a ∈ Zn be arbitrary.
The multiplicative inverse of a in Zn is the number a−1 ∈ Zn such that a · a−1 ≡n 1 if any
such number exists. (If no such number exists, then a−1 is undefined.) For example,
the multiplicative inverse of 2 in Z9 is 2−1 = 5 because 2 · 5 = 10 ≡9 1; the multiplica-
tive inverse of 1 in Z9 is 1−1 = 1 because 1 · 1 ≡9 1; and the multiplicative inverse of 3
in Z9 is undefined (because 3a 6≡9 1 for any a ∈ Z9).

Let n ≥ 2 and a ∈ Zn. The multiplicative inverse a−1 exists in Zn if and only if n and
a are relatively prime. Furthermore, when a−1 exists, we can find it using the Extended
Euclidean algorithm. We compute 〈x, y, r〉 := extended-Euclid(a, n); when gcd(a, n) = 1
(as it is when a and n are relatively prime), the returned values satisfy xa + yn = 1, and
thus a−1 := x mod n is the multiplicative inverse of a in Zn. For a prime number p,
every nonzero a ∈ Zp has a multiplicative inverse in Zp.

Fermat’s Little Theorem states that, for any prime p and any integer a with p 6 | a, the
(p− 1)st power of a must equal 1 modulo p. (That is: for prime p and nonzero a ∈ Zp,
we have ap−1 ≡p 1. For example, because 17 is prime, Fermat’s Little Theorem—or
arithmetic!—tells us that 516 mod 17 = 1.)

Cryptography

A sender (“Alice”) wants to send a private message to a receiver (“Bob”), but they
can only communicate using a channel that can be overheard by an eavesdropper
(“Eve”). In cryptography,Alice encrypts the message m (the “plaintext”) and transmits
the encrypted version c (the “ciphertext”); Bob then decrypts it to recover the original
message m. The simplest way to achieve this goal is with a one-time pad: Alice and Bob
agree on a shared secret bitstring k; the ciphertext is the bitwise XOR of m and k, and
Bob decrypts by computing the bitwise XOR of c and k.

A more useful infrastructure is public-key cryptography, in which Alice and Bob do
not have to communicate a secret in advance. Every user has a public key and a (math-
ematically related) private key; to communicate with Bob, Alice uses Bob’s public key
for encryption (and Bob uses his private key for decryption). The RSA cryptosystem is a
widely used protocol for public-key cryptography; it works as follows:

• Key generation: Bob finds large primes p and q; he chooses an e 6= 1 that’s relatively
prime to (p− 1)(q− 1); and he computes d := e−1 modulo (p− 1)(q− 1). Bob’s public
key is 〈e, n〉 and his private key is 〈d, n〉, where n := pq.

• Encryption: When Alice wants to send m to Bob, she encrypts m as c := me mod n.
• Decryption: Bob decrypts c as cd mod n.

By our choices of n, p, q, d, and e, Fermat’s Little Theorem allows us to prove that Bob’s
decryption of the encryption of message m is always the original message m itself.
And, under commonly held beliefs about the difficulty of factoring large numbers (and
computing “eth roots mod n”), Eve cannot compute mwithout spending an implausi-
bly large amount of computation time.
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Key Terms and Results

Key Terms

Modular Arithmetic

• modulus; n mod k and
⌊ n
k
⌋

• congruence/equivalence (≡n)
• (evenly) divides, factor, multiple
• greatest common divisor
• least common multiple
• Euclidean algorithm

Primality and Relative Primality

• prime vs. composite numbers
• Prime Number Theorem
• prime factorization
• relative primality
• Extended Euclidean algorithm
• Chinese Remainder Theorem

Multiplicative Inverses

• Zn
• multiplicative inverse (a−1 in Zn)
• Fermat’s Little Theorem
• Carmichael number

Cryptography

• Alice, Bob, Eve
• plaintext, ciphertext
• one-time pad
• public-key cryptography
• public key; private key
• key generation; encryption/decryption
• RSA

Key Results

Modular Arithmetic

1. For any integers k ≥ 1 and n, there exist unique integers d
and r such that 0 ≤ r < k and kd + r = n. (And r = n mod k
and d =

⌊ n
k
⌋
.)

2. For arbitrary positive integers n and m ≥ n, the Euclidean
algorithm efficiently computes gcd(n,m).

Primality and Relative Primality

1. The Prime Number Theorem: as n gets large, the ratio
between n

log n and the number of primes less than or equal
to n approaches 1.

2. Every positive integer has a prime factorization (which is
unique up to reordering).

3. Given positive integers n and m, the Extended Euclidean
algorithm efficiently computes three integers x, y, r such
that r = gcd(n,m) = xn + ym.

4. The Chinese Remainder Theorem: Suppose n1, n2, . . . , nk are
all relatively prime, and let N := ∏k

i=1 ni. Then, for any
〈a1, . . . , ak〉 with each ai ∈ Zni , there exists a unique
x ∈ ZN such that x mod ni = ai for all 1 ≤ i ≤ k.

Multiplicative Inverses

1. In Zn, the multiplicative inverse a−1 of a exists if and only
if n and a are relatively prime. When it does exist, we can
find a−1 using the Extended Euclidean algorithm.

2. Fermat’s Little Theorem: for any prime number p and any
nonzero a ∈ Zp, we have ap−1 ≡p 1.

Cryptography

1. In the RSA cryptosystem, Alice can use Bob’s public key
to encrypt a message m so that Bob can decrypt it
efficiently. (And, under reasonable assumptions about
certain numerical problems’ hardness, Eve can’t recover m
without an exorbitant amount of computation.)



8
Relations

In which our heroes navigate a sea of many related perils, some of which
turn out to be precisely equivalent to each other.
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8.1 Why You Might Care

Reality must take precedence over public relations, for
Nature cannot be fooled.

Richard Feynman (1918–1988)

In Chapter 2, we encountered functions, a basic data type that maps each element
of some input set A to an element of an output set B. Here, we’ll explore a general-
ization of functions, called relations, that represent arbitrary subsets of A × B. For
example, a large retailer might be interested in the relation purchased, a subset of
Customers× Products. (A function is a special kind of relation where each input ele-
ment is related to one and only one element of the output set; notice that the same
customer may have purchased many different products—or one, or none at all—so
purchased is not a function.) Or a college might be interested in the relation prerequisiteOf ,
a subset of Courses× Courses, where a student can only register for a course c if, for ev-
ery course c′ where 〈c′, c〉 ∈ prerequisiteOf , she’s already passed c′. (And so the college
would also want to compute the relation passed ⊆ Students× Courses.)

Relations are the critical foundation of relational databases, an utterly widespread
modern area of CS, underlying many of the web sites we all use regularly. (One clas-
sical special-purpose programming language for relational databases is called SQL,
for “structured query language”; there are other platforms, too.) A relational database
stores a (generally quite large!) collection of structured data. Logically, a database is or-
ganized as a collection of tables, each of which represents a relation, where each row of
a table represents an element contained in that relation. Fundamental manipulations
of these relations can then be used to answer more sophisticated questions about the
underlying data. For example, using standard operations in relational databases (and
the relations prerequisiteOf and passed above), we could compute things like (i) a list of
every class c for which you have satisfied all prerequisites of c but have not yet passed
c; or (ii) a list of people with whom you’ve taken at least one class; or (iii) a list of peo-
ple pwith whom you’ve taken at least one class and where p has also taken at least one
class that meets condition (i). (Those are the friends you could ask for help when you
take that class.) Or that large retailer might want, for a particular user u, to find the 10
products not purchased by u that were most frequently purchased by other users who
share, say, at least half of their purchases with u. All of these queries—though some-
times rather brutally complicated to state in English—can be expressed fairly naturally
in the language of relations.

Relational databases are probably the most prominent (and, given the name, the
most obvious!) practical application of relations, but there are many others, too. In a
sense, Chapter 11, on trees and graphs, is filled with a long list of other applications of
relations; a directed graph is really nothing more than a relation on a set of nodes. And
in this chapter, we’ll also encounter some other applications in asymptotics, in com-
puter graphics (figuring out an order in which to draw shapes so that the right piece
ends up “on top” on the screen), and in regular expressions (a widely used formalism
for specifying patterns for which we might search in text).
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8.2 Formal Introduction

A man is a bundle of relations, a knot of roots, whose
flower and fruitage is the world.

Ralph Waldo Emerson (1803–1882)

Informally, a (binary) relation describes a pairwise relationship that holds for certain

〈blue, green〉
〈blue, purple〉
〈red, orange〉
〈red, purple〉
〈yellow, green〉
〈yellow, orange〉

Figure 8.1: A
relation between
the primary colors
and secondary
colors.

pairs of elements from two sets A and B. One particular relation is shown in Figure 8.1,
expressing the “is a component of” relationship between primary and secondary col-
ors: that is, Figure 8.1 denotes a particular relation on the sets A = {red, yellow, blue}
and B = {green, purple, orange}. This description of a relation—a pairwise relation-
ship between some of the elements of two sets A and B—is obviously very general. But
let’s start by considering a few specific examples, which together will begin to show
the range of the kinds of properties that relations can represent:

Example 8.1 (Satisfaction)
Let A := {f : truth assignments for p and q} and B := {ϕ : propositions over p and q}.
One interesting relation between elements of A and B denotes whether a particular
truth assignment makes a particular proposition true. (This relation is usually called
satisfies.) For a proposition ϕ, a truth assignment f either satisfies ϕ or it doesn’t sat-
isfy ϕ. For example:

• the truth assignment [ p=Tq=F ] satisfies p ∨ q (as do all truth assignments except [ p=Fq=F ]);
• the truth assignment [ p=Tq=F ] satisfies p ∧ ¬q (and no other truth assignment does);
• every truth assignment in A satisfies p ∨ ¬p; and
• no truth assignment in A satisfies q ∧ ¬q.

(Thus an element of Bmight be satisfied by zero, one, or more elements of A. Simi-
larly, an element of A might satisfy many different elements of B.)

Example 8.2 (Numbers that are not too different)
Consider the following relationship between two elements of R: we’ll say that two
real numbers x, y ∈ R are withinHalf of each other if |x− y| ≤ 0.5. For example, we
have withinHalf (2.781828, 3.0) and withinHalf (3.14159, 3.0) and withinHalf (2.5, 3.0) and
withinHalf (2.5, 2.0). Note that withinHalf (x, x) holds for any real number x.

Example 8.3 (Being related to)
In keeping with the word “relation,” we actually use the phrase “is related to” in
English to express one specific binary relation on pairs of people—”being in the same
family as” (or “being a (blood) relative of”). For example, we can make the true claim
that Rosemary Clooney is related to George Clooney. (And a related statement is also
true: George Clooney is related to Rosemary Clooney. The fact that these two statements
convey the same information follows from the fact that the is related to relation has a
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property called symmetry: for any x and y, it’s the case that x is related to y if and only
if y is related to x. Not all relations are symmetric, as we’ll see in Section 8.3.)

Some qualitatively different types of relations are already peeking out in these few
examples (and more properties of relations will reveal themselves as we go further).
Sometimes the relation contains a finite number of pairs, as in Figure 8.1 (primary/
secondary colors); sometimes the relation contains an infinite number of pairs, as
in withinHalf . Sometimes a relation connects elements from two different sets, as in
Example 8.1 (satisfaction, which connected truth assignments to propositions); some-
times it connects two elements from the same set, as in Example 8.3 (“is a (blood) rela-
tive of,” which connects people to people). Sometimes a particular element x is related
to every candidate element, sometimes to none. And sometimes the relation has some
special properties like reflexivity, in which every x is related to x itself (as in withinHalf ),
or symmetry (as in “is a (blood) relative of”).

8.2.1 The Definition of a Relation, Formalized

Later in the chapter, we’ll return to the types of properties that we just introduced, but
before we can look at properties of relations, we first need to define them. Technically,
a binary relation is simply a subset of the Cartesian product of two sets:

Definition 8.1 ((Binary) relation)
A (binary) relation on A× B is a subset of A× B.

Often we’ll be interested in a relation on A×A, where the two sets are the same. If there is
no danger of confusion, we may refer to a subset of A×A as simply a relation on A.

Here are a few formal examples of relations:

Example 8.4 (A few relations, formally)
The following sets are all relations:

• {〈12, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, 7〉, 〈7, 8〉, 〈8, 9〉, 〈9, 10〉, 〈10, 11〉, 〈11, 12〉}
is a relation on {1, . . . , 12}. (Informally, this relation expresses “is one hour be-
fore.”)

• | (“divides”) is a relation on Z, where | denotes the set {〈d, n〉 : n mod d = 0}.

• ≤ is a relation on R, where ≤ denotes the set {〈x, y〉 : x is no bigger than y}.

• As a reminder, the power set of a set S, denoted P(S), is the set of all subsets of S.
For any set S, then, we can define ⊆ as a relation on P(S), where ⊆ denotes the set

⊆ = {〈A,B〉 ∈ P(S)× P(S) : [∀x ∈ S : x ∈ A ⇒ x ∈ B]} .
For the set S = {1, 2}, for example, the relation ⊆ is

⊆ =
{

〈∅,∅〉, 〈∅, {1}〉, 〈∅, {2}〉, 〈∅, {1, 2}〉,
〈{1} , {1}〉, 〈{1} , {1, 2}〉, 〈{2} , {2}〉, 〈{2} , {1, 2}〉, 〈{1, 2} , {1, 2}〉

}
.
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• {〈Ron Rivest, 2002〉, 〈Adi Shamir, 2002〉, 〈Len Adleman, 2002〉, 〈Alan Kay, 2003〉,
〈Vint Cerf, 2004〉, 〈Robert Kahn, 2004〉, 〈Peter Naur, 2005〉, 〈Frances Allen, 2006〉}
is a relation on the set People × {2002, 2003, 2004, 2005, 2006}, representing the
relationship between people and any year in which they won a Turing Award.

For some relations—for example, | and ≤ and ⊆ from Example 8.4—it’s traditional

Rivest, Shamir, and
Adleman won Tur-
ing Awards for their
work in cryptogra-
phy; see Section 7.5.
Kay was an inventor
of the paradigm
of object-oriented
programming. Cerf
and Kahn invented
the communication
protocols that un-
dergird the Internet.
Naur made crucial
contributions to the
design of program-
ming languages,
compilers, and soft-
ware engineering.
Allen made founda-
tional contributions
to optimizing com-
pilers and parallel
computing.

to write the symbol for the relation between the elements that are being related, using
so-called infix notation. (So we write 3 ≤ 3.5, rather than 〈3, 3.5〉 ∈ ≤.) In general, for a
relation R, we may write either 〈x, y〉 ∈ R or x R y, depending on context.

Taking it further: Most programming languages use infix notation in their expressions: that is, they
place their operators between their operands, as in (5 + 3) / 2 in Java or Python or C to denote the
value 5+3

2 . But some programming languages, like Postscript (the language commonly used by printers)
or the language of Hewlett–Packard calculators, use postfix notation, where the operator follows the
operands. Other languages, like Scheme, use prefix notation, in which the operator comes before the
operands. (In Postscript, we would write 5 3 add 2 div; in Scheme, we’d write (/ (+ 5 3) 2).) While
we’re all much more accustomed to infix notation, one of the advantages of pre- or postfix notation
is that the order of operations is unambiguous: compare the ambiguous 5 + 3 / 2 to its two postfix
alternatives, namely 5 3 2 div add and 5 3 add 2 div.

Example 8.5 (Bitstring prefixes)
Problem: Let isPrefix denote the following relation: for two bitstrings x and y, we have

〈x, y〉 ∈ isPrefix if and only if the bitstring y starts with precisely the symbols con-
tained in x. (After the bits of x, the bitstring y may contain zero or more additional
bits.) For example, 001 is a prefix of 001110 and 001, but 001 is not a prefix of 1001.
Write down the relation isPrefix on bitstrings of length ≤ 2 explicitly, using set
notation.

Solution: Denoting the empty string by ε, the relation is

isPrefix =





〈ε, ε〉, 〈ε, 0〉, 〈ε, 1〉, 〈ε, 00〉, 〈ε, 01〉, 〈ε, 10〉, 〈ε, 11〉,
〈0, 0〉, 〈0, 00〉, 〈0, 01〉, 〈1, 1〉, 〈1, 10〉, 〈1, 11〉,
〈00, 00〉, 〈01, 01〉, 〈10, 10〉, 〈11, 11〉





.

Visualizing binary relations
For a relation R on A× Bwhere both A and B are finite sets, instead of viewing R

as a list of pairs, it can be easier to think of R as a two-column table, where each row
corresponds to an element 〈a, b〉 ∈ R. Alternatively, we can visualize relations in a way
similar to the way that we visualized functions in Chapter 2: we place the elements of
A in one column, the elements of B in a second column, and draw a line connecting
a ∈ A to b ∈ Bwhenever 〈a, b〉 ∈ R. Note that when we drew functions using these
two-column pictures, every element in the left-hand column had exactly one arrow
leaving it. That’s not necessarily true for a relation; elements in the left-hand column
could have none, one, or two or more arrows leaving them.
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Month Days
Jan 31
Feb 28
Feb 29
Mar 31
Apr 30
May 31
Jun 30
Jul 31
Aug 31
Sep 30
Oct 31
Nov 30
Dec 31

28

29

30

31

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep

Oct
Nov
Dec

Figure 8.2: The
relation indicating
the number of days
per month. (Note
that Feb is related to
both 28 and 29.)

Figure 8.2 shows a relation represented in
these two ways. (For a relation that’s a subset of
A× A, the graphical version of this two-column
representation is less appropriate because there’s
really only one kind of element; see Section 8.3
for a different way of visualizing these relations,
and see Figure 8.13(a) for isPrefix as an example.)

Taking it further: Recall from Chapter 3 that we defined
a predicate as a Boolean-valued function—that is, P is a
function P : U → {True, False} for a set U, called the
universe. (See Definition 3.18.) For example, we considered
the predicate Palphabetical(x, y) = “string x is alphabetically
before string y.”

Binary predicates—when the universe is a set of
pairs U = A × B—are very closely related to binary relations. The main difference is that in Chap-
ter 3 we thought of a binary predicate P as a function P : A × B → {True, False}, whereas here
we’re thinking of a relation R on A× B as a subset R ⊆ A× B. For example, the relation Ralphabetical
is the set {〈AA, AAH〉, 〈AA, AARDVARK〉, . . . , 〈ZYZZYVA, ZYZZYVAS〉}. And Palphabetical(AA, AAH) = True,
Palphabetical(AA, ZYZZYVA) = True, and Palphabetical(BEFORE, AFTER) = False.

But there’s a direct translation between these two worldviews. Given a relation R ⊆ A× B, we can
define the predicate PR such that

PR(a, b) =
{
True if 〈a, b〉 ∈ R
False if 〈a, b〉 /∈ R.

The function PR is known as the characteristic function of the set R: that is, it’s the function such that
PR(x) = True if and only if x ∈ R. (Palphabetical is the characteristic function of Ralphabetical.)

We can also go the other direction, and translate a Boolean-valued binary function into a relation.
Given a predicate P : A× B → {True, False}, define the relation RP := {〈a, b〉 : P(a, b)}—that is, define
RP as the set of pairs for which the function P is true. In either case, we have a direct correspondence
between (i) the elements of the relation, and (ii) the inputs to the function that make the output true.

8.2.2 Inverse and Composition of Binary Relations

Because a relation on A× B is simply a subset of A× B, we can combine relations on
A× B using all the normal set-theoretic operations: if R and S are both relations on
A × B, then R ∪ S, R ∩ S, and R − S are also relations on A × B, as is the set ∼R :=
{〈a, b〉 ∈ A× B : 〈a, b〉 /∈ R}.

But we can also generate new relations in ways that are specific to relations, rather
than being generic set operations. Two of the most common are the inverse of a relation
(which turns a relation on A× B into a relation on B× A by “flipping around” every
pair in the relation) and the composition of two relations (which turns two relations on
A× B and B× C into a single relation on A× C, where a and c are related if there’s a
“two-hop” connection from a to c via some element b ∈ B).

Inverting a relation
Here is the formal definition of the inverse of a relation:

Definition 8.2 (Inverse of a Relation)
Let R be a relation on A× B. The inverse R−1 of R is a relation on B×A defined by
R−1 := {〈b, a〉 ∈ B×A : 〈a, b〉 ∈ R}.
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Here are a few examples of the inverses of some simple relations:
Month Days
Jan 31
Feb 28
Feb 29
Mar 31
Apr 30
May 31
Jun 30
Jul 31
Aug 31
Sep 30
Oct 31
Nov 30
Dec 31
Days Month
31 Jan
28 Feb
29 Feb
31 Mar
30 Apr
31 May
30 Jun
31 Jul
31 Aug
30 Sep
31 Oct
30 Nov
31 Dec

Figure 8.3: The
relation from
Figure 8.2, and its
inverse.

Example 8.6 (Some inverses)
• The inverse of the relation ≤ is the relation ≥.

• The inverse of the relation = is the relation = itself. (That is, = is its own inverse.)

• The inverse of the months–days relation from Figure 8.2 is shown in Figure 8.3.

• Define the relation

R :=
{

〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈1, 6〉,
〈2, 2〉, 〈2, 4〉, 〈2, 6〉, 〈3, 3〉, 〈3, 6〉, 〈4, 4〉, 〈5, 5〉, 〈6, 6〉

}
.

The inverse of R is the relation

R−1 =
{

〈2, 1〉, 〈3, 1〉, 〈4, 1〉, 〈5, 1〉, 〈6, 1〉,
〈2, 2〉, 〈4, 2〉, 〈6, 2〉, 〈3, 3〉, 〈6, 3〉, 〈4, 4〉, 〈5, 5〉, 〈6, 6〉

}
.

(Note that R is {〈d, n〉 : d divides n}, and R−1 is {〈n, d〉 : n is a multiple of d}.)

Note that, as in the month–day example, the inverse of any relation shown in table
form is simply the relation resulting from swapping the two columns of the table.

Composing two relations
The second way of creating a new relation from existing relations is composition,

which, informally, represents the successive “application” of two relations. Two ele-
ments x and y are related under the relation S ◦ R, denoting the composition of two
relations R and S, if there’s some intermediate element b that connects x and y un-
der R and S, respectively. (We already saw how to compose functions, in Section 2.5,
by applying one function immediately after the other. Functions are a special type of
relation—see Section 8.2.3—and the composition of functions will similarly be a spe-
cial case of the composition of relations.) Let’s start with an informal example to build
some intuition:

Warning! The
composition of
R and S is, as
with functions,
denoted S ◦ R:
the function g ◦ f
first applies f and
then applies g, so
(g ◦ f )(x) gives the
result g(f (x)). The
order in which the
relations are written
may initially be
confusing.

Example 8.7 (Relation composition, informally)
Consider a relation allergicTo on People × Ingredients and a relation containedIn on
Ingredients× Entrees. Then the composition of allergicTo and containedIn is a relation
on People× Entrees identifying pairs 〈p, e〉 for which entree e contains at least one ingre-
dient to which person p is allergic.

Here’s the formal definition:

Definition 8.3 (Composition of two relations)
Let R be a relation on A× B and let S be a relation on B× C. Then the composition of R
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and S is a relation on A× C, denoted S ◦ R, where 〈a, c〉 ∈ S ◦ R if and only if there exists an
element b ∈ B such that 〈a, b〉 ∈ R and 〈b, c〉 ∈ S.

Perhaps the easiest way to understand the composition of relations is through the

•
a

•
b

•
c

R S

S ◦ R

Figure 8.4: The
composition of R
and S. A pair 〈a, c〉
is in S ◦ R when,
for some b, both
〈a, b〉 ∈ R and
〈b, c〉 ∈ S.

picture-based view that we introduced in Figure 8.2: the relation S ◦R contains pairs of
elements that are joined by “two-hop” connections, where the first hop is defined by R
and the second hop is defined by S. (See Figure 8.4.)

Some examples of composing relations
Here are a few examples of the composition of some relations:

Example 8.8 (The composition of two small relations)
Consider the following two relations:

• Let R := {〈0, a〉, 〈0, b〉, 〈0, c〉, 〈1, c〉, 〈1, d〉} be a relation on {0, 1} × {a, b, c, d}.
• Let S := {〈b, π〉, 〈b,

√
3〉, 〈c,

√
2〉, 〈d,

√
2〉} be a relation on {a, b, c, d}× R.

Then S ◦ R ⊆ {0, 1} × R is the relation that consists of all pairs 〈x, z〉 such that there
exists an element y ∈ {a, b, c, d}where 〈x, y〉 ∈ R and 〈y, z〉 ∈ S. That is,

S ◦ R = { 〈0, π〉, 〈0,
√
3〉︸ ︷︷ ︸

because of b

, 〈0,
√
2〉︸ ︷︷ ︸

because of c

, 〈1,
√
2〉︸ ︷︷ ︸

because of c and d

}.

a

b

c

d

0

1

π

√
2

√
3

R S

0

1

π

√
2

√
3

R S

0

1

π

√
2

√
3

S ◦ R

Figure 8.5: The
composition of
two relations,
visualized.

See Figure 8.5 for the visual rep-
resentation of the relation compo-
sition from Example 8.8: because
there are “two-hop” paths from
0 to {π,

√
3,
√
2} and from 1 to

{
√
2}, the relation S ◦ R is as de-

scribed. (Again: the relation S ◦ R
consists of pairs related by a two-step chain, with the first step under R and the second
under S.)

Here’s a second example of composing relations, this time where the relations being
composed are more meaningful:

Example 8.9 (Relations in the U.S. Senate)
The United States Senate has two senators from each state, each of whom is affiliated
with zero or one political parties. See Figure 8.6 for two relations: the relation S,
between all U.S. states whose names start with the letter “I” and the senators who
represented them in the year 2016; and the relation T, between senators and their
political party.

Figure 8.6(c) shows the composition of these relations, which is a relation between
IStates and Parties. Notice that 〈state, party〉 ∈ T ◦ S if and only if there exists a senator
s such that state is represented by s and s is affiliated with party party.
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Crapo

Risch

Ernst
Grassley

Coats
Donnelly

Durbin

Kirk

Senators

Idaho

Illinois

Indiana

Iowa

Crapo

Risch

Ernst
Grassley

Coats
Donnelly

Durbin

Kirk

States

(a) The relation S ⊆ IStates× Senators of
each state’s senators.

Crapo

Risch

Ernst
Grassley

Coats
Donnelly

Durbin

Kirk

Democratic

Republican

Senators
Parties

(b) The relation T ⊆ Senators× Parties of
each senator’s party affiliation.

Idaho

Illinois

Indiana

Iowa

Democratic

Republican

States
Parties

(c) The relation T ◦ S ⊆ IStates× Parties.

Figure 8.6: Two re-
lations S and T, and
their composition
T ◦ S.So far we’ve considered composing relations on A× B and B× C for three distinct

sets A, B, and C. But we can also consider a relation R ⊆ A×A, and in this case we can
also compose R with itself. Here are some brief examples:

Problem-solving
tip: Just as you do
with a program,
always make sure
that your mathe-
matical expressions
“type check.” (For
example, just as
the Python ex-
pression 0.33 *
"atomic" doesn’t
make sense, the
composition R ◦ R
for the relation
R = {〈1,A〉, 〈2,B〉}
doesn’t denote
anything useful.)

Example 8.10 (Composing a relation with itself)
Problem: For each of the following relations R on Z≥1, describe the relation R ◦ R:

1. successor, namely the set {〈n, n + 1〉 : n ∈ Z≥1}.
2. =, namely the set {〈n, n〉 : n ∈ Z≥1}.
3. relativelyPrime, defined as the set of pairs of relatively prime (positive) integers,

so that relativelyPrime := {〈n,m〉 : gcd(n,m) = 1}.

Solution: 1. By definition, 〈x, z〉 ∈ successor ◦ successor if and only if there exists an
integer y such that both 〈x, y〉 ∈ successor and 〈y, z〉 ∈ successor. Thus the only
possible y is y = x + 1, and the only possible z is z = y + 1 = x + 2. Thus

successor ◦ successor = {〈n, n + 2〉 : n ∈ Z≥1} .

2. (We’ll write equals instead of =; otherwise the notation becomes indecipher-
able.) By definition, the pair 〈x, z〉 is in the relation equals ◦ equals if and only if
there exists an integer y such that x = y and y = z. But that’s true if and only if
x = z. That is, 〈x, z〉 ∈ equals ◦ equals if and only if 〈x, z〉 ∈ equals. Thus com-
posing equals with itself doesn’t change anything: equals ◦ equals is identical to
equals.

3. We must identify all pairs 〈x, z〉 ∈ Z≥1 × Z≥1 such that there exists an integer y
where 〈x, y〉 ∈ relativelyPrime and 〈y, z〉 ∈ relativelyPrime. But notice that y = 1 is
relatively prime to every positive integer. Thus, for any 〈x, z〉 ∈ Z≥1 × Z≥1, we
have that 〈x, 1〉 ∈ relativelyPrime and 〈1, z〉 ∈ relativelyPrime. Thus

relativelyPrime ◦ relativelyPrime = Z≥1 × Z≥1.
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An example of composing a relation with its own inverse
We’ll close with one last example of composing relations, this time by taking the

composition of a relation R and its inverse R−1:

Month Days
Jan 31
Feb 28
Feb 29
Mar 31
Apr 30
May 31
Jun 30
Jul 31
Aug 31
Sep 30
Oct 31
Nov 30
Dec 31
Days Month
31 Jan
28 Feb
29 Feb
31 Mar
30 Apr
31 May
30 Jun
31 Jul
31 Aug
30 Sep
31 Oct
30 Nov
31 Dec

Figure 8.7: The
relations R and R−1,
from Figure 8.3.

Example 8.11 (Composing a relation and its inverse)
Problem: Let R ⊆ M×D be the relation between the months and the numbers of days

in that month, and let R−1 ⊆ D×M be its inverse. (See Figure 8.7 for a reminder.)
What is R−1 ◦ R?

Solution: First, because R ⊆ M × D and R−1 ⊆ D × M, we know that
R−1 ◦ R ⊆ M×M. We have to identify

〈x, y〉 ∈ M×M such that ∃z ∈ D : 〈x, z〉 ∈ R and 〈z, y〉 ∈ R−1

⇔ ∃z ∈ D : 〈x, z〉 ∈ R and 〈y, z〉 ∈ R. definition of inverse

In other words, we seek pairs of months that are related by R to at least one of the
same values. The exhaustive list of pairs in R−1 ◦ R is





〈Jan, Jan〉, 〈Jan,Mar〉, 〈Jan,May〉, 〈Jan, Jul〉, 〈Jan,Aug〉, 〈Jan,Oct〉, 〈Jan,Dec〉,
〈Mar, Jan〉, 〈Mar,Mar〉, 〈Mar,May〉, 〈Mar, Jul〉, 〈Mar,Aug〉, 〈Mar,Oct〉, 〈Mar,Dec〉,
〈May, Jan〉, 〈May,Mar〉, 〈May,May〉, 〈May, Jul〉, 〈May,Aug〉, 〈May,Oct〉, 〈May,Dec〉,
〈Jul, Jan〉, 〈Jul,Mar〉, 〈Jul,May〉, 〈Jul, Jul〉, 〈Jul,Aug〉, 〈Jul, Oct〉, 〈Jul, Dec〉,
〈Oct, Jan〉, 〈Oct,Mar〉, 〈Oct,May〉, 〈Oct, Jul〉, 〈Oct, Aug〉, 〈Oct,Oct〉, 〈Oct, Dec〉,
〈Dec, Jan〉, 〈Dec,Mar〉, 〈Dec,May〉, 〈Dec, Jul〉, 〈Dec,Aug〉, 〈Dec,Oct〉, 〈Dec,Dec〉,
〈Apr,Apr〉, 〈Apr, Jun〉, 〈Apr, Sep〉, 〈Apr,Nov〉,
〈Jun,Apr〉, 〈Jun, Jun〉, 〈Jun, Sep〉, 〈Jun,Nov〉,
〈Sep,Apr〉, 〈Sep, Jun〉, 〈Sep, Sep〉, 〈Sep,Nov〉,
〈Nov,Apr〉, 〈Nov, Jun〉, 〈Nov, Sep〉, 〈Nov,Nov〉,
〈Feb, Feb〉





.

Note that R−1 ◦ R in Example 8.11 is different from the relation R ◦ R−1: the latter is
the set of numbers that are related by R−1 to at least one of the same months, while the
former is the set of months that are related by R to at least one of the same numbers.
Thus R ◦ R−1 = {〈31, 31〉, 〈30, 30〉, 〈29, 29〉, 〈28, 28〉, 〈28, 29〉, 〈29, 28〉}. (The only distinct
numbers related by R ◦ R−1 are 28 and 29, because of February.)

Also note that the relation R−1 ◦ R from Example 8.11 has a special form: this re-
lation “partitions” the twelve months into three clusters—the 31-day months, the
30-day months, and February—so that any two months in the same cluster are related
by R−1 ◦ R, and no two months in different clusters are related by R−1 ◦ R. (See Fig-
ure 8.13(b) for a visualization.) A relation with this structure, where elements are par-
titioned into clusters (and two elements are related if and only if they’re in the same
cluster) is called an equivalence relation; see Section 8.4.1 for much more.

8.2.3 Functions as Relations

Back in Chapter 2, we defined a function as something that maps each element of the
set of legal inputs (the domain) to an element of the set of legal outputs (the range):
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Definition 2.44 (functions): Let A and B be sets. A function f from A to B, written f : A → B,
assigns to each input value a ∈ A a unique output value b ∈ B; the unique value b assigned
to a is denoted by f (a). We sometimes say that f maps a to f (a).

While we’ve begun this chapter defining relations as a completely different kind of
thing from functions, we can actually view functions as simply a special type of rela-
tion. For example, the “one hour later than” relation {〈12, 1〉, 〈1, 2〉, . . . , 〈10, 11〉, 〈11, 12〉}
from Example 8.4 really is a function f : {1, . . . , 12} → {1, . . . , 12}, where we could
write f more compactly as f (x) := (x mod 12) + 1.

In general, to think of a function f : A → B as a relation, we will view f as defining
the set of ordered pairs 〈x, f (x)〉 for each x ∈ A, rather than as a mapping:

Definition 8.4 (Functions, viewed as relations)
Let A and B be sets. A function f from A to B, written f : A → B, is a relation on A× B
with the additional property that, for every a ∈ A, there exists one and only one element b ∈ B
such that 〈a, b〉 ∈ f .

That is, we view the function f : A → B as the set F := {〈x, f (x)〉 : x ∈ A}, which is a
subset of A× B. The restriction of the definition requires that F has a unique output
defined for every input: there cannot be two distinct pairs 〈x, y〉 and 〈x, y′〉 in F, and
furthermore there cannot be any x for which there’s no 〈x, •〉 in F.

Example 8.12 (A function as a relation)
(Write Z11 to denote {0, 1, 2, . . . , 10}, as in Chapter 7.) The function f : Z11 → Z11
defined as f (x) = x2 mod 11 can be written as

{〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 5〉, 〈5, 3〉, 〈6, 3〉, 〈7, 5〉, 〈8, 9〉, 〈9, 4〉, 〈10, 1〉} .

Observe that f−1, the inverse of f , is not a function—for example, the pairs 〈5, 4〉 and
〈5, 7〉 are both in f−1, and there is no element 〈2, •〉 ∈ f−1. But f−1 is still a relation.

Example 8.13 (Composing functions)
Problem: Suppose that f ⊆ A × B and g ⊆ B × C are functions (in the sense of

Definition 8.4). Prove that the relation g ◦ f is a function from A to C.

Solution: By definition, the composition of the relations f and g is

g ◦ f := {〈x, z〉 : there exists y such that 〈x, y〉 ∈ f and 〈y, z〉 ∈ g} .

Because f is a function, there exists one and only one y∗ such that 〈x, y∗〉 ∈ f .
Furthermore, because g is a function, for this particular y∗ there exists a unique z
such that 〈y∗, z〉 ∈ g. Thus there exists one and only one z such that 〈x, z〉 ∈ g ◦ f .
By definition, then, the relation g ◦ f is a function.

Under this functions-as-relations view, the definitions of the inverse and composition
of functions—Definitions 2.48 and 2.52—precisely line up with the definitions of the
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inverse and composition of relations from this section. Furthermore, if a function is
just a special type of relation, then the special types of functions that we defined in
Chapter 2—one-to-one and onto functions—are just further restrictions on relations.
Under the relation-based view of functions, the function f ⊆ A× B is called one-to-one
if, for every b ∈ B, there exists at most one element a ∈ A such that 〈a, b〉 ∈ f . The
function f ⊆ A× B is called onto if, for every b ∈ B, there exists at least one element
a ∈ A such that 〈a, b〉 ∈ f .

Observe that, if f ⊆ A× B is a function, then the inverse f−1 of f—that is, the set
f−1 = {〈b, a〉 : 〈a, b〉 ∈ f }—is guaranteed to be a relation on B× A, but it is a function
from B to A if and only if f is both one-to-one and onto. In Exercises 8.38–8.43, you’ll
explore some other properties of the composition of functions/relations.

8.2.4 n-ary Relations

The relations that we’ve explored so far have all expressed relationships between two
elements. But some interesting properties might involve more than two entities; for
example, you might assemble all of your friends’ birthdays as a collection of triples of
the form 〈name, birthdate, birthyear〉. Or we might consider a relation on integers of the
form 〈a, b, k〉where a ≡k b. A relation involving tuples with n components, called an
n-ary relation, is a natural generalization of a (binary) relation:

Definition 8.5 (n-ary relation)
An n-ary relation on the set A1 ×A2 × · · · ×An is a subset of A1 ×A2 × · · · ×An. If there
is no danger of confusion, we may refer to a subset of An as an n-ary relation on A.

(We generally refer to 2-ary relations as binary relations and 3-ary relations as ternary
relations.) Here are a few examples:

Example 8.14 (Summing to 8)
Define sumsTo8 as a ternary relation on the set {0, 1, 2, 3, 4}, where

sumsTo8 = {〈a, b, c〉 ∈ {0, 1, 2, 3, 4}3 : a + b + c = 8} .

Then the elements in sumsTo8 are:
{

〈0, 4, 4〉, 〈1, 3, 4〉, 〈1, 4, 3〉, 〈2, 2, 4〉, 〈2, 3, 3〉, 〈2, 4, 2〉, 〈3, 1, 4〉, 〈3, 2, 3〉,
〈3, 3, 2〉, 〈3, 4, 1〉, 〈4, 0, 4〉, 〈4, 1, 3〉, 〈4, 2, 2〉, 〈4, 3, 1〉, 〈4, 4, 0〉

}
.

Example 8.15 (Betweenness)
The set B :=

{〈x, y, z〉 ∈ R3 : x ≤ y ≤ z or x ≥ y ≥ z
}
is a ternary relation on R that

expresses “betweenness”—that is, the triple 〈x, y, z〉 ∈ B if x, y, and z are in a consis-
tent order (either ascending or descending).

For example, we have 〈−1, 0, 1〉 ∈ B and 〈6, 5, 4〉 ∈ B, because −1 ≤ 0 ≤ 1 and
6 ≥ 5 ≥ 4. But 〈−7, 8,−9〉 /∈ B, because these three numbers are neither in ascending
order (because 8 6≤ −9) nor descending order (because −7 6≥ 8).
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Example 8.16 (RGB colors)
A 4-ary relation on Names × {0, 1, . . . , 255} × {0, 1, . . . , 255} × {0, 1, . . . , 255} is
shown below: a collection of colors, each with its official name in HTML/CSS
and its red/green/blue components (all three of which are elements of the set
{0, 1, . . . , 255}).

White 255 255 255
Red 255 0 0
Lime 0 255 0
Blue 0 0 255
Cyan 0 255 255
Magenta 255 0 255
Yellow 255 255 0
Black 0 0 0
Gray 128 128 128
Maroon 128 0 0
Green 0 128 0
Navy 0 0 128
Teal 0 128 128
Purple 128 0 128
Olive 128 128 0

(This relation contains the full set of RGB colors with component values all drawn
from either {0, 128} or {0, 255}.)

HTML (hypertext
markup language)
and CSS (cascading
style sheet) are
languages used to
express the format,
style, and layout of
web pages.

Taking it further: Databases—systems for storing and accessing collections of structured data—are a
widespread modern application of computer science. Databases store student records for registrars,
account information for financial institutions, and even records of who liked whose posts on Facebook;
in short, virtually every industrial system that has complex data with nontrivial relationships among
data elements is stored in a database. More specifically, a relational database stores information about a
collection of entities and relationships among those entities: fundamentally, a relational database is a
collection of n-ary relations, which can then be manipulated and queried in various ways. Designing
databases well affects both how easy it is for a user to pose the questions that he or she wishes to ask
about the data, and how efficiently answers to those questions can be computed. See p. 815 for more on
relational databases and how they connect with the types of relations that we’ve discussed so far.

Expressing n-ary relations as a collection of binary relations
Non-binary relations, like those in the last few examples, represent complex interac-

tions among more than two entities. For example, the “betweenness” relation

B := {〈x, y, z〉 ∈ R3 : x ≤ y ≤ z or x ≥ y ≥ z}

from Example 8.15 fundamentally expresses a relationship regarding triples of num-
bers: for any three real numbers x, y, and z, there are triples 〈x, y, •〉 ∈ B and 〈•, y, z〉 ∈ B
and 〈x, •, z〉 ∈ B—but whether 〈x, y, z〉 itself is in the relation B genuinely depends on
how all three numbers relate to each other. Similarly, the sumsTo8 relation from Exam-
ple 8.14 is a genuinely three-way relationship among elements—not something that
can be directly reduced to a pair of pairwise relationships. But we can represent an n-
ary relation R by a collection of binary relations, if we’re a little creative in defining the
sets that are being related. (Decomposing n-ary relations into multiple binary relations
may be helpful if we store this type of data in a database; there may be advantages of
clarity and efficiency in this view of an n-ary relation.)
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R
White 255
Red 255
Lime 0
Blue 0
Cyan 0
...

...

G
White 255
Red 0
Lime 255
Blue 0
Cyan 255
...

...

B
White 255
Red 0
Lime 0
Blue 255
Cyan 255
...

...

Figure 8.8: The
colors from the
4-ary relation in
Example 8.16,
represented as three
binary relations.

This idea is perhaps easiest to see for the colors from
Example 8.16: because each color name appears once
and only once in the table, we can treat the name as
unique “key” that allows us to treat the 4-ary relation
as three separate binary relations, corresponding to the
red, green, and blue components of the colors. (See Fig-
ure 8.8.) But how would we represent an n-ary relation
like the ternary sumsTo8 using multiple binary relations?
(Recall the relation

sumsTo8 =
{

〈0, 4, 4〉, 〈1, 3, 4〉, 〈1, 4, 3〉, 〈2, 2, 4〉, 〈2, 3, 3〉, 〈2, 4, 2〉, 〈3, 1, 4〉, 〈3, 2, 3〉,
〈3, 3, 2〉, 〈3, 4, 1〉, 〈4, 0, 4〉, 〈4, 1, 3〉, 〈4, 2, 2〉, 〈4, 3, 1〉, 〈4, 4, 0〉

}

from Example 8.14.) One idea is to introduce a new set of fake “entities” that corre-
spond to each of the tuples in sumsTo8, and then build binary relations between each
component and this set of entities. For example, define the set

E := {044, 134, 143, 224, 233, 242, 314, 323, 332, 341, 404, 413, 422, 431, 440} ,

first
044 0
134 1
143 1
224 2
233 2
...

...

second
044 4
134 3
143 4
224 2
233 3
...

...

third
044 4
134 4
143 3
224 4
233 3
...

...

Figure 8.9: The
relation sumsTo8,
as three binary
relations.

and then define the three binary relations first, second, and third
shown in Figure 8.9. Now 〈a, b, c〉 ∈ sumsTo8 if and only if there
exists an e ∈ E such that 〈e, a〉 ∈ first, 〈e, b〉 ∈ second, and 〈e, c〉 ∈ third.
(See Exercise 8.44 for a similar way to think of betweenness using
binary relations.)
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Computer Science Connections

Relational Databases

A database is a (generally large!) collection of structured data. A user can
both “query” the database (asking questions about existing entries, like
“which states are the homes of at least two students who have GPAs above
3.0 in CS classes?”) and edit it (adding or updating existing entries). The bulk
of modern attention to databases focuses on relational databases, based explic-
itly on the types of relations explored in this chapter.1 (Previous database

The era of relational databases is gen-
erally seen as starting with a massively
influential paper by Edgar Codd:
1 Edgar F. Codd. A relational model
of data for large shared data banks.
Communications of the ACM, 13(6):377–
387, 1970.

systems were generally based on rigid top-down organization of the data.)
One of the most common ways to interact with this sort of database is with a
special-purpose programming language, the most common of which is SQL.

“SQL” is short for Structured Query
Language; it’s pronounced either like
“sequel” or by spelling out the letters (to
rhyme with “Bless you, Mel!”).

In a relational database, the fundamental unit of storage is the table,which
represents an n-ary relation R ⊆ A1 × A2 × · · · × An. A table consists of a
collection of columns, each of which represents a component of R; the columns
are labeled with the name of the corresponding component so that it’s pos-
sible to refer to columns by name rather than solely by their index. The rows
of the table correspond to elements of the relation: that is, each row is a value
〈a1, a2, . . . , an〉 that’s in R. An example of a table of this form, echoing Exam-
ple 8.16 but with labeled columns, is shown in Figure 8.10.

Thus a relational database is at its essence a collection of n-ary relations.

name red green blue
Green 0 128 0
Lime 0 255 0
Magenta 255 0 255
Maroon 128 0 0
Navy 0 0 128
Olive 128 128 0
Purple 128 0 128
Red 255 0 0
Teal 0 128 128
White 255 255 255
Yellow 255 255 0

Figure 8.10: Some RGB colors.

(There are other very interesting aspects of databases; for example, how
should the database organize its data on the hard disk to support its opera-
tions as efficiently as possible?)2 Operations on relational databases are based

We will only just brush the surface of
relational databases here—there’s a full
course’s worth of material on databases
(and then some!) that we’ve left out. For
more, see a good book on databases, like
2 Avi Silberschatz, Henry F. Korth, and
S. Sudarshan. Database System Concepts.
McGraw-Hill, 6th edition, 2010.

on three fundamental operations on n-ary relations. The first two basic opera-
tions either choose some of the rows or some of the columns from a relation:

• select: for a function ϕ : A1 × · · · ×An → {True, False} and an n-ary
relation R ⊆ A1 × · · · ×An, we can select those elements of R that satisfy ϕ.

• project: for an n-ary relation R ⊆ A1 × · · · × An, we can project R into a
smaller set of columns by deleting some Ais.

For example, we might select those colors with blue component equal to

name red
Lime 0
Yellow 255
Green 0
Olive 128

se
na

to
r

pa
rt
y

st
at
e

Crapo R ID
Risch R ID
Durbin D IL

...

Figure 8.11: Selecting colors with
green > blue and projecting to name, red;
and joining S and T from Figure 8.6.

zero, or we might project the colors relation down to just red and blue values.
(In SQL, these operations are done with unified syntax; we can write

SELECT name, red FROM colors WHERE green > blue;

to get the first result shown in Figure 8.11.) The third key operation in rela-
tional databases, called join, corresponds closely to the composition of rela-
tions. In a join, we combine two relations by insisting that an identified shared
column of the two relations matches. Unlike with the composition of relations,
we continue to include that matching column in the resulting table:

• join: for two binary relations X ⊆ S × T and Y ⊆ T × U, the join of X
and Y, denoted X ✶ Y, is a ternary relation on S × T × U, defined as
X ✶ Y := {〈a, c, b〉 ∈ S× T ×U : 〈a, c〉 ∈ X and 〈c, b〉 ∈ Y} .

In SQL syntax, this operation is denoted by INNER JOIN; for example, with S
and T as in Figure 8.6, we can generate the second table in Figure 8.11 with

SELECT * FROM T INNER JOIN S ON T.senator = S.senator;
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8.2.5 Exercises

Here are a few English-language descriptions of relations on a particular set. For each, write out (by exhaustive enu-
meration) the full set of pairs in the relation, as we did in Example 8.5. Problem-solving

tip: It’s easy to
miss an element
of these relations
if you solve these
problems by hand.
Consider writing
a small program
to enumerate all
the pairs meeting
the descriptions in
Exercises 8.1–8.5.

8.1 divides, written |, on {1, 2, . . . , 8} (so 〈d,n〉 ∈ | if and only if n mod d = 0, as in Example 8.4).
8.2 subset, written ⊂, on P({1, 2, 3}) (so 〈S,T〉 ∈ ⊂ if and only if S 6= T and ∀x : x ∈ S ⇒ x ∈ T).
8.3 isProperPrefix on bitstrings of length ≤ 3. See Example 8.5, but here we are considering proper
prefixes only. A string x is prefix, but not a proper prefix, of itself: more formally, x is a proper prefix of y if x
starts with precisely the symbols of y, followed by one or more other symbols.

For two strings x and y, we say that x is a substring of y if the symbols of x appear consecutively somewhere in y.
We say that x is a subsequence of y if the symbols of x appear in order, but not necessarily consecutively, in y. (For
example, 001 is a substring of 1001 but not of 0101. But 001 is a subsequence of 1001 and also of 0101.) A string x
is called a proper substring/subsequence of y if x is a substring/subsequence of y but x 6= y. Again, write out (by
exhaustive enumeration) the full set of pairs in these relations:
8.4 isProperSubstring on bitstrings of length ≤ 3
8.5 isProperSubsequence on bitstrings of length ≤ 3

Let ⊆ and ⊂ denote the subset and proper subset relations on P(Z). (That is, we have 〈A,B〉 ∈ ⊂ if A ⊆ B but
A 6= B.) What relation is represented by each of the following?

8.6 ⊆∪⊂
8.7 ⊆−⊂
8.8 ⊂−⊆

8.9 ⊂ ∩⊆
8.10 ∼⊂

Consider the following two relations on {1, 2, 3, 4, 5, 6}: R = {〈2, 2〉, 〈5, 1〉, 〈2, 3〉, 〈5, 2〉, 〈2, 1〉} and S = {〈3, 4〉, 〈5, 3〉, 〈6, 6〉, 〈1, 4〉, 〈4, 3〉}.
What pairs are in the following relations?

8.11 R−1

8.12 S−1

8.13 R ◦ R
8.14 R ◦ S

8.15 S ◦ R
8.16 R ◦ S−1

8.17 S ◦ R−1

8.18 S−1 ◦ S

Five so-called mother sauces of French cooking were codified by the chef Auguste Escoffier in the early 20th century.
(Many other sauces—“daughter” or “secondary” sauces—used in French cooking are derived from these basic recipes.)
They are:

• Sauce Béchamel is made of milk, butter, and flour.
• Sauce Espagnole is made of stock, butter, and flour.
• Sauce Hollandaise is made of egg, butter, and lemon juice.
• Sauce Velouté is made of stock, butter, and flour.
• Sauce Tomate is made of tomatoes, butter, and flour.

8.19 Write down the “is an ingredient of” relation on Ingredients× Sauces using the tabular representa-
tion of relations introduced in Figure 8.2.
8.20 Writing R to denote the relation that you enumerated in Exercise 8.19, what is R ◦ R−1? Give both
a list of elements and an English-language description of what R ◦ R−1 represents.
8.21 Again for the R from Exercise 8.19, what is R−1 ◦ R? Again, give both a list of elements and a
description of the meaning.

Suppose that a Registrar’s office has computed the following relations:

taughtIn ⊆ Classes× Rooms taking ⊆ Students×Classes at ⊆ Classes× Times.

For the following exercises, express the given additional relation using taughtIn, taking, and at, plus relation composi-
tion and/or inversion (and no other tools).
8.22 R ⊆ Students× Times, where 〈s, t〉 ∈ R indicates that student s is taking a class at time t.
8.23 R ⊆ Rooms× Times, where 〈r, t〉 ∈ R indicates that there is a class in room r at time t.
8.24 R ⊆ Students× Students, where 〈s, s′〉 ∈ R indicates that students s and s′ are taking at least one
class in common.
8.25 R ⊆ Students× Students, where 〈s, s′〉 ∈ R indicates that there’s at least one time when s and s′ are
both taking a class (but not necessarily the same class).
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Let parent ⊆ People × People denote the relation {〈p, c〉 : p is a parent of c}. What familial relationships are
represented by the following relations?

For the sake of simplicity in the following questions, assume that there are no divorces, remarriages,
widows, widowers, adoptions, single parents, etc. That is, you should assume that each child has exactly
two parents, and any two children who share one parent share both parents.
8.26 parent ◦ parent
8.27 (parent−1) ◦ (parent−1)
8.28 parent ◦ (parent−1)

8.29 (parent−1) ◦ parent
8.30 parent ◦ parent ◦ (parent−1) ◦ (parent−1)
8.31 parent ◦ (parent−1) ◦ parent ◦ (parent−1)

8.32 Suppose that the relations R ⊆ Z × Z and S ⊆ Z × Z contain, respectively, n pairs and m pairs of
elements. In terms of n and m, what’s the largest possible size of R ◦ S? The smallest?

Consider the following claims about the composition of relations.
8.33 For arbitrary relations R, S, and T, prove that R ◦ (S ◦ T) = (R ◦ S) ◦ T.
8.34 For arbitrary relations R and S, prove that (R ◦ S)−1 = (S−1 ◦ R−1).
8.35 Let R be any relation on A× B. Prove or disprove: 〈x, x〉 ∈ R ◦ R−1 for every x ∈ A.

8.36 What set is represented by the relation ≤ ◦ ≥, where ≤ and ≥ are relations on R?
8.37 What set is represented by the relation successor ◦ predecessor, where successor = {〈n,n + 1〉 : n ∈ Z}
and predecessor = {〈n,n− 1〉 : n ∈ Z}?

Suppose that R ⊆ A× B and T ⊆ B×C are relations. Prove the following:
8.38 If R and T are both functions, then T ◦ R is a function too.
8.39 If R and T are both one-to-one functions, then T ◦ R is one-to-one too.
8.40 If R and T are both onto functions, then T ◦ R is onto too.

The next few exercises ask you to address the converse of the last few. Supposing that T ◦ R has the listed property, can
you infer that both relations R and T have the same property? Only R? Only T? Neither? Prove your answers.
8.41 T ◦ R is a function. Must T be a function? R? Both?
8.42 T ◦ R is a one-to-one function and R and T are both functions. Must T be one-to-one? R? Both?
8.43 T ◦ R is an onto function and R and T are both functions. Must T be onto? R? Both?

Color R G B
White 255 255 255
Red 255 0 0
Lime 0 255 0
Blue 0 0 255
Cyan 0 255 255
Magenta 255 0 255
Yellow 255 255 0
Black 0 0 0
Gray 128 128 128
Maroon 128 0 0
Green 0 128 0
Navy 0 0 128
Teal 0 128 128
Purple 128 0 128
Olive 128 128 0

Figure 8.12: A 4-
ary relation C (see
Example 8.16).

On p. 815, we introduced three operations on relations that are used frequently in relational databases:
• select, which chooses a subset of the elements of an n-ary relation. For R ⊆ A1 × · · · × An and a

function ϕ : A1 × · · · ×An → {True, False}, we can select only those elements of R that satisfy ϕ.
• project, which turns an n-ary relation into an n′-ary relation for some n′ ≤ n by eliminating

components. For R ⊆ A1 × · · · × An and S ⊆ {1, 2, . . . , n}, we can project R into a smaller set of
columns by removing the ith component of each pair in R for any i /∈ S.

• join, which combines two binary relations R ⊆ A× B and S ⊆ B× C into a single ternary relation
containing triples 〈a, b, c〉 such that 〈a, b〉 ∈ R and 〈b, c〉 ∈ S.

For example, let R = {〈1, 2, 3〉, 〈4, 5, 6〉}, let S = {〈6, 7〉, 〈6, 8〉}, and let T = {〈7, 9〉, 〈7, 10〉}. Then
• select(R, xzEven) = {〈4, 5, 6〉} for xzEven(x, y, z) = (2 | x) ∧ (2 | z).
• project(R, {1, 2}) = {〈1, 2〉, 〈4, 5〉} and project(R, {1, 3}) = {〈1, 3〉, 〈4, 6〉}.
• join(S,T) = {〈6, 7, 9〉, 〈6, 7, 10〉}.
Solve the following using the relation operators −1 (inverse), ◦ (composition), select, project, and join:
8.44 Recall from Example 8.15 the “betweenness” relation, defined as the ternary relation
B :=

{
〈x, y, z〉 ∈ R3 : x ≤ y ≤ z or x ≥ y ≥ z

}
. Show how to construct B using only ≤, the relation

operators (−1, ◦, join, select, project), and standard set-theoretic operations (∪, ∩, ∼, −).

Using the relation C defined in Figure 8.12, and select/project/join, write a set that corresponds to the following:
8.45 the names of all colors that have red component 0.
8.46 the names of all pairs of colors whose amount of blue is the same.
8.47 the names of all colors that are more blue than red.

Let X denote the set of color names from Example 8.16. Define three relations Red, Green, and Blue on X ×
{0, 1, . . . , 255} such that 〈x, r, g, b〉 ∈ C if and only if 〈x, r〉 ∈ Red, 〈x, g〉 ∈ Green, and 〈x, b〉 ∈ Blue.
8.48 Repeat Exercise 8.46 using only −1, ◦, and the relations Red, Green, Blue, ≤, and =.
8.49 Do the same for Exercise 8.47—or, at least, compute the set of 〈x, x〉 such that x is the name of a
color that’s more blue than red. (You may construct a relation R on colors, and then take R∩ =.)
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8.3 Properties of Relations: Reflexivity, Symmetry, and Transitivity

Pride destroys all symmetry and grace, and affectation
is a more terrible enemy to fine faces than the
small-pox.

Sir Richard Steele (1672–1729)

Let R ⊆ A×A be a relation on a single set A (as in the successor or ≤ relations on Z,
or the is a (blood) relative of relation on people). We’ve seen a two-column approach to
visualizing a relation R ⊆ A× B, but this layout is misleading when the sets A and B

ε

0

1

00

01

10

11

(a) isPrefix

Jan

MarMay

Jul

Aug

Oct
Dec

Apr

JunSep

Nov

Feb

(b) Months of the same length

0 1

2

3

4

5
6

7

8

9

10

(c) 〈x, x2 mod 11〉 for x ∈ Z11

Figure 8.13: Visu-
alizations of three
relations, from Ex-
ample 8.5 (prefixes
of bitstrings), Exam-
ple 8.11 (months),
and Example 8.12
(〈x, x2〉 mod 11).

are identical. (Weirdly, we’d
have to draw each element
twice, in both the A column
and the B column.) Instead,
it will be more convenient to
visualize a relation R ⊆ A×A
without differentiated columns,
using a directed graph: we sim-
ply write down each element of
A, and draw an arrow from a1
to a2 for every pair 〈a1, a2〉 ∈ R.
(See Chapter 11 for much more
on directed graphs.) A few
small examples are shown in
Figure 8.13.

This directed-graph visualization of relations will provide a useful way of thinking
intuitively about relations in general—and about some specific types of relations in
particular. There are several important structural properties that some relations on A
have (and that some relations do not), and we’ll explore these properties throughout
this section. We’ll consider three basic categories of properties:

reflexivity: whether elements are related to themselves. That is, is an element x neces-
sarily related to x itself?

symmetry: whether order matters in the relation. That is, if x and y are related, are y
and x necessarily related too?

transitivity: whether chains of related pairs are themselves related. That is, if x and y
are related and y and z are related, are x and z necessarily related too?

These properties turn out to characterize several important types of relations—for
example, some relations divide A into clusters of “equivalent” elements (as in Fig-
ure 8.13(b)), while other relations “order” A in some consistent way (as in Figure 8.13(a))—
and we’ll see these special types of relations in Section 8.4. But first we’ll examine
these three categories of properties in turn, and then we’ll define closures of relations,
which expand any relation R as little as possible while ensuring that the expansion of
R has any particular desired subset of these properties.
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8.3.1 Reflexivity

The reflexivity of a relation R ⊆ A×A is based on whether elements of A are related to Latin: re “back” +
flect “bend.”themselves. That is, are pairs 〈a, a〉 in R? The relation R is reflexive if 〈a, a〉 is always in

R (for every a ∈ A), and it’s irreflexive if 〈a, a〉 is never in R (for any a ∈ A):

Definition 8.6 (Reflexive and Irreflexive Relations)
A relation R on A is reflexive if, for every x ∈ A, we have that 〈x, x〉 ∈ R.
A relation R on A is irreflexive if, for every x ∈ A, we have that 〈x, x〉 /∈ R.

1

2

3 4 1

2

3 4

Figure 8.14: A
relation on A is
reflexive if every
a ∈ A has a self-
loop (the dark
arrows in the left
panel), and it is
irreflexive if no
a ∈ A does (as in
the right panel).

Using the visualization style from Figure 8.13, a rela-
tion is reflexive if every element a ∈ A has a “loop”
from a back to itself—and it’s irreflexive if no a ∈ A
has a loop back to itself. (See Figure 8.14.)

Example 8.17 (Reflexivity of =, ≡17, and 〈x, x2〉 mod 11)
The relations = and ≡17 on Z—that is, the relations {〈x, y〉 : x = y} and
{〈x, y〉 : x mod 17 = y mod 17}—are both reflexive, because x = x and x mod 17 =
x mod 17 for any x ∈ Z. But the relation R :=

{
〈x, x2 mod 11〉 : x ∈ Z11

}
from

Figure 8.13(c) is not reflexive, because (among other examples) we have 〈7, 7〉 /∈ R.

Note that there are relations that are neither reflexive nor irreflexive. For example,
the relation S = {〈0, 1〉, 〈1, 1〉} on {0, 1} isn’t reflexive (because 〈0, 0〉 /∈ S), but it’s also
not irreflexive (because 〈1, 1〉 ∈ S).

Example 8.18 (A few arithmetic relations)
Problem: Which of the following relations on Z≥1 are reflexive? Irreflexive?

1. divides: R1 = {〈n,m〉 : m mod n = 0}
2. greater than: R2 = {〈n,m〉 : n > m}
3. less than or equal to: R3 = {〈n,m〉 : n ≤ m}
4. square: R4 =

{〈n,m〉 : n2 = m
}

5. equivalent mod 5: R5 = {〈n,m〉 : n mod 5 = m mod 5}

Solution: 1. reflexive. For any positive integer n, we have that n mod n = 0. Thus
〈n, n〉 ∈ R1 for any n.

2. irreflexive. For any n ∈ Z≥1, we have that n 6> n. Thus 〈n, n〉 /∈ R2 for any n.
3. reflexive. For any positive integer n, we have n ≤ n, so every 〈n, n〉 ∈ R3.
4. neither. The square relation is not reflexive because 〈9, 9〉 /∈ R4 and it is also not

irreflexive because 〈1, 1〉 ∈ R4, for example. (That’s because 9 6= 92, but 1 = 12.)
5. reflexive. For any n ∈ Z≥1, we have n mod 5 = n mod 5, so 〈n, n〉 ∈ R5.

Note again that, as with square, it is possible to be neither reflexive nor irreflexive. (But
it’s not possible to be both reflexive and irreflexive, as long as A 6= ∅: for any a ∈ A, if
〈a, a〉 ∈ R, then R is not irreflexive; if 〈a, a〉 /∈ R, then R is not reflexive.)
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8.3.2 Symmetry

The symmetry of a relation R ⊆ A×A is based on whether the order of the elements in Greek: syn “same”
+ metron “measure.”a pair matters. That is, if the pair 〈a, b〉 is in R, is the pair 〈b, a〉 always also in R? (Or is

it never in R? Or sometimes but not always?) The relation R is symmetric if, for every a
and b, the pairs 〈a, b〉 and 〈b, a〉 are both in R or both not in R.
There are two accompanying notions: a relation R is antisymmetric if the only time

An important
etymological
note: anti- means
“against” rather
than “not.”
Asymmetric (no
〈a, b〉, 〈b, a〉 ∈ R)
is different from
antisymmetric (if
〈a, b〉, 〈b, a〉 ∈ R
then a = b) is dif-
ferent from not
symmetric (there is
some 〈a, b〉 ∈ R but
〈b, a〉 /∈ R).

〈a, b〉 and 〈b, a〉 are both in R is when a = b, and R is asymmetric if 〈a, b〉 and 〈b, a〉 are
never both in R (whether a = b or a 6= b). Here are the formal definitions:

Definition 8.7 (Symmetric, Antisymmetric, and Asymmetric Relations)
A relation R on A is symmetric if, for every a, b ∈ A, if 〈a, b〉 ∈ R then 〈b, a〉 ∈ R.

A relation R on A is antisymmetric if, for every a, b ∈ A such that 〈a, b〉 ∈ R and
〈b, a〉 ∈ R, we have a = b.

A relation R on A is asymmetric if, for every a, b ∈ A, if 〈a, b〉 ∈ R then 〈b, a〉 /∈ R.
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Figure 8.15: R is
symmetric if every
a → b is matched
by b → a (as in
the left panel). R
is antisymmetric
if no a ↔ b exists
for a 6= b (as in
the middle or
right panel), and
asymmetric if it also
has no self-loops (as
in the right panel).

Again thinking about the vi-
sualization from Figure 8.13:
a relation is symmetric if ev-
ery arrow a → b is matched
by an arrow b → a in the opposite direction. It’s antisymmetric if there are no matched
bidirectional pairs of arrows between two distinct elements a and b; and it’s asym-
metric if there also aren’t even any self-loops. (An a-to-a self-loop is, in a weird way, a
“pair” of arrows a → b and b → a, just with a = b.) See Figure 8.15.

zeugma, n.: gram-
matical device in
which words are
used in parallel
construction syn-
tactically, but not
semantically, as in

Yesterday,
Alice caught a
rainbow trout
and hell from
Bob for fishing
all day.

Example 8.19 (Some symmetric relations)
The relations

{〈w,w′〉 : w and w′ have the same length
}

(on the set of English words)
{〈s, s′〉 : s and s′ sat next to each other in class today

}
(on the set of students)

are both symmetric. If w contains the same number of letters as w′, then w′ also con-
tains the same number of letters as w. And if I sat next to you, then you sat next to
me! (The first relation is also reflexive—ZEUGMA contains the same number of letters
as ZEUGMA—but the latter is irreflexive, as no student sits beside herself in class.)

Example 8.20 (A few arithmetic relations, again)
Problem: Which of these relations from Example 8.18 (see below for a reminder) are

symmetric? Antisymmetric? Asymmetric?

R1 = {〈n,m〉 : m mod n = 0}
R2 = {〈n,m〉 : n > m}
R3 = {〈n,m〉 : n ≤ m}
R4 =

{〈n,m〉 : n2 = m
}

R5 = {〈n,m〉 : n mod 5 = m mod 5} .
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Solution: 1. antisymmetric. Because n mod m = m mod n = 0 if and only if n = m, if
〈n,m〉 ∈ R1 and 〈m, n〉 ∈ R1 then n = m. But the relation is neither symmetric
(for example, 3 | 6 but 6 6 | 3) nor asymmetric (for example, 3 | 3).

2. asymmetric. If x < y then y 6< x, even if x = y. So R2 is asymmetric.

3. antisymmetric. Similar to (1), R3 is antisymmetric: if x ≤ y and y ≤ x, then
x = y. (But 3 ≤ 6 and 6 6≤ 3, and 3 ≤ 3, so R3 is neither symmetric nor
asymmetric.)

4. antisymmetric. The square relation is neither symmetric nor asymmetric be-
cause 〈3, 9〉 ∈ R4 but 〈9, 3〉 /∈ R4, and 〈1, 1〉 ∈ R4. (That’s because 32 = 9 but
92 6= 3, and 12 = 1.) But it is antisymmetric, because the only way that x2 = y and
y2 = x is if x = y (specifically x = y = 0 or x = y = 1).

5. symmetric. The “equivalent mod 5” relation is symmetric because equality is:
for any n and m, we have n mod 5 = m mod 5 if and only if m mod 5 = n mod 5.
But it’s not antisymmetric: 〈17, 202〉 ∈ R5 and 〈202, 17〉 ∈ R5.

Note that it is possible for a relation to be both symmetric and antisymmetric; see
Exercise 8.69. And it’s also possible for a relation R not to be symmetric, but also for R
to fail to be either antisymmetric or asymmetric:

Example 8.21 (A non-symmetric, non-asymmetric, non-antisymmetric relation)
The relation R := {〈0, 1〉, 〈0, 2〉, 〈1, 0〉} on {0, 1, 2} isn’t symmetric (0 → 2 but 2 6→ 0),
and it isn’t asymmetric or antisymmetric (0 → 1 and 1 → 0 but 0 6= 1).

R
1

2

3 4
R−1

1

2

3 4
R ∩ R−1

1

2

3 4

Figure 8.16: A
relation R on A, its
inverse R−1, and
R ∩ R−1. From
the right panel,
we see that R
isn’t symmetric
(1 → 2 and 4 → 3
are missing),
asymmetric (1
has a self-loop)
or antisymmetric
(2 ↔ 3 is present).
(But R− {〈2, 3〉} is
antisymmetric.)

One other useful way to
think about the symmetry (or
antisymmetry/asymmetry)
of a relation R is by consid-
ering the inverse R−1 of R. Recall that R−1 reverses the direction of all of the arrows of
R, so 〈a, b〉 ∈ R if and only if 〈b, a〉 ∈ R−1. A symmetric relation is one in which every
a → b arrow is matched by a b → a arrow, so reversing the arrows doesn’t change the
relation. For an antisymmetric relation R, the inverse R−1 has only self-loops in com-
mon with R. And an asymmetric relation has no arrows in common with its inverse.
(See Figure 8.16.) Specifically:

Theorem 8.1 (Symmetry in terms of inverses)
Let R ⊆ A×A be a relation and let R−1 be its inverse. Then:

• R is symmetric if and only if R ∩ R−1 = R = R−1.
• R is antisymmetric if and only if R ∩R−1 ⊆ {〈a, a〉 : a ∈ A}.
• R is asymmetric if and only if R ∩ R−1 = ∅.

You’ll prove this theorem formally in Exercises 8.66–8.68.
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8.3.3 Transitivity

The transitivity of a relation R ⊆ A× A is based on whether the relation always con- Latin: trans
“across/through.”tains a “short circuit” from a to c whenever two pairs 〈a, b〉 and 〈b, c〉 are in R. An al-

ternative view is that a transitive relation R is one in which “applying R twice” doesn’t
yield any new connections. For example, consider the relation “lives in the same town
as”: if a person x lives in the same town as a person y you live in same town as, then in
fact x directly (without reference to the intermediary y) lives in the same town as you.
Here is the formal definition:

Definition 8.8 (Transitive Relation)
A relation R on A is transitive if, for every a, b, c ∈ A, if 〈a, b〉 ∈ R and 〈b, c〉 ∈ R, then
〈a, c〉 ∈ R too.

1

2

3 4 1

2

3 4

Figure 8.17: A
relation on A is
transitive if every
triangle is closed.
The left panel
shows a relation
that is not transitive
(the dark arrows
form an open
triangle). The right
panel shows a
transitive relation,
with a highlighted
closed triangle.

Or, using the visualization from Figure 8.13, a relation
is transitive if there are no “open triangles”: if a → b
and b → c, then a → c. (In any “chain” of connected
elements in a transitive relation, every element is also
connected to all elements that are “downstream” of it.) See Figure 8.17.

Example 8.22 (Some transitive relations)
The relations

{〈w,w′〉 : w and w′ have the same length
}

(on the set of English words)
{〈s, s′〉 : s arrived in class before s′ today

}
(on the set of students)

are both transitive. If w contains the same number of letters as w′, and w′ contains the
same number of letters as w′′, then w certainly contains the same number of letters as
w′′ too. And if Alice got to class before Bob, and Bob got to class before Charlie, then
Alice got to class before Charlie.

Example 8.23 (A few arithmetic relations, one more time)
Problem: Which of the relations from Examples 8.18 and 8.20 are transitive?

R1 = {〈n,m〉 : m mod n = 0}
R2 = {〈n,m〉 : n > m}
R3 = {〈n,m〉 : n ≤ m}
R4 =

{〈n,m〉 : n2 = m
}

R5 = {〈n,m〉 : n mod 5 = m mod 5}

Solution: 1. transitive. Suppose that a | b and b | c. We need to show that a | c. But
that’s easy: by definition a | b and b | c mean that b = ak and c = bℓ for integers k
and ℓ. Therefore c = a · (kℓ)—and thus a | c. (This fact was Theorem 7.4.4.)

2. transitive. If x > y and y > z, then we know x > z.
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3. transitive. Just as in (2), R3 is transitive: if x ≤ y and y ≤ z, then x ≤ z.

4. not transitive. The square relation isn’t transitive, because, for example, we
have 〈2, 4〉 ∈ R4 and 〈4, 16〉 ∈ R4—but 〈2, 16〉 /∈ R4. (That’s because 22 = 4 and
42 = 16 but 22 6= 16.)

5. transitive. The “equivalent mod 5” relation is transitive because equality is: if
n mod 5 = m mod 5 and m mod 5 = p mod 5, then n mod 5 = p mod 5.

While we can understand the transitivity of a relation R directly from Definition 8.8,
we can also think about the transitivity of R by considering the relationship between R
and R ◦ R—that is, R and the composition of Rwith itself. (Earlier we saw how to view
the symmetry of R by connecting R and its inverse R−1.)

Theorem 8.2 (Transitivity in terms of self-composition)
Let R ⊆ A×A be a relation. Then R is transitive if and only if R ◦ R ⊆ R.

Again, you’ll prove this theorem in the exercises (Exercise 8.85).

Taking it further: Imagine a collection of n people who have individual preferences over k candidates.
That is, we have n relations R1 ,R2 , . . . ,Rn, each of which is a relation on the set {1, 2, . . . , k}. We wish
to aggregate these individual preferences into a single preference relation for the collection of people.
Although this description is much more technical than our everyday usage, the problem that we’ve de-
scribed here is well known: it’s otherwise known as voting. (Economists also call this topic the theory of
social choice.) Some interesting and troubling paradoxes arise in voting problems, related to transitivity—
or, more precisely, to the absence of transitivity.

Suppose that we have three candidates: Alice, Bob, and Charlie. For simplicity, let’s suppose that
we also have exactly three voters: #1, #2, and #3. (This paradox also arises when there are many more
voters.) Consider the situation in which Voter #1 thinks Alice > Bob > Charlie; Voter #2 thinks
Charlie > Alice > Bob; and Voter #3 thinks Bob > Charlie > Alice. Then, in head-to-head runoffs
between pairs of candidates, the results would be:
• Alice beats Bob: 2 votes (namely #1 and #2) for Alice, to 1 vote (just #3) for Bob.
• Bob beats Charlie: 2 votes (namely #1 and #3) for Bob, to 1 vote (just #2) for Charlie.
• Charlie beats Alice: 2 votes (namely #2 and #3) for Charlie, to 1 vote (just #1) for Alice.
That’s pretty weird: we have taken strict preferences (each of which is certainly transitive!) from each of
the voters, and aggregated them into a nontransitive set of societal preferences. This phenomenon—no
candidate would win a head-to-head vote against every other candidate—is called the Condorcet paradox.
(The Condorcet criterion declares the winner of a vote to be the candidate who would win a runoff election
against any other individual candidate.)

The Condorcet paradox is troubling, but an even more troubling result says that, more or less, there’s
no good way of designing a voting system! Arrow’s Theorem, proven around 1950, states that there’s no
way to aggregate individual preferences to society-level preferences in a way that’s consistent with three
“obviously desirable” properties of a voting system: (1) if every voter prefers candidate A to candidate
B, then A beats B; (2) there’s no “dictator” (a single voter whose preferences of the candidates directly
determines the outcome of the vote); and (3) “independence of irrelevant alternatives” (if candidate A
beats Bwhen candidate C is in the race, then A still beats B if C were to drop out of the race).3

3

The Condorcet
paradox is named
after the 18th-
century French
philosopher/
mathematician
Marquis de Con-
dorcet (rhymes
with gone for hay).
Arrow’s Theorem
is named after
Kenneth Arrow, a
20th-century Amer-
ican economist
(who won the 1972
Nobel Prize in Eco-
nomics, largely for
this theorem). See
3 Kenneth Arrow.
Social Choice and
Individual Values.
Wiley, 1951.8.3.4 Properties of Asymptotic Relationships

Now that we’ve introduced the three categories of properties of relations (reflexivity,
symmetry, and transitivity), let’s consider one more set of relations in light of these
properties: the asymptotics of functions. Recall from Chapter 6 that, for two functions
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f : R≥0 → R≥0 and g : R≥0 → R≥0, we say that

f (n) is O(g(n)) if and only if ∃n0 ≥ 0, c > 0 :
(∀n ≥ n0 : f (n) ≤ c · g(n)) .

f (n) is Θ(g(n)) if and only if f (n) is O(g(n)) and g(n) is O(f (n)).
f (n) is o(g(n)) if and only if f (n) is O(g(n)) and g(n) is not O(f (n)).

(Actually we previously phrased the definitions of Θ(·) and o(·) in terms of Ω(·), but
the definition we’ve given here is completely equivalent, as proven in Exercise 6.30.)
We can view these asymptotic properties as relations on the set F :=

{
f : R≥0 → R≥0}

of functions. The standard
asymptotic notation
doesn’t match the
standard notation
for relations—we
write f = Θ(g)
rather than f Θ g
or 〈f , g〉 ∈ Θ—but
Θ genuinely is a
relation on F, in
the sense that some
pairs of functions
are related by Θ
and some pairs are
not. AndO and o
are relations on F in
the same way.

Example 8.24 (O and Θ and o: reflexivity)
O is reflexive: For any function f , we can easily show that f = O(f ) by choosing the

constants n0 := 1 and c := 1, because it is immediate that ∀n ≥ 1 : f (n) ≤ 1 · f (n).
ThereforeO is reflexive, because every function f satisfies f = O(f ).

Θ is reflexive: This fact follows immediately from the fact that O is reflexive:

Θ is reflexive ⇔ ∀f ∈ F : f = Θ(f ) definition of reflexivity

⇔ ∀f ∈ F : f = O(f ) and f = O(f ) definition of Θ

⇔ ∀f ∈ F : f = O(f ) p∧ p ≡ p

⇔ O is reflexive. definition of reflexivity

o is irreflexive: This fact follows by similar logic: for any function f ∈ F,

f = o(f ) ⇔ f = O(f ) and f 6= O(f ). definition of o(·)

But p ∧ ¬p ≡ False (including when p is “f = O(f )”), so o is irreflexive.

Example 8.25 (O and Θ and o: symmetry)
O is not symmetric, antisymmetric, or asymmetric: Define the functions t1(n) = n

and t2(n) = n2 and t3(n) = 2n2. O is not symmetric because, for example, t1 = O(t2)
but t2 6= O(t1). O is not asymmetric because, for example, t1 = O(t1). And O is not
antisymmetric because, for example, t2 = O(t3) and t3 = O(t2) but t2 6= t3.

Θ is symmetric: This fact follows immediately from the definition: for arbitrary f
and g,

f = Θ(g) ⇔ f = O(g) and g = O(f ) definition of Θ

⇔ g = O(f ) and f = O(g) p∧ q ≡ q∧ p

⇔ g = Θ(f ). definition of Θ

(Θ is not anti/asymmetric, because t2 = Θ(t3) for t2(n) and t3(n) as defined above.)

o is asymmetric: This fact follows immediately, by similar logic: for arbitrary f and g,
we have f = o(g) and g = o(f ) if and only if f = O(g) and g 6= O(f ) and g = O(f ) and
f 6= O(g)—a contradiction! So if f = o(g) then g 6= o(f ). Therefore o is asymmetric.
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You proved in Exercises 6.18, 6.46, and 6.47 that O, Θ, and o are all transitive, so we
won’t repeat the proofs here.

In sum, then, we’ve argued that O is reflexive and transitive (but not symmetric,
asymmetric, or antisymmetric); o is irreflexive, asymmetric, and transitive; and Θ is
reflexive, symmetric, and transitive.

Taking it further: Among the computer scientists, philosophers, and mathematicians who study formal
logic, there’s a special kind of logic called modal logic that’s of significant interest. Modal logic extends
the type of logic we introduced in Chapter 3 to also include logical statements about whether a true
proposition is necessarily true or accidentally true. For example, the proposition Canada won the 2014
Olympic gold medal in curling is true—but the gold-medal game could have turned out differently and, if it
had, that proposition would have been false. But Either it rained yesterday or it didn’t rain yesterday is true,
and there’s no possible scenario in which this proposition would have turned out to be false. We say that
the former statement is “accidentally” true (it was an “accident” of fate that the game turned out the way
it did), but the latter is “necessarily” true.

In modal logic, we evaluate the truth value of a particular logical statement multiple times, once
in each of a setW of so-called possible worlds. Each possible world assigns truth values to every atomic
proposition. Thus every logical proposition ϕ of the form we saw in Chapter 3 has a truth value in each
possible world w ∈ W. But there’s another layer to modal logic. In addition to the set W, we are also
given a relation R ⊆ W ×W, where 〈w,w′〉 ∈ R indicates that w′ is possible relative to w. In addition to the
basic logical connectives from normal logic, we can also write two more types of propositions:

✸ϕ “possibly ϕ” ✸ϕ is true in w if ∃w′ ∈ W such that 〈w,w′〉 ∈ R and ϕ is true in w′.
✷ϕ “necessarily ϕ” ✷ϕ is true in w if ∀w′ ∈ W such that 〈w,w′〉 ∈ R, ϕ is true in w′.

Of course, these operators can be nested, so we might have a proposition like ✷(✸p ⇒ ✷p).
Different assumptions about the relation R will allow us to use modal logic to model different types

of interesting phenomena. For example, we might want to insist that ✷ϕ ⇒ ϕ (“if ϕ is necessarily true,
then ϕ is true”: that is, if ϕ is true in every world w′ ∈ W possible relative to w, then ϕ is true in w). This
axiom corresponds to the relation R being reflexive: w is always possible relative to w. Symmetry and
transitivity correspond to the axioms ϕ ⇒ ✷✸ϕ and ✷ϕ ⇒ ✷✷ϕ.

The general framework of modal logic (with different assumptions about R) has been used to rep-
resent logics of knowledge (where ✷ϕ corresponds to “I know ϕ”); logics of provability (where ✷ϕ
corresponds to “we can prove ϕ”); and logics of possibility and necessity (where ✷ϕ corresponds to
“necessarily ϕ” and ✸ϕ to “possibly ϕ”). Others have also studied temporal logics (where ✷ϕ corresponds
to “always ϕ” and ✸ϕ to “eventually ϕ”); these logical formalisms have proven to be very useful in
formally analyzing the correctness of programs.4

4

For a good intro-
duction to modal
logic, see
4 G. E. Hughes and
M. J. Cresswell. A
New Introduction
to Modal Logic.
Routledge, 1996.8.3.5 Closures of Relations

Until now, in this section we’ve discussed some important properties that certain rela-
tions R ⊆ A×Amay or may not happen to have. We’ll close this section by looking at
how to “force” the relation R to have one or more of these properties. Specifically, we
will introduce the closure of a relation with respect to a property like symmetry: we’ll
take a relation R and expand it into a relation R′ that has the desired property, while
adding as few pairs to R as possible. That is, the symmetric closure of R is the smallest
set R′ ⊇ R such that the relation R′ is symmetric.

Taking it further: In general, a set S is said to be closed under the operation f if, whenever we apply f to
an arbitrary element of S (or to an arbitrary k-tuple of elements from S, if f takes k arguments), then the
result is also an element of S. For example, the integers are closed under + and ·, because the sum of two
integers is always an integer, as is their product. But the integers are not closed under /: for example, 2/3
is not an integer even though 2, 3 ∈ Z. The closure of S under f is the smallest superset of S that is closed
under f .
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Here are the formal definitions:

Definition 8.9 (Reflexive, symmetric, and transitive closures)
Let R ⊆ A×A be a relation.

• The reflexive closure of R is the smallest relation R′ ⊇ R such that R′ is reflexive.
• The symmetric closure of R is the smallest relation R′′ ⊇ R such that R′′ is symmetric.
• The transitive closure of R is the smallest relation R+ ⊇ R such that R+ is transitive.

We’ll illustrate these definitions with an example of the symmetric, reflexive, and
transitive closures of a small relation, and then return to a few of our running exam-
ples of arithmetic relations.

1
2

3

45

(a) The relation R.

1
2

3

45

(b) The reflexive
closure of R.

1
2

3

45

(c) The symmetric
closure of R.

1
2

3

45

(d) The transitive
closure of R.

Figure 8.18: A
relation R, and
several closures.
In each, the dark
arrows had to
be added to R to
achieve the desired
property.

Example 8.26 (Closures of a small relation)
Consider the relation R := {〈1, 5〉, 〈2, 2〉, 〈2, 4〉, 〈4, 1〉, 〈4, 2〉} on {1, 2, 3, 4, 5}. Then we
have the following closures of R. (See Figure 8.18 for visualizations.)

reflexive closure = R∪ {〈1, 1〉, 〈3, 3〉, 〈4, 4〉, 〈5, 5〉} .
symmetric closure = R∪

{
〈5, 1〉︸ ︷︷ ︸

because of 〈1, 5〉

, 〈1, 4〉︸ ︷︷ ︸
because of 〈4, 1〉

}
.

transitive closure = R∪
{

〈2, 1〉︸ ︷︷ ︸
because of 〈2, 4〉 and 〈4, 1〉

, 〈4, 4〉︸ ︷︷ ︸
because of 〈4, 2〉 and 〈2, 4〉

〈4, 5〉︸ ︷︷ ︸
because of 〈4, 1〉 and 〈1, 5〉

, 〈2, 5〉︸ ︷︷ ︸
because of 〈2, 4〉 and 〈4, 5〉

}
.

It’s worth noting that 〈2, 5〉 had to be in the transitive closure R+ of R, even though
there was no x such that 〈2, x〉 ∈ R and 〈x, 5〉 ∈ R. There’s one more intermediate step
in the chain of reasoning: the pair 〈4, 5〉 had to be in R+ because 〈4, 1〉, 〈1, 5〉 ∈ R, and
therefore both 〈2, 4〉 and 〈4, 5〉 had to be in R+—so 〈2, 5〉 had to be in R+ as well.

Example 8.27 (Closures of divides)
Recall the “divides” relation R = {〈n,m〉 : m mod n = 0}. Because R is both reflexive
and transitive, the reflexive closure and transitive closure of R are both just R itself.
The symmetric closure of R is the set of pairs 〈n,m〉where one of n and m is a divisor
of the other (in either order): {〈n,m〉 : n mod m = 0 or m mod n = 0}.

Example 8.28 (Closures of >)
Recall the “greater than” relation {〈n,m〉 : n > m}. The reflexive closure of > is ≥—
that is, the set {〈n,m〉 : n ≥ m}. The symmetric closure of > is the relation 6=—that
is, the set {〈n,m〉 : n > m or m > n} = {〈n,m〉 : n 6= m}. The relation > is already
transitive, so the transitive closure of > is > itself.
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0 1 2 3

(a) The relation R.

0 1 2 3

(b) 〈0, 1〉 and 〈1, 2〉
mean that we must
add 〈0, 2〉.

0 1 2 3

(c) 〈1, 2〉 and 〈2, 3〉
mean that we must
add 〈0, 2〉.

0 1 2 3

(d) 〈0, 2〉, which we
added in (b), and 〈2, 3〉
mean that we must
now add 〈0, 3〉 too.

Figure 8.19: Com-
puting the tran-
sitive closure
of the relation
{〈0, 1〉, 〈1, 2〉, 〈2, 3〉}.
Note that in panel
(d), we could have
instead argued that
we had to add 〈0, 3〉
because of 〈0, 1〉
and 〈1, 3〉 (from
panel (c)), rather
than because of
〈0, 2〉 (from panel
(b)) and 〈2, 3〉.

Computing the closures of a relation
How did we compute the closures in the last few examples? The approach itself is

simple: starting with R′ = R, we repeatedly look for a violation of the desired prop-
erty in R′ (an element of R′ required by the property but missing from R′), and repair
that violation by adding the necessary element to R′. For the reflexive and symmetric
closures, this idea is straightforward: the violations of reflexivity are precisely those
elements of {〈a, a〉 : a ∈ A} not already in R, and the violations of symmetry are pre-
cisely those elements of R−1 that are not already in R.

reflexive-closure(R):
Input: a relation R ⊆ A×A
Output: the smallest reflexive R′ ⊇ R
1: return R∪ {〈a, a〉 : a ∈ A}

symmetric-closure(R):
Input: a relation R ⊆ A×A
Output: the smallest symmetric R′ ⊇ R
1: return R∪ R−1

transitive-closure(R):
Input: a relation R ⊆ A×A
Output: the smallest transitive R′ ⊇ R
1: R′ := R
2: while there exist a, b, c ∈ A such that

〈a, b〉 ∈ R and 〈b, c〉 ∈ R and 〈a, c〉 /∈ R′:
3: R′ := R′ ∪ {〈a, c〉}
4: return R′

Figure 8.20: Algo-
rithms to compute
reflexive, symmet-
ric, and transitive
closures of a rela-
tion R ⊆ A× A,
when A is finite.

For the transitive closure, things are slightly trickier: as
we resolve existing violations by adding missing pairs to
the relation, new violations of transitivity can crop up. (See
Figure 8.19.) Thus, to compute the transitive closure, we can
simply iterate as described above: starting with R′ := R,
repeatedly add to R′ any missing 〈a, c〉with 〈a, b〉, 〈b, c〉 ∈ R′,
until there are no more violations of transitivity. (While we
won’t prove it here, it’s an important fact that the order in
which we add elements to the transitive closure turns out
not to affect the final result.) See Figure 8.20 for algorithms
to compute these closures for R ⊆ A× A for a finite set A.
(Note that these algorithms are not guaranteed to terminate if
A is infinite! Also, there are faster ways to find the transitive
closure based on graph algorithms—see Chapter 11—but the
basic idea is captured here.)

Alternatively, here’s another way to view the transitive closure of R ⊆ A× A. The
relation R ◦ R denotes precisely those pairs 〈a, c〉where 〈a, b〉, 〈b, c〉 ∈ R for some b ∈ A.
Thus the “direct” violations of transitivity are pairs that are in R ◦ R but not R. But, as
we saw in Figure 8.19, the relation R ∪ (R ◦ R) might have violations of transitivity, too:
that is, a pair 〈a, d〉 /∈ R ∪ (R ◦ R) but where 〈a, b〉 ∈ R and 〈b, d〉 ∈ R ◦ R for some b ∈ A.
So we have to add R ◦ R ◦ R as well. And so on! In other words, the transitive closure
R+ of R is given by R+ = R ∪ R2 ∪ R3 ∪ · · · , where Rk := R ◦ R ◦ · · · ◦ R is the result of
composing Rwith itself k times. Thus:

• the reflexive closure of R is R ∪ {〈a, a〉 : a ∈ A}.
• the symmetric closure of R is R∪ R−1.
• the transitive closure of R is R ∪ R2 ∪ R3 ∪ · · · .

(Exercise 8.104 asks you to prove correctness, and Exercise 8.105 asks you to show that
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the transitive closure can be much bigger than the relation itself.)

Closures with respect to multiple properties at once
In addition to defining the closure of a relation Rwith respect to one of the three

properties (reflexivity, symmetry, or transitivity), we can also define the closure with
respect to two or more of these properties simultaneously. Any subset of these prop-
erties makes sense in this context, but the two most common combinations require
reflexivity and transitivity, with or without requiring symmetry:

Definition 8.10 (Reflexive (symmetric) transitive closure)
Let R ⊆ A×A be a relation.

• The reflexive transitive closure of R is the smallest relation R∗ ⊇ R such that R∗ is both
reflexive and transitive.

• The reflexive symmetric transitive closure of R is the smallest relation R≡ ⊇ R such
that R≡ is reflexive, symmetric, and transitive.

Example 8.29 (Parent)
Consider the relation parent := {〈p, c〉 : p is a parent of c} over a set S. (This example
makes sense if we think of S as a set of people where “parent” has biological mean-
ing, or if we think of S as a set of nodes in a tree.) Then:

• The transitive closure of parent is

parent ∪ grandparent ∪ greatgrandparent∪ greatgreatgrandparent · · · .

• The reflexive transitive closure of parent is ancestor. That is, 〈x, y〉 is in the reflexive
transitive closure of parent if and only if x is a direct ancestor of y, counting x as
a direct ancestor of x herself. (Compared to the transitive closure, the reflexive
transitive closure also includes the relation yourself := {〈x, x〉 : x ∈ S}.)

Figure 8.21: The
sat-immediately-
to-the-right-of
relation.

Example 8.30 (Adjacent seating at a concert)
Consider a set S of people attending a concert held in a theater with rows of seats.
Let R denote the relation of “sat immediately to the right of,” so that 〈x, y〉 ∈ R if and
only if x sat one seat to y’s right in the same row. (See Figure 8.21.)

The transitive closure of R is “sat (not necessarily immediately) to the right of.”
The symmetric closure of R is “sat immediately next to.” The symmetric transitive
closure of R is “sat in the same row as.” The reflexive symmetric transitive closure of
R is also “sat in the same row as.” (You sit in the same row as yourself.)

As we discussed previously, we can think of the transitive closure R+ of the rela-
tion R as the result of repeating R one or more times: in other words, we have that
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R+ := R∪ R2 ∪R3 ∪ · · ·. The reflexive transitive closure of R also adds {〈a, a〉 : a ∈ A}
to the closure, which we can view as the result of repeating R zero or more times. In
other words, we have that the reflexive transitive closure R∗ is R∗ = R0 ∪ R+, where
R0 := {〈a, a〉 : a ∈ A} represents the “zero-hop” application of R.

Taking it further: The basic idea underlying the (reflexive) transitive closure of a relation R—allowing
(zero or) one or more repetitions of a relation R—also comes up in a widely useful tool for pattern
matching in text, called regular expressions. Using regular expressions, you can search a text file for lines
that match certain kinds of patterns (like: find all violations in the dictionary of the “I before E except
after C” rule), or apply some operation to all files with a certain name (like: remove all .txt files). For
more discussion of regular expressions more generally, and a little more on the connection between
(reflexive) transitive closure and regular expressions, see p. 830.

We’ll end with one last example of closures of an arithmetic relation:

Example 8.31 (Closures of the successor relation)
Problem: The successor relation on the integers is {〈n, n+ 1〉 : n ∈ Z}. What are the

reflexive, symmetric, transitive, reflexive transitive, and reflexive symmetric transi-
tive closures of this relation?

Solution:

• The reflexive closure of successor is the relation {〈n,m〉 : m = n or m = n + 1}—
that is, pairs of integers where the second component is equal to or one greater
than the first component.

• The symmetric closure of successor is {〈n,m〉 : m = n− 1 or m = n + 1}—that is,
pairs of integers where the second component is exactly one less or one greater
than the first component.

• The transitive closure of successor is the relation <—that is, the relation
{〈n,m〉 : n < m}. In fact, the infinite version of Figure 8.20 illustrates why: for
any n, we have 〈n, n + 1〉 and 〈n + 1, n + 2〉 in successor, so the transitive closure
includes 〈n, n + 2〉. But 〈n + 2, n + 3〉 is in successor, so the transitive closure also
includes 〈n, n + 3〉. But 〈n + 3, n + 4〉 is in successor, so the transitive closure also
includes 〈n, n + 4〉. And so forth! (See Exercise 8.106 for a formal proof.)

• The reflexive transitive closure of the successor relation {〈x, x + 1〉 : x ∈ Z} is ≤.

• Finally, the reflexive symmetric transitive closure of successor is actually Z × Z:
that is, every pair of integers is in this relation.

Incidentally, we can view ≤ (the reflexive transitive closure of successor) as either the
reflexive closure of < (the transitive closure of successor), or we can view ≤ as the transi-
tive closure of {〈n,m〉 : m = n or m = n + 1} (the reflexive closure of successor). It’s true in
general that the reflexive closure of the transitive closure equals the transitive closure
of the reflexive closure.
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Computer Science Connections

Regular Expressions

Regular expressions (sometimes called regexps or regexes for short) are a
mechanism to express pattern-matching searches in strings. (Their name
is also a bit funny; more on that below.) Regular expressions are used by a
number of useful utilities on Unix-based systems, like grep (which prints all
lines of a file that match a given pattern) and sed (which can perform search-
and-replace operations for particular patterns). And many programming
languages have a capability for regular-expression processing—they’re a
tremendously handy tool for text processing.

A matches the single character A
B matches the single character B
...

...

Z matches the single character Z
. matches any single character in Σ
αβ matches any string xy where x

matches α and y matches β
α|β matches any string x where x

matches α or x matches β

Figure 8.22: The basics of regexps.

Let Σ denote an alphabet of symbols. (For convenience, think of
Σ = {A, B, . . . , Z}, but generally it’s the set of all ASCII characters.) Let Σ∗
denote the set of all finite-length strings of symbols from Σ. (Note that the ∗

notation echoes the notation for the reflexive transitive closure: Σ∗ is the set
of elements resulting from “repeating” Σ zero or more times.)

