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INTRODUCTION 

This book discusses mathematical approaches to the best possible way of estimat- 
ing the state of a general system. Although the book is firmly grounded in math- 
ematical theory, it should not be considered a mathematics text. It is more of an 
engineering text, or perhaps an applied mathematics text. The approaches that we 
present for state estimation are all given with the goal of eventual implementation 
in s0ftware.l The goal of this text is to present state estimation theory in the most 
clear yet rigorous way possible, while providing enough advanced material and ref- 
erences so that the reader is prepared to contribute new material to the state of 
the art. Engineers are usually concerned with eventual implementation, and so the 
material presented is geared toward discretetime systems. However, continuous- 
time systems are also discussed for the sake of completeness, and because there is 
still room for implementations of continuous-time filters. 

Before we discuss optimal state estimation, we need to define what we mean by 
the term state. The states of a system are those variables that provide a complete 
representation of the internal condition or status of the system at a given instant 
of time.2 This is far from a rigorous definition, but it suffices for the purposes of 

lI use the practice that is common in academia of referring to  a generic third person by the word 
we. Sometimes, I use the word we to  refer to  the reader and myself. Other times, I use the 
word we to indicate that I am speaking on behalf of the control and estimation community. The 
distinction should be clear from the context. However, I encourage the reader not to read too 
much into my use of the word we; it is more a matter of personal preference and style rather than 
a claim to authority. 
21n this book, we use the terms state and state vanable interchangably. Also, the word state could 
refer to the entire collection of state variables, or it could refer to  a single state variable. The 
specific meaning needs to be inferred from the context. 

xxi 



xxii INTRODUCTION 

this introduction. For example, the states of a motor might include the currents 
through the windings, and the position and speed of the motor shaft. The states 
of an orbiting satellite might include its position, velocity, and angular orientation. 
The states of an economic system might include per-capita income, tax rates, un- 
employment, and economic growth. The states of a biological system might include 
blood sugar levels, heart and respiration rates, and body temperature. 

State estimation is applicable to virtually all areas of engineering and science. 
Any discipline that is concerned with the mathematical modeling of its systems is 
a likely (perhaps inevitable) candidate for state estimation. This includes electrical 
engineering, mechanical engineering, chemical engineering, aerospace engineering, 
robotics, economics, ecology, biology, and many others. The possible applications of 
state estimation theory are limited only by the engineer’s imagination, which is why 
state estimation has become such a widely researched and applied discipline in the 
past few decades. State-space theory and state estimation was initially developed in 
the 1950s and 1960s, and since then there have been a huge number of applications. 
A few applications are documented in [Sor85]. Thousands of other applications can 
be discovered by doing an Internet search on the terms “state estimation” and 
“application,” or “Kalman filter” and ”application.” 

State estimation is interesting to engineers for at least two reasons: 

0 Often, an engineer needs to estimate the system states in order to implement 
a state-feedback controller. For example, the electrical engineer needs to 
estimate the winding currents of a motor in order to control its position. The 
aerospace engineer needs to estimate the attitude of a satellite in order to 
control its velocity. The economist needs to estimate economic growth in 
order to try to control unemployment. The medical doctor needs to estimate 
blood sugar levels in order to control heart and respiration rates. 

0 Often an engineer needs to estimate the system states because those states are 
interesting in their own right. For example, if an engineer wants to measure 
the health of an engineering system, it may be necessary to estimate the inter- 
nal condition of the system using a state estimation algorithm. An engineer 
might want to estimate satellite position in order to more intelligently sched- 
ule future satellite activities. An economist might want to estimate economic 
growth in order to make a political point, A medical doctor might want to 
estimate blood sugar levels in order to evaluate the health of a patient. 

There are many other fine books on state estimation that are available (see 
Appendix B). This begs the question: Why yet another textbook on the topic of 
state estimation? The reason that this present book has been written is to offer a 
pedagogical approach and perspective that is not available in other state estimation 
books. In particular, the hope is that this book will offer the following: 

0 A straightforward, bottom-up approach that assists the reader in obtaining a 
clear (but theoretically rigorous) understanding of state estimation. This is 
reminiscent of Gelb’s approach [Ge174], which has proven effective for many 
state estimation students of the past few decades. However, many aspects 
of Gelb’s book have become outdated. In addition, many of the more recent 
books on state estimation read more like research monographs and are not 
entirely accessible to the average engineering student. Hence the need for the 
present book. 
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0 Simple examples that provide the reader with an intuitive understanding of 
the theory. Many books present state estimation theory and then follow with 
examples or problems that require a computer for implementation. However, 
it is possible to present simple examples and problems that require only paper 
and pencil to solve. These simple problems allow the student to more directly 
see how the theory works itself out in practice. Again, this is reminiscent of 
Gelb’s approach [Ge174]. 

0 MATLABbased source code3 for the examples in the book is available at 
the author’s Web sitea4 A number of other texts supply source code, but it 
is often on disk or CD, which makes the code subject to obsolescence. The 
author’s e-mail address is also available on the Web site, and I enthusiastically 
welcome feedback, comments, suggestions for improvements, and corrections. 
Of course, Web addresses are also subject to obsolescence, but the book also 
contains algorithmic, high-level pseudocode listings that will last longer than 
any specific software listings. 

0 Careful treatment of advanced topics in optimal state estimation. These 
topics include unscented filtering, high-order nonlinear filtering, particle fil- 
tering, constrained state estimation, reduced-order filtering, robust Kalman 
filtering, and mixed Kalman/H, filtering. Some of these topics are mature, 
having been introduced in the 1960s, but others of these topics are recent 
additions to the state of the art. This coverage is not matched in any other 
books on the topic of state estimation. 

Some of the other books on state estimation offer some of the above features, but 
no other books offer all of these features. 

Prerequisites 

The prerequisites for understanding the material in this book are a good foundation 
in linear systems theory and probability and stochastic processes. Ideally, the 
reader will already have taken a graduate course in both of these topics. However, 
it should be said that a background in linear systems theory is more important 
than probability. The first two chapters of the book review the elements of linear 
systems and probability that are essential for the rest of the book, and also serve 
to establish the notation that is used during the remainder of the book. 

Other material could also be considered prerequisite to understanding this book, 
such as undergraduate advanced calculus, control theory, and signal processing. 
However, it would be more accurate to say that the reader will require a moderately 
high level of mathematical and engineering maturity, rather than trying to identify 
a list of required prerequisite courses. 

3MATLAB is a registered trademark of The Mathworks, Inc. 
4http://academic.csuohio.edu/simond/estimation - if the Web site address changes, it should be 
easy to find with an internet search. 
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Problems 

The problems at the end of each chapter have been written to give a high degree 
of flexibility to the instructor and student. The problems include both written 
exercises and computer exercises. The written exercises are intended to strengthen 
the student’s grasp of the theory, and deepen the student’s intuitive understanding 
of the concepts. The computer exercises are intended to help the student learn how 
to apply the theory to problems of the type that might be encountered in industrial 
or government projects. Both types of problems are important for the student to 
become proficient at the material. The distinction between written exercises and 
computer exercises is more of a fuzzy division rather than a strict division. That is, 
some of the written exercises include parts for which some computer work might be 
useful (even required), and some of the computer exercises include parts for which 
some written analysis might be useful (even required). 

A solution manual to all of the problems in the text (both written exercises and 
computer exercises) is available from the publisher to instructors who have adopted 
this book. Course instructors are encouraged to contact the publisher for further 
information about out how to obtain the solution manual. 

Outline of the book 

This book is divided into four parts. The first part of the book covers introductory 
material. Chapter 1 is a review of the relevant areas of linear systems. This 
material is often covered in a first-semester graduate course taken by engineering 
students. It is advisable, although not strictly required, that readers of this book 
have already taken a graduate linear systems course. Chapter 2 reviews probability 
theory and stochastic processes. Again, this is often covered in a first-semester 
graduate course. In this book we rely less on probability theory than linear systems 
theory, so a previous course in probability and stochastic processes is not required 
for the material in this book (although it would be helpful). Chapter 3 covers least 
squares estimation of constants and Wiener filtering of stochastic processes. The 
section on Wiener filtering is not required for the remainder of the book, although 
it is interesting both in its own right and for historical perspective. Chapter 4 is 
a brief discussion of how the statistical measures of a state (mean and covariance) 
propagate in time. Chapter 4 provides a bridge from the first. three chapters to the 
second part of the book. 

The second part of the book covers Kalman filtering, which is the workhorse of 
state estimation. In Chapter 5 ,  we derive the discrete-time Kalman filter, including 
several different (but mathematically equivalent) formulations. In Chapter 6, we 
present some alternative Kalman filter formulations, including sequential filtering, 
information filtering, square root filtering, and U-D filtering. In Chapter 7, we d i s  
cuss some generalizations of the Kalman filter that make the filter applicable to a 
wider class of problems. These generalizations include correlated process and mea- 
surement noise, colored process and measurement noise, steady-state filtering for 
computational savings, fading-memory filtering, and constrained Kalman filtering. 
In Chapter 8, we present the continuous-time Kalman filter. This chapter could 
be skipped if time is short since the continuous-time filter is rarely implemented in 
practice. In Chapter 9, we discuss optimal smoothing, which is a way to estimate 
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the state of a system at time r based on measurements that extend beyond time 
r. As part of the derivation of the smoothing equations, the first section of Chap- 
ter 9 presents another alternative form for the Kalman filter. Chapter 10 presents 
some additional, more advanced topics in Kalman filtering. These topics include 
verification of filter performance, estimation in the case of unknown system models, 
reduced-order filtering, increasing the robustness of the Kalman filter, and filtering 
in the presence of measurement synchronization errors. This chapter should pro- 
vide fertile ground for students or engineers who are looking for research topics or 
projects. 

The third part of the book covers H, filtering. This area is not as mature as 
Kalman filtering and so there is less material than in the Kalman filtering part of 
the book. Chapter 11 introduces yet another alternate Kalman filter form as part 
of the H, filter derivation. This chapter discusses both time domain and frequency 
domain approaches to H, filtering. Chapter 12 discusses advanced topics in H, 
filtering, including mixed Kalman/H, filtering and constrained H, filtering. There 
is a lot of room for further development in H, filtering, and this part of the book 
could provide a springboard for researchers to make contributions in this area. 

The fourth part of the book covers filtering for nonlinear systems. Chapter 13 
discusses nonlinear filtering based on the Kalman filter, which includes the widely 
used extended Kalman filter. Chapter 14 covers the unscented Kalman filter, which 
is a relatively recent development that provides improved performance over the 
extended Kalman filter. Chapter 15 discusses the particle filter, another recent 
development that provides a very general solution to the nonlinear filtering problem. 
It is hoped that this part of the book, especially Chapters 14 and 15, will inspire 
researchers to make further contributions to these new areas of study. 

The book concludes with three brief appendices. Appendix A gives some histor- 
ical perspectives on the development of the Kalman filter, starting with the least 
squares work of Roger Cotes in the early 1700s, and concluding with the space pro- 
gram applications of Kalman filtering in the 1960s. Appendix B discusses the many 
other books that have been written on Kalman filtering, including their distinctive 
contributions. Finally, Appendix C presents some speculations on the connections 
between optimal state estimation and the meaning of life. 

Figure 1.1 gives a graphical representation of the structure of the book from a 
prerequisite point of view. For example, Chapter 3 builds on Chapters 1 and 2. 
Chapter 4 builds on Chapter 3, and Chapter 5 builds on Chapter 4. Chapters 6-11 
each depend on material from Chapter 5, but are independent from each other. 
Chapter 12 builds on Chapter 11. Chapter 13 depends on Chapter 8, and Chap  
ter 14 depends on Chapter 13. Finally, Chapter 15 builds on Chapter 3. This 
structure can be used to customize a course based on this book. 

A note on notation 

Three dots between delimiters (parenthesis, brackets, or braces) means that the 
quantity between the delimiters is the same as the quantity between the previous 
set of identical delimiters in the same equation. For example, 

( A  + BCD) + (. *)T = ( A  + BCD) + ( A  + BCD)T 

A +  [ B ( C + D ) ] - l E [ . . . ]  = A +  [B(C+D)] - 'E[B(C+D)]  (1.1) 
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CHAPTER 1 

Linear systems theory 

Finally, we make some remarks on why linear systems are so important. The answer 
is simple: because we can solve them! 

--Richard Feynman [Fey63, p. 25-41 

This chapter reviews some essentials of linear systems theory. This material is 
typically covered in a linear systems course, which is a first-semester graduate level 
course in electrical engineering. The theory of optimal state estimation heavily 
relies on matrix theory, including matrix calculus, so matrix theory is reviewed in 
Section 1.1. Optimal state estimation can be applied to  both linear and nonlinear 
systems, although state estimation is much more straightforward for linear sys- 
tems. Linear systems are briefly reviewed in Section 1.2 and nonlinear systems are 
discussed in Section 1.3. State-space systems can be represented in the continuous- 
time domain or the discrete-time domain. Physical systems are typically described 
in continuous time, but control and state estimation algorithms are typically im- 
plemented on digital computers. Section 1.4 discusses some standard methods for 
obtaining a discrete-time representation of a continuous-time system. Section 1.5 
discusses how to simulate continuous-time systems on a digital computer. Sec- 
tions 1.6 and 1.7 discuss the standard concepts of stability, controllability, and 
observability of linear systems. These concepts are necessary to  understand some 
of the optimal state estimation material later in the book. Students with a strong 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 

3 



4 LINEAR SYSTEMS THEORY 

background in linear systems theory can skip the material in this chapter. How- 
ever, it would still help to  a t  least review this chapter to  solidify the foundational 
concepts of state estimation before moving on to the later chapters of this book. 

1.1 MATRIX ALGEBRA A N D  MATRIX  CALCULUS 

In this section, we review matrices, matrix algebra, and matrix calculus. This 
is necessary in order to  understand the rest of the book because optimal state 
estimation algorithms are usually formulated with matrices. 

A scalar is a single quantity. For example, the number 2 is a scalar. The number 
1 + 3 j  is a scalar (we use j in this book to denote the square root of -1). The 
number T is a scalar. 

A vector consists of scalars that are arranged in a row or column. For example, 
the vector 

P 3 TI (1.1) 

is a %element vector. This vector is a called a 1 x 3 vector because it has 1 row 
and 3 columns. This vector is also called a row vector because it is arranged as a 
single row. The vector 

is a 4-element vector. This vector is a called a 4 x 1 vector because it has 4 rows 
and 1 column. This vector is also called a column vector because it is arranged as 
a single column. Note that a scalar can be viewed as a 1-element vector; a scalar 
is a degenerate vector. (This is just like a plane can be viewed as a 3-dimensional 
shape; a plane is a degenerate 3-dimensional shape.) 

A matrix consists of scalars that are arranged in a rectangle. For example, the 
matrix 

r - 2  3 1  

is a 3 x 2 matrix because it has 3 rows and 2 columns. The number of rows and 
columns in a matrix can be collectively referred to  as the dimension of the matrix. 
For example, the dimension of the matrix in the preceding equation is 3 x 2. Note 
that a vector can be viewed as a degenerate matrix. For example, Equation (1.1) is 
a 1 x 3 matrix. A scalar can also be viewed as a degenerate matrix. For example, 
the scalar 6 is a 1 x 1 matrix. 

The rank of a matrix is defined as the number of linearly independent rows. This 
is also equal to the number of linearly independent columns. The rank of a matrix 
A is often indicated with the notation p ( A ) .  The rank of a matrix is always less 
than or equal to the number of rows, and it is also less than or equal to  the number 
of columns. For example, the matrix 
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has a rank of one because it has only one linearly independent row; the two rows 
are multiples of each other. It also has only one linearly independent column; the 
two columns are multiples of each other. On the other hand, the matrix 

A = [ :  :] 
has a rank of two because it has two linearly independent rows. That is, there are 
no nonzero scalars c1 and cz such that 

C l [ l  3 ] + c 2 [ 2  4 ] = [ 0  0 1  (1.6) 

so the two rows are linearly independent. It also has two linearly independent 
columns. That is, there are no nonzero scalars c1 and c2 such that 

so the two columns are linearly independent. A matrix whose elements are com- 
prised entirely of zeros has a rank of zero. An n x m matrix whose rank is equal 
to min(n,m) is called full rank. The nullity of an n x m matrix A is equal to  

The transpose of a matrix (or vector) can be taken by changing all the rows to  
columns, and all the columns to rows. The transpose of a matrix is indicated with 
a T superscript, as in AT.l For example, if A is the r x n matrix 

[m - P(41.  

A =  

then AT is the n x r matrix 

Note that we use the notation A,, to  indicate the scalar in the ith row and j t h  
column of the matrix A. A symmetric matrix is one for which A = AT. 

The hermitian transpose of a matrix (or vector) is the complex conjugate of the 
transpose, and is indicated with an H superscript, as in AH. For example, if 

A =  [ 4j 5 + j  1 - 3 j  (1.10) 

then 

A hermitian matrix is one for which A = AH. 

(1.11) 

lMany papers or books indicate transpose with a prime, as in A’, or with a lower case t ,  as in At.  
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1.1.1 Matrix algebra 

Matrix addition and subtraction is simply defined as element-by-element addition 
and subtraction. For example, 

(1.12) 
1 2 3  

[ 3  2 I ] + [ '  1 -1 -2 I ] = [ '  4 1 -1 " 1  
The sum ( A  + B )  and the difference ( A  - B )  is defined only if the dimension of A 
is equal to  the dimension of B. 

Suppose that A is an n x T matrix and B is an T x p matrix. Then the product of 
A and B is written as C = AB. Each element in the matrix product C is computed 
as 

r 

ctj = AikBkj i = 1 , .  . . ,n  j = 1, . . . , p  (1.13) 
k=l 

The matrix product AB is defined only if the number of columns in A is equal t o  
the number of rows in B. It is important to  note that matrix multiplication does 
not commute. In general, AB # BA. 

Suppose we have an n x 1 vector x.  We can compute the 1 x 1 product xTx, and 
the n x n product xxT as follows: 

xTx = [ 2 1  * . *  xn 3 [ " 1  
X n  

= z :+ . . .+x ;  

xxT = [ i' ] [ 2 1  * * '  xn 3 
X n  

(1.14) 

Suppose that we have a p x n matrix H and an n x n matrix P. Then HT is a 
n x p matrix, and we can compute the p x p matrix product HPHT. 

(1.15) 

This matrix of sums can be written as the following sum of matrices: 
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(1.16) 

where we have used the notation that Hk is the kth column of H .  

(unless, of course, the denominator matrix is a scalar). 

zeros everywhere else. For example, the 3 x 3 identity matrix is equal to  

Matrix division is not defined; we cannot divide a matrix by another matrix 

An identity matrix I is defined as a square matrix with ones on the diagonal and 

I =  0 1 0  [ a  :] (1.17) 

The identity matrix has the property that A I  = A for any matrix A, and I A  = A 
(as long the dimensions of the identity matrices are compatible with those of A). 
The 1 x 1 identity matrix is equal to the scalar 1. 

The determinant of a matrix is defined inductively for square matrices. The 
determinant of a scalar (i.e., a 1 x 1 matrix) is equal to the scalar. Now consider 
an n x n matrix A. Use the notation A(iJ) to  denote the matrix that is formed by 
deleting the ith row and j t h  column of A. The determinant of A is defined as 

for any value of i E [I ,  n]. This is called the Laplace expansion of A along its 
ith row. We see that the determinant of the n x n matrix A is defined in terms 
of the determinants of (n  - 1) x (n - 1) matrices. Similarly, the determinants of 
(n - 1) x (n - 1) matrices are defined in terms of the determinants of (n - 2) x (n - 2) 
matrices. This continues until the determinants of 2 x 2 matrices are defined in 
terms of the determinants of 1 x 1 matrices, which are scalars. The determinant of 
A can also be defined as 

2=1 
(1.19) 

for any value of j E [l, n] .  This is called the Laplace expansion of A along its j t h  
column. Interestingly, Equation (1.18) (for any value of i) and Equation (1.19) (for 
any value of j )  both give identical results. From the definition of the determinant 
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we see that 

Some interesting properties of determinants are 

IABI = IAlIBI 

assuming that A and B are square and have the same dimensions. Also, 

n 

1-41 = 

(1.20) 

(1.21) 

(1.22) 
a=1 

where A, (the eigenvalues of A) are defined below. 
The inverse of a matrix A is defined as the matrix A-l such that AA-l = 

A-lA = I. A matrix cannot have an inverse unless it is square. Some square 
matrices do not have an inverse. A square matrix that does not have an inverse is 
called singular or invertible. In the scalar case, the only number that does not have 
an inverse is the number 0. But in the matrix case, there are many matrices that 
are singular. A matrix that does have an inverse is called nonsingular or invertible. 
For example, notice that 

1 0  1 0  1 0  [ 2 3 1  [ -2/3 1 / 3 1  = [ 0 1 1  (1.23) 

Therefore, the two matrices on the left side of the equation are inverses of each 
other. The nonsingularity of an n x n matrix A can be stated in many equivalent 
ways, some of which are the following [Hor85]: 

0 A is nonsingular. 

0 A-l exists. 

0 The rank of A is equal to n. 

0 The rows of A are linearly independent. 

0 The columns of A are linearly independent. 

IAl # 0. 

0 A z  = b has a unique solution z for all b. 

0 0 is not an eigenvalue of A. 
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The trace of a square matrix is defined as the sum of its diagonal elements: 

(1.24) 
a 

The trace of a matrix is defined only if the matrix is square. The trace of a 1 x 1 
matrix is equal to the trace of a scalar, which is equal to the value of the scalar. 
One interesting property of the trace of a square matrix is 

a 

That is, the trace of a square matrix is equal to the sum of its eigenvalues. 
Some interesting and useful characteristics of matrix products are the following: 

(1.26) 

This assumes that the inverses exist for the inverse equation, and that the matrix 
dimensions are compatible so that matrix multiplication is defined. The transpose 
of a matrix product is equal to  the product of the transposes in the opposite order. 
The inverse of a matrix product is equal to the product of the inverses in the 
opposite order. The trace of a matrix product is independent of the order in which 
the matrices are multiplied. 

The two-norm of a column vector of real numbers, also called the Euclidean 
norm, is defined as follows: 

] ) x ) ) 2  = d z  

From (1.14) we see that 

Taking the trace of this matrix is 

(1.27) 

(1.28) 

(1.29) 

An n x n matrix A has n eigenvalues and n eigenvectors. The scalar X is an 
eigenvalue of A, and the n x 1 vector x is an eigenvector of A, if the following 
equation holds: 

AX = AX (1.30) 

The eigenvalues and eigenvectors of a matrix are collectively referred to  as the 
eigendata of the matrix.2 An n x n matrix has exactly n eigenvalues, although 

2Eigendata have also been referred to by many other terms over the years, including characteristic 
roots, latent roots and vectors, and proper numbers and vectors [Fad59]. 
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some may be repeated. This is like saying that an nth order polynomial equation 
has exactly n roots, although some may be repeated. From the above definitions 
of eigenvalues and eigenvectors we can see that 

AX = XX 
A2x = AXX 

= X(Ax) 
= X(Xz) 

= X2x (1.31) 

So if A has eigendata (X,z), then A2 has eigendata (X2,z). It can be shown that 
A-l exists if and only if none of the eigenvalues of A are equal to 0. If A is 
symmetric then all of its eigenvalues are real numbers. 

A symmetric n x n matrix A can be characterized as either positive definite, 
positive semidefinite, negative definite, negative semidefinite, or indefinite. Matrix 
A is: 

0 Positive definite if xTAx > 0 for all nonzero n x 1 vectors z. This is equivalent 
to saying that all of the eigenvalues of A are positive real numbers. If A is 
positive definite, then A-' is also positive definite. 

0 Positive semidefinite if zTAz  2 0 for all n x 1 vectors z. This is equivalent to  
saying that all of the eigenvalues of A are nonnegative real numbers. Positive 
semidefinite matrices are sometimes called nonnegative definite. 

0 Negative definite if z T A z  < 0 for all nonzero n x 1 vectors z. This is equivalent 
to  saying that all of the eigenvalues of A are negative real numbers. If A is 
negative definite, then A-' is also negative definite. 

0 Negative semidefinite if z T A z  5 0 for all n x 1 vectors 2.  This is equivalent to  
saying that all of the eigenvalues of A are nonpositive real numbers. Negative 
semidefinite matrices are sometimes called nonpositive definite. 

0 Indefinite if it does not fit into any of the above four categories. This is 
equivalent to saying that some of its eigenvalues are positive and some are 
negative. 

Some books generalize the idea of positive definiteness and negative definiteness to 
include nonsymmetric matrices. 

The weighted two-norm of an n x 1 vector x is defined as 

11.11; = mz (1.32) 

where Q is required to  be an n x n positive definite matrix. The above norm is 
also called the Q-weighted two-norm of 2.  A quantity of the form xTQz is called a 
quadratic in analogy to a quadratic term in a scalar equation. 

The singular values g of a matrix A are defined as 

02(A)  = X(ATA) 
= X ( A A ~ )  (1.33) 
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If A is an n x m matrix, then it has min(n,m) singular values. AAT will have 
n eigenvalues, and ATA will have m eigenvalues. If n > m then AAT will have 
the same eigenvalues as ATA plus an additional (n  - m) zeros. These additional 
zeros are not considered to be singular values of A, because A always has min(n, m) 
singular values. This knowledge can help reduce effort during the computation of 
singular values. For example, if A is a 13 x 3 matrix, then it is much easier to 
compute the eigenvalues of the 3 x 3 matrix ATA rather than the 13 x 13 matrix 
AAT. Either computation will result in the same three singular values. 

1.1.2 The matrix inversion lemma 

In this section, we will derive the matrix inversion lemma, which is a tool that we 
will use many times in this book. It is also a tool that is frequently useful in other 
areas of control, estimation theory, and signal processing. 

Suppose we have the partitioned matrix [ : E ] where A and D are invertible 

square matrices, and the B and C matrices may or may not be square. We define 
E and F matrices as follows: 

E = D-CA-lB 
F = A-BD-lC 

Assume that E is invertible. Then we can show that 

(1.34) 

= [ :  ;] 
Now assume that F is invertible. Then we can show that 

I F-1 -A-1BE-1 [ : E ] [ -D-lCF-l 

= [  

= [ :  ;] 

E-1 

CF- l -  CF-l -CA-IBE-l+ DE-l 

0 (D - C A - ~ B ) E - ~  

1 AF-l-  BD-lCF-l -BE-1 + BE-l 

1 0 = [ ( A  - BD-lC)F-' 

(1.35) 

(1.36) 

Equations (1.35) and (1.36) are two expressions for the inverse of [ : 1.  Since 

these two expressions are inverses of the same matrix, they must be equal. We 
therefore conclude that the upper-left partitions of the matrices are equal, which 
gives 

~ - l =  A-1 + A - ~ B E - ~ c A - ~  (1.37) 
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Now we can use the definition of F to  obtain 

( A  - B D - l C ) - l =  A-' + A-lB(D - CA-'B)-lCA-l (1.38) 

This is called the matrix inversion lemma. It is also referred to  by other terms, such 
as the Sherman-Morrison formula, Woodbury's identity, and the modified matrices 
formula. One of its earliest presentations ww in 1944 by William Duncan [Dun44], 
and similar identities were developed by Alston Householder [Hou53]. An account of 
its origins and variations (e.g., singular A )  is given in [Hen81]. The matrix inversion 
lemma is often stated in slightly different but equivalent ways. For example, 

( A  + BD- lC) - '=  A-' - A-'B(D + CA-lB)- lCA-l  (1.39) 

The matrix inversion lemma can sometimes be used to  reduce the computational 
effort of matrix inversion. For instance, suppose that A is n x n, B is n x p ,  C is p x n, 
D is p x p ,  and p < n. Suppose further that we already know A - l ,  and we want 
to  add some quantity to A and then compute the new inverse. A straightforward 
computation of the new inverse would be an n x n inversion. But if the new matrix 
to invert can be written in the form of the left side of Equation (1.39), then we can 
use the right side of Equation (1.39) to  compute the new inverse, and the right side 
of Equation (1.39) requires a p x p inversion instead of an n x n inversion (since we 
already know the inverse of the old A matrix). 

EX AMP LEI.^ 

At your investment firm, you notice that in January the New York Stock Ex- 
change index decreased by 2%, the American Stock Exchange index increased 
by 1%, and the NASDAQ stock exchange index increased by 2%. As a result, 
investors increased their deposits by 1%. The next month, the stock exchange 
indices changed by -4%, 3%, and 2%, respectively, and investor deposits in- 
creased by 2%. The following month, the stock exchange indices changed by 
-5%, 1%, and 5%, respectively, and investor deposits increased by 2%. You 
suspect that investment changes y can be modeled as y = g 1 q  + ~ 2 x 2  + ~ 3 x 3 ,  

where the 2% variables are the stock exchange index changes, and the gi are 
unknown constants. In order to  determine the gi constants you need to  invert 
the matrix 

-2 1 2 

-5 1 5 
A = [  -4 3 2 1  (1.40) 

The result is 

13 -3 -4 

11 -3 -2 
A-' = 1 [ 10 0 - 4 1  

= ;[ -11 (1.41) 
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This allows you to  use stock exchange index changes to  predict investment 
changes in the following month, which allows you to  better schedule person- 
nel and computer resources. However, soon afterward you find out that the 
NASDAQ change in the third month was actually 6% rather than 5%. This 
means that in order to find the gi constants you need to invert the matrix 

-2 1 2 

-5 1 6 
A'= [ -4 3 2 1  (1.42) 

You are tired of inverting matrices and so you wonder if you can somehow use 
the inverse of A (which you have already calculated) to  find the inverse of A'. 
Remembering the matrix inversion lemma, you realize that A' = A + B D - l C ,  
where 

B = [ 0  0 1 I T  

D = 1  (1.43) 

c = [ o  0 1 1  

You therefore use the matrix inversion lemma to compute 

(A')-l = ( A  + BD-lC)- l  
= A-l - A-lB(D + CA- lB) - lCA- l  (1.44) 

The ( D  + CA- lB)  term that needs to be inverted in the above equation is a 
scalar, so its inversion is simple. This gives 

I 4.00 1.00 -1.00 
(A')-' = 3.50 -0.50 -1.00 [ 2.75 -0.75 -0.50 

g = (A')-' [ i ]  
- - [ i . 5  ] (1.45) 

0.25 

In this example, the use of the matrix inversion lemma is not really necessary 
because A' (the new matrix to invert) is only 3 x 3. However, with larger 
matrices, such as 1000 x 1000 matrices, the computational savings that is 
realized by using the matrix inversion lemma could be significant. 

vvv 
Now suppose that A ,  B,  C, and D are matrices, with A and D being square. 

Then it can be seen that 

[ 4 A - l  I 0 ]  I [ A  C D B ]  [ I  0 - A - I B ] = [  I A 0 D - CA-lB ] (1.46) 

(1.47) 
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Similarly, it can be shown that 

(1.48) 

These formulas are called product rules for determinants. They were first given by 
the Russian-born mathematician Issai Schur in a German paper [Schl7] that was 
reprinted in English in [Sch86]. 

1.1.3 Matrix calculus 

In our first calculus course, we learned the mathematics of derivatives and integrals 
and how to apply those concepts to scalars. We can also apply the mathematics of 
calculus to vectors and matrices. Some aspects of matrix calculus are identical to 
scalar calculus, but some scalar calculus concepts need to be extended in order to 
derive formulas for matrix calculus. 

As intuition would lead us to believe, the time derivative of a matrix is simply 
equal to the matrix of the time derivatives of the individual matrix elements. Also, 
the integral of a matrix is equal to the matrix of the integrals of the individual 
matrix elements. In other words, assuming that A is an m x n matrix, we have 

(1.49) 1 J Aii(t) dt * * * J Ain(t) dt 

A(t) = 

J Anl(t) dt * * * J Ann(t) dt 

1 A(t) dt = 

Next we will compute the time derivative of the inverse of a matrix. Suppose that 
matrix A(t), which we will denote as A, has elements that are functions of time. 
We know that AA-l = I; that is, AA-l 6s a constant matrix and therefore has a 
time derivative of zero. But the time derivative of AA-l can be computed as 

d d 
-(AA-l) d t  = AA-l+  A-((A-') d t  (1.50) 

Since this is zero, we can solve for d(A-')/dt as 

(1.51) - ( ~ - 1 )  d = - A - ~ A A - ~  
dt 

Note that for the special case of a scalar A, this reduces to the familiar equation 

d a( 1/A) dA 
dt dA d t  
-(I/A) = -- 

= -A/A2 (1.52) 

Now suppose that x is an n x 1 vector and f (x) is a scalar function of the elements 

af (1.53) 
of 2. Then 

- = [ af/axl . . . af/axn ] 
d X  
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Even though x is a column vector, d f / d x  is a row vector. The converse is also 
true - if x is a row vector, then d f / d x  is a column vector. Note that some authors 
define this the other way around. That is, they say that if x is a column vector then 
d f /dz is also a column vector. There is no accepted convention for the definition of 
the partial derivative of a scalar with respect to a vector. It does not really matter 
which definition we use as long as we are consistent. In this book, we will use the 
convention described by Equation (1.53). 

Now suppose that A is an m x n matrix and f ( A )  is a scalar. Then the partial 
derivative of a scalar with respect to a matrix can be computed as follows: 

(1.54) 

With these definitions we can compute the partial derivative of the dot product of 
two vectors. Suppose x and y are n-element column vectors. Then 

xTy = x l y l +  . . . + znyn 

- -  

Likewise, we can obtain 

(1.55) 

(1.56) 

Now we will compute the partial derivative of a quadratic with respect to a vector. 
First write the quadratic as follows: 

X ~ A X  = [ 2 1  ' * *  xn ] [ ::I [ x l ]  An1 * * a  Ann X n  

Now take the partial derivative of the quadratic as follows: 

(1.57) 
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If A is symmetric, as it often is in quadratic expressions, then A = AT and the 
above expression simplifies to  

= 2xTA 
d(xTAx) 

ax 
i f A = A T  (1.59) 

Next we define the partial derivative of a vector with respect to another vector. 

Suppose g(z)  = [ ''r) ] a n d x =  [ : ' I .  Then 

gm ( x )  X n  

(1.60) 

If either g(x) or x is transposed, then the partial derivative is also transposed. 

(1.61) 

With these definitions, the following important equalities can be derived. Suppose 
A is an m x n matrix and x is an n x 1 vector. Then 

- -  a(Ax) - A 
ax 

= A  
d(xTA) 
ax (1.62) 

Now we suppose that A is an m x n matrix, B is an n x n matrix, and we want 
to compute the partial derivative of Tr(ABAT) with respect to A. First compute 
A B A ~  as follows: 

(1.64) 
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(1.65) 

If B is symmetric, as it often is in partial derivatives of the form above, then this 
can be simplified to 

= 2 A B  i f B = B T  
~ T ~ ( A B A ~ )  

dA 
(1.66) 

A number of additional interesting results related to  matrix calculus can be found 
in jSke98, Appendix B]. 

1.1.4 The history of matrices 

This section is a brief diversion to  present some of the history of matrix theory. 
Much of the information in this section is taken from [OCo96]. 

The use of matrices can be found as far back as the fourth century BC. We see in 
ancient clay tablets that the Babylonians studied problems that led to simultaneous 
linear equations. For example, a tablet dating from about 300 BC contains the 
following problem: “There are two fields whose total area is 1800 units. One 
produces grain at the rate of 2/3 of a bushel per unit while the other produces 
grain at the rate of 1 / 2  a bushel per unit. If the total yield is 1100 bushels, what 
is the size of each field?” 

Later, the Chinese came even closer to  the use of matrices. In [She991 (originally 
published between 200 BC and 100 AD) we see the following problem: “There are 
three types of corn, of which three bundles of the first, two of the second, and one 
of the third make 39 measures. Two of the first, three of the second, and one of 
the third make 34 measures. And one of the first, two of the second and three 
of the third make 26 measures. How many measures of corn are contained in one 
bundle of each type?” At that point, the ancient Chinese essentially use Gaussian 
elimination (which was not well known until the 19th century) to solve the problem. 

In spite of this very early beginning, it was not until the end of the 17th cen- 
tury that serious investigation of matrix algebra began. In 1683, the Japanese 
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mathematician Takakazu Seki Kowa wrote a book called “Method of Solving the 
Dissimulated Problems.” This book gives general methods for calculating determi- 
nants and presents examples for matrices as large as 5 x 5. Coincidentally, in the 
same year (1683) Gottfried Leibniz in Europe also first used determinants to solve 
systems of linear equations. Leibniz also discovered that a determinant could be 
expanded using any of the matrix columns. 

In the middle of the 1700s, Colin Maclaurin and Gabriel Cramer published some 
major contributions to matrix theory. After that point, work on matrices became 
rather regular, with significant contributions by Etienne Bezout, Alexandre Vander- 
monde, Pierre Laplace, Joseph Lagrange, and Carl Gauss. The term “determinant” 
was first used in the modern sense by Augustin Cauchy in 1812 (although the word 
was used earlier by Gauss in a different sense). Cauchy also discovered matrix 
eigenvalues and diagonalization, and introduced the idea of similar matrices. He 
was the first to prove that every real symmetric matrix is diagonalizable. 

James Sylvester (in 1850) was the first to use the term “matrix.” Sylvester 
moved to England in 1851 to became a lawyer and met Arthur Cayley, a fellow 
lawyer who was also interested in mathematics. Cayley saw the importance of the 
idea of matrices and in 1853 he invented matrix inversion. Cayley also proved that 
2 x 2 and 3 x 3 matrices satisfy their own characteristic equations. The fact that a 
matrix satisfies its own characteristic equation is now called the Cayley-Hamilton 
theorem (see Problem 1.5). The theorem has William Hamilton’s name associated 
with it because he proved the theorem for 4 x 4 matrices during the course of his 
work on quaternions. 

Camille Jordan invented the Jordan canonical form of a matrix in 1870. Georg 
Frobenius proved in 1878 that all matrices satisfy their own characteristic equation 
(the Cayley Hamilton theorem). He also introduced the definition of the rank of 
a matrix. The nullity of a square matrix was defined by Sylvester in 1884. Karl 
Weierstrass’s and Leopold Kronecker’s publications in 1903 were instrumental in 
establishing matrix theory as an important branch of mathematics. Leon Mirsky’s 
book in 1955 [MirSO] helped solidify matrix theory as a fundamentally important 
topic in university mathematics. 

1.2 LINEAR SYSTEMS 

Many processes in our world can be described by statespace systems. These include 
processes in engineering, economics, physics, chemistry, biology, and many other 
areas. If we can derive a mathematical model for a process, then we can use the tools 
of mathematics to control the process and obtain information about the process. 
This is why statespace systems are so important to engineers. If we know the state 
of a system at the present time, and we know all of the present and future inputs, 
then we can deduce the values of all future outputs of the system. 

Statespace models can be generally divided into linear models and nonlinear 
models. Although most real processes are nonlinear, the mathematical tools that 
are available for estimation and control are much more accessible and well under- 
stood for linear systems. That is why nonlinear systems are often approximated as 
linear systems. That way we can use the tools that have been developed for linear 
systems to derive estimation or control algorithms. 
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A continuous-time, deterministic linear system can be described by the equations 

j. = A z + B u  
y = c x  (1.67) 

where x is the state vector, u is the control vector, and y is the output vector. 
Matrices A, B ,  and C are appropriately dimensioned matrices. The A matrix is 
often called the system matrix, B is often called the input matrix, and C is often 
called the output matrix. In general, A,  B,  and C can be time-varying matrices 
and the system will still be linear. If A ,  B, and C are constant then the solution 
to Equation (1.67) is given by 

t 
x ( t )  = eA(t-tO)x(to) + eA(t-')Bu(r) d r  

(1.68) 

where t o  is the initial time of the system and is often taken to  be 0. This is easy 
to verify when all of the quantities in Equation (1.67) are scalar, but it happens to  
be true in the vector case also. Note that in the zero input case, x ( t )  is given as 

x ( t )  = eA(t-to) x(to), zero input case (1.69) 

For this reason, eAt is called the state-transition matrix of the ~ y s t e m . ~  It is the 
matrix that describes how the state changes from its initial condition in the absence 
of external inputs. We can evaluate the above equation at  t = t o  t o  see that 

eAO = I (1.70) 

in analogy with the scalar exponential of zero. 
As stated above, even if x is an n-element vector, then Equation (1.68) still 

describes the solution of Equation (1.67). However, a fundamental question arises 
in this case: How can we take the exponential of the matrix A in Equation (1.68)? 
What does it mean to raise the scalar e to  the power of a matrix? There are many 
different ways to compute this quantity [Mo103]. Three of the most useful are the 
following: 

lo 
Y(t) = C 4 t )  

* (At)j 
eAt = Cj! 

j=O 

= LC-'[(s1 - A)-'] 

- - QefttQ-l (1.71) 

The first expression above is the definition of eAt, and is analogous to  the definition 
of the exponential of a scalar. This definition shows that A must be square in 
order for eAt to  exist. From Equation (1.67), we see that a system matrix is always 
square. The definition of eAt can also be used to  derive the following properties. 

(1.72) 

3The MATLAB function EXPM computes the matrix exponential. Note that the MATLAB 
function EXP computes the element-by-element exponential of a matrix, which is generally not 
the same as the matrix exponential. 
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In general, matrices do not commute under multiplication but, interestingly, a 
matrix always commutes with its exponential. 

The first expression in Equation (1.71) is not usually practical for computational 
purposes since it is an infinite sum (although the latter terms in the sum often 
decrease rapidly in magnitude, and may even become zero). The second expression 
in Equation (1.71) uses the inverse Laplace transform to compute eAt.  In the 
third expression of Equation (1.71), Q is a matrix whose columns comprise the 
eigenvectors of A, and A is the Jordan form4 of A. Note that Q and A are well 
defined for any square matrix A,  so the matrix exponential eAt exists for all square 
matrices A and all finite t. The matrix A is often diagonal, in which case eat is 
easy to compute: 

(1.73) 

This can be computed from the definition of eAt in Equation (1.71). Even i f  the 
Jordan form matrix A is not diagonal, eAt is easy to compute [Bay99, Che99, Kai801. 
We can also note from the third expression in Equation (1.71) that 

(1.74) 

(Recall that A and - A  have the same eigenvectors, and their eigenvalues are neg- 
atives of each other. See Problem 1.10.) We see from this that eAt is always 
invertible. This is analogous to the scalar situation in which the exponential of a 
scalar is always nonzero. 

Another interesting fact about the matrix exponential is that all of the individual 
elements of the matrix exponential eA are nonnegative if and only if all of the 
individual elements of A are nonnegative [Be160, Be1801. 

EXAMPLE1.2 

As an example of a linear system, suppose that we are controlling the angular 
acceleration of a motor (for example, with some applied voltage across the 
motor windings). The derivative of the position is the velocity. A simplified 
motor model can then be written as 

41n fact, Equation (1.71) can be used to define the Jordan form of a matrix. That is, if eAt 
can be written as shown in Equation (1.71), where Q is a matrix whose columns comprise the 
eigenvectors of A, then A is the Jordan form of A. More discussion about Jordan forms and their 
computation can be found in most linear systems books [Kai80, Bay99, Che991. 
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o = w  

w = u + w 1  (1.75) 

The scalar w1 is the acceleration noise and could consist of such factors as 
uncertainty in the applied acceleration, motor shaft eccentricity, and load 
disturbances. If our measurement consists of the angular position of the motor 
then a state space description of this system can be written as [:I = [ o  0 1  o ] [ : ] + [ ! ] ~ + [ : ' ]  

y = [ l  O]z+w (1.76) 

The scalar w consists of measurement noise. Comparing with Equation (1.67), 
we see that the state vector z is a 2 x 1 vector containing the scalars 13 and w.  

vvv 
EXAMPLE 1.3 

In this example, we will use the three expressions in Equation (1.71) to com- 
pute the state-transition matrix of the system described in Example 1.2. From 
the first expression in Equation (1.71) we obtain 

(At)2 (At)3 +-+* -  = (At)' + (At)' + yjj- 
3! 

= I + A t  (1.77) 

where the last equality comes from the fact that Ak = 0 when k > 1 for the 
A matrix given in Example 1.2. We therefore obtain 

1 0  
= [ o  1 ] + [ :  ;] 
= [: E ]  

From the second expression in Equation (1.71) we obtain 

eAt = ,C-'[(sI-A)-'] 

11s 1 1 2  
= c-l [ 0 11s ] 
= [; I] 

(1.78) 

(1.79) 
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In order to  use the third expression in Equation (1.71) we first need to obtain 
the eigendata (i.e., the eigenvalues and eigenvectors) of the A matrix. These 
are found as 

This shows that 

= [: k ]  
= [ k  !] 

(1.80) 

(1.81) 

Note that in this simple example A is already in Jordan form, so A = A and 
Q = I .  The third expression in Equation (1.71) therefore gives 

= [ k  El 
vvv 

(1.82) 

1.3 NONLINEAR SYSTEMS 

The discussion of linear systems in the preceding section is a bit optimistic, because 
in reality linear systems do not exist. Real systems always have some nonlinearities. 
Even a simple resistor is ultimately nonlinear if we apply a large enough voltage 
across it. However, we often model a resistor with the simple linear equation 
V = I R  because this equation accurately describes the operation of the resistor 
over a wide operating range. So even though linear systems do not exist in the 
real world, linear systems theory is still a valuable tool for dealing with nonlinear 
systems. 

The general form of a continuous-time nonlinear system can be written as 

(1.83) 

where f(.) and h( . )  are arbitrary vector-valued functions. We use w to  indicate 
process noise, and w to  indicate measurement noise. If f(.) and h(.) are explicit 
functions of t then the system is time-varying. Otherwise, the system is time- 
invariant. If f (2, u, w) = A s  + Bu + w, and h(s, v) = Ha: + w, then the system is 
linear [compare with Equation (1.67)]. Otherwise, the system is nonlinear. 

In order to apply tools from linear systems theory to nonlinear systems, we need 
to linearize the nonlinear system. In other words, we need to  find a linear system 
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that is approximately equal to the nonlinear system. To see how this is done, let 
us start with a nonlinear vector function f ( a )  of a scalar x. We expand f (x) in 
a Taylor series around some nominal operating point (also called a linearization 
point) x = 2 ,  defining 5 = x - 2: 

Now suppose that z is a 2 x 1 vector. This implies that f (x) is a nonlinear function of 
two independent variables x1 and 2 2 .  The Taylor series expansion of f(x) becomes 

(1.85) 

This can be written more compactly as 

(1.86) 

Extending this to the general case in which x is an n x 1 vector, we see that any 
continuous vector-valued function f (x) can be expanded in a Taylor series as 

Now we define the operation 0; f as 

(1.87) 

(1.88) 

z 

Using this definition we write the Taylor series expansion of f (x) as 

(1.89) 
1 1 
2! 3! 

f ( ~ )  = f(Z) + Dz f + -0: f + -Dg f + * * * 

If the nonlinear function f (x) is “sufficiently smooth,” then high-order derivatives 
of f(x) should be “somewhat small.” Also, if f (x) is expanded around a point such 
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that x is “close” to 2,  then 4 will be “small” and the higher powers of 4 in Equ& 
tion (1.89) will be “small.” Finally, the higher-order derivatives in the Taylor series 
expansion of Equation (1.89) are divided by increasingly large factorials, which fur- 
ther diminishes the magnitude of the higher-order terms in Equation (1.89). This 
justifies the approximation 

M f ( z ) + A 2  (1.90) 

where A is the matrix defined by the above equation. 
Returning to our nonlinear system equations in Equation (1.83), we can ex- 

pand the nonlinear system equation f ( x ,  u, w )  around the nominal operating point 
(2,0, a). We then obtain a linear system approximation as follows. 

* =  

= k+AAb+Bii+LtC (1.91) 

where the 0 subscript means that the function is evaluated at the nominal point 
(2 ,  ii, a), and A, B, and L are defined by the above equations. Subtracting h from 
both sides of Equation (1.91) gives 

i = AZ + ~ i i  + LG (1.92) 

Since w is noise, we will set t i j  = 0 so that tC = w and we obtain 

i = AZ + ~ i i  + LW (1.93) 

We see that we have a linear equation for i in terms of 2, 12, and w. We have a 
linear equation for the deviations of the state and control from their nominal values. 
As long as the deviations remain small, the linearization will be accurate and the 
linear equation will accurately describe deviations of x from its nominal value 2. 

In a similar manner we can expand the nonlinear measurement equation given 
by Equation (1.83) around a nominal operating point x = 2 and v = V = 0. This 
results in the linearized measurement equation 

= C f + D v  (1.94) 

where C and D are defined by the above equation. Equations (1.93) and (1.94) 
comprise a linear system that describes the deviations of the state and output from 
their nominal values. Recall that the tilde quantities in Equations (1.93) and (1.94) 
are defined as 

(1.95) 
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EXAMPLE1.4 

Consider the following model for a two-phase permanent magnet synchronous 
motor: 

- R  W X  U a  la = -i,+-sine+- 
L L L 

L L L 
- R  W X  u b  ib = - i b - - C O S e + -  

-3x  3x FW Ti 
& = -  i, sine+ - i b C O S 6  - - - - 

2J 2J J J  
e = w  (1.96) 

where i, and zb are the currents through the two windings, R and L are the 
resistance and inductance of the windings, 8 and w are the angular position 
and velocity of the rotor, A is the flux constant of the motor, U a  and U b  are 
the voltages applied across the two windings, J is the moment of inertia of 
the rotor and its load, F is the viscous friction of the rotor, and Z is the 
load torque. The time variable does not explicitly appear on the right side of 
the above equation, so this is a time-invariant system. However, the system 
is highly nonlinear and we therefore cannot directly use any linear systems 
tools for control or estimation. However, if we linearize the system around 
a nominal (possibly time-varying) operating point then we can use linear 
system tools for control and estimation. We start by defining a state vector 
as x = [ i, zb w 8 3'. With this definition we write 

(1.97) 

We linearize the system equation by taking the partial derivative of f ( x ,  u) 
with respect to x and u to obtain 

(1.98) 
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where s4 = sin 2 4  and c4 = cos 2 4 .  The linear system 

i = ~ z + + i i  (1.99) 

approximately describes the deviation of 2 from its nominal value 5. The non- 
linear system was simulated with the nominal control values fia(t) = sin2.rrt 
and fib(t) = cos2.rrt. This resulted in a nominal state trajectory Z ( t ) .  The 
linear and nonlinear systems were then simulated with nonnominal control val- 
ues. Figure 1.1 shows the results of the linear and nonlinear simulations when 
the control magnitude deviation from nominal is a small positive number. It 
can be seen that the simulations result in similar state-space trajectories, al- 
though they do not match exactly. If the deviation is zero, then the linear 
and nonlinear simulations will match exactly. As the deviation from nomi- 
nal increases, the difference between the linear and nonlinear simulations will 
increase. 

s 
C 

-0.5 -0.5 

-1 -1 
0 

0 0.5 1 0 0.5 1 
Seconds Seconds 

Figure 1.1 Example 1.4 comparison of nonlinear and linearized motor simulations. 

vvv 

1.4 DISC R ET I 2 AT I 0 N 

Most systems in the real world are described with continuous-time dynamics of the 
type shown in Equations (1.67) or (1.83). However, state estimation and control 
algorithms are almost always implemented in digital electronics. This often requires 
a transformation of continuous-time dynamics to discrete-time dynamics. This 
section discusses how a continuous-time linear system can be transformed into a 
discretetime linear system. 

Recall from Equation (1.68) that the solution of a continuous-time linear system 
is given by 

~ ( t )  = eA( t - to)~( tO)  + e A ( t - ' ) B ~ ( ~ )  d~ (1.100) 
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Let t = t k  (some discrete time point) and let the initial time to  = t k - 1  (the previous 
discrete time point). Assume that A(T), B(T),  and U ( T )  are approximately constant 
in the interval of integration. We then obtain 

(1.101) 

Now define At = t k  - t k - 1 ,  define Q = T - t k - 1 ,  and substitute for T in the above 
equation to obtain 

At 
- - eAAtz ( tk - l )  + eAAt Jd e-Aa daBu(tk-1) 

X k  = Fk-12k-1 + G k - 1 U k - 1  (1.102) 

where X k ,  Fk, Gk, and U k  are defined by the above equation. This is a lin- 
ear discretetime approximation to the continuous-time dynamics given in Equa- 
tion (1.67). Note that this discretetime system defines X k  only at the discrete time 
points { t k } ;  it does not say anything about what happens to the continuous-time 
signal z ( t )  in between the discrete time points. 

The difficulty with the above discretetime system is the computation of the 
integral of the matrix exponential, which is necessary in order to compute the G 
matrix. This computation can be simplified if A is invertible: 

At Jd [ I  - AT + A 2 ~ 2 / 2 !  - a] d r  

[IT - Ar2/2! + A2r3/3! - * * *] At 

[IAt - A(At)2/2! + A2(At)3/3! - * .] 
[AAt - (AAt)2/2! + (AAt)3/3! - * * .] A-l 
[ I  - e-AAt 1 -  A 1 (1.103) 

The conversion from continuous-time system matrices A and B to discretetime 
system matrices F and G can be summarized as follows: 

F = e  AAt 

At 
G = F L  e - A T d T B  

= F [I - e-AAt] A-lB 

where At is the discretization step size. 

1.5 SIMULATION 

(1.104) 

In this section, we discuss how to simulate continuous-time systems (either linear 
or nonlinear) on a digital computer. We consider the following form of the general 
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system equation from Equation (1.83): 

i = f(z, u, t )  (1.105) 

where u(t)  is a known control input. In order to simulate this system on a computer, 
we need to program a computer to solve for z(tp) at some user-specified value of 
t f .  In other words, we want to compute 

Often, the initial time is taken as t o  = 0, in which case we have the slightly simpler 
looking equation 

(1.107) 

We see that in order to find the solution z ( t f )  to the differential equation i = 
f(z,u,t), we need to compute an integral. The problem of finding the solution 
z ( t f )  is therefore commonly referred to as an integration problem. 

Now suppose that we divide the time interval [0, t f ]  into L equally spaced in- 
tervals so that t k  = kT for k = 0,. . . , L, and the time interval T = t f / L .  From 
this we note that t f  = t L .  With this division of the time interval, we can write the 
solution of Equation (1.107) as 

(1.108) 

More generally, for some n E [0, L - 11, we can write z(tn) and z(t,+l) as 

which means that 

If we can find a way to approximate the integral on the right side of the above 
equation, we can repeatedly propagate our z( t )  approximation from time t ,  to 
time tn+l, thus obtaining an approximation for z( t )  at any desired time t. The 
algorithm could look something like the following. 
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Differential equation solution 
Assume that z(0) is given 
f o r t = O : T : t f - T  

Find an approximation I ( t )  x s,"" f [ z ( t ) ,  u(t) ,  t] dt 
z(t  + 2') = z ( t )  + TI(t)  

end 

In the following sections, we present three different ways to approximate this in- 
tegral. The approximations, in order of increasing computational effort and increas- 
ing accuracy, are rectangular integration, trapezoidal integration, and fourth-order 
Runge-Kutta integration. 

1.5.1 Rectangular integration 

If the time interval (tn+l -tn) is small, then f [ z ( t ) ,  u( t ) ,  t]  is approximately constant 
in this interval. Equation (1.110) can therefore be approximated as 

(1.111) 

Equation (1.109) can therefore be approximated as 

n 

= 4 9  + c f [ X ( t k ) ,  U ( t k ) ,  tk1T (1.112) 
k=O 

This is called Euler integration, or rectangular integration, and is illustrated in 
Figure 1.2. As long as T is sufficiently small, this gives a good approximation for 

This gives the following algorithm for integrating continuous-time dynamics 
using rectangular integration. The time loop in the algorithm is executed for 

4 t n ) .  

t = 0, T, 2T, . . . , t f  - T. 

Rectangular integration 
Assume that z(0) is given 
f o r t = O : T :  t f - T  

Compute f[z(t), 4% tl 
z( t  + T )  = z ( t )  + f [ z ( t ) ,  u( t ) ,  t]T 

end 

1.5.2 Trapezoidal integration 

An inspection of Figure 1.2 suggests an idea for improving the approximation for 
z ( t ) .  Instead of approximating each area as a rectangle, what if we approximate 
each area as a trapezoid? Figure 1.3 shows how an improved integration algorithm 
can be implemented. This is called modified Euler integration, or trapezoidal in- 
tegration. A comparison of Figures 1.2 and 1.3 shows that trapezoidal integration 
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time 

Figure 1.2 An illustration of rectangular integration. We have 2 = f(z), so z( t )  is the 
area under the f(z) curve. This area can be approximated as the sum of the rectangular 
areas A,. That is, ~ ( 0 . 5 )  M A1, z(1) M A1 + Az, + .  -. 

time 

Figure 1.3 An illustration of trapezoidal integration. We have 2 = f(z), so z( t )  is the 
area under the f(s) curve. This area can be approximated BS the s u m  of trapezoidal areas 
A,.  That is, z(1) rn AI,  4 2 )  M A1 + Az, and 4 3 )  M A1 + Az + A s .  

appears to give a better approximation than rectangular integration, even though 
the time axis is only divided into half as many intervals in trapezoidal integration. 

With rectangular integration we approximated f [ z ( t ) ,  u(t) ,  t] as a constant in 
the interval t E [tn, t,+l]. With trapezoidal integration, we instead approximate 
f[z(t), u(t) ,  t] as a linear function in the interval t E [tn, t,+l]. That is, 
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for t E [tn,tn+l] (1.113) 

This equation to approximate z(tn+l), however, has z(t,+l) on the right side of 
the equation. How can we plug z(tn+l) into the right side of the equation if we 
do not yet know z(t,+l)? The answer is that we can use the rectangular integrs 
tion approximation from the previous section for z(tn+l) on the right side of the 
equation. The above equation can therefore be written as 

Ax1 = f [ z ( tn ) ,  u(tn),tnIT 
Ax2 = f[z(tn+l), u(tn+l)r tn+l]T 

f [ z ( tn )  + Az1, u(tn+l), tn+lIT 

(1.115) 

This gives the following algorithm for integrating continuous-time dynamics 
The time loop in the algorithm is executed for 

1 
z(tn+l) = z(tn) + 5 (AZl + Az2) 

using trapezoidal integration. 
t = 0, T, 2T, . . . , t f  - T. 

Trapezoidal integration 
Assume that z(0) is given 
f o r t = O : T :  t f - T  

Azi = f[z(t), ~ ( t ) ,  t1T 
A22 = f [ z ( t )  + Az1, u(t + T ) ,  t + TIT 
z(t + T) = z ( t )  + (Ax1 + A22)/2 

end 

1.5.3 Runge-Kutta integration 

From the previous sections, we see that rectangular integration involves the calcu- 
lation of one function value at each time step, and trapezoidal integration involves 
the calculation of two function values at each time step. In order to further improve 
the integral approximation, we can perform additional function calculations at each 
time step. nth-order Runge-Kutta integration is the approximation of an integral 
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by performing n function calculations at each time step. Rectangular integration 
is therefore equivalent to first-order Runge-Kutta integration, and trapezoidal in- 
tegration is equivalent to second-order Runge-Kutta integration. 

The most commonly used integration scheme of this type is fourth-order Runge- 
Kutta integration. We present the fourth-order Runge-Kutta integration algorithm 
(without derivation) as follows: 

Ax1 = f[Z(tk),  'ZL(tk), tk]T 
Az2 = f [ x ( t k )  + Az1/2, U(tk+1/2), tk+i/z]T 

AX4 = f [ z ( t k )  A23, U ( t k + i ) ,  tk+i]T 
Ax3 = f [ x ( t k )  f A22/2, u(tk+l/2), tk+l/2]T 

x(tk+i) M z ( t k )  + ( h i  + 2Ax2 + 2AX3 + A24) /6 (1.116) 

where t k + 1 / 2  = t k  + T/2. Fourth-order Runge-Kutta integration is more computa- 
tionally demanding than rectangular or trapezoidal integration, but it also provides 
far greater accuracy. This gives the following algorithm for integrating continuous- 
time dynamics using fourth-order Runge-Kutta integration. The time loop in the 
algorithm is executed for t = 0, T, 2T, . 

Assume that z(0) is given 
f o r t = O :  T :  t f - T  

, t f  - T. 

Fourt h-order Runge-Kutta integration 

ti = t +T/2 
Ax1 = f[z(t), w, t]T 
AXZ = . f [ X ( t )  + A x I / ~ ,  U ( t i ) ,  ti]T 
Ax3 = f[.(t) + Ax2/2, U ( t l ) ,  tl]T 
A24 = f[z(t) + Az3, u(t + T), t + TIT 
z(t + T )  = z ( t )  + (A21 + 2Ax2 + 2Ax3 + A24) /6 

end 

Runge-Kutta integration was invented by Carl Runge, a German mathemati- 
cian and physicist, in 1895. It was independently invented and generalized by 
Wilhelm Kutta, a German mathematician and aerodynamicist, in 1901. More ac- 
curate integration algorithms have also been derived and are sometimes used, but 
fourth-order Runge-Kutta integration is generally considered a good trade-off be- 
tween accuracy and computational effort. Further information and derivations of 
numerical integration algorithms can be found in many numerical analysis texts, 
including [Atk89]. 

EXAMPLE1.5 

Suppose we want to numerically compute z ( t )  at t = 1 based on the differential 
equation 

with the initial condition z(0) = 0. We can analytically integrate the equa- 
tion to find out that z(1) = sin1 M 0.8415. If we use a numerical integration 
scheme, we have to choose the step size T. Table 1.1 shows the error of the 
rectangular, trapezoidal, and fourth-order Runge-Kutta integration methods 
for this example for various values of T. As expected, Runge-Kutta is more 
accurate than trapezoidal, and trapezoidal is more accurate than rectangular. 

x =cost (1.117) 



STABILITY 33 

Also as expected, the error for given method decreases as T decreases. How- 
ever, perhaps the most noteworthy feature of Table 1.1 is how the integration 
error decreases with T .  We can see that with rectangular integration, when T 
is halved, the integration error is also halved. With trapezoidal integration, 
when T is halved, the integration error decreases by a factor of four. With 
Runge-Kutta integration, when T is halved, the integration error decreases by 
a factor of 16. We conclude that (in general) the error of rectangular integra- 
tion is proportional to T ,  the error of trapezoidal integration is proportional 
to T2, and the error of Runge-Kutta integration is proportional to T4. 

Table 1.1 
x = cos t kom t = 0 to t = 1, for various integration algorithms, and for various time 
step sizes T. 

Example 1.5 results. Percent errors when numerically integrating 

T = 0.1 T = 0.05 T = 0.025 

Rectangular 2.6 1.3 0.68 
Trapezoidal 0.083 0.021 0.0052 

Fourth-order Runge-Kutta 3.5 x 2.2 x 1.4 x 

vvv 

1.6 STABILITY 

In this section, we review the concept of stability for linear time-invariant systems. 
We first deal with continuous-time systems in Section 1.6.1, and then discrete-time 
systems in Section 1.6.2. We state the important results here without proof. The 
interested reader can refer to standard books on linear systems for more details and 
additional results [Kai80, Bay99, Che991. 

1.6.1 Continuous-time systems 

Consider the zero-input, linear, continuous-time system 

X = AX 

y = e x  (1.118) 

The definitions of marginal stability and asymptotic stability are as follows. 

Definition 1 A linear continuous-time, time-invariant system is marginally stable 
if the state x ( t )  is bounded for all t and for all bounded initial states x(0). 

Marginal stability is also called Lyapunov stability. 

Definition 2 A linear continuous-time, time-invariant system is  asymptotically 
stable if, for all bounded initial states x(O), 

lim x( t )  = 0 
t+w 

(1 * 119) 
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The above two definitions show that a system is marginally stable if it is asymp- 
totically stable. That is, asymptotic stability is a subset of marginal stability. 
Marginal stability and asymptotic stability are types of internal stability. This is 
because they deal with only the state of the system (i.e., the internal condition of 
the system) and do not consider the output of the system. More specific categories 
of internal stability (e.g., uniform stability and exponential stability) are given in 
some books on linear systems. 

Since the solution of Equation (1.118) is given as 

z( t )  = exp(At)z(O) (1.120) 

we can state the following theorem. 

Theorem 1 A linear continuous-time, time-invariant system is  marginally stable 
i f  and only i f  

lim exp(At) 5 M < 00 (1.121) 
t+w 

for some constant matrix M. This is  just a way of saying that the matrix exponential 
does not increase without bound. 

The “less than or equal to” relation in the above theorem raises some questions, 
because the quantities on either side of this mathematical symbol are matrices. 
What does it mean for a matrix to be less than another matrix? It can be interpreted 
several ways. For example, to say that A < B is usually interpreted to mean that 
( B  - A) is positive definite.5 In the above theorem we can use any reasonable 
definition for the matrix inequality and the theorem still holds. 

Theorem 2 A linear continuous-time, time-invariant system is  asymptotically sta- 
ble i f  and only i f  

A similar theorem can be stated by combining Definition (2) with Equation (1.120). 

lim exp(At) = 0 (1.122) 
t +bo 

Now recall that exp(At) = Qexp(At)Q-’, where Q is a constant matrix con- 
taining the eigenvectors of A, and A is the Jordan form of A. The exponential 
eXp(At) therefore contains terms like exp(Ait), texp(Ait), t 2exp (A i t ) ,  and so on, 
where A, is an eigenvalue of A. The boundedness of exp(At) is therefore related to 
the eigenvalues of A as stated by the following theorems. 

Theorem 3 A linear continuous-time, time-invariant system is  marginally stable 
i f  and only i f  one of the following conditions holds. 

1. All of the eigenvalues of A have negative real parts. 

2. All of the eigenvalues of A have negative or zero real parts, and those with 
real parts equal to zero have a geometric multiplicity equal to their algebraic 
multiplicity. That is, the Jordan blocks that are associated with the eigenvalues 
that have real parts equal to zero are first order. 

Theorem 4 A linear continuous-time, time-invariant system is  asymptotically sta- 
ble i f  and only i f  all of the eigenvalues of A have negative real parts. 

5Sometime5 the statement A < B means that every element of A is less than the corresponding 
element of B. However, we will not use that definition in this book. 
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EXAMPLE1.6 

Consider the system 

x =  0 0  0 x [I : :J (1.123) 

Since the A matrix is upper triangular, we know that its eigenvalues are on 
the diagonal; that is, the eigenvalues of A are equal to 0, 0, and -1. We 
see that the system is asymptotically unstable since some of the eigenvalues 
are nonnegative. We also note that the A matrix is already in Jordan form, 
and we see that the Jordan block corresponding to the 0 eigenvalue is second 
order. Therefore, the system is also marginally unstable. The solution of this 
system is 

z( t )  = ap(At)a:(O) 

= [ : 4 : ] z(0) 
0 0 e-t 

(1.124) 

The element in the first row and second column of exp(At) increases without 
bound as t increases, so there are some initial states x(0)  that will result in 
unbounded x ( t ) .  However, there are also some initial kates z(0) that will 
result in bounded z ( t ) .  For example, if z(0) = [ 1 

T 
0 1 ] , then 

x ( t )  = 

= [ .at ]  (1.125) 

and z ( t )  will be bounded for all t. However, this does not say anything about 
the stability of the system; it only says that there exists some z(0) that results 
in a bounded z ( t ) .  If we instead choose x(0) = [ 0 

T 
1 0 ] , then 

(1.126) 

and z ( t )  increases without bound. This proves that the system is asymptoti- 
cally unstable and marginally unstable. 

vvv 
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EXAMPLE 1.7 

Consider the system 

x =  0 0  0 x (1.127) [: : :1] 
The eigenvalues of A are equal to 0, 0, and -1. We see that the system is 
asymptotically unstable since some of the eigenvalues are nonnegative. In 
order to see if the system is marginally stable, we need to compute the geo- 
metric multiplicity of the 0 eigenvalue. (This can be done by noticing that A 
is already in Jordan form, but we will go through the exercise more completely 
for the sake of illustration.) Solving the equation 

( X I  - A). = [ i ]  
(where X = 0) for nonzero vectors 21, we see that there are two linearly inde- 
pendent solutions given as 

(1.128) 

. = [ % ] , [ % I  (1.129) 

This shows that the geometric multiplicity of the 0 eigenvalue is equal to 2, 
which means that the system is marginally stable. The solution of this system 
is 

~ ( t )  = exp(At)x(O) 

= [ : ; : ] x ( 0 )  
0 0 e-t 

(1,130) 

Regardless of x(O), we see that x(t) will always be bounded, which means that 
the system is marginally stable. Note that x(t) may approach 0 as t increases, 
depending on the value of x(0). For example, if x(0) = [ 0 0 -1 ] , then 

T 

1 0  0 

x(t> = [ 0 1 0 ] [ !l] = [ - ! - t]  o o e-t 

and x(t) approaches 0 as t increases. However, this does not say anything 
about the asymptotic stability of the system; it only says that there exists 
some x(0) that results in state z ( t )  that asymptotically approaches 0. If we 
instead choose x(0) = [ 0 

(1.131) 

T 
1 0 ] , then 

1 0  0 

. O = [ o  0 0 1 e-t o ] [ ; ] = [ ; ]  
and x(t) does not approach 0. This proves that the system is asymptotically 
unstable. 

vvv 

(1.132) 
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1.6.2 Discrete-time systems 

Consider the zero-input, linear, discretetime, timeinvariant system 

(1.133) 

The definitions of marginal stability (also called Lyapunov stability) and asymptotic 
stability are analogous to the definitions for continuous-time systems that were 
given in Section 1.6.1. 

Definition 3 A linear discrete-time, time-invariant system is marginally stable if 
the state Xk is bounded for all k and for all bounded initial states XO. 

Definition 4 A linear discrete-time, time-invariant system is asymptotically stable 

lim X k  = 0 (1.134) 
if 

k+co 

for all bounded initial states XO. 

Marginal stability and asymptotic stability are types of internal stability. This 
is because they deal with only the state of the system (i.e., the internal condition of 
the system) and do not consider the output of the system. More specific categories 
of internal stability (e.g., uniform stability and exponential stability) are given in 
some books on linear systems. 

Since the solution of Equation (1.133) is given as 

xk = A k XO (1.135) 

we can state the following theorems. 

Theorem 5 A linear discrete-time, time-invariant system is marginally stable if 
and only if 

lim Ak 5 M < 00 (1.136) 

for some constant matrix M. This is just a way of saying that the powers of A do 
not increase without bound. 

k - c o  

Theorem 6 A linear discrete-time, time-invariant system is asymptotically stable 
af and only if 

lim Ak = 0 (1.137) 

Now recall that Ak = QAkQ-l, where Q is a constant mFtrix containing the 
eigenvectors of A ,  and A is the Jordan form of A.  The matrix Ak therefore contains 
terms like A!, kA;, k2$, and so on, where A, is an eigenvalue of A. The boundedness 
of Ak is therefore related to the eigenvalues of A as stated by the following theorems. 

Theorem 7 A linear discrete-time, time-invariant system is marginally stable if 
and only if one of the following conditions holds. 

k + w  

1. All of the eigenvalues of A have magnitude less than one. 
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2. All of the eigenvalues of A have magnitude less than or equal to one, and 
those with magnitude equal to one have a geometric multiplicity equal to their 
algebraic multiplicity. That is, the Jordan blocks that are associated with the 
eigenvalues that have magnitude equal to one are first order. 

Theorem 8 A linear discrete-time, time-invariant system is asymptotically stable 
if and only if all of the eigenvalues of A have magnitude less than one. 

1.7 CO NTRO LLAB I Ll TY AND 0 BS E RVA BI LlTY 

The concepts of controllability and observability are fundamental to modern control 
theory. These concepts define how well we can control a system (i.e., drive the state 
to a desired value) and how well we can observe a system (i.e., determine the initial 
conditions after measuring the outputs). These concepts are also important to some 
of the theoretical results related to optimal state estimation that we will encounter 
later in this book. 

1.7.1 Controllability 

The following definitions and theorems give rigorous definitions for controllability 
for linear systems in the both the continuous-time and discretetime cases. 

Definition 5 A continuous-time system is controllable if for any initial state x(0) 
and any final time t > 0 there exists a control that transfers the state to any desired 
value at time t .  

Definition 6 A discrete-time system is controllable if for any initial state xo and 
some final time k there exists a control that transfers the state to any desired value 
at time k .  

Note the controllability definition in the continuous-time case is much more 
demanding than the definition in the discretetime case. In the continuous-time 
case, the existence of a control is required for any final time. In the discretetime 
case, the existence of a control is required for some final time. In both cases, 
controllability is independent of the output equation. 

There are several tests for controllability. The following equivalent theorems can 
be used to test for the controllability of continuous linear timeinvariant systems. 

Theorem 9 The n-state6 continuous linear time-invariant system x = Ax + Bu 
has the controllability matrix P defined by  

P =  [ B AB A"-lB 3 (1.138) 

The system i s  controllable if and only if p ( P )  = n. 

Theorem 10 The n-state continuous linear time-invariant system x = Ax + Bu 
is controllable if and only if the controllability grammian defined by  

it eArBBTeATr d7  (1.139) 

6The notation n-s ta te  sys tem indicates a system that has n elements in its state variable z. 
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is positive definite for  some t E ( 0 , ~ ) .  

Theorem 11 The n-state continuous linear time-invariant system x = Ax + Bu 
is controllable if and only if the differential Lyapunov equation 

W ( 0 )  = 0 

W = W A ~ + A W + B B ~  (1.140) 

has a positive definite solution W( t )  for some t E ( 0 , ~ ) .  This i s  also called a 
Sylvester equation. 

Similar to the continuous-time case, the following equivalent theorems can be 
used to test for the controllability of discrete linear timeinvariant systems. 

Theorem 12 The n-state discrete linear time-invariant system X k  = Fxk-1 + 
Guk-1 has the controllability matrix P defined by 

P =  [ G FG * a *  F"-lG ] (1.141) 

The system is  controllable af and only i f  p(P) = n. 

Theorem 13 The n-state discrete h e a r  time-invariant system X k  = FXk-1 + 
Guk-1 is  controllable if and only i f  the controllability grammian defined by 

k 

Ak-ZBBT(AT)k-i (1.142) 
2=0 

is positive definite for  some k E ( 0 , ~ ) .  

Theorem 14 The n-state discrete h e a r  tame-invariant system X k  = Fxk-1 + 
GUk-1 is controllable if and only i f  the difference Lyapunov equation 

wo = 0 

w%+~ = F W , F ~ + G G ~  (1.143) 

has a positive definite solution wk for  some k E (0, w). This is  also called a Stein 
equation. 

Note that Theorems 9 and 12 give identical tests for controllability for both 
continuous-time and discretetime systems. In general, these are the simplest con- 
trollability tests. Controllability tests for timevarying linear systems can be ob- 
tained by generalizing the above theorems. Controllability for nonlinear systems is 
much more difficult to formalize. 

EXAMPLE 1.8 

The RLC circuit of Figure 1.4 has the system description 

(1.144) 
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where v c  is the voltage across the capacitor, i~ is the current through the 
inductor, and u is the applied voltage. We will use Theorem 9 to determine 
the conditions under which this system is controllable. The controllability 
matrix is computed as 

P = [ B  A B ]  

(1.145) 1 1/RC 1ILC - 2/R2C2 
= [ 1/L -1IRLC 

From this we can compute the determinant of P as 

[PI = 1/R2LC2 - 1/L% 

The determinant of P is 0 only if R = fl. So the system is controllable 
unless R = m. It would be very difficult to obtain this result from 
Theorems 10 and 11. 

(1.146) 

Figure 1.4 RLC circuit for Example 1.8. 

vvv 

1.7.2 0 bserva bility 

The following definitions and theorems give rigorous definitions for observability 
for linear systems in both the continuous-time and discrete-time cases. 

Definition 7 A continuous-time system is observable if for any initial state x(0)  
and any final time t > 0 the initial state x(0)  can be uniquely determined by  knowl- 
edge of the input U ( T )  and output y ( ~ )  for all T E [0, t ] .  

Definition 0 A discrete-time system is observable if for any initial state xo and 
some final time k the initial state XIJ can be uniquely determined by knowledge of 
the input uz and output yd for all i E [0, k ] .  

Note the observability definition in the continuous-time case is much more de- 
manding than the definition in the discrete-time case. In the continuous-time case, 
the initial state must be able to be determined at any final time. In the discrete- 
time case, the initial state must be able to be determined at some final time. If 
a system is observable then the initial state can be determined, and if the initial 
state can be determined then all states between the initial and final times can be 
determined. 
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There are several tests for controllability. The following equivalent theorems can 
be used to test for the controllability of continuous linear time-invariant systems. 

Theorem 15 The n-state continuous linear time-invariant system 

k = A x + B u  

y = c x  

has the observability matrix Q defined by 

Q = [  " 1  C 

CAn-l 

The system is observable if and only if p(Q) = n. 

Theorem 16 The n-state continuous linear time-invariant system 

k = Ax+Bu 
y = c x  

is observable if and only if the observability grammian defined by 

I" eAT7CTCeAr dT 

is positive definite for some t E (0,m). 

Theorem 17 The n-state continuous linear time-invariant system 

k = Ax+Bu 

y = c x  

(1.147) 

(1.148) 

(1.149) 

(1.150) 

(1.151) 

is observable if and only if the differential Lyapunov equation 

W ( t )  = 0 

-I&' = W A + A T W + C T C  (1.152) 

This is also called a has a positive definite solution W ( T )  for some T E (0 , t ) .  
Sylvester equation. 

Similar to the continuous-time case, the following equivalent theorems can be 
used to test for the observability of discrete linear time-invariant systems. 

Theorem 18 The n-state discrete linear time-invariant system 

(1.153) 
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has the observability matrix Q defined by 

Q = [  " 1  H 

H F ~ - ~  

The system i s  observable i f  and only i f  p(Q) = n. 

Theorem 19 The n-state discrete linear time-invariant system 

xk = FXk-l+GUk-i 

Y k  = Hxk 

i s  observable if and only if the observability grammian defined by  

k 

2=0 

is positive definite f o r  some k E (0 ,  m). 

Theorem 20 The n-state discrete linear time-invariant system 

x k  = FXk-1 + GUk-1 

?4k = Hxk 

i s  observable if and only i f  the difference Lyapunov equation 

wk = 0 

w, = F ~ W , + ~ F + H ~ H  

(1.154) 

(1.155) 

(1.156) 

( 1.157) 

(1.158) 

has a positive definite solution Wo f o r  some k E (0,m). This i s  also called a Stein 
equation. 

Note that Theorems 15 and 18 give identical tests for observability for both 
continuoustime and discretetime systems. In general, these are the simplest ob- 
servability tests. Observability tests for timevarying linear systems can be obtained 
by generalizing the above theorems. Observability for nonlinear systems is much 
more difficult to formalize. 

EXAMPLE 1.9 

The RLC circuit of Example 1.8 has the system description 

[ ?  ] = [ -1/L 0 

y = [ - 1  0 1  [::I ( 1.159) 

where vc is the voltage acrom the capacitor, i L  is the current through the 
inductor, and u is the applied voltage. We will use Theorem 15 to determine 
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the conditions under which this system is observable. The observability matrix 
is computed as 

(1.160) 

The determinant of the observability matrix can be computed as 

IQI = 1/C (1.161) 

The determinant of Q is nonzero, so the system is observable. On the other 
hand, suppose that R = L = C = 1 and the output equation is 

[ :: 1 y" -1 13  

Then the observability matrix can be computed as 

Q = [ -: -:] 
I Q I  = 0 

(1.162) 

(1.163) 

So the system is unobservable. It would be very difficult to obtain this result 
from Theorems 16 and 17. 

vvv 

1.7.3 Stabilizability and detectability 

The concepts of stabilizability and detectability are closely related to controllability 
and observability, respectively. These concepts are also related to the modes of a 
system. The modes of a system are all of the decoupled states after the system is 
transformed into Jordan form. A system can be transformed into Jordan form as 
follows. Consider the system 

5 = Ax+Bu 

y = C X + D U  (1.164) 

First find the eigendata of the system matrix A. Suppose the eigenvectors are 
denoted as v1,. . . , v,. Create an n x n matrix M by augmenting the eigenvectors 
as follows. 

M =  [ 211 . . .  v, ] (1.165) 

Define a new system as 

5 = M - ~ A M % + M - ~ B  
= A % + B u  

y = CMZ+Du 
= C'Z+Du (1.166) 

The new system is called the Jordan form representation of the original system. 
Note that the matrix M will always be invertible because the eigenvectors of a 
matrix can always be chosen to be linearly independent. The two systems of Equa- 
tions (1.164) and (1.166) are called algebraically equivalent systems. This is because 
they have the same input and the same output (and therefore they have the same 
transfer function) but they have different states. 
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EXAMPLE 1.10 

Consider the system 

i = Ax+Bu 
= [ o  1 1  1 2 3 ] ] . + [ ; ] .  

0 0 -2 
y = C X + D U  

= [ l  0 0 ] + 2 u  

This system has the same transfer function as 

6 = A5+Bu 

= [; 0 0 ; -2 " ] . + [ a ] .  
y = C'Z+Du 

= [ 1 0 1 ] Z + 2 u  

The eigenvector matrix of A is 

M = [ 'u1 'u2 'un ] 

- - [;: : ]  
0 0 -3 

Note the equivalences 

A = M - ~ A M  
B = M - ~ B  
C' = C M  

The Jordan form system has two decoupled modes. The first mode is 

$1 = [ o  1 1 -  l ] x l + [ ; ] u  

Y1 = [ 1 0 1 5 1  

The second mode is 

5 2  = - 2 5 2 + 0 u  

92 = 5 2  

vvv 

(1.167) 

(1.168) 

(1.169) 

(1.170) 

(1.171) 

(1.172) 

Definition 9 If a system i s  controllable or stable, then it is also stabilizable. If 
a system i s  uncontrollable OT unstable, then it is stabilizable if i t s  uncontrollable 
modes are stable. 
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In Example 1.10, the first mode is unstable (both eigenvalues at +1) but control- 
lable. The second mode is stable (eigenvalue at -2) but uncontrollable. Therefore, 
the system is stabilizable. 

Definition 10 If a system i s  observable or stable, then it i s  also detectable. If a 
system is unobservable or unstable, then it i s  detectable if i t s  unobservable modes 
are stable. 

In Example 1.10, the first mode is unstable but observable. The second mode is 
both stable and observable. Therefore, the system is detectable. 

Controllability and observability were introduced by Rudolph Kalman at a con- 
ference in 1959 whose proceedings were published in an obscure Mexican jour- 
nal in 1960 [KalGOb]. The material was also presented at an IFAC conference in 
1960 [KalGOc] , and finally published in a more widely accessible format in 1963 [Ka163]. 

1.8 SUMMARY 

In this chapter we have reviewed some of the basic concepts of linear systems 
theory that are fundamental to many approaches to optimal state estimation. We 
began with a review of matrix algebra and matrix calculus, which proves to be 
indispensable in much of the theory of state estimation techniques. For additional 
information on matrix theory, the reader can refer to several excellent texts [Hor85, 
Go189, Ber051. We continued in this chapter with a review of linear and nonlinear 
systems, in both continuous time and discrete time. We regard time as continuous 
for physical systems, but our simulations and estimation algorithms operate in 
discrete time because of the popularity of digital computing. We discussed the 
discretization of continuous-time systems, which is a way of obtaining a discrete- 
time mathematical representation of a continuoustime system. The concept of 
stability can be used to tell us if a system’s states will always remain bounded. 
Controllability tells us if it is possible to find a control input to force system states 
to our desired values, and observability tells us if it is possible to determine the 
initial state of a system on the basis of output measurements. State-space theory 
in general, and linear systems theory in particular, is a wideranging discipline 
that is typically covered in a one-semester graduate course, but there is easily 
enough material to fill up a two-semester course. Many excellent textbooks have 
been written on the subject, including [Bay99, Che99, KaiOO] and others. A solid 
understanding of linear systems will provide a firm foundation for further studies 
in areas such as control theory, estimation theory, and signal processing. 

PROBLEMS 

Written exercises 

1.1 Find the rank of the matrix 

1.2 Find two 2 x 2 matrices A and 
diagonal, A # cB for any scalar c, and 

B such that A # B, neither A nor B are 
A B  = BA. Find the eigenvectors of A and 
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B. Note that they share an eigenvector. Interestingly, every pair of commuting 
matrices shares at least one eigenvector [Hor85, p. 511. 

1.3 

1.4 

Prove the three identities of Equation (1.26). 

Find the partial derivative of the trace of AB with respect to A. 

1.5 Consider the matrix 

A = [ ;  !A 
L J 

Recall that the eigenvalues of A are found by find the roots of the polynomial 
P(A) = 1x1 - A[.  Show that P(A)  = 0. (This is an illustration of the Cayley- 
Hamilton theorem [Bay99, Che99, KaiOO] .) 

1.6 Suppose that A is invertible and 

Find B and C in terms of A [Lie67]. 

1.7 
metric. 

Show that AB may not be symmetric even though both A and B are sym- 

1.8 Consider the matrix 

.=I; !A 
L J 

where a, b, and c are real, and a and c are nonnegative. 
a) Compute the solutions of the characteristic polynomial of A to prove that 

the eigenvalues of A are real. 
b) For what values of b is A positive semidefinite? 

1.g 

1.10 
1, . - . , n). What are the eigenvalues and eigenvectors of -A? 

1.11 

1.12 

Derive the properties of the state transition matrix given in Equation (1.72). 

Suppose that the matrix A has eigenvalues A, and eigenvectors wi (i = 

Show that leAtl = elAlt for any square matrix A. 

Show that if A = BA, then 

-= d l A J  Tr( B)IAI 
dt 

1.13 The linear position p of an object under constant acceleration is 

1 
p = po +pt + -jt2 2 

where po is the initial position of the object. 

a) Define a state vector as z = [ p p p ] and write the state space e q u s  
tion h = Az for this system. 

b) Use all three expressions in Equation (1.71) to find the state transition 
matrix eAt for the system. 

c) Prove for the state transition matrix found above that eAo = I .  

T 
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1.14 Consider the following system matrix. 

A = [ '  0 -1 " 1  

satisfies the relation S ( t )  = AS(t), but S( t )  is not the state transition matrix of 
the system. 

1.15 Give an example of a discrete-time system that is marginally stable but not 
asymptotically stable. 

1.16 Show (H, F )  is an observable matrix pair if and only if ( H ,  F-') is observable 
(assuming that F is nonsingular). 

Computer exercises 

1.17 The dynamics of a DC motor can be described as 

~e + ~e = T 

where t9 is the angular position of the motor, J is the moment of inertia, F is the 
coefficient of viscous friction, and T is the torque applied to the motor. 

a) Generate a two-state linear system equation for this motor in the form 

X = AX + BU 

b) Simulate the system for 5 s and plot the angular position and velocity. 
Use J = 10 kg m2, F = 100 kg m2/s, z(0) = [ 0 0 ] , and T = 10 N 
m. Use rectangular integration with a step size of 0.05 s. Do the output 
plots look correct? What happens when you change the step size A t  to 
0.2 s? What happens when you change the step size to  0.5 s? What are 
the eigenvalues of the A matrix, and how can you relate their magnitudes 
to the step size that is required for a correct simulation? 

T 

1.18 The dynamic equations for a series RLC circuit can be written as 

u = I R + L I + V ,  
I = cvc 

where u is the applied voltage, I is the current through the circuit, and V, is the 
voltage across the capacitor. 

a) Write a state-space equation in matrix form for this system with 2 1  as the 
capacitor voltage and 2 2  as the current. 

b) Suppose that R = 3, L = 1, and C = 0.5. Find an analytical expression 
for the capacitor voltage for t 2 0, assuming that the initial state is zero, 
and the input voltage is u(t)  = e-2t.  
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c )  Simulate the system using rectangular, trapezoidal, and fourth-order Runge- 
Kutta integration to obtain a numerical solution for the capacitor voltage. 
Simulate from t = 0 to t = 5 using step sizes of 0.1 and 0.2. Tabulate the 
RMS value of the error between the numerical and analytical solutions for 
the capacitor voltage for each of your six simulations. 

1.19 The vertical dimension of a hovering rocket can be modeled as 

x1 = 2 2  

x2 = 

x3 = -U 

GM - KU - g22 

23 (R + .1)2 

where 2 1  is the vertical position of the rocket, 2 2  is the vertical velocity, 23 is 
the mass of the rocket, u is the control input (the flow rate of rocket propulsion), 
K = 1000 is the thrust constant of proportionality, g = 50 is the drag constant, 
G = 6.6733 - 11 m3/kg/s2 is the universal gravitational constant, M = 5.98324 
kg is the mass of the earth, and R = 6.3736 m is the radius of the earth radius. 

a) Find u(t)  = u ~ ( t )  such that the system is in equilibrium at q ( t )  = 0 and 

b) Find x3(t) when z l ( t )  = 0 and x2(t) = 0. 
c )  Linearize the system around the state trajectory found above. 
d) Simulate the nonlinear system for five seconds and the linearized system 

for five seconds with u(t)  = u g ( t )  + Aucos(t). Plot the altitude of the 
rocket for the nonlinear simulation and the linear simulation (on the same 
plot) when Au = 10. Repeat for Au = 100 and Au = 300. Hand in 
your source code and your three plots. What do you conclude about the 
accuracy of your linearization? 

x2(t) = 0. 



CHAPTER 2 

Probability theory 

The most we can know is in terms of probabilities. 
--Richard Feynman [Fey63, p. 6-11] 

While writing my book [Stochastic Processes, first published in 19531 I had an argument 
with Feller. He asserted that everyone said “random variable” and I asserted that 
everyone said “chance variable.” We obviously had to use the same name in our books, 
so we decided the issue by a stochastic procedure. That is, we tossed for it and he won. 

-Joseph Doob [Sne97, p. 3071 

Probabilities do not exist. 
-Bruno de Finetti [deF74] 

In our &tempt to filter a signal, we will be trying to  extract meaningful informa- 
tion from a noisy signal. In order to  accomplish this, we need to know something 
about what noise is, some of its characteristics, and how it works. This chapter 
reviews probability theory. We begin by discussing the basic concept of probability 
in Section 2.1, and then move on to  random variables (RVs) in Section 2.2. The 
chapter then continues with the following topics: 

0 An RV is a general case of the normal scalars that we are familiar with, and 
so just as we can apply a functional mapping to  a number, we can also apply 

Optimal State Estimation, First Edition. By Dan J.  Simon 
ISBN 0471708585 02006  John Wiley & Sons, Inc. 

49 
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a 

a 

a 

a functional mapping to an RV. We discuss functions (transformations) of 
random variables in Section 2.3. 

Just as we can have vectors of numbers, we can also have vectors of RVs, and 
so we discuss groups of random variables and random vectors in Section 2.4. 

Just as we can have scalar functions of time, we can also have RVs that are 
functions of time, and so we discuss RVs that change with time (stochastic 
processes) in Section 2.5. 

Stochastic processes can be divided into two categories: white noise and col- 
ored noise, and we discuss these concepts in Section 2.6. 

We conclude in Section 2.7 with a high-level discussion of how to write a computer 
simulation of a noise process. 

This chapter is only a brief introduction and review of probability and stochastic 
processes, and more detail can be found in many other books on the subject, such 
as [Pap02, PeeOl]. 

2.1 PROBABILITY 

How shall we define the concept of probability? Suppose we run an experiment a 
certain number of times. Sometimes event A occurs and sometimes it does not. For 
instance, our experiment may be rolling a six-sided die. Event A may be defined 
as the number 4 showing up on the top surface of the die after we roll the die. 
Common sense tells us that the probability of event A occuring is 1/6. Likewise, 
we would expect that if we run our experiment many times, then we would see 
the number 1 appearing about 1/6 of the time. This intuitive explanation forms 
the basis for our formal description of the concept of probability. We define the 
probability of event A as 

(2.1) 
Number of times A occurs 
Total number of outcomes 

P ( A )  = 

This commonsense understanding of probability is called the relative frequency 
definition. A more formal and mathematically rigorous definition of probability 
can be obtained using set theory [Bi195, Nel871, which was pioneered by Andrey 
Kolomogorov in the 1930s. But for our purposes, the relative frequency definition 
is adequate. 

In general, we know that there are n-choose-k different ways of selecting Ic objects 
from a total of n objects (assuming that the order of the objects does not matter), 
where n-choose-k is denoted and defined as 

n! ( ) = (n - k)!k! 

For instance, suppose we have a penny (P), nickel (N), dime (D), and quarter (Q). 
How many distinct subsets of three coins can we pick from that set? We can pick 
PND, PNQ, PDQ, or NDQ, for a total of four possible subsets. This is equal to 
4choose-3. 
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EXAMPLE2.1 

What is the probability of being dealt four of a kind' in poker? The total 
number of possible poker hands can be computed as the total number of 
subsets of size five that can be picked from a deck of 52 cards. The total 
number of possible hands is 52-choose5 = 2,598,960. Out of all those hands, 
there are 48 possible hands containing four aces, 48 possible hands containing 
four kings, and so on. So there are a total of 13 x 48 hands containing four of 
a kind. Therefore the probability of being dealt four of a kind is 

= 1/4165 

M 0.024% 

vvv 
The conditional probability of event A given event B can be defined if the prob- 

ability of B is nonzero. The conditional probability of A given B is defined as 

P(A1B) is the conditional probability of A given B,  that is, the probability that A 
occurs given the fact that B occurred. P ( A , B )  is the joint probability of A and 
B,  that is, the probability that events A and B both occur. The probability of a 
single event [for instance, P ( A )  or P ( B ) ]  is called an a priori probability because it 
applies to the probability of an event apart from any previously known information. 
A conditional probability [for instance, P(AIB)] is called an a posteriori probability 
because it applies to a probability given the fact that some information about a 
possibly related event is already known. 

For example, suppose that A is the appearance of a 4 on a die, and B is the 
appearance of an even number on a die. P ( A )  = 1/6. But if we know that the die 
has an even number on it, then P(A) = 1/3 (since the even number could be either 
a 2, 4, or 6). This example is intuitive, but we can also obtain the answer using 
Equation (2.4). P ( A ,  B )  is the probability that both A occurs (we roll a 4) and B 
occurs (we roll an even number), so P ( A ,  B )  = 1/6. So Equation (2.4) gives 

= 1/3 (2.5) 

The a priori probability of A is 1/6. But the a posteriori probability of A given B 
is 1/3. 

EXAMPLE2.2 

Cnsider the eight shapes in Figure 2.1. We have three circles and five squares, 
so P(circ1e) = 3/8. Only one of the shapes is a gray circle, so P(gray, circle) 

'Once I was dealt four sevens while playing poker with some friends (unfortunately, I was not 
playing for money at the time). I don't expect to see it again in my lifetime. 
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= 1/8. Of the three circles, only one is gray, so P(gray I circle) = 1/3. This 
last probability can be computed using Equation (2.4) as 

P(gray, circle) 
P( circle) 

P(graylcirc1e) = 

Figure 2.1 Some shapes for illustrating probability and Bayes’ Rule. 

vvv 
Note that we can use Equation (2.4) to write P(BIA) = P ( A , B ) / P ( A ) .  We 

can solve both this equation and Equation (2.4) for P ( A , B )  and equate the two 
expressions for P(A,  B)  to obtain Bayes’ Rule. 

P(AIB)P(B) = P(BIA)P(A) (2.7) 

Bayes’ Rule is often written by rearranging the above equation to obtain 

As an example, consider Figure 2.1. The probability of picking a gray shape given 
the fact that the shape is a circle can be computed from Bayes’ Rule as 

P( circle1 gray) P( gray) 
P(circ1e) 

P(graylcirc1e) = 

We say that two events are independent if the occurrence of one event has no effect 
on the probability of the occurrence of the other event. For example, if A is the 
appearance of a 4 after rolling a die, and B is the appearance of a 3 after rolling 
another die, then A and B are independent. Mathematically, independence of A 
and B can be expressed several different ways. For example, we can write 

P ( A , B )  = P ( A ) P ( B )  
P(AIB) = P ( A )  
P(B1A) = P(B) (2.10) 
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if A and B are independent. As an example, recall from Equation (2.5) that if A 
is the appearance of a 4 on a die, and B is the appearance of an even number on 
a die, then P(A) = 1/6 and P(A1B) = 1/3. Since P(A1B) # P(A) we see that A 
and B are dependent events. 

2.2 RANDOM VARIABLES 

We define a random variable (RV) as a functional mapping from a set of experi- 
mental outcomes (the domain) to a set of real numbers (the range). For example, 
the roll of a die can be viewed as a RV if we map the appearance of one dot on the 
die to the output one, the appearance of two dots on the die to the output two, 
and so on. 

Of course, after we throw the die, the value of the die is no longer a random 
variable - it becomes certain. The outcome of a particular experiment is not an 
RV. If we define X as an RV that represents the roll of a die, then the probability 
that X will be a four is equal to 1/6. If we then roll a four, the four is a realization 
of the RV X. If we then roll the die again and get a three, the three is another 
realization of the RV X. However, the RV X exists independently of any of its 
realizations. This distinction between an RV and its realizations is important for 
understanding the concept of probability. Realizations of an RV are not equal to 
the RV itself. When we say that the probability of X = 4 is equal to 1/6, that 
means that there is a 1 out of 6 chance that each realization of X will be equal to  
4. However, the RV X will always be random and will never be equal to a specific 
value. 

An RV can be either continuous or discrete. The throw of a die is a discrete 
random variable because its realizations belong to a discrete set of values. The 
high temperature tomorrow is a continuous random variable because its realizations 
belong to a continuous set of values. 

The most fundamental property of an RV X is its probability distribution func- 
tion (PDF) F x ( x ) ,  defined as 

F x ( x )  = P ( X  5 z) (2.11) 

In the above equation, F x ( x )  is the PDF of the RV X, and z is a nonrandom 
independent variable or constant. Some properties of the PDF that can be obtained 
from its definition are 

The probability density function (pdf) f x ( x )  is defined as the derivative of the 
PDF. 

(2.13) 
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Some properties of the pdf that can be obtained from this definition are 

F X b )  = s _ a . ( . ) d z  

J_mfx(z)dz = 1 

P ( a < z I b )  = JIbfX(s)d5 

f X ( 2 )  2 0 
00 

(2.14) 

The Q-function of an RV is defined as one minus the PDF. This is equal to the 
probability that the RV is greater than the argument of the function: 

(2.15) 

Just as we spoke about conditional probabilities in Equation (2.4), we can also speak 
about the conditional PDF and the conditional pdf. The conditional distribution 
and density of the RV X given the fact that event A occurred are defined as 

Fx(2lA) = P(X5zlA) 

(2.16) 

Bayes’ Rule, discussed in Section 2.1, can be generalized to conditional densities. 
Suppose we have random variables XI and X 2 .  The conditional pdf of the RV X 1  

given the fact that RV X 2  is equal to the realization 2 2  is defined as 

(2.17) 

Although this is not entirely intuitive, it can be derived without too much diffi- 
culty [PapOS, PeeOl]. Now consider the following product of two conditional pdf’s: 

- - f ( 5 1 , 2 2 , 2 3 , 2 4 )  

f ( 5 4 )  

= f [ ( X l ,  52,53)1541 (2.18) 

Note that in the above equation we have dropped the subscripts on the f(.) func- 
tions for ease of notation. This is commonly done if the random variable associated 
with the pdf is clear from the context. This is called the Chapman-Kolmogorov 
equation [Pap02]. It can be extended to any number of RVs and is fundamental to 
the Bayesian approach to state estimation (Chapter 15). 

The expected value of an RV X is defined as its average value over a large number 
of experiments. This can also be called the expectation, the mean, or the average of 
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the RV. Suppose we run the experiment N times and observe a total of m different 
outcomes. We observe that outcome A1 occurs n1 times, A2 occurs n2 times, . . ., 
and A,,, occurs n, times. Then the expected value of X is computed as 

. m  

E(X) = I A i n ,  
N 

2=1 

(2.19) 

E(X) is also often written as E(x), X, or 2.  
At this point, we will begin to use lowercase x instead of uppercase X when the 

meaning is clear. We have been using uppercase X to refer to an RV, and lowercase 
x to refer to a realization of the RV, which is a constant or independent variable. 
However, it should be clear that, for example, E ( x )  is the expected value of the RV 
X, and so we will interchange x and X in order to simplify notation. 

As an example of the expected value of an RV, suppose that we roll a die an 
infinite number of times. We would expect to see each possible number (one through 
six) 1/6 of the time each. We can compute the expected value of the roll of the die 
as 

1 
N+-m N 

E(X) = lim - [(1)(N/6) +.. .+ (6)(N/6)] 

= 3.5 (2.20) 

Note that the expected value of an RV is not necessarily what we would expect 
to see when we run a particular experiment. For example, even though the above 
expected value of X is 3.5, we will never see a 3.5 when we roll a die. 

We can also talk about a function of an RV, just as we can talk about a function 
of any scalar. (We will discuss this in more detail in Section 2.3.) If a function, 
say g(X), acts upon an RV, then the output of the function is also an RV. For 
example, if X is the roll of a die, then P(X = 4) = 1/6. If g(X) = X2, then 
P[g(X) = 161 = 1/6. We can compute the expected value of any function g(X) as 

J-00 

(2.21) 

where fx(x) is the pdf of X. If g(X) = X, then we can compute the expected 
value of X as 

(2.22) 
J --m 

The variance of an RV is a measure of how much we expect the RV to vary from 
its mean. The variance is a measure of how much variability there is in an RV. In 
the extreme case, if the RV X always is equal to one value (for example, the die 
is loaded and we always get a 4 when we roll the die), then the variance of X is 
equal to 0. On the other extreme, if X can take on any value between ztco with 
equal probability, then the variance of X is equal to 00. The variance of an RV is 
formally defined as 

(2.23) 
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The standard deviation of an RV is 0, which is the square root of the variance. 
Sometimes we denote the standard deviation as ox if we need to be explicit about 
the RV whose standard deviation we are discussing. Note that the variance can be 
written as 

g 2  = E [ X 2 - - 2 X 1 + 2 2 ]  

E ( X 2 )  - 212 + 1 2  
= E ( X 2 ) - Z 2  

= 

We use the notation 
x N (z,a2) 

( 2 . 2 4 )  

(2 .25)  

to indicate that X is an RV with a mean of 5 and a variance of g2. 

Skew is defined as 
The skew of an RV is a measure of the asymmetry of the pdf around its mean. 

skew = E [ ( X  - Z ) 3 ]  (2 .26)  

The skewness, also called the coefficient of skewness, is the skew normalized by the 
cube of the standard deviation: 

skewness = skew/g3 ( 2 . 2 7 )  

In general, the ith moment of a random variable X is the expected value of the 
ith power of X .  The ith central moment of a random variable X is the expected 
value of the ith power of X minus its mean: 

ith moment of X = E(X' )  
ith central moment of X = E [ ( X  - Z)'] (2 .28)  

For example, the first moment of a random variable is equal to its mean. The 
first central moment of a random variable is always equal to 0. The second central 
moment of a random variable is equal to its variance. 

An RV is called uniform if its pdf is a constant value between two limits. This in- 
dicates that the RV has an equally likely probability of obtaining any value between 
its limits, but a zero probability of obtaining a value outside of its limits: 

x E [a,b] 
0 otherwise 

(2 .29)  

Figure 2.2 shows the pdf of an RV that is uniformly distributed between fl. Note 
that the area of this curve is one (as is the area of all pdf's). 

EXAMPLE 2.3 

In this example we will find the mean and variance of an RV that is uniformly 
distributed between 1 and 3.  The pdf of the RV is given as 

112 x E [ 1 , 3 ]  
0 otherwise 

( 2 . 3 0 )  
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0.4 t I 

X 

Figure 2.2 Probability density function of an RV uniformly distributed between fl .  

The mean is computed as follows: 6 

= [ i x d z  

= 2  

The variance is computed as follows: 

= l3 i(z - 2)2 dx 

vvv 
An RV is called Gaussian or normal if its pdf is given by 

1 -(x - Z)2 
f X ( 2 )  = - 

a f i e x p  [ 2a2 I 

(2.31) 

(2.32) 

(2.33) 

This is called the Laplace distribution in France, but it had many other discoverers, 
including Robert Adrain. Note that Z and 0 in the above pdf are the mean and 
standard deviation of the Gaussian RV. We use the notation 

x N N(5,02)  (2.34) 

to indicate that X is a Gaussian RV with a mean of Z and a variance of 02. 

Figure 2.3 shows the pdf of a Gaussian RV with a mean of zero and a variance 
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0.4 

0.35 

0.3 

p 0.25. 

0.2- 

v - 
'0 

0.15 

of one. If the mean changes, the pdf will shift to the left or right. If the variance 
increases, the pdf will spread out. If the variance decreases, the pdf will be squeezed 
in. The PDF of a Gaussian RV is given by 

- 

- 

- 

- 

(2.35) 

This integral does not have a closed-form solution, and so it must be evaluated nu- 
merically. However, its evaluation can be simplified by considering the normalized 
Gaussian PDF of an RV with zero mean and unity variance: 

(2.36) 

It can be shown that any Gaussian PDF can be expressed in terms of this normalized 
PDF as 

(2.37) 

In addition, a Gaussian PDF can be approximated as the following closed-form 
expression [Bor79]: 

a = 0.339 

b = 5.510 

0.45 

0.05 O ' l I  

n I  

I 

L 

(2.38) 

2 - 3 - 2 - 1  0 1 2  3 4 
X 

Figure 2.3 
variance of one. 

