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Preface

In this course proofs are given of Gödel’s completeness theorem and of some of
its consequences, making use of Robinson’s completeness theorem and Gödel’s
compactness theorem for propositional logic. The reader will encounter here
other key ideas of logic: a non-ambiguous syntax, the resolution method, Davis-
Putnam procedure, Tarski semantics, logical equivalence and logical conse-
quence, Herbrand models, equality axioms, Skolem normal forms, refutations
viewed as graphical objects, and the construction of some nonstandard models.
The mathematical prerequisites are minimal: the text is accessible to anybody
who has already seen some proofs by induction.

These pages are a distillation from numerous courses of Mathematical
Logic that I gave at the Department of Information Science of the University
of Milan starting from 1996, and subsequently at the Department of Mathe-
matics “Ulisse Dini” of the University of Florence. Various chapters were also
tested in a course offered in the academic year 2001-2002 by Collegio Ghislieri
to students of various undergraduate courses at the University of Pavia. The
current text is the result of a long interaction process between the teacher
and students of various cultural backgrounds. My first acknowledgements go
to them.

This book can be used in a first course of Mathematical Logic for mathe-
maticians and for computer scientists. Parts of this text can also be useful in
a course of Logic for philosophers and linguists, because of numerous, never
too difficult, exercises on the connection between logic and natural language.
Readers wishing to continue the study of Logic will learn from this course
the necessary tools to understand Gödel’s incompleteness theorems, for ex-
ample in the eleven chapters of the monograph of R.M. Smullyan “Gödel’s
Incompleteness Theorems”, Oxford University Press, 1992.

I would like to thank Giulietta and Massimo Mugnai, Pierluigi Minari,
Annalisa Marcja, and in particular Carlo Toffalori for their reading of the
previous versions and for their suggestions.

Florence, November 2010 Daniele Mundici
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Preface to the English edition

This is the translation of the book “Logica: Metodo Breve”, published by
Springer-Verlag Italia in 2011. The author is pleased to express his gratitude
to Prof. Krzysztof Apt. He undertook the task of translating the book, and
offered his great expertise as a computer scientist and a teacher to improve
the original version in various respects.

Florence, November 2011 Daniele Mundici



Symbols and Expressions

The symbol � stands for the end of a proof. The symbol ∅ denotes the empty
set. The set N of natural numbers is defined as N = {0, 1, 2, . . .}.

The adverb “not” and the conjunctions “and” and “or” play a fundamen-
tal rôle in this course and have a precise meaning that is useful to understand
right from the beginning.

Essentially for reasons of convenience, “or” will always be understood in
the inclusive sense, like the Latin “vel”, as opposed to the construct “either
. . . or, but not both”. This way the negation of the phrase “Luigi does not
know English and cannot play piano” is “Luigi knows English or can play
piano”, which, as we just stipulated, leaves open the possibility that Luigi
knows English and also can play piano.

Once this point is clarified the negation of “Luigi works in Florence or
lives there” is “Luigi does not work in Florence and does not live there”.

For simplicity the conjunction “if” will be treated in a very limited way in
comparison with its multiple uses in daily language. For example, the phrase
“if Luigi wins the pools, we will see him better dressed” is interpreted as
“Luigi does not win the pools or we will see him better dressed”. This phrase
leaves open the possibility of seeing Luigi better dressed even if he does not
win the pools. The negation of this phrase is “Luigi wins the pools and (=but)
we will not see him better dressed”. This gives us an opportunity to recall
that in mathematics the conjunction “but” is flatly identified with “and”.

The conjunction “if” can be found in various contexts, for instance: also
if, if also, even if, only if, if only, as if. It is also used to introduce phrases
that express doubt, for example “I don’t know if I have studied hard enough”.
Often it is difficult to understand the precise meaning. In mathematics one
takes care of this by assigning a precise meaning to “A only if B” intending
to say “if not B, then not A”, which is equivalent to “if A then B”, as both
are equivalent to “B or not A”.

The mathematical neologism “iff” stands for “if and only if”. So for ex-
ample, an even number is prime iff it equals 2.



VIII Symbols and Expressions

To render these parts of discourse independent of their formulations in var-
ious natural languages when we find ourselves analysing phrases, we will write
systematically ∧ instead of “and” and ∨ instead of “or”. The adverb “not” is
written ¬. Given the phrases A and B, instead of writing “if A then B” we
will write A → B, which, as already mentioned, stands for ¬A ∨ B. Instead
of “A iff B” we will write A↔ B, which stands for (A → B) ∧ (B → A).

How much shall we gain by writing the conjunction “and” as “∧”? As
much as we have gained by writing the preposition “times” as “×”, when we
multiply the numbers.
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1

Introduction

Have a look at the following drawing:

1

2

3

4 5

.........................
....
......

colour 1 colour 2

The problem C is to colour the vertices 1, . . . , 5 with one of two available
colours, in such a way that vertices of the same edge have different colours.
The answer is simple, but think of the same problem, denoted by C+, to colour
a complex graph with 1000 vertices, 10000 edges and a palette of 7 colours.
The search for efficient methods of solving a problem like C+, so either find-
ing an explicit solution or proving that no solution exists, forms a central
challenge for contemporary mathematics.

Working hypothesis. A Martian announces the solution to problems C and C+.

The unknowns, or variables, of the problem are the questions that we would
ask the Martian to solve the problem ourselves. The questions have to be
“binary”, in the sense that the answer can be only ‘yes’ or ‘no’. A question of
the type “How many vertices have you coloured with the first colour” is not
admissible. Rather, the only questions that are admissible are of the form:

Have you coloured vertex 4 with colour number 2?

For brevity we will write X42 instead of writing this question out in English.
We will consider only the problem C. The answers to the complete bundle of

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 1, © Springer-Verlag Italia 2012



4 1 Introduction

questions Xij (i = 1, 2, 3, 4, 5; j = 1, 2) allow us to extract the solution that
the Martian claims to have.

For the problem C+ there are 7000 unknowns Xij . So each Xij is a symbolic
expression that expects an answer 1 (namely ‘yes’) or 0 (namely ‘no’) from the
Martian. In mathematics one gives to such neither fish nor fowl expressions
the name “unknowns” or “variables”, to emphasise the fact that when posing
the question we do not know the answer. Here there are two possible answers
that depend on the solution. In traditional mathematical practice the vari-
ables and the unknowns often represent rational, real or complex numbers.
Here instead, each unknown represents a bit (binary digit) that will get one
of two values, 0 or 1.

The question Xij , when we omit the question mark, becomes the statement
“vertex i is coloured with colour number j”. As such it can be negated and
transformed into the statement “vertex i is not coloured with colour num-
ber j”, that we will abbreviate writing ¬Xij . These elementary statements
Xij and their negations ¬Xij are called “literals” of the problem. Operating
on our 20 literals with disjunction ∨ and conjunction ∧, the graph colouring
problem C is completely rewritten as a system, that is, a conjunction, of simple
equations in the unknowns Xij . Each equation has the form of a disjunction
of the variables Xij or the negated variables ¬Xij . In Table (1.1) one finds
a transcribed system of equations associated with the problem C, with an
informal commentary on the meaning of each symbolic expression.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X11 ∨X12 vertex 1 has at least one colour

X21 ∨X22 vertex 2 has at least one colour

X31 ∨X32 vertex 3 has at least one colour

X41 ∨X42 vertex 4 has at least one colour

X51 ∨X52 vertex 5 has at least one colour

¬X11 ∨ ¬X12 vertex 1 has at most one colour

¬X21 ∨ ¬X22 vertex 2 has at most one colour

¬X31 ∨ ¬X32 vertex 3 has at most one colour

¬X41 ∨ ¬X42 vertex 4 has at most one colour

¬X51 ∨ ¬X52 vertex 5 has at most one colour

¬X11 ∨ ¬X21 vertices 1 and 2 do not both have colour 1

¬X12 ∨ ¬X22 vertices 1 and 2 do not both have colour 2

¬X21 ∨ ¬X31 vertices 2 and 3 do not both have colour 1

¬X22 ∨ ¬X32 vertices 2 and 3 do not both have colour 2

¬X31 ∨ ¬X41 vertices 3 and 4 do not both have colour 1

¬X32 ∨ ¬X42 vertices 3 and 4 do not both have colour 2

¬X41 ∨ ¬X51 vertices 4 and 5 do not both have colour 1

¬X42 ∨ ¬X52 vertices 4 and 5 do not both have colour 2

¬X51 ∨ ¬X11 vertices 5 and 1 do not both have colour 1

¬X52 ∨ ¬X12 vertices 5 and 1 do not both have colour 2

(1.1)
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This long rigmarole is not an example of good English prose, but it has the
merit of showing that each graph colouring problem, such as C or C+, can be
completely described by a few rudimentary linguistic instruments: the vari-
ables and their negations, the connective “or” and the connective “and”, the
latter tacitly represented by the long brace. Since the Martian understands
only this language, and answers in monosyllables (bits), perhaps studying this
system of equations and realising that it has no solution, he will reconsider
his announcement.

In the first part of this course we will study how to decide mechanically
whether a system of this type has a solution and, in case it does, how to com-
pute at least one. Each possible solution of the system (1.1) provides sufficient
information on how to colour the pentagon so that all the required conditions
are satisfied.

And in fact, with a calculation given on page 29, we will verify that sys-
tem (1.1) is unsatisfiable, which corresponds to the impossibility of colouring
the pentagon with two colours in such a way that the vertices of the same
edge have different colours. The same type of calculation will allow us to de-
cide whether the analogous problem C+ has a solution. The calculation may
appear useless for the trivial problem C, but it becomes an essential instru-
ment in solving, at least in principle, formidable problems such as C+. Up
till now no shortcuts have been found to solve the graph colouring prob-
lems.

Appreciation of logic dawns upon us with the realisation of the fact that
in formula (1.1) one does not see palettes and polygons but only a system
of equations on which one works using purely symbolic manipulations, fixed
and immutable, which are insensitive to the origin of the problem. So the
fact that problem C is simple does not take away interest from its translation
into system (1.1). For a problem more difficult, like C+, the same type of
translation may provide the crucial step in obtaining a solution. As we will
see, the significance of these systems goes well beyond the graph colouring
problems: they are interesting objects of study, independently of the problem
they represent.

Also the systems of linear equations have similar characteristics, to the
point that nowadays the solvers of such systems are predominantly computer
programs and not mathematicians. In logic the unknowns do not represent
real numbers, but statements, which are immediate products of thought and
language. Therefore to solve these systems special manipulations will be nec-
essary, a calculus of reasoning (calculus ratiocinator in Latin).

The following table-vocabulary shows the link between problems such as
C+ and the main concepts of mathematical logic that we will study in the
next chapters.
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The colouring problem Its formalisation

question variable X
answers ‘no’, ‘yes’ truth values 0, 1
elementary assertion, its negation literal L
equation clause C
system of equations for the problem CNF formula F
a bundle of answers assignment α
a bundle of answers solves the problem α satisfies F
there does not exist a solution to the problem F is unsatisfiable
there exists a solution to the problem F is satisfiable



2

Fundamental Logical Notions

2.1 Syntax

Following the convention of the previous chapter, we use capital letters to
denote variables. We need infinitely many variables, but by analogy with the
keyboard of our computer we want to maintain our symbol apparatus, called
the alphabet, finite. Therefore we represent officially the variables as

X,XI,XII,XIII, . . .

To avoid lengthy sequences III . . . I, we will write variables in various
forms that differ from the official one, for example, using two indices X11,
X12, X21, . . . :

– by a literal we mean a variable Y (also called a positive literal) or a variable
preceded by the negation symbol ¬Y (called a negative literal);

– by a clause we mean a disjunction of literals, that is, a sequence of the
form L1 ∨ L2 ∨ . . . ∨ Lm;

– by a CNF (conjunctive normal form) formula we mean a conjunction of
clauses, C1 ∧ C2 ∧ . . . ∧ Ck.

Note. For each literal L, when writing L we mean the following literal, called
the opposite of L:

L =
{¬Y if L coincides with the variable Y,

Y if L = ¬Y.

When writing V ar(F ) we mean the set of the variables that occur (i.e., that
appear written) in F .

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 2, © Springer-Verlag Italia 2012



8 2 Fundamental Logical Notions

2.2 Semantics

Let F be a CNF formula. An assignment suitable for F is a function α : V →
{0, 1}, where V is a set of variables containing V ar(F ). The set {0, 1} is called
the set of truth values. The set V is called the domain of α and is denoted by
dom(α).

We use {0, 1} to be concise and because it is easy to operate on this set
by means of the functions max,min and 1− x. But we could also use the set
{no, yes}, or even more tediously, the set {false, true}.

If we think of a CNF formula as a system of equations having as many
equations as clauses and whose unknowns are the variables, then an assign-
ment is nothing else than a substitution of binary numerical values (in our
case 0 and 1) for the unknowns.

Let F be a CNF formula and α an assignment suitable for F . To make
precise what it means that α satisfies F , in symbols

α |= F,

we proceed gradually, defining α |= G for each variable, negated variable, and
for each clause of F :

(i) if G is a variable Y , then α |= G means that α(Y ) = 1;
(ii) if G = ¬Y , then α |= G means that α(Y ) = 0;
(iii) if G is a clause of F , then α |= G means that α satisfies at least one of

its literals;
(iv) finally, α |= F means that α satisfies each of the clauses of F .

When writing
α �|= F,

we mean that α is suitable for F and furthermore α does not satisfy F . If α
is not suitable for F , it does not make sense to ask whether α satisfies F .

In (i) each variable Y takes a rôle of a receiver of a bit : 0 or 1. In (ii)
we give meaning to the negation symbol ¬. In (iii) we give meaning to the
disjunction ∨, and in (iv) we give meaning to the conjunction ∧.

We say that F is satisfiable if some assignment α satisfies F . Otherwise
we say that F is unsatisfiable. We say that F is a tautology if each assign-
ment (suitable for F ) satisfies F . A tautology is the analogue of a system of
equations that holds true for any assignment of values to its unknowns.

2.3 Logical consequence and logical equivalence

One of the fundamental methods of solving a system of equations consists of
transforming it into an equivalent one that is simpler. The definitions just
given lend themselves well to talking about logical equivalence, by means of
a notion even more important, that of logical consequence.
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Logical consequence. Given two CNF formulas, F and G, we say that G is
a logical consequence of F if for each assignment α suitable for both: if α |= F
then α |= G.

Logical equivalence. Two CNF formulas F and G are (logically) equivalent,
in symbols F ≡ G, if they are satisfied by the same assignments suitable for
both. In other words, each one is a logical consequence of the other.

Intuitively, two equivalent formulas have the same meaning. There is no
risk of confusion if we say “conjunction is commutative”, meaning that C1 ∧
C2 ≡ C2∧C1. We will also say that “conjunction is associative”, meaning that
C1∧(C2∧C3) ≡ (C1∧C2)∧C3. Furthermore, conjunction is idempotent in the
sense that C ∧ C ≡ C. Analogously, disjunction is commutative, associative
and idempotent.

Exercises

1. In a room there are two people (whom we will call a and b) and three
musical instruments (denoted by 1, 2, 3). Using the variables

Xa1,Xa2,Xa3,Xb1,Xb2,Xb3,

where Xaj says “a can play instrument j” and Xbj says “b can play in-
strument j” (for j = 1, 2, 3), write a clause, or a conjunction of clauses,
to express each of the following situations:

a) the second person cannot play any instrument;
(Solution. ¬Xb1 ∧¬Xb2 ∧¬Xb3, which is a conjunction of three clauses, each

having a single literal)

b) the first person can play at least one instrument;
(Solution. Xa1 ∨ Xa2 ∨ Xa3, which is a clause having three literals)

c) the first person can play exactly one instrument;
(Solution. (Xa1 ∨ Xa2 ∨ Xa3) ∧ (¬Xa1 ∨ ¬Xa2) ∧ (¬Xa1 ∨ ¬Xa3) ∧ (¬Xa2 ∨
¬Xa3))

d) nobody (among a and b) can play the third instrument;
(Solution. ¬Xa3 ∧ ¬Xb3)

e) at most one person can play the third instrument;
(Solution. ¬Xa3 ∨ ¬Xb3)

f) for each instrument there is at least one person that can play it;
(Solution. (Xa1 ∨ Xb1) ∧ (Xa2 ∨ Xb2) ∧ (Xa3 ∨ Xb3))
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g) somebody (always among a and b) can play the second instrument;
(Solution. Xa2 ∨ Xb2)

h) each person can play at least one of the three instruments 1,2,3;

i) each person can play at most one instrument;

j) for each instrument there is at most one person who can play it;

k) each person can play exactly one of the three instruments;

l) each instrument can be played by exactly one person.

2. A committee, formed by Andrea, Beatrice and Carla, has to discuss a
proposal and subsequently vote on it. Using the variables A,B,C that
state respectively “Andrea, Beatrice, Carla voted for the proposal”, and
recalling what we said about the conjunction “if”, formalise the following
statements as sets of clauses:

a) if Carla voted for the proposal, also Andrea voted for it;
(Solution. ¬C ∨ A)

b) the vote for the proposal was unanimous;

c) the proposal did not pass;

d) the proposal passed, but not unanimously;

e) only one person voted for the proposal;

f) if Carla voted for the proposal, nobody else voted for it;

g) only one person voted for the proposal;

h) Carla voted differently than Andrea, but Beatrice voted like him.

3. Formalise with a set S of clauses the problem C′ of bicolouring the vertices
of a square, with the only condition that for any edge its two vertices have
a different colour. Find an assignment that satisfies S.

4. Verify that a clause F is a tautology iff among its literals there exists a
variable X and its negation ¬X.

Solution. If among the literals of F there is both X and ¬X, then each as-

signment suitable for F will satisfy X or ¬X and therefore will satisfy F , and

hence F is a tautology. Vice versa, if for each literal L of F its opposite L does

not occur in F , then the assignment defined on V ar(F ) that satisfies each L

is suitable for F and does not satisfy any literal of F , and hence F is not a

tautology.

5. If the graph G has v vertices and e edges, and the palette has c colours,
how many clauses will suffice to express the colourability of G?
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6. Show that ≡ is an equivalence relation.1

7. Let α be suitable for a CNF formula F . Then α satisfies F iff the restric-
tion of α to V ar(F ) satisfies F .

8. If B is a logical consequence of A, and C is a logical consequence of B,
then C is a logical consequence of A.

9. Give an example of equivalent CNF formulas F and G such that V ar(F )∩
V ar(G) = ∅.

1 Recall that a binary relation ≡ on a set A is called an equivalence relation iff for
all a, b, c ∈ A:
• a ≡ a;
• a ≡ b implies b ≡ a;
• a ≡ b and b ≡ c implies a ≡ c.
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The Resolution Method

3.1 Clauses and formulas as finite sets

Let F be a CNF formula. We will describe a method of transforming F into
a formula equivalent to F and richer in clauses. This method then decides
whether F is unsatisfiable, and whenever F is satisfiable it finds an assign-
ment that satisfies F .

First we will simplify the notation, redefining each clause as a finite set
of literals, and each CNF formula as a finite set of clauses. This is possible
thanks to the commutativity, associativity and idempotence of conjunction
and disjunction. In fact:

– as disjunction is associative, we are free to write L1 ∨ . . . ∨ Lm without
bothering to give the rules of precedence for this disjunction: such rules
would not change the meaning of this clause;

– as disjunction is commutative, changing the order of its literals does not
change the meaning of the clause;

– as disjunction is idempotent, we can always avoid the repetition of the
same literal in a clause.

Further, as also conjunction is associative, commutative and idempotent,
each CNF formula can always be viewed as the set of its clauses.

Example 3.1. Instead of (¬C ∨A∨¬C ∨B ∨¬A∨A∨B) we will write in
the new notation {¬C,A,B,¬A}. Instead of (A∨C∨A)∧(A∨¬B)∧(A∨C)
we will write {{C,A}, {A,¬B}}.

To facilitate the presentation of our logical calculus, the definitions of the
previous chapter will now be adapted to this set-based notation.

Clause and CNF formula as sets. By a clause we mean a finite set of
literals. By a CNF formula we mean a finite set of clauses.

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 3, © Springer-Verlag Italia 2012
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The semantics of CNF formulas is now naturally modified in the following
way:

Semantics of CNF formulas. Let V ar(S) be the set of variables that occur
in a set S of clauses, and let α be an assignment suitable for S, again in the
sense that the domain of α contains V ar(S). The definition of α |= S (read
“α satisfies S”) proceeds as follows:

– for each variable Y ∈ V ar(S), α |= Y means α(Y ) = 1;

– for each negated variable L = ¬Y , α |= L means α(Y ) = 0;

– for each clause C ∈ S, where C = {L1, . . . , Ln}, we write α |= C if α |= Lj

for some literal Lj ∈ C;

– finally, we write α |= S if α |= C for each clause C ∈ S.

Definition 3.2. Two sets of clauses S and S′ are equivalent, in symbols, S ≡
S′, if they are satisfied by the same assignments suitable for both sets of
clauses. We say that S′ is a (logical) consequence of S if each assignment α
suitable for S and S′ that satisfies S also satisfies S′.

The introduction of the zero symbol in the Hindu-Arabic numeral system,
so useful to perform fast the four arithmetic operations, entailed some ad-
justments in their definitions. Also the set-based redefinition of clause and of
CNF formula entails a semantical readjustment: we have to give meaning to
the clause with no literals and to the empty set of clauses.

Empty clause and empty set of clauses. The clause with no literals is
denoted by �. There is no risk of confusion using the same symbol to indicate
the end of a proof. One stipulates that � is unsatisfiable.

One also introduces the empty set of clauses ∅, with the stipulation that
each assignment satisfies ∅. In particular, the empty assignment satisfies the
empty set of clauses, in symbols, ∅ |= ∅.

Each assignment α is suitable for the empty clause and also for the empty
set of clauses.

Lemma 3.3. Let S′ be the set obtained from a set of clauses S by removing
a tautology. Then S ≡ S′.

Proof. If α satisfies S, because S′ ⊆ S, α automatically satisfies S′. Vice
versa, suppose that α satisfies S′ and is suitable for S. Since S is obtained
from S′ by adding a tautology T , α satisfies T and therefore α satisfies S. �

3.2 Resolution

The mechanism of transforming a CNF formula into an equivalent one, con-
taining more clauses, is based on a single operation:
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Definition 3.4. Let C1 and C2 be two clauses, and suppose that a literal L
satisfies the conditions L ∈ C1, L ∈ C2.

Then the resolvent of C1 and C2 on L and L is the clause R(C1, C2;L,L)
defined by

R(C1, C2;L,L) = (C1 − {L}) ∪ (C2 − {L}).
So we remove the element L from C1 and the element L from C2, and take
the union of the resulting two clauses.

Example 3.5. Suppose we have two clauses

C1 = {A,¬B,C,D,E,¬F} and C2 = {¬A,D,¬E,G,H,Z, T}.
Then the resolvent of C1 and C2 on A and ¬A is the clause

(C1 − {A}) ∪ (C2 − {¬A}) = {¬B,C,D,E,¬F,¬E,G,H,Z, T}.
Lemma 3.6 (Correctness of Resolution). Let C1 and C2 be two clauses,
L ∈ C1 and L ∈ C2 two literals, and D = R(C1, C2;L,L) their resolvent.
Then D is a logical consequence of the conjunction {C1, C2} of C1 and C2.

Proof. As D does not have new variables, each assignment α suitable for
{C1, C2} is automatically suitable for D. Assuming α |= C1 and α |= C2 we
have to show α |= D. By assumption, α |= M for some M ∈ C1, and α |= N
for some N ∈ C2. It is impossible that M = L and N = L, because then α
would satisfy both the literal L and its opposite. Hence we will find at least
one among M and N again as an element of D. We conclude that α satisfies
that literal of D, whence α |= D, as desired. �

We have immediately the following:

Corollary 3.7. Given the previous assumptions, {C1, C2} ≡ {C1, C2,D}.
Suppose that we start from a set S of clauses and discover that the empty

clause is the resolvent of two clauses C1, C2 ∈ S. Then by Corollary 3.7 we
have {C1, C2} ≡ {C1, C2,�}. Since {C1, C2,�} is unsatisfiable, also {C1, C2}
is unsatisfiable. Therefore, given that S ⊇ {C1, C2}, also S is unsatisfiable.