The basics of regular expressions are shown in Figure 8.22. Essen-
tially the syntax of regular expressions (recursively) defines a relation
Matches ⊆ Regexps × Σ∗, where certain strings match a given pattern α.
Figure 8.22 says that, for example, {s : 〈αβ, s〉 ∈ Matches} is precisely the set
of strings that can be written xy where 〈α, x〉 and 〈β, y〉 are inMatches. There’s
some other shorthand for common constructions, too: for example, a list of
characters in square brackets matches any of those characters (for example,
[AEIOU] is shorthand for (A|E|I|O|U)). (Other syntax allows a range of char-
acters or everything but a list of characters: for example, [A-Z] for all letters,
and [^AEIOU] for consonants.) A few other regexp operators correspond to the
types of closures that we introduced in this section. (See Figure 8.23.)

α? matches any string that matches α
or the empty string

α+ matches any string x1x2 . . . xk , with
k ≥ 1, where each xi matches α

α* matches any string x1x2 . . . xk , with
k ≥ 0, where each xi matches α

Figure 8.23: Some more regexp opera-
tors. The + operator is roughly analo-
gous to transitive closure—α+ matches
any string that consists of one or more
repetitions of α—while ? is roughly
analogous to the reflexive closure and
* to the reflexive transitive closure. The
only difference is that here we’re com-
bining repetitions by concatenation rather
than by composition.

For example, the following regular expressions match words in a dictio-
nary that have some vaguely interesting properties:

1. .*(CIE|[^C]EI).*
2. .*[^AEIOU][^AEIOU][^AEIOU][^AEIOU][^AEIOU].*
3. [^AEIOU]*A[^AEIOU]*E[^AEIOU]*I[^AEIOU]*O[^AEIOU]*U[^AEIOU]*

Respectively, these regexps match (1) words that violate the “I before E
except after C” rule (like WEIRD or GLACIER); (2) words with five consecutive
consonants (like LENGTHS or WITCHCRAFT); and (3) words with all five vowels,
once each, in alphabetical order (like FACETIOUS and ABSTEMIOUS).

The odd-sounding name “regular expression” derives from a related
notion, called a “regular language.” A language L ⊆ Σ∗ is a subset of all
strings; in the subfield of theoretical computer science called formal language
theory, we’re interested in how easy it is to determine whether a given string
x ∈ Σ∗ is in L or not, for a particular language L. (Some example languages:
the set of words containing only type of vowel, or the set of binary strings
with the same number of 1s and 0s.) A regular language is one for which it’s
possible to determine whether x ∈ L by reading the string from left to right
and, at each step, remembering only a constant amount of information about
what you’ve seen so far. (The set of univocalic words is regular; the set of
“balanced” bitstrings is not.)5

We have only hinted at the depth of
regular languages, regular expressions,
and formal language theory here.
There’s a whole courseload of material
about these languages: for a bit more,
see p. 846; for a lot more, see a good
textbook on computational complexity
and formal languages, like
5 Michael Sipser. Introduction to the The-
ory of Computation. Course Technology,
3rd edition, 2012; and Dexter Kozen.
Automata and Computability. Springer,
1997.
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8.3.6 Exercises

8.50 Draw a directed graph representing the relation
{〈x, x2 mod 13〉 : x ∈ Z13

}
.

8.51 Repeat for {〈x, 3x mod 13〉 : x ∈ Z15}.
8.52 Repeat for {〈x, 3x mod 15〉 : x ∈ Z15}.

Which of the following relations on {0, 1, 2, 3, 4} are reflexive? Irreflexive? Neither?
8.53

{〈x, x〉 : x5 ≡5 x
}

8.54 {〈x, y〉 : x + y ≡5 0}
8.55 {〈x, y〉 : there exists z such that x · z ≡5 y}
8.56

{〈x, y〉 : there exists z such that x2 · z2 ≡5 y
}

Let R ⊆ A×A and T ⊆ A×A be relations. Prove or disprove the following:
8.57 R is reflexive if and only if R−1 is reflexive.
8.58 if R and T are both reflexive, then R ◦ T is reflexive.
8.59 if R ◦ T is reflexive, then R and T are both reflexive.
8.60 R is irreflexive if and only if R−1 is irreflexive.
8.61 if R and T are both irreflexive, then R ◦ T is irreflexive.

Which relations from Exercises 8.53–8.56 on {0, 1, 2, 3, 4} are symmetric? Antisymmetric? Asymmetric? Explain.
8.62

{〈x, x〉 : x5 ≡5 x
}

8.63 {〈x, y〉 : x + y ≡5 0}
8.64 {〈x, y〉 : there exists z such that x · z ≡5 y}
8.65

{〈x, y〉 : there exists z such that x2 · z2 ≡5 y
}

Prove Theorem 8.1, connecting the symmetry/asymmetry/antisymmetry of a relation R to the inverse R−1 of R.
8.66 Prove that R is symmetric if and only if R∩R−1 = R = R−1.
8.67 Prove that R is antisymmetric if and only if R ∩R−1 ⊆ {〈a, a〉 : a ∈ A}.
8.68 Prove that R is asymmetric if and only if R∩ R−1 = ∅.

8.69 Be careful: it’s possible for a relation R ⊆ A × A to be both symmetric and antisymmetric!
Describe, as precisely as possible, the set of relations on A that are both.
8.70 Prove or disprove: if R is asymmetric, then R is antisymmetric.
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reflexive Exer. 8.71 Exer. 8.72 Exer. 8.73
irreflexive Exer. 8.74 Exer. 8.75 Exer. 8.76

neither Exer. 8.77 Exer. 8.78 Exer. 8.79

Figure 8.24: Some
fill-in-the-blank
relations.

Fill in each cell in Figure 8.24 with a relation on {0, 1} that satisfies the given criteria.
Or, if the criteria are inconsistent, explain why there is no such a relation.
8.71 a reflexive, symmetric relation on {0, 1} .
8.72 a reflexive, antisymmetric relation on {0, 1} .
8.73 a reflexive, asymmetric relation on {0, 1} .
8.74 an irreflexive, symmetric relation on {0, 1} .
8.75 an irreflexive, antisymmetric relation on {0, 1} .
8.76 an irreflexive, asymmetric relation on {0, 1} .
8.77 a symmetric relation on {0, 1} that’s neither reflexive nor irreflexive.
8.78 an antisymmetric relation on {0, 1} that’s neither reflexive nor irreflexive.
8.79 an asymmetric relation on {0, 1} that’s neither reflexive nor irreflexive.

Which relations from Exercises 8.53–8.56 on {0, 1, 2, 3, 4} are transitive? Explain.
8.80

{
〈x, x〉 : x5 ≡5 x

}
.

8.81 {〈x, y〉 : x + y ≡5 0}.
8.82 {〈x, y〉 : there exists z such that x · z ≡5 y}.
8.83

{
〈x, y〉 : there exists z such that x2 · z2 ≡5 y

}
.

Formally prove the following statements about a relation R ⊆ A×A, using the definitions of the given properties.
8.84 Prove that, if R is irreflexive and transitive, then R is asymmetric.
8.85 Prove Theorem 8.2: show that R is transitive if and only if R ◦ R ⊆ R.
8.86 Theorem 8.2 cannot be stated with an = instead of ⊆ (although I actually made this mistake in a
previous draft!). Give an example of a transitive relation R where R ◦ R ⊂ R (that is, where R ◦ R 6= R).
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The following exercises describe a relation with certain properties. For each, say whether it is possible for a relation
R ⊆ A×A to simultaneously have all of the stated properties. If so, describe as precisely as possible what structure the
relation R must have. If not, prove that it is impossible.
8.87 Is it possible for R to be simultaneously symmetric, transitive, and irreflexive?
8.88 Is it possible for R to be simultaneously transitive and a function?

8.89 Identify all relations R on {0, 1} that are transitive.
8.90 Of the transitive relations on {0, 1} from Exercise 8.89, which are also reflexive and symmetric?

Consider the relation R := {〈2, 4〉, 〈4, 3〉, 〈4, 4〉} on the set {1, 2, 3, 4}.
8.91 What is the reflexive closure of R?
8.92 What is the symmetric closure of R?
8.93 What is the transitive closure of R?
8.94 What is the reflexive transitive closure of R?
8.95 What is the reflexive symmetric transitive closure of R?

Now consider the relation T := {〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 4〉, 〈4, 5〉} on {1, 2, 3, 4, 5}.
8.96 What is the reflexive closure of T?
8.97 What is the symmetric closure of T?
8.98 What is the transitive closure of T?

8.99 What is the symmetric closure of ≥?
reflexive-closure(R):
Input: a relation R ⊆ A×A
Output: the smallest reflexive R′ ⊇ R
1: return R∪ {〈a, a〉 : a ∈ A}

symmetric-closure(R):
Input: a relation R ⊆ A×A
Output: the smallest symmetric R′ ⊇ R
1: return R∪ R−1

transitive-closure(R):
Input: a relation R ⊆ A×A
Output: the smallest transitive R′ ⊇ R
1: R′ := R
2: while there exist a, b, c ∈ A such that

〈a, b〉 ∈ R and 〈b, c〉 ∈ R and 〈a, c〉 /∈ R′:
3: R′ := R′ ∪ {〈a, c〉}
4: return R′

Figure 8.25: A
reminder of algo-
rithms to compute
the reflexive,
symmetric, and
transitive closures
of a relation on a
finite set.

The next few exercises ask you to implement relations (and the standard relation
operations) in a programming language of your choice. Don’t worry too much about
efficiency in your implementation; it’s okay to run in time Θ(n3), Θ(n4) or even
Θ(n5) when relation R is on a set of size n.
8.100 (programming required) Develop a basic implementation of re-
lations on a set A. Also implement inverse (R−1) and composition (R ◦ T,
where both R and T are subsets of A×A).
8.101 (programming required) Write functions reflexive?, irreflexive?,
symmetric?, antisymmetric?, asymmetric?, and transitive? to test whether a
given relation R has the specified property.
8.102 (programming required) Implement the closure algorithms (repro-
duced in Figure 8.25) for relations.
8.103 (programming required) Using your implementations from the last
few exercises, verify your answers to Exercises 8.71–8.79 (see Figure 8.24).

8.104 Prove that the transitive closure of R is indeed
R+ := R ∪R2 ∪R3 ∪ · · ·, as follows: show that if S ⊇ R is any transitive
relation, then Rk ⊆ S. (We’d also need to prove that R+ is transitive, but you
can omit this part of the proof. You may find a recursive definition of Rk

most helpful: R1 = R and Rk = R ◦ Rk−1.)

8.105 Give an example of a relation R ⊆ A× A, for a finite set A, such that the transitive closure of R
contains at least c · |R|2 pairs, for some constant c > 0. Make c as big as you can.

8.106 Recall the relation successor :=
{
〈x, x + 1〉 : x ∈ Z≥0}. Prove by induction on k that, for any integer

x and any positive integer k, we have that 〈x, x + k〉 is in the transitive closure of successor. (In other words,
you’re showing that the transitive closure of successor is ≥. Note that you cannot rely on the algorithm in
Figure 8.25 because Z≥0 is not finite!)

8.107 We talked about the X closure of a relation R, for X being any nonempty subset of the properties
of reflexivity, symmetry, and transitivity. But we didn’t define the “antisymmetric closure” of a relation
R—with good reason! Why doesn’t the antisymmetric closure make sense?
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8.4 Special Relations: Equivalence Relations and Partial/Total Orders

Talking with you is sort of the conversational
equivalent of an out of body experience.

Bill Watterson (b. 1958), Calvin & Hobbes

In Section 8.3, we introduced three key categories of properties that a particular
relation R ⊆ A×A might have: (ir)reflexivity, (a/anti)symmetry, and transitivity. Here
we’ll consider relations R that have one of two particular combinations of those three
categories of properties. Two very different “flavors” of relations emerge from these
two particular constellations of properties:

• equivalence relations (reflexive, symmetric, and transitive), which divide the elements
of A into one or more groups of equivalent elements, so that all elements in the
same group are “the same” under R; and

• order relations (reflexive or irreflexive, antisymmetric, and transitive), which “rank”
the elements of A, so that some elements of A are “more R” than others.

In this section, we’ll give formal definitions of these two types of relations, and look at
a few applications.

8.4.1 Equivalence Relations

An equivalence relation R ⊆ A×A separates the elements of A into one or more groups,
where any two elements in the same group are equivalent according to R:

Definition 8.11 (Equivalence relation)
An equivalence relation is a relation that is reflexive, symmetric, and transitive.

Jan

MarMay

Jul

Aug

Oct
Dec

Apr

JunSep

Nov

Feb

Figure 8.26: The
months-of-the-same
length relation (a
reminder).

The most important equivalence relation that you’ve seen is equality (=): cer-
tainly, for any objects a, b, and c, we have that (i) a = a; (ii) a = b if and only if
b = a; and (iii) if a = b and b = c, then a = c.

The relation sat in the same row as (see Example 8.30) is also an equivalence
relation: it’s reflexive (you sat in the same row as you yourself), symmetric
(anyone you sat in the same row as also sat in the same row as you), and tran-
sitive (you sat in the same row as anyone who sat in the same row as someone
who sat in the same row as you). And we already saw another example in
Example 8.11: the relation

{〈m1,m2〉 : months m1 and m2 have the same number of days (in some years)}

(see Figure 8.26 for a reminder) is also an equivalence relation. It’s tedious but
simple to verify by checking all pairs that the relation in Figure 8.26 is reflexive,
symmetric, and transitive. (See also Exercises 8.115–8.117.)

Here are a few more examples of equivalence relations:
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Example 8.32 (Some equivalence relations)
All of the following are equivalence relations:

1. The set of pairs from {0, 1, . . . , 23}with the same representation on a 12-hour
clock:





〈0, 0〉, 〈0, 12〉, 〈12, 0〉, 〈12, 12〉,
〈1, 1〉, 〈1, 13〉, 〈13, 1〉, 〈13, 13〉,

...
〈11, 11〉, 〈11, 23〉, 〈23, 11〉, 〈23, 23〉





.

2. The asymptotic relation Θ (that is, for two functions f and g, we have 〈f , g〉 ∈ Θ if
and only if f is Θ(g)). We argued in Examples 8.24–8.25 and Exercise 6.46 that Θ is
reflexive, symmetric, and transitive.

3. The relation ≡ on logical propositions, where P ≡ Q if and only if P and Q are
true under precisely the same set of truth assignments. (We even used the word
“equivalent” in defining ≡, which we called logical equivalence back in Chapter 3.)

Example 8.33 (All equivalence relations on a small set)
Problem: List all equivalence relations on the set {a, b, c}.

Solution: There are five different equivalence relations on this set:

{〈a, a〉, 〈b, b〉, 〈c, c〉} “no element is equivalent to any other”

{〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈c, c〉} “a and b are equivalent, but they’re different from c”

{〈a, a〉, 〈a, c〉, 〈b, b〉, 〈c, a〉, 〈c, c〉} “a and c are equivalent, but they’re different from b”

{〈a, a〉, 〈b, b〉, 〈b, c〉, 〈c, b〉, 〈c, c〉} “b and c are equivalent, but they’re different from a”

{〈a, a〉, 〈a, b〉, 〈a, c〉, 〈b, a〉, 〈b, b〉, 〈b, c〉, 〈c, a〉, 〈c, b〉, 〈c, c〉} . “all elements are equivalent”

Equivalence classes
The descriptions of the quintet of equivalence relations on the set {a, b, c} from

Example 8.33 makes more explicit the other way that we’ve talked about an equiva-
lence relation R on A: as a relation that carves up A into one or more equivalence classes,
where any two elements of the same equivalence class are related by R (and no two
elements of different classes are). Here’s the formal definition:

Definition 8.12 (Equivalence class)
Let R ⊆ A×A be an equivalence relation. The equivalence class of a ∈ A is defined as the
set {b ∈ A : 〈a, b〉 ∈ R} of elements related to A under R. The equivalence class of a ∈ A
under R is denoted by [a]R—or, when R is clear from context, just as [a].
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The equivalence classes of an equivalence relation on A form a partition of the set
A—that is, every element of A is in one and only one equivalence class. (See Defini-
tion 2.30 for a reminder of the definition of “partition.”)

Example 8.34 (Equivalent mod 5)
Define the relation ≡5 on Z, so that 〈x, y〉 ∈ ≡5 if and only if x mod 5 = y mod 5. It’s
easy to check that all three requirements (reflexivity, symmetry, and transitivity) are
met; see Examples 8.18, 8.20, and 8.23. There are five equivalence classes under ≡5:

{0, 5, 10, . . .} , {1, 6, 11, . . .} , {2, 7, 12, . . .} , {3, 8, 13, . . .} , and {4, 9, 14, . . .} ,

corresponding to the five possible values mod 5.

Example 8.35 (Some equivalence classes)
The five different equivalence relations on {a, b, c} in Example 8.33 correspond to five
different sets of equivalence classes:

{
{a} , {b} , {c}

}
“no element is equivalent to any other”

{
{a, b} , {c}

}
“a and b are equivalent, but they’re different from c”

{
{a, c} , {b}

}
“a and c are equivalent, but they’re different from b”

{
{a} , {b, c}

}
“b and c are equivalent, but they’re different from a”

{
{a, b, c}

}
. “all elements are equivalent”

An example: equivalence of rational numbers
Back in Chapter 2, we defined the rational numbers (that is, fractions) as the set

Q := Z × Z 6=0—that is, as two-element sequences of integers, respectively called
the numerator and the denominator, where the denominator must be nonzero. (See
Example 2.39.) Here you will give a formal treatment of two rational numbers like
〈17, 34〉 and 〈101, 202〉 being equivalent, in the sense that 17

34 = 101
202 = 1

2 :

Example 8.36 (Equivalence of rationals by reducing to lowest terms)
Problem: Formally define a relation ≡ on Q that captures the notion of equality for

fractions, and prove that ≡ is an equivalence relation.

Solution: We define two rationals 〈a, b〉 and 〈c, d〉 as equivalent if and only if ad = bc—
that is, we define the relation ≡ as the set

{〈
〈a, b〉, 〈c, d〉

〉
: ad = bc

}
.

To show that ≡ is an equivalence relation, we must prove that ≡ is reflexive, sym-
metric, and transitive. These three properties follow fairly straightforwardly from
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the fact that the relation = on integers is an equivalence relation. We’ll prove
symmetry (reflexivity and transitivity can be proven analogously): for arbitrary
〈a, b〉, 〈c, d〉 ∈ Q we have

〈a, b〉 ≡ 〈c, d〉 ⇒ ad = bc definition of ≡

⇒ bc = ad symmetry of =

⇒ 〈c, d〉 ≡ 〈a, b〉. definition of ≡

Taking it further: Recall that the equivalence class of a rational 〈a, b〉 ∈ Q under ≡, denoted [〈a, b〉]≡,
represents the set of all rationals equivalent to 〈a, b〉. For example,

[〈17, 34〉]≡ = {〈1, 2〉, 〈−1,−2〉, 〈2, 4〉, 〈−2,−4〉, . . . , 〈17, 34〉, . . .} .
For equivalence relations like ≡ for Q, we may agree to associate an equivalence class with a canonical
element of that class—here, the representative that’s “in lowest terms.” So we might agree to write 〈1, 2〉
to denote the equivalence class [〈1, 2〉], for example. This idea doesn’t matter too much for the rationals,
but it plays an important (albeit rather technical) role in figuring out how to define the real numbers
in a mathematically coherent way. One standard way of defining the real numbers is as the equivalence
classes of converging infinite sequences of rational numbers, called Cauchy sequences after the 19th-century
French mathematician Augustin Louis Cauchy. (Two converging infinite sequences of rational numbers
are defined to be equivalent if they converge to the same limit—that is, if the two sequences eventually
differ by less than ε, for all ε > 0.) Thus when we write π, we’re actually secretly denoting an infinitely
large set of equivalent converging infinite sequences of rational numbers—but we’re representing that
equivalence class using a particular canonical form. Actually producing a coherent definition of the real
numbers is a surprisingly recent development in mathematics, dating back less than 150 years. For more,
see a good textbook on the subfield of math called analysis.6

6

For example, this
book is a classic:
6 Walter Rudin.
Principles of math-
ematical analysis.
McGraw–Hill, third
edition, 1976.
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(b) A coarsening of ≡.
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(c) A refinement of ≡.

Figure 8.27: Re-
fining/coarsening
an equivalence
relation. In (a), dots
represent elements;
each colored region
denotes an equiv-
alence class under
≡. Panel (b) shows
a new equivalence
relation formed by
merging classes
from ≡; (c) shows
a new equivalence
relation formed by
subdividing classes
from ≡.

An equivalence relation ≡ on A slices
up the elements of A into equivalence
classes—that is, disjoint subsets of A
such that any two elements of the same
class are related by ≡. For example,
you might consider two restaurants
equivalent if they serve food from the
same cuisine (Thai, Indian, Ethiopian, Chinese, British, Minnesotan, . . .). But, given ≡,
we can imagine further subdividing the equivalence classes under ≡ by making finer-
grained distinctions (that is, refining ≡)—perhaps dividing Indian into North Indian
and South Indian, and Chinese into Americanized Chinese and Authentic Chinese.
Or we could make ≡ less specific (that is, coarsening ≡) by combining some of the
equivalence classes—perhaps having only two equivalence classes, Delicious (Thai,
Indian, Ethiopian, Chinese) and Okay (British, Minnesotan). See Figure 8.27.

Definition 8.13 (Coarsening/refining equivalence relations)
Consider two equivalence relations ≡c and ≡r on the same set A. We say that ≡r is a
refinement of ≡c, or that ≡c is a coarsening of ≡r, if (a ≡r b) ⇒ (a ≡c b) for any
〈a, b〉 ∈ A×A. We can also refer to ≡c as coarser than ≡r , and ≡r as finer than ≡c.
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For example, equivalence mod 10 is a refinement of equivalence mod 5: whenever
n ≡10 m—that is, when n mod 10 = m mod 10—we know for certain that n mod 5 =
m mod 5 too. (In other words, we have (n ≡10 m) ⇒ (n ≡5 m).) An equivalence class of
the coarser relation is formed from the union of one or more equivalence classes of the
finer relation. Here ≡10 is a refinement of ≡5, and, for example, the equivalence class
[3]≡5 is the union of two equivalence classes from ≡10, namely [3]≡10 ∪ [8]≡10.

Taking it further: A deterministic finite automaton (DFA) is a simple model of a so-called “machine” that
has a finite amount of memory, and processes an input string by moving from state to state according to
a fixed set of rules. DFAs can be used for a variety of applications (for example, in computer architecture,
compilers, or in modeling simple behavior in computer games). And they can also be understood in
terms of equivalence relations. See p. 846 for more.

Example 8.37 (Refining/coarsening equivalence relations on {a, b, c})
In Example 8.35, we considered five different equivalence relations on {a, b, c}:

{{a} , {b} , {c}}

{{a, b} , {c}} {{a, c} , {b}} {{a} , {b, c}}

{{a, b, c}}

Of these, all three equivalence relations in the middle row refine the one-class
equivalence relation {{a, b, c}} and coarsen the three-class equivalence relation
{{a} , {b} , {c}}. (And the three-class equivalence relation {{a} , {b} , {c}} also
refines the one-class equivalence relation {{a, b, c}}.)

Taking it further: This is a very meta comment, but we can think of “is a refinement of” as a relation
on equivalence relations on a set A. In fact, the relation “is a refinement of” is reflexive, antisymmetric,
and transitive: ≡ refines ≡; if ≡1 refines ≡2 and ≡2 refines ≡1 then ≡1 and ≡2 are precisely the same
relation on A; and if ≡1 refines ≡2 and ≡2 refines ≡3 then ≡1 refines ≡3. Thus “is a refinement of” is,
as per the definition to follow in the next section, a partial order on equivalence relations on the set A.
Thus, for example, there is a minimal element according to the “is a refinement of” relation on the set of
equivalence relations on any finite set A—that is, an equivalence relation ≡min such that ≡min is refined
by no relation aside from ≡min itself. (Similarly, there’s a maximal relation ≡max that refines no relation
except itself.) See Exercises 8.118 and 8.119.

8.4.2 Partial and Total Orders

An equivalence relation ≡ on a set A has properties that “feel like” a form of equality—
differing from = only in that there might be multiple elements that are unequal but
nonetheless cannot be distinguished by ≡. Here we’ll introduce a different special type
of relation, more akin to ≤ than =, that instead describes a consistent order among the
elements of A:
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Definition 8.14 (Partial Order)
Let A be a set. A relation � on A that is reflexive, antisymmetric, and transitive is called a
partial order. (A relation ≺ on A that is irreflexive, antisymmetric, and transitive is called
a strict partial order.)

(Actually, the requirement of antisymmetry in a strict partial order is redundant; see
Exercise 8.84.) Here are a few examples, from arithmetic and sets:

Example 8.38 (Some (strict) partial orders on Z: |, >, and ≤)
In Examples 8.18, 8.20, and 8.23, we showed that the following relations are all anti-
symmetric, transitive, and either reflexive or irreflexive:

1. divides (reflexive): R1 = {〈n,m〉 : m mod n = 0} is a partial order.
2. greater than (irreflexive): R2 = {〈n,m〉 : n > m} is a strict partial order.
3. less than or equal to (reflexive): R3 = {〈n,m〉 : n ≤ m} is a partial order.

Example 8.39 (The subset relation)
Consider the relation ⊆ on the set P({0, 1}), which consists of the following pairs of
sets:

• {} ⊆ {0}, {} ⊆ {1}, and {} ⊆ {0, 1}.
• {0} ⊆ {0} and {0} ⊆ {0, 1}.
• {1} ⊆ {1} and {1} ⊆ {0, 1}.
• {0, 1} ⊆ {0, 1}.

It’s easy to verify that ⊆ is reflexive, antisymmetric, and transitive. (One easy way
to see this fact is via Figure 8.28, which abbreviates the visualizations in Figure 8.13
by leaving out an a-to-c arrow if their relationship is implied by transitivity because
of a-to-b and b-to-c arrows. We’ll see more of this type of abbreviated diagram in a
moment.)

{0, 1}

{0} {1}

{}
Figure 8.28: The
⊆ relation on
P({0, 1}): A ⊆ B
if we can get from
A to B by following
arrows in this
diagram.

Comparability and total orders
Note that, in a partial order �, there can be two elements a, b ∈ A such that neither

a � b nor b � a. For example, for the subset relation from Example 8.39 we have
{0} 6⊆ {1} and {1} 6⊆ {0}, and for the divides relation we have 17 6 | 21 and 21 6 | 17.
In this case, the relation � does not say which of these elements is “smaller.” This
phenomenon is the reason that � is called a partial order, because it only specifies how
some pairs compare.

There’s a very mis-
leading common-
language use of
“incomparable”
(or “beyond com-
pare”) to mean
“unequaled”—as in
Cheese from France
is incomparable to
cheese from Wis-
consin. Be careful!
“Incomparable”
means “cannot be
compared” and
not “cannot be
matched.”

Definition 8.15 (Comparability)
Let � be a partial order on A. We say that two elements a ∈ A and b ∈ A are comparable
under � if either a � b or b � a. Otherwise we say that a and b are incomparable.
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When there are no incomparable pairs under �, then we call � a total order:

Definition 8.16 (Total Order)
A relation � on A is a total order if it’s a partial order and every pair of elements in A is
comparable. (A relation ≺ is a strict total order if ≺ is a strict partial order and every pair of
distinct elements in A is comparable.)

A few examples of partial and total orders
Here are a few examples of orders, related to strings and to asymptotics:

Example 8.40 (Ordering strings)
Problem: Let Σ∗ denote the set of all (finite-length) strings of letters. Which of the

following relations on Σ∗ are partial orders? Total orders? Which are strict?

1. 〈x, y〉 ∈ R if |x| ≥ |y|. (The length of a string x—the number of letters in x—is
denoted |x|.)

2. 〈x, y〉 ∈ S if x comes alphabetically no later than y. (See Example 3.46.)
3. 〈x, y〉 ∈ T if the number of As in x is less than the number of As in y.

Solution: 1. The relation {〈x, y〉 : |x| ≥ |y|} is reflexive and transitive, but it is not
antisymmetric: for example, both 〈PASCAL, RASCAL〉 and 〈RASCAL, PASCAL〉 are in
the relation, but RASCAL 6= PASCAL. So this relation isn’t a partial order.

2. The relation “comes alphabetically no later than” is reflexive (every word w
comes alphabetically no later than w), antisymmetric (the only word that comes
alphabetically no later than w and no earlier than w is w itself), and transitive (if
w1 is alphabetically no later than w2 and w2 is no later than w3, then indeed w1
is no later than w3). Thus S is a partial order.
In fact, any two words are comparable under S: either w is a prefix of w′ (and
〈w,w′〉 ∈ S) or there’s a smallest index i in which wi 6= w′

i (and either 〈w,w′〉 ∈ S
or 〈w′,w〉 ∈ S, depending on whether wi is earlier or later in the alphabet than
w′
i). Thus S is actually a total order.

3. The relation “contains fewer As than” is irreflexive (any word w contains exactly
the same number of As as it contains, not fewer than that!) and transitive (if we
have aw < aw′ and aw′ < aw′′ , then we also have aw < aw′′). Therefore the relation
is antisymmetric (by Exercise 8.84), and thus T is a strict partial order.
But neither 〈PASCAL, RASCAL〉 nor 〈RASCAL, PASCAL〉 are in T—both words con-
tain 2 As, so neither has fewer than the other—and thus RASCAL and PASCAL are
incomparable, and T is not a (strict) total order.

Example 8.41 (O and o as orders?)
We’ve argued that o is irreflexive (Example 8.24), transitive (Exercise 6.47), and asym-
metric (Example 8.25). Thus o is a strict partial order. But o is not a (strict) total order:
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we saw a function f (n) in Example 6.6 such that f (n) 6= o(n2) and n2 6= o(f (n)), so these
two functions are incomparable.

And, though we showed that O is reflexive and transitive (Exercise 6.18), we
showed that O is not antisymmetric (Example 8.25), because, for example, the func-
tions f (n) = n2 and g(n) = 2n2 are O of each other. Thus O is not a partial order.

Taking it further: A relation like O that is both reflexive and transitive (but not necessarily antisymmet-
ric) is sometimes called a preorder. Although O is not a partial order, it very much has an “ordering-like”
feel to it: it does rank functions by their growth rate, but there are clusters of functions that are all equiv-
alent under O. We can think of O as defining a partial order on the equivalence classes under Θ. We saw
another preorder in Example 8.40, with the relation R (“x and y have the same length”): although there
are many pairs of nonidentical strings x and y where 〈x, y〉, 〈y, x〉 ∈ R, it is only because of ties in lengths
that R fails to be a partial order—indeed, a total order.

Hasse diagrams
Let R be any relation on A. For k ≥ 1, we will call a sequence 〈a1, a2, . . . , ak〉 ∈ Ak

a cycle if 〈a1, a2〉, 〈a2, a3〉, · · · , 〈ak−1, ak〉 ∈ R and 〈ak, a1〉 ∈ R. A cycle is a sequence of
elements, each of which is related by R to the next element in the sequence (where the
last element is related to the first). For a partial order �, there are cycles with k = 1
(because a partial order is reflexive, a1 � a1 for any a1), but there are no longer cycles.
(You’ll prove this fact in Exercise 8.130.)

Recall the “directed graph” visualization of a relation R ⊆ A×A that we introduced
earlier (see Figure 8.13): we write down every element of A, and then, for every pair
〈a1, a2〉 ∈ R, we draw an arrow from a1 to a2. For a relation R that’s a partial order,
we’ll introduce a simplified visualization, called a Hasse diagram, that allows us to Hasse diagrams

are named after
Helmut Hasse,
a 20th-century
German mathemati-
cian.

figure out the full relation R but makes the diagram dramatically cleaner.
Let � be a partial order. Consider three elements a, b, and c such that a � b and

b � c and a � c. Then the very fact that � is a partial order means that a � c can be
inferred from the fact that a � b and b � c. (That’s just transitivity.) Thus we will omit
from the diagram any arrows that can be inferred via transitivity. Similarly, we will
leave out self-loops, which can be inferred from reflexivity. Finally, as we discussed
above, there are no nontrivial cycles (that is, there are no cycles other than self-loops)
in a partial order. Thus we will arrange the elements so that when a � bwe will
draw a physically below b in the diagram; all arrows will implicitly point upward in the
diagram. Here are two examples:

0

1 2

3

4

Figure 8.29: A small
Hasse diagram.

Example 8.42 (A small Hasse diagram)
A Hasse diagram for the partial order

{〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈0, 4〉, 〈1, 1〉, 〈2, 2〉, 〈2, 3〉, 〈2, 4〉, 〈3, 3〉, 〈3, 4〉, 〈4, 4〉}

is shown in Figure 8.29. Note that we’ve omitted all arrow directions (they all point
up), all five self-loops (they can be inferred from reflexivity), and the pairs 〈0, 3〉,
〈0, 4〉, and 〈2, 4〉 (they can be inferred from transitivity).
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1

2 3 5 7 11 13 17 19 23 29 31

4 6 9 10 14 15 21 22 25 26

8 12 18 20 27 28 30

16 24

32 Figure 8.30: A
Hasse diagram
for “divides” on
{1, 2, . . . , 32}.
The darker lines
represent the
Hasse diagram;
the lighter arrows
give the full picture
of the relation,
including all of
the relationships
that can be inferred
from the fact that
the relation is a
partial order.

Example 8.43 (Hasse diagram for divides)
A Hasse diagram for the relation | (divides) on the set {1, 2, . . . , 32} is shown in
Figure 8.30. Again, the diagram omits arrow directions, self-loops, and “indirect”
connections that can be inferred by transitivity. For example, the fact that 2 | 20 is
implicitly represented by the arrows 2 → 4 → 20 (or 2 → 10 → 20).

Which arrows must be shown in a Hasse diagram? Those arrows that cannot be
inferred by the definition of a partial order—so we must draw a direct connections for
all those relationships that are not “short circuits” of pairs of other relationships. In
other words, we must draw lines for all those pairs 〈a, c〉where a � c and there is no
b /∈ {a, c} such that a � b and b � c. Such a c is called an immediate successor of a.

Minimal/maximal elements in a partial order
Consider the partial order � := {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 2〉, 〈2, 4〉, 〈3, 3〉, 〈4, 4〉}—

that is, the divides relation on the set {1, 2, 3, 4}. There’s a strong sense in which 1 is
the “smallest” element under �: every element a satisfies 1 � a. And there’s a slightly
weaker sense in which 3 and 4 are both “largest” elements under �: no element a satis-
fies 3 � a or 4 � a. These ideas inspire two related pairs of definitions:

Warning! When
a � b holds for a
partial order �,
we think of a as
“smaller” than b
under �—a view
that can be a little
misleading if, for
example, the partial
order in question
is ≥ instead of ≤.
One example of
this oddity: for
≥, the immediate
successor of 42 is
41.

Definition 8.17 (Minimum/maximum element)
For a partial order � on A:

• aminimum element is x ∈ A such that, for every y ∈ A, we have x � y.
• amaximum element is x ∈ A such that, for every y ∈ A, we have y � x.
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Definition 8.18 (Minimal/maximal element)
For a partial order � on A:

• aminimal element is x ∈ A such that, for every y ∈ A with y 6= x, we have y 6� x.
• amaximal element is x ∈ A such that, for every y ∈ A with y 6= x, we have x 6� y.

Note that x being a minimal element does not demand that every other element be

A maximalwhatzit
is any whatzit that
loses its whatz-
itness if we add
anything to it. A
maximum whatzit is
the largest possible
whatzit. If you’ve
studied calculus,
you’ve seen a sim-
ilar distinction
under a different
name: maximal cor-
responds to a local
maximum; maxi-
mum corresponds to
a global maximum.

larger than x—only that no element is smaller! (Again, we’re talking about a partial
order—so x 6� y doesn’t imply that y � x.) In other words, a minimal element is one
for which every other element y either satisfies x � y or is incomparable to x.

Example 8.44 (Minimal/maximal/maximum/minimum elements in “divides”)
For the divides relation on {1, 2, . . . , 32} (Example 8.43 and Figure 8.30):

• 1 is a minimum element. (Every n ∈ {1, 2, . . . , 32} satisfies 1 | n.)

• 1 is also a minimal element. (No n ∈ {1, 2, . . . , 32} satisfies n | 1, except n = 1 itself.)

• There is no maximum element. (No n ∈ {1, 2, . . . , 32} aside from 32 satisfies n | 32,
so 32 is the only candidate—but 31 6 | 32.)

• There are a slew of maximal elements: each of {17, 18, . . . , 32} is a maximal ele-
ment. (None of these elements divides any n ∈ {1, 2, . . . , 32} other than itself.)

(You’ll prove that any minimum element is also minimal, and that there can be at most
one minimum element in a partial order, in Exercises 8.143 and 8.144.)

We’ve already seen partial orders that don’t have minimum or maximum elements,
but every partial order must have at least one minimal element and at least one maxi-
mal element—at least, as long as the partial order is over a set A that’s finite:

Theorem 8.3 (Every (finite) partial order has a minimal/maximal element)
Let � ⊆ A× A be a partial order on a finite set A. Then � has at least one minimal element
and at least one maximal element.

Input: a partial order � on a finite set A
Output: a ∈ A that’s minimal under �
1: i := 1
2: x1 := an arbitrarily chosen element in A
3: while there exists any y 6= xi with y � xi :
4: xi+1 := any such y (with y 6= xi and y � xi)
5: i := i + 1
6: return xi

Figure 8.31: An
algorithm to find a
minimal element.

Proof. We’ll prove that there’s a minimal element; the proof
for the maximal element is completely analogous. Our proof
is constructive; we’ll give an algorithm to find a minimal
element. (See Figure 8.31.)

It’s easy to see that if this algorithm terminates, then it returns
a minimal element. After all, the while loop only terminates
if we’ve found an xi ∈ A such that there’s no y 6= xi with
y � xi—which is precisely the definition of xi being a minimal element. Thus the real
work is in proving that this algorithm actually terminates.

We claim that after |A| iterations of the while loop—that is, after we’ve defined
x1, x2, . . . , x|A|+1—we must have found a minimal element. Suppose not. Then we have
found elements x1 � x2 � · · · � x|A|+1, where xi+1 6= xi for each i. Because there
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are only |A| different elements in A, in a sequence of |A| + 1 elements we must have
encountered the same element more than once. (This argument implicitly makes use
of the pigeonhole principle,which we’ll see in much greater detail in Chapter 9.) But
that’s a cycle containing two or more elements! And Exercise 8.130 asks you to show
that there are no such cycles in a partial order.

Note that Theorem 8.3 only claimed that a minimal element must exist in a partial
order on a finite set A. The claim would be false without that assumption! If A is an
infinite set, then there may be no minimal element in A under a partial order. (See
Exercise 8.141.)
We can identify minimal and maximal elements of a partial order very easily from

Problem-solving tip:
A good visualiza-
tion of data often
makes an appar-
ently complicated
statement much
simpler. Another
way of stating The-
orem 8.3 and its
proof: start any-
where, and follow
lines downward in
the Hasse diagram;
eventually, you
must run out of
elements below
you, and you can’t
go any lower. Thus
there’s at least one
bottommost ele-
ment in any (finite)
Hasse diagram.

the Hasse diagram: they’re simply the elements that aren’t connected to anything
above them (the maximal elements), and those that aren’t connected to anything be-
low them (the minimal elements). And, indeed, there are always topmost element(s)
and bottommost element(s) in a Hasse diagram, and thus there are always maxi-
mal/minimal elements in any partial order—if the set of elements is finite, at least!

8.4.3 Topological Ordering

Partial orders can be used to specify constraints on the order in which certain tasks
must be completed. For example, the printer must be loaded with paper before the
document can be printed; the document must be written before the document can be
printed; the paper must be purchased before the printer can be loaded with paper. Or,
as another example: a computer science major at a certain college in the midwest must
take courses following the prerequisite structure specified in Figure 8.32.

intro to CS

data structures math of CS
organization &
architecture

software design programming
languages algorithms computability &

complexity

Figure 8.32: The CS
major at a certain
college in the
midwest.

But, while these types of
constraints impose on a partial
order on elements, the jobs
must actually be completed
in some sequence. (Likewise,
the courses must be taken in
some sequence—for a major
who avoids “doubling up” on
CS courses in the same term,
at least.) The task we face here
is to extend a partial order into a total order—that is, to create a total order that obeys
all of the constraints of the partial order, while making comparable all previously
incomparable pairs.

Definition 8.19 (Consistency of a total order with a partial order)
A total order �total is consistent with the partial order � if a � b implies that a�total b.

In general, there are many total orders that are consistent with a given partial order.
Here’s an example:
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Example 8.45 (Ordering CS classes)
The following course orderings are consistent with the prerequisites in Figure 8.32.
(There are many other valid orderings, too.)

• intro to CS → data structures →math of CS → organization & architecture

→ software design → programming languages→ algorithms → computability & complexity.

• intro to CS → data structures → software design → programming languages

→math of CS → algorithms → computability & complexity → organization & architecture.

The first of these orderings corresponds to reading the elements of the Hasse di-
agram from the bottom-to-top (and left-to-right within a “row”); the second cor-
responds to completing the top row left-to-right (first recursively completing the
requirements to make the next element of the top row valid).

As in these examples, we can construct a total order that’s consistent with any given
partial order on the set A. Such an ordering of A is called a topological ordering of A.
(Some people will refer to a topological ordering as a topological sort of A.) We’ll prove
this result inductively, by repeatedly identifying a minimal element a from the set of
unprocessed elements, and then adding constraints to make a be a minimum element
(and not just a minimal element).

•
a∗

· ·

· · ·

· ·

•
a∗

· ·

· · ·

· ·

Figure 8.33: A
sketch of the proof
of Theorem 8.4.
First, we identify
some minimal
element a∗ in
� (left panel).
Then we turn a∗
into a minimum
element by adding
constraints (thick
lines in the right
panel), and then we
inductively find a
total ordering of the
remaining partial
order (the shaded
box at right).

Theorem 8.4 (Extending any partial order to a total order)
Let A be any finite set with a partial order �. Then there is a total order �total on A that’s
consistent with �.

Proof. We’ll proceed by induction on |A|.
For the base case (|A| = 1), the task is trivial: there’s simply nothing to do! The

relation � must be {〈a, a〉}, where A = {a}, because partial orders are reflexive. And
the relation {〈a, a〉} is a total order on {a} that’s consistent with �.

For the inductive case (|A| ≥ 2), we assume the inductive hypothesis (for any set A′

of size |A′| = |A| − 1 and any partial order on A′, there’s a total order on A′ consistent
with that partial order). We must show how to extend � to be a total order on all of
A. Here’s the idea: we’ll remove some element of A that can go first in the total order,
inductively find a total order of all the remaining elements, and then add the removed
element to the beginning of the order.

More specifically, let a∗ ∈ A be an arbitrary minimal element under � on A—in
other words, let a∗ be any element such that no b ∈ A− {a∗} satisfies b � a∗. Such an
element is guaranteed to exist by Theorem 8.3. Add any missing pair 〈a∗, b〉 to �. It’s
easy to see that � is still a partial order on A: by the definition of a minimal element,
we haven’t introduced any violations of transitivity or antisymmetry. Now, inductively,
we extend the partial order � on A− {a∗} to a total order; the result is a total order on
A that’s consistent with �. (See Figure 8.33.)

(Slightly more formally: note that �′ := {〈x, y〉 ∈ (A− {a∗})× (A− {a∗}) : x � y} is
a partial order on A− {a∗}; by the inductive hypothesis, there exists a total order �′

total
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on A− {a∗} consistent with �′. Define

�total=
{〈x, y〉 ∈ A×A : 〈x, y〉 ∈ �′

total or x = a∗
}
.

It’s easy to verify that �total is a total order on A that’s consistent with �.)

Taking it further: Deciding the order in which to compute the cells of a spreadsheet (where a cell
might depend on a list of other cells’ contents) is solved using a topological ordering. In this setting, let
C denote the set of cells in the spreadsheet, and define a relation R ⊆ C × C where 〈c, c′〉 ∈ R if we
need to know the value in cell c before we can compute the value for c′. (For example, if cell C4’s value
is determined by the formula A1 + B1 + C1, then the three pairs 〈A1, C4〉, 〈B1, C4〉, and 〈C1, C4〉 are all
in R. Note that it’s not possible to compute all the values in a spreadsheet if there’s a cell x whose value
depends on cell y, which depends on · · · , which depends on cell x—in other words, the “depends on”
relationship cannot have a cycle! Furthermore, we’re in trouble if there’s a cell x whose value depends
on x itself. In other words, we can compute the values in a spreadsheet if and only if R is irreflexive and
transitive—that is, if R is a strict partial order.

Another problem that can be solved using the idea of topological ordering is that of hidden-surface
removal in computer graphics: we have a 3-dimensional “scene” of objects that we’d like to display
on a 2-dimensional screen, as if it were being viewed from a camera. We need to figure out which of
the objects are invisible from the camera (and therefore need not be drawn) because they’re “behind”
other objects. One classic algorithm, called the painter’s algorithm, solves this problem using ideas from
relations and topological ordering. See the discussion on p. 847.
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Computer Science Connections

Deterministic Finite Automata (DFAs)

As we hinted at previously (see the discussion of regular expressions on
p. 830), there are some interesting computational applications of finite-state
machines, a formal model for a computational device that uses a fixed (finite)
amount of memory to respond to input. Variations on these machines can be
used in building very simple characters in a video game, in computer architec-
ture, in software systems to do automatic speech recognition, and other tasks.
They can also identify which strings match a given regular expression—in
fact, for a set of strings L, it’s a theorem that there exists a finite-state machine
M that recognizes precisely the strings in L if and only if there’s a regular
expression α that matches precisely the strings in L.

Formally, a deterministic finite automaton (DFA)—the simplest version of a
finite-state machine—is a quintuple M = 〈Σ,Q, δ, s,F〉, where:

• Σ is a finite alphabet, the set of input symbols the machine can handle;
• Q is a finite set of states; the machine is always in one of these states. (The

fact that Q is finite corresponds to M having only finite memory.)
• δ : Q× Σ → Q is a transition function: when the machine is in state q ∈ Q

and sees an input symbol a ∈ Σ, the machine moves into state δ(q, a).
• s ∈ Q is the start state,whereM begins before having seen any input.
• F ⊆ Q is the set of final states. If, after processing a string x, M ends up in a

state q ∈ F, then M accepts x; if M ends in a state q /∈ F, then M rejects x.

An example of a DFA that accepts all bitstrings whose first two symbols are
the same is shown in Figure 8.34.

We can also understand DFAs—and the sorts of sets of strings that they can

• Σ = {0, 1}
• Q = {a, b, c,win, lose}
• δ is defined by the following table:

0 1
a b c
b win lose
c lose win

win win win
lose lose lose

• the start state is a.
• the only final state is win.

a

b

c

win

lose

0

1

0

11
0

0, 1

0, 1

Figure 8.34: A DFA accepting all bit-
strings whose first two symbols are the
same—both by defining all five compo-
nents, and by a picture. The start state is
marked with an unattached incoming
arrow; from state q on input symbol a,
the arrow leaving qwith label a points to
δ(q, a). Final states are circled.recognize—by thinking about equivalence relations. To see this connection,

suppose that we wish to identify binary strings representing integers that are
evenly divisible by 3. (So 11 and 1001 and 1111 are all “yes” because 3 | 3 and
3 | 9 and 3 | 15, but 10001 is “no” because 3 6 | 17.)

Here’s one way to solve this problem. Let’s define an equivalence relation

0 1
1

1 0

0

Figure 8.35: A DFA for bitstrings rep-
resenting numbers divisible by 3. The
input is divisible by three if and only if
we end up in the leftmost state.

on binary strings, where x ≡ y if and only if, for any bitstring z, we have that
(xz is divisible by 3) ⇔ (yz is divisible by 3). In other words, two bitstrings x
and y are equivalent if, no matter what additional bitstring suffix we add to
both of them, the two resulting bitstrings are either both divisible by three or
both not divisible by three. For example, it turns out that 11 ≡ 1001 (11 and
1001 are both ’yes’; 110 and 10010 are both ’yes’; 111 and 10011 are both ’no’;
1110 and 100010 are both ’no’; etc.). Similarly, we have 1000 ≡ 10. It’s not hard
to prove that ≡ is an equivalence relation. It’s also true, though a bit harder to
prove, that there are only three equivalence classes for ≡. (Those equivalence
classes are: bitstrings that are 0 mod 3, those that are 1 mod 3, and those that
are 2 mod 3.) Thus we can actually figure out whether a bitstring is evenly
divisible by 3 with the simple DFA in Figure 8.35. The three states of this
machine, going from left to right, correspond to the three equivalence classes
for ≡—namely [0], [1], and [10]. (For a set of strings that cannot be recognized
by a DFA—for example, bitstrings with an equal number of 0s and 1s—there
are an infinite number of equivalence classes for ≡.)7

These particular DFAs merely hint at
the kind of problem that can be solved
with this kind of machine—for much
more, see a good textbook in formal
languages, such as
7 Dexter Kozen. Automata and Com-
putability. Springer, 1997; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.
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Computer Science Connections

The Painter’s Algorithm and Hidden-Surface Removal

At a high level, the goal in computer graphics is to take a 3-dimensional
scene—a set of objects in R3 (with differing shapes, colors, surface reflectiv-
ities, textures, etc.)—as seen from a particular vantage point (a point and a
direction, also in R3). The task is then to project the scene into a 2-dimensional
image. There are a lot of components to this task, and we’ve already talked a
bit about some of them: typically we’ll approximate the shapes of the objects
using a large collection of triangles (see p. 528), and then compute where each
triangle shows up in the camera’s view, in R2, via rotation (see p. 249).

Even after triangulation and rotation, we are still left with another impor-

Figure 8.36: A house in a golden wood.

tant step: when two triangles overlap in the 2-dimensional image, we have to
figure out which to draw—that is, which one is obscured by the other. This
task is also known hidden-surface removal: we want to omit whatever pieces
of the image aren’t visible. For example, when we wish to render the humble
forest scene in Figure 8.36, we have to draw trees in front of and behind the
house, and one particular tree in front of another. One approach to hidden-
surface removal is called the Painter’s Algorithm, named after a hypothetical
artist at an easel: we can “paint” the shapes in the image “from back to front,”
simply painting over faraway shapes with the closer ones as we go:

How might we implement this approach? Let S be the set of shapes that
we have to draw. We can compute a relation obscures ⊆ S× S, where a pair
〈s1, s2〉 ∈ obscures tells us that we have to draw s2 before we draw s1. We seek
a total order on S that is consistent with the obscures relation; we’ll draw the
shapes in this order.

Unfortunately obscures isn’t a total order—or even a partial order! The

Figure 8.37: A cycle of obscurity, and
splitting one of the cycle’s pieces to
break the cycle.

biggest problem with obscures is that we can have “cycles of obscurity”—s1
obscures s2 which obscures s3 which, eventually, obscures a shape sk that ob-
scures s1. (See Figure 8.37; although it may look like an M. C. Escher drawing,
there’s nothing strange going on—just three triangles that overlap a bit like a
pretzel.) This issue can be resolved using some geometric algorithms specific
to the particular task: we’ll split up shapes in each cycle of obscurity—splitting
the black triangle into a left-half and a right-half object, for example—so that
we no longer have any cycles. (Again see Figure 8.37.)

We now have an expanded set S′ of shapes, and a cycle-free relation
obscures on S′. We can use this relation to compute the order in which to
draw the shapes, as follows:

• compute the reflexive, transitive closure of obscures on S′. The resulting
relation is a partial order on S′.

• extend this partial order to a total order on S′, using Theorem 8.4.

We now have a total ordering on the shapes that respect the obscures relation,
so we can draw the shapes in precisely this order.8

While the Painter’s Algorithm does
correctly accomplish hidden-surface
removal, it’s pretty slow (particularly as
we’ve described it here). For example,
when there are many layers to a scene,
we actually have to “paint” each pixel in
the resulting image many many times.
Every computation of a pixel’s color
before the last is a waste of time. You
can learn about cleverer approaches
to hidden-surface removal, like the “z-
buffer,” in a good textbook on computer
graphics, such as
8 John F. Hughes, Andries van Dam,
Morgan McGuire, David F. Sklar,
James D. Foley, Steven K. Feiner, and
Kurt Akeley. Computer Graphics: Princi-
ples and Practice. Addison-Wesley, 3rd
edition, 2013.
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8.4.4 Exercises

List all equivalence relations . . .
8.108 . . . on {0, 1}. 8.109 . . . on {0, 1, 2, 3}.

Are the following relations on P({0, 1, 2, 3}) equivalence relations? If so, list the equivalence classes under the rela-
tion; if not, explain why not.
8.110 〈A,B〉 ∈ R1 if and only if (i) A and B are nonempty and the largest element in A equals the largest
element in B, or (ii) if A = B = ∅.
8.111 〈A,B〉 ∈ R2 if and only if the sum of the elements in A equals the sum of the elements in B.
8.112 〈A,B〉 ∈ R3 if and only if the sum of the elements in A equals the sum of the elements in B and the
largest element in A equals the largest element in B. (That is, R3 = R1 ∩ R2.)
8.113 〈A,B〉 ∈ R4 if and only A ∩ B 6= ∅.
8.114 〈A,B〉 ∈ R5 if and only |A| = |B|.

In Example 8.11, we considered the relation M := {〈m, d〉 : in some years, month m has d days}, and computed the
pairs in the relation M−1 ◦M. By checking all the requirements (or by visual inspection of Figure 8.13(b)), we see
that M−1 ◦M is an equivalence relation. But it turns out that the fact that M−1 ◦M is an equivalence relation says
something particular about M, and is not true in general. Let R ⊆ A× B be an arbitrary relation. Prove or disprove
whether R−1 ◦ R must have the three required properties of an equivalence relation (at least one of these is false!):
8.115 Prove or disprove:
R−1 ◦ R must be reflexive.

8.116 Prove or disprove:
R−1 ◦ R must be symmetric.

8.117 Prove or disprove:
R−1 ◦ R must be transitive.

Let A be any set. There exist two equivalence relations ≡coarsest and ≡finest with the following property: if ≡ is an
equivalence relation on A, then (i) ≡ refines ≡coarsest , and (ii) ≡finest refines ≡.
8.118 Identify ≡coarsest, prove that it’s an equivalence relation, and prove property (i) above.
8.119 Identify ≡finest, prove that it’s an equivalence relation, and prove property (ii) above.

8.120 In many programming languages, there are two distinct but related notions of “equality”: has the
same value as and is the same object as. In Python, these are denoted as == and is, respectively; in Java, they
are .equals() and ==, respectively. (Confusingly!) (For example, in Python, 1776 + 1 is 1777 is false, but
1776 + 1 == 1777 is true.) Does one of these equality relations refine the other? Explain.

8.121 List all partial orders on {0, 1}. 8.122 List all partial orders on {0, 1, 2}.

Are the following relations on P({0, 1, 2, 3}) partial orders, strict partial orders, or neither? Explain.
8.123 〈A,B〉 ∈ R1 ⇔ ∑a∈A a ≤ ∑b∈B b
8.124 〈A,B〉 ∈ R2 ⇔ ∏a∈A a ≤ ∏b∈B b
8.125 〈A,B〉 ∈ R3 ⇔ A ⊆ B

8.126 〈A,B〉 ∈ R4 ⇔ A ⊇ B
8.127 〈A,B〉 ∈ R5 ⇔ |A| < |B|

8.128 Prove that � is a partial order if and only if �−1 is a partial order.
8.129 Prove that if � is a partial order, then {〈a, b〉 : a � b and a 6= b} is a strict partial order.

8.130 A cycle in a relation R is a sequence of k distinct elements a0, a1 , . . . , ak−1 ∈ Awhere 〈ai, ai+1 mod k〉 ∈ R
for each i ∈ {0, 1, . . . , k − 1}. A cycle is nontrivial if k ≥ 2. Prove that there are no nontrivial cycles in any
transitive, antisymmetric relation R. (Hint: use induction on the length k of the cycle.)

Let S ∈ Z≥1 × Z≥1 be a collection of points. Define the relation R ⊆ S× S as follows: 〈〈a, b〉, 〈x, y〉〉 ∈ R if and only
if a ≤ x and b ≤ y. (You can think of 〈a, b〉 ∈ S as an a-by-b picture frame, and 〈f , f ′〉 ∈ R if and only if f fits inside
f ′. Or you can think of 〈a, b〉 ∈ S as a job that you’d get a “happiness points” from doing and that pays you b dollars,
and 〈j, j′〉 ∈ R if and only if j generates no more happiness and pays no more than j′.
8.131 Show that R might not be a total order by identifying two incomparable elements of Z≥1 × Z≥1.
8.132 Prove that R must be a partial order.

1 2

3 4

5

(a)

1

2

3 4

5

(b)
Figure 8.38: Some
Hasse diagrams.

8.133 Write out all pairs in the relation represented by the Hasse diagram in Figure 8.38(a).
8.134 Repeat for Figure 8.38(b).
8.135 Draw the Hasse diagram for the partial order ⊆ on the set P(1, 2, 3).
8.136 Draw the Hasse diagram for the partial order � on the set S := {0, 1} ∪ {0, 1}2 ∪ {0, 1}3, where,
for two bitstrings x, y ∈ S, we have x � y if and only if x is a prefix of y.
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Let � be a partial order on A. Recall that an immediate successor of a ∈ A is an element c such that (i) a � c, and
(ii) there is no b /∈ {a, c} such that a � b and b � c. In this case a is said to be an immediate predecessor of c.
8.137 For the partial order ≥ on Z≥1, identify all the immediate predecessor(s) and immediate succes-
sor(s) of 202.
8.138 For the partial order | (divides) on Z≥1, identify all the immediate predecessor(s) and immediate
successor(s) of 202.
8.139 Give an example of a strict partial order on Z≥1 such that every integer has exactly two different
immediate successors.
8.140 Prove that for a partial order � on A when A is finite there must be an a ∈ A that has fewer than
two immediate successors.

8.141 Consider the partial order ≥ on the set Z≥0. Argue that there is nomaximal element in Z.
8.142 Note that there is a minimal element under the partial order ≥ on Z≥0—namely 0, which is also
the minimum element. Give an example of a partial order on an infinite set that has neither a minimal nor a
maximal element.
8.143 Let � be a partial order on a set A. Prove that there is at most one minimum element in A under
�. (That is, prove that if a ∈ A and b ∈ A are both minimum elements, then a = b.)
8.144 Let � be a partial order on a set A, and let a ∈ A be a minimum element under �. Prove that a is
also a minimal element.

Here’s a (surprisingly addictive) word game that can be played with a set of Scrabble tiles. Each player has a set of
words that she “owns”; there is also a set of individual tiles in the middle of the table. At any moment, a player can
form a new word by taking both (1) one or more tiles from the middle, and (2) zero or more words owned by any of
the players; and reordering those letters to form a new word, which the player now owns. For example, from the word
GRAMPS and the letters R and O, a player could make the word PROGRAMS.

Define a relation � on the set W of English words (of three or more letters), as follows: w � w′ if w′ can be formed
from word w plus one or more individual letters. For example, we showed above that GRAMPS � PROGRAMS.
8.145 Give a description (in English) of what it means for a word w to be a minimal element under �,
and what it means for a word w′ to be a maximal element under �.
8.146 (programming required) Write a program that, given a word w, finds all immediate successors of w.
(You can find a dictionary of English words on the web, or /usr/share/dict/words on Unix-based operating
systems.) Report all immediate successors of GRAMPS using your dictionary.
8.147 (programming required) Write a program to find the English word that is the longest minimal
element under � (that is, out of all minimal elements, find the one that contains the most letters).

(If you’re bored and decide to waste time playing this game: it’s more fun if you forbid stealing words with “trivial”
changes, like changing COMPUTER into COMPUTERS. Each player should also get a fair share of the tiles, originally face
down; anyone can flip a new tile into the middle of the table at any time.)

8.148 Consider a spreadsheet containing a set of cells C. A cell c can contain a formula that depends on
zero or more other cells. Write � to denote the relation {〈p, s〉 : cell s depends on cell p}. For example, the
value of cell C2might be the result of the formula A2 ∗ B1; here A2 � C2 and B1 � C2. A spreadsheet is only
meaningful if � is a strict partial order. Give a description (in English) of what it means for a cell c to be a
minimal element under �, and what it means for a cell c′ to be a maximal element under �.

8.149 List all total orders consistent with the partial order reproduced in Figure 8.39(a).
8.150 Repeat for the partial order reproduced in Figure 8.39(b).

1 2

3 4

5

(a)

1

2

3 4

5

(b)
Figure 8.39: Re-
productions of the
Hasse diagrams
from Figure 8.38.

A chain in a partial order � on A is a set C ⊆ A such that � imposes a total order on C—that is, writing the elements
of C as C = {c1, c2 , . . . , ck} [in an appropriate order], we have c1 � c2 � · · · � ck .
8.151 Identify all chains of k ≥ 2 elements in the partial order in Figure 8.39(a).
8.152 Repeat for the partial order reproduced in Figure 8.39(b).

An antichain in a partial order � on A is a set S ⊆ A such that no two distinct elements in S are comparable under
�—that is, for any distinct a, b ∈ S we have a 6� b.
8.153 Identify all antichains S with |S| ≥ 2 in the partial order in Figure 8.39(a).
8.154 Repeat for the partial order reproduced in Figure 8.39(b).

8.155 Consider the set A := {1, 2, . . . ,n}. Consider the following claim: there exists a relation � on the
set A that is both an equivalence relation and a partial order. Either prove that the claim is true (and describe, as
precisely as possible, the structure of any such relation �) or disprove the claim.
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8.5 Chapter at a Glance

Formal Introduction

A (binary) relation on A × B is a subset of A × B. For a relation R on A × B, we can
write 〈a, b〉 ∈ R or a R b. When A and B are both finite, we can describe R using a two-
column table, where a row containing a and b corresponds to 〈a, b〉 ∈ R. Or we can
view R graphically: draw all elements of A in one column, all elements of B in a second
column, and draw a line connecting a ∈ A to b ∈ B whenever 〈a, b〉 ∈ R.

We’ll frequently be interested in a relation that’s a subset of A× A, where the two
sets are the same. In this case, we may refer to a subset of A×A as simply a relation on
A. For a relation R ⊆ A×A, it’s more convenient to visualize R using a directed graph,
without separated columns: we simply draw each element of A, with an arrow from a1
to a2 whenever 〈a1, a2〉 ∈ R.

The inverse of a relation R ⊆ A × B is a new relation, denoted R−1, that “flips
around” every pair in R: the relation R−1 := {〈b, a〉 : 〈a, b〉 ∈ R} is a subset of B× A.
The composition of two relations R ⊆ A× B and S ⊆ B× C is a new relation, denoted
S ◦ R, that, informally, represents the successive “application” of R and S. A pair 〈a, c〉
is related under S ◦ R ⊆ A× C if and only if there exists an element b ∈ B such that
〈a, b〉 ∈ R and 〈b, c〉 ∈ S.

For sets A and B, a function f from A to B, written f : A → B, is a special kind of
relation on A× B where, for every a ∈ A, there exists one and only one element b ∈ B
such that 〈a, b〉 ∈ f .

An n-ary relation is a generalization of a binary relation (n = 2) to describe a
relationship among n-tuples, rather than just pairs. An n-ary relation on the set
A1 × A2 × · · · × An is just a subset of A1 × A2 × · · · × An; an n-ary relation on a set
A is a subset of An.

Properties of Relations: Reflexivity, Symmetry, and Transitivity

A relation R on A is reflexive if, for every a ∈ A, we have that 〈a, a〉 ∈ R. It’s irreflexive
if 〈a, a〉 /∈ R for every a ∈ A. (In the visualization described above, where we draw an
arrow a1 → a2 whenever 〈a1, a2〉 ∈ R, reflexivity corresponds to every element having
a “self-loop” and irreflexivity corresponds to no self-loops.) Note that a relation might
be neither reflexive nor irreflexive.

A relation R on A is symmetric if, for every a, b ∈ A, we have 〈a, b〉 ∈ R if and only if
〈b, a〉 ∈ R. The relation is antisymmetric if the only time both 〈a, b〉 ∈ R and 〈b, a〉 ∈ R
is when a = b, and it’s asymmetric if it’s never the case that 〈a, b〉 ∈ R and 〈b, a〉 ∈ R
whether a 6= b or a = b. Note that, while asymmetry implies antisymmetry, they
are different properties—and they’re both different from “not symmetric”; a relation
might not be symmetric, antisymmetric, or asymmetric. (In the visualization, a relation
is symmetric if every arrow a → b is matched by an arrow b → a; it’s antisymmetric
if there are no matched bidirectional pairs of arrows between a and b 6= a; and it’s
asymmetric if it’s antisymmetric and furthermore there aren’t even any self-loops.) An
alternative view is that a relation R is symmetric if and only if R ∩ R−1 = R = R−1; it’s
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antisymmetric if and only if R∩ R−1 ⊆ {〈a, a〉 : a ∈ A}; and it’s asymmetric if and only
if R∩ R−1 = ∅.

A relation R on A is transitive if, for every a, b, c ∈ A, if 〈a, b〉 ∈ R and 〈b, c〉 ∈ R,
then 〈a, c〉 ∈ R too. In the visualization, R is transitive if there are no “open triangles”:
in a chain of connected elements, every element is also connected to all “downstream”
connections. The relation R is transitive if and only if R ◦ R ⊆ R.

For a relation R ⊆ A × A, the closure of Rwith respect to some property is the
smallest relation R′ ⊇ R that has the named property. For example, the symmetric
closure of R is the smallest relation R′′ ⊇ R such that R′′ is symmetric. We also define
the reflexive closure R′; the transitive closure R+; the reflexive transitive closure R∗; and the
reflexive symmetric transitive closure R≡. When A is finite, we can compute any of these
closures by repeatedly adding any missing elements to the set. The reflexive closure
of R is given by R ∪ {〈a, a〉 : a ∈ A}; the symmetric closure of R is R ∪ R−1; and the
transitive closure of R is R ∪R2 ∪R3 ∪ · · · .

Special Relations: Equivalence Relations and Partial/Total Orders

There are two special kinds of relations that emerge from particular combinations of
these properties: equivalence relations and partial/total orders.

Equivalence relations: An equivalence relation is a relation ≡ that’s reflexive, symmetric,
and transitive. Such a relation partitions the elements of A into one or more cate-
gories, called equivalence classes; any two elements in the same equivalence class are
related by ≡, and no two elements in different equivalence classes are related.

A refinement of ≡ is another equivalence relation ≡r on the same set A where a ≡ b
whenever a ≡r b. Each equivalence class of ≡ is partitioned into one or more equiv-
alence classes by ≡r, but no equivalence class of ≡r intersects with more than one
equivalence class of ≡. We also call ≡ a coarsening of ≡r.

Partial and total orders: A partial order is a reflexive, antisymmetric, and transitive rela-
tion �. (A strict partial order ≺ is irreflexive, antisymmetric, and transitive.) Elements
a and b are comparable under � if either a � b or b � a; otherwise they’re incomparable.
A Hasse diagram is a simplified visual representation of a partial order where we
draw a physically below c whenever a � c, and we omit the a → c arrow if there’s
some other element b such that a � b � c. (We also omit self-loops.)

For a partial order � on A, a minimum element is an element a ∈ A such that, for
every b ∈ A, we have a � b; a minimal element is an a ∈ A such that, for every
b ∈ A with b 6= a, we have b 6� a. (Maximum and maximal elements are defined
analogously.) Every minimum element is also minimal, but a minimal element a
isn’t minimum unless a is comparable with every other element. There’s at least one
minimal element in any partial order on a finite set.

A total order is a partial order under which all pairs of elements are comparable. A
total order �total is consistent with the partial order � if a � b implies that a�total b.
For any partial order � on a finite set A, there is a total order �total on A that’s con-
sistent with �. Such an ordering of A is called a topological ordering of A.



852 CHAPTER 8. RELATIONS

Key Terms and Results

Key Terms

Formal Introduction

• (binary) relation
• inverse (of a relation)
• composition (of two relations)
• functions (as relations)
• n-ary relation

Properties of Relations

• reflexivity
• irreflexivity
• symmetry
• asymmetry
• antisymmetry
• transitivity
• closures (of a relation)

Special Relations

• equivalence relation
• equivalence class
• coarsening, refinement
• partial order
• comparability
• total order
• Hasse diagram
• minimal/maximal element
• minimum/maximum element
• consistency (of a total order with a par-

tial order)
• topological ordering

Key Results

Formal Introduction

1. For relations R ⊆ A× B and S ⊆ B× C, the relations
R−1 ⊆ B×A and S ◦ R ⊆ A× C—the inverse of R and the
composition of R and S—are defined as

R−1 := {〈b, a〉 : 〈a, b〉 ∈ R}
S ◦ R := {〈a, c〉 :

∃b ∈ B such that 〈a, b〉 ∈ R and 〈b, c〉 ∈ S}.

2. A function f : A → B is a special case of a relation on
A× B, where, for every a ∈ A, there exists one and only
one element b ∈ B such that 〈a, b〉 ∈ f .

Properties of Relations

1. A relation R is symmetric if and only if
R ∩R−1 = R = R−1; it’s antisymmetric if and only if
R ∩R−1 ⊆ {〈a, a〉 : a ∈ A}; and it’s asymmetric if and only
if R∩ R−1 = ∅.

2. A relation R is transitive if and only if R ◦ R ⊆ R.

3. The reflexive closure of R is R ∪ {〈a, a〉 : a ∈ A}; the
symmetric closure of R is R ∪ R−1; and the transitive
closure of R is R∪ R2 ∪R3 ∪ · · · .

Special Relations

1. For a partial order � ⊆ A×A on a finite set A, there is at
least one minimal element and at least one maximal
element under �.

2. Let A be any finite set with a partial order �. Then there
is a total order �total (a topological ordering of A) on A
that’s consistent with �.



9
Counting

In which our heroes encounter many choices, some of which may lead them
to live more happily than others, and a precise count of their number of
options is calculated.
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9.1 Why You Might Care

How do I love thee? Let me count the ways.

Elizabeth Barrett Browning (1806–1861)

This chapter is devoted to the apparently trivial task of counting. By “counting,”
we mean the following problem: given a potentially convoluted description of a set
S, compute the cardinality of S—that is, compute the number of elements in S. It may
seem bizarre that counting could somehow be harder than at the preschool level (just
count! one, two, three), but it will turn out that we can solve surprisingly subtle prob-
lems with some useful and general (and subtle) techniques.

We’ll start in Section 9.2 by introducing basic counting techniques—how to compute
the cardinality of a union A ∪ B of two sets, or sequences from the Cartesian product
A× B of two sets. We then turn in Section 9.3 to one of the best counting strategies:
being lazy! If we can show that |A| = |B| and we already know the value of |B|, then
figuring out |A| is easy; we’ll often use functions to relate two sets so that we can then
lazily compute the size of the apparently harder-to-count set. Finally, in Section 9.4, we
will explore combinations (“how many ways are there to choose an unordered collec-
tion of k items out of a set of n possibilities?”) and permutations (“how many ways are
there to put a set of n items into some order?”).

Why does counting matter in computer science? There are, again, surprisingly
many applications. Here are a few examples. One common (though very basic) style of
algorithm is a brute-force algorithm, which finds the best whatzit by trying every possible
whatzit and seeing which one is best. Determining whether a brute-force algorithm
is fast enough depends on counting how many possible whatzits there are. A more
advanced algorithmic design technique, called dynamic programming, can be used to
design efficient recursive solutions to problems—as long as there aren’t too many
distinct subproblems. Counting techniques are even powerful enough to establish a
mind-bending result about computability: we will be able to prove that there are more
problems than computer programs—which means that there are some problems that
cannot be solved by any program!

Probability (see Chapter 10) has a plethora of applications in computer science,
ranging from randomized algorithms in sorting (algorithms that process their input
by making random decisions about how to act) to models of random noise in speech
recognition or random errors in typing (if I’m trying to type the letter p, what is the
chance that I accidentally type o instead?). We can think of the probability of some
event X happening, roughly, as two counting problems: the numerator and denomina-
tor of the ratio

the number of ways X can happen
the number of ways X can either happen or not happen.

There are many other applications of counting scattered throughout computer sci-
ence, and we will discuss a few more along the way: breaking cryptographic systems,
compressing audio/image/video files, and changing the addressing scheme on the
internet because we’ve run out of smaller addresses, to name a few.
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9.2 Counting Unions and Sequences

If a man who cannot count finds a four-leaf clover, is
he entitled to happiness?

Stanislaw J. Lec (1909–1966)

Suppose that we have two sets A and B from which we must choose an element.
There are two different natural scenarios that meet this one-sentence description:
we must choose a total of one element from either A or B, or we must choose one el-
ement from each of A and B. For example, consider a restaurant that offers soups A =
{chicken noodle, beer cheese,minestrone, . . .} and salads B = {caesar, house, arugula, . . .}.
A lunch special that includes soup or salad involves choosing an x ∈ A ∪ B. A dinner
special including soup and salad involves choosing an x ∈ A and also choosing a
y ∈ B—that is, choosing an element 〈x, y〉 ∈ A× B. In Section 9.2.1, we’ll start with two
basic rules for computing these cardinalities:

• Sum Rule: If A and B are disjoint, then |A∪ B| = |A| + |B|.
• Product Rule: The number of pairs 〈x, y〉with x ∈ A and y ∈ B is |A× B| = |A| · |B|.

These rules will handle the simple restaurant scenarios above, but there are a pair
of extensions that we’ll introduce to handle slightly more complex situations. The first
(Section 9.2.2) extends the Sum Rule to allow us to calculate the cardinality of a union
of two sets even if those sets may contain elements in common:

• Inclusion–Exclusion: |A∪ B| = |A| + |B| − |A∩ B|.

The second extension (Section 9.2.3) generalizes the Product Rule to allow us to calcu-
late the cardinality of a set of pairs 〈x, y〉 even if the choice of x changes the list (but not
the number) of possible choices for y:

• Generalized Product Rule: Consider pairs 〈x, y〉 of the following form: we can choose
any x ∈ A, and, for each such x, there are precisely n different choices for y. Then
the total number of pairs meeting this description is |A| · n.

The remainder of this section will give the details of these four rules, and how to use
these rules individually and in combination.

9.2.1 The Basics: The Sum and Product Rules

Sum Rule: counting unions
Our first rule addresses the union of two sets: if two sets A and B are disjoint, then

the cardinality of their union is simply the sum of their sizes:

Theorem 9.1 (Sum Rule)
Let A and B be sets. If A ∩ B = ∅, then |A∪ B| = |A| + |B|.
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More generally, consider a collection of k ≥ 1 sets A1,A2, . . . ,Ak. If these sets are all
disjoint—that is, if Ai ∩ Aj = ∅ whenever i 6= j—then the cardinality of their union is
the sum of their cardinalities: |A1 ∪A2 ∪ · · · ∪Ak| = |A1| + |A2| + · · · + |Ak|.

The Sum Rule captures an intuitive fact: if a box contains some red things and some
blue things, then the total number of things in the box is the number of red things plus
the number of blue things. Here are a few examples that use this rule:

Example 9.1 (Counting disjoint unions)
• Let A := {1, 2} and B := {3, 4, 5, 6}. Thus |A| = 2 and |B| = 4. Observe that the sets

A and B are disjoint. By the sum rule, |A ∪ B| = |A| + |B| = 2 + 4 = 6. Indeed, we
have A∪ B = {1, 2, 3, 4, 5, 6}, which contains 6 elements.

• There are 11 starters on your school’s women’s soccer team. Suppose there are 8
nonstarters on the team. The total number of people on the team is 19 = 11 + 8.

• At a certain school in the midwest, there are currently 30 computer science majors
who are studying abroad. There are 89 computer science majors who are studying
on campus. Then the total number of computer science majors is 119 = 89 + 30.

• Consider a computer lab that contains 32 Macs and 14 PCs and 1 PDP-8 (a 1960s-
era machine, one of the first computers that was sold commercially). Then the total
number of computers in the lab is 47 = 32 + 14 + 1.

Example 9.2 (Students in classes)
Problem: During this term, there are 19 students taking Data Structures, and 39 stu-

dents taking Mathematics of Computer Science. Let S denote the set of students
taking Data Structures or Mathematics of Computer Science this term. What is |S|?

Solution: There isn’t enough information to answer the question!

• If there are no students who are taking both classes (that is, if DS∩MOCS = ∅),
then |S| = |DS| + |MOCS| = 19 + 39 = 58.

• But, for all we know from the problem statement, every student in Data Struc-
tures is also taking Mathematics of Computer Science. In this case, we have
DS ⊂ MOCS and thus S = DS∪MOCS = MOCS; therefore |S| = |MOCS| = 39.

(The Inclusion–Exclusion Rule, in Section 9.2.2, formalizes the calculation of |A ∪ B|
in terms of |A|, |B|, and |A ∩ B|, in the manner that we just considered.)

Taking it further: The logic that we used in Example 9.2 to conclude that there were at most 58 students
in the two classes combined is an application of the general fact that |A ∪ B| ≤ |A| + |B|. While this
fact is pretty simple, it turns out to be remarkably useful in proving facts about probability. The Union
Bound states that the probability that any of A1,A2, . . . ,Ak occurs is at most p1 + p2 + · · · + pk , where
pi denotes the probability that Ai occurs. The Union Bound turns out to be useful when each Ai is a
“bad event” that we’re worried might happen, and these bad events may have complicated probabilistic
dependencies—but if we can show that the probability that every particular one of these bad events is
some very small ε, then we can use the Union Bound to conclude that the probability of experiencing any
bad event is at most k · ε. (See Exercise 10.141, for example.)
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Using the Sum Rule in less obvious settings
As a general strategy for solving counting problems, we can try to find a way to

apply the Sum Rule—even if it does not superficially seem to be applicable. If we
can find a way to partition an apparently complicated set S into simple disjoint sets
S1, S2, . . . , Sk such that

⋃k
i=1 Si = S, then we can use the Sum Rule to find |S|.

11000000 01100000

10100000

00110000

01010000

10010000

00011000

00101000

01001000

10001000

00001100

00010100

00100100

01000100

10000100

00000110

00001010

00010010

00100010

01000010

10000010

00000011

00000101

00001001

00010001

00100001

01000001

10000001

Figure 9.1: All
bitstrings in {0, 1}8
that contain exactly
two ones.

In this spirit, here’s a somewhat
more complex example of using
the Sum Rule, where we have to
figure out the subsets ourselves: let’s
determine how many 8-bit strings
contain precisely two ones. (The full
list of the bitstrings meeting this condition appears in Figure 9.1.)

Problem-solving
tip: When you’re
trying to find the
cardinality of a
complicated set S,
try to find a way
to split S into a
collection of simpler
disjoint sets, and
then apply the Sum
Rule.

Example 9.3 (8-bit strings with exactly 2 ones)
Problem: How many elements of {0, 1}8 have precisely two 1s?

Solution: Obviously, we can just count the number of bitstrings in Figure 9.1, which
yields the answer: there are 28 such bitstrings. But let’s use the Sum Rule instead.

What does a bitstring x ∈ {0, 1}8 with two ones look like? There must be two
indices i and j—say with i > j—such that xi = xj = 1, and all other components of x
must be 0:

x = 00 · · · 0︸ ︷︷ ︸
j− 1 zeros

one in position j︷︸︸︷
1 00 · · · 0︸ ︷︷ ︸

i− j− 1 zeros

one in position i︷︸︸︷
1 00 · · · 0︸ ︷︷ ︸

8− i zeros

.

(For example, the bitstring 01001000 has ones in positions j = 2 and i = 5, inter-
spersed with an initial block of j− 1 = 1 zero, a block of i− j− 1 = 2 between-the-
ones zeros, and a block of 8− i = 3 final zeros.)

We are going to divide the set of 8-bit strings with two 1s based on the index i.
That is, suppose that x ∈ {0, 1}8 contains two ones, and the second 1 in x appears in
bit position #i. Then there are i− 1 positions in which the first one could appear—
any of the slots j ∈ {1, 2, . . . , i− 1} that come before i. (See Figure 9.1, where the
(i− 1)st column contains all i − 1 bitstrings whose second 1 appears in position
#i. For example, column #3 contains the 3 bitstrings with x4,5,6,7,8 = 10000: that is,
10010000, 01010000, and 00110000.) Because every x with exactly two ones has an
index i of its second 1, we can use the Sum Rule to say that the answer to the given
question is

8
∑
i=1

[
number of bitstrings with the second 1 in position i

]
=

8
∑
i=1

(i− 1)

= 0 + 1 + · · · + 7
= 28.

(We’ll also see another way to solve this example later, in Example 9.39.)
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Let’s also generalize this example to bitstrings of arbitrary length:

Example 9.4 (k-bit strings with exactly 2 ones)
Consider the set S := {x ∈ {0, 1}k : x has precisely two 1s}. As in Example 9.3, every
bitstring x ∈ S has an index i of its second 1; we’ll use the value of i to partition S into
sets that can be easily counted, and then use the Sum Rule to find |S|. Specifically, for
each index i with 1 ≤ i ≤ k, define the set

Si = {x ∈ S : xi = 1 and xi+1 = xi+2 = · · · = xk = 0} .
=
{
x ∈ {0, 1}k :

[∃j ≤ i− 1 : xi = xj = 1 and x has no other 1s
]}

.

Observe that |Si| = i− 1: there are i− 1 different possible values of j. Also, observe
that S =

⋃k
i=1 Si and that, for any i 6= i′, the sets Si and Si′ are disjoint. Thus

|S| =
∣∣∣∣∣
k⋃

i=1
Si

∣∣∣∣∣ =
k
∑
i=1

|Si| =
k

∑
i=1

(i− 1) = k(k− 1)
2 (∗)

by the Sum Rule and the formula for the sum of the first n integers (Example 5.4).

As a check of our formula, let’s verify our solution for some small values of k:

• For k = 2, (∗) says there are 2(2−1)
2 = 1 strings with two 1s. Indeed, there’s just one:

11.
• For k = 3, indeed there are 3(3−1)

2 = 3 strings with two 1s: 011, 101, and 110.
• For k = 4, there are 4·3

2 = 6 such strings: 1100, 1010, 0110, 1001, 0101, and 0011.

Note that (∗) matches Example 9.3: for k = 8, we have 28 = 8·7
2 strings with two 1s.

Problem-solving
tip: Check to make
sure your formulas
are reasonable by
testing them for
small inputs (as we
did in Example 9.4).

Product Rule: counting sequences
Our second basic counting rule addresses the Cartesian product of sets. Recall that,

for sets A and B, the Cartesian product A× B consists of all pairs 〈a, b〉 with a ∈ A and
b ∈ B. (For example, {1, 2, 3} × {x, y} = {〈1, x〉, 〈1, y〉, 〈2, x〉, 〈2, y〉, 〈3, x〉, 〈3, y〉}.) The
cardinality of A× B is the product of the cardinalities of A and B:

Theorem 9.2 (Product Rule)
Let A and B be sets. Then |A× B| = |A| · |B|.

More generally, consider a collection of k arbitrary sets A1,A2, . . . ,Ak, and consider the
set of k-element sequences where, for each i, the ith component is an element of Ai.
The number of such sequences is given by the product of the sets’ cardinalities:

|A1 ×A2 × · · · ×Ak| = |A1| · |A2| · · · · · |Ak|.

Here are a few examples of counting using the Product Rule:
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Example 9.5 (Counting sequences)
• Let A := {1, 2} and B := {3, 4, 5, 6}. By the product rule, |A× B| = |A| · |B| =

2 · 4 = 8. Indeed, A×B = {〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈1, 6〉, 〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈2, 6〉}, which
contains 8 elements.

• At a certain school in the midwest, there are currently 56 senior computer science
majors and 63 junior computer science majors. Then the number of ways to choose
a pair of class representatives, one senior and one junior, is 56 · 63 = 3528.

• Consider a tablet computer that is sold with three different options: a choice of
protective cover, a choice of stylus, and a color. If there are 7 different styles of
protective cover, 5 different styles of stylus, and 3 different colors, then there are
7 · 5 · 3 = 105 different configurations of the computer.

Like the Sum Rule, the Product Rule should be reasonably intuitive: if we are choosing
a pair 〈a, b〉 from A× B, then we have |A| different choices of the first component a—
and, for each of those |A| choices, we have |B| choices for the second component b.
(Thinking of A as A = {a1, a2, . . . , a|A|}, we can even view {〈a, b〉 : a ∈ A, b ∈ B} as

{〈a1, b〉 : b ∈ B} ∪ {〈a2, b〉 : b ∈ B} ∪ · · · ∪ {〈a|A|, b〉 : b ∈ B} .

By the Sum Rule, this set has cardinality |B| + |B| + · · · + |B|, with one term for each ele-
ment of A—in other words, it has cardinality |A| · |B|.) Here are a few more examples:

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Figure 9.2: The set
of all 4-bit strings.

Example 9.6 (32-bit strings)
Problem: How many different 32-bit strings are there?

Solution: The set of 32-bit strings is {0, 1}32—that is, elements of

{0, 1} × {0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
32 times

.

Because | {0, 1} | = 2, the Product Rule lets us conclude that |{0, 1}32| is

2 · 2 · 2 · · · · · 2︸ ︷︷ ︸
32 times

= 232.

(We can use the same type of analysis to show that there are 24 = 16 strings of 4
bits; for concreteness, they’re all listed in Figure 9.2.)

Example 9.7 (Number of possible shortened URLs)
A URL-shortening service like bit.ly or snipurl.com allows a user to compress a long
URL into a much shorter sequence of characters. (The shorter URL can then be used
in emails or tweets or other contexts in which a long URL is unwieldy.) For example,
by entering the URL of Alan Turing’s Wikipedia page into bit.ly, I got the URL
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http://bit.ly/1o6HPM as a shortened form of http://en.wikipedia.org/wiki/
Alan_Turing.

If a shortened URL consists of 6 characters, each of which is a digit, lowercase let-
ter, or uppercase letter, the number of possible shortened URLs is, using the Product
Rule,

|C× C× C× C× C× C| = |C| · |C| · |C| · |C| · |C| · |C| = |C|6,
where C = {0, . . . , 9} ∪ {a, . . . , z} ∪ {A, . . . , Z} is the set of possible characters. Because
|C| = 10 + 26 + 26 = 62 via the Sum Rule, we know that there are 626 = 56,800,235,584
possible shortened 6-character URLs.

Taking it further: The point of a URL-shortening service is to translate long URLs into short ones, but
it’s theoretically impossible for every URL to be shortened by this service: there are more possible URLs
of length k than there are URLs of length strictly less than k. A similar issue arises with file compression
algorithms, like ZIP, that try to reduce the space required to store a file. See the discussion on p. 938.

Product Rule: counting sequences from a fixed set
This use of the Product Rule—to count the number of sequences of length k with

elements all drawn from a fixed set S, rather than having a different set of options for
each component—is common enough that we’ll note it as a separate rule:

Theorem 9.3 (Product Rule: sequences of elements from a single set S)
For any set S and any k ∈ Z≥1, the number of k-tuples from the set Sk = S× S× · · · × S︸ ︷︷ ︸

k times

is
|Sk | = |S|k .

Here’s another example using this special case of the Product Rule:

A notational re-
minder regarding
Theorem 9.3: Sk is
the set

S× S× · · · × S,

that is, the set of
k-tuples where each
component is an
element of S. On
the other hand, |S|k
is the number |S|
raised to the kth
power.

Example 9.8 (MAC addresses)
Problem: A media access control address, or MAC address, is a unique identifier for a

network adapter, like an ethernet card or wireless card. A MAC address consists of
a sequence of six groups of pairs of hexadecimal digits. (A hexadecimal digit is one
of 0123456789ABCDEF.) For example, F7:DE:F1:B6:A4:38 is a MAC address. (The
pairs of digits are traditionally separated by colons when written down.) How
many different MAC addresses are there?

Solution: There are 16 different hexadecimal digits. Thus, using the Product Rule,
there are 16 · 16 = 256 different pairs of hexadecimal digits, ranging from
00 to FF. Using the Product Rule again, as in Example 9.7, we see that there
are 2566 different sequences of six pairs of hexadecimal digits. Thus there are
2566 = [162]6 = [(24)2]6 = 248 = 281,474,976,710,656 total different MAC addresses.

Taking it further: In addition to the numerical addresses assigned to particular hardware devices—
the MAC addresses from Example 9.8—each device that’s connected to the internet is also assigned an
address, akin to a mailing address, that’s used to identify the destination of a packet of information. But
we’ve had to make a major change to the way that information is transmitted across the internet because
of a counting problem: we’ve run out of addresses! See the discussion on p. 919.
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9.2.2 Inclusion–Exclusion: Unions of Nondisjoint Sets

The counting techniques that we’ve introduced so far have some important restric-
tions. We can only use the Sum Rule to calculate |A ∪ B| when A and B are disjoint.
And we are only able to use the Product Rule to calculate the number of sequences
when the set of options for the second component does not depend on the choice that
we made in the first component. In the remainder of this section, we will extend our
techniques to remove these restrictions so that we can handle more general problems.
Let’s start with a specific example of the cardinality of the union of nondisjoint sets:

Example 9.9 (Primes and odds)
Consider the set O = {1, 3, 5, 7, 9} of odd numbers less than 10 and the set
P = {2, 3, 5, 7} of prime numbers less than 10. What is |O ∪ P|?

It might be tempting to use the Sum Rule to conclude that |O ∪ P| = |O| + |P| =
5 + 4 = 9. But this conclusion is incorrect, because P ∩O = {3, 5, 7} 6= ∅, so the Sum
Rule doesn’t apply. In particular, O∪ P = {1, 2, 3, 5, 7, 9}, so |O∪ P| = 6.

(a) Two sets A and B; we seek |A ∪ B|.

+ =

(b) Calculating |A| + |B| counts elements in the dark-shaded region A ∩ B twice.

− =

(c) We correct for the double-counted intersection by subtracting its cardinality.

Figure 9.3: The
Inclusion–Exclusion
Rule.

The issue with the naïve applica-
tion of the Sum Rule in Example 9.9
is called double counting: in the ex-
pression |O| + |P|, we counted the
elements in the intersection O ∩ P
twice, which gave us the incorrect
total count. The idea underlying the
Inclusion–Exclusion Rule is to correct
for this error: to compute the size of
the union of two sets A and B, we
extend the Sum Rule to correct for
the double counting by subtracting
|A ∩ B| from the final result. (See
Figure 9.3.) This counting rule is called inclusion–exclusion because we include (add)
the cardinalities of the two individual sets, and then exclude (subtract) the cardinality
of the intersection of the pairs:

Theorem 9.4 (Inclusion–Exclusion)
Let A and B be sets. Then |A ∪ B| = |A| + |B| − |A∩ B|.

Here are a few small examples:

Problem-solving
tip: Sometimes the
easiest way to solve
a problem—in CS
or in life!—is to
find an imperfect
approximation
to the solution,
and then correct
for whatever
inaccuracies result.
Inclusion–Exclusion
is a good example
of this estimate-
and-fix strategy.

Example 9.10 (Counting not necessarily disjoint unions)
• Let A := {1, 2, 3} and B := {3, 4, 5, 6}. Thus A ∩ B = {3}, and so |A| = 3 and |B| = 4

and |A ∩ B| = 1. By the inclusion–exclusion rule, |A ∪ B| = |A| + |B| − |A ∩ B| =
3 + 4− 1 = 6. Indeed, we have A∪ B = {1, 2, 3, 4, 5, 6}, which contains 6 elements.
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• At a certain school in the midwest, there are 119 computer science majors and 65
math majors. There are 7 students double majoring in CS and math. Thus a total
of 119 + 65− 7 = 177 different students are majoring in either of the two fields.

• There are 21 consonants (BCDFGHJKLMNPQRSTVWXYZ) in English. There are 6 vowels
in English (AEIOUY). There is one letter that’s both a vowel and a consonant (Y).
Thus there are 21 + 6− 1 = 26 total letters.

• Let E be the set of even integers between 1 and 100. Let O be the set of odd inte-
gers between 1 and 100. Note that |E| = 50, |O| = 50, and |E ∩ O| = 0. Thus
|E∪O| = 50 + 50− 0 = 100.

Here’s an example that uses Inclusion–Exclusion to compute the cardinality of a
slightly more complicated set:

0000
1111
...

9999

0001
0002
...

9997
9998

0111
0222
...

9777
9888

fir
st
th
re
e
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ns
m
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ch
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e
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tio

ns
m
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ch

Figure 9.4: Invalid
PINs, starting or
ending with the
same digit repeated
three times.

Example 9.11 (ATM machine PIN numbers)
Problem: A certain bank’s customers can select a 4-digit number (called a PIN) to

access their accounts, but the bank insists that the PIN may not start with the same
digit repeated three times (for example, 7770) or end with the same digit repeated
three times (for example, 0111). How many invalid PINs are there?

Solution: Let S denote the set of PINs that start with three repeated digits. Let E
denote the set of PINs that end with three repeated digits. Then the set of invalid
PINs is S∪ E.

• Note that |S| = 100: we can view a PIN in S as a sequence of two digits
〈x, y〉 ∈ {0, 1, . . . , 9}2, with x repeated three times in the PIN. (So 〈3, 1〉 corre-
sponds to the PIN 3331.) By the Product Rule, there are 102 = 100 such codes.

• Similarly, |E| = 100: we can think of an element of E as a sequence of two digits
〈x, y〉 ∈ {0, 1, . . . , 9}2, where y is repeated three times in the PIN.

If S ∩ Ewere empty, then we could apply the Sum Rule to compute |S ∪ E|. But
there are PINs that are in both S and E:

• A 4-digit number 〈x, y, z,w〉 is in S ∩ E if and only if x = y = z (because
〈x, y, z,w〉 ∈ S) and y = z = w (because 〈x, y, z,w〉 ∈ E). That is, any 4-digit
number that consists of the same digit repeated four times is in S ∩ E. Thus

S ∩ E = {0000, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999} ,

and |S ∩ E| = 10.

(See Figure 9.4 for S, E, and S ∩ E.) Applying the Inclusion–Exclusion rule, we see
that the set S∪E of invalid PINs has cardinality |S|+ |E| − |S∩E| = 100+100− 10 =
190. (So 10,000− 190 = 9810 PINs are valid.)

The basic Sum Rule is actually a special case of the Inclusion–Exclusion Rule: if A and
B are disjoint, then |A∩ B| = ∅, so |A∪ B| = |A|+ |B| − |A∩ B| = |A|+ |B| − 0 = |A|+ |B|.
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Inclusion–Exclusion for three sets
Theorem 9.4 describes how to calculate the cardinality of the union of two sets,

but this idea can be generalized. The basic idea is simple: we will try counting in the
easiest way possible, and then we’ll correct for any overcounting or undercounting.

+ + =

(a) If we start to compute |A∪ B∪ C| as |A| + |B| + |C|, we correctly count the
light-shaded regions, but we count elements in the medium-shaded regions
twice, and elements in the dark-shaded region three times.

+ + =

(b) Subtracting the sum of the sizes of the pairwise intersections
|A ∩ B| + |B∩ C| + |A ∩C| almost corrects for the double counting from (a), but it
also triple counts the elements of A ∩ B∩ C.

− + =

(c) The result of (a) minus (b) hasn’t counted the elements of A ∩ B∩ C at all, so
we can achieve the final count by adding |A∩ B ∩C|.

Figure 9.5: The
Inclusion–Exclusion
Rule for three sets
A, B, and C. See
Theorem 9.5.

For example, we can compute the
cardinality of the union of three sets
A ∪ B ∪ C using a more complicated
version of Inclusion–Exclusion:

• We add (include) the three single-
ton sets (|A| + |B| + |C|), but this
sum counts any element contained
in more than one of the three sets
more than once.

• So we subtract (exclude) the
three pairwise intersections
(|A∩ B| + |A∩ C| + |B∩C|) from
the sum. But we’re not done:
imagine an element contained in
all three of A, B, and C; such an
element was included three times
and then excluded three times, so
it hasn’t been counted at all.

• So we add (include) the three-way
intersection |A∩ B∩ C|.

This calculation yields the following three-set rule for inclusion–exclusion. (Or see
Figure 9.5 for a visual illustration of why this calculation is correct.)

Theorem 9.5 (Inclusion–Exclusion for three sets)
Let A, B, and C be sets. Then |A∪ B∪ C| is given by

|A| + |B| + |C| − |A∩ B| − |A ∩C| − |B∩ C| + |A∩ B∩ C|.

Here are a couple of small examples of the three-set version of inclusion–exclusion:

BA

C

2, 41
0 63

Figure 9.6: Some
small sets.

Example 9.12 (Counting three-set unions)
• Let A := {0, 1, 2, 3, 4} and B := {0, 2, 4, 6} and C := {0, 3, 6}. Then

|A∪ B∪ C|
= 5︸︷︷︸

|A|
+ 4︸︷︷︸

|B|
+ 3︸︷︷︸

|C|
− 3︸︷︷︸

|A∩B|=|{0,2,4}|
− 2︸︷︷︸

|A∩C|=|{0,3}|
− 2︸︷︷︸

|B∩C|=|{0,6}|
+ 1︸︷︷︸
|A∩B∩C|=|{0}|

= 12− 7 + 1 = 6,

by Inclusion–Exclusion. Indeed, A∪ B∪ C = {0, 1, 2, 3, 4, 6}. (See Figure 9.6.)
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• Consider the words ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, and EIGHT. Let E be the
set of these words containing at least one E, let T be the words containing a T, and
let R be the words containing an R. Then

|E∪ T ∪ R|
= 5︸︷︷︸

E={ONE,
THREE,
FIVE,
SEVEN,
EIGHT}

+ 3︸︷︷︸
T={TWO,

THREE,
EIGHT}

+ 2︸︷︷︸
R={THREE,

FOUR}

− 2︸︷︷︸
E∩T={THREE,

EIGHT}

− 1︸︷︷︸
E∩R={THREE}

− 1︸︷︷︸
T∩R={THREE}

+ 1︸︷︷︸
E∩T∩R={THREE}

= 7,

and, indeed, seven of the eight words are in E∪ T∪R (the only one missing is SIX).

