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Preface to the Second Edition

On general grounds I deprecate prefaces.1

—Winston Churchill

In this edition we have added the following newmaterial: In Chapt. 1 we have added
a section on linear equations, which allows us to present some of the material in the
book in the simpler linear setting. In Chapt. 2 we have made some changes in the
presentation of Kružkov’s fundamental doubling of variables method. In Chapt. 3
on finite difference methods the focus has been changed to finite volume methods.
A section on higher-order schemes has been added. The section on measure-valued
solutions has been rewritten. The main existence theorem in Chapt. 4, Theorem 4.3,
now resembles the one-dimensional case. The presentation of the solution of the
Riemann problem for systems in Chapt. 5 has been supplemented by the complete
solution of the Riemann problem for the 3 � 3 Euler equations of gas dynamics.
The solution of the Cauchy problem for systems in Chapt. 6 has been rewritten
and simplified. We have added a new chapter, Chapt. 8, on one-dimensional scalar
conservation laws where the flux function depends explicitly on space in a discon-
tinuous manner.

In addition, we have corrected mistakes that we have discovered. Further-
more, we have polished the presentation in several places, and new exercises have
been added. We are grateful to those who have given us feedback, in particu-
lar G.M. Coclite, U. Skre Fjordholm, F. Gossler, K. Grunert, H. Hanche-Olsen,
Espen R. Jakobsen, Qifan Li, S. May, A. Nordli, X. Raynaud, M. Rejske, O. Sete,
K. Varholm, and F. Weber. The extensive help from Olivier Buffet in setting up the
flip cartoons is much appreciated. We are very grateful to David Kramer for careful
copyediting.

1 in The Story of the Malakand Field Force: An Episode of Frontier War (1898).
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Preface to the First Edition

Все счастливые семьи похожи друг на друга,
каждая несчастливая семья несчастлива по-своему.2
— Лев Толстой, Анна Каренина (1875)

While it is not strictly speaking true that all linear partial differential equations are
the same, the theory that encompasses these equations can be considered well devel-
oped (and these are the happy families). Large classes of linear partial differential
equations can be studied using linear functional analysis, which was developed in
part as a tool to investigate important linear differential equations.

In contrast to the well-understood (and well-studied) classes of linear partial dif-
ferential equations, each nonlinear equation presents its own particular difficulties.
Nevertheless, over the last forty years some rather general classes of nonlinear par-
tial differential equations have been studied and at least partly understood. These
include the theory of viscosity solutions for Hamilton–Jacobi equations, the theory
of Korteweg–de Vries equations, as well as the theory of hyperbolic conservation
laws.

The purpose of this book is to present the modern theory of hyperbolic conser-
vation laws in a largely self-contained manner. In contrast to the modern theory of
linear partial differential equations, the mathematician interested in nonlinear hy-
perbolic conservation laws does not have to cover a large body of general theory
to understand the results. Therefore, to follow the presentation in this book (with
some minor exceptions), the reader does not have to be familiar with many compli-
cated function spaces, nor does he or she have to know much theory of linear partial
differential equations.

The methods used in this book are almost exclusively constructive, and largely
based on the front-tracking construction. We feel that this gives the reader an intu-
itive feeling for the nonlinear phenomena that are described by conservation laws.
In addition, front tracking is a viable numerical tool, and our book is also suitable
for practical scientists interested in computations.

We focus on scalar conservation laws in several space dimensions and systems
of hyperbolic conservation laws in one space dimension. In the scalar case we first
discuss the one-dimensional case before we consider its multidimensional gen-
eralization. Multidimensional systems will not be treated. For multidimensional

2 All happy families resemble one another, but every unhappy family is unhappy in its own way
(Leo Tolstoy, Anna Karenina).
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x Preface to the First Edition

equations we combine front tracking with the method of dimensional splitting. We
have included a chapter on standard difference methods that provides a brief intro-
duction to the fundamentals of difference methods for conservation laws.

This book has grown out of courses we have given over some years: full-semester
courses at the Norwegian University of Science and Technology, the University of
Oslo, and Eidgenössische Technische Hochschule Zürich (ETH), as well as shorter
courses at Universität Kaiserslautern, S.I.S.S.A., Trieste, and Helsinki University of
Technology.

We have taught this material for graduate and advanced undergraduate students.
A solid background in real analysis and integration theory is an advantage, but key
results concerning compactness and functions of bounded variation are proved in
Appendix A.

Our main audience consists of students and researchers interested in analytical
properties as well as numerical techniques for hyperbolic conservation laws.

We have benefited from the kind advice and careful proofreading of various ver-
sions of this manuscript by several friends and colleagues, among them Petter I.
Gustafson, Runar Holdahl, Helge Kristian Jenssen, Kenneth H. Karlsen, Odd Kol-
bjørnsen, Kjetil Magnus Larsen, Knut-Andreas Lie, Achim Schroll. Special thanks
are due to Harald Hanche-Olsen, who has helped us on several occasions with both
mathematical and TEX-nical issues.

Our research has been supported in part by the BeMatA program of the Research
Council of Norway.

A list of corrections can be found at
http://www.math.ntnu.no/~holden/FrontBook/

Whenever you find an error, please send us an email about it.
The logical interdependence of the material in this book is depicted in the dia-

gram below. The main line, Chapts. 1, 2, 5–7, has most of the emphasis on the
theory for systems of conservation laws in one space dimension. Another pos-
sible track is Chapts. 1–4, with emphasis on numerical methods and theory for
scalar equations in one and several space dimensions. Chapt. 8, on the theory for
one-dimensional scalar conservation laws with spatially depending flux function,
requires only Chapts. 1 and 2.

Chapter 1

Chapter 2 Chapter 3 Chapter 4

Chapter 5 Chapter 6

Chapter 7

Chapter 8

Dependencies among the chapters

http://www.math.ntnu.no/~holden/FrontBook/


Flip Cartoons3

Well, the silent pictures were the purest form of cinema.
— Alfred Hitchcock

We have included four flip cartoons in the book: At the bottom of the odd-numbered
pages (starting from the back) you see the solution of the equation

ut C 1

3
.u3/x D 0; ujtD0 D cos.�x/;

using a second-order finite difference method, more specifically, the Lax–Wendroff
method with minmod limiter; see (3.43). On the bottom of the even-numbered pages
(starting from the front) you see the fronts in the .x; t/-plane for the same problem;
see (2.44).

At at top of the odd-numbered pages (starting from the back) you see the solution
of the Euler equations (5.150) with � D 1:4. The initial data are

p.x; 0/ D
(
3 for jxj � 0:5;

1 otherwise;
�.x; 0/ D

(
2:5 for jxj � 0:25;

1 otherwise;
v.x; 0/ D 0;

and the data are extended periodically outside the interval .�1; 1/. The pressure p
is displayed for t 2 Œ0; 1�, and the solution is obtained using the Godunov method
with a Roe approximate Riemann solver. We use�x D 1=250. On the bottom of the
even-numbered pages (starting from the front) you see the fronts in the .x; t/-plane
for the same problem; see (6.9).

We do not want now and we shall never want the human voice with our films.
— D.W. Griffiths (1875–1948), movie pioneer

As for readers of the eBook, we refer to Springer’s web site where one can watch
the flip cartoons.

Maybe eBooks are going to take over, one day, but not until those whizzkids in Silicon Valley
invent a way to bend the corners, fold the spine, yellow the pages, add a coffee ring or two
and allow the plastic tablet to fall open at a favorite page.
— R.T. Davies, in foreword to D. Adams’s The Hitchhiker’s Guide to the Galaxy

3 Assistance from Olivier Buffet is much appreciated.
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Chapter 1

Introduction

I have no objection to the use of the term “Burgers’ equation”
for the nonlinear heat equation
(provided it is not written “Burger’s equation”).
— Letter from Burgers to Batchelor (1968)

Hyperbolic conservation laws are partial differential equations of the form

@u

@t
C r � f .u/ D 0:

If we write f D .f1; : : : ; fm/, x D .x1; x2; : : : ; xm/ 2 Rm, and introduce initial
data u0 at t D 0, the Cauchy problem for hyperbolic conservation laws reads

@u.x; t/

@t
C

mX
jD1

@

@xj
fj .u.x; t// D 0; ujtD0 D u0: (1.1)

In applications, t normally denotes the time variable, while x describes the spatial
variation in m space dimensions. The unknown function u (as well as each fj ) can
be a vector, in which case we say that we have a system of equations, or u and each
fj can be a scalar. This book covers the theory of scalar conservation laws in several
space dimensions as well as the theory of systems of hyperbolic conservation laws
in one space dimension. In the present chapter we study the one-dimensional scalar
case to highlight some of the fundamental issues in the theory of conservation laws.

We use subscripts to denote partial derivatives, i.e., ut.x; t/ D @u.x; t/=@t .
Hence we may write (1.1) when m D 1 as

ut C f .u/x D 0; ujtD0 D u0: (1.2)

If we formally integrate equation (1.2) between two points x1 and x2, we obtain

x2Z
x1

ut dx D �
x2Z
x1

f .u/x dx D f .u .x1; t// � f .u .x2; t// :

Assuming that u is sufficiently regular to allow us to take the derivative outside the
integral, we get

d

dt

x2Z
x1

u.x; t/ dx D f .u .x1; t// � f .u .x2; t// : (1.3)

1© Springer-Verlag Berlin Heidelberg 2015
H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws,
Applied Mathematical Sciences, DOI 10.1007/978-3-662-47507-2_1



2 1 Introduction

This equation expresses conservation of the quantity measured by u in the sense that
the rate of change in the amount of u between x1 and x2 is given by the difference
in f .u/ evaluated at these points.1 Therefore, it is natural to interpret f .u/ as the
flux density of u. Often, f .u/ is referred to as the flux function.

Consider a fluid with density � D �.x; t/ and velocity v. Assume that there are
no sources or sinks, so that amount of fluid is conserved. For a given and fixed
bounded domainD � Rm, conservation of fluid implies

d

dt

Z
D

�.x; t/ dx D �
Z
@D

.�v/ � n dSx; (1.4)

where n is the outward unit normal at the boundary @D ofD. If we interchange the
time derivative and the integral on the left-hand side of the equation, and apply the
divergence theorem on the right-hand side, we obtainZ

D

�.x; t/t dx D �
Z
D

div.�v/ dx (1.5)

which we rewrite as Z
D

�
�t C div.�v/

�
dx D 0: (1.6)

Since the domainD was arbitrary, we obtain the hyperbolic conservation law

�t C div.�v/ D 0: (1.7)

The above derivation is very fundamental, and only two assumptions are made.
First of all, we make the physical assumption of conservation, and secondly, we as-
sume sufficient smoothness of the functions to perform the necessary mathematical
manipulations. The latter aspect will a recurring theme throughout the book.

As a simple example of a conservation law, consider a one-dimensional medium
consisting of noninteracting particles, or material points, identified by their coordi-
nates y along a line. Let �.y; t/ denote the position of material point y at time t .
The velocity and the acceleration of y at time t are given by �t .y; t/ and �tt .y; t/,
respectively. Assume that for each t , �. � ; t/ is strictly increasing, so that two dis-
tinct material points cannot occupy the same position at the same time. Then the
function �. � ; t/ has an inverse  . � ; t/, so that y D  .�.y; t/; t/ for all t . Hence
x D �.y; t/ is equivalent to y D  .x; t/. Now let u denote the velocity of the
material point occupying position x at time t , i.e., u.x; t/ D �t . .x; t/; t/, or
equivalently, u.�.y; t/; t/ D �t .y; t/. Then the acceleration of material point y at
time t is

�tt .y; t/ D ut .�.y; t/; t/ C ux.�.y; t/; t/�t .y; t/

D ut .x; t/C ux.x; t/u.x; t/:

1 In physics one normally describes conservation of a quantity in integral form, that is, one starts
with (1.3). The differential equation (1.2) then follows under additional regularity conditions on u.



1 Introduction 3

If the material particles are noninteracting, so that they exert no force on each other,
and there is no external force acting on them, then Newton’s second law requires
the acceleration to be zero, giving

ut C
�
1

2
u2
�
x

D 0: (1.8)

The last equation, (1.8), is a conservation law; it expresses that u is conserved with
a flux density given by u2=2. This equation is often referred to as the Burgers equa-
tion without viscosity,2 and is in some sense the simplest nonlinear conservation
law.

Burgers’s equation, and indeed any conservation law, is an example of a quasi-
linear equation, meaning that the highest derivatives occur linearly. A general in-
homogeneous quasilinear equation for functions of two variables x and t can be
written

a.x; t; u/ut C b.x; t; u/ux D c.x; t; u/: (1.9)

If the coefficients a and b are independent of u, i.e., a D a.x; t/, b D b.x; t/, we
say that the equation is semilinear, while the equation is linear if, in addition, the
same applies to c, i.e., c D c.x; t/.

We may consider the solution as the surface S D f.t; x; u.x; t// 2 R3 j .t; x/ 2
R2g in R3. Let � be a given curve in R3 (which one may think of as the initial
data if t is constant) parameterized by .t.y/; x.y/; z.y// for y in some interval.
We want to construct the surface S � R3 parameterized by .t; x; u.x; t// such that
u D u.x; t/ satisfies (1.9) and � � S . It turns out to be advantageous to consider
the surface S parameterized by new variables .s; y/, thus t D t.s; y/, x D x.s; y/,
z D z.s; y/, in such a way that u.x; t/ D z.s; y/. We solve the system of ordinary
differential equations

@t

@s
D a;

@x

@s
D b;

@z

@s
D c; (1.10)

with

t.s0; y/ D t.y/; x.s0; y/ D x.y/; z.s0; y/ D z.y/: (1.11)

In this way we obtain the parameterized surface S D f.t.s; y/; x.s; y/; z.s; y/ j
.s; y/ 2 R2g. Assume that we can invert the relations x D x.s; y/, t D t.s; y/ and
write s D s.x; t/, y D y.x; t/. Then

u.x; t/ D z.s.x; t/; y.x; t// (1.12)

satisfies both (1.9) and the condition � � S . Namely, we have

c D @z

@s
D @u

@x

@x

@s
C @u

@t

@t

@s
D uxb C uta: (1.13)

2 Henceforth we will adhere to common practice and call it the inviscid Burgers equation.



4 1 Introduction

However, there are many pitfalls in the above construction: the solution (1.10) may
only be local, and we may not be able to invert the solution of the differential equa-
tion to express .s; y/ as functions of .x; t/. These problems are intrinsic to equations
of this type and will be discussed at length.

Equation (1.10) is called the characteristic equation, and its solutions are called
characteristics. This can sometimes be used to find explicit solutions of conserva-
tion laws. In the homogeneous case, that is, when c D 0, the solution u is constant
along characteristics, namely,

d

ds
u.x.s; y/; t.s; y// D uxxs C ut ts D uxb C uta D 0: (1.14)

} Example 1.1
Consider the (quasi)linear equation

ut � xux D �2u; u.x; 0/ D x;

with associated characteristic equations

@t

@s
D 1;

@x

@s
D �x; @z

@s
D �2z:

The general solution of the characteristic equations reads

t D t0 C s; x D x0e
�s; z D z0e

�2s :

Parameterizing the initial data for s D 0 by t D 0, x D y, and z D y, we obtain

t D s; x D ye�s ; z D ye�2s ;

which can be inverted to yield

u D u.x; t/ D z.s; y/ D xe�t : }
} Example 1.2
Consider the (quasi)linear equation

xut � t2ux D 0: (1.15)

Its associated characteristic equation is

@t

@s
D x;

@x

@s
D �t2:

This has solutions given implicitly by x2=2 C t3=3 equals a constant, since after
all, @.x2=2C t3=3/=@s D 0, so the solution of (1.15) is any function ' of x2=2C
t3=3, i.e., u.x; t/ D '.x2=2 C t3=3/. For example, if we wish to solve the initial
value problem (1.15) with u.x; 0/ D sin jxj, then u.x; 0/ D '.x2=2/ D sin jxj.
Consequently, '.	/ D sin

p
2	 with 	 � 0, and the solution u is given by

u.x; t/ D sin
p
x2 C 2t3=3; t � 0: }
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} Example 1.3 (Burgers’s equation)
If we apply this technique to Burgers’s equation(1.8) with initial data u.x; 0/ D
u0.x/, we get that

@t

@s
D 1;

@x

@s
D z; and

@z

@s
D 0

with initial conditions t.0; y/ D 0, x.0; y/ D y, and z.0; y/ D u0.y/. We cannot
solve these equations without knowing more about u0, but since u (or z) is constant
along characteristics, cf. (1.14), we see that the characteristics are straight lines. In
other words, the value of z is transported along characteristics, so that

t.s; y/ D s; x.s; y/ D y C sz D y C su0 .
/ ; z.s; y/ D u0.y/:

We may write this as

x D y C u0.y/t: (1.16)

If we solve this equation in terms of y D y.x; t/, we can use y to obtain u.x; t/ D
z.s; y/ D u0.y.x; t//, yielding the implicit relation

u.x; t/ D u0.x � u.x; t/t/: (1.17)

Given a point .x; t/, one can in principle determine the solution u D u.x; t/ from
equation (1.17). By differentiating equation (1.16) we find that

@x

@y
D 1C tu0

0 .y/ : (1.18)

Thus a solution certainly exists for all t > 0 if u0
0 > 0, since x is a strictly increasing

function of 
 in that case. On the other hand, if u0
0. Qx/ < 0 for some Qx, then a solution

cannot be found for t > t� D �1=u0
0. Qx/. For example, if u0.x/ D � arctan.x/,

there is no smooth solution for t > 1.
What actually happens when a smooth solution cannot be defined? From (1.18)

we see that for t > t�, there are several y that satisfy (1.16) for each x, since x
is no longer a strictly increasing function of y. In some sense, we can say that the
solution u is multivalued at such points. To illustrate this, consider the surface in
.t; x; u/-space parameterized by s and y,

.s; y C su0.y/; u0.
// :

Let us assume that the initial data are given by u0.x/ D � arctan.x/ and t0 D 0.
For each fixed t , the curve traced out by the surface is the graph of a (multivalued)
function of x. In Fig. 1.1 we see how the multivaluedness starts at t D 1 when the
surface “folds over,” and that for t > 1 there are some x that have three associated
u values. To continue the solution beyond t D 1 we have to choose among these
three u values. In any case, it is impossible to continue the solution and at the same
time keep it continuous. }

Now we have seen that no matter how smooth the initial function is, we cannot
expect to be able to define classical solutions of nonlinear conservation laws for
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Fig. 1.1 A multivalued solu-
tion

 t

 x

u

all time. In this case we have to extend the concept of solution in order to allow
discontinuities.

The standard way of extending the admissible set of solutions to partial differen-
tial equations is to look for weak solutions rather than so-called classical solutions,
by introducing distribution theory. Classical solutions are sufficiently differentiable
functions such that the differential equation is satisfied for all values of the inde-
pendent arguments. However, there is no unique definition of weak solutions. In the
context of hyperbolic conservation laws we do not need the full machinery of dis-
tribution theory, and our solutions will be functions that may be nondifferentiable.

In this book we use the following standard notation: C i.U / is the set of i times
continuously differentiable functions on a set U 	 Rn, and C i

0 .U / denotes the set
of such functions that have compact support in U . Then C1.U / D T1

iD0 C
i .U /,

and similarly for C1
0 . Where there is no ambiguity, we sometimes omit the set U

and write only C0, etc.
If we have a classical solution to (1.2), we can multiply the equation by a function

' D '.x; t/ 2 C1
0 .R � Œ0;1//, called a test function, and integrate by parts to get

0 D
1Z
0

Z
R

�
ut' C f .u/x'

�
dx dt

D �
1Z
0

Z
R

�
u't C f .u/'x

�
dx dt �

Z
R

u.x; 0/'.x; 0/ dx:

Observe that the boundary terms at t D 1 and at x D ˙1 vanish, since ' has
compact support, and that the final expression incorporates the initial data. Now we
define a weak solution of (1.2) to be a measurable function u.x; t/ such that

1Z
0

Z
R

�
u't C f .u/'x

�
dxdt C

Z
R

u0'.x; 0/ dx D 0 (1.19)

holds for all ' 2 C1
0 .R � Œ0;1//. We see that the weak solution u is no longer

required to be differentiable, and that a classical solution is also a weak solution.
We will spend considerable time in understanding the constraints that the equation
(1.19) puts on u.
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We employ the usual notation that for p 2 Œ0;1/, Lp.U / denotes the set of all
measurable functions F WU ! R such that the integralZ

U

jF jp dx

is finite. The set Lp.U / is equipped with the norm

kF kp D kF kLp D kF kLp.U / D
0
@Z
U

jF jpdx
1
A
1=p

:

If p D 1, L1.U / denotes the set of all measurable functions F such that

ess supU jF j
is finite. The space L1.U / has the norm kF k1 D ess supU jF j. As is well-known,
the spaces Lp.U / are Banach spaces for p 2 Œ1;1�, and L2.U / is a Hilbert space.
In addition, we will frequently use the spaces

L
p

loc.U / D ff WU ! R j f 2 Lp.K/ for every compact set K 	 U g:
So what kind of discontinuities are compatible with (1.19)? If we assume that u is
constant outside some finite interval, the remarks below (1.2) imply that

d

dt

1Z
�1

u.x; t/ dx D 0:

Hence, the total amount of u is independent of time, or equivalently, the area below
the graph of u. � ; t/ is constant.
} Example 1.4 (Burgers’s equation (cont’d.))
We now wish to determine a discontinuous function such that the graph of the func-
tion lies on the surface given earlier with u.x; 0/ D � arctan x. Furthermore, the
area under the graph of the function should be equal to the area between the x-axis
and the surface. In Fig. 1.2 we see a section of the surface making up the solution for
t D 3. The curve is parameterized by x0, and explicitly given by u D � arctan .x0/,
x D x0 � 3 arctan .x0/.

The function u is shown by a thick line, and the surface is shown by a dotted
line. A function u.x/ that has the correct integral,

R
u dx D R

u0 dx, is easily

x

u

x

u

x

u
a b c

Fig. 1.2 Different solutions with u conserved
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Fig. 1.3 An isolated discon-
tinuity

x

t

D2

D1

x t)(

found by making any cut from the upper fold to the middle fold at some negative
xc with xc � �p

2, and then making a cut from the middle part to the lower part
at �xc . We see that in all cases, the area below the thick line is the same as the
area bounded by the curve .x .x0/ ; u .x0//. Consequently, conservation of u is not
sufficient to determine a unique weak solution. }

Let us examine what kind of discontinuities are compatible with (1.19) in the
general case. Assume that we have an isolated discontinuity that moves along
a smooth curve � W x D x.t/. The discontinuity being isolated means that the
function u.x; t/ is differentiable in a sufficiently small neighborhood of x.t/ and
satisfies equation (1.2) classically on each side of x.t/. We also assume that u is
uniformly bounded in a neighborhood of the discontinuity.

Now we choose a neighborhoodD around the point .x.t/; t/ and a test function
�.x; t/ whose support lies entirely inside the neighborhood. The situation is as
depicted in Fig. 1.3. The neighborhood consists of two parts D1 and D2, and is
chosen so small that u is differentiable everywhere insideD except on x.t/. LetD"

i

denote the set of points

D"
i D ˚

.x; t/ 2 Di j dist�.x; t/; .x.t/; t/� > "� :
The function u is bounded, and hence

0 D
Z
D

.u�t C f .u/�x/ dx dt D lim
"!0

Z
D"
1[D"

2

.u�t C f .u/�x/ dx dt: (1.20)

Since u is a classical solution inside each D"
i , we can use Green’s theorem and

obtainZ
D"
i

.u�t C f .u/�x/ dx dt D
Z
D"
i

.u�t C f .u/�x C .ut C f .u/x/�/ dx dt

D
Z
D"
i

..u�/t C .f .u/�/x/ dx dt

D
Z
D"
i

.@x; @t / � �f .u/�; u�� dx dt
D
Z
@D"

i

� .f .u/; u/ � ni ds: (1.21)
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Here ni is the outward unit normal at @D"
i . But � is zero everywhere on @D"

i except
in the vicinity of x.t/. Let � "

i denote this part of @D"
i . Then

lim
"!0

Z
� "i

� .f .u/; u/ � ni ds D
Z
I

�
��ulx0.t/C fl

�
dt

D �
Z
I

�
��urx0.t/C fr

�
dt

for some suitable time interval I . Here ul denotes the limit of u.x; t/ as x ! x.t/�,
and ur the limit as x approaches x.t/ from the right, i.e., ur D limx!x.t/C u.x; t/.
Similarly, fl D f .ul / and fr D f .ur /. The reason for the difference in sign is that
according to Green’s theorem, we must integrate along the boundary counterclock-
wise. Therefore, the positive sign holds for i D 1, and the negative for i D 2. Using
(1.20) we obtain (slightly abusing notation by writing u.t/ D u.x.t/; t/, etc.)

Z
I

�
�� .ul.t/ � ur.t// x0.t/C .fl .t/ � fr.t//

�
dt D 0:

Since this is to hold for all test functions �, we must have

s .ur � ul/ D fr � fl ; (1.22)

where s D x0.t/. This equality is called the Rankine–Hugoniot condition or the
jump condition, and it expresses conservation of u across jump discontinuities. It is
common in the theory of conservation laws to introduce a notation for the jump in
a quantity. Write

�a� D ar � al (1.23)

for the jump in any quantity a. With this notation the Rankine–Hugoniot relation
takes the form

s �u� D �f � : (1.24)

} Example 1.5 (Burgers’s equation (cont’d.))
For Burgers’s equation we see that the shock speed must satisfy

s D
�
u2=2

�

�u�
D

�
u2r � u2l

�
2 .ur � ul/ D 1

2
.ul C ur/ :

Consequently, the left shock in parts a and b in Fig. 1.2 above will have greater
speed than the right shock, and will, eventually, collide. Therefore, solutions of
type a or b cannot be isolated discontinuities moving along two trajectories starting
at t D 1. Type c yields a stationary shock. }
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} Example 1.6 (Traffic flow)

I am ill at these numbers.
— W. Shakespeare, Hamlet (1603)

Rather than continue to develop the theory, we shall now consider an example of
a conservation law in some detail. We will try to motivate how a conservation law
can model the flow of cars on a crowded highway.

Consider a road consisting of a single lane, with traffic in one direction only.
The road is parameterized by a single coordinate x, and we assume that the traffic
moves in the direction of increasing x.

Suppose we position ourselves at a point x on the road and observe the number
of cars N D N.x; t; h/ in the interval Œx; x C h�. If some car is located at the
boundary of this interval, we account for that by allowing N to take any real value.
If the traffic is dense, and if h is large compared with the average length of a car,
but at the same time small compared with the length of our road, we can introduce
the density given by

�.x; t/ D lim
h!0

N.x; t; h/

h
:

Then N.x; t; h/ D R xCh
x

�.y; t/ dy.
Let now the position of some vehicle be given by r.t/, and its velocity by

v.r.t/; t/. Considering the interval Œa; b�, we wish to determine how the number
of cars changes in this interval. Since we have assumed that there are no entries
or exits on our road, this number can change only as cars are entering the interval
from the left endpoint, or leaving the interval at the right endpoint. The rate of cars
passing a point x at some time t is given by

v.x; t/�.x; t/:

Consequently,

� .v.b; t/�.b; t/ � v.a; t/�.a; t// D d

dt

bZ
a

�.y; t/ dy:

Comparing this with (1.3) and (1.2), we see that the density satisfies the conserva-
tion law

�t C .�v/x D 0: (1.25)

In the simplest case we assume that the velocity v is given as a function of the
density � only. This may be a good approximation if the road is uniform and does
not contain any sharp bends or similar obstacles that force the cars to slow down. It
is also reasonable to assume that there is some maximal speed vmax that any car can
attain. When traffic is light, a car will drive at this maximum speed, and as the road
gets more crowded, the cars will have to slow down, until they come to a complete
standstill as the traffic stands bumper to bumper. Hence, we assume that the velocity
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v is a monotone decreasing function of � such that v.0/ D vmax and v .�max/ D 0.
The simplest such function is a linear function, resulting in a flux function given by

f .�/ D v� D �vmax

�
1 � �

�max

�
: (1.26)

For convenience we normalize by introducing u D �=�max and Qx D vmaxx. The
resulting normalized conservation law reads

ut C .u.1 � u//x D 0: (1.27)

Setting Qu D 1
2

� u, we recover Burgers’s equation, but this time with a new inter-
pretation of the solution.

Let us solve an initial value problem explicitly by the method of characteristics
described earlier. We wish to solve (1.27), with initial function u0.x/ given by

u0.x/ D u.x; 0/ D

8̂̂
<
ˆ̂:
3
4

for x � �a,
1
2

� x=.4a/ for �a < x < a,
1
4

for a � x.

The characteristics satisfy t 0.�/ D 1 and x0.�/ D 1 � 2u.x.�/; t.�//. The solution
of these equations is given by x D x.t/, where

x.t/ D

8̂̂
<
ˆ̂:
x0 � t=2 for x0 < �a,
x0 C x0t=.2a/ for �a � x0 � a,

x0 C t=2 for a < x0.

Inserting this into the solution u.x; t/ D u0 .x0.x; t//, we find that

u.x; t/ D

8̂̂
<
ˆ̂:
3
4

for x � �a � t=2,
1
2

� x=.4aC 2t/ for �a � t=2 < x < aC t=2,
1
4

for aC t=2 � x.

This solution models a situation in which the traffic density initially is small for
positive x, and high for negative x. If we let a tend to zero, the solution reads

u.x; t/ D

8̂̂<
ˆ̂:
3
4

for x � �t=2,
1
2

� x=.2t/ for �t=2 < x < t=2,
1
4

for t=2 � x.

As the reader may check directly, this is also a classical solution everywhere except
at x D ˙t=2. It takes discontinuous initial values:

u.x; 0/ D
(
3
4

for x < 0,
1
4

otherwise.
(1.28)
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This initial function may model the situation when a traffic light turns green at
t D 0. The density of cars facing the traffic light is high, while on the other side of
the light there is a small constant density.

Initial value problems of the kind (1.28), where the initial function consists of
two constant values, are called Riemann problems. We will discuss Riemann prob-
lems at great length in this book.

If we simply insert ul D 3
4
and ur D 1

4
in the Rankine–Hugoniot condition

(1.22), we find another weak solution to this initial value problem. These left and
right values give s D 0, so the solution found here is simply u2.x; t/ D u0.x/.
A priori, this solution is no better or worse than the solution computed earlier. But
when we examine the situation the equation is supposed to model, the second so-
lution u2 is unsatisfactory, since it describes a situation in which the traffic light is
green, but the density of cars facing the traffic light does not decrease!

In the first solution the density decreased. Examining the model a little more
closely, we find, perhaps from experience of traffic jams, that the allowable dis-
continuities are those in which the density is increasing. This corresponds to the
situation in which there is a traffic jam ahead, and we suddenly have to slow down
when we approach it.

When we emerge from a traffic jam, we experience a gradual decrease in the
density of cars around us, not a sudden jump from a bumper to bumper situation to
a relatively empty road.

We have now formulated a condition, in addition to the Rankine–Hugoniot con-
dition, that allows us to reduce the number of weak solutions to our conservation
law. This condition says that every weak solution u has to increase across dis-
continuities. Such conditions are often called entropy conditions. This terminology
comes from gas dynamics, where similar conditions state that the physical entropy
has to increase across any discontinuity.

Let us consider the opposite initial value problem, namely,

u0.x/ D
(
1
4

for x < 0,
3
4

for x � 0.

Now the characteristics starting at negative x0 are given by x.t/ D x0Ct=2, and the
characteristics starting on the positive half-line are given by x.t/ D x0 � t=2. We
see that these characteristics immediately will run into each other, and therefore the
solution is multivalued for every positive time t . Thus there is no hope of finding
a continuous solution to this initial value problem for any time interval .0; ı/, no
matter how small ı is. When inserting the initial values ul D 1

4
and ur D 3

4
into

the Rankine–Hugoniot condition, we see that the initial function is already a weak
solution. This time, the solution increases across the discontinuity, and therefore
satisfies our entropy condition. Thus, an admissible solution is given by u.x; t/ D
u0.x/.

Now we shall attempt to solve a more complicated problem in some detail. As-
sume that we have a road with a uniform density of cars initially. At t D 0 a traffic
light placed at x D 0 changes from green to red. It remains red for some time inter-
val�t , then turns green again and stays green thereafter. We assume that the initial
uniform density is given by u D 1

2
, and we wish to determine the traffic density for

t > 0.
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When the traffic light initially turns red, the situation for the cars to the left of
the traffic light is the same as when the cars stand bumper to bumper to the right of
the traffic light. So in order to determine the situation for t in the interval Œ0;�t/,
we must solve the Riemann problem with the initial function

ul0.x/ D
(
1
2

for x < 0,

1 for x � 0.
(1.29)

For the cars to the right of the traffic light, the situation is similar to the situation in
which the traffic abruptly stopped at t D 0 behind the car located at x D 0. There-
fore, to determine the density for x > 0 we have to solve the Riemann problem
given by

ur0.x/ D
(
0 for x < 0,
1
2

for x � 0.
(1.30)

Returning to (1.29), here u is increasing over the initial discontinuity, so we can try
to insert this into the Rankine–Hugoniot condition. This gives

s D fr � fl
ur � ul D

1
4

� 0
1
2

� 1 D �1
2
:

Therefore, an admissible solution for x < 0 and t in the interval Œ0;�t/ is given by

ul.x; t/ D
(
1
2

for x < �t=2,
1 for x � �t=2.

This is indeed close to what we experience when we encounter a traffic light. We
see the discontinuity approaching as the brake lights come on in front of us, and the
discontinuity has passed us when we have come to a halt. Note that although each
car moves only in the positive direction, the discontinuity moves to the left.

In general, we have to deal with three different speeds when we study conser-
vation laws: the particle speed, in our case the speed of each car; the characteristic
speed; and the speed of a discontinuity. These three speeds are not equal if the con-
servation law is nonlinear. In our case, the speed of each car is nonnegative, but both
the characteristic speed and the speed of a discontinuity may take both positive and
negative values. Note that the speed of an admissible discontinuity is less than the
characteristic speed to the left of the discontinuity, and larger than the characteristic
speed to the right. This is a general feature of admissible discontinuities.

It remains to determine the density for positive x. The initial function given by
(1.30) also has a positive jump discontinuity, so we obtain an admissible solution
if we insert it into the Rankine–Hugoniot condition. Then we obtain s D 1

2
, so the

solution for positive x is

ur.x; t/ D
(
0 for x < t=2,
1
2

for x � t=2.
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Piecing together ul and ur , we find that the density u in the time interval Œ0;�t/
reads

u.x; t/ D

8̂̂̂
<̂
ˆ̂̂̂:

1
2

for x � �t=2,
1 for �t=2 < x � 0,

0 for 0 < x � t=2,
1
2

for t=2 < x,

t 2 Œ0;�t/:

What happens for t > �t? To find out, we have to solve the Riemann problem

u.x;�t/ D
(
1 for x < 0,

0 for x � 0.

Now the initial discontinuity is not acceptable according to our entropy condition,
so we have to look for some other solution. We can try to mimic the example above
in which we started with a nonincreasing initial function that was linear on some
small interval .�a; a/. Therefore, let v.x; t/ be the solution of the initial value prob-
lem

vt C .v.1 � v//x D 0;

v.x; 0/ D v0.x/ D

8̂̂
<
ˆ̂:
1 for x < �a,
1
2

� x=.2a/ for �a � x < a,

0 for a � x.

As in the above example, we find that the characteristics are not overlapping, and
they fill out the positive half-plane exactly. The solution is given by v.x; t/ D
v0 .x0.x; t//:

v.x; t/ D

8̂̂
<
ˆ̂:
1 for x < �a � t ,
1
2

� x=.2aC 2t/ for �a � t � x < aC t ,

0 for aC t � x.

Letting a ! 0, we obtain the solution to the Riemann problem with a left value 1
and a right value 0. For simplicity we also denote this function by v.x; t/.

This type of solution can be depicted as a “fan” of characteristics emanating
from the origin, and it is called a centered rarefaction wave, or sometimes just
a rarefaction wave. The origin of this terminology lies in gas dynamics.

We see that the rarefaction wave, which is centered at .0;�t/, does not imme-
diately influence the solution away from the origin. The leftmost part of the wave
moves with a speed �1, and the front of the wave moves with speed 1. So for some
time after �t , the density is obtained by piecing together three solutions, ul.x; t/,
v.x; t ��t/, and ur.x; t/.

The rarefaction wave will of course catch up with the discontinuities in the so-
lutions ul and ur . Since the speeds of the discontinuities are 
 1

2
, and the speeds of

the rear and the front of the rarefaction wave are 
1, and the rarefaction wave starts
at .0;�t/, we conclude that this will happen at .
�t; 2�t/.
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x

Fig. 1.4 A traffic light on a single road. To the left we show the solution in .x; t/, and to the right
the solution u.x; t/ at three different times t

It remains to compute the solution for t > 2�t . Let us start with examining
what happens for positive x. Since the u values that are transported along the char-
acteristics in the rarefaction wave are less than 1

2
, we can construct an admissible

discontinuity using the Rankine–Hugoniot condition (1.22). Define a function that
has a discontinuity moving along a path x.t/. The value to the right of the disconti-
nuity is 1

2
, and the value to the left is determined by v.x; t ��t/. Inserting this into

(1.22), we get

x0.t/ D s D
1
4

�
	
1
2

C x
2.t��t/


	
1
2

� x
2.t��t/



1
2

�
	
1
2

� x
2.t��t/


 D x

2.t ��t/ :

Since x.2�t/ D �t , this differential equation has solution

xC.t/ D p
�t.t ��t/:

The situation is similar for negative x. Here, we use the fact that the u values in
the left part of the rarefaction fan are larger than 1

2
. This gives a discontinuity with

a left value 1
2
and right values taken from the rarefaction wave. The path of this

discontinuity is found to be x�.t/ D �xC.t/.
Now we have indeed found a solution that is valid for all positive time. This

function has the property that it is a classical solution at all points x and t where
it is differentiable, and it satisfies both the Rankine–Hugoniot condition and the
entropy condition at points of discontinuity. We show this weak solution in Fig. 1.4,
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both in the .x; t/-plane, where we show characteristics and discontinuities, and u
as a function of x for various times. The characteristics are shown as gray lines,
and the discontinuities as thicker black lines. This concludes our example. Note
that we have been able to find the solution to a complicated initial value problem
by piecing together solutions from Riemann problems. This is indeed the main idea
behind front tracking, and a theme to which we shall give considerable attention in
this book. }

1.1 Linear Equations

I don’t make unconventional stories;
I don’t make nonlinear stories.
I like linear storytelling a lot.
— Steven Spielberg

We now make a pause in the exposition of nonlinear hyperbolic conservation laws
and take a brief look at linear transport equations. Many of the methods and con-
cepts introduced later in the book are much simpler if the equations are linear.

Let u 2 R be an unknown scalar function of x 2 R and t 2 Œ0;1/ satisfying
the Cauchy problem

(
ut C a ux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(1.31)

where a is a given (positive) constant, and u0 is a known function. Recall the theory
of characteristics. Since this case is particularly simple, we can use t as a parameter,
and we will here use .t; x0/ rather than .s; y/ as parameters. Thus the characteristics
x D �.t Ix0/ are defined as

d

dt
�.t Ix0/ D a; �.0Ix0/ D x0;

with solution

�.t Ix0/ D at C x0:

We know that d
dt
u .�.t Ix0/; t/ D 0, and thus u.�.t Ix0/; t/ D u.�.0Ix0/; 0/ D

u.x0; 0/ D u0.x0/. We can use the solution of � to write

u.at C x0; t/ D u0.x0/:

If we set x D at C x0, i.e., x0 D x � at , we get the solution formula

u.x; t/ D u0.x � at/:

Thus (1.31) expresses that the initial function u0 is transported with a constant ve-
locity a.
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The same reasoning works if now a D a.x; t/, where the map x 7! a.x; t/

is Lipschitz continuous for all t . In this case let u D u.x; t/ satisfy the Cauchy
problem

(
ut C a.x; t/ux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/:
(1.32)

First we observe that this equation is not conservative, and the interpretation of
a.x; t/u is not the flux of u across a point. Now let �.t Ix0/ denote the unique
solution of the ordinary differential equation

d

dt
�.t Ix0/ D a.�.t Ix0/; t/; �.0Ix0/ D x0: (1.33)

By the chain rule we also now find that

d

dt
u .�.t Ix0/; t/ D @u

@t
C @u

@x

d

dt
�.t Ix0/ D ut .�; t/C a.�; t/ux.�; t/ D 0:

Therefore u.�.t Ix0/; t/ D u0.x0/. In order to get a solution formula, we must solve
x D �.t Ix0/ in terms of x0, or equivalently, find a function 	.� Ix/ that solves the
backward characteristic equation,

d

d�
	.� Ix/ D �a.	.� Ix/; t � �/; 	.0Ix/ D x: (1.34)

Then

d

d�
u.	.� Ix/; t � �/ D 0;

which means that u.x; t/ D u.	.0Ix/; t/ D u.	.t Ix/; 0/ D u0.	.t Ix//.

} Example 1.7
Let us study the simple example with a.x; t/ D x. Thus

ut C xux D 0; u.x; 0/ D u0.x/:

Then the characteristic equation is

d

dt
� D �; �.0/ D x0;

with solution

�.t Ix0/ D x0e
t :

Solving �.t Ix0/ D x in terms of x0 gives x0 D xe�t , and thus

u.x; t/ D u0
�
xe�t� : }
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Fig. 1.5 Characteristics in the .x; t/-plane for (1.35)

} Example 1.8
Let us look at another example:

a.x/ D

8̂̂
<
ˆ̂:
0 x < 0;

x 0 � x � 1;

1 1 < x:

(1.35)

In this case the characteristics are straight lines �.t Ix0/ D x0 if x0 � 0, and
�.t Ix0/ D x0 C t if x0 � 1. Finally, whenever 0 < x0 < 1, the characteristics
are given by

�.t Ix0/ D
(
x0e

t t � � ln.x0/;

1C t C ln.x0/ t > � ln.x0/:

See Fig. 1.5 for a picture of this. In this case a is increasing in x, and therefore
the characteristics are no closer than they were initially. Since u is constant along
characteristics, this means that

max
x

jux.x; t/j � max
x

ju0
0.x/j :

If a is decreasing, such a bound cannot be found, as the next example shows. }
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Fig. 1.6 The characteristics for (1.36)

} Example 1.9
Let now

a.x/ D

8̂̂
<
ˆ̂:
1 x < 0;

1 � x 0 � x � 1;

0 1 < x:

(1.36)

In this case the characteristics are given by

�.t Ix0/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

(
x0 C t; t < �x0;
1 � e�.tCx0/ t � �x0;

x0 < 0;

1 � .1 � x0/e�t 0 � x0 < 1;

x0 1 � x0:

See Fig. 1.6 for an illustration of these characteristics. Let now x0 be in the interval
.0; 1/, and assume that u0 is continuously differentiable. Since u is constant along
characteristics, u. � ; t/ is also continuously differentiable for all t > 0. Thus

u0
0.x0/ D @

@x0
u.�.t Ix0/; t/ D ux.�.t Ix0/; t/ @�

@x0
;

which, when x0 2 .0; 1/, implies that ux.x; t/ D u0
0.x0/e

t for x D �.t Ix0/. From
this we see that the only bound on the derivative that we can hope for is of the type

max
x

jux.x; t/j � et max
x

ju0
0.x/j : }
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Numerics (I)

If we (pretend that we) do not have the characteristics, and still want to know the
solution, we can try to approximate it by some numerical method.

To this end we introduce approximations to the first spatial derivative

D�u.x/ D u.x/ � u.x ��x/
�x

;

DCu.x/ D u.x C�x/ � u.x/
�x

; and

D0u.x/ D u.x C�x/ � u.x ��x/
2�x

;

where �x is a small positive number. When we deal with numerical approxi-
mations, we shall always use the notation uj .t/ to indicate an approximation to
u.j�x; t/ for some integer j . We also use the notation

xj D j�x; xj˙1=2 D
	
j ˙ 1

2



�x D xj ˙ �x

2
:

Now consider the case in which a is a positive constant. As a semidiscrete numer-
ical scheme for (1.31) we propose to let uj solve the (infinite) system of ordinary
differential equations

u0
j .t/C aD�uj .t/ D 0; uj .0/ D u0.xj /: (1.37)

We need to define an approximation to u.x; t/ for every x and t , and we do this by
linear interpolation:

u�x.x; t/ D uj .t/C �
x � xj

�
D�ujC1.t/; for x 2 Œxj ; xjC1/. (1.38)

We want to show that (a) u�x converges to some function u as�x ! 0, and (b) the
limit u solves the equation.

If u0 is continuously differentiable, we know that a solution to (1.31) exists (and
we can find it by the method of characteristics). Since the equation is linear, we
can easily study the error e�x.x; t/ D u.x; t/ � u�x.x; t/. In the calculation that
follows, we use the following properties:

DCuj �D�uj D �xDCD�uj andD�ujC1 D DCuj .

Inserting the error term e�x into the equation, we obtain for x 2 .xj ; xjC1/,

@

@t
e�x C a

@

@x
e�x D � @

@t
u�x � a @

@x
u�x

D � d

dt

�
uj .t/C �

x � xj
�
D�ujC1.t/

� � aD�ujC1.t/

D �u0
j .t/ � �

x � xj
�
D�u0

jC1.t/ � aDCuj .t/

D aD�uj .t/ � aDCuj .t/C a
�
x � xj

�
D�D�ujC1.t/

D �a�xDCD�uj .t/C a
�
x � xj

�
DCD�uj .t/

D a
��
x � xj

� ��x�DCD�uj .t/:
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Next let f�x be defined by

f�x.x; t/ D a
��
x � xj

� ��x�DCD�uj .t/ for x 2 Œxj ; xjC1/,

so that

.e�x/t C a .e�x/x D f�x: (1.39)

Using the method of characteristics on this equation gives (see Exercise 1.3)

e�x.x; t/ D e�x.x � at; 0/C
tZ

0

f�x.x � a.t � s/; s/ ds: (1.40)

(Here we tacitly assume uniqueness of the solution.) Hence we get the bound

je�x.x; t/j � sup
x

je�x.x; 0/j C t kf�xkL1.R�Œ0;t �/ : (1.41)

In trying to bound f�x , note first that

jf�x.x; t/j � �x a
ˇ̌
D�DCuj .t/

ˇ̌
;

so f�x tends to zero with �x ifD�DCuj is bounded. Writing wj D D�DCuj and
applyingD�DC to (1.37), we get

w0
j .t/C aD�

�
wj
� D 0; wj .0/ D D�DCu0.x/:

Now it is time to use the fact that a > 0. To bound wj , observe that if wj � wj�1,
thenD�wj � 0. Hence, if wj .t/ � wj�1.t/, then

d

dt
wj .t/ D �aD�wj .t/ � 0:

Similarly, if for some t , wj .t/ � wj�1.t/, then w0
j .t/ � 0. This means that

inf
x
u00
0.x/ � inf

k
D�DCuk.0/ � wj .t/ � sup

k

D�DCuk.0/ � sup
x

u00
0.x/:

Thus wj is bounded if u0
0 is Lipschitz continuous. Note that it is the choice of

the difference scheme (1.37) (choosing D� instead of DC or D) that allows us to
conclude that we have a bounded approximation. It remains to study e�x.x; 0/. For
x 2 Œxj ; xjC1/,

je�x.x; 0/j D
ˇ̌̌
u0.x/� u0.xj /� x � xj

�x

�
u0.xjC1/ � u0.xj /

�ˇ̌̌
� 2�x max

x2Œxj ;xjC1�
ju0
0.x/j :

Then we have proved the bound

ju�x.x; t/ � u.x; t/j � �x
	
2 ku0

0kL1.R/ C t a ku00
0kL1.R/



; (1.42)

for all x and t > 0.
Strictly speaking, in order for this argument to be valid, we have implicitly as-

sumed in (1.40) that equation (1.39) has only the solution (1.40). This brings us to
another topic.
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Entropy Solutions (I)

You should call it entropy . . . [since] . . . no one knows what entropy really is,
so in a debate you will always have the advantage.3

— John von Neumann

Without much extra effort, we can generalize slightly, and we want to ensure that
the equation

ut C a.x; t/ux D f .x; t/ (1.43)

has only one differentiable solution. If we let the characteristic curves be defined by
(1.33), a solution is given by (see Exercise 1.3)

u .�.t Ix0/; t/ D u0.x0/C
tZ

0

f .�.sIx0/; s/ ds:

In terms of the inverse characteristic 	 defined by (1.34) this formula reads (see
Exercise 1.3)

u.x; t/ D u0 .	.t Ix//C
tZ
0

f .	.� Ix/; t � �/ d�:

If u0 is differentiable and f is bounded, this formula gives a differentiable function
u.x; t/.

Now we can turn to the uniqueness question. Since (1.43) is linear, to prove
uniqueness means to show that the equation with f D 0 and u0 D 0 has only the
zero solution. Therefore, we consider

ut C a.x; t/ux D 0:

Now let 
.u/ be a differentiable function, and multiply the above by 
0.u/ to get

0 D @

@t

.u/C a

@

@x

.u/ D 
.u/t C .a
.u//x � ax
.u/:

Assume that 
.0/ D 0 and 
.u/ > 0 for u ¤ 0, and that jax.x; t/j < C for all x
and t . If 
.u. � ; t// is integrable, then we can integrate this to get

d

dt

Z
R


.u.x; t// dx D
Z
R

ax.x; t/
.u.x; t// dx � C

Z
R


.u.x; t// dx:

By Gronwall’s inequality (see Exercise 1.10),Z
R


.u.x; t// dx � eCt
Z
R


.u0.x// dx:

3 In a discussion with Claude Shannon about Shannon’s new concept called “entropy.”
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If u0 D 0, then 
.u0/ D 0, and we must have u.x; t/ D 0 as well. We have shown
that if 
.u0/ is integrable for some differentiable function 
 with 
.0/ D 0 and

.u/ > 0 for u ¤ 0, and ax is bounded, then (1.43) has only one differentiable
solution.

Frequently, the model (1.43) (with f identically zero) is obtained by the limit of
a physically more realistic model,

u"t C a.x; t/u"x D "u"xx (1.44)

as " becomes small. You can think of u" as the temperature in a long rod moving
with speed a. In this case " is proportional to the heat conductivity of the rod.
Equation (1.44) has more regular solutions than the initial data u0 (see Appendix B).
If we multiply this equation by 
0.u"/, where 
 2 C2.R/ is a convex function, we
get


 .u"/t C a 
 .u"/x D "
�

0 .u"/ u"x

�
x

� "
00 .u"/
�
u"x
�2
:

The function 
 is often called an entropy. The term with .u"x/
2 is problematic when

" ! 0, since the derivative will not be square integrable in this limit. For linear
equations the integrability of this term depends on the integrability of this term
initially. However, for nonlinear equations, we have seen that jumps can form inde-
pendently of the smoothness of the initial data, and the limit of u"x will in general
not be square integrable.

The key to circumventing this problem is to use the convexity of 
, that is,

00.u/ � 0, and hence "
00 .u"/

�
u"x
�2

is nonnegative, to replace this term by the
appropriate inequality. Thus we get that


 .u"/t C .a
 .u"//x � ax
 .u"/ � "
�

0 .u"/ u"x

�
x
: (1.45)

Now the right-hand side of (1.45) converges to zero weakly.4 We define an entropy
solution to be the limit u D lim"!0 u

" of solutions to (1.44) as " ! 0. Formally, an
entropy solution to (1.43) should satisfy (reintroducing the function f )


.u/t C .a
.u//x � ax
.u/ � 
0.u/f .x; t/; (1.46)

for all convex functions 
 2 C2.R/. We shall see later that this is sufficient to
establish uniqueness even if u is not assumed to be differentiable.

Numerics (II)

Let us for the moment return to the transport equation

ut C a.x; t/ux D 0: (1.47)

4 That is, "
’

R�Œ0;1/
'x


0.u"/u"x dx dt ! 0 as " ! 0 for any test function '.



24 1 Introduction

We want to construct a fully discrete scheme for this equation, and the simplest such
scheme is the explicit Euler scheme,

Dt
Cu

n
j C anj D�unj D 0; n � 0; (1.48)

and u0j D u0.xj /. HereDt
C denotes the discrete forward time difference

Dt
Cu.t/ D u.t C�t/ � u.t/

�t
;

and unj is an approximation of u.xj ; tn/, with tn D n�t , n � 0. Furthermore, anj
denotes some approximation of a.xj ; tn/, to be determined later. We can rewrite
(1.48) as

unC1
j D unj � anj 

	
unj � unj�1



;

where  D �t=�x.5

Let us first return to the case that a is constant. We can then use von Neumann
stability analysis. Assume that the scheme produces approximations that converge
to a bounded solution for almost all x and t ; in particular, assume that unj is bounded
independently of �x and �t . Consider the periodic case. We make the ansatz that
unj D ˛neij�x with i D p�1 (the equation is linear, so we might as well expand

the solution in a Fourier series). Inserting this into the equation for unC1
j , we get

˛nC1eij�x D ˛neij�x � a �˛neij�x � ˛nei.j�1/�x�
D ˛neij�x

�
1 � a.1 � e�i�x/

�
;

so that

˛ D 1 � a�1 � cos.�x/C i sin.�x/
�
:

If j˛j � 1, then the sup-norm estimate will hold also for the solution generated by
the scheme. In this case the scheme is called von Neumann stable.

We calculate

j˛j2 D 1C 22a2 � 2a.1C .1 � a/ cos.�x//
D 1 � 2a .1 � a/ .1 � cos.�x// :

This is less than or equal to 1 if and only if a.1 � a/ � 0. Thus we require

0 � a � 1: (1.49)

This relationship between the spatial and temporal discretization (as measured by )
and the wave speed given by a is the simplest example of the celebrated CFL con-
dition, named after Courant–Friedrichs–Lewy. We will return to the CFL condition
repeatedly throughout the book.

5 Unless otherwise is stated, you can safely assume that this is the definition of .
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Returning to the scheme for the transport equation with variable and nonnegative
speed, we say that the scheme will be von Neumann stable if

max
.x;t/

a.x; t/ � 1: (1.50)

Consider now the scheme (1.48) with

anj D 1

�t

tnC1Z
tn

a.xj ; t/ dt:

We wish to establish the convergence of unj . To this end, set

enj D u.xj ; tn/ � unj ;
where u is the unique solution to (1.47). Inserting this into the scheme, we find that

Dt
Ce

n
j C anj D�enj D Dt

Cu.xj ; tn/C anj D�u.xj ; tn/

D 1

�t

tnC1Z
tn

ut .xj ; t/ dt C anj

�x

xjZ
xj�1

ux.x; tn/ dx

D 1

�x�t

tnC1Z
tn

xjZ
xj�1

�
ut .xj ; t/C a.xj ; t/ux.x; tn/

�
dx dt

D 1

�x�t

xjZ
xj�1

tnC1Z
tn

a.xj ; t/
�
ux.x; tn/ � ux.xj ; t/

�
dt dx

D 1

�x�t

xjZ
xj�1

tnC1Z
tn

a.xj ; t/
	 xZ
xj

uxx.z; tn/dz�
tZ

tn

uxt .xj ; s/ds


dt dx

DW Rnj :
Assuming now that uxx and utx are bounded, which they will be if we consider a fi-
nite time interval Œ0; T �, chooseM such that maxfkuxxkL1 ; kutxkL1 ; kakL1g � M .
Then we get the bound

ˇ̌̌
Rnj

ˇ̌̌
� M2

�x�t

xjZ
xj�1

tnC1Z
tn

� �
xj � x�C .t � tn/

�
dt dx

D M2

2
.�x C�t/ :

Therefore the error will satisfy the inequality

enC1
j � enj

	
1 � anj



C anj e

n
j�1„ ƒ‚ …

�

C�t
M2

2
.�x C�t/ :
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If kakL1  < 1 (recall the CFL condition), then � is a convex combination of

enj and enj�1, which is less than or equal to max
n
enj ; e

n
j�1
o
. Taking the supremum

over j , first on the right, and then on the left, we get

sup
j

n
enC1
j

o
� sup

j

n
enj

o
C�t

M2

2
.�x C�t/ :

We also have that

enC1
j � enj

	
1 � anj



C anj e

n
j�1„ ƒ‚ …

�

��tM
2

2
.�x C�t/ ;

which implies that

inf
j

n
enC1
j

o
� inf

j

n
enj

o
��t M

2

2
.�x C�t/ :

With Nen D supj

ˇ̌̌
enj

ˇ̌̌
, the above means that

NenC1 � Nen C�t
M2

2
.�x C�t/ :

Inductively, we then find that

Nen � Ne0 C tn
M2

2
.�x C�t/ D tn

M2

2
.�x C�t/ ;

since e0j D 0 by definition. Hence, the approximation defined by (1.48) converges
to the unique solution if u is twice differentiable with bounded second derivatives.

We have seen that if x 7! a.x; t/ is decreasing on some interval, the best bounds
for uxx and uxt are likely to be of the form CeCt , which means that the “constant”
M is likely to be large if we want to study the solution for large (or even moderate)
times.

Similarly, if a.x; t/ < 0, the scheme

Dt
Cu

n
j C anj DCunj D 0

will give a convergent sequence.

Entropy Solutions (II)

Consider the Cauchy problem(
ut C a.x; t/ux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(1.51)



1.1 Linear Equations 27

where a is a continuously differentiable function (in this section not assumed to be
nonnegative). Recall that an entropy solution is defined as the limit of the singularly
perturbed equation (1.44). For every positive ", u" satisfies (1.45), implying that the
limit u D lim"!0 u

" should satisfy (1.46) with f identically zero. Multiplying the
inequality (1.46) by a nonnegative test function  , and integrating by parts, we find
that

1Z
0

Z
R

�

.u/ t C a
.u/ x C ax
.u/ 

�
dx dt C

Z
R


.u0.x// .x; 0/ dx � 0 (1.52)

should hold for all nonnegative test functions  2 C1
0 .R � Œ0;1//, and for all

convex 
. If u.x; t/ is a function in L1loc.R� Œ0;1// that satisfies (1.52) for all con-
vex entropies 
, then u is called a weak entropy solution to (1.51). The point of this
is that we no longer require u to be differentiable, or even continuous. Therefore,
showing that approximations converge to an entropy solution should be much easier
than showing that the limit is a classical solution.

We are going to show that there is only one entropy solution. Again, since the
equation is linear, it suffices to show that u0 D 0 (in L1.R/) implies u. � ; t/ D 0

(in L1.R/).
To do this, we specify a particular test function. Let ! be a C1 function such

that

0 � !.�/ � 1; supp! 	 Œ�1; 1�; !.��/ D !.�/;

1Z
�1
!.�/ d� D 1:

Now define

!".�/ D 1

"
!
	�
"



: (1.53)

Let x1 < x2, and introduce

'".x; t/ D
x2�LtZ
x1CLt

!".x � y/ dy;

where L is a constant such that L > kakL1.˝/ and ˝ D R � Œ0;1/. We fix a T
such that T < .x2 � x1/=.2L/, and consider t < T . Observe that '". � ; t/ is an
approximation to the characteristic function for the interval .x1 C Lt; x2 � Lt/.

Next introduce

h".t/ D 1 �
tZ

0

!".s � T / ds:

This is an approximation to the characteristic function of the interval .�1; T �.
Finally, we choose the test function

 ".x; t/ D h".t/'".x; t/ 2 C1
0 .˝/:
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Inserting this into the entropy inequality (1.52), we get“
˝


.u/'"h
0
".t/ dx dt

C
“
˝

h".t/
.u/

�
@

@t
'".x; t/C a.x; t/

@

@x
'".x; t/

�
dx dt

C
“
˝

ax
.u/h"'" dx dt C
Z
R


.u0/'".x; 0/ dx � 0:

(1.54)

We treat the second integral first, and calculate

@

@t
'".x; t/ D �L .!".x � x2 C Lt/C !".x � x1 � Lt// ;

@

@x
'".x; t/ D �!".x � x2 C Lt/C !".x � x1 � Lt/:

Therefore,

@

@t
'" C a

@

@x
'" D .�LC a/!".x � x2 C Lt/C .�L � a/!".x � x1 � Lt/

� .jaj � L/ �!".x � x2 C Lt/C !".x � x1 � Lt/� � 0;

since L is chosen to be larger than jaj. Hence, if 
.u/ � 0, then the second integral
in (1.54) is nonpositive. Thus we have“

˝


.u/'"h
0
".t/ dx dt C

“
˝

ax
.u/h"'" dx dt

C
Z
R


.u0/'".x; 0/ dx � 0:

(1.55)

Let us for the moment proceed formally. The function h" approximates the charac-
teristic function �.�1;T �, which has derivative �ıT , a negative Dirac delta function
at T . Similarly, '" approximates the characteristic function �.x1CLt;x2�Lt/, with
derivative L.ıx1CLt � ıx2�Lt /. From (1.54) we formally obtain by sending " ! 0,
that

�
x2�LTZ
x1CLT


.u.x; T // dx C
TZ
0

x2�LtZ
x1CLt

ax.x; t/
.u.x; t// dx dt C
x2Z
x1


.u.x; 0// dx � 0;

(1.56)

and this is what we intend to prove next.
The first integral in (1.54) reads

�
“
˝


.u/'".x; t/!".t � T / dx dt D �
1Z
0

f".t/!".t � T / dt;
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where

f".t/ D
Z
R

'".x; t/
.u.x; t// dx:

Keeping t fixed, we obtain

f".t/ !
x2�LtZ
x1CLt


.u.x; t// dx D f0.t/ as " ! 0,

the limit being uniform in t for t 2 Œ0; T �. If t 7! u. � ; t/ is continuous as a map
from Œ0;1/ with values in L1.R/, then f" and f0 are continuous in t . In that case,

1Z
0

f".t/!".t � T / dt D
1Z
0

�
f".t/ � f0.t/

�
!".t � T / dt C

1Z
0

f0.t/!".t � T / dt

! f0.T / as " ! 0,

since ˇ̌̌
ˇ̌̌ 1Z
0

�
f".t/ � f0.t/

�
!".t � T / dt

ˇ̌̌
ˇ̌̌ � kf" � f0kL1

1Z
0

!".t � T / dt

D kf" � f0kL1 ! 0:

In order to ensure that t 7! u. � ; t/ is continuous as a map from Œ0;1/ to L1.R/,
we define an entropy solution to have this property; see Definition 1.10 below. We
have that

h".t/'".x; t/ ! �˘T .x; t/ in L1.˝T /,

where ˘T D f.x; t/ j 0 � t � T; x1 C Lt � x � x2 � Ltg and ˝T D R � Œ0; T �.
By sending " ! 0 in (1.54), we then find that (cf. (1.56))

x2Z
x1


.u.x; 0// dx C
TZ
0

x2�LtZ
x1CLt

ax.x; t/
.u.x; t// dx dt �
x2�LTZ
x1CLT


.u.x; T // dx;

(1.57)

which implies that

f0.T / � f0.0/C kaxkL1.˝T /

TZ
0

f0.t/ dt;

assuming that 
 is positive.
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Gronwall’s inequality then implies

f0.T / � f0.0/e
kaxkL1.˝T /

T
;

or, writing it out explicitly,

x2�LTZ
x1CLT


.u.x; T // dx �
x2Z
x1


.u0.x// dx e
kaxkL1 .˝T /

T
;

for every nonnegative convex function 
. Observe that this proves the finite speed
of propagation.

Choosing 
.u/ D jujp for 1 � p < 1, assuming 
.u/ to be integrable, and
sending x1 to �1 and x2 to 1, we get

ku. � ; T /kLp.R/ � ku0kLp.R/ ekaxkL1 .˝T /
T=p
; 1 � p < 1: (1.58)

Next, we can let p ! 1, assuming 
.u/ to be integrable for all 1 � p < 1, to get

ku. � ; T /kL1.R/ � ku0kL1.R/ : (1.59)

In order to formalize the preceding argument, we introduce the following definition.

Definition 1.10 A function u D u.x; t/ in C.Œ0;1/IL1.R// is called a weak en-
tropy solution to the problem

(
ut C a.x; t/ux D 0; t > 0; x 2 R;

u.x; 0/ D u0.x/;

if for all nonnegative and convex functions 
.u/ and all nonnegative test functions
' 2 C1

0 .˝/, the inequality

1Z
0

Z
R

�

.u/'t C a 
.u/'x C ax
.u/'

�
dx dt C

Z
R


.u0.x//'.x; 0/ dx � 0

holds.

Theorem 1.11 Assume that a D a.x; t/ is such that ax is bounded. Then the prob-
lem (1.32) has at most one entropy solution u D u.x; t/, and the bounds (1.58) and
(1.59) hold.

Remark 1.12 From the proof of this theorem (applying (1.58) for p D 1), we
see that if we define an entropy solution to satisfy the entropy condition only for

.u/ D juj, then we get uniqueness in C.Œ0;1/; L1.R//.
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Numerics (III)

We now reconsider the transport equation(
ut C a.x; t/ux D 0; t > 0;

u.x; 0/ D u0.x/;
(1.60)

and the corresponding difference scheme

Dt
Cu

n
j C anj D�unj D 0;

with

anj D 1

�t

tnC1Z
tn

a.xj ; t/ dt; u0j D 1

�x

xjC1=2Z
xj�1=2

u0.x/ dx;

where as before, we assume that a.x; t/ � 0. In order to have an approximation
defined for all x and t , we define

u�x.x; t/ D unj for .x; t/ 2 I nj�1=2 WD Œxj�1; xj / � Œtn; tnC1/;

where tn D n�t . We wish to show that u�x converges to an entropy solution (the
only one!) of (1.60). Now we do not use the linearity, and first prove that fu�xg�x>0
has a convergent subsequence.

First we recall that the scheme can be written

unC1
j D

	
1 � anj 



unj C anj u

n
j�1:

We aim to use Theorem A.11 to prove compactness. First we show that the approx-
imation is uniformly bounded. This is easy, since unC1

j is a convex combination of
unj and unj�1, so new maxima or minima are not introduced. Thus

ku�x. � ; t/kL1.R/ � ku0kL1.R/ :

Therefore, the first condition of Theorem A.11 is satisfied.
To show that the second condition holds, recall, or consult Appendix A, that the

total variation of a function uWR ! R is defined as

T:V: .u/ D sup
fxi g

X
i

ju.xi/ � u.xi�1/j ;

where the supremum is taken over all finite partitions fxig such that xi < xiC1. This
is a seminorm, and we also write jujBV WD T:V: .u/.

We have to estimate the total variation of u�x . For t 2 Œtn; tnC1/ this is given by

ju�x. � ; t/jBV D
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌
:

We also have that

unC1
j � unC1

j�1 D .1 � anj /unj C anj u
n
j�1 � .1 � anj�1/u

n
j�1 � anj�1u

n
j�2

D .1 � anj /.unj � unj�1/C anj�1.u
n
j�1 � unj�2/:
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By the CFL condition 0 � anj  � 1 for all n and j , we inferˇ̌̌
unC1
j � unC1

j�1
ˇ̌̌

� .1 � anj /
ˇ̌̌
unj � unj�1

ˇ̌̌
C anj�1

ˇ̌̌
unj�1 � unj�2

ˇ̌̌
:

ThereforeX
j

ˇ̌̌
unC1
j � unC1

j�1
ˇ̌̌

�
X
j

.1 � anj /
ˇ̌̌
unj � unj�1

ˇ̌̌
C
X
j

anj�1
ˇ̌̌
unj�1 � unj�2

ˇ̌̌

D
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌
�
X
j

anj

ˇ̌̌
unj � unj�1

ˇ̌̌
C
X
j

anj

ˇ̌̌
unj � unj�1

ˇ̌̌

D
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌
:

Hence

ju�x. � ; t/jBV � ju�x. � ; 0/jBV � ju0jBV :
This shows that the second condition of Theorem A.11 is satisfied; see Re-
mark A.12.

To show that the third condition holds, i.e., the continuity of theL1-norm in time,
we assume that s 2 Œtn; tnC1/, and that t is such that t � s � �t . ThenZ

R

ju�x.x; t/ � u�x.x; s/j dx � �x
X
j

ˇ̌̌
unC1
j � unj

ˇ̌̌

D �x
X
j

anj 
ˇ̌̌
unj � unj�1

ˇ̌̌

� �t kakL1.˝/
X
j

ˇ̌̌
unj � unj�1

ˇ̌̌

� �t kakL1.˝/ ju0jBV :
If s 2 Œtn; tnC1/ and t 2 ŒtnCk; tnCkC1/, we haveZ

R

ju�x.x; t/ � u�x.x; s/j dx D �x
X
j

ˇ̌̌
unCk
j � unj

ˇ̌̌

�
nCk�1X
mDn

�x
X
j

ˇ̌̌
umC1
j � umj

ˇ̌̌

D
nCk�1X
mDn

�x
X
j

amj 
ˇ̌̌
umj � umj�1

ˇ̌̌

�
nCk�1X
mDn

�t kakL1.˝/
X
j

ˇ̌̌
umj � umj�1

ˇ̌̌

� k�t kakL1.˝/ ju0jBV
� .t � s C�t/ kakL1.˝/ ju0jBV :



1.1 Linear Equations 33

Hence, also the third condition of Theorem A.11 is fulfilled, and we have the con-
vergence (of a subsequence) u�x ! u as �x ! 0. It remains to prove that u is the
entropy solution.

To do this, start by observing that



	
unC1
j



D 


	
.1 � anj /unj C anj u

n
j�1



� .1 � anj /

	
unj



C anj 


	
unj�1



;

since 
 is assumed to be a convex function. This can be rearranged as

Dt
C


n
j C anj D�
nj � 0;

where 
nj D 
.unj /, and as

Dt
C


n
j CD�

	
anj 


n
j



� 
nj�1D�anj � 0: (1.61)

The operatorsD�,DC, andDt
C satisfy the following “summation by parts” formu-

las:

X
j

ajD�bj D �
X
j

bjDCaj ; if a˙1 D 0 or b˙1 D 0,

1X
nD0

anDt
Cb

n D � 1

�t
a0b0 �

1X
nD1

bnDt
�a

n if a1 D 0 or b1 D 0.

Let ' be a nonnegative test function in C1
0 .˝/ and set

'nj D 1

jI nj�1=2j
“
In
j�1=2

'.x; t/ dx dt:

We multiply (1.61) by�t�x 'nj and sum over n � 0 and j 2 Z, using the summa-
tion by parts formulas above, to get

�x�t

1X
nD1

X
j


.unj /D
t
�'

n
j

C�x�t

1X
nD0

X
j

	
anj 
.u

n
j /DC'nj C 
.unj�1/D�anj '

n
j



C�x

X
j


.u0j /'
0
j � 0:

Call the left-hand side of the above inequality B�x, and set

A�x D
“
˝

�

.u�x/'t C a
.u�x/'x C ax
.u�x/'

�
dx dt C

Z
R


.u0/'.x; 0/ dx:
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Then we have

A�x D B�x C .A�x � B�x/ � A�x � B�x:
We find that

A�x � B�x D
1X
nD1

X
j

“
In
j�1=2


nj

	
't �Dt

�'
n
j



dx dt (1.62a)

C
X
j

“
I 0
j�1=2


0j 't dx dt (1.62b)

C
X
j;n

“
In
j�1=2


nj a
	
'x �DC'nj



dxdt (1.62c)

C
X
j;n

“
In
j�1=2


nj DC'nj
	
a � anj



dx dt (1.62d)

C
X
j;n

“
In
j�1=2

	

nj � 
nj�1



ax' dx dt (1.62e)

C
X
j;n

“
In
j�1=2

ax

n
j�1

	
' � 'nj



dx dt (1.62f)

C
X
j;n

“
In
j�1=2


nj�1
	
ax �D�anj



'nj dx dt (1.62g)

C
X
j

Z
Ij�1=2

	

.u0/� 
0j



'.x; 0/ dx (1.62h)

C
X
j

Z
Ij�1=2


0j

	
'.x; 0/ � '0j



dx: (1.62i)

Here Ij�1=2 D Œxj�1; xj /. To show that the limit u is an entropy solution, we must
show that all the terms (1.62a)–(1.62i) vanish when�x becomes small. A small but
useful device is contained in the following remark.

Remark 1.13 For a continuously differentiable function � we have

j'.x; t/ � '.y; s/j D
ˇ̌̌
ˇ̌̌ 1Z
0

d

d�
'.�.x; t/C .1 � �/.y; s//d�

ˇ̌̌
ˇ̌̌

D
ˇ̌̌
ˇ̌̌ 1Z
0

r'.�.x; t/C .1 � �/.y; s// � .x � y; t � s/d�
ˇ̌̌
ˇ̌̌

� jx � yj k'xkL1 C jt � sj k'tkL1 :
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We start with the last term (1.62i). NowZ
Ij�1=2


0j

	
'.x; 0/� '0j



dx

D 
0j

�x�t

Z
Ij�1=2

“
I 0
j�1=2

'.x; 0/ � '.y; t/ dy dt dx

D 
0j

�x�t

Z
Ij�1=2

“
I 0
j�1=2

	 xZ
y

'x.z; 0/ dz C
tZ
0

't .y; s/ ds


dy dt dx:

Therefore,

j(1.62i)j � k
.u0/kL1.R/
�k'xkL1.˝/ �x C k'tkL1.˝/ �t

�
;

where we used the convexity of 
. Next, we consider the term (1.62h): Since 
 is
convex, we have

j
.b/� 
.a/j � max fj
0.a/j ; j
0.b/jg jb � aj :
Furthermore, if both x and y are in Ij�1=2, then

ju0.x/ � u0.y/j � ju0jBV.Ij�1=2/ :

Using this and choosing C D k
0.u0/kL1 yieldsˇ̌̌ Z
Ij�1=2

	

.u0/ � 
.u0j /



'.x; 0/ dx

ˇ̌̌

� C k'kL1.˝/

Z
Ij�1=2

ˇ̌̌
u0.x/ � u0j

ˇ̌̌
dx

� C k'kL1.˝/

Z
Ij�1=2

1

�x

Z
Ij�1=2

ju0.x/ � u0.y/j dx dy

� C k'kL1.˝/ �x ju0jBV.Ij�1=2/ :

Therefore,

j(1.62h)j � C k'kL1.˝/ �x
X
j

ju0jBV.Ij�1=2/

� C k'kL1.˝/ �x ju0jBV :
Next, we consider (1.62g). First observe that

D�anj D D�
	 1
�t

tnC1Z
tn

a.xj ; t/ dt



D 1

�x�t

“
In
j�1=2

ax.x; t/ dx dt:
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Therefore,


nj�1

“
In
j�1=2

ax.x; t/ �D�anj dx dt D 
nj�1
	“
In
j�1=2

ax.x; t/ dx dt ��x�tanj



D 0;

and (1.62g) D 0. We continue with the term (1.62f), namely

“
In
j�1=2

jaxj 
nj�1
ˇ̌̌
' � 'nj

ˇ̌̌
dx dt

� kaxkL1.˝/ 

n
j�1

1

�x�t

“
Inj

“
Inj

j'.x; t/ � '.y; s/j dy ds dx dt

� kaxkL1.˝/ 

n
j�1�x�t

�
�x k'xkL1.˝/ C�t k'tkL1.˝/

�
:

Recall that the test function ' has compact support, contained in ft < T g. Further-
more, using the scheme for 
nj , cf. (1.61), it is straightforward to show that

�x
X
j


nj � eCtn�x
X
j


0j � eCtn k
.u0/kL1.R/ ;

where C is a bound onD�anj . Therefore,

ˇ̌̌X
j;n

“
In
j�1=2

ax

n
j�1

	
' � 'nj



dx dt

ˇ̌̌
� CT�x

X
j;n


nj �t.�x C�t/

� CT�x
X
n;j


0j�t.�x C�t/

� CT T k
.u0/kL1.R/ .�x C�t/;

since the sum in n is only over those n such that tn D n�t � T . Regarding (1.62e),
and settingM > ku0kL1.R/, we have that

ˇ̌̌X
j;n

“
In
j�1=2

	

nj � 
nj�1



ax' dx dt

ˇ̌̌

� k
0kL1..�M;M// kaxkL1.˝/ k'kL1.˝/ �x�t
X
j;n

ˇ̌̌
unj � unj�1

ˇ̌̌

� C�xT ju0jBV :
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Next, we turn to (1.62d):

j(1.62d)j � k'xkL1.˝/
X
j;n


nj

“
In
j�1=2

ˇ̌
a.x; t/ � a.xj ; t/

ˇ̌
dxdt

� k'xkL1.˝/ kaxkL1.˝/ �x
X
j;n


nj �x�t

� k'xkL1.˝/ kaxkL1.˝/ CT T�x k
.u0/kL1.R/ :

We can use the same type of argument to estimate (1.62c):

j(1.62c)j � kakL1.˝/
�
�x k'xxkL1.˝/ C�t k'xtkL1.˝/

�X
n;j


nj �x�t

� kakL1.˝/
�
�x k'xxkL1.˝/ C�t k'xtkL1.˝/

�
CT T k
.u0/kL1.R/ :

Similarly, we show that

j(1.62b)j � C�t�t k
.u0/kL1.R/ k'tkL1.˝/ :

Now the end is in sight. We estimate the right-hand side of (1.62a). This will be less
than

X
j;n�1


nj

“
In
j�1=2

ˇ̌̌
't �Dt

C'
n
j

ˇ̌̌
dx dt

� �
�x k'xtkL1.˝/ C�t k'ttkL1.˝/

� X
j;n�1


nj �x�t

� �
�x k'xtkL1.˝/ C�t k'ttkL1.˝/

�
CT T k
.u0/kL1.R/ :

To sum up, what we have shown is that for every test function '.x; t/,

“
˝

�

.u/'tCa
.u/'x C ax
.u/

�
dx dt C

Z
R


.u0/'.x; 0/ dx

D lim
�x!0

A�x

� lim
�x!0

�
A�x � B�x

� D 0;

if ax is (locally) continuous and u0 2 BV.R/. Hence the scheme (1.60) produces
a subsequence that converges to the unique weak solution. Since the limit is the
unique entropy solution, every subsequence will produce a further subsequence that
converges to the same limit, and thus the whole sequence converges!

If u00
0 is bounded, we have seen that the scheme (1.60) converges at a rate O .�x/

to the entropy solution. The significance of the above computations is that we have
the convergence to the unique entropy solution even if u0 is assumed to be only in
L1.R/\ BV.R/. However, in this case we have not shown any convergence rate.
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Systems of Equations

I have a different way of thinking. I think synergistically.
I’m not linear in thinking, I’m not very logical.
— Imelda Marcos

Now we generalize, and let uWR � Œ0;1/ ! Rn be a solution of the linear system

(
ut C Aux D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(1.63)

where A is an n � n matrix with real and distinct eigenvalues figniD1. We order
these such that

1 < 2 < � � � < n:

If this holds, then the system is said to be strictly hyperbolic. The matrix Awill also
have n linearly independent right eigenvectors r1; : : : ; rn such that

Ari D iri :

Similarly, it has n independent left eigenvectors l1; : : : ; ln such that

liA D i li :

We assume ri to be column vectors and li to be row vectors. However, we will not
enforce this strictly, and will write, e.g., li � rk. For k ¤ m, lk and rm are orthogonal,
since

mrm � lk D Arm � lk D rm � lkA D krm � lk:

Let

L D

0
B@
l1
:::

ln

1
CA ; R D �

r1 � � � rn
�
:

Normalize the eigenvectors so that lk � ri D ıki , i.e., L D R�1, or LR D I . Then

LAR D

0
B@
1 0

: : :

0 n

1
CA :

We can multiply (1.63) by L from the left to get

Lut C LAux D 0;
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and defining w by u D Rw, we find that

wt C

0
B@
1 0

: : :

0 n

1
CAwx D 0: (1.64)

This is n decoupled equations, one for each component of w D .w1; : : : ; wn/,

@wi

@t
C i

@wi

@x
D 0; for i D 1; : : : ; n.

The initial data transforms into

w0 D Lu0 D .l1 � u0; : : : ; ln � u0/;

and hence we obtain the solution

wi .x; t/ D li � u0.x � i t/:

Transforming back into the original variables, we obtain

u.x; t/ D
nX
iD1

wi .x; t/ri D
nX
iD1

Œli � u0.x � i t/� ri : (1.65)

} Example 1.14 (The linear wave equation)
Now consider the linear wave equation; ˛WR � .0;1/ ! R is a solution of

(
˛tt � c2˛xx D 0; x 2 R; t > 0;

˛.x; 0/ D ˛0.x/; ˛t .x; 0/ D ˇ0.x/;

where c is a positive constant. Defining

u D
 
u1

u2

!
D
 
˛t

˛x

!

implies that

@u1

@t
� c2 @u2

@x
D 0;

@u2

@t
� @u1

@x
D 0;

or ut C
 
0 �c2

�1 0

!
ux D 0:

The matrix

A D
 
0 �c2

�1 0

!
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has eigenvalues and eigenvectors

1 D �c; r1 D
 
c

1

!
; 2 D c; r2 D

 
�c
1

!
:

Thus

R D
 
c �c
1 1

!
; L D R�1 D 1

2c

 
1 c

�1 c

!
:

Hence we find that  
w1

w2

!
D 1

2c

 
u1 C cu2

�u1 C cu2

!
:

Writing the solution in terms of ˛x and ˛t , we find that

˛t .x; t/C c˛x.x; t/ D ˇ0.x C ct/C c˛0
0.x C ct/;

�˛t .x; t/C c˛x.x; t/ D �ˇ0.x � ct/C c˛0
0.x � ct/:

Therefore,

˛x.x; t/ D 1

2

�
˛0
0.x C ct/C ˛0

0.x � ct/�C 1

2c
.ˇ0.x C ct/ � ˇ0.x � ct// ;

˛t .x; t/ D 1

2
.ˇ0.x C ct/C ˇ0.x � ct//C c

2

�
˛0
0.x C ct/ � ˛0

0.x � ct/� :
To find ˛, we can integrate the last equation in t ,

˛.x; t/ D 1

2
.˛0.x C ct/C ˛0.x � ct//C 1

2c

xCctZ
x�ct

ˇ0.y/ dy;

after a change of variables in the integral involving ˇ0. This is the famous
d’Alembert formula for the solution of the linear wave equation in one dimen-
sion. }

Next, we discuss the notion of entropy solutions. The meaning of an entropy
solution to an equation written in characteristic variables is that for some convex
function O
.u/, the entropy solution should satisfy

O
.u/t C Oq.u/x � 0;

in the weak sense. Here the entropy flux Oq should satisfy

rw Oq.u/ D ru O
.u/�; i.e.,
@ Oq
@ui

D i
@ O

@ui

for i D 1; : : : ; n.
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An entropy solution to (1.63) is the limit (if such a limit exists) of the parabolic
reqularization

u"t C Au"x D "u"xx

as " ! 0. To check whether we have a convex entropy 
WRn ! R, we take the
inner product of the above with r
.u"/ to get


 .u"/t C r
 .u"/ � A u"x � "
�r
 .u"/ � u"x

�
x
;

by the convexity of 
. Observe that the convexity is used to get rid of a term con-
taining .u"x/

2, which may not be wellbehaved (for nonlinear equations) in the limit
" ! 0, and we obtain an inequality rather than an equality. We want to write the
second term on the left as the x derivative of some function q.u"/. Using

q .u"/x D rq .u"/ � u"x;
we see that if this is so, then

@q

@uj
D
X
i

aij
@


@ui
for j D 1; : : : ; n. (1.66)

This is n equations in the two unknowns 
 and q. Thus we cannot expect any solu-
tion if n > 2. The right-hand side of (1.66) is given, and hence we are looking for
a potential q with a given gradient. This problem has a solution if

@2q

@uk@uj
D @2q

@uj@uk
;

or X
i

aik
@2


@ui@uj
D
X
i

aij
@2


@ui@uk
for 1 � j; k � n.

If we wish to find an entropy flux for the entropy 
.u/ D juj2 =2, note that
@2


@ui@uk
D ıik:

Thus we can find an entropy flux if ajk D akj for 1 � j; k � n; in other words, A
must be symmetric. In this case the entropy flux q reads

q.u/ D
X
i;j

aij uiuj � 1

2

X
i

ai iu
2
i :

Hence, an entropy (using the entropy 
.u/ D juj2 =2) solution satisfies

juj2t C q.u/x � 0 weakly.

This means that

ku. � ; t/kL2.R/ � ku0kL2.R/ ;
and thus there is at most one entropy solution to (1.63) if A is symmetric.
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The Riemann Problem for Linear Systems

Returning to the general case, recall that the solution u D u.x; t/ to (1.63) is given
by (1.65), namely

u.x; t/ D
nX
iD1

Œli � u0.x � i t/� ri : (1.67)

Now we shall look at a type of initial value problem where u0 is given by two
constant values, namely

u0.x/ D
(
uleft x < 0;

uright x � 0;
(1.68)

where uleft and uright are two constant vectors. This type of initial value problem is
called a Riemann problem, (cf. (1.28)) which will a problem of considerable interest
throughout the book.

For a single equation (n D 1), the weak solution to this Riemann problem reads

u.x; t/ D u0.x � 1t/ D
(
uleft x < 1t;

uright x � 1t:

Note that u is not continuous. Nevertheless, it is the unique entropy solution in the
sense of Definition 1.10 to (1.63) with initial data (1.68) (see Exercise 1.4).

For two equations (n D 2), we write

uleft D
2X
iD1

Œli � uleft� ri ; uright D
2X
iD1

�
li � uright

�
ri :

We can find the solution of each component separately. Namely, using (1.67) for
initial data (1.68), we obtain

Œl1 � u.x; t/� D
(
l1 � uleft x < 1t;

l1 � uright x � 1t;
Œl2 � u.x; t/� D

(
l2 � uleft x < 2t;

l2 � uright x � 2t:

Combining these we see that

u.x; t/ D Œl1 � u.x; t/� r1 C Œl2 � u.x; t/� r2

D

8̂̂
<
ˆ̂:
Œl1 � uleft� r1 C Œl2 � uleft� r2 x < 1t;�
l1 � uright

�
r1 C Œl2 � uleft� r2 t1 < x � t2;�

l1 � uright
�
r1 C �

l2 � uright
�
r2 x � 1t;

D

8̂̂
<
ˆ̂:
uleft x < 1t;

umiddle t1 < x � t2;

uright x � 1t;
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a b

Fig. 1.7 The solution of the Riemann problem. a In .x; t/-space. b In phase space

with umiddle D �
l1 � uright

�
r1 C Œl2 � uleft� r2. Observe the structure of the different

states:

uleft D Œl1 � uleft� r1 C Œl2 � uleft� r2;
umiddle D �

l1 � uright
�
r1 C Œl2 � uleft� r2;

uright D �
l1 � uright

�
r1 C �

l2 � uright
�
r2:

We can also view the solution in phase space, that is, in the .u1; u2/-plane. We see
that for every uleft and uright, we have the solution u.x; t/ D uleft for x < 1t and
u.x; t/ D uright for x � 2t . In the middle, u.x; t/ D umiddle for 1t � x < 2t .
The middle value umiddle is on the intersection of the line through uleft parallel to
r1 and the line through uright parallel to r2. See Fig. 1.7. In the general, nonlinear,
case, the straight lines connecting uleft, um, and uright will be replaced by arcs, not
necessarily straight. However, the same structure prevails, at least locally.

Now we can find the solution to the Riemann problem for any n, namely

u.x; t/ D

8̂̂<
ˆ̂:
uleft x < 1t;

ui i t � x < iC1t; i D 1; : : : ; n � 1;
uright x � nt;

where

ui D
iX

jD1

�
lj � uright

�
rj C

nX
jDiC1

�
lj � uleft

�
rj :

Observe that this solution can also be viewed in phase space as the path from u0 D
uleft to un D uright obtained by going from ui�1 to ui on a line parallel to ri for i D
1; : : : ; n. This viewpoint will be important when we consider nonlinear equations,
where the straight lines will be replaced by arcs. Locally, the structure will remain
unaltered.
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Numerics for Linear Systems with Constant Coefficients

If i > 0, then we know that the scheme

Dt
Cw

m
i;j C iD�wmi;j D 0

will produce a sequence of functions fwi;�xg that converges to the unique entropy
solution of

@wi

@t
C i

@wi

@x
D 0:

Similarly, if i < 0, the scheme

Dt
Cw

m
i;j C iDCwmi;j D 0

will give a convergent sequence. Both of these schemes will be convergent only if
�t � �x ji j, which is the CFL condition. In eigenvector coordinates, with

w D

0
B@
w1
:::

wn

1
CA ; wmj � w.j�x;m�t/;

the resulting scheme for w reads

Dt
Cw

m
j C�CD�wmj C��DCwnj D 0; (1.69)

where

�� D

0
B@
1 ^ 0 0

: : :

0 n ^ 0

1
CA and �C D

0
B@
1 _ 0 0

: : :

0 n _ 0

1
CA ;

and we have introduced the notation

a _ b D max fa; bg and a ^ b D min fa; bg :

Observe that � D �C C��. If the CFL condition

�t

�x
max
i

ji j D �t

�x
max fj1j ; jnjg � 1

holds, then the scheme (1.69) will produce a convergent sequence, and the limit w
will be the unique entropy solution to

wt C�wx D 0: (1.70)

By defining u D Rw, we obtain a solution of (1.63).
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We can also make the same transformation on the discrete level. Multiplying
(1.69) by L from the left and using that u D Rw yields

Dt
Cu

m
j C ACD�umj C A�DCumj D 0; (1.71)

where

A˙ D R�˙L;

and this finite difference scheme will converge directly to u.

1.2 Notes

Never any knowledge was delivered in the same order it was invented.6

— Sir Francis Bacon (1561–1626)

The simplest nontrivial conservation law, the inviscid Burgers equation, has been
extensively analyzed. Burgers introduced the “nonlinear diffusion equation”

ut C 1

2
.u2/x D uxx; (1.72)

which is currently called (the viscous) Burgers’s equation, in 1940 [37] (see also
[38]) as a model of turbulence. Burgers’s equation is linearized, and thereby solved,
by the Cole–Hopf transformation [46, 98]. Both the equation and the Cole–Hopf
transformation were, however, known already in 1906; see Forsyth [66, p. 100]. See
also Bateman [14]. The early history of hyperbolic conservation laws is presented
in [56, pp. XV–XXX]. A source of some of the early papers is [104].

The most common elementary example of application of scalar conservation
laws is the model of traffic flow called “traffic hydrodynamics” that was introduced
independently by Lighthill andWhitham [134] and Richards [155]. A modern treat-
ment can be found in Haberman [81]. Example 1.6 presents some of the fundamen-
tals, and serves as a nontechnical introduction to the lack of uniqueness for weak
solutions. Extensions to traffic flow on networks exist; see [94] and [68].

The jump condition, or the Rankine–Hugoniot condition, was derived heuristi-
cally from the conservation principle independently by Rankine in 1870 [152] and
Hugoniot in 1886 [101–103]. Our presentation of the Rankine–Hugoniot condition
is taken from Smoller [169].

The notion of “Riemann problem” is fundamental in the theory of conservation
laws. It was introduced by Riemann in 1859 [156, 157] in the context of gas dynam-
ics. He studied the situation in which one initially has two gases with different (con-
stant) pressures and densities separated by a thin membrane in a one-dimensional
cylindrical tube. See [97] and [56, pp. XV–XXX] for a historical discussion.

The final section of this chapter contains a detailed description of the one-
dimensional linear case, both in the scalar case and in the case of systems. This
allows us to introduce some of the methods in a simpler case. Here existence of

6 in Valerius Terminus: Of the Interpretation of Nature, c. 1603.
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solutions is shown using appropriate finite difference schemes, in contrast to the
front-tracking method used in the text proper.

There are by now several books on various aspects of hyperbolic conservation
laws, starting with the classical book by Courant and Friedrichs [51]. Nice treat-
ments with emphasis on the mathematical theory can be found in books by Lax
[126, 127], Chorin and Marsden [42], Roždestvenskiı̆ and Janenko [164], Smoller
[169], Rhee, Aris, and Amundson [153, 154], Málek et al. [141], Hörmander [99],
Liu [137], Serre [167, 168], Benzoni-Gavage and Serre [15], Bressan [24, 27],
Dafermos [56], Lu [139], LeFloch [129], Perthame [150], Zheng [192]. The books
by Bouchut [19], Godlewski and Raviart [78, 79], LeVeque [130, 131], Kröner
[116], Toro [180], Thomas [179], and Trangenstein [183] focus more on the numer-
ical theory.

1.3 Exercises

1.1 Determine characteristics for the following quasilinear equations:

ut C sin.x/ux D u;

sin.t/ut C cos.x/ux D 0;

ut C sin.u/ux D u;

sin.u/ut C cos.u/ux D 0:

1.2 Use characteristics to solve the following initial value problems:

(a) uux C xuy D 0, u.0; s/ D 2s for s > 0:

(b) eyux C uuy C u2 D 0, u.x; 0/ D 1=x for x > 0:

(c) xuy � yux D u, u.x; 0/ D h.x/ for x > 0:

(d) .x C 1/2ux C .y � 1/2uy D .x C y/u, u.x; 0/ D �1 � x:
(e) ux C 2xuy D x C xu, u.1; y/ D ey � 1:
(f) ux C 2xuy D x C xu, u.0; y/ D y2 � 1:
(g) xuux C uy D 2y, u.x; 0/ D x:

1.3 (a) Use characteristics to show that

ut C aux D f .x; t/; ujtD0 D u0;

with a a constant, has solution

u.x; t/ D u0.x � at/C
tZ

0

f .x � a.t � s/; s/ ds:

(b) Show that

u .�.t Ix0/; t/ D u0.x0/C
tZ
0

f .�.sIx0/; s/ ds
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holds if u is the solution of

ut C a.x; t/ux D f .x; t/; ujtD0 D u0; (1.73)

where � satisfies

d

dt
�.t Ix0/ D a.�.t Ix0/; t/; �.0Ix0/ D x0:

(c) Show that

u.x; t/ D u0 .	.t Ix//C
tZ
0

f .	.� Ix/; t � �/ d�

holds if u is the solution of (1.73) and

d

d�
	.� Ix/ D �a.	.� Ix/; t � �/; 	.0Ix/ D x:

1.4 Show that

u.x; t/ D
(
uleft x < at;

uright x � at;

is the entropy solution in the sense of Definition 1.10 for the equation ut C
aux D 0 (where a is constant) and ujtD0.x/ D uleft�x<0 C uright�x�0.

1.5 Find the shock condition (i.e., the Rankine–Hugoniot condition) for one-
dimensional systems, i.e., the unknown u is a vector u D .u1; : : : ; un/ for
some n > 1, and also f .u/ D .f1.u/; : : : ; fn.u//.

1.6 Consider a scalar conservation law in two space dimensions,

ut C @f .u/

@x
C @g.u/

@y
D 0;

where the flux functions f and g are continuously differentiable. Now the
unknown u is a function of x, y, and t . Determine the Rankine–Hugoniot
condition across a jump discontinuity in u, assuming that u jumps across
a regular surface in .x; y; t/. Try to generalize your answer to a conservation
law in n space dimensions.

1.7 We shall consider a linearization of Burgers’s equation. Let

u0.x/ D

8̂̂
<
ˆ̂:
1 for x < �1;
�x for �1 � x � 1;

�1 for 1 < x:

(a) First determine the maximum time that the solution of the initial value
problem

ut C 1

2

�
u2
�
x

D 0; u.x; 0/ D u0.x/;

will remain continuous. Find the solution for t less than this time.
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(b) Then find the solution v of the linearized problem

vt C u0.x/vx D 0; v.x; 0/ D u0.x/:

Determine the solution also in the case v.x; 0/ D u0.˛x/, where ˛ is
nonnegative.

(c) Next, we shall determine a procedure for finding u by solving a sequence
of linearized equations. Fix n 2 N. For t in the interval .m=n; .mC1/=n�
and m � 0, let vn solve

.vn/t C vn .x;m=n/ .vn/x D 0;

and set vn.x; 0/ D u0.x/. Then show that

vn

	
x;
m

n



D u0 .˛m;nx/

and find a recurrence relation (in m) satisfied by ˛m;n.
(d) Assume that

lim
n!1˛m;n D N̨ .t/;

for some continuously differentiable N̨.t/, where t D m=n < 1. Show
that N̨ .t/ D 1=.1 � t/, and thus vn.x/ ! u.x/ for t < 1. What happens
for t � 1?

1.8 (a) Solve the initial value problem for Burgers’s equation

ut C 1

2

�
u2
�
x

D 0; u.x; 0/ D
(
0 for x < 0;

1 for x � 0:
(1.74)

(b) Then find the solution where the initial data are

u.x; 0/ D
(
1 for x < 0;

0 for x � 0:

(c) If we multiply Burgers’s equation by u, we formally find that u satisfies

1

2

�
u2
�
t
C 1

3

�
u3
�
x

D 0; u.x; 0/ D u0.x/: (1.75)

Are the solutions to (1.74) you found in parts a and b weak solutions
to (1.75)? If not, then find the corresponding weak solutions to (1.75).
Warning: This shows that manipulations valid for smooth solutions are
not necessarily so for weak solutions.
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1.9 ([169, p. 250]) Show that

u.x; t/ D

8̂̂̂
<̂
ˆ̂̂̂:

1 for x � .1 � ˛/t=2;
�˛ for .1 � ˛/t=2 < x � 0;

˛ for 0 < x � .˛ � 1/t=2;
�1 for x � .˛ � 1/t=2

is a weak solution of

ut C
�
1

2
u2
�
x

D 0; u.x; 0/ D
(
1 for x � 0;

�1 for x > 0;

for all ˛ � 1. Warning: Thus we see that weak solutions are not necessarily
unique.

1.10 We outline a proof of some Gronwall inequalities.

(a) Assume that u satisfies

u0.t/ � �u.t/:

Show that u.t/ � e�tu.0/.
(b) Assume now that u satisfies

u0.t/ � C.1C u.t//:

Show that u.t/ � eCt .1C u.0//� 1.
(c) Assume that u satisfies

u0.t/ � c.t/u.t/ C d.t/;

for 0 � t � T , where c.t/ and d.t/ are in L1.Œ0; T �/. Show that

u.t/ � u.0/C
tZ

0

d.s/ exp
� tZ
s

c.Qs/ d Qs�ds
for t � T .

(d) Assume that u is in L1.Œ0; T �/ and that for t 2 Œ0; T �,

u.t/ � C1

tZ
0

u.s/ ds C C2:

Show that

u.t/ � C2e
C1t :
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1.11 Consider the semidiscrete difference scheme (1.37). The goal of this exercise
is to prove that a unique solution exists for all t > 0.

(a) Let 
.u/ be a smooth function. Show that

D�
.uj / D 
0.uj /D�uj � �x

2

00.uj�1=2/

�
D�uj

�2
;

where uj�1=2 is some value between uj and uj�1.
(b) Assume now that 
00 � 0. Show that

d

dt

X
j


.uj / � sup
j

ˇ̌
DCaj

ˇ̌X
j


.uj /:

Note that in particular, this holds for 
.u/ D u2.
(c) Show that for fixed �x, and u 2 l2, the function F W l2 ! l2 defined by

Fj .u/ D aD�uj is Lipschitz continuous.
If we view u.t/j D uj .t/, then the difference scheme (1.37) reads u0 D
�F.u/. Since we know that the solution is bounded in l2, we cannot have
a blowup, and the solution exists for all time.

1.12 Consider the fully discrete scheme (1.48). Show that

X
j


.unC1
j / �

X
j


.unj /C�t
X
j


.unj /DCanj :

Use this to show that

�x
X
j


.unj / � eCtn k
.u0/kL1.R/ ;

where C is a bound on ax .
1.13 The linear variational wave equation reads

˛tt C c.x/ .c.x/˛x/x D 0; t > 0; x 2 R;

˛.x; 0/ D ˛0.x/; ˛t .x; 0/ D ˇ0.x/;
(1.76)

where c is a positive Lipschitz continuous function, and ˛0 and ˇ0 are suitable
initial data.

(a) Set u D ˛t C c˛x and v D ˛t � c˛x . Find the equations satisfied by u
and v.

(b) Find the solutions of these equations in terms of the characteristics.
(c) Formulate a difference scheme to approximate u.x; t/ and v.x; t/, and

give suitable conditions on your scheme and the initial data (here you
have a large choice) that guarantee the convergence of the scheme.

(d) Test your scheme with c.x/ D
p
1C sin2.x/, ˛0.x/ D max f0; 1 � jxjg,

ˇ0 D 0, and periodic boundary conditions in Œ��; ��.
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1.14 Consider the transport equation

ut C a.x; t/ux D 0; t > 0; x 2 R;

u.x; 0/ D u0.x/:

We know that the (unique) solution can be written in terms of the backward
characteristics, u.x; t/ D u0.	.t Ix//, where 	 solves

d

d�
	.� Ix/ D �a.	.� Ix/; t � �/; 	.0Ix/ D x:

We want to use this numerically. Write a routine that given t , u0, and a, cal-
culates an approximation to u.x; t/ using a numerical method to find 	.t Ix/.
Test the routine for the initial function u0.x/ D sin.x/, and for a given by
(1.35) and (1.36), as well as for the example a.x; t/ D x2 sin.t/.



Chapter 2

Scalar Conservation Laws

It is a capital mistake to theorise before one has data.
Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts.
— Sherlock Holmes, A Scandal in Bohemia (1891)

In this chapter we consider the Cauchy problem for a scalar conservation law. Our
goal is to show that subject to certain conditions, there exists a unique solution to the
general initial value problem. Our method will be completely constructive, and we
shall exhibit a procedure by which this solution can be constructed. This procedure
is, of course, front tracking. The basic ingredient in the front-tracking algorithm is
the solution of the Riemann problem.

Already in the example on traffic flow, we observed that conservation laws may
have several weak solutions, and that some principle is needed to pick out the cor-
rect ones. The problem of lack of uniqueness for weak solutions is intrinsic in the
theory of conservation laws. There are by now several different approaches to this
problem, and they are commonly referred to as “entropy conditions.”

Thus the solution of Riemann problems requires some mechanism to choose one
of possibly several weak solutions. Therefore, before we turn to front tracking, we
will discuss entropy conditions.

2.1 Entropy Conditions

We study the conservation law1

ut C f .u/x D 0; (2.1)

whose solutions u D u.x; t/ are to be understood in the distributional sense; see
(1.19). We will not state any continuity properties of f , but tacitly assume that f is
sufficiently smooth for all subsequent formulas to make sense.

One of the most common entropy conditions is so-called viscous regularization,
where the scalar conservation law utCf .u/x D 0 is replaced by utCf .u/x D �uxx
with � positive. The idea is that the physical problem has some diffusion, and that
the conservation law represents a limit model when the diffusion is small. Based

1 The analysis up to and including (2.7) could have been carried out for systems on the line as well.
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H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws,
Applied Mathematical Sciences, DOI 10.1007/978-3-662-47507-2_2



54 2 Scalar Conservation Laws

on this, one is looking for solutions of the conservation law that are limits of the
regularized equation when � ! 0.

Therefore, we are interested in the viscous regularization of the conservation law
(2.1),

u"t C f .u"/x D "u"xx; (2.2)

as " ! 0. In order for this equation to be well posed, " must be nonnegative.
Equations such as (2.2) are called viscous, because the right-hand side u"xx models
the effect of viscosity or diffusion. We then demand that the distributional solutions
of (2.1) be limits of solutions of the more fundamental equation (2.2) as the viscous
term disappears.

This has some interesting consequences. Assume that (2.1) has a solution con-
sisting of constant states on each side of a discontinuity moving with a speed s,
i.e.,

u.x; t/ D
(
ul for x < st ,

ur for x � st .
(2.3)

We say that u.x; t/ satisfies a traveling wave entropy condition if u.x; t/ is the
pointwise limit almost everywhere of some u".x; t/ D U..x � st/="/ as " ! 0,
where u" solves (2.2) in the classical sense.

Inserting U..x � st/="/ into (2.2), we obtain

�s PU C df .U /

d�
D RU : (2.4)

Here U D U.�/, � D .x � st/=", and PU denotes the derivative of U with respect
to � . This equation can be integrated once, yielding

PU D �sU C f .U /C A; (2.5)

where A is a constant of integration. We see that as " ! 0, � tends to plus or minus
infinity, depending on whether x � st is positive or negative.

If u should be the limit of u", we must have that

lim
"!0

u" D lim
"!0

U.�/ D
(
ul for x < st ,

ur for x > st ,

)
D
(
lim�!�1 U.�/;

lim�!C1 U.�/:

From the differential equation (2.5) we see that lim�!˙1 PU .�/ exists and equals
�sul;rCf .ul;r /CA. We get a contradiction unless this limit vanishes, and therefore,

lim
�!˙1

PU .�/ D 0:

Inserting this into (2.5), we obtain (recall that fr D f .ur/, etc.)

A D sul � fl D sur � fr ; (2.6)
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which again gives us the Rankine–Hugoniot condition

s .ur � ul/ D fr � fl :
Summing up, the traveling wave U must satisfy the following boundary value prob-
lem:

PU D �s .U � ul /C .f .U / � fl / ; U.˙1/ D
(
ur ;

ul :
(2.7)

Using the Rankine–Hugoniot condition, we see that both ul and ur are fixed points
for this equation. What we want is an orbit of (2.7) going from ul to ur . If the triplet
.s; ul ; ur / has such an orbit, we say that the discontinuous solution (2.3) satisfies
a traveling wave entropy condition, or that the discontinuity has a viscous profile.
(For the analysis so far in this section we were not restricted to the scalar case, and
could as well have worked with the case of systems in which u is a vector inRn and
f .u/ is some function Rn ! Rn.)

From now on we say that an isolated discontinuity satisfies the traveling wave
entropy condition if (2.7) holds locally across the discontinuity.

Let us examine this in more detail. First we assume that ul < ur . Observe thatPU can never be zero. Assuming otherwise, namely that PU.�0/ D 0 for some �0,
would result in the constant U.�0/ being the unique solution, which contradicts that
U.�1/ D ul < ur D U.1/. Thus PU.�/ > 0 for all � , and hence

fl C s .u � ul/ < f .u/; (2.8)

for all u 2 .ul ; ur /. Recall that according to the Rankine–Hugoniot conditions,
s D .fl � fr/ =.ul � ur/, which means that the graph of f .u/ has to lie above the
straight line segment joining the points .ul ; fl / and .ur ; fr /. On the other hand, if
the graph of f .u/ is above the straight line, then (2.8) is satisfied, and we can find
a solution of (2.7). Similarly, if ul > ur , PU must be negative in the whole interval
.ur ; ul /. Consequently, the graph of f .u/ must be below the straight line.

By combining the two cases we conclude that the viscous profile or traveling
wave entropy condition is equivalent to

s jk � ul j < sign .k � ul/ .f .k/ � f .ul// ; (2.9)

for all k strictly between ul and ur when the Rankine–Hugoniot condition s �u� D
�f � holds. Note that an identical inequality holds with ul replaced by ur . This is
equivalent to the Oleı̆nik entropy condition

f .k/ � fr
k � ur < s <

f .k/ � fl
k � ul ; (2.10)

to be valid for all k strictly between ul and ur .
Furthermore, we claim that the traveling wave entropy condition is equivalent to

the condition that

s � ju � kj � � � sign .u � k/ .f .u/ � f .k// � (2.11)
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(recall that �a� D ar � al for every quantity a) is satisfied for all k. To show this,
we first assume that (2.11) holds. Consider first the case ul < ur , and choose k to
be between ul and ur . We obtain from (2.11) that

s ..ur � k/C .ul � k// � .fr � f .k//C .fl � f .k// ;
or

f .k/ � Nf � s. Nu � k/: (2.12)

Here, Nf denotes .fl C fr /=2, and similarly, Nu D .ul C ur/=2. The right-hand
side is a straight line connecting .ul ; fl / and .ur ; fr / (here we have to use the
Rankine–Hugoniot condition). Thus, the graph of f .u/ must lie above the straight
line segment between .ul ; fl / and .ur ; fr /. Similarly, if ur < ul , we find that the
graph has to lie below the line segment. Hence (2.11) implies (2.9).

Assume next that (2.9) holds across an isolated discontinuity, with limits ul and
ur that are such that the Rankine–Hugoniot equality holds. Then

s � ju � kj � D � sign .u � k/ .f .u/ � f .k// � (2.13)

for every constant k not between ul and ur . For constants k between ul and ur , we
have seen that if f .k/ � Nf � s. Nu� k/ for ul < ur , i.e., the viscous profile entropy
condition holds, then

s � ju � kj � � � sign .u � k/ .f .u/ � f .k// � : (2.14)

In the same way one can show that (2.14) holds whenever ul > ur . Thus we con-
clude that (2.11) will be satisfied.

The inequality (2.9) motivates another entropy condition, the Kružkov entropy
condition. This condition is often more convenient to work with, since it combines
the definition of a weak solution with that of the entropy condition.

Choose a smooth convex function 
 D 
.u/ and a nonnegative test function �
in C1

0 .R � .0;1//. (Such a test function will be supported away from the x-axis,
and thus we get no contribution from the initial data.) Then we obtain

0 D
“ �

u"t C f .u"/x � �u"xx
�

0.u"/� dx dt

D
“


.u"/t � dx dt C
“

q0.u"/u"x� dx dt

� "
“ �


.u"/xx � 
00.u"/.u"x/
2
�
� dx dt

D �
“


.u"/�t dx dt �
“

q.u"/�x dx dt

� "
“


.u"/�xx dx dt C "

“

00.u"/.u"x/

2� dx dt

� �
“ �


.u"/�t C q.u"/�x C "
.u"/�xx
�
dx dt; (2.15)
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where we first introduced q such that

q0.u/ D f 0.u/
0.u/ (2.16)

and subsequently used the convexity of 
, i.e., 
00 � 0, to remove the term
"
’

00.u"/.u"x/2� dx dt . This term is problematic, since .u"x/

2 in general will
not be integrable in the limit as " ! 0. If this is to hold as " ! 0, we need“ �


.u/�t C q.u/�x
�
dx dt � 0; (2.17)

and we say that the Kružkov entropy condition holds if (2.17) is valid for all convex
functions 
 and all nonnegative test functions �. However, we will soon see that we
can simplify this further.

Consider now the case with


.u/ D �
.u � k/2 C ı2

�1=2
; ı > 0;

for some constant k. By taking ı ! 0 we can extend the analysis to the case


.u/ D ju � kj : (2.18)

In this case, we find that

q.u/ D sign .u � k/ .f .u/ � f .k// :

Remark 2.1 Consider a fixed bounded weak solution u and a nonnegative test func-
tion �, and define the linear functional

�.
/ D
“ �


.u/�t C q.u/�x
�
dx dt: (2.19)

(The function q depends linearly on 
; cf. (2.16).) Assume that the Kružkov entropy
condition holds, that is, �.
/ � 0 with 
 convex. Introduce


i .u/ D ˛i ju � ki j ; ki 2 R; ˛i � 0:

Clearly,

�
	X

i


i



� 0:

Since u is a weak solution, we have

�.˛uC ˇ/ D 0; ˛; ˇ 2 R;

and hence the convex piecewise linear function


.u/ D ˛uC ˇ C
X
i


i .u/ (2.20)

satisfies �.
/ � 0. On the other hand, any convex piecewise linear function 
 can
be written in the form (2.20). This can be proved by induction on the number of
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breakpoints for 
, where by breakpoints we mean those points where 
0 is discon-
tinuous. The induction step goes as follows. Consider a breakpoint for 
, which we
without loss of generality can assume is at the origin. Near the origin we may write

 as


.u/ D
(
�1u for u � 0;

�2u for u > 0;

for juj small. Since 
 is convex, �1 < �2. Then the function

Q
.u/ D 
.u/� 1

2
.�2 � �1/ juj � 1

2
.�1 C �2/u (2.21)

is a convex piecewise linear function with one breakpoint fewer than 
 for which
one can use the induction hypothesis. Hence we infer that �.
/ � 0 for all convex,
piecewise linear functions 
. Consider now any convex function 
. By sampling
points, we can approximate 
 with convex, piecewise linear functions 
j such that

j ! 
 in L1. Thus we find that

�.
/ � 0:

We conclude that if �.
/ � 0 for the Kružkov function 
.u/ D ju � kj for all
k 2 R, then this inequality holds for all convex functions.

We say that a function is a Kružkov entropy solution to (2.1) if the inequality

“
.ju � kj�t C sign .u � k/ .f .u/ � f .k// �x/ dx dt � 0 (2.22)

holds for all constants k 2 R and all nonnegative test functions � inC1
0 .R � .0;1//.

If we instead consider solutions on a time interval Œ0; T �, and thus use nonneg-
ative test functions � 2 C1

0 .R � Œ0; T �/, we find that the appropriate definition is
that u is a Kružkov entropy solution on R � Œ0; T � if

TZ
0

Z
Œ ju � kj �t C sign .u � k/ .f .u/ � f .k// �x � dx dt

�
Z

ju.x; T / � kj�.x; T / dx C
Z

ju0.x/� kj�.x; 0/ dx � 0

(2.23)

holds for all k 2 R and for all nonnegative test functions � in C1
0 .R � Œ0; T �/.

Next, let us analyze the consequences of definition (2.22). If we assume that u is
bounded, and set k � �kuk1, (2.22) gives

0 �
“

..u � k/�t C .f .u/ � f .k// �x/ dx dt D
“

.u�t C f .u/�x/ dx dt:
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Similarly, setting k � kuk1 gives

0 �
“

.u�t C f .u/�x/ dx dt:

These two inequalities now imply that“
.u�t C f .u/�x/ dx dt D 0 (2.24)

for all nonnegative �. By considering test functions � in C1
0 .R � .0;1// of the

form �C � ��, with �˙ 2 C1
0 .R � .0;1// nonnegative, which are dense C1

0 ,
equation (2.24) implies the usual definition (1.19) of a weak solution. Thus, we
find that a Kružkov entropy solution is also a weak solution. In particular, jump
discontinuities satisfy the Rankine–Hugoniot condition.

We will now study the relationship between the Kružkov entropy condition and
the traveling wave condition. First assume that u is a classical solution away from
isolated jump discontinuities along piecewise smooth curves, and that it satisfies the
Kružkov entropy condition (2.22). By applying to (2.22) the argument (cf. (1.21))
used to derive the Rankine–Hugoniot condition in a neighborhood of a jump discon-
tinuity, we obtain precisely the inequality (2.11). Thus the traveling wave entropy
condition holds.

On the other hand, consider the situation in which we have a smooth solution
except for jump discontinuities on isolated curves where the traveling wave condi-
tion (2.11) holds. For smooth solutions we have directly that 
.u/t C q.u/x D 0.
For simplicity we assume that there is exactly one curve � where u has a jump
discontinuity. We write R � .0;1/ D D� [ � [DC, whereD˙ are on either side
of the curve � . Thus (cf. (1.20)–(1.22))

0 D
	“
D�

C
“
DC


�

.u/t C q.u/x

�
� dx dt

D
	“
D�

C
“
DC


�
.
.u/�/t C .q.u/�/x

�
dx dt

�
	“
D�

C
“
DC


�

.u/�t C q.u/�x

�
dx dt

D
	 Z
@D�

C
Z
@DC



�
�
q.u/; 
.u/

� � n ds �
“ �


.u/�t C q.u/�x
�
dx dt

D
Z
�

�
� � �q� C s �
�

�
ds �

“ �

.u/�t C q.u/�x

�
dx dt

� �
“ �


.u/�t C q.u/�x
�
dx dt

using (2.11). Here � 2 C1
0 .R�.0;1// is the usual nonnegative test function. Thus

the Kružkov entropy condition is satisfied.
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Hence, for sufficiently regular solutions, these two entropy conditions are equiva-
lent. We shall later see that Kružkov’s entropy condition implies that for sufficiently
regular initial data, the solution indeed posseses the necessary regularity; conse-
quently, these two entropy conditions “pick” the same solutions. We will therefore
in the following use whichever entropy condition is more convenient to work with.

2.2 The Riemann Problem

With my two algorithms one can solve all problems—without error, if God will!
— Al-Khwarizmi (c. 780–c. 850)

For conservation laws, the Riemann problem is the initial value problem

ut C f .u/x D 0; u.x; 0/ D
(
ul for x < 0,

ur for x � 0.
(2.25)

Assume temporarily that f 2 C2 with finitely many inflection points. We have
seen examples of Riemann problems and their solutions in the previous chapter, in
the context of traffic flow. Since both the equation and the initial data are invariant
under the transformation x 7! kx and t 7! kt , it is reasonable to look for solutions
of the form u D u.x; t/ D w.x=t/. We set z D x=t and insert this into (2.25) to
obtain

� x
t2
w0 C 1

t
f 0.w/w0 D 0; or z D f 0.w/: (2.26)

If f 0 is strictly monotone, we can simply invert this relation to obtain the solution
w D .f 0/�1.z/. In the general case we have to replace f 0 by a monotone function
on the interval between ul and ur . In the example of traffic flow, we saw that it was
important whether ul < ur or vice versa. Assume first that ul < ur . Now we claim
that the solution of (2.26) is given by

u.x; t/ D w.z/ D

8̂̂<
ˆ̂:
ul for x � f 0

^.ul/t ,�
f 0̂ ��1 .x=t/ for f 0̂ .ul/t � x � f 0̂ .ur/t ,
ur for x � f 0

^.ur/t ,

(2.27)

for ul < ur . Here f^ denotes the lower convex envelope of f in the interval Œul ; ur �,
and

�
.f^/

0��1, or, to be less pedantic, .f 0
^/

�1, denotes the inverse of its derivative.
The lower convex envelope is defined to be the largest convex function that is less
than or equal to f in the interval Œul ; ur �, i.e.,

f^.u/ D sup fg.u/ j g � f and g convex on Œul ; ur � g : (2.28)

To picture the envelope of f , we can imagine the graph of f cut out from a board
so that the lower boundary of the board has the shape of the graph. An elastic rubber
band stretched from .ul ; f .ul// to .ur ; f .ur// will then follow the graph of f^.