Probability density function of a Gaussian RV with a mean of zero and a 

Suppose we have a random variable X with a mean of zero and a symmetric 
pdf [i.e., fx(x)  = fx(-x)]. This is the case, for example, for the pdf's shown in 
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Figures 2.2 and 2.3. In this case, the ith moment of X can be written as 

If i is odd then xz = -(-z)~. Combined with the fact that fx(x) = fx(-z), we 
see that 

(2.40) 

So for odd i, the ith moment in Equation (2.39) is zero. We see that all of the odd 
moments of a zero-mean random variable with a symmetric pdf are equal to  0. 

2.3 TRANSFORMATIONS OF RANDOM VARIABLES 

In this section, we will look at what happens to the pdf of an RV when we pass the 
RV through some function. Suppose that we have two RVs, X and Y ,  related to  
one another by the monotonic2 functions g ( . )  and h(.): 

y = dX) 
x = g-l(Y) =h(Y)  (2.41) 

If we know the pdf of X [fx(x)], then we can compute the pdf of Y [fy(y)] as 
follows: 

P(X E [x, x + dz]) = P(Y E [Y, Y + dy]) (dx > 0) 

if dy > 0 

if dy < 0 

(2.42) 

where we have used the assumption of small dx and dy in the above calculation. 

'A monotonic function is a function whose slope is either always nonnegativeor always nonpositive. 
If the slope is always nonnegative, then the function is monotonically nondecreasing. If the slope 
is always positive, then the function is monotonically increasing. If the slope is always nonpositive, 
then the function is monotonically nonincreasing. If the slope is always negative, then the function 
is monotonically decreasing. 
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EXAMPLE2.4 

In this example, we will find the pdf of a linear function of a Gaussian RV. 
Suppose that X N N ( 3 ,  u;) and Y = g ( X )  = aX + b, where a # 0 and b are 
any real constants. Then 

x = h(Y)  

= (Y - b ) / a  

h‘(y) = l / a  

fY(Y)  = Ih’(Y)IfX[h(Y)l 

I = lAl-exp{ 1 -[(y - b ) / a  - 212 

a u x f i  2u: 

I - 1 { -[y - (aZ+b)]2  - 
a u x a  2 a 2 4  

g = a Z + b  

In other words, the RV Y is Gaussian with a mean and variance given by 

u: = a2a: 

(2.43) 

(2.44) 

This important example shows that a linear transformation of a Gaussian RV 
results in a new Gaussian RV. 

vvv 

EXAMPLE2.5 

Suppose that we pass a Gaussian RV X N N(0 ,u; )  through the nonlinear 
function Y = g(X) = X3: 

x = h(Y)  
- - yv3 

y-2/3 

fY(Y) = Ih’(Y)lfX[h(Y)l 

h’(Y) = 3 

(2.45) 

We see that the nonlinear transformation Y = X 3  converts a Gaussian RV 
to a non-Gaussian RV. It can be seen that f ~ ( y )  approaches 00 as y + 0. 
Nevertheless, the area under the fy(y) curve is equal to  1 since it is a pdf. 

vvv 
In the more general case of RVs related by the function Y = g(X), where g(.) is 

a nonmonotonic function, the pdf of Y (evaluated at  y) can be computed from the 
pdf of X as 

~ Y ( Y )  = C fx(za)/Ig’(zt)I (2.46) 
a 
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where the 2% values are the solutions of the equation y = g(z). 

2.4 MULTIPLE RANDOM VARIABLES 

We have already defined the probability distribution function of an RV. For exam- 
ple, if X and Y are RVs, then their distribution functions are defined as 

(2.47) 

Now we define the probability that both X I z and Y I y as the joint probability 
distribution function of X and Y: 

FXY(X, y) = P(X 5 2, y 5 9) (2.48) 

If the meaning is clear from the context, we often use the shorthand notation 
F ( z ,  y) to represent the distribution function Fxy(x, y). Some properties of the 
joint distribution function are 

F ( z , d  E [ O J I  
F(z , -oo )=F( -oo ,y )  = 0 

F(m,oo) = 1 
F(a ,c )  5 F ( b , d )  if a I b and c I d 

P(u < 2 I b, c < y I d) = F(b ,  d )  + F(u,  C) - F ( u ,  d )  - F(b, C) 
F(z ,oo )  = F ( x )  

F(W,Y)  = F(Y) (2.49) 

Note from the last two properties that the distribution function of one RV can be 
obtained from the joint distribution function. When the distribution function for a 
single RV is obtained this way it is called the marginal distribution function. 

The joint probability density function is defined as the following derivative of 
the joint PDF: 

(2.50) 

As before, we often use the shorthand notation f ( z , y )  to represent the density 
function f x y ( z ,  y). Some properties of the joint pdf that can be obtained from this 
definition are 

P(u < x 5 b, c < y 5 d) 

f (Y) (2.51) 
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Note from the last two properties that the density function of one RV can be 
obtained from the joint density function. When the density function for a single 
RV is obtained this way it is called the marginal density function. Computing the 
expected value of a function g(., .) of two RVs is similar to computing the expected 
value of a function of a single RV: 

(2.52) 

2.4.1 Statistical independence 

Recall from Section 2.1 that two events are independent if the occurrence of one 
event has no effect on the probability of the occurrence of the other event. We 
extend this to say that RVs X and Y are independent if they satisfy the following 
relation: 

(2.53) 

From our definition of joint distribution and density functions, we see that this 
implies 

P(X 5 2, Y 5 y) = P(X 5 z)P(Y 5 y) for all 2, y 

F X Y  (2, Y) = F X ( . ) F Y  (Y) 
f X Y  (2, Y) = f X ( Z ) f Y  (Y) (2.54) 

The central limit theorem says that the sum of independent RVs tends toward a 
Gaussian RV, regardless of the pdf of the individual RVs that contribute to the 
sum. This is why so many RVs in nature seem to have a Gaussian distribution. 
Many RVs in nature are actually the sum of many individual and independent RVs. 
For example, the high temperature on any given day in any given location tends 
to follow a Gaussian distribution. This is because the high temperature is affected 
by clouds, precipitation, wind, air pressure, humidity, and other factors. Each of 
these factors is in turn determined by other random factors. The combination of 
many independent random variables determines the high temperature, which has a 
Gaussian pdf. 

We define the covariance of two scalar RVs X and Y as 

c x y  = E[(X-X)(Y -Y] 
= E(XY)-XP (2.55) 

We define the correlation coefficient of two scalar RVs X and Y as 

(2.56) 

The correlation coefficient is a normalized measurement of the independence be- 
tween two RVs X and Y. If X and Y are independent, then p = 0 (although the 
converse is not necessarily true). If Y is a linear function of X then p = f l  (see 
Problem 2.9). 

We define the correlation of two scalar RVs X and Y as 

R x y  = E(XY) (2.57) 

Two RVs are said to be uncorrelated if Rxy  = E(X)E(Y). 
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From the definition of independence, we see that if two RVs are independent 
then they are also uncorrelated. Independence implies uncorrelatedness, but un- 
correlatedness does not necessarily imply independence. However, in the special 
case in which two RVs are both Gaussian and uncorrelated, then it follows that 
they are also independent. 

Two RVs are said to be orthogonal if Rxy = 0. If two RVs are uncorrelated, 
then they are orthogonal only if at least one of them is zero-mean. If two RVs are 
orthogonal, then they may or may not be uncorrelated. 

EXAMPLE2.6 

Two rolls of the dice are represented by the RVs X and Y .  The two RVs are 
independent because one roll of the die does not have any effect on a second 
roll of the die. Each roll of the die has an equally likely probability (1/6) of 
being a 1, 2, 3, 4, 5, or 6. Therefore, 

1 + 2 + 3 + 4 + 5 + 6  
6 

E ( X )  = E ( Y )  = 

= 3.5 (2.58) 

There are 36 possible combinations of the two rolls of the die. We could get 
the combination ( l , l ) ,  (1,2), and so on. Each of these 36 combinations have 
an equally likely probability (1 /36). Therefore, the correlation between X 
and Y is 

6 6  1 
R x y = E ( X Y )  = zyrij 

z=1  j=l 

= 12.25 

= E ( X ) E ( Y )  (2.59) 

Since E ( X Y )  = E ( X ) E ( Y ) ,  we see that X and Y are uncorrelated. However, 
R x y  # 0, so X and Y are not orthogonal. 

vvv 

H EXAMPLE2.7 

A slot machine is rigged so you get 1 or -1 with equal probability the first spin 
X ,  and the opposite number the second spin Y .  We have equal probabilities of 
obtaining ( X ,  Y )  outcomes of (1, -1) and ( - 1 , l ) .  The two RVs are dependent 
because the realization of Y depends on the realization of X .  We also see that 

E(X) = 0 

E ( Y )  = 0 

= -1 (2.60) 

We see that X and Y are correlated because E ( X Y )  # E ( X ) E ( Y ) .  We also 
see that X and Y are not orthogonal because E ( X Y )  # 0. 

vvv 
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EXAMPLE2.8 

A slot machine is rigged so you get -1, 0, or +1 with equal probability the 
first spin X .  On the second spin Y you get 1 if X = 0, and 0 if X # 0. The 
two RVs are dependent because the realization of Y depends on the realization 
of X .  We also see that 

- 1 + 0 + 1  
3 

E ( X )  = 

= o  
0 + 1 + 0  

3 
E ( Y )  = 

= o  (2.61) 

We see that X and Y are uncorrelated because E(XY)  = E ( X ) E ( Y ) .  We 
also see that X and Y are orthogonal because E(XY)  = 0. This example 
illustrates the fact that uncorrelatedness does not necessarily imply indepen- 
dence. 

vvv 

EXAMPLE2.9 

Suppose that x and y are independent RVs, and the RV z is computed as 
z = g(x) + h(y). In this example, we will calculate the mean of z:  

E ( z )  = E[g(4  +h(Y)l 

(2.62) 

As a special case of this example, we see that the mean of the sum of two 
independent RVs is equal to the sum of their means. That is, 

E ( z  + y) = E ( z )  + E(y)  if x and y are independent (2.63) 

vvv 

EXAMPLE 2.10 

Suppose we roll a die twice. What is the expected value of the sum of the two 
outcomes? We use X and Y to refer to the two rolls of the die, and we use 
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2 to  refer to the sum of the two outcomes. Therefore, 2 = X + Y. Since X 
and Y are independent, we have 

E ( 2 )  = E ( X ) + E ( Y )  
= 3 . 5 + 3 . 5  

= 7  (2.64) 

VVQ 

EXAMPLE 2.11 

Consider the circuit of Figure 2.4. The input voltage V is uniformly dis- 
tributed on [-1,1]. Voltage V has units of volts, and the two currents have 
units of amps. 

0 i f V > O  
I1 = { V i f V I O  

V i f V 2 O  
0 i f V < O  I2 = { (2.65) 

We see that I1 is uniformly distributed on [-1,0] and I2 is uniformly dis- 
tributed on [0,1]. The RVs V, 11, and I2 have expected values 

E(V)  = 0 

E(I1) = -1/2 
E(12) = 1/2 (2.66) 

The RVs I1 and I2 are not independent because they are related to each other; 
if I2 # 0 then 11 = 0, and if I1 # 0 then I2 = 0. Since either 11 or I2 is equal 
to 0 at every time instant, I14  = 0 and E(IlI2)  = 0. Therefore 11 and 12 are 
orthogonal. Since E(I l )E(I2)  = -1/4, we see that E(I1I2) # E(I l )E(I2 ) ,  
and I1 and I2 are correlated. 

Figure 2.4 Circuit for Example 2.11. 

vvv 

2.4.2 Multivariate statistics 

The discussion in the previous subsection can be generalized for RVs that are vec- 
tors. In this case, the quantities defined earlier become vectors and matrices. Given 
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an n-element RV X and an rn-element RV Y (assuming that both X and Y are 
column vectors), their correlation is defined as 

(2.67) - - 

Their covariance is defined as 

cxy = E[(X - X)(Y - F)T] 
= E(XYT)-XPT 

The autocorrelation of the n-element RV X is defined as 

(2.68) 

Rx = E[XXT] 

(2.69) 

E[X?] * * a  EIXIXn] 

EIXnX1] * * *  E[X3 

Note that E(X,X,) = E(X,X,) so Rx = R$. An autocorrelation matrix is always 
symmetric. Also note that for any n-element column vector z we have 

(2.70) 

So an autocorrelation matrix is always positive semidefinite. 
The autocovariance of the n-element RV X is defined as 

c x  = E[(X-X)(X-X)T] 
E[(X1 - Q 2 ]  

(2.71) 

1 
* * * E[(X1 - X1)(Xn - Xn)] 

E[(Xn - %I2] = [  E[(Xn - Xn)(X1- XI)] * 

- - [ * . .  ““1 
Unl * . a  u; 

Note that u,j = uj, so Cx = CT. An autocovariance matrix is always symmetric. 
Also note that for any n-element column vector z we have 

zTCxz = zTE[(X - X)(X - X)T]z 
E[zT(X - X)(X - X)TZ] 

= E[(zT(X - X))2] 
= 

L O  (2.72) 
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So an autocovariance matrix is always positive semidefinite. 
An n-element RV X is Gaussian ( n ~ r m a l ) ~  if 

Now consider a Gaussian RV X that undergoes a linear transformation: 

(2.73) 

(2.74) 

where A is a constant n x n matrix, and b is a constant n-element vector. If A is 
invertible, then 

(2.75) 

From Equation (2.42) we obtain 

v N N(AZ+b ,ACxAT)  (2.76) 

This shows that normality is preserved in linear transformations of random vec- 
tors (just as it is preserved in linear transformations of random scalars, as seen in 
Example 2.4). 

3Fkancis Edgeworth (1845-1926), an Irish economist and mathematician, first provided a general 
description and study of the multivariate Gaussian probability distribution in 1892 [Sor80]. 
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2.5 STOCHASTIC PROCESSES 

A stochastic process, also called a random process, is a very simple generalization 
of the concept of an RV. A stochastic process X ( t )  is an RV X that changes with 
time.4 A stochastic process can be one of four types. 

0 If the RV at each time is continuous and time is continuous, then X ( t )  is a 
continuous random process. For example, the temperature at each moment of 
the day is a continuous random process because both temperature and time 
are continuous. 

0 If the RV at each time is discrete and time is continuous, then X ( t )  is a discrete 
random process. For example, the number of people in a given building at 
each moment of the day is a discrete random process because the number of 
people is a discrete variable and time is continuous. 

0 If the RV at each time is continuous and time is discrete, then X ( t )  is a 
continuous random sequence. For example, the high temperature each day is 
a continuous random sequence because temperature is continuous but time is 
discrete (day one, day two, etc.). 

0 If the RV at each time is discrete and time is discrete, then X ( t )  is a discrete 
random sequence. For example, the highest number of people in a given 
building each day is a discrete random sequence because the number of people 
is a discrete variable and time is also discrete. 

Since a stochastic process is an RV that changes with time, it has a distribution 
and density function that are functions of time. The PDF of X ( t )  is 

F x ( x , t )  = P ( X ( t )  5 x )  (2.77) 

If X ( t )  is a random vector, then the inequality above is an element-by-element 
inequality. For example, if X ( t )  has n elements, then 

The pdf of X ( t )  is 

(2.78) 

(2.79) 

If X ( t )  is a random vector, then the derivative above is taken once with respect to 
each element of 2. For example, if X ( t )  has n elements, then 

(2.80) 

The mean and covariance of X ( t )  are also functions of time: 

00 

z ( t )  = S _ _ x f ( z , t ) d x  

4Actually, the independent variable does not have to  be time; for example, it could be spatial 
location or something else. But typically the independent variable is time, and in this book it will 
always be time. 
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(2.81) 

Note that X(t) at two different times (tl and t2) comprise two different random 
variables [X(tl) and X(t2)l. Therefore, we can talk about the joint distribution 
and joint density functions of X(t1) and X(t2). These are called the second-order 
distribution function and the second-order density function: 

(2.82) 

As discussed earlier, if X(t) is an n-element random vector, then the inequality 
that defines F ( Q ,  z2, t l ,  t2)  actually consists of 2 n  inequalities, and the derivative 
that defines f(sl,z2, tl ,  t2) actually consists of 2 n  derivatives. 

The correlation between the two RVs X(t1) and X(t2) is called the autocorrela- 
tion of the stochastic process X(t): 

R X ( t l , t 2 )  = E [X(tl)XT(t2)] (2.83) 

The autocovariance of a stochastic process is defined as 

(2.84) 

For some stochastic processes, the pdf does not change with time. For example, 
if we flip a coin ten times then we can view that process as a stochastic process 
with the statistics of the process being the same at each of the ten time instances. 
In this case, the stochastic process is called strict-sense stationary (SSS), or just 
stationary for short. In this case, the mean of the stochastic process is constant 
with respect to time, and the autocorrelation is a function of the time difference 
t2  - tl (not a function of the absolute times): 

(2.85) 

For some stochastic processes, these two conditions are true even though the pdf 
does change with time. Stochastic processes for which these two conditions are 
true are called widesense stationary (WSS). A stationary process is widesense 
stationary, but a widesense stationary process may or may not be stationary. From 
the definition of autocorrelation, it can be shown that for a widesense stationary 
process the following properties hold: 

Rx(O) = EIX(t)XT(t)l 
Rx(-.) = Rx(.) (2.86) 

For scalar stochastic processes, it can be shown that 
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EXAMPLE 2.12 

1. The high temperature each day can be considered a stochastic process. How- 
ever, this process is not stationary. The high temperature on a day in July 
might be an RV with a mean of 100 degrees Fahrenheit, but the high tem- 
perature on a day in December might have a mean of 30 degrees. This is 
a stochastic process whose statistics change with time, so the process is not 
stationary. 

2. Electrical noise in a voltmeter might have a mean of zero and a variance of 
one millivolt. If we come back the next day and measure the noise again, 
the mean and variance may be the same as before. If the statistics of the 
noise are the same every day, then the electrical noise is a stationary process. 
Note that in reality the noise statistics will eventually change. For example, 
after a few decades the instrument will begin degrading and the electrical 
noise mean and variance will change. In this sense, there is no such thing 
as a stationary random process. Eventually, the universe will freeze and all 
signals will change. But for practical purposes, if the statistics of a random 
process do not change over the time interval of interest, then we consider the 
process to be stationary. 

3. Tomorrow’s closing price of the Dow Jones Industrial Average might be an 
RV with a certain mean and variance. However, 100 years ago the closing 
price had a mean that was much lower. The closing price of the stock market 
is an RV whose mean generally increases with time. Therefore, the stock 
market price is a nonstationary stochastic process. 

vvv 
Suppose we have a stochastic process X ( t ) .  Further suppose that the process 

has a realization z(t). The time average of X ( t )  is denoted as A [ X ( t ) ] ,  and the 
time autocorrelation of X ( t )  is denoted as R [ X ( t ) ] .  These quantities are defined 
for continuous-time random processes as 

rT 

A [ X ( t ) ]  = lim I] z( t )dt  
T+m 2T -T 

R [ X ( t ) ,  ‘r] = A [ X ( t ) X T ( t  4- T ) ]  (2.88) 

The definitions for discretetime random processes are straightforward extensions 
of the continuoustime definitions. 

An ergodic process is a stationary random process for which 

(2.89) 

In the real world, we are often limited to only a few realizations of a stochastic 
process. For example, if we measure the fluctuation of a voltmeter reading, we 
are actually only measuring only one realization of a stochastic process. We can 
compute the time average, time autocorrelation, and other time-based statistics 
of the realization. If the random process is ergodic, then we can use those time 
averages to estimate the statistics of the stochastic process. 
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EXAMPLE 2.13 

1. Suppose each unit of an electrical instrument is manufactured with a small 
random bias. Is the noise of the instrumentation ergodic? If we measure 
the noise of one instrument then we measure its bias, which is equal to  its 
mean. However, if we measure the noise of another instrument it might 
have a different mean because it has a different bias. In other words, we 
cannot obtain the mean of the stochastic process by simply investigating one 
instrument (i.e., one realization of the stochastic process). Therefore, the 
stochastic process is not ergodic. 

2. Suppose each unit of an electrical instrument is manufactured identically, 
each with zero-mean stationary Gaussian noise. Is the noise ergodic? In this 
case we could measure the mean of the process by measuring the noise of 
many separate instruments a t  one instant of time, or by measuring the noise 
of one instrument over an extended period of time. Either experiment would 
correctly inform us that the mean of the stochastic process is zero. We could 
find the statistics of the stochastic process using all the instruments a t  a 
single time, or using a single instrument a t  many different times. Therefore, 
the stochastic process is ergodic. 

vvv 
The definitions of correlation and covariance can be extended to  two stochastic 

processes X ( t )  and Y(t) .  The cross correlation of X ( t )  and Y ( t )  is defined as 

R X Y ( t 1 ,  t 2 )  = E[X( t l )YT( t2)1  (2.90) 

Two random processes X ( t )  and Y ( t )  are said to be uncorrelated if Rxy(t1, t 2 )  = 
E[X( t1 ) ]E[YT( t2 ) ]  for all tl and t z .  The cross covariance of X ( t )  and Y( t )  is 
defined as 

(2.91) Cxy( t1 ,  t2) = E { [ X ( t i )  - x ( t i>I[Y( t~ )  - F(tz) lT} 

2.6 WHITE NOISE AND COLORED NOISE 

If the RV X ( t 1 )  is independent from the RV X ( t z )  for all tl # t z  then X ( t )  is called 
white noise. Otherwise, X ( t )  is called colored noise. 

The whiteness or color content of a stochastic process can be characterized by its 
power spectrum. The power spectrum Sx(w) of a widesense stationary stochas- 
tic process X ( t )  is defined as the Fourier transform of the autocorrelation. The 
autocorrelation is the inverse Fourier transform of the power spectrum. 

00 

S X ( W )  = [00 Rx(r)e-'"'dT 

Rx ( r )  = '/ Sx(w)@""dw (2.92) 

These equations are called the Wiener-Khintchine relations after Norbert Wiener 
and Aleksandr Khinchin. Note that some authors put the term 1/2n on the right 
side of the S x ( w )  definition, in which case the 1127~ term on the right side of the 

W 

2n -00 
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RX(T) definition disappears. The power spectrum is sometimes referred to as the 
power density spectrum, the power spectral density, or the power density. The 
power of a wide-sense stationary stochastic process is defined as 

(2.93) 

The cross power spectrum of two wide-sense stationary stochastic processes X ( t )  
and Y ( t )  is the Fourier transform of the cross correlation: 

~ x y ( w )  = S_, Rxy(r)e-jwrdr 
M 

(2.94) 

Similar definitions hold for discrete-time random processes. The power spectrum 
of a discretetime random process is defined as 

l W  
RXY (7) = 2;; 1, SXU (w)e'"' 

w E [-n,7r] 

(2.95) 

A discretetime stochastic process X ( t )  is called white noise if 

Rx(k) = { u2 i f k = O  
0 i f k # O  

= U26k (2.96) 

where 6k is the Kronecker delta function, defined as 

1 i f k = O  
6 k  = { 0 i f k # O  (2.97) 

The definition of discrete-time white noise shows that it does not have any corre- 
lation with itself except at the present time. If X(k) is a discretetime white noise 
process, then the RV X ( n )  is uncorrelated with X(m) unless n = m. This shows 
that the power of a discrete-time white noise process is equal at all frequencies: 

Sx(w) = Rx(0) for all w E [-n, n] (2.98) 

For a continuous-time random process, white noise is defined similarly. White noise 
has equal power at all frequencies (like white light): 

SX(W) = Rx(0) for all w (2.99) 

Substituting this expression for Sx(w) into Equation (2.92), we see that for continuous- 
time white noise 

where 6(r) is the continuous-time impulse function. That is, 6 ( ~ )  is a function 
that is zero everywhere except at r = 0; it has a width of 0, a height of CCJ, and 
an area of 1. Continuous-time white noise is not something that occurs in the 
real world because it has infinite power, as seen by comparing Equations (2.93) 
and (2.99). Nevertheless, many continuous-time processes approximate white noise 
and are useful in mathematical analyses of signals and systems. 

Rx(7) = Rx(0)6(7) (2.100) 
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EXAMPLE 2.14 

Suppose that a zero-mean stationary stochastic process has the autocorrela- 
tion function 

R ~ ( T )  = u 2 e -PI71 (2.101) 

where ,B is a positive real number. The power spectrum is computed from 
Equation (2.92) as 

oil 

02e-PITI e - j W 7  d 7  

J-w J o  
U 2 IS2 +- 

p - j w  P + j w  

W2 + p 2  

- - 

- 2 2 p  
- -  

The variance of the stochastic process is computed as 

1 oil 2u2p dw 
E [ X 2 ( t ) ]  = - J - 

27r - o i l w 2 + p 2  

(2.102) 

(2.103) 

vvv 

2.7 SIMULATING CORRELATED NOISE 

In optimal filtering research and experiments, we often have to simulate correlated 
white noise. That is, we need to create random vectors whose elements are cor- 
related with each other according to some predefined covariance matrix. In this 
section, we will present one way of accomplishing this. 

Suppose we want to generate an n-element random vector w that has zero mean 
and covariance Q: 

Q = [  ! i 2 ]  (2.104) 

Since Q is a covariance matrix, we know that all of its eigenvalues are real and 
nonnegative. We can therefore denote its eigenvalues as p:: 

U l n  (y! ... 

U l n  un 

X(Q) = p i  (k = 1 , .  . . , n) (2.105) 

Suppose the eigenvectors of Q are found to be d l ,  ., dn. Augment the d, vectors 
together to obtain an n x n matrix D. Since Q is symmetric, we can always choose 
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the eigenvectors such that D is orthogonal, that is, D-l = DT. We therefore obtain 
the Jordan form decomposition of Q as 

Q = DQDT (2.106) 

where Q is the diagonal matrix of the eigenvalues of Q. That is, 

Q = diag(p.:, a * 7 P:) (2.107) 

Now we define the random vector v as v = D-lw,  so that w = Dv. Therefore, 

qVVT) = E ( D ~ W U I ~ D )  
= D ~ Q D  
= Q  

= diag(p:, . - ,  p:) (2.108) 

This shows how we can generate an n-element random vector w with a covariance 
matrix of Q. The algorithm is given as follows. 

Correlated noise simulation 

1. Find the eigenvalues of Q ,  and denote them as p:, - - ., p, 2 

2. Find the eigenvectors of Q, and denote them as d l ,  - ., d,, such that 

D = [ d l  * * a  d ,  ] 
D-l = DT (2.109) 

3. For i = 1,. - ,  n compute the random variable vi = pir2,  where each rZ is an 
independent random number with a variance of 1 (unity variance). 

4. Set w = Dv. 

2.8 SUMMARY 

In this chapter, we have reviewed the basic concepts of probability, random vari- 
ables, and stochastic processes. The probability of some event occurring is simply 
and intuitively defined as the number of times the event occurs divided by the num- 
ber of chances the event has to occur. A random variable (RV) is a variable whose 
value is not certain, but is governed by the laws of probability. For example, your 
score on the test for this chapter is not deterministic, but is a random variable. 
Your actual score, after you take the test, will be a specific, deterministic number. 
But before you take the test, you do not know what you will get on the test. You 
may suppose that you will probably get between 80% and 90% if you have a decent 
understanding of the material, but your actual score will be determined by random 
events such as your health, how well you sleep the night before, what topics the 
instructor decides to cover on the test versus what topics you study, what the traf- 
fic was like on the way to school, the mood of the instructor when she grades the 
test, and so on. A stochastic process is a random variable that changes with time, 
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such as your performance on all of the quizzes and homework assignments for this 
course. The expected value of your test grades may be constant throughout the 
duration of the course if you are a consistent person, or it may increase if you tend 
to study harder as the course progresses, or it may decrease if you tend to study 
less as the course progresses. Probability, random variables, stochastic processes, 
and related topics form a huge area of study that we have only touched on in this 
chapter. Additional information on these topics can be found in many textbooks, 
including [Pap02, PeeOl]. A study of these topics will allow a student to delve into 
many practical engineering subjects, including control and estimation theory, signal 
processing, and communications theory. 

PROBLEMS 

Written exercises 

2.1 
RV? 

2.2 
each. Find the probability that each pile contains exactly one ace [GreOl]. 

2.3 

What is the 0th moment of an RV? What is the 0th central moment of an 

Suppose a deck of 52 cards is randomly divided into four piles of 13 cards 

Determine the value of a in the function 

ax(1- x) x E [O, 11 
otherwise 

so that fx (x) is a valid probability density function [Lie67]. 

2.4 Determine the value of a in the function 

so that fx (x) is a valid probability density function. What is the probability that 

2.5 The probability density function of an exponentially distributed random vari- 
able is defined as follows. 

1x1 5 l? 

where a 2 0. 
a) Find the probability distribution function of an exponentially distributed 

random variable. 
b) Find the mean of an exponentially distributed random variable. 
c) Find the second moment of an exponentially distributed random variable. 
d) Find the variance of an exponentially distributed random variable. 
e )  What is the probability that an exponentially distributed random variable 

takes on a value within one standard deviation of its mean? 
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2.6 
first, second, and third moments. 

2.7 

Derive an expression for the skew of a random variable as a function of its 

Consider the following probability density function: 

b > O  
ab 

b2 + x2 ’ fx(2) = - 

a) Determine the value of a in the so that fx(2) is a valid probability density 
function. (The correct value of a makes fx(2) a Cauchy pdf.) 

b) Find the mean of a Cauchy random variable. 

2.8 Consider two zero-mean uncorrelated random variables W and V with stan- 
dard deviations gw and uv, respectively. What is the standard deviation of the 
random variable X = W + V? 

2.9 Consider two scalar RVs X and Y .  
a) Prove that if X and Y are independent, then their correlation coefficient 

p = 0. 
b) Find an example of two RVs that are not independent but that have a 

correlation coefficient of zero. 
c )  Prove that if Y is a linear function of X then p = f l .  

2.10 Consider the following function [Lie67]. 

ae-2xe-3Y x > 0, y > o 
otherwise 

a) Find the value of a so that fxy(2, y) is a valid joint probability density 
function. 

b) Calculate and g. 
c )  Calculate E ( X 2 ) ,  E(Y2),  and E ( X Y ) .  
d) Calculate the autocorrelation matrix of the random vector [ X 
e )  Calculate the variance 09, the variance ci, and the covariance C x y .  

f )  Calculate the autocovariance matrix of the random vector [ X 
g )  Calculate the correlation coefficient between X and Y. 

T 
Y ] . 

Y ] . 
T 

2.11 
k are positive constants. 

A stochastic process has the autocorrelation Rx(T)  = Ae-klT1, where A and 

a) What is the power spectrum of the stochastic process? 
b) What is the total power of the stochastic process? 
c )  What value of k results in half of the total power residing in frequencies 

less than 1 Hz? 

Suppose X is a random variable, and Y ( t )  = X cost is a stochastic process. 2.12 
a) Find the expected value of Y( t ) .  
b) Find A[Y(t)],  the time average of Y( t ) .  
c )  Under what condition is y ( t )  = A[Y(t)]? 

2.13 
Figure 2.5. 

a) Plot the pdf of ( Z l X )  as a function of X for 2 = 0.5. 

Consider the equation 2 = X + V .  The pdf’s of X and B are given in 



PROBLEMS 77 

b) Given Z = 0.5, what is conditional expectation of X? What is the most 
probable value of X? What is the median value of X? 

-1.5 -1 -05 0 0.5 1 1.5 
X 

0.5 

-1.5 -1 -05 0 0.5 1 1.5 

Figure 2.5 pdf’s for Problem 2.13 [Sch73]. 

2.14 The temperature at noon in London is a stochastic process. Is it ergodic? 

Computer exercises 

2.15 Generate N = 50 independent random numbers, each uniformly distributed 
between 0 and 1. Plot a histogram of the random numbers using 10 bins. What 
is the sample mean and standard deviation of the numbers that you generated? 
What would you expect to see for the mean and standard deviation (i.e., what are 
the theoretical mean and standard deviation)? Repeat for N = 500 and N = 5,000 
random numbers. What changes in the histogram do you see as N increases? 

2.16 Generate 10,000 samples of (z1+ 2 2 ) / 2 ,  where each 2% is a random number 
uniformly distributed on [-1/2, +1/2]. Plot the 50-bin histogram. Repeat for 
( X I +  xz + 23 + 24)/4. Describe the difference between the two histograms. 





CHAPTER 3 

Least squares estimation 

The most probable value of the unknown quantities will be that in which the sum of 
the squares of the differences between the actually observed and the computed values 
multiplied by numbers that measure the degree of precision is a minimum. 

-Karl Friedrich Gauss [GauOli] 

In this chapter, we will discuss least squares estimation, which is the basic idea 
of Karl Gauss's quote above.' The material in this chapter relies on the theory 
of the previous two chapters, and will enable us to derive optimal state estimators 
later in this book. 

Section 3.1 discusses the estimation of a constant vector on the basis of several 
linear but noisy measurements of that vector. Section 3.2 extends the results of 
Section 3.1 to the case in which some measurements are more noisy than others; 
that is, we have less confidence in some measurements than in others. Sections 3.1 
and 3.2 use matrices and vectors whose dimensions grow larger as more measure- 
ments are obtained. This makes the problem cumbersome if many measurements 
are available. This leads us to  Section 3.3, which presents a recursive way of e s  
timating a constant on the basis of noisy measurements. Recursive estimation in 
this chapter is a method of estimating a constant without increasing the computa- 

lGauss published his book in 1809, although he claimed to  have worked out his theory as early 
as 1795 (when he was 18 years old). 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 

79 
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tional effort of the algorithm, regardless of how many measurements are available. 
Finally, Section 3.4 presents the Wiener filter, which is a method of estimating 
a time-varying signal that is corrupted by noise, on the basis of noisy measure- 
ments. Until 1960, Wiener filtering was the state of the art in signal estimation. 
The paradigm of signal estimation was shattered with the publication of Rudolph 
Kalman’s work and related papers in the early 1960s, but it is still worthwhile un- 
derstanding Wiener filtering because of its historical place in the history of signal 
estimation. Furthermore, Wiener filtering is still very useful in signal processing 
and communication theory. 

3.1 ESTIMATION OF A CONSTANT 

In this section, we will determine how to estimate a constant on the basis of several 
noisy measurements of that constant. For example, suppose we have a resistor but 
we do not know its resistance. We take several measurements of its resistance using 
a multimeter, but the measurements are noisy because we have a cheap multimeter. 
We want to estimate the resistance on the basis of our noisy measurements. In this 
case, we want to estimate a constant scalar but, in general, we may want to estimate 
a constant vector. 

To put the problem in mathematical terms, suppose x is a constant but unknown 
n-element vector, and y is a Ic-element noisy measurement vector. How can we find 
the “best” estimate h of x? Let us assume that each element of the measurement 
vector y is a linear combination of the elements of x ,  with the addition of some 
measurement noise: 

y i  = H i i z i  + * * * + H i n ~ n  + 211 

This set of equations can be put into matrix form as 

~ = H x + w  (3.2) 

Now define ey as the difference between the noisy measurements and the vector 
H2:  

ey = y - H h  (3.3) 
q, is called the measurement residual. As Karl Gauss wrote [GauOl], the most 
probable value of the vector x is the vector 2 that minimizes the sum of squares 
between the obsemed values y and the vector H h .  So we will try to compute the h 
that minimizes the cost function J, where J is given as 

J is often referred to in control and estimation books and papers as a cost func- 
tion, objective function, or return function. We can substitute for ey in the above 
equation to rewrite J as 

J = ( y -  H 2 ) T ( y -  H 2 )  
= y T y  - hTHTy  - y T H 3  + h T H T H h  (3.5) 
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In order to minimize J with respect to 2, we compute its partial derivative and set 
it equal to zero: 

- -yTH - yTH + 2?'HTH 
d J  
a? 
_ -  

= o  
Solving this equation for ? results in 

H T y  = HTH? 
? = (HTH)- 'HTy  

= H L y  (3.7) 
where H L ,  the left pseudo inverse of H ,  exists if k 2 n and H is full rank. This 
means that the number of measurements k is greater than the number of variables 
n that we are trying to estimate, and the measurements are linearly independent. 
In order to prove that we have found a minimum rather than some other type of 
stationary point2 of J ,  we need to prove that the second derivative of J is positive 
semidefinite (see Problem 3.1). 

EXAMPLE3.1 

Let us go back to our original problem of trying to estimate the resistance z of 
an unmarked resistor on the basis of k noisy measurements from a multimeter. 
In this case, 2 is a scalar so our k noisy measurements are given as 

These k equations can be combined into a single matrix equation as 

Equation (3.7) shows that the optimal estimate of the resistance x is given as 

? = ( H ~ H ) - ~ H ~ Y  

In this simple example, we see that least squares estimation agrees with our 
intuition to simply compute the average of the measurements. 

vvv 
2A stationary point of a function is any point a t  which its derivative is equal to zero. A stationary 
point of a scalar function could be a maximum, a minimum, or an inflection point. A stationary 
point of a vector function could be a maximum, a minimum, or a saddle point. 
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3.2 WEIGHTED LEAST SQUARES ESTIMATION 

In the previous section, we assumed that we had an equal amount of confidence in all 
of our measurements. Now suppose we have more confidence in some measurements 
than others. In this case, we need to generalize the results of the previous section 
to obtain weighted least squares estimation. For example, suppose we have several 
measurements of the resistance of an unmarked resistor. Some of the measurements 
were taken with an expensive multimeter with low noise, but other measurements 
were taken with a cheap multimeter by a tired student late at night. We have 
more confidence in the first set of measurements, so we should somehow place more 
emphasis on those measurements than on the others. However, even though the 
second set of measurements is less reliable, it seems that we could get at least some 
information from them. This section shows that we can indeed get some information 
from less reliable measurements. We should never throw away measurements, no 
matter how unreliable they may be. 

To put the problem in mathematical terms, suppose x is a constant but unknown 
n-element vector, and y is a k-element noisy measurement vector. We assume that 
each element of y is a linear combination of the elements of x, with the addition 
of some measurement noise, and the variance of the measurement noise may be 
different for each element of y: 

E($)  = CT," (i = 1,. . . , k) (3.11) 

We assume that the noise for each measurement is zero-mean and independent. 
The measurement covariance matrix is 

R = E ( v w ~ )  
0 CTf ... 

- 
- [ 0 . . .  u;] 

(3.12) 

Now we will minimize the following quantity with respect to 2.  

J = Eyl/Cl 2 2  + 9 * * + eEk/g; (3.13) 

Note that instead of minimizing the sum of squares of the ey elements as we did in 
Equation (3.4), we will minimize the weighted sum of squares. If y1 is a relatively 
noisy measurement, for example, then we do not care as much about minimizing 
the difference between y1 and the first element of H2 because we do not have much 
confidence in y1 in the first place. The cost function J can be written as 

J = ETR-'E~ 

= (9 - H2)TR-1(y - H 2 )  
= y T ~ - l y  - P H ~ R - ~ Y  - Y ~ R - ~ H P  + P H ~ R - ~ H ~  (3.14) 
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Now we take the partial derivative of J with respect to  2 and set it equal to  zero 
to compute the best estimate 2: 

- - y T ~ - l ~  + 3 i . T ~ T ~ - 1 ~  d J  
at 
_ -  

= o  
H T R - ~ ~  = H T R - ~ H ~ ~  

2 = ( H T R - ~ H ) - ~ H T R - ~ ~  (3.15) 

Note that this method requires that the measurement noise matrix R be nonsin- 
gular. In other words, each of the measurements yi must be corrupted by at least 
some noise for this method to work. 

EXAMPLE3.2 

We return to our original problem of trying to  estimate the resistance x of an 
unmarked resistor on the basis of k noisy measurements from a multimeter. 
In this case, 2 is a scalar so our k noisy measurements are given as 

yi = x + vi 
E($)  = .P ( i = l ,  .... k) (3.16) 

The k measurement equation can be combined into a single matrix equation 
as 

(3.17) 

and the measurement noise covariance is given as 

R = diag(a!, .... c:) 

Equation (3.15) shows that the optimal estimate of the resistance 2 is given 

(3.18) 

[ 1 " .  1 ] 
... 

0 1  

uT 

0 . . .  u; 
. .  . .  

-l r 1 

= (c l/u?)-l (Yl/.f + . ' .  + Yk/.E) (3.19) 

We see that the optimal estimate L is a weighted sum of the measurements, 
where each measurement is weighted by the inverse of its uncertainty. In 
other words, we put more emphasis on certain measurements, in agreement 
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with our intuition. Note that if all of the 0% constants are equal, this estimate 
reduces to the simpler form given in Equation (3.10). 

vvv 

3.3 RECURSIVE LEAST SQUARES ESTIMATION 

Equation (3.15) gives us a way to compute the optimal estimate of a constant, but 
there is a problem. Note that the H matrix in (3.15) is a k x n matrix. If we obtain 
measurements sequentially and want to update our estimate of z with each new 
measurement, we need to augment the H matrix and completely recompute the 
estimate 2. If the number of measurements becomes large, then the computational 
effort could become prohibitive. For example, suppose we obtain a measurement 
of a satellite's altitude once per second. After one hour has passed, the number 
of measurements is 3600 and growing. The computational effort of least squares 
estimation can rapidly outgrow our resources. 

In this section, we show how to r e c u r s i v e l y  compute the weighted least squares 
estimate of a constant. That is, suppose we have d after (k - 1) measurements, 
and we obtain a new measurement Y k .  How can we update our estimate without 
completely reworking Equation (3.15)? 

A linear recursive estimator can be written in the form 

(3.20) 

That is, we compute d k  on the basis of the previous estimate d k - 1  and the new 
measurement y k .  Kk is a matrix to be determined called the estimator gain matrix. 
The quantity ( y k - H k d k - 1 )  is called the correction term. Note that if the correction 
term is zero, or if the gain matrix is zero, then the estimate does not change from 
time step (k - 1) to k. 

Before we compute the optimal gain matrix Kk, let us think about the mean of 
the estimation error of the linear recursive estimator. The estimation error mean 
can be computed as 

E(%,k) = E(z  - d k )  
= E[X - d k - 1  - K k ( Y k  - H k d k - l ) ]  
= E[Ez,k-l-  K k ( H k Z  -k wk - H k d k - I ) ]  
= EIEz,k-l - K k H k ( X  - d k - 1 )  - K k W k ]  

= (1 - K k H k ) E ( % , k - l )  - K k E ( V k )  (3.21) 

So if E(?Jk) = 0 and E ( E 2 , k - I )  = 0, then E(E2,k) = 0. In other words, if the 
measurement noise vk is zero-mean for all k, and the initial estimate of z is set 
equal to the expected value of z [i.e., 2i.0 = E ( x ) ] ,  then the expected value of ?k 

will be equal to 5 k  for all k .  Because of this, the estimator of Equation (3.20) is 
called an unbiased estimator. Note that this property holds regardless of the value 
of the gain matrix Kk. This is a desirable property of an estimator because it says 
that, on a v e r a g e ,  the estimate d will be equal to the true value x .  

Next we turn our attention to the determination of the optimal value of Kk. 
Since the estimator is unbiased regardless of what value of Kk we use, we must 
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choose some other optimality criterion in order to determine Kk. The optimality 
criterion that we choose to minimize is the sum of the variances of the estimation 
errors at time k: 

where Pk, the estimation-error covariance, is defined by the above equation. We 
can use a process similar to that followed in Equation (3.21) to obtain a recursive 
formula for the calculation of Pk: 

pk = E(Ez,ke: ,k)  

= E { [ ( I  - K k H k ) E z , k - l  - K k V k ]  [ *  * *IT} 
= ( I  - K k H k ) E ( E . , k - i E : , k - 1 ) ( I  - KkHk)T - 

K k E ( V k c : , k - l ) ( I  - KkHk)T - ( I  - KkHk)E(Ez,k-i$)K; f 

KkE(VkVz)K? (3.23) 

Now note that E z , k - l  [the estimation error at time (k - l)] is independent of V k  

(the measurement noise at time k). Therefore, 

(3.24) 

since both expected values are zero. Therefore, Equation (3.23) becomes 

where Rk is the covariance of V k .  This is the recursive formula for the covariance 
of the least squares estimation error. This is consistent with intuition in the sense 
that as the measurement noise increases (i.e.l Rk increases) the uncertainty in our 
estimate also increases (Le., Pk increases). Note that Pk should be positive definite 
since it is a covariance matrix, and the form of Equation (3.25) guarantees that Pk 
will be positive definite, assuming that Pk-1 and Rk are positive definite. 

Now we need to find the value of Kk that makes the cost function in Equa- 
tion (3.22) as small as possible. The mean of the estimation error is zero for any 
value of Kk, so if we choose Kk to make the cost function (i.e.l the trace of Pk) 
small then the estimation error will not only be zero-meanl but it will also be con- 
sistently close to zero. In order to find the best value of Kk, first we need to recall 
from Equation (1.66) that sn(tfA'l = 2AB if B is symmetric. With this in mind 
we can use Equations (3.22), (3.25), and the chain rule to obtain 
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In order to  find the value of Kk that minimizes J k ,  we set the above derivative 
equal to zero and then solve for Kk as follows: 

KkRk = ( I  - KkHk)pk-iH; 

Kk(Rk 4- Hkpk- iHT)  = Pk-iHr 
Kk = Pk-iH;(HkPk-1H; -k &)-' (3.27) 

Equations (3.20), (3.25), and (3.27) form the recursive least squares estimator. The 
recursive least squares estimator can be summarized as follows. 

Recursive least squares estimation 

1. Initialize the estimator as follows: 

$0 = E ( z )  
Po = E[(x  - ? o ) ( x  - 20)7 (3.28) 

If no knowledge about z is available before measurements are taken, then 
Po = mI. If perfect knowledge about z is available before measurements are 
taken, then PO = 0. 

2. For k = 1 , 2 , .  . a, perform the following. 

(a) Obtain the measurement Y k ,  assuming that Y k  is given by the equation 

where V k  is a zero-mean random vector with covariance Rk. Further 
assume that the measurement noise a t  each time step k is independent, 
that is, E(V&) = Rkdk-%. This implies that the measurement noise is 
white. 

(b) Update the estimate of x and the estimation-error covariance P as fol- 
lows: 

3.3.1 Alternate estimator forms 

Sometimes it is useful to write the equations for Pk and Kk in alternate forms. 
Although these alternate forms are mathematically identical, they can be beneficial 
from a computational point of view. They can also lead to  new results, which we 
will discover in later chapters. 

First we will find an alternate form for the expression for the estimation-error 
covariance. Substituting for Kk from Equation (3.27) into Equation (3.25) we 
obtain 

(3.31) Pk = [ I  - Pk-lHrsilHk] Pk-i[- *IT -t KkRkK; 
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(3.34) 

This is a simpler equation for Pk [compared with Equation (3.25)] but numerical 
computing problems (i.e., scaling issues) may cause this expression for Pk t o  not 
be positive definite, even when Pk-1 and Rk are positive definite. 

We can also use the matrix inversion lemma from Section 1.1.2 to  rewrite the 
measurement update equation for 9. Starting with Equation (3.33) we obtain 

Applying the matrix inversion lemma to this equation gives 

Inverting both sides of this equation gives 

(3.38) 

This equation for Pk is more complicated in that it requires three matrix inversions, 
but it may be computationally advantageous in some situations, as will be discussed 
in Section 6.2. 

We can use Equation (3.38) to  derive an equivalent equation for the estimator 
gain Kk. Starting with Equation (3.27) we have 

Kk = Pk-lH:(HkPk-lH: + Rk)-' (3.39) 

Premultiplying the right side by PkPF', which is equal to  the identity matrix, gives 

Kk = PkPFIPk-lHr(HkPk-lH: + Rk)-' (3.40) 
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Substituting for PL1 from Equation (3.38) gives 

Note the Pk-1Hr factor that is on the right of the first term in parentheses. We 
can multiply this factor inside the first term in parentheses to  obtain 

Now bring Hr out to  the left side of the parentheses to  obtain 

Now premultiply the first parenthetical expression by R k l ,  and multiply on the 
inside of the parenthetical expression by Rk, to obtain 

General recursive least squares estimation 

The recursive least squares algorithm can be summarized with the following equa- 
tions. The measurement equations are given as 

(3.45) 

The initial estimate of the constant vector 2, along with the uncertainty in that 
estimate, is given as 

20 = E ( z )  
Po = E [ ( x  - &I))@ - 20)T] 

The recursive least squares algorithm is given as follows. 
Fork= 1,2,..., 

(3.46) 

(3.47) 
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EXAMPLE3.3 

Once again we revisit the problem of trying to  estimate the resistance x of 
an unmarked resistor on the basis of noisy measurements from a multimeter. 
However, we do not want to wait until we have all the measurements in order 
to have an estimate. We want to  recursively modify our estimate of x each 
time we obtain a new measurement. At sample time k our measurement is 

(3.48) 

For this scalar problem, the measurement matrix Hk is a scalar, and the 
measurement noise covariance Rk is also a scalar. We will suppose that each 
measurement has the same covariance so the measurement covariance Rk is 
not a function of k, and can be written as R. Initially, before we have any 
measurements, we have some idea about the value of the resistance x, and this 
forms our initial estimate. We also have some uncertainty about our initial 
estimate, and this forms our initial covariance: 

2 0  = E ( x )  
Po = E [ ( x  - &)(x - f o ) T ]  

= E[(X-fo)Z] (3.49) 

If we have absolutely no idea about the resistance value, then P(0) = 00. If we 
are 100% certain about the resistance value before taking any measurements, 
then P(0) = 0 (but then, of course, there would not be any need to  take 
measurements). Equation (3.47) tells us how to obtain the estimator gain, 
the estimate of x ,  and the estimation covariance, after the first measurement 
(k = 1): 

Kk = Pk-1Hr(HkPk-lHr + Rk)-' 
K1 = Po(Po+R)-l 
f k  = ?k-1  + Kk(yk - Hkfk-1) 

(3.50) 

Repeating these calculations to find these quantities after the second mea- 
surement ( k  = 2 )  gives 

Kz = 

Pz = 

22 = 

- - (3.51) 
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By induction, we can find general expressions for Pk-1 ,  Kk, and 2 k  as follows: 

(3.52) 

Note that if z is known perfectly a priori (i.e., before any measurements are 
obtained) then Po = 0, and the above equations show that Kk = 0 and ?k = 
20. That is, the optimal estimate of z is independent of any measurements 
that are obtained. On the other hand, if z is completely unknown a priori, 
then Po + m, and the above equations show that 

1 
- [ ( k  - l ) ? k - l  + Y k ]  k 

= (3.53) 

In other words, the optimal estimate of x is equal to the running average of 
the measurements Y k ,  which can be written as 

vvv 

EXAMPLE3.4 

1 

(3.54) 

In this example, we illustrate the computational advantages of the first form 
of the covariance update in Equation (3.47) compared with the third form. 
Suppose we have a scalar parameter z and a perfect measurement of it. That 
is, H1 = 1 and R1 = 0. Further suppose that our initial estimation covariance 
Po = 6, and our computer provides precision of three digits to the right of the 
decimal point for each quantity that it computes. The estimator gain K1 is 
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computed as 

= (6)(0.167) 
= 1.002 (3.55) 

If we use the third form of the covariance update in Equation (3.47) we obtain 

PI = (1 -K1)Po 
= (-0.002)(6) 

= -0.012 (3.56) 

The covariance after the first measurement is negative, which is physically 
impossible. However, if we use the first form of the covariance update in 
Equation (3.47) we obtain 

Pl = (1 - Kl)PO(l - K l )  + KlRlKl 
(1 - K1)2Po + K?R1 = 

= o  (3.57) 

The reason we get zero is because (1 - K I ) ~  = 0.000004, but our computer 
retains only three digits to the right of the decimal point. Zero is the theoret- 
ically correct value of PI.  The form of the above expression for PI guarantees 
that it will never be negative, regardless of any numerical errors in PO, R1, 
and K1. 

vvv 

EXAMPLE3.5 

Suppose that a tank contains a concentration 2 1  of chemical 1, and a concen- 
tration 22 of chemical 2. You have some instrumentation that can detect the 
combined concentration (21 + 22) of the two chemicals, but your instrumen- 
tation cannot distinguish between the two chemicals. Chemical 2 is removed 
from the tank through a leaching process so that its concentration decreases 
by 1% from one measurement time to  the next. The measurement equation 
is therefore given as 

where V k  is the measurement noise, which is a zero-mean random variable 
with a variance of R = 0.01. Suppose that 21 = 10 and 52 = 5. Further 
suppose that your initial estimates are $ 1  = 8 and $2 = 7, with an initial 
estimation-error variance Po that is equal to the identity matrix. A recursive 
least squares algorithm can be implemented as shown in Equation (3.47) to  
estimate the two concentrations. Figure 3.1 shows the estimate of 2 1  and 22 as 
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measurements are obtained, along with the variance of the estimation errors. 
It can be seen that after a couple dozen measurements the estimates become 
quite close to their true values of 10 and 5.  The variances of the estimation 
errors asymptotically approach zero, which means that we have increasingly 
more confidence in our estimates as we obtain more measurements. 

ln 
8 
.- S O  
3 . 5 ~  0 

0 10 20 30 40 50 
time step 

Figure 3.1 Parameter estimates and estimation variances for Example 3.5. 

vvv 

3.3.2 Curve fitting 

In this section, we will apply recursive least squares theory to the curve fitting 
problem. In the recursive curve fitting problem, we measure data one sample at a 
time (yl, y2, ...) and want to find the best fit of a curve to the data. The curve 
that we want to fit to the data could be constrained to be linear, or quadratic, or 
sinusoid, or some other shape, depending on the underlying problem. 

EXAMPLE38 

Suppose that we want to fit a straight line to a set of data points. The linear 
data fitting problem can be written as 

(3.59) 

tk is the independent variable (perhaps time), Yk is the noisy data, and we 
want to find the linear relationship between yk and tk. In other words, we 
want to estimate the constants 2 1  and 22. The measurement matrix can be 
written as 

H k = [  1 tk ] (3.60) 
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so that Equation (3.59) can be written as 

Our recursive estimator is initialized as 

f o  = E(x) 

f 2 , o  E(x2) 
[ f1,o ] = [ E ( X d  ] 

Po = E [ ( z  - 2O)(X - 
E [ X l  - f1,0)21 E[(z1 - fl,O)(X2 - f2,o)l = [  q z l  - fl,O)(X2 - f2,o)l El22 - 22,0121 

The recursive estimate of the two-element vector z is then obtained from 
Equation (3.47) as follows: 

For k = l,2,..., 

(3.63) 

vvv 
EXAMPLE3.7 

Suppose that we know a priori that the underlying data is a quadratic function 
of time. In this case, we have a quadratic data fitting problem. For example, 
suppose we are measuring the altitude of a free-falling object. We know from 
our understanding of physics that altitude r is a function of the acceleration 
due to gravity, the initial altitude and velocity of the object TO and TJO, and 
time t, as given by the equation r = ro + vot + (a/2)t2. So if we measure T 

at various time instants and fit a quadratic to the resulting r versus t curve, 
then we have an estimate of the parameters 7-0, 210, and a/2. In general, the 
quadratic data fitting problem can be written as 

(3.64) 

tk is the independent variable, Y k  is the noisy measurement, and we want to  
find the quadratic relationship between Y k  and tk. In other words, we want 
to estimate the constants XI, 22, and 23. The measurement matrix can be 
written as 

so that Equation (3.64) can be written as 

Hk= [ 1 t k  ti ] (3.65) 

Y k  = H k X  + Vk (3.66) 

Our recursive estimator is initialized as 

Po = E(x) 
Po = E[(x - fo)(x - 20)*1 (3.67) 
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where Po is a 3 x 3 matrix. The recursive estimate of the three-element vector 
z is then obtained from Equation (3.47) as follows: 

For k = 1,2, .  . ., 

vvv 

(3.68) 

3.4 W I EN E R F I LT E R I N G 

In this section, we will give a brief review of Wiener filtering. The rest of this book 
does not assume any knowledge on the reader’s part of Wiener filtering. However, 
Wiener filtering is important from a historical perspective, and it still has a lot 
of applications in signal processing and communication theory. But since it is not 
used much for state estimation anymore, the reader can safely skip this section if 
desired. 

Wiener filtering addresses the problem of designing a linear, timeinvariant filter 
to extract a signal from noise, approaching the problem from the frequency domain 
perspective. Norbert Wiener invented his filter as part of the World War I1 effort 
for the United States. He published his work on the problem in 1942, but it was not 
available to the public until 1949 [Wie64]. His book was known as the “yellow peril” 
because of its mathematical difficulty and its yellow cover [Deu65, page 1761. An- 
drey Kolmogorov actually solved a more general problem earlier (1941), and Mark 
Krein also worked on the same problem (1945). Kolmogorov’s and Krein’s work 
was independent of Wiener’s work, and Wiener acknowledges that Kolmogorov’s 
work predated his own work [Wie56]. However, Kolmogorov’s and Krein’s work 
did not become well known in the Western world until later, since it was pub- 
lished in Russian [Ko141]. A nontechnical account of Wiener’s work is given in his 
autobiography [Wie56]. 

To set up the presentation of the Wiener filter, we first need to ask the following 
question: How does the power spectrum of a stochastic process z( t )  change when 
it goes through an LTI system with impulse response g(t)? The output y(t) of the 
system is given by the convolution of the impulse response with the input: 

Y ( t )  = dt) * 4t)  (3.69) 

Since the system is time-invariant, a time shift in the input results in an equal time 
shift in the output: 

y(t + a) = g(t) * z(t  + a) (3.70) 

Multiplying the above two equations and writing out the convolutions as integrals 
gives 

Y(t>Y(t + a) = g(7)4t - 7 )  &- S ( M t  + Q - 7) d7 (3.71) 

Taking the expected value of both sides of the above equation gives the autocorre 
lation of y(t) as a function of the autocorrelation of z ( t ) :  

s s 
(3.72) 
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which we will write in shorthand notation as 

(3.73) 

Now we take the Fourier transform of the above equation to obtain 

RzI(a)e-jw" d a  = / / / g ( ~ ) g ( y ) R , ( a  + r - y ) e - j w a d 7 d y d a  (3.74) / 
Now we define a new variable of integration /? = a + r - y and replace a in the 
above equation to obtain 

= G(-w)G(w)S , (w)  (3.75) 

In other words, the power spectrum of the output y(t) is a function of the Fourier 
transform of the impulse response of the system, G ( w ) ,  and the power spectrum of 
the input z ( t ) .  

Now we can state our problem as follows: Design a stable LTI filter to extract a 
signal from noise. The quantities of interest in this problem are given as 

z ( t )  = noise free signal 

w ( t )  = additive noise 

g ( t )  = filter impulse response (to be designed) 

?(t) = output of filter [estimate of z ( t ) ]  
e ( t )  = estimation error 

= z ( t )  - ?(t)  (3.76) 

Figure 3.2 Wiener filter representation. 

These quantities are represented in Figure 3.2, from which we see that 

?(t> = dt) * M t )  + 4t)l 

E(w) = X ( w )  - X ( w )  

X ( w )  = G ( w ) [ X ( w )  + V ( w ) ]  

= X ( W )  - G ( w ) [ X ( w )  + V(W)]  
= [ I  - G ( w ) ] X ( w )  - G ( w ) V ( w )  (3.77) 

We see that the error signal e ( t )  is the superposition of the system [l - G ( w ) ]  acting 
on the signal z ( t ) ,  and the system G ( w )  acting on the signal w(t ) .  Therefore, from 
Equation (3.75), we obtain 

Se(w) = [ I  - G ( w ) ] [ l -  G(-w)]S , (w)  -G(w)G( -w)S , (w)  (3.78) 
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The variance of the estimation error is obtained from Equation (2.92) as 

(3.79) 

To find the optimal filter G(w)  we need to  minimize E[e2(t)],  which means that we 
need to know Sz(w)  and Sv(w) ,  the statistical properties of the signal z ( t )  and the 
noise w (t ) . 

3.4.1 Parametric filter optimization 

In order to simplify the problem of the determination of the optimal filter G ( w ) ,  
we can assume that the optimal filter is a first-order, low-pass filter (stable and 
causal3) with a bandwidth 1/T to be determined by parametric optimization. 

1 
1 + T j w  

G(w) = - (3.80) 

This may not be a valid assumption, but it reduces the problem to a parametric 
optimization problem. In order to simplify the problem further, suppose that Sz(w)  
and S,(w) are in the following forms. 

2u2p 
S z ( W )  = - 

W 2  + p2 
Sv(w)  = A (3.81) 

In other words, the noise w(t) is white. From Equation (3.78) we obtain 

(I+ 1 T j w )  (m) ' A  (3.82) 

Now we can substitute Se(w)  in Equation (3.79) and differentiate with respect to 
T to find 

(3.83) 

EXAMPLE3.8 

If A = 0 = p = 1 then the optimal time constant of the filter is computed as 

M 2.4 

and the optimal filter is given as 

1 
1 + j w T  

G ( w )  = - 

(3.84) 

3A causal system is one whose output depends only on present and .future inputs. Real-world 
systems are always causal, but a filter that is used for postprocessing may be noncausal. 



1 
T 

g ( t )  = -e-t/T t 2 o 

Converting this filter to the time domain results in 

1 
T 

d = - ( -2  + y) 

vvv 
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(3.85) 

(3.86) 

3.4.2 General filter optimization 

Now we take a more general approach to find the optimal filter. The expected value 
of the estimation error can be computed as 

~ [ e ~ ( t ) ]  = ~ [ s ~ ( t ) ]  - 2 g(u)R,(u) du -t- J 

Now we can use a calculus of variations approach [FomOO, Wei74] to find the filter 
g ( t )  that minimizes E[e2(t)] .  Replace g ( t )  in the above equation with g ( t )  + Eq(t), 
where E is some small number, and q( t )  is an arbitrary perturbation in g( t ) .  The 
calculus of variations says that we can minimize E(e2(t))  by setting 

(3.88) 

and thus solve for the optimal g ( t ) .  From Equation (3.87) we can write 

Taking the partial derivative with respect to E gives 
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Now recall from Equation (2.87) that R=(T - u )  = R,(u - T )  [i.e., R,(T) is even] if 
z(t)  is stationary. In this case, the above equation can be written as 

o = -2 ~ ( T ) R , ( T ) ~ T  t J 

This gives the necessary condition for the optimality of the filter g ( t )  as follows: 

We need to solve this for g ( t )  to find the optimal filter. 

3.4.3 Noncausal filter optimization 

If we do not have any restrictions on causality of our filter, then g ( t )  can be nonzero 
for t < 0, which means that our perturbation q(t)  can also be nonzero for t < 0. 
This means that the quantity inside the square brackets in Equation (3.92) must 
be zero. This results in 

(3.93) 

The transfer function of the optimal filter is the ratio of the power spectrum of the 
signal z ( t )  to the sum of the power spectrums of z( t )  and the noise w(t ) .  
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EXAMPLE3.9 

Consider the system discussed in Example 3.8 with A = ,8 = u = 1. The 
signal and noise power spectra are given as 

S,(w) = 1 (3.94) 

From this we obtain the optimal noncausal filter from Equation (3.93) as 

2 
G(w) = - 

W2+3 

x 0.58e-0.581ti, t E [-m, m] (3.95) 

In order to find a time domain representation of the filter, we perform a partial 
fraction expansion of G ( w )  to find the causal part and the anticausa14 part of 
the filter5: 

(3.96) -- 
causal filter anticausal filter 

From this we see that 

= R,(w) + X&) (3.97) 

X c ( w )  and X a ( y )  (defined by the above equation) are the causal and anti- 
causal part of X ( w ) ,  respectively. In the time domain, this can be written 
as 

(3.98) 

The i, equation runs forward in time and is therefore causal and stable. The 
fa equation runs backward in time and is therefore anticausal and stable. (If 
it ran forward in time, it would be unstable.) 

vvv 
4An anticausal system is one whose output depends only on present and future inputs. 
5The MATLAB function RESIDUE performs partial fraction expansions. 
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3.4.4 Causal filter optimization 

If we require a causal filter for signal estimation, then g ( t )  = 0 for t < 0, and the 
perturbation q( t )  must be equal to 0 for t < 0. In this case, Equation (3.92) gives 

R,(T) - g(u)[R,(u - T )  + R,(u - T ) ]  du = 0, t 2 0 (3.99) s 
The initial application of this equation was in the field of astrophysics in 1894 [Sob631 
Explicit solutions were thought to be impossible, but Norbert Wiener and Eber- 
hard Hopf became instantly famous when they solved this equation in 1931. Their 
solution was so impressive that the equation became known as the Wiener-Hopf 
equation. 

To solve Equation (3.99), postulate some function a( t )  that is arbitrary for t < 0, 
but is equal to 0 for t 2 0. Then we obtain 

R,(T) - /g(u)[R,(u - T) + R,(u - T ) ]  du = a ( ~ )  

S&) - G(w)[&(w)  + &J(w)l = A(w) (3.100) 

For ease of notation, make the following definition: 

S,,(w) = Sz(w) + %(w)  (3.101) 

Then Equation (3.100) becomes 

- G(w)S,+,(4S,-,(w> = A ( w )  (3.102) 

where S&(w) is the part of Szv(w) that has all its poles and zeros in the LHP (and 
hence corresponds to a causal time function), and S&(w) is the part of SZ,(w) that 
has all its poles and zeros in the RHP (and hence corresponds to an anticausal time 
function). Equation (3.102) can be written as 

(3.103) 

The term on the left side corresponds to a causal time function [assuming that 
g ( t )  is stable]. The last term on the right side corresponds to an anticausal time 
function. Therefore, 

SX (w )  
s;v (w ) 

G(w)S,f,(w) = causal part of - 

SFV (w )  

1 
~ ( w )  = [ causal part of - (3.104) 

This gives the TF of the optimal causal filter. 

EXAMPLE 3.10 

Consider the system discussed in Section 3.4.1 with A = ,8 = u = 1. This was 
also discussed in Example 3.9. For this example we have 

n 



S,(W) = 1 
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(3.105) 

Splitting this up into its causal and anticausal factors gives 

j w + a  - j w + d 3  
szv(w) = ( j w +  1 ) ( - j w  + 1  ) 

Equation (3.104) gives 

(3.106) 

(3.107) 

This gives the TF and impulse response of the optimal filter when causality 
is required. 

vvv 

3.4.5 Comparison 

Comparing the three examples of optimal filter design presented in this section 
(Examples 3.8, 3.9, and 3.10), it can be shown that the mean square errors of the 
filter are as fdlows [Bro96]: 

0 Parameter optimization method: E[e2(t)] = 0.914 

0 Causal Wiener filter: E [ e 2 ( t ) ]  = 0.732 

0 Noncausal Wiener filter: E [ e 2 ( t ) ]  = 0.577 

As expected, the estimation error decreases when we have fewer constraints on 
the filter. However, the removal of constraints makes the filter design problem 
more difficult. The Wiener filter is not very amenable to  state estimation because 
of difficulty in extension to MIMO problems with state variable descriptions, and 
difficulty in application to signals with time-varying statistical properties. 
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3.5 SUMMARY 

In this chapter we discussed least squares estimation in a couple of different con- 
texts. First we derived a method for estimating a constant vector on the basis of 
several noisy measurements of that vector. In fact, the measurements do not have 
to be direct measurements of the constant vector, but they can be measurements 
of some linear combination of the elements of the constant vector. In addition, the 
noise associated with each measurement does not have to be the same. The least 
squares estimation technique that we derived assumed that we the measurement 
noise is zero-mean and white (uncorrelated with itself from one time step to the 
next), and that we know the variance of the measurement noise. We then extended 
our least squares estimator to a recursive formulation, wherein the computational 
effort remains the same at each time step regardless of the total number of mea- 
surements that we have processed. Least squares estimation of a constant vector 
forms a large part of the foundation for the Kalman filter, which we will derive 
later in this book. 

In Section 3.4, we took a brief segue into Wiener filtering, which is a method 
of estimating a time-varying signal that is corrupted by noise. The Wiener filter 
is based on frequency domain analyses, whereas the Kalman filter that we derive 
later is based on time domain analyses. Nevertheless, both filters are optimal 
under their own assumptions. Some problems are solvable by both the Wiener and 
Kalman filter methods, in which case both methods give the same result. 

PROBLEMS 

Written exercises 

3.1 In Equation (3.6) we computed the partial derivative of our cost function with 
respect to our estimate and set the result equal to 0 to solve for the optimal estimate. 
However, the solution minimizes the cost function only if the second derivative of 
the cost function with respect to the estimate is positive semidefinite. Find the 
second derivative of the cost function and show that it is positive semidefinite. 

3.2 Prove that the matrix Pk that is computed from Equation (3.25) will always 
be positive definite if 9 - 1  and Rk are positive definite. 

3.3 Consider the recursive least squares estimator of Equations (3.28)-(3.30). If 
zero information about the initial state is available, then Po = 001. Suppose that 
you have a system like this with Hk = 1. What will be the values of K1 and PI? 

3.4 Consider a battery with a completely unknown voltage (PO = m). Two 
independent measurements of the voltage are taken to estimate the voltage, the 
first with a variance of 1, and the second with a variance of 4. 

a) Write the weighted least squares voltage estimate in terms of the two 
measurements y1 and y2. 

b) If weighted least squares is used to estimate the voltage, what is the vari- 
ance of voltage estimate after the first measurement? What is the variance 
of the voltage estimate after the second measurement? 
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c )  If the voltage is estimated as (y1 + y2)/2, an unweighted average of the 
measurements, what is the variance of the voltage estimate? 

3.5 Consider a battery whose voltage is a random variable with a variance of 1. 
Two independent measurements of the voltage are taken to estimate the voltage, 
the first with a variance of 1, and the second with a variance of 4. 

a) Write the weighted least squares voltage estimate in terms of the initial 
estimate 30 and the two measurements y1 and y2. 

b) If weighted least squares is used to estimate the voltage, what is the vari- 
ance of voltage estimate after the first measurement? What is the variance 
of the voltage estimate after the second measurement? 

3.6 Suppose that { z 1 , x z ,  * , z,} is a set of random variables, each with mean 
3 and variance a2. Further suppose that E[(x2 - 3)(x, - Z)] = 0 for i # j .  We 
estimate 3 and u2 as follows. 

a) Is 5 an unbiased estimate of z? That is, is E(2)  = Z? 
b) Find E ( x g j )  in terms of 1 and u2 for both i = j and i # j. 
c )  Is b2 an unbiased estimate of a2? That is, is E ( $ )  = u2? If not, how 

should we change 6' to  make it an unbiased estimate of u2? 

3.7 Suppose a scalar signal has the values 1, 2, and 3. Consider three different 
estimates of this timevarying signal. The first estimate is 3, 4, 1. The second 
estimate is 1, 2, 6. The third estimate is 5 ,  6, 7. Create a table showing the RMS 
value, average absolute error, and standard deviation of the error of each estimate. 
Which estimate results in the error with the smallest RMS value? Which estimate 
results in the error with the smallest infinity-norm? Which estimate gives the error 
with the smallest standard deviation? Which estimate do you think is best from 
an intuitive point of view? Which estimate do you think is worst from an intuitive 
point of view? 

3.8 Suppose a random variable x has the pdf f(x) given in Figure 3.3. 
a) x can be estimated by taking the median of its pdf. That is, P is the 

solution to the equation 
h 00 

f(x) dx = 1 f(x) L 
Find the median estimate of x. 

b) x can be estimated by taking the mode of its pdf. That is, 

f = arg maxf(x) 

Find the mode estimate of x. 
c )  x can be estimated by computing its mean. That is, 

00 
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Find the mean of z. 
d) z can be estimated by computing the minimax value. That is, 

2 = minmaxlz - $ 1  
X 

Find the minimax estimate of z. 

X 

Figure 3.3 pdf for Problem 3.8. 

3.9 Suppose you are responsible for increasing the tracking accuracy of a radar 
system. You presently have a radar that has a measurement variance of 10. For 
equal cost you could either: (a) optimally combine the present radar system with a 
new radar system that has a measurement variance of 6; or, (b) optimally combine 
the present radar system with two new radar systems that both have the same 
performance as the original system [May79]. Which would you propose to do? 
Why? 

3.10 Consider the differential equation 

k + 3 z = u  

If the input u(t)  is an impulse, there are two solutions z(t)  that satisfy the differ- 
ential equation. One solution is causal and stable, the other solution is anticausal 
and unstable. Find the two solutions. 

3.11 Suppose a signal z ( t )  with power spectral density 

is corrupted with additive white noise v( t )  with a power spectral density Sv(s) = 1. 
a) Find the optimal noncausal Wiener filter to extract the signal from the 

noise corrupted signal. 
b) Find the optimal causal Wiener filter to extract the signal from the noise 

corrupted signal. 
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3.12 A system has the transfer function 

1 
G(s) = - 

s - 3  

If the input is an impulse, there are two solutions for the output z( t )  that satisfy 
the transfer function. One solution is causal and unstable, the other solution is 
anticausal and stable. Find the two solutions. 

Computer exercises 

3.13 The production of steel in the United States between 1946 and 1956 was 
66.6,84.9,88.6,78.0,96.8, 105.2,93.2, 111.6,88.3,117.0, and 115.2milliontons [Sor80]. 
Find the least squares fit to these data using (a) linear curve fit; (b) quadratic curve 
fit; (c) cubic curve fit; (d) quartic curve fit. For each case give the following: (1) a 
plot of the original data along with the least squares curve; (2) the RMS error of 
the least squares curve; (3) the prediction of steel production in 1957. 

3.14 Implement the Wiener filters for the three examples given in Section 3.4 
and verify the results shown in Section 3.4.5. Hint: Example 8.6 shows that if 
j. = -z + w where w ( t )  is white noise with a variance of Qc = 2, then 

n 
L 

S Z ( W )  = - 
w2 + 1 

From Sections 1.4 and 8.1 we see that this system can be simulated as 

where w ( t )  and v ( t )  are independent zero-mean, unity variance random variables. 





CHAPTER 4 

Propagation of states and covariances 

In this chapter, we will begin with our mathematical description of a dynamic 
system, and then derive the equations that govern the propagation of the state 
mean and covariance. The material presented in this chapter is fundamental to  the 
state estimation algorithm (the Kalman filter) that we will derive in Chapter 5. 

Section 4.1 covers discrete-time systems. Section 4.2 covers sampled-data sys- 
tems, which are the most common types of systems found in the real world. In 
this type of system, the system dynamics are described by continuous-time differ- 
ential equations, but the control and measurement signals are discrete time (e.g. , 
control based on a digital computer and measurements obtained at  discrete times). 
Section 4.3 covers continuous-time systems. 

4.1 DISCRETE-TIME SYSTEMS 

Suppose we have the following linear discrete-time system: 

where U k  is a known input and W k  is Gaussian zero-mean white noise with covariance 
Q k .  How does the mean of the state x k  change with time? If we take the expected 
value of both sides of Equation (4.1) we obtain 

z k  = E ( x k )  

= F k - 1 z k - 1  + G k - 1 U k - I  

Optimal State Estimation, First Edition. By Dan J.  Simon 
ISBN 0471708585 @ZOOS John Wiley 8z Sons, Inc. 

(4.2) 

107 
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We therefore obtain the covariance of xk as the expected value of the above expres- 
sion. Since (zk-1 - f k - 1 )  is uncorrelated with W k - 1 ,  we obtain 

Pk = E [ ( X k  -fk)(***)T] 

(4.4) 
T = Fk-lPk-lFk-i+ Qk-1  

This is called a discretetime Lyapunov equation, or a Stein equation [Ste52]. We 
will see in the next chapter that Equations (4.2) and (4.4) are fundamental in the 
derivation of the Kalman filter. 

It is interesting to consider the conditions under which the discretetime Lya- 
punov equation has a steady-state solution. That is, suppose that Fk = F is a 
constant, and Qk = Q is a constant. Then we have the following theorem, whose 
proof can be found in [KaiOO, Appendix D]. 

Theorem 21 Consider the equation P = FPFT + Q where F and Q are real 
matrices. Denote by Xi(F) the eigenvalues of the F matrix. 

1. A unique solution P exists if and only if Xi(F)Xj(F) # 1 for all i ,  j .  This 
unique solution is symmetric. 

2. Note that the above condition includes the case of stable F ,  because if F is sta- 
ble then all of its eigenvalues are less than one in magnitude, so Xi(F)Xj(F) # 
1 for all i ,  j .  Therefore, we see that if F is stable then the discrete-time Lya- 
punov equation has a solution P that is unique and symmetric. In this case, 
the solution can be written as 

m 

P = C F % Q ( F ~ ) ~  (4.5) 
a=O 

3. If F is stable and Q is positive (semi)definite, then the unique solution P is 
symmetric and positive (semi)definite. 

4. If F is stable, Q is positive semidefinite, and (F, Q112) is controllable, then P 
is unique, symmetric, and positive definite. Note that Q112, the square root 
of Q, is defined here as any matrix such that Q1/2(Q1/2)T = Q. 

Now let us look at the solution of the linear system of Equation (4.1): 

How does the covariance of xk change with time? We can use Equations (4.1)
and (4.2) to obtain

(4.6)
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The matrix F k , a  is the state transition matrix of the system and is defined as 

F k - l F k - z * * * F a  k > i  

F k , a  = I k = i  (4.7) L k < i  

Notice from Equation (4.6) that Xk is a linear combination of 20, {wi}, and {ua}. 
If the input sequence {ua} is known, then it is a constant and can be considered to 
be a sequence of Gaussian random variables with zero covariance. If xo and {.ti} 
are unknown but are Gaussian random variables, then Xk in Equation (4.6) is a 
linear combination of Gaussian random variables. Therefore, Xk is itself a Gaussian 
random variable (see Example 2.4). But we computed the mean and covariance of 
Xk in Equations (4.2) and (4.4). Therefore 

xk N(zk, pk) (4.8) 

This completely characterizes Xk in a statistical sense since a Gaussian random 
variable is completely characterized by its mean and covariance. 

EXAMPLE4.1 

A linear system describing the population of a predator z(1) and that of its 
prey x(2) can be written as 

T k + l ( l )  = X k ( 1 )  - 0.8~k(1)  + 0.4~k(2)  + U ) k ( l )  

Xk+1(2 )  = xk(2) - 0.4~k(1)  + uk + wk(2) (4.9) 

In the first equation, we see that the predator population causes itself to  de- 
crease because of overcrowding, but the prey population causes the predator 
population to, increase. In the second equation, we see that the prey pop- 
ulation decreases due to  the predator population and increases due to  an 
external food supply Uk. The populations are also subject to  random distur- 
bances (with respective variances 1 and 2) due to environmental factors. This 
system can be written in state-space form as 

wk N ( O , Q )  Q =diag(l ,2)  (4.10) 

Equations (4.2) and (4.4) describe how the mean and covariance of the popula- 
tions change with time. Figure 4.1 depicts the two means and the two diagonal 
elements of the covariance matrix for the first few time steps when 'ZLk = 1 
and the initial conditions are set as 30 = [ 10 and PO = diag(40,40). 
It is seen that the mean and covariance eventually reach steady-state values 
given by 

T 
20 ] 

z = ( I - F ) - ~ G ~  

= [ 2.5 5 1' 
(4.11) 
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The steady-state value of P can also be found directly (i.e., without simula- 
tion) using control system software.' Note that since F for this example is 
stable and Q is positive definite, Theorem 21 guarantees that P has a unique 
positive definite steady-state solution. 

vO 2 4 6 0 10 12 14 

time step 

Figure 4.1 State means and variances for Example 4.1. 

vvv 
In Equation (4.1), we showed the process noise directly entering the system 

dynamics. This is the convention that we use in this book. However, many times 
process noise is first multiplied by some matrix before it enters the system dynamics. 
That is, 

xk = F k - 1 x k - l - k  G k - 1 U k - l +  Lk-1Gk-1, Gk (0, Q k )  (4.12) 

How can we put this into the conventional form of Equation (4.1)? Notice that the 
rightmost term of Equation (4.12) has a covariance given by 

E [ (Lk-lGk-l)(Lk-lGk-l)T]  = Lk-IE(Gk-lG;-'_1)L;-l 

= L k - l Q k - I L k - 1  - T  (4.13) 

Therefore, Equation (4.12) is equivalent to the equation 

z k  = Fk-1zk-l -t Gk-iW-1 + W k - 1 ,  W k  (0, LkQkL;) (4.14) 

This idea is illustrated in Sections 7.3.1 and 7.3.2. The same type of transformation 
can be made with noisy measurement equations. That is, the measurement equation 

y k  = H k X k  + L k c k ,  f ik  (0, R k )  (4.15) 

is equivalent to the measurement equation 

Yk = H k z k  + v k ,  v k  (0, LkRkL;) (4.16) 

lFor example, we can use the MATLAB Control System Toolbox function DLYAP(F, Q) .  
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4.2 SAMPLED-DATA SYSTEMS 

Now we move on to sampled-data systems, which are the most frequently encoun- 
tered systems in practice. A sampled-data system is a system whose dynamics are 
described by a continuous-time differential equation, but the input only changes 
at discrete time instants, because (for example) the input is generated by a digital 
computer. In addition, we are interested in estimating the state only at discrete 
time instants. We are interested in obtaining the mean and covariance of the state 
only at discrete time instants. The continuous-time dynamics are described as 

X = AX + Bu+ w (4.17) 

From Chapter 1 we know that the solution of z ( t )  at some arbitrary time, say t k ,  

is given as 

J t k - i  

Now assume that u( t )  = ?Lk for t E [ t k , t k + l ] ;  that is, the control u( t )  is piecewise 
constante2 If we make the definitions 

. \  

(4.19) 

then Equation (4.18) becomes 

(4.21) 

then Equation (4.20) becomes 

eA(tk-') is the state transition matrix of the system from time T to time t k .  Now 
take the mean of the above equation, remembering that w ( t )  is zero-mean, to obtain 

z k  = E ( x k )  

= F k - 1 Z k - l  -k G k - i U k - 1  (4.23) 

2This assumes that a first-order hold is used for the control inputs. Other types of holds can be 
used in sampled data systems, but in this book we assume that first-order holds are used. 
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We can use the previous equations to obtain the covariance of the state as 

Now, if we assume that w(t) is continuous-time white noise with a covariance of 
Qc( t ) ,  we see that 

E [w(r)w'(a)]  = Q c ( 7 ) 6 ( ~  - a)  (4.25) 

This means that we can use the sifting property of the impulse function (see Prob- 
lem 4.10) to write Equation (4.24) as 

P k  = F k - i p k - i F r - 1  -k eA(tk-7)  QC( T ) e A T  ( t k - T )  d r  L1 
= F k - l p k - l F k - 1  T -k Q k - 1  (4.26) 

where Q k - 1  is defined by the above equation; that is, 

T 
t k  

eA(tk -7) Qc(T)eA ( t k - 7 )  d r  (4.27) 
*lc- l  = Lk-l 

In general, it is difficult to calculate Q k - 1 ,  but for small values of ( t k  - t k - 1 )  we 
obtain 

(4.28) 

EXAMPLE4.2 

Suppose we have a first-order, continuoustime dynamic system given by the 
equation 

(4.29) 

First-order equations can be used to describe many simple physical processes. 
For example, this equation describes the behavior of the current through a 
series RL circuit that is driven by a random voltage w(t), where f = -R/L. 
Suppose we are interested in obtaining the mean and covariance of the state 
z( t )  every At time units; that is, t k  - t k - 1  = At. For this simple scalar 
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(4.30) 

For small values of At, we can expand the above equation in a Taylor series 
around At = 0 to obtain 

% [1+ 2fAt - 11 
2f  

(4.31) 

This matches Equation (4.28), which says that for small At we have Qk-1 M 
qcAt. The sampled mean of the state is computed from Equation (4.23) 
[noting that the control input in Equation (4.29) is zero] as 

We see that if f > 0 (i.e., the system is unstable) then the mean Z k  will 
increase without bound (unless 30 = 0). However, i f f  < 0 (i.e., the system is 
stable) then the mean Z k  will decay to zero regardless of the value of 50. The 
sampled covariance of the state is computed from Equation (4.26) as 

T 
p k  = F k - l P k - l F k - 1  -k Qk-1 

M (1 + 2fAt)Pk-1 +qcAt 

p k  - 9 - 1  = ( 2 f p k - 1  -k qc)At (4.33) 

From the above equation, we can see that P k  reaches steady state (Le., P k  - 
p k - 1  = 0) when P k - 1  = -qc/2f, assuming that f < 0. On the other hand, 
if f 2 0 then P k  - 9 - 1  will always be greater than 0, which means that 
limk,, P k  = 00. 

vvv 
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4.3 CONTINUOUS-TIME SYSTEMS 

In this section, we will look at how the mean and covariance of the state of a 
continuous-time linear system propagate. Consider the continuous-time system 

X = AX + Bu + w 
where u(t)  is a known control input and w(t) is zero-mean white noise with a 
covariance of 

By taking the mean of Equation (4.34), we can obtain the following equation for 
the derivative of the mean of the state: 

(4.34) 

E[W(t)WT(T)] = Qcd(t - 7 )  (4.35) 

P = A1 + Bu (4.36) 

This equation shows how the mean of the state propagates with time. The linear 
equation that describes the propagation of the mean looks very much like the orig- 
inal state equation, Equation (4.34). We can also obtain Equation (4.36) by using 
the equation that describes the mean of a sampled-data system and taking the limit 
as At = tk - tk-1 goes to zero. Taking the mean of Equation (4.'18) gives 

The state transition matrix can be written as 

AAt F = e  
(AAt)2 

2! 

For small values of At,  this can be approximated as 

= I + A A t + - + - . -  

F w I + A A t  

With this substitution Equation (4.37) becomes 

Subtracting z k - 1  from both sides and dividing by At gives 

Taking some limits as At goes to zero gives the following: 

1 - P k  - 1 k - 1  lim - 
At-0 At 

lim eA(tk-T) = I for T E [tk-l,tk] 
At-0 

Making these substitutions in (4.41) gives 

i = A5 + Bu 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 
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which is the same equation as the one we derived earlier in Equation (4.36) by a more 
direct method. Although the limiting argument that we used here was not necessary 
because we already had the mean equation in Equation (4.36), this method shows us 
how we can use limiting arguments (in general) t o  obtain continuous-time formulas. 

Next we will use a limiting argument to  derive the covariance of the state of a 
continuous-time system. Recall the equation for the covariance of a sampled data 
system from Equation (4.26): 

(4.44) 

For small At we again approximate Fk-1 as shown in Equation (4.39) and substitute 
into the above equation to obtain 

Pk M ( I  + AAt)Pk-,(I + AAt)T + Qk-1 
= Pk-l+ APk-lAt + Pk-lATAt + APk-1AT(At)2 + Qk-1 (4.45) 

Subtracting Pk-1 from both sides and dividing by At gives 

Recall from Equation (4.28) that for small At 

Qk-1  M Qc(tk)At (4.47) 

This can be written as 
- M Qc(tk) (4.48) Q k - i  

A t  
Therefore, taking the limit of Equation (4.46) as At goes to  zero gives 

P = AP +  PA^ + Q ~  (4.49) 

This continuous-time Lyapunov equation, also sometimes called a Sylvester equa- 
tion, gives us the equation for how the covariance of the state of a continuous-time 
system propagates with time. 

It is interesting to consider the conditions under which the continuous-time Lya- 
punov equation has a steady-state solution. That is, suppose that A(t )  = A is 
a constant, and Qc(t) = Qc is a constant. Then we have the following theorem, 
whose proof can be found in [KaiOO, Appendix D]. 

Theorem 22 Consider the equation AP + PAT + Qc = 0 where A and Qc are real 
matrices. Denote by  &(A)  the eigenvalues of the A matrix. 

1. A unique solution P exists if and only if &(A)  + Xj(A) # 0 for all i ,  j .  This 
unique solution is symmetric. 

2. Note that the above condition includes the case of stable A,  because if A is 
stable then all of its eigenvalues have realparts less than 0, so Xi(A)+Xj(A) # 
0 for all i ,  j .  Therefore, we see that if A is stable then the continuous-time 
Lyapunov equation has a solution P that is unique and symmetric. In this 
case, the solution can be written as 

P = lw eATrQceAr d7 (4.50) 
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3. If A is stable and Qc is positive (semi)definite, then the unique solution P is 

4. If A is stable, Qc is positive semidefinite, and [A, (Q,?'))'] is controllable, 

then P is unique, symmetric, and positive definite. Note that Q;12, the square 
root of Qc,  is defined here as any matrix such that Qi'2(Q;/2)T = Qc. 

symmetric and positive (semi)definite. 

EXAMPLE4.3 

Suppose we have the first-order, continuoustime dynamic system given by 
Equation (4.29): 

i = f z + w  
E"W(t)'W(t +.)I = Q C b ( . r )  (4.51) 

where w(t)  is zero-mean noise. The equation for the continuous-time propa- 
gation of the mean of the state is obtained from Equation (4.36): 

& =  f Z  (4.52) 

Solving this equation for Z(t) gives 

Z(t) = exp(ft)Z(O) (4.53) 

We see that the mean will increase without bound iff  > 0 (i.e., if the system 
is unstable), but the mean will asymptotically tend to zero if f < 0 (i.e., if 
the system is stable). The equation for the continuous-time propagation of 
the covariance of the state is obtained from Equation (4.49): 

P = 2 f P + q c  (4.54) 

Solving this equation for P( t )  gives 

(4.55) 

We see that the covariance will increase without bound if f > 0 (i.e., if the 
system is unstable), but the covariance will asymptotically tend to -qc/2 f if 
f < 0 (i.e., if the system is stable). Compare these results with Example 4.2. 

The steady-state value of P can also be computed using Equation (4.50). 
If we substitute f for A and qc for Qc in Equation (4.50), we obtain 

00 

P = e2frqcdr 

00 

(4.56) 

The integral converges for f < 0 (i.e., if the system is stable), in which case 

vvv 
P = -qc/2f. 
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4.4 SUMMARY 

In this chapter, we have derived equations for the propagation of the mean and 
covariance of the state of linear systems. For discretetime systems, the mean and 
covariance are described by difference equations. Sampled-data systems are sys- 
tems with continuous-time dynamics but control inputs that are constant between 
sample times. If the dynamics of a sampled-data system does not change between 
sample times, then the mean and covariance are described by difference equations, 
although the factors of the difference equations are more complicated than they 
are for discretetime systems. For continuous-time systems, the mean and covari- 
ance are described by differential equations. These results will form part of the 
foundation for our Kalman filter derivation in Chapter 5. 

The covariance equations that we studied in this chapter are named after Alek- 
sandr Lyapunov, James Sylvester, and Philip Stein. Lyapunov was a Russian math- 
ematician who lived from 1857 to 1918. He made important contributions in the 
areas of differential equations, system stability, and probability. Sylvester was an 
English mathematician and lawyer who lived from 1814 to 1897. He worked for a 
time in the United States as a professor at the University of Virginia and Johns 
Hopkins University. While at Johns Hopkins, he founded the American Journal of 
Mathematics, which was the first mathematical journal in the United States. 

PROBLEMS 

Written exercises 

4.1 Prove that 

4.2 Suppose that a dynamic scalar system is given as X k + l  = f x k  + W k ,  where 
W k  is zero-mean white noise with variance q. Show that if the variance of X k  is u2 
for all k, then it must be true that f2 = (u2 - q)/u2. 

4.3 Consider the system 

where W k  is white noise. 
a) Find all possible steady-state values of the mean of zk. 
b) Find all possible steady-state values of the covariance of X k .  

a) Discretize the system to find the single step state transition matrix F k ,  
the discretetime input matrix G k ,  and the multiplestep state transition 
matrix F k , % .  

4.4 Consider the system of Example 1.2. 



118 PROPAGATION OF STATES AND COVARIANCES 

b) Suppose the covariance of the initial state is Po = diag( 1, 0), and zero-mean 
discrete-time white noise with a covariance of Q = diag(1,O) is input to 
the discrete-time system. Find a closed-form solution for Pk. 

4.5 Two chemical mixtures are poured into a tank. One has concentration c1 and 
is poured at  rate F1, and the other has concentration cz and is poured at rate F2. 

The tank has volume V, and its outflow is at concentration c and rate F .  This is 
typical of many process control systems [Kwa72]. The linearized equation for this 
system can be written as 

1 l l  

x = [  - 2 L  - & I . + [ -  0 - 
vo vo 

where Fo, VO, and Q are the linearization points of F, V, and c. The state x 
consists of deviations from the steady-state values of V and c, and the noise input 
w consists of the deviations from the steady-state values of F1 and Fz. Suppose 
that FO = 2V0, c1 - Q = Vo, and cz - Q = 2Vo. Suppose the noise input w has an 
identity covariance matrix. 

a) Use Equation (4.27) to  calculate Q k - 1 .  

b) Use Equation (4.28) to  approximate Q k - 1 .  

c )  Evaluate your answer to  part (a) for small ( t k  - t k - 1 )  to  verify that it 
matches your answer to  part (b). 

Suppose that a certain sampled data system has the following state-transition 4.6 
matrix and approximate Q k - 1  matrix [as calculated by Equation (4.28)]: 

0 
Fk-1 = [ "OT e-zT ] 

where T = t k  - t k - 1  is the discretization step size. Use Equation (4.26) to compute 
the steady-state covariance of the state as a function of T.  

4.7 Consider the tank system described in Problem 4.5. Find closed-form solu- 
tions for the elements of the state covariance as functions of time. 

4.8 Consider the system 

Use Equation (4.5) to find the steady-state covariance of the state vector. 

4.9 The third condition of Theorem 21 gives a sufficient condition for the discrete- 
time Lyapunov equation to have a unique, symmetric, positive semidefinite solution. 
Since the condition is sufficient but not necessary, there may be cases that do not 
meet the criteria of the third condition that still have a unique, symmetric, positive 
semidefinite solution. Give an example of one such case with a nonzero solution. 
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4.10 
which can be stated as 

Prove the sifting property of the continuous-time impulse function 6 ( t ) ,  
00 

Computer exercises 

4.11 Write code for the propagation of the mean and variance of the state of 
Example 4.2. Use rno  = 1, PO = 2, f = -0.5 and qc = 1. Plot the mean and 
variance of x for 5 seconds. Repeat for PO = 0. Based on the plots, what does 
the steady-state value of the variance appear to be? What is the analytically 
determined steady-state value of the variance? 

4.12 Consider the RLC circuit of Example 1.8 with R = L = C = 1. Suppose 
the applied voltage is continuous-time zero-mean white noise with a variance of 
1. The initial capacitor voltage is a random variable with a mean of 1 and a 
variance of 1. The initial inductor current is a random variable (independent of the 
initial capacitor voltage) with a mean of 2 and a variance of 2. Write a program 
to propagate the mean and covariance of the state for five seconds. Plot the two 
elements of the mean of the state, and the three unique elements of the covariance. 
Based on the plots, what does the steady-state value of the covariance appear 
to be? What is the analytically determined steady-state value of the covariance? 
(Hint: The MATLAB function LYAP can be used to solve for the continuous-time 
algebraic Lyapunov equation.) 

4.13 Consider the RLC circuit of Problem 1.18 with R = 3, L = 1, and C = 
0.5. Suppose the applied voltage is continuous-time zero-mean white noise with 
a variance of 1. We can find the steady-state covariance of the state a couple of 
different ways. 

0 Use Equation (4.49). 

0 Discretize the system and use Equation (4.4) along with the MATLAB func- 
tion DLYAP. In this case, the discrete-time white noise covariance Q is related 
to the continuous-time white noise covariance Q, by the equation Q = TQ,, 
where T is the discretization step size (see Section 8.1.1). 

a) Analytically compute the continuous-time, -steady-state covariance of the 
state. 

b) Analytically compute the discretized steady-state covariance of the state 
in the limit as T 4 00. 

c) One way of measuring the distance between two matrices is by using the 
MATLAB function NORM to take the F’robenius norm of the difference 
between the matrices. Generate a plot showing the F’robenius norm of 
the difference between the continuous-time, steady-state covariance of the 
state, and the discretized steady-state covariance of the state for T between 
0.01 and 1. 
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CHAPTER 5 

The discrete-time Kalman filter 

The Kalman filter in its various forms is clearly established as a fundamental tool for 
analyzing and solving a broad class of estimation problems. 

-Leonard McGee and Stanley Schmidt [McG85] 

This chapter forms the heart of this book. The earlier chapters were written 
only to provide the foundation for this chapter, and the later chapters are written 
only to  expand and generalize the results given in this chapter. 

As we will see in this chapter, the Kalman filter operates by propagating the 
mean and covariance of the state through time. Our approach to  deriving the 
Kalman filter will involve the following steps. 

1. We start with a mathematical description of a dynamic system whose states 
we want to estimate. 

2. We implement equations that describe how the mean of the state and the 
covariance of the state propagate with time. These equations, derived in 
Chapter 4, themselves form a dynamic system. 

3. We take the dynamic system that describes the propagation of the state mean 
and covariance, and implement the equations on a computer. These equations 
form the basis for the derivation of the Kalman filter because: 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 
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(a) The mean of the state is the Kalman filter estimate of the state. 

(b) The covariance of the state is the covariance of the Kalman filter state 
estimate. 

4. Every time that we get a measurement, we update the mean and covariance 
of the state. This is similar to what we did in Chapter 3 where we used 
measurements to recursively update our estimate of a constant. 

In Section 5.1, we derive the equations of the discretetime Kalman filter. This 
includes several different-looking, but mathematically equivalent forms. Various 
books and papers that deal with Kalman filters present the filter equations in 
ways that appear very different from one another. It is not always obvious, but 
these different formulations are actually mathematically equivalent, and we will 
see this in Section 5.1. (Sections 9.1, 10.5.1, and 11.1 also derive alternate but 
equivalent formulations of the Kalman filter equations.) In Section 5.2, we will 
examine some of the theoretical properties of the Kalman filter. One remarkable 
aspect of the Kalman filter is that it is optimal in several different senses, as we 
will see in Section 5.2. In Section 5.3, we will see how the Kalman filter equations 
can be written with a single time update equation. Section 5.4 presents a way to 
obtain a closed-form equation for the timevarying Kalman filter for a scalar time- 
invariant system, and a way to quickly compute the steady-state Kalman filter. 
Section 5.5 looks at some situations in which the Kalman filter is unstable or gives 
state estimates that are not close to the true state. We will also look at some ways 
that instability and divergence can be corrected in the Kalman filter. 

5.1 DERIVATION OF T H E  DISCRETE-TIME KALMAN FILTER 

Suppose we have a linear discretetime system given as follows: 

x k  = F k - 1 X k - 1  + G k - i U k - 1  + W k - 1  

Y k  = H k Z k  + u k  (5.1) 

The noise processes { W k }  and { O k }  are white, zero-mean, uncorrelated, and have 
known covariance matrices Q k  and R k ,  respectively: 

where bk- j  is the Kronecker delta function; that is, & - j  = 1 if k = j, and 6 k - J  = 0 
if k # j. Our goal is to estimate the state 2 k  based on our knowledge of the system 
dynamics and the availability of the noisy measurements { Y k } .  The amount of 
information that is available to us for our state estimate varies depending on the 
particular problem that we are trying to solve. If we have all of the measurements 
up to and including time k available for use in our estimate of X k ,  then we can form 
an a posteriori estimate, which we denote as 2:. The "+" superscript denotes that 
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the estimate is a posteriori. One way to form the a posteriori state estimate is to  
compute the expected value of x k  conditioned on all of the measurements up to  
and including time k: 

2; = E [ X k / y l ,  y 2 , .  . ., Y k ]  = a posteriori estimate (5.3) 

If we have all of the measurements before (but not including) time k available for 
use in our estimate of X k ,  then we can form an a praori estimate, which we denote 
as 2; .  The "-" superscript denotes that the estimate is a priori. One way to  form 
the a priori state estimate is to compute the expected value of 51, conditioned on 
all of the measurements before (but not including) time k: 

2; = E [ X k l y l ,  y 2 , .  ., Y k - l ]  = a priori estimate (5.4) 

It is important to note that 2; and 2; are both estimates of the same quantity; they 
are both estimates of X k .  However, 2 i  is our estimate of Xk before the measurement 
Yk is taken into account, and 2: is our estimate of 21, after the measurement y k  

is taken into account. We naturally expect 2; to be a better estimate than 2 i ,  
because we use more information to compute 2;: 

2 i  = 
2' k = estimate of Xk after we process the measurement at time k (5.5) 

If we have measurements after time k available for use in our estimate of X k ,  then 
we can form a smoothed estimate. One way to form the smoothed state estimate is 
to compute the expected value of x k  conditioned on all of the measurements that 
are available: 

estimate of Xk before we process the measurement a t  time k 

?k lk+N = E [ x k l Y l i Y 2 , ' . . , Y k , " ' , Y k + N ]  = smoothed estimate (5.6) 

where N is some positive integer whose value depends on the specific problem that 
is being solved. If we want to find the best prediction of x k  more than one time 
step ahead of the available measurements, then we can form a predicted estimate. 
One way to form the predicted state estimate is to  compute the expected value of 
Xk conditioned on all of the measurements that are available: 

2 k l k - M  = E [ x k j y 1 ,  y 2 ,  - . ., y k - ~ ]  = predicted estimate (5.7) 

where M is some positive integer whose value depends on the specific problem that 
is being solved. The relationship between the a posteriori, a priori, smoothed, and 
predicted state estimates is depicted in Figure 5.1. 

In the notation that follows, we use 2; to  denote our initial estimate of x o  before 
any measurements are available. The first measurement is taken at  time k = 1. 
Since we do not have any measurements available to  estimate 20, it is reasonable 
to form 2; as the expected value of the initial state 2 0 :  

2; = E ( X 0 )  (5.8) 

We use the term P k  to denote the covariance of the estimation error. P; denotes 
the covariance of the estimation error of 2;, and PL denotes the covariance of the 
estimation error of 2:: 

(5.9) 
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smoothed estimate 
a posteriori estimate I;; 

a priori estimate I;; 
prediction I;9,5 

1 2 3 4 5 6 7 8 9  time 

Figure 5.1 Time line showing the relationship between the a posteriori, a priori, 
smoothed, and predicted state estimates. In this figure, we suppose that we have received 
measurements at times up to and including k = 5. An estimate of the state at k < 5 is called 
a smoothed estimate. An estimate of the state at lc = 5 is called the a posteriori estimate. 
An estimate of the state at k = 6 is called the a priori  estimate. An estimate of the state 
at k > 6 is called the prediction. 

These relationships are depicted in Figure 5.2. The figure shows that after we 
process the measurement at time (k-1), we have an estimate Of X k - 1  (denoted ?:-_,) 
and the covariance of that estimate (denoted P$-l). When time k arrives, before we 
process the measurement at time k we compute an estimate of x k  (denoted 2;)  and 
the covariance of that estimate (denoted Pi). Then we process the measurement 
at time k to refine our estimate of X k .  The resulting estimate of X k  is denoted ?i.;cf, 
and its covariance is denoted Pk+. 

I 

k-1 
, I 

k time 

Figure 5.2 
error covariance. 

Timeline showing a p n o r i  and a posteriori state estimates and estimation- 

We begin the estimation process with at ,  our best estimate of the initial state 
X O .  Given ?$, how should we compute a,? We want to set 2; = E(z1) .  But note 
that 3;': = E(xo) ,  and recall from Equation (4.2) how the mean of x propagates 
with time: z k  = F k - l Z k - l +  Gk-1uk-1. We therefore obtain 

This is a specific equation that shows how to obtain 2;  from 2;. However, the 
reasoning can be extended to obtain the following more general equation: 

(5.11) x k  = Fk-13t-1 -k Gk-iuk-i 

This is called the time update equation for ?. From time (k - 1)f to time k-, the 
state estimate propagates the same way that the mean of the state propagates. This 
makes sense intuitively. We do not have any additional measurements available to 

..- 
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help us update our state estimate between time (k - 1)+ and time k-, so we should 
just update the state estimate based on our knowledge of the system dynamics. 