We’ll close with a slightly bigger example, about integers divisible by 2, 3, or 5:

Example 9.13 (Divisibility)
Problem: How many integers between 1 and 1000, inclusive, are evenly divisible by

any of 2, 3, or 5?

Solution: Define the following sets:

A = {n ∈ {1, . . . , 1000} : 2 | n}
B = {n ∈ {1, . . . , 1000} : 3 | n}
C = {n ∈ {1, . . . , 1000} : 5 | n} .

We must compute |A∪ B∪ C|.
• It’s fairly easy to see that |A| = 500, |B| = 333, and |C| = 200, because

A = {2n : 1 ≤ n ≤ 500}, B = {3n : 1 ≤ n ≤ 333}, and C = {5n : 1 ≤ n ≤ 200}.
• Observe that A ∩ B is the set of integers between 1 and 1000 that are divisible by

both 2 and 3—that is, the set of integers divisible by 6. By the same logic that we
used to compute |A|, |B|, and |C|, we see

– |A∩ B| = | {6n : 1 ≤ n ≤ 166} | = 166,
– |A∩ C| = | {10n : 1 ≤ n ≤ 100} | = 100, and
– |B∩ C| = | {15n : 1 ≤ n ≤ 66} | = 66.

• And, using the same approach, we can conclude that A ∩ B ∩ C = {n : 30 | n} =
{30n : 1 ≤ n ≤ 33}, so |A∩ B∩ C| = 33.

Therefore, using the Inclusion–Exclusion Rule, |A∪ B∪ C| is

500︸︷︷︸
|A|

+ 333︸︷︷︸
|B|

+ 200︸︷︷︸
|C|

− 166︸︷︷︸
|A∩B|

− 100︸︷︷︸
|A∩C|

− 66︸︷︷︸
|B∩C|

+ 33︸︷︷︸
|A∩B∩C|

= 734.

We can further generalize the inclusion–exclusion principle to calculate the cardinality

Problem-solving
tip: To verify a
calculation like
this one, it’s a good
idea (and very
easy!) to write a
short program.

of the union of an arbitrary number of sets. (See Exercises 9.30 and 9.181.)
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9.2.3 The Generalized Product Rule

The Product Rule (Theorem 9.2) tells us how to compute the number of 2-element
sequences where the first element is drawn from the set A and the second from the
set B—specifically, it says that |A × B| is |A| · |B|. But there are many types of se-
quences that do not precisely fit this setting: the Product Rule only describes the set
of sequences where each component is selected from a fixed set of options. If the set of
options for choice #2 depends on choice #1, then we cannot directly apply the Product
Rule. However, the basic principle of the Product Rule still applies if the number of dif-
ferent choices for the second component is the same regardless of the choice of the first
component, even if the particular set of choices can differ:

Theorem 9.6 (Generalized Product Rule)
Let S denote a set of sequences, each of length k, where for each index i ∈ {1, . . . , k} the
following condition holds: for each choice of the first i− 1 components of the sequence, there
are exactly ni choices for the ith component. Then |S| = ∏k

i=1 ni.

Here are a few examples using the Generalized Product Rule:

Example 9.14 (Gold, silver, and bronze)
Problem: A set S of eight sprinters qualify for the finals of the 100-meter dash in the

Olympics. One will win the gold medal, another the silver, and a third the bronze.
How many different trios of medalists are possible?

Solution: It “feels” like we can solve this problem using the Product Rule, by choos-
ing a sequence of three elements from S, where we forbid duplication in our
choices. But our choice of gold, silver, and bronze medalists would be from

S× (
S− {the gold medalist}

)× (
S− {the gold and silver medalists}

)

and the Product Rule doesn’t permit the set of choices for the second component to
depend on the first choice, or the options for the third choice to depend on the first
two choices.

Instead, observe that there are 8 choices for the gold medalist. For each of those
choices, there are 7 choices for the silver medalist. For each of these pairs of gold
and silver medalists, there are 6 choices for the bronze medalist. Thus, by the
Generalized Product Rule, the total number of trios of medalists is 8 · 7 · 6 = 336.

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 9.7: The
valid first moves in
a chess game.

Example 9.15 (Opening moves in a chess game)
In White’s very first move in a chess game, there are n1 = 10 pieces that can move:
any of White’s 8 pawns or 2 knights. Each of these pieces has n2 = 2 legal moves: the
pawns can move forward either 1 or 2 squares, and the knights can move either � or
�. (See Figure 9.7.) Thus there are n1 · n2 = 10 · 2 = 20 legal first moves.
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Example 9.16 (Students in classes)
At a certain school in the midwest, each of 2023 students enrolls in exactly 3 classes
per term. The set

Enrollments := {〈s, c〉 : s is a student enrolled in class c during the current term}

has cardinality 2023 · 3 = 6069, by the Generalized Product Rule: for each of the
n1 = 2023 choices of student, there are n2 = 3 choices of classes. (Note that the
original Product Rule does not apply, because the set Enrollments is not a Cartesian
product: in general, two students are not enrolled in the same classes—just the same
number of classes.)

Although we didn’t say we were doing so, we actually used the underlying idea of the
Generalized Product Rule in Example 9.11. Let’s make its use explicit here:

Example 9.17 (4-digit PINs starting with a triplicated digit)
Let S ⊆ {0, 1, . . . , 9}4 denote the set of 4-digit PINs that start with three repeated
digits. We claim that |S| = 100, as follows:

• There are n1 = 10 choices for the first digit.
• There is only n2 = 1 choice for the second digit: it must match the first digit.
• There’s also only n3 = 1 choice for the third digit: it must match the first two.
• There are n4 = 10 choices for the fourth digit.

Thus there are n1 · n2 · n3 · n4 = 10 · 1 · 1 · 10 = 100 elements of S.

Permutations
The Generalized Product Rule sheds some light on a concept that arises in a wide

range of contexts: a permutation of a set S, which is any ordering of the elements of S.

Definition 9.1 (Permutation)
A permutation of a set S is a sequence of elements from S that is of length |S| and contains
no repetitions. In other words, a permutation of S is an ordering of the elements of S.

As a first example, let’s list all the permutations of the set {1, 2, . . . , n} for a few small
values of n:

• for n = 1, there’s just one ordering: 〈1〉.
• for n = 2, there are two orderings: 〈1, 2〉 and 〈2, 1〉.
• for n = 3, there are six: 〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, and 〈3, 2, 1〉.
• for n = 4, there are twenty-four: six with 1 as the first element (which can then be

followed by any of the six permutations of 〈2, 3, 4〉), six with 2 as the first element,
six with 3 first, and six with 4 first, yielding a total of 4 · 6 = 24 orderings.
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How many permutations of an n-element set are there? There are several ways to see
the general pattern, including recursively, but it may be easiest to use the Generalized
Product Rule to count the number of permutations:

Theorem 9.7 (Number of permutations)
Let S be any set, and write n := |S|. The number of different permutations of S is n!.

Proof. There are n choices for the first element of a permutation of S. For the second
element, there are n − 1 choices (all but the element chosen first). There are n − 2
choices for the third slot (all but the elements chosen first and second). In general, for
the ith element, there are n− i + 1 choices. Thus the number of permutations of S is

n
∏
i=1

(n− i + 1) =
n

∏
j=1

j = n!

by the Generalized Product Rule.

Here’s a small example for a concrete set S:

Example 9.18 (10-digit numbers)
Problem: What fraction of integers between 0 and 9,999,999,999 (all written as 10-digit

numbers, including any leading zeros) have no repeated digits?

Solution: We seek a 10-digit sequence with no repetitions—that is, a permutation of
{0, 1, . . . , 9}. There are 10! = 3,628,800 such permutations, by Theorem 9.7. There
are a total of 1010 integers between 0 and 9,999,999,999, by the Product Rule. Thus
the fraction of these integers with no repeated digits is 10!

1010 ≈ 0.00036 · · · , about
one out of every 2750 integers in this range.

Taking it further: A permutation of a set S is an ordering of that set S—so thinking about permutations
is closely related to thinking about sorting algorithms that put an out-of-order array into a specified
order. By using the counting techniques of this section, we can prove that algorithms must take a certain
amount of time to sort; see the discussion on p. 920.

We will also return to permutations frequently later in the chapter. For example, in Section 9.4, we
will address counting questions like the following: how many different 13-card hands can be drawn from a
standard 52-card deck of playing cards? (Here’s one way to think about it: we can lay out the 52 cards in any
order—any permutation of the cards—and then pick the first 13 of them as a hand. We’ll have to correct
for the fact that any ordering of the first 13 cards—and, for that matter, any ordering of the last 39—will
count as the same hand. But permutations will also help us to think about this correction!)

9.2.4 Combining Products and Sums

Suppose that we select a pair 〈a, b〉 from a set of possible choices. The Product Rule
tells us how many ways to make these choices if the particular choice of a does not
affect the set of options from which b is chosen. The Generalized Product Rule tells us
how many ways to make these choices if the particular choice of a does not affect the
size of the set of options from which b is chosen. But if the number of options for the
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choice of b differs based on the choice of a, even the Generalized Product Rule does
not apply. In this case, we can use a combination of the Sum Rule and the Generalized
Product Rule to calculate the number of results. We’ll close this section with a few
examples of these somewhat more complex counting questions.

Example 9.19 (Ordering coffee)
A certain coffeeshop sells the following espresso-based drinks:

americano∗, cappuccino, espresso∗, latte, macchiato, mocha.

The drinks marked with an asterisk do not contain milk; the others do. All drinks
can be made with either decaf or regular espresso. All milk-containing drinks can be
made with any of {soy, skim, 2%,whole} milk. How many different drinks are sold
by this coffeeshop?

We can think of a chosen drink as a sequence of the form

〈drink type,milk type (or “none”), espresso type〉.

There are 4 · 4 · 2 = 32 choices of milk-based drinks (4 drink types, 4 milk types, and 2
espresso types). There are 2 · 1 · 2 = 4 choices of non-milk-based drinks (2 drink types,
1 “milk” type [“none”], and 2 espresso types). Thus the total number of different
drinks sold by this coffeeshop is 32 + 4 = 36.

Example 9.20 (Text numbers)
Problem: In the United States, a text message can be sent either to a regular 10-digit

phone number, or to a so-called short codewhich is a 5- or 6-digit number. Neither
a phone number nor a short code can start with a 0 or a 1. How many different
textable numbers are there in the United States?

Solution: Let D = {2, 3, . . . , 9}. Note |D| = 8. The set of valid textable numbers is:

D× (D∪ {0, 1})9︸ ︷︷ ︸
phone numbers

∪ D× (D∪ {0, 1})4︸ ︷︷ ︸
5-digit short codes

∪ D× (D∪ {0, 1})5︸ ︷︷ ︸
6-digit short codes

.

The Product Rule tells us that |D× (D∪ {0, 1})i| = |D| · |D∪ {0, 1} |i = 8 · 10i for any
i. (To be totally pedantic: we’re using the Sum Rule to conclude that |D ∪ {0, 1} | =
|D| + | {0, 1} | = 10, because D and {0, 1} are disjoint.) Therefore:

∣∣∣D× (D∪ {0, 1})9 ∪D× (D∪ {0, 1})4 ∪D× (D∪ {0, 1})5
∣∣∣

=
∣∣∣D× (D ∪ {0, 1})9

∣∣∣ +
∣∣∣D× (D ∪ {0, 1})4

∣∣∣ +
∣∣∣D× (D ∪ {0, 1})5

∣∣∣
Sum Rule: the three types of numbers are disjoint because they have different lengths

= 8 · 109 + 8 · 104 + 8 · 105 Product Rule, as described in the previous paragraph

= 8,000,880,000.

Problem-solving
tip: When you’re
confronted with a
counting problem
that appears com-
plicated, try to find
a nice way of split-
ting the problem
into several disjoint
options. Often a
difficult counting
problem is actually
the sum of two
simple counting
problems.
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Combining sums and products: prefix-free codes
We’ll end the section with two somewhat more complicated counting problems,

where we’re asked to calculate the number of objects meeting some particular con-
dition: sets of bitstrings such that no string is a prefix of another, and results of a
best-of-five series of games. In both cases, we can give a solution based entirely on a
brute-force approach by simply enumerating all possible sequences, eliminating any
that don’t meet the stated condition, and counting the uneliminated sequences one by
one. But there are also ways to break down the set of objects of interest into subsets
that we can count using the Sum and (Generalized) Product Rules.

0 1 00 01 10 11 ok?
✓

✓ ✓
✓ ✓
✓ ✓ ✓

✓ ✓
✓ ✓ ✓
✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓
✓ ✓ ✓
✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓

0 1 00 01 10 11 ok?
✓ ✓
✓ ✓ 11
✓ ✓ 10
✓ ✓ ✓ 10
✓ ✓ ✓
✓ ✓ ✓ 11
✓ ✓ ✓ 10
✓ ✓ ✓ ✓ 10
✓ ✓ ✓
✓ ✓ ✓ 11
✓ ✓ ✓ 10
✓ ✓ ✓ ✓ 10
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ 11
✓ ✓ ✓ ✓ 10
✓ ✓ ✓ ✓ ✓ 10

0 1 00 01 10 11 ok?
✓ ✓
✓ ✓ ✓
✓ ✓ ✓
✓ ✓ ✓ ✓
✓ ✓ 01
✓ ✓ ✓ 01
✓ ✓ ✓ 01
✓ ✓ ✓ ✓ 01
✓ ✓ 00
✓ ✓ ✓ 00
✓ ✓ ✓ 00
✓ ✓ ✓ ✓ 00
✓ ✓ ✓ 00
✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ ✓ 00

0 1 00 01 10 11 ok?
✓ ✓ ✓
✓ ✓ ✓ 11
✓ ✓ ✓ 10
✓ ✓ ✓ ✓ 10
✓ ✓ ✓ 01
✓ ✓ ✓ ✓ 01
✓ ✓ ✓ ✓ 01
✓ ✓ ✓ ✓ ✓ 01
✓ ✓ ✓ 00
✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ ✓ 00
✓ ✓ ✓ ✓ ✓ ✓ 00

Figure 9.8: All
64 subsets of
{0, 1, 00, 01, 10, 11},
with indication of
whether the subset
is prefix-free or
not. In each row (a
subset), if the set is
not prefix-free, then
one violation found
in the set is listed.

A prefix-free code is a set
C of bitstrings with the
property that no x ∈ C
is a prefix of any other
y ∈ C. (For example, if
010 ∈ C, then we must
have 0101 /∈ C, because
010 is a prefix of 0101.)
Let’s compute the number
of prefix-free codes where
all of the codewords are
only 1 or 2 bits long:

Example 9.21 (Prefix-free codes)
One simple way to find the number of prefix-free codes C ⊆ {0, 1}1 ∪ {0, 1}2 is
to write down all subsets of S := {0, 1}1 ∪ {0, 1}2, and then check each subset to
eliminate any set that violates the prefix rule. (See Figure 9.8, which was generated
by a computer program; there are 25 codes in the table that pass the prefix test.)
There are 2|S| = 26 = 64 subsets of S: we can describe each subset of S as an element
of {yes, no}|S| where the ith component tells us whether the ith element of S is in the
set. The Product Rule tells that |{yes, no}|S|| = 26 = 64. (See Lemma 9.10.)

Here’s a different approach, involving more thinking and less brute-force calcula-
tion. Let’s partition the set of valid codes into four classes based on whether 0 ∈ C
and 1 ∈ C:

• If 0 /∈ C and 1 /∈ C, then any subset of {00, 01, 10, 11} can be in C.
• If 0 /∈ C and 1 ∈ C, then any subset of {00, 01} can also be in C.
• If 0 ∈ C and 1 /∈ C, then any subset of {10, 11} can also be in C.
• If 0 ∈ C and 1 ∈ C, then no 2-bit strings can be included.

By the Product Rule, there are, respectively, 24 and 22 and 22 and 20 choices corre-
sponding to these classes. (The four classes correspond to the four columns of Fig-
ure 9.8.) By the Sum Rule, the total number of prefix-free codes using 1- and 2-bit
strings is 16 + 4 + 4 + 1 = 25.
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Computer Science Connections

Running out of IP addresses, and IPv6

A crucial component of the internet is the assignment of an address to
every machine connected to the network. This address is called an IP address,
where “IP” stands for Internet Protocol—the algorithm by which packets of
information are handled while they’re being transmitted across the internet.
Each packet of information to be transmitted stores a variety of pieces of
information, including (1) some basic header information; (2) a source address
(the sender of the information); (3) a destination address (the intended recipient
of the information); and (4) the data to be transmitted (the “payload”).

The subfield of computer science called computer networking is devoted to
everything about how the internet (or some smaller network) works: design
of the network, physical systems, protocols for routing, and more.1 Here we For more, see a good textbook on

computer networks, like
1 James F. Kurose and Keith W. Ross.
Computer Networking: A Top-Down
Approach. Addison–Wesley, 6th edition,
2013.

are going to concentrate on the IP address itself, and a particular issue related
to how many—or how few!—addresses there are.

Each device on the internet that can send or receive information needs an
address by which to do so. For almost the entire history of the internet, an
IP address has simply been a 32-bit string. These IP addresses are typically
represented as an element of {0, . . . , 255}4 instead of as an element of {0, 1}32,
by converting 8 bits at a time into base-10 numbers, and then writing each
8-bit chunk separated by periods. For example, the site cs.carleton.edu is
associated with the IP address

10001001︸ ︷︷ ︸
137

. 00010110︸ ︷︷ ︸
22

. 00000100︸ ︷︷ ︸
4

. 00010111︸ ︷︷ ︸
23

.

You can find the IP address of your favorite site using a tool called nslookup

on most machines, which checks a so-called name server to translate a site’s
name (like whitehouse.gov) into an IP address (like 173.223.132.110).

As an easy counting problem, we can check that there only 232 = 4,294,967,296
different possible 32-bit IP addresses—about 4.3 billion addresses. Every ma-
chine connected to the internet needs to be addressable to receive data, so that
means that we can only support about 4.3 billion connected devices. In the There are some strategies from com-

puter networking for conserving ad-
dresses by “translation,” so that several
computers c1, c2, . . . can be connected
via an access point p—where p is the
only machine that has a public, visible
IP address. All of those computers’
traffic is handled by p, but pmust be
able to reroute the traffic it receives to
the correct one of the ci computers. For
more information, see the Kurose–Ross
textbook cited previously.

1990s and 2000s, more and more people began to have machines connected to
the internet, and each person also began to have more and more devices that
they wanted to connect. It became clear that we were facing a dire shortage
of IP addresses! As such, a new version of the Internet Protocol (version six,
hence called IPv6) has been introduced.

In IPv6, instead of using 32-bit addresses, we now use 128-bit addresses.
There are some tricky elements to the transition from 32-bit to 128-bit addresses—
your computer better keep working!—but there are now 2128 different ad-
dresses available. That’s 340,282,366,920,938,463,463,374,607,431,768,211,456 ≈
3.4× 1038 , which should hold us for a few millennia. For example, whitehouse.
gov is associated with a 32-bit address 173.223.132.110, and a 128-bit ad-
dress 2600:1408:0010:019a:0fc4, represented by 5 blocks of 4 hexadecimal
numbers—that is, as an element of

[
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}4

]5
.
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Computer Science Connections

A Lower Bound for Comparison-Based Sorting

Most people who encounter the sorting problem—given an array A[1 . . .n],
rearrange A so that it’s in ascending order—initially devise a quadratic-time
algorithm. (For simplicity, suppose that we’re sorting distinct elements.) The
most common examples of Θ(n2)-time algorithms are Selection Sort, Insertion
Sort, and Bubble Sort. Then, after a lot of thought (and, usually, some help),
those people often are able to devise a O(n log n)-time sorting algorithm, like
Merge Sort, Quick Sort, or Heap Sort. (See Section 6.3.)

But suppose that you were extra impatient with the speed of your sorting
algorithm, and you were extra, extra clever. Could you do asymptotically
better than O(n log n) in the worst case? The answer, we’ll show, is no—with a
footnote: any “comparison-based” sorting algorithm requires Ω(n logn) time.
(The footnote is that it depends on what we mean by “sort,” as we’ll see.)

A Warm-up: Selection Sort
First, recall Selection Sort, shown in Figure 9.10. One way to analyze its

selectionSort(A[1 . . . n]):
1: for i := 1 to n:
2: minIndex := i
3: for j := i + 1 to n:
4: if A[j] < A[minIndex] then
5: minIndex := j
6: swap A[i] and A[minIndex]

Figure 9.10: Selection Sort.

running time is as we did in Example 6.7: there are n iterations, and in the
(n − i)th iteration we require i steps. In other words, the running time of
Selection Sort is ∑n

i=1 i. We could repeat the straightforward inductive proof
that ∑n

i=1 i = n(n + 1)/2, but instead Figure 9.11 gives a more visual way
of seeing this result. Figure 9.11(a) shows a shaded triangle that represents
the running time of selection sort: ∑n

i=1 i, where row i of the triangle has i
steps in it. Figure 9.11(b) shows that this triangle is contained within an n-by-n
square and also contains an n

2 -by-
n
2 square. Thus the area of the triangle is upper

bounded by n · n = n2 and lower bounded by n
2 · n2 = n2

4 , and therefore is Θ(n2).
This picture is a visual representation of a more algebraic proof:

n
∑
i=1

i ≤
n
∑
i=1

n = n2, and
n
∑
i=1

i ≥
n
∑

i= n
2 +1

i ≥
n
∑

i= n
2 +1

n
2 = n2

4 .

While the analysis of Selection Sort isn’t necessary for our main proof, the

row i contains i steps

n
ro
w
s

(a) Selection Sort’s running time.

(b) The analysis of the running time.

Figure 9.11: A visual representation
of the proof that Selection Sort runs in
Θ(n2) time.

style of analysis from Figure 9.11 will be useful in a moment.

There Are No O(n) Comparison-Based Sorting Algorithms
All of the sorting algorithms that we’ve encountered in the book are

comparison-based sorting algorithms: they proceed by repeatedly comparing
the values of two elements xi and xj from the input array without considering
the values themselves. Depending on the result of the comparison, the algorithm
may then swap some elements of the array. (Comparison-based sorting algo-
rithms probably include every sorting algorithm that you’ve ever seen, except
counting, radix, and bucket sorts.)

One way to view a comparison-based sorting algorithm is through a deci-
sion tree, like the one shown in Figure 9.12 for Selection Sort on a 3-element
array. The internal nodes encode the comparisons made by the algorithm. The
leaves correspond to sorted orders—the output of the sorting algorithm.
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Sorting Lower Bounds, continued

a ≶ b?

a ≶ c?

a < b

b ≶ c?

a < c
a is min

〈a, b, c〉

b < c

〈a, c, b〉

c < b

a ≶ b?

a > c
c is min

〈c, a, b〉

a < b

〈c, b, a〉

b < a

b ≶ c?

a > b

a ≶ c?

b < c
b is min

〈b, a, c〉

a < c

〈b, c, a〉

c < a

a ≶ b?

b > c
c is min

〈c, a, b〉

a < b

〈c, b, a〉

b < a

Figure 9.12: The decision tree for Se-
lection Sort on the input array 〈a, b, c〉.
Selection Sort first does two compar-
isons to find the minimum value of
{a, b, c}, and subsequently compares the
remaining two elements to decide on
the final order. The two lighter-shaded
branches of the tree are logically incon-
sistent, but Selection Sort reexecutes the
a-versus-b comparison in those cases.

The running time of the sorting algorithm whose input corresponds to a
particular leaf is Ω(number of comparisons on that root-to-leaf path) because,
although the algorithm might do more than compare—in fact, it must (for
example, it has to perform swaps)—it must do at least these comparisons.

We will use the decision tree to establish a lower bound on the running
time of comparison-based sorting algorithms:

Theorem 9.8
Any comparison-based sorting algorithm requires Ω(n log n) time.

Proof. Consider the decision tree T of the sorting algorithm. First, observe
that T must have at least n! leaves. There are n! different permutations of the
input, and a correct algorithm must be capable of producing any of these
permutations as output. Second, observe that T has at most 2d nodes at depth d.
(It’s a binary tree!) Thus the height h of T satisfies 2h ≥ n!. Taking logarithms
of both sides, we have

The crucial fact here is precisely analo-
gous to the one in Figure 9.11:

n

∏
i=1

i ≥
n

∏
i= n

2 +1
i ≥

n

∏
i= n

2 +1

n
2 = ( n2 )

n/2.

The only difference is that here we’re
using products instead of summations.

h ≥ log2(n!) = log2 [n · (n− 1) · (n− 2) · · · · · ( n2 + 1) · ( n2 ) · · · · · 1]
≥ log2 [n · (n− 1) · (n− 2) · · · · · ( n2 + 1)]

≥ log2
[
( n2 )

(n/2)
]

= ( n2 ) · log2(n/2)
= Ω(n log n).

A Linear-Time Sorting Algorithm
While we’ve now shown that every comparison-based sorting algorithm

takes Ω(n logn) time, there are faster algorithms for special cases. Figure 9.13
shows one, called counting sort, which allows us to sort without comparing
elements to each other. As long as the elements of the array are integers from
a small range, then this algorithm is fast: the running time is Θ(c + n) (the last
nested loop requires ∑v count[v] = n time); as long as c is small, this algorithm
runs in linear time.

countingSort(A[1 . . . n]):
Input: array (A[1 . . .n]) where each

A[i] ∈ {1, 2, . . . , c}.
1: for v := 1 to c:
2: count[v] := 0
3: for i := 1 to n:
4: count[A[i]] := count[A[i]] + 1
5: i := 1
6: for v := 1 to c:
7: for t := 1 to count[v]:
8: A[i] := v
9: i := i + 1

Figure 9.13: Counting Sort.
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9.2.5 Exercises

9.1 A tweet (a message posted on Twitter) is a sequence of at most 140 characters. Assuming there are
256 valid different characters that can appear in each position, how many distinct tweets are possible?

Cars in the United States display license plates containing an alphanumeric code, whose format varies from state to
state. Each of the following questions describes the format of currently issued license plates by some state. For each,
determine the number of different license plate codes (often misleadingly called license plate numbers despite the
presence of letters) of the listed form. All letters in all codes are upper case.
9.2 Minnesota: digit-digit-digit-letter-letter-letter (as in 400GPA).
9.3 Pennsylvania: letter-letter-letter-digit-digit-digit-digit (as in EEE2718).
9.4 Connecticut: digit-letter-letter-letter-letter-digit (as in 4FIVE6).
9.5 You have been named Secretary of Transportation for the State of [Your Favorite State]. Congrat-
ulations! You’re considering replacing the current license plate format ABCD-1234 (4 letters followed by 4
digits) with a sequence of any k symbols, each of which can be either a letter or a digit. How large must k be
so that your new format has at least as many options as the old format did?
9.6 Until recently, France used license plates that contain codes of any of the following forms:
• digit-digit-digit-letter-digit-digit.
• digit-digit-digit-letter-letter-digit-digit, where the first letter is alphabetically ≤ P.
• digit-digit-digit-digit-letter-letter-digit-digit, where the first letter is alphabetically ≥ Q.
• digit-digit-digit-letter-letter-letter-digit-digit.
How many license plates, in total, met the French requirements?

9.7 A particular voicemail system allows numerical passwords of length 3, 4, or 5 digits. How many
passwords are possible in this system?
9.8 What about numerical passwords of length 4, 5, or 6?

A contact lens is built with the following parameters: a (spherical) power (for correcting near- or farsightedness); and,
possibly, a cylindrical power and an axis (for correcting astigmatism). For a particular brand of contacts, the possible
parameters for a lens that corrects near- or farsightedness only are
• a power between −6.00 and +6.00 inclusive in 0.25 steps (excluding 0.00); between 6.50 and 8.00 inclusive in 0.50

steps; and between −6.50 and −10.00 inclusive in 0.50 steps,
and the parameters for a lens that corrects astigmatism are
• one of the powers listed previously;
• a cylindrical power in {−0.75,−1.25,−1.75,−2.25}; and
• an axis between 10◦ and 180◦ in steps of 10◦.
9.9 How many different contact lenses are there?
9.10 A patient needing vision correction in both eyes may get different contact lenses for each eye. A
prescription assigns a lens for the left eye and for the right eye. How many contact prescriptions are there?

9.11 During the West African Ebola crisis that started in 2014, geneticists were working to trace the
spread of the disease. To do so, they acquired DNA samples of the viruses from a number of patients, and
affixed a unique “tag” to each patient’s sample.2 A tag is a sequence of 8 nucleotides—each an element of 2 Richard Preston.

The Ebola wars.
The New Yorker, 27
October 2014.

{A, C, G, T}—attached to the end of a virus sample from each patient, so that subsequently it will be easy to
identify the patient associated with a particular sample. How many different such tags are there?

9.12 In a computer science class, there are 14 students who have previously written a program in Java,
and 12 students who have previously written a program in Python. How many students have previously
written a program in at least one of the two languages? (If you can’t give a single number as a definitive
answer, give as narrow a range of possible values as you can.)

9.13 True story: a relative was given a piece of paper with the password to a wireless access point that
was written as follows: a154bc0401011. But she couldn’t tell from this handwriting whether each “1” was
1 (one), l (ell), or I (eye); or whether “0” was 0 (zero) or O (oh). How many possible passwords would she
have to try before having exhausted all of the possibilities?
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Figure 9.14: A
Rubik’s cube
with the top face
(and one cell
in particular)
highlighted, and
the result of a single
move—rotating the
top face clockwise.

A Rubik’s cube—named after the 20th-century Hungarian architect Ernő Rubik—
is a 3-by-3-by-3 grid of cells, where any of the six nine-cell faces (top, bottom, left,
right, front, back) can be rotated 90◦ clockwise or counterclockwise in a single move.
(See Figure 9.14.) Each face of each cell is colored with one of six colors (blue, red,
green, yellow, white, and orange); initially, all nine cell-faces on each cube-face have
the same color, but the cube can then be scrambled. The challenge is to use rotations
to configure a scrambled cube such that each face of the cube contains nine cells of
the same color.
9.14 How many Rubik’s cube moves are there?
9.15 It is known that, from any configuration, 26 moves suffice to solve
the cube. (Note that we’re counting every 90◦ rotation as a move; if you rotate the same face 180◦ by using
two consecutive 90◦ moves, it counts as two moves.) How many sequences of 26 moves are possible?
9.16 It’s useless to rotate a face clockwise in one move, and rotate the same face counterclockwise in
the next move. (You’ve just undone the previous move.) A counterclockwise move followed by a clockwise
move is analogous. How many sequences are there of 26 moves that never undo the previous move?

Emacs is a widely used software program for—among other things—editing text documents (including this book!).
Here’s a mildly simplified description of Emacs (to make this problem more manageable). In Emacs, a command
character is produced by pressing a letter key while holding down either the Control key, the Meta key, or both. (For
example, Control+Y or Meta+B or Control+Meta+U are command characters.)
9.17 How many command characters are there in Emacs?

Emacs is complicated enough that it needs more commands than Exercise 9.17 allows. To allow for more commands,
Emacs has been extended, as follows. Meta+X and Control+X—as in eXtended—are command prefixes, so that
neither Meta+X nor Control+X is a valid command, but, for example, “Control+X Control+U” is (and it’s different from
Control+U). A valid command can be formed by Control+X or Meta+X followed by any letter or any command character
(including Control+X or Meta+X). All other command characters from Exercise 9.17 are still valid.
9.18 How many command characters are there now?

9.19 Argue that, for any sets A and B, |A ∪ B| = |A− B| + |B−A| + |A ∩ B|. (Use the Sum Rule.)

9.20 How many 100-bit strings have at most 2 ones? (Use Example 9.4.)
9.21 Determine how many k-bit strings have exactly three 1s using the approach in Example 9.4—that
is, by dividing the set of bitstrings based on the position of the third one.
9.22 (programming required) Write a program, in a language of your choice, to enumerate all bitstrings
in {0, 1}16 and count the number that have 0, 1, 2, and 3 ones. Use this program to verify your answer to the
last exercise and your approach to Exercise 9.20.
9.23 The following is a simpler “solution” to Example 9.4, where we computed the number of elements
of {0, 1}k that have precisely two 1s. What, exactly, is wrong with this argument?

We wish to determine |S|, where S is the set of k-bit strings with exactly 2 ones. Define Si := {x ∈ S : xi = 1}, for
each i ∈ 1, 2, . . . , k. Observe that S =

⋃k
i=1 Si and that |Si | = k − 1. Therefore, by the Sum Rule, |S| = ∑k

i=1 |Si | =
∑k

i=1(k − 1) = k(k − 1).

Unicode is a character set frequently used on the web; it supports hundreds of thousands of characters from many
languages—English, Greek, Chinese, Arabic, and all other scripts in current use. A very common encoding scheme
for Unicode, called UTF-8, uses a variable number of bits to represent different characters (with more commonly used
characters using fewer bits). Valid UTF-8 characters can be of any of the following forms, using 1, 2, 3, or 4 bytes, and
have one of the following forms (where x represents an arbitrary bit):
• 0xxxxxxx

• 110xxxxx 10xxxxxx

• 1110xxxx 10xxxxxx 10xxxxxx

• 11110yyy 10yyxxxx 10xxxxxx 10xxxxxx, with a further restriction: the first five bits (marked yyyyy) must be
either of the form 0xxxx or 10000.

The ith character in the Unicode character set is encoded by the ith legal UTF-8 representation, resulting from convert-
ing i into binary and filling in the x (and y) bits from the templates.
9.24 How many characters can be encoded using UTF-8?
9.25 There’s a rule for Unicode that doesn’t allow excess zero padding: if a character can be encoded
using one byte, then the two-byte encoding is illegal. For example, 01010101 encodes the same character
as 11000001 10010101; thus the latter is illegal. How many of the characters from the last exercise can be
encoded without violating this rule?
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9.26 A rook in chess can move any number of spaces horizontally or vertically. (See Figure 9.15.) How
many ways are there to put one black rook and one white rook on an 8-by-8 chessboard so they can’t capture
each other (that is, neither can move onto the other’s square)?

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0S0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0L0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 9.15: Two
chess boards,
showing the legal
moves for a rook
(above) and queen
(below).

9.27 A queen in chess can move any number of spaces horizontally, vertically, or diagonally. (Again,
see Figure 9.15.) How many ways are there to put one black queen and one white queen on an 8-by-8 chess-
board so they can’t capture each other (that is, neither can move onto the other’s square)? (Hint: think about
how far the black queen is from the edge of the board.)
9.28 (programming required) Write a program to verify your solution to the previous exercise.

9.29 You have a wireless-enabled laptop, phone, and tablet. Each device needs to be assigned a unique
“send” frequency and a unique “receive” frequency to communicate with a base station. Let S := {1, . . . , 8}
denote send frequencies and R := {a, . . . , h} receive frequencies. A frequency assignment is an element of
S× R. A set of frequency assignments is noninterfering if no elements of S or R appears twice. How many
noninterfering frequency assignments are there for your three devices?

9.30 Write down an inclusion–exclusion formula for |A∪ B ∪C ∪D|.

9.31 How many integers between 1 and 1000, inclusive, are divisible by one or more of 3, 5, and 7?
9.32 How many integers between 1 and 1000, inclusive, are divisible by one or more of 6, 7, and 8?
9.33 How many integers between 1 and 10000, inclusive, are divisible by at least one of 2, 3, 5, or 7?

In Chapter 7, we encountered the totient function ϕ : Z≥1 → Z≥0, defined as

ϕ(n) := the number of k with 1 ≤ k ≤ n such that k and n have no common divisors.

We can always compute the totient of n by brute force (just test all k ∈ {1, . . . , n} for common divisors using the
Euclidean algorithm, for example). But the next few exercises will give a hint at another way to do this computation
more efficiently. For a fixed integer n:
9.34 Suppose m ∈ Z≥1 evenly divides n. Define M := {k ∈ {1, . . . ,n} : m | k}. Argue that |M| = n

m .
9.35 (A number-theoretic interlude.) Let the prime factorization of n be n = pe11 · pe22 · · · peℓℓ , for distinct
prime numbers {p1, . . . , pℓ} and integers e1, . . . , eℓ ≥ 1. Let k ≤ n be arbitrary. Argue that k and n have no
common divisors greater than 1 if and only if, for all i, we have pi 6 | k.
9.36 Let n be an integer such that n = piqj for two distinct prime numbers p and q, and integers
i ≥ 1 and j ≥ 1. (For example, we can write 544 = 171 · 25; here p = 17, q = 2, i = 1, and j = 5.) Let
P := {k ∈ {1, . . . , n} : p | k} and Q := {k ∈ {1, . . . , n} : q | k}. Argue that ϕ(n) = n(1− 1

p )(1 − 1
q ) by using

Inclusion–Exclusion to compute |P ∪Q|. (You should find the last two exercises helpful.)

In the sport of cricket, a team consists of 11 players who come up to bat in pairs. Initially, players #1 and #2 bat. When
one of those two players gets out, then player #3 replaces the one who got out. When one of the two batting players—
player #3 and whichever player of {#1, #2} didn’t get out—gets out, then player #4 joins the one who isn’t out. This
process continues until the 10th player gets out, leaving the last player not out (but stranded without a partner).

Thus, in total, there are 11 players who bat together in 10 partnerships. As an example, consider the lineup Anil,
Brendan, Curtly, Don, Eoin, Freddie, Glenn, Hansie, Inzamam, Jacques, Kumar. We could have the following batting
partnerships: Anil & Brendan; Anil & Curtly; Anil & Don; Don & Eoin; Don & Freddie; . . . ; Don & Kumar.
9.37 How many different partnerships (pairs of players) are possible?
9.38 How many different sequences of partnerships (like the example list of partnerships given previ-
ously) are possible? (It doesn’t matter which of the last two players gets out.)
9.39 A team’s batting lineup may be truncated (by winning the game or by choosing not to bat any
longer) at any point after the first pair starts batting. Now how many different sequences of partnerships are
possible? Here, it does matter whether one of the last two players gets out or not (but not which of the two
was the one who got out).

9.40 Suppose that, as in Example 9.11, a bank allows 4-digit PINs, but doesn’t permit a PIN that starts
with the same digit repeated twice (for example, 7730) or ends with the same digit repeated twice (for
example, 0122). Now how many invalid PINs are there?
9.41 Let Sk denote the set of PINs that are k digits long, where the PIN may not start with three re-
peated digits or end with three repeated digits. In terms of k, what is |Sk |? (Example 9.11 computed |S4|.)
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Checkers is a game, like chess, played on an 8-by-8 grid. Chinook, a recently built checkers-playing program that never
loses a game,3 computes all possible board positions with up to k tokens, for small k. Over the next few exercises, you’ll 3 Jonathan Schaeffer,

Neil Burch, Yngvi
Bjornsson, Akihiro
Kishimoto, Martin
Muller, Rob Lake,
Paul Lu, and Steve
Sutphen. Checkers
is solved. Science,
317(5844):1518–
1522, 14 September
2007.

compute the scope of that task for very small k—namely, k ∈ {1, 2}. Figuring out how many board positions have two
tokens—note that two tokens can’t occupy the same square!—will take a little more work.

Briefly, the rules of checkers are as follows. Two players, Red and Black, move tokens diagonally on an 8-by-8 grid;
tokens can only occupy shaded squares. There are two types of tokens: pieces and kings. Any piece that has reached the
opposite side of the board from its starting side (row 8 or row 1) becomes a king. (So Black cannot have a piece in row 8,
because that piece would have become a king.) Note that Black occupying square C3 is different from Red occupying C3.
(See Figure 9.16.)

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 9.16: A
checker board.
Pieces can occupy
any shaded square;
a black piece that
reaches row 8 or
a red piece that
reaches row 1
becomes a king.

9.42 How many board positions have exactly one token (of either color)?
9.43 How many board positions have two kings, one of each color?
9.44 How many board positions have two Red kings? (Notice that two Red kings cannot be distin-
guished, so it doesn’t matter “which” one comes first.)
9.45 How many board positions have two Black pieces?
9.46 How many board positions have two pieces, one of each color?
9.47 How many board positions have one Red king and one Red piece?
9.48 How many board positions have one Black king and one Red piece?
9.49 Use the last six exercises to determine how many total board positions have two tokens.
9.50 (programming required) Write a program, in a language of your choice, to verify your answer to the
last few exercises (particularly the total count, in the last exercise).

9.51 How many subsets of {0, 1}1 ∪ {0, 1}2 ∪ {0, 1}3 are prefix free? (See Example 9.21.) You will
probably find it easiest to solve this problem by writing a program.

A text-to-speech system takes written language (text) and reads it aloud as audio (speech). One of the simplest ways
to build a text-to-speech system is to prerecord each syllable, and then paste together those sounds. (Pasting separate
recordings is difficult, and this system as described will produce very robotic-sounding speech. But it’s a start.) A
syllable consists of a consonant or cluster of consonants called the onset, then a vowel called the nucleus, and finally
the consonant(s) called the coda. In many languages, only some combinations of choices for these parts are allowed—
there are fascinating linguistic constraints based on ordering or place of articulation (for example, English allows stay
but not tsay, and allows clay and play but not tlay) that we’re almost entirely omitting here.
9.52 A consonant can be described by a place of articulation (one of 11 choices: the lips, the palate,
etc.); a manner of articulation (one of 8 choices: stopping the airflow, stopping the oral airflow with the nasal
passage open, etc.); and a voicing (the vocal cords are either vibrating, or not). According to this description,
how many consonants are there?
9.53 A vowel can be described as either lax or tense; as either high or mid or low; and as either front or
central or back. According to this description, how many vowels are there?
9.54 As a (very!) rough approximation, Japanese syllables consist of one of 25 consonants followed
by one of 5 vowels, with one consonant that can appear as a coda (or the coda can be left off). How many
Japanese syllables are there?
9.55 As a rough (even rougher!) approximation, English syllables consist of an onset that is either
one of 25 consonants or a cluster of any two of these consonants, followed by one of 16 vowels, followed
optionally by one of 25 consonants. How many English syllables are there?
9.56 To cut down on the large number of syllables that you found in the last exercise, some systems are
instead based on demisyllables—the first half or the second half of a syllable. (We glue the sounds together
in the middle of the vowel.) That is, a demisyllable is either a legal onset followed by a vowel, or a vowel
followed by a legal coda. How many demisyllables are there in English (making the same very rough
assumptions as the last question)?
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9.3 Using Functions to Count

The sun’s shining bright
Everything seems all right
When we’re poisoning pigeons in the park.

Tom Lehrer (b. 1928), “Poisoning Pigeons In The Park”

Our focus in Section 9.2 was on counting sequences of choices (the Generalized
Product Rule) and choices of choices (the Sum Rule). But what about counting other
kinds of sets? Our basic plan is simple: be lazy! In this section, we’ll introduce ways
of counting the cardinality of a given set A in terms of |B| for some other set B, by using
functions that translate between the elements of A and the elements of B:

• Mapping Rule: There exists a bijection f : A → B if and only if |A| = |B|. Similarly,
there exists an onto function f : A → B if and only if |A| ≥ |B|, and there exists a
one-to-one function f : A → B if and only if |A| ≤ |B|.

• Division Rule: Suppose there exists a function f : A → B such that, for every b ∈ B,
we have | {a ∈ A : f (a) = b} | = k. Then |A| = k · |B|.

In particular, we’ll hope to “translate” a choice from an arbitrary set into a sequence of
choices from very simple sets—which, using the tools from Section 9.2, we know how
to count. Here’s a first example to illustrate the basic idea:

Problem-solving tip:
Use programming
to help you! If
you’re going to
use the simple-
but-tedious way
to count legal
Hamming code
codewords, via
enumeration,
write a program
rather than doing
it by hand. (For
example, the table
in Example 9.23 was
generated with a
Python program!)

Example 9.23 (Number of valid Hamming codewords)
Problem: In Section 4.2, we introduced the Hamming code, an error-correcting

code that encodes any 4-bit message m ∈ {0, 1}4 as a 7-bit codeword x ∈ {0, 1}7.
Specifically, the encoding function encode : {0, 1}4 → {0, 1}7 maps 〈a, b, c, d〉 to
〈a, b, c, d, b⊕ c ⊕ d, a⊕ b ⊕ d, a⊕ b⊕ d〉, where ⊕ is exclusive or. That is, a valid
Hamming codeword x is an element of {0, 1}7 satisfying three conditions:

x2 + x3 + x4 ≡2 x5 x1 + x3 + x4 ≡2 x6 x1 + x2 + x4 ≡2 x7.

How many different valid codewords does the Hamming code have?

Solution: We can count the number of valid codewords by looking at all 27 = 128
elements of {0, 1}7 and testing these three conditions (✓ = pass; ✗ = fail):

codeword
0000000 ✓✓✓

0000001 ✓✓✗

0000010 ✓✗✓

0000011 ✓✗ ✗

0000100 ✗✓✓

0000101 ✗✓✗

0000110 ✗ ✗✓

0000111 ✗ ✗ ✗

0001000 ✗ ✗ ✗

0001001 ✗ ✗✓

0001010 ✗✓✗

0001011 ✗✓✓

0001100 ✓✗ ✗

0001101 ✓✗✓

0001110 ✓✓✗

0001111 ✓✓✓

codeword
0010000 ✗ ✗✓

0010001 ✗ ✗ ✗

0010010 ✗✓✓

0010011 ✗✓✗

0010100 ✓✗✓

0010101 ✓✗ ✗

0010110 ✓✓✓

0010111 ✓✓✗

0011000 ✓✓✗

0011001 ✓✓✓

0011010 ✓✗ ✗

0011011 ✓✗✓

0011100 ✗✓✗

0011101 ✗✓✓

0011110 ✗ ✗ ✗

0011111 ✗ ✗✓

codeword
0100000 ✗✓✗

0100001 ✗✓✓

0100010 ✗ ✗ ✗

0100011 ✗ ✗✓

0100100 ✓✓✗

0100101 ✓✓✓

0100110 ✓✗ ✗

0100111 ✓✗✓

0101000 ✓✗✓

0101001 ✓✗ ✗

0101010 ✓✓✓

0101011 ✓✓✗

0101100 ✗ ✗✓

0101101 ✗ ✗ ✗

0101110 ✗✓✓

0101111 ✗✓✗

codeword
0110000 ✓✗ ✗

0110001 ✓✗✓

0110010 ✓✓✗

0110011 ✓✓✓

0110100 ✗ ✗ ✗

0110101 ✗ ✗✓

0110110 ✗✓✗

0110111 ✗✓✓

0111000 ✗✓✓

0111001 ✗✓✗

0111010 ✗ ✗✓

0111011 ✗ ✗ ✗

0111100 ✓✓✓

0111101 ✓✓✗

0111110 ✓✗✓

0111111 ✓✗ ✗

codeword
1000000 ✓✗ ✗

1000001 ✓✗✓

1000010 ✓✓✗

1000011 ✓✓✓

1000100 ✗ ✗ ✗

1000101 ✗ ✗✓

1000110 ✗✓✗

1000111 ✗✓✓

1001000 ✗✓✓

1001001 ✗✓✗

1001010 ✗ ✗✓

1001011 ✗ ✗ ✗

1001100 ✓✓✓

1001101 ✓✓✗

1001110 ✓✗✓

1001111 ✓✗ ✗

codeword
1010000 ✗✓✗

1010001 ✗✓✓

1010010 ✗ ✗ ✗

1010011 ✗ ✗✓

1010100 ✓✓✗

1010101 ✓✓✓

1010110 ✓✗ ✗

1010111 ✓✗✓

1011000 ✓✗✓

1011001 ✓✗ ✗

1011010 ✓✓✓

1011011 ✓✓✗

1011100 ✗ ✗✓

1011101 ✗ ✗ ✗

1011110 ✗✓✓

1011111 ✗✓✗

codeword
1100000 ✗ ✗✓

1100001 ✗ ✗ ✗

1100010 ✗✓✓

1100011 ✗✓✗

1100100 ✓✗✓

1100101 ✓✗ ✗

1100110 ✓✓✓

1100111 ✓✓✗

1101000 ✓✓✗

1101001 ✓✓✓

1101010 ✓✗ ✗

1101011 ✓✗✓

1101100 ✗✓✗

1101101 ✗✓✓

1101110 ✗ ✗ ✗

1101111 ✗ ✗✓

codeword
1110000 ✓✓✓

1110001 ✓✓✗

1110010 ✓✗✓

1110011 ✓✗ ✗

1110100 ✗✓✓

1110101 ✗✓✗

1110110 ✗ ✗✓

1110111 ✗ ✗ ✗

1111000 ✗ ✗ ✗

1111001 ✗ ✗✓

1111010 ✗✓✗

1111011 ✗✓✓

1111100 ✓✗ ✗

1111101 ✓✗✓

1111110 ✓✓✗

1111111 ✓✓✓

By checking every entry in the table, we see that there are 16 valid codewords.
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This table-based approach is fine, but here’s a less tedious way to count. By the
definition of the encoding function, every possible message in {0, 1}4 is encoded
as a different codeword in {0, 1}7. Furthermore, every valid codeword is the en-
coding of a message in {0, 1}4. Thus the number of valid codewords equals the
number of messages, and there are |{0, 1}4| = 16 valid codewords.

9.3.1 The Mapping Rule

The approach that we used in Example 9.23 is based on functions that translate from
one set to another. In the remainder of this section, we will formalize this style of
reasoning as a general technique for counting problems. To build intuition about how
to use functions to count, let’s start with some small, informal examples:

Example 9.24 (Some mappings, informally)
• Let S be a collection of documents, where each document is labeled with one of 5

genres: poem, essay, memoir, drama, or novel.

– Suppose every genre appears as the label for at least one document. Then
|S| ≥ 5. (We see 5 different kinds of labels on documents, and every document
has only one label. Thus there must be at least 5 different documents.)

– Suppose there’s no genre that appears as the label for two distinct documents.
Then |S| ≤ 5. (No label is reused—that is, no label appears on more than one
document—so we can only possibly observe 5 total labels. Every document is
labeled, so we can’t have more than 5 documents.)

• You’re taking a class in which no two students’ last names start with the same
letter. Then there are at most 26 students in the class.

• You’re in a club on campus that has at least one member from every state in the
U.S. Then the club has at least 50 members.

• You’re out to dinner with friends, and you and each of your friends order one of 8
desserts on the menu. Suppose that each dessert is ordered at least once, and no
two of you order the same dessert. Then your group has exactly 8 people.

Taking it further: The document/genre scenario in Example 9.24 is an example of a classification problem,
where we must label some given input data (“instances”) as belonging to exactly one of k different
classes. Classification problems are one of the major types of tasks encountered in the subfield of CS
called machine learning. In machine learning, we try to build software systems that can “learn” how to
better perform a task on the basis of some training data. Other problems in machine learning include
anomaly detection, where we try to identify which instances from a set “aren’t like” the others; or clustering
problems (see p. 234), where we try to separate a collection of instances into coherent subgroups—for
example, separating a collection of documents into “topics.” Classification problems are very common
in machine learning: for example, we might want to classify a written symbol as one of the 26 letters of
the alphabet (optical character recognition); or classify a portion of an audio speech stream as one of 40,000
common English words (speech recognition); or classify an email message as either “spam” or “not spam”
(spam detection).
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Formalizing the rule
How can we generalize the intuition of Example 9.24 into a rule for counting? Think

about the first scenario, the documents and the genres: we can view the labels on the
documents in S as being given by a function

label : S → {poem, essay,memoir, drama, novel} .

If there exists any function that behaves in the way that label did in Example 9.24—that
is, either “covering” all of the possible outputs at least once each, or covering all of
the possible outputs at most once each—then we can infer whether the set of possible
inputs or the set of possible outputs is bigger.

Definition reminder: onto, one-to-one, and bijective functions.
Let A and B be two sets, and let f : A → B be a function. Then:
• f is onto if, for all b ∈ B, there exists an a ∈ A such that f (a) = b.
• f is one-to-one if, for all a ∈ A and a′ ∈ A, if f (a) = f (a′) then a = a′.
• f is a bijection if it is both one-to-one and onto.
Slightly less formally: the function f is onto if “every possible output is hit”;
f is one-to-one if “no output is hit more than once”; and f is a bijection if
“every output is hit exactly once.”

Figure 9.17: A
reminder of Defini-
tions 2.49, 2.50, and
2.51 (onto, one-to-
one, and bijective
functions).

The formal statements of the counting
rules based on this intuition rely on
the definition of three special types of
functions that we defined in Chapter 2:
onto functions, one-to-one functions,
and bijections. (See Figure 9.17 for a
reminder of the definitions.) Formally,
the existence of a function f : A → B
with one of these properties will let us relate |A| and |B|:

Theorem 9.9 (Mapping Rule)
Let A and B be arbitrary sets. Then:

• An onto function f : A → B exists if and only if |A| ≥ |B|.
• A one-to-one function f : A → B exists if and only if |A| ≤ |B|.
• A bijection f : A → B exists if and only if |A| = |B|.

b1
b2
b3
...
bn

A B
f

(a) f is onto: every element
of B has an incoming arrow,
so |A| ≥ |B|.

b1
b2
b3
...
bn

A B
f

(b) f is one-to-one: no
element of B has more than
one incoming arrow, so
|A| ≤ |B|.

b1
b2
b3
...
bn

A B
f

(c) f is a bijection: every
element of B has exactly one
incoming arrow, so
|A| = |B|.

Figure 9.18: The
Mapping Rule. The
number of arrows
equals |A|.

See Figure 9.18 for a
visual representation of
the Mapping Rule, and
for the intuition as why
it’s correct: the number of
arrows leaving A is precisely
|A|; if |A| arrows are enough
to “cover” all elements of B,
then |B| ≤ |A|; and if |A|
arrows can be directed into
|B| elements without any
duplication, then |B| ≥ |A|.
(And, actually, the third
part of the Mapping Rule
is implied by the first two parts: if there’s a bijection f : A → B then f is both onto
and one-to-one, so the first two parts of the Mapping Rule imply that |A| ≥ |B| and
|A| ≤ |B|, and thus that |A| = |B|.)
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A few examples
We’ll start with another example—like those in Example 9.24—of the logic underly-

ing the Mapping Rule, but this time using function terminology:

Example 9.25 (Students and assignments)
Let S be a set of 128 students in a computer science class, let A be a set of program-
ming assignments, and suppose that mine : S → A is a function so that mine(s) is the
assignment that has the name of student swritten on it. (Becausemine is a function,
each student’s name is by definition on one and only one submitted assignment.)

• Suppose the function mine is onto. Then every assignment in A has at least one
student’s name on it—and therefore there are at least as many students as assign-
ments: each name is written only once, and every assignment has a name on it.
So |A| ≤ 128. (There could be fewer than 128 if, for example, assignments were
allowed to be submitted by pairs of students.)

• Suppose the function mine is one-to-one. Then no assignment has more than one
name on it—and therefore there are at least as many students as assignments: each
assignment has at most one name, so there can’t be more names than assignments.
So |A| ≥ 128. (There could be more than 128 if, for example, there are assignments
in the pile that were submitted by students in a different section of the course.)

• Suppose the function mine is both onto and one-to-one. Then each assignment has
exactly one name written on it, and thus |A| = |S| = 128.

Let’s also rewrite two of the informal scenarios from Example 9.24 to explicitly use
functions and the Mapping Rule:

Example 9.26 (Classes, names, and states, formalized)
• Let S be the set of students taking a particular class. Define the function

f : S → {A, B, . . . , Z}, where f (s) is the first letter of the last name of student s. If
no two students’ last names start with the same letter, then f (s) = f (s′) only when
s = s′—in other words, the function f is one-to-one. Then, by the Mapping Rule,
|S| ≤ | {A, B, . . . , Z} |: there are at most 26 students in the class.

• Let T be the set of people in a particular club. Let T′ ⊆ T be those people in T who
are from one of the 50 states. Because T′ ⊆ T, we have |T| ≥ |T′|.
Define the function g : T′ → {Alabama,Alaska, . . . ,Wyoming}, where g(x)
is the home state of person x. If there is at least one student from every state,
then for all s ∈ {Alabama,Alaska, . . . ,Wyoming} there’s an x ∈ T′ such that
g(x) = s—in other words, the function g is onto. Then, by the Mapping Rule,
|T′| ≥ | {Alabama,Alaska, . . . ,Wyoming} |: there are at least 50 people in the club.

We’ll close this section with an example of using the Mapping Rule to count the
cardinality of a set that we have not yet been able to calculate. We’ll do so by giving a
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bijection between this new set (with previously unknown cardinality) and a set whose
cardinality we do know.

The set that we’ll analyze here is the power set of a set X—the set of all subsets of
X, defined as P(X) := {Y : Y ⊆ X}. (See Definition 2.31.) For example, P({0, 1}) is
{ {} , {0} , {1} , {0, 1} }. Let’s look at the power set of {1, 2, . . . , 8}:

Example 9.27 (Power set of {1, 2, . . . , 8})
Problem: What is |P({1, 2, . . . , 8})|?

Solution: We’ll give a bijection between {0, 1}8 and P({1, 2, . . . , 8})—that is, we’ll
define a function b : {0, 1}8 → P({1, 2, . . . , 8}) that’s a bijection. Here is the
correspondence: for every 8-bit string y ∈ {0, 1}8, define b(y) to be the subset
Y ⊆ {1, 2, . . . , 8} such that i ∈ Y if and only if the ith bit of y is 1. For example:

y = 11101010 → Y = {1, 2, 3, 5, 7} that is, b(11101010) = {1, 2, 3, 5, 7},

y = 00001000 → Y = {5} and b(00001000) = {5},

y = 00000000 → Y = {} and b(00000000) = {}.

Because every subset corresponds to some bitstring, and no subset corresponds to
more than one bitstring, the function b : {0, 1}8 → P({1, 2, . . . , 8}) is a bijection
between {0, 1}8 and P({1, 2, . . . , 8}).

Because a bijection from {0, 1}8 to P({1, 2, . . . , 8}) exists, the Mapping Rule says
that |P({1, 2, . . . , 8})| = |{0, 1}8| = 28 = 256.

The idea of the mapping from Example 9.27 applies for an arbitrary finite set X. Here
is the general result:

Lemma 9.10 is
the reason for the
power set’s name:
the cardinality of
P(X) is 2 to the
power of |X|.

Lemma 9.10 (Cardinality of the Power Set)
Let X be any finite set. Then |P(X)| = 2|X|.

Proof. Let n = |X|. Let X = {x1, x2, . . . , xn} be an arbitrary ordering of the elements of
X. Define a function f : {0, 1}n → P(X) as follows:

f (y) = {xi : the ith bit of y is 1} .

It is easy to see that f is onto: for any subset Y of X, there exists a y ∈ {0, 1}n such that
f (y) = Y. It is also easy to see that f is one-to-one: if y 6= y′ then there exists an i such
that yi 6= y′i , so [xi ∈ f (y)] 6= [xi ∈ f (y′)]. Therefore f is a bijection, and by the Mapping
Rule we can conclude |P(X)| = | {0, 1}|X| | = 2|X|.

Taking it further: Although our focus in this chapter is on finding the cardinality of finite sets, we can
also apply the Mapping Rule to think about infinite cardinalities. Infinite sets are generally more the
focus of mathematicians than of computer scientists, but there are some fascinating (and completely
mind-bending) results that are relevant for computer scientists, too. For example, we can prove that the
number of even integers is the same as the number of integers (even though the former is a proper subset
of the latter!). But we can also prove that |R| > |Z|. More relevantly for computer science, we can prove
that there are strictly more problems than there are computer programs, and therefore that there are problems
that cannot be solved by a computer. See the discussion on p. 937.
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9.3.2 The Division Rule

When we introduced the Inclusion–Exclusion Rule, we used an approach to counting
that we might call count first, apologize later: to compute the cardinality of a set A ∪ B,
we found |A| + |B| and then “fixed” our count by subtracting the number of elements
that we’d counted twice—namely, subtracting |A ∩ B|. Here we’ll consider an analo-
gous count-and-correct rule, called the Division Rule, that applies when we count every
element of a set multiple times (and where each element is recounted the same num-
ber of times); we’ll then correct our total by dividing by this “redundancy factor.” Let’s
start with some informal examples:

Example 9.28 (Some redundant counting, informally)
• Suppose that the Juggling Club on campus sells 99 juggling torches to its mem-

bers, in sets of three. Then there are 33 people who purchased torches.

• There are 42 people at a party. Suppose that every person shakes hands with every
other person. How many handshakes have occurred? There are many ways to
solve this problem, but here’s an approach that uses division: each person shakes
hands with all 41 other people, for a total of (42 people) · (41 shakes/person) =
1722 shakes. But each handshake involves two people, so we’ve counted every
shake exactly twice; thus there are actually a total of 861 = 1722

2 = 42·41
2 handshakes.

• In Game 5 of the 1997 NBA Finals, the Chicago Bulls had 10 players who were on
the court for some portion of the game. The number of minutes played by these
ten were 〈45, 44, 26, 24, 24, 24, 23, 23, 4, 3〉. The total number of minutes played was
45 + 44 + 26 + 24 + 24 + 24 + 23 + 23 + 4 + 3 = 240. In basketball, five players are on
the court at a time. Thus the game lasted 240

5 = 48 minutes.

We’ll phrase the Division Rule using the same general structure as the Mapping Rule,
in terms of a function that maps from one set to another. Specifically, if we have a
function f : A → B that always maps exactly the same number of elements of A to each
element of B—for instance, exactly three torches are mapped to any particular juggler
in Example 9.28—then |A| and |B| differ exactly by that factor:

Theorem 9.11 (Division Rule)
Let A and B be arbitrary sets. Suppose that there exists a function f : A → B such that,
for every b ∈ B, there are exactly k elements a1, . . . , ak ∈ A such that f (ai) = b. (That is,
|{a ∈ A : f (a) = b}| = k for all b ∈ B.) Then |A| = k · |B|.

(The Division Rule with k = 1 simply is the bijection case of the Mapping Rule: what it
means for f : A → B to be a bijection is precisely that |{a ∈ A : f (a) = b}| = 1 for every
b ∈ B. If such a function f exists, then both the Mapping Rule and the Division Rule
say that |A| = 1 · |B|.)

Here are two simple examples to illustrate the formal version of the Division Rule:
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Example 9.29 (Redundant counting, formally)
• LetM be the set of members of the Juggling Club, and let T be the set of torches

bought by the members of the club. Consider the function boughtBy : T → M.
Assuming that each member bought precisely three torches—that is, assuming
that | {t ∈ T : boughtBy(t) = m} | = 3 for every m ∈ M—then |T| = 3 · |M|.

• Consider the sets A = {0, 1, . . . , 31} and B = {0, 1, . . . , 15}. Define the function
f : A → B as f (n) = ⌊n/2⌋. For each b ∈ B, there are exactly two input values whose
output under f is b, namely 2b and 2b + 1. Thus by the Division Rule |A| = 2 · |B|.

This basic idea—if we’ve counted each thing k times, then dividing our total count
by k gives us the number of things—is pretty obvious, and it’ll also turn out to be
surprisingly useful. Here’s a sequence of examples, starting with a warm-up exercise
and continuing with two (slightly less obvious) applications of the Division Rule:

ELPR
LEPR

ELRP
LERP

EPLR
LPER

EPRL
LPRE

ERLP
LREP

ERPL
LRPE

PELR
PLER

PERL
PLRE

PREL
PRLE

RELP
RLEP

REPL
RLPE

RPEL
RPLE

EEPR

EERP

EPER

EPRE

EREP

ERPE

PEER

PERE

PREE

REEP

REPE

RPEE

Figure 9.19: The 24
different orderings
of PERL and the 12
different orderings
of PEER. The func-
tion that replaces L
by E is displayed by
the arrows.

Example 9.30 (Rearranging PERL, PEER, and SMALLTALK)
Problem: How many different ways can you arrange the letters of . . .

1. . . . the name of the programming language PERL?
2. . . . the word PEER?
3. . . . the name of the programming language SMALLTALK?

Solution: PERL: There are 4 different letters, and any permutation of them is a differ-
ent ordering. Thus there are 4! = 4 · 3 · 2 · 1 = 24 orderings. (See Theorem 9.7.)

PEER: We’ll answer this question using the solution for PERL. Define the func-
tion L->E as follows: given a 4-character input string, it produces a 4-character
output string in which every L has been replaced by an E. For example,
L->E(PERL) = PERE. Let S denote the orderings of the word PERL, and let T de-
note the orderings of PEER. Note that the function L->E : S → T has the property
that, for every t ∈ T, there are exactly two strings x ∈ S such that L->E(x) = t.
(For example, L->E(PERL) = PERE and L->E(PLRE) = PERE.) See Figure 9.19. Thus,
by the Division Rule, there are 4!

2 = 24
2 = 12 ways to order the letters of PEER.

SMALLTALK: There are 9! different orderings of the nine “letters” in the word
S M A1 L1 L2 T A2 L3 K. (We are writing L1 and L2 and L3 to denote three
different “letters,” and similarly for A1 and A2.) We will use the Division Rule
repeatedly to “erase” subscripts:
• The function that erases subscripts on the As maps two inputs to each output:

one with A1 before A2, and one with A2 before A1. Thus there are 9!
2 different

orderings of the “letters” in the word S M A L1 L2 T A L3 K.
• The function that takes an ordering of S M A L1 L2 T A L3 K and

erases the subscripts on the Ls maps precisely six inputs to each output: one
for each of the 3! possible orderings of the Ls.

Thus there are 9!
2·3! = 362,880

12 = 30,240 different orderings of the letters in the
word S M A L L T A L K.



9.3. USING FUNCTIONS TO COUNT 933

Counting orderings when some elements are indistinguishable
Although we phrased Example 9.30 in terms of the number of ways to rearrange the

letters of some particular words, there’s a very general idea that underlies the PEER and
SMALLTALK examples. We’ll state the underlying idea as a theorem:

Theorem 9.12 (Rearranging with duplicates)
The number of ways to rearrange a sequence containing k different distinct elements
{x1, . . . , xk}, where element xi appears ni times, is

(n1 + n2 + · · · + nk)!
(n1!) · (n2!) · · · · · (nk!)

.

For example, PERL has k = 4 distinct elements, which appear nP = nE = nR = nL = 1 time
each; the theorem says that there are (1+1+1+1)!

1!·1!·1!·1! = 4! ways to arrange the letters. On the
other hand, SMALLTALK has k = 6 distinct elements, which appear nA = 2, nL = 3, and
nS = nM = nT = nK = 1 times each; the theorem says that there are (2+3+1+1+1+1)!

2!·3!·1!·1!·1!·1! = 9!
2!·3!

ways to arrange the letters. Let’s prove the theorem:

Proof of Theorem 9.12. Let’s handle a simpler case first: suppose that we have n differ-
ent elements that we can put into any order, and precisely k of these n elements are
indistinguishable. Then there are exactly n!

k! different orderings of those n elements.
To see this fact, imagine “decorating” each of those k items with some kind of arti-
ficial distinguishing mark, like the numerical subscripts of the letters of SMALLTALK
from Example 9.30. Then there are n! different orderings of the n elements. The erase
function that eliminates our artificial distinguishing marks has k! inputs that yield the
same output—namely, one for each ordering of the k artificially marked elements. There-
fore, by the Division Rule, there are n!

k! different orderings of the elements, without the
distinguishing markers.

The full theorem is just a mild generalization of this argument, to allow us to con-
sider more than one set of indistinguishable elements. (In particular, we could give
a formal proof by induction on the number of elements with ni ≥ 2.) In total, there
are (n1 + n2 + · · · + nk)! different orderings of the elements themselves, but there are
n1! equivalent orderings of the first element, n2! of the second, and so forth. The func-
tion that “erases subscripts” as in Example 9.30 has (n1!) · (n2!) · · · · · (nk!) different
equivalent orderings, and thus the total number of orderings is, by the Division Rule,

(n1 + n2 + · · · + nk)!
(n1!) · (n2!) · · · · · (nk!)

.

Here’s another simple example that we can solve using this theorem:

Example 9.31 (Writing 232,848 as a sequence of prime factors)
Problem: How many ways can we write 232,848 as a product p1p2 · · · pk, where each

pi is prime? (The set of prime factors, and the number of occurrences of each factor, are
the same in every product, because the prime factorization of any positive integer
is unique. But the order may change: for example, we can write 6 = 3 · 2 or 6 = 2 · 3.)
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Solution: The prime factorization of 232,848 is 232,848 = 24 · 33 · 72 · 11. Thus a
product of primes that equals 232,848 consists of 4 copies of two, 3 copies of three,
2 copies of seven, and one copy of eleven—in some order. (For example, 2 · 2 · 7 · 3 ·
3 · 7 · 2 · 11 · 3 · 2.) By Theorem 9.12, the number of orderings of these elements is

(4 + 3 + 2 + 1)!
4! · 3! · 2! · 1! = 10!

4! · 3! · 2! =
3,628,800
24 · 6 · 2 = 12,600.

A slightly more complicated example
Here is one final example of the Division Rule, in which we’ll use this approach on a

slightly more complicated problem:

Problem-solving tip:
There are often
many different
ways to solve a
given problem—
and you can use
whatever approach
makes the most
sense to you! For
example, Exer-
cise 9.106 explores
a completely dif-
ferent way to solve
Example 9.32,
based on the Gen-
eralized Product
Rule instead of the
Division Rule.

or
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AB CD AB CD




AB
+

CD

AB DC AB CD
BA CD AB CD
BA DC AB CD
CD AB CD AB
CD BA CD AB
DC AB CD AB
DC BA CD AB

AC BD AC BD




AC
+

BD

AC DB AC BD
BD AC BD AC
BD CA BD AC
CA BD AC BD
CA DB AC BD
DB AC BD AC
DB CA BD AC

AD BC AD BC




AD
+

BC

AD CB AD BC
BC AD BC AD
BC DA BC AD
CB AD BC AD
CB DA BC AD
DA BC AD BC
DA CB AD BC

Figure 9.20: Part-
nerships for n = 4
students: the 4!
orderings, then the
orderings sorted
within pairs, and
then with the pairs
sorted.

Example 9.32 (Assigning partners)
Problem: The professor divides the n students in a CS class into n

2 partnerships,
with two students per partnership. (Assume that n is even.) The order of part-
ners within a pair doesn’t matter, nor does the order of the partnerships. (That is,
the listings

Paul and George
John and Ringo

and Ringo and John
George and Paul

represent exactly the same set of partnerships.) How many ways are there to di-
vide the class into partnerships?

Solution: Let’s line up the students in some order, and then pair the first two stu-
dents, then pair the third and fourth, and so on. There are n! different orderings
of the students, but there are fewer than n! possible partnerships, because we’ve
double counted each set of pairs in two different ways:
• there are two equivalent orderings of the first pair of students, and two equiva-

lent orderings of the second pair, and so on.
• the ordering of the pairs doesn’t matter, so the partnerships themselves can be

listed in any order at all (without changing who’s paired with whom).
Each of the n

2 pairs can be listed in 2 orders, so—by the Product Rule—there are
2n/2 different possible within-pair orderings. And there are (n/2)! different order-
ings of the pairs. Applying the Division Rule, then, we see that there are

n!
(n/2)! · 2n/2 (∗)

total possible ways to assign partners.

Let’s make sure that (∗) checks out for some small values of n. For n = 2, there’s
just one pairing, and indeed (∗) is 2!

1!·21 = 2
2 = 1. For n = 4, the formula (∗) yields

4!
23 = 4·3·2

8 = 3 pairings; indeed, for the quartet Paul, John, George, and Ringo, there
are three possible partners for Paul (and once Paul is assigned a partner there are
no further choices to be made). See Figure 9.20 for an illustration: we try all 4! = 24
orderings of the four people, then we reorder the names within each pair, and
finally we reorder the pairs.
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9.3.3 The Pigeonhole Principle

We’ll close this section with a very simple—but also surprisingly useful—theorem
based on the Mapping Rule, called the pigeonhole principle. Here are a few informal
examples to introduce the underlying idea: A pigeonhole refers

to one of the “cells”
in a grid of com-
partments that are
open in the front,
and which can
house either snail
mail or, back in
the day, roosting
pigeons. (There’s
also a related verb:
to pigeonhole some-
one/something is to
categorize that per-
son/thing into one
of a small number
of—misleadingly
simple—groups.)

Example 9.33 (What happens when there are more things than kinds of things)
• If there are more socks in your drawer than there are colors of socks in your

drawer, then you must have two socks of the same color.

• If there are only 5 possible letter grades and there are 6 or more students in a class,
then there must be two students who receive the same letter grade.

• If you take 9 or more CS courses during the 8 semesters that you’re in college, then
there must be at least one semester in which you doubled up on CS courses.

• In the antiquated language in which this result is generally stated: if there are n
pigeonholes, and n + 1 pigeons that are placed into those pigeonholes, then there
must be at least one pigeonhole that contains more than one pigeon.

Here is the general statement of the theorem, along with its proof:

Theorem 9.13 (Pigeonhole Principle)
Let A and B be sets with |A| > |B|, and let f : A → B be any function. Then there exist
distinct elements a ∈ A and a′ ∈ A such that f (a) = f (a′).

Proof. We can prove the Pigeonhole Principle using the Mapping Rule. Given the sets
A and B, and the function f : A → B, the Mapping Rule tells us that

if f : A → B is one-to-one, then |A| ≤ |B|. (1)

Taking the contrapositive of (1), we have

if |A| > |B|, then f : A → B is not one-to-one. (2)

By assumption, we have that |A| > |B|, so f : A → B is not one-to-one. The theorem
follows by the definition of a one-to-one function: the fact that f : A → B is not one-
to-one means precisely that there is some b ∈ B that’s “hit” twice by f . In other words,
there exist distinct a ∈ A and a′ ∈ A such that a 6= a′ and f (a) = f (a′).

A slight generalization of this idea is also sometimes useful: if there are n total
objects, each of which has one of k types, then there must be a type that has at least
⌈n/k⌉ objects. (We’ll omit the proof, but the idea is very similar to Theorem 9.13.)

Theorem 9.14 (Pigeonhole Principle: Extended Version)
Let A and B be sets, and let f : A → B be any function. Then there exists some b ∈ B such
that the set {a ∈ A : f (a) = b} contains at least ⌈|A|/|B|⌉ elements.
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(Another less formal way of stating this fact is “the maximum must exceed the aver-
age”: the number of elements in A that “hit” a particular b ∈ B is |A|/|B| on average,
and there must be some element of B that’s hit at least this many times.)

We’ll start with two simpler examples of the pigeonhole principle, and close with a
slightly more complicated application. (In the last example, the slightly tricky part of
applying the pigeonhole principle is figuring out what corresponds to the “holes.”)

Example 9.34 (Congressional voting)
Suppose that there were 5 different bills upon which the House of Representa-
tives voted yesterday. (There are 435 representatives in the U.S. House.) The pi-
geonhole principle implies that there are two representatives who voted identi-
cally on yesterday’s bills. A representative’s vote can be expressed as an element of
{aye, nay, abstain}5, which has cardinality 35 = 243. Because 243 < 435, the pigeonhole
principle says that there are two representatives with the same voting record.

Example 9.35 (Logical equivalence)
Let S be a set of 17 different logical propositions over the Boolean variables p and q.

A truth table for a proposition ϕ ∈ S is an element of {True, False}4 (the rows
of the truth table correspond to each of the four truth assignments for p and q), and
there are only |{True, False}4| = 24 = 16 different such values. Therefore, our 17 dif-
ferent propositions have only 16 different possible truth tables—so, by the pigeonhole
principle, there must be two different propositions that have the same truth table.

(a) 17 points in
a 1-by-1 square.

(b) The square
divided into 16
subsquares, and
one of the
several doubly
occupied
subsquares.

Figure 9.21: Putting
n2 + 1 points in the
unit square.

Example 9.36 (Points in a square)
Problem: Suppose that there are n2 + 1 points in a 1-by-1 square, as in Figure 9.21(a).

Show that there must be two points within distance
√
2
n of each other.

Solution: We will use the pigeonhole principle. Divide the unit square into n2 equal-
sized disjoint subsquares—each with dimension 1

n -by-
1
n . (To prevent overlap, we’ll

say that every shared boundary line is included in the square to the left or below
the shared line.) There are n2 subsquares, and n2 + 1 points. By the pigeonhole
principle, at least one subsquare contains two or more points. (See Figure 9.21(b).)

Notice that the farthest apart that two points in a subsquare can be is when
they are at opposite corners of the subsquare. In this case, they are 1

n apart in x-
coordinate and 1

n apart in y-coordinate—in other words, they are separated by a
distance of √

( 1n )2 + ( 1n )2 =
√

2
n2 =

√
2
n .

Taking it further: The pigeonhole principle can be used to show that compression of data files (for
example, ZIP files or compressed image formats like GIF) must either lose information about the original
data (so-called lossy compression) or must, for some input files, actually cause the “compressed” version to
be larger than the original file. See the discussion on p. 938.
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Computer Science Connections

Infinite Cardinalities (and Problems that Can’t Be Solved by Any Program)

Recall the Mapping Rule: for any two sets A and B, a bijection f : A → B Define the function f : Z≥0 → Z as
f (n) =

⌈ n
2
⌉
· (−1)n. Then:

f (0)= ⌈ 0
2 ⌉ · (−1)0 = 0 · 1 = 0

f (1)= ⌈ 1
2 ⌉ · (−1)1 = 1 · −1 = − 1

f (2)= ⌈ 2
2 ⌉ · (−1)2 = 1 · 1 = 1

f (3)= ⌈ 3
2 ⌉ · (−1)3 = 2 · −1 = − 2

f (4)= ⌈ 4
2 ⌉ · (−1)4 = 2 · 1 = 2
...

Figure 9.22: A bijection between Z≥0

and Z. Thus |Z≥0| = |Z|.

exists if and only if |A| = |B|. Although we were thinking about finite sets when
we stated this rule, the statement holds even for infinite sets A and B; we can
even think of this rule as defining what it means for two sets to have the same
cardinality. Those sets S such that |S| = |Z|, called countable sets, will turn
out to be particularly important. Surprisingly, some sets that “seem” much
bigger or much smaller than the integers have the same cardinality as Z. For
example, the set of nonnegative integers has the same cardinality as the set
of all integers! (See Figure 9.22 for a bijection between these sets.) This fact is
very strange—after all, we’re looking at sets A and B where A is a proper subset
of B and we’ve now established that |A| = |B|! But, indeed, because we have a
bijection between A and B, they really are the same size.

p r i n t " h e l l o w o

112 114 105 110 116 32 34 104 101 108 108 111 32 119 111
1110000 1110010 1101001 1101110 1110100 100000 100010 1101000 1100101 1101100 1101100 1101111 100000 1110111 1101111

Figure 9.23: Converting a Python
program into an integer. This pro-
gram corresponds to the integer
whose binary representation is
1110000 1110010 1101001 1101110 · · · .

Or consider a Python program p. Think of the source code of p as a file—
which thus represents p as a sequence of characters, each of which is repre-
sented as a sequence of bits, which can therefore be interpreted as an integer
written in binary. (See Figure 9.23.) Therefore there is a bijection f between the
integers and the set of Python programs, where f (i) is the ith-largest Python
program (sorted numerically by its binary representation).

With all of these sets that have the same cardinality, it might be tempting to
think that all infinite sets have the same cardinality as Z. But they don’t!




0 1 2 3 4

f (0) 1 0 1 0 1 · · ·
f (1) 0 0 0 1 1 · · ·
f (2) 0 1 1 0 1 · · ·
f (3) 1 1 0 1 1 · · ·
f (4) 1 0 1 0 0 · · ·

...
...

...
...

...
. . .




Figure 9.24: Diagonalization. Suppose
that f : Z≥0 → P(Z≥0). In a table,
write row n corresponding to f (n)—so
that f (n) has a “1” in column j when
j ∈ f (n). Define S := {i : i /∈ f (i)}—that
is, the opposite of the diagonal element.
For this table we have 0 /∈ S (because
0 ∈ f (0)), 1 ∈ S (because 1 /∈ f (1)), etc.

Theorem 9.15
The set of all subsets of Z≥0—that is, P(Z≥0)—is strictly bigger than Z≥0.

Proof. Suppose for a contradiction that f : Z≥0 → P(Z≥0) is an onto
function. We’ll show that there’s a set S ∈ P(Z≥0) such that for every n ∈ Z≥0

we have f (n) 6= S. Define the set S as follows:

S := {i ∈ Z≥0 : i /∈ f (i)} (So i ∈ S ⇔ the set f (i) does not contain i.)

Observe that the set S differs from f (i) for every i: specifically, for every i we have
i ∈ S ⇔ i /∈ f (i). Thus S is never “hit” by f—contradicting the assumption
that f was onto. Therefore there is no onto function f : Z≥0 → P(Z≥0), and,
by the Mapping Rule, |Z≥0| < |P(Z≥0)|. (This argument is called a proof by
diagonalization; see Figure 9.24.)

We can think of any subset of Z as defining a problem that we might want
to write a Python program to solve. For example, the set {0, 2, 4, 6, . . .} is
the problem of identifying even numbers. The set {1, 2, 4, 8, 16, . . .} is exact
powers of 2. The set {2, 3, 5, 7, 11, . . .} is prime numbers. What does all of this
say? There are more problems than there are Python programs! And thus there are
problems that cannot be solved by any program!4

Problems that can’t be solved by any
computer program are called uncom-
putable. Section 4.4.4 identifies some
particular uncomputable problems, or
see a good book on computability, like
4 Dexter Kozen. Automata and Com-
putability. Springer, 1997; and Michael
Sipser. Introduction to the Theory of
Computation. Course Technology, 3rd
edition, 2012.
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Computer Science Connections

Lossy and Lossless Compression

The task in compression is to take a large (potentially massively large!) piece
of data and to represent it, somehow, using a smaller amount of space. Com-
pression techniques are tremendously common, for a wide variety of data:
text, images, audio, and video, for example. There are two fundamentally dif-
ferent approaches to compression of an original data file d into a compressed
form d′: lossy and lossless compression.

Lossy Compression. In lossy compression, d′ does not represent exactly all
of the information in d—that is, we’ve “lost” some information through com-
pression. (That’s why the compression is called “lossy.”) In fact, many of the
standard file formats for images, audio, and video are just standard methods
for lossy compression. For example, JPEG is a lossy image compression for-
mat, and MP3 is a lossy audio compression format. The general goal with a
lossy compression technique is to maintain, to the extent possible, “perceptual
indistinguishability.” For example, a digital audio stream can be represented
precisely as a sequence of intensities at each time t (“how loud is the sound at
time t?”). A lossy compression technique for sound might round the intensi-
ties: instead of representing an intensity as one of 216 values (“a 16-bit sound,”
which is CD quality), we could round to the nearest of 28 values. (This idea is
called quantization; see Example 2.56.) As long as the lost precision is smaller
than the level of human perception, the new audio file would “sound the
same” as the original.

Lossless Compression. In lossless compression, the precise contents of the
original data file d can be reconstructed when the compressed data file d′ is
uncompressed. This approach is the one commonly used, for example, when
compressing text using a program like ZIP.

The typical idea of lossless compression is to exploit redundancy in the
stored data and to avoid wasting space storing the “same” information twice.
For example, take the complete works of Shakespeare. By replacing every
occurrence of the with QQ (two letters that don’t occur consecutively in Shake-
speare) the resulting file takes “only” about 99.2% of the original size. We can The word the appears over 20,000 times

in the complete works of Shakespeare.
The words thee, them, their, they,
there, and these also appear over 1000
times each.

then set up a “translation table” telling us that QQ → the when we’re decom-
pressing. One interesting fact about lossless compression, though, is that it is
impossible to actually compress every input file into a smaller size:

Here’s an example of a lossless “com-
pression” function making a file bigger:
I downloaded the complete works of
Shakespeare from Project Gutenberg,
http://www.gutenberg.org. It took
5,590,193 bytes uncompressed, and
2,035,948 bytes when run through
gzip. But shakespeare.zip.zip.zip
(2,035,779 bytes), run through gzip

three times, is actually bigger than
shakespeare.zip.zip (2,035,417 bytes).

Theorem 9.16
Let C be any lossless compression function. Then there exists an input file d such
that C(d) takes up at least as much space as d.

Proof. Suppose that C compresses all n-bit inputs into n− 1 or fewer bits. That
is, C : {0, 1}n → ⋃n−1

i=0 {0, 1}i . Observe that the domain has size 2n and the
range has size ∑n−1

i=0 2i = 2n − 1. By the pigeonhole principle, there must be
two distinct input files d1 and d2 such that C(d1) = C(d2). But this C cannot be
a lossless compression technique: if the compressed versions of the files are
identical, the decompressed versions must be identical too!
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9.3.4 Exercises

9.57 Use the idea of Example 9.23 to determine how many bitstrings x ∈ {0, 1}7 fail all three Hamming
code tests—those marked “✗ ✗ ✗” in the table in Example 9.23, or satisfying these three conditions:

x2 + x3 + x4 6≡2 x5 x1 + x3 + x4 6≡2 x6 x1 + x2 + x4 6≡2 x7 .

9.58 Prove that the set P of legal positions in a chess game satisfies |P| ≤ 1364 . (Hint: Define a one-to-one
function from {1, 2, . . . , 13}64 to P.)

Let Σ be a nonempty set. A string over Σ is a sequence of elements of Σ—that is, x ∈ Σn for some n ≥ 0.
9.59 How many strings of length n over the alphabet {A,B, . . . , Z, ␣} are there? How many contain
exactly 2 “words” (that is, contain exactly one space ␣ that is not in the first or last position)?
9.60 Let n ≥ 3. How many n-symbol strings over this alphabet contain exactly 3 “words”? (Hint:
use Example 9.4 to account for n-symbol strings with exactly two ␣s; then use Inclusion–Exclusion to prevent ini-
tial/final/consecutive spaces, as in ␣ABC· · · , · · · XYZ␣, and · · · JKL␣␣MNO· · · .)

A string over the alphabet {[, ]} is called a string of balanced parentheses if two conditions hold: (i) every [ is later
closed by a ]; and (ii) every ] closes a previous [. (You must close everything, and you never close something you didn’t
open.) Let Bn ⊆ {[, ]}n denote the set of strings of balanced parentheses that contain n symbols.
9.61 Show that |Bn| ≤ 2n: define a one-to-one function f : Bn → {0, 1}n and use the Mapping Rule.
9.62 Show that |Bn| ≥ 2n/4 by defining a one-to-one function g : {0, 1}n/4 → Bn and using the
Mapping Rule. (Hint: consider [][] and [[]].)

A certain college in the midwest requires its users’ passwords to be 15 characters long. Inspired by an XKCD comic (see
http://xkcd.com/936/), a certain faculty member at this college now creates his passwords by choosing three 5-letter
English words from the dictionary, without spaces. (An example password is ADOBESCORNADORN, from the words ADOBE
and SCORN and ADORN.) There are 8636 five-letter words in the dictionary that he found.
9.63 How many passwords can be made from any 15 (uppercase-only) letters? How many passwords
can be made by pasting together three 5-letter words from this dictionary?
9.64 How many passwords can be made by pasting together three distinct 5-letter words from this
dictionary? (For example, the password ADOBESCUBAADOBE is forbidden because ADOBE is repeated.)

The faculty member in question has a hard time remembering the order of the words in his password, so he’s decided
to ensure that the three words he chooses from this dictionary are different and appear in alphabetical order in his
password. (For example, the password ADOBESCUBAFOXES is forbidden because SCUBA is alphabetically after FOXES.)
9.65 How many passwords fit this criterion? Solve this problem as follows. Let P denote the set
of three-distinct-word passwords (the set from Exercise 9.64). Let A denote the set of three-distinct-
alphabetical-word passwords. Define a function f : P → A that sorts. Then use the Division Rule.

A
B
C
D
E
F
G
H

Figure 9.25: An
8-team tournament
bracket. In the first
round, A plays B,
C plays D, etc. The
A/B winner plays
the C/D winner in
the second round,
and so forth.

9.66 After play-in games, the NCAA basketball tournament involves 64 teams, ar-
ranged in a bracket that specifies who plays whom in each round. (The winner of each game
goes on to the next round; the loser is eliminated. See Figure 9.25.) How many different
outcomes (that is, lists of winners of all games) of the tournament are there?

A palindrome over Σ is a string x ∈ Σn that reads the same backward and forward—like 0110,
TESTSET, or (ignoring spaces and punctuation) SIT ON A POTATO PAN, OTIS!.
9.67 How many 6-letter palindromes (elements of {A, B, . . . , Z}6) are there?
9.68 How many 7-letter palindromes (elements of {A, B, . . . , Z}7) are there?
9.69 Let n ≥ 1 be an integer, and let Pn denote the set of palindromes over Σ of length n. Define a
bijection f : Pn → Σk (for some k ≥ 0 that you choose). Prove that f is a bijection, and use this bijection to
write a formula for |Pn| for arbitrary n ∈ Z≥1.

Let n be a positive integer. Recall an integer k ≥ 1 is a factor of n if k | n. The integer n is called squarefree if there’s
no integer m ≥ 2 such that m2 | n.
9.70 How many positive integer factors does 100 have? How many are squarefree?
9.71 How many positive integer factors does 12! have? (Hint: calculate the prime factorization of 12!.)
9.72 How many squarefree factors does 12! have? Explain your answer.
9.73 (programming required) Write a program that, given n ∈ Z≥1, finds all squarefree factors of n.
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9.74 Consider two sets A and B. Consider the following claim: if there is a function f : A → B that is
not onto, then |A| < |B|. Why does this claim not follow directly from the Mapping Rule?

The genre-counting problem (Example 9.24) considered a function f : {1, 2, . . . ,n} → {1, 2, 3, 4, 5}. When n = 5 . . .
9.75 How many different functions f : {1, 2, . . . , 5} → {1, 2, . . . , 5} are there?
9.76 How many one-to-one functions f : {1, 2, . . . , 5} → {1, 2, . . . , 5} are there?
9.77 How many bijections f : {1, 2, . . . , 5} → {1, 2, . . . , 5} are there?

9.78 Let n ≥ 1 and m ≥ n be integers. Consider the set G of functions g : {1, 2, . . .n} → {1, 2, . . . ,m}.
How many functions are in G? How many one-to-one functions are there in G? How many bijections?
9.79 Show that the number of bijections f : A → B is equal to the number of bijections g : B → A. (Hint:
define a bijection between {bijections f : A → B} and {bijections g : B → A}, and use the bijection case of the mapping
rule!)

9.80 A Universal Product Code (UPC) is a numerical representation of the bar codes used in stores, with
an error-detecting feature to handle misscanned codes. A UPC is a 12-digit number 〈x1, x2, . . . , x12〉 where
[∑6

i=1 3x2i−1 + x2i] mod 10 = 0. (That is, the even-indexed digits plus three times the odd-indexed digits
should be divisible by 10.) Prove that there exists a bijection between the set of 11-digit numbers and the set
of valid 12-digit UPC codes. Use this fact to determine the number of valid UPC codes.

9.81 A strictly increasing sequence of integers is 〈i1, i2, . . . , ik〉 where i1 < i2 < · · · < ik . How many
strictly increasing sequences start with 1 and end with 1024? (That is, we have i1 = 1 and ik = 1024. The value
of k can be anything you want; you should count both 〈1, 1024〉 and 〈1, 2, 3, 4, . . . , 1023, 1024〉.)

A subsequence of a sequence x = 〈x1, x2, . . . , xn〉 is a sequence 〈xi1 , xi2 , . . . , xik 〉 of k ≥ 0 elements of x, where
〈i1, i2, . . . , ik〉 is a strictly increasing sequence. For example, PYTHON is a subsequence of PYTHAGOREAN and BASIC is a
subsequence of BRAINSICKNESS.
9.82 Suppose the components of x = 〈x1, x2 , . . . , xn〉 are all different (as in PYTHON but not PYTHAGOREAN).
Use the Mapping Rule to figure out how many subsequences of x there are.
9.83 Suppose the components of x = 〈x1, x2, . . . , xn〉 are all different, except for a single pair of identical
elements that are separated by k other elements. For example, PYTHAGOREAN has n = 11 and k = 4, because there
are four entries (GORE) between the As (at index 5 and 10), which are the only repeated entries. In terms of n
and k, how many subsequences of x are there?

The Hamming code

For the message m = 〈a, b, c, d〉, we compute three parity bits:
• parity bit #1: b⊕ c⊕ d
• parity bit #2: a⊕ c⊕ d
• parity bit #3: a⊕ b⊕ d
and send c := 〈a, b, c, d, parity #1, parity #2, parity #3〉.
Having received a (possibly corrupted) codeword c′, we com-
pute what the parity bits would have been for the received
message bits, and check for mismatches between the computed
and received parity bits:

parity bit mismatches error (which bit to flip)
{} no error!
{1} parity #1
{2} parity #2
{3} parity #3
{1, 2} bit c
{1, 3} bit b
{2, 3} bit a
{1, 2, 3} bit d

Figure 9.26: De-
coding the Ham-
ming Code. Every
single-bit error is
corrected.

As Example 9.23 describes, the Hamming Code adds 3 different parity bits
to a 4-bit message m, where each added bit corresponds to the parity of a
carefully chosen subset of the message bits, creating a 7-bit codeword c.
Let k and n, respectively, denote the number of bits in the message and the
codeword. (For the Hamming Code, we have k = 4 and n = 7.)

A decoding algorithm takes a received (and possibly corrupted)
codeword c′ and determines which message has a corresponding codeword
c that is most similar to c′. (See Section 4.2, or Figure 9.26 for a brief
reminder. See also Exercises 4.25–4.28.) We can view the decoding
algorithm as a function decode : P(1, 2, . . . , n− k) → {0, 1, 2, . . . , n}—
where decode(S) tells us which bit (if any) to flip in the received codeword
when S is the set of mismatched parity bits. (If decode(S) = 0, then no
bits should be flipped.)
9.84 Argue using the Mapping Rule (that is, without refer-
ence to the precise function in Figure 9.26) that for the Hamming
Code’s parameters (n = 7 and k = 4) that there exists a bijection
decode : P({1, 2, . . . ,n− k}) → {0, 1, 2, . . . , n}.
9.85 Suppose that we choose n = 9 and k = 4. Does there exist
a bijection from P({1, 2, . . . , n− k}) to {0, 1, 2, . . . , n}? Why or why
not?
9.86 Suppose that we choose n = 31. For what value(s)
of k does there exist a bijection from P({1, 2, . . . , n− k}) to
{0, 1, 2, . . . , n}? Prove your answer.
9.87 Prove that, for any n that is not one less than a power of 2, there does not exist a bijection from
P({1, 2, . . . ,n− k}) to {0, 1, 2, . . . , n}.
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In the corporate and political worlds, there’s a dubious technique called URL squatting, where someone creates a
website whose name is very similar to a popular site and uses it to skim the traffic generated by poor-typing internet
users. For example, Google owns the addresses gogle.com and googl.com, which redirect to google.com. (But, as of
this writing, someone else owns oogle.com, goole.com, and googe.com.) Consider an n-letter company name. How
many single-typo manglings of the name are there if we consider the following kinds of errors? Consider only uppercase
letters throughout. (If your answers depend on the particular n-letter company name, then say how they depend on
that name. Note that no transposition errors are possible for the company name MMM, for example.)
9.88 one-letter substitutions
9.89 one-letter insertions
9.90 one-pair transpositions (two adjacent letters written in the wrong order)
9.91 one-letter deletions

How many different ways can you arrange the letters of the following words?
9.92 PASCAL

9.93 GRACEHOPPER

9.94 ALANTURING

9.95 CHARLESBABBAGE

9.96 ADALOVELACE

9.97 PEERTOPEERSYSTEM

9.98 (programming required) Write a function that, given an input string, computes the number of ways
to rearrange the string’s letters. Use your program to verify your answers to the last few exercises.

9.99 (programming required) In Example 9.31, we analyzed the number of ways to write a particular
integer n as the product of primes. (Because the prime factorization of n is unique, the only difference
between these products is the order in which the primes appear.) Write a program, in a language of your
choice, to compute the number xn of ways we can write a given number n as p1 · p2 · · · pk , where each pi is
prime. For what number n ≤ 10,000 is xn the greatest?

|
|

O |
|

| O
|

|
O |

|
| O

X | O
|

| O
X |

| O
| X

X | O
O |

X | O
| O

O | O
X |

| O
X | O

O | O
| X

| O
O | X

X | O
O | X

X | O
O | X

Figure 9.27: A
portion of the
game tree for Tic-
Tac. (The missing
75% is rotated,
but otherwise
identical.)

In Chapter 3, we discussed the application of Boolean logic to AI-based approaches
to playing games like Tic-Tac-Toe. (See p. 344, or Figure 9.27 for a 2-by-2 version
of the game [Tic-Tac; the 3-by-3 version is Tic-Tac-Toe].)