2.2 The Riemann Problem 61

u

f

ul

ur

u2

u3

Fig. 2.1 In a series of figures we will illustrate the solution of an explicit Riemann problem. We
start by giving the flux function f , two states ul and ur (with ul < ur ), and the convex envelope
of f relative to the interval Œul ; ur �

Note that f^ depends on the interval Œul ; ur �, and thus is a highly nonlocal function
of f .

Since f 00
^ � 0, we have that f 0

^ is nondecreasing, and hence we can form its
inverse, denoted by .f 0

^/
�1, permitting jump discontinuities where f 0

^ is constant.
Hence formula (2.27) at least makes sense. In Fig. 2.1 we see a flux function and
the envelope between two points ul and ur .

If f 2 C2 with finitely many inflection points, there will be a finite num-
ber of intervals with endpoints ul D u1 < u2 < � � � < un D ur such that
f^ D f on every other interval. That is, if f^.u/ D f .u/ for u 2 Œui ; uiC1�,
then f^.u/ < f .u/ for u 2 .uiC1; uiC2/ [ .ui�1; ui /. In this case the solution
u. � ; t/ consists of finitely many intervals where u is a regular solution given by
u.x; t/ D .f 0/�1.x=t/ separated by jump discontinuities at points x such that
x D f 0.uj /t D t.f .ujC1/� f .uj //=.ujC1 � uj / D f 0.ujC1/t that clearly satisfy
the Rankine–Hugoniot relation. Furthermore, we see that the traveling wave en-
tropy condition (2.9) is satisfied as the graph of f is above the segment connecting
the left and right states. In Fig. 2.1 we have three intervals, where f^ < f on the
middle interval.

To show that (2.27) defines a Kružkov entropy solution, we shall need some
notation. For i D 1; : : : ; n set �i D f 0̂ .ui / and define �0 D �1, �nC1 D 1. By
discarding identical �i ’s and relabeling if necessary, we can and will assume that
�0 < �1 < � � � < �nC1. Then for i D 2; : : : ; n define (see Fig. 2.2)

vi .x; t/ D �
f 0
^

��1 	x
t



; �i�1 � x

t
� �i

and set v1.x; t/ D ul for x � �1t and vnC1.x; t/ D ur for x � �nt . Let ˝i denote
the set

˝i D f.x; t/ j 0 � t � T; �i�1t < x < �i t g
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Fig. 2.2 The function f 0̂ (a) and its inverse (b)

for i D 1; : : : ; nC 1. Using this notation, u defined by (2.27) can be written

u.x; t/ D
nC1X
iD1

�˝i .x; t/vi .x; t/; (2.29)

where �˝i denotes the characteristic function of the set ˝i . For i D 1; : : : ; n we
then define

ui D lim
x!�i t�

u.x; t/ and Nui D lim
x!�i tC

u.x; t/:

The values ui and Nui are the left and right limits of the discontinuities of u.
With this notation at hand, we show that u defined by (2.29) is a Kružkov entropy

solution of the initial value problem (2.25) in the sense of (2.23). Observe that each
shock by construction satisfies the traveling wave entropy condition as given by
(2.8). Note that u is continuously differentiable in each ˝i . First we use Green’s
theorem (similarly as in proving the Rankine–Hugoniot relation (1.21)) on each˝i

to show that
TZ
0

Z �

't C q'x

�
dx dt D

nC1X
iD1

“
˝i

�

i't C qi'x

�
dx dt

D
nC1X
iD1

“
˝i

�
.
i'/t C .qi'/x

�
dx dt

D
nC1X
iD1

Z
@˝i

' .�
i dx C qi dt/

D
Z �


.x; T /'.x; T / � 
.x; 0/'.x; 0/�dx
C

nX
iD1

TZ
0

' .�i t; t/
h
�i
� N
i � 


i

� � � Nqi � q
i

�i
dt:
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Here


 D 
.u; k/ D ju � kj ;

i D 
.vi .x; t/; k/; N
i D 
. Nvi ; k/; 


i
D 
.vi ; k/;

q D q.u; k/ D sign .u � k/ .f .u/ � f .k//;
qi D q.vi .x; t/; k/; Nqi D q. Nvi ; k/; and q

i
D q.vi ; k/:

By construction, the traveling wave entropy condition (2.9) is satisfied. We have
shown in Sect. 2.1 that this implies that (2.11) holds. Thus

�i
� N
i � 


i

� � � Nqi � q
i

� � 0;

for all constants k. Hence

TZ
0

Z �

't C q'x

�
dx dt C

Z �

.x; 0/'.x; 0/� 
.x; T /'.x; T /� dx � 0; (2.30)

i.e., u satisfies (2.23). Now we have found a Kružkov entropy-satisfying solution to
the Riemann problem if ul < ur .

If ul > ur , we can transform the problem to the case discussed above by sending
x 7! �x. Then we obtain the Riemann problem

ut � f .u/x D 0; u.x; 0/ D
(
ur for x < 0,

ul for x � 0.

In order to solve this, we have to take the lower convex envelope of �f from ur to
ul . But this envelope is exactly the negative of the upper concave envelope from ul
to ur . The upper concave envelope is defined to be

f_.u/ D inf
n
g.u/

ˇ̌̌
g � f and g concave on Œur ; ul �

o
: (2.31)

In this case the weak solution is given by

u.x; t/ D w.z/ D

8̂̂<
ˆ̂:
ul for x � f 0

_.ul/t ,�
f 0
_

��1
.z/ for f 0

_.ul/t � x � f 0
_.ur/t ,

ur for x � f 0
_.ur/t ,

(2.32)

for ul > ur , where z D x=t .
This construction of the solution is valid as long as the envelope consists of

a finite number of intervals where f^;_ ¤ f , alternating with intervals where the
envelope and the function coincide. We will later extend the solution to the case in
which f is a piecewise, twice continuously differentiable function.

We have now proved a theorem about the solution of the Riemann problem for
scalar conservation laws.
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Theorem 2.2 The initial value problem

ut C f .u/x D 0; u.x; 0/ D
(
ul for x < 0,

ur for x � 0,

with a flux function f .u/ such that f^;_ ¤ f on finitely many intervals, alternating
with intervals where they coincide, has a weak solution given by equation (2.27)
if ul < ur , or by (2.32) if ur < ul . This solution satisfies the Kružkov entropy
condition (2.23).

The solution u.x; t/ given by (2.27) and (2.32) consists of a finite number of
discontinuities separated by “wedges” (i.e., intervals .zi ; ziC1/) inside which u is
a classical solution. A discontinuity that satisfies the entropy condition is called
a shock wave or simply a shock, and the continuous parts of the solution of the
Riemann problem are called rarefaction waves. This terminology, as well as the
term “entropy condition,” comes from gas dynamics. Thus we may say that the
solution of a Riemann problem consists of a finite sequence of rarefaction waves
alternating with shocks.

} Example 2.3 (Traffic flow (cont’d.))
In the conservation law model of traffic flow, we saw in Example 1.6 that the flux
function was given as

f .u/ D u.1 � u/:
This is a concave function. Consequently, every upper envelope will be the function
f itself, whereas a lower envelope will be the straight line segment between its
endpoints. Every Riemann problem with ul > ur will be solved by a rarefaction
wave, and if ul < ur , the solution will consist of a single shock. This is, of course,
in accordance with our earlier results, and perhaps also with our experience. }

The solution of a Riemann problem is frequently depicted in .x; t/-space as
a collection of rays emanating from the origin. The slope of these rays is the recip-
rocal of f 0.u/ for rarefaction waves, and if the ray illustrates a shock, the reciprocal
of �f � = �u�. In Fig. 2.3 we illustrate the solution of the previous Riemann problem
in this way; broken lines indicate rarefaction waves, and the solid line the shock.
Note that Theorem 2.2 does not require the flux function f to be differentiable.
Assume now that the flux function is a polygon, i.e., that f is continuous and piece-
wise linear on a finite number of intervals. Thus f 0 will then be a step function
taking a finite number of values. The discontinuity points of f 0 will hereinafter be
referred to as breakpoints.

Making this approximation is reasonable in many applications, since the precise
form of the flux function is often the result of some measurements. These measure-
ments are taken for a discrete set of u values, and a piecewise linear flux function is
the result of a linear interpolation between these values.

Both upper concave and lower convex envelopes will also be piecewise linear
functions with a finite number of breakpoints. This means that f 0̂ and f 0

_ will
be step functions, as will their inverses. Furthermore, the inverses of the derivatives
will take their values among the breakpoints of f^ (or f_), and therefore also of f .
If the initial states in a Riemann problem are breakpoints, then the entire solution
will take values in the set of breakpoints.
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Fig. 2.3 The solution of a Riemann problem, shown in .x; t/-space

If we assume that ul < ur , and label the breakpoints ul D u0 < u1 < � � � <
un D ur , then f^ will have breakpoints in some subset of this, say ul < ui1 <

� � � < uik < ur . The solution will be a step function in z D x=t , monotonically
nondecreasing between ul and ur . The discontinuities will be located at zik , given
by

zik D f
�
uik�1

� � f �uik �
uik�1 � uik

:

Thus the following corollary of Theorem 2.2 holds.

Corollary 2.4 Assume that f is a continuous piecewise linear function f W
Œ�K;K� ! R for some constant K. Denote the breakpoints of f by �K D
u0 < u1 < � � � < un�1 < un D K. Then the Riemann problem

ut C f .u/x D 0; u.x; 0/ D
(
uj for x < 0,

uk for x � 0,
(2.33)

has a piecewise constant (in z D x=t) solution. If uj < uk , let uj D v1 < � � � <
vm D uk denote the breakpoints of f^, and if uj > uk, let uk D vm < � � � < v1 D
uj denote the breakpoints of f_. The weak solution of the Riemann problem is then
given by

u.x; t/ D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

v1 for x � s1t ,

v2 for s1t < x � s2t ,
:::

vi for si�1t < x � si t ,
:::

vm for sm�1t < x.

(2.34)
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Here, the speeds si are computed from the derivative of the envelope, that is,

si D f .viC1/ � f .vi /
viC1 � vi :

For a fixed time t , the solution is monotone in the x variable. Furthermore,

ku. � ; t/ � u0kL1 � tkf kLip
ˇ̌
uj � uk

ˇ̌
: (2.35)

Proof It remains to prove (2.35). With the given notation,

ku. � ; t/� u0kL1 D
X
j

sj�0

.vjC1 � vj /.�sj /t C
X
j

sj >0

.vjC1 � vj /sj t

� max
j

ˇ̌
sj
ˇ̌ jvm � v1j t

� t kf kLip
ˇ̌
uj � uk

ˇ̌
: �

Note that this solution is an admissible solution in the sense that it satisfies
the Kružkov entropy condition. The viscous profile entropy condition is somewhat
degenerate in this case. Across discontinuities over which f .u/ differs from the en-
velope, it is satisfied. But across those discontinuities over which the envelope and
the flux function coincide, the right-hand side of the defining ordinary differential
equation (2.7) collapses to zero. The conservation law is called linearly degenerate
in each such interval .vi ; viC1/. Nevertheless, these discontinuities are also limits
of the viscous regularization, as can be seen by changing to Lagrangian coordinates
x 7! x � si t ; see Exercise 2.4.

With this we conclude our discussion of the Riemann problem, and in the next
section we shall see how the solutions of Riemann problemsmay be used as a build-
ing block to solve more general initial value problems.

2.3 Front Tracking

This algorithm is admittedly complicated,
but no simpler mechanism seems to do nearly as much.
— D.E. Knuth, The TEXbook (1984)

We begin this section with an example that illustrates the ideas of front tracking for
scalar conservation laws, as well as some of the properties of solutions.

} Example 2.5
In this example we shall study a piecewise linear approximation of Burgers’s equa-
tion, ut C .u2=2/x D 0. This means that we study a conservation law with a flux
function that is piecewise linear and agrees with u2=2 at its breakpoints. To be spe-
cific, we choose intervals of unit length. We shall be interested in the flux function
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only in the interval Œ�1; 2�, where we define it to be

f .u/ D

8̂̂<
ˆ̂:

�u=2 for u 2 Œ�1; 0�;
u=2 for u 2 Œ0; 1�;
3u=2� 1 for u 2 Œ1; 2�:

(2.36)

This flux function has two breakpoints, and is convex.
We wish to solve the initial value problem

ut C f .u/x D 0; u0.x/ D

8̂̂<
ˆ̂:
2 for x � x1;

�1 for x1 < x � x2,

1 for x2 < x,

(2.37)

with f given by (2.36). Initially, the solution must consist of the solutions of the
two Riemann problems located at x1 and x2. This is so, since the waves from these
solutions move with a finite speed and will not interact until some positive time.

This feature, sometimes called finite speed of propagation, characterizes hyper-
bolic, as opposed to elliptic or parabolic, partial differential equations. It implies
that if we change the initial condition locally around some point, it will not imme-
diately influence the solution “far away.” Recalling the almost universally accepted
assumption that nothing moves faster than the speed of light, one can say that hy-
perbolic equations are more fundamental than the other types of partial differential
equations.

Returning to our example, we must then solve the two initial Riemann problems.
We commence with the one at x1. Since f is convex, and ul D 2 > �1 D ur ,
the solution will consist of a single shock wave with speed s1 D 1

2
given from the

Rankine–Hugoniot condition of this Riemann problem. For small t and x near x1
the solution reads

u.x; t/ D
(
2 for x < s1t C x1,

�1 for x � s1t C x1.
(2.38)

The other Riemann problem has ul D �1 and ur D 1, so we must use the lower
convex envelope, which in this case coincides with the flux function f . The flux
function has two linear segments and one breakpoint u D 0 in the interval .�1; 1/.
Hence, the solution will consist of two discontinuities moving apart. The speeds
of the discontinuities are computed from f 0.u/, or equivalently from the Rankine–
Hugoniot condition, since f is linearly degenerate over each discontinuity. This
gives s2 D � 1

2
and s3 D 1

2
. The solution equals

u.x; t/ D

8̂̂<
ˆ̂:

�1 for x < s2t C x2,

0 for s2t C x2 � x < s3t C x2,

1 for s3t C x2 � x,

(2.39)

for small t and x near x2.
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It remains to connect the two solutions (2.38) and (2.39). This is easily done for
sufficiently small t :

u.x; t/ D

8̂̂̂
<̂
ˆ̂̂̂:

2 for x < x1 C s1t ,

�1 for x1 C s1t � x � x2 C s2t ,

0 for x2 C s2t � x < x2 C s3t ,

1 for x2 C s3t � x.

(2.40)

The problem now is that the shock wave located at x1.t/ D x1 C t=2 will collide
with the discontinuity x2.t/ D x2 � t=2. Then equation (2.40) is no longer valid,
since the middle interval has collapsed. This will happen at time t D t1 D .x2�x1/
and position x D x4 D .x1 C x2/=2.

To continue the solution, we must solve the interaction between the shock and
the discontinuity. Again, using finite speed of propagation, we have that the solution
away from .x4; t1/ will not be directly influenced by the behavior here. Consider
now the solution at time t1 and in a vicinity of x4. Here u takes two constant values,
2 for x < x4 and 0 for x > x4. Therefore, the interaction of the shock wave x1.t/
and the discontinuity x2.t/ is determined by solving the Riemann problem with
ul D 2 and ur D 0.

Again, this Riemann problem is solved by a single shock, since the flux function
is convex and ul > ur . The speed of this shock is s4 D 1. Thus, for t larger than
x2 �x1, the solution consists of a shock located at x4.t/ and a discontinuity located
at x3.t/. The locations are given by

x4.t/ D 1

2
.x1 C x2/C 1 .t � .x2 � x1// D t C 1

2
.3x1 � x2/ ;

x3.t/ D x2 C 1

2
t:

We can then write the solution u.x; t/ as

u.x; t/ D 2C �u .x4.t//�H .x � x4.t//C �u .x3.t//�H .x � x3.t// ; (2.41)

whereH is the Heaviside function.
Indeed, every function u.x; t/ that is piecewise constant in x with discontinuities

located at xj .t/ can be written in the form

u.x; t/ D ul C
X
j

�
u
�
xj .t/

��
H
�
x � xj .t/

�
; (2.42)

where ul now denotes the value of u to the left of the leftmost discontinuity.
Since the speed of x4.t/ is greater than the speed of x3.t/, these two discon-

tinuities will collide. This will happen at t D t2 D 3 .x2 � x1/ and x D x5 D
.5x2 � 3x1/=2. In order to resolve the interaction of these two discontinuities, we
have to solve the Riemann problem with ul D 2 and ur D 1.

In the interval Œ1; 2�, f .u/ is linear, and hence the solution of the Riemann prob-
lem will consist of a single discontinuity moving with speed s5 D 3

2
. Therefore, for
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t
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x1(t)
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x4(t)

x3(t)
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u = 2

=

u= 1

1−

Fig. 2.4 The solution of (2.37) with the piecewise linear continuous flux function (2.36)

t > t2 the solution is defined as

u.x; t/ D
(
2 for x < 3t=2C 3x1 � 2x2,
1 for x � 3t=2C 3x1 � 2x2.

(2.43)

Since the solution now consists of a single moving discontinuity, there will be no
further interactions, and we have found the solution for all positive t . Figure 2.4
depicts this solution in the .x; t/-plane; the discontinuities are shown as solid lines.
We call the method that we have used to obtain the solution front tracking. Front
tracking consists in tracking all discontinuities in the solution, whether they rep-
resent shocks or not. Hereinafter, if the flux function is continuous and piecewise
linear, all discontinuities in the solution will be referred to as fronts.

Notice that if the flux function is continuous and piecewise linear, the Rankine–
Hugoniot condition can be used to calculate the speed of any front. So from a com-
putational point of view, all discontinuities are equivalent. }

With this example in mind we can define a general front-tracking algorithm for
scalar conservation laws. Loosely speaking, front tracking consists in making a step-
function approximation to the initial data, and a piecewise linear approximation to
the flux function. The approximate initial function will define a series of Riemann
problems, one at each step. One can solve each Riemann problem, and since the
solutions have finite speed of propagation, they will be independent of each other
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until waves from neighboring solutions interact. Front tracking should then resolve
this interaction in order to propagate the solution to larger times.

By considering flux functions that are continuous and piecewise linear, we are
providing a method for resolving interactions.

Front tracking in a box (scalar case)
(i) We are given a scalar one-dimensional conservation law

ut C f .u/x D 0; ujtD0 D u0: (2.44)

(ii) Approximate f by a continuous piecewise linear flux function f ı .
(iii) Approximate initial data u0 by a piecewise constant function u



0.

(iv) Solve the initial value problem

ut C f ı.u/x D 0; ujtD0 D u


0

exactly. Denote the solution by uı;
.
(v) As f ı and u
0 approach f and u0, respectively, the approximate solution

uı;
 will converge to u, the solution of (2.44).

We have seen that the solution of a Riemann problem always is a monotone
function taking values between ul and ur . Another way of stating this is to say that
the solution of a Riemann problem obeys a maximum principle. This means that if
we solve a collection of Riemann problems, the solutions (all of them) will remain
between the minimum and the maximum of the left and right states.

Therefore, fix a large positive numberM and let ui D iı, for �M � iı � M .
In this section we shall assume, unless otherwise stated, that the flux function f .u/
is continuous and piecewise linear, with breakpoints ui .

We assume that u0 is some piecewise constant function taking values in the set
fuig with a finite number of discontinuities, and we wish to solve the initial value
problem

ut C f .u/x D 0; u.x; 0/ D u0.x/: (2.45)

As remarked above, the solution will initially consist of a number of noninteracting
solutions of Riemann problems. Each solution will be a piecewise constant function
with discontinuities traveling at constant speed. Hence, at some later time t1 > 0,
two discontinuities from neighboring Riemann problems will interact.

At t D t1 we can proceed by considering the initial value problem with solution
v.x; t/:

vt C f .v/x D 0; v .x; t1/ D u .x; t1/ :

Since the solutions of the initial Riemann problems will take values among the
breakpoints of f , i.e., fuig, the initial data u.x; t1/ is the same type of function as
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u0.x/. Consequently, we can proceed as we did initially, by solving the Riemann
problems at the discontinuities of u.x; t1/. However, except for the Riemann prob-
lem at the interaction point, these Riemann problems have all been solved initially,
and their solution merely consists in continuing the discontinuities at their present
speed. The Riemann problem at the interaction point has to be solved, giving a new
fan of discontinuities. In this fashion the solution can be calculated up to the next in-
teraction at t2, say. Note that what we calculate in this way is not an approximation
to the entropy weak solution of (2.45), but the exact solution.

It is clear that we can continue this process for any number of interactions oc-
curring at times tn, where 0 < t1 � t2 � t3 � � � � � tn � � � � . However, we
cannot a priori be sure that lim tn D 1, or in other words, that we can calculate
the solution up to any predetermined time. One might envisage that the number of
discontinuities grows for each interaction, and that this number increases without
bound at some finite time. The next lemma assures us that this does not happen.

Lemma 2.6 For each fixed ı, and for each piecewise constant function u0 taking
values in the set fuig, there is only a finite number of interactions between discon-
tinuities of the weak solution to (2.45) for t in the interval Œ0;1/.

Remark 2.7 In particular, this means that we can calculate the solution by front
tracking up to infinite time using only a finite number of operations. In connection
with front tracking used as a numerical method, this property is called hyperfast. In
the rest of this book we call a discontinuity in a front-tracking solution a front. Thus
a front can represent either a shock or a discontinuity over which the flux function
is linearly degenerate.

Proof (of Lemma 2.6) Let N.t/ denote the total number of fronts in the front-
tracking solution u.x; t/ at time t .

If a front represents a jump from ul to ur , we say that the front contains l linear
segments if the flux function has l � 1 breakpoints between ul and ur . We use the
notation �u� to denote the jump in u across a front. In this notation, l D j�u�j =ı.

Let L.t/ be the total number of linear segments present in all fronts of u.x; t/ at
time t . Thus, if we number the fronts from left to right, and the i th front contains li
linear segments, then

L.t/ D
X
i

li D 1

ı

X
i

ˇ̌
�u�i

ˇ̌
:

Let Q denote the number of linear segments in the piecewise linear flux function
f .u/ for u in the interval Œ�M;M�. Now we claim that the functional

T .t/ D QL.t/CN.t/

is strictly decreasing for each collision of fronts. Since T .t/ takes only integer val-
ues, this means that we can have at most T .0/ collisions.

It remains to prove that T .t/ is strictly decreasing for each collision. Assume that
a front separating values ul and um collides from the left with a front separating um
and ur . We will first show that T is decreasing if um is between ul and ur .
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Fig. 2.5 An interaction of fronts where ul < um < ur

We assume that ul < um < ur . If ur < um < ul , the situation is analogous,
and the statement can be proved with the same arguments. The situation is as de-
picted in Fig. 2.5. Since a single front connects ul with um, the graph of the flux
function cannot cross the straight line segment connecting the points .ul ; f .ul//
and .um; f .um//. The entropy condition also implies that the graph of the flux
function must be above this segment. The same holds for the front on the right sep-
arating um and ur . As the two fronts are colliding, the speed of the left front must
be larger than the speed of the right front. This means that the slope of the segment
from .ul ; f .ul// to .um; f .um// is greater than the slope of the segment from
.um; f .um// to .ur ; f .ur//. Therefore, the lower convex envelope from ul to ur
consists of the line from .ul ; f .ul// to .ur ; f .ur//. Accordingly, the solution of
the Riemann problem consists of a single front separating ul and ur . See Fig. 2.5.
Consequently,L does not change at the interaction, and N decreases by one. Thus,
when um is between ur and ul , T decreases.

It remains to show that T also decreases if um is not between ul and ur . We will
do this for the case um < ul < ur . The other cases are similar, and can be proved
by analogous arguments.

Since the Riemann problem with a left state ul and right state um is solved by
a single discontinuity, the graph of the flux function cannot lie above the straight line
segment connecting the points .ul ; f .ul // and .um; f .um//. Similarly, the graph
of the flux function must lie entirely above the straight line segment connecting
.um; f .um// and .ur ; f .ur//. Also, the slope of the latter segment must be smaller
than that of the former, since the fronts are colliding. This means that the Riemann
problem with left state ul and right state ur defined at the collision of the fronts will
have a solution consisting of fronts with speed smaller than or equal to the speed of
the right colliding front. See Fig. 2.6.

The maximal number of fronts resulting from the collision is jul � ur j =ı. This
is strictly less than Q. Hence N increases by at most Q � 1. At the same time,
L decreases by at least one. Consequently, T must decrease by at least one. This
concludes the proof of Lemma 2.6. �

As a corollary of Lemma 2.6, we infer that for a piecewise constant initial func-
tion with a finite number of discontinuities, and for a continuous and piecewise
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Fig. 2.6 An interaction of fronts where um < ul < ur

linear flux function with a finite number of breakpoints, the initial value problem
has a weak solution satisfying the Kružkov entropy condition (2.22), as well as the
viscous entropy condition for every discontinuity. Before we state the precise result,
it is convenient to introduce the notion of total variation. For a piecewise constant
function u D u.x/ with finitely many jumps, its total variation is the sum of the
absolute values of its jumps, that is,

T:V: .u/ D
X
i

ˇ̌
�u�i

ˇ̌
:

This notation can and will be generalized to arbitrary functions; see Appendix A. It
is not difficult to prove the following slight generalization of what we have already
shown:

Corollary 2.8 Let f .u/ be a continuous and piecewise linear function with a finite
number of breakpoints for u in the interval Œ�M;M�, where M is some constant.
Assume that u0 is a piecewise constant function with a finite number of discontinu-
ities, u0WR ! Œ�M;M�. Then the initial value problem

ut C f .u/x D 0; ujtD0 D u0; (2.46)

has a weak solution u D u.x; t/. The function u D u.x; t/ is a piecewise con-
stant function of x for each t , and u.x; t/ takes values in the finite set fu0.x/g [
fthe breakpoints of f g. Furthermore, there is only a finite number of interactions
between the fronts of u. The function u also satisfies the Kružkov entropy condition
(2.23). In addition,

T:V: .u. � ; t// � T:V: .u0/ : (2.47)

Finally, we have

ku. � ; t/ � u0kL1 � t kf kLipT:V: .u0/ ; (2.48)

and, more generally,

ku. � ; t/� u. � ; s/kL1 � kf kLipT:V: .u0/ jt � sj : (2.49)
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Proof For the proof that the solution satisfies the Kružkov entropy condition, see
Exercise 2.21. It remains to prove (2.47), (2.48), and (2.49). Regarding (2.47), recall
that at each time two or more fronts interact, the solution of the resulting Riemann
problem is always monotone, and hence no new extrema are introduced. Thus the
total variation cannot increase, which proves (2.47).

To prove (2.48), we observe that Corollary 2.4 yields (cf. (2.35)) that

ku. � ; t/� u0kL1 � t kf kLipT:V: .u0/
for all t < t1, the first collision time. We use the same argument for all t 2 .t1; t2/,
where t2 is the second collision time, to conclude that

ku. � ; t/� u0kL1 � ku. � ; t/ � u. � ; t1/kL1 C ku. � ; t1/� u0kL1
� .t � t1/kf kLipT:V: .u. � ; t1//C t1kf kLipT:V: .u0/
� t kf kLipT:V: .u0/ :

Repeating this argument for all collision times, we conclude that (2.48) holds. The
estimate (2.49) follows by considering the previous result with initial data u. � ; s/
when s < t . �

This is all well and good, but we could wish for more. For instance, is this so-
lution the only one? And piecewise linear flux functions and piecewise constant
initial functions seem more like an approximation than what we would expect to
see in “real life.” So what happens when the piecewise constant initial function and
the piecewise linear flux function converge to general initial data and flux functions,
respectively?

It turns out that these two questions are connected and can be answered by ele-
gant, but indirect, analysis starting from the Kružkov formulation (2.22).

2.4 Existence and Uniqueness

Det var en ustyrtelig mængde lag!
Kommer ikke kærnen snart for en dag?2

—Henrik Ibsen, Peer Gynt (1867)

By a clever choice of the test function �, we shall use the Kružkov formulation to
show stability with respect to the initial value function, and thereby uniqueness.

The approach used in this section is also very useful in estimating the error in
numerical methods. We shall return to this in a later chapter.

Let therefore u D u.x; t/ and v D v.x; t/ be two weak solutions to

ut C f .u/x D 0;

with initial data

ujtD0 D u0; vjtD0 D v0;

2 So many layers I’ve peeled and peeled! Will the kernel never be revealed?
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respectively, satisfying the Kružkov entropy condition. Equivalently,

“
.ju � kj�t C sign .u � k/ .f .u/ � f .k//�x/ dx dt

C
Z

ju0 � kj�jtD0 dx � 0 (2.50)

for every nonnegative test function � with compact support (and similarly for the
function v). Throughout the calculations we will assume that both u and v are
bounded and integrable, thus

u; v 2 L1 \ L1.R � .0;1//: (2.51)

We assume that f is Lipschitz continuous, that is, that there is a constant L such
that

kf kLip WD sup
u¤v

ˇ̌̌
ˇf .u/ � f .v/

u � v
ˇ̌̌
ˇ � L; (2.52)

and we denote by kf kLip the Lipschitz constant, or seminorm,3 of f .
If � is compactly supported in t > 0, then (2.50) reads

“
.ju � kj�t C sign .u � k/ .f .u/ � f .k//�x/ dx dt � 0: (2.53)

For simplicity we shall in this section use the notation

q.u; k/ D sign .u � k/ .f .u/ � f .k//:

For functions of two variables we define the Lipschitz constant by

kqkLip D sup
.u1;v1/¤.u2;v2/

jq.u1; v1/ � q.u2; v2/j
ju1 � u2j C jv1 � v2j :

Since qu.u; k/ D sign .u � k/ f 0.u/ and qk.u; k/ D �sign .u � k/ f 0.k/, it fol-
lows that if kf kLip � L, then also kqkLip � L.

Now we introduce the famous Kružkov doubling of variables method. To that
end, let � D �.x; t; y; s/ be a nonnegative test function in both .x; t/ and .y; s/
with compact support in t > 0 and s > 0. Using that both u and v satisfy (2.53),
we can set k D v.y; s/ in the equation for u, and set k D u.x; t/ in the equation for
v D v.y; s/. We integrate the equation for u.x; t/ with respect to y and s, and the
equation for v.y; s/ with respect to x and t , and add the two resulting equations.
We then obtainZZZZ � ju.x; t/ � v.y; s/j .�t C �s/C q.u; v/.�x C �y/

�
dx dt dy ds � 0:

(2.54)

3 kf kLip is not a norm; after all, constants k have kkkLip D 0.
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Now we temporarily leave the topic of conservation laws in order to establish some
facts about “approximate ı distributions,” or mollifiers. This is a sequence of smooth
functions!" such that the corresponding distributions tend to the ı0 distribution, i.e.,
!" ! ı0 as " ! 0. There are several ways of defining these distributions. Recall
the following (cf. (1.53)): Let !.�/ be a C1 function such that

0 � !.�/ � 1; supp! 	 Œ�1; 1�; !.��/ D !.�/;

1Z
�1
!.�/ d� D 1:

Now define

!".�/ D 1

"
!
	�
"



: (2.55)

It is not hard to verify that !" has the necessary properties such that as a distribution,
lim"!0 !" D ı0.

We will need the following result:

Lemma 2.9 Let F WR2 ! R be locally Lipschitz continuous and let � 2 C1
0 .R

2/.
Assume that u; v 2 L1 \ L1.R � .0;1//. ThenZZZZ

F.u.x; t/; v.y; s//�
	 1
2
.x C y/;

1

2
.t C s/



!".x � y/!"0.t � s/dxdt dyds

!
";"0#0

“
F.u.x; t/; v.x; t//�.x; t/ dx dt: (2.56)

Proof To ease the notation, we drop the time variation and want to show that“
F.u.x/; v.y//�

	1
2
.x C y/



!".x � y/ dx dy

!
"#0

Z
F.u.x/; v.x//�.x/ dx:

(2.57)

Observe first thatZ
F.u.x/; v.x//�.x/ dx D

“
F.u.x/; v.x//�.x/!".x � y/ dx dy:

Next we obtain“
F.u.x/; v.y//�

	1
2
.x C y/



!".x � y/ dx dy

�
“

F.u.x/; v.x//�.x/!".x � y/ dx dy

D
“ �

F.u.x/; v.y// � F.u.x/; v.x//��	1
2
.x C y/



!".x � y/ dx dy

C
“

F.u.x/; v.x//
	
�
�1
2
.x C y/

� � �.x/


!".x � y/ dx dy:
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We estimate the two terms separately. We obtainˇ̌̌
ˇ
“ �

F.u.x/; v.y// � F.u.x/; v.x//��	1
2
.x C y/



!".x � y/ dx dy

ˇ̌̌
ˇ

� k�kL1 C

“
jv.x/ � v.y/j!".x � y/ dx dy

� k�kL1 C

“
jv.y C z/� v.y/j!".z/ dz dy

� k�kL1 C sup
jzj�"

kv. � C z/� vkL1
Z
!".z/ dz

D k�kL1 C sup
jzj�"

kv. � C z/ � vkL1 ;

using that u is bounded and the Lipschitz continuity of F . Since the L1-norm is
continuous with respect to translations (see Exercise 2.20), we conclude that this
term vanishes as " # 0. As for the second term, we use a similar approach:ˇ̌̌

ˇ
“

F.u.x/; v.x//
	
�
�1
2
.x C y/

� � �.x/


!".x � y/ dxdy

ˇ̌̌
ˇ

� kF.u; v/kL1

“ ˇ̌̌
ˇ�	12z C y



� �.z C y/

ˇ̌̌
ˇ!".z/dzdy

� kF.u; v/kL1 sup
jzj�"

�����	 � C1

2
z



� �
����
L1

Z
!".z/dz

D kF.u; v/kL1 sup
jzj�"

�����	 � C1

2
z



� �
����
L1
;

which again vanishes as " # 0. �

Returning now to conservation laws and (2.54), we must make a smart choice of
a test function �.x; t; y; s/. Let  .x; t/ be a test function that has support in t > 0,
and define

�.x; t; y; s/ D  

�
x C y

2
;
t C s

2

�
!"0.t � s/!".x � y/;

where "0 and " are (small) positive numbers. In this case,4

�t C �s D @ 

@t

�
x C y

2
;
t C s

2

�
!"0.t � s/!".x � y/

and5

�x C �y D @ 

@x

�
x C y

2
;
t C s

2

�
!"0.t � s/!".x � y/:

4 Beware! Here @ 

@t

�
xCy
2
; tCs

2

�
means the partial derivative of with respect to the second variable,

and this derivative is evaluated at
�
xCy
2
; tCs

2

�
.

5 As in the previous equation, @ 
@x

�
xCy
2
; tCs

2

�
means the partial derivative of  with respect to the

first variable, and this derivative is evaluated at
�
xCy
2
; tCs

2

�
.
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Observe that the derivatives of !"0 and !", the approximate ı distributions, cancel.
Now apply Lemma 2.9 to F.u; v/ D ju � vj, � D @ =@t , and F.u; v/ D q.u; v/,
� D @ =@x, respectively. Then, as "0 and " tend to zero, (2.54) and Lemma 2.9
give “

.ju.x; t/ � v.x; t/j t C q.u; v/ x/ dt dx � 0 (2.58)

for any two weak solutions u and v and any nonnegative test function  with sup-
port in t > �.

If we considered (2.23) in the strip t 2 Œ0; T � and test functions whose support
included 0 and T , the Kružkov formulation would implyZZZZ �ju.x; t/ � v.y; s/j .�t C �s/C q.u; v/

�
�x C �y

��
dx dt dy ds

�
•

ju.x; T / � v.y; s/j �.x; T; y; s/ dx dy ds

�
•

ju.x; t/ � v.y; T /j�.x; t; y; T / dx dy dt

C
•

ju0.x/ � v.y; s/j �.x; 0; y; s/ dx dy ds

C
•

ju.x; t/ � v0.y/j�.x; t; y; 0/ dx dy dt � 0:

(2.59)

We can make the same choice of test function as before. Since we are integrating
over only half the support of the test functions, we get a factor 1

2
in front of each of

the boundary terms for t D 0 and t D T . Thus we end up with

“
.ju.x; t/ � v.x; t/j t C q.u; v/ x/ dt dx

�
Z

ju.x; T /� v.x; T /j .x; T / dx C
Z

ju0.x/� v0.x/j .x; 0/ dx � 0:

(2.60)

In order to exploit (2.60), we define  as

 .x; t/ D �
�Œ�MCLtC";M�Lt�"� � !"

�
.x/; (2.61)

for t 2 Œ0; T �. Here L denotes the Lipschitz constant of f , �Œa;b� the characteristic
function of the interval Œa; b�, and � the convolution product. We make the constant
M so large thatM � Lt � " > �M C Lt C 3" for t < T . In order to make  an
admissible test function, we modify it to go smoothly to zero for t > T .

We can compute for t < T ,

 t D d

dt

M�Lt�"Z
�MCLtC"

!".x � y/ dy (2.62)

D �L .!" .x �M C Lt C "/C !" .x CM � Lt � "// � 0
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and

 x D � .!" .x �M C Lt C "/� !" .x CM � Lt � "// : (2.63)

With our choice of M , the two functions on the right-hand side of (2.63) have
nonoverlapping support. Therefore,

0 D  t C L j xj �  t C q.u; v/

ju � vj x;

and hence6

ju � vj t C q.u; v/ x � 0:

Using this in (2.60) and letting " go to zero, we find that

M�LtZ
�MCLt

ju.x; t/ � v.x; t/j dx �
MZ

�M
ju0.x/� v0.x/j dx: (2.64)

By lettingM ! 1, we find that

ku. � ; t/� v. � ; t/kL1 � ku0 � v0kL1 (2.65)

in this case. Thus we have proved the following result.

Proposition 2.10 Assume that f is Lipschitz continuous, and let u; v 2 L1 \
L1.R � .0;1// be weak solutions of the initial value problems

ut C f .u/x D 0; ujtD0 D u0;

vt C f .v/x D 0; vjtD0 D v0;

respectively, satisfying the Kružkov entropy condition. Then

ku. � ; t/ � v. � ; t/kL1 � ku0 � v0kL1: (2.66)

In particular, if u0 D v0, then u D v.

In other words, we have shown, starting from the Kružkov formulation of the en-
tropy condition, that the initial value problem is stable inL1, assuming the existence
of solutions.

The idea is now to obtain the existence of solutions using front tracking; for
Riemann initial data and continuous piecewise linear flux functions, we already
have existence from Corollary 2.8. For given initial data and flux function, we show
that the solution can be obtained by approximating with front-tracking solutions.

Now that we have shown stability with respect to the initial data, we proceed
to study how the solution varies with the flux function. We start by studying two

6 Recall that we had the same property in the linear case; see (1.54).
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Riemann problems with the same initial data, but with different flux functions. Let
u and v be the weak solutions of

ut C f .u/x D 0; vt C g.v/x D 0 (2.67)

with common initial data

u.x; 0/ D v.x; 0/ D
(
ul for x < 0;

ur for x > 0:

We assume that both f and g are continuous and piecewise linear with the same
breakpoints. The solutions u and v of (2.67) will be piecewise constant functions of
x=t that are equal outside a finite interval in x=t . More concretely, we have that

u.x; t/ D v.x; t/ D ul if x < �mt , and u.x; t/ D v.x; t/ D ur if x > �M t .

We have to estimate the difference in L1 between the two solutions.

Lemma 2.11 The following inequality holds:

ku. � ; t/� v. � ; t/kL1 � t kf � gkLip jul � ur j ; (2.68)

where the Lipschitz seminorm is taken over over all u between ul and ur .

Proof Assume that ul � ur ; the case ul � ur is similar. Consider first the case in
which f and g both are convex. Without loss of generality we may assume that f
and g have common breakpoints ul D w1 < w2 < � � � < wn D ur , and let the
speeds be denoted by

f 0j.wj ;wjC1/ D sj and g
0j.wj ;wjC1/ D Qsj :

Then

urZ
ul

jf 0.u/� g0.u/j du D
n�1X
jD1

ˇ̌
sj � Qsj

ˇ̌
.wjC1 � wj /:

Let �j be an ordering, that is, �j < �jC1, of all the speeds fsj ; Qsj g. Then we may
write

u.x; t/jx2.�j t;�jC1t/ D ujC1;

v.x; t/jx2.�j t;�jC1t/ D vjC1;

where both ujC1 and vjC1 are from the set of all possible breakpoints, namely
fw1;w2; : : : ; wng, and uj � ujC1 and vj � vjC1. Thus

ku. � ; t/ � v. � ; t/kL1 D t

mX
jD1

ˇ̌
ujC1 � vjC1

ˇ̌
.�jC1 � �j /:
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However, we see that

n�1X
jD1

ˇ̌
sj � Qsj

ˇ̌
.wjC1 � wj /

D
n�1X
jD1

mX
kD1
.�kC1 � �k/.wjC1 � wj /Œ�kC1, �k between sj and Qsj �

D
n�1X
jD1

mX
kD1
.�kC1 � �k/.wjC1 � wj /ŒwjC1, wj between ukC1 and vkC1�

D
mX
kD1

jukC1 � vkC1j .�kC1 � �k/;

(2.69)

where we have introduced the Iverson bracket notation

ŒP � D
(
1 if P is true;

0 if P is false:
(2.70)

Remark 2.12 The equality (2.69) simply says that

u2Z
u1

jF.u/ �G.u/j du D the area between F and G

D
�2Z
�1

ˇ̌
F �1.�/�G�1.�/

ˇ̌
d�;

where F;GW Œu1; u2� ! Œ�1; �2� are two nondecreasing functions such that F.uj / D
G.uj / D �j for j D 1; 2. In the present case, the functions F and G are piecewise
constant with finitely many jumps. Thus, a certain amount of care is needed in
defining the inverse functions.

Thus we see that

ku. � ; t/� v. � ; t/kL1 D t

urZ
ul

jf 0.u/� g0.u/j du

� t kf � gkLip jul � ur j :
(2.71)

The case in which f and g are not necessarily convex is more involved. We will
show that

urZ
ul

jf 0
^.u/� g0

^.u/j du �
urZ
ul

jf 0.u/ � g0.u/j du (2.72)

when the convex envelopes are taken on the interval Œul ; ur �, which together with
(2.71) implies the lemma. To this end, we use the following general lemma:
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Lemma 2.13 (Crandall–Tartar) Let D be a subset of L1.˝/, where ˝ is some
measure space. Assume that if � and  are in D, then also � _  D maxf�; g is
in D. Assume furthermore that there is a map T WD ! L1.˝/ such thatZ

˝

T .�/ D
Z
˝

�; � 2 D:

Then the following statements, valid for all �; 2 D, are equivalent:

(i) If � �  , then T .�/ � T . /.
(ii)

R
˝
.T .�/ � T . //C � R

˝
.� �  /C, where �C D � _ 0.

(iii)
R
˝ jT .�/� T . /j � R

˝ j� �  j.
Proof (of Lemma 2.13) For completeness we include a proof of this lemma. As-
sume (i). Then T .� _  / � T .�/ � 0, which trivially implies T .�/ � T . / �
T .� _  /� T . /, and thus .T .�/ � T . //C � T .� _  /� T . /. Furthermore,Z
˝

.T .�/ � T . //C �
Z
˝

.T .� _  /� T . // D
Z
˝

.� _  �  / D
Z
˝

.� �  /C;

proving (ii). Assume now (ii). ThenZ
˝

jT .�/ � T . /j D
Z
˝

.T .�/ � T . //C C
Z
˝

.T . /� T .�//C

�
Z
˝

.� �  /C C
Z
˝

. � �/C

D
Z
˝

j� �  j ;

which is (iii). It remains to prove that (iii) implies (ii). Let � �  . For real numbers
we have xC D .jxj C x/=2. This impliesZ

˝

.T .�/� T . //C D 1

2

Z
˝

jT .�/� T . /j C 1

2

Z
˝

.T .�/� T . //

� 1

2

Z
˝

j� �  j C 1

2

Z
˝

.� �  / D 0: �

We use this lemma to prove (2.72), that is,

urZ
ul

jf 0
^.u/� g0

^.u/j du �
urZ
ul

jf 0.u/� g0.u/j dx: (2.73)

In our context, we let D be the set of all piecewise constant functions on Œul ; ur �.
For any piecewise linear and continuous function f , its derivative f 0 is in D, and
we define

T .f 0/ D .f^/
0;
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where the convex envelope is taken on the full interval Œul ; ur �. Then

urZ
ul

T .f 0/ du D
urZ
ul

.f^/
0.u/ du D f^.ur/� f^.ul/

D f .ur /� f .ul / D
urZ
ul

f 0.u/ du:

To prove (2.73), it suffices to prove that (i) holds, that is,

f 0 � g0 implies T .f 0/ � T .g0/

for another piecewise linear and continuous flux function g. Assume otherwise, i.e.,
f 0
^.u/ > g0

^.u/ for some u 2 .ul ; ur /. Recall that both f 0
^ and g0

^ are piecewise
constant, and thus we set

u1 D inf
u
f 0
^.u/ > g

0
^.u/ and u2 D sup

u

f 0
^.u/ > g

0
^.u/:

We have that f 0̂ .u1�/ � f 0̂ .u1C/ > g 0̂ .u1C/, and since u1 is the smallest
such value, we must have that f 0̂ .u1�/ < f 0̂ .u1C/. Therefore f .u1/ D f^.u1/.
Similarly we deduce that g^.u2/ D g.u2/. Using this yields

u2Z
u1

f 0.u/ du �
u2Z
u1

g0.u/ du D g.u2/ � g.u1/

� g^.u2/� g^.u1/; since g^.u/ � g.u/,

D
u2Z
u1

g0
^.u/ du <

u2Z
u1

f 0
^.u/ du

D f^.u2/ � f^.u1/

� f .u2/ � f .u1/ D
u2Z
u1

f 0.u/ du;

which is a contradiction. Thus (2.73) follows. Hence, from (2.71) we get

Z
R

ju.x; t/ � v.x; t/j dx � t

urZ
ul

jf 0.u/� g0.u/j du

� t kf � gkLip jur � ul j : �

Next we consider an arbitrary piecewise constant function u0.x/ with a finite
number of discontinuities, and let u and v be the solutions of the initial value prob-
lem (2.67), but u.x; 0/ D v.x; 0/ D u0.x/. By Lemma 2.11 applied at each of the
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jumps in the initial data, the following inequality holds for all t until the first front
collision:

ku.t/ � v.t/kL1 � t kf � gkLipT:V: .u0/ : (2.74)

This estimate holds until the first interaction of fronts for either u or v. Let t1 be this
first collision time, and let w be the weak solution constructed by front tracking of

wt C f .w/x D 0; w .x; t1/ D v .x; t1/ :

Then for t1 < t < t2, with t2 denoting the next time two fronts of either v or u
interact,

ku.t/ � v.t/kL1 � ku.t/ � w.t/kL1 C kw.t/ � v.t/kL1
� ku .t1/ �w .t1/kL1 C .t � t1/ kf � gkLip T:V: .v .t1// :

(2.75)

However,

ku .t1/� w .t1/kL1 D ku .t1/ � v .t1/kL1 � t1 kf � gkLipT:V: .u0/ : (2.76)

Recall from Corollary 2.8 that front-tracking solutions have the property that the
total variation is nonincreasing. When this and (2.76) are used in (2.75), we obtain

ku.t/ � v.t/kL1 � t kf � gkLipT:V: .u0/ : (2.77)

This now holds for t1 < t < t2, but we can repeat the above argument inductively
for every collision time ti . Consequently, (2.77) holds for all positive t .

Now we are ready to prove the convergence of the front-tracking approxima-
tions as the piecewise linear flux function and the piecewise constant initial data
converge.

Let u0 be a bounded function inL1.R/\BV.R/ such that u0.x/ 2 Œ�M;M� for
some positive constant M . Set ın D M=2n, and uj;n D jın for j D �2n; : : : ; 2n.
Let f be a piecewise twice continuously differentiable function and define the
piecewise linear interpolation

fn.u/ D f .uj;n/C 1

ın

�
u � uj;n

� �
f .ujC1;n/� f .uj;n/

�
; for u 2 .uj;n; ujC1;n�.

(2.78)

We assume that the possible points where f is not a twice continuously differen-
tiable function are contained in the set of points uj;n for all sufficiently large n.7

Define the approximate initial data u0;n to be a piecewise constant function taking

values in the set
˚
uj;n

�2n
jD�2n such that ku0;n � u0kL1 ! 0 as n ! 1. Now let un

be the front-tracking solution to

.un/t C fn.un/x D 0; un.x; 0/ D u0;n.x/:

7 Otherwise, we would have to replace the regular discretization by an irregular one containing the
points where the second derivative does not exist.
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We shall prove that the sequence fun. � ; t/g is a Cauchy sequence in L1.R/. Let
n2 > n1, and let w solve

wt C fn2.w/x D 0; w.x; 0/ D un1;0.x/:

Then

kun2. � ; t/ � un1. � ; t/kL1.R/
� kun2. � ; t/ � w. � ; t/kL1.R/ C kw. � ; t/ � un1. � ; t/kL1.R/
� ku0;n2 � u0;n1kL1.R/ C t T:V: .u0/ kfn1 � fn2kLip.�M;M/ :

We have the following estimate:

kfn1 � fn2kLip.�M;M/ � Cın1 kf 00kL1.�M;M/

for some constant C (see Exercise 2.13).
Using this, we see that fun. � ; t/gn�0 is a Cauchy sequence, and thus strongly

convergent to some u. � ; t/ in L1.R/. Furthermore, recall from Corollary 2.8 that
for s � t ,

kun. � ; t/ � un. � ; s/kL1.R/ � kfnkLipT:V: .u0/ .t � s/:

Since

kfnkLip � kfn � fmkLip C kfmkLip � ım kf 00kL1 C kfmkLip;

we see that the limit u is in C.Œ0;1/IL1.R//.
It remains to show that u is an entropy solution. To this end, let 
 be a convex en-

tropy and qn D R u
f 0
n


0 du, the corresponding entropy flux. Since un is the unique
entropy solution taking the initial value un;0, we have

1Z
0

Z
R

�

.un/'t C qn.un/'x

�
dx dt C

Z
R


.un;0/'.x; 0/ dx � 0:

Since un ! u, and qn.u/ ! q.u/ in C.�M;M/, we have that 
.un/ ! 
.u/,
qn.un/ ! q.u/, and 
.un;0/ to 
.u0/ in L1. Thus the limit u is the unique entropy
solution.

If vn is the front-tracking solution to

.vn/t C gn.vn/x D 0; vn.x; 0/ D vn;0.x/,

where gn is a piecewise linear interpolation to the twice differentiable function g,
we can compare the difference between un and vn as follows: Let w be the solution
of the initial value problem

wt C fn.w/x D 0; w.x; 0/ D vn;0.x/.
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Then we obtain

kun. � ; t/ � vn. � ; t/kL1.R/ � kun. � ; t/ � w. � ; t/kL1 C kw. � ; t/ � vn. � ; t/kL1
� ku0;n � v0;nkL1 C tkfn � gnkLipT:V: .v0/

by combining Proposition 2.10 and (2.77). By interchanging the roles of flux func-
tions f and g and the initial data u0;n and v0;n in the definition of w, we infer

kun. � ; t/ � vn. � ; t/kL1.R/
� ku0;n � v0;nkL1.R/ C t kfn � gnkLip minfT:V: .u0/ ;T:V: .v0/g: (2.79)

Thus we have proved the following theorem.

Theorem 2.14 Let u0 be a function of bounded variation that is also in L1, and
let f .u/ be a piecewise twice continuously differentiable function. Then there exists
a unique weak solution u D u.x; t/ to the initial value problem

ut C f .u/x D 0; u.x; 0/ D u0.x/;

which also satisfies the Kružkov entropy condition (2.50). Furthermore, if v0 is an-
other function inBV \L1.R/, g.v/ is a piecewise twice continuously differentiable
function, and v is the unique weak Kružkov entropy solution to

vt C g.v/x D 0; v.x; 0/ D v0.x/;

then

ku. � ; t/� v. � ; t/kL1.R/ � ku0 � v0kL1.R/
C t min fT:V: .u0/ ;T:V: .v0/g kf � gkLip: (2.80)

We end this section by summarizing some of the fundamental properties of so-
lutions of scalar conservation laws in one dimension.

Theorem 2.15 Let u0 be an integrable function of bounded variation, and let f .u/
be a piecewise twice continuously differentiable function. Then the unique weak
entropy solution u D u.x; t/ to the initial value problem

ut C f .u/x D 0; u.x; 0/ D u0.x/; (2.81)

satisfies the following properties for all t 2 Œ0;1/:

(i) Maximum principle:

ku. � ; t/kL1 � ku0kL1 :

(ii) Total variation diminishing (TVD):

T:V: .u. � ; t// � T:V: .u0/ :
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(iii) L1-contractive: If v0 is a function in BV \ L1.R/ and v D v.x; t/ denotes
the entropy solution with v0 as initial data, then

ku. � ; t/� v. � ; t/kL1.R/ � ku0 � v0kL1.R/:

(iv) Monotonicity preservation:

u0 monotone implies u. � ; t/ monotone:

(v) Monotonicity: Let v0 be a function in BV \L1.R/, and let v D v.x; t/ denote
the entropy solution with v0 as initial data. Then

u0 � v0 implies u. � ; t/ � v. � ; t/:

(vi) Lipschitz continuity in time:

ku. � ; t/ � u. � ; s/kL1.R/ � kf kLip T:V: .u0/ jt � sj ;

for all s; t 2 Œ0;1/.

Proof The maximum principle and the monotonicity preservation properties are all
easily seen to be true for the front-tracking approximation by checking the solution
of isolated Riemann problems, and the properties carry over in the limit.

Monotonicity holds by the Crandall–Tartar lemma, Lemma 2.13, applied with
the solution operator u0 7! u.x; t/ as the operator T and with the L1 contraction
property.

The fact that the total variation is nonincreasing follows using Theorem 2.14
(with g D f and v0 D u0. � C h/) and

T:V: .u. � ; t// D lim
h!0

1

h

Z
ju.x C h; t/ � u.x; t/j dx

� lim
h!0

1

h

Z
ju0.x C h/ � u0.x/j dx D T:V: .u0/ :

The L1-contractivity is a special case of (2.80). Finally, to prove the Lipschitz con-
tinuity in time of the spatial L1-norm, we first observe that by translation invariance
in time it suffices to prove the result for s D 0. Thus

ku. � ; t/ � u0kL1 � t kf kLip T:V: .u0/ ;

for all t 2 Œ0;1/. Consider a step-function approximation u0;n to u0 and a polygo-
nal approximation fn to f . From Corollary 2.8 we see that

kun. � ; t/ � u0;nkL1 � t kfnkLip T:V: .u0;n/ ; (2.82)

for all t 2 Œ0;1/. From Theorem 2.14 we know that un.t/ converges to u.t/, the
solution of (2.81). By taking the limit in (2.82), the result follows. For an alternative
argument, see Theorem 7.10. �
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2.5 Notes

Ofte er det jo sådan, at når man kigger det nye efter
i sømmene, såer det bare sømmene, der er nye.8

— Kaj Munk, En Digters Vej og andre Artikler (1948)

The “viscous regularization” as well as the weak formulation of the scalar conser-
vation law were studied in detail by Hopf [98] in the case of Burgers’s equation
where f .u/ D u2=2. Hopf’s paper initiated the rigorous analysis of conservation
laws. Oleı̆nik, [145], [146] gave a systematic analysis of the scalar case, proving
existence and uniqueness of solutions using finite differences. See also the survey
by Gel’fand [69].

Kružkov’s approach, which combines the notion of weak solution and unique-
ness into one equation, (2.22), was introduced in [118], in which he studied general
scalar conservation laws in many dimensions with explicit time and space depen-
dence in flux functions and a source term.

The solution of the Riemann problem when the flux function f has one or more
inflection points was given by Gel’fand [69], Cho-Chun [41], and Ballou [11].

It is quite natural to approximate a flux function by a continuous and piecewise
linear function. This method is frequently referred to as “Dafermos’s method” [55].
Dafermos used it to derive existence of solutions of scalar conservation laws. Prior
to that, a similar approach was studied numerically by Barker [13]. Further numeri-
cal work based on Dafermos’s paper can be found in Hedstrom [86, 87] and Swartz
and Wendroff [172]. Applications of front tracking to hyperbolic conservation laws
on a half-line appeared in [175].

Unaware of this earlier development, Holden, Holden, and Høegh-Krohn redis-
covered the method [90], [89] and proved L1-stability, the extension to nonconvex
flux functions, and that the method in fact can be used as a numerical method. We
here use the name “front-tracking method” as a common name for this approach
and an analogous method that works for systems of hyperbolic conservation laws.
We combine the front-tracking method with Kružkov’s ingenious method of “dou-
bling the variables”; Kružkov’s method shows stability (and thereby uniqueness) of
the solution, and we use front tracking to construct the solution.

The original argument in [89] followed a direct but more cumbersome analysis.
An alternative approach to show convergence of the front-tracking approximation is
first to establish boundedness of the approximation in both L1 and total variation,
and then to use Helly’s theorem to deduce convergence. Subsequently one has to
show that the limit is a Kružkov entropy solution, and finally, invoke Kuznetsov’s
theory to conclude stability in the sense of Theorem 2.14.We will use this argument
in Chapts. 3 and 4.

Lemma 2.13 is due to Crandall and Tartar; see [54] and [52].
The L1-contractivity of solutions of scalar conservation laws is due to Volpert

[186]; see also Keyfitz [84, 151]. We simplify the presentation by assuming solu-
tions of bounded variation.

The uniqueness result, Theorem 2.14, was first proved by Lucier [140], using
an approach due to Kutznetsov [120]. Our presentation here is different in that we

8 It is said that to tell if a cloth is new, you should examine the seams; yet what you thought you
knew, may not be what it seems, for it might be the seams that are all that is new.
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avoid Kutznetsov’s theory; see Sect. 3.3. For an alternative proof of (2.65) we refer
to Málek et al. [141, pp. 92 ff].

The term “front tracking” is also used to denote other approaches to hyper-
bolic conservation laws. Glimm and coworkers [73–76] have used a front-tracking
method as a computational tool. In their approach, the discontinuities, or shocks, are
introduced as independent computational objects and moved separately according
to their own dynamics. Away from the shocks, traditional numerical methods can be
employed. This method yields sharp fronts. The name “front tracking” is also used
in connection with level set methods, in particular in connection with Hamilton–
Jacobi equations; see, e.g., [149]. Here one considers the dynamics of interfaces or
fronts. These methods are distinct from those treated in this book.

A different approach to hyperbolic conservation laws is based on the so-called
kinetic formulation. The approach allows for a complete existence theory in the
scalar case for initial data that are only assumed to be integrable. See Perthame
[150] for an extensive presentation of this theory.

2.6 Exercises

Our problems are manmade; therefore they may be solved by man.
— John F. Kennedy (1963)

2.1 Let

f .u/ D u2

u2 C .1 � u/2 :

Find the solution of the Riemann problem for the scalar conservation law
ut C f .u/x D 0, where ul D 0 and ur D 1. This equation is an example
of the so-called Buckley–Leverett equation and represents a simple model of
two-phase fluid flow in a porous medium. In this case u is a number between
0 and 1 and denotes the saturation of one of the phases.

2.2 In Example 1.6 one uses a linear velocity model, i.e., the velocity depends
linearly on the density. Other models have been analyzed [68, Sect. 3.1.2]
(v0, vmax, and �max are constants):

v.�/ D v0 ln
	�max

�



(the Greenberg model);

v.�/ D vmax exp
	
� �

�max



(the Underwood model);

v.�/ D vmax

	
1 �

	 �

�max


n

n 2 N; (the Greenshield model);

v.�/ D v0

	1
�

� 1

�max



(the California model):

Solve the Riemann problem with these velocity functions.
2.3 Consider the following initial value problem for Burgers’s equation:

ut C 1

2

�
u2
�
x

D 0; u.x; 0/ D u0.x/ D
(

�1 for x < 0;

1 for x � 0:
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(a) Show that u.x; t/ D u.x; 0/ is a weak solution.
(b) Let

u"0.x/ D

8̂̂<
ˆ̂:

�1 for x < �";
x=" for �" � x � ";

1 for " < x.

Find the solution u".x; t/ of Burgers’s equation if u.x; 0/ D u"0.x/.
(c) Find Nu.x; t/ D lim"#0 u".x; t/.
(d) Since Nu.x; 0/ D u0.x/, why do we not have Nu D u?

2.4 For " > 0, consider the linear viscous regularization

u"t C au"x D "u"xx; u".x; 0/ D u0.x/ D
(
ul ; for x � 0;

ur ; for x > 0;

where a is a constant. Show that

lim
"#0
u".x; t/ D

(
ul ; for x < at;

ur ; for x > at;

and thus that u" ! u0.x � at/ in L1.R � Œ0; T �/.
2.5 This exercise outlines another way to prove monotonicity. If u and v are en-

tropy solutions, then we have“
Œ.u � v/ t C .f .u/ � f .v// x� dx dt �

Z
.u � v/ ˇ̌T

0
dx D 0:

Set ˚.�/ D j� j C � , and use (2.60) to conclude that“ �
˚.u � v/ t C �.u; v/ x

�
dx dt �

Z
˚.u � v/ ˇ̌T

0
dx � 0 (2.83)

for a Lipschitz continuous � . Choose a suitable test function  to show that
(2.83) implies the monotonicity property.

2.6 Let c.x/ be a continuous and locally bounded function. Consider the conser-
vation law with “coefficient” c,

ut C c.x/f .u/x D 0; u.x; 0/ D u0.x/: (2.84)

(a) Define the characteristics for (2.84).
(b) What is the Rankine–Hugoniot condition in this case?
(c) Set f .u/ D u2=2, c.x/ D 1C x2, and

u0.x/ D
(

�1 for x < 0;

1 for x � 0:

Find the solution of (2.84) in this case.
(d) Formulate a front-tracking algorithm for the general case of (2.84).
(e) What is the entropy condition for (2.84)?
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2.7 Consider the conservation law where the x dependency is “inside the deriva-
tion,”

ut C .c.x/f .u//x D 0: (2.85)

The coefficient c is assumed to be continuously differentiable.

(a) Define the characteristics for (2.85).
(b) What is the entropy condition for this problem?
(c) Modify the proof of Proposition 2.10 to show that if u and v are entropy

solutions of (2.85) with initial data u0 and v0, respectively, then

ku. � ; t/� v. � ; t/kL1.R/ � ku0 � v0kL1.R/ :
2.8 Let 
 and q be an entropy/entropy flux pair as in (2.17). Assume that u is

a piecewise continuous solution (in the distributional sense) of


.u/t C q.u/x � 0:

Show that across any discontinuity u satisfies

� .
l � 
r /� .ql � qr/ � 0;

where � is the speed of the discontinuity, and ql;r and 
l;r are the values to
the left and right of the discontinuity.

2.9 Consider the initial value problem for (the inviscid) Burgers’s equation

ut C 1

2

�
u2
�
x

D 0; u.x; 0/ D u0.x/;

and assume that the entropy solution is bounded. Set 
 D 1
2
u2, and find the

corresponding entropy flux q.u/. Then choose a test function .x; t/ to show
that

ku. � ; t/kL2.R/ � ku0kL2.R/ :
If v is another bounded entropy solution of Burgers’s equation with initial
data v0, do we have ku � vkL2.R/ � ku0 � v0kL2.R/?

2.10 Define the positive and negative part of a number x 2 R by x˙ D 1
2
.jxj˙x/.

Show that ��.u. � ; t/ � v. � ; t//˙��
1

� ��.u0 � v0/˙
��
1
;

where u and v are weak entropy solutions of the equation ut C f .u/x D 0

with initial data u0 and v0, respectively.
2.11 Consider the scalar conservation law with a zeroth-order term

ut C f .u/x D g.u/; (2.86)

where g.u/ is a locally bounded and Lipschitz continuous function.

(a) Determine the Rankine–Hugoniot relation for (2.86).
(b) Find the entropy condition for (2.86).
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2.12 The initial value problem

vt CH .vx/ D 0; v.x; 0/ D v0.x/; (2.87)

is called a Hamilton–Jacobi equation. One is interested in solving (2.87) for
t > 0, and the initial function v0 is assumed to be bounded and uniformly
continuous. Since the differentiation is inside the nonlinearity, we cannot de-
fine solutions in the distributional sense as for conservation laws. A viscosity
solution of (2.87) is a bounded and uniformly continuous function v such that
for all test functions ', the following hold:

subsolution

(
if v � ' has a local maximum at .x; t/, then

'.x; t/t CH .'.x; t/x/ � 0;

supsolution

(
if v � ' has a local minimum at .x; t/, then

'.x; t/t CH .'.x; t/x/ � 0:

If we set p D vx , then formally p satisfies the conservation law

pt CH.p/x D 0; p.x; 0/ D @xv0.x/: (2.88)

Assume that

v0.x/ D v0.0/C
(
plx for x � 0,

prx for x > 0,

where pl and pr are constants. Let p be an entropy solution of (2.88) and set

v.x; t/ D v0.0/C xp.x; t/ � tH.p.x; t//:
Show that v defined in this way is a viscosity solution of (2.87).

2.13 Let f be piecewise C2. Show that if we define the continuous, piecewise
linear interpolation fı by fı.jı/ D f .jı/, then we have

kf � fıkLip � C1ı kf 00k1;

where C1 is a constant that equals one plus the number of points where f is
not twice continuously differentiable. Use this to show that

kfn1 � fn2kLip.�M;M/ � 2C1ın1 kf 00kL1.�M;M/ ;

where fn is defined by (2.78).
2.14 (a) Let f be a continuous function on Œa; b�. Show that

f^.u/ D f ��.u/; u 2 Œa; b�;
where f �� D .f �/�, and f � denotes the Legendre transform

f �.u/ D max
v2Œa;b�

�
uv � f .v/�; u 2 Œa; b�:
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(b) Let u.�/ D .f 0
^/

�1.�/. Show that

u.�/ D d

d�
f �.�/:

This provides an alternative formula for the solution of the Riemann
problem in Sect. 2.2.

2.15 Find the unique weak entropy solution of the initial value problem (cf. Exer-
cise 2.11)

ut C
�
1

2
u2
�
x

D �u;

ujtD0 D

8̂̂
<
ˆ̂:
1 for x � � 1

2
;

�2x for � 1
2
< x < 0;

0 for x � 0:

2.16 Find the weak entropy solution of the initial value problem

ut C .eu/x D 0; u.x; 0/ D
(
2 for x < 0;

0 for x � 0:

2.17 Find the weak entropy solution of the initial value problem

ut C �
u3
�
x

D 0

with initial data

(a) u.x; 0/ D
(
1 for x < 2;

0 for x � 2;

(b) u.x; 0/ D
(
0 for x < 2;

1 for x � 2:

2.18 Find the weak entropy solution of the initial value problem

ut C 1

2

�
u2
�
x

D 0

with initial data

u.x; 0/ D
(
1 for 0 < x < 1;

0 otherwise:

2.19 Redo Example 2.5 with the same flux function but initial data

u0.x/ D

8̂̂<
ˆ̂:

�1 for x � x1;

1 for x1 < x < x2;

�1 for x � x2:
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2.20 Show that the L1 norm is continuous with respect to translations, that is,

k�. � C x/� �kL1.R/ !
jxj!0

0;

for every � 2 L1.R/. (The same result is true if L1.R/ is replaced by Lp.M/

for any Lebesgue measurable setM 	 R and p 2 Œ1;1/.)
2.21 Show that the solution constructed in Corollary 2.8 satisfies the Kružkov en-

tropy condition.



Chapter 3

A Short Course in Difference Methods

Computation will cure what ails you.
— Clifford Truesdell, The Computer, Ruin of Science and Threat
to Mankind, 1980/1982

Although front tracking can be thought of as a numerical method, and has indeed
been shown to be excellent for one-dimensional conservation laws, it is not part of
the standard repertoire of numerical methods for conservation laws. Traditionally,
difference methods have been central to the development of the theory of conserva-
tion laws, and the study of such methods is very important in applications.

This chapter is intended to give a brief introduction to difference methods for
conservation laws. The emphasis throughout will be on methods and general results
rather than on particular examples. Although difference methods and the concepts
we discuss can be formulated for systems, we will exclusively concentrate on scalar
equations. This is partly because we want to keep this chapter introductory, and
partly due to the lack of general results for difference methods applied to systems
of conservation laws.

3.1 Conservative Methods

We are interested in numerical methods for the scalar conservation law in one
dimension. (We will study multidimensional problems in Chapter 4.) Thus we con-
sider

ut C f .u/x D 0; ujtD0 D u0: (3.1)

A difference method is created by replacing the derivatives by finite differences,
e.g.,

�u

�t
C �f.u/

�x
D 0: (3.2)

Here �t and �x are small positive numbers. We shall use the notation

unj � u .j�x; n�t/ and un D
	
un�K; : : : ; u

n
j ; : : : ; u

n
K



;

95© Springer-Verlag Berlin Heidelberg 2015
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where unj now is our numerical approximation to the solution u of (3.1) at the point
.j�x; n�t/. Normally, since we are interested in the initial value problem (3.1),
we know the initial approximation

u0j ; �K � j � K;

and we want to use (3.2) to calculate un for n 2 N. We will not say much about
boundary conditions in this book. Often one assumes that the initial data is periodic,
i.e.,

u0�KCj D u0KCj ; for 0 � j � 2K,

which gives un�KCj D unKCj . Another commonly used device is to assume that
@xf .u/ D 0 at the boundary of the computational domain. For a numerical scheme
this means that

f
	
un�K�j



D f

�
un�K

�
and f

	
unKCj



D f

�
unK
�

for j > 0.

For nonlinear equations, explicit methods are most common. These can be written

unC1 D G
�
un; : : : ; un�l� (3.3)

for some function G. We see that unC1 can depend on the previous l C 1 ap-
proximations un; : : : ; un�l . The simplest methods are those with l D 0, where
unC1 D G.un/, and we shall restrict ourselves to such methods in this presenta-
tion.

} Example 3.1 (A nonconservative method)
Consider Burgers’s equation written in nonconservative form (writing uux instead
of 1

2
.u2/x)

ut C uux D 0:

Based on the linear transport equation, if unj > 0, a natural discretization of this
would be

unC1
j D unj � unj

	
unj � unj�1



; (3.4)

with  D �t=�x. Since it is based on the nonconservative formulation, we do not
automatically have conservation of u. Indeed,

�x
X
j

unC1
j D �x

X
j

unj � �x
X
j

unj

	
unj � unj�1



;

D �x
X
j

unj � 1

2
�x

X
j

� 	
unj


2 �
	
unj�1


2 C
	
unj � unj�1


2 �

D �x
X
j

unj � 1

2
�x

X
j

	
unj � unj�1


2
:
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Fig. 3.1 a The entropy solution; b the scheme (3.4); c the scheme (3.5)

This in itself might not seem so bad, since it may happen that �x
P
j .u

n
j � unj�1/

2

vanishes as �x ! 0. However, let us examine what happens in a specific case. Let
the initial data be given by

u0.x/ D
(
1 0 � x � 1;

0 otherwise.

The entropy solution to Burgers’s equation consists of a rarefaction wave, centered
at x D 0, and a shock with left value u D 1 and right value u D 0, starting from
x D 1 and moving to the right with speed 1=2. At t D 2 the rarefaction wave will
catch up with the shock. Thus at t D 2 the entropy solution reads

u.x; 2/ D
(
x
2

0 � x � 2;

0 otherwise.

We use u0j D u0.j�x/ as initial data for the scheme. Then we have that for every
j such that j�x > 1, unj D 0 for all n � 0. So if N�t D 2, then uNj D 0, and
clearly uNj ¨ u.j�x; 2/ for 1 � j�x � 2. This method simply fails to “detect”
the moving shock.

We might think that the situation would be better if we used a (second-order)
approximation to ux instead, resulting in the scheme

unC1
j D 1

2

	
unjC1 C unj�1



� 

2
unj

	
unjC1 � unj�1



: (3.5)

In practice, this scheme computes something that moves to the right, but the rar-
efaction part of the solution is not well approximated. In Fig. 3.1 we show how
these two nonconservative schemes work on this example. Henceforth, we will not
discuss nonconservative schemes. }

We call a difference method conservative if it can be written in the form

unC1
j D unj � 

	
F
	
unj�p; : : : ; u

n
jCq



� F

	
unj�1�p; : : : ; u

n
j�1Cq




; (3.6)

where

 D �t

�x
:
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The function F is referred to as the numerical flux. For brevity, we shall often use
the notation

Gj .u/ D G
�
uj�1�p; : : : ; ujCq

�
;

FjC1=2.u/ D F
�
uj�p; : : : ; ujCq

�
;

so that (3.6) reads

unC1
j D Gj .u

n/ D unj �  �FjC1=2.un/ � Fj�1=2.un/
�
: (3.7)

The above equation has a nice formal explanation. Set xj D j�x and xjC1=2 D
xj C�x=2 for j 2 Z. Likewise, set tn D n�t for n 2 N0 D f0g [ N. Define the
interval Ij D Œxj�1=2; xjC1=2/ and the cell I nj D Ij � Œtn; tnC1/. If we integrate the
conservation law

ut C f .u/x D 0

over the cell I nj , we obtainZ
Ij

u.x; tnC1/ dx D
Z
Ij

u.x; tn/ dx

C
	 tnC1Z
tn

f .u.xjC1=2; t// dt �
tnC1Z
tn

f .u.xj�1=2; t// dt


:

Now defining unj as the average of u.x; tn/ in Ij , i.e.,

unj D 1

�x

Z
Ij

u.x; tn/ dx;

we obtain the exact expression

unC1
j D unj � 

	 1
�t

tnC1Z
tn

f .u.xjC1=2; t// dt � 1

�t

tnC1Z
tn

f .u.xj�1=2; t// dt


:

Comparing this with (3.7), we see that it is reasonable that the numerical flux FjC1=2
approximates the average flux through the line segment xjC1=2 � Œtn; tnC1�. Thus

FjC1=2.un/ � 1

�t

tnC1Z
tn

f .u.xjC1=2; t// dt:

With this interpretation of F n
jC1=2 D FjC1=2.un/, equation (3.7) states that the

change in the amount of u inside the “volume” Ij equals (approximately) the influx
minus the outflux. Methods that can be written on the form (3.7) are often called
finite volume methods.

If u.x; tn/ is the piecewise constant function

u.x; tn/ D unj for x 2 Ij ;
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we can solve the conservation law exactly for 0 � t � tn � �x=.2maxu jf 0.u/j/.
This is true because the initial data is a series of Riemann problems, whose solu-
tions will not interact in this short time interval. We also see that f .u.xjC1=2; t// is
independent of t , and depends only on unj and unjC1. So if we set v D w.x=t/ to be
the entropy solution to

vt C f .v/x D 0; v.x; 0/ D
(
unj x < 0;

unjC1 x > 0;

then

F n
jC1=2 D f .w.0//: (3.8)

This method is called the Godunov method. In general, it is well defined (see Exer-
cise 3.5) for

�t max jf 0.u/j � �x: (3.9)

This last condition is called the Courant–Friedrichs–Lewy (CFL) condition.
If f 0.u/ � 0 for all u, then v.0/ D unj , and the Godunov method simplifies to

unC1
j D unj � 

	
f .unj / � f .unj�1/



: (3.10)

This is called the upwind method.
Conservative methods have the property that

R
u dx is conserved, since

KX
jD�K

unC1
j �x D

KX
jD�K

unj�x ��t
	
F n
KC1=2 � F n

�K�1=2


:

If we set u0j equal to the average of u0 over the j th grid cell, i.e.,

u0j D 1

�x

Z
Ij

u0.x/ dx;

and for the moment assume that F n
�K�1=2 D F n

KC1=2, thenZ
un.x/ dx D

Z
u0.x/ dx: (3.11)

A conservative method is said to be consistent if

F.c; : : : ; c/ D f .c/; (3.12)

and in addition, we demand that F be Lipschitz continuous in all its variables, that
is,

ˇ̌
F.aj�p; : : : ; ajCq/ � F.bj�p; : : : ; bjCq/

ˇ̌ � L

qX
iD�p

ˇ̌
ajCi � bjCi

ˇ̌
; (3.13)

for some constant L.
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} Example 3.2 (Some conservative methods)
We have already seen that the Godunov method (and in particular the upwind
method) is an example of a conservative finite volume method.

Another prominent examples is the Lax–Friedrichs scheme, usually written

unC1
j D 1

2

	
unjC1 C unj�1



� 1

2

	
f
	
unjC1



� f

	
unj�1




: (3.14)

This can be written in conservative form by defining

F n
jC1=2 D 1

2

	
unj � unjC1



C 1

2

	
f
	
unj



C f

	
unjC1




:

Some methods, so-called two-step methods, use iterates of the flux function. One
such method is the Richtmyer two-step Lax–Wendroff scheme:

F n
jC1=2 D f

�
1

2

	
unjC1 C unj



� 

2

	
f
	
unjC1



� f

	
unj



�
: (3.15)

Another two-step method is the MacCormack scheme:

F n
jC1=2 D 1

2

 
f
	
unj � .f

	
unjC1



� f

	
unj



/



C f
	
unj


!
: (3.16)

The Lax–Friedrichs and Godunov schemes are both of first order in the sense that
the local truncation error is of order one. (We shall return to this concept below.)
On the other hand, both the Lax–Wendroff and MacCormack methods are of sec-
ond order. In general, higher-order methods are good for smooth solutions, but they
also produce solutions that oscillate in the vicinity of discontinuities. See Sect. 3.2.
Lower-order methods have “enough diffusion” to prevent oscillations. Therefore,
one often uses hybrid methods. These methods usually consist of a linear combina-
tion of a lower- and a higher-order method. The numerical flux is then given by

F n
jC1=2 D �jC1=2.un/F n

L;jC1=2 C �
1 � �jC1=2.un/

�
F n
H;jC1=2; (3.17)

where FL denotes a lower-order numerical flux, and FH a higher-order numerical
flux. The function �jC1=2 is close to zero where un is smooth, and close to one
near discontinuities. Needless to say, choosing appropriate �’s is a discipline in
its own right. We have implemented a method (called fluxlim in Fig. 3.2) that is
a combination of the (second-order)MacCormackmethod and the (first-order) Lax–
Friedrichs scheme, and this scheme is compared with the “pure” methods in this
figure. We somewhat arbitrarily used

�jC1=2 D 1 � 1

1C
ˇ̌̌
DCD�unj

ˇ̌̌ ;
whereD˙ are the forward and backward divided differences,

D˙uj D ˙uj˙1 � uj
�x

;
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so that DCD� is an approximation to the second derivative of u with respect to x,
namely

DCD�uj D ujC1 � 2uj C uj�1
�x2

:

Another approach is to try to generalize Godunov’s method by replacing the piece-
wise constant data un by a smoother function. The simplest such replacement is
by a piecewise linear function. To obtain a proper generalization, one should then
solve a generalized “Riemann problem” with linear initial data to the left and right.
While this is difficult to do exactly, one can use approximations instead. One such
approximation leads to the following method:

FjC1=2 D 1

2

�
gj C gjC1

� � 1

2
�Cunj :

Here �˙unj D ˙.unj˙1 � unj / D �xD˙unj , and

gj D f .u
nC1=2
j /C 1

2
Quj ;

where
Quj D minmod

	
��unj ;�Cunj



;

u
nC1=2
j D unj � 

2
f 0
	
unj



Quj ;

and

minmod.a; b/ WD 1

2
.sign .a/C sign .b//minfjaj ; jbjg:

This method is labeled slopelim in the figures. Now we show how these methods
perform on two test examples. In both examples the flux function is given by (see
Exercise 2.1)

f .u/ D u2

u2 C .1 � u/2 : (3.18)

The example is motivated by applications in oil recovery, where one often encoun-
ters flux functions that have a shape similar to that of f , that is, f 0 � 0 and
f 00.u/ D 0 at a single point u. The model is called the Buckley–Leverett equation.
The first example uses initial data

u0.x/ D
(
1 for x � 0,

0 for x > 0.
(3.19)

In Fig. 3.2 we show the computed solution at time t D 1 for all methods, using 30
grid points in the interval Œ�0:1; 1:6�, and�x D 1:7=29,�t D 0:5�x. The second
example uses initial data

u0.x/ D
(
1 for x 2 Œ0; 1�,
0 otherwise,

(3.20)
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Fig. 3.2 Computed solutions at time t D 1 for flux function (3.18) and initial data (3.19)

and 30 grid points in the interval Œ�0:1; 2:6�, �x D 2:7=29, �t D 0:5�x. In
Fig. 3.3 we also show a reference solution computed by the upwind method using
500 grid points. The most notable feature of the plots in Fig. 3.3 is the solutions
computed by the second-order methods. We shall show that if a sequence of so-
lutions produced by a consistent conservative method converges, then the limit is
a weak solution. The exact solution to both these problems can be calculated by the
method of characteristics. }
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Fig. 3.3 Computed solutions at time t D 1 for flux function (3.18) and initial data (3.20)

The local truncation error of a numerical method L�t is defined as

L�t .x/ D 1

�t
.S.�t/u � SN .�t/u/ .x/; (3.21)

where S.t/ is the solution operator associated with (3.1), that is, u D S.t/u0 de-
notes the solution at time t , and SN .t/ is the solution operator associated with the
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numerical method, i.e.,

SN .�t/u.x/ D u.x/�  �FjC1=2.u/� Fj�1=2.u/
�
:

Assuming that we have a smooth solution of the conservation law, allowing us to
expand all relevant quantities in Taylor series, we say that the method is of kth order
if

jL�t.x/j D O
�
�tk

�
as �t ! 0. To compute L�t .x/ one uses a Taylor expansion of the exact solution
u.x; t/ near x. We know that u may have discontinuities, so it does not necessar-
ily have a Taylor expansion. Therefore, the concept of truncation error is formal.
However, if u.x; t/ is smooth near .x; t/, then one would expect that a higher-order
method would approximate u better than a lower-order method near .x; t/.

} Example 3.3 (Local truncation error)
Consider the upwind method. Then

SN .�t/u.x/ D u.x/� �t

�x
.f .u.x// � f .u.x ��x/// :

We verify that the upwind method is of first order:

L�t .x/ D 1

�t

	
u.x; t C�t/ � u.x; t/C �t

�x
.f .u.x; t// � f .u.x ��x; t///



D 1

�t

	
uC�t ut C .�t/2

2
ut t C � � � � u

C �t

�x

�
f .u/ � f .u/ � .��x/f .u/x � 1

2
.��x/2f .u/xx C � � � �


D ut C f .u/x C 1

�t

	 .�t/2
2

ut t � �t�x

2
f .u/xx C � � �



D �x

2
.utt � f .u/xx/C O

�
.�t/2

�
:

Since u is a smooth solution of (3.1), we find that

utt D �
.f 0.u//2ux

�
x
;

and inserting this into the previous equation, we obtain

L�t D �t

2

@

@x

�
f 0.u/

�
f 0.u/ � 1�ux�C O

�
.�t/2

�
: (3.22)

Hence, the upwind method is of first order. This means that Godunov’s scheme
is also of first order. Similarly, computations based on the Lax–Friedrichs scheme
yield

L�t D �t

22
@

@x

��
.f 0.u//2 � 1�ux�C O

�
�t2

�
: (3.23)
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Consequently, the Lax–Friedrichs scheme is indeed of first order. From the above
computations it also emerges that the Lax–Friedrichs scheme is second-order accu-
rate when applied to the equation (see Exercise 3.6)

ut C f .u/x D �t

22

��
1 � .f 0.u//2

�
ux
�
x
: (3.24)

This is called the model equation for the Lax–Friedrichs scheme. In order for this
to be well posed, the coefficient of uxx on the right-hand side must be nonnegative,
that is,

jf 0.u/j � 1: (3.25)

This is a stability restriction on , and it is the Courant–Friedrichs–Lewy (CFL)
condition that we encountered in (3.9); see also (1.50).

The model equation for the upwind method is

ut C f .u/x D �t

2

�
f 0.u/

�
1 � f 0.u/

�
ux
�
x
: (3.26)

In order for this equation to be well posed, we must have f 0.u/ � 0 and
f 0.u/ � 1. }

From the above examples, we see that first-order methods have model equations
with a diffusive term. Similarly, one finds that second-order methods have model
equations with a dispersive right-hand side. Therefore, the oscillations observed in
the computations were to be expected.

From now on we let the function u�t be defined by

u�t.x; t/ D unj ; for .x; t/ 2 I nj . (3.27)

Observe that Z
R

u�t.x; t/ dx D �x
X
j

unj ; for tn � t < tnC1.

We briefly mentioned in Example 3.2 the fact that if u�t converges, then the limit
is a weak solution. Precisely, we have the well-known Lax–Wendroff theorem.

Theorem 3.4 (Lax–Wendroff theorem) Let u�t be computed from a conserva-
tive and consistent method. Assume that T:V:x .u�t / is uniformly bounded in �t .
Consider a subsequence u�tk such that �tk ! 0, and assume that u�tk converges
in L1loc as�tk ! 0. Then the limit is a weak solution to (3.1).

Proof The proof uses summation by parts. Let '.x; t/ be a test function. For sim-
plicity we write 'nj D '.xj ; tn/. By the definition of u

nC1
j ,

NX
nD0

1X
jD�1

'nj

	
unC1
j � unj



D ��t

�x

NX
nD0

1X
jD�1

'nj

	
F n
jC1=2 � F n

j�1=2


;
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where we choose T D N�t such that ' D 0 for t � T . After a summation by
parts we get

�
1X

jD�1
'0j u

0
j �

1X
jD�1

NX
nD1

	
'nj � 'n�1

j



unj

� �t

�x

NX
nD0

1X
jD�1

	
'nj�1 � 'nj



F n
jC1=2 D 0:

Rearranging, we find that

�t�x

NX
nD1

1X
jD�1

 
'nj � 'n�1

j

�t

!
unj C�t�x

NX
nD0

1X
jD�1

�
'nj�1 � 'nj
�x

�
F n
jC1=2

D ��x
1X

jD�1
'
�
xj ; 0

�
u0j : (3.28)

This almost looks like a Riemann sum for the weak formulation of (3.1). Thus

�x

1X
jD�1

'
�
xj ; 0

�
u0j !

1Z
0

'.x; 0/u0.x/ dx

as �x ! 0, and

�t�x

NX
nD1

1X
jD�1

 
'nj � 'n�1

j

�t

!
unj !

TZ
0

1Z
�1

't .x; t/u.x; t/ dx dt

as �x;�t ! 0.
Since

�t�x

NX
nD0

1X
jD�1

�
'nj�1 � 'nj
�x

�
f .unj / !

TZ
0

1Z
�1

'x.x; t/f .u.x; t// dx dt (3.29)

as �x;�t ! 0, it remains to show that

�t�x

NX
nD0

1X
jD�1

ˇ̌̌
F n
jC1=2 � f .unj /

ˇ̌̌
(3.30)

tends to zero as�t ! 0 in order to conclude that the limit is a weak solution. Using
consistency, (3.12), we find that (3.30) equals

�t�x

NX
nD0

1X
jD�1

ˇ̌̌
F
	
unj�p; : : : ; u

n
jCq



� F

	
unj ; : : : ; u

n
j


ˇ̌̌
;
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which by the Lipschitz continuity of F is less than

�t�xL

NX
nD0

1X
jD�1

qX
kD�p

ˇ̌̌
unjCk � unj

ˇ̌̌

� 1

2
.q.q C 1/C p.p C 1//�t�xL

NX
nD0

1X
jD�1

ˇ̌̌
unjC1 � unj

ˇ̌̌

� .q2 C p2/�x LT:V: .u�t / T;

where L is the Lipschitz constant of F . Using the uniform boundedness of the total
variation of u�x , we infer that (3.30) is small for small �x, and the limit is a weak
solution. �

We proved in Theorem 2.15 that the solution of a scalar conservation law in one
dimension possesses several properties. The corresponding properties for conserva-
tive and consistent numerical schemes read as follows:

Definition 3.5 Let u�t be computed from a conservative and consistent method.

(i) A method is said to be total variation bounded (TVB), or total variation sta-
ble,1 if the total variation of un is uniformly bounded, independently of �x
and �t .

(ii) Assume that u0 has finite total variation. We say that a numerical method is
total variation diminishing (TVD) if T:V:

�
unC1� � T:V: .un/ for all n 2 N0.

(iii) A method is called monotonicity preserving if the initial data being monotone
implies that un is monotone for all n 2 N.

(iv) Assume that u0 2 L1.R/. Let v�t be another solution with initial data v0 2
L1.R/. A numerical method is called L1-contractive if

ku�t .t/ � v�t .t/kL1 � ku�t.0/ � v�t .0/kL1
for all t � 0. Alternatively, we can of course write this asX

j

ˇ̌̌
unC1
j � vnC1

j

ˇ̌̌
�
X
j

ˇ̌̌
unj � vnj

ˇ̌̌
; n 2 N0:

(v) A method is said to be monotone if for initial data u0 and v0, we have

u0j � v0j ; j 2 Z ) vnj � vnj ; j 2 Z; n 2 N:

The above notions are strongly interrelated, as the next theorem shows.

Theorem 3.6 For conservative and consistent methods the following hold:

(i) Assume initial data to be integrable. In that case, every monotone method is
L1-contractive.

(ii) Every L1-contractive method is TVD.
(iii) Every TVD method is monotonicity preserving.

1 This definition is slightly different from the standard definition of T.V. stable methods.
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Proof (i) We apply the Crandall–Tartar lemma, Lemma 2.13, with ˝ D R, and
D equal to the set of all functions in L1 that are piecewise constant on the grid Ij ,
j 2 Z, and we define T .u0/ D un. Since the method is conservative (cf. (3.11)),
we have that

X
j

unj D
X
j

u0j ; or
Z
T .u0/ dx D

Z
un dx D

Z
u0 dx:

Lemma 2.13 immediately implies that (for t 2 Œtn; tnC1/)

ku�t .t/ � v�t .t/kL1 D �x
X
j

ˇ̌̌
vnj � vnj

ˇ̌̌
� �x

X
j

ˇ̌̌
u0j � v0j

ˇ̌̌

D ku�t .0/ � v�t .0/kL1 :

(ii) Assume now that the method is L1-contractive, i.e.,

X
j

ˇ̌̌
unC1
j � vnC1

j

ˇ̌̌
�
X
j

ˇ̌̌
unj � vnj

ˇ̌̌
:

Let vn be the numerical solution with initial data

v0j D u0jC1:

Then by the translation invariance induced by (3.6), we have vni D uniC1 for all n.
Furthermore,

T:V:
	
unC1
j



D
X
j

ˇ̌̌
unC1
jC1 � unC1

j

ˇ̌̌
D
X
j

ˇ̌̌
unC1
j � vnC1

j

ˇ̌̌

�
X
j

ˇ̌̌
unj � vnj

ˇ̌̌
D T:V:

	
unj



:

(iii) Consider now a TVD method, and assume that we have monotone initial data.
Since T:V:

�
u0
�
is finite by assumption, the limits

uL D lim
j!�1

u0j and uR D lim
j!1

u0j

exist. Then T:V:
�
u0
� D juR � uLj. If u1 were not monotone, then T:V:

�
u1
�
>

juR � uLj D T:V:
�
u0
�
, which is a contradiction. �

We can summarize the above theorem as follows:

monotone ) L1-contractive ) TVD ) monotonicity preserving:

Monotonicity is relatively easy to check for explicit methods, e.g., by calculating
the partial derivatives @G=@ui in (3.3).
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} Example 3.7 (Lax–Friedrichs scheme)
Recall from Example 3.2 that the Lax–Friedrichs scheme is given by

unC1
j D 1

2

	
unjC1 C unj�1



� 1

2

	
f
	
unjC1



� f

	
unj�1




:

Computing partial derivatives, we obtain, assuming the flux function f to be con-
tinuously differentiable,

@unC1
j

@unk
D

8̂̂<
ˆ̂:
.1 � f 0.unk//=2 for k D j C 1,

.1C f 0.unk//=2 for k D j � 1,
0 otherwise;

and hence we see that the Lax–Friedrichs scheme is monotone as long as the CFL
condition

 jf 0.u/j � 1

is fulfilled. See also Exercise 3.7. }
Theorem 3.8 Fix T > 0. Assume that f is Lipschitz continuous. Let u0 2 L1.R/
have bounded variation. Assume that u�t is computed with a method that is con-
servative, consistent, total variation bounded, and uniformly bounded, that is,

T:V: .u�t/ � M and ku�tk1 � M;

whereM is independent of �x and �t .
Then fu�t.t/g has a subsequence that converges for all t 2 Œ0; T � to a weak

solution u.t/ in L1loc.R/. Furthermore, the limit is in C
�
Œ0; T �IL1loc.R/

�
.

Proof We intend to apply Theorem A.11. It remains to show that

bZ
a

ju�t .x; t/ � u�t .x; s/j dx � C jt � sj C �.�t/; as �t ! 0; s; t 2 Œ0; T �;

for some nonnegative continuous function � with �.0/ D 0.
The Lipschitz continuity of the flux function implies, for fixed �t ,ˇ̌̌

unC1
j � unj

ˇ̌̌
D 

ˇ̌̌
F n
jC1=2 � F n

j�1=2
ˇ̌̌

D 
ˇ̌̌
F.unj�p; : : : ; u

n
jCq/� F.unj�p�1; : : : ; u

n
jCq�1/

ˇ̌̌
� L

	ˇ̌̌
unj�p � unj�p�1

ˇ̌̌
C � � � C

ˇ̌̌
unjCq � unjCq�1

ˇ̌̌

;

from which we conclude that

ku�t . � ; tnC1/ � u�t . � ; tn/kL1 D
X
j

ˇ̌̌
unC1
j � unj

ˇ̌̌
�x

� L.p C q C 1/T:V: .un/�t

� L.p C q C 1/M�t;
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where L is the Lipschitz constant of F . More generally,

ku�t . � ; tm/� u�t . � ; tn/kL1 � L.p C q C 1/M jn �mj�t
D L.p C q C 1/M jtn � tmj :

Now let �1; �2 2 Œ0; T �, and choose Qt1; Qt2 2 fn�t j 0 � n � T=�tg such that

0 � �j � Qtj < �t for j D 1; 2:

By construction u�t .�j / D u�t .Qtj /, and hence

ku�t. � ; �L1/� u�t . � ; �2/kL1
� ��u�t . � ; �1/� u�t . � ; Qt1/

��
L1

C ��u�t . � ; Qt1/ � u�t. � ; Qt2/
��
L1

C ��u�t. � ; Qt2/� u�t . � ; �2/
��
L1

� .p C q C 1/LM
ˇ̌Qt1 � Qt2

ˇ̌
� .p C q C 1/LM j�1 � �2j C O .�t/ :

Observe that this estimate is uniform in �1; �2 2 Œ0; T �. We conclude that

u�t ! u in C.Œ0; T �IL1.Œa; b�//

for a sequence �t ! 0. The Lax–Wendroff theorem then says that this limit is
a weak solution. �

At this point, the reader should review the concept of a Kružkov entropy condi-
tion; see Sect. 2.1. A function u is a Kružkov entropy solution of

ut C f .u/x D 0

if it satisfies


.u/t C q.u/x � 0 (3.31)

in the sense of distributions, where


.u/ D ju � kj ; q.u/ D sign .u � k/ .f .u/ � f .k//;

for all k 2 R.
The analogue of the Kružkov entropy pair for difference schemes reads as fol-

lows. We still employ 
.u/ D ju � kj. Write

a _ b D maxfa; bg and a ^ b D minfa; bg;

and observe the trivial identity

ja � bj D a _ b � a ^ b:
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Then we define the numerical entropy fluxQ by

QjC1=2.u/ D FjC1=2.u _ k/ � FjC1=2.u ^ k/; (3.32)

or more explicitly,

Q
�
uj�p; : : : ; ujCq

� D F
�
uj�p _ k; : : : ; ujCq _ k� � F �uj�p ^ k; : : : ; ujCq ^ k�:

Note thatQ is consistent with the Kružkov entropy flux, i.e.,

Q .c; : : : ; c/ D sign .c � k/ .f .c/ � f .k//:

Returning to monotone difference schemes, we have the following result.

Theorem 3.9 Fix T > 0. Assume that f is Lipschitz continuous. Let u0 2 L1.R/
have bounded variation. Assume that u�t is computed with a method that is con-
servative, consistent, and monotone.

For every sequence �tk ! 0, the family
˚
u�tk .t/

�
converges in L1loc.R/ to

the Kružkov entropy solution u.t/ for all t 2 Œ0; T �. Furthermore, the limit is in
C
�
Œ0; T �IL1loc.R/

�
.

Proof Consider a sequence �tk ! 0. Theorem 3.8 allows us to conclude that
u�tk has a subsequence that converges in C.Œ0; T �IL1.Œa; b�// to a weak solution.
It remains to show that the limit satisfies a discrete Kružkov form. First we find,
using (3.7) and (3.32), that

G.un _ k/ �G.un ^ k/ D jun � kj � �Qn
jC1=2 �Qn

j�1=2
�
:

Using that unC1
j D Gj .u

n/, cf. (3.3), and the consistency of the scheme, see (3.12),
which implies k D G.k; : : : ; k/ D G.k/, we conclude from the monotonicity of
the scheme that

Gj .u
n _ k/ � Gj .u

n/ _G.k/ D Gj .u
n/ _ k;

�Gj .un ^ k/ � � �Gj .un/ ^G.k/� D � �Gj .un/ ^ k� :
Therefore, ˇ̌̌

unC1
j � k

ˇ̌̌
�
ˇ̌̌
unj � k

ˇ̌̌
C 

�
Qn
jC1=2 �Qn

j�1=2
� � 0: (3.33)

Applying the technique used in proving the Lax–Wendroff theorem to (3.33) shows
that the limit u satisfies“ � ju � kj 't C sign .u � k/ �f .u/ � f .k/�'x� dx dt

C
Z
R

ju0 � kj '.x; 0/ dx �
Z
R

.ju � kj '/jtDT dx � 0;

for every nonnegative test function ' 2 C1
0 .R � Œ0; T �/ and for every k 2 R.
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Suppose there is another subsequence for which u�t does not converge to the
entropy solution. Then by the above argument, this subsequence has another sub-
sequence for which the limit is the unique entropy solution. The uniqueness of the
limit gives a contradiction, and we conclude that for all sequences �tk ! 0, the
sequence fu�tk .t/g converges to the unique entropy solution u.t/. �

Note that the above theorem offers a constructive proof of the existence of weak
entropy solutions to scalar conservation laws. The fact that monotone schemes con-
verge to the entropy solution provides an alternative to the front-tracking method
discussed in Chapt. 2.

Now we shall examine the local truncation error of a general conservative, con-
sistent, and monotone method. Since this can be written

unC1
j D Gj .u

n/ D G
	
unj�p�1; : : : ; u

n
jCq



D unj � 

	
F
	
unj�p; : : : ; u

n
jCq



� F

	
unj�p�1; : : : ; u

n
jCq�1




;

we write

G D G.˛0; : : : ; p̨CqC1/ and F D F.˛1; : : : ; p̨CqC1/:

We assume that F , and hence G, is three times continuously differentiable with
respect to all arguments, and write the derivatives with respect to the i th argument
as

@iG.˛0; : : : ; p̨CqC1/ and @iF.˛1; : : : ; p̨CqC1/:

We set @iF D 0 if i D 0. Throughout this calculation, we assume that the j th slot
of G contains unj , so that G.˛0; : : : ; p̨CqC1/ D uj � .� � � /. By consistency we
have that

G.u; : : : ; u/ D u and F.u; : : : ; u/ D f .u/:

Using this, we find that

pCqC1X
iD1

@iF.u; : : : ; u/ D f 0.u/; (3.34)

@iG D ıi;j �  .@i�1F � @iF / ; (3.35)

and

@2i;kG D � �@2i�1;k�1F � @2i;kF
�
: (3.36)

Therefore,

pCqC1X
iD0

@iG.u; : : : ; u/ D
pCqC1X
iD0

ıi;j D 1: (3.37)
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Furthermore,

pCqC1X
iD0

.i � j /@iG.u; : : : ; u/ D
pCqC1X
iD0

�
.i � j /ıi;j

� .i � j / .@i�1F.u; : : : ; u/ � @iF.u; : : : ; u//
�

D �
pCqC1X
iD0

..i C 1/� i//@iF.u; : : : ; u/

D �f 0.u/: (3.38)

We also find that

pCqC1X
i;kD0

.i � k/2@2i;kG.u; : : : ; u/

D �
pCqC1X
i;kD0

.i � k/2 �@2i�1;k�1F.u; : : : ; u/ � @2i;kF.u; : : : ; u/
�

D �
pCqC1X
i;kD0

�
..i C 1/� .k C 1//2 � .i � k/2� @2i;kF.u; : : : ; u/

D 0: (3.39)

Having established this, we now let u D u.x; t/ be a smooth solution of the con-
servation law (3.1). We are interested in applying G to u.x; t/, i.e., in calculating

G.u.x � .p C 1/�x; t/ : : : ; u.x; t/; : : : ; u.x C q�x; t//:

Set ui D u.x C .i � .p C 1//�x; t/ for i D 0; : : : ; p C q C 1. Then we find that

G.u0; : : : ; upCqC1/

D G.uj ; : : : ; uj /C
pCqC1X
iD0

@iG.uj ; : : : ; uj /
�
ui � uj

�

C 1

2

pCqC1X
i;kD0

@2i;kG.uj ; : : : ; uj /
�
ui � uj

� �
uk � uj

�C O
�
�x3

�

D u.x; t/C ux.x; t/�x

pCqC1X
iD0

.i � j /@iG.uj ; : : : ; uj /

C 1

2
uxx.x; t/�x

2

pCqC1X
iD0

.i � j /2@iG.uj ; : : : ; uj /

C 1

2
u2x.x; t/�x

2

pCqC1X
i;kD0

.i � j /.k � j /@2i;kG.uj ; : : : ; uj /C O
�
�x3

�
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D u.x; t/C ux.x; t/�x

pCqC1X
iD0

.i � j /@iG.uj ; : : : ; uj /

C 1

2
�x2

pCqC1X
iD0

.i � j /2 �@iG.uj ; : : : ; uj /ux.x; t/�x
� 1

2
�x2u2x.x; t/

pCqC1X
i;k

�
.i � j /2 � .i � j /.k � j /� @2i;kG.uj ; : : : ; uj /

C O
�
�x3

�
:

Next we observe, since @2i;kG D @2k;iG and using (3.39), that

0 D
X
i;k

.i � k/2@2i;kG D
X
i;k

..i � j /� .k � j //2@2i;kG

D
X
i;k

..i � j /2 � 2.i � j /.k � j //@2i;kG C
X
i;k

.k � j /2@2k;iG

D 2
X
i;k

..i � j /2 � .i � j /.k � j //@2i;kG:

Consequently, the penultimate term in the Taylor expansion ofG above is zero, and
we have that

G.u.x � .p C 1/�x; t/; : : : ; u.x C q�x; t// D u.x; t/��tf .u.x; t//x
C �x2

2

X
i

.i � j /2 Œ@iG.u.x; t/; : : : ; u.x; t//ux�x C O
�
�x3

�
: (3.40)

Since u is a smooth solution of (3.1), we have already established that

u.x; t C�t/ D u.x; t/ ��tf .u/x C �t2

2

h�
f 0.u/

�2
ux

i
x

C O
�
�t3

�
:

Hence, we compute the local truncation error as

L�t D � �t

22

" 
pCqC1X
iD1

.i � j /2@iG.u; : : : ; u/� 2.f 0.u//2
!
ux

#
x

DW � �t

22
Œˇ.u/ux�x C O

�
�t2

�
: (3.41)

Thus if ˇ > 0, then the method is of first order. What we have done so far is valid
for every conservative and consistent method where the numerical flux function is
three times continuously differentiable. Next, we use that @iG � 0, so that

p
@iG
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is well defined. This means that

j�f 0.u/j D
ˇ̌̌
ˇ̌pCqC1X
iD0

.i � j /@iG.u; : : : ; u/
ˇ̌̌
ˇ̌

D
pCqC1X
iD0

ji � j j
p
@iG.u; : : : ; u/

p
@iG.u; : : : ; u/:

Using the Cauchy–Schwarz inequality and (3.37), we find that

2
�
f 0.u/

�2 �
pCqC1X
iD0

.i � j /2@iG.u; : : : ; u/
pCqC1X
iD0

@iG.u; : : : ; u/

D
pCqC1X
iD0

.i � j /2@iG.u; : : : ; u/:

Thus, ˇ.u/ � 0. Furthermore, the inequality is strict if more than one term in the
sum on the right-hand side is different from zero. If @iG.u; : : : ; u/ D 0 except for
i D k for some k, then G.u0; : : : ; upCqC1/ D uk by (3.37). Hence the scheme is
a linear translation, and by consistency, f .u/ D cu, where c D .j�k/. Therefore,
monotone methods for nonlinear conservation laws are at most first-order accurate.
This is indeed their main drawback. To recapitulate, we have proved the following
theorem:

Theorem 3.10 Assume that the numerical flux F is three times continuously dif-
ferentiable, and that the corresponding scheme is monotone. Then the method is at
most first-order accurate.

3.2 Higher-Order Schemes

We want to derive a second-order difference approximation to the solution of a con-
servation law

ut C f .u/x D 0:

In order to derive scheme that is second-order accurate, the local truncation error
must be third-order accurate. For a smooth solution we have

u.x; t C�t/ D u.x; t/C�tut .x; t/C �t2

2
utt .x; t/C O

�
�t3

�
D u.x; t/ ��tf .u.x; t//x � �t2

2
f .u.x; t//xt C O

�
�t3

�
D u ��tf .u/x C �t2

2

�
f 0.u/f .u/x

�
x

C O
�
�t3

�
:
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For a difference scheme we have �x D O .�t/, so if the resulting scheme is of
second order, the difference approximation to f .u/x must be second-order accu-
rate, and the approximation to .f 0fx/x can be first-order accurate. We can use the
following (where we write D0.g.x// D .g.x C�x/ � g.x ��x//=.2�x/) rela-
tions:

f .u.x; t//x DD0f .u.x; t//C O
�
�x2

�
D f .u.x C�x; t// � f .u.x ��x; t//

2�x
C O

�
�x2

�
;

.f 0.u.x; t//f .u.x; t//x/x D 1

�x

�
f 0
	
u
	
xC �x

2
; t


f .u.xC�x; t//�f .u.x; t//

�x

�f 0
	
u
	
x��x

2
; t


f .u.x; t//�f .u.x��x; t//

�x

�
C O

�
�x2

�
;

f 0
	
u
	
x ˙ �x

2
; t




D f .u.x ˙�x; t// � f .u.x; t//
u.x ˙�x; t/ � u.x; t/ C O

�
�u2

�
:

This leads to the scheme

unC1
j D unj � 

2

	
f n
jC1 � f nj�1



C 2

2

	
�2jC1=2�Cunj � �2j�1=2��unj



; (3.42)

where

 D �t

�x
; f nj D f .unj /; �˙vj D ˙.vj˙1 � vj /; �jC1=2 D �Cf n

j

�Cunj
:

The scheme (3.42) is called the Lax–Wendroff scheme, and by construction it is
of second order. We can see that it is conservative with a two-point numerical flux
function given by FjC1=2 D F.uj ; ujC1/, where

F.u; v/ D 1

2

�
f .v/C f .u/ � �2.u; v/.v � u/� ; �.u; v/ D f .v/ � f .u/

v � u :

} Example 3.11
We test this second-order scheme on the equation

ut C ux D 0

with two sets of periodic initial data

u1.x; 0/ D sin2.�x/; u2.x; 0/ D
(
1 x 2 Œ0:3; 0:7�;
0 x 2 Œ0; 1� n Œ0:3; 0:7�;

and u2 extended periodically. By periodicity, we know that ui .x; k/ D ui .x; 0/ for
k 2 N. In Fig. 3.4 we have plotted the numerical solution at t D 3 with initial data
u1 and u2 and�x D 1=30. Note that for the smooth solution the method gives very



3.2 Higher-Order Schemes 117

a b

Fig. 3.4 a The numerical solution with initial values u1. b The numerical solution with initial
value u2. We use �x D 1=30

accurate results, and the errors are indeed of second order. For the discontinuous
solution, the errors seem large, and we also see the prominent oscillations trailing
the discontinuity. }

For simplicity we will for the moment assume that f 0 � 0, so that the upwind
method is monotone (and hence TVD). If f is not monotone, then the upwind flux
below should be replaced by a numerical flux giving a monotone method.

The Lax–Wendroff numerical flux function can be rearranged to read

F n
jC1=2 D f .unj /� 1

2
�jC1=2

�
�jC1=2 � 1��Cunj

D upwind C second-order correction.

We would like to modify the Lax–Wendroff method so that it is locally of second or-
der where the solution is smooth, and first order and monotone near discontinuities.
Hence, we would like to turn off the second-order correction near discontinuities.
One way of doing this is to observe that the oscillations occur near discontinuities
(this is the Gibbs phenomenon), and use oscillations as an indicator of when the
second-order term should be turned off. As an important side effect, this is likely to
make the resulting method TVD.

To this end let rj (whose exact form will be specified later) be some “indicator
of oscillations” near xj . We assume that if there are oscillations, then rj < 0. Let
'.r/ be a continuous function that is zero if r < 0.

Now we modify the numerical flux for the Lax–Wendroff method to read

F n
jC1=2 D f n

j � 1

2
'.rj /�jC1=2

�
�jC1=2 � 1��Cunj : (3.43)

If we set

j̨C1=2 D 1

2
�jC1=2.1 � vjC1=2/; (3.44)
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the modified scheme reads

unC1
j D unj � ��f nj � ��

	
'.rj / j̨C1=2�Cunj



D unj � �j�1=2��unj � ��

	
'.rj / j̨C1=2�Cunj




D unj � 
	
�j�1=2 C 

��
	
'.rj / j̨C1=2�Cunj



��unj



��unj

D unj � Aj�1=2��unj ;

where we have defined

Aj�1=2 D �j�1=2 C 
��

	
'.rj / j̨C1=2�Cunj



��unj

:

At this point the following lemma is convenient.

Lemma 3.12 (Harten’s lemma) Let vj be given by

vj D uj �Aj�1=2��uj C BjC1=2�Cuj ;

where �˙uj D ˙.uj˙1 � uj /.
(i) If AjC1=2 and BjC1=2 are nonnegative for all j , and AjC1=2 C BjC1=2 � 1 for

all j , then

T:V: .v/ � T:V: .u/ :

(ii) If AjC1=2 and BjC1=2 are nonnegative for all j , and Aj�1=2 C BjC1=2 � 1 for
all j , then

min
k
uk � vj � max

k
uk; j 2 Z:

Proof (i) We have

�Cvj D ujC1 � uj � AjC1=2�Cuj C BjC3=2�CujC1
C Aj�1=2��uj � BjC1=2�Cuj

D �
1 � AjC1=2 � BjC1=2

�
�Cuj C Aj�1=2��uj C BjC3=2�CujC3=2:

Hence X
j

ˇ̌
�Cvj

ˇ̌ �
X
j

�
1 � AjC1=2 � BjC1=2

� ˇ̌
�Cuj

ˇ̌

C
X
j

Aj�1=2
ˇ̌
��uj

ˇ̌C
X
j

BjC3=2
ˇ̌
�CujC3=2

ˇ̌

D
X
j

ˇ̌
�Cuj

ˇ̌
:
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(ii) We may write

vj D Aj�1=2uj�1=2 C .1 � Aj�1=2 � BjC1=2/uj C BjC1=2ujC1;

from which the statement follows. �

Returning to the scheme (3.43), we introduce

j̨C1=2 D 1

2
�jC1=2

�
1 � �jC1=2

�
:

Hence, we get the scheme

unC1
j D unj � 

	
f nj � f n

j�1



� 
	
'.rj / j̨C1=2�Cunj � '.rj�1/ j̨�1=2��unj



D unj � �j�1=2��unj � ��

	
'.rj / j̨C1=2�Cunj




D unj � 
2
4�j�1=2 C

��
	
'.rj / j̨C1=2�Cunj



��unj

3
5��unj

D unj �Aj�1=2��unj :

Wewant to choose ' and r such that we can use the above lemma, withBjC1=2 D 0,
to conclude that the scheme is TVD. Note that maxu f 0.u/ � 1 by the CFL
condition and thus j̨C1=2 � 0 and  j̨C1=2 � 1.

We define

rj D j̨�1=2��uj
j̨C1=2�Cuj

: (3.45)

To see that this can be used as an “indicator of oscillations,” note that since we have
assumed that f 0 � 0, we have vjC1=2 � 0 for all j , and by the CFL condition,
vjC1=2 � 1 for all j . Hence j̨C1=2 D 1

2
�jC1=2.1 � vjC1=2/ � 0 for all j . We

say that “oscillations” are present at xj if uj is a local maximum or minimum. If so,
then sign

�
��uj

� ¤ sign
�
�Cuj

�
, and consequently, rj � 0. We also calculate

��
	
'.rj / j̨C1=2�Cunj



��unj

D 1

��unj

	
'.rj / j̨C1=2�Cunj � '.rj�1/ j̨�1=2��unj




D j̨�1=2
�
'.rj /

rj
� '.rj�1/

�
:

Hence

AjC1=2 D 
	
�jC1=2 C j̨C1=2

	'.rjC1/
rjC1

� '.rj /



:
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Let us assume that

max
�
'.r/

r
; '.r/


� 2; or 0 � '.r/ � maxf0;minf2r; 2gg: (3.46)

If this assumption holds, then

ˇ̌̌
ˇ'.r/r � '.s/

ˇ̌̌
ˇ � 2 for all r and s.

This means that

AjC1=2 � 
�
�jC1=2 C 2 j̨C1=2

�
D 

�
�jC1=2 C �jC1=2

�
1 � �jC1=2

��
D 

	
2�jC1=2 � �2jC1=2



D 1 � .1 � �jC1=2/2

� 1:

For the other bound,

AjC1=2 � 
�
�jC1=2 � 2 j̨C1=2

�
D 

�
�jC1=2 � �jC1=2.1 � �jC1=2/

�
D �

�jC1=2
�2 � 0:

Summing up, we have proved the following result.

Lemma 3.13 Assume f 0 � 0. Let rj be defined by (3.45), and assume  > 0

is such that the CFL condition maxu f 0.u/ � 1 holds. Assume further that the
function ' is such that '.r/ vanishes for r � 0 and satisfies (3.46). Then the finite
volume scheme with numerical flux function (3.43) is TVD.

If we choose '.r/ D r , we get another scheme, called the Beam–Warming (BW)
scheme. The Beam–Warming scheme is also of second order, but not TVD. The
Lax–Wendroff (LW) scheme is obtained by choosing '.r/ D 1.

If (for the moment) we do not care about TVD, we can define a family of second-
order schemes by linear interpolation between the Beam–Warming and the Lax–
Wendroff schemes. This interpolation can be done locally, meaning that we choose
' as

'.r/ D .1 � �.r//'LW.r/C �.r/'BW.r/:

The scheme reads

unC1
j D unj � ��f n

j C ��'.rj / j̨C1=2�Cunj : (3.47)
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If now unj D u.xj ; tn/ is the exact solution, then we can calculate

unC1
j D uj � �fj C ��

��
.1 � �.rj //C �.rj /rj

�
j̨C1=2�Cuj

�
D �

1 � �.rj /
� �
uj � ��fj C ��

�
j̨C1=2�Cuj

��
C �.rj /

�
uj � ��fj C ��

�
rj j̨C1=2�Cuj

��
C  j̨�1=2

�
rj�1 � 1���uj���.rj /:

This means that

u.xj ; t C�t/� unC1
j D .1 � �.rj // .“LW truncation error”/

C �.rj / .“BW truncation error”/

C  j̨�1=2
�
rj�1 � 1���uj���.rj /„ ƒ‚ …

I

:

If I D O
�
�t3

�
, then the combination of the LW and the BW schemes is of second

order. By the CFL condition, 0 �  j̨�1=2 � 1. Furthermore, since u is an exact
smooth solution, j̨C1=2�Cu � �xf 0.u/.1 � f 0.u//ux , or more precisely

j̨C1=2
�Cuj
�x

D f 0.u/.1 � f 0.u//ux
ˇ̌
xDxjC1=2

CO
�
�x2

�
:

Recall the definition of rj , equation (3.45), and set h.x/ D f 0.u.x; t//.1 �
f 0.u.x; t///ux.x; t/. With this notation we getˇ̌

j̨�1=2.rj�1 � 1/��uj
ˇ̌ D ˇ̌

��
�
j̨�1=2�Cuj�1

�ˇ̌
D �x

ˇ̌
h.xj�1=2/ � h.xj�3=2/C O

�
�x2

�ˇ̌
� �x2max

.x;t/
jh0.x/j C O

�
�x3

�
:

Therefore, to show that I D O
�
�t3

�
, it suffices to show that ���j D O .�t/.