Also if we do not have so much luck immediately, it could happen that after
having added to S all the resolvents of the first generation, the empty clause
now appears as the resolvent of two clauses from the new set S′. Consequently,
the set

S′ ∪ { the resolvents of all the clauses in S′ }
is unsatisfiable, and therefore S itself is unsatisfiable.

Of course, it could happen that the empty clause does not appear among
the resolvents of the second generation, but appears among those of the third
one, and so on. Lemma 3.6 tells us that, if after a certain number of steps the
empty clause appears, then we have a sufficient condition to affirm the unsat-
isfiability of S. We will soon see in Theorem 4.1 that this is also a necessary
condition.
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3.3 Davis-Putnam procedure (DPP)

This procedure, or algorithm, takes as input a finite set S of clauses and pro-
duces as output the clause � (demonstrating this way that S is unsatisfiable)
or else the empty set of clauses ∅; in the latter case the procedure furnishes
an assignment satisfying S.

Let us see how DPP operates on an example. Suppose we have the set of
clauses

S = {{A,B,¬C}, {¬A}, {A,B,C}, {A,¬A,B,D}, {A,¬B}}.
First we ‘clean up’ S, removing all its tautologies, according to Lemma

3.3. We are left with the set

Sclean = {{A,B,¬C}, {¬A}, {A,B,C}, {A,¬B}}.
Therefore, in the preliminary stage, the original set S is simplified to the
equivalent set Sclean without tautologies.

A step of DPP. It consists of four substeps:

1. We choose a variable that occurs in the shortest clause. In the case of
a draw we use the alphabetical order. We call this selected variable the
pivot. In our example the pivot is A.

2. We list all the A-exempted clauses, that is, clauses containing neither A
nor ¬A. As there are none in our Sclean, the result is ∅.

3. (Among the remaining clauses) we compute all the A-resolvents, that is,
all possible resolvents on A and ¬A.

4. We collect the A-exempt clauses and the A-resolvents and remove all the
tautologies possibly generated in step 3. We call the resulting set S1. In
our example,

S1 = {{B,¬C}, {B,C}, {¬B}}.

We have then completed the first step of DPP applied to S0 = Sclean, using
the pivot A = P1. In S1 the pivot P1 does not occur anymore (why?) and no
new variables have sneaked in. This trivial observation guarantees that DPP
terminates after a finite number of steps.

We apply now to S1 a second step of DPP, with the pivot P2 = B: we col-
lect the B-exempt clauses and the B-resolvents of S1, and remove all the tau-
tologies. We write S2 for the resulting set and observe that the pivot P2 does
not occur in any clause of S2. For example, in our case S1 does not have any
B-exempt clauses, there are two B-resolvents and we have S2 = {{¬C}, {C}}.

Proceeding this way, applying the pth step of DPP to the set of clauses
Sp−1, we obtain the set Sp. The pivot Pp does not occur Sp. We call the
variables different from Pp, that occur in Sp−1 but not in Sp, released.
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In our case the third step of DPP applied to the set S2 (with the pivot
P3 = C) produces the set S3 whose unique element is the empty clause,
S3 = {�}.

Exercises

1. Represent the following statements as clauses and apply DPP:

If Aldo dances, then Beatrice dances. If Beatrice dances, then also Carla
dances. But Carla dances only if Aldo dances. Beatrice does not dance.

2. In a room there are two people (that we will denote 1 and 2) and two
chairs (also denoted 1 and 2). Using the variables

X11,X12,X21,X22

where Xij states “i sits on chair j”, express in clauses the fact that each
person sits on precisely one chair. Subsequently apply DPP to the set S
of clauses that you wrote and find an assignment that satisfies S.

3. Formalise as a set S of clauses the problem C′ of bicolouring the vertices
of a square, requiring that the vertices of the same edge have a different
colour. Apply DPP to S.

4. As Exercise 3, but dealing with the vertices of a triangle. Verify that DPP
now yields the empty clause.

5. There are four cities, 1,2,3,4. The roads that connect 1,2,3 form an equi-
lateral triangle with each edge 100 kilometers long. The same holds for the
roads that connect 2,3,4. There are no other roads. Write the clauses for
a travel plan of a salesman of carpets who starts from city 1 and visits the
other three cities in three steps of hundred kilometers. Use nine variables
Xit that state “I am in city i at the end of stage t”, where i = 2, 3, 4 and
t = 1, 2, 3. Apply DPP to the set S of clauses thus obtained.

6. How could one have stated Lemma 3.3 without having introduced the
empty set of clauses? And how could we have stated Lemma 3.6 without
having introduced the empty clause?

7. Given the variables X1, . . . ,Xn, how many clauses C can we write such
that V ar(C) ⊆ {X1, . . . ,Xn}?

8. Apply DPP to the set of clauses of the final example of Exercise 1 on page
10, and obtain the empty clause.

9. What could have happened in DPP if the initial set were not preventively
cleaned of the tautologies? And if at the end of each step of DPP we had
not removed the tautologies?
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Robinson’s Completeness Theorem

4.1 Statement and proof

As we have seen, after a number of steps t∗ not exceeding the number of vari-
ables in S0, DPP terminates producing as output a set St∗ of clauses without
variables. St∗ can have only one of two possible forms: St∗ = {�} or St∗ = ∅.

In the first case, by Lemma 3.6, we conclude that S is unsatisfiable. In
the second case we will construct an assignment α |= S retracing the steps of
DPP backwards.

In this sense DPP is complete:

Theorem 4.1 (Completeness Theorem, Alan Robinson, 1965). Let S
be a finite set of clauses without any tautology that forms an input for DPP.
Then after a number of steps t∗ not exceeding the number v of variables in S,
the set St∗ consists only of the empty clause or is empty. In the first case S
is unsatisfiable; in the second case S is satisfiable.

Proof. In each step a variable (the pivot) is eliminated without introducing
any new ones. This ensures the existence of the set of clauses St∗ without
variables, with t∗ ≤ v.

We already noticed that if St∗ contains the empty clause, then S is un-
satisfiable. It remains to prove that if DPP terminates with the empty set of
clauses, then S is satisfiable.

Construction. Set S = S0. Let

S1, S2, . . . , St∗−1, St∗ = ∅

be the successive sets of clauses obtained in t∗ steps of DPP, with St∗−1 �= ∅.
Each step t has as input St−1 and pivot Pt and produces as output the set
St. In St the pivot Pt does not occur anymore. Recall that the variables in
V ar(St−1)− V ar(St) different from the pivot are said to be released.

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 4, © Springer-Verlag Italia 2012
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We will construct by induction a sequence of t∗ + 1 assignments

∅ = αt∗ ⊆ αt∗−1 ⊆ αt∗−2 ⊆ . . . ⊆ α2 ⊆ α1 ⊆ α0 (4.1)

such that each αt satisfies St, dom(αt) = V ar(St), and αt−1 extends αt.

The induction base is the trivial observation that St∗ is satisfied by the
empty assignment (denoted here for consistency by αt∗).

For the induction step we have as the induction hypothesis that the set of
clauses St is satisfied by an assignment αt. We will show that St−1 is satisfied
by an appropriate extension αt−1 of αt. To begin, let ω be the extension of
αt that assigns value 0 to all variables released in step t. Let ω− and ω+ be
the two possible extensions of ω on the pivot Pt: in other words, ω+ assigns 1
to the pivot, while ω− assigns to it 0. Both ω+ and ω− are suitable for St−1.

Claim. At least one among ω+ and ω− satisfies St−1.
Suppose by contradiction that the claim does not hold. Then there exist

in St−1 two clauses C1 and C2 such that

ω− �|= C1 and ω+ �|= C2. (4.2)

Now we observe that Pt occurs in C1, while ¬Pt does not; moreover ¬Pt oc-
curs in C2, while Pt does not. Otherwise C1 (or C2) would be Pt-exempt,
and hence would be a clause of St. But then already αt satisfies it (by the
induction hypothesis) and so do its extensions ω+ and ω−, contrary to (4.2).
Our observation is therefore confirmed.

Let D be the resolvent of C1 and C2 obtained by the elimination of the
pivot Pt.

Case 1. D is a tautology.
Then there exists a variable X such that D contains both X and ¬X. (Re-

call Exercise 4 on page 10.) Such an X differs from the pivot Pt, and hence
comes from C1 or C2. If X is a released variable, then both ω+ and ω− satisfy
¬X. Hence, if ¬X ∈ C1, it follows that ω− |= C1 contradicting (4.2). If instead
¬X ∈ C2, it follows that ω+ |= C2, again contradicting (4.2). Therefore X
cannot be a released variable. By the induction hypothesis X ∈ dom(αt). The
assignment αt satisfies precisely one of the literals X and ¬X. By construction
this literal belongs to C1 or C2 and this way we obtain a contradiction with
(4.2), recalling that both ω+ and ω− extend αt. Therefore Case 1 cannot arise.

Case 2. D is not a tautology.
Then D ∈ St and by the induction hypothesis αt |= D. It follows that

ω |= D. Therefore ω satisfies some literal of D, which is also satisfied by ω+

and ω−, and which we will find in C1 or C2, obtaining the usual contradiction
with (4.2). So Case 2 cannot arise either and the claim is thus proved.

Defining now αt−1 as the first among ω− and ω+ that satisfies St−1, the
induction step is proved. From the sequence (4.1) we extract in particular an
assignment α0 that satisfies S0. �
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The essence of this proof lies in guaranteeing that the construction (4.1) never
gets stuck, and hence terminates with an assignment that satisfies the initial
set S. We also note that v−t∗ equals the number of variables that are released
during the computation of DPP on S.

Example 4.2. Let S = S0 be the set of clauses given by

S0 = {{X11,X12}, {X21,X22}, {X31,X32}, {¬X11,¬X12}, {¬X21,¬X22},
{¬X31,¬X32}, {¬X11,¬X21}, {¬X12,¬X22}, {¬X21,¬X31}, {¬X22,¬X32}}.
S is already clean, that is, without any tautologies. Applying DPP we have

Step 1. pivot P1 = X11

S1 = {{X21,X22}, {X31,X32}, {¬X21,¬X22}, {¬X31,¬X32},
{¬X12,¬X22}, {¬X21,¬X31}, {¬X22,¬X32}, {X12,¬X21}}.

Step 2. pivot P2 = X12

S2 = {{X21,X22}, {X31,X32}, {¬X31,¬X32}, {¬X21,¬X31},
{¬X22,¬X32}, {¬X21,¬X22}}.

Step 3. pivot P3 = X21

S3 = {{X31,X32}, {¬X31,¬X32}, {¬X22,¬X32}, {X22,¬X31}}.

Step 4. pivot P4 = X22

S4 = {{X31,X32}, {¬X31,¬X32}}.

Step 5. pivot P5 = X31

S5 = ∅.

Model-Building. Now returning to our steps and starting with the empty
assignment α5 (that automatically satisfies S5), we will construct an assign-
ment α0 that satisfies S0.

In Step 4 variable X32 is released. The assignment ω of this step assigns
the value 0 to X32. Then, to extend ω to an assignment suitable for S4 we
prepare two extensions ω+ and ω− on the pivot X31. Theorem 4.1 guarantees
that one among ω+ and ω− satisfies S4. In fact, putting

α4(X31) = 1

it follows that α4 |= S4.
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In Step 4 only the pivot is deleted. We extend α4 to an assignment α3

having X22 in its domain. Putting

α3(X22) = 1

it follows that α3 |= S3.
In Step 3 only the pivot is deleted. Putting α2 ⊇ α3 with

α2(X21) = 0

it follows that α2 |= S2.
In Step 2 only the pivot is deleted. Putting α1 ⊇ α2 with

α1(X12) = 0

it follows that α1 |= S1.
In Step 1 only the pivot is deleted. Putting α0 ⊇ α1 with

α0(X11) = 1

we conclude that α0 |= S0.

Following this procedure we have constructed an assignment that satisfies
S. We note that S represents the problem of bicolouring three vertices 1, 2, 3
in the graph whose two arcs connect 1 with 2 and 2 with 3. Therefore the
assignment α0 is immediately interpreted as a bicolouring of the vertices of
our graph.

4.2 Refutation

Definition 4.3. Given a set of clauses S, a refutation of S is a finite sequence
of clauses C1, C2, C3, . . . , Cu−1, Cu in which Cu = �, and each Cj belongs to
S or is a resolvent of two clauses Cp and Cq with p, q < j.

Example 4.4. Let S = {{A,B,¬C}, {¬A}, {A,B,C}, {A,¬B}}. Here is a
refutation of S (with the justification of each clause, as required by the defi-
nition):

C1 = {A,B,¬C} (C1 ∈ S)

C2 = {A,B,C} (C2 ∈ S)

C3 = {A,B} (C3 = R(C1, C2;¬C,C))

C4 = {A,¬B} (C4 ∈ S)

C5 = {A} (C5 = R(C3, C4;B,¬B))

C6 = {¬A} (C6 ∈ S)

C7 = � (C7 = R(C5, C6;A,¬A)).
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Exercise 4.5. Represent this refutation as a directed graph whose vertices
are the clauses and whose arcs point from each pair of generating clauses
towards their resolvent.

Solution:

{A,B,¬C} {A,B,C} {A,¬B} {¬A}

{A,B}

{A}

Since a refutation of S produces only logical consequences of S, the ap-
pearance of the empty clause among these consequences is a sufficient reason
to conclude that no assignment satisfies S. Vice versa, the completeness theo-
rem assures us that if S is unsatisfiable, then it has a refutation. For example,
adding to S the set of all clauses produced by DPP, and calling DPP (S) the
resulting larger set, we obtain a refutation of S. This set, however, often con-
tains resolvents that are useless for finding the empty clause. That is why we
much appreciate short refutations: they retain all the power of certifying that
S is unsatisfiable, and do so concisely. In addition, it takes only a few seconds
to check that a simple graph like the one we have drawn above indeed rep-
resents a refutation. On the other hand, the conciseness of a good refutation
has a price that we do not need to pay when we compute the resolvents with
DPP: it requires inventiveness. The same type of inventiveness and economy
is required of mathematicians in their proofs. Unfortunately, in many cases
even a maximum amount of inventiveness does not succeed in reducing the
length of a refutation: just as in the case of the colourability problem, there
do not seem to be any shortcuts here.

Exercises

1. Write out in clauses the following premises:

a) at least one among Andrea, Beatrice, Cesare e Delia won the pools;

b) if Andrea won the pools, then also Cesare did;

c) if Beatrice won the pools, then Cesare did not;
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d) if Beatrice did not win the pools, then Andrea did;

e) if Cesare won the pools, then also Andrea or Beatrice did;

f) if Delia won the pools, then also Cesare did;

g) if Delia did not win the pools, Andrea or Cesare did.

Deduce the claim that Andrea won the pools, i.e., show that DPP pro-
duces the empty clause starting from the premises and the negation {¬A}
of the claim.

2. Using the model-building show that from the same premises of the previ-
ous exercise it does not logically follow that Delia won the pools.

3. Apply the Davis-Putnam procedure to the following sets of clauses. If you
obtain the empty set of clauses perform the model-building.

a) {{Z,W}, {Z,B}, {¬Z,B}, {W,¬Y },
{¬Y,¬W}, {¬Y }, {Y,¬B}, {A,¬W,B}, {A,C,¬B},

{W,¬B}, {¬Y,W}, {Y,¬W}};

b) {{E,H}, {C,¬D}, {Y,¬C,¬W}, {Z,¬Y,¬C,¬D},
{Z,¬Y }, {D,¬W}, {W,¬F}, {F}, {¬Z}, {¬D,¬C,¬W, Z},

{Y,¬C}, {D,¬Z,¬C}, {¬Y,¬W,C}};

c) {{D,¬W}, {Y,¬W,F}, {¬Y,¬W,¬F,G}, {Z,¬Y },
{Y,¬C}, {F,¬G}, {Z,¬C,¬D}, {C,¬D}, {W,¬F}, {Z, C,¬D},

{¬Z,C,¬D}, {¬Y,W,F,G}, {Y,¬W,¬F}, {G,¬Z}};

d) {{Y,¬C,¬W}, {Z,¬Y,¬C,¬D}, {C,¬D}, {Z,¬Y },
{D,¬W}, {W,¬F}, {F}, {¬Z}, {¬D,¬C,¬W, Z}, {Y,¬C},

{Z,C}, {¬Y,¬W}, {D,¬Z}};

e) {{A,¬B}, {A,B,C}, {¬A,¬B,¬C}, {B,¬A},
{B,¬C}, {C,¬B}, {B,A,¬C}, {C,¬A}, {A,¬A,C}, {C,¬D}};
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f) {{A,¬B,¬C,D,¬E}, {C,¬B}, {D,¬A}, {B},
{C,A,¬E}, {¬D,A,B,C,D,E}, {C,¬D}, {¬D,¬A, B},

{E,¬C,D}, {D,¬A}, {C,A,¬E}};

g) {{R,¬S}, {T,¬F}, {¬Q,¬T,¬F,¬G}, {G,¬P},
{P,¬Q}, {S,¬T}, {Q, T, F,G}, {Q,¬R}, {F,¬G}, {P,R, S}}.

4. Given a set S of clauses, can it happen that in a refutation of S some
clause of S does not appear? Can it happen that a clause is used more
than once to produce several resolvents?

5. What happens if in the proof of the Completeness Theorem 4.1 we stip-
ulate that the assignment ω assigns the value 1, instead of 0, to all the
released variables?

6. Find a refutation shorter than DPP for the following set of clauses:

{{E,A}, {¬B,C}, {¬A,B}, {A,B}{¬C,¬D}, {¬C,D}, {¬E,¬A,¬C}},

and represent it as a graph, as in Exercise 4.5 on page 23.

Solution:

{¬B,C} {¬A,B} {A,B} {¬C,¬D} {¬C,D}

{B}

{C}

{¬D}

{¬C}
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7. Find the shortest DPP refutation for the following set of clauses:

{{Q,¬R}, {R,¬S}, {S,¬T}, {T,¬U}, {U,¬W}, {Q,R, S, T}, {T},

{¬U,¬W,¬Z}, {W,¬X}, {X,¬Y }, {Y,¬Z}, {Z,¬Q}, {¬W}}.
Represent the refutation as a graph, as in the preceding exercise.

8. Find the shortest DPP refutation for this set of clauses:

{{¬A,B}, {¬B,C}, {¬C,D}, {¬D,E}, {¬E,F}, {¬F,A},

{A, B,C}, {¬D,¬E,¬F}, {A,C,E, F}, {¬A,¬C,¬E,¬F}}.
Represent the refutation as a graph.
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Fast Classes for DPP

5.1 Krom clauses

In some cases DPP proceeds fast, also with sets K of clauses having thousands
of variables, whereas other procedures (e.g., the “truth table method”, in
which one tries all assignments) would take geological time to decide whether
K is satisfiable and to find an assignment if any.

Krom Clause. A clause having at most 2 literals is called a Krom clause.

In the worst cases, the first steps of DPP produce many resolvents, with a
fast increment, resulting in a sort of “explosion”. Yet, with Krom clauses no
such explosion can occur, just because of lack of clauses. To make it precise:

Proposition 5.1. A set S of Krom clauses with n variables is processed by
DPP in at most n steps. In each step t one generates at most 2(n−t)2+n−t+1
clauses.

Proof. In each step of DPP exactly one variable is deleted, so there are at
most n steps.

After step t, there are at most s = n− t variables. These variables produce
exactly 2s literals. The possible Krom clauses are thus:

– the empty clause (with no literals);
– 2s clauses with 1 literal;
– 2s(2s− 1)/2 clauses with 2 literals.

The resolvent of two Krom clauses is again a Krom clause. So after step t
there are in total at most 2s2 + s + 1 = 2(n− t)2 + n− t + 1 clauses. �

The complete computation of DPP requires for each set S of Krom clauses
an amount of space (and of computing time) moderately increasing with the
number n of variables in S.

Mundici D.: Logic: a Brief Course.
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5.2 Horn clauses

Subsumption. A clause C subsumes a clause G if C ⊆ G and C �= G. In
particular, the empty clause subsumes every other clause. Also, it is easy to
see that if a clause C subsumes G, then G is a logical consequence of C.

The following cleaning rule allows us to eliminate all the subsumed clauses.

Lemma 5.2. Let S′ be the set of clauses obtained from S by eliminating a
clause G subsumed by another clause C ∈ S. Then S′ ≡ S.

Proof. If α satisfies S, then α satisfies S′, because S′ ⊆ S. Vice versa, suppose
that α satisfies S′ and is suitable for S. Suppose that S′ is obtained from S
by removing from S a clause G subsumed by some other clause C ∈ S. We
note that C ∈ S′ and α |= C, therefore α satisfies some literal L ∈ C and
hence some literal L ∈ G. Consequently, α satisfies S. �

Horn Clause. A clause having at most one positive literal is called a Horn
clause.

(Recall that positive literals were introduced in Section 2.1.) Examples of
Horn clauses are the empty clause �, the unit clauses, that is, clauses consist-
ing of one variable {A}, {B}, {C}, . . ., the completely negative clauses, for in-
stance {¬A}, {¬A,¬B,¬C}, and the mixed clauses, for instance {¬A,¬B,C},
containing a single nonnegated variable and some negated variables.

Recalling Lemma 5.2 we have:

Proposition 5.3. Let S = S0 be a set of Horn clauses, without any tautolo-
gies and subsumed clauses. Suppose we delete all subsumed clauses arising
during our computation of DPP. For each t = 1, 2, . . . ,

(i) if St−1 contains the empty clause, then S is unsatisfiable; otherwise,
(ii) if St−1 does not contain a unit clause, then S is satisfiable;
(iii) if St−1 contains a unit clause, then St is a set of Horn clauses having

fewer clauses than St−1.

Proof. Case (i) is trivial. In case (ii), note that the zero assignment (assign-
ing 0 to all variables of St−1) satisfies St−1. Arguing as in the proof of the
Robinson Completeness Theorem, the zero assignment can be extended to an
assignment satisfying S. In case (iii), letting {U} denote the first unit clause
of St−1, the variable U will also be the pivot of step t. There cannot be in
St−1 any clauses of the form {¬A1, . . . ,¬Ak, U}, because they are subsumed
by {U}. Thus {U} will be used in forming each U -resolvent. Evidently, the
DPP-step leading from St−1 to St not only reduces the number of clauses but
also produces shorter clauses. All clauses in St are Horn (why?). �

Also in this case, the amount of computing time required by the complete
computation of DPP is moderately increasing with the number of clauses in S.
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Exercises

1. Refute the set of clauses of the formula (1.1) on page 4, that expresses the
bicolourability of the vertices of the pentagon.

