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'YouVe got to learn to think multi-dimensionally... 
If you'd like to know, I can tell you that in your uni-
verse you move freely in three dimensions that you 
call space. You move in a straight line in a fourth, 
which you call time, and stay rooted to one place in 
a fifth, which is the first fundamental of probability. 
After that it gets a bit complicated, and there's all 
sorts of stuff going on in dimensions 13 to 22 that 
you really wouldn't want to know about.' 

Douglas Adams * Mostly Harmless' 
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Preface 

Modal logic is a discipline of many facets. It was baptized in philosophy, and 
for a long time it was known as 'the logic of necessity and possibility.' The 
modal analysis of the 'mathematical necessity'—provability—brought modal 
logic to the foundations of mathematics. The discovery of topological and 
algebraic semantics for modal logic connected it with general topology and 
universal algebra, and the fact that first-order logic can be regarded as a 
propositional modal logic opened a 'modal perspective' in classical mathem-
atical logic. But the most amazing metamorphosis happened when it turned 
out that modal logic could provide languages for talking about various re-
lational structures, such as state transition systems for computer programs, 
semantic networks for knowledge representation, or attribute value structures 
in linguistics—languages that combined both sufficient exi)ressive power and 
effectiveness! This opened new rich and rapidly growing application fields in 
computer science, artificial intelligence, linguistics, as well as in mathematics 
itself. 

A great many systems with various kinds of modal operators have been 
constructed in the last few decades in order to provide effective formalisms for 
talking about time, space, knowledge, beliefs, actions, obligations, etc.: tem-
poral, spatial, epistemic, dynamic, deontic, and so forth. However, modern 
applications often require rather complex formal models and corresponding 
languages that are capable of reflecting different features of the application 
domain. For instance, to analyze the behavior of a multi-agent distributed 
system we may need a formalism containing both epistemic operators for cap-
turing the knowledge of agents and temporal operators for taking care of the 
development of this knowledge in time. In other words, we should construct a 
suitable combination of epistemic and temporal logics. Borrowing the geomet-
rical terminology, one can call the resulting hybrid a many-dimensional modal 
logic (later on we shall see that this name is not merely a nice metaphor). 

The algorithmic properties of such many-dimensional hybrids that ap-
peared more or less independently and with different motivations in com-
puter science, artificial intelligence, algebraic logic, and modal logic, turn out 

ix 



to be quite different from those of their well-known and well-behaved one-
dimensional components. In particular, the complexity of decision algorithms 
may increase dramatically, even up to undecidability; two fairly simple finitely 
axiomatizable systems may give rise to a hybrid which is not even recursively 
enumerable, etc. 

To study the computational behavior of many-dimensional modal logics 
is the main aim of this book. More precisely, as suggested by its title, our 
aim is twofold. On the one hand, we are concerned with providing a solid 
mathematical foundation for the discipline characterized in (Blackburn et al. 
2001) as 

. . . a branch of modal logic dealing with special relational struc-
tures in which the states^ rather than being abstract entities, have 
some inner structure. More specifically^ these states are tuples or 
sequences over some base set ... Furthermore, the accessibility re-
lations between these states are {partly) determined by this inner 
structure of the states. 

On the other hand, we show that many seemingly different applied many-
dimensional systems (e.g., multi-agent systems, description logics with epi-
stemic, temporal and dynamic operators, spatio-temporal logics, (fragments 
of) first-order temporal or epistemic logics, etc.) fit in perfectly with this the-
oretical framework, and so their computational behavior can be analyzed using 
the developed machinery. Thus, we contribute to filling in the gap between 
the mathematical theory of modal logic and applications in computer science 
and artificial intelligence, which were developing in parallel, often independ-
ently of each other (witness description logics created in the field of knowledge 
representation and proved to be terminological variants of well-known modal 
logics). This gap is clearly reflected in the existing literature. Take, for ex-
ample, two recent books: (Fagin et al. 1995) is an excellent exposition of ap-
plied epistemic logic, but it avoids difficult proofs, say, the complexity results 
are only formulated; the first monograph on multi-dimensional modal logics 
(Marx and Venema 1997), on the contrary, considers mostly mathematical 
aspects of modal systems originating in algebraic logic. 

This book also reflects a new direction in applied logic in general and in 
modal logic in particular that has become apparent in the last few years: 
we mean the direction towards constructing and investigating complex com-
bined systems out of relatively simple ones. It has manifested itself in a 
number of international conferences (e.g., 'Frontiers of Combining Systems* 
FroCoS'96-FroCoS'02) and subsequent volumes (Baader and Schulz 1996, 
de Rijke and Gabbay 2000, Kirchner and Ringeissen 2000, Armando 2002), 
special issues of Notre Dame Journal of Formal Logic (de Rijke and Black-
burn 1996) and Studia Logica (Gabbay and Pirri 1997, Kurucz et al. 2002), 
and the monograph (Gabbay 1999). 
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Complex logical systems and knowledge representation formalisms present 
many challenging problems for investigation. In this book we concentrate on 
three of them that are regarded as fundamental in both mathematical logic 
and theoretical computer science. These are: 

• The decision problem^ i.e., to find out whether there exists an algorithm 
that is capable of deciding a given reasoning task (say, satisfiability or 
entailment) for a logic. 

• 

• 

The complexity problem^ i.e., to find lower and upper bounds for the 
computational complexity of a possible algorithmic solution to the de-
cision problem. 

The axiomatization problem^ i.e., to give an effective (preferably finite) 
syntactical characterization of a semantically defined logic, or to provide 
an adequate semantics for a syntactically defined one. 

The first two problems are concerned with effectiveness (or programmability) 
and efficiency (or fast programmability) of logical systems, which make them 
fundamental in artificial intelligence and other practical fields of computer 
science as well. The third problem is connected with the proof-theoretic ap-
proach: it can be understood as describing the most essential features of a 
logic starting from which all others are derivable. Thus, the axiomatization 
problem underpins possible implementations of decision procedures. 

The direct practical use of decidability, complexity and axiomatizability 
results may be not that obvious. 

^Negative' results, say undecidability, are clearly useful: they warn us 
not to waste time with implementing this or that 'decision' algorithm. These 
results lead to a new research programme: (1) to find semi-decision (i.e., sound 
but incomplete) procedures, (2) to search for decidable fragments of the logic 
in question, (3) to modify the logic by making it decidable, etc. Similarly, a 
result establishing a high computational complexity or non-axiomatizability 
may force the researcher to devise another language to model her application 
domain. 

On the other hand, a positive decidability result does not yet guarantee 
that trying to implement a decision procedure is not a waste of time: after all 
the British Museum algorithm is also a decision procedure. It may seem that 
the only use of a positive solution to the decision problem is the conclusion 
that it is not provable (with the existing concepts in recursion and complexity 
theory) that implementing a decision procedure is hopeless.^ This interpret-

^Even this cautious claim may appear too strong. Here, for example, is a citation 
from (Johnson 1990): 'Even those unimpressed with the difficulty of problems in 2- or 3-
EXPTIME will have to admit that if a problem is decidable but not in ELEMENTARY, it 
might as well not be decidable at all.' So, according to Johnson, there are concepts in com-
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ation of decidability results can hardly justify spending an enormous amount 
of energy for obtaining them. 

Actually, it is not only the result itself, not only the first 'sanity check' of 
the system, not only an indication of how to implement a decision procedure 
that motivates the researcher, but also a deep insight into properties of the 
logical system that can be extracted from decidability and axiomatizability 
proofs? It is the proof of a complexity result that provides the researcher 
with insights into the sources of high computational costs and can be used to 
guide the search for more efficient languages—see (Gurevich 1990, 1995) for a 
similar position. To conclude this discussion: we believe that the decidability, 
complexity, and axiomatizability theorems we present in this book are of 
interest mainly because their proofs provide a better understanding of the 
logical formalisms we consider and, at the same time, are often useful for 
the design of practical procedures (to a certain extent, this is illustrated in 
Chapter 15 which presents tableau calculi for modal description logics). 

The book is organized in the following way. Part I may serve as an easy 
introduction to modal logic and its applications. Chapters 1 and 2 introduce 
the basic modal logics we deal with, explain their roots, motivations, syntax, 
semantics and appUcation fields. At the end of Chapter 2 we show useful 
'semantical level' reductions between many of these logics. In Chapter 3, we 
consider a number of many-dimensional systems constructed in logic, artifi-
cial intelligence and computer science, and establish connections between the 
various formalisms. 

Part II is the technical core of the book. Here we develop a mathematical 
theory for handling a spectrum of 'abstract' combinations of modal logics, 
ranging from fusions (known also as independent joins or dovetailings), in 
which the modal operators of different components do not interact at all, 
to products of modal logics, where such an interaction is rather strong. The 
ideas, tools and techniques developed in Part II as well as the obtained results 
will be used in the subsequent two parts to investigate the computational be-
havior of first-order modal and temporal logics and some combined knowledge 
representation formalisms. 

In Part III we consider first-order modal and temporal logics in the two-

plexity theory which allow us to classify certain decidable problems as 'non-implementable' 
ones. We do not agree with this for the simple reason that a non-elementary problem may 
be solvable in polynomial time in all practical cases. For certain highly complex prob-
lems a useful and complete decision algorithm may exist; see e.g. (Horrocks et al. 1999, 
Hustadt and Schmidt 2000). Klarlund et al. (2002), writing about the prover MONA in 
monadic second-order logic, observe that 'perhaps surprisingly, this [NONELEMENTARY] 
complexity also contributes to successful applications, since it is provably linked to the 
succinctness of the logic' 

"̂ That is why decidability results obtained by means of embeddings into extremely ex-
pressive formalisms (like monadic second-order logics SIS or Su)S) may appear somewhat 
disappointing. 



Xlll 

dimensional perspective. It has been known since the 1960s that it is ex-
tremely hard to deal with these logics (and that they can be very important 
for applications). But in contrast to classical predicate logic, where the early 
undecidability results of Turing and Church stimulated research and led to a 
rich and profound theory concerned with classifying fragments of first-order 
logic according to their decidability (see, e.g., Borger et al. 1997), there were 
no serious attempts to convert the *negative^ results in first-order modal and 
temporal logic into a classification problem. Apparently, the extremely weak 
expressive power of the modal and temporal formulas required to prove unde-
cidability left no hope that any useful decidable fragments located 'between' 
propositional and first-order modal and temporal logics could ever be found. 
However, the studies of many-dimensional propositional modal logics have 
brought a new insight into the first-order case. In Part III we present a 
number of recent results concerning decidable and axiomatizable fragments of 
various first-order modal and temporal logics, and try to draw a borderline 
between *the decidable' and 'the undecidable.' 

Part IV applies the developed techniques and obtained results to analyze 
the computational behavior of three kinds of knowledge representation form-
alisms: temporal epistemic logics, description logics with modal and temporal 
operators, and spatio-temporal logics. In particular, we show how the method 
of quasimodels, developed for proving decidability, can be used for devising 
tableau decision procedures for some of these logics. 

The genre of the book can be defined as a research monograph. It brings 
the reader to the front Une of current research in the field by showing both 
recent achievements and directions of future investigations (in particular, mul-
tiple open problems). On the other hand, well-known results from modal and 
first-order logic are formulated without proofs and supplied with references 
to accessible sources. 

The intended audience of this book is primarily those researchers who use 
logic in computer science and artificial intelligence. More specific areas are, 
e.g., knowledge representation and reasoning, in particular, terminological, 
temporal and spatial reasoning, or reasoning about agents. For 'pure' logi-
cians Parts II and III may be of chief interest. Logicians looking for possible 
applications may find some useful ideas in Parts I and IV. And we also be-
lieve that researchers from certain other disciplines, say, temporal and spatial 
databases or geographical information systems, will benefit from this book as 
well. 

We conclude this preface by putting the subject of the book into a more 
general perspective of ongoing and future research. As we have said above, 
many-dimensional modal logics are just one example of 'combined logical sys-
tems.' And even within this smaller area there may be different ways of 
constructing complex logics out of relatively simple ones. Our approach is 
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basically semantical: given two (or more) classes of 'one-dimensional' Kripke 
frames characterizing logics L^, we construct a class of two- (or higher-) di-
mensional Kripke structures reflecting some desirable features of the target 
combination of the Li, and then investigate the logic determined by this class. 
However, logics do not always come equipped with their Kripke semantics. 
They may be given by some kind of algebraic structures or purely syntactic-
ally, as Hilbert-, Gentzen-, tableau-, resolution-, etc. style calculi. Thus, we 
need a spectrum of methodologies providing us with means of combining homo-
geneously given logics (say, tableau systems) and perhaps meta-methodologies 
for combining methodologies. These challenging problems are far beyond the 
scope of this book; many of them are still open for investigation. 
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Chapter 1 

Modal logic basics 

This chapter can serve as a concise introduction to modal logic. We define 
a number of basic modal systems, introduce the possible world semantics 
for propositional multimodal logics, establish connections with classical first-
order logic, and discuss the decision, complexity and axiomatization problems 
which will be investigated later on in the book for much more complex many-
dimensional modal systems. As all the results of this chapter are well docu-
mented in the accessible literature, we omit the proofs and provide the reader 
with references to available textbooks. The reader familiar with elements of 
modal logic can safely skip this introduction and proceed with Chapter 2. 

1.1 Modal axiomatic systems 

Modal logic originated in philosophy. The creator of the first modal systems, 
C.I. Lewis (1918, 1932), constructed them as an auxiliary tool in his attempts 
to solve the paradoxes of 'material' (i.e.. Boolean) implication.^ His idea was 
to replace the material implication 'if ^ then t/̂ ' with the 'strict' implication 
'it is necessary that if ^ then ^ \ And for this purpose Lewis constructed 
five axiomatic systems with simple names: Sl-S5.^ It seems that the only 
intuition behind them was whether they could help to get rid of the paradoxes. 
In any case, Lewis never clarified his understanding of the notions of necessity 
and possibility. Yet, at least two of his systems, S4 and S5, became celebrities 
in modal logic. 

^Here is one such paradox: 'If the moon is made of green cheese then 2 x 2 = 4.' We 
have to regard this statement as true in Boolean logic if we agree that 2 x 2 = 4. Those 
who want to learn more about the paradoxes of material implication are referred to (Zeman 
1973) and (Anderson and Belnap 1975). 

2Actually, S5 was introduced before Lewis by H. McColl (1906). 



4 Chapter 1. Modal logic basics 

Approximately at the same time when Lewis formulated S4 in (Lewis and 
Langford 1932), the very same logic was also constructed by Orlov (1928) 
and Godel (1933). However, their aim was different. Both of them tried to 
interpret the intuitionistic logic of Brouwer by embedding it into classical logic 
extended with an operator *it is provable.'^ 

Unlike Lewis who used the necessity operator implicitly, having hidden 
its properties in strict implication, Orlov and Godel added it to classical pro-
positional logic'* explicitly, thus arriving to the propositional modal language 
which will be denoted in this book by At£ . 

The alphabet of MC consists of 

• a (fixed, countably infinite) list po»Pi» • • of propositional variables; 

• the logical constants: T ('true') and ± ('false'); 

• the Boolean logical connectives: A ('and'), V ('or'), —> ('implies'), and 
- (*not'); 

• the modal operators: D ('it is necessary') and O ('it is possible'); 

• the punctuation symbols: ) and (. 

Propositional variables can be thought of as ranging over arbitrary proposi-
tions—sentences in some (say, natural) language whose content can be eval-
uated as true or not true. Starting from these variables and the logical con-
stants, we construct inductively well-formed formulas oi AiC {MC-form,ulas^ 
for short, or simply formulas^ \l MC'is understood) intended for representing 
compound propositions: 

• all propositional variables and the constants T and ± are AiC-formulas 
(these are called atomic formulas or simply atoms)\ 

• li if and 'ip are A1£-formulas then so are (</? A ̂ ) , ({p V t/̂ ), (<̂  —>• t/?), 

{-^ip), ( a ^ ) , and {Oif)^ 

Sometimes we use ((^ -̂̂  ^ ) as an abbreviation for {{^p -4 ^ ) A (^ —• ^)) . 
In our metalanguage, we may denote propositional variables by lower case 
Roman letters like p, g, r, possibly with subscripts or superscripts; lower case 
Greek letters like (̂ , 0 , x stre reserved for formulas, and upper case letters 
E, A, etc. for sets of formulas. To simplify notation, we use the following 

^We discuss intuitionistic logic and this embedding in Section 2,7. 
•^Orlov's system was based on a logic weaker than classical propositional logic; actually, 

it was the first system of relevant logic. 
^To be absolutely precise, we should add here that no other objects, different from those 

defined above, can be called A1£-formulas. We will never formulate statements like this 
explicitly, relying upon the reader's common sense. 
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standard conventions on formula representation: we assume -», D and O to 
bind formulas stronger than A and V, which in turn are stronger than —• and 
<->, and omit those brackets that can be uniquely recovered according to this 
priority of connectives. Thus, the -M£-formula 

(D((poApi) -^( (Opo)Vpi) ) ) 

can be shortened to 
a(po Api ~> Opo Vpi). 

Instead of (.. . {{(fii V (̂ 2) V (̂ 3) V • • • V (fn) and (.. . ((< î A (̂ 2) A (̂ 3) A • • • A ipn) 
we write, respectively, <̂ i V 9?2 V • •• V ̂ n and (/?i A (̂ 2 A • • • A (̂ n* or Vr=i Vi 
and Ar=i ^t- By definition, Vt€0^« ^̂  -̂ » ^^^^^ At€0^* '^ ^* 

Given a formula ^, we write (^(gi,.. . , gn) to indicate that all propositional 
variables occurring in (p are among g i , . . . ,9n ; subip denotes the set of all 
subformulas of (p (i.e., the formulas used in the construction of (/? according to 
the definition above, including (f itself). Say, if (f is n(po Api —• Opo Vpi) 
then 

sub(p= {pOiPi,PoApi,Opo,Opo Vpi ,poApi --> Opo Vpi,(^}. 

A logical system in general, and a modal system in particular, is supposed 
to single out and describe those formulas that represent certain *true' propos-
itions no matter what values (propositions) are assigned to their variables. 
There are two main ways of defining logics: semantical and syntactical. Usu-
ally, the semantical and syntactical definitions complement each other: the 
former explains the (intended) meaning of the logical constants and connect-
ives, while the latter provides us with a reasoning machinery. 

We illustrate the semantical approach by reminding the reader of the clas-
sical semantics of the sublanguage C of MC that results by omitting the 
modal operators D, O and all formulas containing them. There is a very 
simple interpretation of this language based on the assumption that every 
proposition is either true or false. Having assigned one of these truth-values T 
(for true) or F (for false) to each propositional variable, we can then compute 
the truth-value of an £-formula (under that assignment) using the well-known 
^Boolean truth-tables^^ reflecting the above readings of the logical connectives: 

i> 
F 
F 
T 
T 

X 
F 
T 
F 
T 

V'Ax 
F 
F 
F 
T 

V'Vx 
F 
T 
T 
T 

ip-^X 
T 
T 
F 
T 

-T0 

~T~ 
T 
F 
F 

(of course, the logical constants T and 1 are always evaluated as T and F, 
respectively). Classical propositional logic CI can be defined then as the set 
of all those £-formulas that are true under every such assignment. 
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Now, returning to modal logic, we see that this semantical definition of 
CI cannot be extended to the modal language in a straightforward way. The 
apparent reason is that the modal operators are not truth-functional: the 
truth-value of a formula of the form D(p can depend not only on whether v? 
is true or false. For example, we most likely agree that the proposition 4t is 
necessary that 2 x 2 = 4' is true, while 4t is necessary that NATO bombs 
Belgrade' is undoubtedly false, although both propositions ' 2 x 2 = 4' and 
*NATO bombs Belgrade' are true.^ 

Perhaps this is one of the reasons why the first modal logics were defined 
in another, syntactical, way with the help of inference systems {calculi). In 
this book we consider mainly Hilbert-style inference systems? To define such 
a system, one has to indicate which formulas are regarded as axioms of the 
system and to specify its inference rules. A derivation of a formula (/? in 
the system is a finite sequence of formulas ending with ip and such that each 
formula in the sequence is either an axiom or obtained from earlier formulas in 
the sequence by applying one of the inference rules. The logic of this inference 
system is defined then as the set of all derivable formulas. To put it another 
way, the logic defined by the system is the smallest set of formulas which 
contains the axioms and is closed under the inference rules. 

For example, classical propositional logic CI can be defined by the follow-
ing Hilbert-style calculus: 

A x i o m s : 

( A l ) 
(A2) 
(A3) 
(A4) 
(A5) 
(A6) 
(A7) 
(A8) 
(A9) 

Po - • (Pi -» Po), 
(PO -* (Pl -» P2)) — ((PO -* Pi) — (PO ^ P2)), 
Po A pi —> Po, 
Po Api - » p i , 
Po - • (Pi - • P o A p i ) , 
Po - • P o V p i , 
Pl - • P o V p i , 
(PO - • P2) - • ((Pl - • P2) - • (PO V Pl -» P2)), 
-l--*Po, 

(AlO) poV(po-^ l ) . 

Inference rules: 

Modus ponens (MP): given formulas (p and if ~^ ip, derive ijj; 

Substitution{Snhst): given a formula v^(pi,.. .,Pn), derive the formula 
ifi'ipi/pii..., ipn/Pn} which is obtained by uniformly 
substituting formulas V'l,..., t/'n instead of the vari-
ables P l , . . . , p„ in </?, respectively. 

®This was written on 27 April 1999. 
^For other kinds of modal inference systems the reader is referred to (Fitting 1983, 

Wansing 1996) and references therein; see also Chapter 15 below. 
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As the well-known soundness and completeness theorem of classical proposi-
tional logic says, the logic defined by this calculus coincides with CI (see e.g., 
Chagrov and Zakharyaschev 1997, Enderton 1972). 

The above calculus does not involve the connective -» and the constant T. We 
can define them as abbreviations: 

-i(p = (^—•!, T = ± — • X . 

(These abbreviations 'agree* with the classical semantics in the sense that the 
truth-values of the left-hand and the right-hand sides of these equalities are 
the same under any assignment.) Moreover, in classical logic we can further 
reduce the number of basic logical connectives, say, to A and -», or to V and 
•-1, by defining 

y? —• ^ z= -i((^ A -•V'), (̂  V i/> = -i(--i(^ A - • '0) , ± = po A -ipo 

(a corresponding inference system can be found e.g. in (Shoenfield 1967)). 
Throughout the book we will often use this fact to shorten inductive definitions 
and proofs. 

Let us now return to modal logic. If we agree to accept the reasoning prin-
ciples of classical prepositional logic, then modal calculi can be constructed 
by adding to the Hilbert-style calculus for CI those axioms and inference rules 
that reflect our understanding of the modal operators. A set of A1£-formulas 
which contains the axioms (Al)-(AIO), the modal axiom 

(K) n(po -> Pi) -^ (Qpo - • Opi), 

and is closed under MP, Subst, and the rule of 

Necessitation (RN): given v?, derive Dtp 

is called a modal logic? The possibility operator O can be regarded as an 
abbreviation for -iD-« (or, we can add the axiom Opo -̂̂  -•D-'Po). The min-
imal modal logic is denoted by K: it is defined by the inference system having 
(Al)-(AIO) and (K) as its axioms and MP, Subst and RN as its inference 
rules. Every other modal logic L can be obtained by extending this system 
with a (possibly infinite) set E of extm axioms. In this case we write 

L = K e E . 

If E can be chosen finite, then we call L finitely axiomatizable. In general, 
given a modal logic L and a set A of //f ^-formulas, 

L e A 

®Actually, such logics are usually called normal modal logics. We omit the epithet 
'normal' because no non-normal modal logics are considered in this book. 
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denotes the smallest modal logic containing L U A. We write L®(p whenever 
A = {(f}. Using this notation, we can define the Lewis systems S4 and S5 as 
follows: 

54 = K © Dpo -* ODpo ® Opo -* Po, 

55 = S 4 © O p o - ^ a O p o . 

These axioms and rules of S4 were first introduced by Orlov (1928) and Godel 
(1933) in order to characterize the operator i t is provable.' For example, 
Dpo —> DDpo nieans that, given a proof of poi we can prove that it is indeed 
a proof, and Dpo -* Po says that everything provable is true. Godel observed, 
however, that the D of S4 cannot be understood as the formal provability in 
axiomatic theories like Peano Arithmetic PA (the formula D-iQi., provable 
in S4, would mean then that PA can prove its own consistency, contrary to 
GodePs second incompleteness theorem). This observation gave rise to a new 
branch of mathematical logic—provability logic—studying the laws of formal 
provability that are provable in PA and other theories (see, e.g., Boolos 1993). 
One of the most important modal systems constructed in provability logic is 
known as the Godel-Lob logic GL. It can be obtained from S4 by replacing 
Dpo —̂  Po with the Lob axiom 

D(npo -^ Po) -> Dpo 

or, using the above notation, 

GL = K (9 Dpo -> DDi^ e D(Dpo -> Po) -^ Opo-

Solovay (1976) showed that GL adequately describes those properties of 
Godel's provability predicate Bew{x) which are provable in PA. Recently 
Artemov (see (Artemov 2001) and references therein) has constructed a logic 
of proofs L P extending CI with atomic formulas of the form H is a proof of (/?' 
and showed that by replacing in L P all such formulas (and their subformulas) 
with Dip we again get S4. 

The D of S5 can also be read as 1 know' or 'Mr X believes.' By accepting 
one or more of the axioms of S5 as properties of knowledge or belief we can 
obtain new modal systems, like T and K4: 

T = K e Dpo -^ Po, 

K4 = K ® Dpo -> DDpo. 

A more detailed discussion of these epistemic logics can be found in Sec-
tion 2.3. 

The interpretation of D as 4t is obligatory' and O as 4t is permitted' gives 
another family of modal logics known as deontic. It is a natural principle 
of reasoning about norms (coming from law, moral, etc.) that everything 
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obligatory is permitted. The minimal deontic logic D reflecting this principle 
is defined as 

D = K e n p o -^ Opo. 

We shall see many other modal systems later on in this book. At the 
moment we have got enough examples to illustrate the semantical side of 
modal logic. 

1.2 Possible world semantics 

The provability interpretation of the necessity operator D and its relation 
to intuitionism gave a strong impetus to mathematical studies in modal lo-
gic, which resulted, in particular, in establishing connections with algebra 
and topology by McKinsey and Tarski (1944, 1946, 1948), and finally led to 
the discovery of relational representations of modal algebras by Jonsson and 
Tarski (1951); see Section 1.5 for some details. This relational semantics was 
also invented by philosophers: Carnap (1942, 1947), Prior (1957), Kanger 
(1957a,b), Hintikka (1957, 1961, 1963), and Kripke (1959, 1963a,b) who ap-
parently were not aware of (Jonsson and Tarski 1951).^ In philosophy, this 
semantics can be traced back to the Leibnizean understanding of necessity as 
truth in all possible worlds. Let us imagine a system of 'worlds' which can 
have some alternatives (for instance, as an alternative to our world we can 
consider another one where NATO does not bomb Belgrade and the coalition 
forces do not bomb Baghdad). Denoting the altemativeness relation by i?, 
we write xRy to say that y is an alternative (or possible) world for x. Every 
world X 'lives' under the laws of classical logic: an atomic proposition is either 
true or false in it, and the truth-values of compound non-modal propositions 
are determined by the Boolean truth-tables. A modal formula Dcp is then 
regarded to be true in a world a: if v? is true in all worlds that are alternative 
to x; 0(p is true in x if (̂  is true in at least one world y such that xRy. It is 
not hard to capture this intuitive picture in a precise definition. 

Systems of worlds with altemativeness relations can be represented by 
relational structures 5 = {W^R) in which IV is a non-empty set and R a 
binary relation on W. Such structures are known in modal logic as Kripke 
frames or simply frames. Elements of W are called worlds^ states or, more 
neutrally, points. If xRy^ we say that y is accessible from x, or x sees y. Other 
synonyms are: j/ is a successor of x, x is a predecessor of y. 

A valuation in a frame ^ = (W^R) is a map 9J associating with each 
propositional variable p of A^£ a set QJ(p) of points in W (which is understood 
as the set of those worlds where p holds true). A Kripke model for MC is a 
pair art = (3 ,̂53), where ^ = {W,R) is a frame and 93 a valuation in ^. We 

'See, however, a footnote at the beginning of Section 2 in (Kripke 1963a). 
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say that the model 971 is based on the frame 5, or that 3̂  is the underlying 
frame of 3K. Let (p be an A^£-formula and x a point in W. The truth-relation 
(9Jl, x) 1= (/?, read as 

V 5̂ r̂̂ e â  x in 9H/ 

is defined by induction on the construction of y? as follows: 

(971, x) \= p iff X G 53(p) (p a propositional variable); 

(97 l ,x )hT; 

not (971, x) 1= 1; 

(97l,x) 1= V' A X iff (97l,x) (= i/j and (97l,x) |= x; 

(971, x) 1= V' V X iff (971, x) 1= V' or (971, x) |= x; 

(971, x) 1= V' -^ X iff (9^, a:) 1= V' implies (971, x) [= x; 

(971, x) \= -^il) iff not (971, x) [= V; 

(971, x) 1= Utp iff (971, y) 1= V' for all y e VT such that xRy\ 

(971, x) \= Oil) iff (971, y)\=i) for some y G Ĥ  such that xRy, 

If (971, x) [= y? does not hold then we write (97t,x) ]^ ^ and say that 971 
refutes (p at x. Instead of (971, x) |= ^p and (971, x) ^ (p we write simply 
X [= (̂  and X t̂  (̂ , if 971 is understood. The truth-set of ip m 971 is defined as 
2J((̂ ) = {x G Ĥ  I X 1= y?}. 

Let 971 = (ff,9J) be a model based on the frame 5 = {W, R). A formula (̂  
is said to be true in 97t (in symbols: 971 [= <̂ ) if x ^ V? for all x G W, that is, 
if Q3(<̂ ) = W. Dually, ip is satisfied in 971 if 5J((̂ ) is not empty. We say that 
ip is valid in the frame 5 (or 5 validates (p) and write 5 |= (̂  if 93(</?) = W 
for every valuation 53 in 5» or equivalently, if (p is true in all models based on 
Ŝ . And (p is satisfiable in 3̂ , if it is satisfied in some model based on 3̂ . It 
should be clear that y? is valid in 5 iff '^^ is not satisfiable in J. For a set 
r of A^£-formulas, we say that 5 is a frame for T if all formulas from F are 
valid in J. In this case we write 5 [= F. A formula (p is T-satisfiable if it is 
satisfiable in a frame for F. 

Now we can give a semantical characterization of (at least some) modal 
logics by establishing a connection between logics and frames. Let C be an 
arbitrary class of frames. It is not hard to check that 

Log C = {(̂  G M £ I V3 G C 5 [= V?} 

is a modal logic. We call it the logic of C. 
A modal logic L is said to be sound with respect to C (or C-sound) if 3̂  [= y? 

for all (̂  G L and all ^ ^ C^ that is, L C Log C. L is complete with respect 
to C (or C'Complete) if y? G L whenever (p is valid in every frame in C, that 
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is, Log C C L, We say that L is determined (or characterized) by C if L is 
both C-sound and C-complete, that is, L = Log C. If L is determined by some 
class of frames, we call L Kripke complete. It is worth noting that a Kripke 
complete logic L can be characterized by different classes of frames (we shall 
see many examples in what follows). If L is Kripke complete then it is clearly 
determined by the class FrL of all frames for L, i.e., L = Log FrL. 

Although Kripke frames provide us with a rather transparent semantical in-
strument for dealing with modal languages, this instrument is far from be-
ing universal: as was shown by Fine (1974a) and Thomason (1974a), not 
every modal logic is Kripke complete. Equivalently, there exist two (actually 
uncountably many; see (Blok 1978) or (Chagrov and Zakharyaschev 1997)) 
distinct modal logics having precisely the same Kripke frames. It is worth 
noting, however, that every consistent modal logic L is determined by its 
Kripke models in the sense that v? ̂  L iff there is a model 9Jl such that all 
formulas of L are true in 9JI, while (p is not. Moreover, L is determined by a 
single model TIL known as the canonical model for L: for every formula (̂ , 
we have y> € L iff TIL t= <p. For more details and proofs consult (Chagrov 
and Zakharyaschev 1997, Blackburn et ai 2001). 

A very attractive feature of the possible world semantics is that many standard 
modal logics are determined by ^natural' classes of frames. Let us see first 
what kind of frames correspond to the modal logics introduced in the previous 
section. First of all, we have: 

Theorem 1.1. K is determined by the class of all frames. 

Before describing frame classes for the other logics, we remind the reader 
that a binary relation i? on a set W is said to be transitive if 

Vx, y,z e W{xRy A yRz -^ xRz), 

R is reflexive if 
Wx£W xRx. 

A transitive and reflexive relation on W is called a quasi-order on W. We 
denote by R* the reflexive and transitive closure of a binary relation RonW 
(in other words, R* is the smallest quasi-order on W to contain R). 

R is symmetric if 
Vx, y € W{xRy - • yRx). 

A symmetric quasi-order is called an equivalence relation on W, If 

Wx^y e W xRy^ 

then R is said to be universal onW. Ris serial on W if 

Vx € W3y e W xRy, 
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We say that a frame ^ = (W, R) is serial, if R is serial on W; 5 is a quasi-
ordered frame or simply a quasi-order, if i t is a quasi-order on W, and so 
forth. 

One of the first remarkable results obtained by Kripke (1959, 1963a) was 
the following completeness theorem (see, e.g., Hughes and Cresswell 1996, 
Chagrov and Zakharyaschev 1997): 

T h e o r e m 1.2. The logics D, T, K4, S4 and S5 are Kripke complete, 

• FrD is the class of all serial frames; 

• FrT is the class of all reflexive frames; 

• FrK4 is the class of all transitive frames; 

• FrS4 is the class of all quasi-ordered frames; 

• FrS5 is the class of all frames with equivalence accessibility relations. 

Note that S5 is also determined by the class of all universal frames which 
is a proper subclass of FrS5. The class of serial frames clearly coincides with 
the class of frames validating the formula OT; in fact, O T is an alternative 
extra axiom of D: 

D = K e O T . 

Frames for GL are somewhat more complex. A binary relation R on a 
set W is said to be irrefiexive if xRx holds for no x G W. An irreflexive 
and transitive relation is known as a strict partial order. Call a sequence 
xo,Xi,X2,.. . of points in W a strictly ascending chain if XQRX\RX2 . . . and 
Xn ^ a:n+i, for all n < a;. A binary relation R is called Noetherian if there 
is no infinite strictly ascending chain of points in W. The following result is 
due to Segerberg (1971): 

T h e o r e m 1.3. GL is Kripke complete. FrGL is the class of all Noetherian 
strict partial orders. 

Many other 'mathematically natural' frame classes give rise to 'sensible' 
modal logics as well. Here are a few examples. The meaning of some of these 
logics will be explained later on in the book. 

Alt = K e Opo -^ Dpo, 

DAl t = Alt e Dpo -^ Opo = D e Opo -^ Dpo, 

K D 4 5 = K 4 e Dpo -> Opo 0 Opo -^ DOpo, 

K4.3 = K4 e n(a+po -̂  pi) v n(n+pi -^ po), 
GL.3 = GL e •(••^po ^ Pi) V n(a+pi -* po). 
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S4.3 = S4 e • ( • p o -^ Pi) V D{Dpi -> po), 

Grz = S4 e • ( • ( P o -^ Dpo) ~-* Po) -* Po, 

Gr2.3 = Grz e a(Opo - • Pi) V D(Dpi -> po). 

Here, by definition, D"̂ v? = (̂  A D(/? and 0"*"v? = (/p V Ov?. 

A binary relation /? on a set IV is 

• antisymmetric if Va:, y € Ŵ  {xRy A y/?x —> a? = 2/); 

• functional if Vx, y, 2 6 W (xfiy A xRz -* 1/ = 2); 

• Euclidean if Vx, y, 2 € W (xfiy A xRz —• l/i?^:); 

• weakly connected if Vx, y, 2 € Ŵ  (x/iy A xRz —> yii^ W y — z^ zRy). 

A transitive, reflexive and antisymmetric R is called a partial order. 

T h e o r e m 1.4. The logics Alt, DAlt, KD45, K4.3, GL.3, S4.3 and Grz 
are Kripke complete. 

FrAlt = {5 I 5 i5 functional}] 

FrDAlt = {3̂  I 5 *5 functional and serial}; 

FrKD45 = {5 | 5 is serial, transitive and Euclidean}; 

FrK4.3 = {JJ ] 5 is transitive and weakly connected}; 

FrGL.3 ^ {^ \'S is a Noetherian weakly connected strict partial order}; 

FrS4.3 = {d \S is a weakly connected quasi-order}; 

FrGrz = {^ \S is a Noetherian partial order}; 

FrGrz.3 = {^ \d is a Noetherian weakly connected partial order}. 

We defined modal logics as certain sets of A^£-formulas. It is natural to 
ask which of the constructed logics is 'stronger' or 'weaker' with respect to 
the set-theoretic inclusion C. The family of all modal logics together with 
C form a structure the algebraists call a lattice. K is the least (smallest) 
element of the lattice. The greatest (largest) one is clearly Log 0, i.e., the set 
of all A^£-formulas, called the inconsistent logic (because it contains both ip 
and -ly?). An interesting observation, due to Makinson (1971), is that there 
are precisely two maximal (with respect to C) consistent modal logics. These 
are 

Verum = Log {•} = K4 © Dp, 

Triv = Log {0} = K4 ® Dp <-• p, 

where • denotes a single irreflexive point (i.e., the frame ({ii;},0)) and o a 
single reflexive point (i.e., the frame ({w}^{w^w))). Thus, every consistent 
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Log0 

GL 

Verum 
o 

Grz.3 

Grz 

K o 

Figure 1.1: Lattice of 'standard' modal logics. 
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modal logic is contained either in Verum or in Triv or in both. To put it 
another way, according to Makinson's theorem, at least one of the frames • 
or o is a frame for every consistent modal logic. As an exercise, the reader 
can check the correctness of the diagram in Fig. 1.1, where an arrow from Li 
to L2 means that Li C L2. 

1.3 Classical first-order logic and the standard 
translation 

In this book we consider many different logical formalisms. To understand 
how they are related to each other, to compare their expressive power and 
thereby to elucidate possible areas of applications are among the main aims 
of the book. 

Perhaps the best known connection of that sort is the standard translation 
which embeds modal languages into the language of classical first-order (or 
quantified) logic. Although we assume some familiarity with the syntax and 
semantics of first-order logic,̂ ^ here we give a brief summary of the basic 
definitions and properties we use later on. 

Classical first-order logic 

The first-order (or quantified) language QC we deal with in this book is based 
on the following alphabet: 

• predicate symbols: PQ, A»• • • (or P,Q^R^S^.,,); 

• individual constants: CQ, c i , . . . (or a, 6, c, d, . . .) ; 

• a count ably infinite list of individual variables: XQ, a:i,... (or a:, y, 2, . . . ) ; 

• the logical constants: T and ±; 

• the Boolean logical connectives: A, V, —> and -»; 

• the universal quantifier V; 

• the existential quantifier 3. 

The predicate symbols and the individual constants together form the signa-
ture of QC. As usual, we assume that each predicate symbol is of some fixed 
arity > 0, that the signature contains count ably infinitely many predicate 

^°Good introductions to first-order logic are, e.g., (Enderton 2001, Shoenfield 1967, Bar-
wise 1977). 
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symbols of each arity, and that the set of individual constants is also count-
ably infinite. And, of course, we assume that the language QC is recursive in 
the sense that we can always effectively recognize its predicate symbols with 
their arities, individual constants and variables. Sometimes we consider sub-
languages of QC with smaller signatures (but the same set of non-signature 
symbols as in QC). 

Note that equality = is not a symbol of Q£, and that QC contains no function 
symbols different from constants. Occasionally we shall use the language Q£~ 
whose alphabet extends that of QC with the binary predicate symbol =. 

Individual variables and constants are also known as terms. Formulas of any 
sublanguage of QC are defined inductively £is follows. If P is an n-ary signa-
ture predicate symbol and TI, . . . , Tn are signature terms, then P ( r i , . . . , Tn) is 
an {atomic) formula. (If P is binary then we sometimes write TIPT2 instead 
of P (TI ,T2) . ) Logical constants are (atomic) formulas as well. 

In the case of Q£~, we also have n = T2 as atomic formulas for all n and T2. 

If (̂ , x/j are formulas and x an individual variable, then (p At/j, (pV ip, (p -^ \p^ 
-!(/?, Vx(/? and 3xip are formulas. The conventions on punctuation and formula 
representation of Section 1.1 are extended by the following one: Vx and 3x 
have the same priority as -». An occurrence of a variable x in a formula ip 
is bound if this occurrence lies under the scope of Vx or 3x; otherwise the 
occurrence of x is free. Formulas without free variables are called sentences. 
If (̂  is a formula, r a term, and x a variable, then ^{r/x} denotes the result of 
the simultaneous substitution of r for all free occurrences oi x in (p. Say that 
r is free for x in (p, if no variable in r becomes bound in <^{r/x}. We write 
ip{xo,..., Xn) to indicate that all free variables of ip are among x o , . . . , Xn-

QC and its sublanguages are interpreted in first-order structures (or QC-
structures, if we want to mention the signature explicitly) of the form 

where 

• D^ is a nonempty set, the domain of /; 

• for any predicate symbol Pi in the signature, P / is a relation on D^ of 
the same arity as Pi; 

• for any individual constant Ci in the signature, c( is an element of D^. 

An assignment in I is di function a from the set of individual variables to 
D^. The value a(r) of a term r in I under the assignment a is a(x) if r is a 
variable x, and ĉ  if r is a constant c. 

The truth-relation /[=**(/? (in words: V ^̂  ^̂ ^̂  ̂ ^ ̂  under the assignment 
a') is defined by induction on the construction of ip in the following way: 
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/ K P , ( r i , . . . , r n ) i f f ( a ( r i ) , . . . , a ( T n ) > G P i ^ 

/ 1=̂  T and / t̂ *» 1; 

/ |=« t/; A X iff / h*" V̂  aĴ d / 1=** x; 

/ |=« i/; V X ifF / h " V' or / |=*» x; 

/ |=° ^ - • X iff ^ h " X whenever / |=" ^; 

/ 1=** -^i) iff / t^" t/̂ ; 

/ |=r" \/xil) iff / 1=̂  i/̂  for every assignment b in / such that a{y) = b{y) 
for all variables y different from x; 

I \=^ 3x%l) iff / [=^ V̂  for some assignment b in / such that a[y) = b(t/) 
for all variables y different from x. 

In the case of Q£~, we add one more item: / *̂* n = T2 iff a(ri) = o(r2). 

It should be clear that the truth of a formula ^{x\^... ,Xn) in / under an 
assignment a depends only on the values a\ = a( j : i ) , . . . ,an = a(xn). So 
instead of / [=" v? we sometimes write / (= v?[ai,...,flnl-

If / (=*» (̂  holds for all assignments o in / , then we say that ip is true 
in I and write / |= v̂ . k set T of formulas is true in I if every formula in 
r is true in / . T is true in a class C of first-order structures (in symbols: 
C 1= r ) if / 1= r for all I e C. The theory of C is the set of sentences that 
are true in C. We say that a set F of sentences implies a sentence (p (or v? 
is a consequence of F) and write F |= (/?, if (̂  is true in / whenever F is true 
in / , for every first-order structure / . Given a sublanguage of Q£, we define 
classical first-order logic (of that sublanguage) as the set of formulas that are 
true in all first-order structures (of the appropriate signature) and denote this 
logic (slightly abusing notation) by QCl ('quantified CI'). Formulas in QCl 
are often called classically valid. 

Similarly, QC1~ denotes classical first-order logic with equality. 

A class C of first-order structures of some signature S is said to be first-
order definable if there is a set F of Q£~-sentences of signature S such that, 
for every 5-structure / , 

leC iff / | = F . 

In this case we also say that C is definable byV. It should be clear that if C 
is first-order definable, then it is definable by the theory of C. 

Syntactically, QCl can be defined by a calculus with the following axiom 
schemata and inference rules. 
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Axiom schemata: 

• (Al)-(AIO) of classical propositional logic CI in Section 1.1 regarded as 
axiom schemata (in the sense that the propositional variables pi can be 
replaced by arbitrary formulas of the given sublanguage of QC); 

• \/x(p ~» (P{T/X}, where r is free for x in (p; 

• y?{r/x} —• 3x(pj where r is free for x in ip. 

Inference rules : 

• modus ponens (MP); 

• given ^ —> ^, derive ^ —̂  Va:^, whenever x is not free in ip; 

• given if -^ tp, derive 3x(p —> t/j, whenever x is not free in ^ . 

A formula (p is derivable from a set F of formulas if there is a sequence of 
formulas ending with (p and such that each member of the sequence is either 
in r , or a substitution instance of an axiom schema, or obtained from some 
earlier members of the sequence by applying an inference rule. According to 
GodeFs completeness theorem, for every set F of sentences and every sentence 
(p, we have F \= (p iS (p is derivable from F. 

The standard translation 

Consider the sublanguage of QC with countably many unary predicate sym-
bols Po» A> • • • J and a single binary predicate symbol R, The standard trans-
lation '* of A4£-formulas into this first-order language is defined inductively 
as follows,^ ̂  where x is a fixed individual variable: 

T* = T 1* = X 

((/? A \py = (p* Alp* {ipv xpy = (̂ * V ^* 

(D^)* = Vy {xRy ^ ^{y/x}) {Oi^T = 3y {xRy A ^{yMy 

Here y is a, fresh variable not occurring in tp*. As (p* always has at most one 
free variable, we can define the translation * in such a way that tp* contains 

^^Here and below we provide the inductive definition of the translation for all logical 
constants and connectives T, ±, A, V,-•,-•, D, and O, although it would suffice to define it 
for, say, A, ->, and D. The reason is that later on in this book we shall consider a similar 
translation for intuitionistic modal logic, where the connectives are not interdefinable. 
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at most two variables altogether (simply re-use the available second variable, 
which is not free in xp*^ in the definitions of {Dtp)* and (OV')*)-

Every Kripke model 9Jt = (5» ^ ) can be regarded as a first-order structure 

i{m) = (D^(^),/i^(^),Po'^'"\p/^'"\--.) 

for the above sublanguage of Q£, where D^^^^ is the set of worlds in 5» 
pi{m) _ gj(p.)^ for every i, and R^^^^ is the accessibility relation in 5- It is 
easily seen that for every A1£-formula v?, every Kripke model 9Jt and every 
world w in 9Jl, we have 

{m,w)^ip iff i{m)^ip*[w]. 
Conversely, every first-order structure of the form / = (D^, iZ ,̂ P j , . . . ) can 
be considered as a Kripke model 

9n(/) = (5(/),5J(/)>, 

where 5(/) = (D^, i?^) and 93(7)(pi) = P/ , for every i. And then we have 

I^^*[w] iff (9n(/),ti;)h(^, 

for all A<£-formulas (/?, first-order structures / , and w e D^. Therefore, 

^ € K iff if^eQCl 

Note that starting from a model 3Jt based on a universal frame 5 (where all 
points are accessible from each other) we obtain a first-order structure /(lOT), 
where ĉ * is equivalent to the formula (p^ defined by taking: 

PI = Pi{x) 
Tt = T 

((/? A^)^ = v?̂  A V̂^ 

{(f --• ^ ) ^ = y?^ —> ^^ 

{Dipy = Va:i/̂ ^ 

l t = l 

(V? V^)^ =(p^ \/\p^ 

(-,(^)t = -,(^t 

(OV^)^ =3a:V^^ 

Since S5 is characterized by universal frames, we then have 

V? € S5 iff ip^ £ QCl. 

Observe that x is the only variable which can occur in (p^ and that v?̂  is a 
monadic formula, that is, a formula having only unary predicate symbols. On 
the other hand, it should be clear that every Q£-formula with one variable 
is equivalent to a one-variable monadic formula. Thus, modulo equivalence, 
the translation -̂  is one-one and onto the set of all one-variable first-order 
formulas. In other words, the logic S5 can be regarded as the one-variable 
fragment of classical first-order logic (Wajsberg 1933). 
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1.4 Multimodal logics 

The modal language MC introduced in Section 1.1 contains only one pair of 
(dual) modal operators. It is not hard, however, to imagine situations when 
two or even more such pairs are required. For instance, to represent beliefs of 
n agents developing in time we may need n -I-1 pairs of boxes and diamonds— 
one pair to talk about time and one pair for each agent to represent its beliefs. 
We shall see many examples of this kind later on in the book. Here we discuss 
how to extend the concepts and results of the previous sections to multimodal 
logic. 

For each natural number n > 0, the propositional n-modal language MCn 
is defined in almost the same way as the language MC. The only differ-
ence is that now we have n necessity and n possibility operators D i , . . . , D„ 
and O i , . . . , On, respectively, and that Uiif and O^p are formulas of MCn 
whenever 1 < i < n and if is an A1£n-formula. The modal depth m,d{ip) of 
an MCn'ioimnldi (f is defined inductively as follows: 

md{a) = 0, for atomic a, 

md{'tp(Dx) = niax{md(V'),md(x)}, for 0 G {A, V,-*}, 

md{->ilj) = md{ip), 

md{niilj) = md(tp) -f 1, for 1 < z < n, 

md{<>iip) = md{\l)) -1-1, for 1 < z < n. 

To introduce n-modal logics syntactically we need the axiom (K) and the 
necessitation rule formulated for each of the boxes D i , . . . , Dn- More precisely, 
for each t = 1 , . . . , n let 

(K)i DiCpo -^ Pi) -> (DiPo -^ Uipi), 

(RN)i given if, derive Ui^f. 

A set of A^£n-formulas is called an n-modal logic if it contains the axioms 
(Al)-(AIO) and (K)i, for 1 < i < n, and is closed under the rules MP, Subst 
and (RN)i, for all i = 1 , . . . ,n. (As before, the possibility operators O* are 
regarded as abbreviations for -"Di-".) We define Kn as the minimal (i.e., 
smallest) n-modal logic. In general, for a n-modal logic LQ and a set T of 
MCn'foTinuldiS, we denote by 

Loer 
the smallest n-modal logic containing Lo U F. Logics of the form Kn ® F, 
for a recursive set F are called {recursively) axiomatizable. If F is finite then 
Kn © F is called finitely axiomatizable P 

^^There exist other kinds of axiomatic systems for multimodal logics, for instance, those 
using the so-called irreflexiviiy rules (e.g., given ->(p —• Ojp) —• v?, derive ip, provided that 
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As examples of multimodal logics we give here the n-modal variants of 
K4, T, S4, KD45 and S5: 

K4n = Kn e {DiPo -4 DiDiPo I 1 < i < n}, 

Tn = Kn e {DiPo -> Po I 1 < i < n}, 

S4n = K4„ e {DiPo -> Po I 1 < i < n}, 

KD45n = K4„ e {DiPo -^ OtPo, OiPo -• niOiPo I 1 < i < n}, 

S5n = S4n e {OiPo ~> OtOtPo I 1 < i < n}. 

The axioms of K4n require each Dt to behave like a K4-box. Similarly, Tn, 
S4n, KD45n and S5n are the n-modal logics each box in which behaves like a 
T-, S4-, KD45- and S5-box, respectively. No axiom with two different boxes 
is postulated. In other words, there is no interaction between different modal 
operators. These logics are the simplest examples of fusions of unimodal logics 
to be discussed in detail in Section 3.1 and Chapter 4. 

Let us now introduce the possible world semantics for n-modal logics. 
Recall that the operator D is interpreted by means of the accessibility relation 
R between worlds in a Kripke frame {Wy R). To interpret A^£n-forniulas, we 
need n accessibility relations /?i,...,i?n) one for each Di. Thus we come 
to the notion of an n-frame as a structure of the form 5 = (Ŵ» ^i» • • •»Rn) 
consisting of a non-empty set W of worlds and n binary relations /?i, . . . , /?r. 
01) W. 

As before, a valuation in an n-frame 5 is a map 9J associating with each 
prepositional variable p a subset QJ(p) of W. The pair 9Jt = (5,5J) is a 
model for MCn- The inductive definition of the truth-relation |= in 971 is 
a straightforward generalization of that for the unimodal case: we simply 
replace the clauses for D and O with 

(9Jl, x) 1= Ui^ iff (an, y) h 0 for B\\y£W such that xRiy, 

(an, x) 1= Oi^ iff (971,2/) t= V' for some yeW such that xRiy, 

for all i = 1, . . . , n. Now, given a class C of n-frames, we define the logic of C 
by taking 

LogC = {(^GM£n|Vj€C5Nv^}-

We will not reformulate here the other syntactical and semantical definitions of 
the previous sections for the language MCn relying upon the reader's common 
sense. 

p does not occur in y?). We do not consider such axiomatizations in this book and refer the 
reader to (Gabbay 1981a, Marx and Venema 1997). 
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Theorem 1.5. The n-modal logics Kn, K4n, T„, S4„, KD45n and S5n 
are complete with respect to the classes of their n-framesj viz., 

FrKn = {S \^ is an n-frame}; 

FrK4n = {{W, /?! , . . . ,Rn) \ Ri is transitive, I < i < n}; 

FrTn = {(W, / ? ! , . . . , Rn) I Ri is reflexive, I <i< n}; 

FrS4n = {(VF, i?i',... , Rn) \ Ri is a quasi-order on W, 1 < i < n}; 

FrKD45n = {(lV,i?i, . . . ,i?„} I Ri is serial, transitive, 

and Euclidean, 1 < i < n}; 

FrSSn = {{W, i ? i , . . . , Rn) I Ri is an equivalence relation on W, 

1 < i < n}. 

Note that this theorem is a special case of Theorem 4.1 claiming that 
Kripke completeness is preserved under the formation of fusions. 

The following theorem is an illustration of the use of the standard trans-
lation: 

Theorem 1.6. Let L be an n-modal logic such that L = Log C, for some class 
C of frames which is first-order definable in the language with n binary predic-
ate symbols and equality. Then L is determined by the class of its countable 
frames. 

Proof. Let F denote the first-order theory defining C. Suppose that 'p ̂  L, 
i.e., (971,lu) Y^ if for some model SUl based on a frame in C and some world w 
in SDt. Consider DJl as a first-order structure /(OT) of the language having n 
binary and countably many unary predicate symbols (see Section 1.3). Then 
r' = ru{3x-^(^*(x)} holds in /(371) (where (̂ * is the standard translation oi^p). 
By the downward Lowenheim-Skolem-Tarski theorem, there is a countable 
first-order structure J such that J |= F'. Consider now J as a modal model 
9Jt( J). It is clearly based on a countable frame for L and refutes y?. Q 

Truth-preserving operations 

We conclude this section by introducing three important truth-preserving op-
erations on n-frames and models. 

P-morphism. Given two n-frames 

^^{W,Rx,...,Rn) and 6 = (F ,5 i , . . . ,5n} , 

a map / from W to F is called a p-morphism from '^ to <& ii it satisfies the 
following two conditions, for d\\x,y ^W, z £V and i = 1 , . . . , n: 
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• if xRiy then f{x)Sif{y), 

• if f{x)SiZ then there isy eW such that xRiy and f{y) = z. 

A function / satisfying only the former condition is called a homomorphism 
from ^ to (B. If a p-morphism / is onto then we say that © is a p-morphic 
image of 5, or 5 maps p-morphically onto 6. A p-morphism / from 5 onto © 
is called a p-morphism from a model 9Jt = (5,93) onto a model 91 = (6,il) if, 
for every propositional variable p and every point x € W, we have x € 53(p) 
iff /(x) € U(p). It is readily checked by induction that for all MCn-iotmnla^s 
if and all x € W, 

{m,x)\=ip iff (ai,/(x))hv^. (1.1) 
It follows, in particular, that if 3̂  maps p-morphically onto © and 5 |= V̂  ^^en 
© 1= (/? as well, for every X£„-formula v?, or, to put it another way, if is 
satisfiable in 5 whenever it is satisfiable in ©. 

An n-frame 5 = (H ,̂ i?i , . . . , /?„) is called rooted if there is a u;o € W such 
that W = {w e W \ W{)R*w}^ where 

l<i<n 

Such a Wo is called a root of 5. Given a rooted n-frame 5 with root WJQ, we 
can construct another n-frame © = (V, 5 i , . . . , 5n) by taking V to be the set 
consisting of (ti;o) and all the tuples {wo^Ri^^wi^,.. ^Ri^^Wk)^ k > 0.. of points 
in W and accessibility relations Ri^ € {i?i,...,/?n} such that WjRi.^^Wj.^i 
whenever j < k and, for any two points {WQ^ . . . , 1/;̂ ) and x in V, 

(t/;0) • • • yWk) SjX iff 3w eW X = {WQ^ . . . ^Wk^Rj^w). 

The frame © is called the unraveling of 5 (see Fig. 1.2 in which the accessib-
ility relation in tuples is omitted). Two properties of © make the unraveling 
construction important in modal logic. First, it is not hard to show (see, 
e.g., Chagrov and Zakharyaschev 1997, Blackburn et al. 2001) that the map 
{wo^... ^Wk) ^-^ Wk is a p-morphism from © onto J. And second, © has a 
rather special form known as an intransitive tree. A general definition is as 
follows. 

A rooted frame 5 = (W, i?i , . . . , i?„) is said to be a tree if all the Ri are 
pairwise disjoint and, for every x £ W, the set Wx = {y £ W \ yR*x} is 
finite and linearly ordered by the reflexive and transitive closure R* of the 
relation R = Ui<t<n ^^ (its restriction to W^, to be more precise). 5 is called 
intransitive if for any Ri^ Rj (I < ij < n) we have 

Vx,y,z GW {xRiy A yRjZ -> -^xRiZ A -^xRjz). 
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{V0,Vi,Vs) {Vo,V2,V3) 

V3 
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< > 

V2 

VO 

(^0,^2) . • (t;o,V3) 

Figure 1.2: (5 is the unraveling of transitive J . 

An intransitive frame is clearly irreflexive Let 5 = {W^Rii- • - ,Rn) be an 
intransitive tree and x^y e W. A path of length k from x to y in J is a 
sequence (XQ, . . . , x^} such that xo = x, x/t = y and XtHjXi_j.i, for each i < k 
and some j , 1 < j < n. By the definition, there is a unique path from the 
root of 5 to X. The length of this path is called the co-depth of x and denoted 
by cd{x). (Thus, the co-depth of the root in Jf is 0.) If the set {cd{x) | x 6 T} 
is bounded, then the depth of JJ is the maximum of cd{x) for x G W. By the 
depth d{x) of X in 5 we understand the depth of the subtree of 3̂  with root x. 
(Thus, the depth of a leaf in 3̂  is 0.) 

Now, returning back to the unraveling, we obtain the following remarkable 
result: 

Proposition 1.7. Every rooted n-frame is a p-morphic image of some in-
transitive tree. 

An immediate consequence of this proposition is that Kn is characterized 
by the class of intransitive trees. Moreover, one can easily strengthen this 
observation to the following one: 

Proposition 1.8. / / an MCn-formula (p is satisfiable in a frame then it is 
also satisfiable in a finite intransitive tree of depth < md{ip). 

Another important transformation of frames is known as bulldozing. It 
operates on transitive frames by 'bulldozing' their 'clusters' into infinite as-
cending chains of points. For simplicity we define bulldozing for 1-frames. 

Let (5 = (V, 5) be a transitive frame and x eV. The cluster generated by 
X is the set 

C(x) = {x} U {y € V I xSy and ySx}. 



i.4. Multimodal logics 25 

Figure 1.3: Bulldozing 6 . 

We distinguish between three types of clusters: a proper cluster contains at 
least two points (which see each other), a simple cluster consists of a single 
reflexive point, and a degenerate cluster consists of a single irreflexive point. 
Now, with every x € V we associate a set x'^ which is {(x, i} | t = 0 ,1 , . . . } 
if C{x) is nondegenerate and {(:r,0)} if C{x) is degenerate. Let W be the 
union of all x'^. Fix some well-ordering a:o,a:i,... ,a:^,... of each cluster C in 
(S and define a relation Ron W by taking 

{x^,i) R{x(^J) iff either i < j or ^ < C and t = j , (1.2) 

when C{x^) = C(x^) and, for distinct C{x) and C(t/), 

{x,i)R{yJ) iff xSy 

(see Fig. 1.3). It is easy to see that /? is a strict partial order and that the 
map / : (3:, i) >-> ar is a p-morphism from 5 = (Ŵ» R) onto ©. Note that if (S 
is reflexive then we can make 5 a partial order by replacing < in (1.2) with 
<. Thus we have: 

Proposition 1.9. (i) Every transitive frame is a p-morphic image of some 
strict partial order. 

(ii) Every quasi-ordered frame is a p-morphic image of some partial order. 

As an easy consequence of Proposition 1.9 we obtain, for instance, the 
following 

Theorem 1.10. (i) K4 is characterized by the class of strict partial orders. 
(ii) S4 is characterized by the class of partial orders. 

Genera t ed subframe. We say that an n-frame (5 = (V,S i , . . . ,Sn) is a 
subframe of an n-frame 5 = (Ŵ» JRi, . . . , Rn) iiV CW and, for all i = 1 , . . . , n. 
Si is the restriction of Ri to V (i.e., 5i = /?t D (5 x S)). A subframe 6 of 5 is 
called a generated subframe of J if for every y 6 W, we have y € V whenever 
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xRiy for some x eV and 1 < i < n (in other words, V is upward closed in 5)-
A model 01 = (©,11) is a generated submodel of VJl = (5»5J} if 6 is a generated 
subframe of ^ and il is the restriction of 5J to V (i.e., iX{p) = 93(p) D V for all 
p). It should be clear that in this case we have 

(an,x)t=v^ iff {%x)\=^, (1.3) 
for every A^£n-formula (f and every point x eV. If (5 is a generated subframe 
of 5 and V is the upward closure of some set X CW (i.e., V is the smallest 
upward closed set in 5 containing X), then we say that 6 is generated by 
X. A generated submodel 91 = (6,11) of 9Jl = (5,53) is called in this case a 
submodel generated by X. Note that if (6 is generated by a singleton {x} then 
(5 is rooted, with x being its root. For a class C of n-frames, denote by C^ 
the class of all rooted subframes of frames in C; fr^L is the class of all rooted 
n-frames for an n-modal logic L, It follows from (1.3) that if (971, x) \= (p then 
(OT^,x) 1= (/?, where 971̂  is the submodel of VJl generated by {x}. So we have 
the following: 

Proposition 1.11. If an n-modal logic L is determined by a class C of n-
frames then 

L = Log C = Log Fr^L, 

that iSy L is determined by the class of its rooted frames. 

We say that a (strict) partial order {W^R) is a [strict) linear order if it 
is connected, i.e., for any distinct points x,y £ W, either xRy or yRx. It 
is straightforward to see that a rooted, transitive, weakly connected frame is 
connected. Therefore we obtain an easy consequence of (11), Propositions 1.9 
and 1.11, and Theorem 1.4: 

Theorem 1.12. (i) K4.3 is characterized by the class of strict linear orders. 
(ii) S4.3 is characterized by the class of linear orders. 
(iii) GL.3 25 characterized by the class of all finite strict linear orders as 

well as by the single frame (N, >) {or by the frame obtained by adding a root 
to{N,>)). 