Since � is a smooth function with values in Œ0; 1�, we getˇ̌
���.rj /

ˇ̌ D ˇ̌
�.rj /� �.rj�1/

ˇ̌
� C

ˇ̌
rj � rj�1

ˇ̌
� C

ˇ̌̌
ˇ j̨�1=2��uj
j̨C1=2�Cuj

� j̨�3=2��uj�1
j̨�1=2��uj

ˇ̌̌
ˇ

D C

ˇ̌̌
ˇ̌hj�1=2 C O

�
�x2

�
hjC1=2 C O

�
�x2

� � hj�3=2 C O
�
�x2

�
hj�1=2 C O

�
�x2

�
ˇ̌̌
ˇ̌

D C

ˇ̌̌
ˇ̌h2j�1=2 � hjC1=2hj�3=2 C O

�
�x2

�
hjC1=2hj�1=2 C O

�
�x2

�
ˇ̌̌
ˇ̌

� C
�xmax.x;t/ jh0.x/j C O

�
�x2

�
hjC1=2hj�3=2 C O

�
�x2

�
D O .�t/ :
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Fig. 3.5 The graph of the
limiter must lie in both the
TVD region and the second-
order region. The graph
shown is a possible limiter

second orderTVD

r

ϕ(r)

1

1

2

2

Thus we have shown that if � is a Lipschitz continuous function, the resulting
scheme is of second order.

Returning to ', we have shown that the scheme (3.47) is of second order if ' is
Lipschitz continuous and

min f1; rg � '.r/ � max f1; rg : (3.48)

If ' satisfies both (3.46) and (3.48), then the resulting scheme (3.47) is TVD, and
second-order accurate away from local extrema. The scheme also produces a con-
vergent sequence of approximations, and the limit is a weak solution (prove this!).

The function ' is called a limiter; a list of popular limiters follows. It is clear
that the graph of a limiter must lie in the shaded region in Fig. 3.5.

'.r/ D max f0;min fr; 1gg ; minmod

'.r/ D max f0;min f2r; 1g ;min fr; 2gg ; superbee;

'.r/ D jr j C r

1C r
; van Leer

'.r/ D r2 C r

1C r2
; van Albada

'.r/ D max f0;min fr; ˇgg ; 1 � ˇ � 2; Chakarvarthy & Osher

In Fig. 3.6 we show the approximate solutions to

ut C ux D 0; u.x; 0/ D
(
1 x 2 Œ0; 3; 0:7�;
0 x 2 Œ0; 1� n Œ0; 3; 0:7�;

and for x … Œ0; 1� we extend u.x; 0/ periodically. The figure shows approximate
solutions at t D 0 as well as the exact solution. To the left we see that both the Lax–
Wendroff and the Beam–Warming schemes have pronounced oscillations, but the
linear combination of the two schemes, in this case using the van Leer limiter, does
not. This solution is also superior to the solution found by the upwind method. Since
these methods limit the contribution of the higher-order numerical flux function,
they are often called flux-limiter methods.
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a b

c d

Fig. 3.6 The approximate solutions found by the upwind method (a), the Lax–Wendroff method
(b), the Beam–Warming method (c), and the TVD method using the van Leer limiter (d). All
computations used �x D 1=30

Semidiscrete Higher-Order Methods

Let us now consider semidiscrete higher-order methods, where we do not (initially)
discretize time, only space. Based on the finite volume approach, such methods can
be written

u0
j .t/ D � 1

�x

�
FjC1=2 � Fj�1=2

�
; (3.49)

where uj .t/ is some approximation to the average of u in the cell .xj�1=2; xjC1=2�.
If the right-hand side of the above is a second-order approximation to �f .u/x for
smooth functions u.x/, then the method is said to be second-order accurate. To get
second-order accuracy in time as well, one could use a second-order Runge–Kutta
method to integrate (3.49) numerically. One such example is Heun’s method:

Qunj D unj �  �FjC1=2 � Fj�1=2
�
;

unC1
j D unj � 

2

� QFjC1=2 � QFj�1=2
� � 

2

�
FjC1=2 � Fj�1=2

�
:
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The simplest way of achieving second-order accuracy is by choosing

FjC1=2 D f

�
ujC1 C uj

2

�
: (3.50)

This, however, gives a nonviable method if we combine it with a first-order Euler
method in time. This combination is not stable2. To see this, set f .u/ D u. With
the Euler method it gives

unC1
j D unj � 

2

�
ujC1 � uj�1

�
:

Making the ansatz unj D �ne
ij�x (here i D p�1) yields

�nC1 D �n .1C i sin.�x// :

Therefore, j�nC1j D j�nj
p
1C 2 sin2.�x/, or

j�nj D j�0j
�
1C 2 sin2.�x/

�n=2
:

This is unconditionally unstable. Also using the second-order Heun’s method with
(3.50) gives an unstable method (see Exercise 3.8). Thus the choice (3.50) is of
second order, but useless.

In order to overcome this, we define values to the left and right of a cell edge
uLjC1=2 and u

R
j�1=2 by

uLjC1=2 D uj C 1

2
��uj ;

uRj�1=2 D uj � 1

2
�Cuj :

(3.51)

Then we can use any two-point monotone first-order numerical flux F.u; v/ to de-
fine a second-order approximation

f .u.x//x D 1

�x

	
F
	
uLjC1=2; u

R
jC1=2



� F

	
uLj�1=2; u

R
j�1=2




C O

�
�x2

�
:

(3.52)

Even if we use Heun’s method for time integration, the extrapolation values (3.51)
do not give a TVD method. This is to be expected, since the method is for-
mally second-order accurate. We illustrate this in Fig. 3.7 for the linear equation
ut C ux D 0 with smooth and discontinuous initial values. We used the upwind
first-order numerical flux F.u; v/ D f .u/ D u. From Fig. 3.7 we see that for
smooth initial data, the approximation is “reasonably close” to the correct function,
whereas for discontinuous initial data, the approximation bears little relation to the
exact solution.

2 Often called von Neumann stability.
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a b

Fig. 3.7 Using the extrapolation (3.51). a u.x; 1/ with smooth initial data. b u.x; 1/ with discon-
tinuous intitial data

These results suggest that the method will be improved if we use some kind of
limiter to define the extrapolated values uL;RjC1=2. To this end, set 'j D '.rj /, where
rj is to be defined, and redefine the extrapolations as

uLjC1=2 D uj C 1

2
'j��uj ;

uRj�1=2 D uj � 1

2
'j�Cuj :

(3.53)

For simplicity, we now assume that f 0 � 0, and that the numerical flux function is
the upwind flux, i.e., F.u; v/ D f .u/. In this case the resulting scheme is

unC1
j D unj � 

	
f .uLjC1=2/� f .uLj�1=2/



:

We aim to define rj and find conditions on ' such that the above scheme is TVD but
retains the formal second order away from oscillations. In order to use Lemma 3.12,
we rewrite the scheme as

unC1
j D unj � ��f .uLjC1=2/

��unj
��unj ;

where we have used a first-order Euler method for the integration in time. This will
of course destroy the formal second-order accuracy, but it is convenient for analysis.
With

Aj�1=2 D 
��f .uLjC1=2/

��unj

the scheme will be TVD if 0 � Aj�1=2 � 1. Dropping the superscript n, we calcu-
late

Aj�1=2 D f 0 � Nuj
� uj C 1

2
'j��uj � uj�1 � 1

2
'j�1��uj�1

��uj

D f 0 � Nuj
� ��

1C 1

2
'j

�
� 1

2
'j�1

��uj�1
��uj

�
;



126 3 A Short Course in Difference Methods

where Nuj is some value between uLj�1=2 and u
L
jC1=2. If we now choose

rj D �Cuj
��uj

;

this can be rewritten as

Aj�1=2 D f 0 � Nuj
��
1 � 1

2

�
'.rj�1/
rj�1

� '.rj /
��

:

We now demand that the scheme satisfy the CFL condition

max
u
f 0.u/ � 1

2
:

In this case 0 � Aj�1=2 � 1 if

0 �
�
1 � 1

2

�
'.rj�1/
rj�1

� '.rj /
��

� 2;

which can be rewritten

�2 � 'j�1
rj�1

� 'j � 2:

This is the case if

0 � '.r/ � min f2r; 2g ;

which gives the same TVD-region as for the flux-limiter schemes; see Fig. 3.5.
The scheme with �.r/ � 1 is not TVD, but of second order, and the choice

�.r/ D r gives the (useless) second-order scheme with numerical flux (3.50). It
follows as before that every smooth (in r) convex combination of these two schemes
will also be of second order. Therefore, we get the same second-order region as in
Fig. 3.5. Hence we have the same choice of limiter functions as before. Each choice
will give a formally second-order scheme away from local extrema. This method is
called MUSCL (monotone upstream centered scheme for conservation laws).

If Fig. 3.8 we show how the above schemes perform on the model equation
ut Cux D 0 with smooth and discontinuous initial data. The MUSCL method does
not perform as well as the flux limiter method, but a clear difference can be seen
between the first-order upstream method and the high-resolution methods (MUSCL
and flux limiter). For both the high-resolution methods, the computations in Fig. 3.8
use the van Leer limiter. The perceptive reader may have noticed that the flux-limiter
method is further from the exact solution than the methods shown in Fig. 3.6. This
is because we choose to use the same timestep for all the methods, this being limited
by the MUSCL method. Thus, the upwind and flux limiter methods will also have
a time step �t � �x, with  D 0:49.
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a b

Fig. 3.8 A comparison of the first-order monotone upstream method and high-resolution methods
for smooth (a) and discontinuous initial data (b)

3.3 Error Estimates

Let others bring order to chaos. I would bring chaos to order instead.
— Kurt Vonnegut, Breakfast of Champions (1973)

The concept of local error estimates is based on formal computations, and such
estimates indicate how the method performs in regions where the solution is smooth.
Since the convergence of the methods discussed was in L1, it is reasonable to ask
how far the approximated solution is from the true solution in this space.

In this section we will consider functions u that are maps t 7! u.t/ from Œ0;1/

to L1loc \BV .R/ such that the one-sided limits u.t˙/ exist in L1loc, and for definite-
ness we assume that this map is right continuous. Furthermore, we assume that

ku.t/k1 � ku.0/k1; T:V: .u.t// � T:V: .u.0// :

We denote this class of functions byK. From Theorem 2.15 we know that solutions
of scalar conservation laws are in the class K.

It is convenient to introduce moduli of continuity in time (see Appendix A)

�t .u; �/ D sup
j� j��

ku.t C �/ � u.t/kL1; � > 0;

�.u; �/ D sup
0�t�T

�t .u; �/:
(3.54)

From Theorem 2.15 we have that

�.u; �/ � j� j kf kLipT:V: .u0/ (3.55)

for weak solutions of conservation laws.
Now let u.x; t/ be any function inK, not necessarily a solution of (3.1). In order

to measure how far u is from being a solution of (3.1) we insert u in the Kružkov
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form (cf. (2.23))

�T .u; �; k/ D
TZ
0

Z
.ju � kj�t C q.u; k/�x/ dx ds (3.56)

�
Z

ju.x; T / � kj�.x; T / dx C
Z

ju0.x/� kj�.x; 0/ dx:

If u is a solution, then �T � 0 for all constants k and all nonnegative test functions
�. We shall now use the special test function

˝.x; x0; s; s0/ D !"0.s � s0/!".x � x0/;

where

!".x/ D 1

"
!
	x
"




and !.x/ is an even C1 function satisfying

0 � ! � 1; !.x/ D 0 for jxj > 1;
Z
!.x/ dx D 1:

Let v.x0; s0/ be the unique weak solution of (3.1), and define

�";"0 .u; v/ D
TZ
0

Z
�T

�
u;˝. � ; x0; � ; s0/; v.x0; s0/

�
dx0ds0:

The comparison result reads as follows.

Theorem 3.14 (Kuznetsov’s lemma) Let u. � ; t/ be a function in K, and v a so-
lution of (3.1). If 0 < "0 < T and " > 0, then

ku. � ; T�/ � v. � ; T /kL1.R/ � ku0 � v0kL1.R/ C T:V: .v0/
�
2"C "0kf kLip

�
C �.u; "0/ ��";"0 .u; v/; (3.57)

where u0 D u. � ; 0/ and v0 D v. � ; 0/.

Proof We use special properties of the test function˝, namely that

˝.x; x0; s; s0/ D ˝.x0; x; s; s0/ D ˝.x; x0; s0; s/ D ˝.x0; x; s0; s/ (3.58)

and

˝x D �˝x0 ; and ˝s D �˝s0 : (3.59)
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Using (3.58) and (3.59), we find that

�";"0 .u; v/ D ��";"0 .v; u/ �
TZ
0

“
˝.x; x0; s; T /

� ju.x; T /� v.x0; s/j

C jv.x0; T / � u.x; s/j �dx dx0 ds

C
TZ
0

“
˝.x; x0; s; 0/

� jv0.x0/� u.x; s/j

C ju0.x/ � v.x0; s/j �dx dx0 ds
WD ��";"0 .v; u/ � A C B:

Since v is a weak solution, �";"0 .v; u/ � 0, and hence

A � B ��";"0 .u; v/:
Therefore, we would like to obtain a lower bound on A and an upper bound on
B , the lower bound on A involving ku.T /� v.T /kL1 and the upper bound on B
involving ku0 � v0kL1 . We start with the lower bound on A.

Let �" be defined by

�".u; v/ D
“

!".x � x0/ ju.x/� v.x0/j dx dx0: (3.60)

Then

A D
TZ
0

!"0.T � s/ .�".u.T /; v.s//C �".u.s/; v.T /// ds:

Now by a use of the triangle inequality,

ku.x; T /� v.x0; s/k C ju.x; s/ � v.x0; T /j
� ju.x; T /� v.x; T /j C ju.x; T / � v.x; T /j

� jv.x; T / � v.x0; T /j � ju.x; T / � u.x; s/j
� jv.x0; T / � v.x0; s/j � jv.x; T /� v.x0; T /j :

Hence

�".u.T /; v.s//C �".u.s/; v.T // � 2ku.T /� v.T /kL1 � 2�".v.T /; v.T //
� ku.T /� u.s/kL1 � kv.T / � v.s/kL1 :

Regarding the upper estimate on B , we similarly have that

B D
TZ
0

!"0.s/ Œ�".u0; v.s//C �".u.s/; v0/� ds;
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and we also obtain

�".u0; v.s//C �".u.s/; v0/ � 2ku0 � v0kL1 C 2�".v0; v0/

C ku0 � u.s/kL1 C kv0 � v.s/kL1:
Since v is a solution, it satisfies the TVD property, and hence

�".v.T /; v.T // D
Z "Z

�"
!".z/ jv.x C z; T / � v.x; T /j dz dx

�
"Z

�"
!".z/ sup

jzj�"

�Z
jv.x C z; T / � v.x; T /j dx

�
dz

D j"j
"Z

�"
!".z/T:V: .v.T // dz � j"jT:V: .v0/ ;

using (A.10). By the properties of !,

TZ
0

!".T � s/ ds D
TZ
0

!".s/ ds D 1

2
:

Applying (3.55), we obtain (recall that "0 < T )

TZ
0

!"0 .T � s/kv.T / � v.s/kL1 ds

�
TZ
0

!"0.T � s/ .T � s/kf kLipT:V: .v0/ ds

� 1

2
"0kf kLipT:V: .v0/

and
TZ
0

!"0.s/kv0 � v.s/kL1 ds � 1

2
"0kf kLipT:V: .v0/ :

Similarly,

TZ
0

!"0 .T � s/ku.T / � u.s/kL1 ds � 1

2
� .u; "0/

and
TZ
0

!"0.s/ku0 � u.s/kL1 ds � 1

2
� .u; "0/ :

If we collect all the above bounds, we should obtain the statement of the theorem.
�
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Observe that in the special case that u is a solution of the conservation law (3.1),
we know that �";"0 .u; v/ � 0, and hence we obtain, as "; "0 ! 0, the familiar
stability result

ku. � ; T / � v. � ; T /kL1 � ku0 � v0kL1 :

We shall now show in three cases how Kuznetsov’s lemma can be used to give
estimates on how fast a method converges to the entropy solution of (3.1).

} Example 3.15 (The smoothing method)
While not a proper numerical method, the smoothing method provides an ex-
ample of how the result of Kuznetsov may be used. The smoothing method is
a (semi)numerical method approximating the solution of (3.1) as follows: Let
!ı.x/ be a standard mollifier with support in Œ�ı; ı�, and let tn D n�t . Set
u0 D u0 � !ı. For 0 � t < �t define u1 to be the solution of (3.1) with
initial data u0. If �t is small enough, u1 remains differentiable for t < �t .
In the interval Œ.n � 1/�t; n�t/, we define un to be the solution of (3.1), with
un .x; .n � 1/�t/ D un�1. � ; tn�/ � !ı . The advantage of doing this is that un will
remain differentiable in x for all times, and the solution in the strips Œtn; tnC1/ can
be found by, e.g., the method of characteristics. To show that un is differentiable,
we calculate

junx.x; tn�1/j D
ˇ̌̌
ˇ
Z
un�1
x .y; tn�1/!ı.x � y/ dy

ˇ̌̌
ˇ

� 1

ı
T:V:

�
un�1.tn�1/

� � T:V: .u0/

ı
:

Let �.t/ D maxx jux.x; t/j. Using that u is a classical solution of (3.1), we find by
differentiating (3.1) with respect to x that

uxt C f 0.u/uxx C f 00.u/u2x D 0:

Write

�.t/ D ux.x0.t/; t/;

where x0.t/ is the location of the maximum of juxj. Then

�0.t/ D uxx.x0.t/; t/x
0
0.t/C uxt .x0.t/; t/

� uxt .x0.t/; t/ D �f 00.u/
�
ux.x0.t/; t/

�2
� c�.t/2;

since uxx D 0 at an extremum of ux . Thus

�0.t/ � c�2.t/; (3.61)
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where c D kf 00k1. The idea is now that (3.61) has a blowup at some finite time, and
we choose �t less than this time. We shall be needing a precise relation between
�t and ı and must therefore investigate (3.61) further. Solving (3.61) we obtain

�.t/ � � .tn/

1 � c� .tn/ .t � tn/ � T:V: .u0/

ı � cT:V: .u0/�t :

So if

�t <
ı

cT:V: .u0/
; (3.62)

the method is well defined. Choosing �t D ı=.2cT:V: .u0// will do.
Since u is an exact solution in the strips Œtn; tnC1/, we have

tnC1Z
tn

Z
.ju � kj�t C q.u; k/�x/ dx dt

C
Z 	

ju.x; tnC/� kj�.x; tn/ � ju.x; tnC1�/ � kj�.x; tnC1/


dx � 0:

Summing these inequalities and setting k D v.y; s/, where v is an exact solution of
(3.1), we obtain

�T .u;˝; v.y; s// � �
N�1X
nD0

Z
˝ .x; y; tn; s/

	
ju.x; tnC/� v.y; s/j

� ju.x; tn�/ � v.y; s/j


dx;

where we use the test function˝.x; y; t; s/ D !"0.t � s/!".x�y/. Integrating this
over y and s, and letting "0 tend to zero, we get

lim inf
"0!0

�";"0 .u; v/ � �
N�1X
nD0

.�".u.tnC/; v.tn// � �".u.tn�/; v.tn/// :

Using this in Kuznetsov’s lemma, and letting "0 ! 0, we obtain

ku.T / � v.T /k1 � ��u0 � u0��
1

C 2"T:V: .u0/ (3.63)

C
N�1X
nD0

.�".u.tnC/; v.tn// � �".u.tn�/; v.tn/// ;

where we have used that lim"0!0 �t .u; "0/ D 0, which holds because u is a solution
of the conservation law in each strip Œtn; tnC1/.
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To obtain a more explicit bound on the difference of u and v, we investigate
�".!ı � u; v/ � �".u; v/, where �" is defined by (3.60),

�".u � !ı; v/ � �".u; v/ �
•
jzj�1

!".x � y/!.z/
	

ju.x C ız/ � v.y/j

� ju.x/� v.y/j


dx dy dz

D 1

2

•
jzj�1

.!".x � y/ � !".x C ız � y// !.z/

� .ju.x C ız/ � v.y/j � ju.x/� v.y/j/ dx dy dz;

which follows after writing
” D 1

2

” C 1
2

”
and making the substitution x 7!

x � ız, z 7! �z in one of these integrals. Therefore,

�".u � !ı; v/ � �".u; v/ � 1

2

•
jzj�1

j!".y C ız/ � !".y/j

� !.z/ ju.x C ız/ � u.x/j dx dy dz
� 1

2
T:V: .!"/ T:V: .u/ ı

2

� T:V: .u/
ı2

"
;

by the triangle inequality and a further substitution y 7! x � y. Since N D T=�t ,
the last term in (3.63) is less than

N T:V: .u0/
ı2

"
� .T:V: .u0//

2 2cT
ı

"
;

using (3.62). Furthermore, we have that

��u0 � u0
��
1

� ıT:V: .u0/ :

Letting K D T:V: .u0/ c, we find that

ku.T / � v.T /k1 � 2T:V: .u0/

�
ı C "C KT ı

"

�
;

using (3.63). Minimizing with respect to ", we find that

ku.T /� v.T /k1 � 2T:V: .u0/
�
ı C 2

p
KT ı

�
: (3.64)

So, we have shown that the smoothing method is of order 1
2
in the smoothing coef-

ficient ı. }
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} Example 3.16 (The method of vanishing viscosity)
Another (semi)numerical method for (3.1) is the method of vanishing viscosity.
Here we approximate the solution of (3.1) by the solution of

ut C f .u/x D ıuxx; ı > 0; (3.65)

using the same initial data. Let uı denote the solution of (3.65). Due to the dissi-
pative term on the right-hand side, the solution of (3.65) remains a classical (twice
differentiable) solution for all t > 0. Furthermore, the solution operator for (3.65)
is TVD. Hence a numerical method for (3.65) will (presumably) not experience the
same difficulties as a numerical method for (3.1). If .
; q/ is a convex entropy pair,
we have, using the differentiability of the solution, that


.u/t C q.u/x D ı
0.u/uxx D ı
�

.u/xx � 
00.u/u2x

�
:

Multiplying by a nonnegative test function ' and integrating by parts, we get“
.
.u/'t C q.u/'x/ dx dt � ı

“

.u/x'x dx dt;

where we have used the convexity of 
. Applying this with 
 D ˇ̌
uı � uˇ̌ and q D

F.uı; u/, we can bound lim"0!0 �";"0 .u
ı; u/ as follows:

� lim
"0!0

�";"0 .u
ı; u/ � ı

TZ
0

“ ˇ̌̌
ˇ@!".x � y/

@x

ˇ̌̌
ˇ @

ˇ̌
uı.x; t/ � u.y; t/ˇ̌

@x
dx dy dt

� ı

TZ
0

“ ˇ̌̌
ˇ@!".x � y/

@x

ˇ̌̌
ˇ
ˇ̌̌
ˇ@uı.x; t/@x

ˇ̌̌
ˇ dx dy dt

� 2T:V:
�
uı
�
T
ı

"

� 2T T:V: .u0/
ı

"
:

Now letting "0 ! 0 in (3.57), we obtain

��uı.T /� u.T /��
1

� min
"

�
2"C 2T ı

"

�
T:V: .u0/ D 2T:V: .u0/

p
T ı:

So the method of vanishing viscosity also has order 1
2
. }

} Example 3.17 (Monotone schemes)
We will here show that monotone schemes converge in L1 to the solution of (3.1)
at a rate of .�t/1=2. In particular, this applies to the Lax–Friedrichs scheme.

Let u�t be defined by (3.27), where unj is defined by (3.6), that is,

unC1
j D unj � 

	
F n
jC1=2 � F n

j�1=2


; (3.66)
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where F n
jC1=2 D F

	
unj�p; : : : ; u

n
jCp0



, for a scheme that is assumed to be mono-

tone; cf. Definition 3.5. In the following we use the notation


nj D
ˇ̌̌
unj � k

ˇ̌̌
; qnj D f

	
unj _ k



� f

	
unj ^ k



:

We find that

��T .u�t ; �; k/ D �
X
j

N�1X
nD0

xjC1=2Z
xj�1=2

tnC1Z
tn

�

nj �t .x; s/C qnj �x.x; s/

�
ds dx

�
X
j

xjC1=2Z
xj�1=2


0j �.x; 0/ dx C
X
j

xjC1=2Z
xj�1=2


Nj �.x; T / dx

D �
X
j

"
N�1X
nD0

xjC1=2Z
xj�1=2


nj
�
�.x; tnC1/� �.x; tn/

�
dx

C
xjC1=2Z
xj�1=2


0j �.x; 0/ dx �
xjC1=2Z
xj�1=2


Nj �.x; T / dx

C
N�1X
nD0

tnC1Z
tn

qnj
�
�.xjC1=2; s/ � �.xj�1=2; s/

�
ds

#

D
X
j

N�1X
nD0

�
.
nC1
j � 
nj /

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

C .qnj � qnj�1/

tnC1Z
tn

�.xj�1=2; s/ ds
�

by a summation by parts. Recall that we define the numerical entropy flux by

Qn
jC1=2 D F.unj�p _ k; : : : ; unjCp0 _ k/ � F.unj�p ^ k; : : : ; unjCp0 ^ k/:

Monotonicity of the scheme implies, cf. (3.33), that


nC1
j � 
nj C .Qn

jC1=2 �Qn
j�1=2/ � 0:

For a nonnegative test function � we obtain

��T .u�t ; �; k/ �
X
j

N�1X
nD0

	
�.Qn

jC1=2 �Qn
j�1=2/

xjC1=2Z
xj�1=2

�.x; tnC1/ dx

C .qnj � qnj�1/

tnC1Z
tn

�.xj ; s/ ds
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D
X
j

N�1X
nD0

�

		
qnj �Qn

jC1=2



�
	
qnj�1 �Qn

j�1=2


 xjC1=2Z

xj�1=2

�.x; tnC1/ dx

C .qnj � qnj�1/
	 tnC1Z
tn

�.xj�1=2; s/ ds � 
xjC1=2Z
xj�1=2

�.x; tnC1/ dx

�

D
X
j

N�1X
nD0

�

	
Qn
jC1=2 � qnj


 	 xjC3=2Z
xjC1=2

�.x; tnC1/ dx �
xjC1=2Z
xj�1=2

�.x; tnC1/ dx



C
	
qnj � qnj�1


	 tnC1Z
tn

�.xj�1=2; s/ ds � 
xjC1=2Z
xj�1=2

�.x; tnC1/ dx

�

D
X
j

N�1X
nD0

�

	
Qn
jC1=2 � qnj


 	 xjC1=2Z
xj�1=2

�.x C�x; tnC1/ � �.x; tnC1/ dx



C .qnj � qnj�1/
	 tnC1Z
tn

�.xj�1=2; s/ ds � 
xjC1=2Z
xj�1=2

�.x; tnC1/ dx

�
:

We also have that

ˇ̌̌
qnj �Qn

jC1=2
ˇ̌̌

� kf kLip
p0X

mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌

and

ˇ̌̌
qnj � qnj�1

ˇ̌̌
� kf kLip

ˇ̌̌
unj � unj�1

ˇ̌̌
;

which implies that

��T .u�t ; �; k/ � kf kLip
X
j

N�1X
nD0

�	 p0X
mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌


� 
xjC1=2Z
xj�1=2

j�.x C�x; tnC1/� �.x; tnC1/j dx

C
ˇ̌̌
unj � unj�1

ˇ̌̌

�
ˇ̌̌ tnC1Z
tn

�.xj�1=2; s/ ds � 
xjC1Z
xj

�.x; tnC1/ dx
ˇ̌̌ �
:
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Next, we subtract �.xj�1=2; tnC1/ from the integrand in each of the latter two inte-
grals. Since �t D �x, the extra terms cancel, and we obtain

��T .u�t ; �; k/ � kf kLip
X
j

N�1X
nD0

�	 p0X
mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌

(3.67)

� 
xjC1=2Z
xj�1=2

j�.x C�x; tnC1/ � �.x; tnC1/j dx

C ˇ̌
unj �unj�1

ˇ̌	 tnC1Z
tn

ˇ̌
�.xj�1=2; t/��.xj�1=2; tnC1/

ˇ̌
dt

C 

xjC1=2Z
xj�1=2

ˇ̌
�.x; tnC1/ � �.xj�1=2; tnC1/

ˇ̌
dx

�
:

Let v D v.y; s/ denote the unique entropy solution of (3.1), and let k D v.y; s/.
Then

��"0;".u; v/ D �
TZ
0

Z
R

�T
�
u; v.y; s/; !"0 . � � s/!". � � x/� dy ds:

Thus to estimate ��"0;".u; v/ we must integrate the terms on the right-hand side of
(3.67) in .y; s/. To this end,

TZ
0

Z
R

xjC1=2Z
xj�1=2

!"0 .tnC1 � s/ j!".x C�x � y/ � !".x � y/j dx dy ds

D
Z
R

xjC1=2Z
xj�1=2

j!".x C�x � y/ � !".x � y/j dx dy

� �x2 j!"jBV
� 2�x2

"
:

Recalling that  D �t=�x, we get

TZ
0

Z
R

kf kLip
X
j

N�1X
nD0

�	 p0X
mD�p

ˇ̌̌
unjCm � unj

ˇ̌̌


� 
xjC1=2Z
xj�1=2

j�.x C�x; tnC1/� �.x; tnC1/j dx dy ds

� kf kLip 1
2
.p.p � 1/C p0.p0 � 1//

N�1X
nD0

X
j

ˇ̌̌
unj � unj�1

ˇ̌̌ 2�x2
"



� CT
�x

"
: (3.68)
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We also have that

TZ
0

Z
R

tnC1Z
tn

!".xj�1=2 � y/ j!"0.t � s/ � !"0.tnC1 � s/j dt dy ds

D
TZ
0

tnC1Z
tn

j!"0.t � s/ � !"0.tnC1 � s/j dt ds

�
tnC1Z
tn

tnC1Z
t

TZ
0

ˇ̌
! 0
"0
.� � s/ˇ̌ ds d� dt

� C�t2

"0
:

Therefore,

TZ
0

Z
R

kf kLip
X
j

N�1X
nD0

ˇ̌̌
unj � unj�1

ˇ̌̌ tnC1Z
tn

ˇ̌
�.xj�1=2; t/ � �.xj�1=2; tnC1/

ˇ̌
dt dy ds

� kf kLip
X
j

ˇ̌̌
u0j � u0j�1

ˇ̌̌ N�1X
nD0

C�t2

"0

� CT
�t

"0
: (3.69)

Similarly,

TZ
0

Z
R

tnC1Z
tn

!"0.tnC1 � s/ ˇ̌!".x � y/ � !".xj�1=2 � y/ˇ̌ dx dy ds

�
tnC1Z
tn

xZ
xj�1=2

Z
R

j! 0
".z � y/j dy dz dx

� C�x�t

"0
;

and therefore

kf kLip
X
j

N�1X
nD0

TZ
0

Z
R

ˇ̌̌
unj � unj�1

ˇ̌̌


xjC1=2Z
xj�1=2

ˇ̌
�.x; tnC1/� �.xj�1=2; tnC1/

ˇ̌
dxdyds

� kf kLip
X
j

N�1X
nD0

ˇ̌̌
u0j � u0j�1

ˇ̌̌

C�x�t

"0

� CT
�t

"0
: (3.70)
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Collecting the estimates (3.68)–(3.70), we obtain

��"0;".u; v/ � CT

�
�x

"
C �t

"0

�
; (3.71)

where the constant C depends only on f , F , and ju0jBV . Regarding the term
�.u; "0/, we have that t 7! u�t .x; � / is “almost” L1 Lipschitz continuous, so

�.u�t ; "0/ � C .max f"0;�tg C�t/ :

The entropy solution v is of uniformly bounded variation in x for each t . Therefore,
we conclude that

ku�t . � ; T /� v. � ; T /kL1 � ku�t. � ; 0/� v0k1
C CT

�
max f"0;�tg C "0 C "C �t

"0
C �x

"

�
:

Choosing

u0j D 1

�x

xjC1=2Z
xj�1=2

v0.y/ dy;

we have that ku�t . � ; 0/� v0k1 � �x jv0jBV . Then we can choose " D p
�x and

"0 D p
�t to find that

ku�t . � ; T /� v. � ; T /k1 � C
p
�t; (3.72)

where C depends on T , jv0jBV , f , and F . }

If one uses Kuznetsov’s lemma to estimate the error of a scheme, one must
estimate the modulus of continuity Q�t .u; "0/ and the term �";"0 .u; v/. In other
words, one must obtain regularity estimates on the approximation u. Therefore,
this approach gives a posteriori error estimates, and perhaps the proper use for this
approach should be in adaptive methods, in which it would provide error control
and govern mesh refinement. However, despite this weakness, Kuznetsov’s theory
is still actively used.

3.4 A Priori Error Estimates

We shall now describe an application of a variation of Kuznetsov’s approach in
which we obtain an error estimate for the method of vanishing viscosity without
using the regularity properties of the viscous approximation. Of course, this appli-
cation only motivates the approach, since regularity of the solutions of parabolic
equations is not difficult to obtain elsewhere. Nevertheless, it is interesting in its
own right, since many difference methods have (3.73) as their model equation. We
first state the result.
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Theorem 3.18 Let v.x; t/ be a solution of (3.1) with initial value v0, and let u
solve the equation

ut C f .u/x D .ı.u/ux/x ; u.x; 0/ D u0.x/; (3.73)

in the classical sense, with ı.u/ > 0. Then

ku.T / � v.T /kL1.R/ � 2ku0 � v0kL1.R/ C 4T:V: .v0/
p
8T kıkv;

where

kıkv D sup
t2Œ0;T �
x2R

Qı .v.x�; t/; v.xC; t//

and

Qı.a; b/ D 1

b � a

bZ
a

ı.c/ dc:

This result is not surprising, and in some sense is weaker than the correspond-
ing result found using Kuznetsov’s lemma. The new element here is that the proof
does not rely on any smoothness properties of the function u, and is therefore also
considerably more complicated than the proof using Kuznetsov’s lemma.

Proof The proof consists in choosing new �’s, and using a special form of the test
function '. Let !1 be defined as

!1.x/ D
(
1
2

for jxj � 1,

0 otherwise.

We will consider a family of smooth functions ! such that ! ! !1. To keep the
notation simple we will not add another parameter to the functions !, but rather
write ! ! !1 when we approach the limit. Let

'.x; y; t; s/ D !".x � y/!"0.t � s/

with !˛.x/ D .1=˛/ !.x=˛/ as usual. In this notation,

!1
" .x/ D

(
1=.2"/ for jxj � ",

0 otherwise.

In the following we will use the entropy pair


.u; k/ D ju � kj and q.u; k/ D sign .u � k/ .f .u/ � f .k//;
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and except where explicitly stated, we always let u D u.y; s/ and v D v.x; t/. Let

�.u; k/ and q�.u; k/ be smooth approximations to 
 and q such that


� .u/ ! 
.u/ as � ! 0, q� .u; k/ D
Z

0
� .z � k/.f .z/ � f .k// dz:

For a test function ' define

��T .u; k/ D
TZ
0

Z

0
� .u � k/

	
us C f .u/y � �

ı.u/uy
�
y



' dy ds

(which is clearly zero because of (3.73)) and

��";"0 .u; v/ D
TZ
0

Z
��T .u; v.x; t// dx dt:

Note that since u satisfies (3.73), ��
";"0

D 0 for every v. We now split ��";"0 into two
parts. Writing (cf. (2.15))

�
usCf .u/x � .ı.u/uy/y/
0

� .u � k/
D 
.u � k/s C ..f .u/ � f .k//0
0

� .u � k/uy � .ı.u/uy/y
0
� .u � k/

D 
� .u � k/s C q� .u; k/uuy � .ı.u/uy/y
0
� .u � k/

D 
� .u � k/s C q� .u; k/y � .ı.u/
�.u � k/y/y C 
00
� .u � k/ı.u/.uy/2

D 
� .u � k/s C .q� .u; k/ � ı.u/
�.u � k/y/y C 
00.u � k/ı.u/.uy/2;

we may introduce

��1 .u; v/ D
TZ
0

Z TZ
0

Z

00
� .u � v/ı.u/ �uy�2 ' dy ds dx dt;

��
2 .u; v/ D

TZ
0

Z TZ
0

Z 	

�.u � v/s C �

q�.u; v/ � ı.u/
�.u � v/y
�
y



' dy ds dx dt;

such that ��";"0 D ��1 C ��2 . Note that if ı.u/ > 0, we always have ��1 � 0, and
hence ��2 � 0. Then we have that

�2 WD lim sup
�!0

��2 � 0:
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To estimate �2, we integrate by parts:

�2.u; v/ D
TZ
0

Z TZ
0

Z ��
.u � v/'s � q.u; v/'y C V.u; v/'yy
�
dy ds dx dt

C
TZ
0

“

.u.T /� v/'jsDT dy dx dt �

TZ
0

“

.u0 � v/'jsD0 dy dx dt

D
TZ
0

Z TZ
0

Z �

.u � v/'t C F.u; v/'x � V.u; v/'xy

�
dy ds dx dt

C
TZ
0

“

.u.T /� v/'jsDT dy dx dt �

TZ
0

“

.u0 � v/'jsD0 dy dx dt;

where

V.u; v/ D
vZ
u

ı.s/
0.s � v/ ds:

Now define (the “dual of �2”)

��
2 WD �

TZ
0

Z TZ
0

Z �

.u � v/'t C q.u; v/'x � V.u; v/'xy

�
dy ds dx dt

�
TZ
0

“

.u � v.T //'

ˇ̌̌tDT
tD0

dx dy ds:

Then we can write

�2 D ���
2 C

TZ
0

“ �

.u.T / � v/'�jsDT dy dx dt

„ ƒ‚ …
˚1

�
TZ
0

“ �

.u0 � v/'�jsD0 dy dx dt

„ ƒ‚ …
˚2

C
TZ
0

“ �

.u � v.T //'�jtDT dx dy ds

„ ƒ‚ …
˚3

�
TZ
0

“ �

.u0 � v0/'

�jtD0 dx dy ds
„ ƒ‚ …

˚4

DW ���
2 C ˚:
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We will need later that

˚ D ��
2 C�2 � ��

2 : (3.74)

Let

˝"0.t/ D
tZ
0

!"0.s/ ds

and

e.t/ D ku.t/ � v.t/kL1 D
Z

.u.x; t/ � v.x; t// dx:

To continue estimating, we need the following proposition.

Proposition 3.19

˚ � ˝"0.T /e.T / �˝"0.T /e.0/C
TZ
0

!"0.T � t/e.t/ dt �
TZ
0

!"0.t/e.t/ dt

� 4˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ :

Proof (of Proposition 3.19) We start by estimating ˚1. First note that


.u.y; T / � v.x; t// D ju.y; T /� v.x; t/j
� ju.y; T / � v.y; T /j

� jv.y; T /� v.y; t/j � jv.y; t/ � v.x; t/j
D 
.u.y; T / � v.y; T //

� jv.y; T /� v.y; t/j � jv.y; t/ � v.x; t/j :
Thus

˚1 �
TZ
0

“

.u.y; T /� v.y; T //'jsDT dy dx dt

�
TZ
0

“
jv.y; T /� v.y; t/j 'jsDT dy dx dt

�
TZ
0

“
jv.y; t/ � v.x; t/j 'jsDT dy dx dt

� ˝"0.T /e.T / �˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ :

Here we have used that v is an exact solution. The estimate for ˚2 is similar, yield-
ing

˚2 � �˝"0.T /e.0/ �˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ :
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To estimate ˚3 we proceed in the same manner:


.u.y; s/ � v.x; T // � 
.u.y; s/ � v.y; s// � jv.y; s/ � v.x; s/j
� jv.x; s/ � v.x; T /j :

This gives

˚3 �
TZ
0

!"0.T � t/e.t/ dt �˝"0.T /
�
"0kf kLip C "

�
T:V: .v0/ ;

while by the same reasoning, the estimate for ˚4 reads

˚4 � �
TZ
0

!"0.t/e.t/ dt �˝"0.T /
�kf kLip"0 C "

�
T:V: .v0/ :

The proof of Proposition 3.19 is complete. �

To proceed further, we shall need the following Gronwall-type lemma:

Lemma 3.20 Let � be a nonnegative function that satisfies

˝1
"0
.�/�.�/C

�Z
0

!1
"0
.� � t/�.t/ dt � C ˝1

"0
.�/C

�Z
0

!1
"0
.t/�.t/ dt; (3.75)

for all � 2 Œ0; T � and some constant C . Then

�.�/ � 2C:

Proof (of Lemma 3.20) If � � "0, then for t 2 Œ0; ��, !1
"0
.t/ D !1

"0
.� � t/ D

1=.2"0/. In this case (3.75) immediately simplifies to �.t/ � C .
For � > "0, we can write (3.75) as

�.�/ � C C 1

˝1
"0
.�/

"0Z
0

�
!1
"0
.t/ � !1

"0
.� � t/� �.t/ dt:

For t 2 Œ0; "0� we have �.t/ � C , and this implies

�.�/ � C

0
@1C 1

˝1
"0
.�/

"0Z
0

�
!1
"0
.t/ � !1

"0
.� � t/� dt

1
A � 2C:

This concludes the proof of the lemma. �
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Now we can continue the estimate of e.T /.

Proposition 3.21 We have that

e.T / � 2e.0/C 8
�
"C "0kf kLip

�
T:V: .v0/C 2 lim

!!!1 sup
t2Œ0;T �

��
2.u; v/

˝"10 .t/
:

Proof (of Proposition 3.21) Starting with the inequality (3.74), using the estimate
for ˚ from Proposition 3.19, we have, after passing to the limit ! ! !1, that

˝1
"0
.T /e.T /C

TZ
0

!1
"0
.T � t/e.t/ dt � ˝1

"0
.t/e.0/C

TZ
0

!1
"0
.t/e.t/ dt

C 4˝1
"0
.t/
�
"C "0kf kLip

�
T:V: .v0/

C˝1
"0
.T / lim

!!!1 sup
t2Œ0;T �

��
2.u; v/

˝1
"0
.t/

:

We apply Lemma 3.20 with

C D 4
�
"C "0kf kLip

�
T:V: .v0/C lim

!!!1 sup
t2Œ0;T �

��
2.u; v/

˝1
"0
.t/

C e.0/

to complete the proof. �

To finish the proof of the theorem, it remains only to estimate

lim
!!!1 sup

t2Œ0;T �

��
2.u; v/

˝.t/
:

We will use the following inequality:

ˇ̌̌
ˇ̌V

�
u; vC� � V .u; v�/
vC � v�

ˇ̌̌
ˇ̌ � 1

vC � v�

vCZ
v�

ı.s/ ds: (3.76)

Since v is an entropy solution to (3.1), we have that

��
2 � �

TZ
0

Z TZ
0

Z
V.u; v/'xy dy ds dx dt: (3.77)

Since v is of bounded variation, it suffices to study the case that v is differentiable
except on a countable number of curves x D x.t/. We shall bound ��

2 in the case
that we have one such curve; the generalization to more than one is straightforward.
Integrating (3.77) by parts, we obtain

��
2 �

TZ
0

Z
�.y; s/ dy ds; (3.78)
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where � is given by

�.y; s/ D
TZ
0

	 x.t/Z
�1

V.u; v/v vx'y dx

C �V �

�v�
�v� 'y jxDx.t/ C

1Z
x.t/

V .u; v/v vx'y dx


dt:

As before, �a� denotes the jump in a, i.e., �a� D a.x.t/C; t/ � a.x.t/�; t/. Using
(3.76), we obtain

j�.y; s/j �kıkv
TZ
0

	 x.t/Z
�1

jvx j ˇ̌'y ˇ̌ dx

C j�v�j ˇ̌'y jxDx.t/
ˇ̌C

1Z
x.t/

jvxj
ˇ̌
'y
ˇ̌
dx


dt:

(3.79)

LetD be given by

D.x; t/ D
TZ
0

Z ˇ̌
'y
ˇ̌
dy ds:

A simple calculation shows that

D.x; t/ D 1

"

TZ
0

!"0.t � s/ ds
Z

j! 0.y/j dy � 1

"

TZ
0

!"0.t � s/ ds:

Consequently,

TZ
0

sup
x

D.x; t/ dt � 1

"

TZ
0

TZ
0

!"0.t � s/ ds dt

D 2

"

TZ
0

.T � t/!"0 .t/ dt

� 2T˝.T /

"
:

Inserting this in (3.79), and the result in (3.78), we find that

��
2.u; v; T / � 2

"
T T:V: .v0/ kıkv˝.T /:
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Summing up, we have now shown that

e.T / � 2e.0/C 8
�
"C "0kf kLip

�
T:V: .v0/C 4

"
T T:V: .v0/ kıkv:

We can set "0 to zero, and minimize over ", obtaining

ku.T / � v.T /kL1 � 2ku0 � v0kL1 C 4T:V: .v0/
p
8T kıkv:

The theorem is proved. �

The main idea behind this approach to getting a priori error estimates is to choose
the “Kuznetsov-type” form �";"0 such that

�";"0 .u; v/ D 0

for every function v, and then write�";"0 as the sum of a nonnegative and a nonpos-
itive part. Given a numerical scheme, the task is then to prove a discrete analogue
of the previous theorem.

3.5 Measure-Valued Solutions

You try so hard, but you don’t understand : : :
— Bob Dylan, Ballad of a Thin Man (1965)

Monotone methods are at most first-order accurate. Consequently, one must work
harder to show that higher-order methods converge to the entropy solution. While
this is possible in one space dimension, i.e., in the above setting, it is much more dif-
ficult in several space dimensions. One useful tool to aid the analysis of higher-order
methods is the concept of measure-valued solutions. This is a rather complicated
concept, which requires a solid background in analysis beyond this book. There-
fore, the presentation in this section is brief, and is intended to give the reader a first
flavor, and an idea of what this method can accomplish.

The Young Measure

Consider a sequence fungn2N that is uniformly bounded in L1.R � Œ0;1//. This
is typically the result of a numerical method, where one has L1 bounds, but no
uniform bounds on the total variation. Passing to a subsequence, we can still infer
that the weak-star limit

un
�
* u;

exists, which means that for all ' 2 L1.R � Œ0;1//,“
˝

un' dx dt !
“
˝

u' dx dt;
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with ˝ D R � Œ0;1/. In order to show that the limit u is a weak solution to the
conservation law, we must study“

˝

�
un't C f .un/'x

�
dx dt:

The first term in this equation has a limit
’
u't dx dt , but the second term is more

complicated, as the next example shows.

} Example 3.22
Let un D sin.nx/ and f .u/ D u2, and ' a smooth function in L1.R/. Thenˇ̌̌

ˇ
Z

sin.nx/'.x/ dx

ˇ̌̌
ˇ � 1

n

ˇ̌̌
ˇ
Z

cos.nx/' 0.x/ dx
ˇ̌̌
ˇ � C

n
! 0 as n ! 1:

On the other hand, f .un/ D sin2.nx/ D .1 � cos.2nx//=2, and hence a similar
estimate shows thatˇ̌̌

ˇ
Z
.f .un/ � 1

2
/'.x/ dx

ˇ̌̌
ˇ � C

n
! 0 as n ! 1:

Thus we conclude that

un
�
* 0; f .un/

�
*

1

2
¤ 0 D f .0/: }

The Young measure is one method for studying the weak limits of nonlinear
functions of a weak-star convergent sequence.

In order to define it, we first define the function

�.; u/ D

8̂̂
<
ˆ̂:
1 0 �  � u;

�1 u �  � 0;

0 otherwise.

(3.80)

It is easily verified that for every differentiable function f ,

1Z
�1

f 0./�.; u/ d D f .u/ � f .0/: (3.81)

Furthermore, let g./ be a function such that

u D
Z
R

g./ d; sign ./ g./ D jg./j � 1: (3.82)

Define m./ by

m./ D
Z

�1

�
�.�; u/� g.�/�d�:
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Then lim!�1m./ D 0, and

lim
!1

m./ D
1Z

�1
�.�; u/� g.�/ d� D u � u D 0:

Furthermore, by (3.82), we have that m is nondecreasing in the interval .�1; u/

and nonincreasing in the interval .u;1/. Hence m./ is nonnegative. For every
twice differentiable convex function S./ we haveZ

R

S 0./ .�.; u/� g.// d D �
Z
R

S 00./m./ d � 0:

Thus, for a strictly convex function S , the function �. � ; u/ is the unique minimizer
of the problem: Find g 2 L1.R/ such that (3.82) holds andZ

R

S 0./g./ d is minimized. (3.83)

If fungn2N � L1.˝/ is uniformly bounded, then f�. � ; un/gn2N � L1.R � ˝/

is also uniformly bounded. Thus it has (modulo subsequences) a weak-star limit,
which we call f .; x; t/. The next lemma gives some properties of this limit.

Lemma 3.23 Let f .; x; t/ denote the weak-star limit of �.; un/. Then f is in
L1.R �˝/ and satisfies Z

R

f .; x; t/ d D u.x; t/ (3.84)

for almost all .x; t/. Furthermore,

jf .; x; t/j D sign ./ f .; x; t/; (3.85)

@

@
f .; x; t/ D ı./ � �.x;t/./; (3.86)

where ı./ is the Dirac measure, and �.x;t/./ is a nonnegative measure in .; x; t/
such that Z

R

�.x;t/./ d D 1 (3.87)

for almost all .x; t/.

Remark 3.24 The derivative in (3.86) is to be interpreted in the distributional sense,
i.e., (3.86) means that

�
Z
R

f .; x; t/' 0./ d D
Z
R

@

@
f .; x; t/'./ d

D
Z
R

�
ı./� �.x;t/./

�
'./ d;

for all ' 2 C1
0 .R/.
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Proof The first equality, (3.84) follows from the observation

un.x; t/ D
Z
R

�.; un.x; t// d:

To prove (3.85) we choose a test function of the form '.x; t/ ./, where the  has
support in .0;1/ and ' � 0. By definition of the weak-star limit,

“
˝

Z
R

f .; x; t/ ./'.x; t/ d dx dt

D lim
n!1

“
˝

Z
R

�.; un.x; t// ./'.x; t/ d dx dt � 0:

Thus f � 0 for  � 0, and one similarly shows that f � 0 if  � 0.
To prove (3.86), by Remark 3.24 we have that for all test functions '.; x; t/,

“
˝

Z
R

@

@
�.; un/'.; x; t/ d dx dt

D �
“
˝

Z
R

�.; un/
@

@
'.; x; t/ d dx dt

D
“
˝

�
'.0; x; t/ � '.un; x; t/

�
dx dt

D
“
˝

Z
R

	
ı./'.; x; t/ � ıun./'.; x; t/



ddx dt;

where ıun is the Dirac mass centered at un. Thus we define

�n;.x;t/./ D ıun./;

so that

@

@
�.; un.x; t// D ı./� �n;.x;t/./:

The measure �n;.x;t/ is a probability measure in the first variable, in the sense that it
is nonnegative and has unit total mass. Thus we have that there exists a nonnegative
measure �.x;t/ such that

Z
R

�n;.x;t/./ ./ d !
Z
R

 ./ �.x;t/./ d;

for all continuous functions  . In order to conclude, we must prove (3.87). Choose
a test function of the form  ./'.x; t/, where  has compact support and  � 1
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for jj � kunk1. Then

0 D �
“
˝

Z
R

�.; un/ 
0./'.x; t/ d dx dt

D
“
˝

�
1 �

Z
R

�n;.x;t/./ d

�
'.x; t/ dx dt

!
“
˝

�
1 �

Z
R

�.x;t/./ d

�
'.x; t/ dx dt as n ! 1.

Thus (3.87) holds. �

If now un
�
* u in L1, then we have

un.x; t/ D
Z
R

�.; un.x; t// d !
Z
R

f .; x; t/ d D u.x; t/:

Similarly, for every function S.u/ with S 0 bounded and S.0/ D 0,

S.un/ D
Z
R

S 0./�.; un/ d D
Z
R

S./�n;.x;t/./ d:

Therefore, if NS.x; t/ denotes the weak-star limit of S.un/, then

NS.x; t/ D
Z
R

S 0./f .; x; t/ d D
Z
R

S./�.x;t/./ d: (3.88)

The limit measure �.x;t/ is called the Young measure associated with the sequence
fung. If S is strictly convex, then using (3.83), we obtain

NS.x; t/ D
Z
R

S 0./f .; x; t/ d �
Z
R

S 0./�.; u/ d D S.u/;

with equality if and only if f .; x; t/ D �.; u.x; t//. Hence, un ! u strongly, if
and only if �.x;t/./ D ıu./.

We have proved the following theorem:

Theorem 3.25 (Young’s theorem) Let fung be a sequence of functions from˝ D
R � Œ0;1/ with values in Œ�K;K�. Then there exists a family of probability mea-
sures

˚
�.x;t/./

�
.x;t/2˝ , depending weak-star measurably on .x; t/, such that for

every continuously differentiable function S W Œ�K;K� ! R with S 0 bounded and
S.0/ D 0, we have

S.un/
�
* NS in L1.˝/ as n ! 1;
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where
NS.x; t/ D

Z
R

S./ d�.x;t/./ for a.e. .x; t/ 2 ˝;

and where the exceptional set possibly depends on S . Furthermore,

supp �.x;t/ � Œ�K;K� for a.e. .x; t/ 2 ˝:
We also have that un ! u strongly in L1loc.˝/ if and only if �.x;t/./ D ıu.x;t/./.

} Example 3.26
Let us compute the Young measure associated with the sequence fsin.nx/g. In this
case the weak limit of �.; sin.nx// will be independent of x. If  > 0, then

bZ
a

�.; sin.nx// dx D meas fx 2 Œa; b� j sin.nx/ > g
b � a ;

and similarly, if  < 0, then

bZ
a

�.; sin.nx// dx D �meas fx 2 Œa; b� j sin.nx/ < g
b � a :

We have �.; sin.nx//
�
* f./, where

f ./ D 1

2�

8̂̂
<
ˆ̂:
2.�

2
� sin�1.// 0 <  � 1;

�2.�
2

C sin�1.// �1 �  � 0;

0 otherwise.

This can be rewritten

f ./ D �Œ�1;1�./
�
1

2
sign ./� 1

�
sin�1./

�
:

Thus from (3.86),

f 0./ D ı./� �x./ D ı./ � �Œ�1;1�./ 1

�
p
1 � 2 ;

and we see that

�x./ D �Œ�1;1�./

�
p
1 � 2 : }

Theorem 3.25 is indeed the main reason why measure-valued solutions are easier
to obtain than weak solutions, since for every bounded sequence of approximations
to a solution of a conservation law we can associate (at least) one probability mea-
sure �.x;t/ representing the weak-star limits of the sequence. Thus we avoid having
to show that the method is TVD stable and use Helly’s theorem to be able to work
with the limit of the sequence. The measures associated with weakly convergent
sequences are frequently called Young measures.
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Intuitively, when we are in the situation that we have no knowledge of eventual
oscillations in u" as " ! 0, the Young measure �.x;t/.E/ can be thought of as the
probability that the “limit” at the point .x; t/ takes a value in the set E. To be a bit
more precise, define

�
";r
.x;t/.E/ D 1

r2
meas

n
.y; s/

ˇ̌ jx � yj ; jt � sj � r and u".y; s/ 2 E
o
:

Then for small r , �";r.x;t/.E/ is the probability that u
" takes values in E near x. It can

be shown that

�.x;t/ D lim
r!0

lim
"!0

�";r.x;t/I

see [10].

Measure-Valued Solutions

Now we can define measure-valued solutions. We use the notation

h�.x;t/; gi D
Z
R

g./d�.x;t/./:

A probability measure �.x;t/ is a measure-valued solution to (3.1) if

˝
�.x;t/; Id

˛
t
C ˝
�.x;t/; f

˛
x

D 0

in the distributional sense, where Id is the identity map, Id./ D . As with weak
solutions, we call a measure-valued solution compatible with the entropy pair .
; q/
(recall that q0 D 
0f 0) if

˝
�.x;t/; 


˛
t
C ˝
�.x;t/; q

˛
x

� 0 (3.89)

in the distributional sense. If (3.89) holds for all convex 
, we call �.x;t/ a measure-
valued entropy solution. Clearly, weak entropy solutions are also measure-valued
solutions, as we can see by setting

�.x;t/ D ıu.x;t/

for a weak entropy solution u. But measure-valued solutions are more general than
weak solutions, since for every two measure-valued solutions �.x;t/ and �.x;t/ and
� 2 Œ0; 1�, the convex combination

��.x;t/ C .1 � �/�.x;t/ (3.90)

is also a measure-valued solution. It is not clear, however, what are the initial
data satisfied by the measure-valued solution defined by (3.90). We would like our
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measure-valued solutions initially to be Dirac masses, i.e., �.x;0/ D ıu0.x/. Con-
cretely, we shall assume the following:

lim
T#0

1

T

TZ
0

AZ
�A

˝
�.x;t/; jId�u0.x/j

˛
dx dt D 0 (3.91)

for every A. For every Young measure �.x;t/ we have the following lemma.

Lemma 3.27 Let �.x;t/ be a Young measure with supp �.x;t/ � Œ�K;K�, and let !"
be a standard mollifier in x and t . Then:

(i) there exists a Young measure �".x;t/ defined byD
�".x;t/; g

E
D ˝
�.x;t/; g

˛ � !"
D
“

!".x � y/!".t � s/ ˝�.y;s/; g˛ dy ds: (3.92)

(ii) For all .x; t/ 2 R � Œ0; T � there exist bounded measures @x�".x;t/ and @t�
"
.x;t/,

defined by D
@t�

"
.x;t/; g

E
D @t

D
�".x;t/; g

E
;D

@x�
"
.x;t/; g

E
D @x

D
�".x;t/; g

E
:

(3.93)

Proof Clearly, the right-hand side of (3.92) is a bounded linear functional on
C0.R/, the set of compactly supported continuous functions, and hence the
Riesz representation theorem guarantees the existence of �".x;t/. To show that
k�".x;t/kM.R/ D 1, where M.R/ is the set of all Radon measures, we let f ng
be a sequence of test functions such that˝

�.x;t/;  n
˛ ! 1; as n ! 1.

Then for all 1 > � > 0 we can find an N such that˝
�.x;t/;  n

˛
> 1 � �;

for n � N . Thus, for such n, D
�".x;t/;  n

E
� 1 � �;

and therefore k�".x;t/kM.R/ � 1. The opposite inequality is immediate, sinceˇ̌̌D
�".x;t/;  

Eˇ̌̌
� ˇ̌˝

�.x;t/;  
˛ˇ̌

for all test functions  . Therefore, �".x;t/ is a probability measure. Similarly, the
existence of @x�".x;t/ and @t�

"
.x;t/ follows by the Riesz representation theorem. Since

�.x;t/ is bounded, the boundedness of @x�".x;t/ and @t�
"
.x;t/ follows for each fixed

" > 0. �

Now that we have established the existence of the “smooth approximation” to
a Young measure, we can use this to prove the following lemma.
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Lemma 3.28 Assume that f is a Lipschitz continuous function and that �.x;t/./
and �.x;t/.�/ are measure-valued solutions with support in Œ�K;K�. Then

@t
˝
�.x;t/ ˝ �.x;t/; j � �j˛C @x

˝
�.x;t/ ˝ �.x;t/; q.; �/

˛ � 0; (3.94)

in the distributional sense, where

q.; �/ D sign .� �/ .f ./ � f .�//;

and �.x;t/ ˝ �.x;t/ denotes the product measure d�.x;t/d�.x;t/ on R � R.

Proof If �".x;t/ and �
"
.x;t/ are defined by (3.92), and ' 2 C1

0 .R � Œ0; T �/, then we
have that“

R�Œ0;T �

˝
�.x;t/; g

˛
@t .' � !"/ dx dt D

“
R�Œ0;T �

D
�".x;t/; g

E
@t' dx dt

D �
“

R�Œ0;T �

D
@t�

"
.x;t/; g

E
' dx dt;

and similarly,

“
R�Œ0;T �

˝
�.x;t/; g

˛
@x .' � !"/ dx dt D �

“
R�Œ0;T �

D
@x�

"
.x;t/; g

E
' dx dt;

and analogous identities also hold for �.x;t/. Therefore,

D
@t�

"
.x;t/; j � �j

E
C
D
@x�

"
.x;t/; q.; �/

E
� 0; (3.95)D

@t�
"
.x;t/; j� �j

E
C
D
@x�

"
.x;t/; q.; �/

E
� 0: (3.96)

Next, we observe that for every continuous function g,

@t

D
�".x;t/ ˝ �".x;t/; g.; �/

E
D
Z
R

@t

0
@Z

R

g.;�/ d�".x;t/./

1
A d�".x;t/.�/

C
Z
R

@t

0
@Z

R

g.;�/ d�".x;t/.�/

1
A d�".x;t/./

D
Z
R

D
@t�

"
.x;t/; g.; �/

E
d�".x;t/.�/

C
Z
R

D
@t�

"
.x;t/; g.; �/

E
d�".x;t/./;
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and an analogous equality holds for

@x

D
�".x;t/ ˝ �".x;t/; g.; �/

E
:

Therefore, we find that

“
R�Œ0;T �

h D
�
"1
.x;t/ ˝ �

"2
.x;t/; j � �j

E
't C

D
�
"1
.x;t/ ˝ �

"2
.x;t/; q.; �/

E
'x.x; t/

i
dx dt

D �
“

R�Œ0;T �

	Z
R

D
@t�

"1
.x;t/; j� �j

E
C
D
@x�

"1
.x;t/; q.; �/

E
d�

"2
.x;t/.�/



' dx dt

�
“

R�Œ0;T �

	Z
R

D
@t�

"2
.x;t/; j� �j

E
C
D
@x�

"2
.x;t/; q.; �/

E
d�

"1
.x;t/./



' dx dt

� 0;

for every nonnegative test function '. Now we would like to conclude the proof by
sending "1 and "2 to zero. Consider the second term:

I "1;"2 D
“

R�Œ0;T �

D
�
"1
.x;t/ ˝ �

"2
.x;t/; q.; �/

E
'x.x; t/ dx dt

D
“

R�Œ0;T �

• D
�
"2
.x;t/; q.; �/

E
d�.y;s/

� !"1.x � y/!"1.t � s/'x.x; t/ dy ds dx dt:

Since • D
�
"2
.x;t/; q.; �/

E
d�.y;s/!"1.x � y/!"1.t � s/'x.x; t/ dy ds

!
Z D

�
"2
.x;t/; q.; �/

E
d�.x;t/'x.x; t/ < 1

for almost all .x; t/ as "1 ! 0, we can use the Lebesgue dominated convergence
theorem to conclude that

lim
"1!0

I "1;"2 D
“

R�Œ0;T �

D
�.x;t/ ˝ �

"2
.x;t/; q.; �/

E
'x.x; t/ dx dt:

We can apply this argument once more for "2, obtaining

lim
"2!0

lim
"1!0

I "1;"2 D
“

R�Œ0;T �

˝
�.x;t/ ˝ �.x;t/; q.; �/

˛
'x.x; t/ dx dt: (3.97)
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Similarly, we obtain

lim
"2!0

lim
"1!0

“
R�Œ0;T �

D
�
"1
.x;t/ ˝ �

"2
.x;t/; j � �j

E
't .x; t/ dx dt

D
“

R�Œ0;T �

˝
�.x;t/ ˝ �.x;t/; j � �j˛ 't .x; t/ dx dt:

(3.98)

This concludes the proof of the lemma. �

Let fu"g and fv"g be the sequences associated with �.x;t/ and �.x;t/, respectively,
and assume that for t � T , the support of u". � ; t/ and v". � ; t/ is contained in
a finite interval I . Then both u". � ; t/ and v". � ; t/ are in L1.R/ uniformly in ". This
means that both ˝

�.x;t/; jj˛ and
˝
�.x;t/; jj˛

are in L1.R/ for almost all t . Using this observation and the preceding lemma,
Lemma 3.28, we can continue. Define a smooth approximation to the characteristic
function of Œt1; t2� by

�".t/ D
tZ
0

�
!".s � t1/� !".s � t2/

�
ds;

where t2 > t1 > 0 and !" is the usual mollifier. Also define

 n.x/ D

8̂̂
<
ˆ̂:
1 for jxj � n;

2.1� x=.2n// for n < jxj � 2n;

0 otherwise,

and set  ";n D  n � !".x/. Hence
'.x; t/ D �".t/ ";n.x/

is an admissible test function. Furthermore,
ˇ̌
 0
";n

ˇ̌ � 1=n, and �".t/ tends to the
characteristic function of the interval Œt1; t2� as " ! 0. Therefore,

� lim
"!0

“
R�Œ0;T �

h ˝
�.x;t/ ˝ �.x;t/; j � �j˛ 't

C ˝
�.x;t/ ˝ �.x;t/; q.; �/

˛
'x

i
dx dt � 0:

Set

An.t/ D
Z
R

˝
�.x;t/ ˝ �.x;t/; j � �j˛ n.x/ dx:
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Using this definition, we find that

An.t2/ �An.t1/ �
t2Z
t1

Z
R

˝
�.x;t/ ˝ �.x;t/; j� �j˛ j 0

n.x/j dx dt: (3.99)

The right-hand side of this is bounded by

kf kLip
1

n

	��˝�.x;t/; jj˛��
L1.R/

C ��˝�.x;t/; j�j˛��
L1.R/



! 0

as n ! 1. Since �.x;t/ and �.x;t/ are probability measures, for almost all t , the set˚
x j h�.x;t/; 1i ¤ 1 and h�.x;t/; 1i ¤ 1

�
has zero Lebesgue measure. Therefore, for almost all t ,

An.t/ �
Z
R

˝
�.x;t/ ˝ �.x;t/; j� u0.x/j C j� � u0.x/j

˛
dx

D
Z
R

˝
�.x;t/; j� u0.x/j

˛
dx C

Z
R

˝
�.x;t/; j� � u0.x/j

˛
dx:

Integrating (3.99) with respect to t1 from 0 to T , then dividing by T and sending T
to 0, using (3.91), and finally sending n ! 1, we find that“

R�R

j � �j d�.x;t/ d�.x;t/ D 0; for .x; t/ … E, (3.100)

where the Lebesgue measure of the (exceptional) set E is zero. Suppose now that
for .x; t/ … E there is a N in the support of �.x;t/ and a N� in the support of �.x;t/ andN ¤ N�. Then we can find positive functions g and h such that

0 � g � 1; 0 � h � 1;

and

N 2 supp.g/; N� 2 supp.h/; supp.g/\ supp.h/ D ;:
Furthermore, ˝

�.x;t/; g
˛
> 0 and

˝
�.x;t/; h

˛
> 0:

Thus

0 <

“
R�R

g./h.�/ d�.x;t/ d�.x;t/

� sup
;�

ˇ̌̌
ˇg./h.�/ � �

ˇ̌̌
ˇ
“

R�R

j � �j d�.x;t/ d�.x;t/ D 0:

This contradiction shows that both �.x;t/ and �.x;t/ are unit point measures with
support at a common point. Precisely, we have proved the following theorem:
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Theorem 3.29 Let u0 2 L1.R/\ L1.R/.

(i) Suppose that �.x;t/ is a measure-valued entropy solution to the conservation
law

ut C f .u/x D 0

such that �.x;t/ satisfies the initial condition (3.91), and that h�.x;t/; jji is in
L1.Œ0; T �IL1.R//. Then there exists a function u 2 L1.Œ0; T �IL1.R// \
L1.R � Œ0; T �/ such that

�.x;t/ D ıu.x;t/; for almost all .x; t/.

(ii) Assume that �.x;t/ is (another) measure-valued entropy solution satisfying the
same regularity assumptions as �.x;t/. Then

�.x;t/ D �.x;t/ D ıu.x;t/; for almost all .x; t/.

In order to avoid checking (3.91) directly, we can use the following lemma.

Lemma 3.30 Let �.x;t/ be a probability measure, and assume that for all test func-
tions '.x/ we have

lim
�!0C

1

�

�Z
0

Z ˝
�.x;t/; Id

˛
'.x/ dx dt D

Z
u0.x/'.x/ dx; (3.101)

and that for all nonnegative '.x/ and for at least one strictly convex continuous
function 
,

lim sup
�!0C

1

�

�Z
0

Z ˝
�.x;t/; 


˛
'.x/ dx dt �

Z

 .u0.x// '.x/ dx: (3.102)

Then (3.91) holds.

Proof We shall prove

lim
�!0C

1

�

�Z
0

AZ
�A

h�.x;t/;
�
Id�u0.x/

�Ci dx dt D 0; (3.103)

from which the desired result will follow from (3.101) and the identity

j � u0.x/j D 2
�
� u0.x/

�C � �
� u0.x/

�
;

where aC D maxfa; 0g denotes the positive part of a. To get started, we write 
0
C

for the right-hand derivative of 
. It exists by virtue of the convexity of 
; moreover,


./ � 
.y/C 
0
C.y/. � y/
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for all . Whenever " > 0, write

	.y; "/ D 
.y C "/ � 
.y/
"

� 
0
C.y/:

Since 
 is strictly convex, 	.y; "/ > 0, and this quantity is an increasing function of
". In particular, if  > y C ", then 	.y;  � y/ > 	.y; "/, or


./ > 
.y/C 
0
C.y/. � y/C 	.y; "/. � y/:

In every case, then,


./ > 
.y/C 
0
C.y/. � y/C 	.y; "/

�
. � y/C � "�: (3.104)

On the other hand, whenever y <  < y C ", then 	.y;  � y/ > 	.y; "/, so


./ < 
.y/C 
0
C.y/. � y/C "	.y; "/ .y �  < y C "/: (3.105)

Let us now assume that ' � 0 is such that

'.x/ ¤ 0 ) y � u0.x/ < y C ": (3.106)

We use (3.104) on the left-hand side and (3.105) on the right-hand side of (3.102),
and get

lim sup
�!0C

1

�

�Z
0

Z
R

h�.x;t/;
�

.y/C 
0

C.y/.Id�y/

C 	.y; "/
�
.Id�y/C � "��i'.x/ dx dt

�
Z
R

�

.y/C 
0

C.y/
�
u.x0/� y�C "	.y; "/

�
'.x/ dx:

Here, thanks to (3.101) and the fact that �.x;t/ is a probability measure, all the terms
not involving 	.y; "/ cancel, and then we can divide by 	.y; "/ ¤ 0 to arrive at

lim sup
�!0C

1

�

�Z
0

Z
R

h�.x;t/; .Id�y/Ci'.x/ dx dt � 2"

Z
R

'.x/ dx:

Now, remembering (3.106), we see that whenever '.x/ ¤ 0 we have . � y/C �
. � u0.x//C C ", so the above implies

lim sup
�!0C

1

�

�Z
0

Z
R

h�.x;t/;
�
Id�u0.x/

�Ci'.x/ dx dt � 3"

Z
R

'.x/ dx

whenever (3.106) holds.
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It remains only to divide up the common support Œ�M;M� of all the measures
�.x;t/, writing yi D �M C i" for i D 0; 1; : : : ; N � 1, where " D 2M=N . Let 'i
be the characteristic function of Œ�A;A� \ u�1

0 .Œyi ; yi C "//, and add together the
above inequalities, one for each i , to arrive at

lim sup
�!0C

1

�

�Z
0

AZ
�A

h�.x;t/;
�
Id�u0.x/

�Ci'.x/ dx dt � 3"

AZ
�A
'.x/ dx:

Since " can be made arbitrarily small, (3.103) follows, and the proof is complete.
�

Remark 3.31 We cannot conclude that3

lim
�!0C

1

�

�Z
0

Z
R

h�.x;t/; j Id�u0.x/ji dx dt D 0 (3.107)

from the present assumptions. Here is an example to show this.
Let �.x;t/ D ��.x;t/, where �ˇ D 1

2
.ı�ˇ C ıˇ/ and � is a continuous, nonnegative

function with �.x; 0/ D 0. Let u0.x/ D 0 and 
.y/ D y2.
Then (3.101) holds trivially, and (3.102) becomes

lim sup
�!0C

1

�

�Z
0

Z
R

�.x; t/2'.x/ dx dt D 0;

which is also true due to the stated assumptions on � .
The desired conclusion (3.107), however, is now

lim sup
�!0C

1

�

�Z
0

Z
R

�.x; t/ dx dt D 0:

But the simple choice

�.x; t/ D te�.xt/2

yields

lim sup
�!0C

1

�

�Z
0

Z
R

�.x; t/ dx dt D p
�:

We shall now describe a framework that allows one to prove convergence of
a sequence of approximations without proving that the method is TV stable. Un-
fortunately, the application of this method to concrete examples, while not very

3 Where the integral over the compact interval Œ�A;A� in (3.91) has been replaced by an integral
over the entire real line.
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difficult, involves quite large calculations, and will be omitted here. Readers are
encouraged to try their hands at it themselves.

We give one application of these concepts. The setting is as follows. Let un be
computed from a conservative and consistent scheme, and assume uniform bound-
edness of un. Young’s theorem states that there exists a family of probability mea-

sures �.x;t/ such that g.un/
�
* h�.x;t/; gi for Lipschitz continuous functions g. We

assume that the CFL condition,  supu jf 0.u/j � 1, is satisfied. The next theorem
states conditions, strictly weaker than TVD, for which we prove that the limit mea-
sure �.x;t/ is a measure-valued solution of the scalar conservation law.

Theorem 3.32 Let u0 2 L1.R/ \ L1.R/. Assume that the sequence fung is the
result of a conservative, consistent method, and define u�t as in (3.27). Assume that
u�t is uniformly bounded inL1.R�Œ0; T �/, T D n�t . Let�tn ! 0 be a sequence

such that u�tn
�
* u, and let �.x;t/ be the Young measure associated with u�tn , and

assume that unj satisfies the estimate

.�x/ˇ
NX
nD0

X
j

ˇ̌̌
unjC1 � unj

ˇ̌̌
�t � C.T /; (3.108)

for some ˇ 2 Œ0; 1/ and some constant C.T /. Then �.x;t/ is a measure-valued solu-
tion to (3.1).

Furthermore, let .
; q/ be a strictly convex entropy pair, and let Q be a numer-
ical entropy flux consistent with q. Write 
nj D 
.unj / and Q

n
jC1=2 D Q.un/jC1=2.

Assume that

1

�t

	

nC1
j � 
nj



C 1

�x

	
Qn
jC1=2 �Qn

j�1=2



� Rnj (3.109)

for all n and j , where Rnj satisfies,

lim
�t!0

NX
nD0

X
j

'nj R
n
j �x�t D 0 (3.110)

for all nonnegative ' 2 C1
0 where 'nj D '.j�x; n�t/. Then �.x;t/ is a measure-

valued solution compatible with .
; q/, and the initial data is assumed in the sense
of (3.101), (3.102). If (3.109) and (3.110) hold for all entropy pairs .
; q/, then
�.x;t/ is a measure-valued entropy solution to (3.1).

Remark 3.33 For ˇ D 0, (3.108) is the standard TV estimate, while for ˇ > 0,
(3.108) is genuinely weaker than a TV estimate.

Proof We start by proving the first statement in the theorem, assuming (3.108).
As before, we obtain (3.28) by rearranging. For simplicity, we now write F n

jC1=2 D
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F.un/jC1=2, f n
j D f .unj /, and observe that F

n
jC1=2 D f nj C

	
F n
jC1=2 � f nj



, getting

“ 	
u�tD

t
C'

n
j C f .u�t /DC'nj



dx dt

D
X
j;n

DC'nj
	
F n
jC1=2 � f n

j



�t �x:

(3.111)

Here we use the notation

u�t D unj for .x; t/ 2 Œj�x; .j C 1/�x/ � Œn�t; .nC 1/�t/ ;

and

Dt
C'

n
j D 1

�t

	
'nC1
j � 'nj



;

DC'nj D 1

�x

	
'njC1 � 'nj



:

The first term on the left-hand side in (3.111) reads“
u�tD

t
C'

n
j dx dt D

“ ˝
�.x;t/; Id

˛
't dx dt C

“ �
u�t � ˝

�.x;t/; Id
˛�
't dx dt

C
“

u�t

	
Dt

C'
n
j � 't



dx dt: (3.112)

The third term on the right-hand side of (3.112) clearly tends to zero as �t goes to
zero. Furthermore, by definition of the Young measure �.x;t/, the second term tends
to zero as well. Thus the left-hand side of (3.112) approaches

’ h�.x;t/; Idi't dx dt .
One can use a similar argument for the second term on the left-hand side of

(3.111) to show that the (whole) left-hand side of (3.111) tends to“ �˝
�.x;t/; Id

˛
't C ˝

�.x;t/; f
˛
'x
�
dx dt (3.113)

as �t ! 0. We now study the right-hand side of (3.111). Mimicking the proof of
the Lax–Wendroff theorem, we have

ˇ̌̌
F n
jC1=2 � f nj

ˇ̌̌
� C

qX
kD�p

ˇ̌̌
unjCk � unj

ˇ̌̌
:

Therefore,ˇ̌̌
ˇX
j;n

DC'nj
	
F n
jC1=2 � f nj



�t�x

ˇ̌̌
ˇ

� Ck'kLip.p C q C 1/

NX
nD0

X
j

ˇ̌̌
unjC1 � unj

ˇ̌̌
�t�x

� Ck'kLip.p C q C 1/.�x/1�ˇ; (3.114)
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using the assumption (3.108). Thus the right-hand side of (3.114), and hence also
of (3.111), tends to zero. Since the left-hand side of (3.111) tends to (3.113), we
conclude that �.x;t/ is a measure-valued solution. Using similar calculations, and
(3.110), one shows that �.x;t/ is also an entropy measure-valued solution.

It remains to show consistency with the initial condition, i.e., (3.101) and (3.102).
Let '.x/ be a test function, and we use the notation '.j�x/ D 'j . From the
definition of unC1

j , after a summation by parts, we have thatX
j

'j

	
unC1
j � unj



�x D �t

X
j

F n
jC1=2DC'j�x � O .1/�t;

since unj is bounded. Recall that ' D '.x/, we getˇ̌̌
ˇX
j

'j

	
unj � u0j



�x

ˇ̌̌
ˇ � O .1/ n�t: (3.115)

Let t1 D n1�t and t2 D n2�t . Then (3.115) yieldsˇ̌̌
ˇ 1

.n2 C 1 � n1/�t
n2X
nDn1

X
j

'j

	
unj � u0j



�x�t

ˇ̌̌
ˇ � O .1/ t2;

which implies that the Young measure �.x;t/ satisfies

ˇ̌̌
ˇ 1

t2 � t1

t2Z
t1

'.x/
˝
�.x;t/; Id

˛
dx dt �

Z
'.x/u0.x/ dx

ˇ̌̌
ˇ � O .1/ t2: (3.116)

We let t1 ! 0 and set t2 D � in (3.116), obtainingˇ̌̌
ˇ̌̌1
�

�Z
0

Z
'.x/

˝
�.x;t/; Id

˛
dx dt �

Z
'.x/u0.x/ dx

ˇ̌̌
ˇ̌̌ � O .1/ �; (3.117)

which proves (3.101). Now for (3.102). We have that there exists a strictly convex
entropy 
 for which (3.109) holds. Now let '.x/ be a nonnegative test function.
Using (3.109), and proceeding as before, we obtainˇ̌̌

ˇX
j

	

nj � 
0j



'j�x

ˇ̌̌
ˇ � O .1/ n�t C

nX
lD0

X
j

Rlj 'j�t�x:

Using this estimate and the assumption on Rlj , (3.110), we can use the same argu-
ments as in proving (3.117) to prove (3.102). The proof of the theorem is complete.

�

A trivial application of this approach is found by considering monotone schemes.
Here we have seen that (3.108) holds for ˇ D 0, and (3.109) for Rnj D 0. The the-
orem then gives the convergence of these schemes without using Helly’s theorem.
However, in this case the application does not give the existence of a solution, since
we must have this in order to use DiPerna’s theorem. The main usefulness of the
method is for schemes in several space dimensions, where TV bounds are more
difficult to obtain.



3.6 Notes 165

3.6 Notes

The Lax–Friedrichs scheme was introduced by Lax in 1954; see [124]. Godunov
discussed what has later become the Godunov scheme in 1959 as a method to study
gas dynamics; see [80]. The CFL condition was introduced in the seminal paper
[50]; see also [57].

The Lax–Wendroff theorem, Theorem 3.4, was first proved in [128]. Theo-
rem 3.8 was proved by Oleı̆nik in her fundamental paper [145]; see also [169].
Several of the key results concerning monotone schemes are due to Crandall and
Majda [53], [52]. Theorem 3.10 is due to Harten, Hyman, and Lax; see [84].
Harten’s lemma, Lemma 3.12, can be found in [83]. See also [148].

The error analysis is based on the fundamental analysis by Kuznetsov, [119],
where one also can find a short discussion of the examples we have analyzed,
namely the smoothing method, the method of vanishing viscosity, as well as mono-
tone schemes. Our presentation of the a priori estimates follows the approach due
to Cockburn and Gremaud; see [44] and [45], where also applications to numerical
methods are given.

The concept of measure-valued solutions is due to DiPerna, and the key results
can be found in [62], while Lemma 3.30 is to be found in [61]. Our presentation
of the Young measure follows the exposition of Perthame, [150]. For further infor-
mation regarding the functional-analytic framework, see, e.g., [34] and references
therein. The proof of Lemma 3.30 and Remark 3.31 are due to H. Hanche-Olsen.
Our presentation of the uniqueness of measure-valued solutions, Theorem 3.29, is
taken mainly from Szepessy, [173]. Theorem 3.32 is due to Coquel and LeFloch,
[48]; see also [49], where several extensions are discussed. For numerical schemes
that satisfy the criteria in Theorem 3.32, see [49] and [65].

3.7 Exercises

3.1 Consider the difference scheme (3.4). Show that if u0 is given by

u0j D
(
0 for j < 0,

1 for j � 0,

then un D u0 for all n, thus indicating the solution u.x; t/ D �Œ0;1/. Deter-
mine the weak entropy solution.

3.2 Show that the Lax–Wendroff and the MacCormack methods are of second
order.

3.3 The Engquist–Osher (or generalized upwind) method, see [63], is a conserva-
tive difference scheme with a numerical flux defined as follows:

FjC1=2.u/ D f EO
�
uj ; ujC1

�
; where

f EO.u; v/ D
uZ
0

maxff 0.s/; 0g ds C
vZ
0

minff 0.s/; 0g ds C f .0/:
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(a) Show that this method is consistent and monotone.
(b) Find the order of the scheme.
(c) Show that the Engquist–Osher flux f EO can be written

f EO.u; v/ D 1

2

0
@f .u/C f .v/ �

vZ
u

jf 0.s/j ds
1
A :

(d) If f .u/ D u2=2, show that the numerical flux can be written

f EO.u; v/ D 1

2

�
maxfu; 0g2 C minfv; 0g2� :

Generalize this simple expression to the case that f 00.u/ ¤ 0 and
limjuj!1 jf .u/j D 1.

3.4 Why does the method

unC1
j D unj � �t

2�x

	
f
	
unjC1



� f

	
unj�1




not give a viable difference scheme?

3.5 In the derivation of the Godunov scheme it is assumed that�t maxu jf 0.u/j �
1
2
�x, yet it is stated that the method is well defined if the CFL condition
�t maxu jf 0.u/j � �x is satisfied; see (3.9). Please explain.

3.6 Show that (3.24) is the model equation for the Lax–Friedrichs scheme.
3.7 Show that the Lax–Friedrichs scheme is monotone also in the case that the

flux function is assumed only to be Lipschitz continuous.
3.8 Show that Heun’s method is unstable.
3.9 We study a nonconservativemethod for Burgers’s equation. Assume that u0j 2

Œ0; 1� for all j . Then the characteristic speed is nonnegative, and we define

unC1
j D unj � unC1

j

	
unj � unj�1



; n � 0; (3.118)

where  D �t=�x.

(a) Show that this yields a monotone method, provided that a CFL condition
holds.

(b) Show that this method is consistent and determine the truncation error.

3.10 Assume that f 0.u/ > 0 and that f 00.u/ � 2c > 0 for all u in the range of u0.
We use the upwind method to generate approximate solutions to

ut C f .u/x D 0; u.x; 0/ D u0.x/I (3.119)

i.e., we set

unC1
j D unj � 

	
f .unj / � f .unj�1/



:

Set

vnj D unj � unj�1
�x

:



3.7 Exercises 167

(a) Show that

vnC1
j D

	
1 � f 0.unj�1/



vnj C f 0.unj�1/v

n
j�1

� �t

2

�
f 00.
j�1=2/

	
vnj


2 C f 00.
j�3=2/
	
vnj�1


2�
;

where 
j�1=2 is between unj and unj�1.
(b) Next, assume inductively that

vnj � 1

.nC 2/c�t
; for all j ,

and set Ovn D maxfmaxj vnj ; 0g. Then show that

OvnC1 � Ovn � c�t . Ovn/2 :

(c) Use this to show that

Ovn � Ov0
1C Ov0cn�t :

(d) Show that this implies that

uni � unj � �x.i � j / Ov0
1C Ov0cn�t ;

for i � j .
(e) Let u be the entropy solution of (3.119), and assume that

0 � max
x
u0
0.x/ D M < 1:

Show that for almost every x, y, and t we have that

u.x; t/ � u.y; t/
x � y � M

1C cMt
: (3.120)

This is the Oleı̆nik entropy condition for convex scalar conservation laws.

3.11 Assume that f is as in the previous exercise, and that u0 is periodic with
period p.

(a) Use uniqueness of the entropy solution to (3.119) to show that the entropy
solution u.x; t/ is also periodic in x with period p.

(b) Then use the Oleı̆nik entropy condition (3.120) to deduce that

sup
x

u.x; t/ � inf
x
u.x; t/ � Mp

1C cMt
:

Thus limt!1 u.x; t/ D Nu for some constant Nu.
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(c) Use conservation to show that

Nu D 1

p

pZ
0

u0.x/ dx:

3.12 Let unW Œ0; 1/ ! Œ�1; 1� be defined as

un.x/ D
(
1 x 2 Œ2k=2n; .2k C 1/=2n/;

�1 x 2 Œ.2k C 1/=2n; .2k C 2/=2n/;
for k D 0; : : : ; n � 1,

for n 2 N. Find the weak limit of un as n ! 1, and the associated Young
measure.

3.13 We shall consider a scalar conservation law with a “fractal” function as the
initial data. Define the set of piecewise linear functions

D D f�.x/ D Ax C B j x 2 Œa; b�; A;B 2 Rg;
and the map

F.�/ D

8̂̂
<
ˆ̂:
2D.x � a/C �.a/ for x 2 Œa; aC L=3�;

�D.x � a/C �.a/ for x 2 ŒaC L=3; aC 2L=3�;

2D.x � b/C �.b/ for x 2 ŒaC 2L=3; b�;

for � 2 D, where L D b � a and D D .�.b/ � �.a//=L. For a nonnegative
integer k introduce �j;k as the characteristic function of the interval Ij;k D
Œj=3k; .jC1/=3k�, j D 0; : : : ; 3kC1�1. We define functions fvkg recursively
as follows. Let

v0.x/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

0 for x � 0;

x for 0 � x � 1;

1 for 1 � x � 2;

3 � x for 2 � x � 3;

0 for 3 � x:

Assume that vj;k is linear on Ij;k and let

vk D
3k�1X
jD�3k

vj;k�j;k; (3.121)

and define the next function vkC1 by

vkC1 D
3kC1�1X
jD0

F.vj;k/�j;k D
3kC2�1X
jD0

vj;kC1�j;kC1: (3.122)

In the left part of Fig. 3.9 we show the effect of the map F , and on the right
we show v5.x/ (which is piecewise linear on 36 D 729 segments).
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a b

Fig. 3.9 a The construction of F.�/ from �. b v5.x/

(a) Show that the sequence fvkgk>1 is a Cauchy sequence in the supremum
norm, and hence we can define a continuous function v by setting

v.x/ D lim
k!1

vk.x/:

(b) Show that v is not of bounded variation, and determine the total variation
of vk .

(c) Show that

v.j=3k/ D vk.j=3
k/;

for all integers j D 0; : : : ; 3kC1, k 2 N.
(d) Assume that f is a C1 function on Œ0; 1� with 0 � f 0.u/ � 1. We are

interested in solving the conservation law

ut C f .u/x D 0; u0.x/ D v.x/:

To this end we shall use the upwind scheme defined by (3.10), with�t D
�x D 1=3k, and

u0j D v.j�x/:

Show that u�t.x; t/ converges to an entropy solution of the conservation
law above.



Chapter 4

Multidimensional Scalar Conservation Laws

Just send me the theorems, then I shall find the proofs.1

— Chrysippus told Cleanthes, 3rd century BC

Our analysis has so far been confined to scalar conservation laws in one dimen-
sion. Clearly, the multidimensional case is considerably more important. Luckily
enough, the analysis in one dimension can be carried over to higher dimensions by
essentially treating each dimension separately. This technique is called dimensional
splitting. The final results are very much the natural generalizations one would ex-
pect.

The same splitting techniques of dividing complicated differential equations into
several simpler parts can in fact be used to handle other problems. These methods
are generally called operator splitting methods or fractional steps methods.

4.1 Dimensional Splitting Methods

We will show in this section how one can analyze scalar multidimensional conser-
vation laws by dimensional splitting, which amounts to solving one space direction
at a time. To be more concrete, let us consider the two-dimensional conservation
law

ut C f .u/x C g.u/y D 0; u.x; y; 0/ D u0.x; y/: (4.1)

If we let Sf;xt u0 denote the solution of

vt C f .v/x D 0; v.x; y; 0/ D u0.x; y/

(where y is a passive parameter), and similarly let Sg;yt u0 denote the solution of

wt C g.w/y D 0; w.x; y; 0/ D u0.x; y/

(x is a parameter), then the idea of dimensional splitting is to approximate the solu-
tion of (4.1) as follows:

u.x; y; n�t/ �
h
S
g;y
�t ı Sf;x�t

in
u0: (4.2)

1 Lucky guy! Paraphrased from Diogenes Laertius, Lives of Eminent Philosophers, c. A.D. 200.

171© Springer-Verlag Berlin Heidelberg 2015
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} Example 4.1 (A single discontinuity)
We first show how this works on a concrete example. Let

f .u/ D g.u/ D 1

2
u2

and

u0.x; y/ D
(
ul for x < y,

ur for x � y,

with ur > ul . The solution in the x-direction for fixed y gives a rarefaction wave,
the left and right parts moving with speeds ul and ur , respectively. With a quadratic
flux, the rarefaction wave is a linear interpolation between the left and right states.
Thus

u1=2 WD S
f;x
�t u0 D

8̂̂
<
ˆ̂:
ul for x < y C ul�t ,

.x � y/=�t for y C ul�t < x < y C ur�t ,

ur for x > y C ur�t .

The solution in the y-direction for fixed x with initial state u1=2 will exhibit a fo-
cusing of characteristics. The left state, which now equals ur , will move with speed
given by the derivative of the flux function, in this case ur , and hence overtake the
right state, given by ul , which moves with smaller speed, namely ul . The charac-
teristics interact at a time t given by

urt C x � ur�t D ul t C x � ul�t;

or t D �t . At that time we are back to the original Riemann problem between states
ul and ur at the point x D y. Thus

u1 WD S
g;y
�t u

1=2 D u0:

Another application of Sf;x�t will of course give

u3=2 WD S
f;x
�t u

1 D u1=2:

So we have that un D u0 for all n 2 N. When we introduce coordinates

� D 1p
2
.x C y/ ; 
 D 1p

2
.x � y/;

the equation transforms into

ut C
�
1p
2
u2
�
�

D 0; u.�; 
; 0/ D
(
ul for 
 � 0,

ur for 
 > 0.
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We see that u.x; y; t/ D u0.x; y/, and consequently lim�t!0 u
n D u0 (where we

keep n�t D t fixed). Thus the dimensional splitting procedure produces approxi-
mate solutions converging to the right solution in this case. }

We will state all results for the general case of arbitrary dimension, while proofs
will be carried out in two dimensions only, to keep the notation simple. We first
need to define precisely what is meant by a weak entropy solution of the initial
value problem

ut C divf .u/ D 0; ujtD0 D u0; (4.3)

where f D .f1; : : : ; fm/, and the spatial variables are denoted by .x1; : : : ; xm/2Rm.
Here we adopt the Kružkov entropy condition from Chapt. 2, and say that u is
a (weak) Kružkov entropy solution of (4.3) for time Œ0; T � if u is a bounded func-
tion that satisfies2

TZ
0

Z
Rm

� ju � kj 't C sign .u � k/
mX
jD1

�
fj .u/� fj .k/

�
'xj
�
dx1 � � � dxm dt

C
Z
Rm

	
'jtD0 ju0 � kj � .ju � kj '/jtDT



dx1 � � � dxm � 0; (4.4)

for all constants k 2 R and all nonnegative test functions ' 2 C1
0 .R

m � Œ0; T �/. It
certainly follows as in the one-dimensional case that u is a weak solution, i.e.,

1Z
0

Z
Rm

�
u't C f .u/�r'

�
dx1 � � � dxm dt

C
Z
Rm

'jtD0u0 dx1 � � � dxm D 0; (4.5)

for all test functions ' 2 C1
0 .R

m � Œ0;1//.
Our analysis aims at two different goals. We first show that the dimensional

splitting indeed produces a sequence of functions that converges to a solution of
the multidimensional equation (4.3). Our discussion will here be based on the more
or less standard argument using Kolmogorov’s compactness theorem. The argu-
ment is fairly short. In order to obtain stability in the multidimensional case in the
sense of Theorem 2.14, we show that dimensional splitting preserves this stability.
Furthermore, we show how one can use front tracking as our solution operator in
one dimension in combination with dimensional splitting. Finally, we determine
the appropriate convergence rate of this procedure. This analysis strongly uses
Kuznetsov’s theory from Sect. 3.3, but matters are more complicated and techni-
cal than in one dimension.

We shall now show that dimensional splitting produces a sequence that con-
verges to the entropy solution u of (4.3); that is, the limit u should satisfy (4.4).

2 If we want a solution for all time, we disregard the last term in (4.4) and integrate t over Œ0;1/.
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As promised, our analysis will be carried out in the two-dimensional case only, i.e.,
for equation (4.1). Assume that u0 is a function in L1.R2/ \ L1.R2/ \ BV .R2/

(consult Definition A.2 for a definition of BV .R2/; see also (A.11)). Let tn D n�t

and tnC1=2 D �
nC 1

2

�
�t . Define

u0 D u0; unC1=2 D S
f;x
�t u

n; unC1 D S
g;y
�t u

nC1=2; (4.6)

for n 2 N0. We shall also be needing an approximate solution for t ¤ tn. We want
the approximation to be an exact solution to a one-dimensional conservation law
in each interval

�
tj ; tjC1=2

�
, j D k=2, and k 2 N0. The way to do this is to make

“time go twice as fast” in each such interval; i.e., let u�t be defined by3

u�t .x; t/ D
8<
:S

f;x

2.t�tn/u
n for tn � t � tnC1=2,

S
g;y

2.t�tnC1=2/u
nC1=2 for tnC1=2 � t � tnC1.

(4.7)

We will use Theorem A.11, that is, we show that the sequence fu�tg is compact.
Since neither the operator Sf;x nor Sg;y increases the L1 norm, u�t will be uni-
formly bounded, i.e.,

ku�tkL1.R2/ � ku0kL1.R2/ (4.8)

independent of �t .
Next we study the total variation. We start by consideringZ
T:V:y

	
S
f;x
�t u

n


dx D

Z
lim
h!0

1

h

Z ˇ̌
unC1=2.x; y C h/ � unC1=2.x; y/

ˇ̌
dy dx

D lim
h!0

1

h

“ ˇ̌
unC1=2.x; y C h/ � unC1=2.x; y/

ˇ̌
dx dy

� lim
h!0

1

h

“
jun.x; y C h/� un.x; y/j dx dy

D
Z

lim
h!0

1

h

Z
jun.x; y C h/ � un.x; y/j dy dx

D
Z

T:V:y .u
n/ dx; (4.9)

where we used Lemma A.1 and the L1-contractivity; cf. Theorem 2.15 (vi). The
interchange of integrals and limits is justified using Lebesgue’s dominated conver-
gence theorem.

For the solution constructed from dimensional splitting we have

T:V:x;y
�
unC1=2� D

Z
T:V:x

	
S
f;x
�t u

n


dy C

Z
T:V:y

	
S
f;x
�t u

n


dx

�
Z

T:V:x .u
n/ dy C

Z
T:V:y .u

n/ dx

D T:V:x;y .u
n/ ; (4.10)

3 We will keep the ratio  D �t=�x fixed, and thus we index only with �t .
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using the TVD property of Sf;x and (4.9). Similarly,

T:V:x;y
�
unC1� � T:V:x;y

�
unC1=2� ;

and thus

T:V:x;y .u
n/ � T:V:x;y .u0/

follows by induction. This extends to

T:V:x;y .u�t / � T:V:x;y .u0/ : (4.11)

We now want to establish Lipschitz continuity in time of the L1-norm, i.e.,

ku�t .t/ � u�t .s/kL1.R2/ � C jt � sj (4.12)

for some constantC . By repeated use of the triangle inequality it suffices to estimate

ku�t .tnC1/� u�t .tn/kL1.R2/ � ��unC1 � unC1=2��
1

C ��unC1=2 � un��
L1.R2/

D
���Sf;x�t un � un

���
L1.R2/

C ��Sg;y�t unC1=2 � unC1=2��
L1.R2/

: (4.13)

Using Theorem 2.15 (vi), we conclude that the first term in (4.13) is bounded by
kf kLip�t T:V:x;y .un/. For the second term. we obtain, using in addition (4.9), the
bound kgkLip�t T:V:x;y .un/. This proves

ku�t .tnC1/ � u�t.tn/k1 � �t maxfkf kLip; kgkLipgT:V:x;y .u0/ : (4.14)

Using interpolation, we obtain the estimate

ku�t .t/ � u�t .s/k1 � ku�t.t/ � u�t .tn/k1
C ku�t .tn/� u�t .tm/k1 C ku�t .s/ � u�t .tm/k1

� � jtn � tmj C 2�t
�
maxfkf kLip; kgkLipgT:V:x;y .u0/

� � jt � sj C 4�t
�
maxfkf kLip; kgkLipgT:V:x;y .u0/ ;

(4.15)

where t 2 Œtn; tnC1/ and s 2 Œtm; tmC1/.
Using Theorem A.11, we conclude the existence of a convergent subsequence,

also labeled fu�tg, and set u D lim�t!0 u�t . Next we have to prove that the limit
u is a weak entropy solution.

Let � D �.x; y; t/ be a nonnegative test function, and define ' by '.x; y; t/ D
�.x; y; 1

2
t C tn/. By defining � D 2.t �n�t/, we have that for each y, the function

u�t is a weak solution in x on the strip t 2 Œtn; tnC1=2� satisfying the inequality

�tZ
0

Z �ju�t � kj '� C qf .u�t ; k/'x
�
dx d�

�
Z ˇ̌

unC1=2 � kˇ̌ 'jtD�t dx �
Z

jun � kj 'jtD0 dx;
(4.16)
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for all constants k. Here qf .u; k/ D sign .u � k/ .f .u/�f .k//. Changing back to
the t variable, we find that

2

tnC1=2Z
tn

Z �
1

2
ju�t � kj�t C qf .u�t ; k/�x

�
dx dt

�
Z ˇ̌

unC1=2 � kˇ̌ �jtDtnC1=2 dx �
Z

jun � kj �jtDtn dx: (4.17)

Similarly,

2

tnC1Z
tnC1=2

Z �
1

2
ju�t � kj�t C qg.u�t ; k/�y

�
dy dt

�
Z ˇ̌

unC1 � kˇ̌�jtDtnC1 dy �
Z ˇ̌

unC1=2 � kˇ̌�jtDtnC1=2 dy: (4.18)

Here qg is defined similarly to qf , using g instead of f . Integrating (4.17) over y
and (4.18) over x and adding the two results and summing over n, we obtain

2

TZ
0

“ �
1

2
ju�t � kj�t C

X
n

�nq
f .u�t ; k/�x

C
X
n

Q�nqg.u�t ; k/�y
�
dx dy dt

�
“

.ju�t � kj�/jtDT dx dy �
“

ju0 � kj�.0/ dx dy;

where �n and Q�n denote the characteristic functions of the strips tn � t � tnC1=2
and tnC1=2 � t � tnC1, respectively. As �t tends to zero, it follows that

X
n

�n
�
*

1

2
;

X
n

Q�n �
*

1

2
:

Specifically, for continuous functions  we see that

X
n

TZ
0

�n dt D
X
n

tnC1=2Z
tn

 dt

D
X
n

 .t�n /
�t

2

D 1

2

X
n

 .t�n /�t

! 1

2

TZ
0

 dt as �t ! 0
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(where t�n is in Œtn; tnC1=2�), by definition of the Riemann integral. The general case
follows by approximation.

Letting �t ! 0, we thus obtain

TZ
0

“ 	
ju � kj�t C qf .u; k/�x C qg.u; k/�y



dx dy dt

C
“

ju0 � kj�jtD0 dx dy �
“

.ju � kj�/jtDT dx dy;

which proves that u.x; y; t/ is a solution to (4.1) satisfying the Kružkov entropy
condition.

Next, we want to prove uniqueness of solutions of multidimensional conserva-
tion laws. Let u and v be two Kružkov entropy solutions of the conservation law

ut C f .u/x C g.u/y D 0 (4.19)

with initial data u0 and v0, respectively. The argument in Sect. 2.4 leads, with
no fundamental changes in the multidimensional case, to the same result (2.65),
namely,

ku.t/ � v.t/kL1.R2/ � ku0 � v0kL1.R2/; (4.20)

thereby proving uniqueness. Using the fact that if every subsequence of a sequence
has a further subsequence converging to the same limit, the whole sequence con-
verges to that (unique) limit, we find that the whole sequence fu�tg converges, not
just a subsequence. We have proved the following result.

Theorem 4.2 Let fj be piecewise twice continuously differentiable functions, and
furthermore, let u0 be an integrable and bounded function in BV .Rm/. Define the
sequence of functions fung by u0 D u0 and

unCj=m D S
fj ;xj
�t unC.j�1/=m; j D 1; : : : ; m; n 2 N0:

Introduce the function (where tr D r�t for a rational number r)

u�t .x1; : : : ; xm; t/ D S
fj ;xj
m.t�tnC.j�1/=m/u

nC.j�1/=m;

for t 2 ŒtnC.j�1/=m; tnCj=m�. Fix T > 0. Then for every sequence f�tg such that
�t ! 0, for all t 2 Œ0; T � the function u�t .t/ converges to the unique weak so-
lution u.t/ of (4.3) satisfying the Kružkov entropy condition (4.4). The limit is in
C.Œ0; T �IL1loc.Rm//.

To prove stability of the solution with respect to flux functions, we will show that
the one-dimensional stability result (2.80) in Sect. 2.4 remains valid with obvious
modifications in several dimensions. Let u and v denote the unique solutions of

ut C f .u/x C g.u/y D 0; ujtD0 D u0;
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and

vt C Qf .v/x C Qg.v/y D 0; vjtD0 D v0;

respectively, that satisfy the Kružkov entropy condition. We want to estimate the
L1-norm of the difference between the two solutions. To this end, we first consider

��unC1=2 � vnC1=2��
L1.R2/

D
“ ˇ̌

unC1=2 � vnC1=2 ˇ̌ dx dy
�
Z 	Z

jun � vnj dx

C�t minfT:V:x .un/ ;T:V:x .vn/gkf � Qf kLip


dy

D kun � vnkL1.R2/

C�tkf � Qf kLip
Z

minfT:V:x .un/ ;T:V:x .vn/g dy:

Next we employ the trivial, but useful, inequality

a ^ b C c ^ d � .aC c/ ^ .b C d/; a; b; c; d 2 R:

Thus

��unC1 � vnC1��
L1.R2/

D
“ ˇ̌

unC1 � vnC1 ˇ̌ dx dy
�
Z 	Z ˇ̌

unC1=2 � vnC1=2 ˇ̌ dy
C�t min

˚
T:V:y

�
unC1=2� ;T:V:y �vnC1=2�� kg � QgkLip



dx

� ��unC1=2 � vnC1=2��
L1.R2/

C�tkg � QgkLip
Z

min
˚
T:V:y

�
unC1=2� ;T:V:y �vnC1=2�� dx

� kun � vnkL1.R2/ C�t max
n
kf � Qf kLip; kg � QgkLip

o
�
�
min

n Z
T:V:x .u

n/ dy;

Z
T:V:x .v

n/ dy
o

C min
n Z

T:V:y .u
n/ dx;

Z
T:V:y .v

n/ dx
o�

� kun � vnkL1.R2/

C�t maxfkf � Qf kLip; kg � QgkLipg

� min

(R
T:V:x .un/ dy C R

T:V:y .un/ dx;R
T:V:x .vn/ dy C R

T:V:y .vn/ dx

)

D kun � vnkL1.R2/

C�t maxfkf � Qf kLip; kg � QgkLipgmin
n
T:V: .un/ ;T:V: .vn/

o
;
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which implies

kun � vnkL1.R2/ � ku0 � v0kL1.R2/

C n�t maxfkf � Qf kLip; kg � QgkLipgminfT:V: .u0/ ;T:V: .v0/g: (4.21)

Consider next t 2 Œtn; tnC1=2/. Then the continuous interpolants defined by (4.7)
satisfy

ku�t .t/ � v�t .t/kL1.R2/ D
���Sf;x2.t�tn/un � S Qf ;x

2.t�tn/v
n
���
L1.R2/

�
Z h Z

jun � vnj dx

C 2.t � tn/minfT:V:x .un/ ;T:V:x .vn/gkf � Qf kLip
i
dy

D kun � vnkL1.R2/ (4.22)

C 2.t � tn/kf � Qf kLip
Z

minfT:V:x .un/ ;T:V:x .vn/g dy
� ku0 � v0kL1.R2/

C tnmaxfkf � Qf kLip; kg � QgkLipgminfT:V: .u0/ ;T:V: .v0/g
C 2.t � tn/minfT:V: .u0/ ;T:V: .v0/gmaxfkf � Qf kLip; kg � QgkLipg

� ku0 � v0kL1.R2/

C .t C�t/minfT:V: .u0/ ;T:V: .v0/gmaxfkf � Qf kLip; kg � QgkLipg:

Observe that the above argument also holds mutatis mutandis in the general case
of a scalar conservation law in any dimension. We summarize our results in the
following theorem.

Theorem 4.3 Let u0 be in L1.Rm/ \ L1.Rm/ \ BV .Rm/, and let fj be piece-
wise twice continuously differentiable functions for j D 1; : : : ; m, and set f D
.f1; : : : ; fm/. Then there exists a unique solution u D u.x1; : : : ; xm; t/ of the initial
value problem

ut C divf .u/ D 0; ujtD0 D u0; (4.23)

that satisfies the Kružkov entropy condition (4.4). The solution satisfies

ku.t/kL1.Rm/ � ku0kL1.Rm/ ;

T:V: .u.t// � T:V: .u0/ ;

ku.t/ � u.s/kL1.Rm/ � jt � sjmax
j

f kfjkLip gT:V: .u0/ :
(4.24)

Furthermore, if v0 and g share the same properties as u0 and f , respectively, then
the unique weak Kružkov entropy solution of

vt C div g.v/ D 0; vjtD0 D v0; (4.25)
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satisfies

ku.t/ � v.t/kL1.Rm/ � ku0 � v0kL1.Rm/ (4.26)

C t minfT:V: .u0/ ;T:V: .v0/gmax
j

f kfj � gjkLip g:

If u0 � v0 and f D g, then also u � v on all of Rm � Œ0;1/.

Proof The proof of the Lipschitz continuity in time follows from (4.15). The mono-
tonicity statement at the end follows using the L1-contractivity (the special case of
(4.26) with f D g) as in the one-dimensional case by employing the Crandall–
Tartar lemma. �

(See also Exercise 4.1.)

4.2 Dimensional Splitting and Front Tracking

It doesn’t matter if the cat is black or white. As long as it catches rats, it’s a good cat.
— Deng Xiaoping (1904–1997)

In this section we will study the case in which we use front tracking to solve the
one-dimensional conservation laws. More precisely, we replace the flux functions
f and g (in the two-dimensional case) by piecewise linear continuous interpola-
tions fı and gı, with the interpolation points spaced a distance ı apart. The aim is
to determine the convergence rate toward the solution of the full two-dimensional
conservation law as ı ! 0 and �t ! 0.

With the front-tracking approximation, the one-dimensional solutions will be
piecewise constant if the initial condition is piecewise constant. In order to prevent
the number of discontinuities from growing without bound, we will project the one-
dimensional solution Sfı;xu onto a fixed grid in the .x; y/-plane before applying
the operator Sgı;y .

To be more concrete, let the grid spacing in the x- and y- directions be given by
�x and �y, respectively, and let Iij denote the grid cell

Iij D Œxi ; xiC1/ � Œyj ; yjC1/:

The projection operator � is defined by

�u.x; y/ D 1

�x�y

“
Iij

u dx dy for .x; y/ 2 Iij :

Let the approximate solution at the discrete times tl be defined as

unC1=2 D � ı Sfı ;x�t u
n and unC1 D � ı Sgı;y�t u

nC1=2;
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y

x

y

x

y

x

y

x

un(0) un(Δt)

un+1/2(0)un+1/2(Δt)

Sfδ,x
Δt

π

Sgδ,y
Δt

π n→n + 1

Fig. 4.1 Front tracking and dimensional splitting on a 3 � 3 grid

for n D 0; 1; 2; : : : , with u0 D �u0. We collect the discretization parameters in

 D .ı;�x;�y;�t/. In analogy to (4.7), we define u
 as

u
.t/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

S
fı;x

2.t�tn/u
n for tn � t < tnC1=2,

unC1=2 for t D tnC1=2;

S
gı;y

2.t�tnC1=2/u
nC1=2 for tnC1=2 � t < tnC1,

unC1 for t D tnC1.

(4.27)

In Fig. 4.1 we illustrate how this works. Starting in the upper left corner, the operator
S
fı;x
�t takes us to the upper right corner; then we apply � and move to the lower right

corner. Next, Sgı;y�t takes us to the lower left corner, and finally � takes us back to
the upper left corner, this time with n incremented by 1.

To prove that u
 converges to the unique solution u as 
 ! 0, we essentially
mimic the approach we just used to prove Theorem 4.2. First of all we observe that��u
.t/��L1.R2/

� ��u0��
L1.R2/

; (4.28)

since Sfı;x , Sgı;y , and � all obey a maximum principle. On each rectangle Iij the
function u
 is constant for t D �t . In a desperate attempt to simplify the notation,
we write

unij D u
.x; y; n�t/ for .x; y/ 2 Iij :
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Next we go carefully through one full time step in this construction, starting with
unij . At each step we define a shorthand notation that we will use in the estimates.
When we consider unij as a function of x only, we write

unj .0/ D unij D u
. � ; j�y; n�t/:
(The argument “0” on the left-hand side indicates the start of the time variable
before we advance time an interval�t using Sfı;x�t .) Advancing the solution in time
by �t by applying front tracking in the x-variable produces

unj .�t/ D
	
S
fı;x
�t u

n
j



.x/:

(The x-dependence is suppressed in the notation on the left-hand side.) We now
apply the projection � , which yields

u
nC1=2
ij D �unj .�t/:

After this sweep in the x-variable, it is time to do the y-direction. Considering
u
nC1=2
ij as a function of y, we write

u
nC1=2
i .0/ D u

nC1=2
ij D u


	
i�x; � ;

	
nC 1

2



�t


;

to which we apply the front-tracking solution operator in the y-direction

u
nC1=2
i .�t/ D

	
S
gı;y
�t u

nC1=2
i



.y/:

(The y-dependence is suppressed in the notation on the left-hand side.) One full
time step is completed by a final projection

unC1
ij D �u

nC1=2
i .�t/:

Using this notation, we first want to prove that the total variation is bounded in
the sense that

T:V: .un/ � T:V: .u0/ : (4.29)

We will show that

T:V:
�
unC1=2� � T:V: .un/ I (4.30)

an analogous argument gives T:V:
�
unC1� � T:V:

�
unC1=2�, from which we con-

clude that

T:V:
�
unC1� � T:V: .un/ ;

and (4.29) follows by induction. By definition,

T:V:
�
unC1=2� D

X
i;j

	ˇ̌̌
u
nC1=2
iC1;j � unC1=2

i;j

ˇ̌̌
�y C

ˇ̌̌
u
nC1=2
i;jC1 � unC1=2

i;j

ˇ̌̌
�x



; (4.31)
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while

T:V: .un/ D
X
i;j

	ˇ̌̌
uniC1;j � uni;j

ˇ̌̌
�y C

ˇ̌̌
uni;jC1 � uni;j

ˇ̌̌
�x



: (4.32)

We first consider

X
i

ˇ̌̌
u
nC1=2
iC1;j � unC1=2

i;j

ˇ̌̌
D T:V:x

	
�unj .�t/




� T:V:x
	
unj .�t/



� T:V:x

	
unj .0/



D
X
i

ˇ̌̌
uniC1;j � uni;j

ˇ̌̌
; (4.33)

where we first used that T:V:x .��/ � T:V:x .�/ for step functions �. This fol-
lows from the following argument: Let �c be a continuous function equal to �
except close to each jump, where we use a linear interpolation. Then T:V:x .�/ D
T:V:x .�c/ � T:V:x .��/, since �� is just a particular partition of �c ; cf. (A.1).
Subsequently we used that T:V: .v/ � T:V: .v0/ for solutions v of one-dimensional
conservation laws with initial data v0. For the second term in the definition of
T:V:

�
unC1=2� we obtain (cf. (4.10))

X
i;j

ˇ̌̌
u
nC1=2
i;jC1 � unC1=2

i;j

ˇ̌̌
�x�y D

X
i;j

Z
Iij

ˇ̌̌
u
nC1=2
i;jC1 � unC1=2

i;j

ˇ̌̌
dx dy

D
X
i;j

Z
Iij

ˇ̌̌
�
	
unjC1.�t/ � unj .�t/


ˇ̌̌
dx dy

�
X
i;j

Z
Iij

�
	ˇ̌̌
unjC1.�t/ � unj .�t/

ˇ̌̌

dx dy

D
X
i;j

Z
Iij

ˇ̌̌
unjC1.�t/ � unj .�t/

ˇ̌̌
dx dy

D
X
i;j

�y

.iC1/�xZ
i�x

ˇ̌̌
unjC1.�t/ � unj .�t/

ˇ̌̌
dx

D
X
j

�y

Z
R

ˇ̌̌
unjC1.x;�t/ � unj .x;�t/

ˇ̌̌
dx

�
X
j

�y

Z
R

ˇ̌̌
unjC1.x; 0/� unj .x; 0/

ˇ̌̌
dx

D
X
i;j

ˇ̌̌
uni;jC1 � uni;j

ˇ̌̌
�x�y: (4.34)
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The first inequality follows from j��j � � j�j; thereafter, we use RIij �� D R
Iij
�,

and finally we use the L1-contractivity, kv � wkL1.R/ � kv0 � w0kL1.R/, of solu-
tions of one-dimensional conservation laws. Multiplying (4.33) by �y, summing
over j , dividing (4.34) by �x, and finally adding the results gives (4.30).

Finally, we want to show the analogue of Lipschitz continuity in time of the
spatial L1-norm as expressed in (4.12). We want to prove the following result:

��u
.tm/� u
.tn/
��
L1.R2/

D
X
i;j

ˇ̌̌
umij � unij

ˇ̌̌
�x�y

�
	
maxf kfıkLip; kgıkLip g�t C 2.�x C�y/



� T:V:

�
u0
� jm � nj : (4.35)

To prove (4.35), it suffices to show that

X
i;j

ˇ̌̌
unC1
ij � unij

ˇ̌̌
�x�y � �

maxf kfıkLip; kgıkLip g�t C 2.�x C�y/
�
T:V:

�
u0
�
:

(4.36)

We start by writing

ˇ̌̌
unC1
ij � unij

ˇ̌̌
�
ˇ̌̌
unC1
ij � unC1=2

i .�t/
ˇ̌̌
C
ˇ̌̌
u
nC1=2
ij � unj .�t/

ˇ̌̌
C
ˇ̌̌
u
nC1=2
i .�t/ � unC1=2

i .0/
ˇ̌̌
C
ˇ̌̌
unj .�t/ � unj .0/

ˇ̌̌

D
ˇ̌̌
�u

nC1=2
i .�t/� unC1=2

i .�t/
ˇ̌̌
C
ˇ̌̌
�unj .�t/ � unj .�t/

ˇ̌̌
C
ˇ̌̌
u
nC1=2
i .�t/ � unC1=2

i .0/
ˇ̌̌
C
ˇ̌̌
unj .�t/ � unj .0/

ˇ̌̌
:

Integrating this inequality over R2 gives

X
i;j

ˇ̌̌
unC1
ij � unij

ˇ̌̌
�x�y �

“ ˇ̌̌
�u

nC1=2
i .�t/� unC1=2

i .�t/
ˇ̌̌
dx dy

C
“ ˇ̌̌

�unj .�t/ � unj .�t/
ˇ̌̌
dx dy

C
“ ˇ̌̌

u
nC1=2
i .�t/ � unC1=2

i .0/
ˇ̌̌
dx dy

C
“ ˇ̌̌

unj .�t/ � unj .0/
ˇ̌̌
dx dy:

(4.37)

We see that two terms involve the projection operator � . For these terms we prove
the estimate “

j� �  j dx dy � .�x C�y/T:V: . / : (4.38)
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We will prove (4.38) in the one-dimensional case only (See Exercise 4.3). Consider
(where Ii D Œxi ; xiC1/)Z

j� �  j dx D
X
i

Z
Ii

j� .x/�  .x/j dx

D
X
i

Z
Ii

ˇ̌̌
ˇ 1�x

Z
Ii

 .y/ dy �  .x/
ˇ̌̌
ˇdx

D 1

�x

X
i

Z
Ii

ˇ̌̌
ˇ
Z
Ii

. .y/�  .x// dy
ˇ̌̌
ˇ dx

� 1

�x

X
i

Z
Ii

Z
Ii

j .y/�  .x/j dy dx

D 1

�x

X
i

Z
Ii

Z
�xCIi

j .x C �/�  .x/j d� dx

� 1

�x

X
i

Z
Ii

�xZ
��x

j .x C �/ �  .x/j d� dx

D 1

�x

�xZ
��x

Z
R

j .x C �/ �  .x/j dx d�

� 1

�x

�xZ
��x

j�jT:V: . / d�

D �x T:V: . / : (4.39)

For the two remaining terms in (4.37) we obtain, using the Lipschitz continuity in
time in the L1 norm in the x-variable (see Theorem 2.15), that“ ˇ̌̌

unj .�t/ � unj .0/
ˇ̌̌
dx dy � �t kfıkLip

Z
T:V:x

	
unj .0/



dy

� �t kfıkLipT:V: .un/ : (4.40)

Combining this result with (4.29), (4.38), we conclude that (4.36), and hence also
(4.35), holds.