Solution:

{X11, X12}

{¬X52,¬X12} {X51, X52} {¬X41,¬X51} {X41, X42}

{X11,¬X52} {X11, X51} {X11,¬X41} {X11, X42}

{X11,¬X32} {X11, X31} {X11,¬X21} {X11, X22}

{¬X32,¬X42} {X31, X32} {¬X21,¬X31} {X21, X22}

{X11} {X11,¬X12} {¬X12,¬X22}

{¬X21} {X22} {¬X32} {X31}

{¬X11,¬X21} {X21, X22} {¬X22,¬X32} {X31, X32}

{X51, X52} {¬X42,¬X52} {X41, X42} {¬X31,¬X41}

{X51} {¬X52} {X42} {¬X41}

{¬X11} {¬X51,¬X11}

Note. Bicolourability problems are easy because they are quickly reducible to
satisfiability problems for Krom clauses. One can avoid such reductions, using
a combinatorial lemma to the effect that a graph G is bicolourable iff it does
not have cycles with an odd number of vertices. Then, however, one will have to
describe a just as fast procedure that checks that G does not have such cycles.
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2. Apply DPP to the following sets of clauses. If you obtain the empty set
of clauses perform the model-building.

a) {{Q,¬R}, {R,¬S}, {S,¬T}, {T,¬U}, {U,¬W},
{W,¬X}, {X,¬Y }, {Y,¬Z}, {Z,¬Q}, {T}, {¬W}};

b) {{Q,¬R}, {R,¬S}, {S,¬T}, {T,¬U}, {U,¬W},
{W,¬X}, {X,¬Y }, {Y,¬Z}, {Z,¬Q}};

c) {{D,¬W}, {Y,¬W,¬F}, {¬Y,¬W,¬F, G}, {C,¬D}, {Y }, {Z},
{Z,¬Y }, {Y,¬C}, {F,¬G}, {Z,¬C,¬D}, {W,¬F}, {G,¬Z},
{Z,¬C,¬D}, {¬Z, C,¬D}, {¬Y,¬W,¬F,¬G}, {Y,¬W,¬F}};

d) {{Y,¬E,¬W}, {A,¬H}, {E,¬D}, {Z,¬Y,¬E,¬D}, {A}, {H},
{Z,¬Y }, {D,¬W}, {W,¬F}, {F}, {¬Z}, {¬D,¬E,¬W,Z},

{Y,¬E}, {D,¬Z,¬E}, {¬Y,¬W, E}, {Y }, {Z}};
e) {{Y,¬E,¬W,¬A}, {Y,¬E,¬W,¬A}, {¬Y,E,¬W,¬B}, {W},

{¬Y,¬E,¬W,¬B}, {A,¬B}, {B,¬C,¬A}, {C,¬D,¬B}, {A},
{¬D,E,¬W,¬C,¬A}, {D,¬W,¬E,¬B}, {W,¬A}, {B}, {C}};

f) {{Y,¬E,¬W,¬A,¬C}, {Y,¬E,¬W,¬A}, {¬Y, E,¬W,¬B,¬C},
{¬Y,¬E,¬W,¬B}, {¬A,¬B}, {B,¬C,¬A}, {¬D,¬B,¬C}, {A,¬C},
{¬D,E,¬W,¬C,¬A}, {D,¬W,¬E,¬B,¬C}, {W,¬A,¬C}, {C},

{Y }, {E}, {D}, {W}}.

Solution of the last exercise (the clauses not needed for the refutation are
not shown; the subsumed clauses are immediately eliminated):

{¬A,¬B} {B,¬C,¬A} {A,¬C} {C}

{A}

{B,¬C}

{B}

{¬A}
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Gödel’s Compactness Theorem

6.1 Preparatory material

So far we have considered only finite sets of clauses. But as we will see in the
second part of this course, infinite sets play an important rôle. Therefore we
extend the notion of satisfiability as follows:

Satisfaction of an infinite set of clauses. Let S be a (finite or infinite) set
of clauses. Let V ar(S) denote the set of variables that occur in the clauses of
S. Then an assignment α is suitable for S if the domain of α contains V ar(S).
We say that α satisfies S, and write

α |= S,

if it satisfies each clause of S; S is unsatisfiable if no assignment satisfies it.
We also say that a set S of clauses is finitely satisfiable (in short f.s.) if

each finite subset Q of S is satisfiable. In this case the assignment α = αQ

that satisfies Q depends on Q, and at first sight nothing suggests that by
varying αQ one can obtain an assignment α∗ that simultaneously satisfies all
clauses of S. Vice versa, as an assignment that satisfies S also satisfies each
finite subset of it, the satisfiability of S seems to be a stronger condition than
finite satisfiability.

Surprisingly, Theorem 6.2 will show that both conditions are equivalent.
Before moving on to its proof here is a simple test to check our understanding
of the notion of finite satisfiability:

Lemma 6.1. Let S be a finitely satisfiable set of clauses and X a variable.
Let S′ = S ∪ {{X}} be the set obtained by adding to S the unit clause {X}.
Let S′′ = S ∪ {{¬X}}. Then at least one of S′ or S′′ is finitely satisfiable.

Proof. Suppose by contradiction that neither S′ nor S′′ is finitely satisfiable.
As S∪{{X}} is not f.s., a finite subset {A1, . . . , Ap} of it is unsatisfiable, and
therefore

no assignment satisfies {A1, . . . , Ap}. (6.1)

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 6, © Springer-Verlag Italia 2012
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As S is f.s., it follows that the unit clause {X} has to be one of the Ai clauses,
say Ap. Therefore {A1, . . . , Ap−1} ⊆ S is satisfiable. Analogously there exists
an unsatisfiable finite subset {B1, . . . , Bq} ⊆ S ∪ {{¬X}} and we can write

no assignment satisfies {B1, . . . , Bq}. (6.2)

It follows that {¬X} has to coincide with one of the Bj clauses, say Bq. There-
fore {B1, . . . , Bq−1} ⊆ S is satisfiable. As {A1, . . . , Ap−1, B1, . . . , Bq−1} is a
finite subset of S, by assumption it is satisfiable. Let α be an assignment such
that

α |= {A1, . . . , Ap−1, B1, . . . Bq−1}. (6.3)

Assuming α is also suitable for {X} (if not, we could extend it to X in an
arbitrary way), there are two cases.

Case 1. α |= X. But then α contradicts (6.1).

Case 2. α |= ¬X. But then α contradicts (6.2).

The contradiction we found in both cases makes the initial assumption un-
tenable, and therefore either S′ or S′′ is finitely satisfiable, as we wished to
prove. �

6.2 Statement and proof

Theorem 6.2 (Compactness Theorem of Gödel, 1930). If S is a count-
able unsatisfiable set of clauses, then some finite subset of S is unsatisfiable.
As already noted, the converse implication is trivial.

Proof. We will equivalently prove that if S is finitely satisfiable then it is sat-
isfiable. Let V ar(S) = {X1,X2,X3, . . .} be the set of all variables of S. We
construct an increasing sequence S0 ⊆ S1 ⊆ S2 . . . of sets of clauses as follows:

S0 = S

Sn+1 =

{
Sn ∪ {{Xn+1}}, if Sn ∪ {{Xn+1}} is f.s.
Sn ∪ {{¬Xn+1}}, if Sn ∪ {{Xn+1}} is not f.s.

Then we set
S∗ =

⋃
Sn.

First Claim. For each n = 0, 1, 2, 3, . . . , the set Sn is f.s.
One proves this by induction. The induction base is trivial, because S0 = S

is f.s. by assumption. The induction step is as follows. By the induction hy-
pothesis each set Sn is f.s., and we have to prove that Sn+1 is f.s. But this
follows immediately from the definition of Sn+1, recalling Lemma 6.1.
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Second Claim. Also S∗ is f.s.
Indeed, each finite subset Q of S∗ is included in some Sj and since by the

First Claim Sj is f.s., it follows that Q is satisfiable.

Third Claim. For each variable Xi, i = 1, 2, 3, . . ., exactly one among the
clauses {Xi} and {¬Xi} belongs to S∗.

In fact, by construction at least one of them is in Si and therefore in S∗.
But it cannot be the case that both of them are in S∗; for otherwise, S∗ would
contain an unsatisfiable set formed by the clauses {Xi} and {¬Xi}, and hence
would not be f.s., which would contradict the Second Claim.

We are now able to show that S∗ is satisfiable. We will construct an as-
signment α that satisfies S∗. To start with we set dom(α) = V ar(S∗). Then
we stipulate for each variable Xi that

α(Xi) = 1 iff {Xi} ∈ S∗. (6.4)

Fourth Claim. For each clause F ∈ S∗ we have α |= F .
Suppose by contradiction that α �|= F. Let L1, . . . , Lu be the literals of F .

Therefore for all i = 1, . . . , u, α �|= Li, and hence α satisfies the opposite of
Li, i.e., α |= Li. Combining the Third Claim with the definition (6.4) it follows
that {Li} ∈ S∗. As by the Second Claim S∗ is finitely satisfiable, there exists
an assignment that satisfies the set {F, {L1}, . . . , {Lu}} of clauses, which is
impossible. The Fourth Claim is thus established.

Since S is a subset of S∗, it follows from the Fourth Claim that α satisfies S.
The theorem is thus established. �

Exercises

1. Find an infinite set of clauses with the set of variables

I = {X1,X2,X3, . . .}
that is satisfied by precisely one assignment α: I → {0, 1}.

2. Consider the following infinite set S of clauses:

{¬X1,X2}, {¬X2,X1}, {¬X2,X3}, {¬X3,X2}, . . . .
Which assignments α: {X1,X2,X3, . . .} → {0, 1} satisfy S?

3. Suppose we are given a palette with three colours 1,2,3, and an infinite
graph G, whose vertices are denoted by 1, 2, 3, . . .. Using the variables Xni

that state “vertex n has colour i”, one can formalise the tricolourability
of G using a set of clauses. Since G is infinite, infinitely many clauses will
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be needed. Prove that G is tricolourable iff each of its finite subgraphs is
tricolourable. By definition, a subgraph of G is a subset of vertices of G
connected by the same edges as in G.

4. Can it happen in Lemma 6.1 that both S′ and S′′ are finitely satisfiable?

5. What happens in Theorem 6.2 when the set V ar(S) is finite?
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Propositional Logic: Syntax

7.1 Formulas

We now study a language, known as (Boolean, or classical) propositional logic.
While it is more extended than the language of clauses considered so far, as
we will see, it is not more expressive. For this language it is still possible to
define precisely the concepts of satisfiability, logical equivalence and logical
consequence.

The syntax of propositional logic is more complicated than that of the
logic of clauses; our point of departure is a finite set of symbols, called al-
phabet, containing three fundamental connectives, negation ¬, conjunction ∧,
and disjunction ∨. These connectives are repeatedly applied, starting with
the variables. To avoid ambiguity, as in elementary algebra, one introduces
parentheses to combine expressions. So we have:

Alphabet. The set Σ consisting of the seven symbols {X, I,∧,∨,¬, ), (} is
called the alphabet. One calls each finite sequence of symbols of Σ a string
over Σ.

Variables. Strings of the form X,XI,XII,XIII, . . ., are called variables.

Formulas. One defines formulas inductively as follows:

– each variable is a formula;
– if F and G are formulas, then (F ∧G) is a formula;
– if F and G are formulas, then (F ∨G) is a formula;
– if F is a formula, then ¬F is a formula.

Mundici D.: Logic: a Brief Course.
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Readers not familiar with inductive definitions can adopt the following,
equivalent definition:

Alternative definition of a formula. A formula F is a string on the alpha-
bet Σ for which there exists a parsing certificate, that is, a finite sequence
S1, S2, . . . , Su of strings on Σ with the property that for each j = 1, . . . , u the
string Sj falls into at least one of the following cases:

– Sj is a variable;
– Sj is of the form ¬Si for some previous string Si;
– Sj is of the form (Sp ∧ Sq) with p, q < j;
– Sj is of the form (Sp ∨ Sq) with p, q < j;

and in addition, the final string Su coincides with F .

7.2 Unambiguity of the syntax

There is some analogy between the definition of a formula and the definition
of a refutation of a set of clauses. But here no inventiveness is needed to decide
instantaneously whether a string is a formula. To demonstrate this fact we
need some preparatory results:

Proposition 7.1. Each formula F is balanced, in the sense that the number
of open parentheses in F equals the number of closed parentheses.

Proof. Let S1, S2, . . . , Su = F be a parsing certificate for F . We will show by
induction on j = 1, . . . , u that each string Sj is balanced. In particular F will
turn out to be balanced.

Induction base. S1 is necessarily a variable XI . . . I. Hence S1 has 0 open
parentheses and 0 closed parentheses and therefore is balanced.

Induction step. Suppose that the statement is true for S1, S2, . . . , Sj . We have
to prove the statement for Sj+1. By definition of parsing certificate, Sj+1 falls
into at least one of the following three cases:

1. Sj+1 is a variable.
Then the statement is true, as already noted.

2. Sj+1 is of the type ¬St with t < j + 1. By the induction hypothesis St

is balanced. Necessarily this will be also the case for Sj+1, given the fact
that when passing from St to Sj+1 we have not added any parentheses.

3. Sj+1 is of the type (Sa∨Sb) or (Sa∧Sb) with a, b < j+1. By the induction
hypothesis both Sa and Sb are balanced. By a direct inspection also Sj+1

is balanced. �
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Using this proposition and calling the connectives ∧,∨ binary, one proves
by means of the same method:

Proposition 7.2. Suppose that the formula F has some binary connectives.
Then at the left-hand side of each binary connective of F there are more open
parentheses than closed ones. Moreover, there is a unique binary connective
at whose left-hand side the number of open parentheses exceeds by one the
number of closed parentheses.

The following theorem shows that our syntax is unambiguous:

Theorem 7.3 (Unique reading of propositional formulas). For each
formula F exactly one of the following four cases arises:

(i) The initial symbol of F is X; then F coincides with a uniquely determined
variable.

(ii) The initial symbol of F is ¬; then F is of the form ¬G, where G is a
formula.

(iii) The initial symbol of F is the open parenthesis and F is of the form
(A ∧B) with uniquely determined formulas A and B.

(iv) The initial symbol of F is the open parenthesis and F is of the form
(A ∨B) with uniquely determined formulas A and B.

Proof. Let S1, S2, . . . , Su = F be a parsing certificate for F . The initial symbol
of F has to be one of the symbols X,¬ or the open parenthesis.

If the initial symbol of F is X or ¬, one falls respectively into the first or
the second case and the claim is trivial.

If the initial symbol of F is the open parenthesis, we have to distinguish
between the third and fourth case and find a unique decomposition. Suppose
by contradiction that F has two different readings, say F = (A∨B) = (P ∨Q).
In other words, in one parsing certificate F appears as the disjunction of the
formulas A and B, while in another parsing certificate it appears as the dis-
junction of P and Q.

We make the working hypothesis (that soon will lead to contradiction)
that A has more symbols than P . Then the ∨ symbol of the reading (A ∨B)
is to the right of the ∨ symbol of the reading (P ∨Q). Therefore this latter ∨
lies in A. By Proposition 7.2 the number of open parentheses to the left of this
∨ in A is strictly larger than the number of closed parentheses. So in F this
∨ has to its left at least two more open parentheses than closed ones, because
one needs to add to the parentheses of A the initial open parenthesis of F .

But at the same time the reading (P∨Q) tells us that to the left of the same
∨ there is one more open parenthesis than closed one, as P is balanced. This
is a contradiction. So A does not have more symbols than P . By symmetry
P does not have more symbols than A. So A and P have the same number of
symbols and therefore the strings P and A coincide. It follows automatically
that B and Q coincide.

One similarly shows that F does not admit two readings F = (C ∨D) =
(R ∧ S) or F = (C ∧D) = (R ∧ S). �
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Example 7.4. The formula F = (¬(XII ∧XI)∨XIII) starts with an open
parenthesis “(”, so we are in Case 3 or 4. Starting from the left, for each con-
nective ∧ or ∨ we count by how much the number of open parentheses to its
left exceeds the number of closed ones. When we encounter the first binary
connective for which the difference is one, we split the formula in two, the one
on the left and the one on the right, eliminating the two outer parentheses
of F .

In our example this connective is ∨, so we are in Case 4. To the left we
find the formula ¬(XII ∧XI), while to the right we find the formula XIII.
This last formula cannot be anymore subdivided and we are in Case 1.

On the other hand for the formula ¬(XII ∧ XI) we repeat this parsing
procedure. It starts with ¬, so we are in Case 2. We eliminate ¬, remaining
with (XII ∧XI) to be dealt with subsequently using Case 3. At its left we
remain with the variable XII, whereas at its right we have the variable XI.

The following parsing certificate records this construction:

XII, XI, XIII, (XII ∧XI), ¬(XII ∧XI), (¬(XII ∧XI) ∨XIII).

This certificate is represented graphically by the parsing tree1 given in the
following figure.

(¬(XII ∧XI) ∨XIII)

¬(XII ∧XI) XIII

(XII ∧XI)

IXIIX

When for some string this parsing procedure gets stuck and does not suc-
ceed to reach the variables, it means that this string is not a formula. For
example, the string ¬(¬((XI ∧ XII) ∨ XIII)) is not a formula because it
does not have a binary connective to the left of which the number of open
parentheses is one more than the number of closed parentheses.

1 In mathematical texts, for typographical reasons, trees grow downwards.
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Exercises

1. Prove Proposition 7.2.

2. Which of the following strings are formulas and which aren’t? (for the
latter ones the parsing procedure gets stuck):

(((¬XIII ∨ ¬¬XII) ∧ ¬X) ∨ ¬XIII), (¬XIII), ((X ∨X)),

¬(¬(¬X ∧ (XIII ∨X) ∨XII)), (¬XI ∧XII),

((¬XII ∨XII)) ∨XI) ∨ (((¬(¬XIII) ∧X) ∨XII)).

3. Prove by induction on the number of connectives:

a) in no formula there occurs the sequence of symbols ();

b) in each formula the number of open parentheses cannot be smaller
than the number of ∨;

c) in no formula there occurs the sequence of symbols X¬;

d) in each formula there are twice as many parentheses as binary con-
nectives;

e) in each formula there are fewer binary connectives than variables;

f) if a formula does not have negation symbols and X is its only variable,
then it has 4k + 1 symbols, for some k = 0, 1, 2, 3, . . .;

g) we call a binary connective in a formula yellow if to its left there are
precisely two more open parentheses than closed ones. Show that each
formula has at most two yellow binary connectives.

4. Let p be the number of parentheses in a formula, b the number of binary
connectives, and v the number of variables occurring in the formula. Prove
that p + b ≥ 2(v − 1).

5. Confirm or refute the following statements:

a) in no formula there occurs a binary connective to the left of which
there are precisely three more open parentheses than closed ones;

b) for each formula let v be the number of occurrences of variables in it
and o and c respectively the number of open and closed parentheses.
Then 3o− 2c < v.
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Propositional Logic: Semantics

8.1 Assignment, logical consequence, logical equivalence

Having completed the syntactic definitions we now pass on to the semantic
definitions.

Assignment. By an assignment we mean, as always, a function α whose
domain dom(α) is a set of variables and whose possible values are 0 and 1.

Let F be a formula defined on the alphabet Σ and let {X1, . . . ,Xn} =
V ar(F ) be the set of its variables. Then the assignment α is suitable for F if
dom(α) ⊇ {X1, . . . ,Xn}. So α assigns a truth value to each variable of F .

We will always tacitly assume that all assignments are suitable for all for-
mulas to which they refer. And of course, when constructing assignments, we
will guarantee their suitability.

Satisfiability. Given a formula F with its parsing certificate, one defines by
induction α |= F (read: α satisfies F ) as follows:

– if F = Y , where Y is a variable, then α |= Y means that α(Y ) = 1;

– if F is a negated formula, for example F = ¬G, then α |= F means that
it is not true that α |= G, in symbols α �|= G;

– if F is a conjunction, F = (P ∧ Q), then α |= F means that α |= P and
α |= Q;

– if F is a disjunction, F = (P ∨ Q), then α |= F means that α |= P or
α |= Q.

Note. The unique reading Theorem 7.3 is crucial for the correct functioning
of this definition. Without it the fact that α satisfies F could depend on the
parsing certificate of F .

Mundici D.: Logic: a Brief Course.
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Satisfiable. When there exists an assignment α such that α |= F , then F is
called satisfiable and otherwise it is called unsatisfiable.

Tautology. When α |= F for each assignment α (suitable for F ), we say that
F is a tautology. Clearly, F is a tautology iff ¬F is unsatisfiable.

Satisfaction of an infinite set of formulas. Assume a (possibly infinite)
set S of formulas. Let V ar(S) be the set of variables that occur in S. Then
an assignment α is suitable for S if dom(α) ⊇ V ar(S).

We say that α satisfies S, and write α |= S, if it satisfies each formula of
S. When no assignment satisfies S, we say that S is unsatisfiable.

Logical consequence and logical equivalence. We say that G is a logical
consequence of F if each assignment α that satisfies F also satisfies G. It is
understood that α is suitable for both formulas. Two formulas F and G are
said to be equivalent, in symbols F ≡ G, if each is a logical consequence of
the other.

There is an obvious relationship between logical consequence and unsatis-
fiability:

Lemma 8.1. G is a logical consequence of F iff F ∧ ¬G is unsatisfiable.

This lemma is at the base of the “refutation method” for computing logical
consequences, that we will study in depth later.

Exercises

In these exercises, for the sake of readability, outer parentheses of formulas
will be omitted. To save other parentheses, we further assume that negation
takes precedence over all binary connectives. Therefore ¬A ∨ B stands for
(¬A ∨B) and not for ¬(A ∨B).

Connectives

1. In this exercise each phrase can be written in exactly one of two ways
A→ B or B → A. Indicate which one is the case:

a) A is a sufficient condition for B;

b) A is a necessary condition for B;

c) A if B;

d) A holds whenever B holds;

e) A holds only when B holds;
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f) A or else ¬B;

g) it is impossible to have A and ¬B;

h) A only if B;

i) A follows from B.

2. Denote by A the phrase “Arnaldo loves nature”, by B the phrase “Arnaldo
is a poacher”, and by C the phrase “Arnaldo is silly”.
Then translate the following phrases to the symbolic language of propo-
sitional logic:

a) if Arnaldo loves nature and is a poacher, then he is silly;

b) Arnaldo does not love nature and is silly if he is a poacher;

c) Arnaldo loves nature or is a poacher and is silly;

d) if Arnaldo is a poacher or does not love nature, then he is silly.

3. Translate the following formulas to English phrases, giving to A,B,C the
meaning attributed to them in Exercise 2:
a) (A → B)→ ¬C;

b) ¬B ∧ C;

c) ¬(C ∧ ¬C);

d) (A ∧B)→ (C ∨ ¬B);

e) ¬A ∨ C;

f) ¬(A ∨ C).

Assignment, logical consequence, logical equivalence

1. Given two arbitrary formulas D and E and an assignment α suitable for
both of them, which of the following statements are right and which are
wrong?

a) if α |= D ∧E, then α |= D and α |= E;

b) if α |= D and α |= E, then α |= D ∧E;

c) if α |= ¬D, then it cannot be the case that α |= D;

d) if it is not true that α |= D, then α |= ¬D;

e) if α |= D → E, and moreover α |= D, then α |= E;

f) if not α |= D → E, then α |= D and α |= ¬E;
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g) if α |= ¬(D → E), then α |= D and α |= ¬E;

h) if not α |= D ∧ E, then α |= ¬D or α |= ¬E;

i) if α |= ¬(D ∧E), then α |= ¬D or α |= ¬E;

j) if not α |= D ∨ E, then α |= ¬D and α |= ¬E;

k) if α |= ¬(D ∨E), then α |= ¬D and α |= ¬E.

2. For the following formulas you have at your disposal three alternatives:
(i) the formula is not satisfiable;
(ii) the formula is satisfiable, but not by all assignments suitable for it;
(iii) the formula is a tautology, that is, it is satisfied by all assignments

suitable for it.
Assign the appropriate alternative to each formula:

a) P → ¬P ;

b) P → Q;

c) (P → ¬P ) ∧ (¬P → P );

d) P → (P ∧Q);

e) P → (P ∨Q);

f) ¬(P ∨Q)→ (¬Q ∧ ¬P );

g) (P ∨Q)→ (P ∧Q);

h) (P → Q)→ (¬Q → ¬P );

i) (P → Q)→ (¬P → ¬Q);

j) ¬(P → Q)→ (P ∧ ¬Q);

k) ¬(P ∧Q)→ (¬P ∨ ¬Q).

3. Verify the following tautologies:

a) (A → B)→ ((B → C)→ (A→ C));

(Solution. There are eight possible assignments for three variables; you need

to verify that each of them satisfies the formula)

b) ((A ∧B)→ C)→ (A→ (B → C));

c) ¬A → (A → B);

d) (¬(¬F ∨G) ∨G) → (¬(¬G ∨ F ) ∨ F ).
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4. Which of the following formulas are tautologies?

a) (P → Q)→ P ;

b) P → (Q → P );

c) (P → Q)→ (¬P → ¬Q);

d) ¬(¬(¬(¬P ∨ P ) ∨ P ) ∨ P ) ∨ P ;

e) (P → Q) ∨ (Q → P );

f) (P → (Q ∨R))→ ((P → Q) ∨ (P → R));

g) ((¬Q → ¬R) ∨ P ) → ¬((P ∧Q)→ R).

5. Which of the following statements are true?

a) if A ∨B is a tautology, then at least one of A or B is a tautology;

b) if A ∧B is a tautology, then both A and B are tautologies;

c) for each A, it holds that A or ¬A is a tautology;

d) for each A, it holds that A ∨ ¬A is a tautology;

e) for each A and B, at least one of A → B or B → A is a tautology;

f) for each A and B, the formula (A → B) ∨ (B → A) is a tautology.