Specifically, recall the Tic-Tac-Toe game tree: the root of the tree is the empty
board, and the children of any node in the tree are the boards that result from any
move made in any of the empty squares. We talked briefly about why chess is hard
to solve using an approach like this. (In brief: it’s huge.) The next few problems
will explore why a little bit of cleverness helps a lot in solving even something as
simple as Tic-Tac-Toe.
9.100 Tic-Tac-Toe ends when either player completes a row, column,
or diagonal. But for this question, assume that even after somebody wins
the game, the board is completely filled in before the game ends. (That
is, every leaf of the game tree has a completely filled board.) How many
leaves are in the game tree?
9.101 Continue to assume that the board is completely filled in before the game ends. How many
distinct leaves are there in the tree? (That is, suppose that the order in which O fills his or her squares doesn’t
matter; if the same squares are filled, the boards count as the same.)
9.102 Continue to assume that the board is completely filled in before the game ends. Extend your
answer to Exercise 9.100: how many total boards appear in the game tree (as leaves or as internal nodes)?
(Hint: it may be easiest to compute the number of boards after k moves, and add up your numbers for k = 0, 1, . . . , 9.)
9.103 Continue to assume that the board is completely filled in before the game ends. How many
distinct total boards—internal nodes or leaves—are there in the tree?

There are still two optimizations left that we haven’t tried. The first is using the symmetry of the board to help us: for
example, there are really only three first moves that can be made in Tic-Tac-Toe: a corner, the middle of the board, and the
middle of a side. The second optimization is to truncate the tree when there’s a winner. These are both a bit tedious to
track by hand, but it’s manageable with a small program.
9.104 (programming required) We can cut the size of the game tree down to less than a third of the orig-
inal size—actually substantially more!—by exploiting symmetry in plays. (We’re down to a third of the
original size just within the first move.) Write a program to compute the entire Tic-Tac-Toe game tree, and
use it to determine the number of unique boards (counting as equivalent two boards that match with respect
to rotational or reflectional symmetry) in the game tree. How many boards are now in the tree?
9.105 (programming required) We can reduce the size of the game tree just a bit further by not expanding
the portions of the game tree where one of the players has already won. Extend your implementation from
the last exercise so that no moves are made in any board in which O or X has already won. How many
boards are in the tree now?
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Recall Example 9.32: we must put n students (where n is even) into n
2 partnerships. (We don’t care about the order of

the partnerships, nor about the order of partners within a pair.) Here is an alternative way of solving this problem:
9.106 Consider sorting the n people alphabetically by name. Repeat the following n

2 times: for the
unmatched person p whose name is alphabetically first, choose a partner for p from the set of all other
unmatched people. How many choices are there in iteration i? How many choices are there, in total?
9.107 Algebraically prove the following identity. (Hint: what does (n/2)! · 2n/2 represent?)

n/2

∏
i=1

(n− 2i + 1) = n!
(n/2)! · 2n/2

Think of an n-gene chromosome as a permutation of the numbers {1, 2, . . . , n}, representing the order in which these
n genes appear. The following questions ask you to determine how many chromosome-level rearrangement events of a
particular form there are. (See, for example, Figure 3.38.)
9.108 A prefix reversal inverts the order of the first j genes, for some j > 1 and j ≤ n. For example, for the
chromosome 〈5, 9, 6, 2, 1, 4, 7, 3, 8〉 we could get the result 〈6, 9, 5, 2, 1, 4, 7, 3, 8〉 or 〈1, 2, 6, 9, 5, 4, 7, 3, 8〉 from a
prefix reversal. How many different prefix reversals are there for a 1000-gene chromosome?
9.109 A reversal inverts the order of the genes between index i and index j, for some i and j > i.
For example, for the chromosome 〈5, 9, 6, 2, 1, 4, 7, 3, 8〉 we could get the result 〈6, 9, 5, 2, 1, 4, 7, 3, 8〉 or
〈5, 9, 6, 4, 1, 2, 7, 3, 8〉 from a reversal. How many different reversals are there for a 1000-gene chromosome?
9.110 A transposition takes the genes between indices i and j and places them between indices k and
k + 1, for some i and j > i and k /∈ {i, i + 1, . . . , j}. For example, for the chromosome 〈5, 9, 6, 2, 1, 4, 7, 3, 8〉 we
could get the result 〈5, 1, 4, 7, 3, 9, 6, 2␣8〉 or 〈␣1, 4, 5, 9, 6, 2, 7, 3, 8〉 from a transposition. How many different
transpositions are there for a 1000-gene chromosome?

A cellular automaton is a formalism that’s sometimes used to model complex systems—like the spatial distribution of
populations, for example. Here is the model, in its simplest form. We start from an n-by-n toroidal lattice of cells: a
two-dimensional grid, that “wraps around” so that that there’s no edge. (Think of a donut.) Each cell is connected to its
eight immediate neighbors.

→ → → →

Figure 9.28: In the
Game of Life, each
cell has an identical
update rule: an
active cell with ≤ 1
live neighbors dies
(from “loneliness”),
a live cell with ≥ 4
live neighbors dies
(from “overcrowd-
ing”), and a dead
cell with exactly
three living neigh-
bors becomes alive.

Cellular automata are a model of evolution over time: our model
will proceed in a sequence of time steps. At every time step, each cell
u is in one of two states: active or inactive. A cell’s state may change
from time t to time t + 1. More precisely, each cell u has an update rule
that describes u’s state at time t + 1 given the state of u and each of u’s
neighbors at time t. (For example, see Figure 9.28.)
9.111 An update rule is a function that takes the state of a cell and the state of its eight neighbors as
input, and produces the new state of the cell as output. How many different update rules are there?
9.112 Let’s call an update rule a strictly cardinal update rule if—as in the Game of Life—the state of a
cell u at time t + 1 depends only the following: (i) the state of cell u at time t, and (ii) the number of active
neighbors of cell u at time t. How many different strictly cardinal update rules are there?

Suppose that we have an 10-by-10 lattice of 100 cells, and we have an update rule fu for every cell u. (These update
rules might be the same or differ from cell to cell.) Suppose the system begins in an initial configuration M0. Suppose
we start the system at time t = 0 in configuration M0, and derive the configuration Mt at time t ≥ 1 by computing

Mt(u) = fu(the states of u’s neighbors in Mt−1).

Let’s consider the possible outcomes of the sequence M0,M1,M2, . . .. Say that this sequence exhibits eventual conver-
gence if the following holds: there exists a time t ≥ 0 such that, for all times t′ ≥ t, we have Mt′ = Mt. (So the Life
example in Figure 9.28 exhibits eventual convergence.) Otherwise, we’ll say that this sequence oscillates.
9.113 GivenM0 and the fu’s, we’d like to know what the long-run behavior of this system is: does it
eventually converge or does it oscillate? Prove that, for a sufficiently large value of K, we have eventual
convergence if and only if the following algorithm returns True. Also compute the smallest value of K for
which this algorithm is guaranteed to be correct.
• Start withM := M0 and t := 0.
• Repeat the following K times: updateM to the next time step (that is, for each u compute the updated

M′(u) by evaluating fu on u’s neighbor cells in M).
• If M would be unchanged by one additional round of updates, return True. Else return False.

9.114 Suppose that we place 1234 items into 17 buckets. (For example, consider hashing 1234 items
into a 17-cell hash table.) Call the number of items in a bucket its occupancy, and the maximum occupancy the
number of items in the most-occupied bucket. What’s the smallest possible maximum occupancy?
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9.115 Consider a function f : A → B. Fill in the blank with a statement relating |A| and |B|, and then
prove the resulting claim: if , then, for some b ∈ B, we have | {a ∈ A : f (a) = b} | ≥ 202.
9.116 Suppose that we quantize a set of values from S = {1, 2, . . . ,n} into {k1 , k2, . . . , k5} ⊂ S. (See
Example 2.56.) Namely, we choose these 5 values and then define a function q : S → {k1 , k2 , . . . , k5}. The
maximum error of this quantization is maxx∈S |x− q(x)|. Use the Pigeonhole Principle (or the “the maximum
must exceed the average” generalization) to determine the smallest possible maximum error.

Imagine a round-robin chess tournament for 150 players, each of whom plays 7 games. (In other words, each player is
guaranteed to participate in precisely 7 games with 7 different opponents. Remember that each game has two players.)
9.117 There are 20 possible first moves for White in a chess game, and 20 possible first moves for Black
in response. (See Example 9.15.) Prove that there must be two different games in the tournament that began
with the same first two moves (one by White and one by Black).
9.118 Suppose that would-be draws in this tournament are resolved by a coin flip, so that every game
has a winner and a loser. Prove that there must be two participants in such a tournament who have precisely
the same sequence of wins and losses (for example, WWWLLLW).

A win–loss record reports a number of wins and a number of losses (for example, 6 wins and 1 loss, or 3 wins and 4
losses), without reference to the order of these results.
9.119 Continuing to suppose that there are no draws in this tournament, identify as large a value of k
as you can for which the following claim is true, and prove that it’s true for your value of k: there is some
win–loss record that is shared by at least k competitors.
9.120 Now suppose that draws are allowed, so that competitors have a win–loss–draw record (for
example, 2 wins, 1 loss, and 4 draws). Identify the largest k for which there is some win–loss–draw record
that is shared by at least k competitors, and prove that this claim holds for the k you’ve identified.
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9.4 Combinations and Permutations

Not everything that can be counted counts, and not
everything that counts can be counted.

William Bruce Cameron (1921–2002)

So far in this chapter, we’ve been working to develop a toolbox of general techniques
for counting problems: the Sum Rule and Inclusion–Exclusion, the (Generalized) Prod-
uct Rule, the Mapping Rule, and the Division Rule. This section will be different; in-
stead of a new technique, here we will devote our attention to a particularly common
kind of counting problem: the number of ways to choose a subset from a given set of
candidate elements. Let’s start with an illustrative example:

Example 9.37 (Printing t-shirts)
Problem: Suppose you run a t-shirt shop. There is a collection of jobs that you’re

asked to run, but there’s limited time so you must choose which ones to actually
print. There are 17 requested jobs {a, b, . . . , q}, but there is only time to print 4
different jobs. How many ways are there to select 4 of these 17 candidate jobs?

Solution: There are two answers, depending on how we interpret the problem:
does the order of the printed jobs matter, or does it only matter whether a job was
printed? (Are we choosing an ordered 4-tuple? Or an unordered subset of size 4?)

Order matters: Then the Generalized Product Rule immediately gives us the
answer: there are 17 choices for the first job, 16 for the second job, 15 for the
third, and 14 for the fourth; thus there are 17 · 16 · 15 · 14 total choices.
Another way to write 17 · 16 · 15 · 14 is 17!

13! : every multiplicand between 1 and
13 appears in both the numerator and denominator, leaving only {17, 16, 15, 14}
uncancelled. We can justify the 17!

13! version of the answer using the Division
Rule: we choose one of the 17! orderings of all 17 jobs, and then print the first
4 jobs in this order—but we’ve counted each 4-job ordering 13! times (once for
each ordering of the 13 unprinted jobs), so we must divide by 13!.

Order doesn’t matter: As in the previous case, there are 17!
13! ways of choosing an

ordered sequence of 4 jobs. Because order doesn’t matter, we have counted each
set of four chosen jobs 4! times, once for each ordering of them. By the Division
Rule, then, there are 17!

13!·4! ways of selecting 4 unordered jobs from a set of 17.

Two different fundamental notions of choice are illustrated by Example 9.37: permu-
tations, in which the order of the chosen elements matters, and combinations, in which
the order doesn’t matter. These two notions will be our focus in this section. Here’s
another example to further illustrate combinations:

Example 9.38 (Arranging letters of a bitstring)
Problem: How many different ways can you arrange the symbols in the “word”

000111? What about the “word” 00...011...1 containing k zeros and n− k ones?
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Solution: This problem is just another application of the techniques we used for PERL
and PEER and SMALLTALK in Example 9.30. (We can think of the word 000111 just
like a word like DEEDED: two different letters, appearing three times each.) There
are 6 total characters in the word, each appearing 3 times, so the total number of
arrangements is 6!

3!·3! . (See Theorem 9.12.)
For the general version of the problem—the word 00...011...1, with k zeros

and n− k ones—we have a total of n characters, so there are n! ways of writing
them down. But k! orderings of the zeros, and (n− k)! orderings of the ones, are
identical. Hence, by the Division Rule, the total number of orderings is n!

k!·(n−k)! .

Combinations
The quantity that we computed in Example 9.38 is called the number of combinations

of k elements chosen from a set of n candidates:
The quantity

(n
k
)

is also sometimes
called a binomial co-
efficient, for reasons
that we’ll see in Sec-
tion 9.4.3. It’s also
sometimes denoted
C(n, k) (“C” as in
“Combination”).

Definition 9.2 (Combinations)
Consider nonnegative integers n and k with k ≤ n. The quantity

(n
k
)
is defined as

(
n
k

)
:= n!

k! · (n− k)! ,

and is read as “n choose k.”

As we just argued in Example 9.38, the quantity
(n
k
)
denotes the number of ways to

choose a k-element subset of a set of n elements. For convenience, define
(n
k
)
:= 0

whenever n < 0 or k < 0 or k > n: there are zero ways to choose a k-element subset of a
set of n elements under these circumstances.

Taking it further: When there are annoying complications (or divide-by-zero errors or the like) in the
boundary cases of a definition, it’s often easiest to tweak the definition to make those cases less special.
(Here, for example, instead of having

(7
8
)
be undefined, we treat

(7
8
)
as 0.)

A similar idea in programming can make life much simpler when you encounter data structures with
complicated edge conditions—for example, a node in a linked list that might not have a successor. A
sentinel is a “fake” element that you might add to the boundary of a data structure that makes the edge
elements of the data structure less special. For example, in image processing, we might augment an
n-by-m image with an extra 0th and (m + 1)st column, and an extra 0th and (n + 1)st row, of blank pixels.
Once these “border pixels” are added, every pixel in the image has a neighbor in each cardinal direction. Thus
there’s no special code required for edge pixels in code to, for example, apply a blur filter to the image.

Here are a few small examples of counting problems that use combinations:

11000000

10100000

10010000

10001000

10000100

10000010

10000001

01100000

01010000

01001000

01000100

01000010

01000001

00110000

00101000

00100100

00100010

00100001

00011000

00010100

00010010

00010001

00001100

00001010

00001001

00000110

00000101

00000011

Figure 9.29: All
8-bit bitstrings with
exactly 2 ones.

Example 9.39 (8-bit strings with 2 ones)
How many different 8-bit strings have exactly 2 ones?

We solved this precise problem in Example 9.3 using the Sum Rule, but combina-
tions give us an easier way to answer this question. We must choose 2 out of 8 indices
to make equal to one. There are

(8
2
)
= 8!

2!·(8−2)! =
8!

2!·6! =
8·7
2 = 28 such choices of indices,

and thus
(8
2
)
different 8-bit bitstrings with exactly 2 ones. These 28 strings are shown

in Figure 9.29.
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Example 9.40 (32-bit strings with < 3 ones)
How many different 32-bit strings have fewer than 3 ones?

We will use the Sum Rule, plus the formula for combinations. (We can partition
the set of 32-bit strings that have fewer than 3 ones into those with 0, 1, or 2 ones.)
Thus there are

(32
0
)
+
(32
1
)
+
(32
2
)
= 1 + 32 + 32·31

2 = 1 + 32 + 496 = 529 total such strings.
(Recall that 0! = 1, so

(32
0
)
= 32!

0!·(32−0)! =
32!

0!·32! =
32!
1·32! =

32!
32! = 1.)

Finally, here’s an example of counting using combinations that relates counting to
probability. (There’s much more about probability in Chapter 10.) If we flip an un-
biased coin (in other words, a coin that comes up heads with probability 1

2 and tails
with probability 1

2 each time we flip it), then every sequence of coin flips is equally
likely. The probability that an “event” E happens when we flip an unbiased coin is the
fraction of possible flip sequences for which E actually occurs.

Example 9.41 (Exactly 50% heads)
Suppose we flip an unbiased coin 10 times. What is the probability that precisely 5
flips come up heads?

There are 210 = 1024 total sequences, of which
(10
5
)
= 10!

5!·5! = 252 have precisely 5
heads. Thus there’s a 252

1024 ≈ 0.2461 chance of exactly half of the flips being heads.

9.4.1 Four Different Ways to Select k out of n Options

or
de
rm

at
te
rs

re
pe
tit
io
n
al
lo
w
ed

or
de
rm

at
te
rs

re
pe
tit
io
n
no
ta

llo
w
ed

or
de
ri
rr
ele

va
nt

re
pe
tit
io
n
al
lo
w
ed

or
de
ri
rr
ele

va
nt

re
pe
tit
io
n
no
ta

llo
w
ed

(9 ways) (6 ways) (6 ways) (3 ways)
A, then A

A, then B

B, then A

A, then C

C, then A

B, then B

B, then C

C, then B

C, then C

A, then B

B, then A

A, then C

C, then A

B, then C

C, then B

A and A

A and B

A and C

B and B

B and C

C and C

A and B

A and C

B and C

Figure 9.30: Four
ways of choosing
2 elements from
the candidates A, B,
and C—depending
on whether we can
choose the same
element more than
once, and whether
the order of choices
matters.

In Example 9.37, we saw two different ways in which we can imag-
ine choosing a subset of k distinct elements from a set S of n candi-
dates, depending on whether the order in which we choose those k
elements matters.

There is another dichotomy that can arise in counting problems:
we can imagine circumstances in which we choose k elements from
a set S, but where repetition is allowed (that is, we can choose the
same element more than once). In other scenarios, repetition might
not make sense. Here are some examples of all four situations (see
also Figure 9.30):

• You order a two-scoop ice cream cone from a list of flavors.
Order matters: a chocolate scoop on top of a mint scoop 6= mint on
top of chocolate. Repetition is allowed: you can choose vanilla for both scoops.

• Your soccer game is tied, and you must choose 5 of your 11 players to take penalty
kicks to break the tie. Order matters: the kicks are taken in sequence, so Pelé then
Maradona 6= Maradona then Pelé. Repetition is forbidden: each player is allowed to
take only one kick.

• You order a three-salad salad sampler from a list of salads. Order doesn’t matter:
salads are served on a round plate, so it doesn’t matter which one is “first.” Repetition
is allowed: you can choose the Caesar as two or all three of your salads.
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• You select a starting lineup of 5 basketball players from your 13-person team. Or-
der doesn’t matter: all 5 chosen players are equivalent in starting the game. Repetition
is forbidden: you must choose five different players.

order matters order doesn’t matter

repetition forbidden n!
(n− k)!

(
n
k

)

repetition allowed nk
(
n + k − 1

k

)

Figure 9.31: Four
ways of selecting k
of n items, and the
number of ways to
make that selection.

Here we will consider all four types of
counting problems—ordered/unordered
choice with/without repetition—and
do a few examples. See Figure 9.31 for a
summary of the number of ways to make
these different types of choices.

When order matters and repetition is forbidden
Suppose that we choose a sequence of k distinct elements from a set S: that is, the or-

der of the selected elements matters and repetition is not allowed. (For example, in a player
draft for a sports league, no player can be chosen more than once—”repetition is
forbidden”—and the outcome of the draft depends not just on whether Babe Ruth
was chosen, but also whether it was the Eagles or the Wildcats that selected him.)

In other words, we make k successive selections from S, but no candidate can be
chosen more than once. Such a sequence is sometimes called a k-permutation of S—an
ordered sequence of k distinct elements of S. (Recall from Definition 9.1 that a permuta- Some people denote

the number of ways
of choosing an
ordered sequence
of k distinct selec-
tions from a set of n
options by P(n, k),
because “permu-
tation” starts with
“P.”

tion of a set S is an ordering of S’s elements.)
There are n!

(n−k)! different k-permutations of an n-element set S, by the Generalized
Product Rule. (Specifically, there are

(n)︸︷︷︸
choices of first element

· (n− 1)︸ ︷︷ ︸
choices of second element

· · · · · (n− k + 1)︸ ︷︷ ︸
choices of kth element

total choices, and n!
(n−k)! = n · (n− 1) · (n− 2) · · · · · (n− k + 1).)

Example 9.42 (4 of 10)
Suppose that you are asked to place four of the cards {A♥, 2♥, · · · , 10♥} on the
table, arranged from left to right in an order of your choosing. There are 10 · 9 · 8 · 7 =

10!
(10−4)! such arrangements: order matters (A234♥ 6= 432A♥) and repetition is not
allowed (4444♥ isn’t a valid arrangement, because you only have one 4♥ card).

When order matters and repetition is allowed
Suppose that we simply choose a sequence of k (not necessarily distinct) elements:

that is, order matters and repetition is allowed. In other words, we make k successive
selections from S, and we’re allowed to make the same choice multiple times. (For
example, suppose you and k− 1 friends go to a Chinese restaurant with n items on the
menu, and each of you orders something for dinner. You’re allowed to order the same
dish as your friends—”repetition is allowed”—but you getting the Tofu with Black
Bean Sauce and your vegan friend getting Twice-Cooked Pork is definitely different
from the other way around.)
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Then there are nk different ways to make this choice, by the Product Rule: at every
stage, there are n possible choices, and there are k stages.

Example 9.43 (4 of 10, a second way)
Suppose that you are asked to create a 4-digit integer. There are 104 such integers:
order matters (1234 6= 4321) and repetition is allowed (4444 is a valid 4-digit number).

When order doesn’t matter and repetition is forbidden
Suppose that we choose an unordered set of k distinct elements: that is, order does

not matter and repetition is not allowed. (For example, suppose you and n − 1 friends
enter a raffle in which k identical new cell phones will be given away. Each of you puts
your name on one of n cards that are placed in a hat, and k cards are drawn to choose
the winners. Cards for winners are not put back into the hat after they’re drawn, so
nobody can win twice—”repetition is forbidden”—but Alice and Bob winning is the
same as Bob and Alice winning.)

When we choose an unordered set of k distinct elements from a set of n options,
there are

(n
k
)
different ways to make this choice, by the definition of combination.

Such a subset is sometimes called a k-combination of S—an unordered set of k distinct
elements of S. (Recall from Definition 9.2 that a combination of elements from a set S is
precisely an unordered subset of elements from S.)

Example 9.44 (4 of 10, another way)
Suppose that you’re asked to create a 10-bit number with exactly 4 ones. You do so
by starting with 0000000000 and choosing 4 indices to change from 0 to 1. There are(10
4
)
such bitstrings: the order in which you choose a bit to make a 1 doesn’t matter

(changing bit #2 and then bit #7 to 1 yields the same bitstring as changing bit #7 and
then bit #2 to 1) and repetition is not allowed (you have to change 4 different bits to 1).

When order doesn’t matter and repetition is allowed
While these three types of selecting k out of n elements are the most frequent, the

fourth possibility can sometimes arise, too: order doesn’t matter but repetition is allowed.
Let’s build some intuition for this case with a longer example:

Problem-solving
tip: When you
encounter a prob-
lem that seems
completely novel,
run through the
techniques you
know about and try
them on for size,
even if they’re not
an obvious fit. The
type of counting
in Example 9.45
doesn’t seem like it
has a lot to do with
combinations, but
by changing the
way you view this
problem it can be
transformed into
a problem you’ve
seen before.

Example 9.45 (Taking notes on six sheets of paper in three classes)
Problem: You discover that your school notebook has only k = 6 sheets of paper left in

it. You are attending n = 3 different classes today: Archaeology (A), Buddhism (B),
and Computer Science (C). How many ways are there to allocate your six sheets of
paper across your three classes? (No paper splitting or hoarding: each sheet must
be allocated to one and only one class!)

(Here’s another way to phrase the question: you must choose how many pages to
assign to A, how many to B, and how many to C. That is, you must choose three
nonnegative integers a, b, and c with a + b + c = 6. How many ways can you do it?)
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Solution: The 28 ways of allocating your paper are shown in the following tables,
sorted by the number of pages allocated to Archaeology (and breaking ties by the
number of pages allocated to Buddhism). The allocations are shown in three ways:

• Pages are represented by the class name.
• Pages are represented by ✷, with | marking divisions between classes: we

allocate the number of pages before the first divider to A, the number between
the dividers to B, and the number after the second divider to C.

• Pages are represented by 0, with 1 marking divisions between classes: as in the
✷-and-| representation, we allocate pages before the first 1 to A, those between
the 1s to B, and those after the second 1 to C.

Here are the 28 different allocations:

AAAAAA

AAAAA B

AAAAA C

AAAA BB

AAAA B C

AAAA CC

AAA BBB

AAA BB C

AAA B CC

AAA CCC

AA BBBB

AA BBB C

AA BB CC

AA B CCC

AA CCCC

A BBBBB

A BBBB C

A BBB CC

A BB CCC

A B CCCC

A CCCCC

BBBBBB

BBBBB C

BBBB CC

BBB CCC

BB CCCC

B CCCCC

CCCCCC

A |B |C

✷✷✷✷✷✷| |

✷✷✷✷✷ |✷ |

✷✷✷✷✷ | |✷

✷✷✷✷ |✷✷ |

✷✷✷✷ |✷ |✷

✷✷✷✷ | |✷✷

✷✷✷ |✷✷✷ |

✷✷✷ |✷✷ |✷

✷✷✷ |✷ |✷✷

✷✷✷ | |✷✷✷

✷✷ |✷✷✷✷ |

✷✷ |✷✷✷ |✷

✷✷ |✷✷ |✷✷

✷✷ |✷ |✷✷✷

✷✷ | |✷✷✷✷

✷ |✷✷✷✷✷ |

✷ |✷✷✷✷ |✷

✷ |✷✷✷ |✷✷

✷ |✷✷ |✷✷✷

✷ |✷ |✷✷✷✷

✷ | |✷✷✷✷✷

|✷✷✷✷✷✷|

|✷✷✷✷✷ |✷

|✷✷✷✷ |✷✷

|✷✷✷ |✷✷✷

|✷✷ |✷✷✷✷

|✷ |✷✷✷✷✷

| |✷✷✷✷✷✷

00000011

00000101

00000110

00001001

00001010

00001100

00010001

00010010

00010100

00011000

00100001

00100010

00100100

00101000

00110000

01000001

01000010

01000100

01001000

01010000

01100000

10000001

10000010

10000100

10001000

10010000

10100000

11000000

All three versions of this table accurately represent the full set of 28 allocations,
but let’s concentrate on the representation in the second and third columns—
particularly the third. The 0-and-1 representation in the third column contains
exactly the same strings as Figure 9.29, which listed all 28 =

(8
2
)
of the 8-bit strings

that contain exactly 2 ones.

In a moment, we’ll state a theorem that generalizes this example into a formula for the
number of ways to select k out of n elements when order doesn’t matter but repetition
is allowed. But, first, here’s a slightly different way of thinking about the result in
Example 9.45 that may be more intuitive.



950 CHAPTER 9. COUNTING

Figure 9.32: Any
ordering of 6
pieces of paper
and 2 divider
tabs defines three
sections (before,
between, and after
the dividers).

Suppose that we’re trying to allocate a total of k pages among n classes.
Imagine placing the k pages into a three-ring binder along with n− 1 “di-
vider tabs” (the kind that separate sections of a binder), as in Figure 9.32.
There are now n+ k− 1 things in your binder. (In Example 9.45, there were
6 pages and 2 dividers, so 8 total things are in the binder.) The ways of al-
locating the pages precisely correspond to the ways of ordering the things
in the binder—that is, choosing which of the n + k − 1 things in the binder should be
blank sheets of paper, and which should be dividers. So there are

(n+k−1
k

)
ways of do-

ing so. In Example 9.45, we had n = 3 and k = 6, so there were
(8
6
)
= 28 ways of doing

this allocation.
While the description in Example 9.45 wasn’t stated in precisely these terms, our

paper-allocation task was really a task about choosing with repetition: six times (once
for each piece of paper), we select one of the elements of the set {A, B, C} of classes.
We may select the same class as many times as we wish (“repetition is allowed”), and
the pieces of paper are indistinguishable (“order doesn’t matter”). Here is the general
statement of the number of ways to select k out of n elements for this scenario:

Theorem 9.17 (Choosing with repetition when order doesn’t matter)
The number of ways to select k out of n elements when order doesn’t matter but repetition is
allowed is

(n+k−1
k

)
.

Proof. We’ll give a proof based on the Mapping Rule. We can represent a particular
choice of k elements from the set of n candidates as a sequence x ∈ (Z≥0)n such that
∑n

i=1 xi = k. (Specifically, xi tells us how many times we chose element i.) Define

X := {x ∈ (Z≥0)n : ∑n
i=1 xi = k}

and S := {x ∈ {0, 1}n+k−1 : x contains exactly n− 1 ones and k zeros} .

We claim that there is a bijection between X and S. Specifically, define f : X → S as

f (x1, x2, . . . , xn) = 00 · · · 0︸ ︷︷ ︸
x1 times

1 00 · · · 0︸ ︷︷ ︸
x2 times

1 · · · 1 00 · · · 0︸ ︷︷ ︸
xn times

(This representation is precisely the one in Example 9.45.) It’s easy to see that f is a
bijection: every element of S corresponds to one and only one element of X. As we
argued in Example 9.38, the cardinality of S is

(n+k−1
k

)
.

Here’s another example of this type of choice:

Example 9.46 (4 of 10, one last way)
Suppose that you have decided to buy 4 total drinks for a group of 10 of your friends.
(You may buy multiple drinks for the same friend.) You can think of lining your
friends up and performing a total of 13 successive actions, each of which is either (a)
buying a drink for the friend immediately in front of you, or (b) shouting “next!”. Of
your 13 actions, 4 must be drink purchases. (The other 9 must be shouts of “next!”)
There are

(13
4
)
ways to choose these actions.
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Choosing k of n elements, summarized
We’ve now discussed four notions of choosing k elements from a set of n candidates,

depending on whether we could choose the same option more than once and whether
the order of our choices mattered:

• order matters and repetition is allowed: nk ways.
• order matters and repetition is forbidden: n!

(n−k)! ways.
• order doesn’t matter and repetition is allowed:

(n+k−1
k

)
ways.

• order doesn’t matter and repetition is forbidden:
(n
k
)
ways.

(Or see Figure 9.31 for a summary.) We’ve also considered the same example—choosing
4 of 10 options—in each setting, and the number of ways to do so was different in each
of the four different scenarios:

• order matters and repetition is allowed: 10,000 = 104 ways.
• order matters and repetition is forbidden: 5040 = 10 · 9 · 8 · 7 ways.
• order doesn’t matter and repetition is allowed: 715 =

(13
4
)
ways.

• order doesn’t matter and repetition is forbidden: 210 =
(10
4
)
ways.

Taking it further: In CS, we frequently encounter tasks where we must identify the best solution from
a set of possibilities. For example, we might want to find the longest increasing subsequence (LIS) of a
sequence of n integers. A brute-force algorithm is one that solves the problem by literally trying every
possible solution and selecting the best. (For LIS, there are 2n subsequences, so this algorithm is very
slow.) But if there’s a certain kind of structure and enough repetition in the subproblems that arise in a
naïve recursive solution, a more advanced algorithmic design technique called dynamic programming can
yield a much faster algorithm. And counting the number of subproblems—and the number of distinct
subproblems!—is what establishes when algorithms using brute force or dynamic programming are
good enough. See the discussion on p. 959.

9.4.2 Some Properties of
(n
k
)
, and Combinatorial Proofs

Of the four ways of choosing k elements from n candidates that we explored in Sec-
tion 9.4.1, perhaps the most common is the setting when order doesn’t matter and rep-
etition is forbidden. In this section, we’ll explore some of the remarkable mathematical
properties of the numbers—the values of

(n
k
)
—that arise in this scenario.

The properties that we’ll prove here (and those that you’ll establish in the exercises)
will be equalities of the form x = y for two expressions x and y. We’ll generally be able
to give two very different styles of proof that x = y. One type of proof uses algebra,
typically using the definition of

(n
k
)
and algebraic manipulations to show that x and

y are equal. The other type of proof will be a more story-based approach, called a
combinatorial proof,where we argue that x = y by explaining how x and y are really just
two ways of looking at the same set:

Definition 9.3 (Combinatorial Proof)
A combinatorial proof establishes that two quantities x and y are equal by defining a set S
and proving that |S| = x and |S| = y by counting |S| in two different ways.

The algebraic approach is perhaps apparently more straightforward, but combinatorial
proofs can be more fun. Here’s a first example:
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Theorem 9.18 (A symmetry in choosing)
For any positive integer n and any integer k ∈ {0, 1, . . . , n}, we have

(n
k
)
=
( n
n−k

)
.

Proof #1 of
(n
k
)
=
( n
n−k

)
, via algebra. We simply follow our noses through the definition:

(
n
k

)
= n!
k! · (n− k)! definition of combinations

= n!
(n− k)! · k! commutativity of multiplication

= n!
(n− k)! · (n− (n− k))! antisimplification: k = n− (n− k)

=
(

n
n− k

)
. definition of combinations

Here is a second proof of Theorem 9.18—this time a combinatorial proof. The basic
idea is that we will construct a set S such that we can prove that |S| = (n

k
)
and we can

prove that |S| = ( n
n−k

)
. (Thus we can conclude

(n
k
)
=
( n
n−k

)
.)

Proof #2 of
(n
k
)
=
( n
n−k

)
, via a combinatorial proof: Suppose that n students submit imple-

mentations of Bubble Sort in a computer science class. The instructor has k gold stars,
and he will affix a gold star to each of k different implementations. Let S be the set of
ways to affix gold stars. Here are two ways of computing |S|:

• First, we claim that |S| = (n
k
)
. Specifically, the instructor will choose k of the n sub-

missions and affix gold stars to the k chosen elements. There are
(n
k
)
ways of doing

so.

• Second, we claim that |S| = ( n
n−k

)
. Specifically, the instructor will choose n− k of

the n submissions that he will not adorn with gold stars. The remaining unchosen
submissions will be adorned. There are

( n
n−k

)
ways of choosing the unadorned

submissions.

But |S| is the same regardless of how we count it! So
(n
k
)
= |S| = ( n

n−k
)
and the theorem

follows.

(Another way to think about the combinatorial proof: an n-bit string with k ones is an
n-bit string with n− k zeros; the number of choices for where the ones go is identical
to the number of choices for where the zeros go.)
A combinatorial proof requires creativity—what set S should we consider?—but the

Problem-solving tip:
The hard part in
a combinatorial
proof is coming up
with a story that
explains both sides
of the equation.
Understanding
what the more
complicated side of
the equation means
is often a good
place to start.

argument that the proof is correct is generally comparatively straightforward. Thus
the challenge in proving an identity with a combinatorial proof is a challenge of narra-
tive: we must find a story in which the two sides of the equation both capture the set
described by that story.



9.4. COMBINATIONS AND PERMUTATIONS 953

Pascal’s Identity
Here’s another example claim with both algebraic and combinatorial proofs:

Theorem 9.19 (Pascal’s Identity)
For any integer n ≥ 1 and any k ∈ {0, 1, . . . , n}:

(
n− 1
k

)
+
(
n− 1
k− 1

)
=
(
n
k

)
. Pascal’s identity

is named after
Blaise Pascal, a
17th-century French
mathematician.
The programming
language Pascal was
also named in his
honor.

Proof #1 of Pascal’s Identity (algebra). Observe that if k = 0 or k = n, the identity fol-
lows immediately: by definition, we have

(n
0
)
= 1 = 1 + 0 =

(n−1
0
)
+
(n−1
−1

)
and similarly(n

n
)
= 1 = 0 + 1 =

(n−1
n
)
+
(n−1
n−1

)
. For the non-boundary cases, we’ll manipulate the left-

hand side until it’s equal to the right-hand side:
(
n− 1
k

)
+

(
n− 1
k− 1

)

= (n− 1)!
k! · (n− 1− k)! + (n− 1)!

(k− 1)! · (n− k)! definition of combinations

= (n− 1)!
k! · (n− 1− k)! ·

n− k
n− k

+ (n− 1)!
(k− 1)! · (n− k)! ·

k
k

multiplying by 1 = x
x

= (n− 1)! · (n− k)
k! · (n− k)! + (n− 1)! · k

k! · (n− k)! (k − 1)! · k = k! and (n− 1− k)! · (n− k) = (n− k)!

= (n− 1)! · [(n− k) + k]
k! · (n− k)! factoring

= n!
k! · (n− k)! n− k + k = n, and (n− 1)! · n = n!

=
(
n
k

)
. definition of combinations

Proof #2 of Pascal’s Identity (combinatorial proof). For the case of k = 0 or k = n, the
argument is the same as in Proof #1. Otherwise, consider a set of n ≥ 1 employees,
one of whom is named Babbage. How many ways can we select a subset of k different
employees? Here are two different ways of counting the number of these subsets:

• We choose k of the n employees. There are
(n
k
)
ways to do so.

• We decide whether to include Babbage, and then fill in the rest of the team:

– If we pick Babbage, we need to pick k − 1 further employees from the n − 1
other (non-Babbage) employees; thus there are

(n−1
k−1

)
ways to select a team that

includes Babbage.
– If we don’t pick Babbage, we pick all k employees from the n − 1 others; thus

there are
(n−1

k
)
ways to select a team that does not include Babbage.

By the Sum Rule, there are therefore
(n−1
k−1

)
+
(n−1
k−1

)
ways to choose a team.
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Because we’ve counted the cardinality of one set in two different ways, the two sizes
must be equal. Therefore

(n
k
)
=
(n−1
k−1

)
+
(n−1

k
)
and the theorem follows.

Taking it further: World War II was perhaps the first major historical moment in which computer
science—and, by the end of the war, the computer—was central to the story. The German military used
a complex cryptographic device called the Enigma machine for encryption of military communication
during the war. The Enigma machine, which was partially mechanical and partially electrical, had a
large (though not unfathomably large) set of possible physical configurations, each corresponding to a
different cryptographic “key.” Among the first applications of an electronic computer—and the reason
that one of the first computers was designed and built in the first place—was in breaking these codes, in
part by exhaustively exploring the set of possible keys. As such, understanding the number of different
keys in the system (a counting problem!) was crucial to the Allies’ success in breaking the Enigma code.
For more, see the discussion on p. 960.

9.4.3 The Binomial Theorem

The quantity
(n
k
)
is sometimes called a binomial coefficient, for reasons that we’ll see

in this section. First, a reminder: the product of two binomials (x + y) and (a + b) is A binomial (Latin
bi “two” + nom
“name”) is a
special kind of
polynomial—poly
“many” + nom
“name”—that has
precisely two terms.

xa + xb + ya + yb. (You may have once learned the “FOIL” mnemonic for the terms of
the product: first = xa; outer = xb; inner = ya; and last = yb.) Thus when we square
x + y—that is, multiply it by itself—we get

(x + y) · (x + y) = xx + xy + yx + yy = 1 · x2 + 2 · xy + 1 · y2.

Observe that the three coefficients of these terms, in order, are 〈1, 2, 1〉 = 〈(20
)
,
(2
1
)
,
(2
2
)〉.

The binomial theorem is a general statement of this pattern: when we multiply out the
expression (x + y)n, the coefficient of the xkyn−k term is

(n
k
)
:

Theorem 9.20 (The Binomial Theorem)
For any a ∈ R, any b ∈ R, and any n ∈ Z≥0, we have

(a + b)n =
n
∑
i=0

(n
i
)
aibn−i.

Before we prove the binomial theorem, let’s start with some intuition about why these
coefficients arise. For example, let’s compute (x + y)4 = (x + y) · (x + y) · (x + y) · (x + y),
without doing any simplification by combining like terms:

(x + y) · (x + y) · (x + y) · (x + y)
= (xx + xy + yx + yy) · (x + y) · (x + y)
= (xxx + xyx + yxx + yyx + xxy + xyy + yxy + yyy) · (x + y)
= xxxx + xyxx + yxxx + yyxx + xxyx + xyyx + yxyx + yyyx

+ xxxy + xyxy + yxxy + yyxy + xxyy + xyyy + yxyy + yyyy.

Every term of the resulting expression consists of 4 multiplicands, one from each of
the 4 copies of (x + y). How many of these 16 terms contain, say, 2 copies of x and 2
copies of y? There are 6—yyxx, xyyx, yxyx, xyxy, yxxy, and xxyy—which is just the
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number of elements of {x, y}4 that contain precisely two copies of x. While the sym-
bols are different, it’s easy to see that this quantity is precisely the number of elements
of {0, 1}4 that contain precisely two ones—which is just

(4
2
)
.

We will prove the Binomial Theorem in generality in a moment, but to build a little Problem-solving tip:
When you’re asked
to solve a problem
for a general value
of n, one good way
to get started is to
try to solve it for a
specific small value
of n—and then
try to generalize
your solution to
an arbitrary n.
It’s often easier to
generalize from
a particular n to
a general n than
to give a fully
generally answer
“from scratch.”

bit of intuition for the proof, let’s look at a special case first:

Example 9.47 (The coefficients of (x + y)3)
We’re going to show that (x + y)3 = x3 + 3x2y + 3xy2 + y3 in the same style that we’ll use in
the full proof of the Binomial Theorem. We’ll start with the observation, made previously,
that (x + y)2 = x2 + 2xy + y2 =

(2
0
)
x2 +

(2
1
)
xy +

(2
2
)
y2. A key step will make use of

Theorem 9.19 to move from the coefficients of (x + y)2 to the coefficients of (x + y)3.

(x + y)3 = (x + y) · (x + y)2

= (x + y) ·
[(2

0
)
x2 +

(2
1
)
xy +

(2
2
)
y2
]

=
(2
0
)
x3 +

(2
1
)
x2y +

(2
2
)
xy2︸ ︷︷ ︸

x·
(
(20)x2+(21)xy+(22)y2

)
+

(2
0
)
x2y +

(2
1
)
xy2 +

(2
2
)
y3︸ ︷︷ ︸

y·
(
(20)x2+(21)xy+(22)y2

)

which, collecting like terms, simplifies to

(x + y)3 =
(2
0
)
x3 +

[(2
1
)
+
(2
0
)]

x2y +
[(2

2
)
+
(2
1
)]

xy2 +
(2
2
)
y3.

By Theorem 9.19, we have that
(2
1
)
+
(2
0
)
=
(3
1
)
and

(2
2
)
+
(2
1
)
=
(3
2
)
, so

(x + y)3 =
(2
0
)
x3 +

(3
1
)
x2y +

(3
2
)
xy2 +

(2
2
)
y3

Because
(n
n
)
= 1 and

(n
0
)
= 1 for any n, we have that

(2
0
)
=
(3
0
)
and

(2
2
)
=
(3
3
)
, and thus

(x + y)3 =
(3
0
)
x3 +

(3
1
)
x2y +

(3
2
)
xy2 +

(3
3
)
y3

= x3 + 3x2y + 3xy2 + y3.

The combination notation can sometimes obscure the structure of the proof; for fur-
ther intuition, here is what this proof looks like, without the notational overhead:

(x + y)3 = (x + y) · (x + y)2

= (x + y) · (x2 + 2xy + y2)
= (x3 + 2x2y + xy2) + (x2y + 2xy2 + y3)
= x3 + (2 + 1)x2y + (1 + 2)xy2 + y3

= x3 + 3x2y + 3xy2 + y3.

Proof of the Binomial Theorem
We’re now ready to give a proof of the general form of the Binomial Theorem. Our
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proof will use mathematical induction on the exponent, and the structure of the induc-
tive case of the proof will precisely mimic that of Example 9.47.

Proof of Binomial Theorem. Let a and b be arbitrary real numbers. We wish to prove
that, for any integer n ≥ 0,

(a + b)n =
n
∑
i=0

(n
i
)
aibn−i.

We proceed by induction on n.
The base case (n = 0) is straightforward: anything to the 0th power is 1, so in partic-

ular (a + b)0 = 1. And ∑0
i=0

(0
i
)
aib0−i =

(0
0
)
· 1 · 1 = 1.

For the inductive case (n ≥ 1), we assume the inductive hypothesis (a + b)n−1 =
∑n−1

i=0
(n−1

i
)
aibn−1−i. We must prove that (a + b)n = ∑n

i=0
(n
i
)
aibn−i. Our proof echoes the

structure of Example 9.47:

(a + b)n = (a + b) · (a + b)n−1 definition of exponentiation

= (a + b) ·
n−1
∑
i=0

(n−1
i
)
aibn−1−i inductive hypothesis

= a ·
[
n−1
∑
i=0

(n−1
i
)
aibn−1−i

]
+ b ·

[
n−1
∑
i=0

(n−1
i
)
aibn−1−i

]
distributing the multiplication

=
[
n−1
∑
i=0

(n−1
i
)
ai+1bn−1−i

]
+
[
n−1
∑
i=0

(n−1
i
)
aibn−i

]
distributing the multiplication, again

=
[

n
∑
j=1

(n−1
j−1

)
ajbn−j

]
+
[
n−1
∑
i=0

(n−1
i
)
aibn−i

]
. reindexing the first summation (j := i + 1)

By separating out the i = 0 and j = n terms from the two summations, and then
combining like terms, we have

(a + b)n =
[
n−1
∑
j=1

(n−1
j−1

)
ajbn−j

]
+
[
n−1
∑
i=1

(n−1
i
)
aibn−i

]
+
(n−1
n−1

)
anbn−n +

(n−1
0
)
a0bn−0

=
[
n−1
∑
j=1

((n−1
j−1

)
+
(n−1

j
))

ajbn−j
]
+
(n−1
n−1

)
anbn−n +

(n−1
0
)
a0bn−0.

Applying Theorem 9.19 to substitute
(n
j
)
for

(n−1
j−1

)
+
(n−1

j
)
and using the fact that(n−1

n−1
)
= 1 =

(n
n
)
and

(n−1
0
)
= 1 =

(n
0
)
, we have

(a + b)n =
[
n−1
∑
j=1

(n
j
)
ajbn−j

]
+
(n−1
n−1

)
anbn−n +

(n−1
0
)
a0bn−0 (n

j
)
=
(n−1
j−1

)
+
(n−1

j
)

=
[
n−1
∑
j=1

(n
j
)
ajbn−j

]
+
(n
n
)
anbn−n +

(n
0
)
a0bn−0 (n−1

n−1
)
= 1 =

(n
n
)
and

(n−1
0
)
= 1 =

(n
0
)

=
[

n
∑
j=0

(n
j
)
ajbn−j

]
, incorporating the j = 0 and j = n terms back into the summation

which proves the theorem.



9.4. COMBINATIONS AND PERMUTATIONS 957

9.4.4 Pascal’s Triangle

Much of this section has been devoted to understanding the binomial coefficients, Like Pascal’s
identity, Pascal’s
triangle is named
after the 17th-
century French
mathematician
Blaise Pascal.

through the Binomial Theorem and through combinatorial proofs of a number of
their other properties. We’ll close our discussion of binomial coefficients with a visual
representation of these quantities, called Pascal’s triangle. Pascal’s triangle arranges the
binomial coefficients in a classical and very useful way: the nth row of Pascal’s triangle
consists of all of the n + 1 binomial coefficients

(n
0
)
,
(n
1
)
, · · · ,

(n
n
)
, in order. Figure 9.33

shows the first nine rows of Pascal’s triangle:

(0
0
)

(1
0
) (1

1
)

(2
0
) (2

1
) (2

2
)

(3
0
) (3

1
) (3

2
) (3

3
)

(4
0
) (4

1
) (4

2
) (4

3
) (4

4
)

(5
0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)

(6
0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)

(7
0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)

(8
0
) (8

1
) (8

2
) (8

3
) (8

4
) (8

5
) (8

6
) (8

7
) (8

8
)

...

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

...

Figure 9.33: The
first several rows
of Pascal’s triangle,
in both “choose”
notation and in
numerical form.

Many of the properties of the binomial coefficients that we’ve established previously
can be seen by looking at patterns visible in Pascal’s triangle—as can some others that
we’ll prove here, or that you’ll prove in the exercises.

(0
0
)

(1
0
) (1

1
)

(2
0
) (2

1
) (2

2
)

(3
0
) (3

1
) (3

2
) (3

3
)

(4
0
) (4

1
) (4

2
) (4

3
) (4

4
)

(5
0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)

(6
0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)

+

+

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

+

+

Figure 9.34: Theo-
rems 9.18 and 9.19
reflected in Pascal’s
triangle.

For example, Figure 9.34
gives visualizations of two
properties that we’ve already
proven. Theorem 9.18 states
that

(n
k
)
=

( n
n−k

)
; this theorem

is reflected by the fact that the
numerical values of Pascal’s
triangle are symmetric around
a vertical line drawn down
through the middle of the tri-
angle. And Theorem 9.19 (“Pas-
cal’s Identity”), which states that(n−1

k
)
+
(n−1
k−1

)
=

(n
k
)
, is illustrated by the fact that each entry in Pascal’s triangle is the

sum of the two elements immediately above it (up-and-left and up-and-right).
There are many other notable properties of the binomial coefficients, many of which

we can see more easily by looking at Pascal’s triangle. Here’s one example; a number
of other properties are left to you in the exercises. Let’s look at the row sums of Pas-
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cal’s triangle—that is, computing
(n
0
)
+
(n
1
)
+ · · · + (n

n
)
for different values of n. (See

Figure 9.35.)
1 = 1

1 + 1 = 2
1 + 2 + 1 = 4

1 + 3 + 3 + 1 = 8
1 + 4 + 6 + 4 + 1 = 16

1 + 5 + 10 + 10 + 5 + 1 = 32
1 + 6 + 15 + 20 + 15 + 6 + 1 = 64

...

Figure 9.35: The
row sums of Pas-
cal’s triangle.

From calculating the row sum for a few small values of n, we see that
the nth row appears to have value equal to 2n. (Incidentally, the sum of
the squares of the numbers in any particular row in Pascal’s triangle also
has a special form, as you’ll see in Exercise 9.170.) Indeed, the power-
of-two pattern for the row sums of Pascal’s triangle that we observe in
Figure 9.35 holds for arbitrary n—and we’ll prove this theorem here, in
several different ways.

Theorem 9.21 (Sum of a row of Pascal’s triangle)
∑n

i=0
(n
i
)
= 2n.

Proof #1 (algebraic/inductive) [sketch]. We can gain a bit of intuition for this claim from
Theorem 9.19 (Pascal’s Identity): each entry

(n
k
)
in the nth row is added into exactly two

entries in the (n + 1)st row, namely
(n+1

k
)
and

(n+1
k+1

)
. Therefore the values in row #n of

Pascal’s triangle each contribute twice to the values in row #(n + 1), and therefore the
(n + 1)st row’s sum is twice the sum of the nth row. This intuition can be turned into an
inductive proof, which you’ll give in Exercise 9.169.

Proof #2 (combinatorial). Let S := {1, 2, . . . , n} be a set with n elements. Let’s count the
number of subsets of S in two different ways.

On one hand, there are 2n such subsets: there is a bijection between subsets of S and
|S|-bit strings. (See Lemma 9.10.)

On the other hand, let’s account for the subsets of S by first choosing a size k of the
subset, and then counting the number of subsets of that size. By the Sum Rule, the
total number of subsets of S is exactly

n
∑
k=0

(the number of subsets of S of size k).

By definition, there are exactly
(n
k
)
subsets of size k. Therefore the total number of

subsets is ∑n
k=0

(n
k
)
. Thus 2n = ∑n

k=0
(n
k
)
.

Proof #3 (making clever use of the Binomial Theorem). We’ll start from the right-hand side
of the theorem statement, and begin with a completely unexpected, but obviously true,
antisimplification:

2n = (1 + 1)n obviously 2 = 1 + 1; therefore 2n = (1 + 1)n

=
n
∑
i=0

(n
i
)
1i1n−i binomial theorem

=
n
∑
i=0

(n
i
)
. 1k = 1 for any value of k

You’ll explore some of the many other interesting and useful properties of Pascal’s
triangle, and of the binomial coefficients in general, in the exercises.
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Computer Science Connections

Brute Force Algorithms and Dynamic Programming

In an optimization problem,we’re given a set S of valid solutions and some

Traveling Salesman Problem (TSP):
Input: A set C of n cities, and distance

function d giving the driving time
between any two cities.

Output: An ordering π of C such
that the sum of the driving times
∑i d(πi ,πi+1) is minimized.

Cheapest Vertical Seam (CVS):
Input: An n-by-n grid of integers.
Output: A path from the top row to

the bottom row, moving in direc-
tion {ւ, ↓,ց} at each step, such
that the sum of the integers along
the path is minimized.

Figure 9.36: Two problems.

measure of quality f : S → R, and asked to compute the element x ∈ S that’s
the best according to f . (That is, we want to find the x ∈ S that optimizes f (x).)
Two examples are shown in Figure 9.36: the traveling salesman problem (TSP)—
the problem solved every day by delivery drivers, who have to visit a given
list of addresses and return to the depot—and the cheapest vertical seam (CVS)
problem, which arises in a remarkable computer graphics application.5 (For

5 Shai Avidan and Ariel Shamir. Seam
carving for content-aware image resiz-
ing. In ACM SIGGRAPH, 2007.

an example of the latter problem, see Figure 9.37.)
For both TSP and CVS, there are very simple, but very slow, brute-force

9 8 7 1 9
7 3 2 9 1
2 8 5 6 9
4 7 5 3 4
3 8 2 8 1

Figure 9.37: A small example of CVS.

algorithms that solve the problem by computing the list of all possible solutions
(all orderings of the cities; all top-to-bottom paths) and identifying the best of
these possible solutions. It’s by now a reasonably straightforward counting
exercise to show that there are n! orderings and between 2n · n and 3n · n paths
(it takes some work to avoid counting paths that fall off the left/right edges of
the grid). These running times are unimpressive—even n around 100 would
require decades of computing time—and this is, more or less, the best known
algorithm for TSP! (See p. 326.)

But we can do better for CVS, with another view of the problem. Given

best(i, j): // Assume G1...n,1...n is given.
1: if i = n then
2: return Gi,j (in the last row)
3: else if j ≤ 0 or j ≥ n then
4: return +∞ (outside the grid)
5: else
6: return the minimum of:





Gi,j + best(i + 1, j− 1),
Gi,j + best(i + 1, j),
Gi,j + best(i + 1, j + 1).

Figure 9.38: A recursive algorithm for
CVS. (To solve CVS itself, return the
smallest best(1, j) for every 1 ≤ j ≤ n.)

a grid G, define best(i, j) as the cost of the cheapest path from grid cell 〈i, j〉 to
the bottom of the grid. Then we can solve the CVS problem using a recursive
algorithm that computes best(i, j) for every cell 〈i, j〉, as in Figure 9.38. Unfortu-
nately, this algorithm is just as slow as the brute-force approach: to compute
best(i, j), we make three recursive calls, at least two of which remain inside
the grid. Thus the running time T(i) to find best(n− i, j) with i rows beneath
cell 〈i, j〉 is given by the recurrence T(1) = 1 and T(i) ≥ 2T(i − 1) + 1—which
satisfies T(n) ≥ 2n, just as slow as before.

But a key algorithmic observation is that the number of different cells in
the grid is much smaller—only n2 different cells! So, while the algorithm
in Figure 9.38 does take Ω(2n) time, it actually “should” require only Θ(n2)
time—as long as we avoid recomputing best(i, j) multiple times for the same value
of 〈i, j〉! Once we’ve figured out best(3, 7) (because we needed that value to
figure out best(4, 6)), we don’t bother recomputing best(3, 7) when we need
it again (while we’re computing best(4, 7) and best(4, 8)); instead, we just
remember the value and reuse it without doing any further computation.

The most straightforward way to implement this basic idea is called mem-

CVS(G1...n,1...n):
1: for j := 1, . . . ,n:
2: T[n, j] := Gi,j
3: for i := n− 1, . . . , 1:
4: for j := 1, . . . ,n:
5: T[i, j] := the minimum of:

(Treat T[·, j] = ∞ if j out of range.)




Gi,j + T[i + 1, j− 1],
Gi,j + T[i + 1, j],
Gi,j + T[i + 1, j + 1].

6: return minj T[1, j].

Figure 9.39: A dynamic programming
algorithm for CVS.

oization: we build a data structure in which we check to see whether we’ve
already stored the value of best(i, j) before computing the value via the three
recursive calls, and we always add all values we compute to the data structure
before returning them. A slightly more efficient way of implementing this
idea is called dynamic programming, where we transform this recursive solution
into one using loops—and build up the values of best(i, j) from the bottom up.
(See Figure 9.39).

In general, dynamic programming is an algorithmic design technique that
can save us a massive amount of computation—as long as the number of
different problems encountered in the recursive solution is small.
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Computer Science Connections

The Enigma Machine and the First Computer
Q W E R T

A S D F G

P Y X C V

Figure 9.40: The effect of the plugboard.
Each of the 26 keys is either mapped
to itself (like W here), or is matched
with another key (like Q ↔ D here).
Pressing an unmatched key x yields x
itself; pressing a matched key x yields
whatever letter is matched to x.

A
B C

DEF

G H M QP Z

Figure 9.41: The effect of a rotor. Each
rotor encodes a permutation of the
letters; when the input letter i comes
into the rotor, the output πi comes out.
(Here, for example, an input B turns into
an output of H.) After each keypress, the
top portion of the rotor would rotate
by one notch, so that B would now turn
into G.

The Enigma machine was a physical cryptographic device used by the
Germans during World War II to communicate between German high com-
mand and their military units in the field. The basic structure of the machine
involved rotors and cables. A rotor was a 26-slot physical wheel that encoded a
permutation π; when the wire corresponding to input i is active, the output
wire corresponding to πi is active. A plugboard allowed an arbitrary matching
of keys on the keyboard to the inputs to the rotors—a cable was what actually
connected a key to the first rotor. (The machine did not require any cables
in the plugboard; if there was no cable, then the key pressed was what went
into the rotor in the first place.) The basic encryption in the Enigma machine
proceeded as follows:

1. The user pressed a key, say A, on the keyboard. If there was a cable from
the A key, then the key would be remapped to the other end of the cable;
otherwise the procedure proceeded using the A. (See Figure 9.40.)

2. The pressed key was permuted by rotor #1; the output of rotor #1 was per-
muted by rotor #2; the output of rotor #2 was permuted by rotor #3. (See
Figure 9.41.) The output of rotor #3 was “reflected” by a fixed permutation,
and then the reflector’s output pass through the three rotors, in reverse
order and backward: the output of the reflector was permuted by rotor #3,
then by #2, and then by #1. (See Figure 9.42.)

3. A light corresponding to the output of rotor #1, passed through the plug-
board cable if present, lights up; the illuminated letter is the encoding.

The tricky part is that the rotors rotate by one notch when the key is pressed,
so that the encoding changes with every keypress.

A Q

Figure 9.42: The Enigma machine’s op-
eration. The operator types an A, which
(after going through the plugboard) is
permuted by rotor #1, rotor #2, rotor #3,
the fixed permutation of the machine,
rotor #3, rotor #2, and rotor #1. It then
(after passing through the plugboard)
lights up the output, Q. The rotors
advance by one notch, and encoding
continues with the next letter.

The “secret key” that the two communicating entities needed to agree
upon was which rotors to use in which order (5 · 4 · 3 = 60; there were 5
standard rotors in an Enigma), what the initial position of the rotors should be
(263 = 17,576), and what plugboard matching to use ( 26!

13!·213 ≈ 8× 1012 choices
if all 26 letters were matched; see Example 9.32). Interestingly, almost all of the
complexity came from the plugboards.

Perhaps surprisingly, the fact that there were so many possible settings for
the Enigma led to the invention of one of the first programmable computers,
by Alan Turing at Bletchley Park, in England, during the war. Turing built
a machine that could test many of these configurations, by brute force. (If
there were fewer possibilities, it could have been cracked by hand; if there
were many more, it couldn’t have been cracked by brute force.) Turing and his
team developed a device called the Bombe to exhaustively try to compute the
shared German secret key—each day!

Many other cryptographic tricks related to the way the Enigma was being
used were also part of the analysis. For example, the construction of the
device meant that no letter could encrypt to itself; this fact was exploited in
the analysis. Another crucial part of the code breaking was a known plaintext
attack on the Enigma: the British also used knowledge of what the Germans
tended to communicate (like weather reports) to narrow their search.
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9.4.5 Exercises

For two strings x and y, let’s call a shuffle of x and y any interleaving of the letters of the two strings (that maintains
the order of the letters within each string, but may repeatedly alternate between blocks of x letters and blocks of y
letters). For example, the words ALE and LID can be shuffled into ALLIED or ALLIDE or ALLIDE or LIDALE. How many
different strings can be produced as shuffles of the following pairs of words?
9.121 BACK and FORTH

9.122 DAY and NIGHT

9.123 SUPPLY and DEMAND

9.124 LIFE and DEATH

9.125 ON and ON

9.126 OUT and OUT

9.127 (programming required) Write a program, in a language of your choice, that computes all shuffles of
two given words x and y. A recursive approach works well: a shuffle consists either of the first character of x
followed by a shuffle of x2...|x| and y, or the first character of y followed by a shuffle of x and y2...|y|. (Be sure
to eliminate any duplicates from your resulting list.)

The next few questions ask you to think about shuffles of generic strings, instead of particular words. (Assume that the
alphabet is an arbitrarily large set—you are not restricted to the 26 letters in English.) Consider two strings x and y,
and let n := |x| + |y| be the total number of characters between them. Note that the number of distinct shuffles of x and
y may depend both on the lengths of x and y and on the particular strings themselves; for example, if some letters are
shared between or within the two strings, there may be fewer possible shuffles.
9.128 In terms of n, what is the maximum possible number of different shuffles of x and y?
9.129 In terms of n, what’s the minimum possible number of distinct shuffles of x and y?
9.130 What is the largest possible number of different shuffles of three strings of length a, b, and c?

9.131 How many 42-bit strings have exactly 16 ones?
9.132 How many 23-bit strings have at most 3 ones? (The coincidental arithmetic structure of the
answer actually turns out to be helpful for error-correcting codes; see Exercise 4.30.)
9.133 How many 32-bit strings have a number of ones within ±2 of the number of zeros?
9.134 The set of 64-bit strings with k ones is largest for k = 32. What’s the smallest m for which

| {the number of 64-bit strings with ≤ m ones} | ≥ | {the number of 64-bit strings with 32 ones} |?

9.135 What is the smallest even integer n for which the following statement is true? If we flip an unbi-
ased coin n times, as in Example 9.41, the probability that we get exactly n

2 heads is less than 10%.

A bridge hand consists of 13 cards from a standard 52-card deck, with 13 ranks (2 through ace) and 4 suits (♣, ♦, ♥,
and ♠). (That is, the cards in the deck are {2, 3, . . . , 10, J, Q, K,A} × {♣,♦,♥,♠}.) How many different bridge hands
are there that meet the following conditions?
9.136 A void in spades: a 13-card hand that contains only cards from the suits ♣, ♦, and ♥.
9.137 A singleton in hearts: exactly one of the 13 cards comes from the suit ♥.
9.138 All four kings.
9.139 No queens at all.
9.140 Exactly two jacks.
9.141 Exactly two jacks and exactly two queens.
9.142 A bridge hand has high honors if it contains the five highest-ranked cards {10, J, Q, K,A} in the
same suit. How many bridge hands have high honors? (Warning: be careful about double counting!)

Many bridge players evaluate their hands by the following system of points. First, give yourself one high-card point
for a jack, two for a queen, three for a king, and four for an ace. Furthermore, give yourself three distribution points
for each void (a suit in which you have zero cards), two points for a singleton (a suit with one card), and one point for a
doubleton (a suit with two cards).
9.143 How many bridge hands have a high-card point count of zero?
9.144 How many bridge hands have a high-card point count of zero and a distribution point count of
zero? What fraction of all bridge hands is this?

How many ways are there to choose 32 out of 202 options if . . .
9.145 . . . repetition is allowed and order matters?
9.146 . . . repetition is forbidden and order matters?
9.147 . . . repetition is allowed and order doesn’t matter?
9.148 . . . repetition is forbidden and order doesn’t matter?
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The first 10 prime numbers are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}. How many different integers have exactly . . .
9.149 . . . 5 prime factors (all from this set), where all of these factors are different?
9.150 . . . 5 prime factors (all from this set)? (Note that 32 = 2 · 2 · 2 · 2 · 2 is an example.)

How many different integers have exactly 10 prime factors . . .
9.151 . . . all of which come from the set of the first 20 prime numbers?
9.152 . . . all of which come from the set of the first 20 prime numbers, and where all 10 of these factors
are different from each other?

x1

x2

x3

x4 x5

y1
y2

y3 y4 y5 y6

y7
y8

y9

y10

(a) An alignment that doesn’t respect order.

x1

x2

x3

x4 x5

y1
y2

y3 y4 y5 y6

y7
y8

y9

y10

(b) An alignment that does respect order.

Figure 9.43: An
alignment between
two sequences, for
Exercises 9.153–
9.156. (Thanks to
Roni Khardon, from
whom I learned
a version of the
exercises.)

Suppose that we have two sequences 〈x1, x2, . . . , xn〉 and 〈y1, y2, . . . , y2n〉 of
data points—perhaps representing a sequence of intensities from two streams of
speech. We wish to align x to y by matching up elements of x to elements of y. (For
example, y might represent a reference stream, where we’re trying to match x up to
it.) We insist that each element of x is assigned to one and only one element of y.
(See Figure 9.43.)
9.153 How many ways are there to assign each of the n elements of x to
one of the 2n elements of y?
9.154 How many ways are there to assign each of the n elements of x to
one of the 2n elements of y so that no element of y is matched to more than
one element of x?

In many applications, we can only consider alignments of the elements of x and y
that “maintain order”: that is, we can’t have x5 assigned to an element of y that
comes after the element assigned to x6. (If f : {1, . . . ,n} → {1, . . . , 2n} represents
the alignment, then we require that i ≤ j implies that f (i) ≤ f (j).)
9.155 How many ways are there to assign each of the n elements of x to
one of the 2n elements of y in a way that maintains order?
9.156 How many ways are there to assign each of the n elements of x to
one of the 2n elements of y in a way that maintains order so that no element
of y is matched to more than one element of x?

9.157 Consider the equation a + b + c = 202. How many solutions are there where a, b, and c are all
nonnegative integers?
9.158 How many different solutions are there to the equation a+ b + c+ d + e = 8, where all of {a, b, c, d, e}
have to be nonnegative integers?
9.159 What about for a + b + c + d + e = 88, again where all variables must be nonnegative integers?
9.160 What about for a + 2b + c = 128, again where a, b, and c must be nonnegative integers? (Hint: sum
over the possible values of b and use Theorem 9.17.)

The Association for Computing Machinery (the ACM)—a major professional society for computer scientists—puts
on student programming competitions regularly. Teams of students spend a few hours working on some programming
problems (of various levels of difficulty).
9.161 Suppose that, at a certain college in the midwest, there are 141 computer science majors. A
programming contest team consists of 3 students. How many ways are there to choose a team?
9.162 Suppose that, at a certain programming contest, teams are given 10 problems to try to solve.
When the contest begins, each of the 3 members of the team has to choose a problem to think about first.
(More than one team member can think about the same problem.) How many ways are there for the 3 team
members to choose a problem to think about first?
9.163 In most programming contests, teams are scored by the number of problems they correctly solve.
(There are tiebreakers based on time and certain penalties.) A team can submit multiple solutions to the
same problem. Suppose that a particular team has calculated that they have time to code up and submit 20
different attempted answers to the 10 questions in the contest. How many different ways can they allocate
their 20 submissions across the 10 problems? (The order of their submissions doesn’t matter.)

9.164 Solve the following problem, posed by Adi Shamir in his original paper on secret sharing:6

See the discussion
on p. 730, or
6 Adi Shamir.
How to share a
secret. Communi-
cations of the ACM,
22(11):612–613,
November 1979.

Eleven scientists are working on a secret project. They wish to lock up the documents in a cabinet
so that the cabinet can be opened if and only if six or more of the scientists are present. What is the
smallest number of locks needed? What is the smallest number of keys to the locks each scientist
must carry?
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9.165 In machine learning, we try to use a collection of training data—for example, a large collection of
〈image, letter〉 pairs of images of handwritten letters and the English letter that they represent—to compute
a predictor that will do well on predicting answers on a set of novel test data. One danger in such a system is
overfitting: we might build a predictor that’s overly affected by idiosyncrasies of the training data. One way
to address the risk of overfitting is a technique called cross-validation: we divide the training data into several
subsets, and then, for each subset S, train our predictor based on ∼S and test it on S. We might then average
the parameters of our predictor across the subsets S. In ten-fold cross-validation on a n-element training set,
we would split our n training examples into disjoint sets S1,S2, . . . , S10 where |Si| = n

10 .
How many ways are there to split an n-element set into disjoint subsets S1,S2, . . . , S10 of size n

10 each?
(Note the order of the subsets themselves doesn’t matter, nor does the order of the elements within a subset.)

9.166 Consider the set of bitstrings x ∈ {0, 1}n+k with n zeros and k ones with the additional condition
that no ones are adjacent. (For n = 3 and k = 2, for example, the legal bitstrings are 00101, 01001, 01010, 10001,
10010, and 10100.) Prove by induction on n that the number of such bitstrings is

(n+1
k
)
.

9.167 Consider the set of bitstrings x ∈ {0, 1}n+k with n zeros and k ones with the additional condition
that every block of ones has even length. (For n = 3 and k = 2, for example, the legal bitstrings are 00011, 00110,
01100, 11000.) Prove that, for any even k, the number of such bitstrings is

(n+(k/2)
n

)
.

9.168 Prove that k ·
(n
k
)
= n ·

(n−1
k−1

)
twice, using both an algebraic and a combinatorial proof.

9.169 Using induction on n, prove Theorem 9.21—that is, prove that
n

∑
i=0

(n
i
)
= 2n.

9.170 Prove the following identity about the squares of the binomial coefficients. (For example, for
n = 4, this identity states that

(4
0
)2 +

(4
1
)2 +

(4
2
)2 +

(4
3
)2 +

(4
4
)2 = 12 + 42 + 62 + 42 + 12 = 70 is equal to

(8
4
)
. And,

indeed,
(8
4
)
= 8!

4!·4! = 70.) Use a combinatorial proof.
n

∑
k=0

(n
k
)2 =

(2n
n
)
.

9.171 Prove the following identity by algebraic manipulation:
(n
m
)(m

k
)
=
(n
k
)(n−k

m−k
)
.

9.172 Now prove the identity from Exercise 9.171 with a combinatorial proof. (Hint: think about choosing
a team of m people from a pool of n candidates, and picking k managers from the team that you’ve chosen.)

9.173 Prove the following identity, using an algebraic, inductive, or combinatorial proof:
n

∑
k=0

( k
m
)
=
(n+1
m+1

)
.

Recall that
(a
b
)
= 0 for any b < 0 or b > a, so many of the terms of the summation are zero. For example, for

m = 3 and n = 5, the claim states that
(6
4
)
=
(0
3
)
+
(1
3
)
+
(2
3
)
+
(3
3
)
+
(4
3
)
+
(5
3
)
= 0 + 0 + 0 +

(3
3
)
+
(4
3
)
+
(5
3
)
.

9.174 Prove the following identity about the binomial coefficients and the Fibonacci numbers (where fi
is the ith Fibonacci number), by induction on n:

⌊n/2⌋
∑
k=0

(n−k
k
)
= fn+1 .

9.175 Prove van der Monde’s identity:

(n+m
k
)
=

k

∑
r=0

( m
k−r

)
·
(n
r
)
.

(Hint: suppose you have a deck of n red cards and m black cards, from which you choose a hand of k total cards.)
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1: for each subsequence a of x:
2: for each subsequence b of y:
3: check if a = b

(a) A brute-force algorithm.

1: for k = 0 . . . n:
2: for each subsequence a of x of length k:
3: for each subsequence b of y of length k:
4: check if a = b

(b) A length-aware brute-force algorithm.

Figure 9.44: Two
algorithms for com-
mon subsequences.

A common subsequence of two strings x and y is a string z that’s a subse-
quence of both. A subsequence of an n-character string corresponds to a subset of
{1, 2, . . . , n}, indicating which indices are included (and which aren’t). (See Exer-
cise 9.82.) For example, BASIC is a common subsequence of BRAINSICKNESS and
BIOACOUSTICS.
9.176 Suppose that you have been asked to find the number of common
subsequences of two n-character strings x, y ∈ Σn, by brute force. An algo-
rithm to do so is shown in Figure 9.44(a). How many times do we execute
Line 3 (testing whether a = b)?
9.177 Using the fact that common subsequences must have the same
length, we can modify the algorithm as shown in Figure 9.44(b). Now how
many times do we execute Line 4 (testing whether a = b)?
9.178 Using Stirling’s approximation of the factorial function, which
states that n! ≈

√
2πn(n/e)n (where π = 3.1415 · · · and e = 2.7182 · · · ), argue

that Figure 9.44(b) is an improvement on Figure 9.44(a).

9.179 Use the Binomial Theorem to prove the following identity:
n

∑
k=0

(−1)k ·
(n
k
)
= 0.

9.180 Use the Binomial Theorem to prove the following identity:
n

∑
k=0

(n
k
)

2k
=
(

3
2

)n
.

9.181 In Section 9.2.2, we introduced the Inclusion–Exclusion rule for counting the union of 2 or 3 sets:

|A∪ B| = |A| + |B| − |A ∩ B|
|A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B∩ C| + |A∩ B∩ C|

Exercise 9.30 asked you to give a formula for a 4-set intersection, but here’s a completely general solution:
∣∣∣∣∣
k⋃

i=1
Ai

∣∣∣∣∣ =
k

∑
i=1

[
(−1)i+1 · ∑

j1<j2<···<ji
|Aj1 ∩Aj2 ∩ · · · ∩Aji |

]
.

(Recall that
⋃k

i=1 Ai = A1 ∪A2 ∪ · · · ∪Ak.) Argue that this formula correctly expresses the Inclusion–Exclusion
Rule for any number of sets. (Hint: figure out how many ℓ-set intersections each element x appears in. Then use the
Binomial Theorem—specifically, Exercise 9.179.)

9.182 In Example 8.4, we looked at the subset relation for a set S: that is, we defined the set of pairs

subset := {〈A,B〉 ∈ P(S)×P(S) : [∀x ∈ S : x ∈ A ⇒ x ∈ B]} .
For any particular set B ∈ P(S), the number of sets A such that 〈A,B〉 ∈ subset is precisely 2|B|. The total
number of pairs in the subset relation on S is thus 2k times the number of subsets of S of size k, summed over all
k. We’ve already seen that the number of subsets of S of size k is

(|S|
k
)
. Thus the total number of pairs in the

subset relation on S is
|S|
∑
k=0

(number of subsets of S of size k) · 2k =
|S|
∑
k=0

(|S|
k
)
· 2k .

Use the Binomial Theorem to compute a simple formula for this summation.
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9.5 Chapter at a Glance

Counting is the problem of, given a potentially convoluted description of a set S, com-
puting the cardinality of S. Our general strategy for counting is to develop techniques
for counting simple sets like unions and sequences, and then to handle more compli-
cated counting problems by “translating” them into these simple problems.

Counting Unions and Sequences

The Sum Rule describes how to compute the cardinality of the union of sets: if A and B
are disjoint sets, then |A ∪ B| = |A| + |B|. More generally, if the sets A1,A2, . . . ,Ak are
all disjoint, then

∣∣∣⋃k
i=1Ai

∣∣∣ = ∑k
i=1 |Ai|. If the sets A and B are not disjoint, then the Sum

Rule doesn’t apply. Instead, we can use Inclusion–Exclusion to count |A ∪ B|. This rule
states that |A∪ B| = |A| + |B| − |A∩ B| for any sets A and B. For three sets,

|A∪ B∪ C| = |A| + |B| + |C| − |A∩ B| − |A∩ C| − |B∩ C| + |A∩ B∩ C|.

To compute the cardinality of the Cartesian product of sets, we can use the Product
Rule: for sets A and B, we have |A× B| = |A| · |B|. More generally, for arbitrary sets
A1,A2, . . . ,Ak, we have |A1 ×A2 × · · · ×Ak| = ∏k

i=1 |Ai|. Applying the Product Rule to
a set S× S× · · · × S, we see that, for any set S and any k ∈ Z≥1, we have |Sk | = |S|k. If
the set of options for one choice depends on previous choices, then we cannot directly
apply the Product Rule. However, the basic idea still applies: the Generalized Product
Rule says that |S| = ∏k

i=1 ni if S denotes a set of sequences of length k, where, for each
choice of the first i− 1 components of the sequence, there are exactly ni choices for the
ith component.

A permutation of a set S is sequence of elements from S that contains no repetitions
and has length |S|. In other words, a permutation of S is an ordering of the elements of
S. By the Generalized Product Rule, there are precisely n! = n · (n− 1) · (n− 2) · · · · · 1
permutations of an n-element set.

Using Functions to Count

Let A and B be arbitrary sets. We can use a function f : A → B to relate |A| and |B|. The
Mapping Rule says that:

• There exists a function f : A → B that’s onto if and only if |A| ≥ |B|.
• There exists a function f : A → B that’s one-to-one if and only if |A| ≤ |B|.
• There exists a function f : A → B that’s a bijection if and only if |A| = |B|.

The Mapping Rule implies, among other things, that the power set P(S) of a set S has
cardinality |P(S)| = 2|S|.

The Division Rule says the following: suppose that there exists a function f : A → B
such that, for every b ∈ B, there are exactly k elements a1, . . . , ak ∈ A such that f (ai) = b.
Then |A| = k · |B|. The Division Rule implies, among other things, that the number
of ways to rearrange a sequence containing k different distinct elements {x1, . . . , xk},
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where element xi appears ni times, is

(n1 + n2 + · · · + nk)!
(n1!) · (n2!) · · · · · (nk!)

.

The pigeonhole principle says that if A and B are sets with |A| > |B|, and f : A → B,
then there exist distinct a and a′ ∈ A such that f (a) = f (a′). That is, if there are more
pigeons than holes, and we place the pigeons into the holes, then there must be (at
least) one hole containing more than one pigeon.

Combinations and Permutations

Consider nonnegative integers n and k with k ≤ n. The quantity
(n
k
)
is defined as

(
n
k

)
:= n!

k! · (n− k)! ,

and is read as “n choose k.” The quantity
(n
k
)
denotes the number of ways to choose

a k-element subset of a set of n elements, called a combination,when each element can
only be selected at most once and the order of the selected elements doesn’t matter.
The quantity

(n
k
)
is also sometimes called a binomial coefficient.

Depending on whether we allow the same candidate to be chosen more than once
and whether we care about the order in which the candidates are chosen, there are
many versions of selecting k out of a set of n candidates:

• If the order of the selected elements doesn’t matter and repetition of the chosen
elements is not allowed, then there are

(n
k
)
ways to choose.

• If order matters and repetition is not allowed, there are n!
(n−k)! ways.

• If order matters and repetition is allowed, there are nk ways.
• If order doesn’t matter and repetition is allowed, there are

(n+k−1
k

)
ways.

(0
0
)

(1
0
) (1

1
)

(2
0
) (2

1
) (2

2
)

(3
0
) (3

1
) (3

2
) (3

3
)

(4
0
) (4

1
) (4

2
) (4

3
) (4

4
)

(5
0
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1
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2
) (5

3
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4
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5
)

(6
0
) (6

1
) (6

2
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3
) (6

4
) (6

5
) (6

6
)

...

Figure 9.45: The
first several rows of
Pascal’s triangle.

A combinatorial proof establishes that two quantities x and y are equal by
defining a set S and proving that |S| = x and |S| = y by counting |S| in two
different ways. We can give combinatorial proofs of the following facts about
the binomial coefficients, among others:

(n
k
)
=
( n
n−k

) (n
k
)
=
(n−1

k
)
+
(n−1
k−1

)
∑n

i=0
(n
i
)
= 2n.

The binomial theorem states that, for any a, b ∈ R and any n ∈ Z≥0,

(a + b)n =
n
∑
i=0

(n
i
)
aibn−i.

We can prove the binomial theorem by induction on the exponent n.
Many of the interesting properties of the binomial coefficients can be seen

by looking at patterns visible in Pascal’s triangle,which arranges the bino-
mial coefficients so that the nth row contains the n + 1 binomial coefficients(n
0
)
,
(n
1
)
, · · · , (nn

)
. See Figure 9.45 for the first few rows of Pascal’s triangle.
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Key Terms and Results

Key Terms

Counting Unions and Sequences

• Sum Rule
• Product Rule
• double counting
• Inclusion–Exclusion
• Generalized Product Rule
• permutation

Using Functions to Count

• Mapping Rule
• Division Rule
• pigeonhole principle

Combinations and Permutations

• combinations
• permutations
•

(n
k
)
/ binomial coefficient

• binomial theorem
• combinatorial proof
• Pascal’s triangle

Key Results

Counting Unions and Sequences

1. The Sum Rule: if the sets A1,A2, . . . ,Ak are all disjoint,
then

∣∣∣⋃k
i=1Ai

∣∣∣ = ∑k
i=1 |Ai|. The Inclusion–Exclusion Rule

allows us to handle nondisjoint sets; for example, for any
sets A,Bwe have |A∪ B| = |A| + |B| − |A∩ B|.

2. The Product Rule: |A1 ×A2 × · · · ×Ak| = ∏k
i=1 |Ai|. For

any set S and any k ∈ Z≥1, we have |Sk | = |S|k .
3. The Generalized Product Rule: if S is a set of sequences of

length k, where, for each choice of the first i− 1
components of the sequence, there are exactly ni choices
for the ith component, then |S| = ∏k

i=1 ni.

Using Functions to Count

1. The Mapping Rule: an onto function f : A → Bmeans
|A| ≥ |B|; a one-to-one function f : A → B means
|A| ≤ |B|; and a bijection f : A → B means |A| = |B|.

2. For any set S, |P(S)| = 2|S|.

3. The Division Rule: if f : A → B satisfies
|{a ∈ A : f (a) = b}| = k for all b ∈ B, then |A| = k · |B|.

4. The number of ways to arrange a sequence containing
elements {x1, . . . , xk}, where xi appears ni times, is
(n1+n2+ ··· +nk)!

(n1!)·(n2!)· ··· ·(nk !) .

5. Pigeonhole principle: if f : A → B and |A| > |B|, then
there exist a, a′ 6= a ∈ A such that f (a) = f (a′).

Combinations and Permutations

1. There are four versions of selecting k out of n candidates,
depending on whether the order of the chosen elements
matters and whether we can choose the same element
twice. (See Figure 9.31.) The binomial coefficient

(n
k
)

denotes the number of ways to choose when repetition is
forbidden and order doesn’t matter (called combinations).

2. Some useful properties:
(n
k
)
=
( n
n−k

)
and(n−1

k
)
+
(n−1
k−1

)
=
(n
k
)
and ∑n

i=0
(n
i
)
= 2n.

3. The binomial theorem: (a + b)n = ∑n
i=0

(n
i
)
aibn−i.





10
Probability

In which our heroes evade threats and conquer their fears by flipping coins,
rolling dice, and spinning the wheels of chance.
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10.1 Why You Might Care

Fortune can, for her pleasure, fools advance,
And toss them on the wheels of Chance.

Juvenal (c. 55-–c. 127)

This chapter introduces probability, the study of randomness. Our focus, as will be
no surprise by this point of the book, is on building a formal mathematical framework
for analyzing random processes. We’ll begin with a definition of the basics of probabil-
ity: defining a random process that chooses one particular outcome from a set of pos-
sibilities (any one of which occurs some fraction of the time). We’ll then analyze the
likelihood that a particular event occurs—in other words, asking whether the chosen
outcome has some particular property that we care about. We then consider indepen-
dence and dependence of events, and conditional probability: how, if at all, does knowing
that the randomly chosen outcome has one particular property change our calculation
of the probability that it has a different property? (For example, perhaps 90% of all
email is spam. Does knowing that a particular email contains the word ENLARGE make
that email more than 90% likely to be spam?) Finally, we’ll turn to random variables and
expectation, which give quantitative measurements of random processes: for example,
if we flip a coin 1000 times, how many heads would we see (on average)? How many
runs of 10 or more consecutive heads? Probabilistic questions are surprisingly difficult
to have good intuition about; the focus of the chapter will be on the tools required to
rigorously settle these questions.

Probability is relevant almost everywhere in computer science. One broad appli-
cation is in randomized algorithms to solve computational problems. In the same way
that the best strategy to use in a game of rock–paper–scissors involves randomness
(throw rock 1

3 of the time, throw paper 1
3 of the time, throw scissors 1

3 of the time),
there are some problems—for example, finding the median element of an unsorted
array, or testing whether a given large integer is a prime number—for which the best
known algorithm (the fastest, the simplest, the easiest to understand, . . . ) proceeds by
making random choices. The same idea occurs in data structures: a hash table is an ex-
cellent data structure for many applications, and it’s best when it assigns elements to
(approximately) random cells of a table. (See Section 10.1.1.) Randomization can also
be used for symmetry breaking: we can ensure that 1000 identical drones do not clog the
airwaves by all trying to communicate simultaneously: each drone will choose to try to
communicate at a random time. And we can generate more realistic computer graph-
ics of flame or hair or, say, a field of grass by, for each blade, randomly perturbing the
shape and configuration of an idealized piece of grass.

As a rough approximation, we can divide probabilistic applications in CS into two
broad categories: those uses in which the randomness is internally generated by our
algorithms or data structures, and those cases in which the randomness comes “from
the outside.” The first type we discussed above. In the latter category, consider circum-
stances in which we wish to build some sort of computational model that addresses
some real-world phenomenon. For example, we might wish to model social behavior
(a social network of friendships), or traffic on a road network or on the internet, or to
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build a speech recognition system. Because these applications interact with extremely
complex real-world behaviors, we will typically think of them as being generated ac-
cording to some deterministic (nonrandom) underlying rule, but with hard-to-model
variation that is valuably thought of as generated by a random process. In systems
for speech recognition, it works well to treat a particular “frame” of the speech stream
(perhaps tens of milliseconds in duration) as a noisy version of the sound that the
speaker intended to produce, where the noise is essentially a random perturbation of
the intended sound.

Finally, you should care about probability because any well-educated person must
understand something about probability. You need probability to understand political
polls, weather forecasting, news reports about medical studies, wagers that you might
place (either with real money or by choosing which of two alternatives is a better
option), and many other subjects. Probability is everywhere!

10.1.1 Hashing: A Running Example

Throughout this chapter, we will consider a running sequence of examples that are
about hash tables, a highly useful data structure that also conveniently illustrates a wide
variety of probabilistic concepts. So we’ll start here with a short primer on hash tables.
(See also p. 267, or a good textbook on data structures.)

A hash table is a data structure that stores a set of elements in a table T[1 . . .m]—
that is, an array of size m. (Remember that, throughout this book, arrays are indexed
starting at 1, not 0.) The set of possible elements is called the universe or the keyspace.
We will be asked to store in this table a particular small subset of the keyspace. (For
example, the keyspace might be the set of all 8-letter strings; we might be asked to
store the user IDs of all students on campus.) We use a hash function h to determine in
which cell of the table T[1 . . .m] each element will be stored. The hash function h takes
elements of the keyspace as input, and produces as output an index identifying a cell
in T. To store an element x in T using hash function h, we compute h(x) and place x
into the cell T[h(x)]. (We say that the element x hashes to the cell T[h(x)].)

We must somehow handle collisions, when we’re asked to store two different ele-
ments that hash to the same cell of T. We will usually consider the simplest solution,
where we use a strategy called chaining to resolve collisions. To implement chaining,
we store all elements that hash to a cell in that cell, in an unsorted list. Thus, to find
whether an element y is stored in the hash table T, we look one-by-one through the list
of elements stored in T[h(y)].

Example 10.1 (A small hash table)
Let the keyspace be {1, 2, 3, 4}, and consider a 2-cell hash table with the hash function
h given by h(x) = (x mod 2) + 1. (Thus h(1) = h(3) = 2 and h(2) = h(4) = 1.)

• If we store the elements {1, 4}, then the table would be

T[1] T[2]

[4] [1] .

• If we store the elements {2, 4}, then the table would be [2, 4] [] .
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More formally, we are given a finite set K called the keyspace, and we are also given
a positive integer m representing the table size. We will base the data structure on a
hash function h : K → {1, . . . ,m}. For the purposes of this chapter, we choose h ran-
domly, specifically choosing the hash function so that each function from K to {1, . . . ,m}
is equally likely to be chosen as h.

Let’s continue our above example with a randomly chosen hash function. For the
moment, we’ll treat the process of randomly choosing a hash function informally. (The
precise definitions of what it means to choose randomly, and what it means for certain
“events” to occur, will be defined in the following sections.)

h(
1)

h(
2)

h(
3)

h(
4)

1 1 1 1 A
1 1 1 2
1 1 2 1 A
1 1 2 2 B
1 2 1 1 A
1 2 1 2 B
1 2 2 1 AB
1 2 2 2
2 1 1 1
2 1 1 2 AB
2 1 2 1 B
2 1 2 2 A
2 2 1 1 B
2 2 1 2 A
2 2 2 1
2 2 2 2 A C

Figure 10.1: All
functions from
{1, 2, 3, 4} to {1, 2}.
Each row is a differ-
ent function h; the
ith column records
the value of h(i).
The letters mark
some functions
as described in
Example 10.2.

Example 10.2 (A small hash table)
As before, let K = {1, 2, 3, 4} and m = 2. There are m|K| = 24 = 16 different functions
h : K → {1, 2}, and each of these functions is equally likely to be chosen. (The
functions are listed in Figure 10.1.) Each of these functions is chosen a 1

16 fraction of
the time. Thus:

• a 8
16 = 1

2 fraction of the time, we have h(4) = h(1).
(These functions are marked with an ‘A’ in Figure 10.1.)

• a 6
16 = 3

8 fraction of the time, the hash function is “perfectly balanced”—that is,
hashes an equal share of the keys to each cell.
(These functions are marked with a ‘B’ in Figure 10.1.)

• a 1
16 fraction of the time, the hash function hashes every element of K into cell #2.

(This one function is marked with a ‘C’ in Figure 10.1.)

Taking it further: In practice, the function h will not be chosen completely at random, for a variety
of practical reasons (for example, we’d have to write down the whole function to remember it!), but
throughout this chapter we will model hash tables as if h is chosen completely randomly. The assump-
tion that the hash function is chosen randomly, with every function K → {1, 2, . . . ,m} equally likely to be
chosen, is called the simple uniform hashing assumption. It is very common to make this assumption when
analyzing hash tables.

It may be easier to think of choosing a random hash function using an iterative process instead: for
every key x ∈ K, we choose a number ix uniformly at random and independently from {1, 2, . . . ,m}. (The
definitions of “uniformly” and “independently” are coming in the next few sections. Informally, this de-
scription means that each number in {1, 2, . . . ,m} is equally likely to be chosen as ix , regardless of what
choices were made for previous numbers.) Now define the function h as follows: on input x, output ix .
One can prove that this process is completely identical to the process illustrated in Example 10.2: write
down every function from K to {1, 2, . . . ,m} (there are m|K| of them), and pick one of these functions at
random.

After we’ve chosen the hash function h, a set of actual keys {x1, . . . , xn} ⊆ K will
be given to us, and we will store the element xi in the table slot T[h(xi)]. Notice that
the only randomly determined quantity is the hash function h. Everything else—the
keyspace K, the table size m, and the set of to-be-stored elements—is fixed.
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10.2 Probability, Outcomes, and Events

Anyone who does not know how to make the most of
his luck has no right to complain if it passes by him.

Miguel de Cervantes (1547–1616)

This section will give formal definitions of the fundamental concepts in probability,
giving us a framework to use in thinking about the many computational applications
that involve chance. These definitions are somewhat technical, but they’ll allow us Warning! It is very

rare to have good
intuition or instincts
about probability
questions. Try to
hold yourself back
from jumping to
conclusions too
quickly, and instead
use the systematic
approaches to prob-
abilistic questions
that are introduced
in this chapter.

reason about some fairly sophisticated probabilistic settings fairly quickly.

10.2.1 Outcomes and Probability

Here’s the very rough outline of the relevant definitions; we’ll give more details in a
moment. Imagine a scenario in which some quantity is determined in some random
way. We will consider a set S of possible outcomes. Each outcome has an associated
probability, which is a number between 0 and 1. The set S is called the sample space.
In any particular result of this scenario, one outcome from S is selected randomly
(by “nature”); the frequency with which a particular outcome is chosen is given by
that outcome’s associated probability. (Sometimes we might talk about the process by
which a sequence of random quantities is selected, and the realization as the actual
choice made according to this process.) For example, for flipping an unweighted coin
we would have S = {Heads, Tails}, where Heads has probability 0.5 and Tails has
probability 0.5. Our particular outcome might be Heads.

Here are the formal definitions:

Definition 10.1 (Outcomes and sample space)
An outcome of a probabilistic process is the sequence of results for all randomly determined
quantities. (An outcome can also be called a realization of the probabilistic process.) The
sample space S is the set of all outcomes.

Definition 10.2 (Probability function)
Let S be a sample space. A probability function Pr : S → R describes, for each outcome
s ∈ S, the fraction of the time that s occurs. (We denote probabilities using square brackets, so
the probability of s ∈ S is written Pr [s].) We insist that the following two conditions hold of
the probability function Pr:

∑
s∈S

Pr [s] = 1 (10.1)

Pr [s] ≥ 0 for all s ∈ S. (10.2)

Intuitively, condition (10.1) says that something has to happen: when we flip a coin, then
either it comes up heads or it comes up tails. (And so Pr [Heads] + Pr [Tails] = 1.) The
other condition, (10.2), formalizes the idea that Pr [s] denotes the fraction of the time
that the outcome s occurs: the least frequently that an outcome can occur is never.
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The probability function Pr is also sometimes called a probability distribution over S.
(This function “distributes” one unit of probability across the set S of all possible out-
comes, as in (10.1).)

Taking it further: Bizarrely, in quantum computation—an as-yet-theoretical type of computation based on
quantum mechanics—we can have outcomes whose probabilities are not restricted to be real numbers
between 0 and 1. This model is (very!) difficult to wrap one’s mind around, but a computer based on this
idea turns out to let us solve interesting problems, and faster than on “normal” computers. For example,
we can factor large numbers efficiently on a quantum computer. (Though we don’t know how to build
quantum computers of any nontrivial size.) See p. 1016 for some discussion.

A few examples: cards, coins, and words
Here are a few examples of sample spaces with probabilities naturally associated

with each outcome:

Example 10.3 (One card from the deck)
We draw one card from a perfectly shuffled deck of 52 cards. Then we can denote
the sample space as S = {2, 3, . . . , 10, J, Q, K,A} × {♣,♦,♥,♠}. Each card c ∈ S has
Pr [c] = 1

52 . Note that condition (10.1) is satisfied because

∑c∈S Pr [c] = ∑c∈S
1
52 = 52 · 1

52 = 1,

and (10.2) is obviously satisfied because Pr [c] = 1
52 ≥ 0 for each c.

Example 10.4 (Coin flips)
You flip a quarter and Bill Gates flips a platinum trillion-dollar coin. Assume that
both coins are fair (equally likely to come up Heads and Tails) and that flips of the
quarter and the platinum coin do not affect each other in any way. Then the four
outcomes are—writing the quarter’s result first—〈Heads,Heads〉, 〈Heads, Tails〉,
〈Tails,Heads〉, and 〈Tails, Tails〉. Each of these four outcomes has probability 0.25.

Now is the winter
of our discontent/
Made glorious
summer by this sun
of York;/And all the
clouds that lour’d
upon our house/In
the deep bosom of
the ocean buried.
—William

Shakespeare
(1564–1616)
King Richard III

Example 10.5 (A word on the page)
Consider the following sentence, which—excluding spaces—contains a total of 29
different symbols (namely N, o, w, i, s, t, . . . , t):

Now is the winter of our discontent.

We are going to select a word from this sentence, according to the following process:
choose one of the 29 non-space symbols from the sentence with equal likelihood; the
selected word is the one in which the selected symbol appears. (Thus longer words
will be chosen more frequently than shorter words, because longer words contain
more symbols—and are therefore more likely to be selected.)

The sample space is S = {Now, is, the, winter, of, our, discontent}. There are
3 + 2 + 3 + 6 + 2 + 3 + 10 = 29 total symbols, and thus Pr [Now] = 3

29 , Pr [is] =
2
29 , and

so on, through Pr [discontent] = 10
29 . Again, the conditions for being a probability are

satisfied: each outcome’s probability is nonnegative, and ∑w∈S Pr [w] = 1.
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Examples 10.3 and 10.4 are scenarios of uniform probability, in which each outcome
in the sample space is chosen with equal likelihood. (Specifically, each s ∈ S has
probability Pr [s] = 1

|S| .) Example 10.5 illustrates nonuniform probability, in which some
outcomes occur more frequently than others.

Note that for a single sample space S, we can have many different distinct processes
by which we choose an outcome from S. For example:

Example 10.6 (Two ways of choosing from S = {0, 1, 2, . . . , 7})
One process for selecting an element of S is to flip three fair coins and treat their
results as a binary number (HHH = 111 → 7, HHT = 110 → 6, . . . , TTT = 000 → 0).
This process gives a uniform distribution over S: each sequence of coin flips occurs
with the same probability. For example, Pr [4] = 1

8 = 0.125 and Pr [7] = 1
8 = 0.125.

A second process for selecting an element of S is to flip 7 fair coins and to let the
outcome be the number of heads that we see in those 7 flips (HHHHHHH → 7,
HHHHHHT → 6, HHHHHTH → 6, . . . , TTTTTTT → 0). This process gives a
nonuniform distribution over S, because the number of sequences that have k heads is
different for different values of k. For example:

Pr [4] =
(7
4
)

27
= 35

128 ≈ 0.2734, but Pr [7] =
(7
7
)

27
= 1

128 ≈ 0.0078.

As a word of warning, notice that probabilistic statements about a particular realiza-
tion don’t make sense; the only kind of probabilistic statement that makes sense is a
statement about a probabilistic process. If you happen to be one of the ≈ 10% of the pop-
ulation that’s red–green colorblind, and a friend says “what are the odds that you’re
colorblind!?”, the correct answer is: the probability is 1 (because it happened!).