So far we have obtained the following estimates:

(i) Uniform boundedness, ��u
.t/��L1.R2/
� ��u0��

L1.R2/
:

(ii) Uniform bound on the total variation,

T:V: .un/ � T:V: .u0/ :

(iii) Lipschitz continuity in time,��u
.tm/ � u
.tn/
��
L1.R2/

�
	
maxf kfıkLip; kgıkLip g C 2

�x C�y

�t



� T:V:

�
u0
� jtm � tnj :

(4.41)
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From TheoremA.11 we conclude that the sequence fu
g has a convergent subse-
quence as 
 ! 0, provided that the ratio maxf�x;�yg=�t remains bounded. We
let u denote its limit. Furthermore, this sequence converges in C.Œ0; T �IL1loc.R2//

for every positive T .
It remains to prove that the limit is indeed an entropy solution of the full

two-dimensional conservation law. We first use that unj .x; t/ (suppressing the y-
dependence) is a solution of the one-dimensional conservation law in the time
interval Œtn; tnC1=2�. Hence we know that

Z
R

tnC1=2Z
tn

�
1

2

ˇ̌̌
unj .x; t/ � k

ˇ̌̌
�t C qfı .unj .x; t/; k/�x

�
dt dx

� 1

2

Z
R

ˇ̌̌
unj .x; tnC1=2�/ � k

ˇ̌̌
�.x; tnC1=2/ dx

C 1

2

Z
R

ˇ̌̌
unj .x; tnC/� k

ˇ̌̌
�.x; tn/ dx � 0:

Similarly, we obtain for the y-direction

Z
R

tnC1Z
tnC1=2

�
1

2

ˇ̌̌
u
nC1=2
i .y; t/ � k

ˇ̌̌
�t C qgı .u

nC1=2
i .y; t/; k/�y

�
dt dy

� 1

2

Z
R

ˇ̌̌
u
nC1=2
i .y; tnC1�/ � k

ˇ̌̌
�.y; tnC1/ dy

C 1

2

Z
R

ˇ̌̌
u
nC1=2
i .y; tnC1=2C/� k

ˇ̌̌
�.y; tnC1=2/ dy � 0:

Integrating the first inequality over y and the second over x and adding the results
as well as adding over n gives, where T D N�t ,

“
R2

TZ
0

	1
2

ˇ̌
u
 � kˇ̌ �t C

X
n

�nq
fı .u
; k/�x C

X
n

Q�nqgı .u
; k/�y


dx dy dt

� 1

2

�“
R2

ˇ̌
u
.x; y; T / � kˇ̌ �.x; y; T / dx dy

�
“
R2

ˇ̌
u
.x; y; 0/ � kˇ̌�.x; y; 0/ dx dy�

� �1
2

2N�1X
nD1

“
R2

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌
�.x; y; tn=2/ dx dy

DW �1
2

2N�1X
nD1

In;
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and as before, �n and Q�n denote the characteristic functions on f.x; y; t/ j t 2
Œtn; tnC1=2�g and f.x; y; t/ j t 2 ŒtnC1=2; tnC1�g, respectively. Observe that we have
obtained the right-hand side by using a projection at each time step. As n ! 1
and �t ! 0 while keeping T fixed, we have that

P
n �n

�
* 1

2
. To estimate the

right-hand side we first observe that

u
.x; y; tn=2C/� k D �
�
u
.x; y; tn=2�/ � k�;

and since the absolute value function is convex, Jensen’s inequality implies that

ˇ̌
u
.x; y; tn=2C/ � kˇ̌ � ˇ̌u
.x; y; tn=2�/ � kˇ̌ � 0: (4.42)

Thus we obtain

In D �
“
R2

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌
�.x; y; tn=2/ dx dy
D �

X
i;j

“
Ii;j

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌
�.xi ; yj ; tn=2/ dx dy

�
X
i;j

“
Ii;j

	ˇ̌
u
.x; y; tn=2C/� kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌


� ��.x; y; tn=2/ � �.xi ; yj ; tn=2/
�
dx dy

� �
X
i;j

“
Ii;j

	ˇ̌
u
.x; y; tn=2C/ � kˇ̌ � ˇ̌

u
.x; y; tn=2�/ � kˇ̌


� ��.x; y; tn=2/ � �.xi ; yj ; tn=2/
�
dx dy

D QIn;

using (4.42). This implies

ˇ̌ QIn
ˇ̌ �

X
i;j

“
Ii;j

ˇ̌
u
.x; y; tn=2C/� u
.x; y; tn=2�/

ˇ̌

� ˇ̌�.x; y; tn=2/ � �.xi ; yj ; tn=2/
ˇ̌
dx dy

� �
�x C�y

� kr�kL1.R2/

�
X
i;j

“
Ii;j

ˇ̌
u
.x; y; tn=2C/ � u
.x; y; tn=2�/

ˇ̌
dx dy

� �
�x C�y

�“
R2

kr�kL1.R2/

ˇ̌
�u
.x; y; tn=2�/ � u
.x; y; tn=2�/

ˇ̌
dx dy

� �
�x C�y

�2 kr�kL1.R2/ T:V: .u0/ ;
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since

ˇ̌
�.x; y/� �.xi ; yj /

ˇ̌ � ˇ̌
.x � xi ; y � yj /

ˇ̌ 1Z
0

ˇ̌r�.r.x � xi ; y � yj //
ˇ̌
dr

� �
�x C�y

� kr�kL1.R2/ ; .x; y/ 2 Ii;j ;
where we have used (4.38). Thus

2NX
nD1

ˇ̌ QIn
ˇ̌ � .�x C�y/2

�t
kr�kL1.R2/ T:V: .u0/ : (4.43)

In order to conclude that u is an entropy solution, we need the right-hand side of
(4.43) to vanish as �x;�y;�t ! 0; that is, we need to assume that

�x C�y

�t
remains bounded

as 
 ! 0. Under this assumption,

“
R2

TZ
0

�ju � kj �t C qf .u; k/�x C qg.u; k/�y
�
dt dx dy

�
“
R2

ju.x; y; T / � kj�.x; y; T / dx dy

C
“
R2

ju.x; y; 0/ � kj�.x; y; 0/ dx dy � 0;

which shows that u indeed satisfies the Kružkov entropy condition. We summarize
the result.

Theorem 4.4 Let u0 be an integrable and bounded function in L1.Rm/ \
BV .Rm/, and let fj be piecewise twice continuously differentiable functions
for j D 1; : : : ; m. Construct an approximate solution u
 using front tracking by
defining

u0 D �u0; unCj=m D � ı Sfj;ı ;xj�t unC.j�1/=m; j D 1; : : : ; m; n 2 N;

and

u
.x; t/ D
(
S
fj;ı ;xj

m.t�tnC.j�1/=m/u
nC.j�1/=m; for t 2 ŒtnC.j�1/=m; tnCj=m/;

unCj=m for t D tnCj=m,

where x D .x1; : : : ; xm/.
For every sequence f
g, with 
 D .�x1; : : : ; �xm;�t; ı/, where 
 ! 0 and

max
j

˚
�xj

�
=�t remains bounded;
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we have that fu
g converges to the unique solution u D u.x; t/ of the initial value
problem

ut C
mX
jD1

fj .u/xj D 0; u.x; 0/ D u0.x/; (4.44)

which satisfies the Kružkov entropy condition.

4.3 Convergence Rates

Now I think I’m wrong on account of those damn partial integrations.
I oscillate between right and wrong.
— Letter from Feynman to Welton (1936)

In this section we show how fast front tracking plus dimensional splitting converges
to the exact solution. The analysis is based on Kuznetsov’s lemma.

We start by generalizing Kuznetsov’s lemma, Theorem 3.14, to the present mul-
tidimensional setting. Although the argument carries over, we will present the rele-
vant definitions in arbitrary dimension.

Let the class K consist of maps uW Œ0;1/ ! L1.Rm/ \ BV .Rm/ \ L1.Rm/

such that:

(i) The limits u.t˙/ exist.
(ii) The function u is right continuous, i.e., u.tC/ D u.t/.
(iii) ku.t/kL1.Rm/ � ku.0/kL1.Rm/.
(iv) T:V: .u.t// � T:V: .u.0//.

Recall the following definition of moduli of continuity in time (cf. (3.54)):

�t .u; �/ D sup
j� j��

ku.t C �/ � u.t/kL1.Rm/; � > 0;

�.u; �/ D sup
0�t�T

�t .u; �/:

The estimate (3.55) is replaced by

�.u; �/ � j� jT:V: .u0/max
j

f kfjkLip g;

for a solution u of (4.23).
In several space dimensions, the Kružkov form reads

�T .u; �; k/ D
“

Rm�Œ0;T �

� ju � kj�t C
X
j

qfj .u; k/�xj
�
dx1 � � �dxm

�
Z
Rm

ju.x; T / � kj�.x; T / dx1 � � �dxm dt

C
Z
Rm

ju0.x/ � kj�.x; 0/ dx1 � � �dxm:

(4.45)
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In this case, we use the test function

˝.x; x0; s; s0/ D !"0.s � s0/!".x1 � x0
1/ � � �!".xm � x0

m/; (4.46)

x D .x1; : : : ; xm/; x0 D .x0
1; : : : ; x

0
m/:

Here !" is the standard mollifier defined by

!".xj / D 1

"
!
	xj
"



with

0 � ! � 1; supp! 	 Œ�1; 1�; !.�xj / D !.xj /;

1Z
�1
!.z/ dz D 1:

When v is the unique solution of the conservation law (4.25), we introduce

�";"0 .u; v/ D
TZ
0

Z
Rm

�T
�
u;˝. � ; x0; � ; s0/; v.x0; s0/

�
dx0ds0:

Kuznetsov’s lemma can be formulated as follows.

Theorem 4.5 Let u be a function in K, and let v be an entropy solution of (4.25).
If 0 < "0 < T and " > 0, then

ku. � ; T�/ � v. � ; T /kL1.Rm/ � ku0 � v0kL1.Rm/

C T:V: .v0/
	
2"C "0max

j
f kfjkLip g



C �.u; "0/ ��";"0 .u; v/; (4.47)

where u0 D u. � ; 0/ and v0 D v. � ; 0/.
The proof of Theorem 3.14 carries over to this setting verbatim.

} Example 4.6
Let us first apply this theorem to the case that u is the dimensional splitting ap-
proximation, defined with exact solution operators Sf;x�t and Sg;y�t ; cf. (4.6). We have
established that �.u�t ; "0/ � C"0, where the constant C depends on the total vari-
ation of u0 and the Lipschitz norm of the flux. The inequalities (4.17) and (4.18)
imply

LT .u�t ; k; '/ D
TZ
0

“
R2

ju�t � kj 't

C 2�n.t/q
f .u�t ; k/'x C 2 Q�n.t/qg.u�t ; k/'y dx dy dt

�
“
R2

ju�t � kj '
ˇ̌̌
tDT

dx dy C
“
R2

ju�t � kj '
ˇ̌̌
tD0

dx dy

� 0:
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Set

L"0;" D
•

LT .u�t ; v.x
0; y0; s/; !". � � x0/!. � � y0/!"0. � � s/ dx0 dy0 ds � 0:

In the following we always have that u�t D u�t .x; y; t/ and v D v.x0; y0; s/,
although we sometimes do not indicate that, or indicate only those variables to
which we would like to draw the reader’s attention. Then

��"0;".u�t ; v/ � ��"0;".u�t ; v/C L"0;"

D
TZ
0

“
R2

TZ
0

“
R2

�
I x C I y

�
dx dy dt dx0 dy0 ds;

where

I x D .2�n.t/ � 1/ qf .u�t ; v/! 0
".x � x0/!".y � y0/!"0.t � s/;

I y D .2 Q�n.t/ � 1/ qg.u�t ; v/!".x � x0/! 0
".y � y0/!"0.t � s/:

We shall estimate
R
I x ; the estimate for I y is identical. First observe that

2�n.t/ � 1 D
(
1 tn � t < tnC1=2;
�1 tnC1=2 � t < tnC1:

Therefore, if N�t D T , then

TZ
0

.2�n.t/ � 1/ .t/ dt D
N�1X
nD0

tnC1=2Z
tn

�
 .t/�  .t C�t=2/

�
dt;

for every function  . Thus

TZ
0

“
R2

TZ
0

“
R2

I x dx dy dt dx0 dy0 ds

D
N�1X
nD0

tnC1=2Z
tn

TZ
0

“
R2

“
R2

	
qf .u�t .t/; v/!"0 .t � s/

� qf .u�t .t C�t=2/; v/!"0.t C�t=2 � s/



� ! 0
".x � x0/!".y � y0/ dx dy dx0 dy0 ds dt
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D
N�1X
nD0

tnC1=2Z
tn

TZ
0

“
R2

“
R2

	
!"0.t � s/ � !"0.t C�t=2 � s/




� qf .u�t .t/; v/! 0
".x � x0/!".y � y0/ dx dy dx0 dy0 ds dt

C
N�1X
nD0

tnC1=2Z
tn

TZ
0

“
R2

“
R2

!"0.t C�t=2� s/

�
	
qf .u�t .t C�t/; v/ � qf .u�t.t/; v/



� ! 0

".x � x0/!".y � y0/ dx dy dx0 dy0 ds dt
DW A C B:

Regarding A,

jAj �
N�1X
nD0

tnC1=2Z
tn

L

Z
R

ju�t. � ; x; t/jBV dy
�t=2Z
0

TZ
0

ˇ̌
! 0
"0
.t � s C �/

ˇ̌
ds d�dt

� CT�t

"0

Z
R

ju�t . � ; x; t/jBV dy:

Also

jB j �
N�1X
nD0

tnC1=2Z
tn

!"0.t � s C�t=2/

� L
“
R2

ju�t .t C�t=2/� u�t .t/j dx dy j! 0
".x � x0/j dx0 ds dt

� �.u�t ;�t=2/
C

"

� C�t

"
:

Hence

ˇ̌̌ TZ
0

“
R2

TZ
0

“
R2

I x dx dy dt dx0 dy0 ds
ˇ̌̌

� C�t

"0

Z
R

ju�t. � ; x; t/jBV dy C C�t

"
:

We have a similar estimate for the integral of I y ; thus we end up with the estimate

��"0;".u�t ; v/ � C�t

"0
ju0jBV.R2/ C C�t

"
:
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Since we have v.0/ D u�t.0/ D u0, Kuznetsov’s lemma yields

ku�t . � ; T / � v. � ; T /kL1.R2/ � C

�
"0 C "C �t

"0
C �t

"

�
;

which on setting "0 D " D p
�t , yields

ku�t. � ; T / � v. � ; T /kL1.R2/ � C
p
�t: (4.48)

Since this estimate was obtained using the exact solution operator in each direc-
tion, there is no hope of obtaining a better estimate using numerical approximations
instead of Sf;g�t . }

Next, we use Kuznetsov’s lemma to estimate the rate of convergence for the front
tracking approximation. This entails using a first-order (in ı) approximation to the
exact solution operators, so from the previous example, the best we can hope for is
that the error is bounded by O.ı C p

�t/.
We want to estimate��S.T /u0 � u


��
L1.Rm/

� kS.T /u0 � Sı.T /u0kL1.Rm/ C ��Sı.T /u0 � u

��
L1.Rm/

;

(4.49)

where u D S.T /u0 and Sı.T /u0 denote the exact solutions of the multidimen-
sional conservation law with flux functions f replaced by their piecewise linear
and continuous approximations fı . The first term can be estimated by

kS.T /u0 � Sı.T /u0kL1.Rm/ � T max
j

˚ kfj � fj;ıkLip
�
T:V: .u0/ ; (4.50)

while we apply Kuznetsov’s lemma, Theorem 4.5, for the second term. For the
function u we choose u
, the approximate solution using front tracking along each
dimension and dimensional splitting, while for v we use the exact solution with
piecewise linear continuous flux functions fı and gı, and u0 as initial data, that is,
v D vı D Sı.T /u0. Thus we find, using (4.41), that

�.u
; "0/ � "0

�
C C O

�
1

�t
max
j

˚
�xj

���
T:V: .u0/ :

Kuznetsov’s lemma then reads

��Sı.T /u0 � u

��
L1.Rm/

� ��u0 � u0��
L1.Rm/

C
�
2"C max

j

˚kfj;ıkLip� "0
C "0

	
C C O

	max
˚
�xj

�
�t



�
T:V: .u0/

��";"0 .u
; vı/; (4.51)

and the name of the game is to estimate �";"0 .
To make the estimates more transparent, we start by rewriting �T .u
; �; k/.

Since all the complications of several space dimensions are present in two dimen-
sions, we present the argument in two dimensions only, that is, with m D 2, and
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denote the spatial variables by .x; y/. All arguments carry over to arbitrary dimen-
sions without any change. By definition we have (in obvious notation, qfı .u/ D
sign .u � k/ .fı.u/� fı.k// and similarly for qgı )

�T .u
; �; k/ D
“ TZ

0

�ˇ̌
u
 � kˇ̌�t C qfı .u
; k/�x C qgı .u
; k/�y

�
dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy

D
N�1X
nD0

“ � tnC1=2Z
tn

C
tnC1Z

tnC1=2

�	ˇ̌
u
 � kˇ̌�t

C qfı .u
; k/�x C qgı .u
; k/�y



dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy

D
N�1X
nD0

“ tnC1=2Z
tn

�ˇ̌
u
 � kˇ̌�t C 2qfı .u
; k/�x

�
dt dx dy

C
X
n

“ tnC1Z
tnC1=2

�ˇ̌
u
 � kˇ̌ �t C 2qgı .u
; k/�y

�
dt dx dy

C
N�1X
nD0

“ � tnC1Z
tnC1=2

�
tnC1=2Z
tn

�
qfı .u
; k/�x dt dx dy

C
N�1X
nD0

“ � tnC1=2Z
tn

�
tnC1Z

tnC1=2

�
qgı .u
; k/�y dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy:

We now use that u
 is an exact solution in the x-direction and the y-direction on
each strip Œtn; tnC1=2� and ŒtnC1=2; tnC1�, respectively. Thus we can invoke inequali-
ties (4.17) and (4.18), and we conclude that

�T .u
; �; k/ �
N�1X
nD0

“ 	ˇ̌
u
 � kˇ̌ jtDtnC1=2��.tnC1=2/

� ˇ̌
u
 � kˇ̌ jtDtnC�.tn/



dx dy

C
N�1X
nD0

“ 	ˇ̌
u
 � kˇ̌ jtDtnC1��.tnC1/

� ˇ̌
u
 � kˇ̌ jtDtnC1=2C�.tnC1=2/



dx dy
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C
N�1X
nD0

“ � tnC1Z
tnC1=2

�
tnC1=2Z
tn

�
qfı .u
; k/�x dt dx dy

C
N�1X
nD0

“ � tnC1=2Z
tn

�
tnC1Z

tnC1=2

�
qgı .u
; k/�y dt dx dy

C
“ ˇ̌

u
 � kˇ̌ �jtD0C dx dy �
“ ˇ̌

u
 � kˇ̌�jtDT� dx dy

D �2
N�1X
nD0

“ tnC1=2Z
tn

qfı .u
; k/�x dt dx dy

C
“ TZ

0

qfı .u
; k/�x dt dx dy

� 2
N�1X
nD0

“ tnC1Z
tnC1=2

qgı .u
; k/�y dt dx dy

C
“ TZ

0

qgı .u
; k/�y dt dx dy

C
N�1X
nD0

“ 	ˇ̌
u
 � kˇ̌ ˇ̌̌

tDtnC1=2�

� ˇ̌
u
 � kˇ̌ ˇ̌̌

tDtnC1=2C



�.tnC1=2/ dx dy

C
N�1X
nD1

“ � ˇ̌
u
 � kˇ̌ ˇ̌̌

tDtn�
� ˇ̌u
 � kˇ̌ ˇ̌̌

tDtnC
�
�.tn/ dx dy

WD �I1.u
; k/ � I2.u
; k/ � I3.u
; k/ � I4.u
; k/: (4.52)

Observe that because we employ the projection operator � between each pair of
consecutive times, we solve a conservation law in one dimension; unC1=2 and un
are in general discontinuous across tnC1=2 and tn, respectively. The terms I1 and I2
are due to dimensional splitting, while I3 and I4 come from the projections.

Choose now for the constant k the function vı.x0; y0; s0/, and for � we use ˝
given by (4.46). Integrating over the new variables, we obtain

�";"0 .u
; vı/ D
“ TZ

0

�T .u
;˝. � ; x0; � ; y0; � ; s0/; vı.x0; y0; s0// ds0 dx0 dy0

� �I ";"01 .u
; vı/� I ";"02 .u
; vı/ � I ";"03 .u
; vı/ � I ";"04 .u
; vı/;
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where I ";"0j are given by

I
";"0
1 .u
; vı/ D

“ TZ
0

“ �
2

N�1X
nD0

tnC1=2Z
tn

qfı .u
; vı/˝x ds

�
TZ
0

qfı .u
; vı/˝x ds

�
dx dy ds0 dx0 dy0;

I
";"0
2 .u
; vı/ D

“ TZ
0

“ �
2

N�1X
nD0

tnC1Z
tnC1=2

qgı .u
; vı/˝y ds

�
TZ
0

qgı .u
; vı/˝y ds

�
dx dy ds0 dx0 dy0;

I
";"0
3 .u
; vı/ D

N�1X
nD1

“ TZ
0

“ 	ˇ̌
u
 � vı

ˇ̌ jsDtnC

� ˇ̌
u
 � vı

ˇ̌ jsDtn�


˝ dx dy ds0 dx0 dy0;

I
";"0
4 .u
; vı/ D

N�1X
nD0

“ TZ
0

“ 	ˇ̌
u
 � vı

ˇ̌ jsDtnC1=2C

� ˇ̌
u
 � vı

ˇ̌ jsDtnC1=2�


˝ dx dy ds0 dx0 dy0:

We will start by estimating I ";"01 and I ";"02 .

Lemma 4.7 We have the following estimate:ˇ̌
I
";"0
1

ˇ̌C ˇ̌
I
";"0
2

ˇ̌ � T max
˚kf kLip; kgkLip

�
T:V: .u0/

�
	�t
"0

C 1

"

	
fkf kLip C kgkLipg�t C�x C�y




: (4.53)

Proof We will detail the estimate for
ˇ̌
I
";"0
1

ˇ̌
. Writing

qfı .u
.s/; vı.s
0// D qfı .u
.tnC1=2/; vı.s0//

C �
qfı .u
.s/; vı.s

0//� qfı .u
.tnC1=2/; vı.s0//
�
;

we rewrite I ";"01 as

I
";"0
1 .u
; vı/ D

N�1X
nD0

� �
J1.tn; tnC1=2/ � J1.tnC1=2; tnC1/

�

C �
J2.tn; tnC1=2/� J2.tnC1=2; tnC1/

� �
;

(4.54)
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with

J1.�1; �2/ D
“ TZ

0

“ �2Z
�1

qfı .u
.x; y; tnC1=2/; vı.x0; y0; s0//

�˝x.x; x
0; y; y0; s; s0/ ds dx dy ds0 dx0 dy0;

J2.�1; �2/ D
“ TZ

0

“ �2Z
�1

	
qfı .u
.x; y; s/; vı.x

0; y0; s0//

� qfı .u
.x; y; tnC1=2/; vı.x0; y0; s0//



�˝x.x; x
0; y; y0; s; s0/ ds dx dy ds0 dx0 dy0:

Here we have written out all the variables explicitly; however, in the following we
will display only the relevant variables. All spatial integrals are over the real line
unless specified otherwise. Rewriting

!"0.s � s0/ D !"0.tnC1=2 � s0/C
sZ

tnC1=2

! 0
"0
.Ns � s0/ d Ns;

we obtain

J1.tn; tnC1=2/ D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

� tnC1=2Z
tn

!"0 .tnC1=2 � s0/ ds

C
tnC1=2Z
tn

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
dx dy ds0 dx0 dy0

D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

�
�t

2
!"0.tnC1=2 � s0/

C
tnC1=2Z
tn

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
dx dy ds0 dx0 dy0;

where˝" D !".x � x0/!".y � y0/ denotes the spatial part of˝.
If we rewrite J1.tnC1=2; tnC1/ in the same way, we obtain

J1.tnC1=2; tnC1/ D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

�
�t

2
!"0.tnC1=2 � s0/

C
tnC1Z

tnC1=2

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
dx0 dy0 ds0 dx dy;
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and hence

J1
�
tn; tnC1=2/ � J1.tnC1=2; tnC1

�

D
“ TZ

0

“
qfı .u
.tnC1=2/; vı.s0//˝"

x

	 tnC1=2Z
tn

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds

�
tnC1Z

tnC1=2

sZ
tnC1=2

! 0
"0
.Ns � s0/ d Ns ds



dx dy ds0 dx0 dy0: (4.55)

Now using the Lipschitz continuity of qfı , we can replace variation in qfı by vari-
ation in u, and obtain, using

’
! 0
"0
.x � x0/ dx dx0 D 0, thatˇ̌̌

ˇ
“

qfı .u
.x; y; tnC1=2/; vı.s0//! 0
"0
.x � x0/ dx dx0

ˇ̌̌
ˇ

D
ˇ̌̌
ˇ
“

! 0
"0
.x � x0/ dx dx0

� �qfı .u
.x; y; tnC1=2/; vı.s0// � qfı .u
.x0; y; tnC1=2/; vı.s0//
�ˇ̌̌ˇ

� kfıkLip
“ ˇ̌

! 0
"0
.x � x0/

ˇ̌
� ˇ̌u
.x; y; tnC1=2/� u
.x0; y; tnC1=2/

ˇ̌
dx dx0

D kfıkLip
“ ˇ̌

u
.x
0 C z; y; tnC1=2/ � u
.x0; y; tnC1=2/

ˇ̌ ˇ̌
! 0
"0
.z/
ˇ̌
dx0 dz

� kfıkLip
Z

1

jzj
Z ˇ̌

u
.x
0 C z; y; tnC1=2/ � u
.x0; y; tnC1=2/

ˇ̌
dx0

� ˇ̌z! 0
"0
.z/
ˇ̌
dz

� kfıkLipT:V:x
�
u
.tnC1=2/

� Z ˇ̌
z! 0

"0
.z/
ˇ̌
dz

� kfıkLipT:V:x
�
u
.tnC1=2/

�
;

using that
R ˇ̌
z! 0

"0
.z/
ˇ̌
dz D 1. We combine this with (4.55) to getˇ̌̌

J1.tn; tnC1=2/ � J1.tnC1=2; tnC1/
ˇ̌̌

� kfıkLip
“

T:V:x
�
u
.tnC1=2/

�
!"0.y � y0/

�
� TZ
0

tnC1=2Z
tn

ˇ̌̌
ˇ

sZ
tnC1=2

ˇ̌
! 0
"0
.Ns � s0/

ˇ̌
d Ns
ˇ̌̌
ˇ ds ds0

C
TZ
0

tnC1Z
tnC1=2

ˇ̌̌
ˇ

sZ
tnC1=2

ˇ̌
! 0
"0
.Ns � s0/

ˇ̌
d Ns
ˇ̌̌
ˇ ds ds0

�
dy0 dy:
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Inserting the estimate

TZ
0

ˇ̌
! 0
"0
.Ns � s0/

ˇ̌
ds0 � 1

"0

Z
j! 0.z/j dz � 2="0;

we obtain

ˇ̌̌
J1.tn; tnC1=2/ � J1.tnC1=2; tnC1/

ˇ̌̌
� kfıkLip.�t/2

2"0
T:V:

�
u
.tnC1=2/

�
: (4.56)

Next we consider the term J2. We first use the Lipschitz continuity of qfı , which
yields

ˇ̌̌
J2.tn; tnC1=2/

ˇ̌̌
� kfıkLip

“ TZ
0

“ tnC1=2Z
tn

ˇ̌
u
.x; y; s/ � u
.x; y; tnC1=2/

ˇ̌

� j˝xj ds dx0 dy0 ds0 dx dy

� kfıkLip
"

tnC1=2Z
tn

“ ˇ̌
u
.x; y; s/ � u
.x; y; tnC1=2/

ˇ̌
ds dx dy

� kfıkLip
"

tnC1=2Z
tn

“ ˇ̌
u
.x; y; s/ � u
.x; y; tnC1=2�/

ˇ̌
ds dx dy

C kfıkLip�t
2"

“ ˇ̌
u
.x; y; tnC1=2�/ � u
.x; y; tnC1=2/

ˇ̌
dx dy

� kfıkLip�t
"

�kfıkLip�t C�x
�
T:V:

�
u

�
tnC1=2

��
:

Herewe integrated to unity in the variables s0 andy0, and estimated
R j! 0

".x �x0/jdx0
by 2=". Finally, we used the continuity in time of the L1-norm in the x-direction
and estimated the error due to the projection. A similar bound can be obtained for
J2.tnC1=2; tnC1/, and hence

ˇ̌̌
J2.tn; tnC1=2/ � J2.tnC1=2; tnC1/

ˇ̌̌
� ˇ̌
J2.tn; tnC1=2/

ˇ̌C ˇ̌
J2.tnC1=2; tnC1/

ˇ̌
� kf kLip�t

"

�
2kf kLip�t C�x C�y

�
T:V:

�
u
.tn/

�
; (4.57)
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where we used that T:V:
�
u
.tnC1=2/

� � T:V:
�
u
.tn/

�
. Inserting estimates (4.56)

and (4.57) into (4.54) yields

ˇ̌
I
";"0
1 .u
; vı/

ˇ̌ � kfıkLipT:V:
�
u
.0/

�
�
N�1X
nD0

�
.�t/2

2"0
C �t

2"
.2kfıkLip�t C�x C�y/

�

� T kfıkLipT:V:
�
u
.0/

�
�
�
�t

2"0
C 1

2"
.2kfıkLip�t C�x C�y/

�
;

where we again used that T:V:
�
u

�
is nonincreasing. An analogous argument gives

the same estimate for I ";"02 . Adding the two inequalities, we conclude that (4.53)
holds. �

It remains to estimate I ";"03 and I ";"04 . We aim at the following result.

Lemma 4.8 The following estimate holds:

ˇ̌
I
";"0
3

ˇ̌C ˇ̌
I
";"0
4

ˇ̌ � T .�x C�y/2

�t "
T:V: .u0/ :

Proof We discuss the term I
";"0
3 only. Recall that

I
";"0
3 .u
; vı/ D

N�1X
nD1

“ TZ
0

“ � ˇ̌
u
.x; y; tn/� vı.x0; y0; s0/

ˇ̌

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
�˝.x; x0; y; y0; tn; s0/ dx0 dy0 ds0 dx dy:

The function u
.x; y; tnC/ is the projection of u
.x; y; tn�/, that is,

u
.x; y; tnC/ D 1

�x�y

“
Iij

u
. Nx; Ny; tn�/ d Nx d Ny: (4.58)

If we replace
’

R2 by
P

i;j

’
Iij

and use (4.58), we obtain

I
";"0
3 .u
; vı/

D
N�1X
nD1

“ TZ
0

X
i;j

“
Iij

� ˇ̌̌
ˇ 1

�x�y

“
Iij

u
. Nx; Ny; tn�/ d Nx d Ny � vı.x0; y0; s0/
ˇ̌̌
ˇ

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
˝.x; x0; y; y0; tn; s0/ dx dy ds0 dx0 dy0



4.3 Convergence Rates 201

D 1

�x�y

N�1X
nD1

“ TZ
0

˝.x; x0; y; y0; tn; s0/

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
. Nx; Ny; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
d Nx d Ny dx dy ds0 dx0 dy0

D 1

2�x�y

N�1X
nD1

“ TZ
0

˝.x; x0; y; y0; tn; s0/

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
. Nx; Ny; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌ �
d Nx d Ny dx dy ds0 dx0 dy0

C 1

2�x�y

N�1X
nD1

“ TZ
0

˝. Nx; x0; Ny; y0; tn; s0/

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
.x; y; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌u
. Nx; Ny; tn�/ � vı.x0; y0; s0/
ˇ̌ �
dx dy d Nx d Ny ds0 dx0 dy0

D 1

2�x�y

N�1X
nD1

“ TZ
0

�
˝.x; x0; y; y0; tn; s0/ �˝. Nx; x0; Ny; y0; tn; s0/

�

�
X
i;j

“
Iij

“
Iij

� ˇ̌
u
. Nx; Ny; tn�/ � vı.x0; y0; s0/

ˇ̌

� ˇ̌u
.x; y; tn�/ � vı.x0; y0; s0/
ˇ̌ �
d Nx d Ny dx dy ds0 dx0 dy0:

Estimating I ";"03 .u
; vı/ using the inverse triangle inequality, we obtain

ˇ̌̌
I
";"0
3 .u
; vı/

ˇ̌̌

� 1

2�x�y

N�1X
nD1

“ TZ
0

X
i;j

“
Iij

“
Iij

ˇ̌
u
. Nx; Ny; tn�/ � u
.x; y; tn�/

ˇ̌

� j˝.x; x0; y; y0; tn; s0/�˝. Nx; x0; Ny; y0; tn; s0/j d Nx d Ny dx dy ds0 dx0 dy0:
(4.59)



202 4 Multidimensional Scalar Conservation Laws

The next step is to bound the test functions in (4.59) from above. To this end we
first consider, for x; Nx 2 .i�x; .i C 1/�x/,

Z
j!".x � x0/� !". Nx � x0/j dx0 D

Z
j!.z/� !.z C . Nx � x/="/j dz

D
Z ˇ̌̌
ˇ̌̌ zC. Nx�x/="Z

z

! 0.�/ d�

ˇ̌̌
ˇ̌̌ dz

�
Z zC. Nx�x/="Z

z

j! 0.�/j d� dz

�
Z �x="Z

0

j! 0.˛ C ˇ/j d˛ dˇ D 2�x

"
:

Integrating the time variable to unity, we easily see (really, this is easy!) that

“ TZ
0

j˝.x; x0; y; y0; tn; s0/ �˝. Nx; x0; Ny; y0; tn; s0/j ds0 dx0dy0

D
TZ
0

!"0.s � s0/ ds0

�
“

j!".x � x0/!".y � y0/� !". Nx � x0/!". Ny � y0/j dx0dy0

�
“

j!".x � x0/� !". Nx � x0/j!".y � y0/ dx0dy0

C
“

j!".y � y0/ � !". Ny � y0/j!". Nx � x0/ dx0dy0

�
Z

j!".x � x0/ � !". Nx � x0/j dx0 C
Z

j!".y � y0/ � !". Ny � y0/j dy0

� .�x C�y/
2

"
: (4.60)

Furthermore,

ˇ̌
u
. Nx; Ny; tn�/ � u
.x; y; tn�/

ˇ̌ D ˇ̌
u
.x; Ny; tn�/ � u
.x; y; tn�/

ˇ̌
� T:V:.j�y;.jC1/�y/

�
u
.x; � ; tn�/

�
: (4.61)
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Inserting (4.60) and (4.61) into (4.59) yields

ˇ̌
I
";"0
3 .u
; vı/

ˇ̌
� 1

2�x�y

2.�x C�y/

"

�
N�1X
nD1

X
i;j

“
Iij

“
Iij

T:V:.j�y;.jC1/�y/
�
u
.x; � ; tn�/

�
d Nx d Ny dx dy

� �x C�y

"�x�y

N�1X
nD1

�x.�y/2
X
i;j

.iC1/�xZ
i�x

T:V:.j�y;.jC1/�y/
�
u
.x; � ; tn�/

�
dx

� .�x C�y/

"
�y

N�1X
nD1

T:V:
�
u
.tn�/

�

� .�x C�y/

"
�y

T

�t
T:V:

�
u
.0/

�
; (4.62)

where in the final step we used that T:V:
�
u
.tn�/

� � T:V:
�
u
.0/

�
.

The same analysis provides the following estimate for I ";"04 .vı; u
/:

ˇ̌
I
";"0
4 .u
; vı/

ˇ̌ � .�x C�y/

"
�x

T

�t
T:V:

�
u
.0/

�
: (4.63)

Adding (4.62) and (4.63) proves the lemma. �

We now return to the proof of the estimate of �";"0 .u
; vı/. Combining
Lemma 4.7 and Lemma 4.8, we obtain

��";"0 .u
; vı/ � ˇ̌
I
";"0
1 .u
; vı/

ˇ̌C ˇ̌
I
";"0
2 .u
; vı/

ˇ̌C ˇ̌
I
";"0
3 .u
; vı/

ˇ̌C ˇ̌
I
";"0
4 .u
; vı/

ˇ̌
� T

��
�t

"0
C 1

"
.fkfıkLip C kgıkLipg�t C�x C�y/

�

� max
˚kfıkLip; kgıkLip�C .�x C�y/2

�t "

�
T:V: .u0/

DW T T:V: .u0/�."; "0; 
/: (4.64)

Returning to (4.49), we combine (4.50), (4.51), as well as (4.64), to obtain

��S.T /u0 � u
.T /
��
L1.R2/

� kS.T /u0 � Sı.T /u0kL1.R2/ C ��Sı.T /u0 � u
.T /
��
L1.R2/

� T maxf kf � fıkLip; kg � gıkLip gT:V: .u0/C ��u0 � u0��
L1.R2/

C
	
2"C maxf kfıkLip; kgıkLip g"0 C "0

	
C C O

	maxf�x;�yg
�t




C T �."; "0; 
/



T:V: .u0/ : (4.65)
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Next we take the minimum over " and "0 on the right-hand side of (4.65). This has
the form

min
";"0

	
a "C b

"
C c "0 C d

"0



D 2

p
ab C 2

p
cd :

The minimum is obtained for " D p
b=a and "0 D p

d=c. We obtain

��S.T /u0 � u
.T /
��
L1.R2/

� T max
˚kf � fıkLip; kg � gıkLip

�
T:V: .u0/C ��u0 � u0��

L1.R2/

C O
�	
.�x C�y/C�t C .�x C�y/2

�t


1=2�
T:V: .u0/ : (4.66)

We may choose the approximation of the initial data such that
��u0 � u0��

L1.R2/
D

O .�x C�y/T:V: .u0/. Furthermore, if the flux functions f and g are piecewise
C2 and Lipschitz continuous, then

kf � fıkLip � ıkf 00kL1.R/:

We state the final result in the general case.

Theorem 4.9 Let u0 be a function in L1.Rm/\ L1.Rm/ with bounded total vari-
ation, and let fj for j D 1; : : : ; m be piecewise C2 functions that in addition are
Lipschitz continuous. Then

��u.T / � u
.T /
��
L1.Rm/

� O
�
ı C .�x C�y/1=2

�
as 
 ! 0 when

�x D K1�y D K2�t

for constants K1 and K2.

It is worthwhile to analyze the error terms in the estimate. We are clearly making
four approximations with the front-tracking method combined with dimensional
splitting. First of all, we are approximating the initial data by step functions. That
gives an error of order �x. Secondly, we are approximating the flux functions by
piecewise linear and continuous functions; in this case the error is of order ı. A third
source is the intrinsic error in the dimensional splitting, which is of order .�t/1=2,
and finally, the projection onto the grid gives an error of order .�x/1=2.

The advantage of this method over difference methods is the fact that the time
step �t is not bounded by a CFL condition expressed in terms of �x and �y. The
only relation that must be satisfied is (4.27), which allows for taking large time
steps. In practice it is observed that one can choose CFL numbers4 as high as 10–15
without loss in accuracy. This makes it a very fast method.

4 In several dimensions the CFL number is defined as maxi .
ˇ̌
f 0
i

ˇ̌
�t=�xi /.
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4.4 Operator Splitting: Diffusion

The answer, my friend, is blowin’ in the wind, the answer is blowin’ in the wind.
— Bob Dylan, Blowin’ in the Wind (1968)

We show how to use the concept of operator splitting to derive a (weak) solution of
the parabolic problem5 on Rm � Œ0; T �,

ut C
mX
jD1

fj .u/xj D �

mX
jD1

uxj xj ; (4.67)

by solving

ut C fj .u/xj D 0; j D 1; : : : ; m; (4.68)

and

ut D ��u; (4.69)

where we employ the notation �u D P
j uxj xj . We augment the equation with

initial data ujtD0 D u0. Let Sj .t/u0 and H.t/u0 denote the solutions of (4.68) and
(4.69), respectively, with initial data u0. Introducing the heat kernel, we may write

u.x; t/ D .H.t/u0/ .x; t/

D
Z
Rm

K.x � y; t/u0.y/ dy

D 1

.4��t/m=2

Z
Rm

exp

 
�jx � yj2

4�t

!
u0.y/ dy:

Let �t be positive and tn D n�t . Define

u0 D u0; unC1 D .H.�t/Sm.�t/ � � �S1.�t// un; (4.70)

with the idea that un approximates u.x; tn/. We will show that un converges to the
solution of (4.67) as �t ! 0.

Lemma 4.10 The following estimates hold:

kunkL1.Rm/ � ��u0��
L1.Rm/

; (4.71)

T:V: .un/ � T:V:
�
u0
�
; (4.72)

kun1 � un2kL1loc.Rm/ � C
� jn1 � n2j�t

�1=.mC1/
: (4.73)

5 Although we have used the parabolic regularization to motivate the appropriate entropy condi-
tion, we have constructed the solution of the multidimensional conservation law independtly, and
hence it is logically consistent to use the solution of the conservation law in combination with
operator splitting to derive the solution of the parabolic problem. A different approach, where we
start with a solution of the parabolic equation and subsequently show that in the limit of vanishing
viscosity the solution converges to the solution of the conservation law, is discussed in Appendix B.
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Proof Equation (4.71) is obvious, since both the heat equation and the conservation
law obey the maximum principle.

We know that the solution of the conservation law has the TVD property (4.72);
see (4.24). Thus it remains to show that this property is shared by the solution of
the heat equation. To this end, we haveˇ̌̌

H.t/u.x C h/ �H.t/u.x/
ˇ̌̌

D
ˇ̌̌
ˇ̌̌Z
Rm

�
K.x C h � y; t/u.y/ �K.x � y; t/u.y/� dy

ˇ̌̌
ˇ̌̌

�
Z
Rm

jK.y; t/u.x C h � y/ �K.y; t/u.x � y/j dy;

which implies thatZ
Rm

ˇ̌̌
H.t/u.x C h/ �H.t/u.x/

ˇ̌̌
dx

�
Z
Rm

Z
Rm

jK.y; t/u.x C h � y/ �K.y; t/u.x � y/j dy dx

D
Z
Rm

K.y; t/

Z
Rm

ju.x C h � y/ � u.x � y/j dx dy

D
Z
Rm

K.y; t/ dy

Z
Rm

ju.x C h/� u.x/j dx

D
Z
Rm

ju.x C h/ � u.x/j dx:

Dividing by jhj and letting h ! 0, we conclude that

T:V: .H.t/u/ � T:V: .u/ ;

which proves (4.72).
Finally, we consider (4.73). We will first show that the approximate solution

obtained by splitting is weakly Lipschitz continuous in time. More precisely, for
each ball Br D fx j jxj � rg, we will show thatˇ̌̌

ˇ
Z
Br

.un1 � un2/�
ˇ̌̌
ˇ � Cr jn1 � n2j�t

�
k�k1 C max

j
k�xj k1

�
; (4.74)

for smooth test functions � D �.x/, where Cr is a constant depending on r . It is
enough to study the case n2 D n1 C 1, and we set n1 D n. Furthermore, we can
writeˇ̌̌
ˇ
Z
.unC1 � un/� dx

ˇ̌̌
ˇ �

ˇ̌̌
ˇ
Z
.H.�t/ Qun � Qun/� dx

ˇ̌̌
ˇC

ˇ̌̌
ˇ
Z
. Qun � un/� dx

ˇ̌̌
ˇ ; (4.75)
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where Qun D .Sm.�t/ � � �S1.�t// un. This shows that it suffices to prove this prop-
erty for the solutions of the conservation law and the heat equation separately. From
Theorem 4.3 we know that the solution of the one-dimensional conservation law
satisfies the stronger estimate

kS.t/u � ukL1.Rm/ � C jt j :

This implies that (for simplicity with m D 2)

kS2.t/S1.t/u � ukL1.R2/ � kS2.t/S1.t/u � S1.t/ukL1.R2/ C kS1.t/u � ukL1.R2/

� C jt j ;

and hence we infer that the last term of (4.75) is of order�t , that is,

k Qun � unkL1.R2/ � Ck�kL1.R2/ j�t j :

The first term can be estimated as follows (for simplicity of notation we assume
m D 1). Consider

ˇ̌̌
ˇ
Z
.H.t/u0 � u0/� dx

ˇ̌̌
ˇ D

ˇ̌̌
ˇ̌̌Z tZ

0

ut dt � dx

ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌̌Z tZ

0

uxx dt � dx

ˇ̌̌
ˇ̌̌

�
Z tZ

0

jux�xj dt dx

� k�xkL1.R/

tZ
0

Z
juxj dx dt

� k�xkL1.R/

tZ
0

T:V: .u/ dt � k�xkL1.R/T:V: .u0/ t:

(4.76)

Thus we conclude that (4.74) holds.
From the TVD property (4.72), we have that

sup
j�j��

Z
jun.x C �; t/ � un.x; t/j dx � �T:V: .un/ : (4.77)

Using Kružkov’s interpolation lemma (stated and proved right after this proof) we
can infer, using (4.74) and (4.77), that

Z
Br

jun1.x/ � un2.x/j dx � Cr

�
"C jn1 � n2j�t

"

�

for all " � �. Choosing " D pjn1 � n2j�t proves the result. �
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We next state and prove Kružkov’s interpolation lemma. It will be convenient
to use the multi-index notation. A vector of the form ˛ D .˛1; : : : ; ˛m/, where
each component is a nonnegative integer, is called a multi-index of order j˛j D
˛1 C � � � C ˛m. Given a multi-index ˛, we define

D˛u.x/ D @j˛ju.x/
@x

˛1
1 � � �@x˛mm :

Lemma 4.11 (Kružkov interpolation lemma) Let u.x; t/ be a bounded measur-
able function defined in the cylinderBrCOr�Œ0; T �, Or � 0. For t 2 Œ0; T � and j�j � Or ,
assume that u possesses a spatial modulus of continuity

sup
j�j�j�j

Z
Br

ju .x C �; t/ � u.x; t/j dx � �r;T;Or .j�j Iu/; (4.78)

where �r;T;Or does not depend on t . Suppose that for every � 2 C1
0 .Br / and t1; t2 2

Œ0; T �,

ˇ̌̌
ˇ
Z
Br

�
u .x; t2/ � u �x; t1���.x/ dx

ˇ̌̌
ˇ � Constr;T

� X
j˛j�m

kD˛�kL1.Br /

�
jt2 � t1j ;

(4.79)

where ˛ denotes a multi-index.
Then for t and t C � 2 Œ0; T � and for all " 2 .0; Or�,
Z
Br

ju.x; t C �/ � u.x; t/j dx � Constr;T

�
"C �r;T;Or ."Iu/C j� j

"m

�
: (4.80)

Proof Let ı 2 C1
0 be a function such that

0 � ı.x/ � 1; supp ı 	 B1;
Z
ı.x/ dx D 1;

and define

ı".x/ D 1

"m
ı
	x
"



:

Furthermore, write f .x/ D u.x; t C �/�u.x; t/ (suppressing the time dependence
in the notation for f ),

�.x/ D sign .f .x// for jxj � r � ", and 0 otherwise;

and

�".x/ D .� � ı"/.x/ D
Z
�.x � y/ı".y/ dy:
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By construction, �" 2 C1
0 .R

m/ and supp�" 	 Br . Furthermore, j�"j � 1 and

ˇ̌̌
ˇ @@xj �"

ˇ̌̌
ˇ � 1

"m

Z ˇ̌̌
ˇ @@xj ı.

x � y
"

/

ˇ̌̌
ˇ �.y/ dy

� 1

"mC1

Z ˇ̌̌
ıxj .

x � y
"

/
ˇ̌̌
�.y/ dy � C

"
:

This easily generalizes to

kD˛�"kL1.Rm/ � C

"j˛j :

Next we have the elementary but important inequality

Z
Br

jf .x/j dx D
ˇ̌̌
ˇ̌̌Z
Br

jf .x/j dx
ˇ̌̌
ˇ̌̌

D
ˇ̌̌
ˇ̌̌Z
Br

.jf .x/j � �".x/f .x/C �".x/f .x// dx

ˇ̌̌
ˇ̌̌

�
ˇ̌̌
ˇ̌̌Z
Br

.jf .x/j � �".x/f .x// dx
ˇ̌̌
ˇ̌̌C

ˇ̌̌
ˇ̌̌Z
Br

�".x/f .x/ dx

ˇ̌̌
ˇ̌̌

�
Z
Br

j jf .x/j � �".x/f .x/j dx C
ˇ̌̌
ˇ̌̌Z
Br

�".x/f .x/ dx

ˇ̌̌
ˇ̌̌

DW I1 C I2:

We estimate I1 and I2 separately. Starting with I1, we obtain

I1 D
Z
Br

ˇ̌jf .x/j � �".x/f .x/
ˇ̌
dx

D
Z
Br

ˇ̌̌
ˇ jf .x/j 1"m

Z
ı.
x � y
"

/ dy � 1

"m

Z
ı.
x � y
"

/�.y/ dy f .x/

ˇ̌̌
ˇ dx

D 1

"m

Z Z
ı.
x � y
"

/
ˇ̌ jf .x/j � �.y/f .x/ˇ̌ dy dx:

The integrand is integrated over the domain

f.x; y/ j jxj � r; jx � yj � "g:

We further divide this set into two parts: (i) jyj � r � ", and (ii) jyj � r � "; see
Fig. 4.2. In case (i) we haveˇ̌jf .x/j � �.y/f .x/ˇ̌ D jf .x/j ;
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Fig. 4.2 The integration
domain

x

y

−r

−r + ε

−r − ε

r

r − ε

r + ε

(i)

(ii)

(i)

since �.y/ D 0 whenever jyj � r � ". In case (ii) we haveˇ̌jf .x/j � �.y/f .x/ˇ̌ D ˇ̌jf .x/j � sign .f .y// f .x/
ˇ̌ � 2 jf .x/ � f .y/j ;

using the elementary inequalityˇ̌jaj � sign .b/ a
ˇ̌ D ˇ̌jaj � jbj C sign .b/ .b � a/ˇ̌

� ˇ̌jaj � jbjˇ̌C jsign .b/ .b � a/j
� 2 ja � bj :

Thus

I1 � 2

"m

Z
Br

Z
Br�"

ı.
x � y
"

/ jf .x/ � f .y/j dy dx

C 1

"m

Z
Br

Z
jyj�r�"

ı.
x � y
"

/ jf .x/j dy dx

� 2

Z
Br

Z
B1

ı.z/ jf .x/ � f .x � "z/j dz dx

C kf k1
1

"m

Z
Br

Z
jyj�r�"

ı.
x � y
"

/ dy dx

� 2

Z
B1

ı.z/ sup
j�j�"

Z
Br

jf .x/ � f .x C �/j dx dz

C kf kL1.Rm/

Z
BrC"nBr�"

1

"m

Z
Br

ı.
x � y
"

/ dx dy

� 2�."If /C kf kL1.Rm/vol .BrC" n Br�"/
� 2�."If /C kf kL1.Rm/Cr":
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Furthermore,

�."If / � 2�."Iu/:
The second term I2 is estimated by the assumptions of the lemma, namely,

I2 D
ˇ̌̌
ˇ̌̌Z
Br

�".x/f .x/ dx

ˇ̌̌
ˇ̌̌ � Constr;T

� X
j˛j�m

kD˛�"kL1.Br /

�
j� j � C

j� j
"m
:

Combining the two estimates, we conclude thatZ
Br

ju.x; t C �/ � u.x; t/j dx � Cr

�
"C �r;T;Or ."Iu/C j� j

"m

�
: �

Next we need to extend the function un to all times. First, define

unCj=.mC1/ D Sju
nC.j�1/=.mC1/; j D 1; : : : ; m:

Now let

u�t .x; t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

Sj ..mC 1/.t � tnC.j�1/=.mC1///unC.j�1/=.mC1/

for t 2 ŒtnC.j�1/=.mC1/; tnCj=.mC1//;

H..mC 1/.t � tnCm=.mC1///unCm=.mC1/

for t 2 ŒtnCm=.mC1/; tnC1/:

(4.81)

The estimates in Lemma 4.10 carry over to the function u�t . Fix T > 0. Apply-
ing Theorem A.11, we conclude that there exists a sequence of �t ! 0 such that
for each t 2 Œ0; T �, the function u�t .t/ converges to a function u.t/, and the con-
vergence is in C.Œ0; T �IL1loc.Rm//. It remains to show that u is a weak solution of
(4.67), or

Z
Rm

tZ
0

.u�t C f .u/ � r� C �u��/ dt dx C
Z
Rm

u0�jtD0 dx D
Z
Rm

.u�/jtDT dx

(4.82)

for all smooth and compactly supported test functions �. We have

Z
Rm

tnCj=.mC1/Z
tnC.j�1/=.mC1/

	 1

mC 1
u�t �t C f .u�t / � r�



dt dx

D 1

mC 1

Z
Rm

�tZ
0

�
unC.j�1/=.mC1/.x; Qt / �t

	
x;

Qt � tnC.j�1/=.mC1/
mC 1




C f .unC.j�1/=.mC1// � r�
	
x;

Qt � tnC.j�1/=.mC1/
mC 1


�
d Qt dx

D 1

mC 1

Z
Rm

.u�t�/
ˇ̌̌tDtnCj=.mC1/

tDtnC.j�1/=.mC1/
dx; (4.83)
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for j D 1; : : : ; m, where we have used that unC.j�1/=.mC1/ is a solution of the
conservation law on the strip t 2 ŒtnC.j�1/=.mC1/; tnCj=.mC1//. Similarly, we find for
the solution of the heat equation that

Z
Rm

tnC1Z
tnCm=.mC1/

�
1

mC 1
u�t�t C �u�t��

�
dt dx

D 1

mC 1

Z
Rm

�
.u�t�/ jtDtnCm=.mC1/ � .u�t�/ jtDtnC1

�
dx:

(4.84)

Summing (4.83) for j D 1; : : : ; m, and adding the result to (4.84), we obtain

Z
Rm

tZ
0

�
1

mC 1
u�t�t C f�t .u�t/ � r� C ��mC1u�t��

�
dt dx

C 1

mC 1

Z
Rm

u0�jtD0 dx D 1

mC 1

Z
Rm

.u�t�/jtDT dx;
(4.85)

where
f�t D .�1f1; : : : ; �mfm/

and

�j D
(
1 for t 2 [nŒtnC.j�1/=.mC1/; tnCj=.mC1//;
0 otherwise:

As �t ! 0, we have �j
�
* 1=.m C 1/, which proves (4.82). We summarize the

result as follows.

Theorem 4.12 Let u0 be a function in L1.Rm/\L1.Rm/\BV .Rm/, and assume
that fj are piecewise twice continuously differentiable functions for j D 1; : : : ; m.
Define the family of functions fu�tg by (4.70) and (4.81). Fix T > 0. Then there
exists a sequence of �t ! 0 such that fu�t.t/g converges to a weak solution u of
(4.67). The convergence is in C.Œ0; T �IL1loc.Rm//.

One can prove that a weak solution of (4.67) is indeed a classical solution; see
[147]. Hence, by uniqueness of classical solutions, the sequence fu�tg converges
for every sequence f�tg tending to zero.

4.5 Operator Splitting: Source

Experience must be our only guide; Reason may mislead us.
— J. Dickinson, the Constitutional Convention (1787)

We will use operator splitting to study the inhomogeneous conservation law

ut C
mX
jD1

fj .u/xj D g.x; t; u/; ujtD0 D u0; (4.86)



4.5 Operator Splitting: Source 213

where the source term g is assumed to be continuous in .x; t/ and Lipschitz contin-
uous in u. In this case the Kružkov entropy condition reads as follows. The bounded
function u is a weak entropy solution on Œ0; T � if it satisfies

TZ
0

Z
Rm

� ju � kj 't C sign .u � k/
mX
jD1

�
fj .u/� fj .k/

�
'xj
�
dx1 � � � dxm dt

C
Z
Rm

ju0 � kj 'jtD0 dx1 � � � dxm �
Z
Rm

.ju � kj '/jtDT dx1 � � � dxm

� �
TZ
0

Z
Rm

sign .u � k/ 'g.x; t; u/ dx1 � � � dxm dt; (4.87)

for all constants k 2 R and all nonnegative test functions ' 2 C1
0 .R

m � Œ0; T �/.
To simplify the presentation we consider only the case with m D 1, and where

g D g.u/. Thus

ut C f .u/x D g.u/: (4.88)

The case in which g also depends on .x; t/ is treated in Exercise 4.7. Let S.t/u0
and R.t/u0 denote the solutions of

ut C f .u/x D 0; ujtD0 D u0; (4.89)

and

ut D g.u/; ujtD0 D u0; (4.90)

respectively. Define the sequence fung by (we still use tn D n�t)

u0 D u0; unC1 D .S.�t/R.�t// un

for some positive�t . Furthermore, we need the extension to all times, defined by6

u�t .x; t/ D
(
S.2.t � tn//un for t 2 Œtn; tnC1=2/;
R
�
2
�
t � tnC1=2

��
unC1=2 for t 2 ŒtnC1=2; tnC1/;

(4.91)

with

unC1=2 D S.�t/un; tnC1=2 D
	
nC 1

2



�t:

For this procedure to be welldefined, we must be sure that the ordinary differential
equation (4.90) is welldefined. This is the case if g is uniformly Lipschitz continu-
ous in u, i.e.,

jg.u/� g.v/j � kgkLip ju � vj : (4.92)

6 Essentially replacing the operator H used in operator splitting with respect to diffusion by R in
the case of a source.
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For convenience, we set � D kgkLip. This assumption also implies that the solution
of (4.90) does not “blow up” in finite time, since

jg.u/j � jg.0/j C � juj � Cg.1C juj/; (4.93)

for some constant Cg . Under this assumption on g we have the following lemma.

Lemma 4.13 Assume that u0 is a function in L1loc.R/, and that u0 is of bounded
variation. Then for n�t � T , the following estimates hold:

(i) There is a constantM1 independent of n and �t such that

kunkL1.R/ � M1: (4.94)

(ii) There is a constantM2 independent of n and �t such that

T:V: .un/ � M2: (4.95)

(iii) There is a constantM3 independent of n and �t such that for t1 and t2, with
0 � t1 � t2 � T , and for each bounded interval B � R,Z

B

ju�t.x; t1/ � u�t.x; t2/j dx � M3 jt1 � t2j : (4.96)

Proof We start by proving (i). The solution operator St obeys a maximum principle,
so that

��unC1=2��1 � kunk1. Multiplying (4.90) by sign .u/, we find that

jujt D sign .u/ g.u/ � jg.u/j � Cg.1C juj/;

where we have used (4.93). By Gronwall’s inequality (see Exercise 1.10), for a so-
lution of (4.90), we have that

ju.t/j � eCgt .1C ju0j/ � 1:

This means that

��unC1��
L1.R/ � eCg�t

	
1C ��unC1=2��

L1.R/



� 1

� eCg�t
�
1C kunkL1.R/

� � 1;

which by induction implies

kunkL1.R/ � eCgtn
�
1C ku0kL1.R/

� � 1:

Setting

M1 D eCgT
�
1C ku0kL1.R/

� � 1

proves (i).
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Next, we prove (ii). The proof is similar to that of the last case, since St is TVD,
T:V:

�
unC1=2� � T:V: .un/. As before, let u be a solution of (4.90) and let v be

another solution with initial data v0. Then we have .u�v/t D g.u/�g.v/. Setting
w D u � v, and multiplying by sign .w/, we find that

jwjt D sign .w/ .g.u/� g.v// � � jwj :
Then by Gronwall’s inequality,

jw.t/j � e�t jw.0/j :
Hence, ˇ̌

unC1.x/ � unC1.y/
ˇ̌ � e��t

ˇ̌
unC1=2.x/ � unC1=2.y/

ˇ̌
:

This implies that

T:V:
�
unC1� � e��tT:V:

�
unC1=2� � e��tT:V: .un/ :

Inductively, we then have that

T:V: .un/ � e�tnT:V: .u0/ ;

and settingM2 D e�T concludes the proof of (ii).
Regarding (iii), we know thatZ

B

ˇ̌
unC1=2.x/ � un.x/ˇ̌ dx � C�t:

We also have that

Z
B

ˇ̌
unC1.x/ � unC1=2.x/

ˇ̌
dx D

Z
B

ˇ̌̌
ˇ̌̌ �tZ
0

g .u�t .x; t � tn// dt
ˇ̌̌
ˇ̌̌ dx

�
Z
B

�tZ
0

jg .u�t .x; t � tn//j dt dx

� Cg

�tZ
0

Z
B

.1CM1/ dx dt

D jB jCg.1CM1/�t;

where jB j denotes the length of B . SettingM3 D C C jB jCg.1CM1/ shows thatZ
B

ˇ̌
unC1.x/ � un.x/ˇ̌ � M3�t;

which implies (iii). �
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Fix T > 0. Theorem A.11 implies the existence of a sequence�t ! 0 such that
for each t 2 Œ0; T �, the function u�t .t/ converges in L1loc.R/ to a bounded function
of bounded variation u.t/. The convergence is in C.Œ0; T �IL1loc.Rm//. It remains to
show that u solves (4.88) in the sense of (4.87).

Using that u�t is an entropy solution of the conservation law without source term
(4.89) in the interval Œtn; tnC1=2�, we obtain7

2

tnC1=2Z
tn

Z �
1

2
ju�t � kj 't C sign .u�t � k/ .f .u�t / � f .k//'x

�
dx dt

C
Z
.ju�t � kj '/

ˇ̌̌tDtn
tDtnC1=2

dx � 0: (4.97)

Regarding solutions of (4.90), since kt D 0 for every constant k, we find that

ju � kjt D sign .u � k/ .u � k/t D sign .u � k/ g.u/:
Multiplying this by a test function �.t/ and integrating over s 2 Œ0; t �, we find after
a partial integration that

tZ
0

� ju � kj�s C sign .u � k/ g.u/��ds C u�jsDtsD0 D 0:

Since u�t is a solution of the ordinary differential equation (4.90) on the interval
ŒtnC1=2; tnC1� (with time running “twice as fast”; see (4.91)), we find that

2

tnC1=2Z
tn

Z �
1

2
ju�t � kj 't C sign .u�t � k/ g.u�t/'

�
dx dt

C
Z
.ju�t � kj '/

ˇ̌̌tDtnC1=2

tDtnC1
dx D 0:

Adding this and (4.97), and summing over n, we obtain

2

TZ
0

Z �
1

2
ju�t � kj 't C ��t sign .u�t � k/ .f .u�t / � f .k//'x

C Q��t sign .u�t � k/ g.u�t /'
�
dx dt

�
Z
.ju�t � kj '/ jtDTtD0 dx � 0;

where ��t and Q��t denote the characteristic functions of the sets [nŒtn; tnC1=2/ and
[nŒtnC1=2; tnC1/, respectively. We have that ��t

�
* 1

2
and Q��t �

* 1
2
, and hence we

conclude that (4.87) holds in the limit as �t ! 0.

7 The constants 2 and 1
2
come from the fact that time is running “twice as fast” in the solution

operators S and R in (4.91) (cf. also (4.16)–(4.17)).
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Theorem 4.14 Let f .u/ be piecewise twice continuously differentiable, and as-
sume that g D g.u/ satisfies the bound (4.92). Let u0 be a bounded function of
bounded variation. Then the initial value problem

ut C f .u/x D g.u/; u.x; 0/ D u0.x/ (4.98)

has a weak entropy solution, which can be constructed as the limit of the sequence
fu�tg defined by (4.91).

4.6 Notes

Dimensional splitting for hyperbolic equations was first introduced by Bagrinovskiı̆
and Godunov [7] in 1957. Crandall and Majda made a comprehensive and sys-
tematic study of dimensional splitting (or the fractional steps method) in [52]. In
[53] they used dimensional splitting to prove convergence of monotone schemes as
well as the Lax–Wendroff scheme and the Glimm scheme, i.e., the random choice
method. A more general introduction to operator splitting can be found in [91].

There are also methods for multidimensional conservation laws that are intrinsi-
cally multidimensional. However, we have here decided to use dimensional splitting
as our technique because it is conceptually simple and allows us to take advantage
of the one-dimensional analysis.

Another natural approach to the study of multidimensional equations based on
the front-tracking concept is first to make the standard front-tracking approxima-
tion: Replace the initial data by a piecewise constant function, and replace flux
functions by piecewise linear and continuous functions. That gives rise to truly
two-dimensional Riemann problems at each grid point .i�x; j�y/. However, that
approach has turned out to be rather cumbersome even for a single Riemann prob-
lem and piecewise linear and continuous flux functions f and g. See Risebro [159].

The one-dimensional front-tracking approach combined with dimensional split-
ting was first introduced in Holden and Risebro [93]. The theorem on the conver-
gence rate of dimensional splitting was proved independently by Teng [178] and
Karlsen [105, 106]. Our presentation here follows Haugse, Lie, and Karlsen [133].
Sect. 4.4, using operator splitting to solve the parabolic regularization, is taken
from Karlsen and Risebro [108]. The Kružkov interpolation lemma, Lemma 4.11,
is taken from [117]; see also [108].

The presentation in Sect. 4.5 can be found in Holden and Risebro [95], where
also the case with a stochastic source is treated. The convergence rate in the case of
operator splitting applied to a conservation law with a source term is discussed in
Langseth, Tveito, and Winther [123].

4.7 Exercises

4.1 Consider the initial value problem

ut C f .u/x C g.u/y D 0; ujtD0 D u0;

where f , g are piecewise twice continuously differentiable functions, and u0
is a bounded integrable function with finite total variation.
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(a) Show that the solution u is Lipschitz continuous in time; that is,

ku.t/ � u.s/kL1.R2/ � jt � sj �kf kLip _ kgkLip
�
T:V: .u0/ :

(b) Let v0 be another function with the same properties as u0. Show that if
u0 � v0, then also u � v almost everywhere, where v is the solution with
initial data v0.

4.2 Consider the initial value problem

ut C f .u/x D 0; ujtD0 D u0; (4.99)

where f is a piecewise twice continuously differentiable function and u0 is
a bounded, integrable function with finite total variation. Write

f D f1 C f2

and let Sj .t/u0 denote the solution of

ut C fj .u/x D 0; ujtD0 D u0:

Prove that operator splitting converges to the solution of (4.99). Determine the
convergence rate.

4.3 Prove (4.38), that is, that“
j� �  j dx dy � .�x C�y/T:V: . / ;

for all functions  of bounded variation.
4.4 Consider the heat equation in Rm,

ut D
mX
iD1

@2u

@x2i
; u.x; 0/ D u0.x/: (4.100)

Let Hi
t denote the solution operator for the heat equation in the i th direction,

i.e., we write the solution of

ut D @2u

@x2i
; u.x; 0/ D u0.x/;

asHi
t u0. Define

un.x/ D �
Hm
�t ı � � � ıH1

�t

�n
u0.x/;

unCj=m.x/ D H
j
�t ıHj�1

�t ı � � � ıH1
�tu

n.x/;

for j D 1; : : : ; m, and n � 0.
For t in the interval Œtn C ..j � 1/=m/�t; tn C .j=m/�t� define

u�t.x; t/ D H
j

m.t�tnC.j�1/=m/u
nC.j�1/=m.x/:

If the initial function u0.x/ is bounded and of bounded variation, show that
fu�tg converges in C.Œ0; T �IL1loc.Rm// to a weak solution of (4.100).
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4.5 We consider the viscous conservation law in one space dimension,

ut C f .u/x D uxx; u.x; 0/ D u0.x/; (4.101)

where f satisfies the “usual” assumptions and u0 is in L1 \BV . Consider the
following scheme based on operator splitting:

U
nC1=2
j D 1

2

	
Un
jC1 C Un

j�1



� 
	
f
	
Un
jC1



� f

	
Un
j�1



;

U nC1
j D U

nC1=2
j C �

	
U
nC1=2
jC1 � 2U nC1=2

j C U
nC1=2
j�1



;

for n � 0, where  D �t=�x and � D �t=�x2. Set

U 0
j D 1

�x

.jC1=2/�xZ
.j�1=2/�x

u0.x/ dx:

We see that we use the Lax–Friedrichs scheme for the conservation law and an
explicit difference scheme for the heat equation. Let

u�t .x; t/ D Un
j

for
�
j � 1

2

�
�x � x <

�
j C 1

2

�
�x and n�t < t � .nC 1/�t .

(a) Show that this gives a monotone and consistent scheme, provided that
a CFL condition holds.

(b) Show that there is a sequence of �t ’s such that u�t converges to a weak
solution of (4.101) as �t ! 0.

(a) Assume that u, f , and g are inL1.Œ0; T �/, and that g is nonnegative, while
f is strictly positive and nondecreasing. Assume that

u.t/ � f .t/C
tZ

0

g.s/u.s/ ds; t 2 Œ0; T �:

Show that

u.t/ � f .t/ exp
	 tZ
0

g.s/ ds


; t 2 Œ0; T �:

4.6 Assume that u and v are entropy solutions of

ut C f .u/x D g.u/; u.x; 0/ D u0.x/;

vt C f .v/x D g.v/; v.x; 0/ D v0.x/;

where u0 and v0 are in L1.R/\ BV .R/, and f and g satisfy the assumptions
of Theorem 4.14.
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(a) Use the entropy formulation (4.87) and mimic the arguments used to prove
(2.60) to show that for every nonnegative test function  ,“ � ju.x; t/ � v.x; t/j t C q.u; v/ x

�
dt dx

�
Z

ju.x; T / � v.x; T /j .x; T / dx

C
Z

ju0.x/� v0.x/j .x; 0/ dx

�
“

sign .u � v/ .g.u/� g.v// dt dx:

(b) Define  .x; t/ by (2.61), and set

h.t/ D
Z

ju.x; t/ � v.x; t/j .x; t/ dx:

Show that

h.T / � h.0/C �

TZ
0

h.t/ dt;

where � denotes the Lipschitz constant of g. Use the previous exercise to
conclude that

h.T / � h.0/
�
1C �Te�T

�
:

(c) Show that

ku. � ; t/� v. � ; t/kL1.R/ � ku0 � v0kL1.R/
�
1C � te�t

�
;

and hence that entropy solutions of (4.98) are unique. Note that this im-
plies that fu�tg defined by (4.91) converges to the entropy solution for
every sequence f�tg such that�t ! 0.

4.7 We consider the case that the source depends on .x; t/. For u0 2 L1loc \ BV ,
let u be an entropy solution of

ut C f .u/x D g.x; t; u/; u.x; 0/ D u0.x/; (4.102)

where g is bounded for each fixed u and continuous in t , and satisfies

jg.x; t; u/ � g.x; t; v/j � � ju � vj ;
T:V: .g. � ; t; u// � b.t/;

where the constant � is independent of x and t , for all u and v and for
a bounded function b.t/ in L1.Œ0; T �/. We let St be as before, and let
R.x; t; s/u0 denote the solution of

u0.t/ D g.x; t; u/; u.s/ D u0;

for t > s.
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(a) Define an operator splitting approximation u�t using St and R.x; t; s/.
(b) Show that there is a sequence of �t’s such that u�t converges in

C.Œ0; T �IL1loc.R// to a function of bounded variation u.
(c) Show that u is an entropy solution of (4.102).

4.8 Show that if the initial data u0 of the heat equation ut D �u is smooth, that is,
u0 2 C1

0 , then

ku.t/ � u0kL1 � C t:

Compare this result with (4.76).



Chapter 5

The Riemann Problem for Systems

Diese Untersuchung macht nicht darauf Anspruch, der
experimentellen Forschung nützliche Ergebnisse zu liefern;
der Verfasser wünscht sie nur als einen Beitrag zur Theorie der
nicht linearen partiellen Differentialgleichungen betrachtet zu
sehen.1

—G. F. B. Riemann [156]

We return to the conservation law (1.2), but now study the case of systems, i.e.,

ut C f .u/x D 0; (5.1)

where u D u.x; t/ D .u1; : : : ; un/ and f D f .u/ D .f1; : : : ; fn/ 2 C2 are
vectors in Rn. (We will not distinguish between row and column vectors, and use
whatever is more convenient.) Furthermore, in this chapter we will consider only
systems on the line; i.e., the dimension of the underlying physical space is still one.
In Chapt. 2 we proved existence, uniqueness, and stability of the Cauchy problem
for the scalar conservation law in one space dimension, i.e., well-posedness in the
sense of Hadamard. However, this is a more subtle question in the case of systems
of hyperbolic conservation laws. We will here first discuss the basic concepts for
systems: fundamental properties of shock waves and rarefaction waves. In partic-
ular, we will discuss various entropy conditions to select the right solutions of the
Rankine–Hugoniot relations.

Using these results, we will eventually be able to prove well-posedness of the
Cauchy problem for systems of hyperbolic conservation laws with small variation
in the initial data.

5.1 Hyperbolicity and Some Examples

Before we start to define the basic properties of systems of hyperbolic conserva-
tion laws we discuss some important and interesting examples. The first example
is a model for shallow-water waves and will be used throughout this chapter as
both a motivation and an example in which all the basic quantities will be explicitly
computed.

1 The present work does not claim to lead to results in experimental research; the author asks only
that it be considered as a contribution to the theory of nonlinear partial differential equations.
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Fig. 5.1 A shallow channel
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h

h(x)
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} Example 5.1 (Shallow water)

Water shapes its course according to the nature of the ground over which it flows.
— Sun Tzu, The Art of War (6th–5th century BC)

We will now give a brief derivation of the equations governing shallow-water waves
in one space dimension, or, if we want, the long-wave approximation.2 Consider
a one-dimensional channel along the x-axis with a perfect, inviscid fluid with con-
stant density �, and assume that the bottom of the channel is horizontal.

In the long-wave or shallow-water approximation we assume that the fluid veloc-
ity v is a function only of time and the position along the channel measured along
the x-axis. Thus we assume that there is no vertical motion in the fluid. The distance
of the surface of the fluid from the bottom is denoted by h D h.x; t/. The fluid flow
is governed by conservation of mass and conservation of momentum.

Consider first the conservation of mass of the system. Let x1 < x2 be two points
along the channel. The change of mass of fluid between these points is given by

d

dt

x2Z
x1

h.x;t/Z
0

� dy dx D �
h.x2;t/Z
0

�v.x2; t/ dy C
h.x1;t/Z
0

�v.x1; t/ dy:

Assuming smoothness of the functions and domains involved, we may rewrite the
right-hand side as an integral of the derivative of �vh. We obtain

d

dt

x2Z
x1

h.x;t/Z
0

� dy dx D �
x2Z
x1

@

@x
.�v.x; t/h.x; t// dx;

or

x2Z
x1

�
@

@t
.�h.x; t// C @

@x
.�v.x; t/h.x; t//

�
dx D 0:

Dividing by .x2 � x1/� and letting x2 � x1 ! 0, we obtain the familiar

ht C .vh/x D 0: (5.2)

2 A word of warning. There are several different equations that are called the shallow-water equa-
tions. Also the name Saint-Venant equation is used.
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Observe the similarity in the derivations of (5.2) and (1.26). In fact, in the derivation
of (1.26) we started by considering individual cars before we made the continuum
assumption corresponding to high traffic densities, thereby obtaining (1.26), while
in the derivation of (5.2) we simply assumed a priori that the fluid constituted a con-
tinuum, and formulated mass conservation directly in the continuum variables.

For the derivation of the equation describing the conservation of momentum we
have to assume that the fluid is in hydrostatic balance. For that we introduce the
pressure P D P.x; y; t/ and consider a small element of the fluid Œx1; x2�� Œy; yC
�y�. Hydrostatic balance means that the pressure exactly balances the effect of
gravity, or

.P. Qx; y C�y; t/ � P. Qx; y; t// .x2 � x1/ D �.x2 � x1/�g�y
for some Qx 2 Œx1; x2�, where g is the acceleration due to gravity. Dividing by
.x2 � x1/�y and taking x1; x2 ! x;�y ! 0, we find that

@P

@y
.x; y; t/ D ��g:

Integrating and normalizing the pressure to be zero at the fluid surface, we conclude
that

P.x; y; t/ D �g.h.x; t/ � y/: (5.3)

Consider again the fluid between two points x1 < x2 along the channel. According
to Newton’s second law, the rate of change of momentum of this part of the fluid is
balanced by the net momentum inflow .�v/v D �v2 across the boundaries x D x1
and x D x2 plus the forces exerted by the pressure at the boundaries. Thus we
obtain

@

@t

x2Z
x1

h.x;t/Z
0

�v.x; t/ dy dx D �
h.x2;t/Z
0

P.x2; y; t/ dy C
h.x1;t/Z
0

P.x1; y; t/ dy

�
h.x2;t/Z
0

�v.x2; t/
2 dy C

h.x1;t/Z
0

�v.x1; t/
2 dy:

In analogy with the derivation of the equation for conservation of mass, we may
rewrite this, using (5.3), as

@

@t

x2Z
x1

�vh dx D ��g
�
h.x2; t/

2 � 1

2
h.x2; t/

2

�

C �g

�
h.x1; t/

2 � 1

2
h.x1; t/

2

�
�

x2Z
x1

@

@x

�
�hv2

�
dx

D ��g
x2Z
x1

@

@x

�
1

2
h2
�
dx �

x2Z
x1

@

@x

�
�v2h

�
dx:
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Dividing again by .x2 �x1/� and letting x2 �x1 ! 0, scaling g to unity, we obtain

.vh/t C
�
v2hC 1

2
h2
�
x

D 0: (5.4)

To summarize, we have the following system of conservation laws:

ht C .vh/x D 0; .vh/t C
�
v2hC 1

2
h2
�
x

D 0; (5.5)

where h and v denote the height (depth) and velocity of the fluid, respectively.
Introducing the variable q defined by

q D vh; (5.6)

we may rewrite the shallow-water equations as 
h

q

!
t

C
 

q
q2

h
C h2

2

!
x

D 0; (5.7)

which is the form we will study in detail later on in this chapter. We note in passing
that we can write the equation for v as

vt C vvx C hx D 0 (5.8)

by expanding the second equation in (5.5), and then using the first equation in (5.5).
A different derivation is based on the incompressible Navier–Stokes equations.3

Consider gravity waves of an incompressible two-dimensional fluid governed by
the Navier–Stokes equations

NvNt C . Nv � r/ Nv D Ng � Np
�

C �� Nv;
r � Nv D 0:

(5.9)

Here �, Np, Nv D . Nv1; Nv2/, � denote the density, pressure, velocity, and viscosity of
the fluid, respectively. The first equation describes the momentum conservation,
and the second is the incompressibility assumption. We let the y-direction point
upward, and thus the gravity Ng is a vector with length equal to g, the acceleration
due to gravity, and direction in the negative y-direction. LetL andH denote typical
wavelengths of the surface wave and water depth, respectively. The shallow-water
assumption (or long-wave assumption) is the following

" D H

L
 1: (5.10)

We introduce scaled variables

x D L Nx; y D H Ny; t D T Nt ;
v D U Nv1; u D V Nv2; p D �gH Np: (5.11)

The following relations are natural:

UT D L; V T D H; U 2 D gH: (5.12)

3 Thanks to Harald Hanche-Olsen.
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In addition, we introduce the dimensionless Reynolds number Re D UH=�. In the
new variables we obtain

vt C vvx C uvy D �px C 1

"Re
."2vxx C vyy/;

"2.vut C vuvx C uuy/ D �1 � py C "

Re
."2uxx C uyy/;

ux C vy D 0:

(5.13)

For typical waves we have Re � 1, yet "Re � 1.4 Hence a reasonable approxima-
tion reads

vt C vvx C uvy D �px;
py D �1;

vx C uy D 0:

(5.14)

We assume that the bottom is flat and normalize the pressure to vanish at the surface
of the fluid, given by y D h.x; t/. Hence the pressure equation integrates in the y-
direction to yield p D h.x; t/ � y.

Next we claim that if the horizontal velocity v is independent of y initially, it
will remain so, and thus vy D 0. Namely, for a given fluid particle we have that

d2x

dt2
D dv

dt
D vt C vx

dx

dt
C vy

dy

dt

D vt C vvx C uvy D �px:
(5.15)

Since the right-hand side is independent of y, the claim is proved.We can then write

vt C vvx C hx D 0: (5.16)

A fluid particle at the surface satisfies y D h.x; t/, or

u D hxv C ht , whenever y D h.x; t/. (5.17)

Consider the fluid contained in a domain R between two fixed points x1 and x2. By
applying Green’s theorem on the domain R and on vx C uy D 0, we obtain

0 D
“
R

�
vx C uy

�
dx dy D

Z
@R

.�u dx C v dy/

D
x2Z
x1

�
.hxv C ht / dx � vhx dx

�
C v.x2; t/h.x2; t/ � v.x1; t/h.x1; t/

D
x2Z
x1

�
ht C .vh/x

�
dx;

(5.18)

or ht C.vh/x D 0, where we used that v dy D vhx dx along the curve y D h.x; t/.

4 In tidal waves, say in the North Sea, we have H � 100m, T D 6 h, � D 10�6 m2s�1, which
yields " � 2 � 10�4 and Re � 3 � 109.
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From this we conclude that the shallow-water equations read

ht C .vh/x D 0;

vt C vvx C hx D 0;
(5.19)

in nonconservative form. }
} Example 5.2 (The wave equation)
Let � D �.x; t/ denote the transverse position away from equilibrium of a one-
dimensional string. If we assume that the amplitude of the transversal waves is
small, we obtain the wave equation

�tt D .c2�x/x; (5.20)

where c denotes the wave speed. Introducing new variables u D �x and v D �t ,
we find that (5.20) may be written as the system 

u

v

!
t

�
 
v

c2u

!
x

D 0: (5.21)

If c is constant, we recover the classical linear wave equation �tt D c2�xx . See also
Example 1.14. }
} Example 5.3 (The p-system)
The p-system is a classical model of an isentropic gas, where one has conservation
of mass and momentum, but not of energy. In Lagrangian coordinates it is described
by  

v

u

!
t

C
 

�u
p.v/

!
x

D 0: (5.22)

Here v denotes specific volume, that is, the inverse of the density; u is the velocity;
and p denotes the pressure. }
} Example 5.4 (The Euler equations)
The Euler equations are commonly used to model gas dynamics. They can be writ-
ten in several forms, depending on the physical assumptions used and variables
selected to describe them. Let it suffice here to describe the case in which � denotes
the density, v velocity, p pressure, and E the energy. Conservation of mass and
momentum give �t C .�v/x D 0 and .�v/t C .�v2 C p/x D 0, respectively. The
total energy can be written as E D 1

2
�v2C�e, where e denotes the specific internal

energy. Furthermore, we assume that there is a relation between this quantity and
the density and pressure, namely e D e.�; p/. Conservation of energy now reads
Et C .v.E C p//x D 0, yielding finally the system0

@ ��v
E

1
A
t

C
0
@ �v

�v2 C p

v.E C p/

1
A
x

D 0: (5.23)

We will return to this system at length in Sect. 5.6. }
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We will have to make assumptions on the (vector-valued) function f so that
many of the properties of the scalar case carry over to the case of systems. In order
to have finite speed of propagation, which characterizes hyperbolic equations, we
have to assume that the Jacobian of f , denoted by df , has n real eigenvalues

df .u/rj .u/ D j .u/rj .u/; j .u/ 2 R; j D 1; : : : ; n: (5.24)

(We will later normalize the eigenvectors rj .u/.) Furthermore, we order the eigen-
values

1.u/ � 2.u/ � � � � � n.u/: (5.25)

A system with a full set of eigenvectors with real eigenvalues is called hyperbolic,
and if all the eigenvalues are distinct, we say that the system is strictly hyperbolic.

Let us look at the shallow-water model to see whether that system is hyperbolic.

} Example 5.5 (Shallow water (cont’d.))
In the case of the shallow-water equations (5.7) we easily find that

1.u/ D q

h
�

p
h <

q

h
C

p
h D 2.u/; (5.26)

with corresponding eigenvectors

rj .u/ D
 

1

j .u/

!
; (5.27)

and thus the shallow-water equations are strictly hyperbolic away from h D 0. }

5.2 Rarefaction Waves

Natura non facit saltus.5

— Carl Linnaeus, Philosophia Botanica (1751)

Let us consider smooth solutions for the initial value problem

ut C f .u/x D 0; (5.28)

with Riemann initial data

u.x; 0/ D
(
ul for x < 0,

ur for x � 0.
(5.29)

First we observe that since both the initial data and the equation are scale-invariant
or self-similar, i.e., invariant under the map x 7! kx and t 7! kt , the solution
should also have that property. Let us therefore search for solutions of the form

u.x; t/ D w.x=t/ D w.�/; � D x=t: (5.30)

5 Nature does not make jumps.
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Inserting this into the differential equation (5.28), we find that

� x
t2

Pw C 1

t
df .w/ Pw D 0; (5.31)

or

df .w/ Pw D � Pw; (5.32)

where Pw denotes the derivative of w with respect to the one variable � . Hence we
observe that Pw is an eigenvector for the Jacobian df .w/ with eigenvalue � . From
our assumptions on the flux function we know that df .w/ has n eigenvectors given
by r1; : : : ; rn, with corresponding eigenvalues 1; : : : ; n. This implies

Pw.�/ D rj .w.�//; j .w.�// D �; (5.33)

for a value of j . Assume in addition that

w.j .ul// D ul ; w.j .ur// D ur : (5.34)

Thus for a fixed time t , the function w.x=t/ will continuously connect the given
left state ul to the given right state ur . This means that � is increasing, and hence
j .w.x=t// has to be increasing. If this is the case, we have a solution of the form

u.x; t/ D

8̂̂
<
ˆ̂:
ul for x � j .ul/t ,

w.x=t/ for tj .ul / � x � tj .ur/,

ur for x � tj .ur/,

(5.35)

where w.�/ satisfies (5.33) and (5.34). We call these solutions rarefaction waves,
a name that comes from applications to gas dynamics. Furthermore, we observe that
the normalization of the eigenvector rj .u/ also is determined from (5.33), namely,

rj .u/ � rj .u/ D 1; (5.36)

which follows by taking the derivative with respect to � . But this also imposes an ex-
tra condition on the eigenvector fields, since we clearly have to have a nonvanishing
scalar product between rj .u/ and rj .u/ to be able to normalize the eigenvector
properly. It so happens that in most applications this can be done. However, the
Euler equations of gas dynamics have the property that in one of the eigenvector
families, the eigenvector and the gradient of the corresponding eigenvalue are or-
thogonal. We say that the j th family is genuinely nonlinear if rj .u/ � rj .u/ ¤ 0

and linearly degenerate if rj .u/ � rj .u/ � 0 for all u under consideration. We
will not discuss mixed cases whereby a wave family is linearly degenerate only in
certain regions in phase space, e.g., along curves or at isolated points.

Before we discuss these two cases separately, we will make a slight but important
change in point of view. Instead of considering given left and right states as in
(5.29), we will assume only that ul is given, and consider those states ur for which
we have a rarefaction wave solution. From (5.33) and (5.35) we see that for each



5.2 Rarefaction Waves 231

point ul in phase space there are n curves emanating from ul on which ur can lie
allowing a solution of the form (5.35). Each of these curves is given as integral
curves of the vector fields of eigenvectors of the Jacobian df .u/. Thus our phase
space is now the ur space.

We may sum up the above discussion in the genuinely nonlinear case by the
following theorem.

Theorem 5.6 Let D be a domain in Rn. Consider the strictly hyperbolic equation
ut Cf .u/x D 0 with u 2 D and assume that the equation is genuinely nonlinear in
the j th wave family in D. Let the j th eigenvector rj .u/ of df .u/ with correspond-
ing eigenvalue j .u/ be normalized so that rj .u/ � rj .u/ D 1 in D.

Let ul 2 D. Then there exists a curve Rj .ul/ inD, emanating from ul , such that
for each ur 2 Rj .ul/ the initial value problem (5.28), (5.29) has weak solution

u.x; t/ D

8̂̂
<
ˆ̂:
ul for x � j .ul/t ,

w.x=t/ for j .ul/t � x � j .ur/t ,

ur for x � j .ur/t ,

(5.37)

where w satisfies Pw.�/ D rj .w.�//, j .w.�// D � , w.j .ul// D ul , and
w.j .ur// D ur .

Proof The discussion preceding the theorem gives the key computation and the
necessary motivation behind the following argument. Assume that we have a strictly
hyperbolic, genuinely nonlinear conservation law with appropriately normalized
j th eigenvector. Due to the assumptions on f , the system of ordinary differential
equations

Pw.�/ D rj .w.�//; w.j .ul // D ul (5.38)

has a solution for all � 2 Œj .ul/; j .ul/C 
/ for some 
 > 0. For this solution we
have

d

d�
j .w.�// D rj .w.�// � Pw.�/ D 1; (5.39)

proving the second half of (5.33). We denote the orbit of (5.38) by Rj .ul/. If we
define u.x; t/ by (5.37), a straightforward calculation shows that u indeed satisfies
both the equation and the initial data. �

Observe that we can also solve (5.38) for � less than j .ul/. However, in that
case j .u/will be decreasing. We remark that the solution u in (5.37) is continuous,
but not necessarily differentiable, and hence is not necessarily a regular, but rather
a weak, solution.

We will now introduce a different parameterization of the rarefaction curve
Rj .ul /, which will be convenient in Section 5.5 when we construct the wave
curves for the solution of the Riemann problem. From (5.39) we see that j .u/
is increasing along Rj .ul/, and hence we may define the positive parameter � by
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� WD � � �l D j .u/ � j .ul/ > 0. We denote the corresponding u by uj;�, that is,
uj;� D w.�/ D w.j .u// D w.� C j .ul//. Clearly,

duj;�

d�

ˇ̌̌
ˇ
�D0

D rj .ul/: (5.40)

Assume now that the system is linearly degenerate in the family j , i.e., rj .u/ �
rj .u/ � 0. Consider the system of ordinary differential equations

du

d�
D rj .u/; uj�D0 D ul ; (5.41)

with solution u D uj;� for � 2 .�
; 
/ for some 
 > 0. We denote this orbit by
Cj .ul/, along which j .uj;�/ is constant, since

d

d�
j .uj;�/ D rj .uj;�/ � rj .uj;�/ D 0:

Furthermore, the Rankine–Hugoniot condition is satisfied on Cj .ul/ with speed
j .ul/, because

d

d�
.f .uj;�/ � j .ul/uj;�/ D df .uj;�/

duj;�

d�
� j .ul/duj;�

d�

D .df .uj;�/ � j .ul//rj .uj;�/
D .df .uj;�/ � j .uj;�//rj .uj;�/ D 0;

which implies that f .uj;�/� j .ul/uj;� D f .ul / � j .ul/ul .
Let ur 2 Cj .ul/, i.e., ur D uj;�0 for some �0. It follows that

u.x; t/ D
(
ul for x < j .ul/t ,

ur for x � j .ul/t ,

is a weak solution of the Riemann problem (5.28), (5.29). We call this solution
a contact discontinuity.

We sum up the above discussion concerning linearly degenerate waves in the
following theorem.

Theorem 5.7 Let D be a domain in Rn. Consider the strictly hyperbolic equation
ut C f .u/x D 0 with u 2 D. Assume that the equation is linearly degenerate in
the j th wave family in D, i.e., rj .u/ � rj .u/ � 0 in D, where rj .u/ is the j th
eigenvector of df .u/ with corresponding eigenvalue j .u/.

Let ul 2 D. Then there exists a curve Cj .ul / inD, passing through ul , such that
for each ur 2 Cj .ul/ the initial value problem (5.28), (5.29) has solution

u.x; t/ D
(
ul for x < j .ul/t ,

ur for x � j .ul/t ,
(5.42)

where ur is determined as follows: Consider the function � 7! u� determined by
du
d�

D rj .u/, uj�D0 D ul . Then ur D u�0 for some �0.
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} Example 5.8 (Shallow water (cont’d.))
Let us now consider the actual computation of rarefaction waves in the case of
shallow-water waves. Recall that

u D
 
h

q

!
; f .u/ D

 
q

q2

h
C h2

2

!
;

with eigenvalues j D q

h
C .�1/jp

h, and corresponding eigenvectors rj .u/ D�
1

j .u/

�
. With this normalization of rj , we obtain

rj .u/ � rj .u/ D 3.�1/j
2
p
h
; (5.43)

and hence we see that the shallow-water equations are genuinely nonlinear in both
wave families. From now on we will renormalize the eigenvectors to satisfy (5.36):

rj .u/ D 2

3
.�1/j

p
h

 
1

j .u/

!
: (5.44)

For the 1-family we have that Ph
Pq

!
D �2

3

p
h

 
1

q

h
� p

h

!
; (5.45)

implying that

dq

dh
D 1 D q

h
�

p
h;

which can be integrated to yield

q D q.h/ D ql
h

hl
� 2h�ph �

p
hl
�
: (5.46)

Since 1.u/ has to increase along the rarefaction wave, we see from (5.26) (inserting
the expression (5.46) for q) that we have to use h � hl in (5.46).

For the second family we again obtain

dq

dh
D 2 D q

h
C

p
h;

yielding

q D q.h/ D ql
h

hl
C 2h

�p
h �

p
hl
�
: (5.47)

In this case we see that we have to use h � hl . Observe that (5.46) and (5.47) would
follow for any normalization of the eigenvector rj .u/. See Fig. 5.2.
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h

v
R1 R2

L

h

q

R1

R2

L

Fig. 5.2 Rarefaction curves in the .h; v/- and .h; q/-planes. We have illustrated the full solution
of (5.38) for the shallow-water equations. Only the part given by (5.48) and (5.49) will be actual
rarefaction curves

Summing up, we obtain the following rarefaction waves expressed in terms of h:

R1 W q D R1.hIul / WD ql
h

hl
� 2h�ph �

p
hl
�
; h 2 .0; hl �; (5.48)

R2 W q D R2.hIul / WD ql
h

hl
C 2h

�p
h�

p
hl
�
; h � hl : (5.49)

Alternatively, in the .h; v/ variables (with v D q=h) we have the following:

R1 W v D R1.hIul / WD vl � 2�ph �
p
hl
�
; h 2 .0; hl �; (5.50)

R2 W v D R2.hIul / WD vl C 2
�p
h �

p
hl
�
; h � hl : (5.51)

However, if we want to compute the rarefaction curves in terms of the parameter �
or �, we have to use the proper normalization of the eigenvectors given by (5.44).
Consider first the 1-family. We obtain

Ph D �2
3

p
h; Pq D 2

3

�
� qp

h
C h

�
: (5.52)

Integrating the first equation directly and inserting the result into the second equa-
tion, we obtain

w1.�/ D
 
h1

q1

!
.�/ D R1.�Iul/

WD
 

1
9
.vl C 2

p
hl � �/2

1
27
.vl C 2

p
hl C 2�/.vl C 2

p
hl � �/2

!
(5.53)

for � 2 �vl � p
hl ; vl C 2

p
hl
�
.
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Similarly, for the second family we obtain

w2.�/ D
 
h2

q2

!
.�/ D R2.�Iul/

WD
 

1
9
.�vl C 2

p
hl C �/2

1
27
.vl � 2phl C 2�/.�vl C 2

p
hl C �/2

!
(5.54)

for � 2 �2.ul/;1�
. Hence the actual solution reads

u.x; t/ D

8̂̂<
ˆ̂:
ul for x � j .ul/t ,

Rj .x=t Iul/ for j .ul/t � x � j .ur/t ,

ur for x � j .ur/t .

(5.55)

In the .h; v/ variables (with v D q=h) we obtain

v1.�/ D 1

3

�
vl C 2

p
hl C 2�

�
(5.56)

and

v2.�/ D 1

3

�
vl � 2

p
hl C 2�

�
; (5.57)

for the first and the second families, respectively.
In terms of the parameter � we may write (5.53) as

u1;� D
 
h1;�

q1;�

!
D R1;�.ul / WD

 
.
p
hl � �

3
/2

.vl C 2�
3
/.

p
hl � �

3
/2

!
(5.58)

for � 2 �0; 3phl �, and (5.54) as
u2;� D

 
h2;�

q2;�

!
D R2;�.ul / WD

 �p
hl C �

3

�2�
vl C 2�

3

��p
hl C �

3

�2
!

(5.59)

for � 2 Œ0;1/. }
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God lives in the details.
— Johannes Kepler (1571–1630)

The discussion in Chapt. 1 concerning weak solutions, and in particular the
Rankine–Hugoniot condition (1.27), carries over to the case of systems without
restrictions. However, the concept of entropy is considerably more difficult for
systems and is still an area of research. Our main concern in this section is the
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characterization of solutions of the Rankine–Hugoniot relation. Again, we will take
the point of view introduced in the previous section, assuming the left state ul to
be fixed, and consider possible right states u that satisfy the Rankine–Hugoniot
condition

s.u � ul/ D f .u/ � f .ul /; (5.60)

for some speed s. We introduce the jump in a quantity � as

��� D �r � �l ;

and hence (5.60) takes the familiar form

s �u� D �f .u/� :

The solutions of (5.60), for a given left state ul , form a set, which we call the
Hugoniot locus and writeH.ul/, i.e.,

H.ul/ WD ˚
u j 9s 2 R such that s �u� D �f .u/�

�
: (5.61)

We start by computing the Hugoniot locus for the shallow-water equations.

} Example 5.9 (Shallow water (cont’d.))
The Rankine–Hugoniot condition reads

s.h � hl / D q � ql ;

s.q � ql / D
�
q2

h
C h2

2

�
�
�
q2l
hl

C h2l
2

�
;

(5.62)

where s as usual denotes the shock speed between the left state ul D �
hl
ql

�
and right

state u D �
h
q

�
:

 
h

q

!
.x; t/ D

(�
hl
ql

�
for x < st ,�

h

q

�
for x � st .

(5.63)

In the context of the shallow-water equations such solutions are called bores. Elim-
inating s in (5.62), we obtain the equation

�h�

��
q2

h

�

C 1

2

�
h2

�
�

D �q�2 : (5.64)

Introducing the variable v, given by q D vh, equation (5.64) becomes

�h�

�
�
hv2

� C 1

2

�
h2

�
�

D �vh�2 ;
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h

v

S 1S 2

L

h

q

S 1S 2

L

Fig. 5.3 Shock curves in the .h; v/- and .h; q/-planes. Slow (S1) and fast (S2) shocks indicated;
see Sect. 5.4

with solution

v D vl ˙ 1p
2
.h � hl /

q
h�1 C h�1

l ; (5.65)

or alternatively,

q D vh D ql
h

hl
˙ hp

2
.h � hl /

q
h�1 C h�1

l : (5.66)

See Fig. 5.3. For later use, we will also obtain formulas for the corresponding shock
speeds. We find that

s D �vh�

�h�
D v.h � hl/C .v � vl /hl

h � hl
D v C �v�

�h�
hl D v ˙ hlp

2

q
h�1 C h�1

l ;

(5.67)

or

s D v C �v�

�h�
hl D vl C �v� C �v�

�h�
hl D vl ˙ hp

2

q
h�1 C h�1

l : (5.68)

When we want to indicate the wave family, we write

sj D sj .hI vl / D vl C .�1/j hp
2

q
h�1 C h�1

l

D v C .�1/j hlp
2

q
h�1 C h�1

l : (5.69)

Thus we see that through a given left state ul there are two curves on which the
Rankine–Hugoniot relation holds, namely,

H1.ul/ WD
( 

h

ql
h
hl

� hp
2
.h � hl /

q
h�1 C h�1

l

! ˇ̌̌
ˇ̌ h > 0

)
(5.70)
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and

H2.ul/ WD
( 

h

ql
h
hl

C hp
2
.h � hl /

q
h�1 C h�1

l

! ˇ̌̌
ˇ̌ h > 0

)
: (5.71)

We call the corresponding shocks slow shocks (or 1-shocks) and fast shocks (or
2-shocks), respectively. The Hugoniot locus now reads

H.ul/ D ˚
u j 9s 2 R such that s �u� D �f .u/�

� D H1.ul/[H2.ul/: }
We will soon see that the basic features of the Hugoniot locus of the shallow-

water equations carry over to the general case of strictly hyperbolic systems at least
for small shocks where u is near ul . The problem to be considered is to solve im-
plicitly the system of n equations

H .s; uI ul / WD s.u � ul/ � .f .u/ � f .ul // D 0 (5.72)

for the n C 1 unknowns u1; : : : ; un and s for u close to the given ul . The major
problem comes from the fact that we have one equation fewer than the number of
unknowns, and thatH .s; ul I ul/ D 0 for all values of s. Hence the implicit function
theorem cannot be used without first removing the singularity at u D ul .

Let us first state the relevant version of the implicit function theorem that we will
use.

Theorem 5.10 (Implicit function theorem) Let the function

˚ D .˚1; : : : ; p̊/ W Rq � Rp ! Rp (5.73)

be C1 in a neighborhood of a point .x0; y0/, x0 2 Rq , y0 2 Rp with ˚.x0; y0/ D 0.
Assume that the p � p matrix

@˚

@y
D

0
BB@
@˚1
@y1

: : : @˚1
@yp

:::
: : :

:::
@ p̊

@y1
: : :

@ p̊

@yp

1
CCA (5.74)

is nonsingular at the point .x0; y0/.
Then there exist a neighborhood N of x0 and a unique differentiable function

�WN ! Rp such that

˚.x; �.x// D 0; �.x0/ D y0: (5.75)

We will rewrite equation (5.72) into an eigenvalue problem that we can study
locally around each eigenvalue j .ul/. This removes the singularity, and hence we
can apply the implicit function theorem.

Theorem 5.11 LetD be a domain inRn. Consider the strictly hyperbolic equation
ut C f .u/x D 0 with u 2 D. Let ul 2 D.

Then there exist n smooth curves H1.ul /; : : : ;Hn.ul/ locally through ul on
which the Rankine–Hugoniot relation is satisfied.
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Proof Writing

f .u/ � f .ul / D
1Z
0

@

@˛
f ..1 � ˛/ul C ˛u/ d˛

D
1Z
0

df ..1 � ˛/ul C ˛u/.u � ul/ d˛

D M.u; ul/.u � ul/;

(5.76)

whereM.u; ul/ is the averaged Jacobian

M.u; ul/ D
1Z
0

df ..1 � ˛/ul C ˛u/ d˛;

we see that (5.72) takes the form

H .s; u; ul / D .s �M.u; ul//.u � ul/ D 0: (5.77)

Here u � ul is an eigenvector of the matrix M with eigenvalue s. The matrix
M.ul ; ul / D df .ul / has n distinct eigenvalues 1.ul/; : : : ; n.ul/, and hence we
know that there exists an open set N such that the matrix M.u; ul/ has twice-
differentiable eigenvectors and distinct eigenvalues, namely,�

�j .u; ul/ �M.u; ul/
�
vj .u; ul/ D 0; (5.78)

for all u; ul 2 N .6 Let wj .u; ul / denote the corresponding left eigenvectors nor-
malized so that

wk.u; ul/ � vj .u; ul/ D ıjk: (5.79)

In this terminology u and ul satisfy the Rankine–Hugoniot relation with speed s if
and only if there exists a j such that

wk.u; ul/ � .u � ul/ D 0 for all k ¤ j; s D �j .u; ul/; (5.80)

and wj .u; ul/ � .u � ul/ is nonzero. We define functions Fj W Rn � R ! Rn by

Fj .u; �/ D �
w1.u; ul/ � .u � ul/� �ı1j ; : : : ; wn.u; ul/ � .u � ul/� �ınj

�
: (5.81)

The Rankine–Hugoniot relation is satisfied if and only if Fj .u; �/ D 0 for some �
and j . Furthermore, Fj .ul ; 0/ D 0. A straightforward computation shows that

@Fj

@u
.ul ; 0/ D

0
B@
l1.ul /
:::

ln.ul /

1
CA ;

6 The properties of the eigenvalues follow from the implicit function theorem used on the
determinant of �I �M.u; ul /, and for the eigenvectors by considering the one-dimensional eigen-
projections

R
.M.u; ul / � �/�1 d� integrated around a small curve enclosing each eigenvalue

j .ul /.
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which is nonsingular. Hence the implicit function theorem implies the existence of
a unique solution uj .�/ of

Fj .uj .�/; �/ D 0 (5.82)

for � small. �

Occasionally, in particular in Chapt. 7, we will use the notation

Hj .�/ul D uj .�/:

We will have the opportunity later to study in detail properties of the parameter-
ization of the Hugoniot locus. Let it suffice here to observe that by differentiating
each component of Fj .uj .�/; �/ D 0 at � D 0, we find that

lk.ul / � u0
j .0/ D ıjk (5.83)

for all k D 1; : : : ; n, showing that indeed

u0
j .0/ D rj .ul/: (5.84)

From the definition of M we see that M.u; ul/ D M.ul ; u/, and this symmetry
implies that

�j .u; ul/ D �j .ul ; u/; �j .ul ; ul / D j .ul/;

vj .u; ul/ D vj .ul ; u/; vj .ul ; ul / D rj .ul/;

wj .u; ul/ D wj .ul ; u/; wj .ul ; ul / D lj .ul /:

(5.85)

Let rkh.u1; u2/ denote the gradient of a function hWRn � Rn ! R with respect to
the kth variable uk 2 Rn, k D 1; 2. Then the symmetries (5.85) imply that

r1�j .u; ul / D r2�j .u; ul/: (5.86)

Hence

rj .ul/ D r1�j .ul ; ul /C r2�j .ul ; ul / D 2r1�j .ul ; ul /: (5.87)

For a vector-valued function �.u/ D .�1.u/; : : : ; �n.u// we let r�.u/ denote the
Jacobian matrix,

r�.u/ D

0
B@

r�1
:::

r�n

1
CA : (5.88)

Now the symmetries (5.85) imply that

rlk.ul / D 2r1wk.ul ; ul / (5.89)

in obvious notation.
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5.4 The Entropy Condition

. . . and now remains
That we find out the cause of this effect,
Or rather say, the cause of this defect . . .
— W. Shakespeare, Hamlet (1603)

Having derived the Hugoniot loci for a general class of conservation laws in the pre-
vious section, we will have to select the parts of these curves that give admissible
shocks, i.e., satisfy an entropy condition. This will be considerably more compli-
cated in the case of systems than in the scalar case. To guide our intuition we will
return to the example of shallow-water waves.

} Example 5.12 (Shallow water (cont’d.))
Let us first study the points onH1.ul/; a similar analysis will apply to H2.ul/. We
will work with the variables h; v rather than h; q. Consider the Riemann problem
where we have a high-water bank at rest to the left of the origin and a lower-water
bank to the right of the origin, with a positive velocity; or in other words, the fluid
from the lower-water bank moves away from the high-water bank. More precisely,
for hl > hr we let

 
h

v

!
.x; 0/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

 
hl

0

!
for x < 0,0

@ hr
hl�hrp

2

q
h�1
r C h�1

l

1
A for x � 0,

where we have chosen initial data so that the right state is on H1.ul/, i.e., the
Rankine–Hugoniot is already satisfied for a certain speed s. This implies that

 
h

v

!
.x; t/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

 
hl

0

!
for x < st ,0

@ hr
hl�hrp

2

q
h�1
r C h�1

l

1
A for x � st ,

for hl > hr , where the negative shock speed s given by

s D �
hr

q
h�1
r C h�1

lp
2

is a perfectly legitimate weak solution of the initial value problem. However, we see
that this is not at all a reasonable solution, since the solution predicts a high-water
bank being pushed by a lower one! See Fig. 5.4.

If we change the initial conditions so that the right state is on the other branch of
H1.ul/, i.e., we consider a high-water bank moving into a lower-water bank at rest,
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hhl

hr

Fig. 5.4 Unphysical solution

h

hl

hr

Fig. 5.5 Reasonable solution

or

 
h

v

!
.x; 0/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

 
hl

0

!
for x < 0,0

@ hr
hl�hrp

2

q
h�1
r C h�1

l

1
A for x � 0,

for hl < hr , we see that the weak solution

 
h

v

!
.x; t/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

 
hl

0

!
for x < st ,0

@ hr
hl�hrp

2

q
h�1
r C h�1

l

1
A for x � st ,

for hl < hr and with speed s D �hr
q
h�1
r C h�1

l =
p
2 is reasonable physically,

since the high-water bank now is pushing the lower one. See Fig. 5.5
If you are worried about the fact that the shock is preserved, i.e., that there is no

deformation of the shock profile, this is due to the fact that the right state is carefully
selected. In general we will have both a shock wave and a rarefaction wave in the
solution. This will be clear when we solve the full Riemann problem.

Let us also consider the above examples with energy conservation in mind. In our
derivation of the shallow-water equations we used conservation of mass and mo-
mentum only. For smooth solutions of these equations, conservation of mechanical
energy will follow. Indeed, the kinetic energy of a vertical section of the shallow-
water system at a point x is given by h.x; t/v.x; t/2=2 in dimensionless variables,
and the potential energy of the same section is given by h.x; t/2=2, and hence the to-
tal mechanical energy reads .h.x; t/v.x; t/2 C h.x; t/2/=2. Consider now a section
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of the channel between points x1 < x2 and assume that we have a smooth (classical)
solution of the shallow-water equations. The rate of change of mechanical energy is
given by the net energy flow across x1 and x2, i.e.,

1
2
.hv2 C h2/v D 1

2
.hv3 C h2v/,

plus the work done by the pressure. Energy conservation yields

0 D d

dt

x2Z
x1

�
1

2
hv2 C 1

2
h2
�
dx C

x2Z
x1

@

@x

�
1

2
hv3 C 1

2
h2v

�
dx

C
h.x2;t/Z
0

P.x2; y; t/v.x2; t/ dy �
h.x1;t/Z
0

P.x1; y; t/v.x1; t/ dy

D d

dt

x2Z
x1

�
1

2
hv2 C 1

2
h2
�
dx C

x2Z
x1

@

@x

�
1

2
hv3 C 1

2
h2v

�
dx

C
x2Z
x1

@

@x

�
1

2
h2v

�
dx

D
x2Z
x1

@

@t

�
1

2
hv2 C 1

2
h2
�
dx C

x2Z
x1

@

@x

�
1

2
hv3 C h2v

�
dx;

where we have used that P.x; y; t/ D h.x; t/�y in dimensionless variables. Hence
we conclude that �

1

2
hv2 C 1

2
h2
�
t

C
�
1

2
hv3 C h2v

�
x

D 0:

This equation follows easily directly from (5.5) for smooth solutions.
However, for weak solutions, mechanical energy will in general not be con-

served. Due to dissipation we expect an energy loss across a bore. Let us compute
this change in energy �E across the bore in the two examples above, for a time t
such that x1 < st < x2. We obtain

�E D d

dt

x2Z
x1

�
1

2
hv2 C 1

2
h2
�
dx C

�
1

2
hv3 C h2v

�ˇ̌̌
ˇ
x2

x1

D �s
�
1

2
hv2 C 1

2
h2

�

C
�
1

2
hv3 C h2v

�

D 1

2
hrı.�h�

2
ı2hr C h2r � h2l /C .� �h�3 ı3hr � 2 �h� ıh2r /

D �1
4

�h�3 ı; (5.90)

where we have introduced

ı WD
q
h�1
r C h�1

lp
2

D
	hr C hl

2hrhl


1=2
: (5.91)
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(Recall that vl D 0 and vr D �v� D � �h� ı from the Rankine–Hugoniot condition.)
Here we have used that we have a smooth solution with energy conservation on
each interval Œx1; st � and Œst; x2�. In the first case, where we had a low-water bank
pushing a high-water bank with hr < hl , we find indeed that �E > 0, while in the
other case we obtain the more reasonable�E < 0.

From these two simple examples we get a hint that only one branch of H1.ul/

is physically acceptable. We will now translate this into conditions on existence of
viscous profiles and conditions on the eigenvalues of df .u/ at u D ul and u D ur ,
conditions we will use in cases where our intuition will be more blurred.

In Chapt. 2 we discussed the notion of traveling waves. Recall from (2.7) that
a shock between two fixed states ul and ur with speed s,

u.x; t/ D
(
ul for x < st ,

ur for x � st ,
(5.92)

admits a viscous profile if u.x; t/ is the limit as � ! 0 of u�.x; t/ D U..x �
st/=�/ D U.�/ with � D .x � st/=�, which satisfies

u�t C f .u�/x D �u�xx:

Integrating this equation, using lim�!0 U.�/ D ul if � < 0, we obtain

PU D A.h; q/ WD f .U / � f .ul/ � s.U � ul/; (5.93)

where the differentiation is with respect to � . We will see that it is possible to con-
nect the left state with a viscous profile to a right state only for the branch with
hr > hl ofH1.ul/, i.e., the physically correct solution.

Computationally it will be simpler to work with viscous profiles in the .h; v/
variables rather than .h; q/. Using Pq D Pvh C v Ph and (5.93), we find that there is
a viscous profile in .h; q/ if and only if .h; v/ satisfies Ph

Pv

!
D B.h; v/ WD

 
vh � vlhl � s.h � hl/

.v � vl /.vl � s/ hl
h

C h2�h2
l

2h

!
: (5.94)

Consider now a slow shock with s D vl � hrı, cf. (5.69). We can write

B.h; v/ D
 
vh � vlhl � s.h � hl /
.v � vl / hl hrh ı C h2�h2

l

2h

!
: (5.95)

We will analyze the vector field B.h; v/ carefully. The Jacobian of B reads

dB.h; v/ D
 

v � s h
h2Ch2

l

2h2
� .v � vl/ hl hrh2 ı hlhr

h
ı

!
: (5.96)

At the left state ul we obtain

dB.hl; vl / D
 
vl � s hl

1 hr ı

!
D
 
hrı hl

1 hrı

!
; (5.97)
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using the value of the shock speed s, equation (5.68). The eigenvalues of dB.hl ; vl /
are hrı ˙ p

hl , both of which are easily seen to be positive when hr > hl ; thus
.hl ; vl / is a source. Similarly, we obtain

dB.hr; vr / D
 
hlı hr

1 hlı

!
; (5.98)

with eigenvalues hlı ˙ p
hr . In this case, one eigenvalue is positive and one nega-

tive, and thus .hr ; vr / is a saddle point. However, we still have to establish an orbit
connecting the two states. To this end we construct a region K with .hl ; vl / and
.hr ; vr / at the boundary of K such that a connecting orbit has to connect the two
points within K. The region K will have two curves as boundaries where the first
and second components of B vanish, respectively. The first curve, denoted by Ch,
is defined by the first component being zero,

vh � vlhl � s.h � hl / D 0; h 2 Œhl ; hr �;

which can be simplified to yield

v D vl � .h � hl /hr
h
ı; h 2 Œhl ; hr �: (5.99)

For the second curve, Cv , we have

.v � vl/.vl � s/hl
h

C h2 � h2l
2h

D 0; h 2 Œhl ; hr �;

which can be rewritten as

v D vl � h2 � h2l
2hlhrı

; h 2 Œhl ; hr �: (5.100)

Let us now study the behavior of the second component of B along the curve Ch
where the first component vanishes, i.e.,

h
.v � vl /hlhr

h
ı C h2 � h2l

2h

i ˇ̌̌
Ch

D � hl

2h2
.hr � h/.h � hl /.1C hC hr

hl
/ < 0:

(5.101)

Similarly, for the first component of B along Cv , we obtain�
vh � vlhl � s.h � hl /

� ˇ̌
Cv

D h � hl
2hrhlı

.hr .hl C hr /� h.hC hl // > 0;
(5.102)

which is illustrated in Fig. 5.6. The flow of the vector field is leaving the region K
along the curvesCh andCv . Locally, around .hr ; vr / there has to be an orbit entering
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Fig. 5.6 The vector field B ,
the curves Cv and Ch, as well
as the orbit connecting the
left and the right states

K as � decreases from 1. This curve cannot escapeK and has to connect to a curve
coming from .hl ; vl /. Consequently, we have proved existence of a viscous profile.

We saw that the relative values of the shock speed and the eigenvalues of the
Jacobian of B , and hence of A, at the left and right states were crucial for this
analysis to hold. Let us now translate these assumptions into assumptions on the
eigenvalues of dA. The Jacobian of A reads

dA.h; q/ D
 

�s 1

h� q2

h2
2q

h
� s

!
:

Hence the eigenvalues are �s C q

h
˙ p

h D �s C .u/. At the left state both
eigenvalues are positive, and thus ul is a source, while at ur one is positive and one
negative, and hence ur is a saddle. We may write this as

1.ur/ < s < 1.ul/; s < 2.ur/: (5.103)

We call these the Lax inequalities, and say that a shock satisfying these inequalities
is a Lax 1-shock or a slow Lax shock. We have proved that for the shallow-water
equations with hr > hl there exists a viscous profile, and that the Lax shock condi-
tions are satisfied.