Next we need to compute the time update equation for P ,  the covariance of the 
state estimation error. We begin with Po', which is the covariance of our initial 
estimate of zo. If we know the initial state perfectly, then P$ = 0. If we have 
absolutely no idea of the value of 20, then P$ = 001. In general, P$ represents 
the uncertainty in our initial estimate of 20: 

Pof = E[(zrJ - zo)(zo - zo )T]  

= E"zo - *i.os)(zo - 20 -+ ) T I (5.12) 

Given Po', how can we compute P;? Recall from Equation (4 .4 )  how the co- 
variance of the state of a linear discrete-time system propagates with time: Pk = 
Fk_1&1F;-, + Qk-1. w e  therefore obtain 

PT = FoP$F,T + Qo (5 .13)  

This is a specific equation that shows how to obtain P; from Pof. However, the 
reasoning can be extended to obtain the following more general equation: 

p i  = Fk-ip?-,FkT_1 + Q k - 1  (5 .14)  

This is called the timeupdate equation for P .  
We have derived the time-update equations for 2 and P .  Now we need to derive 

the measurement-update equations for 2 and P .  Given 2;,  how should we compute 
2:? The quantity 53; is an estimate of X k ,  and the quantity 53; is also an estimate 
of Z k .  The only difference between 2; and 2: is that 2; takes the measurement 
Y k  into account. Recall from the recursive least squares development in Section 3.3 
that the availability of the measurement Y k  changes the estimate of a constant z as 
follows: 

Kk = Pk-iHT(HkPk-lHT + &)-' 
= PkH:Ril 

5k = ? k - 1  f Kk(Yk - H k i k - 1 )  

Pk = (1 - KkHk)Pk-i(I - KkHk)T + KkRkK; 
= (PF:l + HTRL1Hk)-l 

= (1 - KkHk)Pk-l (5 .15)  

where i&-1 and Pk-1 are the estimate and its covariance before the measurement 
Y k  is processed, and 2k and Pk are the estimate and its covariance after the mea- 
surement Y k  is processed. In this chapter, 2; and P; are the estimate and its 
covariance before the measurement Y k  is processed, and 2; and P z  are the esti- 
mate and its covariance after the measurement yk is processed. These relationships 
are shown in Table 5 .1 . l  

We can now generalize from the formulas for the estimation of a constant in 
Section 3.3, to the measurement update equations required in this section. In 

'we need to use minus and plus superscripts on &k and Pk in order to distinguish between 
quantities before Yk is taken into account, and quantities after Y k  is taken into account. In 
Chapter 3, we did not need superscripts because x was a constant. 
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Table 5.1 Fklationships between estimates and covariances in Sections 3.3 and 5.1 

Section 3.3 
Least squares estimation 

~~ 

Section 5.1 
Kalman filtering 

2k-1 = estimate before Y k  is processed 
Pk-1 = covariance before Y k  is processed 
hk = estimate after Yk is processed 
Pk = covariance after Y k  is processed 

I 
* 
I 

2 i  = a praori estimate 
P- - a priori covariance 
2f a posteriori estimate 
Pk+ = a posteriori covariance 

Equation (5.15), we replace 2k-1 with 2 i ,  we replace Pk-1 with P;, we replace 2k 
with 2:, and we replace Pk with Pk+. This results in 

Kk = P;Hr(HkP;Hr + &)-' 
= P ~ + H ~ R L '  

h i  = &i+Kk(Yk-Hk?i )  
Pk+ = (1 - KkHk)P;(I - KkHk)T + KkRkKr 

= [(P;)-' + HTR,'Hk]-' 

= (I-KkHk)P; (5.16) 

These are the measurement-update equations for hk and Pk. The matrix Kk in the 
above equations is called the Kalman filter gain. 

The discrete-time Kalman filter 

Here we summarize the discrete-time Kalman filter by combining the above equ* 
tions into a single algorithm. 

1. The dynamic system is given by the following equations: 

(5.17) 

2. The Kalman filter is initialized as follows: 

2; = E(X0) 
P$ = E[(xo - i?i'o+)(~o - X O  -+ ) T ] (5.18) 

3. The Kalman filter is given by the following equations, which are computed 
for each time step k = 1,2,. . .: 

PL = Fk-ipk+-lFz-l 4- Qk-1 

Kk = P;Hr(HkP;Hr + &)-' 
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The first expression for PL above is called the Joseph stabilized version of the 
covariance measurement update equation. It was formulated by Peter Joseph in 
the 1960s and can be shown to be more stable and robust than the third expression 
for Pk+ [Buc68, Cra04] (see Problem 5.2). The first expression for Pk+ guarantees 
that Pk+ will always be symmetric positive definite, as long as Pr  is symmetric 
positive definite. The third expression for P t  is computationally simpler than the 
first expression, but its form does not guarantee symmetry or positive definiteness 
for P l .  The second form for Pk+ is rarely implemented as written above but will 
be useful in our derivation of the information filter in Section 6.2. 

If the second expression for Kk is used, then the second expression for Pk+ must 
be used. This is because the second expression for Kk depends on P;, so we need 
to use an expression for Pk+ that does not depend on Kk. 

Note that if x k  is a constant, then Fk = I ,  Qk = 0 ,  and U k  = 0. In this case, the 
Kalman filter of Equation (5.19) reduces to the recursive least squares algorithm 
for the estimation of a constant vector as given in Equation (3.47). 

Finally we mention one more important practical aspect of the Kalman filter. We 
see from Equation (5.19) that the calculation of P;, Kk, and Pk+ does not depend 
on the measurements y k ,  but depends only on the system parameters Fk, Hk, Qk, 
and Rk. That means that the Kalman gain Kk can be calculated offline before the 
system operates and saved in memory. Then when it comes time to operate the 
system in real time, only the 2k equations need to be implemented in real time. The 
computational effort of calculating Kk can be saved during real-time operation by 
precomputing it. If the Kalman filter is implemented in an embedded system with 
strict computational requirements, this can make the difference between whether or 
not the system can be implemented in real time. Furthermore, the performance of 
the filter can be investigated and evaluated before the filter is actually run. This is 
because Pk indicates the estimation accuracy of the filter, and it can be computed 
offline since it does not depend on the measurements. In contrast, as we will see in 
Chapter 13, the filter gain and covariance for nonlinear systems cannot (in general) 
be computed offline because they depend on the measurements. 

5.2 KALMAN FILTER PROPERTIES 

In this section, we summarize some of the interesting and important properties of 
the Kalman filter. Suppose we are given the linear system of Equation (5.17) and 
we want to find a causal filter that results in a state estimate 2k. The error between 
the true state and the estimated state is denoted as 4k: 
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Since the state is partly determined by the stochastic process {wk}, xk is a random 
variable. Since the state estimate is determined by the measurement sequence {yk}, 

which in turn is partly determined by the stochastic process {wk}, ?k is a random 
variable. Therefore, 5k is also a random variable. 

Suppose we want to find the estimator that minimizes (at each time step) a 
weighted two-norm of the expected value of the estimation error z k :  

(5.21) 

where 5’1, is a positive definite user-defined weighting matrix. If sk is diagonal with 
elements S k ( l ) ,  . . a ,  Sk(n), then the weighted sum isequal to Sk(l)E[i$(l)] + . . a +  

sk (n)E [z.% (n)] - 
0 If {wk} and {wk} are Gaussian, zero-mean, uncorrelated, and white, then the 

Kalman filter is the solution to the above problem. 

0 If {wk} and {vk} are zero-mean, uncorrelated, and white, then the Kalman 
filter is the best linear solution to the above problem. That is, the Kalman 
filter is the best filter that is a linear combination of the measurements. There 
may be a nonlinear filter that gives a better solution, but the Kalman filter is 
the best linear filter. It is often asserted in books and papers that the Kalman 
filter is not optimal unless the noise is Gaussian. However, as our derivation 
in this chapter has shown, that is simply untrue. Such statements arise from 
erroneous interpretations of Kalman filter derivations. Even if the noise is 
not Gaussian, the Kalman filter is still the optimal linear filter. 

0 If {wk} and {vk} are correlated or colored, then the Kalman filter can be 
modified to solve the above problem. This will be shown in Chapter 7. 

0 For nonlinear systems, various formulations of nonlinear Kalman filters ap- 
proximate the solution to the above problem. This will be discussed further 
in Chapters 13-15. 

Recall the measurement update equation from Equation (5.19): 

The quantity (yk - Hk?;) is called the innovations. This is the part of the measure- 
ment that contains new information about the state. In Section 10.1, we will prove 
that the innovations is zero-mean and white with covariance (HkPLHT + R k ) .  In 
fact, the Kalman filter can actually be derived as a filter that whitens the measure- 
ment and hence extracts the maximum possible amount of information from the 
measurement. This was first proposed in [Kai68]. When a Kalman filter is used 
for state estimation, the innovations can be measured and its mean and covariance 
can be approximated using statistical methods. If the mean and covariance of the 
innovations are not as expected, that means something is wrong with the filter. 
Perhaps the assumed system model is incorrect, or the assumed noise statistics 
are incorrect. This can be used in real time to verify Kalman filter performance 
and parameters, and even to adjust Kalman filter parameters in order to improve 
performance. An application of this idea will be explored in Section 10.2. 
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5.3 ONE-STEP KALMAN FILTER EQUATIONS 

In this section, we will see how the a priori  and a posteriori Kalman filter equations 
can be combined into a single equation. This may simplify computer implementa- 
tion of the equations. We start with the a priori state estimate expression from 
Equation (5.19), with the time index increased by one: 

Now take the a posteriori expression for 2; from Equation (5.19), and substitute 
it into the above equation to obtain 

This shows that the a priori state estimate can be computed directly from its value 
at the previous time step, without computing the a posteriori state estimate in b e  
tween. A similar procedure can be followed in order to  obtain a onestep expression 
for the a priori covariance. We start with the a priori  covariance expression from 
Equation (5.19), with the time index increased by one: 

Now take the expression for Pkf from Equation (5.19), and substitute it into the 
above equation to obtain 

This equation, called a discrete Riccati equation, shows how PL+l can be computed 
on the basis of P; without an intermediate calculation of P;. 

Similar manipulations can be performed to obtain one-step expressions for the 
a posteriori state estimate and covariance. This results in 

One could imagine many different ways of combining the two expressions for Kk 
and the three expressions for P z  in Equation (5.19). This would result in a num- 
ber of different expressions for onestep updates for the a priori  and a posteriori 
covariance. 
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EXAMPLE5.1 

Suppose we have a noise-free Newtonian system2 with position T ,  velocity w, 
and constant acceleration a. The system can be described as [ i ]  = [ O O l ] [ j  0 1 0  

0 0 0  

k = AZ (5.28) 

The discretized version of this system (with a sample time of T) can be written 
as 

X k f l  = FZk (5.29) 

where F is given as 

F = exp(AT) 

1 T T2/2 
0 1  T 
0 0  1 

The Kalman filter for this system is 

(5.30) 

(5.31) 

We see that the covariance of the estimation error increases between time 
(k - 1)+ [that is, time (k - 1) after the measurement a t  that time is processed], 
and time k- (i.e., time k before the measurement at that time is processed). 
Since we do not obtain any measurements between time (k - 1)+ and time 
k-, it makes sense that our estimation uncertainty increases. Now suppose 
that we measure position with a variance of u2: 

Y k  = Hkxk+vk 
= [ 1 0 0 ] 2 1 , + v k  

wk (0 ,Rk)  
Rk = U2 (5.32) 

The Kalman gain can be obtained from Equation (5.19) as 

Kk = PLHz(HkPFHr + Rk)-l (5.33) 

If we write out the 3 x 3 matrix P; in terms of its individual elements, and 
substitute for Hk and Rk in the above equation, we obtain 

2The system described in this example is called Newtonian because it has its roots in the mathe- 
matical work of Isaac Newton. That is, velocity is the derivative of position, and acceleration is 
the derivative of velocity. 
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(5.34) 

The a posteriori covariance can be obtained from Equation (5.19) as 

P; = PL - Kk HkPi (5.35) 

If we write out the 3 x 3 matrix P i  in terms of its individual elements, and 
substitute for Hk and Kk in the above equation, we obtain 

1 (p<ll)2 p<llp621 p<llp631 

p<12p<11 (p<12)2 pc12p<31 (5*36) 
p<13p<11 '<13'<12 (p<13)2 

1 
= p;- 

P<ll+ a2 

We will use this expression to show that from time k- to time k+ the trace 
of the estimation-error covariance decreases. To see this first note that the 
trace of P; is given as 

T r ( P i )  = P<ll+ p<22 + p<33 (5.37) 

From Equation (5.36) we see that the trace of Pz is given as 

WP,+)  = q 1 1 +  q 2 2  + q 3 3  

(5.38) 

When we get a new measurement, we expect our state estimate to improve. 
That is, we expect the covariance to decrease, and the above equation shows 
that it does indeed decrease. That is, the trace of P z  is less than the trace 

This system was simulated with five time units between discretization steps 
(T = 5), and a position-measurement standard deviation of 30 units. Fig- 
ure 5.3 shows the variance of the position estimate (Pcll and P,';,,) for the 
first five time steps of the Kalman filter. It can be seen that the variance 
(uncertainty) increases from one time step to the next, but then decreases at 
each time step as the measurement is processed. 

Figure 5.4 shows the variance of the position estimate (PCl1 and P,';,,) 
for the first 60 time steps of the Kalman filter. This shows that the variance 
increases between time steps, and then decreases at each time step. But it 

of P;. 



134 THE DISCRETE-TIME KALMAN FILTER 
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time step 

Figure 5.3 
error variances for Example 5.1. 

The first five time steps of the a priori and a posteriori position-estimation- 
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Figure 5.4 
error variances for Example 5.1. 

The first 60 time steps of the a priori and a posteriori position-estimation- 

can also be seen from this figure that the variance converges to a steady-state 
value. 

Figure 5.5 shows the position-measurement error (with a standard devia- 
tion of 30) and the error of the a posteriori position estimate. The estimation 
error starts out with a standard deviation close to 30, but by the end of the 
simulation the standard deviation is about 11. 

vvv 
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Figure 5.5 The position-measurement error and position estimation error for 
Example 5.1. 

5.4 ALTERNATE PROPAGATION OF COVARIANCE 

In this section, we derive an alternate equation for the propagation of the estimation- 
error covariance P. This alternate equation, based on [GreOl], can be used to find 
a closed-form equation for a scalar Kalman filter.3 It can also be used to find a fast 
solution to the steady-state estimation-error covariance. 

5.4.1 Multiple state systems 

Recall from Equation (5.19) the update equations for the estimation-error covari- 
ance: 

p; = Fk-ipz-_lFr-l + Q k - i  (5.39) 

Pk+ = Pc - PcH:(HkPLH: + Rk)-lHkPL 

If the n x n matrix P; can be factored as 

PL = AkBkl (5.40) 

where Ak and Bk are n x n matrices to be determined, then P;+l satisfies 

pL+l = Ak+lBii1 (5.41) 

where A and B are propagated as follows: 

3The equations given in [GreOl] have some typographical errors that have been corrected in this 
section. 
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This can be seen by noting from Equation (5.42) that 
Bi i l  = [FF T H k R k  T -1 HkAk+FFTBk]-l  

= [ F i T ( H Z R i 1 H k A k B i 1  + I)&]-' 

- k [ k k H d k B i l + I ] - l F T  (5.43) 

(5.44) 

- B - ~ H T R ~ ~  

From Equation (5.42) we see that 

Ak+lB& = [(Fk 4- Q k F i  T T  Hk R i lHk)Ak  f QkFLTBk]BFil 

Substituting the expression for B;jl into this equation gives 

(5.45) 

Ak+iBii1 = [(Fk 4- QkFiTHFRi lHk)PF + QkFFT] X 

[HFRilHkP; + I]-lF: 

[FkpF + QkFFT(H;RilHkPF + I ) ]  X 

[HFRi'HkPF + I]-lF: 

= 

= FkP<[H:RilHkP[ + I]-lF,T + QkFF T T  Fk (5.46) 

Applying the matrix inversion lemma to the term in brackets gives 

Ak+1Bii1 = FkpF[I  - Hk ( HkPFH? 4- Rk)-lHkpF]F: + Qk 
= F k [ P i  - PcH;(HkPFHF f Rk)-lHkPF]FT + Qk 
= F k P Z F F f Q k  
= PF+l (5.47) 

So we see that Ak+lBijl = PF+l. 
Equation (5.42) can be used to obtain a quick solution to the steady-state covari- 

ance for multidimensional systems (although not a closed-form solution). Suppose 
that F ,  Q ,  H ,  and R are constant matrices. From Equation (5.42) we obtain 

[ Ak+i ] = [ ( F + Q F - T H T R - l H )  QF-T 
Bk+1 F - ~ H ~ R - ~ H  F-T ] [ ti ] (5.48) 

where we used the fact that A1 = P; and B1 = I satisfies the original factoring 
of Equation (5.40). Now we can successively square Q a total of p times to obtain 
\k2, Q4, Q8, and so on, until \k2' converges to a steady-state value: 

[ tz ] w \ k z p  [ ] for large p (5.49) 
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The steady-state covariance is P; = A,BZ1. We can also find the steady-state 
Kalman gain by simply iterating the filter equations from Equation (5.19), but the 
method in this section could be a much quicker way to find the steady-state gain. 
Once we find P; as shown above, we compute K, = P;HT(HP&HT + R)-l 
as the steady-state Kalman filter gain. More discussion of steady-state Kalman 
filtering is given in Section 7.3. 

5.4.2 Scalar systems 

Equation (5.42) can be used to obtain a closed-form solution for the scalar Kalman 
filter for time-invariant systems. Suppose that F ,  Q, H ,  and R are constant scalars. 
Then from Equation (5.42) we obtain 

= . [ ; : I  (5.50) 

where \Ir is defined by the above equation. Now find the eigendata of 8. Suppose 
that the eigenvalues of 8 are X 1  and XZ, and the eigenvectors of 8 are combined to  
create the 2 x 2 matrix M .  Then 

(5.51) 

and we obtain 

(5.52) 

where we used the fact that A1 = P c  and B1 = 1 satisfies the original factoring 
of Equation (5.40). 
following. 

P; = 

Xz = 

n =  

7-1 = 

7-2 = 

P1 = 

Pz = 

Working through the math to obtain XI, X2, and M gives the 

2FR 
d H 2 Q  + R ( F  + 1)2.\/H2Q + R ( F  - 1)2 

H ~ Q + R ( F ~ - I ) + ~  

H ~ Q  + R ( F ~  - I) - 
H ~ Q  + R ( F ~  + 1) + O  

H Q  + R ( F ~  + 1) - 
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(5.53) 

This is a closed-form equation for the timevarying Kalman filter for a scalar time- 
invariant system. This can easily be used to obtain the steady-state value of P i .  
Note that p 2  < 111. As k increases, p; gets smaller and smaller relative to pt .  
Therefore 

(5.54) 

This gives the steady-state covariance for a scalar system. 

EXAMPLE 5.2 

In this example, we will show how a scalar covariance can be propagated. 
Consider the following scalar system: 

(5.55) 

This is a very simple system but one that arises in many applications. For 
example, it may represent some slowly varying parameter X k  that we measure 
directly. The process noise term W k  accounts for the variations in X k ,  and the 
measurement noise term V k  accounts for measurement errors. In this system, 
we have F = H = Q = R = 1. Substituting these values in Equation (5.53) 
gives 

7 1  = l + &  

7 2  = 1 - &  

p 1  = 3 + &  

p 2  = 3 - 4 5  

Taking the limit as k t 00 gives the steady-state value of P i :  

(5.56) 

- 1+G - -  
2 

M 1.62 (5.57) 
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1.4 

1.2 

1 -  

0.8 

Now we can use Equation (5.19) to find the steady-state value of Kk: 

Kk = pLHr(HkPLHr + &)-' 
- pi- - 

P; + 1 

~ 

- 

- 

x 0.62 (5.58) 

Figure 5.6 shows the a priori estimation covariance and the Kalman gain as 
a function of time, and illustrates their convergence to steady-state values. 
From the equation for the a posteriori estimation covariance, we know that 
P$ = (I- KkHk)Pi. For this example we therefore see that the steady-state 
value of ~ k +  is given as 

1 + &  

3 + 6  
- -  - (5.59) 

0 2 4 6 8 10 
time 

Figure 5.6 
The covariance and gain converge to steady-state values. 

Estimation covariance and Kalman gain as a function of time for Example 5.2. 

vvv 

5.5 DIVERGENCE ISSUES 

The theory presented in this chapter makes the Kalman filter an attractive choice 
for state estimation. But when a Kalman filter is implemented on a real system it 



140 THE DISCRETE-TIME KALMAN FILTER 

may not work, even though the theory is correct. Two of the primary causes for the 
failure of Kalman filtering are finite precision arithmetic and modeling errors [Fit7l]. 

The theory presented in this chapter assumes that the Kalman filter arithmetic 
is infinite precision. In digital microprocessors the arithmetic is finite precision - 
only a certain number of bits are used to represent the numbers in the Kalman filter 
equations. This may cause divergence or even instability in the implementation of 
the Kalman filter. 

The theory presented also assumes that the system model is precisely known. It 
is assumed that the F ,  Q, H, and R matrices are exactly known, and it is assumed 
that the noise sequences {wlc} and {Q} are pure white, zero-mean, and completely 
uncorrelated. If any of these assumptions are violated, as they always are in real 
implementations, then the Kalman filter assumptions are violated and the theory 
may not work. 

In order to improve filter performance in the face of these realities, the designer 
can use several strategies: 

1. Increase arithmetic precision 

2. Use some form of square root filtering 

3. Symmetrize P at each time step: P = ( P  + P T ) / 2  

4. Initialize P appropriately to avoid large changes in P 

5.  Use a fading-memory filter 

6. Use fictitious process noise (especially for estimating “constants”) 

These strategies are often problem dependent and need to be explored via simula- 
tion or experimentation in order to obtain good results. Some of these strategies 
may be more attractive than others, depending on the specific problem. 

Item 1 above, increasing arithmetic precision, simply forces the digital imple- 
mentation of the filter to more closely match the analog theory. In a PC-based 
implementation, it may require only a trivial effort to increase the arithmetic pre- 
cision - change all the variables to double precision. This trivial change may make 
the difference between divergence and convergence. However, in a microcontroller 
implementation it may not be feasible to increase the arithmetic precision. 

Item 2 above, square root filtering, is a way of reformulating the filter equations. 
Even though the physical precision of the implementation does not change, square 
root filtering effectively increases arithmetic precision. This will be discussed further 
in Sections 6.3, 6.4, and 8.3. But square root filtering requires more computational 
effort, which may or may not be a major consideration for a given application. 
Square root filtering also adds a lot of complication to the filter equations, which 
invites software bugs. 

Items 3 and 4 above involve forcing P to be symmetric and initializing P ap- 
propriately. These are easy solutions, but they usually do not result in major im- 
provements to the convergence properties of the filter. However, these steps should 
always be implemented since they are straightforward and easy, and since they may 
prevent numerical problems. Note from Equation (5.19) that the Pr  expression is 
already symmetric, and so there is no point to forcing symmetry for Pr .  However, 
depending on which equation is used, P z  may or may not be symmetric. The 
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expressions for Pk+ in Equation (5.19) are mathematically equivalent, but they are 
not numerically equivalent. One of them has a built-in symmetry, but the others 
do not. If an equation for P c  is used that does not have a built-in symmetry, then 
it is very easy and may pay large dividends to force symmetry. This has been done 
several different ways in the literature. One way is as described in Item 3 above; 
that is, after P is calculated, set P = ( P  + PT)/2.  Other ways involve forcing the 
terms below the diagonal to be equal to the terms above the diagonal, or forcing 
the eigenvalues of P to be positive. 

Item 5 above is a simple way of forcing the filter to “forget” measurements in 
the distant past and place more emphasis on recent measurements. This causes the 
filter to be more responsive to measurements. It theoretically results in the loss of 
optimality of the Kalman filter, but it may restore convergence and stability. It is 
better to have a theoretically suboptimal filter that works rather than a theoretically 
optimal filter that does not work due to modeling errors. The greater responsiveness 
of the fading-memory filter to recent measurements makes the filter less sensitive 
to modeling errors, and hence more robust. This approach will be discussed further 
in Section 7.4. 

Item 6 above, the use of fictitious process noise, is also easy to implement. In 
fact, it can be implemented in a way that is mathematically equivalent to the 
fading-memory filter of Item 5. Adding fictitious process noise is a way of telling 
the filter that you have less confidence in your system model. This causes the filter 
to place more emphasis on the measurements, and less emphasis on the process 
model (which may be incorrect) [Jaz69]. 

EXAMPLE5.3 

Let us illustrate the use of fictitious process noise with an example. Suppose 
we are trying to estimate a state that we think is a constant, but in reality is a 
ramp. In other words, we have a modeling error. Our assumed (but incorrect) 
model, upon which we base the Kalman filter, is given as follows: 

(5.60) 

The assumed process noise is zero, which means that we are modeling X k  as 
a constant. From Equation (5.19) we derive the Kalman filter equations for 
this system as 

pr = Fk-ipt-lFr-l + Q k - i  

= p;-1 

pi- 
P; + 1 

Kk = PFHF(HkPrHF + &.)-I 

= -  

ki = Fk-lXk-1 -+ 
- - 5;-1 
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2; = 2, f Kk(yk - Hk2;) 
= 2 ,  + Kk(yk - 2 i )  

Pkf = (1 - KkHk)Pi(I - KkHk)* + KkRkKz 

= (1 - K k ) 2 p i  + K i  (5.61) 

Suppose that the true system, although unknown to the Kalman filter de- 
signer, is given as the following two-state model: 

(5 .62)  

The first state is a ramp, which we assumed incorrectly in our system model 
to be a constant. Figure 5.7 shows the true state x 1 , k  and the estimated state 
& , k ,  It can be seen that the estimate is diverging from the true state, and 
the estimation error is'growing without bound. 

Figure 5.7 Kalman filter divergence due to mismodeling. 

However, if we add fictitious process noise to  the Kalman filter, then the 
filter will place more emphasis on the measurements, which will improve the 
filter performance. Figure 5.8 shows the true state and the estimated state 
when various values of Q are used in the Kalman filter. As the fictitious 
process noise gets larger, the estimation error becomes smaller. Of course, 
this is at the price of poorer performance in case the assumed system model 
is actually correct. The designer needs to  add an appropriate amount of 
fictitious process noise to balance performance under nominal conditions with 
performance under mismodel conditions. 

Figure 5.9 shows the time history of the Kalman gain Kk for this example 
for various values of Q. As expected, the gain Kk converges to  a larger 
steady-state value when Q is larger, making the filter more responsive to  
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Figure 5.8 Kalman filter improvement due to fictitious process noise. 

measurements [see the 2: expression in Equation (5.61)]. This compensates 
for modeling errors. As shown later in Section 7.4, the fading-memory filter 
accomplishes the same thing in a different way. Also note from Figure 5.9 
that the steady-state Kalman gain is approximately 0.62 when Q = 1. This 
matches the results of Example 5.2. 

Figure 5.9 Kalman gain for various values of process noise. 

This example illustrates the general principle that model noise is good, but 
only to a certain extent. If a system model has too much noise then it is 
difficult to estimate its state. But if a system model has too little noise then 
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our state estimator might be overly susceptible to modeling  error^.^ When 
designing a model for a Kalman filter, we need to balance our confidence in 
our model (low noise resulting in close model tracking; i.e., low bandwidth) 
with a healthy self-doubt (high noise resulting in filter responsiveness; i.e., 
high bandwidth). 

vvv 
Examination of the filter equations shows why adding fictitious process noise 

compensates for modeling errors. Recall the Kalman filter equations from Equa- 
tion (5.19), some of which we repeat here: 

p i  = Fk-ip$-lFkT_1 + Q k - i  

Kk = PiHT(HkPFHT + Rk)-' 
?+ k = ?i + Kk(yk - H k f i )  (5.63) 

If Qk is small then the covariance may not increase very much between time samples. 
In Example 5.3 we had Fk = 1, so PF = Pz-l when Qk = 0. But the covariance 
will decrease from PF down to Pk+ every time a measurement is obtained due to 
the measurement-update equation for the covariance. Eventually PF will converge 
to zero. This can be seen by looking at Equation (5.26), which shows the one-step 
equation for PF : 

Pi+1 = FkPFFr - FkKkHkPFFr 4- Qk (5.64) 

If Qk = 0 then this equation has a steady solution of zero. A zero value for Pi 
will result in Kk = 0, as seen from Equation (5.63). A zero value for Kk means 
that the measurement-update equation (5.63) for 5 will not take any account of 
the measurement - that is, the measurement y k  will be completely ignored in the 
computation of ?+. This is because the measurement noise covariance Rk (assuming 
it is greater than zero) will be infinitely times larger than the process noise Qk = 0. 
The filter will become sluggish in the sense that it will not respond to measurements. 

On the other hand, if Qk is larger, then the covariance will always increase 
between time samples - that is, P i  will always be larger than P:--. When P; 
converges, it will converge to a larger value. This will make Kk converge to a larger 
value. A larger Kk means that the measurement update for 32. in Equation (5.63) 
will include a larger emphasis on the measurement - that is, the filter will pay more 
attention to the measurements. 

5.6 SUMMARY 

In this chapter, we have presented the essence of the discrete-time Kalman filter. 
Over the past few decades, this estimation algorithm has found applications in 
virtually every area of engineering. We have seen that the Kalman filter equations 
can be written in several different ways, each of which may appear quite different 
than the others, although they are all mathematically equivalent. We have seen that 

4Noise, like most things in life, is beneficial in moderate amounts. We also see this in human 
psychological responses to noise. Too much noise will drive humans insane, but too little noise 
might also result in a loss of sanity. Noise is especially beneficial for controls engineers, who would 
not only lose their sanity but would also lose their research funding if not for noise [BarOl, p. 1791. 
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the Kalman filter is optimal even when the noise is not Gaussian. The Kalman filter 
is the optimal estimator when the noise is Gaussian, and it is the optimal linear 
estimator when the noise is not Gaussian. We have seen that the Kalman filter 
may not perform well if the underlying assumptions do not hold, and we briefly 
mentioned some ways to compensate for violated assumptions. The later chapters 
of this book will expand and generalize the results presented in this chapter. 

PROBLEMS 

Written exercises 

5.1 A radioactive mass has a half-life of 7 seconds. At each time step the num- 
ber of emitted particles x is half of what it was one time step ago, but there is 
some error wk (zero-mean with variance Q) in the number of emitted particles due 
to background radiation. At each time step, the number of emitted particles is 
counted. The instrument used to count the number of emitted particles has a ran- 
dom error at time k of vk, which is zero-mean with a variance of R. Assume that 
W k  and V k  are uncorrelated. 

a) Write the linear system equations for this system. 
b) Suppose we want to use a Kalman filter to find the optimal estimate of 

the number of emitted particles at each time step. Write the one-step a 
posteriori Kalman filter equations for this system. 

c )  -Find the steady-state a posteriori estimation-error variance for the Kalman 
filter. 

d) What is the steady-state Kalman gain when Q = R? What is the steady- 
state Kalman gain when Q = 2R? Give an intuitive explanation for why 
the steady-state gain changes the way it does when the ratio of Q to R 
changes. 

5.2 This problem illustrates the robustness that is achieved by the use of the 
Joseph form of the covariance measurement update equation. Suppose you have a 
discretetime Kalman filter for a scalar system. 

a) Find aP,+/aKk for the third form of the covariance measurement update 
in Equation (5.19). 

b) Find aP,+/aKk for the Joseph form (the first form) of the covariance mea- 
surement update in Equation (5.19). After you get your answer, substitute 
for Kk from the Kalman gain expression. 

c) Use the above results to explain why the Joseph form of the covariance 
measurement-update equation is stable and robust. 

5.3 Prove that E[21(5t )T]  = 0. Hint: Since 2' = E[zo] is a constant and 

prove that E[2f(2f)T] = 0. From this point, use induction to complete the proof. 

5.4 Suppose that you have a fish tank with xp piranhas and xg guppies [Bay99]. 
Once per week, you put guppy food into the tank (which the piranhas do not eat). 
Each week the piranhas eat some of the guppies. The birth rate of the piranhas 
is proportional to the guppy population, and the death rate of the piranhas is 

2+ - - 20 -2;  is zero-mean, we know that E[2;(5$)8] = 0. Given this information, 
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proportional to their own population (due to overcrowding). Therefore xp(k + 1) = 
xp(k) + k l z g ( k )  - k2zp(k) + wp(k), where kl and k2 are proportionality constants 
and wp(k) is white noise with a variance of one that accounts for mismodeling. The 
birth rate of the guppies is proportional to the food supply u, and the death rate 
of the guppies is proportional to the piranha population. Therefore, xg(k + 1 )  = 
zg ( k )  + u( k) - k3zp  (k) + wg (k) , where ks is a proportionality constant and wg (k) is 
white noise with a variance of one that accounts for mismodeling. The step size for 
this model is one week. Every week, you count the piranhas and guppies. You can 
count the piranhas accurately because they are so large, but your guppy count has 
zero-mean noise with a variance of one. Assume that k l  = 1 and k2 = kg = 1 / 2 .  

a) Generate a linear state-space model for this system. 
b) Suppose that at the initial time you have a perfect count for x p  and xg. Us- 

ing a Kalman filter to estimate the guppy population, what is the variance 
of your guppy population estimate after one week? What is the variance 
after two weeks? 

c) What is the ratio of the piranha population to the guppy population when 
they reach steady state? Assume that the process noise is zero for this 
part of the problem. 

The measured output of a simple moving average process is gk  = z k  + z k - 1 ,  

a) Generate a state-space description for this system with the first element 
of X k  equal to Z k - 1  and second element equal to Z k .  

b) Suppose that the initial estimation-error covariance is equal to the identity 
matrix. Show that the a posteriori estimation-error covariance is given by 

5.5 
where {zJ} is zero-mean white noise with a variance of one. 

1 1 -1  
p:'& 1 1  

c )  Find E [ IIXk - In] as a function of k. 

5.6 In this problem, we use the auxiliary variable Sk = HkPrHT + Rk. Note 

Use the product rule for determinants to show that 

5.7 In Section 4.1, we saw that &, the covariance of the state of a discrete- 
time system, is given as Ck+l = Fk&FT + Qk. use this along with the one-step 
expression for the a priori estimation-error covariance of the Kalman filter to show 
that &-PF 2 0 for all k. Give an intuitive explanation for this expression [And79]. 

5.8 
a) Use the method of Section 5.4 to find a closed-form solution for Pi-, as 

suming that Q = 1, R = 5 ,  and Po = 0. 
b) Use your result from above to find the steady-state value of P;. 

Consider the system of Problem 5.1. 



PROBLEMS 147 

5.9 Suppose that a Kalman filter is designed for the system 

x k + l  = x k  

Yk  = x k  f v k  

v k  (O,R) 

a) Suppose that E(xg)  = 1. Design a Kalman filter for the system and find 
a closed-form expression for P i .  What is the limit of P i  as k -+ oo? 

b) Now suppose that the true process equation is actually x k + 1  = x k  + W k ,  
where W k  N (0, Q ) .  Find a difference equation for the variance of the a 
pr ior i  estimation error if the Kalman filter that you designed in part (a) 
is used to estimate the state. What is the limit of the estimation-error 
variance as k t oa? 

5.10 Suppose that a Kalman filter is designed for a discrete LTI system with 
an assumed measurement noise covariance of R, but the actual measurement noise 
covariance is ( R  + AR).  The output of the Kalman filter will indicate that the a 
priori  estimation-error covariance is P;, but the actual a priori estimation-error 
covariance will be EL. Find a difference equation for Ak = (C, - P;). Will A,  
always be positive definite? 

Computer exercises 

5.11 Let p k  denote the wombat population at time k ,  and f k  denote the size of 
the wombat's food supply at time k. From one time step to the next, half of the 
existing wombat population dies, but the number of new wombats is added to the 
population is equal to twice the food supply. The food supply is constant except 
for zero-mean random fluctuations with a variance of 10. At each time step the 
wombat population is counted with an error that has zero mean and a variance of 
10. The initial state is 

PO = 650 

fo = 250 

The initial state estimate and uncertainty is 

$0 = 600 

E[($o - P o ) 2 ]  = 500 

jcJ = 200 

q . f o  - fo>21 = 200 

Design a Kalman filter to estimate the population and food supply. 
a) Simulate the system and the Kalman filter for 10 time steps. Hand in the 

following. 

0 Source code listing. 

0 A plot showing the true population and the estimated population as a function 
of time. 
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0 A plot showing the true food supply and the estimated food supply as a 
function of time. 

0 A plot showing the standard deviation of the population and food supply 
estimation error as a function of time. 

0 A plot showing the elements of the Kalman gain matrix as a function of time. 

b) Compare the standard deviation of the estimation error of your simulation 
with the steady-state theoretical standard deviation based on Pk+. Why 
is there such a discrepancy? 

c) Run the simulation again for 1000 time steps and compare the experi- 
mental estimation error standard deviation with the theoretical standard 
deviation. 

5.12 Consider the RLC circuit described in Problem 1.18 with R = 3, L = 1, and 
C = 0.5. The input voltage is zero-mean, unity variance white noise. Suppose that 
the capacitor voltage is measured at 10 Hz with zero-mean, unity variance white 
noise. Design a Kalman filter to estimate the inductor current, with an initial 
covariance P$ = 0. Generate a plot showing the a priori and a posteriori variances 
of the inductor current estimate for 20 time steps. Based on the plot, what is the 
steady-state value of P;? Use the development of Section 5.4.1 to approximate the 
steady-state value of P; using 1, 2, 3, and 4 successive squares of the Q matrix. 



CHAPTER 6 

Alternate Kalman filter formulations 

Our experiences with estimation and control applications engineers, however, indicates 
that they generally prefer the seemingly simpler Kalman filter algorithms for computer 
implementation and they dismiss reported instances of numerical failure. 

-Gerald Bierman and Catherine Thornton [Bie77a] 

In this chapter, we will look at some alternate ways of writing the Kalman filter 
equations. There are a number of mathematically equivalent ways of writing the 
Kalman filter equations. This can be confusing. You might read two different papers 
or books that present the Kalman filter equations, and the equations might look 
completely different. You may not know if one of the equations has a typographical 
error, or if they are mathematically equivalent. So you try to prove the equivalence 
of the two sets of equations only to arrive at a mathematical dead end, because it 
is not always easy to prove the equivalence of two sets of equations. This chapter 
derives some Kalman filter formulations that are different than (but mathematically 
equivalent to) the equations we derived in Chapter 5 .  This chapter also illustrates 
their advantages and disadvantages. 

The first alternate formulation that we discuss is called the sequential Kalman 
filter, derived in Section 6.1. Sequential Kalman filtering allows for the implemen- 
tation of the Kalman filter without matrix inversion. This can be a great benefit, 
especially in an embedded system that does not have matrix libraries, but it only 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 
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makes sense if certain conditions are satisfied. The second formulation that we 
discuss is called information filtering, derived in Section 6.2 .  Information filter- 
ing propagates the inverse of the covariance matrix (i.e., P - l )  instead of P ,  and is 
computationally cheaper than Kalman filtering under certain conditions. The third 
formulation that we discuss is called square root filtering, derived in Section 6.3.  
Square root filtering effectively increases the precision of the Kalman filter, which 
can help prevent divergence and instability. However, this is at the cost of increased 
computational effort. The final formulation that we discuss is called U-D filtering, 
derived in Section 6.4 .  This is another way to implement square root filtering, 
which helps to prevent numerical difficulties in the implementation of the Kalman 
filter. 

6.1 SEQUENTIAL KALMAN FILTERING 

In this section, we derive the sequential Kalman filter. This is a way of implement- 
ing the Kalman filter without matrix inversion. This can be a great advantage, 
especially in an embedded system that may not have matrix routines. However, 
the use of sequential Kalman filtering only makes sense if certain conditions are 
satisfied, which we will discuss in this section. 

Recall the Kalman filter measurement update formulas from Equation ( 5 . 1 6 ) :  

The computation of Kk requires the inversion of an T x T matrix, where T is the 
number of measurements. This is depicted in Figure 6 . 1 .  

I 

j r measurements 
i r r x r matrix inversion 
! 

k - 1  k time 

Figure 6.1 
T x T matrix inversion, where T is the number of measurements. 

The measurement-update equation of the standard Kalman filter requires an 

Suppose that instead of measuring Y k  at time k ,  we obtain T separate measure- 
ments at time k. That is, we first measure Y k ( l ) ,  then Y k ( 2 ) ,  . . ., and finally Y k  (.). 
We will use the shorthand notation Yik  for the ith element of the measurement 
vector yk.  Assume for now that RI, (the covariance of measurement Y k )  is diagonal; 
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that is, R k  is given as 
R l k  ' * *  0 

R k =  [ 0 * . .  ] (6.2) 
* * *  R , k  

We will also use the notation that H i k  is the ith row of H k ,  and v i k  is the i th  
element of V k .  Then we obtain 

So instead of processing the measurements at time k as a vector, we will imple- 
ment the Kalman filter measurement-update equation one measurement at a time. 
We use the notation that K i k  is the Kalman gain that is used to  process the i th  
measurement at time k, i& is the optimal estimate after the ith measurement has 
been processed at time k ,  and P$ is the estimation-error covariance after the i th  
measurement at time k has been processed. We can see from these definitions that 

That is, 3$k is the estimate after zero measurements have been processed, so it is 
equal to the a priori estimate. Similarly, P& is the estimation-error covariance after 
zero measurements have been processed, so it is equal to  the a priori estimation- 
error covariance. The gain K i k  and covariance PA are obtained from the normal 
Kalman filter measurement-update equations, with the understanding that they 
apply to the scalar measurement y i k .  For i = 1,. - . , r we have 

After all r measurements are processed, we set 2; = i?&, and P z  = PA, and 
we have our a posteriori estimate and error covariance at  time k. The sequential 
Kalman filter does not require any matrix inversions because all of the expressions 
in Equation (6.5) are scalar operations. This process is depicted in Figure 6.2. The 
sequential Kalman filter can be summarized as follows. 

The sequential Kalman filter 

1. The system and measurement equations are given as 

x k  = F k - i X k - i +  G k - i U k - i f  W k - 1  

Y k  = H k X k + V k  

w k  ( O , Q k )  

v k  ( 0 , R k )  (6.6) 

where W k  and V k  are uncorrelated white noise sequences. The measurement 
covariance R k  is a diagonal matrix given as 

R k  = diag(Rlk, * * * , R r k )  (6.7) 
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1 measurement 
1 x 1 matrix inversion 

k-1 
- 
k time 

Figure 6.2 The measurement update equation of the sequential Kalman filter requires 
P scalar divisions (where T is the number of measurements) because the measurements at 
each time step are processed sequentially. This is in contrast to the standard Kalman filter 
processing that is depicted in Figure 6.1. 

2. The filter is initialized as 

3. At each time step k, the time-update equations are given as 

This is the same as the standard Kalman filter. 

4. At each time step k, the measurement-update equations are given as follows. 

(a) Initialize the a posteriori estimate and covariance as 

(6.~10) 

These are the a posteriori estimate and covariance at time k after zero 
measurements have been processed; that is, they are equal to the a priori 
estimate and covariance. 

, T (where T is the number of measurements), perform the 
following: 

(b) For i = 1,. 
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(c) Assign the a posteriori estimate and covariance as 

'+ k = ':k 

P; = P+ r k  (6.12) 

The development above assumes that the measurement-noise covariance Rk is 
diagonal. What if Rk is not diagonal? Suppose that Rk = R is not diagonal, but 
it is a constant matrix. We perform a Jordan form decomposition of R by finding 
a matrix S such that 

R = SRS-l (6.13) 

R is a diagonal matrix containing the eigenvalues of R, and S is an orthogonal 
matrix (i.e., S-l = p) containing the eigenvectors of R. This decomposition 
is always possible if R is symmetric positive definite, as discussed in most linear 
systems books [Bay99, Che99, KaiOO]. Now define a new measurement fik as 

(6.14) 

where f i k  and 'uk are defined by the above equation. The covariance of '6k can be 
obtained as 

So we have introduced a normalized measurement f ik  that has a diagonal noise 
covariance. Now we can implement the sequential Kalman filter equations, except 
that we use the measurement fik instead of Y k ,  the measurement matrix f i k  instead 
of Hk, and the measurement noise covariance R. 

Note that this procedure would not make sense if R were timevarying, because in 
that case we would have to perform a Jordan form decomposition at each step of the 
Kalman filter. That would be a lot of computational effort in order to avoid a matrix 
inversion. However, if R is constant and it is known before the implementation of 
the Kalman filter, then we can perform the Jordan form decomposition offline and 
use the sequential Kalman filter to our advantage. 

In summary, it only makes sense to use the sequential Kalman filter if one of the 
following two conditions holds: 

1. The measurement noise covariance Rk is diagonal 

2. The measurement noise covariance R is a constant. 
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Finally, note that the term sequential filtering is sometimes used synonymously 
with the Kalman filter. That is, sequential is often used as a synonym for recur- 
sive [Buc68, Chapter 131, [Bro96]. This can cause some confusion in terminology. 
However, sequential filtering is usually used in the literature as we use it in this sec- 
tion; that is, sequential filtering is a filtering method that processes measurements 
one at a time (rather than processing the measurements as a whole vector). Some 
times, the standard Kalman filter is called the batch Kalman filter to distinguish 
it from the sequential Kalman filter. 

EXAMPLE6.1 

The change X k  from one week to the next of an American football team’s 
ranking is related to the team’s performance against that week’s opponent. 
The expected relationships between various normalized game measures y& 
and the team’s ranking change at the kth week are given as 

Y l k  = X k  + V l k  = point differential 

y z k  = -xk + w2k = turnover differential 

Y3k = - X k  + V 3 k  = yardage differential 

where W l k  N (0,2), W2k N (0, l), and V 3 k  N (0 ,50 ) .  Before the first game of the 
season is played, it is expected that the team ranking will increase by one due 
to certain players having returned from injuries. The variance of this a priori 
estimate is 4. Uncertainty in ownership conditions is expected to decrease 
the team’s ranking by 5% each week, with a variance of 2 .  The system can 
therefore be modeled as 

1 
5 
1 

50 
(6.16) 

xk+l = 0 . 9 5 ~ k + w k  

yk = [ 1 1/5 1/50 ] T X k + W k  

wk ( O , Q )  Q = 2  
Wk N (0, R) R = diag(2,1,50) 
2; = 1 

Po+ = 4 (6.17) 

Suppose that the team plays its first game and wins by six points, gains 
three more turnovers than its opponent, and is outgained by 100 yards. That 
is, y1 = [ 6 3 -100 3’. 
ranking as follows: 

The standard Kalman filter adjusts the team’s 

FP$FT + Q 

5.61 

0.952; 

0.95 

[ 0.6961 0.2785 0.0006 ] 
P p P ( H P T H T  + R)-1 

2T + Kl(y1-  H?i.,) 
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= 5.1922 

P.f = (I-K1H)P,- 

= 1.3923 (6.18) 

The K1 calculation requires the inversion of a 3 x 3 matrix. On the other 
hand, the sequential Kalman filter could be used to  update the estimated 
team ranking as follows: 

Pc = FP2FT+Q 

2; = 0.952: 

= 5.61 

= 0.95 

2i'ofi = 2;  
Pofi = P- 1 

The first measurement is processed as follows: 

Kii = P&HT(HiP&HT + Rii)-l 
= 0.7372 

$1 = + Kll(Y11 - Hl2i'o+l) 

p;: = (I-K11HdP& 

= 4.6728 

= 1.4744 

The second measurement is processed as follows: 

(6.19) 

(6.20) 

(6.21) 

The third measurement is processed as follows: 

K31 = P,',H,T(H3PZ+lHT + R33)-' 
= 0.0006 

2& zz 2$l f K31(Y33 - H32i1) 
= 5.1922 

PA = ( I  - K31H3)PL 
= 1.3923 (6.22) 

The sequential Kalman filter requires three loops through the measurement 
update equations, but no matrix inversions are required. 

vvv 
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6.2 I N FO R MAT I 0 N F I LT E R I N G 

In this section, we discuss information filtering. This is an implementation of the 
Kalman filter that propagates the inverse of P rather than propagating P ;  that is, 
information filtering propagates the information matrix of the system. Recall that 

P = E [ ( z  - ?)(z -?)TI (6.23) 

That is, P represents the uncertainty in the state estimate. If P is “large” then 
we have a lot of uncertainty in our state estimate. In the limit as P t 0 we 
have perfect knowledge of x ,  and as P t 00 we have zero knowledge of x. The 
information matrix is defined as 

Z = p-1 (6.24) 

That is, Z represents the certainty in the state estimate. If Z is “large” then we 
have a lot of confidence in our state estimate. In the limit as Z + 0 we have zero 
knowledge of x ,  and as Z t 00 we have perfect knowledge of x .  

Recall from Equation (5.19) that the measurement update equation for P can 
be written as 

(6.25) (P;)-1 = (P;)-’ + HrRk’Hk 

Substituting the definition of Z into this equation gives 

1: = + HrRk’Hk (6.26) 

This gives the measurement-update equation for the information matrix. Recall 
from Equation (5.19) the time-update equation for P :  

p; = Fk-iPk+lFF-1+ Q k - i  (6.27) 

This implies that 
1; = [Fk-i(ZL-l)-lFr-l + Q k - 1 1 - l  (6.28) 

Now we can use the matrix inversion lemma from Section 1.1.2, which we restate 
here: 

( A  + B D - l C ) - l =  A-’ - A - l B ( D  + CA- lB) - lCA- l  (6.29) 

If we make the identifications A = Qk-1, B = 9 - 1 ,  C = FkT_l, and D = Zk+-l, 
then we can apply the matrix inversion lemma to Equation (6.28) to  obtain 

1; = Q L 2 1 -  Qi?iFk-l(Zk-i + + Fk-1Qk21Fk-l)-1Fr-iQ~~l T (6.30) 

This gives the timeupdate equation for the information matrix. The information 
filter can be summarized as follows. 

The information filter 

1. The dynamic system is given by the following equations: 

x k  = Fk-126-1 + Gk-1Uk-l f W k - ]  

Y k  = HkXk+vk 
wk (0 ,Qk)  
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(6.31) 

2. The Kalman filter is initialized as follows: 

3. The information filter is given by the following equations, which are computed 
for each time step k = 1,2,  a:  

The standard Kalman filter equations require the inversion of an T x T matrix, where 
r is the number of measurements. The information filter equations require a t  least 
a couple of n x n matrix inversions, where n is the number of states. Therefore, 
if T >> n (i.e., we have significantly more measurements than states) it may be 
computationally more efficient to use the information filter. It could be argued 
that since the Kalman gain is given as 

(6.34) 

we have to perform and T x T matrix inversion on Rk anyway, whether we use the 
standard Kalman filter or the information filter. But if Rk is constant, then we 
could invert it as part of the initialization process, so the Kalman gain equation 
may not require this T x T matrix inversion after all. The same thinking also applies 
to the inversion of Q k - 1 .  

If the initial uncertainty is infinite, we cannot numerically set Po+ = 00, but we 
can numerically set 1 ,  = 0. This makes the information filter more mathematically 
precise for the zero initial certainty case. However, if the initial uncertainty is zero 
(i.e., we have perfect knowledge of zo), we can numerically set P: = 0, but we 
cannot numerically set 1; = 00. This makes the standard Kalman filter more 
mathematically precise for the zero initial uncertainty case 

EXAMPLE6.2 

The information filter can be used to solve the American football team ranking 
problem of Example 6.1. The information filter equations are given as 

1,- = Q-1 - Q - ~ F ( z $  + F T Q - ~ F ) - ~ F T Q - ~  

= 0.1783 
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z,- + H ~ R - ~ H  
0.7183 

@ ) - I  HTR-1 

F2i.,f 

[ 0.6961 0.2785 0.0006 ] 

0.95 

2; + Kl(yl - H2;) 
5.1922 (6.35) 

The information filter requires the inversion of Q and R, but in many appli- 
cations these matrices are constant and can therefore be inverted offline. The 
only other matrix inversions are in the and Kk equations. These inversions 
are scalar in this example because there is only one state in this example. 

vvv 

6.3 SQUARE ROOT FILTERING 

The early days of Kalman filtering in the 1960s saw a lot of promise and successful 
applications in the aerospace industry and in NASA’s space program, but sometimes 
problems arose in implementation. Many of the problems that were encountered 
were due to numerical difficulties. The Riccati equation solution Pk should theoret- 
ically always be -a symmetric positive semidefinite matrix, but numerical problems 
in computer implementations sometimes led to Pk matrices that became indefinite 
or nonsymmetric. This was often because of the short word lengths in the com- 
puters of the 1960s [Sch81]. Numerical problems may arise in cases in which some 
elements of the state-vector 2 are estimated to much greater precision than other 
elements of 2. This could be because of discrepancies in the units of the state-vector 
elements. For example, one state might be in units of miles and can be estimated 
to within 0.01 miles, whereas a second state might be in units of cm/s and can be 
estimated to within 10 cm/s. The covariance for the first state would be on the 
order of whereas the covariance for the second state would be on the order 
of lo2. This led to a lot of research during the 1960s that was related to numerical 
implementations. 

Square root filtering is a way to mathematically increase the precision of the 
Kalman filter when hardware precision is not available. Perhaps the first square 
root algorithm was developed by James Potter for NASA’s Apollo space pro- 
gram [Bat64]. Although Potter’s algorithm was limited to zero process noise and 
scalar measurements, its success led to a lot of additional square root research 
in the following years. Potter’s algorithm was extended to handle process noise 
in [And68, Dye691, and was generalized in two different ways to handle vector mea- 
surements in [Be167, And681. Paul Kaminski gives a good review of square root 
filtering developments during the first decade of the Kalman filter [Kam7l]. 

Now that computers have become so much more capable, we do not have to worry 
about numerical problems as often. Nevertheless, numerical issues still arise in 
finite-word-length implementations of algorithms, especially in embedded systems. 
In this section, we will discuss the square root filter, which was developed in order to 
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effectively increase the numerical precision of the Kalman filter and hence mitigate 
numerical difficulties in implementations. However, this improved performance is 
at the cost of greater computational effort. First, we will review the concept of 
the condition number of a matrix, then we will derive the square root version of 
the time update equation, and finally we will derive the square root version of the 
measurement update equations. Section 8.3.3 contains a discussion of square root 
filtering for the continuous-time Kalman filter. 

6.3.1 Condition number 

Recall the definition of the singular values of a matrix. An n x n matrix P has n 
singular values o, given as 

02(P) = X(PTP) 
= X(PPT) (6.36) 

The matrix PTP is symmetric, and the eigenvalues of a symmetric matrix are 
always real and nonnegative, so the singular values of a matrix are always real 
and nonnegative. The matrix P is nonsingular (invertible) if and only if all of its 
singular values are positive. The condition number of a matrix is defined as 

omax ( P )  
omin (P) 

.(P) = 

(6.37) 

Note that some authors use alternate definitions for condition number; for example, 
some authors define the condition number of a matrix as the square of the above 
definiti0n.l As .(P) --t 00, the matrix P is said to be poorly conditioned or 
ill conditioned, and P approaches a singular matrix. In the implementation of 
a Kalman filter, the error covariance matrix P should always be positive definite 
because P = E [ ( z  - i)(z - We use the standard notation 

P>O (6.38) 

to indicate that P is positive definite. This is equivalent to saying that P is invert- 
ible, which is equivalent to saying that all of the eigenvalues of P are greater than 
zero. But suppose in our Kalman filter that some elements of z are estimated to 
much greater precision than other elements of z. For example, suppose that 

(6.39) 

This means that our estimate of XI has a standard deviation of lo3 and our estimate 
of x2 has a standard deviation of This could be due to drastically different 
units in z1 and z2, or it could be simply that z1 is much more observable that 
2 2 .  The singular values of a diagonal matrix are the magnitudes of the diagonal 
elements, which are lo6 and lo-'. In other words, 

.(P) = 10l2 (6.40) 

lIn MATLAB the COND function can be used to  find the condition number of a matrix. 
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This is a pretty large condition number, which means that the P matrix might 
look like a singular matrix to a digital computer. For example, if we have a fixed- 
point computer with 10 decimal digits of precision and the lo6 term is represented 
correctly in the computer, then the term will be represented as a zero in the 
computer. Mathematically, P is nonsingular, but computationally P is singular. 

The square root filter is based on the idea of finding an S matrix such that 
P = S p .  The S matrix is then called a square root of P. Note that the definition 
of the square root of P is not that P = 9, but that P = S p .  Also note that 
this definition of the matrix square root is not standard. Some books and papers 
defined the matrix square root as P = 9, others define it as P = P S ,  and others 
define it as P = SST. This latter definition is the one that we will use in this book. 
If P is symmetric positive definite then it always has a square root [Go189, MooOO]. 
The square root of a matrix may not be unique; that is, there may be more than 
one solution for S in the equation P = S p .  (This is analogous to the scalar square 
root, which is usually not unique. For example, the number 1 has two square roots; 
f l  and -1.) Also note that S p  will always be symmetric positive semidefinite no 
matter what the value of the S matrix. Whereas numerical difficulties might cause 
P to become nonsymmetric or indefinite in the Kalman filter equations, numerical 
difficulties can never cause S p  to become nonsymmetric or indefinite. 

Matrix square root algorithms were first given by the French military officer An- 
dre Cholesky (1875-1918) and the Polish astronomer Tadeusz Banachiewicz (1882- 
1954) [Fad59]. An interesting biography of Cholesky is given in the appendix 
of [Mai84]. 

The following algorithm computes an S matrix such that P = S p  for an n x n 
matrix P. 

The Cholesky Matrix Square Root Algorithm { 
For i = l , . - - , n  

For j = l , - . . , n  

Sji=O j < i  

sji = & (PJZ - cklt S j k s i k )  j i 

{ 

1 
} 

} 
This is called Cholesky factorization and results in a matrix S such that P = 

SST.  The matrix S is referred to as the Cholesky triangle because it is a lower 
triangular matrix. However, the algorithm only works if P is symmetric positive 
definite. If P is not symmetric positive definite, then it may or may not have a 
square root.2 

In the following example we illustrate the application of Cholesky factorization. 

2The MATLAB function CHOL outputs the transpose of the Cholesky triangle that is computed 
above. 
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1 EXAMPLE63 

This example is taken from [Kam71]. Suppose we have a P matrix given as 

The Cholesky factorization algorithm tells us that, for i = 1, 

Sll = 6 

S 2 l  = - ( P 2 l )  

= 1  
1 

s 1 1  

= 2  

= 3  

For i = 2, the algorithm tells us that 

I 1 

= 2  

s 1 2  = 0 

= -2 

For i = 3, the algorithm tells us that 

I 2 

s 3 3  = 11 P 3 3  - C S &  
j = 1  

(6.41) 

(6.42) 

(6.43) 

(6.44) 

So we obtain 

S = 2 2 Q  (6.45) [: :2 :I 
and it can be verified that P = S p .  

vvv 
After defining S as the square root of P in the Kalman filter, we will propagate S 

instead of P .  This requires more computational effort but it doubles the precision 



162 ALTERNATE KALMAN FILTER FORMULATIONS 

of the filter and helps prevent numerical problems. The singular values B of P are 
given as 

2 ( P )  = X(PTP) 
= X(SSTSST) (6.46) 

The singular values of S are given as 

2 ( S )  = X(SST) (6.47) 

Recall that for a general matrix A we have X(A2) = X2(A). Therefore, we see from 
the above equations that 

0 2 ( P )  = [B2(S)I2 

.(P) = 2 ( S )  (6.48) 

That is, the condition number of P is the square of the condition number of S. For 
example, consider the P matrix given earlier in this section: 

0 10-6 O l  
p = 1 Io6 

L 1 

.(P) = 10l2 

The square root of this matrix and its condition number are 

o 10-3 " 1  s = [ lo3 

.(S) = lo6 

(6.49) 

(6.50) 

The condition number of P is 10l2, but the condition number of the square root 
of P is only lo6. Square root filtering uses this idea to provide twice the precision 
of the standard Kalman filter. Instead of propagating P,  we propagate the square 
root of P. 

6.3.2 The square root timeupdate equation 

Suppose we have an n-state discrete LTI system given as 

x k  = Fk-lXk-l+ Gk-iUk-i+ W k - 1  

E(WkWT) = Q k  (6.51) 

The a priori error covariance matrix of the Kalman filter is P;, and its square root 
is S;. The a posteriori error covariance matrix is P z ,  and its square root is S;. 
Suppose that we can find an orthogonal 2n x 2n matrix T such that 

(6.52) 
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Since T is orthogonal we see that 

= [: ;] 
where TI and T2 are both n x n matrices. We see from the above that 

(6.53) 

(6.54) 

Now note that we can use Equation (6.52) to  write 

We can use this equation, along with Equation (6.54), to write 

If St-, is the square root of Pkfl, this implies that 

which is exactly the timeupdate equation for Pk that is required in the Kalman 
filter, as shown in Equation (5.19). So if we can find an orthogonal 2n x 2n matrix 
T such that 

(6.58) 

then the n x n matrix in the upper half of the matrix on the right side is equal 
to ( S i ) T .  This assumes that (Sz-l)T is available from a square root measure- 
ment update equation, which we will discuss in the following two subsections. The 
square root time update equation above is mathematically equivalent to the origi- 
nal Kalman filter time update equation for P,  but the update equation is used to 
update S instead of P. 

As we noted above, the square root of Pi is not unique, so different algorithms 
for solving Equation (6.58) will result in different T and (S;)T matrices. We can use 
various methods from numerical linear algebra to find the orthogonal 2n x 2n matrix 
T and the resulting square root matrix S i  (e.g., Householder, Gram-Schmidt, 
modified Gram-Schmidt, or Givens transformations) [Hor85, Gol89, Str90, MooOO]. 
A couple of these algorithms are discussed in Section 6.3.5. 
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EXAMPLE6.4 

Suppose that at time (k - 1) our Kalman filter has a system matrix, process 
noise covariance, and a posteriori estimation covariance square root equal to 

(6.59) 

It can be verified that the square root of Qk-l (so that Qk/_”1Qr!; = Qk- l )  
is given by 

Q:/_2, = [ ] (6.60) 

Equation (6.58) can be solved as 

As mentioned earlier, algorithms for performing this computation will be dis- 
cussed in Section 6.3.5. The upper-right square matrix on the right side of 
the above equation is equal to ( S i ) = ,  so this shows that the square root of 
the a priori estimation covariance at time k is given as 

(6.62) 

From this it can be inferred that the a priori  estimation covariance at time k 
is given as 

PL = S,-(S,-)T 

= [:,:I (6.63) 

Indeed, a straightforward implementation of the timeupdate equation for the 
estimation-error covariance gives 

= [:: :I (6.64) 

which confirms our square root results. However, the square root time update 
has essentially twice the precision of the standard time-update equation. 

vvv 
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6.3.3 

The square root measurement-update equation discussed here is based on James 
Potter's algorithm, which was developed for NASA's Apollo space program [Bat64, 
Kam7lI and modified by Angus Andrews to  handle vector measurements [And68]. 
Recall from Equation (5.19) that the measurement update equation for the estima- 
tion covariance is given as 

Pk+ = ( I  - KkHk)PF (6.65) 

We can process the measurements one at a time using the sequential Kalman filter 
of Section 6.1. That is, first we initialize Pofk = PL. Then, for i = l , . . . , ~  (where 
T is the number of measurements), we compute 

Potter's square root measurement-update equation 

p& = ( I  - KikHik)PLl,k (6.66) 

where Hik is the ith row of Hk and Rik is the variance of the ith measurement. 
(We are assuming here, as in Section 6.1, that Rk is diagonal.) suppose we have 
the square root of Pz+-l,k so that P:,,, = s:l,ks:;,k. Then Kik can be written 
a5 

(6.67) 

and P$ can be written as 

where $ and a are defined as 

(6.69) 

It can be shown (see Problem 6.9) that 

I - a$+T = ( I  - ay$$T)2 (6.70) 

where y is given as 
1 

(6.71) 

Either the plus or minus sign can be used in the computation of y. Comparing 
Equations (6.68) and (6.70) shows that 

s.ik + - - s+ i - l , k ( I  - ay$4T) (6.72) 

This results in a square root measurement-update algorithm that can be summa- 
rized as follows. 



166 ALTERNATE KALMAN FILTER FORMULATIONS 

Potter's square root measurement-update algorithm 

1. After the a priori covariance square root S i  and the a priori state estimate 
2 i  have been computed, initialize 

2& = 2; 
s:k = s i  (6.73) 

2. For i = 1, . . , r (where r is the number of measurements), perform the fol- 
lowing. 

Define H i k  as the ith row of H k ,  y i k  as the ith element of Y k ,  and R i k  

as the variance of the ith measurement (assuming that R k  is diagonal). 
Perform the following to  fmd the square root of the covariance after the 
ith measurement has been processed: 

4i = s,'-?;,kHz'k 

1 

@4i + R i k  
a, = 

1 

l k d a i  
Ti = 

s; = s+ i- 1,k (I - $i dT) 
Compute the Kalman gain for the ith measurement 

(6.74) 

as 

(6.75) 

Compute the state estimate update due to  the ith measurement as 

x i k  -+ - - x , - l , k  -+ + K i k ( Y i k  - H i k f : - l , k )  (6.76) 

3. Set the a posteriori covariance square root and the a posteriori state estimate 
as 

sk+ = s+ r k  

2; = ':k (6.77) 

Although square root filtering improves the numerical characteristics of the Kalman 
filter, it also increases computational requirements. Efforts to  make square root 
filtering more efficient are reported in [Car73, Tho77, Tap801. 

EXAMPLE6.5 

This example is based on [Kam71]. Suppose that we have an LTI system with 

pi- = [; ;] 
H = [ l  0 1  

= [: :] (6.78) 
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If we had an infiniteprecision computer, the exact Kalman gain and a poste- 
riori covariance at time k would be given by 

Kk = P p T ( H P p T  4- R)-l 

(6.79) 
L 

The a priori covariance and Kalman gain at the next time step (k + 1) would 
be given by 

Pr+l = FPk+FT+Q 

- - [ + I  (6.80) 

Now consider implementation in a finite precision digital computer. Suppose 
that the measurement covariance R << 1. The covariance R is such a tiny 
number that because of rounding in the computer, 1 + R = 1, but 1 + a> 1. 
The rounded values of the Kalman gain and. a posteriori covariance at  time k 
would be given by 

(6.81) 

Note that Pkf has become singular because of the numerical limitations of the 
computer. The rounded values of the a priori  covariance and Kalman gain at  
the next time step (k + 1) would be given by 

PF+l = F P I F T + Q  

= [;I (6.82) 

The numerical limitations of the computer have resulted in a zero Kalman 
gain, whereas the infiniteprecision Kalman gain as given in Equation (6.80) 
is about [ 1 /2  0 1'. 
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Now suppose we implement the measurement-update equation using Pot- 
ter’s algorithm. We start out with 

1 0  
S L = [ o  11  

(6.83) 

We only have to  iterate through Equation (6.74) one time since we only have 
one measurement. The rounded values of the parameters given in Equa- 
tion (6.74) are 

a =  

(SF)THT 

1 

dTd + R 
1 

l + R  
1 

1 

1 
1+m 

1 + d X  
s,- (1 - [+ ;] (6.84) 

Note that SzScT is nonsingular. The rounded values of the square root of 
the a priori covariance, the parameters of Equation (6.74), and the Kalman 
gain at the next time step (k + 1) would be given by 

%+l = 

d =  

a =  

L J 

1 

dTd + R 
1 + R + 2 &  

R2 + 2R i- 2 R a  

1 + 2 &  
2R + 2R@ 

as,, 14 
R +2fl [ 1+R;2Jfi ] 

2R(1 +a) [*I (6.85) 
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Note that the rounded Kalman gain is almost identical to the exact Kalman 
gain given by Equation (6.80). This shows the benefit that can be gained by 
using the square root filter. 

vvv 

6.3.4 Square root measurement update via triangularization 

The previous section derived a measurement update based on Potter's algorithm 
that could be performed on the square root of the Kalman filter estimation covari- 
ance. This section derives an alternative method for performing the measurement 
update. Suppose that we want to design a Kalman filter for a system with n states 
and r measurements. Suppose that we can find an orthogonal matrix (n+r) x (n+r) 
matrix rif such that 

S; and S,' are the square roots of the a priori and a posteriori covariances, and 
kk is defined as 

Kk = Kk(Rk + HkPFHT)T/2 (6.87) 

where Kk is the normal Kalman gain matrix. Note that Sk+ in Equation (6.86) is not 
known until after an orthogonal is found that forces the left side of Equation (6.86) 
into the specified form. That is, we need to find a 5? so that the upper-left r x r block 
of the left side of Equation (6.86) is equal to (Rk + HkPLH?)T/2, the upper-right 
r x n block is equal to k;, and the lower-left n x r block is equal to 0. After such 
a is found, whatever the lower right n x n block turns out to be is, by definition, 
equal to (S,')', which is the transpose of the square root of P z .  Now write the 
(n + r )  x (n + r )  matrix F as 

(6.88) 

where 5?11 is an r x r matrix, 5?12 is an r x n matrix, T 2 1  is an n x r matrix, and 
p22 is an n x n matrix. Since 5? is orthogonal we can write 

= [; ;] 
Now we expand Equation (6.86) as 

(6.89) 

(6.90) 
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We will equate the four matrix partitions of this equation to write four separate 
equalities. We will then take each equality and premultiply each side by its trans- 
pose to obtain four new equalities. The first two equalities obtained this way are 

(Rk + HkP;Hr)1/2(.  - = 

1/2pT p R T / ~  + iyks-  P T  p TI2 + 
R k  1 1  11 k k 12 l l R k  

R ~ / ~ F T F  T T T T  
11 12(si) Hk +Hksi5%F12(si)  Hk 

1'2pTp RT12 + R:/2?!?22(Si) T T  Hk + 
Hksip&p21RT/2 + H k s ~ p & ~ 2 2 ( s i )  T T  Hk 

= R k  21 21 k 

(6.91) 

Adding these two equations and using Equations (6.87) and (6.89) to simplify the 
result gives 

Rk 4- HkPFHr = Rk + H k s i  ( s i ) T H T  (6.92) 

This shows that the proposed measurement update of Equation (6.86) is consistent 
with S i  being the square root of P;. 

The second two equalities that can be written from Equation (6.90) are 

r?kl?r = siFg!f12(Si)T 

S,'(S,')' = S,-F&T22(Si)T (6.93) 

Adding these two equations and using Equation (6.89) to simplify the result gives 

S,'(s,')' f Kk(Rk + HkP;Hr)Kr = si(&)T (6.94) 

Substituting the standard Kalman gain equation Kk = P;HT(Rk + HkP;Hr)-l 
into this equation gives 

~k+(skf)~ + P;H,TK,T = 

s,'(s,')~ = P -  k - P - H ~ K ~  k k k  (6.95) 

Since the left side of the above equation is symmetric and the first term on the right 
side is symmetric, the last term on the right side must also be symmetric, which 
means that we can transpose it in the above equation to obtain 

S,'(s,')' = P i  - KkHkp; (6.96) 

The right side of this equation is the Kalman filter measurement-update equation 
for P ,  which means that the left side of the equation must be P z ,  which means that 
S,' must be the square root of Pz. So if we can find an orthogonal (n  + r )  x (n + r )  
matrix p such that 

then the lower-right n x n matrix on the left side of the equation is equal to the 
transpose of the square root of Pk+, and this equation is mathematically equiv- 
alent to the original Kalman filter measurement-update equation for Pk. This 
measurement-update method results in numerical precision that is effectively twice 
as much as the standard Kalman filter, which helps to avoid numerical problems. 
However, the computation o f?  adds a lot of computational effort to the Kalman 
filter. In addition, the form of the transformation given in Equation (6.97) makes 
it of questionable practicality (see Problem 6.10). 
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6.3.5 

Several numerical algorithms are available for performing the orthogonal transfor- 
mations that are required to solve for the T and S; matrices in Equation (6.58). 
Some algorithms that can be used are the Householder method, the Givens method, 
the Gram-Schmidt method, and the modified Gram-Schmidt method. In this 
section we will present (without derivation) the Householder algorithm and the 
modified Gram-Schmidt algorithm. Derivations and presentations of the other al- 
gorithms can be found in many texts on numerical linear algebra, such as [Hor85, 
Go189, MooOO]. A comparison of Gram-Schmidt, modified Gram-Schmidt, and 
Householder transformations can be found in [Jor68], where it is stated that the 
modified Gram-Schmidt procedure is best (from a numerical point of view), with 
the Householder method offering competitive performance. 

Algorithms for ort hogona I transformations 

6.3.5.1 The Householder algorithm The algorithm presented here was developed 
by Alston Householder [Hou64, Chapter 51, applied to  least squares estimation 
by Gene Golub [Go165], and summarized for Kalman filtering by Paul Kamin- 
ski [Kam7l]. 

1. Suppose that we have a 2n x n matrix A ( 1 ) ,  and we want to find an n x n 

(6.98) 

where T is an orthogonal 2n x 2n matrix, and 0 is the n x n matrix consisting 
of all zeros. Note that this problem statement is in the same form as Equa- 
tion (6.58). Also note that we do not necessarily need to  find T ;  our goal is 
to  find W .  

2. For k = 1, . . . , n perform the following: 

(a) Compute the scalar Uk as 

(6.99) 

where A!:) is the element in the ith row and kth column of A ( k ) .  The 
sgn(.) function is defined to be equal to $1 if its argument is greater 
than or equal to zero, and -1 if its argument is less than zero. 

(b) Compute the scalar ,& as 

(c) For i = 1, * ,2n perform the following: 

(6.100) 

(6.101) 
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This gives a 2n-element column vector ~ ( ~ 1 .  
(d) For i = 1, . , n perform the following: 

i < k  
y y  = 1 i = k  (6.102) 

{ O  &U(k)TAl(k) i > k 

where A(k)  is the ith column of A(k) .  This gives an n-element column 
vector &I. 

(e) Compute the 2n x n matrix as 

A(k+fl) = A(k) - u ( k ) y ( k ) T  (6.103) 

3. After the above steps have been executed, A("+1) has the form 

(6.104) 

where W is the n x n matrix that we are trying to solve for. Note that if 
b k  = 0 at any stage of the algorithm, that means A(1)  is rank deficient and 
the algorithm will fail. Also note that the above algorithm does not compute 
the T matrix. However, we can find the T matrix as 

6.3.5.2 The modified Gram-Schmidt algorithm The modified Gram-Schmidt al- 
gorithm for orthonormalization that is presented here is discussed in most linear 
systems books [Kai80, Bay99, Che991. It was first given in [Bjo67] and was sum- 
marized for Kalman filtering in [Kam7l]. 

Suppose that we have a 2n x n matrix A(1) ,  and we want to find an n x n 
matrix W such that 

TA(l )  = [ y ] (6.106) 

where T is an orthogonal 2n x 2n matrix, and 0 is the n x n matrix con- 
sisting of all zeros. Note that this problem statement is in the same form as 
Equation (6.58). 

For k = 1, a . a ,  n perform the following. 

(a) Compute the scalar b k  as 

where A!k) is the ith column of A(')). 
(b) Compute the kth row of W as 

(6.107) 

(6.108) 
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(c) Compute the kth row of T as 

(d) If (k < n), compute the last (n - k) columns of as 

(6.109) 

(6.110) 

Note that the first k columns of 
rithm. 

are not computed in this algo- 

As with the Householder algorithm, if Uk = 0 a t  any stage of the algorithm, that 
means A(1) is rank deficient and the algorithm fails. After this algorithm completes, 
we have the first n rows of T ,  and T is an n x 2 n  matrix. If we want to know the 
last n rows of T ,  we can compute them using a regular Gram-Schmidt algorithm 
as follows [Hor85, Go189, MooOO]. 

1. Fill out the T matrix that was begun above by appending a 2n  x 2n  identity 
matrix to  the bottom of it. This ensures that the rows of T span the entire 
2n-dimensional vector space: 

T =  [ TI (6.111) 

Note that this T is a 3n x 2n  matrix. 

2. Now we perform a standard Gram-Schmidt orthonormalization procedure on 
the last 2n rows of T (with respect to  the already obtained first n rows of T ) .  
For k = n + 1,. ., 3n, compute the kth row of T as 

k - 1  

2=1 

(6.112) 

If Tk is zero then that means that it is a linear combination of the previous 
rows of T .  In that case, the division in the above equation will be a divide 
by zero, so instead Tk should be discarded. This discard will actually occur 
exactly n times so that this procedure will compute n additional rows of T 
and we will end up with an orthogonal 2 n  x 2n  matrix T .  

The Gram-Schmidt algorithms are named after the Danish mathematician Jor- 
gen Gram (1850-1916) and the German mathematician Erhard Schmidt (1876- 
1959). Schmidt received his doctorate in 1905 under David Hilbert’s supervision, 
and in 1929 he was on the doctoral committee of Eberhard Hopf (see Section 3.4.4). 
However, the Gram-Schmidt algorithm was actually invented by Pierre Laplace 
(1749-1827). 
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6.4 U-D FILTERING 

U-D filtering was introduced in [Bie76, Bie77al as another way to  increase the 
numerical precision of the Kalman filter. It is sometimes considered as a type 
of square root filtering, and sometimes it is considered distinct from square root 
filtering (depending on the author). It increases the computational cost of the filter 
but not so severely as the square root filter of the previous section. 

The idea of U-D filtering is to factor the n x n matrix P as UDUT,  where U is 
an n x n upper triangular matrix with ones along the diagonal, and D is an n x n 
diagonal matrix. This can always be accomplished for a symmetric positive definite 
matrix P [Go189, Chapter 41, so it can always be implemented on a Kalman filter. 
A U-D factorization routine can be implemented without too much difficulty. For 
example, suppose that we want to compute the U-D factorization of a 3 x 3 matrix. 
We can then write 

P l l  P l 2  P13 1 u12  0 0 0  [ P12 P22 P 2 3 ]  = [ p : ]  [ d f  $2 [ ii i3 :] P13 P23 P33 

d22  + d 3 3 4 3  d33U23 (6.113) 1 =[ d33u13 d33U23 d33  

d l l  + d22'42 + d33uq3 d22u12 + d33U13u23 d33U13 

d22u12  + d33u13u23  

We need to solve for the u a j  and d i i  elements. We can begin at the lower-right 
element of the matrix equality to see that d33  = p 3 3 .  Next we can look at the other 
elements in the third column to see that 

u 1 3  = p 1 3 / d 3 3  

2123 = p 2 3 / d 3 3  

Now look at the (2,2) and (1,2) elements of the equality to  see that 

d22  = P22 - d 3 3 4 3  

u12  = (P12 - d 3 3 u 1 3 u 2 3 ) / d 2 2  

Finally look at the (1,l) element of the equality to see that 

(6.114) 

(6.115) 

d i i  = pi1 - d22& - d33& (6.11 6)  

This gives us the U-D factorization for a 3 x 3 symmetric matrix, and provides the 
outline for a general U-D factorization algorithm. 

6.4.1 

Recall from Equation (5.19) the measurement update equation for the covariance 
of the Kalman filter: 

P f  = P -  - P-H*(HP-HT + R ) - l H P -  (6.11 7) 

We have omitted the time subscripts for ease of notation. Now suppose that we 
process the measurements sequentially as discussed in Section 6.1. This gives the 
equation 

P, = Pa-1 - Pt -1H,T(HaPa-1H,T  + ~ a ) - ' ~ a & - l  (6.118) 

U-D filtering: The measurement-update equation 
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where H, is the ith row of H ,  R, is the ith diagonal entry of R, and Pz is the esti- 
mation covariance after i measurements have been processed. Now define the scalar 
ai z H,P,-lH? + R,. Suppose that P,-1 = U,-lDi- lUzl ,  and P, = U,DiU,'. 
With these factorizations we can write the measurement update of Equation (6.118) 
as 

1 

ffi 
U, Di U,' = U,- 1 Di- 1 U z  - - U,- 1 Dg- 1 U z  1 HT Hi U,- 1 Di- 1 U z  

1 1  
1 

= U,-l Di-1 - -(Di-lU~,H,T)(Di-1U2T_1HT uL1(6.119) 

The term in brackets in the above equation is symmetric positive definite so it has 
a U-D factorization that can be written as 

[ ffi 

(6.120) 1 1 - - -  
UDUT = Di-1- - (Di- 1 U,T_ H,T) (Di- 1 U,T_ H,T)T [ ffi 

Combining this with Equation (6.119) gives 

U,DiU,' = U , - l U D U T U . ,  

= (U,- 10)b (V,- 1 O)T (6.121) 

Note that U,-10 is upper triangular with diagonal elements equal to 1, and b is 
diagonal. Therefore the above equation means that U, = Ua- lu ,  and Di = D: 

u, = u,-J 
Di = D (6.122) 

This gives us a way of performing the measurement update of P in terms of its U-D 
factors. The algorithm can be summarized as follows. 

The U-D measurement update 

We start with the a priori estimation covariance P- at time k. Define Po = 
P- . 
For i = 1,. . e ,  T (where T is the number of measurements), perform the fol- 
lowing: 

(a) Define H,  as the ith row of H ,  R, as the ith diagonal entry of R, and 

(b) Perform a U-D factorization of Pi-1 to obtain U,-l and Di-1, and then 

(c) Find the U-D factorization of the matrix on the right side of Equa- 

(d) Compute U, and Di from Equation (6.122). 

= H,Pi-iH,T + R,. 

form the matrix on the right side of Equation (6.120). 

tion (6.120) and call the factors U and 0. 

The a posteriori estimation covariance is given as P+ = U,D,U,'. 

Since the U-D measurement-update equation relies on sequential filtering, the con- 
ditions discussed at the end of Section 6.1 apply to U-D filtering. That is, it proba- 
bly does not make sense to implement U-D filtering unless one of the following two 
conditions is true. 
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1. The measurement noise covariance Rk is diagonal 

2. The measurement noise covariance R is a constant. 

6.4.2 

Recall from Equation (5.19) the time-update equation for the covariance of the 
Kalman filter: 

P- = FP'F' + Q (6.123) 

We have omitted the time subscripts for ease of notation. If the Kalman filter is 
being used to estimate the state of an n-state system, then the P matrices will be 
n x n matrices. Suppose that P+ is factored as U+D+U+' (from the measurement 
update equation discussed previously). We need to find the U-D factors of P-  such 
that P-  = U-D-U-' = FP+FT + Q. Note that U-' in this notation is not the 
transpose of the inverse of U ;  it is rather the transpose of U - .  The time update of 
Equation (6.123) can be written as 

U-D filtering: The timeupdate equation 

P- = FP+F'+Q 

= WDW' (6.124) 

where W and D are defined by the above equation. Note that W is an n x 2n 
matrix, and fi is a 2n x 2n matrix. From the above equation we see that the U-D 
factors of P-  need to satisfy 

U-D-U-' = WDWT (6.125) 

The transpose of W can be written as 

w'=[ wy . * *  w , T ]  (6.126) 

That is, wi (a 2n-element row vector) is the ith row of W .  Now we find n vectors 
vi such that 

VkDVT = 0 k # j  (6.127) 

The vi vectors (2n-element row vectors) can be found with the following Gram- 
Schmidt orthogonalization procedure [Hor85, Go189, MooOO]: 

vn = W n  

If we define u(k, j )  as 

(6.129) 
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then from Equation (6.128) we see that Wk can be expressed as 

or equivalently 
n 

(6.130) 

(6.131) 
j = k + l  

These n equations can be written as 

w = u-v (6.132) 

The n x 2n matrix W ,  the n x n matrix U - ,  and the n x 2n matrix V are defined by 
the above equation. Note that U -  is a unit upper triangular matrix. The matrix 
product WDWT can then be written as 

WbWT = (u-v)Ij(u-v)T 
= u-(vIjvT)u-T 
= U-D-U-T (6.133) 

where the D- matrix is defined by the above equation. From Equation (6.127), 
we see that the vi vectors are orthogonal with respect to the b inner product. We 
therefore know that 

D- = V b V T  = diag(d1, - - ,  dn) 

dk = VkDV: (6.134) 

That is, D- is a diagonal matrix. From Equations (6.124), (6.125), and (6.133) 
we see that U- and D- satisfy the conditions of being the U-D factors of P-. 
This gives us a way to perform the Kalman filter time-update equation in U-D 
factorization form. The algorithm can be summarized as follows. 

The U-D time update 

1. Begin with P+ = U+D+UST (from the measurement update equation). 

2. Define the following matrices. 

W = [ F U +  I ]  
D+ 0 

D = [ o  Q I  (6.135) 

3. Use the rows of W along with the Gram-Schmidt orthogonalization procedure 
to generate vi vectors that are orthogonal with respect to the D inner product. 
The algorithm for generating the vi vectors is given in Equation (6.128). 
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4. Form the V matrix using the wi vectors as rows; see Equation (6.132). 

5.  Use D inner products to form the unit upper triangular matrix U-; see Equa- 
tions (6.129) and (6.132). 

6. Define D- as D- = V b v .  

The U-D filter results in twice as much precision as the standard Kalman filter, 
just like the square root filter, but it requires less computation than the square 
root filter. If some of the states are missing from the measurement vector, a more 
efficient U-D algorithm can be derived [Bar83]. 

6.5 SUMMARY 

In this chapter, we discussed the sequential Kalman filter, which is mathematically 
identical to the Kalman filter, but which avoids matrix inversion. This is an attrac- 
tive formulation for embedded systems in which computational time and memory 
are at a premium. However, sequential filtering can only be used if the noise co- 
variance is diagonal, or if the noise covariance is constant. Information filtering is 
also equivalent to the Kalman filter, but it propagates the inverse of the covariance. 
This can be computationally beneficial in cases in which the number of measure 
ments is much larger than the number of states. Square root filtering and U-D 
filtering effectively increase the precision of the Kalman filter. Although these ap- 
proaches require additional computational effort, they can help prevent divergence 
and instability. Gerald Bierman’s book provides an excellent and comprehensive 
overview of square root and U-D filtering [Bie77b]. 

We see that we have a number of different choices when implementing a Kalman 
filter. 

0 Covariance filtering or information filtering 

0 Standard filtering, square root filtering, or U-D filtering 

0 Batch filtering or sequential filtering 

Any of these choices can be made independently of the other choices. For instance, 
we can choose to combine information filtering with square root filtering [Kam7l] 
in much the same way as we combined covariance filtering with square root filtering 
in this chapter. The choices in the list above gives us a total of 12 different Kalman 
filter formulations (two choices in the first item, three choices in the second item, 
and two choices in the third item). There are also other choices that are not listed 
above, especially other types of square root filtering. A numerical comparison 
of various Kalman filter formulations (including the standard filter, the square 
root covariance filter, the square root information filter, and the Chandrasekhar 
algorithm) is given in [Ver86]. Numerical and computational comparisons of various 
Kalman filtering approaches are given in [Bie73, Bie77al. Continuous-time square 
root filtering is discussed in [Mor78] and in Section 8.3.3 of this book. 
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PROBLEMS 

Written exercises 

6.1 In this chapter, we discussed alternatives to the standard Kalman filter for- 
mulation. Some of these alternatives include the sequential Kalman filter, the 
information filter, and the square root filter. 

What is the advantage of the sequential Kalman filter over the batch 
Kalman filter? What is the advantage of the batch Kalman filter over 
the sequential Kalman filter? 
What is the advantage of the information filter over the standard Kalman 
filter? What is the advantage of the standard Kalman filter over the 
information filter? 
What is the advantage of the square root filter over the standard Kalman 
filter? What is an advantage of the standard Kalman filter over the square 
root Kalman filter? 

6.2 
surement noise covariance matrices 

Suppose that you have a system with the following measurement and mea- 

= [: :I 
You want to use a sequential Kalman filter to estimate the state of the system. 
Derive the normalized measurement, measurement matrix, and measurement noise 
covariance matrix that could be used in a sequential Kalman filter. 

6.3 Consider the two alternative forms for the information matrix time-update 
equation. What advantages does Equation (6.28) have? What advantages does 
Equation (6.30) have? 

6.4 A radioactive mass has a half-life of 7 seconds. At each time step k the 
number of emitted particles 2 is half of what it was one time step ago, but there 
is some error wk (zero-mean with variance Q k )  in the number of emitted particles 
due to background radiation. At each time step the number of emitted particles is 
counted with two separate and independent instruments. The instruments used to 
count the number of emitted particles both have a random error at each time step 
that is zero-mean with a unity variance. The initial uncertainty in the number of 
radioactive particles is a random variable with zero mean and unity variance. 

The discrete-time equations that model this system have a one-dimensional 
state and a two-dimensional measurement. Use the information filter to 
compute the a priori and a posteriori information matrix at k = 1 and 
k = 2. Assume that QO = 1 and Q1 = 5/4. 
Another way to solve this problem is to realize that the two measurements 
can be averaged to form a single measurement with a smaller variance than 
the two independent measurements. What is the variance of the averaged 
measurement at each time step? Use the standard Kalman filter equations 
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to compute the a priori and a posteriori covariance matrix at k = 1 and 
k = 2, and verify that it is the inverse of the information matrix that you 
computed in 'part (a). 

Prove that the singular values of a diagonal matrix are the magnitudes of the 

Prove that S p  is symmetric positive semidefinite for any S matrix. 

Find an upper triangular matrix S (using only paper and pencil) such that 

6.5 
diagonal elements. 

6.6 

6.7 

Is your solution unique? 

6.8 Find an upper triangular matrix S (using only paper and pencil) such that 

S F = [  5 2 2 2 -2 -;I 
-2 -1 

How many solutions exist to this problem? 

6.9 Verify Equation (6.70). Hint: Equate the two sides of the equation, take the 
trace, and solve for y. Make sure to explain why taking the trace is valid. 

6.10 ~ Suppose that an orthogonal matrix p is desired to satisfy Equation (6.97), 
where Cholesky factorization is used to compute the matrix square roots on the left 
side of the equation. This equation can then be written as U = PA, where U is an 
upper triangular matrix. Show that such a transformation cannot be found unless 
the two-norm of the first column of A happens to be equal to IUlll. [Note that this 
does not necessarily prevent the possibility of the transformation of Equation (6.97), 
because U could be nontriangular if nontriangular square root matrices are used to 
form the U matrix.] 

6.11 Use the Householder method (using only paper and pencil) to find an or- 

thogonal T such that T A  = [ : ] where W is a 2 x 2 matrix and 

6.12 
solve Problem 6.11. 

6.13 

Use the modified Gram-Schmidt method (using only paper and pencil) to 

Compute the U-D factorization (using only paper and pencil) for the matrix 
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Computer exercises 

6.14 Consider the RLC circuit of Example 1.8 with R = 100 and L = C = 1. 
Suppose the applied voltage is continuous-time, zero-mean white noise with a stan- 
dard deviation of 3. The initial capacitor voltage and inductor current are both 
zero. Discretize the system with a time step of 0.1. The discretetime measure 
ments consist of the capacitor voltage and the inductor current, both measurements 
containing zero-mean unity variance noise. Implement a sequential Kalman filter 
for the system. Simulate the system for 2 seconds. Let the initial state estimate 
be equal to the initial state, and the initial estimation covariance be equal to 0.11. 
Hint: Set the discretetime process noise covariance Q = Q c A t ,  where Qc is the co- 
variance of the continuoustime process noise, and At is the discretization step size. 
Q will be nondiagonal, which means you need to use the algorithm in Section 2.7 
to simulate the process noise. 

a) Generate a plot showing the a priori variance of the capacitor voltage 
estimation error, and the two a posteriori variances of the capacitor voltage 
estimation error. 

b) Generate a plot showing a typical trace of the true, a posteriori estimated, 
and measured capacitor voltage. What is the standard deviation of the 
capacitor voltage measurement error? What is the standard deviation of 
the capacitor voltage estimation error? 

The pitch motion of an aircraft flying at constant speed can be approxi- 6.15 
mately described by the following equations [Ste94] : 

-0.5680 17.9800 0.1750 0.1750 ] u +  [ 17.9800 ] 
1.0000 -1.2370 ] 2+ [ -0.0010 -0.0010 -1.2370 

x = [  

Y ( t k )  = z ( t k )  -k uk  

where 51 is the pitch rate, 5 2  is the angle of attack, u consists of the elevator and 
flap angles, and w is disturbance due to wind. Suppose that the variance of the wind 
disturbance is 0.001, and the measurement variances are 0.3. Discretize the system 
with a step size of 0.01 and simulate the system and a square root Kalman filter 
for 100 time steps. Use an initial state of zero, an initial state estimate of zero, an 
initial estimation-error covariance of 0.011, and a control input of zero. Hint: Set 
the discretetime process noise covariance Q = QcAt, where Qc is the covariance of 
the continuous-time process noise, and At is the discretization step size. Q will be 
nondiagonal, which means you need to use the algorithm in Section 2.7 to simulate 
the process noise. 

a) Generate a plot showing the a posteriori variance of the estimation errors 
of the two states. 

b) Generate a plot showing a typical trace of the true, a posteriori estimated, 
and measured pitch rate. What is the standard deviation of the pitch 
rate measurement error? What is the standard deviation of the pitch rate 
estimation error? 

c) Generate a plot showing a typical trace of the true, a posteriori estimated, 
and measured angle of attack. What is the standard deviation of the angle 
of attack measurement error? What is the standard deviation of the angle 
of attack estimation error? 





CHAPTER 7 

Ka I man filter generalizations 

Many practical systems exist in which the correlation times of the random measurement 
errors are not  short compared to times of interest in the system; for brevity such errors 
are called “colored” noise. 

-Arthur Bryson and Donald Johansen [Bry65] 

In the last two chapters, we derived the discretetime Kalman filter and presented 
some alternate but mathematically equivalent formulations. In this chapter we will 
discuss some generalizations of the Kalman filter that will make it more flexible 
and effective for a broader class of problems. For example, in our derivation of the 
Kalman filter in Chapter 5 we assumed that the process noise and measurement 
noise were uncorrelated. In Section 7.1, we will show how correlated process and 
measurement noise changes the Kalman filter equations. Our derivation in C h a p  
ter 5 also assumed that the process noise and measurement noise were white. We 
modify the Kalman filter to deal with colored process noise and measurement noise 
in Section 7.2. 

Many Kalman filter implementations are coded in embedded systems (rather 
than desktop computers) where memory and computational effort is still a primary 
consideration. For this reason, we can replace the timevarying Kalman filter of 
Chapter 5 with a steady-state Kalman filter that often performs nearly rn well. This 
means that we do not have to  compute the estimation-error covariance or Kalman 
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gain in real time. This is discussed in Section 7.3, which includes a presentation of 
a-P and a-P-7 filtering. 

When the dynamics of the system are not perfectly known, then the Kalman filter 
may not provide acceptable state estimates. This can be addressed by giving more 
weight to recent measurements when updating the state estimate, and discounting 
measurements that arrived a long time ago. This is called the fading-memory filter 
and is discussed in Section 7.4. Finally, there may be other information about the 
states other than the system model. For example, there may be state constraints 
that we know must be satisfied. Section 7.5 discusses several ways to incorporate 
state equality constraints and state inequality constraints into the formulation of 
the Kalman filter. 

7.1 CORRELATED PROCESS AND MEASUREMENT NOISE 

Our derivation of the Kalman filter in Chapter 5 assumed that the process noise and 
measurement noise were uncorrelated. In this section, we will show how correlated 
process and measurement noise changes the Kalman filter equations. Suppose that 
we have a system given by 

x k  = F k - i x k - 1  -k G k - 1 U k - i  -k W k - i  

Yk = H k x k + u k  

w k  ( 0 , Q k )  

uk ( 0 , R k )  

E [ W k W T ]  = Q k 8 k - j  

E[WkWjT] = R k 6 k - J  

E[Wk'$] = M k d k - J + l  (7.1) 

We see that the process noise in the system equation is correlated with the mea- 
surement noise, with the cross covariance given by M k 6 k - j + l .  Our derivation in 
Chapter 5 assumed that M k  was zero, but in this section we will relax that assump- 
tion. For example, suppose that our system is an airplane and winds are buffeting 
the plane. We are using an anemometer to measure wind speed as an input to 
our Kalman filter. So the random gusts of wind affect both the process (i.e., the 
airplane dynamics) and the measurement (i.e., the sensed wind speed). We see that 
there is a correlation between the process noise and the measurement noise. From 
the above equation, we see that the process noise at time k is correlated with the 
measurement noise at time (k + 1); that is, W k  is correlated with ?&+I. This is 
because W k  affects the state at time (k + I), just as ?&+I affects the measurement 
at time (k + 1). 

In order to find the Kalman filter equations for the correlated noise system, we 
will define the estimation errors as 

As in our original Kalman filter derivation of Chapter 5, we still assume that our 
update equations for the state estimate are given as follows: 
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The a priori and a posteriori estimation-error covariances can be written as 

= 2AB if B is symmetric 
~ T ~ ( A B A ~ )  

dA 
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We can use this fact to derive 

2Kk(HkMk -k MFHT)  - Mk - Mk 

2 [Kk(HkpLHr + HkMk -k Mk Hk + R k ) -  
T T  = 

PLHF - Mk] (7-9) 

In order to make this partial derivative zero, we need to set the gain Kk as follows: 

(7.10) 

This gives the optimal Kalman gain matrix for the system with correlated process 
and measurement noise. The estimation-error covariance is then obtained from 
Equation (7.7) as 

Kk = (PLHT 4- Mk)(HkPFHr + HkMk + MFHT + 

P z  = (1 - K k H k ) P i ( I  - KkHk)T + 
Kk(HkMk + M r H T  + Rk)K;- MkK? - KkMF 
PL - KkHkPL - P L H r K r  + 
Kk(HkpFHr + HkMk + M$$ -I- R k ) K r  - 
MkKT - KkMF 

PL - Kk(HkpL + M r )  - (PLH;+ Mk)KT + 
(PLH; + Mk)(HkpLHr  + HkMk + MFH; + &)-l(HkPL + M?) 

= p; - Kk(HkPL + M r )  - (PLH,' + M k ) K r  + ( P i H r  + M k ) K r  
= PL - Kk(HkPF + M F )  (7.11) 

This gives the measurement-update equation for the estimation-error covariance for 
the Kalman filter with correlated process and measurement noise. The measurement- 
update equation for the state estimate is the same as for the standard Kalman filter 
and is given in Equation (7.3). The timeupdate equations for the state estimate 
and the estimation-error covariance are also the same as before. The Kalman filter 
for the system with correlated process and measurement noise can be summarized 
as follows. 

= 

= 

The general discretetime Kalman filter 

1. The system and measurement equations are given as 

(7.12) 
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2. The Kalman filter is initialized as 

2; = E(x0) 
P,+ = E[(xo - 2o+)(xo - ?;)TI (7.13) 

The second form for P z  and the second form for Kk can be derived by following a 
procedure similar to that shown in Section 3.3.1. Note that this is a generalization 
of the Kalman filter that was presented in Equation (5.19). If Mk = 0, then the 
above equations reduce to Equation (5.19). 

EXAMPLE 7.1 

Consider the following scalar system: 

xk = 0.8~k-1+ wk-1 

Y k  = xk +vk 
E[wkWT] = 16k-j 

E [ V k V T ]  = 0.16k-j 

E [ W k V T ]  = M&-J+1 (7.15) 

We can use the method discussed in Section 2.7 to simulate correlated noise. 
The Kalman filter equations given above can then be run to obtain an estimate 
of the state. Table 7.1 shows (for several values of M )  the variance of the 
estimation error for the standard Kalman filter (when M = 0 is assumed) and 
for the correlated noise Kalman filter (when the correct value of M is used). 
When M = 0, the estimation-error variances are the same for the two filters, 
as expected. However, when M # 0, the filter that uses the correct value of 
M performs noticeably better than the filter that incorrectly assumes that 
M = O .  

vvv 
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Table 7.1 
when there is a cross covariance M between the process noise and the measurement 
noise. The standard filter assumes that M = 0, and the correlated filter uses the 
correct value of M 

Experimental estimation-error variance (50 time steps) for Example 7.1 

Standard Filter Correlated Filter 
Correlation M ( M  = 0 assumed) (correct M used) 

0 0.076 
0.25 0.030 

-0.25 0.117 

0.076 
0.019 
0.052 

7.2 COLORED PROCESS AND MEASUREMENT NOISE 

Our derivation of the Kalman filter in Chapter 5 assumed that the process noise 
and measurement noise were both white. In this section, we will show how to deal 
with colored process noise, and we will present two methods for dealing with colored 
measurement noise. 

7.2.1 Colored process noise 

If the process noise is colored, then it is straightforward to modify the system 
equations and obtain an equivalent but higher-order system with white process 
noise [Buc68]. Then the standard Kalman filter equations can be applied. For 
example, suppose that we have an LTI system given as 

Xk = F X k - 1 +  W k - 1  (7.16) 

where the covariance of w k  is equal to Q k .  Further suppose that the process noise 
is the output of a dynamic system: 

w k  = "Wk-1 f Ck-1 (7.17) 

where Ck-1 is zero-mean white noise that is uncorrelated with W k - 1 .  In this case, 
we can see that the covariance between W k  and W k - 1  is equal to 

E ( W k W k - 1 )  = E ( $ W k - l W k - i  + C k - 1 w k - 1 )  
T T T 

= "Qk-1 -t 0 (7.18) 

The 0 arises because W k - 1  is independent from &.-I, and Ck-1 is zero-mean. We 
see that W k  is colored process noise (because it is correlated with itself at other 
time steps). We can combine Equations (7.16) and (7.17) to obtain 

This is an augmented system with a new state x', a new system matrix F', and a 
new process noise vector w' whose covariance is given as follows: 
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= Qk (7.20) 

Now the standard Kalman filter can be run on this augmented system that has white 
process noise, as long as we know E ( < k < ; ) .  Computational effort increases because 
the state vector dimension has doubled, but conceptually this is a straightforward 
approach to dealing with colored process noise. 

7.2.2 

Now suppose that we have colored measurement noise. Our system and measure 
ment equations are given as 

Colored measurement noise: State augmentation 

The measurement noise is itself the output of a linear system. The covariance of 
the measurement noise is given as 

E[Vk'$-'_1] = E [ ( @ k - l V k - l  + < k - l ) V k - i ]  T 

= "k - l E [ V k  - 1 V k  T - 11 (7.22) 

There are a couple of ways to  solve the colored measurement-noise problem. It was 
solved by Richard Bucy for continuous-time problems in [Buc68]. Here we will solve 
the discretetime problem by augmenting the state. This was originally proposed 
in [Bry65] in the context of continuous-time systems. We augment the original 
system model as follows: 

x k - 1  W k - 1  
0 "k-1  ] [ V k - 1  ] -k [ 6 k - 1  ] 

This can be written as 

(7.23) 

(7.24) 

This system is equivalent to the original system but has a modified state x', state 
transition matrix F', process noise w', measurement matrix HI, and measurement 
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noise w‘. The covariance of the process noise and the covariance of the measurement 
noise are computed as 

E[w;wF] = 0 (7.25) 

We see that there is no measurement noise, which is equivalent to saying that 
the measurement noise is white with a mean of zero and a covariance of zero. 
Theoretically, it is fine to have zero measurement noise in the Kalman filter. In 
fact, Kalman’s original paper [Ka160] was written without any restrictions on the 
singularity of the measurement-noise covariance. But practically speaking, a sin- 
gular measurement-noise covariance often results in numerical problems [May79, 
p. 2491, [Ste94, p. 3651. For that reason we will present another approach to deal- 
ing with colored measurement noise in the next section. 

7.2.3 

In this section we present a method for dealing with colored measurement noise 
that does not rely on augmenting the state vector. This approach is due to [Bry68]. 
As in the previous section, our system is given as 

Colored measurement noise: Measurement differencing 

Now we define an auxiliary signal y;  as follows: 

y 6 - 1  = Y k  - ‘$‘k- lYk- l  

(7.26) 

(7.27) 

Substitute for Y k  and Y k - 1  in the above definition of yk- l  to obtain 

9 ; - 1  = ( H k x k  + u k )  - $ k - l ( H k - l x k - l  -k u k - 1 )  

= H k ( F k - l X k - l +  w k - 1 )  -k u k  - $ k - i ( H k - i x k - i  -k W k - 1 )  

( H k F k - 1  - ‘ $ k - l H k - l ) x k - l  -k ( H k W k - 1 +  c k - 1 )  

= ( H k F k - 1  - ‘ $ ‘ k - l H k - l ) x k - l - k  H k W k - 1 - k  u k  - ‘$‘k-l?Jk-l  

= 

= H k - 1 X k - i  f w L - 1  (7.28) 

and W L - ~  are defined by the above equation. We see that we have a new 
measurement equation for the measurement y i - l  that has a measurement matrix 
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HA-l and measurement noise v;-l. Our new but equivalent system can therefore 
be written as 

(7.29) 

The covariance of the new measurement noise w', and the cross covariance between 
the process noise w and the new measurement noise v', can be obtained as 

where we have used the fact that Wk and ck are independent and zero-mean. 
Now we will d e h e  the a priori and a posteriori state estimates for the system 

of Equation (7.29) slightly differently than we have up to this point. The state 
estimate 2; at time k is defined as the expected value of the state Z k  conditioned 
on measurements up to and including time k. 

2; = E [ X k l Y l , . . . , Y k ]  (7.31) 

The state estimate at time 2; at time k is defined as the expected value of the state 
Xk conditioned on measurements up to and including time (k + 1). We assume that 
it is given by a standard linear predictor/corrector combination: 

2; = E [ X k l y l ,  ' '  ' 9  Yk+1] 

= 3; + Kk(y ;  - H@L)  (7.32) 

Note that these definitions of 2; and 2: are slightly different than the definitions 
used elsewhere in this book. Usually, 2; is based on measurements up to and 
including time k - 1, and 2; is based on measurements up to and including time k. 
In this section, these two estimates are both based on one additional measurement. 
As in our previous derivations, we choose the gain Kk to minimize the trace of the 
covariance of the estimation error. In equation form this is written as 

Kk = argmin Tr E [ ( x k  - 2;)(xk - ?:)'I (7.33) 

We will not work through the details here, but in [Bry68] it is shown that this 
minimization leads to the following estimator equations. 

The discrete-time Kalman filter with colored measurement noise 

1. Our system and measurement equations are given by Equation (7.26). 

2. y;C and H i  are defined by Equations (7.27) and (7.28). 

3. At each time step, execute the following equations to update the state esti- 
mate: 
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A similar approach to the continuous-time filter with colored measurement noise is 
given in [Ste68]. 