6. Verify the following logical consequences in which, by a slight abuse of
notation, we write F |= G to state that G is a logical consequence of F :

a) P ∧ (P → Q) |= Q (modus ponens);

b) P ∧ ¬P |= Q (ex falso quodlibet);

c) ¬A → A |= A (consequentia mirabilis);

d) ¬¬ B → ¬A |= (A→ ¬ B).

7. Are the following pairs of formulas equivalent?

a) A → (B → C), (A→ C)→ B;

b) A → (B → C), (A→ B)→ C;

c) A → (B ∨ C), (A → C) ∨ (A → B);

d) A → (B ∨ C), (A → C) ∨B;

e) A → (B ∨ C), ¬B → (A→ C);

f) (A ∨B)→ C, (A→ C) ∨ (C → B).
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g) A → ¬B, (B → ¬C) ∧ C;

h) A ∨ ¬B, (B → C)→ (¬C → ¬B).

Hint. There are eight possible assignments for three variables; you need to verify

that each of them satisfies the first the formula iff it satisfies the second formula.

8. Verify the following deduction theorem: A ∧B |= C iff A |= B → C.

9. Verify the following special case of the Craig interpolation theorem: if
F → G is a tautology and V ar(F ) ∩ V ar(G) = ∅, then F is unsatisfiable
or G is a tautology.
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Normal Forms

9.1 Some logical equivalences

We now list some logical equivalences. Their proofs follow immediately from
the definitions of the previous chapter. To facilitate the reading, outer paren-
theses are omitted throughout:

F ∨G ≡ G ∨ F

(F ∨G) ∨H ≡ F ∨ (G ∨H)
F ∨ F ≡ F

¬¬F ≡ F

F ∨O ≡ F for each unsatisfiable formula O

F ∨ ¬O ≡ ¬O for each unsatisfiable formula O

¬(¬F ∨G) ∨G ≡ ¬(¬G ∨ F ) ∨ F.

Exercise 9.1. Prove these seven equivalences. The first three state that dis-
junction is commutative, associative and idempotent. Prove that the same
holds for conjunction. The fourth equivalence is known as the law of double
negation.

Exercise 9.2. Prove the following two equivalences, known as De Morgan
laws:

¬(F1 ∨ . . . ∨ Fu) ≡ ¬F1 ∧ . . . ∧ ¬Fu

¬(F1 ∧ . . . ∧ Fu) ≡ ¬F1 ∨ . . . ∨ ¬Fu.

Since product distributes over sum, for each a, . . . , e ∈ N we can write:

(a + b + c) · (d + e) = ad + bd + cd + ae + be + ce.

Mundici D.: Logic: a Brief Course.
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Analogously, we have the following distributivity property:

(F1 ∨ . . . ∨ Fu) ∧ (G1 ∨ . . . ∨Gw) ≡ ∨
i,j(Fi ∧Gj).

We also have

(F1 ∧ . . . ∧ Fu) ∨ (G1 ∧ . . . ∧Gw) ≡ ∧
i,j(Fi ∨Gj).

Exercise 9.3. Verify these two laws of distributivity.

9.2 Propositional logic and the logic of clauses

Theorem 9.4 (CNF and DNF reduction). For each formula F there ex-
ists an equivalent formula in CNF (understood as a conjunction of disjunc-
tions of literals) and an equivalent formula in DNF (i.e., a disjunction of
conjunctions of literals).

Proof. We proceed by induction on the number n of the connectives in F .

Induction base. n = 0, that is, F is a variable X. In this case already {{X}}
is the desired formula in CNF equivalent to F : it is a conjunction containing
a single clause, the one containing just the variable X. Analogously, {{X}} is
the desired formula in DNF.

Induction step. By the induction hypothesis for each formula G having
0, 1, . . . , n connectives, we have equivalent formulas in CNF and DNF. We
have to find equivalent formulas in CNF and DNF for each formula F having
n + 1 connectives.

Case 1. F = ¬G.
Observing that G has n connectives and applying to G the induction hy-

pothesis, we obtain G ≡ C1 ∧ . . . ∧ Cp for appropriate clauses Ci. Using De
Morgan laws and the law of double negation we can write

F = ¬G ≡ ¬(C1 ∧ . . . ∧ Cp) ≡ ¬C1 ∨ . . . ∨ ¬Cp ≡ K1 ∨ . . . ∨Kp,

where each Ki is a conjunction of literals. This gives us a formula in DNF
equivalent to F . Analogously one finds a formula in CNF equivalent to F ,
starting from a formula in DNF equivalent to G.

Case 2. F = G ∧H.
Then the formulas G and H have ≤ n connectives and we can apply

to each of them the induction hypothesis, writing, to start with, the formu-
las in CNF equivalent to G and to H as follows: G ≡ C1 ∧ . . . ∧ Cp and
H ≡ D1 ∧ . . . ∧Dr. We find immediately a formula in CNF equivalent to F ,
writing F ≡ G ∧H ≡ C1 ∧ . . . ∧ Cp ∧D1 ∧ . . . ∧Dr.

It is a bit more complicated to find a formula in DNF equivalent to F .
By the induction hypothesis there exists a formula in DNF equivalent to G,
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that is, G ≡ K1 ∨ . . . ∨Kq, and a formula in DNF equivalent to H, that is,
H ≡ E1 ∨ . . . ∨Es. Now, using distributivity we can write

F ≡ G ∧H ≡ (K1 ∨ . . . ∨Kq) ∧ (E1 ∨ . . . ∨Es) ≡
∨
i,j

(Ki ∧Ej).

This final formula is a formula in DNF equivalent to F .

Case 3. F = G ∨H.
We argue as in Case 2. From the formulas in DNF equivalent to G and to

H we immediately find a formula in DNF equivalent to F . Using distributiv-
ity and starting with formulas in CNF equivalent to G and to H, we find a
formula in CNF equivalent to F . �

One calls a set S of formulas finitely satisfiable if each finite subset of S is
satisfiable. Theorem 9.4 allows us immediately to extend Theorem 6.2 to the
whole propositional logic:

Theorem 9.5 (Compactness Theorem of Gödel, 1930). Let S be a
countable set of formulas. If S is unsatisfiable, then it has a finite unsatis-
fiable subset. As already noted, the reverse implication is trivial.

As proved by Maltsev, the compactness theorem holds for arbitrary sets
of formulas. Following Gödel, for simplicity, we proved it only for countable
sets.

Boolean Algebra. A Boolean algebra is a structure B = (B, 0,¬,∨) that
satisfies the first seven equations written at the beginning of this chapter,
using = instead of ≡ and 0 instead of O.

In each Boolean algebra B one defines the constant 1 as ¬0 and the oper-
ation ∧ as x ∧ y = ¬(¬x ∨ ¬y).

Boolean algebras have interesting connections with various parts of mathe-
matics: probability, topology, and set theory. Using these algebras one obtains
a presentation of propositional logic in which the syntax and the logical cal-
culus play a much less important rôle than in the presentation given on these
pages.

Weakening the definition of Boolean algebra one obtains structures that
are in some cases closely connected with other parts of mathematics, and at the
same time correspond to logics that are interesting for some applications. For
example, if we remove the equation F ∨F = F from the seven equations, with
the remaining six we obtain the definition of MV-algebra that corresponds to
the infinite valued logic of �Lukasiewicz. In this logic a phrase repeated twice
gives more information than the same phrase stated only once, just as it hap-
pens when having to transmit information in a noisy environment, we repeat
the words to be better understood.
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Exercises

1. Prove the seven equivalences from the beginning of this chapter.

2. Find (preferably short) DNF and CNF equivalents for the following for-
mulas, often written in an abbreviated form:

a) (XI ∨ (X ∧ (X ∨ (XI ∧ (XI ∨X)))));

b) ((XI ∨XII) ∧XII) ∨X;

c) (¬(X ∧ (¬X ∨ (XI ∧ ¬XI))));

d) ¬((X ∧XI) ∨X);

e) (((X ∨ ¬XI) ∧ (¬XI ∨XII)) ∧ ((XI ∨XII) ∨ ¬X));

f) ((P → Q)→ R)→ (P → R);

g) (P ∨Q) ∧ ((Q ∧ (R ∨ ((R ∨ S) ∧ P ))) ∨R);

h) P → (Q → (R → (S ∨ T )));

i) (((A → B)→ B)→ ((B → A) → A)) → (C ∨D ∨A);

j) (P → (Q → R))→ ((P ∧ S)→ R);

k) (A ∧ (B ∨ (¬A ∧ (¬B ∨A)))) ∨ (B ∧ (¬A ∨ (¬B ∧A)));

l) (A ∧ (B ∨ (¬A ∧ (¬B ∨A)))) ∨ (B ∧ (¬A ∨ (¬B ∧ (A ∨B))));

m) A ∨ (B ∧ (C ∨ (¬A ∧ (¬B ∨ ¬C))));

n) (A∨ (¬B ∧ (¬C ∨ (¬A∧ (B ∨C)))))∧ (A∨¬(B ∨C))∧ (¬A∨¬(B ∨
¬C));

o) D ∧ (A ∨ (¬B ∧ (¬C ∨ (¬A ∧ (B ∨ C)))));

p) (A ↔ B)↔ (B ↔ ¬A).

3. Consider the following list of formulas, where, as always X → Y abbrevi-
ates ¬X ∨ Y , and X ↔ Y abbreviates (X → Y ) ∧ (Y → X):

X ↔ (Y ∨ Z)
(X ∨ Y )→W
(Y ∧ Z)→ (X ∨ ¬W )
———————————–
X ∧ (¬Y ∨ (Z ∧ ¬W ))

Call “premises” the three formulas written above the line and “conclusion”
the formula written under the line. Determine whether the conclusion is
a logical consequence of the premises.

Hint. For each assignment that satisfies the three premises, we have to verify
that it also satisfies the conclusion. This requires sixteen checks.
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The refutation method offers the following alternative procedure:

(i) put each premise Pi, i = 1, 2, 3 in CNF and rewrite it as a finite set Ci of
clauses;

(ii) do the same for the negation of the conclusion, obtaining this way a finite
set N of clauses;

(iii) apply DPP to the set C1 ∪ C2 ∪ C3 ∪ N of clauses.

By Lemma 8.1 the conclusion is a consequence of the premises iff we obtain the

empty clause. If we do not obtain it, applying the model-building we find an

assignment that satisfies the premises and the negation of the conclusion.

4. Prove Theorem 9.5.

5. Let E, T , M be three variables, where

a) E = “Martians exist”;
b) T = “Alf travels in a spaceship”;
c) M = “Alf meets a Martian”.

Let F be the formula ¬E → ¬(T →M). It states

If Martians do not exist, then it is not true that if Alf travels in a
spaceship, Alf meets a Martian.

Let F ′ be a formula in CNF equivalent to F , written as a set of clauses
in variables E, T,M . Write the following clauses:

F ′

{¬T}
———
{E}
Using the refutation method of Exercise 3 verify that the conclusion is a
logical consequence of the premises.

The premise F sounds plausible: if there are no Martians, how can Alf
possibly meet them during his travels in a spaceship? But if we add the
premise that Alf does not travel in a spaceship, then from this premise it
logically follows that Martians do exist—which is surprising. Analyse this
example recalling the introductory remarks made on page VII on the use
of the conjunction “if” in natural language and in mathematical language.
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Recap: Expressivity and Efficiency

Recall the example on page 3, in which we transcribed in clauses the problem
of checking whether a graph G with n vertices is k-colourable. We used n× k
variables with the intention that each variable Xij abbreviates the phrase
“vertex i has colour j”. Each variable Xij also represents the question “does
vertex i have colour j?”, and intends to contain the yes-no answer to this
question.

The phrase “each vertex has at least one colour” is transformed into the
conjunction of n clauses C1, . . . , Cn, where Ci states “vertex i has at least one
colour”, that is, Xi1 ∨ . . . ∨Xik. Analogously, the phrase “each vertex has at
most one colour” becomes the conjunction of n formulas K1, . . . ,Kn, where
Ki states “vertex i has at most one colour”. In detail, one forms Ki writing
for each pair of different colours k′ and k′′ the formula ¬Xik′ ∨¬Xik′′ . Finally,
to state “every two vertices connected by an edge have different colours” we
write for each colour and for each edge a clause stating that at least one of
its vertices does not have this colour.

The result of this transcription is a formula S that completely describes the
initial problem. To find a colouring we treat S as a system of equations, one
equation per clause, and think of the variables as unknowns to which we assign
the values 1 (for “yes) or 0 (for “no”). Each assignment α: {variables} → {0, 1}
represents an attempt of colouring the graph.

As we saw in the exercises, various other combinatorial problems can be
easily transcribed as satisfiability problems of a set S of clauses. The Davis-
Putnam procedure solves each system S in a finite number of steps. Never-
theless, there exist examples of sets of clauses S1, S2, S3, . . . , Si, . . . such that
the length |Si| grows proportionally to i, while the number of resolvents in
DPP (Si) grows exponentially in i, hence faster than any polynomial in i,
which soon exceeds the memory of any computer, present or future.
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Does there exist a revolutionary procedure that, working on an arbitrary
finite set S of clauses, decides its satisfiability in a number of “steps” �(S)
much smaller than DPP, for example �(S) ≤ |S|n, for some fixed n ∈ N? This
is the first problem in the famous list of seven mathematical “Millennium
Prize Problems” for our millennium.1

1 The crucial notion of “step” is taken care of by an ingenious mathematical artefact
introduced by Alan Turing in 1936.
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Predicate Logic
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The Quantifiers “There Exists” and “For All”

11.1 Introduction

The fundamental notions of natural number, zero and successor are suffi-
ciently clear to us. Addition and multiplication are then defined inductively,
using zero and successor together with the equality predicate =, as is done
on the next page of this course. More complicated arithmetic relations and
operations such as x ≤ y, “x divides y”, “x is the minimum of y and z”, “x
is a prime number”, are definable using these fundamental notions.

So for example x ≤ y means that there exists z such that x + z = y, in
symbols, ∃z x+ z = y. Analogously, “x is a prime number” means that 2 ≤ x
and for all y ≤ z such that y · z = x it follows that y = 1, in symbols,

s(s(0)) ≤ x ∧ ∀y∀z (
(y ≤ z ∧ y · z = x)→ y = s(0)

)
,

where s denotes the successor function.
In all these expressions the variables regain their familiar use, as in sys-

tems of equations; but now in addition these variables are acted upon by the
quantifiers ∃ and ∀.

Consider the following twin primes conjecture:

For every x there exists a prime number y ≥ x such that y + 2 is a
prime number.

Is it true or false?
For problems such as the colourability of a graph we have used a tran-

scription in a simple logical language, obtaining a system of equations with
binary unknowns; then we have developed a logical calculus (DPP) that al-
lows us to decide whether such a system has a solution. The calculus proceeds
by obtaining various consequences of the data, or “axioms”, that define the
problem. The transition from the problem to its formalisation should be made
with great meticulousness, because the inference mechanism knows only how
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to work on its symbols. If we omit some data or use data that do not corre-
spond to our problem, the inference mechanism works on a different problem
than the one we want to solve.

As Pythagoras thought, natural numbers are an infinity full of mystery.
For their active contemplation we need a richer symbolic apparatus than that
of propositional logic. The connectives ¬, ∨, ∧ now connect more complex
phrases having the natural subject/predicate structure. Some predicates have
two or more arguments. For example, the predicate “to be smaller than” has
two arguments; when we say “x is smaller than y”, x is the subject and y
is a complement. One also needs symbols for such “constants” as zero, that
remind us of “proper names”, along with symbols for the “variables”. The
latter are used to quantify, for example when we say “for every x there exists
some y”, or when we write an identity. There also appear function symbols
for successor, sum and product.

Thus, following Dedekind and Peano, to address the twin primes problem
we first list the properties of zero, successor, sum and product, by writing
suitable axioms for N and its main operations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∀x 0 �= s(x) zero is not a successor of any number

∀x∀y x �= y → s(x) �= s(y) different numbers have different successors

∀x x + 0 = x zero is the neutral element of the sum

∀x∀y x + s(y) = s(x + y) inductive property of the sum

∀x x · 0 = 0 zero property of the product

∀x∀y x · s(y) = x · y + x inductive property of the product

Unlike in the case of the colouring problem, nobody tells us here: “It is
enough, the axioms are sufficient for solving the problem”. At one point we
might even run short of ideas and not know anymore which axioms to choose.

Logic does not tell us how to find the right axioms, not even for the nat-
ural numbers. Yet, using a list of axioms A slightly richer than the one given
above, Euclid succeeded to prove that “for every x there exists a prime y
larger than x”. This theorem (i) is not as evident as the axioms of A, but
is equally true, (ii) has a fundamental rôle in mathematics and, incidentally,
(iii) is a necessary condition for having an infinite number of twin primes.

To prove it we use the refutation method, reasoning by contradiction. So
we take the negation N of what we wish to prove, “there exists some x such
that all y larger than x are not prime numbers”. Operating on A and N with
a variant of DPP, that we will study in the subsequent pages, we obtain the
empty clause.

One can prove all theorems using this method or equivalent ones, i.e., ones
that are able to prove the same theorems. So mathematics is the art of (a)
finding the axioms and definitions adhering to the reality of the concepts that
we are interested to study, (b) deriving from these definitions and axioms
deeper and deeper results, possibly dismissing their evidence, but never their
truthfulness; and if possible (c) combining these results with results obtained
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from other definitions and axioms, thus showing that an activity of type (a)
is not gratuitous mental gymnastics.

The fact that for tasks of type (b) and (c) there do not exist more pow-
erful methods than those already in use in the classical world, is one of the
consequences of the most important theorem of this course, the completeness
theorem of Gödel, which we will prove in Chapter 16.

Working hypothesis. A Martian announces that it follows from A that there
are arbitrarily large pairs of twin primes.

However brilliant the Martian can be, on account of the completeness theorem
we know that her/his solution of the twin primes conjecture will be anyway
within the reach of the down-to-earth calculus presented in the subsequent
chapters.

Exercises

Following Frege, to formalise the phrase “every man is mortal” we prepare two
predicate symbols M1 and M2, where M1x states “x is mortal” and M2y states
“y is a man”. Then we write ∀x(M2x→M1x), that is, ∀x(¬M2x ∨M1x). To
formalise “some man is mortal” we will write ∃x(M2x ∧ ¬M1x).

1. Let Sx mean “x is a swimmer” and Ey “y is elegant”. Formalise each of
the following phrases:

a) every swimmer is elegant;
b) some swimmer is elegant;
c) not every swimmer is elegant;
d) some swimmer is not elegant.

2. Let Axy mean “x admires y”. Transcribe the following phrases in the
appropriate logical symbolism:

a) everybody admires somebody;
b) somebody admires everybody;
c) somebody is admired by everybody;
d) nobody is admired by everybody;
e) somebody does not admire anybody.

3. Formalise the following phrases:

a) a dog does not bite a dog;
b) winners never quit and quitters never win;
c) a tiger’s son has stripes;
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d) Giovanna does not vote for any racist;
e) any raptor stays up at night;
f) no lazy person discovers new worlds;
g) some fishermen do not boast;
h) a healer that everybody reveres is not necessarily honest;
i) he who sleeps doesn’t catch any fish;
j) Figaro shaves all those who do not shave themselves;
k) every barber shaves only those who do not shave themselves.

4. Formalise:
a) two orthogonal lines have a common point (that is, a point that be-

longs to both lines);
b) if two lines are parallel, then they do not have a common point;
c) through each point outside a line there passes a parallel to this line.

Solutions. ∀x∀y(Lx ∧ Ly ∧ Oxy → ∃z(Pz ∧ Bzx ∧ Bzy)), ∀x∀y(Lx ∧ Ly ∧
Qxy → ¬∃z(Pz∧Bzx∧Bzy)), ∀x∀y(Px∧Ly∧¬Bxy → ∃z(Lz∧Qzy∧Bxz))

5. Let
(i) Sx mean “x is a Scot”;
(ii) Cy mean “y is a type of cheese”;
(iii) Bz mean “z is a type of beer”;
(v) Lxy mean “x likes y”.

Suppose then that c stands for Carlo and d for Donatella. Formalise each
of the following phrases:

a) Donatella likes all types of cheese;
b) some Scots like all types of cheese;
c) Donatella likes some type of cheese;
d) every Scot likes at least one type of cheese;
e) there is a type of cheese that all Scots like;
f) Carlo does not like any type of cheese;
g) every Scot dislikes any type of cheese;
h) every Scot likes some type of cheese and some type of beer.

6. The negation of each of these phrases can be expressed by a phrase that
starts with a quantifier. Find these negative forms:

a) each supporter of Arsenal is enthusiastic;
b) some accountant is poor;
c) some illiterate admires all scholars;



Exercises 61

d) every illiterate admires some scholar;
e) for every x there is some y > x;
f) for every x there is some y such that for every z > y, f(z) > x.

7. Note the ambiguity of the phrase “Figaro does not take seriously a per-
son who promises quick returns.” This could stand for “any person who
promises quick returns to Figaro is not taken seriously by Figaro”, or
“not all people who promise quick returns to Figaro are taken seriously
by Figaro”. Formalise both phrases.
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Syntax of Predicate Logic

12.1 Elements of the syntax

Following the same procedure as for propositional logic, we prepare now the
necessary material for writing expressions upon which the logical calculus
will act. In a first phase we will only work with formulas that are similar to
the clauses of propositional logic. Then the calculus will be extended to all
formulas.

Definition 12.1. Our alphabet for predicate logic is the following finite set
Σ of symbols:

– connectives: ¬,∨,∧,→;
– quantifiers (universal and existential) ∀,∃ ;
– variables: x, y, z, . . .

– constant symbols: a, b, c, . . .;
– predicate (or relation) symbols: P,Q,R,A,B, . . .;
– function symbols: f, g, h, . . .;
– parentheses, comma (to facilitate the reading).

Strictly speaking, the finiteness of Σ would require us to write pedantically
c, c|, c||, . . . instead of a, b, c, . . .. Analogously for the variables, predicates and
functions. So officially

Σ = {¬,∨,∧,∀,∃, x, c, P, f, |, ), (, , }.
But in these pages readability is more important than strict adherence to
syntactic parsimony: thus for instance, we will write x5 (or even better, y)
instead of x|||||, and will consider it as a unique symbol.

To avoid further pedantry, we will simply say “predicate, function, con-
stant” instead of “predicate symbol, function symbol, constant symbol”. From
the context it will be clear that each predicate has a precise number of argu-
ments and the same for functions.

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 12, © Springer-Verlag Italia 2012
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Definition 12.2. A term is a string on Σ, that is, a finite sequence of symbols
of the alphabet Σ, given by the following inductive definition:

– every constant is a term;

– every variable is a term;

– if f is a function with n arguments and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term.

Exercise 12.3. Give a definition of “term” as the one given earlier for propo-
sitional formulas, using an appropriate notion of “certificate”. Write down a
few terms and their parsing trees, in analogy to the parsing trees of proposi-
tional formulas. Formulate a “unique reading” theorem for terms, in analogy
to Theorem 7.3.

Exercise 12.4. Write the parsing tree for the term

h(f(g(x, z, f(y, x)), g(f(c, c), h(z), y))).

12.2 Formalisation in clauses

Definition 12.5.

– an atomic formula A is a string on Σ of the form Pt1 · · · tm, where P is a
predicate with m arguments and t1, . . . , tm are terms;

– by a literal L we mean an atomic formula A or an atomic formula preceded
by the negation symbol, ¬A;

– a clause is a disjunction of literals, L1 ∨ . . . ∨ Lu.

When a term, a literal, or a clause does not contain any variable, one says
that it is ground.

Example 12.6. Many phrases in the exercises of the previous chapter were
universal statements, i.e., statements starting with “each” or “for all”. These
statements can be easily transcribed in clauses. Take as an example the famous
phrase “every man is mortal”.