Let us now return to the unphysical shock “solution.” In this case we had ur 2
H1.ul/ with hr < hl with the eigenvalues at the left state .hl ; vl / of different signs.
Thus .hl ; vl / is a saddle. However, for the right state .hr ; vr / both eigenvalues are
positive, and hence that point is a source. Accordingly, there cannot be any orbit
connecting the left state with the right state.

A similar analysis can be performed for H2.ul /, giving that there exists a vis-
cous profile for a shock satisfying the Rankine–Hugoniot relation if and only if the
following Lax entropy conditions are satisfied:

2.ur/ < s < 2.ul/; s > 1.ul/: (5.104)

In that case we have a fast Lax shock, or Lax 2-shock.
We may sum up the above argument as follows. A shock has a viscous profile if

and only if the Lax shock conditions are satisfied. We call such shocks admissible
and denote the part of the Hugoniot locus where the Lax j conditions are satisfied
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by Sj . In the case of shallow-water equations we obtain

S1.ul/ WD
( 

h

ql
h
hl

� hp
2
.h � hl/

q
h�1 C h�1

l

! ˇ̌̌
ˇ̌ h � hl

)
; (5.105)

S2.ul/ WD
( 

h

ql
h
hl

C hp
2
.h � hl /

q
h�1 C h�1

l

! ˇ̌̌
ˇ̌ 0 < h � hl

)
: (5.106)

(These curves are depicted in Sect. 5.3.) We may also want to parameterize the
admissible shocks differently. For the slow Lax shocks let

h1;� WD hl � 2

3

p
hl �; � < 0: (5.107)

This gives

q1;� WD ql

�
1 � 2�

3
p
hl

�
C �

9

r
2hl

	
6
p
hl � 2�


 	
3
p
hl � 2�



(5.108)

such that

d

d�

 
h1;�

q1;�

!ˇ̌̌
ˇ̌
�D0

D r1.ul/; (5.109)

where r1.ul / is given by (5.44). Similarly, for the fast Lax shocks let

h2;� WD hl C 2

3

p
hl �; � < 0: (5.110)

Then

q2;� WD ql

�
1C 2�

3
p
hl

�
C �

9

r
2hl

	
6
p
hl C 2�


 	
3
p
hl C 2�



; (5.111)

such that

d

d�

 
h2;�

q2;�

!ˇ̌̌
ˇ̌
�D0

D r2.ul/; (5.112)

where r2.ul / is given by (5.44). }

In the above example we have seen the equivalence between the existence of
a viscous profile and the Lax entropy conditions for the shallow-water equations.
This analysis has yet to be carried out for general systems. We will use the above
example as a motivation for the following definition, stated for general systems.
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Definition 5.13 We say that a shock

u.x; t/ D
(
ul for x < st ,

ur for x � st ,
(5.113)

is a Lax j -shock if the shock speed s satisfies the Rankine–Hugoniot condition
s �u� D �f � and

j�1.ul/ < s < j .ul/; j .ur/ < s < jC1.ur/: (5.114)

(Here 0 D �1 and nC1 D 1.)

Observe that for strictly hyperbolic systems, for which the eigenvalues are dis-
tinct, it suffices to check the inequalities j .ur/ < s < j .ul/ for small Lax
j -shocks if the eigenvalues are continuous in u.

The following result follows from Theorem 5.11.

Theorem 5.14 Consider the strictly hyperbolic equation ut C f .u/x D 0 in a do-
main D in Rn. Assume that rj � rj D 1. Let ul 2 D. A state uj;� 2 Hj .ul/ is
a Lax j -shock near ul if j�j is sufficiently small and � negative. If � is positive, the
shock is not a Lax j -shock.

Proof Using the � parameterization of the Hugoniot locus, we see that the shock is
a Lax j -shock if and only if

j�1.0/ < s.�/ < j .0/; j .�/ < s.�/ < jC1.�/; (5.115)

where for simplicity we write u.�/ D uj;�, s.�/ D sj;� , and k.�/ D k.uj;�/. The
observation following the definition of Lax shocks shows that it suffices to check
the inequalities

j .�/ < s.�/ < j .0/: (5.116)

Assume first that u.�/ 2 Hj .ul/ and that � is negative. We know from the implicit
function theorem that s.�/ tends to j .0/ as � tends to zero. From the fact that also
j .�/ ! j .0/ as � ! 0, and

dj .�/

d�

ˇ̌̌
ˇ
�D0

D rj .0/ � rj .ul / D 1;

it suffices to prove that 0 < s0.0/ < 1. We will in fact prove that s0.0/ D 1
2
. Recall

from (5.80) that s is an eigenvalue of the matrixM.u; ul/, i.e., s.�/ D �j .u.�/; ul /.
Then

s0.0/ D r1�j .ul ; ul / � u0.0/ D 1

2
rj .ul/ � rj .ul / D 1

2
; (5.117)

using the symmetry (5.87) and the normalization of the right eigenvalue.
If � > 0, we immediately see that s.�/ > s.0/ D j .0/, and in this case we

cannot have a Lax j -shock. �
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5.5 The Solution of the Riemann Problem

Wie für die Integration der linearen partiellen Differentialgleichungen die fruchtbarsten
Methoden nicht durch Entwicklung des allgemeinen Begriffs dieser Aufgabe gefun-
den worden, sondern vielmehr aus der Behandlung specieller physikalischer Probleme
hervorgegangen sind, so scheint auch die Theorie der nichtlinearen partiellen Differ-
entialgleichungen durch eine eingehende, alle Nebenbedingungen berücksichtigende,
Behandlung specieller physikalischer Probleme am meisten gefördert zu werden, und in
der That hat die Lösung der ganz speciellen Aufgabe, welche den Gegenstand dieser Ab-
handlung bildet, neue Methoden und Auffassungen erfordert, und zu Ergebnissen geführt,
welche wahrscheinlich auch bei allgemeineren Aufgaben eine Rolle spielen werden.7

—G. F. B. Riemann [156]

In this section we will combine the properties of the rarefaction waves and shock
waves from the previous sections to derive the unique solution of the Riemann prob-
lem for small initial data. Our approach will be the following. Assume that the left
state ul is given, and consider the space of all right states ur . For each right state we
want to describe the solution of the corresponding Riemann problem. (We could,
of course, reverse the picture and consider the right state as fixed and construct the
solution for all possible left states.)

To this end we start by defining wave curves. If the j th wave family is genuinely
nonlinear, we define

Wj .ul/ WD Rj .ul /[ Sj .ul/; (5.118)

and if the j th family is linearly degenerate, we let

Wj .ul/ WD Cj .ul/: (5.119)

Recall that we have parameterized the shock and rarefaction curves separately with
a parameter � such that � positive (negative) corresponds to a rarefaction (shock)
wave solution in the case of a genuinely nonlinear wave family. The important fact
about the wave curves is that they almost form a local coordinate system around
ul , and this will make it possible to prove existence of solutions of the Riemann
problem for ur close to ul .

We will commence from the left state ul and connect it to a nearby intermediate
state um1 D u1;�1 2 W1.ul/ using either a rarefaction wave solution (�1 > 0)
or a shock wave solution (�1 < 0) if the first family is genuinely nonlinear. If
the first family is linearly degenerate, we use a contact discontinuity for all �1.
From this state we find another intermediate state um2 D u2;�2 2 W2.um1/. We
continue in this way until we have reached an intermediate state umn�1 such that
ur D un;�n 2 Wn.umn�1/. The problem is to show existence of a unique n-tuple of
.�1; : : : ; �n/ such that we “hit” ur starting from ul using this construction.

As usual, we will start by illustrating the above discussion for the shallow-water
equations. This example will contain the fundamental description of the solution,
which in principle will carry over to the general case.

7 The theory of nonlinear equations can, it seems, achieve the most success if our attention is
directed to special problems of physical content with thoroughness and with a consideration of all
auxiliary conditions. In fact, the solution of the very special problem that is the topic of the current
paper requires new methods and concepts and leads to results which probably will also play a role
in more general problems.
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} Example 5.15 (Shallow water (cont’d.))
Fix ul . For each right state ur we have to determine one middle state um on the first-
wave curve through ul such that ur is on the second-wave curve with left state um,
i.e., um 2 W1.ul / and ur 2 W2.um/. (In the special case that ur 2 W1.ul/[W2.ul/

no middle state um is required.) For 2 � 2 systems of conservation laws it is easier
to consider the “backward” second-wave curveW �

2 .ur/ consisting of states um that
can be connected to ur on the right with a fast wave. The Riemann problemwith left
state ul and right state ur has a unique solution if and only if W1.ul/ and W �

2 .ur/

have a unique intersection. In that case, clearly the intersection will be the middle
state um. The curveW1.ul / is given by

v D v.h/ D
8<
:vl � 2�ph � p

hl
�

for h 2 Œ0; hl �,
vl � h�hlp

2

q
h�1 C h�1

l for h � hl ;
(5.120)

and we easily see that W1.ul/ is strictly decreasing, unbounded, and starting at
vl C 2

p
hl . Using (5.49) and (5.106), we find thatW �

2 .ur/ reads

v D v.h/ D
(
vr C 2.

p
h � p

hr/ for h 2 Œ0; hr �,
vr C h�hrp

2

p
h�1 C h�1

r for h � hr ;
(5.121)

which is strictly increasing, unbounded, with minimum vr � 2
p
hr . Thus we con-

clude that the Riemann problem for shallow water has a unique solution in the
region where

vl C 2
p
hl � vr � 2

p
hr : (5.122)

To obtain explicit equations for the middle state um we have to make case distinc-
tions, depending on the type of wave curves that intersect, i.e., rarefaction waves or
shock curves. This gives rise to four regions, denoted by I; : : : ; IV. See Fig. 5.7. For
completeness we give the equations for the middle state um in all cases.

Assume first that ur 2 I. We will determine a unique intermediate state um 2
S1.ul/ such that ur 2 R2.um/. These requirements give the following equations to
be solved for hm; vm such that um D .hm; qm/ D .hm; hmvm/:

vm D vl � 1p
2
.hm � hl/

s
1

hm
C 1

hl
; vr D vm C 2

	p
hr �

p
hm



:

Summing these equations, we obtain the equation

p
2 �v� D 2

p
2
	p

hr �
p
hm



� .hm � hl/

s
1

hm
C 1

hl
.I/ (5.123)

to determine hm. Consider next the case with ur 2 III. Here um 2 R1.ul / and
ur 2 S2.um/, and in this case we obtain

p
2 �v� D .hr � hm/

s
1

hr
C 1

hm
� 2p2

	p
hm �

p
hl



; .III/ (5.124)
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Fig. 5.7 The partition of the
.h; v/-plane; see (5.127) and
(5.146)

h

v

L
I

II

V
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IV

R1

R2

S2
S1

V

II

IIII

IV

while in the case ur 2 IV, we obtain (here um 2 S1.ul / and ur 2 S2.um/)

p
2 �v� D .hr � hm/

s
1

hr
C 1

hm
� .hm � hl /

s
1

hm
C 1

hl
: .IV/ (5.125)

The case ur 2 II is special. Here um 2 R1.ul/ and ur 2 R2.um/. The intermediate
state um is given by

vm D vl � 2
	p

hm �
p
hl



; vr D vm C 2

	p
hr �

p
hm



;

which can easily be solved for hm to yield

p
hm D

2
	p

hr C p
hl



� �v�

4
: .II/ (5.126)

This equation is solvable only for right states such that the right-hand side of (5.126)
is nonnegative. Observe that this is consistent with what we found above in (5.122).
Thus we find that for

ur 2
n
u 2 .0;1/ � R j 2.

p
hC

p
hl / � �v�

o
(5.127)

the Riemann problem has a unique solution consisting of a slow wave fol-
lowed by a fast wave. Let us summarize the solution of the Riemann problem
for the shallow-water equations. First of all, we were not able to solve the
problem globally, but only locally around the left state. Secondly, the general
solution consists of a composition of elementary waves. More precisely, let

ur 2
n
u 2 .0;1/ � R j 2�phC p

hl
� � �v�

o
. Let wj .x=t Ihm; hl / denote the
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M

L

M

R

a b

Fig. 5.8 The solution of the Riemann problem in phase space (a) and in .x; t/-space (b)

solution of the Riemann problem for um 2 Wj .ul /; here, as in most of our cal-
culations on the shallow-water equations, we use h rather than � as the parameter.
We will introduce the notation �˙

j for the slowest and fastest wave speeds in each
family to simplify the description of the full solution. Thus we have that for j D 1

(j D 2) and hr < hl (hr > hl ), wj is a rarefaction-wave solution with slowest
speed ��

j D j .ul/ and fastest speed �C
j D j .ur/. If j D 1 (j D 2) and hr > hl

(hr < hl ), then wj is a shock-wave solution with speed ��
j D �C

j D sj .hr ; hl /.
The solution of the Riemann problem reads (see Fig. 5.8)

u.x; t/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

ul for x < ��
1 t ;

w1.x=t Ium; ul/ for ��
1 t � x � �C

1 t ;

um for �C
1 t < x � ��

2 t ;

w2.x=t Iur ; um/ for ��
2 t � x � �C

2 t ;

ur for x � �C
2 t:

(5.128)

We will show later in this chapter how to solve the Riemann problem globally for
the shallow-water equations. }

Before we turn to the existence and uniqueness theorem for solutions of the
Riemann problem, we will need a certain property of the wave curves that we can
explicitly verify for the shallow-water equations.

Recall from (5.84) and (5.40) that du�
d�

ˇ̌̌
�D0

D rj .ul/; thus Wj .ul/ is at least

differentiable at ul . In fact, one can prove that Wj .ul/ has a continuous second
derivative across ul .

We introduce the following notation for the directional derivative of a quantity
h.u/ in the direction r (not necessarily normalized) at the point u, which is defined
as

Drh.u/ D lim
�!0

1

�
.h.uC �r/� h.u// D .rh � r/.u/: (5.129)

(When h is a vector, rh denotes the Jacobian.)
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Theorem 5.16 The wave curve Wj .ul/ has a continuous second derivative across
ul . In particular,

uj;� D ul C �rj .ul/C 1

2
�2Drj rj .ul /C O

�
�3
�
:

Proof In our proof of the admissibility of parts of the Hugoniot loci, Theorem 5.14,
we derived most of the ingredients required for the proof of this theorem. The
rarefaction curve Rj .ul/ is the integral curve of the right eigenvector rj .u/ pass-
ing through ul , and thus we have (when for simplicity we have suppressed the
j -dependence in the notation for u, and write u.�/ D uj;�, etc.)

u.0C/ D ul ; u0.0C/ D rj .ul/; u00.0C/ D rrj .ul/rj .ul/: (5.130)

(Here rrj .ul/rj .ul / denotes the product of the n � n matrix rrj .ul/, cf. (5.88),
and the (column) vector rj .ul /.) Recall that the Hugoniot locus is determined by
the relation (5.82), i.e.,

wk.u.�/; ul / � .u.�/ � ul/ D �ıjk; k D 1; : : : ; n: (5.131)

We know already from (5.84) that u0.0�/ D rj .ul/. To find the second derivative
of u.�/ at � D 0, we have to compute the second derivative of (5.131). Here we find
that8

2rj .ul/r1wk.ul ; ul /rj .ul/Cwk.ul ; ul / � u00.0�/ D 0; k D 1; : : : ; n: (5.132)

(A careful differentiation of each component may be helpful here; at least we
thought so.) In the first term, the matrix r1wk.ul ; ul / is multiplied from the right
by the (column) vector rj .ul / and by the (row) vector rj .ul/ from the left. Using
(5.89), i.e., r1wk.ul ; ul / D 1

2
rlk.ul /, we find that

rj .ul/ � rlk.ul /rj .ul/C lk.ul / � u00.0�/ D 0: (5.133)

The orthogonality of the left and the right eigenvectors, lk.ul / � rj .ul/ D ıjk , shows
that

rj .ul/rlk.ul / D �lk.ul /rrj .ul/: (5.134)

Inserting this into (5.133), we obtain

lk.ul / � u00.0�/ D lk.ul /rrj .ul /rj .ul/ for all k D 1; : : : ; n:

From this we conclude that also u00.0�/ D rrj .ul/rj .ul/, thereby proving the
theorem. �

We will now turn to the proof of the classical Lax theorem about existence of
a unique entropy solution of the Riemann problem for small initial data. The as-
sumption of strict hyperbolicity of the system implies the existence of a full set
of linearly independent eigenvectors. Furthermore, we have proved that the wave
curves are C2, and hence intersect transversally at the left state. This shows, in

8 Lo and behold; the second derivative of wk.u.�/; ul / is immaterial, since it is multiplied by
u.�/ � ul at � D 0.
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a heuristic way, that it is possible to solve the Riemann problem locally. Indeed,
we saw that we could write the solution of the corresponding problem for the
shallow-water equations as a composition of individual elementary waves that do
not interact, in the sense that the fastest wave of one family is slower than the
slowest wave of the next family. This will enable us to write the solution in the
same form in the general case. In order to do this, we introduce some notation. Let
uj;�j D uj;�j .x=t Iur ; ul / denote the unique solution of the Riemann problem with
left state ul and right state ur that consists of a single elementary wave (i.e., shock
wave, rarefaction wave, or contact discontinuity) of family j with strength �j . Fur-
thermore, we need to define notation for speeds corresponding to the fastest and
slowest waves of a fixed family. Let

�C
j D ��

j D sj;�j if �j < 0,

��
j D j .uj�1;�j�1/ D j .umj�1/;

�C
j D j .uj;�j / D j .umj /

)
if �j > 0,

(5.135)

if the j th wave family is genuinely nonlinear, and

�C
j D ��

j D j .uj;�j / D j .umj / (5.136)

if the j th wave family is linearly degenerate. With these definitions we are ready to
write the solution of the Riemann problem as

u.x; t/ D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

ul for x < ��
1 t ,

u1;�1 .x=t Ium1; ul / for ��
1 t � x � �C

1 t ,

um1 for �C
1 t � x < ��

2 t ,

u2;�2 .x=t Ium2; um1/ for ��
2 t � x � �C

2 t ,

um2 for �C
2 t � x < ��

3 t ,
:::

un;�n .x=t Iur; umn�1/ for ��
n t � x � �C

n t ,

ur for x � �C
n t .

(5.137)

Theorem 5.17 (Lax’s theorem) Assume that fj 2 C2.Rn/, j D 1; : : : ; n. Let D
be a domain in Rn and consider the strictly hyperbolic equation ut C f .u/x D 0

with u 2 D. Assume that each wave family is either genuinely nonlinear or linearly
degenerate.

Then for ul 2 D there exists a neighborhood QD � D of ul such that for all
ur 2 QD the Riemann problem

u.x; 0/ D
(
ul for x < 0,

ur for x � 0,
(5.138)

has a unique solution in QD consisting of up to n elementary waves, i.e., rarefaction
waves, shock solutions satisfying the Lax entropy condition, or contact discontinu-
ities. The solution is given by (5.137).
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Proof Consider the map Wj;�Wu 7! uj;� 2 Wj .u/. We may then write the solution
of the Riemann problem using the composition

W.�1;:::;�n/ D Wn;�n ı � � � ıW1;�1 (5.139)

as

W.�1;:::;�n/ul D ur; (5.140)

and we want to prove the existence of a unique vector .�1; : : : ; �n/ (near the origin)
such that (5.140) is satisfied for jul � ur j small. In our proof we will need the two
leading terms, i.e., up to the linear term, in the Taylor expansion for W . For later
use we expand to the quadratic term in the next lemma.

Lemma 5.18 We have

W.�1;:::;�n/.ul / D ul C
nX
iD1

�i ri .ul /C 1

2

nX
iD1

�2i Dri ri .ul /

C
nX

i;jD1
j<i

�i �jDri rj .ul /C O
	
j�j3



:

(5.141)

Proof (of Lemma 5.18) We shall show that for k D 1; : : : ; n,

W.�1;:::;�k ;0;:::;0/.ul / D ul C
kX
iD1

�i ri .ul /C 1

2

kX
iD1

�2i Dri ri .ul /

C
kX

i;jD1
j<i

�i �jDri rj .ul /C O
	
j�j3


 (5.142)

by induction on k. It is clearly true for k D 1; cf. Theorem 5.16. Assume (5.142).
Now,

W.�1;:::;�kC1 ;0;:::;0/ .ul / D WkC1;�kC1
�
W.�1;:::;�k /.ul /

�
D ul C

kX
iD1

�i ri .ul /C 1

2

kX
iD1

�2i Dri ri .ul /

C
kX

i;jD1
j<i

�i �jDri rj .ul /C �kC1rkC1
�
W.�1;:::;�k ;0;:::;0/.ul /

�

C 1

2
�2kC1DrkC1rkC1

�
W.�1;:::;�k ;0;:::;0/.ul /

�C O
	
j�j3




D ul C
kC1X
iD1

�i ri .ul /C 1

2

kC1X
iD1

�2i Dri ri .ul /

C
kC1X
i;jD1
j<i

�i �jDri rj .ul /C O
	
j�j3




by Theorem 5.16. �
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Let ul 2 D and define the map

L.�1; : : : ; �n; u/ D W.�1;:::;�n/ul � u: (5.143)

This map L satisfies

L.0; : : : ; 0; ul / D 0; r�L.0; : : : ; 0; ul / D .r1.ul/; : : : ; rn.ul// ;

where the matrix rL has the right eigenvectors rj evaluated at ul as columns. This
matrix is nonsingular by the strict hyperbolicity assumption.

The implicit function theorem then implies the existence of a neighborhood N
around ul and a unique differentiable function .�1; : : : ; �n/ D .�1.u/; : : : ; �n.u//

such that L.�1; : : : ; �n; u/ D 0. If ur 2 N , then there exists unique .�1; : : : ; �n/
with W.�1;:::;�n/ul D ur , which proves the theorem. �

Observe that we could rephrase the Lax theorem as saying that we may use
.�1; : : : ; �n/ to measure distances in phase space, and that we indeed have

A jur � ul j �
nX

jD1

ˇ̌
�j
ˇ̌ � B jur � ul j (5.144)

for constants A and B .
Let us now return to the shallow-water equations and prove the existence of

a global solution of the Riemann problem.

} Example 5.19 (Shallow water (cont’d.))
We will construct a global solution of the Riemann problem for the shallow-water
equations for all left and right states in D D ˚

.h; v/ j h 2 Œ0;1/; v 2 R
�
. Of

course, we will maintain the same solution in the region where we already have
constructed a solution, so it remains to construct a solution in the region

ur 2 V WD
n
ur 2 D j 2

	p
hr C

p
hl



< �v�

o
[ fh D 0g : (5.145)

We will work in the .h; v/ variables rather than .h; q/. Assume first that ur D
.hr ; vr / in V with hr positive. We first connect ul , using a slow rarefaction wave,
with a state um on the “vacuum line” h D 0. This state is given by

vm D vl C 2
p
hl ; (5.146)

using (5.50). From this state we jump to the unique point v� on h D 0 such that
the fast rarefaction starting at h� D 0 and v� hits ur . Thus we see from (5.51) that
v� D vr � 2phr , which gives the following solution (see Fig. 5.9):

u.x; t/ D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

�
hl
vl

�
for x < 1.ul/t ;

R1.x=t Iul/ for 1.ul/t < x < .2
p
hl C vl/t ;�

0
Qv.x;t/

�
for .2

p
hl C vl /t < x < v

�t ;

R2.x=t I .0; v�// for v�t < x < 2.ur/t ;�
hr
vr

�
for x > 2.ur/t :

(5.147)
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Fig. 5.9 The solution of the dam-breaking problem in .x; t/-space (a), and the h-component (b)

Physically, it does not make sense to give a value of the speed v of the water when
there is no water, i.e., h D 0, and mathematically we see that any v will satisfy the
equations when h D 0. Thus we do not have to associate any value with Qv.x; t/.

If ur is on the vacuum line h D 0, we still connect to a state um on h D 0 using
a slow rarefaction, and subsequently we connect to ur along the vacuum line. By
considering a nearby state Qur with Qh > 0, we see that with this construction we have
continuity in the data.

Finally, we have to solve the Riemann problem with the left state on the vacuum
line h D 0. Now let ul D .0; vl /, and let ur D .hr ; vr / with hr > 0. We now
connect ul to an intermediate state um on the vacuum line given by vm D vr�2

p
hr

and continue with a fast rarefaction to the right state ur . }

We will apply the above theory to one old and two ancient problems:

} Example 5.20 (Dam breaking)
For this problem we consider Riemann initial data of the form (in .h; v/ variables)

u.x; 0/ D
 
h.x; 0/

v.x; 0/

!
D
(�
hl
0

�
for x < 0,�

0
0

�
for x � 0.

From the above discussion we know that the solution consists of a slow rarefaction
(see Fig. 5.10); thus

u.x; t/ D
 
h.x; t/

v.x; t/

!
D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

�
hl
0

�
for x < �p

hl t ;�
1
9 .2

p
hl� x

t /
2

2
3 .

p
hlC x

t /

�
for �p

hl t < x < 2
p
hl t ;

�
0
0

�
for x > 2

p
hl t :

}

We shall call the two ancient problems Moses’s first and second problems.
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Fig. 5.10 The solution of Moses’s first problem in .x; t/-space (a), and the h-component (b)

} Example 5.21 (Moses’s first problem)

And Moses stretched out his hand over the sea; and the Lord caused the sea to go back by
a strong east wind all that night, and made the sea dry land, and the waters were divided.
And the children of Israel went into the midst of the sea upon the dry ground: and the waters
were a wall unto them on their right hand, and on their left.
— Exodus (14:21–22)

For the first problem we consider initial data of the form (in .h; v/ variables)

u.x; 0/ D
(�

h0
�v0
�

for x < 0,�
h0
v0

�
for x � 0,

for a positive speed v0. By applying the above analysis, we find that in this case we
connect to an intermediate state u1 on the vacuum line using a slow rarefaction. This
state is connected to another state u2 also on the vacuum line, which subsequently
is connected to the right state using a fast rarefaction wave. More precisely, the
state u1 is determined by v1 D v.x1; t1/, where h.x; t/ D 1

9

� � v0 C 2
p
h0 � x

t

�2
along the slow rarefaction wave (cf. (5.53)) and h.x1; t1/ D 0. We find that x1 D�
2
p
h0 � v0

�
t1 and thus v1 D 2

p
h0 � v0. The second intermediate state u2 is

such that a fast rarefaction wave with left state u2 hits ur . This implies that v0 D
v2 C 2

p
h0 from (5.51), or v2 D v0 � 2

p
h0. In order for this construction to be

feasible, we will have to assume that v2 > v1 or v0 � 2
p
h0. If this condition does

not hold, we will not get a region without water, and thus the original problem of
Moses will not be solved. Combining the above waves in one solution, we obtain

h.x; t/ D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

h0 for x < ��v0 C p
h0
�
t ,

1
9

� � v0 C 2
p
h0 � x

t

�2
for ��v0 C p

h0
�
t < x <

�
2
p
h0 � v0

�
t ,

0 for
�
2
p
h0 � v0

�
t < x <

�
v0 � 2ph0

�
t ,

1
9

�
v0 � 2ph0 � x

t

�2
for

�
v0 � 2ph0

�
t < x <

�
v0 C p

h0
�
t ,

h0 for x >
�
v0 C p

h0
�
t ,
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Fig. 5.11 The solution of Moses’s second problem in .x; t/-space (a), and the h-component (b)

v.x; t/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

�v0 for x < ��v0 C p
h0
�
t ,

1
3

� � v0 C 2
p
h0 C 2x

t

�
for ��v0 C p

h0
�
t < x <

�
2
p
h0 � v0

�
t ,

0 for
�
2
p
h0 � v0

�
t < x <

�
v0 � 2ph0

�
t ,

1
3

�
v0 � 2ph0 C 2x

t

�
for

�
v0 � 2ph0

�
t < x <

�
v0 C p

h0
�
t ,

v0 for x >
�
v0 C p

h0
�
t .

}

} Example 5.22 (Moses’s second problem)

And Moses stretched forth his hand over the sea, and the sea returned to his strength when
the morning appeared; and the Egyptians fled against it; and the Lord overthrew the Egyp-
tians in the midst of the sea.
— Exodus (14:27)

Here we study the multiple Riemann problem given by (in .h; v/ variables)

u.x; 0/ D

8̂̂
<
ˆ̂:
�
h0
0

�
for x < 0;�

0

0

�
for 0 < x < L;�

h0
0

�
for x > L:

For small times t , the solution of this problem is found by patching together the
solution of two dam-breaking problems. The left problem is solved by a fast rar-
efaction wave, and the right by a slow rarefaction. At some positive time, these
rarefactions will interact, and thereafter explicit computations become harder.

In place of explicit computation we therefore present the numerical solution con-
structed by front tracking. This method is a generalization of the front-tracking
method presented in Chapt. 2, and will be the subject of the next chapter.

In the left part of Fig. 5.11 we see the fronts in .x; t/-space. These fronts are
similar to the fronts for the scalar front tracking, and the approximate solution is
discontinuous across the lines shown in the figure. Looking at the figure, it is not
hard to see why explicit computations become difficult as the two rarefaction waves
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interact. The right part of the figure shows the water level as it engulfs the Egyptians.
The lower figure shows the water level before the two rarefaction waves interact,
and the two upper ones show that two shock waves result from the interaction of the
two rarefaction waves. }

5.6 The Riemann Problem for the Euler Equations

The Euler equations are often used as a simplification of the Navier–Stokes equa-
tions as a model of the flow of a gas. In one space dimension these represent the
conservation of mass, momentum, and energy, and read0

@ ��v
E

1
A
t

C
0
@ �v

�v2 C p

v.E C p/

1
A
x

D 0: (5.148)

Here � denotes the density of the gas, v the velocity, p the pressure, and E the
energy. To close this system, i.e., to reduce the number of unknowns to the number
of equations, one can add a constitutive “law” relating these. Such laws are often
called equations of state and are deduced from thermodynamics. For a so-called
ideal polytropic gas the equation of state takes the form

E D p

� � 1 C 1

2
�v2;

where � > 1 is a constant spesific to the gas. For air, � � 1:4. Solving for p, we
get

p D .� � 1/E � � � 1
2

�v2 D .� � 1/E � � � 1
2

q2

�
; (5.149)

where the momentum q equals �v. Inserting this in the Euler equations yields

0
@ ��v
E

1
A
t

C

0
B@

�v
��3
2
�v2 C .� � 1/E

v
	
�E � ��1

2
�v2



1
CA
x

D 0:

In the conserved variables �, q, and E, this system of conservation laws reads

0
@�q
E

1
A
t

C

0
BB@

q	
3��
2



q2

�
C .� � 1/E

�
Eq

�
�
	
��1
2



q3

�2

1
CCA
x

D 0: (5.150)

Set

u D
0
@�q
E

1
A and f .u/ D

0
BB@

q	
3��
2



q2

�
C .� � 1/E

�
Eq

�
�
	
��1
2



q3

�2

1
CCA :
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Then the Jacobian df .u/ reads

df .u/ D

0
BB@

0 1 0	
��3
2



q2

�2
.3 � �/ q

�
� � 1

�� Eq
�2

C .� � 1/ q3
�3

� E
�

� 3.��1/
2

q2

�2
�
q

�

1
CCA :

Introducing the enthalpy as

H D E C p

�
D �

E

�
�
�
� � 1
2

�
q2

�2
D �

�

�
p

� � 1
�

C 1

2
v2;

the Jacobian can be rewritten as

df .u/ D

0
BBB@

0 1 0	
��3
2



v2 .3 � �/ v � � 1	

��1
2



v3 � vH H � .� � 1/ v2 �v

1
CCCA :

To find its eigenvalues, we compute the determinant

det .I � df .u// D 
�
.� .3 � �/v/ . � �v/C .� � 1/ �.� � 1/ v2 �H ��

C 3 � �
2

v2 .� �v/C .� � 1/
�
vH � � � 1

2
v3
�

D 
�
2 � 3vC �.3 � �/v2 C .� � 1/2v2 C .� � 1/H �

C 3 � �
2

v2� 1

2
.� C 1/v3 C .� � 1/Hv

D 

�
2 � 3vC 2v2 C 1

2
.� C 1/ v2 � .� � 1/H

�

� 1

2
.� C 1/v3 C .� � 1/vH

D 
h
. � v/. � 2v/C 1

2
.� C 1/v2 � .� � 1/H

i
� 1

2
.� C 1/v3 C .� � 1/vH

D .� v/
�
. � 2v/C 1

2
.� C 1/v2 � .� � 1/H

�

D .� v/
�
. � v/2 �

�
v2 � 1

2
.� C 1/v2 C .� � 1/H

��

D .� v/
�
. � v/2 �

�
� � 1
2

.2H � v2/
��
:

This can be simplified further by introducing the sound speed c, by

c2 D �p

�
:
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We then calculate

2H � v2 D 2�
E

�
� .� � 1/v2 � v2 D 2�

E

�
� �v2 D �

�
2E

�
� v2

�

D �

�

�
2E � �v2� D �

�

2p

� � 1 :

Therefore

det.I � df .u// D . � v/ �. � v/2 � c2� :
Thus the eigenvalues of the Jacobian are

1.u/ D v � c; 2.u/ D v; 3.u/ D v C c: (5.151)

As for the corresponding eigenvectors, we write these as ri D .1; yi ; zi /;
9 and we

see that yi D i , and

zi D 1

� � 1
�
2i � 1

2
.� � 3/v2 C i .� � 3/v

�
:

For i D 1 we find that

z1 D 1

� � 1
�
v2 � 1

2
.� � 3/v2 C v.� � 3/v

�

C 1

� � 1
�
c2 � 2cv � .� � 3/cv�

D 1

2
v2 C c2

� � 1 � cv

D
�
1

2
v2 C �p

�.� � 1/
�

� cv
D H � cv:

For i D 3 we similarly calculate

z3 D H C cv;

and for i D 2 it is straightforward to see that z2 D v2=2. Summing up, we have the
following eigenvalues and eigenvectors:

1.u/ D v � c; r1.u/ D
0
@ 1

v � c
H � cv

1
A ;

2.u/ D v; r2.u/ D
0
@ 1

v
1
2
v2

1
A ;

3.u/ D v C c; r3.u/ D
0
@ 1

v C c

H C cv

1
A :

(5.152)

9 Recall that this is in .�; q; E/ coordinates.
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It is important to observe that the second family is linearly degenerate, since

r2.u/ � r2.u/ � 0; (5.153)

and hence the solution of the Riemann problem in this family will consist of a con-
tact discontinuity. The first and the third families are both genuinely nonlinear, and
we encounter the familiar shock and rarefaction waves.

At this point it is convenient to introduce the concept of an i -Riemann invariant.
(See Exercise 5.8.) An i -Riemann invariant is a function R D R.�; q;E/ such that
R is constant along the integral curves of ri . In other words, an i -Riemann invariant
satisfies

rR.u/ � ri D 0:

The usefulness of this is that if we can find for each of the three eigenvectors, two
Riemann invariants R.u/ and QR.u/, then we can possibly solve the equations

R.�; q;E/ D R.�l ; ql ; El /; QR.�; q;E/ D QR.�l ; ql ; El /

to obtain a formula for the rarefaction waves. This is equivalent to finding an im-
plicit solution of the ordinary differential equation Pu D r.u/ defining the rarefaction
curves.

It turns out that we have the following Riemann invariants (see Exercise 5.12):

i D 1; Riemann invariants:

(
S;

v C 2c
��1 ;

i D 2; Riemann invariants:

(
v;

p;

i D 3; Riemann invariants:

(
S;

v � 2c
��1 ;

(5.154)

where we have introduced the entropy S by

S D � log
�
p

��

�
: (5.155)

Now we can try to obtain solution formulas for the rarefaction curves. For i D 1,
this curve is given by

p D pl

�
�

�l

��
; v D vl C 2cl

� � 1

 
1 �

�
�

�l

�.��1/=2!
:
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This curve is parameterized by �. We must check which half of the curve to use.
This will be the part where 1 D v � c is increasing. On the curve we have

v.�/ � c.�/ D vl C 2cl

� � 1

 
1 �

�
�

�l

�.��1/=2!
�
�
�p.�/

�

�1=2

D vl C 2cl

� � 1

 
1 �

�
�

�l

�.��1/=2!
�
�
�pl

�l

�1=2 �
�

�l

�.��1/=2

D vl C 2cl

� � 1

 
1 �

�
�

�l

�.��1/=2!
� cl

�
�

�l

�.��1/=2

D vl C 2cl

� � 1

 
1 � � C 1

2

�
�

�l

�.��1/=2!
:

Since � > 1, we see that v.�/ � c.�/ is decreasing in �, and for the 1-rarefaction
wave we must use � < �l . Since p.�/ is increasing in �, this also means that we
use the part where p < pl . Therefore we can use p as a parameter in the curve for
v and write the 1-rarefaction curve as

v1.p/ D vl C 2cl

� � 1

 
1 �

�
p

pl

�.��1/=.2�/!
; p � pl :

The general theory tells us that (at least for p close to pl ) this curve can be continued
smoothly as a 1-shock curve.

To find the rarefaction curve of the third family, we adopt the viewpoint that ur
is fixed, and we wish to find u as a function of ur (cf. the solution of the Riemann
problem for the shallow-water equations). In the same way as for v1 this leads to
the formula

v3.p/ D vr C 2cr

� � 1

 
1 �

�
p

pr

�.��1/=.2�/!
; p � pr :

To find how the density varies along the rarefaction curves, we can use that the
entropy S is constant, leading to

�

�l
D
�
p

pl

�1=�
:

Now we turn to the computation of the Hugoniot loci. We view the left state ul
as fixed, and try to find the right state u; recall the notation �u� D u � ul . The
Rankine–Hugoniot relations for (5.148) are

s ��� D ��v� ;

s ��v� D �
�v2 C p

�
;

s �E� D �v.E C p/� ;

(5.156)
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where s denotes the speed of the discontinuity. Now we introduce new variables by

w D v � s and m D �w:

Then the first equation in (5.156) reads

s� � s�l D �w C s� � �lwl � s�l ;

which implies that �m� D 0. Similarly, the second equation reads

s�w C s2� � s�wl � s2�l D �.w C s/2 � �l .wl C s/2 C �p� ;

or

s �m� C s2 ��� D �w2 C 2�w C s2� � �lw2l � 2�lwl � s2�l C �p� ;

and subsequently

s2 ��� D �
�w2 C p

� C s2 ��� :

Hence �mw C p� D 0. Finally, the third equation in (5.156) reads

sE � sEl D Ew CEs C pw C ps � Elwl � Els � plwl � pls;

which implies

0 D
�
E

�
� El

�l

�
mC pw � plwl C s �p�

D
�
E

�
� El

�l
C p

�
� pl

�l

�
m � sm �w�

D m

�
E C p

�
� sw

�

D m

�
c2

� � 1 C 1

2
.w C s/2 � sw

�

D m

�
c2

� � 1 C 1

2
w2

�

:

Hence the Rankine–Hugoniot conditions are equivalent to

�m� D 0;

�mw C p� D 0;

m

�
c2

� � 1 C 1

2
w2

�

D 0:

(5.157)

We immediately find one solution by setting m D 0, which implies �p� D 0 and
�v� D 0. This is the contact discontinuity. Hence we assume that m ¤ 0 to find the
other Hugoniot loci.
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Now we introduce auxiliary parameters

� D p

pl
and z D �

�l
:

Using these, we have that

c2

c2l
D �

z
and

w

wl
D 1

z
: (5.158)

Then the third equation in (5.157) reads

c2l
� � 1 C 1

2
w2l D c2l

� � 1
�

z
C 1

2
w2l

1

z2
;

which can be rearranged as

c2l
2

� � 1
	
1 � �

z



D w2l

�
1

z2
� 1

�
;

so that

�
wl

cl

�2
D 2

� � 1
z.z � �/
1 � z2 : (5.159)

Next recall that p D �c2=� . Using this, the second equation in (5.157) reads

�c2

�
C �w2 D �lc

2
l

�
C �lw

2
l ;

or

z

�
c2

�
C w2

�
D c2l
�

C w2l ;

which again can be rearranged as

z

�
c2l �

�z
Cw2l

1

z2

�
D c2l
�

Cw2l :

Dividing by c2l , we can solve for .wl=cl /2:

�
wl

cl

�2
D 1

�

z.� � 1/
z � 1 : (5.160)

Equating (5.160) and (5.159) and solving for z yields

z D ˇ� C 1

� C ˇ
; (5.161)
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where

ˇ D � C 1

� � 1 : (5.162)

Using this expression for z in (5.159), we get

�
wl

cl

�2
D 2

� � 1
�ˇC1
�Cˇ

	
�ˇC1
�Cˇ � �



1 � .�ˇC1/2

.�Cˇ/2

D 2

� � 1
.�ˇ C 1/.1 � �2/
.�2 � 1/.1 � ˇ2/

D 2

� � 1
�ˇ C 1

ˇ2 � 1 :

Note that � > 1 implies ˇ > 1, so that this is always well defined. Sincewl D vl�s,
we can use this to get an expression for the shock speed,

s D vl 
 cl

s
2

� � 1
ˇ� C 1

ˇ2 � 1 ; (5.163)

where we use the minus sign for the first family and the plus sign for the third.
Next, using (5.158), we get

v � s
vl � s D 1

z
;

which can be used to express v as a function of � :

v D vl 
 cl

s
2

� � 1
ˇ� C 1

.ˇ2 � 1/ ˙ � C ˇ

�ˇ C 1
cl

s
2

� � 1
�ˇ C 1

.ˇ2 � 1/

D vl 
 cl

s
2

� � 1
1

.ˇ2 � 1/.�ˇ C 1/

�
.ˇ � 1/.� � 1/

�ˇ C 1

�

D vl 
 2cl
1p

2�.� � 1/
� � 1

.�ˇ C 1/1=2
;

where we take the minus sign for the first family and the plus sign for the third. To
see how the density varies along the Hugoniot loci, we use that � D �lz, or

� D �l
�ˇ C 1

� C ˇ
; (5.164)

which holds for both the first and third families.
Next we have to verify the Lax entropy condition, Definition 5.13. Consider the

Lax 1-shock condition

s < 1.ul /; 1.u/ < s < 2.u/:
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Since the shock speed s D s.u/ given by (5.163) satisfies

s.ul/ D vl � cl D 1.ul/

and is a decreasing function in � , we infer that s < 1.ul/ holds when p � pl ,
that is, � > 1. As for the inequality involving the right state, it is advantageous to
rewrite the shock speed (5.163) in terms of the right state (see Exercise 5.13); thus

s D v 
 c

s
2

� � 1
ˇ=� C 1

ˇ2 � 1 : (5.165)

Since � > 1, we see that s
2

� � 1
ˇ=� C 1

ˇ2 � 1 < 1;

thereby proving 1.u/ < s < 2.u/. This shows that the part of the Hugoniot locus
with p � pl satisfies the Lax 1-shock condition. A similar argument applies to the
third family.

This means that the whole solution curve for waves of the first family is given by

v1.p/ D vl C 2cl

8̂<
:̂

1
��1

�
1 �

	
p

pl


.��1/=.2�/�
; p � pl ;

1p
2�.��1/

	
1 � p

pl


	
1C ˇ

p

pl


�1=2
; p � pl :

(5.166)

To find the density along this solution curve, we have the formula

�1.p/ D �l

8̂̂
<
ˆ̂:
	
p

pl


1=�
; p � pl ;

1Cˇ p
pl

ˇC p
pl

; p � pl :

(5.167)

In terms of the parameter � D p=pl , the wave curve of the first family reads

�1.�/ D �l

(
�1=� ; � � 1;
1Cˇ�
ˇC� ; � � 1;

v1.�/ D vl C 2cl

8<
:

1
��1

�
1 � �.��1/=.2�/� ; � � 1;

1p
2�.��1/ .1 � �/ .1C ˇ�/�1=2 ; � � 1:

(5.168)

Similar formulas can also be computed for the variables q and E.
Since the second family is linearly degenerate, we can use the whole integral

curve of r2. Using the Riemann invariants, this is given simply as

v D vl ; p D pl ; (5.169)
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and thus only the density � varies. The contact discontinuity is often called a slip
line.

For the third family, we take the same point of view as for the shallow-water
equations; we keep ur fixed and look for states u such that the Riemann problem

u.x; 0/ D
(
u x < 0;

ur x > 0;

is solved by a wave (shock or rarefaction) of the third family. By much the same
calculations as for the first family we end up with

v3.p/ D vr � 2cr

8̂<
:̂

1
��1

�
1 �

	
p

pr


.��1/=.2�/�
; p � pr

1p
2�.��1/

	
1 � p

pr


	
1C ˇ

p

pr


�1=2
; p � pr ;

(5.170)

where the rarefaction part is for p � pr and the shock part for p � pr . Regarding
the density along this curve, it will change according to

�3.p/ D �r

8̂̂
<
ˆ̂:
	
p

pr


1=�
; p � pr ;�

1Cˇ p
pr

ˇC p
pr

�
; p � pr :

(5.171)

In terms of the parameter �r D p=pr , the wave curve of the third family reads

�3.�r/ D �r

(
�1=� ; �r � 1;
1Cˇ�
ˇC� ; �r � 1;

v3.�r/ D vr � 2cr
8<
:

1
��1 .1 � �r/.��1/=.2�/ ; �r � 1;

1p
2�.��1/ .1 � �r/ .1C ˇ�r/

�1=2 ; �r � 1:

(5.172)

Now for every �l , the curve v1.p/ is a strictly decreasing function of p (or �) for
nonnegative density p taking values in the set .�1; vl C 2cl=.� � 1/�. Similarly,
for every �r , we have that v3.p/ is a strictly increasing function of p (or �r ) taking
values in the set Œvr � 2cr=.� � 1/;1/. It follows that these curves will intersect in
one point .pm; vm/ if

vr � 2cr

� � 1 � vl C 2cl

� � 1;

or

1

2
.� � 1/ �v� � cl C cr :

In this case we obtain a unique solution of the Riemann problem as the pressure
jumps from the value to the left of the slip line to the value on the right-hand side,
while the pressure p and velocity v remain unchanged and equal to pm and vm,
respectively, across the slip line. If this does not hold, then v1 does not intersect v3,
and we have a solution with vacuum.
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Fig. 5.12 The solution of the Riemann problem (5.173)

} Example 5.23 (Sod’s shock tube problem)
We consider an initial value problem similar to the dam-breaking problem for shal-
low water. The initial velocity is everywhere zero, but the pressure to the left is
higher than the pressure on the right. Specifically, we set

p.x; 0/ D
(
12 x < 0;

1 x � 0;
v.x; 0/ D 0; �.x; 0/ D 2: (5.173)

We have used � D 1:4.
In Fig. 5.12 we show the solution to this Riemann problem in the .p; v/-plane

and in the .x; t/-plane. We see that the solution consists of a leftward-moving rar-
efaction wave of the first family, followed by a contact discontinuity and a shock
wave of the third family. In Fig. 5.13 we show the pressure, velocity, density, and
the Mach number as functions of x=t . The Mach number is defined to be jvj=c, so
that if this is larger than 1, the flow is called supersonic. The solution found here is
actually supersonic between the contact discontinuity and the shock wave. }

The Euler Equations and Entropy

We shall show that the physical entropy is in fact also a mathematical entropy for
the Euler equations, in the sense that

.�S/t C .v�S/x � 0; (5.174)

weakly for every weak solution u D .�; q;E/ that is the limit of solutions to the
viscous approximation.

To this end, it is convenient to introduce the internal specific energy, defined by

e D 1

�

�
E � 1

2
�v2

�
:
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Fig. 5.13 Pressure, velocity, density, and the Mach number for the solution of (5.173)

Then the Euler equations read
�t C .�v/x D 0;

.�v/t C �
�v2 C p

�
x

D 0;�
�

�
e C 1

2
v2
��

t

C
�
1

2
�v2 C �ev C pv

�
x

D 0:

(5.175)

For classical solutions, this is equivalent to the nonconservative form (see Exer-
cise 5.12)

�t C v�x C �vx D 0;

vt C vvx C 1

�
px D 0;

et C vex C p

�
vx D 0:

(5.176)

We have that

S D � log
�
p

��

�

D � log
�
.� � 1/e
���1

�
D .� � 1/ log.�/� log.e/ � log.� � 1/: (5.177)
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Thus we see that

S� D � � 1
�

> 0 and Se D �1
e
< 0:

These inequalities are general, and thermodynamic mumbo jumbo implies that they
hold for every equation of state, not only for polytropic gases.

For classical solutions we can compute

St D S��t C Seet

D �� � 1
�

.v�x C �vx/C 1

e

�
vex C p

�
vx

�

D �
�
.� � 1/ � p

e�

�
vx �

�
.� � 1/�x

�
� ex

e

�
v

D �vSx:
Therefore

St C vSx D 0

for smooth solutions to the Euler equations. This states that the entropy of a “par-
ticle” of the gas remains constant as the particle is transported with velocity v.
Furthermore,

.�S/t D �tS C �St

D �.�v/xS � �vSx
D � .v�S/x :

Thus for smooth solutions the specific entropy 
.u/ D �S.u/ is conserved:

.�S/t C .�vS/x D 0: (5.178)

The existence of such an entropy/entropy flux pair is rather exceptional for a system
of three hyperbolic conservation laws; see Exercise 5.10. Of course, combining this
with (5.175) and viewing the entropy as an independent unknown, we have four
equations for three unknowns, so we cannot automatically expect to have a solu-
tion. Sometimes one considers models in which the energy is not conserved but the
entropy is, so-called isentropic flow. In models of isentropic flow the third equation
in (5.175) is replaced by the conservation of entropy (5.178).

To show that (5.174) holds for viscous limits, we first show that the map

u 7! 
.u/ D �S.�; e.u//

is convex. We have that 
 is convex if its Hessian d2
 is a positive definite matrix.
For the moment we use the convention that all vectors are column vectors, and for
a vector a, aT denotes its transpose. We first obtain

r
 D Sr� C �rS
D Sr� C �.S�r� C Sere/
D .S C �S�/r� C �Sere:
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Trivially we have that r� D .1; 0; 0/T . Furthermore,

e.u/ D E

�
� 1

2

q2

�2
;

so we have

re D
�

�E
�2

C q2

�3
;� q

�2
;
1

�

�T
D 1

�

�
�e C 1

2
v2;�v; 1

�T
:

Next we compute

d2
 D d2 .�S.�; e//

D r� .rS/T C rS .r�/T C �d2S

D r� �S�r�C Sere
�T C .S�r� C Sere/ .r�/T C �d2S

D 2S�r�.r�/T C Se
�r�.re/T C re.r�/T �C �d2S:

To compute the Hessian of S we first compute its gradient:

rS.�; e/ D S�r� C Sere:

Thus10

d2S.�; e/ D r.S�r�/C r.Sere/
D r�.rS�/T C re.rSe/T C Sed

2e

D r�.S��r� C S�ere/T C re.Se�r� C Seere/T C Sed
2e

D S��r�.r�/T C S�e
�r�.re/T C re.r�/T �C Seere.re/T C Sed

2e:

If we use this in the previous equation, we end up with

d2
.u/ D �
�S�� C 2S�

�r� .r�/T

C �S�e

	
r� .re/T C re .r�/T



C �Seere .re/T � SeC;

where C is given by

C D �
	
�d2e C r� .re/T C re .r�/T



:

The Hessian of e is given by

d2e D

0
B@
2 E
�3

� 3q2
�4

2
q

�3
� 1
�2

2
q

�3
� 1
�2

0

� 1
�2

0 0

1
CA D 1

�2

0
@2e � 2v2 2v �1

2v �1 0

�1 0 0

1
A :

10 In our notation we have r.f .u/V .u// D V .u/.rf .u//T C f .u/rV .u/, where f is a scalar-
valued function and V is (column) vector-valued. The result r.f V / is a matrix.
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Next,

r�.re/T C re.r�/T D 1

�

0
@10
0

1
A��e C 1

2
v2; �v; 1

�

C 1

�

0
@�e C 1

2
v2

�v
1

1
A�1 0 0

�

D 1

�

0
@�2e C v2 �v 1

�v 0 0

1 0 0

1
A :

Then

C D �1
�

0
@2e � 2v2 2v �1

2v �1 0

�1 0 0

1
A � 1

�

0
@�2e C v2 �v 1

�v 0 0

1 0 0

1
A

D 1

�

0
@ v2 �v 0

�v 1 0

0 0 0

1
A :

Now introduce the matrix D by

D D
0
@1 v 1

2
v2 C e

0 � �v

0 0 �

1
A :

We have that D is invertible, and thus d2
 is positive definite if and only if
Dd2
DT is positive definite. Then

Dd2
.u/DT D �
�S�� C 2S�

�
Dr� .Dr�/T

C �S�e

	
Dr� .Dre/T CDre .Dr�/T



C �SeeDre .Dre/T � SeDCDT :

We compute

Dr� D
0
@10
0

1
A ; Dre D

0
@00
1

1
A ; DCDT D

0
@0 0 0

0 1 0

0 0 0

1
A ;
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and using this,

Dd2
.u/DT D �
�S�� C 2S�

�0@1 0 0

0 0 0

0 0 0

1
AC �S�e

0
@0 0 1

0 0 0

1 0 0

1
A

C �See

0
@0 0 0

0 0 0

0 0 1

1
A � Se

0
@0 0 0

0 1 0

0 0 0

1
A

D
0
@�S�� C 2S� 0 S�e

0 �Se 0

S�e 0 See

1
A

D

0
B@
��1
�

0 0

0 1
e

0

0 0 1
e2

1
CA :

Hence Dd2
.u/DT has three positive eigenvalues and is positive definite. There-
fore, also d2
 is positive definite, and 
 is convex. From the general identity


.u/xx D .ux/
T d2
.u/ux C .r
.u//T uxx; u D u.x/ D .u1; : : : ; un/; (5.179)

we get from the convexity of d2
 that


.u/xx � .r
.u//T uxx: (5.180)

Consider now a smooth solution of the regularized Euler equations

u"t C f .u"/x D �u"xx: (5.181)

We multiply from the left by .r
/T , which yields11

0 D .r
.u"//T u"t C .r
.u"//T df .u"/u"x � �.r
.u"//T u"xx
D 
.u"/t C �r.v�
.u"//�T u"x � �.r
.u"//T u"xx
D 
.u"/t C �

v�
.u"/
�
x

� �.r
.u"//T u"xx
� 
.u"/t C �

v�
.u"/
�
x

� �
.u"/xx:
By assuming that u" ! u as � ! 0, we see that


t C .v
/x � 0

holds in the weak sense (cf. (2.15)). Hence we conclude that (5.174), that is,

.�S/t C .v�S/x � 0; (5.182)

holds weakly.

11 A word of caution: To show that .r
.u//T df .u/ D .r.v
.u///T is strenuous. It is better done
in nonconservative coordinates; see Exercise 5.12.
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Fig. 5.14 The entropy and specific entropy for the solution of the Riemann problem (5.173)

In Fig. 5.14 we show the entropy and the specific entropy for the solution of
Riemann problem (5.173). The entropy decreases as the shock and the contact dis-
continuity pass, while it is constant across the rarefaction wave.

Analogously to the shallow-water equations, we can also check whether (5.174)
holds for the solution of the Riemann problem. We know that this will hold if and
only if

�s ��S� C ��vS� � 0:

Using the expression giving the shock speed, (5.163), we calculate

�s ��S� C ��vS� D S .�s ��� C ��v�/C �l .�s �S� C vl �S�/

D ˙�lcl
s

2

� � 1
ˇ� C 1

ˇ2 � 1 �S� ;

where we use the plus sign for the first family and the minus sign for the second.
Hence the entropy will decrease if and only if �S� < 0 for the first family, and
�S� > 0 for the third family.

Note in passing that for the contact discontinuity, s D v, and thus

�s ��S� C ��vS� D �v ��S� C v ��S� D 0:

Therefore, as expected, entropy is conserved across a contact discontinuity.
We consider shocks of the first family, and view �S� as a function of � D p=pl .

Recall that for these shocks, we have � > 1. Thus

�S� D S � Sl
D log

�
��

�
�

l

�
� log

�
p

pl

�
D � log.z/ � log.�/

D � log
�
ˇ� C 1

� C ˇ

�
� log.�/

DW h.�/:
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To check whether h.�/ < 0 D h.1/, we differentiate, using (5.162):

h0.�/ D �
ˇ2 � 1

.� C ˇ/.ˇ� C 1/
� 1

�

D 1

�.� C ˇ/.ˇ� C 1/

�
�.ˇ2 � 1/� � .� C ˇ/.ˇ� C 1/

�
D 1

�.� C ˇ/.ˇ� C 1/

�
ˇ C 1

ˇ � 1 .ˇ
2 � 1/� � .� C ˇ/.ˇ� C 1/

�

D ˇ

�.� C ˇ/.ˇ� C 1/
.2� � �2 � 1/

D � ˇ

�.� C ˇ/.ˇ� C 1/
.� � 1/2 < 0:

Thus S is monotonically decreasing along the Hugoniot locus of the first family.
We see also that (5.174) holds only if p � pl for waves of the first family.

For shocks of the third family, an identical computation shows that (5.174) holds
only if p � pl .

5.7 Notes

The fundamentals of the Riemann problem for systems of conservation laws were
presented in the seminal paper by Lax [125], where also the Lax entropy condition
was introduced. We refer to Smoller [169] as a general reference for this chapter.
Our proof of Theorem 5.11 follows Schatzman [165]. This also simplifies the proof
of the classical result that s0.0/ D 1

2
in Theorem 5.14. The parameterization of the

Hugoniot locus introduced in Theorem 5.11 makes the proof of the smoothness of
the wave curves, Theorem 5.16, quite simple.

We have used shallow-water equations as our prime example in this chapter. This
model can be found in many sources; a good presentation is in Kevorkian [112]. Our
treatment of the vacuum for these equations can be found in Liu and Smoller [138].

There is extensive literature on the Euler equations; see, e.g., [51], [169], [167],
and [42]. The computations on the Euler equations and entropy are taken from [85].

Our version of the implicit function theorem, Theorem 5.10, was taken from
Cheney [40]. See Exercise 5.11 for a proof.

5.8 Exercises

5.1 In this exercise we consider the shallow-water equations in the case of a vari-
able bottom. Make the same assumptions regarding the fluid as in Example
5.1 except that the bottom is given by the function Ny D Nb. Nx; Nt /. Assume that
the characteristic depth of the water is given byH and the characteristic depth
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of the bottom isA. Let ı D A=H . Show that the shallow-water equations read

ht C .vh/x D 0;

.vh/t C .v2hC 1

2
h2 C ıhb/x D 0:

(5.183)

5.2 What assumption on p is necessary for the p-system to be hyperbolic?
5.3 Solve the Riemann problem for the p-system in the case p.v/ D 1=v. For

what left and right states does this Riemann problem have a solution?
5.4 Repeat Exercise 5.3 in the general case where p D p.v/ is such that p0 is

negative and p00 is positive.
5.5 Solve the following Riemann problem for the shallow-water equations:

u.x; 0/ D
 
h.x; 0/

v.x; 0/

!
D
(�
hl
0

�
for x < 0,�

hr
0

�
for x � 0,

with hl > hr > 0.
5.6 Letw D .u; v/ and let '.w/ be a smooth scalar function. Consider the system

of conservation laws

wt C .'.w/w/x D 0: (5.184)

(a) Find the characteristic speeds 1 and 2 and the associated eigenvectors
r1 and r2 for the system (5.184).

(b) Let '.w/ D jwj2 =2. Then find the solution of the Riemann problem for
(5.184).

(c) Now let

'.w/ D 1

1C uC v
;

and assume that u and v are positive. Find the solution of the Riemann
problem of (5.184) in this case.

5.7 Let us consider the Lax–Friedrichs scheme for systems of conservation laws.
As in Chapt. 3 we write this as

unC1
j D 1

2

	
unj�1 C unjC1



� 

2

	
f
	
unjC1



� f

	
unj�1




;

where  D �t=�x, and we assume that the CFL condition

 � max
k

jkj

holds. Let vnj .x; t/ denote the solution of the Riemann problem with initial
data (

unj�1 for x < j�x;

unjC1 for x � j�x:
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Show that

unC1
j D 1

2�x

.jC1/�xZ
.j�1/�x

vnj .x;�t/ dx:

5.8 A smooth function w W Rn ! R is called a k-Riemann invariant if

rw.u/ � rk.u/ D 0;

where rk is the kth right eigenvector of the Jacobian matrix df , which is
assumed to be strictly hyperbolic.

(a) Show that locally there exist precisely .n � 1/ k-Riemann invariants
whose gradients are linearly independent.

(b) Let Rk.ul/ denote the kth rarefaction curve through a point ul . Then
show that all .n � 1/ k-Riemann invariants are constant on Rk.ul/. This
gives an alternative definition of the rarefaction curves.

(c) We say that we have a coordinate system of Riemann invariants if there
exist n scalar-valued functions w1; : : : ; wn such that wj is a k-Riemann
invariant for j; k D 1; : : : ; n, j ¤ k, and

rwj .u/ � rk.u/ D �j .u/ıj;k; (5.185)

for some nonzero function gj . Why cannot we expect to find such a co-
ordinate system if n > 2?

(d) Find the Riemann invariants for the shallow-water system, and verify
parts b and c in this case.

5.9 We study the p-system with p.v/ D 1=v as in Exercise 5.3.

(a) Find the two Riemann invariants w1 and w2 in this case.
(b) Introduce coordinates

� D w1.v; u/ and � D w2.v; u/;

and find the wave curves in .�; �/ coordinates.
(c) Find the solution of the Riemann problem in .�; �/ coordinates.
(d) Show that the wave curvesW1 andW2 are stiff in the sense that if a point

.�; �/ is on a wave curve through .�l ; �l /, then the point .�C��; � C
��/ is on a wave curve through .�l C��; �l C��/. Hence the solution
of the Riemann problem can be said to be translation-invariant in .�; �/
coordinates.

(e) Show that the 2-shock curve through a point .�l ; �l / is the reflection
about the line � � �l D � � �l of the 1-shock curve through .�l ; �l /.

5.10 As for scalar equations, we define an entropy/entropy flux pair .
; q/ as scalar
functions of u such that for smooth solutions,

ut C f .u/x D 0 ) 
t C qx D 0;

and 
 is supposed to be a convex function.



280 5 The Riemann Problem for Systems

(a) Show that 
 and q are related by

ruq D ru
 df: (5.186)

(b) Why cannot we expect to find entropy/entropy flux pairs if n > 2?
(c) Find an entropy/entropy flux pair for the p-system if p.v/ D 1=v.
(d) Find an entropy/entropy flux pair for the shallow-water equations.

5.11 This exercise outlines a proof of the implicit function theorem, Theorem 5.10.

(a) Define T to be a mapping Rp ! Rp such that for y1 and y2,

jT .y1/� T .y2/j � c jy1 � y2j ; for some constant c < 1.

Such mappings are called contractions. Show that there exists a unique y
such that T .y/ D y.

(b) Let u W Rp ! Rp , and assume that u is C1 in some neighborhood of
a point y0, and that du.y0/ is nonsingular. We are interested in solving
the equation

u.y/ D u.y0/C v (5.187)

for some v where jvj is sufficiently small. Define

T .y/ D y � du.y0/�1 .u.y/ � u.y0/� v/ :
Show that T is a contraction in a neighborhood of y0, and consequently
that (5.187) has a unique solution x D '.v/ for small v, and that '.0/ D
y0.

(c) Now let ˚.x; y/ be as in Theorem 5.10. Show that for x close to x0 we
can find '.x; v/ such that

˚.x; '.x; v// D ˚.x; y0/C v

for small v.
(d) Choose a suitable v D v.x/ to conclude the proof of the theorem.

5.12 Many calculations for the Euler equations become simpler in nonconservative
variables. Introduce w D .�; v; e/, where

e D 1

�

�
E � 1

2
�v2

�

is the internal specific energy.

(a) Show that in these variables we have

p D .� � 1/e�; c2 D �.� � 1/e: (5.188)

(b) Show that w satisfies an equation of the form

wt C A.w/wx D 0; (5.189)

and determine A.
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(c) Compute the eigenvalues and eigenvectors for A and determine whether
the wave families are linearly degenerate or genuinely nonlinear.

(d) Compute the Riemann invariants in these variables.
(e) Show that

	@�S
@w


T
A.w/ D

	@�vS
@w


T
; (5.190)

where S denotes the entropy and is given by (5.155) or (5.177). Here

	 @f
@w


T D .f�; fv; fe/

for any scalar function f .

5.13 Prove (5.165).



Chapter 6

Existence of Solutions of the Cauchy Problem

Faith is an island in the setting sun. But proof, yes.
Proof is the bottom line for everyone.
— Paul Simon, Proof (1990)

In this chapter we study the generalization of the front-tracking algorithm to sys-
tems of conservation laws, and how this generalization generates a convergent se-
quence of approximate weak solutions. We shall then proceed to show that the limit
is a weak solution. Thus we shall study the initial value problem

ut C f .u/x D 0; ujtD0 D u0; (6.1)

where f WRn ! Rn and u0 is a function in L1.R/.
In doing this, we are in the setting of Lax’s theorem (Theorem 5.17); we have

a system of strictly hyperbolic conservation laws, where each characteristic field
is either genuinely nonlinear or linearly degenerate, and the initial data are close
to a constant. This restriction is necessary, since the Riemann problem may fail to
have a solution for initial states far apart, which is analogous to the appearance of
a “vacuum” in the solution of the shallow-water equations.

The convergence part of the argument follows the traditional method of proving
compactness in the context of conservation laws, namely, via Kolmogorov’s com-
pactness theorem or Helly’s theorem.

Again, the basic ingredient in front tracking is the solution of Riemann problems,
or in this case, the approximate solution of Riemann problems. Therefore, we start
by defining these approximations.

6.1 Front Tracking for Systems

Nisi credideritis, non intelligetis.1

— Saint Augustine, De Libero Arbitrio (387/9)

In order for us to define front tracking in the scalar case, the solution of the Riemann
problem had to be a piecewise constant function. For systems, this is possible only
if all waves are shock waves or contact discontinuities. Consequently, we need to
approximate the continuous parts of the solution, the rarefaction waves, by functions
that are piecewise continuous in x=t .

1 Soft on Latin? It says, “If you don’t believe it, you won’t understand it.”
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There are, of course, several ways to make this approximation. We use the fol-
lowing: Let ı be a small parameter. For the rest of this chapter, ı will always denote
a parameter that controls the accuracy of the approximation. We start with the sys-
tem of conservation laws (6.1), and the Riemann problem

u.x; 0/ D
(
ul for x < 0,

ur for x � 0.
(6.2)

We have seen (Theorem 5.17) that the solution of this Riemann problem consists
of at most nC 1 constant states, separated by either shock waves, contact disconti-
nuities, or rarefaction waves. We wish to approximate this solution by a piecewise
constant function in .x=t/.

When the solution has shocks or contact discontinuities, it is already a step func-
tion for some range of .x=t/, and we set the approximation equal to the exact
solution u for such x and t .

Thus, if the j th wave is a shock or a contact discontinuity, we let

uıj;�j .x; t/ D uj;�j .x; t/; t�C
j < x < t��

jC1;

where the right-hand side is given by (5.137).
A rarefaction wave is a smooth transition between two constant states, and we

will replace this by a step function whose “steps” are no farther apart than ı and lie
on the correct rarefaction curve Rj . The discontinuity between two steps is defined
to move with a speed equal to the characteristic speed of the left state.

More precisely, let the solution to (6.2) be given by (5.137). Assume that the j th
wave is a rarefaction wave; that is, the solutions u and umj lie on the j th rarefaction
curve Rj

�
umj�1

�
through umj�1 , or

u.x; t/ D uj;�j
�
x; t I umj ; umj�1

�
; for t��

j � x � t�C
j :

Let k D rnd
�
�j =ı

�
for the moment, where rnd .z/ denotes the integer closest2 to z,

and let Oı D �j =k. The step values of the approximation are now defined as

uj;l D Rj
�
l Oı I umj�1

�
; for l D 0; : : : ; k. (6.3)

We have that uj;0 D umj�1 and uj;k D umj . We set the speed of the steps equal to
the characteristic speed to the left, and hence the piecewise constant approximation
we make is the following:

uıj;�j .x; t/ WD uj;0 C
kX
lD1

�
uj;l � uj;l�1

�
H
�
x � j

�
uj;l�1

�
t
�
; (6.4)

where H now denotes the Heaviside function. Equation (6.4) is to hold for t�C
j <

x < ��
jC1t . Loosely speaking, we step along the rarefaction curve with steps of size

at most ı. Observe that the discontinuities that occur as a result of the approximation
of the rarefaction wave will not satisfy the Rankine–Hugoniot condition, and hence
the function will not be a weak solution. However, we will prove that uı converges
to a weak solution as ı ! 0. Fig. 6.1 illustrates this in phase space and in .x; t/-
space.

2 Such that z � 1
2

� rnd .z/ < z C 1
2
.
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Fig. 6.1 An approximated
rarefaction wave in phase
space and in .x; t/-space

uj-1

uj

uj,l

uj-1

uj,l

uj

The approximate solution to the Riemann problem is then found by inserting
a superscript ı at the appropriate places in (5.137), resulting in

uı.x; t/ D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

ul for x � ��
1 t ;

uı1;�1 .x=t Ium1; ul / for ��
1 t � x � �C

1 t ;

um1 for �C
1 t � x � ��

2 t ;

uı2;�2 .x=t Ium2; um1/ for ��
2 t � x � �C

2 t ;

um2 for �C
2 t � x � ��

3 t ;
:::

uın;�n .x=t Iur; umn�1/ for ��
n t � x � �C

n t ;

ur for x � �C
n t .

(6.5)

It is clear that uı converges pointwise to the exact solution given by (5.137). Indeed,

ˇ̌
uı.x; t/ � u.x; t/ˇ̌ D O .ı/ :

Therefore, we also have that
��uı.t/ � u.t/��

L1
D O .ı/, since uı and u are equal

outside a finite interval in x.
Nowwe are ready to define the front-tracking procedure to (approximately) solve

the initial value problem (6.1).
Our first step is to approximate the initial function u0 by a piecewise constant

function uı0 (we let ı denote this approximation parameter as well) such that

lim
ı!0

��uı0 � u0
��
L1

D 0: (6.6)

We then generate approximations, given by (6.5), to the solutions of the Riemann
problems defined by the discontinuities of uı0. Already here we see one reason why
we must assume T:V: .u0/ to be small: The initial Riemann problems must be solv-
able. Therefore, we assume our initial data u0, as well as the approximation uı0, to
be in some small neighborhoodD of a constant Nu. Without loss of generality, Nu can
be chosen to be zero.

Since the initial discontinuities interact at some later time, we can solve the
Riemann problems defined by the states immediately to the left and right of the
collisions. These solutions are then replaced by approximations, and we may con-
tinue to propagate the front-tracking construction until the next interaction.
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However, as in the scalar case, it is not obvious that this procedure will take us
up to any predetermined time. A priori, it is not even clear whether the number
of discontinuities will blow up at some finite time, that is, that the collision times
will converge to some finite time. This problem is much more severe in the case
of a system of conservation laws than in the scalar case, since a collision of two
discontinuities generically will result in at least n � 2 new discontinuities. So for
n > 2, the number of discontinuities seems to be growing without bound as t
increases. As in the scalar case, the key to the solution of these problems lies in
the study of interactions of discontinuities. To keep the number of waves finite, we
shall eliminate small waves emanating from Riemann problems. However, there is
a trade-off: The more waves we eliminate, the easier it is to prove convergence, but
the less likely it is that the limit is a solution of the differential equation.

The method we shall use to eliminate discontinuities is taken from [9]. Let � > 0
be some small number whose precise value will be determined later, cf. (6.36).
Henceforth, we shall call all discontinuities in the approximate Riemann solution
fronts. The family of a front separating states uL and uR is the unique number j
such that

uR 2 Wj .uL/;
where, as in Chapt. 5,Wj .u/ denotes the j th wave curve through the point u. These
are parameterized as in Theorem 5.16. (Observe that we still have this relation for
fronts approximating a rarefaction wave.) The strength of a front is �, where we
have

uR D Wj;�uL:

Note that the total strength of a rarefaction wave remains unchanged in the front-
tracking approximation.

If a front of strength �l collides from the left with a front from the right of
strength �r , and j�l �r j � �, then we shall not use the approximate Riemann solver
given by (6.5), but the following construction.

Let Ol denote the family of the front �l and Or the family of �r . Let the state to the
left of the collision be ul and the state to the right be ur . Observe that since we have
a collision, Ol � Or . If Ol > Or , define the states u0

m and u0
r by

u0
m D W Or;�r ul ; u

0
r D W Ol;�l u

0
m: (6.7)

If Ol D Or , then we define
u0
r D W Or;�lC�r ul : (6.8)

The piecewise constant approximation to the Riemann problem defined by the col-
lision of a left front �l and right front �r consists of two fronts if Ol > Or and of one
front if Ol D Or . We define the front-tracking approximation to this problem to be the
piecewise constant approximation to the Riemann problem defined by ul and u0

r ,
followed by a discontinuity traveling at a fixed speed � > maxu jn.u/j separating
u0
r and ur . This front we call a ghost front. Other fronts we call physical fronts.

Regarding ghost fronts, we label these �g , and define the strength of a ghost front
�g to be �g D ju0

r � ur j. IfN physical fronts, �1; : : : ; �N , interact at the same point,
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a b

Fig. 6.2 a A collision producing a ghost front. b Collision between a ghost front and a physical
front

then we use an analogous construction ifX
i;j
i�j

ˇ̌
�i�j

ˇ̌ � �;

so that the result of this interaction will not be more than N physical fronts of the
same families as the incoming fronts, followed by a ghost front. More specifically,
we use the following construction. First observe that since the fronts are colliding,
their families are nonincreasing from left to right. We sum the strengths of fronts
belonging to the same family, i.e., Q�k D P

j; O|Dk �j for k D 1; : : : ; n. If the kth
family is absent, the corresponding Q�k vanishes. Next we construct the new states
after the collision, starting from the left. We define u0

m1
D W1; Q�1ul . Next we let

u0
m2

D W2; Q�2u
0
m1
, and so on until u0

r D u0
mn

D Wn; Q�nu
0
mn�1 . The strength of the ghost

front will be "g D jur � u0
r j.

Two ghost fronts will never interact, since they travel at the same speed. In order
to complete our description of the front-tracking algorithm, we must define how
a collision between a ghost front and a physical front is resolved. If a ghost front
separating states u0

l and ul collides with a physical front �r separating ul and ur ,
we define

u0
r D W Or;�r u

0
l :

Then the solution consists of a physical front of family Or and strength �r , followed
by a ghost front separating u0

r and ur , traveling at speed �. In particular, note that
the strength of a physical front is not changed if it collides with a ghost front. See
Fig. 6.2.

If a ghost front interacts with several physical fronts, �1; : : : ; �N at some point
.xc; tc/, we define u0

r D W1; Q�1 ı� � �ıWn; Q�nu
0
l ,
3 where is Q�k is as above. Then we solve

the Riemann problem with left state u0
l and right state u

0
r by the general procedure.

If
P

i�j
ˇ̌
�i�j

ˇ̌
> �, we use the full solution of the Riemann problem to define

the fronts. If
P

i�j
ˇ̌
�i�j

ˇ̌ � �, we should solve the Riemann problem using the
middle states u0

mk
D Wk; Q�k u

0
mk�1 for k D 1; : : : ; n, with u0

m0
D u0

l followed by
a ghost front separating u0

r and ur . Note that this solution equals the one we would

3 Observe that the order of families is reversed.
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a b

Fig. 6.3 a A collision between a ghost front and several physical fronts. b How this collision is
resolved by considering a sequence of collisions

have obtained if we had let the ghost front first interact with the leftmost of the
interacting fronts, �N , then let the resulting ghost front interact with �N�1 and so
on, until the interaction between a ghost front and the rightmost front �1, and after
this, resolve the collision between �N ; : : : ; �1. Thus, a collision between a ghost
front and several physical fronts can be viewed as a succession of collisions, first
between the ghost front and each physical front, and then between the physical
fronts. For an illustration of this, see Fig. 6.3. This perspective will be useful when
we obtain interaction estimates, cf. (6.25).

Since ghost fronts have a speed larger than that of other fronts, we define them
to be of family nC 1.

Front tracking in a box (systems)
(i) Given a one-dimensional strictly hyperbolic system of conservation

laws,
ut C f .u/x D 0; ujtD0 D u0; (6.9)

where u0 has small total variation.
(ii) Approximate the initial data u0 by a piecewise constant function uı0.
(iii) Approximate the solution of each Riemann problem by a piecewise con-

stant function by sampling points at distance ı apart on the rarefaction
curve and using the exact shocks and contact discontinuities.

(iv) Track fronts (discontinuities).
(v) Solve new Riemann problems as in (iii), or if j�l �r j � � or one of the

colliding fronts is a ghost front, use (6.7)–(6.8).
(vi) Continue to solve Riemann problems approximately as in (v). Denote

an approximate solution by uı.
(vii) The function uı is well defined, and as ı ! 0, the approximate solution

uı will converge to u, the solution of (6.9).4
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Fig. 6.4 A collision of N
physical fronts

x

t

. . . . . . . . . 12

1 2 nβ β β

γ γγN−1γN

We wish to estimate the strengths of the fronts resulting from a collision in terms
of the strengths of the colliding fronts. With some abuse of notation we shall refer
to both the front itself and its strength by �i .

Consider therefore oncemoreN physical fronts �N ; : : : ; �1 interacting at a single
point as in Fig. 6.4. We will have to keep track of the associated family of each front.
As before, we denote by O{ the family of wave �i . Thus if �1; : : : ; �4 all come from
the first family, we have O1 D � � � D O4 D 1. Since the speed of �j is greater than
the speed of �i for j > i , we have O| � O{. We label the waves resulting from the
collision ˇ1; : : : ; ˇn.

Let ˇ denote the vector of waves in solution of the Riemann problem, defined by
the collision of �1; : : : ; �N , i.e., ˇ D .ˇ1; : : : ; ˇn/, and let

˛ D
	 X

O{D1
�i ;

X
O{D2

�i ; : : : ;
X
O{Dn

�i



:

For simplicity, also set � D .�1; : : : ; �N /. Note that ˇ is a function of � , that is,
ˇ D ˇ.�/. For i < j we define

ˇi;j .�; �/ WD @2ˇ

@�i@�j

�
�1; : : : ; �i�1; ��i ; 0; : : : ; 0; ��j ; 0; : : : ; 0

�
:

Then

�i�j

1Z
0

1Z
0

ˇi;j .�; �/ d� d� (6.10)

D ˇ
�
�1; : : : ; �i ; 0; : : : ; 0; �j ; 0; : : : ; 0

�C ˇ .�1; : : : ; �i�1; 0; : : : ; 0/

� ˇ .�1; : : : ; �i ; 0; : : : ; 0/ � ˇ ��1; : : : ; �i�1; 0; : : : ; 0; �j ; 0; : : : ; 0� :
Furthermore,

ˇ .0; : : : ; 0; �k; 0; : : : ; 0/ D .0; : : : ; 0; �k; 0; : : : ; 0/ ; (6.11)

4 Proved in Sect. 6.2.
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where �k on the right is at the Okth place, since in this case we have no collision.
Summing (6.10) for all i < j , we obtain

NX
i<j

�i �j

1Z
0

1Z
0

ˇi;j .�; �/ d� d�

D ˇ .�1; : : : ; �N /�
NX
iD1

ˇ .0; : : : ; 0; �i ; 0; : : : ; 0/ D ˇ � ˛: (6.12)

By the solution of the general Riemann problem, see Lax’s theorem 5.17, we have
that ˇi;j is bounded; hence

jˇ � ˛j � O .1/
NX

i;j Ii<j

ˇ̌
�i�j

ˇ̌
; (6.13)

or

ˇ D ˛ C O .1/
NX
i;j
i<j

ˇ̌
�i�j

ˇ̌
: (6.14)

Note that if the incoming fronts �k are small, then the fronts resulting from the
collision will be very small for those families that are not among the incoming
fronts.

If we have a collision between a ghost front �g , separating states u0
l and ul , and

a physical front with strength � of family j separating states ur and ur , the result
will be a physical front of strength � separating states u0

l and u
0
r , and a ghost front

�0
g separating u0

r and ur ; see the right part of Fig. 6.2. Since u0
r D Wj;�u

0
l and

ur D Wj;�ul ,

ur � u0
r D Wj;�ul �Wj;�u0

l

D ul � u0
l C

�Z
0

@

@�

�
Wj;�ul �Wj;�u0

l

�
d�

D ul � u0
l C

�Z
0

	@Wj;�
@�

.ul/ � @Wj;�

@�
.u0
l /


d�

D ul � u0
l C O .1/ j�j jul � u0

l j :
Therefore ˇ̌̌

�0
g

ˇ̌̌
� ˇ̌
�g
ˇ̌CK j�j ˇ̌�g ˇ̌ : (6.15)

} Example 6.1 (Higher-order estimates)
The estimate (6.13) is enough for our purposes, but we can extract some more in-
formation from (6.12) by considering higher-order terms. Firstly, note that

ˇ D ˛ C
X
i<j

�i�j ˇi;j .0; 0/C O .1/
X
i<j

ˇ̌
�i�j

ˇ̌ j� j : (6.16)
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Therefore, we evaluate ˇi;j .0; 0/. To do this, observe that

ur D Rˇ.�/ ul D R�N ı R�N�1 ı � � � ı R�1 ul ; (6.17)

where Rˇ is defined as in (5.141), and ul and ur are the states to the left and right
of the collision, respectively. If we define

ˇ�j WD @ˇ

@�j
;

(6.11) implies

ˇ�j .0; : : : ; 0/ D e O| ;

where ek denotes the kth standard basis vector in Rn. Also note that

@

@�i
Rˇ.�/ D rˇRˇ � ˇ�i :

Furthermore, from Lemma 5.18 and (5.141), we have that

rˇRˇ D
0
@: : : ; rk C

nX
jD1

ǰDrmin.j;k/ rmax.j;k/; : : :

1
AC O

	
jˇj2



:

Here the first term on the right-hand side is the n � n matrix with the kth column
equal to rk CPn

jD1 ǰDrmin.j;k/ rmax.j;k/. Consequently,5

@

@�j
rˇR.0;:::;0/ D �

Dr1r O| ;Dr2r O| ; : : : ;Dr O| r O| ;Dr O| r O|C1; : : : ;Dr O| rn
�

evaluated at ul . Differentiating (6.17) with respect to �i , we obtain�rˇRˇ � ˇ�i
� j�D.0;:::;0;�j ;0:::;0/.ul / D rO{

�
R�j ul

�
for j > i . Differentiating this with respect to �j , we obtain�

@

@�j
rˇRˇ

�
j�D.0;:::;0/e O| C rˇR.0;:::;0/ˇi;j .0; 0/ D Dr O| rO{ .ul / :

Inserting this in (6.16), we finally obtain

ˇ D ˛ C
NX
i<j

�i�j
�rˇRˇ

��1 �
Dr O| rO{ �DrO{ r O|

�C O .1/
X
i<j

ˇ̌
�i�j

ˇ̌ j� j ; (6.18)

5 The right-hand side denotes the n � n matrix whose first O| columns equal Drk r O| , k D 1; : : : ; O| ,
and the remaining .n � O|/ columns equal Dr O| rk , k D O| C 1; : : : ; n.
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Fig. 6.5 An interaction in .x; t/-space and in phase space

which we call the interaction estimate. One can also use (6.12) to obtain estimates
of higher order.

In passing, we note that if the integral curves of the eigenvectors form a coordi-
nate system nearM , then �

Drj ri �Dri rj
� D 0

for all i and j , and we obtain a third-order estimate. The estimate (6.13) will prove
to be the key ingredient in our analysis of front tracking.

For the reader with knowledge of differential geometry, the estimate (6.18) is no
surprise. Assume that only two fronts collide, �l and �r , separating states uL, uM ,
and uR. Let the families of the two fronts be l and r , respectively. The states uL,
uM , and uR are almost connected by the integral curves of rl and rr , respectively.
If we follow the integral curve of rl a (parameter) distance ��l from uR, and then
follow the integral curve of rr a distance ��r , we end up with, up to third order in
�l and �r , half the Lie bracket of �lrl and �rrr away from uL. This Lie bracket is
given by

Œ�l rl ; �r rr � WD �l �r
�
Drl rr �Drr rl

�
:

This means that if we start from uL and follow rr a distance �r , and then rl a dis-
tance �l , we finish a distance O .Œ�l rl ; �r rr �/ away from uR. Consequently, up to
O .Œ�l rl ; �r rr �/, the solution of the Riemann problem with right state uR and left
state uL is given by a wave of family r of strength �r , followed by a wave of family
l of strength �l . While not a formal proof, these remarks illuminate the mechanism
behind the calculation leading up to (6.18). See Fig. 6.5. }

Before we proceed further, we introduce some notation. Front tracking will pro-
duce a piecewise constant function labeled uı.x; t/ that has, at least initially, some
finite number N of fronts. These fronts have strengths �i , i D 1; : : : ; N . We will
refer to the i th front by its strength �i , and label the left and right states uli and
uri , respectively. The position of �i is denoted by xi.t/, and with a slight abuse of
notation we have that

xi .t/ D xi C si .t � ti / ; (6.19)
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where si is the speed of the front, and .xi ; ti / is the position and time it originated.
In this notation, uı can be written

uı.x; t/ D ul1 C
NX
iD1

.uri � uli /H .x � xi .t// : (6.20)

The interaction estimate (6.13) shows that the “amount of change” produced by
a collision is proportional to the product of the strengths of the colliding fronts.
Therefore, in order to obtain some estimate of what will happen as fronts collide,
we define the interaction potentialQ. The idea is thatQ should (over)estimate the
amount of change in uı caused by all future collisions. Hence by (6.13), Q should
involve terms of type j�l �r j. We say that two fronts are approaching if the front to
the left has a larger family than the front to the right, or if both fronts are of the
same family and at least one of the fronts is a shock wave. Note that this means that
a ghost front is approaching all physical fronts to its right. We collect all pairs of
approaching fronts in the approaching set A, that is,

A WD ˚�
�i ; �j

�
such that �i and �j are approaching

�
: (6.21)

The set A will, of course, depend on time. All future collisions will now involve
two fronts from A due to the hyperbolicity of the equation. Observe that two ap-
proximate rarefaction waves of the same family never collide unless there is another
front between, all colliding at the same point .x; t/. Therefore, we defineQ as

Q WD
X
A

ˇ̌
�i �j

ˇ̌
: (6.22)

For scalar equations we saw that the total variation of the solution of the conserva-
tion law was not greater than the total variation of the initial data. From the solution
of the Riemann problem, we know that this is not true for systems. Nevertheless, we
shall see that if the initial total variation is small enough, the total variation of the
solution is bounded. To measure the total variation we use another time-dependent
functional T defined by

T WD
NX
iD1

j�i j ; (6.23)

where N is the number of fronts. Lax’s theorem (Theorem 5.17) implies that T is
equivalent to the total variation as long as the total variation is small.

Let t1 denote the first time two fronts collide. At this time we will have another
Riemann problem, which can be solved up to the next collision time t2, etc. In this
way we obtain an increasing sequence of collision times ti , i 2 N. To show that
front tracking is well defined, we need to show that the sequence ftig is finite, or if
infinite, not convergent. In the scalar case we saw that indeed this sequence is finite.

We will analyze more closely the changes in Q and T when fronts collide.
Clearly, they change only at collisions. Let tc be some fixed collision time.

Assume then that the situation is as in Fig. 6.6:N fronts �1; : : : ; �N are colliding
at some point .xc; tc/, givingN 0 fronts �0

1; : : : ; �
0
N 0 . Observe that if one of the collid-

ing fronts is a ghost front, then it must be the leftmost one, �N . Furthermore, if �N is
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Fig. 6.6 A collision of N
fronts
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a ghost front, then this collision can be viewed as a sequence of collisions between
the ghost front and each physical front �N�1; : : : ; �1, followed by the interaction of
�N�1; : : : ; �1 as depicted in Fig. 6.3. Thus for interaction estimates, we can assume
that if �N is a ghost front, then there are only two fronts colliding; �2 (the ghost
front) and �1 (the physical front).

Let I be a small interval containing xc , and let J be the complement of I . Then
we may write Q D Q.I/ C Q.J / C Q.I; J /, where Q.I/ and Q.J / indicate
that the summation is restricted to those pairs of fronts that both lie in I and that
both lie in J , respectively. Similarly, Q.I; J / means that the summation is over
those pairs where one front is in I and the other in J . Let �1 < tc < �2 be two
times, chosen such that no other collisions occur in the interval Œ�1; �2�, and such
that no fronts other than �1; : : : ; �N are crossing the interval I at time �1, and only
waves emanating from the collision at tc , i.e., waves denoted by �0

1; : : : ; �
0
n, cross I

at time �2. LetQi and Ti denote the values ofQ and T at time �i . By construction,
Q2.I / D 0 andQ2.J / D Q1.J /, and hence

Q2 �Q1 D Q2.I; J / �Q1.I; J / �Q1.I /: (6.24)

We now want to bound the increase in Q.I; J / from time �1 to �2. More precisely,
we want to prove that

Q2.I; J / � Q1.I; J /C O .1/Q1.I /T1.J /: (6.25)

Let
ˇ̌
��0
i

ˇ̌
be a term inQ2.I; J /, i.e., .�; �0

i / 2 A at time �2. This means that �0
i < 0

or � < 0. With a slight abuse of notation we denote the family of �0
i by i . Let Ii be

the set of indices of the colliding fronts in I at time �1 with family i , i.e.,

Ii D fj j O| D i; j D 1; : : : ; N g :
Now the interaction estimate (6.14) reads

�0
i D

X
j2Ii

�j C O.1/Q1.I /:
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To prove (6.25) we study different cases. First we consider the three possibilities
that can occur if neither �0

i nor � is a ghost front:

(a) The family of � is not i . In this case, .�j ; �/ 2 A at time �1 for all j 2 Ii .
Therefore

j�0
i �j �

X
O|Di

.�j ;�/2A

ˇ̌
�j �
ˇ̌C O .1/Q1.I / j�j : (6.26)

(b) The family of � is i , and � < 0. In this case, since .�0
i ; �/ 2 A at time �2, also

.�j ; �/ 2 A at time �1 for all j 2 Ii . Hence (6.26) holds.
(c) The family of � is i , and � > 0. Since .�0

i ; �/ 2 A, we infer that �0
i < 0. Let

Ii;� D fk 2 Ii j "k < 0g. Then

j�0
i j D

X
j2Ii;�

ˇ̌
�j
ˇ̌ �

X
j2IinIi;�

ˇ̌
�j
ˇ̌C O.1/Q1.I /:

Also, for j 2 Ii , .�j ; �/ 2 A if and only if j 2 Ii;�. Hence (6.26) holds also in
this case.

Next we consider the situation when either �0
i or � is a ghost front.

(d) � is a ghost front. In this case � must be to the left of I since .�0
i ; �/ 2 A. Thus

.�j ; �/ 2 A for all j 2 K and (6.26) holds.
(e) �0

i is a ghost front. Then � must be to the right of I for .�0
i ; �/ to be in A. This

situation is depicted in Fig. 6.2. In the right case, �i is a ghost front, and in the
left case, �0

i D O .1/Q1.I / and there were no ghost fronts in I at �1. In the
latter case, clearly (6.26) holds. If �i is a ghost front, then there are only two
fronts colliding in I . By (6.15),

ˇ̌
�0
i

ˇ̌ � j�i j C O .1/ j�i jT1.I / and .�i ; �/ 2 A.
Thus (6.26) holds.

Therefore, for all pairs .�0
i ; �k/ 2 A with �k in J , (6.26) holds. Summing over i and

k gives (6.25).
Inserting (6.25) into (6.24), using the constant K to replace the order symbol,

we obtain

Q2 �Q1 � KQ1.I /T1 �Q1.I / D Q1.I / .KT1 � 1/ � �1
2
Q1.I / (6.27)

if T1 is smaller than 1=.2K/. By the estimate (6.15), (6.27) holds also for collisions
involving a ghost front.We summarize the above discussion in the following lemma.

Lemma 6.2 Assume that T1 � 1=.2K/. Then

Q2 �Q1 � �1
2
Q1.I /

for every ı and �.

We will use this lemma to deduce that the total variation remains bounded if it
initially is sufficiently small, or in other words, if the initial data are sufficiently
close to a constant state.
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Lemma 6.3 If T is sufficiently small at t D 0, then there is some constant c inde-
pendent of ı such that

G D T C c Q

is nonincreasing. We call G the Glimm functional. Consequently, T and T:V:
�
uı
�

are bounded independently of ı and �.

Proof Let Tn and Qn denote the values of T and Q, respectively, before the nth
collision of fronts at tn, with 0 < t1 < t2 < � � � . Using the interaction estimate
(6.13), we first infer that

TnC1 D
X
j

ˇ̌̌
�0
j

ˇ̌̌
� Tn CKQn.I /: (6.28)

Let c � 2K and assume that T1CcT 21 � 1=.2K/. Assume furthermore that TCc Q
is nonincreasing for all t less than tn, and that Tn � 1=.2K/. Lemma 6.2 and (6.28)
imply that

TnC1 C c QnC1 � Tn CKQn.I /C c Qn � c

2
Qn.I /

D Tn C c Qn C
	
K � c

2



Qn.I /

� Tn C c Qn;

since K � c
2

� 0. Consequently,

TnC1 � TnC1 C c QnC1 � � � � � T1 C c Q1 � T1 C c T 21 � 1=.2K/;

which by induction proves the result. �

We still have not shown that the front-tracking approximation can be continued
up to any desired time. Now, however, this is clear. Since only collisions between
physical fronts that have strengths �l and �r such that j�l �r j > � will produce new
fronts, andQ decreases by at least j�l �r j =2 in such a collision, there can be at most
2Q.0/=� collisions producing new nonghost fronts. Since fronts of each family
will travel in a wedge in the .x; t/-plane, eventually all physical fronts of different
families will have interacted. After this time, two rarefaction fronts (fronts approx-
imating rarefaction waves) of the same family will not collide, and the collision of
two shock fronts of the same family will produce a single shock front of the same
family and a ghost front. Thus in such collisions the number of physical fronts de-
creases by at least one. Therefore, there can be only a finite number of this type of
collision. Since ghost fronts all have the same speed, they will not interact among
themselves. Therefore, for fixed ı and �, there will be only a finite number of inter-
actions for all t > 0. Hence the front-tracking approximation is well defined, and
we can calculate the approximation uı.x; t/ for all t > 0 using a finite number of
steps. Thus front tracking for systems is also a hyperfast method.

Summing up our results so far, we have proved the following result.
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Theorem 6.4 Let fj 2 C2.Rn/, j D 1; : : : ; n. Let D be a domain in Rn and
consider the strictly hyperbolic equation ut C f .u/x D 0 in D. Assume that f
is such that each wave family is either genuinely nonlinear or linearly degenerate.
Assume also that the function u0.x/ has sufficiently small total variation.

Then the front-tracking approximation uı.x; t/, defined by (6.5), (6.6) and con-
structed by the front-tracking procedure described above, is well defined. Further-
more, the method is hyperfast, i.e., it requires only a finite number of computations
to define uı.x; t/ for all t . The total variation of uı is uniformly bounded, and there
is a constant C such that

T:V:
�
uı. � ; t/� � C;

for all t � 0 and all ı > 0 and all � > 0.

6.2 Convergence

The Devil is in the details.
— English proverb

At this point we could proceed, as in the scalar case, by showing that front tracking
is stable with respect to L1 perturbations of the initial data. This would then imply
that the sequence of approximations

˚
uı
�
has a unique limit as ı ! 0. For systems,

however, this analysis is rather complicated. In this section we shall instead prove
that the sequence

˚
uı
�
is compact and that every (there is really only one) limit is

a weak solution. The reader willing to accept this, or primarily interested in front
tracking, may skip ahead to the next chapter.

To show that a subsequence of the sequence fuıgı>0 converges inL1loc.R� Œ0; T �/,
we use Theorem A.11 from Appendix A. We have already shown that uı.x; t/ is
bounded, and we have thatZ

R

ˇ̌
uı.x C �; t/ � uı.x; t/ˇ̌ dx � � T:V:

�
uı. � ; t/� � C�;

for some C independent of ı. Hence, by Theorem A.11, to conclude that a subse-
quence of

˚
uı
�
converges, we must show that

RZ
�R

ˇ̌
uı.x; t/ � uı.x; s/ˇ̌ dx � C.t � s/;

where t � s � 0, for every R > 0 and for some C independent of ı. Since uı is
bounded, we have that � (the speed of the ghost fronts) is bounded, and (recall that
1 < � � � < n)

� > max
juj�supjuıj

fjn.u/j ; j1.u/jg :
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Let ti and tiC1 be two consecutive collision times. For t 2 .ti ; tiC1� we write uı in
the form

uı.x; t/ D u1 C
NiX
kD1

�
uik � uik�1

�
H
�
x � xik.t/

�
; (6.29)

where xik.t/ denotes the position of the kth front from the left, andH the Heaviside
function. Here uı.x; t/ D uik for x between xik and xikC1. Assume now that t 2
Œti ; tiC1� and s 2 Œtj ; tjC1�, where j � i and s � t . Then

Z
R

ˇ̌
uı.x; t/ � uı .x; ti /

ˇ̌
dx

D
Z
R

ˇ̌̌ tZ
ti

d

d�
uı.x; �/ d�

ˇ̌̌
dx

�
Z
R

tZ
ti

NiX
kD1

ˇ̌
uik�1 � uik

ˇ̌ ˇ̌̌
xik

0
.�/
ˇ̌̌ ˇ̌
H 0 �x � xik.�/

�ˇ̌
d� dx

� �

tZ
ti

NiX
kD1

ˇ̌
uik�1 � uik

ˇ̌ Z
R

ˇ̌
H 0 �x � xik.�/

�ˇ̌
dx d�

� �.t � ti /T:V:
�
uı. � ; t/�

� �C .t � ti / ;

since
ˇ̌
xik

0 ˇ̌ � �. Similarly, we show that

Z
R

ˇ̌
uı .x; ti / � uı �x; tjC1

�ˇ̌
dx � �C

�
ti � tjC1

�
if j C 1 < i ,

and Z
R

ˇ̌
uı
�
x; tjC1

� � uı .x; s/ˇ̌ dx � �C
�
tjC1 � s� :

Therefore,

��uı. � ; t/ � uı. � ; s/��
L1

� C jt � sj ;

for some constant C independent of t and ı. Hence, we can use Theorem A.11 to
conclude that there exist a function u.x; t/ and a subsequence

˚
ıj
� � fıg such that

uıj ! u.x; t/ in L1loc as j ! 1.
As in the scalar case, it is by no means obvious that the limit function u.x; t/ is

a weak solution of the original initial value problem (6.1). For a single conservation
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law, this was not difficult to show, using that the approximations were weak solu-
tions of approximate problems. This is not so in the case of systems, so we must
analyze how close the approximations are to being weak solutions.

There are three sources of error in the front-tracking approximation. Firstly, the
initial data are approximated by a step function. Secondly, there is the approxima-
tion of rarefaction waves by step functions, and finally, ghost fronts are not weak
solutions locally.

In the following, the next lemma will be useful.

Lemma 6.5 Let the sequence faig1
iD1 be defined by

a1 D 1; am D
m�1X
jD1

am�j aj ; m D 2; 3; : : : : (6.30)

Then

am D 2
.2m � 3/Š
mŠ.m � 2/Š D O .1/ 4mm�1=2:

Proof We use the notation 
1=2

m

!
D

1
2

� . 1
2

� 1/ � � � . 1
2

�mC 1/

mŠ
:

Define the function

y.x/ D
1X
mD1

amx
m:

Then, using (6.30),

y2 D
1X
mD2

0
@m�1X
jD1

am�j aj

1
A xm D y � x;

and we infer that (recall that y.0/ D 0)

y.x/ D 1

2

	
1 � p

1 � 4x



D
1X
mD1

.�1/mC1
 
1=2

m

!
22m�1xm;

which implies

am D .�1/mC1
 
1=2

m

!
22m�1:

We may rewrite this as

am D 2
.2m � 3/Š
mŠ.m � 2/Š :
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To estimate am as m ! 1, we apply Stirling’s formula [188, p. 253]

nŠ D p
2� exp

 	
n � 1

2



ln.nC 1/� .nC 1/C �

12.nC 1/

!
;

for 0 � � � 1. We obtain

am D 2
.2m � 3/Š
mŠ.m � 2/Š D O .1/ 4m m�1=2: �

We begin the error analysis by estimating how much we “throw away” by the
ghost fronts. To do this, it is useful to introduce the concept of the generation of
a front. We say that each initial front starting at t D 0 belongs to the first generation.
Consider two first-generation fronts of families l and r , respectively, that collide.
The resulting fronts of families l and r will still belong to the first generation,
while all the remaining fronts resulting from this collision will be called second-
generation fronts. More generally, if a front of family l and generation m interacts
with a front of family r and generation n, the resulting fronts of families l and r are
still assigned generationsm and n, respectively, while the remaining fronts resulting
from this collision are given generation nCm. If k fronts, of generations M1; : : : ; Mk
and families O1; : : : ; Ok collide, then the resulting fronts of family O{ have generation
M{, while resulting fronts of families not in the set

nO1; : : : ; Ok
o
will have generation

mini;j fM{ C M|g. The motivation behind this concept is that fronts of high generations
will have small strength.

For fixed ı and �, there will be only a finite number of fronts in uı.x; t/. We
can use Lemma 6.5 to estimate the number of fronts of generation m. If we let Gm
denote this number, we have that

GmC1 � .n � 2/T
ı

mX
jD1

GmC1�jGj ; m � 1; G1 D N � O .1/ T
ı
: (6.31)

This holds since there will be at most .n � 2/ waves of new generations at each
collision, each of which can consist of at most T=ı rarefaction fronts.

Set C D .n � 2/T=ı and

am D Gm

Cm�1 :

Then am satisfies

amC1 D GmC1
Cm

� 1

Cm�1
X
jD1

GmC1�jGj

D 1

Cm�1

mX
jD1

amC1�j ajCmC1�j�1Kj�1

D
mX
jD1

amC1�j aj :
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We can use Lemma 6.5 and conclude that

Gm � O .1/
�
.n � 2/T

ı

�m�1
.4N /mm�1=2

� O .1/ 4
m.n � 2/m�1T 2m�1

ı2m�1m1=2
: (6.32)

We also need to estimate the total variation of the fronts belonging to a given gen-
eration. Let Gm denote the set of all fronts of generation m, and let Tm denote the
sum of the strengths of fronts of generationm. Thus

Tm.t/ D
X
�j 2Gm

ˇ̌
�j
ˇ̌
:

Since there are no fronts of generation more than N (see the discussion of Theo-
rem 6.4),

T .t/ D
NX
mD1

Tm.t/:

Lemma 6.6 We have that

Tm.t/ � C.4KT .t//m

for some constant C .

Proof Using the interaction estimate, we obtain

TmC1 D
mX
jD1

X
�l2GmC1�j

X
�r2Gj

O .j�l j j�r j/

� K

mX
jD1

X
�l2GmC1�j

X
�r2Gj

j�l j j�r j

D K

mX
jD1

TmC1�jTj :

By introducing QTm.t/ D Tm.t/=.T .t/mKm�1/, we see that QTm.t/ satisfies

QTmC1.t/ �
mX
jD1

QTmC1�j .t/ QTj .t/;

with QT1.t/ � 1. Now we can use Lemma 6.5 to conclude that

QTm � C4mm�1=2;

and thus

Tm � C
.4KT /mp

m
; (6.33)

and the lemma follows. �
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Next we must estimate the change in the strength of a ghost front as it collides
with other fronts. We denote the strength of the ghost front after colliding with m
other fronts by �m. First we claim that

j�0j � K�: (6.34)

To see this, assume that a front �l of family Ol and a front �r of family Or collide and
produce a ghost front; see Fig. 6.2. If Ol > Or , then (6.7) holds, and if Ol D Or , (6.8)
holds. If we solve the Riemann problem exactly, obtaining n waves of strengths
�0
1; : : : ; �

0
n, we have that

ur D Wn;�0
n

ıWn�1;�0
n�1 ıW1;�0

1
ul ;

as well as the interaction estimate

�0
i D ıi;Ol �l C ıi;Or�r C O .1/ j�l �r j :

With a slight abuse of notation, write

W.�1; �2; : : : ; �n/ul WD Wn;�n ıWn�1;�n�1 ıW1;�1ul ;

so that

ur D W.�0
1; �

0
2; : : : ; �

0
n/ul

and

u0
r D W.0; : : : ; 0; �r ; 0; : : : ; 0; �l ; 0; : : : ; 0/ul :

The functionW has bounded derivatives with respect to all its arguments, whence

j�0j D ju0
r � ur j � K

nX
iD1

ˇ̌̌
�0
i � ı

i;Ol �l � ıi;Or�r
ˇ̌̌

� K j�l �r j � K�;

and (6.34) holds. The proof of (6.34) if several fronts interact to produce a ghost
front is analogous.

To estimate how the strength of a ghost front evolves as it collides with physical
fronts, we use the interaction estimate (6.15),

j�mC1j � .1CK j�r j/ j�mj ;
after the next collision with a front �r . Using this repeatedly, after collisions with
�r;1; : : : ; �r;m, yields

j�mj � .1CK j�r;1j/ � � � .1CK j�r;mj/ j�0j

� j�0j exp
	
K

mX
kD1

j�r;k j


:
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Assume that the ghost front started at .x0; t0/, and let Y.x/ be the curve coinciding
with the trajectory of the ghost front for t > t0 and t0 otherwise, i.e.,

Y.x/ D
(
t0 x � x0;

t0 C x�x0
�

x > x0:

Then we have that

mX
kD1

j�r;k j � T
ˇ̌̌
Y.x/�

� G.t0/ � T .0/C cT .0/2 � 1

2K
;

since Y.x/ is “spacelike.” Hence, for all ghost fronts,

j�j � K�e1=2; (6.35)

since their initial strength is by definition bounded by K�.
Now we can finally determine �. Let G denote the set of all ghost fronts. We

want to choose � such that the variation of uı across the ghost fronts vanishes as ı
becomes small. Let Tg denote this variation. We have that

Tg D
X
g2G

ˇ̌
�g
ˇ̌

D
k0�1X
MgD1

ˇ̌
�g
ˇ̌C

X
Mg�k0

ˇ̌
�g
ˇ̌

� Ke1=2�

k0�1X
kD1

Gk C
X
k�k0

C .4KT /k ;

where Gk is the total number of fronts of generation k, and T is the total variation
over all fronts. Now we assume that T .0/ is so small that

4KT .t/ � � < 1:

By (6.32),

Gk � C.C=ı/2k�1:

Using this, we have that

Tg � C�

k0�1X
kD1

	C
ı


2k�1 C C
�k0

1 � � :

Now we first choose k0 such that

C
�k0

1 � � � ı

2
;
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and then choose � such that

C�

k0�1X
kD1

	C
ı


2k�1 � ı

2
: (6.36)

Thus Tg � ı, and the total strength of the ghost fronts is small.
Now we can estimate how far uı is from being a weak solution. Recall that

shock fronts are local weak solutions, while we are making errors across fronts
approximating rarefaction waves and across ghost fronts.

To bound the error coming from a ghost front, we use

jf .ul / � f .ur/ ��.ul � ur/j � C jul � ur j : (6.37)

This follows from the Lipschitz continuity of f .
To bound the error coming from a rarefaction front separating ul and ur , we note

that ur D Wj;�ul for some � � ı, and we shall need to estimate

�.�/ D f .ur / � f .ul / � j .ul/.ur � ul /
D f

�
Wj;�ul

� � f .ul /� .ul/
�
Wj;�ul � ul

�
:

We have that �.0/ D 0 and that

� 0.0/ D df .ul /rj .ul/ � j .ul/rj .ul/ D 0:

Hence, �.�/ D O
�
�2
�
, orˇ̌

f .ur /� f .ul / � j .ul/.ur � ul/
ˇ̌ � Cı2; (6.38)

if ul and ur are the left and right states of a rarefaction front.
By construction, if ul and ur are the states to the left and right of a shock front

traveling with a speed � , then

f .ur / � f .ul / � �.ur � ul/ D 0:

For a fixed time, we have that uı is piecewise constant in x, and that the disconti-
nuities of uı are located at xi and move with speed �i for i D 1; : : : ; N . This holds
for all times t that are not collision times. Using this, we can write

uı.x; t/ D uL C
X
i

H .x � xi.t// �u�i ;

f
�
uı
� D f .uL/C

X
i

H .x � xi .t// �f .u/�i ;

where H denotes the Heaviside function and �u�i D ur � ul if ur is the state to
the right of the discontinuity, and ul the state to the left. Thus in the distributional
sense,

uıt .x; t/ D �
X
i

�i �u�i ıxi .t/.x/;

f
�
uı.x; t/

�
x

D
X
i

�f .u/�i ıxi .t/.x/;
(6.39)

where ıxi .t/ denotes the Dirac delta distribution located at xi.t/.
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We can use this to estimate how far uı is from a being a weak solution. Recall
that u is a weak solution of (6.1) if

1Z
0

Z
R

�
u't C f .u/'x

�
dx dt C

Z
R

u.x; 0/'.x; 0/ dx D 0:

Since u D limı!0 u
ı , we need to show that

0 D lim
ı!0

	 1Z
0

Z
R

�
uı't C f .uı/'x

�
dx dt C

Z
R

uı.x; 0/'.x; 0/ dx


; (6.40)

for all test functions '. We have constructed the initial data uı.x; 0/ such that the
last integral in the limit approaches

R
u0'.x; 0/ dx. Regarding the double integral,

using the representation of uı as a sum of Heaviside functions and (6.39), we have

1Z
0

Z
R

�
uı't C f .uı/'x

�
dx dt

D �
TZ
0

X
i

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

D �
X
i2S

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

�
X
i2R

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

�
X
i2G

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt;

where S denotes the set of shock fronts, R the set of rarefaction fronts, and G the
set of ghost fronts. Here, T is chosen so that ' is zero for t > 0. We have that

X
i2S

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt D 0;

ˇ̌̌X
i2R

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

ˇ̌̌
� C

X
i2R

ˇ̌
�u�i

ˇ̌2 � Cı;

ˇ̌̌X
i2G

TZ
0

�
�i �u�i � �f .u/�i

�
'.xi .t/; t/ dt

ˇ̌̌
� C

X
i2G

ˇ̌
�u�i

ˇ̌ � Cı:

Thus the limit is a weak solution.
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We can actually extract some more information about the limit u by examining
the approximate solutions uı. More precisely, we would like to show that isolated
jump discontinuities of u satisfy the Lax entropy condition

m .ul/ � � � m .ur/ (6.41)

for some m between 1 and n, where � is the speed of the discontinuity, and

ul D lim
y!x�u.y; t/ and ur D lim

y!xCu.y; t/:

To show this, we assume that u has an isolated discontinuity at .x; t/, with left and
right limits ul and ur . We can enclose .x; t/ by a trapezoid Eı with corners defined
as follows. Start by finding points

xkı;l ! x�; xkı;r ! xC; t1ı " t; t2ı # t;

for k D 1; 2 as ı ! 0. We let Eı denote the trapezoid with corners .x1ı;l ; t
1
ı /,

.x1ı;r ; t
1
ı /, .x

2
ı;r ; t

2
ı /, .x

2
ı;l ; t

2
ı /. Recall that convergence inL

1
loc implies pointwise con-

vergence almost everywhere, so we choose these points such that

uı.x1ı;l ; t
1
ı /

uı.x2ı;l ; t
2
ı /

)
! ul and

uı.x1ı;r ; t
1
ı /

uı.x2ı;r ; t
2
ı /

)
! ur

as ı ! 0. We can also choose points such that the diagonals of Eı have slopes not
too different from � ; precisely,ˇ̌̌

ˇ̌x1ı;l � x2ı;r
t1ı � t2ı

� �
ˇ̌̌
ˇ̌ � ".ı/ and

ˇ̌̌
ˇ̌x1ı;l � x2ı;r
t1ı � t2ı

� �
ˇ̌̌
ˇ̌ � ".ı/; (6.42)

where ".ı/ ! 0 as ı ! 0. Next for k D 1; 2, set

Mk
ı D

P j�i j
xkı;r � xkı;l

;

where the sum is over all rarefaction fronts in the interval
�
xkı;l ; x

k
ı;r

�
. If Mk

ı is
unbounded as ı ! 0, then u contains a centered rarefaction wave at .x; t/, i.e.,
a rarefaction wave starting at .x; t/. In this case the discontinuity will not be iso-
lated, and henceMk

ı remains bounded as ı ! 0. Next observe thatˇ̌̌
uı.xkı;l ; t

k
ı /� uı.xkı;r ; tkı /

ˇ̌̌
xkı;r � xkı;l

� C

P jrarefaction frontsj CP jshock frontsj
xkı;r � xkı;l

D CMk
ı C C

P jshock frontsj
xkı;r � xkı;l

:

Here the sums are over fronts crossing the interval
�
xkı;l ; x

k
ı;r

�
. Since the fraction on

the left is unbounded as ı ! 0, there must be shock fronts crossing the top and
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bottom ofEı for all ı > 0. Furthermore, since the discontinuity is isolated, the total
strength of all fronts crossing the left and right sides of Eı must tend to zero as
ı ! 0.

Next we define a shock line as a sequence of shock fronts of the same family in
uı. Assume that a shock line has been defined for t < tn, where tn is a collision time,
and in the interval Œtn�1; tn/ consists of the shock front �. In the interval Œtn; tnC1/,
this shock line continues as the front � if � does not collide at tn. If � collides at tn,
and the approximate solution of the Riemann problem determined by this collision
contains an approximate shock front of the same family as �, then the shock line
continues as this front. Otherwise, it stops at tn. Note that we can associate a unique
family to each shock line.

From the above reasoning it follows that for all ı there must be shock lines
entering Eı through the bottom that do not exit Eı through the sides; hence such
shock lines must exit Eı through the top. Assume that the leftmost of these shock
lines enters Eı at y1ı;l and leaves Eı at y2ı;l . Similarly, the rightmost of the shock
lines enters Eı at y1ı;r and leaves Eı at y

2
ı;r . Set

vkı;l D uı
�
ykı;l�; tkı

�
and vkı;r D uı

�
ykı;rC; tkı

�
:

Between ykı;l and x
k
ı;l , the function u

ı varies over rarefaction fronts or over shock
lines that must enter or leaveEı through the left or right side. Since the discontinuity
is isolated, the total strength of such waves must tend to zero as ı ! 0. Because
uı.xkı;l ; t

k
ı / ! ul as ı ! 0, we have that vkı;l ! ul as ı ! 0. Similarly, vkı;r ! ur .

Since " .ı/ ! 0, by strict hyperbolicity, the family of all shock lines not crossing
the left or right side of Eı must be the same, say m. The speed of an approximate
m-shock front with speed Q� and left state vkı;l satisfies

m�1
�
vkı;l
�
< Q� C O .ı/ < m

�
vkı;l
�
: (6.43)

Similarly, an approximatem-shock front with right state vkı;r and speed O� satisfies

m
�
vkı;r

�
< O� C O .ı/ < mC1

�
vkı;r

�
: (6.44)

Then (6.41) follows by noting that Q� and O� both tend to � as ı ! 0, and then letting
ı ! 0 in (6.43) and (6.44).

To summarize the results of this chapter we have the following theorem:

Theorem 6.7 Consider the strictly hyperbolic system of equations

ut C f .u/x D 0; u.x; 0/ D u0.x/;

and assume that f 2 C2 is such that each characteristic wave family is either
linearly degenerate or genuinely nonlinear. If T:V: .u0/ is sufficiently small, there
exists a global weak solution u.x; t/ to this initial value problem. This solution may
be constructed by the front-tracking algorithm described in Sect. 6.1. Furthermore,
if u has an isolated jump discontinuity at a point .x; t/, then the Lax entropy con-
dition (6.41) holds for some m between 1 and n.
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We have seen that for each ı > 0 there is only a finite number of collisions
between the fronts in uı for all t > 0. Hence there exists a finite time Tı such
that for t > Tı, the fronts in uı will move apart, and not interact. This has some
similarity to the solution of the Riemann problem. One can intuitively make the
change of variables t 7! t=", x 7! x=" without changing the equation, but the
initial data is changed to u0.x="/. Sending " ! 0, or alternatively t ! 1, we see
that u solves the Riemann problem

ut C f .u/x D 0; u.x; 0/ D
(
uL for x < 0;

uR for x � 0;
(6.45)

where uL D limx!�1 u0.x/ and uR D limx!1 u0.x/. Thus in some sense, for
very large times, u should solve this Riemann problem. Next, we shall show that
this (very imprecise statement) is true, but first we need some more information
about uı.

For t > Tı, the function uı will consist of a finite number of constant states, say
uıi , for i D 0; : : : ;M . If uıi�1 is connected with uıi by a wave of a different family
from the one connecting uıi to u

ı
iC1, we call u

ı
i a real state, and we let f NuigNiD0 be

the set of real states of uı. Since the discontinuities of uı are moving apart, we must
have

N � n; (6.46)

by strict hyperbolicity. Furthermore, to each pair . Nui�1; Nui / we can associate a fam-
ily ki such that 1 � ki < kiC1 � n, and we define k0 D 0 and kNC1 D n.
We write the solution of the Riemann problem with left and right data Nu0 and NuN ,
respectively, as u, and define �j , j D 1; : : : ; n, by

NuN D Wn.�n/Wn�1.�n�1/ � � �W1.�1/ Nu0;

and define the intermediate states

u0 D Nu0 and uj D Wj .�j /uj�1 for j D 1; : : : ; n.