10.2.2 Events

Many of the probabilistic questions that we’ll ask are about whether the realization has
some particular property, rather than whether a single particular outcome occurs. For
example, we might ask for the probability of getting more heads than tails in 1000
flips of a fair coin. Or we might ask for the probability that a hand of seven cards
(dealt from a perfectly shuffled deck) contains at least two pairs. There may be many
different outcomes in the sample space that have the property in question. Thus, often
we will be interested in the probability of a set of outcomes, rather than the probability
of a single outcome. Such a set of outcomes is called an event:

Definition 10.3 (Event)
Let S be a sample space with probability function Pr. An event is a subset of S. The
probability of an event E is the sum of the probabilities of the outcomes in E, and it is
written Pr [E] = ∑s∈E Pr [s].

The probability of an event E ⊆ S follows by a probabilistic version of the Sum Rule,
from counting: because one (and only one) outcome is chosen in a particular realiza-
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tion, the probability of either outcome x or y occurring is Pr [x] + Pr
[
y
]
.

Note that the notation in Definition 10.3 generalizes the function Pr by allowing Our mixture of
Pr [outcome] and
Pr [event] is an
abuse of notation;
we’re mixing
the type of input
willy nilly. But,
because Pr [x] for
an outcome x and
Pr

[
{x}

]
for the

singleton event {x}
are identical, we can
write probabilities
this way without
risk of confusion.

us to write either elements of S or subsets of S as inputs to Pr. That is, previously we
considered a function Pr : S → [0, 1]; we have now “extended” our notation so that
it’s a function Pr : P(S) → [0, 1]. (To be more precise, we’re actually extending the
notation to be a function Pr : (S ∪ P(S)) → [0, 1], because we’re still letting ourselves
write outcomes as arguments too.)

A few examples
Here are a few examples of events and their probabilities:

Example 10.7 (At least one head)
You and Bill Gates each flip fair coins, as in Example 10.4. Define the event H =
{〈Heads,Heads〉, 〈Heads, Tails〉, 〈Tails,Heads〉} as “at least one coin comes up
heads.” Then Pr [H] = 0.25 + 0.25 + 0.25 = 0.75.

Example 10.8 (Aces up)
Problem: Suppose that you draw one card from a perfectly shuffled deck, as in Exam-

ple 10.3. What is the probability that you draw an ace?

Solution: The event in question is E = {A♣, A♦, A♥, A♠}. Each of these four out-
comes has a probability of 1

52 , so Pr [E] = 1
52 +

1
52 +

1
52 +

1
52 = 4

52 = 1
13 .

Example 10.9 (Full house)
Problem: You’re dealt 5 cards from a shuffled deck, so that each set of 5 cards is

equally likely to be your hand. A hand is a full house if 3 cards share one rank, and
the other 2 cards share a second rank. (For example, the hand 3♥, 3♠, 9♥, 9♣, 3♣
is a full house.) What’s the probability of being dealt a full house?

Solution: There are
(52
5
)
possible hands, each of which is dealt with probability

1/
(52
5
)
. Thus the key question is a counting question: how many full houses are there?

We can compute this number using the Generalized Product Rule; specifically, we
can view a full house as the result of the following sequence of selections:

• we choose the rank of which to have three of a kind;
• we choose which 3 of the 4 cards of that rank are in the hand;
• we choose the rank of the pair (any of the 12 remaining ranks); and
• we choose which 2 of the 4 cards of that rank are in the hand.

Thus there are
(13
1
)
·
(4
3
)
·
(12
1
)
·
(4
2
)
full houses, and the probability of a full house is

(13
1
) · (43

) · (121
) · (42

)
(52
5
) = 3744

2598960 ≈ 0.00144.

Here’s a slightly more complex example, with multiple events of interest:
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Taking it further: Section 10.2.3 has been devoted to tree diagrams—a systematic way of analyzing
probabilistic settings in which a sequence of random choices is made. Typically we think of—or at
least model—these random choices as being made “by nature”: if you flip a coin, you act as though the
universe “chooses” (via microdrafts of wind, the precise topology of the ground where the coin bounces,
etc.) whether the coin will come up Heads or Tails.

But, in many scenarios in computer science, we want to generate the randomness ourselves, per-
haps in a program: choose a random element of the set A; go left with probability 1

2 and go right with
probability 1

2 ; generate a random 8-symbol password. The process of actually generating a sequence of
“random” numbers on a computer is difficult, and (perhaps surprisingly) very closely tied to notions of
cryptographic security. A pseudorandom generator is an algorithm that produces a sequence of bits that
seem to be random, at least to someone examining the sequence of generated bits with limited computa-
tional power. It turns out that building a difficult-to-break encryption system is in a sense equivalent to
building a difficult-to-distinguish-from-random pseudorandom generator.1

1

For more, see:
1 Oded Goldre-
ich. Foundations of
Cryptography. Cam-
bridge University
Press, 2006.

10.2.4 Some Common Probability Distributions

We’ll end this section by spending a few words on some of the common probabilistic
processes (and therefore some common probability distributions) that arise in com-
puter science applications.

Uniform distribution
Under the uniform distribution, every outcome is equally likely. We can define a

uniform distribution for any finite sample space S:

Definition 10.4 (Uniform distribution)
Let S be a finite sample space. Under the uniform distribution, the probability of any
particular outcome s ∈ S is given by Pr [s] = 1

|S| .

Some familiar examples of the uniform distribution include:

• flipping a fair coin (Pr [Heads] = Pr [Tails] = 1
2 ).

• rolling a fair 6-sided die (Pr [1] = Pr [2] = Pr [3] = Pr [4] = Pr [5] = Pr [6] = 1
6 ).

• choosing one card from a shuffled deck (Pr [c] = 1
52 for any card c).

Note that, if outcomes are chosen uniformly at random, then the probability of an
event is simply its fraction of the sample space. That is, for any event E ⊆ S, we have

Pr [E] =
|E|
|S| .

Taking it further: We often make use of a uniform distribution in randomized algorithms. For example,
in randomized quicksort or randomized select applied to an array A[1 . . .n], a key step is to choose a
“pivot” value uniformly at random from A, and then use the chosen value to guide subsequent operation
of the algorithm. (See Exercises 10.24–10.27.)

Bernoulli distribution
The next several distributions are related to “flipping coins” in various ways. “Coin

flipping” is a common informal way of referring to any probabilistic process is which
we have one or more trials, where each trial has the same “success probability,” also
known as “getting heads.” We will refer to flipping an actual coin as a coin flip, but we
will also refer to other probabilistic processes that succeed with some fixed probability
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as a coin flip. We will consider a (possibly) biased coin—that is, a coin that comes up
heads with probability p, and comes up tails with probability 1− p. The coin is called
fair if p = 1

2 ; that is, if the probability distribution is uniform. We can call the coin p-
biased when Pr [heads] = p. It’s important that the result of one trial has no effect on
the success probability of any subsequent trial. (That is, these flips are independent; see
Section 10.3.)

The first coin-related distribution is simply the one associated with a single trial:

The Bernoulli
distribution is
named after Jacob
Bernoulli, a 17th-
century Swiss
mathematician.

Definition 10.5 (Bernoulli distribution)
The Bernoulli distribution with parameter p is the probability distribution that results
from flipping one p-biased coin. Thus the sample space is {H,T}, where Pr [H] = p and
Pr [T] = 1− p.

Taking it further: Imagine a sequence of Bernoulli trials performed with p = 0.01, and another sequence
of Bernoulli trials performed with p = 0.48. The former sequence will consist almost entirely of zeros; the
latter will be about half zeros and about half ones. There’s a precise technical sense in which the second
sequence contains more information than the first, measured in terms of the entropy of the sequence. See
p. 1017 for some discussion.

Binomial distribution

0 1 2 3 4 5 6 7 8 9 10

k0.1
0.2
0.3 Pr [k]

(a) n = 10, p = 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k0.1
0.2
0.3 Pr [k]

(b) n = 15, p = 0.5

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

k0.1
0.2
0.3 Pr [k]

(c) n = 20, p = 0.5

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3

(d) n = 10, p = 0.25

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3

(e) n = 10, p = 0.75

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3

(f) n = 10, p = 0.85

Figure 10.6: Several
binomial distribu-
tions, for different
values of n and p.

A somewhat more interest-
ing distribution results from
considering a sequence of flips
of a biased coin. Consider the
following probabilistic process:
perform n flips of a p-biased coin,
and then count the number of
heads in those flips. The binomial
distribution with parameters n and p
is a distribution over the sample
space {0, 1, . . . , n}, where Pr [k]
denotes the probability of getting
precisely k heads in those flips.
Figure 10.6 shows several exam-
ples of binomial distributions, for different settings of the parameters n and p. Each
panel of Figure 10.6 shows the probability P[k] of getting precisely k heads in n flips of
a p-biased coin, for each k in the sample space.

If we flip a p-biased coin n times, what is the probability of the event of getting
exactly k heads? For example, consider the outcome

HH · · ·H︸ ︷︷ ︸
k times

TT · · ·T︸ ︷︷ ︸
n − k times

.

The probability of this outcome is pk · (1− p)n−k: the first k flips must come up heads,
and the next n − k flips must come up tails. In fact, any ordering of k heads and n − k
tails has probability pk · (1− p)n−k. One way to see this fact is by imagining the prob-
ability tree, which is a binary tree with left branches (heads) having probability p and
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right branches (tails) having probability 1− p. The outcomes in question have k left
branches and n − k right branches, and thus have probability pk · (1− p)n−k. There are(n

k
)
different outcomes with k heads—a sequence of n flips, out of which we choose

which k come up heads. Therefore:

Definition 10.6 (Binomial distribution)
The binomial distribution with parameters n and p is a distribution over the sample space
{0, 1, . . . , n}, where for each k ∈ {0, 1, . . . , n} we have

Pr [k] =
(n

k
) · pk · (1− p)n−k.

For an unbiased coin, when p = 1
2 , the expression for Pr [k] from Definition 10.6 simpli-

fies to Pr [k] =
(n

k
)
/2n, because ( 12 )

k · (1− 1
2 )

n−k = ( 12 )
k · ( 12 )n−k = ( 12 )

n.

Geometric distribution

1 2 3 4 5 6 7 8 9 10
k
. . .

0.1
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(a) p = 0.3
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k
. . .
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0.4
0.5
0.6 Pr [k]

(b) p = 0.5
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k
. . .
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0.2
0.3
0.4
0.5
0.6

(c) p = 0.7

Figure 10.7: Sev-
eral geometric
distributions, for
different values of
p. Although these
plots are truncated
at k = 10, the dis-
tribution continues
infinitely: Pr [k] > 0
for all positive
integers k.

Another interesting coin-derived distribution comes from the
“waiting time” before we see heads for the first time. Consider a
p-biased coin, and continue to flip it until we get a heads. The out-
put of this probabilistic process is the number of flips that were
required, and the geometric distribution with parameter p is defined
by this process. (The name “geometric” comes from the fact that
the probability of needing k flips looks a lot like a geometric se-
ries, from Chapter 5.) See Figure 10.7 for a few such distributions.

What is the probability of needing precisely k flips to get heads
for the first time? We would have to have k − 1 initial flips come
up tails, and then one flip come up heads. As with the binomial
distribution, one nice way to think about the probability of this
outcome uses the probability tree. This tree has left branches
(heads) having probability p and right branches (tails) having
probability 1− p; the outcome k follows k − 1 right branches and
one left branch, and thus has probability (1− p)k−1 · p. Therefore:

Definition 10.7 (Geometric distribution)
Let p be a real number satisfying 0 < p ≤ 1. The geometric distribution with parameter p
is a distribution over the sample space Z≥1 = {1, 2, 3, . . .}, where for each k we have

Pr [k] = (1− p)k−1 · p.

Notice that the geometric distribution is our first example of an infinite sample space:
every positive integer is a possible result.
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Computer Science Connections

Quantum Computing

As the 20th-century revolution in physics brought about by the discovery
of quantum mechanics unfolded, some researchers working at the boundary
of physics and computer science developed a new model of computation
based on these quantum ideas. This model of quantum computation relies
deeply on some very deep physics, far too deep for one page, but here is a
brief summary—without any of the details of the physics. “Anyone who is not shocked by quan-

tum theory has not understood it.”
— attributed to Niels Bohr (1885–1962)

The most basic element of data in a quantum computer is a quantum bit,
or qubit. Like a bit (the basic element of data on a classical computer), a qubit
can be in one of two basic states. These two states are written as |0〉 and |1〉.
(A classical bit is in state 0 or 1). The quantum magic is that a qubit can be in
both states simultaneously, in what’s called a superposition of these basic states.
A qubit will be in a state α|0〉 + β|1〉, where α and β are “weights” where
|α|2 + |β|2 = 1. (Actually, the weights α and β are complex numbers, but the
basic idea will come across if we think of them as real numbers—possibly
negative!—instead.) Thus, while there are only two states of a bit, there are
infinitely many states that a qubit can be in. So a qubit’s state contains a huge
amount of information. But, by the laws of quantum physics, we are limited
in how we can extract that information from a qubit. Specifically, we can
measure a qubit, but we only see 0 or 1 as the output. When we measure a
qubit α|0〉 + β|1〉, the probability that we see 0 is |α|2; the probability that we
see 1 is |β|2. For example, we might have a qubit in the state

1
2 |0〉 +

√
3
2 |1〉. (Note

(
1
2

)2
+
(√

3
2

)2
= 1

4 + 3
4 = 1.)

When we measure this qubit, 25% of the time we’d see a 0, and 75% of the
time we’d see a 1.

There are two more crucial points. First, when there are multiple qubits—
say n of them—the qubits’ state is a superposition of 2n basic states. (For
example, two qubits are in a state α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉.) Sec-
ond, even though we only see one value when we measure qubits, there can
be “cancellation” (or interference) among coefficients. There are notable restric-
tions on how we can operate on qubits, based on constraints of physics, but
at a very rough level, we can run an operation on an n-qubit quantum com-
puter in parallel in each of the 2n basic states and, if the process is designed
properly, still read something useful from our single measurement.2

This cursory description of qubits and
quantum computation is nowhere close
to a full accounting of how qubits work,
or what a quantum computer might do.
For much more, see the wonderful text
2 Michael A. Nielsen and Isaac L.
Chuang. Quantum Computation and
Quantum Information. Cambridge
University Press, 2000.

Why does anyone care about any of this? The main interest in quantum
computation stems from a major breakthrough, Shor’s algorithm (named after
its discoverer, Peter Shor): an algorithm that solves the factoring problem—
given a large integer n, determine n’s prime factorization—efficiently on a
quantum computer. An efficient factoring problem is deeply problematic
for most currently deployed cryptographic systems (see Chapter 7), so a
functional quantum computer would be a big deal. But, at least as of this
writing, no one has been able to build a quantum computer of any appreciable
size. So at the moment, at least, it’s a theoretical device—but there’s active
research both on the physics side (can we actually build one?) and on the
algorithmic side (what else could we do if we did build one?).
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Computer Science Connections

Information, Charles Dickens, and the Entropy of English

Consider the following two (identical-length) sequences of letters and
spaces—one from Charles Dickens’s A Tale of Two Cities and one generated by
uniformly randomly choosing a sequence of elements of {A, . . . , Z, ␣}:

IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES, IT WAS THE AGE OF

WISDOM, IT WAS THE AGE OF FOOLISHNESS, IT WAS THE EPOCH OF BELIEF, IT

WAS THE EPOCH OF INCREDULITY.

TUYSSUWWYVOZULF XZQBSFS AFNBMAOOGWZPAHGREAYC SUSCMBOWDCNCYEJBHPVCRO

MLVTGVHTVCZXHSCQFULCMBO CDIWTXOCUPKTFZVNBHRGDWAKZSZPFTZKEWKWIH O

QFIUWTCDKUBTQSPLXSYXGQZA DLXBHKFILFPZ.

Which sequence contains more information? It is very tempting to choose the
first (information about contrast, and irony, and the opposition of ideas!)—
but, in a precise technical sense, Random contains far more information than
Dickens. The basic reason is that, in Dickens, certain letters occur far more
frequently than others—E occurs 17 times and there are six letters that don’t
appear at all. (In Random, all 26 letters appear.) With such a lopsided distri-
bution, you already know a lot about what letter is (probably) going to come
next, and so there’s less new information conveyed by a typical letter.

Formally, the entropy of a sequence of letters (or bits, or whatever) is a

Figure 10.8: A sequence of bits, pro-
duced independently at random with
probability p = 0.25 (top), p = 0.5
(middle), and p = 0.9 (bottom) of a one.
Their entropies are, respectively, 0.8113,
1.0000, and 0.4690.

measure of “how surprising” each element of the sequence is, averaged over
the sequence. We’ll convert the “unit of surprise” into a real number between
zero and one, where zero corresponds to the next letter is 100% predictable
and one corresponds to we have absolutely no idea what the next letter will be.
Formally, the entropy H of a probability distribution over S is given by

− ∑
x∈S

Pr [x] · log(Pr [x]).

For example, if we produce a sequence of coin flips where each flip comes up
heads with probability p (see Figure 10.8), then the entropy of the sequence
will be −

(
p log p + (1− p) log(1− p)

)
, as shown in Figure 10.9.

This definition of entropy comes from the 1940s, in a paper by Claude 0
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probability p

entropy

Figure 10.9: The entropy of a biased coin
whose heads probability is p.

Shannon,3 and has found all sorts of useful applications since. Here is one

3 Claude E. Shannon. A mathematical
theory of communication. Bell System
Technical Journal, 27:379–423, 1948.

example: the entropy of a sequence of bits expresses a theoretical limit on
the compressibility of that sequence. (And that theoretical limit is, in fact,
achievable.) That is, if the entropy of a string of n bits is very low—say around
0.25—then with some clever algorithms we can represent that string (without
any error) using only about n

4 bits. But we can’t represent it in fewer bits with
perfect fidelity (“lossless” compression; see p. 938).

There is significant redundancy in English text, as we’ve already men-
tioned, based on the nonuniformity in the probability distribution of indi-
vidual letters. But there’s even more redundancy based on the fact that the
probability that the ith character of an English document is an H is affected by
whether the (i − 1)st character was a T. (In the language of Section 10.3, these
events are not independent.) If you’ve seen the letters TH in succession, you
can make a very good bet that E is coming next. Compression schemes for
English make use of this phenomenon.4

For more about entropy, compressibility,
and information generally, see a text-
book about information theory. A great
classic reference is:
4 Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory. Wiley,
1991.
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10.2.5 Exercises

Philippe flips a fair coin 100 times. Let the outcome be the number of heads that he sees.
10.1 What is the sample space?
10.2 What is Pr [0]?

10.3 What is Pr [50]?
10.4 What is Pr [64]?

Philippe now flips his fair coin n times. He is interested in the event “there are (strictly) more heads than tails.” What’s
the probability of this event for the following values of n?
10.5 n = 2
10.6 n = 3

10.7 n = 1001 (Hint: Pr [k] = Pr [1001− k].)
10.8 an arbitrary positive integer n

Bridget plays Bridge. Bridge is a card game played with a standard 52-card deck. Each player is initially dealt a hand of
13 cards; assume a fair deal in which each of the

(52
13
)

hands is equally likely.
10.9 What is the probability of being dealt both A♣ and A♦?
10.10 Suppose Bridget receives a uniformly drawn hand of 13 cards, in a uniformly random order. Be-
cause your ex-friend Peter was trying to cheat at poker with this deck, the A♣ card is marked. You observe
that the card the fourth-from-the-right position in Bridget’s hand is A♣. What is the probability that Bridget
also has the A♦ in her hand?

Most casual bridge players sort their hands by suit (♠,♥,♣,♦ from left to right), and decreasing from left to right
by rank within each suit. (So one might have a hand like ♠AK4 ♥983 ♣AKQ ♦AJ98, reading from left to right.)
Professional players are taught not to sort their hands, because doing so causes which card they play to leak information
about the rest of their hand to the other players. Suppose Bridget receives a uniformly drawn hand of 13 cards, and
sorts the cards in her hand. Peter’s card marking is still present, and you observe the A♣ in a particular position in
Bridget’s hand. In the following scenarios, what is the probability that Bridget also has the A♦ in her hand? (That is:
out of all hands for which A♣ is highest/lowest/etc. card, what fraction also have the A♦?)
10.11 A♣ is the fourth-from-the-right (that is, fourth-from-the-lowest) card
10.12 A♣ is the rightmost (that is, lowest) card
10.13 A♣ is the leftmost (that is, highest) card

Chrissie plays Cribbage. Cribbage is a card game played with a standard 52-card deck. For the purposes of these ques-
tions, assume that a player is dealt one of the

(52
4
)

different 4-card hands, chosen uniformly at random. Cribbage hands
are awarded points for having a variety of special configurations:
• A flush is a hand with all four cards from the same suit.
• A run is a set of at least 3 cards with consecutive rank. (For example, the hand 3♥, 9♣, 10♦, J♣ contains a run.)
• A pair is a set of two cards with identical rank.
Aces are low in Cribbage, so A, 2, 3 is a valid run, but Q,K,A is not.
10.14 What’s the probability that Chrissie is dealt a flush?

10.15 What’s the probability that Chrissie is dealt a run of length 4?
10.16 What’s the probability of getting two runs of length 3 that is not a run of 4? (For example, the
hand 9♥, 9♣, 10♦, J♣ contains two runs of length 3: the first is 9♥, 10♦, J♣ and the second is 9♣, 10♦, J♣.)
10.17 What’s the probability of getting one (and only one) run of length 3 (and not a run of length 4)?

10.18 What’s the probability of getting at least one pair? (Hint: Pr
[
getting a pair

]
= 1−Pr

[
getting no pair

]
.)

10.19 What’s the probability of getting two or more pairs? (In cribbage, any two cards with the same
rank count as a pair; for example, the hand 2♥2♦2♠8♣ has three pairs: 2♥2♦ and 2♥2♠ and 2♦2♠.)

10.20 (programming required) Write a program to approximately verify your calculations from these
Cribbage exercises, as follows: generate 1,000,000 random hands from a standard deck, and count the
number of those samples in which there’s a flush, run (of the three flavors), pair, or multiple pairs.
10.21 (programming required) Modify your program to exactly verify your calculations: exhaustively
generate all 4-card hands, and count the number of hands with the various features (flushes, runs, pairs).

10.22 A fifteen is a subset of cards whose ranks sum to 15, where an A counts as 1 and each of {10, J, Q, K}
counts as 10. (For example, the hand 3♥, 2♣, 5♦, J♣ contains two fifteens: 3♥ + 2♣ + J♣ = 15 and
5♦ + J♣ = 15.) What’s the probability a 4-card hand contains at least one fifteen? (Hint: use a program.)

10.23 A bitstring x ∈ {0, 1}5 is stored in vulnerable memory, subject to corruption—for example, on
a spacecraft. An α-ray strikes the memory and resets one bit to a random value (both the new value and
which bit is affected are chosen uniformly at random). A second α-ray strikes the memory and resets one bit
(again chosen uniformly at random). What’s the probability that the resulting bitstring is identical to x?
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quickSort(A[1 . . . n]):
1: if n ≤ 1 then
2: return A
3: else
4: choose pivot ∈ {1, . . . , n}, somehow.
5: L := list of all A[i] where A[i] < A[pivot].
6: R := list of all A[i] where A[i] > A[pivot].
7: return quickSort(L) + 〈A[pivot]〉 + quickSort(R)

Figure 10.10: Quick
Sort, briefly. (See
Figure 5.20(a)
for more detail.)
Assume that the
elements of A are all
distinct.

Recall the quick sort algorithm for sorting an array A: we choose a “pivot”
value x; we partition A into those elements less than x and those greater than
x; and we return x and those two sublists, recursively sorted, in the correct
order. (See Figure 10.10.) This algorithm is efficient if the two sublists are
close to equal in size. There are many ways to choose the pivot value, but one
common (and good!) strategy is to choose x randomly from A.

Assume that the elements of A are all distinct. If we select pivot in Line 4
by choosing uniformly at random from the set {1, . . . , n}:
10.24 As a function of n, what is the probability that |L| ≤ 3n/4
and |R| ≤ 3n/4? (You may assume that n is divisible by 4.)
10.25 As a function of n and α ∈ [0, 1], what is the probability |L| ≤ αn and |R| ≤ αn? (You may neglect
issues of integrality: assume αn is an integer.)

Suppose that we choose pivot in Line 4 by choosing three elements p1, p2, p3 uniformly at random from the set
{1, . . . , n}, and taking as pivot the pi whose corresponding element of A is the median of the three. (Assume that the
same index can be chosen as both p1 and p3 , for example.) For example, for the array A = 〈94, 32, 29, 85, 64, 8, 12, 99〉,
we might randomly choose p1 = 1, p2 = 7, and p3 = 2. Then the pivot will be p3 because A[p3] = 32 is between
A[p2] = 12 and A[p1] = 94. Under this “median of three” strategy:
10.26 What is the probability that |L| ≤ 3n/4 and |R| ≤ 3n/4? Assume n is large; for ease, you may
neglect issues of integrality in your answer.
10.27 As a function of α ∈ [0, 1], what is the probability |L| ≤ αn and |R| ≤ αn? Again, you may assume
that n is large, and you may neglect issues of integrality in your answer.

Suppose that Team Emacs and Team VI play a best-of-five series of softball games. Emacs, being better than VI, wins “Emacs” rhymes
with “ski wax”;
“VI” rhymes with
“knee-high.” The
teams are named
after two text
editors frequently
used by computer
scientists to write
programs or emails
or textbooks.

each game with probability 60%.
10.28 Use a tree diagram to compute the probability that Team Emacs wins the series.
10.29 What is the probability that the series goes five games? (That is, what is the probability that
neither team wins 3 of the first 4 games?)
10.30 Update your last two answers if Team Emacs wins each game with probability 70%.

(Calculus required.) Now assume that Team Emacs wins each game with probability p, for an arbitrary value
p ∈ [0, 1]. For the following questions, write down a formula expressing the probability of the listed event. Also find the
value of p that maximizes the probability, and the probability of the specified event for this maximizing p.
10.31 There is a fifth game in the series.
10.32 There is a fourth game of the series.
10.33 There is a fourth game of the series and Team Emacs wins that fourth game.

Let S be a sample space, and let Pr : S → [0, 1] be an arbitrary function satisfying the requirements of being a
probability function (Definition 10.2). That is, we have

∑
s∈S

Pr [s] = 1 and Pr [s] ≥ 0 for all s ∈ S.

Argue briefly that the following properties hold.
10.34 For any outcome s ∈ S, we have Pr [s] ≤ 1.
10.35 For any event A ⊆ S, we have Pr

[
A
]
= 1− Pr [A]. (Recall that A = S −A.)

10.36 For any events A,B ⊆ S, we have Pr [A∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].
10.37 The Union Bound: for any events A1,A2, . . . ,An, we have Pr [

⋃
i Ai] ≤ ∑i Pr [Ai].

Imagine n identical computers that share a single radio frequency for use as a network connection. Each of the n
computers would like to send a packet of information out across the network, but if two or more different computers
simultaneously try to send a message, no message gets through. Here you’ll explore another use of randomization:
using randomness for symmetry breaking.
10.38 Suppose that each computer flips a coin that comes up heads with probability p. What is the
probability that exactly one of the n machines’ coins comes up heads (and thus that machine can send its
message)? Your answer should be a formula that’s in terms of n and p.

(The next two exercises require calculus.)
10.39 Given the formula you found in Exercise 10.38, what p should you choose to maximize the proba-
bility of a message being successfully sent?
10.40 What is the probability of success if you choose p as in Exercise 10.39? What is the limit of this
quantity as n grows large? (You may use the following fact: (1− 1

m )m → e−1 as m → ∞.)
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We hash items into a 10-slot hash table using a hash function h that uniformly assigns elements to {1, . . . , 10}. Com-
pute the probability of the following events if we hash 3 elements into the 10-slot table:
10.41 no collisions occur
10.42 all 3 elements have the same hash value

1 2 3 4 5 6 7 8 9 10

Figure 10.11: A
reminder of linear
probing. If h(x) = 4,
then we try to store
x in slot 4, then 5,
then 6. Because
slot 6 is empty, x is
placed into that slot.

Suppose that we resolve collisions by linear probing, wherein an element x that hashes to an occupied
cell h(x) is placed in the first unoccupied cell after h(x). (That is, we try to put x into h(x), then h(x) + 1,
then h(x) + 2, and so forth—wrapping back around to the beginning of the table after the 10th slot. See
Figure 10.11.) If we hash 3 elements into the 10-slot table, what is the probability that . . .
10.43 at least 2 adjacent slots are filled. (Count slot #10 as adjacent to #1.)
10.44 3 adjacent slots are filled.

One issue with resolving collisions by linear probing is called clustering: if there’s a large block of occupied slots in the
hash table, then there’s a relatively high chance that the next element placed into the table extends that block.
10.45 Suppose that we currently have a single block of k adjacent slots full in an n-slot hash table, and
all other slots are empty. What’s the probability that the next element inserted into the hash table extends
that block (that is, leaves k + 1 adjacent slots full).
10.46 (programming required) Write a program to hash 5000 elements into a 10,007-slot hash table using
linear probing. Record which cell x5000 ends up occupying—that is, how many hops from h(x5000) is x5000?
Run your program 2048 times, and report how far, on average, x5000 moved from h(x5000). Also report the
maximum distance that x5000 moved.

1 2 3 4 5 6 7 8 9 10

Figure 10.12:
Quadratic probing.
We try to store x
in slot h(x), then
h(x) + 12, then
h(x) + 22, etc.

Because linear probing suffers from this clustering issue, other mechanisms for resolving collisions are
sometimes used. Another choice is called quadratic probing: we change the cell number we try by an
increasing step size at every stage, instead of by one every time. Specifically, to hash x into an n-slot table,
first try to store x in h(x); if that cell is full, try putting x into h(x) + i2 , wrapping back around to the
beginning of the table as usual, for i = 1, 2, . . .. (Linear probing tried slot h(x) + i instead.)
10.47 (programming required) Modify your program from Exercise 10.46 to use quadratic probing in-
stead, and report the same statistics: the mean and maximum number of cells probed for x5000.
10.48 In about one paragraph, explain the differences that you observed between linear and quadratic
probing. A concern called secondary clustering arises in quadratic probing: if h(x) = h(y) for two elements
x and y, then the sequence of cells probed for x and y is identical. These sequences were also identical for
linear probing. In your answer, explain why secondary clustering from quadratic probing is less of a concern
than the clustering from linear probing.

h(x) = 4
g(x) = 1

h(y) = 4
g(y) = 3

1 2 3 4 5 6 7 8 9 10

Figure 10.13:
Double hashing.
We try to store
x in slot h(x),
then h(x) + g(x),
then h(x) + 2g(x),
etc. (wrapping
around the table as
necessary).

A fourth way of handling collisions in hash tables (after chaining, linear probing, and quadratic probing)
is what’s called double hashing: we move forward by the same number of slots at every stage, but that
number is randomly chosen, as the output of a different hash function. Specifically, to hash x into an
n-slot table, first try to store x in h(x); if that cell is full, try putting x into h(x) + i · g(x), wrapping
back around to the beginning of the table as usual, for i = 1, 2, . . .. (Here g is a different hash function,
crucially one whose output is never zero.) See Figure 10.13.
10.49 (programming required) Modify your program from Exercises 10.46 and 10.47 to use
double hashing. Again report the mean and maximum number of cells probed for x5000.
10.50 In about one paragraph, explain the differences you observe between chaining, linear probing,
quadratic probing, and double hashing. Is there any reason you wouldn’t always use double hashing?

Consider a randomized algorithm that solves a problem on a particular input correctly with probability p, and it’s
wrong with probability 1− p. Assume that each run of the algorithm is independent of every other run, so that we can
think of each run as being an (independent) coin flip of a p-biased coin (where heads means “correct answer”).
10.51 (Requires calculus.) Suppose that the probability p is unknown to you. You observe that exactly k
out of n trials gave the correct answer. Then the number k of correct answers follows a binomial distribution
with parameters n and p: that is, the probability that exactly k runs give the correct answer is

(n
k
) · pk · (1− p)n−k. (∗)

Prove that the maximum likelihood estimate of p is p = k
n—that is, prove that (∗) is maximized by p = k

n .

10.52 (Requires calculus.) Suppose that the probability p is unknown to you. You observe that it takes n
trials before the first time you get a correct answer. Then n follows a geometric distribution with parameter
p: that is, the probability that n runs were required is given by

(1− p)n−1p. (†)
Prove that the maximum likelihood estimate of p is p = 1

n—that is, prove that (†) is maximized by p = 1
n .
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10.3 Independence and Conditional Probability

If your parents never had children, chances are you
won’t, either.

Dick Cavett (b. 1936)

Imagine that you’re interviewing to be a consultant for Premier Passenger Pigeon
Purveyors, a company that pitches its products to prospective pigeon purchasers using
online advertising—specifically, by displaying ads to users of a particular search en-
gine on the web. PPPP makes $50 profit from each sale, and, from historical data, they
have determined that 0.02% of searchers who see an ad buy a pigeon. The interviewer
asks you how much PPPP should be willing to pay to advertise to a searcher. A good
answer is $0.01: on average, PPPP earns $50 · 0.0002 = $0.01 per ad, so paying anything
up to a penny per ad yields a profit, on average. But you realize that there’s a better
answer (and, by giving it, you get the job): it depends on what the user is searching for! A
user who searches for BIRD or PIGEON or BUYING A PET TO COMBAT LONELINESS is far
more likely to respond to a PPPP ad than an average user, while a user who searches
for ORNITHOPHOBIA is much less likely to respond to an ad.

It is a general phenomenon in probability that knowing that event A has occurred may
tell you that an event B is much more likely (or much less likely) to occur than you’d previ-
ously known. In this section, we’ll discuss when knowing that an event A has occurred
does or does not affect the probability that B occurs (that is, whether A and B are de-
pendent or independent, respectively). We’ll then introduce conditional probability, which
allows us to state and manipulate quantities like “the probability that B happens given
that A happens.”

10.3.1 Independence and Dependence of Events

We’ll start with independence and dependence of events. Intuitively, two events A and
B are dependent if A’s occurrence/nonoccurrence gives us some information about
whether B occurs; in contrast, A and B are independent when A occurs with the same
probability when B occurs as it does when B does not occur. More formally:

Definition 10.8 (Independent and dependent events)
Two events A and B are independent if and only if Pr [A ∩ B] = Pr [A] · Pr [B]. The events
A and B are called dependent if they are not independent.

If A and B are dependent events, then we can also say that A and B are correlated; inde-
pendent events are said to be uncorrelated.

This definition is phrased a bit differently from the intuition above, but a little
manipulation of the equation from Definition 10.8 may help to make the connection
clearer. Assume for the moment that Pr [B] 6= 0. (Exercise 10.70 addresses the case of
Pr [B] = 0.) Dividing both sides of the equality Pr [A] · Pr [B] = Pr [A ∩ B] by Pr [B], we
see that the events A and B are independent if and only if

Pr [A] =
Pr [A ∩ B]
Pr [B]

.
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The left-hand side (Pr [A]) denotes the fraction of the time that A occurs. The right-
hand side (Pr [A ∩ B] /Pr [B]) denotes the fraction of the time when B occurs that A
occurs too. If these two fractions are equal, then A occurs with the same probabil-
ity when B occurs as it does when B does not occur. (And if these two fractions are
equal, then both when B occurs and when B does not occur, A occurs with probability
Pr [A]—that is, the probability of A without reference to B.)

Examples of independent and dependent events
To establish that two events A and B are independent, we can simply compute

Pr [A], Pr [B], and Pr [A ∩ B], and show that the product of the first two quantities is
equal to the third. Here are a few examples:

Example 10.14 (Some independent events)
The following pairs of events are independent:

1. I flip a fair penny and a fair nickel. Define the following events:

• Event A: The penny is heads.
• Event B: The nickel is heads.

Then Pr [A] = 0.5 and Pr [B] = 0.5 and Pr [A ∩ B] = 0.25 = 0.5 · 0.5.

2. I draw a card from a randomly shuffled deck. Define the following events:

• Event A: I draw an ace.
• Event B: I draw a heart.

For these events, we have Pr [A] = Pr
[
{A♣, A♦, A♥, A♠}

]
= 1

13

Pr [B] = Pr
[
{A♥, 2♥, . . . , K♥}

]
= 1

4

Pr [A ∩ B] = Pr
[
{A♥}

]
= 1

52 = 1
4 · 1

13 .

3. I roll a fair red die and a fair blue die. Define the following events:

• Event A: The red die is odd.
• Event B: The sum of the rolled numbers is odd.

Then, writing outcomes as 〈the red roll, the blue roll〉, we have

Pr [A] = Pr
[
{1, 3, 5}× {1, 2, 3, 4, 5, 6}

]
= 18

36 = 0.5
Pr [B] = Pr [{1, 3, 5}× {2, 4, 6}︸ ︷︷ ︸

red odd, blue even

∪ {2, 4, 6}× {1, 3, 5}︸ ︷︷ ︸
red even, blue odd

] = 18
36 = 0.5

Observe that A ∩ B = {1, 3, 5}× {2, 4, 6}, and so Pr [A ∩ B] = 9
36 = (0.5) · (0.5).

Any time the processes by which A and B come to happen are completely unrelated,
it’s certainly true that A and B are independent. But events can also be independent
in other circumstances, as we saw in Example 10.14.3: both events in this example in
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3. I flip a fair penny and a fair nickel. Define the following events:

• Event A: The penny is heads.
• Event B: Both coins are heads.

Then Pr [A] = 0.5 and Pr [B] = 0.25 and Pr [A ∩ B] = 0.25 = Pr [B] 6= Pr [A] · Pr [B].

Correlation of events
The pairs of dependent events from Example 10.15 are of two different qualitative

types. Knowing that the first event occurred can make the second event more likely
to occur (“rolling an odd number” and “rolling a prime number” for the dice) or less
likely to occur (“rolling an even number” and “rolling a prime number”):

Definition 10.9 (Positive and negative correlation)
When two events A and B satisfy Pr [A ∩ B] > Pr [A] · Pr [B], we say that A and B are
positively correlated. When Pr [A ∩ B] < Pr [A] · Pr [B], we say that A and B are
negatively correlated. (If Pr [A ∩ B] = Pr [A] · Pr [B], then A and B are uncorrelated.)

At the extreme, knowing that the first event occurred can ensure that the second event
definitely does not occur (“drawing a heart” and “drawing a spade” from Exam-
ple 10.15) or can ensure that the second event definitely does occur (“both coins are
heads” and “the first coin is heads” from Example 10.15).

Here are some further examples in which you’re asked to figure out whether certain
pairs of events are independent or dependent:

Example 10.16 (Encryption by random substitution)
Problem: One simple form of encryption for text is a substitution cipher, in which (in

the simplest version) we choose a permutation of the alphabet, and then replace
each letter with its permuted variant. (For example, we might permute the letters
as ABCDE· · · → XENBG· · · ; thus DECADE would be written as BGNXBG.) Suppose we
choose a random permutation for this mapping, so that each of the 26! orderings
of the alphabet is equally likely. Are the following events Q and Z independent or
dependent?

• Q = “the letter Q is mapped to itself (that is, Q is ‘rewritten’ as Q).”
• Z = “the letter Z is mapped to itself.”

Solution: We must compute Pr [Q], Pr [Z], and Pr [Q∩ Z]. Because each permutation
is equally likely to be chosen, we have

Pr [Q] =
# permutations π1,2,...,26 where π17 = 17

# permutations π1,2,...,26
= 25!
26! =

1
26

because we can choose any of 25! orderings of all non-Q letters. Similarly,

Pr [Z] =
# permutations π1,2,...,26 where π26 = 26

# permutations π1,2,...,26
= 25!

26! =
1
26 .
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To compute Pr [Q ∩ Z], we need to count the number of permutations π1...26 with
both π17 = 17 and π26 = 26. Any of the 24 other letters can go into any of the
remaining 24 slots of the permutation, so there are 24! such permutations. Thus

Pr [Q ∩ Z] =
# permutations π1,2,...,26 where π17 = 17 and π26 = 26

# permutations π1,2,...,26
= 24!
26! =

1
25 · 26 .

Thus we have

Pr [Q ∩ Z] = 1
25·26 and Pr [Q] · Pr [Z] = 1

26 · 1
26 = 1

26·26 .

There’s only a small difference between 1
26·26 ≈ 0.00148 and 1

25·26 ≈ 0.00154, but
they’re indubitably different, and thus Q and Z are not independent.

(Incidentally, substitution ciphers are susceptible to frequency analysis: the most com-
mon letters in English-language texts are ETAOIN—almost universally in texts of rea-
sonable length—and the frequencies of various letters is surprisingly consistent. See
Exercises 10.72–10.76.)

HT TH

HH

TT

A B

C
Figure 10.15: Two
coin flips and three
events.

Example 10.17 (Matched flips of two fair coins)
Problem: I flip two fair coins (independently). Consider the following events:

• Event A: the first flip comes up heads.
• Event B: the second flip comes up heads.
• Event C: the two flips match (are both heads or are both tails).

Which pairs of these events are independent, if any?

Solution: The sample space is {HH,HT, TH, TT}, and the events from the problem
statement are given by A = {HH,HT}, B = {HH,TH}, and C = {HH,TT}. Thus
A ∩ B = A ∩ C = B ∩ C = {HH}—that is, HH is the only outcome that results in
more than one of these events being true. (See Figure 10.15.)

Because the coins are fair, every outcome in this sample space has probability 1
4 .

Focusing on the events A and B, we have

Pr [A] = Pr
[
{HH,HT}

]
= 1

2
Pr [B] = Pr

[
{HH,TH}

]
= 1

2
Pr [A ∩ B] = Pr

[
{HH}

]
= 1

4 .

Thus Pr [A] · Pr [B] = 1
2 · 1

2 = 1
4 , and Pr [A ∩ B] = 1

4 . Because Pr [A] · Pr [B] =
Pr [A ∩ B], the two events are independent.

The calculation is identical for the other two pairs of events, and so A and B are
independent; A and C are independent; and B and C are independent.
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Example 10.18 (Matched flips of two biased coins)
Problem: How would your answers to Example 10.17 change if the coins are p-biased

instead of fair?

Solution: The sample space and events remain as in Example 10.17 (see Figure 10.16),
but the outcomes now have different probabilities:

outcome HH HT TH TT
probability p · p p · (1− p) (1− p) · p (1− p) · (1− p)

Using these outcome probabilities, we compute the event probabilities as follows:

Pr [A] = Pr
[
{HH,HT}

]
= p · p + p · (1− p) = p (1)

Pr [B] = Pr
[
{HH,TH}

]
= p · p + (1− p) · p = p (2)

Pr [C] = Pr
[
{HH,TT}

]
= p · p + (1− p) · (1− p) = p2 + (1− p)2. (3)

Because A ∩ B = B ∩ C = A ∩ C = {HH}, we also have

Pr [A ∩ B] = Pr [B ∩ C] = Pr [A ∩ C] = Pr [HH] = p2. (4)

Thus A and B are still independent, because Pr [A] · Pr [B] = p · p = p2 = Pr [A ∩ B]
by (1), (2), and (4). But what about the events A and C? By (1), (3), and (4), we have

Pr [A] · Pr [C] = p ·
[
p2 + (1− p)2

]
and Pr [A ∩ C] = p2.

By a bit of algebra, we see that Pr [A ∩ C] = Pr [A] · Pr [C] if and only if

p2 = p(p2 + (1− p)2) ⇔ 0 = p(p2 + (1− p)2)− p2

⇔ 0 = 2p3 − 3p2 + p
⇔ 0 = p(2p− 1)(p− 1).

So the events A and C are independent—that is, Pr [A ∩ C] = Pr [A] · Pr [C]—if and
only if p ∈ {0, 12 , 1}.

Thus events A and B are independent for any value of p, while events A and C
(and similarly B and C) are independent if and only if p ∈ {0, 12 , 1}.

HT TH

HH

TT

A B

C
Figure 10.16:
The flips and
events, again.
Recall the events:
A: 1st flip heads.
B: 2nd flip heads.
C: flips match.

Taking it further: While any two of the events from Example 10.17 (or Example 10.18 with p = 1
2 ) are

independent, the third event is not independent of the other two. Another way to describe this situation is
that the events A and B ∩ C are not independent: in particular, Pr [A ∩ (B ∩ C)] /Pr [B ∩C] = 1 6= Pr [A].
A set of events A1,A2, . . . ,An is said to be pairwise independent if, for any two indices i and j 6= i, the
events Ai and Aj are independent. More generally, these events are said to be k-wise independent if, for
any subset S of up to k of these events, the events in S are all independent. (And we say that the set of
events is fully independent if every subset of any size satisfies this property.)

Sometimes it will turn out that we “really” care only about pairwise independence. For example, if
we think about a hash table that uses a “random” hash function, we’re usually only concerned with the
question “do elements x and y collide?”—which is a question about just one pair of events. Generally, we
can create a pairwise-independent random hash function more cheaply than creating a fully indepen-
dent random hash function. If we view random bits as a scarce resource (like time and space, in the style
of Chapter 6), then this savings is valuable.



10.3. INDEPENDENCE AND CONDITIONAL PROBABILITY 1027

10.3.2 Conditional Probability

In Section 10.3.1, we discussed the black-and-white distinction between pairs of in-
dependent events and dependent events: if A and B are independent, then knowing
whether or not B happened gives you no information about whether A happened; if
A and B are dependent, then the probability that A happens if B happened is different
from the probability that A happens if B did not happen. But how does knowing that
B occurred change your estimate of the probability of A? Think about events like “the
sky is clear” and “it is very windy” and “it will rain today”: sometimes B means that
A is less likely or even impossible; sometimes B means that A is more likely or even
certain. Here we will discuss quantitatively how one event’s probability is affected by
the knowledge of another event.

The conditional probability of A given B represents the probability of A occurring if we
know that B occurred:

Definition 10.10 (Conditional probability)
The conditional probability of A given B, written Pr

[
A|B], is given by

Pr
[
A|B] = Pr [A ∩ B]

Pr [B]
.

(The quantity Pr
[
A|B] is also sometimes called the probability of A conditioned on B.)

We will treat Pr
[
A|B] as undefined when Pr [B] = 0.

Here are a few simple examples:

Example 10.19 (Odds and primes)
I choose a number uniformly at random from {1, 2, . . . , 10}. Define these two events:

• Event A: The chosen number is odd.
• Event B: The chosen number is prime.

For these events, we have Pr
[
A|B] = Pr [A ∩ B]

Pr [B]
=

Pr
[
{3, 5, 7}

]

Pr
[
{2, 3, 5, 7}

] = 3
4

and Pr
[
B|A

]
= Pr [A ∩ B]

Pr [A]
=

Pr
[
{3, 5, 7}

]

Pr
[
{1, 3, 5, 7, 9}

] = 3
5 .

Figure 10.17: Some
dominoes.

Example 10.20 (Dominoes)
Problem: Shuffle the dominoes in Figure 10.17, and draw one uniformly at random.

1. What is the probability that you drew a domino with a 2 ( ) on it?

2. You make a draw and see the domino . (Imagine the shaded side of the
domino is covered by your hand.) What’s the probability your domino has a 2?

3. You make a draw and see that the domino is . What is the probability that
you drew a domino with a 2?
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Here’s one more example, where we condition on slightly more complex events.

Example 10.21 (Coin flips)
Problem: Flip a fair coin 10 times (with all flips independent: the ith flip has no effect

on the jth flip for j 6= i). Write H to denote the event of getting at least 9 heads.
1. What is Pr [H]?
2. Let A be the event “the first flip comes up heads.” What is Pr

[
H|A]

?
3. Let B be the event “the first flip comes up tails.” What is Pr

[
H|B

]
?

4. Let C be the event “the first three flips come up heads.” What is Pr
[
H|C]?

5. Let D be the event “we get at least 8 heads.” What is Pr
[
H|D]

?

Solution: 1. Observe that every outcome—every element of {H,T}10—is equally
likely, each with probability 1/210. The number of sequences of 10 flips with 9
or 10 heads is

(10
9
)
+
(10
10
)
= 10 + 1 = 11, so Pr [H] = 11/210 ≈ 0.0107.

For the conditional probabilities, we will compute Pr [H ∩ X] and Pr [X] for each
of the stated events X. The final answer is their ratio. Because each outcome is
equally likely, we only have to compute the cardinality of the given events (and the
cardinality of their intersection with H) to answer the questions.
2. For A (the first flip comes up H), we have |A ∩ H| = 10: there are 9 outcomes

with one Tails that start with a Heads (HTHHHHHHHH, HHTHHHHHHH,
. . ., HHHHHHHHHT) and 1 outcome with zero Tails (HHHHHHHHHH).
Thus Pr [A ∩ H] = 10/210. Obviously Pr [A] = 1

2 . Thus

Pr
[
H|A]

= Pr [A ∩ H]
Pr [A]

= 10/210
1/2 = 10

29
≈ 0.01953.

3. For B (the first flip comes up T), we’ve already “used up” the single permit-
ted non-heads in the first flip, so there’s only one outcome in B ∩ H, namely
THHHHHHHHH. And, again, obviously Pr [B] = 1

2 . Therefore we have

Pr
[
H|B] = Pr [B ∩ H]

Pr [B]
= 1/210

1/2 = 1
29

≈ 0.00195.

4. For C (the first three flips come up H), we have Pr [C] = 1
8 . The outcomes in

C ∩ H are exactly those that start with HHH followed by 6+ heads in the last 7
flips. There are

(7
7
)
+
(7
6
)
= 8 such outcomes. Thus

Pr
[
H|C] = Pr [C ∩ H]

Pr [C]
= 8/210

1/8 = 64
210

≈ 0.0625.

5. For D (there are at least 8 heads), we have Pr [H ∩D] = Pr [H] = 11/210. (There
are no outcomes in which we get 9+ heads but fail to get 8+ heads!) The proba-
bility of getting 8+ heads in 10 fair flips is

Pr [D] =
(10
8
)
+
(10
9
)
+
(10
10
)

210
= 45 + 10 + 1

210
= 56

210
.

And therefore

Pr
[
H|D]

= Pr [D ∩ H]
Pr [D]

= 11/210

56/210
= 11
56 ≈ 0.1964.
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To repeat the word of warning from early in this chapter: it can be very difficult to have
good intuition about probability questions. For example, the last problem in Example 10.21
asked for the probability of getting 9+ heads in 10 flips conditioned on getting 8+ heads.
It may be easy to talk yourself into believing that, of the times that we get 8+ heads,
there’s a ≈ 50% chance of getting 9 or more heads. (“Put aside the first 8 heads, and
look at one of the other flips—it’s heads with probability 1

2 , so we get a 9th heads
with probability 1

2 .”) But this intuition is blatantly wrong. Another way of thinking
about the calculation in the last part of Example 10.21 is to observe that there are 56
outcomes with 8, 9, or 10 heads. Only 11 of these outcomes have 9 or 10 heads. Each
outcome is equally likely. So if we’re promised that one of the 56 outcomes occurred,
then there’s an 11

56 chance that one of the 11 occurred.

Taking it further: So far, we have considered only random processes in which each outcome that can
occur does so with probability ε > 0—that is, there have been no infinitesimal probabilities. But we can
imagine scenarios in which infinitesimal probabilities make sense.

For example, imagine a probabilistic process that chooses a real number x between 0 and 1, where
each element of the sample space S = {x : 0 ≤ x ≤ 1} is equally likely to be chosen. We can make
probabilistic statements like Pr [x ≤ 0.5] = 1

2—half the time, we end up with x ≤ 0.5, half the time we
end up with x ≥ 0.5—but for any particular value c, the probability that x = c is zero! (Perhaps bizarrely,
Pr [x ≤ 0.5] = Pr [x < 0.5]. Indeed, Pr [x = 0.5] cannot be ε > 0, for any ε. Every possible outcome has to
have that same probability ε of occurring, and for any ε > 0 there are more than 1

ε real numbers between
0 and 1. So we’d violate (10.1) if we had Pr [x = 0.5] > 0.)

To handle infinitesimal probabilities, we need calculus. We can describe the above circumstance with
a probability density function p : S → [0, 1], so that, in place of (10.1), we require

∫

x∈S
p(x)dx = 1.

(For a uniformly chosen x ∈ [0, 1], we have p(x) = 1; for a uniformly chosen x ∈ [0, 100], we have
p(x) = 1

100 .) Some of the statements that we’ve made in this chapter don’t apply in the infinitesimal case.
For example, the “zooming in” view of conditional probability from Figure 10.18 doesn’t quite work in
the infinitesimal case. In fact, we can consider questions about Pr

[
A|B

]
even when Pr [B] = 0, like what is

the probability that a uniformly chosen x ∈ [0, 100] is an integer, conditioned on x being a rational number?. (And
Exercise 10.70—if Pr [B] = 0, then A and B are independent—isn’t true with infinitesimal probabilities.)
But details of this infinitesimal version of probability theory are generally outside of our concern here,
and are best left to a calculus-based/analysis-based textbook on probability.

The restriction to non-infinitesimal probabilities is generally a reasonable one to make for CS ap-
plications, but it is a genuine restriction. (It’s worth noting that we have encountered an infinite sample
space before—just one that didn’t have any infinitesimal probabilities. In a geometric distribution with
parameter 1

2 , for example, any positive integer k is a possible outcome, with Pr [k] = 1/2k , which is a
finite, albeit very small, probability for any positive integer k.)

10.3.3 Bayes’ Rule and Calculating with Conditional Probability

Here, we’ll briefly introduce a few simple but useful ways of thinking about condi-
tional probability: the connection between independence of events and conditional
probability; a few ways of thinking about plain (unconditional) probability using
conditional probability; and, finally, Bayes’ Rule, a tremendously useful formula that
relates Pr

[
A|B] and Pr

[
B|A]

.

Relating independence of events and conditional probability
Consider two events A and B for which Pr [B] 6= 0. Observe that A and B are inde-
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pendent if and only if Pr
[
A|B] = Pr [A]:

A and B are independent ⇔ Pr [A] · Pr [B] = Pr [A ∩ B] definition of independence

⇔ Pr [A] =
Pr [A ∩ B]
Pr [B]

dividing by Pr [B]

⇔ Pr [A] = Pr
[
A|B

]
. definition of Pr

[
A|B

]

(Note that this calculation doesn’t work when Pr [B] = 0—we can’t divide by 0, and
Pr

[
A|B] is undefined—but see Exercise 10.70.) Notice again that this relationship is

an if-and-only-if relationship: when A and B are not independent, then Pr [A] and
Pr

[
A|B

]
must be different. Here is a small example:

Example 10.22 (Self-mapped letters in substitution ciphers)
In Example 10.16, we showed that, for a random permutation π of the alphabet, the
events Q (Q is mapped to itself by π) and Z (Z is mapped to itself by π) were not inde-
pendent: specifically, Pr [Q] = 1

26 , Pr [Z] =
1
26 , and Pr [Q ∩ Z] = 1

25·26 . Thus

Pr
[
Q|Z] = Pr [Q ∩Z]

Pr [Z]
= 1/(25 · 26)

1/26 = 1
25 .

Compare Pr
[
Q|Z] = 1

25 to Pr [Q] = 1
26 : thus, knowing that Z is mapped to itself makes

it slightly more likely that Q is also mapped to itself. The reason that Z makes Q slightly
more probable is that, when Z occurs, Z cannot be mapped to Q, so there are only 25
letters “competing” to be mapped to Q instead of 26.

Problem-solving tip:
Often it is easier to
get intuition about
a probabilistic
statement by
imagining an
absurdly small
variant of the
problem. Here, for
example, imagine a
2-letter alphabet Q,Z.
Then if Z is mapped
to itself then Q must
also be mapped to
itself. So Pr [Q] = 1

2 ,
but Pr

[
Q|Z

]
= 1.

Intersections and conditional probability
The definition of conditional probability (Definition 10.10) states that

Pr
[
A|B] = Pr [A ∩ B]

Pr [B]
.

Multiplying both sides of this equality by Pr [B] yields a useful way of thinking about
the probability of intersections:

Theorem 10.2 (The Chain Rule)
Let A and B be arbitrary events. Then

Pr [A ∩ B] = Pr [B] · Pr
[
A|B] .

And, more generally, for events A1,A2, . . . ,Ak, we have

Pr [A1 ∩ A2 ∩ A3 ∩ · · · ∩Ak]
= Pr [A1] · Pr [A2|A1

] · Pr [A3|A1 ∩ A2
] · · · · · Pr [Ak|A1 ∩ · · · ∩ Ak−1

]
.

If we’re interested in the probability that A and B occur, then we need it to be the case
that A occurs—and, conditioned on A occurring, B occurs too.
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Example 10.23 (Drawing a heart flush in poker)
Problem: A flush in poker is a 5-card hand, all of which are the same suit. What is the

probability of drawing a heart flush from a randomly shuffled deck?

Solution: We can draw any heart first. We have to keep drawing hearts to get a flush,
so for 2 ≤ k ≤ 5, the kth card we draw must be one of the remaining 14− k hearts
from the 53− k cards left in the deck. That is, writing Hi to denote the event that
the ith card drawn is a heart:

Pr [H1 ∩ H2 ∩ H3 ∩H4 ∩ H5]

= Pr [H1] · Pr
[
H2|H1

]
· Pr

[
H3|H1,2

]
· Pr

[
H4|H1,2,3

]
· Pr

[
H5|H1,2,3,4

]

= 13
52 · 1251 · 1150 · 1049 · 9

48

= 154440
311875200 ≈ 0.00049519807.

(We could also have directly computed this quantity via counting: there are
(13
5
)

hands of 5 hearts, and
(52
5
)
total hands. Thus the fraction of all hands that are heart

flushes is (13
5
)

(52
5
) =

13!
5!·8!
52!

5!·47!
= 13! · 47!

8! · 52! = 13 · 12 · 11 · 10 · 9
52 · 51 · 50 · 49 · 48 ,

which is the same quantity that we found above.)

We can use the chain rule to compute the probability of an event A by making the
(obvious!) observation that another event B either occurs or doesn’t occur:

Theorem 10.3 (The Law of Total Probability)
Let A and B be arbitrary events. Then

Pr [A] = Pr
[
A|B] · Pr [B] + Pr

[
A| B

] · Pr [ B ] .

Proof. We’ll proceed by splitting A into two disjoint subsets, A ∩ B and A − B (which is
otherwise known as A ∩ B):

Pr [A] = Pr
[
(A∩ B) ∪ (A∩ B)

]
A = (A ∩ B)∪ (A ∩ B)

= Pr [A ∩ B] + Pr
[
A ∩ B

]
A ∩ B and A ∩ B are disjoint

= Pr
[
A|B] · Pr [B] + Pr

[
A| B

] · Pr [ B ] . the chain rule

Thus the theorem follows.

Here’s a simple example of using the law of total probability:
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Example 10.24 (Binary Symmetric Channel)
We wish to transmit a 1-bit message from a sender to a receiver. The sender’s mes-
sage is 0 with probability 0.3, and it’s 1 with probability 0.7. The sender sends this
data using a communication channel that corrupts (that is, flips) every transmitted bit
with probability 0.25. Then the probability that the receiver receives a “1” message is

Pr [receive 1] = Pr
[
receive 1|send 1

] · Pr [send 1] + Pr
[
receive 1|send 0

] · Pr [send 0]
= (0.75 · 0.7) + (0.25 · 0.3)
= 0.525 + 0.075 = 0.6.

0

1

0

1

p
1− p

1− p
p

input output

Figure 10.19: The
binary symmetric
channel.

Taking it further: The binary symmetric channel is
given this name because it transmits a bit (it’s bi-
nary) and it corrupts a 0 with the same probability
as it corrupts a 1 (it’s symmetric). (See Figure 10.19;
view each arrow in the channel as transforming a
particular input bit to a particular output bit, with
the indicated probability.)

The binary symmetric channel is one of the
most basic forms of a noisy communication channel (that is, a channel that does not perfectly transmit its
input without any chance of corruption). The subfield of information theory is devoted to analyzing topics
like the (theoretical) efficiency of communication channels, including the binary symmetric channel. For
much more, see a textbook on information theory.5

5

5 Thomas M. Cover
and Joy A. Thomas.
Elements of Informa-
tion Theory. Wiley,
1991.

Bayes’ Rule
Bayes’ Rule is a simple—but tremendously useful—rule for “flipping around” a

conditional probability statement. It allows us to express the conditional probability of

Bayes’ Rule is
named after
Thomas Bayes,
an 18th-century
English mathemati-
cian.

A given B in terms of the conditional probability of B given A:

Theorem 10.4 (Bayes’ Rule)
For any two events A and B:

Pr
[
A|B

]
=
Pr

[
B|A] · Pr [A]
Pr [B]

.

Proof. Applying the chain rule to break apart Pr [A ∩ B] “in both orders,” we have

Pr [A ∩ B] = Pr
[
A|B] · Pr [B]

Pr [B ∩ A] = Pr
[
B|A] · Pr [A] .

The left-hand sides of these equations are identical because A ∩ B = B ∩ A (and there-
fore Pr [A ∩ B] = Pr [B ∩ A]), so their right-hand sides are equal, too:

Pr
[
A|B] · Pr [B] = Pr

[
B|A] · Pr [A] .

Dividing both sides of this equality by Pr [B] yields the desired equation:

Pr
[
A|B

]
=
Pr

[
B|A] · Pr [A]
Pr [B]

.
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Here are a couple of simple examples of using Bayes’ Rule:

Example 10.25 (Binary Symmetric Channel, again)
As in Example 10.24, assume a sender transmits a 0 with probability 0.3 and a 1 with
probability 0.7 across a channel that corrupts every bit with probability 0.25. We
showed in Example 10.24 that Pr [receive 1] = 0.6 and thus Pr [receive 0] = 0.4. Then
the probability that the receiver receiving a “1” message was indeed sent a 1 is

Pr
[
message sent was 1|receive 1] = Pr

[
receive 1|send 1

]
· Pr [send 1]

Pr [receive 1]
by Bayes’ Rule

= 0.75 · 0.7
0.6 = 0.875.

And the probability that the receiver receiving a “0” message was indeed sent a 0 is

Pr
[
message sent was 0|receive 0] = Pr

[
receive 0|send 0

]
· Pr [send 0]

Pr [receive 0]
by Bayes’ Rule

= 0.75 · 0.3
0.4 = 0.5625.

(Qualitatively, these numbers tell us that most of received ones were actually sent as
ones, but barely more than half of the received zeros were actually sent as zeros.)

Example 10.26 (9+ heads, again)
We flip a fair coin 10 times. As in Example 10.21, let A denote the event that the first
flip comes up heads and let H denote the event that there are 9 or more heads in the
10 flips. (There we showed Pr [H] = 11/210, Pr [A] = 1

2 , and Pr
[
H|A

]
= 10/29.) Then

Pr
[
A|H]

=
Pr

[
H|A] · Pr [A]
Pr [H]

=
(10/29) · 1

2
11/210

= 10
11 .

Taking it further: A speech recognition system is supposed to “listen” to speech in a language like English,
and recognize the words that are being spoken. Bayes’ Rule allows us to think about two different types
of evidence that such a system uses in deciding what words it “thinks” are being said; see p. 1036.

A particularly important application of Bayes’ Rule is in “updating” one’s beliefs
about the world by observing new information. (Here “beliefs” take the form of a
probability distribution.) One starts with a prior distribution which one then updates
based on evidence to produce a posterior distribution. Here are two examples:

The prior (pre =
before) is your
best guess of the
probability of
the event prior
to seeing the
produced evidence;
the posterior (post
= after) is your best
guess after seeing
the evidence.

Example 10.27 (Alice the CS major)
We are interested in whether a student (let’s call her Alice) is a computer science
major. Our prior for Alice might be Pr

[
CS major

]
= 0.05 because 5% of students

are CS majors. We learn that Alice took Ancient Philosophy. If we know that 10% of
students as a whole take Ancient Philosophy, and 50% of CS majors do, then
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Pr
[
CS major|phil] = Pr

[
phil|CS major

] · Pr [CS major
]

Pr
[
phil

] = 0.5 · 0.05
0.10 = 0.25.

Our posterior distribution (that is, the updated guess) is that there is now a 25%
chance that Alice is a CS major.

Example 10.28 (Flipping a coin to decide which coin to flip)
I have two coins in an opaque bag. The coins are visually indistinguishable, but one
coin is fair (Pr [H] = 0.5); the other coin is 0.75-biased (Pr [H] = 0.75). I pull one of the
two coins out at random.

• My prior distribution is that there is a 50% chance I’m holding the fair coin, and a
50% chance I’m holding the biased coin. (That is, Pr [biased] = Pr [fair] = 0.5.)

I flip the coin that I’m holding. It comes up heads.

• The evidence is the Heads flip.

Because the biased coin is more likely to produce Heads flips than the fair coin is
(and we saw Heads), this evidence should make us view it as more likely that the
coin that I’m holding is the biased coin. Let’s compute my posterior probability:

• The posterior probability of an event is the probability of that event conditioned on
the observed evidence. So we wish to compute Pr

[
biased|H]

:

Pr
[
biased|H]

=
Pr

[
H|biased] · Pr [biased]

Pr [H]
Bayes’ Rule

=
Pr

[
H|biased] · Pr [biased]

Pr
[
H|biased] · Pr [biased] + Pr

[
H|fair] · Pr [fair]

Law of Total Probability

= 0.75 · Pr [biased]
(0.75 · Pr [biased]) + (0.5 · Pr [fair])

the given biases of the coins: 0.75 for biased, 0.5 for fair

= 0.75 · 0.5
(0.75 · 0.5) + (0.5 · 0.5) Pr [biased] = Pr

[
fair

]
= 0.5, as defined by the prior

= 0.375
0.375+ 0.25 = 0.6.

So the posterior probability is Pr
[
biased|H

]
= 0.6 and Pr

[
fair|H

]
= 0.4.

Taking it further: The idea of Bayesian reasoning is used frequently in many applications of computer
science—any time a computational system weighs various pieces of evidence in deciding what kind of
action to take in a particular situation. One of the most noticeable examples of this type of reasoning
occurs in Bayesian spam filters; see p. 1037 for more.
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Computer Science Connections

Speech Recognition, Bayes’ Rule, and Language Models

A software system for speech recognition must solve the following problem:
given an audio stream S of spoken English as input, produce as output a
transcriptW of the words in S . There will be many candidate transcripts of
S , and generally the task of the system is to produce the most likely sequence of
words given the audio stream—that is, to find the W∗ maximizing Pr

[W∗|S].
Using Bayes’ Rule, we can rephrase Pr

[
W∗|S

]
into an expression that’s

Figure 10.20: A spectrogram represen-
tation of an audio stream: the x-axis
represents time, the y-axis represents
frequency, and the darkness of the
shading denotes the intensity of sound
at that particular frequency at that
particular time. (See p. 234 for more
discussion.) The task is to turn this
representation into its most proba-
ble sequence of words—in this case,
the sentence “I prefer agglomerative
clustering.”

easier to understand:

the W∗ maximizing Pr
[
W∗|S

]

= the W∗ maximizing
Pr

[S|W∗] · Pr [W∗]
Pr [S] Bayes’ Rule

= the W∗ maximizing Pr
[S|W∗] · Pr [W∗] . Pr [S] is the same for each W∗

Thus there are two valuable sources of data for evaluating a candidate W :

• Pr
[S|W]

, the likelihood of the observation: the probability that this sound
stream would have been produced if W were the sequence of words; and

• Pr [W], the probability of this output: the probability of this sequence of
words being uttered at all.

For example, even if the audio stream is a better acoustic match for the phrase
whirled Siri string, you’d want your system to prefer the phrase World Se-
ries ring—because an English speaker is far more likely to say the latter
phrase than the former. (That is, Pr

[
World Series ring

]
is much higher than

Pr
[
whirled Siri string

]
.) Of course, we still must take into account the audio

stream S—otherwise, regardless of the audio, we’d end up with a system that
produced precisely the same output sentence (the most common sentence in
English: I’m sorry!, or whatever it is) for any input sound stream.

Generally speaking, the quantity Pr
[S|W]

would be estimated by an
acoustic model of the vocal tract: if I’m trying to say Camp Utah seance, what is
the probability that I produce a particular stream S of sounds?

The quantity Pr [W] is estimated by what’s called a language model. We
would acquire a large collection of English text, and then try to use that data
to estimate how likely a particular sequence is. The simplest language model
is the unigram model:

• from a giant data set with N total words, for each word w we count up the
number of times n(w) that w appears.

• if W = w1,w2, . . . ,wk , we estimate Pr [W] as n(w1)
N · n(w2)

N · · · · · n(wk )
N .

A more complex language model might use bigrams—two-word sequences—
instead; we count the number of occurrences of wi ,wi+1 consecutively in
the giant data set, and estimate Pr [W] based on these counts. Other more
complex language models are used in real systems.6 There’s also a great deal

For much more, see
6 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.

of complication with avoiding overfitting of the language model to the training
data. (In addition to speech recognition, a variety of other natural language
processing problems are generally solved with the same general approach.)
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Computer Science Connections

Bayesian Modeling and Spam Filtering

There are, it’s estimated, a few hundred billion email messages sent on
earth per day. Of those, a significant fraction of those messages are unso-
licited, unwanted bulk messages—that is, what’s commonly known as spam.
Somewhere between 50% and 95% of emails are currently spam. (It’s hard
to be precise; statistics and definitions of spam vary, and there’s change over
time as certain spammers are shut down, or not.) See statistics on email and spam pro-

duced by the Radicati Group, for exam-
ple: www.radicati.com.

The basic idea of a spam filter is to estimate the probability that a particular
message m is spam. The email client, or possibly the individual user, can
choose a threshold p; a message m for which Pr

[
m is spam

]
≥ p is placed into

a spam folder. The choice of p depends on the user’s relative concern about
false positives (nonspam messages that end up being incorrectly treated as
spam) versus false negatives (spam messages that end up being incorrectly left
in the inbox). So, how might a spam filter actually make its decisions? Here’s

It’s a good test of your probabilistic
intuition to ask: supposing that we have
a spam filter that correctly classifies 90%
of email messages as spam/nonspam,
and 95% of email messages are spam,
what fraction of email in your inbox is
nonspam? The answer, by Bayes’ Rule:

Pr
[
nonspam|inbox

]

=
Pr

[
inbox|nonspam

]
Pr

[
nonspam

]
(
Pr

[
inbox|nonspam

]
Pr

[
nonspam

]

+ Pr
[
inbox|spam

]
Pr

[
spam

]
)

= 0.9 · 0.05
0.9 · 0.05 + 0.1 · 0.95

= 0.045
0.045 + .095

= 0.3214 · · · .
In other words, a full two thirds of
messages in your inbox would be spam!

one approach, based fundamentally on Bayes’ Rule. Consider a message
consisting of words w1,w2, . . . ,wn; we must compute Pr

[
spam|w1,w2, . . .wn

]
.

Using Bayes’ Rule, we turn around this probability:

Pr
[
spam|w1,w2, . . .wn

]
=
Pr

[
w1,w2, . . .wn|spam

]
· Pr

[
spam

]

Pr [w1,w2, . . .wn]

And, by the law of total probability (every message is either spam or not
spam), we can further rewrite this probability as

Pr
[
w1,w2, . . .wn|spam

]
· Pr

[
spam

]

Pr
[
w1,w2, . . .wn|spam

]
Pr

[
spam

]
+ Pr

[
w1,w2, . . .wn|not spam

]
Pr

[
not spam

] .

That is, we want to know: what is the probability that the sequence of words
w1, . . . ,wn would have been generated in a spam message, relative to the
probability that w1, . . . ,wn would have been generated in a spam or nonspam
message? (These “relative probabilities” are weighted by the background
probability of spam-vs.-nonspam messages.)

A naïve Bayes classifier uses an additional assumption: that the appearance
of every word in an email is an independent event. That is, we’re going to
estimate Pr [w1,w2, . . .wn] as if the probability of each wi appearing does not
depend on any other word appearing. (Obviously that assumption isn’t right:
the probability of the word MORTGAGE appearing is not independent of the
probability of the word RATE appearing, in either spam or nonspam.)

Pr
[
w1,w2, . . .wn|spam

]
≈ Pr

[
w1|spam

]
· Pr

[
w2|spam

]
· · · · · Pr

[
wn|spam

]
.

Thus a naïve Bayes classifier estimates the probability of a message being
generated as spam by multiplying a measure of “how spammy” each word
is. A spam filter would still need to have two numbers associated with each
word wi—namely Pr

[
wi |spam

]
and Pr

[
wi|nonspam

]
. We can estimate these

numbers from a training set of spam/nonspam emails, with some sort of
“smoothing” mechanism to improve our estimate of the spamminess of a
word that doesn’t appear in any of the training emails.7

For more about the training of these
estimates, and about text classification—
the broader version of the problem that
we’re trying to solve in spam filtering—
again see:

7 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.
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10.3.4 Exercises

Choose one of the 12 months of the year uniformly at random. (That is, choose a number uniformly from the set
{1, 2, . . . , 12}.) Indicate whether the following pairs of events are independent or dependent. Justify your answers.
10.53 “The month number is even” and “the month number is divisible by 3.”
10.54 “The month number is even” and “the month number is divisible by 5.”
10.55 “The month number is even” and “the month number is divisible by 6.”
10.56 “The month number is even” and “the month number is divisible by 7.”

We flip a fair coin 6 times. Which of these events are independent or dependent? Justify your answers.
10.57 “The number of heads is even” and “the number of heads is divisible by 3.”
10.58 “The number of heads is even” and “the number of heads is divisible by 4.”
10.59 “The number of heads is even” and “the number of heads is divisible by 5.”

10.60 We flip three fair coins, called a, b, and c. Are the events “The number of heads in {a, b} is odd”
and “The number of heads in {b, c} is odd” independent or dependent?
10.61 How (if at all) would your answer to the previous exercise change if the three coins are p-biased?
(That is, assume Pr [a = H], Pr [b = H], and Pr [c = H] are all equal to p.)

ABIDES

BASES

CAJOLED

DATIVE

EXUDE

FEDORA

GASOLINES

HABANERO

(a) Some words.

A : “the first
letter of the
word is a
consonant.”

B : “the second
letter of the
word is a
consonant.”

C : “the second
letter of the
word is a
vowel.”

D : “the last
letter of the
word is a
consonant.”

E : “the word
has even
length.”

(b) Some events.
Figure 10.21: A
word list from
which we choose a
random word, and
some events.

Consider the list of words and the events in Figure 10.21. Choose a word at random from this list. Which of these pairs
of events are independent? For the pairs that are dependent, indicate whether the events are positively or negatively
correlated. Justify your answers.
10.62 A and B
10.63 A and C
10.64 B and C
10.65 A and D

10.66 A and E
10.67 A ∩ B and E
10.68 A ∩ C and E
10.69 A ∩ D and E

Let A and B be arbitrary events in a finite sample space.
10.70 Prove that if Pr [B] = 0, then A and B are independent.
10.71 Prove that A and B are independent if and only if A and B are independent.

A substitution cipher (see Example 10.16) is a simple cryptographic scheme in which we choose a permutation π of
the alphabet, and replace each letter i with πi. (Decryption is the same process, but backward: replace πi by i.) However,
substitution ciphers are susceptible to frequency analysis, in which an eavesdropper who observes the encrypted
message (the ciphertext) infers that the most common letter in the ciphertext probably corresponds to the most common
letter in English text (the letter E), the second-most common to the second-most common (T), and so on.
10.72 (programming required) Write a program that generates a random permutation π of the alphabet,
and encrypts a given input text using π. (Leave all non-alphabetic characters unchanged.)
10.73 (programming required) Write a program that takes a text as input, converts it to upper case, and
produces as output a vector 〈fA, fB, . . . , fZ〉, where f• is the fraction of letters in the input text that are the letter
•. (So f will be a probability distribution over the alphabet.)

10.74 (programming required) Write a program that, given a reference text and a text encrypted with an
unknown substitution cipher, attempts to decrypt by mapping the most common encrypted letters, in order,
to the most common reference letters. You can find useful reference files—for example, the complete works
of Shakespeare—from Project Gutenberg, http://www.gutenberg.org/.

A Caesar cipher is a special kind of substitution cipher in which the permutation π is generated by choosing a nu-
merical shift s and moving all letters s steps forward in the alphabet, wrapping back to the beginning of the alphabet as
necessary. (For example, with a shift of 5, A→ F and W → B.)
10.75 (programming required) Write a Caesar cipher encryption program that encrypts a given input text
file with a randomly chosen shift in {0, 1, . . . , 25}.
10.76 (programming required) If you run your decryption program from Exercise 10.74 on Caesar-
ciphered text, you’ll find that your program generally doesn’t work perfectly. Write a Caesar-cipher-
decrypting program that takes advantage of the fact that every letter is shifted by the same amount. Find
the most probable s—the s that minimizes the difference in the probabilities of each letter from the reference
text and the deciphered text. That is, minimize ∑i |f ′i − fi+s|, where f comes from the ciphertext and f ′ comes
from the reference text.
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Flip n fair coins. For any two distinct indices i and j with 1 ≤ i < j ≤ n, define the event Ai,j as

Ai,j := (the ith coin flip came up heads) XOR (the jth coin flip came up heads).
For example, for n = 4 and the outcome 〈T,T,H,H〉, the events A1,3, A1,4 , A2,3, and A2,4 all occur; A1,2 and A3,4
do not. Thus, from n independent coin flips, we’ve defined Ω(n2) different events—

(n
2
)
, to be specific. In the next few

exercises, you’ll show that these
(n
2
)

events are pairwise independent, but not fully independent.
10.77 Let i and j > i be arbitrary. Show that Pr [Ai,j] = 1

2 .
10.78 Let i and j > i be arbitrary, and let i′ and j′ > i′ be arbitrary. Show that any two distinct events Ai,j
and Ai′ ,j′ are independent. That is, show that Pr

[
Ai,j |Ai′ ,j′

]
= Pr

[
Ai,j |Ai′,j′

]
= 1

2 if {i, j} 6= {i′, j′}.
10.79 Show that there is a set of three distinct A events that are not mutually independent. That is,
identify three events Ai,j , Ai′ ,j′ , and Ai′′,j′′ where the sets {i, j}, {i′ , j′}, and {i′′, j′′} are all different (though
not necessarily disjoint). Then show that if you know the value of Ai,j and Ai′ ,j′ , the probability of Ai′′,j′′ 6= 1

2 .

Figure 10.22: Some
dominoes.

Suppose that you have the dominoes in Figure 10.22, and you shuffle them and draw
one domino uniformly at random. (More specifically, you choose any particular
domino with probability 1

12 . After you’ve chosen the domino, you choose an orienta-
tion, with a 50–50 chance of either side pointing to the left.) What are the following
conditional probabilities? (“Even total” means that the sum of the two halves of the
domino is even. “Doubles” means that the two halves are the same.)
10.80 Pr

[
even total|doubles

]

10.81 Pr
[
doubles|even total

]

10.82 Pr
[
doubles|at least one

]

10.83 Pr
[
at least one |doubles

]

10.84 Pr
[
total ≥ 7|doubles

]

10.85 Pr
[
doubles|total ≥ 7

]

10.86 Pr
[
even total|total ≥ 7

]

10.87 Pr
[
doubles|left half of drawn domino is

]

10.88 Suppose A and B are mutually exclusive events—that is, A ∩ B = ∅. Prove or disprove the
following claim: A and B cannot be independent.
10.89 Let A and B be two events such that Pr

[
A|B

]
= Pr

[
B|A

]
. Which of the following is true? (a)

A and B must be independent; (b) A and B must not be independent; or (c) A and B may or may not be
independent (there’s not enough information to tell). Justify your answer briefly.

Suppose, as we have done throughout the chapter, that h : K → {1, . . . ,n} is a random hash function.
10.90 Suppose that there are currently k cells in the array that are occupied. Consider a key x ∈ K not
currently stored in the hash table. What is the probability that the cell h(x) into which x hashes is empty?
10.91 Suppose that you insert n distinct values x1, x2, . . . , xn into an initially empty n-slot hash table.
What is the probability that there are no collisions? (Hint: if the first i elements have had no collisions, what is the
probability that the (i + 1)st hashed element does not cause a collision? Use Theorem 10.2 and Exercise 10.90.)

There’s a disease BCF (“base-case failure”) that afflicts a small but very unfortunate fraction of the population. One in
a thousand people in the population have BCF. Explain your answers to the following questions:
10.92 Doctor Genius has invented a BCF-detection test. Her test, though, isn’t perfect:
• it has false negatives: if you do have BCF, then her test says that you’re not sick with probability 0.01.
• it has false positives: if you don’t have BCF, then her test says that you’re sick with probability 0.03.
What is the probability p that Dr. Genius gives a random person x an erroneous diagnosis?
10.93 “Doctor” Quack has invented a BCF-detection test, too. He was a little confused by the statement
“one in a thousand people in the population have BCF,” so his test is this: no matter who the patient is, with
probability 1

1000 report “sick” and with probability 999
1000 report “not sick.” What is p now?

Alice wishes to send a 3-bit message 011 to Bob, over a noisy channel that corrupts (flips) each transmitted bit indepen-
dently with some probability. To combat the possibility of her transmitted message differing from the received message,
she adds a parity bit to the end of her message (so that the transmitted message is 0110). [Bob checks that he receives a
message with an even number of 1s, and if so interprets the first three received bits as the message.]
10.94 Assume that each bit is flipped with probability 1%. Conditioned on receiving a message with an
even number of 1s, what is the probability that the message Bob received is the message that Alice sent?
10.95 What if the probability of error is 10% per bit?

Suppose, as in Example 10.28, I have two coins—one fair and one p-biased. I pull one uniformly at random from an
opaque bag, and flip it. What is Pr

[
I pulled the biased coin|the following observed flips

]
? Justify your answers.

10.96 p = 2
3 , and I observe a single Heads flip.

10.97 p = 3
4 , and I observe the flip sequence HHHT.

10.98 p = 3
4 , and I observe the flip sequence HTTTHT.
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A Bloom filter is a probabilistic data structure designed to store a set of elements from a universe U, allowing very
quick query operations to determine whether a particular element has been stored.8 Specifically, it supports the opera- 8 Burton H. Bloom.

Space/time trade-
offs in hash coding
with allowable
errors. Communi-
cations of the ACM,
13(7):422–426, July
1970.

tions Insert(x), which adds x to the stored set, and Lookup(x), which reports whether x was previously stored. But,
unlike most data structures for this problem, we will allow ourselves to (occasionally) make mistakes in lookups, in
exchange for making these operations fast.

Here’s how a Bloom filter works. We will choose k different hash functions h1 , . . . , hk : U → {1, . . . ,m}, and we
will maintain an array of m bits, all initially set to zero. The operations are implemented as follows:
• To insert x into the data structure, we set the k slots h1(x), h2(x), . . . , hk (x) of the array to 1. (If any of these slots

was already set to 1, we leave it as a 1.)
• To look up x in the data structure, we check that the k slots h1(x), h2(x), . . . , hk(x) of the array are all set to 1. If

they’re all 1s, we report “yes”; if any one of them is a 0, we report “no.” 1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

0

0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 1 1 0 0
(a) The table initially; after inserting 3; and after
inserting 7. Note h1(3) = 4, h2(3) = 10, h1(7) = 8,
and h2(7) = 11.

1

0
2

0
3

0
4

1
5

0
6

0
7

0
8

1
9

0
10

1
11

1
12

0
13

0

0 0 0 1 0 0 0 1 0 1 1 0 0

0 0 0 1 0 0 0 1 0 1 1 0 0
(b) Testing for 3 (yes!), 15 (no!), and 10 (yes!?!).
Note h1(15) = 3, h2(15) = 5, h1(10) = 11, and
h2(10) = 10—so 10 is a false positive.

Figure 10.23: An
example of a Bloom
filter with k = 2
hash functions:
h1(x) = x mod 13 + 1
and h2(x) =
x2 mod 13 + 1.

For an example, see Figure 10.98. Note that there can be a false positive in a
lookup: if all k slots corresponding to a query element x happen to have been set to 1
because of other insertions, then x will incorrectly be reported to be present.

As usual, we treat each of the k hash functions as independently assigning each
element of U to a uniformly chosen slot of the array. Suppose that we have an m-slot
Bloom filter, with k independent hash functions, and we insert n elements into the
data structure.
10.99 Suppose we have k = 1 hash functions, and we’ve inserted n = 1
element into the Bloom filter. Consider any particular slot of the m-slot table.
What is the probability that this particular slot is still set to 0? (That is, what
is the probability that this slot is not the slot set to 1 when the single element
was inserted?)
10.100 Let the number k of hash functions be an arbitrary number k ≥ 1,
but continue to suppose that we’ve inserted only n = 1 element in the
Bloom filter. What is the probability a particular slot is still set to 0 after this
insertion?
10.101 Let the number k of hash functions be an arbitrary number k ≥ 1,
and suppose that we’ve inserted an arbitrary number n ≥ 1 of elements into
the Bloom filter. What is the probability a particular slot is still set to 0 after these insertions?

Define the false-positive rate of a Bloom filter (with m slots, k hash functions, and n inserted elements) to be the
probability that we incorrectly report that y is in the table when we query for an uninserted element y.

For many years (starting with Bloom’s original paper about Bloom filters), people in computer science believed that
the false positive rate was precisely pk , where p = (1− [your answer to Exercise 10.101]). The justification was the
following. Let Bi denote the event “slot hi(y) is occupied.” We have a false positive if and only if B1,B2, . . . ,Bk are all
true. Thus

the false positive rate = Pr [B1 and B2 and · · · and Bk] .
You showed in the previous exercise that Pr [Bi] = p. Everything up until here is correct; the next step in the
argument, however, was not! Therefore, because the Bi events are independent,

the false positive rate = Pr [B1 and B2 and · · · and Bk] = Pr [B1] · Pr [B2] · · · Pr [Bk] = pk .

But it turns out that Bi and Bj are not independent!9 (This error is a prime example of how hard it is to have perfect

9 Prosenjit Bose,
Hua Guo, Evange-
los Kranakis, Anil
Maheshwari, Pat
Morin, Jason Morri-
son, Michiel Smid,
and Yihui Tang. On
the false-positive
rate of Bloom fil-
ters. Information
Processing Letters,
108(4):210–213,
2008; and Ken
Christensen, Allen
Roginsky, and
Miguel Jimeno. A
new analysis of the
false positive rate of
a Bloom filter. In-
formation Processing
Letters, 110:944–949,
2010.

intuition about probability!)
10.102 Let m = 2, k = 2, and n = 1. Compute by hand the false-positive rate. (Hint: there are “only” 16
different outcomes, each of which is equally likely: the random hash functions assign values in {1, 2} to h1(x), h2(x),
h1(y), and h2(y). In each of these 16 cases, determine whether a false positive occurred.)
10.103 Compute p2—the answer you would have gotten by using

false-positive rate = (1− [your answer to Exercise 10.101])2.

Which is bigger—p2 or [your answer to Exercise 10.102]? In approximately one paragraph, explain the
difference, including an explanation of why the events B1 and B2 are not independent.

10.104 While the actual false-positive rate is not exactly pk , it turns out that pk is a very good approxima-
tion to the false-positive rate as long as m is sufficiently big and k is sufficiently small. Write a program that
creates a Bloom filter with m = 1,000,000 slots and k = 20 hash functions. Insert n = 100,000 elements, and
estimate the false positive probability by querying for n additional uninserted elements y /∈ X. What is the
false-positive rate that you observe in your experiment? How does it compare to pk?
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10.4 Random Variables and Expectation

Acts of sacrifice, charity and penance are not to be
given up but should be performed. . . . All these
activities should be performed without any
expectation of result.

Bhagavad Gita 18:5–6

Thus far, we have been considering whether or not something occurs—that is, using
the language of probability, we have been interested in events. But often we will also be
interested in how many? questions and not just did it or did it not? questions. How many
heads came up in 1000 coin flips? How many times do we have to flip a coin before
it comes up heads for the 1000th time? For a randomly ordered array A[1 . . .n] of the
integers {1, . . . , n}, for how many indices i is A[i] < A[i + 1]? To address these types
of questions, we will introduce the concept of a random variable, which measures some
numerical quantity that varies from outcome to outcome. We will also consider the Warning! A “ran-

dom variable” is
one of the worst-
named concepts in
this entire book. A
random variable
is not a variable—
rather, it’s a function
that maps each out-
come to a numerical
value. But everyone
calls it a random
variable, so that’s
what we’ll call it,
too.

expectation of a random variable, which is the value of that variable averaged over all of
the outcomes in the sample space.

10.4.1 Random Variables

We begin with the definition of a random variable itself:

Definition 10.11 (Random variable)
A random variable X assigns a numerical value to every outcome in the sample space S. (In
other words, a random variable is a function X : S → R.)

Here are a few simple examples:

Example 10.29 (Counting heads in 3 flips)
Suppose that we flip a fair coin independently, three times. (Then the sample space is
S = {H,T}3, and Pr [x] = 1

8 for any x ∈ S.) Define the random variables

X = the number of heads
Y = the number of initial consecutive tails.

These random variables take on the following values:

X(HHH) = 3 Y(HHH) = 0
X(HHT) = 2 Y(HHT) = 0
X(HTH) = 2 Y(HTH) = 0
X(HTT) = 1 Y(HTT) = 0
X(THH) = 2 Y(THH) = 1
X(THT) = 1 Y(THT) = 1
X(TTH) = 1 Y(TTH) = 2
X(TTT) = 0 Y(TTT) = 3.
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Example 10.30 (Word length, and number of vowels)
Select a word from the sample space {Now, is, the, winter, of, our, discontent} by
choosing word w with probability proportional to the number of letters in w, as in
Example 10.5. Define a random variable L to denote the number of letters in the word
chosen. Thus L(discontent) = 10 and L(winter) = 6, for example. We can also
define a random variable V to denote the number of vowels in the word chosen. Thus
V(discontent) = 3 and V(winter) = 2, for example. Here are the values for these two
random variables for each outcome in the sample space:

w Pr [w] L(w) V(w)
Now 3/29 3 1
is 2/29 2 1
the 3/29 3 1
winter 6/29 6 2
of 2/29 2 1
our 3/29 3 2
discontent 10/29 10 3

Although it’s an abuse of notation, often we just write X to denote the value of a ran-
dom variable X for a realization chosen according to the probability distribution Pr. (So we
might write “X = 3 with probability 1

8” or “there are L letters in the chosen word.”)
We can state probability questions about events based on random variables, as the

following example illustrates:

Example 10.31 (More word length and vowel counts)
Choose a word as in Example 10.30. Define L as the number of letters in the word,
and define V as the number of vowels in the word. Then Pr [L = 3] denotes the proba-
bility that we choose an outcome w for which L(w) = 3. (In other words, L = 3 denotes
the event {w : L(w) = 3}.) Thus (see the table in Example 10.30)

Pr [L = 3] = Pr
[
{Now, the, our}

]
= 9

29

Pr [V = 3] = Pr
[
{discontent}

]
= 10

29 .

We will also abuse notation by performing arithmetic on random variables (remember,
these are functions!): for two random variables X and Y, we write X + Y as a new
random variable that, for any outcome x, denotes the sum of X(x) and Y(x). We will
interpret similarly any other arithmetic expression that involves random variables.
(The notational analogue here is writing “sin + cos” to denote the function f (x) =
sin(x) + cos(x).) Here’s a small example:

Example 10.32 (Number of consonants)
We can express the number of consonants in the randomly chosen word from our
running example (see Example 10.30) as L − V. For example, L − V = 1 when the
chosen word is our, and L − V = 4 when the chosen word is winter.
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Indicator random variables
One special type of random variable that will come up frequently is an indicator

random variable, which only takes on the values 0 and 1. (Such a random variable “indi-
cates” whether a particular event has occurred.) Here’s a simple example:

Example 10.33 (Indicator random variables in coin flips)
Suppose that we flip three fair coins independently. Let X1 be an indicator random
variable that reports whether the first flip came up heads. Similarly, let X2 and X3 be
indicator random variables for the second and third flips. Then:

outcome X1 X2 X3
HHH 1 1 1
HHT 1 1 0
HTH 1 0 1
HTT 1 0 0
THH 0 1 1
THT 0 1 0
TTH 0 0 1
TTT 0 0 0

Note that the total number of heads is given by the random variable X1 + X2 + X3.

Independence of random variables
Just as with independence for events, we will often be concerned with whether

knowing the value of one random variable tells us something about the value of an-
other. Two random variables X and Y are independent if every two events of the form
“X = x” and “Y = y” are independent: for every value x and y, it must be the case that
Pr

[
X = x and Y = y

]
= Pr [X = x] · Pr

[
Y = y

]
. For example:

Example 10.34 (Some independent/dependent random variables)
The random variables X2 and X3 from Example 10.33—we flip 3 fair coins indepen-
dently; X2 and X3 indicate whether the 2nd and 3rd flips are heads—are indepen-
dent. You can check all four possibilities; for example,

Pr [X2 = 1 and X3 = 1] = 1
4 = 1

2 · 1
2 = Pr [X2 = 1] · Pr [X3 = 1] and

Pr [X2 = 1 and X3 = 0] = 1
4 = 1

2 · 1
2 = Pr [X2 = 1] · Pr [X3 = 0] .

On the other hand, the random variables X and Y from Example 10.29—we flip 3 fair
coins independently; X is the number of heads and Y is the number of consecutive
initial tails—are not independent; for example,

Pr [X = 3] · Pr [Y = 3] = 1
8 · 1

8 but Pr [X = 3 and Y = 3] = 0.
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10.4.2 Expectation

A random variable X measures a numerical quantity that varies from realization to
realization. We will often be interested in the “average” value of X, which is otherwise
known as the random variable’s expectation:

The alternate ver-
sion of the summa-
tion for expectation
in Definition 10.12
follows by collect-
ing together each
outcome x that has
the same value of
the random variable
X(x):

∑
x∈S

X(x) · Pr [x]

= ∑
y∈R

∑
x∈S:

X(x)=y

y · Pr [x]

= ∑
y∈R

y · ∑
x∈S:

X(x)=y

Pr [x]

= ∑
y∈R

y · Pr
[
X = y

]
.

Definition 10.12 (Expectation)
The expectation of a random variable X, denoted E [X], is the average value of X, defined as

E [X] = ∑
x∈S

X(x) · Pr [x] .

The expectation of X is also sometimes called the mean of X.
We can equivalently write E [X] = ∑y

(
y · Pr [X = y

])
by summing over each possible

value y that X can take on, rather than by summing over outcomes.

In other words, E [X] is the average value of X over all outcomes (where the average is
weighted, with weights defined by the probability function). For example:

Example 10.35 (Expectation of a Bernoulli random variable)
Let X be an indicator random variable for a Bernoulli trial with parameter p—that is,
X = 1 with probability p and X = 0 with probability 1− p. Then E [X] is precisely

E [X] = 1 · Pr [X = 1] + 0 · Pr [X = 0] definition of expectation (alternative version)

= 1 · p + 0 · (1− p) definition of a Bernoulli trial with parameter p

= p.

Warning! Just
because E [X] = 1.5
doesn’t mean that
Pr [X = 1.5] is big!
(If you ever flip
three fair coins
and see exactly
1.5 heads, it might
be a sign that the
world is ending.)
Remember that
“average” and
“typical” aren’t the
same thing!

Example 10.36 (Counting heads in 3 flips, again)
Problem: Recall Example 10.29, where the random variable X denotes the number of

heads in three independent flips of a fair coin. (The sample space was S = {H,T}3,
and Pr [x] = 1

8 for any x ∈ S.) What is E [X]?

Solution: The expectation of X is

E [X] = ∑
x∈{H,T}3

Pr [x] · X(x)

= 1
8X(HHH) + 1

8X(HHT) + 1
8X(HTH) + 1

8X(HTT)
+ 1

8X(THH) + 1
8X(THT) + 1

8X(TTH) + 1
8X(TTT)

= 1
8 ·

[
3 + 2 + 2 + 1 + 2 + 1 + 1 + 0

]

= 12
8 = 1.5.

In other words, in three flips of a fair coin, we expect 1.5 flips to come up Heads.



10.4. RANDOM VARIABLES AND EXPECTATION 1045

Example 10.37 (Counting letters and vowels, again)
Recall the probabilistic process of choosing a word from the sentence Now is the

winter of our discontent in proportion to word length. Recall also the random
variables from Example 10.30: L denotes the chosen word’s length, and V the number
of vowels in the chosen word. (See Figure 10.24 for a reminder.) Then we have

E [L] = 3 · 3
29 + 2 · 2

29 + 3 · 3
29 + 6 · 6

29 + 2 · 2
29 + 3 · 3

29 + 10 · 10
29

= 171
29

≈ 5.8966.

E [V] = 1 · 3
29 + 1 · 2

29 + 1 · 3
29 + 2 · 6

29 + 1 · 2
29 + 2 · 3

29 + 3 · 10
29

= 57
29

≈ 1.9656.

10

outcome Pr L V
Now 3

29 3 1
is 2

29 2 1
the 3

29 3 1
winter 6

29 6 2
of 2

29 2 1
our 3

29 3 2
discontent 10

29 10 3

Figure 10.24: A
reminder of the
sample space,
probabilities, and
random variables
for Example 10.37.

10 Scott L. Feld. Why
your friends have
more friends than
you do. American
Journal of Sociology,
96(6):1464–1477,
May 1991.