Following Frege, and moving away from common practice in natural lan-
guage, we prepare a variable x, and let it range over all possible “things” or
“entities” or “beings” that exist in the universe, including mythological crea-
tures, and the ones that are born in the minds of artists and mathematicians.
We also prepare a predicate (symbol) U , so that Ux abbreviates the phrase
“x is a man”. Analogously, we prepare a predicate M so that Mx stands for
“x is a mortal”. Then

“every man is mortal” is initially transcribed as ∀x(Ux →Mx)



12.3 Substitution of terms for variables 65

(read: “for every being x, if x is a man, then x is mortal”). Treating “if” as
we have done in propositional logic, this phrase is equivalent to “for all beings
x, x is not a man or x is mortal”, that is transcribed as ∀x(¬Ux∨Mx). Now
we omit the universal quantifier ∀. And then

“every man is mortal” is formalised by the clause ¬Ux ∨Mx

Likewise, the phrase “all slow predators go hungry” is first transcribed as
∀x((Px∧Sx)→ Hx), that is, ∀x(¬Px∨¬Sx∨Hx). Dropping the symbol ∀,
the phrase is formalised by the clause ¬Px ∨ ¬Sx ∨Hx.

As long as no existential quantifiers are used, this transcription functions
well also for more complicated phrases, like “every barber shaves all those who
do not shave themselves”. This phrase becomes the clause ¬Bx ∨ Syy ∨ Sxy
through the following transformation: ∀x∀y((Bx ∧ ¬Syy) → Sxy) and then
∀x∀y(¬Bx ∨ ¬¬Syy ∨ Sxy).

Omitting the universal quantifier ∀ in all formulas in which no existential
quantifiers occur is standard mathematical practice. It suffices to recall the
identity sin2 x + cos2 x = 1.

As already done in the propositional case, to simplify the logical calcu-
lus, it is convenient to write each clause using the set-based notation. So we
will not repeat identical literals, will write in the same clause the comma in-
stead of the disjunction ∨, will cancel all the occurrences of ¬¬ and will use
braces to enclose the literals of the clause. The three clauses of Example 12.6
will then be further simplified by writing {¬Ux,Mx}, {¬Px,¬Sx,Hx}, and
{¬Bx, Syy, Sxy}.

The deviation of the clause-based language from the spoken language is
the price we need to pay for developing the logical calculus.

Using the language of clauses, we will give in Theorem 14.1 a simple proof
of a first version of Gödel completeness theorem. We will see in Theorem 16.10
that the fact that our logical calculus acts on clauses is not an essential limita-
tion. In Theorem 16.11 we will extend the completeness theorem to predicate
logic with equality.

12.3 Substitution of terms for variables

Definition 12.7. Assume a string E on the alphabet Σ. Writing

E(x1, . . . , xn)

we wish to say that variables of E belong to the set {x1, . . . , xn}. If we now
have an n-tuple of terms t = (t1, . . . , tn), we can substitute in E each variable
xi by the corresponding term ti. The new string thus obtained is denoted by
E(t).
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Example 12.8. Let E(x, y, z) be the clause

{Pf(x)g(b, y), Qg(y, a), Pyg(z, z)}

and t be the triple of terms (f(u), g(y, z), f(f(b))). Then E(t) is the clause

{Pf(f(u))g(b, g(y, z)), Qg(g(y, z), a), Pg(y, z)g(f(f(b)), f(f(b)))}.

So if L1, L2, L3 are the literals of E, we have E(t) = {L1(t), L2(t), L3(t)}.

Recall that the associativity of composition of functions states that
f(g(h)) = (f(g))(h). The following lemma shows that a similar associativ-
ity property holds for substitutions:

Lemma 12.9. Given a string E = E(x1, . . . , xn), let t = (t1, . . . , tn) be an
n-tuple of terms, with ti = ti(y1, . . . , ym), for all i = 1, . . . , n. Then for every
m-tuple of terms r = (r1, . . . , rm) the following identity holds:

(E(t))(r) = E(t(r)), (12.1)

where t(r) is an abbreviation of the n-tuple of terms (t1(r), . . . , tn(r)).

Proof. We proceed by induction on the number l = 1, 2, . . . of symbols in E,
where, as mentioned above, each variable x| . . . | is counted as a single symbol.
If l = 1 and E is not a variable symbol, then E remains unchanged for every
substitution. If the unique symbol of E is a variable xi, then (xi(t))(r) =
ti(r) = xi(t(r)).

For the induction step, as l > 1, we can split E in two strings E′ and E′′

of length < l, so that each variable of E lies entirely either in E′ or in E′′.
(In short, we want to avoid the possibility of a split inside of x| . . . |.) The
induction hypothesis holds for E′ and E′′. We write E = E′ � E′′ to indicate
that E is the concatenation of E′ and E′′. Therefore we can write

(E(t))(r) = ((E′ � E′′)(t))(r) = (E′(t) � E′′(t))(r) =

= (E′(t))(r) � (E′′(t))(r) = E′(t(r)) � E′′(t(r)) = (E′ � E′′)(t(r)),

which coincides with E(t(r)). �

12.4 Herbrand universe

Definition 12.10. By a CNF formula of predicate logic we mean a finite con-
junction of clauses, written as {C1, . . . , Cu} in the set-based notation. Given
a (finite or countably infinite) set S of clauses, by the Herbrand universe of
S, denoted by HS , we mean the set of all ground terms obtained from the
constants and functions of S.



12.5 Refutation 67

If S does not contain any constant, we add one to it, for example c

If there are no functions in S and S is finite, then HS is a finite set. As soon
as there is a function symbol in S, HS is automatically infinite. For example
if S = {{Qax,Rf(b)ba,¬Qbf(a)}, {Qxy,Rabx}} then HS = {a, b, f(a), f(b),
f(f(a)), f(f(b)), . . .}.

Definition 12.11. Let H = HS be the Herbrand universe of a set S of clauses.
Let K be a subset of H and C = C(x1, . . . , xn) a clause of S. Then the instance
C/K of C over K is the following set of ground clauses:

C/K = {C(g) | g = (g1, . . . , gn) ∈ Kn}.

One then defines the instance S/K of S over K as

S/K =
⋃

C∈S

C/K. (12.2)

Example 12.12. Let S be a set of clauses, with the Herbrand universe

H = {a, b, f(a), f(b), f(f(a)), f(f(b)), . . .}.

Let K = {a, b, f(a), f(b)}. Further, let C = {Ax,Bf(x),¬Ab} be a clause of
S.

Instantiating C over K means listing the clauses that one obtains substi-
tuting the variable x with the terms from K, in all possible ways. All these
clauses will be ground. Therefore:

– the substitution of x with a is the clause {Aa,Bf(a),¬Ab};
– the substitution of x with b is the clause {Ab,Bf(b),¬Ab};
– the substitution of x with f(a) is the clause {Af(a), Bf(f(a)),¬Ab};
– the substitution of x with f(b) is the clause {Af(b), Bf(f(b)),¬Ab}.

12.5 Refutation

Each ground clause C is a disjunction of the literals L1, . . . , Lt that do not
contain variables. Depending on the possible world in which it is interpreted,
each literal Li becomes true or false, just as a literal of propositional logic
acquires a truth value by an assignment. The identification

atomic ground formula = propositional variable
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is a simple and clever trick in predicate logic. So for example, the set of ground
clauses

{{Qc, Paf(b), T bg(a, c)}, {¬Qc, Paf(b)}, {Qc,¬Paf(b)}, {¬Tbg(a, c)}}
differs from the set of clauses

{{X,XI,XII}, {¬X,XI}, {X,¬XI}, {¬XII}}
only in the way the variables are written. Identifying each finite set S of
ground clauses of predicate logic with a set of clauses of propositional logic,
DPP acts on S exactly as if S belonged to propositional logic, computing
resolvents and resolvents of resolvents.

Definition 12.13. We say that a set S of clauses is refutable if the empty
clause is derivable from a finite subset S′ of S/HS applying to S′ the Davis-
Putnam procedure, or simply, refuting S′ using Definition 4.3.

Example 12.14. Let S = {{¬Ux,Mx}, {Ua}, {¬Ma}} and

S′ = S/HS = {{¬Ua,Ma}, {Ua}, {¬Ma}}.
Then resolving the first two clauses of S′ we obtain {Ma}, and resolving this
clause with the third clause of S′ we obtain the empty clause. This short refu-
tation guarantees that, whatever possible world we conceive to interpret the
symbols of S, in that world S cannot hold.

For example, in the world in which Ux means “x is ungulate”, My means
“y is left-handed”, and a denotes “Alf”, it cannot be the case that “every
ungulate is left-handed, Alf is ungulate, Alf is not left-handed”. And analo-
gously, in another world in which Ux means “x is a man”, My means “y is
mortal”, and a represents Andrew, it cannot be the case that “every man is
mortal, Andrew is a man, Andrew is not mortal”.

As in the propositional case, the above refutation can be represented eco-
nomically by a graph; the only difference is that now we also have to state
which instances are used to transform clauses into ground clauses:

{¬Ux,Mx}

x=a

{Ua} {¬Ma}

{Ma}

For centuries logic essentially finished here: today logic starts with an in-
depth examination of the relation between the irrefutability of a set S of
clauses and the existence of “possible worlds’, called “models”, in which S
holds.



Exercises 69

Exercises

1. Let E = E(x, y, z) and t = t(u, y, z) be as in Example 12.8. Let r be the
triple of terms (g(z, a), c, f(g(x, v))). Verify that

(E(t))(r) = E(t(r)).

2. Verify that if S is a finite set of clauses, then S/HS is finite iff S does not
contain function symbols.

3. Let C be the clause {Px,Qay,Rzbx}. How many clauses are there in
C/HC?

4. For each set S of clauses and subsets K1 ⊆ K2 ⊆ . . . of HS verify that⋃ S

Ki
=

S⋃
Ki

.

5. Given the clause {Px,¬Pf(a, y)}, list four elements of its Herbrand uni-
verse and instantiate the clause by these elements in all possible ways.

6. Given the set of clauses S = {{¬Ux,Mx}, {Ma}, {¬Ua}}, instantiate it
over its Herbrand universe and verify that S/H is not refutable. (If each

man is mortal and Alf is mortal, why on earth should Alf be a man? Might it

not be a dog?)

7. Find a refutation of the set of clauses

S = {{¬Fx, Px}, {¬Cy,¬Py}, {Fa}, {Ca}}

instantiating S over its Herbrand universe H, and then refuting (graphi-
cally) the set of ground clauses S/H as if they were clauses of propositional
logic.
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The Meaning of Clauses

13.1 Tarski semantics: types and models

The discovery of a non-Euclidean geometry ended a two thousand-year-old
search for a refutation of the set of statements obtained by adding the nega-
tion of the Fifth Postulate (about parallel lines) to the remaining Euclidean
axioms. This is an important example of a general fact: if there exists a pos-
sible world in which a set of statements is true, then there does not exist a
refutation of this set of statements. The reverse implication is a fundamental
result of logic, the completeness theorem of Gödel, for the proof of which we
cannot content ourselves with a generic intuition. Instead, we have to learn
to work with some fundamental concepts that will be defined in this chapter.

To start with, the intuitive notion of a “possible world” is defined as fol-
lows.

Definition 13.1. A type τ is a set of (constant, relation or function) symbols.
A model M of type τ is a pair (M,∗ ) where M is a nonempty set, called the
universe of M, and ∗ is a function that contains τ in its domain, with the
following properties:

– for each constant symbol c ∈ τ , c∗ is an element of M ;

– for each function symbol f ∈ τ with n arguments, f∗ is an n-ary function
from Mn to M , in symbols f∗:Mn →M ;

– for each relation symbol R ∈ τ with m arguments, R∗ is an m-ary relation
in M , in symbols, R∗ ⊆ Mm.

Let S be a CNF formula. Then the type of S is a set of (constant, relation
or function) symbols of S. A model M is suitable for S if its type τ contains
the type of S. One defines analogously the type of a term t and the property
that M is suitable for t.

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 13, © Springer-Verlag Italia 2012
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Notation and tacit assumptions. From now on, all models will be tacitly as-
sumed to be suitable for all clauses, terms and literals to which one will refer
to. As we have already done in Definition 12.7 and in Lemma 12.9, for each
term t we will write t(x1, . . . , xn) to state that the variables of t belong to
the set {x1, . . . , xn}. The same meaning has the notation L(x1, . . . , xn) and
C(x1, . . . , xn), where L is a literal and C is a clause. We will write x as
the abbreviation of the n-tuple (x1, . . . , xn). We will not use the implication
connective and the existential quantifier until Chapter 16.

Definition 13.2. Assume given a term t = t(x1, . . . , xn), a modelM = (M,∗ )
and an n-tuple m = (m1, . . . ,mn) ∈Mn. By induction on the number of func-
tion symbols occurring in t, we define the element tM[m] of M as follows:

aM[m] = a∗, for each constant symbol a (13.1)

(clearly m plays no rôle);
xMi [m] = mi ; (13.2)

and for each k-ary function symbol f and k-tuple (t1, . . . , tk) of terms,

(f(t1, . . . , tk))M[m] = f∗(tM1 [m], . . . , tMk [m]). (13.3)

Given a p-tuple of terms r = (r1(x1, . . . , xn), . . . , rp(x1, . . . , xn)), one defines
rM[m] = (rM1 [m], . . . , rMp [m]) in an analogous way.

So to give a meaning to a term t = t(x1, . . . , xn) in a model M we have to
associate with M an n-tuple of elements m1, . . . ,mn of its universe. When we
defined t(x1, . . . , xn), we did not require that each variable xi occurs in t. In
reality it suffices to associate with M as many elements as there are variables
that actually occur in t. In particular, when t is ground, we can associate with
M the empty 0-tuple ∅, that of course we will not write. In this case, (13.3)
takes the simplified form

(f(t1, . . . , tk))M = f∗(tM1 , . . . , tMk ). (13.4)

For each p-tuple s = (s1, . . . , sp) of ground terms we will use the notation

sM = (sM1 , . . . , sMp ). (13.5)

Example 13.3. Let τ = {c, s, f, g} and let M be the model of type τ
whose universe is the set N = {0, 1, 2, . . .} of natural numbers, and in which
c∗, s∗, f∗, g∗ are respectively zero, the successor function, the addition and
multiplication functions. Let t(x, y) be the term given by f(g(c, s(x)), f(x, y)).
Then tM[(3, 7)] = (0 · (3 + 1)) + (3 + 7) = 10.

Exercise 13.4. Remaining with the same term t(x, y) of the preceding ex-
ample, construct a model Q = (Q,� ) of type τ having as universe the rational
numbers in which c�, s�, f �, g� are defined in such a way that tQ[(1, 0)] = −1.
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The following lemma takes care of the relationship between substitution (a
purely syntactical operation that transforms expressions into expressions) and
the operation g �→ gM (that transforms the ground term g into an element of
the universe of the model M):

Lemma 13.5. Let t = (t1(x1, . . . , xn), . . . , tp(x1, . . . , xn)), and

g = (g1, . . . , gn),

where each gi is a ground term. Then (t(g))M = tM[gM].

Proof. We proceed by induction on the number l of symbols in t. If l = 1, t is
a constant c or a variable xi. If t = c, then (c(g))M = cM = c∗ = cM[gM]. If
t = xi, then we have (xi(g))M = gMi = xMi [gM]. For the induction step, to
keep the notation simple, suppose that p = 1. Then t is of the form f(h) =
f(h1, . . . , hq), where each hi is a term in the variables x1, . . . , xn, for which
the induction hypothesis holds. Therefore using Lemma 12.9 together with
(13.3)-(13.4) we can write

(t(g))M = ((f(h))(g))M = (f(h(g)))M = f∗((h(g))M) =

= f∗(hM[gM]) = (f(h))M[gM] = tM[gM].

�

13.2 Tarski semantics: clauses

Given a set S of clauses of type τ and a model M = (M,∗ ) we are finally able
to give a meaning to the statement “M satisfies S”, in symbols M |= S.

Definition 13.6. Suppose that M is suitable for a set S of clauses and that
P ∈ τ is a k-ary relation symbol. Put t = (t1(x), . . . , tk(x)), where x =
(x1, . . . , xn), and suppose that m = (m1, . . . ,mn) is an n-tuple of elements of
M . Then we define M |= S inductively as follows:

M,m |= P t means tM[m] ∈ P ∗; (13.6)

M,m |= ¬P t means tM[m] /∈ P ∗.

For each clause C ∈ S, where C = C(x1, . . . , xn), we write

M,m |= C iff for some literal L ∈ C, M,m |= L

and
M |= C iff for each m = (m1, . . . ,mn) ∈Mn, M,m |= C.

Finally, M |= S means that M |= C for each C ∈ S. In other words,

for each C = C(x) ∈ S and m ∈ Mn M,m |= L for some L ∈ C. (13.7)
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This definition expresses rigorously the following imprecise intuition:

M |= S is supposed to say that each clause C of S becomes true if it
is read with reference to the constant, relation and function symbols
of M, letting each variable of C range over the universe of M.

WhetherM,m1, . . . ,mn satisfies C or not, only depends on the elements mi of
M associated with the variables of C. Thus in particular, when t = (t1, . . . , tn)
and each term ti is ground we will write M |= P t instead of M, ∅ |= P t. Re-
calling now (13.5), we can write

M |= P t means tM ∈ P ∗ (when t is ground). (13.8)

Definition 13.7. One says that a set S of clauses is satisfiable if there exists
a model that satisfies it. Otherwise, S is said to be unsatisfiable. A clause C
is a (logical) consequence of S if each model M that satisfies S also satisfies
C (it is understood that M is suitable for both S and C).

Exercise 13.8. Verify that the set

S = {{Eaf(b)}, {¬Eba}, {Ef(x)a,¬Eaf(x)}}

of clauses is satisfied by the model N = (N,∗ ) where a∗ = 1, b∗ = 0, f∗(n) =
n + 1, and E∗ is the equality relation on N. Find another model, preferably
with fewer elements.

Exercise 13.9. Verify the satisfiability of each of the following sets of clauses:

(i) {{Pa}, {Pg(g(a))}, {Pg(x),¬Px}};
(ii) {{Px,Qx}, {¬Px,¬Qx}, {Qa}, {¬Qb}};
(iii) {{Nx}, {¬Nx,Nf(x)}, {¬Nf(x), Nx}}.

13.3 Instantiation, resolution and its correctness

The proof of Lemma 3.6 that sanctions the correctness of the resolution rule
for propositional logic immediately guarantees the correctness of the resolu-
tion rule for predicate logic:

Corollary 13.10 (Correctness of ground resolution). Let R be a finite
set of ground clauses and DPP (R) be the set of clauses generated from R by
means of DPP. Then each clause C ∈ DPP (R) is a logical consequence of R.
In other words, if a model M satisfies R, then M also satisfies C.
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The next result confirms the intuition that if a ground clause G is obtained
by an instantiation of a clause C, then G is a logical consequence of C. This
intuition corresponds to the fact that the variables of C are tacitly bound
by the universal quantifier ∀. The proof is a testing ground for checking our
understanding of the notions introduced in this chapter:

Proposition 13.11 (Correctness of ground instantiation). Let C =
C(x1, . . . , xn) be a clause and let g = (g1, . . . , gn) be an n-tuple of ground
terms. If M |= C, then M |= C(g) (always assuming that the model
M = (M, ∗) is suitable for both clauses).

Proof. Writing the clause C as C = {L1, . . . , Lu} we have C(g) = {L1(g),
. . . , Lu(g)}. Recalling (13.7), the assumption M |= C means that for all
m ∈ Mn there exists a literal in C that is satisfied in M,m. In particular,
M,gM |= L for some L ∈ C. Suppose that L = P t, where P is an k-ary
relation and t is an k-tuple of terms. Therefore M,gM |= P t.

By (13.6), tM[gM] ∈ P ∗. By Lemma 13.5, (t(g))M ∈ P ∗. As each term of
the k-tuple t(g) is ground, on the account of (13.8) we can writeM |= P (t(g)),
that is (Lemma 12.9), M |= (P t)(g). In other words, M |= L(g) and hence
M |= C(g) as we wanted.

One deals with the case L = ¬P t the same way. �

Combining this proposition with (12.2) we obtain immediately:

Corollary 13.12. Let S be a set of clauses, with its Herbrand universe H. If
M |= S then M |= S/H.

Exercises

In each of the following exercises verify that the conclusion is not a logical
consequence of the premises, by transcribing the premises (that are above the
line) and the negation of the conclusion into clauses, and subsequently finding
a model that satisfies all these clauses.

1. Each pigeon is two-footed
Bet is not a pigeon
———————————
Bet is not two-footed

Solution. The clauses {¬Px, Tx}, {¬Pb}, {Tb} formalise the premises and the
negation of the conclusion. Let M = (M,∗ ) where M = {b∗}, b∗ = Napoleon,
C∗ = ∅, B∗ = M . Then the model M satisfies all these clauses. Therefore it
is not true that each model (a possible world) that satisfies the premises also
satisfies the conclusion.
It is important to note that when constructing a possible world for the premises
and the negation of the conclusion we have complete freedom in interpreting
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the symbols. In particular, any resemblance of “Bet” to persons living or dead,
bearing or not bearing this name, is purely coincidental. Actually, our present
model M interprets as Napoleon the constant b (which abbreviates the string
of symbols “Bet”). In older texts, to impress upon the students this abstrac-
tion and to avoid any confusion about Bet, this exercise could be given in the
following dry form:

Each P is T
b is not P
—————
b is not T

2. Each child loves his mother
Beatrice loves her mother
—————————————
Beatrice is a child

Solution. Premises: {¬Cx, Lx m(x)}, {Lb m(b)}. Negation of the conclusion:
{¬Cb}. The model M = (M, ∗) in which we put

M = {Athena}, b∗ = Athena, C∗ = ∅, L∗ = {(b∗, b∗)}, m∗(b∗) = b∗

satisfies the premises and the negation of the conclusion.

Note. To formalise “mother of . . . ” we have used the function symbol m. So in

the model M, m∗ is a function, whence we are forced to specify who Athena’s

mother is, even if Athena is not a child. In our present model M, Athena is

her own mother. This is possible because no premise stipulates m(x) �= x. The

omission of this “axiom” is, possibly, a problem of the one who proposed these

clauses. It is not our problem here. The problem of saying “the whole truth”,

for example about the equality, or about the natural numbers will be considered

later.

3. Every combatant is mortal
Alf is a combatant
—————————————
Alf’s mother is mortal

Solution. The premises and the negation of the conclusion are formalised by the
set S = {{¬Cx, Mx}, {Ca}, {¬Mm(a)}} of clauses. In this exercise everything
that is supposed to be known about combatants, mortals, mothers, and Alf is
contained in the set S of clauses. In particular, no clause of S is devoted to stat-
ing other facts that would seem obvious to us, like “Alf’s mother differs from
Alf”, or “the mother of each mortal is mortal”. We should not be distracted by
all these extra hypotheses. Perhaps, using them we might succeed to deduce the
thesis – but we have to work only on the set S of symbols given to us in this
exercise. In a similar way, when we solve systems of equations we do not ask
ourselves whether these equations faithfully represent intersecting geometrical
figures or falling bodies.
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We have to find a model of S. Each reader will find his preferred one. The

model Q = (Q,‡ ) here proposed is suggested by the Greek mythology. We

put Q = {Achilles, his mother, mother of his mother, . . .}, a‡ = Achilles, C‡ =

M‡ = {Achilles}, and m‡(x) = mother of x, for each x ∈ Q. The model satisfies

S because Achilles is the unique combatant in the universe Q, is mortal, and his

mother (the sea nymph Thetis) is not mortal. Therefore the conclusion is not a

logical consequence of the premises.

4. LetN = (N,† ), where N = {0, 1, 2, . . .}, C† = M† = {0}, a† = 0 and m† =
the successor function. Verify that N satisfies the set S of Exercise 3.

5. A dog does not bite a dog
Alf bites Blick
Blick bites Alf
————————————
Alf is not a dog

6. {¬Ix, Pbx}
{Pab}
——————
{¬Ia}

7. Each fast talker promises everybody heaven and earth
Dick promises everybody heaven and earth
———————————————————
There is a fast talker

8. Each A is B
each B is C
each C is D
————————————————
some C is not B or some D is not A

9. {¬Ax,Bx}
{¬By,Cy}
{¬Cz,Dz}
——————
{¬Dt,At}

10. Prove the following statement:

Let M = (M, ∗) be a model of type τ and let m be an element of M .
Suppose that there exists a ground term t of type τ such that tM = m. Let
C(x) be a clause of type τ with a unique variable x. Then M,m |= C iff
M |= C(t).