Now we claim that ˇ̌
uj � Nui

ˇ̌ � O .ı/ ; for ki�1 � j � ki : (6.47)

If N D 1, this clearly holds, since in this case uı consists of two states for t > Tı ,
and by construction of uı, the pair . Nu0; Nu1/ is the solution of the same Riemann
problem as u is, but possibly with waves of a high generation ignored.

Now assume that (6.47) holds for some N > 1. We shall show that it holds for
N C 1 as well. Let v be the solution of the Riemann problem with initial data given
by

v.x; 0/ D
(

Nu0 for x < 0;

NuN for x � 0;
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and let w be the solution of the Riemann problem with initial data

w.x; 0/ D
(

NuN for x < 0;

NuNC1 for x � 0:

We denote the waves in v and w by �vj and �wj , respectively. Then by the induction
hypothesis,

ˇ̌N�i � �vki
ˇ̌ � O .ı/ ;

ˇ̌̌
N�NC1 � �wkNC1

ˇ̌̌
� O .ı/ ;X

i…fk1;:::;kN g
j�vi j � O .ı/ ; and

X
i¤kNC1

j�wi j � O .ı/ ;

where N�i denotes the strength of the wave separating Nui�1 and Nui . Notice now that
u can be viewed as the interaction of v and w; hence by the interaction estimate,

X
i

j�i � �vi j � O .ı/ for i � kN ; and
ˇ̌̌
�kNC1 � �wkNC1

ˇ̌̌
� O .ı/ :

Thus (6.47) holds for N C 1 real states, and therefore for every N � n. Now we
can conclude that for u D limı!0 u

ı the following result holds.

Theorem 6.8 Assume that uL D limx!�1 u0.x/ and uR D limx!1 u0.x/ exist.
Then as t ! 1, u will consist of a finite number of states fuigNiD0, where N � n.
These states are the intermediate states in the solution of the Riemann problem
(6.45), and they will be separated by the same waves as the corresponding states in
the solution of the Riemann problem.

Proof By the calculations preceding the lemma, for t > Tı we can define a func-
tion Nuı that consists of a number of constant states separated by elementary waves,
shocks, rarefactions, or contact discontinuities such that these constant states
are the intermediate states in the solution of the Riemann problem defined by
limx!�1 uı.x; t/ and limx!1 uı.x; t/, and such that for every bounded interval I ,

�� Nuı. � ; t/ � uı. � ; t/��
L1.I /

! 0 as ı ! 0.

Then for t > Tı,

ku. � ; t/ � Nuı. � ; t/kL1.I / � ��u. � ; t/ � uı. � ; t/��
L1.I /

C �� Nuı. � ; t/� uı. � ; t/��
L1.I /

:

Set t D Tı C 1, and let ı ! 0. Then both terms on the right tend to zero, and
Nu0 ! uL and NuN ! uR. Hence the lemma holds. Note, however, that u does not
necessarily equal some Nuı in finite time. �
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Remark 6.9 Here is another way to interpret heuristically the asymptotic result for
large times. Consider the set

fuı.x; t/ j x 2 Rg

in phase space. There is a certain ordering of that set given by the ordering of x. As
ı ! 0, this set will approach some set

fu.x; t/ j x 2 Rg:

Theorem 6.8 states that as t ! 1 this set approaches the set that consists of the
states in the solution of the Riemann problem (6.45) with the same order. No state-
ments are made as to how fast this limit is obtained. In particular, if uL D uR D 0,
then u.x; t/ ! 0 for almost all x as t ! 1.

6.3 Notes

The fundamental result concerning existence of solutions of the general Cauchy
problem is due to Glimm [72], where the fundamental approach was given, and
where all the basic estimates can be found. Glimm’s result for small initial data
uses the random choice method. The random element is not really essential to the
random choice method, as was shown by Liu in [135]. The existence result has been
extended for some 2� 2 systems, allowing for initial data with large total variation;
see [144, 170]. These systems have the rather special property that the solution of
the Riemann problem is translation-invariant in phase space.

Our proof of the interaction estimate (6.13) is a modified version of Yong’s ar-
gument [190].

Front tracking for systems was first used by DiPerna in [60]. In this work a front-
tracking process was presented for 2 � 2 systems, and shown to be well defined
and to converge to a weak solution. Although DiPerna states that “the method is
adaptable for numerical calculation,” numerical examples of front tracking were
first presented by Swartz and Wendroff in [172], in which front tracking was used
as a component in a numerical code for solving problems of gas dynamics.

The front tracking presented here contains elements from the front-tracking
methods of Bressan [21] and, in particular, of Risebro [160]. In [160] the genera-
tion concept was not used. Instead, one “looked ahead” to see whether a buildup of
collision times was about to occur. In [9] Baiti and Jenssen showed that one does
not really need to use the generation concept or look ahead in order to decide which
fronts to ignore.

The large-time behavior of u was shown to hold for the limit of the Glimm
scheme by Liu in [136].

The front-tracking method presented in [160] has been used as a numerical
method; see Risebro and Tveito [162, 163] and Langseth [121, 122] for examples
of problems in one space dimension. In several space dimensions, front tracking
has also been used in conjunction with dimensional splitting with some success for
systems; see [92] and [132].



6.4 Exercises 311

6.4 Exercises

6.1 Assume that f WRn ! Rn is three-times differentiable, with bounded deriva-
tives. We study the solution of the system of ordinary differential equations

dx

dt
D f .x/; x.0/ D x0:

We write the unique solution as x.t/ D exp.tf /x0.

(a) Show that

exp."f /x0 D x0 C "f .x0/C "2

2
df .x0/ f .x0/C O

�
"3
�
:

(b) If g is another vector field with the same properties as f , show that

exp."g/ exp."f /x0 D x0 C " .f .x0/C g .x0//

C "2

2

	
df .x0/ f .x0/C dg .x0/ g .x0/



C "2dg .x0/ f .x0/C O

�
"3
�
:

(c) The Lie bracket of f and g is defined as

Œf; g�.x/ D dg.x/f .x/� df .x/g.x/:
Show that

Œf; g� .x0/ D lim
"!0

1

"2

�
exp."g/ exp."f /x0 � exp."f / exp."g/x0

�
:

(d) Indicate how this can be used to give an alternative proof of the interaction
estimate (6.13).

6.2 We study the p system with p.u1/ as in Exercise 5.3, and we use the re-
sults of Exercise 5.9. Define a front-tracking scheme by introducing a grid in
the .�; �/-plane. We approximate rarefaction waves by choosing intermediate
states that are not farther apart than ı in .�; �/. If � is a front with left state
.�l ; �l / and right state .�r ; �r /, define

T .�/ D
(

j���j � j���j if � is a 1-wave,

j���j � j���j if � is a 2-wave,

and define T additively for a sequence of fronts.

(a) Define a front-tracking algorithm based on this, and show that

TnC1 � Tn;

where Tn denotes the T value of the front-tracking approximation between
collision times tn and tnC1.
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(b) Find a suitable condition on the initial data so that the front-tracking algo-
rithm produces a convergent subsequence.

(c) Show that the limit is a weak solution.

6.3 Assume that the flux function f .u/ admits an entropy/entropy flux pair .
; q/,
that is, 
 and q are functions from Rn to R such that

ru
.u/ D ruq.u/df .u/:

Assume also that for the solution of the Riemann problem

ut C f .u/x D 0; u.x; 0/ D
(
ul x < 0;

ur x > 0;

we have that


.u/t C q.u/x D 0 if the solution is a rarefaction wave

or contact discontinuity,


.u/t C q.u/x < 0 in the distributional sense if the solution is a shock.

Let now u D lim uı, where uı is the front-tracking approximation. Show that


.u/t C q.u/x � 0;

in the distributional sense.



Chapter 7

Well-Posedness of the Cauchy Problem

Ma per seguir virtute e conoscenza.1

—Dante Alighieri (1265–1321), La Divina Commedia

The goal of this chapter is to show that the limit found by front tracking, that is, the
weak solution of the initial value problem

ut C f .u/x D 0; u.x; 0/ D u0.x/; (7.1)

is stable in L1 with respect to perturbations in the initial data. In other words, if
v D v.x; t/ is another solution found by front tracking, then

ku. � ; t/ � v. � ; t/k1 � Cku0 � v0k1
for some constant C . Furthermore, we shall show that under some mild extra en-
tropy conditions, every weak solution coincides with the solution constructed by
front tracking.

} Example 7.1 (A special system)
As an example for this chapter we shall consider the special 2 � 2 system

ut C �
vu2

�
x

D 0;

vt C �
uv2

�
x

D 0:
(7.2)

For simplicity assume that u > 0 and v > 0. The Jacobian matrix reads 
2uv u2

v2 2uv

!
; (7.3)

with eigenvalues and eigenvectors

1 D uv; r1 D
 

�u=v
1

!
;

2 D 3uv; r2 D
 
u=v

1

!
: (7.4)

1 Hard to comprehend? It means “[but to] pursue virtue and knowledge.”
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u

v

η

ξ

a b

Fig. 7.1 The curves W in .u; v/ coordinates (a) and .
; �/ coordinates (b)

The system is clearly strictly hyperbolic. Observe that

r1 � r1 D 0;

and hence the first family is linearly degenerate. The corresponding wave curve
W1.ul ; vl / D C1.ul ; vl / is given by (cf. Theorem 5.7)

du

dv
D �u

v
; u .vl / D ul ;

or (see Fig. 7.1)

W1.ul ; vl / D C1.ul ; vl / D f.u; v/ j uv D ulvlg:

The corresponding eigenvalue 1 is constant along each hyperbola.
With the chosen normalization of r2 we find that

r2 � r2 D 6u;

and hence the second-wave family is genuinely nonlinear. The rarefaction curves of
the second family are solutions of

du

dv
D u

v
; u .vl / D ul ;

and thus

u

v
D ul

vl
:

We see that these are straight lines emanating from the origin, and 2 increases as
u increases. Consequently,R2 consists of the ray

v D u
vl

ul
; u � ul :
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The rarefaction speed is given by

2 .uIul ; vl / D 3u2
vl

ul
:

To find the shocks in the second family, we use the Rankine–Hugoniot relation

s .u � ul/ D vu2 � vlu2l ;
s .v � vl / D v2u � v2l ul ;

which implies

u

ul
D 1

2

�
v

vl
C vl

v
˙
�
v

vl
� vl

v

��
D
(
vl=v;

v=vl :

(Observe that the solution with u=ul D vl=v coincides with the wave curve of the
linearly degenerate first family.) The shock part of this curve S2 consists of the line

S2.ul ; vl / D
n
.u; v/

ˇ̌
v D u

vl

ul
; 0 < u � ul

o
:

The shock speed is given by

s WD �2 .uIul ; vl / D �
u2 C uul C u2l

� vl
ul
:

Hence the Hugoniot locus and rarefaction curves coincide for this system. Systems
with this property are called Temple class systems after Temple [177]. Furthermore,
the system is linearly degenerate in the first family and genuinely nonlinear in the
second. Summing up, the solution of the Riemann problem for (7.2) is as follows:
First the middle state is given by

um D
r
ulur

vl

vr
; vm D

r
vlvr

ul

ur
:

If ul=vl � ur=vr , the second wave is a rarefaction wave, and the solution can be
written as

 
u

v

!
.x; t/ D

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

 
ul

vl

!
for x=t � ulvl ; 

um

vm

!
for ulvl < x=t � 3umvm;

q
x
3t
vm
um

 
um=vm

1

!
for 3umvm < x=t � 3urvr ; 

ur

vr

!
for 3urvr < x=t:

(7.5)
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In the shock case, that is, when ul=vl > ur=vr , the solution reads

 
u

v

!
.x; t/ D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

 
ul

vl

!
for x=t � ulvl ; 

um

vm

!
for ulvl < x=t � �2 .ur Ium; vm/; 

ur

vr

!
for �2 .ur Ium; vm/ < x=t:

(7.6)

If we set


 D uv; � D u

v
;

and thus

u D
p

�; v D

p

=�;

the solution of the Riemann problem will be especially simple in .
; �/ coordinates.
See Fig. 7.1. Given left and right states .
l ; �l /, .
r ; �r/, the middle state is given
by .
l ; �r/. Consequently, measured in .
; �/ coordinates, the total variation of the
solution of the Riemann problem equals the total variation of the initial data. This
means that we do not need the Glimm functional to show that a front-tracking ap-
proximation to the solution of (7.2) has bounded total variation. With this in mind
it is easy to show (using the methods of the previous chapters) that there exists
a weak solution to the initial value problem for (7.2) whenever the total variation of
the initial data is bounded.

We may use these variables to parameterize the wave curves as follows:

 
u

v

!
D
 
ulvl=





!
(first family),

 
u

v

!
D
 
ul
=vl




!
(second family):

For future use we note that the rarefaction and shock speeds are as follows:

1.
/ D �1.
/ D 
;

2.
/ D 3
; and �2 .
l ; 
r / D �

l C p


l
r C 
r
�
: }

As a reminder we now summarize some properties of the front-tracking approx-
imation for a fixed ı.

1. For all positive times t , uı.x; t/ has finitely many discontinuities, each having
position xi .t/. These discontinuities can be of two types: shock fronts or approx-
imate rarefaction fronts. Furthermore, only finitely many interactions between
discontinuities occur for t � 0.
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2. Along each shock front, the left and right states

ul;r D uı .xi
; t/ (7.7)

are related by

ur D SO{ .�i / ul C ei ;

where �i is the strength of the shock and O{ is the family of the shock. The “er-
ror” ei is a vector of small magnitude. Furthermore, the speed of the shock, Px,
satisfies

j Px � �O{ .ul ; ur /j � O .1/ ı; (7.8)

where �O{ .ul ; ur / is the O{th eigenvalue of the averaged matrix

M .ul ; ur/ D
1Z
0

df ..1 � ˛/ul C ˛ur/ d˛I

cf. (5.76)–(5.77).
3. Along each rarefaction front, the values ul and ur are related by

ur D RO{ .�i / ul C ei : (7.9)

Also,

j Px � O{ .ur /j � O .1/ ı and j Px � O{ .ul /j � O .1/ ı; (7.10)

where O{ .u/ is the O{th eigenvalue of df .u/.
4. The total magnitude of all errors is small:

X
i

jei j � ı: (7.11)

Also, recall that for a suitable constant C0 the Glimm functional

G
�
uı. � ; t/� D T

�
uı. � ; t/�C C0Q

�
uı. � ; t/�

is nonincreasing for each collision of fronts, where T and Q are defined by (6.23)
and (6.22), respectively, and that the interaction potential

Q
�
uı. � ; t/�

is strictly decreasing for each collision of fronts.
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7.1 Stability

Details are always vulgar.
— Oscar Wilde, The Picture of Dorian Gray (1891)

Now let vı be another front-tracking solution with initial condition v0. To compare
uı and vı in the L1-norm, i.e., to estimate

��uı � vı��
1
, we introduce the vector

q D q.x; t/ D .q1; : : : ; qn/ by

vı.x; t/ D Hn .qn/Hn�1 .qn�1/ � � �H1 .q1/ u
ı.x; t/ (7.12)

and the intermediate states !i ,

!0 D uı.x; t/; !i D Hi .qi / wi�1; for 1 � i � n; (7.13)

with velocities

�i D �i.!i�1; !i /: (7.14)

As in Chapt. 5, Hk.�/u denotes the kth Hugoniot curve through u, parameterized
such that

d

d�
Hk .�/ u

ˇ̌
�D0 D rk.u/:

Note that in the definition of q we use both parts of this curve, not only the part
where � < 0. The vector q represents a “solution” of the Riemann problem with
left state uı and right state vı using only shocks. (For � > 0 these will be weak
solutions; that is, they satisfy the Rankine–Hugoniot condition. However, they will
not be Lax shocks.)

Later in this section we shall use the fact that genuine nonlinearity implies that
�k .u;Hk.�/u/ will be increasing in �, i.e.,

d

d�
�k .u;Hk.�/u/ � c > 0;

for some constant c depending only on f .
As our model problem showed, the L1 distance is more difficult to control than

the “q-distance.” However, it turns out that even the q-distance is not quite enough,
and we need to introduce a weighted form.We letD

�
uı
�
andD

�
vı
�
denote the sets

of all discontinuities in u and v, respectively, and define the functional ˚
�
uı; vı

�
as

˚.uı; vı/ D
nX
kD1

1Z
�1

jqk.x/jWk.x/ dx: (7.15)

Here the weightsWk are defined as

Wk D 1C �1Ak C �2
�
Q
�
uı
�CQ

�
vı
��
; (7.16)
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where Q
�
uı
�
and Q

�
vı
�
are the interaction potentials of uı and vı , respectively;

cf. (6.22). The quantityAk is the total strength of all waves in uı or vı that approach
the k-wave qk.x/. More precisely, if the kth field is linearly degenerate, then

Ak.x/ D
X
i; xi<xO{>k

j�i j C
X
i; x>xiO{<k

j�i j : (7.17)

The summation is over all discontinuities xi 2 D
�
uı
� [ D.vı/. If the kth field is

genuinely nonlinear, we must also account for waves of the same family approach-
ing each other, and define

Ak.x/ D
X
i; xi<xO{>k

j�i j C
X
i; x>xiO{<k

j�i j

C

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

X
i2D.uı/

O{Dk; xi<x

j�i j C
X

i2D.vı/
O{Dk; x<xi

j�i j if qk.x/ < 0;

X
i2D.vı/

O{Dk; xi<x

j�i j C
X

i2D.uı/
O{Dk; x<xi

j�i j if qk.x/ > 0.

(7.18)

In plain words, a qk shock is approached by k-waves in uı from the left, and k-
waves in vı from the right. Similarly, a qk rarefaction wave is approached by k-
waves in vı from the left and k-waves in uı from the right.

Once the values of the constants �1 and �2 are determined, we will assume that
the total variations of uı and vı are so small that

1 � Wk.x/ � 2: (7.19)

In this case we see that ˚ is equivalent to the L1 norm; i.e., there exists a finite
constant C1 such that

1

C1

��uı � vı��
1

� ˚
�
uı; vı

� � C1
��uı � vı��

1
: (7.20)

We can also define, with obvious modifications, ˚.uı1.t/; vı2 .t// with two dif-
ferent parameters ı1 and ı2. Our first goal will be to show that

˚
�
uı1.t/; vı2 .t/

� � ˚ �uı1.s/; vı2 .s/� � C2.t � s/�ı1 _ ı2
�
; (7.21)

for all 0 � t � s. Once this inequality is in place, we can show that the sequence of
front-tracking approximations is a Cauchy sequence in L1 for��uı1.t/ � uı2.t/��

1
� C1˚

�
uı1.t/; uı2 .t/

�
� C1˚

�
uı1.0/; uı2.0/

�C C1C2t
�
ı1 _ ı2

�
� C2

1

��uı1.0/ � uı2.0/��
1

C C1C2t
�
ı1 _ ı2

�
:
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Letting ı1 and ı2 tend to zero, we have the convergence of the whole sequence, and
not only a subsequence.

The first step in order to prove (7.21) is to choose �2 so large that the weights
Wk do not increase when fronts in uı1 or vı2 collide. This is possible, since the
total variations of both uı1 and vı2 are uniformly small; hence the terms �1Ak are
uniformly bounded, and by the interaction estimate, Q decreases for all collisions.
This ensures the inequalities (7.19).

Then we must examine how ˚ changes between collisions. Observe that ˚.t/ is
piecewise linear and continuous in t . Let

D D D
�
uı1
� [ D

�
vı2
�
:

We differentiate ˚ and find that

d

dt
˚
�
uı1 ; vı2

� D
X
i2D

nX
kD1

fjqk .xi�/jWk .xi�/ � jqk .xiC/jWk .xiC/g Pxi

D
X
i2D

nX
kD1

nˇ̌̌
q
i;C
k

ˇ̌̌
W

i;C
k

	
�
i;C
k � Pxi



�
ˇ̌̌
q
i;�
k

ˇ̌̌
W

i;�
k

	
�
i;�
k � Pxi


o
;

DW
X
i2D

nX
kD1

Ei;k; (7.22)

where

�
i;˙
k D �k .xi˙/ ; �k.x/ D �k .!k�1.x/; !k.x// ;

q
i;˙
k D qk .xi˙/ ; and W

i;˙
k D Wk .xi˙/ :

The second equality in (7.22) is obtained by adding terms

ˇ̌̌
q
i;�
k

ˇ̌̌
W

i;�
k �

i;�
k �

ˇ̌̌
q
.i�1/;C
k

ˇ̌̌
W

.i�1/;C
k �

.i�1/;C
k D 0;

and observing that there is only a finite number of terms in the sum in (7.22).

} Example 7.2 (Example 7.1 (cont’d.))
Let us check how this works for our special system. The two front-tracking approxi-
mations are denoted by u and v, and for simplicity we omit the superscript ı. These
are made by approximating a rarefaction wave between 
l D nı and 
r D mı,
m > n, by a series of discontinuities with speed 3jı, j D n; : : : ; m � 1. In other
words, we use the characteristic speed to the left of the discontinuity. The functions
u and v are well defined by standard techniques.

Since we managed this far without the interaction potential, we define the
weights also without these (they are needed only to bound the weights, anyway).
Hence for the example we use

Wk.x/ D 1C �Ak.x/: (7.23)



7.1 Stability 321

Now we shall estimate

d

dt
˚ .u; v/ D

X
i2D
.Ei;1 C Ei;2/: (7.24)

To this end we consider a fixed discontinuity at x (to simplify the notation we
do not use a subscript on this discontinuity) in one of the functions, say v. This
discontinuity gives a contribution to the right-hand side of (7.24), denoted by E1 C
E2, where

Ej D W C
j

ˇ̌̌
qC
j

ˇ̌̌ 	
�C
j � Px



�W �

j

ˇ̌̌
q�
j

ˇ̌̌ 	
��
j � Px



; j D 1; 2:

For this 2 � 2 system we have

A1.x/ D
X

xi<x; O{D2
j�i j ;

A2.x/ D
X

xi>x; O{D1
j�i j

C

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

X
O{D2; xi<x
xi2D.u/

j�i j C
X

O{D2; xi>x
xi2D.v/

j�i j if q2 < 0,

X
O{D2; xi<x
xi2D.v/

j�i j C
X

O{D2; xi>x
xi2D.u/

j�i j if q2 > 0.

To estimate E1 CE2 we study several cases.

Case 1 Assume first that the jump at x is a contact discontinuity, that is, of the first
family, in which case

AC
1 D A�

1 ;

and consequently,

W C
1 D W �

1 : (7.25)

Furthermore,

qC
1 D q�

1 C � and �C
1 D ��

1 D Px � q�
2 :

Then

E1 D W C
1

ˇ̌
qC
1

ˇ̌ �
�C
1 � Px� �W �

1 jq�
1 j ���

1 � Px�
D W �

1 fjq�
1 C �j � jq�

1 jg ��q�
2

�
� W �

1 jq�
2 j j�j : (7.26)
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For the weights of the second family we find that

AC
2 D A�

2 � j�j ; W C
2 D W �

2 � � j�j ; qC
2 D q�

2 ; ��
2 D �C

2 :

To estimate ��
2 � Px we exploit that ��

2 is a discontinuity of the second family, while
Px is a contact discontinuity of the first family. Thus we can estimate from below
their difference by the smallest difference in speeds between waves in the first- and
second-wave families. We find that ��

2 � Px � c D minu;v f
g > 0. Hence
E2 D W C

2

ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� �W �

2 jq�
2 j ���

2 � Px�
D jq�

2 j ���
2 � Px� .�� j�j/

� ��c jq�
2 j j�j : (7.27)

Then

E1 CE2 D jq�
2 j j�j �W �

1 � �c� � 0 (7.28)

if �c � supx W1.x/. (Throughout this argument we will choose larger and larger �.)
This inequality (7.28) is the desired estimate when x is a contact discontinuity.

Case 2 The case that x is a genuinely nonlinear wave, that is, belongs to the second
family, is more complicated. There are two distinct cases, that of an (approximate)
rarefaction wave and that of a shock wave. First we treat the term E1, which is
common to the two cases. Here

AC
1 D A�

1 C j�j ; W C
1 D W �

1 C � j�j ; qC
1 D q�

1 ;

�C
1 D ��

1 ; and ��
1 � Px < �c:

Consequently,

E1 D W C
1

ˇ̌
qC
1

ˇ̌ �
�C
1 � Px� �W �

1 jq�
1 j ���

1 � Px�
D � j�j jq�

1 j ���
1 � Px�

� ��c jq�
1 j j�j � 0: (7.29)

We split the estimate for E2 into several cases.

Case 2a (rarefaction wave) First we consider the case that x is an approximate
rarefaction wave. By the construction of v we have

� D ı > 0 and qC
2 D q�

2 C �:

The speeds appearing in E2 are given by

�C
2 D 2
u C q�

2 C � C
q

u
�

u C q�

2 C �
�
;

��
2 D 2
u C q�

2 C
q

u
�

u C q�

2

�
;

Px D 3
�

u C q�

2

�
:
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Fig. 7.2 q�
2 > 0

u = (ηu, ξu)

v− = (η−, ξ−)

q−2

q+
1 = q−1

q+
2 = q−2 +

v+ = (η+, ξ+)

We define the auxiliary speed

Q� D �2
�
v�; vC� D 2
u C 2q�

2 C � C
q�

u C q�

2

� �

u C q�

2 C �
�
:

It is easily seen that

0 � � � Q� � Px � 2�:

We have several subcases. First we assume that q�
2 > 0, in which case qC

2 > 0 as
well; see Fig. 7.2.

In this case AC
2 D A�

2 C j�j. Hence

E2 D W C
2

ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� � �

W C
2 � � j�j� jq�

2 j ���
2 � Px�

D W C
2

˚�
q�
2 C �

� �
�C
2 � Q�� � q�

2

�
��
2 � Q���

CW C
2

�
qC
2 � q�

2

�
. Q� � Px/C � j�j jq�

2 j .��
2 � Px/:

We need to estimate the term
˚�
q�
2 C �

� �
�C
2 � Q�� � q�

2

�
��
2 � Q���. This estimate

is contained in Lemma 7.4 in the general case, and it is verified directly for this
model right after the proof of Lemma 7.4. We obtainˇ̌�

q�
2 C �

� �
�C
2 � Q�� � q�

2

�
��
2 � Q��ˇ̌ � O .1/ j�j jq�

2 j �jq�
2 j C j�j� ;

and thus

E2 � O .1/ j�j jq�
2 j �jq�

2 j C j�j�CW C
2 j�j j Q� � Pxj C � j�j jq�

2 j .��
2 � Px/

� O .1/ j�j jq�
2 j �jq�

2 j C j�j�C 2W C
2 j�j2 C � j�j jq�

2 j .��
2 � Px/:

We estimate ��
2 � Px � �q�

2 � 0, and hence

E2 � j�j jq�
2 j2 .O .1/� �/C O .1/ j�j2 jq�

2 j C O .1/ j�j2 � M j�j ı;

for some constantM if we choose � big enough.We have used thatW C
2 is bounded.

Therefore,

E1 CE2 � M j�j ı:
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Now for the case q�
2 < 0. Here we have two further subcases, qC

2 < 0 and q
C
2 > 0.

First we assume that qC
2 < 0, and thus both q�

2 and qC
2 are negative. Note thatˇ̌

qC
2

ˇ̌ D jq�
2 j � j�j ; 0 � �q�

2 � ��
2 � Px � �2q�

2 ; and AC
2 D A�

2 � j�j :
Thus

E2 D �
W �
2 � � j�j� ˇ̌qC

2

ˇ̌ �
�C
2 � Px� �W �

2 jq�
2 j ���

2 � Px�
D W �

2

˚�
qC
2 � �� ���

2 � Q�� � qC
2

�
�C
2 � Q���

�W �
2 j�j . Q� � Px/ � � j�j ˇ̌qC

2

ˇ̌ �
�C
2 � Px�

� O .1/ j�j ˇ̌qC
2

ˇ̌ �ˇ̌
qC
2

ˇ̌C j�j�C O .1/ j�j2 � � j�j ˇ̌qC
2

ˇ̌2
� j�j jq�

2 j2 .O .1/ � �/C O .1/ j�j2
� M j�j ı;

where we have used Lemma 7.4 (with " D �, "0 D qC
2 ) and chosen � sufficiently

large. Thus we conclude that E1 CE2 � M j�j ı in this case as well.
Now for the last case in which � > 0, namely q�

2 < 0 < q
C
2 . Since q

C
2 D q�

2 C�,
we have ˇ̌

qC
2

ˇ̌ � ı; jq�
2 j � ı:

Furthermore, AC
2 D A�

2 , and thusW
C
2 D W �

2 . We see that

0 � �q�
2 � ��

2 � Px � �2q�
2 ; �C

2 � Px � 2� � q�
2 ;

and hence

E2 D W C
2

˚
qC
2

�
�C
2 � Px�C jq�

2 j ���
2 � Px��

� W C
2

˚
qC
2

�
2 j�j C q�

2

�C jq�
2 j 2 jq�

2 j�
� M j�j ı;

for some constantM .

Case 2b (shock wave) When x is a shock front, we have � < 0. In this case,

Px D Q� D �2
�
v�; vC� D 2
u C 2q�

2 C � C
q�

u C q�

2

� �

u C q�

2 C �
�
:

We first consider the case q�
2 < 0. Then

qC
2 D q�

2 C � < 0;
ˇ̌
qC
2

ˇ̌ D jq�
2 j C j�j ; and AC

2 D A�
2 � j�j ;

and we obtain

E2 D �
W �
2 � � j�j� ˇ̌qC

2

ˇ̌ �
�C
2 � Px� �W �

2 jq�
2 j ���

2 � Px�
D �W �

2

�
.q�
2 C �/.�C

2 � Px/� q�
2 .�

�
2 � Px/�

� � j�j .jq�
2 j C j�j/.�C

2 � Px/
� O .1/ j�j jq�

2 j .jq�
2 j C j�j/ � � j�j .jq�

2 j C j�j/ jq�
2 j

� j�j jq�
2 j .jq�

2 j C j�j/ .O .1/� �/ � 0:
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Lemma 7.4 (with "0 D �, " D q�
2 ) implies

ˇ̌�
q�
2 C �

� �
�C
2 � Px� � q�

2

�
��
2 � Px�ˇ̌ � O .1/ j�j jq�

2 j �jq�
2 j C j�j� :

Furthermore,

�C
2 � Px D �q�

2 C
q

u
�

u C q�

2 C �
�

�
q�

u C q�

2

� �

u C q�

2 C �
�

D �q�
2

0
B@1C

q

u C qC

2

p

u C

q

u C qC

2

1
CA

� �q�
2 D jq�

2 j :

If q�
2 > 0, then there are two further cases to be considered, depending on the sign

of qC
2 . We first consider the case qC

2 < 0, and thus qC
2 < 0 < q�

2 . Now A
C
2 D A�

2 .
Furthermore,

��
2 � Px � �2q�

2 � 0;

�C
2 � Px D �q�

2

0
B@1C

q

u C qC

2

p

u C

q

u C qC

2

1
CA < � jq�

2 j :

Thus

�C
2 < Px < ��

2 ;

and we easily obtain

E2 D W �
2

˚ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� � jq�

2 j ���
2 � Px�� < 0:

This leaves the final case q˙
2 > 0. In this case we have that A

C
2 D A�

2 Cj�j. We still
have

��
2 � Px D �qC

2

0
B@1C

p

u C q�

2

p

u C

q

u C qC

2

1
CA � �qC

2 < 0;

and thus

j Px � ��
2 j � qC

2 :

Furthermore, by Lemma 7.4, we have that

ˇ̌�
q�
2 C �

� �
�C
2 � Px� � q�

2

�
��
2 � Px�ˇ̌ � O .1/

ˇ̌
qC
2

ˇ̌ j�j �ˇ̌qC
2

ˇ̌C j�j� :
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Then we calculate

E2 D W C
2

ˇ̌
qC
2

ˇ̌ �
�C
2 � Px� � �

W C
2 � � j�j� jq�

2 j ���
2 � Px�

D W C
2

�
.q�
2 C �/.�C

2 � Px/� q�
2 .�

�
2 � Px/�C � j�j jq�

2 j .��
2 � Px/

� W C
2

ˇ̌
qC
2

�
�C
2 � Px� � q�

2

�
��
2 � Px�ˇ̌ � � j�j j��

2 � Pxj jq�
2 j

� O .1/ j�j jq�
2 j �jq�

2 j C j�j� � � j�j jq�
2 j ˇ̌qC

2

ˇ̌
� O .1/ j�j2 C j�j jq�

2 j2 .O .1/ � �/
� M j�j ı

if � is sufficiently large. This is the last case.
Now we have shown that in all cases,

E1 CE2 � M j�j ı:
Summing over all discontinuities in u and v we conclude that

d

dt
˚.u; v/ � C 0ı;

for some finite constant C 0 independent of ı.
We shall now show that

nX
kD1

Ei;k � O.1/ j�i j
�
ı1 _ ı2

�C O .1/ jei j ; (7.30)

and this estimate is easily seen to imply (7.21). To prove (7.30) we shall need some
preliminary results:

Lemma 7.3 Assume that the vectors � D .�1; : : : ; �n/, �0 D �
�0
1; : : : ; �

0
n

�
, and �00 D�

�00
1 ; : : : ; �

00
n

�
satisfy

H .�/ u D H
�
�00�H �

�0�u
for some vector u, where

H .�/ D Hn .�n/Hn�1 .�n�1/ � � �H1 .�1/ :

Then

nX
kD1

j�k � �0
k � �00

k j D O .1/
 X

j

ˇ̌̌
�0
j �

00
j

ˇ̌̌ 	ˇ̌̌
�0
j

ˇ̌̌
C
ˇ̌̌
�00
j

ˇ̌̌

C
X
k;l
k¤l

ˇ̌̌
�0
j �

00
l

ˇ̌̌!
: (7.31)

If the scalar � and the vector �0 D �
�0
1; : : : ; �

0
n

�
satisfy

Rl .�/ u D H
�
�0�u;

where Rl denotes the l th rarefaction curve, then

j� � �0
l j C

X
k¤l

j�0
kj D O .1/ j�j

�
j�0
l j
�j�j C j�0

l j
�C

X
k¤l

j�0
kj
�
: (7.32)
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Proof The proof of this lemma is a straightforward modification of the proof of the
interaction estimate (6.18). �

Lemma 7.4 Let N! 2 ˝ be sufficiently small, and let " and "0 be real numbers.
Define

! D Hk."/ N!; � D �k . N!;!/ ;
! 0 D Hk

�
"0�!; �0 D �k

�
!;! 0� ;

! 00 D Hk

�
"C "0� N!; �00 D �k

� N!;! 00� :
Then one has

j."C "0/.�00 � �0/� ".� � �0/j � O.1/ j""0j �j"j C j"0j� : (7.33)

Proof The proof of this is again in the spirit of the proof of the interaction estimate,
equation (6.13). Let the function � be defined as

�
�
"; "0� D �

"C "0��00 � "� � "0�0:

Then � is at least twice differentiable, and satisfies

� ."; 0/ D �
�
0; "0� D 0;

@2�

@"@"0 .0; 0/ D 0:

Consequently,

�
�
"; "0� D

"Z
0

"0Z
0

@2�

@"@"0 .r; s/ ds dr D O.1/
j"jZ
0

j"0 jZ
0

.jr j C jsj/ dr ds:

From this the lemma follows. �

} Example 7.5 (Lemma 7.4 for Example 7.1)
If k D 2, let N!, ! 0, and ! 00 denote the 
-coordinate, since only this will influence
the speeds. Then a straightforward calculation yields

ˇ̌
."C "0/.�00 � �0/� ".� � �0/

ˇ̌
D j"j j"0j �j"j C j"0j�

�
p N! C p

! 0 C p
! 00

N!
	p

! 0 C p
! 00



C ! 0
	p N! C p

! 00



C ! 00
	p N! C p

! 0



C 2
p N!! 0! 00

� j"j j"0j .j"j C j"0j/
min f N!;! 0; ! 00g ;

verifying the lemma in this case. }
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If the kth characteristic field is genuinely nonlinear, then the characteristic speed
k .Hk.�/!/ is increasing in �, and we can even choose the parameterization such
that

k .Hk.�/!/ � k.!/ D �;

for all sufficiently small � and !. This also implies that �k.!;Hk.�/!/ is strictly
increasing in �. However, the Hugoniot locus through the point ! does not in gen-
eral coincide with the Hugoniot locus through the point Hk.q/!. Therefore, it is
not so straightforward comparing speeds defined on different Hugoniot loci. When
proving (7.30) we shall need to do this, and we repeatedly use the following lemma:

Lemma 7.6 For some state ! define

�.q/ D �k .Hk.q/!;Hk.�/Hk.q/!/ � �k .!;Hk.� C q/!/ :

Then � is at least twice differentiable for all k D 1; : : : ; n. Furthermore, if the kth
characteristic field is genuinely nonlinear, then for sufficiently small jqj and j�j,

� 0.q/ � c > 0; (7.34)

where c depends only on f for all sufficiently small j!j.
Proof Let the vector �0 be defined by H .�0/! D Hk.�/Hk.q/!. Then by
Lemma 7.3,

j�0
k � .q C �/j C

X
i¤k

j�0
i j � O .1/ jq�j .j�j C jqj/ :

Consequently,

Hk.� C q/! D Hk.�/Hk.q/! C O .1/ jq�j .j�j C jqj/ :
Using this we find thatˇ̌̌
ˇHk.�/Hk.q/! �Hk.�/!

q

ˇ̌̌
ˇ D

ˇ̌̌
ˇHk.� C q/! �Hk.�/!

q

ˇ̌̌
ˇC O .1/ j�j .j�j C jqj/ :

Therefore,

d

dq
fHk.�/Hk.q/!g ˇ̌

qD0D
d

d�
fHk.�/!g C O .1/ j�j2 : (7.35)

Hence, we compute

� 0.0/ D r1�k .!;Hk.�/!/ � rk.!/
� r2�k .!;Hk.�/!/ �

�
d

d�
fHk.�/!g � d

dq
fHk.�/Hk.q/!g ˇ̌

qD0

�
D r1�k .!;Hk.�/!/ � rk.!/C O .1/ j�j2
� c0 > 0;
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Fig. 7.3 The setting in the
proof of (7.30)

q− −q+

uδ1 uδ1vδ,+vδ,−

for sufficiently small j�j. The value of the constant c0 (and its existence) depends on
the genuine nonlinearity of the system and hence on f . Since � 0 is continuous for
small jqj, the lemma follows. �

We shall prove (7.30) in the case that the front at xi is a front in vı2 ; the case in
which it is a front in uı1 is completely analogous. We therefore fix i , and study the
relation between q�

k and qC
k . Since the front is going to be fixed from now on, we

drop the subscript i . For simplicity we write ı D ı2. Assume the the family of the
front x is l and the front has strength �. The situation is as in Fig. 7.3.

A key observation is that we can regard the waves qC
k as the result of an inter-

action between the waves q�
k and �; similarly, the waves �q�

k are the result of an
interaction between � and �qC

k .
Regarding the weights, from (7.16) and (7.18) we find that

W C
k �W �

k D
(
�1 j�j if k < l;

��1 j�j if k > l;
(7.36)

while for k D l we obtain

W C
l �W �

l D

8̂̂
<
ˆ̂:
�1 j�j if min

˚
q�
l ; q

C
l

�
> 0,

��1 j�j if max
˚
q�
l ; q

C
l

�
< 0,

O .1/ if q�
l q

C
l < 0:

(7.37)

The proof of (7.30) is a study of cases. We split the estimate into two subgroups,
depending on whether the front at x is an approximate rarefaction wave or a shock.
Within each subgroup we discuss three subcases depending on the signs of q˙

l . In
all cases we discuss the terms Ek (k ¤ l) and El separately. For k ¤ l we write
Ek (recall that we dropped the subscript i ) as

Ek D �ˇ̌
qC
k

ˇ̌ � jq�
k j�W C

k

�
�C
k � Px�

C jq�
k j �W C

k �W �
k

� �
�C
k � Px�C jq�

k jW �
k

�
�C
k � ��

k

�
: (7.38)

By the strict hyperbolicity of the system, we have that

�C
k � Px � �c < 0; for k < l ,

�C
k � Px � c > 0; for k > l ,
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where c is some fixed constant depending on the system. Thus we always have that

�
W C
k �W �

k

� �
�C
k � Px� � �c�1 j�j ; k ¤ l: (7.39)

We begin with the case that the front at x is an approximate rarefaction wave
(� > 0). In this case,

Rl.�/v
ı;� C e D H

�
qC�uı1 D H

�
qC�H .�q�/ vı;� D H . Qq/ vı;�

for some vector Qq. Hence

H .�q�/ vı;� D H
��qC�H . Qq/ vı;�; (7.40)

Rl.�/v
ı;� C e D H . Qq/ vı;�: (7.41)

From (7.31) and (7.40) we obtain

X
k

ˇ̌
qC
k � q�

k � Qqk
ˇ̌
O .1/

	X
k

ˇ̌
qC
k Qqk

ˇ̌ �ˇ̌
qC
k

ˇ̌C j Qqkj
�C

X
k;j
k¤j

ˇ̌
qC
k Qqj

ˇ̌

; (7.42)

and from (7.32) and (7.41) we obtain

j Qql � �j C
X
k¤l

j Qqk j D O .1/ j�j
	
j Qql j .j Qql j C j�j/C

X
k¤l

j Qqkj



C O .1/ jej :

This implies that

j Qql � �j � O .1/ j�j C O .1/ jej ;X
k¤l

j Qqkj � O .1/ j�j C O .1/ jej : (7.43)

Furthermore, since � is an approximate rarefaction, 0 � � � ı. Therefore, we can
replace Qql with � and Qqk (k ¤ l) with zero on the right-hand side of (7.42), making
an error of O .1/ ı. Indeed,

ˇ̌
qC
l � q�

l � �ˇ̌C
X
k¤l

ˇ̌
qC
k � q�

k

ˇ̌

�
X
k

ˇ̌
qC
k � q�

k � �ˇ̌C j Qql � �j C
X
k¤l

j Qqk j

� O .1/
 X

k

ˇ̌
qC
k Qqk

ˇ̌ �ˇ̌
qC
k

ˇ̌C j Qqk j
�C

X
k;j
k¤j

ˇ̌
qC
k Qqj

ˇ̌!

C O .1/ j�j
�

j Qql j .j Qql j C j�j/C
X
k¤l

j Qqkj
�

C O .1/ jej :
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Using (7.43) and the fact that � � ı, we conclude that

ˇ̌
qC
l �q�

l � �ˇ̌C
X
k¤l

ˇ̌
qC
k � q�

k

ˇ̌

D O .1/ j�j
�
ı C ˇ̌

qC
l

ˇ̌ �ˇ̌
qC
l

ˇ̌C j�j�C
X
k¤l

ˇ̌
qC
k

ˇ̌�C O .1/ jej :
(7.44)

Similarly,

ˇ̌
qC
l �q�

l � �ˇ̌C
X
k¤l

ˇ̌
qC
k � q�

k

ˇ̌

D O .1/ j�j
�
ı C jq�

l j �jq�
l j C j�j�C

X
k¤l

jq�
k j
�

C O .1/ jej :
(7.45)

Since in this case 0 � � � ı, and the total variation is small, we can assume that
the right-hand sides of (7.44)–(7.45) are smaller than � C O .1/ jej. Also, the error
e is small; cf. (7.11). Then

0 < qC
l � q�

l < 2� C O .1/ jej � 2ı C O .1/ jej : (7.46)

We can also use the estimates (7.44) and (7.45) to make a simplifying assumption
throughout the rest of our calculations. Since the total variation of u�v is uniformly
bounded, we can assume that the right-hand sides of (7.44) and (7.45) are bounded
by

1

2
j�j C O .1/ jej :

In particular, we then find that

� � 1

2
j�j � O .1/ jej � qC

` � q�
` � � C 1

2
j�j C O .1/ jej :

Hence if � > 0, from the left inequality we find that

qC
` > q

�
`

or

j�j � O .1/ jej ;

and if � < 0, from the right inequality above,

qC
` < q

�
`

or

j�j � O .1/ jej :
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If � > 0 and q�
` � qC

` or � < 0 and qC
` � q�

` , then j�j � O .1/ jej. In this case we
find for k ¤ l , or k D l and q�

` q
C
` > 0, that

Ek D ˚jq�
k j �W �

k �W C
k

�CW C
k

�jq�
k j � ˇ̌

qC
k

ˇ̌�� Px
� ˚jq�

k j �1 j�j C ˇ̌
W C
k

ˇ̌
.j�j =2C O .1/ jej/� j Pxj

� O .1/ jej : (7.47)

If k D l and q�
` q

C
` < 0, then for � > 0 we have that qC

` � q�
` � O .1/ jej, so if

qC
` < q

�
` , we must have that

ˇ̌
qC
`

ˇ̌ � O .1/ jej and q�
` � O .1/ jej :

Similarly, if � < 0 and qC
` > q

�
` , we obtain

qC
` < O .1/ jej and jq�

` j � O .1/ jej :

Then we find that

El D ˚jq�
` jW �

l � ˇ̌
qC
`

ˇ̌
W C
l

� Px � O .1/ jej : (7.48)

These observations imply that if j�j D O .1/ jej, we have that
X
k

Ek D O .1/ jej ;

which is what we want to show. Thus in the following we can assume that either

� > 0 and qC
` > q

�
` ;

or

� < 0 and qC
` < q

�
` : (7.49)

Now follows a discussion of several different cases, depending on whether the front
is an approximate rarefaction wave or a shock wave, and on the signs of q�

` and qC
` .

Case R1 0 < q�
l < q

C
l , � > 0.

For k ¤ l we recall (7.38) that

Ek D �ˇ̌
qC
k

ˇ̌ � jq�
k j�W C

k

�
�C
k � Px�

C jq�
k j �W C

k �W �
k

� �
�C
k � Px�C jq�

k jW �
k

�
�C
k � ��

k

�
: (7.50)

The second term in (7.50) is less than or equal to (cf. (7.39))

�c�1 jq�
k j j�j :
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Fig. 7.4 The situation for
0 < q�

l < qC
l , � > 0, and

k D l

ω 1

ω

ω

ω̃

H ( )ω 1

H ( )ω

−

Furthermore, by (7.45),

ˇ̌
qC
k

ˇ̌� jq�
k j � O .1/ j�j

�
ı C jq�

l j �jq�
l j C j�j�C

X
k¤l

jq�
k j
�

C O .1/ jej :

By the continuity of �k ,

ˇ̌
�C
k � ��

k

ˇ̌ D O .1/ .j�j C jej/ :

Hence from (7.38), we find that

Ek � O .1/ j�j
�
ı C jq�

l j �jq�
l j C j�j�C

X
Qk¤l

ˇ̌̌
q�

Qk
ˇ̌̌�

C O .1/ jej � c�1 jq�
k j j�j

� O .1/ j�j
�
ı C

X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej

� c�1 j�j jq�
k j C O .1/ j�j jq�

l j �jq�
l j C j�j� : (7.51)

For k D l the situation is more complicated. We define states and speeds

Q!` D Hl

�
q�
l C �

�
!�
l�1; Q�` D �l

�
!�
l�1; Q!`

�
;

!?` D Hl .�/ !
�
l ; �?` D �l

�
!�
l ; !

?
`

� I (7.52)

see Fig. 7.4.
Recall that

�˙
l D �l

�
!˙
l�1; !

˙
l

�
:

Now by Lemma 7.4, with ! D !�
l�1, " D q�

` , and "
00 D q�

` C �,

ˇ̌�
q�
` C �

� � Q�` � �?`
� � q�

`

�
��
l � �?`

�ˇ̌ D O .1/ jq�
` j j�j �jq�

` j C j�j� : (7.53)
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We also find that (cf. (7.10) and the fact that �l.u; u/ D l .u/)

j�?` � Pxj � ˇ̌
�l
�
!�
l ; !

?
`

� � �l
�
vı;�; vı;�

�ˇ̌C O .1/ ı
D ˇ̌

�l
�
!�
l ;Hl.�/!

�
l

� � �l
�
!�
n ; !

�
n

�ˇ̌C O .1/ ı
� ˇ̌
�l
�
!�
l ;Hl.�/!

�
l

� � �l.!�
l ; !

�
l /
ˇ̌

C ˇ̌
�l.!

�
l ; !

�
l /� �l.!�

l ; !
�
lC1/

ˇ̌
C ˇ̌
�l.!

�
l ; !

�
lC1/� �l.!�

lC1; !
�
lC2/

ˇ̌C � � �
C j�l.!�

n�1; !
�
n / � �l.!�

n ; !
�
n /j C O .1/ ı

� O .1/
�j�j C ˇ̌

!�
l � !�

lC1
ˇ̌C � � � C j!�

n�1; !
�
n j�C O .1/ ı

� O .1/
	

jıj C jq�
l j C

X
k>l

jq�
k j


: (7.54)

Furthermore,ˇ̌
�C
l � Q�`

ˇ̌ D ˇ̌
�l
�
!C
l�1;Hl

�
qC
`

�
!C
l�1
� � �l

�
!�
l�1;Hl

�
q�
l C �

�
!�
l�1
�ˇ̌

� ˇ̌
�l
�
!C
l�1;Hl

�
qC
`

�
!C
l�1
� � �l

�
Hl

�
qC
`

�
!C
l�1; !

�
l�1
�ˇ̌

C ˇ̌
�l
�
Hl

�
qC
`

�
!C
l�1; !

�
l�1
� � �l

�
!C
l�1;Hl

�
q�
l C �

�
!�
l�1
�ˇ̌

� O .1/
� ˇ̌
!C
l�1 � !�

l�1
ˇ̌C ˇ̌

Hl

�
qC
`

�
!C
l�1 �Hl

�
q�
l C �

�
!�
l�1
ˇ̌ �

� O .1/
� ˇ̌
!C
l�1 � !�

l�1
ˇ̌C ˇ̌

Hl

�
qC
`

�
!C
l�1 �Hl

�
q�
l C �

�
!C
l�1
ˇ̌

C ˇ̌
Hl

�
q�
l C �

�
!C
l�1 �Hl

�
q�
l C �

�
!C
l�1
ˇ̌ �

� O .1/
� ˇ̌
!C
l�1 � !�

l�1
ˇ̌C ˇ̌

qC
` � q�

` � �ˇ̌ �
� O .1/

� ˇ̌
qC
l�2 � q�

l�2
ˇ̌C � � � C ˇ̌

qC
1 � q�

1

ˇ̌C ˇ̌
qC
` � q�

` � �ˇ̌ �
D O .1/ �

	
ı C jq�

` j � jq�
` j C j�j �C

X
k¤l

jq�
k j



C O .1/ jej : (7.55)

Since the l th field is genuinely nonlinear, then by Lemma 7.6,

�?` � Q�` � c jq�
` j (7.56)

for some constant c > 0 depending only on the system. Recall that in this case,

W C
` D W �

` C �1 j�j :
Moreover, �, qC

` , and q
�
` are positive. Using the above inequalities, we compute

El D W C
` q

C
`

�
�C
` � Px� �W �

` q
�
`

�
��
` � Px�

D �
W �
` C �1 j�j� qC

`

�
�C
` � Px� �W �

` q
�
`

�
��
` � Px�

D �1�q
C
`

�
�C
` � Px�CW �

`

˚
qC
`

�
�C
` � Px� � q�

`

�
��
` � Px��

D �1�
˚�
q�
` C �

� � Q�` � �?`
�C qC

`

�
�C
` � Px� � �

q�
` C �

� � Q�` � �?`
��

CW �
`

˚
qC
`

�
�C
` � Px� � q�

`

�
��
` � Px��

D �1�
�
q�
` C �

� � Q�` � �?`
�

C �1�
˚�
q�
` C �

� �
�C
` � Px � � Q�` � �?`

��C �
qC
` � q�

` � �� ��C
` � Px��

CW �
`

˚
qC
`

�
�C
` � Px� � q�

`

�
��
` � Px��



7.1 Stability 335

� �1�
�
q�
` C �

� � Q�` � �?`
�C �1�

�
q�
` C �

� �ˇ̌
�C
` � Q�`

ˇ̌C j�?` � Pxj�
C �1�

ˇ̌
qC
` � q�

` � �ˇ̌ ˇ̌�C
` � Px ˇ̌CW �

`

˚
qC
`

�
�C
` � Px� � q�

`

�
��
` � Px��

� �c�1q�
` �
�
q�
` C �

�
C �1�

�
q�
` C �

� �
O .1/ �

�
ı C q�
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Adding (7.57) and (7.51), we obtainX
k
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which holds for sufficiently large �1. This implies (7.30) in Case R1.

Case R2 q�
l < q

C
l < 0, � > 0.

Writing Ek as in (7.38), and using (7.44) (instead of (7.45) as in the previous
case), we find for k ¤ l that
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Fig. 7.5 The situation for
q�
l < qC

l < 0, � > 0, and
k D l

ω̃

ω+
ω

ω+
1

H ( )ω+ H ( )ω+
1−

−

For k D l the situation is similar to the previous case. We define auxiliary states
and speeds
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�
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�
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�
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�
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?
`

� I (7.60)

see Fig. 7.5.
Recall that
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`

�
:
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As in (7.54), we find that
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We also obtain the analogue of (7.55), namely,
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By genuine nonlinearity, using Lemma 7.6, we find that

Q�` � �?` > c
ˇ̌
qC
`

ˇ̌
; (7.64)

for some constant c. Now

W �
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Using the above estimates (7.61)–(7.64), we compute
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Finally,

X
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by choosing �1 larger if necessary. Hence (7.30) holds in this case as well.

Case R3 q�
l < 0 < q

C
l , � > 0.

Since the front at x is a rarefaction front, both estimates (7.51) and (7.59) hold.
Moreover, we have that

qC
` � q�

` D ˇ̌
qC
`

ˇ̌C jq�
` j < 2� � 2ı:



338 7 Well-Posedness of the Cauchy Problem

Then from ADCBC � .ACB/.DCC/ for positive A, B , C , andD, we obtain
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Using (7.51) for k < l and (7.59) for k > l , and choosing �1 sufficiently large, we
obtain (7.30).

Now we shall study the cases in which the front at x is a shock front. Also, here
we prove (7.30) in three cases depending on q�

` and qC
` . If the front at x is a shock

front, then by the construction of the front-tracking approximation, we have
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, and e is the error of the front at x. Then we can use
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We also have that
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Fig. 7.6 The situation for
0 < qC

` < q�
` , � < 0, and

k D l
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ω
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H ( )ω+
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Case S1 0 < qC
` < q

�
` , � < 0.

If k ¤ l , then we can write Ek as (7.38) and use the arguments leading to (7.51)
and the estimate (7.69) to obtain
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For k D l we define the auxiliary states and speeds as in (7.60); see Fig. 7.6.
Then the estimate (7.61) holds. Also, using (7.69) we find that
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By Lemma 7.6, we have
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In this case
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and
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We estimate
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As before, setting �1 sufficiently large, (7.75) and (7.70) implyX
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X
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which is (7.30).

Case S2 qC
` < q

�
` < 0, � < 0.

In this case we proceed as in Case S1, but using (7.68) instead of (7.69). For
k ¤ l this gives the estimate
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Fig. 7.7 The situation for
qC
` < q�

` < 0, � < 0, and
k D l
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We now define the intermediate states Q!`, !?` and the speeds Q�` and �?` as in (7.52);
see Fig. 7.7.

Then the estimate (7.53) holds. As in Case R1, we computeˇ̌
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In this case, genuine nonlinearity and Lemma 7.6 imply that
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Combining (7.81) and (7.77), we obtain
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Case S3 qC
` < 0 < q
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For k ¤ l , the estimate (7.77) remains valid.
Next we consider the case k D l . The O .1/ that multiplies j�j in (7.69) (or

(7.69)) is proportional to the total variation of the initial data. Hence we can assume
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ˇ̌
qC
l � q�

l � �ˇ̌ � ˇ̌
q�
l � qC

l

ˇ̌ � j�j D q�
l � qC

l C � � 2q�
l C �: (7.84)

Thus

2q�
l C � � 1

2
j�j C O .1/ jej ; (7.85)

or

q�
l C � � �1

4
j�j C O .1/ jej ; (7.86)

which can be rewritten as

jq�
l C � � O .1/ jejj � 1

4
j�j : (7.87)

From this we conclude that

jq�
l C �j � 1

4
j�j � O .1/ jej : (7.88)

We define the auxiliary states Q!`, !?` and the speeds Q�` and �?` as in (7.52); see
Fig. 7.8. Then estimates (7.78) and (7.79) hold.
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Fig. 7.8 The situation for
qC
` < 0 < q�

` , � < 0, and
k D l

ω̃

ω 1

ω

ω
H ( )ω

H ( )ω 1

−

−

By Lemma 7.6 we have that

Q�` � �?` � 0; (7.89)

��
` � �?` � c jq�

` C �j ; (7.90)

for a positive constant c. Recalling that W �
` � 1, and using (7.89), (7.90), and the

estimates (7.78) and (7.79) (which remain valid in this case), we compute

El D W C
`

ˇ̌
qC
`

ˇ̌ �
�C
` � Px� �W �

` jq�
` j ���

` � Px�
� W C

`

ˇ̌
qC
`

ˇ̌ � Q�` � �?`
� �W �

` jq�
` j ���

` � �?`
�

CW C
`

ˇ̌
qC
`

ˇ̌ �ˇ̌
�C
` � Q�`

ˇ̌C j�?` � Pxj�CW �
` jq�

` j j�?` � Pxj
� � jq�

` j c jq�
` C �j C O .1/ j�j

�
q�
`

�
q�
` C j�j�C

X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej

� �c
4

jq�
` j j�j C O .1/ j�j

�
q�
`

�
q�
` C j�j�C

X
Qk¤l

ˇ̌̌
q�

Qk

ˇ̌̌�
C O .1/ jej : (7.91)

Now (7.77) and (7.91) are used to balance the terms containing the factor
P

k¤l
ˇ̌
q�
k

ˇ̌
.

The remaining term,

jq�
` j j�j

�
�1
4
c C O .1/

�
q�
` C j�j�� ;

can be made negative by choosing T:V: .u0/ (and hence O .1/) sufficiently small.
Hence also in this case (7.30) holds.
Finally, if q�

` or qC
` is zero, (7.30) can easily be shown to be a limit of one of the

previous cases.
Summing up, we have proved the following theorem:

Theorem 7.7 Let uı1 and vı2 be front-tracking approximations, with accuracies
defined by ı1, ı2,

G
�
uı1.t/

�
< M; and G

�
vı2 .t/

�
< M; for t � 0. (7.92)

For sufficiently small M there exist constants �1, �2, and C2 such that the func-
tional ˚ defined by (7.15) and (7.16) satisfies (7.21). Furthermore, there exists
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a constant C (independent of ı1 and ı2) such that��uı1.t/ � vı2 .t/��
1

� C
��uı1.0/� vı2 .0/��

1
C Ct

�
ı1 _ ı2

�
: (7.93)

To state the next theorem we need the following definition. Let the domainD be
defined as the L1 closure of the set

D0 D
n
u 2 L1.RIRn/ j u is piecewise constant and G.u/ < M

o
I (7.94)

that is, D D D0. Since the total variation is small, we will assume that all possible
values of u are in a (small) neighborhood˝ � Rn.

Theorem 7.8 Let fj 2 C2.Rn/, j D 1; : : : ; n. Consider the strictly hyperbolic
equation ut C f .u/x D 0. Assume that each wave family is either genuinely
nonlinear or linearly degenerate. For all initial data u0 in D, defined by (7.94),
every sequence of front-tracking approximations uı converges to a unique limit u
as ı ! 0. Furthermore, let u and v denote solutions

ut C f .u/x D 0;

with initial data u0 and v0, respectively, obtained as a limit of a front-tracking
approximation. Then

ku.t/ � v.t/k1 � Cku0 � v0k1: (7.95)

Proof First we use (7.93) to conclude that every front-tracking approximation uı

has a unique limit u as ı ! 0. Then we take the limit ı ! 0 in (7.93) to conclude
that (7.95) holds. �

Note that this also gives an error estimate for front tracking for systems. If we
denote the limit of the sequence

˚
uı
�
by u and vı2 D uı , then by letting ı2 ! 0 in

(7.93) ��uı. � ; t/ � u. � ; t/��
1

� C
���uı0 � u0

��
1

C ıt
� D O .1/ ı

for some finite constant C . Hence front tracking for systems is a first-order method.

7.2 Uniqueness

Let St denote the map that maps initial data u0 into the solution u of

ut C f .u/x D 0; ujtD0 D u0

at time t , that is, u D St u0. In Chapt. 6 we showed the existence of the semigroup
St , and in the previous section its stability for initial data in the class D as limits of
approximate solutions obtained by front tracking. Thus we know that it satisfies

S0u D u; StSsu D StCsu;
kSt u � Ssvk1 � L .jt � sj C ku � vk1/

for all t; s � 0 and u, v in D.
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In this section we prove uniqueness of solutions that have initial data in D.
We want to demonstrate that every other solution u coincides with this semi-

group. To do this we will basically need three assumptions. The first is that u is
a weak solution, the second is that it satisfies Lax’s entropy conditions across dis-
continuities, and the third is that it has locally bounded variation on a certain family
of curves. Concretely, we define an entropy solution of

ut C f .u/x D 0; ujtD0 D u0;

to be a bounded measurable function u D u.x; t/ of bounded total variation satis-
fying the following conditions:

A The function u D u.x; t/ is a weak solution of the Cauchy problem (7.1) taking
values in D, i.e.,

TZ
0

Z
R

.u't C f .u/'x/ dx dt C
Z
R

'.x; 0/u0.x/ dx D 0 (7.96)

for all test functions ' whose support is contained in the strip Œ0; T i.
B Assume that u has a jump discontinuity at some point .x; t/, i.e., there exist states
ul;r 2 ˝ and speed � such that if we let

U.y; s/ D
(
ul for y < x C �.s � t/,
ur for y � x C �.s � t/, (7.97)

then

lim
�!0

1

�2

tC�Z
t��

xC�Z
x��

ju.y; s/ � U.y; s/j dy ds D 0: (7.98)

Furthermore, there exists k such that

k .ul / � � � k .ur/ : (7.99)

C There exists a � > 0 such that for all Lipschitz functions � with Lipschitz con-
stant not exceeding � , the total variation of u.x; �.x// is locally bounded.

Remark 7.9 One can prove, see Exercise 7.1, that the front-tracking solution con-
structed in the previous chapter is an entropy solution of the conservation law.

There is a direct argument showing that any weak solution, whether it is a limit of
a front-tracking approximation or not, satisfies a Lipshitz continuity in time of the
spatial L1-norm, as long as the solution has a uniform bound on the total variation.
We present that argument here.

Theorem 7.10 Let u0 2 D, and let u denote any weak solution of (7.1) such that
T:V: .u.t// � C . Then

ku. � ; t/� u. � ; s/k1 � C kf kLip jt � sj ; s; t � 0: (7.100)
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Proof Let 0 < s < t < T , and let ˛h be a smooth approximation to the character-
istic function of the interval Œs; t �, so that

lim
h!0

˛h D �Œs;t �:

Furthermore, define

'h.y; �/ D ˛h.�/�.y/;

where � is any smooth function with compact support. If we insert this into the
weak formulation

TZ
0

Z
R

.u'h;t C f .u/'h;x/ dx dt C
Z
R

'h.x; 0/u.x; 0/ dx D 0; (7.101)

and let h ! 0, we obtain

Z
�.y/ .u.y; t/ � u.y; s// dy C

tZ
s

Z
�yf .u/ dy ds D 0:

From this we obtain

ku. � ; t/ � u. � ; s/k1 D sup
j�j�1

Z
�.y/ .u.y; t/ � u.y; s// dy

D � sup
j�j�1

tZ
s

Z
�.y/yf .u/ dy ds

�
tZ
s

T:V: .f .u// ds

� C kf kLip.t � s/;
which proves the claim. Here we first used Exercise A.1, Theorem A.4, subse-
quently the definition (A.1) for T:V: .f /, and finally the Lipschitz continuity of
f and the bound on the total variation on u. �

Remark 7.11 This argument provides an alternative to the proof of the Lipschitz
continuity in Theorem 2.15 in the scalar case.

Before we can compare an arbitrary entropy solution to the semigroup solution,
we need some preliminary results. Firstly, Theorem 7.10 says that every function
u. � ; t/ taking values in D and satisfying A is L1 Lipschitz continuous:

ku. � ; t/� u. � ; s/k1 � L.t � s/;

for t � s.
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Furthermore, by the structure theorem for functions of bounded variation [193,
Theorem 5.9.6], u is continuous almost everywhere. For the sake of definiteness, we
shall assume that all functions inD are right continuous. Also, there exists a setN
of zero Lebesguemeasure in the interval Œ0; T � such that for t 2 Œ0; T �nN , the func-
tion u. � ; t/ either is continuous at x or has a jump discontinuity there. Intuitively,
the set N can be thought of as the set of times when collisions of discontinuities
occur.

Lemma 7.12 If (7.96)–(7.98) hold, then

ul D lim
y!x�u.y; t/; ur D lim

y!xCu.y; t/;

and � .ul � ur/ D f .ul/ � f .ur/ :

Proof Let P denote the parallelogram

P D ˚
.y; s/ j jt � sj � ; jy � x � �.s � t/j � 

�
:

Integrating the conservation law over P, we obtain

� xCC�Z
x�C�

u.y; t C / dy �
xC��Z
x���

u.y; t � / dy
�

C
tCZ
t�

.f .u/ � �u/.x C C �.s � t/; s/ ds

�
tCZ
t�

.f .u/ � �u/.x � C �.s � t/; s/ ds D 0:

If we furthermore integrate this with respect to  from  D 0 to  D �, and divide
by �2, we obtain

1

�2

0
@ �Z
0

xCC�Z
x�C�

u.y; t C / dy d �
�Z
0

xC��Z
x���

u.y; t � / dy d
1
A

C 1

�2

� �Z
0

tCZ
t�

.f .u/ � �u/.x C C �.s � t/; s/ ds d

�
�Z
0

tC�Z
t��

.f .u/ � �u/.x � C �.s � t/; s/ ds d
�

D 0:
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Now let � ! 0. Then

1

�2

�Z
0

xCC�Z
x�C�

u.y; t C / dy d ! 1

2
.ul C ur/;

1

�2

�Z
0

xC��Z
x���

u.y; t � / dy d ! 1

2
.ul C ur/;

1

�2

�Z
0

tCZ
t�

.f .u/ � �u/.x C C �.s � t/; s/ ds d ! f .ur/ � �ur;

1

�2

�Z
0

tCZ
t�

.f .u/ � �u/.x � C �.s � t/; s/ ds d ! f .ul/ � �ul :

Hence

1

2
.ul C ur/ � 1

2
.ul C ur/C .f .ur/ � �ur/ � .f .ul/ � �ul/ D 0:

This concludes the proof of the lemma. �

The next lemma states that if u satisfies C, then the discontinuities cannot cluster
too tightly together.

Lemma 7.13 Assume that uW Œ0; T � ! D satisfies C. Let t 2 Œ0; T � and " > 0.
Then the set

Bt;" D
n
x 2 R j lim sup

s!tC; y!x
ju.x; t/ � u.y; s/j > "

o
(7.102)

has no limit points.

Proof Assume that Bt;" has a limit point, denoted by x0. Then there is a monotone
sequence fxig1

iD1 inBt;" converging to x0. Without loss of generality we assume that
the sequence is decreasing. Since u.x; t/ is right continuous, we can find a point zi
in .xi ; xi�1/ such that

ju .zi ; t/ � u .xi ; t/j � "

2
:

Now choose si > t and yi 2 .ziC1; zi / such that
ju .yi ; si /� u .xi ; t/j � "; jsi � t j � � max fjyi � zi j ; jyi � ziC1jg :

We define a curve �.x/ for x 2 Œx0; x1� passing through all the points .zi ; t/ and
.yi ; si / by

�.x/ D

8̂̂
<
ˆ̂:
t for x D x0 or x � z1,

si � .x � yi / si�t
zi�yi for x 2 Œyi ; zi �,

t C .x � ziC1/ si�t
yi�ziC1 for x 2 ŒziC1; yi �.

(7.103)
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Then � is Lipschitz continuous with Lipschitz constant � , and we have that

ju .yi ; si / � u .zi ; t/j � "

2

for all i 2 N. This means that the total variation of u.x; �.x// is infinite, violat-
ing C, concluding the proof of the lemma. �

In the following, we let �? be a number strictly larger than the absolute value
of every characteristic speed, and we also demand that �? � 1=� , where � is the
constant in C. The next lemma says that if u satisfies C, then discontinuities cannot
propagate faster than �?. Precisely, we have the following result.

Lemma 7.14 Assume that uW Œ0; T � ! D satisfies C. Then for .x; t/ 2 .0; T / � R,

lim
s!tC; y!x˙

jx�yj>�?.s�t /
u.y; s/ D u.x˙; t/: (7.104)

Proof We assume that the lemma does not hold. Then, for some .x0; t/ there exist
decreasing sequences sj ! t and yj ! x0 such thatˇ̌

yj � x0
ˇ̌ � �?

�
sj � t� ; ˇ̌

u
�
yj ; sj

� � u .x0; t/
ˇ̌ � "

for some " > 0 and j 2 N. Now let

z0 D y1 C s1 � t
�

;

where as before � is defined by C. Now we define a subsequence of
˚
.yj ; sj /

�
as

follows. Set j1 D 1 and for i � 1 define

(
zi D yji � sji�t

�
;

jiC1 D min
˚
k
ˇ̌
sk � t � � .yk � zi /

�
:

Then

yji 2 .ziC1; zi / and
ˇ̌
sji � t ˇ̌ � � max

˚ˇ̌
yji � zi

ˇ̌
;
ˇ̌
yji � ziC1

ˇ̌�
for all i . Let � be the curve defined in (7.103). Since we have that zi ! x0, we have
that

ju .zi ; t/ � u .x0; t/j � "

2

for sufficiently large i . Consequently,

ˇ̌
u .zi ; t/ � u �yji ; sji �ˇ̌ � "

2
;

and the total variation of u.x; �.x// is infinite, contradicting C. �
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The next lemma concerns properties of the semigroup St . We assume that u is
a continuous function uW Œ0; T � ! D, and wish to estimate ST u.0/ � u.T /. Let h
be a small number such that Nh D T . Then we can calculate

kST u.0/ � u.T /k1 �
NX
iD1

��ST�.i�1/hu..i � 1/h/� ST�ihu.ih/
��
1

� L

NX
iD1

���� 1h
�
u.ih/� Shu..i � 1/h/�����

1

h:

Letting h tend to zero, we obtain the following lemma:

Lemma 7.15 Assume that uW Œ0; T � ! D is Lipschitz continuous in the L1-norm.
Then for every interval Œa; b�, we have

kST u.0/� u.T /kL1.ŒaC�?T;b��?T � IRn/

� O .1/
TZ
0

n
lim inf
h!0C

1

h
kShu.t/� u.t C h/kL1.ŒaC�?.tCh/;b��?.tCh/� IRn/

o
dt:

Proof For ease of notation we set

k � k D k � kL1.ŒaC�?.tCh/;b��?.tCh/� IRn/:

Observe that by finite speed of propagation, we can define u.x; 0/ to be zero outside
of Œa; b�, and the Lipschitz continuity of the semigroup will look identical written
in the norm k � k to how it looked before. Let

�.t/ D lim inf
h!0C

1

h
ku.t C h/� Shu.t/k :

Note that � is measurable, and for all h > 0, the function

�h.t/ D 1

h
ku.t C h/ � Shu.t/k

is continuous. Hence we have that

�.t/ D lim
"!0C

inf
h2Q\Œ0;"�

�h.t/;

and therefore � is Borel measurable. Define functions

�.t/ D kST�t u.t/ � ST u.0/k ;

 .t/ D �.t/ � L
tZ
0

�.s/ ds: (7.105)
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The function  is a Lipschitz function, and hence

 .T / D
TZ
0

 0.s/ ds: (7.106)

Furthermore, Rademacher’s theorem2 implies that there exists a null set N1 	
Œ0; T � such that � and  are differentiable outside N1. Furthermore, using that
Lebesgue measurable functions are approximately continuous almost everywhere
(see [64, p. 47]), we conclude that there exists another null set N2 such that � is
continuous outside N2. Let N D N1 [ N2. Outside N we have

 0.t/ D lim
h!0

1

h

�
�.t C h/ � �.t/� � L .t/: (7.107)

Using properties of the semigroup we infer

�.t C h/ � �.t/ D kST�t�hu.t C h/ � ST u.0/k � kST�t u.t/ � ST u.0/k
� kST�t�hu.t C h/ � ST�t u.t/k
D kST�t�hu.t C h/ � ST�t�hShu.t/k
� L ku.t C h/ � Shu.t/k ;

which implies

lim
h!0

1

h

�
�.t C h/ � �.t/� � L lim inf

h!0

1

h
ku.t C h/ � Shu.t/k D L�.t/:

Thus  0 � 0 almost everywhere, and we conclude that

 .T / � 0; (7.108)

which proves the lemma. �

The next two lemmas are technical results valid for functions satisfying (7.97)
and (7.98).

Lemma 7.16 Assume that uW Œ0; T � ! D is Lipschitz continuous, and that for some
.x; t/ equations (7.97) and (7.98) hold. Then for all positive ˛ we have

lim
�!0C

sup
jhj��

˛Z
0

ju.x C hC �y; t C h/ � ur j dy D 0; (7.109)

lim
�!0C

sup
jhj��

0Z
�˛

ju.x C hC �y; t C h/ � ul j dy D 0: (7.110)

2 Rademacher’s theorem states that a Lipschitz function is differentiable almost everywhere; see
[64, p. 81].
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Proof We assume that the limit in (7.109) is not zero. Then there exist sequences
�i ! 0 and jhi j < �i and a ı > 0 such that

˛Z
0

ju .x C hi C �iy; t C hi / � ur j dy > ı (7.111)

for all i . Without loss of generality we assume that hi > 0, and let

v.z; h/ D u.x C hC z; t C h/:

Then the map h 7! v. � ; h/ is Lipschitz continuous with respect to the L1 norm,
since

kv. � ; h/ � v. � ; 
/k1 D
Z

ju.z; t C h/� u..
 � h/C z; t C 
/j dz

�
Z

ju.z; t C h/ � u.z; t C 
/j dz

C
Z

ju.z; t C 
/ � u..
 � h/C z; t C 
/j dz
� M jh � 
j C  j
 � hjT:V: .u.t C 
//

� fM j
 � hj :
From (7.111) we obtain

˛�iZ
0

ju.x C hC z; t C h/ � ur j dz

�
˛�iZ
0

ju .x C hi C z; t C hi / � ur j dz

�
˛�iZ
0

ju .x C hi C z; t C hi /� u.x C hC z; t C h/j dz

� ı�i �fM jhi � hj :

We can (safely) assume that ı=fM < 1 (if this is not so, then (7.111) will hold
for smaller ı as well). We integrate the last inequality with respect to h, for h in
Œ��i ; �i �. Since

�
hi � �i ı=fM;hi

� � Œ��i ; �i �, we obtain
�iZ

��i

˛�iZ
0

ju.x C hC z; t C h/ � ur j dz dh �
hiZ

hi��i ı=eM
�
ı�i �fM.hi � h/� dh

D .ı2�2i /=.2
fM/:

Comparing this with (7.97) and (7.98) yields a contradiction. The limit (7.111) is
proved similarly. �
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For the next lemma, recall that a (signed) Radon measure is a (signed) regular
Borel measure3 that is finite on compact sets.

Lemma 7.17 Assume that w is in L1 ..a; b/ I Rn/ such that for some Radon mea-
sure �, we have thatˇ̌̌

ˇ̌̌ x2Z
x1

w.x/ dx

ˇ̌̌
ˇ̌̌ � � .Œx1; x2�/ for all a < x1 < x2 < b. (7.112)

Then

bZ
a

jw.x/j dx � � ..a; b// : (7.113)

Proof First observe that the assumptions of the lemma also hold if the closed in-
terval on the right-hand side of (7.112) is replaced by an open interval. We have
that ˇ̌̌

ˇ̌̌ x2Z
x1

w.x/ dx

ˇ̌̌
ˇ̌̌ D lim

"!0

ˇ̌̌
ˇ̌̌ x2�"Z
x1C"

w.x/ dx

ˇ̌̌
ˇ̌̌

� lim
"!0

� .Œx1 C "; x2 � "�/ D � ..x1; x2// :

Secondly, since w is in L1, it can be approximated by piecewise constant functions.
Let v be a piecewise constant function with discontinuities located at a D x0 <

x1 < � � � < xN D b, and

bZ
a

jw.x/ � v.x/j dx � ":

Then we have

bZ
a

jw.x/j dx �
bZ
a

jw.x/ � v.x/j C
bZ
a

jv.x/j dx

� "C
X
i

xiZ
xi�1

jv.x/j dx

D "C
X
i

ˇ̌̌
ˇ̌̌ xiZ
xi�1

v.x/ dx

ˇ̌̌
ˇ̌̌

3 A Borel measure � is regular if it is outer regular on all Borel sets (i.e., �.B/ D inff�.A/ j
A � B;A openg for all Borel sets B) and inner regular on all open sets (i.e., �.U / D supf�.K/ j
K � U;K compactg for all open sets U ).
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� "C
X
i

ˇ̌̌
ˇ̌̌ xiZ
xi�1

.v.x/ �w.x// dx
ˇ̌̌
ˇ̌̌C

X
i

ˇ̌̌
ˇ̌̌ xiZ
xi�1

w.x/ dx

ˇ̌̌
ˇ̌̌

� "C
bZ
a

jv.x/ � w.x/j dx C
X
i

� ..xi�1; xi //

� 2"C � ..a; b// :

Since " can be made arbitrarily small, this proves the lemma. �

Next we need two results that state how well the semigroup is approximated
firstly by the solution of a Riemann problem with states that are close to the initial
state for the semigroup, and secondly by the solution of the linearized equation. To
define this precisely, let !0 be a function in D, fix a point x on the real line (which
will remain fixed throughout the next lemma and its proof), and let !.y; t/ be the
solution of the Riemann problem

!t C f .!/y D 0; !.y; 0/ D
(
!0.x�/ for y < 0,

!0.xC/ for y � 0.

(If !0 is continuous at x, then !.y; t/ D !0.x/ is constant.) Define QA D
df .!0.xC//, and let Qu be the solution of the linearized equation

Qut C QA Quy D 0; Qu.y; 0/ D !0.y/: (7.114)

Furthermore, define Ou.y; t/ by

Ou.y; t/ D
(
!.y � x; t/ for jy � xj � �?t ,

!0.y/ otherwise.
(7.115)

Then we can state the following lemma.

Lemma 7.18 Let !0 2 D. Then we have

1

h

xC��h�?Z
x��Ch�?

j.Sh!0/ .y/ � Ou.y; h/j dy D O .1/T:V:.x��;x/[.x;xC�/ .!0/ ; (7.116)

1

h

xC��h�?Z
x��Ch�?

j.Sh!0/ .y/ � Qu.y; h/j dy D O .1/
�
T:V:.x��;xC�/ .!0/

�2
; (7.117)

for all x and all positive h and � such that x � � C h�? < x C � � h�?.
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Proof We first prove (7.117). In the proof of this we shall need the following gen-
eral result:

Let Nv be the solution of Nvt C f . Nv/y D 0 with Riemann initial data

Nv.y; 0/ D
(
ul for y < 0,

ur for y � 0,

for some states ul;r 2 ˝. We have that this Riemann problem is solved by waves
separating constant states ul D v0; v1; : : : ; vn D ur . Let uc be a constant in ˝ and
set Ac D df .uc/. Assume that ul and ur satisfy

Ac .ul � ur/ D ck .ul � ur/ I
i.e., ck is the kth eigenvalue and ul � ur is the kth eigenvector of Ac . Let Qv be
defined by

Qv.y; t/ D
(
ul for y < ckt ,

ur for y � ckt

( Qv solves ut CAcuy D 0 with a single jump at y D 0 from ul to ur as initial data).
We wish to estimate

I D 1

t

�?tZ
��?t

j Nv.y; t/ � Qv.y; t/j dy:

Note that since Nv and Qv are equal outside the range of integration, the limits in the
integral can be replaced by 
1.

Due to the hyperbolicity of the system, the vectors frj .u/gnjD1 form a basis in

Rn, and hence we can find unique numbers N"l;rj such that

ur � ul D
nX

jD1
N"lj rj .ul/ D

1X
jDn

N"rj rj .ur/: (7.118)

From ur � ul D "crk.u
c/ for some "c it follows that

N"li D li .ul / �
nX

jD1
N"lj rj .ul/

D li .ul / � .ul � ur/
D .li .ul / � li .uc// � .ul � ur/C li .u

c/ � .ul � ur/
D .li .ul / � li .uc// � .ul � ur/C "cli .u

c/ � rk.uc/
D .li .ul / � li .uc// � .ul � ur/; i ¤ k:

Thus we conclude (using an identical argument for the right state) thatˇ̌ N"li ˇ̌ � C jul � ur j jul � ucj ; i ¤ k;

j N"ri j � C jul � ur j jur � ucj ; i ¤ k:
(7.119)
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Let "i denote the strength of the i th wave in Nv. Then, by construction of the solution
of the Riemann problem, for i < k we have that

ˇ̌
"i � N"li

ˇ̌ � C
	
jvi�1 � ul j2 C jvi � ul j2



� C jul � ur j2 ;

while for i > k we find that

j"i � N"ri j � C jul � ur j2 ;

for some constant C . Assume that the k-wave in Nv moves with speed in the inter-
val Œk; Nk�; i.e., if the k-wave is a shock, then k D Nk D �k .vk�1; vk/, and
if the wave is a rarefaction wave, then k D k.vk�1/ and Nk D k.vk/. Set
s D min.k; Qk/ and Ns D max. Nk; Qk/. Then we can write I as

I D 1

t

� sZ
�1

jul � Nv.y; t/j dy

C
NsZ

s

j Ov.y; t/ � Nv.y; t/j dy C
1Z

Ns
jur � Nv.y; t/j dy

�

D I1 C I2 C I3:

Next we note that the first integral above can be estimated as

I1 � C

k�1X
iD1

jvi � ul j � C

k�1X
iD1

j"i j � C

�k�1X
iD1

ˇ̌ N"li ˇ̌C jur � ul j2
�
;

and similarly,

I3 � C

� nX
iDkC1

j N"ri j C jul � ur j2
�
:

Using (7.119), we obtain

I1 C I3 � C jul � ur j .jul � ucj C jur � ucj C jul � ur j/
� C jul � ur j .jul � ucj C jur � ucj/ ; (7.120)

for some constant C . It remains to estimate I2. We first assume that the k-wave in
Nv is a shock wave and that ck > �k.vk�1; vk/. Then

I3 D �
ck � �k .vk�1; vk/

� jul � vkj
� C jul � vkj .juc � vk�1j C juc � vkj/
� C jul � ur j .jul � ucj C jur � ucj C jvk � ur j C jvk�1 � ul j/ ;
� C jul � ur j .jul � ucj C jur � ucj C C jul � ur j .jul � ucj C jur � ucj//
� C jul � ur j .jul � ucj C jur � ucj/ (7.121)
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by the above estimates for jvk � ur j and jvk�1 � ul j. If ck � �k .vk�1; vk/ or the
k-wave is a rarefaction wave, we similarly establish (7.121). Combining this with
(7.120), we find that

I � C jul � ur j .jul � ucj C jur � ucj/ : (7.122)

Having established this preliminary estimate, we turn to the proof of (7.117). Let
N!0 be a piecewise constant approximation to !0 such that

N!0.x˙/ D !0.x˙/;
xC�Z
x��

j N!0.y/ � !0.y/j dy � �;

T:V:.x��;xC�/ . N!0/ � T:V:.x��;xC�/ .!0/ : (7.123)

Furthermore, let v be the solution of the linear hyperbolic problem

vt C QAvy D 0; v.y; 0/ D N!0.y/;
where again QA D df .!0.xC//. Let the eigenvalues and the right and left eigenvec-
tors of QA be denoted by Qk , Qrk , and Qlk, respectively, for k D 1; : : : ; n, normalized
so that ˇ̌̌ Qlk ˇ̌̌ D 1; Qlk � Qrj D

(
0 for j ¤ k;

1 for j D k:
(7.124)

Then it is not too difficult to verify (see Sect. 1.1) that v.y; t/ is given by

v.y; t/ D
X
k

� Qlk � N!0.y � Qkt/
� Qrk: (7.125)

We can also construct v by front tracking. Since the eigenvalues are constant and
the initial data piecewise constant, front tracking will give the exact solution. Hence
v will be piecewise constant with a finite number of jumps occurring at xi .t/, where
we have that

d

dt
xi .t/ D Qk;� QA � QkI

�
.v.xi .t/C; t/ � v.xi .t/�; t// D 0;

for all t where we do not have a collision of fronts, that is, for all but a finite number
of t’s. Now we apply the estimate (7.122) to each individual front xi . Then we
obtain, introducing v˙

i D v.xi .t/˙; t/,
xC���?"Z
x��C�?"

j.S"v. � ; �// .y/ � v.y; � C "/j dy

� "O .1/
X
i

ˇ̌
vC
i � v�

i

ˇ̌ �ˇ̌
vC
i � !0.xC/ˇ̌C jv�

i � !0.xC/j�
� "O .1/T:V:.x��;xC�/ . N!0/

X
i

ˇ̌
vC
i � v�

i

ˇ̌
� "O .1/

�
T:V:.x��;xC�/ .!0/

�2
: (7.126)
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Recall that QA D df .!0.xC// and that Qu was defined by (7.114), that is,

Qut C QA Quy D 0; Qu.y; 0/ D !0.y/: (7.127)

In analogy to formula (7.125) we have that Qu satisfies

Qu.y; t/ D
X
k

� Qlk � !0.y � Qkt/
� Qrk: (7.128)

Regarding the difference between Qu and v, we find that

xC���?hZ
x��C�?h

jv.y; h/ � Qu.y; h/j dy (7.129)

D
xC���?hZ
x��C�?h

ˇ̌̌
ˇX
k

	 Qlk � . N!0 � !0/ .y � Qkh/



Qrk
ˇ̌̌
ˇ dy

� O .1/
xC�Z
x��

j N!0.y/ � !0.y/j dy

� O .1/ �: (7.130)

By the Lipschitz continuity of the semigroup we have that

xC���?hZ
x��C�?h

jSh N!0.y/ � Sh!0.y/j dy � L

xC�Z
x��

j N!0.y/ � !0.y/j dy � L�: (7.131)

Furthermore, by Lemma 7.15 with a D x � �, b D x C �, T D h, and t D 0, and
using (7.126), we obtain

1

h

xC���?hZ
x��C�?h

j.Sh N!0/ .y/ � v.y; h/j dy

� O .1/
h

hZ
0

lim inf
"!0C

1

"

xC���?"Z
x��C�?"

j.S"v . � ; �// .y/ � v.y; � C "/j dy d�

� O .1/
�
T:V:.x��;xC�/ .!0/

�2
: (7.132)

Consequently, using (7.132), (7.131), and (7.130), we find that

1

h

xC��h�?Z
x��Ch�?

j.Sh!0/ .y/ � Qu.y; h/j dy

� O .1/
�
T:V:.x��;xC�/ .!0/

�2 C L�

h
C O .1/ �

h
:

Since � is arbitrary, this proves (7.117).



7.2 Uniqueness 359

Now we turn to the proof of (7.116). First we define z to be the function

z.y; t/ D
(
ul for y < t ,

ur for y � t ,

where jj � �?. Recall that Nv.y; t/ denotes the solution of Nvt C f . Nv/y D 0 with
Riemann initial data

Nv.y; 0/ D
(
ul for y < 0,

ur for y � 0.

Then trivially we have that

�?tZ
��?t

jz.y; t/ � Nv.y; t/j dy � t O .1/ jul � ur j : (7.133)

Let N!0 be as (7.123) but replacing the TV bound by

T:V:.x��;x/[.x;xC�/ . N!0/ � T:V:.x��;x/[.x;xC�/ .!0/ :

Recall that Ou.y; t/ was defined in (7.115) by

Ou.y; t/ D
(
!.y � x; t/ for jy � xj � �?t ,

!0.y/ otherwise.

Let Jh be the set

Jh D ˚
y j h�? < jy � xj < � � h�?�;

and let Ov be the function defined by

Ov.y; t/ D
(

Ou.y; t/ for jx � yj � �?t ,

N!0.y/ otherwise.

Then we have that

xC���?hZ
x��C�?h

j Ov.y; h/ � Ou.y; h/j dy �
Z
Jh

j N!0.y/ � !0.y/j dy � �: (7.134)

Note that the bound (7.131) remains valid. We need a replacement for (7.126). In
this case we wish to estimate

I D
xC���?"Z
x��C�?"

j.S"v. � ; �// .y/ � Nv.y; � C "/j dy:
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For jx � yj > �?t , the function Nv.y; t/ is discontinuous across lines located at
xi . In addition, it may be discontinuous across the lines jx � yj D �?t . Inside the
region jx � yj � �?t , v is an exact entropy solution, coinciding with the semigroup
solution. Using this and (7.133), we find that

I D
� x��?�Z
x��C�?"

C
xC���?"Z
xC�?�

�
j.S�C" N!0/ .y/ � N!0.y/j dy

C
xC�?�Z
x��?�

j.S" Ou. � ; �// .y/ � Ou.y; � C "/j dy

� "O .1/
� X

jxi�xj<�?�
j N!0 .xiC/ � N!0 .xi�/j

�

C L

� xZ
x�2�?�

j N!0.y/ � ul j dy C
xC2�?�Z
x

j N!0.y/ � ur j dy
�

� "O .1/T:V:.x��;x/[.x;xC�/ .!0/ : (7.135)

Now using Lemma 7.15, we find that

1

h

xC���?hZ
x��C�?h

j.Sh N!0/ .y/ � Nv.y; t/j dy

� O .1/
h

hZ
0

lim inf
"!0C

1

"

xC���?"Z
x��C�?"

j.S" Nv . � ; �// .y/ � Nv.y; � C "/j dy d�

� O .1/T:V:.x��;x/[.x;xC�/ .!0/ : (7.136)

As before, since � is arbitrary, (7.131), (7.134), and (7.136) imply (7.116). �

Remark 7.19 Note that if !0 is continuous at x, then Lemma 7.18 and (7.117) say
that the linearized equation gives a good local approximation of the action of the
semigroup. If !0 has a discontinuity at x, then

T:V:hx��;xC�i .!0/

does not become small as � tends to zero; hence we must resort to (7.116) in this
case. Since the total variation of every function in D is small, (7.117) is a much
stronger estimate than (7.116).

Now that the preliminary technicalities are out of the way, we can set about
proving that an entropy solution coincides with the semigroup.

Let u be an entropy solution. To prove that u. � ; t/ D St u0, it suffices to show,
applying Lemma 7.15, that

lim inf
h!0

1

h
kShu. � ; t/ � u. � ; t C h/kL1.Œa;b�/ D 0; (7.137)

for all a < b, and for all t 2 Œ0; T � n N .
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Assume therefore that t … N . Then by the structure theorem, see [193, Theo-
rem 5.9.6], there exists a null set N � Œ0; T � such that outside that set, u either is
continuous or has a jump discontinuity (as a function of x). Therefore, we split the
argument into two cases, one in which u has a jump discontinuity, and one in which
u is continuous or has a small jump in the sense that it is not in the set Bt;".

Consider first a point .x; t/ where u has jump discontinuity.4 By condition B
there exist ul;r 2 ˝ and � such that the limit (7.98) holds when U is defined by
(7.97). Using a change of variables, we find that

lim
h!0C

1

h

xC�?hZ
x��?h

ju.y; t C h/� U.y; t C h/j dy

D lim
h!0C

�?
� 0Z

�1�=�?
ju .x C hC �?hy; t C h/ � ul j dy

C
1�=�?Z
0

ju .x C hC �?hy; t C h/ � ur j dy
�

D 0;

by Lemma 7.16. Hence for small positive h, we have that

1

h

xC�?hZ
x��?h

ju.y; t C h/ � U.y; t C h/j dy � Q"; (7.138)

for some small Q" to be determined later. By Lemma 7.14 we haveU.y; s/ D Ou.y; s�
t/, where Ou is defined by (7.115) with !0.y/ D u.y; t/, and U is defined by (7.97),
in some forward neighborhood of .x; t/. Then using (7.138) and (7.116), we obtain

1

h

xC�?hZ
x��?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

� Q"C 1

h

xC�?hZ
x��?h

j.Shu. � ; t// .y/ � U.y; t C h/j dy

� Q"C O .1/T:V:.x�2�?h;x/[.x;xC2�?h/ .u. � ; t//
� 2 Q"; (7.139)

for all h sufficiently small, since we compute the total variation on a shrinking
interval excluding the jump in u at x.

Now we consider points .x; t/ where u either is continuous or has a small jump
discontinuity. Hence we can choose an interval hc; d i centered at x such that Bt;" \

4 The following argument is valid for every jump discontinuity, but will be applied only to jumps
in Bt;".
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.c; d/ D ;. Recall that Bt;", defined in (7.102), is the set of points where u. � ; t/
has a jump larger than ". Let the family of trapezoids �h be defined by

�h D ˚
.y; s/ j s 2 Œt; t C h�; y 2 .c C �?.s � t/; d � �?.s � t// �:

Now we claim that for h sufficiently small, we have that for all .y; s/ 2 �h,
ju.y; s/ � u.x; t/j � 2"C T:V:.c;d/ .u. � ; t// : (7.140)

To prove this, we argue as follows: By Lemma 7.14, discontinuities in u cannot
propagate faster than �?; hence u. � ; t/ is continuous in the lower corners of �h, and
the estimate surely holds for .y; s/ located there. We must prove (7.140) for .y; s/
in a region ŒcCh0; d�h0�� Œt; tCh�, where h0 is given and we can be free to choose
h small. Now also Œc C h0; d � h0� \ B";t D ;; hence for each y 2 Œc C h0; d � h0�
we can find �y , hy such that the estimate (7.140) is valid for

.y; s/ 2 .y � �y; y C �y/ � �t; t C hy
�
:

Now we can cover the compact interval Œc C h0; d � h0� with a finite number of
intervals of the form .yi � �yi ; yi C �yi /, and choose

h D min
i
hyi :

Then we obtain (7.140) for .y; s/ in Œc C h0; d � h0� � Œt; t C h�.
Now we must compare u and Qu near .x; t/. The eigenvectors of QA D df .u.x; t//

are normalized according to (7.124). Observe that trivially

u D
X
k

	 Qlk � u



Qrk:

Then

d��?hZ
cC�?h

ju.y; t C h/ � Qu.y; t C h/j dy

�
X
k

d��?hZ
cC�?h

ˇ̌̌ Qlk � �u.y � Qkh; t/ � u.y; t C h/
�ˇ̌̌
dy:

(7.141)

To aid us here we use Lemma 7.17. Let x1 < x2 be in the interval .cC�?h; d��?h/.
Then we shall estimate

Ek D
x2Z
x1

Qlk � �u.y; t C h/� u.y � Qkh; t/
�
dy:

If we integrate the conservation law over the region˚
.y; s/ j y 2 Œx1 � .s � .t C h// Qk; x2 C .s � .t C h// Qk�; s 2 Œt; t C h�

�
;
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we find that

x2Z
x1

u.y; t C h/dy �
x2CQkhZ
x1�Qkh

u.y; t/dy C
tChZ
t

.f .u/ � Qku/.x2 C .s � .t C h// Qk; s/ds

�
tChZ
t

.f .u/ � Qku/.x1 � .s � .t C h// Qk; s/ ds D 0:

Taking the inner product with Qlk, we obtain

Ek D
tChZ
t

Qlk � .f .u/ � Qku/.x2 C .s � .t C h// Qk; s/ ds

�
tChZ
t

Qlk � .f .u/ � Qku/.x1 � .s � .t C h// Qk; s/ ds

D
tChZ
t

Qlk � �f .u2/ � f .u1/� Qk.u2 � u1/
�
ds; (7.142)

where we have defined

u1 D u
�
x1 � .s � .t C h// Qk; s

�
; u2 D u

�
x2 C .s � .t C h// Qk; s

�
:

Let A? denote the matrix

A? D
1Z
0

df
�
su2 C .1 � s/u1

�
ds � QA:

Then

Qlk � �f .u2/ � f .u1/� Qk.u2 � u1/
� D Qlk � �A?.u2 � u1/

C QA.u2 � u1/ � Qk .u2 � u1/
�

D Qlk � A?.u2 � u1/: (7.143)

Since

kA?k � O .1/ .ju1 � u.x; t/j C ju2 � u.x; t/j/ ;
(7.142) and (7.143) yield

jEkj � O .1/
tChZ
t

.ju1 � u.x; t/j C ju2 � u.x; t/j/ ju2 � u1j ds

� O .1/ sup
.y;s/2�h

ju.y; s/ � u.x; t/j

�
tChZ
t

T:V:.x1�.s�.tCh// Qk;x2C.s�.tCh// Qk/ .u. � ; s// ds:
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Therefore,ˇ̌̌
ˇ̌̌ x2Z
x1

.u.y; t C h/ � Qu.y; t C h// dy

ˇ̌̌
ˇ̌̌

�
X
k

jEkj

� O .1/ sup
.y;s/2�h

ju.y; s/ � u.x; t/j

�
tChZ
t

X
k

T:V:.x1�.s�.tCh// Qk;x2C.s�.tCh// Qk/ .u. � ; s// ds: (7.144)

Returning to (7.141) and using Lemma 7.17, we find that

d��?hZ
cC�?h

ˇ̌
u.y; t C h/ � Qu.y; t C h/

ˇ̌
dy

� O .1/ sup
.y;s/2�h

ju.y; s/ � u.x; t/j

�
tChZ
t

T:V:ŒcC�?.s�t /;d��?.s�t /� .u. � ; s// ds:

(7.145)

Now we use (7.117), (7.145), and (7.140) to obtain

d��?hZ
cC�?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

�
d��?hZ
cC�?h

� j.Shu. � ; t// .y/ � Qu.y; t C h/j C j Qu.y; t C h/ � u.y; t C h/j � dy
� O .1/ h

�
T:V:.c;d/ .u. � ; t//�2

C O .1/
�
2"C T:V:Œc;d � .u. � ; t//�

�
tChZ
t

T:V:ŒcC�?.s�t /;d��?.s�t /� .u. � ; s// ds: (7.146)

By Lemma 7.13, the set Bt;" contains only a finite number of points; x1 < x2 <

� � � < xN , where u. � ; t/ has a discontinuity larger than ". We can cover the set
Œa; b� n [i fxig by a finite number of open intervals .cj ; dj /, j D 1; : : : ;M , such
that:

(a) xi … [j .cj ; dj / D ; for i D 1; : : : ; N .
(b) T:V:.cj ;dj / .u . � ; t// � 2" for j D 1; : : : ;M .
(c) Every x 2 Œa; b� is contained in at most two distinct intervals .ci ; di /.
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We have established that for sufficiently small h,

1

h

xiC�?hZ
xi��?h

j.Shu. � ; t// .y/ � u.y; t C h/j � "

N
;

by (7.139) choosing Q" D "=.2N /. Also,

dj��?hZ
cjC�?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

� O .1/ "
tChZ
t

T:V:.cjC�?.s�t /;dj��?.s�t // .u. � ; s// ds

C O .1/ h"T:V:.cj ;dj / .u. � ; t//

for all i , j , and " > 0. Combining this, we find that

1

h

bZ
a

j.Shu. � ; t// .y/ � u.y; t C h/j dy

�
X
i

1

h

xiC�?hZ
xi��?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

C
X
j

dj��?hZ
cjC�?h

j.Shu. � ; t// .y/ � u.y; t C h/j dy

� "C O .1/ "
h

tChZ
t

T:V: .u. � ; s// ds C "T:V: .u. � ; t//

� O .1/ ":

Since " can be arbitrarily small, (7.137) holds, and we have proved the following
theorem:

Theorem 7.20 Let fj 2 C2.Rn/, j D 1; : : : ; n. Consider the strictly hyperbolic
equation ut C f .u/x D 0. Assume that each wave family is either genuinely non-
linear or linearly degenerate. For every u0 2 D, defined by (7.94), the initial value
problem

ut C f .u/x D 0; u.x; 0/ D u0.x/;

has a unique weak entropy solution satisfying conditions A–C, see Sect. 7.2. Fur-
thermore, this solution can be found by the front-tracking construction.
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7.3 Notes

The material in Sect. 7.1 is taken almost entirely from the fundamental result of
Bressan, Liu, and Yang [33]; there is really only an O .jej/ difference.

Stability of front-tracking approximations to systems of conservation laws was
first proved by Bressan and Colombo in [28], in which they used a pseudopolygon
technique to “differentiate” the front-tracking approximation with respect to the
initial location of the fronts. This approach was later used to prove stability for
many special systems; see [47], [8], [3], [4].

The same results as those in Sect. 7.1 of this chapter have also been obtained by
Bressan, Crasta, and Piccoli, using a variant of the pseudopolygon approach [29].
This leads to many technicalities, and [29] is heavy reading indeed!

The material in Sect. 7.2 is taken from the works of Bressan [23–26] and cowork-
ers, notably Lewicka [32], Goatin [30], and LeFloch [31].

There are few earlier results on uniqueness of solutions to systems of conserva-
tion laws; most notable are those by Bressan [20], where uniqueness and stability
are obtained for Temple class systems where every characteristic field is linearly
degenerate, and in [22] for more general Temple class systems.

Continuity in L1 with respect to the initial data was also proved by Hu and
LeFloch [100] using a variant of Holmgren’s technique. See also [77].

Stability for some non-strictly hyperbolic systems of conservation laws (these
are really only “quasisystems”) has been proved by Winther and Tveito [185] and
Klingenberg and Risebro [114].

We end this chapter with a suitable quotation:

This is really easy:

jwhat you havej � jwhat you wantj C jwhat you have � what you wantj

— Rinaldo Colombo, private communication

7.4 Exercises

7.1 Show that the solution of the Cauchy problem obtained by the front-tracking
construction of Chapt. 6 is an entropy solution in the sense of conditions A–C
in Sect. 7.2.

7.2 The proof of Theorem 7.8 was carried out in detail only in the genuinely non-
linear case. Do the necessary estimates in the case of a linearly degenerate
wave family.



Chapter 8

Conservation Laws with Discontinuous Flux
Functions

Of course it is happening inside your head, Harry,
but why on earth should that mean it is not real?
— Albus Dumbledore, in Harry Potter and the Deathly Hallows

The aim of this chapter is to give a brief introduction to scalar conservation laws
with a space-dependent flux function, where the spatial dependence of the flux can
have discontinuities. We shall restrict ourselves to one spatial dimension, both for
reasons of simplicity and because the theory is more complete in one dimension.

In one spatial dimension, a conservation law with a space-dependent flux can be
written

ut C f .x; u/x D 0; x 2 R; t > 0: (8.1)

Since the interpretation of f is the flux of u at the point x, there are many applica-
tions where the flux depends on the location. We give some simple examples that
are modeled by such conservation laws.

} Example 8.1
Traffic flow is a simple model in whcih conservation laws with space-dependent co-
efficients arise naturally. We refer to Example 1.6, and repeat the necessary notation
here.

Let � denote the density of cars on a long “one way” road. We normalize units,
so that � D 1 if the cars are packed bumper to bumper. Assume that the speed of
the cars is a decreasing function of the density v D v.�/. The speed of the cars
on an empty road (� D 0) is governed by the road conditions and the speed limits,
so that v.0/ D � , where � is a function of the position on the road. Furthermore,
it is reasonable to assume that v.1/ D 0. For simplicity we can then define v as
v.�/ D �.1 � �/. If the road conditions, and thereby � , vary with the position x,
then we end up with the conservation law

�t C .�.x/�.1 � �//x D 0; (8.2)

which is an example of a conservation law with an x-dependent flux function. On
the scale of continuum traffic, where the natural lengths are many times that of
a single car, the road conditions often vary discontinuously. }

367© Springer-Verlag Berlin Heidelberg 2015
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} Example 8.2
When extracting oil from an oil reservoir, one often injects water in order to main-
tain the pressure, and thereby to force out more oil. Assuming that we have two
phases, oil and water, present, the mass conservation of oil and water reads,

�st C ux D 0 and �.1 � s/t � vx D 0;

where (the unknown) s denotes the saturation, i.e., the fraction of the available
pore space occupied by oil, and u and v are the Darcy velocities of oil and water
respectively. The factor � denotes the fraction of the void space in the material,
commonly called the porosity. One often assumes that Darcy’s law holds,

u D �koilP 0
oil � g�oil and v D �kwaterP 0

water � g�water;
where k denotes the absolute permeability of the medium, g the gravitational con-
stant, phase the mobility, Pphase the pressure, and �phase the density. Here the sub-
script “phase” denotes either water or oil. If we assume that the two pressures are
the same, and that the total velocity q D u C v is constant (incompressibilty), we
can add the two conservation equations to obtain

�st C
�

oil.s/

oil.s/C water.s/
.q � k.x/gwater.s/��/

�
x

D 0; (8.3)

where�� D �water ��oil. The absolute permeability of the rock is often modeled as
a piecewise constant function of x, and therefore this is another example of a con-
servation law in which the flux function varies discontinuously. }
} Example 8.3
Since oil is much more viscous than water, water injection can lead to the formation
of thin “fingers” of water. In order to prevent this, one sometimes injects a mixture
of polymer and water instead of water only. This polymer is passively transported
with the water. In a “one-dimensional” homogeneous oil reservoir, conservation of
water and polymer is expressed through the system of conservation laws

st C f .s; c/x D 0;

.sc/t C .cf .s; c//x D 0;
(8.4)

where c denotes the concentration of the polymer in the water, and the flux function
f .s; c/ is a known function of the type in (8.3), where water is now a function of
both s and c. Introducing new coordinates .y; �/ by

@y

@x
D s;

@y

@t
D �f .s; c/; @�

@x
D 0; and

@�

@t
D 1;

the system (8.4) reads �
1

s

�
�

�
�
f .s; c/

s

�
y

D 0;

c� D 0:

(8.5)
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This change of independent variables is valid only for differentiable (classical) so-
lutions, whereas we know that we cannot expect solutions of conservation laws to
be even continuous. Therefore, we must interpret solutions in the weak sense. Nev-
ertheless, by [187, Thm. 2] there is a one-to-one correspondence between weak
solutions of (8.4) and weak solutions of (8.5). Hence if the initial polymer concen-
tration is discontinuous, (8.5) is another example of a conservation law with a flux
function depending discontinuously on the spatial location. }

We can always view an x-dependent flux as a flux function depending on a pa-
rameter � that in turn depends on x. In this way we write (8.1) as a system

ut C f .�; u/x D 0; �t D 0: (8.6)

This is a hyperbolic system with a Jacobian matrix 
@f

@u

@f

@�

0 0

!
;

which has the eigenvalues

1 D @f

@u
; 2 D 0:

So if @f
@u

D 0 for some values of � and u, the system is not strictly hyperbolic. This
is the cause of many difficulties when one is working with conservation laws with
x-dependent fluxes. In [176], Temple exhibited a simple example of a sequence of
approximate solutions without any uniform bound on the variation. This means that
when studying conservation laws of the type (8.6), one must use more powerful (and
complicated) tools. The “z-transform” used in this chapter is perhaps the simplest
(and least powerful) example of such a tool. Recently, compensated compactness
and variants of the “div-curl” lemma have taken the place of the “z-transform” in
proving convergence of approximations; see [107] for a recent example.

We emphasize that this chapter is meant to be an introduction to this topic and
does not contain the most general results.

8.1 The Riemann Problem

In this section we shall study the Riemann problem, that is, the initial value problem
in which the initial values consist of two constants separated by a jump discontinu-
ity. More precisely, this is the problem

(
ut C f .�l ; u/x D 0; u.x; 0/ D ul ; for x < 0,

ut C f .�r ; u/x D 0; u.x; 0/ D ur ; for x > 0,
(8.7)

where �l , �r , ul , and ur are constants. Riemann problems for conservation laws
have the simplest solutions that are not constant. Furthermore, by studying the
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solution of Riemann problems, we gain insight into the local behavior of typical
solutions. It turns out that solutions of Riemann problems can be used as a building
block in many numerical methods, in particular front tracking.

By a solution of (8.7) we mean a weak solution in the usual sense, i.e., u 2
L1loc.R � .0;1// is called a weak solution if for every test function ' 2 C1

0 .R �
Œ0;1//,

1Z
0

� 0Z
�1

�
u't C f .�l ; u/ 'x

�
dxC

1Z
0

�
u't C f .�r ; u/ 'x

�
dx

�
dt

C
Z
R

u.x; 0/'.x; 0/ dx D 0:

(8.8)

Now we shall first show that under reasonable assumptions on f , weak solutions
exist, and that if we require that weak solutions satisfy an additional entropy condi-
tion, then there exists only one weak solution.

Existence of a Solution

To show the existence of a solution, we start by observing that for x negative,u.x; t/
must be the solution of a scalar conservation law

vt C f .�l ; v/x D 0; (8.9)

with v.x; 0/ given by

v.x; 0/ D
(
ul for x < 0,

u0
l for x D 0,

where u0
l is a value to be determined. Similarly, for x positive, umust be the solution

of the scalar initial value problem

wt C f .�r ; w/x D 0; w.x; 0/ D
(
u0
r for x D 0,

ur for x > 0,
(8.10)

where u0
r is to be determined. Setting

u.x; t/ D
(
v.x; t/ for x < 0,

w.x; t/ for x > 0,
(8.11)

provided that v.0�; t/ and w.0C; t/ satisfy some extra condition, we find that this
will give a weak solution, since both v and w are weak solutions. Therefore, to find
a weak solution, we must find solutions of scalar Riemann problems v and w such
that this construction is possible.
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Now recall, or reread Sect. 2.2, that the solution to the scalar Riemann problem

vt C g.v/x D 0; v.x; 0/ D
(
vl x < 0;

vr x � 0;

is found by constructing the lower convex (if vl < vr ) or upper concave (if vl > vr )
envelope of g between vl and vr ; cf. Sect. 2.2. To make the notation less cumber-
some we introduce

Ng .vI vl ; vr / D
(
g_.vI vl ; vr / if vr < vl ,

g^.vI vl ; vr / if vl < vr .
(8.12)

In this notation the entropy solution v is given by

v.x; t/ D Ng0�1
	x
t

I vl ; vr


; t > 0: (8.13)

Nowwe turn to the Riemann problem (8.7). The left and right parts of u are v, given
by (8.9), and w, given by (8.10). If we are to form u by gluing together v and w,
then v must equal u0

l for x > 0, and w must equal u0
r for x < 0. In other words,

v must contain only waves of nonpositive speed, and w only waves of nonnegative
speed. To utilize these observations, we introduce the notation

fl .u/ D f .�l ; u/ and fr.u/ D f .�r ; u/

and define Nfl.uIul ; Qu/ and Nfr.uI Qu; ur/ analogously to (8.12).
Since v contains only waves of nonpositive speed, we must choose u0

l from the
set

Hl .ul/ D ˚ Qu j Nf 0
l .uIul ; Qu/ � 0 for all u between ul and Qu� : (8.14)

Similarly, since w must contain waves of nonnegative speed, we must choose u0
r

from the set

Hr .ur/ D ˚ Qu j Nf 0
r .uI Qu; ur/ � 0 for all u between ur and Qu� : (8.15)

There is another characterization of the admissible sets Hl and Hr that will be
useful. Let hl be defined by

hl .uIul/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

inf

(
h.u/

ˇ̌̌
h.u/ � fl .u/; h0.u/ � 0;

and h.ul / D fl .ul/

)
if u � ul ,

sup

(
h.u/

ˇ̌̌
h.u/ � fl .u/; h0.u/ � 0;

and h.ul/ D fl .ul/

)
if u � ul ,

(8.16)
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fl

u

ul

hl

fr

u

ur

hr

a b

Fig. 8.1 a hl (solid line) and fl (dotted line). b hr (solid line) and fr (dotted line)

and define hr by

hr .uIur/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

sup

(
h.u/

ˇ̌̌
h.u/ � fr.u/; h0.u/ � 0;

and h.ur/ D fr .ur/

)
if u � ur ,

inf

(
h.u/

ˇ̌̌
h.u/ � fr.u/; h0.u/ � 0;

and h.ul / D fl .ul/

)
if u � ul .

(8.17)

In these definitions, the function h appearing in the infima and suprema is assumed
to be continuous. In Fig. 8.1 we show an example of hl and hr . Using hl and hr
we can use the following alternative definition of the admissible sets Hl and Hr ,
namely

Hl .ul / D fu j hl .uIul/ D fl .u/g ; (8.18)

Hr .ur/ D fu j hr .uIur/ D fr .u/g : (8.19)

Since the jump in u at x D 0 is a discontinuity with zero speed, the Rankine–
Hugoniot condition says that for every weak solution we must have

f
�
�l ; u

0
l

� D f
�
�r ; u

0
r

� DW f�: (8.20)

We now have u0
l 2 Hl.ul / and u0

r 2 Hr.ur/, using (8.18) and (8.19). This can be
restated as

hl
�
u0
l ; ul

� D hr
�
u0
r ; ur

�
: (8.21)

Since the mapping u 7! hl .uIul/ is nonincreasing and u 7! hr .uIur/ is nonde-
creasing, the above equality, (8.21), will hold for at most one h value. Therefore, if
the graphs of hl and hr intersect, the flux value at x D 0 is determined by the flux
value at this intersection point. We label this flux value f�.

From these observations it also follows that if the graph of hl does not intersect
the graph of hr , we cannot hope to find a weak solution to the Riemann problem
(8.7). For instance, if

fl .u/ D e�u2 and fr.u/ D 2C e�u2 ;
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u

f

ul

hl

ur

hr

u′
l

u′
r

u×

Fig. 8.2 An example showing how to solve a Riemann problem of the type (8.7)

we cannot find any weak solution. Another important example for which we cannot
find any solution to the Riemann problem is

f 0
l .u/ � 0 and f 0

r .u/ � 0:

In this case hl .uIul/ D fl .ul/ and hr .uIur/ D fr .ur/, so unless these happen to
be equal, we cannot find any solution.

Furthermore, even if the flux value at the intersection is uniquely determined,
the actual values u0

l and u
0
r need not be. This is so since for u … Hl.ul / we have

h0
l .uIul/ D 0, and similarly, if u … Hr.ur/, then h0

r .uIur/ D 0. In other words,
hl and hr may both be constant on the interval where their graphs cross. In order to
resolve this nonuniqueness problem, we propose that u0

l and u
0
r be chosen such that

the variation of the solution u is minimal, subject to the above restrictions.
To be more concrete, we choose u0

l to be the unique value such that

jul � u0
l j is minimized, provided u0

l 2 Hl.ul/ and hl.u
0
l Iul / D f�. (8.22)

Similarly, we choose u0
r to be the unique value such that

jur � u0
r j is minimized, provided u0

r 2 Hr.ur/ and hl .u
0
r Iur/ D f�. (8.23)

These criteria for choosing u0
l and u

0
r are called theminimal jump entropy condition.

It is perhaps instructive to examine this condition in a little more detail. If the
graphs of hl and hr intersect in a single point u�, then u� 2 Hl.ul/ or u� 2 Hr.ur/.
If u� 2 Hl.ul/, then u0

l D u�, and if u� 2 Hr.ur/, then u0
r D u�. Assuming for

definiteness that ul < u� and u� … Hl.ul /, then there will be a smallest point Qu
in the interval Œul ; u�� such that the interval . Qu; u�� is not contained in Hl.ul/, and
Qu 2 Hl.ul /. It is clear that according to (8.22) we must choose u0

l D Qu.
In Fig. 8.2 we show how the Riemann problem from Fig. 8.1 is solved in this

way. Here u� 2 Hl.ul / so u0
l D u�. Also the point minimizing ju0

r � ur j is clearly
ur , so that u0

r D ur . Finally the Riemann problem is solved by a shock of negative
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speed from ul to u0
l , and then by a discontinuity at x D 0 from u0

l to ur . There is
some more important information to be extracted from the minimal jump entropy
condition. Since the Riemann problem with ul D u0

l and ur D u0
r is solved by

a single stationary discontinuity, in the interval spanned by u0
l and u

0
r , we must have

hl
�
uIu0

l

� D f�, or hr
�
uIu0

r

� D f�. (8.24)

If u0
l < u

0
r , since hl. � Iu0

l / is the largest nonincreasing continuous function less than
or equal to fl such that hl .u0

l Iu0
l / D fl .u

0
l /, then

hl
�
uIu0

l

� D f� ) fl .u/ > f
� for u 2 .u0

l ; u
0
r /

and

hr
�
uIu0

r

� D f� ) fr .u/ > f
� for u 2 .u0

l ; u
0
r /,

since hr. � Iu0
r / is the largest continuous nondecreasing function smaller than or

equal to fr . Similarly, if u0
r < u

0
l , then

hl
�
uIu0

l

� D f� ) fl .u/ < f
� for u 2 .u0

r ; u
0
l /

and

hr
�
uIu0

r

� D f� ) fr .u/ < f
� for u 2 .u0

r ; u
0
l /.