Taking it further: If we think about it without a great deal of care, there’s something apparently curious
about the result from Example 10.37. We’ve plopped down our thumb on a random letter in the sentence
Now is the winter of our discontent, and we’ve computed that the word that our thumb lands on
has an average length of about 5.9 letters. That seems a little puzzling, because there are 7 words in
the sentence, with an average word length of 29

7 = 4.1428 letters. But there’s a good reason for this
discrepancy: longer words are more likely to be chosen because they have more letters, and therefore the
average word that’s chosen has more letters than average. An analogous phenomenon occurs in many
other settings, too. When you’re driving, you spend most of your time on longer-than-average trips.
Most people in Canada live in a larger-than-average-sized Canadian city. Most 3rd-grade students
in California are in a larger-than-average-size 3rd-grade class. (In fact, this broader phenomenon is
sometimes called the class-size paradox.) Perhaps even more jarringly, a random person x knows fewer
people than the average number of people known by someone x knows—that is, on average, your friends
are more popular than you are.10 (Why? A very popular person—call her Oprah—is, by definition, the
friend of many people, and therefore Oprah’s astronomical popularity is averaged into the popularity of
many people x. In computing the popularity of a randomly chosen person x, Oprah only contributes her
popularity once for x = Oprah—but she contributes it many times to the popularity of x’s friends.)

This phenomenon may illustrate an example of a sampling bias, in which we try to draw a uniform
sample from a population but we end up with some kind of bias that overweights some members of
the population at the expense of others. Sampling biases are a widespread concern in any statistical
approach to understanding a population. For example, consider a telephone-based political poll that col-
lects voters’ preferences for candidates one evening by randomly dialing phone numbers until somebody
answers, and records the answerer’s preference. This poll will overweight those people who are sitting
around at home during the evening—which correlates with the voter’s age, which correlates with the
voter’s political affiliation.

Example 10.38 (Number of aces in a bridge hand)
Problem: Suppose that we are dealt a 13-card hand from a standard 52-card deck.

What is the expected number of aces in our hand?

Solution: Later we’ll solve this problem more easily (see Example 10.41), but here
we’ll do it the hard way. We’ll compute the probability of getting 0, 1, . . . , 4 aces:

• There are
(52
13
)
different hands.

• There are
(4

k
) · ( 48

13−k
)
hands with exactly k aces. (We have to pick k ace cards

from the 4 aces in the deck, and 13− k non-ace cards from the 48 non-aces.)
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Because each hand is equally likely to be chosen, therefore

Pr
[
drawing exactly k aces

]
=

(4
k
)
·
( 48
13−k

)
(52
13
) .

And thus, letting A be a random variable denoting the number of aces, we have

E [A] = ∑
h
Pr

[
being dealt hand h

] · (number of aces in h)

=
4
∑
i=0

i · Pr [A = i] (reordering sum by collecting all hands with the same number of aces)

=

0·Pr[A=0]︷ ︸︸ ︷
0 · (40

) · (4813
)

+

1·Pr[A=1]︷ ︸︸ ︷
1 · (41

) · (4812
)

+

2·Pr[A=2]︷ ︸︸ ︷
2 · (42

) · (4811
)

+

3·Pr[A=3]︷ ︸︸ ︷
3 · (43

) · (4810
)

+

4·Pr[A=4]︷ ︸︸ ︷
4 · (44

) · (489
)

(52
13
)

=
0 · 1 · (4813

)
+ 1 · 4 · (4812

)
+ 2 · 6 · (4811

)
+ 3 · 4 · (4810

)
+ 4 · 1 · (489

)
(52
13
)

= 0 + 278,674,137,872 + 271,142,404,416 + 78,488,590,752 + 6,708,426,560
635,013,559,600

= 635,013,559,600
635,013,559,600

= 1.

That is, the expected number of aces in a 13-card hand is precisely 1.

A useful property of expectation
We’ve now seen several examples of computing the expectation of random variables

by directly following the definition of expectation. Here we’ll introduce a transforma-
tion that can often make expectation calculations easier, at least for positive integer–
valued random variables:

Theorem 10.5 (A new formula for expectation, for nonnegative integers)
Let X : S → Z≥0 be a random variable. Then E [X] = ∑∞

i=1 Pr [X ≥ i].

(Note that by definition E [X] = ∑∞
i=0 i · Pr [X = i], so we’re trading the multiplication of

i for the replacement of = by ≥.)
The proof will follow by changing the order of summation in the expectation for-

mula. We’ll give an algebraic proof in a moment, but it may be easier to follow the idea
by looking at a visualization first. See Figure 10.25.
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We can use this theorem to find the expected value of a geometric random variable:

Example 10.39 (Expectation of a geometric random variable)
Let X be a geometric random variable with parameter p. (That is, X measures the
number of flips of a p-biased coin before we get Heads for the first time.) Then E [X]
is precisely 1

p :

E [X] =
∞

∑
i=1

Pr [X ≥ i] Theorem 10.5 (E [X] = ∑∞
i=1 Pr [X ≥ i])

=
∞

∑
i=1

Pr
[
fail to get heads in i − 1 flips

]
definition of geometric random variable

=
∞

∑
i=1

(1− p)i−1 need i − 1 consecutive tails flips

=
∞

∑
i=0

(1− p)i changing index of summation

= 1
1− (1− p) =

1
p
. formula for geometric summations

For example, we expect to flip a fair coin (with p = 1
2 ) twice before we get heads.

10.4.3 Linearity of Expectation

Here’s a very useful general property of expectation, called linearity of expectation: the
expectation of a sum is the sum of the expectations. (A linear function is a function f
that satisfies f (a + b) = f (a) + f (b)—for example, f (x) = 3x or f (x) = 0.) The usefulness
of Linearity of Expectation will come from the way in which it lets us “break down” a
complicated random variable into the sum of a collection of simple random variables.
(We can then compute E

[
Complicated

]
= E

[
∑i Simplei

]
= ∑i E

[
Simplei

]
.)

We’ll see several useful examples soon, but let’s start with the proof:

Theorem 10.6 (Linearity of Expectation)
Consider a sample space S, and let X : S → R and Y : S → R be any two random variables.
Then E [X + Y] = E [X] + E [Y].

Proof. We’ll be able to prove this theorem by just invoking the definition of expectation
and following our algebraic noses:

E [X + Y] = ∑
s∈S

(X + Y)(s) · Pr [s] definition of expectation

= ∑
s∈S

[
X(s) +Y(s)

] · Pr [s] definition of the random variable X +Y

=
[

∑
s∈S

X(s) · Pr [s]
]

+
[

∑
s∈S

Y(s) · Pr [s]
]

distributing the multiplication; rearranging

= E[X] + E[Y]. definition of expectation

Therefore E [X + Y] = E [X] + E [Y], as desired.
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Notice that Theorem 10.6 does not impose any requirement of independence on the
random variables X and Y: even if X and Y are highly correlated (positively or nega-
tively), we still can use linearity of expectation to conclude that E [X + Y] = E [X] + E [Y].
There are many apparently complicated problems in which using linearity of expecta-
tion makes a solution totally straightforward. Here are a few examples:

Example 10.40 (Expectation of a binomial random variable)
Problem: We have a p-biased coin (that is, Pr [heads] = p) that we flip 1000 times.

What is the expected number of heads that come up in these 1000 flips?

Solution: The intuition is fairly straightforward: a p-fraction of flips are heads, so we
should expect 1000p heads in 1000 flips. But doing the math requires a bit of work.

An abandoned first attempt: Let’s compute the probability that there are exactly
k heads in a sequence of 1000 flips, and then apply the definition of expectation
directly. There are

(1000
k
)
sequences of 1000 flips that have exactly k heads, and

the probability of any one of these sequences is pk(1− p)1000−k, so

E [number of heads]

=
1000
∑
k=0

k · Pr [number of heads = k] definition of expectation

=
1000
∑
k=0

k ·
(1000

k
)
· pk · (1− p)1000−k. above analysis of Pr

[
number of heads = k

]

We could try to simplify this expression (but it turns out to be pretty hard!).
Instead, let’s start over with a different approach.

A second try: Here’s a strategy that ends up being much easier. Define 1000 ran-
dom variables X1,X2, . . . ,X1000, where Xi is the indicator random variable

Xi =
{

1 if the ith flip of the coin comes up Heads
0 if the ith flip of the coin comes up Tails.

The total number of heads in the 1000 coin flips is given by the random variable

X = X1 + X2 + · · · +X1000.

We can use this definition of X and linearity of expectation to compute the
expected number of heads much more easily:

E [number of heads] = E [X] = E

[
1000
∑
i=1

Xi

]
definition of X

=
1000
∑
i=1

E [Xi] linearity of expectation

=
1000
∑
i=1

p Example 10.35 (expectation of a Bernoulli variable)

= 1000p.

Problem-solving tip:
Often, the easiest
way to compute
an expectation is
by finding a way
to express the
quantity of interest
in terms of a sum of
indicator random
variables.
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Example 10.41 (Number of aces in a bridge hand, better)
Recall Example 10.38, where we showed that the number A of aces in a randomly
chosen 13-card hand from a standard 52-card deck has E [A] = 1. Here is a much
easier way of solving that problem:

Number your cards from 1 to 13. Let Ai be an indicator random variable that re-
ports whether the ith card in your hand is an ace. Then A = A1 + A2 + . . . + A13. Note
that Pr [Ai = 1] = 1

13 (there are 4
52 = 1

13 aces in the deck), so

E [A] = E [A1 +A2 + · · · +A13]
= E [A1] + E [A2] + · · · + E [A13] linearity of expectation

= 13 · 1
13 Pr [Ai = 1] = 1

13 as above, and so E [Ai] = 1
13 (Example 10.35)

= 1.

(The random variables Ai and Aj are correlated—but, again, linearity of expectation
doesn’t care! We can still use it to conclude that E

[
Ai + Aj

]
= E [Ai] + E

[
Aj

]
.)

Some examples about hashing
Here are two more problems about expectation, both involving hashing:

Example 10.42 (Hashing)
Problem: Suppose that we hash 1000 elements into a 1000-slot hash table, using a

completely random hash function, resolving collisions by chaining. (See Sec-
tion 10.1.1.) How many empty slots do we expect?

Solution: Let’s compute the probability that some particular slot is empty:

Pr
[
slot i is empty

]

= Pr [none of the 1000 elements hash to slot i]

= Pr
[
every element j ∈ {1, 2, . . . , 1000} hashes to a slot other than i

]

=
1000
∏
j=1

Pr
[
element j hashes to a slot other than i

]
elements are hashed independently

=
1000
∏
j=1

999
1000 elements are hashed uniformly, and there are 999 other slots

=
(

999
1000

)1000
= 0.3677 · · · .

We’ll finish with the by-now-familiar calculation that also concluded the last two
examples: we define a collection of indicator random variables and use linearity of
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expectation. Let Xi be an indicator random variable that’s 1 if slot i is empty and 0
if slot i is full. Then the expected number of empty slots is

E

[
1000
∑
i=1

Xi

]
=

1000
∑
i=1

E [Xi] = 1000 ·
(

999
1000

)1000
≈ 367.7.

Taking it further: If we stated the question from Example 10.42 in full generality, we would ask: if we
hash n elements into n slots, how many empty slots are there in expectation? Using the same approach as in
Example 10.42, we’d find that the fraction of empty slots is, in expectation, (1− 1/n)n . Using calculus, it’s
possible to show that (1− 1/n)n approaches 1/e ≈ 0.367879 as n → ∞. So, for large n, we’d expect to
have n

e empty slots when we hash n elements into n slots.
We can also turn this hashing problem on its head: we’ve been asking “if we hash n elements into

n slots, how many slots do we expect to find empty?” Instead we can ask “how many elements do we
expect have to hash into n slots before all n slots are full?” This problem is called the coupon-collector
problem; see Exercises 10.136–10.137 for more.

Let’s also consider a second example about hashing—this time counting the (ex-
pected) number of collisions, rather than the (expected) number of empty slots:

Example 10.43 (Expected collisions in a hash table)
Problem: Hash n elements A = {x1, . . . , xn} into an m-slot hash table. Recall that a

collision between two elements xi and xj (for i 6= j) occurs when h(xi) = h(xj).

1. Consider two elements xi 6= xj. What’s Pr [there’s a collision between xi and xj]?

2. What is the expected number of collisions among the elements of A?

Solution: 1. A collision between xi and xj occurs precisely when, for some index k,
we have h(xi) = k and h(xj) = k. Thus:

Pr
[
collision between xi and xj

]

= Pr
[[

h(xi) = h(xj) = 1
]
or

[
h(xi) = h(xj) = 2

]
or · · · or [h(xi) = h(xj) = m

]]

=
m
∑
k=1

Pr
[
h(xi) = k and h(xj) = k

]
by the sum rule; these events are disjoint

=
m
∑
k=1

Pr [h(xi) = k] · Pr
[
h(xj) = k

]
hashing assumption: hash values are independent

=
m
∑
k=1

1
m · 1

m hashing assumption: hash values are uniform

= m
m2 = 1

m
.

So the probability that a particular pair of elements collides is precisely 1
m .
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2. Given (1), we can again compute the expected number of collisions using indi-
cator random variables and linearity of expectation. The number of collisions
between elements of A is precisely the number of unordered pairs {xi, xj} that
collide. For indices i and j > i, then, define Xi,j as the indicator random variable

Xi,j =




1 if xi and xj collide
0 if they do not.

Thus the expected number of collisions among the elements of A is given by

E
[

∑
1≤i<j≤n

Xi,j
]

summing over all unordered pairs of elements

= ∑
1≤i<j≤n

E
[
Xi,j

]
linearity of expectation

= ∑
1≤i<j≤n

1
m part 1 of this example: we showed E

[
Xi,j

]
= Pr

[
Xi,j = 1

]
= 1

m

=
(n
2
)

m
= n(n − 1)

2m
. there are

(n
2
)
= n(n−1)

2 unordered pairs of elements

One consequence of this analysis is that we’d expect the first collision in an
m-slot hash table to occur when the number n of hashed elements reaches approxi-
mately

√
2m: for n =

√
2m + 1, the expected number of collisions would be

n(n − 1)
2m

= (
√
2m + 1) ·

√
2m

2m
≈ 2m

2m
= 1.

Taking it further: Example 10.43 also explains the so-called birthday paradox. Assume that a person’s
birthday is uniformly and independently chosen from the m = 365 days in the year. (Close, but not quite
true; certain parts of the year are nine months before days whose probabilities are notably more than
1

365 .) Under this assumption, you can think of “birthday” as a random hash function mapping people
to {1, 2, . . . , 365}. By Example 10.43, if you’re in a room with more than

√
2 · 365 = 27.018 people, you’d

expect to find a pair that shares a birthday. (It’s called a “paradox” because most people’s intuition is
that you’d need way more than 28 people in a room before you’d find a shared birthday.)

Two more examples of expectation: breaking PINs and Insertion Sort
Here’s another example of expectation, in a simple security context:

Example 10.44 (Brute-force breaking of PINs)
Problem: I steal a debit card from a (former) friend. The card has a 4-digit PIN, be-

tween 0000 and 9999, that I need to know to get all my friend’s money. Here are
two strategies:

1. every day, I try a random PIN.
2. every day, I try a random PIN that I haven’t tried before.

How many days would I expect to wait before I get into my friend’s account?
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Solution: 1. Observe that the probability of getting the correct PIN on a particular
day is 1

10000 . Thus we have a geometric random variable with parameter 1
10000 ,

so by Example 10.39 we expect to need 10000 days to break the PIN.

2. As usual, there are multiple ways to solve this problem—and, for illustrative
purposes, we’ll describe two of them, using fairly different approaches.

Solution A: Pr
[
winning on day #i

]
. The key will be to find the probability

of breaking the code for the first time on day i. (For the purposes of this
analysis, imagine that we keep guessing new PINs even after we find the
correct answer.)
Because we make i − 1 guesses on the i − 1 days before day i, we know

Pr
[
getting the PIN before day i

]
= i−1

10000 (1)
Pr

[
not getting the PIN before day i

]
= 1− i−1

10000 = 10001−i
10000 . (2)

Furthermore, on day i there are 10000− (i − 1) untried guesses, and so

Pr
[
getting the PIN on day i

| not getting it before day i
]
= 1

10000−(i−1) =
1

10001−i . (3)

Thus the expected number of days that we have to keep guessing is:

10000
∑
i=1

i · Pr [we first break the code on day #i
]

definition of expectation

=
10000
∑
i=1

i · Pr
[
wrong on days 1, . . . , i − 1

]

· Pr [right on day i|wrong on days 1, . . . , i − 1
] Chain Rule

=
10000
∑
i=1

i · 10001−i
10000 · 1

10001−i (2) and (3), as argued above

= 1
10000 ·

10000
∑
i=1

i algebra

= 1
10000 · 10000·10001

2 = 5000.5. arithmetic summation (Example 5.4)

(Another way to view this solution: our PIN-guessing strategy corresponds
to choosing a permutation of {0000, . . . , 9999} uniformly at random, and
guessing in the chosen order. The correct PIN is equally likely to be at any
position in the permutation so, for any i, we require exactly i days with prob-
ability precisely 1

10000 .)

Solution B: Pr
[
have to guess on day #i

]
. Define an indicator random vari-

able Xi, where Xi = 1 if we have to make a guess on day #i, and Xi = 0
if we do not. Thus the number of days that we have to guess is precisely
X := ∑10000

i=1 Xi. Observe that

E [Xi] = Pr [Xi] = Pr
[
lose on days 1, . . . , i − 1

]
= 10001−i

10000
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by the same reasoning as in Solution A. Thus

E [X] =
10000
∑
i=1

E [Xi] linearity of expectation

=
10000
∑
i=1

10001−i
10000 the above argument

=
10000
∑
j=1

j
10000 change of variables j = 10001− i

= 5000.5. just as in Solution A

So avoiding duplication saves, in expectation, just less than half of the days: we
expect to use 10000 days if we allow duplication, and 5000.5 days if we avoid it.

(Incidentally, the argument in Solution B is just another way of viewing
the transformation from Theorem 10.5: instead of calculating the value of
∑i i · Pr [exactly i days

]
, we calculated ∑i Pr

[
at least i days

]
.)

insertionSort(A[1 . . .n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j − 1]:
4: swap A[j] and A[j − 1]
5: j := j − 1

Figure 10.26:
A reminder of
Insertion Sort.

Let’s conclude with one last example of another type:
analyzing the expected performance of an algorithm on a
randomly chosen input. In Example 6.13, we gave a brief
intuition for the average-case (expected) performance of
Insertion Sort. (See Figure 10.26 for a reminder of the algo-
rithm.) Here is a somewhat different version of the analysis,
which comes out with the same result:

Example 10.45 (Expected performance of Insertion Sort)
Problem: Let the array A be a permutation of {1, . . . , n} chosen uniformly at random.

What is the expected number of swaps performed by insertionSort(A[1 . . .n])?

Solution: Define an indicator random variable Xj,i for indices j < i:

Xj,i =
{

1 if the (original) elements A[j] and A[i] are swapped by insertionSort
0 if not.

Note that E [Xj,i] = Pr [Xj,i = 1] = 1
2 : precisely half of permutations have their

ith element larger than their jth element. (There’s a bijection between the set of
permutations with their ith element larger than their jth element and the set of
permutations with their ith element smaller than their jth element. Because these
sets have the same size, the probability of choosing one of the former is 1

2 .)
Because insertionSort correctly sorts its input and only swaps out-of-order

pairs once per pair, the total number of swaps done is precisely

X =
n
∑
i=2

i−1
∑
j=1

Xi,j.
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Note that the number of indicator random variables in this sum is

n
∑
i=2

i−1
∑
j=1

1 =
n
∑
i=2

(i − 1) =
n−1
∑
i=1

i = (n−1)·n
2 =

(n
2
)
.

Thus by linearity of expectation we have

E [X] =
(n
2
) · E [Xi,j] =

(n
2
) · 1

2 .

10.4.4 Conditional Expectation

Just as we did with conditional probability in Section 10.3, we can define a notion of
conditional expectation: that is, the average value of a random variable X when a particu-
lar event occurs.

Definition 10.13 (Conditional expectation)
The conditional expectation of a random variable X given an event E, denoted E

[
X|E

]
, is

the average value of X over all outcomes where E occurs:

E
[
X|E] = ∑

x∈E
X(x) · Pr [x|E] .

In the original definition of expectation, we summed over all x in the whole sample
space; here we sum only over the outcomes in the event E. Furthermore, here we
weight the value of X by Pr

[
x|E] rather than by Pr [x]. We’ll omit the details, but con-

ditional expectation has analogous properties to those of the original (nonconditional)
version of expectation, including linearity of expectation.

Here’s a brief example of computing some conditional expectations:

Example 10.46 (Hearts in Poker)
Problem: In Texas Hold ’Em, a particular variant of poker, after a standard deck of

cards is randomly shuffled, you are dealt two “personal” cards, and then five
“community” cards are dealt. Let P denote the number of your personal cards that
are hearts, and let C denote the number of community cards that are hearts. What
are the following?

1. E [P]
2. E [C]
3. E

[
C|P = 0

]

4. E
[
C|P = 2

]

Solution: 1 & 2. Each card that’s dealt has a 13
52 = 1

4 chance of being a heart. By linear-
ity of expectation, then, E [P] = 2

4 = 0.5 and E [C] = 5
4 = 1.25. (Implicitly, we’re

defining indicator random variables for “the ith card is a heart,” so P = P1 + P2
and C = C1 + · · · +C5.)
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3. Given that 2 of the 39 non-heart cards were dealt as your personal cards, there
are still 13 undealt hearts among the remaining 50 undealt cards. Thus there is
a 13

50 = 0.26 chance that any particular undealt card is a heart. Thus, again by
linearity of expectation, we have that E

[
C|P = 0

]
= 5 · 13

50 = 1.30.

4. Similarly, there are 11 undealt hearts among the remaining 50 undealt cards.
Thus there is an 11

50 = 0.22 chance that any particular undealt card is a heart, and
E
[
C|P = 2

]
= 5 · 11

50 = 1.10.

We’ll omit the proof, but it’s worth noting a useful property that connects expecta-
tion to conditional expectation, an analogy to the law of total probability:

Theorem 10.7 (Law of Total Expectation)
For any random variable X and any event E:

E [X] = E
[
X|E] · Pr [E] + E

[
X| E

] · (1− Pr [E]).

That is, the expectation of X is the (weighted) average of the expectation of X when E
occurs and when E does not occur.

Taking it further: One tremendously valuable use of probability is in randomized algorithms, which flip
some coins as part of solving some problem. There is a massive variety in the ways that randomization
is used in these algorithms, but one example—the computation of the median element of an unsorted
array of numbers—is discussed on p. 1060. (We’ll make use of Theorem 10.7.) Median finding is a nice
example of problem for which there is a very simple, efficient algorithm that makes random choices in its
solution. (There are deterministic algorithms that solve this problem just as efficiently, but they are much
more complicated than this randomized algorithm.)

10.4.5 Deviation from Expectation

Let X be a random variable. By definition, the value of E [X] is the average value that
X takes on, where we’re averaging over many different realizations. But how far away
from E [X] is X, on average? That is, what is the average difference between (a) X,
and (b) the average value of X? We might care about this quantity in applications like
political polling or scientific experimentation, for example. Suppose X is a random
variable defined as follows:

X =





−1 the voter will vote for the Democratic candidate
0 the voter will vote for neither the Democratic nor Republican candidates
+1 the voter will vote for the Republican candidate

for a voter chosen uniformly at random from the population. If E [X] < 0, then the
Democrat will beat the Republican in the election; if E [X] > 0, then the Republican
will beat the Democrat. We might estimate E [X] by calling, say, 500 uniformly chosen
voters from the population and averaging their responses. We’d like to know whether
our estimate is accurate (that is, if our estimate is close to E [X]). This kind of question
is the core of statistical reasoning. We’ll only begin to touch on these questions, but
here are a few of the most important concepts.
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Definition 10.14 (Variance)
Let X be a random variable. The variance of X is

var (X) = E
[
(X − E [X])2

]
.

The standard deviation is std (X) =
√
var (X).

(Exercise: why didn’t we just define std (X) = E [X − E [X]]?)
Here’s a simple example:

Example 10.47 (Variance/standard deviation of a Bernoulli random variable)
Let X be the outcome of a flipping a p-biased coin. (That is, X is a Bernoulli random
variable.) We previously showed that E [X] = p, so the variance of X is

var (X) = E [ (X − E [X])2 ] definition of expectation

= E [ (X − p)2 ] expectation of a Bernoulli random variable (Example 10.35)

= Pr [X = 0] · (0− p)2 + Pr [X = 1] · (1− p)2 definition of expectation

= (1− p) · (0− p)2 + p · (1− p)2 definition of Bernoulli random variable

= (1− p)p2 + p(1− p)2

= (1− p)p · (p + 1− p)
= (1− p)p.

Thus the standard deviation is std (X) =
√
var (X) =

√
(1− p)p.

(For example, for a fair coin, the standard deviation is
√
(1− 0.5)0.5 =

√
0.25 = 0.5: an

average coin flip is 0.5 units away from the mean 0.5. In fact, every coin flip is that far
away from the mean!)

Here’s another simple example, illustrating the fact that two random variables can
have the same mean but wildly different variances:

1 3

5

7 9

12

14

16 18

19 21

23

25 27

30

32

34 36

2

4 6

8

10 11

13 15

17

20

22 24

26

28 29

31 33

35

0 00

Figure 10.27: A
reminder of the
roulette outcomes.
A number in the set
{0, 00, 1, 2, . . . , 36}
is chosen uniformly
at random by a
spinning wheel;
there are 18 red
numbers and 18
black numbers; 0
and 00 are neither
red nor black.

Example 10.48 (Roulette bets)
Here are two bets available to a player in roulette (see Figure 10.27 for a reminder):

• Bet $1 on “red”: If the spin lands on one of the 18 red numbers, you get $2 back;
otherwise you get nothing.

• Bet $1 on “17”: If the spin lands on the number 17, you get $36 back; otherwise
you get nothing.

Let X denote the payoff from playing the first bet, so X = 0 with probability 20
38 and

X = 2 with probability 18
38 . Let Y denote the payoff from playing the second bet, so

Y = 0 with probability 37
38 and X = 36 with probability 1

38 . The expectations match:

E [X] = 20
38 · 0 + 18

38 · 2 = 36
38

E [Y] = 37
38 · 0 + 1

38 · 36 = 36
38 .
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But the variances are very different:

var (X) = 20
38 · (0− 36

38 )
2 + 18

38 · (2− 36
38 )

2 = 0.9972 · · ·
var (Y) = 37

38 · (0− 36
38 )

2 + 1
38 · (36− 36

38 )
2 = 33.2077 · · · .

Generally speaking, the expectation of a random variable measures “how good it is”
(on average), while the variance measures “how risky it is.”

Variance, the squared expectation, and the expectation of the square
Here’s a useful property of variance, which sometimes helps us avoid tedium in

calculations. We can write var (X) as var (X) = E [X2]− (E [X])2, that is, the difference
between the expectation of the square of X and the square of the expectation of X:

Theorem 10.8 (Variance = expectation of the square minus the expectation2)
For any random variable X, we have

var (X) = E
[
X2

]
− (E [X])2 .

Proof. Writing µ := E [X], we have

var (X)
= E

[
(X − µ)2

]
definition of expectation

= E
[
X2 − 2Xµ + µ2

]
multiplying out

= E
[
X2

]
+ E [−2Xµ] + E

[
µ2

]
linearity of expectation

= E
[
X2

]
− 2µ · E [X] + µ2 Exercise 10.151

= E
[
X2

]
− 2µ · µ + µ2 definition of µ = E [X]

= E
[
X2

]
− µ2

= E
[
X2

]
− (E [X])2 .

Here is a simple example in which Theorem 10.8 eases the computation:

Example 10.49 (Variance/standard deviation of a uniform random variable)
Problem: Let X be the result of a roll of a fair die. What is var (X)?

Solution: Because Pr [X = k] = 1
6 for all k ∈ {1, . . . , 6}, we have that

E [X] = 1
6 · (1 + 2 + 3 + 4 + 5 + 6)

= 1
6 · 21

= 3.5.
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Similarly, we can compute E
[
X2] as follows:

E
[
X2

]
= 1
6 · (12 + 22 + 32 + 42 + 52 + 62)

= 1
6 · 91

≈15.1666 · · · .

Therefore, by Theorem 10.8,

var (X) = E [X2]− (E [X])2 = 91
6 − 49

4 = 35
12 ≈ 2.9116 · · · ,

and std (X) =
√
35/12 ≈ 1.7078 · · · .

(In Exercise 10.150, you’ll show that the standard deviation of the average result
of two independent dice rolls is much smaller.)

Taking it further: Suppose that we need to estimate the fraction of [very complicated objects] that have
[easy-to-verify property]: would I win a higher fraction of chess games with Opening Move A or B?
Roughly how many different truth assignments satisfy Boolean formula ϕ? Roughly how many integers
in {2, 3, . . . ,n − 1} evenly divide n? Is the array A “mostly” sorted?

One nice way to approximate the answer to these questions is the Monte Carlo method, one of the sim-
plest ways to use randomization in computation. The basic idea is to compute many random candidate
elements—chess games, truth assignments, possible divisors, etc.—and test each one; we can then esti-
mate the answer to the question of interest by calculating the fraction of those random candidates that
have the property in question. See p. 1062 for more discussion.
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Computer Science Connections

A Randomized Algorithm for Finding Medians

The median element of an array A[1 . . .n] is the item that would appear in

Select:
Given: an array A[1 . . . n] and an

index k ∈ {1, . . . ,n}.
Output: the element x in A such

that, if you were to sort A, x
would appear in the kth slot of
the sorted array.

Figure 10.28: The Select problem.

the ⌈n/2⌉th slot of the sorted order if we sorted A. For example, the median of
[1, 3, 5, 7, 9] is 5, and the median of [4, 3, 2, 1] is 2. (We arbitrarily chose to find
the ⌈n/2⌉th element instead of the ⌊n/2⌋th.) This description already suggests
a solution to the median problem: sort A, and then return A[⌈n/2⌉]. But we
can do better than the sorting-based approach: we’ll give a faster algorithm
for finding the median element of an unsorted array. Our algorithm will be
randomized, and the expected running time of the algorithm will be linear.
It will turn out to be easier to solve a generalization of the median problem,
called Select. See Figure 10.28.

randSelect(A[1 . . . n], i):
// Find the ith-largest element of A.
// If i /∈ {1, 2, . . . , n}, then error.
1: if n = 1 then
2: return A[1]. (If i 6= 1, then error.)
3: choose x ∈ {1, . . . , n} randomly
4: Losers[1 . . . ℓ] := {y ∈ A : y < A[x]}
5: Winners[1 . . .w] := {y ∈ A : y > A[x]}.
6: if i < ℓ + 1 then
7: return randSelect(Losers, i)
8: else if i = ℓ + 1 then
9: return A[x]
10: else if i > ℓ + 1 then
11: return randSelect(Winners, i − ℓ− 1)

Figure 10.29: Randomized Median
finding. (We build Losers and Winners by
going through A element-by-element.)

A recursive solution to Select is given in Figure 10.29; we can
solve the median problem by calling randSelect(A[1 . . .n], ⌈n/2⌉). A
proof of correctness of the algorithm—that is, a proof that randSelect
actually solves the Select problem—is reasonably straightforward by
induction. (In fact, correctness is guaranteed regardless of how we choose x
in Line 3 of the algorithm.) But we still have to analyze the running time.

Running Time: The Big Picture
Think about an invocation of randSelect(A), and imagine the array A

in sorted order and divided into quartiles:

0
n
4

n
2

3n
4 n

Here are two crucial observations:

1. Suppose that the element A[x] chosen in step 3—call A[x] the pivot—
falls within the shaded region of the quartile picture above. Then we
know that |Losers| ≤ 3n

4 and |Winners| ≤ 3n
4 .

2. The shaded region contains half of the elements of A.

(Why? To put it briefly: because half of the elements of A are in the middle
half of the array A.) So what? Let’s think intuitively for a moment, and defer
the formal analysis. Whenever we choose an element from the middle half of
the sorted order, the next recursive call is on an array of size at most 3

4 the size
of the original input. Also observe that the running time of any particular call
(aside from the recursive call) is linear in the input size. Thus, if we got lucky
every time and picked an element from the middle half of the array, we’d have
a recurrence like the following:

T(1) = 1 T(n) ≤ n + T(3n/4)

That’s a classic Master Method recurrence with a solution of T(n) = Θ(n).
(Actually the master method only says that T(n) = O(n), because we have an
inequality in the recurrence. But it’s trivial that the running time is Ω(n) as
well, because just building Losers and Winners at the root takes Ω(n) time.)
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Computer Science Connections

A Randomized Algorithm for Finding Medians, Continued

Running Time: Making it Formal
We engaged in wishful thinking in the last paragraph: it’s obviously not

true that we get a pivot in the middle half of the array every time. In fact, it’s
only half the time! But this isn’t so bad: even if we imagine that picking a pivot
outside the middle half yields zero progress at all toward the base case, we’d only
double the estimate of the running time! Let’s make this formal. Define

Cn := the number of comparisons performed by randSelect on an input of size n.

Notice that Cn is a random variable: the number of comparisons that are
performed depends on which pivots are chosen! But we can analyze E [Cn].

Before we start, let’s make one quick observation: the expected running
time of this algorithm is monotonic in its input size. That is, E [Cn] ≤ E [Cn′ ] if
n ≤ n′. (This fact is tedious to prove rigorously, but is still pretty obvious.)

Theorem: E [Cn] ≤ 8n.
Proof (by strong induction on n). Base case (n = 1): In fact, when n = 1, the

algorithm performs zero comparisons, and indeed 0 ≤ 8.

Inductive case (n ≥ 2): We assume the inductive hypothesis, namely that for
any n′ < n, we have that E

[
C′

n
] ≤ 8n′. We must prove that E [Cn] ≤ 8n.

Let’s consider the comparisons that are made on an input array of size n.
First, there are n comparisons performed in Lines 4–5, to compute Losers
and Winners. Then there are whatever comparisons are made in the recur-
sive call. Because we’re trying to compute a worst-case bound, we’ll make
do with the following observation: Cn ≤ n + Cmax(|Losers|,|Winners|).
LetM denote the event that our pivot is in the middle half of A (that is,
falls in the shaded region of the diagram on the previous page). Thus:

E [Cn] ≤ E
[
n + Cmax(|Losers|,|Winners|)

]
the above accounting of the comparisons

= n + E
[
Cmax(|Losers|,|Winners|)

]
linearity of expectation

= n + E
[
Cmax(|Losers|,|Winners|)|M

]
· Pr [M] + E

[
Cmax(|Losers|,|Winners|)| M

]
· Pr [ M ]

Law of Total Expectation (Theorem 10.7)

= n + 1
2 ·

[
E
[
Cmax(|Losers|,|Winners|)|M

]
+ E

[
Cmax(|Losers|,|Winners|)| M

]]
Crucial observation #2: Pr [M] = Pr

[
M

]
= 1

2

≤ n + 1
2 ·

[
E
[
C3n/4

]
+ E [Cn]

]
. Crucial observation #1: if M occurs, we recurse on ≤ 3n

4 elements; else it’s certainly on ≤ n elements.

Thus we have argued that

E [Cn] ≤ n + 1
2 · E

[
C3n/4

]
+ 1

2 · E [Cn] and therefore
E [Cn] ≤ 2n + E

[
C3n/4

]
. starting with the previous inequality and subtracting 1

2 · E [Cn] from both sides, and then multiplying both sides by 2

The inductive hypothesis says that E
[
C3n/4

] ≤ 8 · 3n
4 = 6n, so we therefore have

E [Cn] ≤ 2n + 6n = 8n.
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10.4.6 Exercises

Choose a word in S = {Computers, are, useless, They, can, only, give, you, answers} (a quote attributed to Pablo
Picasso) by choosing a word w with probability proportional to the number of letters in w. Let L be a random variable
denoting the number of letters in the chosen word, and let V be a random variable denoting the number of vowels.
10.105 Give a table of outcomes and their proba-
bilities, together with the values of L and V.
10.106 What is Pr [L = 4]? What is E

[
V|L = 4

]
?

10.107 Are L and V independent?

10.108 What are E [L] and E [V]?
10.109 What is var (L)?
10.110 What is var (V)?

Flip a fair coin 16 times. Define the following two random variables:
• let H be an indicator random variable that’s 1 if at least one of the 16 flips comes up heads, and 0 otherwise.
• let R be a random variable equal to the length of the longest “run” in the flips. (A run of length k is a sequence of k

consecutive flips that all come up Heads, or k consecutive flips that all come up Tails.)
10.111 What’s E [H]?
10.112 What’s E [R]? (Hint: write a program—not by simulating many sequences of 16 coin flips, but rather by
listing exhaustively all outcomes.)
10.113 Are H and R independent?

In 1975, a physicist named Michael Winkelmann invented a dice-based game with the following three (fair) dice:
Blue die: sides 1, 2, 5, 6, 7, 9 Red die: sides 1, 3, 4, 5, 8, 9 Black die: sides 2, 3, 4, 6, 7, 8

There are some weird properties of these dice, as you’ll see.
10.114 Choose one of the three dice at random, roll it, and call the result X. Show that Pr [X = k] = 1

9 for
any k ∈ {1, . . . , 9}.
10.115 Choose one of the three dice at random, roll it, and call the result X. Put that die back in the pile
and again (independently) choose one of the three dice at random, roll it, and call the result Y. Show that
Pr [9X − Y = k] = 1

81 for any k ∈ {0, . . . , 80}.
10.116 Roll each die. Call the results B (blue), R (red), and K (black). Compute E [B], E [R], and E [K].
10.117 Define B, R, and K as in the last exercise. Compute Pr

[
B > R|B 6= R

]
, Pr

[
R > K|R 6= K

]
, and

Pr
[
K > B|K 6= B

]
—in particular, show that all three of these probabilities (strictly) exceed 1

2 .

The last exercise demonstrates that the red, blue, and black dice are nontransitive, using the language of relations
(Chapter 8): you’d bet on Blue beating Red and you’d bet on Red beating Black, but (surprisingly) you’d want to bet
on Black beating Blue. Here’s another, even weirder, example of nontransitive dice. (And if you’re clever and mildly
unscrupulous, you can win some serious money in bets with your friends using these dice.)

Kelly die: sides 3, 3, 3, 3, 3, 6 Lime die: sides 2, 2, 2, 5, 5, 5 Mint die: sides 1, 4, 4, 4, 4, 4
These dice are fair; each side comes up with probability 1

6 . Roll each die, and call the resulting values K, L, and M.
10.118 Show that the expectation of each of these three random variables is identical.
10.119 Show that Pr [K > L], Pr [L > M], and Pr [M > K] are all strictly greater than 1

2 .

You can think of the last exercise as showing that, if you had to bet on which of K or L would roll a higher number,
you should bet on K. (And likewise for L over M, and for M over K.) Now let’s think about rolling each die twice and
adding the two rolled values together. Roll each die twice, and call the resulting values K1 , K2, L1, L2, M1, and M2,
respectively.
10.120 Show that the expectation of the three values K1 +K2, L1 + L2, and M1 +M2 are identical.
10.121 (programming required) Show that the following probabilities are all strictly less than 1

2 :
Pr [K1 +K2 > L1 + L2] , Pr [L1 + L2 > M1 +M2] , and Pr [M1 +M2 > K1 +K2] .

(Notice that which die won switched directions—and all we did was go from rolling the dice once to
rolling them twice!) To show this result, write a program to check how many of the 64 outcomes cause
K1 +K2 > L1 + L2, etc.

Suppose that you are dealt a 5-card hand from a standard deck. For the purposes of the next two questions, a pair
consists of any two cards with the same rank—-so ♣A♥A♦A23 contains three pairs (♥A♦A and ♣A♦A and
♣A♥A). Let P denote the number of pairs in your hand.
10.122 Compute E [P] “the hard way,” by computing Pr [P = 0], Pr [P = 1], Pr [P = 2], and so forth. (There
can be as many as 6 pairs in your hand, if you have four-of-a-kind.)
10.123 Compute E [P] “the easy way,” by defining an indicator random variable Ri,j that’s 1 if and only if
cards #i and #j are a pair, computing E

[
Ri,j

]
, and using linearity of expectation.
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In bridge, you are dealt a 13-card hand from a standard deck. A hand’s high-card points are awarded for face cards: 4
for an ace, 3 for a king, 2 for a queen, and 1 for a jack. A hand’s distribution points are awarded for having a small
number of cards in a particular suit: 1 point for a “doubleton” (only two cards in a suit), 2 points for a “singleton”
(only one card in a suit), and 3 points for a “void” (no cards in a suit).
10.124 What is the expected number of high-card points in a bridge hand? (Hint: define some simple
random variables, and use linearity of expectation.)
10.125 What is the expected number of distribution points for hearts in a bridge hand? (Hint: calculate the
probability of having exactly 2 hearts, exactly 1 heart, or no hearts in a hand.)
10.126 Using the results of the last two exercises and linearity of expectation, find the expected number
of points (including both high-card and distribution points) in a bridge hand.

We’ve shown linearity of expectation—the expectation of a sum equals the sum of the expectations—even when the
random variables in question aren’t independent. It turns out that the expectation of a product equals the product of the
expectations when the random variables are independent, but not in general when they’re dependent.
10.127 Let X and Y be independent random variables. Prove that E [X ·Y] = E [X] · E [Y].
On the other hand, suppose that X and Y are dependent random variables. Prove that . . .
10.128 . . . E [X · Y] is not necessarily equal to E [X] · E [Y].
10.129 . . . E [X · Y] is also not necessarily unequal to E [X] · E [Y].

We showed in Example 10.39 that the expected number of flips of a p-biased coin before we get Heads is precisely 1
p .

10.130 How many flips would you expect to have to make before you see 1000 heads in total (not neces-
sarily consecutive)? (Hint: define a random variable Xi denoting the number of coin flips after the (i − 1)st Heads
before you get another Heads. Then use linearity of expectation.)
10.131 How many flips would you expect to make before you see two consecutive heads?

insertionSort(A[1 . . .n]):
1: for i := 2 to n:
2: j := i
3: while j > 1 and A[j] < A[j − 1]:
4: swap A[j] and A[j − 1]
5: j := j − 1

Figure 10.32:
A reminder of
Insertion Sort.

In Insertion Sort, we showed in Example 10.45 that the expected number of swaps is(n
2
)
/2 for a randomly sorted input. With respect to comparisons, it’s fairly easy to

see that each element participates in one more comparison than it does swap—with
one exception: those elements that are swapped all the way back to the beginning of
the array. Here you’ll precisely analyze the expected number of comparisons.
10.132 What is the probability that the ith element of the array is
swapped all the way back to the beginning of the array?
10.133 What’s the expected number of comparisons done by Insertion Sort on a randomly sorted n-
element input?

Suppose we hash n elements into an 100,000-slot hash table, resolving collisions by chaining.
10.134 Use Example 10.43 to identify the smallest n for which the expected number of collisions first
reaches 1. What the smallest n for which the expected number of collisions exceeds 100,000?
10.135 (programming required) Write a program to empirically test your answers from the last exercise, by
doing k = 1000 trials of loading [your first answer from Exercise 10.134] elements into a 100,000-slot hash table.
Also do k = 100 trials of loading [your second answer from Exercise 10.134] elements. On average, how many
collisions did you see?

Consider an m-slot hash table that resolves collisions by chaining. In the next few problems, we’ll figure out the ex-
pected number of elements that must be hashed into this table before every slot is “hit”—that is, until every cell of the
hash table is full.
10.136 Suppose that the hash table currently has i − 1 filled slots, for some number i ∈ {1, . . . ,m}. What
is the probability that the next element that’s hashed falls into an unoccupied slot? Let the random variable Xi
denote the number of elements that are hashed until one more cell is filled. What is E [Xi]?
10.137 Argue that the total number X of elements hashed before the entire hash table is full is given by
X = ∑m

i=1 Xi . Using Exercise 10.136 and linearity of expectation, prove that E [X] = m · Hm.

(Recall that Hm denotes the mth harmonic number, where Hm := ∑m
i=1

1
i . See Definition 5.4.)

The problem you’ve addressed in the last two exercises is called the coupon collector problem among computer
scientists: imagine, say, a cereal company that puts one of n coupons into each box of cereal that it sells, choosing which
coupon type goes into each box randomly. How many boxes of cereal must a serial cereal eater buy before he collects a
complete set of the n coupons?
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True story: some nostalgic friends and I were trying to remember all of the possible responses on a Magic 8 Ball, a
pseudopsychic toy that reveals one of 20 answers uniformly at random when it’s shaken—things like

{ask again later, signs point to yes, don’t count on it, . . .} .

We found a toy shop with a Magic 8 Ball in stock and started asking it questions. We hoped to have learned all 20
different answers before we got kicked out of the store.
10.138 What is the probability that we’d get 20 different answers in our first 20 trials?
10.139 In expectation, how many trials would we need before we found all 20 answers? (Use the result
on coupon collecting from Exercise 10.137.)

In Exercise 10.139, you determined the number of trials that, on average, are necessary to get all 20 answers. But how
likely are we to succeed with a certain number of trials?
10.140 Suppose we perform 200 trials. What is the probability that a particular answer (for example, “ask
again later”) was never revealed in any of those 200 trials?
10.141 Use the Union Bound (Exercise 10.37) and the previous exercise to argue that the probability that
we need more than 200 trials to see all 20 answers is less than 0.1%.

10.142 Suppose that one random bit in a 32-bit number is corrupted (that is, flipped from 0 to 1 or from 1
to 0). What is the expected size of the error (thinking of the change of the value in binary)? What about for a
random bit in an n-bit number?

10.143 Suppose that the numbers {1, . . . , n} are randomly ordered—that is, we choose a random per-
mutation π of {1, . . . ,n}. For a particular index i, what is the probability that πi = i—that is, the ith biggest
element is in the ith position?
10.144 Let X be a random variable denoting the number of indices i for which πi = i. What is E [X]?
(Hint: define indicator random variables and use linearity of expectation.)

Markov’s inequality states that, for a random variable X that is always nonnegative (that is, for any x in the sample Markov’s inequality
is named after
Andrey Markov,
a 19th-to-20th-
century Russian
mathematician. A
number of other
important ideas
in probability are
also named after
him, like Markov
processes, Hidden
Markov models,
and more.

space, we have X(x) ≥ 0), the following statement is true, for any α ≥ 1:

Pr [X ≥ α] ≤ E [X]
α

.

10.145 Prove Markov’s inequality. (Hint: use conditional expectation.)
10.146 The median of a random variable X is a value x such that

Pr [X ≤ x] ≥ 1
2 and Pr [X ≥ x] ≥ 1

2 .

Using Markov’s inequality, prove that the median of a nonnegative random variable X is at most 2 · E [X].

Take a fair coin, and repeatedly flip it until it comes up heads. Let K be a random variable indicating the number of
flips performed. (We’ve already shown that E [K] = 2, in Example 10.39.) You are offered a chance to play a gambling
game, for the low low price of y dollars to enter. A fair coin will be flipped until it comes up heads, and you will be paid
(3/2)K dollars if K flips were required. (So there’s a 1

2 chance that you’ll be paid $1.50 because the first flip comes up
heads; a 1

4 chance that you’ll be paid $2.25 = (1.50)2 because the first flip comes up tails and the second comes up heads,
and so forth.)
10.147 Assuming that you care only about expected value—that is, you’re willing to play if and only if
E [(3/2)K ] ≥ y—then what value of y is the break-even point? (In other words, what is E [(3/2)K ]?)
10.148 Let’s sweeten the deal slightly: you’ll be paid 2K dollars if K flips are required. Assuming that you
still care only about expected value, then what value of y is the break-even point? (Be careful!)

10.149 Let X be the number of heads flipped in 4 independent flips of a fair coin. What is var (X)?
10.150 Let Y be the average of two independent rolls of a fair die. What is var (Y)?

10.151 Let a ∈ R, and let X be a random variable. Prove that E [a · X] = a · E [X].
10.152 Let a ∈ R, and let X be a random variable. Prove that var (a ·X) = a2 · var (X).
10.153 Prove that var (X +Y) = var (X) + var (Y) for two independent random variables X and Y. (Hint:
use Exercise 10.127.)



1066 CHAPTER 10. PROBABILITY

10.154 Let X be a random variable following a binomial distribution with parameters n and p. (That
is, X is the number of heads found in n flips of a p-biased coin.) Using Exercise 10.153 and the logic as in
Example 10.40, show that E [X] = np and var (X) = np(1− p).

10.155 Flip a p-biased coin n times, and let Y be a random variable denoting the fraction of those n flips
that came up heads. What are E [Y] and var (Y)?

In the next few exercises, you’ll find the variance of a geometric random variable. This derivation will require a little
more work than the result from Exercise 10.154 (about the variance of a binomial random variable); in particular, we’ll
need a preliminary result about summations first:
10.156 (Calculus required.) Prove the following two formulas, for any real number r with 0 ≤ r < 1:

∞

∑
i=0

iri = r
(1− r)2

∞

∑
i=0

i2ri = r(1 + r)
(1− r)3

.

(Hint: use the geometric series formula ∑n
i=0 ri = rn+1−1

r−1 from Theorem 5.2, differentiate, and take the limit as n grows.
Repeat for the second derivative.)
10.157 Let X be a geometric random variable with parameter p. (That is, X denotes the number of flips of
a p-biased coin we need before we see heads for the first time.) What is var (X)? (Hint: compute both E [X]2 and
E
[
X2]. The previous exercise will help with at least one of those computations.)

Recall from Chapter 3 that a proposition is in 3-conjunctive normal form (3CNF) if it is the conjunction of clauses,
where each clause is the disjunction of three different variables/negated variables. For example,

(¬p ∨ q ∨ r) ∧ (¬q∨ ¬r ∨ x)

is in 3CNF. Recall further that a proposition ϕ is satisfiable if it’s possible to give a truth assignment for the variables
of ϕ to true/false so that ϕ itself turns out to be true. We’ve previously discussed that it is believed to be computation-
ally very difficult to determine whether a proposition ϕ is satisfiable (see p. 326)—and it’s believed to be very hard to
determine whether ϕ is satisfiable even if ϕ is in 3CNF. But you’ll show here an easy way to satisfy “most” clauses of
a proposition ϕ in 3CNF, using randomization.
10.158 Let ϕ be a proposition in 3CNF. Consider a random truth assignment for ϕ—that is, each variable
is set independently to True with probability 1

2 . Prove that a particular clause of ϕ is true under this truth
assignment with probability ≥ 7

8 .
10.159 Suppose that ϕ has m clauses and n variables. Prove that the expected number of satisfied clauses
under a random truth assignment is at least 7m

8 .
10.160 Prove the following general statement about any random variable: Pr [X ≥ E [X]] > 0. (Hint:
use conditional expectation.) Then, using this general fact and Exercise 10.159, argue that, for any 3CNF
proposition ϕ, there exists a truth assignment that satisfies at least 7

8 of ϕ’s clauses.

Taking it further: One can also show that there’s a very good chance—at least 8/m—that a random
truth assignment satisfies at least 7m/8 clauses, and therefore we expect to find such a truth assign-
ment within m/8 random trials. This algorithm is called Johnson’s algorithm, named after the researcher
David Johnson; for details of this and other randomized algorithms for satisfiability, see a good book on
randomized algorithms.11

11

11 Michael Mitzen-
macher and Eli
Upfal. Probability
and computing: ran-
domized algorithms
and probabilistic
analysis. Cambridge
University Press,
2005; Rajeev Mot-
wani and Prabhakar
Raghavan. Ran-
domized Algorithms.
Cambridge Uni-
versity Press, 1995;
and Jon Kleinberg
and Éva Tardos.
Algorithm Design.
Addison–Wesley,
2006.
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10.5 Chapter at a Glance

Probability, Outcomes, and Events

Imagine a process by which some quantities of interest are determined in some ran-
dom way. An outcome, or realization, of this probabilistic process is the sequence of
results for all randomly determined quantities. The sample space S is the set of all pos-
sible outcomes. A probability function Pr : S → R describes, for each outcome s ∈ S,
the fraction of the time that s occurs. The probability function Prmust satisfy two
conditions: (i) ∑s∈S Pr [s] = 1, and (ii) Pr [s] ≥ 0 for every s ∈ S.

An event is a subset of S, and the probability of an event E, written Pr [E], is the sum
of the probabilities of the outcomes contained in E. We have that Pr [S] = 1 and
Pr [∅] = 0. For events A and B, writing A (“not A”) to denote the event A = S − A,
we have that Pr [ A ] = 1− Pr [A], and Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].

We can use a tree diagram to represent a sequence of random choices, where internal
nodes of the tree correspond to random decisions made by the probabilistic process;
leaves correspond to the outcomes in the sample space. Every edge leaving an internal
node is labeled with the probability of the corresponding random decision; the prob-
ability of a particular outcome is precisely equal to the product of the labels on the
edges leading from the root to its corresponding leaf.

The uniform distribution is the probability distribution in which all outcomes in the
sample space S are equally likely—that is, when Pr [s] = 1

|S| for each s ∈ S. (Nonuniform
probability is when this equality does not hold.)

The Bernoulli distribution with parameter p is the probability distribution that results
from flipping one coin, where the sample space is {H,T} and Pr [H] = p (and thus
Pr [T] = 1− p). Such a coin is called p-biased. Each coin flip is called a trial; the flip is
called fair if p = 1

2 .
The binomial distribution with parameters n and p is a distribution over the sample

space {0, 1, . . . , n} determined by flipping a p-biased coin n times and counting the
number of times the coin comes up heads. Here Pr [k] =

(n
k
) · pk · (1− p)n−k denotes the

probability that there are precisely k heads in the n flips.
The geometric distribution with parameter p is a distribution over the positive integers,

where the output is determined by the number of flips of a p-biased coin required
before we first see a heads; thus Pr [k] = (1− p)k−1 · p for any integer k ≥ 1.

Independence and Conditional Probability

When there are multiple events of interest, then one useful way understanding the
relationship between two events is to understand whether one event’s occurrence
changes the likelihood of the other event also occurring. When there’s no change, the
events are called independent; when there is a change in the probability, the events are
called dependent. More formally, two events A and B are independent (or uncorrelated) if
and only if Pr [A ∩ B] = Pr [A] · Pr [B]. Otherwise the events A and B are called depen-
dent (or correlated). Intuitively, A and B are dependent if A’s occurrence/nonoccurrence
tells us something about whether B occurs. When knowing that A occurred makes B
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more likely to occur, we say that A and B are positively correlated; when A makes B less
likely to occur, we say that A and B are negatively correlated.

The conditional probability of A given B is

Pr
[
A|B] = Pr [A ∩ B]

Pr [B]
.

(Treat Pr
[
A|B] as undefined when Pr [B] = 0.) Intuitively, we can think of Pr

[
A|B] as

“zooming” the universe down to the set B. Two events A and B for which Pr [B] 6= 0 are
independent if and only if Pr

[
A|B] = Pr [A].

There are a few useful equivalences based on conditional probability. For any events
A and B, the chain rule says that Pr [A ∩ B] = Pr [B] · Pr

[
A|B]; more generally,

Pr [A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak]
= Pr [A1] · Pr

[
A2|A1

] · Pr [A3|A1 ∩ A2
] · · · · · Pr [Ak|A1 ∩ · · · ∩ Ak−1

]
.

The law of total probability says that Pr [A] = Pr
[
A|B

]
· Pr [B] + Pr

[
A| B

]
· Pr [ B ].

Bayes’ Rule is a particularly useful rule that allows us to “flip around” a conditional
probability statement: for any two events A and B, we have

Pr
[
A|B

]
=
Pr

[
B|A] · Pr [A]
Pr [B]

.

Random Variables and Expectation

The probabilistic statements that we’ve considered so far are about events (“whether
or not” questions); we can also consider probabilistic questions about “how much” or
“how often.” A random variable X assigns a numerical value to every outcome in the
sample space S—that is, a random variable is a function X : S → R. (Often we write
X to denote the value of a random variable X for a realization chosen according to Pr,
or perform arithmetic on random variables.) An indicator random variable is a {0, 1}-
valued random variable. Two random variables X and Y are independent if every two
events of the form “X = x” and “Y = y” are independent.

The expectation of a random variable X, denoted E [X], is the average value of X,
defined as E [X] = ∑x∈S X(x) · Pr [x]. A Bernoulli random variable with parameter p has
expectation p. A binomial random variable with parameters p and n has expectation
pn. A geometric random variable with parameter p has expectation 1

p .
Linearity of expectation is the very useful fact that the expectation of a sum is the sum

of the expectations. That is, for random variables X : S → R and Y : S → R, we
have E [X +Y] = E [X] + E [Y]. (Note that there is no requirement of independence on
X and Y!) Another useful fact is that, for a positive integer–valued random variable
X : S → Z≥0, we have E [X] = ∑∞

i=1 Pr [X ≥ i].
The conditional expectation of a random variable X given an event E is the average

value of X over outcomes where E occurs, defined as E
[
X|E

]
= ∑x∈E X(x) · Pr

[
x|E

]
.

The variance of a random variable X is

var (X) = E
[
(X − E [X])2

]
= E

[
X2

]
− (E [X])2 .

The standard deviation is std (X) =
√
var (X).
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Key Terms and Results

Key Terms

Probability, Outcomes, and Events

• outcome/realization
• sample space
• probability function/distribution
• event
• tree diagram
• uniform vs. nonuniform probability
• fair vs. biased coin flips
• uniform distribution
• Bernoulli distribution
• binomial distribution
• geometric distribution

Independence and Conditional
Probability

• independent/uncorrelated events
• dependent/correlated events
• positive/negative correlation
• conditional probability
• chain rule
• law of total probability
• Bayes’ Rule

Random Variables and Expectation

• random variable
• indicator random variable
• independent random variables
• expectation
• linearity of expectation
• conditional expectation
• variance
• standard deviation

Key Results

Probability, Outcomes, and Events

1. For a sample space S and events A and B, writing A (“not
A”) to denote the event S − A, we have that Pr [S] = 1,
Pr [∅] = 0, Pr [ A ] = 1− Pr [A], and
Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].

2. Under the uniform distribution, Pr [s] = 1
|S| for every

s ∈ S. Consider parameters p and n. Under a Bernoulli
distribution, Pr [H] = p and Pr [T] = 1− p. Under a
binomial distribution, Pr [k] =

(n
k
)
pk(1− p)n−k. Under a

geometric distribution, Pr [k] = (1− p)k−1p.

Independence and Conditional Probability

1. Events A and B are independent if and only if
Pr [A ∩ B] = Pr [A] · Pr [B], or, equivalently, if
Pr

[
A|B] = Pr [A].

2. The chain rule: Pr [A ∩ B] = Pr [B] · Pr
[
A|B

]
.

3. The law of total probability:
Pr [A] = Pr

[
A|B] · Pr [B] + Pr

[
A| B

] · Pr [ B ].

4. Bayes’ Rule: Pr
[
A|B] = Pr[B|A]·Pr[A]

Pr[B] .

Random Variables and Expectation

1. The expectation of a random variable X is the average
value of X, defined as E [X] = ∑x∈S X(x) · Pr [x].

2. A Bernoulli random variable with parameter p has
expectation p. A binomial random variable with
parameters p and n has expectation pn. A geometric
random variable with parameter p has expectation 1

p .

3. Linearity of expectation: for any two random variables X
and Y, we have E [X + Y] = E [X] + E [Y]. (Note that there is
no requirement of independence on X and Y!)

4. For a random variable X : S → Z≥0, we have that
E [X] = ∑∞

i=1 Pr [X ≥ i].

5. For a random variable X, we have
var (X) = E

[
(X − E [X])2

]
= E

[
X2]− (E [X])2 .





11
Graphs and Trees

In which our heroes explore the many twisting paths through the gnarled
forest, emerging in the happy and peaceful land in which their
computational adventures will continue.
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11.1 Why You Might Care

Oh what a tangled web we weave,
When first we practise to deceive!

Sir Walter Scott (1771–1832), Marmion (1808)

It’s possible to make graphs sound hopelessly abstract and utterly uninteresting: a
graph is a pair 〈V, E〉, where V is a nonempty collection of entities called nodes and E is a
collection of edges that join pairs of nodes. But graphs are fascinating—at least, when the
entities and the relationship represented by the edges are themselves interesting! Here
are a few of the many examples of types of graphs:

• social networks like Facebook (or LinkedIn or Pinterest or . . . ): the nodes are people,
and an edge between two people represents a friendship (or at least a “friendship”).

• the world-wide web: the nodes are web pages, and an edge represents a hyperlink
from one page to another. These hyperlinks between pages form the basis for the
ranking of web pages by search engines like Google.1 1 Sergei Brin and

Larry Page. The
anatomy of a large-
scale hypertextual
web search engine.
In 7th International
World-Wide Web
Conference, 1998.

• dating networks: nodes represent people; an edge connects two people who have
been involved in a romantic relationship. These networks have implications for
the spread of certain communicable diseases, particularly sexually transmitted
infections.

• road networks and other transportation networks: edges represent roads; nodes
represent intersections. For example, United Parcel Service (UPS) saves gas (and
money!) by using a route-finding algorithm through this network that avoid turns
across traffic.2 2 Joel Lovell. Left-

hand-turn elimina-
tion. The New York
Times, 9 December
2007.

• food webs: nodes represent species within a particular ecosystem, and an edge from
one species to another indicates that the first species preys on the latter.

• co-purchase networks: nodes are products that are sold by a retailer like Walmart or
Amazon; an edge between two products indicates the number of customers who
bought both products. These networks have implications for recommender systems,
the “people who bought x also bought y” feature of Amazon.

• the internet: nodes are computers (personal computers, servers, and other network-
ing hardware like routers), and edges represent physical wires connecting two
machines together. When you request a video from youtube.com, the computers
involved in the network must collectively construct a path along which YouTube’s
bits can flow so that they reach your computer.

Graphs are ubiquitous. Indeed, any pairwise relationship among entities is really
underlyingly a graph: web pages and links, computers and fiber optic cables, kidney
patients/donors and compatibility for transplants. The applications are innumerable,
and this chapter will barely scratch the surface. Graphs and graph-theoretic reasoning
will arise again and again well beyond the end of this book.
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11.2 Formal Introduction

The Bible tells us to love our neighbors, and also to
love our enemies; probably because they are generally
the same people.

G. K. Chesterton (1874–1936)

We begin by defining the terminology for the two different basic types of graphs. In
both, we have a set of entities called nodes, some pairs of which are joined by a relation-
ship called an edge. (A node can also be called a vertex.) The two types of graph differ
in whether the relationship represented by an edge is “between two nodes” or “from
one node to another.” In an undirected graph, the relationship denoted by the edges is
symmetric (for example, “u and v are genetically related”):

vertex, n.: a node.
plural: vertices.

We will use the
terms node/nodes
and vertex/vertices
interchangeably
throughout this
chapter. (Both terms
are used commonly
in CS.) A graph
can also be called
a network; edges
are also sometimes
called links, or
occasionally arcs in
directed graphs.

Definition 11.1 (Undirected Graph)
A undirected graph is a pair G = 〈V, E〉 where V is a nonempty set of vertices or nodes,
and E ⊆

{
{u, v} : u, v ∈ V

}
is a set of edges joining pairs of vertices.

The second basic kind of graph is a directed graph, in which the relationship denoted by
the edges need not be reciprocated (for example, “u has texted v”):

Definition 11.2 (Directed Graph)
A directed graph is a pair G = 〈V, E〉 where V is a nonempty set of nodes, and E ⊆ V × V
is a set of edges joining (ordered) pairs of vertices.

In other words, in a directed graph an edge is an ordered pair of vertices (“an edge from
u to v”) and in an undirected graph an edge is an unordered pair of vertices (“an edge
between u and v”). Think about the difference between Twitter followers (directed)
and Facebook friendships (undirected): Alice can follow Bob without Bob following
Alice, but they’re either friends or they’re not friends.

Graphs are generally drawn with nodes represented as circles, and edges repre-
sented by lines. Each edge in directed graphs is drawn with an arrow indicating its
orientation (“which way it goes”). Here is an example of each:

Example 11.1 (A sample undirected graph)
Here is an undirected graph:

A

B

C D

E
F

G
H

I
J

K L

This graph contains:

• 12 nodes: {A, B, C, D, E, F, G, H, I, J, K, L}.
• 10 edges:

{
{A, B} , {B, C} , {C, D} , {E, F} , {E, H} , {F, G} , {G, H} , {I, J} , {J, K} , {K, L}

}
.
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Example 11.2 (Streets of Manhattan: a sample directed graph)
The following directed graph contains 9 nodes, each corresponding to an intersection
of a “street” running east–west and an “avenue” running north–south in Manhattan:

43rd & 9th 43rd & 8th 43rd & 7th

42nd & 9th 42nd & 8th 42nd & 7th

41st & 9th 41st & 8th 41st & 7th

There are 14 edges in this graph. There’s something potentially tricky in count-
ing to 14: edges in a directed graph are ordered pairs, so there are two edges be-
tween 42nd & 9th and 42nd & 8th, one in each direction—〈42nd & 9th, 42nd & 8th〉 and
〈42nd & 8th, 42nd & 9th〉. The pair of nodes 42nd & 8th and 42nd & 7th is similar.

For many of the concepts that we’ll explore in this chapter, it will turn out that there
are no substantive differences between the ideas for directed and undirected graphs.
To avoid being tedious and unhelpfully repetitive, whenever it’s possible we’ll state
definitions and results about both undirected and directed graphs simultaneously. But
doing so will require a little abuse of notation: we’ll allow ourselves to write an edge
as an ordered pair 〈u, v〉 even for an undirected graph. In an undirected graph, we will
agree to understand both 〈u, v〉 and 〈v, u〉 as meaning {u, v}.

Simple graphs

(a) Undirected graphs.

(b) Directed graphs.

Figure 11.1: Parallel
edges and self-
loops.

For many of the real-world phenomena that we will be interested in
modeling, it will make sense to make a simplifying assumption about
the edges in our graphs. Specifically, we will typically restrict our at-
tention to so-called simple graphs, which forbid two different kinds of
edges: edges that connect nodes to themselves, and edges that are pre-
cise duplicates of other existing edges. (See Figure 11.1.)

Definition 11.3 (Self-loops and parallel edges)
A self-loop is an edge from a node u to itself. Two edges are called parallel if they both go
from same node u and both go to the same node v.

Note that the edges 〈u, v〉 and 〈v, u〉 are not parallel in a directed graph: directed edges
are parallel only if they both go from the same node and to the same node, in the same
orientation.

Definition 11.4 (Simple graph)
A graph is simple if it contains no parallel edges and no self-loops.

In general, the particular real-world phenomenon that we seek to model will dictate
whether self-loops, parallel edges, or both will make sense. Here are a few examples:
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Example 11.3 (Self-loops and parallel edges)
Problem: Suppose that we construct a graph to model each of the following phenom-

ena. In which settings do self-loops or parallel edges make sense?

1. A social network: nodes correspond to people; (undirected) edges represent
friendships.

2. The web: nodes correspond to web pages; (directed) edges represent links.

3. The flight network for a commercial airline: nodes correspond to airports;
(directed) edges denote flights scheduled by the airline in the next month.

4. The email network at a college: nodes correspond to students; there is a (di-
rected) edge 〈u, v〉 if u has sent at least one email to v within the last year.

Solution: 1. Neither self-loops nor parallel edges make sense. A self-loop would
correspond to a person being a friend of himself, and parallel edges between
two people would correspond to them being friends “twice.” (But two people
are either friends or not friends.)

2. Both self-loops and parallel edges are reasonable. It is easy to imagine a web
page p that contains a hyperlink to p itself. It is also easy to imagine a web page
p that contains two separate links to another web page q. (For example, as of
this writing, the “CNN” logo on www.cnn.com links to www.cnn.com. And, as of
the end of this sentence, this page has three distinct references to www.cnn.com.)

3. In the flight network, many parallel edges will exist: there are generally many
scheduled commercial flights from one airport to another—for example, there
are dozens of flights every week from BOS (Boston, MA) to SFO (San Francisco,
CA) on most major airlines. However, there are no self-loops: a commercial
flight from an airport back to the same airport doesn’t go anywhere!

4. Self-loops are reasonable but parallel edges are not. A student u has either sent
email to v in the last year or she has not, so parallel edges don’t make sense
in this network. However, self-loops exist if any student has sent an email to
herself (as many people do to remind themselves to do something later).

Throughout, we assume that all graphs are simple unless otherwise noted.

Taking it further: Actually, the way that we phrased our definitions of graphs in Definitions 11.1
and 11.2 doesn’t even allow us to consider parallel edges. (Our definitions do allow self-loops, though.)
That’s because we defined the edges as a subset E of V × V or

{
{u, v} : u, v ∈ V

}
, and sets don’t allow

duplication—which means that we can’t have 〈u, v〉 in E “twice.” There are alternate ways to formalize
graphs that do permit parallel edges, but they’re needlessly complicated for the applications that we’ll
focus on in this chapter.

11.2.1 Neighborhoods and Degree

Imagine a social network in which two people, Ursula and Victor, are friends—or,
more generally, imagine an undirected graph in which nodes u and v are joined by an
edge. Here’s the vocabulary for referring to these nodes and the edge between them:
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Definition 11.5 (Adjacency, neighbors, endpoints, incidence)
For an edge e = {u, v} in an undirected graph (see Figure 11.2), we say that:

• the nodes u and v are adjacent;
• the node v is a neighbor of the node u (and vice versa);
• the nodes u and v are the endpoints of the edge e; and
• the nodes u and v are both incident to the edge e.

It’s important to distinguish between two distinct concepts:

u ve

Figure 11.2: Two
nodes joined by an
edge.• the direct connection between two nodes u and v that are adjacent—that is, a single

edge that joins u and v directly; and

• an indirect connection between two nodes that follows a sequence of edges.

At the moment, we’re talking only about the first kind of connection, a direct connec-
tion via a single edge. (A multihop connection is called a path; we’ll talk about paths in
Section 11.3.) Here’s an example of the vocabulary from Definition 11.5:

Example 11.4 (Disney World to Disney Land)
Here is a small portion of the U.S. Interstate system between Orlando, FL and Los
Angeles, CA. Each of the roads is labeled by its name.

Los Angeles

Lake City, FL Jacksonville

Tampa Daytona Beach

Orlando

I10(west)

I75

I10(east)

I95

I4(east)I4(west)

In this graph:

• Orlando is adjacent to Tampa and Daytona Beach.
• None of the other nodes (Lake City, Jacksonville, Los Angeles) is a neighbor of

Orlando. Orlando is also not a neighbor of itself.
• The endpoints of edge I75 are Tampa and Lake City.
• Jacksonville is incident to I95, as is Daytona Beach.

The neighborhood of a node is the set of all nodes adjacent to it:

Definition 11.6 (Neighborhood)
Let G = 〈V, E〉 be an undirected graph, and let u ∈ V be a node. The neighborhood of u is
the set

{
v ∈ V : {u, v} ∈ E

}
—that is, the set of all neighbors of u.
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For example, in the graph from Example 11.4 (reproduced in abbreviated form in
Figure 11.3), the neighborhood of Lake City (LC) is {Los Angeles (LA), Tampa (TA),
Jacksonville (JA)}. Or, for a graph G that represents a social network, the neighborhood
of a node u is the set of people who are u’s friends.

LA

LC JA

TA DB

OR

Figure 11.3: The
road network from
Example 11.4,
abbreviated.

Degree
It’s also common to refer the number of neighbors that a node has (without reference

to which particular nodes happen to be that node’s neighbors):

Definition 11.7 (Degree)
The degree of a node u in an undirected graph G is the size of the neighborhood of u in
G—that is, the number of nodes adjacent to u.

For example, in the graph in Figure 11.3, Lake City (LC) has degree 3 and Los Angeles
(LA) has degree 1. Or, in a social network, the degree of a node u is the popularity of
u—the number of friends that u has. Here are a few practice questions:

Example 11.5 (Neighborhood and degree)
Problem: Consider the following graph:

A

B

C

D

E

F

G

H

1. What are the neighbors of node C?
2. What nodes, if any, have degree equal to one?
3. What node has the highest degree in this graph?
4. What nodes, if any, are in the neighborhoods of both nodes B and E?

Solution: 1. Node C has two neighbors, namely the nodes B and E.

2. The nodes with degree one are those with precisely one neighbor. These nodes
are: A, D, F, and H. (Their solitary neighbors are, respectively: B, G, E, and G.)

3. We simply count neighbors for each node, and we find that nodes B and E both
have degree three, and are tied as the nodes with the highest degree.

4. The neighborhood of node B is {A, C, E}, and the neighborhood of node E is
{B, C, F}. Taking the intersection of those sets yields the one node in the neigh-
borhood of both B and E, namely node C.

Taking it further: Consider a population of people—say, the current residents of Canada—represented
as a social network, in an undirected graph whose edges represent friendship. For a node in the social
network (also known as a person), we can calculate many numbers that may be interesting: height, age,
income, number of cigarettes smoked per day, self-reported happiness, etc. Then, for any one of these
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numerical properties, we can consider the distribution over the population: for example, the distribution
of heights, or the distribution of ages. (The height distribution will follow a roughly bell-shaped curve;
the age distribution is more complicated, both because of death and because of variation in the birth
rate over time.) Another interesting numerical property of a person u is the degree of u: that is, the
number of friends that u has. The degree distribution of a graph describes how popularity varies across
the nodes of the network. The degree distribution has some interesting properties—very different from
the distribution of heights or ages. See p. 1123 for some discussion.

The Handshaking Lemma
Before we move on from degree, we’ll prove a basic but valuable fact, colloquially

called the “handshaking lemma.” (We can represent a group of people, some pairs of
whom shake hands, using an undirected graph: an edge joins u and v if and only if u
and v shook hands; the theorem describes the number of shakes.) The handshaking
lemma relates the sum of nodes’ degrees to the number of edges in the graph: 1

3 2

2 2

2

Figure 11.4: The
road network from
Figure 11.3, with
nodes labeled by
their degree.

Theorem 11.1 (“Handshaking Lemma”)
Let G = 〈V, E〉 be an undirected graph. Then

∑
u∈V

degree(u) = 2|E|.

For example, Figure 11.4 shows our road network from Example 11.4, with all nodes
labeled by their degree. This graph has |E| = 6 edges, and the sum of the nodes’
degrees is 1 + 3 + 2 + 2 + 2 + 2 = 12, and indeed 12 = 2 · 6. Here is a proof:

Proof of Theorem 11.1. Every edge has two endpoints! Or, more formally, imagine loop-

“Look on every exit
as being an entrance
somewhere else.”
— Tom Stoppard
(b. 1937),
Rosencrantz and
Guildenstern are
Dead (1966)

ing over each edge to compute all nodes’ degrees:

1: initialize du to 0 for each node u
2: for each edge {u, v} ∈ E:
3: du := du + 1
4: dv := dv + 1

In each iteration of the for loop, we increment two different d• values; thus, after i
iterations, we have that ∑u du = 2i. (We could give a fully rigorous proof of this fact by
induction.) We complete |E| iterations of the for loop, one for each edge, and thus at
the end of the algorithm we have that ∑u∈V du = 2|E|. Furthermore, after the loop, it’s
clear that du = degree(u) for every node u. Thus

∑
u∈V

du = ∑
u∈V

degree(u) = 2|E|.

Here’s a useful corollary of Theorem 11.1 (the proof is left to you as Exercise 11.17):

Corollary 11.2
Let nodd denote the number of nodes whose degree is odd. Then nodd is even.

(For example, for the graph in Figure 11.4, we have nodd = 2: the two nodes with odd
degree are those with degree 1 and 3. And 2 is an even number.)
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Neighborhoods and degree: directed graphs
The definitions of adjacency, neighbors, and degree from Definitions 11.5–11.7

were all for undirected graphs. Here we’ll introduce the analogous notions for directed
graphs, all of which are slightly more complicated because they must account for the
orientation of each edge. We start with the directed version of “neighbors”:

Definition 11.8 (Neighbors in directed graphs)
For an edge 〈u, v〉 from node u to node v in a directed graph, we say that:

• the node v is an out-neighbor of the node u; and
• the node u is an in-neighbor of the node v.

For example, if G represents a flight network (with nodes as airports and directed
edges corresponding to flights), then the out-neighbors of node u are those airports
that have direct flights from u, and the in-neighbors of u are those airports that have
direct flights to u. (See Figure 11.5.) Now, using these definitions, we can define the
analogues of neighborhoods and degree in directed graphs:

u

(a) in-neighbors

u

(b) out-neighbors

Figure 11.5: The in-
and out-neighbors
of a node u.

Definition 11.9 (Neighborhoods and degrees in directed graphs)
For a node u in an directed graph, we say that:

• the in-neighborhood of u is {v : 〈v, u〉 ∈ E}, the set of in-neighbors of v;
• the in-degree of u is its number of in-neighbors (its in-neighborhood’s cardinality);
• the out-neighborhood of u is {v : 〈u, v〉 ∈ E}, the set of out-neighbors of u; and
• the out-degree of u is its number of out-neighbors (its out-neighborhood’s cardinality).

Here are a few practice questions about in- and out-neighborhoods:

Example 11.6 (Neighborhood and degree in a directed graph)
Problem: Consider the following directed graph:

A

B

C

D

E

F

G

H

1. What are the in-neighbors of node C? The out-neighbors of C?
2. What nodes, if any, are in both the in-neighborhood and out-neighborhood of

node E?
3. What nodes, if any, have in-degree zero? Out-degree zero?

Solution: 1. Node C has one in-neighbor, namely B, and two out-neighbors, namely D

and E.
2. Node E has three in-neighbors (B, C, and F) and two out-neighbors (B and F). So

nodes B and F are in both E’s in-neighborhood and E’s out-neighborhood.
3. Node A has no in-neighbors, so A’s in-degree is zero. Node G has no out-

neighbors, so G’s out-degree is zero.
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11.2.2 Representing Graphs: Data Structures

The graphs that we’ve considered so far have been presented visually: as a picture,
with nodes drawn as circles and edges drawn as lines or arrows. But, of course, when
we represent a graph on a computer, we’ll need to use some data structure to store a
network, not just some image file. Here we will give a brief summary of the two major
data structures used to represent graphs. If you’ve had a course on data structures,
then this material may be a review; if not, it will be a preview.3

3 Katy Börner.
Atlas of Science:
Visualizing What We
Know. MIT Press,
2010.

Taking it further: A visual representation is great for some smaller networks, and a well-designed lay-
out can sometimes make even large networks easy to understand at a glance. Graph drawing is the prob-
lem of algorithmically laying out the nodes of a graph well—in an aesthetic and informative manner.
There’s a physics analogy that’s often used in laying out graphs, in which we imagine nodes “attracting”
and “repelling” each other depending on the presence or absence of edges. See p. 1124 for some discus-
sion, including an application of this graph-drawing idea to the 9/11 Memorial in New York City. Some
other gorgeous visualizations of network (and other!) data can be found online at sites like Flowing Data
(http://flowingdata.com/), Information Is Beautiful (http://informationisbeautiful.net), or some
of the beautiful books on data visualization like the Atlas of Science.3

The most straightforward data structure for a graph is just a list of nodes and a list
of edges. But this straightforward representation suffers for some standard, natural
questions that are typically asked about graphs. Many of the natural questions that we
will find ourselves asking are things like: What are all of the neighbors of A? or Are B and
C joined by an edge? There are two standard data structures for graphs, each of which is
tailored to make it possible to answer one of these two questions quickly.

Adjacency lists
The first standard data structure for graphs is an adjacency list, which—as the name

implies—stores, for each node u, a list of the nodes adjacent to u:

Definition 11.10 (Adjacency list)
In an adjacency list of a graph G = 〈V, E〉, for each node u ∈ V, we store an unsorted list of
all of u’s neighbors in the graph.

linked list of u’s neighbors

(empty) list of x’s neighbors

array containing all nodes in the graph

u v1 v2 v3 v4

x

...

...

Figure 11.6: A
schematic of an
adjacency list.

The schematic for an adjacency list is illus-
trated in Figure 11.6: each node in the graph
corresponds to a row of the table, which points
to an unsorted list of that node’s neighbors.
(These lists are unsorted so that it’s faster to
add a new edge to the data structure.)

There’s no significant difference between
adjacency lists for undirected graphs and for
directed graphs: for an undirected graph, we
list the neighbors for each node u; for a directed
graph, we list the out-neighbors of each node. (Every edge 〈u, v〉 in a directed graph
appears only once in the data structure, in u’s list. Every edge {u, v} in an undirected
graph is represented twice: v appears in u’s list, and u appears in v’s list. This observa-
tion is another way of thinking of the proof of Theorem 11.1.)
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Here are example adjacency lists for two graphs, one undirected and one directed:

Example 11.7 (Two sample adjacency lists)
Consider the following two graphs:

Allie

Ben

Camille

DerekEvie

A

B

C

D

E

The adjacency lists for these two graphs are as follows.

Allie: Evie, Ben

Ben: Allie, Evie

Camille: --

Derek: --

Evie: Allie, Ben

A: B

B: C, D

C: E, A

D: --

E: C

Note that the order of the (out-)neighbors of any particular node isn’t specified:
for example, we could just as well said that Evie’s neighbors were [Ben, Allie] as
[Allie, Ben].

Adjacency matrices
The second standard data structure for representing graphs is an adjacency matrix:

Definition 11.11 (Adjacency matrix)
In an adjacency matrix of a graph G = 〈V, E〉, we store the graph using an |V|-by-|V| table.
The ith row of the table corresponds to the neighbors of node i. A True (or 1) in column j
indicates that the edge 〈i, j〉 is in E; a False (or 0) indicates that 〈i, j〉 /∈ E.

In a directed graph, the ith row corresponds to the out-neighbors of node i, so that
the 〈i, j〉th entry of the matrix corresponds to the presence/absence of an edge from
i to j. The ith column corresponds to the in-neighbors of i. Here are two examples of
adjacency matrices, for the graphs from Example 11.7:

Example 11.8 (Two sample adjacency matrices)
The following adjacency matrices represent the graphs from Example 11.7:

A
l
l
i
e

B
e
n

C
a
m
i
l
l
e

D
e
r
e
k

E
v
i
e

Allie 0 1 0 0 1

Ben 1 0 0 0 1

Camille 0 0 0 0 0

Derek 0 0 0 0 0

Evie 1 1 0 0 0

A B C D E

A 0 1 0 0 0

B 0 0 1 1 0

C 1 0 0 0 1

D 0 0 0 0 0

E 0 0 1 0 0
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the main diagonal
〈j, j〉 /∈ E (for simple graphs)

〈j, i〉 ∈ E?
(identical in undirected graphs)

〈i, j〉 ∈ E?

0

0

0

0

0

0

0

0

i

j

i j

Figure 11.7: A
schematic of an
adjacency matrix.

The adjacency matrix has two properties
that are worth a note. (See Figure 11.7.)

• The main diagonal contains all zeros: a 1
in the 〈i, i〉th position of the matrix would
correspond to an edge between node i and
node i—that is, a self-loop, which is forbidden
in a simple graph.

• For an undirected graph, the matrix is sym-
metric: the 〈i, j〉th position of the matrix records
the presence or absence of an edge from i to j,
which is identical to the presence or absence
of an edge from j to i in an undirected graph. Adjacency matrices are not necessarily
symmetric in directed graphs: there may be an edge from u to v without an edge from
v to u.

Choosing between adjacency lists and matrices
Which of the two data structures that we’ve seen for graphs should we choose? Are

adjacency lists better than adjacency matrices, or the other way around? Recall the two Meta–problem-
solving tip: The
answer to “which
is better?” in a
class or textbook
is almost always
It depends! After
all, why would we
waste time/pages
on a solution that’s
always worse!?
(The only plausible
answer is that
it warms us up
conceptually for
a better but more
complex solution.)
The real question
here what does it
depend on?

basic questions about graphs that we wish to answer quickly:

(A) is v a neighbor of u?
(B) what are all of u’s neighbors?

Figuring the details of how efficiently we can answer these questions with an adja-
cency list or an adjacency matrix is better suited to a data-structures textbook than this
one, but here’s a brief summary of the reasoning.

Adjacency Lists: An adjacency list is perfectly tailored to answering Question (B):
we’ve stored precisely the list of u’s neighbors for each node u, so we simply iter-
ate through that list to output u’s neighborhood. To answer Question (A), we need
to search through that same unsorted list to see if v is present. In both cases, we
have to spend constant time finding u’s list in the table, and then we examine a list
of length degree(u) to answer the question.

Adjacency Matrices: An adjacency matrix is perfect for answering Question (A): we
just look at the appropriate spot in the table. If the 〈u, v〉th entry is True, then the
edge 〈u, v〉 exists. This lookup takes constant time. Answering Question (B) requires
looking at one entire row of the table, entry by entry. There are |V| entries in the
row, so this loop requires |V| operations.

Thus adjacency matrices solve Question (A) faster, while adjacency lists are faster at
solving Question (B). In addition to the time to answer these questions, we’d also want
the space—the amount of memory—consumed by the data structure to be as small as
possible. (You can think of “the amount of memory” as the total number of boxes that
appear in the diagrams in Figures 11.6 and 11.7.)
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Example 11.9 (Space consumption for adjacency lists and matrices)
Problem: Consider a graph G = 〈V, E〉 stored using an adjacency list or an adjacency

matrix. In terms of the number of nodes and the number of edges in G—that is, in
terms of |V| and |E|—how much memory is used by these data structures?

Solution: An adjacency matrix is a |V|-by-|V| table, and thus contains exactly |V|2
cells. (Of them, the |V| cells on the diagonal are always 0, but they’re still there!)

An adjacency list is a |V|-element table pointing to |V| lists; the length of the list
for node u is exactly degree(u). Thus the total number of cells in the data structure
is

|V| + ∑
u∈V

degree(u).

In an undirected graph we have ∑u degree(u) = 2|E|, by Theorem 11.1; in a directed
graph we have ∑u out-degree(u) = |E| by Exercise 11.18. Thus the total amount of
memory used is 



|V| + 2|E| for an undirected graph
|V| + |E| for a directed graph.

Here’s the summary of the efficiency differences between these data structures (using
asymptotic notation from Chapter 6):

adjacency list adjacency matrix
is v a neighbor of u? 1 + Θ(degree(u)) Θ(1)

what are all of u’s neighbors? 1 + Θ(degree(u)) Θ(|V|)
space Θ(|V| + |E|) Θ(|V|2)

The better data structure in each row is highlighted. (Note that, in a simple graph, we
have that degree(u) ≤ |V| and |E| ≤ |V|2.) So, is an adjacency list or an adjacency
matrix better? It depends!

First, it depends on what kind of questions—Question (A) or Question (B) listed
previously, for example—we want to answer: if we will ask few “is v a neighbor of
u?” questions, then adjacency lists will be faster. If we will ask many of those ques-
tions, then we probably prefer adjacency matrices. Similarly, it might depend on how
much, if at all, the graph changes over time: adjacency lists are harder to update than
adjacency matrices.

Second, it depends on how many edges are present in the graph. If the total num-
ber of edges in the graph is relatively small—and thus most nodes have only a few
neighbors—then degree(u) will generally be small, and the adjacency list will win. If
the total number of edges in the graph is relatively large, then degree(u) will generally
be larger, and the adjacency matrix will perform better. (Many of the most interesting
real-world graphs are sparse: for example, the typical degree of a person in a social
network like Facebook is perhaps a few hundred or at most a few thousand—very
small in relation to the hundreds of millions of Facebook users.)
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11.2.3 Relationships between Graphs: Isomorphism and Subgraphs

Now that we have the general definitions, we’ll turn to a few more specific properties
that certain graphs have. We’ll start in this section with two different relationships
between pairs of graphs—when two graphs are “the same” and when one is “part” of
another; in Section 11.2.4, we’ll look at single graphs with a particular structure.

Graph isomorphism
When two graphs G and H are identical except for how we happen to have arranged

the nodes when we drew them on the page (and except for the names that we happen
to have assigned to the nodes), then we call the graphs isomorphic. Informally, G and H Greek: iso “same”;

morph “form.”are isomorphic if there’s a way to relabel (and rearrange) the nodes of G so that G and
H are exactly identical. More formally:

Definition 11.12 (Graph isomorphism)
Consider two graphs G = 〈V, E〉 and H = 〈U, F〉. We say that G and H are isomorphic if
there exists a bijection f : V → U such that

for all a ∈ V and b ∈ V, 〈a, b〉 ∈ E ⇔ 〈f (a), f (b)〉 ∈ F.

(By abusing notation as we described earlier, this definition works for either undi-
rected or directed graphs G and H.) Here are some small examples:

Example 11.10 (Two isomorphic graphs)
Let’s show that the following two directed graphs are isomorphic. (The first graph’s
edges could also have be written as {〈a, b〉 : a < b and a evenly divides b}.)

1 2 3 4 5 6 A

D

C

B

F

E

To do so, define the following bijection f : {1, 2, . . . , 6} → {A, B, . . . , F}:

x 1 2 3 4 5 6
f (x) A D C F B E

The tables of edges in the graphs now match exactly, so they are isomorphic:

1 2 3 4 5 6
1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓

3 ✓

4
5
6

A D C F B E

f (1) = A ✓ ✓ ✓ ✓ ✓

f (2) = D ✓ ✓

f (3) = C ✓

f (4) = F

f (5) = B

f (6) = E
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Example 11.11 (Isomorphic graphs)
Problem: Which pairs, if any, of the following graphs are isomorphic?

A

B

C

DE

F

G

H

IJ

1

2

3

4

5 0

7

9

6

8 Z

U

Y

V

Q

W

S

R

X

T

Solution: The first two graphs are isomorphic. The easiest way to see this fact is to
show the mapping between the nodes of the two graphs:

A B C D E F G H I J

1 2 3 4 5 0 7 9 6 8

It’s easy to verify that all 15 edges now match up between the first two graphs. But
the third graph is not isomorphic to either of the others. The easiest justification is
that node S in the third graph has degree 5, and no node in either of the first two
graphs has degree 5. No matter how we reshuffle the nodes of graph #3, there will
still be a node of degree 5—so the third graph can never match the others.

Problem-solving
tip: When you’re
trying to prove or
disprove a claim
about graphs,
you may find it
useful to test out
the claim against
the following four
“trivial” graphs:

A lot of bogus
claims about graphs
turn out to be false
on one of these
four examples—
or, unexpectedly,
the so-called
Petersen graph,
the first graph in
Example 11.11. (The
Petersen graph is
named after Julius
Petersen, a 19th-
century Danish
mathematician.) It’s
a good idea to try
out any conjecture
on all five of these
graphs before you
let yourself start to
believe it!

Taking it further: In general, it’s easy to test whether two graphs are isomorphic by brute force (try all
permutations!), but no substantially better algorithms are known. The computational complexity of the
graph isomorphism problem has been studied extensively over the last few decades, and there has been
substantial progress—but no complete resolution.

It’s easy to convince someone that two graphs G and H are isomorphic: we can simply describe
the relabeling of the nodes of G so that the resulting graphs are identical. (The “convincee” then just
needs to verify that the edges really do match up.) When G and H are not isomorphic, it might be easy
to demonstrate their nonisomorphism: for example, if they have a different number of nodes or edges,
or if the degrees in G aren’t identical to the degrees in H. But the graphs may have identical degree
distributions and yet not be isomorphic; see Exercise 11.49.

Subgraphs
When a graph H is isomorphic to a graph G, we can think of having created H by

moving around some of the nodes and edges of G. When H is a subgraph of G, we can
think of having created H by deleting some of the nodes and edges of G. (Of course,
it doesn’t make sense to delete either endpoint of an edge e without also deleting the
edge e.) Here’s the definition, for either undirected or directed graphs:

Note that Defini-
tion 11.13 uses the
abuse of notation
that we mentioned
earlier: we “ought”
to have written
{u, v} ∈ E′ for
the case that G is
undirected.

Definition 11.13 (Subgraph)
Let G = 〈V, E〉 be a graph. A subgraph of G is a graph G′ = 〈V ′, E′〉 where V ′ ⊆ V and
E′ ⊆ E such that every edge 〈u, v〉 ∈ E′ satisfies u ∈ V ′ and v ∈ V ′.

For example, consider the graph G = 〈V, E〉 with nodes V = {A, B, C, D} and edges
E = {{A, B} , {A, C} , {B, C} , {C, D}}. Then the graph G′ with nodes {B, C, D} and edges
{{B, C} , {C, D}} is a subgraph of G. In fact, G has many different subgraphs:
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Example 11.12 (All 3-node subgraphs of G)
Here are all of the 3-node subgraphs of the graph G with nodes V = {A, B, C, D} and
edges E = {{A, B} , {A, C} , {B, C} , {C, D}}. (There are many other subgraphs—about 50
total—when we consider subgraphs with 1, 2, 3, or 4 nodes.)

A, B, C: A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D A

B

C

D

A, B, D: A

B

C

D A

B

C

D

A, C, D: A

B

C

D A

B

C

D A

B

C

D A

B

C

D

B, C, D: A

B

C

D A

B

C

D A

B

C

D A

B

C

D

Ger

Jap Ita

US UK

+ +

+

+

− −

− − − −

(a) A signed
network from 1941

+ +

−
−
−
−

(b) Two triangles

Figure 11.8: Signed
social networks. For
more about signed
networks and these
results, see

Taking it further: One of the earliest applications of a formal, mathematical perspective to networks—a
collaboration between a psychologist and mathematician, in the 1950s—was based on subgraphs. Con-
sider a signed social network, an undirected graph where each edge is labeled with ‘+’ to indicate friends,
or ‘−’ to indicate enemies. (See Figure 11.8(a).) The adages “the enemy of my enemy of my friend”
and “the friend of my friend is my friend” correspond to the claim that the subgraphs in Figure 11.8(b)
would not appear. Dorwin Cartwright (the psychologist) and Frank Harary (the mathematician) proved
some very interesting structural properties of any signed social network G that does not have either
triangle in Figure 11.8(b) as a subgraph—a property that they called “structural balance”—and in the
process helped launch much of the mathematical and computational work on graphs that’s followed.4

4
4 Dorwin
Cartwright and
Frank Harary.
Structural balance:
a generalization of
Heider’s theory.
Psychological Review,
63(5):277–293, 1956.

We sometimes refer to a special kind of subgraph: the subgraph of G = 〈V, E〉 induced
by a set V ′ ⊆ V of nodes is the subgraph of G where every edge between nodes in V ′ is
retained. The first subgraph in each row of Example 11.12 is the induced subgraph for
its nodes. Here’s a brief description of one application of (induced) subgraphs:

Example 11.13 (Motifs in biological networks)
At any particular moment in any particular cell, some of the genes in the organism’s
DNA are being expressed—that is, some genes are “turned on” and the proteins that
they code for are being produced by the cell. Furthermore, one gene g can regulate
another gene g′: when g is being expressed, gene g can cause the expression of gene
g′ to increase or decrease over the baseline level. A great deal of recent biological re-
search has allowed us to construct gene-regulation networks for different such settings:
that is, a directed graph G whose nodes are genes, and whose edges represent the
regulation of one gene by another.

Consider the induced subgraph of a particular set of genes in such a graph G—
that is, the interactions among the particular genes in that set. Certain patterns of
these subgraphs, called motifs, occur significantly more frequently in gene-regulation
networks than would be expected by chance. Biologists generally believe that these
repeated patterns indicate something important in the way that our genes work, so
computational biologists have been working hard to build efficient algorithms to
identify induced subgraphs that are overrepresented in a network.
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11.2.4 Special Types of Graphs: Complete, Bipartite, Regular, and Planar Graphs

In Section 11.2.3, we looked at two ways in which a pair of graphs might be related.
Here, we’ll consider special characteristics that a single graph might have—that is,
subcategories of graphs with some particular structural properties. These special types
of graphs arise frequently in various applications.

Complete graphs
Our first special type of graph is a complete graph (also called a clique), which is an In CS, the word

clique usually
rhymes with
bleak or sleek. In
common-language
usage, the word
usually rhymes
with slick or flick.

undirected graph in which every possible edge exists:

Definition 11.14 (Complete graph/clique)
A complete graph or clique is an undirected graph G = 〈V, E〉 such that {u, v} ∈ E for any
two distinct nodes u ∈ V and v ∈ V.

Figure 11.9: Com-
plete graphs with 3,
5, 8, and 16 nodes.

See Figure 11.9 for examples of com-
plete graphs of varying sizes. (In
everyday usage, a clique is a small,
tight-knit, and exclusionary group
of friends that doesn’t mingle with
outsiders. If you think about a graph
as a social network, the common-language meaning is similar to Definition 11.14.)

Observe that an undirected graph with n nodes has
(n

2
)

unordered pairs of nodes,
and therefore an n-node complete graph has

(n
2
)

= n(n − 1)/2 edges.
A complete graph with n nodes is sometimes denoted by Kn. There are two

different prevailing
explanations for the
Kn notation:
• the K is as in

complete—or, rather,
as in komplett;
the notation was
invented by a
German speaker.
• the K is in

honor of Kazimierz
Kuratowski, a
20th-century Polish
mathematician
who made major
contributions
to the study of
graphs (among
other mathematical
topics).