EXAMPLE7.2 

Consider the following linear system with colored measurement noise: 

0.70 -0.15 ] [ ] 
x k - 1 +  Wk-I  

x k  = [ 0.03 0.79 

E [ W k c T ]  = 0 (7.35) 

The scalar $ indicates the correlation of the measurement noise. If $ = 0 
then the measurement noise is white. As $, increases, the color of the mea- 
surement noise increases (i.e., it contains more low-frequency components and 
less high-frequency components). In this example, we simulate the Kalman 
filter for this system in three different ways. First, we simulate the standard 
Kalman filter while simply ignoring the colored nature of the measurement 
noise. Second, we augment the state vector as described in Section 7.2.2, 
which will take the colored nature of the measurement noise into account, 
and then simulate the Kalman filter. Third, we implement the measurement- 
differencing approach that is described in this section, which again takes the 
colored nature of the measurement noise into account, and then simulate the 
filter. Table 7.2 shows the experimental values of the trace of the covariance 
of the estimation error for the three filters. We can see that if $ = 0 then the 
three filters perform essentially identically. (There is some difference in per- 
formance between the filters because the performance measures in Table 7.2 
are experimentally determined statistical values.) However, as $ increases 
(i.e., the color of the measurement noise increases) we see that the filters that 
take this into account provide increasingly better performance compared to 
the standard Kalman filter. This example shows the improvement in perfor- 
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mance that is possible with the colored measurement-noise filters described 
in this section. 

Table 7.2 
error (500 time steps) for Example 7.2. As the color content of the measurement noise 
increases (i.e., as 11, increases) the colored measurement-noise filters provide 
increasingly better performance than the standard Kalman filter 

Experimental values of the trace of the covariance of the estimation 

Standard Augmented Measurement 
Color $J Filter Filter Differencing 

0.0 0.245 0.245 0.247 
0.2 0.260 0.258 0.259 
0.5 0.308 0.294 0.295 
0.9 0.631 0.407 0.406 

vvv 

7.3 STEADY-STATE FILTERING 

Many Kalman filter implementations are coded in embedded systems (rather than 
desktop computers) in which memory and computational effort is still a primary 
consideration. If the underlying system is time-invariant, and the process- and 
measurement-noise covariances are time-invariant, then we can replace the time- 
varying Kalman filter of Chapter 5 with a steady-state Kalman filter. The steady- 
state filter often performs nearly as well as the time-varying filter. Using a steady- 
state filter has the advantage that we do not have to  compute the estimation-error 
covariance or Kalman gain in real time. Note that a steady-state Kalman filter is 
still a dynamic system. The term “steady-state” Kalman filtering means that the 
Kalman filter is time-invariant; it is the Kalman gain that is in steady state. 

As an example, recall the scalar system discussed in Example 5.2: 

(7.36) 

We saw from Example 5.2 that the Kalman gain converged to a steady-state value 
after a few time steps: 

lim Kk = K ,  
k + m  

- 1+d3 
3 + d 3  

- -  (7.37) 

So instead of performing the measurement-update equation for Pk, the time-update 
equation for Pk, and the Kalman gain computation for Kk at  each time step, we 
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can simply use the constant Kw as our Kalman gain at each time step. For a 
system with many states, this can save a lot of computational effort, especially 
considering the fact that this will allow us to avoid real-time matrix inversions. 
The steady-state Kalman filter for this example is simply given as 

3, = F$;-_, 

jjf k = 2 i  4- Km(yk - H?;) 
= Fjjl-1-k Kw(yk - H F f l - 1 )  

= ( I  - K,H)F?;-l+ Kwyk (7.38) 

The steady-state Kalman filter is not optimal because we are not using the optimal 
Kalman gain at each time step (although it approaches optimality in the limit as 
k + 00). We are instead using the steady-state Kalman gain. However, for many 
problems of practical interest, the performance of the steady-state filter is nearly 
indistinguishable from that of the time-varying filter. For any particular problem, 
the difference between the time-varying and steady-state filters needs to be assessed 
by simulation or experimental results. 

One way to determine the steady-state Kalman gain is by numerical simulation. 
We can simply write a computer program to propagate the Kalman gain as a 
function of time, and then observe the value toward which the gain is converging. 

Another way to determine the steady-state Kalman gain is to manipulate the 
Kalman filter equations from Equation (7.14). Recall the covariance time-update 
equation for a time-invariant system: 

= F P z F T  + Q (7.39) 

Now substitute the expression for P z  from Equation (7.14) into this equation to 
obtain 

P;+l = FP;FT - FKkHPFFT - FKkMTFT + Q (7.40) 

Now substitute the expression for Kk from Equation (7.14) into this equation to 
obtain 

P;+~ = F P ; F ~ -  

F(P;HT + M)(HP;HT + H M  + MTHT + R)-lHP;FT - 
F(P;HT + M)(HP;HT + H M  + M T H T  + R)- lMTFT + Q 

= FP;FT - F(P;HT + M)(HP;HT + H M  + M T H T  + R)-l x 

(HP;  + M T ) F T  + Q (7.41) 

If P; converges to a steady-state value, then P i  = P;+l for large k. We will 
denote this steady-state value as Pm, which means that we can write 

P, = F P , F ~ -  

F(PwHT + M)(HPwHT + H M  + MTHT + R)-l x 
(HP,  + M T ) F T  + Q (7.42) 

This is called an algebraic Riccati equation (ARE), or more specifically a discrete 
ARE (DARE).l Once we have Pw, we can substitute it for P; in the Kalman gain 

IIn MATLAB’s Control System Toolbox, we can solve this equation by invoking the command 
DARE(FT, H T ,  8, H M  + M T H T  + R, F M ) .  
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formula of Equation (7.14) to obtain the steady-state Kalman gain: 

Km = (PmHT + M)(HPmHT + H M  + M ~ H ~  + R)-l  (7.43) 

There are systems for which the Riccati equation (and hence the Kalman gain) does 
not converge to a steady-state value. Furthermore, it may converge to different 
steady-state values depending on the initial condition PO. Finally, even when it 
does converge to a steady-state value, it may result in an unstable Kalman filter. 
These issues comprise a rich field of study that has been reported widely in many 
books and papers [McG74, And79, Kai81, Goo84, Chu871. We will summarize the 
most important Riccati equation convergence results below, but first we need to 
define what it means for a system to be controllable on the unit circle. 

Definition 11 The matrix pair (F,G) is controllable on the unit circle if there 
exists some matrix K such that ( F  - G K )  does not have any eigenvalues with 
magnitude 1. 

We illustrate this definition with some simple examples. 

H EXAMPLE7.3 

Consider the scalar system 

xk+1 = xk (7.44) 

In this example, F = 1 and G = 0. The system dynamics are independent of 
any control signal, and the system has an eigenvalue with a magnitude of 1. 
The system is not controllable on the unit circle because its eigenvalue has a 
magnitude of 1 regardless of the feedback control input. 

vvv 

EXAMPLE7.4 

Consider the scalar system 

xk+1 = 2xk (7.45) 

In this example, F = 2 and G = 0. As in the previous example, the sys- 
tem dynamics are independent of any control signal. However, the system 
eigenvalue has a magnitude of 2. The system is controllable on the unit circle 
because there exists a feedback control gain K such that (F - G K )  does not 
have any eigenvalues with a magnitude of 1. In fact, regardless of the feedback 
control gain, the system eigenvalues will never have a magnitude of 1. 

vvv 

EXAMPLE7.5 

Consider the system 

(7.46) 
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When the feedback control u k  = -Kxk is implemented, where K = [ K1 

the closed-loop system becomes 
K2 3 ,  

(7.47) 

The closed-loop system has eigenvalues at F1 and (1 - K2). We see that if 
FI = f l  then there is no feedback control gain K that results in all closed- 
loop eigenvalues having a nonunity magnitude, and the system is therefore 
not controllable on the unit circle. However, if FI # f l ,  then we can find a 
feedback control gain K that does result in all closed-loop eigenvalues having 
a nonunity magnitude, and the system is therefore controllable on the unit 
circle. 

vvv 
Next we summarize the most important Riccati equation convergence results 

from [Bit85, Pou86, KaiOO], where proofs are given. Recall that the DARE is given 
as 

P, = F P , F ~ -  
F(P,HT + M)(HP,HT + H M  + M T H T  + R)-l x 

(HP,  + M T ) F T  + Q (7.48) 

We assume that Q 2 0 and R > 0. We define G as any matrix such that GGT = 
Q - M R - l M T .  The corresponding steady-state Kalman gain K,  is given as 

K,  = (P,HT + M)(HP,HT + H M  + M T H T  + R)-l (7.49) 

The steady-state Kalman filter is given as 

(7.50) 

We say that the DARE solution P, is stabilizing if it results in a stable steady-state 
filter. That is, P, is defined as a stabilizing DARE solution if all of the eigenvalues 
of ( I  - K,H)F are less than one in magnitude. 

Theorem 23 The D A R E  has a unique positive semidefinite solution P,  i f  and 
only i f  both of the following conditions hold. 

1. (F ,  H )  i s  detectable. 

2. ( F  - M R - l H ,  G )  i s  stabilizable. 

Furthermore, the corresponding steady-state Kalman filter i s  stable. That is, the 
eigenvalues of ( I  - K,H)F have magnitude less than 1. 

Theorem 23 does not preclude the existence of DARE solutions that are negative 
definite or indefinite. If such solutions exist, then they would result in an unstable 
Kalman filter. If we weaken the stabilizability condition in Theorem 23, we obtain 
the following. 

Theorem 24 The D A R E  has at least one positive semidefinite solution P, i f  and 
only i f  both of the following conditions hold. 
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1. ( F ,  H )  is  detectable. 

2. ( F  - M R - I H ,  G )  is  controllable on the unit circle. 

Furthermore, exactly one of the positive semidefinite D A R E  solutions results in a 
stable steady-state Kalman filter. 

Since controllability on the unit circle is a subset of stabilizability, we see that 
Theorem 24 is a subset of Theorem 23. Theorem 24 states conditions for the 
existence of exactly one stabilizing positive semidefinite DARE solution. However, 
there may be additional DARE solutions (positive semidefinite or otherwise) that 
result in unstable Kalman filters. If a timevarying Kalman filter is run in this 
situation, then the Kalman filter equations may converge to  either a stable or 
an unstable filter, depending on the initial condition P$. If we strengthen the 
controllability condition of Theorem 24, we obtain the following. 

Theorem 25 The DARE has at least one positive definite solution P, if and only 
i f  both of the following conditions hold. 

1. ( F ,  H )  is  detectable. 

2. ( F  - M R - I H ,  G )  is  controllable on  and inside the unit circle. 

Furthermore, exactly one of the positive definite D A R E  solutions results in a stable 
steady-state Kalman filter. 

If we drop the controllability condition in the above two theorems, we obtain the 
following. 

Theorem 26 The DARE has at least one positive semidefinite solution P, if 
( F ,  H )  is  detectable. Furthermore, at least one such solution results in a marginally 
stable steady-state Kalman filter. 

Note that the resulting filter is only marginally stable, so it may have eigenvalues 
on the unit circle. Also note that this theorem poses a sufficient (not necessary) 
condition. That is, there may be a stable steady-state Kalman filter even if the 
conditions of the above theorem do not hold. Furthermore, even if the conditions 
of the theorem do hold, there may be DARE solutions that result in unstable 
Kalman filters. 

EXAMPLE 7.6 

Consider again the scalar system of Equation (7.36). We see that F = 1, 
H = 1, Q = 1, R = 1, and M = 0. Note that (F ,  H )  is observable, and 
(F ,G)  is controllable for all G such that GGT = Q (recall that M = 0 for 
this example). We therefore know from Theorem 23 that the DARE has 
a unique positive semidefinite solution. We know from Theorem 25 that the 
DARE solution is not only positive semidefinite, but it is also positive definite. 
We also know from these two theorems that the corresponding steady-state 
Kalman filter is stable. The DARE for this system is given by 

P = F P F T  - F P H T ( H P H T  + R ) - l H P F T  + Q 
= P - P(P  + l)-lP + 1 (7.51) 
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This can be solved to obtain 

l k f i  p = -  
2 

(7.52)  

So the DARE has two solutions, one of which is negative and one of which is 
positive. If we use the negative DARE solution in the steady-state Kalman 
filter we obtain 

K = P H T ( H P H T  + R)-l 

- 1 - 4  

3 - 4  
- -  

2' k = (1 - KH)F2;-_, + Kyk 

(7 .53)  

We see that the resulting Kalman filter is unstable. However, if we use the 
positive DARE solution in the steady-state Kalman filter we obtain 

(7 .54)  

We see that the resulting Kalman filter is stable. 

vvv 

EXAMPLE7.7 

Consider a scalar system with F = 1, H = 1, Q = 0 ,  R = 1, and M = 0. Note 
(F ,  H )  is detectable. However, it is not true that (F, G) is controllable on the 
unit circle for all G such that GGT = Q. We therefore know from Theorem 24 
that the DARE does not have a positive semidefinite solution that results in 
a stable Kalman filter. However, we know from Theorem 26 that the DARE 
has a positive semidefinite solution that results in a marginally stable Kalman 
filter. The DARE for this system is given by 

P = FPFT - F P H T ( H P H T  + R)-'HPFT + Q 

= P - P ( P  + l)-lP (7 .55)  

This has two solutions for P,  both of which are 0 (i.e., positive semidefinite). 
If we use this solution in the steady-state Kalman filter we obtain 

(7 .56)  

We see that the resulting Kalman filter is marginally stable (the eigenvalue is 

vvv 
1). 
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w EXAMPLE 7.8 

Consider a scalar system with F = 2, H = 1, Q = 0, R = 1, and M = 0. Note 
( F ,  H )  is detectable. Also ( F ,  G) is controllable on and inside the unit circle 
for all G such that GGT = Q. We therefore know from Theorem 24 that the 
DARE has exactly one positive semidefinite solution that results in a stable 
Kalman filter. 

However, we know from Theorem 26 that the DARE has exactly one posi- 
tive semidefinite solution that results in a marginally stable Kalman filter is 
stable. We also know from Theorem 25 that this DARE solution is positive 
definite. The DARE for this system is given by 

P = F P F T  - F P H T ( H P H T  + R)- lHPFT + Q 

= 4P - 4 P ( P  + l)-'P (7.57) 

This has two solutions for P,  one of which is 0 (i.e., positive semidefinite), and 
one of which is 3 (i.e., positive definite). If we use P = 0 in the steady-state 
Kalman filter we obtain 

K = O  
li.+ = 2f+ 

k k -1  (7.58) 

We see that the resulting Kalman filter is unstable (the eigenvalue is 2). If 
we use P = 3 in the steady-state Kalman filter we obtain 

(7.59) 

We see that the resulting Kalman filter is stable (the eigenvalue is 1/2). In 
this example, we have multiple positive semidefinite solutions to  the DARE, 
but only one results in a stable Kalman filter. 

vvv 

7.3.1 a-p filtering 

In this section, we derive the a-P filter [BarOl], also sometimes referred to  as the 
f-g filter or the g-h filter [Bro98]. The a-P filter is a steady-state Kalman filter 
that is applied to a two-state Newtonian system with a position measurement. This 
is the type of estimation problem that commonly arises in tracking problems, and 
so it is well known and has been widely studied since before the invention of the 
Kalman filter. 

Suppose we have a Newtonian dynamic system with only two states (position 
and velocity) and a noisy acceleration input, and we measure position plus noise. 
The system and measurement equations are then given as 
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(7.60) 

where T is the sample time, and wi and Vk are uncorrelated white noise processes. 
The process equation can be written as 

Q =  [ T212 ~ ] ~ [ k k  W'W''] [ T2/2  T ] 

(7.61) 

A steady-state Kalman filter can be designed for this system from Equation (5.19), 
which is repeated here using steady-state notation: 

FP+FT + Q 

P-H'(HP-H= + R)-1 
F*;- 1 

5; + K(yk - H&;) 
( I  - KH)P-  (7.62) 

For this two-state, onemeasurement problem, we see that K is a 2 x 1 matrix, and 
P- and P+ are 2 x 2 matrices. We will denote their steady-state values as 

K = [ Ki K2 1' 
= [ a PIT I' 

(7.63) 

The parameters of the Kalman gain matrix K define the a and P parameters of 
the a-P filter. We can use Equation (7.62) to yrite 

The P+ expression in Equation (7.62) can be written as 

(7.64) 

(7.65) 
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The P- expression in Equation (7.62) can be rewritten in terms of P+ as follows: 

p+ = F-l (P--Q)F-T 

(7.66) 

Carrying out the multiplication gives the elements of P+ as 

P.&, = PG i- a;T3/2 - PGT 
PA = Pfi + o;T4/4 - PGT - PLT 
PA = PG-a%T2 (7.67) 

Equating the P$ elements in Equations (7.65) and (7.67) and performing a little 
algebra gives 

KIP; = 2TPG - T2PG + T4a;/4 
KIP,-, = TPG-T3u;/2 
K2PG = T2u; (7.68) 

These three equations, along with the expressions for K1 and K2 in the last line of 
Equation (7.64), can be solved for the five unknowns K I ,  K2, PG, P;, and PG. 
After some algebra, this gives 

K I  = -5  (A2 + 8X - (A + 4)J-I 

K2 = & ( X 2 + 4 A - X J 3 T z )  

(7.69) 

where X is called the target maneuvering index or target tracking index [Ka184] and 
is defined as 

aLT2 A = -  
R 

(7.70) 

Note that X gives the ratio of the motion uncertainty to the measurement un- 
certainty. From these expressions and Equation (7.65) it can be shown that the 
elements of the steady-state a posteriori estimation-error covariance are given as 

(7.71) 
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7.3.2 a-P-7 filtering 

In this section, we present (without derivation) the a-P-y filter [BarOl], also some- 
times referred to as the f - g - h  filter or the g-h-k filter [Bro98]. The a-P-7 filter 
is a steady-state Kalman filter that is applied to a threestate Newtonian system 
with a position measurement. This is very similar to the a-P filter presented in the 
previous section, except that the dynamic system model is one order higher in the 
a-P-7 filter. 

Consider the threestate system given in Example 5.1. The states consist of 
position, velocity, and acceleration, the input consists of noisy acceleration, and 
the measurement consists of position plus noise. The system and measurement 
equations are given as 

where T is the sample time, and wi and Vk are uncorrelated white noise processes. 
The process equation can be written as 

T2/2 T 1 ] 

T4/4 T3/2 T2/2  
T3/2 T2  T ] ui 
T 2 / 2  T 1 

(7.73) 

A steady-state Kalman filter can be designed for this system from Equation (5.19), 
in a similar way that the a-P filter was designed in the previous section. The 
steady-state values of the Kalman gain and a posteriori estimation-error covariance 
are denoted as 

K = [ K1 K2 K3 1' 
= [ a PIT 7 /2T2  1' 

(7.74) 

The parameters of the Kalman gain matrix K define the a,  P, and y parameters 
of the a-P-7 filter. The solution can be computed as follows [Gra93]: 
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2 
a! = l - s  

p = 2(1 - s ) 2  

y = 2xs (7.75) 

where X is the target maneuvering index defined in Equation (7.70), and s is an 
auxiliary variable. The variable s is defined via auxiliary variables b, c, p ,  q, and z 
as follows. 

The steady-state a posteriori error covariance can be computed as 

PA = a!R 

PA = PR/T 
PA = yR/2T2 

r(P - 2 ~ t  - 4) PA = 
8T2 (1 - a)  

(7.76) 

(7.77) 

The general idea of the a-P and a!-P-7 filters date back to the 1940s [Mec49, Sk157, 
Ben621, before the advent of Kalman filtering, although, of course, the optimal 
cu-P-7 values were not known at  that time. Further discussion of these filters and 
related issues can be found in [Bro98, BarOl]. A steady-state Kalman filter that is 
applied to a one-state Newtonian system with a position measurement is called an 
a filter [Sio96]. 

7.3.3 

In this section, we present an alternative method for obtaining the steady-state 
Kalman filter. We will assume in this section that the correlation M between the 
process noise and measurement noise is zero so that we can simplify notation. The 

A Hamiltonian approach to steady-state filtering 
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a priori Riccati equation of Equation (7.41) can then be written as 

Pk+l = FPkFT - FPkHT(HPkHT + R)- lHpkFT + Q (7.78) 

where we have dropped the minus superscript for ease of notation. We can use the 
matrix inversion lemma of Equation (1.39) to  write 

(HPkHT + R)-l = R-' - R- lH(HTR- lH  + PL1)- lHTR-l  (7.79) 

Substituting this into Equation (7.78) gives 

Pk+1 = FPkFT - FPkHTR-'HPkFT + 
FPkHTR-lH(HTR-'H + Pi l ) - lHTR- lHpkFT + Q (7.80) 

Factoring out F and FT from the beginning and end of the first three terms on the 
right side gives 

Now suppose that Pk can be factored a8 

This shows that 
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These equations for and Z k + 1  can be written as the following single equation: 

zk+1 F-T F - ~ H ~ R - ~ H  [ S k + l  ] = [ &FT F +QF-THTR- lH  ] [ 2 ] 
= .[:I (7.85) 

If the covariance matrix P is an n x n matrix, then 1-I will be a 2n x 2n matrix. The 
matrix 'H on the right side of the above equation is called a Hamiltonian matrix 
and has some interesting properties. It is a symplectic matrix; that is, it satisfies 
the equation 

O I  J- ' 'HTJ= 'H-l where J = [ -I ] (7.86) 

Symplectic matrices have the following properties (see Problem 7.7). 

0 None of the eigenvalues of a symplectic matrix are equal to 0. 

0 If A is an eigenvalue of a symplectic matrix, then so is 1/X. 

0 The determinant of a symplectic matrix is equal to fl .  

If a symplectic matrix does not have any eigenvalues with magnitude equal to one, 
then half of its eigenvalues will be outside the unit circle, and the other half will 
be inside the unit circle. Let us define A as the diagonal matrix that contains all 
of the eigenvalues of h! that are outside the unit circle (assuming that none of the 
eigenvalues are on the unit circle). Then the Jordan form of 'FI can be written as 

1-I = 9 [  h-l *]Pi 0 

= 9IrD9-l (7.87) 

where the D matrix is the diagonal matrix of eigenvalues, and is defined by the 
above equation. The 9 matrix can be partitioned into four n x n blocks as 

9 1 1  9 1 2  * =  [ 9 2 1  9 2 2  ] (7.88) 

Note that the 2n x n matrix [ i:: ] contains the eigenvectors of 1-I that correspond 

to the stable eigenvalues of 1-I (i.e., the eigenvalues that are inside the unit circle). 

The 2n x n matrix [ :i: ] contain the eigenvectors of 'H that correspond to the 

unstable eigenvalues of 'H (i.e., the eigenvalues that are outside the unit circle). 
Equation (7.85) can be written as 

(7.89) 
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Now define the n x n matrices Y 1 k  and Y 2 k 1  and the 2n x n matrix Y k ,  as follows: 

[;:I = Q-q 21 
= Y k  (7.90) 

Note in the above equation that ( V 1 ) l l  is not the inverse of the upper left n x n 
partition of \k; the matrix ( W 1 ) l l  is rather the upper left n x n partition of T 1 .  

(Similar statements hold for the other partitions.) With these definitions we can 
write Equation (7.89) as 

From this equation we see that 

Similarly we see that 

Now note that Equation (7.90) can be written as 

Y 1 k  = A - k Y 1 , o  

[ 21 = [ 2 21 [ z:] 
A- Yl ,o 

= [ E:: E:: ] [ A k Y 2 , 0  ] 

(7.91) 

(7.92) 

(7.93) 

(7.94) 

As k increases, the A-k matrix approaches zero (because it is a diagonal matrix 
whose elements are all less than one in magnitude). Therefore, for large k we obtain 

[ 2 ] = [ ::: t::] [ A & y  ] 
z k  = 9 1 2 y 2 k  

s k  = q 2 2 Y 2 k  (7.95) 

Solving for s k  for large values of k gives 

s k  = q 2 2 Q T ; z k  (7.96) 

But we also know from Equation (7.82) that 

s k  = P k Z k  (7.97) 

Combining the two previous equations shows that 
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This gives us a way to determine the steady-state solution of the Riccati equation 
solution. However, this analysis assumed that A was a diagonal matrix with all 
elements outside the unit circle. In other words, if the Hamiltonian matrix has 
any eigenvalues with magnitude equal to one, then this analysis falls apart. This 
gives the following algorithm for computing the steady-state, discretetime Riccati 
equation solution. 

The Hamiltonian approach to steady-state Kalrnan filtering 

Form the Hamiltonian matrix 

(7.99) 

For an n-state Kalman filtering problem, the Hamiltonian matrix will be a 
2n x 2n matrix. 

Compute the eigenvalues of 'H. If any of them are on the unit circle, then 
we cannot go any further with this procedure; the Riccati equation does not 
have a steady-state solution. 

Collect the n eigenvectors that correspond to the n eigenvalues that are out- 
side the unit circle. Put these n eigenvectors in a matrix partitioned as 

(7.100) 

The first column of this matrix is the first eigenvector, the second column is 
the second eigenvector, etc. Q12 and Qzz are both n x n matrices. 

Compute the steady-state Riccati equation solution as 

PZ = Q22Q;; (7.101) 

Note that Q l 2  must be invertible for this method to work. 

The Hamiltonian approach to steady-state filtering is due to [Vau70], which also 
derives time-varying DARE solutions using Hamiltonian matrices. 

EXAMPLE 7.9 

Consider the scalar system of Equation (7.36): 

x k + l  = X k f W k  

y k  = x k  + w k  

w k  N(O,1) 
wk N(O,1) (7.102) 

We see that F = H = Q = R = 1. Substituting these values into the 
expression for the Hamiltonian matrix gives 

= [ :  :I (7.103) 
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The eigenvalues of 3-t are 0.38 and 2.62. None of the eigenvalues has a mag- 
nitude of one so we are able to  continue with the procedure. The eigen- 
vector of 'FI that corresponds to the eigenvalue outside the unit circle is 
[ 0.5257 0.8507 1'. We form the corresponding eigenvector matrix as 

0.5257 [ ::: ] = [ 0.8507 ] (7.104) 

Note that 9 1 2  is invertible so we are able to  continue with the problem. The 
steady-state Riccati equation solution is 

P = 9229;; 
0.8507 
0.5257 

= -  

= 1.62 (7.105) 

The steady-state Kalman gain is therefore computed from Equation (7.14) as 

K = P H T ( H P H T  + R)-l  

- - (1.62) (1) 
(1)(1.62)(1) + 1 

= 0.62 (7.106) 

which is in agreement with Equation (7.37). 

vvv 

7.4 KALMAN FILTERING WITH FADING MEMORY 

In Section 5.5, we discussed the problem of filter divergence due to  mismodeling. 
That is, if our system model does not match reality, then the Kalman filter estimate 
may diverge from the true state. Example 5.3 showed how the addition of fictitious 
process noise can compensate for mismodeling. In this section, we show how to 
accomplish the same thing with the fading-memory filter. Recall our linear discrete- 
time system model: 

x k  = F k - 1 2 k - 1 +  G k - i U k - 1  + W k - 1  

Y k  = H k x k  + v k  

w k  ( O , Q k )  

v k  ( 0 , R k )  

E [ W k W T ]  = Q k J k - j  

E [ V k V T ]  = R k 6 k - j  

E [ W k V T ]  = 0 (7.107) 

The Kalman filter finds the sequence of estimates {2; ,  - - a ,  2;) that minimizes 
E ( J N ) ,  where JN is given as 

N 

JN = [ ( y k  - H k 2 ; )  T R k  - 1  ( Y k  - H k 3 ; )  + @Q;'$k] (7.108) 
k = l  
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Note that 2 determines 6 through the system equation, and vice versa. This expres- 
sion for JN shows how we could give greater emphasis to  more recent data. Instead 
of finding the filter that minimizes E ( J N ) ,  we can find the filter that minimizes 
E ( ~ N ) ,  where JN is given as 

N 

JN = [ ( y k  - H k h k ) T f f 2 k R i 1 ( Y k  - H k ? i )  f 6 ~ f f 2 k + $ 2 Q ~ ' 6 k ]  (7.109) 

where a 2 1. The 0 term in the first part of the cost function means that we 
are more interested in minimizing the weighted covariance of the residual a t  recent 
times (large values of k) than at times in the distant past (small values of k). This 
will force the filter to converge to state estimates that discount old measurements 
and give greater emphasis to  more recent measurements. The cr term in the second 
part of the cost function is added for mathematical tractability, as we will see in 
the subsequent development. The second part of the cost function is constant as 
far as our minimization problem is concerned. 

The solution to the minimization of E(.?N) is equivalent to the minimization of 
E ( J N )  (which is the Kalman filter), except that Rk is replaced with ff-2kRk and 
Q k  is replaced with f f - 2 k - 2 Q k .  The modified Kalman gain can therefore be written 

k = l  

a5 

Kk = P;HT(HkPiHF f f f - 2 k R k ) - 1  

= f f 2 k P L H F ( H k c r 2 k P L H F  f R k ) - '  (7.110) 

The time update for the estimation-error covariance can be written as 

p; = Fk-1pk-1 + FT k - 1  + f f - 2 k + 2  & k - i / f f 2  

f f2kP;  = Fk-iff2kPkf_lFkT_1 f Q k - 1  

= ffzFk-la2(k-1)P+ k - 1  FT k - l f Q k - 1  (7.111) 

The measurement update for the estimation-error covariance can be written as 

P l  = P - - K  k kHkpL 

f f2kpz  = f fPkP; - KkHkff2kpL (7.112) 

Now we define pz and f'; as 

p; = ,=p; 

p; = f f 2 k  pi- (7.113) 

We can then write Equations (7.110), (7.111), and (7.112) as 

Kk = p ; H r ( H k $ ; H F  f R k ) - '  
f'; = ff 2 Fk-ip'ks_lFz-i f Q k - i  

f'; = p - - K  k k H k p L  (7.114) 

These are the new Kalman gain equation and covariance-update equations. The 
state-update equations remain as before: 

5; = Fk-i?;-l+ G k - i U k - i  

?+ k = 2; + K k ( y k  - H k h ; )  (7.115) 
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We see that the fading-memory filter is identical to the standard Kalman filter, with 
the exception that the time-update equation for the computation of the a priori 
estimation-error covariance has an o2 factor in its first term. This serves to increase 
the uncertainty in the state estimate, which results in the filter giving more credence 
to the measurement. This is equivalent to increasing the process noise, which 
also results in the filter giving relatively more credence to the measurement. This 
strategy, along with other solutions to the filter divergence problem, was suggested 
early in the history of the Kalman filter [Sch67, Sor7laI. The fading-memory filter 
can be summarized as follows. 

The fading-memory filter 

1. The dynamic system is given by the following equations: 

2. The Kalman filter is initialized as follows: 

2; = E(z0) 
P; = E[(zo - 2o+)(zo - zo)  ] (7.117) -+ T 

3. Choose Q 2 1 based on how much you want the filter to forget past measure- 
ments. If Q = 1 then the fading-memory filter is equivalent to the standard 
Kalman filter. In most applications, Q is only slightly greater than 1 (for 
example, Q x 1.01). 

puted for each time step k = 1 ,2 ,  e a e: 

4. The fading-memory filter is given by the following equations, which are com- 

p i  = Q2Fk- ipz - lF~-1  -k Q k - 1  

Kk = P i H r ( H k p F H r  + Rk)-' 

= P Z H ~ R ~ ~  
2 i  = Fk-l*l-l -k Gk-iUk-1 

2' k = 2 i  f K k ( Y k  - Hk?;) 

pz = ( I  - KkHk)&(I - KkHk)T + KkRkKT 

Note that p is not equal to the covariance of the estimation error. However, the 
fading-memory filter is more robust to modeling errors than the standard Kalman 
filter. 
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4 EXAMPLE 7.10 

In this example, we will show how the fading-memory filter makes the Kalman 
filter more responsive to measurements when the process noise is zero. Con- 
sider the following scalar system: 

(7.119) 

In other words, we are trying to estimate a constant on the basis of noisy 
measurements of that constant. Applying the fading-memory filter equations 
given in Equation (7.118) to this problem, we see that 

(7.120) 

As the filter approaches steady state, Pk+ approaches a steady-state value that 
can be obtained from the above equation as 

This can be solved for P& as 

The steady-state Kalman gain K, can then be solved EM 

ff2PZ 
K, = 

a2P& + R 
f f 2  - 1 

ff2 
- - -  

(7.121) 

(7.122) 

(7.123) 

We see that if a = 1 (i.e., if we use the standard Kalman filter) then P& = 
K ,  = 0. However, if a > 1 (i.e., if we use the fading-memory Kalman filter) 
then P& and K, will both be greater than zero. The measurement update 
equation for the state is given as 

2; = 2; + Kk(yk - 2 i )  

For the standard Kalman filter, limk,, Kk = 0, which means that new mea- 
surements will be ignored and will not be used to update the state estimate. 

(7.124) 
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The Kalman filter may have a false confidence in the certainty of its state 
estimate. However, for the fading-memory filter, Kk > 0 for all k, and the 
filter will always be responsive to new measurements. A larger value of a will 
make the filter more responsive to new measurements. In the limit as a + 00, 

we see from Equation (7.123) that K, = 1. This will result in a measurement 
update from Equation (7.124) of 

(7.125) 

In other words, the fading-memory filter, when carried to an extreme, ignores 
the system model and estimates the state solely on the basis of the m e a  
surements. This is the same thing that will happen if the process noise is 
extremely large. The Kalman filter will ignore the system model because we 
are telling it that we do not have any confidence in the system model. 

vvv 

7.5 CONSTRAINED KALMAN FILTERING 

In the application of state estimators, there is often known information that does 
not fit into the Kalman filter equations in an obvious way. For example, suppose 
that we know (on the basis of physical considerations) that the states satisfy some 
equality constraint Da: = d,  or some inequality constraint Da: 5 d,  where D is 
a known matrix and d is a known vector. This section discusses some ways of 
incorporating those constraints into the Kalman filter equations. 

Some researchers have treated state equality constraints by reducing the sys- 
tem model parameterization [Wen92], and this will be discussed in Section 7.5.1. 
Others have handled state equality constraints by treating them as perfect mea- 
surements [Por88, Hay981, and this will be discussed in Section 7.5.2. A third 
approach is to incorporate the state constraints into the derivation of the Kalman 
filter [Chi85, Sim021, and this will presented in Section 7.5.3. A final approach is 
to incorporate the constraints by discarding that portion of the pdf of the state 
estimate that violates the constraints [Shi98, SimOGb], and this will be discussed in 
Section 7.5.4. 

7.5.1 Model reduction 

Some researchers have treated state equality constraints by reducing the system 
model parameterization [Wen92]. This is straightforward but there are some disad- 
vantages with this approach. First, it may be desirable to maintain the form and 
structure of the state equations due to the physical meaning associated with each 
state. The reduction of the state equations makes their interpretation less natural 
and more difficult. Second, equality constraints that are formulated this way can- 
not be extended to inequality constraints. On the other hand, the model reduction 
approach is conceptually straightforward and usually can be easily implemented. 
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As an example of the model reduction approach, consider the system 

Zk+l = [j 4 -2 : 2 'Izk+[;;;] 
Y k  = [ 2  4 5 ] z k + V k  (7.126) 

Now suppose that we also know, on the basis of our understanding of the physics 
underlying the problem, that the following constraint is always satisfied between 
the states: 

[ l  0 l ] X k = o  (7.127) 

This means that xk(3) = -xk(1). If we make this substitution for zk(3) in the 
original state and measurement equations, we obtain 

These equations can be written in matrix form as 

-2 2 
xk+1 = [ 2 2 ] X k + [ % ]  

(7.128) 

(7.129) 

We have reduced the filtering problem with equality constraints to an equivalent 
but unconstrained filtering problem. An advantage of this approach is that the 
dimension of the problem has been reduced, and so the computational effort of the 
problem is less. One disadvantage of this approach is that the physical meaning of 
the state variables has been lost. Also, this approach can only be used for equality 
constraints (i.e., constraints of the form Dx = d )  and cannot be used for inequality 
constraints (i.e., constraints of the form Dz I d) .  

7.5.2 Perfect measurements 

Some researchers treat state constraints as perfect measurements (i.e., no measure- 
ment noise) [Por88, Hay981. Suppose that our constraints are given as Dzk = d, 
where D is a known s x n matrix (s < n), and d is a known vector. We can 
solve the constrained Kalman filtering problem by augmenting the measurement 
equation with s perfect measurements of the state: 

xk+l = FkxkfWk 

[:I = [ % ] % + [ ? I  (7.130) 

The state equation is the same as usual, but the measurement equation has been 
augmented. The fact that the last s elements of the measurement equation are 
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noise free means that the Kalman filter estimate of the state will always be con- 
sistent with these s measurements; that is, the Kalman filter estimate will always 
be consistent with the constraint 02: = d. Note that the new measurement noise 
covariance will be singular - the last s rows and the last s columns of the measure 
ment noise covariance will be zero. A singular covariance matrix does not present 
any theoretical problems [Gee97]. In fact, Kalman's original paper [Ka160] presents 
an example that uses perfect measurements. However, in practice a singular covari- 
ance increases the possibility of numerical problems [May79, p. 2491, [Ste94, p. 3651. 
In addition, the use of perfect measurements is directly applicable only to equality 
constraints. It can be extended to inequality constraints by adding small nonzero 
measurement noise to the "perfect" measurements, but then the constraints will be 
soft [MahOla] and it will be difficult to control how close the state estimate gets to 
the constraint boundary. 

7.5.3 Projection approaches 

Another approach to constrained filtering is to incorporate the state constraints 
into the derivation of the Kalman filter [Chi85, Sim021. We can incorporate the 
constraints into a maximum probability derivation of the filter, or a mean square 
derivation of the Kalman filter. Also, we can simply project the standard Kalman 
filter estimate onto the constraint surface. 

7.5.3.1 Maximum probability approach Assuming that 20, Wk, and Vk are Gaus- 
sian, the Kalman filter solves the problem 

2k = argm- Pdf( xk I y k  ) (7.131) 

That is, i k  is the value of Xk  that maximizes pdf(zk1Yk). In the above equa- 
tion, Yk is the vector of measurements up to and including time k; that is, Yk = 

[ y? . - y: 1'. This interpretation of the Kalman filter looks at Xk as a random 
variable with a pdf that is conditioned on the measurements up to and including 
time k. The Kalman filter estimate is that value of Xk that maximizes its conditional 
pdf. If the noise processes are Gaussian, then 

(7.132) 

where n is the dimension of the state, P k  is the covariance of the state estimate, 
and z k  is defined as the mean of Xk conditioned on the measurements Yk: 

z k  = E(xl,IYk) (7.133) 

To maximize pdf(xkIYk), we can maximize lnpdf(xr,lYk), which means minimizing 
( z k  - zk)'Pi'(xk - z k ) .  Now suppose that we have the additional constraint that 
Dxk = d. The solution of this constrained minimization problem is the constrained 
state estimate 2. That is, 

z k  = argminE,(zk - zk) 'PL1(5k - zk) such that Dzk = d (7.134) 

Constrained optimization problems can be solved using the Lagrange multiplier 
method discussed in Section 11.2 [Ste94, MooOO]. We form the Lagrangian L and 
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find the necessary conditions for a minimum as follows: 

= D z k - d = O  (7.135) 
dL - 
ax 

where X is the n-element Lagrange multiplier. Solving these equations gives 

= (DPkDT)-l(D5k - d) 

= (DPkDT)-'(D2k - d) 

= 2k - pkDT(DPkDT)-l(D2k - d) (7.136) 

We see that the constrained state estimate 5 is equal to the unconstrained state 
estimate 2,  minus a correction term. 

7.5.3.2 Least squares approach Another way to solve the constrained Kalman fil- 
tering problem is to approach the problem from a least squares point of view. In 
this approach, we find the constrained state estimate 5 as 

5 = argmin5E( 112 - 51 1'1Y) such that D5 = d (7.137) 

where we have dropped the time subscripts for ease of notation. This interpretation 
of the Kalman filter looks at z as a random variable. The quantity (z - 5) (for 
any constant 5) is also a random variable. The conditional expected value can be 
written as 

5k = z k  -PkDTX 

E(llz - 511'1Y) = (z - 5)T(a: - 5) pdf(zIY) da: J 
= /zTzpdf(zlY)dz- 25 zpdf(zIY)dx+ZTZ I 

s 
We form the Lagrangian for the constrained optimization problem as 

L = E(llz - 511'1Y) + 2XT(D5 - d) 

= / zTz pdf(z1Y) dz - 25 z pdf(a:IY) dz + ZT5 + 

(7.138) 

2XT(D2 - d) (7.139) 

Assuming that 20, W k ,  and Wk are Gaussian, the standard Kalman filter estimate 2 
is given by 

i =  E W )  

= / z pdf(z/Y) dz (7.140) 

Solving the constrained minimization problem involves setting the partial deriva- 
tives of the Lagrangian of Equation (7.139) equal to zero. This gives the equations 

d L  - = - 2 f + 2 5 + 2 D T X = 0  
85 
d L  - = D Z - d = O  (7.141) ax 
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Solving these equations for X and Z gives 

X = (DDT) - l (DP-d)  
Z = 2 - DT(DDT)-l(DP - d) (7.142) 

We see that the constrained state estimate P is equal to the unconstrained state 
estimate P, minus a correction term. This is similar to the constrained estimate 
that was obtained by the maximum probability approach in Equation (7.136). 

7.5.3.3 General projection approach A third way to  derive the constrained state 
estimate is to begin with the standard unconstrained estimate P and project it onto 
the constraint surface Dx = d. This can be written as 

2 = argminz(Z - P)TW(Z - 2 )  such that DZ = d (7.143) 

where W is any positive definite weighting matrix. [W is chosen to weight various 
elements of the difference (5 - 3). This is generally based on the designer's relative 
confidence in the elements of the unconstrained state estimate.] The solution to 
the above problem is 

Z = P - W-lDT(DW-lDT)-l(DP - d) (7.144) 

This is the most general approach to the problem. Note that the maximum prob- 
ability estimate of Equation (7.136) is equal to this if we set W = P-'. The mean 
square estimate of Equation (7.142) is equal to this if we set W = I .  

It is shown in [Chi85, Sim021 that the constrained state estimate of Equa- 
tion (7.144) has several interesting properties. 

1. The constrained estimate is unbiased. That is, E(Z) = E(x). 

2. Setting W = P-l results in the minimumvariance filter. That is, if W = P-' 
then Cov(x - Z) 5 Cov(x - 2 )  for all 2.  

3. Setting W = I results in a constrained estimate that is always (i.e., at each 
time step) closer to the true state than the unconstrained estimate. That is, 
if W = I then I lxk - P k ]  12 5 I1q - h k  112 for all k. 

The projection approach to constrained filtering has the advantage that it can be 
easily extended to inequality constraints. That is, if we have the constraints Dx 5 d, 
then the constrained estimate can be obtained by modifying Equation (7.143) and 
solving the problem 

Z = argminz(Z - ?)%'(it - 2 )  such that DZ 5 d (7.145) 

The problem defined above is known as a quadratic programming problem [Fle81, 
Gi1811. There are several algorithms for solving quadratic programming problems, 
most of which fall in the category known as active set methods. An active set 
method uses the fact that it is only those constraints that are active at the solution 
of the problem that are significant in the optimality conditions. Assume that we 
have s inequality constraints (i.e., D has s rows), and q of the s inequality con- 
straints are active at the solution of Equation (7.145). Denote by l? and d^ the q 
rows of D and q elements of d corresponding to the active constraints. If the correct 
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set of active constraints was known a priori then the solution of Equation (7.145) 
would also be a solution of the equality constrained problem 

Z = argmiQ(Z - 5)TW(Z - 2)  such that BZ = d^ (7.146) 

This shows that the inequality constrained problem of Equation (7.145) is equivalent 
to the equality constrained problem of Equation (7.146). Therefore, all of the 
properties of the equality constrained state estimate enumerated above also apply 
to the inequality constrained state estimate. Standard quadratic programming 
routines2 can be used to solve inequality constrained problems that are in the form 
of Equation (7.145). 

EXAMPLE 7.11 

Suppose that we have an unconstrained estimate and covariance given as 

= [: ;] (7.147) 

That is, we are twice as certain of our 2 2  estimate as we are of our XI estimate. 
We also know (from our understanding of the underlying system) that the 
state must satisfy the constraint 

DX = d 
[ l  l ] x  = 1 (7.148) 

Clearly, the unconstrained estimate does not satisfy this constraint. The least 
squares approach to constrained estimation uses Equation (7.142) to compute 
the constrained estimate as 

We see that the estimates for x1 and 2 2  both changed by the same amount 
(from the unconstrained values of 3, to the constrained values of 1/2). The 
maximum probability approach to constrained estimation uses Equation (7.136) 
to compute the constrained estimate as 

Z M p  = 3 - PDT(DpDT)-'(D2 - d )  

= [ -:;;I (7.150) 

The estimate for x1 changed by 10/3 (from the unconstrained value of 3, to 
the constrained value of -1/3). The estimate for 2 2  changed by 5/3. We see 

2For example, the QP function in MATLAB's Optimization Toolbox. 
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that the estimate for XI changed twice as much as the estimate for 2 2 ,  because 
the certainty of the unconstrained 2 2  estimate was twice the certainty of the 
unconstrained X I  estimate. This is illustrated in Figure 7.1. 

xz T unconstrained estimate 
and uncertainty ellipse 

constraint 
X I  + xi! -1 = 0 

Figure 7.1 In Example 7.11, the unconstrained estimate violates the equality constraint. 
The least squares approach to constrained estimation projects the estimate in the direction 
perpendicular to the constraint surface. The maximum probability approach projects the 
estimate in the direction P-l relative to the constraint surface. 

vvv 

7.5.4 A pdf truncation approach 

In the projection approach to constrained estimation discussed in the previous 
section, the state estimates are projected onto the constraint surface. In the pdf 
truncation approach, we take the probability density function that is computed by 
the Kalman filter (assuming that it is Gaussian) and truncate it at the constraint 
edges. The constrained state estimate then becomes equal to the mean of the 
truncated pdf [Shi98, SimOGb] . This approach is designed for inequality constraints 
on the state, although it can also be applied to equality constraints. 

Suppose that at time k we have the s scalar state constraints 

i = 1 , .  . . , s (7.151) T 
a k z  5 $ k t x k  5 bki  

where a k z  < bkz .  This is a two-sided constraint on the linear function of the state 
$ z t 2 k .  If we have a one-sided constraint, then we set a k z  = --oo or b k z  = +m. 
Now suppose at time k that we have a standard Kalman filter estimate P k  with 
covariance P k .  The problem is to truncate the Gaussian pdf N ( & , P k )  at the s 
constraints given in Equation (7.151), and then find the mean z k  and covariance 
p k  of the truncated pdf. These new quantities, z k  and &, become the constrained 
state estimate and its covariance. 

In order to make the problem tractable, we will define &, as the state estimate 
after the first i constraints of (7.151) have been enforced, and i j k r  as the covariance 
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of Zka .  We therefore initialize 

(7.152) 

Now perform the following transformation: 

Zka = pW-'/2TT(2k - 5ka) (7.153) 

p is an orthogonal n x n matrix that will be determined later, and T and W are 
obtained from the Jordan canonical decomposition of &. This transformation will 
allow us to  solve the pdf truncation problem that we have posed, and find the mean 
of the pdf as the estimated state after i constraints have been enforced. From the 
description of T and W we know that 

TWTT = 4% (7.154) 

T is orthogonal and W is diagonal (therefore, its square root is very easy to  com- 
pute). Next we use Gram-Schmidt orthogonalization [MooOO] to  find the orthogonal 
p matrix that satisfies 

pW112TT4k, = [ ( 4 r a & i 4 k a ) 1 / 2  0 * . *  0 3' (7.155) 

The Gram-Schmidt orthogonalization procedure for computing p is given as follows. 

1. Suppose that p is an n x n matrix with rows pi (i = 1,. - -, n): 

P =  [ y ' ]  
Pn 

The first row of p is computed as 

(7.156) 

( 7.157) 

2. For k = 2, - a ,  n, perform the following. 

(a) Compute the kth row of p as follows: 

k - 1  

i= I 

where ek is the unit vector; that is, e k  is an n-element column vector 
comprised entirely of zeros, except that its kth element is a 1. 

element (7.159) 
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(b) If the p k  computed above is zero, then replace it with the following: 

k - 1  

P k  = el - c ( e T P i ) P i  (7.160) 
2=1 

(c) Normalize P k :  

(7.161) 

It can be shown from Equations (7.153)-(7.155) that z k z  has a mean of 0 and 
covariance matrix of identity. With these definitions we see that the upper bound 
of Equation (7.151) is transformed as follows: 

where d k z  is defined by the above equation. Similarly we can see 

(7.162) 

that 

(7.163) 

where Ckz is defined by the above equation. We therefore have the normalized scalar 
constraint 

Ckc 5 [ 1 0 0 ] z k z  5 d k c  (7.164) 

Since Zkz has a covariance of identity, its elements are statistically independent 
of each other. Only the first element of .Zk, is constrained, so the pdf truncation 
reduces to a one dimensional pdf truncation. The first element of Zkz is distributed 
as N(0 , l )  (before constraint enforcement), but the constraint says that Zkz must 
lie between c k z  and d k z .  We therefore remove that part of the Gaussian pdf that 
is outside of the constraints and compute the area of the remaining portion of the 
pdf as 

dkr 1 1 
- exp(-C2/2) dC = [erf(di(k)/fi) - erf(ckz/fi)] (7.165) 

l k *  6 
where erf(.) is the error function, defined as 

erf(t) = - e x p ( - y 2 ) d y  (7.166) 

(Note that the error function is sometimes defined without the 2 / f i  factor, which 
can lead to confusion. However, the above definition is the most commonly used 

J?F 2 l  
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one.) We normalize the truncated pdf so that it has an area of one, and we find 
that the truncated pdf (i.e., the constrained pdf of the first element of Zkz) is given 
by 

(7.167) 

We define Zk,z+l  as the random variable that has the same pdf as Zkz except that 
the pdf is truncated and normalized, so that its pdf lies entirely between the limits 
Cka and dk,: 

pdf(Zk,,+l) = truncated pdf(Zk,,) (7.168) 

We can compute the mean and variance of Zk,z+l as follows: 

p = E[zk,z+l] 

(7.169) 

= a [exp(-&/2)(ckz - 2p) - =p(-di,/2)(dk, - 2p)] + p2 + 1 

The mean and variance of the transformed state estimate, after enforcement of the 
first constraint, are therefore given as 

z k , z + l  = [ p 0 " '  0 1' 
COV(&,$+1) = diag(a2, 1,. ., 1) (7.170) 

We then take the inverse of the transformation of Equation (7.153) to find the mean 
and variance of the state estimate after enforcement of the first constraint. 

We then increment i by one and repeat the process of Equations (7.153)-(7.171) 
to obtain the state estimate after enforcement of the next constraint. Note that 
fkk0 is the unconstrained state estimate at time k, ? k l  is the state estimate at time 
k after the enforcement of the first constraint, 2k2 is the state estimate at time k 
after the enforcement of the first two constraints, and so on. After going through 
this process s times (once for each constraint), we have the final constrained state 
estimate and covariance at time k: 

(7.172) 
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Figure 7.2 shows an example of a one-dimensional state estimate before and after 
truncation. Before truncation, the state estimate is outside of the state constraints. 
After truncation, the state estimate is set equal to the mean of the truncated pdf. 
Figure 7.3 shows another example. In this case, the unconstrained state estimate 
is inside the state constraints. However, truncation changes the pdf and so the 
constrained state estimate changes to the mean of the truncated pdf. 

unconstrained estimatc 
0.35 

0.3 

0.25 

E o.2 

0.15 

0.1 

0.05 

- 4 - 3 - 2 - 1  0 1 2  3 4 
X 

Figure 7.2 
estimate, which is at z c -1.38, is the centroid of the truncated pdf. 

The unconstrainedestimate at  z = 0 violates the constraints. The constrained 

,-, Q= 1 constrained estimate’ 1 

0.05L 
-4 -3 -2 -1 0 

X 

iconstrained estimate 

Figure 7.3 The unconstrained estimate at z = 0 satisfies the constraints. Nevertheless, 
the truncation approach to constrained estimation shifts the estimate to the centroid of the 
truncated pdf, which is at z M -0.23. 



SUMMARY 223 

EXAMPLE 7.12 

In this example, we consider a vehicle navigation problem. The first two state 
elements are the north and east positions of a land vehicle, and the last two 
elements are the north and east velocities. The velocity of the vehicle is in 
the direction of 8, an angle measured clockwise from due east. A position- 
measuring device provides a noisy measurement of the vehicle’s north and 
east positions. The process and measurement equations for this system can 
be written as 

(7.173) 

where T is the discretization step size. We can implement a Kalman filter to 
estimate the position and velocity of the vehicle based on our noisy position 
measurements. If we know that the vehicle is on a road with a heading of 8, 
then we know that 

tan8 = 2(1)/2(2) 

= 4 3 ) / 4 4 )  (7.174) 

These constraints can be written as 

(7.175) 1 -tan8 0 0 1 0 0 1 - tan8 

The constrained filter can be implemented using any of the four approaches 
discussed in this section (model reduction, perfect measurements, projection, 
or pdf truncation). Figure 7.4 shows the magnitude of the north position esti- 
mation error of the unconstrained and constrained filters (projection approach 
using W = I )  for a typical simulation. In this example, significant estimation 
improvement can be obtained when constraint information is incorporated 
into the filter, although the improvement will be problem dependent. 

vvv 
It is clear from this section that there are a variety of ways to enforce equality or 

inequality constraints on state estimation problems. The “best” way is not clear- 
cut, and probably depends on the application. Other approaches to constrained 
estimation and some discussion of the mathematical meaning of state constraints 
can be found in [He194, Rao03, DewO4, Goo05a, Gooosb, Ko061. 

7.6 SUMMARY 

In this chapter, we discussed a variety of Kalman filter generalizations that make 
the filter more widely applicable to a broader class of problems. Correlated and 
colored process and measurement noise were studied early in the history of the 
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Figure 7.4 
constrained Kalman filters for Example 7.12. 

North position estimation error magnitude of the unconstrained and 

Kalman filter. We showed in this chapter that filter modifications taking correlation 
and color into account can improve estimation performance. However, whether or 
not these approaches are worth the extra complexity and computational effort is 
problem dependent. One of the most practical extensions of the Kalman filter is the 
steady-state Kalman filter. The steady-state Kalman filter often performs nearly 
identically to the more theoretically rigorous timevarying filter. However, the 
steady-state filter requires only a fraction of the computational cost. The a-p and 
a-B-7 filters are special cases of the steady-state Kalman filter. We also discussed 
the fading-memory filter, which is a way of making the Kalman filter more robust to 
modeling errors. The fading-memory filter is a simple modification to the Kalman 
filter that can noticeably improve filter performance. Further discussion of filter 
robustness is found in Section 10.4 and Chapter 11. Finally, we discussed several 
ways to incorporate state constraints in the Kalman filter to improve estimation 
accuracy when information other than the state model is available. Other Kalman 
filter generalizations are discussed in later chapters of this book. 

Kalman filters with fewer states than the system (Section 10.3) 

Kalman filtering when the system model or noise statistics are not known 
(Section 10.4) 

order (Section 10.5) 
Kalman filtering when the measurements arrive at the filter in the wrong 

Kalman filters for nonlinear systems (Chapter 13) 

Further generalizations undoubtedly await future development by the efforts of 
enterprising students and researchers. 
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PROBLEMS 

Written exercises 

7.1 Consider the scalar system 

1 
x k  = s x k - 1 - k  w k - 1  

Y k  = x k - k v k  

V k  = - Y k - l  + ( k - 1  
1 
2 

where W k  N (0, Q )  and ( k  N (0, Qc). Let Q = Qc = 1. 
a) Design a Kalman filter in which the dynamics of the measurement noise V k  

are ignored and it is assumed that V k  is white noise with a variance of Qc. 
Based on the incorrect Kalman filter equations, what does the Kalman 
filter think that the steady-state a posteriori estimation covariance is? 

b) Based on the incorrect Kalman filter equations, what is the true steady- 
state a posteriori estimation covariance E(e%)? Hint: Find a recursive 
equation for E ( $ )  in terms of E(e%-,), E(w; -J ,  E(v;),  and E ( e k - l V k ) ,  

then solve for the steady-state value of E(ei) .  
c) Design a Kalman filter using the state augmentation approach in which 

the dynamics of the measurement noise are correctly taken into account. 
What is the steady-state estimation covariance? Hint: You may need to 
use MATLAB’s DARE function to solve the steady-state Riccati equation 
that is associated with this question. 

7.2 Show that the Kalman filter for an LTI system with a noise-free scalar mea- 
surement that satisfies the equation (HQHT)Q = QHTHQ has a steady-state a 
posteriori covariance of zero. 

7.3 Consider the scalar system 

x k  = x k - I - k w k - 1  

Y k  = x k  + v k  

where w k  N (0, Q )  and V k  N (0, R) are white noise processes with Q = R = 1. 

Design a Kalman filter in which the correlation between W k  and wk+l is 
ignored. Based on the incorrect Kalman filter equations, what does it 
appear that the steady-state a posteriori estimation covariance is? 
For the Kalman filter designed above, write a recursive equation for the 
a posteriori estimation error e k  = X k  - 2;. use this equation to find the 
steady-state solution to E(ei ) .  
Design a Kalman filter in which the correlation between W k  and Vk+1 

is correctly taken into account. Show that the steady-state a posteriori 
estimation covariance is zero. Explain why the estimation covariance goes 
to zero in spite of the existence of process noise and measurement noise. 
(Hint: Use the correlation between w k  and V k + 1  to write an equivalent 
two-state system, and then use the results of Problem 7.2.) 
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7.4 Consider the system 

where W k  N (0, Q )  and Q = I .  
Find one matrix square root of Q. 
Is ( F , H )  observable? 
Is ( F ,  H )  detectable? 
Is ( F ,  G) controllable for all G such that GGT = Q? 
Is (F,  G) stabilizable for all G such that GGT = Q? 
Use the above results to specify how many positive definite solutions exist 
to the DARE that is associated with the Kalman filter for this problem. 
Use the above results to specify whether or not the steady-state Kalman 
filter for this system is stable. 

7.5 Prove that the matrix 3.1 in Equation (7.85) is symplectic. 

7.6 In this problem, we will use the shorthand notation P = PS and M = P-. 
Use the following procedure to find a as a function of ,B for the cu-p filter [BarOl]. 

Use the time-update equation for M to solve for the three unique elements 
of P as a function of the three unique elements of M .  
Use the measurement-update equation for P to solve for the three unique 
elements of P as a function of the three unique elements of M .  
Equate the sets of equations from the two steps above to get expressions 
for M11K1, M12K1, and M12K2, that do not have any P23 terms. 
Use Equation (7.64) to solve for M11 and M12. 
Combine the five equations from the two previous steps to get a single 
equation with K1 and K2 that does not have any M,j terms. 
Replace K1 and K2 in the previously obtained equation with a and ,B from 
Equation (7.63), then solve for a as a function of p. 

7.7 
lowing Equation (7.86). 

7.8 
r ior i  Kalman filter can be written as 

Prove the properties of symplectic matrices that are listed immediately fol- 

Recall that the steady-state, zero-input, one-step formulation of the a poste- 

Prove that if (F ,  H) is observable and (I - H K )  is full rank, then the Kalman filter 
in the above equation is an observable system. Hint: H ( I  - K H )  = ( I  - H K ) H .  

7.9 Suppose you have a two-state Newtonian system of the type described in 
Section 7.3.1. The sample time is 1 and the variance of the acceleration noise is 1. 
A requirement is given to estimate the position with an a posteriori steady-state 
variance of 1 or less. What is the largest measurement variance that will meet the 
requirement? 
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Computer exercises 

7.10 Consider the system described in Problem 7.1. Implement the Kalman 
filter that assumes white noise and the Kalman filter that assumes colored noise. 
Numerically calculate the RMS a posteriori estimation-error variance and verify 
that it matches the analytically calculated values from your answer to Problem 7.1. 

7.11 Plot the a and P parameters of the a-P filter as a function of A. Use a log 
scale for X with a range of to lo3. What are the limiting values of a and p 
as X + O? Does this make intuitive sense? What are the limiting values of a and 
p a s  X -+ m? 

7.12 Plot the a ,  p, and y parameters of the a-P-y filter as a function of A. Use 
a log scale for X with a range of to lo3. What are the limiting values of a,  P, 
and y as X + O? Does this make intuitive sense? What are the limiting values of 
a,  P, and y as X -+ m? 

7.13 A simple model of the ingestion and metabolism of a drug is given as 

i l  = - k 1 s 1 + u  

X 2  = k lx l  - k 2 ~ 2  

Y ( t k )  = x 2 ( t k )  + u ( t k )  

where the units of time are days, X I  is the mass of the drug in the gastrointestinal 
tract, 2 2  is the mass of the drug in the bloodstream, and u is the ingestion rate of 
the drug. Suppose that kl = k 2  = 1. The measurement noise ' U ( t k )  is zero-mean 
and unity variance. The initial state, estimate, and covariance are 

h(0) = x ( 0 )  

It is known from physical constraints that 2 1  E [0.8,1]. 
a) Discretize the system with a step size of 1 hour. 
b) Implement the discrete-time Kalman filter, the projection-based constrained 

Kalman filter with W = I, and the pdf truncation constrained filter. Run 
simulations of these filters for a three-day period. Plot the magnitude 
of the 2 1  estimation error for the three filters. Which filter appears to 
perform best? Which filter appears to perform worst? 





CHAPTER 8 

The continuous-time Kalman filter 

Our philosophy here will be to model phenomena with differential equations and then 
to form estimates of the physical quantities which also satisfy differential equations. 

--Richard Bucy [Buc68, Chapter 11 

James Follin, A. G. Carlton, James Hanson, and Richard Bucy developed the 
continuous-time Kalman filter in unpublished work for the Johns Hopkins A p  
plied Physics Lab in the late 1950s. Rudolph Kalman independently developed the 
discretetime Kalman filter in 1960. In April 1960 Kalman and Bucy became aware 
of each other's work and collaborated on the publication of the continuous-time 
Kalman filter in [Ka161]. This filter is sometimes referred to as the Kalman-Bucy 
filter. Further historical notes are given in Appendix A. 

The vast majority of Kalman filter applications are implemented in digital com- 
puters, so it may seem superfluous to discuss Kalman filtering for continuous-time 
measurements. However, there are still opportunities to implement Kalman filters 
in continuous time (i.e., in analog circuits) [Hug88]. Furthermore, the derivation 
of the continuous-time filter is instructive from a pedagogical point of view. Fi- 
nally, steady-state continuous-time estimators can be analyzed using conventional 
frequency-domain concepts, which provides an advantage over discretetime estimc+ 
tors [Ba187, Ste941. In light of these factors, this chapter presents the continuous- 
time Kalman filter. 

Optimal State Estimation, First Edition. By Dan J.  Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 
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Our derivation of the continuous-time filter starts with the previously developed 
discrete-time filter from Chapter 5, and then takes the limit as the time step de- 
creases to zero. Section 8.1 shows the relationship between continuous-time white 
noise and discrete-time white noise, which is the foundation for the derivation of the 
continuous-time Kalman filter. Section 8.2 derives the Kalman filter for the case of 
continuous-time system dynamics and continuous-time measurements. Section 8.3 
shows some creative methods to solve the continuous-time Riccati equation, which 
is a key component of the continuous-time Kalman filter. Section 8.4 discusses the 
continuous-time Kalman filter for the cases of correlated process and measurement 
noise, and for colored measurement noise. Section 8.5 discusses the steady-state 
continuous-time Kalman filter, its relationship to the Wiener filter of Section 3.4, 
and its relationship to linear quadratic optimal control. 

8.1 DISCRETE-TIME AND CONTINUOUS-TIME WHITE NOISE 

In this section, we will show the relationship between discrete-time white noise and 
continuous-time white noise. We need to understand this relationship because in 
the next section we will derive the continuous-time Kalman filter as the limiting case 
of the discretetime Kalman filter as the sample time decreases to zero. First we will 
discuss the relationship between discrete-time and continuous-time process noise, 
and then we will discuss the relationship between discrete-time and continuous-time 
measurement noise. 

8.1.1 Process noise 

Consider the following discrete-time system with an identity state transition matrix 
and a sample time of T :  

where {Wk} is a discrete-time white noise process. Let us see what effect the white 
noise has on the covariance of the state. We can solve this discrete-time system for 
the state as follows: 

x k  = WO + W 1  + - . . + W k - 1  (8.2) 

The covariance of the state is therefore given as 

E [ x k x r ]  = E[(Wo + W1 + * + Wk-i)(WO + W 1  + * * * + W ~ - I ) ~ ]  

= E[wow3 + E [ W l W T ]  + * a * + EIWk-lW;- l ]  

= kQ (8.3) 

The value of the continuous-time parameter t is equal to the number of discrete-time 
steps k times the sample time T .  That is, t = kT. We therefore see that 

E [ Z ( t ) X T ( t ) ]  = E [ z k X : ]  

= kQ 
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The covariance of the state increases linearly with time for a given sample time T.  
Now consider the continuoustime system with an identity state transition matrix: 

i ( t )  = w(t) (8.5) 

where w(t) is continuous-time white noise. We propose (in hindsight) the following 
definition for continuous-time white noise: 

(8.6) E[W(t)WWT(T)] = -6( t  Q - T )  T 
where Q and T are the same as they are in the discretetime system of Equa- 
tion (8.1). 6 ( t  - T )  is the continuous-time impulse response; it is a function with a 
value of 0;) at t = T ,  a value of 0 everywhere else, and an area of 1. Let us compute 
the covariance of z ( t )  in Equation (8.5): 

E[z(t)zT(t)] = E w ( a )  da wT(@) dp [JO’ Jo’ I 
Substituting Equation (8.6) into the above equation gives 

E[z(t)z’(t)] = J’ J’ &6(a - p) d a d p  

= J0 ’4dp 

0 o T  

Qt - -  - 
T 

where we have used the sifting property of the continuous-time impulse function 
(see Problem 4.10). Recalling that t = kT, we can write the above equation as 

E[z( t ) zT( t ) ]  = k Q  (8.9) 

Comparing this with Equation (8.4), we see that the covariance of the state of 
the continuous-time system increases with time in exactly the same way as the 
covariance of 6he state of the discretetime system. In other words, discretetime 
white noise with covariance Q in a system with a sample period of T ,  is equivalent to 
continuous-time white noise with covariance Qc6(t), where Qc = Q / T .  Zero-mean 
continuous-time white noise is denoted as 

4 t )  N ( 0 , Q c )  (8.10) 

which is equivalent to saying that 

E [ W ( t ) W T ( T ) ]  = Qc6(t - T )  (8.11) 

Continuous-time white noise is counterintuitive because w ( t )  is infinitely correlated 
with W ( T )  at t = T, but it has zero correlation with itself when t # T. Nevertheless, 
it can be approximately descriptive of real processes. Also, continuous-time white 
noise is mathematically well defined and is a useful device that we will use in this 
chapter. Additional discussion about the relationship between discretetime and 
continuous-time white noise can be found in [Kai81, Smi781. 
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8J.2 Measurement noise 

Now let us think about measurement noise. Suppose we have a discretetime mea- 
surement of a constant x every T seconds. The measurement times are tk = kT 
( k  = 1,2,**.) :  

(8.12) 

From the Kalman filter equations in Section 5.1 we find that the a posteriori 
estimation-error covariance is given by 

From this it can be shown that 

PoR 
kPo + R 

Pk+ = 

lim ~ k +  = - R 
P o - t w  k 

RT = -  
tk 

The error covariance at time tk is independent of the sample time T if 

(8.13) 

(8.14) 

(8.15) 

where Rc is some constant. This implies that 

lim R = R,6(t) (8.16) 
T-0 

where 6(t)  is the continuous-time impulse function. This establishes the equivalence 
between white measurement noise in discrete time and continuous time. The effects 
of white measurement noise in discrete time and continuous time are the same if 

(8.17) 

Equation (8.15) specifies the relationship between R and Rc, and the second equa- 
tion above is a shorthand way of saying 

E [ w ( ~ ) w ( T ) ]  = Rc6(t - T) (8.18) 

8.1.3 

The results of the above sections can be combined with the results of Section 1.4 to 
obtain a discretized simulation of a noisy continuous-time system for the purpose 

Discretized simulation of noisy continuous-time systems 
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of implementing a discretetime state estimator. Suppose that we have a system 
given as 

(8.19) 

Both w ( t )  and v( t )  are continuous-time noise, and u(t)  is a known input. This 
system is approximately equivalent to the following discretetime system: 

(8.20) 

where At is the discretization step size. The second expression for X k  above is valid 
if A-l exists. If we use these discretized equations to simulate a continuous-time 
system, then we can simulate a continuous-time state estimator using the resulting 
measurements with one of the integration methods discussed in Section 1.5. The 
remainder of this chapter discusses continuous-time state estimation. 

8.2 DERIVATION OF THE CONTINUOUS-TIME KALMAN FILTER 

We will now use the results of the previous section to derive the continuous-time 
Kalman filter. Suppose that we have a continuous-time system given as 

(8.21) 

When we write w - (O,Qc) we mean exactly what is written in Equation (8.11). 
When we write w N (0, R,) we mean exactly what is written in Equation (8.18). Now 
suppose that we discretize this system with a sample time of T (see Section 1.4). 
We obtain 

(8.22) 

The matrices in this discretetime system are computed as follows: 
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F =  
M 

G =  
w 

A =  
M 

H =  

wk 

uk  

exP(AT) 
( I  + AT) for small T 
(exp(AT) - I)A-'B 
BT for small T 
(exp(AT) - I)A-I 
IT for small T 
C 

( O , Q ) ,  Q =  QcT 
N(0,  R) ,  R = RJT  (8.23) 

The discretetime Kalman filter gain for this system was derived in Section 5.1 a 

Kk = PLHT(HPLHT + R)-' (8.24) 

From this we can derive 

The estimation-error covariances were derived in Section 5.1 as 

(8.25) 

(8.26) 

For small values of T ,  this can be written as 

PL+' = ( I  + AT)Pkf(I + ATjT + QcT 

= P; + (AP; + P , ~ A ~  + Q,)T + A P , + A ~ T ~  (8.27) 

Substituting for Pk+ gives 

PF+l = (I - Kkc)P i  f APk+ATT2 + 
[A(I - K k c ) P i  + ( I  - KkC)PLAT i- Qc]T (8.28) 

Subtracting PL from both sides and then dividing by T gives 

Taking the limit as T + 0 and using Equation (8.25) gives 

= -PCTRLICP + AP +PAT + Qc (8.30) 
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This equation for P is called a differential Riccati equation and can be used to com- 
pute the estimation-error covariance for the continuous-time Kalman filter. This 
requires n2 integrations because P is an n x n matrix. But P is symmetric, so in 
practice we only need to integrate n(n + 1)/2 equations in order to solve for P. 

In Section 5.1 we derived the Kalman filter equations for 2 as 

2; = Ff; -_ ,+G~k- l  

2; = 2,  + Kk(yk - H 2 ; )  (8.31) 

If we assume that T is small we can use Equation (8.23) to write the measurement 
update equation as 

2; = F i t - l f  G u ~ - I +  Kk(yk - HFi?t-'_, - HGuk-1) 

NN ( I  + + BTuk-l+ 

Kk(yk - C ( I  + AT)2t-l - CBTUk-1) (8.32) 

Now substitute for Kk from Equation (8.25) to obtain 

i+ k = 2:.-1+ ATi;-l + B T u ~ - ~ +  
T -1 PC R, T(yk - C2;-l - CAT?:-_, - CBTuk-1) (8.33) 

Subtracting zkf-l from both sides, dividing by T ,  and taking the limit as T + 0 ,  
gives 

i; - q-l 
T 

2 = lim 
T+O 

= A2 + BU + PCTRL1(y - C2) 

This can be written as 

1 = A P + B u f K ( y - C 2 )  
K = PCTRF1 

(8.34) 

(8.35) 

This gives the differential equation that can be used to integrate the state estimate 
in the continuous-time Kalman filter. 

The continuous-time Kalman filter 

The continuous-time Kalman filter can be summarized as follows. 

1. The continuous-time system dynamics and measurement equations are given 
as 

Si. = A x + B u + w  

y = c x + v  
w N ( 0 , Q c )  

y (0,RC) 

Note that w ( t )  and w ( t )  are continuous-time white noise processes. 

(8.36) 
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2. The continuous-time Kalman filter equations are given as 

2(0)  = E[z(O)] 
P(0) = E((s (0)  - 2(0))(z(O) - 2 ( 0 ) ) T ]  

K = PCTRF1 

P = -PCTRLICP + AP + PAT + Qc (8.37) 

2 = A2++~u+K(y-C2)  

Other methods of deriving the continuous-time Kalman filter also exist. For exam- 
ple, George Johnson presented a derivation that is based on finding the gain that 
minimizes the derivative of the estimation covariance [Joh69]. 

EXAMPLE8.1 

In this example we will use the continuous-time Kalman filter to estimate a 
constant given continuous-time noisy measurements: 

(8.38) 

We see that A = 0, Q = 0, and C = 1. Equation (8.37) gives the differential 
equation for the covariance as 

P = -PCTR-lCP + AP + PAT + Q 

= -P2/R (8.39) 

with the initial condition P(0) = PO. From this we can derive 

lim P 
t-ca 

-dT 
R 

= -  

= - j f i d r  

= Pr l  + t / R  
= (Pr l  + t/R)-' 

1 + Pot/R 

= - t /R 

- PO - 

= o  (8.40) 

Equation (8.37) gives the Kalman gain as 

(8.41) 
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Equation (8.37) gives the state-update equation as 

d = A$ + B~ + ~ ( y  - c?) (8.42) 

from which we can derive 

2 =  K(Y - 2)  
lim 2 = 0 (8.43) 
t+m 

This shows that as time goes to infinity, 2 reaches a steady-state value. This 
is intuitive because as we obtain an infinite number of measurements of a 
constant, our estimate of that constant becomes perfect and additional mea- 
surements cannot improve our estimate. Furthermore, the Kalman gain goes 
to zero as time goes to infinity, which again says that we ignore additional 
measurements (since our estimate becomes perfect). Finally, the covariance 
P goes to zero as time goes to infinity, which says that the uncertainty in our 
estimate goes to zero, meaning that our estimate is perfect. Compare this 
example with the equivalent discrete-time system discussed in Example 7.10. 

vvv 

EXAMPLE8.2 

In this example we are able to obtain measurements of the velocity of an object 
that is moving in one dimension. The object is subject to random accelera- 
tions. We want to estimate the velocity x from noisy velocity measurements. 
The system and measurement equations are given as 

j . =  W 

y = a : + v  

w N (0 ,Q)  
tJ (0 ,R)  (8.44) 

We see that A = 0 and C = 1. From the covariance update of Equation (8.37) 
we obtain 

P = - P C ~ R - ~ C P  + AP +  PA^ + Q 

- - -P2/R+Q (8.45) 

with the initial condition P(0) = Po. From this we can derive 

Solving this for P gives 

= (Q-P2/R)dr  

= 1 dr 
t 

= t  (8.46) 
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The Kalman gain is obtained from Equation (8.37) as 

K = PCTR-' 

= P / R  

lim K = 
t+w 

(8.48) 

The state estimate update expression is obtained from Equation (8.37) as 

f = A h + B t ~ + K ( y - C f i . )  
= K(y  - 5) (8.49) 

From these expressions we see that if process noise increases (i.e., Q increases) 
then K increases. This is intuitively agreeable, because from the 4 equation we 
see that K defines the rate at which we change 3 based on the measurements. 
If Q is large then we have less confidence in our system model, and relatively 
more confidence in our measurements, so we change f more aggressively to 
be consistent with our measurements. 

Similarly, we see that if we have large measurement noise (i.e., R is large) 
then K decreases. This is again intuitively agreeable. Large measurement 
noise means that we have less confidence in our measurements, so we change 
f less aggressively to be consistent with our measurements. 

Finally, we see that P increases as both Q and R increase. An increase in 
the noise in either the system model or the measurements will degrade our 
confidence in our state estimate. 

vvv 

8.3 ALTERNATE SOLUTIONS T O  T H E  RlCCATl EQUATION 

The differential Riccati equation of Equation (8.37) can be computationally expen- 
sive to integrate, especially for systems with small time constants. Also, direct 
integration of the Riccati equation may result in a P matrix that loses its positive 
definiteness due to numerical problems. In this section we will look at some alter- 
nate solutions to the differential Riccati equation. This first two methods, called the 
transition matrix approach and the Chandrasekhar algorithm, are both intended 
to reduce computational effort. The third method, called square root filtering, is 
intended to reduce numerical difficulties. 

8.3.1 The transition matrix approach 

Assume that P = AY-l, where A and Y are n x n matrices to be determined. In 
the following we will determine what equalities must be satisfied by A and Y in 
order for this factorization to be valid. If the factorization is valid then 

d 
d t  

AY-l+ A-(Y-l) 

= Ay-1- AY-1yy-l (8.50) 

where we have used Equation (1.51) for the time derivative of Y-l .  We post- 
multiply both sides of the above equation by Y to obtain 

(8.51) p y  = A - A y - l y  
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Recall from Equation (8.37) that the differential equation for P is given by 

P = AP + PAT - PCTR-lCP + Q (8.52) 

Substitute AY-l for P in this equation to obtain 

P = AAY-l+ AY-lAT - AY-lCTR-'CAY-l + Q (8.53) 

Post-multiply both sides of this equation by Y to obtain 

PY = A h  + AY-lATY - AY-lCTR-lCA + QY (8.54) 

Now we can equate the right sides of Equations (8.51) and (8.54) to obtain 

A - A Y - ~ Y  = AA + A Y - ~ A ~ Y  - A Y - ~ C ~ R - ~ C A  + QY 

A = AA + QY + AY-'(Y + ATY - CTR-lCA) (8.55) 

This equation came from our original factorization of P,  and if this equation re- 
duces to 0 = 0 then we know that the original factorization was valid. So if 
Y = CTR-ICA - ATY,  and A = AA + QY, then our assumed factorization will be 
valid. These differential equations for Y and A can be combined as 

[ i ]  = [ CTR-lC -AT ] [ $ 1  A Q 

= J [ b ]  (8.56) 

where J is defined by the above equation. The initial conditions on A and Y can 
be chosen to be consistent with the initial condition on P as follows: 

A(0) = P(0) 
Y(0)  = I (8.57) 

Now suppose that A,  Q, C,  and R are constant (that is, we have an LTI system with 
constant process and measurement noise covariances). In this case J is constant 
and Equation (8.56) can be solved as 

A(t + T )  [ Y ( t  + T )  ] = exp(JT) [ ![;{ ] 
This can be written as 

(8.58) 

(8.59) 

where the q5iJ matrices are defined as the four n x n submatrices in exp(JT). From 
our original factorization assumption we have A = P Y ,  so this equation can be 

This can be written as two separate equations: 

(8.61) 
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Since h(t + T )  = P(t + T ) Y ( t  + T) ,  we can write the first equation as 

P(t + T ) Y ( t  + T )  = 411(T)P(t)Y(t) + 412(T)Y(t) (8.62) 

Substituting for Y ( t  + T )  from Equation (8.61) in the above equation gives 

P(t + T )  [ 4 2 l ( ~ ) P ( t ) Y ( t )  + 422(T)Y(t)l = 411(T)P(t)Y(t) + $12(T)Y(t) 
P(t + T )  [421(T)P(t) + 422(T)1 = 411(T)P(t) + 412(T) (8.63) 

This equation is finally solved for P(t + T )  as 

P(t + T )  = [ h ( T ) P ( t )  + 412(T)] [421(T)P(t) + 422(T)]-l (8.64) 

This may be a faster way to solve for P instead of integrating the Riccati equation. 
Note that we do not have to worry about the integration step size with this method. 
This method can be used to propagate from P(t)  to P(t + T )  in a single equation, 
for any values t and T .  

m  EXAMPLE^.^ 

Suppose that we want to estimate a gyroscope drift rate E (assumed to be con- 
stant) given measurements of the gyro angle 8. The system and measurement 
model can be written as 

e = E  

Y = e + v  

v (0 ,R)  

Direct use of the differential Riccati equation from Equation (8.37) gives 

P = AP + PAT - PCTR-lCP + Q 

(8.65) 

We can solve for P by performing three numerical integrations (recall that P 
is symmetric). However, it would be difficult to find a closed-form solution for 
P(t )  from these coupled differential equations. A transition matrix approach 
to this problem would proceed as follows, assuming that P(0) is diagonal. We 
suppose that P is factored as P = AY-l,  where A and Y are 2 x 2 matrices. 
The initial conditions on A ( t )  and Y ( t )  can be chosen as 

A(0) = P(0) 

Y(0) = I (8.67) 
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The differential equation for A(t) and Y( t )  is given as 

[ $ ] = J [  $ 1  
where the matrix J is computed as 

(8.68) 

(8.69) 

The transition matrix for the differential equation for A and Y is computed 
as 

r 1  t 0 0 1  
1 

exp(Jt) = 1 tj)R t2/2R 
-t2/2R -t3/6R -t 1 

(8.70) 

where the +ij(t) terms are 2 x 2 matrix partitions. The Riccati equation 
solution is obtained from Equation (8.64) as 

P(t)  = [4ll(t)P(O) + 412(t)1[421(t)P(O) + 4 2 2 ( t ) l - l  (8.71) 

- 12R2 - 2t3Pz2(0) - 
12R2t + 6t2P11(0) 12R2 + 12tP11(0) 

where A is given as 

A = 12R2 + P I I ( O ) P ~ ~ ( O ) ~ ~  + 12Pll(O)tR + 4P22(0)t3R (8.72) 

Carrying out the multiplication and some algebra gives the Riccati equation 
solution as 

1 

1 

1 

P11(t) = a4R [P11(0)P22(O)t3 + 3P11(O)R + 3t2P22(0)R] 

P12(t) = ~6RPzz(O)t  [Pii(O)t + 2R] 

&(t) = ~12R%2(0)  [Pii(O)t + R] (8.73) 

With the transition matrix approach we have obtained a closed-form solution 
for P(t) ,  something that was not possible with a direct approach to the Riccati 
equation. In the special case that our initial uncertainty is infinite, we can 
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further simplify P(t )  as 

lim A = P11(0)P22(O)t4 
P(O)+w 

lim [ lim ~ ( t ) ]  = [ 0 0  ] 
t+w P(O)+W 

(8.74) 

That is, our uncertainty goes to zero as time goes to infinity. This occurs 
because the process noise is zero (i.e., we are estimating a constant). Since 
K = PCTR-l, we see that the Kalman gain also goes to zero as time goes 
to infinity. This simply means that eventually we get so many measurements 
that our knowledge is complete. Additional measurements cannot give us any 
new information, so we ignore additional measurements. 

vvv 

8.3.2 The Chandrasekhar algorithm 

Recall the differential Riccati equation for the continuous-time Kalman filter from 
Equation (8.37): 

P = AP + PAT - PCTR-’CP + Q (8.75) 

If P were not symmetric then the numerical computation of P would require n2 
integrations. However, since P = PT the computation of P requires only n(n+1)/2 
integrations. This can still be computationally taxing, especially for problems with 
small time constants. The Chandrasekhar algorithm gives computational savings 
in some circumstances. The algorithm is based on the work of the Nobel prize 
winning astrophysicist Subramanan Chandrasekhar, who used similar algorithms to 
solve computationally difficult astrophysics problems in the 1940s [Cha47, Cha481. 
Chandrasekhar’s algorithms were applied to Kalman filtering in [Kai73, KaiOO]. 
The Chandrasekhar algorithm applies only when A, C, R, and Q are constant. 

8.3.2.1 The Chandrasekhar algorithm derivation Consider the continuoustime dif- 
ferential equation for the state estimate, assuming that the original system is time- 
invariant and the Kalman gain K is a constant: 

(8.76) 

The measurement y is the output of the system, but it is the input to the filter. 
Consider the zero-input Kalman filter (i.e., y = 0). 

$ = ( A  - KC)? (8.77) 

This equation has the solution 

(8.78) 
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where 4J(t) is the state transition matrix of the filter and is defined by the above 
equation. From the definition of 4J(t) as a state transition matrix we know that 

(8.79) 

We can differentiate both sides of Equation (8.75) to obtain 

P = AP +PAT - PCTR-'CP - PCTR-'CP 
= AP + PAT - PCTKT - KCP 
= ( A  - K C ) P  + P ( A  -  KC)^ (8.80) 

Now note that for a general timevarying matrix Y ( t ) ,  if Y = AY + YAT,  where 
A is a constant matrix, then Y ( t )  = exp(At)Y(0)exp(ATt) (see Problem 8.2). 
Therefore, we can solve the above equation for P as 

P = 4JP(0)4JT (8.81) 

where P(0) is obtained from Equation (8.75) as 

P(0)  = AP(0) + P(0)AT - F'(0)CTR-lCP(O) + Q (8.82) 

The symmetric matrix P(0)  can be factored as follows (see Section 8.3.2.2): 

P(0) = MiM,T - M2M: (8.83) 

P(0)  is an n x n matrix. The rank of P(0) is a 5 n. Since p(0) is symmetric, all 
of its eigenvalues are real. The number of positive eigenvalues of P(0) is P, and the 
number of negative eigenvalues is (a  - P). Matrix MI is an n x ,6 matrix, and Mz 
is an n x (a - p) matrix. From the previous three equations we can write 

P = 4JP(0)4JT 
= 4J(M&fF - M2M:)p  
= 4JM1MF4JT - 4JM2MT4JT (8.84) 

Now define the matrices Y1 and YZ as 

(8.85) 

Then the P equation can be written as 

P = KY? - YZY? (8.86) 

Also, from the definition of Y1 we can see that 

(8.87) 
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Similarly, we see that 

(8.88) 

Recall from Equation (8.37) that K = PCTRV1. Therefore, a differential equation 
and initial condition for K can be written as 

K = PCTR-l 

= (YlY,' - &Y?)CTR-l 

K(0) = P(0)CTR-' (8.89) 

To compute K from its differential equation we need to integrate three equations. 

1. We need to integrate Y1 from Equation (8.87), where Y1 is an n x p matrix. 

2. We need to integrate Y2 from Equation (8.88), where Y2 is an n x (a - p) 
matrix. 

3. We need to integrate K from Equation (8.89), where K is an n x r matrix (T 

is the number of measurements of the system). 

So we need to perform a total of n(a + T )  integrations. The direct computation 
of P from the differential Riccati equation requires n(n + 1)/2 integrations. So if 
%(a + T )  < (n  + 1) then the Chandrasekhar algorithm reduces the computational 
effort of solving the differential Riccati equation. 

The Chandrasekhar algorithm 

The Chandrasekhar algorithm can be summarized as follows. 

1. Compute P ( o ) .  

2. Use the method of Section 8.3.2.2 to find M I  and M2 matrices that satisfy 

3. Initialize Yl(0) = M I ,  Yz(0) = M2, and K(0) = P(0)CTR-l. 

4. Integrate K ,  Y1, and Y2 as follows: 

P(0) = MlM,T - M2MF. 

I;; = (YiY,' - Y2Y,T)CTR-l 
Y 1  = ( A - K C ) K  
Y 2  = (A-KC)Yz (8.90) 

8.3.2.2 Chandrasekhar factorization The derivation of the Chandrasekhar algo- 
rithm requires the factorization of P(0) as shown in Equation (8.83): 

P(0)  = M1M,T - M2MF (8.91) 

e(0) is an n x n matrix with rank a 5 n. The number of positive eigenvalues of 
P(0) is p, and the number of negative eigenvalues is (a -p). Matrix MI is an n x p 
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matrix, and M2 is an n x (a - p) matrix. In this section, we will show one way to 
perform that factorization. 

Since P(0)  is symmetric, all of its eigenvalues are real. We can therefore write 
the Jordan form of P(0)  as 

P(0)  = SDST 
s11 s 1 2  s13 0 

S is an orthogonal matrix whose columns comprise the eigenvectors of P(0).  The 
p x p matrix D1 is a diagonal matrix whose entries are the positive eigenvalues of 
P(0). The (a - p) x (a  - p) matrix D2 is a diagonal matrix whose entries are the 
magnitudes of the negative eigenvalues of P(0). Multiplying out the above equation 
results in 

P(0)  = N1+ N2 (8.93) 

where N1 and N2 are given as 

1 S11Dlgi S11D1gi 41D1g1 
NI = [ S21D1S?1 S2iDiS& S21D1S3T1 

s31Dlgl S31Dls& S31Dlg1 

(8.94) 

Note that Nl is the product of an n x p matrix, the p x p matrix D1, and a /3 x n 
matrix. N1 can therefore be written as 

Ni = MiMT (8.95) 

where MI is the n x p matrix 

(8.96) 

A similar development can be followed to see that M2 is the n x (a - p) matrix 

s 1 2  

M2 = 1 s 2 2  1 (8.97) 
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8.3.3 The square root filter 

The early days of Kalman filtering in the 1960s saw a lot of successful applications. 
But there were also some problems in implementation, many due to numerical 
difficulties. The differential Riccati equation solution P(t )  should theoretically 
always be a symmetric positive semidefinite matrix (since it is a covariance matrix). 
But numerical problems in computer implementations sometimes led to P matrices 
that became indefinite or nonsymmetric. This was often because of the short word 
lengths in the computers of the 1960s [Sch81].' This led to a lot of research during 
that decade related to numerical implementations. 

Now that computers have become so much more capable, we don't have to worry 
about numerical problems as often. Nevertheless, numerical issues still arise in fi- 
nite word-length implementations of algorithms, especially in embedded systems.2 
The square root filter was developed in order to effectively increase the numerical 
precision of the Kalman filter and hence mitigate numerical difficulties in imple- 
mentations. 

The square root filter is based on the idea of finding an S matrix such that 
P = S p .  The S matrix is then called a square root of P. Note that the definition 
of the square root of P is not that P = 9, but rather P = Sfl. Also note that 
this definition of the matrix square root is not standard. Some books and papers 
define the matrix square root as P = 9, others define it as P = flS, and others 
define it as P = SP. The latter definition is the one that we will use in this book. 
Finally, note that the square root of a matrix may not be unique; that is, there may 
be more than one solution for S in the equation P = Sfl. (This is analogous to 
the existence of multiple square roots for scalars. For example, the number 4 has 
two square roots: +2 and -2.) Sections 6.3 and 6.4 contain a discussion of square 
root filtering for the discrete-time Kalman filter. 

After defining S as the square root of P, we will integrate S instead of P in our 
Kalman filter solution. This requires more computational effort but it doubles the 
precision of the filter and helps prevent numerical problems. From the differential 
Riccati equation of Equation (8.37), and the definition of S, we obtain 

P = AP + PAT - PCTR-'CP + Q 
SST + S F  = A S P  + SSTAT - SSTCTR-'CSP + Q (8.98) 

Now premultiply both sides by S-' and postmultiply by S-T to obtain 

8-1pS-T = S-19 + 9Ts-T 
= S ' A S  + S T A T S T  - STCTR-'CS -k S - ' Q S T  (8.99) 

Since P is symmetric positive definite, we can always find an upper triangular S 
such that P = S p  [Go189, MooOO]. For example, consider the following matrices: 

lThe United States' Apollo space program of the 1960s resulted in the first man on the moon 
in 1969. The Apollo spacecraft guidance computer had a word length of 16 bits [Bat82], which 
corresponds to 4.8 decimal digits of precision. 
2Most microcontrollers in the first decade of the 21st century have 16 bit words, and 8 bit micro- 
controllers still comprise a large share of the market. 
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= [; :] (8.100) 

P is symmetric positive definite, S is upper triangular, and P = Sp. It can be 
shown that if S is upper triangular, then S and S-l are also upper triangular (see 
Problem 8.4). Also, the product of upper triangular matrices is another upper 
triangular matrix (see Problem 8.5). Therefore, the product S-lS is upper trian- 
gular. Similarly, since fl and FT are lower triangular, the product PFT is 
lower triangular. That is, 

s-'S = Mu 
STs-T  = M L  (8.101) 

where Mu and M L  denote upper triangular and lower triangular matrices. From 
this we can obtain 

S = SMu (8.102) 

Now we can use Equations (8.99) and (8.101) to find 

= M u + M L  (8.103) 

So we see that Mu is the upper triangular portion of S-'PS-T. This gives us the 
square root algorithm as follows. 

The continuous-time square root Kalman filter 

1. The initialization step consists of computing the upper triangular S(0) such 

2. At each time step compute P from the differential Riccati equation, and then 

3. Use S = SMu to integrate S to the next time step. 

4. Use the equation K = PCTR-l = SSTCTR-' to  compute the Kalman gain. 

This is more computationally expensive than a straightforward integration of the 
differential Riccati equation, but it is also more numerically stable. The numerical 
benefits of square root filtering are discussed in more detail in-Section 6.3. 

that S ( O ) f l ( O )  = P(0). 

compute MU as the upper triangular portion of S - l P S T .  

8.4 GENERALIZATIONS OF THE CONTINUOUS-TIME FILTER 

In this section, we will discuss some generalizations of the continuous-time Kalman 
filter, just as we did in Chapter 7 for the discrete-time Kalman filter. The continuous- 
time filter was derived under the assumptions that the process and measurement 
noise was uncorrelated, and that the process and measurement noise was white. 
We will consider the case in which the process and measurement noise are corre- 
lated in Section 8.4.1, and the case in which the measurement noise is colored in 
Section 8.4.2. 
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8.4.1 

Consider the continuoustime system 

Correlated process and measurement noise 

X = A X + W  

w N (0 ,Q)  

y = c x + w  
21 (0 ,R)  

E [ w ( ~ ) v ~ ( T ) ]  = Md(t - 7) 

Since y - C x  - v = 0 we can write the system dynamics as 

(8.104) 

5 = A X + W + M R - ~ ( ~ - C Z - U )  
= 

= A Z + i i + G  (8.105) 

where A, ii, and 6 are defined by the above equation. Note that ii is a known input 
to the X equation, and 6 is a new process noise term. The cross covariance between 
the new process noise 8 and the measurement noise u can be found as 

( A  - MR-lC)z  + MR-ly + (w - MR-'w) 

E(6wT) = E[(w - MR-'w)wT] 
= E ( W V ~ )  - M R - ~ E ( W V ~ )  

= M - M  
= o  (8.106) 

So 8 and w are uncorrelated. The covariance of the new process noise 6 can be 
found as 

Q = E(66T)  
= 

= 

= Q - M R - ~ M T  (8.107) 

The differential Riccati equation for Kalman filter for the system given in Equa- 
tion (8.105) is given by 

E[(w - MR-%)(w - M R - I w ) ~ ]  
Q - MR-lMT - MR-lMT + MR-IMT 

P = A P  + PAT - PCTR-lCP + Q 
= ( A  - MR-lC)P + P ( A  - MR-lC)T - PCTR-'CP + 

Q - MR-'MT (8.108) 

If we define k as 
K = K + M R - ~  

= PCTR-l + MR-I 
= ( P C ~ + M ) R - ~  

then the differential Riccati equation becomes 

P = AP+  PA^ + Q - K R K ~  

(8.109) 

(8.1 10) 
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The differential equation for the state estimate can be written as 

i~! = A2+i i+K(y -C2)  
= 

= 

= A2+k(y-C2) (8.111) 

We see that the introduction of correlation between the process and measurement 
noise has the effect of simply modifying the Kalman gain. The stateupdate equa- 
tion and the differential Riccati equation retain the same form as for the standard 
Kalman filter. The Kalman filter for correlated process and measurement noise can 
be summarized as follows. 

( A  - MR-'C)2 + MR-'y + K(y  - C2) 

A2 - M X ' C 2  + MR-ly  + (I? - MR-' ) (y  - C2) 

The continuous-time Kalman filter with correlated noise 

1. The system dynamics and measurement equation are given as 

i = A X + W  

w N ( 0 , Q )  

y = c x + v  

(O,R) 
E[W(t)VT(T)] = Mb(t  - T) (8.112) 

2. The continuous-time Kalman filter is given as 

P = A P + P A ~ + Q - K R K ~  
K = ( P C T + M ) X 1  

d = A 2 + K ( y - C 2 )  (8.113) 

Note that (as expected) this filter reduces to the standard continuous-time filter 
of Equation (8.37) if the process and measurement noise are uncorrelated (i.e., 
M = 0). This filter can therefore be considered as a general formulation of the 
continuous-time Kalman filter, with the situation M = 0 as a special case. 

8.4.2 Colored measurement noise 

In this section we will derive the Kalman filter when the measurement noise is not 
white. Suppose we have the system 

(8.114) 

We will assume that w and q5 are uncorrelated white noise processes. We could 
augment v onto the state vector (as suggested in Section 7.2.2 for discretetime sys- 
tems), but then the covariance of the measurement noise of the augmented system 
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would be singular, which could potentially cause numerical problems in the Kalman 
filter implementation. Instead, we will define a new signal as 

0 = y - N y  
= Cz+Ck++--N(Cz+w)  
= 

= 

CX +C(Az+ W )  + (Nw + 4) - N ( C z + v )  
(C + C A  - NC)z + (CW + 4) 

= C x + 6  (8.115) 

where c and 6 are defined by the above equation. Note that 6 is a white noise 
process (since w and 4 are uncorrelated and white). So we have defined a new 
measurement equation that has white noise, but this is a t  the expense of creating 
a correlation between the process noise w and the new measurement noise 6. The 
correlation can be obtained as 

where the cross correlation matrix M is defined by the above equation. The covari- 
ance of the new measurement noise 6 can be obtained as 

E ( G T )  = E[(Cw + $)(cW + 
R = CQCT+@ (8.117) 

So we have defined a new measurement equation with white noise. We have the 
correlation between the process noise and the new measurement noise in Equa- 
tion (8.116), and the covariance of the new measurement noise in Equation (8.117). 
Now we can use the results from Section 8.4.1 which discussed Kalman filtering for 
systems with correlated process and measurement noise. The Kalman filter can be 
written from Equation (8.113) as 

P = A P + P A ~ + Q - K ~ K ~  
K = ( P C T + M ) R i - l  
h = &+K(g-Ci!)  

= A ~ + K ( O - N Y - C ~ ! )  (8.118) 

However, the new measurement that we defined in Equation (8.115) could cause 
some problems. The original measurement y is already a noisy measurement, so the 
new measurement (which contains y )  will be even more noisy. How can we avoid 
the use of y in the filter? We can attack this problem by looking at the derivative 
of the product Ky as follows: 

K y  Ky = -- 
d t  

(8.119) 
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The dynamic equation for the state estimate in Equation (8.118) can then be written 
as follows: 

f-- d(Ky) * 
= ( A  - K C ) f  - (k + KN)y 

dt 

Now define a new signal z as 
z = f - K y  

(8.120) 

(8.121) 

Differentiating z results in the right side of Equation (8.120): 

t = ( A  - KC)? - (k + K N ) ~  (8.122) 

Here we have an equation for k that we can integrate to solve for z. We can then 
use our solution for z in Equation (8.121) to  solve for 2, So the only signal we 
have to differentiate in the Kalman filter algorithm is the Kalman gain K ,  because 
we need K in the computation of k above. However, this differentiation should be 
much easier than differentiating y, because we expect the Kalman gain K to be 
much smoother than the noisy measurement y. The Kalman filter for the case of 
colored measurement noise can be summarized as follows. 

The continuous-time Kalman filter with colored measurement noise 

1. The system and measurement equations are given as 

X = AX+W 
w N ( 0 , Q )  
y = Cx+w 

4 ( O , @ )  

ir = N w + # J  

where w and #J and uncorrelated white noise processes. 

2. Make the following matrix definitions: 

C' = C + C A - N C  
R = CQCT+@ 

M = QCT 

3. Initialize the Kalman filter as 

K(0)  = [P(0)CT + M1R-l 
~ ( 0 )  = f (0 )  - K(O)y(O) 

4. Integrate P,  K ,  and z using the following equations: 

P = A P + P A ~ + Q - K R K ~  
d 
dt 

k = -[(PCT+M)R- ']  

= ( A - K C ) ~ - ( ( ~ + K N ) Y  

(8.123) 

(8.124) 

(8.125) 

(8.126) 
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Note that the K equation can be simplified to  the following if Q, C, and @ 
are constant: 

k = p c T R - 1  (8.127) 

5 .  Compute the state estimate as 

? = , Z + + K y  (8.128) 

EXAMPLE 8.4 

Suppose that it is known that a continuous-time measurement v(t) has a total 
power of 1 watt and a power spectrum that is bandlimited to  frequencies below 
10 Hz. In this example, we will use our knowledge of the frequency content 
of v ( t )  to obtain a dynamic model for v(t). The power spectrum Sv(w) can 
be plotted as shown in Figure 8.1. The magnitude of the spectrum, 1/40~, is 
obtained by realizing that the total power of the signal (1 watt) is equal to  
the integral from -oo to  +oo of Sv(w), and Sv(w)  is an even function of w. 
The spectrum shown in Figure 8.1 can be approximated as 

= G(w)G(-w)Sb(w) (8.129) 

This shows that v ( t )  is the output of a linear system with a transfer function 
of G(w) and an input of #(t) ,  where #(t)  is white noise with a variance of 1 / 2  
(see Equation 3.75). This can be written in the sdomain and then translated 
to the time domain as follows: 

V ( S )  = G(s)@(s) 

- @(s) - -  
s + 20T 

sV(s )  + 20TV(S) = @(s) 

S V ( S )  = -2OTV(S) + @(s) 

6 = -207rv+# (8.130) 

where +(t) is white noise with variance @ = 1 /2 .  Additional discussion and 
examples of this method can be found in [Bur99]. 

vvv 

8.5 THE STEADY-STATE CONTINUOUS-TIME KALMAN FILTER 

In some situations, the Kalman filter converges to  an LTI filter. If this is the case 
then we can often get good filtering performance by using a constant Kalman gain 
K in the filter. Then we do not have to  worry about integrating the differential 
Riccati equation to solve for P and we do not have to  worry about updating K in 



THE STEADY-STATE CONTINUOUSTIME KALMAN FILTER 253 

frequency (radkec) 

Figure 8.1 Power spectrum of bandlimited measurement noise for Example 8.4. 

real time. This can provide a large savings in filter complexity and computational 
effort at the cost of only a small sacrifice of performance. In this section, we discuss 
the conditions under which the continuous-time filter converges to an LTI filter, 
and the steady-state filter’s relationship to Wiener filtering and optimal control. 

8.5.1 The algebraic Riccati equation 

Recall from Equation (8.37) that the differential Riccati equation is given as 

P = -PCTR-lCP + AP + PAT + Q (8.131) 

If A,  C, Q, and R are constant (i.e., the system and measurement equations form 
an LTI system with constant noise covariances) then P may reach a steady-state 
value and P may eventually reach zero. This implies that 

-PCTR-lCP + AP + PAT + Q = 0 (8.132) 

This is called an algebraic Riccati equation (ARE). To be more specific, it is called 
a continuous ARE (CARE) .3 

The ARE solution may not always exist, and even if it does exist it may not 
result in a stable Kalman filter. We will summarize the most important Riccati 
equation convergence results below, but first we need to define what it means for a 
system to be controllable on the imaginary axis. 

Definition 12 The matrix pair (A ,  B )  is controllable on the imaginary axis i f  there 
exists some matrix K such that ( A  - B K )  does not have any eigenvalues on the 
imaginary axis.  

31n the MATLAB Control System Toolbox the CARE can be solved by invoking the command 
P = CARE(AT, CT, Q, 8). The reason that the transposes are required is that MATLAB’s CARE 
command is designed to solve the ARE for continuous-time optimal control problems. When we 
use it to solve for the Kalman filtering problem we need to transpose the A and C matrices, as 
discussed in Section 8.5.3. 
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This is similar to the concept of controllability on the unit circle for discretetime 
systems (see Section 7.3). Now we summarize the most important Riccati equation 
convergence results from [KaiOO], where proofs are given. Recall that the ARE is 
given as 

-PCTR-'CP + AP + PAT + Q = 0 (8.133) 

We assume that Q 2 0 and R > 0. We define G as any matrix such that GGT = Q. 
The corresponding steady-state Kalman gain K is given as 

K = PCTR-' (8.134) 

The steady-state Kalman filter is given as 

h = ( A  - KC)2 + K y  (8.135) 

We say that the CARE solution P is stabilizing if it results in a stable steady-state 
filter. That is, P is defined as a stabilizing CARE solution if all of the eigenvalues 
of ( A  - KC)  have negative real parts. 

Theorem 27 The CARE has a unique positive semidefinite solution P i f  and only 
i f  both of the following conditions hold. 

1. (A, C )  i s  detectable. 

2. (A,  G )  is  stabilizable. 

Furthermore, the corresponding steady-state Kalman filter i s  stable. That is, the 
eigenvalues of (A - KC) have negative real parts. 

This theorem is analogous to Theorem 23 for discretetime Kalman filters. The 
above theorem does not preclude the existence of CARE solutions that are negative 
definite or indefinite. If such solutions exist, then they would result in an unstable 
Kalman filter. If we weaken the stabilizability condition in the above theorem, we 
obtain the following. 