(iv) Grz.3 is characterized by the class of all finite linear orders as well 
as by the single frame (N,>) {or by the frame obtained by adding a root to 
( N , > » . 

Disjoint union, for j G J , be a family of n-

frames with pairwise disjoint sets of worlds, i.e., Wj Pi Wk = 0 for all distinct 
j,k e J. (If this is not the case, we can always take suitable isomorphic copies 
of the 'Sj') The disjoint union of Sj is simply the n-frame 

E?j = (\JWi,(JR{,...,\jRi) 
jeJ \jeJ jeJ jeJ I 
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The disjoint union of models OJlj = (5j>2Jj), j € J, is the model 

Again, for all A^£n-formulas <fi, j € J and x eWj.we have 

(!m„x)hv^ iff ( E ^ ^ ' ^ J ^V -̂ (1-4) 

Summarizing (1.1), (1.3) and (1.4), we can formulate the following: 

Theorem 1.13. For every MCn-formula ip, 
(i) if (S is a p-morphic image of 5, then ^ \= (p implies (6 |= (p; 
(ii) if (6 is a generated subframe of ^, then 5 f= <̂  implies © |= ip; 
(iii) ifdj N V?> /or o// j € J, then Y^dj f= V̂ . 

In other words, for every n-modal logic L, FrL is closed under the formation 
of p-morphic images, generated subframes and disjoint unions. 

1.5 Algebraic semantics 

As was said in Section 1.2, Kripke frames were constructed first as relational 
(or Stone-Jonsson-Tarski) representations of modal algebras (see Jonsson and 
Tarski 1951, Dummett and Lemmon 1959). Unlike Kripke frames, modal al-
gebras can be viewed as a straightforward translation of the language of modal 
logic into the language of algebra (see, e.g., the construction of Lindenbaum 
algebras in (Chagrov and Zakharyaschev 1997) or (Goldblatt 1989)), which 
makes the algebraic semantics adequate for all modal logics. 

Although not so intuitive and transparent as the possible world semantics, 
the algebraic semantics brings us to the realm of universal algebra and makes 
its rich and well-developed machinery available for studying modal logics. In 
this section we give a brief overview of (a very small number of) elementary 
algebraic concepts we need in what follows. For more detailed expositions see 
(Burris and Sankappanavar 1981, Chagrov and Zakharyaschev 1997, Gold-
blatt 1989). 

To begin with, we remind the reader that a Boolean algebra is a structure 
of the form 

21 = (^A^,-1^,0^,1^), 

in which A, the universe of 21, is a non-empty set, A^ is a binary operation 
on Ay -1^ a unary one, 0^, 1^ G A, and the following conditions hold for all 
a,6,c € A: 
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• a A^ 6 = 6 A^ a and a V^ 6 = 6 V^ a (commutativity of A^ and V^); 

• aA^(6A^c) ^ (aA^o)A^candoV^(6V^c) = (aV^a)V^c (associativity 
of A^ and V^); 

• (a A^ fc) V^ 6 = 6 and (a V^ 6) A^ 6 = 6 (absorption); 

• aA^(6V^c) = (aA^6)V^(aA^c)andoV^(6A^c) = (aV^6)A^(oV^c) 
(distributivity); 

• a A^ -i^a = 0^ and a V^ - ^ a = 1^, 

where, by definition, a V^ 6 = -i^(-«^a A^ -i^6). It is readily checked that for 
every set W, the structure 

(2^n,-,0,W^) 

is a Boolean algebra, where 2 ^ is the set of all subsets of W, and 0 and — are 
the usual set-theoretic intersection and complementation in W, respectively. 
By the Stone representation theorem, every Boolean algebra is embeddable 
into such a set-algebra. For more details on Boolean algebras and their con-
nections with classical propositional logic the reader is referred to (Monk 1988, 
Rasiowa and Sikorski 1963, Sikorski 1969). 

An n-modal algebra is a Boolean algebra with extra n operations modeling 
the n boxes Di, viz., a structure of the form 

21 = ( ^ A ^ ^ ^ o M ^ D ^ . . . , D ^ ) , 

where {A, A^, -i^, 0^, 1^) is a Boolean algebra and, for each i = 1 , . . . , n, Uf 

is a unary operation on A such that Df 1^ = 1^ and, for all a,6 € i4, 

af(aA^6) = DfaA^Df6. 

^£n-formulas are interpreted in 21 by means of valuations 93 in 21 which 
map these formulas into A in such a way that, for all (p^tp £ MCm and all 
i = 1, . . . , n , we have 

2J((^At/^) = 5J(v?) A^ 2J(t/;), 

5J(-i(^) = -^93(^), 

aJ(Di(^) = DfV{ip). 

It follows that the value 2J(v?) of a formula (p under 2J is uniquely determined 
by the values 93(p) of the propositional variables p occurring in (p. The pair 
90t = (21,53) is called an algebraic model for MCn based on 21. 
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A formula (f is said to be true in dJl^ VJl \= ip in symbols, if 5J(v?) = 1^; </? 
is satisfied in dJl if V{(f) 7̂  0^. We say that v? is valid in 21 and write 211= (̂  
if (p is true in all models based on 21. 

Given a class C of n-modal algebras, the set 

Log C = {v? € MCn I V2l € C 2H= V̂ } 

is always a n-modal logic. It is called the logic of C, If L = Log C, we say that 
L is determined (or characterized) by C. An n-modal algebra 21 validating all 
formulas in some n-modal logic L is called an algebra for L\ in this case we 
write 211= L. The class of all n-modal algebras for L is denoted by AlgL. 

In contrast to the possible world semantics, the algebraic one is able to 
characterize all n-modal logics: 

Theorem 1.14. For every n-modal logic L, we have L = Log AlgL. 

(The proof of this theorem is similar to that of Theorem 4.4.) 

There can be a slightly different view on the algebraic semantics. Algebras in 
general are first-order structures for a language having only function symbols 
in its signature. In particular, n-modal algebras are first-order structures of 
the signature having a binary function symbol A, unary function symbols -1, 
Dt (1 < i < n), and individual constants 0 and 1. A1£n-formulas can be 
regarded then as terms ̂  and—if we also have equality—equations of the form 
(p — \ are well-formed formulas of this first-order language. And then for 
every n-modal logic L and every A1£n"formula (/?, 

(̂  € L iff AlgL h= ¥? = !• 

Thus, various problems concerning n-modal logics can be straightforwardly 
reformulated as problems concerning equational theories of classes of n-modal 
algebras and vice versa. 

Every n-frame 5 = (ly, / ? i , . . . , Rn) gives rise to the n-modal algebra 

r = (2»^,n,- ,0,W,nr, . . . ,Dr) , 

where, for all X C W and i = 1 , . . . , n, 

ufx ^{x^W\\/y^W [xRiV -^ y G X)], 

Moreover, an >M£n-formula is vaUd in 5 iff it is valid in J"*"- Thus, for any 
class C of n-frames, 

LogC = Log{5^|5€C}. 

Note, however, that it is not the case that for every n-modal algebra 21 there 
is an n-frame J such that 21 = J"^ (for instance, there are countable algebras, 
while 5"*" is either finite or uncountable). 
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The truth-preserving operations on n-frames considered in Section 1.4 cor-
respond to the well-known algebraic operations of taking subalgebras, homo-
morphic images, and direct products. Suppose we are given two n-modal 
algebras 

Then a is called a subalgebra o/Q5 if >l C B, 0*" = 0®, 1^ = 1®, and for all 
a,a' E A, 1 <i <n, 

aA^a' = a A® a', 

afa = Df a. 

A homomorphism from 51 to *8 is a map h: A —* B such that, for all a, a' € A, 
1 <i <n, 

h{a A^ a') = h{a) A® /i(a'), 

/i(-,2'a) = - « / i ( a ) , 

h{afa) = a'^hia). 

If h is onto then 05 is called a homomorphic image of 21. Now suppose that 
2tj, for j 6 •/, is a family of n-modal algebras of the form 

a, = (^ „ A'»^-.«^ o'»M'»^ D^,..., n^>). 

The direct product 

of the 2lj is defined by taking A to contain all functions g from J into Uj€J ^J 
such that g{j) € Aj, for all j € J, and defining the operations A^, -" ĵ 1^, 0^ 
and o f (1 < i < n) component-wise. For example, Dfg is defined by taking 

(Df 5)0) = af^g(j), 

for 1 < z < n and j G J. One can show (see, e.g., Chagrov and Zakharyaschev 
1997) that, given two n-frames 5 and 6 , 

• if 6 is a p-morphic image of'S, then ©"̂  is (isomorphic to) a subalgebra 
o f ^ ; 

• if 6 is a generated subframe of 5, then (S"*" is a homomorphic image of 

Similarly, given a family Ŝ^ {j e J) of n-frames, 



1.6. Decision, complexity and axiomatizability problems 31 

• the n-modal algebra (Ylj^j^j)^ ^^ isomorphic to Ylj^j^j^-

For more information on the duality between frames and modal algebras 
see (van Benthem 1984, Goldblatt 1989, Chagrov and Zakharyaschev 1997, 
Blackburn et oi. 2001). 

We conclude this section by formulating the Birkhoff variety theorem from 
universal algebra specialized for n-modal algebras. 

Theorem 1.15. For every n-modal logic L, the class AlgL is closed un-
der the formation of subalgebraSy homomorphic images^ and direct products. 
Moreover^ if L ^ Log C for some class C of n-modal algebras, then AlgL is the 
closure of C under taking subalgebras, homomorphic images, and {isomorphic 
copies of) direct products. 

The proof of this theorem can be found, e.g. in (Burris and Sankappanavar 
1981) (in a universal algebraic setting) or in (Chagrov and Zakharyaschev 
1997). 

1.6 Decision, complexity and axiomatizability 
problems 

In general, neither the syntactical nor the semantical characterizations of a 
modal logic L provides us with a means to decide, given an arbitrary formula 
(p, whether (f £ L. If an algorithm (or a program) capable of solving this 
decision problem does exist, then L is called decidable; otherwise it is unde-
cidable. The existence of a decision algorithm for L does not yet guarantee 
that it can be used in practice: the amount of computational resources it 
requires may be astronomic. That is why we need to know the optimal com-
putational complexity of the decision problem for L. Problems of this sort are 
briefly discussed in this section. It is beyond the scope of the book to give a 
formal treatment of the concepts from computability theory such as algorithm, 
recursive (or computable) function and set, recursive enumerability, etc. The 
reader can find all these in (Barwise 1977, Enderton 2001, Shoenfield 1967) 
and other textbooks on mathematical logic and recursion theory. 

Let us begin with complexity problems. A standard way of measuring 
the difficulty of problems like V ^ ^?' is by the amount of time (number of 
steps) and/or space (memory) required by the decision algorithm to solve the 
problem, depending on the size of (fi. The size or the length i{(p) of a formula 
ip is usually defined as the number of symbol occurrences^^ in (p. Here we give 

^^There are other ways of defining i((p). For instance, one can understand by i{ip) the 
number of subformulas of ip or the size of memory required to store the symbols in (p 
(thereby taking into account the difference between po and P2003)- However, in this book 
the complexity of the decision algorithms is not affected by the choice we make. 
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a brief overview of the notions from complexity theory we use in this book; for 
more details consult (Garey and Johnson 1979, Hopcroft and UUman 1979, 
Papadimitriou 1994). 

Following the standard terminology, we call an algorithm deterministic 
if each step of the algorithm is uniquely determined. On the other hand, a 
nondeterministic algorithm may guess at each step which of a finite number 
of possible next steps to take. We say that a problem 'x G X?' belongs to 
the complexity class 

• P if it is solvable by a deterministic algorithm in polynomial time of the 
size of x; 

• EXPTIME if it is solvable by a deterministic algorithm in exponential 
time of the size |x| of x, i.e., in time < 2'̂ ' , for some fc > 0; 

• 2EXPTIME if it is solvable by a deterministic algorithm in doubly ex-

ponential time of the size of x, i.e., in time < 2^ ̂  ; 

• ELEM if it is solvable by a deterministic algorithm in time /( |x |) where 
/ is an elementary recursive function of the size of x, i.e., there is a 
natural number n such that 

Vx /( |x |) < 2^ }". 

The problem 'x G X?' is in 

• NP if it is solvable by a nondeterministic algorithm in polynomial time 
of the size of x, and it is in 

• NEXPTIME if it is solvable by a nondeterministic algorithm in expo-
nential time of the size of x. 

Finally, we say that the problem is in 

• PSPACE if it is solvable by a deterministic algorithm using polynomial 
space of the size of x; 

• EXPSPACE if it is solvable by a deterministic algorithm using expo-
nential space of the size of x. 

According to Savitch's theorem (see, e.g., Papadimitriou 1994), nondetermin-
ism does not increase the level of space complexity. So the complexity classes 
of nondeterministic polynomial space and nondeterministic exponential space 
coincide with PSPACE and EXPSPACE, respectively. It should be clear that 
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the complexity class of nondeterministic elementary time is the same as ELEM 
and that 

P C NP C PSPACE C EXPTIME C NEXPTIME C 
C EXPSPACE C 2EXPTIME C N2EXPTIME C •.. C ELEM. 

It is also known that 

P 7̂  EXPTIME, NP ̂  NEXPTIME, 
PSPACE ̂  EXPSPACE, EXPTIME ^ 2EXPTIME, 
NEXPTIME ̂  N2EXPTIME, N2EXPTIME 7«̂  ELEM. 

Whether the remaining inclusions are strict or not is one of the most challen-
ging open problems in complexity theory. 

Given a problem of the form ^x € X?\ its complement is the problem 
'a: ^ X?\ For any complexity class C, the class coC consists of all problems 
whose complement is in C. It is not hard to see that for deterministic classes 
C = coC, while for nondeterministic C it is not known whether this equality 
holds. 

We say that a problem A is C-hard^ for a complexity class C (above P), 
if every problem B £ C can be polynomially reduced to A^ i.e., there is a 
recursive function (program) / which, given a word b (in the language of B), 
in deterministic polynomial time returns a word /(6) (in the language of i4) 
such that 6 G B iff f{b) e A. A problem is called C-complete, if it is C-hard 
and belongs to C, Thus a standard technique for proving C-completeness 
of a problem A is to show first that i4 is in C, and then give a polynomial 
time reduction of some C-complete problem B to A. However, if our aim is to 
establish that A is undecidable, then any recursive reduction of an undecidable 
problem B to 4̂ will suffice. 

For an n-modal logic L, the question if 'there is an algorithm which, given 
an A1£„-formula v?, decides whether (p belongs to V is called the decision 
problem or the validity problem for L. We say that L is decidable (or C-
complete) if the decision problem for L is decidable (respectively C-complete). 
Closely related is the satisfiability problem for L\ 'given v?, decide whether 
If is satisfiable in a frame for L.' It should be clear that, for any Kripke 
complete logic L, (/? is in L iff -^^p is not satisfiable in a frame for L. Thus, 
validity and satisfiability are complementary problems connected by a very 
simple reduction (p ^^ -K/?: one is decidable iff the other is decidable; if one is 
C-complete for some complexity class C, then the other is co C-complete. 

Let us consider, for instance, classical propositional logic CI. Given a 
formula v?, we can nondeterministically assign (guess) truth-values to the pro-
positional variables in (̂ , and then compute the truth-value of y? in polynomial 
time. Thus the satisfiability problem for CI is in NP. Moreover, according 
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to Cook's theorem (see e.g. Papadimitriou 1994), it is NP-complete. It fol-
lows that the decision problem for CI is coNP-complete. A similar algorithm 
can be used to show the NP-completeness of the satisfiability problem for 
a modal logic characterized by a single finite frame—such logics are called 
tabular. However, most of the modal logics considered in this book are not 
tabular. 

If a modal logic L is recursively axiomatizable then we can recursively 
enumerate all formulas in L by systematically constructing all possible deriv-
ations. So we would have a decision algorithm for L if we could enumerate 
those formulas that are not in L. Obviously, this can be done if 

• L has the finite model property {fmp, for short), i.e., L is characterized 
by the class of its finite frames^^ and 

• the class of finite frames for L is recursively enumerable (up to isomorph-
ism), which is clearly the case if L is finitely axiomatizable (for then we 
can even decide whether a given finite frame is a frame for L). 

However, the fmp itself says nothing about the complexity of the decision 
algorithm. We can get more information about complexity by establishing a 
stronger property which is sometimes called the effective (or bounded) finite 
model property {efmp): L has the efmp if there is a recursive function / such 
that, for any formula (/?, (̂  ^ L iff there is a frame 5 for L such that 'S V^ ^ 
and 5 contains at most fi^i^p)) points. If / is a polynomial or exponential 
function then we say that L has the polynomial or, respectively, exponential 
fmp. Suppose now that for L the problem whether a frame 5 belongs to FrL 
can be decided in polynomial time in the size of 5- (Obviously, this is the 
case for all modal logic introduced so far in this book.) Then the polynomial 
and exponential fmp provide satisfiability checking algorithms that are in 
NP and NEXPTIME, respectively: given a formula <f, we guess a model 
9Jl = (3̂ , 2J) of size polynomial or exponential in </?, and check whether J G FrL 
and (9K, x) \=^ (f for some x in 5- While the NP upper bound obtained in this 
way is always optimal (because CL is already NP-hard), the NEXPTIME-
upper bound can often be improved by more fine-tuned arguments. Here are 
some examples; for proofs consult (Ladner 1977, Ono and Nakamura 1980, 
Chagrov and Zakharyaschev 1997). 

Theorem 1.16. All the logics K, S4, S5, KD45, K4.3, S4.3, GL, GL.3, 
K4, T and D are decidable. Moreover, 

(i) S5, KD45, K4.3, GL.3 and S4.3 have the polynomial fmp and are 
coNV-complete. 

"̂̂ An equivalent formulation (which has actually given the name to the property): L has 
the fmp if, for every (̂  ^ L, there is a finite model Tl such that 9Jl |= L and Wl)^ ip. For a 
proof that the two formulations are equivalent see e.g. (Chagrov and Zakharyaschev 1997). 
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(ii) K, S4, GL, K4, T andD have the exponential fmp and are PSPACE-
complete. 

An example of a coNEXPTIME-complete finitely axiomatizable logic with 
the exponential fmp can be found in Section 5.5; examples of EXPTIME-
complete finitely axiomatizable logics with the exponential fmp are provided 
by Theorem 1.26. 

In Chapter 4 we shall see that many properties (such as the fmp and 
decidability) of unimodal logics are preserved under joining them into mul-
timodal ones without postulating any interactions between their modal oper-
ators. However, this does not always apply to the complexity of the decision 
algorithms, as the following theorem suggests: 

Theorem 1.17. (i) Kn, Tn, K4„ and S4„ are PSPACE-complete, for all 
n > 0 . 

(ii) Ifn>l then S5n and KD45n are PSPACE-complete as well. 

The proof can be found in (Halpern and Moses 1992). Note that the 
addition of interaction axioms involving different boxes (say, commutativ-
ity) can drastically change the character of these rather 'harmless' logics; see 
Chapter 8. 

From a purely logical point of view, the most important reasoning task 
for a logic L is to recognize, given two arbitrary formulas rp and (/?, whether 
V? is a logical consequence oi t/j in L. The notion of logical consequence may 
be different depending on applications. 

Given an n-modal logic L, we say that an A<£n-formula (/? is a global 
consequence of xj) in L and write xj) hĵ  (̂ , if if belongs to the smallest set of 
A^£n-formulas which contains L U {V̂ } and is closed under the inference rules 
MP and RN^ (1 < t < n). 

A formula (p is said to be a local consequence of rp in L (in symbols: 
V̂  ^L ^) if ^ belongs to the smallest set of X£n-formulas which contains 
L U {xl)} and is closed under MP only. The consequence relation V-i can be 
easily reduced to validity in L via the following equivalence known as the 
deduction theorem. For all A1£n-formulas ip and V̂ , 

rp^L ^ iff -0 -* v? € L. 

It follows, in particular, that L is decidable if and only if the local consequence 
relation h^ is decidable, and that the decision problems for L and \-i always 
have the same complexity. 

For many n-modal logics L there is a very natural semantical interpretation 
of hĵ  and !-£,. 
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Theorem 1.18. (i) For any Kripke complete n-modal logic L, we have tl^^i ^ 
iff (9Tt, x) \= (f whenever (9Jl, x) |= tf), for every model 9)1 based on a frame for 
L and every point x indJl. 

(ii) For all n-modal logics L defined above, we have '(p ^'i (f iff ^ ^ (p 
whenever dJl\= ip, for every model 9Jl based on a frame for L. 

Logics L such that, for all formulas (f and tp^ rp \-*i^ ^p iS VJt \= il^ implies 
9711= y?, for every model 9Jl based on a frame for L, are called globally Kripke 
complete. Clearly, every globally Kripke complete logic is Kripke complete; 
however, the converse does not hold (Kracht 1999). On the other hand, we 
have the following general completeness result: 

Theorem 1.19. Suppose L = Log C for some first-order definable class C of 
n-frames. Then L is globally Kripke complete. 

(This result does not seem to be stated explicitly in the literature. It 
follows from the Fine-van Benthem Theorem, according to which any logic 
Log C with first-order definable C is canonical, and from the fact that any ca-
nonical logic is globally Kripke complete. For details consult (Zakharyaschev 
et al. 2001, Chagrov and Zakharyaschev 1997).) 

If hj^ can be characterized by models 971 based on countable (or finite) 
frames, then we say that \-*i is determined by countable {finite) frames. The 
following theorem can be proved similarly to Theorem 1.6: 

Theorem 1.20. Suppose L = Log C for some first-order definable class C of 
n-frames. Then HĴ  25 determined by countable frames. 

We also have: 

Theorem 1.21. For all the logics K, S4, S5, KD45, K4.3, S4.3, GL, K4, 
T and D, the global consequence relation is determined by finite frames. 

For more details and further references consult (Goranko and Passy 1992, 
Zakharyaschev et al. 2001). 

It is not so simple to reduce the global consequence relation HĴ  to valid-
ity in L. The deduction theorem for f-Ĵ  is not constructive in general. 
To formulate it, we require the following notation. For a formula (̂ , put 
M^^^ip = Mr^.ip = if and, for fc > 0, 

Mf+V = Ar=lDiM(n)¥', 

In the unimodal case, let D^tp = D-^ip = ip and, for A; > 0, 
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Theorem 1.22. For every n-modal logic L and all MCn-formulas (f and X/J^ 

V̂  f-l ^ iff 3m > 0 (Mg^t/; - x p € L ) . 

In particular^ in the unimodal case we have 

^\-l(f iff 3m > 0 (a^^V' -^ifi e L\. 

In general, the parameter m above is not a computable function of i{(fi) 
and i{ip)^ even under the condition that L is decidable. In fact, we shall see 
later on in the book a number of natural decidable n-modal logics L for which 
hĵ  is undecidable. Note, however, that for every unimodal logic L containing 
the axiom Dpo ~* ODpo (saying that frames for L are transitive) we have 

tp^lif iff V^ADV^-*v?€ L. (1.5) 

In particular, there is no difference between the complexity of the decision 
problems for L and hj^. 

For some non-transitive unimodal logics there also exists a computable 
bound on m; say, for K, D and T, m < 2^^^^'^^^^^^\ (see e.g. Chagrov and 
Zakharyaschev 1997). This upper bound cannot be reduced substantially. As 
follows from (Spaan 1993) and (Ladner 1977), the global consequence relations 
for these logics are computationally more complex than the local ones: 

Theorem 1.23. For L — Kn,Dn,Tn, the problem of whether ip^}^ ^ holds 
is EXPTlME-complete. 

The global consequence relation h-*^ can be reduced to the decision problem 
for a logic closely related to L. Recall that semantically V̂  f~£ v? means that ^p 
is true everywhere in a model whenever xp is true everywhere in the model. We 
can capture this by introducing another modal operator 13 with the intended 
meaning 'everywhere in the model:' 

(9Jt, x) 1= mi) iff (an, y) |= ^ for all points y in 971. 

Its dual <$> means 'somewhere in the model:' 

(9Jt, x) \= ^rp iff (971, y) \= ip for some point y in 97t. 

The relation VJl \= iBxp -^ ip would then read 'if t/̂  is true everywhere in 971 
then ip is also true everywhere in 971.̂  The modal operators (3 and ^ are 
known as the universal modalities. They were introduced and investigated 
by Goranko and Passy (1992). Denote by MC^ the language MCn enriched 
with 13 (and its dual <l>). 
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Suppose now that we have an n-modal logic L and want to introduce in 
it the universal modalities with their intended interpretation. As 0 and <l> 
should behave like the S5 box and diamond, the most natural way to do this 
is to take the n -f 1-modal logic 

Lu== L® {axioms of S5 for <S> and 0 } ® {0po -* QiPo I 1 < ^ < n} 

in the language MC^. It is not hard to check that in any rooted n -f 1-frame 
for Lu the accessibility relation corresponding to 0 should be universal. The 
connection between L and L^ is established by the following two results of 
(Goranko and Passy 1992): 

Lemma 1.24. For every n-modal logic L and all MCn-formulas cp and ip, 

i^^l^ iff 0V^-^(/?€Lti. 

Theorem 1.25. For every n-modal logic L, 
(i) Lu is Kripke complete iff L is globally Kripke complete; 
(ii) Lu has the finp iff^}^ is determined by finite frames. 

In general, Lu does not inherit 'good' properties from L. For example, 
Spaan (1993) constructs a unimodal logic L such that L has the polynomial 
fmp and is decidable in coNP, while Lu is undecidable. Using the filtration 
technique (see e.g. Chagrov and Zakharyaschev 1997), one can prove the fol-
lowing: 

Theorem 1.26. Let L be any of the logics K, S4, S5, KD45, K4.3, S4.3, 
GL, K4, T and D . Then Lu has the exponential fmp. 

Some complexity results for modal logics with the universal modalities 
follow from (Hemaspaandra 1996) and (Areces et ai 2000): 

Theorem 1.27. (i) The logics Ku, Tu andBu are EXPTlME-complete. 
(ii) The logics K4u and 84^ are PSPACE-complete. 

However, a detailed complexity analysis of the decision problem for these 
kinds of logics seems to be missing. 

Another way of proving decidability of a multimodal logic L is to reduce 
the decision problem for L to some known decidable problem, say, to a decid-
able set r of formulas, written in some language C, The task then is to find 
a recursive function / mapping A^£n-forniulas to £-formulas and such that, 
for every MCn-formula (p, 

ipeL iff /((/?) e r . 

An example of a very expressive formalism is monadic second-order logic^ 
where various classes of structures are known to have decidable theories. As 
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we will use reductions to such theories in Part III, here we briefly present all 
the required definitions and results. 

The monadic second-order language MSOC is based on the alphabet of 
first-order logic QC extended with a countably infinite list Po,A) •• of 
unary (or monadic) predicate variables. In what follows we consider the first-
order signature consisting of one binary predicate symbol < only. The formula 
formation rules of MSOC are those of QC^ plus the following two: 

• if X is an individual variable and P is a monadic predicate variable then 
P{x) is an (atomic) A15C?£-formula; 

• if (̂  is an A^50£-formula and P is a monadic predicate variable then 
VPcp and 3Pv? are A<50£-formulas. 

An MSOC'Sentence is an A15(P£-formula without occurrences of free indi-
vidual variables or free monadic predicate variables. 

MSOC is interpreted in usual first-order structures / = (D^, <^). How-
ever, this time an assignment in / is a function o mapping each individual 
variable x to an element o(x) G D^ and each monadic predicate variable P 
to a subset a(P) C D^. The truth-relation I 1=** (̂ , for an A150£-formula 
V?, is defined by induction on the construction of (f in the same way as for 
Q^'^-formulas in Section 1.3; the only missing clauses are: 

• / [=° P(x) iff a(a:) € a(P), P a predicate variable; 

• / |=<» VP̂ > iff / [=^ V̂  for every assignment b in / such that o and b 
agree on all individual variables and on all predicate variables different 
from P; 

• / |=" 3Ptp iff / 1=** V' for some assignment b in / such that a and b agree 
on all individual variables and on all predicate variables save P. 

An A^5C>£-formula (f is said to be true in / , if / |=** v? for all assignments 
a in /. Given a class C of first-order structures, the monadic second-order 
theory of C is the set of A<5C?£-sentences that are true in each I e C, 

The following theorem is a consequence of results of Biichi (1962) and 
Rabin (1969); for details consult (Gabbay et al. 1994): 

Theorem 1.28. LetC be one of the following classes of first-order structures: 
{{N, <)}, {(Z, <)}, {(Q, <)}, the class of all finite strict linear orders. Then 
the monadic second-order theory ofC is decidable}^ 

^^However, the monadic second-order theories of {(R, <)} and of the class of all strict 
linear orders are undecidable according to results of Shelah (1975) and Gurevich and Shelah 
(1982) (see also Gabbay et aL 1994). 
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It is to be noted, however, that the price of proving decidability via a re-
duction to these decidable monadic second-order theories is that the resulting 
decision algorithm is non-elementary (see Robertson 1974, Meyer 1974, Rabin 
1977). 

We conclude this section with a brief discussion of how to prove that a 
logic is not recursively axiomatizable. As was observed by Craig (1953), every 
recursively enumerable logic L is recursively axiomatizable as well. Thus, to 
show that L is not recursively axiomatizable, it suffices to reduce a problem, 
whose complement is not recursively enumerable, to the satisfiability problem 
for L. It is well-known from computability theory that S}-hard problems are 
such. Roughly, the membership problem 'x € X?\ for a set X of natural 
numbers, is in E} if there is a formula 

3Po..,3Pkip{y) 

of monadic second-order arithmetic such that, for all natural numbers n, we 
have 

neX iff (N,0, +, •) [= 3Po . . . 3Pk ^[n]. 

(Here Po , . . . , Pfc are the only monadic predicate variables in (/?, y its only free 
individual variable, and no quantification over predicate variables occurs in 
ip.) Then we say that a problem A is E}-/iard if every problem in Ej can 
be recursively reduced to 4̂. A problem is T,\'complete if it is E}-hard and 
belongs to Ej. 



Chapter 2 

Applied modal logic 

So far we were considering modal logics with rather 'abstract' necessity and 
possibility operators. Let us now concentrate on logical formalisms specially 
designed for reasoning about certain concrete application domains, such as 
time, space, knowledge, etc., and show how they can be related to modal 
logics. 

2.1 Temporal logic 

Perhaps the most natural and intuitive use of modal logic is reasoning about 
time. There are many different models of time. In the framework of the 
possible world semantics we can imagine, for instance, that the flow of time is 
represented as a frame 5 = (T, <) in which T is a set of moments of time and 
< a binary precedence relation between them. If time is regarded to be linear 
then we may assume that < is a strict linear order on T, i.e., < is transitive, 
irreflexive and connected: 

Vx, yeT{x<y\/y<xWx = y) 

(see Section 1.4). The necessity and possibility operators interpreted in such 
frames can be understood then as 'always in the future' and 'some time in 
the future,' respectively. 

According to Theorem 1.12, the logic determined by the class of all strict 
linear orders is K4.3. If we regard time to be infinite and discrete (in the 
sense that between any two points there are only finitely many other points) 
or, on the contrary, dense (that is, there is a third point between any two 
distinct points) then we may need temporal logics determined by the flows of 
time (N, <), (Z, <), (Q, <) or (R, <), where N, Z, Q, and R are the sets of 
natural, integer, rational and real numbers, respectively. 

41 
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Theorem 2 .1 . The following equalities hold true: 

i, <)} = Log{(Z, <}} = K4.3 e OT e n (Dp -* p) -^ (ODp -> Dp), 

Log{(Q, <>} = Log{(R, <}} = K4.3 e OT e DDp -^ Dp. 

For proofs see, e.g., (Segerberg 1970, Goldblatt 1982). As both of these 
logics have the fmp (for instance, Log{(N, <}} is determined by the class of 
finite *balloons,' i.e., finite strict linear orders ending with nondegenerate finite 
clusters), they are decidable. Moreover, it is easy to show (see, e.g., Ono and 
Nakamura 1980, Sistla and Clarke 1985) that we have the following: 

Theorem 2.2. Log{{N, <)} and Log{{Q, <)} have the polynomial fmp and 
are coNP-complete. 

One can understand future as f̂rorn now on' (i.e., including the present mo-
ment) and consider logics determined by classes of (reflexive) linear orders. 
Again by Theorem 1.12, the logic determined by the class of all linear orders 
is S4.3. For other reflexive flows of time we have: 

Log{(N, <)} = Log{(Z, <)} = S4.3 0 a(D(p - Dp) -^ p) -• (ODp -^ Dp), 

Log{(Q,<)} = Log{(R,<)} = S4.3. 

Similarly to the case of strict linear orders, both of these logics have the 
polynomial fmp and are coNP-complete. 

The unimodal language A^£ is able to speak only about the future, but we 
can easily extend it to deal with the past by adding one more pair of necessity 
and possibility operators interpreted by the converse <~^ of < (that is, by 
>) . Thus we come to the bimodal temporal language MC2 with two boxes 
Df ('always in the future') and Dp ('always in the past'), together with their 
duals O F and Op, respectively. Although frames for this language are of 
the form (T, <, >), we can safely write 5 = (T*, <) keeping in mind that Dp 
is interpreted by the converse of <. The truth-relation for Dp and Dp in a 
model based on a flow of time 5 = (T", <) is defined as follows: 

t 1= DFtp iff (Vf' >t)t'\= i)\ 

11= Up^l) iff (Vf' <t)t'\= \l). 

Even this simple language is enough to say that some property (f will take 
place infinitely often in the future or that <p is always caused by another 
property ^ : 

D F O F ( / ? , 

DF((/7 - * Opi)) A ap((^ - • Opi)) A ((/? - * O p ^ ) . 
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Statements of this sort are used in the field of verification and specification 
of reactive systems (such as operating systems); see, e.g., (Manna and PnueU 
1992, 1995). 

We can also define operators S and ^ which behave on linear frames like 
the universal modalities: 

SI (̂  = (/? A Dpip A Dpv?, 

Moreover, we can say that some formula (p holds precisely at one point of a 
flow of time: 

^\(f — ^[(f A -»OFV? A -•Op(/?). 

Denote by Lin the bimodal logic determined by the class of all strict linear 
orders, i.e., 

Lin = {(f e MC2 \d \= ^) 5 a strict linear order}. 

This logic can be axiomatized as 

Lin = K42 ® p ~* DpOpp 

®P^DPOFP 

® OpOpp V OpOpp -> p V Opp V Opp 

(see, e.g., Gabbay et al. 1994). Roughly speaking, if Rp and Rp are (transit-
ive) accessibility relations interpreting Dp and Dp, then the first two axioms 
describe the conditions Rp C Rp^ and Rp C i i pS respectively, and the third 
one says that these relations are connected. 

Given a class C of flows of time, we denote by LogppC the bimodal logic 
(with the operators Dp and Dp) determined by C. (Recall that LogC denotes 
the unimodal logic determined by C.) To simplify notation, we will write 
Log;rp(T) instead of Logpp((T, <)} , for T € {N,Z,Q,R}. 

Theorem 2 .3 . The following equalities hold true: 

Logpp(N) = Lin 0 OpT ® D p ( a p p - • ? ) - * Dpp 

e DF(aFp -^ p) ~> (OpDpp - • Dpp), 

Logpp(Z) = L i n e O p T e O p T 

e Dp(Dpp -^ p) - • (OpDpp - • Dpp) 

e Dp(Dpp -^ p) - • (OpDpp -^ Dpp), 

Logpp(Q) = Lin ® O p T ® O p T ® DpDpp -* Dpp, 

Logpp(R) = Logpp(Q) ® 0 (Dpp - • OpDpp) -4 (Dpp -> Dpp). 
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We refer the reader to (Goldblatt 1982) for a proof of this theorem; see also 
(Bull 1968, Segerberg 1970, Wolter 1996). 

Theorem 2.4. The decision problem for the logics Lin, Logpp(N), Logpp(Z), 
Logpp(Q) and Logpp(R) is coNP-complete. 

The results for Lin, Logpp(Q) and Logpp(R) follow from the fact that 
these logics have the polynomial fmp. For Logpp(N) and Logpp(Z) (which 
do not have the fmp), the complexity results can be obtained by proving that 
these logics are determined by some special models of polynomial size (Wolter 
1996). 

'Always in the future' and 'always in the past' are just one type of possible 
temporal operators. When reasoning about the behavior of programs, we 
quite often need to say that if at some moment of time the program is at 
state (/?, then at the next moment it passes to a state tp. This behavior can be 
captured by the next-time operator denoted by O and semantically defined in 
linear orders 5 = (T", <) in the following way: 

t \=z Oif iff there is an immediate <-successor t-\-lo{t 

and t 4-1 1= (p. 

The statement above about programs can be represented then as 

lyl(<^ -> Otp). 

More expressive are the binary temporal operators 'since' and 'until' with 
their natural meaning: 

• ip since tp: '(^ has been the case since xp^; 

• if until ip: '(/? will be the case until 'ip\ 

We will denote these operators by S and W, respectively. Let MCsu be the 
temporal language which results from the language C of classical propositional 
logic by extending it with the binary connectives 5 , U and the corresponding 
formula formation clause: if (f and ip are MCsu-formnldiS then so are (pSip 
and (fUip. 

The semantics of the new operators is defined as follows. Let 5 = (T, <) 
be a strict linear order and ti,t2 € T. Denote by (ti,t2) the open interval 
{teT\ti<t< ^2}. Then 

ti 1= ifStp iff there is 2̂ < ti such that f2 |= V' ^^^ t\= (p iov all t G (^2,̂ 1)^ 

ti t= (pUxp iff there is 2̂ > 1̂ such that t2\= ip and t \= ̂  for all t € (ti, ^2)-
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Note that the operators O F and Op can be defined in MCsu as abbreviations 

In this language we can say, for instance, that a system will respond (p will 
be true) only when it gets a request {q is true): 

The expressive power of the temporal language MCsu over the flows of time 
(N, <), (Z, <) and (R, <) can be characterized in terms of the first-order sub-
language QCt of QC having one binary predicate symbol < and countably 
infinitely many unary predicate symbols Po^Pi^ — (Here we denote indi-
vidual variables by t,t'^ etc.) The language QCt is interpreted in flows of 
time (T, <): the interpretation of < is given by the flow, and Pi are inter-
preted by arbitrary subsets of T. Consider the following standard translation 
* of MCsu into QCt: 

p* = Pj(f), Pi a propositional variable, 

{(pAipy = (̂ * ^tp*, 

{^u^py = 3t'>t {^^t'/t}AW'{t < f <t' -^ v?*{̂ ''A}))i 
{ipSxi)y ^3e <t {xi)'{t'it)A\/t'\t' < f" < ^ -4 (^*{^70))' 

Observe that, for any ^VJ£5e -̂formula v?, v̂ * is a Q£rformula with precisely 
one free variable t Let 9K = (5,2J) be a model for MCsu based on a flow of 
time J = (T, <). Define a first-order structure 

by taking P^ ^ = 5J(pt), for all i <u). Then we clearly have, for every t € T 

and every A^£5t/-formula (/?: 

(971,0 h ^ iff im)h^'[tV 

In other words, MCsu can be regarded as a fragment of QCt> Say that MCsu 
is expressively complete for a class C of flows of time if, for any Q£rformula 
(t>{t) with one free variable, there exists an A<£5t/-formula (̂  such that, for 
all models 371 based on some 5 € C, 

/(OTt) \:^^t{(j>^ if'). 

This means that, modulo the flows of time in C, the temporal language MCsu 
has the same expressive power as the fragment of the first-order language QCt 
consisting of formulas with one free variable. 

The following result is known as Kamp^s theorem] for proofs see (Kamp 
1968) and (Gabbay et al. 1994). 
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T h e o r e m 2.5. MCsu is expressively complete for the flows of time {{N, < )} , 
{(Z, < )} , {(E, <)} , and the class of all finite strict linear orders. 

Note that MCsu is expressively complete neither for {(Q, <)} nor for the 
class of all strict linear orders. Expressive completeness for these classes can 
be obtained by adding the so-called Stavi connectives to MCsu] we refer the 
reader to (Gabbay et al. 1994) for more information. 

Given a class C of strict linear orders, we denote by Log5^(C) the temporal 
logic in the language MCsu determined by C. To simplify notation, if C 
consists of a single flow of time 5 then we will write Logsuid) instead of 

We denote by Linsu the temporal logic determined by the class of all strict 
linear orders. Log5jY(N), Logsu{Z), Log52^(Q) and logsuW are the logics 
of (N, <) , (Z, <}, etc. All these logics are known to be finitely axiomatizable 
and PSPACE-complete; see (Goldblatt 1982, Sistla and Clarke 1985, Gabbay 
and Hodkinson 1990, Reynolds 1992, 1999, 2003). We present here an axio-
matization of a somewhat simpler logic which has found many applications 
as a program verification and specification formalism (see Manna and Pnueli 
1992, 1995). The logic is known as PTL, propositional temporal logic} It is 
formulated in the 5-free reduct MCu of the language MCsu and has (N, <) 
as its intended flow of time, i.e., 

PTL ^logsuWn MCu^ 

Theorem 2.6. PTL can be axiomatized by the following Hilbert-style system: 

Axioms: / x / x 
^FKP -^q) -^ ( D F P -* D F ^ ) , 

0(p -^q)^ (Op -^ Og), 

0-»p *-^ -lOp, (2.1) 

D F P ^ Op A O D F P , (2.2) 

• F ( P -^ Op) ^ 0 ( p -^ D F P ) , (2.3) 

pKq -^ Opq, (2.4) 

pUq*-^OqyO{pApUq). (2.5) 

Inference rules: MP, Subst^ and RN for Dp-

Theorem 2.7. The decision problem for PTL is PSPACE-compiete. 

For proofs see e.g. (Segerberg 1989, Sistla and Clarke 1985, Gabbay et al. 
1994) or Corollary 11.36. 

^This logic is also called LTL (linear tempoTul logic); see, e.g., (Clarke et al. 2000). 
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It may be of interest to note that as far as decidability and computational 
complexity are concerned, it is enough to deal with PTL instead of Log5i^(N), 
for we have the following (see Gabbay et al, 1980): 

Proposition 2.8. Log5ĵ (N) is polynomially reducible to PTL. 

Proof. It is sufficient to show that, given a A^^^^-formula (p, one can ef-
fectively construct an 5-free formula (p (the length of which is linear in the 
length of if) such that (p is satisfied in a model based on (N, <) iff (̂  is satis-
fied in a model based on (N, <}. Suppose (f is given. Clearly, without loss of 
generality we may assume that (̂  = r? V Opt?, so that (p is satisfiable iff it is 
satisfiable at time point 0. Given a subformula of (p of the form tl>\S'ip2 with 
5-free rpi and 02» we introduce a fresh propositional variable p î5V'2- Let </?' 
be the result of replacing every occurrence of il)iSil)2 in (f with p^i5^2» ^"d 
let 

(̂ " = (̂ ' A -̂ p̂ i5V>2 ̂  DF(OP^I5V'2 ^ (V̂2 V (V̂ i Ap,/,i5V>2))j, 

where D^x denotes x A DFX- We claim that (̂ " is satisfiable at 0 iff (/? is 
satisfiable at 0. Indeed, suppose first that (9Jl,0) |= (p^\ for some model 971. 
By induction on n 6 N one can show that (9Jl,n) |= p^p^s\i)2 ^ '^\S'4>2'> for 
every n € N. It follows that (9Jt, 0) |= v?. 

Conversely, if (9Jl,0) |= (f for some 971 = ((N, <) ,5J), then we can extend 
93 to 93' by taking 

93'(p ,̂5V'2) = {n I (971,n) 1= ^iSxl)2} . 

It should be clear that y?" is true at 0 in the resulting model ((N, <) ,93'). 
By iterating this process sufficiently many times we end up with an 5-free 

formula p. As (p is 5-free, it is satisfiable at 0 iff it is satisfiable at all. Thus, 
<̂  is as required. • 

As a consequence we obtain: 

Theorem 2.9. The decision problem for Log5^(N) is PSPACE-comp/eie. 

We will also be considering the bimodal fragment PTL^^ of PTL having 
only Dp and O as its temporal operators, i.e., 

PTL^o = Log{(N, <,+!)}. 

It is not hard to see that if we omit axioms (2.4) and (2.5), then the resulting 
Hilbert-type system axiomatizes PTL^^. Actually, again it turns out that in 
a sense PTL^^ has the same expressive power as full PTL. For we have the 
following: 
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Proposition 2.10. PTL is polynomially reducible to FTL^^. 

Proof. Given an MCu-iormula, y?, denote by (f^ the result of replacing every 
subformula of the form ipUx in (f with a fresh propositional variable Ptpux-
Let TZu{(p) be the union of the sets 

{PtijUx -* O F X ^ I i^^X ^ subip} and 

{Prf;Ux ^ (OX^ V (Oi/;^ A Op^ux)) I V^^x € subip}. 

We will show that, for every A1£t/-formula if, 

if e PTL iff D-p/\nu{ip) -^ip^ e PTL^o-

Suppose first that 

for some model 9Jl based on (N, <, +1). (This QJl can also be considered as a 
model based on (N, <}.) We claim that for every subformula aof^p and every 
n € N , 

(on, n)\=a iff (9Jl, n) 1= a^. (2.6) 

The proof is by induction on the construction of a, where the only non-trivial 
case is Q = rpUx-

(=>) If (pJl^n) 1= tpUx then there is an m > n such that (971,m) \= x 
and (9Jl, fc) |= ijj for all k € {n^m). It follows by the induction hypothesis 
that (OT,m) \= x^» whence (im,m - 1) |= Ox^, and so (971, m - 1) |= p^Ux^ 
since we have (9Jt,i) |= f\^u{^) for all i G N. If n < m — 1 then we 
have (9Jl, m — 2) \= Opt/jUx ^"d (9Jl,m - 1) ^ Otp^, from which we obtain 
(371, m — 2) 1= p^ux' By repeating this argument sufficiently many times we 
shall end up with (971, n) |= Pxpux^ ^^ required. 

(4=) If (971, n) t= Pri^ux then (971, n) |= Ox^ V {O'tp^ A Op^i^ux)- We either 
have (97t, n-f 1) |= x^» whence by the induction hypothesis (971, n-hl) \= x» and 
so (971, n) 1= xpUx, or (971, n+1) |= I/J^ Aprpux- Since (971, n) \= p^ux -* O F X ^ , 
there is an m > n such that (971, m)\= x^ -> and so by the induction hypothesis, 
(971, m) t= X- Now, by using the above argument at most m times, we can show 
that if) holds 'everywhere in between,' i.e., (971, n) |= i^Uxi which completes 
the proof of (2.6). 

Now it follows from (2.6) that (971,0) Y^ (/?, as required. 

Conversely, assume that (̂  is refuted in some model 97t = ((N, <),93). 
Extend 9J to a valuation 9J"*" by taking, for all ^Ux ^ sub (/?, 

"O^iP^Ux) = {n € N I (97t,n) H ^Ux). 
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and let 9Jl^ = ({N, <, +1) ,93" )̂. We leave it to the reader to show that for 
all n € N and all tp € sub^p^ 

(9n^ ,n ) |=A^ t /M, and 
(9n,n)|=V^ iff {m-^,n)\=tp^. 

Therefore, n'^/\nu{if) -* if^ is refuted in UJt̂ . • 

It follows from Theorem 2.7 that PTL^^ is also PSPACE-complete. A 
discussion of some related topics can be found in (Sistla and Zuck 1987). 

Remark 2.11. It is worth mentioning that there exist rooted frames for PTLJ-,Q 
different from (N, <, 4-1). However, a//of them satisfy two important proper-
ties. First, by (2.1), the accessibility relation R^ interpreting O (as a box-like 
operator) is a function (i.e., Wx3\y xR^y) and, by (2.3) and (2.2), the rela-
tion corresponding to Dp is the transitive closure of R^ (for a proof see, e.g., 
Blackburn et al, 2001). Second, every rooted frame for Log{(N, <)} (and for 
PTL) different from (N, <) is a balloon—a finite strict linear order followed 
by a (possibly uncountably infinite) nondegenerate cluster (see, e.g., Gold-
blatt 1987). So every rooted frame for PTL^^ different from (N, <, -f 1) is of 
the form (VT, /?, / ) , where {W, R) is a balloon and / is a function on W that 
is the /?-successor on the f̂inite linear order part' and arbitrary otherwise. In 
particular, every countable rooted frame for PTL^^ is in fact a p-morphic 
image of (N,<,-hi). 

2.2 Interval temporal logic 

In Section 2.1 we considered temporal logics interpreted in Kripke models 
the points of which are linearly ordered and represent moments of time. In 
this section we discuss another approach to temporal reasoning which takes 
as primitive temporal intervals rather than points. Interval-based temporal 
logics originate from the same areas as modal logic in general: philosophy, 
linguistics, computer science and artificial intelligence. They arise from the 
observation that time-dependent assertions can be of different kinds. Some 
of them describe instant situations and can be evaluated at single moments 
(points) of time, for example: 

My temperature is 37.3 C° 

But there are also assertions that can be evaluated only at some period (in-
terval) of time, say: 

Mary often visits her mother. 
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And of course there are cases when we can regard temporal assertions as 
both point-dependent and interval-dependent, perhaps with some difference 
in meaning, for instance: 

William Shakespeare is an actor. 

The interplay between these types of propositions has been studied thor-
oughly in linguistical semantics, see e.g. (Dowty 1979, Kamp 1979, Bennett 
1977, Nishimura 1980). Similar considerations can be found in works on com-
putational logic (Lamport 1985, Kowalski and Sergot 1985). We address the 
reader to (van Benthem 1995) for further discussion and references. 

Now let us consider some specific systems of interval logic. Allen (1983) 
observed that relative positions of any two intervals i and j can be described 
by precisely one of the following thirteen basic interval relations: before(i, j ) , 
meets(i,j), overlaps(i, j ) , during(t, j ) , starts(z,j), finishes(i, j ) , their inverses 
(i.e., before(j,i), meets(j,i), etc.), and equal(i,j). Let us denote by ,4^^-13 
the language whose alphabet contains these thirteen binary predicate symbols, 
a sufficient supply of interval variables t, j , etc., and the Booleans. Formulas 
of Ai£-l^ are just Boolean combinations of the above listed atomic ones. 

In order to provide a semantics for AU-l^ formulas, suppose that the flow 
of time is represented as a strict linear order 5 = {W, <). (Often the intended 
flow of time in interval logic is not just an arbitrary strict linear order, but 
a dense order like (Q, <) or (R, <).) An assignment in ^ is a. function a 
mapping the interval variables into temporal intervals in J. There may be 
different views on what the temporal intervals in 3̂  should be. First we take 
perhaps the most liberal' version by defining them as arbitrary non-empty 
convex sets in 5- In other words, a temporal interval a(i) in Ŝ  is a non-empty 
subset of W such that 

Vx,t/ e a{i) Vz € W{x < z < y -^ z € a{i)). 

For example, liu <v then the open interval (u, v), the sets 

{UjV] = {w £ W \ U < W < V}, 

[u,v) = {w e W \ u < w < v}, 

and if u <v (i.e., u <v ov u = v) then the set 

[u,v] = {w e W \ u < w < v} 

are temporal intervals. Now, following (Allen 1984), the truth-relation 5 |=* V̂  
for atomic AUA3 formulas can be defined as follows (see Fig. 2.1): 

5Kequals (2 , j ) iff o(i) = a(j), 

5 [=" before(i, j) iff Va:, y {x € a{i) Aye a{j) -^ x <yA 3z{x <z <y 

Azi a{i)Az^ a(j))), 
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before(i, j ) 

meets(i, j ) 

overlaps(t\ j ) 

during(i,j) 

starts(i,j) 

finishes(i, j ) 

equal(i,j) 

before(j,i) 

meets( j , i) 

overlaps(j, i) 

during(j,i) 

starts(j, i) 

finishes(j, i) 

Figure 2.1: The atomic formulas of A££-13. 

3^|=«meets(t\j) X < y A V2(x < z <y iff Va:,y {x e a{i) Ay £ o(j) 
-4 zea{i)Wz€a{j))), 

^ f='* overlaps(t, j) iff a(t) n a{j) ^^9 A3x,y {x < y 
A a; € a(j) A x ^ a(t) A y G a(i) A y ^ a(j)), 

iff a(i) C a(j) A a(i) ^ a(j) AWx.y {x <y 
Axe a{j) Ay e a{i) -• x € a{i)), 

iff 3x,2/,2 (x < y < 2 A X € a{j) Ax ^ a(i) 
Aye a{i)Az e a{j)Az i a(i)), 

iff a(i) C a(j) A o(i) ^^ a{j) A Vx, y (x < t/ 
A J/ E a(j) A x e a(i) -• y 6 a(t)). 

5Kstarts( i , j ) 

5Kduring(i , j ) 

5f=''finishes(t,i) 
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The truth-conditions for the Booleans are the same as in CI. We say that (f 
is satisfied in ^ ii ^ \=^ (p holds for some assignment a in ^; ip is satisfiable 
in a class C of flows of time if ip is satisfied in 5 for some 5 € C. 

Using formulas of this language we can express various constraints on time 
intervals, which can be used for representing qualitative temporal information, 
for instance, in planning (see, e.g., Allen et al. 1991, Allen and Koomen 1983). 
Usually Aii-li serves as a basis for more complex languages which, besides 
temporal constraints, use other predicates such as HOLDS(F,i) (property P 
holds during interval i), OCCURS(E,t) (event E happens over interval i). 
Some examples will be provided in Section 3.2. 

The reader may now be wondering why such a formalism as AilA3 is 
discussed in a book on modal logic. First, because it can be regarded as a 
fragment of a suitable point-based temporal logic. Indeed, let us define a 
translation •* from A£i-13 into the temporal language MC2 of the previous 
section (cf. Blackburn 1992). For atomic formulas we take: 

(equals(i, j ) ) * = B{pi ^ pj), 

(before(i, j ) ) * = B{pi ~* -^pj A OFPJ) A <$>(-ipi A -.pj A OpPi A O F P J ) , 

(meets(i, j ) ) * = m{pi -* -^Pj A OFPJ) A -^<$>{-^Pi A -^pj A OpPi A O F P J ) , 

(overlaps(i, j ) ) * = #(pi Apj) A 4>{pi A -^pj A OPPJ) A <$>(p̂  A -ipi A OpPi), 

(starts(i, j ) ) * = m{pi -> pj) A <l>(pj A -.p^) A El(pi Apj -> a p ( p j -~* Pi)), 

(during(i, j ) ) * = 0(Pi - • Pj) A <P{pj A -^p, A OpPi) A <$^{pj A -^pi A OpPi), 

(finishes(i, j ) ) * = lvl(pi -> pj) A 4>{pj A -^pi) A Sl(pi Apj -* np{pj -* Pi)). 

Now, given an ^^€-13 formula <̂ , we replace in it all atomic subformulas ^ 
with ip^ and add to the result the conjunct 

<$>Pi A (3(Oppi A OpPi -> Pi), (2.7) 

for every interval variable i occurring in (p (which ensures that the propos-
itional variable pi associated with the interval variable i is interpreted by a 
nonempty convex set). The resultant formula is denoted by ip^. It is not 
hard to see that, for every Aii-13 formula (p and every flow 5 of time, (p is 
satisfiable in 5 iff V̂ * is satisfiable in J . 

By appropriately changing the formulas of this translation one can capture 
diff'erent understandings of the nature of temporal intervals. For example, 
if we want temporal intervals to contain at least two points then the first 
conjunct of (2.7) should be replaced by the formula ^{pt A Oppt). The 
reader can try to define modal formulas describing Allen's relations between 
only closed intervals [u,v] or between only open ones (u^v). 
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As A(i'l3 clearly contains CI (a prepositional variable pi can be translated 
to equals(t, j ) , for some interval variable j ^ i), the satisfiability problem for 
Aii'13 formulas in any class of flows of time is NP-hard. Moreover, as follows 
from (Vilain and Kautz 1986), we have: 

Theorem 2.12. The satisfiability problem for AU-IS formulas in any class 
of strict linear flows of time is NP-complete. 

For the interested reader, here we give a sketch of a simple proof of how 
satisfiability of an Ai£'l3 formula (f in an arbitrary infinite strict linear flow 
of time 5 = {W,<) can be reduced to satisfiability in the finite Hnear order 

C5 = ( { 0 , . . . , 4 n - 1 } , < ) , 

where n is the number of interval variables in (p. (Theorem 2.12 will follow 
immediately.) 

Suppose V? is satisfied in 5. Without loss of generality we may assume ff 
to be Dedekind-complete. (This means that every convex set in 5 can be 
represented as one of the four types of intervals: (w, v), (w, v], [ti, v) and [u, t;], 
where u,t;€ VV^U{-oo,-l-oo}, with the standard interpretation of the infinity 
symbols: (w,-f-oo) == {v e W \ v > u}y (-oo,ti) = {t; € W | t; < w}, etc. 
Examples of Dedekind-complete orders are (M, <), (N, <), (Z, <); however, 
(Q, <) is not Dedekind-complete.) If our 5 is not Dedekind-complete, then 
we take its completion 5' (the smallest Dedekind-complete order containing 
5). It is readily seen that if (p is satisfied in 5 then it is satisfied in 5'. So let 
5 be Dedekind-complete and let Xo < - • < Xm^ m, < 2n, be all the endpoints 
of the intervals interpreting the variables in v?. If a variable i is interpreted by 
(xk.Xi) {[xk,X(), (xk.xe], [xk.xt]) in ff then we interpret it as [2A: + 1,2£- 1] 
(respectively, [2k, 2i - 1), [2A: -f 1,2 )̂, [2k, 2i]) in 0. It is not hard to check 
that (25 satisfies y? under this assignment. 

Now suppose that ip is satisfied in ^. As (!5 is finite, all of its intervals can be 
regarded as closed (e.g. (A;, )̂ = [A: -f 1, ^ - 1]). Select points xo < • • • < X4n in 
5. Now, if i is interpreted as [k,i] in (5 then we interpret it as [xk^xe-^i) in 
ff. It is readily checked that (p holds in 5 under this assignment. 

The second reason for considering interval temporal logic in this book is 
that one can construct rather expressive modal logics of intervals (see, e.g., 
Humberstone 1979, van Benthem 1983, Allen and Hayes 1985, Halpern and 
Shoham 1991). Here we present a variant of the Halpem-Shoham logic HS 
following (Marx and Venema 1997). The language of HS is MC\ with four 
diamonds O^, O/ , 0 7 \ O y \ and the corresponding boxes Ds, D/ , D 7 \ 

DJ^ Frames for HS, or simply HS-/rame5, contain closed intervals of the 
form [u, v\,u<v,oi some strict linear order 5 = (tVi <) as their worlds and 
interpret Oa, O/ , 0 7 \ OJ^ by the relations i 5 j , iFj saying that interval i 
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starts j , interval i finishes j , and their converses, respectively. More precisely, 
let 

/n(5) = {[u,v]\u,veW, u< v). 

Then an YlS-frame (corresponding to 5) is the triple 3(5) = ( /n(5) ,5 ,F) , 
where 

[ui,'i;i]5[u2, V2) iff wi = '^2 and v\ < V2, 

[ui,vi]F[u2,V2] iff ui > U2 and vi = V2' 

Such a frame is called an HS-frame over J. Thus, for a model 9Jl = (3(5), 2J) 
based on 3(5), we have 

(9Jl, [u, v]) H= O5V? iff 3t;' > V (971, [n, v']) |= y?, 

(on, [w,v]) =̂ 0 7 V iff 3u' (u < u' < i; A (OJl, [u,u']) \= if), 

i.e., O5VP is true in [u, v) iff v? is true in an interval which has [u, v] as a starting 
subinterval, and Oj^(f is true in [u, v] iff (f is true in a starting subinterval of 
[u, v]. The meaning of the other two diamonds is defined analogously. 

This language is quite expressive. For example, [u, v] |= DT^D^ V iff V is 

true at all subintervals of [u,i;].' Further, the modal operator Os represents 
the basic relation starts of AU-13 in the following sense: 

[u,v] 1= Oa^p iff [u, v'] \= v? for some v' such that starts([u,i;], [ti,t;']) holds. 

In fact, we can define modal operators representing all the thirteen basic rela-
tions of ^^^-13 in the same sense. For instance, here is a formula representing 
meets: 

Om^ = (07^ J- A Ô ^̂ ) V O/^DJ^X A Os^)-

Indeed, we have 

[u,v] t= Om^ iff b»H N ^ for some w such that meets([u,i;], [v,w]) holds. 

One can also characterize many standard properties of linear orders using 
HS-formulas. Say, the formula -^(Oj^T A D J ^ D j U ) is valid in 3(5) iff 5 
is dense. For more examples consult (Halpern and Shoham 1986, Marx and 
Venema 1997). 

Various classes of strict linear orders give rise to different HS-logics. For 
such a class C, let 

HSc = {^ € MC4 I 3(5) h ^^ for all 5 € C}. 

Halpern and Shoham (1986) show that the decision problem for HSc is very 
complex for almost all interesting classes C of linear orders: 
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Theorem 2.13. Let C be any class of linear orders such that at least one 
member of C contains an infinite ascending chain of distinct points. Then 
HSc is undecidable. 

Note that (Halpern and Shoham 1986) contains many other results con-
cerning the high complexity of HS-logics. Explicit axiomatizations of some 
HS-logics can be found in (Marx and Venema 1997). However, they are not 
finite in the sense of Section 1.4, because they use the irreflexivity rule of 
Gabbay (1981a). We will return to HS-logics in Section 3.9, where it will 
be considered from a two-dimensional perspective, and in Section 7.1, where 
Theorem 2.13 will be obtained as a consequence of a more general result. 

We have defined only those temporal languages that will be used later on 
in this book. For other kinds of temporal logics designed for various applic-
ations in philosophy, computer science, artificial intelligence, computational 
linguistics and other fields, for instance, branching time temporal logics, or 
computation tree logics, we refer the reader to (Clarke and Emerson 1981, 
1982, Emerson 1990, Emerson and Halpern 1985, Thomason 1984, Zanardo 
1990, 1996, Gabbay et al. 1994, 2000) and references therein. 

2.3 Epistemic logic 

Epistemic logics, or logics of knowledge, have been studied in philosophy with 
the aim of analyzing formal properties of reasoning about knowledge and belief 
since the 1950s (see, e.g., Hintikka 1962, Lenzen 1978). Over the last 20 years, 
however, epistemic logic has found applications in various other disciplines. 
Here are some of them: 

• in game theory, it is used for an epistemic analysis of games with in-
complete information (Aumann 1976, Bacharach 1994, Kaneko and Na-
gashima 1997); 

• in artificial intelligence, epistemic logic is applied in order to find out 
what an agent has to know (in particular, about what it knows) to show 
intelligent behavior (Laux and Wansing 1995, Meyer and van der Hoek 
1995, Halpern and Moses 1992, Fagin et al. 1995); 

• in computer science, it is employed to analyze the behavior of multi-
agent systems; see (Fagin et al. 1995) and references therein. 