The word clique can also refer to a subgraph that’s complete—that is, in which every
possible edge actually exists. For example, the graph G = 〈V, E〉 with V = {A, B, C, D}
and E =

{
{A, B} , {A, C} , {B, C} , {C, D}

}
contains a 3-node clique {A, B, C}. Here’s one

small example of an interesting application in which cliques arise:

Example 11.14 (Collaboration networks and cliques)
Imagine a setting in which different groups of people can work together in different
teams, with each person allowed to participate in multiple teams. For example:

• actors in movies. (A “team” is the cast of a single movie.)
• scientific researchers. (A “team” is the set of coauthors of a published paper.)
• employees of a company. (A “team” is a group that worked on a specific project.)

A collaboration network is a graph G that represents a setting like these: the nodes of G
are the people involved; there is an edge between any two people who have worked
together on at least one team. (You may have heard of a challenge in the collabora-
tion network: in the Kevin Bacon Game, you’re given the name of some actor A; your
job is to find a sequence of edges that connects A to the “Kevin Bacon” node in the
movie collaboration network. There’s a similar game that computer scientists play in
the scientific collaboration network, trying to connect themselves to the Hungarian
polymath Paul Erdős. See p. 438.)
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For example, for the teams listed below, we get the collaboration network at right:

• Tigers: Deborah, George, Hicham, Josh, Lauren
• Unicorns: Anita, Bev, Eva, Fernan
• Vultures: Cathy, Eva, Kelly

EA

B F

C K

D

G
H

J
L

Notice that each team results in a clique inside the collaboration graph—every pair of
members of that team is joined by an edge—in this case, creating a K5, K4, and K3 in
the graph:

Tigers

EA

B F

C K

D

G
H

J
L

Unicorns

EA

B F

C K

D

G
H

J
L

Vultures

EA

B F

C K

D

G
H

J
L

Bipartite graphs
Our second special kind of graph is a bipartite graph. In a bipartite graph, the nodes Latin: bi “two”; part

“part.”can be divided into two groups such that no edges join two nodes that are in the same
group: that is, there are two “kinds” of nodes, and all edges join a node of Type A to a
node of Type B. Formally:

Definition 11.15 (Bipartite graph)
A bipartite graph is an undirected graph G = 〈V, E〉 such that V can be partitioned into two
disjoint sets L and R where, for every edge e ∈ E, one endpoint of e is in L and the other
endpoint of e is in R.

For example, consider the graph G = 〈V, E〉 whose nodes are V = {A, B, C, D, E, F} and
whose edges are E =

{
{A, B} , {A, C} , {C, E} , {D, E}

}
. The graph G is bipartite: for ex-

ample, we can split the nodes into two groups—the vowels {A, E} and the consonants
{B, C, D, F}—such that every edge joins a vowel and a consonant. (There’s another split
that would also have worked: {A, E, F} and {B, C, D}.) See Figure 11.10 for a visualiza-
tion of the vowel–consonant split.

Bipartite graphs are traditionally drawn with the nodes arranged in two columns,

A

E

B

C

D

F

L R

Figure 11.10: A
bipartite graph.

one for each part: left (“L”) and right (“R”). But notice that the definition only requires
that it be possible to divide the nodes into two groups, with no within-group edges.

Example 11.15 (Bipartite or nonbipartite?)
Problem: Which of the following graphs are bipartite?

(a) (b) (c) (d) (e)
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Solution: All of them except (c)! Although (d) and (e) are the only graphs drawn in
the “two-column” format, both (a) and (b) can be rearranged into two columns. In
fact, aside from node positioning, graphs (a) and (d) are identical. And, similarly,
graphs (b) and (e) are isomorphic!

Only (c) is not bipartite: if we attempt to put the topmost node in one group,
then both of the next higher two nodes must both be in the other group—but
they’re joined by an edge themselves, and so we’re stuck.

Many interesting real-world phenomena can be modeled using bipartite graphs:

Example 11.16 (Bipartite graphs as models)
Here are just a few of the scenarios that are naturally modeled using bipartite graphs:

• dating relationships in a strictly heterosexual community: the nodes are the boys B
and the girls G; every edge connects some boy to some girl.

• nodes are courses and students; an edge joins a student to each class she’s taken.

• affiliation networks: people and organizations are the nodes; an edge connects per-
son p and organization o if p is a member of o.

Figure 11.11:
Complete bipartite
graphs of varying
sizes: K1,4, K4,4,
K8,4, K8,8, and K2,4.

There’s one further refinement of bipartite
graphs that we’ll mention: a complete bipartite
graph is a bipartite graph in which every pos-
sible edge exists. In other words, a complete
bipartite graph has the form G = 〈L ∪ R, E〉
where {ℓ, r} ∈ E for every node ℓ ∈ L and
r ∈ R. A complete bipartite graph with ℓ

nodes in the left group and r nodes in the
right group is sometimes denoted by Kℓ,r.
See Figure 11.11 for a few examples. (Note again that, as with the K2,4 in Figure 11.11,
we don’t have to draw a bipartite graph in two-column format—if it’s bipartite, then
it’s still bipartite no matter how we draw it!)

Regular graphs
Our next type of graph is defined in terms of the degree of its nodes: a regular graph

is one in which all of the nodes have an identical number of neighbors.

Definition 11.16 (Regular graph)
Let d ≥ 0 be an integer. A d-regular graph is a graph G such that every node has degree
precisely equal to d. If G is d-regular for any d, then we say that G is a regular graph.

(Most of the time one talks about regular graphs that are undirected, but we can speak
of regular directed graphs, too; we’d generally require that all in-degrees match each
other and all out-degrees match each other.)
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For example, consider the graph G = 〈V, E〉 whose nodes are V = {A, B, C, D, E, F}
and whose edges are E =

{
{A, B} , {A, E} , {B, C} , {C, F} , {D, E} , {D, F}

}
. The graph

1

2

3

4
5

6

7

8

9
10

Figure 11.12: A
4-regular 10-node
graph.

G is 2-regular: you can check that each node has exactly two neighbors. As
another example, note that the complete graph Kn is (n − 1)-regular, as each
node has all n − 1 other nodes as neighbors. Or see Figure 11.12 for another
example of a regular graph.

There are many real-world examples in which regular graphs are useful: for
example, imagine constructing a physical network of computers in which each
machine only has the capacity for a fixed number of connections. Here are two
other useful applications of regular graphs:

Example 11.17 (Scheduling sports with a regular graph)
You are the League Commissioner for an intramural ultimate frisbee league. There
are 10 teams in the league, each of whom should play four games. No two teams
should play each other twice. Suppose that you construct an undirected graph
G = 〈V, E〉, where V = {1, 2, . . . , 10} is the set of teams, and E is the set of games
to be played. If G is an 4-regular graph, then all of the listed requirements are met.
Figure 11.12 is a randomly generated example of such a graph; you could use that
graph to set the league schedule.

A 1-regular graph is called a perfect matching, because each node is “matched” with
one—and only one—neighbor. (If every node has degree at most 1, then the graph is
just called a matching.) Matchings have a variety of applications—for example, see
p. 960 for their role in the Enigma machine—but here’s another specific use of match-
ings, in assigning partnerships:

Example 11.18 (Matchings for CS partnerships)
Each of n students in an Intro CS class submits a list of people whom they’d like to
have as a partner for the final project. Define the following undirected graph G:

• the set V of nodes is {1, 2, . . . , n}, one per student.
• the set E of edges includes {u, v} if both of the following are true: student u wants

to work with student v, and student v wants to work with student u.

The instructor can assign partnerships by finding a 1-regular graph G′ = 〈V, E′〉 with
E′ ⊆ E—that is, a subgraph of G that includes all of the nodes of G. For example:

For this graph G . . . . . . these graphs (among others) are valid partner assignments.
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(Incidentally, Example 9.32 asked: how many perfect matchings are there in Kn?)
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Planar graphs
Our last special type of graph is a planar graph, which is one that can be drawn on a

sheet of paper without any lines crossing:

Definition 11.17 (Planar graph)
A planar graph is a graph G such that it is possible to draw G on a plane (that is, on a piece
of paper) such that no edges cross.

It’s important to note that a graph is planar if it is possible to draw it with no crossing
edges; just because a graph is drawn with edges crossing does not mean that it isn’t
planar. Here is an example of a planar graph:

Example 11.19 (New England, in a plane)
Here are two copies of the same graph—one drawn with edge crossings, and another
with the nodes rearranged to avoid edge crossing:

NH ME NY

RI

CTMA

VT

NH

ME

NY

RICT

MA

VT

Example 11.19 shows one of the most famous types of planar graph, one derived from
a map: we can think of the countries on a map as nodes, and we draw an edge be-
tween two country–nodes if those two countries share a border. (See p. 437 for a dis-
cussion of the four-color theorem for maps, which we could have phrased as a result
about planar graphs instead.)

There are other applications of planar graphs in computer science, too. For example,
we can view a circuit (see Section 3.3.3) as a graph, where the logic gates correspond
to nodes and the wires correspond to edges. Most modern circuits are now printed on
a board (where the “ink” is the conducting material that serves as the wire), and the
question of whether a particular circuit can be printed on a single layer is precisely the
question of whether its corresponding graph is planar. (If it’s not planar, we’d like to
minimize the number of edges that cross, or more specifically the number of layers
we’d need in the circuit.)

Here’s one more set of planarity challenges for you to try:

Example 11.20 (Two planar challenges)
Problem: Are these graphs planar? 1. A

D

FB

E

G

C

2. HI

J K L M
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Solution: Yes, both: we can rearrange the nodes so that there are no edges that cross.

1.
A D

F

B

E G C
2.

HI
J

K

L

M

(a) K5 (b) K3,3

A

B

C

DE

F

G

H

IJ

(c) The Petersen graph

Figure 11.13:
Nonplanar graphs.

Taking it further: Determining how to lay out a planar
graph without edge crossings can be an interesting
amusement—see www.planarity.net for a surprisingly
fun game based on planar graphs. So far we haven’t
seen any examples of graphs that can’t be rearranged
so that no edges cross. But, if you play around long
enough, you should be able to convince yourself that
neither K5 and K3,3 are planar; see Figure 11.13. And,
while this shouldn’t be at all obvious, it turns out
that K5 and K3,3 are in a sense the only “reasons” that a graph can be nonplanar. A theorem known
as Kuratowski’s Theorem—after the Polish mathematician who may have lent his initial to the notation
for complete graphs—says that every graph is planar unless it “contains” K5 or K3,3 for a subgraph-
like notion of “containment.” (It’s not exactly the subgraph relation, because there are graphs that do
not contain K5 or K3,3 as subgraphs but nonetheless are nonplanar in some sense “because” of one of
them. For example, the Petersen Graph from Example 11.11—see Figure 11.13(c)—is nonplanar, but it
doesn’t have K5 as a subgraph. But if we “collapse” together the nodes A/F, B/G, C/H, D/I, and E/J into
“supernodes” then the resulting graph is K5.)
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Computer Science Connections

Degree Distributions and the Heavy Tail
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(c) The cumulative degree distribution

Figure 11.14: The degree distribution of
≈ 18,000 Facebook users at the Univer-
sity of North Carolina. Figure 11.14(b)
shows a log–log plot of the same data
as the linear plot in Figure 11.14(a). Fig-
ure 11.14(c) shows a log–log plot of the
cumulative degree distribution: the num-
ber of people with degree ≥ k, whereas
Figures 11.14(a) and 11.14(b) showed the
number with degree = k.

When we think about massive graphs like the World-Wide Web (with
nodes representing web pages and edges representing hyperlinks from one
page to another) or an online social network (with nodes representing people
and edges representing “friendships”), it is interesting to look at how proper-
ties of individual nodes are distributed across the population. We can look at
the distribution of any node-by-node property—the physical height of Twitter
users, or the number of words of text per web page, for example. But in addi-
tion to demographic properties like height and length, we can also look at the
distribution of network-type properties.

The degree distribution of a graph G shows, for each possible degree d, the
number of nodes in G whose degree is d. While one might initially expect
degree distributions to look similar to the distribution of heights, it turns out
that the degree distribution of an online social network has very different
properties. Figure 11.14 shows the degree distribution (in linear, log–log, and
cumulative form) for members of the University of North Carolina.5

From the Facebook5 dataset, from
Mason Porter via the International
Network for Social Network Analysis:
5 Amanda L. Traud, Peter J. Mucha,
and Mason A. Porter. Social struc-
ture of Facebook networks. CoRR,
abs/1102.2166, 2011.

Figure 11.14 shows, for each value of k, the number of people who have
precisely k Facebook friends. About 350 people have only 1 friend, which is
the most common number of friends to have. There are about 750,000 friend-
ships represented in this dataset; the average degree is ≈ 84. But, looking at
the far-right end of Figure 11.14(a) and 11.14(b), we see a handful of people
with very high degrees: 2000, 2500, 3000, and even ≈ 3800. One of the inter-
esting facts about degree distributions in real social networks (or the web)
is that there are people whose popularity is massively larger than average:
the highest-degree person in this dataset is about 3800/84 ≈ 45 times more
popular than average. (Imagine the tallest person at the University of North
Carolina being 45 times taller than average!)

Significant research by computer scientists (and many others!) interested
in the structure of social networks and the world-wide web has focused on
this so-called heavy-tailed degree distribution.6 Some of the literature debates the

You can read more about power laws
and heavy-tailed degree distributions:
6 David A. Easley and Jon M. Kleinberg.
Networks, Crowds, and Markets: Reason-
ing About a Highly Connected World.
Cambridge University Press, 2010.

particular form of this distribution; for example, whether the distribution has
the particular form of a power law, where the number of people with degree k
is roughly kα for some small constant α, usually around 2.
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Computer Science Connections

Graph Drawing, Graph Layouts, and the 9/11 Memorial

Visual representations of most large graphs are too cluttered for a hu-
man viewer to process: there are just too many nodes and edges crammed
into a small space to see much of anything. Visually presenting a graph like
Facebook (billions of nodes, tens of billions of edges) without it looking like
a grade-school scribble is daunting. But there is an entire subfield of com-
puter science called graph drawing, which is devoted to taking networks and
producing good—clear, aesthetic, informative—images of the networks.

Figure 11.15: A visualization of selected
European train routes, where each
node’s position corresponds to the city’s
spatial location. Image reproduced
with permission from RGBAlpha/Getty
Images, Inc.

In some large graphs, each node has
a “natural location” and thus it is clear
where on the page it should be placed. For
example, graphs may represent data in
which the nodes have a precise location sit-
uated in the physical world. When we have
that kind of layout information for each
node, presenting the graph well is easier.
(See Figure 11.15.) But many large graphs
do not have obvious coordinates associ-
ated with each node: while you and your
college classmates do have geographic loca-
tions (dorm rooms), it’s not clear that your
dorm really best describes “where” you fit
in the social scene of your institution.

For graphs whose nodes don’t have
obvious coordinates, we have to do some-
thing else. One approach that’s often used in graph drawing is to arrange the
nodes based on a physics analogy, as follows. Imagine each node as a charged
particle: any two nodes that are joined by an edge are pulled together by an
attractive force, and any two nodes that are not joined by an edge are pushed
apart by a repulsive force. Then figuring out how to place nodes on the page
can be done by starting them in a random configuration and letting the attrac-
tive/repulsive forces move the nodes around until they’re “happy” in their
current positions.

An idea like this one was actually used in designing the 9/11 memorial at
the site of the World Trade Center. The memorial was designed with bronze
panels inscribed with the 2982 names of victims. A team of computer sci-
entists, architects, and visual artists collaborated to organize the names in a
meaningful way. Families were invited to submit “meaningful adjacencies”
between victims—which would cause two names to be as close together in
the bronze panels as possible. (One of the other algorithmic issues regarding
the layout of this memorial was that the designers wanted the names to be
placed at evenly spaced intervals on the bronze panels; this constraint added
to the computational complexity of the process.) The team used an algorithm
to organize the names in an arrangement that respected these requests, which
was then used in the final design of the memorial.7

In addition to the broader news reports
on the wrenching emotional and his-
torical aspects of 9/11 Memorial, the
algorithmic aspects of the memorial
were also covered in the popular press.
You can read more about it here:
7 Nick Paumgarden. The names. The
New Yorker, 16 May 2011.
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11.2.5 Exercises

For each of the following, draw a graph G = 〈V, E〉 for the following sets of nodes and edges. Does it make sense to use a
directed or undirected graph? Is the graph you’ve drawn simple?
11.1 nodes V = {1, 2, . . . , 10}; an edge connects x and y if gcd(x, y) = 1.
11.2 nodes V = {1, 2, . . . , 10}; an edge connects x and y if x divides y.
11.3 nodes V = {1, 2, . . . , 10}; an edge connects x and y if x < y.

For the following undirected graphs, list the edges of the graph, and identify the node(s) with the highest degree. For the
directed graphs, identify the node(s) with the highest in-degree, and the node(s) with the highest out-degree.

11.4

A

B

C

D

E

F

G

H

11.5

A

E

B F

C G

D

H

11.6

A

E

B F

C G

D

H

11.7

A

B

C

D

Consider a graph G = 〈V, E〉 with n := |V| nodes. State your answers in terms of n. Justify.
11.8 If G is an undirected, simple graph, what’s the largest that |E| can be? The smallest?
11.9 If G is a directed, simple graph, what’s the largest that |E| can be? The smallest?
11.10 How do your answers to Exercise 11.9 change if self-loops are allowed?
11.11 How do your answers to Exercise 11.9 change if self-loops and parallel edges are allowed?

The anthropologist Robin Dunbar has argued that humans have a mental capacity for only ≈ 150 friends.8 (This argu- 8 Robin Dunbar.
How Many Friends
Does One Person
Need?: Dunbar’s
Number and Other
Evolutionary Quirks.
Harvard University
Press, 2010.

ment is based in part on the physical size of the human brain, and cross-species comparisons; 150 is now occasionally
known as Dunbar’s Number.)

Thanks to Michael
Kearns, from
whom I learned a
somewhat related
version of these
exercises.

Suppose that Alice has exactly 150 friends, and each of her friends has exactly 150 friends—that is, a friend of Alice
knows Alice and 149 other people. (Note that Alice’s friends’ sets of friends can overlap.) Let S denote the set of people
that Alice knows directly or with whom Alice has a mutual friend.
11.12 What’s the largest possible value of |S|?
11.13 What’s the smallest possible value of |S|?
Continue to assume that everyone has precisely 150 friends. Let Sk denote the set of all people that Bob knows via a
chain of k or fewer intermediate friends:
• Bob’s friends are in S0;
• the people in S0 and the friends of people in S0 are in S1;
• the people in S1 and the friends of people in S1 are in S2; and so forth.
11.14 Let k ≥ 0 be arbitrary. What’s the largest possible value of |Sk |?
11.15 Let k ≥ 0 be arbitrary. What’s the smallest possible |Sk |?

Prove the following properties of graphs, related to Theorem 11.1 or degree more generally:
11.16 Let u be a node in an undirected graph G. Prove that u’s degree is at most the sum of the degrees
of u’s neighbors.
11.17 Prove Corollary 11.2: in an undirected graph G = 〈V, E〉, let nodd denote the number of nodes
whose degree is odd. Prove that nodd is an even number. That is: prove that

| {u ∈ V : degree(u) mod 2 = 1} | mod 2 = 0.

11.18 Prove the analogy of Theorem 11.1 for directed graphs: for a directed graph G = 〈V, E〉,
∑

u∈V
in-degree(v) = ∑

u∈V
out-degree(v) = |E|.
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head

Figure 11.16: A
linked list. Each
rectangle is a node,
and shows two
fields: data on the
left and next on the
right.

A linked list is a data structure consisting of a collection of nodes,
each of which contains two fields: a data field (whatever the node stores)
and a next field that is either null or points to a node in the linked list.
A particular node is designated as the head node. Note that a circular
linked list in which a node points back to a previously encountered
node meets this definition. See Figure 11.16.

Define a not-necessarily-simple directed graph G = 〈V, E〉, where
V is the set of all nodes reachable by following any number of next
pointers starting at the head node, and 〈u, v〉 ∈ E if u’s next field points to u. Observe that each node u in G has
out-degree d ∈ {0, 1}.

Describe a 5-node linked list in which . . .
11.19 . . . every node has in-degree d = 1.
11.20 . . . some node has in-degree d = 2.
11.21 . . . the resulting graph G is not simple.
11.22 (This exercise is a tougher algorithmic challenge.) You are given access to the head node h of an n-
node linked list. The value of n is unknown to you. The only operations permitted are (a) to save a node;
(b) test whether two saved nodes are the same or different; and (c) given a node u, fetch the node pointed to
by u.next. Give an algorithm to determine whether the given list is circular using only a constant amount of
memory—that is, remembering only a constant number of nodes at a time.

1 2 3 4

Figure 11.17: A
doubly linked list.
Each rectangle
is a node, and
shows three fields:
previous on the
left, data in the
middle, and next

on the right.

A doubly linked list has n nodes with data and two pointers, previous
and next, to other nodes (or null). (See Figure 11.17 for an example.) Let
Cn denote an n-node doubly linked list with nodes {1, 2, . . . , n}, where, for
each node u,

• u’s next node is v = (u mod n) + 1
• v’s previous node is u.

Define a directed graph Gn = 〈V, E〉, where V is the set {1, 2, . . . , n} of
nodes, and every node has two edges leaving it: one edge 〈u, u.next〉, and
one edge 〈u, u.previous〉.
11.23 Draw G5.
11.24 Give an example of a Gn that contains a self-loop.
11.25 Give an example of a Gn that contains parallel edges.

Write down an adjacency list representing each of the following graphs.

11.26

A

B

C

D

E

F

G

H

11.27

A

E

B F

C G

D

H

11.28

A

E

B F

C G

D

H

11.29

A

B

C

D

Now give an adjacency matrix for the graphs shown in the above exercises:

11.30 Exercise 11.26
11.31 Exercise 11.27

11.32 Exercise 11.28
11.33 Exercise 11.29

11.34 Suppose that a (possibly directed or undirected) simple graph G is represented by an adjacency
list. Suppose further that, for every node u in G, the list of (out-)neighbors of u has a different length. True or
False: G must be a directed graph. Justify your answer.
11.35 Describe a directed graph G meeting the specifications of Exercise 11.34.
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The density of a graph G = 〈V, E〉 is the fraction of all possible edges that actually exist: that is,

density = |E|
[your answer to the first part of Exercise 11.8/Exercise 11.9] .

Taking it further: Informally, a dense graph is one for which most pairs of nodes are joined by an edge, and
a sparse graph is one in which few pairs of nodes are joined by an edge. We will use these terms informally; a
graph is dense if its density is close to 1, and sparse if its density is close to 0. Some people define graphs as dense
if |E| = Θ(|V|2) and as sparse if |E| = O(|V|). (These asymptotic definitions only make sense for a family
of graphs—one for each size n.) There are (families of) graphs that are neither sparse nor dense according to this
definition; see Exercise 6.37.

Figure 11.18: A
12-node path,
cycle, collection of
n
3 triangles, and
collection of three
n
3 -node cliques.

As a function of n, what are the densities of the following undirected graphs, with nodes V =
{1, 2, . . . n}? (See Figure 11.18 for small versions of each of these graphs.)
11.36 an n-node path: E = {{1, 2} , {2, 3} , . . . , {n − 1, n}}.
11.37 an n-node cycle: E = {{1, 2} , {2, 3} , . . . , {n − 1, n} , {n, 1}}.
11.38 n

3 disconnected triangles (assume that n mod 3 = 3):

E = {{1, 2} , {2, 3} , {3, 1}︸ ︷︷ ︸
triangle on 1, 2, 3

, {4, 5} , {5, 6} , {6, 4}︸ ︷︷ ︸
triangle on 4, 5, 6

, . . . {n − 2, n − 1} , {n − 1, n} , {n, n − 2}︸ ︷︷ ︸
triangle on n − 2, n − 1, n

} .

11.39 3 separate n
3 -node cliques (assume that n mod 3 = 3): E = {{x, y} : x mod 3 = y mod 3}.

A hypercube Hn is a graph in which the 2n different nodes are all elements of {0, 1}n. There is an edge between x
and y if they differ in only one bit position. (Using the language of Chapter 4.2, there’s an edge between any two nodes
whose Hamming distance is 1.)
11.40 Draw H3.
11.41 Write down an adjacency list for H4.
11.42 Write down an adjacency matrix for H4.
11.43 In terms of n, how many edges does Hn have? What is its density?

Decide whether the following pairs of graphs are isomorphic, and prove your answers.
11.44

A

B

C

D

E

F

G

H
J

OP

I

L

MK

N

11.45

A

B

C

D E

F

G

L

J K M H

IN

11.46 G1 = 〈V1, E1〉, where V1 =
{10, 11, 12, 13, 14, 15} and 〈x, y〉 ∈ E1 if and only
if x and y are not relatively prime.

G2 = 〈V2, E2〉, where V2 = {20, 21, 22, 23, 24, 25}
and 〈x, y〉 ∈ E2 if and only if x and y are not rela-
tively prime.

Prove or disprove the following claims about isomorphism:
11.47 All 5-node graphs with degrees 1, 1, 1, 1, and 0 are isomorphic.
11.48 All 5-node graphs with degrees 4, 4, 4, 3, and 3 are isomorphic.
11.49 All 5-node graphs with degrees 3, 3, 2, 2, and 2 are isomorphic.
11.50 All n-node, 3-regular graphs are isomorphic.

The computational problem of finding the largest clique (complete graph) that’s a subgraph of a given graph G is
believed to be very difficult. But for small graphs it’s possible to do, even by brute force. For each of the following
graphs, identify the size of the largest clique that’s a subgraph of the given graph.

11.51 B

H

A

F

I

G

D

E

C 11.52 B

H

A

FI G

D

E

C

J

11.53 B

H

A

FI G

D

E

C

J
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Figure 11.19: A
collaboration
network.

11.54 Consider the collaboration network (see Example 11.14) in Figure 11.19. Assum-
ing that the nodes correspond to actors in movies, what is the smallest number of movies that
could possibly have generated this collaboration network?
11.55 Are you certain that there weren’t more movies than [your answer to the previous
exercise] that generated this graph? Explain.

For which integers n are the following graphs bipartite? Prove your answers.
11.56 V = {1, 2, . . . , n}; E = {〈i, i − 1〉 : i ≥ 2}.
11.57 V = {0, 1, . . . , n− 1}; E = {〈i, i + 1 mod n〉 : i ≥ 1}.
11.58 Kn. That is, a complete graph of n nodes: V = {1, 2, . . . , n}; E = {{u, v} : u ∈ V and v ∈ V}.
11.59 V = {0, 1, . . . , 2n − 1}; E = {〈i, (i + n) mod 2n〉 : i ∈ V}.

Are either of the following graphs bipartite? Explain.
11.60

A

E

B F

C G

D

H

11.61

A

B

C

D

E

F

G

H

Consider a bipartite graph with a set L of nodes in the left column and a set of nodes R on the right column, where
|L| = |R|. Prove or disprove the following claims:
11.62 The sum of the degrees of the nodes in L must equal the sum of the degrees of the nodes in R.
11.63 The sum of the degrees of the nodes in L must be even.
11.64 The sum of the degrees of all nodes (that is, all nodes in L ∪R) must be an even number.

Suppose that G is a complete bipartite graph with n nodes—that is, G = K|L|,|R| for |L| + |R| = n.
11.65 What’s the largest number of edges that can appear in G?
11.66 What’s the smallest number of edges that can appear in G? (Careful!)

11.67 Prove or disprove: any graph that does not contain a triangle (that is, three nodes a, b, and c with
the edges {a, b} and {b, c} and {c, a} in the graph) as a subgraph is bipartite.

11.68 Definition 11.16 describes a regular undirected graph. In a directed regular graph, we require that
there be two integers din and dout such that every node’s in-degree is din and every node’s out-degree is dout.
Prove that we must have din = dout.

Show that both of the following graphs are planar.
11.69

A

B

C

D

E

F G

H 11.70 B

H

A

F

I

G

D

E

C

11.71 Prove that any 2-regular graph is planar.



11.3. PATHS, CONNECTIVITY, AND DISTANCES 1129

11.3 Paths, Connectivity, and Distances

Well, you can go west to the next intersection, get onto
the turnpike, go north through the toll gate at
Augusta, ’til you come to that intersection . . . well, no.
You keep right on this tar road; it changes to dirt now
and again. Just keep the river on your left. You’ll come
to a crossroads and . . . let me see. Then again, you can
take that scenic coastal route that the tourists use. And
after you get to Bucksport . . . well, let me see now.
Millinocket. Come to think of it, you can’t get there
from here.

Marshall Dodge (1935–1982) and Robert
Bryan (b. 1931), “Which Way to Millinocket?”

Bert and I (1958)

One of the most basic questions that one can ask about a graph is whether it is
possible to get from some given node s to some given node t by following a sequence

u1 u2 u3 · · ·
uk−1 uk

u1 u2 u3 · · ·
uk−1 uk

Figure 11.20: Paths
in undirected and
directed graphs.

of edges. Is there some chain of friends that connects
Barack Obama to Phil Collins? Can you get from Missoula
to Madison by car? (And, if there is a way to get from s to t,
what is the shortest way to get there?) These basic questions
concern the existence of paths in the graph:

Definition 11.18 (Path)
Consider a (directed or undirected) graph G = 〈V, E〉. A path in G is a sequence
〈u1, u2, . . . , uk〉 of k ≥ 1 nodes such that:

• ui ∈ V for every i ∈ {1, . . . , k}, and
• 〈ui, ui+1〉 ∈ E for every i ∈ {1, . . . , k − 1}.

(See Figure 11.20.) We say that such a sequence of nodes is a path from u1 to uk , and that
this path has length k − 1. We also say that this path traverses the edges 〈ui, ui+1〉.

A

B C

D E

Z

X

Y

A

B C

D E

Z

X

Y

Figure 11.21: Two
graphs with paths
from A to Z.

(Note that this definition includes both directed and
undirected graphs: if the edges are directed, we have
to follow them “in the right direction.”) For example,
in both of the graphs shown in Figure 11.21, there is no
path from A to X. But, in both, the sequence 〈A, C, E, Z〉 is a path of length 3 from A to
Z. In both cases, the edges traversed by the path are {〈A, C〉, 〈C, E〉, 〈E, Z〉}. Notice that
the length of a path is the number of edges that it traverses, which is one fewer than the
number of nodes in the path.

Taking it further: A common mistake made by novice (and not-so-novice) programmers is an off-by-
one error in specifying the bounds on a loop, by iterating either one time too many or one time too few.
These errors are also sometimes called fencepost errors: if you build a 10-yard fence with posts placed
every yard, then there are eleven fenceposts (at yard 0, yard 1, . . ., yard 10). Be careful! A path 〈A, C, E, Z〉
contains four nodes, but it traverses three edges (A → C, C → E, and E → Z) and has length 3.

Here’s an example of finding paths in a small graph:
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Example 11.21 (Finding paths)
Problem: Consider the following undirected graph:

A

B

C

D

E

F

G

H

1. Is there a path from node H to node E?
2. Name three different paths from node D to node F. What is the length of each

path?

Solution: 1. Yes; 〈H, A, F, G, E〉 is a path from node H to E.

2. The following sequences are paths from D to F:

• 〈D, B, E, G, F〉, which has length 4.
• 〈D, B, C, E, G, F〉, which has length 5.

Finding a third path might seem harder, but Definition 11.18 did not require
that the nodes in a path be distinct from each other. (In other words, nothing
forbade the repetition of nodes in a path.) So a third path from D to F is:

• 〈D, B, C, E, B, C, E, G, F〉, which has length 8.

We will often restrict our attention to paths that never go back to a vertex that
they’ve already visited, which are called simple paths:

Definition 11.19 (Simple Path)
A path 〈u1, u2, . . . , uk〉 is simple if all of the nodes u1, . . . , uk are distinct.

Of the three paths identified in Example 11.21, the first two are simple paths, but the
third path is not simple because it repeated nodes {B, C, E}.

11.3.1 Connectivity in Undirected Graphs

The most basic question about two nodes in a graph is whether it’s possible to get from
one to another—that is, are these two nodes connected? We start with a formal defini-
tion of connectivity for undirected graphs, because the relevant notions are simpler in
the undirected setting.

Definition 11.20 (Connected nodes and connected graphs)
Let G = 〈V, E〉 be an undirected graph.

• Two nodes u ∈ V and v ∈ V are connected if there exists a path from u to v.
• The graph G is connected if u and v are connected for any two nodes u ∈ V and v ∈ V.
• The graph G is called disconnected if it is not connected.
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A

B C

D E

F

G

H

I

J K

L M

N

O

P

Figure 11.22: A
disconnected
and connected
undirected graph.

For example, Figure 11.22 shows one disconnected
graph—there’s no path from A to H, for example—and
one connected graph. You can check that the second
graph is connected by testing all pairs of nodes. (Exer-
cise 11.87 asks you to show that connectivity is symmetric in an undirected graph: if
there exists a path from u to v, then there exists a path from v to u.)

Example 11.22 (Connectivity of an undirected graph)
Problem: Is the following graph connected?

1 3

57

2

4

6

8

Solution: No: odd-numbered nodes have edges only to other odd-numbered nodes,
and even-numbered nodes have edges only to other even-numbered nodes. So
there is no path from, for example, node 1 to node 2; this graph is disconnected.

Problem-solving
tip: Sometimes
it’s very helpful to
redraw a graph that
you’re given, with
nodes placed more
meaningfully. For
example, the graph
from Example 11.22
can be redrawn as

1 3

57

2

4

6

8

just by sliding the
even-numbered
nodes down. This
visualization
makes it clear
that the graph is
disconnected.

Connected components
More generally, we will talk about the connected components of an undirected graph

G = 〈V, E〉—“subsections” of the graph in which all pairs of nodes are connected.

Definition 11.21 (Connected component)
In an undirected graph G = 〈V, E〉, a connected component is a set C ⊆ V such that:

(i) any two nodes s ∈ C and t ∈ C are connected.
(ii) for any node x ∈ V − C, adding x to C would make (i) false.

A

B C

D E

F

G

H

(a) The original graph.

A

B C

D E

F

G

H

A

B C

D

(b) Component #1.

A

B C

D E

F

G

H

E

F H

(c) Component #2.

A

B C

D E

F

G

H

G

(d) Component #3.

Figure 11.23: A
graph’s connected
components.

A subset C ⊆ V of nodes is a connected
component of an undirected graph G = 〈V, E〉
if, intuitively, it forms its own “section” of the
graph: any two nodes in C are connected, and
no node in C is connected to any node not in
C. For example, Figure 11.23 shows a graph
with three connected components—one with
4 nodes, one with 3 nodes, and one with just
a single node.

Note that we could have defined a “con-
nected graph” in terms of the definition of
connected components (instead of Definition 11.20): an undirected graph G = 〈V, E〉 is
connected if it contains only one connected component, namely the entire node set V.
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Example 11.23 (Connected components of an undirected graph)
Problem: What are the connected components of the following graph?

A B

CD

E

F

G

H

Solution: The set S = {A, B, C, G, H} is a connected component; there are paths from
every node u ∈ S to every node v ∈ S, and furthermore no node in S is connected
to any node not in S. To be thorough, here are paths connecting each pair of nodes
from S:

A B C G H

A 〈A〉 〈A, C, G, B〉 〈A, C〉 〈A, C, G〉 〈A, C, G, H〉
B 〈B〉 〈B, G, C〉 〈B, G〉 〈B, H〉
C 〈C〉 〈C, G〉 〈C, G, H〉
G 〈G〉 〈G, H〉
H 〈H〉

Note that we haven’t bothered to write down a path from u to v when we’d already
recorded a path from v to u, because the graph is undirected and paths are sym-
metric. We also had many choices of paths for many of these entries: for example,
other paths from B to H included 〈B, G, H〉 or 〈B, G, H, B, G, H〉.

There’s a second connected component in the graph: the nodes {D, E, F}. It’s
easy to check that both clauses of Definition 11.21 are also satisfied for this set.

Observe that, in any undirected graph G = 〈V, E〉, there is a path from each node u ∈ V
to itself. Namely, the path is 〈u〉, and it has length 0. Check Definition 11.18!

Taking it further: There are many computational settings in which undirected paths are relevant; here’s
one example, in brief. In computer vision, we try to build algorithms to process—”understand,” even—
images. For example, before it can decide how to react to them, a self-driving car must partition the
image of the world from a front-facing camera into separate objects: painted lines on the road, trees,
other cars, pedestrians, etc. Here’s a crude way to get started (real systems use far more sophisticated
techniques): define a graph whose nodes are the image’s pixels; there is an edge between pixels p and
p′ if (i) the two pixels are adjacent in the image, and (ii) the colors of p and p′ are within a threshold of
acceptable difference. The connected components of this graph are a (very rough!) approximation to the
“objects” in the image.

This description misses all sorts of crucial features of good algorithms for the image-segmentation
problem, but even as stated it may be familiar from a different context: the “region fill” tool in image-
manipulation software uses something very much like what we’ve just described.

11.3.2 Connectivity in Directed Graphs

Recall that we have to follow edges “in the right direction” in a directed graph G: as
in Definition 11.18, a path from u1 to uk in G is a sequence 〈u1, u2, . . . , uk〉 where every
pair 〈ui, ui+1〉 is an edge in G. Thus notions of connectivity in directed graphs are more
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complicated: the existence of a path from u to v does not imply the existence of a path
from v to u. We will speak of a node t as being reachable from a node s if it’s possible to
go from s to t, and of pairs of nodes as being strongly connected when it’s possible to “go
in both directions” between them:

Definition 11.22 (Reachability and strongly connected nodes/graphs)
Let G = 〈V, E〉 be a directed graph.

• A node u ∈ V is reachable from a node v ∈ V if there is a directed path from u to v.
• Two nodes u ∈ V and v ∈ V are strongly connected if u is reachable from v, and v is

reachable from u.
• The graph G is strongly connected if every pair of nodes in V is strongly connected.

A

B C

D E

F

G

H

I

J K

L M

N

O

P

Figure 11.24: Two
directed graphs,
one that’s strongly
connected and one
that’s not.

For example, you can check that the first graph in Fig-
ure 11.24 is strongly connected by testing for directed
paths between all pairs of nodes, in both directions. But
the second graph in Figure 11.24 is not strongly con-
nected: there’s no path from any node in the right-hand side (nodes {M, N, O, P}) to any
node in the left-hand side (nodes {I, J, K, L}).

Strongly connected components
As with undirected graphs, for a directed graph we will divide the graph into

“sections”—subsets of the nodes—each of which is strongly connected. These sections
are called strongly connected components of the graph:

Definition 11.23 (Strongly connected component)
In a directed graph G = 〈V, E〉, a strongly connected component (SCC) is a set C ⊆ V
such that:

(i) any two nodes s ∈ C and t ∈ C are strongly connected.
(ii) for any node x ∈ V − C, adding x to C would make (i) false.

A

B C

D E

F

G

H

(a) The original graph.

A

B C

D E

F

G

H

A

B C

D

(b) SCC #1.

A

B C

D E

F

G

H

E

F H

(c) SCC #2.

A

B C

D E

F

G

H

G

(d) SCC #3.

Figure 11.25:
A graph and
its connected
components.

Figure 11.25 shows an example of a directed
graph G and the three strongly connected
components in G. The easiest strongly con-
nected component to identify is {A, B, C, D}:
we can go counterclockwise around the loop
A → B → C → D → A, so we can go from any
one of these four nodes to any other, and we
can’t get from any of these four nodes to any
of the other nodes. The other two strongly
connected components are {E, F, H} and, sep-
arately, {G} on its own. The reason is that G
is not strongly connected to any other node: we can’t get from G to any other node. (We
can go around the E → F → H → E loop, so these three nodes are together in the other
strongly connected component.)
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Here’s another example of finding strongly connected components:

Example 11.24 (Finding strongly connected components)
Problem: What are the strongly connected components of the following graph?

A

B

C

D

E

F

Solution: The three nodes {C, D, E} form a strongly connected component: there is a
path from any one of them to any other of them (C → D → E → C → D → E · · · ),
and furthermore there is no path from any {C, D, E} to any other node in the graph.

In fact, every other node in the graph is alone in a strongly connected compo-
nent by itself. For example, while there is a path from A to every node in the graph,
there is no path from any other node to A. (There is a path from A to A, so the set
{A} is a strongly connected component.) Thus the four strongly connected compo-
nents of the graph are {A}, {B}, {F}, and {C, D, E}.

Here’s an example that shows why the second clause of Definition 11.23 is crucial:

Example 11.25 (A non-SCC)
Problem: In the following graph, the set S := {A, B, C, E, F} is not a strongly connected

component. Why not?

A

B

C

D

E

F

G

Solution: It is indeed the case that there is a path in both directions between any two
nodes in S: we can just keep “going around” clockwise in S and we eventually
reach every other node in S. So S satisfies Definition 11.23(i). But it fails to satisfy
Definition 11.23(ii): if we considered the set S+ := S ∪ {D}, it is still the case that
there is a path in both directions between any nodes in S+. Thus S is not a strongly
connected component!

On the other hand, S+ = {A, B, C, D, E, F} is a strongly connected component:
we can’t add any other node (specifically G; it’s the only other node) to S+ without
falsifying this property—because there’s no path from G to A, for example. Thus
the two strongly connected components are {A, B, C, D, E, F} and {G}.
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Taking it further: There are many computational settings in which directed paths, reachability, and
strongly connected components are relevant. For example, for a spreadsheet, consider a directed graph
whose nodes are the spreadsheet’s cells, and an edge 〈u, v〉 indicates that u’s contents affect the contents
of cell v; when a user changes the content of cell c, we must update all cells that are reachable from node
c. For a chess-playing program, consider a directed graph whose nodes are board configurations, and
there’s an edge 〈u, v〉 if a legal move in u can result in v; any configuration u that’s unreachable from the
starting board configuration can never occur in chess, and thus your program doesn’t have to bother
evaluating what move to make in position u.

See p. 1142 for a discussion of another application of reachability and strongly connected compo-
nents: the structure of the world-wide web, understood with respect to the directed paths in the graph
defined by the pages and the hyperlinks of the web.

11.3.3 Shortest Paths and Distance

So far we have concentrated on the basic question of connectivity: for a given pair
of nodes, does any path exist from one node to the other? Here we address a more
refined question: what is the shortest path that goes from one node to the next?

Definition 11.24 (Shortest Paths)
Let G = 〈V, E〉 be a graph (undirected or directed), and let s ∈ V and t ∈ V be two nodes. A
path from s to t is a shortest path if its length is the smallest out of all s-to-t paths.

(Recall that the length of a path 〈u1, u2, . . . , uk〉 is k − 1, the number of edges that it
traverses.) Observe that there may be more than one shortest path from a node s to a
node t, if there are multiple paths that are tied in length.

Definition 11.25 (Distance)
The distance from s to t is the length of a shortest path from s to t. If there is no path from s to
t, then we say that the distance from s to t is infinite (written as “∞”).

A

B

C

D

E

F

Figure 11.26: An
undirected graph.

For example, consider the undirected graph in Figure 11.26. We have the
following distances from node A in this graph:

A B C D E F

0 1 2 2 1 1

The distance from A to A is 0 because 〈A〉 is a path from A to A. This graph
also has an example of a pair of nodes connected by two different shortest
paths, going from A to C (via either B or E).

G

H

I

J

K

L

Figure 11.27: A
directed graph.

For the directed graph in Figure 11.27, we have the following distances
from node G:

G H I J K L

0 1 2 3 1 ∞

Again, there’s a path from G to G of length zero, so the distance from G to G is
0. Note that there’s no G-to-J path of length two (because the edge from J to
K goes in the wrong direction), so the distance from G to J is 3 (via K and I, or via H and
I). Similarly, there is no directed path from G to L, so the distance is infinite.

Here’s another example of finding shortest paths in a small graph:
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Example 11.26 (Shortest paths in directed graphs)
Problem: Find the shortest path from A to L in the graph with this adjacency list:

A: B, D, E, F, G

B: C, D, I

C: B, D, I

D: E

E: A, F

F:

G: F

H: E, F

I: B, H, K

J: C, K

K: L

L: F

Solution:
The nodes at distance 1 from A are B, D, E,
F, and G. There’s no edge from any of those
nodes to L—or indeed to K, which is L’s
only in-neighbor. Thus the distance from A

to L cannot be any smaller than 4. But there
is an edge from I to K, and one from B to I.
We can assemble these edges into the path
〈A, B, I, K, L〉. This path has length 4. So
the distance from A to L is 4. (Drawing the
graph, as on the right, with nodes arranged
by their distance from A, can make these facts easier to see.)

di
st

an
ce

0

di
st

an
ce

1

di
st

an
ce

2

di
st

an
ce

3

di
st

an
ce

4

di
st

an
ce

∞

A

B C

D

E

F

G

HI J

K

L

Problem-solving
tip: In solving any
graph problem with
a small graph, a
good first move is to
draw the graph.

11.3.4 Finding Paths: Breadth-First Search (BFS)

There are many aspects of graphs that are valuable for interesting computational ap-
plications, but perhaps the single most important graph algorithm is breadth-first search
(BFS). BFS is a path-finding algorithm: it explores outward from a given source node s
in a given graph G until it finds every node reachable from s in G. BFS can be used to
solve all sorts of graph-related problems, as we’ll see.

A

CB

FED

HG

I

J

A

CB

FED

HG

I

J

A

CB

FED

HG

I

J

A

CB

FED

HG

I

J

A

CB

FED

HG

I

J

Figure 11.28:
The intuition of
breadth-first search:
the steps of BFS
on a small graph,
starting at node A.

Here’s the intuition of the algorithm. (See
Figure 11.28.) We maintain a set L of nodes
that are reachable from the given node s
(the shaded nodes in Figure 11.28). To start,
we set L := {s}. Now we find all as-yet-
undiscovered neighbors of nodes in L, and
add those nodes (the dark-shaded nodes in
Figure 11.28) to L: if 〈u, v〉 ∈ E and you can reach the node u from s, then you can also
reach v from s, via u. But now we’ve found some more nodes that can be reached from
s, which means that we can also reach any nodes that are directly connected to them
from s. So we’ll repeat that process with the updated list L. And we’ll do it again, and
again, and again, until we stop finding new nodes.
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Breadth-First Search (BFS):
Input: a graph G = 〈V, E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G

1: Frontier := 〈s〉
// Frontier will be a list of nodes to process, in order.

2: Known := ∅
// Known will be the set of already-processed nodes.

3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: for every neighbor v of u:
7: if v is in neither Frontier nor Known then
8: add v to the end of Frontier
9: add u to Known

10: return Known

Figure 11.29: The
pseudocode for
breadth-first search.

Observe that BFS discovers nodes in order of their dis-
tance from the source node. Every expansion of L takes the
full breadth of the frontier and expands it out by one more
“layer” in the graph. (That’s why the algorithm is called
breadth-first search.) You can think of BFS as throwing a
pebble onto the graph at the node s, and then watching the
ripples expanding out from s.

Breadth-first search is presented more formally in Fig-
ure 11.29. (While we’ve described BFS in terms of undirected
graphs for simplicity, it works equally well for directed
graphs. The only change is that Line 6 should say “for ev-
ery out-neighbor” for a directed graph.)

Here’s another example of breadth-first search in action, running the algorithm in
full detail (precisely as specified in Figure 11.29):

Example 11.27 (Sample run of BFS, in detail)
We’ll trace BFS starting at node A in the following graph (shown here in the form of a
picture and as an adjacency list):

A

B

C

G

E

F

D H

A: B, C
B: A, C, G
C: A, B, E, F, G
D: H
E: C
F: C, G
G: B, C, F
H: D

= Frontier
= just moved from Frontier to Known
= Known
= neither Known nor Frontier Known Frontier Explanation

A

B

C

G

E

F

D H

{} 〈A〉 initialization
(Lines 1–2)

A

B

C

G

E

F

D H

{A} 〈B, C〉 processing A

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B} 〈C, G〉 processing B

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C} 〈G, E, F〉 processing C

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C, G} 〈E, F〉 processing G

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C, G, E} 〈F〉 processing E

(Lines 4–9)

A

B

C

G

E

F

D H

{A, B, C, G, E, F} 〈〉 processing F

(Lines 4–9)

Because Frontier is now empty, the while loop in BFS terminates. The algorithm
returns the set Known, {A, B, C, G, E, F}.
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Correctness of BFS
We’ll prove two important properties of BFS. The first is correctness: the set that BFS

returns is precisely those nodes that are reachable from the starting node. The second
is efficiency: BFS finds this set quickly. The first claim might seem obvious—and thus
proving it may feel annoyingly pedantic—but there’s a bit of subtlety to the argument,
and it’s good practice at using induction in proofs besides.

Theorem 11.3 (Correctness of BFS)
Let G = 〈V, E〉 be any graph, and let s ∈ V be an arbitrary node. Then the set of nodes
discovered by BFS(G, s) is exactly {t ∈ V : t is reachable from s in G}.

Proof. We’ll prove the result by showing two set inclusions: the discovered nodes
form a subset of the reachable nodes, and the reachable nodes form a subset of the
discovered nodes. Both proofs will use induction, though on different quantities. Problem-solving

tip: The hard part
here is figuring on
what quantity to do
induction. One way
to approach this
question is to figure
out a recursive
way of stating the
correctness claim.

Q: why is there a
path to every node
added to Frontier?
(A: there was a path
to every previous
node in Frontier,
and there’s an
edge from some
previously added
node to this one!)

Q: why is every
node u reachable
from s eventually
added to Frontier?
(A: because a
neighbor of u
that’s closer to s is
eventually added
to Frontier, and
every neighbor of a
node in Frontier is
eventually added to
Frontier!)

Claim #1: BFS(G, s) ⊆ {t ∈ V : t is reachable from s in G}. By inspection, we see that (i)
BFS returns the set of nodes that end up in the Known set, and (ii) the only way that
a node ends up in Known is having previously been in Frontier. Thus it will suffice to
prove the following property for all k ≥ 0, by strong induction on k:

Q(k) := if a node t ∈ V is added to the list Frontier during the kth iteration of the
while loop of BFS, then there is a path from s to t.

Base case (k = 0): If the node t was added to Frontier during the 0th iteration of the
while loop—that is, before the while loop begins—then t was added in Line 1 of
BFS. Therefore t is actually the node s itself. There is a path from s to s itself in
any graph, and thus Q(0) holds.

Inductive case (k ≥ 0): We assume the inductive hypotheses Q(0), . . . , Q(k − 1), and
we must prove Q(k). Consider a node t that was added to Frontier during the kth
iteration of the while loop—in other words, t was added in the for loop (Lines
6–8) because t is a neighbor of some node u that was already in Frontier. That is,
we know that 〈u, t〉 ∈ E and that u was added to Frontier in the (k′)th iteration,
for some k′ < k. By the inductive hypothesis Q(k′), there is a path P from s to u.
Therefore there is a path from s to t, too:

s u t
edges of P edge 〈u, t〉 .

Claim #2: BFS(G, s) ⊇ {t ∈ V : t is reachable from s in G}. If a node t is reachable from s
in G, then by definition the distance from s to t is some integer d ≥ 0. Furthermore,
by inspection of the algorithm, we see that any node that’s added to Frontier is even-
tually moved to Known. Thus it will suffice to prove the following property for all
d ≥ 0, by (weak) induction on d:

R(d) := if a node t ∈ V at distance d from s, then t is eventually added to Frontier.

Base case (d = 0): We must prove R(0): any node t at distance 0 is eventually added
to Frontier. But the only node at distance 0 from s is s itself, and BFS adds s itself
to Frontier in Line 1 of the algorithm.
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Inductive case (d ≥ 1): We assume the inductive hypothesis R(d − 1), and we must
prove R(d). Let t be a node at distance d from s. Then by definition of distance
there is a shortest path P of length d from s to t. Let u be the node immediately
before t in P. Then the distance from s to u must be d − 1, and therefore by the
inductive hypothesis R(d − 1) the node u is added to Frontier in some iteration of
the while loop. There are at most |V| iterations of the loop, and thus eventually
u is the first node in Frontier. In that iteration, the node t is added to Frontier (if it
had not already been added). Thus R(d) follows.

(In the exercises, you’ll show how to modify BFS so that it actually computes distances
from s, using an idea very similar to the proof of Claim #2 of Theorem 11.3.)

Running time of BFS

Theorem 11.4 (Efficiency of BFS)
For a graph G = 〈V, E〉 represented using an adjacency list, BFS takes Θ(|V| + |E|) time.

Breadth-First Search (BFS):
Input: a graph G = 〈V, E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G

1: Frontier := 〈s〉
2: Known := ∅
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: for every neighbor v of u:
7: if v is in neither Frontier nor Known then
8: add v to the end of Frontier
9: add u to Known

10: return Known

Figure 11.30: A
reminder of BFS.

Proof. See Figure 11.30 for a reminder of the algorithm. Lines
1, 2, and 10 take Θ(1) time, so the only question is how long
the while loop takes. In the worst case, every node in the
graph is reachable from the node from which BFS is run. In
this case, there is one iteration of the while loop for every
node u ∈ V. How long does the body of the while loop
(Lines 4–9) take for a particular node u?

• Lines 4, 5, and 9 take Θ(1) time.
• The for loop in Lines 6–8 has one iteration for each neighbor

of u. (In an adjacency list, the loop simply steps through
the list of neighbors, one by one.) Each for-loop iteration takes Θ(1) time, and there
are degree(u) iterations for node u.

Therefore, ignoring multiplicative constants, the worst-case running time of BFS is

1 + ∑
u∈V

[
1 + degree(u)

]

= 1 +
[

∑
u∈V

1
]

+
[

∑
u∈V

degree(u)
]

rearranging the summation

= 1 + |V| + 2|E| or 1 + |V| + |E| for a directed graph Theorem 11.1/Exercise 11.18

= Θ(|V| + |E|).

Taking it further: BFS arises in applications throughout computer science, from network routing to arti-
ficial intelligence. Another application of BFS occurs (hidden from your view) as you use programming
languages like Python and Java, through a language feature called garbage collection. In garbage-collected
languages, when you as a programmer are done using whatever data you’ve stored in some chunk of
memory, you just “drop it on the floor”; the “garbage collector” comes along to reclaim that memory for
other use in the future of your program. The garbage collector runs BFS-like algorithms to determine
whether a particular piece of memory is actually trash. See p. 1143 for more.
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11.3.5 Finding Paths: Depth-First Search (DFS)

Another important algorithm for exploring graphs is called depth-first search (DFS),
which can be described informally as follows. Instead of exploring outward from the
source node s in “layers” as in BFS, we will try to explore a new node at every stage of
the search. We start at s, and at every stage we move to an unvisited neighbor of our
current node. If at any stage we’re stuck at a node u that has no unvisited neighbors,
we go back from u to the node from which we first reached u and continue exploring
from there. Here is an example of DFS in a small graph, informally:

Example 11.28 (Sample run of depth-first search)

A

B

D

E

FC

G

H

We start exploring node A; in each frame, the dark-
shaded node is the current node.

A

B

D

E

FC

G

H

Previously discovered nodes are lightly shaded.
Arrows indicate the steps of the exploration.

A

B

D

E

FC

G

H

In each of the first four frames, we move from the
current node to a neighbor that is unexplored. (We
pick the alphabetically first node if there’s a choice.)

A

B

D

E

FC

G

H

A

B

D

E

FC

G

H

The current node E has no unvisited neighbors, so
we backtrack from E to D to find D’s unvisited neigh-
bor F.

A

B

D

E

FC

G

H

We backtrack from F to D to B to discover the new
node C.

A

B

D

E

FC

G

H

We backtrack from C to B to A; there are no further
unexplored nodes from any of these nodes, and thus
the algorithm terminates.

Intuitively, depth-first search is a close match for the way that you would explore
a maze: you start at the entrance, follow a passageway to a location you’ve never vis-
ited before; using breadcrumbs or a pencil, you remember where you’ve been and
backtrack if you get stuck. You may have heard of another algorithm for mazes:

Place your right hand on the wall as you go in the entrance. Continue to walk forward,
always keeping your right hand on the wall. Eventually, you will get out of the maze.

In fact, this right-hand-on-the-wall algorithm is identical in spirit to DFS: whenever
you encounter a choice, you always choose the first (right-most) unexplored pas-
sageway, and if you ever get stuck at a dead end you turn around and go back from
whence you came.
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Depth-First Search (DFS):
Input: a graph G = 〈V, E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G

1: Frontier := 〈s〉
2: Known := ∅
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: if u is not in Known then
7: for every neighbor v of u:
8: if v is not in Known then
9: add v to the start of Frontier

10: add u to Known
11: return Known

Figure 11.31: The
pseudocode for
depth-first search.
The only changes
from BFS are
underlined.

We can implement DFS with only a small change to BFS,
as shown in Figure 11.31: instead of putting a newly discov-
ered node u at the end of the list Frontier of nodes from which
to explore (as in BFS), we put a newly discovered node u at
the beginning of Frontier. (In other words, BFS treats the list
Frontier as a queue—first in, first out—while DFS treats the list
Frontier as a stack—last in, first out.) Another small change is
necessary, to allow a node already in Frontier to be “moved”
earlier in the list of nodes to explore.

Because this alteration of BFS changes only the order in
which the nodes in Frontier are explored, DFS does precisely
the same work as BFS, and is correct for the same reasons:
DFS returns precisely the set of nodes reachable from the given source node s. (With a
little more cleverness in moving nodes to the front of Frontier, DFS can also be imple-
mented in Θ(|V| + |E|) time.) Here’s a fully detailed example of DFS:

Example 11.29 (Sample run of DFS, in detail)
We’ll trace DFS starting at node A in this graph:

A

B

C E

FG

D H

A: B, C
B: A, G
C: A, E
D: H
E: C, F, G
F: E, G
G: B, E, F
H: D

= Frontier
= just moved from Frontier to Known
= Known
= neither Known nor Frontier Known

Frontier
u: just added. Explanation

A

B G

EC

F

D H

{} 〈A〉 initialization

A

B G

EC

F

D H

{A} 〈B, C〉 processing A

A

B G

EC

F

D H

{A, B} 〈G, C〉 processing B

(A known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G} 〈E, F, C〉 processing G

(B known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G, E} 〈C, F, F, C〉 processing E

(G known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G, E, C} 〈 F, F, C〉 processing C

(A,E known ⇒ not re-added)

A

B G

EC

F

D H

{A, B, G, E, C, F} 〈 F, C〉 processing F

There are two more iterations that remove the last two entries in Frontier (making no
changes to Known and adding nothing further to Frontier), because both F and C are
already in Known. The while loop then terminates, and DFS returns {A, B, G, E, C, F}.
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Computer Science Connections

The Bowtie Structure of the Web

As the web has grown more and more central in the daily lives of us all,
it has garnered increasing attention from researchers in computer science. A
great deal of work has been performed to characterize the web in terms of its
degree distribution (see p. 1123) or in terms of the “small-world phenomenon”
(see p. 438). But one foundational and influential paper sought to characterize
the web’s structure in terms of its strongly connected components.9 In the 9 Andrei Broder, Ravi Kumar, Farzin

Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew
Tomkins, and Janet Wiener. Graph
structure in the web. Computer Networks,
33(1–6):309–320, 2000.

early days of the web, eight researchers from AltaVista, IBM, and Compaq
downloaded around 200 million web pages, comprising about 1.5 billion links.
They then analyzed the structure of the resulting graph, by categorizing the
pages:

1. Let core denote those web pages contained in the largest SCC of the
web graph. Like many other networks (for example, social networks and
collaboration networks), the web graph has a giant component that contains
many more nodes than the second-largest SCC. Denote by core those
nodes in the largest SCC in the web graph.

2. Let in denote those web pages p such that (i) p /∈ core, and (ii) there is a
path from p to some node in core. That is, there is a path from p to every
page in core, but there’s no path from any node in core to p.

3. Let out denote those web pages p such that (i) p /∈ core, and (ii) there is a
path from some node in core to p. That is, there is a path from every page
in core to page p, but there’s no path from p to any node in core.

When displayed graphically, as in Figure 11.32, these categories of web pages
look like a bowtie, and so the paper by Broder et al. came to be known as “the
bowtie paper.”

COREIN OUT

Figure 11.32: The “bowtie structure” of
the web graph, in its basic form. Broder
et al. found that roughly 25% of web
pages fell into each of these categories:
56M pages (of 200M) in core, 43M
pages in in, and 43M pages in out.

To complete the picture of the bowtie structure of the web, we must note
that not all web pages are included in Figure 11.32. There are three further
categories of nodes:

4. Let tubes denote those pages p that (i) are reachable from a node of in
(that is, there’s a page q ∈ in that has a path to p), and (ii) can reach a node
of out (that is, there’s a page q ∈ out to which p has a path), and (iii)
p /∈ core.

5. Let tendrils denote those pages p that are either reachable from a node of
in, or can reach a node of out, but not both.

6. Let disconnected denote those pages p that are not in core, in, out,
tubes, or tendrils—that is, those pages p that can neither reach nor be
reached by any node in those sets.

One of the unexpected facts found by Broder et al. was the extent to which

COREIN OUT

TUBES

TENDRILS TENDRILS

DISCONNECTED

Figure 11.33: The remainder of the
“bowtie structure” of the web graph.
There were about 44M pages in
tendrils and tubes, and about 17M
pages in disconnected.

the web is actually not particularly well connected. In particular, if we were to
choose web pages p and q uniformly at random from the web graph, there was
only a roughly 24% chance of that a directed path from p to q exists—far lower
than the “small world” phenomenon would suggest.
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Computer Science Connections

Garbage Collection

In many modern programming languages, including Python and Java, the
burden of managing memory is lifted from the shoulders of the program-
mer. When a new object is needed, the programmer just creates it. After a
program has been running for a while, there may be objects that were stored
in memory but are now inaccessible because the programmer has no way to
refer to them ever again. This stored but inaccessible data is called garbage.
Figure 11.34 shows an example of garbage being created. In Python- and Java-
like languages, the system provides a garbage collector that periodically runs to
clean up the garbage, which allows that memory to be reused for future allo-
cations. (In contrast, in languages like C or C++, when you as a programmer
are done using a chunk of memory, it’s your responsibility to declare to the
system that you’re done using that memory by explicitly “deallocating” or
“freeing” it.)

There are many sophisticated garbage-collection algorithms that are em-

Suppose that Node(data,next) creates
a new node for a singly linked list,
with data data and with a pointer
next to the next node in the list. Imag-
ine executing the following code:

1 L = Node(7,NULL)

2 L = Node(5,L)

3 L = Node(3,L)

4 L = Node(2,L)

5 L.next = L.next.next

Then the state of memory after execut-
ing lines 1–4 is
L

2 3 5 7

But when we execute line 5, the state
of memory becomes
L

2 3 5 7

The node with data = 3 is garbage now:
there is no way to access that memory
again, because there is no way for the
programmer to refer to it.

Figure 11.34: Garbage being created.

ployed in real systems, but fundamentally the algorithmic idea is based on
finding reachable nodes in a graph. There is a root set of memory locations
that are reachable—essentially every variable that’s defined in any cur-
rently active function call on the stack. Furthermore, if a memory location
ℓ is pointed to by a reachable memory location, then ℓ too is reachable. Two
simpler algorithms that are sometimes used in garbage collection are based
on some corresponding simple graph-theoretic approaches. Here’s a brief
description of these two garbage-collection algorithms:10

You can learn more about garbage
collection in any good textbook on
programming languages. A few of these
are:
10 Michael L. Scott. Programming Lan-
guage Pragmatics. Morgan Kaufmann
Publishers, 3rd edition, 2009; and
Kenneth C. Louden and Kenneth A.
Lambert. Programming Languages: Prin-
ciples and Practices. Course Technology,
3rd edition, 2011.

Reference counting: For each block b of memory, we maintain a reference count
of the number of other blocks of memory (or root set variables) that refer to
b. When the garbage collector runs, any block b that has a reference count
equal to 0 is marked as garbage and reclaimed for future use.

Mark-and-sweep: When the garbage collector runs, we iteratively mark each
block b that is accessible. Specifically, for every variable v in the root set,
we mark the block to which v refers. Then, for any block b that is marked,
we also mark any block to which b refers. Once the marking process is
completed, we sweep through memory, and reclaim all unmarked blocks.

x y

1 2 3 4 5 6

Figure 11.35: A memory diagram with
six blocks of memory, and two root set
variables x and y. Reference counting
would show block #6 with a reference
count of zero, and therefore it would
be reclaimed. Mark-and-sweep would
mark blocks #1, #4, and #5; thus it would
reclaim blocks #2, #3, and #6.

In graph-theoretic terms, we view memory as a directed graph,
with an edge from each block b to the block(s) to which b refers.
Reference counting declares as garbage any node with in-degree 0;
mark-and-sweep declares as garbage any node that is not reached
by BFS starting from the root set.

Reference counting is a simpler algorithm, but it has a prob-
lem with cyclical structures. If two inaccessible blocks of memory refer to
each other, they both have nonzero reference count, and therefore won’t be
marked as garbage. An example is shown in Figure 11.35. There are issues
of efficiency with mark-and-sweep (the entire system has to pause while the
garbage collector runs), and so other, more sophisticated algorithms are gener-
ally used in real systems.
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11.3.6 Exercises

A

B

C

D

E

F

G

H

(a)

A

B

C

D

E

F

G

H

(b)

A: B, E, F

B: A

C: D

D: C, F

E: A

F: A, D

(c)

A: B, C

B: A, C

C: A, B, F

D: E

E: B, D

F: C

(d)

A B C D E F G H

A 1 1
B 1 1 1
C 1 1
D 1 1 1
E 1 1
F 1 1
G 1
H 1 1 1

(e)

Figure 11.36:
Several graphs.

For the graphs defined in Figure 11.36, identify the following specified objects (or indicate why no such thing exists):
11.72 a path from D to B in Figure 11.36(a)
11.73 two different paths from C to H in Figure 11.36(a)
11.74 a path from C to B in Figure 11.36(b)
11.75 two different paths from A to H in Figure 11.36(b)
11.76 a path from D to H in Figure 11.36(b) that is not simple.
11.77 a path from B to C in the graph defined by the adjacency list in Figure 11.36(c)
11.78 a shortest path from B to F in Figure 11.36(d)
11.79 a non–shortest path from B to C in the graph defined by the adjacency matrix in Figure 11.36(e)
11.80 all nodes reachable from A in Figure 11.36(d)
11.81 all nodes reachable from A in Figure 11.36(e)

Which of these graphs are (strongly) connected? Explain your answers. Identify all of the connected components for the
undirected graphs, and all of the strongly connected components for the directed graphs.
11.82 Figure 11.36(a)
11.83 Figure 11.36(b) (strong connectivity)
11.84 Figure 11.36(c)
11.85 Figure 11.36(d) (strong connectivity)
11.86 Figure 11.36(e)

Let G = 〈V, E〉 be an undirected graph, and let s ∈ V and t ∈ V be any two nodes in G. Prove the following:
11.87 If there’s a path of length k from s to t, then there’s a path of length k from t to s.
11.88 Every shortest path between s and t is a simple path.

For a directed graph G = 〈V, E〉, the diameter of G is the largest node-to-node distance in the graph. That is, Although the
context is different,
our version of
“diameter” matches
the idea from
geometry: the
diameter of a circle
is the distance
between the two
points in the circle
that are farthest
apart. That’s still
true for a graph.

diameter(G) = max
s∈V,t∈V

d(s, t),

where d(s, t) denotes the length of the shortest path from node s to node t in G. Prove your answers:
11.89 In terms of n, what is the smallest diameter that an n-node undirected graph can have?
11.90 In terms of n, what is the largest diameter that a connected n-node undirected graph can have?
Give an example of a graph where the diameter is this large. (In other words, assuming that G is connected,
what’s the largest possible distance between two nodes in G? Note that, without the restriction that the graph be
connected, the answer would be ∞.)

Consider an n-node 3-regular undirected graph G. (That is, we’re considering a graph G = 〈V, E〉 with |V| = n, where
each node u ∈ V has degree exactly equal to 3.) In terms of n:
11.91 What is the largest possible number of connected components in a 3-regular graph?
11.92 What is the smallest possible number of connected components in a 3-regular graph?
11.93 Describe a connected 3-regular graph with n nodes with a diameter that’s at least n

8 .
11.94 Describe a connected 3-regular graph with n nodes with a diameter that’s at most 8 log n.
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11.95 Prove or disprove: let G = 〈L ∪ R, E〉 be a bipartite graph with |L| = |R|. Suppose that every node
in the graph (that is, all nodes in L and R) has at least one neighbor. Then the graph is connected.

Consider an undirected graph G. Recall that a simple path from s to t in G is a path that does not go through any node
more than once. A Hamiltonian path from s to t in G is a path from s to t that goes through each node of G precisely
once. In general, finding Hamiltonian paths in a graph is believed to be computationally very difficult. But there are Hamiltonian paths

are named after
William Rowan
Hamilton, a 19th-
century Irish
mathematician/
physicist.

some specific graphs in which it’s easy to find one.
11.96 Find a Hamiltonian path in the Petersen graph:

A

B

C

DE

F

G

H

IJ

11.97 Let Kn be a complete graph, and let s and t be two distinct nodes in the graph. How many differ-
ent Hamiltonian paths are there from s to t?
11.98 Let Kn,m be a complete bipartite graph with n + m nodes, and let s and t be two distinct nodes in
the graph. How many different Hamiltonian paths are there from s to t? (Careful; your answer may depend on s
and t.)

The diameter of an undirected graph G = 〈V, E〉 is defined as the maximum distance between any two nodes s ∈ V
and t ∈ V. (See Exercises 11.89 and 11.90.) The maximum distance is one measure of how far a graph “sprawls,”
but another way of measuring this idea is by looking at the average distance instead. That is, for a pair of distinct
nodes 〈s, t〉 chosen uniformly from the set V, what’s the distance from s to t? That is, the average distance of a graph
G = 〈V, E〉 is defined as

the average distance of G =
∑s∈V ∑t∈V:t 6=s distance(s, t)

n(n − 1)
.

(There are n(n − 1) ordered pairs of distinct nodes.) Often the average distance is a bit harder to calculate than the
maximum distance, but in the next few exercises you’ll look at the average distance for a pair of simple graphs.
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(a) A 15-node cycle.
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(b) A 16-node cycle.
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(c) A 15-node path.

Figure 11.37: Three
graphs.

11.99 Consider an n-node cycle,
where n is odd. (We’ll see a formal
definition of a cycle in Section 11.4, but
for now just look at the 15-node example
in Figure 11.37(a).) Compute the average
distance in this n-node graph. (Hint:
every node is positioned symmetrically, so
you can just figure out the average distance
from some particular node u.)
11.100 What is the average distance
for an n-node cycle where n is even? (See
the 16-node example in Figure 11.37(b).)
11.101 What is the average distance for an n-node path? (See the 15-node example in Figure 11.37(c).)
(Hint: for any particular integer k, how many pairs of nodes have distance k? Then simplify the summation.)
11.102 (programming required) Write a program, in a language of your choice, to verify your answers to
the last three exercises: build a graph of the appropriate size and structure, sum all of the node-to-node
distances, and compute their average.

Suppose that G is an undirected graph with n nodes. Answer the following questions in terms of n:
11.103 If G is disconnected, what is the largest possible number of edges that G can contain?
11.104 If G is connected, what is the smallest possible number of edges that G can contain?

Suppose that G is a directed graph with n nodes. Answer the following questions in terms of n:
11.105 If G is strongly connected, what is the smallest number of edges that G can contain?
11.106 If every node of G is in its own strongly connected component (that is, there are n different SCCs,
one per node), what is the largest number of edges that G can contain?
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A metric on a set V is a function d : V ×V → R≥0 that obeys the following conditions (see Exercise 4.6 for more):
• reflexivity: for any u ∈ V and v ∈ V, we have d(u, u) = 0 and d(u, v) 6= 0 whenever u 6= v.
• symmetry: for any u ∈ V and v ∈ V, we have d(u, v) = d(v, u).
• triangle inequality: for any u ∈ V and v ∈ V and z ∈ V, we have d(u, v) ≤ d(u, z) + d(z, v).
Let dG(u, v) denote the distance (shortest path length) between nodes u ∈ V and v ∈ V for a graph G = 〈V, E〉.
11.107 Prove that dG is a metric if G is any connected undirected graph.
11.108 Prove that dG is not necessarily a metric for a directed graph G, even if G is strongly connected.

11.109 Definition 11.23 defined a strong connected component in a graph G = 〈V, E〉 as a set C ⊆ V such
that: (i) any two nodes s ∈ C and t ∈ C are strongly connected; and (ii) for any node x ∈ V − C, adding x to C would
make (i) false. Suppose that we’d instead defined clause (i) as for any two nodes s ∈ C and t ∈ C, the node t is
reachable from node s. (But we don’t require that s be reachable from t.) This alternate definition is equivalent
to the original. Why?

11.110 Prove that the strongly connected components (SCCs) of a directed graph partition the nodes of
the graph: that is, prove that the relation R(u, v) denoting mutual reachability (u is reachable from v, and v is
reachable from u) is an equivalence relation (reflexive, symmetric, and transitive).

A

B

C

D

E

F

G

(a)

0: 3, 7

1: 9, 2, 5

2: 1, 10, 9

3: 0, 7, 1

4: 10, 7

5: 1

6: 7, 11

7: 0, 4, 6, 8

8: 11, 12

9: 1

10: 2, 4

11: 6, 8

12: 8

(b)

Figure 11.38: Two
graphs.

Consider the directed graphs represented in Figure 11.38, one by picture and
one by adjacency list. Identify the strongly connected components . . .
11.111 . . . in Figure 11.38(a).
11.112 . . . in Figure 11.38(b).

Suppose that we run breadth-first search from the following nodes. What is the
last node that BFS discovers? (If there’s a tie, then list all the tied nodes.)
11.113 BFS from node A in Figure 11.38(a).
11.114 BFS from node B in Figure 11.38(a).
11.115 BFS from node 0 in Figure 11.38(b).
11.116 BFS from node 12 in Figure 11.38(b).

Breadth-first search as described in Figure 11.29 finds all nodes reachable from a given source node in a given graph,
and, in fact, it discovers nodes in increasing order of their distance from s. But we didn’t actually record distances
during the computation.
11.117 Modify the pseudocode for BFS to compute distances instead of just whether a path exists, by
annotating every node added to Frontier with its distance from the source node s.
11.118 Argue that in your modified version of BFS, there are never more than two different distances
stored in the Frontier.
11.119 Argue that the claim from the previous exercise may be false for depth-first search.

11.120 Consider a graph G represented by an adjacency matrix M. What does the 〈i, j〉th entry of MM
(the matrix that results from squaring the matrix M) represent?

A word chain is a sequence 〈w1, w2, . . . , wk〉 of words, where each wi is a word in English, and wi+1 is one letter
different from wi . For example, a word chain from FROWN to SMILE for my dictionary is

FROWN → FLOWN → FLOWS → SLOWS → SLOTS → SLITS → SKITS → SKITE → SMITE → SMILE.

(SKITE is a word of Scottish origin, meaning “an oblique blow.”)
11.121 (programming required) Write a program that uses a BFS-like algorithm to find a shortest word
chain between two given words w1 and w2 of the same length. (You can find a dictionary of English words
on the web, or /usr/share/dict/words on Unix-based operating systems. You’ll want to cull your dictionary
to only words of the right length before you start.) There are faster solutions that involve searching “in both
directions” out from w1 and into w2 until you find a match, but BFS from w1 will work.
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11.4 Trees

I think that I shall never see
A poem lovely as a tree.

Joyce Kilmer (1886–1918), “Trees”
Trees and Other Poems (1914)

leaves

root

Figure 11.39: A
small tree.

Informally, a tree is a graph that grows from a root, branching outward
and eventually leading to the leaves. (We computer scientists are always
upside down compared to botanists: unlike an oak or maple or tamarack,
the root of a tree in CS is at the top, and it grows downward toward the
leaves.) See Figure 11.39.

Trees arise very frequently in computer science: to name just a few exam-
ples, they’re the class hierarchies of object-oriented programming, the bi-
nary search trees of data structures (see p. 1160), the game trees describing
the progression of Tic-Tac-Toe or chess (p. 344), the parse trees that describe
formal or natural languages (p. 543), the recursion trees that describe the execution
of recursive algorithms (Section 6.4). Trees are also frequently used in computational
models of important phenomena from outside of CS: for example, in reconstructing
evolutionary phylogenies (in computational biology), or in reconstructing the paths by
which rumors spread from the originator of the information (in social network analy-
sis). In this section, we’ll introduce trees formally—including definitions, properties,
algorithms, and applications—as a special type of graph.

11.4.1 Cycles

Before we can define trees properly, we must first define another notion about graphs
in general—a cycle, which is way to get from a node back to itself:

Definition 11.26 (Cycle)
A cycle 〈u1, u2, . . . , uk, u1〉 is a path of length ≥ 2 from a node u1 back to node u1 that does
not traverse the same edge twice. Just as for any other path, the length of the cycle
〈u1, u2, . . . , uk, u1〉 is the number of edges it traverses—that is, k.

A

B

C

D

E

A

B

C

D

E

Figure 11.40: Two
graphs with cycles
〈A, B, C, A〉.

Figure 11.40 shows examples of an undirected and directed
graph with a cycle 〈A, B, C, A〉. Note that the edges 〈s, t〉 and 〈t, s〉
in a directed graph are different; in an undirected graph, the
edges {s, t} and {t, s} are the same. Thus a cycle in a directed
graph can use both 〈s, t〉 and 〈t, s〉, but a cycle in an undirected graph cannot use both
〈s, t〉 and 〈t, s〉. In Figure 11.40, the path 〈C, E, C〉 is a cycle in the directed graph, but is
not a cycle in the undirected graph because it reuses an edge.

Technically speaking, the definition of a cycle in Definition 11.26 says that the undi-
rected graph in Figure 11.40 has six different cycles:

• 〈A, B, C, A〉, 〈C, A, B, C〉, and 〈B, C, A, B〉 (going clockwise), and
• 〈A, C, B, A〉, 〈C, B, A, C〉, and 〈B, A, C, B〉 (going counterclockwise).
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However, we will adopt the convention that there is one and only one cycle in this
graph. Because we can “start anywhere” in a cycle, we consider a cycle to be defined
only by the relative ordering of the nodes involved, regardless of where we start. In

A

B

C

(a)
A

B

C

(b)
A

B

C

(c)

Figure 11.41: Some
cycles.

an undirected graph, we can “go either direction” (clock-
wise or counterclockwise), so we also ignore the di-
rection of travel in distinguishing cycles. In a directed
graph, the direction of travel does matter; we may be able
to go in one direction around a cycle without being able
to go in the other. In other words, we say that Figure 11.41(a) and Figure 11.41(b) have
one cycle each, while Figure 11.41(c) has two.

A cycle is by definition forbidden from traversing the same edge twice. A simple
cycle also does not visit any node more than once:

Definition 11.27 (Simple cycle)
A cycle 〈u1, u2, . . . , uk, u1〉 is simple if each ui is distinct—that is, no nodes in the cycle are
duplicated aside from the last node (which equals the first node).

(We’ve now used the word “simple” in three different contexts: simple graphs have
no parallel edges or self-loops, and simple paths and cycles have no repeated vertices.
Intuitively, all three definitions correspond to an entity that’s not unnecessarily compli-
cated.) For one example, see Figure 11.42; here are two more:

A

B

C

DE

Figure 11.42:
In this graph,
〈D, B, A, C, E, A, D〉
is a non-simple
cycle. This graph
also has two simple
cycles: 〈D, B, A, D〉
and 〈C, E, A, C〉.

Example 11.30 (Finding cycles)
Problem: Identify all simple cycles in the following graphs:

1.

A

B

C

D

E

F

G

H

2.

I J

K

L

M

Solution: A nice way to identify cycles systematically is to look for cycles of all possi-
ble lengths: 2-node cycles, 3-node cycles, etc. (Actually 2-node cycles are possible
only in directed graphs. Exercise: why?) Here are the simple cycles in these graphs:

1. 〈B, E, C, B〉
〈B, D, F, C, B〉
〈C, F, G, E, C〉
〈B, D, F, G, E, B〉
〈B, D, F, G, E, C, B〉

2. 〈I, J, I〉
〈J, L, J〉
〈J, M, L, J〉
〈J, K, M, L, J〉

Note that (to name one of several examples) the sequence 〈I, J, L, J, I〉 is also a
cycle in the second graph—it traverses four distinct directed edges and goes from
node I to I—but this cycle is not simple, because node J is repeated.
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We can use a modification of breadth-first search to identify cycles algorithmically.
Specifically, suppose that we wish to find out whether a node u is involved in a cycle
in a directed graph. We run BFS starting at node u, and if we ever encounter a node
v that has u as a neighbor, then we have found a cycle involving node u. (An extra
modification is necessary for undirected graphs; see Exercise 11.129.)

Taking it further: Kidneys are the most frequently transplanted organ today, in part because—unlike
for other organs—humans generally have a “spare”: we’re born with two kidneys, but only need one
functioning kidney to live a healthy life. Thus patients suffering from kidney failure may be able to get a
transplant from friends or family members who are willing to donate one of their kidneys. But this po-
tential transplant relies on the donor and the patient being compatible in dimensions like blood type and
the physical size of the organs. Recently a computational solution to the problem of incompatibility has
emerged, using algorithms based on finding (short) cycles in a particular graph: there is now national
exchange for matching up two (or a few) patients with willing-but-incompatible donors, and doing a
multiway transplant. See p. 1159 for more discussion.

Acyclic graphs
While cycles are important on their own, their relevance for trees is actually when

they don’t exist:

Definition 11.28 (Acyclic Graphs)
A graph is acyclic if it contains no cycles.

Let’s prove a useful structural fact about acyclic graphs. (Recall that we are consid-
ering finite graphs, where the set of nodes in the graph is finite. The following claim
would be false if graphs could have an infinite number of nodes!)

Lemma 11.5 (Every acyclic graph has a node with degree 0 or 1)
Let G = 〈V, E〉 be an acyclic undirected graph. Then there exists a node in V whose degree is
zero or one.

Proof. We’ll give a constructive proof of the claim—specifically, we’ll give an algorithm
that finds a node with the stated property:

1: let u0 be an arbitrary node in the graph, and let i := 0
2: while the current node ui has no unvisited neighbors:
3: let ui+1 be a neighbor of ui that has not previously been visited.
4: increment i

Observe that this process must terminate in at most |V| iterations, because we must
visit a new node in each step. Suppose that this algorithm goes through k iterations of
the while loop, and let t be the last node visited by the algorithm. (So t = uk .)

• If k = 0, then t = u0 has degree zero, so the claim follows immediately.
• If k ≥ 1, then we’ll argue that t has degree one. Because the algorithm terminated,

there cannot be an edge between t and any unvisited node. Furthermore, if there
were an edge from t to any previously visited node uj for j < k − 1, then there would
be a cycle in the graph, namely 〈uj, uj+1, . . . , uk−1, uk, uj〉. Therefore t’s only neighbor
is uk−1, and the degree of t is one.
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For directed graphs, the claim analogous to Lemma 11.5 is every directed acyclic graph
contains a node with outdegree zero. (You’ll prove it in Exercise 11.130.)

Taking it further: A directed acyclic graph (often just called a DAG) is, perhaps obviously, a directed
graph that contains no cycles. A DAG G corresponds to a (strict) partial order (see Chapter 8); a cycle in
G corresponds to a violation of transitivity. In fact, we can think of any directed graph G = 〈V, E〉 as a
relation—specifically, the edge set E is a subset of V × V. Like transitivity and acyclicity, many of the
concepts that we explored in Chapter 8 have analogues in the world of graphs.

11.4.2 Trees

With the definition of cycles in hand, we can now define trees themselves:

Definition 11.29 (Tree)
A tree is an undirected graph that is connected and acyclic.

We will also sometimes talk about graphs that satisfy only the latter requirement:
a forest is an undirected graph that is acyclic (but not necessarily connected). Every
connected component of a forest is a tree, and note that a tree is itself a forest.

An irrelevant note
about Chinese: the
character for tree
is木; the character
for forest is森
(a disconnected
collection of trees!).

(a) (b) (c) (d) (e) (f)

Figure 11.43: Some
sample trees.

Several examples of trees
are shown in Figure 11.43:
all six graphs have a single
connected component and
contain no cycles. Therefore
all six are trees.

We’ll prove several struc-
tural facts about trees in this section, beginning with one concerning the number of
edges in a tree. To start, let’s look at the number of nodes and edges in each of the trees
in Figure 11.43:

(a) (b) (c) (d) (e) (f)
number of nodes 4 11 4 5 1 7
number of edges 3 10 3 4 0 6

In each of these trees, the number of nodes is one more than the number of edges, and
that’s no coincidence; here’s the statement and proof of the general fact:

Theorem 11.6 (Number of edges in a tree)
Let T = 〈V, E〉 be a tree. Then |E| = |V| − 1.

Proof. Let P(n) denote the property that any n-node tree has precisely n − 1 edges. We
will prove that P(n) holds for all n ≥ 1 by induction on n.

Base case (n = 1): We must prove P(1): any 1-node tree has 1 − 1 = 0 edges. But the
only 1-node (simple) graph is the one shown in Figure 11.43(e), which has zero
edges, and so we’re done immediately.
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Inductive case (n ≥ 2): We assume the inductive hypothesis P(n − 1)—that is, every
(n − 1)-node tree has n − 2 edges. We must prove P(n).

Consider an arbitrary tree T = 〈V, E〉 with |V| = n. By definition, T is acyclic and
connected. By Lemma 11.5, then, there exists a node u ∈ V with degree 0 or 1 in T.
Furthermore, because T is connected, the degree of u cannot be 0. Thus u is a node
with degree(u) = 1. Let v ∈ V be the unique neighbor of u in T. Let T′ be T with
node u and the edge {u, v} between u and v deleted. (See Figure 11.44.)

We claim that the graph T′ = 〈V − {u} , E − {{u, v}}〉 is a tree, too. The acyclicity

T ′

u

v

Figure 11.44: A tree
T, with a node u of
degree = 1 and its
neighbor v. The tree
T ′ is T without the
node u and the edge
{u, v}.

and connectivity of T′ both follow from the fact that T was acyclic and connected,
and the fact that the eliminated node u was of degree 1.

The tree T′ contains n − 1 nodes, and thus, by the inductive hypothesis P(n − 1),
contains n − 2 edges. Therefore T, whose edges are precisely the edges of T′ plus
the eliminated edge {u, v}, contains precisely (n − 2) + 1 = n − 1 edges.

An immediate consequence of Theorem 11.6 is that every tree is teetering on the
edge of being disconnected and of having a cycle (see Figure 11.45):

✗

(a) Imagine adding
the dashed edge, or
removing the edge
marked with ✗ .

(b) Adding an edge
creates a cycle.

(c) Removing an
edge disconnects
the graph.

Figure 11.45:
Adding/removing
an edge from a tree.

Corollary 11.7 (A tree with an edge added or removed is not a tree)
Let T = 〈V, E〉 be any tree. Then:

1. adding any edge e /∈ E to T creates a cycle; and
2. removing any edge e ∈ E from T disconnects the graph.

Proof. 1. Define the graph G = 〈V, E ∪ {e}〉 as the result of adding the new edge e to
the tree T. Because adding an edge to a graph can never disrupt connectivity and
T was already connected, we know that G must be connected too. Thus if G were
acyclic, then G would be a tree. But G has one more edge than T—specifically, G has
(|V| − 1) + 1 = |V| edges—and therefore isn’t a tree by Theorem 11.6.

2. The proof is similar: let G′ be T with e removed. Removing an edge cannot create
a cycle, so G′ is acyclic. But G′ has too few edges to be a tree by Theorem 11.6, so G′

must be disconnected.

(Here’s an alternative proof of Corollary 11.7.1. Let 〈u, v〉 be an edge not in the tree T.
Because T is connected, there is already a (simple) path P from u to v in T. If we add
〈u, v〉 to T, then there is a cycle: follow P from u to v and then follow the new edge
from v back to u. Therefore G contains a cycle.)

Rooted trees
We often designate a particular node of a tree T as the root, which is traditionally

drawn as the topmost node. (Note that we could designate any node as the root and—
just like that mobile of zoo animals from your crib from infancy—“hang” the tree by
that node.) We will adopt the standard convention that, whenever we draw trees, the
vertically highest node is the root.
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(a) The root.
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(b) The leaves.
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(c) The internal nodes.
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(d) The parent of E .
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(e) The children of E .
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E

HG

I

F

D

B

(f) The sibling(s) of E .

Figure 11.46: The
root, leaves, and
internal nodes
of the tree; the
parent, children,
and siblings of a
particular node.

There’s a lot of terminology about
trees in computer science that’s bor-
rowed from the world of family trees:

• For a node u in a tree with root
r 6= u, the parent of u is the unique
neighbor of u that is closer to r than
u is. (The root is the only node that
has no parent.)

• A node v is one of the children of a
node u if v’s parent is u.

• A node v is a sibling of a node u 6= v
if v and u have the same parent.

A node with zero children is called a leaf. A node with one or more children is called
an internal node. (Note that the root is an internal node unless the tree is the trivial
one-node graph.) See Figure 11.46 for an illustration of all of these definitions. Note
that Figure 11.46 is correct only when the root is the topmost node in the image; with a
different root, all of the panels could change. Here’s a concrete example:

Example 11.31 (A sample tree)
Here are two trees. (The second tree is just the first, rerooted to make E the new root.)

A

C

G

J

B

FE

I

MLK

H

D

E

B

FDA

C

G

J

I

MLK

H

Then we have:

Root: A Root: E
Leaves: {D, F, H, J, K, L, M} Leaves: {D, F, H, J, K, L, M}
Internal nodes: {A, B, C, E, G, I} Internal nodes: {A, B, C, E, G, I}
Parent of B: A Parent of B: E
Children of B: {D, E, F} Children of B: {A, D, F}
Parent of A: none Parent of A: B
Children of A: {B, C} Children of A: {C}

While the leaves and internal nodes are identical in these two trees, note that if we’d
rerooted the tree at any of the erstwhile leaves instead, the new root would become
an internal node instead of a leaf. For example, if we reroot this tree at H, then the
leaves would be {D, F, J, K, L, M} and the internal nodes would be {A, B, C, E, G, H, I}.
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Subtrees, descendants, and ancestors
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(a) Ancestors of E .
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E
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I

F

D
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(b) Descendants of E .

E

HG

I

F

(c) Subtree rooted at E .

Figure 11.47: Ances-
tors, descendants,
and subtrees.

Let T be a rooted tree, and let u be
any node in T. The subtree rooted at u
consists of u and all those nodes and
edges “below” u in T. (In other words,
a node v is in the subtree rooted at
u if and only if v is no closer to the
root of T than u is; the subtree is the
induced subgraph of these nodes.) Such a node v in the subtree rooted at u is called
a descendant of u if v 6= u. The node u is called an ancestor of v. See Figure 11.47 for
illustrations of these three definitions. Here’s an example:

Example 11.32 (Descendants and ancestors)
Recall the trees from Example 11.31:

A

C

G

J

B

FE

I

MLK

H

D

E

B

FDA

C

G

J

I

MLK

H

Then we have:

Descendants of B: {D, E, F, H, I, K, L, M} Descendants of B: {A, C, D, F, G, J}
Ancestors of B: {A} Ancestors of B: {E}
Descendants of H: none Descendants of H: none
Ancestors of H: {A, B, E} Ancestors of H: {E}
Subtree rooted at B:

B

FE

I

MLK

H

D

Subtree rooted at B: B

FDA

C

G

J

A

C

E

HG

I

F

D

B

0

1 1

2 2

3 3 3

4

Figure 11.48: A
rooted tree’s nodes,
labeled by depth.

We have one final pair of definitions to (at last!) conclude our parade
of terminology about rooted trees, related to how “tall” a tree is. Con-
sider a rooted tree T with root node r. The depth of a node u is the dis-
tance from u to r. The height of a tree is the maximum, over all nodes u in
the tree, of the depth of node u.

For example, every node in the tree in Figure 11.48 is labeled by its
depth: the root has depth 0, its children have depth 1, their children (the
“grandchildren” of the root) have depth 2, and so forth. The height of the tree is the
largest depth of any of its nodes—in this case, the height is 4.
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Taking it further: Alternatively, we could give several of the definitions about rooted trees recursively.
For example, we could define ancestors and descendants of a node u be in a rooted tree T as follows:
• A node v is an ancestor of u if (i) v is the parent of u; or (ii) v is the parent of any ancestor of u.
• A node v is a descendant of u if (i) v is a child of u; or (ii) v is a child of any descendant of u.
We can also think of the depth of a node, or the height of a tree, recursively. The depth of the root is zero;
the depth of a node with a parent p is 1 + (the depth of p). For height:
• the height of a one-node tree T is zero; and
• the height of a tree T with root r with children {c1, c2 , . . . , ck} is

1 + max
i∈{1,...,k}

the height of the subtree rooted at ci .

Binary trees
We’ll often encounter a special type of tree in which nodes have a limited number of

children:

Definition 11.30 (Binary trees and k-ary trees)
A binary tree is a rooted tree in which each node has 0, 1, or 2 children. More generally, if
every node in a rooted tree T has k or fewer children, then T is called a k-ary tree. (In other
words, a binary tree is 2-ary.)

(a) (b) (c) (d) (e) (f)

Figure 11.49:
The trees from
Figure 11.43,
repeated. All but
(d) are binary trees.

For example, consider
the trees in Figure 11.49.
Of them, only the tree in
Figure 11.49(d) is not a
binary tree, because its root
has four children. (This
tree is a 4-ary tree.) But
the other five trees are all binary: in each, every internal node has either 1 child or 2
children.

In a binary tree, the possible children of a node are called its left child and right
child. (Even for a node u in a binary tree that has only one child, we’ll insist that the
lone child be designated as either the left child of u or the right child of u.) For a node
u, we say that u’s left subtree is the subtree rooted at u’s left child; the right subtree is
analogous.

11.4.3 Tree Traversal

We will sometimes want to list all of the nodes contained in a tree T. There are three
standard algorithms that are used for this purpose, called pre-order, in-order, and post-
order traversal. While these algorithms can be generalized to non-binary trees, they’re
easier to understand for binary trees (and they’re most frequently deployed for binary
trees), so we’ll consider them that way.

All three algorithms are recursive, and all three algorithms execute precisely the
same steps—just in a different order. On an empty tree T, we do nothing; on a non-
empty tree T, all three algorithms perform the following steps:
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• we “visit” the root of the tree T. (You can think of “visiting” the root as printing out
the contents of the root node, or as adding it to the end of an accumulating list of
the nodes that we’ve encountered in the tree.)

• we recursively traverse the left subtree of T, finding all nodes there.
• we recursively traverse the right subtree of T, finding all nodes there.

But the three traversal algorithms execute the three steps in different orders, either
visiting the root before both recursive calls (“pre-order”); between the recursive calls (“in-
order”); or after both recursive calls (“post-order”). We always recurse on the left subtree
before we recurse on the right subtree. Here are the details:

pre-order-traverse(T):
1: if T is empty then
2: do nothing.
3: else
4: visit the root of T
5: pre-order-traverse(T’s left subtree)
6: pre-order-traverse(T’s right subtree)

in-order-traverse(T):
1: if T is empty then
2: do nothing.
3: else
4: in-order-traverse(T’s left subtree)
5: visit the root of T
6: in-order-traverse(T’s right subtree)

post-order-traverse(T):
1: if T is empty then
2: do nothing.
3: else
4: post-order-traverse(T’s left subtree)
5: post-order-traverse(T’s right subtree)
6: visit the root of T

Figure 11.50: Three
different algorithms
to traverse a binary
tree.

Let’s take a look at an example of traversing a small tree using these algorithms.
First we’ll look at the pre-order traversal, in which the first node visited in any subtree is
the root of that subtree:

Example 11.33 (Traversing a small tree: pre-order traversal)
Let’s determine the order of nodes’ visits by a pre-order traversal of the following
tree:

A

B

D E F

C

In a pre-order traversal, we first visit the root, then pre-order-traverse the left subtree,
then pre-order-traverse the right subtree. In other words, we first visit the root A, then
pre-order-traverse B

D , then pre-order-traverse C
E F :

Step #1: visit the root. We visit the root A.
Step #2: pre-order-traverse the left subtree. To pre-order-traverse B

D , we first
visit the root B, then pre-order-traverse the left subtree D , then pre-order-traverse
the (empty) right-subtree. In order, these steps visit B and D.

Step #3: pre-order-traverse the right subtree. To pre-order-traverse C
E F ,

we first visit C, then pre-order-traverse the left subtree E , and then pre-order-
traverse the right subtree F . Pre-order-traversing E just results in visiting E, and
pre-order-traversing F just visits F. In order, these steps visit C, E, and F.

Putting this all together, the pre-order traversal of the tree visits the nodes in this
order:

A︸︷︷︸
step #1

, B, D︸︷︷︸
step #2

, C, E, F︸ ︷︷ ︸
step #3

.
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Here are examples of the other two traversal algorithms, on the same tree:

Example 11.34 (Traversing a small tree: in-order and post-order traversals)
Problem: Recall the tree from Example 11.33:

A

B

D E F

C

1. In what order are the nodes visited by an in-order traversal of this tree?
2. What about a post-order traversal?

Solution: 1. We first traverse B
D , then visit A, then traverse C

E F .
Traversing B

D visits D and B: first the left subtree, then the root.
Traversing C

E F visits E, then C, then F.
Thus an in-order traversal visits the nodes in the order D, B, A, E, C, F.

2. For a post-order traversal, the root of each subtree is the last node traversed in
that subtree: we first traverse B

D , then traverse C
E F , then visit A.