Theorem 28 The CARE has at least one positive semidefinite solution P if and 
only i f  both of the following conditions hold. 

1. (A, C )  is  detectable. 

2. (A, G) i s  controllable on  the imaginary axis. 

firthewnore, exactly one of the positive semidefinite ARE solutions results an a 
stable steady-state Kalman filter. 

This theorem is analogous to Theorem 24 for discretetime Kalman filters. This 
theorem states conditions for the existence of exactly one stabilizing positive definite 
CARE solution. However, there may be additional CARE solutions (positive defi- 
nite or otherwise) that result in unstable Kalman filters. If a timevarying Kalman 
filter is run in this situation, then the Kalman filter equations may converge to 
either a stable or an unstable filter, depending on the initial condition P(0). If we 
strengthen the controllability condition of Theorem 28, we obtain the following. 
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Theorem 29 The CARE has at least one positive definite solution P i f  and only 
i f  both of the following conditions hold. 

1. (A ,  C )  is  detectable. 

2. (A, G )  is  controllable in the closed left half plane. 

Furthermore, exactly one of the positive definite C A R E  solutions results in a stable 
steady-state Kalman filter. 

This theorem is analogous to Theorem 25 for discretetime Kalman filters. If 
we drop the controllability condition in the above two theorems, we obtain the 
following. 

Theorem 30 The C A R E  has at least one positive semidefinite solution P i f  (A,  C )  
is detectable. firthemnore, at least one such solution results in a marginally stable 
steady-state Kalman filter. 

This theorem is analogous to Theorem 26 for discretetime Kalman filters. Note 
that the resulting filter is only marginally stable, so it may have eigenvalues on 
the imaginary axis. Also note that this theorem poses a sufficient (not necessary) 
condition. That is, there may be a stable steady-state Kalman filter even if the 
conditions of the above theorem do not hold. Furthermore, even if the conditions 
of the theorem do hold, there may be CARE solutions that result in unstable 
Kalman filters. 

Additional results related to the stability of the steady-state continuous-time 
filter can be found many places, including [Aok67, Buc67, Buc68, Kwa721. Many 
practical Kalman filters are applied to systems that do not meet the conditions of 
the above theorems, but the filters still work well in practice. 

EXAMPLE8.5 

In this example we consider the following two-state system that is taken 
from [Buc68, Chapter 51: 

(8.136) 

In the remainder of this example, we use the symbol G to denote any matrix 
such that GGT = Q. The differential Riccati equation for the Kalman filter 
is given as 

P = -PCTR-'CP + AP + PAT + Q (8.137) 

This can be written as the following three coupled differential equations. 
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Pll = 2UlPll - p:1/7-1 - P:2 + 411 

P12 = (a1 + a2)p12 - PllP12/7- l  - P12P22/7-2 + 412 

P22 = 2 a 2 ~ 2 2  - p&/rl - pi2/7-2 + 422 (8.138) 

We set these derivatives equal to zero to obtain the steady-state Riccati equa- 
tion solution. 

If a 1  # a 2  and 412 # 0, then (A ,  C) is detectable and (A ,  G) is stabilizable 
(see Problem 8.8). The results of Theorem 27 therefore apply to this situation. 
It can be shown that the unique positive semidefinite ARE solution in this 
case is 

P22 = 7-2 [a2+ (12 - g2] 
P12 

41 1 
71 = - 7-1 +a: 

422 

7-2 
1 2  = - + a ;  (8.139) 

This results in a stable steady-state Kalman filter. 
If a1 = a 2  < 0 , 4 1 2  # 0, and IQI = 0, then ( A ,  C) is detectable, and ( A ,  G) 

is stabilizable (see Problem 8.9). The results of Theorem 27 therefore apply 
to this situation as well. It can be shown that the unique positive semidefinite 
ARE solution in this case is given as 

Pll = 411/13 

p22 = q22/13 

P12 = q12/13 

7 3  = -a1  + (4 + 411/7- l+  422/r2)1/2 (8.140) 

This results in a stable steady-state Kalman filter. 
If a 1  = a 2  > 0, 412 # 0, and IQI = 0, then ( A , C )  is detectable and 

(A ,  G) is controllable on the imaginary axis, but (A,  G) is not stabilizable (see 
Problem 8.10). The results of Theorem 27 do not apply to this situation, 
but Theorem 28 does apply to this situation. it can be shown that Equa- 
tions (8.139) and (8.140) are both positive semidefinite ARE solutions in this 
case. If we integrate Equation (8.138) we may come up with Equation (8.139) 
as the steady-state solution, or we may come up with Equation (8.140) as the 
steady-state solution, depending on the initial condition P(0). However, only 
one of the solutions will result in a stable Kalman filter.4 

To be more specific, consider the case a 1  = a 2  = 1, 411 = q12 = 422 = 0, 
and 7-1 = 7-2 = 1. For these values, we can simulate the differential Riccati 

41f we use MATLAB's CARE function then we will get the stabilizing solution. 
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equations of Equation (8.138) to find the steady-state Riccati solution, the 
steady-state Kalman gain, and the steady-state estimator, as follows: 

P = [ 2 0 ] o r [ o  0 2  
0 0  O ]  

K = PCTR-' 
2 0  

= [ o  2 ] 0 r [ ;  4 
4 = ( A - K C ) ? + K y  

= (-2 + Ky) or (i + Ky) (8.141) 

The ARE solution depends on the initial condition P(0). The first ARE 
solution results in a positive semidefinite ARE solution that gives a stable 
Kalman filter. The second ARE solution results in a positive semidefinite ARE 
solution that gives an unstable Kalman filter. This agrees with Theorem 28. 

vvv 

8.5.2 

Consider the steady-state continuous-time Kalman filter. 

The Wiener filter is a Kalman filter 

1 = AZ + K(Y - cq (8.142) 

Taking the Laplace transform of both sides of this equation gives 

(d - A + KC)X(s) = K Y ( s )  
X ( S )  = (d - A + KC)-lKY(s) (8.143) 

The transfer function from y(t) to  ?(t) is identical to the transfer function of the 
Wiener filter [Buc68, Chapter 5],Sha82, [Sag7l, Chapter 71. In other words, the 
Wiener filter is a special case of the Kalman filter. The equivalence of discrete-time 
Wiener and Kalman filtering is discussed in [Men87]. 

EXAMPLE8.6 

Consider the scalar system given by 

x = -x+w 

y = x + w  (8.144) 

where w and w are zero-mean, uncorrelated white noise processes with re- 
spective variances Q = 2 and R = 1. The steady-state Kalman filter for this 
system can be obtained by solving Equation (8.37) with P = 0, from which 
we obtain 

1 = -A*+ (A- l)y (8.145) 

Taking the Laplace transform of this estimator gives 

(s + &)R(s) = (6 - 1)Y(s) (8.146) 
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In other words, the Kalman filter is equivalent to  passing the measurement 
y(t) through the transfer function G(s), which is given as 

f i - 1  

S + f i  
G(s) = - (8.147) 

The impulse response of the Kalman filter is obtained by taking the inverse 
Laplace transform, which gives 

g ( t )  = (d- 1)e-&t, t 2 0 (8.148) 

Now we will obtain the power spectrum of the state by taking the Laplace 
transform of Equation (8.144). This gives 

s X ( s )  = - X ( s )  +W(s)  
1 

s + l  
X ( S )  = -W(s) (8.149) 

We see that the state x ( t )  can be obtained by passing the white noise w(t) 
(which has a power spectrum Sw(w) = Q = 2) through the transfer function 
L(s)  = l/(s + 1). From Equation (3.75) we see how to compute the power 
spectrum of the output of a linear system. This gives the power spectrum of 
4 t )  

1 
= ( - j w + l )  (A)' 

2 
w2 + 1 

= -  (8.150) 

The causal Wiener filter for a signal with this power spectrum, corrupted 
by white measurement noise with a unity power spectrum, was obtained in 
Example 3.10. The Wiener filter was found to  be identical t o  the steady- 
state Kalman filter of Equation (8.148). This example serves to  illustrate the 
equivalence of Wiener filtering and steady-state Kalman filtering. 

vvv 

8.5.3 Duality 

It is interesting to  note the duality between optimal estimation and optimal control. 
The optimal estimation problem begins with the system and measurement equations 

(8.151) 

Recall that Q and R are symmetric matrices. The optimal estimation problem tries 
to find the state estimate 2 that minimizes the cost function 

tf 

Je = E [ ( x  - 2)T(x - 2 ) ]  d t  (8.152) 
Jo 
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The optimal estimator (the Kalman filter) is given as 

Pe(0) = E[(z(o) - ~(o)) (z(o)  - 
P e  = APe + PeAT - PeCTR-lCPe + Q 
Ke = PeCTR-’ 

= A2+Ke(p-C2)  (8.153) 

The differential Riccati equation for the optimal estimator is integrated forward in 
time from its initial condition Pe(0). 

The optimal control problem begins with the system 

5 = AZ + CU (8.154) 

where u is the control variable. The finitetime optimal control problem tries to 
fmd the control u that minimizes the cost function 

tf 
J,  = zT+zltf + 1 (zTQz + uTRu) dt (8.155) 

4, Q, and R (which are assumed to be symmetric positive definite matrices) provide 
user-specified weighting in the performance index. The optimal controller is given 
as 

P&) = 

P, = -ATP, - PcA + PcCR-lCTP, - Q 
K,  = R-lCTPC 
u = -K,z (8.156) 

The differential Riccati equation for the optimal control problem is integrated back- 
ward in time from the final condition P ( t f ) .  Note the relationships between the 
optima1 estimation solution of Equation (8.153) and the optimal control solution 
of Equation (8.156). The differential Riccati equations have the same form, except 
they are negatives of each other, and A and C are replaced by their transposes. The 
estimator gain K, and the controller gain Kc have very similar forms. The Q and 
R covariance matrices in the estimation problems have duals in the cost function 
weighting matrices of the optimal control problem. 

The dual relationship between the estimation and control problems was noted in 
the very first papers on the Kalman filter [Ka160, Ka1611. Since then, it has been 
used many times to extrapolate results known from one problem to obtain new 
results for the dual problem. 

8.6 SUMMARY 

In this chapter, we derived the continuous-time Kalman filter by applying a limiting 
argument to the discretetime Kalman filter. However, just as there are several 
ways to derive the discretetime Kalman filter, there are also several ways to derive 
the continuous-time Kalman filter. Kalman and BUCY’S original derivation [Ka161] 
involved the solution of the Wiener-Hopf integral equation. Another derivation is 
provided in [ Joh691. 
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We have seen that the differential and algebraic Riccati equations are key to 
the solution of the continuous-time Kalman filter. The scalar version of what is 
now known as the Riccati equation was initially studied by such mathematical 
luminaries as James Bernoulli and John Bernoulli in the 1600s’ and Jacopo Riccati, 
Daniel Bernoulli, Leonard Euler, Jean-leRond d’ Alembert , and Adrien Legendre 
in the 1700s. The equation waa first called “Riccati’s equation” by d’Alembert 
in 1763 [Wat22]. Jacopo Riccati originally entered the University of Padua in 
1693 to study law, but he found his true calling when his astronomy professor, 
Stefan0 Angeli, inspired him to study math. Additional technical discussion of 
Riccati equations can be found in many places, including [Rei72, Lan95, Abo031. 
An account of Riccati equations with indefinite quadratic terms is given in [Ion99]. 
Interesting historical background to the Riccati equation can be found in [Wat22, 
Bit911. 

The continuous-time Kalman filter applies to systems with continuous-time white 
noise in the both the process and measurement equations. Continuous-time white 
noise is nonintuitive because it has an infinite correlation with itself at the present 
time, but zero correlation with itself when separated by arbitrarily small nonzero 
times. However, continuous-time white noise is a limiting case of discretetime 
white noise, which is intuitively acceptable. Therefore, continuous-time white noise 
can be accepted as an approximation to reality. This corresponds to many other 
approximations to reality that we accept at face value (e.g., our mathematical 
system model is an approximation to reality, and our infinite-precision arithmetic 
is an approximation to reality). 

The continuous-time Kalman filter applies regardless of the statistical nature 
of the noise, as long it is zero-mean. That is, the Kalman filter is optimal even 
when the noise is not Gaussian. The Kalman filter was extended in this chapter 
to systems with correlated process and measurement noise, and with colored me& 
surement noise. The steady-state Kalman filter provides near-optimal estimation 
performance at a small fraction of the computational effort of the timevarying 
Kalman filter. The steady-state Kalman filter is identical to the Wiener filter of 
Section 3.4, and has an interesting dual relationship to linear quadratic optimal 
control. 

PROBLEMS 

Written exercises 

8.1 Suppose you have two discrete-time systems with identity transition matrices 
driven with stationary zero-mean white noise. The first system has a sample period 
of T, and the second system has a sample period of T l n  for some integer n > 1. 
The noise in the first system has a covariance of Q. What should the covariance 
of the noise in the second system be in order for both states to have the same 
covariance at times kT ( k  = 0,1,2, .  . a ) ?  

8.2 Show that for a general timevarying matrix Y(t), if Y = AY + YAT, where 
A is a constant matrix, then Y(t) = exp(At)Y(0)exp(ATt). 
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8.3 Suppose you have a third-order Newtonian system with 

0 1 0  

A =  [ : : ; I  
& =  [K] 
c = [ I  0 0 1  

2 0 1  

R = l  

with P(0) = I .  
a) What is the rank of p(O)? How much computational savings in integration 

effort can be obtained by using the Chandrasekhar algorithm to find the 
Kalman gain for this system? 

b) Find M I  and M2 such that P(0) = M1Mr - M2MT. 

8.4 Show that if S is upper triangular, then S and S-l are also upper triangular. 

8.5 Show that the product of upper triangular matrices is another upper trian- 
gular matrix. 

8.6 Find the steady-state solution of the differential Riccati equation for a scalar 
system. Show from your solution how the steady-state solution changes with A,  C, 
Q, and R, and give intuitive explanations. 

8.7 Consider the system of Example 8.3 except with process noise that has a co- 
variance of diag(0, q).  Find an analytical expression for the steady-state estimation- 
error covariance. 

8.8 Show that if a1 # a2 and 412 # 0 in the system of Example 8.5, then (A ,  C) 
is detectable and ( A ,  G) is stabilizable for all matrices G such that GGT = Q. 

8.9 Show that if a1 = a2 < 0, q 1 2  # 0, and IQI = 0 in the system of Example 8.5, 
then ( A , C )  is detectable and ( A , G )  is stabilizable for all matrices G such that 
GGT = Q. 

8.10 Show that if a1 = a2 > 0, q12 # 0, and IQI = 0 in the system of Example 8.5, 
then ( A ,  C) is detectable and (A ,  G) is controllable on the imaginary axis, but (A,  G) 
is not stabilizable for all matrices G such that GGT = Q. 

Computer exercises 

8.11 Consider the discrete-time system Xk+1 = Xk +wk with the initial condition 
50 = 0. The sample time is T and the variance of the zero-mean process noise Wk is 
equal to 2T. Simulate the system a few thousand times for 10 s with: (a) T = 0.5 
s; (b) T = 0.4 s; (c) T = 0.2 s. Use the value of Xk at t = 10 s to obtain a statistical 
estimate of ~ ( 1 0 )  = E[x2(10)]. 

a) What is your estimate of P(10) for the three sample times given? 
b) What is the analytically derived value for P(lO)? 
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8.12 Consider the continuous-time scalar system 

x = -x+w 

y = z + v  

where w(t) and v( t )  are continuous-time white noise with variances Q, = 2 and 
R, = 1 respectively. Design a continuous-time Kalman filter to estimate x. 

a) What is the theoretical steady-state variance of the estimation error? 
b) Simulate the system for 1000 s with discretization step sizes of 0.4, 0.2, 

and 0.1 s. What are the resulting experimental estimation-error variances? 

8.13 Simulate the system of Problem 8.7 for 10 seconds with q = 2 and R = 
3. Plot the elements of the estimation-error covariance matrix as a function of 
time. Compare the experimental RMS estimation errors when using a timcvarying 
Kalman gain and a constant Kalman gain. 

8.14 Repeat Problem 8.13 using the correlated noise filter when the process noise 
that affects the second state is equal to the measurement noise. How much do the 
estimation-error variances decrease due to the correlation between the two noise 
terms? 

8.15 Consider the system of Example 8.5 with R = I .  
Integrate the Riccati equation with a1 = 1, a2 = 2, 411 = 412 = q22 = 1, 
and P(0) = I .  Plot the Riccati equation solution as a function of time and 
verify that its steady-state value matches the results of Equation (8.139) 
and MATLAB’s CARE function. 
Integrate the Riccati equation with a1 = a2 = -1, q l l  = 1, q12 = 2, 
422 = 4, and P(0) = I .  Plot the Riccati equation solution as a func- 
tion of time and verify that its steady-state value matches the results of 
Equation (8.140) and MATLAB’s CARE function. 
Integrate the Riccati equation with a1 = a2 = 1, 411 = 1,412 = 2,422 = 4, 
and P(0) = I .  Plot the Riccati equation solution as a function of time and 
verify that its steady-state value matches the results of Equation (8.139) 
and MATLAB’s CARE function. 
Integrate the Riccati equation with a1 = a2 = 1, q l l  = 1,412 = 2, q22 = 4, 
and P(0) = 0. [Note that this is the same as part (c) except for P(O).] 
Plot the Riccati equation solution as a function of time and verify that 
its steady-state value matches the results of Equation (8.140). Does it 
match the results of MATLAB’s CARE function? Does it result in a 
stable steady-state Kalman filter? 



CHAPTER 9 

Optimal smoothing 

In a post m o r t e m  (after the fact) analysis, it is possible to wait for more observations 
to accumulate. In that case, the estimate can be improved by smoothing. 

-Andrew Jazwinski jJaz70, p. 1431 

In previous chapters, we discussed how to obtain the optimal a priori  and a 
posteriori state estimates. The a priori state estimate a t  time k, 2; ,  is the state 
estimate at time k based on all the measurements up to  (but not including) time 
k. The a posteriori state estimate at time k, 2:, is the state estimate a t  time k 
based on all the measurements up to and including time k: 

There are often situations in which we want to obtain other types of state estimates. 
We will define 2 k , j  as the estimate of X k  given all measurements up to and including 
time j .  With this notation, we see that 

Now suppose, for example, that we have recorded measurements up to  time index 
54 and we want to obtain an estimate of the state at time index 33. Our theory in 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 
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the previous chapters tells us how to obtain 2T3 or 2i'3f3, but those estimates only 
use the measurements up to and including times 32 and 33, respectively. If we have 
more measurements (e.g., measurements up to time 54) it stands to reason that we 
should be able to get an even better estimate of 233.  This chapter discusses some 
ways of obtaining better estimates. 

In another scenario, it may be that we are interested in obtaining an estimate 
of the state at a fixed time j. As measurements keep rolling in, we want to keep 
updating our estimate 2j .  In other words, we want to obtain 2 j , j+ l ,  2j,j+z, a. 

This could be the case, for example, if a satellite takes a picture at time j. In order 
to more accurately process the photograph at time j we need an estimate of the 
satellite state (position and velocity) at time j. As the satellite continues to orbit, 
we may obtain additional range measurements of the satellite, so we can continue to 
update the estimate of zj and thus improve the quality of the processed photograph. 
This situation is called fixed-point smoothing because the time point for which we 
want to obtain a state estimate (time j in this example) is fixed, but the number 
of measurements that are available to improve that estimate continually changes. 
Fixed-point smoothing is depicted in Figure 9.1 and is discussed in Section 9.2. 

1 1 1 1  1 
Figure 9.1 Fixed-point smoothing. We desire an estimate of 2 4 .  Up until k = 4, the 
standard Kalman filter operates. At k = 4, we have 2; = 24,4, which is the estimate of 2 4  

based on measurements up to and including 93. As time progresses, we continue to refine 
our estimate of 2 4  based on an increasing number of measurements. At time k = N ,  we have 
2 4 , ~ ,  which is the estimate of 2 4  based on measurements up to and including time N - 1. 

Another type of smoothing is fixed-lag smoothing. In this situation, we want 
to obtain an estimate of the state at time (k - N )  given measurements up to and 
including time k, where the time index Ic continually changes as we obtain new 
measurements, but the lag N is a constant. In other words, at each time point we 
have N future measurements available for our state estimate. We therefore want 
to obtain ? k - N , k  for k = N , N  + l , . . . ,  where N is a fixed positive integer. This 
could be the case, for example, if a satellite is continually taking photographs that 
are to be displayed or transmitted N time steps after the photograph is taken. In 
this case, since the photograph is processed N time steps after it is taken, we have 
N additional measurements after each photograph that are available to update the 
estimate of the satellite state and hence improve the quality of the photograph. 
Fixed-lag smoothing is depicted in Figure 9.2 and is discussed in Section 9.3. 

The final type of smoothing is fixed-interval smoothing. In this situation, we 
have a fixed interval of measurements (yl, y2, . - 3, YM) that are available, and we 
want to obtain the optimal state estimates at all the times in that interval. For each 
state estimate we want to  use all of the measurements in the time interval. That is, 
we want to obtain 2 0 , ~ ,  2 1 , ~ ,  . . a ,  ~ M , M .  This is the case when we have recorded 
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1 1 1  1 
Figure 9.2 Fixed-lag smoothing. We desire an estimate of the state at each time step 
based on measurements two time steps ahead. After processing y2, we form the estimate 
&,2, which is the estimate of 20 based on measurements up to and including yz. Similarly, 
?1,3 is the estimate of z1 based on measurements up to and including y3. 

some data that are available for post-processing. For example, if a manufacturing 
process has run over the weekend and we have recorded all of the data, and now we 
want to plot a time history of the best estimate of the process state, we can use all 
of the recorded data to estimate the states at each of the time points. Fixed-interval 
smoothing is depicted in Figure 9.3 and is discussed in Section 9.4. 

1 
Figure 9.3 Fixed-interval smoothing. We desire an estimate of the state at each time step 
based on all of the measurements in some interval. After processing all of the measurements 
kom y1 to y ~ ,  we form the estimate &o,M,  which is the estimate of 20 based on all the 
measurements. Similarly, 5 1 , ~  is the estimate of x1 based on all the measurements. 

Our derivation of these optimal smoothers will be based on a form for the Kalman 
filter different than we have seen in previous chapters. Therefore, before we can 
discuss the optimal smoothers, we will first present an alternate Kalman filter form 
in Section 9.1. 

9.1 AN ALTERNATE FORM FOR T H E  KALMAN FILTER 

.In order to put ourselves in position to derive optimal smoothers, we first need to de- 
rive yet another form for the. Kalman filter. This is the form presented in [And79]. 
The equations describing the system and the Kalman filter were derived in Sec- 
tion 5.1 as follows: 
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Now if we define L k  as 
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Combining Equations (9.4), (9.5), and (9.9) gives the alternate form for the one-step 
a priori Kalman filter, which can be summarized as follows: 

Lk = F k P F H r ( H k P F H z  + &)-' 

pF+1 = FkpF(Fk - LkHk)T + Q k  

2;+1 = Fk?; -k L k ( Y k  - Hk?;) (9.10) 

where Lk is the redefined Kalman gain. This form of the filter obtains only a priori  
state estimates and covariances. Note that the Kalman gain, L k ,  for this form of 
the filter is not the same as the Kalman gain, K k ,  for the form of the filter that we 
derived in Section 5.1. However, the two forms result in identical state estimates 
and estimation-error covariances. 

9.2 FIXED-POINT SMOOTHING 

The objective in fixed-point smoothing is to  obtain a priori state estimates of x3 
at times j + 1, j + 2, e .  a ,  k, k + 1, .... We will use the notation ? j , k  to refer to  
the estimate of x3 that is obtained by using all of the measurements up to  and 
including time (k - 1). That is, ? j , k  can be thought of as the a priori estimate of 
x3 at  time k: 

With this definition we see that 

2 j , k = E ( x j I Y l , . . . , Y k - l )  k > j  (9.11) 

(9.12) 

In other words, 2j, j  is just the normal a priori state estimate at time j that we 
derived in Section 5.1. We also see that 

(9.13) 

In other words, 23,j+1 is just the normal a posteriori state estimate a t  time j that 
we derived in Section 5.1. The question addressed by fixed-point smoothing is as 
follows: When we get the next measurement a t  time ( j  + l), how can we incorporate 
that information to obtain an improved estimate (along with its covariance) for 
the state at time j? Furthermore, when we get additional measurements at times 
( j  +2),  ( j  +3), etc., how can we incorporate that information to  obtain an improved 
estimate (along with its covariance) for the state at time j ?  

In order to derive the fixed-point smoother, we will define a new state variable 2'. 

This new state variable will be initialized as x i  = zj, and will have the dynamics 
X L + ~  = xL ( k  = j ,  j + 1,. . .). With this definition, we see that x i  = x3 for all k > j .  
So if we can use the standard Kalman filter to find the a priori estimate of xi then 
we will, by definition, have a smoothed estimate of x3 given measurements up to 
and including time (k - 1). In other words, the a priori estimate of xi will be equal 
to ?i.,,k. This idea is depicted in Figure 9.4. 

Our original system is given as 

(9.14) 



268 OPTIMAL SMOOTHING 

Figure 9.4 This illustrates the idea that is used to obtain the fked-point smoother. A 
fictitious state variable x' is initialized as x: = x3 and from that point on has an identity 
state transition matrix. The a priari estimate of xk is then equal to 23,k. 

Augmenting the dynamics of our newly defined state x' to the original system 
results in the following: 

(9.15) 

If we use a standard Kalman filter to obtain an a priori estimate of the augmented 
state, the covariance of the estimation error can be written as 

The covariance P k  above is the normal a pri0q-i covariance of the estimate of X k .  

We have dropped the minus superscript for ease of notation, and we will also feel 
free to drop the minus superscript on all other quantities in this section with the 
understanding that all estimates and covariances are a priori .  The c k  and I l k  

matrices are defined by the above equation. Note that at time k = j ,  & and I I k  

are given as 

C j  = E [ ( ~ j  - * j , j ) ( X j  - 
= E [ ( X j  - q ( X ,  - q T ]  

nj = E [ ( x j  - 2 j , j ) ( x j  - f j , j I T ]  

= P j  

A-  T = E [(x~ - 5 7 ) ( x j  - X~ ) ] 
= P j  (9.17) 

The Kalman filter summarized in Equation (9.10) can be written for the augmented 
system as follows: 

where L k  is the normal Kalman filter gain given in Equation (9.10), and X k  is the 
additional part of the Kalman gain, which will be determined later in this section. 
Writing Equation (9.18) as two separate equations gives 

%+l = F k - 1 2 ;  + L k  (yk - H k 5 ; )  

2: 2 , k + 1  = 2 i k  + X k  ( Y k  - H k 2 ; )  (9.19) 
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The Kalman gain can be written from Equation (9.10) as follows: 

P k  xT [::I = [Fi-l ; I [ , ,  $ ] [? I x  
(9.20) 

Writing this equation as two separate equations gives 

L k  = F k P k H T ( H k P k H r  + R k ) - '  

= & H z ( H k P k H r  + R k ) - '  (9.21) 

The Kalman filter estimation-error covarianceupdate equation can be written from 
Equation (9.10) as follows: 

F k  0 p k  xz [ x k + l  "+' n k + l  "+' ] = [ 0 I ]  [ C k  r I k  ] 
Qk 0 

(9.22) 

Writing this equation as three separate equations gives 

p k + l  = F k p k ( F k  - L k H k l T  + Qk 

n k + l  = n k - c k H r x r  

G+l = - F k P k H T X %  -k F k c z  

c k + l  - - x k ( F k  - L k H k ) T  (9.23) 

It is not immediately apparent from the above expressions that Cftl is really the 
transpose of c k + l ,  but the equality can be established by substituting for P k  and 
Lk* 

Equations (9.19) - (9.23) completely define the fixed-point smoother. The fixed- 
point smoother, which is used for obtaining ei.,,k = E ( z j I y l , . . . , p k - l )  for k L j ,  
can be summarized as follows. 

The fixed-point smoother 

1. Run the standard Kalman filter up until time j, at which point we have 2; 
and P37. In the algorithm below, we omit the minus superscript on Pi.,: for 
ease of  notation. 

2. Initialize the filter as follows: 

c .  3 = P j  

rIj = P.  3 

e 3 , j  = ej- (9.24) 
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3. For k = j ,  j + 1, - a, perform the following: 

As we recall from Equation (9.16), Pk is the a priori covariance of the standard 
Kalman filter estimate, I I k  is the covariance of the smoothed estimate of xJ at time 
k ,  and Ck is the cross covariance between the two. 

9.2.1 

Now we will look at the improvement in the estimate of xJ due to smoothing. The 
estimate 2; is the standard a priori Kalman filter estimate of x3, and the estimate 
? J , k + l  is the smoothed estimate after measurements up to and including time k 
have been processed. In other words, i$ ,k  uses ( k  + 1 - j) more measurements to 
obtain the estimate of xJ than 2; uses. How much more accurate can we expect 
our estimate to be with the use of these additional (k + 1 - j) measurements? 
The estimation accuracy can be measured by the covariance. The improvement in 
estimation accuracy due to smoothing is equal to the standard estimation covariance 
PJ minus the smoothed estimation covariance n k + l .  We can use Equations (9.24) 
and (9.25) to write this improvement as 

Estimation improvement due to smoothing 

k 

(9.26) 
%=j 

Now assume for purposes of additional analysis that the system is timeinvariant 
and the covariance of the standard filter has reached steady state at time j. Then 
we have 

lim P i  = P (9.27) 
k - r w  

From Equation (9.25) we see that 

where C is initialized as Cj = P .  Combining this expression for &+I with its 
initial value, we see that 

(9.29) 
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where $’ is defined by the above equation. Now substitute this expression, and the 
expression for X from Equation (9 .25) ,  into Equation (9.26) to obtain 

The quantity on the right side of this equation is positive definite, which shows 
that the smoothed estimate of z j  is always better than the standard Kalman fil- 
ter estimate. In other words, (Pj - & + I )  > 0, which implies that &+I < Pj. 
Furthermore, the quantity on the right side is a sum of positive definite matrices, 
which shows that the larger the value of k (i.e., the more measurements that we use 
to obtain our smoothed estimate), the greater the improvement in the estimation 
accuracy. Also note from the above that the quantity (HPHT + R) inside the 
summation is inverted. This shows that as R increases, the quantity on the right 
side decreases. In the limit we see from Equation (9 .30)  that 

lim (Pj - = 0 
R + w  

(9 .31)  

This illustrates the general principle that the larger the measurement noise, the 
smaller the improvement in estimation accuracy that we can obtain by smoothing. 
This is intuitive because large measurement noise means that additional measure- 
ments will not provide much improvement to our estimation accuracy. 

EXAMPLE9.1 

In this example, we will see the improvement due to smoothing that can be 
obtained for a vehicle navigation problem. This is a second-order Newtonian 
system where ~ ( 1 )  is position and 4 2 )  is velocity. The input is comprised of 
a commanded acceleration u plus acceleration noise 6. The measurement y is 
a noisy measurement of position. After discretizing with a step size of T ,  the 
system equations can be written as 

1 T  T2 /2  
= [ 0 T 

Note that the process noise W k  is given as 

(9 .33)  

Now suppose the acceleration noise 6 k  has a standard deviation of a. We 
obtain the process noise covariance as follows: 
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The percent improvement due to smoothing can be defined as 

100 Tr(Pj - I I k + l )  
Percent Improvement = 

TdPj) 

(9.34) 

(9.35) 

where j is the point which is being smoothed, and k is the number of mea- 
surements that are processed by the smoother. We can run the fixed-point 
smoother given by Equation (9.25) in order to smooth the position and veloc- 
ity estimate at any desired time. Suppose we use the smoother equations to 
smooth the estimate at the second time step (k = 1). If we use measurements 
at times up to and including 10 seconds to estimate 21, then our estimate is 
denoted as 41,101. In this case, Table 9.1 shows the percent improvement due 
to smoothing after 10 seconds when the time step T = 0.1 and the acceler- 
ation noise standard deviation a = 0.2. As expected from the results of the 
previous subsection, we see that the improvement due to smoothing is more 
dramatic for small measurement noise. 

Table 9.1 
seconds for Example 9.1. The improvement due to  smoothing is more noticeable when 
the measurement noise is small. 

Improvement due to smoothing the state at the first time step after 10 

Measurement noise Percent 
standard deviation Improvement 

0.1 99.7 
1 96.6 
10 59.3 
100 13.7 
1000 0.2 

Figure 9.5 shows the trace of IIk, which is the covariance of the estimation 
error of the state at the first time step. As time progresses, our estimate 
of the state at the first time step improves. After 10 seconds of additional 
measurements, the estimate of the state at the first time step has improved by 
96.6% relative to the standard Kalman filter estimate. Figure 9.6 shows the 
smoothed estimation error of the position and velocity of the first time step. 
We see that processing more measurements decreases the estimation-error 
covariance. 

In general, the smoothed estimation errors shown in Figure 9.6 will con- 
verge to nonzero values. The estimation errors are zero-mean, but not for 
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Figure 9.5 This shows the trace of the estimation-error covariance of the smoothed 
estimate of the state at the first time step for Example 9.1. As time progresses and we 
process more measurements, the covariance decreases, eventually reaching steady state. 

Figure 9.6 This shows typical estimation errors of the smoothed estimate of the state at  
the first time step for Example 9.1. As time progresses and we process more measurements, 
the estimation error decreases, and its standard deviation eventually reaches steady state. 

any particular simulation. The estimation errors are zero-mean when aver- 
aged over many simulations. The system discussed here was simulated 1000 
times and the variance of the estimation errors (q - 21,101) were computed 
numerically to be equal to  0.054 and 0.012 for the two states. The diagonal 
elements of lT101 were equal to 0.057 and 0.012. 

vvv 
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9.2.2 Smoothing constant states 

Now we will think about the improvement (due to smoothing) in the estimation 
accuracy of constant states. If the system states are constant then Fk = I and 
Q = 0. Equation (9.25) shows that 

Comparing these expressions for and & + I ,  and realizing from Equation (9.24) 
that the initial value of C, = P,, we see that & = Pk for k 2 j .  This means that 
the expression for Lk from Equation (9.25) can be written as 

Lk = FkPkHT(HkpkHT + Rk)-' 
= ckHT(HkpkH? + &)-' 
= x k  (9.37) 

Substituting these results into the expression for l&+1 from Equation (9.25) we see 
that 

(9.38) 

Realizing that the initial value of II, = Pj, and comparing this expression for &+I 

with Equation (9.36) for Pk+l, we see that & = Pk for k 2 j. Recall that Pk is 
the covariance of the estimate of x k  from the standard Kalman flter, and & is 
the covariance of the estimate of x ,  given measurements up to and including time 

This result shows that constant states are not smoothable. Additional measure- 
ments are still helpful for refining an estimate of a constant state. However, there 
is no point to using smoothing for estimation of a constant state. If we want to 
estimate a constant state at time j using measurements up to time k > j, then we 
may as well simply run the standard Kalman filter up to time k. Implementing the 
smoothing equations will not gain any improvement in estimation accuracy. 

(k - 1). 

9.3 FIXED-LAG SMOOTHING 

In fixed-lag smoothing we want to obtain an estimate of the state at time (k - N )  
given measurements up to and including time k, where the time index k continually 
changes as we obtain new measurements, but the lag N is a constant. In other 
words, at each time point we have N future measurements available for our state 
estimate. We therefore want to obtain S k - N , k  for k = N ,  N + 1 , .  . ., where N is a 
fixed positive integer. This could be the case, for example, if a satellite is continually 
taking photographs that are to be displayed or transmitted N time steps after the 
photograph is taken. In this case, since the photograph is processed N time steps 
after it is taken, we have N additional measurements after each photograph that 
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are available to update the estimate of the satellite state and hence improve the 
quality of the photograph. In this section we use the notation 

2 k - N , k  = E ( x k - N I Y 1 ,  * * ’ , Y k )  

n k - N  = E [ ( x k - N  - ? k - N , k ) ( X k - N  - % k - N , k )  T ] (9.39) 

Note that the notation has changed slightly from the previous section. In the 
previous section we used the notation &,m to refer to the estimate of X k  given 
measurements up to and including time (m - 1). In this section (and in the remain- 
der of this chapter) we use 2 k , m  to refer to the estimate of Xk given measurements 
up to and including time m. 

Let us define X k , m  as the state X k - n  propagated with an identity transition 
matrix and zero process noise to time k. With this definition we see that 

xk+1 ,1  = x k  

xk+1 ,2  - X k - 1  
- 

x k , l  - - 

xk+1 ,3  = X k - 2  

x k , 2  
- - 

etc. 

We can therefore define the augmented system 

. . .  

(9.40) 

The Kalman filter estimates of the components of this augmented state vector are 
given as 

E ( Z k + l I Y l  ’ ’ * Y k )  = *L+l 

= * k + l , k  

E ( Z k + l , l l Y l  + * ’ Y k )  = E ( x k l Y 1  * * Y k )  

- - 2$ 

= *k ,k  

E(xk+1 ,21Y1  * * ‘ Y k )  = E ( x k - l l y l  * * ‘ Y k )  

= * k - l , k  

E ( X k + l , N + l I Y l  ‘ * * Y k )  = ?k-N,k  (9.42) 

We see that if we can use a Kalman filter to estimate the states of the augmented 
system (using measurements up to and including time k), then the estimate of the 
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last element of the augmented state vector, Z k + l , N + 1 ,  will be equal to  the estimate 
of X k - N  given measurements up to  and including time k. This is the estimate that 
we are looking for in fixed-lag smoothing. This idea is illustrated in Figure 9.7. 

'k 

' k + m , m  = ' k - L  

' _-___-__-_-_I_ - 
'0 1 ' k - m  ' k - m + l  

Figure 9.7 This illustrates the idea that is used to obtain the fixed-lag smoother. A 
fictitious state variable Xk,m is initialized a s  Xk,m = Xk-m and from that point on has 
an identity state transition matrix. The a posteriori estimate of Xk+m,m is then equal to 
z k - n , k .  

From Equation (9.10) we can write the Kalman filter for the augmented system 
of Equation (9.41) as follows: 

5; 

[ Fi 1 = [ a [ * k - : , k - l  1 t 
* k - N , k  . . .  I 0 ? k - ( N + l ) , k - 1  

where the Lk, z  matrices are components of the smoother gain that will be deter- 
mined in this section. Note that L k . 0  is the standard Kalman gain. The smoother 
gain L k  is defined as 

From Equation (9.10) we see that the L k  gain matrix is given by 

(9.44) 

#"I. \ - l  0 

where the Pl'J covariance matrices are defined as 

pi'' = E [ ( Z k - j  - ? k - J , k - l ) ( z k - z  - 2k-z ,k- l ) ' ]  

(9.45) 

(9.46) 
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The Lk expression above can be simplified to  

From Equation (9.10) we see that the covariance-update equation for the Kalman 
filter for our augmented system can be written as 

Substituting for Lk from Equation (9.47) and multiplying out gives 

(9.49) 

This gives us the update equations for the P matrices. The equations for the first 
column of the P matrix are as follows: 

pjf1 = Fkp;” [FZ - Hr(HkPk’ 0 0  Hk T + Rk)-lHkP;’oFr] + Q k  

= 

= Pi’O(Fk - Lk,oHk)T 
FkPi7O(Fk - Lk,oHk)T + Qk 

(9.50) 
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The equations for the diagonal elements of the P matrix are as follows: 

pi,% k+l = ' k  a-1,%-1 - ' k  O,%-~HTLT k k,a FT k (9.51) 

These equations give us the formulas that we can use for fixed-lag smoothing. This 
gives us the estimate E ( Z k - N I Y 1 ,  - - , y k )  for a fixed N as k continually increments. 
The fixed-lag smoother is summarized as follows. 

The fixed-lag smoother 

1. Run the standard Kalman filter of Equation (9.10) to obtain 5;+l, L k ,  and 
PL . 

2. Initialize the fixed-lag smoother as follows: 

(9.52) 

3. For i = 1, + a ,  N + 1, perform the following: 

Note that the first time through this loop is the measurement update of 
the standard Kalman filter. At the end of this loop we have the smoothed 
estimates of each state with delays between 0 and N ,  given measurements up 
to and including time k. These estimates are denoted &,k, . . a ,  & l N , k .  w e  
also have the estimation-error covariances, denoted Pi$l, . a ,  Pk+l  N+1,N+1 

The percent improvement due to smoothing can be computed as 

(9.54) 
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EXAMPLE9.2 

Consider the same two state system as described in Example 9.1. Suppose 
we are trying to estimate the state of the system with a fixed time lag. The 
discretization time step T = 0.1 and the standard deviation of the acceleration 
noise is 10. Figure 9.8 shows the percent improvement in state estimation that 
is available with fixed-lag smoothing. The figure shows percent improvement 
as a function of lag size, and for two different values of measurement noise. The 
values on the plot are based on the theoretical estimation-error covariance. 
As expected, the improvement in estimation accuracy is more dramatic as the 
measurement noise decreases. This was discussed at the end of Section 9.2. 

QOm 
8o t 

2ot 
10; . I 

5 10 15 20 25 30 
Number of lag intervals 

Figure 9.8 This shows the percent improvement of the trace of the estimation-error 
covariance of the smoothed estimate of the state (relative to the standard Kalman filter) for 
Example 9.2. As the number of lag intervals increases, the estimation error of the smoother 
decreases and the percent improvement increases. Also, as the measurement noise decreases, 
the improvement due to smoothing is more dramatic. 

vvv 

9.4 FIXED-INTERVAL SMOOTHING 

Suppose we have measurements for a fixed time interval. In fixed-interval smooth- 
ing we seek an estimate of the state at some of the interior points of the time 
interval. During the smoothing process we do not obtain any new measurements. 
Section 9.4.1 discusses the forward-backward approach to smoothing, which is per- 
haps the most straightforward smoothing algorithm. Section 9.4.2 discusses the 
RTS smoother, which is conceptually more difficult but is computationally cheaper 
than forward-backward smoothing. 
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9.4.1 Forward-backward smoothing 

Suppose we want to estimate the state xm based on measurements from k = 1 to 
k = N ,  where N > m. The forward-backward approach to  smoothing obtains two 
estimates of xm. The first estimate, P f ,  is based on the standard Kalman filter that 
operates from k = 1 to k = m. The second estimate, hb, is based on a Kalman filter 
that runs backward in time from k = N back to k = m. The forward-backward 
approach to  smoothing combines the two estimates to  form an optimal smoothed 
estimate. This approach was first suggested in [Fra69]. 

Suppose that we combine a forward estimate P f  of the state and a backward 
estimate i?b of the state to  get a smoothed estimate of x as follows: 

where K f  and Kb are constant matrix coefficients to  be determined. Note that 
? f  and P b  are both unbiased since they are both outputs from Kalman filters. 
Therefore, if h is to  be unbiased, we require K f  + Kb = I (see Problem 9.9). This 
gives 

P = K f h f  + ( I  - K f ) &  (9.56) 

The covariance of the estimate can then be found as 

(9.57) 

where e f  = x - x f ,  eb  = x - q,, and we have used the fact that E(e fe r )  = 0. The 
estimates P f  and i?b are both unbiased, and ef and eb are independent (since they 
depend on separate sets of measurements). We can minimize the trace of P with 
respect to K f  using results from Equation (1.66) and Problem 1.4: 

- -  - 2E {Kf(e feF + ebe;f) - ebe; f}  
aKf  

(9.58) 

where Pf = E(efeT)  is the covariance of the forward estimate, and Pb = E(eb.5:) 
is the covariance of the backward estimate. Setting this equal to  zero to find the 
optimal value of K f  gives 

(9.59) 

The inverse of (Pf  + Pb) always exists since both covariance matrices are positive 
definite. We can substitute this result into Equation (9.57) to  find the covariance 
of the fixed-interval smoother as follows: 

(9.60) 
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Using the identity ( A  + B)-l = B-'(AB-'+ I ) - l  (see Problem 9.2), we can write 
the above equation as 

P = ( P f P i l  + I ) - ' (Pf  + Pb)(P;'Pf +I)-' f 
Pb - (PfP;' + I)-lPb - (PfPc'  f I)-'Pb (9.61) 

Multiplyingout the first term, and again using the identity (A+B)-l  = B-'(AB-l t 
I)-l  on the last two terms, results in 

(Pr '+PT')- '+(pb -1p f p-1 b + p-1 b ) -1 ] ( P i l P f  +I)-' + 
(9.62) 

(9.63) 

(9.64) 

These results form the basis for the fixed-interval smoothing problem. The system 
model is given as 

xk = Fk-ixk-i + W k - 1  

W k  (0,Qk) 
uk (0,Rk) (9.65) 

Suppose we want a smoothed estimate a t  time index m. First we run the forward 
Kalman filter normally, using measurements up to and including time m. 

Y k  = Hkxk+vk 

1. Initialize the forward filter as follows: 

2. For k = 1, - , m, perform the following: 

(9.66) 

(9.67) 
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At this point we have a forward estimate for xm, along with its covariance. These 
quantities are obtained using measurements up to and including time m. 

The backward filter needs to run backward in time, starting at  the final time 
index N .  Since the forward and backward estimates must be independent, none 
of the information that was used in the forward filter is allowed to be used in the 
backward filter. Therefore, PrN must be infinite: 

PCN = 0O (9.68) 

We are using the minus superscript on PiN to indicate the backward covariance at 
time N before the measurement at time N is processed. (Recall that the filtering 
is performed backward in time.) So PbN will be updated to obtain Pb+N after the 
measurement at time N is processed. Then it will be extrapolated backward in 
time to obtain PGN-l, and so on. 

Now the question arises how to initialize the backward state estimate ?& at the 
final time k = N .  We can solve this problem by introducing the new variable 

s k  = Pil?bk (9.69) 

A minus or plus superscript can be added on all the quantities in the above equation 
to indicate values before or after the measurement at time k is taken into account. 
Since PcN = 00 it follows that 

s; = 0 (9.70) 

The infinite boundary condition on P i  means that we cannot run the standard 
Kalman filter backward in time because we have to begin with an infinite covariance. 
Instead we run the information filter from Section 6.2 backward in time. This can 
be done by writing the system of Equation (9.65) as 

z k - 1  = FFJlzk + FiIiWk-1 

= F F 2 1 X k  + W b , k - 1  

(9.71) 

Note that FL1 should always exist if it comes from a real system, because Fk comes 
from a matrix exponential that is always invertible (see Sections 1.2 and 1.4). The 
backward information filter can be written as follows. 

1. Initialize the filter with zrN = 0. 

2. For k = N ,  N - 1, - a ,  perform the following: 

(9.72) 
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The first form for Z;k-l above requires the inversion of Zbfk. Consider the first 
time step for the backward filter (i.e., at k = N ) .  The information matrix Z; is 
initialized to  zero, and then the first time through the above loop we set Z$ = 
Zk + HFRL'Hk. If there are fewer measurements than states, H F R i l H k  will 
always be singular and, therefore, Zbfk will be singular at k = N .  Therefore, the 
first form given above for Z c k - l  will not be computable. In practice we can get 
around this by initializing ZbN to  a small nonzero matrix instead of zero. 

The third form for ZCk-1 above has its own problems. It does not require the 
inversion of Z&, but it does require the inversion of Q k - 1 .  So the third form of 
Zb;k-l is not computable unless Q k - 1  is nonsingular. Again, in practice we can 
get around this by making a small modification to Q k - 1  so that it is numerically 
nonsingular. 

Since we need to update S k  = Zbk?bk instead of ?bk (because of initialization 
issues) as defined in Equation (9.69), we rewrite the update equations for the state 
estimate as follows: 

?& = ?Lk + K b k ( Y k  - Hk?&) 

skf = Z + f +  bk bk 

= Zb+k2& + Z&Kbk ( Y k  - Hkgrk)  (9.73) 

Now note from Equation (6.33) that we can write Zbfk = Zk + H T R k l H k ,  and 
K b k  = P&HrR;? Substituting these expressions into the above equation for skf 
gives 

We combine this with Equation (9.72) to write the backward information filter as 
follows. 

1. Initialize the filter as follows: 

(9.75) 

2. For k = N ,  N - 1, * . , m + 1, perform the following: 

3. Perform one final time update to obtain the backward estimate of xm: 
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(9.77) 

Now we have the backward estimate f;, and its covariance PLm. These 
quantities are obtained from measurements m + 1, m + 2, a ,  N .  

After we obtain the backward quantities as outlined above, we combine them with 
the forward quantities from Equation (9.67) to obtain the final state estimate and 
covariance: 

Kf = P&pTm+P&)-l 

f m  = K f q m  + (I - Kf)f,, 
(9.78) 

We can obtain an alternative equation for P ,  by manipulating the above equations. 
If we substitute for Kf in the above expression for Pm then we obtain 

- p- p+ +p- )-1-+ 
- bm( f m  bm "fm + [('r', + pb-k> - p&] (pTm + p;m)-'f;m 

- - p- bm( p+ f m  +p- b m  )-l-+ "fm+pf+m(pf+m+p&)-lfbm (9.79) 

Using the matrix inversion lemma on the rightmost inverse in the above equation 
and performing some other manipulations gives 

where we have relied on the identity (A + B)-l = B-l(AB-l + I)-1 (see Prob- 
lem 9.2). The coefficients of f:m and 2;' in the above equation both have a 
common factor which can be written as follows: 
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= P;m - P;mT;m (I + P;mT;m) - 1 PTm 
P;m - Pfm(Tf+mP;m + I)-l = 

= [P;m(T;mP& +I) - Pf,] (ZTmP& + I)-l 
= P,-,(zf+mP& + I)-1 
= + 

Therefore, using Equation (9.78), we can write Equation (9.80) as 

hm = PmZj!mi?i.fm + ~ m ~ r ~ h r ~  

= pm (.,.ni?~~ + ~ r ~ i ? ; ~ )  
Figure 9.9 illustrates how the forward-backward smoother works. 

k 3 k=m k=N 

(9.81) 

(9.82) 

Figure 9.9 This figure illustrates the concept of the forward-backward smoother. The 
forward filter is run to obtain a posteriori estimates and covariances up to time m. Then 
the backward filter is run to obtain a priori  estimates and covariances back to time m (i.e., 
a pr ior i  from a reversed time perspective). Then the forward and backward estimates and 
covariances at time m are combined to obtain the find estimate 2m and covariance Pm. 

EXAMPLE9.3 

In this, example we consider the same problem given in Example 9.1. Suppose 
that we want to estimate the position and velocity of the vehicle at t = 5 
seconds. We have measurements every 0.1 seconds for a total of 10 seconds. 
The standard deviation of the measurement noise is 10, and the standard 
deviation of the acceleration noise is 10. Figure 9.10 shows the trace of the 
covariance of the estimation of the forward filter as it runs from t = 0 to t = 5, 
the backward filter as it runs from t = 10 back to t = 5, and the smoothed 
estimate at t = 5 .  The forward and backward filters both converge to the 
same steady-state value, even though the forward filter was initialized to a 
covariance of 20 for both the position and velocity estimation errors, and the 
backward filter was initialized to an infinite covariance. The smoothed filter 
has a covariance of about 7.6, which shows the dramatic improvement that 
can be obtained in estimation accuracy when smoothing is used. 

vvv 
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Figure 9.10 This shows the trace of the estimation-error covariance for Example 9.3. 
The forward filter runs from t = 0 to t = 5, the backward filter runs from t = 10 to t = 5, 
and the trace of the covariance of the smoothed estimate is shown at t = 5. 
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9.4.2 RTS smoothing 

Several other forms of the fixed-interval smoother have been obtained. One of the 
most common is the smoother that was presented by Rauch, Tung, and Striebel, 
usually called the RTS smoother [Rau65]. The RTS smoother is more computai 
tionally efficient than the smoother presented in the previous section because we 
do not need to directly compute the backward estimate or covariance in order to 
get the smoothed estimate and covariance. In order to  obtain the RTS smoother, 
we will first look at the smoothed covariance given in Equation (9.78) and obtain 
an equivalent expression that does not use Pbm. Then we will look at the smoothed 
estimate given in Equation (9.78), which uses the gain K f ,  which depends on Pbm, 
and obtain an equivalent expression that does not use Pbm or &,m. 

forward--backward filter 

J 0 
- 

9.4.2.1 RTS covariance update First consider the smoothed covariance given in 
Equation (9.78). This can be written as 

= PTm - P;m(P;m + PFm)-1PTm (9.83) 

where the second expression comes from an application of the matrix inversion 
lemma to the first expression (see Problem 9.3). From Equation (9.72) we see that 

(9.84) 

Substituting this into the expression (PTm + P L ) - l  gives the following: 
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We can combine these two equations to obtain 

Substituting this into Equation (9.78) gives 

(9.85) 

(9.86) 

(9.87) 

(9.8%) 

Substituting this into Equation (9.85) gives 

= F T z -  m f,m+l (p im+l-  ',+I) z im+lFm (9.89) 

where the last equality comes from an application of the matrix inversion lemma. 
Substituting this expression into Equation (9.83) gives 

Pm = pFm - Km(Pim+1 - Pm+l)K; (9.90) 

where the smoother gain Km is given as 

Km = ~ f + ~ ~ z ~ f ; ~ + l  (9.91) 

The covariance update equation for Pm is not a function of the backward covariance. 
The smoother covariance Pm can be solved by using only the forward covariance 
Pfm, which reduces the computational effort (compared to the algorithm presented 
in Section 9.4.1). 
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9.4.2.2 RTS state estimate update Next we consider the smoothed estimate 2 ,  
given in Equation (9.78). We will find an equivalent expression that does not use 
Pam or ?bm.  In order to do this we Will f ist  need to establish a few lemmas. 

Lemma 1 

Proof: From Equation (9.67) we see that 

FF?lQk-lFF-; = F - I P - F - T  k - 1  f k  k - 1  - P f , k - l  + (9.92) 

p h  = F k - l P L k - l F k T - 1 +  Qk-1  (9.93) 

Q k  - 1 = ph - F k  - 1 p z k  - 1 Fz- 1 

Rearranging this equation gives 

(9.94) 

Premultiplying both sides by FFI1 and postmultiplying both sides by FF-; gives the 
desired result. 
QED 

Lemma 2 The a posteriori covariance P& of the backward filter satisfies the equa- 
tion 

p& = ( P h  f p & ) T ; k p k  (9.95) 

Proof: From Equation (9.78) we obtain 

I = (I& + z ; k ) p k  

p& = (I + p & z y , ) p k  

= p k  + p & z y k p k  

= P G z Y k p k  + pb+lczflePk 

= (p& + p&)zy ,pk  (9.96) 

QED 

Lemma 3 The covariances of the forward and backward filters satisfy the equation 

p& + p& = F k - l ( P & - i +  p c k - 1 ) F k - l  T (9.97) 

Proof: From Equation (9.67) and (9.72) we see that 

Adding these two equations and rearranging gives 

(9.98) 

(9.99) 

(9.100) 
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Proof: Fkom Equations (9.69) and (9.82) we have 

2 k  = P k z T k 2 i k  + P k z h 2 i k  

= Pkz;’k?;k + P k S i  

&om Equation (9.76) we see that 

(9.101) 

Substitute this expression for s i  and the expression for  2 i k  from Equation (9.67), 
into Equation (9.101) to obtain 

?k = P k z T k 2 y k  + P k z T k K f k ( Y k  - H k ? y k )  f Pkskf - P k H F R k ’ Y k  (9.103) 

Now substitute Pf+kHrRb’ for K f k  [from Equation (9.67’1 in the above equation 
to obtain 

Lemma 5 

Proof: Recall from Equations (6.26) and (9.72) that 

Combining these two equations gives 

(9.105) 

(9.106) 

(9.107) 

where we have used Equation (9.78) in the above derivation. Substitute this expres- 
sion for Pbfk into Equation (9.97) to obtain 

(9.108) 
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Invert both sides to obtain 

Now apply the matrix inversion lemma to the term (Zk -Z;,)-' in the above equa- 
tion. This results in 

(9.110) 

With the above lemmas we now have the tools that we need to obtain an alternate 
expression for the smoothed estimate. Starting with the expression for sk-' in 
Equation (9.76), and substituting the expression for Tck-1 from Equation (9.72) 
gives 

(9.111) 

Rearranging this equation gives 

(9.112) 

Multiplying out this equation, and premultiplying both sides by F;21Pa+k, gives 

(9.113) 
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Substituting for F;ylQk- IFF-: from Equation (9.92) gives 

(9.1 14) 

Substituting in this expression for Pb+k from Equation (9.95) gives 

(9.115) 

Substituting for (PG + PA) from Equation (9.97) on both sides of this expression 
gives 

(9.116) 
Premultiplying both sides by (Pftk-l + p<k-l)-lFF?l gives 

(9.117) 

Substituting Equation (9.105) for (Pftk-l + P<k-l)-l gives 

(9.118) 

Now from Equation (9.105) we see that 

(9.119) 

So we can add the two sides of this equation to  the two sides of Equation (9.118) 
to get 

(9.120) 

Now use Equation (9.100) to  substitute for PkS$ in the above equation and obtain 

(9.121) 

Rearrange this equation to obtain 

(9.122) 
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From Equation (9.106) we see that ZTk -TFk = HzRk'Hk. Also note that part of 
the coefficient of 27k on the left side of the above equation can be expressed as 

(9.123) 

From Equation (9.67) we see that FF?12& = 2 i k - 1 ,  Therefore Equation (9.122) 
can be written as 

(9.124) 

Now substitute for pk from Equation (9.90) and use Equation (9.91) in the above 
equation to obtain 

(9.125) 

Premultiplyhg both sides by Plk-1 gives 

(9.126) 

Now use Equation (9.91) to  notice that the coefficient of  SF-^ on the left side of 
the above equation can be written as 

(9.127) 

Using Equation (9.90) to  substitute for &pk+lKz allows us to  write the above 
expression as 

(9.128) 

Since this is the coefficient of s ; - ~  in Equation (9.126), we can write that equation 

(9.129) 

as 

Now from Equations (9.78) and (9.82) we see that 

(9.130) 

From this we see that 

(9.131) 
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Rewriting the above equation with the time subscripts (k - 1) and then substituting 
for the left side of Equation (9.129) gives 

2 k - 1  - x f , k - 1  -+ = K k - l ( 2 k  - 2 7 k )  (9.132) 

from which we can write 

2 k  = 2 F k  + K k ( i k + l  - ? i k + l )  (9.133) 

This gives the smoothed estimate 2 k  without needing to  explicitly calculate the 
backward estimate. The RTS smoother is implemented by first running the stan- 
dard Kalman filter of Equation (9.67) forward in time to the final time, and then 
implementing Equations (9.90), (9.91), and (9.133) backward in time. The RTS 
smoother can be summarized as follows. 

The RTS smoother 

1. The system model is given as follows: 

2. Initialize the forward filter as follows: 

3. For k = l , . . . ,  N (where N is the final time), execute the standard forward 
Kalman filter: 

4. Initialize the RTS smoother as follows: 

(9.136) 

(9.137) 
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5 .  For k = N - 1, - . - ,  1,0, execute the following RTS smoother equations: 

9.5 SUMMARY 

In this chapter we derived the optimal smoothing filters. These filters, sometimes 
called retrodiction filters [BarOl] , include the following variants. 

2 J , k  = E ( s j l y l , * . . , y k - l )  ( k  L j )  is the output of the fixed-point smoother. 
In this filter we find the estimate of the state at the fixed time j when mea- 
surements continue to arrive at the filter at times greater than j .  The time 
index j is fixed while k continues to increase as we obtain more measurements. 

?k-N,k  = E ( ~ k - N I Y l , " * , Y k )  for a fixed N is the Output of the fixed-lag 
smoother. In this filter we find the estimate of the state at each time k while 
using measurements up to and including time (k + N ) .  The time index k 
varies while N remains fixed. 

0 i k , N  = E ( z k l y 1 ,  * .  ., y ~ )  for a fixed N is the output of the fixed-interval 
smoother. In this filter we find the estimate of the state at each time k while 
using measurements up to and including time N .  The time index k varies 
while the total number of measurements N is fixed. The two formulas we 
derived for this type of smoothing included the forward-backward smoother 
and the RTS smoother. 

Just as steady-state filters can be used for standard filtering, we can also derive 
steady-state smoothers to save computational effort [Ge174]. An early survey of 
smoothing algorithms is given in [Med73]. 

PROBLEMS 

Written exercises 

9.1 Prove or disprove the following conjecture: The trace of the inverse of a 
matrix is equal to the inverse of the trace of the matrix. 

9.2 Show that ( A  + B ) - l =  B - l ( A B - l +  I ) - 1 .  

9.3 Derive Equation (9.83). 

9.4 Consider a scalar system with F = 1, H = 1, and R = 2Q. 
a) What is the steady-state value of the a priori estimation-error covariance 

PF? 



PROBLEMS 295 

b) Suppose that after the Kalman filter has reached steady state, the fixed- 
point smoother begins to operate. Find a closed-form solution to the 
covariance of the smoothed estimate l& as a function of the time index k. 
What is the limiting value of 

9.5 Repeat Problem 9.4 for the case R = l2Q. What is the percent improvement 
in the estimation-error covariance due to smoothing? Explain why the percent 
improvement due to smoothing for this case differs in the way that it does from the 
results of Problem 9.4. 

9.6 Suppose 
that the fixed-lag smoother for this system is in steady state so that P;+l = P;, 
L k + l , %  = L k , z ,  Pi$1 = Pila, and Pt$l = Pk’ , for i = l , . . . ,  N + 1 .  Find closed-form 
expressions for P;, L k , z ,  P;”, and Pi” as functions of i. What is the limit as 
i --+ m of L k , z ,  pis2, and pi!’? 

9.7 Suppose you have a fixed-lag smoother as shown in Equation (9.43) that 
is in steady state. How do the eigenvalues of the fixed-lag smoother relate to 
the eigenvalues of the standard Kalman filter? What do you conclude about the 
stability of the fixed-lag smoother? 

9.8 Solve Equation (9.10) for ( y k  - HIE!?;) [assuming that p ( L k )  = T ,  where T 

is the number of measurements in the system]. Substitute the resulting expression 
for (Yk - H k ! ? i )  in the fixed-lag smoother equation for !?k+l-$,k to show that the 
smoothed state estimate can be driven by the state estimates without any input 
from the measurements [And79]. 

9.9 Suppose that bj and &, are unbiased estimates of x, and !? = Kjbj + K&. 
Show that if b is an unbiased estimate of x, then we must have Kj + Kb = I. 

9.10 Consider a scalar system with F = 1, H = 1, and R = 2Q. Use the forward- 
backward smoother of Section 9.4.1 to find the steady-state value of the covariance 
of the smoothed state estimate. 

9.11 Consider a scalar system with F = 1, H = 1, and R = 2Q. Use the RTS 
smoother of Section 9.4.2 to find the steady-state value of the covariance of the 
smoothed state estimate. 

9.12 Consider a scalar system with F = 1, H = 1, and R = 2Q. Suppose that 
the forward filter has reached steady state. Use the RTS smoother of Section 9.4.2 
to find the covariance of the smoothed state estimate for k = N ,  N - 1, N - 2, N - 3, 
and N - 4. At what point does the covariance of the smoothed state estimate get 
within 1% of its steady-state value? 

9.13 Repeat Problem 9.12 for R = 12Q. How do you intuitively explain the 
quicker convergence of Pk to steady state? 

9.14 Use the RTS smoother equations to show that constant states are not 
smoothable. That is, if F = I and Q = 0, then P k  = PIN for all k. 

as k ---f m? 

Consider a scalar system with F = 1, H = 1, and R = 2Q. 

0 2  
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Computer exercises 

9.15 Consider the second-order system 

where w = 6 rad/s is the natural frequency of the system, and c = 0.16 is the 
damping ratio. The input w(t) is continuous-time white noise with a variance of 
0.01. Measurements of the first state are taken every 0.5 s: 

Y ( t k )  = [ 1 0 ] z ( t k )  + u ( t k )  

where ' ~ ( t k )  is discrete-time white noise with a variance of 
estimate, and covariance are 

The initial state, 

f (0 )  = x(0)  

a) Discretize the system equation. 
b) Implement the discretetime Kalman filter and the RTS smoother for 10 s 

(20 time steps). Plot the variance of the estimation error of the first state 
for the forward filter and for the RTS smoother on a single plot. Do the 
same for the second state. Why is the second state more smoothable than 
the first state? 

9.16 Repeat Problem 9.15 with the continuous-time process noise w ( t )  having a 
variance of 1. How does this change the smoothability of the states? 

9.17 Design a fixed-interval smoother for the system described in Problem 5.11 
to estimate the state at each time on the basis of measurements at all 10 time steps. 

a) Plot the a posteriori covariance of the forward state estimate and the 
covariance of the smoothed state estimate as a function of time for both 
states. 

b) What are the percent improvements in the estimation-error variances due 
to smoothing for the two states at the initial time? Why is there so much 
more improvement for one state than for the other state? 

c )  Simulate the system and smoother a hundred times or so, each simulation 
with a different noise history. On the basis of your simulations, derive a 
numerical estimate of the smoother estimation-error variances of the two 
states at the initial time. How do your numerical variances compare with 
the theoretical variances obtained in part (b)? 



CHAPTER 10 

Additional topics in Kalman filtering 

The use of wrong a priori  statistics in the design of a Kalman filter can lead to large 
estimation errors or even to a divergence of errors. 

--Raman Mehra [Meh72] 

The previous chapters covered the essentials of Kalman filtering and should 
provide a firm foundation for further studies. This chapter discusses some additional 
important topics related to  Kalman filtering. Section 10.1 talks about how to verify 
that a Kalman filter is operating reliably. When we run computer-based simulations 
of a Kalman filter, we can tell if the filter is working because we are in control of the 
simulation model and so we can compare the true state with the estimated state. 
However, in the real world we do not know what the true state is - after all, that is 
why we need a Kalman filter. In those situations, it is more difficult to  verify that 
the Kalman filter’s estimates are reliable. 

Section 10.2 discusses multiplemodel estimation, which is a way of estimating 
system states when we are not sure of which model is governing the dynamics of the 
system. This can be useful when the system model changes due to events of which 
the engineer may not be aware. Section 10.3 discusses reduced-order filtering. Many 
system models are of high order, which means that the corresponding Kalman filter 
will also be of high order. The high order of the filter may prevent the real-time 
implementation of the Kalman filter due to computational constraints. In these 

Optimal State Estimation, First Edition. By Dan J.  Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 
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cases a smaller, suboptimal filter (called a reduced-order filter) can be designed to 
give acceptable estimation performance at a lower computational cost. Section 10.4 
discusses robust Kalman filtering, which is a way of making the filter less sensitive 
to variations in the assumed system model. Section 10.5 discusses the topic of 
delayed measurements. Sometimes the measurements do not arrive at the filter in 
chronological order because of processing delays. In these cases, we can modify the 
filter to optimally incorporate measurements that arrive at the filter in the wrong 
sequence. 

10.1 VERIFYING KALMAN FILTER PERFORMANCE 

We can verify Kalman filter performance, or adjust the gain of the Kalman filter, 
using our knowledge of the statistics of the innovations. The innovations is defined 
as ( y k  - H k ? , ) ,  and in this section we will show that it is a zero-mean white 
stochastic process with a covariance of ( H k p F  H: + &). 

Recall our original system model, along with the one-step a priori update equa- 
tion for the state estimate: 

x k  = F k - 1 X k - l - k  w k - 1  

Y k  = H k x k  +'"k 

?;+I = F k ? ,  + F k K k ( Y k  - Hk?;) (10.1) 

The innovations is defined as the quantity in parentheses in the update equation. 
The innovations can be thought of as the part of the measurement that contains 
new information and that is therefore used to update the state estimate (apart from 
our knowledge of the state transition matrix). If the innovations was zero then the 
state estimate would simply be updated according to the state transition matrix. 
A nonzero innovations allows the measurement to affect the state estimate. The 
innovations T k  can be written as 

where € k ,  the a priori estimation error, is defined by the above equation. The 
covariance of the innovations is given as 

E['?'kTT] = E [ ( H k € k  + 'Uk)(Hi'& + W i ) T ]  (10.3) 

Let us see what the covariance is when k # i. We can assume without loss of 
generality that k > i. We then obtain 

(10.4) 

Note that two of the cross terms reduced to zero because of the whiteness of Wk, 

and the fact that the estimation error € a  is independent of 'uk for k > i. In order 
to evaluate this Covariance, we need to evaluate E ( E k E T )  and E ( E k w T ) .  First we 
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will evaluate E ( E k E T ) .  In order to evaluate this term, notice that the a priori state 
estimate can be written as follows: 

(10.5) 

The a priori estimation error can be written as 

Ek+1 = x k + l  - ?;+i 

= 

= 

= $ k € k  + vk (10.6) 

where & and w(, are defined by the above equation. This is a linear discretetime 
system for Ek with the state transition matrix 

F k ( X k  - 5;) - F k K k H k ( X k  - 3;) -k w k  - F k K k V k  

F k ( I  - K k H k ) E k  -k ( W k  - F k K k V k )  

Ek can be solved from the initial condition as follows: 

j =a 

The covariance of EkET can be written as 

(10.7) 

(10.8) 

(10.9) 

We see that all of the W ~ E T  terms in the above expression are zero-mean. This is 
because all of the wi noise terms occur a t  time i or later and so do not affect ~ i .  

[Note from Equation (10.6) that ~i is affected only by the noise terms at time (i - 1) 
or earlier.] Therefore, 

E ( V i E T )  = 0 ( j  2 i) (10.10) 

We therefore see that Equation (10.9) can be written as 

(10.11) 

Now that we have computed E ( E k € r ) ,  we need to solve for E ( E k V T )  in order to  
arrive at our goal, which is the evaluation of Equation (10.4). E ( e k v T )  can be 
written as 

(10.12) 
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The E ~ V T  term in the above expression is zero-mean, and the V ~ V T  terms are zero- 
mean for j > i. The above covariance can therefore be written as 

E(Ek'$) = E ($k,z+lViVT) 

= E ($k,i+l(Wi - F&ivi)vT) 

= -$k,z+iFtKt& (10.13) 

Substituting this equation, along with Equation ( l O . l l ) ,  into Equation (10.4) gives 

(10.14) 

So we see that the innovations T k  is white noise. Our next task is to determine its 
covariance. In order to do this we write the covariance as 

We therefore see that the innovations is a white noise process with zero mean and 
a covariance of (HkPiHF + Rk). While the Kalman filter is operating, we can 
process the innovations, compute its mean and covariance, and verify that it is 
white with the expected mean and covariance. If it is colored, nonzero-mean, or 
has the wrong covariance, then there is something wrong with the filter. The most 
likely reason for such a discrepancy is a modeling error. In particular, an incorrect 
value of F ,  H ,  Q ,  or R could cause the innovations to statistically deviate from its 
theoretically expected behavior. Statistical methods can then be used to tune F ,  
H ,  Q, and R in order to force the innovations to be white zero-mean noise with 
a covariance of (HkPLHk + Rk) [Meh7O, Meh721. This concept is illustrated in 
Figure 10.1. A scalar example is presented in Problem 10.1. 

Alternatively, if the engineer is uncertain of the correct values of F, H ,  Q, and R ,  
then a bank of Kalman filters can be run in parallel, each Kalman filter with a value 
of F ,  H ,  Q, and R that the engineer thinks may be likely. Then the innovations 
can be inspected in each filter, and the one that matches theory is assumed to have 
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Figure 10.1 This figure illustrates how the performance of a Kalman filter can be used 
to tune the values of F ,  H ,  Q, and R in order to obtain residual statistics that agree with 
theory. Alternatively, the K h a n  gain K could be tuned directly. 

the correct F, H ,  Q, and R, so the state estimate that comes out of that filter is 
probably the most correct. See [Kobo31 for an application of this idea. 

The analysis of this section can also be conducted for the continuoustime Kalman 
filter. The continuous-time innovations, y(t) - H(t)?( t ) ,  is a zero-mean white 
stochastic process with a covariance R(t)  (see Problem 10.2). 

10.2 M U LT I P L E- M 0 D E L EST1 M AT1 0 N 

Suppose our system model is not known, or the system model changes depending 
on unknown factors. We can use multiple Kalman filters (one for each possible 
system model) and combine the state estimates to obtain a refmed state estimate. 
Remember Bayes’ rule from Section 2.1: 

(10.18) 

Suppose that a random variable x can take one of N mutually exclusive values 
21, . . . , X N .  Then we can use Bayes’ rule to write 

(10.19) 

where we have used the fact that the probability of an event occurring is directly 
proportional to the value of its pdf. Now suppose that we have the timeinvariant 
system 

xk = 

Yk = 

wk 

vk 

The parameter set p is defined a 

(10.20) 

~~ se that p can take 
one of N possible values pl, , p ~ .  The question that’we want to answer in this 
section is as follows: Given the measurements Yk,  what is the probability that 
p = p j ?  From Equation (10.19) this probability can be written as 

(10.21) 
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Now think about the probability that measurement Yk is observed given the fact 
that p = p j .  If p = pj then the state will take on some value Xk that is determined 
by the parameter set p j .  We therefore see that 

However, if our state estimate is accurate, then we know that Xk M ?;. Therefore, 
the above equation can be written as 

pdfbk Ipj) pdfbk 15;) ( 10.23) 

The right side of the equation is the pdf of the measurement Yk given the fact that 
the state is 2; .  But since yk M H?; + 'uk, this pdf is approximately equal to the 
pdf of (Yk - H2;). We therefore have 

pdf(Yk Ipj) pdf(yk - Hk2;) 
= pdf(Tk) (10.24) 

where Tk is the residual defined in Section 10.1. From Section 10.1 we see that if Wk, 

Wk, and 20 are Gaussian, then the residual Tk is a linear combination of Gaussian 
random variables. Recall from Section 2.4.2 that a linear combination of Gaussian 
random variables is itself Gaussian. In Section 10.1 we found the mean and variance 
of Tk. The pdf of Tk,  which is approximated by the pdf of Yk given pj, can therefore 
be aDDroximated as 

( 10.25) 

where Tk = Yk -Hk?;, s k  = HkPiH:+Rk, and q is the number of measurements. 
Now from Bayes' rule we can write the following equation for the probability 

that p = p3 given the fact that the measurement Yk-1 is observed. 

(10.26) 

If we are presently at time k, then the measurement at time (k - 1) is a given. The 
value of the measurement at time (k - 1) is a certain event with a probability equal 
to one. Therefore, Pr(yk-llpj) = PT(Yk-1) = 1 and the above equation becomes 

Pr(pj I Yk - 1) = Pr(pj ) (10.27) 

Now in Equation (10.21) we can substitute this equation for Pr(pj), and we sub- 
stitute Equation (10.25) for pdf(yk1pj). This gives a timerecursive equation for 
evaluating the probability that p = pj given the fact that the measurement was 
equal to Yk. The multiplemodel estimator can be summarized as follows. 

The multiple-model estimator 

1. For j = l , . . . , N ,  initialize the probabilities of each parameter set before 
any measurements are obtained. These probabilities are denoted as Pr(pj 190) 
( j = l , . . . , N )  . 
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2. At each time step k we perform the following steps. 

(a) Run N Kalman filters, one for each parameter set pj ( j  = 1 , .  , N ) .  
The a priori state estimate and covariance of the j t h  filter are denoted 
as 2& and Pk>. 

(b) After the measurement at time k is received, for each parameter set 
approximate the pdf of Yk given p, as follows: 

( 10.28) 

where r k  = yk - Hk2ij, s k  = HPGHT + Rk, and q is the number of 
measurements. 

(c) Estimate the probability that p = p j  as follows. 

(d) Now that each parameter set p j  has an associated probability, we can 
weight each 2 i j  and Pg accordingly to obtain 

N 

j=1 

N 

(10.30) 
j=1 

(e) We can estimate the true parameter set in one of several ways, depending 
on our application. For example, we can use the parameter set with the 
highest conditional probability as our parameter estimate, or we can 
estimate the parameter set as a weighted average of the parameter sets: 

argm%j Pr(pj Iyk) max-probability method 
c:=, Pr@j 1yk)pj weighted-average method 

(10.31) 

As time progresses, some of the Pr(pjlyk) terms will approach zero. Those p j  
possibilities can then be eliminated and the number N can be reduced. 

In Equation (10.31), the function argmax,f(z) returns the value of z at which 
the maximum-of f(z) occurs. For example, max( 1 - z)2 = 0 because the maximum 
of (1 - z)2 is 0, but argmax,(l - z)' = 1 because (1 - attains its maximum 
value when z = 1. A similar definition holds for the function argmin. 

EXAMPLE 10.1 

In this example, we consider a second-order system identification problem [Ste94]. 
Suppose that we have a continuous-time system with discrete-time measure- 
ments described as follows: 
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1 
= [ O  -w; -26wn I.+[ 4-I 

( 10.3 2) 

The damping ratio 6 = 0.1, and the process and measurement noise covari- 
ance Qc and R are respectively equal to 1000 and 101. The natural frequency 
wn = 2, but this is not known to the engineer. The engineer knows that w; 
is either 4, 4.4, or 4.8 with the following a priori probabilities: 

Pr(wi = 4) = 0.1 

Pr(wi = 4.4) = 0.6 

Pr(wi = 4.8) = 0.3 

The state equation can be written as 

k = A X + W  
w N ( O , B Q , B ~ )  

(10.33) 

(10.34) 

We can discretize the system using the technique given in Section 1.4. If the 
measurements are obtained every 0.1 seconds, then we discretize the state 
equation with a sample time of T = 0.1 to obtain 

X k  = F Z k - 1 + A W 6 - 1  

F = exp(AT) 
A = ( F - I ) F - I  (10.35) 

From Section 8.1 we know that the covariance Q' of the discretetime noise 
wi  is given as 

This means that the discretetime process dynamics can be written as 

Q' = BQ,BTT (10.36) 

x k  = F X k - 1  f w k - 1  

wk N(O,Q) 
Q = ( F  - 1)F-l(BQB*T)FwT(FT - I )  (10.37) 

The multiplemodel estimator described in this section was run on this exam- 
ple. Three Kalman filters running in parallel each generate an estimate of the 
state. As the filters run, the probability of each parameter is updated by the 
multiplemodel Kalman filter. Figure 10.2 shows the parameter probabilities 
for a typical simulation run. It is seen that even though the correct parameter 
has the lowest initial probability, the multiplemodel filter estimate converges 
to the correct parameter after a few seconds. 

vvv 
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Figure 10.2 Parameter probabilities for the multiple-model Kalman filter for 
Example 10.1. The true parameter value is 4, and the filter converges to the correct 
parameter after a few seconds. 

10.3 REDUCED-ORDER KALMAN FILTERING 

If a user wants to estimate only a subset of the state vector, then a reduced-order 
filter can be designed. This can be the case, for example, in a real-time application 
where computational effort is a main consideration. Even in off-line applications, 
some types of problems (e.g., weather forecasting) can involves tens of thousands 
of states, which naturally motivates reduced-order filtering as a means to  reduce 
computational effort [Pha98, BalOl]. 

Various approaches to reduced-order filtering have been proposed over the years. 
For example, if the dynamic model of the underlying system can be reduced to  a 
lower-order model that approximates the full-order model, then the reduced-order 
model can form the basis of a normally designed Kalman filter [Ke199]. This is the 
approach taken in [Gli94, Sot991 for motor state estimation, in [Sim69, Ara941 for 
navigation system alignment, in [Bur93, Pat981 for image processing, and in [Cha96] 
for audio processing. If some of the states are not observable then the Kalman filter 
Riccati equation reduces to  a lower-order equation [Yon80]. Reduced-order filtering 
can be implemented by approximating the covariance with a lower-rank SVD-like 
decomposition [Pha98, BalOl]. If some of the measurements are noise free, or if there 
are known equality constraints between some of the states, then the Kalman filter 
is a filter with an order that is lower than the underlying system [Bry65, Hae981 as 
discussed in Section 7.5.1 of this book. Optimal reduced-order filters are obtained 
from first principles in [Ber85, Nag871. A more heuristic approach to  reduced- 
order filtering is to decouple portions of the matrix multiplications in the Kalman 
filter equations [Chu87]. In this section we will present two different approaches to 
reduced-order filtering. 
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10.3.1 

Anderson and Moore [And791 suggest a framework for reduced-order filtering that 
is fully developed in [SimOGa] and in this section. This approach is based on the idea 
that we do not always need to estimate all of the states of a system. Sometimes, 
with a system that has n states, we are interested only in estimating m linear 
combinations of the states, where m < n. In this case, it stands to reason that 
we could devise a filter with an order less than n that estimates the m linear 
combinations that we are interested in. Suppose our state space system is given as 

Anderson's approach to reduced-order filtering 

(10.38) 

We desire to estimate the following m linear combinations of the state: TTZ, q 2 ,  
. a ., TKZ, where each T,' is a row vector. Define the n x n matrix T as 

(10.39) 

where S is arbitrary as long as it makes T a nonsingular n x n matrix. Now perform 
the state transformation 

x = T?t (10.40) 

This means that Z = T- lx .  From these relationships we can obtain a state space 
description of the system in terms of the new state as follows: 

T - ' X k + l  = FT-lXk f G W k  

x k + 1  = Tp"T-lxk+T&k 

= F X k f G W k  

Y k  = H T - l X k f  V k  

= H x k + V k  (10.41) 

where F ,  G, and H are defined by the above equations. Remember that our goal 
is to estimate the first m elements of x ,  which we will denote as 5. We therefore 
partition x as follows: 

x =  [ ;] (10.42) 

We can then write equations for z k + 1 ,  & + I ,  and y k  as follows: 

zk+1 = F11z.k -l- F12& + Giwk 

h k + l  = F 2 i Z k  f F22hk + Gzwk 
Y k  = Hlzk  f H 2 2 k  f v k  (10.43) 

where the Fij, Gi, and H, matrices are appropriately dimensioned partitions of 
F ,  G, and H .  Now we propose the following form for the one-step a posteriori 
estimator of 5: 

ii+1 = F11ii + K k ( y k + l  - H1Flli:)  (10.44) 
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This predictor/corrector form for the estimate of 2 is very similar to the predic- 
tor/corrector form of the standard Kalman filter. The estimation error is given as 
follows: 

c+ 
ek+l = 2k+l - zk+l 

= Fii(& - k:) f F 1 2 i k  + G i W k  - K k ( Y k + i  - HiFiik;) 
= (I - KkH1)Fllek + [F12 - Kk(H1F12 - HZF22)]5k - 

KkH2F215.k - Kkvk+l+ [Gl - Kk(HlG1 + H2G2)lwk 

Now we will introduce the following notation for various covariance matrices: 

(10.45) 

Pk = E(ekeF) 

& = E(Zk2:)  

F k  = E(ik$T) 

C k  = E ( Z k 5 ; )  
f i k  = E(kkzr) 

f i k  = E(kk5T) (10.46) 

With this notation and the equations given earlier in this section, we can obtain 
the following expressions for these covariances: 
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Now we can find the optimal reduced-order gain Kk at each time step as follows: 

(10.49) 

In order to compute the partial derivative we have to remember from Section 1.1.3 
that 

= B  
dTr ( BAT) 

aA (10.50) 

Armed with these tools we can compute the partial derivative of Equation 10.49 
and set it equal to zero to obtain 

Kk = AL1Bk (10.51) 

where Ak and Bk are given as follows: 

(HlF12 + HZF22)Fk(HlF12 f H2F22)T -k 

[(HlFlP + HZF22)zTF$HT] + [ '  * '1' + H2F21FkF21H2 -k T T  

Rk+l+ (H1G1 + HzGz)Qk(HzGi + H z G z ) ~  

Bk = F11pk + F12z; - FlzfiT) F&HT + ( 
(Fllzk - F l l f i k  + FlZFk) (HlF12 + H2F22)T -k 

T T  (Fiih - Fill% + Fizz:) FZIHZ + GiQk(HiG1 4- H z G z ) ~  (10.52) 

Equation (10.51) ends up being a long and complicated expression for the reduced- 
order gain. In fact, this reduced-order filter is probably more computationally 
expensive than the full-order filter (depending on the values of m and n). However, 
if the gain of the reduced-order filter converges to steady state, then it can be 
computed off-line to obtain savings in real-time computational cost and memory 
usage. However, note that the reduced-order filter may not be stable, even if the 
full-order Kalman filter is stable. 

EXAMPLE 10.2 

Suppose we are given the following system: 

0.9 0.1 
2k+1 = [ 0.2 0 . 7 1  2k + [ ] wk 
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(10.53) 

We want to find a reduced-order estimator of the first element of x .  In this 
example the reduced-order gain of Equation (10.51) converges to a steady- 
state value after about 80 time steps. The estimation-error variance of the 
reduced-order filter converges to a value that is about 10% higher than the 
estimation-error variance of the full-order filter for the first state, as shown 
in Figure 10.3. The estimation error for the reduced-order filter and the full- 
order filter is shown in Figure 10.3 for a typical simulation. In this example, 
the standard deviation of the estimation error was 0.46 for the full-order filter 
and 0.50 for the reduced-order filter. The steady-state full-order estimator is 
given as follows: 

0.9 0.1 
%+l 0.2 0.7 

jj+ k = ? i f K ( y k - [  O 112;) 

0.1983 
= [ 0.11681 

The steady-state reduced-order estimator is given as follows: 

(10.54) 

(10.55) 

vvv 

10.3.2 The reduced-order Schmidt-Kalman filter 

Stanley Schmidt's approach to reduced-order filtering can be used if the states are 
decoupled from each other in the dynamic equation [Sch66, Bro96, GreOl]. This 
happens, for instance, if colored measurement noise is accounted for by augment- 
ing the state vector (see Section 7.2.2). In fact, satellite navigation with colored 
measurement noise was the original motivation for this approach. 

Suppose we have a system in the form 

?Jk (O,R) (10.56) 

We want to estimate i?k but we do not care about estimating i k .  Suppose we use a 
Kalman filter to estimate the entire state vector. The estimation-error covariance 



310 ADDITIONAL TOPICS IN KALMAN FILTERING 

'C 

>" 0.6 
E y 0.4 

g 0.2 
E 
c 

Reduced-order variance ' a ' ' ' ' c  - Full-order variance 

- 
,. , , . , , , , , , , , . / , , , , , . . / , I . . I I , I I I I , ~ I I I I I I I 1  

- 

1.5- 
/ , I . * , ,  Standard Kalman filter error - Reduced-order filter error ' 

0 10 20 30 40 50 
Time Step 

Figure 10.3 Results for Example 10.2. The top figure shows the analytical estimation- 
error variances for the first state for the full-order filter and the reduced-order filter. As 
expected, the reduced-order filter has a higher estimation-error variance, but the small 
degradation in performance may be worth the computational savings, depending on the 
application. The bottom figure shows typical error magnitudes for the estimate of the first 
state for the full-order filter and the reduced-order filter. The reduced-order filter has slightly 
larger estimation errors. 

can be partitioned as follows: 

' = [ c T  P c  F ]  
(10.57) 

We are omitting the time subscripts for ease of notation. The Kalman gain is 
usually written as K = P - H T ( H P - H T  + R)-l. With our new notation it can be 
written as follows: 

K = 
L J  

[ gi ] [( H I  H2 ) ( (C-)T '- P ) ( g i  ) + R1-l (10.58) 

By multiplying out this equation we can write the formula for I? as follows. 

K = (P-HT + C-H:)Q-~ (10.59) 

where Q is defined as 

(10.60) 
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The measurement-update equation for 53 is normally written as 53; = 3 i  + K ( y k  - 
H53L). With our new notation it is written as 

(10.61) 

A -  

Since we are not going to estimate $ with the reduced-order filter, we set i k  = 0 in 

the above equation to obtain the following measurement-update equation for 
-+  

: 

The measurement-update equation for P is usually written as P+ = ( I - K H ) P - ( I -  
K H ) T  + KRKT. With our new notation it is written as 

[( 0' ;) - ( i )  ( H I  H2 ) I T +  ( f ) R (  K T  kT ) (10.63) 

I 

At this point, we assume that I? = 0. This can be justified if the measurement 
noise associated with the 5 states is large, or if H2 is small, or if the elements of 
are small. The elements are then referred to as consider states, nuisance states, 
or nuisance variables, because they are only partially used in the reduced-order 
state estimator, and because we are not interested in estimating them. Based on 
Equation (10.63), the update equation for p+ can then be written as 

P+ = ( I  - R H 1 ) P - ( I  - K H I ) ~  - K H z ( C - ) ~ ( I  - K H I ) ~  - 

( I  - K H 1 ) C - H r K T  + K H $ - H r K T  + K R K T  (10.64) 

Multiplying out the above equation and then using the definition of cr from Equa- 
tion (10.60) results in 

p+  = p -  - K H I P -  - P - H T K T  + - K H 2 ( C - ) T  - C - H r K T  

= P -  - K H 1 P  - P - H T K T  + ( F H T  + C-H,T)KT - K H 2 ( C - ) T  - 
C - H r K T  

= ( I  - R H 1 ) P -  - R H z ( C - ) ~  (10.65) 

This gives the measurement-update equation for p + .  We can go through similar 
manipulations with Equation (10.63) to obtain 

- -  
C+ = ( I - k H l ) C - - k H 2 P  

- -  
;+ = p (10.66) 

Putting it all together results in the reduced-order Schmidt-Kalman filter. We can 
summarize the reduced-order filter as follows. 
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The reduced-order Schmidt-Kalman filter 

1. The system and measurement equations are given in Equation (10.56). 

(10.67) 

EXAMPLE 10.3 

Consider the following system: 

(10.68) 

Figure 10.4 shows a typical example of the estimation error of the first element 
of the state vector for the full-order filter and the reduced-order filter. It is 
seen that the performances of the two estimators are virtually identical. In 
other words, we can save a lot of computational effort with only a marginal 
degradation of estimation performance by using the reduced-order filter. 

vvv 

10.4 ROBUST KALMAN FILTERING 

The Kalman filter works well, but it assumes that the system model and noise 
statistics are known. If any of these assumptions are violated then the filter 
estimates can degrade. This was noted early in the history of Kalman filter- 
ing [S0065, Hef66, Nis661. 

Daniel Pena and Irwin Guttman give an overview of several methods of robusti- 
fying the Kalman filter [Spa88, Chapter 91. For example, although the Kalman filter 
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Figure 10.4 Results for Example 10.3. Typical error magnitudes for the estimate of the 
first state for the full-order filter and the reduced-order filter. The reduced-order filter has 
only slightly larger estimation errors. 

is the optimal linear filter, it is not the optimal filter in general for non-Gaussian 
noise. Noise in nature is often approximately Gaussian but with heavier tails, and 
the Kalman filter can be modified to accommodate these types of density func- 
tions [Mas75, Mas77, Tsa831. Sometimes, measurements do not contain any useful 
information but consist entirely of noise (probabilistically), and the Kalman filter 
can be modified to deal with this possibility also [Nah69, Sin73, Ath77, Bar781. 

The problem of Kalman filtering with uncertainties in the system matrix Fk, the 
measurement matrix Hk, and the noise covariances Qk and Rk, has been consid- 
ered by several authors [Xie94, Zha95, Hsi96, The96, XieO41. This can be called 
adaptive filtering or robust filtering. Comparisons of adaptive filtering methods for 
navigation are presented in [Hid03]. Continuous-time adaptive filtering is discussed 
in [Bar05, MarOB]. Methods for identifying the noise covariances Q and R are pre- 
sented in [Meh7O, Meh72, Als74, Mye761. Additional material on robust Kalman 
filtering can be found in [Che93]. 

In this section we present a conceptually straightfornard way of making the 
Kalman filter more robust to uncertainties in Q and R [Kos04]. Suppose we have 
the linear time-invariant system 

(10.69) 

Now suppose that a general steady-state gain K (not necessarily the Kalman gain) 
is used in a predictor/corrector type of state estimator. The state estimate update 
equations are then given as follows: 
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2;+l = F2; 

2i+l = + K(!/k+l - Hki+l) 
= F2; + K(HZk+l + uk+l - HF2;) 

KHzk+l -k (I - KH)Ffi + K2)k+l 
( K H F z k  + KHwk)  + (I - K H ) F k i  + KZ)k+l 

= 

= (10.70) 

The error in the a posteriori state estimate can be written as 

ek+l = z k + 1  - 

= (FZk + wk) - [ (KHFZk + KHwk)  + (I - KH)FP;  + K2)k+1] 

= (I - KH)FZk + (I - KH)wl,  - (I - K H p ;  - KWk+l 

= (I - KH)Fek f (I - KH)wk - K2'k+l (10.71) 

So the covariance of the estimation error can be written as 

p k + l  = E(ek+leT+;,) 
= ( I  - KH)FPkFT(I - KH)T + (I - K H ) Q ( I  - KH)= + 

K R K ~  (10.72) 

The steady-state covariance P satisfies the following Riccati equation: 

P = ( I  - KH)FPFT(I  - + (I - KH)Q(I  - KH)T + KRKT (10.73) 

Note that we derived this without making any assumption on the optimality of the 
filter gain K.  That is, this equation holds regardless of what filter gain K we use. 
Now we can consider what happens when there is no measurement noise, and what 
happens when there is no process noise. Define PI as the steady-state estimation- 
error covariance when R = 0, and P2 as the steady-state estimation-error covariance 
when Q = 0. The above equation for P shows that 

Pi ( I  - KH)FPIFT(I - KH)= + (I - K H ) Q ( I  - KH)T 
p2 = ( I  - K H ) F P ~ ( I  - K H ) ~  + K R K ~  (10.74) 

= 

Adding these two covariances together results in 

Pi + P2 = ( I  - KH)FPIFT(I - KH)T + (I - K H ) Q ( I  - KH)T + 
( I  - KH)FP2FT(I - KH)T + KRKT 

( I  - KH)Q(I  - KH)T + KRKT 

= ( I  - KH)F(Pl+ PZ)FT(I - KH)T + 
(10.75) 

Comparing this equation with Equation (10.73) shows that P and the sum (PI +P2) 
both satisfy the same Riccati equation. This shows that 

P = PI + Pz (10.76) 

This shows an interesting linearity property of a general predictor/corrector type 
of state estimator. The estimation covariance is equal to the sum of the covariance 
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due to process noise only and the covariance due to measurement noise only. Recall 
from Chapter 5 that the Kalman filter was designed to minimize the trace of P. So 
the Kalman filter minimizes the trace of (PI + P2). 

Now suppose that the true process noise and measurement noise covariancea are 
different from those assumed by the Kalman filter. The filter is designed under the 
assumption that the noise covariances are Q and R,  but the true noise covariancea 
are Q and R: 

Q = (1+a)Q 
R = (1+P)R (10.77) 

where LY and P are unknown scalars. These differences between the assumed and 
true covariances will result in a change in the estimation-error covariance of the fil- 
ter. The true estimation-error covariance will be equal to the assumed covariance 
P plus some difference AP.  This can be written as 

F = 

P + AP = 

( I  - KH)FFFT(I  - KH)= + ( I  - KH)Q(I  - KH)= + KRKT 
( I  - KH)F(P  + AP)FT(I  - KH)= + 
(1 + a) ( I  - KH)Q(I  - + (1 + P)KRKT (10.78) 

Comparing this equation with Equation (10.73) shows that 

A P = ( I  - K H ) F A  PFT( I - KH)T + a( I - KH)Q(I  - KH)= + PKRKT (10.79) 

Now we repeat this same line of reasoning for the computation of the true estimation- 
error covariance when the process noise is zero (A  = PI + API)  and the true 
estimation-error covariance when the measurement noise is zero (4 = P2 + AP2). 
Equation (10.74) shows that 

= 

Pi + AP1 = 

( I  - KH)FPIFT(I - KH)= + ( I  - KH)Q(I  - KH)T 
( I  - KH)F(Pi + AP1)FT(I - KH)= + 
(1 + cr)(I- KH)Q(I  - KH)T 

( I  - KH)F(Pz + AP2)FT(I - KH)* + (1 + P)KRKT 
l3 = ( I  - KH)FF2FT(I - KH)T + K k K T  (10.80) 

P2 + AP2 = 

Comparing these equations with Equation (10.74) shows that 

AP1 
AP2 = ( I  - KH)FAP2FT(I - KH)T + PKRKT (10.81) 

= ( I  - KH)FAPIFT(I - KH)= + a( I  - KH)Q(I - KH)= 

Adding these two equations and comparing with Equation (10.79 shows that 

A P  = AP1+ AP2 (10.82) 

Comparing Equations (10.74) and (10.81) shows that 

AP1 =  CUP^ 
AP2 = PP2 

Combining Equations (10.82) and (10.83) shows that 

(10.83) 

A P  = PP2 (10.84) 
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Now suppose that Q and P are independent zero-mean random variables with vari- 
ances n: and a;, respectively. The previous equation shows that 

E[73(AP)1 = E(Q)Tr(Pl) + E(P)Tr(P2) 

E { [Tr(AP)I2} = E { IQTr(X1) + PTr(X2)I2} 

= o  

= n:Tr2(P1) + 4Tr2(P2) (10.85) 

This gives the variance of the change in the estimation-error covariance due to 
changes in the process and measurement-noise covariances. A robust filter should 
try to minimize this variance. In other words, a robust filter should have an 
estimation-error covariance that is insensitive to changes in the process and measurement- 
noise covariances. So the performance index of a robust filter can be written as 
follows: 

where p is the relative importance given to filter performance under nominal con- 
ditions (i.e., when Q and R are as expected), and (1 - p)  is the relative importance 
given to robustness. In other words, ( 1  - p)  is the relative weight given to min- 
imizing the variation of the estimation-error covariance due to changes in Q and 
R. If p = 1 then we have the standard Kalman filter. If p = 0 then we will mini- 
mize changes in the estimation-error covariance, but the nominal estimation-error 
covariance may be poor. So p should be chosen to balance nominal performance 
and robustness. Unfortunately, the performance index J cannot be minimized an- 
alytically, so numerical methods must be used. PI and P2 are functions of the gain 
K and can be computed using a DARE function in control system software. The 
partial derivative of J with respect to K must be computed numerically, and then 
the value of K can be changed using a gradient-descent method to decrease J .  

EXAMPLE 10.4 

Suppose we have a discretized second-order Newtonian system that is driven 
by an acceleration input. z( 1) represents position, 4 2 )  represents velocity, 
Uk represents the known acceleration input, and Wk represents the noisy ac- 
celeration input. This is the same as the system described in Example 9.1. 
The system is described as follows: 

1 T  T 2 / 2  
xk+l = [ 0 1 ] . k + [  T 

(1 0.87) 

The sample time T = 0.1. The variance q2 of the acceleration noise is equal 
to 0.22, and the variance R of the measurement noise is equal to lo2. Now 
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suppose that Q and R have relative uncertainties of one (one standard devi- 
ation). That is, C T ~  = ~ 2 ”  = l. Suppose we find the robust filter gain using 
equal weighting for both nominal and robust performance (i.e., p = 0.5). Ta- 
ble 10.1 shows the average performance of the robust filter and the standard 
Kalman filter when Q and R change by factors of -0.8 and 3, respectively. 
One question that remains is, How does the robust filter perform under nom- 
inal conditions? That is, since the Kalman filter is optimal, the robust filter 
will not perform as well as the Kalman filter when Q and R are equal to their 
nominal values. However, Table 10.2 shows that the performance degrada- 
tion is marginal. In fact, the robust filter performs identically to the optimal 
filter (to two decimal places) under nominal conditions. During the gradient- 
descent optimization of Equation (10.86), the nominal part of the cost function 
increases from 2.02 to 2.04, the robust part of the cost function decreases from 
2.54 to 2.38, and the total cost function decreases from 2.28 to 2.21. 

Table 10.1 
noise covariances are not nominal ( p  = 0.5, 6 1  = 02 = 1, a = -0.8, p = 3) 

RMS estimation errors for Example 10.4 over 100 seconds when the 

Position Velocity 

Standard Filter 4.62 0.38 
Robust Filter 4.47 0.32 

Table 10.2 
noise covariances are nominal ( p  = 0.5, 01 = 02 = 1, a = 0, ,B = 0) 

RMS estimation errors for Example 10.4 over 100 seconds when the 

Position Velocity 

.Standard Filter 1.38 0.19 
Robust Filter 1.38 0.19 

vvv 
The robust filtering approach presented here opens several possible research top- 

ics. For example, under what conditions is the robust filter stable? Is the gain of 
the robust filter equal to the gain of a standard Kalman filter for some other related 
system? What is the true estimation-error covariance of the robust filter? 

10.5 DELAYED MEASUREMENTS AND SYNCHRONIZATION ERRORS 

In decentralized filtering systems, observations are often collected at various phys- 
ical locations, and then transmitted in bulk to a central processing computer. In 
this type of setup, the measurements may not arrive at the processing computer 
synchronously. That is, the computer may receive measurements out of sequence. 
This is typically the case in target-tracking systems. Various approaches have been 
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taken to deal with this problem [Ale91, Bar95, Kas96, Lar98, MalOl]. The case 
of delayed measurements with uncertainty in the measurement sampling time is 
discussed in [Tho94a, Tho94bl. The approach to filtering delayed measurements 
that is presented here is based on [BarOa]. 

First we will present yet another form of the Kalman filter that will provide the 
basis for the delayed-measurement filter. Then we will derive the optimal way to 
incorporate delayed measurements into the Kalman filter estimate and covariance. 
In this section, we will have to change our notation slightly in order to carry out 
the derivation of the delayed measurement Kalman filter. We will use the following 
notation to represent a discretetime system: 

s ( k )  = F(k  - l ) z ( k  - 1) + w(k - 1) 

Y(k) = H ( k ) z ( k )  + 4 k )  (10.88) 

where w(k)  and v(k) are independent zero-mean white noise process with covari- 
ances Q ( k )  and R(k) ,  respectively. 

10.5.1 

Suppose that we have an a priori estimate 2 - ( k )  at time k, and we want to find an 
optimal way to update the state estimate based on the measurement at time k. We 
want our update equation to be linear (for reasons of mathematical tractability) so 
we decide to update the state estimate at time k with the equation 

A statistical derivation of the Kalman filter 

&+(k) = K ( k ) y ( k )  + b ( k )  (10.89) 

where K ( k )  and b ( k )  are a matrix and vector to be determined. Our first state esti- 
mation criterion is unbiasedness. We can see by taking the mean of Equation (10.89) 
that - 

&+(k) = K(k) f j (k )  + b ( k )  (10.90) 

This gives us the constraint that 

b ( k )  = 2 ( k )  - K ( k ) @ )  (10.91) 

This will ensure that 2+(k)  is unbiased regardless of the value of the gain matrix 
K ( k ) .  Next we find the gain matrix K ( k )  that minimizes the trace of the estimation 
error. First recall that 

P, = E [ ( z  - e)(z - E)T] 

= E(zzT) -zzT (10.92) 

for any general random vector z. Now set z = z ( k )  - &+(k). With this definition 
of z we see that E = 0. The quantity we want to minimize is given by the trace of 
the following matrix: 

P+(k)  = E [ ( z ( k )  - ?+(k)>(S(k) - 2 + ( k ) ) T ]  
= P, + EET (10.93) 

P, can be computed as follows: 
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P, = E { [x(k) - ?+(k) - E(x(k) - ?+(k))][. . a]'} 

E { [x(k) - (K(k)Y(k) + W)) - Z ( k )  - (K(k)i@) + b(k))l[. a .I*} 

E { [(x(k) - Z ( k ) )  - K(k)(Y(k) - y(k))l[* * *IT> 
= 

= 

= P-(k)  - K(k)P,, - P,,KT(k) + K(k)P,KT(k) (10.94) 

We are using the symbol P,, to denote the cross covariance between Yk and Zk, P,, 
to denote the cross covariance between Xk and Yk, and P, to denote the covariance 
of Yk. Recall that Pxv = P z .  We have omitted the subscript k on P,,, P,,, and P, 
for notational convenience. We combine the above equation with (10.93) to obtain 

Tr P+(k) = Tr (P-(k)  - K(k)P,, - P,,K(k)T + K(k)P,K(k)T) + Tr(ZF) 
Tr (P- (k )  - K(k)P,, - P,,K(k)T + K(k)P,K(k)T) + 
I F(k)  - K ( k M k )  - b ( k )  I l 2  
Tr [ ( K ( k )  - P,,P,-l)P,(K(k) - Pz,P,-l)T] + 

= 

= 

Tr (P-(k)  - PxVPL'P,T,) + IlZ(k) - K ( k ) g ( k )  - b(k)1I2 (10.95) 

where we have used the fact that Tr(AB) = Tr(BA) for compatibly dimensioned 
matrices [see Equation (1.26)]. We want to choose K(k)  and b ( k )  in order to 
minimize the above expression. The second term is independent of K ( k )  and b ( k ) ,  
and the first and third terms are always nonnegative. The first and third terms can 
be minimized to zero when 

K ( k )  = PxyP;l 

b ( k )  = Z ( k )  - K ( k ) P ( k )  (10.96) 

Note that this is the same value for b ( k )  that we obtained in Equation (10.91) when 
we enforced unbiasedness in the state estimate. With these values of K(k)  and b ( k ) ,  
we see that the first and third terms in (10.95) are equal to zero, so the estimation- 
error covariance P+(k) can be seen to be equal to the second term. Substituting 
these values into Equation (10.89) we obtain 

?+(k) = K(k)y(k) + Z ( k )  - K ( k ) y ( k )  

P+(k) = P-(k)  - PxyP,-'P& 

= K(k)y(k) + ?-(k) - K ( k ) H ( k ) ? - ( k )  

&-(k) + K(k)(y(k) - H ( k ) ? . - ( k ) )  = 

= P-(k) - K(k)P,K*(k) (10.97) 

Straightforward calculations (see Problem 10.8) show that P,, and P, can be com- 
puted as 

P,, = P- ( k ) H ( k ) T  

P, = H(k)P-(k)H(k)T + R(k)  (10.98) 

Now consider our linear discrete-time system: 

(10.99) 
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The noise processes w(k)  and v(k) are white, zero-mean, and uncorrelated, with 
covariances Q ( k )  and R(k) ,  respectively. We saw in Chapter 4 how the mean and 
covariance of the state propagates between measurement times. Those equations, 
along with the measurement-update equations derived above, provide the following 
Kalman filter equations: 

q c )  = F ( k  - l)5+(k - 1) 

P - ( k )  = F ( k  - 1)P+(k - l)FT(k - 1) + Q ( k )  

Pzv = P - ( k ) H T ( k )  

Pv = H ( k ) P - ( k ) H T ( k )  + R(k)  
K ( k )  = PsvP;l 

2 + ( k )  = r ( k )  + K ( k ) ( y ( k )  - H ( k ) f - ( k ) )  
P+(k )  = P - ( k )  - K(k)P,K*(k) 

= P - ( k )  - PzvP;lP& ( 10.100) 

These equations appear much different than the Kalman filter equations derived 
earlier in this book, but actually they are mathematically identical for linear sys- 
tems. 