This list is by no means complete; other applications can be found in (Fagin 
et al. 1995, Meyer and van der Hoek 1995). 

In all these cases the use of the multimodal language MCn for capturing 
properties of knowledge and belief seems quite natural. Suppose, for instance, 
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that we have a group of n agents called 1 , . . . , n. For each of them we introduce 
a modal operator Di which is read as 'agent i knows' or 'agent i believes.' 
The axioms 

(1) Di(po -^ Pi) -^ (QiPo -> Oipi), 

(2) Dipo -^ Po, 

(3) Dipo -* aiOiPo, 

(4) -DiPo -^ Qi-Dipo 

mean then that 

(1) agent i knows all the logical consequences of its knowledge (this phe-
nomenon is known in the literature as logical omniscience), 

(2) everything that i knows is true, 

(3) agent i knows what it knows {positive introspection), and 

(4) agent i knows what it does not know {negative introspection). 

Recall now that (1) is an axiom of every normal modal logic, (2) an axiom 
of T, (3) an axiom of K4, and (2)-(4) are axioms of S5. All the epistemic 
logics to be considered in this book contain axiom (1) for every agent and 
are closed under the necessitation rules ip/Diip, which mean that agents know 
what is valid; in particular, they know all the tautologies of classical logic. 
Of course, this assumption gives a somewhat idealized model of knowledge 
for human agents (and perhaps for robots as well), but for many purposes 
of modeling the behavior of multi-agent systems in artificial intelligence this 
simplification seems to be justified or at least the best possible approximation. 
For a philosophical discussion of principles which can be acceptable under this 
or that interpretation of knowledge and belief the reader is referred to (Lenzen 
1978). 

The basic epistemic logics in the language MCn are the following mul-
timodal variants of the systems K, T, K4, S4, KD45 and S5 defined in 
Section 1.4: 

• Kn', no property different from logical omniscience of all agents is as-
sumed, 

• Tn'- besides logical omniscience, it is assumed that what is known is 
true, 

• K4n: besides logical omniscience, positive introspection is assumed. 
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• S4n' besides the properties of Tn, we have positive introspection, 

• KD45n: besides logical omniscience and positive introspection, negat-
ive introspection, and consistency of what is known is assumed, 

• S5n'. besides the properties of S4n, we have negative introspection. 

It was shown in (Halpern and Moses 1992) that all these logics are decidable 
and their decision problems are PSPACE-complete; see Theorem 1.17. 

Having postulated (1) and the necessitation rules for epistemic logics, we 
get again into the class of normal multimodal logics which can be interpreted 
in Kripke models. The question is how these models fit into the epistemic con-
text. According to the possible world semantics, the meaning of the formula 
DtV? is analyzed as follows: Di^ is true in a world w if and only if ip is true 
in every world (or situation) which agent i regards as possible. And a world 
V is regarded as possible by i in ti; if v is accessible from w via the relation 
interpreting Di. It follows that i does not know ip iff there exists a world, 
which is considered possible by i, where if is false. The following example^ 
illustrates how elegant this analysis is. 

Example 2.14. (The wise men puzzle.) Imagine that there are three 
wise men and a king who has two white and three red hats, and that all wise 
men know that he only has these hats. The king puts a hat on the head of 
each of the three wise men. Each of them sees the colors of the hats of the 
other two men, but not the color of his own hat. Now the king asks whether 
any of them knows the color of his hat. No one says he does. The king asks 
again—and again none of them knows. But having been asked the third time, 
all of them say that they know the color. How did the wise men solve the 
puzzle? 

We analyze this puzzle in the framework of the possible world semantics. 
Assume that the three wise men are called i4, B, and C. The following seven 
situations (alias worlds) are possible: 

• all wise men have red hats; this situation is represented by the triple 

• A has a white hat, B and C have red hats, or (ii;,r, r ) , in symbols; 

• B has a white hat, A and C have red hats, i.e., (r^w^r); 

• C has a white hat, A and B have red hats, i.e., (r, r, K;); 

• A and B have white hats, C has a red hat, i.e., {WyW^r); 

^The reader can find numerous examples of this sort in the literature, cf. (Fagin et al. 
1995). 
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• B and C have white hats, A has a red hat, i.e., {r,w,w)', 

• A and C have white hats, B has a red hat, i.e., {w^r,w). 

Denote this collection of triples by W. Since they describe all possible situ-
ations, no world outside W is possible. 

Now, A sees the hats of the two other wise men. So he knows their 
colors. Therefore, only one the following four sets of worlds can be regarded 
as possible by A: 

• V?rr = {{C1,C2,C3) G H^ | C2 = T, C3 = r } , 

• V7^r = {(Cl,C2,C3) eW \C2=W, C3=r}, 

• V?^^ = {(C1,C2,C3) eW \C2=W, C3 = W}, 

• V̂ ?rn; = {{Cl,C2,C3} G M̂  | C2 = T, C3 = w}. 

As i4 does not know the color of his hat, the set of worlds he considers possible 
must contain at least one world in which he has a white hat and at least one 
world in which his hat is red. This excludes V7iyty. Similarly, the sets of worlds 
considered possible by B and C are Vrir, K?iyj or Vyj'?r^ and V̂ r?? Vrwi^ or 
Vyjr7^ respectively. 

After the wise men have stated that they do not know the colors of their 
hats, it is common knowledge that none of them knows the color of his hat. 
Thus, it is common knowledge that at least two of them have red hats. So, 
new the set of worlds A considers possible belongs to the list V?^ {(r, //;, r)}. 
and {(r,r,It;}}. Similarly, the sets of worlds considered possible by B and 
C are among Vrin {(^j^»^)}» {{'^^f,r)} and K-r?, {(^^^?0}, {(^»^»^)}r re-
spectively. 

In the second round each of the three wise men again says that he does 
not know the color of his hat. This means that the set of worlds A considers 
possible contains a world in which he has a red hat and a world in which 
he has a white hat. The same holds for B and C. It follows that the sets 
of worlds i4, B and C consider possible are Vim Vrir and K-r?* respectively. 
This is common knowledge after all of them have stated that they don't know 
the colors of their own hats. But then the only remaining possible world is 
(^r,r). 

Observe that a number of assumptions have been made to derive this 
conclusion. For example, we assumed that the three wise men are logically 
omniscient (and that each of them knows that the other wise men are logically 
omniscient). Moreover, we used the facts that (i) at the beginning all wise 
men know that there are three red hats and two white hats, that (ii) every 
wise man knows that every wise men knows that there are three red hats 
and two white hats, and that (iii) every wise man knows that every wise men 
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knows that every wise men knows that there are three red hats and two white 
hats. 

This phenomenon—the need to take a potentially infinite iteration of epi-
stemic operators—turns out to be fundamental for various representations of 
multi-agent systems in game theory, artificial intelligence and computer sci-
ence. In a finitary language like MCn we are not able to express directly the 
infinite conjunction saying that y? is common knowledge among a group M of 
agents, that is 

k<uj 

where 

The standard solution to this problem is to take the common knowledge oper-
ators CM» *it is common knowledge among the agents in M,' as primitive and 
interpret them by the transitive and reflexive closure of the relations Ut^M ̂ »̂ 
ie., by (UteM ^ 0 * ' where the Ri interpret the operators D ,̂ for i £ M, In 
other words, we define 

1̂  N CMV^ iff "iv eW (w (Ui6Af -Rt)* V implies v \= ipj 

iff Vik < a; ti; 1= E^y?. 

Rtmark 2.15. An alternative way would be to interpret CA/ by the transitive 
(but not reflexive) closure of Ui^M ^* ^ ^̂  done, e.g., in (Fagin et al. 1995). 
From the technical point of view these two ways are equivalent. Indeed, let 
C^ denote the operator interpreted by the transitive closure of Ui€M^*-
Then CM^ can be defined as (/? A Cĵ (̂  and Ĉ ĉp as EMCMV^-

Let MC^ denote the language that results from MCn by extending it 
with the common knowledge operator CA/ for every nonempty subset M of 
{ 1 , . . . ,n} (and the corresponding formula formation rules). 

Given a normal modal logic L in the language MCn, denote by L^ the 
(n 4- 2" - l)-modal logic formulated in MC^ and determined by the class of 
all frames of the form 

/ iy , /? i , . . . , /?n ,{( | J /? i )* |MC{l , . . . ,n} , M ^ 0 } \ , (2. 
\ t€M / 

8) 

where (VF, /? i , . . . , i?n) is a frame for L and the common knowledge operators 
CM are interpreted by (UieAf ^*)*-

Remark 2.16. It is to be noted that this kind of semantic definition leaves 
a possibility for L^ to have nonstandard (or not intended) frames that are 



60 Chapter 2. Applied modal logic 

different from those above (for example, the operation of the transitive reflex-
ive closure is not first-order definable). Fortunately, this is not the case. As 
follows from the axiomatization given in Theorem 2.17 below, all frames for 

are standard frames of the form (2.8) (and the operation of the transitive 
reflexive closure is modally definable). That is why, when dealing with frames 
for L^j we need to know only the relations Ri. So, to simplify notation, we 
will usually represent frames for L^ as {W, / ? i , . . . , jR„). 

Note that in S4^ and S5^ the operators C{i} have the same interpretation 
as the operators Di, while in K^, T?", K 4 ^ , and KD45^ their behavior is 
different. In particular, S4f and S5f are just notational variants of S4 and 
S5, respectively. 

The following theorem summarizes the most important facts about epi-
stemic logics with common knowledge operators: 

Theorem 2.17. Suppose that either n>l and L G {Kn,Tn}, or n > 1 and 
L € {K4n,S4„ ,KD45n,S5„} . Then 

can be axiomatized by adding the following axioms and inference 
rules to those of L, for all nonempty sets M C { 1 , . . . , n } ; 

CMPO ^ (Po A EMCMPO), (2.9) 

given po -* Pi /^ EMPO, derive po ~> C M P I ; (2-10) 

• the decision problem for L^ is EXPTIME-complete; 

• L^ has the finite model property. 

Remark 2.18. An alternative axiomatization for any epistemic logic L^ above 
can be obtained by omitting rule (2.10) and adding the following axioms and 
inference rules to those of L and (2.9), for all nonempty sets M C { 1 , . . . , n} : 

• CM(PO - * P I ) - • (CMPO - ^ C M P I ) , 

• CM(PO - ^ EMPO) - ^ (PO - ^ CMPO), 

• given Po, derive CMPO-

(Observe the similarities with the axiomatization of PTL in Theorem 2.6.) 
We leave it to the reader to show that the two axiomatizations are interde-
rivable. 

Axioms for common knowledge appear in (Lehmann 1984, Milgrom 1981, 
McCarthy et al. 1979), although in these papers only the operator C express-
ing common knowledge of all agents is used. A completeness proof, based on 
the ideas of Kozen and Parikh (1981), can be found in (Halpern and Moses 
1992). The decidability and complexity results are based on the fact that—as 
will be shown in Section 2.8—the above logics are embeddable into proposi-
tional dynamic logics PDL and CPDL (Halpern and Moses 1992). 
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2.4 Dynamic logic 
Prepositional dynamic logic PDL was designed for reasoning—at a rather ab-
stract level—about the behavior of programs. The field of computer science 
which is concerned with formal languages that are able to express various 
properties of programs, in particular their correctness, is known as program 
verification and specification. One of the most influential approaches to veri-
fication of ordinary sequential programs (e.g., programs for sorting lists of 
integers) proposed by Floyd (1967) and Hoare (1967) uses correctness asser-
tions of the form 

which state that any execution of program (command or action type) a start-
ing from a state where (f holds reaches a state where rp holds. The formulas 
V? and ip are called the pre- and post-conditions of this assertion. The idea 
of using such assertions is based on the fact that the program's underlying 
semantics can be described in terms of a transformation from an initial state 
to a final state.*' The transition graph representing this transformation can 
be regarded as a Kripke frame whose accessibility relations are labeled with 
commands. So if we associate with every program a the modal operator [a] 
with the intended meaning ^w [= [a]^ iff every possible execution of a at state 
w arrives at a state in which i/) holds,' then the correctness assertion above 
can be represented as an ordinary modal formula: 

(f - > [a]rp. 

(Note that [a]ip is the weakest pre-condition for which any execution of a 
reaches a V'-state.) 

As computer programs are usually composed from commands, our 'ab-
stract' programs can also be complex entities composed from primitive ones. 
Our operations on programs are sequencing (or composition) *;'» nondetermin-
istic choice *U', iteration '*', and test '?' (see Fig. 2.2). For example, for 
programs a, f3 and a statement (̂ , we can represent the compound program 
'if (f then a else (3' as ((^?; a) U (-'V??; /3). The programs 'while if do a' and 
'repeat a until (̂ ' can be represented as ((/??; a)* -^-^(f? and a ;(-•(/:?, a)* ;</??, 
respectively. 

Before turning to the precise definitions of the syntax and semantics of 
PDL, it may be worth noting that apart from its ability to describe abstract 
properties of programs, PDL and its extensions turned out to be useful for 
at least two other reasons as well. 

^Observe that assertions of this form are not appropriate for the verification and spe-
cification of continuously operating reactive programs which are usually nonterminating. 
Since there is no final state, post-conditions are of no use to describe the behavior of such 
programs. In this case temporal logic provides an appropriate formalism (see, e.g., Clarke 
and Emerson 1981, Emerson and Halpern 1985, Manna and Pnueli 1992, 1995). 
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a ; /? do a followed by /?, 

Q U /? do either a or P, nondeterministically, 

a* repeat a a finite number of times, 

if? proceed if ^p is true, else fail. 

Figure 2.2: The intended reading of operations on programs. 

First, various important modal logics can be embedded into propositional 
dynamic logics, and so inherit some of their properties, say, decidability or 
upper bounds for their computational complexity. We will discuss the em-
bedding of expressive epistemic logics with the common knowledge operator 
(Halpern and Moses 1992) in Section 2.8. Fischer and Immerman (1987) em-
bedded temporalized epistemic logics into CPDL—an extension of PDL with 
the 'converse operator.' A variant of their embedding can be found in Sec-
tion 6.3. Description logics have also been analyzed by means of embeddings 
in propositional dynamic logics (Schild 1991, De Giacomo and Lenzerini 1994, 
De Giacomo and Lenzerini 1996); see Section 2.5. And second, in artificial 
intelligence and philosophy, propositional dynamic logics are often taken as a 
basis for constructing deontic logics and logics intended for reasoning about 
actions; see, e.g., (Segerberg 1980, Prendinger and Schurz 1996, De Giacomo 
and Lenzerini 1995, Meyer 1988, Fischer and Immerman 1987). 

Besides the alphabet of classical propositional logic (where A and -• are 
regarded as the only primitive connectives), the alphabet of the language WC 
contains 

• a countably infinite set a o , a i , . . . of atomic actions (or atomic pro-
grams), 

• the symbols ;, U, * and ?. 

The sets of WC-formulas and action terms are defined by simultaneous in-
duction as follows: 

• every propositional variable is a formula, 

• every atomic action is an action term, 

• if (̂  and tp are formulas and a is an action term, then if /\ipj -•</? and 
[a\ip are formulas, 

• if a and /? are action terms and (/? is a formula, then a U /8, a ; )9, Q* and 
(f? are action terms. 
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As before, we define (a) (f as an abbreviation for -»[a]--iv?. Observe that the 
internal structure of the modal operators is the only difference between the 
language WC and the standard multimodal language MC^ with infinitely 
many boxes. 

The language WC is interpreted in WC-structures which are frames of 
the form 

where W is a (nonempty) set of states and the To, are binary relations—this 
time called transition relations—on W^ one for each atomic action at- Unlike 
the possible world semantics, now WTQ.V reads as t̂here is an execution of ai 
which starts at state w and ends at state t;.' 

As usual, a valuation 9J m 5 is a map from the set of propositional variables 
into the set of all subsets of W. Given a model 9Jl = (5»53), we define 
the truth-relation (9W, w) \== if {or w \=^ V?, if understood) and the compound 
transition relations T^ (or Ta) by parallel induction, for any state u;, formula 
if and action term a: 

w ^ p iff w € 93(p), 

w\=^ip/\il) iS w\=(p and w \= xp^ 

w \= ->(p iS not w \= (fy 

w \==[a]ip \S V \=^ (f for every v eW such that wTaV. 

Tau(3 ^TaUTp (i.e., x{Ta UT0)y iff xT^y or xl^y), 

Ta;0 is the composition (or relative product) T^ o Tp of TQ and T^ (i.e., 
x{Ta o T0)y IS 3zeW xT^zT^y), 

Tot* = (^a)* (i-e., Ta* is the reflexive and transitive closure of TQ), 

TV? == {{x,x) I x |= v:?}. 

Observe that Ta depends on the valuation 53 only if a contains test, otherwise 
it is completely determined by 5-

We say that v? is true in 9Jl if (9Jl, w)]^ if for all it; € W and define the 
logic PDL as the set of all 7^P£-formulas that are true in all models based 
on PD£-structures. Note that the fragment of PDL with only atomic action 
terms is just a syntactic variant of the multimodal logic K ;̂ with infinitely 
many K-boxes. One can define (along the fines of Section 1.5) an algebraic 
semantics for PDL. These modal algebras are studied in the literature under 
the name of dynamic algebras; see (Kozen 1981, Pratt 1991). 

Syntactically, PDL can be characterized as follows (see Berman 1979, 
Gabbay 1977a, Nishimura 1979, Parikh 1978, Pratt 1978, Segerberg 1977). 
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Theorem 2.19. PDL is the smallest set of WC-formulas containing clas-
sical propositional logic CI, the axioms 

[a]{p^q)-.{[a]p^[a]q), (2.11) 

[a;p]p^[a][p]p, (2.12) 

[a[Jp]p^[a]pA[f3]p, (2.13) 

[a*]p^pA[a][a*]p, (2.14) 

K l ( p - [ a b ) - ( p - K b ) , (2.15) 
[Q'f]p^{q^p), (2.16) 

for all action terms a, (3, and closed under modus ponens, substitution^ and 
the necessitation rules 

^given (̂ , derive [a](^/ 

for all action terms a. 

Theorem 2.20. PDL has thefmp and is decidable, with the decision problem 
being EXPTlME-complete. 

The fmp is shown by filtration using the Fischer-Ladner closure in (Fischer 
and Ladner 1977). The decidability of PDL and the exponential lower bound 
is proved in (Fischer and Ladner 1979). The exponential upper bound was 
established in (Pratt 1979). 

A more expressive language, called CPVC [converse WC)^ is obtained by 
extending WC with a constructor for representing backward executions of 
programs. Namely, we add to the alphabet of WC the converse operator ~ 
on action terms, so that a~ is an action term of CWC whenever a is an 
action term, and associate with a~ the transition relation 

• T^- = T - i (i.e., xT^^y iff yT^x). 

(Note that [ot^]^ is the strongest post-condition satisfied after any execution 
of a starting from a state at which ^ holds.) 

The logic CPDL is defined to be the set of all valid CPX>£-formulas. It 
is not hard to see that the following identities always hold: 

Thus we have: 

Proposition 2.21. Every CWC-formula is equivalent in CPDL to a for-
mula in which the converse operator is applied only to atomic actions. 
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The above axiomatization of PDL can be extended to an axiomatization 
of CPDL by adding the axioms (see Parikh 1978): 

P ~ ^ H ( ^ " ) P ^^^ P —̂  [ĉ ""] (< )̂P- (2-17) 

The filtration for PDL goes through for CPDL as well, and as was shown 
in (Pratt 1979, Vardi 1985, Vardi and Wolper 1986), the complexity of the 
extended logic does not increase: 

Theorem 2.22. CPDL has the fmpj and the decision problem for CPDL 
is EXPTIME-comp/e<e. 

Remark 2.23. Observe that the test-free fragment CPDL"*^ of CPDL (i.e., 
those formulas in CPDL that do not contain action terms of the form ip?) 
is in fact a Kripke complete multimodal logic. Indeed, the language of this 
fragment has a modal operator [a] for every test-free action term a. So, 
strictly speaking, a frame interpreting this multimodal language is not a PVC-
structure as introduced above, but any structure of the form 

5 = ( M ^ , r « , . . . ) , (2.18) 

where VT is a (nonempty) set and the TQ are binary relations on W, one for 
each test-free action term a (not only for atomic actions). Then CPDL"" 
is the multimodal logic determined by the class C of all frames of this kind 
such that the relations T^ for nonatomic test-free action terms a are obtained 
as above. In principle, there can be frames fc»r CPDL'''^ that are not in C. 
It can be shown, however, that by omitting (2.16) from the axiomatization 
of CPDL, we obtain an axiomatization for CPDL" . S o , actually, in every 
frame for CPDL"^ of the form (2.18), the relation T^* is the reflexive and 
transitive closure of Ta, Taup = T^UT^, Ta;p = TaoTp, and T«- = T ^ ^ for all 
test-free action terms a, /3 (see Remarks 2.11, 2.16 and observe the similarities 
between the axiomatizations for PDL, PTL^^ and epistemic logics L^ given 
in Remark 2.18). 

Different variants of PDL as well as first-order dynamic logic can be found 
in (Goldblatt 1987, Harel et aL 2000); see also Section 3.6. The reader may 
find useful surveys of other dynamic formalisms in (van Bent hem 1996, van 
Eijck and Visser 1994, Goldblatt 1982, Harel 1984, Kozen and Tiuryn 1990, 
Ponse et aL 1996); see also Section 3.10. 

2.5 Description logic 

Description logic is not a modal logic. It was created at the beginning of 
the 1980s as a formalism for knowledge representation and reasoning in arti-
ficial intelligence. And only ten years later it was observed that description 
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logic and modal logic are more than close: to a large extent they are simply 
notational variants of each other. 

Briefly, the history of description logic is as follows. After the straight-
forward attack on knowledge representation with the help of the heavy artil-
lery of first-order logic failed in the 1960s, a number of ideas were proposed 
the essence of which was to treat knowledge in a more structural, visual, 
object-oriented way (see Quillian 1967, 1968, Minsky 1975 and the collection 
Brachman and Levesque 1985) without using logic. 

Eve Adam 

Figure 2.3: Semantic network. 

Figure 2.3 shows a simple example of representing some information about 
human relationships in the form of a semantic network of QuilUan (1967, 
1968) and Raphael (1968). The application domain in this example—human 
beings—is divided into (not necessarily disjoint) classes (Homo^apiens, Fe-
male, Male, Father, Mother, Child), concrete individuals {Eve, Adam), and 
the relations between them (is, has, parent, loves) are depicted in the form of 
labeled arrows. 

The main deficit of such representations was the lack of semantics, and 
as a consequence, ambiguities. (For how can we be sure that a reasoning 
program our company has bought provides us with a complete set of correct 
answers, if it was not even precisely formulated in the manual what a correct 
answer is?) In the depicted network it is not clear, for instance, whether all 
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members of the class Child are children of Eve or only some of them. 
Description logic appeared as a sort of compromise between the above 

mentioned features of semantic networks and Minsky frames, on the one hand, 
and logic- (and so semantic-) based formalisms, on the other. It originated 
from the KL-ONE system of Brachman and Schmolze (1985), which combined 
in itself many ideas of its predecessors. 

Like modal logic, description logic consists of a wide spectrum of lan-
guages. Since our road in this book comes from modal logic, as the basis of 
our description language we choose the language ACC of Schmidt-SchauB and 
Smolka (1991) which, as we shall see, is closely related to multimodal K. 

The alphabet of ACC consists of 

• concept names Co, C i , . . . ; 

• role names /?o, i? i , . . . (or i?, 5 , . . . ) ; 

• object names ao, a i , . . . (or a, 6 , . . . ) ; 

• the Boolean concept constructors n, -»; 

• the existential quantifier 3; 

• the Boolean formula constructors A, -i; 

• the symbols . (dot), : (colon) and --=. 

Concept names are supposed to denote classes of objects in a certain domain 
A (say. Mother, Male, etc. in the example above), role names are intended 
for denoting binary relations between elements of A (has, loves), and object 
names stand for some concrete elements in A {EvCy Adam). 

Now we define by induction (complex) concepts and formulas of ACC. 
Every concept name is an (atomic) concept. If C and D are concepts, a and 
6 object names, and /? is a role name, then 

• C n D, -̂ C and 3R.C are concepts^ 

• a : C^ aRby C = D are atomic formulas^ and 

• Boolean combination of atomic formulas are formulas. 

The intended meaning of C n Z? is simply the intersection of C and D; -^C 
means the complement (in the domain under consideration) of C; 3R.C de-
notes the class of all objects from which at least one object in C is accessible 
via R. In the usual way we can also define concepts Vfl.C, C U D, C —• D, 
C ^ D,T, 1: e.g., V/?.C is -i3i?.-^C, C U J5 is -̂ (-nC n -iD), T is C U -^C. 
The formulas a : C and aRb mean that object a belongs to concept C, and 
that a and 6 are related by role /?, respectively; C - D says that concepts C 
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and D contain the same elements (a precise definition of semantics of ACC is 
given below). 

Traditionally, in 'standard' description logic the Booleans are not among 
the formula constructors; all formulas are atomic. Instead of equality C = D 
often inclusion (subsumption) C Q D is preferred. (Note that C Q D can 
be expressed as (C fl -•D) = 1 . Conversely, C = D is defined via C as 
{CQD)A{DQ C),) 

An ACC knowledge base is just a finite set of ACC formulas. As usual 
in knowledge representation, we distinguish between knowledge bases con-
taining only terminological knowledge and those containing only assertional 
knowledge. More precisely, we call a knowledge base E a TBox {termino-
logical box) if it contains formulas of the form C = D only; S is an A Box 
{assertion box) if it contains only formulas of the form a : C or aRb. Note 
that without loss of generality we may assume all concept equations to be of 
the form C = T, since C = D is equivalent to (C <-> D) = T. 

Example 2.24. The following ACC knowledge base represents the semantic 
network in Fig. 2.3: 

Female U Male Q Homo_sapiens 

Mother C Female 

Father C Male 

Child C 3has.Mothern3has.Father 

>TBox 

Eve : Mother 

Adam : Father 

Eve loves Adam V ABox 

Eve : Bparent.Child I 

Adam : 3parent.Child J 

Observe that the relation is in Fig. 2.3 is represented in the form of C Q D 
if it connects concepts (like Mother and Female) and a : C if it holds between 
an object name and a concept (like Eve and Mother). 

Formally, the semantics of ACC is defined in the following way. A model 
for ACC is a structure of the form 

/ = (A , i^5 , . . . ,Co^ . . . , a i , . . . ) , (2.19) 

where A is a nonempty set, the domain of/ (elements of which are often called 
objects), and for all i = 0 , 1 , . . . , /Zf are binary relations on A (interpreting 
the role names), C( subsets of A (interpreting the concept names), and af 
are elements of A (interpreting the object names). 
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The value C^ of a concept C in / , and the truth-relation / |= (/?, v? a 
formula, are defined inductively as follows: 

{-^cy = A - c^ 

{3Ri,cy =: {x e A\3y e C^ xRly}; 

I\=a',C iff o^ € C^ 

/ h aRib iff a^R(b^; 

I\=zC^D iff C^ ^D^\ 

I ^ (fi Atp iff / |=<^ and / f= V̂ ; 

/ 1= -K̂  iff not / 1= (̂ . 

A formula v? is said to be true in / if / |= <̂ ; we then also say that / is a 
model for (/?. A formula ip is called satisfiable if there exists a model for ^p. A 
concept C is satisfiable if there is a model / in which C^ 7̂  0. 

Suppose we are given (or have constructed) a set E of ^£C-formulas de-
scribing an application domain. This is our knowledge base. How can it be 
used? There are several typical reasoning tasks we should be able to solve. 
We formulate them in terms of the consequence relation E |= y? defined as 
follows. 

Say that an >4£C-formula (/? is a logical consequence of the knowledge base 
E and write E |= (p if v? is true in every >t£C-model where all formulas in E 
are true. 

For instance, let E be the knowledge base of Example 2.24. Then we 
clearly have 

E t= Mother C Homo-sapiens, E |= Eve : Female. 

The main reasoning tasks for a knowledge base E are: 

• Concept satisfiability: E [̂  C = 1 . (Is there is a model / for E such 
that C^ ^ 0?) 

• Subsumption: E |= C C D. (Does C^ C D^ hold in every model / for 
E?) 

• Consistency: E ^ 1 . (Is there a model for E?) 

• Instance checking: E |= a : C, a an object name. (Does a^ belong to 
C^ in every model / for E?) 
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Since knowledge bases are supposed to be finite, all the listed ree^oning tasks 
are reducible to the 

• Satisfiability problem: given an ^£C-formula (p, determine whether it is 
satisfiable. 

Indeed, we have E |= V̂  iff the formula ^ x A -•V' is not satisfiable. Note also 

that concept satisfiability, subsumption, consistency and instance checking 
are reducible to each other: for example 

E H = C g D iff E h C n - n / 3 = l , (2.20) 

and 
E t ^ C = ± iff E ^ C C l 

(see Table 2.1, where A -^ B means that problem A is reducible to problem 
B). 

The reader must have already observed that the concept fragment of ACC 
is just a notational variant of multimodal K."* Indeed, assuming that ACC 
contains n role names /?o» • •»^ - i ? we can define a translation -̂  from the 
set of A^£n-formulas onto the set of ^£C-concepts by taking: 

PI = Ci, 

(--,(^)t = -.^t^ 

{Oiipy = BRi.ipl 

Every Af£n-model M = (3^,^) with 5 = {W;5o,... ,5n-i) can be trans-
formed to an ^£C-model 

/ ^ = (w^ , i? i^ , . . . ,<^ i ,Co '^ , , . . , a^^ , . . . ) , 

where RI^ = S^ C/^ = 5J(pi) and a[^ e W arbitrary. Then it should be 
clear that for every A<£n-formula ^, every A^£n-model 9Jl, and every world 
tt; in 9Jt, 

(9H,w)\=ip iff we {ip^y^. 

Conversely, every ^£C-model of the form (2.19) gives rise to an A<£n-model 
OTj = (3^/,aJ/), where di = <A,/?^,... ,H^_i) and 5I/(pi) = C/, for all 

^Note, however, that a modal logic is intended to represent schemes of correct reasoning 
that involves modal operators; formally, it is a set of formulas containing some basic axioms 
and closed under certain inference rules (in particular, substitution). Description logic was 
designed to represent knowledge about some application domains rather than universal 
logical truth. In mathematical logic such ^knowledge bases' are known as theories. 
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i = 0,1, Take the inverse t of translation f from ^£C-concepts onto 
^£n-formulas. Then clearly 371 is isomorphic to 2)t/g„, and for every ACC-
concept C, every >t£C-model / and every object w in /, 

weC^ iff {mi,w)\=CK 

As a consequence we have that the problem of ACC concept satisfiability with 
empty knowledge base is equivalent to the satisfiability problem for K„. Thus 
by Theorem 1.17 we obtain: 

Proposition 2.25. The problem of ACC concept satisfiability and the sub-
sumption problem^ both with empty knowledge baseSy are PSPACE-comp/e^e. 

On the other hand, •4£C-formulas can refer explicitly to the names of ob-
jects (worlds) in the models and express some facts about these objects. Thus, 
the formula part of ACC is more expressive than multimodal K. Moreover, 
even pure terminological reasoning is more complex than reasoning in Kn 
because the global consequence relation hj^^ is equivalent to the concept sat-
isfiability problem relative to TBoxes, i.e., to the problem 'E ^ C = J.?,' 
where E is a TBox (see Table 2.1). First, for all A1£n-formulas ^ and i/;, 

ip hĵ ^̂  xl) iff (pt := T 1= V̂t = T 

iff -^xl)^ is not satisfiable in a model for (̂ ^ = T. 

Conversely, given a TBox E and a concept C, we have 

Eb^C = l iff {C^ ^ D H C = D € E} 1/^^^-C^ 

As a consequence of Theorem 1.23 we obtain then the following result, which 
was first proved by Schild (1991) who embedded (an extension of) ACC 
(without assertion formulas) into PDL. 

Theorem 2.26. The ACC concept satisfiability problem relative to TBoxes 
is EXPTlME'Complete, 

It is worth mentioning that standard tableau procedures for TBox-reaso-
ning in ACC—as implemented, for example, by Horrocks (1998)—do not run 
in exponential time, but are double-exponential. Only recently Donini and 
Masacci (2000) have presented a satisfiability checking tableau algorithm for 
TBoxes running in exponential time. 

As follows from Theorem 2.26, the satisfiability problem for ^£C-formulas 
is EXPTIME-hard. Moreover, we have a matching upper bound: 

Theorem 2.27. The satisfiability problem for ACC-formulas is EXPTIME-
complete. 
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subsumption with 

empty knowledge base 

i i 

concept satisfiability with 
empty knowledge base 

r 

— 

— 

subsumption 

relative to TBoxes 

. I 

concept satisfiability 
relative to TBoxes 

> 

K„ 

— satisfiability 

Table 2.1: Reasoning tasks in ACC. 

As this result does not seem to appear explicitly in the existing literature, 
we show here a satisfiability checking algorithm for >t£C-formulas running in 
exponential time. An alternative proof would be a generalization of the proof 
of the exponential upper bound for f-j;̂ ^̂ . 

Suppose if is an ACC-iormula.. Let ob (p be the set of all object names in 0 
and let con (p and sub y? denote the closure under negation of, respectively, the 
set of all concepts in y? and the set of all subformulas in <̂ . By identifying E 
and -•-•E, for every concept or formula E, we have 

\obip\<i{ip), \coTnp\<2i((p), and \subif\<2i((p), 

where i{ip) is the length of ip, i.e., the number of symbol occurrences in ip. 

We call a concept type for y? any subset c of con (p such that 

• C n D € c iff C, D e c, for every Cn Decamp; 

• -iC 6 c iff C ^ c, for every C € con ip. 

A formula type f for (p is a subset of sub (p such that 

• V' A X € / iff V', X ^ /> for every V' A x € subip; 
• -'V̂  € / iff V' ^ / , for every xp € sub^p. 

Clearly, there are at most 2''̂ '*'*'̂ ' concept types and at most 2'*'*'"̂ ' formula 
types for (p. We are going to use these types to construct a model for (p, if 
any. 
Let us call a model candidate for ip a triple (T, o, / ) such that T is a set of 
concept types for y?, o is a function from ob(p to T, f a formula type for </?, 
and (T, o, / ) satisfies the conditions: 
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(a) V5 € / ; 

(b) (a:C) e f implies C G o{a)\ 

(c) aRb e f implies {-̂ C | ~.B/?.C 6 oia)} C o(6). 

A model candidate {T,o,f) for <̂  is said to be a quasimodel for if if the 
following conditions hold: 

(d) for every concept type c £ T and every concept 3R.C € c, there is a 
c' eT such that {-^D \ -^IR.D € c} U {C} C c'; 

(e) for every concept type c e T and every concept C, if -̂ C 6 c then 
( C = T ) ^ / ; 

(f) for every concept C, if -«(C = T) 6 / then there is a c € T such that 

(g) T is not empty. 

We now show that our formula tp is satisfiable iff there is a quasimodel for (/?. 
Suppose first that we have found a quasimodel (T, o, / ) for v?. Define a model 
/ = (A, H^, . . . , C ^ , . . . , a i , . . . ) by taking 

• A = TUo6(^; 

• a^ = a^ for o 6 ob(f; 

• C/ = {c € T I Ci € c} U {a € o6(/? | d € o(o)}; 

• CRW iff {-̂ C I -n3/2.C € c} C c', for c,c' € T; 

• aR^6 iff a/?6 € / , for a, 6 € o6(^; 

• aR'c iff {--C I -.3H.C 6 o(o)} C c, for a e obip and c e T. 

It is readily proved by induction that 

C' = {ceT\C ec}U {a € obif | C € o(a)}, 

for every C € conv?, and that / f= / . Therefore, / (= ĉ . 

Conversely, suppose that / f= 9:? for some model 

/ = ( A , RQ^ . . . , CO , . . . , ao , . . .y . 

Define a triple (T, o, / ) as follows: 

• T = {c(x) I a: € A} , where c(x) = {C e cmnp \ x e C^}; 

• o{a) = c(a^); 

• / = { x € 5 u 6 ( ^ | / h x } . 
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It is easily seen that (T, o, / ) is a quasimodel for ip. 

Our exponential time satisfiability-checking algorithm runs as follows. Given 
a formula (p, we first enumerate all model candidates (T, o, /} for y? in which 
T contains all concept types for y?; denote these candidates by Ci , . . . , CN . It 
should be clear that 

j y ^ 2\con (fiWob ifi\ 2l«*»'»vl <; 2^^^^^^"*"^'^'^^ 

and so this enumeration can be performed in exponential time. Set t = 1 and 
consider d = {T,o, / ) . 

Step 1. Enumerate all pairs (c, D), where c e T and D £ c. Call such a 
pair a (fe/ec< (in T) if either (i) D is of the form 3R.C and there is no c' € T 
such that {-^D \ -^3R.D € c} U {C} C c'; or (ii) D is of the form -iC and 
(C = T) 6 / . If we find such a defect (c, D) in T and c is not in the range 
of o, then we set T :— T - {c} and then proceed further with Step 1. If c 
belongs to the range of o, then we stop considering (£» and go to Step 3. When 
all defects are exhausted, we go to Step 2. 

Step 2. Check whether the resulting triple {T',o, f) satisfies (f) and (g). If it 
does, then we stop with a verdict: {T\oy f) is a quasimodel for tp. Otherwise 
we go to Step 3. 

Step 3. Set i := i -f 1. If i < N then we go to Step 1. Otherwise we stop 
with a verdict: there is no quasimodel for (p. 

Clearly, if the algorithm says that {T\o,f) is a quasimodel for (p, then this 
is indeed the case. On the other hand, if (T\o, f) is a quasimodel for (p then 
there is €{ = (T, o, / ) and no concept type from T' can ever occur in a defect. 
So the algorithm will stop at Step 2 producing a quasimodel for (p. 

Actually, from the application point of view we may be interested not in 
arbitrary models satisfying a given formula, but only in finite ones. For logics 
like ACC there is no difference between these two variants of the satisfiability 
problem: 

Proposition 2.28. ACC has the fmp: every satisfiable ACC-formula can be 
satisfied in a finite model. 

(This fact follows immediately from the proof above: given a satisfiable 
formula (f, our algorithm constructs a model for (p of size 

However, there are much more expressive description languages that do 
not enjoy the fmp; some of them will be discussed later on in this section. 

There are several ways of reducing the complexity of the reasoning tasks. 
Of course, all of them mean reducing the expressive power of the language as 
well. One can restrict the use of some concept constructors. For instance, by 
allowing applications of -» only to atomic concepts we cannot form the union 
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(U) of concepts. The subsumption problem for such a restricted language 
(with empty knowledge base) becomes NP-complete (see Donini et aL 1995 
and references therein). 

Another way is to impose restrictions on formulas that may be used in our 
knowledge bases. Suppose a TBox E consists of statements of the form 

where 4̂ is a concept name. The equation i4 = C7 can be regarded as a 
definition of A. Say that E is a simple TBox if, for every concept name 
i4, there is at most one definition of i4 in E. Thus, to define a concept 
i4 in a simple TBox means to single out necessary and sufficient conditions 
for an object to be in A. In simple TBoxes, one can distinguish between 
defined concepts—those which appear in the left-hand side of an equation— 
and atomic ones, i.e., those that are not defined. Of course, in order to obtain 
explicit definitions of defined concepts one has to require that no defined 
concept name occurs in its own definition. To make this more precise, let us 
define a binary relation -< on the set of concept names occurring in E by taking 
A ^ B it A is defined and the definition of 4̂ in E contains an occurrence of 
B. Now call E acyclic if the relation -< contains no cycles (i.e., no sequences 
of the form Ao ^ Ai •< " - ̂  AQ), otherwise it is cyclic. 

Acyclic simple TBoxes are an important type of knowledge bases for ap-
plications. The reason for this is that for a simple acyclic TBox E, the sub-
sumption problem 

Eh=CCD 

reduces to the subsumption problem with empty knowledge base 

where C and D' are obtained from C and D by replacing recursively every 
defined concept by its definition, so that the resultant C and D' contain only 
atomic concept names. Unfortunately, as was shown by Nebel (1990), this 
'unfolding' technique may result in an exponential blowup of the concept size, 
and so we can't use Proposition 2.25 to obtain a PSPACE algorithm. Nev-
ertheless, such an algorithm exists: Lutz (1999) presents a PSPACE tableau 
procedure for checking satisfiability of ACC-concepts with respect to acyclic 
simple TBoxes. (We remind the reader that by Theorem 2.26, both concept 
satisfiability and subsumption for arbitrary TBoxes are EXPTIME-complete.) 

Suppose now that our knowledge base E is a cyclic simple TBox. Then a 
statement of the form 

A = T{A) 

is contained in E, where T{A) denotes a concept with an occurrence of A, 
According to the interpretation given above, A = T{A) is understood as a 
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constraint stating that an object belongs to A^ iff it belongs to T{Ay. There 
are two other interpretations of such equations in the literature, known as 
the least and the greatest fixed point interpretations: according to them, A^ 
is understood as the least (respectively, greatest) solution of the equation 
A = T{A) if it exists; see (Baader 1990, Nebel 1991). However, this topic is 
beyond the scope of this book. 

The natural desire to improve the computational behavior of description 
logics comes across the need to increase their expressive power. For instance, 
in the knowledge base of Example 2.24 we might want to refine the information 
by stating that 

• Eve and Adam have only two children; 

• every child has only one mother; and 

• all children have Eve and Adam as their ancestors. 

This desire may lead to richer description languages, say, to the one introduced 
by De Giacomo and Lenzerini (1996) and De Giacomo (1995) under the name 
CQ. 

The language of CQ is an extension of that of ACC with a number of role 
and concept constructors. First, by a basic role we mean any role name Ri, 
Now, if R, S are roles, B is a basic role, C, D are concepts and n a natural 
number, then 

• RuS, Ro S^ R* are roles, and 

• C n D, -iC, 3R.C, 3>nB.C are concepts. 

The intended meaning of the introduced constructors will be clear from the 
following definition (which extends the corresponding definition for ACC). Let 
/ be a model of the form (2.19). Then 

• {Rusy = R^US^; 

• {Ro sy = R^ oS' (the composition of R' and 5 ^ ; 

• {R*y = {R^y (the transitive and reflexive closure of i?^); 

• xe {3>nR-Cy iff |{y e C^ I xR^y}\ > n. 

Concepts of the form 3>n/?.C are called in description logic qualified number 
restrictions; in modal logic they appeared under the name of graded modalities 
in (Fine 1972b, van der Hoek 1992). Observe that 

X e {-^3>nR.Cy iff \{yeC' \ xR^y}\ < n. 
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So we denote ~i3>n/?.C by 3<n-ii?.C, and 3>nRC A 3<nR.C by 3=nR'C, 
It is easy to extend the translation -̂  from multimodal K onto ACC-

concepts above to a translation of PDL into CQ-concepts (see Section 14.1). 
On the other hand, De Giacomo (1995) showed that the satisfiability prob-
lem for CQ-concepts relative to CQ TBoxes is polynomially reducible to the 
satisfiability problem for CPDL. This reduction is easily generalized to a 
reduction of CQ formula satisfiability to PDL. By Theorem 2.22, we obtain: 

Proposition 2.29. The satisfiability problem for CQ-formulas is EXPTIME-
complete. 

In CQ^ we can extend the knowledge base of Example 2.24 with the fol-
lowing formulas: 

Eve : 3=2parent.Child 

(Eve has two children). 

Child C 3=ihas.Mother 

(every child has one mother). 

Eve : First-Parent, Adam : First-Parent 

(Eve and Adam are first parents), 

First-Parent E 3(parent o parent*).3drives.Car 

(the first parents have a descendent who drives a car). Note, however, that 
we cannot express in CQ that Eve and Adam are the only first parents. To 
be able to do this we need a constructor allowing us to form concepts {a} 
out of object names a. The concept {o} is interpreted in a model / in a 
straightforward way: 

[aY = W). 
Such concepts are closely related to nominals in modal and hybrid logics; see, 
e.g., (Blackburn 1993). Using this construct we can define 

First-Parent = {Eve} U {Adam}, 

The extension CQO of CQ with the constructor of nominals above was in-
troduced by De Giacomo (1995). Observe that having concepts of the form 
{a}, there is no need to define a : C and aRb as atomic formulas: they are 
equivalent to {a} —> C = T and {a} -^ 3R,{b} = T, respectively. It is shown 
in (De Giacomo 1995) that the satisfiability problem for CQO is EXPTIME-
complete. 

The language CQ and its extensions are not available yet in implemented 
systems. A less expressive but important extension of ACC^ which is part of 
almost all working systems, adds to the syntax of ACC 
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(i) a set of transitive role names To, T i , . . . interpreted by transitive binary 
relations, and 

(ii) the possibility to use role inclusion axioms of the form 

SiQS2 

in TBoxes, where Si and ^2 are transitive or standard role names. Such 
a role inclusion axiom is satisfied in a model / iff 5( C S^. 

Now, instead of defining the role descendent as the transitive closure of the role 
parent in the example above, one can approximate the properties of descendent 
by introducing it from the very beginning as a transitive role name and adding 
the role inclusion axiom 

parent C descendent 

to the TBox. Of course, some information is lost, since now the interpretation 
of descentent does not coincide with but only contains the transitive closure of 
parent, but in implemented systems the computational behavior of transitive 
role names is much better than that of transitive closures. ACC extended with 
transitive roles was introduced under the name ACCii+ in (Sattler 1996), but 
now is usually called 5; see e.g. (Horrocks et al. 2000b). As S is already 
reserved for the temporal operator 'Since,' in what follows we will use the 
original name ^£C/?+. ACCR^ with role inclusion axioms is called ACCHR^. 

Since ACCHR+ can obviously be embedded into CQ, we immediately ob-
tain: 

Proposition 2.30. The satisfiability problem for ACCR^- and ACCHR^-

formulas is EXPTIME-comp/e^e. 

For more information about description logic we refer the reader to the 
Description Logic Handbook (Baader et al. 2003) and the surveys (Donini et 
al 1996, Calvanese et al 2001). 

2.6 Spatial logic 

'Spatial logic' is a collective name for various logical languages and systems 
describing topological and geometric sets and relations. Some of them have 
been motivated by applications in computer science and artificial intelligence, 
such as image processing, visual databases, geographical information systems, 
robotics, etc. Others come from pure mathematics and mathematical phys-
ics (in particular, topology, projective geometry, relativity theory). Of the 
enormous number of spatial formalisms developed in these diverse fields, we 
concentrate in this book only on those that were devised within the knowledge 
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representation and reasoning branch of artificial intelligence. Most of these 
logics are of qualitative rather than quantitative character because quite often 
precise numerical information is either not available or not appropriate for 
(common sense) reasoning about spatial structures in knowledge representa-
tion systems (Cohn 1997).̂  

Even within the field of knowledge representation and reasoning there exist 
different approaches to logical description of spatial structures; see, e.g., the 
collection (Stock 1997) and references therein, and monographs (Casati and 
Varzi 1999, Galton 2000). In this book, we will consider only some of them 
which—explicitly or implicitly—are based on the formalism of modal logic. 

Let us begin by discussing a 'naive' approach to representing space in the 
framework of possible world semantics. 

Compass relations on the plane 
In human everyday practice, most spatial structures are attached to coordin-
ate systems; such are, for example, maps (geographical, celestial, anatomical, 
etc.) or images (fixed or moving). This observation suggests the following 
straightforward use of Kripke frames to represent coordinates. Consider the 
real plane R x R as an infinite map. The compass relations between points 
(x,t/) and {x\y') are defined by taking: 

(x, y) RE {X\ y') iff x <x\ y = y' ((x', y') is to the East of {x, y))\ 

(x, y) Rs {x\ 2/') iff x — x\ y < y' {{x\ y^) is to the North of (x, y)); 
(x, y) Rs (x', 2/') iff x = x', j / > y' ((x', y') is to the South of (x, y))\ 

(x, y) Rw {x\ y') iff x > x', y = y' ((x', y') is to the West of (x, y)). 

The plane with these relations can be regarded as the 4-frame 

(RXR.RE.RW^RN.RS)^ 

and one can consider the corresponding modal logic with four necessity op-
erators: DE, OWI DN and D5. Instead of R we can take any other linearly 
ordered set, for instance Z, thus obtaining a grid-like map. Of course, the 
change of the basic set may affect the resulting logic. But some formulas are 
valid in any plane of this sort, say, 

D E D / V P ^ DTVOEP 

^TYaditionally, spatial structures are investigated by many mathematical disciplines from 
different viewpoints. The closest ones to the modal logic ideology are those studying qual-
itative properties and behavior of space structures. A typical example is the mathematical 
theory of dynamical systems (with its more recent parts, such as catastrophe theory and 
chaos theory). The basic concept here is a 'phase space' consisting of 'states,' the coordin-
ates of which are parameters of a certain system. This allows one to represent various 
structures (mechanical, biological, economical) as spatial. 
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and the other commutativity axioms. Instead of the whole plane one can 
restrict attention only to a certain subset, say, the North-Western half-plane 

{{x,y) \x<y}. 

The formula 

is valid in this half-plane, while its converse 

DEOSP-* ONDEP 

is not. Note that the logic of this half-plane can also be regarded as a variant 
of interval temporal logic—it will be considered in Section 3.9. 

There are at least two big flaws in this simple approach to spatial rep-
resentation and reasoning. First, the resulting 'spatial logics' often turn out 
to be undecidable and even not recursively axiomatizable; see Chapter 7. 
And second, the language of the compass logic speaks only about points, but 
not about spatial regions, that is the space occupied by physical bodies, say, 
countries, which are much more important for applications. 

Region connection calculus 

1ZCC—Region Connection Calculus—is a first-order theory devised by Ran-
dell, Cui and Cohn (1992) for qualitative spatial representation and reasoning. 
The signature of TZCC contains only one binary predicate symbol C. Atomic 
formulas of the form C(X, Y) are read as 'region X is connected with region 
y.' (We denote individual variables of TZCC by X, K, Z, etc.) Using C one can 
define other relations between spatial regions. Here are some of them: 

DC(X, Y) — 'X and Y are disconnected,' 
P(X,r) — 'X is a part of r,' 
EQ{X,Y) — 'X is identical with r,' 
0 (X,r) — 'X overlaps r,' 
PO(X, Y) — 'X partially overlaps Y; 
EC(X, Y) — 'X is externally connected to F,' 
PP(X,r) — 'X is a proper part of r,' 
TPP(X, Y) — 'X is a tangential proper part of K,' 
TPPi(X, Y) — 'y is a tangential proper part of X,' 
NTPP(X, Y) — 'X is a nontangential proper part of y,' 
NTPPi(X, Y) — 'y is a nontangential proper part of X.' 
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DC(x,y) 
PiX,Y) 
EQiX,Y) 
0(X,Y) 
PO(X, Y) 
EC(x,y) 
PP{X,Y) 
TPP(X,Y) 
NTPP(A",K) = 

-c(x,y) 
WZ{C{Z,X)-*C{Z,Y)) 
P{X,Y)AP{Y,X) 
BZ(P{Z,X)/\P(Z,Y)) 
0{X, Y) A -^P{X, Y) A -P(r, X) 
C{X,Y)A-^0{X,Y) 
P{X,Y)A-^P(Y,X) 
PP(X, r ) A 3Z (EC(Z, X) A EC(Z, K)) 
PP(X, y) A -.3Z (EC(Z, X) A EC(Z, Y)) 

Figure 2.4: Some relations between spatial regions, defined in terms of C. 

Their definitions via C are given in Fig. 2.4. The axioms of TZCC can be found 
in (Randell et al. 1992). We will not use them in this book. 

From the computational point of view TZCC turns out to be too expressive: 
as was observed by Gotts (1996b) (and actually follows from Grzegorczyk 
1951), the full first-order theory of UCC is undecidable. Fortunately, there 
are various decidable (and even tractable) fragments of HCC. One of the 
most important is known as HCC-S. It was constructed (independently and 
almost simultaneously) by two parallel research streams of spatial knowledge 
representation and reasoning: in the framework of geographical information 
systems (Egenhofer and Franzosa 1991, Egenhofer and Mark 1995, Bennett et 
al. 1997, Haarslev et ai 1999) and as an effective fragment of 71CC (Randell 
et al. 1992). 

7ecc-8 

If we are interested only in relationships between spatial regions without tak-
ing into account their topological shape, then the eight predicates in Fig. 2.5 
are enough: they turn out to be jointly exhaustive and pairwise disjoint, 
which means that any two (non-empty) regions stand precisely in one of these 
eight relations. Moreover, according to the experiments reported in (Renz 
and Nebel 1998), the eight predicates turn out to be conceptually cognitive 
adequate in the sense that people indeed distinguish between these relations. 

Formally, the language of TiCC-S consists of a countably infinite set of 
individual variables Xo, Xi , . . . (or A*, K, Z,. . .) , called region variables, eight 
binary predicate symbols DC, EQ, PO, EC, TPP, TPPi, NTPP, NTPPi and 
the Booleans out of which we construct in the usual way spatial formulas. 
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DC{X,Y) EC(X,Y) TPP{X,Y) TPPi(A',y) 

Q 
PO(X,y) EQ{X,Y) NTPP{X,Y) NTPPi(X,y) 

Figure 2.5: The TZCCS predicates. 

For example, using the language of HCC-S we can compose spatial knowledge 
bases like 

EC(Cato/unt/a, Prance), 
JPP{Catalunya, Spain) V NTPP(Caia/tinj/a, Spain), 
DC(5pam, France) V EC(Spain, France), 
NTPP(Pam, France). 

Then the formulas 

EC{Spain, France), TPP(Catalunya, Spain), DC{Spain, Paris) 

should be consequences of this knowledge base. 
Note that the other relations in Fig. 2.4 can be expressed as Boolean 

combinations of the 72CC-8 predicates as follows: 

P(X, Y) = TPP(X, y ) V EQ(X, Y) V NTPP(X, Y), 

P{Y, X) = TPPi(X, Y) V EQ(X, Y) V NTPPi(X, Y), 

0{X, Y) = PO(X, Y) V P{X, Y) V P(y, X). 

Spatial formulas can be interpreted in topological spaces. We remind the 
reader that a topological space is a pair T = {U, I) in which C/ is a nonempty 
set, the universe of the space, and I is the interior operator on U satisfying 
the following Kuratowski axioms: for dX\ X,Y CU, 

i(xny) = ixniy, ixciix, ixcx, iu = u. 
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X CU^ -̂  (y o ex (y o 
Figure 2.6: Regular closure. 

The operator dual to I is called the closure operator and denoted by C. Thus 
CX = U ~ I(f/ - X), for all X C f/. A set JSf C t/ is called open if IX = X, 
and closed if CX = X. We will also consider some special topological spaces, 
such as the connected spaces (which are not unions of two disjoint nonempty 
open sets), and the Euclidean spaces (R",I) forn > 1 (where a point x G R^ 
belongs to IX if, for some e > 0, all points in the e-neighborhood^ of x belong 
toX). 

Region variables range over regular closed sets of the topological space X, 
i.e., an assignment in T is a map a associating with every variable X a set 
a(X) C U such that a(X) = Cla(X). (For instance, 0 and U are regular closed 
sets. Examples of sets that are not regular closed in, say, the two-dimensional 
Euclidean space are balloons—circles with attached threads (ID Hues)—or 
sets with isolated points, etc., which can hardly be regarded as regions; see 
Fig. 2.6 where the region CIX consists of two disconnected parts, with one of 
them containing a *hole.*) Often it is also assumed that regions are nonempty, 
i.e., a(X) ^ 0. However, this constraint can be expressed in HCC-S explicitly: 
for instance, -•DC(X,X), according to the interpretation below, guarantees 
that region X is not empty. 

The truth-relation 11=" (/? for atomic formulas of TZCC-S is defined in the 
following way:''' 

T|=°DC(Xi,X2) iff -^3a:a:Go(Xi)na(X2), 
Th°EQ(Xi,X2) iff Va:(a:€a(Xi)^a:€a(X2)), 
X|=°P0(Xi,X2) iff 3a;a:€la(Xi)nIa(X2) 

A3xa:€a(Xi)n(C/~o(X2)) 
A3a:x€(t/-a(Xi))na(X2), 

Th"EC(Xi,X2) iff 3xxea{Xi)na{X2) 
A-i3a:a:€ a(Xi)nIo(X2) 
A-.3a;a;€ la(Xi) na(X2), 

^The e-neighborhood of a; = (a;i,... ^Xn) in R** consists of all points y = (j/i,... ,2/n) 
such that EILi l«i - Vil^ < ê . 

"̂ Note that since we allow regions to be empty, the TICC-S predicates are no longer 
pairwise disjoint. For instance, both DC(0, X) and NTPP(0, X) hold in every topological 
space whenever X 7̂  0, as well as DC(0,0) and EQ(0,0). 
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' r K T P P ( X i , X 2 ) iff ^xxe{U-a(Xi))Ua{X2) 

A 3a: a: € a(Xi) n 0(^2) n{U-- Ia(X2)) 

A3xx€{U^a{Xi))na{X2), 
*rKNTPP(Xi,X2) iff Vxx6(t / -o(Xi))Ula(X2) 

/\3xxeiU-a{Xi))na(X2). 

Note that although the full 1ZCC formalism was originally presented as a 
naifve theory without any specific models, Gotts (1996a) and Bennett (1998) 
showed that it can also be interpreted in classical point-set topology. The 
truth-definition for C(X, Y) is formalissed then as follows: 

r̂ H** CiX, Y) iff 3x € a{X) 0 a(Y). 

As was proved by Gotts (1996a), the syntactical definitions of Fig. 2.4 are 
correct in Euclidean spaces, and these spaces are models of the TICC axioms 
as well. 

It is not hard to see that the above truth-definition and the Kuratowski axioms 
together yield the following equivalences (which one might consider as more 
natural truth-definitions): 

% |=« PO(Xi, X2) iff 3xxe la(Xi) n U{X2) 

A3xxeU{Xi)n{U-a{X2)) 
A 3a: x € (1/ - a(Xi)) nIa(X2), 

T h" EC(Xi,X2) iff 3xxe a{Xi)na{X2) 

A -i3x X € la(Xi) n Ia(X2), 

T |=« TPP(A'i, X2) iff Vx X € (t/ - a{Xi)) U 0(^2), 

A 3x X € a(Xi) n (£/ - 10(^2)) 

A3xxe{U-a{Xi))na{X2). 

Indeed, it is readily checked that for any sets i4, B, 

>lnB = 0 implies C^nIB = 0. (2.21) 

Now, in order to prove that the two definitions of PO are equivalent, it is 
enough to show that for all regular closed sets V and W, 

W'-W^ib iff V - V r ^ 0 . 

One direction is obvious. For the other, suppose that V — W ^ ^, Since 
V "W ^ ClVnl{U - W), by (2.21) we have IV -W ^% 

In the case of EC, we have to show that for all regular closed sets V and W, 

wniw^^ iff* vnii^=:0 and ivni¥ = 0. 
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The implication («=) is obvious. For the converse, suppose that IVOIW = 0. 
Then by (2.21) we have 

0 = CIV n inv^ = K n iw, 

Finally, in the case of TPP we have: 

a(Xi) n a(X2) n (f/«Io(X2)) = o(Xi) n (t/ - Io(X2)), 

because 0(^1) C a(X2). 

The main reasoning task for HCC-S is the following entailment problem: given 
a finite set E of spatial formulas and a formula v?, decide whether (̂  is a logical 
consequence ofE (or E entails if), i.e., for every topological space % and every 
assignment a in it, we have 11=** (̂  whenever T |=** V' for all V' € E. If (̂  is 
a logical consequence of E, then we write E f= v?. It should be clear that the 
entailment problem is reducible to the satisfiability problem: given a spatial 
formula (/?, decide whether y? is satisfiable (or realizable) in a topological space, 
i.e., whether there exists a topological space T and an assignment a In it such 
that T ^* (fi. Indeed, we have Il\= (fiiS the formula /\ E A-̂ v? Is not satisfiable 
In any topological space. Sometimes satisfiability in more restricted classes 
of topological spaces is considered, say, only in connected spaces or in the 
Euclidean spaces (R",I), for n > 1. 

That the satisfiability (and so entailment) problem for HCC-S formulas in 
topological spaces is decldable was observed by Bennett (1994, 1996). Renz 
and Nebel (1999) showed the NP-completeness of the satisfiability problem 
and described maximal tractable fragments of TICCS^ I.e., those that belong 
to P. 

Bennett (1994, 1996) embedded TICC-S Into the blmodal logic S4„, i.e., 
Lewis's S4 with the universal modality, using the fact that S4u is complete 
with respect to topological spaces. But before considering this connection In 
more detail, let us extend TZCC-S with Boolean operations on regions. 

BTlCC-8 

One apparent ^deficit' of TZCC-S is that It operates only with atomic regions. 
We cannot form unions (U) or Intersections (n) of regions to say, for Instance, 
that 

EQ{EU, Spain U Italy U. . . ) 

(*the EU consists of Spain, Italy, etc.'), 

P{Alps, Italy U France U. . . ) 
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(*the Alps are located in Italy, France, etc.'), 

EC{Austria, Alps n Italy) 

('Austria is externally connected to the alpine part of Italy'), and deduce from 
these that there is a country Z such that JPP{Z, EU) (i.e., *Z is a tangential 
proper part of the EU'), or that if EC(X, Et / ) , for some country X, then 
EC{X,Y) for some country Y in the EU. Note, by the way, that TPP(Z, EU) 
is a correct conclusion only if we interpret our formulas in Euclidean (or, more 
generally, connected topological spaces (and if there are non-EU countries): 
in a discrete topological space (where all sets are open) the EU may be an 
open set with empty boundary. This simple observation and the result of 
(Renz 1998), according to which every satisfiable TZCC-S formula is satisfiable 
in all Euclidean spaces (R^,I), n > 1, show that the Boolean operations on 
region terms indeed increase the expressive power of TtCC-S. 

Denote by BTZCC-S the extension ofTZCCS which allows the use of Boolean 
region terms, i.e., combinations of region variables using the Boolean operators 
U, (1 and -1, as arguments of the TICC-S predicates. The value a{t) of a Boolean 
region term H n a topological space % = (C/, I) under assignment a is defined 
inductively as follows: 

a(t U t') = Cl{a{t) U ait')) = a{t) U a(t'), 

a{tnt')= Cl{a{t)na{t')), 

a(- i t )= CliU-ait)), 

As the Boolean operators do not in general preserve the property of being 
regular closed, we need the prefix CI in the right-hand parts of these defini-
tions. Thus, every region term is interpreted as a regular closed set of T. Note 
that a{X n -^X) = 0 and a{X U -*X) = U for any a and T. We denote the 
region terms X fl -«X and X U -^X by 1 and T, respectively. The constraint 
-'EQ(X, JL) asserts that X is a nonempty region. 