Hint. Use the associativity of substitution together with Lemma 13.5.
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11. State and prove the generalization of Lemma 13.5 in case g is an n-tuple
of (not necessarily ground) terms.
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Gödel’s Completeness Theorem for the Logic
of Clauses

14.1 Introduction

This fundamental theorem shows the equivalence of two at first sight different
properties of a set of clauses S:

– satisfiability, or the existence of a model of S;
– coherence (= irrefutability = consistency), i.e., the impossibility of ob-

taining the empty clause when applying DPP to a finite subset of S/HS .

Frege and Hilbert had contrasting ideas on these two notions. According to
Frege the existence of a model of S is the definitive proof that S cannot be
refuted: it does not have much sense to go on searching for other proofs of the
coherence of S.

For example, from the axioms that speak about the commutativity and
associativity of addition and multiplication of natural numbers, and of the dis-
tributivity of multiplication over addition, no one will ever obtain the empty
clause, because these axioms obviously have a model.

Hilbert’s view was the opposite: the coherence of a set S of axioms should
be proved in a more down to earth, mechanical fashion, mimicking what DPP
does when S is a set of clauses in propositional logic. Surely DPP does not
take into account our trust that S has a model (or even, a preferred model) –
a trust that turned out to be illusory more than once. DPP is just a simple
mechanism for generating new clauses. Once the impossibility of obtaining
the empty clause is ascertained, one can expect that some form of “model-
building” yields a model of S.

It was Hilbert who first explicitly pointed out that refutations could be
mathematical objects, and posed the completeness problem of logic. Using the
language of these pages we can formulate the problem as follows:

Does each unsatisfiable set of clauses have a refutation?

Gödel’s Completeness Theorem gives a positive answer to this problem.

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 14, © Springer-Verlag Italia 2012
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When S is a finite set of clauses and H ′ is a finite subset of its Herbrand
universe, we will denote by

DPP (S/H ′)

the set of all clauses obtained from S/H ′ by applying DPP. As we have al-
ready noted on page 67, since S/H ′ is a finite set of ground clauses, there is
no problem for DPP to handle such clauses as clauses of propositional logic.

14.2 Completeness and compactness

Theorem 14.1 (Gödel’s Completeness Theorem). Let S be a finite set
of clauses of type τ , with its Herbrand universe H. Then the following state-
ments are equivalent:

(i) S is unsatisfiable;
(ii) S is refutable, in the sense that for some finite subset H ′ of H it holds
� ∈ DPP (S/H ′).

Proof (according to Herbrand and Skolem).
(ii) ⇒ (i) Assume by contradiction that S is both refutable and satisfiable,
say N |= S. From Corollary 13.12 it follows that N |= S/H. A fortiori we
have N |= S/H ′ and then by Corollary 13.10, N |= DPP (S/H ′). The two
clauses that generate in DPP (S/H ′) the empty clause have the form {P t}
and {¬P t} and are both satisfied in N . By (13.8) we have both tN ∈ P ∗ and
tN /∈ P ∗, which is impossible.

(i) ⇒ (ii) We will show that if S is not refutable then it is satisfiable. Let
H1 ⊆ H2 ⊆ . . . be an increasing sequence of finite subsets of H with H =⋃

n Hn. For each fixed i, S/Hi is a finite set of clauses (because both S and Hi

are finite). S/Hi is an input for DPP, whose variables are identified with the
atomic ground formulas of S/Hi. By assumption, � �∈ DPP (S/Hi). By Theo-
rem 4.1 there exists an assignment αi that satisfies (each clause of) S/Hi in the
sense of propositional logic; in symbols, αi |=prop S/Hi. As S/H = S/

⋃
Hn =⋃

S/Hn, by the Compactness Theorem 6.2 there exists an assignment α that
satisfies S/H in propositional logic; in symbols,

α |=prop S/H. (14.1)

The domain of α is the set of atomic formulas of S/H. Let P t be an atomic
formula that occurs (possibly preceded by negation) in a clause of S/H. Then
α assigns to P t a truth value α(P t) ∈ {0, 1}. The assignment α suggests the
following:

Construction of the model M = (M,∗ ) of S of type τ . To start with, we put
M = H. For each n-ary predicate symbol P ∈ τ , we define the relation P ∗ ⊆
Mn putting for each t ∈ Mn = Hn,

t ∈ P ∗ iff α(P t) = 1. (14.2)
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In other words, t ∈ P ∗ iff α |=prop P t. In particular, if the ground atomic
formula P t is not in the domain of α we have t �∈ P ∗. For each constant
a ∈ τ we put a∗ = a. For each k-ary function symbol f ∈ τ we define the
function f∗:Mk → M putting f∗(t1, . . . , tk) = f(t1, . . . , tk). This completes
the construction of M.

Recalling the notation (13.4), and arguing by induction on the number of
functions symbols in the term h ∈ H we see that

hM = h. (14.3)

Final claim. M |= S.

For each clause C = C(x1, . . . , xn) ∈ S and n-tuple g ∈ Mn = Hn

we want to prove that M,g |= C. We write C = {L1, . . . , Lu}, so C(g) =
{L1(g), . . . , Lu(g)}. As C(g) is an element of S/H , it follows from (14.1) that

α |=prop C(g), that is, α |=prop L(g) for some literal L ∈ C.

Suppose that L has the form ¬P t (the case L = P t is similar). We have
α |=prop (¬P t)(g), and therefore α |=prop ¬P (t(g)). From (14.2) we obtain
t(g) �∈ P ∗. Applying (14.3) to the sequence t(g) of ground terms we can
write (t(g))M �∈ P ∗. By Lemma 13.5 we obtain tM[gM] �∈ P ∗. By (13.6) we
can write M,gM |= ¬P t. Again by (14.3) we obtain M,g |= ¬P t, that is,
M,g |= L and hence M,g |= C, as we wanted. �

Exercise 14.2. The two statements (i) and (ii) of the Completeness Theo-
rem 14.1 are also equivalent to each of the following two statements:

(iii) for each sequence H1 ⊆ H2 ⊆ . . . of finite subsets of H with H =
⋃

Hn,
there exists some i such that � ∈ DPP (S/Hi);

(iv) for some sequence H1 ⊆ H2 ⊆ . . . of finite subsets of H with H =
⋃

Hn,
there exists some i such that � ∈ DPP (S/Hi).

Theorem 14.3 (Gödel Compactness Theorem). Let S be a countably in-
finite set of clauses of type τ , with its Herbrand universe H. Then the following
statements are equivalent:

(i) S is unsatisfiable;

(ii) some finite subset S′ of S is unsatisfiable;

(iii) for some finite subset S′ of S and finite subset H ′ of H we have � ∈
DPP (S′/H ′).

Proof. By the Completeness Theorem (iii) ⇔ (ii). Trivially, (ii) ⇒ (i). The
proof that (i) ⇒ (iii) proceeds by supposing that for no finite subset S′ of S
and finite subset H ′ of H we have � ∈ DPP (S′/H ′). Then for each pair
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(S′,H ′) the model-building procedure of propositional logic provides an as-
signment αS′,H′ satisfying S′/H ′ in propositional logic. It is easy to see that

S

H
=

⋃ {
S′

H ′ | S′ ⊆ S, H ′ ⊆ H, S′,H ′ finite
}

. (14.4)

Therefore S/H is finitely satisfiable in propositional logic. The Compactness
Theorem for propositional logic provides an assignment α |=prop S/H. From
α we construct a model of S by means of the same technique as the one used
in the proof of the Completeness Theorem 14.1.

Therefore S is satisfiable. We have proved ¬(iii) ⇒ ¬(i), that is, (i) ⇒
(iii). �

14.3 Comments on the Completeness Theorem

The steps of DPP that, having as input the finite subset S/H ′ of S/H, ar-
rive at the empty clause, produce nothing else but strings of symbols of the
alphabet Σ. The resulting sequence of symbols is, however, an ultimate, math-
ematically convincing “proof” that the statement formed by S does not hold
in any “possible world” M, and hence S is unsatisfiable.

But what to think if, no matter how we choose finite sets H1 ⊆ H2 ⊆ . . .
with H =

⋃
Hn, and apply DPP to each S/Hi we never get the empty clause?

Gödel’s Completeness Theorem states that this sequence of failed attempts of
finding the empty clause is constructing a model of S.1

On the other hand, anybody who announces having proved the unsatisfia-
bility of S, perhaps also the Martian quoted on the previous pages, equipped
with extraterrestrial deductive powers, is warned that also our meticulous
reasoner DPP will arrive sooner or later at the same result, by producing the
empty clause.

Gödel’s Completeness Theorem does not preclude the discovery of new
techniques of proving theorems that are faster or more efficient than the ones
we use today.

And in fact, in the subsequent sections we will describe some tools (for
example, the equality predicate, the nonclausal formulas) used in the math-
ematical practice. But in essence, “proofs” boil down to the time-honoured
manipulations of our logical calculus, namely instantiation and resolution: no
one is allowed to draw conclusions that cannot be drawn from this calculus.

As we have seen, Gödel’s Completeness Theorem states that the unsatis-
fiability of S (a condition that calls for a galaxy of “possible worlds” to be
explored by S) is equivalent to the existence of a refutation of S – meaning
that for some Hi the empty clause belongs to DPP (S/Hi). So the contrast
1 Recall the failed attempt of Saccheri to prove the incompatibility of the postu-

lates of Euclid with the negation of the Fifth Postulate: page after page, he was
in fact describing a model of non-Euclidean geometry.
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between Frege and Hilbert regarding the satisfiability of S doesn’t look so
drastic, after all: the former asked for the existence of a model of S, while the
latter asked for the irrefutability of S; and the Completeness Theorem states
that these two conditions are equivalent.

Actually, there would be no contrast at all if, just as the unsatisfiability of
a set S of clauses is always certified by a refutation, also the satisfiability of S
could be taken care of by some sort of “satisfiability certificate” – say, a “me-
chanical procedure” DPP � that, on input S, terminates in a finite number of
steps iff S is satisfiable. Then, by simultaneously launching DPP and DPP �,
after a finite number of steps precisely one of them would terminate, allowing
us to decide mechanically whether S is satisfiable or unsatisfiable. After all,
this is the status of satisfiability and unsatisfiability in propositional logic.

A series of fundamental results of 20th century mathematical logic, the
coverage of which asks for a second course in logic, (i) gave a convincing defi-
nition of a “mechanical procedure that terminates in a finite number of steps”
and (ii) proved the nonexistence of a mechanical procedure that terminates in
a finite number of steps iff S is satisfiable. This is the Turing-Church Theo-
rem on the undecidability of predicate logic, answering Hilbert’s fundamental
Decision Problem (Entscheidungsproblem).

Exercises

Refutational Method

In each of these exercises the conclusion is a consequence of the premises.
Deduce the conclusion from the premises in a finite number of purely formal
steps using the following refutational method that realises the proof of Gödel
theorem:

(i) Formalise the premises and the negation of the conclusion, thus obtaining
a finite set of clauses S with its Herbrand universe H.

(ii) Instantiate S over a finite subset H ′ of H; for brevity try to write a
refutation with a few resolvents compared to those produced by DPP:
only the computer has enough time and patience for carry out completely
DPP(S/H ′).

(iii) Check whether DPP(S/H ′) produces the empty clause. Otherwise en-
large H ′ to a subset H ′′ ⊇ H ′ and return to step (ii). Only look for the
few instantiations that are really needed to obtain the empty clause.

1. Every combatant is mortal
Ach is a combatant
the mother of every combatant is mortal
——————————————————
the mother of Ach is mortal
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Hint. Formalising the premises and the negation of the conclusion we obtain the
set R = {{¬Cx, Mx}, {Ca}, {¬Mz, Mm(z)}, {¬Mm(a)}} of clauses. All infor-
mation about combatants, mortals, mothers and Ach that we can use to solve
this exercise is contained in the set of clauses R.

We realise that there does not exist a “possible world” M, possibly a mytho-

logical one, that is a model of R. This intuition is confirmed by the following

refutation of R: instantiating R over the subset {a} of the Herbrand universe of

R we obtain an unsatisfiable set R/{a} of clauses of propositional logic. If M
existed, it would have to satisfy R/{a}, together with every clause obtained by

means of DPP. But among these clauses there is the empty clause.

The following graph represents a refutation of the premises and of the negation
of the conclusion; all instantiations are over a:

{¬Cx, Mx} {Ca} {¬Mz, Mm(z)} {¬Mm(a)}

{Ma} {Mm(a)}

2. Dog does not bite a dog
Alf bites Blick
————————————————
at least one among Alf and Blick is not a dog

Solution. The following graph represents a refutation of the premises and of the
negation of the conclusion:

{Bab} {¬Dx,¬Dy,¬Bxy}
x=a,y=b

{Da} {Db}

{¬Db,¬Bab}

{¬Db}

3. The tardy bird does not catch the worm
Alf is a bird
Alf catches Bic
Bic is a worm
—————————————
Alf is not tardy
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4. Each primate is a vertebrate
the father of each primate is a primate
Arg is a primate
—————————————————
the father of Arg is a vertebrate

5. {¬Px,¬Ry, Txy}
{¬Rz, Tzb}
{Ra}
{Pa}
—————————
{Taa, Tab}
Hint. Negating the conclusion means producing two clauses {¬Taa} and {¬Tab}.
Note. Not all six clauses of this exercise are necessary for a refutation.

6. Every pianist admires every violinist
Every violinist admires Bill
Alice is both a pianist and a violinist
————————————————
Alice admires herself and Bill

7. {¬Fx, Pm(x)}
{¬Cy,¬Pm(y)}
—————————
{¬Fa,¬Ca}

8. In Canto XXVI of Dante’s Inferno the devil gives a lesson of logic to Saint
Francis who is unfairly bringing count Guido da Montefeltro to paradise.
In verses 118-119 one finds two premises:2

One may not be absolved without repentance,
nor repent and wish to sin concurrently.

In the preceding verses we find the third premise, under the form of a
self-denouncement:

Guido da Montefeltro wants to commit a sin.
Finally, there is a doctrinal premise that is so obvious that Dante does
not need to announce it explicitly:

Everybody who is not absolved goes to hell.
Using the constant c = count Guido da Montefeltro and the predicates
Rx = “x repents”, Ay = “y is absolved”, Wz = “z wants to commit
a sin”, and Hu = “u goes to hell”, deduce from the four premises the
diabolic conclusion that Guido da Montefeltro goes to hell.

2 Dante Alighieri, The Inferno, translation by Robert Hollander.
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Solution (instantiating each variable by c):

{¬Rx,¬Wx} {Rx,¬Ax} {Ax,Hx} {¬Hx} {Wc}

{Ac}

{Rc}

{¬Wc}

9. Find in the preceding exercise another refutation, starting from the resol-
vent {¬Rc} of {¬Rc,¬Wc} and {Wc}.

Satisfiability/Unsatisfiability

For each of the following exercises write in clauses the premises and the nega-
tion of the conclusion; then informally assess whether the conclusion is a con-
sequence of the premises. If this is not the case, construct a model (preferably
with a few elements) for the premise P and the negation N of the conclusion.
If instead the conclusion is a consequence of the premise, by appropriately
instantiating P and N over the Herbrand universe, find the empty clause
using the refutational method. Gödel theorem assures us that this approach
succeeds one way or another.

1. Every hare fears every wolf: {¬Hx,¬Wy,Fxy}
Bic fears nobody: {¬Fbz}
Ark is a wolf: {Wa}
————————————————————
Bic is not a hare: {¬Hb}

2. Every hare fears any fox that chases it
Bic is a hare
—————————————————
Bic fears some fox
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3. {¬Px,¬Ey,Mm(x)m(y)}
{¬Mm(a)m(b)}
————————————————
{¬Pb,¬Ea}

4. {¬Px,¬Ey,Mm(x)m(y)}
{¬Mm(a)m(b)}
————————————————
{¬Pa,¬Eb}

5. The mass of every flea is smaller than the mass of every elephant
The mass of Alf is not smaller than the mass of Bet
Bet is an elephant
—————————————————————————————–
Alf is not a flea

6. {¬Ix,¬Axf(y)}
{If(z)}
————————————————
{¬Af(a)a}

7. Those who are uneducated cannot defend themselves against touts
Biago cannot defend himself against himself
—————————————————————————————–
Biagio is uneducated or is not a tout

8. In chapter VI of the short story The Death of Ivan Ilych by Lev Tolstoy,
the protagonist is confronted with the syllogism

Caius is a man, men are mortal, therefore Caius is mortal

he had studied in a logic manual that was in vogue at his times. Com-
ment on the considerations of Ivan Ilych and assess the plausibility of his
observations. Here is the relevant fragment:3

Ivan Ilych saw that he was dying, and he was in continual despair. In
the depth of his heart he knew he was dying, but not only was he not
accustomed to the thought, he simply did not and could not grasp it.
The syllogism he had learnt from Kiesewetter’s Logic: “Caius is a man,
men are mortal, therefore Caius is mortal,” had always seemed to him
correct as applied to Caius, but certainly not as applied to himself.
That Caius – man in the abstract – was mortal, was perfectly correct,
but he was not Caius, not an abstract man, but a creature quite, quite
separate from all others. He had been little Vanya, with a mamma and a
papa, with Mitya and Volodya, with the toys, a coachman and a nurse,
afterwards with Katenka and with all the joys, griefs, and delights of

3 L. Tolstoy, The Death of Ivan Ilych, translation by Louise and Aylmer Maude.
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childhood, boyhood, and youth. What did Caius know of the smell of
that striped leather ball Vanya had been so fond of? Had Caius kissed
his mother’s hand like that, and did the silk of her dress rustle so for
Caius? Had he rioted like that at school when the pastry was bad? Had
Caius been in love like that? Could Caius preside at a session as he
did? “Caius really was mortal, and it was right for him to die; but for
me, little Vanya, Ivan Ilych, with all my thoughts and emotions, it’s
altogether a different matter. It cannot be that I ought to die. That
would be too terrible.”
Such was his feeling:
“If I had to die like Caius I would have known it was so. An inner voice
would have told me so, but there was nothing of the sort in me and I and
all my friends felt that our case was quite different from that of Caius.
and now here it is!” he said to himself. “It can’t be. It’s impossible! But
here it is. How is this? How is one to understand it?”

a) As a mathematical exercise, this syllogism is perfectly valid for a gene-
ric man, like Caius, but cannot be applied to Ivan Ilych, who is not a
generic man and has his own personal life story which Caius cannot
claim as his own. Caius can pass away at any moment, but by a similar
approach as the one discussed in the solution of Exercise 3 on page
76, by adding appropriate axioms specific for Ivan Ilych, his mother
and his relatives, the conclusion of the syllogism could be turned into
the conclusion that Ivan Ilych will continue to live for several years.

b) Just as the conjunction “if”, also the adjective “every” has a more
restricted meaning in mathematics than in the natural language. One
thing is to say “every crow is black”, another is to say “every natu-
ral number has a successor”, and still another thing is to say “every
nonempty set of natural numbers has a least element”. Such simple
symbolic manipulations as instantiation and resolution just fall short
of taking control of all the facets of the adjective “every”.
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Equality Axioms

15.1 Introduction

The possibility of enriching the logical calculus with the equality symbol is
not a trifling matter. This symbol is found everywhere in mathematics, and
makes sense in every Tarskian model. This is not the case for the other math-
ematical relations. For example, the relation “is bigger than” makes no sense
for lines, the relation “belongs to” makes no sense for natural numbers, etc.

Therefore we enrich our alphabet with the new binary relation symbol ≈.
Later on, we will write = instead of ≈, but for now the risk of confusion is
too big. For convenience, we will write x ≈ y instead of ≈ xy. We will define
a model with equality M = (M,∗ ) where the equality symbol ≈ is interpreted
as the equality relation on M . Therefore

≈∗ coincideswith the relation {(x, y) ∈M2 | x = y}.

It may happen that the equality symbol occurs in a satisfiable set S of clauses,
but no model with equality satisfies S:

Example 15.1. The set S constructed from three clauses

{a ≈ b}, {Pa}, {¬Pb}

is satisfiable, for example, by a model M = (M,∗ ) whose universe has two
elements a∗, b∗, the binary relation symbol ≈ is interpreted as the set M2,
(therefore x ≈∗ y for every x, y ∈ M), and the predicate P is interpreted as
the singleton set {a∗}.

On the other hand, S is not satisfiable by any model N = (N,� ) with
equality. In fact, in N we have that a� and b� are the same element, and
therefore it is impossible that a� ∈ P � and b� �∈ P �.

Mundici D.: Logic: a Brief Course.
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To extend the Completeness Theorem to all clauses containing the equal-
ity symbol, we need to extend the logical calculus. Fortunately this extension
does not call for new “deduction rules” beyond instantiation and resolution.
Rather, we will just add the few clauses – the “equality axioms” – that consti-
tute the outcome of thousand years of reflections on the properties of equality.

15.2 Axiomatisation of the equality

To begin, recall three equality axioms, that we write in the usual mathematical
language:

– (Reflexivity) ∀x (x ≈ x);
– (Symmetry) ∀x∀y (x ≈ y → y ≈ x);
– (Transitivity) ∀x∀y∀z ((x ≈ y ∧ y ≈ z)→ x ≈ z).

For each function symbol f(x1, . . . , xn) and relation Px1 · · ·xm, using the
abbreviations f(x) and Px, we also introduce the following congruence ax-
ioms:

∀x1 · · · ∀xn∀x′1 · · · ∀x′n((x1 ≈ x′1 ∧ . . . ∧ xn ≈ x′n) → f(x) ≈ f(x′))

and

∀x1 · · · ∀xm∀x′1 · · · ∀x′m ((x1 ≈ x′1 ∧ . . . ∧ xm ≈ x′m)→ (Px→ Px′)).

Consequently, when we have a set S of clauses in which there appears the
equality symbol, the logical calculus adds to S three clauses

{x ≈ x}, {¬x ≈ y, y ≈ x}, {¬x ≈ y, ¬y ≈ z, x ≈ z},
and for each function symbol f and relation symbol P that appears in S, it
also adds the clauses

{¬x1 ≈ x′1, . . . ,¬xn ≈ x′n, f(x1, . . . , xn) ≈ f(x′1, . . . , x
′
n)}

{¬x1 ≈ x′1, . . . ,¬xm ≈ x′m, ¬Px1, . . . , xm, Px′1, . . . , x
′
m}.

Instead of ¬x ≈ y we will write x �≈ y.

Theorem 15.2. Let S be a set of clauses. Let S≈ be the set of clauses obtained
by adding to S the clauses of the equality axioms and the congruence axioms
for the function and relation symbols of S. Then the following conditions are
equivalent:

(i) S is satisfiable by a model with equality;

(ii) S≈ is satisfiable.
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Proof. (i) ⇒ 2 Let N = (N,� ) be a model with equality that satisfies S.
Clearly, the relation ≈� is an equivalence relation on the universe N . Further,
the congruence axioms hold in N for each function and relation symbol that
occurs in S. Therefore N |= S≈.
(ii) ⇒ 1 Let M = (M,∗ ) be a model of S≈. From the fact that M satisfies
the first three axioms, we obtain that the relation ≈∗⊆M2 is an equivalence
relation on M . Let N be the set of its equivalence classes. For each x ∈ M let
〈x〉 ∈ N be its equivalence class. We will construct a model N = (N,� ) with
equality that satisfies S. Therefore we define ≈� as the equality relation on
N . For each n-ary function symbol f putting

f �(〈a1〉, . . . , 〈an〉) = 〈f∗(a1, . . . , an)〉, (ai ∈ M) (15.1)

we have a correct1 definition of a function f �:Nn → N . This is so because M
satisfies the congruence axiom for f . Analogously, putting

(〈b1〉, . . . , 〈bm〉) ∈ P � iff (b1, . . . , bm) ∈ P ∗ (bi ∈ M) (15.2)

we define an m-ary relation P � in N. This concludes the definition of N .
By construction N is a model with equality. From (15.1) for each term
t(x1, . . . , xk) and k-tuple a = (a1, . . . , ak) ∈ Mk, by induction on the number
of function symbols in t, we obtain

〈tM[a]〉 = tN [〈a〉], where 〈a〉 stands for (〈a1〉, . . . , 〈ak〉). (15.3)

Let L be a literal of the form P t, where t = t(x1, . . . , xk) (the case L = ¬P t
is analogous), and let m be an element of Mk. Using (15.1)–(15.3) we see that

M,m |= L iff N , 〈m〉 |= L.