10.5.2 

Now we need to complicate the notation a little bit more in order to derive the 
Kalman filter with delayed measurements. We will write our system equations as 

Kalman filtering with delayed measurements 

z ( k )  
Y(k) = H ( k ) z ( k )  + v(k) (10.101) 

= F ( k ,  k - l)z(k - 1) + w(k,  k - 1) 

F ( k ,  k - 1) is the matrix that quantifies the state transition from time (k - 1) to 
time k. Similarly, w(k, k - 1) is the effect of the process noise on the state from 
time (k - 1) to time k. We can then generalize the statespace equation to the 
following: 

where ko is any time index less than k. The above equation can be solved for z ( k 0 )  

z ( k 0 )  = F(ko,  k)[z(k) - w(k ,  k0)l (10.103) 

where F(k0, k) = F - l ( k ,  ko). Note that F ( k ,  ko) should always be invertible if it 
comes from a real system, because F(k ,  ko) comes from a matrix exponential that 
is always invertible (see Sections 1.2 and 1.4). The noise w(k,  ko) is the cumulative 
effect of all of the process noise on the state from time ko to time k. Its covariance 
is defined as Q (k, ko) : 

w(k, ko) N 10, Q ( k ,  k0)l (10.104) 

At time k we have the standard a posteriori Kalman filter estimate, which is the 
expected value of the state z ( k )  conditioned on all of the measurements up to and 
including time k. We also have the a posteriori covariance of the estimate: 

z ( k )  = F ( k ,  ko)z(ko) + w(k, ko)  (10.102) 

as 

q k )  = E[z(k)ly(l), * * * 7 Y(k)l 
= ~ [ W l Y ( ~ ) l  

P(k)  = { [ z ( k )  - W l [ z ( k )  - w T l y ( k ) )  (10.105) 
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where Y (k) is defined by the above equation; that is, Y(k) is all of the measurements 
up to and including time k that have been processed by the Kalman filter. (There 
may be some measurements before time k that have not yet been processed by the 
filter. These measurements are not part of Y(k).) 

Now suppose an out-of-sequence measurement arrives. That is, we obtain a 
measurement from time ko < k that we want to incorporate into the estimate 
and covariance at time k. The problem is how to modify the state estimate and 
covariance on the basis of this new measurement. The modified state estimate and 
covariance are given as follows: 

W k O )  = E[z(k)IY(k), Y(ko)l 

P(klko) = E { [ z ( k )  - Z ( k ,  ko)][Z(k)  - Z(k, ko)lTIY(k), ~ ( k o ) )  (10.106) 

The approach here is to use the new measurement at time ko to obtain an updated 
state estimate and covariance at time ko, and then use those quantities to update 
the estimate and covariance at time k. We can use Equation (10.103) to obtain 

E[z(ko)lY(k)l = W o ,  k ) E [ z ( k )  - w(k, kO)lY(k)l 
= F(k0, k) [Zi . - (k)  - d(k, ko)] ( 10.107) 

where G ( k , k o )  is defined by the above equation; it is the expected value of the 
cumulative effect of the process noise from time ko to time k, conditioned on all 
of the measurements up to and including time k [but not including measurement 
y(ko)]. Now define the vector 

(10.108) 

In general, we define the covariance of vector a conditioned on vector c, and the 
cross covariance of vectors a and b conditioned on vector c, as follows: 

Cov(a1c) = E[(a  - ii)(a - ii)TIC] 

Cov(a, blc) = E[(a - a ) ( b  - E)TIC] (10.109) 

We can then generalize Equation (10.100) to obtain 

f ( k )  = i-@) + 
Cov[z(k), Y(k)IY(k - l ) l c o v - l [ Y ( ~ ) l y ( ~  - 111 (dk) - H ( W ( k ) )  

W . ( k ) ,  Y(k)IY(k - l)lcov-l[Y(k)ly(k - 1)1COV[Y(k), z(k)IY(k - I)] 

Cov[z(k)lY(k)] = Cov[z(k)IY(k - l)] - ( 10.1 lo) 

The first covariance on the right side of the above i(k) equation can be written as 

Now consider the first covariance in the above equation. This can be written as 

Cov[z(k), y(k)lY(k - 111 = cov { z ( k ) ( H ( k ) z ( k )  + V(k)lTIY(k - 1)) 

= cov {z(k)[H(k)z(k)]TJY(k - 1)) 

= cov{z(k)} H T ( k )  

= P - ( k ) H T ( k )  (10.1 12) 
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where the covariance of z ( k )  and w(k) is zero since they are independent. Now 
consider the second covariance on the right side of Equation (10.111). This can be 
written as 

where the cross covariances of w(k,  ko) with z ( k o ) ,  w(k), and $(k) are zero since 
they are independent. We are using the notation c - ( k )  to denote the expected 
value of y(k) based on measurements up to (but not including) time k. Now con- 
sider the conditional covariance of y(k) in Equation (10.110). This was derived in 
Equation (10.17) in Section 10.1 as 

Cov[y(k)IY(k - l)] = H ( k ) P - ( k ) H T ( k )  + R(k)  (1 0.114) 

We will write this expression more compactly as 

Cov[r(k)] = S ( k )  (10.115) 

where the residual r(k) = y(k) - H ( k ) C ( k )  and its covariance S(k) are defined 
by the two above equations. Substituting Equations (10.112) and (10.113) into 
Equation ( l O . l l l ) ,  and then substituting into Equation ( l O . l l O ) ,  gives 

This shows that 

because E[G(k,ko)lY(k - l)] = 0 [since w(k,ko)  is independent of the measure- 
ments]. Substituting this expression into Equation (10.107) gives 

E[z(ko)lY(k)I = F(ko,  k) [ f ( k )  - Q ( k ,  ko)HT(k)S- ' (k ) r (k ) ]  (10.11 8) 

This is called the retrodiction of the state estimate from time k back to time ko. 
Whereas a prediction equation is used to predict the state at some future time, a 
retrodiction equation is used to predict the state at some past time. In this case, 
the state estimate at time k [i.e., f (k)]  is retrodicted back to time ko to obtain 
the state estimate at time ko, which is denoted above as E[z(ko)lY(k)]. Note that 
E[z(k,-,)lY(k)] is computed on the basis of all the measurements up to and including 
time k, but does not consider the measurement at time ko. 

Now we can write Equation (10.110) as follows: 
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(10.119) 

From Equation (10.102) we can write 

where we have used the independence of z ( k 0 )  and w ( k , k o ) .  Now substitute 
this equation along with Equations (10.112), (10.113), and (10.114) into Equa- 
tion (10.119) to  obtain 

From this equation we can write the conditional covariance of w(k,  ko), and cross 
covariance of z (k) and w (k, ko) , as follows: 

Using this in Equation (10.103) gives the conditional covariance of the state retro- 
diction as follows: 
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p(ko, k) = cov[z(koji~(k)i 
= F(k0, k)Cov[z(k) - w ( k ,  k0)lY(k)IFT(kO, k) 

F(k0, k){Cov[z(k)lY(k)] - Cov[z(k), w(k, ko)IY(k)l - 
COVT[2(k), w(k, kO>lY(k)l + Cov[w(k, ko)lY(k)l}FT(ko, k) 

F(k0, k) { P + ( k )  - P z w ( k ,  ko) - P 2 ( k ,  ko)+ 

= 

= 

P W ( k  ko) )  FT(ko, k) ( 10.123) 

Using the above along with Equation (10.101) we obtain the conditional covariance 
O f Y ( k 0 )  as 

S(k0) = cov[Y(ko)IY(k)l 
= { [H(ko).(ko) + 4ko)l[H(ko)z(ko) + .(ko>lTIY(k)} 
= H(ko)P(ko, k )HT(ko)  + R(k0) (10.124) 

We can use Equations (10.101) and (10.103) to obtain the conditional covariance 
between z ( k )  and y(k.0) as 

Pz,(k, ko) = W z ( k ) ,  Y(ko)lY(k)l 
= Cov{z(k), H(ko)F(ko,  k)[z(k) - w(k,  k0)l + 4ko)lY(k>) 
= [P+(k)  - ~ z w ( k ,  ko>lFT(ko, k ) H T ( k o )  (10.125) 

We can substitute this into the top partition of the i(k) expression in Equa- 
tion (10.110) to obtain the estimate of z ( k )  which is updated on the basis of the 
measurement y(k0): 

q k ,  ko)  = ri.(k) + Pz,(k, ko)S-l(ko>[Y(ko) - H ( k o ) W o ,  k)l (10.126) 

where f ( k 0 ,  k) is the retrodiction of the state estimate given in Equation (10.118). 
From the top partition of the Cov[z(k)IY(k)] expression in Equation (10.110) we 
obtain 

These equations show how the state estimate and its covariance can be updated on 
the basis of an out-of-sequence measurement. The delayed-measurement Kalman 
filter can be summarized as follows. 

The delayed-measurement Kalman filter 

1. The Kalman filter is run normally on the basis of measurements that arrive 
sequentially. If we are presently at time k in the Kalman filter, then we 
have i j - ( k )  and P - ( k ) ,  the a priori  state estimate and covariance that are 
based on measurements up to and including time (k - 1). We also have f ( k )  
and P ( k ) ,  the a posteriori  state estimate and covariance that are based on 
measurements up to and including time k. 
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2. If we receive a measurement y(ko), where ko < k, then we can update the 

(a) Retrodict the state estimate from k back to ko as shown in Equa- 

state estimate and its covariance to 2 ( k ,  ko) and P ( k ,  ko) as follows. 

tion (10.118): 

S ( k )  = H ( k ) P - ( k ) H T ( k )  + R(k)  

2 ( k 0 ,  k) = F ( ~ o ,  k) [ f ( k )  - Q ( k ,  k o ) H T ( k ) S - ' ( k ) ~ ( k ) ]  (10.128) 

(b) Compute the covariance of the retrodicted state using Equations (10.122) 
and (10.123): 

Pw(k, ko) = Q(k ,  ko) - Q ( k ,  ~o)H~(~)S-~(~)H(~)Q(~, ko) 

P z w ( k ,  ko) = Q ( k ,  ko) - P-(k)HT(k)S-l(k)H(k)Q(k, ko) 

P(k0, k) = q k o ,  k) { P ( k )  - P z w ( k ,  ko) - Pzw( k , k o ) +  
P w ( k ,  ko)IFT(ko ,  k) (1 0.129) 

(c) Compute the covariance of the retrodicted measurement at time ko using 
Equation (10.124): 

S(k0)  = H(ko)P(ko,  W T ( k o )  + R(ko)  (10.130) 

(d) Compute the covariance of the state at time k and the retrodicted mea- 
surement at time ko using Equation (10.125): 

Pz,(k, ko) = [P(k )  - P z w ( k ,  kO)l~T(ko,  k)HT(ko> (10.131) 

(e) Use the delayed measurement y(k0) to update the state estimate and its 
covariance: 

It is possible to make some simplifying approximations to this delayed measurement 
filter in order to decrease computational cost with only a slight degradation in 
performance [Bar021 . 

10.6 SUMMARY 

In this chapter we discussed some important topics related to Kalman filtering 
that extend beyond standard results. We have seen how to verify if a Kalman 
filter is operating reliably. This gives us a quantifiable confidence in the accuracy 
of our filter estimates. We also discussed multiplemodel estimation, which is a 
way of estimating system states when we are not sure of which model is governing 
the dynamics of the system. This can be useful when the system model changes 
in unpredictable ways. We discussed reduced-order filtering, which can be used 
to estimate a subset of the system states while saving computational effort. We 
derived a robust Kalman filter, which makes the filter less sensitive to variations 
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in the assumed system model. Robust filtering naturally leads into the topic of 
H, filtering, which we will discuss in Chapter 11. Finally, we derived a way to 
update the state estimate when a measurement arrives at the filter in the wrong 
chronological order because of processing delays. 

There are several other important extensions to Kalman filtering that we have 
not had time to discuss in this chapter. One is the variable structure filter, which 
is a combination of the Kalman filter with variable structure control. This guaran- 
tees stability under certain conditions and often provides performance better than 
the Kalman filter, especially when applied to nonlinear systems [Hab03]. Another 
recent proposal is the proportional integral Kalman filter, which adds an integral 
term to the measurement state update and thereby improves stability and reduces 
steady-state tracking errors [Bas99]. Another interesting topic is the use of a per- 
turbation estimator to estimate the process noise . This allows model uncertainties 
to be lumped with process noise so that the processnoise estimate increases the 
robustness of the filter [KwoOS]. 

PROBLEMS 

Written exercises 

10.1 In this problem we consider the scalar system 

z k + l  = z k f w k  

Y k  = x k  + v k  

where w k  and V k  are white and uncorrelated with respective variances Q and R, 
which are unknown. A suboptimal steady-state value of K is used in the state 
estimator since Q and R are unknown. 

a) Use the expression for Pi along with the first expression for Pz in Equa- 
tion (5.19) to find the steady-state value of Pi as a function of the sub- 
optimal value of K and the true values of Q and R. [Note that the first 
expression for P$ in Equation (5.19) does not depend on the value for K k  

being optimal.] 
b) Now suppose that E(rg) and E ( T k + l T k )  are found numerically as the filter 

runs. Find the true value of R and the steady-state value of Pi as a 
function of ~ ( r : )  and E ( T k f 1 T k ) .  

c) Use your results from parts (a) and (b) to find the true value of Q. 

10.2 Show that the innovations r = y - C2 of the continuous-time Kalman filter 
is white with covariance R. 

10.3 Consider the system described in Problem 5.1. Find the steady-state vari- 
ance of the Kalman filter innovations when Q = R and when Q = 2R. 

10.4 Consider the system of Problem 10.3 with Q = R = 1. Suppose the Kalman 
filter for the system has reached steady state. At time k the innovations T k  = 

a) Find an approximate value for pdf(yk lp) (where p is the model used in the 
Kalman filter) if T k  = 0, if Tk = 1, and if T k  = 2. 

’& - 2;. 
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b) Suppose that the use of model p l  gives T k  = 0, model p2 gives T k  = 1, 
and model p3 gives r k  = 2. Further suppose that Pr(pl lyk-1)  = 1/4, 
Pr(pzlyk-1) = 1/4, and Pr(p31Yk-l) = 1/2. Find Pr(pj1yk) f o r j  = 1,2 ,3 .  

10.5 Consider the system described in Example 4.1 where the measurement con- 
sists of the predator population. Suppose that we want to estimate x(1) + 4 2 ) ,  the 
sum of the predator and prey populations. Create an equivalent system with trans- 
formed states such that our goal is to estimate the first element of the transformed 
state vector. 

10.6 Consider the system 

Y k  = [ 1 0 ] Z k + v k  

where wk and V k  are uncorrelated zero-mean white noise processes with Variances 
q and R, respectively. 

a) Use Anderson's approach to reduced-order filtering to estimate the first 
element of the state vector. Find steady-state values for p, P ,  C, fi, fi, 
and P. Find the steady-state gain K of the reduced-order filter. 

b) Use the full-order filter to estimate the entire state vector. Find steady- 
state values for P and K .  

c )  Comment on the comparison between your answer for P in part (a) and 

Consider the reduced-order filter of Example 10.3 with the initial condition 

a) Find analytical expressions for the steady-state values of I?, a, p+, C+, 
P', p - ,  C-, and 3- 

b) What does the reduced-order filter indicate for the steady-state a posteriori 
estimation-error variance of the first state? Find an analytical expression 
for the true steady-state a posteriori estimation-error variance of the first 
state when the reduced-order filter is used. Your answer should be a 
function of ~ ( 2 ) .  Solve for the true steady-state a posteriori estimation- 
error variance of the first state when 4 2 )  = 0, when 4 2 )  = 1, and when 

c )  What is the steady-state a posteriori estimation-error variance of the first 
state when the full-order filter is used? 

10.8 Verify that the two expressions in Equation (10.98) are respectively equal 
to the cross-covariance of x and y ,  and the covariance of y .  

10.9 Suppose you have the linear system xk+l = Fxk  + wk, where wk N (0, Q k )  
is zero-mean white noise. Define w(k  + 2, I c )  as the cumulative effect of all of the 
process noise on the state from time k to time (k + 2). What are the mean and 
covariance of w ( k  + 2, k)? 

10.10 

- - 

Part (b). 

10.7 
z +  
P, = l .  

x(2) = 2. 

Suppose that a Kalman filter is running with 

= [ k  :I 
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H = [ l  0 1  

R = l  

An out-of-sequence measurement from time (k - 1) is received at the filter. 
a) What was the value of P-(k)? 
b) Use the delayed-measurement filter to  find the quantities Pw(k, k - l), 

P,,(k, k - l), P(k  - 1, k), P,,(k, k - l), and P(k ,  k - 1). 
c )  Realizing that the measurement a t  time (k - 1) was not received at time 

(k - l), derive the value of P- (k - 1). Now suppose that the measurement 
was received in the correct sequence at time (k - 1). Use the standard 
Kalman filter equations to compute P+(k - l), P - ( k ) ,  and P+(k) .  How 
does your computed value of P+(k)  compare with the value of P(k,  k - 1) 
that you computed in part (b) of this problem? 

Under what conditions will P, in Equation (10.100) be invertible for all k? 10.11 

Computer exercises 

10.12 Consider the equations 

3 0 0 ~ + 4 0 0 y  = 700 

lOO~+133y = 233 

a) What is the solution of these equations? 
b) What is the solution of these equations if each constant in the second 

equation increases by l ?  
c )  What is the condition number of the original set of equations? 

,Repeat Problem 10.12 for the equations 10.13 

3 0 0 ~ + 4 0 0 y  = 700 

1oox+2ooy = 200 

Comment on the difference between this set of equations and the set given in 
Problem 10.12. 

10.14 Tire tread is measured every r weeks. After r weeks, 20% of the tread has 
worn off, so we can model the dynamics of the tread height as Xk+1 = fXk + Wk, 
where f = 0.8, and Wk is zero-mean white noise with a variance of 0.01. We measure 
the tread height every T weeks with zero-mean white measurement noise that has 
a variance of 0.01. The initial tread height is known to be exactly 1 cm. Write a 
program to simulate the system and a Kalman filter t o  estimate the tread height. 

Run the program for 10 time steps per tire, and for 1000 tires. What is a) 
the mean of the 10,000 measurement residuals? 
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b) Suppose the Kalman filter designer incorrectly believes that 30% of the 
tread wears off every 7 weeks. What is the mean of the 10,000 measure 
ment residuals in this case? 

c )  Suppose the Kalman filter designer incorrectly believes that 10% of the 
tread wears off every 7 weeks. What is the mean of the 10,000 measure- 
ment residuals in this case? 

10.15 Consider the system described in Problem 10.14. Suppose the engineer 
does not know the true value off  but knows the initial probabilities Pr(f = 0.8) = 
Pr(f = 0.85) = Pr(f = 0.9) = 1/3. Run the multiple-model estimator for 10 
time steps on 100 tires to estimate f .  The f probabilities at each time step can 
be taken as the mean of the 100 f probabilities that are obtained from the 100 
tire simulations, and similarly for the f estimate at each time step. Plot the f 
probabilities and the f estimate as a function of time. 

10.16 Consider a scalar system with F = H = 1 and nominal noise variances 
Q = R = 5. The true but unknown noise variances Q and R are given as 

Q = (l+a)Q 
R = (1 +P)R 

E(a2) = 0: = 1/2 

E(P2) = 0; = 1 

where a and P are independent zero-mean random variables. The variance of the a 
posteriori estimation error is P if a = P = 0. In general, a and P are nonzero and 
the variance of the estimation error is P +  A P .  Plot P ,  E ( A P 2 ) ,  and ( P + E ( A P 2 ) )  
as a function of K for K E [0.3,0.7]. What are the minimizing values of K for the 
three plots? 
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CHAPTER 11 

The H, filter 

[Kalman filtering] assumes that the message generating process has a known dynamics 
and that the exogenous inputs have known statistical properties. Unfortunately, these 
assumptions limit the utility of minimum variance estimators in situations where the 
message model and/or the noise descriptions are unknown. 

-Uri Shaked and Yahali Theodor [Sha92] 

As we have seen in earlier chapters, the Kalman filter is an effective tool for 
estimating the states of a system. The early success in the 1960s of the Kalman filter 
in aerospace applications led to attempts to apply it to more common industrial 
applications in the 1970s. However, these attempts quickly made it clear that a 
serious mismatch existed between the underlying assumptions of Kalman filters and 
industrial state estimation problems. Accurate system models are not as readily 
available for industrial problems. The government spent millions of dollars on the 
space program in the 1960s (hence the accurate system models), but industry rarely 
has millions of dollars to spend on engineering problems (hence the inaccurate 
system models). In addition, engineers rarely understand the statistical nature 
of the noise processes that impinge on industrial processes. After a decade or 
so of reappraising the nature and role of Kalman filters, engineers realized they 
needed a new filter that could handle modeling errors and noise uncertainty. State 
estimators that can tolerate such uncertainty are called robust. Although robust 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 @ZOOS John Wiley & Sons, Inc. 
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estimators based on Kalman filter theory can be designed (as seen in Section 10.4), 
these approaches are somewhat ad-hoc in that they attempt to modify an already 
existing approach. The H, filter was specifically designed for robustness. 

In Section 11.1 we derive a different form of the Kalman filter and discuss the 
limitations of the Kalman filter. Section 11.2 discusses constrained optimization 
using Lagrange multipliers, which we will need later for our derivation of the H, 
filter. In Section 11.3 we use a game theory approach to derive the discretetime 
H, filter, which minimizes the worst-case estimation error. This is in contrast 
to the Kalman filter's minimization of the expected value of the variance of the 
estimation error. Furthermore, the H, filter does not make any assumptions about 
the statistics of the process and measurement noise (although this information can 
be used in the H, filter if it is available). Section 11.4 presents the continuous-time 
H, filter, and Section 11.5 discusses an alternative method for deriving the H, 
filter using a transfer function approach. 

11.1 INTRODUCTION 

In this section we will first derive an alternate form for the Kalman filter. We do 
this to facilitate comparisons that we will make later in this chapter between the 
Kalman and H, filters. After we derive an alternate Kalman filter form, we will 
briefly discuss the limitations of the Kalman filter. 

11.1.1 

Recall that the Kalman filter estimates the state of a linear dynamic system defined 
by the equations 

An alternate form for the Kalman filter 

(11.1) 

where {wk} and { V k }  are stochastic processes with covariances Qk and Rk, respec- 
tively. As derived in Section 5.1, the Kalman filter equations are given as follows: 

(11.2) 

Using the matrix inversion lemma from Section 1.1.2 we see that 

where Zk is the information matrix (i.e., the inverse of the covariance matrix Pk). 
The Kalman gain can therefore be written as follows: 
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From Equation (11.4) the Kalman gain can be written as 

Kk = (I + PLHTRk1Hk)-'PiH:Rk1 (11.9) 

We can premultiply outside the parentheses by PL , and postmultiply each term 
inside the parenthesis by Pi, to obtain 

Kk = PL(PL f P~HTR~,'HI,PL)-'P,-HTR,~ (11.10) 

We can postmultiply outside the parentheses by the inverse of Pi, and premultiply 
each term inside the parentheses by the inverse of P;, to obtain 

Kk = Pi(I + HTRk'HkPF)-lHTR-l k k  (11.11) 

Combining this expression for Kk with Equations (11.2) and (11.8) we can summa- 
rize the Kalman filter as follows: 

(1 1.12) 

11.1.2 Kalman filter limitations 

The Kalman filter works well, but only under certain conditions. 

First, we need to know the mean and correlation of the noise Wk and v k  at  
each time instant. 

Second, we need to know the covariances Qk and Rk of the noise processes. 
The Kalman filter uses Qk and Rk as design parameters, so if we do not know 
QI, and RI, then it may be difficult to  successfully use a Kalman filter. 

Third, the attractiveness of the Kalman filter lies in the fact that it is the one 
estimator that results in the smallest possible standard deviation of the esti- 
mation error. That is, the Kalman filter is the minimum variance estimator if 
the noise is Gaussian, and it is the linear minimum variance estimator if the 
noise is not Gaussian. If we desire to  minimize a different cost function (such 
as the worst-case estimation error) then the Kalman filter may not accomplish 
our objectives. 

0 Finally, we need to  know the system model matrices Fk and Hk. 

So what do we do if one of the Kalman filter assumptions is not satisfied? What 
should we do if we do not have any information about the noise statistics? What 
should we do if we want to  minimize the worst-case estimation error rather than 
the covariance of the estimation error? 

Perhaps we could just use the Kalman filter anyway, even though its assumptions 
are not satisfied, and hope for the best. That is a common solution to our Kalman 
filter quandary and it works reasonably well in many cases. However, there is yet 
another option that we will explore in this chapter: the H, filter, also called the 
minimax filter. The H, filter does not make any assumptions about the noise, and 
it minimizes the worst-case estimation error (hence the term minimax). 
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1 1.2 CO N ST R A I N ED 0 PTI M I 2 AT1 0 N 

In this section we show how constrained optimization can be performed through 
the use of Lagrange multipliers. This background is required for the solution of 
the H, filtering problem that is presented in Section 11.3. In Section 11.2.1 we 
will investigate static problems (i.e., problems in which the independent variables 
are constant). In Section 11.2.2 we will take a brief segue to look at problems with 
inequality constraints. In Section 11.2.3 we will extend our constrained optimization 
method to dynamic problems (i.e., problems in which the independent variables 
change with time). 

11.2.1 Static constrained optimization 

Suppose we want to minimize some scalar function J(x,  w) with respect to x and w. 
x is an n-dimensional vector, and w is an rn-dimensional vector. w is the indepen- 
dent variable and x is the dependent variable; that is, x is somehow determined by 
w. Suppose our vector-valued constraint is given as f(x, w) = 0. Further m u m e  
that the dimension of f(x,  w) is the same as the dimension of x. This problem can 
be written as 

min J (x ,  w) such that f (x ,  w) = 0 (11.13) 

Suppose that the constrained minimum of J(x,  w) occurs at x = x* and w = w*. 
We call this the stationary point of J(x,  w). Now suppose that we choose values of 
x and w such that x is close to x*, w is close to w*, and f(x,  w) = 0. Expanding 
J(x,  w) and f(x,  w) in a Taylor series around x* and w* gives 

x,w 

J (x ,  w) = J(x*,w*) + El A x + E ~  AW 
ax x * , w *  x * ,w*  

f(X,W) = f ( X * , W * ) +  af/ A x + E l  Aw (1 1.14) 
a x  I *  ,w* X*,W* 

where higher-order terms have been neglected (with the assumption that x is close 
to x*, and w is close to w*), Ax = x - x*, and Aw = w - w*. These equations can 
be written as 

AJ(x, W )  = J(x, W )  - J(x*, w') 

(11.15) 

Now note that for values of x and w that are close to x* and w*, we have A J (x ,  w) = 
0. This is because the partial derivatives on the right side of the AJ(x,  w) equation 
are zero at the stationary point of J(x,  w). We also see that Af(x, w) = 0 at 
the stationary point of J(x, w). This is because f(x*, w*) = 0 at the constrained 
stationary point of J(x,  w), and we chose x and w such that f(x, w) = 0 also. The 
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above equations can therefore be written as 

AX+ 1 A w  = 0 
x',w' 

a f  (1 1.16) 

These equations are true for arbitrary x and w that are close to x* and w* and 
that satisfy the constraint f(x, w )  = 0. Equation (11.16) can be solved for Ax as 

(1 1.17) 

This can be substituted into Equation (11.16) to obtain 

- d J 1  - -  dJ1  ("I )-'xi = o  (1 1.18) 
dw x*,w* dx x8,w. dx dw x* ,w*  

This equation, combined with the constraint f(s, w )  = 0, gives us (m+n) equations 
that can be solved for the vectors w and x to find the constrained stationary point 
of J ( x ,  w). 

Now consider the augmented cost function 

Ja = J + A T f  (1 1.19) 

where A is an n-element unknown constant vector called a Lagrange multiplier. 
Note that 

d J  d f  - -+AT- Ja 

dX dX dX 
- -  

d J  T d f  - - + A -  d Ja 

dW dW dW 
- -  

If we set all three of these equations equal to zero then we have 

(1 1.20) 

(11.21) 

The first equation gives us the value of the Lagrange multiplier, the second equation 
is identical to Equation (11.18), and the third equation forces the constraint to be 
satisfied. We therefore see that we can solve the original constrained problem by 
creating an augmented cost function J a ,  taking the partial derivatives with respect 
to x, w ,  and A, setting them equal to zero, and solving for x, w ,  and A. The 
partial derivative equations give us (271 + m) equations to solve for the n-element 
vector x, the m-element vector w ,  and the n-element vector A. We have increased 
the dimension of the original problem by introducing a Lagrange multiplier, but 
we have transformed the constrained optimization problem into an unconstrained 
optimization problem, which can simplify the problem considerably. 
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EXAMPLE 11.1 

Suppose we need to find the minimum of J ( x ,  u) = x2/2 + xu + u2 + u with 
respect to z and u such that f(z, u) = x - 3 = 0. This simple example can 
be solved by simply realizing that x = 3 in order to satisfy the constraint. 
Substituting z = 3 into J(x, u) gives J ( x ,  u) = 9/2 + 4u + u2. Setting the 
derivative with respect to u equal to zero and solving for u gives u = -2. 

We can also solve this problem using the Lagrange multiplier method. We 
create an augmented cost function as 

Ja = J + X T f  
= z2/2 + z u  + u2 + u + X(x - 3) (11.22) 

The Lagrange multiplier X has the same dimension as z (scalar in this exam- 
ple). The three necessary conditions for a constrained stationary point of J 
are obtained by setting the partial derivations of Equation (11.20) equal to 0. 

= z + u + X = O  aJa 

d X  
- 

- x + 2 u + l = O  a Ja 

d U  
- -  

- x - 3 = 0  aJa 
dX 
- -  (11.23) 

Solving these three equations for x, u, and X gives x = 3, u = -2, and X = 
-1. In this example the Lagrange multiplier method seems to require more 
effort than simply solving the problem directly. However, in more complicated 
constrained optimization problems the Lagrange multiplier method is essential 
for finding a solution. 

vvv 

11.2.2 Inequality constraints 

Suppose that we want to minimize a scalar function that is subject to an inequality 
constraint: 

min J ( x )  such that f (x)  5 0 (11.24) 

This can be reduced to two minimization problems, neither of which contain in- 
equality constraints. The first minimization problem is unconstrained, and the 
second minimization problem has an equality constraint: 

1. minJ(z) 

2. min J(z) such that f(z) = 0 

In other words, the optimal value of z is either not on the constraint boundary 
[i.e., f(x) < 01, or it is on the constraint boundary [i.e., f (x)  = 01. If it is not 
on the constraint boundary then f (x)  < 0 and the optimal value of x is obtained 
by solving the problem without the constraint. If it is on the constraint boundary 
then f(z) = 0 at the constrained minimum, and the optimal value of x is obtained 
by solving the problem with the equality constraint f(x) = 0. 
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The procedure for solving Equation (11.24) involves solving the unconstrained 
problem first. Then we check to see if the unconstrained minimum satisfies the 
constraint. If the unconstrained minimum satisfies the constraint, then the uncon- 
strained minimum solves the inequality-constrained minimization problem and we 
are done. However, if the unconstrained minimum does not satisfy the constraint, 
then the minimization problem with the inequality constraint is equivalent to the 
minimization problem with the equality constraint. So we solve the problem with 
the equality constraint f(z) = 0 to obtain the final solution. This is illustrated for 
the scalar case in Figure 11.1. 

-0.5 - -0.5 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
X 

Figure 11.1 This illustrates the constrained minimization of z2. If the constraint is 
z - 1 5 0, then the constrained minimum is equal to the unconstrained minimum and occurs 
at z = 0. If the constraint is x + 1 5 0, then the constrained minimum can be solved by 
enforcing the equality constraint x + 1 = 0 and occurs at 2 = -1. 

When we extend this idea to more than one dimension, we obtain the following 
procedure, which is called the active-set method for optimization with inequality 
constraints [Fle81, Gi1811. 

1. The problem is to minimize J ( z )  such that f(z) 5 0, where f(z) is an m- 
element constraint function and the inequality is taken one element at a time. 

2. First solve the unconstrained minimization problem. If the unconstrained 
solution satisfies the constraint f(z) 5 0 then the problem is solved. If not, 
continue to the next step. 

3. For all possible combinations of constraints, solve the problem using those 
constraints as equality constraints. If the solution satisfies the remaining 
(unused) constraints, then the solution is feasible. Note that this step requires 
the solution of (2.' - 1) constrained optimization problems. 

4. Out of all the feasible solutions that were obtained in the previous step, the 
one with the smallest J ( z )  is the solution to the constrained minimization 
problem. 
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Note that there are also other methods for solving optimization problems with 
inequality constraints, including primal-dual interior-point methods [Wri97]. 

11.2.3 Dynamic constrained optimization 

In this section we extend the Lagrange multiplier method of constrained optimiza- 
tion to  the optimization of dynamic systems. Suppose that we have a dynamic 
system given as 

z k + 1  = F k X k f W k  ( k = O , * * * , N - 1 )  (1 1.25) 

where Xk is an n-dimensional state vector. We want to  minimize the scalar function 

N - 1  

(11.26) 
k=O 

where $(xo) is a known function of 20,  and e k  is a known function of Xk and W k .  

This is a constrained dynamic optimization problem similar to  the type that arises 
in optimal control [Lew86a, Ste941. It is slightly different than typical optimal 
control problems because $ ( X k )  in the above equation is evaluated at  the initial 
time ( I c  = 0) instead of the final time (k = N ) ,  but the methods of optimal control 
can be used with only slight modifications to solve our problem. The constraints 
are given in Equation (11.25). From the previous section we know that we can 
solve this problem by introducing a Lagrange multiplier A, creating an augmented 
cost function Ja ,  and then setting the partial derivatives of J, with respect to  X k ,  

W k ,  and X equal to  zero. Since we have N constraints in Equation (11.25) (each 
of dimension n), we have to  introduce N Lagrange multipliers X I ,  . a ,  A N  (each of 
dimension n). The augmented cost function is therefore written as 

This can be written as 

N - 1  N - 1  

k=O k=O 

where A0 is now an additional term in the Lagrange multiplier sequence. It is not in 
the original augmented cost function, but we will see in Section 11.3 that its value 
will be determined when we solve the constrained optimization problem. Now we 
define the Hamiltonian 'Flk as 

(1 1.29) 

With this notation we can write the augmented cost function as follows. 
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k =O 

The conditions that are required for a constrained stationary point are 

These conditions can also be written as 

(11.30) 

(11.31) 

(11.32) 

The fifth condition ensures that the constraint X k f l  = F k x k  + W k  is satisfied. Based 
on the expression for Ja in Equation (11.30), the first four conditions above can be 
written as 

This gives us the necessary conditions for a constrained stationary point of our 
dynamic optimization problem. These are the results that we will use to solve the 
H, estimation problem in the next section. 
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11.3 A GAME THEORY APPROACH T O  H, FILTERING 

The H, solution that we present in this section was originally developed by Ravi 
Banavar [Ban921 and is further discussed in [She95, She971. Suppose we have the 
standard linear discrete-time system 

(1 1.34) 

where W k  and Wk are noise terms. These noise terms may be random with possibly 
unknown statistics, or they may be deterministic. They may have a nonzero mean. 
Our goal is to estimate a linear combination of the state. That is, we want t o  
estimate Z k ,  which is given by 

z k  = L k x k  (11.35) 

where L k  is a user-defined matrix (assumed to be full rank). If we want to  directly 
estimate X k  (as in the Kalman filter) then we set L k  = 1. But in general we may 
only be interested in certain linear combinations of the state. Our estimate of Zk 
is denoted &, and our estimate of the state at time 0 is denoted 20. We want to  
estimate Zk based on measurements up to  and including time ( N  - 1). In the game 
theory approach to H, filtering we define the following cost function: 

Our goal as engineers is to  find an estimate & that minimizes J 1 .  Nature's goal 
as our adversary is to find disturbances Wk and W k ,  and the initial state 20, to  
maximize J1. Nature's ultimate goal is to maximize the estimation error ( Z k  - & ) .  
The way that nature maximizes ( Z k  - &) is by a clever choice of W k ,  V k ,  and 20. 

Nature could maximize ( Z k  - &) by simply using infinite magnitudes for W k ,  ?Jk, 

and 20, but this would not make the game fair. That is why we define J 1  with 
(20 - 20),  W k ,  and ?& in the denominator. If nature uses large magnitudes for ' w k ,  

V k ,  and x o  then ( z k  - &) will be large, but J 1  may not be large because of the 
denominator. The form of J 1  prevents nature from using brute force to  maximize 
( Z k  - & ) .  Instead, nature must try to  be clever in its choice of W k ,  V k ,  and xo as 
it tries to maximize ( Z k  - & ) .  Likewise, we as engineers must be clever in finding 
an estimation strategy to minimize (Zk - .&). 

This discussion highlights a fundamental difference in the philosophy of the 
Kalman filter and the H, filter. In Kalman filtering, nature is assumed to  be 
indifferent. The pdf of the noise is given. We (as filter designers) know the pdf 
of the noise and can use that knowledge to  obtain a statistically optimal state es- 
timate. But nature cannot change the pdf to degrade our state estimate. In H, 
filtering, nature is assumed to be perverse and actively seeks to  degrade our state 
estimate as much as possible. Intuition and experience seem to indicate that nei- 
ther of these extreme viewpoints of nature is entirely correct, but reality probably 
lies somewhere in the middle. 

lNevertheless, it is advisable to  remember the pnnczple of perversity of ananamate objects [BarOl, 
p. 961 - for instance, when dropping a piece of buttered toast on the floor, the probability is 
significantly more than 50% that the toast will land buttered-side down. 
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Po, Q k ,  R k ,  and s k  in Equation (11.36) are symmetric positive definite matrices 
chosen by the engineer based on the specific problem. For example, if the user is 
particularly interested in obtaining an accurate estimate of the third element of Z k ,  

then & ( 3 , 3 )  should be chosen to be large relative to the other elements of &.  If 
the user knows u priori that the second element of the w k  disturbance is small, 
then Q k ( 2 , 2 )  should be chosen to be small relative to the other elements of Q k .  

In this way, we see that Pi, Q k ,  and R k  are analogous to those same quantities in 
the Kalman filter, if those quantities are known. That is, suppose that we know 
that the initial estimation error, the process noise, and the measurement noise are 
zero-mean. Further suppose that we know their covariances. Then we should use 
those quantities for Po, Q k ,  and R k  in the H, estimation problem. In the Kalman 
filter, there is no analogy to the S k  matrix given in Equation (11.36). The Kalman 
filter minimizes the &-weighted sum of estimation-error variances for all positive 
definite & matrices (see Section 5 .2 ) .  But in the H, filter, we will see that the 
choice of s k  affects the filter gain. 

The direct minimization of J1 is not tractable, so instead we choose a perfor- 
mance bound and seek an estimation strategy that satisfies the threshold. That is, 
we will try to find an estimate ,i?k that results in 

1 
J1 < - e (11.37) 

where 6' is our user-specified performance bound. Rearranging this equation results 
in 

< 1  (1 1.38) 

where J is defined by the above equation. The minimax problem becomes 

J* = min max J (11.39) 

Since Zk = L k X k ,  we naturally choose i k  = L k 2 k  and try to find the 2 k  that 
minimizes J .  This gives us the problem 

i k  W k , V k , X O  

J* = min rnax J 
2 ,  W k  r v k  9x0 

(11.40) 

Nature is choosing 20, w k ,  and V k  to maximize J .  But 20, W k ,  and V k  completely 
determine Y k ,  so we can replace the V k  in the minimax problem with Y k .  We 
therefore have 

J* = min max J (11.41) 
* k  W k , Y k i Z O  

Since Y k  = H k X k  + ?&, We See that V k  = Y k  - H k X k  and 

(1 1.42) 

(1 1.43) 
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where s k  is defined as 

We substitute these results in Equation (11.38) to  obtain 

s k  = L r S k L k  ( 11.44) 

N - 1  

= $(xO) + L k  (1 1.45) 
k=O 

where $(Q) and L k  are defined by the above equation. To solve the minimax 
problem, we will first find a stationary point of J with respect to  xo and W k ,  and 
then we will find a stationary point of J with respect to  $k and y k .  

11.3.1 Stationarity with respect to 20 and W k  

The problem in this section is to  maximize J = $(xo) + cfii L k  (subject to  the 
constraint 2 k + 1  = F k x k  + W k )  with respect to 20 and W k .  This is the dynamic con- 
strained optimization problem that we solved in Section 11.2.3. The Hamiltonian 
for this problem is defined as 

(11.46) 

where 2 X k + l / e  is the time-varying Lagrange multiplier that must be computed 
( I c  = O,-. , N - 1). Note that we have defined the Lagrange multiplier as 2&+1/0 
instead of x k + l .  This does not change the solution to the problem, it simply scales 
the Lagrange multiplier (in hindsight) by a constant to  make the ensuing math more 
straightforward. From Equation (11.33) we know that the constrained stationary 
point of J (with respect to xo and w k )  is solved by the following four equations: 

From the first expression in the above equation we obtain 

2x0 2 
e e  -- -P,- ' (zo-do)  = 0 

P o x o - x o + ~ o  = 0 

20 = $i.o+Poxo 

From the second expression in Equation (11.47) we obtain 

A N  = 0 

(1 1.47) 

(11.48) 

(11.49) 
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From the third expression in Equation (11.47) we obtain 

W k  = Q k x k + i  (11.50) 

This can be substituted into the process dynamics equation to obtain 

x k + 1  = F k X k  -k Q k x k + i  (11.51) 

From the fourth expression in Equation (11.47) we obtain 

T -1 2 
- 2 s k ( x k  - $ k )  + $ H k  R k  ( y k  - H k X k )  + j F z x k + i  

= F?Xk+l + e s k ( x k  - ? k )  + H F R i l ( y k  - H k x k )  

2 x k  - -  
e 

(1 1.52) 

At this point we have to make an assumption in order to proceed any further. From 
Equation (11.48) we know that xo = 20 + PoXo, so we will assume that 

x k  = p k  + P k x k  ( 11.53) 

for all k, where p k  and P k  are some functions to be determined, with PO given, 
and the initial condition po = 20. That is, we assume that X k  is an affine function 
of x k .  This assumption may or may not turn out to be valid. We will proceed as 
if the assumption were true, and if our results turn out to be correct then we will 
know that our assumption was indeed valid. Substituting Equation (11.53) into 
Equation (11.51) gives 

(1 1.54) pk+1 + P k + l x k + l  = F k P k  + F k p k x k  + Q k x k + l  

Substituting Equation (11.53) into Equation (11.52) gives 

x k  = F z x k + l  + e s k ( p k  + P k x k  - & k )  + HrRL1 [Yk - H k ( p k  + p k x k ) ]  (11.55) 

Rearranging this equation gives 

x k  - O S k P k X k  + H F R k l H k P k . &  = 

F z x k + l  + e g k ( p k  - * k )  + H ; R I , ' ( y k  - H k p k )  (1 1.56) 

This can be solved for x k  as 

X k  = [I - 6 s k P k  + H z R c l H k p k ] - '  X 

T -1 
[ F z x k + l  + e s k ( p k  - z k )  + H k  R k  ( y k  - H k p k ) ]  (11.57) 

Substituting this expression for x k  into Equation (11.54) gives 

p k + i  -k P k + l X k + l  = F k p k  + F k p k  [I - e s k p k  + H r R , l H k P k ] - l  X 

[F?xk+.l + e S k ( p k  - 2 k )  + H ; R i l ( Y k  - H k p k ) ]  + Q k X k + i  (11.58) 

This equation can be rearranged as follows: 

p k + l  - F k p k  - F k P k  [I - e s k P k  + H I R i l H k P k ] - l  X 

[ e s k ( p k  - 2 k )  -k H z R k l ( Y k  - H k p k ) ]  = 

[ - p k + l  + F k P k  [I - e s k p k  + H F R i l H k P k ] - l  F z  + Q k ]  &+I (11.59) 
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This equation is satisfied if both sides are zero. Setting the left side of the above 
equation equal to zero gives 

pk+1 = F k p k  -k F k P k  [I - 8 s k P k  -k H ; R ; l H k P k ] - l  X 

[ e S k ( P k  - 2 k )  f H k  T R k  -1 ( Y k  - H k P k ) ]  (1 1.60) 

with the initial condition 

Po = fo 

Setting the right side of Equation (11.59) equal to  zero gives 

Pk+1 = F k P k  [ I  - 8 s k P k  f H f R i l H k P k ] - l  Fr + Q k  

= F k & F r - k Q k  

where & is defined by the above equation. That is, 

(11.61) 

(11.62) 

= P k  [ I  - 8 S k P k  -k H r R k l H k P k ] - l  

= [P;' - 89, f H F R i ' H k 1 - l  (1 1.63) 

From the above equation we see that if P k ,  s k ,  and R k  are symmetric, then P k  will 
be symmetric. We see from Equation (11.62) that if Qk is also symmetric, then 
Pk+1 will be symmetric. So if PO, Q k ,  R k ,  and s k  are symmetric for all k, then 
z'r, and P k  will be symmetric for all k. The values of 20 and W k  that provide a 
stationary point of J can be summarized as follows: 

20 = 2 0  +POX0 

w k  = QkAk+l  

AN = 0 

A k  = [I  - 8 S k P k  f I f f R ; l H k P k ] - l  X 

[F,TAk+l + e S k ( P k  - f k )  -k HTR-' k k ( Y k  - H k P k ) ]  

P k + i  = F k P k  [I - 8 S k P k  + H r R F ' H k P k ]  F z  + Q k  

Po = fo 

p k + l  = F k p k  f F k P k  [ I  - 8 S k P k  f H r R k l H k P k ] - l  X 

[ e S k ( P k  - 2 k )  -k H r R i l ( Y k  - H k P k ) ]  (11.64) 

The fact that we were able to  find a stationary point of J shows that we were 
correct in our assumption that X k  was an affine function of &. In the following 
section, given these values of 20 and W k ,  we will find the values of 2 k  and Y k  that 
provide a stationary point of J .  

11.3.2 

The problem in this section is to find a stationary point (with respect to 2 k  and 

This problem is solved given the fact that ZO and W k  have already been set to  their 

Stationarity with respect to 5 and y 

N-1 
Y k )  Of J = $(Zk) lk=o -k x k = O  c k  (subject to the Constraint z k + l  = F k X k  f w k ) .  
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maximizing values as described in Section 11.3.1. From Equation (11.53), and the 
initial condition of p k  in Equation (11.61), we see that 

(1 1.65) 

We therefore obtain 

llxoll;o = gpoxo 
= (20 - 2 0 )  T Po -T PoPo-l(zo - 2 0 )  

(20 -20 )  T Po - 1  (20 - 2 0 )  = 

= llzo - 2oIlp;1 2 (1 1.66) 

Therefore, Equation (1 1.45) becomes 

Substituting for 2 k  from Equation (11.53) in this expression gives 

(1 1.68) 
-1 

J = ~ l l ~ o / l ~ o +  

Consider the term w ~ & ~ l w k  in the above equation. Substituting for W k  from 
Equation (11.50) in this term gives 

T -1 T - 1  
W k Q k  Wk = A;+l&kQk Q k A k + l  

= AT+iQkAk+l  (11.69) 

where we have used the fact that Q k  is symmetric. Equation (11.68) can therefore 
be written as 

(1 1.70) 
-1 

J = -lIxoll;o+ e 

Now we take a slight digression to notice that 

The reason that this equation is correct is because from Equation (11.49) we know 
that A N  = 0. Therefore, the last term in the first summation above is equal to zero 
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and the two summations are equal. The above equation can be written as 

We can subtract this zero term to the cost function of Equation (11.70) to obtain 

Now we consider the term xc+;1(Pk+l - Qk)&+l  in the above expression. Substi- 
tuting for Pk+l from Equation (11.62)  in this term gives 

A;+; ( P k A l  - Q k ) A k + l  = x c + i ( Q k  + FkpkFT - Q k ) x k + i  

= $+ 1 Fk p k  FF x k  + I (1 1.74) 
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(1 1.77) 

Notice that the above expression is a scalar. That means that each term on the 
right side is a scalar, which means that each term is equal to its transpose. For 
example, consider the second term on the right side. Since it is a scalar, we see 
that e ( p k  - 2 k ) T S k P k X k  = e x : P k s k ( p k  - 2 k ) .  (we have used the fact that P k  and 
S k  are symmetric, and 8 is a scalar.) Equation (11.77) can therefore be written as 

(1 1.78) 

Now note from Equation (11.63) that 

(1 1.79) 

We therefore see that 

(1 1.80) 

Substituting this into Equation (11.78) gives 

(11.81) 

Substituting this equation for x r + l ( P k + l -  Q k ) & + l  into Equation (11.73) gives the 
following. 
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These equations are clearly satisfied for the following values of 2 k  and yk: 

( 1  1.84) 

These are the extremizing values of ?k and yk. However, we still are not sure if 
these extremizing values give a local minimum or maximum of J .  Recall that the 
second derivative of J tells us what kind of stationary point we have. If the second 
derivative is positive definite, then our stationary point is a minimum. If the second 
derivative is negative definite, then our stationary point is a maximum. If the second 
derivative has both positive and negative eigenvalues, then our stationary point is 
a saddle point. The second derivative of J with respect to  h k  can be computed as 

( 1  1.85) 

_ - _  
Our ?k will therefore be a minimizing value of J if ( s k  + e s k p k s k )  is positive 
definite. The value of s k  chosen for use in Equation (11.36) should always be 
positive definite, which means that S k  defined in Equation (11.44) will be positive 
definite. This means that our ?k will be a minimizing value of J if & is positive 
definite. 

in Equation (11.63), the condition required for ?k 

to minimize J is that (P;' - e s k  + H?R;lHk)-l  be positive definite. This is 
So, from the definition of 



352 THE H- FILTER 

equivalent to  requiring that (PF' - e s k  + H ? R i l H k )  be positive definite. The 
individual terms in this expression are always positive definite [note in particular 
from Equation (11.62) that P k  will be positive definite if 4 is positive definite]. 
So the condition for ?k to  minimize J is that e s k  be "small enough" so that 
(PF' - e s k  + H F R k ' H k )  is positive definite. Requiring that be small can be 
accomplished three different ways. 

1. e s k  will be small if 0 is small. This means that the performance requirement 
specified in Equation (11.37) is not too stringent. As long as our performance 
requirement is not too stringent then the problem will have a solution. If, 
however, the performance requirement is too stringent (i.e., 6 is large) then 
the problem will not have a solution. 

2. 63, will be small if L k  is small. This statement is based on the relationship 
between S k  and L k  as shown in Equation (11.44). From Equation (11.36) we 
see that the numerator of the cost function is given as ( Z k - & ) T L T S k L k ( Z k -  

& ) .  So if L k  is small we see that the numerator of the cost function will be 
small, which means that it will be easier to  minimize the cost function. If, 
however, L k  is too large, then the problem will not have a solution. 

3. e s k  will be small if s k  is small. This statement is based on the relationship 
between s k  and S k  as shown in Equation (11.44). From Equation (11.36) we 
see that the numerator of the cost function is given as ( Z 1 , - ? k ) T L ; S k L k ( 3 & -  

& ) .  so if s k  is small we see that the numerator of the cost function will be 
small, which means that it will be easier to minimize the cost function. If, 
however, s k  is too large, then the problem will not have a solution. 

Note from Equation (11.62) that the positive definiteness of p k  implies the positive 
definiteness of %+I.  Therefore, if Po is positive definite (per our original problem 
statement), and p k  is positive definite for all k ,  then P k  will also be positive definite 
for all k. 

It is also academically interesting (though of questionable utility) to  note the 
conditions under which the Y k  that we found in Equation (11.84) will be a maxi- 
mizing value of J .  (Recall that Y k  is chosen by nature, our adversary, to  maximize 
the cost function.) The second derivative of J with respect t o  y k  can be computed 
as 

R k  and Rk', specified by the 
tion (11.36), should always be 

(11.86) 

user as part of the problem statement in Equa- 
positive definite. So the second derivative above 

will be negative definite (which means that Y k  will be a maximizing value of J )  if 
( R k  - H k p k H ? )  is positive definite. This requirement can be satisfied in two ways. 

1. (Rk - H k p k H F )  will be positive definite if R k  is large enough. A large value 
of R k  means that the denominator of the cost function of Equation (11.36) 
will be small, which means that the cost function will be large. A large 
cost function value is easier to  maximize and will therefore tend to have a 



A GAME THEORY APPROACH T O  Hoo FILTERING 353 

maximizing value for Y k .  Also note that the designer typically chooses R k  to  
be proportional to the magnitude of the measurement noise. If the user knows 
that the measurement noise is large, then R k  will be large, which again will 
result in a problem with a maximizing value for y k .  In other words, nature 
will be better able to maximize the cost function if the measurement noise is 
large. 

2. (& - H k & H T )  will be positive definite if H k  is small enough. If H k  becomes 
smaller, that means that the measurement noise becomes larger relative to  
the size of the measurements, as seen in Equation (11.34). In other words, 
a small value of H k  means a smaller signal-to-noise ratio for the measure- 
ments. A small signal-to-noise ratio gives nature a better opportunity to  find 
a maximizing value of Y k .  

Of course, we are not really interested in finding a maximizing value of Y k .  Our goal 
was to find the minimizing value of X k .  The H, filter algorithm can be summarized 
as follows. 

The discretetime H, filter 

1. The system equations are given as 

(11.87) 

where W k  and V k  are noise terms, and our goal is to  estimate 9.  

2. The cost function is given as 

where PO, & k ,  R k ,  and s k  are symmetric, positive definite matrices chosen 
by the engineer based on the specific problem. 

3. The cost function can be made to be less than l / e  (a user-specified bound) 
with the following estimation strategy, which is derived from Equations (11.44), 
(11.60), (11.62), and (11.84): 

s k  = L T s k L k  

K k  = P k  [ I  - e s k p k  + H T R i l H k P k ] - l  HTRkl  

i k f l  = F k 2 k  -k F k K k ( Y k  - H k 2 k )  

P k + l  = F k P k  [I - e s k p k  + H ? R I , l H k P k ] - l  FF + Q k  (11.89) 

4. The following condition must hold at  each time step k in order for the above 
estimator to be a solution to the problem: 

PF1 - O S k  + H Z R k l H k  > 0 (1 1.90) 
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11.3.3 

Comparing the Kalman filter in Equation (11.12) and the H, filter in Equa- 
tion (11.89) reveals some fascinating connections. For instance, in the H, filter, 
Q k ,  R k ,  and Po are design parameters chosen by the user based on a priori knowl- 
edge of the magnitude of the process disturbance ' w k ,  the measurement disturbance 
w k ,  and the initial estimation error (20 - $0). In the Kalman filter, w k ,  V k ,  and 
(20 - 20) are zero-mean, and Q k ,  R k ,  and PO are their respective covariances. 

Now suppose we use L k  = s k  = I in the H, filter. That is, we are interested 
in estimating the entire state, and we want to  weight all of the estimation errors 
equally in the cost function. If we use 6 = 0 then the H, filter reduces to  the 
Kalman filter (assuming Q k ,  R k ,  and Po are chosen as above). This provides an 
interesting interpretation of the Kalman filter; that is, the Kalman filter is the 
minimax filter in the case that the performance bound in Equation (11.36) is set 
equal to 00. We see that although the Kalman filter minimizes the variance of the 
estimation error (as discussed in Section 5.2), it does not provide any guarantee as 
far as limiting the worst-case estimation error. That is, it does not guarantee any 
bound for the cost function of Equation (11.36). 

The Kalman and H, filter equations have an interesting difference. If we want 
to estimate a linear combination of states using the Kalman filter, the estimator is 
the same regardless of the linear combination that we want to  estimate. That is, if 
we want to estimate L k x k  using the Kalman filter, the answer is the same regardless 
of the L k  matrix that we choose. However, in the H, approach, the resulting filter 
depends strongly on L k  and the particular linear combination of states that we 
want to estimate. 

Note that the H, filter of Equation (11.89) is identical to  the Kalman filter 
except for subtraction of the term e S k P k  in the K k  and P k + 1  equations. Recall 
from Section 5.5 that the Kalman filter can be made more robust to  unmodeled 
noise and unmodeled dynamics by artificially increasing Qk in the Kalman filter 
equations. This results in a larger covariance P k ,  which in turn results in a larger 
gain K k .  From Equation (11.89) we can see that subtracting e s k k p k  on the right 
side of the p k + 1  equation tends to make P k + l  larger (since the subtraction is inside 
a matrix inverse operation). Similarly, subtracting e s k k p k  on the right side of 
the K k  equation tends to  make K k  larger. Increasing Q k  in the Kalman filter is 
conceptually the same as increasing P k  and K k .  Therefore, the H, filter equations 
make intuitive sense when compared with the Kalman filter equations. The H, 
filter is a worst-case filter in the sense that it assumes that ' w k ,  V k ,  and 20 will be 
chosen by nature to maximize the cost function. The H, filter is therefore robust 
by design. Comparing the H, filter with the Kalman filter, we can see that the 
H, filter is simply a robust version of the Kalman filter. When we robustified the 
Kalman filter in Section 5.5 to add tolerance to  unmodeled noise and dynamics, we 
did not derive an optimal way to increase Q k .  However, H, filter theory shows us 
the optimal way to  robustify the Kalman filter. 

A comparison of the Kalman and H, filters 

11.3.4 Steady-state H, filtering 

If the underlying system and the design parameters are time-invariant, then it may 
be possible to obtain a steady-state solution to the H, filtering problem. Suppose 
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that our system is given as 

where W k  and V k  are noise terms. Our goal is to estimate Zk such that 

(11.91) 

(11.92) 

where Q, R, and S are symmetric positive definite matrices chosen by the engineer 
based on the specific problem. The steady-state filter of Equation (11.89) becomes 

S = L ~ S L  

K = P [I  - eSP + HTR-lHP]-' HTR-l 

P = FP [I  - eSP + HTR-lHP]-' FT + Q 

?k+l = Fhk -k FKk(yk - H f k )  

(11.93) 

The following condition must hold in order for the above estimator to be a solution 
to the problem: 

p - l -  eS + H ~ R - ~ H  > o (11.94) 

If 0, L,  R,  or S is too large, or if H is too small, then the H, estimator will not 
have a solution. Note that the expression for P in Equation (11.93) can be written 
as 

P = F [P-' - 0s + HTR-lH]-' FT + Q (1 1.95) 

Applying the matrix inversion lemma to the inverse in the above expression gives 

P = F { P -  P [(HTR-lH - eS)-' + P ] - ' P }  FT + Q 

= FPFT - F P  [ ( H T R - ~ H  - es)-l+ PI- '  PFT + Q (11.96) 

This is a discretetime algebraic Riccati equation that can be solved with control 
system software.2 If control system software is not available, then the algebraic 
Riccati equation can be solved by numerically iterating the discrete-time Riccati 
equation of Equation (11.89) until it converges to a steady-state value. The steady- 
state filter is much easier to implement in a system in which real-time computational 
effort or code size is a serious consideration. The disadvantage of the steady-state 
filter is that (theoretically) it does not perform as well as the time-varying filter. 
However, the reduced performance that is seen in the steady-state filter is often a 
small fraction of the optimal performance, whereas the computational savings can 
be significant. 

2For example, in MATLAB's Control System Toolbox we can use the command 
DARE(FT,I,Q, ( H ~ R - ~ H  - es)-1. 
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1 EXAMPLE 11.2 

Suppose we are trying to estimate a randomly varying scalar on the basis of 
noisy measurements. We have the scalar system 

(1 1.97) 

This system could describe our attempt to estimate a noisy voltage. The 
voltage is essentially constant, but it is subject to random fluctuations, hence 
the noise term Wk in the process equation. Our measurement of the voltage 
is also subject to noise or instrument bias, hence the noise term Vk in the 
measurement equation. We see in this example that F = H = L = 1. Further 
suppose that Q = R = S = 1 in the cost function of Equation (11.88). Then 
the discretetime Riccati equation associated with the H, filter equations 
becomes 

Pk+1 = F k P k  [I - eskpk -k HTRklHkPk]-l F r  + Qk 

= Pk [1 - e p k  + P k 1 - l  + 1 (11.98) 

This can be solved numerically or analytically as a function of time for a given 
8 to give P k ,  and then the H, gain can be obtained as 

Kk = P k  [I - eSkPk + HTRilHkPk]-l H;Ril 

= p k  [1 - e p k  + Pk1-l (1 1.99) 

we can set P k + l  = Pk in Equation (11.98) to obtain the steady-state solution 
for Pk. This gives 

P = p ( i - e P + p ) - l + i  
P( i -eP+P)  = p+( i - ep+p)  

(1 - e)p2 + (e  - i ) ~  - 1 = o 
1 - e & J(e - i ) (e  - 5) 

2(1-  e) P =  (1 1.100) 

As we discussed earlier, i-n order for this value of P to be a solution to the 
H, estimation problem, P must be positive definite. The first solution for P 
is positive if 6 < 1, and both solutions for P are positive if 0 2 5.  Another 
condition for the solution of the H, estimation problem is that 

p-l- eS + H ~ R - ~ H  > o 
P - l - e + i  > o (11.101) 

If 6 < 1 then the first solution for P satisfies this bound. However, if 8 2 5 ,  
then neither solution for P satisfies this bound. Combining this data shows 
that the H, estimator problem has a solution for 6 < 1. Every H, estimator 
problem will have a solution for 6 less than some upper bound because of the 
nature of the cost function. 
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For a general estimator gain K the estimate can be written as 

? k + l  = F?k + FK(yk - H k ? k )  

= (1 - K)?k + Kyk (11.102) 

If we choose 8 = 1/2, then we obtain P = 2 and K = 1. As seen from the above 
equation, this results in bk+l = y k .  In other words, the estimator ignores 
the previous estimate and simply sets the estimate equal to  the previous 
measurement. As 8 increases toward 1, P increases above 2 and approaches 
00, and the estimator gain K increases greater than 1 and also approaches 00. 

In this case, the estimator will actually place a negative weight on the previous 
estimate and compensate by placing additional weight on the measurement. 
If 8 increases too much (gets too close to  1) then the estimator gain K will 
be greater than 2 and the H, estimator will be unstable. It is always a good 
idea to check the stability of your H, filter. If the filter is unstable then you 
should probably decrease 8 to obtain a stable filter. As 8 decreases below 
1/2,  P decreases below 2 and the gain K decreases below 1. In this case, the 
estimator balances the relative weight placed on the previous estimate and 
the measurement. 

A Kalman filter to estimate Xk is equivalent to an H, filter with 0 = 0. In 
this case, we obtain the positive definite solution of the steady-state Riccati 
equation as P = (1 + G)/2. This gives a steady-state estimator gain K = 
(1 + &)/(3 + 4) = (4 - 1)/2 M 0.62. The Kalman filter gain is smaller 
than the H, filter gain for 8 > 0, which means that the Kalman filter relies 
less on measurements and more on the system model. The Kalman filter gives 
an optimal estimate if the model and the noise statistics are known, but it 
may undervalue the measurements if there are errors in the system model or 
the assumed noise statistics. 

Figure 11.2 shows the true state Xk and the estimate ?k when the steady- 
state Kalman and H, filters are used to estimate the state. The H, filter was 
designed with 8 = 1/3, which gave a filter gain K = (3 + 3fi) / (8  + 2 8 )  x 
0.82. The disturbances W k  and Wk were both normally distributed zero-mean 
white noise sequences with standard deviations equal to 10. The performance 
of the two filters is very similar. The RMS estimation error of the Kalman 
filter is 3.6 and the RMS estimation error of the H, filter is 4.1. As expected, 
the Kalman filter performs better than the H, filter. However, suppose that 
the process noise has a mean of 10. Figure 11.3 shows the performance of the 
filters for this situation. In this case the H, filter performs better. The RMS 
estimation error of the Kalman filter is 15.6 and the RMS estimation error of 
the H, filter is 12.0. 

If we choose 8 = 1/10 then we obtain P = 5/3 and K = 2/3. As 8 gets 
smaller, the H, estimator gain gets closer and closer to  the Kalman filter 
gain. 

vvv 

11.3.5 

In this section, we show that the steady-state H, filter derived in the previous 
section bounds the transfer function from the noise to the estimation error, if Q, 

The transfer function bound of the H, filter 
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Figure 11.2 Example 11.2 results. K h a n  and H, filter peformance when the noise 
statistics are known. The Kalman gain is 0.62 and the H, gain is 0.82. The Kalman filter 
performs about 12% better than the H, filter. 
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Figure 11.3 Example 11.2 results. Kalman and H, filter peformance when the process 
noise is biased. The Kalman gain is 0.62 and the H, gain is 0.82. The H, filter performs 
about 23% better than the Kalman filter. 

R, and S are all identity matrices. Recall that the two-norm of a column vector x 
is defined as 

l l x l l 2 - x  2 -  T 2 (1 1.103) 

Now suppose we have a timevarying vector 50, X I ,  2 2 ,  a .  The signal two-norm of 
x is defined as 

(11.104) 
k=O 
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That is, the square of the signal two-norm is the sum of all of the squares of the 
vector two-norms that are taken at each time step.3 Now suppose that we have a 
system with input u and output 5, and the transfer function is G(z) .  If the input 
u is comprised entirely of signals a t  the frequency w and the sample time of the 
system is T ,  then we define the phase of u as q5 = Tw. In this case the maximum 
gain from u to x is determined as 

sup - I 1 5 c l 1 2  = 01 [G (&@)I 
U#O llullz 

(11.105) 

where ol(G) is the largest singular value of the matrix G. If u can be comprised of 
an arbitrary mix of frequencies, then the maximum gain from u to z is determined 
as follows: 

= IlGllco (1 1.106) 

The above equation defines llGli,, which is the infinity-norm of the system that 
has the transfer function G ( z ) . ~  

Now consider Equation (1 1.92), the cost function that is bounded by the steady- 
state H, filter: 

If Q, R, and S are all equal to  identity matrices, then 

(11.107) 

(11.108) 

Since the H, filter makes this scalar less than l / e  for all Wk and v k ,  we can write 

(1 1.109) 

where we have defined 2 = z - 2 ,  eT = [ wT vT ] T ,  and Gze is the system that has 
e as its input and 2 as its output. We see that the steady-state H, filter bounds the 
infinity-norm (i.e., the maximum gain) from the combined disturbances w and v to  
the estimation error 2,  if &, R, and S are all identity matrices. Further information 
about the computation of infinity-norms and related issues can be found in [Bur99]. 

3Note that this definition means that many signals have unboundedsignal two-norms. The signal 
two-norm can also be defined as the sum from k = 0 to a finite limit k = N .  
4Note that the infinity-norm of a matrix has a definition that is different than the infinity-norm 
of a system. In general, the expression I IGI could refer either to  the matrix infinity-normor the 
system infinity-norm. The meaning needs to be inferred from the context unless it is explicitly 
st at ed . 
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1 EXAMPLE 11.3 

Consider the system and filter discussed in Example 11.2: 

The estimation error can be computed as 

Taking the z-transform of this equation gives 

zZ(Z) = (1 - K ) Z ( z )  + W ( Z )  - KV(z )  

(11.1 10) 

(11.111) 

(1 1.112) 

G(z), the transfer function from W k  and Wk to g k ,  is a 2 x 1 matrix. This 
matrix has one singular value, which is computed as 

The supremum of this expression occurs at + = 0 when K 5 1, so 

(11.113) 

(11.114) 

Recall from Example 11.2 that 6 = 1/2 resulted in K = 1. In this case, 
the above expression indicates that 11G11k = 2 5 l /e = 2. In this case, the 
infinity-norm bound specified by 0 is exact. Also recall from Example 11.2 
that 6’ = 1/10 resulted in K = 2/3. In this case, the above expression indicates 
that 1.lGl IL = 13/4 5 l /e = 10. In this case, the infinity-norm bound specified 
by 0 is quite conservative. 

Note that as K increases, the infinity-norm from the noise to the estimation 
error decreases. However, the estimator also is unstable for K > 1. So 
even though large K reduces the infinity-norm of the estimator, it gives poor 
results. In other words, just because the effect of the noise on the estimation 
error is small does not necessarily prove that the estimator is good. For 
example, we could set the estimate $k = 00 for all k. In that case, the noise 
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will have zero effect on the estimation error because the estimation error will 
be infinite regardless of the noise value. However, the estimate will obviously 
be poor. This example shows the importance of balancing H, performance 
with other performance criteria. 

vvv 

11.4 THE CONTINUOUS-TIME H, FILTER 

The methods of the earlier sections can also be used to  derive a continuous-time 
H, filter, as shown in 
continuous-time system 

[Rhe89, Ban91, Ban921. In this section we consider the 

x = A x + B u + w  

y = c x + v  
z = La: (1 1.115) 

where L is a user-defined matrix and z is the vector that we want to  estimate. Our 
estimate of z is denoted 2 ,  and our estimate of the state a t  time 0 is denoted h(0). 
The vectors w and v are disturbances with unknown statistics; they may not even 
be zero-mean. In the game theory approach to H, filtering we define the following 
cost function: 

(1 1.116) 

Po, Q ,  R, and S are positive definite matrices chosen by the engineer based on the 
specific problem. Our goal is to find an estimator such that 

(1 1.117) 

The estimator that solves this problem is given by 

P(0) = Po 
P = A P  + PAT + Q - KCP + 6'PLTSLP 

K = PCTRM1 
2 = AP+Bu+K(y-C2) 
2 = L2 (11 I 118) 

These equations are identical to the continuous-time Kalman filter equations (see 
Section 8.2) except for the 6' term in the P equation. The inclusion of the 6' term 
in the P equation tends to increase P,  which tends to  increase the gain K, which 
tends to  make the estimator more responsive to  measurements than the Kalman 
filter. This is a way of robustifymg the filter to uncertainty in the system model. 
The estimator given above solves the H, estimation problem if and only if P(t) 
remains positive definite for all t E [0, TI. As with the discrete-time filter, we can 
also obtain a steady-state continuous-time H, filter. To do this we let P = 0 so 
that the differential Riccati equation above reduces to  an algebraic Riccati equation. 



362 THE H= FILTER 

EXAMPLE 11.4 

Consider the scalar continuous-time system 

x = x+w 

y = x + w  
z =  X (1 1.119) 

We see that A = C = L = 1. Further suppose that Q = R = S = 1 in the 
cost function of Equation (11.116). Then the differential Riccati equation for 
the H, filter is 

P = A P  + P A T  + Q - PCTR-'CP + .4PLTSLP 

= 2 p + i + ( e - i ) p 2  (11.120) 

This can be solved numerically or analytically as a function of time for a given 
0 to give P, and then the H, gain K = PCTR-' = P can be obtained. We 
can also set P = 0 in Equation (11.120) to obtain the steady-state solution 
for P. This gives 

As mentioned above, the solution to this quadratic equation must be positive 
definite in order for it to solve the H, estimation problem. For this scalar 
equation, positive definite simply means positive. The equation has a positive 
solution for 6 < 1, in which case the steady-state solution is given by 

(e - i)p2 + 2~ + 1 = o (11.121) 

-1 - rn 
8 - 1  

P =  (11.122) 

Suppose we choose 8 = 7/16. In this case, the analytic solution for the time- 
varying P can be obtained from Equation (11.120) as 

4 + 160ce5t/2 
-9 + 40ce5t/2 

P ( t )  = 

9P(O) + 4 
c =  

40P(O) - 160 

From this analytic expression for P ( t )  we can see that 

lim P ( t )  = 4 
t - + m  

(11.123) 

(1 1.124) 

Alternatively, we can substitute 6 = 7/16 in Equation (11.122) to obtain 
P = 4. Figure 11.4 shows P as a function of time when P(0)  = 1. Note that 
in this example, since C = R = 1, the H, gain K is equal to P. 

Figure 11.5 shows the state estimation errors for the time-varying H, 
filter and the steady-state H, filter. In these simulations, the disturbances 
w and w were both normally distributed white noise sequences with standard 
deviations equal to 10. w had a mean of zero, and w had a mean of 10. 
Both simulations were run with identical disturbance time histories. It can 
be seen that the performance of the two filters is very similar. There are 
some differences between the two plots at small values of time before the 
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Figure 11.4 Example 11.4 H, Riccati equation solution as a function of time. 

time-varying Riccati solution has converged to steady state (note that the 
time-varying filter performs better during the initial transient). But after the 
Riccati solution gets close to steady state (after about t = 1) the performance 
of the two filters is nearly identical. This illustrates the possibility of saving a 
lot of computational effort by using a steady-state filter while giving up only 
an incremental amount of performance. 

-25 ' I 
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Time 

Figure 11.5 
the measurement noise is zero-mean. 

Example 11.4 timevarying and steady-state Hm filter performance when 

If we use the performance bound 0 = 0 in this example then we obtain 
the Kalman filter. The steady-state Riccati equation solution from Equa- 
tion (11.120) is (l+a) when 0 = 0, so the steady-state Kalman gain K M 2.4, 
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which is less than the steady-state H, gain K = 4 that we obtained for 
0 = 7/16. From Equation (11.118) we see that this will make the Kalman 
filter less responsive to measurements than the H, filter, but the Kalman 
filter should provide optimal RMS error performance. Indeed, if we run the 
timevarying Kalman filter (0 = 0) then the two-norm of the estimation error 
turns out to be 26.5. If we run the timevarying H, filter (0 = 7/16) then 
the two-norm of the estimation error increases to  30.0. 

However, the Kalman filter assumes that the system model is known ex- 
actly, the process and measurement noises are zero-mean and uncorrelated, 
and the noise statistics are known exactly. If we change the simulation so the 
measurement noise has a mean of 10 then the H, filter works better than the 
Kalman filter. Figure 11.6 shows the estimation error of the two filters in this 
case. The two-norm of the estimation error is 112.8 for the Kalman filter but 
only 94.2 for the H, filter. 

I 
0 1 2 3 4 5 

Time 

-30 ' 

Figure 11.6 
measurement noise is not zero-mean. 

Example 11.4 time-varying Kalman and H, filter performance when the 

vvv 
As with the discretetime steady-state filter, if Q, R, and S are all identity 

matrices, the continuous-time steady-state filter bounds the maximum gain from 
the noise to the estimation error: 

(11.125) 

where w is the frequency of the noise, and we have defined 2 = z - 2 ,  eT = 

[ wT vT I T ,  and Gi, is the system that has e as its input and 2 as its output. 
The continuous-time infinity-norm of the system Gi, is defined as follows: 
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(1 1.126) 

where Gie(s) is the transfer function from e to 2. 

11.5 TRANSFER FUNCTION APPROACHES 

It should be emphasized that other formulations to H, filtering have been proposed. 
For instance, Isaac Yaesh and Uri Shaked [YaeSl] consider the following time- 
invariant system: 

(11.127) 

where W k  and V k  are uncorrelated process and measurement noise, Y k  is the mea- 
surement, and Z k  is the vector to be estimated. Define the estimation error as 

Define an augmented disturbance vector as 

(11.129) 

The goal is to find a steady-state estimator such that the infinity-norm of the 
transfer function from the augmented disturbance vector e to the estimation error 
,Z is less than some user specified bound: 

1 
IIGzeII2 ; (1 1.130) 

The steady-state a priori filter that solves this problem is given as 

P = I + F P F ~  - F P H ~ ( I  + H P H ~ ) - ~ H P F ~  + 
q I / e  + L P L ~ ) - ~ L P  

K = F P H ~ ( I  + H P H ~ ) - ~  
?k+ l  = F f k  + K ( y k  - H f k )  (11.131) 

These equations solve the H, estimation problem if and only if P is positive definite. 
The steady-state a posteriori filter that solves this problem is given as 

c-1 = P - ~ - B L T L + H T H  

F = F F ( H ~ H F  - O L ~ L F  + I ) - ~ F ~  + I 
K = ( I + B L ~ L ) - ' c H ~  

= F ( I  + H ~ H P ) - ~ H ~  
?k+l = F?k + I?r(Yk+l - HF?k) (1 1.132) 
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Again, these equations solve the H, estimation problem if and only if P is positive 
definite. 

Interestingly, the P matrix in the a priori filter of Equation (11.131) is related 
to the p matrix in the a posteriori filter of Equation (11.132) by the following 
equation: 

p- l=  p-1- eLTL (11.133) 

In general, the Riccati equations in these filters can be difficult to solve. However, 
the solution can be obtained by the eigenvector method shown in [YaeSl]. (This is 
similar to the Hamiltonian approach to steady-state Kalman filtering described in 
Section 7.3.3.) Define the 2n x 2n matrix 

] (11.134) 

Note that F-l should always exist if it comes from a real system, because F comes 
from a matrix exponential that is always invertible (see Sections 1.2 and 1.4). 
Compute the n eigenvectors of 'FI that correspond to the eigenvalues outside the 
unit circle. Denote those eigenvectors as & (i = 1, . . . , n). Form the 2n x n matrix 

FT + HTHF- l  OFTLTL - H T H F - l ( I  - t9LTL) 
'H= [ -F-l P(I - eLTL)  

(11.135) 

where X i  and X2 are n x n matrices. The P matrix used in the a priori  H, filter 
can be computed as 

P = X2X,l (11.136) 

For the a posteriori fdter, define the 2n x 2n matrix 

1 ii = [ F-T F-T(HTH - BLTL) 
F-T F + F-T(HTH - BLTL) (11.137) 

Compute the n eigenvectors of I? that correspond to the eigenvalues outside the 
unit circle. Denote those eigenvectors as & (i = 1, . . . , n). Form the 2n x n matrix 

(11.138) 

where and x2 are n x n matrices. The f' matrix used in the a posteriori H, 
filter can be computed as 

p = x2x,1 (11.139) 

The eigenvector method for the Riccati equation solutions works because 'H and 
7? are symplectic matrices (see Section 7.3.3 and Problem 11.9). This assumes 
that F is nonsingular and that 'H and f i  do not have any eigenvalues on the unit 
circle. If these assumptions are violated, then the problem becomes more compli- 
cated [YaeSl]. A method similar to this for continuoustime systems is developed 
in [Naggl]. 

It is important to be aware that the P and p solutions given by Equations (11.136) 
and (11.139) only give one solution each to Equations (11.131) and (11.132). Equ& 
tions (11.136) and (11.139) may give solutions to Equations (11.131) and (11.132) 
that are not positive definite and therefore do not satisfy the H, filtering problem. 
However, that does not prove that the H, filtering solution does not exist (see 
Problem 11.13). 
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EXAMPLE 11.5 

We will revisit Example 11.2, but assume that the initial state is 0: 

(1 1.140) 

From Equation (11.131) we can find the a prioristeady-state filter that bounds 
the infinity-norm of the transfer function from e to 2 by l/&. (Recall that 
ek = [ 'Wk Vk ] T . )  The algebraic Riccati equation associated with this prob- 
lem is given by 

P = 1 + P - ~ ( i  + P)-+ + p ( i / e  + P)-+ 
P 2  P 2  

1 + P  l/O+P 
= 1+P--+- 

Solving the above for P we obtain 

-e - 1 f Je2 - 68 + 5 
2(2e - 1) 

P =  

(11.141) 

(11.142) 

In order for the solution of this equation to solve the H, filtering problem, 
we must have P > 0. The only solution for which P > 0 is when 0 5 0 < 1/2 
and when we use the negative sign in the above s ~ l u t i o n . ~  If we choose 
0 = 1/10 then P = 2. The gain of the a priori filter is then computed from 
Equation (11.131) as 

K = P ( l + P ) - - l  

= 2/3 (1 1.143) 

Note that the P value t h t  i's obtained for 8 = 1/10 does not match Ex- 
ample 11.2, but K does match. The H, filter equation is computed from 
Equation (11.131) as 

?k+l = ?k + K(Yk - ?k) 

= i k  + (2/3)(yk - 5k) (1 1.144) 

vvv 

11.6 SUMMARY 

In this chapter, we have presented a couple of different approaches to H, esti- 
mation, also called minimax estimation. H, filtering minimizes the worst-case 

5Note that Example 11.2 showed that this problem has a solution for 0 5 8 < 1, which indicates 
that the game theory approach to H, filtering may be more general than the transfer function 
approach. 
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estimation error and is thus more robust than Kalman filtering, which minimizes 
the RMS estimation error. H, filtering has sometimes been criticized for being too 
pessimistic in its assumption about t-he noise processes that impinge on the system 
and measurement equations. After all, H, estimation assumes that the noise is 
worst case, thus attributinga degree of perversity to the noise that intuitively seems 
unrealistic. This has led to mixed Kalman/H, estimation techniques, which we 
will discuss in Chapter 12. 

Research in H, estimation began in the 1980s. During that decade, some work 
was directed toward the design of minimax state estimators for systems corrupted by 
random noise whose covariances were within known bounds [POOH, Dar84, Ver841. 
This was a first step toward H, filtering, although it still assumed that the noise 
was characterized by statistical measurements. The earliest work that could pass 
for what we now call H, filtering was probably published by Mike Grimble [Gri88]. 
However, unlike the presentation in this chapter, he used a frequency domain ap- 
proach. He designed a state estimator such that the frequency response from the 
noise to the estimation error had a user-defined upper bound. 

Some early tutorials on H, filtering can be found in [Griglb, Sha921. A poly- 
nomial systems approach to H, filtering is presented in [GriSO]. Nonlinear H, 
filtering is discussed in [Rei99], where a stable state estimator with a bounded 
infinity-norm is derived. System identification using H, methods is discussed 
in [Sto94, Tse94, Bai95, Did95, Pan961. 

The effectiveness of the H, filter can be highly sensitive to the weighting func- 
tions [e.g., &, Po, Qk, and Rk in Equation (11.36), and 8 in the performance 
bound]. This sometimes makes H, filter design more sensitive than Kalman filter 
design (which is ironic, considering the higher degree of robustness in H, filter- 
ing). The advantages of H, estimation over Kalman filtering can be summarized 
as follows. 

1. H, filtering provides a rigorous method for dealing with systems that have 
model uncertainty. 

2. H, filtering provides a natural way to limit the frequency response of the 
estimator. 

The disadvantages of H, filtering compared to Kalman filtering can be summarized 
as follows. 

1. The filter performance is more sensitive to the design parameters. 

2. The theory underlying H, filtering is more abstract and complicated. 

The types of applications where H, filtering may be preferred over Kalman filtering 
could include the following. 

1. Systems in which stability margins must be guaranteed, or worst-case esti- 
mation performance is a primary consideration (rather than RMS estimation 
performance) [Sim96] . 

2. Systems in which the model changes unpredictably, and identification and 
gain scheduling are too complex or time-consuming. 

3. Systems in which the model is not well known. 
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Work by Babak Hassibi, Ali Sayed, and Thomas Kailath involves the solution of 
state estimation problems within the context of Krein spaces (as opposed to the 
usual Hilbert space approach). This provides a general framework for both Kalman 
and H, filtering (along with other types of filtering), and is discussed in some of 
their papers [Has96a, Has96bI and books [Has99, KaiOO]. 

PROBLEMS 

Written exercises 

11.1 

11.2 
measurement noise variances Q and R. Suppose a state estimator of the form 

Show that ( I  + A)- lA = A(I + A ) - 1 .  

Consider a scalar system with F = H = 1 and with process noise and 

?;+I = 2; + K(yk - 2;) 

is used to estimate the state, where K is a general estimator gain. 
a) Find the optimal gain K if R = 2Q. Call this gain KO. What is the 

resulting steady-state a priori estimation-error variance? 
b) Suppose that R = 0. What is the optimal steady-state a priori estimation- 

error variance? What is the (suboptimal) steady-state a priori estimation- 
error variance if KO is used in the estimator? Repeat for R = Q and 
R = 5Q. 

11.3 Consider a scalar system with F = H = 1 and with process noise and 
measurement noise variances Q and R = 2Q. A Kalman filter is designed to 
estimate the state, but (unknown to the engineer) the process noise has a mean of 
a. 

a) What is the steady-state value of the mean of the a priori estimation error? 
b) Introduce a new state-vector element that is equal to a. Augment the new 

state-vector element to the original system so that a Kalman filter can be 
used to estimate both the original state element and the new state element. 
Find an analytical solution to the steady-state a priori estimation-error 
covariance for the augmented system. 

Suppose that a Kalman filter is designed to estimate the state of a scalar 11.4 
system. The assumed system is given as 

where Wk N (0, Q )  and V k  N (0, R) _are uncorrelated zero-mean white noise pro- 
cesses. The actual system matrix is F = F + AF. 

a) Under what conditions is the mean of the steady-state value of the a priori 
state estimation error equal to zero? 

b) What is the steady-state value of the a priori estimation-error variance P? 
How much larger is P because of the modeling error AF? 
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11.5 Find the stationary point of (2s + 2122 + 2223) subject to  the constraint 

Maximize (142 - x 2  + 6y - y2 + 7) subject to  the constraints ( x  + y 5 2) 

( X I  + 22 = 4) [MooOO]. 

11.6 
and ( x  + 2y 5 3) [Lue84]. 

11.7 Consider the system 

1 
xk = s x k - 1  -k wk-1 

Y k  = xk +vk 

Note that this is the system model for the radiation system described in Prob- 
lem 5.1. 

a) Find the steady-state value of Pk for the H, filter, using a variable 8 and 

b) Find the bound on f3 such that the steady-state H, filter exists. 

11.8 Suppose that you use a continuous-time H, filter to estimate a constant on 
the basis of noisy measurements. The measurement noise is zero-mean and white 
with a covariance of R. Find the H, estimator gain as a function of PO, R, 8, and 
time. What is the limit of the estimator gain as t + oo? What is the maximum 
value of 8 such that the H, estimation problem has a solution? How does the value 
of 8 influence the estimator gain? 

11.9 

11.10 Prove that the solution of the a posteriori H, Riccati equation given in 
Equation (11.132) with 6' = 0 is equivalent to  the solution of the steady-state a 
priori Kalman filter Riccati equation with R = I and Q = I. 

11.11 Prove that C in Equation (11.132) with 8 = 0 is equivalent to the solution 
of the steady-state a posteriori Kalman filter Riccati equation with R = I and 
Q = I. 

11.12 Find the a posteriori steady-state H, filter for Example 11.5 when f3 = 
1/10, Verify that the a priori  and a posteriori Riccati equation solutions satisfy 
Equation (11.133). 

11.13 Find all possible solutions P to  the a priori  H, filtering problem for Ex- 
ample 11.5 when 8 = 0. Next use Equation (11.139) to  find the P solution. Repeat 
for f3 = 1/10. [Note that Equation (11.139) gives a negative solution for P and 
therefore cannot be used.] 

L = R =  Q =  S =  1. 

Prove that 3-1 and 7? in Equations (11.134) and (11.137) are symplectic. 

Computer exercises 

11.14 Generate the time-varying solution to  Pk for Problem 11.7 with PO = 1. 
What is the largest value of 6' for which Equation (11.90) will be satisfied for all k 
up to  and including k = 20? Answer to  the nearest 0.01. Repeat for k = 10, k = 5, 
and k = 1. 

11.15 Consider the vehicle navigation problem described in Example 7.12. De- 
sign a Kalman filter and an H, filter to  estimate the states of the system. Use the 
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following parameters. 

T = 3  

uk = 1 

Q = diag(4,4,1,1) 
R = diag(900,900) 

heading angle = 0 . 9 ~  
T 

z(0) = q o )  = [ 0 0 0 0 ] 

Simulate the system and the filters for 300 seconds. In the H, filter use S = L = I 
and 6' = 0.0005. 

a) Plot the position estimation errors for the Kalman and H, filters. What 
are the RMS position estimation errors for the two filters? 

b) Now suppose that unknown to the filter designer, Uk = 2. Plot the position 
estimation errors for the Kalman and H, filters. What are the RMS 
position estimation errors for the two filters? 

c) What are the closed loop estimator eigenvalues for the Kalman and H, 
filters? Do their relative magnitudes agree with your intuition? 

d) Use MATLAB's DARE function to  find the largest 6' for which a steady- 
state solution exists to  the H, DARE. Answer to  the nearest 0.0001. How 
well does the H, filter work for this value of 6'? What are the closed-loop 
eigenvalues of the H, filter for this value of O? 





CHAPTER 12 

Additional topics in H, filtering 

Since [H, filters] make no assumption about the disturbances, they have to accommo- 
date for all conceivable disturbances, and are thus over-conservative. 

-Babak Hassibi and Thomas Kailath [Has951 

In this chapter we will briefly introduce some advanced topics in H, filtering. 
H, filtering was not introduced until the 1980s and is therefore considerably less 
mature than Kalman filtering. As such, there is more room for additional work and 
development in H, filtering than Kalman filtering. This chapter introduces some 
of the current directions of research in the area of H, filtering. 

Section 12.1 looks at the mixed Kalman/H, estimation problem. We present a 
filter that satisfies an H, performance bound while at the same time minimizing a 
Kalman performance bound. Section 12.2 looks at the robust mixed Kalman/H, 
estimation problem. This is the same as mixed Kalman/H, filtering but with the 
added complication of uncertainties in the system matrices. Section 12.3 discusses 
the solution of the constrained H, filter, where equality (or inequality) constraints 
are enforced on the state estimate. 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 

373 
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12.1 MIXED KALMAN/H, FILTERING 

In this section we look at the problem of finding a filter that combines the best 
features of Kalman filtering with the best features of H, filtering. This problem 
can be attacked a couple of different ways. Recall from Section 5.2 the cost function 
that is minimized by the steady-state Kalman filter: 

N 

(12.1) 

Recall from Section 11.3 the cost function that is minimized by the steady-state 
H, state estimator if s k  and L k  are identity matrices: 

Jm = lim max cf==, I1xk - *k  I l 2  (12.2) 
N+CO X O , W k , V k  l lx(0)-*(o)ll$l  f Cf=o (ljw"Il8;' 2 -k l l ~ k l l & ~ )  

Loosely speaking, the Kalman filter minimizes the RMS estimation error, and the 
H, filter minimizes the worst-case estimation error. 

In [Had911 these two performance objectives are combined to form the following 
problem: Given the n-state observable LTI system 

(12.3) 

where { W k }  and { V k }  are uncorrelated zero-mean, white noise processes with co- 
variances Q and R respectively, find an estimator of the form 

* k + l  = P X k  + K y k  (12.4) 

that satisfies the following criteria: 

1. F is a stable matrix (so the estimator is stable). 

2. The H, cost function is bounded by a user-specified parameter: 

1 
J, < - e (12.5) 

3. Among all estimators satisfying the above criteria, the filter minimizes the 
Kalman filter cost function J2. 

The solution to this problem provides the best RMS estimation error among all 
estimators that bound the worst-case estimation error. The filter that solves this 
problem is given as follows. 

The mixed Kalman/H, filter 

1. Find the n x n positive semidefinite matrix P that satisfies the following 
Riccati equation: 

P = F P F ~  + Q + FP(1/e2 - P ) - ~ P F ~  - P,v-~P,T (12.6) 
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where Pa and V are defined as 

Pa = FPHT + FP(I/02 - P)-'PHT 
V = R + HPHT + HP(I/02 - P)-'PHT 

2. Derive the F and K matrices in Equation (12.4) as 

K = P,V-' 
F = F - K H  

(12.7) 

(12.8) 

3. The estimator of Equation (12.4) satisfies the mixed Kalman/H, estimation 
problem if and only if k is stable. In this case, the state estimation error 
satisfies the bound 

lim E (I lXk - Zk1l2 )  I n ( ~ )  (12.9) 

Note that if 0 = 0, then the problem statement reduces to  the Kalman filter 
problem statement. In this case we can see that Equation (12.6) reduces to  the 
discrete-time algebraic Riccati equation that is associated with the Kalman filter 
(see Problem 12.2 and Section 7.3). The continuous-time version of this theory is 
given in [Ber89]. 

k+m 

EXAMPLE 12.1 

In this example, we take another look at  the scalar system that is described 
in Example 11.2: 

(12.10) 

where { W k }  and { V k }  are uncorrelated zero-mean, white noise processes with 
covariances Q and R, respectively. Equation (12.6), the Riccati equation for 
the mixed Kalman/H, filter, reduces to the following scalar equation: 

02(1 - R02)P3 + (Qe2 + 1)(Re2 - 1)P2 + Q(1- 2R8') + QR = 0 (12.11) 

Suppose that (for some value of Q ,  R,  and 8) this equation has a solution 
P 2 0, and 11 - KI < 1, where the filter gain K from Equation (12.8) is given 
as 

(12.12) 
P 

P+R-PR02  
K =  

Then J ,  from Equation (12.2) is bounded from above by l / O ,  and the vari- 
ance of the state estimation error is bounded from above by P. The top half 
of Figure 12.1 shows the Kalman filter performance bound P and the esti- 
mator gain K as a function of 8 when Q = R = 1. Note that at 8 = 0 the 
mixed Kalman/H, filter reduces to a standard Kalman filter. In this case the 
performance bound P M 1.62 and the estimator gain K M 0.62, as discussed 
in Example 11.2. However, if 8 = 0 then we do not have any guarantee on 
the worst-case performance index J,. 

From the top half of Figure 12.1, we see that as 8 increases, the performance 
bound P increases, which means that our Kalman performance index gets 
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worse. However, a t  the same time, the worst-case performance index J ,  
decreases as 0 increases. From the bottom half of Figure 12.1, we see that as 
f3 increases, K increases, which is consistent with better H, performance and 
worse Kalman performance (see Example 11.2). When 0 reaches about 0.91, 
numerical difficulties prevent a solution to  the mixed filter problem. 

The bottom half of Figure 12.1 shows that at f3 = 0.5 the estimator gain 
K M 0.76. Recall from Example 11.2 that the H, filter had an estimator 
gain K = 1 for the same value of 6. This shows that the mixed Kalman/H, 
filter has a smaller estimator gain (for the same 0) than the pure H, filter. 
In other words, the mixed filter uses a lower gain in order to obtain better 
Kalman performance, whereas the pure H, filter uses a higher gain because 
it does not take Kalman performance into account. 

n. 

- 0  0.2 0.4 0.6 0.8 
H_ performance bound parameter f3 

Figure 12.1 Results for Example 12.1 of the estimation-error variance bound and 
estimator gain as a function of B for the mixed Kalman/H, filter. As B increases, the 
worst-case performance bound l / B  decreases, the error-variance bound increases, and the 
estimator gain increases greater than the Kalman gain (0 = 0). This shows a trade-off 
between worst-case performance and RMS performance. 

vvv 
Although the approach presented above is a theoretically elegant method of 

obtaining a mixed Kalman/H, filter, the solution of the Riccati equation can be 
challenging for problems with a large number of states. Other more straightforward 
approaches can be used to  combine the Kalman and H, filters. For example, if 
the steady-state Kalman filter gain for a given problem is denoted as Kz and the 
steady-state H, filter gain is denoted as K,, then a hybrid filter gain can be 
constructed as 

K = dK2 + (1 -d)Km (12.13) 

where d E [0,1]. This hybrid filter gain is a convex combination of the Kalman and 
H, filter gains, which would be expected to  provide a balance between RMS and 
worst-case performance [Sim96]. However, this approach is not as attractive theo- 
retically since stability must be determined numerically, and no a priori bounds on 
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the Kalman or H, performance measures can be given. Analytical determination 
of stability and performance bounds for this type of filter is an open research issue. 

12.2 ROBUST KALMAN/H, FILTERING 

The material in this section is based on [Hun03]. In most practical problems, an 
exact model of the system may not be available. The performance of the system 
in the presence of model uncertainties becomes an important issue. For example, 
suppose we have a system given as 

where {wk} and { W k }  are uncorrelated zero-mean white noise processes with covari- 
ances Q k  and Rk, respectively. Matrices AFk and AH, represent uncertainties in 
the system and measurement matrices. These uncertainties are assumed to  be of 
the form 

(1 2.15) 

where Mlk, M2k, and Nk are known matrices, and rk is an unknown matrix satis- 
fying the bound 

r;rk 5 I (12.16) 

[Recall that we use the general notation A 5 B to  denote that ( A  - B )  is a negative 
semidefinite matrix.] Assume that Fk is nonsingular. This assumption is not too 
restrictive; Fk should always be nonsingular for a real system because it comes from 
the matrix exponential of the system matrix of a continuous-time system, and the 
matrix exponential is always nonsingular (see Sections 1.2  and 1.4). The problem 
is to  design a state estimator of the form 

?k+l = k k ? k  -k K k y k  (12.17) 

with the following characteristics: 

1. The estimator is stable (i.e., the eigenvalues of F k  are less than one in mag- 
nitude). 

2. The estimation error zk satisfies the following worst-case bound: 

(1 2.18) 

3. The estimation error 2 k  satisfies the following RMS bound: 

The solution to the problem can be found by the following procedure [HunOS]. 
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The robust mixed Kalman/H, filter 

1. Choose some scalar sequence (Yk > 0, and a small scalar e > 0. 

2. Define the following matrices: 

R i i k  = Qk + a k M i k M 2  

R i 2 k  = a k M i k M &  

R 2 2 k  = R k + a k M 2 k M z  

3. Initialize P k  and i j k  as follows: 

(12.20) 

(12.21) 

5. If the Riccati equation solutions satisfy 

1 
-I > P k  
e 2  

CYkI > N k & N T  

then the estimator of Equation (12.17) solves the problem with 

(12.23) 

(12.24) 

The parameter e is generally chosen as a very small positive number. In the example 
in [Hun031 the value is e = The parameter Qk has to be chosen large enough 
so that the conditions of Equation (12.24) are satisfied. However, as (Yk increases, 
P k  also increases, which results in a looser bound on the RMS estimation error. 
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A steady-state robust filter can be obtained by letting Pk+l = Pk and &+I = i j k  

in Equation (12 .22)  and removing all the time subscripts (assuming that the system 
is time-invariant). But the resulting coupled steady-state Riccati equations will be 
more difficult to solve than the discretetime Riccati equations in Equation ( 1 2 . 2 2 ) ,  
which can be solved by a simple (albeit tedious) iterative process. Similar problems 
have been solved in [MahO4b, Xie04, Yo0041. 

EXAMPLE 12.2 

Suppose we have an angular positioning system such as a motor. The moment 
of inertia of the motor and its load is J and the coefficient of viscous friction 
is B .  The torque that is applied to the motor is CZL+ w ,  where u is the applied 
voltage, c is a motor constant that relates applied voltage to generated torque, 
and w is unmodeled torque that can be considered as noise. The differential 
equation for this system is given as 

~4 + B$ = ( 1  2 .26)  

where 4 is the motor shaft angle. We choose the states as x ( 1 )  = q5 and 
x ( 2 )  = 4. The dynamic system model can then be written as 

= A x + B U U + B ~ W  

In order to discretize the system with a sample time T, we use the method of 
Section 1.4 to obtain 

The discretetime system matrices are given as 

F =  

G,  = 

- - 

G ,  = 

c Y =  
B 
J 
- ( 12.29) 

If our measurement is angular position q5 corrupted by noise, then our mea- 
surement equation can be written as 

Y k =  [ 1 0 ] x k f v k  (12 .30)  

Suppose the system has a torque disturbance W k  with a standard deviation 
of 2, and a measurement noise V k  with a standard deviation of 0.2  degrees. 
We can run the Kalman filter and the robust mixed Kalman/H, filter for 



380 ADDITIONAL TOPICS IN H~ FILTERING 

this problem. Figure 12.2 shows the position and velocity estimation errors of 
the Kalman and robust mixed Kalman/H, filters. The robust filter performs 
better at the beginning of the simulation, although the Kalman filter performs 
better in steady state. (It is not easy to see the advantage of Kalman filter 
during steady state in Figure 12.2 because of the scale, but over the last half 
of the plot the Kalman filter estimation errors have standard deviations of 
0.33 deg and 1.65 deg/s, whereas the robust filter has standard deviations of 
0.36 deg and 4.83 deg/s.) 

Now suppose that the moment of inertia of the motor changes by a factor 
of 100. That is, the filter assumes that J is 100 times greater than it really is. 
In this, case Figure 12.3 shows the position and velocity estimation errors of 
the Kalman and robust filters. It is apparent that in this case the robust filter 
performs better not only at the beginning of the simulation, but in steady 
state also. After the filters reach “steady state” (which we have defined some- 
what arbitrarily as the time at which the position estimation error magnitude 
falls below 1 degree) the Kalman filter RMS estimation errors are 0.36 de- 
grees for position and 1.33 degrees/s for velocity, whereas the robust filter 
RMS estimation errors are 0.28 degrees for position and 1.29 degrees/s for 
velocity. The square roots of the diagonal elements of the Pk Riccati equation 
solution of Equation (12.22) reach steady-state values of 0.51 degrees and 1.52 
degrees/s, which shows that the estimation-error variance is indeed bounded 
by the Riccati equation solution 4. 

Kalman filter 
Robust filter 

B 

2 4 6 .0 10 
-501 

0 

I 
I 

2 4 6 8 10 
seconds 

Figure 12.2 Position and velocity estimation errors for Example 12.2 for the Kalman filter 
and the robust filter, assuming that the system model is perfectly known. The robust filter 
performs better at the beginning of the simulation, but the Kalman filter performs better in 
steady state. The steady-state Kalman filter estimation errors have standard deviations of 
0.33 deg and 1.65 deg/s, whereas the robust filter has standard deviations of 0.36 deg and 
4.83 deg/s. 

vvv 
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Figure 12.3 Position and velocity estimation errors for Example 12.2 for the Kalman 
filter and the robust filter, assuming that the system model is not well known. The robust 
filter performs better both at the beginning of the simulation and in steady state. The 
steady-state Kalman filter estimation errors have standard deviations of 0.36 deg and 1.33 
degls, whereas the robust filter has standard deviations of 0.28 deg and 1.29 deg/s. 

12.3 CONSTRAINED H, FILTERING 

As in Section 7.5, suppose that we know (on the basis of physical considerations) 
that the states satisfy some equality constraint D k X k  = d k ,  or some inequality 
constraint D k x k  5 d k ,  where D k  is a known matrix and d k  is a known vector. 
This section discusses how those constraints can be incorporated into the H, filter 
equations. As discussed in Section 7.5, state equality constraints can always be 
handled by reducing the system-model parameterization [Wen92], or by treating 
state equality constraints as perfect measurements [Por88, Hay981. However, these 
approaches cannot be extended to inequality constraints. The approach summ& 
rized in this section is to incorporate the state constraints into the derivation of the 
H, filter [SimOGc]. 

Consider the discrete LTI system given by 

(12.31) 

where Yk is the measurement, { W k }  and { V k }  are uncorrelated white noise sequences 
with respective covariances Q and I ,  and ( 6 k )  is a noise sequence generated by an 
adversary (i.e., nature). Note that we are assuming that the measurement noise has 
a unity covariance matrix. In a real system, if the measurement noise covariance is 
not equal to the identity matrix, then we will have to normalize the measurement 
equation as shown in Example 12.3 below. In general, F ,  H, and Q can be time- 
varying matrices, but we will omit the time subscript on these matrices for ease 
of notation. In addition to the state equation, we know (on the basis of physical 
considerations or other a priori information) that the states satisfy the following 
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constraint: 
D k X k  = d k  (12.32) 

We assume that the D k  matrix is full rank and normalized so that D k D T  = I. 
In general, D k  is an s x n matrix, where s is the number of constraints, n is the 
number of states, and s < n. If s = n then Equation (12.32) completely defines X k ,  

which makes the estimation problem trivial (i.e., 2 k  = D k ’ d k ) .  For s < n, which 
is the case in this section, there are fewer constraints than states, which makes the 
estimation problem nontrivial. Assuming that D k  is full rank is the same as the 
assumption made in the constrained Kalman filtering problem of Section 7.5. For 
notational convenience we define the matrix v k  as 

fi = D r D k  (12.33) 

We assume that both the noisy system and the noise-free system satisfy the state 
constraint. The problem is to find an estimate 2 k + l  O f  X k + l  given the measurements 
{ y l ,  y2,. . . , g k } .  The estimate should satisfy the state constraint. We will assume 
that the estimate is given by the following standard predictor/corrector form: 

Po = 0 
2 k + l  = F ? k  + K k  ( Y k  - H 2 k )  (12.34) 

The noise bk in (12.31) is introduced by an adversary that has the goal of maximizing 
the estimation error. We will assume that our adversary’s input to  the system is 
given as follows: 

b k  = L k  [ G k ( x k  - 2 k )  + n k ]  (1 2.35) 

where L k  is a gain to be determined, G k  is a given matrix, and { n k }  is a noise 
sequence with variance equal to the identity matrix. We assume that { n k }  is 
uncorrelated with { W k } ,  { V k } ,  and 20. This form of the adversary’s input is not 
intuitive because it is based on the state estimation error, but this form is taken 
because the solution of the resulting problem results in a state estimator that 
bounds the infinity-norm of the transfer function from the random noise terms 
to the state estimation error [Yae92]. 