S4^ as a spatial formalism 

In the late 1930s and early 1940s several logicians (Stone 1937, Tarski 1938, 
Tsao Chen 1938, McKinsey 1941) noticed that S4 can be interpreted in to-
pological spaces. Actually, there is a striking similarity between the axioms 
of S4 and Kuratowski's axioms for the interior operator. (Axiom (K) and 
rule (RN) of S4 can be replaced with D(pi Ap2) ^ (Dpi A Dp2) and DT, 
corresponding to the first and the last topological axioms above.) Using this 
observation, it is readily seen that every topological space % = (£/, I) gives 
rise to the modal algebra 

T-^ = ( 2 ^ , n , - , I , 0 , l / ) 
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which is an algebra for S4 (see Section 1.5). Moreover, one can show that S4 
is complete with respect to algebras of this sort. This follows, in particular, 
from the fact that given a Kripke frame 5 = (Ŵ^ R) for S4, we can construct 
the topological space T j == (W^,I^}, where for any X C W, 

l^X = {xeX\yy£W (xRy ^y€ X)} . 

Moreover, 5 and T j validate the same modal formulas, i.e., Log5 = LogTj. 
Therefore, 

S4 = {(̂  e MC I T (= (/? for every (finite) topological space 1 } , 

where the relation T |= (̂  is defined as follows. Given a topological space 
1 = (t/,I), a valuation 9J in T maps each propositional variable to a subset 
of U. The pair (T,5J) is then called a topological model {based on T). The 
valuation 93 can be extended to all X£-formulas by interpreting D as I, O 
as C, A as n, and -̂  as - . Now we say that tp is satisfiable in T if 9J((^) ^ 0, 
for some topological model (X,93); y? is valid in T (T |= (/? in symbols) if 
53((p) =r U for all topological models based on T. Thus, S4 can be regarded 
as the logic of topological spaces. 

We can increase the expressive power oi MC by enriching it with the 
universal box 0 and diamond 4> (see Section 1.6), the topological meaning 
of which is *for all points in the space' and 'for some point in the space,* 
respectively. More precisely, for every formula (f in the language of MC^ and 
for every topological model (X,9J) based on T = (C/,I), we have: 

if93(v^)7^0, 
otherwise. ^(M^isj'i's,;"' ^<*^^-{"i, 

In view of the connection between S4-frames and topological spaces mentioned 
above and Theorem 1.26, we have: 

S4u = {v̂  6 MC^ I T 1= (̂  for every (finite) topological space T}. 

S4u is expressive enough to encode the topological meaning of the IZCC-S pre-
dicates and that of Boolean region terms.^ Indeed, let us denote the box and 
the diamond of S4 by, respectively, I and C (to emphasize their topological 
interpretation as the interior and closure operators). For a Boolean region 
term f, define inductively a modal formula t^ by taking: 

X^ = CIpt, {Xi is a region variable, pi a propositional variable), 

{tint2r==CI{t'^At^), 

(^iuf2)''-ci(trvf^), 
®Recently, the expressive power of the language of S4u has been characterized in terms 

of bisimulations by Aiello and van Benthem (2000). The associated topo-games have been 
used in (Aiello 2001) to measure the difference between spatial regions. 
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Then, with every atomic BTICC-S formula P{s, t) we associate a modal formula 
( P ( 5 , 0 r defined by: 

(DC(s,t))^ = -<»(5^At^), 

(EQ(s,t)r = 0 ( 5 ^ ^ 0 , 

(P0(5, t ) r = <»(Is'̂  Alt^) A <»(5'̂  A -.t^) A •(-^5'^ A t*^), 

(EC(s, t))'^ = <S>(ŝ  A t^) A -<S>(l5^ A It^), 

(TPP(5, t ) r = l3(-s' ' V e") A <»(s'' A -I t^) A <S>(-5'̂  A t""), 

(NTPP(s,or = Sl(-s'' V If") A <»(-5'' A t"^). 

Finally, given a BTZCC-S formula y?, denote by (p^ the result of replacing all 
occurrences of atomic formulas P{s,t) in tp by {P{Sjt))^. Note that in view 
of CICIp ^ CIp € S4, the translations of all region variables and terms in 
(f^ are interpreted in topological spaces as regular closed sets. 

Since the definition of the translation -^ mimics the truth-definition of 
the TZCCS predicates, and since S4u has the fmp (see Theorem 1.26), we 
immediately obtain: 

Theorem 2.31. For every BTZCC-S formula if, the following conditions are 
equivalent: 

(i) if is satisfiable in a topological space, 
(ii) ip^ is satisfiable in a topological space, 
(iii) ip^ is satisfiable in a finite Kripke frame for S4u, 
(iv) ip^ is satisfiable in a finite topological space, 
(v) (/? is satisfiable in a finite topological space. 

As a corollary we have: 

Theorem 2.32. The satisfiability problem for BUCC-S formulas is decidable. 

Actually, SAu makes it possible to express much more complex relations 
among regions than those available in BTICC-S. For example, we can define a 
ternary relation 

EC3(x, y, z) = M I X A IF) A i3-(iy A iz) A 0-1(12̂  AIX) A <i>(x A y A z) 
and write £C3{Russia, Poland, Lithuania) to say that Russia, Poland and 
Lithuania have a common border, but no common interior point. Unlike 
TZCC-S and BTZCC-S, where regions are usually assumed to be regular closed, 
S4„ gives more flexibility. In the extreme, we can express such 'pathological' 
properties of sets as 'X is dense in Y, but has no interior:' 

0- ix A 0(cx ^ y). 
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Embedding BTZCC-S into S5 

The modal translation ip^ of a BTZCC-S formula ip has a rather special form. 
Renz (1998) used this form to show that satisfiable 1ZCC-8 formulas can be 
satisfied in very simple topological spaces, namely in those determined by 
S4u-frames that we call quasisaws. (Renz used this result to show that all 
satisfiable TICC-S formulas can be satisfied in (R^,I) for any n > 1. Note, 
however, that S4u is not complete with respect to {(R'*,!) | n > 1}; for a 
counterexample see Proposition 16.20.) 

A quasisaw is a 2-frame ff = (W^R^Ru) such that Ry is the universal 
relation on W and (W^R) is a partial order of depth < 1 and width < 2 
(that is, no i?-chain has more than two distinct points, and no point has more 
than two distinct proper successors). An example of a quasisaw is shown in 
Fig. 2.7. A fork is a frame f = {W^.R^) such that W^ = {frf,/f,n} and R^ 

on 

bi 

fork f 

Figure 2.7: Quasisaw. 

is the reflexive closure of {(6f,/f), (6j,rj)}. Thus, 6j is the root of f with two 
immediate successors l^ and r̂ . It should be clear that if an S4u-formula is 
satisfied in a quasisaw then it is satisfied in a disjoint union of forks (equipped 
with the universal relation) as well. 

The following generalization of Renz's result was proved in (Wolter and 
Zakharyaschev 2000a); see Theorem 16.4 for a further generalization: 

Theorem 2.33. A BTICC-S formula (p is satisfiable in a topological space iff 
ifi^ is satisfiable in a quasisaw containing < i{^^) forks. 

Thus, the satisfiability problem for BUCC-S formulas (p in topological 
spaces reduces to the satisfiability problem for their translations ip^ in quas-
isaws which are disjoint unions of forks. We can make one step further by 
observing that the latter problem can be reduced to the satisfiability of pro-
positional unimodal formulas in S5-models. The idea behind this reduction 
is to represent every subformula ip of (p^ by means of three S5-formulas 'tp^y 
t/̂ ', ^^ which encode the *behavior' of tp at the three points of a fork. 

Given such a formula (̂ ,̂ we define inductively three translations •'*, •' 
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and -̂  by taking 

{PY = P*» P and p* prepositional variables, i G {6,/ ,r}, 

(i/;Axr = V'*Ax*, f o r i € { 6 , i , r } , 

(V;Vxr = V'*VxS f o r i € { 6 , / , r } , 

(^^)i^_,^i^ for iE{6 , i , r } , 

(IV^y^V'S fori€{/,r}, 

(<|> )̂» = 0(V'^VV''Vt/;^), foriG {6,r,i}, 

(HV')* = aCV'̂  A V̂ ' A V'̂ ), for i € {6, r, i}. 

Finally, we define the S5'translation ip^ of a BVJ2C-S formula ip as (</7̂ )''. It 
should be clear that the length of (p^ is polynomial in the length of (f. 

Theorem 2.34. For every BTZCC-S formula (/?, (p^ is satisfiahle in a quasisaw 
iff(p^ is SSsatisfiable. 

Proof. (=>) Suppose that ip^ is satisfiable in an S4t^-model 9Jl = (6,53} 
based on a frame © = (K,/?,/?(/), where jR̂ ' is the universal relation on V 
and (y, R) is a disjoint union of forks. Without loss of generality we can 
clearly assume that (p^ is satisfied at the bottom point fej of some fork f. 

Construct an S5-model ^ = {5,^) by taking 3̂  = (C/, 5), where U consists 
of all forks in 6 , 5 = f/ x [/, and for every prepositional variable p in <̂ ,̂ 

ii(p'') = { f € C / | ( a n , 6 , ) h p } , 

H(p') = { f e f / | ( O T , / , ) | = p } , 

ii(pO = {fec/|(9n,r,)Np}-

Now, by induction on the construction of a subformula t/' of (p^ we show that, 
for every fork f in (5 and every i G {6, /, r}, 

{%^)\=r iff (an,iONV .̂ (2.22) 

The basis of induction follows from the definition of 9t, and the case of the 
Boolean connectives is trivial. 

Suppose tj) = IX' If I G {/, r} then (2.22) holds by the induction hypothesis, 
since (9Jl, if) |= Ix ^̂  X ^^^ {^xT — X*- And if t = 6 then, on the one hand, 

(9Jl, 6,) h Ix iff (an, bf) h X, m, h) h X, (9", rf) h X, 
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and on the other, by the definition of the translation, 

{%f) h (ix)' iff {%f) N x\ {%f) h x', {%f) N x^ 
which yields (2.22) by the induction hypothesis. 

Suppose now that \p — ^x- Then 

{% f) h= V'* iff Bf € f/ 3j G {6, i,r} (91, f) h x̂  

iff 3f '€f /3jG{6, / ,r}(an,jV)Nx 

iff (OT,ij)|=<S>X-

The remaining cases are considered analogously. 
It follows that if^ is satisfied in 9t. 
(<=) Assume that (̂ ® is satisfied in an S5-model 7t = (ff,il), ff = {U,S). 

With every point x € [/ we associate a fork jx = {^DRX) SO that the sets 
VKp, for X e U^ are pairwise disjoint. Construct an S4,̂ -model 5)T = (©,5J) 
by taking 0 = (V,/2,i?t;), 

• uRv iff w = t; or Bar 6 t/ (u = 6f̂  A (v == /f̂  V t; = rj^)), 

• ^{P) = {ih eV\{%x)\=^p\ t = 6,i,r}. 

Then © is clearly a quasisaw. By a straightforward induction one can show 
that for every a: € C/, every subformula tp of (f^y and every i = 6, i, r, we have 

(9l,x)|=V' iff Wt,J|=T/.. 

For example, 

(Ot, x) N (Ix)* iff i% X) f= X', for i e {6, /, r} 
iff (On.ijJhx, forie{fe,/,r} 
iff {m,b,j\=ix. 

It follows that ip^ is satisfied in QJl. • 

As S5 is NP-complete and TZCCS can encode propositional classical logic 
(using the predicate EQ), we immediately obtain that the computational be-
havior of BUCC'S in arbitrary topological spaces is precisely the same as that 
oinCC-8: 

Theorem 2.35. The satisfiability problem for BTICC-S formulas in topological 
spaces is NP-complete. 

However, if only Euclidean (or even connected) topological spaces are re-
garded as possible interpretations, the satisfiability problem for BTZCC-8 for-
mulas becomes PSPACE-complete (for details consult Wolter and Zakharya-
schev 2000a). 
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2.7 Intuitionistic logic 

Intuitionistic logic is yet another type of logic which can be embedded in S4; 
actually, as we have already said, to provide such an embedding was the main 
reason for constructing S4 by Godel (1933) and Orlov (1928). 

Intuitionistic logic, and more generally intuitionism as the trend in the 
foundations of mathematics initiated by Brouwer (1907,1908), aimed to single 
out and describe the principles of 'constructive' mathematical reasoning, con-
structive in the sense that it provides (at least) an algorithm constructing an 
object the existence of which is proved. Classical logic CI, as well as all other 
logics having CI as their fragment, are not constructive: using the law of the 
excluded middle (AlO) we can establish the existence of objects by reductio 
ad absurdum without even giving a hint of how to find them (mathematical 
textbooks abound with proofs of this sort^). 

Intuitionistic prepositional logic Int was first constructed syntactically by 
Kolmogorov (1925), Glivenko (1929) and Heyting (1930). It has the same 
language C as CI, and an £-formula if belongs to Int iff <̂  can be derived 
from the axioms (A1)-(A9) using MP and Subst. In other words, Int is 
obtained from CI by discarding axiom (AlO). (It should be noted, however, 
that unlike CI, the connectives A, V, —> and 1 are independent: they cannot 
be expressed via each other.) 

The intended meaning of the intuitionistic connectives was explained first 
in terms of the proof interpretation due to Brouwer, Kolmogorov and Heyting: 

• a proof of a proposition (/? A V' consists of a proof of ip and a proof of V'; 

• a proof of (fW ip is given by presenting either a proof of </? or a proof of 

• a proof of <̂  —> V' is a construction which, given a proof of ip, returns a 
proof of V̂ ; 

• 1 has no proof and a proof of -^ip is a construction which, given a proof 
of (̂ , would return a proof of 1 . 

According to this interpretation, Int contains only those formulas that have 
proofs. The existence of open mathematical problems (e.g., T = NP?') shows 
that the formula pV -^p has no proof, and so cannot be accepted as an intu-
itionistically valid principle. 

^Here is a well-known example: to prove that there exists an irrational number x such 

that x^ is rational, we observe first that, by (AlO), >/2 is either rational or irrational; 

if it is rational then we take x = ^2, otherwise x — y/2 
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Various more formal semantics have been constructed for Int (see, e.g., 
Kieene 1945, Godei 1958, Kreisei 1962, Medvedev 1962, Skvortsov 1979, Arte-
mov 2001). Here we briefly consider three of them: the topological, the al-
gebraic and the relational (or possible world) semantics. 

Stone (1937) and Tarski (1938) discovered that Int can be interpreted in 
topological spaces T - (t/, I) by associating with each variable p an open set 
V{p) Q U, the value of p in T under the valuation 9J. The values of arbitrary 
^-formulas in T are defined inductively as follows: 

5J(1) - 0, 

93((̂  A V̂) = 9J((/?) n QJ(V̂ ), 

33(v?vV )̂ = 93((^)uaJ(V^), 

9J(^ -^ V') = I((t/ - 5J(v?)) U 2J(V )̂). 

If 53((̂ ) = U for every valuation 93 in 1, then we say that (/? is valid in T and 
write 1 f= v̂ . It turns out that (p e Int iff (p is valid in all topological spaces 
iff V? is valid in R^, for any n > 1; see, e.g., (Rasiowa and Sikorski 1963). 

A more general algebraic semantics was constructed by McKinsey and 
Tarski (1944, 1946). A Heyting (or pseudo-Boolean) algebra is a structure of 
the form 

2 l - (> l ,A^ ,V^ , -^ ,0^ , l ^ ) 

such that A^, V'̂  and —•̂  are binary operations on A, O''^. 1^ G ̂ 4, A^ and 
v'^ are commutative, associative and have the absorption property (like in 
Boolean algebras, see Section 1.5) and for all a^b^c € i4, 

• c A^ a <^ 6 iff c <^ a -•^ 6 (a -•^ 6 is the greatest element in the set 
{ c € > l | c A ^ a < ^ 6 } ) ; 

• 0^ <^ a <^ 1^ (0^ and 1^ are the least and greatest elements in 21, 
respectively), 

where the binary relation <^ on A is defined by taking 

a<^ b iff a A^ 6 = a. 

Note that one can also define Heyting algebras as the algebras of open elements 
of modal algebras for S4 (see Sections 1.5 and 2.6). 

Int is sound and complete with respect to the class of all Heyting algebras; 
moreover, every extension of Int (closed under MP and Subst)—these exten-
sions are known as intermediate or superintuitionistic logics—is characterized 
by the class of Heyting algebras validating its formulas; see, e.g., (Chagrov 
and Zakharyaschev 1997). 
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The possible world semantics for Int defined by Beth (1956) and Kripke 
(1965b) (see also Grzegorczyk 1964) reflects the epistemic character of intu-
itionistic logic, namely that it takes into account the development of know-
ledge. 

Let us imagine that our knowledge is developing discretely, nondetermin-
istically passing from one state to another. Being at some state of knowledge 
(or information) x, we can say which facts are known at x and which are not 
established yet. Besides, we know what states of information are possible in 
the future (i.e., do not contradict the knowledge at x). This does not mean, 
however, that we shall reach all these possible states (for instance, we can 
imagine now not only a course of events under which the equality P = NP 
will be proved, but also situations when it will remain unproved or will be 
refuted). It is also reasonable to assume that when passing to a new state, 
all the facts known at x are preserved, and some new facts can possibly be 
established. The propositions established at x are regarded as true at x; they 
will remain true at all further possible states. But a proposition which is not 
true at x cannot be said to be false, because it may become true at one of the 
subsequent states. 

Possible states of information are represented as Kripke frames 5 = {W, R) 
in which /? is a partial order on W, i.e., R is reflexive, transitive and anti-
symmetric (Vx, y {xRy A yRx —• x = y)). A valuation 9J in 5 indicates which 
atomic propositions hold true in each state x e W. Thus ^ is a map from 
the set of propositional variables into the set Up^ of upward closed subsets 
oiW {X e Upd iff Vx € XVy e F/ {xRy -> y € X)). The pair M = {5, ̂ ) is 
called an intuitionistic {Kiipke) model of the language £. The truth-relation 
(9TI, x) \= (f (or simply x \= ip) \s defined inductively as follows: 

( im,x) |=p iff x G » ( p ) ; 

(OT,x)t^i.; 
(OT,x) t= V A X iff (9Jt,x) 1= tp and (an,x) f= x; 

(9n,x) |=V'Vx iff (9n,x) 1= V ôr (9n,x) f=x; 

{M, x)\=ip -^x iff for all y € Ŵ  such that xfiy, 

{m,y) f= rp implies {m,y) \= x-

It follows from this definition that 

(an, x) \= -1^ iff for aWyeW such that xRy, (971, y) ^ tp. 

(Observe that an intuitionistic model based on the single-point frame is noth-
ing else but a standard model for CI.) For example, Fig. 2.8 shows an intu-
itionistic model refuting axiom (AlO). 

Int is sound and complete with respect to the class of all intuitionistic 
frames. Moreover, it has the exponential fmp, and the decidability problem 
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h ^, s 6hpV(p^l) 
''oe5J(p) b^l 

Figure 2.8: An intuitionistic model refuting pV {p -* 1). 

a^p 
a^p-^ 1 
a [ ^ p V ( p - ^ l ) 

for Int is PSPACE-compiete. (It should be noted that the problem of whether 
a given intuitionistic formula is satisfiable is NP-complete: it is enough to 
check satisfiability in single-point—i.e., classical—models.) 

The constructive character of Int is reflected by the fact that it has the 
so-called disjunction property: for all £-formulas (f and xl), 

(̂  V ̂  € Int iff ip e Int or ^ € Int. 

Note, however, that this property is not characteristic for Int: there are 
proper extensions of Int having the disjunction property.. 

We conclude this section with the definition of the Godel translation T 
which embeds Int into S4: 

• T(p) = Dp, p a propositional variable; 

• T(±) = D l ; 

• T((/?AV^)=T(v?)AT(V^); 

• T(cpVV')=T(y?)VT(V^); 

• T((^ - . V̂) = D(T((/?) ^ T(V )̂). 

If we understand the S4-box as 4t is provable' then the intuitionistic connect-
ives are transformed by T into the corresponding classical ones, but they are 
understood now in the context of * provability.' One can show that for every 
£-formula (/?, 

ifi e Int iff T{ip) e S4. 

For more information about intuitionistic logic we refer the reader to (van 
Dalen 1986) or (Chagrov and Zakharyaschev 1997). 
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2.8 'Model leveP reductions between logics 

We conclude Chapter 2 by establishing a number of useful polynomial reduc-
tions between modal, epistemic, dynamic and temporal logics, summarized 
in Table 2.2. On the one hand, that such reductions exist follows immedi-
ately from the complexity results presented in this chapter. For example, Kf 
and K4f̂  (introduced in Section 2.3) are polynomially reducible to each other 
simply because they are both EXPTIME-complete. However, such reductions 
via Turing machines usually do not give any information on how models of the 
two logics are connected. In contrast, our reductions below work on the 'model 
level,' and this will enable us to generalize the results to many-dimensional 
logics in Sections 6.3 and 6.5. 

Thm. 2.38 ^ 
PTL ^ ^ ^ 

Thm. 2.36 Thm. 2.39 
^ PDL 

CPDL 

Thm. 2.39 

K 
Thm 2.37 

S52 

Table 2.2: 'Model leveF reductions between modal, epistemic, dynamic, and 
temporal logics. 

Theorem 2.36. Kf is polynomially reducible toT^, K4^, 84^ and KD45f' 

Proof. First, we show that Kf is polynomially reducible to Df. Fix a fresh 
propositional variable p and define a translation ^ from At£f-formulas (with 
modal operators D and C) into MCf by taking 

q^ = pAq, (g a propositional variable) 

i^tl^Y ^ pA^r, 

(DtPY = pADip^tl;^), 

( C ^ r = pACip^rPn-

Our aim is to show that for all A<£f-formulas ip, 

<^€Kf iff pAC(-ip-»C-^p)->(^' '€Df. 



2.8. *Model leveV reductions between logics 97 

Suppose first that (fi ̂  Kf. Then there is a model 371 = (5,2J) based on a 
frame J = {W, R) with root r and such that (9)t, r) ]^ (p. Let X be the set of 
all points in W having no /?-successors. For each x € X, take a fresh point 
x-^, and define a new model 971' = (5'»2J'> based on a frame 5' = (W^, R') by 
setting 

• R =r /?U {(x,x+> I a; € X} U {(x+,x+> \x € X}, 

• ^'(9) — 2J(g), for any other propositional variable q. 

Then clearly R' is serial and 9Jt' |= -«p -• C -ip. An easy induction shows that 
for all X£f-formulas xl) and all x € Ŵ , 

(an,x)|=v^ iff (9n^a:)|=V'^ 

It follows that (an',r) ^ if. 
Conversely, suppose that p A C(-«p —• C -ip) A -iv?'* is satisfied at the root 

of a model OT = (5,53) bâ ed on 5 = (H ,̂i?>. Define a model Ort' = (5',aj') 
based on 5' -̂:: (W, H') by taking 

• W'^ 5J(p), 

• 2J'(g) = 5J(p) n9J(g), for any variable q. 

We leave it to the reader to show that (W,r) t̂  (̂ . 

Thus, it suffices to construct the reductions we need from Df instead of 
Kf. Take a fresh variable p and define a translation ^ from A<£f-formulas 
into A1£^-formulas (with Dj, 02 and C{i,2}) as follows: 

q^ — p/\q^ (g a propositional variable) 

(D0)^ = pAai(-ip-->D2(p->V''^)), 
(CV̂ )» = pAC{i,2}(p->t/^^). 
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Given an At£f-formula ip, we set: 

Xs4 = PAC{i ,2}(p^ Oi-p) A C { I , 2 } ( - P - ^ O2P) A (2.23) 

C{i,2}(p ^ Dap) A C{i,2}(-p ^ Di-p) A (2.24) 

C{i,2} ( A (P ^ V- -^ ai(P -^ip))A{pAip-^ D2V) A (2.25) 

{-^pAip^ D11/;) A (-.p A V ~* a2(-'P - • 0) ) ) • (2.26) 

Our aim is to show that 

(i) i f x L - V ^ ^ ^ S 4 ? t h e n ^ € D f ; 

(ii) i f c p e D f thenx^4-^V'*^^K?• 
It will follow then that (p e D f iff Xs4 —^^^^L^i for all Kripke complete 
modal logics L between K2 and S42, in particular, for the logics mentioned 
in the theorem—save KD45^. 

To prove (i), suppose that (f ^ Df . Using Proposition 1.7, it is not hard 
to see that (971, r) ^ (f, for some model 9JI = (5,2J) based on an intransitive 
tree 5 = (^» R) without endpoints and with root r. Define a new 2-frame 
5' = (U^',fii,fi2)bytaking 

• W = WU{Wx{l}), 

• xRijj iff either x eW and y = (x, 1) or rr = y, 

• xi?2y iff either there is 2 G M̂  such that x = (z, 1) and 2:fir/ or x = y 

(see Fig. 2.9). Obviously, both Ri and R2 are partial orders, which means 
that 5' = {^',RiiR2) is a frame for S42. Further, it is straightforward to 
see that, for all x, y € W, 

xR*y iff x{Ri U i?2)*y-

Now define a model Wl' = (5',5J') by taking 

• aj'(p) = w, 

• 5J'(g) = 93(9), for any other propositional variable q. 

An easy induction shows that, for all x E W and all subformulas ^ of v?, 

{m,x)\=xp iff {m\x)^tpK 

Thus, (9Jl',r) t^ (/?̂ . It is not hard to check also that (9Tt',r) |= Xs4» and so 
we have 

(9n',r)^xL-¥''. 
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(all points are Hi-reflexive) 
/?2 

(all points are H2-i'eflexive) 

w H ^ x { l } W W^x{l} 

• • 

t \ / 

Figure 2.9: (W^',/?i,/?2> is a frame for S42. 

from whicii Xs4 -^ ^^ ^ S4^. 

Let us now show (ii). Suppose that Xs4 ^ ""V̂* 's satisfied at the root of a 
model an = (J,5J) based on some frame 5 = {^,^i,i?2)- For i = 1,2, let 

i?f = i?i n (23(p) X 33(p)) and R;^ = /?< n {{W - 9J(p)) x {W - 93(p))). 

Define a new frame 5' = {W, R) by taking W = 5J(p) and, for all x, y € H '̂, 
x/Jy iff there are x', y' € VV" and z\ z'^ eW - U '̂, such that 

a:(/?? U i?5)*a;', x'/Ji^', ^'C/^^P U R;yz'\ z''R2y\ y\R\ U R^Yy 

(see Fig. 2.10). By (2.23), R is serial. Clearly, for all x,y 6 U '̂, 

if xR*y then x(i?i U fl2)*y- (2.27) 

On the other hand, it is not hard to show using (2.24) that, for all x, y € W^ 

if x{Ri U fi2)*y then either x{R\ U R^Yy or xR*y, (2.28) 

Now define a model 9Jt' = {5',2J') by taking 53'(9) = V{q) n W . We claim 
that, for every x eW* and every subformula \l) of v?, 

(97l',a;)f=V' iff (an,x)|=V^^ 

We show only the induction steps for V' = Dx and ^ = Qx- First, suppose 
that (971, x) 1= Di(-ip --> a2(p ~> X^)) and let ar/iy. We need to show that 
(9Jt',y) [= X- By the definition of /?, there are x', z\ 2", y' as above. Since 
ni(-.p -^ D2(p - • x^)) is a subformula of v?̂  by (2.25) we have 

(jm,x')Nai(-'P~>a2(p-^x^)), 
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2J(p) 

Figure 2.10: The accessibility relation R. 

and so {m,z') |= D2(p ~> X^)- By (2.26), we have (971,2") |= n2{p -> x^)i 
and so (9H,i/') |= x^ Finally, again by (2.25) we obtain (OT,y) |= x^- Thus, 
by the induction hypothesis, we have {9Jl\y) h= \» as required. The other 
direction for D-formulas is straightforward. 

Now suppose (971', x) |= Cx and let y e W^ he such that x(fli U R^yv-
We need to show that (971, y) \= x^- By the induction hypothesis, we have 
(971, z) 1= x^ for all 2 with xR^z. By (2.28), we have either x{R^ U fl$)*t/ 
or xR*y, so in the latter case we have (971, y) f= x^- If ^(^i ^ ^2)*?/ holds 
then we obtain this by (2.25). The other direction for C-formulas follows from 
(2.27). 

Finally, as the root of 5 belongs to 5', it follows that 971' refutes ip. 

In the case of KD45^ we need another reduction. Define a translation '' 
from Al£f-formulas into A ĵC -̂formulas as follows. First, we associate with 
each A^£f-formula of the form C V' a new propositional variable pcv- Take a 
fresh variable p. Then define inductively: 

q- = 

(DV^)" 

pAq, {q a propositional variable) 

pA -•V'\ 

pADi(-^p-^D2(p-^V''')), 
pApcV'-
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(all o-points are Hi-reflexive) 
^2 

(all o-points are Aa-reflexive) 

w H^x{l} W W^x{l} 

• • t \/ 
\ / 

Figure 2.11: {W',RuR2) is a frame for KD452. 

Finally,̂ ^ given an A^£f-formula (/?, we set 

XKD45 = P A C{1,2}((P -> {Xtim ^ ^l^^P)) A hp -^ Oap)). 

Our aim is to show that 

V? € Df iff x^D46 -^ ^̂  e KD45^. '1 *" ACKD46 --̂  ' ^ ^ xvx-r-»U2 . (229) 

To prove the (<=) direction, suppose v? ^ Df. Then (9)t,r) ^ v?, for some 
model 9Jl = (ff, 57) based on an intransitive tree ff = {Ŵ , R) without endpoints 
and with root r. Define a 2-frame 5' = {^', RiiR2) by taking 

• Ŵ ' = iyu(W^x {1}), 

• xR\y iff either x € W and y = (x, 1), or x,y € Ŵ  x {1} and x = j/, 

• R2 to be the closure of R2 under the rule *x5y A xSz =» 2/52' (i.e., 
the Euclidean closure), where xjRjy iff there exists z £ W such that 
X = (2,1) and zRy 

(see Fig. 2.11). It is not hard to check that both R\ and R2 are transitive, 
serial and Euclidean. So 5' = (VV",/ii,/?2> is a frame for KD452. Observe 
that, for all x, y € Ŵ , 

xRy iff there is a 2 € W' - IV such that xRiz and 2/i2y. (2.30) 

^°It would be more natural to define (CV')" = V'" A ni(-»p -• D2(p -• C(i,2}(p -* V''')))-
However, this would not be a polynomial translation, since V" would occur twice in the 
right-hand side. 



102 Chapter 2, Applied modal logic 

Now define a model 971' = (5', 93') by taking 

• 53'(p) = W, 

• '0'{pcn.) = {xew\{m,x)^CtP}, 

• 2J'(g) = 5J(qf), for any other propositional variable q. 

An easy induction shows that, for all x € W and all subformulas ip of (̂ , 

(9n,x) \=rp iff (an',x) [= v̂ ''. (2.31) 

Thus, (971', r) ^ (p^. Further, we claim that (971',r) \= XKD45- Indeed, we 
clearly have (971',r) |= C{i^2}((p —* Di~'P) A {'-^p —> •2P))- Now let x e W. 
We need to show that (971',x) \= xtim- Take a subformula of (/? of the form 
C ip. Suppose first that 

(971', x) \=iP^A D i ( - p - . D2(p -> C{i,2}(p -^ V'^))), 

and let xR*y. Then, by (2.30), we have (971', y) |= ^^ and so, by (2.31), 
(971, y) (= ^. It follows that (971, x) \=Ctl), from which (971', x) f= pc^. 

Conversely, suppose that (971',x) |= pc^p, and so (971,x) |= C V'. By (2.31), 
we have (971', x) \= V̂ ''. Now let y G Ŵ ' - M̂  and z,u £ W he such that 
xRiy, yR2Z, and z{Ri U i^2)*^- Using the transitivity of i?2 it is not hard 
to show that in this case u can be reached from x via an alternating chain of 
nonreflexive Hi- and H2-arrows. Then, by (2.30), xH*u, and so (971, u) |= IIJ. 
Using (2.31) once again, we finally obtain (971',n) [= ^''j as required. 

So we have (9n',r) \^ XKD45 "̂  V̂ ^ whence XS^D45 "^ ^̂  ^ KD45^. 
Let us now show the (=>) direction of (2.29). Suppose that XKD45 ^ ~'<̂ '' 

is satisfied at the root r of a model 971 = (5, ̂ ) based on a KD452-frame 
3̂  = (W,RuR2), Define a model 971' = (5',2J') based on Ŝ ' = {W',R) by 
taking 

. W = 93(p), 

• xRy iff there exists z eW - 2J(p) such that xRiz and zi?22/j 

• 2J'(g) = 93((/)n93(p). 

Then clearly i? is serial. We claim that, for every x € H '̂ and every subformula 
^ of (̂ , 

(97t',x)h=V' iff (97l,x) hV '̂'-

We show only the induction step for il^ = Cx- Suppose first that (971', x) \= Cx-

According to the definition of XKD45' ^^ ^^^ ^^ show that 

(97t,x) h X*" A Di (-P - . a2(p -> C{i,2}(P - x"))). 
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We have {Wl^ x) |= x^ by the induction hypothesis. Now let x' € H '̂ - W^ 
x",y € Ŵ  be such that xRxx', x'R^x'^ and a:"(/?i U i?2)*2/. Using that 
(9Jt,r) 1= XKD45 ^^^ ^^^ transitivity of Ry and i?2» it is not hard to see 
that then xR*y holds. So by the induction hypothesis, we have (QH,y) |= x'' 
as required. The other direction for C-formulas is straightforward. 

As the root of 5 belongs to 5', it follows that 9Jl' refutes v?. • 

Theorem 2.37. (1) K^ is polynomially reducible to Kf . Further^ 

(2) K is polynomially reducible to L, and 

(3) Ku is polynomially reducible to L^, 

for any bimodal logic L between K2 and 862. 

Proof. First, observe that the decision problem for K^ can be polynomially 
reduced to the decision problem for Al£^-formulas in which no 13 occurs in 
the scope of a modal operator (D or S) . Indeed, given an A1£]f-formula <̂ , 
denote by ip'^ the result of replacing every subformula of the form x = 0 V' 
with a fresh propositional variable p^. Let 

TZu{(fi) = {(SV^" *-* Bp^)A{<^Py. ^ 13Px) I X = 0^^ € sub<f}. 

Then it is not hard to see that 

ipeKu iff / \Tlui^) -•> v?̂  e K«, 

and the formula in the right-hand side is as required. 
In order to show (1), we take a fresh propositional variable p and define a 

(polynomial) translation ^ from MCi into MCf as follows: 

Q^ — Qi (Q ^ propositional variable) 

Let us show that for every A1£"-formula <p without occurrences of EEI in the 
scope of a modal operator, 

VJ€K„ iff ifi'^eK^. 

First, suppose ip ^ K^. By a straightforward generalization of Proposi-
tion 1.7, we may assume that (JW, r) )/: tp for some model SDt based on a frame 
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5 = {Wi R, R^), where {W, R) is a disjoint union of intransitive trees witli r 
being the root of one of them, and Ru is the universal relation on W. 

Now extend the relation iZ to a relation R' by connecting the roots of the 
trees with each other. Define a new model M' based on {W, R\ R'*) by taking 
p to be true everywhere but at the roots of the above trees. One can first 
prove by induction that, for all x € W and all subformulas tj) oi ip without 
the operator E, 

(im,x)|=V^ iff (OT',x)|=^^ 

Now, since no E occurs within the scope of a modal operator, we derive for 
all subformulas tp of (p: 

(aJt,r)|=^ iff (9n',r)|=^^ 

It follows that (Wl', r) ^ ^f. 
Conversely, suppose that kp^ ^ Kf. Then ({Wl, r) ^ ^ for a model SErt based 

on a rooted frame with root r. Remove from this frame all arrows leading to 
points where -̂ p holds in SPt, and define the accessibility relation interpreting 
S as the universal one. Since ^p has no occurrences of 0 in the scope of a 
modal operator, it is not hard to see that ip is refuted at r in the resulting 
model. 

Claims (2) and (3) are proved simultaneously- Define a translation * from 
Af£i-formulas into ^£2^-formulas (with Di, 02, and C{i,2}) by taking 

^* = p A ,̂ {q a propositional variable) 

(^lA^2)* = ^f A^?, 
( ^ ^ ) * = p A - 1 ^ * , 

(D^)* = p A DiC-ip A -"e -* D2(p -^ ̂ *)), 

(0^)* = pAC{i,2}(p-^^*), 

where p and e are fresh variables. Note that if ^ is an A^£i-formula then ^* 
is an A<£2-formula. 

We now show that, for every Af £"-formula {p without occurrences of S in 
the scope of a modal operator, 

(i) if p -• 9?* € SSg' then ip € K,,, 

(ii) liipeKu then p -• y?* € K^. 

We will then have, for any bimodal logic L between K2 and S52, 

^ € K iff p -* (p^ £ L, 

(peKu iff p-*(p^ e L^. 
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To prove (i), suppose that (fi ^ K .̂ Then (M,r) ^ (fi for some model 
an = (5,53) based on a frame 5 = {W,R,Ru), with Ru being the universal 
relation on W. Define a model OT' = (5', 53'} based on ff' = {W\RuR2) by 
taking 

• R\ to be the reflexive, transitive and symmetric closure of R^, where 
xRiy iS X eW and y = (x, z), for some z € VT, 

• /?2 to be the reflexive, transitive and symmetric closure of i?2» where 
xR2y iSy ^W and x = (z, j/), for some z eW, 

• aj'(p) = w, 

• 2J'(e) = {(x,t/)€irxW^|(x,y)$?/?}, 

• 2J'(g) = 93(g), for any other propositional variable q. 

Thus, 5' = (Ŵ '» R11R2) is a frame for S52. Further, it is not hard to see that 
(Ri U/?2)* is the universal relation on W\ An easy induction shows that, for 
all X eW and all subformulas tp of (/?, we have 

(9n,x)h^ iff (an',x)|=0*. 
It follows that (971', r) [̂  p -• (̂ *, and so p -• (̂ * ^ S5^. 

Now let us prove (ii). Suppose that p A -ly?* is satisfied at the root r of a 
model JOT = (5,03) based on J = (W ,̂i?i,H2). Define a model 971' = (5',53') 
based on 5' = (H '̂, i?, fl^) by taking 

• VT' = a3(p), 

• xRy iff there exists 2 € PV - (93(p) U 53(e)) such that xRxZ and zi?22/j 

• i?u to be the universal relation on W\ 

• 93'((7)=r2J((7)n93(/;). 

One can first prove by induction that, for all x e W^ and all subformulas tp 
of (fi without the operator BE), 

(9rt',x)|=V' iff (9n,a:)|=V'*. 

Now, since no 13 occurs within the scope of a modal operator, we derive for 
all subformulas 'tp of tp: 

(9n',r)|=0 iff (9n,r)|=^*. 

It follows that (9n',r) ^tp. • 
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Theorem 2.38. PTL is polynomially reducible to Kf . 

Proof. By Proposition 2.10, PTL is polynomially reducible to PTL^^. 
Hence, it suffices to show that PTL^^ is polynomially reducible to K f . 

For a formula (p of the bimodal language MC2 (with Dp and O), we put 

sub^(p = sub if U {Ox I X ̂  subif} 

and denote by (/?* the result of replacing all occurrences of O and O F in </? 
with Oi and Oi~'C-», respectively. Let 

7^(^) = {OiX* -* DiX* I X e sub'^if}. 

We show now that for every jM£2-formula (/?, 

if € PTL^o iff C(Oi"^ ^ A ^ ( ^ ) ) -^ ^* ^ Ki"-

The implication {<F=) should be clear. Conversely, suppose that 

(m.wo) h - ^ * A C(OiT /\f\n{ip)) (2.32) 

for some model 9Jl = (ff,93) based on a rooted intransitive tree 5 = (W,/2i) 
with root wo' First we construct a countable sequence WQ^WI^. ,. of distinct 
points in W such that WiRiWi^^, for all i € N. This sequence will then be 
used as the flow of time m which we refute (/?. 

Suppose that a sequence a = (wo,.. -^Wn) has already been constructed. 

Call a pair (m, Optp) a a-defect if m < n, OFV^ € subip, and 

• (OT,ti;m) 1= Oi-'C-'V'*, but 

• for all i with m -f 1 < i < n, we have (9Jl, Wi) ^ V'*. 

If there are no a-defects then we take some i^n+i € W such that WnRiWn+i 

{wn-^i exists because (971, tan) t= OiT) and continue with the new sequence 

Otherwise, we list all the cr-defects (there are finitely many of them). Take 

the first cT-defect (m, O F ^ ) in the list. One can prove by induction that for 

all i = m , . . . , n, 
{m,Wi)\=Oi^C--rpr (2.33) 

Indeed, for i = m this holds by the definition of a cr-defect. Now suppose that 
(2.33) holds for some i with m <i <n. Then either 

(a) {Wl,Wi)^Oirp\oT 
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(b) {m,Wi) \^OiOi--C'^tp\ 

In the former case, in view of (2.32), we have {M,Wi) |= DiV *̂, contrary to 

/m, OFV^) being a cr-defect. So case (b) must hold. Since OOFV' ^ sub^tp, 

and so 
{Wl.Wi) h DiOi-^C-.^*, 

from which (97l,ti;i+i) |= Oi-̂ C-̂ V *̂. 
We have shown that (971, Wn) h Oi-iC-i^*. So we can find distinct points 

Wn-\-ii' • •)^fci iî  W'' such that 

• WiRiWi^i for all i with n < i < fci, and 

Now consider the sequence ai = {ti;o, • •»tî n) t̂ n-f i , . . . , ty/ti), and take the 
second cr-defect from the previous list cr (if any). If it is also a ai-defect then, 
by repeating the above argument, we can extend ai to some 

and so on. After fixing all the a-defects this way, we obtain a new sequence 
a\ Then we list all the cr'-defects, *fix' them, and so forth. 

In the limit we obtain a sequence (i(;i | i € N). Define a valuation 53' in 
the frame (N, <, -hi) by taking 

2J'(p) = {nGN|ti;„G2J(p)}, 

for every propositional variable p, and let 9JI' = ((N, <, -f 1) ,93'). It can be 
shown by induction that for all ip € sub if and all n € N, 

{m,wn)kr iff (£m',n)|=^. 

Hence, by (2.32), we have (971', 0) ^ (̂ , as required. Q 

We conclude this section by showing that all epistemic logics L^, intro-
duced in Section 2.3, as well as the temporal logic PTL, can be embedded 
into dynamic logics PDL and CPDL. First, with every operator Di ofMCn 
(1 < t < n) we associate an action term tj(Dt), j < 5. To this end, we fix 
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action variables QI , . . . , a„, /3i,..., /?„ and put, for i < n, 

mi(D<) = a<, 

m2(Di) = a<;Q*, 

m3(nj) = a* , 

m4(Di) = ( a i U a - ) * , 

m5(Di) = Oi U ( a - ; a O U (A U/?-)*. 

Define translations t i , . . . , te from the language MC^ into the language CVDC 
by taking for every non-empty set M = {ii,...,ik} Q {1)• • •,"} and every 
j = l , . . . , 6 : 

tj{Pi)=Pi, 

\te{(^) A [mi(ai)] t6(v?), otherwise, 

tj{CM^) = [(m^(D,J U .. • U mj{Di,)y] tj{if). 

Theorem 2.39. IfL e {Kn,Tn,K4n,S4n,KD45n,S5n} then the epistemic 
logic L^ is polynomially reducible to CPDL. More preciselyj for every AiC^-
formula (/?, we have 

( i ) ^ € K ^ iff U{^)€PDL, 

(ii) v' 6 T^ iff m<fi) 6 PDL, 
(iii) V e K4^ i# t2(sp) e PDL, 
(iv) v> e S4^ iff t3(v?) € PDL, 
(v) <p € S5^ j# U(<P) e CPDL, 
(vi) (/7 € KD45^ zg" [7*] x -+ t^i^f) 6 CPDL, to/iere 

7 = a i U a f U . . . U Q „ U a ; U/3i U^Sf U . . . Uj8„ U/?-, 

X = / \ (a< ;ai] 1 A / \ ( a i U Q - > T - > [ft U ; 9 - ] l . 

Proof. The proofs are rather straightforward. Here we only sketch the proof 
of (vi). Suppose a KD45n-frame J = {W, jRi,..., Rn) refutes (/? in a world VD 
under some valuation. Without loss of generality we may assume that w is 
the root of J. Define a PP£-structure 6 = (H ,̂ Tai , . . . , T/jj,...} by taking, 
for all u, v € W, 1 < i < n, 
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• uTctiV iff uRiV and not vRiU; 

• uT^^v iff uRiV^ vRiU and there Is no x € VT such that xRiU and not 
uRiX. 

It is easy to show that (8 refutes [7*] x ^ ts((/?). 
Conversely, suppose that a PP£-8tructure (8 = {W, To, , . . . , T/jj,...) re-

futes (7*] X —• t5(v?) at its root w. Define an n-frame 5 = (iV, /? i , . . . , /?n) by 
taking, for all UjV eW^ 

• u/?it; iff either uTaiV or wT^- .^. v, or uT^^.up:-)*'^' 

One can readily show that 5 is a frame for KD45^ refuting ip, Q 

Observe that the translations above embed the epistemic logics in question 
into the test-free fragments of PDL and CPDL. 

Since the composition of two polynomial reductions is a polynomial reduc-
tion, Theorems 2.38 and 2.39 yield: 

Theorem 2.40, The temporal logic PTL is polynomially reducible to PDL. 
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Chapter 3 

Many-dimensional modal 
logics 

So far we have been considering modal formalisms intended for reasoning 
about time, knowledge, beliefs, actions, space independently of each other. 
We have completely abstracted from the fact that in reality all these entities 
exist in close interaction: knowledge, beliefs and spatial regions can change 
over time and under actions, agents in a multi-agent system may have their 
own knowledge bases, and so forth. In this chapter we discuss possible ways 
of constructing many - dimensional (or combined) modal logics which are able 
to capture such interactions. Computational properties of these logics will be 
investigated in Parts II-IV. 

3.1 Fusions 

The formation of fusions ̂  or independent joins ̂  is the simplest and perhaps 
most frequently used way of combining logics. Let Li and L2 be two mul-
timodal^ logics formulated in languages £1 and £2? both containing the lan-
guage £ of classical propositional logic, but having disjoint sets of modal 
operators. Denote by £1 ® £2 the union of £1 and £2. Then the fusion 
L\^ L2 of Li and L2 is the smallest multimodal logic L in the language 
£1 ® £2 containing Li U L2. In particular, if Li is axiomatized by a set of 
axioms Axi and L2 is axiomatized by Ax2^ then Li (81 L2 is axiomatized by 
the union Axi U Ax2' This means that no axiom containing modal operators 
from both languages C\ and £2 is required to axiomatize the fusion of Li and 

^Here by a multimodal logic we mean a logic formulated in any of the languages MCn, 
MC^, MCu, or MCsu-

111 
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1/2- The modal operators in £ i and £2 remain 'independent/ they 'do not 
interact;' however, both Li and L2 contain classical propositional logic CI. 
Note that the formation of fusions is clearly an associative binary operation 
on logics. Thus, one can define the fusion Li (g) L2 0 • • 0 Ln of n logics in a 
straightforward way, for any natural number n > 2. For example, we have 

S5n = S5 (g) • • • (8) S5, etc. 

(see Section 1.4). 
Fusions of modal logics have been studied for a relatively long time. The 

first explicit result about fusions was obtained by Thomason (1980), who 
proved that fusions of consistent modal logics turn out to be conservative 
extensions of their components. Further results showing that many important 
properties of logics are preserved under fusions were obtained by Kracht and 
Wolter (1991), Fine and Schurz (1996), Goranko and Passy (1992), Spaan 
(1993), Gabbay (1996) and Wolter (1998). 

So far we have considered fusions only from the syntactical point of view. 
However, fusions have a very natural semantical interpretation as well, at least 
for logics which are Kripke complete. Consider two classes Ci and C2 of m- and 
n-frames, respectively, that are closed under disjoint unions and isomorphic 
copies. The fusion Ci 0 C2 of C\ and C2 is the class of all n -}- m-frames of the 
form 

such that (M̂ , fli,..., Rm) e Cx and (Pî , 5 i , . . . , S^) e C2. 
Thus, Ci 0 C2 consists of arbitrary combinations of frames from Ci and C2 

sharing the same set of worlds. It should be clear that if Ci and C2 determine 
logics Li and L2, respectively, then all frames in Ci 0C2 validate the fusion 
Li 0 1/2- However, it is rather nontrivial to prove that actually the converse 
also holds, i.e., Ci 0C2 characterizes Li 0 L2. 

Another important preservation theorem shows that the fusion of two de-
cidable logics is decidable as well. Thus, modulo decidability, fusions can be 
reduced to their components. This result heavily relies upon the fact that we 
combine propositional modal logics rather than, say, first-order theories, where 
such a result does not hold. For example, the first-order theory of one equi-
valence relation ^ has the finite model property and is decidable. However, 
the first-order theory of two equivalence relations ~ i and ~2 Is undecidable 
(Janiczak 1953, Ershov et al. 1965). 

These results as well as other preservation theorems concerning fusions are 
proved in Chapter 4. 

We conclude this introductory section by illustrating the role of fusions 
with some simple examples. 
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Example 3.1. First we explain in more detail why it is natural to consider 
the basic epistemic logics^ introduced in Section 2.3, as fusions. Take an 
agent A and an epistemic logic LA with the modal operator DA ('agent A 
knows') intended for reasoning about the knowledge of A, Assume now that 
L B is another epistemic logic formalizing the knowledge of another agent B by 
means of the operator Da ('agent B knows'). If agents A and B are supposed 
to interact, we may need a formalism which is able to represent not only the 
knowledge about i4's and S's ^objects,' but also their knowledge about each 
other's knowledge. 

Naturally, we then take the bimodal epistemic language with both oper-
ators D^ and Da. But what are the principles (axioms) of the logic intended 
for reasoning in the combined language? Of course, it should contain LA^LB^ 

since the principles governing a single knowledge operator should remain the 
same in the combined logic. Thus, the logic will contain the fusion LA®LB-

If no information about the relation between A and B is available, then we 
have no grounds to add any axioms containing both boxes DA and Da. So 
in this case the fusion LA® LB is the epistemic logic which can serve for 
reasoning about the knowledge of two agents A and B. 

It is not hard to imagine various situations when interaction axioms are 
required, for instance, when A knows everything that B knows. Then we 
should extend the fusion with the axiom 

Dap --> D^p. 

Another example: A knows about B's knowledge (when, say, A has construc-
ted B). Then we need the extra axiom 

Dap~> D^Dap. 

But in any case the formation of fusions is the first basic step towards con-
structing multi-agent logics of knowledge. 

Example 3.2. Epistemic logics are used in order to formalize reasoning about 
knowledge of agents having incomplete information. However, such logics are 
able to describe only static pictures. They do not have enough expressive 
power to reason, for instance, about changes of knowledge when new informa-
tion becomes available or certain facts are forgotten. To construct a language 
which can capture various dynamic features of knowledge, a new temporal 'di-
mension' should be added to the epistemic one. Suppose, for example, that an 
epistemic logic is extended by means of the temporal operator U (until). The 
resulting temporal epistemic language will then contain the modal operators 
Di ('agent i knows') and W, so that we can express conditions like 

(-Dip) UiUjp) 
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saying that agent j will know property p, and not later than agent i. 
Again, it seems natural to start constructing an axiomatization of the 

desirable combination of the epistemic and temporal logics by taking their 
fusion. When doing that, we assume no interaction between time and know-
ledge, so agents may forget, learn, etc. Actually, such a fusion is the basic 
temporal epistemic logic introduced in (Fagin et al. 1995). In Section 3.4 
we discuss this temporal epistemic logic as well as some other logics having 
interactions between time and knowledge. 

E x a m p l e 3.3. The nice behavior of fusions of modal logics is particularly 
useful in description logic. For instance, having a decidable description logic 
with one transitive role, another decidable description logic with one func-
tional role, and one more decidable description logic with one ordinary role, 
and taking a suitable fusion of them, we can construct a decidable description 
logic with arbitrarily many transitive, functional, and ordinary roles. More 
advanced applications of fusions in description logic are explored in (Baader 
et al, 2002). 

From the semantical point of view, the formation of fusions does not change 
the 'dimension' of logics: worlds in their frames are still regarded as points 
without any *many-dimensional feature' (cf., however. Section 9.1). Let us see 
now what happens when we combine logics whose modal operators are sup-
posed to interact. Perhaps the most intuitively transparent is the combination 
of temporal and spatial logics. 

3.2 Spatio-temporal logics 

Suppose that we need a logical formalism which is able to represent knowledge 
and reason about spatial regions changing over time. We can then choose a 
spatial logic and a temporal logic that reflect our views on space and time 
(and satisfy the required effectiveness and expressiveness parameters), say, 
BIZCC'8 and Log^if{C), for some class C of flows of time, and try to combine 
them into a single spatio-temporal system.^ 

This choice (together with common sense considerations) almost uniquely 
determines the semantical paradigm of the hybrid under construction. As 
we saw in Sections 2.6 and 2.1, static spatial regions are interpreted in a 
topological space T = (C/,I), and the flow of time is represented by a frame 
5 = {^W, <) , where < is a strict linear order on W, It is reasonable to assume 
that space with its topology always remains the same. However, the spatial 
regions occupied by the objects under consideration may move with time 

'^Our choice is motivated mainly by the fact that both components are *modar logics 
considered in this book. 
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topological space 

flow of time 

Figure 3.1: Spatial regions moving in time. 

passing by (see Fig. 3.1). This naive picture can be formalized by means of 
the following concept of topological temporal model. 

A topological temporal model (or tt-model^ for short) based on a flow of 
time 5 = {Wy <) and a topological space T = (t/,I) is a triple 9Jt = (ff,T, a), 
where o, an assignment in OT, associates with every region variable X and 
every moment of time w £ W a regular closed set o(X, w) C U (that is, 
a set a{X) C U such that a{X) = aa (X)) , the state of X at w. Thus, 
tt-models can be regarded as two-dimensional structures. Having fixed a 
moment of time, we can move in the ^spatial dimension' representing the 
states of regions at this moment. Having fixed a spatial region, we can move 
along the 'temporal dimension' tracing the evolution of this region in time. 

Let us turn now to the syntactical parameters of spatio-temporal hybrids. 
Actually, there are different ways of introducing a temporal dimension into the 
syntax of BTZCC-S^ which give rise to a hierarchy of possible spatio-temporal 
languages 

STo C STi C ST2. 

The spatio-temporal language STQ. The most obvious one allows ap-
plications of the temporal operators S and U only to spatial formulas of 
BTICC'8, More precisely, the spatio-temporal language STQ is defined as fol-
lows. Every formula of BTlCC-8 is also an 5To-formula, and if ip and tp are 
«STo-formulas then so are (^5-^, ipUtp^ <̂  A ^, and -K^. AS usual, we use 
abbreviations 0(p = 1W(/?, OF^ = TUip^ Dp^p = -IOF'^V^; ^ Ĵ ŵ one is 
(pWi/j = Dpifi V {(fUip)^ where W stands for ^waiting for' (it is also known as 
^unless;' see Manna and Pnueli 1992). 

For a tt-model 9Jl = (5,1, a), an 5To-formula (/?, and w £ Wy define 
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the truth-relation {VJl,w) [= ip (V holds in 9Jl at moment w') by induction 
on the construction of ^p. Denote by aw the assignment in T defined by 
aw{X) = a{X^w)^ for every region variable X and every w eW. (Recall that 
the truth-relation T |=**̂  ^p was introduced in Section 2.6.) Now, 

• ii ip contains no temporal operators, then {VJl,w) [= v? iff X |=°'" ip; 

• (QJl, w) \= (pUx/; iff there is v > w such that (9Jt, v) |= V̂  and (9Jl, tz) |= <̂  
for every u in the interval ti; < u < v; 

• {9Jl, w) \= (pSip iff there is v <w such that (971, v) |= ^̂  and (971, ix) |= (̂  
for every u in the interval v <u <w. 

Although the interaction between time and space in STQ is rather weak, the 
language STQ is expressive enough to capture some aspects of continuity of 
changes (see, e.g., Cohn 1997): 

DC(x,y) -̂  DC(x,y) wEC(x,y), 
EC(X, Y) -^ EC(X, F) W (DC(X, F) V PO(X, Y)), 
po(x,y) -> PO(x,r) w(EC(x,r) v 

TPP(X, Y) V EQ(X, y) V TPPi(X, y)), 
etc. 

The first of these formulas, for instance, says that if two regions are discon-
nected at some moment, then either they will remain disconnected forever or 
they are disconnected until they become externally connected. If the flow of 
time is discrete then these conditions can be rewritten as: 

DC(X, Y) -> 0(DC(X, Y) V EC(X, F)) , 

EC(X, Y) -^ 0(EC(X, Y) V DC(X, Y) V PO(X, F)) , 

PO(X, Y) -> O(P0(X, Y) V EC(X, F ) V 

TPP(X, F) V EQ(X, F) V TPPi(X, F) ) , 

etc. 

The spatio-temporal language 5 T i . Of course, the expressive power of 
STQ is rather limited. In particular, we can compare regions only at one 
moment of time, but we are not able to connect a region as it is 'today' 
with its state 'tomorrow' to say, for example, that it is expanding or remains 
the same. In other words, we can express the dynamics of relations between 
regions, say, 

-<nFP{Kosovo, Yugoslavia) 
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('it is not true that Kosovo will always be part of Yugoslavia'), but not the 
dynamics of regions themselves, for instance, that 

D-^P{EU,OEU), 

where OEU at moment n intends to denote the space occupied by the EU 
at the next moment (so for the flow of time (N, <) the last formula means: 
'the EU will never contract'). This new constructor may also be important 
to refine the continuity assumption by requiring that 

D^(EQ(^,OX)V0(X,OX)), 

i.e., 'regions X and OX either coincide or overlap.' (Recall from Section 2.6 
that the predicates P and 0 are expressible in BTICC-S.) 

To capture this dynamics, we extend STQ by allowing applications of the 
next-time operator O not only to formulas but also to Boolean region terms. 
Thus, arguments of the predicate symbols in BTICC-S can be now arbitrary 
region O-terms which are constructed from region variables using the Booleans 
and O. For instance, OOX represents region X as it will be 'the day after 
tomorrow.' Denote the resulting language by STi. If 971 = (3 ,̂T, a) is a 
tt-model and t a O-term, then put 

_ / o(< . \ _ J ^(^ ̂ ')» if ^ ' is an immediate successor of w in 5? 
^ ' ^ ~ ' ^ iftc has no immediate successor in 5-

Note that for every O-term and every time point n), a(f, w) is a regular closed 
set in X. Using STi we can express over (N, <) that region X will always be 
the same (i.e., X is rigid): 

D+EQ(X,OX), 

or that it has at most two distinct states, one on 'even days,' another on 'odd 
ones:' 

DJ;EQ(X,OOX). 

Note, by the way, that the 5Ti-formula 

a+NTPP(X,OA:) 

is satisfiable only in models based on infinite topological spaces—in contrast 
to BTICC'S formulas, for which finite topological spaces are enough (see The-
orem 2.31). 

It may appear that STi is able to compare regions only within fixed time 
intervals. However, using an auxiliary rigid variable X we can write, for 
instance, 

DJ;EQ(X, OX) A O F E Q ( X , EU) A P{Russia, X). 
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This formula is satisfiable iff *some day in the future the present territory of 
Russia will be part of the EU.' Note that the formula 

OFP {Russia, EU) 

means that there will be a day when Russia—its territory on that day (say, 
without Chechnya but with Byelorussia)—becomes part of the EU. 

T h e spa t io - t empora l language ST2* Imagine now that we want to ex-
press in our spatio-temporal language that all countries in Europe will pass 
through the euro-zone, but only Germany (in its present territory) will use the 
euro forever. Unfortunately, we do not know which countries will be formed 
in Europe in the future, so we cannot simply write down all formulas of the 
form 

OF^{X, Euro-zone). 

What we actually need is the possibility of constructing regions OpX and 
UpX which contain all the points that will belong to region X in the future 
and only common points of all future states of X, respectively. Then we can 
write: 

EQ(J?urope, O'pEuro-zone) 

and 
EQ (Germany, D ̂  Euro-zone). 

The formula 
Pi Russia, OFEU) 

says that all points of the present territory of Russia will belong to the EU in 
the future (but perhaps at different moments of time). 

So let us extend STo by allowing the use of temporal region terms, con-
structed from region variables, the Booleans, and the temporal operators U 
and S with all their derivatives, as arguments of the TZCC-S predicates. In 
other words, every region variable is a temporal region term, and if ti and t2 
are temporal region terms then so are ti 11^2, ti Ut2, "^^i, O F ^ I » DF^I» Opti, 
Dpti, Oti, t\Ut2 and tiSt2' The resulting language will be denoted by 5T2. 

The intended semantics of temporal region terms is as follows. Suppose 
!Ul = ( J ,T , a) is a tt-model. Define inductively the value a{t,w) of a temporal 
region term t under a at w inTl hy taking: 

o(OFt,tt/) = CI y a{t,v), 
v>w 

a{DFt,w) = CI P I a{t,v), 
v>w 

a{tillt2,w) = 0 { x I 3v > w{x e a{t2jv) A^uiw <u<v -^ x e a{ti,u)))}, 

a{tiSt2rW) = CI{a: | 3v < w{x e a{t2,v) AW{w > w > v -* x € a{ti,u)))}, 
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and the corresponding clauses for Op, Dp and the Booleans. For example, 
the formula 

DC{Russia S Russian.Empiref Russia S Germany) 

can be used to say that the part of Russia that has been remaining Russian 
since 1917 is not connected to the part of Germany (Konigsberg) that became 
Russian after the Second World War. 

Note that the operators Op and Dp on temporal region terms are dual in 
the sense that for every assignment a, every region term f, and every moment 
w we have 

a{0 pt^w) = a(-iDp-'f,ti;). 

Indeed, suppose that a(f, v) = CIX^ for v > w. Using the duality of C, I and 
U, n, it is easy to see that the equality above is equivalent to the following 
one 

CI IJ ClXt; = CIC U ICIX^ 
v>w v>w 

which holds in any topological space. 

The inclusion D follows from 

o c IJ icnXv = cncn |J ncnXt, = ci |J icnXv. 
v>w v>w v>w 

To show C, it suffices to observe thptt for every t; > t/;, we have CIXv C 
CnCIXv, from which UXv S C [J lOXv, whence I (J CIXv C C | J ICEXv, 

v>w v>w v>w 

and so CI (J ClXt, C C (J ICIXv = CI (J ICIX^ because CX is the smal-
v>w v>w v>w 

lest closed set containing X and every union of open sets is open. 

Further, Op and O can be defined via U as usual: 

Opt = TUt, Ot = lUt. 