Therefore, for each clause C = C(x1, . . . , xk) of S and m ∈Mk we have

M,m |= C iff N , 〈m〉 |= C.

As M |= C for each clause C ∈ S, we conclude that N |= S. �

Example 15.3 (Continuation of Example 15.1). The set S = {{a ≈
b}, {Pa}, {¬Pb}} becomes unsatisfiable as soon as we add the congruence
axiom

{x �≈ y,¬Px, Py}
for P . Let us instantiate this axiom replacing x by a and y by b. We then
obtain the set {{a ≈ b}, {Pa}, {¬Pb}, {a �≈ b,¬Pa, Pb}} of clauses that is
easily seen to be refutable.

From now on we abolish the heavy symbol ≈ and write = instead

1 i.e., independent of the choice of the representantive x in the class 〈x〉.
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Exercises

1. Formalise the following statements as clauses with equality:

a) if Clementine is the maternal grandmother of Luisa, then she is also
the mother of Filippo and of Marta;

b) there are two second prize winners and one first prize winner;

c) either the earth is the unique planet inhabited by mathematicians, or
at least two mathematicians live on different planets.

2. Verify by means of a refutation the unsatisfiability of the set S of Exam-
ple 15.3.

3. Describe a model for the set

S = {{a = b}, {f(a) = b}, {f(b) �= a}}

of clauses. Verify that S does not have any model with equality.

4. Using the resolution method prove that the conclusion is a logical conse-
quence of the premise:

∀x∀y(x = a ∨ y = a)
—————————
f(a, b) = f(b, a)

Solution:

{x = a, y = a}
x=b,y=b

{f(a, b) = f(b, a)} {x = x , y = y , f(x, y) = f(x , y )}

x=a,y=b,x =b,y =a

{b = a}
by symmetry

{a = b, b = a}

{a = b} {a = b}

Note. “by symmetry” means that one should take a resolvent of the clause
{b = a} with an instantiation of the clause that expresses the symmetry of
equality.
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5. For each example check whether the conclusion is a logical consequence
of the premise. If not, find a model with equality for the premise and the
negated conclusion; if yes, prove it using the refutational method:

a) a �= b
∀x(x = a ∨ x = b)
∀x x = f(x)
f(c) = b
—————————
c = b

b) a �= b
∀x(x = a ∨ x = b)
∀x x �= f(x)
—————————
∃x f(f(x)) = x

c) ∀x(x = a ∨ x = b)
—————————
∃x f(f(x)) = x
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The Predicate Logic L

16.1 Introduction

In this chapter, a bit more dense than the other ones, we describe a logic,
denoted by L, and known as “predicate logic” or “elementary logic”, or also
“first-order logic.” The syntax of L is perfectly tailored for the language of
mathematics, which usually avoids clauses.

Let Σ be the alphabet defined at the beginning of Chapter 12. Adding
the equality symbol we have the alphabet Σ=. We update Definition 12.5 of
an atomic formula decreeing that also every string t1 = t2 (where t1, t2 are
terms) is an atomic formula.

Definition 16.1. The formulas (of L) are the strings over Σ= given by the
following inductive definition:

– each atomic formula is a formula;
– if F and G are formulas, then ¬F, (F ∨G), (F ∧G), (F → G), are formulas;
– if F is a formula and x is a variable, then (∃xF ) and (∀xF ) are formulas.

For each formula F the unique readability principle holds, that allows us
to uniquely decompose F into its constituents. The proof is a variant of that
of Theorem 7.3. This principle also allows us to define the free occurrences of
a variable x in a formula F as follows:

– each occurrence of each variable in an atomic formula is free;
– the free occurrences of a variable in a negated formula ¬F are exactly its

free occurrences in F ;
– the free occurrences of a variable in a formula of the type (F ∨ G), (F ∧

G), (F → G), are the free occurrences in F together with the free occur-
rences in G;

– the variable x does not have a free occurrence in any formula (∃xF ) or
(∀xF ), while each other variable y has the same free occurrences as in F .

Mundici D.: Logic: a Brief Course.
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An occurrence of x in F is called bound if it is not free. A variable z is

called free in F if it has a free occurrence; z is called bound in F if it has a
bound occurrence.

The example of the formula ((∃zPz) ∧ Qz) shows that a variable can be
both free and bound. Writing F (x1, . . . , xn) we mean to say that the free
variables of the formula F are included in the set {x1, . . . , xn}.
Definition 16.2. A statement is a formula in which all occurrences of the
variables are bound.

From now on the word “model” stands for “model with equality”. Further, all
models will be suitable for all formulas to which they refer.

For simplicity we will omit outer parentheses and will apply the precedence
rules already introduced for propositional logic.

Definition 16.3 (Extension of Definition 13.6 by induction on the
number of connectives and quantifiers in F ). Let F (x1, . . . , xn) be a
formula M = (M, ∗) a model, and m = (m1, . . . ,mn) an n-tuple of elements
of M .

– if F is an atomic formula, of the form P t, then M,m |= F (read: “M
with m satisfies F”) means that tM[m] is an element of P ∗;

– if F is u = v, M,m |= F means that uM[m] = vM[m];
– if F is a negated formula, ¬G, then M,m |= ¬G means that it is not true

that M,m |= G;
– if F is a conjunction or disjunction or an implication of two formulas H

and K, then we stipulate that:
– M,m |= H ∧K means that M,m |= H and M,m |= K;
– M,m |= H ∨K means that M,m |= H or M,m |= K;
– M,m |= H → K means that if M,m |= H then M,m |= K;

– if F is of the form ∀xG(x1, . . . , xn, x), then M,m1, . . . ,mn |= F means
that for each m ∈ M we have M,m1, . . . ,mn,m |= G;

– if F is of the form ∃xG(x1, . . . , xn, x), then M,m1, . . . ,mn |= F means
that there exists m ∈ M such that M,m1, . . . ,mn,m |= G.

This definition may appear pedantic because it just explains the intuition
according to which M with m satisfies F if from the reading of F , after sub-
stituting the constant, function and predicate symbols by respective elements,
functions and relations of M, and after substituting each variable xi by the
element mi, and interpreting the quantifiers “for all” and “there exists” on
the universe of M, one obtains a true statement. The point is that with this
imprecise intuition we will not succeed to advance in the study of predicate
logic: for our proofs we will need to work by induction on the number of
symbols in F using the unique reading property of F .
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We further note that this definition also gives meaning to formulas such
as ∃z a = b, or ∀x∃xPxx that upon first reading may appear ungrammatical.

Definition 16.4. We say that the formula F (x1, . . . , xn) is satisfiable if there
exists a model M with an n-tuple m of elements of its universe M such that
M,m |= F .

Formula G(x1, . . . , xn) is (logically) equivalent to F , in symbols F ≡ G,
if for every model M suitable for both formulas and for every m ∈ Mn we
have M,m |= F iff M,m |= G.

A statement E is a logical consequence of the statements E1, . . . , Em if
every model M of E1 ∧ . . . ∧Em is a model of E. It is understood that M is
suitable for both statements.

From these definitions we immediately have:

Proposition 16.5. Given statements E1, . . . , Em, E the following conditions
are equivalent:

(i) E is a logical consequence of E1, . . . , Em;

(ii) the statement (E1 ∧ . . . ∧Em) → E is a tautology, i.e., it is satisfied in
every model suitable for it;

(iii) the statement E1 ∧ . . . ∧Em ∧ ¬E is unsatisfiable.

So the notion of the logical consequence can be reduced to the notion of
unsatisfiability.

16.2 Transformation of formulas in PNF

To apply to L the logical calculus prepared in the preceding chapters, we will
transform each statement F into an appropriate set SF of clauses such that
F is satisfiable iff SF is.

We first consider the following proposition, the proof of which is a good
exercise for checking our understanding of the usefulness of Definition 16.3:

Proposition 16.6. Let F,G,H,K be formulas. Then we have the following
equivalences:

(i) F → G ≡ ¬F ∨G;
(ii) if F ≡ G, then ¬F ≡ ¬G;
(iii) if F ≡ G and H ≡ K, then F ∧H ≡ G ∧K and F ∨H ≡ G ∨K;
(iv) if F ≡ G, then ∃xF ≡ ∃xG and ∀xF ≡ ∀xG;
(v) ¬∃xF ≡ ∀x¬F ; ¬∀xF ≡ ∃x¬F ;
(vi) if x does not have any free occurrence in G, then (∀xF )∧G ≡ ∀x(F ∧G),

(∃xF ) ∧ G ≡ ∃x(F ∧ G), (∀xF ) ∨ G ≡ ∀x(F ∨ G), (∃xF ) ∨ G ≡
∃x(F ∨G).
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The transformation of a formula F into a set of clauses is based on the

following preliminary result:

Theorem 16.7. Every formula F is equivalent to a PNF formula1, that is, a
formula PF of the form

Q1x1 · · ·Qkxk G, in short, QxG, (16.1)

of the same type and with the same free variables as F , that enjoys the fol-
lowing properties:

(i) G is quantifier-free and does not contain the implication symbol →;
(ii) for all i = 1, . . . , k, Qi ∈ {∃,∀};
(iii) xi �= xj for i �= j.

Proof. Applying Proposition 16.6(i) we can assume that the connective →
does not occur already in F . We now proceed by induction on the number n
of connectives and quantifiers in F , using the unique reading property of F .
If n = 0, then F is an atomic formula and it suffices to put PF = F . For the
induction step we have the following cases:
Case 1. F = ¬K. Using the induction hypothesis and Proposition 16.6(ii) we
can write F ≡ ¬PK . Repeatedly applying Proposition 16.6(v) we obtain the
desired formula PF .
Case 2. F = H ∨K. Using the induction hypothesis and Proposition 16.6(iii)
we can write F ≡ PH∨PK . Using the notation of (16.1) we write PH = Q′yA
and PK = Q′′zB.

We note that every free variable of A does not have a bound occurrence in
A, but some free variable of Q′yA might have a bound occurrence in Q′′zB,
and vice versa. Therefore we rewrite all bound variables y of PH and z of PK

using “new” variables u and w (that is, not occurring in PH and PK).
We denote by Au and Bw the result of this transformation of the formulas

A and B. Clearly, Q′yA ≡ Q′uAu and Q′′zB ≡ Q′′wBw. Applying repeat-
edly Proposition 16.6(vi) we see that Q′uQ′′wAu ∨Bw is the desired prenex
normal form for F .
Case 3. F = H ∧K. It is similar to Case 2.
Case 4. F = ∃yL. Applying the induction hypothesis and Proposition 16.6(iv)
we can write F ≡ ∃yPL.

If y does not occur in PL, the quantification ∃y does not play any rôle in
PL and we can put PF = ∃yPL, or simply PF = PL.

If y has a bound occurrence in PL, (and therefore, as we have noted, does
not have any free occurrence) substituting y in PL by a new variable we obtain
a new PNF for L, and proceed as in the preceding case. Also in this case the
quantification ∃y does not play any rôle in PL.

1 PNF stands for “prenex normal form”.
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There remains the case in which y is free (and therefore has no bound
occurrence) in PL. Then the formula ∃yPL is the desired PNF for F .
Case 5. F = ∀yL. Similar to Case 4.

Direct inspection shows that F and PF have the same type. This completes
the proof. �

Example 16.8. Omitting for the sake of readability some parentheses, one
obtains the prenex normal form of the formula (∃x∀yPxy)∨((∃xQx)∧(∀yQy))
by writing (∃x∀yPxy) ∨ ((∃zQz) ∧ (∀wQw)), and then

∃x∀y∃z∀w(Pxy ∨ (Qz ∧Qw)). (16.2)

The steps that transform F into PF are completely mechanical and PF is just
a bit longer than F . This holds in general.

Whenever the commutativity of the binary connectives allows it, it is con-
venient to give precedence to the existential quantifier: so for example it is
more convenient to transform the statement ∀xPx∧∃yQy into ∃y∀x(Px∧Qy)
than into ∀x∃y(Px∧Qy). Attention! ∃y∀xPxy is not equivalent to ∀x∃yPxy.

16.3 Skolemisation

Suppose now that F is a statement. Therefore its prenex normal form PF =
Q1x1 · · ·QkxkG satisfies conditions (i)-(iii) of Theorem 16.7 and the variables
of PF are included in the set {x1, . . . , xk}.

Suppose that some quantifier Qi is ∃.
Case 1. Q1 = ∃. Then a Skolemisation step consists of substituting x1 in G
by a new constant a, and transforming PF into the statement

sk(PF ) = Q2x2 · · ·QkxkG(a, x2, . . . , xk).

Case 2. The first existential quantifier of PF is preceded by n universal quan-
tifiers, PF = ∀x1 · · · ∀xn∃xn+1QxG. Then letting f be a new n-ary function
symbol, a Skolemisation step of PF produces the statement

sk(PF ) = ∀x1 · · · ∀xnQx G(x1, . . . , xn, f(x1, . . . , xn), xn+2, . . . , xk), (16.3)

obtained by substituting the variable xn+1 in PF by the term f(x1, . . . , xn).

So a Skolemisation step eliminates in each statement that satisfies condi-
tions (i)–(iii) of Theorem 16.7 the first existential quantifier from the left and
produces a new statement that satisfies these three conditions.

Assuming there are m existential quantifiers in PF , applying m Skolemi-
sation steps we have a finite sequence of statements

PF �→ sk(PF ) �→ sk(sk(PF )) �→ sk(sk(sk(PF ))) �→ . . .
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that transform the statement PF into the statement ∀z1 · · · ∀zk−mH, where
H does not contain quantifiers, and the variables zj are the universally quan-
tified variables xi of PF listed in the same order. We call ∀z1 · · · ∀zk−mH the
Skolemisation of PF .

Example 16.9. The statement ∃x∀yPxy is Skolemised to ∀yPay. By the
same token ∀x∃yGxy becomes ∀xGxf(x). The statement ∃x∃y∀z∀w∃v∃tPxv∧
Qvwz ∧Pyyxvt becomes ∀z∀wPaf(z, w)∧Qf(z, w)wz ∧Pbbaf(z, w)g(z, w).
Applying two Skolemisation steps, statement (16.2) is transformed into

∀y∀w(Pay ∨ (Qf(y) ∧Qw)). (16.4)

Theorem 16.10 (Skolem). Given a statement F of type τ suppose that its
prenex normal form PF has m existential quantifiers. Let SF be the formula
obtained from PF by means of m Skolemisation steps. Then we have:

(i) every model of SF is also a model of F ;

(ii) if the model M of type τ satisfies F , then SF has a model M′ with the
same universe as M and with the same interpretation of the symbols
of F ;

(iii) F is satisfiable iff SF is satisfiable.

Proof. It suffices to consider a single Skolemisation step. Moreover, by The-
orem 16.7 we can suppose that F is already in PNF, i.e., F = PF . We will
consider only Case 2 of which Case 1 is a trivial variant. Let sk(PF ) be as in
(16.3).
(i) Let N = (N, ∗) be a model of sk(PF ). By Definition 16.3 this means that
for every n-tuple d1, . . . , dn of the elements of N it holds

N , d1, . . . , dn, f∗(d1, . . . , dn) |= Qx G(x1, . . . , xk).

A fortiori, for every n-tuple d1, . . . , dn of the elements of N there exists an
element d ∈ N such that N , d1, . . . , dn, d, |= Qx G(x1, . . . , xk). Again by Def-
inition 16.3 this means that N |= ∀x1 · · · ∀xn∃xn+1QxG, that is, N |= PF .

(ii) Let M = (M, �) be a model of PF . By Definition 16.3, for every n-tuple
e1, . . . , en of the elements of M there exists an element e ∈M such that

M, e1, . . . , en, e, |= Qx G(x1, . . . , xk).

Using the Axiom of Choice2 we can write e as e = s(e1, . . . , en) for some
function s:Mn → M . Therefore for every e1, . . . , en ∈ M we have:

M, e1, . . . , en, s(e1, . . . , en) |= Qx G(x1, . . . , xk).

2 This is the statement that the Cartesian product of a nonempty set of nonempty
sets is nonempty.



16.4 Completeness, compactness and nonstandard models 101

Let � be an extension of the function � obtained by adding to the domain τ of
� a new n-ary function symbol f and putting f � = s. Let M′ = (M, �). Then
for every e1, . . . , en ∈ M we have

M′, e1, . . . , en, f �(e1, . . . , en) |= Qx G(x1, . . . , xn, xn+1, xn+2, . . . , xk)

and thereforeM′ |= ∀x1 · · · ∀xnQx G(x1, . . . , xn, f(x1, . . . , xn), xn+2, . . . , xk),
that is, M′ |= sk(PF ).
(iii) It follows immediately from (i) and (ii). �

16.4 Completeness, compactness and nonstandard
models

As we have seen, the Skolemisation of statement F produces the statement
SF = ∀z1 · · · ∀zk−mH, that enjoys the property of equisatisfiability established
in Theorem 16.10(iii), with H quantifier-free. The equivalences of proposi-
tional logic (Theorem 9.4) continue to hold unchanged for all formulas of
predicate logic. Therefore we can obtain from H an equivalent CNF formula
H ′. Applying Proposition 16.6(iv) we obtain ∀z1 · · · ∀znH ≡ ∀z1 · · · ∀znH ′.
Since the Skolemisation process eliminated all the existential quantifiers, elim-
inating ∀z1 · · · ∀zn and rewriting the clauses of H ′ in a set-based notation, we
finally obtain a finite set CF of clauses.

For example, the statement (16.4) becomes ∀y∀w((Pay∨Qf(y))∧ (Pay∨
Qw)) and then {{Pay,Qf(y)}, {Pay,Qw}}.

Noting that the transformations F �→ PF �→ SF �→ CF of Theorems 16.7
and 16.10 can be derived mechanically, our complete logical calculus devel-
oped in Theorems 14.1 and 15.2 now extends to an equally complete logical
calculus for predicate logic with equality L:

Theorem 16.11 (Gödel’s Completeness Theorem). Let F be a state-
ment of L and CF the set of clauses obtained from F . Further, let C=

F be the
set of clauses obtained by adding to CF the equality and congruence axioms for
all the relation and function symbols of CF . Let H be the Herbrand universe
of C=

F . Then F is unsatisfiable iff � ∈ DPP (C=
F /H ′) for some finite subset

H ′ of H.

Recalling Theorem 14.3 we now immediately obtain the following two corol-
laries:

Corollary 16.12 (Gödel Compactness Theorem for L). Let Θ be a
countably infinite set of statements of the logic L. Then Θ is satisfiable iff
each finite subset of Θ is satisfiable.

Corollary 16.13 (Löwenheim, 1915 for finite Θ; Skolem, 1920, 1928
for the general case). Let Θ be a finite or countably infinite set of state-
ments of L. If Θ has a model, then Θ has a model whose universe is finite or
countably infinite.
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From this result it follows that no finite or countably infinite set Θ of

statements can characterise the ring structure R of the real numbers – in the
sense that R′ |= Θ iff R′ is isomorphic to R. In fact, if R |= Θ, then Θ also
has a finite or countably infinite model R̃, and obviously R̃ is not isomorphic
to R.

Things are no better for the natural numbers:

Corollary 16.14. Let N = (N,� ) be the structure of the natural numbers.
Suppose that the type τ of N contains at least a symbol a for the zero, a
symbol s for the successor function, and a binary predicate symbol G, where
one reads Gxy as “x is larger than y”. Let Θ be a finite or countably in-
finite list of statements of L such that N |= Θ. Then N ′ |= Θ for some
countable model N ′ = (N ′,∗ ) that, in addition to the ‘standard’ elements
a∗, s∗(a∗), s∗(s∗(a∗)), . . . , also contains a ‘nonstandard’ element larger than
all standard elements.

Proof. Let τ ′ be the type obtained by adding to τ a constant c. Let Θ′ be the
set obtained by adding to Θ the following new statements:

Gca, Gcs(a), Gcs(s(a)), . . . . (16.5)

Each finite subset of Θ′ is satisfiable – for example, in the model (N,∗ ) of
type τ ′ in which the function ∗ is an extension of � to type τ ′, and c∗ is
a sufficiently large number. This follows from the assumption that N |= Θ.
By Corollary 16.12, Θ′ is satisfiable. By Corollary 16.13, Θ′ has a count-
able model N ′ = (N ′,∗ ). This model satisfies in particular all the statements
(16.5). Therefore in N ′ the constant c is interpreted as a nonstandard ele-
ment c∗. �

Let τ be a type containing symbols for addition, multiplication, zero, one,
and for an order relation ≤. Let A be a set of statements of type τ satisfied
by the real numbers. Then A has a model R∗ containing the infinitesimals,
that is, elements ε > 0 but smaller than every number of the form 1

1+···+1 ,
and thus smaller than every “standard” real > 0. One proves this as in the
previous corollary, using the compactness of L: it is sufficient to add to τ a
new constant c, and then add to A the following list of axioms:

0 < c, c < 1, c · (1 + 1) < 1, c · (1 + 1 + 1) < 1, . . .

Clearly R∗ does not satisfy the Archimedean principle, according to which for
every two “quantities” x, y > 0 there exists some n ∈ N such that nx > y.
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Exercises

Transformation into clauses

1. Transform into a set of clauses each of the following formulas, in which
various parentheses are omitted for the sake of readability:

a) (∀xPx) ∧ (∃xQx);

b) (∃x∀yPxy) → (¬ ∀w∀yPwy);

c) (∀xPx) → ((∀xQx)→ ∀xSx);

d) ((∀xPx → ∀yDy)→ ∀ySy) → ∀yTy;

e) (∀x∃yDxy ∧ ∀y∃zByz)→ ∀x∃y∃z(Cxy → Dyz);

f) ∀x(
Ax ∧ ∀y(Pxy → ∃z(f(x, z) = y))

) → ∀yPty;

g) (∀x(Cx → ∃yAxy)) → ¬∃x(Cx → ∀yAyx).

2. Formalise in clauses using the equality predicate:

a) there exist at least four elementary particles;

b) for each pair of distinct points there passes exactly one line;

c) each line passes by at least two distinct points;

d) two lines have the same direction iff they are equal or do not have any
point in common;

e) for each external point of a line there passes exactly one parallel.

3. Let Wx stand for “x won the polls”.
Using when necessary the equality predicate, write down as a set of clauses
each of the following phrases:

a) at least one person won the polls;

b) at most one person won the polls;

c) exactly one person won the polls;

d) at least two people won the polls;

e) at most two people won the polls;

f) only two people won the polls;

g) if somebody won the polls, Luigi won the polls;

h) if somebody won the polls, he was the only one.
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4. Suppose that Fxy means “x is father of y”, Mxy means “x is mother

of y”, c denotes Carlo and d denotes Damiano. The following statements
express familiar relations between Carlo and Damiano. What are these
relations?

a) ∃x∃y(Mxc ∧Mxd ∧ Fyc ∧ Fyd);

b) ∃x∃y∃z(Fxy ∧ Fxz ∧Myc ∧ Fzd);

c) ∃x(Fcx ∧Mxd);

d) ∃x(Fcx ∧ Fxd).

5. Using the predicates F and M and the constants c and d of the previous
exercise, formalise in clauses the following phrases:

a) Carlo is the paternal grandfather of Damiano;

b) Carlo and Damiano are brothers;

c) Carlo and Damiano do not have the same parents;

d) Carlo and Damiano have the same maternal grandmother;

e) the father of Damiano is a unique son.

6. Write in clauses the following statements, using the predicate Lxy per “x
likes to play with y”, and the predicates V z and Pu for, respectively, “z
is a violinist” and “u is a pianist”:

Every violinist either likes to play with every pianist or does not
like to play with any pianist or likes to play with some violinist.

7. Transform into a set of clauses the negation of the following phrase:

If for every innocent there is a judge who acquits him, then for
every guilty there is a judge who condemns him.

By convention “guilty = not innocent” and “condemned = not acquitted”.

8. Write in clauses:

a) fortune helps all courageous people and also helps some non coura-
geous;

b) if everything is moved by something, then there exists something that
is moved only by itself;

c) if there exists at least one extraterrestrial, then there exist at least two;

d) if there was exactly one winner of the lottery, then either Carlo did
not win it or Beatrice did not in it.
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9. Write in clauses and find a model that satisfies these clauses:

a) every Manichean condemns all the apostates or does not condemn
any;

b) every striker admires some goal keeper, but there are some goal keep-
ers who are not admired by all strikers;

c) if everything is moved by something, then there exists something that
moves everything and is not moved by anything else.