Traversing B
D visits D and B: first the left subtree, then the nonexistent

right subtree, then the root.
Traversing C

E F visits E, then F, then C.
Thus a post-order traversal visits the tree’s nodes in the order D, B, E, F, C, A.

Here’s another example, of using traversals to reconstruct a binary tree:

Example 11.35 (Trees from traversals)
Problem: Here is the output of all three traversals on a binary tree T. What’s T?

pre-order traversal in-order traversal post-order traversal
9, 2, 7, 4, 5, 3 2, 9, 5, 4, 3, 7 2, 5, 3, 4, 7, 9

Solution: We’ll reassemble T from the root down. The root is first in the pre-order
traversal (and last in the post-order), so 9 is the root. The root separates the left
subtree from the right subtree in the in-order traversal; thus the left subtree con-
tains just 2 and the right contains {3, 4, 5, 7}. So the tree has the following form:

9

{3, 4, 5, 7}
2

The post-order 5, 3, 4, 7 and in-order 5, 4, 3, 7 show that 7 is the root of the un-
known portion of the tree and that 7’s right subtree is empty. The last three nodes
are pre-ordered 4, 5, 3; in-ordered 5, 4, 3; and post-ordered 5, 3, 4. In sum, that says
that 4 is the root, 5 is the left subtree, and 3 is the right subtree. Assembling these
pieces yields the final tree:
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9

2 7

4

5 3

Taking it further: One particularly important type of binary tree is the binary search tree (BST), a widely
used data structure—one that’s probably very familiar if you’ve taken a course on data structures. A
BST is a binary tree in which each node has some associated “key” (a piece of data), and the nodes of the
tree are stored in a particular sorted order: all nodes in the left subtree have a key smaller than the root,
and all nodes in the right subtree have a key larger than the root. Thus an in-order traversal of a binary
search tree yields the tree’s keys in sorted order. For more, see p. 1160. An even more specific form of
binary search tree, called a balanced binary search tree, adds an additional structural property related to
the depth of nodes in the tree. See p. 643 for a discussion of one scheme for balanced binary search trees,
called AVL trees.

11.4.4 Spanning Trees

Let G = 〈V, E〉 be an undirected graph. For example, imagine that each node in V
represents a dorm room on your campus, and each edge in E denotes a possible fiber
optic cable that can be laid to build an ethernet connection throughout the residence
halls. A reasonable goal is to actually place only some of those possible cables, a subset
E′ ⊆ E, while ensuring that network traffic can be sent between any two dorm rooms—
that is, ensuring that the resulting network is connected. In other words, one seeks a
spanning tree of the graph G:

Definition 11.31 (Spanning tree)
Let G = 〈V, E〉 be a connected undirected graph. A spanning tree of G is a tree T = 〈V, E′〉
with the same nodes as G and with edges E′ ⊆ E that are a subset of G’s edges.

A

B

C
E

F

The original graph.

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

Figure 11.51: All 8
spanning trees of
the graph shown in
the first panel.

A spanning tree of G is called
“spanning” because it con-
nects (that is, spans) all nodes
in G. Figure 11.51 shows a
small example: the first panel
shows a small graph G; the
remaining panels show the 8
different spanning trees of G.

A graph G has a spanning tree if and only if G is connected: we can be sure to only
remove “redundant” edges that aren’t required for connectivity, and removing edges
from G can never cause a disconnected graph to become connected. (For disconnected
graphs, people sometimes talk about a spanning forest: a forest F = 〈V, E′〉 with E′ ⊆ E,
where the connected components of the original graph G and the connected compo-
nents of the forest F are identical.)

Although we didn’t talk about it this way when we introduced breadth- and depth-
first search (see Figures 11.29 and 11.31), these algorithms can find spanning trees,
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with a small change: as we explore the graph, we include in E′ every edge 〈u, v〉 that
leads from a previously known node u to a newly discovered node v.

Cycle Elimination Algorithm:
Input: a connected graph G = 〈V, E〉
Output: a spanning tree of G

1: while there exists a cycle C in G:
2: let e be an arbitrary edge traversed by C
3: remove e from E
4: return the resulting graph 〈V, E〉.

Figure 11.52: The
pseudocode for an
algorithm to find a
spanning tree.

We’ll also see some other ways to find spanning trees in
Section 11.5.2, but here’s another, conceptually simpler tech-
nique. To find a spanning tree in a connected graph G, we
repeatedly find an edge that can be deleted without discon-
necting G—that is, an edge that’s in a cycle—and delete it.
See Figure 11.52 for the algorithm. Here’s an example:

Example 11.36 (Finding a spanning tree via cycle elimination)
Here are the iterations of the Cycle Elimination algorithm in computing a spanning
tree of a given connected graph. In each iteration, we’ve selected an arbitrary cycle
(lightly shaded) and then selected an arbitrary edge from that cycle (heavily shaded)
and removed it. After three iterations, the resulting graph has no cycles, and remains
connected; the resulting graph is a spanning tree of the original graph.

A

BC

D

E

FG

H

step #1 A

BC

D

E

FG

H

step #2 A

BC

D

E

FG

H

step #3 A

BC

D

E

FG

H

A

BC

D

E

FG

H

We can prove that the Cycle Elimination algorithm correctly finds spanning trees,
given an arbitrary connected graph as input:

Theorem 11.8 (Correctness of the Cycle Elimination algorithm)
Given any connected graph G = 〈V, E〉, the Cycle Elimination algorithm returns a spanning
tree T of G.

cycle C

s

u v

t

(a) The short way
from s to t, via
{u, v}.

cycle C

s

u v

t

(b) The long way
from s to t.

Figure 11.53: Main-
taining connectivity
in the Cycle Elimi-
nation Algorithm.

Proof. The algorithm only deletes edges from G, so certainly T = 〈V, E′〉 satisfies
E′ ⊆ E. We need to prove that T is a tree: that is, T is acyclic and T is connected.

Acyclicity: As long as there’s a cycle remaining, the algorithm stays in the while loop.
Thus we only exit the loop when the remaining graph is acyclic. (And the loop
terminates in at most |E| iterations, because an edge is deleted in every iteration.)

Connectivity: We claim that the graph is connected throughout the algorithm. It’s true
at the beginning of the algorithm, by assumption. Now consider an iteration in
which we delete the edge {u, v} from a cycle C. Let s and t be arbitrary nodes; we
will argue that there is still a path from s to t. Before we deleted {u, v}, there was a
path P from s to t. If P didn’t traverse the edge {u, v}, then P is still a path from s to
t. Otherwise, we can still get from s to t by going “the long way around” the cycle
C instead of following the single edge {u, v}. (See Figure 11.53.) Thus there is still a
path from any node s to any node t, and so the graph stays connected.
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Computer Science Connections

Directed Graphs, Cycles, and Kidney Transplants

Kidneys are essential to human life; they play an essential filtering role
in the body without which we would all die. Although we are born with
two kidneys, humans need only one functioning kidney to live healthy lives.
Because we’re all naturally equipped with a “spare,” kidney transplants are
the most common form of transplant surgery performed today. Thousands of
lives are saved annually through kidney transplants.

Typically a patient in need of a kidney identifies a friend or relative who
is willing to donate. If the patient and donor are compatible—for example,
blood type and physical size of the donor’s kidney must be appropriate—
then medical teams perform two simultaneous operations: one to remove the
“spare” kidney from the donor, and one to implant it in the patient. (Some
patients instead receive kidneys from strangers who chose to donate their
organs in case of an untimely death.) Unfortunately, many patients who need
kidneys have a friend or relative willing to donate to them—but they are
incompatible with their prospective donor’s kidney. These patients may spend
years on a waiting list for a transplant, undergoing painful, expensive, and
only partially effective dialysis while they wait and hope.

In recent years, medical personnel have begun a program of kidney ex-
changes. Suppose that a patient p1 is incompatible with her prospective donor
d1, another patient p2 is incompatible with his prospective donor d2, but pairs
〈p1, d2〉 and 〈p2, d1〉 are both compatible with each other. Four teams of doctors
can then do a “paired exchange” with four surgeries, in which d1 donates to p2
and d2 donates to p1. (To ensure that everybody follows through, the surgeries
must be simultaneous: if d1 donates to p2 before d2 undergoes surgery, then
d2 has no incentive to go through the surgery, as d2’s friend p2 has already
received his kidney.) We can even consider larger exchanges (three or more
simultaneous donations)—though as the number of surgeries increases, the
logistical difficulty increases as well.

Deciding which transplants to complete is done using a graph-based
algorithm. Each patient pi comes to the system with a donor di who is willing
to donate to pi . Define a directed graph G as follows. There is a node for each
patient pi and a node for each donor di. Add a directed edge 〈pi, di〉 for every
i. Also add a directed edge 〈di , pj〉 if donor dj is compatible with patient pj . A
cycle in G then corresponds to a set of surgeries that can be completed: every
donor in the cycle donates a kidney, and every patient in the cycle receives a
compatible kidney. See Figure 11.54 for an example.

The algorithm that’s actually used in the real kidney exchange net-

patient #1

patient #2

patient #3

patient #4

patient #5

donor #1

donor #2

donor #3

donor #4

donor #5
(a) The graph of compatibilities. A
directed edge goes from every
patient to her corresponding donor.
There is a directed edge from a
donor to a patient if that patient can
receive a kidney from that donor.

patient #1

patient #2

patient #3

patient #4

patient #5

donor #1

donor #2

donor #3

donor #4

donor #5
(b) The selected transplants. We
“cover” this graph with two cycles;
if we perform the transplants
highlighted (the darker
donor-to-patient edges), then every
patient receives a compatible
kidney.

Figure 11.54: An example of a kidney
exchange network, and the cycle-based
algorithm to select transplants.

work in the United States computes a set of node-disjoint cycles that will
be performed.11 To limit the number of simultaneous surgeries that are re- 11 David Abraham, Avrim Blum, and

Tuomas Sandholm. Clearing algorithms
for barter exchange markets: Enabling
nationwide kidney exchanges. In
Proceedings of the ACM Conference on
Electronic Commerce (EC), 2007.

quired, the algorithm seeks a set of cycles of length 4 or length 6—that is, 2 or 3
transplants—in G that maximizes the total number of nodes included. (The
constraint on cycle length makes the computational problem much more dif-
ficult, so the algorithm requires significant computational power to compute
the surgeries to complete.)
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Computer Science Connections

Binary Search Trees

Trees are the basis of many important data structures, of which binary
search trees are perhaps most frequently used. Binary search trees are data
structures that implement the abstract data type called a dictionary: we have
a set of keys, each of which has a corresponding value. (For example, the keys
might be words and the values definitions, or they might be student names
and GPAs, or usernames and encrypted passwords.) The data structure must
support operations like insert(k, v) (add a new key/value pair) and lookup(k)
(report the value associated with key k, if any).

A binary search tree (BST) is a binary tree for which every node u satisfies
the BST condition illustrated in Figure 11.55: every node v in u’s left subtree
has a key that is less than u’s key, and every node v in u’s right subtree has
a key that is greater than u’s key. (For simplicity, assume that all keys are
distinct.)

An example of a binary search tree is shown in Figure 11.56.

x

all keys > xall keys < x

Figure 11.55: The binary search tree
condition. For every node with key x:
all keys in the left subtree of the node
have a key < x; and all keys in the right
subtree of the node have a key > x.

Hanan

Evan Joseph

Isaac Noah

Mikenna

Morgan

Milan

Yasin

Qwill

Figure 11.56: A binary search tree
storing a set of 10 keys. The key is
shown in each node; the accompanying
value isn’t drawn.

Incidentally, the BST condition implies the following claim: an
in-order traversal of a binary search tree visits the keys in sorted order.
This claim can be proven formally by induction, but the intuition
is straightforward: an in-order traversal of a node with key x
first visits nodes < x (while traversing the left subtree), then x
itself, and then nodes > x (while traversing the right subtree).
Because, recursively, the nodes of the left and right subtrees
are themselves visited in sorted order, the entire tree’s keys are
visited in sorted order.

Binary search trees are good data structures for dictionaries
because insert and lookup can be implemented simply and effi-
ciently. If we perform a lookup for a key k in an empty BST T, we return “not
found.” (For simplicity, we allow a BST to be empty—that is, to contain zero
nodes.) Otherwise, compare k to the key r stored in the root node of T:

• if k = r, then return the value stored at the root.
• if k < r, then perform a lookup for k in the left subtree.
• if k > r, then perform a lookup for k in the right subtree. Morgan

Hanan

Evan Joseph

Isaac

Noah

Mikenna

Milan

Yasin

Qwill

Figure 11.57: Another binary search tree
with the same set of keys.

The BST condition guarantees that we find the node with key
k if it’s in the tree. (You can prove this fact by induction.) The
insert operation can be implemented similarly, by adding a new
node exactly where a lookup for the key k would have found k.

The worst-case running time of lookup and insert is propor-
tional to the height of the binary search tree. More “balanced”
BSTs—in which every internal node has a left subtree with roughly the same
height as its right subtree—have better performance. (There are many differ-
ent BSTs with the same set of keys; for example, another BST that has the same
keys as the BST in Figure 11.56 is shown in Figure 11.57.)

Most software therefore uses balanced binary search trees instead—for ex-
ample, AVL trees or red–black trees.12 (See p. 643 for further discussion of AVL

See the details in any good textbook on
data structures, or in
12 Thomas H. Cormen, Charles E.
Leisersen, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009.trees, and a proof of their efficiency.)
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11.4.5 Exercises

Identify all of the simple cycles in the following graphs:

11.122

A

B

C

D

E

F

G

H

11.123

A

B

C

D

E

F

G

H

11.124

A

B

C

D

E

F

G

H

Consider an undirected graph G with n nodes. In terms of n . . .
11.125 . . . what is the longest simple cycle that G can contain? Explain.
11.126 . . . what is the longest cycle (not necessarily simple) that G can contain? Explain.

Prove your answers to the following questions, and simplify your answer as n gets large. (For handling large n, a useful
fact from calculus: ∑n

i=0
1
i! approaches e = 2.71828 · · · as n grows.)

11.127 In the n-node complete graph Kn, how many simple cycles is a particular node u involved in?
11.128 Let u be a node in a n-node complete directed graph: all edges except for self-loops are present.
How many simple cycles is node u involved in?

Input: a graph G = 〈V, E〉 and a source node s ∈ V
Output: is s involved in a cycle in G?

1: Frontier := 〈s〉
2: Known := ∅
3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: if s is a neighbor of u then
7: return “s is involved in a cycle.”
8: for every neighbor v of u:
9: if v is in neither Frontier nor Known then

10: add v to the end of Frontier
11: add u to Known
12: return “s is not involved in a cycle.”

Figure 11.58: BFS
modified (slightly
buggily) to detect
cycles involving the
node s.

11.129 A small modification to BFS can detect cycles involving a node
s a directed graph, as shown in Figure 11.58. However, this modification
doesn’t quite work for undirected graphs. Give an example of an acyclic
graph in which the algorithm Figure 11.58 falsely claims that there is a cycle.
Then describe briefly how to modify this algorithm to correctly detect cycles
involving node s in undirected graphs.

Recall Lemma 11.5: in any acyclic undirected graph, there exists a node whose
degree is zero or one. Prove the following two extensions/variations of this lemma:
11.130 Prove that every directed acyclic graph contains a node with
out-degree zero.
11.131 Prove that there are two nodes of degree 1 in any acyclic undi-
rected graph that contains at least one edge.

Recall Definition 11.26: a cycle 〈u0, u1, . . . , uk , u0〉 is a path of length ≥ 2 from a node u0 back to node u0 that
does not traverse the same edge twice. At various times in class, I’ve tried to define cycles in all of the following
ways—and they’re all bogus definitions, in the sense that they describe something different from Definition 11.26. For
each of the following broken definitions, explain why I was wrong:
11.132 A cycle is a simple path from s to s.
11.133 A cycle is a path of length ≥ 2 from s to s.
11.134 A cycle is a path from s to s that doesn’t traverse any edge more than once.
11.135 A cycle is a path from s to s that includes at least 3 distinct nodes.
11.136 A cycle is a path of length ≥ 2 from s to s that doesn’t traverse any edge twice consecutively.

11.137 Definition 11.28 defines an acyclic graph as one containing no cycles, but it would have been
equivalent to define acyclic graphs as those containing no simple cycles. Prove that G has a cycle if and only if
G has a simple cycle.

Recall that G = 〈V, E〉 is a regular graph if every u ∈ V has degree(u) = d, for some fixed constant d.
11.138 Identify two different regular graphs that are trees.
11.139 It turns out that there are two and only two different trees T that are regular graphs. Prove that
there are no other regular graphs that are trees.
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A triangle is a simple cycle containing exactly three nodes. A square is a simple cycle containing exactly four nodes.
11.140 What is the largest number of triangles possible in an undirected graph of n nodes?
11.141 What is the largest number of squares possible in an undirected graph of n nodes?

Let’s analyze the largest number of edges that are possible in an n-node undirected graph that contains no triangles.
11.142 Consider a triangle-free graph G = 〈V, E〉. For nodes u ∈ V and v ∈ V, argue that if {u, v} ∈ E,
then we have degree(u) + degree(v) ≤ |V|.
11.143 Prove the following claim by induction on the number of nodes in the graph: if G = 〈V, E〉 is
triangle-free, then |E| ≤ |V|2/4. (Hint: use the previous exercise.)
11.144 Give an example of an n-node triangle-free graph that contains n2

4 edges.

Consider the following adjacency lists. Is the graph that each represents a tree? Justify your answers.
11.145

A: B, E

B: A

C: D

D: C, F

E: A

F: D

11.146
A: C

B: C, E

C: A, B, F

D: E

E: B, D

F: C

11.147
A: D

B: E, F

C: D, F

D: A, C

E: B

F: B, C

11.148
A: C, D, F

B: F

C: A, E, F

D: A

E: C

F: A, B, C

Prove or disprove the following claims about trees:
11.149 There is a node of degree equal to 2 in any tree with ≥ 3 nodes.
11.150 In any rooted binary tree (all nodes have 0, 1, or 2 children), there are an even number of leaves.
11.151 If a graph G = 〈V, E〉 has |V| − 1 edges, then G must be a forest.

11.152 The following pair of definitions is subtly broken: the root of a tree is a node that is not a child,
and a leaf is a node that is a child but not a parent. What’s broken?

A

B

C

D

E F

G

H I

Figure 11.59: A
rooted tree.

For the tree in Figure 11.59, with node A as the root . . .
11.153 . . . what are the leaves?
11.154 . . . which nodes are internal nodes?
11.155 . . . what the are parent, children, and siblings of node D?
11.156 . . . what are the descendants of node D?
11.157 . . . what are the ancestors of node F?
11.158 . . . what is the height of the tree?

11.159 Let T be an arbitrary n-node rooted tree, with root r and
with ℓ different leaves. Prove or disprove: if we reroot T at a new
node r′ 6= r, then the number of leaves remains exactly ℓ.

Figure 11.60: A
complete and nearly
complete binary
tree of height 3.

A complete binary tree of height h
has “no holes”: reading from top-to-
bottom and left-to-right, every node
exists. Complete binary trees form a
subset of nearly complete binary trees: a
nearly complete binary tree has every
node until the last row, which is allowed
to stop early. (See Figure 11.60, and see
also p. 529 for a discussion of heaps,
which are a data structure represented as a nearly complete binary tree.)
11.160 Prove by induction that a complete binary tree of height h contains precisely 2h+1 − 1 nodes.

11.161 How many leaves does a nearly complete binary tree of height h have? Give the smallest and
largest possible values, and explain.

11.162 What is the diameter of a nearly complete binary tree of height h? Again, give the smallest
and largest possible values, and explain your answer. (Recall that the diameter of a graph G = 〈V, E〉 is
maxs,t∈V d(s, t), where d(s, t) denotes the length of the shortest path from u to v in G.)



11.4. TREES 1163

Suppose that we “rerooted” a complete binary tree of height h by instead designating one of the erstwhile leaves as the
root. In the rerooted tree, what are the following quantities?
11.163 the height
11.164 the diameter
11.165 the number of leaves

Justify your answers to the following questions: describe an 1000-node binary tree with . . .
11.166 . . . height as large as possible.
11.167 . . . height as small as possible.

11.168 . . . as many leaves as possible.
11.169 . . . as few leaves as possible.

11.170 What is the largest possible height for an n-node binary tree in which every node has precisely zero
or two children? Justify your answer.

A

B

C

D

E F

G

H I

Figure 11.61: A
rooted tree.

In what order are nodes of the tree in Figure 11.61 traversed . . .
11.171 . . . by a pre-order traversal?
11.172 . . . by an in-order traversal?
11.173 . . . by a post-order traversal?

11.174 Draw the binary tree with in-order traversal
4, 1, 2, 3, 5; pre-order traversal 1, 4, 3, 2, 5; and post-order traver-
sal 4, 2, 5, 3, 1.
11.175 Do the same for the tree with in-order traversal
1, 3, 5, 4, 2; pre-order traversal 1, 3, 5, 2, 4; and post-order traver-
sal 4, 2, 5, 3, 1.

11.176 Describe (that is, fully explain the structure of) an n-node binary tree T for which the pre-order and
in-order traversals of T result in precisely the same ordering of T’s nodes. (That is, pre-order-traverse(T) =
in-order-traverse(T).)

11.177 Describe a binary tree T for which the pre-order and post-order traversals result in precisely the
same ordering of T’s nodes. (That is, pre-order-traverse(T) = post-order-traverse(T).)

11.178 Prove that there are two distinct binary trees T and T ′ such that pre-order and post-order traver-
sals are both identical on the trees T and T ′. (That is, pre-order-traverse(T) = pre-order-traverse(T ′) and
post-order-traverse(T) = post-order-traverse(T ′) but T 6= T ′.)

11.179 Give a recursive algorithm to reconstruct a tree from the in-order and post-order traversals.

11.180 Argue that we didn’t leave out any spanning trees of G in Figure 11.51, reproduced here for your
convenience:

A

B

C
E

F

The original graph.

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

A

B

C
E

F A

B

C
E

F A

B

C
E

F A

B

C
E

F

How many spanning trees do the following graphs have? Explain.

11.181

A

B

C

D

E

F

G

H

11.182

A

B

C

D

E

F

G

H
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11.5 Weighted Graphs

Force without wisdom falls of its own weight.

Horace (65–8 bce), Odes (23 bce)

Many real-world situations are naturally modeled by different edges having differ-
ent “weights”: the price of an airplane flight, the closeness of a friendship, the physical
length of a road, the time required to transmit data across an internet connection.
These graphs are called weighted graphs: Definition 11.32

considers only
nonnegative
weights—every
we ≥ 0—which is a
genuine restriction.
(For example, the
“signed” social
networks from
Figure 11.8(a)
have positive and
negative weights
signifying friend-
ship and enmity.)
Some, but not all,
of the results that
we’ll discuss in this
section carry over
to the setting of
negative weights.

Definition 11.32 (Weighted graph)
A weighted graph is a graph G = 〈V, E〉 and a weight function w : E → R≥0, so that each
edge e ∈ E has a weight w(e) ≥ 0. For simplicity of notation, we’ll often write we instead of
w(e); we’ll also sometimes refer to we as the length of the edge e.

In a weighted graph, the length of a path in a weighted graph is the sum of the lengths of
the edges traversed by the path. (A shortest path is, as before, one with the smallest length.)

Either undirected or directed graphs can be weighted. Aside from the length of a
path, all of the other notions and terminology from unweighted graphs carry over:
neighbors and degree, paths and connectivity, and so forth. Weighted graphs can be
represented just as unweighted graphs were: we typically store the weight of edge
〈u, v〉 directly in the 〈u, v〉th entry of the adjacency matrix, or attach the edge weight as
an additional slot in the adjacency list entries. Here’s an example:

Example 11.37 (A weighted graph)
Here’s the highway system from Example 11.4, where each road is labeled with its
length:

Los Angeles Lake City, FL Jacksonville

Tampa Daytona Beach

Orlando

2350 miles

180 miles

60 miles

90 miles

55 miles85 miles

There are two simple paths between Orlando and Lake City:

• Orlando ↔ Tampa ↔ Lake City: 85 + 180 = 265 miles.
• Orlando ↔ Daytona Beach ↔ Jacksonville ↔ Lake City: 55 + 90 + 60 = 205 miles.

The second path is shorter, even though it traverses more edges, as 265 > 205.

Taking it further: The primary job of a web search engine is to respond to a user’s search query (“give
me web pages about Horace”) with a list of relevant pages. There’s a complex question of data struc-
tures, parallel computing, and networking infrastructure in solving even the simplest part of this
task: identifying the set R of web pages (out of many billions) that contain the search term. A subtler
challenge—and at least as important—is figuring out how to rank the set R. What pages in R are the
“most important,” the ones that we should display on the first page of results? See p. 1174 for some
discussion of how Google uses a weighted graph (and probability) to do this ranking.
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11.5.1 Shortest Paths in Weighted Graphs: Dijkstra’s Algorithm shaded nodes =
all nodes of distance ≤ d

v

s

u

Figure 11.62: The
intuition of BFS.
Assume the shaded
set S contains
every node within
distance d of s, and
that u /∈ S is a
neighbor of v ∈ S.
The distance from s
to u must be d + 1.

A shortest path from s to t in a weighted graph is the path connecting s and t
that has shortest total length. In many natural applications where shortest
paths are useful, we have weights on edges: you want the shortest walking
route from the bar back to your apartment, for example, not necessarily the
one with the fewest turns. In Example 11.37, we already saw a case in which
the shortest path used more edges than necessary. Thus we cannot directly
use breadth-first search to compute distances in weighted graphs.

But we can compute distances using an algorithm that’s very similar in
spirit to BFS. The basic idea of breadth-first search is to “expand outward” from the
source node s in layers, accumulating a set of nodes u for which we know the distance
from s to u. We add nodes in increasing order of their distance from s, and eventually
we’ve computed distances from s to all nodes in the graph. (See Figure 11.62.) The
trouble for weighted graphs is that the order in which BFS builds up its knowledge
about shortest paths doesn’t always work (as in Example 11.37). But we can use a
cleverer way of building up knowledge about the network to find shortest paths in
weighted graphs, too.

The algorithm that we’ll describe is due to Edsger Dijkstra, and hence it is known as

Edsger Dijkstra
was a 20th-century
Dutch computer
scientist—one
of the founders
of theoretical
computer science,
and the 1972 Turing
Award winner.

Irrelevant quotation:
“Computer science
is no more about
computers than
astronomy is about
telescopes.”
— attributed to
Edsger W. Dijkstra
(1930–2002)

Irrelevant challenge:
Name a common
English word that,
like DIJKSTRA, has
at least five (or 6
or even 7, which is
technically possible)
consecutive conso-
nants. (Not SYZYGY
or RHYTHMS; Y is a
vowel if it’s used as
a vowel!)

Dijkstra’s algorithm. The key idea of Dijkstra’s algorithm has parallels with BFS:
Suppose that we know the distance from a source node s to every node in some set S of
nodes. (Assume that s ∈ S.) We will find some node not in S for which we can determine
the shortest path from s.

For now, let’s not worry about where this set S came from; the key point is just that
we are assuming that we know distances to certain nodes (those in S), and we seek to
leverage that existing knowledge to learn the distance to some other node (not previ-
ously in S). We’ll then add that new node to S and iterate.

Before we state the formal result, let’s look at an example:

Example 11.38 (An example of distances)
Consider the following weighted, undirected graph (with edge weights marked on
the edges):

A

C

B

E

D

G

F

H

3

4 5

8

1

7

2

10

6

9

Suppose we know the distances from A to every node in the shaded set S = {A, B, C}:

d(A, A) = 0 d(A, B) = 1 d(A, C) = 3.
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We wish to expand our set of known nodes by adding a neighbor of an already
shaded node. The candidate nodes that are neighbors of nodes with known distances
are {D, E, F}. In particular, their candidate distances are:

node distance
F (via B) d(A, B) + wB,F = 1 + 6 = 7
E (via A) d(A, A) + wA,E = 0 + 9 = 9
E (via C) d(A, C) + wC,E = 3 + 8 = 11
D (via C) d(A, C) + wC,D = 3 + 5 = 8

Let’s argue that we can now conclude that d(A, F) = 7.
The key reason is that, to get from A to F, we have to “escape” the set of shaded

nodes—and every “escape route” (path to F) must reach its last shaded node v (that’s
d(A, v)) and then follow an edge to its first unshaded node u (that’s wv,u). Because this
table tells us that every path out of the shaded region has length at least 7, and we’ve
found a path from A to F with exactly that length, we conclude that d(A, F) = 7.

A

C B

E D

G F

H

3

4

58

1

7 2

10

6

9

Figure 11.63:
The graph for
Example 11.38,
repeated and
rotated. We’ve
computed that
d(A, A) = 0 and
d(A, B) = 1 and
d(A, C) = 3.

Computing the distance to a new node
The same basic reasoning that we used in Example 11.38 will allow us to prove a

general observation that’s the foundation of Dijkstra’s algorithm:

Lemma 11.9 (Foundation of Dijkstra’s Algorithm)
Let G = 〈V, E〉 be a graph with edge weights w, let S ⊂ V be a set of nodes, and let s ∈ S
be a source node. Let d(s, v) denote the distance from s to v for every node v in S. For a node
u /∈ S, define

du := min
v∈S : u is a neighbor of v

d(s, v) + wv,u.

Let u∗ be the node u /∈ S for which du is minimized. Then the distance from s to u∗ is du∗ .

shaded nodes = S

wv∗ ,u∗d(s, v∗) v∗

s

u∗

Figure 11.64:
The intuition for
Lemma 11.9.

Before we prove the lemma, let’s restate the claim in slightly less
notation-heavy English. (See Figure 11.64.) We have a set S of
nodes—the shaded nodes in the picture—for which we know the
distance from s. We examine all unshaded nodes u that are neighbors
of shaded nodes v. For each shaded/unshaded pair, we’ve computed
the sum of the distance d(s, v) and the edge weight wv,u. And we’ve
chosen the pair 〈v∗, u∗〉 that minimizes this quantity.

The lemma says that the shortest path from s to this particular
u∗ must have length precisely equal to du∗ := d(s, v∗) + wv∗,u∗ . The
intuition matches the argument in Example 11.38: to get from s to u∗,
we have to somehow “escape” the set of shaded nodes—and, by the
way that we chose u∗, every “escape route” must have length at least du∗ .

Proof of Lemma 11.9. We must show that the distance from s to u∗ is du∗ , and we’ll do
it in two steps: by showing that the distance is no more than du∗ , and by showing that
the distance is no less than du∗ .



11.5. WEIGHTED GRAPHS 1167

The distance from s to u∗ is ≤ du∗ . We must argue that there is a path of length
d(s, v∗) + wv∗,u∗ from s to u∗. By assumption and the fact that v∗ ∈ S, we know
that d(s, v∗) is the distance from s to v∗, so there must exist a path P of length d(s, v∗)
from s to v∗. (It’s the curved line in Figure 11.64.) By tacking u∗ onto the end of P,
we’ve constructed a path from s to u∗ via v∗ with length d(s, v∗) + wv∗,u∗ .

The distance from s to u∗ is ≥ du∗ . Consider an arbitrary path P from s to u∗. We must
show that P has length at least d(s, v∗) + wv∗,u∗ .
What does P look like? The node s is in the set S, so P starts out at s ∈ S, then
wanders around for a while inside S, then crosses outside of S for the first time,
wanders around outside S for a while, and eventually ends up at u∗ /∈ S. Nothing
prevents P from re-entering (and later re-exiting) S after its first departure—indeed,
it can go in and out of S several times—but it definitely has to leave S at least once.
Thus P has to look like the following:

v∗

s

u∗ v∗

s

u∗ v∗

s

u∗

(a) the entire path P (b) the portion of P up to the
first exit from S

(c) the portion of P after the
first exit from S

Therefore we know that

the length of P

= (the length of P up to the first exit) + (the length of P after the first exit)

≥ (the length of the shortest path exiting S) + (the length of P after the first exit)
P up to the first exit is a path exiting S, so its length is at least the length of the shortest such path

≥ d(s, v∗) + wv∗,u∗ + (the length of P after the first exit)
we chose u∗ and v∗ so that d(s, v∗) + wv∗ ,u∗ is exactly the length of the shortest path exiting S

≥ d(s, v∗) + wv∗,u∗ + 0 all edge weights are nonnegative, so all path lengths are ≥ 0 too

= du∗ . definition of du∗

Thus the length of P is at least du∗ .

We’ve therefore argued that the distance from s to u∗ is both ≤ du∗ and ≥ du∗ . Thus the
distance is precisely du∗ , and the lemma follows.

Problem-solving tip:
When we want to
prove that x = y, it’s
sometimes easier
to prove x ≥ y and
x ≤ y separately.Dijkstra’s Algorithm

With Lemma 11.9 proven, we can now put together the pieces of the entire algo-
rithm. The lemma describes a way to take a set S of nodes with known distance from
the source node s, and correctly calculate the distance from s to a new node u /∈ S.
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Dijkstra’s Algorithm:
Input: a weighted graph G = 〈V, E〉, nonnegative edge weights we ≥ 0, and

a source node s ∈ V.
Output: the distance from s to every node in G

1: Let S := {s} and let d(s, s) := 0. // S is the set of nodes with known distances.
2: while there exists a node in S with a neighbor not in S:
3: for every node u /∈ S, define

du := min
v∈S : u is a neighbor of v

d(s, v) + wv,u.

4: u∗ := the node with the smallest du.
5: Add u∗ to S and set d(s, u∗) := du∗ .
6: for every node u ∈ V − S:
7: d(s, u) := ∞
8: return the recorded values d(s, u).

Figure 11.65: The
pseudocode for
Dijkstra’s algorithm.

In Dijkstra’s algorithm, the idea is to
apply the calculation from Lemma 11.9
repeatedly to find all distances from the
given source node s. We’ll need a base
case to get started, but that’s straightfor-
ward: we start with the set of nodes with
known distance from s as S = {s}, where
the distance from s to s is zero. The full
algorithm is shown in Figure 11.65.

Before we prove the algorithm’s cor-
rectness, let’s run through an example:

Example 11.39 (Dijkstra’s algorithm in action)
Let’s run Dijkstra’s algorithm on the network from Example 11.37, with the graph ro-
tated for compactness. We’ll start from the Orlando (OR) node. Here is the execution:

DB JA LA LC OR TA

LALC

JA

TA

DB

OR

2350180

60

90
55

85

0

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 0

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 0 85

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 145 0 85

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 145 205 0 85

LALC

JA

TA

DB

OR

2350180

60

90
55

85

55 145 2555 205 0 85

nodes with known distances from OR

A “candidate” node for the next iteration: has unknown
distance, but has a neighbor with known distance.

Of the candidate nodes, DB has the
smallest value as per Lemma 11.9.
So its distance can now be recorded.
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The correctness of Dijkstra’s Algorithm
We’ll now prove the correctness of the algorithm, using Lemma 11.9 and induction:

Theorem 11.10 (Correctness of Dijkstra’s Algorithm)
Let G = 〈V, E〉 be a graph with nonnegative edge weights we for each edge. Let s ∈ V
be a source node, and let d(s, •) := Dijkstra(G, w, s) be the values computed by Dijkstra’s
Algorithm. Then, for every node u, we have that d(s, u) is the length of the shortest path from
s to u in G under w.

Proof. Looking at the algorithm, we see that Dijkstra’s Algorithm records finite dis-
tances from s in Line 1 (for s itself) and Line 5 (for other nodes reachable from s). Sup-
pose that Dijkstra’s algorithm executes n iterations of the loop in Line 2, thus recording
n + 1 total distances in Lines 1 and 5—say in the order u0, u1, . . . , un. Let P(i) denote the
claim that d(s, ui) is the length of the shortest s-to-ui path. We claim by strong induc-
tion on i that P(i) holds for all i ∈ {0, 1, . . . , n}.

Base case (i = 0): We must prove that d(s, u0) is recorded correctly. The 0th node u0 is
recorded in Line 1, so u0 is the source node s itself. And the shortest path from s to s
in any graph with nonnegative edge weights is the 0-hop path 〈s〉, of length 0.

Inductive case (i ≥ 1): We assume the inductive hypothesis P(0), P(1), . . . , P(i − 1):
that is, all recorded distances d(s, u0), d(s, u1), . . . , d(s, ui−1) are correct. We must
prove P(i): that is, that the recorded distance d(s, ui) is correct. But this follows im-
mediately from Lemma 11.9: the algorithm chooses ui as the u /∈ S minimizing

du := min
v∈S : u is a neighbor of v

d(s, v) + wv,u,

where S = {u0, u1, . . . , ui−1}. Lemma 11.9 states precisely that this value du is the
length of the shortest path from s to u.

Finally, observe that any node u that’s only discovered in Line 6 is not reachable from s,
and so indeed d(s, u) = ∞. (A fully detailed argument that the ∞ values are correct can
follow the structure in Theorem 11.3, which proved the correctness of BFS.)

Taking it further: Dijkstra’s algorithm as written in Figure 11.65 can be straightforwardly implemented
to run in O(|V| · |E|) time: each iteration of the while loop (Line 2) can look at each edge to compute the
smallest du. But with cleverer data structures, Dijkstra’s algorithm can be made to run in O(|E| log |V|)
time. This improved running-time analysis, as well as other shortest-path algorithms—for example,
handling the case in which edge weights can be negative (it’s worth thinking about where the proof
of Lemma 11.9 fails if an edge e can have we < 0), or computing distances between all pairs of nodes
instead of just every distance from a single source—is a standard topic in a course on algorithms. Any
good algorithms text should cover these algorithms and their analysis.

Before we leave Dijkstra’s algorithm, it’s worth reflecting on its similarities with BFS.
In both cases, we start from a seed set S of nodes for which we know the distance from
s—namely S = {s}. Then we build up the set of nodes for which we know the dis-
tance from s by finding the unknown nodes that are closest to s, and adding them to
S. Of course, BFS is conceptually simpler, but Dijkstra’s algorithm solves a more com-
plicated problem. It’s a worthwhile exercise to think about what happens if Dijkstra’s
algorithm is run on an unweighted graph. (How does it relate to BFS?)



1170 CHAPTER 11. GRAPHS AND TREES

11.5.2 Spanning Trees in Weighted Graphs: Minimum Spanning Trees

Recall from Definition 11.31 that a spanning tree of a connected graph G = 〈V, E〉 is a
tree T = 〈V, E′〉 where E′ ⊆ E. As with shortest paths, in many of the applications in
which spanning trees are interesting, we actually want to find a spanning tree whose
edges have minimum possible total cost. For example, when a college wants to put
down networking cable in a new dorm building, they wish to ensure that the resulting
network is connected, while minimizing the cost of construction.

Formally, in a weighted graph, the cost of a spanning tree T is the sum of the weights
of its edges: ∑e∈E′ we. A minimum spanning tree (MST) is a spanning tree whose cost is
as small as possible. Here are two small examples:

Example 11.40 (Some minimum spanning trees)
Consider the following two graphs (the road network from Example 11.37 and the
larger connected component from Example 11.38):
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Here are the minimum spanning trees. (For the first, every spanning tree omits ex-
actly one edge from the lone cycle; the cheapest tree omits the most expensive edge.)
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As with shortest paths in weighted graphs, the question of how to find a minimum
spanning tree most efficiently is more appropriate to an algorithms text than this book.
But, between the Cycle Elimination Algorithm (Figure 11.52) and Example 11.40, we’ve
already done almost all the work to develop a first algorithm.

Assume throughout that all edge weights are distinct. (This assumption lets us refer
to “the most expensive edge” in a set of edges. Removing this assumption complicates
the language that we have to use, but it doesn’t fundamentally change anything about
the MST problem or its solution.)
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Lemma 11.11 (The “cycle rule”)
Let C be a cycle in a connected undirected graph G = 〈V, E〉, and let e be the heaviest edge in
C. Then e is not in any minimum spanning tree of G.

u v

V = nodes on
the v side
of the tree

U = nodes on
the u side
of the tree

(a) Removing the edge {u, v} splits the
tree into two connected components.

cycle C

u v

a

b

(b) C is a cycle with {u, v} as its heaviest
edge. Some other edge {a, b} from the
cycle has a ∈ U and b ∈ V.

Figure 11.66: The
cycle rule for MSTs.

Proof. Consider a spanning tree T of G, and suppose that e = {u, v}
is included in T. We’ll show that T is not a minimum spanning tree.
(Thus the only minimum spanning trees of G do not include e.)

By definition, the spanning tree T is connected. If we delete {u, v}
from T, the resulting graph will have two connected components, one
containing u and the other containing v. (This fact follows by Corol-
lary 11.7.) Call those connected components U and V, respectively.
See Figure 11.66(a).

Imagine following the cycle C from u to v the “long way” around
C. This part of C starts at u, wanders around U for a while, and even-
tually crosses over into V, before finally arriving at v. Let a ∈ U be
the last node in U and b the first node in V as we go around C. (Note
that C might go back and forth between U and V multiple times, but
define a and b based on the first time C leaves U.) See Figure 11.66(b).

Now define the graph T′ as T with the edge {u, v} removed and
with the edge {a, b} inserted instead. Crucially, T′ is a spanning
tree of G; because we’ve only swapped which edge connected the
connected sets U and V. Thus T′ remains connected and acyclic.

Now observe that the cost of T′ is less than the cost of T, because
the edge {u, v} is heavier than the edge {a, b}. (Both {u, v} and {a, b}
are in the cycle C, and by assumption {u, v} is the heaviest edge in C.)
But therefore T′ is a cheaper spanning tree than T, and thus T isn’t a
minimum spanning tree.

Finding MSTs by removing cycles
Lemma 11.11 immediately suggests that we can find minimum

spanning trees using a modification of the Cycle Elimination Algorithm:

Weighted Cycle Elimination Algorithm
Input: a weighted connected graph G = 〈V, E〉 with edge weights we
Output: a minimum spanning tree of G

1: while there exists a cycle C in G:
2: let e be the heaviest edge traversed by C
3: remove e from E
4: return the resulting graph 〈V, E〉.

While the Weighted Cycle Elimination Algorithm is correct and reasonably efficient,
there are more efficient algorithms based on Lemma 11.11. One such algorithm is
called Kruskal’s Algorithm, named after its discoverer Joseph Kruskal. The key idea of

Joseph Kruskal
was a 20th-century
American com-
puter scientist/
mathematician/
statistician. He
published his MST
algorithm in 1956.

Kruskal’s Algorithm is that by sorting the edges in increasing order, we can be more
efficient: we add edges in increasing order of their weight, as long as doing so doesn’t
create a cycle.
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Kruskal’s Algorithm
Input: a weighted connected graph G = 〈V, E〉 with distinct

edge weights we
Output: a minimum spanning tree of G

1: Sort the edges e in increasing order of weight.
2: S := ∅
3: for each edge e (taken in increasing order of weight):
4: if the graph 〈V, S ∪ {e}〉 doesn’t contain a cycle then
5: add e to S
6: return the resulting graph 〈V, S〉

Figure 11.67:
Kruskal’s Algo-
rithm.

The insight of this algorithm is that, by consider-
ing edges in increasing order of weight, if including
an edge e creates a cycle, then we know that e must
be the heaviest edge in that cycle. See Figure 11.67.
Kruskal’s algorithm is reasonably efficient: the sort-
ing step takes O(|E| log |E|) time, and each of the |E|
iterations of the for loop can be implemented using
one call to BFS to test for a cycle. (And, in fact, there
are some cleverer ways to implement Line 4 so that
the entire algorithm runs in O(|E| log |E|) time.) Here’s an example:

Example 11.41 (Sample run of Kruskal’s algorithm)
In each panel, the highlighted edge is being considered for inclusion in the tree.
Black edges have already been included; light edges have not yet been considered.
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The original graph.
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We examine the cheapest edge
{A, C}. It doesn’t create a cycle, so we
keep it.
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We examine the next cheapest edge
{B, C}. It doesn’t create a cycle, so we
keep it.
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We examine the next cheapest edge
{C, D}. It doesn’t create a cycle, so we
keep it.
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We examine the next cheapest edge
{A, B}. It creates a cycle 〈A, B, C, A〉, so
we discard it.
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The next edge is {D, E}; we keep it.

A

B

C

D E
1

2
3

4
5

6

7

The next edge is {B, D}; it creates a
cycle, so we discard it.
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We last edge is {C, E}; it creates a
cycle, so we discard it too.
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The final spanning tree.
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Here is the general statement of correctness for both algorithms:

Theorem 11.12 (Correctness of minimum spanning tree algorithms)
The Weighted Cycle Elimination Algorithm and Kruskal’s Algorithm both return a minimum
spanning tree for any weighted connected undirected graph.

Proof. The correctness of the Weighted Cycle Elimination Algorithm follows immedi-
ately from Lemma 11.11 (the cycle rule) and from Theorem 11.8 (the correctness of the
Cycle Elimination Algorithm): the heaviest edge in any cycle does not appear in any
MST, and we terminate with a spanning tree when we repeatedly eliminate any edge
from an arbitrarily chosen cycle.

For Kruskal’s algorithm, consider an edge e that is not retained—that is, when e is
considered, it is not included in the set S. The only reason that e wasn’t included is
that adding it would create a cycle C involving e and previously included edges—but
because the edges are considered in increasing order of weight, that means that e is the
heaviest edge in C. Thus by Lemma 11.11, Kruskal’s algorithm removes only edges not
contained in any minimum spanning tree. Because it only excludes edges that create
cycles, the resulting graph is also connected—and thus a minimum spanning tree.

Taking it further: There are several other commonly used algorithms for minimum spanning trees,
using different structural properties than the Cycle Rule. For much more on these other algorithms, and
for the clever data structures that allow Kruskal’s Algorithm to be implemented in O(|E| log |E|) time, see
any good textbook on algorithms.
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Computer Science Connections

Random Walks and Ranking Web Pages
A

B

C

D E

0.5

0.5 0.33

0.33
1.0

1.0

0.33
1.0

(a) A sample 5-node graph. Edges are
annotated with their probabilities in a
random walk; we can view the
resulting weighted graph as defining
the process.

node steps
A 166,653
B 166,652
C 166,155
D 250,270
E 250,271

(b) The number of steps spent at each
node in a computer-generated
1,000,000-step random walk starting
at A. This particular walk began
ABABABABABABACEDCEDEDBABAC.

1
6

1
6

1
6

1
4

1
4

0.5

0.5 0.33

0.33
1.0

1.0

.33
1.0

(c) The stationary distribution for G.

A B C D E

A 0.03 0.45 0.45 0.03 0.03
B 0.88 0.03 0.03 0.03 0.03
C 0.03 0.03 0.03 0.03 0.88
D 0.03 0.31 0.31 0.03 0.31
E 0.03 0.03 0.03 0.88 0.03

(d) The updated link probabilities,
with random restarts.

Figure 11.68: A random walk.

When Google launched as a web search engine, one of its major innova-
tions over its competition was in how it ranked the pages returned in response
to a user’s query. Here are two key ideas in Google’s ranking system, called
PageRank (named after Larry Page, one of Google’s founders):

• view a link from page u to page v as implicit “endorsement” of v by u.
• not all endorsements are equal: if a page u is endorsed by many other

pages, then being endorsed by u is a bigger deal.

These point can be restated more glibly as: a page is important if it is pointed to
by many important pages. The idea of PageRank is to break this apparent circu-
larity using the Random Surfer Model. Imagine a hypothetical web user who
starts at a random web page, and, at every time step, clicks on a randomly
chosen link from the page she’s currently visiting. The more frequently that
this hypothetical user visits page u, the more important we’ll say u is.

The Random Surfer explores the web using what’s called a random walk
on the web graph. In its simplest form, a random walk on a directed graph
G = 〈V, E〉 visits a sequence u0, u1, u2, . . . of nodes in G as follows:

1. choose a node u0 ∈ V, uniformly at random.
2. in step t = 1, 2, . . ., the next node ut is chosen by picking a node uniformly

at random from the out-neighborhood of the previous node ut−1.

(See Figure 11.68(a) for an example.)
As you’ll explore in Exercises 11.204–11.208, under mild assumptions about

G, there’s a special probability distribution p over the nodes of the graph,
called the stationary distribution of the graph, that has the following property:
if we choose an initial node u with probability p(u), and we then take one step
of the random walk from u, the resulting probability distribution over the
nodes is still p. And, it turns out, we can approximate p by the probability
distribution observed simply by running the random walk for many steps, as
in Figure 11.68(b). We’ll use p as our measure of importance.

We’ve already made a lot of progress toward the stated goals: p(u) is higher
the more in-neighbors u has, but p(u) will be increased even more when the
in-neighbors of u have a high probability themselves. In Figure 11.68(c), for
example, we see that p(D) > p(B) and p(D) > p(C), despite B and C having higher
in-degree than D.

But there are a few complications that we still have to address to get to the
full PageRank model.13 One is that the Random Surfer has nowhere to go if

You can find more about the Random
Surfer model and PageRank (including
interesting questions about how to
calculate it on a graph with nodes
numbering in the billions) in a good
textbook on data mining, like
13 Jure Leskovec, Anand Rajaraman,
and Jeff Ullman. Mining of Massive
Datasets. Cambridge University Press,
2nd edition, 2014.
There are also many other ingredients
in Google’s ranking recipe beyond
PageRank, though PageRank was an
early and important one.

she ends up at a page u that has no out-neighbors. (The random walk’s next
step isn’t even defined.) In this case, we’ll have the Random Surfer jump to
a completely random page (each of the |V| nodes is chosen with probability

1
|V| ). Second, this model allows the Random Surfer to get stuck in a “dead
end” if there’s a group of nodes that has no edges leaving it. Thus—and this
change probably makes the Random Surfer more realistic anyway—we’ll add
a restart probability of 15% to every stage of the random walk: with probability
85%, we behave as previously described; with probability 15%, we jump to a
randomly chosen node. (See Figure 11.68(d) for the updated probabilities.)
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11.5.3 Exercises

For the following graphs, find all shortest paths between the given nodes. Give both the path length and the path itself.

11.183 From A to E:
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A

C

B

E

D F

H
7

10 5

6

1
9

8
4

3

2

11.187 From A to H:
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11.188 Let n be arbitrary. Give an example of an n-node weighted graph G = 〈V, E〉 with designated
nodes s ∈ V and t ∈ V in which both of the following conditions hold:
(i) all edge weights are distinct (for any e ∈ E and e′ ∈ E, we have w(e) 6= w(e′) if e 6= e′), and
(ii) for some α > 1 and c > 0, there are at least c · αn different shortest paths between s and t.
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Figure 11.69: A
weighted graph.

Suppose that we are running Dijkstra’s Algorithm on the graph shown in
Figure 11.69 to compute distances from the node A. So far Dijkstra’s Algorithm
has computed four distances:

d(A, A) = 0 d(A, B) = 1 d(A, C) = 3 d(A, F) = 7

If we continue Dijkstra’s algorithm for further iterations, it records the distance
for a new node in each iteration.
11.189 What is the next node recorded, and what is its distance?
11.190 What is the next node (after the one from Exercise 11.189) for
which Dijkstra’s algorithm records a distance, and what is its distance?
List all subsequently discovered nodes, and their distances.
11.191 Trace Dijkstra’s algorithm on the graph shown in Figure 11.69 to compute distances from the node
H. List all discovered nodes and their distances, in the order in which they’re discovered.

11.192 Identify exactly where the proof of correctness for Dijkstra’s algorithm (specifically, in the proof
of Lemma 11.9) the argument fails if edge weights can be negative. Then give an example of a graph with
negative edge weights in which Dijkstra’s algorithm fails.

Suppose that G = 〈V, E〉 is a weighted, directed graph in which nodes represent physical states of a system, and an edge
〈u, v〉 indicates that one can move from state u to state v. The weight w〈u,v〉 of edge 〈u, v〉 denotes the multiplicative
cost of the exchange: one can trade wu,v units of u for 1 unit of v. For example, if there’s an edge 〈A, B〉 with weight
1.04, then I can trade 2.08 units of energy in state A for 2 units of energy in state B.

Suppose that we wish to find a shortest multiplicative path (SMP) from a given node s to a given node t in G,

A B

CD

1.1

1.5

1.4

2.25

Figure 11.70: A
weighted graph.

where the cost of the path is the product of the edge weights along it. For example, in Figure 11.70, the SMP from A to
D is A → B → C → D at cost 1.1 · 1.5 · 1.4 = 2.31, which is better than A → B → D at cost 1.1 · 2.5 = 2.75.
11.193 Describe how to modify Dijkstra’s algorithm to find the shortest SMP in a given weighted graph
G. Alternatively, describe how to modify a given weighted graph G into a graph G′ so that Dijkstra’s algo-
rithm run on G′ finds an SMP in G.
11.194 As you argued in Exercise 11.192, Dijkstra’s algorithm may fail if edge weights are negative. State
the condition that guarantees that your algorithm from Exercise 11.193 properly computes SMPs.



1176 CHAPTER 11. GRAPHS AND TREES

List all minimum spanning trees of the following graphs. (Note that some have edges with nondistinct weights.)
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Consider the undirected 9-node complete graph K9. There are
(9

2
)

= 9·8
2 = 36 unordered pairs of nodes in this graph,

so there are 36 different edges in the graph. Suppose that you’re asked to assign each of these 36 edges a distinct weight
from the set {1, 2, . . . , 36}. (You get to choose which edges have which weights.)
11.200 What’s the cheapest possible minimum spanning tree of K9?
11.201 What’s the most expensive edge that can appear in a minimum spanning tree of K9?
11.202 What’s the costliest possible minimum spanning tree of K9?
11.203 Generalize Exercise 11.200 and 11.202: what are the cheapest and most expensive possible MSTs
for the graph Kn if all edges have distinct weights chosen from

{
1, 2, . . . ,

(n
2
)}

? (Hint: see Exercise 9.173.)

Recall from p. 1174 that a random walk in a graph G = 〈V, E〉 proceeds as follows: we start at a node u0 ∈ V, and, at
every time step, we select as the next node ui+1 a uniformly chosen (out-)neighbor of ui .

Suppose we choose an initial node u0 according to a probability distribution p, and we then take one step of the
random walk from u0 to get a new node u1. The probability distribution p is a stationary distribution if it satisfies
the following condition: for every node s ∈ V, we have that Pr [u0 = s] = Pr [u1 = s] = p(s). Such a distribution is
called “stationary” because, if p is the probability distribution before a step of the walk, then p is still the probability
distribution after a step of the walk (and thus the distribution “hasn’t moved”—that is, is stationary).
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(a)
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(b)

J

K L

M

(c)

Figure 11.71: Some
undirected graphs
upon which a
random walk can be
performed.

11.204 Argue that p(A) = p(B) = p(C) = 1
3 is a stationary distribution for the graph in Figure 11.71(a).

11.205 Argue that the graph in Figure 11.71(b) has at least two distinct stationary distributions.

Suppose that we start a random walk at node A in the graph in Figure 11.71(a). The following chart shows the probabil-
ity of being at any particular node after each step of the random walk:

1

0

0 0

1
2

1
2

2
4

1
4

1
4

2
8

3
8

3
8

6
16

5
16

5
16

10
32

11
32

11
32
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64
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64
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64

Let pk (u) denote the probability of the kth step of this random walk being at node u. Although we’ll skip the proof, the
following theorem turns out to be true of random walks on undirected graphs G:

If G is connected and nonbipartite, then a unique stationary distribution p exists for this random walk on G
(regardless of which node we choose as the initial node for the walk). Furthermore, the stationary distribution is
the limit of the probability distributions pk of where the random walk is in the kth step.

11.206 (programming required) Write a random-walk simulator: take an undirected graph G as input,
and simulate 2000 steps of a random walk starting at an arbitrary node. Repeat 2000 times, and report the
fraction of walks that are at each node. What are your results on the graph from Figure 11.71(a)?
11.207 Argue that the above process doesn’t converge to a unique stationary distribution in a bipartite
graph. (For example, what’s p1000 if a random walk starts at node J in the graph in Figure 11.71(c)? Node K?)
11.208 Let G = 〈V, E〉 be an arbitrary connected undirected graph. For any u ∈ V, define

p(u) := degree(u)
2 · |E| .

Prove that the probability distribution p is a stationary distribution for the random walk on G.
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11.6 Chapter at a Glance

Formal Introduction

A graph is a pair G = 〈V, E〉 where V is a set of vertices or nodes, and E is a set of edges.
In a directed graph, the edges E ⊆ V × V are ordered pairs of vertices; in an undirected
graph, the edges E ⊆ {{u, v} : u, v ∈ V} are unordered pairs. A directed edge 〈u, v〉
goes from u to v; an undirected edge 〈u, v〉 goes between u and v. We sometimes write
〈u, v〉 even for an undirected graphs. A simple graph has no parallel edges joining the
same two nodes and also has no self loops joining a node to itself.

A

B

C

D

E

F

G

H

For an edge e = 〈u, v〉, we say that u and v are adjacent;
v is a neighbor of u; u and v are the endpoints of e; and u
and v are both incident to e. The neighborhood of a node u
is {v : 〈u, v〉 ∈ E}, its set of neighbors. The degree of u is
the cardinality of u’s neighborhood. In a directed graph,
the in-neighbors of u are the nodes that have an edge
pointing to u; the out-neighbors are the nodes to which u
has an edge pointing; and the in-degree and out-degree of u are the number of in- and
out-neighbors, respectively.

An adjacency list stores a graph using an array with |V| entries; the slot for node
u is a linked list of u’s neighbors. An adjacency matrix stores the graph using a two-
dimensional Boolean array of size |V| × |V|; the value in 〈row u, column v〉 indicates
whether the edge 〈u, v〉 exists.

Two graphs are isomorphic if they are identical except for the naming of the nodes.
A subgraph of G contains a subset V ′ of G’s nodes and a subset E′ of G’s edges joining
elements of V ′. An induced subgraph is a subgraph in which every edge that joins ele-
ments of V ′ is included in E′. A complete graph or clique is a graph Kn in which every
possible edge exists. A bipartite graph is one in which nodes can be partitioned into sets
L and R such that every edge joins a node in L to a node in R. A regular graph is one
in which every node has identical degree. A planar graph is one that can be drawn on
paper without any edges crossing.

Paths, Connectivity, and Distances

A path is a sequence of k ≥ 1 nodes 〈v1, v2, . . . , vk〉, where 〈vi−1, vi〉 ∈ E for every index
i ∈ {1, 2, . . . , k − 1}. The path is simple if all the vis are distinct. This path has length
k − 1—the number of edges that it traverses—and is a path from v1 to vk.

In an undirected graph, nodes u and v are connected if there exists a path from u to v.
A connected component of G = 〈V, E〉 is a set S ⊆ V such that (i) every u ∈ S and v ∈ S
are connected; and (ii) for every w /∈ S, the set S ∪ {w} does not satisfy condition (i).
The entire graph is connected if it has only one connected component, namely V.

In a directed graph, node u is reachable from node v if there exists a path from v to u;
u and v are strongly connected if each is reachable from the other. A strongly connected
component is a set S of nodes such that any two nodes in S are strongly connected and
no node x /∈ S is strongly connected to any node s ∈ S.
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Breadth-First Search (BFS):
Input: a graph G = 〈V, E〉 and a source node s ∈ V
Output: the set of nodes reachable from s in G

1: Frontier := 〈s〉
// Frontier will be a list of nodes to process, in order.

2: Known := ∅
// Known will be the set of already-processed nodes.

3: while Frontier is nonempty:
4: u := the first node in Frontier
5: remove u from Frontier
6: for every neighbor v of u:
7: if v is in neither Frontier nor Known then
8: add v to the end of Frontier
9: add u to Known

10: return Known

Figure 11.72:
Breadth-first search.

Connectivity can be tested in time Θ(|V| + |E|) time using
breadth-first search (BFS; see Figure 11.72) or depth-first search
(DFS). The distance from node s to node t is the length of a
shortest path from s to t. BFS can also be used to compute
distances.

Trees

A cycle 〈v1, v2, . . . , vk, v1〉 is a path of length ≥ 2 from a node
v1 back to itself that does not traverse the same edge twice.
The length of the cycle is k. The cycle is simple if each vi is
distinct. Cycles can be identified using BFS.

A graph is acyclic if it contains no cycles. Every acyclic
graph has a node of degree 0 or 1. A tree is a connected, acyclic graph. (A forest is any
acyclic graph.) A tree has one more node than it has vertex. A tree becomes discon-
nected if any edge is deleted; it becomes cyclic if any edge is added.

One node in a tree can be designated as the root. Every node other than the root has
a parent (its neighbor that’s closer to the root). If p is v’s parent, then v is one of p’s chil-
dren. Two nodes with the same parent are siblings. A leaf is a node with no children; an
internal node is a node with children. The depth of a node is its distance from the root;
the height of the entire tree is the depth of deepest node. The descendants of u are those
nodes that go through u to get the root; the ancestors are those nodes through which u’s
path to the root goes. The subtree rooted at u is the induced subgraph consisting of u
and all descendants of u.

All nodes in binary trees have at most two children, called left and right. A traversal
of a binary tree visits every node of the tree. An in-order traversal recursively traverses
the root’s left subtree, visits the root, and recursively traverses the root’s right subtree.
A pre-order traversal visits the root and recursively traverses the root’s left and right
subtrees; a post-order traversal recursively traverses the root’s left and right subtrees
and then visits the root.

A spanning tree of a connected graph G = 〈V, E〉 is a graph T = 〈V, E′ ⊆ E〉 that’s a
tree. A spanning tree can by found by repeatedly identifying a cycle in G and deleting
any edge in that cycle.

Weighted Graphs

In a weighted graph, each edge e has a weight we ∈ R≥0. (Although graphs with
negative edge weights are possible, we haven’t addressed them in any detail.) The
length of a path in a weighted graph is the sum of the weights of the edges that it tra-
verses. Shortest paths in weighted graphs can be found with Dijkstra’s Algorithm
(Figure 11.65), which expands a set of nodes of known distance one by one. Minimum
spanning trees—spanning trees of the smallest possible total weight—in weighted
graphs can be found with Kruskal’s Algorithm (Figure 11.67) or by repeatedly identi-
fying a cycle in G and deleting the heaviest edge in that cycle.
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Key Terms and Results

Key Terms

Formal Introduction

• undirected and directed graphs
• nodes/vertices, edges
• parallel edges, self loops
• simple graphs
• adjacent node, incident edge
• (in/out-)neighbors, neighborhood
• (in/out-)degree
• adjacency list, adjacency matrix
• isomorphic graphs
• subgraphs
• complete, bipartite, regular, planar

graphs

Paths and Connectivity

• path
• connected (nodes), connected (graph)
• connected component
• reachability
• strongly connected component
• shortest path/distance
• breadth-first search (BFS)
• depth-first search (DFS)

Trees

• cycle
• tree, forest
• root, leaf, internal node, child, parent,

sibling, ancestor, descendant, depth,
height, subtree

• spanning tree

Weighted graphs

• Dijkstra’s algorithm
• minimum spanning trees
• Kruskal’s algorithm

Key Results

Formal Introduction

1. The “handshaking lemma”: for any undirected graph
G = 〈V, E〉, we have ∑u∈V degree(u) = 2|E|.

2. Representing G with an adjacency matrix requires
Θ(|V|2) space; we can answer “what are all of u’s
neighbors?” in Θ(|V|) time and “is there an edge between
u and v?” in Θ(1) time. Representing G = 〈V, E〉 with an
adjacency list requires Θ(|V| + |E|) space; both questions
take 1 + Θ(degree(u)) time.

Paths, Connectivity, and Distances

1. Connectivity can be tested using breadth-first search (BFS)
(Figure 11.29) or depth-first search (DFS) (Figure 11.31). BFS
can also be used to compute the distance between nodes
in a graph, and it runs in Θ(|V| + |E|) time.

Trees

1. Any tree with n nodes has exactly n − 1 edges. Adding
any edge to a tree creates a cycle; deleting any edge
disconnects the graph.

2. A spanning tree of a graph G can by found by repeatedly
identifying a cycle in G and deleting an arbitrary edge in
that cycle.

Weighted Graphs

1. Shortest paths in weighted graphs can be found with
Dijkstra’s Algorithm (Figure 11.65) if all edges have
nonnegative weights.

2. Minimum spanning trees in weighted graphs can be
found with Kruskal’s Algorithm (Figure 11.67) or by
repeatedly identifying a cycle in G and deleting the
heaviest edge in that cycle.
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Index

2–3 and 2–3–4 trees, 545
9/11 Memorial, 1124
123456791, 752
987654263, 752

∀ (universal quantifier), 333 ff.
absolute value, 205, 427, 429
abstract algebra, 736
adjacency, see graphs
Adleman, Leonard, 747
affirming the consequent, see fallacy
algorithms, 265 ff., see also random-

ized algorithms
asymptotic analysis, 617 ff.
brute force, 326, 515, 902, 959
divide and conquer, 647 ff., 655
dynamic programming, 515, 902,

959
greedy algorithms, 422, 918
recurrence relations, 633 ff.
time, space, and power, 626

Alice and Bob, 745 ff.
ambiguity

in natural language, 308, 309, 314
order of operations, 543, 805
order of quantification, 351 ff., 360
prefix-free/Huffman codes, 918

analysis (mathematics), 836
antisymmetry, 820 ff.
approximate equality, 205
Ariane 5 rocket, 464
arithmetic mean, 439, 456
arithmetic series, 512
Arrow’s Theorem, 823
artificial intelligence

computer vision, 1132

game trees, 344, 941
assertions, 360, 517
associativity, 321, 545, 736
assuming the antecedent, see proofs
asymmetry, 820 ff.
asymptotics

analysis of algorithms, 617 ff.
asymptotic analysis, 603 ff.
asymptotic relationships viewed as

relations, 823 ff.
best- and average-case running

time, 623 ff.
master method, 648 ff.
O (Big O), 604 ff.
o, Ω, ω, and Θ, 608 ff.
polynomials, logs, and exponen-

tials, 606 ff.
recurrence relations, 633 ff.
worst-case analysis, 618 ff.

automata, 846, 942
automated theorem proving, 424
average distance in a graph, 1145
average-case analysis, see running

time
AVL trees, 643 ff.
axiom of extensionality, 229

Bacon, Kevin, 438, 1117
balanced binary search trees, 643
Bayes’ Rule, 1033 ff.
begging the question, see fallacy
Bernoulli distribution, 1013 ff., 1044,

1057
betweenness, 812
BFS, see breadth-first search
biased coins, 1014 ff.

big O, big Ω, and big Θ, 604 ff., 823 ff.
bigrams, 1036
bijections, 262, 928, 937
binary numbers, see integers
binary relation, see relations
Binary Search, see searching
binary search trees, see trees
binary symmetric channel, 1033, 1034
binary trees, see trees
binomial coefficients, see combinations
binomial distribution, 1014 ff., 1049
Binomial Theorem, 954 ff.
bipartite graphs, 1118 ff.

complete bipartite graphs, 1119
birthday paradox, 526, 1052
bitmaps, 243
bits/bitstrings, 203, 240
Bletchley Park, 960
Bloom filters, 1039
Booleans, 203, 305, see also logic
bound (vs. free) variables, 336
breadth-first search, 1136 ff.

finding cycles, 1149
brute force, see algorithms
Bubble Sort, see sorting
Buffon’s needle, 1062
bugs, 217, 464, 517, 1129

C (programming language), 327, 345,
534

Caesar Cipher, see cryptography
cardinality, 222–223, 903 ff.

infinite, 937
Carmichael numbers, 741, 742, 744
Cartesian product (×), 237
catchphrase, 1165
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Cauchy sequences, 836
ceiling, 206
cellular automata, 942
Chain Rule (probability), 1031 ff.
checkers, 344, 437, 925
checksum, 403
chess, 237, 344, 518–519, 913, 924, 1135
Chinese Remainder Theorem, 725 ff.
circle packing, 416
circuits

printing and planar graphs, 1121
representing logical propositions,

322, 329
using nand gates, 445

class-size paradox, 1045
cliques, 1117 ff.
closure, 736, 825 ff.
clustering, 234
coarsening equivalence relations,

836 ff.
codomain (of a function), 255
collaboration networks, 1117
collaborative filtering, 236
combinations, 945 ff.

k-combinations, 948 ff.
Binomial Theorem, 954 ff.
Pascal’s identity, 953, 957
Pascal’s Triangle, 957

combinatorial proof, 951 ff.
commutativity, 246, 321, 352, 545, 736
comparability, see partial orders
comparison-based sorting, see sorting
compilers, 327, 543
complement (of a set), 226
complete graphs, 1117 ff.
complexity, see computational com-

plexity
composite numbers, see prime num-

bers
composition

of functions, 258, 811
of relations, 807, 823

compression
entropy and compressibility, 1017
Huffman coding, 918
impossibility of lossless compres-

sion, 938
lossy vs. lossless, 938
quantization of images, 254, 268
URL shortening, 907

computability, 449

computational biology
genome rearrangements, 359, 942
motifs in gene networks, 1116

computational complexity
and cryptography, 752
complexity classes, 628
graph isomorphism, 1115
input size, 706
P vs. NP, 326
regular languages, 830, 846

computational geometry, 251
computational linguistics, see natural

language processing
computer architecture, 322 ff., 445

and running times, 618
Moore’s Law, 613
power consumption, 626
representation of numbers, 217

computer graphics
hidden-surface removal, 847
morphing, 252
rotation matrices, 249
triangulation, 528

computer security, 752, 753
computer vision, 1132
computing networking, 919
conditional expectation, 1055 ff.
conditional probability, 1027 ff.

Bayes’ Rule, 1033
Chain Rule, 1031
Law of Total Probability, 1032

Condorcet paradox, 823
congruences (modular), 707 ff., 726 ff.,

835
conjunctive normal form, 323 ff.,

441 ff., 540 ff.
connectivity (in graphs), 1130 ff.

connected component, 1131 ff.
reachability, 1133 ff.

constructive proofs, 432
constructivism, 433
context-free grammar, 543
contradiction, 318
contrapositive, 320, 428, see also proofs
converse, 320
Cook–Levin Theorem, 326
correlation, 1021

correlation vs. causation, 463
positive and negative, 1024

countable sets, 937
counterexamples, 432 ff.

counting
Binomial Theorem, 954 ff.
combinations, 945 ff.
combinatorial proofs, 951 ff.
combining products and sums,

915 ff.
Division Rule, 931 ff.
double counting, 909 ff.
Generalized Product Rule, 913 ff.
inclusion–exclusion, 909 ff.

for 3+ sets, 911
Mapping Rule, 927 ff.
order, 946 ff.
Pascal’s Triangle, 957 ff.
permutations, 947 ff.
Pigeonhole Principle, 935 ff.
Product Rule (sequences), 906
repetition, 946 ff.
Sum Rule (unions), 903

Counting Sort, see sorting
coupon collector problem, 1064
crossword puzzles, 358
cryptography, 745 ff.

and pseudorandomness, 1013
Caesar Cipher, 746, 1038
Diffie–Hellman key exchange, 753
digital signatures, 748
Enigma Machine and WWII, 960
frequency analysis, 1025, 1038
key exchange, 753
man-in-the-middle attack, 753
one-time pads, 745
public-key cryptography, 746 ff.
RSA cryptosystem, 454, 747 ff.
secret sharing, 730
substitution cipher, 1024, 1031, 1038

Currying, 357
cycles, 840, 1147 ff.

acyclic graphs, 1149 ff.
cycle elimination algorithm, 1158
cycle rule for minimum spanning

trees, 1170
kidney transplants, 1159
simple cycles, 1148
weighted cycle elimination algo-

rithm, 1170

DAG (directed acyclic graph), 1150
data mining, see machine learning
data visualization, 1110
databases, 347, 815, 817
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De Morgan’s Laws, 322
decision problems, 448
Deep Blue, 344
degree (in a graph), 1107 ff., 1109

degree distribution, 1123
regular graphs, 1119

degree (of a polynomial), 264
density (of a graph), 615, 1127
denying the hypothesis, see fallacy
dependent events, 1021 ff.
depth-first search, 1140 ff.
Descartes, René, 239
deterministic finite automata, 846
DFS, see depth-first search
diagonalization, 937
diameter, 1144
Diffie–Hellman key exchange, 753
Dijkstra’s algorithm, 1165 ff.
directed graphs, 818
disconnected, see connectivity in

graphs
disjoint sets, 230, 416
disjunctive normal form, 323 ff.,

441 ff., 540 ff.
distance, see also metrics

Euclidean, see Euclidean distance
Hamming, see Hamming distance
in a graph, 1135 ff.
Manhattan, see Manhattan distance
minimum distance of a code, 407 ff.

divide and conquer, see algorithms
divisibility, 210, 516, 841

and modular arithmetic, 708 ff.
common divisors, 709 ff.
divisibility rules, 316, 425, 716
Division Theorem, 703

division, see mod
in Zn, 735

Division Rule, 931 ff.
domain (of a function), 255
dot product, 241 ff.
Dunbar’s number, 1125
dynamic programming, see algo-

rithms
dynamic scope, 345

∃ (existential quantifier), 333 ff.
e (base of natural logarithm), 209
edges, see graphs
efficiency, see running time, see also

computational complexity

empty set, 226
Enigma Machine, 960
entropy, 1017
equivalence relations, 833 ff.

equivalence classes, 834
refinements and coarsenings, 836

Eratosthenes, 718, 732
Erdős numbers, 438
Erdős, Paul, 438, 1117
error-correcting codes, 405 ff.

Golay code, 422
Hamming code, 412 ff., 926
messages and codewords, 405 ff.
minimum distance and rate, 407 ff.
Reed–Solomon codes, 418, 731
repetition code, 410 ff.
upper bounds on rates, 415

error-detecting codes, 405 ff.
credit card numbers, 403, 419
UPC, 940

Euclid, 446, 447, 710
Euclidean algorithm, 710, 722

efficiency, 713, 716
Extended Euclidean algorithm, 722

Euclidean distance, 250, 456
Euler’s Theorem, 744
Euler, Leonhard, 440, 744
even numbers, 430
evenly divides, see divisibility
events (probability), 1007 ff.

correlated, 1021
independent events, 1021 ff.

exclusive or (⊕), 211, 308 ff.
existential quantifier (∃), 333 ff.
expectation, 1044 ff.

average-case analysis of algorithms,
624 ff.

conditional expectation, 1055 ff.
coupon collector problem, 1064
deviation from expectation, 1056 ff.

Markov’s inequality, 1065
Law of Total Expectation, 1056
linearity of expectation, 1048 ff.

exponentials, 206 ff., 545
asymptotics, 606 ff.
modular, 716

EXPSPACE (complexity class), 628
EXPTIME (complexity class), 628
Extended Euclidean algorithm, 722

Facebook, 1123

factorial, 423–424, 515–516, 633, 636,
915, 921

Stirling’s approximation, 964
factors, see divisibility, see also prime

factorization
fallacy, 458 ff.

affirming the consequent, 460
begging the question, 462
denying the hypothesis, 461
false dichotomy, 427, 461
proving true, 460

false dichotomy, see fallacy
fencepost error, 1129
Fermat pseudoprime, 741
Fermat’s Last Theorem, 739
Fermat’s Little Theorem, 739 ff.
Fermat–Euler Theorem, 744
Fibonacci numbers, 252, 530, 634,

640–642, 644, 963
algorithms, 646
and the Euclidean algorithm, 716

filter, 233
finite-state machines, 846
float (floating point number), 217, 618
floor, 206

Division Theorem, 703
forests, 1150

spanning forests, 1157
formal language theory, see computa-

tional complexity
formal methods, 424, 825
Four Color Theorem, 437, 1121
fractals, 502, 508–510, 519–520, 532
free (vs. bound) variables, 336
frequency analysis, 1025
functions, 253 ff.

algorithms, 265 ff.
characteristic function of a set, 806
composition, 258
domain/codomain, 255
growth rates, 603 ff.
inverses, 262
one-to-one/onto functions, 259 ff.
range/image, 256 ff.
viewed as relations, 810 ff.
visual representation, 258
vs. macros, 345

Fundamental Theorem of Arithmetic,
720

Gödel’s Incompleteness Theorem, 346
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Gödel, Kurt, 346
game trees, 344, 941
garbage collection, 627, 1143
Gates, Bill, 359, 438, 1006
GCD, see greatest common divisor
GCHQ, 747
Generalized Product Rule, 913 ff.
geometric distribution, 1015 ff., 1048
geometric mean, 439, 456
geometric series, 510 ff.

infinite, 512
master method, 648 ff.

giant component, 1142
Goldbach’s conjecture, 303, 350, 360
golden ratio, 641
Google, 1174
grammars, 535, 543
graph drawing, 1121, 1124
graphs, 1103 ff.

acyclic graphs, 1149 ff.
adjacency lists, 1110 ff.
adjacency matrices, 1111 ff.
bipartite graphs, 1118 ff.
breadth-first search, 1136 ff.
complete graphs, 1117 ff.
connected components, 1131 ff.
connectivity, 1130 ff.
cycles, 1147 ff.
data structures, 1110 ff.
degree, 1107, 1109 ff.

Handshaking Lemma, 1108
regular graphs, 1119

density, 1127
depth-first search, 1140 ff.
forests, 1150
isomorphism, 1114 ff.
matchings, 934, 942, 960, 1120, 1159
neighborhoods, 1106 ff., 1109 ff.
paths, 1129 ff.

shortest paths, 1135 ff.
planar graphs, 1121 ff.
shortest paths

Dijkstra’s algorithm, 1165 ff.
simple graphs, 1104
subgraphs, 1115 ff.
trees, see trees
undirected vs. directed, 1103 ff.
weighted graphs, 1164 ff.

Dijkstra’s algorithm, 1165 ff.
greatest common divisor, 709 ff., see

also Euclidean algorithm

Hn, see harmonic number
Halting Problem, 346, 451 ff., 455
Hamiltonian path, 1145
Hamming code, 412 ff.

number of valid codewords, 926
Hamming distance, 404
Hamming, Richard, 404, 412
Handshaking Lemma, 1108
harmonic number, 512–514
hashing, 267, 942, 1003–1004, 1050,

1064
Bloom filters, 1039
collisions, 1003 ff., 1010, 1020, 1039,

1051
and pairwise independence, 1026
chaining, 1003
clustering, 1010, 1020
double hashing, 1020
linear probing, 1010, 1020
quadratic probing, 1020

simple uniform hashing, 1004
Hasse diagrams, 840
heaps, 269, 529, 544
heavy-tailed distribution, 1123
Heron’s method, 218, 439
hidden-surface removal, 847
higher-order functions, 233, 357
Hopper, Grace, 464
Huffman coding, 918
hypercube, 1127

I (identity matrix), 244
idempotence, 321
identity

identity function, 263
identity matrix, 244
multiplicative identity, 735
of a binary operator, 315, 545

if and only if (⇔), 308 ff.
image (of a function), 256
image processing

blur filter, 218
dithering, 330
quantization, 254
segmentation, 1132

imaginary numbers, 207
implication (⇒), 306 ff.
in-degree, see degree
in-neighbor, see neighbors (in graphs)
inclusion–exclusion, 909 ff.
incomparability, 610, 838

incompleteness (logic), 346
independent events, 1021 ff.

pairwise independence, 1026
induction, see proofs

checklist for inductive proofs, 507
generating conjectures, 508
proofs about algorithms, 514 ff.
strengthening the inductive hypoth-

esis, 540
infix notation, 805
information retrieval, 248
information theory, 1017, 1033
injective functions, see one-to-one

functions
Insertion Sort, see sorting
integers, 203 ff.

algorithms for arithmetic, 705, 715
efficiency, 706

division, see modular arithmetic
primes and composites, see prime

numbers
recursive definition, 542
representation

binary numbers, 316, 506, 520,
530, 706, 714

different bases, 530, 714
ints, 217
modular representation, 729
unary, 706

successor relation, 829
internet addresses, 919
intersection (of sets), 227
intervals, see real numbers
invalid inference, 458
inverse

additive, 743
multiplicative, 735 ff.
of a function, 262
of a matrix, 252
of a relation, 806 ff., 821
of an implication, 320

IP addresses, 919
irrationals, see rationals

irrationality of
√

2, 431
irreflexivity, 819 ff.
isomorphism (of graphs), 1114 ff.

Jaccard coefficient, 236
Java (programming language), 256,

311, 327, 1143
Johnson’s algorithm, 1066
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Kn, see complete graphs
Kn,n, see bipartite graphs
Kasparov, Garry, 344
keyspace, see hashing
kidney transplants, 1159
Knuth, Donald, 710
Kruskal’s algorithm, 1171
Kuratowski’s Theorem, 1122

L (complexity class), 628
latchstring, 1165
law of the excluded middle, 317
Law of Total Expectation, 1056
Law of Total Probability, 1032
least common multiple, 709 ff.
length (of a vector), 241
lexical scope, 345
lexicographic ordering, 349, 806
Liar’s Paradox, 225
linearity of expectation, 1048
linked lists, 544

adjacency lists for graphs, 1110 ff.
as graphs, 1125
recursive definition, 533

list, see sequence
little o and little ω, 608 ff., 823 ff.
logarithms, 208–209

asymptotics, 606 ff.
discrete logarithm, 753
polylogarithmic functions, 615, 706

logic
Boolean logic, 203, 736
consistency, 346
fuzzy logic, 314
incompleteness, 346
logical equivalence, 319, 338
logical fallacy, see fallacy
modal logic, 825
predicate logic, 331 ff.

games against the demon, 354
nested quantifiers, 349 ff.
order of quantification, 350 ff.
predicates, 331 ff.
quantifiers, 333 ff.
theorems in predicate logic,

337 ff.
propositional logic, 303 ff.

atomic vs. compound proposi-
tions, 304

logical connectives, 305 ff.
propositions, 303 ff.

recursive definition of a well-
formed formula, 535

satisfiability, 318
tautology, 317 ff.
truth assignment, 311
truth tables, 311 ff.
truth values, 303, 535
universal set of operators, 456

temporal logic, 825
longest common subsequence, 515,

964
loop invariants, 517

machine learning
classification problems, 927, 1037
clustering, 234
cross-validation, 963

macros, 345
Manhattan distance, 241, 250, 456
map, 233
Mapping Rule, 927 ff.
MapReduce, 233
maps, 437, 1121
mark-and-sweep, 1143
Markov’s inequality, 1065
master method, 648 ff.
matchings, see graphs
matrices, 243 ff.

adjacency matrices for graphs,
1111 ff.

identity matrix, 244
inverse of a matrix, 252
matrix multiplication, 245 ff.

Strassen’s algorithm, 655
rotation matrices, 249
term–document matrix, 248

maximal element, 841 ff.
maximum element, 228, 266, 841 ff.
mazes, 1140
median (of an array), 1060 ff.
memoization, 959
memory management, 1143
Merge Sort, see sorting
metrics, 404, 419–420, 1145
Milgram, Stanley, 438
Miller–Rabin test, 454, 742
minimal element, 841 ff.
minimum element, 228, 841 ff.
minimum spanning trees, 1170 ff.

cycle rule, 1170
Kruskal’s algorithm, 1171

weighted cycle elimination algo-
rithm, 1170

ML (programming language), 357, 539
modal logic, 825
modular arithmetic, 209–211, 703 ff.

Division Theorem, 703
mod-and-div algorithm, 705 ff., 715
modular congruences, 707
modular exponentiation, 716
modular products, 707
modular sums, 707
multiplicative inverse, 735 ff.
primitive roots, 753

modus ponens, 317
modus tollens, 318
Monte Carlo method, 1062
Monty Hall Problem, 1012
Moore’s Law, 613
multiples, see divisibility
multiplicative identity, 735
multiplicative inverse, 735 ff.
multitasking, 627

naïve Bayes classifier, 1037
nand (not and), 445
n-ary relations, 812 ff.

expressing n-ary relations as binary
relations, 813

natural language processing
ambiguity, 314
language model, 1036
speech processing, 234, 925
speech recognition, 1036
text classification, 1037
text-to-speech systems, 925

natural logarithm, see logarithms
neighbors (in graphs), 1106, 1109
nested quantifiers, 349 ff.

games against the demon, 354
negations, 352
order of quantification, 350 ff.

Newton’s method, 218
nodes, see graphs
nonconstructive proofs, 432
NP (complexity class), 326, 461, 628
number theory, see modular arith-

metic
numerical methods, see scientific

computing

O (Big O), 604 ff., 823 ff.
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o (little o), 608, 823 ff.
off-by-one error, 1129
Omega (Ω) (asymptotics), 608, 823 ff.
omega (ω) (asymptotics), 608, 823 ff.
one-time pads, 745
one-to-one functions, 260, 928
onto functions, 259, 928
operating systems, 358

multitasking, 627
virtual memory, 455

optimizing compilers, 327
orders, see partial orders
out-degree, see degree
out-neighbor, see neighbors (in

graphs)
outcome (probability), 1005
overfitting, 1036
overflow, 217, 464

P , see power set
P (complexity class), 326, 461, 628
PageRank, 1174
Painter’s Algorithm, 847
pairwise independence, 1026
palindromes, 545, 939
paradoxes

birthday paradox, 1052
class-size paradox, 1045
Liar’s paradox, 225
nontransitive dice, 1063
paradoxes of translation, 304
Russell’s paradox, 225
Simpson’s Paradox, 467
voting paradoxes, 823

parallel edges, 1104
parity, 211, 412 ff., 522–523, 530
parsing, 543
partial orders, 837 ff.

chains and antichains, 849
comparability, 838
extending to a total order, 843 ff.
Hasse diagrams, 840
immediate successors, 841
minimal/maximal elements, 841
minimum/maximum element, 841
strict partial order, 838
topological ordering, 843 ff.
total orders, 838

consistency with a partial order,
843 ff.

partition (of a set), 231

bipartite graphs, 1118
equivalence relations, 835

Pascal’s identity, 953, 957
Pascal’s Triangle, 957 ff.
paths (in graphs), 1129 ff.

breadth-first search, 1136 ff.
connected graphs, 1130 ff.
depth-first search, 1140 ff.
Dijkstra’s algorithm, 1165 ff.
internet routing, 919
shortest paths, 1135 ff.
simple paths, 1130

Pentium chip, 464, 613
perfect matchings, see graphs
perfect square, 207
Perl (programming language), 446
permutations, 532, 914–915, 921

k-permutations, 947 ff.
Petersen graph, 1115, 1122
Pigeonhole Principle, 935 ff., 938
planar graphs, 1121 ff.

Kuratowski’s Theorem, 1122
polylogarithmic, 615, 706
polynomials, 263 ff., 418, see also P

(complexity class)
asymptotics, 606 ff.
evaluating modulo a prime, 720,

730, 731
postfix notation, 805
Postscript (programming language),

805
power set, 232

as a relation, 804
cardinality, 930

power-law distribution, 1123
powers, see exponentials
precedence of operators, 227, 310, 336,

543
predicate logic, see logic
predicates, 331 ff., 806, see also logic
prefix notation, 805
prefix-free codes, 917
preorder, 840
prime numbers, 211, 449, 717 ff.

Carmichael numbers, 741, 744
distribution of the primes, 718
infinitude of primes, 447
primality testing, 447, 454, 617, 717

efficient algorithms, 742
prime factorization, 720, 752

cryptography, 454, 752

existence of, 523–524
Shor’s algorithm, 1016
uniqueness of, 723–725

Prime Number Theorem, 718
Sieve of Eratosthenes, 718, 732

priority queues, 529
probability

Bayes’ Rule, 1033 ff.
conditional expectation, 1055 ff.
conditional probability, 1027 ff.
coupon collector problem, 1064
events, 1007 ff.
expectation, 1044 ff.
infinitesimal probabilities, 1030
Law of Total Expectation, 1056
Law of Total Probability, 1032
linearity of expectation, 1048 ff.
Markov’s inequality, 1065
Monty Hall Problem, 1012
outcomes, 1005 ff.
probability functions, 1005 ff.
random variables, 1041 ff.
random walks, 1174
standard deviation, 1056 ff.
tree diagrams, 1010 ff.
variance, 1056 ff.

probability distributions
Bernoulli, 1013 ff.
binomial, 1014 ff.
entropy, 1017
geometric, 1015 ff.
posterior distribution, 1034
prior distribution, 1034
uniform, 1013 ff.

product, 216 ff.
of a set, 228

product of sums, see conjunctive
normal form

Product Rule, 906
cardinality of Sk , 908

programming languages
compile-time optimization, 327
Currying, 357
garbage collection, 627, 1143
higher-order functions, 233, 357
parsing, 543
scoping/functions/macros, 345
short-circuit evaluation, 327
syntactic sugar, 322

proofs, 423 ff.
by assuming the antecedent, 341,
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426
by cases, 415, 427 ff.
by construction, 411, 432 ff.
by contradiction, 416, 430 ff.
by contrapositive, 428 ff.
by induction, 503 ff.
by mutual implication, 429
by strong induction, 521 ff.
by structural induction, 535 ff.
combinatorial proofs, 951 ff.
direct, 425 ff.
nonconstructive, 432
strategy for proofs, 433 ff.
unprovable true statements, 346
“without loss of generality”, 427
writing proofs, 435 ff.

proper subset and superset, 229
propositional logic, see logic
proving true, see fallacy
pseudocode, 265
pseudorandom generator, 1013
PSPACE (complexity class), 628
public-key cryptography, see cryptog-

raphy
Pythagorean Theorem, 435, 445–446,

456
incorrect published proof, 468

Python (programming language), 217,
233, 256, 315, 316, 345, 357, 449 ff.,
937, 1143

Q, see rationals
quadtrees, 645
quantifiers, 333 ff.

negating quantifiers, 340 ff.
nested quantifiers, 349 ff.
vacuous quantification, 342

quantum computation, 1016
Quick Sort, see sorting

R, see real numbers
Radix Sort, see sorting
raising to a power, see exponentials
Random Surfer Model, 1174
random variables, 1041 ff.

expectation, 1044 ff.
independent random variables,

1043
indicator random variables, 1043

random walks, 1174, 1176
randomized algorithms, 626

Buffon’s needle, 1062
finding medians, 1060
Johnson’s algorithm, 1066
Monte Carlo method, 1062
primality testing (Miller–Rabin), 742
Quick Sort, 1018

range (of a function), 256
rate (of a code), 407 ff.
rationals, 203 ff., 238, 426, 429, 710

in lowest terms, 710, 835
real numbers, 203 ff.

absolute value/floor/ceiling, 205 ff.
approximate equality (≈), 205, 803
defining via infinite sequences, 836
exponentiation, 206 ff.
floats (representation), 217
intervals, 205
logarithms, 208 ff.
trichotomy, 611

realization, see outcome (probability)
recommender system, 236
recurrence relations, 633 ff.

iterating, 636
master method, 648 ff.
sloppiness, 640
solving by induction, 635
variable substitution, 637

recursion tree, 631, 648 ff.
recursively defined structures, 533 ff.
Reed–Solomon codes, 418, 731
reference counting, 1143
refining equivalence relations, 836 ff.
reflexivity, 405, 819 ff.

reflexive closure, 826 ff.
regular expressions, 830, 846
regular graphs, 1119
relational databases, see databases
relations

n-ary relations, 812 ff.
binary relations, 804 ff.
closures, 825 ff.
composition, 807 ff.
equivalence relations, 833 ff.
functions as relations, 810 ff.
inverses, 806 ff.
partial orders, 837 ff.
reflexivity, 819
relational databases, 815
symmetry, 820
total orders, 838 ff.
transitivity, 822 ff.

visual representation, 805 ff., 818 ff.
Hasse diagrams, 840 ff.

vs. predicates, 806
relative primality, 720 ff., 737 ff.

Chinese Remainder Theorem,
725 ff.

Extended Euclidean algorithm, 722
remainder, see mod
repeated squaring, 646, 716, 749
repetition code, 410 ff.
Rivest, Ron, 747
roots (of a polynomial), 264, 418, 731
RSA cryptosystem, 454, 747 ff.

breaking the encryption, 752
Rubik’s cube, 736, 922
running time, 617 ff.

average case, 624 ff., 1054
best case, 623 ff.
worst case, 618 ff.

Russell’s paradox, 225
Russell, Bertrand, 225

sample space (probability), 1005
sampling bias, 1045
satisfiability, 318, 326, 450, 803, 1066
scalars, 240
SCC, see strongly connected compo-

nents
Scheme (programming language),

233, 238, 322, 357, 805
scientific computing, 618

Newton’s method, 218
searching

Binary Search, 517, 532, 622 ff., 634,
638–640, 647

Linear Search, 621 ff.
Ternary Search, 645

secret sharing, 730, 962
select, see median
Selection Sort, see sorting
self-loops, 1104
self-reference, 225, 304, 346, 448, 1174,

1207
sentinels, 945
sequences, 237 ff.

Sn (sequence of elements from the
same set), 239

cardinality, 906, 913
sets, 222 ff.

cardinality, 222 ff., 903 ff.
characteristic function, 806
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complement, 226
disjointness, see disjoint sets, see also

partitions
empty set, 226
intersection, 227
set difference, 227
singleton set, 226
subsets/supersets, 229 ff., see also

power set
union, 227

inclusion–exclusion, 909 ff.
Venn diagrams, 226
well-ordered, 537

Shamir, Adi, 730, 747, 962
Shannon, Claude, 1017
Sheffer stroke (|), 445
Shor’s algorithm, 1016
short-circuit evaluation, 327
Sierpinski triangle/carpet, 519 ff.
Sieve of Eratosthenes, 718
signed social networks, 1116
Simpson’s Paradox, 467
six degrees of separation, 438
small-world phenomenon, 438, 1142
social networks, 1116, 1123

Dunbar’s number, 1125
sorting

Bubble Sort, 621, 626, 629
comparison-based, 629, 920
Counting Sort, 630, 921
Insertion Sort, 508, 620, 625, 629

average-case analysis, 1054, 1064
correctness using loop invariants,

517
lower bounds, 920–921
Merge Sort, 532, 631–632, 634, 636–

638, 646, 647
Quick Sort, 630, 645

correctness (for any pivot rule),
526 ff.

randomized pivot selection, 1018
Radix Sort, 630
Selection Sort, 619, 626, 629, 920

spam filter, 1037
spanning trees, 1157 ff.

cycle elimination algorithm, 1158
minimum spanning trees, 1170 ff.

speech processing, see natural lan-
guage processing

sphere packing, 416
spreadsheets, 845, 849, 1135

SQL (programming language), 815
square roots, 218, see exponentials

Heron’s method, 439
standard deviation, 1056 ff.
Strassen’s algorithm, 655
strings, 239

generating all strings of a given
length, 714

regular expressions, 830
strong induction, see proofs
strongly connected components,

1133 ff.
structural induction, see proofs
subgraphs, see graphs
subset, 229
sum of products, see disjunctive nor-

mal form
Sum Rule, 903
summations, 212 ff.

arithmetic, 512
geometric, 510 ff., 648 ff.

infinite, 512
harmonic, 512 ff.
of a set, 228
reindexing summations, 213
reversing nested summations, 215,

1046
superset, 230
surjective functions, see onto functions
symmetry, 405, 804, 820 ff.

symmetric closure, 826 ff.
syntactic sugar, 322

tautology, 317 ff.
temporal logic, 825
The Book, 438
Therac-25, 464
Theta (Θ) (asymptotics), 608, 823 ff.
tic-tac-toe, 344, 941
topological ordering, 843 ff.
total orders, 838 ff., see also partial

orders
totient function, 744, 924
Towers of Hanoi, 656
transitivity, 822 ff.

nontransitive dice, 1063
nontransitivity in voting, 823
signed social networks, 1116
transitive closure, 826 ff.

Traveling Salesman Problem, 959
trees, 1147 ff.

2–3 and 2–3–4 trees, 545
AVL trees, 643 ff.
binary search trees, 643, 1160
binary trees, 534, 643 ff., 1154 ff.

complete binary trees, 1162 ff.
heaps, 269, 529

decision trees, 921
forests, 1150
game trees, 344, 941
in counting problems, 918
parse trees, 543
quadtrees, 645
recursion trees, 631 ff.
recursive definitions of trees, 534,

1154
rooted trees, 1151 ff.
spanning trees, 1157 ff.

minimum spanning trees, 1170 ff.
subtrees, 1153 ff.
tree traversal, 1154 ff.
van Emde Boas trees, 656

triangle inequality, 405
triangulation, 524–526, 528
truth tables, 311 ff.
truth values, 303 ff.
tsktsks, 1165
tuple, see sequence
Turing Award, 224, 404, 604, 710, 747,

805, 1165
Turing machines, 346, 449
Turing, Alan, 448, 960

unary numbers, see integers
uncomputability, 346, 448–452, 455,

937
undecidability, see uncomputability
underflow, 217
Unicode, 923
uniform distribution, 1007, 1013 ff.
unigrams, 1036
union (of sets), 227
Union Bound, 904
unit vector, 241
universal quantifier (∀), 333 ff.
URL squatting, 941

vacuous quantification, 342
valid inference, 458
van Emde Boas trees, 656
variance, 1056 ff.
Vector Space Model, 248
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vectors, 239 ff.
dot product, 241 ff.

Venn diagrams, 226
virtual memory, 455
Von Koch snowflake, 502, 509
Voronoi diagram, 251
voting systems, 823

wall clocks, 627
well-ordered set, 537
“without loss of generality”, 427
World War II, 960, 1116
World-Wide Web, 1123, 1142

Google PageRank, 1174
worst-case analysis, see running time

xor, see exclusive or

Z, see integers
Zn, 734 ff.
zero (of a binary operator), 315, 545
zyzzyvas, 806
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