(So ST2 is in fact an extension of STi.) 
It is also worth noting that in the definition above we have to use the 

prefix CI in the right-hand parts because infinite unions and intersections of 
regular closed sets are not necessarily regular closed, while all temporal region 
terms are supposed to be interpreted by 'regions' of topological spaces. For 
example, an infinite union of closed intervals in R can be open and an infinite 
intersection of closed intervals can be just a single point, the regular closure 
of which is empty: 

00 0 0 

(J [l/n, 1 - 1/n] = (0,1), n (-!/"' I H = {0}-
n - 1 n= l 
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Actually, as we shall see below, infinite operations bring various semantical 
complications. To avoid this problem, we can try to restrict assignments in 
models in such a way that infinite intersections and unions can be reduced to 
finite ones. There are different ways of doing this. 

One idea would be to accept the Finite Change Assumption: 

FCA No region can change its spatial configuration infinitely often. 

This means that under FCA we consider only those tt-models 971 = (5, X, a) 
that satisfy the following condition: for every temporal region term t there 
are pairwise disjoint convex sets / i , . . . , / „ of points in'S = {W^<) such that 

ly = / l U . • . U Jn 

and the state of t remains constant on each Ij (i.e., a{t,u) = a{t^v) for all 
u,v e Ij). Note that for the flow 5 = (N, <} FCA can be captured by the 
5T2-formulas Op^F^Qit^Ot). 

Of course, FCA excludes some mathematically interesting cases. Yet, 
it is absolutely adequate for many applications,"^ for example, when we are 
planning a job which eventually must be completed (consider a robot painting 
a wall). Optimists would accept FCA to describe the geography of Europe 
in the examples above. In temporal databases the time line is often assumed 
to be finite, though arbitrarily long, which corresponds to FCA. 

Another, more general, way of reducing infinite unions and intersections 
to finite ones is to adopt the Finite State Assumption: 

FSA Every region can have only finitely many possible states {although it 
may change its states infinitely oft^en). 

Say that a tt-model 971 = ( 5 , 1 , a) satisfies FSA, or is an FSA-model, if 
for every temporal region term t there are finitely many regular closed sets 
Ai,...,Am Q U such that {a{t,w) \ w £ W} - {Ai,...,Am}' 

Example 3.4. We illustrate possible applications of the language introduced 
above by showing a toy spatio-temporal knowledge base. Consider the follow-
ing scenario of how the foot and mouth epidemic spreads across a country. 
Assume that the country consists of disjoint regions: farms, towns, forests, 
rivers, etc. The map of the country can clearly be represented as a database 
of TijCC'8 formulas. Besides, we require that all these regions are rigid, i.e., 
D^EQ(X, OX) (as quantification over regions is not allowed, we have to write 
such formulas for all regions X on the map). Now, suppose that at moment 
0 foot and mouth has been detected only at one farm XQ: 

EQ(F&M, Xo) A P(Xo, Farm). 

^'What has been is what will be and what has been done is what will be done; there is 
nothing new under the sun.' (Ecclesiastes) 
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The region FSzM^ representing the current contaminated part of the country, 
is not rigid. Nor is the region Stock representing the farms with live-stock. 
Let X o , . . . , Xn be all the farms in the country. We then should clearly have, 
for all i < n: 

D-^{0{Xi,Stock) -> P{Xi, Stock)). 

D'^P(Stock,XoU'"\JXn)> 

Dj:((0(Xi, FkM) -> P{Xu FkM)), 

D-^PiFkM, Stock). 

Suppose also that if one farm suffers from foot and mouth, then at the next 
moment the disease will spread to all neighboring farms with stock, but not 
further, i.e., for all t, j < n, 

Dj;(P(Xi, FkM) A £C{Xu Xj) A P{Xj, Stock) -^ OP{Xj,FkM)). 

Dj(-EC(Xi,F&A/) -^ 0-^P{Xi,FkM)). 

As the government takes proper measures against the disease, in a few mo-
ments (say, two for definiteness), a farm with foot and mouth will have no 
live-stock. On the other hand, the government is going to help the farmers 
to continue their business, so eventually new stock will be purchased (but 
nobody knows when): 

D^(P(Xi, F&M)--> OO(-0(Xi , F&M) A - 0 ( X i , S^ocifc))). 

D-^{P{Xi,Stock) -> OFP{XUStock)). 

Denote the resulting knowledge base by E. We can use it to answer queries 
like 'how much time the government needs to get rid of the disease' or 'when 
it is safe to buy new animals,' for instance, by checking whether formulas of 
the form 

O . . . OEQ(F&A/, 1) , O . . . 0{^OFP{Xi, FkM)) 

are logical consequences of E. 
It is worth noting that in this example we have a typical mixture of 'a 

sort oV model checking and deduction: while the map of the country is sim-
ulated by taking all TICC-S relations which hold true between farms, towns, 
forests, etc., knowledge about regions like F&Mand Stock is incomplete, since 
it depends on the future development. So to decide whether E |= v̂  holds or 
not proper deduction (or theorem proving) is required; cf. (Halpern and Vardi 
1991). 
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Modal formalisms for spatio-temporal reasoning 

As we saw in Section 2.6, BTICCS can be embedded into the bimodal logic 
S4u. Similarly, the constructed temporalizations oiBTZCC-S can be translated 
into the language 

or propositional spatio-temporal language, which contains the temporal oper-
ators S and W, and the modal operators of S4u (which we denote, to em-
phasize their topological interpretation, by I, C, and 0 , <l>) as well. The 
intended models of VST, called topological VST-models, are triples of the 
form 91 = {ff, 3:,il), in which 3̂  = {W, <) is a flow of time, T = (f/, I) a topolo-
gical space, and il, a valuation, is a map associating with every propositional 
variablepand every w eW d.set il(p, w) CU. His then extended to arbitrary 
P5T-formulas in the following way: 

• ii(i/^ A X, t/̂ ) = iiCV', w) n u(x, w); 

• U(l3V ,̂ti;) = U if 11(^,1/;) = U, and 11(130,1/;) = 0 otherwise; 

• !d{Irlj,w) =m(i/;,ti;); 

• X € ii{^pUxi u)) iff there is v > it; such that x € il(x, v) and x € il(V', u) 
for all u in the interval ly < u < v; 

• X 6 il(i/'5x» ^) iff there is v < ti; such that x G ll(x, v) and x t il(V', a) 
for all u in the interval v < u < w. 

In particular, 

is an immediate successor of w in 5, 
has no immediate successor in J. 

A 7^5T-formula </? is satisfied in 91 if il((^, ti;) 7̂  0, for some w e W. We 
say that a topological P5T-model 9t = (5, X, il) satisfies FSA if for every 
variable p there are finitely many sets Ui,., .,Un QU such that 

{H{p,w)\weW} = {Ui,...,Un}. 

The following toy example illustrates the expressive power of VST: 

Dp^i'^icockroach A {Ccockroach <-> habitat)), 

DF^{habitat —> Ohabitat), 

0 C O F cockroach. 
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These formulas say that (a) cockroaches form a dense set in their habitat (but 
for humans they are invisible), (b) the cockroach habitat will never contract, 
and (c) sooner or later, cockroaches will appear in the neighborhood of every 
place on Earth. 

Let us encode now 5Ti-formulas in the language VST by extending the 
translation -^ of Section 2.6. For a temporal region term f, define a VST-
formula t^ by taking: 

X^ = CIpu {Xi is a region variable), (fi n 2̂)"̂  = CI(t^ A t^), 

{ti u t2r = ci(f^ V t^), {tiUt2r = 01(̂ 5^̂ ^̂ ), 
(-O"" = Cl-t^, {tiSt2r = CI(<f 5t^). 

Note that we also have 

(Ot)'' = ClOf'', {Oftr = CIOF^"", {Opt)'' = C I D F ^ ' ' . 

For atomic 5T2-formulas, let 

(DC(<i,<2))^ = -.<S>(trAt^), 

(EQ(ti,t2))^ = S l ( f r ^ t ^ ) , 

{P0{tut2))'' = <S>(Iff A It^) A <l>(t̂  A -^t^) A <l>(-^f A t^), 

{EC{tut2)r = <S>(̂ r A t^) A -<3>(Ifr AI^?), 

(TPP(il,<2))'' = E(-^r V t^) A <l>(<̂  A -.If^) A <l>(-.f>t^), 

(NTPP(ti, 2̂))"" = Sl(-<^ V I<^) A <S>(-<̂  A t^). 

Suppose now that v? is an arbitrary 5T2-formula. Then (p^ denotes the result 
of replacing all occurrences of atomic formulas R{t\^t2) in v? with (-R(^i,f2))'^-

It should be clear from the definition that we have: 

Theorem 3.5. An ST2'formula (f is satisfiable in a tUmodel {with FSA) 
based on a flow of time Ŝ  iff (p^ is satisfiable in a topological VST-model 
{with FSA) based on S-

The two-dimensional character of spatio-temporal logics becomes even 
more apparent if we interpret spatial formulas of BUCC-S in rooted Kripke 
frames (S = (V,/?i,/iv) for S4« (i.e., where {V,Ri) is a quasi-order and ily 
is the universal relation on V). Let 5 = {W,<) be a flow of time. Then 
'P5T-formulas are interpreted in 3-frames of the form 

where Ĥ  x V is the Cartesian product of W and K, i.e., the set of all pairs 
{w,x), for ti; e Ĥ  and x € V, and the relations <", ^ i and Sy are defined 
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coordinate-wise: for all {wi^xi) and {w2,X2) in W x V, 

{Wi,Xi)<{W2,X2) 

{Wi,Xi)Ri{w2,X2) 

{Wi,Xi)R^{W2,X2) 

iff 

iff 

iff 

wi < W2 and xi = X2, 

wi = W2 and X1R1X2, 

Wi = W2. 

The temporal operators 5 and U are interpreted by means of the relation 
'<y while the interior and closure operators of S4,4 (into which we embed 
BTZCC-S) are interpreted by /?i, and the universal modalities of S4u by R\/. 
The frame 5 x © is known as the product of Kripke frames 5 = (^7 <) 
and 6 = {V,Ri,R\/). (Products of frames and the corresponding many-
dimensional modal logics are among the main topics of this book; we will 
introduce them in Section 3.3.) 

As we saw in Section 2.6, every Kripke frame © for S4,^ gives rise to 
a topological space Tijj. Similarly, every Kripke model (5 x (5,5J), where 
3̂  = (ly, <} is a flow of time and (6 = (V, Ri, R\/) is a rooted S4u-frame, can 
be transformed into a topological "PST-model {'S, ^Q^ , il) in which, for every 
propositional variable p, every w € W and every v € V, 

V e il(p, w) iff {w, v) e V{p). 

Now it is straightforward to prove the following: 

Proposition 3.6. For every VST-formula (̂ , if if is satisfied in the Kripke 
model {'S X 0 , ^ ) , then ip is satisfied in the topological VST-model (3^,^0,11). 

It is worth noting, however, that the sets of'P.ST-formulas satisfiable in the 
above Kripke models and in topological 'P5T-models turn out to be different. 
Consider, for example, the formula 

OpCp ^ COFP-

It is clearly valid in every Kripke model based on the product of a flow of 
time and a rooted S4t4-frame. On the other hand, we can refute this formula 
in a topological P5T-model: it suffices to take X = (R, 1} with the standard 
interior operator on the real line and the flow of time 3 = (N, <), then select a 
sequence Xn of closed sets such that UneN ^ ^ ^̂  ^^* closed, and put il(p, n) = 
Xn- As we shall see in Section 16.2, the two types of models are equivalent 
with respect to the modal translations of 5T2-formulas under the finite state 
assumption FSA. 

BTZCC-8 + AeiAS 

We conclude this section by showing how one can design a temporal extension 
of BTZCC'8 based on the interval approach to temporal representation and 
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reasoning. Such a combination may appear to be rather natural because the 
region-based approach to spatial reasoning closely mirrors the interval-based 
approach to temporal reasoning—they both take extended entities rather than 
points as primitives. 

Following (Allen 1984) we write HOLDS(v?, i) to say that a formula v? holds 
during a time interval i. For example, HOLDS(PO(X, Y), i) means that during 
interval i regions X and Y partially overlap. Let us call an ATICC-S formula 
any Boolean combination of atomic Aii'l3 formulas and formulas of the form 
H0LDS(v9,t), where v? is a BUCC'S formula. 

ATICC'8 formulas are interpreted in interval topological models which are 
triples of the form 9JI = (S ,̂T, a), where J = {W, <) is a strict linear order, 
T = (t/, n) a topological space, and assignment a associates with every interval 
variable i a non-empty convex set a{i) in J, and with every region variable 
X and every moment of time u it associates a regular closed set a(X, u) in 
T. Now, the truth-relation for the AU-13 atomic formulas is defined as in 
Section 2.2, and HOLDS((̂ , i) is true in 9JI iff for every point u G o(i) we have 
T !="« (f (as defined in Section 2.6). Here is a simple example of a formula of 
this unsophisticated language which holds in every interval topological model: 

meets(i, j ) A during(i, k) A during(j, k) 

A H01D5{TPP{Hong-Kong, UK) A EC{Hong.Kong, China), i) 

A HOLDS(DC(/fon(7.A:on(;, UK) J) 

A HOLDS(EC( UK, China) V DC( UK, China), k) 

-* HOLDS(EC(C//r,C/ima),0. 

By combining the translations * of Section 2.2 and -^ of Section 2.6, it is 
not hard to embed A7ZCC'8 into the language VST interpreted in topolo-
gical P5T-models based on arbitrary flows of time. Moreover, a combin-
ation of satisfiability-checking algorithms for AU-\3 and BTiCCS yields a 
satisfiability-checking algorithm for AHJCC-S, also showing that the satisfiab-
ility problem for AKCC-S is in NP. We leave details to the reader as an 
exercise. 

3.3 Products 
In the previous section we saw how spatio-temporal logics can be interpreted 
in products of certain frames. The formation of Cartesian products of vari-
ous structures—vector and topological spaces, algebras, etc.—is a standard 
mathematical way of capturing the multidimensional character of our world* 
In modal logic, products of Kripke frames are natural constructions allowing 
us to reflect interactions between modal operators representing time, space, 
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knowledge, actions, etc. Products of modal logics (i.e., the sets of multimodal 
formulas valid in products of Kripke frames for those logics) have been studied 
in both pure modal logic (see, e.g., Segerberg 1973, Shehtman 1978, Gabbay 
and Shehtman 1998, Marx 1999) and applications in computer science and 
artificial intelligence (see, e.g., Reif and Sistla 1985, Fagin et al. 1995, Baader 
and Ohlbach 1995, Reynolds 1997, Finger and Reynolds 1999) since the 1970s. 

Two-dimensional products 

We define the product of an n-frame ^i = (VFi, / ? } , . . . , /?5f) and an m-frame 
t?2 = {W 2̂i ^2» • •»^2*) ^ *^^ ^ "̂ m-frame of the form 

in which, for all ui,U2 € Wi and t;i,i'2 € W2, 

{ui,vi) R^ (u2, V2) iff uiR\u2 and vi =V2 (1 < t < n), 

{ui,vi) Ri {u2,V2) iff ui = U2 and V1R2V2 {I < j < m). 

Such a frame will be called a product frame. The subscripts h and v appeal 
to the geometrical intuition of considering the R\ as 'horizontal' accessibility 
relations in Ŝ i x52 and the i?j as Vertical' ones; see Fig. 3.2 for an illustration. 

Given a class Ci of n-frames and a class C2 of m-frames, we define their 
product C\ X C2 by taking 

Ci X C2 = {5i X 52 I 3̂ 1 € Cudt € C2}. 

Let Li and L2 be two Kripke complete multimodal logics formulated in 
languages £1 and £2- As in Section 3.1, denote by C\ <8> £2 the smallest 
multimodal language containing the language £ of classical propositional logic 
together with the disjoint union of the modal operators of £1 and £2. (For 
example, if £1 = MCn and £2 = MCm then £1 ^ £ 2 = MCn-k-m) We define 
the product of Li and L2 as the multimodal logic 

Li X L2 = Log(FrLi x FrL2) 

in the language £1 ® £2. In other words, Li x L2 is the set of £1 ® £2-formulas 
that are valid in all product frames 5i x 3̂ 2? where 5i is a frame for Li and ^2 
a frame for £2- For example, K^ x K ^ is the n + m-modal logic determined 
by all product frames 5i x ^21 where 5i is an n-frame and 'S2 an m-frame; 
S4 X S5 is the bimodal logic determined by all product frames 5i x 3̂ 2 such 
that 3i \= S4 and 3̂ 2 \= S5. 

It is worth emphasizing that in the definition of Li x L2 we take the 
classes of all Kripke frames for Li and L2. The reason is that the equalities 
LogCi = LogCj and LogC2 = LogC2 do not necessarily imply that 

Log(Ci X C2) = Log(Cj X C'2) 
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• • • 

5i 
U2 V2 

^ 2 

(ui,t;2) ^h (U2.V2) 
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UO / ^ # 
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<ui,vo> 

5l X52 

Figure 3.2: Product frames. 

(an example will be given in Theorem 7.11 of Section 7.2). Actually, instead 
of the classes of all frames for Li and L2 in this definition we can take the 
classes Fr^Li and Fr''L2 of rooted frames for Li and £2- Indeed, the inclusion 

Li X L2 C Log(Fr^Li x Fr''L2) 

is clear. To show the converse, suppose (f ^ Li x L2, i.e., (/? is refuted at a 
point {u,v) in some 5i x ^2 € FrLi x FrL2 under some valuation. Let C5i 
and ©2 be the subframes of 5i and ^2 generated by u and 1;, respectively. 
Then by Theorem 1.13 ©t h Li, for i = 1,2. On the other hand, it is readily 
checked that (81 x ©2 is isomorphic to the subframe of 5i x ^2 generated by 
(u,t;). It follows that (p ^ Log(Fr''Li x Fr''L2). Thus we obtain the following: 

Proposition 3.7. For all Kripke complete modal logics Li and L2, 

Li X L2 = Log(Fr''Li x Fr'*L2)-
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Products of logics always contain their fusions. Indeed, given a product 
frame 

dixd2^{WixW2,Rl...,R';i,Rl,...,R':;) 

and points x eWi, y e W2, we define 

W^ = {{w,y)\w€Wi}, 

W^ = {{x,v)\veW:,}, 

S;-" = Rin {Wf X Wf) (1 < i < n), 

Si''' = Ri n {W^ X Wf) (1 < j < m), 

and the 'coordinate-wise' frames 

5? = {wf, sl'y,..., s^'y), 51 = {w^, 5i•^..., 5---). 
Then for all x € M î, y € Ŵ2» the frames ^\ and 3̂ 2 stre isomorphic to 5i and 
ff2i respectively, and 

{W,xW2,Rl,..,R)i)= 5 ] ^ i ' ( i y i x W ^ 2 , f i i , . . . , f i r > = E ^2-

Now suppose that ^i \= Li (i = 1,2). Then, by Theorem 1.13, 5i x ^2 is a 
frame for the fusion Li 0L2 of Li and L2. Thus we have proved the following: 

Proposition 3.8. For all Kiipke complete modal logics L\ and L2, 

Li (8)1/2 ^ ^1 X i'2-

As we shall see in Section 5.1, this inclusion is proper: product logics al-
ways include certain interactions between the modal operators of their com-
ponents. Note, however, that the modal operators within each component are 
not affected by these interactions. More precisely, we have: 

Proposition 3.9. For any two consistent Kripke complete modal logics L\ 
and L2, their product Li x L2 is a conservative extension of both Li and L2-

Proof. Let (̂  be a formula in the language of Li such that ip ^ L\. Then 
3̂ 1 H= <P for some 3i |= ^ i - Take any frame ^2 for L2. It should be clear that 
3 i X 52 t^ ^, and so v? ^ Li X L2. • 

The following simple result showing that the product construction com-
mutes with the three basic operations on frames (see Section 1.4) will be often 
used in Part II. We leave the proof to the reader as an exercise. 
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Proposition 3.10. For all frames J , (6, 9), Sjiy i € / , the following hold: 
(i) If ^ is a p'tnorphic image of 9)^ then ^ x (& is a p-morpfiic image of 

ii X (3. 
(ii) If ^ is a generated sub frame of ?), then ^ x (6 is a generated sub frame 

off)X(6. 
(iii) If ^ is a disjoint union of f)i, i € / , then ^ x & is isomorphic to the 

disjoint union of S)i x (6, i € L 

Similarly to products of logics, one can also define products of consequence 
relations. Given Kripke complete modal logics Li and L2 formulated in lan-
guages £1 and £2? respectively, define the consequence relation HĴ ^x hj^^ 
between formulas in the language £1 (g) £2 by taking 

^{^^x \-'l^)ip iff for all models 9Jt based on a frame in FrLi x FrL2, 

S!Jt 1= ^ whenever Wl\= ip. 

A natural question arises then as to how "̂Î jX hj^^ relates to the global con-
sequence relation ~̂£,j xL2- Clearly, if Li x L2 is globally Kripke complete then 
hĴ jX hj^^ always contains •̂J ĵxLa- ^" f̂ ^̂ ' ^ ^^ ^^^'^ see in Theorem 5.12, 
in many cases they coincide. 

The reader should have no difficulties with defining products of logics in the 
languages MCu and MCsu (say, PTL x PTL, PTL x S5, Log5i^(N) x S42) 
by extending the definitions above in a straightforward way. 

Higher-dimensional products 
In principle, there are two ways of defining products of three or more modal 
logics. First, we can generalize in a straightforward way the definitions of 
the previous subsection. (To simplify notation, we consider here products 
of unimodal logics.) The product 5i x • • • x JJn of frames J i = (lVi,/?i), 
i = 1 , . . . , n, is the n-frame 

where, for each i = 1 , . . . , n, ^ i is a binary relation on Wi x • • x Wn such 
that 

( u i , . . . , u „ ) H i (t;i , . . . , t ;n) iff UiRiVi and Uk-Vk, ior k ^ i. 

Then, given Kripke complete (unimodal) logics Li {i = l , . . . , n ) , we define 
the product logic Li x • • x Ln as the set of all n-modal formulas that are valid 
in all product frames ffi x • • • x 5n such that 5t |= Li for every i = 1 , . . . , n. 
For example, K^ is the logic determined by all n-dimensional product frames; 
S5^ is the logic determined by all product frames J i x • • • x Jru where ^i |= S5 
for each i = 1, . . . , n . 
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The second way would be to define Li x • • x L^ as 

(((Li X L2) X i s ) X • • • X Ln-l) X Ln. 

The easily estabhshed fact that the frame 5i x * • x 3̂ n is isomorphic to 

( ( (J l x ; f 2 ) x 5 3 ) x . . . x S ^ n . l ) x Jn 

might seem to suggest that the two definitions are equivalent. However, the 
situation is not that simple. For example, it is an open question (asked by 
V. Shehtman) whether the equalities 

K ^ = K ^ x K and S5^ = S5^ x S5 

hold. The problem here is that K^ is characterized by the class of products of 
four 1-frames, while K^ x K by the class of products of arbitrary 3-frames for 
K^ and 1-frames for K. Now, the thing is that these arbitrary K^-frames are 
not necessarily isomorphic to product frames (in fact, we do not even know 
what they look like; see Theorem 8.29). 

For this reason, we take as the only ^official' definition of Li x • • x L ĵ 
the equality 

Li X • • • X Ln = Log(FrLi x • • • x FrLn)-

Note, however, that in Section 5.1 we provide a characterization of arbit-
rary (countable) fram<»s for K x K and S5 x S5 (among many other 2D 
logics), and prove—with the help of this characterization—that for many 
three-dimensional products the two definitions coincide. For instance, 

K^ = (K x K) X K, 

S5^ = (S5 X S5) X S5 

(see Corollary 5.11). 

Similarly to Proposition 3.7, we have: 

Proposition 3.11. For all Kripke complete modal logics L i , . . . , L„, 

Li X ' " X Ln - Log(Fr''Li x • • x Fr^'Ln)-

In particular, S5^ is determined by products of frames {Wi^Ri) where 
R^ = WiX Wi is the universal relation on Wi, for every i = 1 , . . . , n. Product 
frames of this kind will be called universal product S5^-frames. We denote 
such a frame by {Wi,... ,Wn) and sometimes call it the universal product 
frame onWi x •" x Wn- It is to be noted that each universal product frame 
(W^i,..., Wn) is a p-morphic image of a cubic universal product frame, i.e., 
a frame of the form {W,..., W). Indeed, it is easy to see that if a set W is 
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such that there are surjections /i : W —> H î, for i = 1, . . . , n, then the map / 
defined by 

is a p-morphism from the frame {W^..., Ŵ ) onto (Wi,. . . , Wn}- Such a set 
and surjections can be found, for example, by taking the disjoint union of the 
Wi as W and defining fi so that it is the identity map on Wi and arbitrary 
otherwise. Thus we obtain: 

Proposition 3.12. S5" is determined by the cubic universal product frames. 

Observe that the n-dimensionai analogs of Propositions 3.8 and 3.9 hold: 

Proposition 3.13. For all Kripke complete modal logics L i , . . . , Ln, 

Li (SI L2 (SI ' ' ^ Ln Q Li X L2 X • • X Ln-

Proposition 3.14. The product L\X " - x Ln of consistent Kripke complete 
logics L i , . . . , Ln is a conservative extension of each of them. 

Moreover, we also have: 

Proposition 3.15. Let Li , . . . ,Ln,I'n-i-i be consistent Kripke complete un-
imodal logics. Then the logic L\x - -x LnX Ln-f 1 is a conservative extension 
of Li X • " X Ln, ie.f for every MCn-formula (f, 

(f € Li X • " X Ln iff ^p e Li X " • X Ln X I/n-f 1. 

Proof. We prove this only for Lt =̂  L, i = 1, . . . , n, n 4-1; the general case 
is considered in a similar way. First, it is readily checked that for any n 4-1-
dimensional product frame 

^={WiX'"XWnX Wn^U ^ 1 , . . . , ^ n , ^ n + l ) , 

the projection map 

f{wi,...,Wn,Wn^\) = {wi,...,Wn) 

is a p-morphism from the 'n-reduct' 

5 ( n ) = ( M ^ l X"'^WnXWn^uRu...,Rn) 

of J onto the n-dimensional product frame 

Now suppose that (f € L̂ "*"̂  and (& is an n-dimensional product frame 
for L". As L is consistent and Kripke complete, there exists a frame 9) for 
L. Then the product J = © x î  is a frame for L^*^\ and so ff |= (̂ . Since 
5 - = 6, by the p-morphism theorem we finally obtain 6 |= v?. 

Conversely, suppose that (/? € L^, and let 5 be an n -f 1-dimensional 
product frame for L^'^^. Then clearly 5~ is a frame for L^, and so 5 |= V̂- ^ 
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Product logics were defined as sets of modal formulas that are valid in 
classes of product frames. It is important to stress that in general there are 
frames for product logics which are not product frames. Thus, in the case 
of product logics, it is meaningful to speak not only about the finite model 
property, but also about product finite model property: a product logic L has 
the product fmp if L is characterized by the class of its finite product frames. 
Note that by Proposition 3.13, for every product frame 3̂  = 5i x • • • x i?n and 
product logic L = Li x • • • x Z/„, 

5 1 = ^ iff 3̂ i N Li. for all 1 < 2 < n. 

Obviously, the product fmp implies the fmp. However, the converse does not 
hold: we shall see a number of counterexamples in Section 8.4. 

We can enumerate the formulas that are not in a product logic L (and 
thereby obtain a decision algorithm for L whenever L is recursively enumer-
able) if 

• L has the product fmp, and 

• finite product frames for L are recursively enumerable (up to isomorph-
ism). 

The latter property clearly holds if L is a product of finitely axiomatizable 
Kripke complete logics such as K, K4, S5, etc. However, not so many product 
logics enjoy the product fmp. 

We can say much more about countable product frames: 

Theorem 3.16. Let Li he a Kripke complete unimodal logic such that frLi 
is first'order definable in the language having equality and a binary predicate 
symbol Ri, for each i = 1 , . . . ,n . Then Li x •" x Ln is determined by the 
class of its countable product frames. 

Proof. For each t, let Fi denote the first-order theory defining FrLi. Extend 
our first-order language having equality and i ? i , . . . , J?n with n unary function 
symbols / i , . . . , /n- For each </> G Fi, denote by 0' the formula obtained by 
substituting fi{x) for all occurrences of each variable x in (j> {i = 1 , . . . ,n) . 
Let 

E = {0 ' | (A€F i , i = l , . . . , n}U{7r} , 

where TT is the following sentence: 

VxVy (/i(x) = fi{y) A • • • A /n(x) = fn{y) -^ x = y) A 

Vxi. .."^Xn^y (/i(t/) = xi A • • • A fn{y) = Xn) A 
n n 

/ \VxVy [xRiy ^ {fi{x)Rifi{y) A / \ fj{x) = f^{y))). 
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Now suppose that vp ̂  Li x • • x Ln, for some MCn-iortnula, (p. Then if is 
not true in a model 9Jt = (5,95) based on the product 5f i x • • x 5n of frames 
ŷ  = (VTt, 5t) such that Jft |= Fj for t = 1 , . . . , n. Take the first-order language 
having equality and fli,..., ^m /i» • • •»/n as above and also countably many 
unary predicate symbols Po, A» Define a first-order structure / of this 
language by taking 

/ = (VTi X . . . X Wn,5 i , . . . , 5n ,pr i , . . . ,prn,93(po),93(pi),...) , 

where pri : Wi x -" x W^ —• Wi are the projection functions. It is readily 
checked that / |= E. Since without the projections / is nothing but the modal 
model 9TI considered as a first-order structure (see Section 1.3), we also have 
/ t̂  Vx(/?*(x) (where if* is the standard translation of if). In other words, 
E' = EU {3x-i(^*(a:)} is true / . By the downward Lowenheim-Skolem-Tarski 
theorem, there is a countable first-order structure 

J = \W^ / ? ! , . . . , / ?„ , / i , . . . , / y j , P Q ,Pi , . . . ) 

such that J 1= E'. For each i = 1 , . . . , n, define 

Qi = Ri n (f/, X Ui), 

and for each j < 'JJJ 

Pf = {{f^iw),...,f;i{w))\wePf}. 

Since J |= TT, the map h{w) = {f\{w)^..., /^ (^)) is an isomorphism between 
J and the first-order structure 

r = ^t/i x . . . x f /n ,Q i , . . . ,Q n ,pr i , . . . , prn , P o^ ' , P / ' , . . . ) . 

Thus, r 1= E and P ^ \/xif*{x). Let 6^ = (Ui.Qi), i = l , . . . , n . Define a 
valuation 2IJ in the (countable) product frame 

(6 = 6 i X . . x ( » n 

by taking W{pj) = Pf for j < u). Then P without the projections is just the 
modal model 71 = (©,2D) considered as a first-order structure, and so (f is 
not true in 91. 

Note that in fact we have also proved that 

ip^LiX'XLn iff E|=Vx(^*(a:), (3.1) 

for any A^£n-formula (p. • 
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In many cases the product construction preserves recursive enumerability 
of the components: 

Theorem 3.17. Let Li be a Kripke complete unimodal logic such that FrLi 
is definable by a recursive set of first-order sentences in the language having 
equality and a binary predicate symbol Ri, for each i = 1 , . . . ,n . Then the 
product logic Li x - ' x Ln is recursively enumerable. 

Proof. We use the notation of the proof of Theorem 3.16. Since now the sets 
Ft are recursive, E is recursive as well. And since the consequence relation 
of first-order logic QCl is recursively enumerable, it follows from (3.1) that 
Li X • • • X L„ is recursively enumerable. • 

Modal description logics 

Section 3.8 
Chapters 14,15 

First-order modal logics 

( Modal products 1 

Sections 3.5,8.1 

Classical first-order logic 

Sections 3.6,3.7 

Sections 8.1,8.4 
Chapter 9 

Algebraic logic 

Figure 3.3: Products and other many-dimensional formalisms. 

Besides their obvious connection to fusions, products of modal logics are 
related to other many-dimensional formalisms considered in this book. We 
saw in Section 3.2 how they show up in spatio-temporal representation and 
reasoning. In the next section we shall see a family of temporal epistemic logics 
ranging from fusions to products. Fig. 3.3 indicates some other connections 
which will be discussed later on in the book. Product logics themselves will 
be investigated in detail in Chapters 5-8. 

3.4 Temporal epistemic logics 

A large family of combined modal logics has been constructed with the aim 
of formalizing the behavior of multi-agent systems; see, e.g., (Ladner and 
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Reif 1986, Lehmann 1984, Parikh and Ramanujam 1985, Sato 1977). In this 
section we briefly discuss the approach proposed by Fagin et al. (1995), which 
gave rise to various combinations of propositional temporal and epistemic 
logics ranging from fusions to products of these logics. 

Consider a certain system 6 about which we know only that the state of 
6 at each moment of time belongs to some set S of states. Suppose further 
that the flow of time is 3̂  = (T, <). Then every possible evolution of 6 over 
5 can be represented by means of a function / associating with each moment 
t e T the state f{t) € 5 of S at t. Such an / will be called a run over 5-
Thus, the collection of all possible runs over 5 is the set of all functions from 
r to5 . 

Example 3.18. We illustrate these concepts using the *multi-agent system' 
of three wise men from the *wise men puzzle' analyzed in Section 2.3. The 
^agents' of the system are the three wise men, denoted by 4̂, B and C. Each 
of them wears either a red or a white hat. Thus, for each D € {i4, B, C} we 
can define the set of (relevant) local states So of D as 

SD = {r,w}. 

The meaning of '£> is in state r' or *D is in state it;' is 'D's hat is red' or 
*Z)'s hat is white,' respectively. The set S of states of the whole multi-agent 
system is then the Cartesian product 

S = SA^SB^ SC-

A run / in this example is a function which associates with every moment 
of time t the distribution of the red and white hats among the wise men at 
t. As the king does not change the location of the hats, we may assume that 
each run in the wise men puzzle is a constant function associating with every 
f € T the same triple (ci, C2, cs) of colors. We will come back to this example 
later on in this section. 

Assume now that the states s e S come equipped with the set of classical 
propositional (i.e., nontemporal) formulas that are true in s. In other words, 
assume that there is a valuation 2J which associates with every propositional 
variable p the set of states 93(p) C 5 in which p is true. Now, for each run / 
over 5» we can define a valuation il/ over 5 by taking 

ii/(p) = {<€r | / (<)e5J(p)} 

for each propositional variable p. Then, for every A1£5M-formula ip, every 
moment t € T, and every run / over 5, we can define the truth-relation 

{tj)\=<fi iff (5 , i i / , t )Nv-



136 Chapter 3. Many-dimensional modal logics 

This formalism is nothing else but a special representation of the temporal 
logics discussed in Section 2.1. 

Example 3.18 (cont.) From now on, we assume that the flow of time T 
consists of the natural numbers N, i.e., ^ = (N, <) . At moment 0 the wise 
men do not answer questions: they observe the hats of each other. The first 
round of answers to the king's question happens at moment 1, the second 
round at moment 2, and so on. 

Assume that the respective colors of wise men A, B and C are /ii, /12 
and /13. Take a propositional variable p which intends to mean this. In other 
words, we have a valuation 93 in 5/^ x 5 B x Sc with 

« ( P ) = {(/11,/12,/13)}. 

Now, if fp denotes the run which is constantly (/ii,/i2,/i3) then {n,fp) \= p, 
for every n E N. 

As we see, the pure temporal perspective does not enable us to model the 
interesting part of the three wise men puzzle. Recall that the main ingredients 
in the analysis of this puzzle were statements of the form 'agent A knows that 
agent B knows ' So the question is how to represent within the temporal 
framework the fact that an agent Ai knows (/? at a moment t e T under the 
assumption that the evolution is represented by a run / . To put it another 
way, if we mix the temporal and epistemic languages then how shall we define 
the truth-relation ( t , / ) |= Oiif? 

In epistemic logic we defined Di(p to be true in a world w iff (f is true in 
every world which is considered possible by agent Ai. In the current frame-
work this means: \Ji(p is true in {f, / ) iff (p is true in {t\ f) for every moment 
t' and every run / ' that are regarded possible by agent Ai. Thus, in order to 
define a truth condition for (f, / ) [= Di(/?, we require accessibility relations Ri 
between pairs (^,/) and {^',/'). 

The following definition of the semantics for temporal epistemic logics with 
n agents should appear natural now. Suppose 5 is a non-empty set (of states) 
and 3̂  = (T, <) is a strict linear order. Suppose also that 7?. is a non-empty 
set of functions from T to 5 (the available runs over 5)j and let i ? i , . . . , /?„ 
be binary relations on T x 7?,. Then the tuple 

e = {^x7^, <,/?! , . . . , /?n> 

is called a temporal epistemic structure. A valuation 2J in S is a function 
from the set of propositional variables into the set 2^ of all subsets of S. The 
pair 971 = (S , 93) is called a model based on &. 

We will consider two modal languages interpreted in temporal epistemic 
structures: the language MCsu ^ MCn consisting of modal formulas with 
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the temporal operators S and U^ and the epistemic boxes Di , . . . , Dn, and its 
extension MCsu <S) MC^ with the common knowledge operators. 

Suppose 9JI = (6,5J) is a model based on a temporal epistemic structure 
6 = (T X 7?,, <, R i , . . . , i?n)- Define the truth-relation |= between elements 
of r X 7̂  and MC$u ® MC^'fovmnlm as follows: 

• (9H,(fJ))t=piff/W€53(p), 

• (an, (t, /)) h v̂  A 0 iff {m, {u / » N ^ and {t, /) h V̂, 

• (an, {t, /)) h -v̂  iff not (an, (t, /)) t= <f, 

• (an, (t, /)) 1= (fSi) iff there exists t' < t such that (an, (f, /)) |= t/̂  and 
(an, (s, /}) ^ (̂  for every 5 in the interval t' < s < t, 

• (2n, (t, /)) 1= (/?W^ iff there exists t' > t such that (an, (t', /)) |= ^ and 
(an, (s, /}) 1= if for every 5 in the interval t < 5 < t', 

• (an, (tj)) h Di^ iff (an, (f^f)) N V̂  whenever (t,/) /?, ( t ' , f ) , 

• (an, (t, /)) h CM<̂  iff (an, (t', /')) h (̂  when (t, /) ( U ^ M ^i)* (̂ '» /')• 

As usual, we say that (f is true in Tl (in symbols: an |= (f) if (an, (t, /)) \= ip 
holds, for every (t, /> € T x 71. 

For any epistemic logic L from the list Kn, Tn, K4n, S4„, KD45n, S5„ 
and any class C of strict linear orders, we let TEi^c denote the class of all 
temporal epistemic structures of the form 

(rx7l ,<, f i i , . . . , f in> 

such that (T, <) € C and (T x 7 ,̂ /? i , . . . , Rn) [=1 . If C consists of a single 
flow of time 5, then we write TSi^^ instead ofTSi^c The temporal epistemic 
logic determined by a class /C of temporal epistemic structures, 

in symbols, is the set of all MCsu ^ MCn-fotmnhs that are true in every 
model based on a structure in tC. The common knowledge logic ELog5^(/C) is 
defined analogously. 

The following result is a consequence of Theorems 4.1 and 4.12 stating the 
transfer of some properties under the formation of fusions. 

Theorem 3.19. Let L he one of the epistemic logics Kn, Tn, K4n, S4n, 
KD45n, S5n, and let 5 = (T, <) be a strict linear order. Then the following 
holds: 
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• The temporal epistemic logic ELog5j^(Tf L^^) coincides with the fusion 
of the temporal logic Log^if{^) and L. That is to say^ £V.og^n{T£i^:^) 
can be axiomatized by putting together the sets of axioms and inference 
rules for Log5j^(5) Qfid L. 

• ELog^if{T£L^^) is decidable whenever^ is one o/(N, <}, (Z, <) , {Q, <) 
or(R,<). 

The same results hold for the common knowledge extensions ELog^if{T£i^^) 
of these logics. 

Theorem 3.19 does not necessarily hold for classes C containing more than 
one flow of time. For example, while the formula 

DF-L -* ni{nF± V O F O F - L ) 

does not belong to the fusion liinsu 0 S5, it is easy to see that it belongs to 
ELog^if{T£s5,c)i where C is the class of all strict linear orders. 

By imposing various constraints on temporal epistemic structures, we can 
reflect sonie interesting features of agents; see (Fagin et al. 1995). Here are 
some examples. 

Synchronous systems 
A temporal epistemic structure 6 models agents who knov) the time if, for all 
t, t' e T, / , / ' 6 7̂ , and i < n, 

{tJ)Ri{t',f) implies t = t\ 

In other words, if Ai believes that at moment t relative to an evolution / 
the pair {t',f^) represents a possible state of affairs, then t = t\ So at each 
moment t the agents are assumed to know that the clock is at t. Systems 
represented by structures of this type are known as synchronous. 

In Section 13.1 we will show that many temporal epistemic logics determ-
ined by classes of synchronous systems are decidable by embedding them into 
decidable fragments of first-order temporal logics. 

Agents who know the time and neither forget nor learn 

A temporal epistemic structure models agents who do not learn if, for all 
agents Ai, f,f £11 and t, t' € T, we have 

{t, f) Ri {t\ f) implies V5 >t3s'> t' {s, f) Ri (5', / ' ) . 

Intuitively, an agent Ai does not learn if, whenever it regards it; as a possible 
state of affairs at moment t, then it regards lu as a possible state of affairs at 
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every moment 5 > ^ as well. Under the condition that agents know the time, 
this means that if agent Ai regards an evolution / ' as possible at t then it 
regards / ' as possible at every s > t. 

A temporal epistemic structure models agents who do not forget if, for all 
Ai, t,t' £T and / , / ' € 71, we have 

(f, / ) Ri (t', / ' ) implies V5 <t3s' < t' (s, / ) Ri {s\ f). 

The intuition behind this definition is dual to that behind the models for 
agents who do not learn. Systems of this type are known also as systems mth 
perfect recall. 

Observe that if a temporal epistemic structure models agents who know 
time, do not forget and do not learn, then, for all agents i4i, f,f' € T and 
/ , / ' € 71, we have 

(f, /> Ri (f', / '} implies t = f' and Vs (5, / ) Ri (5, / ' ) . 

Thus, 6 is isomorphic to the product of frames 5 = (r, <) and (7i, 5 i , . . . , 5n), 
where 

fSif iff 3<, <' 6 r {t, f) Ri (t\ / ' ) iff vt € r {t, f) Ri {t, / ' ) . 

Example 3.18 (cent.) Let us complete the analysis of the *wise men puzzle' 
by collecting first the information we already have. We hav:* a temporal 
epistemic structure 

e = (Nx7e,< , i?^, i?B,f ic ) , 

where 1Z is the set of all constant functions from N to {r, w] x {r, w] x {r, w]. 
(We will identify such a run / with its only value.) But what are the access-
ibility relations RA^ RB and /2c? There is also some model 9Jl = (©,93) 
with 

2J(p) = {(/ii,/i2,/i3)}, 

for some triple (/ii,/i2,/i3) of colors. For D € {i4,B,C}, we denote by Do 
the knowledge operator for agent D. Then the following should hold in 9Jl, 
for all / € 71: 

{QJ)\^UAPMUBP\/UCP, (3.2) 

(0, / ) H= 0{nAP V UBP V Dcp). (3.3) 

We show how to define—using some of our implicit assumptions—the relations 
RA, RB and Re in order to find out what (fti, /12,/13) should be. We assume 
that the wise men are logically omniscient, capable of positive and negative 
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introspection and that they know only true things. In other words, D^, D^ 
and Dc are S5-boxes, and so RA, RB and Re must be equivalence relations. 
Further, we assume that the wise men know the time and do not forget. 
Therefore, for every D e {A, B, C} , 

/?D = i^D U ^i ) U i?o U . . . 

where R^ (n < ct;) is a binary relation on the set {{^, /} | / G Tt) and 

RQ — ^D — ^D — • • • 

holds. 
Consider first the R^Q. Since all the three wise men see the other two, we 

have 

(0, (ci,C2,C3)} R\ (0, {c\,c'2,c^)) iff C2 = 4 and C3 = c'3, 

{0, (ci,C2,C3» R% (0, (c'l, c'2,c^)) iff ci = c'l and C3 = c'3, 

(0, (ci,C2, C3)> /??: (0, (c'l, 4 , 4 ) ) iff ci = c'l and C2 = 4 . 

Now state {r^w^w) has only one /?^-successor (itself), {w^r^w) has only one 
i?^-successor, and {w^w^r) has only one fi^-successor. Thus by (3.2), 2J(p) 
cannot have any of these states as its only element. Since all three wise men 
have this knowledge, R\) is defined as follows, for all D € {̂ 4, JB, C } : 

fR],r iS f = f or {fR%f and / ^ {{r^w.w), {w,r,w), <ti;,Ti;,r)}) 

(see Fig. 3.4). Therefore, by (3.3), the only possibility which remains for 

(ii;,r,r) 

— — — jb {r,r,w) • V- — — — — • (r,r,ti;) 
/ (r,r,r) / / {r,r,r) 

— — — •* •* • 
(r,ti;,r) ^ (r,u;,t£;) (r,iy,r) 

Figure 3.4: The relations R% and R]^. 

9?(p) is {{r,r ,r)}, since every other state has only one i?}j-successor for some 
D e {A, B, C}. This also shows that 

fRif iff / = r 
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must hold for all n > 2. Note that while the wise men do not forget, they do 
learn (at least at the beginning) because 

f o r a l l D € { i 4 , B , C } . 

3.5 Classical first-order logic as a propositional 
multimodal logic 

As we saw in Section 1.3, the standard translation, mapping the modal oper-
ators to the corresponding first-order quantifiers, embeds propositional modal 
logic S5 into classical first-order logic. Moreover, the inverse map is an em-
bedding of the one-variable fragment of first-order logic into S5. A natural 
question arising in this situation is whether we can generalize the inverse trans-
lation by considering quantification over each variable as a new modal oper-
ator and thereby representing full first-order logic as a propositional modal 
logic. The idea of such a *modal approach' to first-order logic was suggested 
by Quine (1971) and Kuhn (1980), and fully realized by Venema (1991). On 
the other hand, 'approximating' first-order logic with logical systems of pro-
positional character was an important motive in the algebraic treatment of 
classical first-order logic; see the work of Tarski and his school (Halmos 1962, 
Henkin et al. 1971, 1985, Craig 1974, Blok and Pigozzi 1989, Nemeti 1991, 
Andreka et al. 2000). 

In this section we exploit this idea to establish connections between clas-
sical first-order logic and products of propositional S5. 

Let us fix a natural number n > 0 and consider the sublanguage rQC^ 
of the n-variable fragment of QC which contains no individual constants and 
whose atomic formulas are of the form P(a;o,... , a;n-i)» where P is an n-ary 
predicate symbol and XQ, . . . ,a:n-i are the first n individual variables (r in 
rQC^ stands for 'restricted'). 

Note that by allowing atomic formulas of the form P(xo,..., Xn~ i) only, we re-
strict the expressive power of the n-variable fragment of QC. As was observed 
by Tarski, if we extend the language with equality then variable substitutions 
Hke P{xoyXo,X2i... ,a:n-i) become expressible in rQC^: 

P{xo^Xo^X2y>'>Xn-l) ^ Bxi{xo = Xl A P{X0yX\^X2y. >.yXn^l))' 

However, even with the help of equality, variable interchanges like 

P(a:i,a:o,a:2,...,a?n-i) 

are expressible only by using an extra n -f 1st variable; see (Henkin et al. 
1985). 
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Define a translation •* of rQ£'^-formulas into the multimodal language 
MCn by taking 

Pi(xo, . . . ,x„_i)* = Pi 

{\fxiijy = Di^itl^^ ( i < n ) , 

{3xitpy = Oi+ixp^ {i < n). 

Every rQZ '̂̂ -structure / = (D^,P((,.. .) can be considered then as a modal 
model m{I) = {{W, i?o,.. •),93), where 

• IV is the set of all variable assignments in / , i.e., the set of all functions 
from the variables xo , . . . ,Xn-i into D^; 

• aRih iff a{xj) = b{xj) for all variables Xj different from Xi, i < n; 

• 5j(pi) = p,'. 

It is not hard to see that for all rQ£"-formulas (p, rQ£^-structures / , and all 
assignments a in / , we have 

/ H V iff (an(/),o)hy*- (3.4) 

The set W of all assignments in / can be regarded as the n}^ Cartesian power 
of the domain D^. The underlying frame of 9Jl(/) then turns into a product 
frame for S5^: the nth power of the Kripke frame {D^ ,S), where S is the 
universal relation on D^. 

Conversely, we can turn every modal model Wl = (5,93) based on a cubic 
universal product S5^-frame 5 = {W, W, . . . , W) into the first-order structure 

/ (9JI) = ( H / , . . . , / > ^ W , . . . ) , 

where P^^ ^ = 93(pi) for each i. Then for all rQ£^-formulas (p and all worlds 
{wi,..., i^n) in 5 we clearly have: 

im,{wi,...,Wn))\=ip' iff im^<p[wi,...,Wn]. (3.5) 

According to Proposition 3.12, SS'̂  is determined by the class of cubic uni-
versal product frames. Thus, by (3.4) and (3.5), for every rQ£"-formula ip, 
we obtain 

ipeQCl iff ( ^ • G S 5 " . 

This equivalence shows that, since the translation * is clearly onto the set of 
A^£„-formulas, the logic S5^ can be regarded as the n-variable ^substitution 
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/nee* fragment of classical first-order logic. To put it in another way, the fol-
lowing inverse translation, mapping A^£n-formulas to Q£-formulas, extends 
Wajsberg's map ^ (see the end of Section 1.3) and embeds S5^ into QCl: 

Pi = Pt(xo,. . . ,a;n~i), 

{(f Aip)^ = ip^ A V'^ 

(-,(^)t = -.^p\ 

(DiV^)t = Vxi-iV^t (i = l , . . 

(Oal))^ ^ 3xi^itP^ (i = l>.. 

. , n ) , 

. , n ) . 

We shall return to interconnections between classical first-order logic and 
modal product logics in Sections 8.1 and 9.1. The reader can find more 
information on algebraization and modalization of other versions of first-order 
logic in (Andreka et al. 2000, Blok and Pigozzi 1989, Marx and Venema 1997). 

3.6 First-order modal logics 

After the previous section it should not come as a surprise that we intro-
duce first-order modal logics here, in the chapter on many-dimensional sys-
tems, rather than in Chapter 1 dealing with basic modal logics; the more so 
that first-order modal logics can be regarded as combinations of propositional 
modal logics with classical first-order logic. Many interesting features of the 
resulting systems arise because of subtle interactions between the quantifiers 
and the modal operators independently of the underlying modal logic. It is 
in fact the 'combined system' aspect that makes first-order modal logic so 
exciting. To illustrate this claim, let us consider two formulas 

D3xip{x) and 3xn(p{x). 

Under the epistemic reading of D, the former formula means that the agent 
knows that there exists an x to which (f applies, while the latter means that 
there exists an x for which the agent knows that y? applies to x. For example, 
suppose (p{x) stands for 

^x is the telephone number of Mary.' 

Then the former formula is true if the agent knows that Mary has a telephone, 
while the latter one is true if the agent knows the telephone number of Mary. 
(In the former case D is called a modality de dicto and in the latter a modality 
de re.) 

Our first-order (or quantified) modal language QMCi is based on the al-
phabet of QC (Section 1.3) extended with the necessity operators D i , . . . , D^, 
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for / > 1. The formulas of QMCi are defined using the formula-formation 
rules of QC together with the rule for the Dii if (̂  is a QMCi-formnla. then 
so is ni(f, for every i, 1 < i < /. As in propositional modal logic, we regard 
Oitp as an abbreviation for -"Di-K^ and write QMC for QMCi. 

Another reason to consider first-order modal logics in this chapter is that 
their models are in a sense two-dimensional. Actually, there is a spectrum 
of different semantics for first-order modal logics. In this book we will be 
considering perhaps the simplest one of them. It was first introduced by 
Kripke (1963b) and is characterized by 'constant (or common) domains' and 
*rigid designators.' More precisely, we interpret QMCi in first-order Kripke 
models which are structures of the form 9Jl = (5, D, / ) , where 

• 5 = (W,i?i,.. .,jR/) is an /-frame (the Ri being binary relations on a 
nonempty set of worlds W), 

• D is a nonempty set, the domain of 9Jt, and 

• / is a function associating with every world w e W a. first-order QC-
structure 

such that P^ ^^\ for each i, is a relation on D of the same arity as Pi, 

and q is an element in D such that c^ = c/^^ for all u,v eW. 

(As before, we say that 9Jl is based on 5 or that 5 is the underlying frame of 
OT.) To simplify notation we will omit the superscript / and write P^̂ , cj", 
etc., if this does not cause ambiguity. 

An assignment in D is a function a from the set of individual variables to 
D. The value r̂ '** of a term r in 971 under the assignment a is a{x) if r is a 
variable x, and (the unique) ĉ ^̂ ^ if r is a constant c. 

According to the given definition, our models have rigid designators in the 
sense that they interpret each term (a constant or a variable) by the same 
element of D in all worlds of W. Under the temporal interpretation (see 
Section 3.7) of the modal operators this means that the names of objects do 
not vary in time so that we can refer to an object by its name even if it does 
not exist yet (or does not exist any more). Under the epistemic interpretation, 
rigid designators mean, in particular, that we assume all agents to know which 
object a constant denotes. It is to be noted that, from the technical point of 
view, not too much will change if we consider models with nonrigid constants 
(but not variables)—to allow names like the Queen to denote different objects 
at different moments of time. 

The truth-relation (OT, w) |=** v? (or simply w |=** (p, if 971 is understood) 
in the model 971 under the assignment o is defined by induction on the con-
struction of ip in the following way: 
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• w h " Piiru. ..,Tn) iff ^ r - ^ ' ° , . . . , r f ' « ) € PI^""^ (this fact will also be 

written as I{w) |= P i [ r f ' " , . . . , r f ' « ] ) ; 

• w \=^^ xp Ax'iS w [=^ ip and ti; [=** xi 

• ti; |=° -11/; iff not w |=" V̂ ; 

• ti; |=:« VxV̂  iff It; 1=̂  t/̂  for every assignment b in D that may differ from 
a only on x; 

• w \=^ Diif iff t; |=" (̂  for all t; E W such that wRiV. 

We say that a formula (p is true in OTt if (9Jl, w) |=° (̂  holds for all assignments 
a in D and all worlds w in W. The set of Q>f £/-formulas that are true in all 
models is denoted by QK^ {quantified Ki). In general, given an /-modal logic 
L, we denote by QL the set of QA^£/-formulas that are true in all models 
based on frames for L. For instance, QT/, QK4; and QS4^ are the sets of 
QA^£/-formulas that are true in all models based on reflexive, transitive and 
quasi-ordered frames, respectively. 

The models introduced above are known as models with constant domains. 
In other words, we make the constant domain assumption. Under this assump-
tion all constants and variables do denote some objects, and the quantifiers 
range over the same domain everywhere in the model. It follows immediately 
that the resulting logic is a conservative extension of classical predicate logic 
QCl. (Note that under the epistemic interpretation of the modal operators 
the constant domain assumption says that the domain is common knowledge.) 

However, the defined semantics is just one of a dozen possible alternatives. 
Imagine, for example, that we deal with a temporal interpretation of the modal 
operators. Then our everyday life experience suggests the following: 

1. The domains of I{w) can all be different for different w^ because their 
elements can 'die' and 'be born.' 

2. When we name an element x then its name is a rigid designator whenever 
X exists. 

3. Predicates at moment w can apply to elements not existing at w. We 
are all familiar with young expectant parents talking about their babies 
(yet to be born), buying things for them, or similarly talking about their 
dead parents, etc. 

This leads us to models with varying (or changing) domains which contain 
one more function D associating with every world w £ W SL nonempty set 
d{w) C D—the existing elements in w—such that D = M X){w). The only 

wew 
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difference in the definition of the truth-relation above is in the truth-condition 
for Wxi/j, which now looks as follows: 

• w \=^ Vxt/; iff la \=^^ V' for every assignment b that may differ from a 
only on x, provided that b{x) € d{w). 

Thus, d{w) is regarded as the *true' domain of I{w), The set of QMCi-
formulas that are true in all models with varying domains under all assign-
ments will be denoted by Q^K ,̂ quantified K/ with varying domains. It is 
worth noting that Q^K/ has a number of ^unorthodox' properties. For ex-
ample, neither 

WxP{x)^P{c) nor VxP(x)-^ P(y) 

belongs to QvK/ simply because there may be a world w such that P^ = D(w), 
but c^ ^ d{w) and a{y) ^ d{w). This means, in particular, that Q^K/ does 
not obey the principles of classical first-order logic. Various authors have 
regarded this as an argument against the semantics defined above (see, e.g., 
Garson 1984). The interested reader can find various alternative approaches 
to the semantics of first-order modal logics in (Garson 1984, Hughes and 
Cresswell 1996, Fitting and Mendelson 1998). 

One way to 'repair' Q^K; is to require that 

• c/^^ G d{w) for every w eW and every constant Ci 

and to modify the notion of truth in a model by saying that a formula -p is 
true (satisfied) in a model 3Jl with varying domains if (971, ti;) \=^ tp holds for 
every (some) w € W and every (respectively, some) assignment a in D such 
that a(x) € X){w) for all individual variables x. The set of QA^£/-formulas 
that are true in all 'repaired' models with varying domains will be denoted 
by Q^K/. By definition, 

if e Q^K, ifl̂  Vxi . . . VxnV? e Q'^K/, 

for any QA^£/-formula (p and list x i , . . . ,x„ of all variables which occur free 
in (f. It is easy to see that Q^K/ is a conservative extension of QCl and that 
Q^Ki and QvK/ contain precisely the same constant-free sentences; however. 

Two other important classes of models consist of models with expanding 
domains and with decreasing domains, i.e., models with varying domains in 
which D(u) C d{v) or d{u) D d{v) whenever uRiV, respectively. Under the 
'old' understanding of truth, these models also give rise to some unorthodox 
properties. For instance, the formula VyD(VxP(x) -> P{y)) is true in all 
models with expanding domains, while D(VxP(x) —• P{y)) is not (contrary 
to the classical principle (p € QCl iff Vx(̂  G QCl). As mentioned above, this 
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does not happen under the new definition of truth, which will be considered 
as the only 'official' definition from now on. 

Actually, later on in this section we will show that both varying and ex-
panding domains can be reduced to constant ones, at least as far as the 
decidability of (fragments of) the logics in question is concerned. For that 
reason we will mostly be considering models with constant domains. 

On the syntactic level, the difference between the domain assumptions can 
be captured by the Barcan formulas 

and the converse Barcan formulas 

It is not hard to see that the Barcan formulas are true in all models with 
decreasing domains (but refuted in a model with nondecreasing domains), 
while the converse Barcan formulas are true in all models with expanding 
domain (and refuted in a model with nonexpanding domains). So, both types 
of Barcan formulas are true in models with constant domains. 

The (converse) Barcan formulas can be used to axiomatize QK/: it can be 
represented by the calculus containing all the axiom schemata and inference 
rules of classical predicate calculus, the Barcan and converse Barcan formulas, 
the modal schemata 

Di(^ -^ V̂ ) ~> (Div? --̂  UiXl)), 

for 1 < i < /, and the necessitation rules v?/DtV?. 
By adding to QK the standard modal axiom schemata of T, K4, S4 

we obtain modal predicate logics QT, QK4, QS4 (see, e.g., Hughes and 
Cresswell 1996). 

Let us now see how satisfiability in models with varying and expanding 
domains can be reduced to satisfiability in models with constant domains. 
Let v? be a QA^£/-formula, and let E{x) be a unary predicate symbol which 
does not occur in (̂ . By induction on the construction of y? we define its 
relativization if IE: 

Pi{Tu...,Tn)lE = Pi(ri , . . . ,rn), 

( ^ A x ) l ^ = {^iE)A{xiE), 

(^xl^)iE = - (01E) , 

(ixi^)iE = ^x{E{x)-^{rPlE)), 

{DirP)iE = DiitPlE) (i = l , . . . , / ) . 

As before, we denote by md{ip) the modal depth of (̂ , i.e., the maximal 
number of nested modal operators in (p. 
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Proposition 3.20. Let ip be a QMCi-sentence, ci , . . . ,Cn all the constants 
occurring in (f and E{c) = E{ci) A • • • A E{cn)' Then for any Kripke frame 
^ = {Wj/?!,...,Ri)j we have 

(i) (f is satisfied in a model based on 5 and having varying domains iff 

iflEA Mfi:^'^^'^\3xE{x) A E{c)) 

is satisfied in a model based on 5 and having constant domains; 
(ii) If is satisfied in a model based on 5 and having expanding domains iff 

if'= if IE A 3xE{x) A E{c) A M§|"^^^Vx(J5;(a:) -^ / \ DiE{x)) f<md{(p\ 
fJL\JJJ\JLJ ' 

i= l 

is satisfied in a model based on 5 ciTid having constant domains. 

Proof. We prove only (ii), leaving the simpler case (i) to the reader. Assum-
ing that (f is satisfied in a model 971 = (3 ,̂ D,D,/} with expanding domains 
and that 

I{W) = {D,P^^-\...,4^'"\..) 

for w e W, we construct a model 91 = (5i D, J) with constant domains by 
taking 

J{W) = {D,E-'^^\P^^'"\...,4^'"^ ) , 

where E'^^^^ = d{w). It is readily checked by induction that {DJl.w) j=" ij^ 
iff i^yw) \=^ i^ I E, for every w e W, every subformula xl) of (̂ , and every 
assignment a in X){w), It follows that ^p' is satisfied in ^ . 

Conversely, suppose ( '̂ is satisfied at root T; of a model 9t = (5, D, J) with 
constant domains and 

for w £W. Consider the model 9Jl = (5, D, D, / ) such that 

for all t/; € W, ^{w) — E^^^"^ whenever w is accessible in < md{(f) steps from 
V (via the relation Ui<i</^i) ^^^ ^(^) — ^ otherwise, c/^^ = c/^^ if Ci 
occurs in ip and c / ^ is an arbitrary element of D(i;) otherwise. By the fourth 
conjunct of y?', 9K has expanding domains. Now, using that the truth-value 
of (̂  at t; depends only on the worlds accessible in < md{(p) steps from v, one 
can easily show by induction that (p is satisfied at i; in 9JI. Q 



3.6. First-order modal logics 149 

The connection between products S5^ and classical first-order logic QCl 
we established in Section 3.5 suggests that modal product logics of the form 

n 

L X S5 X . . . X S5 

can be reduced to the n-variable fragments of first-order modal logics QL 
(with constant domains). Indeed, fix some natural number n > 0 and take 
the sublanguage rQMCf of the n-variable fragment of QMCi which con-
tains no constant symbols and whose only atomic formulas are of the form 
P(xo , . . . ,Xn-i), where P is an n-ary predicate symbol and XQ) • • •)oCfî i are 
the first n individual variables. The translation ^ from MCn onto rQC^ 
defined in Section 3.5 can be extended to a translation from MCi+n onto 
rQA1£[*-formulas by taking 

Pj = P t ( x o , . . . , X n - i ) , 

{if A t/̂ )̂  =^ (f^ Arp\ 

(-n(p)t = -n^^ 

(DiV )̂̂  = Dit/^^ f o r i - l , . . . , / , 

(D^-^)^ = Vxj-/>lV^^ for j = / + 1 , . . . , / + n. 