Logical consequence

1. In the following exercises, we will write P �|= C to denote the fact that the
conclusion C (written at the right) is not a consequence of the premise
P .3 Find in each case a model that satisfies the premise and the negation
N of the conclusion.

a) ∀xPx → ∀xQx �|= ∀x(Px → Qx);

b) ∃x(Px → Qx) �|= (∃xPx) → ∃xQx;

c) ∃xPx ↔ ∃xQx �|= ∃x(Px ↔ Qx);

d) ∀xPx ↔ ∀xQx �|= ∀x(Px ↔ Qx);

e) ∃xPx ∧ ∃xQx �|= ∃x(Px ∧Qx).

2. In these exercises the conclusion C is a consequence of the premise P .
Formalise in clauses P and the negation of C. Produce a refutation of the
clauses thus obtained, instantiating them appropriately over their Her-
brand universe, and applying DPP.

a) ∃x∀yPxy |= ∃xPxf(x);

b) ∃x(Px ∧Qx) |= (∃xPx) ∧ ∃xQx;

c) ∃x(Px ∨Qx) |= (∃xPx)∨ ∃xQx;

d) ∀x∀yPxy |= ∀y∀xPxy;

e) ∃x∃yPxy |= ∃y∃xPxy;

f) ∀x∀yPxy |= ∀xPxx;

g) ∀xPxf(x) |= ∀x∃yPxy;

h) ∀x(Px ↔ Qx) |= (∃xPx) ↔ (∃xQx);

i) ∃xPx → ∃xQx |= ∃x(Px → Qx).

3 This is an abuse of the notation because |= has already been chosen to signify
that a model satisfies a formula in Tarskian semantics. Nevertheless the context
allows us to distinguish these two uses of this symbol.
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Solution of the last exercise:

{Qa,¬Px}
x=a

{¬Qx}
x=a

{Px}

x=a{¬Pa}

3. In each of the following exercises formalise in clauses the premise and the
negation of the conclusion. Let S be the set of clauses thus obtained. If
the conclusion is a consequence of the premise produce a refutation of S.
Otherwise find a model.

a) ∀x∃yPxy |= ∃x∃yPf(x, y)y;

b) ∀x∀yPxy |= ∀yPyy;

c) ∀x(Px ∨Qx) |= ∃x(Px ∨Qx);

d) ∀x∃yPxy |= ∃yPyy;

e) ∀x∀y(y = x) |= ∀y(y = a);

f) ∃xPx ∨ ∀xQx |= ∀x(Px ∨Qx).

4. Verify the following tautologies, showing that each of them is a conse-
quence of the equality axioms. Use the refutational method, negating the
formula and writing this negated formula as a set of clauses and using
appropriate equality axioms.

a) ∀x∀y[x = y → (Txyx → Tyxy)];

b) ∀x∀x′ ∀y∀y′ [(x = x′ ∧ y = y′)→ g(f(x, y)) = g(f(x′, y′))];

c) ∀x∀y∀z[(x = y ∧ y = z ∧ Pxz)→ Pyy];

d) ∀x∀y[x = y → (Pxy → Pxx)];

e) ∀x∀x′ ∀y∀y′ [(x = x′ ∧ y = y′)→ f(f(x, y), x) = f(f(x′, y′), x)].
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5. Determine which of the following statements are tautologies. If a state-
ment E is a tautology, produce a refutation of ¬E, after having trans-
formed ¬E into a set of clauses. If E is not a tautology, find a model of
¬E, preferably with few elements.

a) ∀x∃y(Pxy → Pyx);

b) ∀x∀y[(Px ↔ Py)→ x = y];

c) (∃x∀y(x = y))→ (∀xPx ∨ ∀x¬Px);

d) (∃xPxx) → ((∀y∀w¬Pyw) → ∃tP tt).

6. Prove using the refutational method that the conclusion is a logical con-
sequence of the premise:

∀x∀y(x = a ∨ x = y)
—————————
∀uf(u) = f(f(u))

Abbreviated solution:

{x = a, x = y}
x=f(b),y=f(f(b))

x=f(f(b)),y=a

{f(b) = f(f(b))}

{f(b) = a}

symmetry + transitivity{f(f(b)) = a}
symmetry + transitivity

{f(b) = f(f(b))}

7. In each of the following exercises write in clauses the premises and the
negation of the conclusion. Find out whether the conclusion is a conse-
quence of the premises. If this is the case, using the equality axioms give
a refutation of the set P of premises jointly with the negation N of the
conclusion. Otherwise, construct a model with equality for P and N .
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a) ∀x∀y x = y

————————————————
∀u∀v f(u) = f(v)

b) ∀x∀y x �= y
————————————————
∀u∀v (f(u) = f(v) ∧ ¬g(u) = g(v))

c) ∀x∀y (x = a ∨ y = b)
f(a, b) = f(b, a)
————————————————
∀z f(a, z) = f(z, a)

8. Prove without using the Completeness Theorem that the conjunction of
the first three equality axioms cannot be refuted.4

9. Prove that the conclusion is a consequence of the premises using the refu-
tational method and appropriate equality axioms:

g(a, b) = g(b, a)
∀z (z = a ∨ z = b)
————————————————
∀x g(a, x) = g(x, a)

Hint. Let {g(a, c) �= g(c, a)} be the Skolemised form of the negation of the
conclusion, where p �= q stands for ¬p = q. Using the congruence axiom for
g and the symmetry axiom we obtain {c �= a}. Resolving with an appropri-
ate instantiation of the second premise we obtain {c = b}. Resolving with the
congruence axiom for g we obtain {a �= a, g(a, c) = g(a, b)}, and therefore by
reflexivity g(a, c) = g(a, b). From {c = b} we also have {g(b, a) = g(c, a)}. Ap-
plying the transitivity and using the first premise we have {g(a, c) = g(c, a)},
and consequently we obtain the empty clause.

10. Why does one plus one equal two. Prove that the conclusion is a conse-
quence of the premises using the refutational method and the appropriate
equality axioms:

∀x∀y f(x, s(y)) = s(f(x, y))
∀x f(x, o) = x
————————————————
f(s(o), s(o)) = s(s(o))

4 For Frege this exercise probably would be futile, as the satisfiability of the equality
axioms is evident (indeed, their validity in each model with equality is evident).
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Solution. Instantiating both premises we get

{f(s(o), s(o)) = s(f(s(o), o))} and {f(s(o), o) = s(o)}.
From the last premise, resolving with an instance of the congruence axiom for s
we obtain {s(f(s(o), o)) = s(s(o))}. Applying transitivity we have {f(s(o), s(o))
= s(s(o))}. Resolving with the negation of the conclusion we get the empty
clauses.

11. The two axioms of the previous exercise define addition using the succes-
sor function, but do not suffice to prove that 0 �= 1 and 0 �= 2. Recalling
what we wrote on page 58, add suitable axioms for the natural numbers
and prove that 0 �= 3. Subsequently write two axioms for multiplication
and convince yourself that the entries of the multiplication table (1×1=1,
1×2=2,. . . , 10×10=100) are consequences of these axioms.

12. Prove the following statement by obtaining the empty clauses from the
premise and the negation of the conclusion:

Let R be a symmetric and transitive relation with the following
property: for every x there exists y such that Rxy. Then R is re-
flexive.

13. Prove the following tautology by showing that it is a logical consequence
of the equality axioms:

∀x∀x′∀y∀y′((x = x′ ∧ y = y′) → g(f(x), y) = g(f(x′), y′)
)
.

14. Prove that the following statement is a tautology, or find a model for its
negation:
(∃x∀yAxy)→ (∀u∃vAvu).

15. Prove that the following statement is a tautology, or find a model for its
negation:
(∀x∀y (x = a ∨ y = a))→ (∀z f(a, z) = f(z, a)).

Logical consequence, models and natural language

In each of the following exercises write in clauses the premises and the nega-
tion of the conclusion, obtaining a set S of clauses. If the conclusion is a
consequence of the premises, produce a refutation of S using the equality ax-
ioms whenever needed. Otherwise find a model for S, preferably with a few
elements. When the symbol = occurs in S find a model with equality.

1. Every Franciscan is poor
no accountant is poor
————————————————
there do not exist Franciscan accountants
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Solution. The premise is: {¬Fx,Px}, {¬Ay,¬Py}; the negation of the conclu-

sion is: “there exists a Franciscan accountant”, that is, “there exists an entity x

that is an accountant and Franciscan”, ∃z(Az∧Fz). To eliminate the existential

quantifier using Skolemisation, let’s give a name, for example a for “Arturo”,

to one of the existing Franciscan accountants of our choice. The unique condi-

tion that we have to respect is that Arturo is a new name in this exercise.5 So

the negation of the conclusion becomes “Arturo is a Franciscan accountant”,

that one formalises as two clauses {Aa} and {Fa}. The Herbrand universe of

this exercise is the singleton set {a}. Therefore we do not have any problem in

choosing an instance that quickly yields the empty clause. Instantiating the first

two clauses we obtain {¬Fa, Pa} and {¬Aa,¬Pa}. We are now in propositional

logic and it is easy to refute the clauses {¬Fa, Pa}, {¬Aa,¬Pa}, {Aa}, {Fa}.
Having obtained this way the empty clause we have “deduced” the conclusion of

the premises using a purely formal calculus. Nobody will find a possible world

simultaneously satisfying the premises and the negation of the conclusion. In

fact, let M = (M,∗ ) be a model of type {F, P, A, a}. In the possible world

described by M the words “Franciscan”, “accountant”, “poor”, and “Arturo”

have an absolutely arbitrary meaning: F ∗, P ∗, A∗ are just subsets of the uni-

verse M , and a∗ is one of its elements. Well, even with this enormous freedom,

if M satisfies the premises, it cannot satisfy the negation of the conclusion, and

therefore M will satisfy the conclusion.

2. Every hare is afraid of some fox
Bic is not afraid of anybody
————————————————
Bic is not a hare

Hint. One formalises in L the premises by means of the statements ∀x(Hx →
∃y(Fy ∧ Axy)) e ∀z¬Abz, from which one obtains the clauses

{¬Hx, Ff(x)}, {¬Hx, Axf(x)}, {¬Abz}.

The negation of the conclusion is the clause {Hb}. It is easy to refute these

clauses: in fact, already the last three are refutable.

3. Every ungulate is a vertebrate: ∀x(Ux → V x)
the father of every ungulate is an ungulate: ∀y(Uy → Up(y))
Bic is not a vertebrate: ¬V b
—————————————————————————
Bic is not the father of any ungulate: ¬∃z(Uz ∧ b = p(z))

5 The idea that exist = have received a proper name has a thousand-years old story
that continues to be of importance in our computer: to delete a file means to
remove its name.
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4. For every unfortunate there is some goat that bites him
Alf is unfortunate
Bic is an unfortunate goat
————————————————
Bic bites Alf

Hint. The formalisation in L gives the statements
∀x(Ux → ∃y(Gy ∧ Byx))
Ua
Ub ∧ Gb
————————
Bba

Then put in clauses the premises and the negation of the conclusion, and sub-

sequently find a model that satisfies all these clauses.

5. Every A is B
the mother of every B is B
Ada is not A
Ada is not B
————————————————
Ada is not the mother of any A

6. Prove the validity of the following Aristotelean syllogisms:

a) Some A is B
every B is C
—————————
some C is A

b) some A is B
every B is C
—————————
some A is C

c) some A is B
no C is B
—————————
some A is not C
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7. Every boxer fears some left-handed

every left-handed fears some non-left-handed
Alf is a non-left-handed boxer
—————————————————————————
either Alf fears some non-left-handed or some non-left-handed fears Alf

8. Every progressive admires some conservative
everybody who is not progressive is conservative
Alf does not admire any conservative
———————————————————
Alf is a conservative

Abbreviated solution (the instances are not indicated):

{¬Px,Cf(x)} {¬Px,Axf(x)} {Px,Cx} {¬Ca} {¬Cy,¬Aay}

{Pa}

{Aaf(a)}

{Cf(a)}

{¬Aaf(a)}

9. Logic and barbers. Only one among the following deductions is valid
(where we introduce imaginary ‘megabarbers’, ‘bureaucratic barbers’, in
short ‘burobarbers’, and ‘megaburobarbers’ who are both megabarbers
and burobarbers):

a) Every megabarber shaves all those who do not shave themselves
————————————————————————
there does not exist any megabarber

b) Every burobarber shaves only those who do not shave themselves
————————————————————————
there does not exist any burobarber

c) Every megaburobarber shaves all those and only those who do not
shave themselves
————————————————————————
there does not exist any megaburobarber
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Hint:

{¬Bx,¬Syy¬Sxy, }

x=y=a

{¬Bx, Syy, Sxy}
x=y=a

{Ba}

{¬Ba}

10. Every stupid listens to anybody who promises heaven and earth to him
Alf promises heaven and earth to everybody
————————————————————————
there is somebody who is listened by everybody

11. Every thief is afraid of every cop
every cop is afraid of some thief
some cop is afraid of every thief
Antonio is afraid of every thief and every cop
————————————————
Antonio is a cop or a thief

12. Every utopian diver is a swimmer
no utopian dentist is a swimmer
the mother of every utopian is utopian
————————————————————————
either Anne is not the mother of any utopian, or she is not a dentist, or
she is not a diver

13. Every stupid believes anybody who talks to him
Alf does not belief anybody
Als is stupid
——————————————————
nobody talks to Alf

14. Every A is B and every B is C
not every C is A
————————————————
either some B is not A or some C is not B

15. Every ambitious person fights against somebody else
Ark fights only against himself
————————————————————
Ark is not ambitious
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Solution:

{¬Ax,Fxf(x)}

x=a

{Aa} {¬Ax, x = f(x)}
x=a

{y = a,¬Fay}

y=f(a)

{Faf(a)} {a = f(a)}

{a = f(a)}

16. Every two different inhabitants of Rio Bo have different mothers
Aldo and Mr Palazzi have the same mother
———————————————————————————
either Aldo or Mr Palazzi is not an inhabitant of Rio Bo

17. Every rigorous person admires some mathematician
every mathematician admires some rigorous person
Alf admires only himself
—————————————————————————
either Alf is not a mathematician or is a rigorous person

Abbreviated solution, without indication of the ground instances, and without
explicit use of the congruence clauses:

{¬Mx, Rf(x)} {Ma} {¬Mx, Axf(x)} {x = a,¬Aax} {¬Ra}

congruence

{Rf(a)} {Aaf(a)} {f(a) = a}
congruence

{¬Rf(a)}

18. Every boxer is afraid of some left-handed
every left-handed is afraid of some non-left-handed
Alf is a left-handed boxer
————————————————
Alf is afraid of at least two persons

19. There are precisely two elements in A
R is a reflexive and transitive relation over A
————————————————
R is symmetric
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20. Write the three axioms (reflexivity, antisymmetry and transitivity) that
define a partial order relation M . Obtain using the refutational method
some elementary properties of M . The simplest ones are: there exists at
most one largest element; if there exists a largest element, then it is also
maximal, that is, it is not strictly dominated by any element.

21. With reference to Exercise 5 on page 51, compare the following two de-
ductions:

Martians do not exist: ¬∃xM1x
———————————————————————————
it is not true that if Alf travels he meets a Martian:
¬(Ta → ∃y(M1y ∧M2ay))

Martians do not exist
———————————————————————————
whether he travels or not, Alf does not meet Martians

Prove that precisely one of these deductions is valid.

22. Consider the phrase:

There is a person such that if he votes for Octavio, then everybody
votes for Octavio.

Write in clauses its negation and refute it. So this phrase is a tautology,
even though our daily way of understanding “if” and ”there is somebody”
does not help us in understanding that this phrase is infallibly true in all
possible worlds. Can this tautology be used by Octavio to get all the
votes?

23. For each of the following phrases, if it is not a tautology, then find a model
that satisfies its negation; if it is a tautology, then refute its negation:

(a) there is a person such that if he votes for Octavio, then somebody
else votes for Octavio;

(b) there is a person such that if he votes for Octavio, then everybody
votes for Octavio, but if he does not vote for Octavio, then nobody
votes for Octavio;

(c) there is a person such that if he votes for Octavio, then everybody
votes for Octavio, and there is a person such that if he does not vote
for Octavio, then nobody votes for Octavio;
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(d) there is a person such that if he votes for Octavio, then Octavio votes

for himself;

(e) there is a person such that if he does not vote for Octavio, then
Octavio votes for himself;

(f) there is a person such that if he does not vote for Octavio, then
Octavio does not vote for himself.
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Final Remarks

We have prepared a formidable symbolic apparatus, with its logical calculus,
and we can now launch it in the vast field of mathematics for which it was
constructed. For example, if we wish to dedicate ourselves to the study of the
problem of twin prime numbers p, p + 2 introduced on page 57, we cannot
do anything else than accept the axioms for natural numbers, or for sets, and
subsequently get down to calculate the consequences of the axioms – mentally,
or with the help of lemmas and theorems previously obtained, or even with
the help of a computer that generates for us pairs of twin primes with more
than hundred thousand digits, hence suggesting that there are infinitely many
of such pairs. The completeness theorem assures us that no consequence of
the axioms will escape the logical calculus.

The axiomatic method is for mathematicians what the experimental meth-
od is for physicists. It has proved to be so powerful that it has also affected
physics. For example, the analysis of the possible geometries obtained by
dropping one of the Euclid axioms produced seemingly esoteric models which,
however, have found use in physics later on. In 1899 Hilbert published a book
(Grundlagen der Geometrie) dedicated to the axiomatic foundation of geom-
etry. In 1903 Poincaré commented:

This was not so easy as one might suppose; there are the axioms which one

sees and those which one does not see, which are introduced unconsciously

and without being noticed. [. . .] Is the list of Professor Hilbert final? We

may take it to be so, for it seems to have been drawn up with care.

Poincaré seems to be asking himself whether the list of axioms of Hilbert is
complete, that is, whether they suffice to decide all geometric conjectures.
Perhaps Poincaré even asks himself whether this question is important for
the development of geometry. The point is that if the list is not complete,
somebody will have to make an addition – and surely the axioms to be added
will be surprising since they escaped even Professor Hilbert.

Mundici D.: Logic: a Brief Course.
DOI 10.1007/978-88-470-2361-1 17, © Springer-Verlag Italia 2012
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The completeness problem also arises for the numbers: starting from
Descartes the real numbers, with their equations and disequations were shown
to be crucial for treating every geometric entity, to the point of becoming in-
dispensable for defining geometric entities in spaces of arbitrary dimensions.
Since the real numbers are constructed from the rational numbers and these
are constructed from the integers, a spontaneous question arose: what are the
natural numbers? And so Dedekind, Peano and others proposed axioms for
natural numbers even before the Grundlagen der Geometrie.

With a handful of simple axioms for addition and multiplication, like those
on page 58, the logical calculus allows us to recover the hundred mini-theorems
of the multiplication table. Continuing this way we will be able to prove sev-
eral more profound results, including the Euclid theorem about the infinity
of the prime numbers. But our axioms will be in any case a caricature of the
Minimum Principle, equivalent to the Induction Principle, stating that “ev-
ery nonempty set X of natural numbers has a least element.” This universal
quantifier ∀X is very different from the quantifier ∀x used until now, that
makes the variable x vary over the universe M of the model and not over
the subsets of M . The necessity to express the Induction Principle using the
universal quantifier of the logic L requires that we enlarge the horizon, intro-
ducing axioms not anymore for the totality of natural numbers but for the
totality of sets, and defining N and its subsets as the elements of this totality.

When preparing a list A of axioms for the universe of all sets, or for any
system of mathematical entities, one has to absolutely avoid the:

Major Evil: Incoherence (= Refutability). Incoherence means that the
logical calculus can derive from A the empty clause. As a result for every
statement E, both E and ¬E are consequences of A. As A is unsatisfiable, it
does not distinguish true from false and does not axiomatise any model.

For example, Frege, the father of predicate logic, conjectured that for ev-
ery formula F (x) of L there exists a set consisting precisely of the elements
x that satisfy F (x). In particular, when F (x) is the formula x �∈ x, that ex-
presses the property of not being an element of itself, we will have to admit
the axiom ∃s∀x(x ∈ s ↔ x �∈ x). But the logical calculus easily derives from
this statement the empty clause. (The final exercise of this course.)

Having avoided the major evil, one should avoid the other:

Minor Evil, Incompleteness. Incompleteness means that there exists a
proposition E that is undecidable in A, in the sense that neither E nor ¬E is
a consequence of A. Such a set of axioms A is said to be incomplete because
it does not succeed to decide which among E and ¬E holds in the model that
we were hoping to axiomatise.

In 1931 Gödel proved the admirable Incompleteness Theorem, for the full
understanding of which a second course of logic is necessary, in which one
defines mathematically the notions of “algorithm” and of “formal system”. A
corollary expressible using the means that are at our disposal states that each
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of our attempts to axiomatise sets or natural numbers that succeeds to avoid
the major evil, will not avoid the minor evil.

More precisely, let A be a finite set of statements of a type τ ⊇ {f, g}, and
let N = (N,∗ ) be a model of natural numbers with f∗ = addition and g∗ =
multiplication. If N |= A, then there exists a statement E of type τ such that
N |= E but E is not a consequence of A.

So, although E is a true arithmetic statement, it is not a consequence of
A. But neither ¬E is a consequence of A, because otherwise the assumption
N |= A would imply N |= ¬E, and therefore N |= E ∧¬E, which is impossi-
ble. In conclusion, N does not admit a finite and complete list of axioms.

Gödel Incompleteness Theorem, of which this corollary is only a foretaste,
is one of the most important results of twentieth century mathematics. It
yields a distinction between numbers viewed as a means to count, as on an
abacus, and numbers viewed as “numerals”, that is, as the structure N that
is at the base of our perceptions and manipulations. This distinction perhaps
goes back to the Pythagorean school, and through Plotinus was resumed by
Saint Augustine (Confessions, §10.12) and others.

The logical calculus L is certainly able to derive all the consequences of
the set A of our axioms, but A is deficient: it leaves open some problems con-
cerning addition and multiplication – while we perhaps have fooled ourselves
that our axioms would capture the whole truth about the four arithmetic
operations. Which property of addition and multiplication, expressible in L,
could have eluded the mathematicians for all these millennia of reflection on
N ? It is hard to say, especially since Gödel Incompleteness Theorem tells us
that if A were substituted by a richer set A′ of axioms, also A′ would leave
open some conjecture E′, provided A′ is coherent.

We might then think that incompleteness is due to the expressive poverty
of L, which is clearly shown by the final corollaries of this course. Why to stop
at predicate logic with equality L? One reason could be the theorem proved in
1965 by Lindström, according to which every extension of the logic L either
does not have the compactness property or does not satisfy the Löwenheim
property, that we proved for L in Corollary 16.13. Therefore, every enrich-
ment of L will have to take into account the loss of at least one of these two
important ingredients of the completeness of the logical calculus L. For exam-
ple, adding a new quantifier ∃∞ x that states “there are infinitely many x”, we
could write ∀n ¬∃∞ x x < n, and therefore ban the nonstandard numerals,
avoiding the pathology of Corollary 16.14. But as we have repeatedly seen in
this course, to each enrichment of the symbolic apparatus there corresponds
an increased complication of the logical calculus: the calculus for the connec-
tives ∨,∧,¬ and the propositional variables is considerably simpler than the
calculus operating on a richer symbolic apparatus of ∨,∧,¬,∀,∃ with pred-
icates, function, variables and constants. A further complication comes from
incorporating the equality symbol, to reach the full expressive power of L.

The price to pay for adding to L the quantifier ∃∞ is too high: for the so
obtained logic there cannot exist a complete logical calculus. Also, if we tried
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other, more expressive logics and other axioms, Gödel Incompleteness The-
orem tells us that the truth contained in the additive-multiplicative totality
of the natural numbers, however axiomatised, is not fully accessible by any
logical calculus. What holds for the structure (N,+, ·, 0, 1) obviously applies
to every more complex structure.

But perhaps, not even a mathematical truth as profound and general as
this one touches upon the problems posed by the protagonist of Exercise 8 on
page 87.
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