G k  in Equation (12.35) is chosen by the designer as a tuning parameter or weight- 
ing matrix that can be adjusted on the basis of our a priori knowledge about the 
adversary’s noise input. Suppose, for example, that we know ahead of time that 
the first component of the adversary’s noise input to the system is twice the mag- 
nitude of the second component, the third component is zero, and so on; then that 
information can be reflected in the designer’s choice of G k .  We do not need to  make 
any assumptions about the form of G k  (e.g., it does not need to  be positive definite 
or square). From Equation (12.35) we see that as G k  approaches the zero matrix, 
the adversary’s input becomes a purely random process without any deterministic 
component. This causes the resulting filter to  approach the Kalman filter; that is, 
we obtain better RMS error performance but poorer worst-case error performance. 
As G k  becomes large, the filter places more emphasis on minimizing the estimation 
error due to the deterministic component of the adversary’s input. That is, the fil- 
ter assumes less about the adversary’s input, and we obtain better worst-case error 
performance but worse RMS error performance. The estimation error is defined as 

e k  = x k  - P k  ( 12.36) 
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It can be shown from the preceding equations that the dynamic system describing 
the estimation error is given as 

e o  = 20 

e k + l  = (F  - KkH + LkGk)ek -/- wk + Lknk - K k V k  ( 12.37) 

Since D k Z k  = Dkkk = d k ,  we see that Dkek = 0. But it can also be shown [SimOGc] 
that Dk+lFek = 0. Therefore, we can subtract the zero term DT+lDk+lFek = 
Vk+lFek from Equation (12.37) to obtain 

e o  = 20 

e k + l  = [ ( I  - V k + l ) F  - KkH + LkGk]ek + wk f Lknk - K k V k  (12.38) 

However, this is an inappropriate term for a minimax problem because the adver- 
sary can arbitrarily increase ek by arbitrarily increasing Lk. To prevent this, we 
decompose e k  as 

(12.39) 

where e1 ,k  and e 2 , k  evolve as follows: 
e k  = e l , k  + e2 ,k  

e 1 , o  = 20 

e 2 , o  = 0 

e i , k  

e 2 , k  = [ ( I  - V k + l ) F  - KkH + LkGk]ez,k + Lknk (12.40) 

= [ ( I  - V k + l ) F  - KkH -k LkGk]el,k -k wk - K k V k  

We define the objective function for the filtering problem as 
N 

(12.41) 
k=O 

where wk is any positive definite weighting matrix. The differential game is for 
the filter designer to find a gain sequence {Kk} that minimizes J ,  and for the 
adversary to  find a gain sequence {Lk}  that maximizes J .  As such, J is considered 
a function of {Kk}  and { L k } ,  which we denote in shorthand notation as K and L. 
This objective function is not intuitive, but is used here because the solution of the 
problem results in a state estimator that bounds the infinity-norm of the transfer 
function from the random noise terms to  the state estimation error [Yae92]. That is, 
suppose we can find an estimator gain K* that minimizes J( K ,  L )  when the matrix 
Gk in (12.35) is equal to 01 for some positive scalar 0. Then the infinity-norm of 
the weighted transfer function from the noise terms W k  and V k  to  the estimation 
error ek  is bounded by 110. That is, 

(12.42) 

where sup stands for suprernum.l The filtering solution is obtained by finding 
optimal gain sequences { K l }  and { L ; }  that satisfy the following saddle point: 

(12.43) 

'The supremum of a function is its least upper bound. This is similar t o  the maximum of a 
function, but a maximum is a value that is actually attained by a function, whereas a supremum 
may or may not be attained. For example, the supremum of (1 - e-") is 1, but (1 - e-=) never 
actually reaches the value 1. Similar distinctions hold for the operators minimum and infimum 
(usually abbreviated 2nd. 

J ( K * ,  L )  5 J ( K * ,  L * )  5 J ( K ,  L*) for all K ,  L 
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This problem is solved subject to the constraint that Dk5k = d k  in [SimOGc], whose 
result is presented here. We define Pk and & as the nonsingular solutions to the 
following set of equations: 

Po = E(z0z;) 
ck = (PkHTH - PkGrGk + I)-lPk 

pk+1 = (I - h + l ) F x k F T ( I  - vk+l) + Q ( 12.44) 

Nonsingular solutions to these equations are not always guaranteed to exist, in 
which case a solution to the H, filtering problem may not exist. However, if 
nonsingular solutions do exist, then the following gain matrices for our estimator 
and adversary satisfy the constrained H, filtering problem: 

(12.45) 

These matrices solve the constrained H, filtering problem only if (I-GkPkG;) 2 0. 
Note that as Gk becomes larger, we will be less likely to satisfy this condition. 
Fkom Equation (12.35) we see that a larger Gk gives the adversary more latitude 
in choosing a disturbance. This makes it less likely that the designer can minimize 
the cost function. 

The mean square estimation error that results from using the optimal gain K; 
cannot be specified because it depends on the adversary’s input 6 k .  However, we 
can state an upper bound for the mean square estimation error [SimOGc] as follows: 

E [ ( z k  - $ k ) ( z k  - 2k)T] 5 pk (12.46) 

This provides additional motivation for using the game theory approach presented 
in this section. The estimator not only bounds the worst-case estimation error, but 
also bounds the mean square estimation error. 

Now consider the special case that there are no state constraints. Then in Equ& 
tion (12.32) we can set the Dk matrix equal to a zero row vector and the dk vector 
equal to the zero scalar. In this case v k + 1  = 0 and we obtain from Equations (12.44) 
and (12.45) the following estimator and adversary strategies: 

Po = E(ZOZ;) 
Pk(I-  HTH&) = (I - PkGrGk)& 

p k + 1  = FCkFT+Q 
KE = FCkCT 
L; = FCkGr ( 12.47) 

This is identical to the unconstrained H, estimator [Yae92]. The unconstrained 
H, estimator for continuous-time systems is given in [YaeO4]. 

In the case of state inequality constraints (i-e., constraints of the form DkXk 5 
d k ) ,  a standard activeset method [Fle81, Gi1811 can be used to solve the H, filtering 
problem. An activeset method uses the fact that it is only those constraints that 
are active at the solution of the problem that affect the optimality conditions; the 
inactive constraints can be ignored. Therefore, an inequality-constrained problem 
is equivalent to an equality-constrained problem. An activeset method determines 



CONSTRAINED H= FILTERING 385 

which constraints are active at the solution of the problem and then solves the 
problem using the active constraints as equality constraints. Inequality constraints 
will significantly increase the computational effort required for a problem solution 
because the active constraints need to be determined, but conceptually this poses 
no difficulty. 

The constrained H, filter 

The constrained H, filter can be summarized as follows. 

1. We have a linear system given as 

x k + l  = F k x k + w k  

Y k  = H k x k + v k  

D k X k  = d k  (12.48) 

where W k  is the process noise, V k  is the measurement noise, and the last 
equation above specifies equality constraints on the state. We assume that 
the constraints are normalized so D k D T  = I .  The covariance of W k  is equal 
to Q k ,  but W k  might have a zero mean or it might have a nonzero mean (i.e., 
it might contain a deterministic component). The covariance of vk is the 
identity matrix. 

2. Initialize the filter as follows: 

(12.49) 

3. At each time step k = O , l , .  ., do the following. 

(a) Choose the tuning parameter matrix G k  to weight the deterministic, bi- 
ased component of the process noise. If G k  = 0 then we are assuming 
that the process noise is zero-mean and we get Kalman filter perfor- 
mance. As G k  increases we are assuming that there is more of a deter- 
ministic, biased component to the process noise. This gives us better 
worst-case error performance but worse RMS error performance. 

(b) Compute the next state estimate as follows: 

(c) Verify that 
( I  - G k P k G r )  2 0 

If not then the filter is invalid. 

( 12.50) 

(12.51) 
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EXAMPLE 12.3 

Consider a land-based vehicle that is equipped to measure its latitude and 
longitude (e.g., through the use of a GPS receiver). This is the same problem 
as that considered in Example 7.12. The vehicle dynamics and measurements 
can be approximated by the following equations: 

r l  o T 0 1  r o i  

x k  + 0 1 0 0  
(12.52) 

The first two components of Xk are the latitude and longitude positions, the 
last two components of Xk are the latitude and longitude velocities, W k  rep- 
resents zero-mean process noise due to potholes and other disturbances, 6k  

is additional unknown process noise, and U k  is the commanded acceleration. 
T is the sample period of the system, and a is the heading angle (measured 
counterclockwise from due east). The measurement yk consists of latitude 
and longitude, and TJ(, is the measurement noise. Suppose the standard devi- 
ations of the measurement noises are known to be cq and 172. Then we must 
normalize our measurement equation to satisfy the condition that the me& 
surement noise has a unity covariance. We therefore define the normalized 
measurement Yk as 

(12.53) 

In our simulation we set the covariances of the process and measurement noise 
as follows: 

Q = Diag(4 m2, 4 m2, 1 (rn/s)', 1 (m/s)') 
R = Diag(al, c,") = Diag(9OO m2, 900 m2) (12.54) 

We can use an H, filter to estimate the position of the vehicle. There may be 
times when the vehicle is traveling off-road, or on an unknown road, in which 
case the problem is unconstrained. At other times it may be known that the 
vehicle is traveling on a given road, in which case the state estimation problem 
is constrained. For instance, if it is known that the vehicle is traveling on a 
straight road with a heading of a then the matrix D k  and the vector d k  of 
Equation (12.32) can be given as follows: 

0 1 - t a n a  

( 12.55) 
O I  

1 - t a n a  0 
Dk = [ o  

d k  = [ 0 01' 

We can enforce the condition D k D r  = I by dividing D k  by dl + tan2 a. In 
our simulation we set the sample period T to 1 s and the heading angle cy 
to a constant 60 degrees. The commanded acceleration is toggled between 



CONSTRAINED H~ FILTERING 387 

l t l0 m/s2, as if the vehicle were accelerating and decelerating in traffic. The 
initial conditions are set to 

( 12.56) 
T 

50 = [ 0 0 173 100 ] 

We found via tuning that a Gk matrix of @I,  with 0 = 1/40, gave good filter 
performance. Smaller values of B make. the H, filter perform like a Kalman 
filter. Larger values of 0 prevent the H, filter from finding a solution as the 
positive definite conditions in Equations (12.44) and (12.45) are not satisfied. 

This example could be solved by reducing the system-model parameter- 
ization [Wen92], or by introducing artificial perfect measurements into the 
problem [Hay98, Por881. In fact, those methods could be used for any esti- 
mation problem with equality constraints. However, those methods cannot 
be extended to inequality constraints, whereas the method discussed in this 
section can be extended to inequality constraints, as discussed earlier. 

The unconstrained and constrained H, filters were simulated 100 times 
each, and the average RMS position and estimation error magnitudes at each 
time step are plotted in Figure 12.4. It can be seen that the constrained 
filter results in more accurate estimates. The unconstrained estimator results 
in position errors that average 35.3 m, whereas the constrained estimator 
gives position errors that average about 27.1 m. The unconstrained velocity 
estimation error is 12.9 m/s, whereas the constrained velocity estimation error 
is 10.9 m/s. 

and H, filters when the noise statistics are nominal. Table 12.2 shows a com- 
parison of the unconstrained and constrained Kalman and H, filters when 
the acceleration noise on the system has a bias of 1 m/s2 in both the north 
and east directions. In both situations, the H, filter estimates position more 
accurately, but the Kalman filter estimates velocity more accurately. In the 
off-nominal noise case, the advantage of the H, filter over the Kalman filter 
for position estimation is more pronounced than when the noise is nominal. 

Table 12.1 shows a comparison of the unconstrained and constrained Kalman 

Table 12.1 Example 12.3 estimation errors (averaged over 100 Monte Carlo 
simulations) of the unconstrained and constrained Kalman and H, filters with 
nominal noise statistics. The H, filters perform better for position estimation, and 
the Kalman filters perform better for velocity estimation. Position errors are in units 
of meters, and velocity errors are in units of meters/second. 

Kalman H, 
Pos. Vel. Pos. Vel. 

Unconstrained 40.3 12.4 35.3 12.9 
Constrained 33.2 10.4 27.1 10.9 

vvv 
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Table 12.2 Example 12.3 estimation errors (averaged over 100 Monte Carlo 
simulations) of the unconstrained and constrained Kalman and H, filters with 
off-nominal noise statistics. The H, filters perform better for position estimation, and 
the Kalman filters perform better for velocity estimation. Position errors are in units 
of meters, and velocity errors are in units of meters/second. 

Kalman H, 
Pos. Vel. Pos. Vel. 

Unconstrained 60.8 19.2 45.9 20.6 
Constrained 56.2 17.6 39.1 19.1 

""I I 

"0 10 20 30 40 50 60 

3 I /  
OO 10 20 30 40 50 60 

seconds 

Figure 12.4 Example 12.3 unconstrained and constrained H, filter estimation-error 
magnitudes. The plots show the average estimation-error magnitudes of 100 Monte Carlo 
simulations when the noise statistics are nominal. 

12.4 SUMMARY 

In this chapter we briefly introduced some advanced topics in the area of H, 
filtering. We discussed an approach for minimizing a combination of the Kalman 
and H, filter performance indices. This provides a way to  balance the excessive 
optimism of the Kalman filter with the excessive pessimism of the H, filter. We 
also looked at the robust mixed Kalman/H, estimation problem, where we took 
system-model uncertainties into account. This is an important problem because 
(in practice) the system model is never perfectly known. Finally we discussed 
constrained H, filtering, in which equality (or inequality) constraints are enforced 
on the state estimate. This can improve filter performance in cases in which we 
know that the state must satisfy certain constraints. 

There is still a lot of room for additional work and development in H, filtering. 
For example, reduced-order H, filtering tries to obtain good minimax estimation 
performance with a filter whose order is less than that of the underlying system. 
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Reduced-order Kalman filtering was discussed in Section 10.3, and reduced-order 
H, filtering is considered in [Bet94, Gri97, Xu021. The approach taken in [Ko06] 
for constrained Kalman filtering may be applicable to  constrained H, filtering and 
may give better results than the method discussed in this chapter. The use of Krein 
space approaches for solving various H, filtering problems is promising [Has96a, 
Has96bl. H, smoothing is discussed in [Grigla, The94b, Has99, Zha05a1, and ro- 
bust H, smoothing is discussed in [The94a]. An information form for the H, filter 
(analogous to the Kalman information filter discussed in Section 6.2) is presented 
in jZha05bI. Approaches to dealing with delayed measurements and synchroniza- 
tion errors have been extensively explored for Kalman filters (see Section 10.5), but 
are notably absent in the H, filter literature. There has been a lot of work on non- 
linear Kalman filtering (see Chapters 13-15), but not nearly as much on nonlinear 
H, filtering. 

PROBLEMS 

Written exercises 

12.1 Consider the system described in Example 12.1 with Q = R = 1. 
a) Find the steady-state a priori estimation-error variance P as a function of 

the estimator gain K .  
b) Find I /GseI I&, the square of the infinity-norm of the transfer function from 

the noise w and v to  the a priori state estimation error 2,  as a function of 
the estimator gain K .  

c) Find the estimator gain K that minimizes (P + I/GseI I&). 
12.2 
filter in Equation (12.6) reduces to the Riccati equation associated with the Kalman 
filter. 

12.3 Suppose that the hybrid filter gain of Equation (12.13) is used for the system 
of Example 12.1 with 0 = 1/2. For what values of d will the hybrid filter be stable? 

12.4 Suppose that the robust filter of Section 12.2 is used for a system with n 
states and T measurements. What are the dimensions of M I ,  Mz,  l?, and N? 

12.5 Suppose that a system matrix is given as 

Verify that if 8 = 0, the Riccati equation associated with the mixed Kalman/H, 

= [ 0 . 4 f  0.2 0.4 ] 
-0.4 1 

(Note that this is the system matrix of Example 4.1 in case the effect of overcrowding 
on the predator population is uncertain.) Give an MI and N matrix that satisfy 
Equation (12.15) for this uncertainty. 

12.6 Consider an uncertain system with F = -1, H = 1, Q = R = 1, MI = 1/5, 
Mz = 0, and N = 1. Suppose that E = 0 is used to design a robust mixed 
Kalman/H, filter. 

in Equation (12.22) a) For what values of a will the steady-state value of 
be real and positive? 
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b) For what values of a will the steady-state value of 
condition of Equation (12.24)? 

satisfy the second 

12.7 Consider a constrained H, state estimation problem with 

= [ lf.2 

G = H  = [ G I  0 ]  

D = [ l  1 1  

Find the steady-state constrained Riccati solution for P from Equation (12.50). 
For what values of G1 will the condition of Equation (12.51) be satisfied? 

Computer exercises 

12.8 
T = 1, a = 1, and R = 1. 

Consider a two-state Newtonian system as discussed in Example 9.1 with 

a) What is the steady-state Kalman gain? 
b) What is the maximum 0 for which the H, estimator exists? Answer to 

the nearest 0.01. What is the H, gain for this value of 0? 
c )  What is the H, gain when B = 0.5? Plot the maximum estimator eigen- 

value magnitude as a function of d for the hybrid filter of Equation (12.13) 
when 0 = 0.5. 

12.9 
filter for F = 1/2, H = Q = R = 1, M I  = 1/4, M2 = 0, N = 1, E = 0, 0 = 1/10, 
and S1 = S2 = 1. 

a) At what time do the conditions of Equation (12.24) fail to ,be satisfied 
when Q = 2? Repeat for a = 3, 4, 5, and 6. 

b) What is the steady-state theoretical bound on the estimation error when 
Q = lo? Repeat for a = 20, 30, and 40. 

Consider a constrained H, state estimation problem with 

Implement the timevarying Riccati equations for the robust mixed KaIman/H, 

12.10 

= [: :] 
H = [ l  0 1  

D = [ l  11 

G = [ G I  0 1  

L 

Implement the Ck and P k  expressions from Equation (12.50). 
a) What is the largest value of GI for which P k  reaches a positive definite 

steady-state solution that satisfies the condition given in Equation (12.51)? 
Answer to the nearest 0.01. What is the resulting steady-state value of P? 
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b) Set GI equal to 1% of the maximum G1 that you found in part (a). What 
is the new steady-state value of P? Give an intuitive explanation for why 
P gets smaller when G1 gets smaller. 
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CHAPTER 13 

Nonlinear Kalman filtering 

It appears that no particular approximate [nonlinear] filter is consistently better than 
any other, though ... any nonlinear filter is better than a strictly linear one. 

-Lawrence Schwartz and Edwin Stear [Sch68] 

All of our discussion to this point has considered linear filters for linear systems. 
Unfortunately, linear systems do not exist. All systems are ultimately nonlinear. 
Even the simple I = V / R  relationship of Ohm’s Law is only an approximation over 
a limited range. If the voltage across a resistor exceeds a certain threshold, then the 
linear approximation breaks down. Figure 13.1 shows a typical relationship between 
the current through a resistor and the voltage across the resistor. At small input 
voltages the relationship is approximately linear, but if the power dissipated by 
the resistor exceeds some threshold then the relationship becomes highly nonlinear. 
Even a device as simple as a resistor is only approximately linear, and even then 
only in a limited range of operation. 

So we see that linear systems do not really exist. However, many systems are 
close enough to linear that linear estimation approaches give satisfactory results. 
But “close enough” can only be carried so far. Eventually, we run across a system 
that does not behave linearly even over a small range of operation, and our linear 
approaches for estimation no longer give good results. In this case, we need to 
explore nonlinear estimators. 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 02006 John Wiley & Sons, Inc. 

395 
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Figure 13.1 
for a limited range of operation, but becomes highly nonlinear beyond that range. 

Typical current/voltage relationship for a resistor. The relationship is linear 

Nonlinear filtering can be a difficult and complex subject. It is certainly not as 
mature, cohesive, or well understood as linear filtering. There is still a lot of room 
for advances and improvement in nonlinear estimation techniques. However, some 
nonlinear estimation methods have become (or are becoming) widespread. These 
techniques include nonlinear extensions of the Kalman filter, unscented filtering, 
and particle filtering. 

In this chapter, we will discuss some nonlinear extensions of the Kalman filter. 
The Kalman filter that we discussed earlier in this book directly applies only to 
linear systems. However, a nonlinear system can be linearized as discussed in 
Section 1.3, and then linear estimation techniques (such as the Kalman or H, 
filter) can be applied. This chapter discusses those types of approaches to nonlinear 
Kalman filtering. 

In Section 13.1, we will discuss the linearized Kalman filter. This will involve 
finding a linear system whose states represent the deviations from a nominal tra- 
jectory of a nonlinear system. We can then use the Kalman filter t o  estimate the 
deviations from the nominal trajectory, and hence obtain an estimate of the states 
of the nonlinear system. In Section 13.2, we will extend the linearized Kalman 
filter to directly estimate the states of a nonlinear system. This filter, called the 
extended Kalman filter (EKF), is undoubtedly the most widely used nonlinear state 
estimation technique that has been applied in the past few decades. In Section 13.3, 
we will discuss “higher-order” approaches to  nonlinear Kalman filtering. These ap- 
proaches involve more than a direct linearization of the nonlinear system, hence 
the expression “higher order.” Such methods include second-order Kalman filter- 
ing, iterated Kalman filtering, sum-based Kalman filtering, and grid-based Kalman 
filtering. These filters provide ways to reduce the linearization errors that are in- 
herent in the EKF. They typically provide estimation performance that is better 
than the EKF, but they do so at  the price of higher complexity and computational 
expense. 
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Section 13.4 covers parameter estimation using Kalman filtering. Sometimes, an 
engineer wants to estimate the parameters of a system but does not care about 
estimating the states. This becomes a system identification problem. The sys- 
tem equations are generally nonlinear functions of the system parameters. System 
parameters are usually considered to be constant, or slowly timevarying, and a 
nonlinear Kalman filter (or any other nonlinear state estimator) can be adapted to 
estimate system parameters. 

13.1 T H E  LINEARIZED KALMAN FILTER 

In this section, we will show how to linearize a nonlinear system, and then use 
Kalman filtering theory to estimate the deviations of the state from a nominal 
state value. This will then give us an estimate of the state of the nonlinear system. 
We will derive the linearized Kalman filter from the continuowtime viewpoint, but 
the analogous derivation for discretetime or hybrid systems are straightforward. 

Consider the following general nonlinear system model: 

(13.1) 

The system equation f( .)  and the measurement equation h(.) are nonlinear func- 
tions. We will use Taylor series to expand these equations around a nominal control 
UO, nominal state 20, nominal output yo, and nominal noise values wo and vo. These 
nominal values (all of which are functions of time) are based on a priori guesses of 
what the system trajectory might look like. For example, if the system equations 
represent the dynamics of an airplane, then the nominal control, state, and output 
might be the planned flight trajectory. The actual flight trajectory will differ from 
this nominal trajectory due to mismodeling, disturbances, and other unforeseen ef- 
fects. But the actual trajectory should be close to the nominal trajectory, in which 
case the Taylor series linearization should be approximately correct. The Taylor 
series linearization of Equation (13.1) gives 

h(zo, VO, t) + CAX + MAv (13.2) 

The definitions of the partial derivative matrices A, B, C, L, and M are apparent 
from the above equations. The 0 subscript on the partial derivatives means that 
they are evaluated at the nominal control, state, output, and noise values. The 
definitions of the deviations Ax, Au, Aw, and Av are also apparent from the 
above equations. 
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Let us assume that the nominal noise values wo(t) and vo(t) are both equal to 
0 for all time. [If they are not equal to 0 then we should be able to write them 
as the sum of a known deterministic part and a zero-mean part, redefine the noise 
quantities, and rewrite Equation (13.1) so that the nominal noise values are equal 
to 0. See Problem 13.11. Since wo(t) and vo(t) are both equal to 0, we see that 
Aw(t) = w(t) and Av(t) = v(t). Further assume that the control u(t)  is perfectly 
known. In general, this is a reasonable assumption. After all, the control input u(t)  
is determined by our control system, so there should not be any uncertainty in its 
value. This means that uo(t) = u(t)  and Au(t) = 0. However, in reality there may 
be uncertainties in the outputs of our control system because they are connected 
to actuators that have biases and noise. If this is the case then we can express the 
control as uo(t) + Au(t) ,  where uO(t) is known and Au(t) is a zero-mean random 
variable, rewrite the system equations with a perfectly known control signal, and 
include Au(t) as part of the process noise (see Problem 13.2). Now we define the 
nominal system trajectory as 

(13.3) 

We define the deviation of the true state derivative from the nominal state deriva- 
tive, and the deviation of the true measurement from the nominal measurement, as 
follows: 

AX = i - f o  

AY = Y-yo  (13.4) 

With these definitions Equation (13.2) becomes 

AX = AAx+Lw 
= AAX+G 

6 N ( O , Q ) ,  Q=LQLT 
Ay = CAx+Mv 

= CAX+G 
6 ( o , R ) ,  R = M R M ~  (13.5) 

The above equation is a linear system with state Ax and measurement Ay, so we 
can use a Kalman filter to estimate Ax. The inputs to the filter consist of Ay, which 
is the difference between the actual measurement y and the nominal measurement 
yo. The Ax that is output from the Kalman filter is an estimate of the difference 
between the actual state x and the nominal state 20. The Kalman filter equations 
for the linearized Kalman filter are 

A2(0) = 0 

P(O) = E [(Ax(O) - Aa(O))(Az(O) - A2(o))T] 

A i  = AA2+K(Ay-CA2) 
K = pCTR-' 
P = A P  + PAT + Q - PCTR-'CP 

2 = X O + A &  (13.6) 
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For the Kalman filter, P is equal to the covariance of the estimation error. In the 
linearized Kalman filter this is no longer true because of errors that creep into the 
linearization of Equation (13.2). However, if the linearization errors are small then 
P should be approximately equal to the covariance of the estimation error. The 
linearized Kalman filter can be summarized as follows. 

The continuous-time linearized Kalrnan filter 

1. The system equations are given as 

The nominal trajectory is known ahead of time: 

(13.7) 

(13.8) 

2. Compute the following partial derivative matrices evaluated at the nominal 
trajectory values: 

3. Compute the following matrices: 

Q = L Q L ~  
R = M R M ~  

(13.9) 

(13.10) 

4. Define Ay as the difference between the actual measurement y and the nom- 

AY=Y-Yo (13.11) 
inal measurement yo: 

5. Execute the following Kalman filter equations: 

Ali(0) = 0 

P(O) = E [(Ax(O) - A~~(O))(AX(O) - Ai(0 ) )T]  

A& = AAl i+K(Ay-CA2)  
K = PCTR-l 
P = A P  + PAT + Q - PCTR- 'CP (1 3.12) 
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6.  Estimate the state as follows: 

h = 20 + Ah (13.13) 

The hybrid linearized Kalman filter and the discrete-time linearized Kalman filter 
are not presented here, but if the development above is understood then their 
derivations should be straightforward. 

13.2 THE EXTENDED KALMAN FILTER 

The previous section obtained a linearized Kalman filter for estimating the states of 
a nonlinear system. The derivation was based on linearizing the nonlinear system 
around a nominal state trajectory. The question that arises is, How do we know 
the nominal state trajectory? In some cases it may not be straightforward to find 
the nominal trajectory. However, since the Kalman filter estimates the state of 
the system, we can use the Kalman filter estimate as the nominal state trajectory. 
This is sort of a bootstrap method. We linearize the nonlinear system around the 
Kalman filter estimate, and the Kalman filter estimate is based on the linearized 
system. This is the idea of the extended Kalman filter (EKF), which was originally 
proposed by Stanley Schmidt so that the Kalman filter could be applied to nonlinear 
spacecraft navigation problems [Be167]. 

In Section 13.2.1, we will present the EKF for continuous-time systems with 
continuous-time measurements. In Section 13.2.2, we will present the hybrid EKF, 
which is the EKF for continuous-time systems with discrete-time measurements. In 
Section 13.2.3, we will present the EKF for discretetime systems with discretetime 
measurements. 

13.2.1 

Combine the & expression in Equation (13.3) with the A4 expression in Equa- 
tion (13.6) to obtain 

(13.14) 

Now choose zo(t) = h(t) so that Ah(t) = 0 and AP(t) = 0. In other words, our 
linearization trajectory zo(t) is equal to our linearized Kalman filter estimate 2(t). 
Then the nominal measurement expression in Equation (13.3) becomes 

The continuous-time extended Kalman filter 

ko + Ah = f ( ~ ,  UO, WO, t )  + AAh + K[y - YO - C(2 - ZO)] 

(13.15) 

and Equation (13.14) becomes 

4 = f(h, U,  WO, t )  + K [Y - h ( h , ~ o ,  t ) ]  (13.16) 

This is equivalent to the linearized Kalman filter except that we have chosen zo = 2, 
and we have rearranged the equations to obtain h directly. The Kalman gain K 
is the same as that presented in Equation (13.6). But this formulation inputs the 
measurement y directly, and outputs the state estimate h directly. This is often 
referred to as the extended Kalman-Bucy filter because Richard Bucy collaborated 
with Rudolph Kalman in the first publication of the continuoustime Kalman fil- 
ter [Kal61]. The continuowtime EKF can be summarized as follows. 



THE EXTENDED KALMAN FILTER 401 

The continuous-time extended Kalman filter 

(1 3.17) 

2. Compute the following partial derivative matrices evaluated at the current 
state estimate: 

3. Compute the following matrices: 

Q = L Q L ~  
ii = M R M ~  

(13.18) 

( 13.19) 

4. Execute the following Kalman filter equations: 

f (0 )  = E[x(O)] 
P(0) = E [(x(O) - h(O))(x(O) - h(0))T] 

i = f(h, U ,  ~ 0 ,  t )  + K [Y - h(h, WO, t ) ]  
K = PCTR-I 

P = AP + PAT + - PCTR-’CP (13.20) 

where the nominal noise values are given as wo = 0 and vo = 0. 

EXAMPLE 13.1 

In this example, we will use the continuous-time EKF to estimate the state 
of a two-phase permanent magnet synchronous motor. The system equations 
are given in Example 1.4 and are repeated here: 

-R W X  ua + 91 
L L L 

U b  + 92 -R W X  
L L L 

-3x 3x Fw 
2 J  2 J  J 

-2, + - sin 8 + - i, = 

ib = -ib - - cos 8 + - 
i j =  -i, sin 8 + - i b  cos 8 - - + q3 

e = w  (13.21) 
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where i, and i b  are the currents in the two windings, 6' and w are the angular 
position and velocity of the rotor, R and L are the winding resistance and 
inductance, X is the flux constant, and F is the coefficient of viscous friction. 
The control inputs ua and Ub consist of the applied voltages across the two 
windings, and J is the moment of inertia of the motor shaft and load. The 
state is defined as 

x =  [ ia i b  w e I' (13.22) 

The qi terms are process noise due to uncertainty in the control inputs (41 
and 42) and the load torque ( 4 3 ) .  The partial derivative A matrix is obtained 
as 

( 13.23) 1 0 X S I L  X&/L 
- R / L  - X C / L  X 3 X S I L  

= [ -;:/ J 3Xc/2/J -F/ J -3X(xlc + x2s)/2/ J 
0 1 0 

where we have used the notation s = sinxq and c = cosx4. Suppose that 
we can measure the winding currents with sense resistors so our measurement 
equations are 

(13.24) 

where v(1) and 4 2 )  are independent zero-mean white noise processes with 
standard deviations equal to 0.1 amps. The nominal control inputs are set to 

( 13.25) 

The actual control inputs are equal to the nominal values plus 41 and 42 (elec- 
trical noise terms), which are independent zero-mean white noise processes 
with standard deviations equal to 0.01'amps. The noise due to load torque 
disturbances ( 4 3 )  has a standard deviation of 0.5 rad/sec2. Measurements are 
obtained continuously. Even though our measurements consist only of the 
winding currents and the system is nonlinear, we can use a continuous-time 
EKF (implemented in analog circuitry or very fast digital logic) to estimate 
the rotor position and velocity. The simulation results are shown in Fig- 
ure 13.2. The four states are estimated quite well. In particular, the rotor 
position estimate is so good that the true and estimated rotor position traces 
are not distinguishable in Figure 13.2. 

The P matrix quantifies the uncertainty in the state estimates. If the 
nonlinearities in the system and measurement are not too severe, then the 
P matrix should give us an idea of how accurate our estimates are. In this 
example, the standard deviations of the state estimation errors were obtained 
from the simulation and then compared with the diagonal elements of the 
steady-state P matrix that came out of the Kalman filter. Table 13.1 shows a 
comparison of the estimation errors that were determined by simulation and 
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Time (Seconds) Time (Seconds) 

Figure 13.2 
permanent magnet synchronous motor of Example 13.1. 

Continuous extended Kalman filter simulation results for the two-phase 

Table 13.1 Example 13.1 results showing one standard deviation state estimation 
errors determined from simulation results and determined from the P matrix of the 
EKF. These results are for the two-phase permanent magnet motor simulation. This 
table shows that the P matrix gives a good indication of the magnitude of the EKF 
state estimation errors. 

Simulation P Matrix 

Winding A Current 0.054 amps 0.094 Amps 
Winding B Current 0.052 amps 0.094 Amps 
S P d  0.26 rad/sec 0.44 rad/sec 
Position 0.013 rad 0.025 rad 

the theoretical estimation errors based on the P matrix. We see that the P 
matrix gives a good indication of the magnitude of the estimation errors. 

vvv 

13.2.2 The hybrid extended Kalman filter 

Many real engineering systems are governed by continuous-time dynamics whereas 
the measurements are obtained at discrete instants of time. In this section, we will 
derive the hybrid EKF, which considers systems with continuoustime dynamics 
and discretetime measurements. This is the most common situation encountered 
in practice. 

Suppose we have a continuous-time system with discretetime measurements as 
follows: 



404 NONLINEAR KALMAN FILTERING 

( 13.26) 

The process noise w( t )  is continuous-time white noise with covariance Q ,  and the 
measurement noise V k  is discretetime white noise with covariance Rk. Between 
measurements we propagate the state estimate according to the known nonlinear 
dynamics, and we propagate the covariance as derived in the continuous-time EKF 
of Section 13.2.1 using Equation (13.20). Recall that the P expression from Equai 
tion (13.20) is given as 

P = AP + PAT + LQLT - P C T ( M R M T ) - l C P  ( 13.2 7) 

In the hybrid EKF, we should not include the R term in the P equation because 
we are integrating P between measurement times, during which we do not have 
any measurements. Another way of looking at it is that in between measurement 
times we have measurements with infinite covariance ( R  = oo), so the last term on 
the right side of the P equation goes to zero. This gives us the following for the 
timeupdate equations of the hybrid EKF: 

( 13.28) 

where A and L are given in Equation (13.18). The above equations propagate 2 
from to 2;, and P from PzVl to P;. Note that wo is the nominal process 
noise in the above equation; that is, wo(t) = 0. 

At each measurement t'ime, we update the state estimate and the covariance as 
derived in the discretetime Kalman filter (Chapter 5 ) :  

where 210 is the nominal measurement noise; that is, vo = 0. Hk is the partial 
derivative of hk(Xk,Vk) with respect to X k ,  and Mk is the partial derivative of 
hk(Zk, V k )  with respect to V k .  Hk and Mk are evaluated at 2;. 

Note that Pk and Kk cannot be computed offline because they depend on Hk and 
Mk, which depend on 2; ,  which in turn depends on the noisy measurements. There 
fore, a steady-state solution does not (in general) exist to the extended Kalman 
filter. However, some efforts at obtaining steady-state approximations to the ex- 
tended Kalman filter have been reported in [Saf78]. 

The hybrid EKF can be summarized as follows. 



The hybrid extended Kalman filter 

1. The system equations with continuous-time dynamics and discretetime mea- 
surements are given as follows: 

(13.30) 

2. Initialize the filter as follows: 

2; = E[zo] 
P,s = E [(zo - 2;)(zo - ?;)'I (13.31) 

3. For k = 1,2 ,  . . ., perform the following. 

(a) Integrate the state estimate and its covariance from time (k - 1)+ to 
time k- as follows: 

2 =  
P = A P + P A ~ + L Q L ~  (13.32) 

where F and L are given in Equation (13.18). We begin this integration 
process with 2 = 2t- l  and P = P:--,. At the end of this integration we 
have 2 = 2; and P = PF. 

(b) At time k, incorporate the measurement Y k  into the state estimate and 
estimation covariance as follows: 

f ( 2 ,  u, 0, t )  

Kk = PFHF(HkPFHF 4- MkRkM?)-l 
2' k = 2; -b Kk(yk - hk(?;, 0, tk)) (13.33) 

Pk+ = (I - KkHk)Pi(I - KkHk)' + KkMkRkMrKT 

Hk and Mk are the partial derivatives of h k ( Z k ,  O k )  with respect to Z k  and 
V k ,  and are both evaluated at 2 i .  Note that .other equivalent expressions 
can be used for Kk and P z ,  as is apparent from Equation (5.19). 

EXAMPLE 13.2 

In this example, we will use the continuous-time EKF and the hybrid EKF 
to estimate the altitude 21, velocity 22, and constant ballistic coefficient 1/23 
of a body as it falls toward earth. A rangemeasuring device measures the 
altitude of the falling body. This example (or a variant thereof) is given 
in several places, for example IAth68, Ste94, JulOO]. The equations for this 
system are 

(13.34) 

THE EXTENDED KALMAN FILTER 403 
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As usual, w, is the noise that affects the ith process equation, and v is the 
measurement noise. po is the air density at sea level, k is a constant that 
defines the relationship between air density and altitude, and g is the acceler- 
ation due to gravity. The partial derivative matrices for this system are given 
as follows: 

(13.35) 

We will use the continuous-time system equations to simulate the system. For 
the hybrid system we suppose that we obtain range measurements every 0.5 
seconds. The constants that we will use are given as 

po = 0.0034 lb-sec2/ft4 

g = 32.2 ft/sec2 
k = 22OOOft 

E[v2(t)] = 100 ft2 

E[w:(t)] = 0 (i = 1,2,3) (13.36) 

The initial conditions of the system and the estimator are given as 

xo = 

5; = 

[ 100,000 -6,000 1/2,000 3' 
[ 100,010 -6,100 1/2,500 1' 

[ o  0 1/250,000 
(1 3.37) 1 500 0 0 

0 20,000 0 Po+ = 

We use rectangular integration with a step size of 0.4 msec to simulate the 
system, the continuoustime EKF, and the hybrid EKF (with a measurement 
time of 0.5 sec). Figure 13.3 shows estimation-error magnitudes averaged over 
100 simulations for the altitude, velocity, and ballistic coefficient reciprocal of 
the falling body. We see that the continuoustime EKF appears to perform 
better in general than the hybrid EKF. This is to be expected since more 
measurements are incorporated in the continuoustime EKF. The RMS esti- 
mation errors averaged over 100 simulations was 2.8 feet for the continuous 
time EKF and 5.1 feet for the hybrid EKF for altitude estimation, 1.2 feet/s 
for the continuous-time EKF and 2.0 feet/s for the hybrid EKF for velocity 
estimation, and 213 for the continuoustime EKF and 246 for the hybrid EKF 
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for the reciprocal of ballistic coefficient estimation. Of course, a continuous- 
time EKF (in analog hardware) would be more difficult t o  implement, tune, 
and modify than a hybrid EKF (in digital hardware). 

m 

a 
3 .,- .- .,- 

"0 2 4 6 8 10 12 14 16 

. , I , , . ,  Continuous 

0 2 4 6 0 10 12 14 16 
Time 

- 0  

Figure 13.3 Example 13.2 altitude, velocity, and ballistic coefficient reciprocal 
estimation-error magnitudes of a falling body averaged over 100 simulations. The continuous- 
time EKF generally performs better than the hybrid EKF. 

vvv 

13.2.3 The discrete-time extended Kalman filter 

In this section, we will derive the discrete-time EKF, which considers discretetime 
dynamics and discretetime measurements. This situation is often encountered in 
practice. Even if the underljring system dynamics are continuous time, the EKF 
usually needs to be implemented in a digital computer. This means that there 
might not be enough computational power to integrate the system dynamics as 
required in a continuous-time EKF or a hybrid EKF. So the dynamics are often 
discretized (see Section 1.4) and then a discrete-time EKF can be used. 

Suppose we have the system model 

We perform a Taylor series expansion of the state equation around z k - 1  = 
and W k - 1  = 0 to obtain the following: 
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F k - 1  and L k - 1  are defined by the above equation. The known signal '& and the 
noise signal 'I& are defined as follows: 

We linearize the measurement equation around X k  = 2; and V k  = 0 t o  obtain 

H k  and M k  are defined by the above equation. The known signal Zk and the noise 
signal 6 k  are defined as 

We have a linear statespace system in Equation (13.39) and a linear measurement 
in Equation (13.41). That means we can use the standard Kalman filter equations 
to estimate the state. This results in the following equations for the discretetime 
extended Kalman filter. 

(13.43) 

The discretetime EKF can be summarized as follows. 
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The discrete-time extended Kalman filter 

1. The system and measurement equations are given as follows: 

2. Initialize the filter as follows: 

3. For k = 1,2 ,  e ,  perform the following. 

(a) Compute the following partial derivative matrices: 

(1 3.44) 

(13.45) 

(13.46) 

Perform the time update of the state estimate and estimation-error co- 
variance as follows: 

Compute the following partial derivative matrices: 

(13.48) 

Perform the measurement update of the state estimate and estimation- 
error covariance as follows: 

Note that other equivalent expressions can be used for Kk and Pk+, as 
is apparent from Equation (5.19). 
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13.3 HIGH E R - 0  R D  ER APPROACH ES 

More refined linearization techniques can be used to reduce the linearization error in 
the EKF for highly nonlinear systems. In this section, we will derive and illustrate 
two such approaches: the iterated EKF, and the second-order EKF. We will also 
briefly discuss other approaches, including Gaussian sum filters and grid filters. 

13.3.1 

In this section, we will discuss the iterated EKF. We will confine our discussion 
here to discretetime filtering, although the concepts can easily be extended to 
continuous or hybrid filters. 

When we derived the discretetime EKF in Section 13.2.3, we approximated 
h ( Z k ,  V k )  by expanding it in a Taylor series around 2;, as shown in Equation (13.41): 

The iterated extended Kalman filter 

Based on this linearization, we then wrote the measurement-update equations as 
shown in Equation (13.43): 

Kk = P i H z ( H k P i H z  + MkRkM?)-l 
P z  = ( I - K k H k ) P r  
2i.k+ = 2; + K k [ Y k  - h k ( 2 ; , 0 ) ]  (13.51) 

The reason that we expanded h ( Z k )  around 2; was because that was our best es- 
timate of X k  before the measurement at time k is taken into account. But after we 
implement the discrete EKF equations to obtain the a posteriori estimate @, we 
have a better estimate of X k .  So we can reduce the linearization error by reformu- 
lating the Taylor series expansion of h ( Z k )  around our new estimate. If we then use 
that new Taylor series expansion of h ( X k )  and recalculate the measurement-update 
equations, we should get a better a posteriori estimate of 2:. But then we can 
repeat the previous step; since we have an even better estimate of x k ,  we can again 
reformulate the expansion of h ( X k )  around this even better estimate to get an even 
better estimate. This process can be repeated as many times as desired, although 
for most problems the majority of the possible improvement is obtained by only 
relinearizing one time. 

We use the notation 2i';z,+ to refer to the a posteriori estimate of x k  after i r e h -  
earizations have been performed. So 2k,O is the a posteriori estimate that results 
from the application of the standard EKF. Likewise, we use P& to refer to the 
approximate estimation-error covariance of 2i.k+,i, Kk,+ to refer to the Kalman gain 
that is used during the ith relinearization step, and Hk,+ to refer to the partial 
derivative matrix evaluated at the X k  = 2i.k+,i. 

With this notation, we can describe an algorithm for the iterated EKF as follows. 
First, at each time step k we initialize the iterated EKF estimate to the standard 
EKF estimate: 

q0 = 22 

PC0 = Pk+ ( 13.52) 
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Second, for i = 0, 1, . . . , N ,  evaluate the following equations: 

ah 
Hk,a = - 

Kk,a = pFHci(Hk, tpFHc+ + MkRkM?)-l 

a x  IP;, 
p c Z + l  = (1 - Kk,%Hk,%)pL 

2i,i+1 = 2 i  + K k , i [ Y k  - h k ( ? i ) ]  (13.53) 

This is done for as many steps as desired to improve the linearization. If N = 0 
then the iterated EKF reduces to the standard EKF. 

We still have to make one more modification to the above equations to obtain the 
iterated Kalman filter. Recall that in the derivation of the EKF, the P measurement 
update equation was originally derived from the following first-order Taylor series 
expansion of the measurement equation: 

Y k  = h(xk)  
% h(2 i )  + HIS; ( x k  - 2;) (13.54) 

To derive the measurement-update equation for 2 we evaluated the right side at 
the a priori  estimate 2 i  and subtracted from yk to get our correction term (the 
residual) : 

T k  = y k  - h ( 2 i )  - HI,; ( P i  - 2 i )  

= Y k  - h(2;)  ( 13.55) 

With the iterated EKF we instead want to expand the measurement equation 
around ii,a as follows: 

Y k  h(?;,%) + HI,+ ( x k  - 2;,,) ( 13.56) 

To derive the iterated EKF measurement-update equation for 2,  we evaluate the 
right side of the above equation at the a priori estimate 2 i  and subtract from Y k  

to get our correction term: 

T k  = Y k  - h(hi,,) - Hk, i ($L  - *k,%) + 

k,. 

( 13.57) 

This gives the iterated EKF update equation for 2 as 

*;,,+I = 2 i  + K k , i [ Y k  - h(?;,,) - H k , i ( ? i  - * $ , % ) I  (1 3.58) 

The iterated EKF can then be summarized as follows. 

The iterated extended Kalman filter 

1. The nonlinear system and measurement equations are given as follows: 

(13.59) 
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2. Initialize the filter as follows. 

2; = E(X0) 

PO+ = E [(ZO - ~ o ) ( x o  

3. For k = 1 ,2 ,  . . ., do the following. 

(13.60) 

Perform the following timeupdate equations: 

T p i  = F k - 1 P k + - 1 F z - 1 +  L k - 1 Q k - 1 L k - 1  

2 i  = . f k - l ( 2 : - 1 ,  U k - 1 7 0 )  (13.61) 

where the partial derivative matrices F k - 1  and L k - 1  are defined as fol- 
lows: 

( 13.62) 

Up to this point the iterated EKF is the same as the standard discre& 
time EKF. 

Perform the measurement update by initializing the iterated EKF esti- 
mate to the standard EKF estimate: 

(13.63) 

For i = 0,1, .  . , N ,  evaluate the following equations (where N is the 
desired number of measurement-update iterations) : 

H k , a  = 
ax &t>% 

The final a posteriori  state estimate and estimation-error covariance are 
given as follows: 

(13.65) 

An illustration of the iterated EKF will be presented in Example 13.3. 
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13.3.2 

The second-order EKF is similar to the iterated EKF in that it attempts to reduce 
the linearization error of the EKF. In the iterated EKF of the previous section, we 
refined the point at which we performed a first-order Taylor series expansion of the 
measurement equation h(.). In the second-order EKF we instead perform a seconh 
order Taylor series expansion of f (.) and h(.). The second-order EKF presented in 
this section is based on [Ath68, Ge1741. 

In this section, we will consider the hybrid system with continuous-time system 
dynamics and discretetime measurements: 

The second-order extended Kalman filter 

(13.66) 

In the standard EKF, we expanded f (5, u, w, t )  using a first-order Taylor series. In 
this section, we will consider only the expansion around a nominal x, ignoring the 
expansion around nominal u and w values. This is done so that we can present the 
main ideas of the second-order EKF without getting too bogged down in notation. 
The development in this section can be easily extended to second-order expansions 
around u and w once the main idea is understood. 

The first-order expansion of f (z, u, w, t )  around z = 2 is given as 

f (2,217 w, t )  = f ( 2 ,  uo, 'wo, t )  + (a: - 2 )  (1 3.67) 

In the standard EKF, we evaluated this expression at 2 = 2 to obtain our time- 
update equation for 2 as 

i = f ( 2 ,  u g ,  wo, t )  (13.68) 

In the second-order EKF we expand f (5, u, w, t )  with an additional term in the 
Taylor series: 

af I* 

where n is the dimension of the state vector, fi is the ith element of f(z, u, w, t ) ,  
and the 4i vector is defined as an n x 1 vector with all zeros except for a one in the 
ith element. The quadratic term in the summation can be written as 

(r-f)Tg~i.(5-*)=n [Ti - 1 i. (5 - *)(. - *)T 1 (1 3.70) 

Since we do not know the value of (z -2)(z -2)T in the above equation, we replace 
it with its expected value, which is the covariance of the Kalman filter, to obtain 

(13.71) 
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We then evaluate Equation (13.69) at z = 2 and substitute the above expression 
in the summation to obtain the timeupdate equation for 2 as 

(13.72) 

The timeupdate equation for P remains the same as in the standard hybrid EKF 
as shown in Equation (13.28): 

P = F P + P F ~ + L Q L ~  (13.73) 

Now we will derive the measurement-update equations. Suppose that the measurement- 
update equation for the state estimate is given as 

2 + -  k - z k  A -  + K k  [Yk - h ( 2 i ,  t k ) ]  - r k  (1 3.74) 

where K k  is the Kalman gain to be determined, and T k  is a correction term to be 
determined. We will choose Irk so that the estimate 2: is unbiased, and we will 
then choose K k  to minimize the trace of the covariance of the estimate. 

If we define the estimation errors as 

(13.75) 

we can see from Equations (13.66) and (13.74) that 

e l  = e i  - K k  [ h ( z k , t k )  - h ( ? i , t k ) ]  - K k V k  -k r k  (13.76) 

Now we perform a second-order Taylor series expansion of h ( z k , t k )  around the 
nominal point 2; to obtain 

(13.77) 

where H k  is defined by the above equation, m is the dimension of the measurement 
vector, and h, is the ith element of h ( z k ,  t k ) .  This gives the a posteriori estimation 
error as 

m 

where D k , %  is defined as 

(13.79) 
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Taking the expected value of both sides of Equation (13.78), assuming that E(e;)  = 
0, and making the same approximation as in Equation (13.71), we can see that in 
order to have E ( e t )  = 0 we must set 

m 

(13.80) 

Defining P$ as 
p$ = [ek + ( e k  + T  ] (13.81) 

and using the above equations, it can be shown after some involved algebraic cal- 
culations [Ath68] that 

P$ = (1 - KkHk)pi(I  - KkHk)T f Kk(Rk 4- &)K; ( 13.82) 

where the matrix Ak is defined as 

Now we define a cost function J k  that we want to  minimize as a weighted sum of 
estimation errors: 

(13.84) 

where Sk is any positive definition weighting matrix. The Kk that  minimizes this 
cost function can be found as 

Kk = PiHT (HkPiH: + Rk + h k ) - '  (13.85) 

This gives the P z  matrix from Equation (13.82) as 

P z  = P; - PLHT (HkPiHT f Rk f hk)-'HkP; (13.86) 

Now we need to  figure out how to evaluate the A,  ,matrix in Equation (13.83). Note 
that Ak can be written as the double summation 

(i3.87) 
The product +i$ is an m x m matrix whose elements are all zero except for the 
element in the zth row and j t h  column. Therefore, the element in the ith row and 
j t h  column of A k  can be written as 

This expression can be evaluated with the following lemma [Ath68]. 
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- 0 -  

0 
I t  
0 

0 - -  

Lemma 6 Suppose we have the n-element random vector x N N ( 0 ,  P) .  Then  

E [zT7(AzzT)] = 0 

E [ TT(hxTBxxT)]  = E [ T7(AxzT) T7(BxxT)] 
= 2 q A P B P )  + T7(AP)T7(BP) (13.89) 

where A and B are arbitrarg n x n matrices. 

Using this lemma with Equation (13.88) we can see that 

(1 3.90) 

This equation, along with Equations (13.74), (13.80), (13.82), and (13.85), specify 
the measurement-update equations for the second-order EKF. The second-order 
EKF can be summarized as follows. 

1 
A k ( i , j )  = p ( D k , z P p k , j P F )  

The second-order hybrid extended Kalrnan filter 

1. The system equations are given as follows: 

x =  f ( x ,  u, w, t )  
Y k  = h(xk,  t k )  + Vk 

w(t) N (0, Q )  
Vk (0 ,Rk)  

2. The estimator is initialized as follows: 

3. The timeupdate equations are given as 

p = F P + P F ~ + L Q L ~  

di = ith element 

(13.91) 

(13.92) 

(13.93) 
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4. The measurement update equations are given as 

Note that setting the second partial derivative matrices in this algorithm to  zero 
matrices results in the standard hybrid EKF. 

EXAMPLE 13.3 

In this example, we compare the performance of the EKF, the second-order 
EKF, and the iterated EKF for the falling body problem described in Exam- 
ple 13.2. A similar comparison was shown in [Wis69], where it was concluded 
that the iterated EKF had better RMS error performance, but the second- 
order filter had smaller bias. The system equations are the same as those 
shown in Example 13.2: 

In this example, we change the measurement system so that it does not mea- 
sure the altitude of the falling body, but instead measures the range to  the 
measuring device. The measuring device is Iocated at  an altitude a and at a 
horizontal distance M from the body's vertical line of fall. The measurement 
equation is therefore given by 

This makes the problem more nonlinear and hence more difficult to  estimate 
(i.e., in Example 13.2 we had a nonlinear system but a linear measurement, 
whereas in this example we have nonlinearities in both the system and the 
measurement equations). The partial derivative F matrix for the EKFs are 
given in Example 13.2. The other partial derivative matrices used in the 
second-order EKF are given as follows: 
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H =  

- - 

L =  

dh - 
ax 
[ ( X l  - a)(M2 + (XI - a)2)-1/2 

af 
dW 

0 0 ] 
- 

[ s  8 H] 
d2hl - 

h - y l  - (21 - a)2h-2) 0 0 

0 0  

( 13.97) 

0 i’ 0 

x$x3/2k2 - ~ 2 ~ 3 / k  - ~ , 2 / 2 k  

- ~ $ / 2 k  2 2  x 2  0 1 -xzz3/k 23 

Table 13.2 shows the performances of the EKFs (averaged over 20 simulation 
runs). It is seen that second-order EKF provides significant improvement over 
the first-order EKF for altitude and velocity estimation, but for some reason it 
actually provides worse performance for ballistic coefficient estimation. Also 
note that the iterated EKF provides only slight improvement over the first- 
order EKF, and (as expected) the iterated EKF performs better when more 
iterations are executed for the linearization refinement. 

Table 13.2 
different EKF approaches for tracking a falling body. 

Example 13.3 results. A comparison of the estimation errors of 

Filter 
~ ~~~ 

Altitude Velocity Ballistic Coefficient 

First-order EKF 758 feet 518 feet/sec 0.091 feet3/lb/sec2 
Second-order EKF 356 483 0.129 
Iterated EKF ( N  = 2) 755 517 0.091 
Iterated EKF ( N  = 3) 745 516 0.091 
Iterated EKF ( N  = 4) 738 509 0.091 
Iterated EKF ( N  = 5) 733 506 0.091 
Iterated EKF ( N  = 6) 723 506 0.091 

We conclude from this that the second-order filter has better estimation 
performance. However, the implementation is much more difficult and re- 
quires the computation of second-order derivatives. In this example, the 
second-order derivatives could be taken analytically because we have explicit 
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analytical system and measurement equations. In many applications second- 
order derivatives will not be available analytically, and approximations will 
inevitably be subject to error. 

These results are different than reported in [Wis69], where it was shown 
that the iterated EKF performed better than the second-order EKF. The 
different conclusions between this book and [Wis69] show that comparisons 
between different algorithms are often subjective. Perhaps the discrepancies 
are due to  differences in implementations of the filtering algorithms, differ- 
ences in implementations of the system dynamics or random noise generation, 
differences in the way that the estimation errors were measured, or even dif- 
ferences in the computing platforms that were used. 

vvv 
The second-order filter was initially developed by Bass [Bas661 and Jazwin- 

ski [Jaz66]. A Gaussian second-order filter was developed by Athans [Ath68] and 
Jazwinski [ Jaz701, in which fourth-order terms in Taylor series approximations are 
retained and approximated by assuming that the underlying probabilities are Gaus- 
sian. A small correction in the original derivations of the second-order EKF was 
reported by Rolf Henriksen [Hen82]. Although the second-order filter often provides 
improved performance over the extended Kalman filter, nothing definitive can be 
said about its performance, as evidenced by an example of an unstable second-order 
filter reported in [Kus67]. Additional comparison and analysis of some nonlinear 
Kalman filters can be found in [Sch68, Wis69, Wis70, Net781. A simplified version 
of Henriksen's discretetime second-order filter can be summarized as follows. 

The second-order discretetime extended Kalman filter 

1. The system equations are given as follows: 

2. The estimator is initialized as follows: 

3. The time update equations are given as follows: 

(13.98) 

(13.99) 

PF+l = FPcFT + Q k  
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(13.100) 

4. The measurement update equations are given as follows: 

A more general version of the above algorithm can be found in [Hen82]. Similar 
to the hybrid second-order EKF presented earlier in this section, we note that set- 
ting the second-order partial derivative matrices in this algorithm to zero matrices 
results in the standard discretetime EKF. 

13.3.3 Other approaches 

We have considered a couple of higher-order approaches to reducing the lineariza- 
tion error of the EKF. We looked at the iterated EKF and the second-order EKF, 
but other approaches are also available. For example, Gaussian sum filters are based 
on the idea that a non-Gaussian pdf can be approximated by a sum of Gaussian 
pdfs. This is similar to the idea that any curve can be approximated by a piecewise 
constant function. Since the true pdf of the process noise and measurement noise 
can be approximated by a sum of M Gaussian pdfs, we can run M Kalman filters 
in parallel on M Gaussian filtering problems, each of them optimal filters, and then 
combine them to obtain an approximately optimal estimate. The number of fil- 
ters M is a trade-off between approximation accuracy (and hence optimality) and 
computational effort. This idea was first mentioned in [Aok65] and was explored 
in [Cam68, Sor7lb, Als74, Kit891. The Gaussian sum filter algorithm presented 
in [Ah721 can be summarized as follows. 
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The Gaussian sum filter 

1. The discrete-time n-state system and measurement equations are given as 
follows: 

2. Initialize the filter by approximating the pdf of the initial state as follows: 

The a,-,% coefficients (which are positive and add up to l),  the 2i.,$, means, and 
the PL covariances, are chosen by the user to provide a good approximation 
to the pdf of the initial state. 

3. For k = 1 , 2 , .  . ., do the following. 

(a) The a priori state estimate is obtained by first executing the following 
time-update equations for i = 1, . , M :  

The pdf of the a priori state estimate is obtained by the following sum: 

M 

pdf(fi)  = aktN(*,, p i )  ( 13.105) 
2=1 

(b) The a posteriori state estimate is obtained by first executing the following 
measurement update equations for i = 1, - . . , M :  

Hk2 = ah./ 
dxk i;, 

Kk2 = p ~ H ~ ( H k 2 p ~ H ~  + & ) - I  

p; = p i  -KkzHkzPi 
2t2 = f Kkz [Yk - hk(2ii ,  o)] (13.106) 

The weighting coefficients akz for the individual estimates are obtained 
as follows: 
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( 13.107) 

Note that the weighting coefficient aka is computed by using the me& 
surement y k  to obtain the relative confidence P k z  of the estimate 2ii .  
The pdf of the a posteriori state estimate is obtained by the following 
sum: 

M 

pdf(2:) = akzN(g&, PL) ( 13.108) 
2=1 

This approach can also be extended to smoothing [Kit94]. Similar approaches 
can be taken to expand the pdf using non-Gaussian functions [Aok67, Sor68, Sri70, 
deF71, Hec71, Hec73, Mcr75, Wi181, Kit87, Kra881. A related filter has been derived 
for the case where either the process noise or the measurement noise is strictly 
Gaussian, but the other noise is Gaussian with heavy tails [Mas75, Tsa831. This 
is motivated by the observation that many instances of noise in nature have pdfs 
that are approximately Gaussian but with heavier tails [Mas77]. 

Another approach to nonlinear filtering is called grid-based filtering. In grid- 
based filtering, the value of the pdf of the state is approximated, stored, propagated, 
and updated at discrete points in state space [Buc69, Buc711; [Spa88, Chapter 61. 
This is similar to particle filtering (discussed in Chapter 15), except in particle 
filtering we choose the particles to be distributed in state space according to the 
pdf of the state. Grid-based filtering does not distribute the particles in this way, 
and hence has computational requirements that increase exponentially with the 
dimension of the state. Grid-based filtering is even more computationally expensive 
than particle filtering, and this has limited its application. Furthermore, particle 
filtering is a type of “intelligent” grid-based filtering. This seems to portend very 
little further work in grid-based filtering. 

Richard Bucy suggested yet another approach to nonlinear filtering [Buc65]. In- 
stead of linearizing the system dynamics, compute the theoretically optimal nonlin- 
ear filter, and then linearize the nonlinear filter. However, the theoretically optimal 
nonlinear filter is very difficult to compute except in special cases. 

13.4 PARAMETER ESTIMATION 

State estimation theory can be used to not only estimate the states of a system, 
but also to estimate the unknown parameters of a system. This may have first been 
suggested in [Kop63]. Suppose that we have a discretetime system model, but the 
system matrices depend in a nonlinear way on an unknown parameter vector p :  
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Z k f l  = F k ( p ) x k  -k G k ( P ) U k  f L k ( P ) w k  

Y k  = H k x k + v k  

p = unknown parameter vector (13.109) 

In this model, we are assuming that the measurement is independent of p ,  but this 
is only for notational convenience. The discussion here can easily be extended to 
include a dependence of Yk on p .  Assume that p is a constant parameter vector. 
We do not really care about estimating the state, but we are interested in esti- 
mating p .  This is the case, for example, in the aircraft engine health estimation 
problem [KobOS, Sim05aI. In those papers it was assumed that we want to estimate 
aircraft engine health (for the purpose of maintenance scheduling), but we do not 
really care about estimating the states of the engine. 

In order to estimate the parameter p ,  we first augment the state with the pa- 
rameter to obtain an augmented state vector x': 

x i  = [ ;; ] (13.110) 

If p k  is constant then we model pk+l  = p k + W p k ,  where W p k  is a small artificial noise 
term that allows the Kalman filter to change its estimate of p k .  Our augmented 
system model can be written as 

(13.11 1) 

Note that !(xi, U k ,  W k ,  W p k )  is a nonlinear function of the augmented state xi. 
We can therefore use an extended Kalman filter (or any other nonlinear filter) to 
estimate x i .  

EXAMPLE 13.4 

This example is taken from [Ste94]. Suppose we have a second-order system 
governed by the following equations: 

X I +  2<wnXl+ wnxl 2 = W ~ W  (13.112) 

where w, is the natural frequency of the system, < is the damping ratio, and 
the input w is zero-mean noise. A statespace model for this system can be 
written as 

(13.1 13) [5:] = [ -w: O -2<wn 
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Suppose that -2<wn is known, but 6 and wn are unknown. We want to  
estimate -wt. Suppose that both 21 and 2 2  are available for measurement. 
We define the known parameter as b; that is, b = -2Cwn. We define a new 
state element equal to the parameter that we want to  estimate. That is, 
53 = -wf. We then form a n  augmented system model as follows: 

(1 3.114) 

where w p  is an artificial noise term that we add to the system that allows 
the Kalman filter to  modify its estimate of 23 .  We can use an extended 
Kalman filter to estimate the augmented state. First we need to  find the 
partial derivative matrices: 

0 1  0 

9’,W;I 

0 1 0  

0 0 0  
= [ 23 b P I ]  

0 
= [ -;3 ;] 

The continuous-time extended Kalman filter can be written as 

(13.115) 

i’ - - f(2’, 0 )  + K(y  - HP’) 

K = PHTR-‘ 
P = F P  + PFT + LQLT - PHTR-‘HP (1 3.116) 

Figure 13.4 illustrates the results of a typical simulation of the extended 
Kalman filter that is used to  estimate -wi for this system. The true system 
parameters are wn = 2 and 6 = 0.1, so -w t  = -4. Suppose that we begin by 
estimating -w: as -8 with an initial estimation variance of 20. Figure 13.4 
shows that the error in our estimate of -w: gradually decreases toward zero, 
and the estimation variance gradually decreases. We set the variance of the 
artificial noise w p  equal to 0.1 in this example. This allows the Kalman filter 
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Figure 13.4 Example 13.4 results. Typical parameter estimation performance and 
parameter uncertainty for an extended Kalman filter estimating -uK for a second-order 
system. The estimation error of the unknown parameter and its variance gradually decrease 
toward zero. 

to more readily adjust its estimate of - w i ,  but also may prevent the filter 
from converging to the true value (see Problem 13.23). 

vvv 

13.5 SUMMARY 

Optimal state estimators can be derived for general classes of nonlinear systems as 
shown in [Kus67], but the filters are generally infinite dimensional, which makes 
them impractical for implementation. Finite-dimensional, optimal, nonlinear state 
estimators can be derived for more restricted classes of nonlinear systems [Liu80], 
but the restriction on the classes of applicable systems are significant enough to 
prevent wide applicability. Because of these factors, nonlinear Kalman filtering is 
the most widespread approach to state estimation for nonlinear systems. 

It is interesting to note that the first applications of Kalman filtering were on 
nonlinear orbit-estimation problems [Bat62]. Some early investigations in nonlinear 
Kalman filtering can be found in [Cox64, Fri661. Whereas stability and convergence 
results are readily available for the linear Kalman filter, such results are much more 
difficult to obtain for nonlinear Kalman filtering. Some convergence results for 
nonlinear Kalman filtering are found in [Urs80]. If the nonlinearities have known 
bounds then the Riccati equation can be modified in a simple way to guarantee 
stability for the continuous-time EKF [Rei98]. Conditions needed to guarantee 
the boundedness of the discrete-time EKF error covariance can be related to the 
observability of the underlying nonlinear system [Dez92, Son951. 
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PROBLEMS 

Written exercises 

13.1 Consider the scalar system 

x = - x+w 

y = x + v  

The process noise has a mean value of 2, and the measurement noise has a mean 
value of 3. Redefine the noise quantities and the state to obtain an equivalent 
system of the form 

X' = AX'+ Bu+w' 
y = CX'+ 0' 

so that the new noise quantities w' and v' both have mean values of 0. 

13.2 Consider the scalar system 

X = - x + u + w  

w is zero-mean process noise with a variance of Q. The control has a mean value 
of UO, an uncertainty of 2 (one standard deviation), and is uncorrelated with w. 
Rewrite the system equations to obtain an equivalent system with a normalized 
control that is perfectly known. What is the variance of the new process noise term 
in the transformed system equation? 

13.3 Suppose that x is a constant scalar, and yk  = fi(1 + V k )  are noisy mea- 
surements, where Vk N N(0,  R). 

a) An intuitive way to estimate x is to set z k  = y:. Compute the mean and 
variance of the estimation error for this estimate. Your answer should be 
a function of x and R. Hint: recall that E(vi)  = 0 and E(vi )  = 3R2. 

b) Perhaps a better estimate for X k  could be obtained by averaging all pre- 
vious values of y:. That is, 

Compute the mean and variance of the estimation error for this estimate. 
Your answer should be a function of k, x ,  and R. Note that if you substi- 
tute k = 1 into your solution, you should get the same answer as part (a). 
What is the variance as k + cm? 

c) Write the extended Kalman filter equations to estimate x. What is the 
theoretical mean and variance of the EKF estimate as k -+ cm? 

13.4 Consider the system 
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where W k  and Wk are uniformly distributed, uncorrelated, zero-mean white noise 
processes with variances Q and R ,  respectively. 

a) What is the mean of the a posteriori estimation error for the discrete EKF? 
b) Modify the measurement equation by subtracting the known bias of the 

measurement noise so that the modified measurement noise is zero-mean. 
What is the variance of the modified measurement noise? 

13.5 Consider the nonlinear system 

Find the nominal values for Xk and Yk when 20 = 0 and U k  = 1. 

13.6 + W k ,  where W k  is zero-mean. The initial 
state 20 is uniformly distributed between 0 and 1. An EKF is initialized with 
3;'; = E(z0). What is E(z l )?  What is 3;';? This problem illustrates the fact that 
the state estimate of an EKF is not always equal to the expected value of the state. 

13.7 Find the terminal velocity of the falling body of Example 13.2 if the terminal 
velocity occurs at an altitude of 1 mile. 

13.8 Consider the hybrid scalar system 

Consider the system 2 k + 1  = 

The estimator that is used for the system is 

Suppose that the state ~ ( t )  is normally distributed with a mean of zero and a 
variance of P,. 

a) Find an equation relating a, b, and c that must be satisfied in order for & 
to be an unbiased estimate of 2 ( t k )  [Ge174]. 

b) Find values of a, b, and c so that & is the minimum-variance estimate. 
Assume that h(z)  is an odd function of z. 

13.9 Suppose for a scalar system that Pc = 1, R = 1, and H = 3. What is the 
value of Pkf as given by Equation (5.19)? What will be the computed value of Pkf 
if H = 2 is used instead? What will be the computed value of Pk+ if H = 1 is 
used instead? This illustrates how the iterated Kalman filter gets a more accurate 
estimate of P: by using a more accurate value for H k .  

13.10 Consider a system with the measurement equation Yk = xi f Wk. At time k 
the a priori state estimate is 3;'; = 1, the true state is z k  = 5, and the measurement 
is Yk = 25. The a priori estimation-error variance is P; = 1, and the measurement 
noise variance is R k  = 4. Use the iterated EKF algorithm to find 2z,l and 3;'12. 
Although the iterated EKF does not always improve the a posteriori state estimate, 
this problem illustrates how it usually does. 

13.11 Prove Lemma 6 for scalar random variables z. 
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13.12 Suppose you have the process equation x = x2 + w and the state estimate 
2: = 0. What is the differential equation for propagating 2 to the next measure- 
ment time using the first-order EKF? What is the differential equation using the 
second-order EKF? 

13.13 Consider the measurement equation yk = xi + 'uk ,  where V k  N (0, R). 
Suppose that Pi = 1, and &, = 1 is unbiased. 

a) What is the expected value of 2: if the first-order EKF is used for the 
measurement update? Based on your expression for E(2:),  how does the 
bias of the state estimate change with R? Does this make intuitive sense? 

b) What is the expected value of 2: if the second-order EKF is used for the 
measurement update? 

13.14 Consider the system 

zk+l  = azk +wk,  wk (079 )  

Y k  = z k  +vk ,  wk (O,R) 

with unknown parameter a.  Suppose that an EKF is used to estimate the state 
Zk and the parameter a. Further suppose that the artificial noise term used in the 
estimation of a is zero, and the EKF converges to the correct value of a with zero 
variance. Show that the EKF in this situation is equivalent to the standard Kalman 
filter for the scalar system when a is known. 

Computer exercises 

13.15 Write a program that implements the moving average filter and the ex- 
tended Kalman filter for the system described in Problem 13.3. Use R = 1, x = 1, 
Po+ = 1, and 20 = 2. Which filter appears to perform better? 

13.16 A planar model for a satellite orbiting around the earth can be modeled 
as 

-a& e = -  
T 

where T is the distance of the satellite from the center of the earth, 8 is the angular 
position of the satellite in its orbit, G = 6.6742 x 10-11m3/kg/s2 is the universal 
gravitational constant, M = 5.98 x loz4 kg is the mass of the earth, and w N 

(0, low6) is random noise due to space debris, atmospheric drag, outgassing, and 

Write a state-space model for this system with X I  = T ,  xz = +, x3 = 8, 
and 2 4  = 8.. 
What must 9 be equal to in order for the orbit to have a constant radius 
when w = O? 
Linearize the model around the point T = T O ,  I: = 0, 8 = woT, 8 = wo. 
What are the eigenvalues of the system matrix for the linearized system 
when TO = 6.57 x lo6 m? What would you estimate to be the largest 
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integration step size that could be used to simulate the system? (Hint: 
recall that for a second-order transfer function with imaginary poles kja, 
the time constant is equal to l/a.) 

d) Suppose that measurements of the satellite radius and angular position are 
obtained every minute, with error standard deviations of 100 meters and 
0.1 radians, respectively. Simulate the linearized Kalman filter for three 
hours. Initialize the system with z(0) = [ TO 0 0 1 .1~0 1, 2(0) = 
z(O), and P(0) = diag(0,0,0,0). Plot the radius estimation error as a 
function of time. Why is the performance so poor? How could you modify 
the linearized Kalman filter to get better performance? 

e )  Implement an extended Kalman filter and plot the radius estimation er- 
ror as a function of time. How does the performance compare with the 
linearized Kalman filter? 

13.17 Implement the hybrid EKF with a measurement period of 0.1s for the 
system described in Example 13.1. Assume that the winding current measurement 
noises have a standard deviation of 0.1 amps. Create a table showing the experi- 
mental standard deviation of the motor velocity estimation error as a function of 
the standard deviation of the control input uncertainties 41 and 42. Use control in- 
put standard deviations from 0 to 0.1 volts in steps of 0.01 (i.e., oq = 0, oq = 0.01, 
. . ., gq = 0.1). In order to make a fair comparison, you should either run several 
simulations for each value of oq and average the results, or else initialize the ran- 
dom seed in your software so that each simulation runs with the same random noise 
history. 

13.18 Derive the first-order EKF, second-order EKF, and iterated EKF (with 
one iteration) for the scalar system 

z k + 1  = z i + w k  

'& = 5: +'Uk 

where 'Wk and V k  are independent zero-mean white noise terms with variances 0.1 
and 1, respectively. Simulate the first-order, second-order, and iterated extended 
Kalman filters for five time steps. Set the initial state to 1, the initial estimation- 
error variance to 1, and the initial state estimate to 2. Compute the RMS error of 
the filter estimates. How does the performance of the filters compare? (Note that 
you need more than one simulation, in general, to obtain a fair comparison of filter 
performance. ) 

13.19 Use the following procedure [Sor7lb] to approximate a uniform pdf that is 
defined on f l  with M Gaussian pdfs; that is, U(-1, 1) M CE1 azN(pr, 0:). 

0 Select the weighting coefficients so that a, = 1/M for all i. 

0 Select the means of the Gaussian pdfs to be equally spaced on the range 
[-1,1] with p,+1 - p, = 2 / ( M  + 1). 

0 Select the variances cri of the Gaussian pdfs to all be the same and to minimize 
the RMS difference between U(-1, 1) and xzl azN(pz, o,") over the range 
[-I, 11. 

The above approach reduces the approximation problem to a onedimensional opti- 
mization problem, which can be solved in a number of different ways (for example, 
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using the golden search method [Pre92]). Plot the true pdf and the approximate 
pdf for M = 3, 5, and 10, and compare the RMS errors. 

13.20 Suppose you have a scalar system given as 

X k + 1  = X k  

Yk  = ZE +2’k 

where V k  is white Gaussian noise with a variance of 0.01. The pdf of the initial 
state xo is uniform between -1 and +1. Note from the measurement equation that 
there is 

4 
b) 

13.21 

no way to distinguish between a positive state and a negative state. 
What will the extended Kalman filter estimate of the system be equal to? 
The pdf of xo can be approximated with two Gaussian pdfs, each with a 
variance of 0.43, and with respective means of -1/3 and +1/3. Suppose 
that xo = -1/2. Plot the true state and the individual state estimates of 
a two-term Gaussian sum filter for 20 time steps. Plot the Gaussian pdfs 
at the final time for each estimate of the two-term Gaussian sum filter. 

Consider the problem of tracking a moving vehicle in two dimensions (north 
is one dimension and east is the other dimension). The vehicle’s acceleration in the 
north and east directions consists of independent white noise. Two tracking sta- 
tions, located at north-east coordinates (N1, E l )  and (N2, E2), respectively, mea- 
sure the range to the vehicle. The system model can therefore be written as 

where nk and ek are the vehicle’s north and east coordinates at time step k, T 
is the time step of the system, wk is the zero-mean process noise, and vk is the 
zero-mean measurement noise. Suppose that the time step T = O.ls, the process 
noise covariance Q = diag(0, 0,4,4), and the measurement noise covariance R = 
diag(1,l). The tracking stations are located at ( N I ,  E l )  = (20,0), and (N2, E2) = 

(0,20). The initial state of the vehicle zo = [ 0 0 50 50 ] and is perfectly 
known. Design an extended Kalman filter to estimate the state of the vehicle. Run 
the simulation for 60 s. Plot the estimation error for the four states. What is the 
experimental standard deviation of the estimation error for each of the four states? 
Based on the steady-state covariance matrix of the filter, what is the theoretical 
standard deviation of the estimation error for each of the four states? 

13.22 Consider the system 

T 

where W k  - ( O , l ) ,  and $ = 0.9 is an unknown constant. Design an extended 
Kalman filter to estimate $. Simulate the filter for 100 time steps with zo = 1, 
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PO = I ,  20 = 0, and $0 = 0. Hand in your source code and a plot showing $ as a 
function of time. 

13.23 Simulate Example 13.4 with artificial parameter noise variance values 0; = 
0, 1, and 100. How does a change in the artificial parameter noise variance affect 
the filter’s estimate of -wi? 





CHAPTER 14 

The unscented Kalman filter 

We use the intuition that it is easier to approximate a probability distribution than it 
is to approximate an arbitrary nonlinear function or transformation. 

-Simon Julier, Jeffrey Uhlmann, and Hugh Durrant-Whyte [JulOO] 

As discussed earlier, the extended Kalman filter (EKF) is the most widely a p  
plied state estimation algorithm for nonlinear systems. However, the EKF can be 
difficult to tune and often gives unreliable estimates if the system nonlinearities are 
severe. This is because the EKF relies on linearization to propagate the mean and 
covariance of the state. This chapter discusses the unscented Kalman filter (UKF), 
an extension of the Kalman filter that reduces the linearization errors of the EKF. 
The use of the UKF can provide significant improvement over the EKF. 

First, we will take a diversion from filtering in Section 14.1 to investigate how 
means and covariances propagate in nonlinear equations. In Section 14.2, we will 
present the unscented transformation, which is a way to approximate how the mean 
and covariance of a random variable change when the random variable undergoes 
a nonlinear transformation. In Section 14.3, we will use the previous results to 
derive the UKF and show that it has less linearization error than the EKF. In 
Section 14.4, we will present some modifications of the standard UKF which can 
be used to obtain more accurate or faster filtering results. 

Optimal State Estimation, First Edition. By Dan J. Simon 
ISBN 0471708585 @ZOOS John Wiley & Sons, Inc. 
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14.1 MEANS AND COVARIANCES OF NONLINEAR 
TRANSFORMATIONS 

In this section, we will show how linearization approximations can result in errors 
in the transformation of means and covariances when a random variable is operated 
on by a nonlinear function. This section does not really have anything to do directly 
with state estimation, Kalman filtering, or the UKF. However, this section provides 
some background that will allow us to develop the UKF later in this chapter. This 
section will also give us a more complete background to understand the type of 
problems that can arise in the EKF (which relies on linearization). 

Consider the nonlinear transformation 

y1 = rcose 
y2 = rsin8 (14.1) 

This is a standard polar-to-rectangular coordinate transformation. For instance, we 
might have a sensor that measures range r and angle 8, and we want to convert the 
measured data to rectangular coordinates y1 and y2. The coordinate transformation 
can be written more generally as 

Y = h(x) (14.2) 

where y is the two-element output of h(z) ,  and the two-element vector 5 is defined 
as 

x =  [ 4 (14.3) 

Suppose that 51 (which is the range r )  is a random variable with a mean of 1 and 
a standard deviation of uT. Suppose that 52 (which is the angle 8) is a random 
variable with a mean of 7r/2 and a standard deviation of go.  In other words, the 
means of the components of 5 are given as F = 1 and s = ~ / 2 .  In addition, we will 
assume that r and 8 are independent, and that their probability density functions 
are symmetric around their means (for example, Gaussian or uniform). 

14.1.1 The mean of a nonlinear transformation 

An initial consideration of the above problem, along with Equation (14.1), would 
lead us to believe that y1 has a mean of 0, and y2 has a mean of 1. In addition, a 
linearization approach would lead us to the same conclusion. If we perform a first- 
order linearization of Equation (14.2) and take the expected value of both sides, we 
obtain 

M E h(Z) + - (Z -2)  [ ::Iz 1 
= h(Z) 

r o i  (14.4) 
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Our intuition, along with a first-order linearization analysis, both lead us to the 
same conclusion. However, let us pursue this problem with more rigor to check our 
previous analysis. We can write T and 6' as 

T = P + 7  

e = 8 + B  (14.5) 

where ? and e' are simply the deviations of T and 6 from their means. A rigorous 
analysis of the mean of y1 can be performed as follows: 

g, = E(Tcose) 

= E [(S + 7) cos(8 + e')] 

(14.6) 1 = E [ (F + (cos ~ c o s  8 - sin 8 sin 8) 

Carrying out the multiplication, remembering that ? and e' are independent with 
symmetric pdfs, and taking the expected value, results in 

g1 = Scos8 

= o  (14.7) 

Our intuition and our first-order approximation of 81 have been confirmed by rig- 
orous analysis. Let us repeat the process for y2: 

fjz = E(rsin8) 

= E [ (F + 7) sin($ + B ) ]  

= E [ ( ~ + f ) ( s i n ~ c o s e +  cos~sine')] (14.8) 

Carrying out the multiplication, remembering that 7 and 8 are independent with 
symmetric pdfs, and taking the expected value, results in 

8 2  = fsinBE(cos8) 
= E(cos e') (14.9) 

We cannot go any further unless we assume some distribution for e, so let us assume 
that e' is uniformly distributed between &Om. In that case, we can compute 

&2 = E(cos8) 
sin 0, 

em 
- - -  (14.10) 

We expected to get 1 for our answer in confirmation of Equation (14.4), but instead 
we got some number that is less than 1. [Note that (sinOm)/Om < 1 for all 8, > 0, 
and lirq,,-,~(sinO,)/8, = 1.1 The analysis reveals a problem with our initial 
intuition and the first-order linearization that we performed earlier. The mean of 
yz will indeed be less than 1. This can be seen by looking at a plot of 300 randomly 
generated T and 6' values, where 7 is uniformly distributed between +0.01, and e' is 
uniformly distributed between f0.35 radians. The small variance of F and the large 
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Figure 14. 
uniformly distributed between f O . O 1  and 6 uniformly distributed between f0.35 radians. 

Linearized and nonlinear mean of 300 randomly generate, points with F 

variance of 8 result in an arc-shaped distribution of points as seen in Figure 14.1. 
This arc-shaped distribution results in g2 < 1. 

This is not a Kalman filtering example. But since the EKF uses first-order 
linearization to update the mean of the state, this example shows the kind of error 
that can creep into the EKF when it is applied to a nonlinear system. 

For a more general analysis of the mean of a nonlinear transformation, recall 
from Equation (1.89) that y = h(z)  can be expanded in a Taylor series around 2 
as follows: 

where 9 = x - 2.  The mean of y can therefore be expanded as 

By using Dzh from Equation (1.88) we can see that 

(14.11) 

(14.12) 

= o  (1 4.13) 
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because E(Za) = 0. Likewise, we can see that 

= o  (14.14) 

This is because the sum in the above equation consists only of third-order moments 
[E(Z;), E ( Z ? Z 2 ) ,  etc.]. These expected values will always be zero as shown at the 
end of Section 2.2. Similarly all of the odd terms in Equation (14.12) will be zero, 
which leads to the simplification 

1 1 
2! 4! 

g = h(z)  + -E[D2h] + -E[D$h] + - * * (14.15) 

This shows why the mean calculation in Equation (14.4) was incorrect; that cal- 
culation was only correct up to the first order. If we approximate g for our 
polar-tc-rectangular transformation using terms up to the second order from Equa- 
tion (14.15), we obtain 

1 
2! 

g M h(3) + - E [ D 3 ]  

= [ ;]+y:[ 1 - 1 1  0 

We therefore obtain 

E(82) = I - -  
2 

(14.16) 

( 14.17) 

Note that we found the exact value of g 2  in Equation (14.9) to be equal to E(cos 8). 
The approximate expression found in Equation (14.17) is the first two nonzero 
terms of the Taylor series expansion of E(cos 8). 

14.1.2 The covariance of a nonlinear transformation 

Now we turn our attention to the covariance of a random variable that undergoes 
a nonlinear transformation. The covariance of y is given as 

p, = E [(Y - B)(Y - g)'] (14.18) 
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We can use Equations (14.11) and (14.15) to write (y - g )  as 

y - g  = [h(Z)+D&+-D;h+. . .  1 
2! 

1 1 
= DZh + -D;h 1 + * * ] - [ i E ( D Z h )  + z E ( D i h )  + a * .  (14.19) 

1 [h(b)  + g E ( D $ h )  1 + z E ( D : h )  1 + - * a  

[ 2! 

We substitute this expression into Equation (14.18) and use the same type of rea- 
soning as in the previous section to see that all of the odd-powered terms in the 
expected value evaluate to zero (assuming that Z is zero-mean with a symmetric 
pdf). This results in 

Pv = E [ D s h ( D ~ h ) ~ ]  + 

E ( 2 $ ) E ( $ )  T +...  

The first term on the right side of the above equation can be written as 

(14.20) 

(14.21) 

where the partial derivative vector HZ and the expected value P,j are defined by 
the above equation. Recall from Equation (1.16) that an equation in this form can 
be written as 

dh  dhT 
E[D&(D&)T] = 

= H P H ~  (14.22) 

where the partial derivative matrix H and the covariance matrix P are defined by 
the above equation. H, in Equation (14.21) is the ith column of H ,  and P,j in Equ& 
tion (14.21) is the element in the ith row and j t h  column of P = E ( Z Z T ) .  We can 
use this in Equation (14.20) to write the covariance of a nonlinear transformation 
y = h(x)  as follows: 
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+ + 
2!2! 

P, = H P H ~ + E  

T 
,IJ($).($) +... (14.23) 

This is the complete Taylor series expansion for the covariance of a nonlinear trans- 
formation. 

In the EKF, we use only the first term of this expansion to approximate the 
covariance of the estimation error. For example, if the measurement y = h(x) + TJ 
then we see from Equation (10.98) that the covariance of y is approximated as 
Pa, = HPxHT + R, where H is the partial derivative of h with respect to x, and R 
is the covariance of ?I. Likewise, if the state propagates as xk+l = f(xk) + Wk then 
we see from Equation (10.100) that the covariance of x is approximately updated 
as P i  = FPz-_,FT +&, where F is the partial derivative of f(x) with respect to x, 
and Q is the covariance of Wk. However, these covariance approximations can result 
in significant errors if the underlying functions h(x) and f(x) are highly nonlinear. 

For example, consider the nonlinear transformation introduced at the begin- 
ning of this section. A linear covariance approximation would indicate that P, M 
HPxHT, where H and Px are given as 

= [; -:] 
p, = E ( [ ' - t ] [  e - e  . . . I T )  

This gives P, as follows. 

P, H P , H ~  

(14.24) 

(14.25) 

This is an approximation of P,. However, a more rigorous analysis of P, can be 
conducted using Equations (14.1), (14.7), and (14.10): 

p, = E [(Y - f N Y  - g)'] (14.26) 

TcOse ) ( 
= ,IJ [ ( T sin 6 - (sin e,)/e, 

1 T~ cos2 e 
T~ cos e sin e - T cos O(sin e,)/e, 

r2cosesine - ~cos~(sine,)/e, 
(rsine - (sin6,)/em)2 

= E [  
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We again use our assumption that P and 8 are independent, T is uniformly dis- 
tributed with a mean of 1 and a standard deviation of ur, and 8 = 7~/2 + 8, with 8 
uniformly distributed between 44,. We can therefore compute 

E(P2) = 1 +u; 

' .:'. . ' 

- 

- 

- 

- 

* .  ''i.*. nonlinear % . *:: 
covariance *:;: 

1 *. - * 

1 - E(c0s 28) 
2 

E(cos28) = 

sin 28, 
E(cos26) = - 

28, 
E(sin8) = ~ ( c o s 8 )  

sin 8, - - -  
ern 

We can use these expressions in Equation (14.26) to compute 

(14.27) 

1 ;(I + u,2)(1- sin28,/20,) 0 
0 ;(I + c;)(I + sin28,/28,) - sin2 e,/O$ 

(14.28) 
This matrix defines a two-dimensional ellipse, where Pv(l, 1) specifies the square 
of the y1 axis length, and Pv(2, 2) specifies the square of the y2 axis length. Fig- 
ure 14.2 shows the linearized covariance defined by Equation (14.25), and the exact 
covariance defined by Equation (14.28). The linearized covariance is centered at 
the linearized mean, and the exact covariance is centered around at the exact mean. 
It can be seen that the linearized covariance is not a vew good approximation to 
the exact 

0.93 
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

Y l  

Figure 14.2 Linearized and nonlinear mean and covariance of 300 randomly generated 
points with F uniformly distributed between f O . O 1  and 6 uniformly distributed between 
h0.35 radians. 

This is not a Kalman filtering example. But since the EKF uses first-order 
linearization to update the covariance of the state, this example shows the kind of 
error that can creep into the EKF when it is applied to a nonlinear system. 
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14.2 U N S C E N T E D TRANS FO R M AT I 0 N S 

The problem with nonlinear systems is that it is difficult to transform a probability 
density function through a general nonlinear function. In the previous section, we 
were able to obtain exact nonlinear transformations of the mean and covariance, 
but only for a simple two-dimensional transformation. The extended Kalman filter 
works on the principle that a linearized transformation of means and covariances 
is approximately equal to the true nonlinear transformation, but we saw in the 
previous section that the approximation could be unsatisfactory. 

An unscented transformation is based on two fundamental principles. First, it is 
easy to perform a nonlinear transformation on a single point (rather than an entire 
pdf). Second, it is not too hard to find a set of individual points in state space 
whose sample pdf approximates the true pdf of a state vector. 

Taking these two ideas together, suppose that we know the mean Z and covari- 
ance P of a vector x. We then find a set of deterministic vectors called sigma points 
whose ensemble mean and covariance are equal to Z and P. We next apply our 
known nonlinear function y = h(x)  to each deterministic vector to obtain trans- 
formed vectors. The ensemble mean and covariance of the transformed vectors will 
give a good estimate of the true mean and covariance of y. This is the key to the 
unscented transformation. 

As an example, suppose that x is an n x 1 vector that is transformed by a 
nonlinear function y = h(x). Choose 2n sigma points di) as follows: 

(14.29) 

where a is the matrix square root of nP such that = nP, and 
(a)i is the ith row of @.l In the next couple of subsections, we will see how 
the ensemble mean of the above sigma points can be used to approximate the mean 
and covariance of a nonlinearly transformed vector. 

14.2.1 Mean approxi mat ion 

Suppose that we have a vector x with a known mean Z and covariance P, a non- 
linear function y = h(z) ,  and we want to approximate the mean of y. We propose 
transforming each individual sigma point of Equation (14.29) using the nonlinear 
function h(.), and then taking the weighted sum of the transformed sigma points to 
approximate the mean of y. The transformed sigma points are computed as follows: 

'MATLAB'S Cholesky factorization routine CHOL can be used to  find a matrix square root. See 
Section 6.3.1, but note the slight difference between the matrix square root definition used in that 
section and here. 
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The true mean of y is denoted as ji. The approximated mean of y is denoted as gu 
and is computed as follows: 

jiu = c w(i)y(i) (14.31) 
2n 

2=1  

The weighting coefficients W ( i )  are defined as follows: 

Equation (14.31) can therefore be written aa 

(14.33) 

Now let's compute the value of gu to see how well it matches the true mean of y. 
To do this we first use Equation (1.89) to expand each in Equation (14.33) in 
a Taylor series around 2. This results in 

(14.34) 

Now notice that for any integer k 2 0 we have 

= o  (14.35) 

because from Equation (14.29) Z(j) = -Z(n+j) ( j  = 1, a ' ,  n). Therefore, all of the 
odd terms in Equation (14.34) evaluate to zero and we have 

(14.36) 
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Now look at the second term on the right side of the above equation: 

where we have again used the fact from Equation (14.29) that dk)  = -5(kSn) 
(k = l , . . . , n )  . Substitute for 5:') and 55") from Equation (14.29) in the above 
equation to obtain 

Equation (14.36) can therefore be written as 

(14.39) 

Now recall that the true mean of y is given by Equation (14.15) as 

1 1 
= h(Z)+ -E[D;h] + -E [Dih] + a * -  (14.40) 

Look at the second term on the right side of the above equation. It can be written 
as follows: 

2! 4! 

1 -E[D;h] 2! = A E  2! [(eii&) z=1 h(x)l X=Z 

2 
1 
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We therefore see that gj can be written from Equation (14.40) as 

(14.41) 

(14.42) 

Comparing this with Equation (14.39) we see that B, (the approximated mean of 
y) matches the true mean of y correctly up to the third order, whereas linearization 
only matches the true mean of y up to the first order (see Section 14.1.1). If we 
compute B, using Equations (14.29), (14.30), and (14.33), then the value of fj, will 
match the true mean of y up to the third order. The biggest difficulty with this 
algorithm is the matrix square root that is required in Equation (14.29). But the 
unscented transformation has the computational advantage that the linearization 
matrix H does not need to be computed. Of course, the greatest advantage of the 
unscented transformation (relative to linearization) is the increased accuracy of the 
mean transformation. 

14.2.2 Covariance approximation 

Now suppose that we want to approximate the covariance of the nonlinearly trans- 
formed vector x. That is, we have an n-element vector x with known mean 5 and 
covariance P,  and we have a known nonlinear function y = h(x) .  We want to esti- 
mate the covariance of y. We will denote the estimate as P,, and we propose using 
the following equation: 

1 2n 
= - C(y" - y,)(y(i) - 

a=1 
2n 

where the y(i) vectors are the transformed sigma points that 
Equation (14.30), and the weighting coefficients are the same as those given in 
Equation (14.32). Expanding this approximation using Equations (1.89) and (14.36) 
gives the following: 

(14.43) 

were computed in 

T 1 2n 
pu = - 

2n [h(x(')) - 2/11] [h(z( i ) )  - 4 
2=1 

(14.44) 
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Multiplying this equation out gives 

I ( C D ; ( j ) h ) ( . . . ) T -  [-&i)h(cD;(j)h)T] - [ . . . I T +  
j 3 

471.2 

plz(4h(;D;(j)h)T] + [...I T + . . . }  (14.46) 

Some of the terms in the above equation are zero as noted above because di) = 
-idz+n) for i = 1,. . e ,  n .  So the covariance approximation can be written as 

. 2n 

( 14.47) 

where HOT means higher-order terms (i.e., terms to the fourth power and higher). 
Expanding this equation for Pu while neglecting the higher order terms gives 

(14.48) 

Now recall that 5;) = -5:'") and Zf) = -53i+n) for i = 1, - - -, n. Therefore, the 
covariance approximation becomes 

T 

j , k = l  

= H P H ~  (14.49) 

where the last equality comes from Equation (14.22). Comparing this equation for 
Pu with the true covariance of y from Equation (14.23), we see that Equation (14.43) 
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approximates the true covariance of y up to the third order (i.e., only terms to the 
fourth and higher powers are incorrect). This is the same approximation order as 
the linearization method, as seen on page 439. However, we would intuitively expect 
the magnitude of the error of the unscented approximation in Equation (14.43) to 
be smaller than the linear approximation HPHT, because the unscented approx- 
imation at least contains correctly signed terms to the fourth power and higher, 
whereas the linear approximation does not contain any terms other than HPHT. 

The unscented transformation can be summarized as follows. 

The unscented transformation 

1. We begin with an n-element vector z with known mean 2 and covariance P. 
Given a known nonlinear transformation y = h(z) ,  we want to estimate the 
mean and covariance of y, denoted as g, and P,. 

2. Form 2n sigma point vectors di) as follows: 

(14.50) 

where a is the matrix square root of n P  such that (a)Ta = nP ,  
and (a), is the ith row of a. 

3. Transform the sigma points as follows: 

y(i) = h(z(i)) i = 1,. . . ,2n (14.51) 

4. Approximate the mean and covariance of y as follows: 

1 2n T 

2n 
P, = - C (y(i) - yu) (p - yu) 

EXAMPLE 14.1 

(14.52) 

To illustrate the unscented transformation, consider the nonlinear transfor- 
mation shown in Equation (14.1). Since there are two independent variables 
(T and O ) ,  we have n = 2. The covariance of P is given as P = diag(o:, o,"). 
Equation (14.32) shows that W(i)  = 1/4 for i = 1,2,3,4. Equation (14.29) 
shows that the sigma points are determined as 
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(14.53) 

Computing the nonlinearly transformed sigma points y(*) = h ( d i ) )  gives 

Now we can compute the unscented approximation of the mean and covariance 
of y = h(x) &s 

4 

i=l 

(14.55) 

The results of these transformations are shown in Figure 14.3. This shows 
the improved accuracy of mean and covariance estimation when unscented 
transformations are used. instead of linear approximations. The true mean 
and the approximate unscented mean are so close that they are plotted on 
top of each other. The true mean and the approximate unscented mean are 
both equal to (0,0.9797) to four significant digits. 

vvv 

14.3 UNSCENTED KALMAN FILTERING 

The unscented transformation developed in the previous section can be generalized 
to give the unscented Kalman filter. After all, the Kalman filter algorithm attempts 
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Figure 14.3 A comparison of the exact, linearized, and 
unscented mean and covariance of 300 randomly generated points with f uniformly 
distributed between fO.O1 and 6 uniformly distributed between f0.35 radians. 

Results of Example 14.1. 

to propagate the mean and covariance of a system using a time-update and a 
measurement update. If the system is linear, then the mean and covariance can 
be exactly updated with the Kalman filter (Chapter 5). If the system is nonlinear, 
then the mean and covariance can be approximately updated with the extended 
Kalman filter (Section 13.2). However, the EKF is based on linearization, and the 
previous section showed that unscented transformations are more accurate than 
linearization for propagating means and covariances. Therefore, we simply replace 
the EKF equations with unscented transformations to obtain the UKF algorithm. 
The UKF algorithm can be summarized as follows. 

The unscented Kalman filter 

1. We have an n-state discretetime nonlinear system given by 

(14.56) 

2. The UKF is initialized as follows. 

a,+ = E(z0) 
Po+ = E [(zo - a$)(zo - 5 0  -+ ) T ] (1 4.57) 

3. The following time update equations are used to propagate the state estimate 
and covariance from one measurement time to the next. 
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(a) To propagate from time step (k - 1) to k, first choose sigma points 
zfi, as specified in Equation (14.29), with appropriate changes since 
the current best guess for the mean and covariance of Z k  are 2$-, and 

+ 
pk- 1: 

7 2n -(i) - 2 t - , + z ( i )  i = 1, . . .  
x k - l  - 

d i )  = (&qT i = l , - - - , n  

z (n+ i )  - - -(&qT i = l , . . -  , n  

a 

(1 4.58) 

(b) Use the known nonlinear system equation f(.) to transform the sigma 
points into 2t) vectors as shown in Equation (14.30), with appropriate 
changes since our nonlinear transformation is f(.) rather than h(.): 

2:) = f(2rL1, ?Jk, t k )  

i 

(14.59) 

(c) Combine the 2:) vectors to obtain the a priori  state estimate at time k. 
This is based on Equation (14.33): 

(14.60) 

(d) Estimate the a priori error covariance as shown in Equation (14.43). 
However, we should add Qk-1  to the end of the equation to take the 
process noise into account: 

4. Now that the time update equations are done, we implement the measurement- 

(a) Choose sigma points xt) as specified in Equation (14.29), with appro- 
priate changes since the current best guess for the mean and covariance 
of Xk are 2; and P;: 

update equations. 

2; + ?(i) i = 1 , .  . . 7 2n = 
k 

d i )  = (*)T i =  1, . . .  , n  
z 

z.(n+i) - - - (e)T i = l , . . . , n  (14.62) 

This step can be omitted if desired. That is, instead of generating new 
sigma points we can reuse the sigma points that were obtained from the 
time update. This will save computational effort if we are willing to 
sacrifice performance. 

2 
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(b) Use the known nonlinear measurement equation h(.) to transform the 
sigma points into 6:’ vectors (predicted measurements) as shown in 
Equation (14.30): 

y k  -(i) = h ( q ,  t )  (14.63) 

(c) Combine the of) vectors to obtain the predicted measurement at time 
k, This is based on Equation (14.33): 

(14.64) 

(d) Estimate the covariance of the predicted measurement as shown in Equa- 
tion (14.43). However, we should add R k  to the end of the equation to 
take the measurement noise into account: 

(e) Estimate the cross covariance between 2; and g k  based on Equation (14.43): 

( f )  The measurement update of the state estimate can be performed using 
the normal Kalman filter equations as shown in Equation (10.100): 

The algorithm above assumes that the process and measurement equations are 
linear with respect to the noise, as shown in Equation (14.56). In general, the 
process and measurement equations may have noise that enters the process and 
measurement equations nonlinearly. That is, 

In this case, the UKF algorithm presented above is not rigorous because it treats the 
noise as additive, as seen in Equations (14.61) and (14.65). To handle this situation, 
we can augment the noise onto the state vector as shown in [Ju104, WanOl]: 

(14.69) 
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Then we can use the UKF to estimate the augmented state zt ' .  The UKF is 
initialized as 

2;+ = [ E!o'] 

E [(zo - ~O)(ZO - 20)~] 0 
0 Qo :] ( 14.70) 

Then we use the UKF algorithm presented above, except that we are estimating the 
augmented mean and covariance, so we remove Q k - 1  and Rk from Equations (14.61) 
and (14.65). 

[ 0 0 Ro 
Po"+ = 

EXAMPLE 14.2 

Suppose we are trying to estimate the altitude 21, velocity 2 2 ,  and constant 
ballistic coefficient 2 3  of a body as it falls toward earth. A range measur- 
ing device is located at an altitude a and the horizontal range between the 
measuring device and the body is M .  This system is the same as the one in 
Example 13.3. The equations for this system are 

x, = Q + W l  

2 2  = po exp(-z1/k)z$c3/2 - g + w2 

x 3  = w3 

~ ( t k )  = J M 2  + ( ~ i ( t k )  - a)2 + V ~ C  (14.71) 

As usual, wi is the noise that affects the ith process equation, and v is the 
measurement noise. po is the air density at sea level, k is a constant that 
defines the relationship between air density and altitude, and g is the accel- 
eration due to gravity. We will use the continuous-time system equations to 
simulate the system, and suppose that we obtain range measurements every 
0.5 seconds. The constants that we will use are given as 

= 2 1b+~2/ft4 
g = 32.2 ft/sec2 

k = 20,oooft 

E[v;] = 10,000 ft2 
E[wf(t)] = 0 i = 1,2,3 

M = 100,OOOft 

a = 100,000ft (14.72) 

The initial conditions of the system and the estimator are given as 

20 = [ 300,000 -20,000 0.001 1' 
2: = 20 

P,s = 
10 O 1  

0 

0 
4,000,000 0 (14.73) 
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We use rectangular integration with a step size of 1 msec to simulate the 
system, the extended Kalman filter, and the unscented Kalman filter for 30 
seconds. Figure 14.4 shows the altitude and velocity of the falling body. 
For the first few seconds, the velocity is constant. But then the air density 
increases and drag slows the falling object. Toward the end of the simulation, 
the object has reached a constant terminal velocity as the acceleration due to 
gravity is canceled by drag. 

Figure 14.5 shows typical EKF and UKF estimation-error magnitudes for 
this system. It is seen that the altitude and velocity estimates both spike 
around 10 seconds, at which point the altitude of the measuring device and 
the falling body are about the same, so the measurement gives less information 
about the body's altitude and velocity. It is seen from the figure that the UKF 
consistently gives estimates that are one or two orders of magnitude better 
than the EKF. 

"0 5 10 15 20 25 30 

I 
0 5 10 15 20 25 30 

Seconds 

-3' 

Figure 14.4 Altitude and velocity of a falling body for Example 14.2. 

vvv 

14.4 OTHER UNSCENTED TRANSFORMATIONS 

The unscented transformation discussed in the previous section is not the only one 
that exists. In this section, we discuss several other possible transformations. These 
other transformations can be used if we have some information about the statistics 
of the noise, or if we are interested in computational savings. 