An argument similar to the proof of Proposition 3.12 shows that the product 
logic L X S5 X • • X S5 is determined by product frames of the form 

© = 5 X (D, D X D> X . • X (D, D X D>, 

where J = {W, / ? i , . . . , /?/) is a frame for L and D is a nonempty set. Now, 
(propositional) Kripke models (6,9J) based on such a product frame (25 and 
first-order Kripke models of the form (5, D, /> are in one-to-one correspond-
ence with each other: 

{w,au...,an)£V{pi) iff ( a i , . . . ,an) € / ^ ^ ^ ^ \ 

for all propositional variables pi^ w e W and o i , . . . ,an € D. It should be 
clear that in fact, for all Al£/4-n-formulas (f^ we have 

( ( (5 ,5J) , ( t i ; , a i , . . . , a„) )hv^ iff ((J, A / ) ,tz;) h V ^ 

where a is the assignment in D such that a{xi) = a^+i (i < n). As a con-
sequence we obtain the following: 

Theorem 3.21. Let L be a Kripke complete l-modal logic. Then for every 
MCi^n-formula (f. 

V? e L X S5 X • • X S5 iff (p^ e QL. 
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This observation will be used in Section 8.4 (Theorem 8.35) to show the 
undecidabihty of the two-variable fragment of any logic between Q K and 
QS5. 

First-order epistemic logics 

Let us now have a closer look at the interaction between modal operators and 
quantifiers in epistemic logics with common knowledge operators. Denote by 
QMC^ the language of modal predicate logic with epistemic operators Di, 
1 < i < n, and common knowledge operators C M for all nonempty subsets 
M of { 1 , . . . ,n} (see Section 2.3 for the propositional case). For a proposi-
tional logic L e {Kn, Tn, K4n, S4n, KD45n, S5n}, let Q L ^ be the first-order 
epistemic logic which consists of those QA^£^-formulas that are true in all 
first-order Kripke models based on frames for L and having constant domains. 

Note that unlike standard first-order modal logics like QK„ and QS4y^, 
which can be axiomatized in a natural way by putting together the axioms of 
their propositional fragments and those of QCl, first-order modal logics with 
common knowledge operators behave quite differently. The following result 
of (Wolter 2000a) will be partly proved in Section 12.1: 

T h e o r e m 3.22. Let L € {Kn,Tn ,K4n,S4n ,KD45n,S5n} , where n > 1. 
Then QL^ is not recursively enumerable. 

First-order epistemic logic has found interesting applications in game the-
ory; see, e.g., (Kaneko and Nagashima 1997) and references therein. A static 
noncooperative strategic normal form 2-person game G consists of two agents 
(or players), say, 1 and 2. The players have finite sets Si = {«},••. ,5/(1)} 
and 52 = {sf,. . . , sff2)} ^^ actions, respectively. Payoff functions Ui, i = 1,2, 
from S = Si X S2 into the set of rational numbers determine the payoff of 
the players: 1*1(51,52) is the payoff of player i when player 1 performs action 
si £ Si and player 2 performs action S2 € S2. 

Here is a variant of a game known as Prisoner's Dilemma (Gibbons 1992). 
Two partners in a crime (the players in this game) have been captured, placed 
in separate cells and offered an opportunity to confess. Their actions can be 
^confess^ and ^not confess."^ The payoff functions are defined as follows. If 
neither suspect confesses, they go free and split the proceeds of the crime 
(which we represent by, say, 5 units of utility). If one player confesses and the 
other does not, the one who confesses testifies against the other, and so goes 
free and gets the entire 10 units of utility. The other prisoner goes to prison 
and gets nothing. If both prisoners confess, then both are given a reduced 
term, but both are convicted (which we represent by 1 unit of utility). The 
following table summarizes the definition: 
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1 not confess 
confess 

not confess 
(5,5) 
(10,0) 

confess 
(0,10) 
(1,1) 

For an intelligent individual it is always best to confess: if his partner does 
not confess, he receives 10 units (instead of 5) and if the partner confesses 
as well, he receives 1 (instead of 0). (Note however, that for the common 
good it would be better if neither of them confessed. This conflict between 
the pursuit of individual goals and common good is the driving force behind 
many game theoretic problems.) 

The argument above is formalized by the notion of Nash equilibrium (Nash 
1991): the strategy (si,S2) is a Nash equilibrium for G if 

tii(si,S2) > ui{s,S2) and ^2(51,52) > ^2(^11«') 

for all actions s and s' of players 1 and 2, respectively. The Prisoner's Dilemma 
has precisely one Nash equilibrium: (confess, confess). 

Not all games have a Nash equilibrium in this sense. However, extended 
to mixed strategies (which are probability distributions over the sets of ac-
tions Si—modeling, for example, that you flip a coin to choose an action), 
Nash equilibria (which are now defined via the expected payoff) exist for any 
game. In fact, for every game G with strategies 5i = {^h • • • ^ ^ / Q J and 
•52 = {̂ i» • • -^^ i^)} ' ^^^ ^^^ construct a formula denoted by NashGr(x,|^), 
where (x,y) = ( x i , . . . ,x/(i) , t / i , . . . ,t//(2)), such that 

(R,. . . ) 1= Nashclai , . . . , a/(i), fei,..., 6̂ (2)] 

holds iflt the probability distributions Pi(sj) = Oj and ^2(5^) = bj define a 
Nash equihbrium for G. Here NashG(^»|/) is a first-order formula in the lan-
guage of real closed fields, and (R,. . .) is the standard model for this language 
based on the real numbers. (Our first-order language QC does not contain 
function symbols of arity > 1, so operations like ' + ' should be represented 
by appropriate predicate symbols.) The reader can consult (Kaneko and Na-
gashima 1997, Wolter 2000a) for details of the construction. 

Now, in the epistemic analysis of games one has to be aware of the differ-
ence between C(i,2}3x3yNashG(^,y), which states that it is common know-
ledge among the two players 1 and 2 that game G has a Nash equilibrium 
(knowledge de dido), and 3x3yC{i^2}NashGr(^,^), which says that at least 
one Nash equilibrium for G is common knowledge among 1 and 2 (know-
ledge de re). Knowledge de re is useful for playing the game, while knowledge 
de dido is not. Actually, it turns out that the relation between these two 
assertions depends on the formal representation. For example, assume that 
mathematics is common knowledge and that both players know the game. 



152 Chapter 3. Many-dimensional modal logics 

One possibility to formalize this assumption is to accept 

C{ l ,2}Vx(q i ,2}P(x)^P(x) ) , 

for every ^mathematical predicate' P (say, the ternary predicate for '-f') and 
to assume that the constant symbols representing the payoffs 1*1(51,52) are 
interpreted globally. The last condition need not be added explicitly, since 
it is *built into' the semantics of constants. What are the consequences for 
^common knowledge about Nash equilibria'? Since all relevant predicates are 
global, there is no difference between de re and de dido knowledge! The two 
formulas are equivalent. 

The outcome is completely different if another natural interpretation of the 
phrase 'mathematics is common knowledge' is chosen. This time we formalize 
this by the assumption that the theory of real closed fields is common know-
ledge without requiring that the mathematical predicates are global. So, we 
just accept 

{C{i,2}V^ I V̂  € $ } , 

where $ is an axiomatization of the theory of real closed fields. Under this 
formalization, it is common knowledge that every game has a Nash equilibrium 
(since, according to (Nash 1991), every game has a Nash equiUbrium in R 
and the theory of real closed fields is complete (Tarski 1948)), but it does 
not follow that a Nash equilibrium is common knowledge; see (Wolter 2000a) 
for details. The following result illustrates formally the fact that common 
knowledge about theories implies common knowledge about objects only if 
these objects are denoted by global constant symbols: 

Proposition 3.23. Let L € {K2,T2,K42,S42,KD452,S52}. Suppose that 
(f{x) and tp are QC-formulas {without epistemic operators), x is the only free 
variable in (/?, and tp is a sentence. Then C{î 2}V^ ~^ 3xC{i 2}V (̂̂ ) ^ QL^ iff 
there exists a constant c such that ip -^ ip{c) is in classical logic QCl. 

Proof. The implication (<=) is clear because constants are interpreted glob-
ally. Conversely, suppose there is no constant c such that ip —> ip{c) e QCl. 
Then for each constant c we have a Q£-structure 

/(c) = (APo'^'=\...,ci(^...) 

such that I{c) ^ V̂  —> <^(c), where D is the set of all constants and c/^^ = Ci 
for all c G D (such a term model exists, since QC does not contain equality). 
Define OTl = (d^DJ) by taking ^ = (D,/?i,H2), where Ri = R2 = D x D. 
Then c\= ip and c ^ ip{c) holds for all ce D. Soc\= C{i,2}V''^~'3xC{i^2}^(^) 
for allceD. ' Q 
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A detailed discussion of alternative formalizations and the connection with 
issues in the philosophy of mathematics lies outside the scope of this book. 
We just wanted to show that the interaction between quantifiers and epistemic 
operators is not as simple as it may appear when only 'telephone numbers' 
are considered. 

First-order dynamic logics 

First-order dynamic logic has a flavor that is quite different from first-order 
modal logic and even propositional dynamic logic: its modal operators are 
not constructed from abstract atomic programs, but from concrete programs 
of the form x := r which assign the value of a term r to a variable x. The 
worlds (or states) of models of standard dynamic logics consist of structures 
interpreting first-order logic together with assignments of values to variables. 
The accessibility relation interpreting the program x := r consists of all pairs 
(01,02) of assignments such that 02 is obtained from ai by taking 02(2:) = 
Oi(r). Obviously, this language allows for natural representations of many 
concrete programs; we refer the reader to (Harel et al. 2000) for details. 
First-order dynamic logic in this sense is outside the scope of this book. 

The languages QVC ('quantified VVC) and CQVC ('quantified CVVC) 
we consider here extend WC in the same manner as first-order modal logics 
extend propositional modal logics. We will use logics based on these languages 
as expressive formalisms into which other logics (like first-order epistemic or 
temporal logics) can be embedded. For simplicity, we will not even allow for 
the test operator '?'. Thus, the modal operators of QVC are composed from 
abstract atomic programs a o , a i , . . . by means of ;, U, and *. In CQVC we 
allow for the converse operator as well. Now the syntax and semantics of 
QVC and CQVC are defined in the obvious manner. By QDL and CQDL 
we denote the respective sets of valid formulas. As in the propositional case 
(Theorem 2.39), all first-order epistemic logics can be embedded into CQDL: 

Theorem 3.24. Let L G {Kn,Tn,K4n,S4n,KD45n,S5n}. Then QL^ is 
polynomially reducible to CQDL. 

First-order intuitionistic logic 

As its propositional fragment Int, first-order intuitionistic logic QInt was 
originally constructed by Heyting (1930) in the form of an axiomatic system 
reflecting the constructive proof interpretation of the propositional connect-
ives ~>, A, V, 1 (see Section 2.7) and the quantifiers: 

• a proof of 3xip{x) is a construction presenting an object a together with 
a proof of (fi{a)] 
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• a proof of Vx(^(x) is a construction which, given an object a as an input, 
returns a proof of < (̂a). 

Similar to the propositional case, such a system can be obtained from the 
classical first-order calculus of Section 1.3 by deleting the law of the excluded 
middle (AlO). 

Intuitionistic first-order Kripke models can be defined as a special case of 
first-order modal Kripke models: they are of the form 

where 

• 3̂  = (VK, R) is an intuitionistic frame, i.e., fl is a partial order on W, 

• J is a function associating with every w eW a first-order Q£-structure 

I{w) = {D,Pi^-\,,,,ci^-\,,) 

such that cl^""^ = cl^""^ for all u.veW, 

• 9JI has expanding domains, i.e., D(u) C d(v) whenever uRv, 

• c^^^ € D(it) for every u £W, 

• the truth of predicates is preserved in all accessible worlds, i.e., for every 
n-ary predicate symbol P, if uRv then P (̂̂ ) C P^(^). 

An assignment in D is a function a from the set of individual variables to 
D, The value r^'° of a term T in 9Jl under the assignment a is a{x) if r is 
a variable x, and (the unique) c^^^^ if r is a constant c. The truth-relation 
(9Jl,it;) |=" (f (or simply w \=^ (f) is defined as follows: 

. « ; K P , ( r i , . . . , r „ ) i f f ( r r - , . . . , r f - - ) e / ^ ' < " ' > ; 

• I/; 1=** V' A X iff ^ |=° V̂  ̂ ^^ ^ t=** X\ 

• It; 1=** t/̂  V X iff t^ h** ^ <̂ r It; [=* X; 

• w\=^ xl) ^^ xiHiox all v such that wRv^ v\=^ xf) implies v [=** xi 

• tt; t̂ « 1; 

m w \=^ "ixtp iff v 1=̂  V̂  for every v eW with wRv and every assignment 
b in D such that b{x) e D{v) and o(y) = b(y) for all variables y ^ x; 

• w \=^ 3xxl) iSw\=^xl){ox some assignment b in D such that b(x) G X){w) 
and a(y) = b{y) for all variables y 7̂  x. 
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(Note that this definition generalizes the truth-conditions for classical first-
order formulas and intuitionistic propositional formulas: the clauses for the 
propositional connectives are the same as in Section 2.7, and if the underlying 
frame 5 consists of a single point, 9Jl is simply a Q£-structure.) We say that 
a formula (/? is true in 9Jt if (9Jl, w) \==^ ^p holds for every world w € W and 
every assignment o in D such that o(x) € t>{w) for all individual variables x. 

As in the propositional case, an intuitionistic first-order Kripke model can 
be understood as a dynamic database with the set of states W: d{w) is the set 
of all objects available at the state w^ and w; |=** v? means that the truth of (fi 
is established at w^ given the values of parameters of v? according to o. Thus, 
the above truth-definition says that 3x(p{x) is true at w iff at the state w we 
have an object a such that the truth of (p(x) is established at ti; for a: = a. 
On the other hand, Vxv?(a:) is true at w iff for every state v accessible from w 
we can guarantee the truth of (f{x) for every replacement of x by any object 
available at v, i.e., iff the universal truth of v? is predictable at the state it;. 
For example, from the intuitionistic viewpoint, we have 

10 May 2000 ^ 3x {'x is a planet' A 'x ^ Earth' A 'there is fife on a:'), 

but 

10 May 2000 ^ \/x {'x is a planet A 'x ^ Earth' -> 'there is no life on x'). 

As was shown by Kripke (1965) (see also Schiitte 1968, Gabbay 1981b), 
the following completeness theorem holds: 

Theorem 3.25. A QC-formula is in QInt iff it is true in all intuitionistic 
Kripke models. 

Using this result it is not hard to see that QInt has both the disjunction 
and the existence properties demonstrating its 'constructive' character, viz., 

V? V V̂  € QInt iff V? G QInt or 0 ^ QInt; 
3x(p{x) e QInt iff (P{T) € QInt for some term r. 

It is worth noting also that the formulas 

->yx-^P{x) -^ 3xP{x), -i3x-.P(x) -> VxP(x) 

do not belong to QInt. Indeed, they are refuted in a model with two worlds 
uRv each of which has one object, say a, such that 

u ^ P{x) and v \= P{x). 

Thus, the quantifiers V and 3 are not dual in QInt as they are in QCl. 
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Similarly to the prepositional case, first-order intuitionistic logic can be 
interpreted in first-order (classical) modal logic using the Godel translation T 
which prefixes D to every subformula of a Q£-formula. This translation turns 
out to be an embedding of QInt into the modal logic Q^S4 determined by 
quasi-ordered models with expanding domains. Namely, for every Q£-formula 

(f e QInt iff T{if) e Q^S4. 

A proof can be found in (Rasiowa and Sikorski 1963). 
Denote by QlntCD the extension of QInt with the axiom schema 

cd = Vx {(f{x) V t/̂ ) —̂  Vx ip{x) V ip. 

The following result was obtained by Gornemann (1971) (see also Gabbay 
1981b): for every Q£-formula (p, 

if e QlntCD iff (f is true in all intuitionistic Kripke models 

with constant domains. 

As a consequence we have: 

if e QlntCD iff T{ip) e QS4. 
Thus, semantically the formula cd can be viewed as an intuitionistic analog of 
the Barcan formula V.rnP(x) —> DVxP(x). Note, however, that the Barcan 
formula cannot be derived from T(cd) and that the extension of Q^S4 with 
T(cd) turns out to be a proper sublogic of QS4, which means, in particular, 
that this extension is incomplete with respect to the above Kripke semantics; 
see (Shehtman and Skvortsov 1990). 

We conclude this section by noting that satisfiability in arbitrary intuition-
istic Kripke models reduces to satisfiability in models with constant domains. 
This can be shown in the same way as in the modal case. Namely, let £ be a 
unary predicate symbol which has no occurrences in <p. Define the relativiza-
tion iplE oi if by taking 

P i ( r i , . . . ,Tn ) l£ ; = P i ( r i , . . . , r n ) , 

{i^Qx)iE = ( t / ; i £ ; )0 (x i£ : ) , whereO€{V,A, ->} , 

MiE = 1 , 

{\/xi^)iE = Vx(E(x)~>(V^lE)), 

{3xtP)iE = 3x{E{x)A{xl;lE)). 

The reader can readily prove by induction that, for every Q£-sentence (/?,(/? is 
satisfied in an intuitionistic model based on a frame 3̂  and having expanding 
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domains iff the sentence ipiE /\ 3xE{x) A E{c) is satisfied in a model based 
on S and having constant domains, where E{c) = E(c\) A • • • A E{ck) and 
c i , . . . , Cfc are all the constants occurring in ip. 

For more information on first-order intuitionistic logic and its extensions 
we refer the reader to (Dummett 1977, van Dalen 1986, Gabbay et ai 2000). 

3.7 First-order temporal logics 

Let us turn now to first-order extensions of temporal logics. These kinds of 
first-order modal logics are probably the most interesting from the viewpoint 
of possible applications in computer science and artificial intelligence: they 
have been used in program specification and verification (Pnueli 1986, Manna 
and Pnueli 1992, 1995), temporal databases and e-commerce (Chomicki 1994, 
Abiteboul et ai 1996, Chomicki and Toman 1998, Spielmann 2000, Chomicki 
et ai 2001), knowledge representation and reasoning (Fagin et at. 1995, 
Schild 1993, Wolter and Zakharyaschev 2000b, Artale and Franconi 2003) 
and some other fields. 

For instance, in temporal databases first-order temporal logic can be used 
as both a query language and a language capable of formalizing temporal 
integrity constraints. Here are two simple examples (more information and 
further references can be found in Chomicki and Toman 1998). The query 

'find 0.11 people who have been unemployed since their graduation 
and married before graduation^ 

can be represented as the formula 

unemployed(x) S (grad(x) A Opmarried(x)). 

The temporal integrity constraint 

'a student cannot graduate without attending a course in logic * 

can be rephrased as 

-i3a: f grad(a:) A ap-i3t/ (attend(x,y) A logic-Course(2/))]. 

(The reader should appreciate the elegance and readability of these formulas. 
Later on in this section we shall see first-order translations which are much 
more artificial.) 

Formally, the language of first-order temporal logic and its models are 
defined as follows. Denote by QTC the first-order temporal language con-
structed in the standard way from the alphabet of QMCi in which the boxes 
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of MCi are replaced with the (binary) temporal operators S (since) and U 
(until) of the language MCsu- As before, we use the standard abbreviations: 

QTC is interpreted in first-order temporal models of the form SDt = (J, £>, / ) , 
where 'S = (W ,̂ <) is a strict linear order representing the flow of time, D is 
a nonempty set, the domain of 9Jl, and J is a function associating with every 
moment of time tz; € W a first-order Q£-structure 

I{W) = {D,PI^'"\...,C[('"\..), 

the state of 9PI at moment ti;, such that c^^^' = c^ '̂'̂  for all u^v £W, Given 
an assignment a in D, we define the truth-relation (9H, tu) [=** ^ (or simply 
w\=^ (^) QS in Section 3.6, adding the standard temporal clauses: 

• !/;(=** tpSxl) iff there is v < w such that t; ^** ^ and u\=^ ip for every 

• w \=^ ipUi/j iff there is i; > ti; such that u |=° ^ and w (=** ^ for every 

As before, we say that a formula (f is true in 9Jl if (OT,tjt;) |=** (p holds for all 
assignments a in D and all time points w in W. (We do not consider here 
models with expanding, varying, or decreasing domains: the discussion on 
domain assumptions of Section 3.6 can be translated to the temporal context 
in a straightforward way. In particular, the satisfiability problem for QTC-
formulas in first-order temporal models with varying and expanding domains 
is reducible to the same problem in models with constant domains.) 

For a class C of strict Unear orders, we denote by QLog^if{C) the set of 
QT£-formulas that are true in all models based on frames in C: 

QlogsuiC) = y e QTC I {m,w) |=° if for all M = {d^DJ) with J G C, 

all w in Ŝ , and all assignments o in D} . 

QLog5j^(C) is said to be the {first-order or quantified) temporal logic of the 
class C. We will also be considering the 5-free sublanguage QTCu of QTC, 
and the logic 

QLoge^(C) = Qlogsu{C) n QTCu. 

Instead of QLog52^({(N <)}) and QLogi^({{N, <)}) we write QLog5i^(N) and 
QLogi^(N), respectively; similar notation is used for (Z, <) , (Q, <) , and (K, <) . 
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Unfortunately, the temporal logics of many natural and useful flows of 
time turn out to be not recursively enumerable, and so not presentable as 
axiomatic systems with finitely many axiom schemata. Such are, for in-
stance, QLog5jY(N), QLog5^(Z) or QLog5iY(If̂ ) (some proofs can be found in 
Chapter 11; for a general result consult (Gabbay et al. 1994)). Here we show 
the axiomatizations of Reynolds (1996) for the temporal logics QLoĝ ^̂  (£(!?), 
where CO is the class of all strict linear orders, and QLog5^(Q). 

Theorem 3.26. (i) QLog^if{CO) is axiomatized by the following axiom sche-
mata and inference rules: 

Axiom schemata: those of QCl plus 

tljU{3xip) -^ 3x{i^U(fi), 

DF{ip -* V̂ ) -* (x^V^ -^ XWV̂)> 

D F ( ^ -> 0) --> {(fUx -> ^Ux)^ 

<^A(xWtA)->xW(V'A(x5(^)), 

ipUif -* {ip A (•0W(p))W(/?, 

{xl)U^) A (/?Wa) -> (V̂  A /?)W(v? A a) V (t/; A (i)U{^ A /?) V (i/; A f3)U{xl) A a) , 

and their past counterparts. 

Inference rules: those of QCl plus RN for both Dp and Dp. 

(ii) QLog5^(Q) can be axiomatized by extending QLog^if {CO) with two 
extra axioms: OpT A OpT and -*{±UT) A -i(±5T) {saying that the flow of 
time has no end points and is dense). 

According to Theorem 2.5, the propositional temporal language MCsu 
is expressively complete for the flows of time (N, <), (Z, <) , (R, <). In this 
connection it would be interesting to find out whether this characterization of 
the expressive power of MCsu can be lifted to QTC. Actually, this question 
was raised in the context of temporal databases; see (Abiteboul et al, 1996, 
Chomicki 1994, Chomicki and Niwinski 1995). QTC provides only 'implicit' 
access to time: quantification over points in time in the sense of first-order 
logic is not permitted, and the only means of expressing temporal properties 
is by the operators 5 and U, An obvious alternative is to reason about 
time explicitly, using the full power of first-order logic. This leads us to a 
two-sorted first-order language^ called TS in what follows, one sort of which 
refers to points in time and the other to the first-order domain. In TS^ every 
predicate P has precisely one 'temporal argument' so that P ( f , x i , . . . ,x„) 
means that P applies to x i , . . . ,Xn at moment t, (This reflects the timestamp 
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view of temporal databases, see Chomicki 1994.) The query and the constraint 
above can be reformulated in TS as the formulas 

3ti (ti <to A grad(fi,x) A 3̂ 2 {̂ 2 < 1̂ A married(t2,x) A 

V^3(^i < f3 < 0̂ - * unemployed(t3,x))) j 

and 

V̂  f-i3x(grad(^x) A Vt' {t' <t-^ -^3y (attend(f',x,y) A 

logic-Course(f',t/))))), 

respectively. 
Let us define the syntax and semantics of TS more precisely. TS is based 

on the following alphabet: 

• individual variables XQ, x i , . . . (or x, y, 2 , . . . ) and constants CQ, c i , . . . of 
domain sort (we also call them domain terms) ̂  

• individual variables to.ti,... (or f, t', f" , . . . ) of temporal sort^ 

• the binary predicate symbol < of sort ^temporal x temporal,' 

• predicate symbols PQ, P i , . . . of sort 'temporal x domain".' n < ijj, 

• the Boolean logical connectives -< and A, 

• the universal quantifier V. 

Formulas of TS are defined inductively: 

• ti < tj is an (atomic) formula, for temporal variables tj, t j , 

• P ( i , T i , . . . , r„) is an (atomic) formula, for a predicate symbol P of 
sort 'temporal x domain'^,' a temporal variable t, and domain terms 

• if (/? and ip are formulas, t a temporal variable, and x a domain variable, 
then -'(^, v? A ̂ , \/tip and Vx(/7 are formulas. 

TS is interpreted in the same kind of first-order temporal models as QTC, 
i.e., structures of the form 971 = (3 ,̂ D, / ) , where 3̂  = {W, <) is a flow of time, 
Z) is a nonempty set, the domain of 9Jt, and / a function associating with 
every moment of time w eW a first-order Q£-structure 

/ H = (D,Fo'<"'>,...,ci<"'\...), 
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in which P^^^^ is an n-ary relation on D whenever Pi is a predicate symbol 
of arity n + 1, and cf ^̂  € D with cf ̂ ^̂  = cf ̂ ^̂  for ail u.veW. 

An assignment in JOT is a function a = Oi U02 such that ai associates with 
every temporal variable t a moment of time a\{t) € W and 02 associates with 
every domain variable x an element 02(x) of D. The va/we r^'^ of a domain 
term r in 9Jl under the assignment a is 02(x) if r is a domain variable x, and 
(the time independent) ĉ ^̂ ^ if r is a constant c. 

The truth-relation 9Jt |=" (/? is defined inductively as follows: 

• 9711=° ti < fj iff oi(<i) < oi(fj) in ;?, 

• !OTKP(^rl,...,rn)iff(r^'^...,rf•«)€P^(«^(^)). 

• 9Jl |=" Mtif iff 9Jl 1=̂  V? for every assignment b that may differ from a 
only on t, 

• roi |=° Va:(̂  iff 271 1=̂  (̂  for every assignment b that may differ from a 
only on a:, 

and the standard clauses for the Booleans. 
It is fairly easy to see that everything expressible in QTC can be expressed 

in TS as well. Indeed, suppose that each n-ary predicate symbol Q, of QTC is 
associated with the (ri-f l)-ary predicate symbol Pi of TS. Define a translation 
^ from QTC into TS by taking, for some fixed temporal variable t, 

Qi(n,-. . ,rn)* = Pt(^ri , . . . , rn) , 

(¥j5t/;)< = lt'{t' <tAi)^{t'/t}AWit' <t" <t^ ip^{t"/t))), 

{^xj))^ = 3t'{t < (' A V^{«70 A Vt"(i < t" <t' -^ vH*'7<})). 

where t' and <" are fresh temporal variables. Let 9Jl = {5. £>> /} be a first-order 
temporal structure such that, for all w in 5, 

/ W = (z?,Po'^^---.Co^^---) 

Then the relations P^ ^^^ can be regarded as interpretations of the n-ary pre-
dicate symbols Qi of QTC^ as well as interpretations of the ^domain parts' of 
the corresponding (n -I- l)-ary predicate symbols Pi of TS. Thus, we have the 
following: 
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Lemma 3.27. For every QTC-formula ip, every moment of time w and every 
assignment a in D, 

(fOT,ti;)Kv^ iff 9 n p ( ^ ^ 

where b = bi U a and h\{t) = w. 

We are now in a position to formulate a natural first-order version of the 
expressive completeness definition for propositional temporal logic. Let C be a 
class of flows of time, C a sublanguage of QTC and £ " a sublanguage of TS, 
We say that C is expressively complete for C over C if for every £"-formula 
(p{t) with at most one free temporal variable, there exists an £ '-formula^ 
such that for all models 971 based on flows of time in C, 

9Jl 1= Vt ((^ ^ {(p)^) . 

In this case we also say that (p expresses (f over C. 
Having the expressive completeness result for MCsui it may seem plaus-

ible to conjecture that there are interesting classes C of flows of time over 
which QTC is expressively complete for TS itself. Unfortunately, this con-
jecture turns out to be wrong: the sentence 

3ti3t2 (ti < f2 A Vx {P{tux) 4-̂  P{t2,x))) 

is not expressible in QTC over any interesting class of flows of time; see (Kamp 
1971), where this is proved for {(Q, <)} , and (Abiteboul et ai 1996), where 
this is proved for {(N, <)} and the class of all finite linear orders. 

We now define a natural fragment of TS for which QTC is expressively 
complete over every class of flows of time C for which MCsu is expressively 
complete. 

Denote by TSu the set of all T5-formulas ^p which do not contain subfor-
mulas of the form Vxt/̂  such that ij) has more than one free temporal variable. 

Note that for every QT£-formula ip^ we have ^p^ G TSu. The following 
result was obtained in (Hodkinson et al. 2000): 

Theorem 3.28. Let C he any class of flows of time for which MCsu is 
expressively complete {for example^ the class 

i, <), (Z, < ) , (R, <)} U {J I 5 a finite strict linear order}). 

Then QTC is expressively complete for TSu over C. 

Proof. Suppose that MCsu is expressively complete for C. So for any for-
mula ip{t^ Pij-i Pk) of the first-order language QCt with one free variable t 
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and unary predicates P i , . . . , P^, we may fix a prepositional temporal formula 
^(pi , . . . .pfc) such that for every first-order structure 

m = {w,<,Pi^,pr',...) 
based on a flow of time 5 = (Ŵ* <) € C, and every MCsw^odel 91 = (ff,5J) 
with 53(pi) = i^^, we have 

(m, w;) h ^ iff 9Jl H= ^[w/tl for all w; € Ŵ. 

Suppose now that x = x(^Qi» • • »Qife) is a T5irformula. We prove that 
for every subformula^ V̂  of x with at most one free temporal variable, there 
is a QT£-formula ip that expresses tp. The proof is by induction on the 
construction of ^|J. ^ 

Case 1: ^ is atomic. U^p — t < f, then put V' = -L- If "0 = Qi{t^xi^,. .,Xn), 
then put tp = Pi{xi^.. .,Xn). 

Case 2.- tp = VxV î. By the induction hypothesis, there exists xpi that 
expresses ipi. But then ^ = VarV̂ i expresses V̂. 

Case 3: otherwise. Let V^i,...,V^/ be a list of all subformulas of tp of 
the form either Qiit^^yi,... ^yn) or ^ztp^ that have an occurrence in tp that 
is not within the scope of a domain quantifier Vt/. (This means that xp is 
constructed from ^ i , . . . , ^̂  using the Booleans and quantification over tem-
poral variables.) Since ^ G TSui every ipi of the form V^̂ ^ has at most 
one free temporal variable. Thus, by the induction hypothesis, there exists a 
QT£-formula xpi that expresses ipi^ for each i < L 

Now replace in tp every occurrence of a tpi(V') that is not within the scope 
of a Vj/ by a unary predicate Q^iit^)- Denote the resulting Q£rformula by 
V '̂(̂ Qt/>i» • • • iQtiJt) (note that it contains jrio free variables different from t). 
Take the prepositional temporal formula tp^{q^^^ -- "iQi>t) expressing ^', and 
in it, replace every prepositional variable q^^ by tpi. The resulting formula ^ 
clearly expresses tp. 

This completes the induction. So there is a QT£-formula x expressing x> 
which proves the claim of the theorem. Q 

We conclude this section by establishing a connection between products 
of prepositional temporal logics with S5 and first-order temporal logics. Sim-
ilarly to the first-order modal case, the translation ^ from MCn into the 
n-variable fragment of QC defined in Section 3.5 can be extended to a trans-
lation from MCsu ® MCn into the n-variable fragment of QTC by taking 

p̂  = Pi(a:o,...,a:n-i)) 

((/: A xp)^ = v?̂  A0^ 
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(DjV')^ = VxJ^lV^^ for j = l , . . . , n . 

Then the following theorem can be proved in a way similar to Theorem 3.21: 

Theorem 3.29. Let C be a class of strict linear orders. Then for every 
MCsu <S) MCn'formula <̂ , 

^ € logsuiC X FrS5 x • • • x FrS5) iff ip^ e QlogsuiC). 

In particular, by Theorem 6.29 to be proved in Section 6.4, we shall have: 

Theorem 3.30. For every MCu <Si MC-formula (/?, 

if G PTL X S5 iff if^ € QLogi^(N). 

This observation will be used in Section 6.5 for establishing an upper 
bound for the complexity of PTL x S5, and in Section 11.4 for establishing 
lower bounds for the complexity of fragments of QLogiY(N). 

3.8 Description logics with modal operators 
Description logics havo been designed and used as a formalism for knowledge 
representation and reasoning only in static application domains. They are 
not able to express such dynamic aspects of knowledge as time- or action-
dependence, beliefs of different agents, obligations, etc., which are regarded 
to be important ingredients in modeling intelligent agents. 

Imagine, for instance, a car salesman who, trying to understand the devel-
opment of the car market, implements a knowledge base about his customers. 
Besides standard ABox and TBox of the form 

John: 3has.Car 

John likes Golf 

Go//:VW 

\AA/ E Car 

Male-Customer = Male n Customer 

Modern-car = Car n 3has.Computer 

it may also contain *modalized' formulas, e.g.. 

Customer = Homo-sapiensn (sometime in the past) Bbuys.Car 

PotentiaLcustomer = (eventually) Customer 
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FaithfuLcustomer = Customer n 3[always]buys.Car 

(John believes) (next year) (Male.customer C 3buys.Modern-car) 

The meaning of the first two modaiized formulas should be clear. The third 
one means that a faithful customer always buys a car of the same type, say, 
Golf. And the fourth formula says that according to John's beliefs, next year 
every male customer will buy a modern car. 

To provide such a language with a reasonable semantics, we obviously 
come to many-dimensional structures. First, we need an object dimension— 
a usual model of the underlying description language. To capture beliefs of 
agents, every such model may have a number of alternatives. And to reflect 
the development of the knowledge base in time we need a time axis. The 
whole model thus has at least three dimensions. 

There are several many-dimensional approaches in the literature to the 
design of 'dynamic' description logics (see, e.g., Schmiedel 1990, Schild 1993, 
Laux 1994, Graber et al. 1995, Baader and Ohlbach 1995, Artale and Franconi 
1998, Baader and Laux 1995, Wolter and Zakharyaschev 1998, 2000a, 2000c). 
Perhaps the most general perspective was proposed by Baader and Ohlbach 
(1995). Roughly speaking, each dimension (object, time, belief, etc.) is rep-
resented by a set Di (of objects, moments of time, possible worlds, etc.), 
concepts are interpreted as subsets of the Cartesian product fllLi ^« ^^^ 
roles of dimension i as binary relations between n-tuples that may differ only 
in the ith coordinate. And one can quantify over roles not only to obtain con-
cepts, but also roles themselves and cont^ept equations (like in the example 
above). However, the constructed language turned out to be too expressive: 
the satisfiability problem in such models is undecidable. 

Trying to simplify this semantics, Baader and Laux (1995) noticed that 
different dimensions may have different status. For instance, time should 
probably be the same for all objects inhabiting the object dimension of our 
knowledge base. This observation led to a somewhat more transparent se-
mantics: models now consist of worlds (or states) which represent—in terms 
of some standard description logic—the 'current states of affairs;' these worlds 
may change with time passing by or under certain actions, or they may have a 
number of alternative worlds reflecting the beliefs of agents, and the connec-
tion between concepts and roles from different worlds is described by means 
of the corresponding temporal, dynamic, epistemic, or some other 'modal' 
operators. 

There are several 'degrees of freedom' within this semantical paradigm: 

1. The worlds in models may have arbitrary, expanding or constant do-
mains. Of course, the choice depends on the application we deal with. 
However, as in first-order modal logic, technically the most important 
is the constant domain assumption: we shall see that if the satisfiab-
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ility problem is decidable in models with constant domains then it is 
decidable in models with expanding or varying domains as well. 

2. The concept, role and object names of the underlying description lan-
guage may be local or global. Global names have the same values in 
all worlds, while local ones may have different values. However, tech-
nically local object names present no difficulty as compared with global 
ones, and it will be shown that global concepts are expressible via local 
concepts and modal operators. On the other hand, we shall see in 
Chapter 14 that it does make a difference whether we use local or global 
role names. 

3. As we saw in the example above, in general we may need modal oper-
ators applicable to all syntactic terms of the language: concepts, roles 
and formulas. However, sometimes only some of them require modal 
^quantification.' 

4. And finally, depending on the application domain we may choose between 
various kinds of modal operators (e.g., temporal, epistemic, action, etc.), 
the corresponding accessibility relations (say, linear for time, universal 
for knowledge, arbitrary for actions), and between the underlying pure 
description logics. 

We begin by introducing a modal description language MCACC whose al-
phabet consists of the alphabet of ACC (where we distinguish between global 
role names i?o» ̂ i» • • • and local role names 5o, 5 i , . . . ) and the necessity oper-
ators D i , . . . , Dn together with their duals O i , . . . , On of the modal language 

Starting from this alphabet, we construct compound concepts and roles in 
the following way: 

• all role names are roles, and all concept names are concepts] 

• if iZ is a role then so are DiR and Oii?, for every i = 1 , . . . , n (we will 
call such roles modalized); 

• if C, D are concepts and i? is a role then C n D, ->C, 3R.C and DiC 
are concepts, i = 1 , . . . , n. 

Atomic MCj^cc'formulas are expressions of the form C = D, a : C, aRb, 
where a and b are object names. If y? and 'ip are MCj^cc-formulas then so are 
(/? A ^, -^(f and Ui^p. 

The intended semantics of MCj^cc is defined as follows. Suppose that 
3̂  = (ly, < i , . . . , <in) is an n-frame. An MCj^cc-'^odel based on 5 is a pair 
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2JI = ( j , / ) in which / is a function associating with each w e W an ACC-
model 

where 

• A is a nonempty set, called the domain of 971, 

• RI^""^ are binary relations on A such that RI^""^ = R^^""^ for all u.veW 
(they interpret the global role names), 

• S^ are arbitrary binary relations on A (interpreting the local role 
names), 

• C^ ^^' are subsets of A (interpreting the concept names), and 

• Oj ^^' are elements of A such that a^ ^^^ = a^ ^^^ for any u^v £ W (they 
interpret the (global) object names). 

The definition of a model given above presupposes that we accept the constant 
domain assumption^ that the object names are rigid designators (i.e., they are 
global), and that all concepts are local. Later on in this section we shall see 
that we do not lose too much by imposing these restrictions. 

To define models with varying domains^ one should replace everywhere 
in the above definition the common domain A with an individual nonempty 
domain A^, for each world iv. Jn models with expanding domains^ we have 
A** C A*̂  whenever u <i v^ for some i = l , . . . , n . Note that the values 
R^ ^^^ of global role names must be given so that, for all u^v € W and all 
^^y ^ Uw^w^""^ we have xRl^'^^y iff xRl^'^^y whenever x,y e AT) A ^ 
Besides, all the a^^ must belong to A^ for every w £ W. 

Now, for a model 971 = (J?, / ) and a world w in 5, we define the values 
C (̂̂ ) of a concept C and R^^"^^ of a role R in w, and the truth-relation 
(9Jl, w) \= <p (or simply w \= <p) for a formula ip by taking: 

• x(D<il)^("')y iff Vu t>i w xE'^^^y; 

• xiOiRY^'^^y iff 3u >i w xR'^^^y; 

• (C n £»)̂ ("') = C"-""^ n D"-""^; 

• (-.C)'<'") = A-C^<'"); 

• X € (3RC)^('") iff 3j/ 6 Ĉ *̂") xR'^'"^y; 

• X 6 (niC)^(«') iff Wv>iwxe C'^"^; 
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w\=C = D iff C^W = £ ) / « ; 

w\=aRb iff a^Wi?^(«^)6^(^>; 

w^a.C iff a^ '̂̂ ) e C^(^>; 

t/; |=(^A'0 iff i/;|=(^ and w \= xl^; 

K; 1= -•(/? iff not w ^ ip; 

w 1= ni(/? iff Wv>iW V \= if. 

(We recommend the reader to analyze the semantical meaning of the concept 
FaithfuLcustomer defined above.) A concept C is satisfied in 9Jt if there is a 
world w in 5 such that C'^""^ ?̂  0. A formula (p is satisfied in 971 if there is a 
world It; in 5J such that w \= (f. 

Note that in the same way as we have combined ACC and MCn, one 
can construct hybrids of other description and modal logics, say, CQ and 
temporal logics, or ACC and CPDL. Such combinations will be considered 
in Chapter 14. Here we only show examples of the use of the 'temporal' and 
'action' description languages. 

Example 3.31. The following is a definition of a concept 'mortal:' 

Mortal = Living_beingn (BlivesJn.Place) n 

(Living_being W DF'^Living-being) n 

(Livlng_being 5 Dp-»Living-.being). 

In other words, a mortal is a living being who lives in a certain place, remains 
alive until it dies and was born some time in the past. 

Another example: suppose we have two atomic actions submit and accept. 
Then we can specify concepts published_paper and submitted-paper using the 
formulas 

published_paper C (accept") submitted_paper, 

submitted_paper C (submit") manuscript. 

The former inclusion, for instance, says that if an object is currently a pub-
lished paper then there is a state in which it is a submitted paper and from 
which the current state is reachable via the action 'accept.' Suppose now that 
author.of is a global role name. Then we can derive from these two formulas 
that 

3author_of. published-paper C ((submit; accept)")3author-of. manuscript. 
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i.e., if somebody is currently the author of a published paper, then there is a 
state in which she is the author of a manuscript and from which the current 
state is accessible via the action ^submit' followed by the action 'accept.' 

Now we show how to reduce satisfiability of MCj^cc-^oncepts and formulas 
in models with expanding and varying domains to satisfiability in models with 
constant domains. 

Given a concept C or a formula v?, let ex be a *fresh' concept name (not 
occurring in C and (p) the intended meaning of which is to contain in each 
world precisely those objects that are assumed to exist (under the varying 
or expanding domain assumption) in this world. By relativizing all concepts 
and formulas to ex, one can simulate varying and expanding domains using 
constant ones. For simplicity, we will do this for the unimodal language 
MCi with the operators D and O. The results are readily generalized to the 
multimodal case. 

By induction on the construction of C define its relativization CI ex: 

Ci |ex = Ct, Ci a concept name, 

( D n E ) l e x = (Dlex)n(£; iex) , 

(-./)) i ex = ~«(I?iex), 

{3R.D)lex = 3 / i . (exnDiex) , 

(aZ))iex = D{Diex). 

The relativization 9 j ex of y? is then defined inductively as follows: 

(C = D) iex = ( (Clex)=(Z?iex)) , 

( a : C ) i e x = o: (Cjex), 

{aRb)lex = aRb^ 

(xAV^)iex = (xlex) A(T/;iex), 

(-iV^)lex = --(V^iex), 

(DV^)lex = n(^iex) . 

To formulate the statement, we require the notion of modal depth md() 
of roles, concepts and formulas, and the notion of role depth rd() of concepts. 
The modal depth of roles, concepts and formulas is defined inductively in the 
following way: 

md(Ri) = md(Si) = md(Ci) = 0, md{DR) = md{OR) = md(R) + 1, 
md{CnD) = tnax{md(C),md{D)}, md{-^C) = mc/(C), 

Tnd{3R.C) = max{md(R),md(C)}, md{DC) = mci(C)-f 1, 
md{C = D) = max{mcf(C),mrf(D)}, md{a : C) = md{C), 

md{aRb) = md(R), Tnd{(pAilj) = max{mcf((̂ ),md(V )̂}, 

md{'^(p) = md{(p), md{D(f) = md((p) + 1. 



170 Chapter 3, Many-dimensional modal logics 

The role depth rd{C) of a concept C is defined analogously: 

rd{Ci) = 0, 

rd{CnD) = max{rd(C),rd(D)}, 

rdi-^C) = rd(C), 

rd{3R.C) = rd(C) + l, 

rd(DC) = rd{C). 

Given concepts C, D and a formula (̂ , define inductively the concepts D-^C, 
RpC and i4£)C, and the formula D-^ip by taking 

A%c = c nV = a-V = <̂ , 

and for A: > 0, 

li^-^^C = j R ^ C n n{Vi?.H^C I /? occurs in D}, 

and 

Proposition 3.32. For a// Kripke frames 5 t/ie following hold: 
(i) i4n A^£^£c-concept C is satisfied in a model based on ^ and having 

varying domains iff the concept C i ex fl ex is satisfied in a model based on 5 
and having constant domains. 

(ii) An MCj^cC'Concept C is satisfied in a model based on 5 dfid having 
expanding domains iff the concept 

C" = C i ex n ex n D^^^^^U^^^^^ex 

is satisfied in a model based on 5 and having constant domains. 
(iii) An MCACC-formula (p containing object names 6i,...,6yn is satisfied 

in a model based on 5 o.Tid having varying domains iff the formula 

m 

if lex A D^^^(^^(-(ex = ±) A /\{bi : ex)) 
i = l 

is satisfied in a model based on 5 â id having constant domains. 
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(iv) An MCj^cc'formula (p containing object names 61 , . . . , 6m is satisfied 
in a model based on Jf and having expanding domains iff the formula 

m 

if lex A -.(ex = 1) A /\{bi : ex) A D '̂"^(^^(ex C Dex) 

is satisfied in a model based on 5 o,nd having constant domains. 

Proof. We show here only (ii), leaving (i), (iii) and (iv) to the reader as an 
exercise. Suppose that 3̂  = {W^ <) is a frame and C^^^^ ^ 0 for a world v in 
a model 9Jl = (5, /) with expanding domains such that 

i(w) — {Li ,iXo ,...,Oo , . . . , O Q , . . . ,ao »---y» 

for every w eW {so that A^ C A^ whenever u <3 u'). We construct a model 
9t = (5, J) with constant domains by taking 

J(t.) = (A,i?o',...,5o'^"\...,C7o^^"\...,ex^W,a^^^^ 

where A = \Jw€W ^""y ^i = U«,€W t̂̂ "̂̂ ^ (which can be done by the defini-
tion of global roles) and ex*̂ ^̂ ) = A*", for all w eW, Then it is not hard to 
see that 

(exn n^'"''<^)^^''(^)ex)''<''^ = A" = ex-̂ ("). 

And it is readily checked by induction that for every subconcept D of C and 
every w eW^ 

DIM = (Diexnex)'^(^). 

It follows that {Cy^''^ = C^(^), i.e., C is satisfied in m. 
Conversely, suppose that {Cy^"^ ^H) &t root t; of a model «n = (S, J) 

with constant domains such that for all tt; € W, 

Jiw) = ( A , R',^'"\ ..., S^^'"\.... Co^C"),..., ex-'(-), ao'^-),...) . 

Choose a point x € {C'y^^\ For any n < LJ and any world t/; € VT, we say 
that a point t/ € A is role-accessible from x in n steps in w if there exist points 
xo,...,Xn € A, worlds ti;o,...,Wn-^i 6 W, natural numbers mo,..>,mn and 
roles Qo» • • •»Qn-i occurring in C such that the following hold: 

Xo = X, Xn = t/, (3.6) 

XiQ^^'^'^Xi^l for i < n, (3.7) 

Xi^i € ex'̂ ^̂ *̂  for t < n, (3.8) 

ti/o is <-accessible from v in mo steps, (3.9) 
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Wi^i is <]-accessible from Wi in mi^i steps, for t < n, (3.10) 
n 

Y^mi<m,d{C), and (3.11) 
t=0 

w is <I*-accessible from Wn-i. (3.12) 

Now, for any world w eW,i{w is <-accessible from t; in < md(C) steps then 
let 

A^ = {y G A I y is role-accessible from x in n steps in w, 

for some n < rd{C)}. 

For all other it; G W, let A^ = A. By (3.12), we have that whenever y is 
role-accessible from x in n steps in w then it is role-accessible from x in n 
steps in w' as well, for all w^ with w <\w'. Thus A^ C A^ holds whenever 
w<w'. Moreover, for every w which is O-accessible from v in < m,d{C) steps, 
we have 

Indeed, suppose that y G A^ and that XQ, . . . ,Xn and WQ,.. . ,Wn-i satisfy 
(3.6)-(3.12) for some n < rd{C). By assumption. 

Thus, by (3.7)-(3.9), 

It can be shown by induction on n (using (3.7)-(3.11)) that in fact for all 
i < n, we have 

So, by (3.12), 

Since, by the definition, k < k' implies (Ac'ex)-̂ ^"') C (Acex)-^^"'), we finally 
obtain that y € (A^ex)-"^'"^ = ex'̂ t"'). 

Now consider the model 9JI = {'S, I) 

/(«;) = (A-,i?^('">,...,5o^<"'),...,Co^("'),...,ai("'\...), 

where a^ are arbitrary elements of A'̂ , and R^ , S^ ^^ and C^ ^^^ are the 
restrictions of R^ , S^ and C^ ^^ to A'^, respectively, for every w eW. 
It can be shown by induction that for every subconcept D of C, every world 
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w which is <l-accessible from i; in < md{C) - md{D) steps, and every ?/ € A^ 
such that y is role-accessible from x in rd{C) - rd{D) steps in t/;, 

y € JD^̂ '̂ ^ iff 1/ € (Diex)'^(^) O A^. 

We consider only the case of D = 3R.E. Suppose that y € D^^^^ and y is 
role-accessible from x in rd{C) - rrf(jD) steps in w. Then there is a 2 € A^ 
such that yR^^'^h and 2 € E^(^). So y/i'^^^'^z and, by (3.13), z € ex'̂ '̂̂ ) and 
z is role-accessible from x in 

rd(C) - rrf(D) 4-1 = rd[C) - rd{E) 

steps in it;. Then, by the induction hypothesis, we have 2 € (E1 ex)'^^^^ and so 
z e (exnElex)^^^). It follows that t/ G (Diex)*^('^)nA^. Conversely, suppose 
that y £ {DI ex)^^^^ fl A^ and y is role-accessible from x in rd{C) - rd{D) 
steps in w. Then there is a 2 such that yR-^^^h, z € {E I exy^^^ and 
z e ex'^^^^ This means that z is role-accessible from x in rd{C)-rd{E) steps 
in t/;, and hence z G A^. Therefore, yR^^^^z. By the induction hypothesis 
we have z € E^^^\ and so i/ G 

Since a: G A^ and x is role-accessible from a: in 0 steps in v, this is enough 
to show that C is satisfied in 97t. Q 

We have justified our acceptance of the constant domain assumption. And 
the following proposition shows that the addition of global concepts does 
not increase the expressive power of our languages. (We again consider the 
language with only one pair of modal operators.) 

Proposition 3.33, (i) A concept C is satisfied in a model based on a frame 
S and interpreting concept names C i , . . . , C/t globally iff 

c n n<md{c)j^rd{c) PI ^^ .̂ ^ Q^.^ ^ ^^^. _̂  n-Ci)) 

is satisfied in a model based on 5 with the local interpretation of concepts. 
(ii) An A4CACC'formula (f is satisfied in a model based on 5 and inter-

preting concept names C i , . . . , C/t globally iff 

^ A D^^^(^) n {{d ^ DCi) n i-^Ci ^ U^Ci)) = T 
i<t<fc 

is satisfied in a model based on 5 with the local interpretation of concepts. 

Proof. Exercise. • 

Let us see now how the reasoning tasks formulated in Section 2.5 modify 
for modal description logics. Suppose C is a class of n-frames (modeling time, 
beliefs, actions, or something else). The satisfiability problem for MC^cc-
formulas in C can be formulated as follows: 
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• Given an MCACciovmxila, ip, decide whether there is a model based on 
a frame in C and satisfying ip. 

Usually we consider the classes of all frames for some multimodal logic L in 
the language MCn- By the formula satisfiability problem for L^cc we mean 
then the satisfiability problem for MCj^cc-fovmnlas in FrL. 

Given a multimodal logic L and a knowledge base E, we now have two 
variants of reasoning tasks for E and L, which reflect the two ways of under-
standing the consequence relation in L. 

• Concept satisfiability: Are there a model (5,1) and a world v in 5 such 
that C (̂̂ ) 7«̂  0, 3̂  is a frame for L and v f= E? 

• Global concept satisfiability: Are there a model (3̂ , / ) and a world v in 
5 such that Ĉ (̂ ^ ^ 0, J is a frame for L and t/; |= E for all w in J? 

• Subsumption: Does C^^^^ C Z)̂ ^̂ ^ hold for every model (5,7) and every 
world t; in 3 such that 3̂  is a frame for L and v |= E? 

• Global subsumption: Does Ĉ '̂'̂  C D^̂ ''̂  hold for every model (3, /} 
and every world t; in 3̂  such that 3 is a frame for L and ti; [= E for all 
w in 5? 

• Instance checking: Does â '̂̂ ^ belong to Ĉ ^̂ ^ for every model (3, / ) and 
every world v in 3 such that 3 is a frame for L and v |= E? 

• Global instance checking: Does â ^̂ ^ belong to C^^^"^ for every model 
(3, / ) and every world i; in 3 such that 3 is a frame for L and ti; |= E 
for all w in 3? 

In the 'global cases,' the knowledge base is assumed to be applied to all 
worlds in the model, while in the 'local' ones only to a single world. As we 
shall see below, the decidability of a local problem does not imply in general 
the decidability of the corresponding global one. However, as in Section 2.5, 
we again have obvious reductions between the various reasoning tasks; see 
Table 3.1. 

We explain those which connect modal description logics and products of 
modal logics. 

Modal description logics and products 

Consider first the fragment of the language MCj^cc containing m global role 
names JRQ, • • •»Rm-\ and neither local role names nor modalized roles at all. 
In this case the translation ^ from the modal language MCn onto ACC-
concepts defined in Section 2.5 can be extended to a translation from MCn^m 
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onto >f£^£c-concepts by taking 

(->(^)t = -^ip\ 

{OiifiY = OtV5̂  for 1 < i < n, 

{Oup)^ = ^i?i_n-l.v?^ for n 4-1 < i < n 4- m. 

Since all the role names are global, every modal model Wl = (5 x C,5J) 
based on the product of an n-frame 5 = {^) <!> • • •»<n) and an m-frame 
(S = (A^To,. ..jTm-i) can be transformed into an A^£^£c-model (5,/an) 
such that, for each w £W^ 

where ftf^^^ = Ti, c/̂ ^^ = {u € A | (t/;, u> € 2J(pO}, and â ^̂ ^ G A arbitrary. 
Then it should be clear that for every A^£n+m-formula (f and every world 
(ii;, u) in 971, we have 

{m,{w,u))^ip iff ueiifi^y^'^l 

Conversely, every MCAcc^odel (5, /} with 5 = (Ŵ» <i» ' • <Jn) and 

i[w) - {^a.KQ ,...,/t^_i,OQ ,. . . ,ao , . . .y , 

gives rise to a modal model OT = (ff x (!5/,2J/), where 

(5/ = (A,fli("'\...,/?^!:>) and V,{pi) = [j Cl^'-'\ 
wew 

By taking the inverse t of the translation f, we obtain 

^^(-/M iff (an/,Ku))|=c^ 

for every At£^£c-concept C, every object u 6 A and every world w in 5. 
It follows that if the knowledge base is empty, then the L>i£c-satisfiability 

problem for concepts containing neither modalized roles nor local role names 
is equivalent to the satisfiability problem for the product logic L x Km- (Note 
that the same problem for models with expanding domains corresponds to the 
satisfiability problem for 'expanding relativized products,' see Section 9.1.) 

We know (see page 71) that the global consequence relation hĵ ^̂  cor-
responds to the satisfiability problem for ^£C-concepts relative to TBoxes. 
We now lift this correspondence to modalized ACC. Following the standard 
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formula satisfiability 
without global role names 
without modalized roles 

concept satisfiability 
with empty knowledge base 
without local role names 
without modalized roles L x K . 

formula 
satisfiability 

concept satisfiability 

global 
concept satisfiability 

•4 • -

^ • • 

subsumption 

global 
subsumption 

global subsumption 
relative to TBoxes 
without local role names 
without modalized roles 

global concept satisfiability 
relative to TBoxes 
without local role names 
without modalized roles 

n^^k. 

Table 3.1: Reasoning tasks in Lj^cc-

terminology of description logic, by a TBox we mean a knowledge base E con-
sisting only of equations C = D oi A^£^£c-concepts. For MCj^cc without 
local role names and modalized roles, the consequence relation hĵ x hj!^^ (cf. 
Section 3.3) and the global concept satisfiability problem relative to TBoxes 
are reducible to each other. Indeed, it is enough to observe that 

(f{y-*i)< ^~K^)^ iff ""V̂ ^ is not globally L^£c-satisfiable relative to {^p^ = T} . 

As will be shown in Theorem 5.36, hji^x hj^ is undecidable. Thus, we have: 

Proposition 3.34. The global K^cc-satisfiability problem for concepts con-
taining neither local role names nor modalized roles is undecidable {even rel-
ative to TBoxes). 

On the other hand, we shall see (Theorem 14.8) that the formula satis-
fiability problem (and thus the concept satisfiability problem) for K^cc is 
decidable. Unlike KACCI for many other modal description logics the global 
concept satisfiability problem can easily be reduced to the formula satisfiab-
ility problem. In particular, this is the case for CPDL, S4, K4, S5^ and 
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PTL. Here, for example, is a reduction for S4. Given any finite knowledge 
base E, we have: 

C is globally satisfiable relative to E iff (D ^ (p) A -i(C = 1) is satisfiable. 
V3€E 

The connections between modal description logics and products of modal 
logics established so far are based on what one may call ^semantic equival-
ence:' we just have to replace concepts by propositional variables and roles 
by accessibility relations. In contrast, the following polynomial reduction is 
invariant only under satisfiability. Yet, it will be very useful for the transfer 
of decidability and complexity results. 

Theorem 3.35. Let L be a Kripke complete modal logic. Then the satisfiab-
ility problem for L x S5 is polynomially reducible to the formula satisfiability 
problem for L^cc {without any roles at all). 

Proof. Assume for simplicity that L is a unimodal logic with modal operator 
Di and that S5 has modal operator D2. For every if € MC2 we define an 
MCAcc-iormnldi which is L^£c-satisfiable iff (/? is L x S5-satisfiable. Let Cp 
and Cx be fresh concept names for every propositional variable p and every 
X£2-formula x of the form x = ^2X\ respectively. Define inductively a 
translation \p^ of an A1£2-formula ip by taking 

p« 

(i'X A -02)^ 

h^)^ 
(ait/^)» 

{D2XP)^ 

, denote by x the formula 

= V?n0« 
= ̂ v", 
= D,V", 

- ^ D J V 

A ((<^a,̂  = T) V(C7̂ ^̂  = D ) A / \ ((C^^^ = T) ^ (V.« = T)). 

The first conjunct of x says that C^ . applies to all objects iff it applies to 
some object. The second one says that this is the case iff t/)^ applies to all 
objects. Now one can readily show by induction that -•(v?̂  = 1) A of^ ^^\ 
is satisfiable in Lj\^cc iff v̂  is L x S5-satisfiable. • 

The theorem we have just proved states that the L^£c-satisfiability prob-
lem for formulas without global role names and modalized roles is at least 
as complex as the satisfiability problem for L x S5. We will use this result 
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in Chapter 14 to obtain lower bounds of the computational complexity for 
modal description logics from lower bounds of the computational complexity 
for products with S5 obtained in Section 6.5. 

The following result is proved similarly; it will be used in Chapter 14 to 
obtain undecidability results for description logics with modal operators. 

Theorem 3.36. Let L be a Kripke complete modal logic. Then the satisfiab-
ility problem for L x K^ is polynomially reducible to the formula satisfiability 
problem for L^cc '^th global role names {but unthout local role names and 
modalized roles). 

Modal description logics and first-order modal logics 

Now we show that modalized ACC can be regarded as a fragment of first-order 
modal logic. This embedding will be used in Chapter 14 to obtain decidability 
and complexity results for modal description logics from corresponding results 
for certain fragments of first-order modal logics established in Chapters 11 and 
12. To simplify notation, we assume again that there is only one pair D and 
O of modal operators. 

Fix two different individual variables, say, x,y. The translation RT of a 
role Ris a formula with two free variables x, y defined by taking 

Rj = Ri{x,y), Sj = Si{x,y), 

(URf = DR^, {OKf = OR^. 

The translation C^ of a concept C is a formula with one free variable x: 

Cj = Ci{x), 

{3R.Cf = 3y {R^ A C^{y/x}), (DC)'' = aC'^. 

The translation (p^ of an A1£>i£c-formula ip is a. QA1£-sentence defined as 
follows (we assume that the object names of ACC coincide with the constant 
symbols of first-order logic): 

(C = Df = Vi(C^ ^ D"^), 

(a : Cf = C^ia/x}, 
(aRbf = R'^{a/x,b/y}, 

{ip/\il)f = (f'' AxjF, 

{Oifif = Dip'^. 

It is readily checked that the following theorem holds: 
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Theorem 3.37. (i) Let C be an MCj^cc-concept with global role names 
jRi,... ,i?/t- Then C is satisfied in an MCj^cc-f^odel based on a frame ^ 
and having domain A iff the first-order modal sentence 

3xC^A 

a<md{C)^ Va:,t/((/?,(x,2/) -^ DRi{x,y)) A {--Riix.y) -^ D^Ri{x,y))) 
l<i<k 

is satisfied in a first-order Kripke model based on 5 and having domain A. 
(ii) Let (fi be an MCj^cc-formula with global role names i ? i , . . . , /?it. Then 

if is satisfied in an MCj^cc-'^odel based on a frame 5 o.nd having domain A 
iff the first-order modal sentence 

•<md(vp)y^ Vx,2/((/?i(x,y) -^ URi{x,y)) A (-/?i(x,y) -> U-^Riix.y))) 
l<i<k 

is satisfied in a first-order Kripke model based on ^ and having domain A. 

3.9 HS as a two-dimensional logic 

In Section 2.2 we interpreted formulas of the temporal logic HS of intervals 
in frames of the form 

3 ( 5 ) - ( / n ( 5 ) , S , F ) , 

where ff = {W^ <) is a strict linear order, /n(3') the set of all closed intervals 
[uyv] in 3̂  (for u^v e W, u < v) and 5, F are the ^starts* and 'finishes' 
relations between intervals. 