Summing up, we have

u0
l � u0

r )
8<
:
fl .u/ � fl .u

0
l / for all u 2 Œu0

l ; u
0
r � or

fr.u/ � fr.u
0
r / for all u 2 Œu0

l ; u
0
r �,

(8.25)

u0
r � u0

l )
8<
:
fl .u/ � fl .u

0
l / for all u 2 Œu0

r ; u
0
l � or

fr.u/ � fr.u
0
r / for all u 2 Œu0

r ; u
0
l �.

(8.26)

Furthermore, the implications (8.25) and (8.26) actually imply that u0
l and u

0
r are

chosen according to the minimal jump entropy condition.

Lemma 8.4 If the values u0
l and u

0
r are chosen according to the minimal jump

entropy condition (8.22), (8.23), then for every constant c,

Fr
�
u0
r ; c
� � Fl

�
u0
l ; c
� � jfr.c/ � fl.c/j ; (8.27)

where Fl and Fr are the Kružkov entropy fluxes. Thus

Fl.u; c/ D sign .u � c/ .fl .u/� fl .c// ;
Fr .u; c/ D sign .u � c/ .fr .u/� fr.c// :
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Proof If sign
�
u0
l � c� D sign

�
u0
r � c�, then the left-hand side of (8.27) equals

sign
�
u0
l � c� �fr �u0

r

� � fr .c/ � fl
�
u0
l

�C fl.c/
� D sign

�
u0
l � c� .fl .c/ � fr .c// ;

and the inequality clearly holds.
If u0

l � c � u0
r , then (8.27) reads

2f� � fl .c/ � fr.c/ � jfr .c/ � fl .c/j ;

or

2f� � max ffl .c/; fr .c/g � min ffl .c/; fr .c/g
� max ffl .c/; fr .c/g � min ffl .c/; fr .c/g :

In other words, (8.27) is the same as

f� � max ffl .c/; fr .c/g ;

and it is immediate that (8.25) implies this.
If u0

r � c � u0
l , then (8.27) reads

f� � min ffl .c/; fr .c/g ;

which is implied by (8.26). �

From the proof of Lemma 8.4 it is also transparent that the condition (8.27) does
not imply the minimal jump entropy condition (8.25) and (8.26). However, define
the pair of “constants” cl and cr (these numbers depend on u0

l and u
0
r ) by requiring

cl
�
u0
l ; u

0
r

� D
8<
:min argŒu0

l
;u0
r �
fl .u/ if u0

l � u0
r ,

max argŒu0
r ;u

0
l
� fl .u/ if u0

l � u0
r ,

(8.28)

cr
�
u0
l ; u

0
r

� D
8<
:min argŒu0

l
;u0
r �
fr .u/ if u0

l � u0
r ,

max argŒu0
r ;u

0
l
� fr .u/ if u0

l � u0
r .

(8.29)

Using the arguments of the proof of Lemma 8.4, it readily follows that the minimal
jump entropy condition is equivalent to

Fr
�
u0
r ; cr

� � Fl
�
u0
l ; cl

� � jfr .cr / � fl .cl /j : (8.30)

Furthermore, for every c between u0
l and u

0
r , the inequality

Fr
�
u0
r ; c
� � Fl

�
u0
l ; c
� � Fr

�
u0
r ; cr

� � Fl
�
u0
l ; cl

�
;

holds.
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Remark 8.5 In a special case (8.27) actually implies that the values u0
l and u

0
r

are chosen according to the minimal jump entropy condition. Assume that there
is a value Ou such that both fl .u/ and fr.u/ have a global maximum (minimum) at
Ou, and that fl;r is increasing (decreasing) for u < Ou and decreasing (increasing) for
u > Ou. To see this, we recall that (8.27) holds trivially if c is not between u0

l and
u0
r ,while if c is between these values, (8.27) reads(

f� � max ffl .c/; fr .c/g ; if u0
l < u

0
r ,

f� � max ffl .x/; fr .c/g ; if u0
l > u

0
r .

(8.31)

By assuming that fl .u0
l / D fr.u

0
r /, that the above holds, and that the flux functions

fl;r have a single commonmaximum, the reader can check that (8.31) implies (8.25)
and (8.26). Actually, this implication holds for more general flux functions as well;
cf. the notorious “crossing condition” in [110].

Although it seemingly has nothing to do with the solution of the Riemann prob-
lem, at this point it is convenient to state and prove the following lemma, which will
play an important role in proving well-posedness in Sect. 8.3.

Lemma 8.6 Assume that the pairs .u0
l ; u

0
r / and .v

0
l ; v

0
r / are both chosen according

to the minimal jump entropy condition. Then

Q D Fr
�
u0
r ; v

0
r

� � Fl
�
u0
l ; v

0
l

� � 0: (8.32)

Proof Since fl .v0
l / D fr.v

0
r / and fl.u

0
l / D fr.u

0
r /, if

sign
�
u0
l � v0

l

� D sign
�
u0
r � v0

r

�
;

thenQ D 0. Assume therefore that

sign
�
u0
l � v0

l

� D �1 and sign
�
u0
r � v0

r

� D 1:

In this case,

Q D �
fr
�
u0
r

� � fr
�
v0
r

��C �
fl
�
u0
l

� � fl
�
v0
l

��
D 2

�
fr
�
u0
r

� � fr
�
v0
r

��
(8.33)

D 2
�
fl
�
u0
l

� � fl
�
v0
l

��
; (8.34)

since fl .v0
l / D fr.v

0
r / and fl.u

0
l / D fr.u

0
r /. Moreover

u0
l � v0

l and v0
r � u0

r :

Then either u0
l and u

0
r are both in the interval Œv0

r ; v
0
l � (case a), or v0

l and v
0
r are in

the interval Œu0
l ; u

0
r � (case b), or v

0
r � u0

l � v0
l � u0

r (case c), or u
0
l � v0

r � u0
r � v0

l

(case d).
If case a holds, then (8.26) for v0

l and v
0
r gives that either

fl
�
u0
l

� � fl
�
v0
l

�
or fr

�
u0
r

� � fr
�
v0
r

�
:

It is easy to see that this coupled with either (8.33) or (8.34) will giveQ � 0.
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If case b holds, then (8.26) for u gives that either

fl
�
v0
l

� � fl
�
u0
l

�
or fr

�
v0
r

� � fr
�
u0
r

�
:

So againQ � 0.
Recall that case c is defined to hold if

v0
r � u0

l � v0
l and u0

l � v0
l � u0

r :

Using the first inequality and (8.26) for v, we find that

fl
�
u0
l

� � fl
�
v0
l

�
or fr

�
u0
r

� � fr
�
v0
r

�
;

both of which give the desired conclusion.
Finally, in case d, we have

u0
l � v0

r � u0
r and v0

r � u0
r � v0

l :

Using the first inequality with (8.25) gives

fl
�
v0
l

� � fl
�
u0
l

�
or fr

�
v0
r

� � fr
�
u0
r

�
;

thereby completing the proof. �

} Example 8.7
Now we pause to consider two examples. First consider the Riemann problem for
the equation

ut C
�
1

2
u2 C �

�
x

D 0; (8.35)

where

u0.0/ D
(
ul for x < 0,

ur for x > 0,
and �.x/ D

(
�l for x < 0,

�r for x > 0.

If ul � 0, then

Hl .ul/ D .�1; 0�;

and if ul � 0, then

Hl .ul/ D .�1;�ul � [ fulg :

Similarly, if ur � 0, then

Hr .ur/ D f�urg [ Œ�ur ;1/ ;
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and if ur � 0, then

Hr .ur/ D Œ0;1/:

Now it is easy to construct the solution for any initial data and any � . Assume that
�l D �1, �r D 1, ul D 1, and ur D 1. Then

hl .uI �1/ D
(
1
2
u2 � 1 if u � �1,

� 1
2

if u � �1, and hr .uI 1/ D
(
1 if u � 0,
1
2
u2 C 1 if u � 0.

The graphs of hl and hr intersect in a single point where the flux equals 1 and u < 0.
Thus we obtain u0

l as the solution of

hl
�
u0
l I �1� D 1; u0

l < 0;

and thus u0
l D �2. Following the general construction, we see that u0

r D 0. The
complete solution thus consists of the solution of a scalar Riemann problem for the
equation

vt C
�
1

2
v2
�
x

D 0; v.x; 0/ D
(
1 for x � 0,

�2 for x � 0,

glued together with the solution of the scalar Riemann problem

wt C
�
1

2
w2
�
x

D 0; w.x; 0/ D
(
0 for x � 0,

1 for x � 0.

From the general solution procedure for scalar Riemann problems, i.e., taking en-
velopes, we see that

v.x; t/ D
(
1 for x � �t=2,
�2 for x > �t=2,

and w.x; t/ D

8̂̂
<
ˆ̂:
0 for x � 0,

x=t for 0 < x � t ,

1 for t < x.

Finally, we set

u.x; t/ D
(
v.x; t/ for x < 0,

w.x; t/ for x > 0.

This solution is depicted in Fig. 8.3. To the left we see the solution path in the
.u; f /-plane, and to the right u.x; t/. Perhaps the most important lesson to be
learned from this example is that the variation of the solution u is not bounded
by the variation of the initial data u.x; 0/. Even though this is so, it is natural to ask
whether the variation of u is bounded by the variation of u0 plus the variation of � .
From the construction of the solution of the Riemann problem, the total variation of
f .�; u/ is bounded by the total variation of f .�; u0/. Nevertheless, an explicit ex-
ample shows that it may happen that the total variation of u0 is finite, yet for a finite
T > 0, we have T:V: .u. � ; T // D 1; see [1]. We shall return to these observations
in a later section. }
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Fig. 8.3 An example of the solution of a Riemann problem. a The solution path in .u; f / space.
b u.x; t/

} Example 8.8
As a second example we study the traffic flow model

ut C .�.x/4u.1� u//x D 0; (8.36)

where

u.x; 0/ D
(
ul for x < 0,

ur for x � 0,
�.x/ D

(
�l for x < 0,

�r for x � 0.

For simplicity, we assume that �l and �r are positive. Now

Hl .ul / D
(

fulg [ Œ1 � ul ;1/ if ul � 1=2,

Œ1=2;1/ if ul � 1=2,

and

Hr .ur/ D
(
.�1; 1=2� if ur � 1=2,

.�1; 1 � ur � [ furg if ur � 1=2.

We shall now detail the complete solution of the Riemann problem in this case. This
is instructive, since (8.36) exhibits many of the features of Riemann solutions for
general flux functions.

We describe the solution by listing what happens in various cases, depending on
�l , �r , ul , and ur . Note first that f .�; u/ has a maximum at u D 1=2 for all � and
that f .�; 1=2/ D � . We start by assuming that

ul � 1

2
: (8.37)

In this case the structure of the solution will depend on whether �l < �r . We start by
examining the case �l < �r and f .�l ; ul / < f .�r ; ur/ or ur � 1=2. The situation
is depicted in Fig. 8.4. Here we show the hl and hr functions as dotted lines, and
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Fig. 8.4 The solution of
the Riemann problem if
ul < 1=2, �l < �r , and
f .�l ; ul / < f .�r ; ur / or
ur � 1=2

f

u

ul

ur

Fig. 8.5 The solution of
the Riemann problem if
ul < 1=2, �l < �r , and
f .�l ; ul / < f .�r ; ur / or
ur � 1=2

f

u

ul

ur

the solution path as a gray line. In this case u0
l D ul , and u0

r is the solution of

f
�
�r ; u

0
r

� D f .�l ; ul / ; u0
r <

1

2
:

In our case, this means that

u0
r D 1

2

�
1 �

r
1 � �l

�r
4ul .1 � ul/

�
:

The solution consists of a stationary discontinuity separating .u0
l ; �l / and .u

0
r ; �r /,

which we shall call a �-wave, followed by a shock in u moving to the right. This
we call a u-wave. For clarity we also show the solution if ur � 1=2 in Fig. 8.5.

Next, we turn to the case that �l < �r and f .�l ; ul / � f .�r ; ur /, depicted in
Fig. 8.6. The solution consists of a u-wave with negative speed followed by a �-
wave separating u0

l and ur . In other words, we have u0
r D ur , and u0

l is the solution
of

f
�
�l ; u

0
l

� D f .�r ; ur / ; u0
l � 1

2
:

In the next case we assume that ul � 1=2. In this case, if ur � 1=2, or f .�r ; ur / >
f .�l ; 1=2/, then u0

l D 1=2, and u0
r solves

f
�
�r ; u

0
r

� D f
�
�l ; u

0
l

� D �l ; u0
r <

1

2
:
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Fig. 8.6 The solution of
the Riemann problem if
ul < 1=2, �l < �r ,
f .�l ; ul / � f .�r ; ur /, and
ur � 1=2

f

u

ul
ur

Fig. 8.7 The solution of
the Riemann problem if
ul � 1=2, �l < �r , and
f .�l ; 1=2/ < f .�r ; ur / or
ur � 1=2

f

u

ul

ur

Fig. 8.8 The solution of
the Riemann problem if
ul � 1=2, �l < �r ,
f .1=2; ul / � f .�r ; ur /,
and ur > 1=2

f

u

ul

ur

This is illustrated in Fig. 8.7. Now the solution consists of a u-wave moving to
the left, this u-wave is a rarefaction wave, followed by a �-wave. The last wave is
a u-wave moving to the right; this is a shock wave.

Next, if ul � 1=2, ur � 1=2, and f .�r ; ur / � f .�l ; 1=2/, the solution is shown
in Fig. 8.8. In this case u consists of a leftward moving u-wave followed by a �-
wave. This exhausts the case �l < �r .

The case �l > �r is analogous, and we show the four different possibilities in
Fig. 8.9.
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Fig. 8.9 The different possibilities for a solution of the Riemann problem if ur � 1=2. The
solution path is the gray line

In order to determine a particular solution, follow the gray path from ul to ur . If
the path follows the graph of fl or fr , the wave is a rarefaction wave, and, if not, it
is a shock wave. The horizontal segments joining fl and fr are �-waves. In these
figures, the dotted lines indicate the functions hl and hr .

From the above diagrams, we observe that if ul and ur are in the interval Œ0; 1�,
then also the solution u.x; t/ will take values in Œ0; 1�. In many applications involv-
ing similar conservation laws, u is interpreted as a density; hence it is natural to
require that u be between 0 and 1.

There is another and much more compact way to depict the solution of the gen-
eral Riemann problem for this conservation law. Let z D z.�; u/ be defined as

z.�; u/ D sign
�
1

2
� u

��
f .�; u/ � f

�
�;
1

2

��
(8.38)

D � sign

�
u � 1

2

�
.2u� 1/2

D
uZ

1=2

ˇ̌̌
ˇ@f@u.�; �/

ˇ̌̌
ˇ d�:

This mapping takes the rectangle Œ�1; �2� � Œ0; 1� into the region
f.z; �/ j �1 � � � �2 and �� � z � �g :
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a b

Fig. 8.10 The solution of the Riemann problem. a zl � 0. b zl � 0

Furthermore, u 7! z.�; u/ is injective, and strictly increasing. In .z; �/ coordi-
nates, �-waves are straight lines of slope �1 if u � 1=2 and slope 1 if u � 1=2,
and u-waves are horizontal lines. In Fig. 8.10 we show how the solution looks
in the various cases in the .z; �/-plane. To read the diagram, start at the point
L D .z.ul ; �l /; �l / and follow the arrows to the right location. The dotted lines
mark the boundaries where the solution type is constant. Since we are working with
.z; �/ coordinates, we call u-waves z-waves, and the solution types are z� , z�z, and
�z. If a solution type is, e.g., �z, this means that the solution consists of a z-wave
(u-wave) followed by a �-wave. This finishes the second example. }

Actually, our two examples are more similar than it might seem at a first glance.
The inverse of the mapping (8.38) is

u D 1

2

 
1C sign .z/

s
jzj
�

!
;

and

f .�; u/ D jzj C �:

Inserting this into equation (8.36), we find that

 
1

2

 
1C sign .z/

s
jzj
�

!!
t

C .jzj C �/x D 0:

Since � is independent of t , we can rearrange this as	
sign .z/

p
jzj


t
C 2

p
� .jzj C �/x D 0:

If we now introduce w D sign .z/
pjzj and a new time coordinate � such that

@=@� D p
2�@=@t , then

w� C
�
1

2
w2 C �

�
x

D 0:
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Now we return to the discussion of the Riemann problem for the general conser-
vation law; cf. (8.7). We have seen that we cannot always find a weak solution to
this problem, but if the graphs of the functions Hl. � Iul/ and Hr. � Iur/ intersect,
we can choose a unique pair .u0

l ; u
0
r /, which in turn gives us a unique solution of

the Riemann problem. We call this solution, satisfying the minimal jump entropy
condition, an entropy solution of the Riemann problem.

It seems complicated to give a general criterion for fl and fr to guarantee the
intersection of hl and hr , but for two important classes of flux functions we always
have an intersection.

Lemma 8.9 Consider the Riemann problem

ut C f .�; u/x D 0; t > 0;

u.x; 0/ D
(
ul for x < 0,

ur for x > 0,
�.x/ D

(
�l for x < 0,

�r for x > 0.

(8.39)

(i) Let f D f .�; u/ be a continuously differentiable function on the set

.�; u/ 2 Œ�1; �2� � Œu1; u2� D ˝:

Assume that

@f

@�
.�; u1/ D @f

@�
.�; u2/ D 0;

so that f .�; u1/ D C1 and f .�; u2/ D C2 for some constants C1 and C2. Then
the Riemann problem (8.39) has a unique entropy solution for all .�l ; ul / and
.�r ; ur / in ˝. Furthermore, u.x; t/ 2 ˝ for all x and t .

(ii) Let f D f .�; u/ be a locally Lipschitz continuous function for � 2 Œ�1; �2� and
u 2 R. Assume that

lim
u!˙1

f .�; u/ D 1 or lim
u!˙1

f .�; u/ D �1;

for all � 2 Œ�1; �2�. Then the Riemann problem (8.39) has a unique entropy
solution for all .�l ; ul / and .�r ; ur / in Œ�1; �2� � R.

Our first example is of the second type mentioned in the lemma, and the sec-
ond example is of the first type. This lemma is proved simply by constructing the
functions hl and hr in the two cases.

Vanishing Viscosity and Smoothing

We would like to motivate the minimal jump entropy condition. In our construction
of the solution of the Riemann problem, it emerged naturally as a candidate for
finding a unique solution. In this section we shall give two partial motivations for



8.1 The Riemann Problem 385

this entropy condition. Both of these motivations are based on the study of equations
that formally have (8.7) as a limit, but whose solutions, or the equations themselves,
possess more regularity than the conservation law with a discontinuous coefficient.
When doing this, we hope that the minimal jump condition will be a consequence
of requiring that the solutions to the perturbed equations tend to the solution of the
Riemann problem as the size of the perturbations tends to zero.

It is common to motivate entropy conditions for conservation laws by requiring
that the solution of Riemann problems be limits of traveling wave solutions to the
singularly perturbed equation

vt C f .v/x D "vxx;

as " # 0. For a scalar equation in which the flux function does not depend on x,
the “lower convex envelope” criterion is indeed a consequence of such an approach.
We also say that the weak solution found by taking envelopes satisfies the vanishing
viscosity entropy condition; see Sects. 2.1 and 2.2.

Let now u" be a traveling wave solution of the initial value problem

u"t C f .�; u"/x D "u"xx; �.x/ D
(
�l for x < 0,

�r for x > 0
(8.40)

(with �l ¤ �r ). We hope that

lim
x!�1u

".x; t/ D u0
l ; and lim

x!1u
".x; t/ D u0

r (8.41)

for some values u0
l ; u

0
r . Since � depends on x, we cannot expect to find a traveling

wave solution, i.e., a solution that depends on .x � st/=", unless it is stationary,
that is, s D 0. Thus we consider a function that depends on space only, u".x; t/ D
u.x="/. Introduce � D x=", to obtain

Pf .�; u/ D Ru;

where Pf D df=d� . The equation can be integrated once, and if we assume that the
limits (8.41) are reached in a suitable manner, we get

Pu D f .�; u/ � f ��l ; u0
l

� D f .�; u/ � f ��r ; u0
r

�
;

which also gives us the Rankine–Hugoniot condition

f
�
�l ; u

0
l

� D f
�
�r ; u

0
r

� DW f�: (8.42)

Summing up, we say that the discontinuity separating .�l ; u0
l / and .�r ; u

0
r / admits

a viscous profile, or that this discontinuity satisfies the viscous profile entropy con-
ditions, if the ordinary differential equation

du

d�
D
(
f .�l ; u/ � f� if � < 0,

f .�r ; u/� f� if � > 0,
(8.43)
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has a (at least one) solution u.�/ such that either

lim
�!�1

u.�/ D u0
l and u. N�/ D u0

r

or

u. N�/ D u0
r and lim

�!1
u.�/ D u0

r ;

where N� can be finite or infinite. This means that one of two alternatives must hold:
Either the ordinary differential equation

Pv D f .�l ; v/ � f�; � < 0; v.0/ D u0
r ;

has a solution such that

lim
�!�1

v.�/ D u0
l ;

in which case we say that v is a left viscous profile, or the equation

Pw D f .�r ; u/� f�; � > 0; w.0/ D u0
l ;

has a solution such that

lim
�!1

w.�/ D u0
r ;

in which case we call w a right viscous profile.
Hence the discontinuity satisfies the viscous profile entropy condition if there exists
a left or right viscous profile.

If u0
l < u

0
r , we will have a left viscous profile if and only if

f .�l ; u/ > f
�
�l ; u

0
l

�
; for all u 2 .u0

l ; u
0
r /.

Similarly, we will have a right viscous profile if and only if

f .�r ; u/ > f
�
�r ; u

0
r

�
; for all u 2 .u0

l ; u
0
r /.

Also, if u0
l > u

0
r , we will have a left viscous profile if and only if

f .�l ; u/ < f
�
�l ; u

0
l

�
; for all u 2 .u0

l ; u
0
r /.

Similarly, we will have a right viscous profile if and only if

f .�r ; u/ < f
�
�r ; u

0
r

�
; for all u 2 .u0

l ; u
0
r /.

Summing up, the viscous profile entropy condition is equivalent to

u0
l � u0

r )
8<
:
f .�l ; u/ > f

� for all u 2 .u0
l ; u

0
r / or

f .�r ; u/ > f
� for all u 2 .u0

l ; u
0
r /,

(8.44)

u0
r � u0

l )
8<
:
f .�l ; u/ < f

� for all u 2 .u0
r ; u

0
l / or

f .�r ; u/ < f
� for all u 2 .u0

r ; u
0
l /.

(8.45)



8.1 The Riemann Problem 387

This condition implies the minimal jump entropy condition, and thus provides a mo-
tivation.

If the coefficient � is a continuous function of x, then the classical theory of
scalar conservation laws applies, and the initial value problem has a unique weak
solution. If we let �" denote a smooth approximation to

�.x/ D
(
�l for x < 0,

�r for x > 0,

such that �" ! � as " ! 0, and let u" denote the weak solution to

u"t C f .�"; u"/x D 0; u".x; 0/ D
(
u0
l for x < 0,

u0
r for x > 0,

(8.46)

it is natural to ask whether u" tends to the minimal jump entropy solution as " ! 0.

} Example 8.10
We shall consider this in an example. Define

fl.u/ D 4 � .uC 1/2;

fr .u/ D 4 � .u � 1/2;
f .�; u/ D .1 � �/fl .u/C �fr.u/;

and consider the Riemann problem

ut C f .�; u/x D 0; u.x; 0/ D
(

�1 for x < 0,

1 for x > 0,
�.x/ D

(
0 for x < 0,

1 for x > 0.

In this case we find that

hl .uI �1/ D
(
4 if u < �1,
4 � .uC 1/2 if u � �1,

hr.uI 1/ D
(
4 � .uC 1/2 if u � 1,

0 if u > 1.

Furthermore, the discontinuity separating the u and � values .�1; 0/ and .1; 1/ sat-
isfies the minimal jump entropy condition, and hence u.x; 0/ is a weak solution
satisfying the minimal jump entropy condition. Now set

�".x/ D

8̂̂<
ˆ̂:
0 for x � �",
xC"
2"

for �" < x < ",
1 for " � x,
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Fig. 8.11 The stationary so-
lution of (8.46), " D 1=2, and
the discontinuity at x D 0
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and let u" denote the stationary solution to (8.46) with u0
l D �1 and u0

r D 1. We
have that u" satisfies

f .�"; u"/x D 0;

and thus

f .�"; u"/ D f .0;�1/ D 0:

Solving this for u", we find that

u".x/ D 1 � 2�".x/˙
q
.1 � 2�".x//2 C 3:

Since u" D �1 for x � �" and u" D 1 for x � ", we can choose the negative sign
for x close to �" and the positive sign for x close to ". Furthermore, since for every
(fixed) � , f .�; u/ is concave in u, we can jump from the negative to the positive
solution if this will give a shock with zero speed (recall that u" is stationary). But
since f .�"; u"/ is constant, we can jump at any value of x! For instance, we can
choose to jump at x D 0, giving

u" D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

�1 for x � �",
1 � 2x

"
�
q�
1 � 2x

"

�2 C 3 for �" < x < 0,

1 � 2x
"

C
q�
1 � 2x

"

�2 C 3 for 0 < x < ",

1 for " � x.

We show a plot of this solution in Fig. 8.11, and we note that although u" ! u, the
variation of the approximate solution is larger than that of u. }

This example readily generalizes to the following case. Assume that the map

u 7! f .�; u/
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has a single global maximum for all � , and

lim
u!�1 f .�; u/ D �1 and lim

u!1 f .�; u/ D �1:

Let u˙.�; y/ denote the two solutions of

y D f
�
�; u˙� ;

such that u� � uC. As before, let u" denote the stationary solution of (8.46), where

�".x/ D �l C x C "

2"
.�r � �l/ ; �" < x < ":

Then it is possible to find a weak solution u" if and only if

u� ��l ; f ��l ; u0
l

�� D u0
l or uC ��r ; f ��r ; u0

r

�� D u0
r : (8.47)

Recall that we are always assuming that u0
l and u

0
r satisfy the Rankine–Hugoniot

condition, i.e., f .�l ; u0
l / D f .�r ; u

0
r / D f�. If both of the conditions in (8.47) hold,

then this solution is given by

u".x/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

u0
l for x < �",
u� .�".x/; f�/ for �" � x � xJ ,

uC .�".x/; f�/ for xJ < x � ",

u0
r for " < x,

(8.48)

for every xJ 2 Œ�"; "�. Since we are jumping from u� to uC, this jump is allowed
since u� � uC and f .�; u/ > f� in the interval .u�; uC/. If only one of the
conditions in (8.47) holds, then we stay on uC or u� throughout the interval Œ�"; "�.
If

u0
l D uC ��l ; f ��l ; u0

l

��
and u0

r D u� ��r ; f ��r ; u0
r

��
;

we must at some point jump from uC to u�, and this will give an entropy-violating
weak solution. Looking at the shapes of the graphs of f .�l ; u/ and f .�r ; u/, we
see that (8.47) is equivalent to the minimal jump entropy condition in this case.
Hence, if .u0

l ; u
0
r / satisfies the minimal jump entropy condition, there exist entropy

solutions u" of (8.46) such that u" tends to the minimal jump entropy condition
when " ! 0 (if the flux f has the properties assumed above).

Remark 8.11 The minimal jump entropy condition is not always reasonable. En-
tropy conditions are based on extra information, such as physics or common sense.
To illustrate this, consider the equation

ut C
�
1

2
.uC �/2

�
x

D 0;

�.x/ D
(

�1 for x < 0,

1 for x > 0,
u.x; 0/ D 0:

(8.49)
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In this case,

hl.uI 0/ D
(
1
2
.u � 1/2 if u � 1,

0 if u > 1,
hr.uI 0/ D

(
0 if u � �1,
1
2
.uC 1/2 if u > �1.

We see that there is a unique crossing value f� D 1=2, and the minimal jump
entropy condition gives the solution u.x; t/ D 0.

One can also try to find a solution of (8.49) by making the substitution w D
uC � , which turns (8.49) into

wt C
�
1

2
w2
�
x

D 0; w.x; 0/ D
(

�1 for x < 0,

1 for x > 0.

The entropy solution to this, found by taking the lower convex envelope, reads

w.x; t/ D

8̂̂
<
ˆ̂:

�1 for x < �t ,
x=t for �t � x � t ,

1 for x > t .

Since u D w � � , we obtain the alternative solution

Qu.x; t/ D
(
0 for jxj > t ,
x
t

� sign .x/ otherwise.
(8.50)

So which of these solutions shall we choose?We have already seen that the minimal
jump solution, u D 0, is the limit of the viscous approximations u" satisfying

u"t C
�
1

2
.u" C �/

2

�
x

D "u"xx: (8.51)

We know that w is the limit of the viscous approximation w" satisfying

w"t C
�
1

2
w"2

�
x

D "w"xx:

This means that Qu is the limit of Qu", where Qu" and �" satisfy the viscous approxima-
tion for the system (8.6), i.e.,

Qu"t C
�
1

2
. Qu" C �"/

2

�
x

D " Qu"xx;
�"t D "�"xx:

(8.52)

Therefore, it is reasonable to choose u D 0 if (8.49) is an approximation of (8.51)
and Qu if (8.49) is an approximation of (8.52).
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8.2 The Cauchy Problem

In this section we shall demonstrate the existence of an entropy solution to the
conservation law where the flux function depends on a discontinuous coefficient.
To be concrete, this is the initial value problem

(
ut C f .�; u/x D 0; x 2 R; t > 0;

u.x; 0/ D u0.x/;
(8.53)

where � D �.x/ is a function of bounded variation. Fix an arbitrary T > 0, and
set ˘T D R � Œ0; T /. By a solution of (8.53) we mean a weak solution, that is,
a function u in L1loc.˘T /\ C.Œ0; T /IL1loc.R// such that

“
R�.0;1/

�
u't C f .�; u/'x

�
dt dx C

Z
R

u0.x/'.x; 0/ dx D 0; (8.54)

for all test functions ' 2 C1
0 .˘T /. In order to demonstrate existence we shall as-

sume that f and � have additional properties; for instance, we must be assured that
the Riemann problem has a solution for all relevant initial data.

To show that a solution exists, we shall construct it as a limit of a sequence of
approximations. This can be done using difference approximations, front-tracking
approximations, or the limits of parabolic regularizations, but we shall use front
tracking.

Front Tracking for the Model Equation

In this section we will restrict ourselves to the model equation with f .�; u/ D
4�u.1� u/, i.e.,

ut C .4�u.1� u//x D 0; u.x; 0/ D u0.x/: (8.55)

We assume that � WR ! R is a function of bounded variation that is continuously
differentiable on a finite set of intervals. In particular, we assume that there exists
a finite number of intervals

Im D .�m; �mC1/ for m D 0; : : : ;M ,

where �0 D �1, �MC1 D 1, such that

� 0 ˇ̌
Im

is continuous and bounded for m D 0; : : : ;M . (8.56)

For the moment, we also assume that the initial function u0 is of bounded variation
and such that u0.x/ 2 Œ0; 1� for all x. Now we shall design a front-tracking scheme
to approximate solutions of (8.55).
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In order to prove convergence of the front-tracking approximations in the scalar
case, we used that the variation of

˚
uı
�
ı>0

was uniformly bounded. As Exam-
ple 8.13 will show, such a bound does not exist if � is not constant.

In order to circumvent this obstacle, we shall work with the variable z defined
by (8.38). The reason that this is a good idea is outlined in the remark below.

Remark 8.12 Assume that u" and v" are smooth solutions of the regularized equa-
tions

u"t C f .�; u"/x D "u"xx; v"t C f .�; v"/x D "v"xx;

with smooth initial data u"0 and v
"
0, respectively. Let 
 be a smooth convex function.

We subtract these equations and multiply the result by 
0.u" � v"/ to obtain

 .u" � v"/t D �
0 .u" � v"/ Œf .�; u"/� f .�; v"/�x

C "
 .u" � v"/xx � "
00 .u" � v"/ .u" � v"/2x
� � �
0 .u" � v"/ .f .�; u"/ � f .�; v"//�

x

C "
 .u" � v"/xx C 
0 .u" � v"/x .f .�; u"/ � f .�; v"// :
Now we let 
 D 
� be a continuously differentiable approximation to j � j, explicitly


�.u/ D
uZ
0

max
	
�1;min

	v
�
; 1




dv:

Assuming that u" � v" has compact support in x, we can integrate the above in-
equality over x 2 R, and get

d

dt

Z
R


� .u
" � v"/ dx �

Z
R


00
� .u

" � v"/ .f .�; u"/ � f .�; v"// .u" � v"/x dx

� L

Z
ju"�v"j<�

j.u" � v"/xj dx;

where L D sup jfuj, since


00
�.u/ D

(
1
�

for juj � �,

0 otherwise.

By Lemma B.5,

lim
�!0

Z
ju"�v"j<�

j.u" � v"/xj dx D 0:

Thus we can send � to zero, and obtain for any two solutions of the regularized
equation

ku". � ; t/ � v". � ; t/kL1.R/ � ku"0 � v"0kL1.R/ : (8.57)
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Now we can set v". � ; t/ D u". � ; t C �/ in (8.57), then divide by � and let � ! 0,
to deduce that

ku"t . � ; t/kL1.R/ � ku"t . � ; 0C/kL1.R/ D ˇ̌
f
�
�; u"0

�ˇ̌
BV
: (8.58)

Without loss of generality we can construct u"0 so that
ˇ̌
f .�; u"0/

ˇ̌
BV

� jf .�; u0/jBV .
This means that the total variation of f .�; u"/ is bounded independently of ", i.e.,

jf .�; u". � ; t//jBV � jf .�; u0/jBV : (8.59)

If fu.�; u/ � c > 0 for all � and u, then this would imply that also u" had uni-
formly bounded variation.1 For the flux function in our example, fu.�; 1=2/ D 0,
so we cannot deduce that u" is of bounded variation. This is precisely where the
z-mapping comes to the rescue. We write (8.38) as

z.�; u/ D sign

�
u � 1

2

��
f .�; u/ � f

�
�;
1

2

��
:

Now

jz .�; u"/jBV � jf .�; u"/jBV C ��f���L1 j� jBV
� jf .�; u0/jBV C ��f���L1 j� jBV :

Thus z" D z.�; u"/ has uniformly bounded variation, and the mapping u 7! z.�; u/

is continuous and invertible. The next step in this strategy is to attempt to show that
fz"g">0 is compact in L1.R � Œ0;1//, and thus (for a subsequence) z" ! Nz as
" ! 0. Then we define

u D z�1 .�; Nz/ D lim
"!0

z�1 .�; z"/ D lim
"!0

u":

The final step will then be to show that the limit u is a weak solution. See, e.g.,
[114] for an example where this strategy has been carried out.

This remark is meant to indicate how the z-mapping could be used to show
existence via viscous regularizations, and to motivate the use of the z-mapping also
for front-tracking approximations.

As in the case without a coefficient, we start with a discussion of an approximate
solution to the Riemann problem, or rather with the exact solution of the Riemann
problem for an approximate equation. In the simple scalar case, we saw that the
exact solution of the Riemann problem was piecewise constant in x=t if the flux
function was piecewise linear. We shall now define an approximate flux function gı

such that gı.�; u/ � 4�u.1�u/ and the solution of the Riemann problem with flux
gı is piecewise constant.

From Sect. 8.1 we saw that the solution of the Riemann problem consisted of
a sequence of straight lines in the .z; �/-plane, where

z.�; u/ D sign

�
u � 1

2

�
� .1 � 2u/2 : (8.60)

1 This assumption excludes resonances, i.e., coinciding eigenvalues.
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There were z-waves, over which � is constant, and �-waves, over which � was not
constant. Now fix a (small) positive number ı, and set

�i D iı; i > 0; i 2 N; (8.61)

and for integers j such that �i � j � i , zi;j D jı; and

ui;j D z�1 ��i ; zi;j � D 1

2

0
@1C sign

�
zi;j

�sˇ̌
zi;j

ˇ̌
�i

1
A : (8.62)

Note that the set
˚
.zi;j ; �i /

�
defines a grid in the .z; �/-plane. We define gı to be

the linear interpolation to f on this grid, i.e.,

gı .�i ; u/ D fi;j C �
u � ui;j

� fi;jC1 � fi;j
ui;jC1 � ui;j ; for u 2 Œui;j ; ui;jC1�, (8.63)

where fi;j D f .�i ; ui;j / D 4�iui;j .1 � ui;j /. For each fixed i , gı.�i ; u/ will be
a concave function with a maximum for u D 1=2. Therefore the solution of the
Riemann problem

ut C gı .�.x/; u/x D 0;

u.x; 0/ D
(
ui;j for x < 0,

um;n for x > 0,
�.x/ D

(
�i for x < 0,

�m for x > 0,

(8.64)

can be found from the diagrams in Fig. 8.10. Furthermore, since gı is piecewise
linear in u, this solution will be piecewise constant in x=t . Also, by our choice of
interpolation points in constructing gı, all the intermediate values of u.x; t/ will be
grid points, i.e.,

z.�.x/; u.x; t// D �
zi 0;j 0 ; �i 0

�
; where i 0 D i or i 0 D m.

We label the grid points in the .u; �/-plane, or when there is no danger of misunder-
standing, in the .z; �/-planeUı . Hence, the solution of the Riemann problem takes
pointwise values in Uı if the “initial” states .u.x; 0/; �.x// take values in Uı.

Once we have the solution of the approximate Riemann problem (8.64), we can
use this to design a front-tracking scheme. To this end, let

˚
uı0
�
ı>0

and
˚
�ı
�
ı>0

be
two sequences of piecewise constant functions such that

�
uı0.x/; �

ı.x/
� 2 Uı for all but a finite number of x-values.

Furthermore, we demand that

lim
ı!0

��uı0 � u0
��
1

D 0; (8.65)

lim
ı!0

���ı � ���
1

D 0: (8.66)
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We label the discontinuity points of �ı by y1 < � � � < yN . Of course, these depend
on ı, but we suppress this dependency in our notation. At each point of discontinuity
of either uı0 or �

ı, we have a Riemann problem whose solution will give a sequence
of z-waves and �-waves. We define the front-tracking approximation as in the scalar
case, by following discontinuities, called fronts, and solve the Riemann problems
(using the approximate flux gı) defined by their collisions. We call the resulting
piecewise constant function uı. As in the scalar case, in order to show that we can
define uı. � ; t/ for every t > 0, we must study the interaction of fronts.

The front-tracking solution uı has two types of fronts, z-fronts and �-fronts,
where z-fronts are those fronts whose left and right �-values are equal. Regarding
the collision of two or more z-fronts, we have seen that such a collision always
results in one z-front. Hence, the number of fronts in uı decreases when z-fronts
collide.

Moreover, �-fronts have zero speed (recall that these are the discontinuities of
�ı), and therefore two �-fronts will never collide. It remains to study collisions be-
tween z-fronts and �-fronts. This turns out to be complicated, and simple examples
show that we can have such collisions that result in three outgoing fronts. Further-
more, even if such collisions always result in two outgoing fronts, it is in general not
possible to bound the total variation of uı independently of ı, as the next example
shows.

} Example 8.13
Assume for the moment that

u0.x/ D 1

2
; �.x/ D

8̂̂
<
ˆ̂:
1 for x � 0,

1C x for 0 < x � 2,

2 for 2 < x.

(8.67)

In this case z.�.x/; u0.x// D 0, and we can set

�ı.x/ D

8̂̂
<
ˆ̂:
1 for x � 0,

1C iı for iı < x � .i C 1/ı, i D 0; : : : ; 2=.ı � 1/,
2 for 2 < x.

The z-component of the solution of each of the Riemann problems defined by
.uı0; �

ı/ at x D iı reads

.z; �/ D

8̂̂
<
ˆ̂:
.0; 1C .i � 1/ı/ for x < iı,

.�ı; 1C iı/ for iı � x < tsi C iı,

.0; 1C iı/ for iı C tsi � x,

where

si D
p
ı.1C iı/:
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Fig. 8.12 The weights in the
Temple functional, (8.68)

This follows from the diagram in Fig. 8.10. Hence, before any interaction of fronts,
the total variation of uı reads

ˇ̌
uı
ˇ̌
BV

D
1=ıX
iD1

s
ı

1C iı
�

1=ıX
iD1

r
ı

2
D 1

ı

r
ı

2
D 1p

2ı
! 1 as ı ! 0.

Despite this, since �.x/ is Lipschitz continuous, the total variation of the exact
solution to this problem is uniformly bounded for t < T for every finite time T ;
see, e.g., Kružkov [118] or Karlsen and Risebro [109]. As an indication of things to
come, we observe in passing that

ˇ̌
zı
ˇ̌
BV

D
1=ıX
iD1

jıj D 1;

where zı D z.�ı; uı/. So the total variation of the transformed variable z is uni-
formly bounded for this example, at least until the first interaction. }

For reasons outlined in the above example and in Remark 8.12, we shall work
with the z variable instead of u. In the above example, it was trivial to show that the
variation of z was bounded independently of ı, but this becomes more cumbersome
in general, so to help us we use the Temple functional.2 For a single front, which
we label f , this is defined as

T .f/ D

8̂̂<
ˆ̂:

j�zj if f is a z-front,

4 j�zj if f is a �-front and zl < zr ,

2 j�zj if f is a �-front and zl > zr ,

(8.68)

where zl is the z value to the left of the front, zr the value to the right, and �z D
zr � zl . Fig. 8.12 will perhaps be useful later. The figure shows the weights given
to j�zj in the various cases. Recall also that if f is a �-front, then

j�zj D j�� j ;

2 This, or rather a similar functional, was first used in the paper of Temple [176].
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and thus an alternative definition of T is

T .f/ D

8̂̂<
ˆ̂:

j�zj if f is a z-front,

4 j�� j if f is a �-front and zl < zr ,

2 j�� j if f is a �-front and zl > zr .

For a sequence of fronts, we define T additively, and with a slight abuse of notation
we write

T
�
uı
� D

X
f2uı

T .f/ :

With this definition of T we have the obvious inequalities

ˇ̌
zı
ˇ̌
BV

� T
�
uı
� � 4

�ˇ̌
zı
ˇ̌
BV

C ˇ̌
�ı
ˇ̌
BV

�
: (8.69)

We also have for every front f 2 uı that

T .f/ � ı:

With a further abuse of notation we shall write T .t/ D T .uı. � ; t//.

Lemma 8.14 If 0 < s < t , then

T .t/ � T .s/: (8.70)

Hence
ˇ̌
zı. � ; t/ˇ̌

BV
� T .0C/.

Proof The value of T will change only when fronts collide. From the analysis of
collisions of z-fronts, we have established that T does not increase at such colli-
sions. To prove the lemma, it therefore remains to study collisions between z-fronts
and �-fronts. We say that a �-front is nonpositive if it connects points in the half-
plane z � 0, and similarly, we say that it is nonnegative if it connects points in the
half-plane z � 0.

We shall study the collision between z-fronts and a �-fronts, and we thus have
three points in the .z; �/-plane, .zl ; �l /, .zm; �m/, and .zr ; �r /, which lie to the left
of, in between, and to the right of the colliding fronts respectively. If we have more
than one z-front colliding with the �-front, we can reduce to the two-front collision
type as follows. If we have several z-fronts colliding with the �-front from the
same side, then we can resolve the collision between the z-fronts first, and then the
collision between the (single) resulting z-front and the �-front.

Therefore, we consider the case that we have two z-fronts colliding with one
�-front. One z-front collides from the left, the other from the right. We label the
states to the left of the left z-front L D .zl ; �l /, the one to the left of the �-front
M� D .z�; �l /, the state to the left of the right z-frontMC D .zC; �r /, and finally,
the state to the right of this z-frontR D .zr ; �r /. Of course we may have zl D z� or
zC D zr , in which case we have only two colliding fronts. In order to study how T
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z

γ

L M−

M+

R

solution type γz solution type zγ

Fig. 8.13 The possible locations of L and R if the � -front is nonpositive and �l > �r

changes by this collision, we study a number of cases. These are distinguished by
whether the �-front lies in the left (it is nonpositive) or the right (it is nonnegative)
half-spaces and by whether �l < �r .

Case 1: The �-front is nonpositive and �l > �r . Consult Fig. 8.13 in what fol-
lows. Now we regard the z-front, and henceM� andMC, as fixed. Since the �-front
is negative, zC � 0, and since �l > �r , z� � �ı. The z-front between zl and z�
moves with positive speed, and it is the solution of the Riemann problem defined by
these two states with a flux function f ı.�l ; � /. Hence zl cannot be larger than “one
breakpoint to the right” of z�. If it were, then the solution would contain more than
one front. Furthermore, ul D z�1.�l ; zl / � 0, which is the same as zl � ��l . Thus

zl 2 Œ��l ; z� C ı�:

This interval is indicated by the upper left horizontal gray line in Fig. 8.13. Reason-
ing in the same way, we see that the right z-front must have negative speed and thus
that

zr 2 fzCg [ Œ�zC C ı; �r �:

This interval is indicated by the lower right horizontal gray line in Fig. 8.13. We
have two alternatives. First if �zl C �l � zr C �r , then the solution of the Riemann
problem defined by .zl ; �l / and .zr ; �r / is of type �z, and if �zl C �l < zr C �r ,
then this Riemann problem has a solution of type z� . This is indicated in Fig. 8.13,
where the dashed line passing through L is the line where jzj C � D �zl C �l .

If zl D z�, i.e., we have a collision between a �-front and a z-front from the
right, then the solution type is always z� . In other words, the wave is transmitted.
Consulting Fig. 8.12, we see that if zl � z�, then T is unchanged by the collision. If
zl D z� C ı (which is the maximum value for zl ), and the solution type is z� , then
T decreases by 2ı. Otherwise, T is unchanged. In the special case that zr D z� D 0

and zl D z� C ı, the z-front is reflected. Thus we see that a reflection results in
a decrease of T by 2ı. The reader is urged to check these statements.
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z

γ

L M−

M+
R

solution type zγsolution type γz

Fig. 8.14 The possible locations of L and R if the � -front is nonpositive and �l < �r

z

γ

L
M−

M+

R

solution type γz solution type zγ

Fig. 8.15 The possible locations of L and R if the � -front is nonnegative and �l > �r

Case 2: The �-front is nonpositive and �l < �r . Consult Fig. 8.14 in what
follows. Since the fronts are colliding, the speed of the left z-front is positive
and that of the right z-front is negative. Hence zl 2 Œ��l ; z� C ı� and zr 2
fzCg[ Œ�zC Cı; �r �. These intervals are indicated in Fig. 8.14 by the lower left and
upper right horizontal lines. If zr C �r < �zl C �l , then the solution type is z� , and
if zr C�r � �zl C�l , the solution type is �z. In both of these cases T is unchanged.
If zr D zC, then the solution type is �z, and if zl D z�, then the solution type is
z� . Thus there are no reflected fronts in this case.

Case 3: The �-front is nonnegative and �l > �r . Consult Fig. 8.15 in what fol-
lows. This case is similar to Case 2 above. By considering the speeds of the colliding
fronts, we find that

zl 2 Œ�z� � ı;��l � [ fz�g and zr 2 ŒzC � ı; �r �:
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z

γ

L

M−

M+ R

solution type γz

solution type zγ

Fig. 8.16 The possible locations of L and R if the � -front is nonnegative and �l < �r

If jzl j C �l < zr C �r , then the solution is of type �z, and if jzl j C �l � zr C �r ,
the solution is of type z� . Note that if zr D zC, then the solution type is �z, while
if zl D z�, the solution type is z� . So also in this case a front cannot be reflected.
Furthermore, T is unchanged.

Case 4: The �-front is nonnegative and �l < �r . Consult Fig. 8.16 in what fol-
lows. This case is similar to Case 1 above. We find that

zl 2 Œ�z� � ı;��l � [ fz�g and zr 2 ŒzC � ı; �r �:
If jzl j C �l > zr C �r , then the solution type is z� , while if jzl j C �l � zr C �r ,
the type is �z. If zr D zC � ı and the solution type is �z, then T decreases by 2ı;
otherwise, it is unchanged. If zC D zr , then the solution type is z� , while if zl D z�
and zr D zC � ı, we have a reflection, and in this case T decreases by 2ı.

This finishes the proof of Lemma 8.14. �

Remark 8.15 Recall that we have used the term “reflection” for a collision between
a z-front and a �-front if the z-front collides from the left and the solution of the
Riemann problem is of type z� , or if the z-front collides from the right and the
solution type is �z. From the proof of the above lemma, it is clear that whenever we
have a reflection, T decreases by 2ı. Hence, if T .0C/ is finite, we can have only
a finite number of reflections in uı.

One immediate consequence of Lemma 8.14 and (8.69) is the following result.

Corollary 8.16 Ifˇ̌
�ı
ˇ̌
BV

� j� jBV and
ˇ̌
z.uı0; �

ı/
ˇ̌
BV

� jz.u0; �/jBV ; (8.71)

then for t � 0, ˇ̌
zı. � ; t/ˇ̌

BV
� jz.u0; �/jBV C 4 j� jBV ;

and thus
ˇ̌
zı. � ; t/ˇ̌

BV
is bounded independently of ı and t .
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Note that this corollary in itself does not imply that the front-tracking construc-
tion uı can be defined up to an arbitrary time t . In order to show this, we have to do
some more work. For a z-front fz let A.fz/ be the set of �-fronts f� that approach
fz , i.e.,

f� 2 A .fz/ if

(
x.fz/ < x.f�/ and s.fz/ � 0 or

x.fz/ > x.f�/ and s.fz/ � 0,

where x.f/ denotes the position of f , and s.f/ its speed. For every z-front fz define

J .fz/ D
X

f�2A.fz/
j�� j ; (8.72)

where�� denotes the difference in � over the front.

Lemma 8.17 Assume that (8.71) holds. Then for each fixed ı, the functional

F.t/ D ı
X
fz

J .fz/C T .t/ j� jBV (8.73)

is nonincreasing, and it decreases by at least ı2 when a z-front collides with a �-
front.

Proof LetNf.t/ denote the number of fronts in uı at time t . For each front we have
j�zj � ı, and thus

Nf �
ˇ̌
zı
ˇ̌
BV

ı
:

Recall that T is bounded and J .fz/ � j� jBV . Hence F is bounded by

F.t/ � ı j� jBV Nf C 2T .0C/ j� jBV
� 4 j� jBV .jz.u0; �/jBV C 4 j� jBV / : (8.74)

Thus F is bounded independently of ı and t . We must show that F is decreasing
by at least ı2 for collisions between z-fronts and �-fronts, and nonincreasing when
z-fronts collide.

First consider a collision between one (or two) z-front(s) and a �-front. From the
proof of Lemma 8.14 we saw that either (a) a z-front “passes through” the �-front
in the collision, or (b) we have a reflection, and T decreases by 2ı. If (a) holds, then
the sum in (8.73) will “lose” at least one term (two terms if one z-front is lost in
the collision) of size j�� j, and the second term in (8.73), does not increase. Thus
F decreases by at least ı j�� j � ı2. If (b) holds, then T decreases by 2ı, and the
sum increases by at most j� jBV . Hence F decreases by a least ı j� jBV � ı2.

Next we consider a collision between two (or more) z-fronts. Recall that this
collision will result in one z-front. If more than two fronts collide, we can consider
this as several collisions between two fronts occurring at the same point. Therefore,
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we consider a collision between two z-fronts, fl and fr , separating values zl , zm
and zr . We label the resulting front f . If zm is between zl , and zr , then T does not
change by the collision. However, the speed of f is between the speeds of fl and fr .
If the speed of f is different from 0, then A.f/ D A.fl / or A.f/ D A.fr /. Hence
the sum in (8.73) loses one term, and F decreases by at least ı2. If the speed of f is
0, then the speed of fl is positive, and the speed of fr negative, whence

A.f/ D A .fl / [ A .fr / ;

and thus F is constant.
If zm is not between zl and zr , then either zr D zm � ı or zl D zm C ı. This is so

because gı is convex. In this case T decreases by ı, and the first term in equation
(8.73) increases by at most ı

ˇ̌
�ı
ˇ̌
BV

. This concludes the proof of the lemma. �

Note that an immediate consequence of equation (8.74) and Lemma 8.17 is that
for a fixed ı, the number of collisions of z-fronts and �-fronts is bounded by

4 j� jBV
jz.u0; �/jBV C 4 j� jBV

ı2
:

Also, the smallest absolute value of the speed of any z-front having speed different
from zero is bounded below by q

min
�
�ı
�
ı:

Hence, after some finite time T1, collisions between z-fronts and �-fronts cannot
occur. This means that there must be a time T2 � T1 such that all z-fronts in the
interval .y1; yN / (recall that �ı has discontinuities at y1; : : : ; yN ) have zero speed,
that all z-fronts to the left of y1 have nonpositive speed and that the z-fronts to the
right of yN have nonnegative speed for all t > T2. Outside the interval Œy1; yN �,
uı is the front-tracking approximation to a scalar conservation law with a constant
coefficient, and there can be only a finite number of collisions between fronts in
uı there. Therefore, there exists a finite time T3 � T2 such that there will be no
further collisions between fronts in uı for t > T3. Thus, the front-tracking method
is hyperfast.

} Example 8.18
Now we pause for a moment in order to exhibit an example of how front tracking
looks in practice. We wish to find the front-tracking approximation to the initial
value problem

ut C Œ4�.x/u.1� u/�x D 0; t > 0;

�.x/ D

8̂̂<
ˆ̂:
ejxj for �1 � x � 1,

sin.�x2/C 2 for 1 < jxj < 2,
1 otherwise,

u.x; 0/ D
(
1
2
.1C e�jxj/ for �1 � x � 1,

0 otherwise.

(8.75)
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Fig. 8.17 a �ı.x/. b uı.x; 3/ for ı D 0:05

0.0

1.0
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x

t

5.02.70.34-2.0

Fig. 8.18 The fronts in the .x; t/-plane for Example 8.18

In Fig. 8.17, we show the approximation �ı for ı D 0:05, and uı. � ; 3/. In Fig. 8.18,
we show the fronts in uı in the .x; t/-plane. Here z-fronts are marked with solid
lines, and �-fronts with dashed lines. We see that the number of fronts decreases
rapidly, and there do not seem to be many collisions after t D 3. }

Returning now to the more general case, we claim that the sequence
˚
zı
�
ı>0

satisfies the following bounds:

��zı��
L1.R/ � ���ı��

L1.R/ � C; (8.76)��zı. � ; t/��
L1loc

� C; t < T; (8.77)

kz. � ; t/ � z. � ; s/kL1.R/ � C.t � s/; (8.78)
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where the constant C does not depend on t or on ı. The first bound (8.76) follows
by the definition of z, (8.60), and the fact that uı takes values in the interval Œ0; 1�.
Regarding (8.77), we have that uı is a weak solution of

uıt C gı
�
�ı; uı

�
x

D 0; uı.x; 0/ D uı0.x/: (8.79)

Thus we can repeat the argument used in the proof of Theorem 7.10, to obtain��uı. � ; t/� uı. � ; s/��
L1.R/

� max
�2Œs;t �

ˇ̌
gı
�
�ı; uı. � ; �/�ˇ̌

BV
.t � s/

� max
�2Œs;t �

ˇ̌
zı. � ; �/ˇ̌

BV
.t � s/

� C.t � s/;
(8.80)

for some constant not depending on t , s, or ı. Setting s D 0, we obtain��uı. � ; t/��
L1.R/

� ��uı0��L1.R/ C Ct; (8.81)

and thus uı. � ; t/ is in L1.R/ for all finite t . Nowˇ̌
z
�
uı; �ı

�ˇ̌ D ˇ̌
z
�
0; �ı

�C zu
�
�; �ı

�
uı
ˇ̌

� ˇ̌
�ı
ˇ̌C C

ˇ̌
uı
ˇ̌
;

for some positive constant C , where � is in the interval Œ0; uı�. Since �ı is in L1loc,
equation (8.77) follows. Actually, in our case, since uı.x; t/ 2 Œ0; 1�, we have that

��uı. � ; t/��
L1.R/

D
Z
R

uı.x; t/ dx D
Z
R

uı0.x/ dx D ��uı0��1;
which is stronger than (8.81).

To prove (8.78) we use the equality

zı.x; t/ � zı.x; s/ D z
�
uı.x; t/; �ı

� � z �uı.x; s/; �ı�
D zu

�
�; �ı

� �
uı.x; t/ � uı.x; s/� :

Since zu is bounded, by (8.80) the bound (8.78) holds.
Hence, by standard techniques as in the case with constant coefficients, it follows

that there exists a subsequence of fıg (which we also label fıg) and a function
z 2 L1loc.R � Œ0;1//\ L1..0;1/IBV.R// such that

lim
ı!0

zı D z in L1loc.R � Œ0; T �/. (8.82)

Since zı D z.uı; �ı/, it also follows that there is a function u 2 L1loc.R � Œ0; T �/
such that uı ! u, and u D z�1.z; �/. Furthermore, for this subsequence also
gı.�ı; uı/ ! f .�; u/. Thus

lim
ı!0

“ �
uı't C gı.�ı; uı/'x

�
dx dt

D
“ �

u't C f .�; u/'x
�
dx dt;
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and by construction,

lim
ı!0

Z
R

uı.x; 0/'.x; 0/ dx D
Z
R

u0.x/'.x; 0/ dx:

Since uı is a weak solution to (8.79), it follows from this that u is a weak solution
to (8.53).

Furthermore, it is transparent that although we performed the analysis for
f .�; u/ D 4�u.1 � u/, our results could be (slightly) extended to include flux
functions that are similar to f . To be precise, assume that:

A.1 There is an interval Œa; b� such that f .�; a/ D f .�; b/ D C for all � .
A.2 There is a point u?.�/ 2 .a; b/ such that fu.�; u/ > 0 for a < u < u?.�/ and

fu.�; u/ < 0 for u?.�/ < u < b.
A.3 The map � 7! f .�; u/ is strictly monotone for all u 2 .a; b/.
A.4 The flux function f belongs to C2.R � Œa; b�/.
If f satisfies these assumptions, we can define the mapping z as

z.�; u/ D sign .u � u?.�// .f .�; u?.�// � f .�; u// ; (8.83)

and use this to show that the front-tracking approximation is well defined. This anal-
ysis is only a slight modification of the analysis in the case f .�; u/ D 4�u.1 � u/.
Hence, mutatis mutandis, we have proved the following theorem.

Theorem 8.19 Let f be a function satisfying A.1–A.4, and assume that u0.x/ is
a function in L1loc taking values in the interval Œa; b�, and that � is a function in
BV.R/[ L1loc.R/. Then there exists a weak solution to the initial value problem

ut C f .�; u/x D 0; x 2 R t > 0; u.x; 0/ D u0.x/:

Furthermore, this solution is the limit of a sequence of front-tracking approxima-
tions.

An Entropy Inequality

Now we shall show that the limit of every front-tracking approximation to the gen-
eral conservation law (8.53) satisfies a Kružkov-type entropy condition. Thus we
let uı be a weak solution to the approximate problem(

uıt C gı
�
�ı; uı

�
x

D 0; x 2 R t > 0;

uı.x; 0/ D uı0.x/; x 2 R;
(8.84)

where gı.�; � / is a piecewise linear continuous approximation of f .�; u/ such that
gı ! f as ı ! 0. Here �ı is a piecewise constant approximation to � , such that
�ı ! � in L1 as ı ! 0. We assume that uı can be constructed by front tracking,
and that for each fixed T > 0,

uı ! u in L1.R � Œ0; T �/ as ı ! 0. (8.85)
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Furthermore, we let

z.�; u/ D
uZ
0

jfu.�; v/j dv; (8.86)

and set zı D z.�ı; uı/. We shall also assume that for each t the family
˚
zı. � ; t/�

is a sequence of uniformly bounded variation in x and satisfies the three basic
estimates (8.76), (8.77), and (8.78), so that we have convergence of zı along a sub-
sequence.

Using that uı is a weak solution to (8.84), it is not hard to show that u is a weak
solution to (8.53) if uı0 ! u as ı ! 0. We would like to show that the limit
u satisfies a generalization of the Kružkov entropy condition. Recall that if � is
continuous, then an entropy solution to (8.53) in the strip˘T D R� Œ0; T � satisfies“

˘T

� ju � cj 't C F.�; u; c/'x
�
dx dt (8.87)

�
“
˘T

sign .u � c/ @xf .�; c/' dx dt C
Z
R

ju0.x/ � cj '.x; 0/ dx � 0;

for all constants c and all nonnegative test functions ' such that '. � ; T / D 0. Here
F is the Kružkov entropy flux defined by

F.�; u; c/ D sign .u � c/ .f .�; u/ � f .�; c// : (8.88)

We would like to show that the front-tracking limit u satisfies (8.87) if � is contin-
uous, and if � has discontinuities, find a suitable generalization that is satisfied by
the front-tracking limit. The condition (8.87) does not make sense for discontinuous
�’s, since the second integral is undefined.

We shall assume that � is piecewise continuous on a finite number of intervals,
i.e., that � has a finite number of discontinuities. We call this set of discontinuities
D� D f�0; : : : ; �N g, and we assume that �.x/ is continuously differentiable for
x … D� . Thus � and � 0 have left and right limits at each discontinuity point �i 2 D� .

Next, we shall require that the approximation �ı.x/ also have discontinuity
points for all x 2 D� for all relevant ı. In addition to these discontinuities, for
a fixed ı, �ı has discontinuities at

˚
yi;j

�
. These are ordered so that

�i D yi;0 < yi;1 < � � � < yi;Ni < yi;NiC1 D �iC1;

for i D 0; : : : ; N . Let �i;jC1=2 denote the value of �ı in the interval .yi;j ; yi;jC1/,
and set

�xi;j D 1

2

�
yi;jC1 � yi;j�1

�
; j D 1; : : : ; Ni :

Of course, these quantities all depend on ı, but for simplicity we omit this in our
notation. We also assume that

lim
ı!0

gı
�
�i;jC1=2; c

� � gı ��i;j�1=2; c
�

�xi;j
�Ii;j .x/ D @f .�.x/; c/

@x
; (8.89)
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where �Ii;j denotes the characteristic function of the interval

Ii;j D
�
yi;j�1 C yi;j

2
;
yi;j C yi;jC1

2

�
:

This is not unreasonable, since � is continuously differentiable in .�i ; �iC1/. In what
follows, we let u


i and u

i;j denote the left and right limits of uı at the points �i and

yi;j , respectively. Since uı. � ; t/ is piecewise constant, these limits exist.
In each interval .yi;j ; yi;jC1/ the function uı is an entropy solution of the con-

servation law

uıt C gı.�i;jC1=2; uı/x D 0;

and hence

�
TZ
0

yi;jC1Z
yi;j

� ˇ̌
uı � cˇ̌ 't C F ı

�
�i;jC1=2; uı; c

�
'x
�
dx dt

C
TZ
0

�
F ı
	
�i;jC1=2; u�

i;jC1; c


'
�
yi;jC1; t

� � F ı
	
�i;jC1=2; uC

i;j ; c


'
�
yi;j ; t

� �
dt

�
yi;jC1Z
yi;j

ˇ̌
uı.x; 0/� cˇ̌ '.x; 0/ dx � 0;

(8.90)

where

F ı.�; u; c/ D sign .u � c/ �gı.�; u/ � gı.�; c/� :
Summing this for j D 0; : : : ; Ni , we find that

�
TZ
0

�iC1Z
�i

� ˇ̌
uı � cˇ̌ 't C F ı

�
�ı; uı; c

�
'x
�
dx dt �

�iC1Z
�i

ˇ̌
uı.x; 0/� cˇ̌ '.x; 0/ dx

C
TZ
0

�
F ı
�
�i;NiC1=2; u

�
iC1; c

�
'.�i ; t/ � F ı

�
�i;1=2; u

C
i ; c

�
'.�iC1; t/

�
dt

�
TZ
0

NiX
jD1

h
F ı
	
�i;jC1=2; uC

i;j ; c



� F ı
	
�i;j�1=2; u�

i;j ; c

i
'.yi;j ; t/ dt

� 0: (8.91)



408 8 Conservation Laws with Discontinuous Flux Functions

Regarding the terms in the integrand in the last term in (8.91), we can write

F ı
	
�i;jC1=2; uC

i;j ; c



� F ı
	
�i;j�1=2; u�

i;j ; c



D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

�sign
	
uC
i;j � c


 �
f
�
�i;jC1=2; c

� � f ��i;j�1=2; c
��

C
n
sign

	
uC
i;j � c



� sign

	
u�
i;j � c


o 	
f�
i;j � f ��i;j�1=2

�

or

�sign
	
u�
i;j � c


 �
f
�
�i;jC1=2; c

� � f ��i;j�1=2; c
��

C
n
sign

	
uC
i;j � c



� sign

	
u�
i;j � c


o 	
f�
i;j � f ��i;jC1=2

�

;

where f�
i;j D f .�i;jC1=2; uC

i;j / D f .�i;j�1=2; u�
i;j /. If sign.u

C
i;j�c/ D sign.u�

i;j�c/,
the last terms in the above expressions are zero, while if u�

i;j � c � uC
i;j , then since

these values are chosen according to the minimal jump entropy condition (8.25), we
have that

sign
	
uC
i;j � c



� sign

	
u�
i;j � c



D 2 and

8<
:
f .�i;j�1=2; c/ � f�

i;j or

f .�i;jC1=2; c/ � f�
i;j ;

and thus in this case one of the last terms must be nonpositive. If uC
i;j < c < u�

i;j ,
we use (8.26) to conclude that

sign
	
uC
i;j � c



� sign

	
u�
i;j � c



D �2 and

8<
:
f .�i;j�1=2; c/ � f�

i;j or

f .�i;jC1=2; c/ � f�
i;j ;

and again we find that one of the last terms is nonpositive. If the first of these last
terms is nonpositive for c between u�

i;j and u
C
i;j , we define ui;j D uı.yi;j ; t/ D uC

i;j .

Otherwise, we define ui;j D uı.yi;j ; t/ D u�
i;j . Using these observations, we find

that

�
TZ
0

�iC1Z
�i

� ˇ̌
uı � cˇ̌ 't C F ı

�
�ı; uı; c

�
'x
�
dx dt �

�iC1Z
�i

ˇ̌
uı.x; 0/ � cˇ̌ '.x; 0/ dx

C
TZ
0

�
F ı
�
�i;NiC1=2; u

�
iC1; c

�
' .�i ; t/ � F ı

�
�i;1=2; u

C
i ; c

�
' .�iC1; t/

�
dt

C
TZ
0

NiX
jD1

sign
�
ui;j � c� �f ��i;jC1=2; c

� � f ��i;j�1=2; c
��
'
�
yi;j ; t

�
dt

� 0: (8.92)

Now ui;j D uı.y�
i;j ; � / or ui;j D uı.yC

i;j ; � /; hence if we define Nuı.x; t/ D
ui;j .t/�Ii;j .x/, and set Nzı D zıi;j .t/�Ii;j , we have that

Nzı �yi;j ; t� D zı
�
yi;j ; t

�
:



8.2 The Cauchy Problem 409

Now we claim that the sequence
˚ Nzı� is compact in L1loc.R � Œ0; T �/. Trivially we

have that �� Nzı��
L1.R/ � ��zı��

L1.R/ < C (8.93)

and ˇ̌Nzı. � ; t/ˇ̌
BV

� ˇ̌
zı. � ; t/ˇ̌

BV
� C: (8.94)

Furthermore,

�� Nzı. � ; t/ � zı. � ; t/��
L1.R/

D
Z
R

ˇ̌Nzı.x; t/ � zı.x; t/ˇ̌ dx

D
X
i;j

yi;jC1=2Z
yi;j�1=2

ˇ̌
zı
�
yi;j ; t

� � zı.y; t/ˇ̌ dy

�
X
i;j

yi;jC1=2Z
yi;j�1=2

yi;jZ
y

ˇ̌
zıx.x; t/

ˇ̌
dx dy

� max
i;j

ˇ̌
�xi;j

ˇ̌ ˇ̌
zı. � ; t/ˇ̌

BV
:

Setting �x D maxi;j �xi;j , we therefore find that�� Nzı. � ; t/ � Nzı. � ; s/��
L1.R/

� ��zı. � ; t/ � zı. � ; s/��
L1.R/

C 2�x
ˇ̌
zı. � ; t/ˇ̌

BV

� C..t � s/C�x/:
(8.95)

By the bounds (8.93), (8.94), and (8.95), the sequence
˚Nzı� converges along a sub-

sequence (also labeled ı), and

lim
ı!0

Nzı D lim
ı!0

zı D z:

Therefore, also limı!0 Nuı D u. Now define

�xg
ı.x; c/ D 1

�xi;j

�
f
�
�i;jC1=2; c

� � f ��i;j�1=2; c
� �
; for x 2 Ii;j .

Using this notation, the inequality (8.92) reads

�
TZ
0

�iC1Z
�i

� ˇ̌
uı � cˇ̌ 't C F ı

�
�ı; uı; c

�
'x
�
dx dt �

�iC1Z
�i

ˇ̌
uı.x; 0/� cˇ̌ '.x; 0/ dx

�
TZ
0

�
F ı
�
�C
i ; u

C
i ; c

�
' .�i ; t/ � F ı

�
��
iC1; u

�
iC1; c

�
' .�iC1; t/

�
dt

C
TZ
0

�iC1Z
�i

sign
� Nuı � c��xg

ı.y; c/

NiX
jD1

'
�
yi;j ; t

�
�I;j .y/ dy dt

� 0: (8.96)
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Now we can add this for i D 0; : : : ;M to obtain

�
“
˘T

� ˇ̌
uı � cˇ̌'t C F ı

�
�ı; uı; c

�
'x
�
dx dt �

Z
R

ˇ̌
uı.x; 0/� cˇ̌ '.x; 0/ dx

�
TZ
0

MX
iD1

�
F ı
�
�C
i ; u

C
i ; c

� � F ı
�
��
i ; u

�
i ; c

��
' .�i ; t/ dt

C
TZ
0

MX
iD0

�iC1Z
�i

sign
� Nuı � c��xg

ı.y; c/

NiX
jD1

'
�
yi;j ; t

�
�Ii;j .y/ dydt

� 0: (8.97)

At this point it is convenient to state the following general lemma.

Lemma 8.20 Let ˝ 2 R be a bounded open set, g 2 L1.˝/, and suppose that
gn.x/ ! g.x/ almost everywhere. Then there exists a set � 	 R, which is a most
countable, such that for every c 2 R n�,

sign .gn.x/� c/ ! sign .g.x/� c/ a.e. in ˝.

Furthermore, let c 2 � and define

Ec D fx 2 ˝ j g.x/ D cg :
Then it is possible to define sequences fcmg1

mD1 � R n � and f Ncmg1
mD1 � R n �

such that

cm " c and sign
�
g.x/ � cm

� ! sign .g.x/� c/ a.e. in˝ n Ec , (8.98)

Ncm # c and sign .g.x/� Ncm/ ! sign .g.x/� c/ a.e. in ˝ n Ec , (8.99)

as m ! 1.

Proof Fix c 2 R and a point x 2 ˝ such that gn.x/ ! g.x/ and g.x/ ¤ c.
For sufficiently large n, sign .gn.x/ � c/ D sign .g.x/� c/, i.e., sign .gn.x/� c/
is constant in n, and therefore converges to the correct limit. Thus for each c 2 R,
sign .gn.x/ � c/ ! sign .g.x/� c/ almost everywhere in ˝ n Ec . It remains to
show that all but countably many of the sets Ec have zero measure. To this end,
define

Ck D
�
c 2 R j meas.Ec/ � 1

k


:

Since ˝ is bounded, Ck contains only a finite number of points. Therefore, the set

fc 2 R j meas.Ec/ > 0g D
[
k>0

Ck

is at most countable.
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To prove (8.98), fix c 2 �. Since� is at most countable, we can find a sequence
cn " c such that cn … �. For x 2 ˝ n Ec , we have that g.x/ ¤ c, and thus
sign

�
g.x/� cn

� D sign .g.x/� c/ for n sufficiently large. Thus (8.98) holds. The
existence of f Ncng and (8.99) is proved in the same way. �

Now clearly

�xg
ı.y; c/

NiX
jD1

'
�
yi;j ; t

�
�Ii;j .y/ ! @xf .�.y/; c/'.y; t/ as ı ! 0

in each interval .�i ; �iC1/. Furthermore, by Lemma 8.20,

sign
� Nuı � c� ! sign .u � c/ ;

for almost all .x; t/ and all but at most a countable set of c’s.
Regarding the middle term of (8.97), by Lemma 8.4 each summand is bounded

by ˇ̌
gı
�
�C
i ; c

� � gı ���
i ; c

�ˇ̌
;

since .u�
i ; u

C
i / satisfies the minimal jump entropy condition. Therefore, by sending

ı to 0 in (8.97), we find that

�
“
˘T

� ju � cj 't C F.�; u; c/'x
�
dx dt C

“
˘T nD�

sign .u � c/ @xf .�; c/' dx dt

„ ƒ‚ …
I.c/

�
TZ
0

X
x2D�

ˇ̌
f .�.xC/; c/ � f .�.x�/; c/

ˇ̌
'.x; t/ dt �

Z
R

ju0 � cj '.x; 0/ dx

� 0 (8.100)

for all but a countable set of c’s and all nonnegative test functions '. This can be
rewritten as

I.c/ � G.c/;

where G is a continuous function of c. Let � denote the set where the convergence
of sign

� Nuı � c� ! sign .u � c/ does not hold. Fix some c 2 � and define the two
sequences fcng and f Ncng as in Lemma 8.20. Set

Ec D ˚
.x; t/

ˇ̌
u.x; t/ D c

�
:

Since (8.100) holds for cn and Ncn, we can write I.c/ as“
Ŏ
T nEc

sign
�
u � cn

�
@xf .�; u/' dx dt

C
“

EcnD�

sign
�
u � cn

�
@xf .�; u/' dx dt � G.c/;

(8.101)
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where Ŏ
T D ˘T n D� . Since cn < c, the last integral can be rewritten as“

EcnD�

@xf .�; u/' dxdt:

Since f is continuous, by sending n to 1, we find that“
Ŏ
T nEc

sign .u � c/ @xf .�; u/' dx dt C
“

EcnD�

@xf .�; u/' dx dt � G.c/: (8.102)

Similarly, using the sequence f Ncng, we arrive at“
Ŏ
T nEc

sign .u � c/ @xf .�; u/' dx dt �
“

EcnD�

@xf .�; u/' dx dt � G.c/: (8.103)

Adding (8.102) and (8.103) and dividing by 2, we find that“
Ŏ
T nEc

sign .u � c/ @xf .�; u/' dx dt � G.c/:

Since sign .0/ D 0, sign .u � c/ D 0 on Ec , and therefore, we can conclude that“
˘T nD�

sign .u � c/ @xf .�; u/' dx dt � G.c/ (8.104)

for all constants c. We have proved the following theorem.

Theorem 8.21 Assume that the flux function satisfies A.1–A.4, and let uı be a weak
solution of (8.84), constructed by front tracking, such that uı converges to u in
L1.˘T /. Then the entropy condition (8.100) holds for all constants c.

8.3 Uniqueness of Entropy Solutions

Now we shall use the Kružkov entropy formulation, (8.100), to show that there
exists at most one entropy solution. For convenience, we restate this condition,“
˘T

� ju � cj 't C F.�; u; c/'x
�
dt dx �

“
˘T nD�

sign .u � c/ @xf .�; c/' dt dx

C
TZ
0

X
i

ˇ̌
f
�
�C
i ; c

� � f ���
i ; c

�ˇ̌
' .�i ; t/ dt C

Z
R

ju0 � cj '.x; 0/ dx � 0;

(8.105)
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for all nonnegative test functions ' 2 C1
0 .R � Œ0; T // and all real constants c, and

where we write �˙
i D �.�i˙/.

In addition to satisfying this entropy inequality, we demand3 that an entropy
solution be a weak solution, i.e., that it satisfy (8.54) and be slightly more regular
in the sense described below.

If w 2 L1.˘T /, by the left and right traces of w. � ; t/ at a point x0 we under-
stand functions t 7! w.x0˙; t/ 2 L1.Œ0; T �/ that satisfy a.e. t 2 Œ0; T /,

ess limx#x0 jw.x; t/ � w.x0C; t/j D 0;

ess limx"x0 jw.x; t/ � w.x0�; t/j D 0:
(8.106)

When comparing two entropy solutions, we shall need that they have traces at the
points �i , i.e., if u is an entropy solution, then we assume that the following traces
exist:

u˙
i .t/ D u .xi˙; t/ ; (8.107)

in the sense of (8.106) for almost all t and for i D 1; : : : ; N .
An entropy solution of (8.53) is a function inL1loc.˘T /\C.Œ0; T /IL1loc.R// such

that (8.54), (8.105), and the regularity assumption (8.107) all hold.
We have already shown that an entropy solution exists for our model problem,

since the existence of traces follows by noting that z. � ; t/ 2 BV.R/, which implies
that z has traces. Since u D z�1.�; z/, the same applies to u.

Let noww D w.x/ be any function onR, and fix a point y. We use the following
notation:

L-limx#y w.x/ D lim
"#0

1

"

yC"Z
y

w.x/ dx;

L-limx"y w.x/ D lim
"#0

1

"

yZ
y�"

w.x/ dx:

Lemma 8.22 Let w 2 L1.˘T /, and fix a point x0 2 R. If the left and right traces
t 7! w.x0˙; t/ exist in the sense of (8.106), then for a.e. t 2 Œ0; t/ we have that

L-limx#x0 w.x; t/ D w.x0C; t/; L-limx"x0 w.x; t/ D w.x0�; t/:
Proof We prove the first limit as follows:

1

"

x0C"Z
x0

jw.x; t/ � w.x0C; t/j dx

� 1

"

x0C"Z
x0

ess supy2.x0;x0C"/ jw.y; t/ � w.x0C; t/j dx

D ess supy2.x0;x0C"/ jw.y; t/ � w.x0C; t/j ! 0 as " # 0. �

3 This does not follow easily from the entropy condition, which is in contrast to the case in which
the flux function is space-independent.
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As a consequence of this lemma, the following limits exist for every entropy
solution u:

L-limx#�i f .�.x/; u.x; t// D f .� .�iC/ ; u.�iC; t// ;
L-limx"�i f .�.x/; u.x; t// D f .� .�i�/ ; u.�i�; t// ; (8.108)

and therefore, if v is another entropy solution,

L-limx#�i F .�.x/; u.x; t/; v.x; t// D F .� .�iC/ ; u.�iC; t/; v.�iC; t// ;
L-limx"�i F .�.x/; u.x; t/; v.x; t// D F .� .�i�/ ; u.�i�; t/; v.�i�; t// ;

(8.109)

where F is the Kružkov entropy flux (8.88). Before we continue, let us define the
following compactly supported Lipschitz continuous function:

�".x/ D

8̂̂
<
ˆ̂:
1
"
."C x/ if x 2 .�"; 0�,
1
"
." � x/ if x 2 Œ0; "/,
0 otherwise.

(8.110)

Lemma 8.23 Let u be an entropy solution. Then for a.e. t 2 Œ0; t/ and for all
constants c,

f
�
�C
i ; u

C
i .t/

� D f
�
��
i ; u

�
i .t/

�
;

F
�
�C
i ; u

C
i ; c

� � F ���
i ; u

�
i

� � ˇ̌
f
�
�C
i ; c

� � f ���
i ; c

�ˇ̌
;

where F is the Kružkov entropy flux (8.88).

Proof Since u 2 L1.˘T /, a density argument shows that

'.x; t/ D �" .x � �i /  .t/;
where  2 C1

0 ..0; T // is an admissible test function that can be used in the weak
formulation (8.54). If " < mini f�iC1 � �ig, we get“

˘T

u�" .x � �i /  0.t/ dx dt

D
TZ
0

	1
"

�iC"Z
�i

f .�.x/; u/ dx � 1

"

�iZ
�i�"

f .�.x/; u/ dx


 .t/ dt:

By sending " # 0 and using Lemma 8.23, we obtain

TZ
0

�
f
�
�C
i ; u

C
i

� � f ���
i ; u

�
i

��
 .t/ dt D 0:

Since this holds for every test function  , the integrand must be zero.
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To prove the inequality in the lemma, we choose the same test function, but
restrict  to be nonnegative. By the entropy condition, (8.105), we get

“
˘T

ju � cj�" .x � �i /  0.t/ dx dt

�
TZ
0

	1
"

�iC"Z
�i

F .�.x/; u; c/ dx � 1

"

�iZ
�i�"

F.�.x/; u; c/ dx


 .t/ dt

�
“
˘T

sign .u � c/ @xf .�.x/; c/�" .x � �i /  .t/ dx dt

C
TZ
0

ˇ̌
f
�
�C
i ; c

� � f ���
i ; c

�ˇ̌
 .t/ dt � 0:

Again, by sending " # 0,

TZ
0

ˇ̌
f
�
�C
i ; c

� � f ���
i ; c

�ˇ̌
 .t/ dt �

TZ
0

�
F
�
�C
i ; u

C
i ; c

� � F ���
i ; u

�
i ; c

��
 .t/ dt;

which implies the inequality. �

This has the following immediate corollary.

Corollary 8.24 Assume that the flux function f satisfies A.1–A.4. If u is an entropy
solution, then the pairs .u�

i ; u
C
i / satisfy the minimal jump entropy condition (8.25)–

(8.26) for i D 1; : : : ; N .

For any test function ' that has support away fromD� , we can double variables
in the sense of Kružkov.

Lemma 8.25 For every two entropy solutions u and v and nonnegative test func-
tion ' 2 C1

0 .˘T n D�/, we have that

�
“
˘T

� ju � vj 't C F.�; u; v/'x
�
dt dx

� C

“
˘T

ju � vj ' dt dx C
Z
R

ju0 � v0j '.x; 0/ dx; (8.111)

where the constant C is zero if � is piecewise constant.
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Proof The proof is a classical doubling of variables argument. It uses exactly the
same arguments as in Sect. 2.4, but adapted to our situation.

Let � be a nonnegative test function in C1
0 .˘T � ˘T /. We use the notation

u D u.y; s/, v D v.x; t/. Then using c D u.y; s/ as the constant in the entropy
inequality for v and then integrating over .y; s/, we get

�
ZZZZ
˘T �˘T

� ju � vj�t C F.�.x/; u; v/�x
�
dt dx ds dy

C
ZZZZ

.˘T nD� /�.˘T nD� /

sign .v � u/ f .�.x/; u/x � dt dx dy ds

�
“
˘T

Z
R

jv0 � uj�.x; 0; y; s/ dx ds dy:

(8.112)

Similarly, starting with the entropy inequality for u and integrating over .x; t/, we
arrive at

�
ZZZZ
˘T �˘T

� ju � vj�s C F.�.y/; u; v/�y
�
ds dy dt dx

C
ZZZZ

.˘T nD� /�.˘T nD� /

sign .u � v/ f .�.y/; v/y � ds dy dt dx

�
“
˘T

Z
R

ju0 � vj �.x; t; y; 0/ dy dt dx:

(8.113)

Since � is differentiable outside D� , for .x; t/ 2 ˘T n D� we have

F .�.x/; v; u/ �x�sign .v � u/ f .�.x/; u/x �
D sign .v � u/ .f .�.x/; v/ � f .�.y/; u// �x

� sign .v � u/ ..f .�.x/; u/� f .�.y/; u// �/x :

Using this, we find that

�
ZZZZ

.˘T nD� /�.˘T nD� /

�
F .�.x/; v; u/ �x � sign .v � u/ f .�.x/; u/x �

�
dt dx ds dy

D �
ZZZZ

.˘T nD� /�.˘T nD� /

sign .v � u/ .f .�.x/; v/ � f .�.y/; u// �x dt dx ds dy

C
ZZZZ

.˘T nD� /�.˘T nD� /

sign .v � u/ ..f .�.x/; u/� f .�.y/; u// �/x dt dx ds dy:
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We also have a similar equality for u,

�
ZZZZ

.˘T nD� /�.˘T nD� /

�
F .�.y/; v; u/ �y � sign .u � v/ f .�.y/; v/y �

�
ds dy dt dx

D �
ZZZZ

.˘T nD� /�.˘T nD� /

sign .u � v/ .f .�.y/; u/ � f .�.x/; v// �y ds dy dt dx

C
ZZZZ

.˘T nD� /�.˘T nD� /

sign .u � v/ ..f .�.y/; v/ � f .�.x/; v// �/y ds dy dt dx:

Now we introduce the notation

@tCs D @t C @s; @xCy D @x C @y:

We use the above result and add (8.113) and (8.112) to obtain

�
ZZZZ
˘T �˘T

	
jv � uj @tCs�

C sign .v � u/ .f .�.x/; v/ � f .�.y/; u// @xCy�


dt dx ds dy

C
ZZZZ
˘T �˘T

sign .v � u/
h
..f .�.x/; u/� f .�.y/; u// �/x

C ..f .�.y/; v/ � f .�.x/; v// �/y
i
dt dx ds dy

�
“
˘T

Z
R

jv0 � uj�.x; 0; y; s/ dx ds dy

C
“
˘T

Z
R

ju0 � vj�.x; t; y; 0/ dy dt dx:

(8.114)

Now we shall choose a suitable test function. First let ! 2 C1
0 .R/ be a function

such that !.�a/ D !.a/, ! 0.a/ � 0 for a > 0, j! 0.a/j � 2, !.a/ D 0 for jaj � 1,
and

R
!.a/ da D 1. For positive ", set

!".a/ D 1

"
!
	a
"



:

Let '.x; t/ be a test function such that

'.x; t/ D 0 for jx � �i j � "0, i D 1; : : : ; N ,

for some positive "0. Then we define

�.x; t; y; s/ D '

�
x C y

2
;
t C s

2

�
!"

	x � y
2



!"

�
t � s
2

�
; (8.115)
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for " < "0. We can easily check that � 2 C1
0 ..˘T nD� /�.˘T nD�//. Furthermore,

we have the useful identities

@tCs�.x; t; y; s/ D @tCs'
�
x C y

2
;
t C s

2

�
!"

	x � y
2



!"

�
t � s
2

�
;

@xCy�.x; t; y; s/ D @xCy'
�
x C y

2
;
t C s

2

�
!"

	x � y
2



!"

�
t � s
2

�
:

If we use these identities in (8.114), we find that

�
ZZZZ
˘T �˘T

.Itime.x; t; y; s/C Iconv.x; t; y; s// !"

	x � y
2



!"

�
t � s
2

�
dt dx ds dy

�
ZZZZ
˘T �˘T

�
I 1flux.x; t; y; s/ C I 2flux.x; t; y; s/C I 3flux.x; t; y; s/

�
dt dx ds dy

C
“
˘T

Z
R

jv0 � uj�.x; 0; y; s/ dx ds dy C
“
˘T

Z
R

ju0 � vj�.x; t; y; 0/ dy dt dx
„ ƒ‚ …

Jinit

;

(8.116)

where

Itime.x; t; y; s/ D jv � uj @tCs'
�
x C y

2
;
t C s

2

�
;

Iconv.x; t; y; s/ D sign .v � u/ Œf .�.x/; v/ � f .�.y/; u/�
� @xCy'

�
x C y

2
;
t C s

2

�
;

I 1flux.x; t; y; s/ D �sign .v � u/!"
	x � y

2



!"

�
t � s
2

�
'

�
x C y

2
;
t C s

2

�

� �� 0.x/f�.�.x/; u/� � 0.y/f� .�.y/; v/
�
;

I 2flux.x; t; y; s/ D �sign .v � u/!"
	x � y

2



!"

�
t � s
2

�

�
�
@x'

�
x C y

2
;
t C s

2

�
.f .�.x/; u/ � f .�.y/; u//

C @y'

�
x C y

2
;
t C s

2

�
.f .�.x/; v/ � f .�.y/; v//

�
;

I 3flux.x; t; y; s/ D ŒF .�.x/; v; u/ � F .�.y/; v; u/�
� '

�
x C y

2
;
t C s

2

�
!"

�
t � s
2

�
@x!"

	x � y
2



:

Introduce new variables

Qx D x C y

2
; z D x � y

2
; Qt D t C s

2
; � D t � s

2
;
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which map ˘T �˘T into

˝T D ˚� Qx; Qt ; z; �� 2 R4 j 0 � Qt ˙ � � T
�
;

and .˘T n D� / � .˘T n D� / into

˝T;� D ˚� Qx; Qt ; z; �� 2 ˝T j Qx ˙ z ¤ �i ; i D 1; : : : ; N
�
:

We start by estimating the terms in Jinit:

“
˘T

Z
R

jv0.x/� u.y; s/j '
�
x C y

2
;
s

2

�
!"

	x � y
2



!"

	�s
2



dx ds dy

D
"Z
0

Z
R

"Z
�"

ˇ̌
v0. Qx C z/� u. Qx � z; Qt � �/ˇ̌ '. Qx; �/!".z/!".�/ dz d Qx d�

! 1

2

Z
R

jv0.x/� u.x; 0/j'.x; 0/ dx

as " ! 0. Since t 7! u.x; t/ is L1 continuous, we can replace u.x; 0/ by u0.x/.
Similarly, we find that

“
˘T

Z
R

ju0 � vj�.x; t; y; 0/ dy dt dx ! 1

2

Z
R

ju0 � v0j '.x; 0/ dx

as " ! 0, and thus

lim
"!0

Jinit D
Z
R

ju0 � v0j '.x; 0/ dx: (8.117)

In the transformed variables, we have

Itime. Qx; Qt ; z; �/ D ˇ̌
v. Qx C z; Qt C �/ � u. Qx � z; Qt � �/ˇ̌ @Qt '

� Qx; Qt� ;
Iconv. Qx; Qt ; z; �/ D sign

�
v. Qx C z; Qt C �/ � u. Qx � z; Qt � �/� @ Qx'

� Qx; Qt�
�
h
f
�
�. Qx C z/; v. Qx C z; Qt C �/

�
� f ��. Qx � z/; u. Qx � z; Qt � �/�i;

I 1flux. Qx; Qt ; z; �/ D sign
�
v. Qx C z; Qt C �/ � u. Qx � z; Qt � �/�!" .z/ !" .�/

�
h
� 0. Qx C z/f� .�. Qx C z/; u. Qx � z; Qt � �//
� � 0. Qx � z/f� .�. Qx � z/; v. Qx C z; Qt C �//

i
'
� Qx; Qt� ;
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I 2flux. Qx; Qt ; z; �/
D sign

�
v. Qx C z; Qt C �/ � u. Qx � z; Qt � �/�!" .z/ !" .�/ @ Qx'

� Qx; Qt�
�
h�
f .�. Qx C z/; u. Qx � z; Qt � �// � f .�. Qx � z/; u. Qx � z; Qt � �//�

C �
f .�. Qx C z/; v. Qx C z; Qt C �// � f .�. Qx � z/; v. Qx C z; Qt C �//

�i
;

I 3flux. Qx; Qt ; z; �/ D
h
F
�
�. Qx C z/; v. Qx C z; Qt C �/; u. Qx � z; Qt � �/�

� F ��. Qx � z/; v. Qx C z; Qt C �/; u. Qx � z; Qt � �/�i
� ' � Qx; Qt�!" .t/ @z!" .z/ :

It is straightforward to deduce the limits

lim
"!0

ZZZZ
˝

Itime. Qx; Qt ; z; �/!" .z/ !" .t/ d� dzd Qtd Qx D
“
˘T

ju � vj 't dt dx;

(8.118)

lim
"!0

ZZZZ
˝

Iconv. Qx; Qt ; z; �/!" .z/!" .t/ d� dz d Qt d Qx D
“
˘T

F .�.x/; u; v/ 'x dt dx:

(8.119)

Since � is C1 outside D� , we deduce that

lim
"!0

ZZZZ
˝�

I 1flux
� Qx; Qt ; z; �� d Qt d Qx d�dz D

“
˘T nD�

� 0.x/F� .�.x/; u; v/ dt dx

� C

“
˘T

ju � vj dt dx; (8.120)

where

C D k� 0kL1.RnD� /

��fu���L1 :

In particular, we observe that C can be chosen as zero if � is a piecewise constant
function.

Next we consider I 2flux. Since ' vanishes near D� , I 2flux also vanishes near D� .
Hence � is uniformly C1 where I 2flux ¤ 0. Therefore,ˇ̌
I 2flux. Qx; Qt ; z; �/ˇ̌

� !".z/!".�/
ˇ̌
@ Qx'. Qx; Qt /ˇ̌

�
	ˇ̌
f
�
�. Qx C z/; u

� Qx � z; Qt � ��� � f ��. Qx � z/; u � Qx � z; Qt � ���ˇ̌
C ˇ̌
f
�
�. Qx C z/; v

� Qx C z; Qt C �
�� � f ��. Qx � z/; v � Qx C z; Qt C �

��ˇ̌

� !".z/!".�/

ˇ̌
@ Qx'. Qx; Qt /ˇ̌ 2 ��f���L1 j�. Qx C z/� �. Qx � z/j

� 4
��f���L1.R/ k� 0kL1.RnD� /

!".z/!".�/
ˇ̌
@ Qx'. Qx; Qt /ˇ̌ jzj :
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From this we conclude that

lim
"!0

ˇ̌̌ZZZZ
˝

I2flux
� Qx; Qt ; z; �� d Qt d Qx d� dz

ˇ̌̌

� lim
"!0

C

"Z
�"

jzj!".z/ dz D 0:

(8.121)

Finally, we turn to I 3flux:ˇ̌
I 3flux. Qx; Qt ; z; �/ˇ̌ � '

� Qx; Qt�!".�/ j@z!".z/j
�
ˇ̌̌
F
�
�. Qx C z/; v. Qx C z; Qt C �/; u. Qx � z; Qt � �/�

� F ��. Qx � z/; v. Qx C z; Qt C �/; u. Qx � z; Qt � �/�ˇ̌̌
� '

� Qx; Qt�!".�/ j@z!".z/j 2 k� 0kL1.RnD� /
jzj

� ��f�u��L1.R/
ˇ̌
v
� Qx C z; Qt C �

� � u � Qx � z; Qt � ��ˇ̌
� ��f�u��L1.R/ k� 0kL1.RnD� /

'
� Qx; Qt�!".�/ 8

2"
�fzj jzj�"g

� ˇ̌v � Qx C z; Qt C �
� � u � Qx � z; Qt � ��ˇ̌ :

Now set

h". Qx; Qt/ D 1

2"

"Z
�"

"Z
�"

ˇ̌
v
� Qx C z; Qt C �

� � u � Qx � z; Qt � ��ˇ̌' � Qx; Qt�!".�/ d� dz:
By Lebesgue’s differentiation theorem,

lim
"!0

h".x; t/ D jv.x; t/ � u.x; t/j a.e. .x; t/.

Therefore,

lim
"!0

ˇ̌̌Z ZZZ
˝

I3flux
� Qx; Qt ; z; �� d Qt d Qx d� dz

ˇ̌̌
� lim

"!0
C

“
˘T

ju � vj ' dt dx; (8.122)

where the constant C is zero if � is piecewise constant.
Combining (8.118), (8.119), (8.120), (8.121), and (8.122) we get (8.111). �

Equipped with Lemma 8.25, we can continue to prove uniqueness of entropy
solutions. Define

 ".x/ D

8̂̂̂
<̂
ˆ̂̂̂:

2
"
."C x/ if x 2 Œ�";�"=2�,

1 if �"=2 < x < "=2,
2
"
." � x/ if x 2 Œ"=2; "�,
0 otherwise,
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and set �".x/ D 1 � PN
i  ".x � �i /. Observe that �" ! 1 in L1loc.R/ as " ! 0,

and we consider only " such that " < mini f�iC1 � �ig. Let ' be a nonnegative
test function in C1

0 .˘T /. Then � D '�" is an admissible test function, as a den-
sity argument will show. Furthermore, � has support away from D� . With this test
function, (8.111) takes the form

�
“
˘T

� ju � vj�"'t C F.�; u; v/�"'x
�
dt dx �

“
˘T

F.�; u; v/� 0
"' dt dx

� C

“
˘T

ju � vj�"' dt dx C
Z
R

ju0 � v0j�"'.x; 0/ dx:

Set

I" D
“
˘T

F.�; u; v/� 0
"' dt dx;

and let " # 0. This yields

�
“
˘T

� ju � vj 't C F.�; u; v/'x
�
dt dx

� C

“
˘T

ju � vj ' dt dx C
Z
R

ju0 � v0j'.x; 0/ dx C lim
"#0
I":

Now we use that .u�
i ; u

C
i / and .v

�
i ; v

C/ both satisfy the minimal jump entropy
condition, and thus Lemma 8.6 applies at each discontinuity in � . With this in mind,
we calculate

lim
"#0
I" D

NX
i

lim
"#0

TZ
0

�
2

"

�iC"Z
�iC"=2

F.�.x/; u; v/' dx

� 2

"

�i�"=2Z
�i�"

F .�.x/; u; v/ ' dx

�
dt

D lim
"#0

NX
i

TZ
0

�
F
�
�C
i ; u

C
i ; v

C
i

� � F ���
i ; u

�
i ; v

�
i

��
' .�i ; t/ dt

� 0:

Hence for every nonnegative test function, we have

�
“
˘T

� ju � vj 't C F.�; u; v/'x
�
dt dx

� C

“
˘T

ju � vj ' dt dx C
Z
R

ju0 � v0j'.x; 0/ dx: (8.123)
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This equation is very similar to (2.60), the difference being that F replaces q and
that F depends explicitly on x. What follows is therefore analogous to the argu-
ments used after (2.60).

Now let ˛r.x/ be a smooth function taking values in Œ0; 1� such that

˛r.x/ D
(
1 if jxj � r ,

0 if jxj � r C 1,

and max j˛0
r .x/j � 2. Then fix s0 and s so that 0 < s0 < s < T . For all positive �

and � such that s0 C � < sC � < T , let ˇ�;� .t/ be a Lipschitz function that is linear
on Œs0; s0 C �� and on Œs; s C �� and satisfies

ˇ�;� .t/ D
(
0 if t < s0 or t > s C �,

1 if s 2 Œs0 C �; s�.

By density arguments, ' D ˛rˇ�;� is an admissible test function, and using this in
(8.123) gives

1

�

sC�Z
s

Z
R

ju � vj˛r dx dt � 1

�

s0C�Z
s0

ju � vj˛r dx dt

� C

sC�Z
s0

Z
R

ju � vj˛r dx dt C 2

sC�Z
s0

Z
r<jxj<rC1

jF .�; u; v/jˇ�;� dx dt:

Next, we let s0 # 0 and use the triangle inequality to get

1

�

sC�Z
s

Z
R

ju � vj˛r dx dt �
Z
R

ju0 � v0j˛r dx

C 1

�

�Z
0

Z
R

jv.x; t/ � v0.x/j˛r.x/ dx dt

C 1

�

�Z
0

Z
R

ju.x; t/ � u0.x/j˛r.x/ dx dt

C C

sC�Z
s0

Z
R

ju � vj˛r dx dt

C 2

sC�Z
s0

Z
r<jxj<rC1

jF .�; u; v/jˇ�;� dx dt:



424 8 Conservation Laws with Discontinuous Flux Functions

We shall now send � # 0 and prove later that for every entropy solution u,

lim
�#0

1

�

�Z
0

Z
R

ju.x; t/ � u0.x/j˛r.x/ dxdt D 0: (8.124)

Furthermore, by finite speed of propagation, if u0.x/ D v0.x/ for jxj large, then
also u.x; t/ D v.x; t/ for jxj large. Hence F.�.x/; u.x; t/; v.x; t// D 0 for jxj
large. Thus

lim
r!1

sC�Z
s0

Z
r<jxj<rC1

jF .�; u; v/jˇ�;� dx dt D 0:

Set

E.t/ D
Z
R

ju.x; t/ � v.x; t/j dx:

By sending � # 0 and then r " 1, we obtain

1

�

sC�Z
s

E.t/ dt � E.0/C C

sC�Z
0

E.t/ dt: (8.125)

Let s be a Lebesgue point for the L1 function E. Sending � # 0 yields

E.s/ � E.0/C C

sZ
0

E.t/ dt:

Since the set of Lebesgue points has full measure, we can use Gronwall’s inequality
to conclude that

E.t/ � eCtE.0/;

for almost every t > 0.
It remains to prove (8.124). To this end, define

ˇ�.t/ D d

(
1
�
.� � t/ if 0 � t � � ,

0 otherwise.
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We then use the test function !".x � y/ˇ� .t/˛r .x/ and the constant c D u0.y/ in
the entropy formulation (8.105). The result of this is“

˘�

ju.x; t/ � u0.y/j!".x � y/˛r .x/ˇ0
� .t/ dt dx

C
“
˘�

F .�.x/; u; u0.y// .!".x � y/˛r.x//x ˇ� .t/ dt dx

�
“

˘� nD�

sign .u � u0.y// @xf .�.x/; u0.y// !".x � y/˛r.x/ˇ� .t/ dt dx

C
�Z
0

X
i

ˇ̌
f
�
�C
i ; u0.y/

� � f ��C
i ; u0.y/

�ˇ̌
!" .�i � y/ ˛r .�i / ˇ� .t/ dt

C
Z
R

ju0.x/� u0.y/j!".x � y/˛r.x/ dx � 0:

Since u 2 L1loc, on sending � # 0, all terms in the above expression containing ˇ�
will vanish. Recalling that ˇ0

� .t/ D �1=� for t 2 .0; �/, after an application of the
triangle inequality and an integration over y 2 R, we find that

lim
�#0

1

�

�Z
0

Z
R

ju.x; t/ � u0.x/j˛r.x/ dx dt

� 2

Z
R

Z
R

ju0.x/� u0.y/j!".x � y/˛r.x/ dx dy:

Since u0 2 L1loc.R/, we can send " # 0 to prove (8.124).
We have now proved that the initial value problem (8.53) is well posed in L1.

Theorem 8.26 Assume that the flux function f satisfies the assumptions A.1–A.4,
and that the initial value u0 is in L1.R/ and f .�; u0/ 2 BV.R/. Then there exists
a weak entropy solution, in the sense of (8.54) and (8.105), to the initial value
problem (8.53).

If v is another entropy solution with initial data v0, then

kv. � ; t/ � u. � ; t/kL1.R/ � eCt kv0 � u0kL1.R/ ;
where the constant C depends on � 0.x/ for x … D� and is zero if � is piecewise
constant.

8.4 Notes

The presentation here is based on [161]. Over that last twenty years, conservation
laws with spatially discontinuous flux functions have been studied in several papers;
a very incomplete list includes [2, 36, 59, 71, 110, 111, 166, 181, 182] and other
references therein.
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The solution of the Riemann problem presented in this chapter is based on [70].
Regarding the admissibility criteria for solutions of the Riemann problem, as al-
ready hinted at in the text, there exist many criteria for selecting unique solutions;
see, e.g., [2, 59]. It turns out that all these recipes can be used to prove an estimate
similar to (8.123), and thus give a unique solution to the Cauchy problem. How this
is done is explained in [5]. Example 8.8 is taken from [143].

The convergence of the front-tracking algorithm is taken from [113]. In [114] the
convergence of front tracking was shown for the polymer model (8.5). Existence
proofs based on finite volume methods were first presented in [181], see also [182],
and later extended to several dimensions in [107]. For a general overview we refer
to [35].

8.5 Exercises

8.1 Solve the Riemann problem for the linear conservation law with discontinuous
coefficients,

ut C .a.x/u/x D 0; a.x/ D
(
al ; x < 0;

ar ; x � 0:

8.2 Carry out the coordinate change transforming (8.4) into (8.5).



Appendix A
Total Variation, Compactness, Etc.

I hate T.V. I hate it as much as peanuts. But I can’t stop eating peanuts.
— Orson Welles, The New York Herald Tribune (1956)

A key concept in the theory of conservation laws is the notion of total variation,
T:V: .u/, of a function u of one variable. We define

T:V: .u/ WD sup
X
i

ju .xi /� u .xi�1/j : (A.1)

We will also use the notation jujBV WD T:V: .u/. The supremum in (A.1) is taken
over all finite partitions fxig such that xi�1 < xi . The set of all functions with
finite total variation on I we denote by BV .I /. Clearly, functions in BV .I / are
bounded. We shall omit explicit mention of the interval I if (we think that) this is
not important, or if it is clear which interval we are referring to.

For any finite partition fxig we can write

X
i

ju .xiC1/ � u .xi /j D
X
i

max .u .xiC1/ � u .xi/ ; 0/

�
X
i

min .u .xiC1/ � u .xi/ ; 0/

DW p C n:

Then the total variation of u can be written

T:V: .u/ D P CN WD supp C supn: (A.2)

We call P the positive, and N the negative, variation of u. If for the moment we
consider the finite interval I D Œa; x� and partitions with a D x1 < � � � < xn D x,
we have that

pxa � nxa D u.x/� u.a/;

where we write pxa and nxa to indicate which interval we are considering. Hence

pxa � Nx
a C u.x/� u.a/:

427© Springer-Verlag Berlin Heidelberg 2015
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Taking the supremum on the left-hand side, we obtain

P x
a �Nx

a � u.x/ � u.a/:
Similarly, we have that Nx

a � P x
a � u.a/� u.x/, and consequently

u.x/ D Px
a �Nx

a C u.a/: (A.3)

In other words, every function u.x/ in BV can be written as a difference between
two increasing functions,1

u.x/ D uC.x/ � u�.x/; (A.4)

where uC.x/ D u.a/C P x
a and u�.x/ D Nx

a . Let �j denote the points where u is
discontinuous. Then we have thatX

j

ˇ̌
u.�jC/� u.�j�/ˇ̌ � T:V: .u/ < 1;

and hence we see that there can be at most a countable set of points where u.�C/ ¤
u.��/.

Observe that functions with finite total variation are bounded, since

ju.x/j � ju.a/j C ju.a/� u.x/j � ju.a/j C T:V: .u/ :

Equation (A.3) has the very useful consequence that if a function u in BV is also
differentiable, then Z

ju0.x/j dx D T:V: .u/ : (A.5)

This equation holds, sinceZ
ju0.x/j dx D

Z 	 d
dx
P x
a C d

dx
N x
a



dx D P CN D T:V: .u/ :

We can also relate the total variation with the shifted L1-norm. Define

.u; "/ D
Z

ju.x C "/� u.x/j dx: (A.6)

If .u; "/ is a (nonnegative) continuous function in " with .u; 0/ D 0, we say that
it is a modulus of continuity for u. More generally, we will use the name modulus
of continuity for every continuous function .u; "/ vanishing at " D 0 2 such that
.u; "/ � ku. � C "/ � ukp , where k � kp is the Lp-norm. We will need a conve-
nient characterization of total variation (in one variable), which is described in the
following lemma.

1 This decomposition is often called the Jordan decomposition of u.
2 This is not an exponent, but a footnote! Clearly, .u; "/ is a modulus of continuity if and only if
.u; "/ D o .1/ as " ! 0.
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Lemma A.1 Let u be a function in L1.R/. If .u; "/= j"j is bounded as a function
of ", then u is in BV and

T:V: .u/ D lim
"!0

.u; "/

j"j : (A.7)

Conversely, if u is in BV , then .u; "/= j"j is bounded, and thus (A.7) holds. In
particular, we shall frequently use

.u; "/ � j"jT:V: .u/ (A.8)
if u is in BV .

Proof Assume first that u is a smooth function. Let fxig be a partition of the interval
in question. Then

ju .xi/ � u .xi�1/j D
ˇ̌̌
ˇ̌̌ xiZ
xi�1

u0.x/ dx

ˇ̌̌
ˇ̌̌ � lim

"!0

xiZ
xi�1

ˇ̌̌
ˇu.x C "/ � u.x/

"

ˇ̌̌
ˇ dx:

Summing this over i , we get

T:V: .u/ � lim inf
"!0

.u; "/

j"j
for differentiable functions u.x/. Let u be an arbitrary bounded function in L1, and
uk a sequence of smooth functions such that uk.x/ ! u.x/ for almost all x, and
kuk � uk1 ! 0. The triangle inequality shows that

j .uk; "/�  .u; "/j � 2kuk � ukL1 ! 0:

Let fxig be a partition of the interval. We can now choose uk such that uk .xi / D
u .xi/ for all i . ThenX

ju .xi/ � u .xi�1/j � lim inf
"!0

.uk; "/

j"j :

Therefore,

T:V: .u/ � lim inf
"!0

.u; "/

j"j :

Furthermore, we have

Z
ju.x C "/� u.x/j dx D

X
j

j"Z
.j�1/"

ju.x C "/� u.x/j dx

D
X
j

"Z
0

ju.x C j"/� u.x C .j � 1/"/j dx

D
"Z
0

X
j

ju.x C j"/� u.x C .j � 1/"/j dx

�
"Z
0

T:V: .u/

D j"jT:V: .u/ :
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Thus we have proved the inequalities

.u; "/

j"j � T:V: .u/ � lim inf
"!0

.u; "/

j"j � lim sup
"!0

.u; "/

j"j � T:V: .u/ ; (A.9)

which imply the lemma. �

Observe that we trivially have

Q.u; "/ WD sup
j� j�j"j

.u; �/ � j"jT:V: .u/ : (A.10)

For functions in Lp care has to be taken as to which points are used in the supre-
mum, since these functions in general are not defined pointwise. The right choice
here is to consider only points xi that are points of approximate continuity3 of u.
Lemma A.1 remains valid.

Wemeasure the variation in the case of a function u of two variables u D u.x; y/

as follows:

T:V:x;y .u/ D
Z

T:V:x .u/ .y/ dy C
Z

T:V:y .u/ .x/ dx: (A.11)

The extension to functions of n variables is obvious. We include a useful character-
ization of total variation.

Definition A.2 Let ˝ 	 Rn be an open subset. We define the set of all functions
with finite total variation with respect to ˝ as follows:

BV .˝/ D fu 2 L1loc.˝/ j sup
�2C10 .˝IRn/;k�k1�1

Z
˝

u.x/ div�.x/ dx < 1g:

For u 2 BV .˝/ we write

kDuk D sup
�2C10 .˝IRn/;k�k1�1

Z
˝

u.x/ div�.x/ dx;

and for u 2 BV .˝/\ L1.˝/ we define
kukBV D kukL1.˝/ C kDuk :

Remark A.3 If u is integrable with weak derivatives that are integrable functions,
we clearly have

kDuk D
Z

jru.x/j dx:

In one space dimension there is a simple relation between kDuk and T:V: .u/,
as the next theorem shows.

3 A function u is said to be approximately continuous at x if there exists a measurable set A such
that limr!0 jŒx � r; x C r� \ Aj = jŒx � r; x C r�j D 1 (here jB j denotes the measure of the setB),
and u is continuous at x relative to A. (Every Lebesgue point is a point of approximate continuity.)
The supremum (A.1) is then called the essential variation of the function. However, in the theory
of conservation laws it is customary to use the name total variation in this case, too, and we will
follow this custom here.
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Theorem A.4 Let u be a function in L1.I /, where I is an interval. Then

T:V: .u/ D kDuk : (A.12)

Proof Assume that u has finite total variation on I . Let ! be a nonnegative function
bounded by unity with support in Œ�1; 1� and unit integral. Define

!".x/ D 1

"
!
	x
"



and

u" D !" � u: (A.13)

Consider points x1 < x2 < � � � < xn in I . Then
X
i

ju".xi /� u".xi�1/j �
"Z

�"
!".x/

X
i

ju.xi � x/� u.xi�1 � x/j dx

� T:V: .u/ : (A.14)

Using (A.5) and (A.14), we obtainZ
j.u"/0.x/j dx D T:V: .u"/

D sup
X
i

ju".xi / � u".xi�1/j

� T:V: .u/ :

Let � 2 C1
0 with j�j � 1. ThenZ

u".x/� 0.x/ dx D �
Z
.u"/0.x/�.x/ dx

�
Z

j.u"/0.x/j dx
� T:V: .u/ ;

which proves the first part of the theorem.
Now let u be such that

kDuk WD sup
�2C10j�j�1

Z
u.x/�x.x/ dx < 1:

First we infer that

�
Z
.u"/0.x/�.x/ dx D

Z
u".x/� 0.x/ dx

D �
Z
.!" � u/.x/� 0.x/ dx

D �
Z
u.x/.!" � �/0.x/ dx

� kDuk :
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Using that (see Exercise A.1)

kf kL1.I / D sup
�2C10 .I /;j�j�1

Z
f .x/�.x/ dx;

we conclude that Z
j.u"/0.x/j dx � kDuk : (A.15)

Next we show that u 2 L1. Choose a sequence uj 2 BV \ C1 such that (see,
e.g., [64, p. 172])

uj ! u a.e.;
��uj � u��

L1
! 0; j ! 1; (A.16)

and Z ˇ̌̌
u0
j .x/

ˇ̌̌
dx ! kDuk ; j ! 1: (A.17)

For all y; z we have

uj .z/ D uj .y/C
zZ

y

u0
j .x/ dx:

Averaging over some bounded interval J 	 I , we obtain

ˇ̌
uj
ˇ̌ � 1

jJ j
Z
J

ˇ̌
uj .y/

ˇ̌
dy C

Z
I

ˇ̌̌
u0
j .x/

ˇ̌̌
dx; (A.18)

which shows that the uj are uniformly bounded, and hence u 2 L1. Thus

u".x/ ! u.x/

as " ! 0 at each point of approximate continuity of u. Using points of approximate
continuity x1 < x2 < � � � < xn, we conclude thatX

i

ju.xi/ � u.xi�1/j D lim
"!0

X
i

ju".xi / � u".xi�1/j

� lim sup
"!0

Z
j.u"/0.x/j dx (A.19)

� kDuk : �

The next result shows that the generalization (A.11) of the total variation to
higher dimension yields a (semi)norm that is equivalent to the one coming from
bounded variation.
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Theorem A.5 Let u 2 L1.K/ with K D Œa1; b1� � � � � � Œan; bn� � Rn. Then

kDuk � T:V: .u/ � n kDuk :
Proof Assume first that u 2 BV .K/ \L1.K/, and define the mollifier of u,

u" D !" � u:
Then u" ! u in L1.K/ and lim sup" kDu"k � kDuk < 1; see [193, Thm. 5.3.1].
Let uk denote the function all of whose variables but the kth remain fixed, namely

uk.x
0; x/ D u.x1; : : : ; xk�1; x; xk; : : : ; xn/;
x0 D .x1; : : : ; xk�1; xk; : : : ; xn/ 2 K 0:

Then also u"k ! uk in L1.Œak; bk�/, which implies, by the lower semicontinuity of
the bounded variation [193, Thm. 5.2.1] and Theorem A.4,

T:V:Œak ;bk � .uk/ � lim inf
"

T:V:Œak;bk �
�
u"k
�
:

Fatou’s lemma and Theorem A.4 then implyZ
K 0

T:V:Œak;bk � .uk/ dx
0 � lim inf

"

Z
K 0

T:V:Œak ;bk �
�
u"k
�
dx0

D lim inf
"

Z
K

jDku
"j dx

� lim sup
"

Z
K

jDku
"j dx

� kDuk < 1:

This implies that

T:V: .u/ � n kDuk :
Assume now that

R
K 0 T:V:Œak ;bk � .uk/ dx

0 < 1 for all k D 1; : : : ; n. From Theo-
rem A.4 we have for � 2 C1

0 .˝IRn/, k�k1 � 1, thatZ
K 0

u
@�

@xk
dx0 �

Z
K 0

T:V:Œak;bk � .uk/ dx
0;

from which it follows that kDuk � T:V: .u/. �

Total variation is used to obtain compactness. The appropriate compactness
statement is Kolmogorov’s compactness theorem. We say that a subset M of
a complete metric space X is compact if every infinite sequence of points of M
contains a (strongly) convergent sequence. A set is relatively compact if its closure
is compact. A subset of a metric space is called totally bounded if it is contained in
a finite union of balls of radius " for every " > 0 (we call this finite union an "-net).
Our starting theorem is the following result.
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Theorem A.6 A subset M of a complete metric space X is relatively compact if
and only if it is totally bounded.

Proof Consider first the case in whichM is relatively compact. Assume that there
exists an "0 for which there is no finite "0-net. For every element u1 2 M there
exists an element u2 2 M such that ku1 � u2k � "0. Since the set fu1; u2g is not
an "0-net, there has to be a u3 2 M such that ku1 � u3k � "0 and ku2 � u3k � "0.
Continuing inductively, construct a sequence fuj g such that��uj � uk

�� � "0; j ¤ k;

which clearly cannot have a convergent subsequence, which yields a contradiction.
Hence we conclude that there has to exist an "-net for every ".

Assume now that we can find a finite "-net for M for every " > 0, and let M1

be an arbitrary infinite subset of M . Construct an "-net for M1 with " D 1
2
, say˚

u
.1/
1 ; : : : ; u

.1/
N1

�
. Now letM.j /

1 be the set of those u 2 M1 such that ku�u.1/j k � 1
4
.

At least one of M.1/
1 ; : : : ;M

.N1/
1 has to be infinite, since M1 is infinite. Denote

such a set by M2 and the corresponding element by u2. On this set we construct
an "-net with " D 1

4
. Continuing inductively, we construct a nested sequence of

subsets MkC1 � Mk for k 2 N such that Mk has an "-net with " D 1=2k, say˚
u
.k/
1 ; : : : ; u

.k/
Nk

�
. For arbitrary elements u; v ofMk we have ku � vk � ku � ukk C

kuk � vk � 1=2k�1. The sequence fukg with uk 2 Mk is convergent, since

kukCm � ukk � 1

2k�1 ;

proving thatM1 contains a convergent sequence. �

A result that simplifies our argument is the following.

Lemma A.7 LetM be a subset of a metric space X . Assume that for each " > 0,
there is a totally bounded set A such that dist.f;A/ < " for each f 2 M . ThenM
is totally bounded.