14.4.1 General unscented transformations 

We have seen that an accurate mean and covariance approximation for a nonlinear 
transformation y = h(z)  can be obtained by choosing 2n sigma points (where n is 
the dimension of z) as given in Equation (14.29), and approximating the mean and 
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1 o4 
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- Kalman filter 
Unscented filter 
. .. .,.*,II. ..., t ’ * r * . .  .. .. 

10’ I I 

Seconds 

Figure 14.5 
altitude, velocity, and ballistic coefficient of a falling body for Example 14.2. 

Kalman filter and unscented filter estimation-error magnitudes of the 

covariance as given in Equations (14.33) and (14.43). However, it can be shown 
that the same order of mean and covariance estimation accuracy can be obtained 
by choosing (2n + 1) sigma points di) as follows: 

The (271 + 1) weighting coefficients are given as 

n 
w(0) = - 

n + n  

The unscented mean and covariance approximations are computed as 

2n 

2=0 

( 14.74) 

(14.75) 

(14.76) 

It can be seen that if n = 0 then these definitions reduce to the quantities given in 
Section 14.2. Any n value can be used [as long as (n + n) # 01 and will give a mean 
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and covariance estimation accuracy with the same order of accuracy as derived in 
Section 14.2. However, IE can be used to reduce the higher-order errors of the mean 
and covariance approximation. For example, if z is Gaussian then IC = 3 - n will 
minimize some of the errors in the fourth-order terms in the mean and covariance 
approximation [ Ju100, Ju1041. 

14.4.2 The simplex unscented transformation 

If computational effort is a primary consideration, then a minimum number of 
sigma points can be chosen to give the order of estimation accuracy derived in the 
previous section. It can be shown [JulO2a, Ju1041 that if z has n elements then the 
minimum number of sigma points that gives the order of estimation accuracy of the 
previous section is equal to (n  + 1). These sigma points are called simplex sigma 
points. The following algorithm results in (n + 2) sigma points, but the number 
can be reduced to (n + 1) by choosing one of the weights to be zero. The simplex 
sigm&point algorithm can be summarized as follows. 

The simplex sigma-point algorithm 

1. Choose the weight W(O) E [0, 1). The choice of W(O) affects only the fourth 
and higher order moments of the set of sigma points [JulOO, Jul02al. 

2. Choose the rest of the weights as follows: 

3. Initialize the following one-element vectors: 

(14.77) 

(14.78) 

4. Recursively expand the o vectors by performing the following steps for j = 
2 , .  , n: 

(14.79) 

where O j  is the column vector containing j zeros. 
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5.  After the above recursion is complete we have the n-element vectors ~ 7 : ~ )  (i = 
0,. , n + 1). We modify the unscented transformation of Equation (14.29) 
and obtain the sigma points for the unscented transformation as follows: 

Ji) = 3 + f l a y  (i = 0, * * ,  n + 1) (14.80) 

We actually have (n + 2) sigma points instead of the (n  + 1) sigma points 
as we claimed, but if we choose W(O) = 0 then the do) sigma point can 
be ignored in the ensuing unscented transformation. The unscented Kalman 
filter algorithm in Section 14.3 is then modified in the obvious way based on 
this minimal set of sigma points. 

The problem with the simplex UKF is that the ratio of W(n) t o  W(l) is equal to  
2n-2 , where n is the dimension of the state vector x. As the dimension of the state 
increases, this ratio increases and can quickly cause numerical problems. The only 
reason for using the simplex UKF is the computational savings, and computational 
savings is an issue only for problems of high dimension (in general). This makes the 
simplex UKF of limited utility and leads to the spherical unscented transformation 
in the following section. 

14.4.3 The spherical unscented transformation 

The unscented transformation discussed in Section 14.2 is numerically stable. How- 
ever, it requires 2n sigma points and may be too computationally expensive for some 
applications. The simplex unscented transformation discussed in Section 14.4.2 is 
the cheapest computational unscented transformation but loses numerical stability 
for problems with a moderately large number of dimensions. The spherical un- 
scented transformation was developed with the goal of rearranging the sigma points 
of the simplex algorithm in order to obtain better numerical stability [Ju103, Ju1041. 
The spherical sigma points are chosen with the following algorithm. 

The spherical sigma-point algorithm 

1. Choose the weight W(O) E [0,1). The choice of W(O) affects only the fourth- 
and higher-order moments of the set of sigma points [JulOO, Jul02al. 

2. Choose the rest of the weights as follows: 

(14.81) 

Note that (in contrast to the simplex unscented transformation) all of the 
weights are identical except for W(O). 

3. Initialize the following oneelement vectors: 

(14.82) 



456 THE UNSCENTED KALMAN FILTER 

4. Recursively expand the Q vectors by performing the following steps for j = 
2. - - . , n: 

( 14.83) 

where 0, is the column vector containing j zeros. 

5. After the above recursion is complete, we have the n-element vectors Q!"' 
(i = 0, . . , n + 1). As with the simplex sigma points, we actually have (n + 2) 
sigma points above, but if we choose W(O) = 0 then the do) sigma point 
can be ignored in the ensuing unscented transformation. We modify the 
unscented transformation of Equation (14.29) and obtain the sigma points 
for the unscented transformation as follows: 

(14.84) 

The unscented Kalman filter algorithm in Section 14.3 is then modified in the 
obvious way based on this set of sigma points. 

The ratio of the largest element of Q:") to the smallest element is 

(14.85) 

so numerical problems should not be an issue for the spherical unscented transfor- 
mation. 

EXAMPLE 14.3 

Here we consider the falling-body system described in Example 14.2. The 
initial conditions of the system and the estimator are given as 

20 = [ 300,000 -20,000 1/1000 3' 
2; = [ 303,000 -20,200 1/1010 1' 

(14.86) 
0 1/10,000 : I  Po+ = [ ; 2,000 

30,000 0 

We ran 100 Monte Carlo simulations, each with a 60 s simulation time. The 
average RMS estimation errors of the EKF, standard UKF (six sigma points), 
simplex UKF (four sigma points since we chose W(O) = 0), and spherical UKF 
(four sigma points since we chose W(O) = 0) are given in Table 14.1. The 
simplex UKF performs best for altitude estimation, with the standard UKF 
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not far behind. The standard UKF performs best for velocity estimation, and 
the spherical UKF performs best for ballistic coefficient estimation. The EKF 
is generally the worst performing of the four state estimators. 

Table 14.1 
standard unscented Kalman filter with 2n sigma points, and the spherical unscented 
Kalman filter with (n + 1) sigma points. The standard UKF generally performs best. 
The spherical UKF performance and computational effort lie between those of the 
EKF and the standard UKF. 

Example 14.3 estimation errors for the extended Kalman filter, the 

Altitude Velocity Ballistic Coefficient Reciprocal 

EKF 615 173 11.6 
UKF 460 112 7.5 
Simplex UKF 449 266 80.8 
Spherical UKF 578 142 0.4 

vvv 

14.5 SUMMARY 

The unscented filter can give greatly improved estimation performance (compared 
with the extended Kalman filter) for nonlinear systems. In addition, the EKF re- 
quires the computation of Jacobians (partial derivative matrices), and the UKF 
does not use Jacobians. For systems with analytic process and measurement equ& 
tions (such as Example 14.2), it is easy to compute Jacobians. But some systems 
are not given in analytical form and it is numerically difficult to compute Jacobians. 

The UKF was first published in 1995 [Ju195] and since then has been expounded 
upon in many publications.2 Although the UKF is a relatively recent development, 
it is rapidly finding applications in such areas as aircraft engine health estima- 
tion [Dew03], aircraft model estimation [CamOl], neural network training [WanOl], 
financial forecasting [WanOl], and motor state estimation [Aki03]. In addition, just 
as in the Kalman filter, the UKF can be implemented in a square root form to 
effectively increase numerical precision [VanOl, WanOl]. Note that a filter based 
on polynomial approximations of nonlinear functions is presented in [NorOO], and 
it seems that the UKF is a special case of this filter. 

There is a lot of room for development in the area of unscented filtering. A glance 
through this book’s table of contents shows many specialized topics that have been 
applied to Kalman and H, filtering, revealing a rich source of research topics for 
unscented filtering. These include UKF stability properties, constrained unscented 
filtering, unscented smoothing, reduced-order unscented filtering, robust unscented 
filtering, unscented filtering with delayed measurements, hybrid unscented/H, fil- 
tering, and others. 

21t is interestingto note that the first journal publicationof the UKF waa submitted for publication 
in 1994, but did not appear in print until 2000 [JulOO]. Alternative technologies that are highly 
different than existing approaches tend to meet with resistance, but persistence (if accompanied 
by technical rigor) can break down barriers. 
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PROBLEMS 

Written exercises 

14.1 Suppose the RV 2 is uniformly distributed on [-1,1], and y = z2. What is 
g? What is the first-order approximation to g? What is the second-order approxi- 
mation to fj? 

14.2 Suppose the RV z is uniformly distributed on [-1,1], and y = e”. What is 
g? What is the first-order approximation to g? What is the second-order approxi- 
mation to g? What is the third-order approximation to g? What is the fourth-order 
approximation to g? 

14.3 Suppose the RV z is uniformly distributed on [-1,1], and y = e”. What 
is the variance of y? What is the first-order approximation to the variance of y? 
What is the fourth-order approximation to the variance of y? 

14.4 Suppose the RV z is uniformly distributed on [-1,1], and y = e x .  What is 
g? What is the unscented approximation to g? 

14.5 Consider the matrix 

Find an upper triangular matrix S (using only paper and pencil) such that P S  = 
P. Find a lower triangular matrix S such that flS = P. (Note the difference 
between your solution to this problem and the solution to Problem 6.7.) 

14.6 Suppose the RV z is uniformly distributed on [-1,1], and y = e”. What is 
the variance of y? What is unscented approximation to the variance of y? 

14.7 Show that for a system with an identity transition matrix, the UKF algo- 
rithm gives 2; = 

14.8 Show that for a system with Yk = zk, the UKF gain Kk is positive definite. 

14.9 Suppose the RV z is uniformly distributed on [-1,l], and y = e”. What 
is g? Use the generalized unscented transformation to approximate Q with K. = 0, 
K. = 1, and K. = 2. 

14.10 Suppose the RV z is uniformly distributed on [-1,1], and y = e”. What 
is the variance of y? Use the generalized unscented transformation to approximate 
the variance of y with K. = 0, K = 1, and K. = 2. 

14.11 Consider the simplex sigma-point algorithm. Prove that C, W(i)oy)  = 0 
(i.e., the weighted sample mean of the 0:) vectors is zero). 

14.12 Prove that the sum of the weights in the simplex sigma-point algorithm is 
equal to 1. 

14.13 Consider the simplex sigm&point algorithm. Prove that the C, W(i)z(i) = 
5 (i.e., the weighted sample mean of the sigma points is equal to 5). (Hint: Use 
the results of Problems 14.11 and 14.12.) 
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Computer exercises 

14.14 Design an unscented Kalman filter for the system described in Prob- 
lem 13.21. Simulate the system and the filter for 60 s. Plot the estimation error 
for the four states. What is the experimental standard deviation of the estimation 
error for each of the four states? Based on the steady-state covariance matrix of 
the filter, what is the theoretical standard deviation of the estimation error for each 
of the four states? How does this compare with the extended Kalman filter results 
of Problem 13.21? 

14.15 An inverted pendulum on a cart can be modeled as follows [Bay99, Che991. 

mgl sin e (M + m) - ml cos e(u + rn@ sine - ~ c i )  
(J + m12)(M + m) - m2P cos2 0 

u - ml8cosO + mle2 sine - Bd 
M + m  

e =  

d =  

The quantities in the system model are as follows: 

e(o) = 

d(0)  = 

m =  
M =  

9 =  
B =  

1 =  
T =  

u =  

J =  
- - 

initial angle (0.1 rad) 

initial cart displacement (0 rad) 

pendulum mass (0.2 kg) 

cart mass (1 kg) 

acceleration due to gravity (9.81 m/s2) 

coefficient of friction between cart and ground [0.1 N/(m/s)] 

pendulum length (1 m) 

pendulum mass radius (0.02 m) 

external force applied to cart 

pendulum moment of inertia 

mr2/2 

where we have assumed that the pendulum mass is concentrated in a cylinder at 
the end of the pendulum. Define the state of the system as z = [ d d 8 e ] , 
The horizontal displacement d is measured every 5 ms with a standard deviation 
of 0.1 m. The continuous-time process noise is Qc = diag(0,0.0004,0,0.04). The 
system can be linearized (so that an EKF can be used to estimate the state) by 
assuming that 0 is small, so cos t9 m 1, sin 8 M 0, and e2 = 0. Suppose that the 
feedback control signal is given as u = 408 and the initial state is perfectly known. 
Write an EKF and a UKF to estimate the state, where the control is assumed by 
the filters to be 0 = 408. Plot the true states and estimated states for a 2 second 
simulation. Which filter appears to perform better? 

T 





CHAPTER 15 

The particle filter 

In view of all that we have said in the foregoing sections, the many obstacles we appear 
to have surmounted, what casts the pall over our victory celebration? It is the curse 
of dimensionality, a malediction that has plagued the scientist from earliest days. 

--Richard Bellman [Be1611 

We want now to point out that modern computing machines are extremely well suited 
to perform the procedures described. 

-Nicholas Metropolis and S. Ulam [Met491 

Particle filters had their beginnings in the 1940s with the work of Metropolis, 
and Norbert Wiener suggested something much like particle filtering as early as 
1940 [Wie56]. But only since the 1980s has computational power been adequate 
for their implementation. Even now it is the computational burden of the particle 
filter that is its primary obstacle to more widespread use. The particle filter is a 
statistical, brute-force approach to estimation that often works well for problems 
that are difficult for the conventional Kalman filter (i.e., systems that are highly 
nonlinear). Particle filtering goes by many other names, including sequential impor- 
tance sampling [DouOl, Chapter 111, bootstrap filtering [Gor93], the condensation 
algorithm [Isa96, Mac991 , interacting particle approximations [Mor98], Monte Carlo 
filtering [Kit96], sequential Monte Carlo (SMC) filtering [And04, CriOZ] , and sur- 
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viva1 of the fittest [Kan95]. A short discussion on the origins of particle filtering can 
be found in [IbaOl]. Reference books on the particle filter include [DouOl, Ris041. 

Particle filters had their origin in Nicolas Metropolis’s work in 1949 [Met49], 
in which he proposed studying systems by investigating the properties of sets of 
particles rather than the properties of individual particles. He used the analogy of 
the card game of solitaire. What is the probability of success in a game of solitaire? 
The probability may be impossible to compute analytically (because of all of the 
possible permutations of play). But if a person plays several hundred games and 
succeeds in a certain proportion of those games, then the probability of success can 
be approximated on that basis: 

Number of successes 
Number of trials 

Pr(Success) M (15.1) 

This simple idea hearkens back to the definition of probability in Section 2.1. Given 
the recent invention of the electronic computer at the time, Metropolis’s work was 
certainly ahead of its time. Now that fast, parallel computers are available, his 
work is beginning to see its fruition in the methods described in this chapter. 

As discussed in Chapter 13, the extended Kalman filter (EKF) is the most widely 
applied state estimation algorithm for nonlinear systems. However, the EKF can 
be difficult to tune and often gives unreliable estimates if the system nonlinearities 
are severe. This is because the EKF relies on linearization to propagate the mean 
and covariance of the state. Chapter 14 discussed the unscented Kalman filter and 
showed how it reduces linearization errors. We saw that the UKF can provide 
significant improvements in estimation accuracy over the EKF. However, the UKF 
is still only an approximate nonlinear estimator. The EKF estimates the mean of 
a nonlinear system with first-order accuracy, and the UKF improves on this by 
providing an estimate with higher-order accuracy. However, this simply defers the 
inevitable divergence that will occur when the system or measurement nonlinearities 
become too severe. 

This chapter presents the particle filter, which is a completely nonlinear state 
estimator. Of course, there is no free lunch [Ho02]. The price that must be paid 
for the high performance of the particle filter is an increased level of computational 
effort. There may be problems for which the improved performance of the particle 
filter is worth the increased computational effort. There may be other applications 
for which the improved performance is not worth the extra computational effort. 
These trade-offs are problem dependent and must be investigated on an individual 
basis. 

The particle filter is a probability-based estimator. Therefore, in Section 15.1, 
we will discuss the Bayesian approach to state estimation, which will provide a 
foundation for the derivation of the particle filter. In Section 15.2, we will derive 
the particle filter. In Section 15.3, we will explore some implementation issues and 
methods for improving the performance of the particle filter. 

15.1 BAYESIAN STATE ESTIMATION 

In this section, we will briefly discuss the Bayesian approach to state estimation. 
This is based on Bayes’ Rule, which is discussed in Chapter 2. This section is 
based on the presentation given in [Gor93], which is similar to many other books 
and papers on the subject of Bayesian estimation [DouOl, Ris041. 
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Suppose we have a nonlinear system described by the equations 

(15.2) 

where k is the time index, Xk is the state, W k  is the process noise, y k  is the mea- 
surement, and Wk is the measurement noise. The functions fk( . )  and h k ( . )  are 
time-varying nonlinear system and measurement equations. The noise sequences 
{ W k }  and {Wk}  are assumed to be independent and white with known pdf’s. The 
goal of a Bayesian estimator is to  approximate the conditional pdf of Xk based on 
measurements y1,  y 2 ,  - , Y k .  This conditional pdf is denoted as 

p ( X k l Y k )  = pdf of Xk conditioned on measurements y1, y 2 ,  . a ,  y k  (15.3) 

The first measurement is obtained at k = 1, so the initial condition of the estimator 
is the pdf of 20, which can be written as 

P ( Z 0 )  = P(ZOIy0) (15.4) 

since YO is defined as the set of no measurements. Once we compute p ( 2 k I Y k )  then 
we can estimate Xk in whatever way we think is most appropriate, depending on 
the problem. The conditional pdf p ( x k I Y k )  may be multimodal, in which case we 
may not want to  use the mean of Xk as our estimate. For example, suppose that 
the conditional pdf is computed as shown in Figure 15.1. In this case, the mean 
of x is 0, but there is zero probability that x is equal to 0, so we may not want to  
use 0 as our estimate of x. Instead we might want t o  use fuzzy logic and say that 
2 = f 2 ,  each with a level of membership equal t o  0.5 [Lew97]. 

2 - 3 - 2 - 1  0 1 2  3 4 
X 

Figure 15.1 
number should be used as an estimate of z? 

An example of a multimodal probability density function. What single 

Our goal is to find a recursive way to  compute the conditional pdf p ( Z k I Y k ) .  

Before we find this conditional pdf, we will find the conditional p d f p ( x k I Y k - 1 ) .  This 
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is the pdf of X k  given all measurements prior to  time k. We can use Equations (2.17) 
and (2.51) to write this pdf as 

But notice from our system description in Equation (15.2) that 2 k  is entirely d e  
termined by 2 k - 1  and Wk-1;  therefore p[Zk1(2k-1, Y k - l ) ]  = p(Zk12k-1) and we see 
that 

(15.6) 

The second pdf on the right side of the above equation is not available yet, but it is 
available at the initial time [see Equation (15.4)]. Later in this section we will see 
how to compute it recursively. The first pdf on the right side of the above equation 
is available. The pdf p(Zk12k-1) is simply the pdf of the state at time k given 
a specific state at time ( I c  - 1). We know this pdf because we know the system 
equation f k ( * )  and we know the pdf of the noise W k  (we Section 2.3). For example, 
suppose that the system equation is given as X k + l  = X k  + W k  and suppose that 
2 k - 1  = 1 and Wk-1 is uniformly distributed on [-1,1].  Then the pdf p(Zk12k-1) is 
uniformly distributed on [0 ,2] .  

Now consider the a posteriori conditional pdf of X k .  We can again use Equa- 
tions (2.17) and (2.51) to write this pdf as 

p(zk  I&- 1 )  = p ( z k  Izk-l)p(zk- 11 y k -  1 )  dzk-  1 J 

(15.7) 

We can multiply both the numerator and denominator of this equation by p ( z k ,  yk) 
to obtain 

Now we use the ratios of various joint pdfs to marginal pdfs in the above equation 
to obtain conditional pdfs. This gives 

(15.9) 

Note that Y k  is a function of Z k ,  so p[Yk- l l ( zk ,  yk)] = p(&-lIzk).  These two terms 
cancel in the above equation and we obtain 

(15.10) 



BAYESIAN STATE ESTIMATION 465 

All of the pdf’s on the right side of the above equation are available. The pdf 
P(Ykl2k) is available from our knowledge of the measurement equation hk(‘) and 
our knowledge of the pdf of the measurement noise wk. The pdf p(ZklYk-1) is 
available from Equation (15.6). Finally, the pdf p(ykIYk-1) is obtained (in the 
same way that Equation (15.5) wm obtained) as follows: 

p(Yklyk-1) = p[(yki zk)Iyk-l] d z k  

(15.11) 

But & iS Completely determined by X k  and Wk, SO p[Ykl(Zk, Yk-l)] = p(Ykl2k) and 

S 
= J P[YkI ( z k ,  &-l)]p(zk Iyk-1) d z k  

(15.12) 
J 

Both of the pdf’s on the right side of the above equation are available as discussed 
above. p(ykIZk) is available from our knowledge of the measurement equation h(.) 
and the pdf of W k ,  and p(ZkIYk-1) is available from Equation (15.6). 

Summarizing the development of this section, the recursive equations of the 
Bayesian state estimation filter can be summarized as follows. 

The recursive Bayesian state estimator 

The system and measurement equations are given as follows: 

zk+l = fk ( z k  w k )  

yk = hk(zk,vk) (15.13) 

where { W k }  and {Wk} are independent white noise processes with known pdf’s. 

Assuming that the pdf of the initial state p ( z 0 )  is known, initialize the esti- 
mator as follows: 

P(zoIY0) = P(Z0) (15.14) 

For k = 1’2 ,  . . ., perform the following. 

(a) The a priori pdf is obtained from Equation (15.6). 

p(zk 1 yk- 1) = p(zk 1zk- l)p(zk- 11 yk- 1) d z k -  1 (15.15) S 
(b) The a posteriori pdf is obtained from Equations (15.10) and (15.12). 

(15.16) 

Analytical solutions to these equations are available only for a few special cases. 
In particular, if f(.) and h(.) are linear, and zo, {Wk}, and {Wk} are additive, 
independent, and Gaussian, then the solution is the Kalman filter discussed in 
Chapter 5. This way of obtaining the Kalman filter is more complicated than the 
least squares approach that we used in Chapter 5. The Bayesian derivation of the 
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Kalman filter can be found in many references, including [Rho71], [Spa88, Chapter 
61, [Ho64, Wes851, [Kit96a, Chapter 61. When the Kalman filter is derived this way, 
then no conclusions can be drawn about the optimality of the filter when the noise 
is not Gaussian. In fact, other optimal (nonKalman) filters have been derived for 
other noise distributions [Ser81]. Nevertheless, the Bayesian derivation proves that 
when the noise is Gaussian, the Kalman filter is the optimal filter. However, the 
least squares derivation that we used in Chapter 5 shows that the Kalman filter is 
the optimal linear filter, regardless of the pdf of the noise. 

15.2 PARTICLE FILTERING 

In this section, we derive the basic idea of the particle filter. The particle filter was 
invented to numerically implement the Bayesian estimator of the previous section. 
The main idea is intuitive and straightforward. At the beginning of the estimation 
problem, we randomly generate a given number N state vectors based on the initial 
pdf p ( z 0 )  (which is assumed to be known). These state vectors are called particles 
and are denoted as z& (i = 1,. - a ,  N ) .  At each time step k = 1,2, .  - ., we propagate 
the particles to the next time step using the process equation f(.): 

"i,% = f k - l ( z k - l , % ,  + wb-1) (i = 1, * * ' 7 N )  (1 5.17) 

where each w;-~  noise vector is randomly generated on the basis of the known pdf 
of wk-1. After we receive the measurement at time k, we compute the conditional 
relative likelihood of each particle z&. That is, we evaluate the pdf p ( y k I ~ i , ~ ) .  As 
discussed in Section 15.1, this can be done if we know the nonlinear measurement 
equation and the pdf of the measurement noise. For example, if an rn-dimensional 
measurement equation is given as Yk = h(zk) + w k  and W k  - N ( 0 ,  R) then a relative 
likelihood qi that the measurement is equal to a specific measurement y* , given the 
premise that zk is equal to the particle z$~,  can be computed as follows [compare 
with Equation (2.73)]. 

qi = P [ ( Y k  = Y*)I(Zk = zi,,,>l 
= P[?Jk = y* - h(zi ,+)] 

The - symbol in the above equation means that the probability is not really given 
by the expression on the right side, but the probability is directly proportional to 
the right side. So if this equation is used for all the particles zi,% (i = 1, . . 1 ,  N ) ,  
then the relative likelihoods that the state is equal to each particle will be correct. 
Now we normalize the relative likelihoods obtained in Equation (15.18) as follows. 

(15.19) 

This ensures that the sum of all the likelihoods is equal to one. Next we resample 
the particles from the computed likelihoods. That is, we compute a brand new set of 
particles that are randomly generated on the basis of the relative likelihoods qi. 
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0.1 

This can be done several different ways. One straightforward (but not necessarily 
efficient) way is the following [Ris04]. For i = 1, - , N ,  perform the following two 
steps. 

1. Generate a random number r that is uniformly distributed on [0,1]. 

I - q1 

2. Accumulate the likelihoods qi into a sum, one at  a time, until the accumulated 
sum is greater than T .  That is, xk21 qm < T but EL=, qm 2 r. The new 
particle x:,~ is then set equal to the old particle xi,j. 

This resampling idea is formally justified in [Smi92], where it is shown that the 
ensemble pdf of the new particles x:,% tends to  the pdf p(xklyk) as the number of 
samples N approaches 00. The resampling step can be summarized as follows: 

x:,~ = xi , j  with probability qj (i, j = 1, . - . , N )  (1 5.20) 

This is illustrated in Figure 15.2. 

.g - 0.7 - 
B 
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Figure 15.2 Illustration of resampling in the particle filter. For example, if a random 
number T = 0.3 is generated (from a distribution that is uniform on [0, l]), the smallest 
value of j for which c',=, qm 2 T is j = 3. Therefore the resampled particle is set equal to 

";,a. 

The computational effort of the particle filter is often a bottleneck to  its im- 
plementation. With this in mind, more efficient resampling methods can be im- 
plemented, such as order statistics [Car99, Rip871, stratified sampling and residual 
sampling [Liu98], and systematic resampling [Kit96]. Other ways of resampling have 
also been proposed [Mu191]. For example, the a priori samples xi , j  ( j  = 1, +, N )  
could be accepted as a posteriori samples with a probability that is proportional 
to q j .  However, in this case additional logic must be incorporated to  maintain a 
constant sample size N .  

Now we have a set of particles x:,% that are distributed according to  the pdf 
p(xk(yk). We can compute any desired statistical measure of this pdf. For example, 
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if we want to compute the expected value E(ZklYk) then we can approximate it as 
the algebraic mean of the particles: 

(15.21) 

The particle filter can be summarized as follows. 

The particle filter 

1. The system and measurement equations are given as follows: 

where (wk) and {vk} are independent white noise processes with known pdf’s. 

2. Assuming that the pdf of the initial state p ( z 0 )  is known, randomly generate 
N initial particles on the basis of the pdf p ( z 0 ) .  These particles are denoted 
z$,% (i = 1, - . . , N ) .  The parameter N is chosen by the user as a tradeoff 
between computational effort and estimation accuracy. 

3. For k = 1 , 2 , .  . ., do the following. 

(a) Perform the time propagation step to obtain a priori particles z;,? using 
the known process equation and the known pdf of the process noise: 

(15.23) 

where each w:-~ noise vector is randomly generated on the basis of the 

(b) Compute the relative likelihood qi of each particle z& conditioned on 
the measurement yk. This is done by evaluating the pdf p(yk12&) on 
the basis of the nonlinear measurement equation and the pdf of the 
measurement noise. 

known pdf Of Wk- 1. 

(c) Scale the relative likelihoods obtained in the previous step as follows: 

Qi qi = - c,”=, qj 

Now the sum of all the likelihoods is equal to one. 

(15.24) 

(d) Generate a set of a posteriori particles z;,% on the basis of the relative 
likelihoods qi. This is called the resampling step (for example, see Fig- 
ure 15.2). 

(e) Now that we have a set of particles x t z  that are distributed according 
to the pdf p(zklyk), we can compute any desired statistical measure of 
this pdf. We typically are most interested in computing the mean and 
the covariance. 
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EXAMPLE 15.1 

Suppose that we have a scalar system given by the following equations: 

(15.25) 

where {Wk} and {Wk} are zero-mean Gaussian white noise sequences, both with 
variances equal to 1. This system has become a benchmark in the nonlinear 
estimation literature [Kit87, Gor931. The high degree of nonlinearity in both 
the process and measurement equations makes this a difficult state estimation 
problem for a Kalman filter. We take the ipitial state as xo = 0.1, the initial 
state estimate as 20 = 20, and the initial estimation covariance for the Kalman 
filter as P$ = 2. We can simulate the EKF and the particle filter to estimate 
the state x. We used a simulation length of 50 time steps, and 100 particles 
in the particle filter. Figure 15.3 shows the EKF and particle filter estimates 
of the state. Not only is the EKF estimate poor, but the EKF thinks (on the 
basis of the computed covariance) that the estimate is much better than it 
really is. The true state is usually farther away from the estimated state than 
the 95% confidence measure of the EKF (as determined from the covariance 
P). On the other hand, Figure 15.3 shows that the particle filter does a nice 
job of estimating the state for this example. The RMS estimation errors for 
the Kalman and particle filters were 16.3 and 2.6, respectively. 

Note that it might be possible to modify the Kalman filter to obtain better 
performance. For example, some of the procedures discussed in Section 5.5 to 
prevent divergence could improve the Kalman filter performance in this exam- 
ple. Sometimes, changing the coordinate system of the state space equation or 
measurement equation can improve performance [Aid83]. Nevertheless, this 
example shows the type of improvement that can be obtained with the use of 
particle filtering. 

vvv 

15.3 I M P L E M E NTATl 0 N I SS U ES 

In this section, we discuss a few implementation issues that often arise in the 
application of particle filters. The methods discussed in this section can significantly 
improve the performance of the particle filter, and in fact can make the difference 
between success and failure. 

15.3.1 Sample impoverishment 

Sample impoverishment occurs when the region of state space in which the pdf 
p(Yk1Xk) has significant values does not overlap with the pdfp(xklYk-1). This means 
that if all of our a priori particles are distributed according to P(XklYk-l), and we 
then use the computed pdf p(YklXk) to resample the particles, only a few particles 
will be resampled to become a posteriori particles. This is because only a few of the 
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Figure 15.3 
performance for a highly nonlinear scalar system. 

Example 15.1 results. Extended Kalman filter and particle filter estimation 

a priori particles will be in a region of state space where the computed pdf p ( y k l z k )  

has a significant value. This means that the resampling process will select only a 
few distinct a priori particles to become a posteriori particles. Eventually, all of the 
particles will collapse to the same va1ue.l This problem will be exacerbated if the 
measurements are not consistent with the process model (modeling errors). This can 
be overcome by a bruteforce method of simply increasing the number of particles 
N ,  but this can quickly lead to unreasonable computational demands, and often 
simply delays the inevitable sample impoverishment. Other more intelligent ways of 
dealing with this problem can be used [Aru02, Gor93J. In the following subsections 
we discuss several remedies for sample impoverishment, including roughening, prior 
editing, regularized particle filtering, Markov chain Monte Carlo resampling, and 
auxiliary particle filtering. 

15.3.1.1 Roughening Roughening can be used to prevent sample impoverishment, 
as shown in [DouOl, Chapter 141, [Gor93]. In this method, random noise is added 
to each particle after the resampling process. This is similar to adding artificial 
process noise to the Kalman filter (see Section 5.5). In the roughening approach, 
the a posteriori particles (i.e., the outputs of the resampling step) are modified as 
follows: 

Az(m) is a zero-mean random variable (usually Gaussian). K is a scalar tuning 
parameter, N is the number of particles, n is the dimension of the state space, and 
M is a vector containing the maximum difference between the particle elements 

lThis is called the black hole of particle filtering, 
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before roughening. The mth element of the M vector is given as 

where Ic is the time step, and i and j are particle numbers. K is a tuning parameter 
that specifies the amount of jitter that is added to each particle. In [Gor93] the 
value K = 0.2 is used. 

EXAMPLE 15.2 

In this example, we consider the same problem as discussed in Example 14.2. 
That is, we will try to estimate the altitude, velocity, and ballistic coefficient 
of a body as it falls toward earth. We use the extended Kalman filter, the 
unscented Kalman filter, and the particle filter to estimate the system state. 
A straightforward implementation of the particle filter does not work very 
well in this example. In order to get good results we had to use the rough- 
ening procedure of Equation (15.26) with a tuning parameter K = 0.2. We 
also had to constrain each particle’s third element (ballistic coefficient) to a 
nonnegative value so that the integration of the timeupdate equations in the 
particle filter did not diverge. We used 1000 particles. Figure 15.4 shows 
typical EKF, UKF, and particle filter estimation error magnitudes for this 
system. It is seen that the particle filter provides performance on par with 
the UKF, but at the price of much higher computational effort. The UKF 
is essentially an “intelligent” particle filter with only seven particles (twice 
the number of states plus one), whereas the particle filter can be viewed as 
a “brute-force” filter with 1000 particles. Perhaps some additional modifica- 
tions could be made to the particle filter to obtain better performance, but 
the same could be said for the UKF. 
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Figure 15.4 
estimation-error magnitudes. 

Example 15.2 results. Kalman filter, unscented filter, and particle filter 

vvv 
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15.3.1.2 Prior editing If roughening does not prevent sample impoverishment, 
then prior editing can be tried. This involves rejection of an a priori sample if it is 
in a region of state space with small qi. If an a priori sample is in a region of small 
probability, then it can be roughened as many times as necessary, using a procedure 
like Equation (15.26), until it is in a region of significant probability qi. In [Gor93] 
prior editing is implemented as follows: if the magnitude of [yk  - h ( ~ ; , ~ ) ]  is more 
than six standard deviations of the measurement noise, then it is highly unlikely to 
be selected as an a p o s t e r i o r i  particle. In this case, is roughened and then 
passed through the system equation again to obtain a new x i , i .  This is repeated 
as many times as necessary until zi,% is in a region of nonnegligible probability. 

15.3.1.3 Regularized particle filtering Another way of preventing sample impover- 
ishment is through the use of the regularized particle filter (RPF) [DouOl, Chapter 
121, [Ris04]. This performs resampling from a continuous approximation of the pdf 
p ( y k I z F , J  rather than from the discrete pdf samples used thus far. Recall in our 
resampling step in Equation (15.18) that we used the probability 

4, = p [ ( Y k  = Y * ) l ( x k  = zF,z)l ( 15.28) 

to determine the likelihood of selecting an a priori particle to be an a p o s t e r i o r i  
particle. Instead, we can use the pdf p ( x k l y k )  to perform resampling. That is, the 
probability of selecting the particle x;,+ to be an a p o s t e r i o r i  particle is proportional 
to the pdf p ( z k l y k )  evaluated at  Xk = xi,,. In the RPF, this pdf is approximated 
as 

f i ( zk IYlc)  = c w k , t K h ( x k  - z k , t )  ( 15.29) 

where W k , z  are the weights that are used in the approximation. Later on, we will see 
that these weights should be set equal to the qi probabilities that were computed 
in Equation (15.18). Kh ( a )  is given as 

N 

2= 1 

Kh(2) = h-nK(z/h) (15.30) 

where h is the positive scalar kernel bandwidth, and n is the dimension of the state 
vector. K(. )  is a kernel density that is a symmetric pdf that satisfies 

/ z K ( x ) d x  = 0 

(15.31) 

The kernel K ( . )  and the bandwidth h are chosen to minimize a measure of the error 
between the assumed true density p ( x k l y k )  and the approximate density I j ( s k ) y k ) :  

{ K ( z ) ,  h)  = a r g m i q  [ ? j ( 4 Y k )  - P ( 4 Y k ) 1 2  dx (15.32) 

, N )  the optimal kernel In the classic case of equal weights (wk,$ = 1 / N  for i = 1,. 
is given as 

E ( 1  - 11.113 if 11412 < 1 
otherwise 

K ( x )  = (15.33) 
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where u, is the volume of the n-dimensional unit hypersphere. K ( x )  is called the 
Epanechnikov kernel [DouOl, Chapter 121. 

An n-dimensional unit hypersphere is a volume in n dimensions in which all 
points are one unit from the origin [Cox73]. In one dimension, the unit hypersphere 
is a line with a length of two and a "volume" of two. In two dimensions, the unit 
hypersphere is a circle with a radius of one and volume 7r.  In three dimensions, the 
unit hypersphere is a ball with a radius of one and volume 47r/3. In n dimensions, 
the unit hypersphere has a volume v, = 27rv,-z/n. 

If p ( z l y k )  is Gaussian with an identity covariance matrix then the optimal band- 
width is given as 

(1 5.34) 

In order to handle the case of multimodal pdf's,2 we should use h = h*/2 [DouOl, 
Chapter 12],[Si186]. These choices for the kernel and the bandwidth are optimal 
only for the case of equal weights and a Gaussian pdf, but they still are often used in 
other situations to obtain good particle filtering results. Instead of selecting a priori 
particles to become a posteriori particles using the probabilities of Equation (15.28), 
we instead select a posteriori particles based on the pdf approximation given in 
Equation (15.29). This allows more diversity as we perform the update from the a 
priori particles to a posteriori particles. In general, we should set the Wk,Z weights 
in Equation (15.29) equal to the qi probabilities shown in Equation (15.28). 

Since this procedure assumes that the true density p ( x k l y k )  has a unity covari- 
ance matrix, we numerically compute the covariance of the x i 2  at each time step. 
Suppose that this covariance is computed as S (an n x n matrix). Then we compute 
the matrix square root of S, denoted as A, such that AAT = S (e.g., we can use 
Cholesky decomposition for this computation). Then we compute the kernel as 

Kh(x) = (det A ) - l h - n K ( A - l ~ / h )  (15.35) 

The RPF resampling algorithm can be summarized as follows. 

Regularized particle filter resampling 

This resampling strategy replaces Step (3d) in the particle filter algorithm on 
page 468. We have an n-state system, the N a priori  particles and the N 
corresponding (normalized) a priori  probabilities qi. Generate the a posteriori par- 
ticles x:,~ as follows. 

1. Compute the ensemble mean p and covariance S of the a priori  particles as 
follows. 

(15.36) 

Some authors use an N in the denominator of the S equation, but ( N  - 1) 
gives an unbiased estimate (see Problem 3.6). 

2A multimodal pdf is one with more than one local maxima. See, for example, Figure 15.1. 
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2. Perform a square root factorization of S (e.g., a Cholesky factorization) to 

3. Compute the volume of the n-dimensional unit sphere as wn = 2rwn-2/n. 
The starting values for this recursion are 01 = 2, 2r2 = 71, and w3 = 4n/3. 

compute the n x n matrix A such that AAT = S. 

4. Compute the optimal kernel bandwidth h as follows: 

h = - 1 [8v;'(n + 4)(2fi)n] 1/(n+4) N -  l/(n+4) 
2 

( 15.37) 

The bandwidth h can be considered a tuning parameter for the particle filter. 

5. Approximate the pdf p ( z k l g k )  as follows: 

where the kernel Kh(z) is given as 

Kh(z) = (det A)-lh-"K(A-'z/h) (15.39) 

and the Epanechnikov kernel K ( z )  is given as 

E(1 - Il.IIE) if 11412 < 1 
otherwise 

K ( x )  = (15.40) 

Note that other kernels can also be used in the pdf approximation (see Prob- 
lem 15.14). Equation (15.38) must be implemented digitally, so the user 
must choose a certain number of digital values at which to evaluate Equa- 
tion (15.38). As with the number of particles N ,  the number of digital values 
is a trade-off between computational resources and estimation accuracy. 

6. Now that we haveIj(zk1yk) from the previous step, we generate the a posteriori 
by probabilistically selecting points from the pdf approximation particles 

$ ( x k  lyk ) *  

EXAMPLE 15.3 

Consider the same system &s in Example 15.1, except use a process-noise 
covariance of 0.001 and only three particles ( N  = 3). In this case, the particles 
in the standard particle filter can quickly degenerate into a single point, but 
the use of an RPF can prevent this degeneration, increase diversity among 
the particles, and provide a better state estimate. Twenty Monte Carlo runs 
of this system result in average RMS errors of 4.6 for the standard particle 
filter and 3.0 for the RPF. Figure 15.5 shows the improvement that is possible 
with the use of an RPF. 

Figure 15.6 shows the difference between the resampling step of the stan- 
dard particle filter and the RPF. The standard particle filter has an a priori  
pdf approximation that consists of the sum of impulse functions. Therefore, 
the a posteriori particles are all set equal to one of the a priori particles. 



IMPLEMENTATION ISSUES 475 

However, the RPF has a pdf approximation that is a continuous function of 
the state estimate. Therefore, the a posteriori particles can be equal to any 
value on the horizontal axis. Of course, when we implement the RPF we have 
to discretize the horizontal axis in order to choose the a posteriori particles, 
but we can use as fine a discretization as our computational 
allow. 
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Figure 15.5 
of Example 15.3. This shows the improvement that is possible with the use of an RPF. 

Particle filter estimation performance for the highly nonlinear scalar system 

RPF approximation 

state estimate 

Figure 15.6 This shows the discrete pdf approximation of the standard particle filter 
(with three particles), and the continuous pdf approximation of the RPF. This plot is a 
snapshot of the pdf approximations at one time instant. 

vvv 
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15.3.1.4 Markov chain Monte Carlo resampling Another approach for preventing 
sample impoverishment is the Markov chain Monte Carlo (MCMC) move step [GilOl, 
Ris041. This approach moves the a priori particle z& to a new randomly gener- 
ated state 5& if a uniformly distributed random number is less than an acceptance 
probability. The acceptance probability is computed as the probability that the a 
priori sample is consistent with the measurement, relative to the probability that 
the resampled state is consistent with the measurement. The Metropolis-Hastings 
acceptance probability [Rob991 is given as 

(15.41) 

The first fraction in the above equation is the ratio of the measurement probability 
conditioned on the new particle to the measurement probability conditioned on 
the old particle. The second fraction is the ratio of the probability of the new 
particle to the probability of the old particle, both conditioned on the particle at 
the previous time. The acceptance probability is the product of these two fractions, 
which increases as the probability of the new particle increases. The old a priori 
particle z& is therefore changed to a new particle 5i,+ if the old particle has a 
low probability of being selected with the resampling step. This helps to maintain 
diversity in the particles that come out of the resampling step. 

15.3.1.5 Auxiliary particle filtering Another approach to evening out the proba- 
bility of the a priori particles (and thus increasing diversity in the a posteriori 
particles) is called the auxiliary particle filter [Pit99, Ris041. This approach was d e  
veloped by augmenting each a priori particle by one element (an auxiliary variable). 
This increases the dimension of the problem and thus adds a degree of freedom to 
the choice of the resampling weights in Equation (15.19), which allows the resam- 
pling weights to be more evenly distributed. Recall from Section 15.2 that the 
resampling step of the standard particle filter is performed by selecting particles 
based on their probabilities. These probabilities are given by 

qi = p[(Yk = Y*)I(zk = zk,2)] (15.42) 

where y* is the actual measurement at time I c .  The problem with this is that outliers 
in the batch of a priori particles are ignored due to their low probabilities, and 
the particles can therefore collapse into a single point. Auxiliary particle filtering 
addresses this issue by changing the resampling probability to the following: 

(15.43) 

where pk,% is some statistical characterization of Xk based on x l i .  For example, we 
could use pk,z = E ( Z ~ ~ Z ; , ~ ) ,  or p k , z  = pdf(zklzi,,). So compared to the standard 
particle filter, the resampling probability of the auxiliary particle filter is smaller by 
a factor of P[(yk  = y*)Ipk,i]. If the actual measurement is highly likely given pk,%, 
then the actual measurement is highly likely given z&. The auxiliary particle filter 
will then tend to decrease qi relative to the standard particle filter. Likewise, the 
auxiliary particle filter will tend to increase qi for highly unlikely particles. This 
tends to promote diversity in the population of particles. 
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Another easy way to smooth out the qi probabilities is to use something like the 
following formula. 

(15.44) 

where Q is the sample mean of all of the qi probabilities. The parameter Q E 
[1,00] controls how much regularization occurs. If Q + 00 then the regularized 
probabilities @i are equal to the standard probabilities qi. If Q = 1 then all of the 
regularized probabilities & are equal. 

If the dynamics of the statespace system are linear, then there should not be 
any reason to use auxiliary particle filtering. The existence of outliers in the par- 
ticles results from nonlinearities. This implies that the use of auxiliary particle 
filtering is more appropriate when the system nonlinearities are severe. In fact, if 
the nonlinearities are mild or nonexistent, then the use of auxiliary particle filtering 
could corrupt the probabilities qi in an inappropriate way and degrade performance 
relative to the standard particle filter. 

q,  - (a - 1)qa + Q 
a -  a 

EXAMPLE 15.4 

Consider the same system as in Examples 14.2 and 15.2. That is, we will try 
to estimate the altitude 21, velocity 22, and constant ballistic coefficient 2 3  

of a body as it falls toward eahh. The equations for this system are given 
in Example 14.2. We use fourth-order Rung-Kutta integration with a step 
size of 0.5 sec to simulate the system for 30 seconds. We estimate the system 
states with the standard particle filter and the auxiliary particle filter. As 
mentioned in Example 15.2, a straightfonvard implementation of the particle 
filter does not work very well in this example. In Example 15.2, we used 
the roughening procedure of Equation (15.26). In this example, we use the 
auxiliary particle filter of Equation (15.44) with 200 particles. In the standard 
particle filter, the particles quickly collapse to a single point in state space. 
In the auxiliary particle filter with a = 1.1 (obtained by manual tuning) 
the diversity of the particles is preserved. Averaged over 10 simulations, the 
use of the auxiliary particle filter improves altitude estimation by 73%, and 
improves velocity estimation by 55%. However, the auxiliary particle filter 
makes the estimate of the ballistic coefficient worse. This may be because 
the ballistic coefficient is not involved in any nonlinear dynamics in either the 
system equation or the measurement equation. 

vvv 

15.3.2 

One approach that has been proposed for improving particle filtering is to combine 
it with another filter such as the EKF or the UKF [WanOl, Ris041. In this approach, 
each particle is updated at the measurement time using the EKF or the UKF, and 
then resampling is performed using the measurement. This is like running a bank 
of N Kalman filters (one for each particle) and then adding a resampling step after 
each measurement. After zk2 is obtained as shown in Equation (15.17), it can be 
refined using the EKF or UKF measurement-update equations. For example, if we 
want to combine the particle filter with the EKF, then after the measurement is 

Particle filtering combined with other filters 



478 THE PARTICLE FILTER 

obtained at time k ,  x i , %  is updated to x;,% according to the EKF equations shown 
in Section 13.2: 

PC, = F k--1,sPk-i,iFr-1,% + f Q k - 1  

Kk,i = p<iHgi(Hk,zp<&,z f Rk)-' 

4 , s  = x i , %  f Kk,% [Yk - h(x&)] 

pCz = (1 - Kk,&k,%)pk% (15.45) 

Kk,% is the Kalman gain for the ith particle, and P& is the a priori  estimation-error 
covariance for the ith particle. The partial derivative matrices F and H are defined 
as 

(15.46) 

Next, resampling is performed as discussed in Section 15.2 to modify the zl,% parti- 
cles (and their associated covariances PLJ. This is another way to prevent sample 
impoverishment because the a priori particles x i , %  are updated on the basis of the 
measurement at time k before they are resampled. The measurement updates of 
the particles could be performed with any type of filter - an EKF, a UKF, an H, 
filter, another particle filter, and so on. The extended Kalman particle filter can 
be summarized as follows. 

The extended Kalman particle filter 

1. The system and measurement equations are given as follows: 

x k + 1  = f k ( x k ,  W k )  

Y k  = h k ( x k , w k )  (15.47) 

where { W k }  and { W k }  are independent white noise processes with known pdf's. 

2. Assuming that the pdf of the initial state p(x0)  is known, randomly generate 
N initial particles on the basis of the pdf p ( x 0 ) .  These particles are denoted 
x& and their covariances are denoted P& = Po+ (i = 1 , .  -, N ) .  The param- 
eter N is chosen by the user as a trade-off between computational effort and 
estimation accuracy. 

3. For k = 1,2,  - ' ., do the following. 

(a) Perform the time propagation step to obtain a priori  particles xi,% and 
covariances P& using the known process equation and the known pdf of 
the process noise: 

+ - 
x k , %  = f k - l ( X k - l , % r  wi- l )  

pc2 = Fk-i,epz-l,iF~-l,l f Q k - 1  

(15.48) 
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where each W L - ~  noise vector is randomly generated on the basis of the 

(b) Update the a priori  particles and covariances to  obtain a posteriori par- 

known pdf Of W k - 1 .  

ticles and covariances: 

xl,a = " k , a  -I- K k , t  [Yk - h ( z , a ) ]  

pza = ( I  - K k , a H k , a ) p < i  (15.49) 

(c) Compute the relative likelihood qi  of each particle x:,~ conditioned on 
the measurement Y k .  This is done by evaluating the pdf p ( y k l Z t , t )  on 
the basis of the nonlinear measurement equation and the pdf of the 
measurement noise. 

(d) Scale the relative likelihoods obtained in the previous step as follows: 

(15.50) 

Now the sum of all the likelihoods is equal to  one. 

(e) Refine the set of a posteriori particles and covariances Pz t  on the 
basis of the relative likelihoods qi. This is the resampling step. 

( f )  Now we have a set of a posteriori particles x:,~ and covariances P l a .  We 
can compute any desired statistical measure of this set of particles. We 
typically are most interested in computing the mean and the covariance. 

EXAMPLE 15.5 

Consider the same system as in Example 15.4. That is, we will try to  estimate 
the altitude 21, velocity 2 2 ,  and constant ballistic coefficient 2 3  of a body as 
it falls toward earth. The equations for this system are given in Example 14.2. 
We use fourth-order Runge-Kutta integration with a step size of 0.5 sec to 
simulate the system for 30 s. We use the standard particle filter and the 
EKF particle filter to estimate the states. The EKF particle filter updates 
the a pr ior i  particles at each time based on the measurement, and then the 
resampling step is performed as usual. In this example, we use 200 particles 
for the estimator. As mentioned in Example 15.4, in the standard particle 
filter the particles quickly collapse to a single trajectory. In Example 15.2, 
we used roughening to  improve the particle filter. In Example 15.3, we used 
the regularized particle filter to improve performance. In Example 15.4, we 
used the auxiliary particle filter to improve performance. Here we use an 
EKF particle filter to improve performance. Averaged over 10 simulations, 
the use of the EKF particle filter improves altitude estimation accuracy by 
an astounding 99.6%, almost three orders of magnitude. The velocity esti- 
mation is only marginally improved, and the ballistic coefficient estimation is 
marginally degraded. 
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15.4 SUMMARY 

In this chapter, we laid the foundation of Bayesian state estimation, and from 
there we developed the particle filter. In a linear system with Gaussian noise, 
the Kalman filter is optimal. In a system that is nonlinear, the Kalman filter 
can be used for state estimation, but the particle filter may give better results a t  
the price of additional computational effort. In a system that has non-Gaussian 
noise, the Kalman filter is the optimal linear filter, but again the particle filter may 
perform better. The unscented Kalman filter provides a balance between the low 
computational effort of the Kalman filter and the high performance of the particle 
filter. This is depicted in Figure 15.7. 

nonlinear or 
non-Gaussian 

particle + UKF + filter 

I I 
computational effort computational effort 

(a) The above figure depicts the increasing 
computational effort and increasing accuracy that 
is obtained by going from an EKF to a UKF to a 
particle filter. This applies to systems that are 
nonlinear or non-Gaussian. 

(b) The above figure depicts the fact that the 
Kalman filter is optimal for linear Gaussian 
systems. Going from a Kalman filter to a UKF to 
a particle filter will increase computational effort 
but will not improve estimation accuracy. 

Figure 15.7 State estimation trade-offs. 

The particle filter has some similarities with the UKF (see Chapter 14) in that it 
transforms a set of points via known nonlinear equations and combines the results 
to  estimate the mean and covariance of the state. However, in the particle filter the 
points are chosen randomly, whereas in the UKF the points are chosen on the basis 
of a specific algorithm. Because of this, the number of points used in a particle filter 
generally needs to be much greater than the number of points in a UKF. Another 
difference between the two filters is that the estimation error in a UKF does not 
converge to zero in any sense, but the estimation error in a particle filter does 
converge to zero as the number of particles (and hence the computational effort) 
approaches infinity. 

Particle filters have found application in a wide variety of areas, including track- 
ing problems [Ris04], demodulation of communication signals [DouOl, Chapter 41, 
estimation of ecological parameters and populations [DouOl, Chapter 51, image pro- 
cessing [DouOl, Chapter 161, neural network training [DouOl, Chapter 171, fault d e  
tection [deF02], speech recognition [VerOZ] , and pattern recognition [DouOl, Chap- 
ter 261. Particle filtering is a growing area of research with many unexplored avenues 
and applications. Some of the more important areas of open research include the 
avoidance of sample impoverishment, methods for determining how many parti- 
cles are required for a given problem, convergence results [Cri02], application to  
control and parameter estimation [Mor03, AndO41, connections with genetic algo- 
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rithms [DouOl, Chapter 201, real-time implementation issues [Kwo04], and hard- 
ware implementations of parallel particle filters (e.g., in field programmable gate 
arrays). 

PROBLEMS 

Written exercises 

15.1 Consider the scalar system 

z k + 1  = xk$Wk, WkNU(-l , l )  

yk = x k  f v k ,  Vk u(-1,1) 

where xo N U(-1, 1). Suppose that the first measurement y1 = 1. 
a) Use the recursive Bayesian state estimator to find pdf(z1 [YO) and pdf(z1 lY1). 
b) What is the Kalman filter estimate 2:? How is 2: related to pdf(z1 IY,)? 

15.2 Suppose the pdf of an RV x is given as 

1 - z/2 2 E [O, 21 
otherwise pdf(x) = 

The value of z can be estimated several ways. 
a) The maximum-likelihood estimate is written as f = a rgmqpdf (z ) .  Find 

the maximum-likelihood estimate of x. 
b) The min-max estimate of z is that value off  that minimizes the magnitude 

of the maximum estimation error. Find the min-max estimate of z. 
c) The minimum mean square estimate of z is that value of 2 that minimizes 

E [ ( x  - 2)2]. Find the minimum mean square estimate of x. 
d) The expected value estimate of x is given as 2 = E ( z ) .  Find E ( z ) .  

15.3 
pdf that is given as 

Suppose you have a measurement yk = zz + vk,  where Vk has a triangular 

{ 1/2 ,vk/4 vk E [-2,o] 
pdf(vk) = 1/2  - vk/4 vk E [o, 21 

otherwise 

Suppose that five a priori particles xi,% are given as -2, -1, 0, 1, and 2, and that 
the measurement is obtained as Yk = 1. What are the normalized likelihoods qi of 
each a priori particle 

15.4 Suppose you have a measurement Yk = V k / Z k ,  where Wk N N(9,l) .  Suppose 
that five a priori particles zi,z are given as 0.8, 0.9, 1.0, 1.1, and 1.2, and that the 
measurement is obtained as yk = 10. What are the relative likelihoods qi of each a 
priori particle x;,~? 

15.5 Suppose that five a priori particles are found to have probabilities 0.1, 0.1, 
0.1, 0.2, and 0.5. The particles are resampled with the basic strategy depicted in 
Equation (15.20). 
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a) What is the probability that the first particle will be chosen as an a pos- 
teriori particle at least once? 

b) What is the probability that the fifth particle will be chosen as an a pos- 
teriori particle at least once? 

c) What is the probability that the five a posteriori particles will be equal to 
the five a priori particles (disregarding order)? 

15.6 Suppose you have the five particles xCk+,% = { 1, 2, 3, -2, 6 }. What 
would you propose to use for the estimate of Xk? What would you estimate as the 
variance of &? 

15.7 Suppose that you have five particles -1, -1, 0, 1, and 1. You want to use 
the roughening procedure of Section 15.3.1.1 to add a uniform random variable with 
a variance of KMN-lIn to each particle. What range of K will give a probability 
of at least 1/8 that at least one of the roughened particles is less than -2? 

15.8 Suppose you have the system equation Xk+1 = Xk and the measurement 
equation Yk = 2: + Wk, where 2rk has a triangular pdf that is given as 

Suppose that five a posteriori particles Z C ~ + - ~ , ~  are given as -2, -1, 0, 1, and 2, 
and that the measurement is obtained as Yk = 1. You want to use prior editing to 
ensure that the -2 particle has at least a 10% chance (after one roughening step) 
of being selected as an a posteriori particle at the next time step. What value of 
K should you use in your roughening step? 

15.9 Suppose you have two particles -1 and +1, both with a priori probabilities 
1/2. Use the kernel bandwidth h = 1 with the regularized particle filter to find 
the pdf approximations $(xk = -21yk), $(xk = -llyk), $(zk = Olyk), @(xk = llyk), 
and $(zk = 21yk). For what values of 2 k  is the pdf approximation $(xklyk) equal 
to zero? 

15.10 Suppose you have N resampling probabilities qi with sample mean /A and 
sample variance S. What is the sample mean and variance of the auxiliary proba- 
bilities given by Equation (15.44)? 

Computer exercises 

15.11 Plot the volume of the n-dimensional unit hypersphere as a function of n 
for n E [1,20]. 

15.12 Consider two particles 2 1  = 1 and 2 2  = 2, with equal probabilities. Gen- 
erate the approximate pdf using the Epanechnikov kernel with bandwidth h = h*. 
Generate two separate plots (on the same figure) of the two individual terms in 
the summation of Equation (15.29), and also generate a plot (on the same figure) 
of their sum. Repeat for three particles 2 1  = 1, 2 2  = 2, and 2 3  = 3 with equal 
probabilities. 
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15.13 
the bandwidth selection can have a strong effect on the pdf approximation. 

15.14 

Repeat Problem 15.12 with h = h*/2 and with h = 2h*. This shows that 

Kernels other than the Epanechnikov kernel can also be used for pdf ap- 
proximation [Sim98, DevOl] . 
one dimension as follows. 

Epanechnikov: 

Gaussian: 

Uniform: 

Triangular: 

Biweight: 

Some of the more popular kernels can be described in 

i ( 1  - 9) 1x1 < 1 
otherwise 

K ( z )  = ( 2 ~ ) - ' / ~  exp( --x2/2) 

Bandwidth selection is another matter, but for this problem you can simply use the 
optimal Epanechnikov bandwidth for all of the kernels. 

a) Repeat Problem 15.12 using Gaussian kernels. 
b) Repeat Problem 15.12 using uniform kernels. 
c) Repeat Problem 15.12 using triangular kernels. 
d) Repeat Problem 15.12 using biweight kernels. 

In this problem, we will explore the performance of the EKF and the 15.15 
particle filter for the system described in Example 15.1. 

Run 100 simulations of the EKF and the particle filter with N = 10, 
N = 100, and N = 1000. What is the average RMS state-estimation error 
for each case? 
Run 100 simulations of the EKF and the particle filter with N = 100 using 
Q = 0.1, Q = 1, and Q = 10. What is the average RMS state-estimation 
error for each case? 





APPENDIX A 

HISTORICAL PERSPECTIVES 

We are like dwarfs on the shoulders of giants, by whose grace we see farther than they. 
Our study of the works of the ancients enables us to give fresh life to their finer ideas, 
and rescue them from time’s oblivion and man’s neglect. 

-Peter of Blois, late twelfth century’ 

The Kalman filter has its roots in the early 1700s in the least squares work of 
Roger Cotes, who died in 1716.’ However, Cotes’s research was vague, without ex- 
ample, and therefore had little influence on later developments in estimation [Sti86]. 
Least squares estimation began to  be more firmly developed in the middle 1700s 
by Tobias Mayer (estimating the motion of the moon in 1750), Leonard Euler 
in 1749 and Pierre Laplace in 1787 (estimating the motion of Jupiter and Sat- 
urn), Roger Boscovich in 1755 (estimating the dimensions of Earth), and Daniel 
Bernoulli in 1777 [KenGl]. At the age of 77, Daniel Bernoulli developed the idea of 

‘This quote is usually attributed to Isaac Newton, but as seen from this quote, the idea did not 
originate with Newton. Peter of Blois penned this analogy in the context of theological knowledge, 
and Newton, who himself spent much time studying theology, may have been familiar with the 
idea from Peter of Blois’s writings. 
’Cotes died at the age of 33, having published only one paper during his entire life. Some of his 
work was published posthumously. Isaac Newton said of him, “had he lived we might have known 
something.” 
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maximum likelihood estimation. Recursive least squares was essentially established 
by the early 1800s with the work of Karl Gauss (published in 1809, but claimed 
to have been completed in 1795), Adrien Legendre (1805), and Robert Adrain 
(1808). Gauss and Legendre’s application was estimating the locations of planets 
and comets on the basis of imperfect measurements, and Adrain’s application was 
surveying. Additional information on the early history of the development of least 
squares estimation can be found in [Sea67, Sor80, Sor85, Sti861. 

In 1880 the Danish astronomer Thorvald Nicolai Thiele extended earlier least 
squares work and developed a recursive algorithm very similar to the Kalman fil- 
ter [Ha181, Lau811. Thiele’s filter is equivalent to the Kalman filter for the special 
case of a scalar state, scalar measurement, state transition and measurement ma- 
trices both equal to  unity, and deterministic initial state. Thiele also proposed a 
way to estimate the variances of the state and measurement noise, a precursor to 
adaptive filtering. 

It is interesting to note that most of the early contributors to  estimation theory 
were primarily astronomers rather than mathematicians. They used mathematics as 
a means to an end. Then, as now, the most outstanding and lasting contributions to 
theory were driven by practical engineering interests. “There is nothing so practical 
as a good theory” [Lew51, page 1691. 

Wiener and Kolmogorov’s work in the 1940s was similar to  the Kalman filter 
(see Section 3.4). However, their work did not arise within the context of state- 
space theory. It is more statistical in nature than Kalman filtering, and requires 
knowledge of covariances such as E(ziz7) and E(yiz7). In order to  implement a 
Wiener filter in a closed form, the theory assumes that the state and measurements 
are stationary random processes. Furthermore, Wiener filtering is a steady-state 
process; that is, it assumes that the measurements have been generated from the 
infinite past. The 1950s saw a lot of work on relaxing the assumptions of the Wiener 
filter [Zad50, Boo521. NASA spent several years investigating Wiener theory in the 
1950s, but could not see any practical way to implement it in space navigation 
problems [Sch81]. 

Later in the 1950s, work began on replacing the covariance knowledge required 
by the Wiener filter with state-space descriptions. The results of this work were 
algorithms that are very close to the Kalman filter as we know it today. Work in 
this direction at Johns Hopkins University was motivated by missile tracking and 
appeared in unpublished work as early as 1956 [Spa88]. Peter Swerling’s work at 
the RAND Corporation in the late 1950s was motivated by satellite orbit estima- 
tion [Swe59]. Swerling essentially developed (and published in 1959) the Kalman 
filter for the case of noise-free system dynamics. Furthermore, he considered non- 
linear system dynamics and measurement equations (because of his application). 
Similar to  the dispute between Gauss and Legendre regarding credit for the de- 
velopment of least squares, there has been a smaller dispute regarding credit for 
the development of the Kalman filter. After the Kalman filter became well known, 
Peter Swerling wrote a letter to the AIAA Journal claiming credit for the algo- 
rithm that bears Kalman’s name [Swe63]. For the most part, Swerling’s claim has 
been ignored, but his place in the development of the Kalman filter will surely be 
remembered. He wrote an appendix to [Bro98] comparing his work with Kalman’s. 
Ruslan Stratonovich in the USSR also obtained the Kalman filter equations in 
1960. Richard Battin independently developed the Kalman filter equations from a 
maximum likelihood point of view. He published his results internally at MIT in 



487 

1961 (MIT Instrumentation Laboratory Report R-341), and in the open literature 
in 1962 [Bat62]. 

Results similar to Kalman filtering were also derived prior to 1960 in fields 
other than engineering. For example, work as early as 1950 in statistics and eco- 
nomics resulted in a recursive least squares “Kalman filter” for the case of con- 
stant parameter estimation with noisy measurements [Pla50, Thi611. More details 
about the relationship between this early work and the Kalman filter can be found 
in [Did85, We1871. 

Rudolph Kalman developed the discrete-time Kalman filter that we presented 
in this book in 1960 [Ka160]. Kalman and Bucy developed the continuous-time 
Kalman filter (discussed in Chapter 8) in 1961 [Ka161]. 

In view of all the earlier work along the same lines, why was the filter named after 
Kalman? There were probably several factors that contributed to this [Spa88]. First 
of all, Kalman wrote his papers in a relatively straightforward way and did not focus 
on any specific applications. Other similar papers were more application oriented, 
which tended to obscure the fundamental nature of the theory.3 Second, Kalman 
discussed the duality between state estimation and optimal control, which allowed 
him to specify mathematical conditions for filter stability. Third, the increasing 
popularity of digital computers at the time of Kalman’s papers helped bring his 
work into the mainstream. Finally, Kalman made his work known to NASA, which 
needed just such an estimator for the Apollo space program [Sch81, McG851. The 
use of the Kalman filter for the Apollo program was facilitated by Stanley Schmidt, 
who was the branch chief of the NASA Ames Dynamic Analysis Branch in the 
late 1950s and early 1960s when NASA was beginning feasibility studies of lunar 
missions. Kalman and Schmidt happened to be close acquaintances during the time 
that Kalman developed his theory and Schmidt needed a navigation algorithm. 
During the early 1960s, the Kalman filter was often referred to in papers as the 
Kalman-Schmidt filter [Be167]. It is something of an accident of history that the 
filter was named after Rudolph Kalman, although it is difficult to overstate his 
contributions to the development of modern control and estimation theory. 

Additional interesting notes on the early history of the Kalman filter can be 
found in [Sor70, Kai74, Lai74, Bat82, Hut84, GreOl]. 

3This can be a lesson for researchers today. As engineers our goal is t o  gear our work towards 
practical applications. But (as a rule of thumb) it is the more general, theoretical work that has 
greater influence on the world and stands the test of time. 
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OTHER BOOKS ON KALMAN FILTERING 

Of making many books there is no end, and much study wearies the body. 
-Solomon [Ecclesiastes 12: 121 

Many books have been written over the years that include Kalman filtering. 
In this appendix, we give a brief review of some of these books in approximately 
chronological order. 

The earliest book that includes Kalman filtering is probably the one by Richard 
Battin [Bat64]. His book deals primarily with orbital dynamics and spacecraft 
guidance, but also includes a chapter titled “Recursive navigation theory,” which 
essentially provides an independent derivation of the Kalman filter and applies it 
to spacecraft navigation. Battin’s book includes an interesting section that dis- 
cusses the determination of the measurement schedule that minimizes the state 
estimation-error covariance. Richard Lee’s book [Lee64], published a few months 
later, gives more extensive coverage of the Kalman filter, also referred to  in the book 
as the “Wiener-Kalman filter.” Ralph Deutsch’s book [Deu65] mostly deals with 
least squares estimation of constants and Wiener filtering, essentially an expanded 
version of Chapter 3 of the present book. Deutsch’s book is notable in that it 
contains one chapter on “Kalman and BUCY’S recently provided alternate approach 
to the Wiener-Kolmogorov theory which has certain inviting features.” Deutsch’s 
book also contains an interesting chapter that reproduces part of Karl Gauss’s orig- 
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inal work on least squares estimation. Other early books .that include coverage of 
Kalman filtering include those by Masanao Aoki [Aok67] and Paul Liebelt [Lie67]. 
Richard Bucy and Peter Joseph’s book [Buc68] deals mostly with continuous-time 
filtering. It also discusses the second-order Kalman filter for nonlinear systems (see 
Section 13.3 of the present book) and includes a lo t  of material related to aerospace 
applications. James Meditch’s book [Med69] was the first to include extensive cov- 
erage of both Kalman filtering and its dual, linear quadratic control. These early 
books on estimation theory are interesting because they were written when a lot 
of linear systems material that we take for granted today (state-space descriptions, 
observability, controllability, etc.) were relatively new concepts in the engineering 
literature. 

Andrew Jazwinski’s book [Jaz70] emphasizes the Bayesian approach to optimal 
filtering and includes much material on nonlinear filtering. Andrew Sage and James 
Melsa’s book [Sag711 includes a chapter on decision theory, which is closely related 
to (but distinct from) estimation theory. Arthur Gelb’s book [Gel741 is still consid- 
ered a classic in the field, probably because it was the earliest readily accessible text 
on the topic (in terms of mathematical clarity). The book is dated by now, but still 
continues to provide a good introduction to  Kalman filtering. Gerald Bierman’s 
book [Bie77b] is an excellent reference on square root filtering and related topics. 
He gives a one chapter review of the Kalman filter, and then spends the rest of the 
book delving into topics such as matrix factorizations and transformations, square 
root filtering, and U-D filtering. Mark Davis’s brief book [Dav77] includes an inter- 
esting section on Kalman filtering for distributed parameter systems (i.e., systems 
with an infinite number of states). Thomas Kailath’s edited volume [Kai77] con- 
tains reprints of 20 historically important papers on the topics of Wiener filtering 
and Kalman filtering. Brian Anderson and John Moore’s book [And791 has been 
an important text and reference for many students of optimal filtering, and is noted 
for its mathematical rigor. 

Peter Maybeck wrote a three-volume series covering state estimation and opti- 
mal control [May79, May82, May841 that is another classic in the field. The first 
volume covers the standard linear filtering material, along with one of the earliest 
discussions of Kalman filtering for GPS/INS integration. The second volume covers 
more advanced topics in Kalman filtering, such as smoothing, model uncertainties, 
and nonlinear estimation. The third volume deals with optimal control. 

Harold Sorenson’s text [Sor80] includes interesting notes about the historical 
development of parameter estimation techniques, starting with Babylonian as- 
tronomers in 300 BC, continuing with least squares estimation in the 18th and 
19th centuries, and concluding with the development of Kalman filtering in the 
1960s. Sorenson’s later edited volume [Sor85] includes reprints of 45 historically 
important papers in the area of Kalman filtering. It includes reprints of Swerling’s 
paper [Swe59], Kalman and BUCY’S papers [Ka160, Ka1611, and many other founda- 
tional papers. Fkank Lewis’s book on state estimation [Lew86b] is notable for the 
amount of material devoted to connections between Wiener filtering and Kalman 
filtering. Charles Chui and Guanrong Chen’s book [Chug71 has a good discussion 
of decoupled Kalman filtering, which can reduce computational effort (without nec- 
essarily using a steady-state filter). Donald Catlin’s book [Cat891 is interesting in 
that it covers Kalman filtering more from a mathematical and statistical point of 
view rather than from a systems and engineering point of view. 



Athanasios Antoulas’s edited volume [Ant911 is also worth mentioning. I t  was 
published as a tribute to Rudolf Kalman on the occasion of his 60th birthday. I t  
contains 31 papers on topics that were invented or largely influenced by Kalman, 
such as system theory, Kalman filtering, optimal control, system realization, and 
system identification. Guanrong Chen’s edited volume [Che93] contains a sequence 
of chapters that deal with Kalman filtering when the underlying assumptions of 
the filter are not exactly satisfied. These situations include nonlinear systems (see 
Chapter 13 of the present book), unknown initial conditions, and unmodeled system 
information. Bozic’s brief book [Boz94] presents a treatment of Kalman filtering 
within the context of digital signal processing. George Siouris’s book [So961 is 
quite useful and contains a chapter on decentralized Kalman filtering, and also in- 
cludes several flowcharts and Fortran code listings for various algorithms. Robert 
Brown and Patrick Hwang’s excellent book [BroSG], currently in its third edition, 
is an extensive treatment of Kalman filtering and contains two chapters showing 
how it can be applied to navigation problems. Yaakov Bar-Shalom, X.-Rong Li, 
and Thiagalingam Kirubarajan’s books [Bar98, Bar011 include extensive discus- 
sion of tracking and navigation examples, including adaptive estimation and target 
tracking. They also include companion software that is an interactive MATLAB- 
based Kalman filter design tool. Eli Brookner’s book [Bro98] deals mostly with 
tracking applications and includes a lot of discussion of the a-P and a-P-y filters 
(see Section 7.3 of the present book). I t  also includes detailed discussions of the 
transformations that are required for square root filtering (see Section 6.3 of the 
present book), and concludes with an appendix written by Peter Swerling that com- 
pares his work with Kalman’s. Thomas Kailath, Ali Sayed, and Babak Hassibi’s 
compendious volumes [Has99, KaiOO] are well worth the effort for the serious re- 
searcher. Their first book is more of a research monograph, while their second book 
is more suitable for general classroom use and self-study. Their material is mostly 
restricted to linear filtering, and is motivated by the Krein space approach that 
they pioneered. They also scatter a lot of complementary historical background 
throughout the text. 

Paul Zarchan and Howard Musoff’s book [ZarOO] is light on theory but is full of 
practical, real-world examples illustrating applications of the Kalman filter. Mo- 
hinder Grewal and Angus Andrews’s book [GreOl] contains a useful chapter on 
practical considerations in Kalman filter implementations. John Crassidis and John 
Junkins’s highly recommended book [Cra04] includes a chapter discussing the du- 
ality between Kalman filtering and optimal control (see Section 8.5 of the present 
book). They also have a Web site with MATLAB code for the examples in the 
book. 

Other books that focus on the topic of Kalman filtering include [Sch73, McG74, 
Kai81, Goo84, Kri84, Che85, Ott85, Ruy85, Ba187, Men87, Cai88, Min93, Bra89, 
Har89, Ste941, In addition to all of these texts, there are many other books on 
topics such as optimal control, signal processing, and time series analysis that  
include chapters or sections devoted to Kalman filtering. 





APPENDIX C 

STATE ESTIMATION AND THE MEANING 

OF LIFE 

The discipline of the scholar is a consecration to the pursuit of the truth. 
-Norbert Wiener [Wie56, p. 3581 

The truth will set you free. 
-Jesus Christ [John 8:32] 

This appendix places state estimation in a larger, more meaningful context in 
the life of the reader. At first glance, state estimation may not seem to have much 
to do with The Meaning of Life. After all, 

0 State estimation is the concern of engineers (and in particular, control engi- 
neers). The Meaning of Life is the concern of philosophers. 

0 State estimation deals with mathematical and physical realities. The Meaning 

0 State estimation is concerned with the things of this world (the planet Earth 
and its immediate surroundings). The Meaning of Life is concerned with the 
things of God. 

of Life is concerned with spiritual realities. 

Optimal State Estimation, First Edition. By Dan 3. Simon 
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However, in spite of these superficial differences, it is my contention that state 
estimation is intimately connected with The Meaning of Life. After all, there is only 
one reality, and both state estimation and The Meaning of Life are both a part of 
that rea1ity.l An analogy from physics can be brought to bear on this point. If 
we look at a banana and an airplane, they would appear on the surface to be two 
completely different things with very little in common. However, at a deeper level 
they are actually similar in many ways. They are both part of the same reality. In 
fact, both bananas and airplanes are made up of exactly the same electrons, protons, 
neutrons, and other subatomic particles. Similarly, on a superficial level it appears 
that state estimation and The Meaning of Life may not have a lot in common. 
However, at a deeper level they are closely related. Consider the following: 

0 The Meaning of Life is based on philosophical and theological truth. State 
estimation is based on mathematical truth. 

0 God created the universe and all that is in it. This includes philosophical and 
theological truth, and it also includes mathematical truth. 

Many readers will have reasonable doubts about the existence of God, and 
whether or not hea created the universe. Nevertheless, the vast majority of people 
believe in something or someone that they call God. Without this assumption, I 
don’t think we can go any farther, and so we will use God’s existence as a working 
assumption for now. We will return to the question of this assumption’s validity at 
the end of this appendix. 

To be fair, I should also state that I write as a Christian. That is, I believe that 
the Bible is God’s Word, I believe that Jesus Christ offers rescue from evil and 
death, and I believe the host of other doctrines that historically have characterized 
evangelical Christianity. Nevertheless, I believe that other religions and worldviews 
also have a lot of truth, and I believe that all religions (including Christianity) 
have more similarities with each other than differences (recall the banana/airplane 
analogy). So although I am a follower of Jesus, I choose to focus in this appendix 
on the commonalities of all religions and worldviews. 

Another implicit assumption that I have made is that The Meaning of Life exists. 
That is, I am assuming that there is some meaning to life. Again, many readers will 
have reasonable doubts about this assumption, but the majority of people believe 
that life does have some meaning. So what is the meaning of life? Philosophies 
and religions have given a variety of answers to this question. Most of them include 
something like the following. 

0 The meaning of life is to pursue pleasure. 

0 The meaning of life is to love and serve others. 

0 The meaning of life is to know God. 

0 The meaning of life is to grow and improve as a person. 

lAt this point I begin making assumptions, such as the assumption here that there is only one 
reality. Most of the implicit assumptions made in this appendix are widely accepted, but it should 
be noted that they are indeed assumptions rather than proven facts. 
2There is no intent here to classify God as male. The pronoun “he” is used for purely historical 
reasons. 
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Many religions and worldviews would agree (to at least some extent) with each of 
these hypotheses for The Meaning of Life. 

If God exists, and he created everything (including philosophical, spiritual, and 
mathematical truth), it follows that there may be some underlying connections 
between the two seemingly disparate ideas of state estimation and The Meaning of 
Life. 

Consider another analogy. If a certain artist paints a portrait one week, and a 
landscape the next week, the two paintings may appear upon initial examination 
to be quite different. But since they were both painted by the same artist, a close 
examination of the paintings will reveal similarities in style and other interesting 
connections. Similarly if an author writes a novel one year, and a biography the 
next year, the two books may appear on the surface to  be quite different. But since 
they were both written by the same author, a close examination of the books will 
reveal similarities in style and other interesting connections. So we see that if the 
same God creates both theological truth and mathematical truth, there may not 
be any apparent connection between the two sets of truth. But since they were 
both created by the same God, a close examination of the two sets of truth will 
reveal similarities in style and other interesting connections. Some thought shows 
that there are indeed interesting connections between state estimation and The 
Meaning of Life. These connections are explored in the following sections. 

Forgiveness and noise suppression 

Forgiveness is an essential part of The Meaning of Life. God’s nature is such that 
he forgives humans, and he also requires his followers to forgive others. Many 
people have a shallow view of forgiveness, thinking that forgiveness of an offense is 
equivalent to ignoring that offense (hence the popular but damaging phrase “forgive 
and forget”). A careful examination of religious philosophy shows that forgiveness 
is actually active rather than passive. Far from ignoring or forgetting an offense, 
true forgiveness consists of confronting the offense, recognizing it as the wrong that 
it truly is, actively seeking to benefit the offender, and consciously revoking any 
attempts at revenge. A person who refuses to forgive hurts himself more than the 
offender, for the unforgiving person allows a destructive root of hate and bitterness 
to grow inside him. 

Noise suppression in state estimation is similar to  forgiveness. A state estimator 
that does not consider noise is incomplete and does not reflect an accurate view of 
reality. In fact, noise suppression (filtering) can be considered as one of the primary 
purposes of state estimation. A state estimator that ignores the presence of noise 
might exhibit undesirable oscillatory behavior or even instability. The estimator 
might operate wonderfully in a noise-free environment, but the introduction of noise 
could render the system useless. A state estimator that is designed to  perform well 
in the presence of noise is like a person who acknowledges the presence of sin in 
the world but does not allow it to ruin him. Just as the spiritual person deals with 
offense in a constructive and active way, the optimal state estimator minimizes the 
effects of noise. 
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Discernment and bandwidth 

In order to grow spiritually, we need to listen and learn from a variety of sources 
(from all religions and worldviews) because we never know when and how God may 
try to speak to us. In that sense we need to be essentially open to the data that 
comes into our lives from others. But if we listen to everything that is within earshot 
we will be “tossed back and forth by the waves, and blown here and there by every 
wind of tea~hing.”~ We need to reject unhealthy data in order to prevent ourselves 
from being misled. In other words, we can’t believe everything we hear or read.4 We 
need to strike a healthy balance between skepticism and acceptance of the views of 
others. We need to exercise discernment in order to allow ourselves to be influenced 
by beneficial information while rejecting data that may be detrimental. 

The band-limited frequency response of a state estimator is similar to spiritual 
discernment. A state estimator needs to be responsive to input measurements, 
yet it also needs to reject those parts of the measurements that consist of noise. 
A state estimator that rejects all measurements is clearly ineffective. Yet a state 
estimator that is equally sensitive to all measurement data will be “tossed back and 
forth by the waves, and blown here and there by every wind of measurement.” The 
state estimator needs to strike a healthy balance between acceptance of information 
content and rejection of the noisy part of measurements. 

Fellowship and persistent excitation 

People need to be actively involved in fellowship (i.e., spiritually constructive friend- 
ships with others) in order to grow spiritually. We need to interact with others, 
share insights and burdens, and receive the encouragement that others offer. Many 
people adopt the “Lone Ranger” approach to religion and consider themselves be- 
yond the need for fellowship. But they are like the scientist who tries to conduct 
research without considering the contributions of the past. We need to be aware 
that interaction with others will enrich our spiritual lives as we draw on the var- 
iegated experiences and insights of others. We will make more progress in our 
spiritual lives if we stand on the shoulders of the giants who went before us (or at 
least on the shoulders of the average sized people who accompany us). 

Persistent excitation in system identification is similar to spiritual fellowship. In 
order to estimate the state of a system, we need to have a mathematical model 
of that system (in general). Even in those systems in which estimation can be 
performed without a mathematical model, the availability of an accurate system 
model will always improve estimation performance. One way to obtain a system 
model is to execute some sort of system identification algorithm. But in order 
for the system identification algorithm to be effective, it must be excited by an 
adequate variety of input signals. This is called the “persistent excitation” condition 
for system identification methods [Jua93, Lju981. The system model will not be 
accurate unless the inputs are persistently exciting. Likewise, our lives as spiritual 
persons will not be all that they can be unless we receive sufficient input from 
others. 

3Ephesians 4:14. 
4 0 f  course, you can’t take my word for it 
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Spiritual growth and adaptive state estimation 

As spiritual beings, we need to  grow spiritually in order to be healthy as balanced 
individuals. Many people appear to be satisfied with their present spiritual status, 
but God requires us to grow on a continual basis throughout our lives. God is 
more concerned about the spiritual direction that we are moving in than he is with 
our present spiritual condition. In other words, he is more concerned with velocity 
than position. We should adopt a mindset that is never complacent but rather 
continually looks for areas in our lives where we can grow and improve. One of the 
apostles of the early Christian church, Saint Paul, said toward the end of his life, 
“Not that I have already obtained all this, or have already been made perfect, but 
I press on ... forgetting what is behind and straining toward what is ahead, I press 
on toward the 

Adaptive state estimation is similar to spiritual growth. Some state estimators 
are static and unchanging in their dynamic characteristics. But a variety of adaptive 
state estimators have been proposed over the past few decades that exhibit contin- 
uous improvement in performance. These adaptive algorithms are never satisfied 
with their present performance, but continually adjust their parameters in order 
to obtain incremental improvements over time (see Section 10.4). These adaptive 
estimators promise the benefit of improved performance and robustness relative 
to more traditional estimators. In a similar manner, the person who constantly 
maintains a lookout for areas of possible growth has the promise of many spiritual 
benefits. 

Spiritual perfection and estimator optimality 

God requires us to be perfect. To the control engineer, this statement raises the 
questions, “Perfect in what way? What is the standard for perfection?” Jesus told 
his followers, “Be perfect, therefore, as your heavenly Father is p e r f e ~ t . ” ~  So we 
see that it is God himself who provides the standard for perfection. God himself 
is the divine objective function. Some people will disagree with the statement that 
“God requires us to be perfect” because of its obvious impossibility. But in spite of 
its impossibility, it is a standard toward which God requires us to strive. We will 
never reach the standard of perfection (at least in this life), but we can continually 
get (asymptotically) closer to  it throughout our lives.7 

Optimality in state estimation is similar to perfection in life. An optimal state 
estimator attempts to  minimize some objective function. Theoretically, optimality 
can be achieved. But practically speaking, optimality will never be attained. This 
is because of modeling errors, incomplete knowledge of noise statistics, sampling 
and resolution limitations, and other deviations from ideal conditions. Although 
optimality will never be completely attained, optimal estimators are still quite 
effective in practice. We do not give up on the notion of optimality just because 
it is not completely attainable. We continue with our efforts toward optimality, 
thankful for the performance that we can obtain. The state estimator churns away 
in its quest for optimality, never quite attaining it, yet continually getting closer 

5Philippians 3:12-14. 
6Matthew 5:48. 
7Those who claim to have already achieved perfection are referred to the paragraphs above. 
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and never giving up. In a similar manner, we churn away in our quest for spiritual 
perfection, never quite attaining it, yet continually getting closer and never giving 
UP. 

The one true way and the single best estimator 

In this book we have discussed a number of different estimators (e.g., Kalman 
filtering, H, filtering, robust filtering, unscented filtering, and particle filtering). 
Which filter is the best approach for a given problem? It is not an easy question 
because one filter may be computationally more effective, another filter may be 
better from an RMS error viewpoint, another filter may be better from a worst-case 
error viewpoint, and yet another filter may be better from some other viewpoint. 
Nevertheless, if the problem and the optimality criterion are well defined, then there 
is a single filter that is the best. We may not know what the best filter is, but there 
is a single best filter for the problem. One reason that we may never find the best 
filter for our problem is because we are stuck on a specific filtering approach and are 
unable to take the time to learn other competing approaches. If we are comfortable 
with filter x and we have never been exposed to  competing approaches, then we 
will probably use filter z for every problem. This will prevent us from obtaining 
the better performance that we might have gotten with a different filter. To some 
extent this problem is unavoidable. After all, who has the time or energy to learn 
every filtering algorithm that has ever been proposed? But to  some extent this 
problem is avoidable. After all, with some expenditure of effort on our part we can 
learn about new filters and have a better chance of knowing the right filter for new 
problems that we encounter. 

As we spend our lives searching for The Meaning of Life, we are confronted with 
the question of which worldview is the best approach to use in our search. It is not 
an easy question because one worldview may be better from one point of view, while 
another worldview may be better from another point of view. Nevertheless, there is 
a single worldview that is ultimately the best. We may end our lives never having 
found the best worldview, but it is out there somewhere. One reason that we may 
never find the best worldview is because we are stuck on the specific worldview that 
we grew up with and are unable to  take the time to learn about others. To some 
extent this problem is unavoidable. After all, who has the time or energy to conduct 
an exhaustive study of every religion and philosophy that has ever been proposed? 
But to some extent this problem is avoidable. After all, with some expenditure of 
effort on our part we can learn about the most widely adopted religions and have 
a better chance of knowing the best approach to  finding The Meaning of Life. 

Conclusion 

Earlier in this appendix (page 494) I promised to  return to the question of the 
validity of the assumption of God’s existence. In order to deal with this question, 
we turn to Occam’s razor. William of Occam, who lived in the 14th century, was an 
English philosopher and Christian theologian. He is most famous for the invention 
of Occam’s razor, also called the principle of parsimony. The idea of Occam’s 
razor is that the simplest explanation is the most reasonable explanation. Occam’s 
razor is used to “shave off” those concepts that are not really needed to  explain 
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some observed phenomenon. This idea is used in system identification to accept 
the simplest model structure that fits the observed data. Occam’s razor is used 
implicitly in all fields of science and engineering (and in everyday life as well) to 
support the simplest explanation for observed data. 

Consider the following example. If I come home and find crayon marks on the 
wall, I can theorize that a mysterious chemical reaction caused the paint on the 
wall to change color, or perhaps a burglar broke into the house and colored my 
walls, or perhaps my young daughter with a fondness for coloring did it. Which 
explanation is most likely? Occam’s razor says to accept the simplest explanation. 
The simplest explanation is not always correct, but experience has taught us that it 
is usually correct, and it is certainly more satisfying (although it is not necessarily 
more satisfying to my daughter). 

When we look at the complexity of life with its underlying unity, Occam’s razor 
says to accept the simplest explanation. Bananas and airplanes are both made from 
the same stuff, and state estimation and The Meaning of Life have an underlying 
commonality. We see two paintings with similar artistic styles. We see two books 
with similar writing styles. Is it a coincidence, or is there a simpler explanation? 
Occam’s razor says to accept God as the simplest explanation. The underlying 
unity that we see in the complexity of life is an evidence for the existence of God. 

Some would say that God is more complicated than anything that we directly 
observe. Therefore, introducing God as an explanation introduces unwarranted 
complexity and thus actually violates Occam’s razor. In this brief appendix, I have 
neither the time nor the ability to delve into the many deep philosophical arguments 
for and against the existence of God. Nevertheless, I believe that the existence of 
God explains so many things that we observe in life that it is a clear example of 
Occam’s razor. Although God is certainly complicated and cannot be proven to 
be necessary, the addition of one complicated factor to explain a million simple 
observations is appealing from both an aesthetic and an engineering viewpoint. 
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A 

CI filter, 203 
a-P filter, 199, 491 
a-pq  filter, 202, 491 
acronyms, xv 
active set method, 216, 340, 384 
aircraft, 181, 184, 397, 423, 457, 494, 499 
applications of state estimation, xxii 
astrophysics, 100 
auxiliary particle filter, 470 

B 

Babylonians, 17, 490 
banana, 494 
bandwidth, 496 
batch fiIter, 178 
battery, 102-103 
Bayes’ rule, 52 
Bayesian estimator, 462, 465 
biomedical engineering, 227 
black hole, 470 
bootstrap filter, see particle filter 

C 

calculus of variations, 97 
Cayley-Hamilton theorem, 18, 46 
central limit theorem, 62 
Chandrasekhar algorithm, 178, 238, 242, 261 
Chapman-Kolmogorov equation, 54 

chemicals, 91, 118 
Chinese, ancient, 17 
Cholesky decomposition, 160, 180, 473 
Cholesky triangle, 160 
choose function, 50 
communication system, 480 
condensation algorithm, see particle filter 
consider state, 311 
constrained filter, 212, 223, 381 

Hm, 381 
model reduction, 212 
pdf truncation, 212, 218 
perfect measurements, 212-213 
projection approach, 212, 214 

general, 216 
least squares, 215 
maximum probability, 214 

constrained optimization, 337 
control vector, 19 
controllability grammian, 38-39 
controllability matrix, 38-39 
convolution, 94 
correction term, 84 
cost function, 80 

augmented, 338 
covariance filter, 178 
curse of dimensionality, 461 
curve fitting, 92 

linear, 92 
quadratic, 93 
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Gaussian sum filter, 420-421 
giants, shoulders of, 485 
Givens transformation, 163, 171 
GPS, 223, 386,490 
Gram-Schmidt transformation, 163, 171, 219 

grid-based filter, 422 
gyroscope, 240, 261-262 

H 

D 

decentralized filtering, 317 
decision theory, 490 
delayed measurement, 317, 320 
digital signal processing, 491 
discretization, 26, 379 
duality, 258, 487, 490-491 

E 

modified, 163, 171-172, 180 

e-mail address, xxiii 
Earth, dimensions of, 485 
ecology, 480 
error function, 220 
estimation 

a posteriori, 124 
a priori, 125 
covariance, 85 
frequency domain, 94 
gain matrix, 84 
least squares, 79 

alternate forms, 86 
history, 485-486 
recursive, 84 
weighted, 82 

maximum likelihood, 481, 486 
mean based, 103, 481 
median based, 103 
minimax based, 104,481 
minimum mean square, 481 
mode based, 103 
of a constant, 80 
of the mean, 103 
of the variance, 103 
predicted, 125 
smoothed, 125 
unbiased, 84 

F 

f-g filter, see a-p filter 
f - g - h  filter, see a-P-7 filter 
fading-memory filter, 140, 143, 208 
falling body, 405, 417, 427, 451, 456, 471, 477, 

fault detection, 480 
feedback control, xxii 
finite precision arithmetic, 140 
first order hold, 111 
fish, 145 
football, 154, 157 
Fourier transform, 71 
FPGA, 481 
free lunch, 462 
fuzzy logic, 463 

479 

G 

g-h filter, see a-p filter 
g-h-k filter, see a-P-7 filter 
game theory, 343, 381 
Gaussian elimination, 17 

H, filter, 336, 367 
a posteriori, 365 
a priori, 365 
combined with Kalman, 374, 376-377 
comparison with Kalman, 354, 361, 368 
constrained, 381 
continuous, 361 
limitations, 360, 368 
model uncertainties, 377 
nonlinear, 368 
optimality, 374 
performance bound, 344, 365 
philosophy, 343 
polynomial systems approach, 368 
sensitivity to design parameters, 368 
stability, 357 
steady state, 354 
system identification, 368 
transfer function, 357, 364-365 
weighting matrices,. 344 

Hamiltonian function, 341, 345 
Hamiltonian matrix, 205, 226, 366, 370 
Householder transformation, 163, 171 
hypersphere, 473, 482 

I 

image processing, 480 
impulse function, 72 

infimum, 383 
information filter, 156, 178 

backward, 282 
information matrix, 334 
input matrix, 19 
interacting particles, see particle filter 
inverted pendulum, 459 
investments, 12 

sifting property, 112, 119, 231 

J 

j (complex variable), 4 
Jacobian, 457 
Johns Hopkins University, 229, 486 
Jordanform, 18, 20, 43, 74, 153, 205, 219 
Jupiter, 485 

K 

Kalman-Bucy filter, 229, 400 
Kalman-Schmidt filter, 487 
Kalman filter 

adaptive, 298, 300, 313, 497 
bank, 300-301 
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batch, 154 
combined with H,, 374, 376-377 
comparison with H,, 354, 361, 368 
comparison with Wiener filter, 490 
continuous, 229 

alternate form, 238 
gain, 236 
innovations, 301, 326 
steady state, 252 

decentralized, 491 
decoupled, 490 
discrete, 123 

alternate form, 135, 149, 265, 318, 334 
closed form, 138 
gain, 128 
innovations, 130, 298, 300, 326 
Joseph stabilized version, 145 
measurement update, 127 
offline calculation, 129 
one-step equations, 131 
steady state, 137, 193 
time update, 126-127 

divergence, 140 
extended, 400, 416, 462 

continuous, 400-401 
difficulties, 433, 439, 462 
discrete, 407, 409 
hybrid, 403, 405 
iterated, 410-411 
second order, 413, 419 
steady state, 404 

fictitious process noise, 140, 142 
history, 485, 490-491 
initialization, 140 
Joseph stabilized version, 129 
limitations, 336 
linearized, 397, 399 
multiple model, 301 
optimality, 336, 374, 465, 480 
philosophy, 343 
properties, 129, 145 
proportional integral, 326 
reduced order, 305 

Anderson’s approach, 306 
covariance approximation, 305 
decoupled, 305 
model reduction, 305 
Schmidt’s approach, 309 

robust, 312 
sequential, 150 
square root, 140 
stability, 196, 254, 297, 308, 317 
symmetrization, 140 
transition matrix approach, 238 
verification, 298 

bandwidth, 472, 483 
biweight, 483 
density, 472 
Epanechnikov, 473, 483 
Gaussian, 483 

kernel 

triangular, 483 
uniform, 483 

Krein space, 369, 491 
Kronecker delta function, 72, 124 

L 

Lagrange multiplier, 214-215, 337-338, 345 
linearization, 22, 397, 434 

covariance approximation, 446 
mean approximation, 444 
operating point, 23 

continuous, 39, 41, 115 
discrete, 39, 42, 108 

Lyapunov equation 

M 

MATLAB, xxiii, 491 
functions 

CARE, 253, 256, 262 
CHOL, 160, 441 
COND, 159 
DARE, 194, 225, 355 
DLYAP, 110 
EXP, 19 
EXPM, 19 
LYAP, 119 
QP, 217 
RESIDUE, 99 

matrix, 4 
matrix inversion lemma, 11 
matrix 

algebra, 6 
calculus, 14 
characteristic roots, 9 
condition number, 159, 328 
degenerate, 4 
determinant, 7 

product rules, 14 
diagonalization, 153 
dimension, 4 
eigendata, 9 
eigenvalues, 8-9 
eigenvectors, 9 
exponential, 19 
hermitian, 5 
hermitian transpose, 5 
history, 17-18 
identity, 7 
indefinite, 10 
infinity-norm, 359 
inverse, 8, 10 

derivative, 14 
trace, 294 

Laplace expansion, 7 
latent roots, 9 
latent vectors, 9 
negative definite, 10 
negative semidefinite, 10 
noninvertible, 8 
nonnegative definite, 10 
nonpositive definite, 10 
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nullity, 5 
positive definite, 10 
positive semidefinite, 10 
product, 9 
proper numbers, 9 
proper vectors, 9 
rank, 4-5 
singular, 8 
singular values, 10, 159, 180 
square root, 160, 246, 441, 458, 473 
symmetric, 5, 10 
symplectic, 205, 226, 370 
trace, 9 

inverse, 294 
transpose, 5 
triangular, 261 
triangularhation, 169 

MCMC resampling, 470, 476 
meaning of life, 493 
measurement residual, 80 
Metropolis-Hastings acceptance, 476 
minimax filter, 336, 367 

missile tracking, 486 
MIT, 486 
model errors, 140 
model uncertainties, 377 
modified matrices formula, 12 
monotonic function, 59 
Monte Carlo filter, see particle filter 
moon, 485, 487 
motor, 20, 25, 47, 379, 401, 429, 457 

N 

NASA, xiii, 158, 165, 246,486-487 
neural networks, 480 
noise 

see also H, filter 

artificial, 423 
bandlimited, 252 
biased, 369,398,426 
colored, 71, 183, 188, 247, 249, 309 

simulation, 73 
control, 398, 426 
correlated, 184, 247-248 
nonlinear, 450 
power spectrum, 252 
white, 71, 112, 230-231 
zero measurement, 190, 214, 250 

nominal operating point, 23, 397 
nonlinear filter, 395, 425, 490 

benchmark problem, 469 
stability, 425 
tradeoffs, 396, 480 

notation, xxiii, xxv 
nuisance state, 311 
nuisance variable, 311 
numerical difficulties, 158, 246 

0 

objective function, 80 
observabilitv mammian. 41-42 

observability matrix, 41-42 
Occam's rmor, 498 
Ohm's Law, 395 
open research areas, xxv, 224, 317, 377, 388, 

396,457, 480 
optimal control, 258 
optimization 

constrained, 214 
order statistics, 467 
output matrix, 19 
output vector, 19 

P 

parameter estimation, 422, 428, 487 
parsimony, 498 
particle filter, 466, 468 

auxiliary, 470, 476 
comparison with unscented filter, 480 
difficulties, 462, 467 
extended, 477 

implementation issues, 469 
prior editing, 470, 472 
regularized, 470, 472 
resampling, 466-468 
roughening, 470 
sample impoverishment, 469 
unscented, 477 

Hoe, 478 

pattern recognition, 480 
perfection, 497 
persistent excitation, 496 
perturbation estimator, 326 
pleasure, 494 
poker, 51 
population, 109, 327 
prerequisites, xxiii, xxv 
primal-dual interior-point method, 341 
prior editing, 470 
probability density function, 53 

conditional, 54 
joint, 61 
marginal, 62 
multimodal, 463, 473 

conditional, 54 
joint, 61 
marginal, 61 

probability 
a posteriori, 51 
a priori, 51 
conditional, 51 
definition, 50 
independence, 52 
joint, 51 

probability distribution function, 53 

proportional integral Kalman filter, 326 
" -  , -  pseudo inverse, 81 
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RLC circuit, 39, 42, 47, 119, 148, 181 
Q rocket, 48 
Q-function, 54 roughening, 470 

quadratic programming, 216 running average, 90 

quaternions, 18 S 
R 

radar, 104 
radioactivity, 145, 179, 370 
RAND, 486 
random process, 68 
random sequence 

continuous, 68 
discrete, 68 

average, 54 
Cauchy, 76 
central moment, 56 
continuous, 53 
correlation coefficient, 62 
covariance, 62 
definition, 53 
discrete, 53 
expectation, 54 
expected value, 54 
exponential, 75 
function, 55, 59, 67 
Gaussian, 57 
independence, 62 
Laplace, 57 
mean, 54 
moment, 56 
multivariable, 65 
normal, 57 
orthogonal, 63 
realization, 53 
skew, 56 
skewness, 56 
standard deviation, 56 
transformation, 59 
uncorrelated, 62 
uniform, 56 
variance, 55 
vector, 65 

random variable, 49, 53 

autocorrelation, 66 
autocovariance, 66 
correlation, 66 
covariance, 66 
Gaussian, 67 

recursion, see recursion 
regularized particle filter, 470 
research funding, 144 
residual sampling, 467 
retrodiction, 322 
retrodiction filter, 294 
return function, 80 
Riccati equation 

continuous, 235, 248, 253, 259, 361 
discrete, 131, 158, 194, 196, 314, 355, 374, 

378, 389 
RL circuit, 112 

saddle point, 351, 383 
satellite, 264, 274, 309, 428, 486 
Saturn, 485 
scalar, 4 
sequential filter, 178 
sequential importance, see particle filter 
Sherman-Morrison formula, 12 
sigma point, 441, 449, 452 
signal, two-norm, 358 
simulation, 27, 232 

colored noise, 73 
Euler integration, 29 
rectangular integration, 29 
Runge Kutta integration, 31 
trapezoidal integration, 29 

slot machine, rigged, 63 
smoother 

constant states, 274 
fixed-interval, 264, 279 

forward-backward, 280, 285 
RTS, 286 

fixed-lag, 264, 274 
fixed-point, 264, 267 
Gaussian sum, 422 
improvement, 270 
stability, 295 

solution manual, xxiv 
spacecraft, 400, 489 
speech recognition, 480 
square root filter, 158, 178, 238, 246, 490-491 

Potter’s algorithm, 158, 165 
triangularhation, 169 

state, xxi 
state space models, 18 
state transition matrix, 19, 109, 111, 114, 320 

state vector, 19 
stationary point, 81, 351 
steel production, 105 
Stein equation, 39, 42, 108 
stochastic process, 68 

autocorrelation, 69 
autocovariance, 69 
colored, 71 
continuous, 68 
cross correlation, 71 
cross covariance, 71 
cross power spectrum, 72 
discrete, 68 
ergodic, 70 
power, 72 
power density, 72 
power density spectrum, 72 
power spectral density, 72 
power spectrum, 71 

invertibility, 282, 320, 377 
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probability density function 
joint, 69 
second-order, 69 

joint, 69 
second-order, 69 

stationary, 69 
strict-sense stationary, 69 
time autocorrelation, 70 
time average, 70 
uncorrelated, 71 
white, 71 
wide-sense stationary, 69 

probability distribution function 

stock market, 70 
stratified sampling, 467 
student, tired, 82 
superposition, 95 
supremum, 360, 383 
surveying, 486 
survival of the fittest, see particle filter 
Sylvester equation, 39, 41, 115 
synchronization error, 317 
system identification, 303, 496 
system matrix, 19 
system 

algebraically equivalent, 43 
anticausal, 99 
augmented, 424 
causal, 96 
continuous 

covariance, 114 
mean, 114 

controllability, 38, 195, 197, 253-254 
detectability, 43, 197, 254 
discrete 

covariance, 108 
mean, 107 

distributed parameter, 490 
infinity-norm, 359 
linear, 18-19, 27 

modes, 43 
Newtonian, 132, 199, 202, 226, 261, 271, 279, 

285, 316, 390 
nonlinear, 22, 395 
observability, 38 
sampled-data 

covariance, 111 
mean, 111 

nonexistence of, 395 

second order, 296, 303, 423 
stability, 33-34, 37 
stabilizability, 43, 197, 254 

systematic resampling, 467 

T 

target maneuvering index, 201, 203 
target tracking index, 201 
Taylor series, 23, 337, 397, 407, 413, 439 
tire tread, 328-329 
toast, 343 
tracking, 317, 480, 491 

U 

U-D filter, 174, 178, 180, 490 
unscented filter, 447 

comparison with particle filter, 480 
difficulties, 462 
simplex, 454 
spherical, 455 
square root, 457 
weighting coefficient, 442, 444, 453 

unscented transformation, 441, 446, 452 
covariance approximation, 446 
mean approximation, 444 

V 

variable structure filter, 326 
vector, 4 

calculus, 14 

Euclidean norm, 9 
quadratic form, 10 
row, 4 
two-norm, 9-10, 358 

column, 4 

vehicle navigation, 223, 370, 386, 430, 459 

W 

weather forecasting, 305 
Web site, xxiii 
Wiener-Hopf equatipn, 100, 259 
Wiener-Kalman filter, 489 
Wiener-Khintchine relations, 71 
Wiener filter, 94, 257, 486 

causal, 100 
comparison to Kalman filter, 490 
noncausal, 98 
parametric, 96 

wombat, 147 
Woodbury’s identity, 12 
workhorse of state estimation, xxiv 
World War 11, 94 

Y 

yellow peril, 94 
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