As every interval [t/, v] is determined by its two end-points u^v € W^ v/e 
can represent it as a pair (u,t;), i.e., as an element of the Cartesian product 
W xW. Let us define the 'North-Western' subset of W x ly as 

nw{W xW) = {{u,v) eWxW\u<v}, 

and then the compass relations RE^ Rwy RNI RS on nw{W x W) in precisely 
the same way as we did in Section 2.6 for R x R, but using the relation < of 
y. For example, 

{u, v) RE (W', V') iff u <u^ and v = v\ 

The compass relations can represent the relations 5, F of 3(5) and their 
converses, viz., 

[u, v]S[u\ v'] iff (it, v) Ri^ (u', v'), 

[u, v]F[u', v'] iff (u, v) Rw (u', v'), 
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[u, v]S^^[u\v'] iff (w, v) Rs (n', v'), 

[w, v]F-1 [u', v'] iff (ix, v} H E {U\ V') . 

In other words, we can view the frame 3(5) as a *map' on which the intervals 
of In{'S) correspond to the points on and above the diagonal coming from 
'South-West' to *North-East.' (The points on the diagonal correspond to 
intervals [n,u] without duration.) Note that by using the compass relations, 
we can represent all the AU-IZ relations between intervals; see Fig. 3.5. 

Observe that the frame 

nw:^ = {^^^{W X W),RE,RW,RN,RS) 

we obtain this way is in fact a subframe of the product frame 

{W,<,>)x{W,<,>). 

So, for any class C of strict linear orders, the logic HSc can be defined as 

HSc = Log{nii;5 | 5 G C } . 

As we shall see in Section 9.1, the two-dimensional HS-frames introduced 
above are examples of expanding (and decreasing) relativized product frames, 

3.10 Modal transition logics 

The structures of action terms in PDL-like logics have been represented in 
algebraic form as Kleene algebras, action algebras (Kozen 1981, 1990, Pratt 
1990), as well as process algebras intended for describing the behavior of par-
allel processes (Bergstra and Klop 1984, Hoare 1985, Milner 1980). Some of 
these algebraic formalisms allow for the Boolean operations on action terms, 
which has led to the idea of considering them in the modal perspective as 
modal transition logics: multimodal logics reasoning about transitions (or 
procedures, programs, actions, preferences, etc.). Formulas of these logics are 
similar to action terms of P D L , they are evaluated in frames having trans-
itions as their worlds, and PDL-operations like composition become modal 
operators. A successful research program in this direction was initiated by 
van Bent hem (1991) and Venema (1991) under the name of arrow logic, with 
arrows being abstractions of transitions. Here we give a brief survey of this 
approach; for more information the reader is referred to (Marx et al. 1996, 
Marx and Venema 1997). 

The language AC of arrow logic has three modal operators. However, 
unlike MC:^, not all of them are unary. Namely, we have 

• a binary operator ; (for taking the composition of arrows), 
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starts(tj') 
during(t,j) | overlaps(j,i) 

• finishes(i,j) 

overlaps(t,j) 

flnlshe$(j,i) 

$tarts(j,t) 

- meets(j,t) 

before(j,t) 

Figure 3.5: Representation of the A£i'l3 relations. 

• a unary operator " (for taking the converse of an arrow), and 

• a constant Id (for identity arrows that are similar to ? in WC)^ 

The corresponding formula-formation rules are as follows: 

• Id is an w4£-formula, 

• if (̂  and ^ are >l£-formulas, then so are v?; V̂  and <̂ ~. 

^£-formulas are interpreted in arrow frames which are structures of the form 

where W is a nonempty set (of arrows)^ C is a ternary, i? is a binary and 
jE* is a unary relations on W. An arrow model is a pair 3Jl = (5,93), where 
5 is an arrow frame and 93 a valuation in 5, i.e., a function mapping the 

'̂ Sometimes ; is denoted by o, • or |, "" by " or (̂ , and Id by iS or 1'. 



(9n,x)i=p 
(9n,x) \=(pAip 
{m,x)\=^ip 
{m,x)\=^;tP 

(9n,i)hv" 
{m,x)\=id 

iff 
iff 
iff 
iff 
iff 
iff 
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prepositional variables to subsets of W. The truth-relation {V)l,x) \= (p, x an 
arrow in W and ip an ^£-formula, is defined as follows: 

X e 9J(p) (p a prepositional variable), 

(2n,x) 1= If and (971, x) \= ^, 

not (an, x) f= y?, 
3y,2 G ly (C(x,y,z) & (9Jl,t/) ^ ^ & (OT,z) |= t/;), 

3t/€iy(i?(x,2/)&(OT,t/)h^), 
£(x). 

We say that an ^£-formula (f is va/td in an arrow frame 3̂  if (9Jl,x) \= ip 
holds for every arrow model 9Jt based on 3̂  and every arrow x in J. Note 
that according to the given definition the operators ; and ~ are diamond-like 
modalities. They satisfy the following analogs of (the dual version of) axiom 
(K): 

(K); (((Po Vpi) ;p2) ^ ((Po ;P2) V (pi ;p2))) 

A ((po ;(pi V P2)) ^ ((po ;pi) V (po ;P2))) 

(K)_ ( p o V p i ) - ^ ( p o V P H 

A set of ^£-formulas is called an arrow logic if it contains the axioms (Al ) -
(AlO) of classical prepositional logic CI, the formulas (K). and (K)_ and is 
closed under the rules of MP, Subst and the following analogs of RN: 

(RN); given (/?, derive ->{-^(p; ->ip) and ->{-'ip; -x^), 

(RN)_ given v?, derive -^{-^^)~ -

The smallest arrow logic is denoted by ALmin-
This 'abstract' approach to arrows permits various more concrete 'rep-

resentations.' Perhaps the most natural way of depicting an arrow w is to 
consider it as a pair 

(start-point of w, end-point of w), 

i.e., as an edge in a directed graph. More generally, arrows can be regarded 
as edges of a directed multi-graph (where more than one edge between two 
nodes is allowed); see (Vakarelov 1996a, 1996b, 1997). This view can be put 
into a two-dimensional perspective: a set W of arrows is the Cartesian square 
U X U at some nonempty set U of points, and C, R and E are the following 
relations onU x U: 

Ci/ = {((a,6),(a,c),(c,6)) | a , 6 , c € C / } , 

Ru = {{{a,b)Ab,a))\a,beU}, 

£t/ = {(a,a) \aeU}, 
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We call an arrow frame of the form {U x UyCuyRu^Eu) the square arrow 
frame over U. Subframes of such a frame are called pair arrow frames. Mod-
els which are based on square (pair) arrow frames are called square (pair) 
arrow models. The set of arrows satisfying an AC-formula in a pair arrow 
model is simply a binary relation. This observation connects arrow logics 
with the algebraic theory of relations which originated in the 19th century 
from the work of De Morgan (1860), Peirce (1870) and Schroder (1895). The 
modern development of this theory—a branch of algebraic logic—started with 
Tarski and his colleagues. Along the Unes of Section 1.5, one can easily gen-
eralize all the concepts involved in the algebraic semantics of modal logics to 
arrow logics. Then the class RRA of representable relation algebras^ defined 
by Tarski (1941), turns out to be the class of modal algebras for the arrow 
logic AL̂ ŷ, which is the set of all AC-iormnlas that are valid in every square 
arrow frame. In an attempt to extend the finite equational axiomatization of 
Boolean algebras to RRA, Tarski (1941) gave a list of natural properties of 
binary relations formulated here as ^£-formulas: 

(ALi) (po)- ^ p o , 

(AL2) (po;/rf) <~>po» 

(AL3) (poipi)*" ^ (pr;Po)> 

(AL4) (Po ;-'(Po;Pi)) ->-^Pi, 

(AL5) ((po ;pi) ;P2) ^ (po ;(pi ;P2))-

It is readily seen that all these formulas are valid in every square arrow frame 
and so belong to AL^^. Moreover, even over ^abstract' arrow frames they 
express certain properties in the sense that a formula (p is valid in an arrow 
frame 5 = (M̂ » C", i?, E) iff 5 has the corresponding property. Roughly, (ALi) 
says that 

(1) ii is an idempotent total function on W, 

that is, if r{x) denotes the unique y such that i?(x,y), then r{r{x)) = x. 
(AL2) says that 

(2) Vx3t/ {E(y) AC{x,x,y)) A Vx,y,z (C(x,y,z) A E{z) ^ x ^ y); 

(AL3) and (AL4) mean that 

(3) Va:,2/,^((C(r(x),y,^)-^C(x,r(2),r(t/))) 

A {C{x,y,z)^C{z,r{y),x))y, 

and (AL5) corresponds to 

(4) Va:,t/,2,u,t;fc(x,t/,2) AC(2:,u,t;) - • 3w{C{x,w,v) AC{w,y,u))j. 
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Arrow logics having axiom (AL5) are called associative. For proofs of these 
correspondences see, e.g., (Marx and Venema 1997). Given an arrow logic L 
and a set F of ^£-formulas, we write L © F to denote the smallest arrow logic 
containing L U F. Let 

ALRA = ALmin e {(ALi), (AL2), (AL3), (AL4), (AL5)}. 

(The modal algebras of ALRA are what Tarski (1941) called relation algebras.) 
As was mentioned above, we have ALRA Q ALgq. However, the converse 
inclusion does not hold (i.e., the axioms (ALi)-(AL5) do not give a complete 
axiomatization of ALsq), as the following consequence of the algebraic results 
of Lyndon (1950) and Monk (1964) show: 

Theorem 3.38. The arrow logics ALgq and ALRA O.^^ different. In fact, 
ALsq is not finitely axiomatizable. 

Various strengthenings of this theorem can be found in (Andreka 1997). 
Marx and Venema (1997) give an axiomatization of AL̂ ^̂  using an irreflexivity 
rule. Actually, ALsq is *quite far' from the finitely axiomatizable logic ALRA-

In Section 8.4 we will discuss a remarkable result of Hirsch and Hodkinson 
(2001) (Theorem 8.32) which has the following consequence: 

Corollary 3.39. It is undecidable whether a finite arrow frame for ALRA is 
a frame for ALsq • 

Tarski showed (see Tarski 1941, Tarski and Givant 1987) that strong set 
and number theories can be developed within the framework of relation al-
gebras. As a consequence we obtain: 

Theorem 3.40. Every arrow logic L in the interval ALRA Q L Q ALsq is 
undecidable. In particular, ALsq ^̂  recursively enumerable but undecidable. 

Many more associative arrow logics are proven to be undecidable in (And-
reka et al. 1994, Kurucz et al. 1995), see also (Andreka et al. 1997). These 
proofs use reductions to undecidable word problems for semigroups. 

The undecidability of relation algebras led to the study of various weaken-
ings of the associativity axiom (AL5); see, e.g., (Hirsch and Hodkinson 2002, 
Maddux 1978) and references therein. For instance, let 

ALNA = AL^ine{(ALi),(AL2),(AL3),(AL4)}, 

ALwA = AL^Me{(ALi),(AL2),(AL3),(AL4),(AL6)}, 

where (ALe) is the following axiom of weak associativity: 

(ALe) (((po A Id) ;pi) ;p2) ^ ((Po A Id) ;(pi ;p2)). 



3,10. Modal transition logics 185 

(The corresponding classes of modal algebras are the nonassociative relation 
algebras (NA) and the weakly associative relation algebras (WA), respectively.) 
It follows from the algebraic results of Nemeti (1987) that these logics are 
decidable: 

Theorem 3.41. The arrow logics ALf^A o^f^d ALw>4 â e decidable. 

Marx (2002) provides a detailed complexity analysis of various arrow lo-
gics. Here we mention his result concerning AL wA only: 

Theorem 3.42. The decision problem for AL wA is EXPTIME-complete. 

There are intuitive properties of arrows (e.g., that composition of arrows 
is a partial function) that the language AC is not able to express. This gave 
rise to extensions of AC with various new (i.e., not expressible in AC) con-
nectives. In particular, all extensions of AL wA with the universal modality, 
the difference operator, counting or graded modalities, polyadic compositions 
or the iteration * turned out to be decidable; see, e.g., (van Benthem 1994, 
Kurucz 2000b, Marx 1995, Marx and Venema 1997, Mikulas 1995, Stebletsova 
2000a, 2000b). On the other hand, the extensions of AL wA with coordinate-
wise difference or counting operators are undecidable (Marx 2002); those with 
projection elements or the fork operation are not even recursively enumerable 
(Kurucz 1997). 

There is also an interesting semantical characterization of AL wA- Recall 
that a pair arrow frame is a subframe of a square arrow frame, that is, a 
structure of the form 

5\r^={w,cjr\Rr.Er), 
where 9 ji^ W C U x U for some set U and cl)^\ R^^^ and E^)^^ are the 
respective restrictions of Cu, Ru and Ey to W, i.e., 

Cr^-{{(a»t) ,{a,c) , (c ,6)) | (a ,6) , (a ,c) , (c ,6)€Vr}, 

i i l f U {((a,6),(6,a)) I (a,6),(6,a) e ly}, 

E^^^ = {{a,a) I {a,a) eW}^Evr\W. 

The following theorem (in its algebraic form) was proved by Maddux (1982): 

Theorem 3.43. The arrow logic ALWA ^S characterized by the class of all 
pai 
U. 
pair arrow frames j [ ; \ with W being a reflexive and symmetric relation on 

For a proof and further completeness theorems concerning weak arrow 
logics consult (Marx and Venema 1997). Note that according to Theorem 3.43, 
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ALwA can be considered as an example of the relativization technique to be 
discussed in Section 9.1. 

A remarkable feature of the language AC is that its expressive power 
over square arrow frames is the same as that of the first-order language with 
equality QC^'^ having only binary predicate symbols RQ,RI,.., and three 
individual variables x^y,z. Indeed, define a translation -̂  of ^£-formulas 
into QC2'^'{oTm\xlas (having free variables among x and y) by taking 

PI = i?i(x,t/) (pi a propositional variable), 

(-.(^)t = -,(̂ t̂  

((^;t/^)t = 3z{ip^{z/y}Aij^{z/x}), 

((^-)t = (pHx/y,y/x}, 

Id^ = (x = y). 

On the semantical level, one may regard any arrow model 9Jl = (3̂ , 5J} based 
on a square arrow frame Ŝ  over some set [/ as a first-order structure 

j{m) = (u,Ri^^\Ri^'^\...) 

of the language 2^2'^, where R^^ ^ = ^(Pi) for all i. Similarly, one can 
regard a first-order ££2'^-structure J with domain C/ as a square arrow model 
9Jl( J) over U. It is not hard to see the following equivalence: 

Theorem 3.44. For every AC-formula (p, every square arrow model 9Jl and 
every arrow (a, 6) in 971, 

(2n,(a,6»t=<^ iff Jm\=,p^[a,b\. 

The translation in the other direction is more complicated. Nevertheless, 
the following theorem was proved by Tarski in an algebraic setting (see Tarski 
and Givant 1987): 

Theorem 3.45. There is a recursive function * from QC2^ to AC such 
that, for any QC2^-formula ^(x,?/), any first-order QC^^"^ -structure J with 
domain U and any points a,b e U, 

J\=(f>[a,b] iff (9n(J),(a,6))h<^V 

The reader can find an 'arrow logic' proof of this result in (Marx and 
Venema 1997). In Section 8.1 we will give an embedding of QC^'^ into the 
logic S5 X S5 X S5 which provides a connection between AL^^ and three-
dimensional product logics. 
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To conclude this section, we briefly discuss some connections between ar-
row logics and other modal transition formalisms. In action logics (Pratt 
1990), the binary residuals \ and / of the composition connective ; of AC are 
also considered, with the following semantical meaning (in arrow frames): 

{m,x)\=^\xl) iff Vt/,2(ifC(2,y,x)and(an,y)h<^then(9Jt,z)HV^), 
(m,x)\=:ip/i) iff Vt/, z (if C(z, X, y) and (OJl, y) \=^ ip then (OT, z) t= (/?). 

It is readily checked that these connectives are expressible in ALMA) viz., the 
following equivalences are valid in all arrow frames for AL^A' 

{(p\xl)) ^-•((/?"" ;-'V'), 
(( /̂V')f-^-n("n(^;V;-). 

The residuals \ and / are also connectives of implicational calculi of cat-
egorial grammars^ (where they are called pre- and post-implications and of-
ten denoted by —• and <—, respectively). It is not hard to see that the above 
semantical definition gives us the following implications: 

• if (f\ilj follows from x? then xl) follows from (̂ ; x» 

• ii (fi / tp follows from x> then one (p follows from x 5 V̂-

These are the rules of one of the best-known implicational inference systems— 
the Lambek calculus (Lambek 1958). It follows that associative arrow frames 
provide a sound semantics for this cakulus (van Benthem 1991). Moreover, it 
is shown in (Andreka and Mikulas 1994) that the Lambek calculus is complete 
for the class of pair arrow frames ^y \ with W being a transitive relation on 
U. Implicational calculi and their embeddings into modal logics are studied in 
detail in (Kurtonina 1995, Roorda 1991). Other semantics for implicational 
calculi are reviewed in (van Benthem 1991). 

3.11 Intuitionistic modal logics 

Intuitionistic modal logics, i.e., combinations of modal logics and (extensions 
of) intuitionistic logic, originate from several distinguishable sources and have 
various areas of application. They include: 

• intuitionistic analysis of modalities in philosophy (see, e.g.. Prior 1957, 
Ewald 1986, Williamson 1992); 

• modal analysis of formal constructive provability in the foundations of 
mathematics (Kuznetsov 1985, Kuznetsov and Muravitskij 1986); 

^The reader can find a detailed treatment of categorial grammars in (Moortgat 1996); 
a brief survey is in (van Benthem 1996). 
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• possible applications in computer science (Plotkin and Stirling 1986, 
Stirling 1987, Wijesekera 1990); 

• modalities are added to intuitionistic logic in the framework of studying 
*new intuitionistic connectives' (Bessonov 1977, Gabbay 1977, Yashin 
1994) and 

• to simulate the monadic fragment of intuitionistic first-order logic (Bull 
1966, Ono 1977, Ono and Suzuki 1988, Bezhanishvili 1997). 

There are different ways of defining intuitionistic analogs of classical modal 
logics. One approach is to use the fact that classical S5 and K can be regarded 
as fragments of classical first-order logic QCl and introduce their intuitionistic 
counterparts as 'solutions' x and y to the equations 

QCl QInt QCl QInt 
S5 ~ x ' K " y * 

More precisely, let us recall that in Section 1.2 we defined two maps ip —^ ip* 
and ip —* ip^ from MC into the language of classical first-order logic in such 
a way that for all (̂  G A1£ we have: 

• (p e S5 iS tp^ e QCl, 

• (peKi«(p* e QCl. 

So the 'solutions' x and y to the equations above can be written as 

• M I P C = {^e MC I ip^ e QInt}, 

• FS = {ipe MC I ip* e QInt}, 

respectively. 
These two logics can be regarded as 'intuitionistic' because their non-

modal fragments coincide with propositional intuitionistic logic Int, and their 
modal operators D and O reflect the behavior of the intuitionistic quantifiers 
V and 3 in the same way as the classical D and O of S5 and K simulate the 
classical quantifiers. Moreover, M I P C and FS turn out to be of interest from 
one more point of view. The former logic corresponds to the one-variable 
fragment of QInt and the latter to a natural fragment of the two-variable 
sublanguage of QInt. As both of them are decidable (this will be shown in 
Section 10.2), we obtain expressive and natural fragments of the undecidable 
first-order logic Qlnt.^ 

®The decidability of FS is of particular interest, since no more expressive decidable 
fragments of QInt are known. In contrast to classical predicate logic, the two-variable 
fragment of QInt is undecidable, at least under the constant domain assumption (Gabbay 
and Shehtman 1993). While the decidability of K can be 'explained' by the fact that it is 
embeddable into the two-variable fragment of classical predicate logic, the decidability of 
F S cannot be justified by the observation that it is embedded into the two-variable fragment 
of QInt. 
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MIPC and FS were introduced—axiomatically, not as fragments of first-
order intuitionistic logic—by Prior (1957) and Fischer Servi (1980,1984). But 
before defining their syntactical and semantical characterizations, it is worth 
considering another, more general and abstract, approach to constructing 
intuitionistic modal logics. 

Let M be a nonempty subset of {D,0}. Denote by £M the standard 
propositional intuitionistic language extended with the connectives in M. In 
particular, Cr^ ^^ = MC. We stick to the new notation, however, in order to 
emphasize that ^/g <>! on the intuitionistic basis is usually more expressive 
than £/Qi- Instead of C,^. and ^Cr^^., we will write C^ and £g^, respect-
ively. By an intuitionistic modal logic in the language £M {imAogic^ for short) 
we understand any subset of £M containing intuitionistic logic Int and closed 
under MP, Subst and the regularity rule 

0(^~>0^ 

for every 0 G M. Given such a logic L and a set F of £M-formulas we denote 
by L ® r the smallest im-logic containing L U F. 

Within this approach, there are three obvious ways of defining intuition-
istic analogs of classical modal logics. First, one can take the family of logics 
extending the basic system IntKj^ in the language £j-,, which is axiomatized 
by adding to Int the axioms of K, say, 

• D{p A q) <--> Dp A D^ and 

• DT. 

An example of a logic in this family is Kuznetsov's (1985) intuitionistic prov-
ability logic I^ (Kuznetsov used A instead of D), the intuitionistic analog of 
the Godel-Lob classical provability logic GL: 

I^ = IntK^ e p -> Dp ® (Dp -^ p) -• p © ((p -> ^) -* p) -• (D^ -* p). 

A possibility operator O in logics of this sort can be defined in the classical 
way by taking O^p = ~»D-'(̂ . Note, however, that in general this O does not 
distribute over disjunction and that the connection via negation between D 
and O is too strong from the intuitionistic standpoint. The situation here is 
similar to that in intuitionistic predicate logic where 3 and V are not dual. 
Consequently, neither MIPC nor FS are axiomatic extensions of IntK,-,. 

Another family of im-logics can be defined in the language C^ by taking 
as the basis system the smallest logic in £^ to contain the axioms 

• 0(pVq) ^ OpV Oq and 
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• - . 0 1 . 

This logic will be denoted by IntK^. However, again neither FS nor MIPC 

are axiomatic extensions of IntK^ because D cannot be defined by means of 

O in those logics. 
A family of logics containing FS and MIPC can be obtained if we consider 

im-logics with independent D and O. These are extensions of the system 
IntK^^ which is the smallest im-logic in the language C^^ containing both 
IntK^ and IntK^. Then we have: 

FS = IntKQ<> e 0 ( p -> g) -* (Dp -^ Oq) 0 

MIPC = FS e Dp -^ p e Dp -> DDp © Op -> DOp 0 

p -> Op 0 OOp -> Op 0 ODp -> Dp. 

The axiomatization of M I P C was first given by Bull (1966) and, according 
to Simpson (1994), the axiomatization of FS was determined by C. Stirling; 
see also (Grefe 1998). We will prove these equations in Chapter 10. 

Now let us consider the relational semantics for some of the im-logics 
introduced above. All the semantical concepts to be defined turn out to 
be natural combinations of the corresponding notions developed for classical 
modal and intuitionistic logics. 

We begin with the semantics for logics in the language C^ Consider 
frames 5 = {^, R, RQ) in which H is a partial order on W interpreting the 
intuitionistic connectives and R^ is an arbitrary binary relation interpreting 
D in the standard manner. Say that a map QJ is a valuation in 5 if it associates 
with every propositional variable p an R-closed subset 2J(p) G Up^ of W. The 
truth-relation (9Jt, x) \= ip (or simply x ^ tp) is defined inductively as follows: 

(an,x)|=p 
{m,x)\=rpAx 
(9n,x)|=V'Vx 
(OT,x)|=V-^X 

{m,x)\^l; 

(on.x) |=Dvj 

iff 
iff 
iff 
iff 

iff 

X € aj(p); 

(an,x)|=V'and(9Jl,x)f=x; 
(art,x)hV'or(9n,x)t=x; 
for ally £W such that xRy, 

{m,y) 1- ^p implies {m,y) \= x, 

^yeW {xR^y -^ y |= </?)• 

In accordance with the principles of intuitionistic semantics, we want the set 
of states {x G W I X 1= Dy?} to be /Z-c/osed whenever the set {x G W | x |= (/?} 
is ii-closed. This will be the case if 

{x G Vy I Vy {xR^y -^ y e X)} 
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is /Z-closed whenever X CW is i?-closed. Equivalently this condition can be 
represented as 

RoR^C R^, 

We shall see in Section 10.1 that IntK^ is sound and complete with respect 
to frames satisfying this condition? 

Another possibility of constructing a semantics for IntK^ is to manipulate 
the inductive definition of the truth-relation for D in such a way that the set 
{a: I X 1= n(f} becomes i?-closed for arbitrary frames of the form (W^R^R^), 
where /? is a partial order. This can be achieved by using the truth-relation 
1=' which is obtained from \= by replacing the clause for D with the following 
one: 

(3Jl, x) h ' Oip iff V2/V2 {xRyR^z -^z\=(p). 

With the help of the completeness result formulated above it is not difficult 
to see that IntK^ is sound and complete with respect to arbitrary frames 
{W,R,R^) under the truth-relation |='. 

We arrive at a similar adjustment of the truth-relation for D if we try to 
construct a semantics for FS and MIPC starting from their definitions as 
fragments of QInt and considering proper reducts of first-order intuitionistic 
frames. 

Consider a set of information states W with a partial order < on it an«i 
a function ti which ^describes' the states w e W by associating with them 
structures l>{w) = (A^ ,5^) such that A^ is nonempty and S^ is a binary 
relation on A^ satisfying the following monotonicity conditions: 

• A^ C A^ whenever w <Vy 

• S^ C S^ whenever w <v. 

The triple 5 = (W ,̂ <, t>> will be called a standard FS-frame. A valuation V 
in it is a map which associates with every propositional variable p and every 
state w a set D(it;,p) C A^ satisfying the condition 

• D{w^p) C d{Vyp) whenever w<v. 

The pair {ff,9J) is called a standard FS-modeL. 
The truth-relation \= between pairs {w^x)^ for w e W, x e A^, and 

£Q^-formulas is defined inductively as follows: 

•̂ Actually, we will show that IntK^ is determined by the class of frames satisfying the 
stronger condition Ro R^o R = R^; see Proposition 10.4. 
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{w, x)\=p 

{w,x) 1= V^Ax 

{w,x) \=ipVx 

{w,x) 1= V^->x 

{w,x) ^ 1; 

{w^x) t= n(f 

{w,x) 1= 0(p 

iff 
iff 

iff 

iff 

iff 

iff 

X e 2J(ti;,p); 
{w^x) t= V̂  and {w^x) |= x; 
{w,x) \=tljov {w,x) \= x; 
for all V eW such that w <Vy 

(w;, x) 1= V' imphes {w, x) \= x; 

Vx; (n; <31; •-• Vy (xS'^y -• (v, t/) |= (/?)); 

3t/(x5«^y^(ti;,y)|=V.); 

A direct inspection of the inductive definitions shows that standard FS-models 
indeed simulate first-order intuitionistic models. It follows that FS coincides 
with the set of jC^^-formulas that are true in every standard FS-frame under 
every valuation. It should also be clear that MIPC is the set of formulas that 
are valid in all standard FS-frames in which 5 ^ = A^ x A'^, for all w eW. 

We close our introduction to intuitionistic modal logic with the following 
observation. 

Proposition 3.46. Neither FS nor MIPC have the finite model property 
with respect to standard FS-models. 

Proof. We show that the formula 

If = n-»- 'p —> -i—iDp 

is valid in all finite standard FS-frames, but is refuted in an infinite standard 
FS-frame validating M I P C (this example was provided by Ono and Suzuki 
1988). First, suppose that 5 = {W, <],t)) is a finite standard FS-frame, fU a 
valuation in it, and {w,x) \= n-»-»p. Consider a maximal v e W with w <v 
and any y E D{v) with xS^y. Then (v, y) \= -~«-«p, and so (v, y) \= p because v 
is maximal. Hence (v^x) |= Dp (again because v is maximal). It follows that 
{v, x) \= Up for all maximal v e W with w <v. Therfore, since W is finite, 
{w, x) \= -•-•Dp. Thus, 3̂  validates (p. 

Now we construct a standard FS-frame {W, <\,d) by taking 

. W = N, 

• n<] m iff n < m, for all n,m eW, 

• D(n) = N, 

• 5"^ = N X N, for m G H .̂ 

Let 5J(n,p) = {0 , . . . , n} . Then it is easily checked that (0,0)]/=ip. Q 



3.1 L Intuitionistic modal logics 193 

We have discussed two different types of im-logics: those in which only one 
primitive modal operator is available (viz., extensions of IntK^ and IntK^) 
and those comprising two primitive operators D and O connected by the 
principles of FS. Intuitively, the former logics are much simpler; they can 
hardly be described as *many-dimensional.' On the contrary, the frames for 
FS and its extensions have a clear two-dimensional flavor. This intuition 
will be made more precise in Chapter 10, where we show that IntK^ can be 
embedded into fusions of classical modal logics, while FS lies embedded into 
products of them. 
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Fusions and products 
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Chapter 4 

Fusions of modal logics 

We begin our study of the combined systems introduced in the previous chap-
ter by considering the simplest and most fundamental kind of combination— 
the formation of fusions. Unlike other, more sophisticated, combinations to 
be investigated in the subsequent chapters, the fusion operation has a very 
nice feature: it preserves properties of the fused logics. In particular, the 
following properties are transferred from the component logics to their fusion: 

• Kripke completeness (Theorem 4.1), 

• the fmp (Theorem 4.2), 

• decidability (Theorem 4.12), 

• decidability of the global consequence relation (Theorem 4.10), 

• (uniform) interpolation property (Theorem 4.18). 

We prove these remarkable theorems in the first five sections of this chapter. 
Section 4.6 provides a brief survey of known complexity results concerning 
fusions. 

4.1 Preserving Kripke completeness and the fi-
nite model property 

In this section we outline a proof of the following two transfer theorems con-
cerning fusions of multimodal logics due to Kracht and Wolter (1991) and 
Fine and Schurz (1996): 

^As in Section 3.1, by a multimodal logic we mean a logic formulated in any of the 
languages MCn, MC^, MCu, or MCsu-

197 



198 Chapter 4. Fusions of modal logics 

Theorem 4.1. If multimodal logics L\ and L2 are characterized by classes of 
frames Ci andC2, respectively, andifCi andC2 are closed under the formation 
of disjoint unions and isomorphic copies, then the fusion L\^ L2 of L\ and 
L2 is characterized by Ci (S)C2. In particular, 

Li 01/2 = Log(FrLi (g) FrL2)-

Theorem 4.2. If both L\ and L2 are multimodal logics having the finite model 
property, then their fusion Li (g) L2 has the finite model property as well 

Actually, Theorem 4.2 follows from the proof of Theorem 4.1, since the 
closure under finite disjoint unions is enough when we work with finite frames. 
So we concentrate on the proof of Theorem 4.1. To simplify notation, we 
assume that Li and L2 are unimodal logics with the boxes Di and D2, re-
spectively. The fusion L = Li (g) L2 is then a bimodal logic in the language 
M£2. 

With each At£2-formula ^ of the form Uiil) (i = 1,2) we associate a new 
variable q^p which will be called the surrogate of (/?. For an A4£2-forniula (f 
containing no surrogate variables, denote by ip^ the formula that results from 
if by replacing all its subformulas of the form 02^'* which are not within the 
scope of other 02, with their surrogate variables ^g ^. So (p^ is a unimodal 

formula containing only Di. Let 

0^((p) = {p I p is a variable in ĉ } U {x € subn2'(p \ O21P € sub(p}. 

The formula (p^ and the set 0^{ip) are defined symmetrically. 
Suppose now that (p is satisfiable in a model based on a frame for L. To 

prove that L is characterized by Ci (g) C2, we have to construct a frame in 
Ci (g) C2 satisfying ip. As we know only how to build frames for the unimodal 
fragments of L, the frame is constructed step-by-step alternating between Di 
and D2. 

Note first that since Li is characterized by Ci, there is a model 9Jt based 
on a frame in Ci and satisfying (p^ at a point r. Our aim now is to ensure that 
the formulas of the form 0 2 ^ have the same truth-values as their surrogates 
ĵ-j .. To do this, with each point x in 9Jl we can associate the formula 

construct a model Tlx based on a frame in C2 and satisfying (p^ in a world y, 
and then hook 97Ix to 9Jt by identifying x and y. After that we can switch to 
Di and in the same manner ensure that formulas DiV' have the same truth-
values as ^p . at all points in every Tlx- And so forth; see Fig. 4.1 for an 
example. In this construction we use the fact that Ci and C2 are closed under 
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isomorphic copies and disjoint unions: the 9Jlx should be mutually disjoint 
and the final model is the union of the models constructed at each step. Note 
also that this construction is a special case of fibring semantics that is called 
iterated dovetailing (Gabbay 1996, 1999). 

-pAOi(pAg^^p). 

pAg, 

Ol(pA02p) 

-.pAq, 

02P 

^^(^P^%lipr.02P)^ 

02P 

Figure 4.1: Satisfying (̂  = pA Oi(-ip A O2P) A 02("^p A Oi(pA O2P)) at r. 

However, to realize this quite obvious scheme, we must be sure that (f^ 
is really satisfiable in a frame for L2, which may impose some restrictions on 
the models we choose. First, in the construction above it is enough to deal 
with points x accessible from r in at most md{ip) steps; no other point has 
any influence on the truth of (f at r. Let X be the set of all such points. Now, 
a sufficient and necessary condition for (fx to be satisfiable in a frame for L 
(and so for (f^ to be satisfiable in a frame for L2) can be formulated using the 
following general description of formulas of type (fx-

Suppose r is a finite set of formulas closed under subformulas. Define the 
consistency-set C{r) of T by taking 

C{T) = {VA I A C D, 
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where for A C T , 

V'A = A{x IX ^ A} A / \ { -x IX € r - A}. 

In particular, for all x G X, we have (px € C(0^((/?)). Given a formula (/?, 
define 

Ex{<fi) = {i,eC{eH<p))\-^i>iL}, 

The formulas in Ei((^) can be regarded as *state descriptions' of the points in 
the possible models with respect to the formulas in 9* ((/?). In particular, for 
all X £ X, (fx is satisfiable in a frame for LiS(fx^ ^i(v^)- ^^ other words, we 
should start with a model djl satisfying v?̂  A p f "*̂ '̂̂ (̂V lli{{p))^ at a point r. 
Of course, the subsequent models Tlx must satisfy (p^ A nf^^^ '̂̂ ^V E2(</?x))̂  
at all points x € X, etc. 

We hope this sketch is enough to illustrate the basic idea of the proof. 
We will not go further into the technical details of the inductive construction: 
they can be either found in (Kracht and Wolter 1991) or restored from the 
algebraic proof of Theorem 4.10 below. 

Note that although frames for fusions of n unimodal logics have n different 
accessibility relations, these frames—unlike product frames—can hardly be 
regarded as 'genuinely many-dimensional' in the geometric sense. However, 
in Section 9.1 we show that in many cases fusions can be characterized by 
certain classes of subframes of product frames. 

4-2 Algebraic preliminaries 

This section is intended to provide the reader with the algebraic prerequisites 
that are necessary for the proofs of the other transfer theorems. 

The algebraic characterization of fusions is quite natural. Suppose Li is 
an n-modal logic (with the boxes D i , . . . , Dn) and L2 an m-modal logic (with 
the boxes Dn+i,. . •, Dn^m)' Given classes Ci and C2 of n-modal and m-modal 
algebras, respectively, denote by Ci 0 C2 the class of n -f m-modal algebras of 
the form 

{^>l ,A , - i , 0 , l ,D i , . . . , an+m) I / i 4 , A , - n , 0 , l , a i , . . . , a n ) eCi and 

(^A, A, - , 0, 1, Dn+l, . . . , ̂ n-^-m) € C2}. 

It should be clear that 

Alg(Li (g) L2) = AlgLi (g) AlgL2. 
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Let 21 = {A,/\^,-^^yO^, 1^) be a Boolean algebra. For all a,be A, put 

a<^b iff a A^ 6 = o. 

It is easy to see that <^ is a partial order on A with least element 0^ and 
greatest element 1^. As usual, we write a <^ b if a <^ b and a ^ b. An 
element a of 21 is called an atom if a ^ 0^ and 

{xeA\x<^a}^{0^,a}. 

In other words, an atom of 21 is an immediate successor of the zero element of 
21. The algebra 21 is called atomic if for every nonzero x e A there exists an 
atom a such that a <^ x. The algebra 21 is said to be atomless if 21 contains 
no atoms. A proof of the following theorem can be found in (Koppelberg 
1988). 

Theorem 4.3. Any two countably infinite atomless Boolean algebras are iso-
morphic? 

We say that a modal algebra 21 is a c.i.a.-algebra if the Boolean reduct of 
21 is a countably infinite atomless Boolean algebra. For a multimodal logic L, 
denote by AtgL the class of all c.i.a.-algebras in AlgL. 

The following result generalizes Theorem 1.14 by stating that all modal 
logics L as well as the global consequence relations hĵ  are characterized by 
their c.i.a.-t>.lgebras. 

Theorem 4.4. Let L be a n-modal logic. Then 

(i) for any two formulas if and ip, we have 

^V-li) iff ?J(v?) = 1^ implies V(tp) = 1^, 

for every 21 6 AtgL and every model OT = (21,2J); 

(ii) L = LogAtgL. 

Proof. To simplify notation, we assume L to be a unimodal logic formulated 
in the language MC. Suppose that (f \f\ ip. Define an equivalence relation ~ 
on A<£ by taking 

Xi '̂  X2 iff ^ ^l Xi ^ X2. 

Denote by [x] the ~-equivalence class generated by x- We define an algebra 

2 l = ( ^ A = ' , - ^ 0 « , l ' » , D « ) 

^For readers not familiar with atomless Boolean algebras: this theorem can be proved 
in the same way (namely, using a back-and-forth construction) as Cantor proved that any 
two countably infinite dense linear orders without endpoints are isomorphic. 
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by taking i4 = {[x] | X e MC} and 

[Xi] A^[X2] = (Xi AX2I, 

-"•[x] = hx), 
O'" = (±1, 
I'" = [T), 

•=•1x1 = Px]. 

The reader can readily check that 21 is a well-defined modal algebra for L. 
Define a valuation 53 in 21 by taking 93(p) = [p] for every propositional 

variable p. It can be proved by induction that 53(x) = [x]^ for every MC-
formula x- Since ip ^T and V' / T, we then have 2J((/?) = 1^ and V{il^) ^ 1^. 

It remains to show that 21 is countably infinite and atomless. Clearly, 21 
is countably infinite whenever it is atomless. So it suffices to prove that 21 is 
atomless. Suppose x Is an arbitrary formula such that [x] ^ 0^. Take any 
propositional variable p which does not occur in x and ip. Then 

0'»<'"[x]A='[p]<^[xl, 

and so [x] is not an atom of 21. It follows that 21 is atomless. 
This proves (i), and (ii) is its obvious consequence. • 

The second part of the following theorem was first proved in (Thomason 
1980): 

Theorem 4 .5 . For all consistent multimodal logics Li and L21 

(i) l~£,j<g,£,2 ^̂  ^ conservative extension of both \-\^ and ^1^; 

(ii) Li ^ L2 is a conservative extension of both L\ and L2. 

Proof. As before, we assume that Li and L2 are unimodal logics with the 
boxes Di and D2, respectively. And again it suffices to prove only (i): (ii) 
follows immediately. Suppose (f \f\^ ip. We show that y? '/Li(giL2 ^* ^ ^ 
Theorem 4.4, there exist 

2 l = ( y l , A ^ ^ ^ o ^ l ^ D ? ) € A t g L l 

and a valuation 9? in 21 such that 2J(v?) = 1^ and 2J(V') j^ 1^. Take any 

53 = ( B , A ® , - ® , 0 ® , 1 ® , D ^ ) € AtgL2. 

(Such an algebra exists, since L2 is consistent.) By Theorem 4.3, the Boolean 
reducts of 21 and 05 are isomorphic. Hence we may assume that A = B and 
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that the Boolean operations of 21 and 53 coincide, i.e., A^ = A®, -i^ = -n®, 
0^ = 0® and 1^ = 1®. But then 

s = (^A^,-^,o^l^a^a?) 
is in Atg(Li ® L2) and (S), 9J) is an algebraic model in which (p is true, but ip 
is not. • 

We now remind the reader of some basic facts about Boolean algebras. 
(Detailed proofs can be found in (Koppelberg 1988).) 

Recall that the domain of a direct product 21 = fJie/ ^* ̂ ^ algebras consists 
of all functions / from / into (J^^; Ai with f{i) 6 Ai^ for all i € L In other 
words, it consists of all sequences {ai\i e I) with a^ £ Ai for all i € / . The 
operations are defined component-wise. For example, 

(ai I t G / ) A^ (6i I i € / ) = {ai A^* 6̂  | i G / ) . 

Let us recall next that given a Boolean algebra 21 = (i4, A^,-»^,0^,1^) 
and a nonzero element a G i4, we can construct the Boolean algebra 

2l« = ( {aA^6|6G>l} ,A^, -n«,0^,a) , 

where for all 6 G i4, 
-.«6 = a A^ - ^6 

This algebra is called the relativization of 21 by a. 
A finite set {oi | i G /} is said to be a partition of 21 if 

• ai 7^0^, for alH G / , 

• ai A^ Oj = 0^, for all distinct t, j G / , and 

Lemma 4.6. Suppose that {ai\i € 1} is a partition of%. Then the map 

(T:2l->n2lan 

defined by taking cr(a) = (a A^ â  | i G / ) , for a£ Aj is an isomorphism from 
21 ontoY[^^j%ai' 
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Proof. First we observe that cr is a bijection. Indeed, suppose a{a) = cr(6). 
Then 

a A^ Oi = 6 A^ tti, 

for all T € / , from which 

and so 

a A ^ \ / a i = 6 A ^ \ / a , . 

As ViG/ ^i = 1̂ » we then obtain a = b. 
To prove that cr is a surjection, suppose that {bi\i e I) is an element of 

n , e / 2 l a . . T h e n 

^ (V^^) = {aiA''\/bi\iel) = {bi\ieI), 

since bi <^ ai and ai A^ aj = 0^, for all i^jel,i^ j . 
It remains to show that a respects the Booleans. For 55 = FliG/^^i ^^^ 

all a in the universe of 51, we have: 

a{-^^a) = ( - ^ a A^ ai \ i e I) 

= ( - ' ^ ^ ( a A ^ a O l i G / ) 

= -.® (a A^ a, I t G / ) 

The other operations are considered analogously. • 

Since an element b e A such that 6 <^ a is an atom in 21 iff it is an atom 
in 2la, we clearly have: 

Lemma 4.7. 7/21 is atomless, then 2la is atomless for each nonzero a G A. 

Given maps (Ti : Ai -^ Bi, iov i e I, we denote by 

i€l 

the map from Yiiei ^« ^^^^ Hiei ^^ defined by 

a(ai\iel) = {(Ti{ai) \iel). 

If the (Ti are isomorphisms from 2li onto 53i, then clearly I l i e / ^ ^̂  ^^ ^^^ 
morphism from Yliei ^« ^^^^ O I G / ®*-
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Proposition 4.8. Suppose that 21 and 53 are countably infinite atomless 
Boolean algebras, with {ai \ i e 1} and {bi \ i e 1} being partitions of 21 
and 03, respectively. Then there exists an isomorphism a from 21 onto 53 such 
that (T{ai) = bi for all i G / . 

Proof. By Lemma 4.7, 2lo. and ^bi (̂  ^ I) are countably infinite atomless 
algebras. Hence, by Theorem 4.3, there are isomorphisms <Ti from 2lai onto 
036,. So 

iei 

is an isomorphism from Ilte/^o* ^^^^ FltG/®*'** Lemma 4.6 supplies an 
isomorphism po from 21 onto fli^/ l̂o* such that poio^i) = (O^,.. . , Oi,..., 0^) 
for all t € / . It also supplies an isomorphism pi from B onto Ote/ ® î ^^^^ 
that pi(6t) = (O®,..., 6t,... ,0®), for i 6 /. The composition poocr o p^^^ is 
then the required isomorphism from 21 onto 03 (here pj"^ is the inverse of pi). 

Q 

Given a sequence of valuations 93t in algebras 2lt, i G /, we denote by 

the valuation in Ote/^* defined by 

9J(p) = {Viip) I i 6 /> 

for every prepositional variable p. 

Lemma 4.9. Suppose OJi is a valuation in a modal algebra 2lt, for i e I. 
Then for all formulas ^, we have 

Kiel ) 

Proof. The easy inductive proof is left to the reader. • 

4.3 Preserving decidability of global consequ-
ence 

In this section we prove the following result of (Wolter 1998): 

Theorem 4.10. Suppose that L\ and L^ are consistent multimodal logics and 
L = Li 0 L2. Then ^*i is decidable iff both hĵ ^ and hĵ  are decidable. 
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The implication (=>) follows immediately from Theorem 4.5. The converse 
implication is a consequence of Lemma 4.11 below and the fact that the size 
of the set C(9^(v?) U 6^(^)) can be bounded by a recursive function in the 
lengths of ip and ip. 

Again, let us assume for simplicity that Li and L2 are unimodal logics 
with the boxes Di and n2, respectively. Then L = Li (g) I/2 is a bimodal logic 
in the language MC2' 

Lemma 4.11. For any two MC2'formulas ^ and xp, the following conditions 
(i)-(iii) are equivalent: 

(ii) there exists D C C(e^{(p) U e^(^)) such that 

• (̂ ^ A (VI>)' Vh - X ' and (yU)^ \fl^ - x ^ for every x € D; 

(iii) there exists D C C{e^{(p) U Q^{^)) such that 

• ^2 A (VD)2 \/l^ -.x^ and iyO)^ \/l, -x\ for every x € D. 

Proof. (ii)=>(i). Take any D C C(e^((p) U G^{ip)) satisfying (ii). By The-
orem 4.4, for each x ^ D there exist 21;̂  € AtgLi and a valuation 93;̂  in 51̂ ^ 
such that 

Further, we can find 21^ G AtgLi and 5J^ such that 

"Orl^i^^ ^{\JDY) = \'^^ and f»v;(^^)7^1^^. 

Put 

21= n 2lx 

and define a valuation 53̂  in 21 by taking 

xeDu{v} 

We then have: 

SteAtgLj, (4.1) 

QJ^V') = 1", (4-2) 
5Ji(V^) ^ I'", (4.3) 

(SJ^X*) I X € !>} is a partition of 21. (4.4) 
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(4.1) follows from the fact that any direct product of finitely many c.i.a.-
algebras is clearly a c.i.a.-algebra, and the class of algebras for a logic is closed 
under the formation of direct products (see Theorem 1.15). For (4.2)-(4.4), 
observe first that, by Lemma 4.9, 

5J^a) = (5J; , (a) |x€DU{V'}>, 

for every >liCi-formula a. Now (4.2) follows from ^xi^^) ~ ^^^ ^^^ '̂̂  
X e Du{\p}. (4.3) follows from 53̂ (V^̂ ) ^ 1^^. To show (4.4), note that 
for any two distinct XiiX2 € C{Q^{ip) U 6^(V^)), there exists a formula a 
such that either a is a conjunct of xi and -"Q a conjunct of X2 or vice versa. 
Hence 53^(xi) ^^ ^^ixl) = ^^ for any two distinct XiiX2 € D. We have 
Vx€D^^(X^) = 1^ because V^HyD)^) = 1^^ for every x € DU{rp}. 
Finally, 2J^(x^) 7̂  0^ because V^ix^) 7̂  O^s for all x € Z). 

On the other hand, using the fact that (V D)^ \f\^ -^^ for all x € D, we 
obtain in a similar way an algebra 55 € AtgI/2 with a valuation 5Ĵ  such that 
the set 

is a partition of 05. By Proposition 4.8, there exists an isomorphism a from 
the Boolean reduct of 58 onto the Boolean reduct of 21 such that 

for all X € Z?. By identifying the Boolean reducts of 05 and 21, we can therefore 
assume that we have an algebra 

with two valuations ^^ and 93̂  satisfying 

2Jnx') = 2J2(x^) 

for all X ̂  Ẑ  and such that 2}^ still has properties (4.1)-(4.4). 
Now, taking into account the definition of C(e^((^) U O (̂V )̂), one can 

easily show that the following equations hold for every ot € © (̂y?) U 6 (̂V )̂: 

5J^(a^) = \/®{9J^(x^) I X ^ A tt is a conjunct of x} 

= \/^{V^{x^) I X € Z), a is a conjunct of x} 

= 2j2(a2). 

Thus, we can define a new valuation 9J in D by taking, for all (nonsurrogate) 
variables p in <̂  and tp^ 

93(p) = 5J»(p) = 5J2(p). 
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By induction on the construction of a we show that 

2J(a)=2J^(a^) = 2j2(a2) 

for every a e 0^{^) U 0^(^). The only nontrivial steps are a = Dî S and 
a = D20: 

2J(Di/?) = Df (5J(^)) = n?(2Ji(/3^)) = V\{niP)^). (4.5) 

The proof of Q3(D2/J) = V'^{{D2/3)^) is similar. Since (p and i) are built up 
from formulas in e^((^)U0^(V') using only the Booleans and Di, an argument 
similar to (4.5) shows that 93((/?) = V^{(p^) = 1^ and V{xf)) = 53^^^) ^ 1^. 
Hence (/? I/Ĵ  V', as required. 

(i)=>(ii). Suppose that (̂  1/̂  i/;. So we have an algebra 

a = (^A^,^^,o^,i^,n?,Df) 

and a valuation 93 in 21 such that 21 € AlgL, 53((/?) = 1^ and 5J(V̂ ) 7*̂  1^. But 
then 

D = {x e C(ei(^) u e^(v)) 193(x) ?̂  o''} 
satisfies (ii). Indeed, let 

21I = ( A , A ^ , - ^ , 0 ^ . 1 ^ , G ? ) 

and 

2J(p), if p is a nonsurrogate variable, 
J ' ( P ) = | 93\^, - ^ 

93(D2X). if P = 9n,v fô ^ ŝ "̂ ^ °2X € ei((^) U ei(V^). 

The algebra 2I2 and the valuation 2Ĵ  in 2I2 are defined analogously. Then we 
clearly have 93^{ip^) = V^({\/D)^) = 532((VD)2) = 1^, V^{^^) ^ 1^, and 
V^{X^) ^ 0^, 532(;̂ 2) ^ 0^ for any x € D. 

The equivalence of (i) and (iii) is proved in the same way. • 

4.4 Preserving decidability 

As we saw in Section 1.5, from the algebraic point of view every modal logic 
L can be regarded as the equational theory of modal algebras generated by 
the equations {(p = I \ ip e L}. Thus, the problem of whether decidability 
is preserved under the formation of fusions of modal logics is an instance of 
the more general question: under which conditions does the decidability of 
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two equational theories Ti and T2 imply the decidabiUty of the union Ti U 
T2? So it would seem to be natural to begin investigating decidability of 
fusions by trying to take advantage of the available results concerning unions 
of equational theories. But unfortunately, none of them is applicable to modal 
logics. For instance, the first rather general sufficient condition found by 
Pigozzi (1974) says that decidability is preserved whenever the languages of 
Ti and T2 are disjoint. However, we cannot use this result to prove decidability 
of fusions of modal logics because the Boolean operators are always shared by 
the equational theories of modal algebras. There are a number of preservation 
results for joins of equational theories with shared symbols; see, e.g., (Baader 
and TineUi 1997, Baader and Tinelli 2002, Domenjoud et al. 1994). But 
again the special conditions they impose on the equational theories make 
these results nonapplicable to fusions. 

Here we prove the following theorem due to Wolter (1998): 

Theorem 4.12. Suppose that L\ and L2 are multimodal logics. Then L\^L2 
is decidable whenever both L\ and L2 are decidable. 

Proof. We again assume that L\ and L2 are unimodal logics with the boxes 
Di and 02, respectively. Let L = Li 0 L2. 

It is natural to begin the proof by trying to use the criterion of Lemma 4.11. 
Observe that for any consistency-set C( r ) , modal algebra 21 and valuation 9J 
in 21, we have 

Therefore, taking into account the definition of 5:3i(</?), we obtain for all MC2' 
formulas ip that 

\jT.x{if)eL, (4.6) 

and so 
\lY.x{<fi)\/l-^X for all X € Ei(^) . 

Thus, for all x € Ei{(p), we have 

(V^iM) ' ^li -X\ {\J^x{^)? TL, V . (4.7) 

Now, if (f ^ L, then by (4.6) 

( \ / S I ( V ; ) ) V L . V ^ ' . 

If V? G L, then by taking D = Ei((/?) and using (4.7) and Lemma 4.11 we 
obtain 

Thus, we arrive at the following corollary (in which the equivalence (i) <=> (iii) 
is proved in the same manner as (i) <=> (ii)): 
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Corollary 4.13. Suppose that L\ and L2 are consistent and if is an MC2-
formula. Then the following conditions are equivalent: 

(i) feL, 

(ii)(VSlM)^l-I.V'^ 
(iii)(Vi:2(<^))^l-I,v". 

Define a^(ip) to be the length of the longest chain D2, Di, D2 , . . . of boxes 

starting with 02 and such that a subformula of the form 

D 2 ( . . . D i ( . . . a 2 ( . . . ) ) ) 

occurs in (p. The function a^{(p) is defined analogously by swapping Di and 
D2. The sum a{ip) = a^{(p) -f o?{^) will be called the alternation depth of (p. 
It is readily seen that the following lemma holds: 

Lemma 4.14. For every MC2'formula if with at least one box, either 

a(Vc(e^(v)))<«M 

or 
a{\/Cie^i^)))<a{<fi). 

Now Lemma 4.14 together with Corollary 4.13 provide us with a decision 
algorithm for L under the condition that hĵ ^ and l-Ĵ ^ ^̂ ® decidable. We 
proceed by induction on a{(f). Suppose that we already know how to decide 
whether a G L, for every a with a{a) < a{ip). By Lemma 4.14, we may 
assume, say, that a{x) < a{(p) for all x ^ C'(9^((/?)). Hence T,i{ip) can be 
constructed effectively and, according to Corollary 4.13, it remains to check 
whether (V5]i((^))^ hĵ ^ (p^ holds, which can be done effectively because hĵ ^ 
is decidable. The case when a{x) < a{ip) for all x ^ C'(9^((^)) is similar. 

Unfortunately, l-Ĵ . is not necessarily decidable when Li is decidable; for 
a counterexample see Section 5.4. So this argument cannot be used to prove 
Theorem 4.12. However, it indicates a path we shall follow to conduct our 
proof. In fact, if we find recursive functions which for every if give two natural 
numbers n i , 712 such that 

( V E I M ) ^ ! - ! . . ^ ^ iff D^"«(VSi(vp))^-*v*eL,, 

and 
( \ / E 2 ( ¥ ' ) ) ' l - I , V ^ iff D | " ^ ( \ / S 2 ( v ) ) = ' - v ' e L 2 , 

then we shall have a decision procedure for L provided that both Li and L2 
are decidable. It turns out that the l-depth d^{(p) and the 2'depth d^{(p) of (p 
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defined below can be used as the required ni and na: 

dHp) = 0 
d'CvJAV) = max{di(vj),dHV')} 

d'h^) = dH'p) 

d»(D2V3) = dH'fi); 

(fitp) is defined analogously. 

Proposition 4.15. For every MC2-formula ip, the foUovnng conditions are 
equivalent: 

(i) <p€L, 

Proof. The implications (ii) => (i) and (iii) =» (i) are clear, since Li and L2 
are modal logics. To prove (i) => (ii), suppose that 

Then there exist 5l~ 6 Atglj and a valuation 2U in 2l~ such that 

We will construct an algebra S) € AtgL and a valuation 93 in it such that 

We may assume that 

2n((V^i(v))')?^l'''. (4-8) 

for otherwise we would have (VSi(c^))^ \f\^ V?̂ , and so (/? ^ L by Corol-
lary 4.13. 

Lemma 4.16. For each i = 1,2, there exist an algebra 21̂  G AtgLt and a 
valuation W^ in 2li such that 

{2n'(x ') |x€EiM} 

is a partition of^i. 
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Proof. By the definition of Ei(<^), for each x € Ei(^) there exist an algebra 
21;̂  e AtgL and a valuation W^ in 21̂ ^ such that an^Cx) T̂  0^^, By (4.6), 
20x(Vl!i(^)) = l^'^ for ail x ^ 5]i((^). Given any two distinct formulas 
^1,^2 € Si((^), we can find a formula a such that either a is a conjunct of 
ipi and -^a a conjunct of ^2 or vice versa. Hence W^{ipi) A^^ 2H^(^2) = 0^^-

Now, for each x ^ ^iMi let 2lĵ  be the a2-free reduct of Sl^. Define a 
valuation W^ in 2lĵ  by taking 

Kip) = I 
2Ux(p), if p is a nonsurrogate variable, 

2Bx(n2^), if P = g^^^ for some D2t/? € e^((^). 

Put 

Then 2li € AtgLi. It should be clear that for all a € Q^{ip) and all x ^ ^i{¥>) 
we have 

Thus, {W^ix^) I X e Si((^)} is a partition of ^ i . 2I2 and SJ^ can be defined 
analogously. • 

L e m m a 4.17. Let m = d^{<p) and suppose that Df^{y Ili{ip))^ —^{p^^L\, 

Then there exist an algebra 51 — / ^ , A,-^,0,1, DiN in AtgLi, a valuation QĴ  

in 21, and elements a o , . . . , am ^ A such that 

(al) 0 < â n < «m-i < • • < ao < 1 {so {-'ao,aoA-iai,... ytt̂ n} is a partition 

(a2) a„4.i < On A Dittn, /or a// n <m; 

'(a3) a m A 5 J n V ) 7 ^ 0 ; 

(a4) {a^ Aaji(x^) | X ^ ^iM} «« o partition of%ami 

(a5) /or even/ n Km^ {(on A -"an+i) A93^(x^) | X ^ ^i(v')} ^̂  ^ partition of 

Proof. By assumption, there exist 2l~ € AtgLi and a valuation W in 21" 
such that 

2n(VAnf'"(VsiM)^)?^o^". (4.9) 
For each n < m, we take an algebra 2l„ G AtgLi with a valuation 2U„ such 
that 

{2rr„(x^) I X e Ei(vj)} is a partition of 2l„. (4.10) 
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(Such algebras exist by Lemma 4.16.) Put 

21 = 21- X J][ 2ln, 5Ĵ  = 2rr X J ] 2»n, 
n<m n<m 

and, for every n < m^ 

a„ = (2n(Dp(VSiM)^),0'»°,...,0'»"-M'»",...,l'''"). 

Recall that we denote the constants and operations of 21 by 0, 1, A, -i, Di. 
We show that the sequence OQ, . . . ,«m and the valuation 5Ĵ  are as required. 
By (4.8), ao < 1, and so (al) clearly follows from the definition. Condition 
(a2) follows from the fact that an A DiOn is equal to 

(2»(np-^^(\/Si(v?))^), ^^o^^. . . , of "-^o^"-M^^..., 1^-). 

Condition (a3) follows from (4.9). For (a4), observe that for all x ^ ^i{^) 

vHx^) = (2n(x^), 2»o(x'),.. .,Wm{x^)). 

Thus, by the definition of Ei((/?), am A 5J^(xi) and am A 2J^(x2) are disjoint 
for distinct xi and X2- By (4.10), 

V 23nx^) = ( 2 ^ ( ( \ / S l ( ^ ) ) ^ ) , l ^ ^ . . . , l ^ - ) = a o , 

and so, by (al), we have 

Finally, by the definition of am, we have am A 23^(x^) > 0, for all x ^ Si((^). 
Condition (a5) is proved similarly to (a4). Q 

Now we can complete the proof of Proposition 4.15 as follows. For each 
n = l , . . . ,m-l - l , take a Q3n 6 AtgL2 and a valuation 9Jn such that 

is a partition of fBn- Take also an arbitrary Q3o € AtgL2 and any valuation 
93o in 23o- Define a valuation 93̂  in the direct product 

«= n ®-
n<m-f 1 
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by taking 
2J2= n ^" 

n<m4-l 

Next, choose 21 G AtgLi with a valuation 53̂  and a sequence ao , . . , an i 
satisfying (al)-(a5) of Lemma 4.17. Let 6o = -"ao, 6n+i = an A -"an+i, 
for n <m, and 6m4-i = ^m- Then by (al) and Lemma 4.6, there is a Boolean 
isomorphism 

n<m+l 

By (a4)-(a5) and Proposition 4.8, for all n = 1 , . . . ,m -h 1 there are Boolean 
isomorphisms 

such that 
<T„(fe„A9ji(x^)) = 9J„(x^), (4.11) 

for all X ^ 5]i(v:?). Take an arbitrary Boolean isomorphism (TQ from 2lbo onto 
So , and put 

n<m+l 

Then ^oa is a Boolean isomorphism from 21 onto 53. Using this isomorphism 
we can identify the Boolean reducts of 21 and 03 in the usual way and obtain 
an algebra 

D = ^ ^ A , - , o , i , n i , n ^ ) 

such that 2) e AtgL. 
Observe that using the isomorphisms g and a we obtain 

On ^ (0, . . . ,0,1'"'"+>,. . . ,1'"W.^ 

= (0^«,.. . ,0'»",1®"+\.. . ,1'^"'+')' (412) 

for all n <m. Therefore, by (4.11), 

a„A«DHx') ^^ (0«",... ,0'«",aJ„+i(x^),.. . ,2J^+i(x')> 
= 0„A5J2(^2)^ 

for all n < m and all x € I^iitp)- Now using the properties of Si(i^), one can 
easily show that, for all n < m and all a 6 0^(v). 

a„ A «0*(Q^) = a„ A \ / { ^ H X ^ ) I X e Ei((^), a is a conjunct of x} 

= a„ A \/{232(x^) I X 6 Si (v) , a is a conjunct of x} 
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Define a new valuation 9J in S) by taking, for all variables p in (̂ , 

9J(p) = 5J^p) = OJ l̂p). 

We claim that for every n < m and every a € 6^(v?) U suh-^^p such that 
d}{a) < n, we have: 

afcAaj(a)=aifcA2J^(a^). (4.14) 

The proof is by induction on n. The basis of induction, i.e., the case n = 0, is 
proved by induction on the subformulas of a with d}{a) = 0. For propositional 
variables this follows from the definition of 53. The case of the Booleans 
is trivial. So suppose a == D2)0. Then a € 0^(v^). Notice that Di does 
not occur in /?, since d^(a) = 0. Consequently, a = Q^ and the equality 
ao A2J(a) = ao A93^(Q^) follows immediately. Hence, oo A93(a) = ao A5J^(a^) 
by (4.13). 

The induction step is also proved by induction on the subformulas of a 
with (i^(a) < n -f 1. The only interesting cases are: a = Di/S and a = D2/9. 
Let us first assume that a = Diai . By the induction hypothesis, 

o„A5J(/?)=a„AaJ*(/?^). 

Hence, 

On A U\an A 93(a) = an A DiOn A ai2J(/?) = an A Di(an A 93(/?)) 

- an A Di(an A 5J^(/?^)) = On A Dian A Di93^(/?^) 

= an A DiOn A 53^(a^). 

Now On+i A 93(a) = an+i A 93^(a^) follows from an+i < an A Dian, i.e., 
condition (a2). 