Proof Let A be such that dist.f;A/ < " for each f 2 M . Since A is totally
bounded, there exist points x1; : : : ; xn in X such that A 	 [n

jD1B".xj /, where

B".y/ D fz 2 X j kz � yk � "g:
For every f 2 M there exists by assumption some a 2 A such that ka � f k < ".
Furthermore,

��a � xj
�� < " for some j . Thus

��f � xj
�� < 2", which proves

M 	
n[

jD1
B2".xj /:

HenceM is totally bounded. �

We can state and prove Kolmogorov’s compactness theorem.
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Theorem A.8 (Kolmogorov’s compactness theorem) Let M be a subset of
Lp.˝/, p 2 Œ1;1/, for some open set ˝ 	 Rn. Then M is relatively compact if
and only if the following three conditions are fulfilled:

(i) M is bounded in Lp.˝/, i.e.,

sup
u2M

kukLp < 1:

(ii) We have

ku. � C "/� ukLp � .j"j/
for a modulus of continuity  that is independent of u 2 M (we let u equal
zero outside ˝).

(iii)

lim
˛!1

Z
fx2˝jjxj�˛g

ju.x/jp dx D 0 uniformly for u 2 M:

Remark A.9 In the case that˝ is bounded, condition (i) is clearly superfluous.

Proof We start by proving that conditions (i)–(iii) are sufficient to show thatM is
relatively compact. Let ' be a nonnegative and continuous function such that ' � 1,
'.x/ D 1 on jxj � 1, and '.x/ D 0 whenever jxj � 2. Write 'r.x/ D '.x=r/.
From condition (iii) we see that k'ru � ukLp ! 0 as r ! 1. Using Lemma A.7,
we see that it suffices to show that Mr D f'ru j u 2 M g is totally bounded.
Furthermore, we see thatMr satisfies (i) and (ii). In other words, we need to prove
only that (i) and (ii) together with the existence of someR such that u D 0whenever
u 2 M and jxj � R imply thatM is totally bounded. Let !" be a mollifier, that is,

! 2 C1
0 ; 0 � ! � 1;

Z
! dx D 1; !".x/ D 1

"n
!
	x
"



:

Then

ku � !" � ukpLp D
Z

ju � !".x/� u.x/jp dx

D
Z ˇ̌̌
ˇ
Z
B"

�
u.x � y/ � u.x/�!".y/ dy

ˇ̌̌
ˇ
p

dx

�
Z Z

B"

ju.x � y/ � u.x/jp dy k!"kpLq dx

D "np=q�pk!kpLq
Z
B"

Z
ju.x � y/ � u.x/jp dx dy

� "np=q�pk!kpLq
Z
B"

max
jzj�"

.jzj/ dy

D "nCnp=q�pk!kpLq jB1j max
jzj�"

.jzj/;
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where 1=p C 1=q D 1 and

B" D B".0/ D fz 2 Rn j kzk � "g:

Thus

ku � !" � ukLp � "n�1k!kLq jB1j1=p max
jzj�"

.jzj/; (A.20)

which together with (ii) proves uniform convergence as " ! 0 for u 2 M . Using
Lemma A.7, we see that it suffices to show that N" D fu � !" j u 2 M g is totally
bounded for every " > 0.

Hölder’s inequality yields

ju � !".x/j � kukLpk!"kLq ;

so by (i), functions in N" are uniformly bounded. Another application of Hölder’s
inequality implies

ju � !".x/� u � !".y/j D
ˇ̌̌
ˇ
Z
.u.x � z/� u.y � z//!".z/ dz

ˇ̌̌
ˇ

� ku. � C x � y/ � ukLp k!"kLq ;

which together with (ii) proves that N" is equicontinuous. The Arzelà–Ascoli theo-
rem implies that N" is relatively compact, and hence totally bounded in C.BRCr /.
Since the natural embedding ofC.BRCr / intoLp.Rn/ is bounded, it follows thatN"
is totally bounded in Lp.Rn/ as well. Thus we have proved that conditions (i)–(iii)
imply thatM is relatively compact.

To prove the converse, we assume that M is relatively compact. Condition (i)
is clear. Now let " > 0. Since M is relatively compact, we can find functions
u1; : : : ; um in Lp.Rn/ such that

M 	
m[
jD1

B".uj /:

Furthermore, since C0.Rn/ is dense in Lp.Rn/, we may as well assume that uj 2
C0.Rn/. Clearly,

��uj . � C y/ � uj
��
Lp

! 0 as y ! 0, and so there is some ı > 0

such that
��uj . � C y/ � uj

��
Lp

� " whenever jyj < ı. If u 2 M and jyj < ı, then
pick some j such that

��u � uj
��
Lp
< ", and obtain

ku. � C z/ � ukLp � ��u. � C z/� uj . � C z/
��
Lp

C ��uj . � C z/� uj
��
Lp

C ��uj � u��
Lp

D 2
��uj � u��

Lp
C ��uj . � C z/ � uj

��
Lp

� 3";

proving (ii).
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When r is large enough, �Br uj D uj for all j , and then, with the same choice
of j as above, we obtain

k�Br u � ukLp � ���Br .u � uj /
��
Lp

C ��u � uj
��
Lp

� 2
��u � uj

��
Lp

� 2";

which proves (iii). �

Helly’s theorem is a simple corollary of Kolmogorov’s compactness theorem.

Corollary A.10 (Helly’s theorem) Let
˚
hı
�
be a sequence of functions defined on

an interval Œa; b�, and assume that this sequence satisfies

T:V:
�
hı
�
< M and

��hı��1 < M;

where M is some constant independent of ı. Then there exists a subsequence hın

that converges almost everywhere to some function h of bounded variation.

Proof It suffices to apply (A.8) (for p D 1) together with the boundedness of the
total variation to show that condition (ii) in Kolmogorov’s compactness theorem is
satisfied. �

We remark that one can prove that the convergence in Helly’s theorem is at every
point, not only almost everywhere; see Exercise A.2.

The application of Kolmogorov’s theorem in the context of conservation laws
relies on the following result.

Theorem A.11 Let u
WRn � Œ0;1/ ! R be a family of functions such that for
each positive T , ˇ̌

u
.x; t/
ˇ̌ � CT ; .x; t/ 2 Rn � Œ0; T �;

for a constantCT independent of 
. Assume in addition that for all compactB � Rn

and for t 2 Œ0; T �,

sup
j�j�j�j

Z
B

ˇ̌
u
.x C �; t/� u
.x; t/

ˇ̌
dx � �B;T .j�j/;

for a modulus of continuity �B;T . Furthermore, assume that for s and t in Œ0; T �,Z
B

ˇ̌
u
.x; t/ � u
.x; s/

ˇ̌
dx � !B;T .jt � sj/ as 
 ! 0,

for some modulus of continuity !B;T . Then there exists a sequence 
j ! 0 such that
for each t 2 Œ0; T � the sequence fu
j .t/g converges to a function u.t/ in L1loc.R

n/.
The convergence is in C.Œ0; T �IL1loc.Rn//.

Remark A.12 If the spatial total variation of u
 is uniformly bounded, then u
 has
a spatial modulus of continuity.
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Proof Kolmogorov’s theorem implies that for each fixed t 2 Œ0; T � and for every
sequence 
j ! 0 there exists a subsequence (still denoted by 
j ) 
j ! 0 such that
fu
j .t/g converges to a function u.t/ in L1loc.Rn/.

Consider now a dense countable subset E of the interval Œ0; T �. By possibly
taking a further subsequence (which we still denote by fu
j g), we find that

Z
B

ˇ̌
u
j .x; t/ � u.x; t/ˇ̌ dx ! 0 as 
j ! 0, for t 2 E:

Now let " > 0 be given. Then there exists a positive ı such that !B;T . Qı/ � " for all
Qı � ı. Fix t 2 Œ0; T �. We can find a tk 2 E with jtk � t j � ı. ThusZ

B

ˇ̌
u Q
.x; t/ � u Q
.x; tk/

ˇ̌
dx � !B;T .jt � tk j/ � " for Q
 � 


and Z
B

ˇ̌̌
u
j1 .x; tk/ � u
j2 .x; tk/

ˇ̌̌
dx � " for 
j1; 
j2 � 
 and tk 2 E:

The triangle inequality yieldsZ
B

ˇ̌̌
u
j1 .x; t/ � u
j2 .x; t/

ˇ̌̌
dx

�
Z
B

ˇ̌̌
u
j1 .x; t/ � u
j1 .x; tk/

ˇ̌̌
dx C

Z
B

ˇ̌̌
u
j1 .x; tk/ � u
j2 .x; tk/

ˇ̌̌
dx

C
Z
B

ˇ̌̌
u
j2 .x; tk/� u
j2 .x; t/

ˇ̌̌
dx

� 3";

proving that for each t 2 Œ0; T � we have that u
.t/ ! u.t/ in L1loc.R
n/. The

bounded convergence theorem then shows that

sup
t2Œ0;T �

Z
B

ˇ̌
u
.x; t/ � u.x; t/ˇ̌ dx ! 0 as 
 ! 0;

thereby proving the theorem. �

A.1 Notes

Extensive discussion about total variation can be found, e.g., in [64], [193], and [6].
The proof of Theorem A.6 is taken from Sobolev [171, pp. 28 ff]. An alternative
proof can be found in Yosida [191, p. 13]. The proof of Theorem A.4 is from [64,
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Thm. 1, p. 217]. The proof of Theorem A.5 follows [64, Thm. 2, p. 220] and [193,
Thm. 5.3.5].

Kolmogorov’s compactness theorem, Theorem A.8, was first proved by Kol-
mogorov in 1931 [115] in the case that ˝ is bounded, p > 1, and the translation
u.x C "/ of u.x/ is replaced by the spherical mean of u over a ball of radius " in
condition (ii). It was extended to the unbounded case by Tamarkin [174] in 1932
and finally extended to the case with p D 1 by Tulajkov [184] in 1933. M. Riesz
[158] proved the theorem with translations. See also [67]. For a survey, see [82].

For other proofs ofKolmogorov’s theorem, see, e.g., [171, pp. 28 ff], [39, pp. 69 f],
[191, pp. 275 f], and [189, pp. 201 f].

A.2 Exercises

A.1 Show that for every f 2 L1.I / we have

kf kL1.I / D sup
�2C10 .I /j�j�1

Z
f .x/�.x/ dx:

A.2 Show that in Helly’s theorem, Corollary A.10, one can find a subsequence hın

that converges for all x to some function h of bounded variation.



Appendix B
The Method of Vanishing Viscosity

Details are the only things that interest.
— Oscar Wilde, Lord Arthur Savile’s Crime (1891)

In this appendix we will give an alternative proof of existence of solutions of scalar
multidimensional conservation laws based on the viscous regularization

u
�
t C

mX
jD1

@

@xj
fj .u

�/ D ��u�; u�jtD0 D u0; (B.1)

where as usual �u denotes the Laplacian
P
j uxj xj . Our starting point will be the

following theorem:

Theorem B.1 Let u0 2 L1.Rm/ \ L1.Rm/ \ C2.Rm/ with bounded derivatives
and fj 2 C1.R/ with bounded derivative. Then the Cauchy problem (B.1) has
a classical solution, denoted by u�, that satisfies1

u� 2 C2.Rm � .0;1// \ C.Rm � Œ0;1//: (B.2)

Furthermore, the solution satisfies the maximum principle

ku�.t/kL1.Rm/ � ku0kL1.Rm/: (B.3)

Let v� be another solution with initial data v0 satisfying the same properties as u0.
Assume in addition that both u0 and v0 have finite total variation and are integrable.
Then

ku. � ; t/� v. � ; t/kL1.Rm/ � ku0 � v0kL1.Rm/ ; (B.4)

for all t � 0.

1 The existence and regularity result (B.2) is valid for systems of equations in one spatial dimension
as well.
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Proof We present the proof in the one-dimensional case only, that is, with m D 1.
Let K denote the heat kernel, that is,

K.x; t/ D 1p
4��t

exp
	

� x2

4�t



: (B.5)

Define functions un recursively as follows: Let u�1 D 0, and define un to be the
solution of

unt C f .un�1/x D �unxx; unjtD0 D u0; n D 0; 1; 2; : : : : (B.6)

Then un.t/ 2 C1.R/ for t positive. Applying Duhamel’s principle, we obtain

un.x; t/ D
Z
K.x � y; t/u0.y/ dy

�
t“
0

K.x � y; t � s/f .un�1.y; s//y ds dy

D u0.x; t/ �
t“
0

@

@x
K.x � y; t � s/f .un�1.y; s// ds dy: (B.7)

Define vn D un � un�1. Then

vnC1.x; t/ D �
t“
0

@

@x
K.x � y; t � s/�f .un.y; s// � f .un�1.y; s//

�
ds dy:

Using Lipschitz continuity, we obtain

��vnC1.t/
��
L1.R/ � kf kLip

tZ
0

kvn.s/kL1.R/

Z ˇ̌̌
ˇ @@xK.x; t � s/

ˇ̌̌
ˇ dx ds

� kf kLipp
��

tZ
0

.t � s/�1=2kvn.s/kL1.R/ ds:

Assume that ju0j � M for some constantM . Then we claim that

kvn.t/kL1.R/ � Mkf knLip
tn=2

�n=2� .nC2
2
/
; (B.8)

where we have introduced the gamma function defined by

� .p/ D
1Z
0

e�ssp ds:
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We shall use the following properties of the gamma function. Let the beta function
B.p; q/ be defined as

B.p; q/ D
1Z
0

sp�1.1 � s/q�1 ds:

Then

B.p; q/ D � .p/� .q/

� .p C q/
:

After a change of variables, the last equality implies that �
�
1
2

� D p
� . Equation

(B.8) is clearly correct for n D 0. Assume it to be correct for n. Then

ˇ̌
vnC1.x; t/

ˇ̌ � Mkf knC1
Lip

1p
��.nC1/=2� .nC2

2
/

tZ
0

.t � s/�1=2sn=2 ds

D Mkf knC1
Lip

t .nC1/=2
p
��.nC1/=2� .nC2

2
/

1Z
0

.1 � s/�1=2sn=2 ds

D Mkf knC1
Lip

t .nC1/=2

�.nC1/=2� .nC3
2
/
: (B.9)

Hence we conclude that
P

n v
n converges uniformly on every bounded strip t 2

Œ0; T �, and that

u D lim
n!1u

n D lim
n!1

nX
jD0

vj

exists. The convergence is uniform on the strip t 2 Œ0; T �. It remains to show that u
is a classical solution of the differential equation. We immediately infer that

u.x; t/ D u0.x; t/ �
t“
0

@

@x
K.x � y; t � s/f .u.y; s// ds dy: (B.10)

It remains to show that (B.10) implies that u satisfies the differential equation

ut C f .u/x D �uxx; ujtD0 D u0: (B.11)

Next we want to show that u is differentiable. Define

Mn.t/ D sup
x2R

max
0�s�t

junx.x; s/j :
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Clearly,

junx.x; t/j � kf kLip 1p
��

tZ
0

.t � s/�1=2Mn�1.s/ ds CM0.t/:

Choose B such thatM0 � B=2. Then

Mn.t/ � B exp.C t=�/ (B.12)

if C is chosen such that

kf kLip 1p
��

1Z
0

s�1=2e�Cs=� ds � 1

2
:

Inequality (B.12) follows by induction: It clearly holds for n D 0. Assume that it
holds for n. Then

ˇ̌
unC1
x .s; x/

ˇ̌ � kf kLip 1p
��

tZ
0

.t � s/�1=2Mn.s/ ds C B=2

� BeCt=�

0
@kf kLip 1p

��

tZ
0

s�1=2e�Cs=� ds C 1

2

1
A

� BeCt=�:

Define

Nn.t/ D sup
x2R

max
0�s�t

junxx.x; s/j :

Choose QB � maxf2N 0;B2 C 1g and QC � C such that

2 QB�kf 0kL1 C kf 00kL1
� 1p

��

1Z
0

s�1=2e�2 QCs=� � 1

2
:

Then we show inductively that

Nn.t/ � QBe2 QC t=�:
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The estimate is valid for n D 0. Assume that it holds for n. Thenˇ̌
unC1
xx .x; t/

ˇ̌ � ˇ̌
u0xx.x; t/

ˇ̌
C

tZ
0

�kf 00kL1Mn.s/
2 C kf 0kL1Nn.s/

� Z ˇ̌̌ @
@x
K.y; t � s/

ˇ̌̌
dy ds

� N0

C �kf 0kL1 C kf 00kL1
� 1p

��

tZ
0

�
Mn.s/

2 C Nn.s/
�
.t � s/�1=2 ds

� N0

C�kf 0kL1 C kf 00kL1
� 1p

��

tZ
0

�
B2e2Cs=� C e

QCs=��.t � s/�1=2 ds

� QBe2 QCt=�
	
1C 2 QB�kf 0kL1 C kf 00kL1

� 1p
��

tZ
0

e�2 QCs=� ds



� QBe2 QCt=�:

We have now established that un ! u uniformly and that unx and unxx both are
uniformly bounded (in .x; t/ and n). Lemma B.2 (proved after this theorem) implies
that indeed u is differentiable and that ux equals the uniform limit of unx. Performing
an integration by parts in (B.10), we find that the limit u satisfies

u.x; t/ D u0.x; t/ �
t“
0

K.x � y; t � s/f .u.y; s//y ds dy:

Applying Lemma B.3, we conclude that u satisfies

ut C f .u/x D �uxx; ujtD0 D u0;

with the required regularity.2

The proof of (B.3) is nothing but the maximum principle. Consider the auxiliary
function

U.x; t/ D u.x; t/ � 
.t C .
x/2=2/:

Since U ! �1 as jxj ! 1, U obtains a maximum on R� Œ0; T �, say at the point
.x0; t0/. We know that

U.x0; t0/ D u.x0; t0/ � 
.t0 C .
x0/
2=2/ � u0.0/:

Hence


3x20 � 2u.x0; t0/� 2u0.0/ � 2
t0 � O .1/ (B.13)

2 The argument up to this equality is valid for one-dimensional systems as well.
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independently of 
, since u is bounded on R � Œ0; T � by construction. Assume that
0 < t0 � T . At the maximum point we have

ux.x0; t0/ D 
3x0; ut .x0; t0/ � 
; and uxx.x0; t0/ � 
3;

which implies that

ut.x0; t0/C f 0.u.x0; t0//ux.x0; t0/� �uxx.x0; t0/ � 
� O .1/ 
3=2 � �
3
> 0

if 
 is sufficiently small. We have used that f 0.u/ is bounded and (B.13). This
contradicts the assumption that the maximum was attained for t positive. Thus

u.x; t/ � 
.t C .
x/2=2/ � sup
x

U.x; 0/

D sup
x

�
u0.x/ � 
3x2=2�

� sup
x

u0.x/;

which implies that u � supu0. By considering 
 negative, we find that u � infu0,
from which we conclude that kukL1 � ku0kL1 .

Lemma B.6 implies that every solution u satisfies the property needed for our
uniqueness estimate, namely that if u0 is in L1, then u. � ; t/ is in L1. This is so,
since we have that

ku. � ; t/kL1 � ku0kL1 � ku. � ; t/ � u0kL1 � Ct:

Furthermore, since u is of bounded variation (which is the case if u0 is of bounded
variation), ux is in L1, and thus limjxj!1 ux.x; t/ D 0. Hence, if u0 is in L1 \BV ,
then we have that

d

dt

Z
u.x; t/ dx D �

Z
.f .u/x C �uxx/ dx D 0:

Hence Z
u.x; t/ dx D

Z
u0.x/ dx: (B.14)

By the Crandall–Tartar lemma, Lemma 2.13, to prove (B.4) it suffices to show that
if u0.x/ � v0.x/, then u.x; t/ � v.x; t/. To this end, we first add a constant term
to the viscous equation. More precisely, let uı denote the solution of (for simplicity
of notation we let � D 1 in this part of the argument)

uıt C f .uı/x D uıxx � ı; uıjtD0 D u0:

In integral form we may write (cf. (B.10))

uı.x; t/ D
Z
K.x � y; t/u0.y/ dy

�
t“

0

@

@x
K.x � y; t � s/f .uı.y; s// ds dy � ıt:
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Furthermore,

ˇ̌̌
uı.x; t/ � u.x; t/

ˇ̌̌

�
t“

0

ˇ̌̌
ˇ @@xK.x � y; t � s/

ˇ̌̌
ˇ ˇ̌f .uı.y; s// � f .u.y; s//ˇ̌ ds dy C jıj t

� kf kLip
t“
0

ˇ̌̌
ˇ @@xK.x � y; t � s/

ˇ̌̌
ˇ ˇ̌uı.y; s/ � u.y; s/ˇ̌ ds dy C jıj t

� kf kLip
tZ
0

��uı.s/ � u.s/��
L1

dsp
�.t � s/ C jıj t

�
tZ
0

��uı.s/ � u.s/��
L1d�.s/C jıj t

with the new integrable measure d�.s/ D kf kLip=
p
�.t � s/. Gronwall’s inequal-

ity yields that

��uı.t/ � u.t/��
L1 � t jıj exp

	 tZ
0

d�.s/



D t jıj exp
 
2

p
tkf kLipp
�

!
;

which implies that uı ! u in L1 as ı ! 0. Thus it suffices to prove the mono-
tonicity property for uı and vı , where

vıt C f .vı/x D vıxx C ı; vı jtD0 D v0: (B.15)

Let u0 � v0. We want to prove that uı � vı . Assume to the contrary that uı.x; t/ >
vı.x; t/ for some .x; t/, and define

Ot D infft j uı.x; t/ > vı.x; t/ for some xg:

Pick Ox such that uı. Ox; Ot / D vı. Ox; Ot /. At this point we have

uıx. Ox; Ot / D vıx. Ox; Ot /; uıxx. Ox; Ot/ � vıxx. Ox; Ot/; and uıt . Ox; Ot / � vıt . Ox; Ot /:

However, this implies the contradiction

�ı D uıt C f 0.uı/uıx � uıxx � vıt C f 0.vı/vıx � vıxx � ı at the point . Ox; Ot /

whenever ı is positive.
Hence u.x; t/ � v.x; t/ and the solution operator is monotone, and (B.4)

holds. �



448 The Method of Vanishing Viscosity

In the above proof we needed the following two results.

Lemma B.2 Let �n 2 C2.I / on the interval I , and assume that �n ! � uniformly.
If k� 0

nkL1 and k� 00
nkL1 are bounded, then � is differentiable, and

� 0
n ! � 0

uniformly as n ! 1.

Proof The family f� 0
ng is clearly equicontinuous and bounded. The Arzelà–Ascoli

theorem implies that a subsequence f� 0
nk

g converges uniformly to some function  .
Then

�nk D
xZ
� 0
nk
dx !

xZ
 dx;

from which we conclude that � 0 D  . We will show that the sequence f� 0
ng itself

converges to  . Assume otherwise. Then we have a subsequence f� 0
nj

g that does
not converge to  . The Arzelà–Ascoli theorem implies the existence of a further
subsequence f� 0

nj 0 g that converges to some element Q , which is different from  .
But then we have

xZ
 dx D lim

k!1
�nk D lim

j 0!1
�nj 0 D

xZ
Q dx;

which shows that  D Q , which is a contradiction. �

Lemma B.3 Let F.x; t/ be a continuous function such that

jF.x; t/ � F.y; t/j � M jx � yj

uniformly in x; y; t . Define

u.x; t/ D
Z
K.x � y; t/u0.y/ dy C

t“
0

K.x � y; t � s/F.y; s/ ds dy:

Then u is in C2.Rm � .0;1//\ C.Rm � Œ0;1// and satisfies

ut D uxx C F.x; t/; ujtD0 D u0:

Proof To simplify the presentation we assume that u0 D 0. First we observe that

u.x; t/ D
tZ
0

F.x; s/ ds C
t“

0

K.x � y; t � s/�F.y; s/ � F.x; s/� ds dy:
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The natural candidate for the time derivative of u is

ut .x; t/ D F.x; t/C
t“

0

@

@t
K.x � y; t � s/�F.y; s/ � F.x; s/� ds dy: (B.16)

To show that this is well defined we first observe thatˇ̌̌
ˇ @@t K.x � y; t � s/

ˇ̌̌
ˇ � O .1/

t � s K.x � y; 2.t � s//:

Thus
t“
0

ˇ̌̌
ˇ @@t K.x � y; t � s/

ˇ̌̌
ˇ jF.y; s/ � F.x; s/j ds dy

� MO .1/
tZ
0

Z
1

t � sK.x � y; 2.t � s// jy � xj dy ds

� MO .1/
tZ
0

1p
t � s ds � O .1/ :

Consider nowˇ̌̌
ˇ 1�t

�
u.x; t C�t/� u.x; t/� � ut.x; t/

ˇ̌̌
ˇ

�
ˇ̌̌
ˇ 1�t

tC�tZ
t

F .x; s/ ds � F.x; t/
ˇ̌̌
ˇ

C
Z

1

�t

tC�tZ
t

K.x � y; t C�t � s/ jF.y; s/ � F.x; s/j ds dy

C
t“
0

ˇ̌̌
ˇ 1�t

�
K.x � y; t C�t � s/�K.x � y; t � s/�

� @

@t
K.x � y; t � s/

ˇ̌̌
ˇ jF.y; s/ � F.x; s/j dy ds

�
ˇ̌̌
ˇ 1�t

tC�tZ
t

F .x; s/ ds � F.x; t/
ˇ̌̌
ˇ

CM
1

�t

tC�tZ
t

Z
K.y; t C�t � s/ jyj dy ds

CM

t“
0

ˇ̌̌
ˇ @@t K.y; t C ��t � s/ � @

@t
K.y; t � s/

ˇ̌̌
ˇ jyj ds dy;
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for some � 2 Œ0; 1�. We easily see that the first two terms vanish in the limit as
�t ! 0. The last term can be estimated as follows (where ı > 0):

t“
0

ˇ̌̌
ˇ @@t K.y; t C ��t � s/ � @

@t
K.y; t � s/

ˇ̌̌
ˇ jyj dy ds

�
t�ıZ
0

Z ˇ̌̌
ˇ @@t K.y; t C ��t � s/ � @

@t
K.y; t � s/

ˇ̌̌
ˇ jyj dy ds

C
tZ

t�ı

Z �ˇ̌̌
ˇ @@t K.y; t C ��t � s/

ˇ̌̌
ˇC

ˇ̌̌
ˇ @@t K.y; t � s/

ˇ̌̌
ˇ
�

jyj dy ds

�
t�ıZ
0

Z ˇ̌̌
ˇ @@t K.y; t C ��t � s/ � @

@t
K.y; t � s/

ˇ̌̌
ˇ jyj dy ds

C O .1/
tZ

t�ı

Z �
1

t C ��t � sK.y; 2.t C ��t � s//

C 1

t � sK.y; 2.t � s//
�

jyj dy ds:

Choosing ı sufficiently small in the second integral, we can make that term less
then a prescribed �. For this fixed ı we choose �t sufficiently small to make that
integral less than �. We conclude that indeed (B.16) holds. Using estimatesˇ̌̌

ˇ @@xK.x; t/
ˇ̌̌
ˇ � O .1/p

t
K.x; 2t/;ˇ̌̌

ˇ @2@x2K.x; t/
ˇ̌̌
ˇ � O .1/

t
K.x; 2t/;

we conclude that the spatial derivatives are given by

ux.x; t/ D
t“
0

@

@x
K.x � y; t � s/F.y; s/ ds dy;

uxx.x; t/ D
t“
0

@2

@x2
K.x � y; t � s/F.y; s/ ds dy; (B.17)

from which we conclude that

ut .x; t/ � uxx.x; t/ (B.18)

D F.x; t/C
Z tZ
0

	 @
@t
K.x � y; t � s/ � @2

@x2
K.x � y; t � s/



F.y; s/ ds dy

D F.x; t/: �
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Remark B.4 The lemma is obvious if F is sufficiently differentiable; see, e.g., [142,
Theorem 3, p. 144].

Next, we continue by showing directly that as � ! 0, the sequence fu�g con-
verges to the unique entropy solution of the conservation law (B.30). We remark
that this convergence was already established in Chapt. 3 when we considered error
estimates.

In order to establish our estimates we shall need the following technical result.

Lemma B.5 Let vWRm ! R such that v 2 C1.Rm/ and jrvj 2 L1 .Rm/. ThenZ
jvj�


jrvj dx ! 0 as 
 ! 0:

Proof By the inverse function theorem, the setn
x
ˇ̌
v.x/ D 0; rv.x/ ¤ 0

o
is a smooth .m � 1/-dimensional manifold of Rm. ThusZ

jvj�

jrvj dx D

Z
0<jvj�


jrvj dx:

The integrand (the norm of the gradient times the characteristic function of the
region where jvj is nonzero and less than 
) tends pointwise to zero as 
 ! 0. The
lemma follows using Lebesgue’s dominated convergence theorem. �

The key estimates are contained in the next lemma.

Lemma B.6 Assume that u0 2 C2 .Rm/ with bounded derivatives and finite total
variation. Let u� denote the solution of equation (B.1). Then the following estimates
hold:

T:V: .u�.t// � T:V: .u�.0// ; (B.19)

ku�.t/ � u�.s/kL1.Rm/ � C jt � sj : (B.20)

Proof We set w0 D @u"=@t and wi D @u"=@xi for i D 1; : : : ; m. Then we find
that

@wi

@t
C

mX
jD1

	
f 0
j .u

�/wi


xj

D ��wi (B.21)

for i D 0; 1; : : : ; m. Define the following continuous approximation to the sign
function:

sign
.x/ D

8̂̂<
ˆ̂:
1 for x � 
;

x=
 for jxj < 
;
�1 for x � �
:
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Multiply (B.21) by sign
.w
i / and integrate over Rm � Œ0; T � for some T positive.

This yields

Z
Rm

TZ
0

@wi

@t
sign
.w

i / dt dx C
mX
jD1

Z
Rm

TZ
0

	
f 0
j .u

�/wi


xj

sign
.w
i / dt dx

D
Z
Rm

TZ
0

��wi sign
.w
i / dt dx: (B.22)

The first term in (B.22) can be written

Z
Rm

TZ
0

@wi

@t
sign
.w

i / dt dx D
Z
Rm

TZ
0

�
wi sign
.w

i /
�
t
dt dx

�
Z
Rm

TZ
0

wi sign0

.w

i /wit dt dx:

Here we have that

ˇ̌̌Z
Rm

TZ
0

wi sign0

.w

i /wit dt dx
ˇ̌̌

D 1




ˇ̌̌ Z
jwi j�


Z
t�T

wi wit dt dx
ˇ̌̌

�
Z

jwi j�


Z
t�T

ˇ̌
wit
ˇ̌
dt dx ! 0;

using Lemma B.5, which implies

Z
Rm

TZ
0

@wi

@t
sign
.w

i / dt dx !
Z
Rm

TZ
0

@

@t

ˇ̌
wi
ˇ̌
dt dx

D ��wi .T /��
L1

� ��wi .0/��
L1
; (B.23)

as 
 ! 0. The second term in (B.22) reads

I WD
mX
jD1

Z
Rm

TZ
0

	
f 0
j .u

�/wi


xj

sign
.w
i / dt dx

D �
mX
jD1

Z
Rm

TZ
0

f 0
j .u

�/wi sign0

.w

i /
@wi

@xj
dt dx

D �1



Z
jwi j�

t�T

wi f 0.u�/ � rwi dt dx;

where f 0 D �
f 0
1 ; : : : ; f

0
m

�
. This can be estimated as follows:

jI j � sup
u

jf 0.u/j
Z

jwi j�


Z
t�T

ˇ̌rwi ˇ̌ dt dx ! 0; (B.24)
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as 
 ! 0. Here the supremum is over juj � ku�.0/k1. Finally,

�

Z
Rm

TZ
0

�wi sign
.w
i / dt dx D ��

Z
Rm

TZ
0

ˇ̌rwi ˇ̌2 sign0

.w

i / dt dx � 0: (B.25)

Using (B.23), (B.24), and (B.25) in (B.22), we obtain, when 
 ! 0,��wi .T /��
L1

� ��wi .0/��
L1

� 0: (B.26)

For i D 0 this implies

ku�.t/ � u�.s/kL1 D
Z
Rm

ˇ̌̌
ˇ̌̌ tZ
s

@u�

@t
dt

ˇ̌̌
ˇ̌̌ dx

�
Z
Rm

tZ
s

ˇ̌
w0.Qt /ˇ̌ d Qt dx

D
tZ
s

��w0.Qt/��
L1
d Qt

� jt � sj ��w0.0/��
L1
:

For i � 1 we use (B.26) to prove (B.19). Recalling the results from Appendix A,
we define

i .u; �/ D
Z
Rm

ju .x C �ei/ � u.x/j dx and .u;�/ D
mX
iD1

i .u; �/:

Then the inequalities (A.10) hold. We have that

i .u
". � ; t/; �/ D

Z
Rm

ju" .x C �ei ; t/ � u".x; t/j dx

D
Z
Rm

ˇ̌̌
ˇ̌̌ �Z
0

wi .x C ˛ei ; t/ d˛

ˇ̌̌
ˇ̌̌ dx

�
Z
Rm

�Z
0

ˇ̌
wi.x C ˛ei ; t/

ˇ̌
d˛ dx

�
�Z
0

��wi. � ; t/��
L1
d˛

D j�j��wi . � ; t/��
L1

� j�j��wi. � ; 0/��
L1

D j�j
Z

Rm�1

T:V:xi .u0/ dx1 � � �dxi�1 dxiC1 � � �dxm:
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Thus we find that

T:V: .u". � ; t// D lim inf
�!0

 .u". � ; t/; �/
j�j � T:V: .u0/ ;

which proves (B.19). �

From the estimates in Lemma B.6 we may conclude, using Helly’s theorem,
Corollary A.10, and Theorem A.11, that there exists a (sub)sequence of fu�g that
converges uniformly in C.Œ0; T �IL1loc.Rm// to a function that we denote by u. It
remains to show that u is an entropy solution of the conservation law.

Let k be in R. Then

.u� � k/t C r � .f .u�/ � f .k// D ��.u� � k/: (B.27)

Multiply (B.27) by sign
.u
� � k/ times a nonnegative test function � and integrate

over Œ0; T � � Rm. We find, when we write U D u� � k, that

0 D
“ 	

Ut sign
.U /�

C r � .f .u�/ � f .k// sign
.U /� � � sign
.U /�U�


dx dt

D
“ 	�

U sign
.U /
�
t
�

� .f .u�/� f .k// �
	
sign
.U /r� C � sign0


.U /rU



dx dt

C �

“
rU � r �sign
.U /�� dx dt �

“
U sign0


.U /Ut � dx dt

D �
“ �

U sign
.U /�t C sign
.U / .f .u
�/� f .k// � r�� dx dt

�
Z �

.U�/
ˇ̌
tD0 �.U�/ ˇ̌

tDT
�
dx

�
“

� sign0

.U / .f .u

�/� f .k// � rU dx dt

�
“

U� sign0

.U /Ut dx dt

C �

“
sign
.U /rU � r� dx dt C �

“
jrU j2 sign0


.U /� dx dt:

The third and the fourth integrals tend to zero as 
 ! 0 (since f is Lipschitz and
x sign .x/0
 tends weakly to zero), and the last term is nonpositive. Hence

“ �ju� � kj�t C sign .u� � k/ .f .u�/ � f .k// � r�� dx dt
�
Z
.u�.0/� k/�jtDTtD0 dx � �

“
sign .U /rU � r� dx dt:

(B.28)
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Taking � ! 0, we see that the right-hand side tends to zero, and we conclude that“ 	
ju � kj�t C sign .u � k/ .f .u/ � f .k// � r�



dx dt

C
Z
.u0 � k/�jtD0 dx �

Z
.u.T / � k/�jtDT dx � 0;

(B.29)

which is the Kružkov entropy condition. We have proved the following result.

Theorem B.7 Let u0 2 C2.Rm/ \ L1.Rm/ with bounded derivatives and finite
total variation, and let fj 2 C1.R/ with bounded derivative. Let u� be the unique
solution of (B.1). Then there exists a convergent subsequence of fu�g that converges
in C.Œ0; T �IL1loc.Rm// to a function u that satisfies the Kružkov entropy condition
(B.29), and hence is the unique solution of

ut C
mX
jD1

@

@xj
fj .u/ D 0; ujtD0 D u0: (B.30)

B.1 Notes

Our proof of Theorem B.1 is taken in part from [99], where a similar result is proved
for an equation of the form

ut C
mX
jD1

 j .x; t; u/uxj D ��u:

We are grateful to H. Hanche-Olsen for discussions on the proof of this theorem.We
have also used [43]. Other proofs can be found; see, e.g., [141]. The conditions of
Theorem B.1 can be weakened considerably. Alternative proofs of Theorem B.1 can
be obtained using the dimensional splitting construction in Sect. 4.4. Lemma B.6 is
familiar; see, e.g., [141]. Our presentation of Lemma B.6 and Theorem B.7 follows
in part Bardos et al. [12].

Bianchini and Bressan [16–18] have published results concerning the vanishing
viscosity method for general systems. More precisely, consider the solution u" of
the system

u"t C A.u"/u"x D "u"xx; u"jtD0 D u0:

They prove that u" converges to u, the solution of

ut C A.u/ux D 0; ujtD0 D u0;

as " ! 0. Their assumptions are the following: the matrices A.u/ are smooth and
strictly hyperbolic in a neighborhood of a compact set K, the initial data u0 has
sufficiently small total variation, and limx!�1 u0.x/ 2 K. The proof uses an inge-
nious decomposition of the function u"x in terms of gradients of viscous traveling
waves selected by a center manifold technique.
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B.2 Exercises

B.1 Consider the system of parabolic equations

ut C f .u/x D �uxx; ujtD0 D u0; (B.31)

with u0.x/ 2 Rn.

(a) Show that there exists a solution u� of (B.31) that satisfies the regularity
condition (B.2).

(b) Fix temporarily � D 1, and consider the equation

ut C f .u/x D uxx � ı; ujtD0 D u0; (B.32)

with solution uı . Show that
��uı.t/ � u.t/��

1
! 0, where u solves (B.31)

(with � D 1).
(c) Assume that the flux function f satisfies

f .u1; : : : ; uj�1; u�; ujC1; : : : ; un/ D const; ui 2 R; i ¤ j;

for some j and some u� 2 R. Assume that the j th component u0;j of u0
satisfies u0;j � u�. Show that the j th component uj of the solution u of
(B.31) satisfies

uj .x; t/ � u�:

(d) Assume that there are constants u� < u� and j such that

f .u1; : : : ; uj�1; u�; ujC1; : : : ; un/ D const; ui 2 R; i ¤ j;

f .u1; : : : ; uj�1; u�; ujC1; : : : ; un/ D const; ui 2 R; i ¤ j;

and that u� � u0;j � u�. Show that

u� � uj .x; t/ � u�;

and hence that the region

fu 2 Rn j u� � uj � u�g

is invariant for the solution of (B.31). Systems with this property appear,
e.g., in multiphase flow in porous media and chemical chromatography.
For more on invariant regions, see [96] and [88].
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The Authors

The only way to get rid of a temptation is to yield to it.
Resist it, and your soul grows sick with longing
for the things it had forbidden itself.
— Oscar Wilde, The Picture of Dorian Gray (1891)

Chapter 1, Sect. 1.3

1.1 The characteristics are given by

x D 2 arctan
�
x0e

�
�
; t D � C t0; z D � C z0;

x D 2 arctan
	 x0e� � 1
x0e� C 1



; t D 2 arctan

�
t0e

�
�
; z D z0;

x D 2

�Z
0

sin
�
z0e

�
�
d� C x0; t D � C t0; z D z0e

� ;

x D cos.z0/� C x0; t D sin.z0/� C t0; z D z0:

1.2 a. u.x; y/ D y C
p
y2 � x2:

b. u.x; y/ D 1

x
cosh.y/:

c. u.x; y/ D h
�p
x2 C y2

�
exp

�
arctan.y=x/

�
:

d. u.x; y/ D .x C 1/.y � 1/:
e. u.x; y/ D exp

�
y C .1 � x2/=2�� 1:

457
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f. u.x; y/ D .y � x2/2 exp �x2=2�� 1:
g. x D .u � y2/ exp �uy � 2y3=3�;

which determines u implicitly in terms of .x; y/.
1.3 a. The theory of characteristics yields

t D s; t D as C y; z D z0 C
yZ
0

f .a� C y; �/ d�;

which gives the solution.
b. Observe that

d

ds
u.�.sIx0/; s/ D f .�.sIx0/; s/:

Integrate this from s D 0 to s D t .
c. Observe that

d

ds
u.	.sIx0/; t � s/ D f .	.sIx0/; t � s/:

Integrate this from s D 0 to s D t .
1.4 You may use that u equals a constant is clearly a classical solution in the two

domainsD˙ D f.x; t/ j ˙.x � at/ > 0g that satisfies the Rankine–Hugoniot
condition across x D at , since f .u/ D au.

1.5 This is identical to the scalar case; work with each component fi and ui , etc.
1.6 Set x D .x; y/ and f D .f; g/. The conservation law reads ut C r � f D

0. Let .x; t/ denote a point on the surface of discontinuity, and let Br Dn
.z; �/ j jx � zj2 C .t � �/2 � r2

o
. Denote by �r the intersection of the sur-

face of discontinuity with Br . Parameterize the surface as t D t.x; y/ with
normal N D .1;�tx ;�ty/. The velocity equals � D .t2x C t2y /

�1=2. Choose
a test function ' 2 C1

0 .Br /. Then an application of the divergence theorem
yields Z

�r

'.x; y/ .�u� ; �f � ; �g�/ �N.x; y/ dx dy D 0;

where �u� as usual denotes the jump in u across �r , etc. Since ' is arbitrary,
we obtain

.�u� ; �f � ; �g�/ �N D 0;

or

� �u� D n � �f� ;
where n D .tx; ty/� is the unit normal in the direction of the propagating
discontinuity.
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1.7 Observe that we need only consider the extreme characteristics originating at
x D 
1, since before these meet, the solution will be linear between these.
These characteristics have speed ˙1, and hence the solution will be continuous
until t D 1, and is given by u.x; t/ D u0.x=.t � 1//. The solution of the
linearized equation is given by v.x; t/ D u0.˛e

˛tx/. From this we find that

vn .x; .mC 1/=n/ D vn
�
˛m;ne

˛m;n=n;m=n
�
;

and thus ˛mC1;n D ˛m;ne
˛m;n=n. Set 1=n D �t . Assuming that the limit holds,

we have ˛.mC 1; n/ D N̨ .t C�t/, and thus

ln. N̨ .t C�t// � ln. N̨ .t//
�t

D N̨ .t/:

Letting �t go to zero, we find that N̨ 0.t/ D N̨ 2.t/, which gives the conclusion,
since N̨ .0/ D 1. For t � 1, ˛m;n diverges to C1, which incidentally gives us
the correct solution.

1.8 The solutions in parts a and b are, respectively,

u.x; t/ D

8̂̂
<
ˆ̂:

�1 for x � t ;

x=t for jxj < t;
1 for x > t;

and u.x; t/ D u0.x/:

In the first case we directly verify that u.x; t/ also solves (1.75). In the
second case the Rankine–Hugoniot condition, which in this case reads
s D 2

�
u3

�
=.3

�
u2

�
/, is violated. Set v D u2. Then vt C 2

3
.v3=2/x D 0,

and v.x; 0/ D u.x; 0/. Hence the correct solution is a shock with speed 2=3,
which is different from the square of the solution in part b.

1.9 The jumps satisfy the Rankine–Hugoniot condition. That’s all.
1.10 a. We multiply the inequality by e��t and find that

d

dt

�
e��t u.t/

� � 0:

Thus

u.t/e��t � u.0/:

b. Multiply the inequality by e�Ct to find that

d

dt

�
u.t/e�Ct � � Ce�Ct :

We integrate from 0 to t :

u.t/e�Ct � u.0/ �
tZ
0

Ce�Cs ds D 1 � e�Ct :

After some rearranging, this is what we want.
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c. Multiplying by exp.� R t
0
c.s/ds/ we find that

u.t/ � u.0/e
R t
0 c.s/ds C

tZ
0

d.s/e
R t
s c.�/d� ds;

which implies the claim.
d. Set U.t/ D R t

0
u.t/dt . Then

U 0.t/ � C1U.t/C C2;

and an application of part c gives that

tZ
0

u.s/ ds � �C2
C1

�
1 � eC1t�:

Inserting this in the original inequality yields the claim.
e. Introduce w D u=f . Then

w.t/ � 1C
tZ

0

f .s/

f .t/
g.s/w.s/ ds � 1C

tZ
0

g.s/w.s/ ds:

Let U be the right-hand side of the above inequality, that is,

U D 1C
tZ
0

g.s/w.s/ ds:

Clearly,U.0/ D 1 and U 0.t/ D g.t/w.t/ � g.t/U.t/. Applying part c, we
find that

u.t/ D w.t/f .t/ � f .t/U.t/ � f .t/ exp
	 tZ
0

g.s/ ds


:

(If f is differentiable, we see that U.t/ D f .t/C R t
0
g.s/u.s/ ds satisfies

U 0.t/ � f 0.t/C g.t/U.t/, and hence we could have used part c directly.)
1.11 Taylor’s formula implies that


0.uj /D�uj D D�
.uj /C �x

2

00.uj�1=2/

�
D�uj

�2
:

We have that

ajD�
.uj / D D�.aj 
.uj // � 
.uj�1/D�aj ;
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which gives

d

dt

.uj /CD�.aj 
.uj // � 
.uj�1/D�aj :

Summing over j gives the desired result. Regarding the Lipschitz continuity
we have

kaD�u � a D�vk � kakL1

�x
2 ku � vk :

1.12 The scheme implies the update

unC1
j D unj � anj 

�
unj � unj�1

�
with  D �t=�x. Using that 
 is convex, we get (assuming the CFL condition
0 � anj  � 1)



�
unC1
j

� D 

	�
1 � anj 

�
unj C anj u

n
j�1



� �
1 � anj 

�

.unj /C anj 


�
unj�1

�
D 


�
unj
� � anj �tD�


�
unj
�
:

Summing over j , using the integration by parts formula

X
j

cjD�bj D �
X
j

bjDCcj ; if c˙1 D 0 or b˙1 D 0;

one obtains X
j


.unC1
j / �

X
j


.unj /��t
X
j

anj D�
.unj /

D
X
j


.unj /C�t
X
j


.unj /DCanj ;

which implies

�x
X
j


.unC1
j / � �x

X
j


.unj /C�t�x
X
j


.unj /DCanj :

Define

F.tnC1/ D �x
X
j


.unC1
j /:

Then

F.tnC1/ � F.tn/C�t�x
X
j


.unj /DCanj :
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Also

jDCanj j D jax.�/j � C;

where � is a suitable intermediate value and C is a bound on ax . Then

F.tnC1/ � F.tn/C C�tF.tn/:

By recursion one obtains

F.tnC1/ � F.t0/C
nX
�D0

C�tF.t�/:

Using a discrete version of Gronwall’s lemma (see below), identifying !n D
F.tn/, an D C�t , and bn D F.t0/, which is nondecreasing, we conclude that

F.tn/ � exp

 
n�1X
�D0

C�t

!
F.t0/ D exp.C tn/F.t0/;

i.e.,

�x
X
j


.unj / � eCt
n

�x
X
j


.u0j /:

Now we use that

u0j D 1

�x

Z
Ij�1=2

u0 dx:

Applying Jensen’s inequality on the interval Œxj�1; xj �, using that 
 is convex,
we get


.u0j / D 


0
B@ 1

�x

Z
Ij�1=2

u0 dx

1
CA � 1

�x

Z
Ij�1=2


.u0/ dx:

Therefore,

�x
X
j


.u0j / � �x
X
j

1

�x

Z
Ij�1=2


.u0/ dx

D
X
j

Z
Ij�1=2


.u0/ dx D k
.u0/kL1.R/:

Discrete Gronwall: Let .!n/n�0, .an/n�0, .bn/n�0 be sequences of nonnegative
numbers and !0 � b0. If

!n �
n�1X
�D0

a�!� C bn; n 2 N;
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and .bn/n�0 is nondecreasing, then

!n � exp
	 n�1X
�D0

a�



bn; n 2 N:

1.13 a. We find that

ut D ˛tt C c˛tx; ux D ˛xt C .c˛x/x

and

vt D ˛tt � c˛tx; vx D ˛xt � .c˛x/x:
Therefore,

ut � cux D ˛tt C c˛tx � c˛xt � c.c˛x/x D ˛tt � c.c˛x/x D 0

and

vt C cvx D ˛tt � c˛tx C c˛xt � c.c˛x/x D ˛tt � c.c˛x/x D 0:

This implies the set of differential equations

ut � cux D 0;

vt C cvx D 0;

˛t D 1

2
.uC v/:

We deduce the initial conditions u0 and v0 from ˛0 and ˇ0:

u D ˛t C c˛x ) u0.x/ D ˇ0.x/C c˛0
0.x/;

v D ˛t � c˛x ) v0.x/ D ˇ0.x/� c˛0
0.x/:

Therefore,

u.x; 0/ D u0.x/ D ˇ0.x/C c˛0
0.x/;

v.x; 0/ D v0.x/ D ˇ0.x/� c˛0
0.x/;

˛.x; 0/ D ˛0.x/:

b. We define the backward characteristic equation

d

d�
	u.� Ix/ D c.	u.� Ix//; 	u.0Ix/ D x:

This equation is well defined, since c is Lipschitz. Then u.x; t/ D
u0.	u.t Ix//. We also define

d

d�
	v.� Ix/ D �c.	v.� Ix//; 	v.0Ix/ D x:

Then v.x; t/ D v0.	v.t Ix//.
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c. Alternative 1: Use upwind (with the appropriate upwind direction) and Eu-
ler methods for ˛:

UnC1
j D Un

j C cnj �t

�x

	
Un
jC1 � Un

j



;

V nC1
j D V n

j � cnj �t

�x

	
V n
j � V n

j�1


;

˛nC1
j D ˛nj C�t

U n
j C V n

j

2
:

Alternative 2: Use the Lax–Friedrichs scheme for .u; v/ and Euler method
for ˛:

UnC1
j D Un

j�1 C Un
jC1

2
C cnj �t

2�x

	
Un
jC1 � Un

j�1


;

V nC1
j D V n

j�1 C V n
jC1

2
� cnj �t

2�x

	
V n
jC1 � V n

j�1


;

˛nC1
j D ˛nj C�t

U n
j C V n

j

2
:

The CFL condition reads

�tn � �x

maxj
ˇ̌̌
cnj

ˇ̌̌ :

d. We locate our variables at the cell centers and evaluate cnj at the cell centers.
See Fig. C.1

1.14 Here is a MATLAB code that will work:

function u=charsolve(a,u0,x,T,dt)
% Solves the equation
% u_t + a(x,t)u_x = 0
% u(x,0)=u0(x)
% by approximate integration
% of the backward characteristics.

% ------------------------
% Solve the backward characteristic
% equation
% y'(t)=-a(y(t),T-t), y(0)=x,
% until t=T by the Euler method.
N=ceil(T/dt); dt=T/N; y=x; t=0;
for i=1:N,

y=y-dt*a(y,T-t);
t=t+dt;

end
% ----------------------
u=u0(y);
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Fig. C.1 Solution at time t D 1:0 on an N D 800 grid using upwinding

For the initial data in the exercise, it would be invoked as

>> a=@(x,t) max(0,min(x,1));
>> u0=@(x) sin(x);
>> x=linspace(-2,2,200);
>> u=charsolve(a,u0,x,2,0.05);

Chapter 2, Sect. 2.6

2.1 We find that

f 0.u/ D 2u.1 � u/
.u2 C .1 � u/2/2 ;

and that the graph of f is “S-shaped” in the interval Œ0; 1� with a single in-
flection point at u D 1

2
. Hence the solution of the Riemann problem will be

a rarefaction wave followed by a shock. The left limit of the shock, u1, will
solve the equation f 0.u1/ D .1�f .u1//=.1�u1/, which gives u1 D 1�p

2=2,
and the speed of the shock will be � D .1C p

2/=2. For u < u1 we must find
the inverse of f 0, and after some manipulation this is found to be

.f 0/�1.�/ D 1

2

 
1 �

s
1

�

�p
4� C 1 � 1� � 1

!
:
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Hence the solution will be given by

u.x; t/ D

8̂̂
<
ˆ̂:
0 for x � 0;

.f 0/�1 .x=t/ for 0 � x � t.1C p
2/=2;

1 for x > t.1C p
2/=2:

2.2 See Examples 1.6 and 2.3. All velocity models give a concave flux function
f .�/ D �v.�/. For Riemann initial data

u.x; 0/ D
(
ul for x � 0,

ur for x � 0,

the solution reads

u.x; t/ D
(
ul for x � st ,

ur for x � st ,
s D �f � = ��� ;

whenever ul < ur , and

u.x; t/ D

8̂̂
<
ˆ̂:
ul for x � f 0.ul/t ,

.f 0/�1 .x=t/ for f 0.ul/t � x � f 0.ur/t ,
ur for x � f 0.ur/t ,

for ul > ur . In the case of the California model, the flux function becomes
linear, f .�/ D v0.1 � �=�max/, and thus the solution reads

u.x; t/ D
(
ul for x � �v0t=�max,

ur for x � �v0t=�max,

for all initial data.
2.3 To show that the function in part a is a weak solution, we check that

the Rankine–Hugoniot condition holds. In part b we find that u".x; t/ D
u"0.x"=.t C "//. Then

Nu.x; t/ D

8̂̂<
ˆ̂:

�1 for x < �t ;
x=t for jxj � t ;

1 for x > t:

The solution found in part a does not satisfy the entropy condition, whereas Nu
does.

2.4 Introduce coordinates .�; y/ by � D t , y D x�at . Then the resulting problem
reads

u"� D "u"yy:
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The solution to this is found by convolution with the heat kernel and reads

u".y; �/ D ul C ur � ulp
4"��

1Z
0

exp
��.y � z/2=.4"��/�dz:

The result follows from this formula.
2.5 Add (2.83) and (2.60); then choose  as (2.61).
2.6 a. The characteristics are given by

@t

@�
D 1;

@x

@�
D c.x/f 0.z/;

@z

@�
D 0;

or

t D � C t0;
@x

@�
D c.x/f 0.z0/; z D z0:

b. The Rankine–Hugoniot condition reads

s �u� D c �f � :

c. The characteristics are given by

t D � C t0; x D tan
�
z� C arctan.x0/

�
; z D z0:

Using all values of z0 between �1 and 1 for characteristics starting at the
origin, and writing u in terms of .x; t/, we obtain

u.x; t/ D

8̂̂
<
ˆ̂:

�1 for x � � tan t ;
arctan x
t

for jxj < tan t ;

1 for x � tan t :

d. One possibility is to approximate f by a continuous, piecewise linear flux
function, and keep the function c. The characteristics will no longer be
straight lines, and one will have to solve the ordinary differential equations
that come from the jump condition. Another possibility is to approximate
c by piecewise constant or piecewise linear functions.

e. The entropy condition reads

ju � kjt C c.sign .u � k/ .f .u/ � f .k///x � 0

weakly for all k 2 R.
2.7 a. The characteristics are given by

@t

@�
D 1;

@x

@�
D c.x/f 0.z/;

@z

@�
D �c0.x/f .z/: (C.1)
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b. The entropy condition reads

ju � kjt C .q.u; k/c.x//x C sign .u � k/ f .k/c0.x/ � 0; (C.2)

in the distributional sense.

c. Set 
.u; v/ D ju � vj and q.u; v/ D sign .u � v/ .f .u/ � f .v//. Starting
from the entropy condition (C.2), we get

“ h

.u; k/'t C q.u; k/c.x/'x � sign .u � k/ f .k/c0.x/'

i
dx dt � 0;“ h


.v; k/'s C q.v; k/c.y/'y � sign .v � k/ f .k/c0.y/'
i
dx dt � 0:

We set k D v in the first equation, k D u in the second, and then add and
integrate, obtaining

““ h

.u; v/.'t C 's/C q.u; v/.c.x/'x C c.y/'y/

� sign .u � v/ .f .u/c0.y/ � f .v/c0.x//'
i
dx dt dy ds

C
“ “

sign .u � v/
h
.f .u/ � f .v//.c.y/ � c.x//'y

� c0.x/f .v/' C c0.y/f .u/'
i
dx dt dy ds � 0:

Now, 'y D  y! C  !y . Therefore, the first term in the last integrand
above can be split into

sign .u � v/ Œ.f .u/ � f .v//.c.y/ � c.x//� !y 
C sign .u � v/ Œ.f .u/ � f .v//.c.y/ � c.x//� ! y:

The integral of the last term will vanish as "1 ! 0, since c is continuous.
What remains is the integral of

 sign .u � v/
h
.f .u/ � f .v//.c.y/ � c.x//!y

� c0.x/f .v/! C c0.y/f .u/!
i
:

We have that

.c.y/ � c.x//!y C c0.y/! D @

@y

	
.c.y/ � c.x//!



;

�.c.y/ � c.x//!y � c0.x/! D �
	
.c.x/ � c.y//!x C c0.x/!



D � @

@x

	
.c.x/ � c.y//!



:
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Thus the troublesome integrand can be written

 sign .u � v/
�
f .u/

@

@y

	
.c.y/ � c.x//!




� f .v/ @
@x

	
.c.x/ � c.y//!


�
:

We add and subtract to find that this equals

 sign .u � v/.f .u/ � f .v//
�
@

@y

	
.c.y/ � c.x//!


�
C  sign .u � v/ f .v/ �c0.y/ � c0.x/

�
!:

Upon integration, the last term will vanish in the limit, since c0 is continu-
ous. Thus, after a partial integration we are left with“ “

@

@y

	
 q.u; v/



.c.x/ � c.y//! dx dt dy ds

� kc0kL1"1

“ “ ˇ̌̌
ˇ @@y

	
 q.u; v/


ˇ̌̌ˇ! dx dt dy ds
� const "1 .T:V: .v/C T:V: . // :

By sending "0 and "1 to zero, we find that“
ju � vj t C sign .u � v/ .f .u/ � f .v//c.x/ x dx dt � 0:

With this we can continue as in the proof of Proposition 2.10.
2.8 Mimic the proof of the Rankine–Hugoniot condition by applying the compu-

tation (1.21).
2.9 The function q satisfies q0 D f 0
0. Thus q D u3=3. The entropy condition

reads

Z
R

TZ
0

	1
2
u2�t C 1

3
u3�x



dt dx � �1

2

Z
R

�
u20�jtD0 � .u2�/jtDT

�
dx:

Choose functions � that approximate the identity function appropriately. ThenZ
R

u2 dx �
Z
R

u20:

Solutions of conservation laws are not contractive in the L2-norm in general,
as the following counterexample shows. Let

u0 D
(
1 for 0 < x < 1;

0 otherwise;
v0 D

(
1
2

for 0 < x < 1;

0 otherwise:
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We find that

ku.t/ � v.t/k22 D 1

4
C 5

24
t

for t < 2.
2.10 We have that u is a Kružkov entropy solution. Thus (cf. (2.23))

TZ
0

Z �

�t C q�x

�
dx dt C

Z

.u0/�.x; 0/ dx

�
Z �


.u/�/jtDT dx � 0:

(C.3)

In particular, u is a weak solution, and thus

TZ
0

Z �
.u � k/�t C .f .u/ � f .k//�x

�
dx dt

C
Z
.u0 � k/�.x; 0/ dx �

Z �
.u � k/�/jtDT dx D 0:

(C.4)

Adding and subtracting (C.4) to (C.3) we find

TZ
0

Z �
.u � k/˙�t C .u � k/˙.f .u/ � f .k//�x

�
dx dt

C
Z
.u0 � k/˙�.x; 0/ dx �

Z �
.u � k/˙�/jtDT dx � 0:

(C.5)

By following the Kružkov doubling of variables method we obtain the ana-
logue of (2.59) with 
 D ju � vj and q D q.u; v/ replaced by


˙ D .u � v/˙; q˙.u; v/ D .u � v/˙.f .u/ � f .v//:
The rest of the argument follows in a similar way.

2.11 a. The Rankine–Hugoniot relation is the same as before,

s �u� D �f � :

b. Z
R

TZ
0

� ju � kj�t C q.u; k/�x
�
dt dx

C
Z
R

�
.ju � kj�/jtD0 � .ju � kj�/jtDT

�
dx

� �
Z
R

TZ
0

sign .u � k/ g.u/� dt dx

for all k 2 R and all nonnegative test functions � 2 C1
0 .R � Œ0; T �/.

(Recall that q.u; k/ D sign .u � k/ .f .u/ � f .k//.)
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2.12 First we note that the Rankine–Hugoniot condition implies that v is locally
bounded and uniformly continuous. Assume now that v � ' has a local max-
imum at .x0; t0/, where t0 > 0. Since p is piecewise differentiable, we can
define the following limits:

Npl D lim
x!x0�

p.x; t0/ � 'x.x0; t0/ � Npr D lim
x!x0C

p.x; t0/:

The inequalities hold, since v � ' has a maximum at .x0; t0/ and where p is
differentiable,

vx D p C xpx � tH.p/x D p C x

t
Pp C tpt D p C x

t
Pp � x

t
Pp D p:

Thus O'x D 'x.x0; t0/ is between Npl and Npr . We also take the upper convex
envelope. Thus

Hl C �. O'x � Npl / � H. O'x/;
Hr C �. O'x � Npr/ � H. O'x/;

where Hl;r D H. Npl;r / and � D .Hl � Hr/=. Npl � Npr/ if pl ¤ pr and � D
H 0.pl;r / otherwise. We add the two equations to find that

� O'x � H. O'x/C �

2
. Npl C Npr/ � 1

2
.Hl CHr/: (C.6)

Now we find .x; t/ close to .x0; t0/ such that

� D x0 � x
t0 � t :

Since v � ' has a local maximum at .x0; t0/, we have that

v.x0; t0/ � v.x; t/
t0 � t � '.x0; t0/ � '.x; t/

t0 � t :

If p is assumed to be left continuous, we can now use this to show that

� Npl �Hl � O't C � O'x:
Choosing .x; t/ slightly to the right of the line x D � t , we can also show that

� Npr �Hr � O't C � O'x;
and therefore

�

2
. Npl C Npr/� 1

2
.Hl CHr/ � O't C � O'x:

Using (C.6), we conclude that

O't CH. O'x/ � 0;

and v is a subsolution. To show that v is also a supsolution, proceed along
similar lines.
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2.13 Assuming f to be twice continuously differentiable, we find that

kf � fıkLip D sup
j.f .p/ � fı.p// � .f .q/ � fı.q//j

jp � qj
� sup jf 0.p/ � f 0

ı .p/j
D sup

j;p
jı�p�.jC1/ı

ˇ̌̌
ˇf 0.p/ � f ..j C 1/ı/ � f .jı/

ı

ˇ̌̌
ˇ

D sup
p;q

jp�qj�ı
jf 0.p/ � f 0.q/j � ıkf 00kL1 :

Assume next that f is twice continuously differentiable on closed intervals
I1; I2 with I1 \ I2 D f Qug, where Qu is such that f is not twice differentiable at
Qu. Then we get for u 2 I1; v 2 I2 thatˇ̌̌
ˇ .f � fı/.u/ � .f � fı/.v/

u � v
ˇ̌̌
ˇ

� j.f � fı/.u/� .f � fı/. Qu/j
ju � vj C j.f � fı/. Qu/� .f � fı/.v/j

ju � vj
� j.f � fı/.u/� .f � fı/. Qu/j

ju � Quj C j.f � fı/. Qu/� .f � fı/.v/j
j Qu � vj

� kf � fıkLip.I1/ C kf � fıkLip.I2/
� ı kf 00kL1.I1/ C ı kf 00kL1.I2/

� 2ı kf 00kL1.I1[I2/ :

Thus in the general case, we get

kf � fıkLip.�M;M/ � C1ı kf 00kL1.�M;M/ ;

where C1 is one plus the number of points where the second derivative does
not exist.
Finally, we observe that

kfn1 � fn2kLip.�M;M/ � kfn1 � f kLip.�M;M/ C kf � fn2kLip.�M;M/

� 2C1ın1 kf 00kL1.�M;M/

when n1 � n2.
2.14 a. Observe first that

f^.u/ D sup
g2A

g.u/;

where A is the set of all affine function below f , that is,

A D fg.u/ D suC q j s; q 2 R; sv C q � f .v/; v 2 Œa; b�g:
Consider the subset of A with a fixed slope:

As D fg 2 A j g0 D sg:
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Then

f^.u/ D sup
s2R

sup
g2As

g.u/;

and there exists gs 2 As such that supg2As g.u/ D gs.u/. Since f is
continuous, there exists Nu such that

gs. Nu/ D f . Nu/;
which implies

q D gs. Nu/ � s Nu D f . Nu/ � s Nu:
Since gs � f , we infer that q must be minimal. Thus

q D min
v2Œa;b�

�
f .v/ � sv� D � max

v2Œa;b�
�
sv � f .v/� D �f �.s/:

Finally,

f^.u/ D sup
s2R

gs.u/ D sup
s2R

�
su � f �.s/

� D f ��.u/:

b. The fact that u.�/ D .f 0̂ /�1.�/ implies that � D f 0̂ .u/. We have that

f^.u/ D f ��.u/ D max
v2Œa;b�

�
uv � f �.v/

�
:

The maximum is attained for s D f 0
^.u/, and hence s D � , and we obtain

f^.u/ D u� � f �.�/:

By differentiation with respect to � we obtain

f 0
^.u/u

0.�/ D u0.�/� C u.�/� d

d�
f �.�/;

which implies, since we have � D f 0̂ .u/, that

u.�/ D d

d�
f �.�/:

See [148].
2.15 We first find the characteristics (parameterized using t)

x D x.
; t/ D

8̂̂<
ˆ̂:

C .1 � e�t / for 
 � � 1

2
;


.2e�t � 1/ for � 1
2
< 
 < 0;


 for 
 � 0;

u D u.
; t/ D u0.
/e
�t :

Characteristics with 
 2 � � 1
2
; 0
�
collide at t D ln 2. At that time a shock

forms. The solution reads

u.x; t/ D

8̂̂<
ˆ̂:
e�t for x < min

�
1
2

� e�t ; 1
4

� 1
2
e�t�;

2x
et�2 for 1

2
� e�t � x � 0;

0 for x � max
�
0; 1

4
� 1

2
e�t�:
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Fig. C.2 The fronts for Ex-
ercise 2.19

 x1  x2  x

t

2.16 The solution reads

u.x; t/ D
(
2 for x < 1

2
.e2 � 1/t ;

0 for x � 1
2
.e2 � 1/t :

2.17 a.
u.x; t/ D

(
1 for x < t C 2;

0 for x � t C 2:

b.

u.x; t/ D

8̂̂
<
ˆ̂:
0 for x � 2;�
x�2
3t

�1=2
for 2 < x < 3t C 2;

1 for x � 3t C 2:

2.18 The solution reads

u.x; t/ D

8̂̂
<
ˆ̂:
x=t for 0 < x < t;

1 for t � x � 1C t=2;

0 otherwise,

when t � 2, and

u.x; t/ D
(
x=t for 0 < x <

p
2t ;

0 otherwise,

when t > 2.
2.19 In Fig. C.2 you can see how the fronts are supposed to move, but you will have

to work out the states yourself.
2.20 See, e.g., [58, p. 255].
2.21 Let 0 D t0 < t1 < t2 < � � � < tn < tnC1 D 1 denote the collision times. On

each time interval Œti ; tiC1� the solution satisfies the Kružkov entropy condition
in the sense of (2.23); cf. (2.30). By adding all these inequalities, all boundary
terms will cancel except the term coming from the initial data, which results
in (2.23) with T D 1.
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Chapter 3, Sect. 3.7

3.1 The weak entropy solution reads

u.x; t/ D

8̂̂<
ˆ̂:
0 for x � 0;

x
t

for 0 < x < t;

1 for x � t :

3.2 We do the MacCormack method only; the Lax–Wendroff scheme is similar. It
simplifies the computation to use repeatedly that

�
�
uC a"C b"2 C O

�
"3
� �

D �.u/C � 0.u/a"C "2

2

�
� 00.u/a2 C 2b� 0.u/

�C O
�
"3
�

as " ! 0. Consider an exact classical (smooth) solution u of ut C f .u/x D 0,
and compute (where SM is the operator defined by the MacCormack scheme)

L�t D 1

�t

�
S.�t/u � SM.�t/

�
D 1

�t

n
u.x; t C�t/ � u.x; t/

C 

2

�
f
�
u.x; t/ � .f .u.x C�x; t// � f .u.x; t///�

� f �u.x ��x; t/ � .f .u.x; t// � f .u.x ��x; t///�
C f .u.x; t// � f .u.x ��x; t//�o

D 1

�t

n
.ut C f .u/x/�t

C 2

2

�
utt � 2f 0.u/f 00.u/u2x � f 0.u/2uxx

�
�x2 C O

�
�x3

� o
D O

�
�x2

�
;

where we have used that a smooth solution of ut C f .u/x D 0 satisfies utt �
2f 0.u/f 00.u/u2x � f 0.u/2uxx D 0 as well.

3.3 a. If u D unj , v D unjC1 and w D unj�1, we have that

unC1
j D g.u; v;w/

D u � 
� uZ
0

f 0.s/ _ 0 ds C
vZ
0

f 0.s/ ^ 0 ds

�
wZ
0

f 0.s/ _ 0 ds �
uZ
0

f 0.s/ ^ 0 ds
�

D u � 
� uZ
0

jf 0.s/j ds C
vZ
0

f 0.s/ ^ 0 ds �
wZ
0

f 0.s/ _ 0 ds
�
:
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Computing partial derivatives, we find that

@g

@u
D 1 �  jf 0.u/j � 0 if  jf 0j � 1,

@g

@v
D �f 0.v/ ^ 0 � 0;

@g

@w
D f 0.w/ _ 0 � 0:

Consistency is easy to show.
b. If f 0 � 0, the scheme coincides with the upwind scheme; hence it is of

first order.
c. For any number a we have

jaj D a _ 0 � a ^ 0;
a D a _ 0C a ^ 0;

)
)

8̂<
:̂
a _ 0 D 1

2
.aC jaj/;

a ^ 0 D 1

2
.a � jaj/:

Using this the form of the scheme easily follows.
d. We have that Z

juj du D sign .u/
u2

2
:

From this it follows that

f EO.u; v/ D 1

2

�
u2

2
C v2

2
� sign .v/

v2

2
C sign .u/

u2

2

�

D 1

2

�
u2

2
.1C sign .u//C v2

2
.1 � sign .v//

�
;

which is what we want to show. If f is convex with a unique minimum at
Nu, then

f EO.u; v/ D f .u _ Nu/C f .v ^ Nu/� f . Nu/:

3.4 The scheme is not monotone, since

@unC1
j

@unj˙1
D 
 �t

2�x
f 0.unj˙1/:

3.5 Assume that waves coming from xj�1=2 and xjC1=2 at time tn interact be-
fore tnC1, say at Qtn. Integrating the conservation law over the rectangle
Œxj�1=2; xjC1=2� � Œtn; Qtn� yields

Qunj D unj � Qtn � tn
�x

�
F n
jC1=2 � F n

j�1=2
�
;
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where the Godunov numerical flux F n
jC1=2 is given by (3.8), and Qunj is the

average of the solution at time Qtn. If we now integrate the conservation law
over the rectangle Œxj�1=2; xjC1=2� � ŒQtn; tnC1�, we obtain

unC1
j D Qunj � tnC1 � Qtn

�x

�
F n
jC1=2 � F n

j�1=2
�I

the Godunov numerical flux is the same. Adding the two expressions, we get

unC1
j D unj � �F n

jC1=2 � F n
j�1=2

�
;

which is the Godunov method.
3.6 We calculate

L�t D 1

�t

h
u.t C�t/ � 1

2
.u.x C�x/C u.x ��x//

C �t

2�x
.f .x C�x/ � f .x ��x//

i

D 1

�t

"
uC�tut C �t2

2
utt � u � �x2

2
uxx C�tfx

#
C O.�t2/

D �t

2

��
f 0.u/2ux

�
x

� 1

2
uxx

�
C O.�t2/

D �t

22

h	�
f 0.u/

�2 � 1


ux

i
x

C O.�t2/:

3.7 Consider the function

G.a; b/ D aC b � .f .a/ � f .b//:
We have � positive,

G.aC �; b/ �G.a; b/ D � � .f .a C �/ � f .a//
� � �  jf .aC �/ � f .a/j
� �.1 � L/ > 0

for L < 1, and where L is the Lipschitz constant of f . Similar calculations
for the b variable.

3.8 For the case f .u/ D u, we find that Heun’s method gives

unC1
j D unj � 

2

	
unjC1 � unj�1



� 2

4

	
unjC1 � 2unj C unj�2



:

Using the ansatz unj D �ne
ixj . we obtain

�nC1 D �n

 
1 � 

2

�
ei�x � e�i�x� �

�


2

�
ei�x � e�i�x��2!

D �n
�
1 � i sin.�x/C 2 sin2.�x/

�
:
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Hence

j�nC1j D j�nj
q
.1C 2 sin2.�x//2 C 2 sin2.�x/ > j�nj ;

for all  > 0 and �x > 0, and the method is unconditionally unstable.
3.9 a. We find that

unC1
j D unj =

�
1C .unj � unj�1/

�
;

provided that the denominator is nonzero. Thus

@unC1
j

@unj
D unj =

�
1C .unj � unj�1/

�2
;

@unC1
j

@unj�1
D �

1 � unj
�
=
�
1C .unj � unj�1/

�2
:

Assume  < 1. Considering unC1
j as a function of unj ; u

n
j�1 2 Œ0; 1�, we

see that unC1
j takes on its largest value, namely one, when unj D unj�1 D 1.

Thus unC1
j 2 Œ0; 1� for all n and j . The same computation shows that the

scheme is monotone.
b. A constant is mapped into the same constant by this scheme, which there-

fore is consistent. A Taylor expansion around a smooth solution shows that
the truncation error is of first order.

3.10 a. With the obvious notation we have that

vnC1
j D vnj � 

�x

	
f nj � f nj�1 C f n

j�2 � f nj�1


;

and by a Taylor expansion about Un
j�1,

f n
j D f n

j�1 C .unj � unj�1/f
0.unj�1/C 1

2
.unj � unj�1/

2f 00.
j�1=2/;

f nj�2 D f n
j�1 C .unj�2 � unj�1/f

0.unj�1/C 1

2
.unj�2 � unj�1/

2f 00.
j�3=2/:

Using this, we get the desired result.
b. Assuming that vnj � vnj�1 � 0, we find that

vnC1
j � vnj � c�t

	
vnj


2 D g.vnj /:

The function g has a maximum at 1=.2c�t/. Hence vnj is in an interval
where g is increasing. Thus

vnC1
j � g

�
1

.2C n/c�t

�
D 1

.nC 2/c�t

nC 1

nC 2
<

1

.nC 3/c�t
:
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The case vnj�1 > vnj is similar, and the case 0 � vnj _ vnj�1 is trivial. Thus
we have completed the induction. Hence for all n, Ovn will be in an interval
where g is increasing, and

vnC1
j � g . Ovn/ :

Taking the maximum over j and 0 on the left completes the claim.
c. Assuming that the claim holds for n D 0, we wish to show that it holds for

every n by induction. Since Ovn is in an interval where g is increasing, we
find that

OvnC1
j � Ov0

1C cn�t Ov0
�
1 � Ov0

1C cn�t Ov0
�

D Ov0
1C cn�t Ov0

1C c�t Ov0.n � 1/
1C c�t Ov0n ;

so if

1C Ov0c�t.n � 1/
.1C Ov0c�tn/2

� 1

1C Ov0c�t.nC 1/
;

we are ok. Set k D Ov0c�t . Since

.1C kn/2 � k2 < .1C kn/2;

the claim follows.
d. Since vnj � Ovn, the claim follows by noting that

uni � unj D
iX

kDjC1
vnj :

e. Since
n
unj

o
converges to the entropy solution u for almost every x (and y)

and t , we find that the claim holds.
3.11 a. We find that u. � C p; t/ is another entropy solution with the same initial

condition; hence u. � C p; � / D u, and u is periodic.
b. Taking the infimum over y and the supremum over x, we find that this

holds.
c. Set u" D u � !". Then u" is differentiable, and satisfies

@tu" C @x.f .u/ � !"/ D 0:

Thus

d

dt

pZ
0

u".x; t/ dx D .f .u/ � !"/.0; t/ � .f .u/ � !"/.p; t/ D 0;
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since also f � !" is periodic with period p. Therefore,

pZ
0

u".x; t/ dx D
pZ
0

u0;".x/ dx:

We know that u" converges to u in L1.Œ0; p�/; hence

pZ
0

u.x; t/ dx D
pZ
0

u0.x/ dx:

Now, since u.x; t/ ! Nu as t becomes large,

p Nu D
pZ
0

u0.x/ dx:

3.12 The limit of �.; un.x// will be independent of x, we have that

�.; un.x// D
(
1 0 �  � 1; and x 2 Œ2k=2n; .2k C 1/=2n/;

�1 �1 �  < 0; and x 2 Œ.2k C 1/=2n; .2k C 2/=2n/:

Therefore

�.; un.x// * f ./ D

8̂̂
<
ˆ̂:
1
2

0 �  � 1;

� 1
2

�1 �  < 1;

0 otherwise.

Now

d

d
f ./ D ı0./ � 1

2
.ı�1./C ı1.// :

Thus � D .ı�1 C ı1/=2.
3.13 a. Observe first that vk is constant and equal to one on the interval Œ1; 2�. From

the definition of F we see that

jF.�/ � �j � 1

3
j�.b/ � �.a/j :

Thus

jvkC1 � vkj D
X
j

ˇ̌
F.vj;k/ � vj;k

ˇ̌
�j;k �

�
2

3

�k
;

and hence the limit

v.x/ D lim
k!1

vk.x/

exists and is continuous.
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b. Observe that T:V:
�
vj;k

� D �
2
3

�k
(on Œ0; 1� and Œ2; 3�), and that

T:V: .F.�// D 5

3
j�.b/ � �.a/j D 5

3
T:V: .�/ :

Thus

T:V: .vkC1/ D
X
j

T:V:
�
F.vj;k/

� D 5

3

X
j

T:V:
�
vj;k

�

D 5

3

	2
3


k � 2 � 3k D 10

3
2k: (C.7)

c. We see that

v.j=3k/ D vk.j=3
k/

by construction.
d. Define the upwind scheme by

unC1
j D unj C .f nj � f n

j�1/; u0j D v.j=3k/ D vk.j=3
k/: (C.8)

From the assumptions on the flux function we know that the scheme is
TVD with a CFL number at most one. Thus

T:V: .un/ � T:V:
�
u0
� � T:V: .vk/ D 10

3
2k:

We apply Theorem 3.32, and consider

.�x/ˇ
X
n

X
j

ˇ̌̌
unjC1 � unj

ˇ̌̌
�t � T 3�kˇ 10

3
2k:

For this to be less than a constant C.T /, we need 2=3ˇ � 1, or ˇ �
ln 2= ln 3 � 0:63. For Theorem 3.32 to apply we note that (3.110) is satis-
fied with right-hand side zero.

Chapter 4, Sect. 4.7

4.1 a. Set

˛".t/ D
tZ
0

�
!".s � t1/� !".s � t2/

�
ds:

Then ˛" will tend to the characteristic function of the interval Œt1; t2� as
" ! 0. Furthermore, set  .x; y; t/ D ˛".t/'.x; y/ for some test function
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' with j'.x; y/j � 1. Since u is a weak solution, we find, using  as a test
function and taking " ! 0, that

“
'.x; y/.u.x; y; t1/�u.x; y; t2// dx dy

C
t2Z
t1

“ �
f .u/'x C g.u/'y

�
dx dy dt D 0:

Then we have that

ku. � ; � ; t1/� u. � ; � ; t2/kL1.R2/

D sup
j'j�1

“
'.x; y/.u.x; y; t1/� u.x; y; t2// dx dy

�
t2Z
t1

sup
j'j�1

“ �
f .u/'x C g.u/'y

�
dx dy dt

�
t2Z
t1

�Z
T:V:x .f .u. � ; y; t/// dy C

Z
T:V:y .g.u.x; � ; t/// dx

�
dt

� jt1 � t2j
�kf kLip _ kgkLip

�
T:V: .u0/ :

See also Theorem 7.10.
b. Let u�t and v�t denote the dimensional splitting approximations to u

and v, respectively. It is easy to show (using monotonicity for the one-
dimensional solution operators) that if u0 � v0 a.e., then u�t � v�t a.e.
Hence “ �

u�t .x; y; t/ � v�t .x; y; t/
� _ 0 dx dy D 0;

and since both u�t and v�t converge strongly inL1 to u and v, respectively,
it follows that “ �

u.x; y; t/ � v.x; y; t/� _ 0 dx dy D 0;

and thus u � v a.e.
4.2 Let u D S

j
t u0 denote the solution of ut C fj .u/x D 0 with initial condition

ujtD0 D u0. Define fung by

u0 D u0; unC1=2 D S1�tu
n; unC1 D S2�tu

nC1=2:

Interpolate by defining u�t D S12.t�tn/u
n if tn � t � tnC1=2 and u�t D

S12.t�tnC1=2/u
nC1=2 whenever tnC1=2 � t � tnC1. (Here tn D n�t .) By mim-

icking the multidimensional case, one concludes that (i) ku�tkL1 � C ; (ii)



Answers and Hints 483

T:V: .u�t .t// � T:V: .u0/; and (iii) ku�t .t/ � u�t .s/kL1 � C jt � sj. Theo-
rem A.11 shows that u�t has a limit u as �t ! 0. Write the Kružkov entropy
condition for u�t for each time interval Œtn; tnC1=2� (for f1) and Œtn; tnC1=2� (for
f2), add the results, and letDt ! 0. As in the multidimensional case, the limit
is the Kružkov entropy condition for u and the original initial value problem
(4.99). The analysis in Sect. 4.3 applies concerning convergence rates.

4.3 Consider first a smooth function  . Let

I D I1 � I2 D Œa1; b1� � Œa2; b2� � R2:

For xj ; yj 2 Ij we have
 .x1; x2/�  .y1; y2/ D  .x1; x2/ �  .x1; y2/C  .x1; y2/ �  .y1; y2/

D
x1Z
y1

@ 

@x
.�; y2/ d� C

x2Z
y2

@ 

@y
.x1; �/ d�:

By integrating over I we obtainˇ̌̌
ˇ̌̌ .x1; x2/ � 1

jI j
“
I

 .y1; y2/ dy1 dy2

ˇ̌̌
ˇ̌̌

� 1

jI2j
“
I

ˇ̌̌
ˇ@ @x .�; y2/

ˇ̌̌
ˇ d� dy2 C

b2Z
a2

ˇ̌̌
ˇ@ @y .x1; �/

ˇ̌̌
ˇ d�:

Thus

“
I

ˇ̌̌
ˇ̌̌ .x1; x2/ � 1

jI j
“
I

 .y1; y2/ dy1 dy2

ˇ̌̌
ˇ̌̌ dx1 dx2

� jI1j
“
I

ˇ̌̌
ˇ@ @x .x; y/

ˇ̌̌
ˇ dx dy C jI2j

“
I

ˇ̌̌
ˇ@ @y .x; y/

ˇ̌̌
ˇ dx dy

� maxfjI1j ; jI2jg
“
I

jr .x; y/j dx dy:

We can approximate every function of bounded variation with smooth func-
tions  k such that (see [64, Thm. 2, p. 172])

k �  kkL1.I / ! 0; kr kkL1.I / ! kr kL1.I / :

This implies that“
Iij

j k � � kj dx dy � maxf�x;�yg
“
Iij

jr kj dx dy:
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By taking limits we have“
Iij

j � � j dx dy � maxf�x;�yg
“
Iij

jr j dx dy;

and subsequently“
j � � j dx dy D

X
i;j

“
Iij

j � � j dx dy

� maxf�x;�yg
X
i;j

“
Iij

jr j dx dy

D maxf�x;�yg
“

jr j dx dy:

4.4 For simplicity, we assume that m D 2. Using the heat kernel, we can write

unC1=2.x; y/ D 1p
4��t

Z
exp

	
� .x � z/2

4�t



un.z; y/ dz

unC1.x; y/ D 1p
4��t

Z
exp

	
� .y � w/2

4�t



unC1=2.x;w/ dw

D 1

4��t

“
exp

	
� .x � z/2 C .y � w/2

4�t



un.z;w/ dz dw:

From this we see that unC1.x; y/ is the exact solution of the heat equation
with initial data un.x; y/ after a time �t . If we let u.x; y; t/ denote the exact
solution of the original heat equation, we therefore see that

u.x; y; tn/ D u�t .x; y; tn/; n D 0; 1; 2; : : : :

We have that u and u�t are L1 continuous in t ; hence it follows that u�t ! u

in L1 as �t ! 0.
If we want a rate of this convergence, we first assume that u. � ; � ; tn/ is uni-
formly continuous. For t 2 .tn; tnC1=2/ we have that

u�t .x; y; t/ � u.x; y; t/

D 1

4�.t � tn/
“

exp
	

� .x � z/2 C .y � w/2
4.t � tn/



� �u.z; y; tn/� u.z;w; tn/

�
dw dz

D 1p
4�.t � tn/

Z
exp

	
� .x � z/2
4.t � tn/




�
Z

1p
4�.t � tn/

exp
	

� .y � w/2
4.t � tn/



� �u.z; y; tn/� u.z;w; tn/

�
dw dz

D 1p
4�.t � tn/

Z
exp

	
� .x � z/2
4.t � tn/


�

.z; y; t/ � 
.z; y; tn/

�
dz;
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where 
.z;w; t/ denotes the solution of


t D 
ww; 
.z;w; tn/ D un.z;w/:

If un.z;w/ is uniformly continuous, then

j
.z; y; t/ � 
.z; y; tn/j � C
p
�t;

and hence

ju�t .x; y; t/ � u.x; y; t/j � C
p
�t;

and an identical estimate is available if t 2 .tnC1=2; tnC1/. Hence if u0.x; y/ is
uniformly continuous, then

ku�t . � ; � ; t/ � u. � ; � ; t/kL1.R2/ � C
p
�t:

If u0.x; y/ is not assumed to be continuous, but merely of bounded variation,
we must use Kružkov’s interpolation lemma to conclude that

k
.z; � ; t/ � 
.z; � ; tn/kL1loc.R/ � C
p
�t:

Using this, we find that

ku�t. � ; � ; t/ � u. � ; � ; t/kL1loc.R2/ � C
p
�t:

4.5 a. The scheme will be monotone if UnC1=2
j .U n/ and Un

j

�
UnC1=2� are mono-

tone in all arguments. This is the case if

kf 0k1 � 1 and � � 1

2
:

b. We see that if  jf 0j � 1, then

min
j
U n
j � U

nC1=2
j � max

j
U n
j ;

and if � � 1
2
,

min
j
U
nC1=2
j � UnC1

j � max
j
U
nC1=2
j :

Therefore, the sequence fu�tg is uniformly bounded. Now let V n
j be an-

other solution with initial data V 0
j . Set W

n
j D Un

j � V n
j . Then

W
nC1=2
j D 1

2

�
1 � f 0 �
jC1

��
W n
jC1 C 1

2

�
1C f 0 �
j�1

��
W n
j�1;
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where 
j is between Un
j and V n

j . By the CFL condition, the coefficients of
W n
j˙1 are positive; henceˇ̌̌
W

nC1=2
j

ˇ̌̌
� 1

2

�
1 � f 0 �
jC1

�� ˇ̌̌
W n
jC1

ˇ̌̌
C 1

2

�
1C f 0 �
j�1

�� ˇ̌̌
W n
j�1
ˇ̌̌
:

Summing over j , we find thatX
j

ˇ̌̌
W

nC1=2
j

ˇ̌̌
�
X
j

ˇ̌̌
W n
j

ˇ̌̌
:

Similarly, we find thatˇ̌̌
W nC1
j

ˇ̌̌
� .1 � 2�/

ˇ̌̌
W

nC1=2
j

ˇ̌̌
C �

ˇ̌̌
W

nC1=2
jC1

ˇ̌̌
C �

ˇ̌̌
W

nC1=2
j�1

ˇ̌̌
;

so that X
j

ˇ̌̌
W nC1
j

ˇ̌̌
�
X
j

ˇ̌̌
W

nC1=2
j

ˇ̌̌
�
X
j

ˇ̌̌
W n
j

ˇ̌̌
:

Setting V n
j D Un

j�1, we see that T:V: .u�t / is uniformly bounded, and set-
ting V 0

j D 0, we see that ku�tk1 is also uniformly bounded. To apply The-
orem A.11 we need to use Kružkov’s interpolation lemma, Lemma 4.11, to
find a temporal modulus of continuity. Now we find thatˇ̌̌

ˇ
Z
�.x/

�
u�t.x; n�t/ � u�t.x;m�t/

�
dx

ˇ̌̌
ˇ

D
ˇ̌̌
ˇ

mX
kDnC1

X
j

xjC1=2Z
xj�1=2

�.x/ dx
	
UkC1
j � Uk

j


ˇ̌̌ˇ:
If we set N�j D R xjC1=2

xj�1=2 �.x/ dx andDk
j D Uk

j �Uk
j�1, then the sum over j

can be writtenX
j

N�j�
	
D
kC1=2
jC1 �DkC1=2

j



C
X
j

N�j 1
2

	
Dk
jC1 �Dk

j




C
X
j

N�j
	
f n
jC1 � f n

j�1


:

(C.9)

We do a partial summation in the first sum to find that it equals

��
X
j

D
kC1=2
j

� N�j � N�j�1
�
:

Now

ˇ̌ N�j � N�j�1
ˇ̌ D

ˇ̌̌
ˇ
xjC1=2Z
xj�1=2

xZ
x��x

� 0.y/ dy dx
ˇ̌̌
ˇ � k� 0kL1�x2:
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Since � D �t=�x2, the first sum in (C.9) is bounded by

�tk� 0kL1T:V: .u�t / :
Similarly, the second term is bounded by

�t
k� 0kL1
2

�x


T:V: .u�t/ :

Finally, since  D �t=�x, the last term in (C.9) is bounded by

�tk�kL1T:V: .u�t / :
Therefore,ˇ̌̌

ˇ
Z
�.x/ .u�t .x; n�t/ � u�t .x;m�t// dx

ˇ̌̌
ˇ

� .n �m/�t const �k�kL1 C k� 0kL1
�
:

Then by Lemma 4.11 and the bound on the total variation,

ku�t . � ; t1/ � u�t . � ; t2/kL1 � const
p

jt1 � t2j:
Hence we can conclude, using Theorem A.11, that a subsequence of fu�tg
converges strongly in L1.
To show that the limit is a weak solution, we have to do a long and tortuous
calculation. We give only an outline here. Firstly,“ 	

u�t't C f .u�t /'x C u�t'xx



dx dt

D
X
n;j

xjC1=2Z
xj�1=2

tnC1Z
tn

	
Un
j 't C f n

j 'x C Un
j 'xx



dx dt:

After a couple of partial summations this equals

�
X
n;j

xjC1=2Z
xj�1=2

'nC1.x/ dx
h
UnC1
j � Un

j

i
(C.10)

�
X
n;j

tnC1Z
tn

'jC1=2.t/ dt
h
f n
j � f n

j�1
i

(C.11)

�
X
n;j

tnC1Z
tn

' 0
jC1=2.t/ dtD

nC1=2
j (C.12)

�
X
n;j

tnC1Z
tn

	
' 0
jC1=2.t/ � ' 0

j�1=2.t/


dt
h
U
nC1=2
j � Un

j

i
: (C.13)
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Now split (C.10) by writing the term in the square brackets as

�
�
	
D
nC1=2
j �DnC1=2

j�1



C 1

2

	
Dn
j �Dn

j�1



� 

2

	
f n
jC1 � f nj�1


�
:

(C.14)

The trick is now to pair the term in (C.14) with � with (C.12), and the
term with  with (C.11). The limits of the sums of these are zero, as is the
limit of (C.13), and the remaining part of (C.14) also tends to zero as �t
approaches zero. If you carry out all of this, you will find that the limit is
a weak solution.

4.6 a. To verify the left-hand side of the inequality, we proceed as before. When
doing this, we have a right-hand side given by

“ “
sign .u � v/ .g.u/� g.v// !"0!"1 dx dt dy ds:

Now we can send "0 and "1 to zero and obtain the answer.
b. By choosing the test function as before, we find that the double integral on

the left-hand side is less than zero. Therefore, we find that

h.0/� h.T / �
“

sign .u � v/ .g.u/� g.v// .x; t/ dxdt;

and therefore

h.T / � h.0/C
TZ
0

Z
jg.u/� g.v/j dx dt

� h.0/C �

TZ
0

Z
ju � vj dx dt:

c. By makingM arbitrarily large we obtain the desired inequality.
4.7 a. We set

u�t.x; 0/ D u0.x/;

u�t.x; t/ D
(
S .2 .t � tn// un.x/; t 2 .tn; tnC1=2�;

R.x; 2.t � tnC1=2/C tn; tnC1=2/unC1=2.x/; t 2 .tnC1=2; tn�:

b. A bound on ku�tk1 is obtained as before. To obtain a bound on the total
variation we first note that

T:V:
�
unC1=2� � T:V: .un/ :
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Let u.x; t/ and v.y; t/ be two solutions of the ordinary differential equa-
tion in the interval Œtn; tnC1�. Then as before, we find that

ju.x; t/ � v.x; t/j t � jg.x; t; u.x; t// � g.x; t; v.y; t//j
C jg.x; t; v.y; t// � g.y; t; v.y; t//j

� � ju.x; t/ � v.y; t/j
C jg.x; t; v.y; t// � g.y; t; v.y; t//j :

Setting w D u � v, we obtain

jw.t/j � e�.t�tnC1/
�

jw.0/j C
tnC1Z
tn

jg.x; t; v.y; t// � g.y; t; v.y; t//j dt
�
:

If now u.0/ D unC1=2.x/ and v.0/ D unC1=2.y/, this reads

ˇ̌̌
unC1.x/ � unC1.y/

ˇ̌̌
� e��t

�ˇ̌
unC1=2.x/� unC1=2.y/

ˇ̌

C
tnC1Z
tn

ˇ̌̌
g
	
x; t; u�t

	
y;
t � tn
2

C tnC1=2




� g
	
y; t; u�t

	
y;
t � tn
2

C tnC1=2


ˇ̌̌

dt

�
:

By the assumption on g this implies that

T:V:
�
unC1� � e��t

�
T:V:

�
unC1=2�C

tnC1Z
tn

b.t/ dt

�
;

and thus

T:V: .u�t/ � e�T .T:V: .u0/C kbk1/ :

We can now proceed as before to see that

Z
I

ˇ̌
unC1.x/ � un.x/ˇ̌ dx � const �t:

Hence we conclude, using Theorem A.11, that a subsequence of fu�tg
converges strongly in L1 to a function u of bounded variation.

c. To show that u is an entropy solution, we can use the same argument as
before.
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4.8 Write v D ut and differentiate the heat equation ut D "�u with respect to t .
Thus

vt D "�v:

Let sign
 be a smooth sign function, namely,

sign
.x/ D

8̂̂<
ˆ̂:
1 for x � 
;

x=
 for jxj < 
;
�1 for x � �
:

If we multiply

vt D "�v

by sign
.v/ and integrate over R
m � Œ0; t �, we obtain

Z
Rm

tZ
0

vt sign
.v/ dt dx D "

Z
Rm

tZ
0

�v sign
.v/ dt dx

D �"
Z
Rm

tZ
0

jrvj2 sign0

.v/ dt dx

� 0:

For the left-hand side we obtain

Z
Rm

tZ
0

vt sign
.v/ dt dx D
Z
Rm

tZ
0

.v sign
.v//t dt dx

�
Z
Rm

tZ
0

v vt sign
0

.v/ dt dx:

The last term vanishes in the limit 
 ! 0; see Lemma B.5. Thus we conclude
that as 
 ! 0,

kv.t/kL1 � kv.0/kL1 � 0:

From this we obtain

ku.t/ � u0kL1 D
Z
Rm

ˇ̌̌
ˇ

tZ
0

v.Qt / d Qt
ˇ̌̌
ˇ dx �

tZ
0

��v.Qt /��
L1
d Qt � kv.0/k1 t:
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Chapter 5, Sect. 5.8

5.1 Using the derivation of the shallow-water equations based on the Navier–
Stokes equations, we obtain as before

vt C vvx C uvy D �px;
py D �1:

When we integrate the pressure in the vertical direction, we get

p D ıb.x; t/C h.x; t/ � y (C.15)

when we as before normalize the pressure to vanish at the surface of the water.
By inserting this in the first equation, we obtain

vt C vvx C .ıb C h/x D 0:

Apply Green’s theorem to a region R of the fluid confined between x D x1
and x D x2:

0 D
“
R

�
vx C uy

�
dx dy D

Z
@R

.�u dx C v dy/

D
x2Z
x1

�
..ıb C h/xv C .ıb C h/t / dx � v.ıb C h/x dx

�

�
x2Z
x1

�
.ıbxv C ıbt / dx � vıbx dx

�
C v.x2; t/h.x2; t/ � v.x1; t/h.x1; t/

D
x2Z
x1

�
ht C .vh/x

�
dx;

(C.16)

or ht C .vh/x D 0, where we used that v dy D v.ıbCh/x dx along the curve
y D .ıb C h/.x; t/ and v dy D vıbx dx along the curve y D ıb.x; t/.
By combining these equations and rewriting in conservative form, we conclude
that

ht C .vh/x D 0;

.vh/t C .v2hC 1

2
h2 C ıhb/x D 0:

(C.17)

5.2 The eigenvalues are  D ˙p�p0.v/. Hence we need that p0 is negative.
5.3 The shock curves are given by

S1Wu D ul C .v � vl /=pvvl ; v � vl ;

S2Wu D ul � .v � vl /=pvvl ; v � vl ;
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and the rarefaction curves read

R1Wu D ul C ln.v=vl /; v � vl ;

R2Wu D ul � ln.v=vl /; v � vl :

We see that for vl > 0 the wave curves extend to infinity. Given a right state
.vr ; ur / and a left state .vl ; ul /, we see that the forward slow curves (i.e., the
S1 and the R1 curves above) intersect the backward fast curves from .vr ; ur /

(i.e., the curves of left states that can be connected to the given right state
.vr ; ur /) at a unique point .vm; um/. Hence the Riemann problem has a unique
solution for all initial data in the half-plane v > 0.

5.4 The shock curves are given by

S1Wu D ul �
p
.v � vl/.p.vl /� p.v//; v � vl ;

S2Wu D ul �
p
.v � vl/.p.vl /� p.v//; v � vl ;

and the rarefaction curves read

R1Wu D ul C
vZ

vl

p
�p0.y/ dy; v � vl ;

R2Wu D ul �
vZ

vl

p
�p0.y/ dy; v � vl :

If
R1
vl

p�p0.y/ dy < 1, then there are points .vr ; ur / for which the Riemann
problem does not have a solution. For further details, see [169, pp. 306 ff].

5.5 The solution consists of a slow rarefaction wave connecting the left state
.hl ; 0/ and an intermediate state .hm; vm/ with

vm D �2�phm �
p
hl
�
;

and there is a fast shock connecting .hm; vm/ and .hr ; 0/, where

vm D 1p
2
.hr � hm/

s
1

hm
C 1

hr
:

The intermediate state is determined by the relation

2
p
2
�p
hm �

p
hl
� D .hr � hm/

s
1

hm
C 1

hr
;

which has a unique solution (the left-hand side is increasing in hm, ending up
at zero for hl , while the right-hand side is decreasing in hm, starting at zero
for hr ).
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5.6 a. Set f .w/ D 'w and compute

df D
 
'u C ' 'vu

'uv 'vv C '

!
D
 
'uu 'vu

'uv 'vv

!
C
 
' 0

0 '

!
D AC 'I:

Hence an eigenvector of A with eigenvalue � is also an eigenvector of df
with corresponding eigenvalue �C '. Using this, we find that

1 D '; r1 D
 
'v

�'u

!
; 2 D ' C .'uuC 'vv/; r2 D

 
u

v

!
:

b. In this case 'u D u and 'v D v, and hence

1 D 1

2

�
u2 C v2

�
; r1 D

 
v

�u

!
; 2 D 3

2

�
u2 C v2

�
; r2 D

 
u

v

!
:

We find that the contours of ', i.e., circles about the origin, are contact dis-
continuities with associated speed equal to half the radius squared. These
correspond to the eigenvalue 1. The rarefaction curves of the eigenvalue
2 are half-lines starting at .ul ; vl / given by

u

ul
D v

vl

such that u2Cv2 � u2l Cv2l . For the shock part of the solution the Rankine–
Hugoniot relation gives

.' � 'l /.vul � vlu/ D 0:

If ' D 'l , we are on the contact discontinuity, so we must have

u

v
D ul

vl
:

This is again a straight line through the origin and through ul , vl . What
parts of this line can we use? The shock speed is given by

� D u2l C v2l
2

"�
v

vl

�2
C
�
v

vl

�
C 1

#

D u2l C v2l
2

"�
u

ul

�2
C
�
u

ul

�
C 1

#

D u2l C v2l
2ulvl

�
uv C p

uulvvl C ulvl
�
:

Using polar coordinates r2 D 2', u D r cos.�/, and v D r sin.�/, we see
that

� D 'l

"�
r

rl

�2
C
�
r

rl

�
C 1

#
:

We want (this is an extra condition!) to have � decreasing along the shock
path, so we define the admissible part of the Hugoniot locus to be the line
segment bounded by .ul ; vl / and the origin.
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Now the solution of the Riemann problem is found by first using a contact
discontinuity from .ul ; vl / to some .um; vm/, where

'.ul ; vl / D '.um; vm/ and
um

ur
D vm

vr
;

and .um; vm/ is on the same side of the origin as .ur ; vr /. Finally, .um; vm/
is connected to .ur ; vr / with a 2-wave.

c. In this case

'u D 'v D �1
.1C uC v/2

;

and therefore

2 D 1

.1C uC v/2
:

The calculation regarding the Hugoniot loci remains valid; hence the
curves ' D const are contact discontinuities. These are the lines given
by v D c � u and u; v > 0. The rarefaction curves of the second family
remain straight lines through the origin, as are the shocks of the second
family. On a Hugoniot curve of the second family, the speed is found to be

� D 1

.1C ul C vl /.1C uC v/
;

and if we want the Lax entropy condition to be satisfied, we must take the
part of the Hugoniot locus pointing away from the origin. In this case both
families of wave curves are straight lines. Such systems are often called
line fields, and this system arises in chromatography. See [153, 154].
Observe that the family denoted by subscript 2 now has the smallest speed.
Hence when we find the solution of the Riemann problem, we first use the
second family, then the contact discontinuity.

5.7 Integrate the exact solution unj over the rectangle Œ.j � 1/�x; .j C 1/�x� �
Œn�t; .n C 1/�t�. The CFL condition yields that no waves cross the lines
.j ˙ 1/�x. Thus

0 D
.jC1/�xZ
.j�1/�x

.nC1/�tZ
n�t

�
.unj /t C f .unj /x

�
dx dt

D
.jC1/�xZ
.j�1/�x

ˇ̌̌.nC1/�t
n�t

unj dx C
.nC1/�tZ
n�t

ˇ̌̌.jC1/�x
.j�1/�x

f .unj / dt

D
.jC1/�xZ
.j�1/�x

unj .x;�t/ dt ��x�Un
jC1 C Un

j�1
�

C�t
�
f .U n

jC1/ � f .U n
j�1/

�

D
.jC1/�xZ
.j�1/�x

unj .x;�t/ dt � 2�xU nC1
j :
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5.8 a. Choose a hypersurfaceM transverse to rk.u0/. Then the linear first-order
equation rw.u/ � rk.u/ with w equal to some regular function w0 on M
has a unique solution locally, using, e.g., the method of characteristics. On
M we may choose n�1 linearly independent functions, sayw10; : : : ; wn�1

0 .
The corresponding solutions wj , j D 1; : : : ; n � 1, will have linearly in-
dependent gradients. See [167, p. 117] for more details, and [169, p. 321]
for a different argument.

b. The kth rarefaction curve is the integral curve of the kth right eigenvector
field, and hence every k-Riemann invariant is constant along that rarefac-
tion curve.

c. The set of equations (5.185) yields n.n�1/ equations to determine n scalar
functions wj . See [56, pp. 127 ff] for more details.

d. For the shallow-water equations we have

w1 D q

h
� 2

p
h; w2 D q

h
C 2

p
h:

5.9 a. Recall from Exercise 5.3 that the rarefaction curves are given by

ln .v=vl / D 
 .u � ul/ :

Therefore, the Riemann invariants are given by

w�.v; u/ D ln.v/C u; wC.v; u/ D ln.v/ � u:

b.–e. Introducing � D w� and � D wC, we find that

v D exp

�
�C �

2

�
; u D � � �

2
:

The Hugoniot loci are given by

u � ul D 

�r

v

vl
�
r
vl

v

�
;

which in .�; �/-coordinates reads

1

2
Œ.� � �l/� .� � �l /�

D 

�
exp

	� � �l C � � �l
4



� exp

	�l � �C �l � �
4


�
:

Using �� and �� , this relation says that

�� ��� D 
4 sinh
�
��C��

4

�
: (C.18)

Hence the Hugoniot loci are translation-invariant. The rarefaction curves
are coordinate lines, and trivially translation-invariant. To show that H�
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(the part of the Hugoniot locus with the minus sign) is the reflection of
HC, we note that such a reflection maps

�� 7! �� and �� 7! ��:

Hence a reflection leaves the right-hand side of (C.18) invariant, and
changes the sign of the left-hand side. Thus the claim follows.
Recalling that the “�” wave corresponds to the eigenvalue C1=u, we must
use the “C” waves first when solving the Riemann problem. Therefore,
we now term the “C” waves 1-waves, and the “�” waves 2-waves. Hence
the lines parallel to the �-axis are the rarefaction curves of the first family.
Then the 1-wave curve is given by8<

:
u � ul D ln

�
v
vl

�
for v > vl ;

u � ul D
q

v
vl

�
q

vl
v

for u < ul ;

which in .�; �/ coordinates reads(
� D �l for � > �l;

� D �.�/ for � < �l:

Here, the curve �.�/ is given implicitly by (C.18), and we find that

� 0.�/ D 1 � cosh.� � � /
1C cosh.� � � / :

From this we conclude that

0 � d�

d�
� �1; d2�

d�2
� 0;

and �.�l/ D �l and lim�!�1 � 0.�/ D �1. By the reflection property we
can also find the second wave curve in a similar manner.

5.10 a. We obtain (cf. (2.15))

0 D
“

.ut C f .u/x/ru
.u/� dx dt

D
“


.u/t� dx dt C
“

df .u/uxru
.u/� dx dt

D �
“


.u/�t dx dt C
“

ruq.u/ux� dx dt

D �
“ �


.u/�t C q.u/�x
�
dx dt:

b. The right-hand side of (5.186) is the gradient of a vector-valued function q
if

d2
.u/df .u/ D df .u/t d 2
.u/; (C.19)
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where df .u/t denotes the transpose of df .u/, and d2
.u/ denotes the Hes-
sian of 
. The relation (C.19) follows from the fact that mixed derivatives
need to be equal, i.e.,

@2q

@uj@uk
D @2q

@uk@uj
:

Equation (C.19) imposes n.n � 1/=2 conditions on the scalar function 
.
c. We obtain


.u/ D 1

2
u2 �

vZ
p.y/ dy; q.u/ D up.v/:

d. Equation (C.19) reduces in the case of the shallow-water equations to one
hyperbolic equation,

	 q2
2h

C h



qq D 
hh C 2

q

h

hq;

with solution


.u/ D q2

2h
C 1

2
h2; Q.u/ D q3

2h2
C hq

(where for obvious reasons we have written the entropy flux with capital
Q rather than q).

5.11 See [40, Sect. 3.4].
5.12 a. The result follows directly from the definitions.

b. Given ut C f .u/x D 0, introduce new variables w such that u D g.w/

for some function g. We have ut D Gwt and ux D Gwx , where G D
@g.w/=@w, which implies

wt C A.w/wx D 0;

where A D G�1df .g.w//G. In our case w D .�; v; e/, and we obtain by
straightforward computations

G D
0
@ 1 0 0

v � 0
1
2
v2 C e �v 1

1
A ; G�1 D 1

�

0
@ � 0 0

�v 1 0
1
2
v2 � e �v 1

1
A :

Thus

A D
0
@ v � 0

.� � 1/e=� v .� � 1/
0 .� � 1/e v

1
A :

We can also rewrite this as

A D
0
@ v � 0

p�=� v pe=�

0 p=� v

1
A :
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c. Clearly, we obtain the same eigenvalues as for df .u/, that is, v; v˙ c. The
corresponding eigenvectors read

1 D v � c; r1 D
0
@ �

�c
p=�

1
A ;

2 D v; r2 D
0
@pe0
p�

1
A ;

3 D v C c; r3 D
0
@ �

c

p=�

1
A :

Furthermore,

r1 � r1 D �1
2
.1C �/c; r2 � r2 D 0; r3 � r3 D 1

2
.1C �/c:

Thus the first and third families are genuinely nonlinear, while the second
family is linearly degenerate.

d. With R D S D .� � 1/ log.�/� log.e/� log.� � 1/, we obtain
R � r1 D R � r3 D 0;

while with R D v C 2c=.� � 1/, we see that
R � r1 D 0:

(It is convenient to use that @c=@e D c=.2e/.) If R D p, we obtain

R � r2 D 0:

e. We obtain 	@�S
@w


T D �
S C .� � 1/; 0;��=e�;	@�vS

@w


T D �
vS C .� � 1/v; �S;��v=e�:

A straightforward computation yields the result.
5.13 The third equation in (5.157) will give

zc2

�.� � 1/ C 1

2
z2w2 D c2

� � 1 C 1

2
w2;

and solving for w=c gives

	w
c


2 D 2

� � 1
� � z

�.1 � z2/ : (C.20)
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The second equation in (5.157) now reads

c2

�
Cw2 D c2

��
C zw2:

Solving for w=c, we obtain

	w
c


2 D 1 � �
��.1 � z/ :

Setting the two expressions for .w=c/2 equal and solving for z, we get (5.161)!
However, now we insert this into (C.20), and after several lines of computa-
tions, we get

	w
c


2 D 2

� � 1
ˇ C �

�.ˇ2 � 1/ :

This implies (5.157).

Chapter 6, Sect. 6.4

6.1 a. Up to second order in �, the wave curves are given by

Si .�/ D exp.�ri /:

For an interaction between an i -wave and a j -wave (j < i ) we have that
(up to second order)

ur D exp.�i ri / exp.�j /ul :

After the interaction,

ur D exp.�0
nrn/ � � � exp.�0

j rj / � � � exp.�0
i ri / � � � exp.�0

1r1/ul

up to second order. Comparing these two expressions and using part c and
the fact that frig are linearly independent, we find that

�0
k D ıkj �j C ıki �i C second-order terms:

6.2 a. The definition of the front-tracking algorithm follows from the general case
and the grid in the .�; �/-plane. In this case we do not need to remove any
front of high generation. To show that Tn is nonincreasing in n, we must
study interactions. In this case we have a left wave �l separating states
.�l ; �l / and .�m; �m/ colliding with a wave �r separating .�m; �m/ and
.�r ; �r /. Now, the family of �l must be greater than or equal to the family
of �r . The claim follows by studying each case, and recalling that (consult
Exercise 5.9) 0 � � 0.�/ > �1.
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b. If the total variation of �0 and �0 is finite, then we have enough to show
that front tracking produces a compact sequence. Hence if

T:V: .ln.u0// and T:V: .v0/

are finite, then the sequence produced by front tracking is compact. A rea-
sonable condition could then be that u0.x/ � c > 0 almost everywhere,
T:V: .u0/ < M , and T:V: .v0/ < M .

c. To show that the limit is a weak solution, we proceed as in the general case.

Chapter 7, Sect. 7.4

7.1 We have already established A and B in Theorem 6.7. To prove C, let T be
defined by (6.23) and Q by (6.22), and assume that t D �.x/ is a curve with
Lipschitz constantL that is smaller than the inverse of the largest characteristic
speed, i.e.,

L <
1

maxu2D;k jk.u/j :

For such a curve we have that all fronts in uı will cross � from below. Let
�t .x/ be defined by

�t .x/ D min ft; �.x/g :
Since all fronts will cross � , and hence also �t , from below, we can define
T j�t . Then we have that

T j�t � .T C kQ/j�t � .T C kQ/.t/ � .T C kQ/.0/:

Since � D limt!1 �t , it follows that the total variation of uı on � is finite,
independent of ı. Hence the total variation on � of the limit u is also finite.

7.2 In the linearly degenerate case the Hugoniot loci coincide with the rarefaction
curves. If you (meticulously) recapitulate all cases, you will find that some of
the estimates are easier because of this, while others are identical. If you do
this exercise, you have probably mastered the material in Sect. 7.1!

Chapter 8, Sect. 8.5

8.1 If al and ar are both nonnegative, then the solution reads

u.x; t/ D

8̂̂<
ˆ̂:
ul x < 0;
al
ar
ul 0 � x � ar t;

ur x > ar t:
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A similar description holds if both al and ar are nonpositive. If al < 0 < ar ,
then the solution reads

u.x; t/ D

8̂̂
<
ˆ̂:
ul x < al t;

0 al t � x � ar t;

ur x � art:

If al > 0 > ar , we have that Hl.ul/ D fulg and Hr.ur/ D furg, so unless
alul D arur , there is no solution.

8.2 We have that

@

@t
D @

@�
� f @

@y
and

@

@x
D s

@

@y
:

Using this, we get

s� � f sy C sfy D 0:

Dividing by s2, we get the first equation in (8.5). Combining this with the
second equation in (8.4) will give c� D 0.

Appendix A, Sect. A.2

A.1 Observe first that ˇ̌̌
ˇ
Z
�.x/f .x/ dx

ˇ̌̌
ˇ �

Z
jf .x/j dx;

for every function j�j � 1. Now let !" be a standard mollifier, and define

�" D !" � sign .f / :

Clearly, f �" ! jf j pointwise, and a simple application of dominated conver-
gence implies that indeed,

Z
�".x/f .x/ dx !

Z
jf .x/j dx as " ! 0:

A.2 Write as usual hı D vı � wı , where vı and wı both are nondecreasing func-
tions. Both sequences fvıg and fwıg satisfy the conditions of the theorem, and
hence we may pass to a subsequence such that both vı and wı converge in L1.
After possibly taking yet another subsequence, we conclude that we may ob-
tain pointwise convergence almost everywhere. Let v be the limit of vı , which
we may assume to be nondecreasing (by possibly redefining it on a set of mea-
sure zero). Write v.x˙/ for the right, respectively left, limits of v at x. Fix
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x 2 .a; b/. Let � > 0 and 
 > 0 be such that v.y/ < v.xC/ C � whenever
x < y < x C 
. If vı � v.xC/C 2�, then

��vı � v��
L1

�
xC
Z
x

.vı.y/ � v.y// dy > 
�;

and so, since
��vı � v��

L1
! 0 as ı ! 0, we must conclude that vı.x/ <

v.xC/C 2� for ı sufficiently small. Similarly, vı.x/ > v.x�/� 2�. In partic-
ular, vı.x/ ! v.x/ whenever v is continuous at x, thus at all but a countable
set of points x. In the same way we show that wı.x/ ! w.x/ for all but at
most a countable set of points x. A diagonal argument shows that we can pass
to a subsequence such that both vı and wı converge pointwise for all x in
Œa; b�.

Appendix B, Sect. B.2

B.1 For more details on this exercise including several applications, as well as how
to extend the result to hyperbolic systems in the � ! 0 limit, please consult
[96].

a. Just follow the argument in Theorem B.1.
b. Mimic the argument starting with (B.15). (Let ı in (B.15) be negative.)
c. Redo the previous point, assuming that u0;j � u�.
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241, 250, 256, 277, 278
bores, 236
conservation of

energy, 242
mass, 224
momentum, 224

hydrostatic balance, 225
pressure, 225
traveling wave, 244
vacuum, 257
variable bottom, 277

shock, 64
admissible, 246

shock line, 307
smoothing method, 131
Sod’s shock tube problem, 270
solution

classical, 6
weak, 6

strictly hyperbolic, 229
structure theorem

for BV functions, 347

T
Temple class systems, 315
test function, 6
total variation, 31, 73, 427, 438
total variation bounded (TVB), 107
total variation diminishing (TVD), 86, 107
total variation stable, 107
totally bounded, 433
traffic flow, 10, 45, 64
traffic hydrodynamics, 45
traveling wave, 55, 244
traveling wave entropy condition, 54, 55
TVD, see total variation diminishing
two-step method, 100

U
upper concave envelope, 63
upwind method, 99
upwind scheme, 100

V
vanishing viscosity method, 134
viscosity solution, 92
viscous profile, 55
viscous regularization, 53, 54, 88
von Neumann stability, 24

W
wave

family of, 230
wave curve, 249
wave equation, 228
weak solution, 6

Y
Young’s theorem, 151



So, for God’s sake, when you’ve finished this book,
don’t seal it away on a shelf. Put it in your pocket.
Pass it round. Spread the word. Leave it on a bus!
And complete the circle – go on, someone, please, read
it out in a school assembly. Because they’ll love it,
those kids, I promise; they will find it makes so much
sense. . . . So hand over this lovely paperback, for the
next thirty years.
— R.T. Davies, in foreword to D. Adams’s
The Hitchhiker’s Guide to the Galaxy
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