Let a = 02/3. Then a,P e © (̂v )̂. We know, by the induction hypothesis 
and (4.13), that an+i A9J(/3) = On-fi A5J2(/?2). Hence 

D^an+i A 2J(a) - Ufan^i A D?9J(/?) - D?(an+i A 93(/9)) 

= D?(an^i A2J2(^2)) == D?an-,i A a?2j2(^2) 

= a?an-HiA93V2). 

On the other hand, by (4.12) we have an-i-i < D^an+i- Thus, we can conclude 
that 

an+iA93(a)=an4-iA932(a2), 

which, by (4.13), yields 

an+iA2J(a) = an+iA93^(a^). 
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To complete the proof of Proposition 4.15, it remains to observe that, by 
(4.14) and (a3), we have am A 2J(-'V?) ^ 0, and so V{ip) ^ 1. 

The impUcation (i) => (iii) can be proved in the same way. Q 

As was shown above, Proposition 4.15 provides us with a decision proced-
ure for L whenever both Li and L2 are decidable. This completes the proof 
of Theorem 4.12. • 

4.5 Preserving interpolation 

Denote by vavip the set of all propositional variables in ip. We remind the 
reader that a logic L has the interpolation property if whenever (p -^ if) e L 
then there is a formula x with varx Q var<f D varip such that (p -^ x ^ L and 
X —^ i/^ € L. The formula x is then called an interpolant for ip -^ tp in L. The 
interpolation property was introduced and investigated by Craig (1957) who 
discovered that classical logic enjoys interpolation. For information about 
interpolation in modal logic we refer the reader to (Maksimova 1979) and 
(Chagrov and Zakharyaschev 1997). 

Say that a modal logic L has uniform interpolation if for every formula (p 
and every set Q = {g i , . . . , q^} of variables, there exists a uniform interpolant 
ipQ for (p with the following properties: 

• <p-^^Q e L, 

• vanpQ C vanp — Q, 

• for every ip, ii (p -^ tp € L and varxp n Q = 0 then ipQ -^ ip € L. 

Pitts (1992) proved that intuitionistic propositional logic Int has uniform in-
terpolation. Ghilardi (1995) and Visser (1996) showed that K, the provability 
logic GL and the Grzegorczyk logic Grz also have this property. However, 
S4 does not have uniform interpolation, although it enjoys Craig interpola-
tion; see also (Ghilardi and Zawadowski 1995). It is easy to see that a modal 
logic L has uniform interpolation whenever it has interpolation and AlgL is 
locally finite, i.e., each finitely generated algebra in AlgL is finite. (Take as 
the uniform interpolant for (p the conjunction of all interpolants iov (p -^ tfj 
in L.) It follows, for instance, that S5 has uniform interpolation, since it has 
interpolation and AlgS5 is locally finite. 

In this section we prove the following result of Wolter (1998). (Note that 
the transfer of interpolation can be proved similarly; see Kracht and Wolter 
1991). 

Theorem 4.18. Suppose Li and L2 are multimodal logics. Then L = Li®L2 
has the uniform interpolation property iff both L\ and L2 have this property. 
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Proof. Let 

V((^,V^) = {^1 ~> --^1 I V?i € Ei(v?), ^1 € Ei(V^), v?i --• -iV î G L}. 

Then V^i(v^ "^ V̂ ) ^^ equivalent (modulo Boolean transformations) to 

\ / S i ( ^ ) A \ / S i ( t A ) A / \ V ( ^ , t A ) . 

Now, the proof of Proposition 4.15 can be easily extended to show that, for 
any two formulas ip and V̂ , we have 

(fi -* 'if) e L iff 7 € Li, 

where 7 is 

Suppose that Li and L2 have uniform interpolation. Fix Q = {gi,. •. ,9it}. 
We prove by induction on a((/?) that there exists a uniform interpolant (fq for 
<p. This is clear if <f contains no modal operators. Assume that (f contains 
them and that uniform interpolants exist for all x with a{x) < CLM- We may 
assume that a{x) < a(v^) for all x ^ C'(0^(v?)), and take uniform interpolants 
XQ for these x- Let 

P^^A of' ' '<^) V Erif) A Df'''^^) f\{x - XQ I X € Jlxif)}, 

and 
i? = Q U {(?^^^ I Daa € e^((^), Q n vara ^ 0}. 

As Li has uniform interpolation, we can take a uniform interpolant 0}^ for 0^ 
in Li. There exists a (uniquely determined) formula (̂  such that 

By the definition of /?, we have Q D varip = 0. We show that (p is equivalent 
to a uniform interpolant ^pq for ip. Indeed, we have P^ -* P}^ e Li. Thus 
P -^ (p £ L^ and so (/? —> (̂  € L, since /? ^ (̂  € L. Assume now that 
(p —^ xp e L and vart/; n Q = 0. We show that (p -^ \p e L. It follows from 
7 € Li that /3^ —• (5̂  € Li, where (J is 

So i^^ -> (Ĵ  € Li, since R n t;artJ^ = 0. But then (p —^ S e Ly from which 
(̂  —> 0 € L, since tp i-^ S e L. • 

It follows, for example, that Kn and S5 (8) S5 have uniform interpolation. 
(For Kn this was first proved by D'Agostino and HoUenberg 1998.) 
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4.6 On the computational complexity of fusions 

Unlike the properties considered above, the upper bounds for the compu-
tational complexity do not always transfer under the formation of fusions 
(obviously, the lower bounds are inherited as long as we take fusions of con-
sistent logics). We already know that the validity problems for S5 and KD45 
are coNP-complete, while for S52 = S5 (g) S5 and KD452 = KD45 (g) KD45 
these problems become PSPACEl-complete; see Theorems 1.16 and 1.17. On 
the other hand, we know that in many cases PSPACEJ-completeness transfers 
under the formation of fusions: examples are the fusions of K, T, S4, etc. 
(see Theorem 1.17). In fact, the proof of Theorem 1.17 from (Halpern and 
Moses 1992) can be easily modified so as to obtain the following result on the 
computational complexity of fusions of basic modal logics: 

Theorem 4-19. Let n > I and Li e { K , T , K 4 , S 4 , K D 4 5 , S 5 } , for all 
l<i<n. Then Li<^ • • - (S> Ln is PSPACE-complete. 

These observations lead to the following question: 

(1) Given a complexity class C, is it the case that the validity problem for 
the fusion Li 0 L2 is in C whenever the validity problem for both Li 
and L2 is in C? 

According to the example above, the answer to this question is negative for 
the class coNP. But then we are facing the following problem: 

(2) Give a criterion describing when the validity problem for the fusion of 
two coNP-complete modal logics is also in coNP. 

Unfortunately, except the observation that coNP does not transfer, nothing 
nontrivial is known about question (1). For example, it is an open problem 
whether PSPACE- or EXPTIME-completeness transfer under the formation 
of fusions. 

The second problem, however, has been solved by Spaan (1993). To for-
mulate her classification theorem, we require the following notion. Say that 
a frame (W, R') is a skeleton subframe of a frame {W, R) ii W C W and 
R' C R. Recall also that we used to denote by o reflexive points and by • 
irreflexive ones. 

Theorem 4.20. Suppose that C\ and C2 are classes of unimodal frames that 
are closed under the formation of isomorphic copies and disjoint unions. Then 
the validity problem for L = Log(Ci(8)C2) = Log(Ci)(8)Log(C2) is PSPACE-Ziard 
whenever one of the following six cases holds {here {n,n} = {1,2}); 

(i) »4 • •• is a skeleton subframe of a frame in Cn and •—•• is a skeleton 
subframe of a frame in Cnl 
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(ii) o—•-•—#•• is a skeleton subframe of a frame in Cn o>nd •—̂ « is a skeleton 
subframe of a frame in Cn,' 

(iii) •-•o~^« is a skeleton subframe of a frame in Cn dnd •—•• is a skeleton 
subframe of a frame in Cn,' 

(iv) •— •̂-̂ » is a skeleton subframe of a frame in Cn o,nd o—*-* is a skeleton 
subframe of a frame in Cn', 

(v) • »• »• and o—̂» are skeleton subframes of a frame in Cn CLTid —^* is 
a skeleton subframe of a frame in Cn; 

(vi) •— •̂--̂ « and o--̂ » are skeleton subframes of a frame in Cn and •-^o is 
a skeleton subframe of a frame in Cn-

Otherwisey either Cn, for some n € {1)2}, consists of disjoint unions of 
singleton frames—in which case L is polynomially reducible to Log(Cn)—or L 
is coNP-complete, 

A close inspection of this result shows that almost all interesting fusions 
are PSPACE-hard. Besides those already mentioned in Theorem 1.17, this 
lower bound holds, for example, for K4.3 (g) K4.3 and S4.3 (g) S4.3. The only 
interesting exceptions are the fusions Alt 0 Alt and DAlt (g)DAlt, which by 
Theorem 4.20 are coNP-complete. 
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Chapter 5 

Products of modal logics: 
introduction 

Unlike fusions, where modal operators of the fused logics do not interact, 
products of modal logics do involve a rather strong interaction, which makes 
them much more complex than fusions. In particular, no general transfer 
theorem comparable with those we saw in the previous chapter can be proved 
for products. Their computational behavior subtly 'feels' various frame prop-
erties of logics (transitivity, linearity, etc.): it strongly depends on the di-
mensionality of the product. All this as v;ell as the connections with other 
many-dimensional formalisms makes the theory of products of modal logics 
challenging and exciting. 

We begin our study of decidability, complexity and axiomatizability prob-
lems for products of standard modal logics with an introductory chapter, 
where, to keep the exposition as transparent as possible, we consider only 
two-dimensional products of unimodal logics. (However, all the definitions 
and many of the results can be easily generalized to two-dimensional products 
of multimodal logics; see Gabbay and Shehtman 1998). Thus, we will be deal-
ing with product logics formulated in the bimodal language A1£2- To reflect 
the geometrical intuition behind product frames (see Section 3.3), we denote 
the boxes and diamonds of MC2 by Q, O, and • , < ;̂ the former pair is inter-
preted in 2-frames 5 = (W^Rh^Ry) by the 'horizontal' accessibility relation 
Rh and the latter one by the 'vertical' Ry, 

The aim of the chapter is to consider the interaction axioms between Q 
and Q, which will result in rather simple axiomatizations of certain kinds of 
products, and then, using the example of relatively simple S5 x S5, to gently 
introduce the methods of obtaining decidability and complexity results we 
will be applying later on to more complex products. 

221 
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5.1 Axiomatizing products 

Recall that the product logic Li x L2 of Kripke complete modal logics Li and 
L2 is defined as 

Li X L2 = Log{5i X ̂ 2 I 5i G FrLi, ^2 € FrL2}, 

where the product Ŝ i x ^2 of frames 5i = (^1, ^i> and 3̂ 2 = {W 2̂, ^2) is the 
frame (M î x W2,Rh,Rv) in which, for all u,u' € W î, v,v' G W2» 

(u, v) Rh (tx', v'} iff uR\u' and t; = v', 

(li, v) Ry (u', v'} iff t;i?2^' and u = u'. 

Product logics are defined in a semantical way: they are logics determined by 
classes of product frames. Thus, a good start to understand their behavior 
is to find properties that hold in every product frame. The most obvious are 
the three diagrams in Fig. 5.1 the meaning of which can be described by the 
following first-order sentences: 

• left commutativity. 'ix'iyiz {xRyy A yRhZ —• 3u {xRhU A uRyz)), 

• right commutativity: Wx^y^z {xRny A yRyZ —> 3u {xRyU A uRhz)), 

• Church-Rosser property, ^/x^y^z (xRyy A xRhZ —> 3u {yRhU A zRyu)). 

1 

i 
X 

1 • ^ ^ 

1 
1 

> -^o 
u 

1 
1 
1 

• 
X 

i 

^ 1 V X 

1 
1 
1 

z 

Figure 5.1: Left and right commutativity and Church-Rosser properties. 

These properties can also be expressed by modal formulas. One can easily 
check that a 2-frame is left commutative iff it validates the formula 

com} = OOp —̂  O^p, 

it is right commutative iff it validates 

coni^ = 0<I>p -^ OOp, 

and it is Church-Rosser iff it validates 

chr = OClp -* QOp. 
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The left and right commutativity axioms can be combined into a single com-
mutativity axiom 

com = com} A comT. 

Are these axioms enough to characterize the product frames? The answer is 
negative: there are commutative and Church-Rosser 2-frames that are not 
(isomorphic to) products of any frames. A simple example of such a frame is 
shown in Fig. 5.2. Anyway, it is tempting to conjecture that every product 

Figure 5.2: Commutative and Church-Rosser but not product frame, 

logic Li X L2 can be represented as 

[Li, L2] = {Li 0 L2) ® com. ® chr. 

Logics Li and £2 for which this is the case, i.e., Li x L2 = [Li,L2l, will he 
called product-matching. Of course, by Proposition 3.8, we always have the 
inclusion 

[LuL2]CLixL2. (5.1) 

The question is whether the converse holds. It turns out that many pairs of 
standard modal logics are indeed product-matching; however, there are many 
counterexamples as well. The results we are about to present were obtained 
by Gabbay and Shehtman (1998). 

Axiomatizing K x K 
First, since both com and chr are Sahlqvist formulas, the logic [K,K] is 
canonical, and so we have: 

Proposition 5.1. [K,K] is Kripke complete. In particular, Fr[K,K] is the 
class of all 2-frames having the commutativity and Church-Rosser properties. 

For definitions of and classical results on Sahlqvist formulas and canon-
icity; see, e.g., (Sahlqvist 1975, Chagrov and Zakharyaschev 1997, Blackburn 
et aL 2001). 
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Now we show that K and K are product-matching. The heart of the proof 
is the following: 

L e m m a 5.2. Every countable rooted 2-frame validating com and chr is a 
p-morphic image of a product frame {in fact, of the product of two countable 
intransitive trees). 

Proof. Let 6 = {W^Rh^Ry) be a countable rooted frame validating com 
and chr. We will build, step-by-step, frames 5i = {U,Ri) and ^2 = {V1R2) 
and a p-morphism / from ^i x 3̂ 2 onto 6 . One way of formalizing this 
straightforward step-by-step argument is by defining a game G(0) between 
two players V (male) and 3 (female) over (8. (Our game and its properties are 
similar to those of (Hirsch and Hodkinson 1997), where games are played over 
relation algebras. For a detailed treatment of games over many-dimensional 
structures see (Hirsch and Hodkinson 2002).) 

We define a (d-network to be a tuple 

where ^i = {U^,R^) and ^2^ = {V^, R^) are finite irreflexive and intrans-
itive trees, and f^ is a homomorphism from ^^ x 3̂ 2̂  to 6 , that is, for all 

if uR^u' then f^{u,v)Rhf^{u\v), 

if vR^v' then f^{u,v)Ryf^iu,v'). 

The players V and 3 build a countable sequence of finite 0-networks 

iVo C iVi C . . . C iVi C . . . 

where Ni.i C Ni means that U^^-' C U^\ V^'-' C F ^ S R^'"' C R^\ for 
£ = 1 , 2 , and /^*-* C /^* if we consider functions as sets of pairs. 

In round 0, V picks the root r of 6 . 3 responds with some ©-network 
No such that both [/^° and V^^ are singleton sets, the accessibility relations 
Hf° and i?^° are empty, and /^« maps the only pair in U^^ x V^^ to r. 

Suppose now that in round i, 0 < i < a;, the players built a sequence 
ATQ C • • • C Ni-i of 0-networks. Player V's aim is to challenge 3 with possible 
defects of Ni-.i which indicate that the homomorphism /^^- i is not a p-
morphism onto 0 yet. V picks such a defect which consists of 

• apa i r (w,i;>€C/^*-* x V ^ - * , 

• a 'direction' d € {/i, v}, 

• a world tt; in 0 such that f^*-^{u,v)RdW. 
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Player 3 can respond in two ways. Assume that V has picked direction h. If 
there is some u' € f/̂ *-* such that uR^ *"^u' and f^'-^{u\v) = w, then she 
responds with Ni = Ni^\. Otherwise, she responds (if she can) with some 
(S-network Ni extending Ni^i in such a way that 

• [/Ni = f/N,-, y 1^^}^ ^+ being a fresh point, R^' = /?f*^' U {(w, u+)}, 

• 5̂ ^ = ;5f-̂  and 

If V picked direction v, her move is analogous, possibly extending ^2 * • ^̂  
3 can respond in each round i < OJ then she wins the play. Say that 3 has a 
winning strategy in the game G((S) if she can win all plays. (We assume that 
in each round of a play, 3 possesses the information about all the previous 
moves of V and remembers her answers.) 

Claim 5.3. / / 3 has a winning strategy in G((8) then there are countable 
intransitive trees J i , ^2 such that 0 is a p-morphic image of^i x 3̂ 2 • 

Proof. Consider a play of the game G(©) when V eventually picks all pos-
sible defects (he can do this because 0 is countable and (5-networks are always 
finite). If 3 uses her winning strategy in this play, then she succeeds in con-
structing a countable ascending chain of (S-networks whose union gives the 
required p-morphism. • 

Thus, it remains to define a winning strategy for 3 in G((S). In round 0, her 
response is determined by the rules of the game. In round i (0 < i < a;), some 
sequence No C -- - C Ni^i of 0-networks is already constructed. Assume that 
V picks the defect which consists of a pair (u, v) € U^''^ x V^***, a direction 
d and a world w in (& such that f^*-'{u,v)RdW. 

Let for definiteness d — h (the case of rf = t; is similar). By the rules of the 
game, if there is u' € (7^*-* such that uR^ '~^u' and f^'-^{u\v) = w;, then 3 
must respond with Ni = Ni^\, Otherwise she has to add a fresh point W^ to 
C/^'-» and to respond with a (S-network Ni satisfying the above conditions. 
The value of f^*{u'^^v) is defined to be w by the rules. What remains to be 
done is to define /^* on all pairs of the form (u^, t;'), where i;' G V^' = y^i-i 
and v^ ^ V. These pairs will be called new pairs. 

Claim 5.4. There is an enumeration {vo^Viy... ^VM} of V^'^^ such that 
Vo =^ V and, for all k, 0 < k < M, there is a unique index pred{k) < k for 
which either Vc(i(A:)^2 ''''^k or VkR2 ''^Vpred{k)' 

Proof. Take the unique i?2 *~^-path starting from the root of the tree 3̂ 2 *~* 
and ending with i;, and enumerate it backwards; then proceed with all the 
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other points in V^'-* by enumerating them in the order of their 'creation' in 
the current play of the game. • 

In order to define /^* on the new pairs, suppose that 0 < fc < M and that 
we have already defined f^'{u^^vt) for all ^ < fc in such a way that 

f''*{u,vt)RHf'''{u^,vt), (5.2) 

/^ ' («+, t;<)i?„/'^'("^. Vedw). if ^ > 0 and v^^ '" 'v^rfW' (5-3) 

/'^*(«+, Ved(0)^/ '^ ' ("" ' . ^tl if ^ > 0 and Ve<iW^^'' '«^ (5-4) 

Let us now define f'^'{u^,Vk)- By Claim 5.4, we havepred(fc) < A;, and either 
t;pred(fc)i?2' '̂ fc or VkR2 '~^Vpred(k)- Consider two possible cases. 

Case 1: Vpred{k)f^2 '~^'"k- As /''*-> is a homomorphism from J j ' " ' x52 '" ' , 

and by (5.2) we have also 

/ ^ ' - ' (u, Ved(fe))«fc/^'"' ("" .̂ Ved(fc)) 

(see Fig. 5.3). Since <6 validates chr, there is s € W such that f^'-^{u, Vk)RhS 

I 

I 
• • 

f^'-'{u,Vpred{k)) f^'-^(u^.Vj^ed{k)) 

Figure 5.3: Using chr. 

and f^*~^{u^^Vpred(k))^vS' Take any such 5 and define f^^{u^,Vk) = s. 
Then f^'{u^,Vk) satisfies (5.2) and (5.4), that is, 

fHn'-.Vpredik))Rvf'''{u^.Vk). 

Case 2: VfeĤ *~*Vpred(fc)- We then have 

/^*-^ (U, Vk)Rvf^'-'{u, Veci(fc)), 

/ ^ ' - » (W, Vpred{k))Rhf^'-^{u^ .Vpredik)). 
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• • • 

I 
I 

• -^O 
f^^-^iu^v,) r^(^^^^) 

Figure 5.4: Using com}, 

and so we can use (S |= com} to define f^*{u'^,Vk); see Fig. 5.4. (If player V 
chooses rf = t;, then we use (5 f= com^.) Then /^*(tx"^, Vfc) satisfies (5.2) and 
(5.3), that is, 

/^^(u+,t;,)/?t;/^^(ti^,Ved(it)). 

Now we prove that the defined function / ^ ' is a homomorphism from 
5^' X 5^* to «. Suppose first that x,y e t/^S x/if^'t/ and 2 G V^*. We show 
that 

/^^(x,.)i?,/^'(2/,^). (5.5) 

Indeed, if y ^ u'^ then a: G f/^*-S and so (5.5) holds because /^* coincides 
with /^*-^ on the *old' pairs. And ii y = W^ then we have x = M, and then 
(5.5) follows from (5.2). 

Now suppose that x,t/ € V^», xi?^*y and 2 € C/̂ *. We show that 

f'''{z,x)R^f'''{z,y). (5.6) 

Again, if z ^ u'^ then (5.5) is clear. Let z = w"̂ . There are k^£ < M such 
that fc ̂  £, X = v̂  and y — Vk- Suppose first that k > £, Then, by Claim 5.4, 
we have ( = pred{k)^ and so (5.6) follows from (5.4). Similarly, if A: < ^ then 
A; = pred{e) and (5.6) holds by (5.3). • 

We are now in a position to prove the following: 

Theorem 5.5. K x K = [K,K]. 

Proof. By Proposition 5.1, [K,K] is determined by the class of all com-
mutative and Church-Rosser frames. This class is first-order definable in the 
language having equality and two binary predicate symbols. Let ip ^ [K,K]. 
Then, by Theorem 1.6, we have a countable rooted 2-frame 5 for [K,K] re-
futing V?. Now, using Lemma 5.2, we can find a product frame 6 having S 
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as its p-morphic image. By Theorem 1.13 (i), it follows that 6 ^ (/?, and so 
^ ^ K X K. Therefore, we obtain K x K C [K,K]. The converse inclusion 
has already been shown above. Q 

Product-matching logics 

Actually, Theorem 5.5 can be generalized to many other pairs of standard 
modal logics. Consider the first-order language with equality and a binary 
predicate K A formula ip in this language is called positive if it is built up 
from atoms using only A and V. A sentence of the form 

VxVt/Vz (^(x, y, z) -^ R{x, y)) 

is said to be a universal Horn sentence if ^(ar, y, z) is a positive formula. We 
call an A<£-formula (p a Horn formula, if there is a universal Horn sentence 
(PH such that, for all frames 3̂ , 

d\=ip iff 5 N ^H. 

An A^£-formula is called variable free if it contains no propositional variables, 
i.e., all its atomic subformulas are constants ± or T. 

Lemma 5.6. (i) For every variable-free MC-formula <f, the class fr{(p} is 
first-order definable. In fact, for all frames 5, 

51=^ iff d^^*, 

where (̂ * is the standard translation of ip {see Section 1.3). 
(ii) If (f is a variable-free formula and ^ is a p-morphic image of 0 then 

d\=^ iff « 1= </̂-

Proof. An easy induction is left to the reader as an exercise. Q 

We call a unimodal logic Horn axiomatizable if it is axiomatizable by 
only Horn and variable-free formulas. Examples of Kripke complete Horn 
axiomatizable logics are K, D = K 8 OT, K4, S4, KD45, T, S5. 

Clearly, if L is a Kripke complete and Horn axiomatizable logic then frL 
is defined by the set 

TL ={^H I <̂  is a Horn axiom of L} U 
{if* I (/? is a variable-free axiom of L} (5.7) 

of first-order formulas. 
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Proposition 5.7. Let Li and L2 be Kripke complete and Horn axiomatizable 
unimodal logics. Then [Li,L2] is Kripke complete. In particular^ Fr[Li,I/2] 
is determined by the class of frames in Fr(Li 0I /2) having the commutativity 
and Church-Rosser properties. 

Proof. Since both FrLi and FrL2 are first-order definable, Fr(Li(8)L2) is first-
order definable as well. By Theorem 4.1, Li 0 L2 is complete with respect 
to Fr(Li 0 L2), and so, by Fine*s (1975b) theorem, Li 0 L2 is canonical (see 
also Chagrov and Zakharyaschev 1997, Blackburn et ai 2001). Using the fact 
that [K, K] is canonical and that the sum of two canonical logics is canonical 
(see, e.g., Chagrov and Zakharyaschev 1997), we can conclude that [Li, L2] is 
canonical as well, and therefore Kripke complete. Q 

Letntna 5.8. Let L\ and L2 be Kripke complete and Horn axiomatizable un-
imodal logics. Then every countable rooted 2-frame for [^1,^2] ^s a p-morphic 
image of a product frame for Li x L2. 

Proof. For each i = 1,2, define the set ^L^ of first-order formulas as in (5.7). 
Then, by Proposition 5.7, Fr[Li,L2] is defined by F L , (for i?/i), Ti^ (for Rv)y 
plus the commutativity and Church-Rosser properties. Suppose that (9 = 
(IV, Rh, Rv) is a countable rooted 2-frame for [Li, L2I. Then (5 |= comAchVy 
{W^Rh) h FLI and (W^Ry) f= F^a- Therefore, by Lemma 5.2, there are 
frames J i = (f/, Ri) and ^2 = (V̂» ̂ 2) and a p-morphism / from 5i x ^2 onto 
(S. However, di and ^2 can reiiite some axioms of Li and L2. By Lemma 5.6 
(ii), these can only be some of the Horn axioms. 

To 'repair' the 5t) we will form the 'Li-dosiire' of 5i by extending, step-
by-step, their accessibility relations Ri in the following way. First, let t = 1. 
Define an infinite ascending chain 

/?? C /?} C . . . C i?y C . . . 

of binary relations on U by taking fij = iJj, 5? = Jfi and, for n < a;, 

i?7"^^ = /?y U {(a, 6) G t/ X t/ I j y 1= 3z^{a, 6, z), for some tp such that 

VxVyVf (^(x, y, z) -^ /?(x, y)) € F L , } , 

and d^'^^ = {U, R^^^). R2 and 5? are defined similarly, using universal Horn 
sentences in Ti^. We claim that, for each n < a;, / is a p-morphism from 
5? X 5̂ 2 onto (S. Indeed, the 'backward' condition always holds after extending 
the accessibility relation of the pre-image. Let us assume inductively that / 
is a homomorphism from ffj x 5? ^o (S and let aR^'^^b, for o,fr € f/, and 
c e V. If aRib also holds then f{a,c)Rhf{b,c) by the induction hypothesis. 
Otherwise, there are a positive formula t/;(a:, 2/, 2 1 , . . . , Zm) and d i , . . . , dy„ € C/ 
such that 

Sy hi/ ;(a,6,di , . . . ,dn») and Va:VyVf(0(a:,y,f)-* i?(a:,t/)) € F L , . 



230 Chapter 5. Products of modal logics: introduction 

Since / is a homomorphism and ^ is positive, we have 

(5 h i^(f{a.c),mc), fiduc),...,/(dm,c)) 

when /? is interpreted as il^. It follows that 

{W,RH)\=3mf{a,c),f{b,c),z), 

and so, by {W,Rh) (= Ti^, we obtain f{a,c)Rhf{b,c). 
Finally, let 

Rr=\J^"' ^r = {u,Rr), 
n<uf 

It is easy to see that 5f° N Tx,., i = 1,2, and / is a p-morphism from Jf* x y ^ 
onto 0 . Q 

Now we obtain: 

Theorem 5.9. Let Li and L2 be Kripke complete and Horn axiomatizable 
unimodal logics. Then Li x L2 = [Li,L2]. 

Proof. By Proposition 5.7, [Li, L2] is determined by the class of commut-
ative and Church^Rosser frames from Fr(Li 0 I/2). This class is first-order 
definable in the language with equality and two binary predicate symbols. Let 
ip ^ [Li,L2]- Then, by Theorem 1.6, we have a countable rooted 2-frame 5 
for [£i, £2] refuting (p. Now, using Lemma 5.8, we can find a product frame 0 
for Li X L2 having 5 as its p-morphic image. By Theorem 1.13 (i), it follows 
that (5 t^ (̂ , and soip ^ LiX L2. Therefore, LiX L2 Q [I'l, L2]' The converse 
inclusion has already been shown as (5.1). • 

Corollary 5.10. Let Li and L2 be any logics from the following list: K, D, 
K4, S4, KD45, T, S5. Then Li x L2 = [^1,12]. 

More axiomatizability results about products of temporal, dynamic, and 
epistemic logics with S5 will be obtained in Sections 6.5, 11.7 and 12.2. 

Corollary 5.11. Let Li, L2 and L3 be Kripke complete and Horn axiomat-
izable unimodal logics. Then 

Lix L2X Lz = (Li X L2) X L3 = Li X (L2 X L3). 

Proof. Follows from Theorem 3.16 and Lemma 5.8. Q 
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Note that according to the definition above, the sentence 

^xiyiz(R{x, y) A R{x, z) --* y =^ z) 

is not regarded as a universal Horn sentence, so Lemma 5.8 (and hence The-
orem 5.9 and Corollary 5.11) does not seem to apply to products of Alt (and 
DAlt) logics. However, in Section 8.5 we shall show how to modify the proof 
of Lemma 5.8 in order to obtain these results for products of Alt (and DAlt) 
logics of any finite dimension. 

In Section 3.3 we introduced the product hĵ x̂ hĵ ^ of global consequence 
relations hĵ ^ and hĵ :̂ for any formulas if and V̂ , we have '^{^l,^ x l-J,̂ )*̂  iff 
9Jl\= ip whenever 9Jl\=^ tp^ for every model 9Jl based on a frame in FrLi x FrL2. 
In general, not too much is known about how hĵ x̂ \-*^^ relates to the global 
consequence relation ^1,^x12 ̂ ^^^ ^̂ ^ questions below). But in case both Li 
and L2 are Kripke complete and Horn axiomatizable, we have the following: 

Theorem 5.12. Suppose Li and L2 are Kripke complete and Horn axiomat-
izable unimodal logics. Then Li x L2 is globally Kripke complete, and ^l,^xL2 
coincides with ~̂£.j x hĴ .̂ 

Proof. By Proposition 5.7 and Theorem 5.9, Li x L2 is determined by a 
first-order definable class of frames. So, by Theorem 1.19, it is globally Kripke 
complete, and thus we have ^l^xL2 ~ ^1\ ^^L* 

Suppose now that ip \/l^xL2 ^- Then, by Theorem 1.20, we can find a 
countable 2-frame 5 for Li x L2 (and so for [Li,L2]) such that 971 |= V' and 
OT t̂  V?, for some model 071 based on 5. By Lemma 5.8, 5 is a p-morphic 
image of a product frame © from FrLi x FrL2. But then W f= V̂  and Q7t' ^ v? 
for some model 971' based on 6 , and so V̂ (H-£̂ j x HĴ )̂̂ ? does not hold. • 

Note that Theorem 5.12 can also be regarded as a syntactical character-
ization of the semantically defined consequence relation hĵ ^ x hĵ :̂ v? is a 
consequence of V̂  if v? can be derived from \p using the theorems of [Li, L2], 
modus ponens, and the rules of necessitation. 

Question 5.13. Is it true that Li x L2 is globally Kripke complete whenever 

(i) both Li and L2 are globally Kripke complete; 

(ii) both Li and L2 are determined by first-order definable classes of frames? 

Question 5.14. Give an example of a globally Kripke complete product logic 
Li X L2 such that ~̂J,̂ xL2 ^̂ ^̂  "̂ ^ coincide with "̂£,iX ^L2-
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Logics that are not product-matching 

Of course, there are numerous cases when Theorem 5.9 does not apply. In 
Chapter 7 we shall see many examples of finitely axiomatizable modal lo-
gics whose products are not even recursively enumerable. Such are, for in-
stance, Log{(N, <)} X Log{(N, <)} (cf. (Segerberg 1970, Spaan 1993) and Co-
rollary 7.14), GL.3 X GL.3 and Grz.3 x Grz.3 (see Corollary 7.16). Here 
we prove that Theorem 5.9 cannot be generalized even to logics whose classes 
of frames are definable by universal first-order formulas. As the following 
theorem shows, for many transitive logics L, the pair of K4.3 and L is not 
product-matching: 

Theorem 5.15. Let L be any Kripke complete logic containing K4 and having 
the two-element reflexive chain as its frame. Then K4.3 x L ^ [K4.3, L]. 

Proof. Let 3̂  be the frame in Fig. 5.5. It is readily seen that 3̂  |= [K4.3, L]. 

Figure 5.5: The frame 5-

Now, with each world p in 3 we associate a propositional variable, denoted 
also by p. The following formula (p^ is an analog of the frame (or Jankov-Fine) 
formula for J (see Chagrov and Zakharyaschev 1997): 

uAQ-^f y ( p A - . \ / p ' ) A / \ (p-~> Op') A / \ ( p - ^ - O p ' ) A 

-^{pHhP') 

l\ {p^<!>p')^|\{p-^-^Op')\ 

pRhP' -^{pllhP') 

PJP =U,V,W pyp =u,VjW 

pRvP' -^{pRvP') 

Here U^'^ abbreviates i) A Qi/; A Di/̂  A QCD̂ .̂ 
The formula (/?5 is clearly satisfiable in J: it is enough to take the model 

gjl = (3,93) with 5J(p) = {p} for every p in 5, and then (9Jl,u) |= ^5 - So 
-•(^j ^ [K4.3, Z/]. (Note that we do not assume here that [K4.3, L] is Kripke 
complete, which in general—say, for L = Grz—we do not know.) 
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On the other hand, it is easy to see that, for every two-dimensional product 
6 of transitive frames, 

(f^ is satisfiable in (S iff 5 is a p-morphic image 

of a generated subframe of (6 (5.8) 

(see (Chagrov and Zakharyaschev 1997) or Claim 8.36 below). Since a gen-
erated subframe of a product frame is a product frame itself, it suffices to 
show that 5 is not a p-morphic image of any product frame ©i x ©2j where 
« i 1= K4.3. Then -^^p^ € K4.3 x L follows by (5.8). 

Suppose otherwise, i.e., there exists a p-morphism / from a product frame 
(5 = (W^Sh^Sy) with weakly connected Sh onto J. Then there are points 
XuiXv.Xw € W such that f{xu) = u, f{xy) = v, f{xyj) = w and XuShXySyX^. 
Since (8 is a product frame, there is a ?/u ^ Ŵ  such that XuSvyuShXxv' 

o • • • 

Sv ' 5 . 

-^# 

Then /(t/«) = u must hold. Next, there \s o^ y^ e W such that f{yv) = v 
and yuShyv Since Sh is weakly connected and f{xw) = t̂ ?̂ we have yvShXw 
And since 0 is a product frame, there has to be a point z e W such that 
Xy,UfiZufiXy'. 

Vv. 

yu / X 

? 
S,,\ O* 

• • • 
^ti 5h Xy 

But then uRhf{z)RhV should hold, which is a contradiction. Q 

Corollary 5.16. Let L be any logic from the list K4, S4, Grz, K4.3, S4.3, 
Grz.3. Then K4.3 xL^ [K4.3,L]. 

Next, we prove a theorem of Gabbay and Shehtman (1998) from which 
it follows that, for many transitive logics L, the pair of Grz.3 and L is not 
product-matching either. 
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Theorem 5.17. Let Li be any Kripke complete logic containing Grz and 
having the two-element reflexive chain as its frame. Let L2 be any Kripke 
complete logic containing S4 and having either (i) the two-element reflexive 
chain or (ii) the two-element cluster as its frame. Then Li x L2 / [Li,L2]. 

Proof. Consider the formula 

^ = •Q(m(p - • Bp) -^p) -^p. 

First, we show that rp € Li x L2. Suppose otherwise. Then there is a model 
9Jl based on the product 5i x 3̂ 2 of a frame 5i = {U, Ri) for Li and a frame 
3̂ 2 = (K ^2) for L2 and such that 

(9Jl, (wot vo)) \=-^pA mB{-^p --̂  0 ( p A 0-^p)) (5.9) 

for some point {uo,vo) £ U x V. To derive a contradiction, we are going 
to construct an infinite ascending chain of at least two distinct points in 5ij 
thereby showing that it cannot be a frame for Grz, and so for Li either. 

Let 0 < n < a; and assume inductively that we have already defined points 
{ukjVk) € C/ X F , for all fc < n, such that: 

(9n,(ufc,Vife))|=-p, (5.10) 

uoRiUk and voR2Vk, (511) 

uk ^Uk-u if fc>0. (5.12) 

By (5.10), (5.11) and (5.9), 

{m,(un-uvn-^i)) h <!>(pAO-tp), 

and so there are Un ^U, Vn €V such that 

Un^lRlUn and Vn-~lR2Vni (5.13) 

(SPt, {un-uVn)) t= P and (9Jl, {un,Vn)) |= - p . (5.14) 

Then {un,Vn) clearly satisfies (5.10) and (5.12), and (5.11) follows from (5.13) 
and the transitivity of J?i and /?2- Now, consider the points Wn G t/, n < CJ. 
Two cases are possible: either there are m, n such that m > n -f- 1 and 
Um = Ufii or all the Un are distinct. In the former case J i contains a proper 
cluster and in the latter an infinite ascending chain of distinct points, which 
is a contradiction. 

It remains to show that ^ ^ [Li,L2)- Let (5 be the frame in Fig. 5.2, if 
case (i) in the formulation of our theorem holds, and that in Fig. 5.6, if (ii) 
holds. In either case we define a valuation on 6 in such a way that u |= -ip 
and V \= p. Then it is readily checked that u ^ tp and 6 |= [Li,L2]- (Note 
that we do not assume that [Li,L2] is Kripke complete. In fact, we do not 
know this.) Q 
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Figure 5.6: The frame (S in case (ii). 

It is worth noting that in fact each of the Theorems 5.15 and 5.17 gives 
a continuum of non-product-matching pairs of logics (see, for instance, The-
orem 11.19 of (Chagrov and Zakharyaschev 1997)). 

There are still many pairs of logics that are beyond the scope of Theor-
ems 5.15 and 5.17. For instance, the following question is open: 

Question 5.18. Are any of the logics K4.3 x S5, K4.3 x K, S4.3 x S4.3, 
GL X S4, Log{(N, <)} X K, Log{(Q, <)} x S5 product-matching? Are any of 
them finitely axiomatizable? 

And for pairs that are known to be not product-matching, no finite axio-
matization is known either: 

Question 5.19. Let L be any logic from the list K4, S4, Grz, K4.3, S4.3, 
Grz.3. Is K4.3 x L finitely axiomatizable? 

Many of these logics are recursively enumerable by Theorem 3.17. An 
axiomatization of K4.3 x K4.3 using Gabbay-style irreflexivity rules can be 
found in (Reynolds and Zakharyaschev 2001). 

[K4.3,K4.3] looks rather ^harmless' (maybe not?), whereas, as we show 
in Chapter 7, K4.3 x K4.3 is undecidable. The following interesting problems 
are also open: 

Question 5.20. Do there exist Kripke complete logics Li and L2 such that 
only one of [Li,L2] and L\ x L2 is decidable? 

Question 5.21. Give an example of Kripke complete logics Li and L2 such 
that [1^1,̂ 2] is Kripke incomplete? 

5.2 Proving decidability with quasimodels 

This section introduces the main technique we will use to prove decidability 
of product logics and other two-dimensional logical formalisms—the method 
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of quasimodels} 
There are three basic approaches to estabUshing decidabiUty of one-dimen-

sional modal logics; see, e.g., (Gabbay et al 1994, Chagrov and Zakharyaschev 
1997, Zakharyaschev et al 2001). Given such a logic L, we can try to prove 
that it has the fmp (and that the class of finite frames for L is recursively 
enumerable, which is the case if L is finitely axiomatizable). This is the most 
popular approach. If L does not enjoy the fmp, then we can try to show that it 
is characterized by (in general) infinite models having a certain 'regular struc-
ture,' say, constructed from repeating finite pieces. The third approach is to 
try to reduce the decision problem for L to another problem that is already 
known to be decidable (say, to the decision problem for a suitable monadic 
second-order theory or the emptiness problem for a certain tree automaton 
(Vardi and Wolper 1986)). 

In principle, the same approaches can be applied to many-dimensional 
modal logics. At first sight, proving decidability by establishing the (product) 
fmp may appear as very promising. By definition, the product logic Li x L2 
is determined by product frames Ŝ i x ^2 such that 3̂ i |= L^, i = 1,2. If both 
Li and L2 are finitely axiomatizable, then clearly the finite product frames 
for L\ X L2 are recursively enumerable. So to prove that L\ x L2 is decidable, 
it is enough 'just' to show that it has the product fmp. Unfortunately, many 
product logics do not have this property; see Theorem 6.21. 

There still remains a possibility that our Li x L2 is complete with respect 
to the class of its all (not necessarily product) finite frames—i.e., it enjoys the 
'abstract^ fmp. However, on the one hand, very few product logics are known 
to have the fmp (some examples are given in Sections 5.3 and 8.3). And on the 
other hand, now we are facing the problem of enumerating the finite 'abstract' 
frames for Li x L2- This problem can be much harder than enumerating its 
finite product frames. In fact, the standard approach to enumerating the 
finite frames by first providing a finite axiomatization works only in a limited 
number of cases, because, as we saw in the previous section, not too many 
product logics are known to be finitely axiomatizable. The complexity of 
the structure of finite abstract frames for product logics is also illustrated by 
results of Section 8.4, where we shall show examples of finitely axiomatizable 
(and decidable) logics Li, i = 1,2,3, such that the property of being a finite 
frame for Li x L2 x L3 is undecidable. 

Thus, if we want to develop a reasonably general machinery for proving 
decidability of product and other many-dimensional logics, we may be bound 
to deal with infinite models. The question then is how to represent these 

^The method of quasimodels was first developed in the series of papers on description 
logics with various modal and temporal operators in (Wolter and Zakharyaschev 1998, 
1999b, 2000c, 2001b) and then extended to products in (Wolter 2000b) and to fragments of 
first-order modal and temporal logics in (Hodkinson et al. 2000, Wolter and Zakharyaschev 
2001a, 2002). 
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infinite models as 'regular structures of repeating finite pieces/ if this is at all 
possible. Consider, for example, the product 5 x ® of a frame ff = {W, R) for 
a logic Li and a frame (S = (A, 5) for a logic L2, and let 9J be a valuation in 
Jx ©. We can then represent the model 9H = (5 x ©> in the following way. Let 
g' be a function associating with each w eW the L2-model q'{w) = (8,93u;}, 
where 

2Jti;(p) = {a:€ A | (t/;,x>€2J(p)}, 

for all variables p. As the valuation 5J is clearly restored from g' by taking 

93{p) = {{w,x) eW X A\xe Vw{p)}^ 

we can think of 9Jt as the pair (5»9')* ^̂  other words, we may assume that 
product models for Li x L2 consist of 'slices' q'{w)y w e W^ of L2-models 
(which take care of the 'vertical' modal operators • and C>). In fact, this 
kind of representation was originally built in the definitions of some other 
two-dimensional formalisms, say, description or first-order temporal logics. 

The next step is to 'finitize' the slices q'{w). There are different ways 
of doing this depending on the logics we deal with. However, the standard 
starting observation is as follows. If we are interested, say, in satisfiability of a 
formula (/?, then there are only finitely many formulas that may influence the 
truth-value of (̂ , for example, the set subip of all its subformulas or a certain 
closure of subif^ say, under -•. Suppose that we have fixed a set F of such 
'relevant' formulas, with its size being bounded by some computable function 
of l{(p). For every point x G A, we can then define the type of (w^x) as 

tM)=^{tper\{m,{w,x))^xlj} 
and think of q*{w) as populated by these types. More precisely, instead of 
q\w) = i&.Vuj) we consider now the pair q^'{w) = (6,ttw), where txt, 'labels' 
every element of (3 with a type. The fact that the number of pairwise distinct 
types cannot exceed 2'^' opens a way to various finitizations of q'^{w)y for 
instance, filtration, by identifying different points of the same type; see e.g., 
(Blackburn et al. 2001, Chagrov and Zakharyaschev 1997). We call the 
obtained finite type structures q{w) = {^wit^w) Quasistates—they still take 
care of Q and O—and the pair (tf, 9) a basic structure, (The reader will find 
various kinds of quasistates and basic structures later on in the book, the 
simplest ones being those for S5 x S5 defined below in this section.) 

As the slices q"{u) and q'\v) are in general different for different u and 
v, although sharing the same frame ©, their finitizations q{u) = (0u»^u) and 
q{v) — (©v, tĵ ) may have nonisomorphic frames &u and (S ,̂ i.e., we are losing 
the product structure of the original model. To put it another way, we no 
longer know what happens with the point (u,a:)—or the type representing 
it—when we move to a successor t; of u in ff. To restore this lost information. 
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we require functions r which trace the evolution of each point (or type) in ©t̂ , 
along the horizontal axis (and thereby take care of the horizontal operators Q 
and O); see Fig. 5.7. Such functions r are called runs: they map every w eW 
to a point r{w) in the underlying frame (S,̂ , of q{w). In order to reconstruct 
the product structure, in some cases certain conditions should be imposed on 
the runs. A basic structure together with an appropriate (structured) set 91 
of runs is called a quasimodel for ip. 

Given concrete Li and L2» om first aim will be to find a proper notion of 
quasimodel for which the following 'quasimodel lemma' holds: o formula ip is 
satisfiable in a model based on a frame for Li x L2 iff there is a quasimodel 
for If. 

Although quasistates in quasimodels are always finite, quasimodels them-
selves are usually infinite (since the frame ^ can be infinite). How can we use 
them to prove decidability? Depending on the logics in question, there may 
be several different ways: 

(1) In certain cases it is easy to find a finite quasimodel for ip and then 
to construct a finite product model out of it, thereby showing that the 
logic has the product fmp. This will be done in the decidability proofs 
for S5 X S5 (later on in this section) and K x K in Section 6.1. 

(2) It is shown that there is a quasimodel for (p iff there exists a finite set S 
of finite 'partial' quasimodels (called blocks) satisfying some effectively 
checkable condition^ and that the cardinality of «S as well as the size 
of each block in it do not exceed a number effectively computable from 
(f. The 'effectively checkable conditions' are supposed to guarantee that 
blocks can be used as 'small mosaic pieces' to construct the quasimodel 
we need.̂  (This technique is used in Sections 6.2, 6.4, 6.5, 6.6, 14.2, 
and—in a somewhat 'degenerate' form—in Sections 11.4 and 11.5.) 

(3) In some cases, the statement that a quasimodel exists can be translated 
into monadic second-order logic or reduced to other known decidable 
problems. (This approach is taken in Sections 11.3, 11.8, and 13.2.) 

(4) In Section 11.6 we also decompose quasimodels into 'partial' quasimod-
els, but neither the 'pieces' nor their collection is finite. Nevertheless, 
the existence of an appropriate set of partial quasimodels can be checked 
effectively using a reduction to a decidable problem in monadic second-
order logic. 

(5) Tableau type decision procedures building quasimodels are developed in 
Chapter 15. 

^The mosaic method of (Nemeti 1995, Venema and Marx 1999) is of similar flavor: it 
also builds big structures out of small pieces. 
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(Quasimodels will also be used for axiomatizing many-dimensional logics in 
Sections 11.7 and 12.2.) 

We illustrate the method of quasimodels by proving the following well-
known theorem: 

Theorem 5.22. S5 x S5 is decidable. 

As we saw in Section 3.5, products of S5 can be embedded into (finite vari-
able fragments of) first-order logic. Thus, this theorem follows from Scott's 
(1962) result on the decidability of the two-variable fragment of first-order 
logic. An algebraic proof (in the setting of diagonal-free cylindric algebras of 
dimension 2) was found by Henkin in (Henkin et al. 1985). Segerberg (1973) 
uses filtration to prove the fmp of S5 x S5. A mosaic type proof (also in the 
algebraic setting) can be found in (Marx and Mikulas 1999). 

Proof. Let us fix an Al£2-formula (p and see how to construct quasimodels 
for S5 X S5. First, we define a type for (p as a subset t of subip which is 
Boolean-satumted in the sense that 

• V ' A x ^ * iff V ^ € t and x ^ *» for every V' A x € sub ( ,̂ 

• -^ip Et iff V̂  ^ t, for every -^ip € sub {p. 

A quasistate for v? is a set T of distinct types for (p which is <!>-saturated^ i.e., 

(qml ) Vt € TVOV' € sub^p {Orp € t ^ 3t' GTip£ t ' ) . 

It follows that if OV'* ^ *» for some type t in T, then 01/) € t' for all other 
types t ' in T. Note that we can consider a quasistate as a 'cluster of types:' 
a universal frame each world in which is labeled by a type. Clearly, the 
cardinality of a quasistate for (p (i.e., the number of distinct types in it) does 
not exceed 2'^^^^'. 

A basic structure for v? is a pair (W, q) such that W is a nonempty set and 
q a function from W into the set of quasistates for (p. (In other words, we 
can think of a basic structure as a multiset of type-clusters.) 

A run through (W, q) is a function r from W to the set of types for </? such 
that 

"iw eW r{w) e q{w). 

That is, a run is a 'choice-function' which, for every w e W^ chooses a type 
from the type-cluster q{w). 

A run r is called coherent if 

\/w € W>/Otp e subip {(3v € Wt/) € r{v)) -^ Ot/) € r{w)), 

and saturated if 

\/w € WyOrp e subip [Otp € r{w) -^ 3v e Wip e r{v)). 
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We say that a triple £2 = {W, q, W) is an S5 x Sb-quasimodel for ^p if (W, q) is 
a basic structure for (p and fH is a set of coherent and saturated runs through 
{W^ q) such that 

(qin2) (̂  belongs to a type occurring in a quasistate q{w) for some w eW\ 

(qm3) for every w £W and every t € q{w), there is an r € 91 such that 
r{w) = t. 

This definition is illustrated by Fig. 5.7 in which types are represented by • 
and quasistates by the framed sets of types on the same vertical line. 

P, Op, 

q{wi) Qi'^s) 

is not a run 

Figure 5.7: An S5 x S5-quasimodel for (f = 0(<>p A <^->p A q). 

Remark 5.23. It is to be noted that the quasimodel Q = {W,q,9i) can be 
regarded as an abstract model for S5 x S5 satisfying ip. The set of points in 
this model is 

U = {r{w) \weW, re^}, 

the accessibility relations Ry and Rh are defined by taking 

r{u)Rvr\v) iff u ~ v, 

r{u)Rhr\v) iff r = r'. 

(It is easily checked that they satisfy the commutativity and Church-Rosser 
conditions.) And the valuation of the model is determined by the types: 

gj(p) = {r{w) eU \pe r{w)}. 

An important property of this abstract model is that it can be reconstructed 
into a product model; see Lemma 5.24. 
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Recall from Section 3.3 that the product of universal frames {Wi ,Wi xWi) 
and {W2yW2 x W2) is denoted by {Wi,W2). The following statement is the 
'quasimodel lemma' mentioned above. 

Lemma 5.24, An /AC2-formula (f is satisfiable in a model based on a uni-
versal product S5 X S5-/rame (Wi,H^2) W there is an S5 x SB-quasimodel 
{Wx,q,9\) fonp. 

Proof. Suppose that we have a model Wl based on (H^i, W2) and satisfying 
(f. With every pair {x^y) e Wi x W2 we associate the type 

t{x,y) = {V̂  G sub^ I (an, {x,y)) |= V }̂, 

and with every x € Wi we associate the quasistate (Vertical type-cluster') 

q{x)^{t{x,y)\yeW2], 

For every t/ € ^2^ define a function ry by taking, for x eW\^ 

ry{x) =t{x,y). 

Put m = {ry \ y £ W2}> Then clearly {Wi.q,^) is a quasimodel for (f. 
Conversely, suppose (1^1,^,91) is a quasimodel for (p. Take the universal 

relations on Wi and on the set 9\ of runs, and let 5 = {Wi x 91, /?/i, Ry) be 
the product of these two universal frames: for all x, x' € Wi and r, r ' € £R, 

(x, r) /?;i (x', r ') iff r = r', 

(x, r) /?v (x', r'} iff x = x\ 

Observe that 

if (Wi,g,9^) is finite then the product frame 3̂  is finite as well. (5.15) 

Let QJ be a valuation in 5 defined by 

QJ(p) = {(x,r) \per{x)} 

for every propositional variable p. Put 9Jt = (J, 9J). By induction on the 
construction of V̂  € sub^p one can readily show that, for every (x,r) in 9Jl, we 
have 

(9n,(x,r)) 1=^ iff V^Gr(a:). 

The basis of induction and the case of Booleans are trivial (here we use the 

fact that types are Boolean saturated). Let tp = <>x- We then have 

( a r t , ( x , r ) ) h O x ^=> ax'GH^i ( 9 n , ( x ' , r ) ) h x 
3x' eWi X ^ r(x') [by the induction hypothesis] 

Ox € r(x) [since r is coherent and saturated). 
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Now let ip = <!>x- Then 

(971, (x, r)) t= Ox = > 3r' € 91 {VJl, {x, r')) N X 

==> 3r' G 91 X ̂  ^'(^) [by the induction hypothesis] 

= » Ox € r(x) [by (qml)] . 

Conversely, 

Ox ^ r{x) = » 3t € q{x) x € t [by (qml)] 

= > 3r' € 91 X ̂  r'{x) [by (qm3)] 

= > 3r' € 91 (971, (x, r')) f= x [by the induction hypothesis] 

=> (97l,(x,r))t=<I>x. 

It now follows from (qin2) that 971 satisfies (p. • 

We show now that for every S5 x S5-satisfiable formula (f there is a 
quasimodel the size of which is effectively bounded in the length of ip. Let 
O = (ly, g, 91) be a quasimodel for if. Without loss of generality we may 
assume that each point w e W has a twin in 0 , i.e., a point w' e W such 
that q{w) = q{w') and, for all runs r € 91, we have r{w) = r{w'). (Such a 
'duplication' of points clearly does not change Q, being a quasimodel for (p.) 
We construct a smaller quasimodel £}' = {W\ g', 91') out of Q in the following 
way. To begin with, we put in W a point w^ eW such that qiwtp) contains a 
type with (f. Then, for every t e qiw^p), we fix a run rt such that rt{Wip) — i 
and, for each O^ € t, select a v £W such that xp € rt(tO and put v into W 
together with its twin v'. Thus, the resulting W contains at most 

2«^^^^1.2|su6(^| (5.16) 

elements. Let q' be the restriction of q to W . It should be clear from the 
construction that, for all types t € q{Wip), the restriction rj of rt to W is 
a coherent and saturated run through (W',g'). Let 6 = {rj | t G g(it;,p)}. 
Although for every t € q{Wip) we have a run coming through t, 6 is not 
necessarily big enough to satisfy (qm3), i.e., to contain runs coming through 
a//types in (W',q'). 

To fix this problem, we extend 6 to a larger set 91' in the following way. 
We know that for every v eW different from Wip and every type t e q'{v), 
there is a run Vy^t e 91 such that ry^t{v) = t. By the construction of 6 , we 
have a run s e & with s{w^p) = ry^t{w^). Define the run Vy^t + 5 through 
( l y , g') by taking, for every w € W , 

f t, ifi 

1 s{w)j otl 

_ ti; = i;, 

(r,e + . ) H = ^ - ' - - otherwise. 
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It is easy to see that Vy^t -f s is coherent and saturated. Indeed, suppose 
that Ox/) e sub if and that there is w^ € W such that ip e (vy^t -h s){w^). 
As t = rt;,t(t̂ ), ry^t{Wip) = s{'W^p) and both r^^t and 5 are coherent, we have 
Oip € {rv,t -f s){w) for ail tz; € W\ Now, suppose that OV' € (r̂ .t 4- 5)(t/;) 
for some w € Ĥ '. Then Oip € 5(t/;^). Since 5 € S and v has a twin in ly', it 
does not really matter that we have changed the saturated run 5 at v. there 
is still some w^ € W such that w' ^ v and ij) € s{w') = (ri,,t -f- 5)(ti;') (see 
Fig. 5.8). Thus, we can take dV to be the set of all coherent and saturated 
runs though {W\q'). 

twins 

Figure 5.8: Constructing run Vy^t -f- 5 using twins. 

The number of runs in JH' is at most 

(5.17) 

and so we get a quasimodel for ^p of effectively bounded size. Since, by Pro-
position 3.7, S5 X S5 is determined by universal product frames and in view 
of Lemma 5.24, we can conclude that S5 x S5 is decidable. • 

Observe that by (5.15), (5.16) and (5.17) we obtain the following: 

Theorem 5.25. S5 x S5 has the product fmp. In particular, each S5 x S5-
satisfiable formula (p is satisfiable in a universal product S5 x S5-frame con-
taining at most 

points. 

The product fmp of S5 x S5 follows from Mortimer's (1975) result on the 
fmp of the two-variable fragment of first-order logic; the exponential fmp of 
this fragment is shown in (Gradel et ai 1997). A short algebraic proof is 
given in (Andreka and Nemeti 1994). 
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Theorem 5.25 provides us with a nondeterministic exponential time al-
gorithm for satisfiability checking in universal product S5 x S5-frames. In-
deed, given a formula ip, we first guess an S5 x S5-model of exponential size 
in the length of (f and then check whether ^p is satisfied in it. So we have: 

Theorem 5.26. The satisfiability problem /or S5 x S5 is in NEXPTIME, 
and so the decision problem for S5 x S5 is in coNEXPTIME. 

Compared with the polynomial (in fact, linear) upper bound for the size 
of satisfying S5-frames (see Theorem 1.16), the upper bound obtained in 
Theorem 5.25 may appear too high. In Section 5.5 we will show that actually 
it cannot be significantly reduced. 

5.3 The finite model property 

We begin by showing that a variant of the *good old' filtration method, known 
in modal logic since the 1940s (for history and references consult, e.g., Chagrov 
and Zakharyaschev 1997), can also be used to establish decidability (and the 
fmp) of some products with S5. The following theorem is due to Gabbay and 
Shehtman (1998): 

Theorem 5.27. For every logic L in the list Kn, Tn, Dn, K4n, S4„, 
KD45n, S5„, and every n > 1, the product L x S5 has the 2'exponential 
{abstract) fmp. 

Proof. We illustrate the method by giving a proof for K4 x S5. The gen-
eralization to K4n X S5 for n > 1, as well as the other cases, is similar and 
left to the reader. 

By Theorem 5.9, we know that K 4 x S5 = [K4, S5]. Suppose ^ ^ [K4, S5] 
for some MC2-ionii\ila, (p. Then, by Proposition 5.7, there exists a model 
OT = (5,5J) refuting (p and based on a 2-frame 5 = (W,Rh,Rv) such that 
Rh is transitive, Ry is an equivalence relation, and Rh and Ry commute (the 
Church-Rosser property follows from commutativity in this case). 

For each world x inW, let 

E(a:) = {tpesub(p\ (9n,x) |= V'}. 

Define an equivalence relation ~ on PV by taking, for all x^y eW, 

X ~ 2/ iff T.{x) = E(t/) and {T.{z) \ xRyz} = {J:{z) \ yRyz}. 

Now we construct a new model OT'" = (5'", 2J'") based on 5'" = (W~, flj^, R'^) 
as follows: 

• W^ = { N I ^ € W}, where [x] denotes the ^-equivalence class of x; 
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• for all x^y eW^ 

[x]R^[y] iff 3x'3y' (x' ^ x, y' ^ y and x^Ryy'); 

• /?Ĵ  is the transitive closure of the relation i?J defined by taking, for all 
x.y £W^ 

[x]Rl[y] iff 3x'3y' (x' ^ a;, y' ^ t/ and x^Rhy')\ 

• 53^ (p) = {[x] I X € 53(p)}, for all p € sub^, and 2J'"(9) = 0, for all 
other propositional variables q. 

Observe first that each world [x\ in fW is uniquely determined by the pair 
(E(x), {Ti{z) I xRyz}) of sets. So we have 

We will show now that 

(1) 9W refutes v?, and 

(2) {W^.R'^^.R';;) is a frame for [K4,S5]. 

Claim (1) follows from the fact that 9W is a filtration of 9Jt in the sense that, 
for all x,y €W^ the following two conditions hold: 

(fl) if xRhy then [x]/?J [̂y], and if xRyy then [x]/?J^[y|, 

(f2) if [x]i?;;'[y] then, for all 7p, 

if Btp € subif and (9Jt,x) |= Q̂ ^ then (9Jt,t/) |= 0, and 

if [x]jRj;'[!/] then, for all 0, 

if C2xp € siiftv? and (971, x) |= Q^ then (371, y) |= V̂. 

The proofs are straightforward and left to the reader. {R'^ and Rf^ are known 
as the least filtration and the Lemmon (or least transitive) filtration^ respect-
ively; see e.g., (Chagrov and Zakharyaschev 1997, Goldblatt 1987).) By in-
duction on the construction of \p^ the reader can readily check that for every 
ip € subif and every x € VK, 

(9n,x)hV' iff (an-,[x])|=^, 
which yields (1). 
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To prove (2), observe first that Rf^ is transitive by definition. Further, it 
follows easily from the definition of Ry and the corresponding properties of 
Ry that Ry is reflexive and symmetric. In order to show transitivity of R'^, 
we first prove that the equivalence relations ^ and Ry commute, that is, for 
all X, y in W, 

3z X ^ zRyy iff 3u xRyU ~ y. (5.18) 

Clearly, it is enough to show only one direction, since the other follows by 
taking the converse and using the fact that both ~ and Ry are symmetric. 
So suppose X ~ zRyy. By the definition of ^, there exists a u such that 
xRyU and E(u) = T,{y). We claim that u ^ y holds. Now we make essential 
use of the fact that Ry is an equivalence relation (actually, a transitive and 
symmetric, or a transitive and Euclidean Ry would suffice here): 

{it; I uRyw} — {w I xRyw) and {w \ zRyw) = {w \ yRyw), 

Since x ~ 2:, we have that {L{w) \ uRyw) = {E(it;) | yRyw}^ as required. 
Now we can easily obtain the transitivity of R'^. Suppose [X]JR^[I/]/Z^[Z]. 

So there are x', y', t/", 2' G W such that 

X ~ x'Ryy' r^y r^ y"Rvz' ~ z. 

Then t/' '^ y" and, by (5.18), there is a i/ such that x' ~ uRyy'\ which implies 
[x]i?7[2:] by the transitivity of Ry. 

Finally, we prove that R!f^ and HĴ  commute. Since Rf^ is the transitive 
closure of R^, it clearly suffices to show that H^ and Ry commute. Suppose 
first that [x]i?J[y]/i;;[2;]. Then there are x',y\y",z' E W such that 

X ~ x'Rhy' ^ y ^ y"Rvz' ^ z. 

By (5.18), there is a u such that y'RyU ~ z'^ and so we obtain 

X ~ x^RywR^u ^ z' '^ z 

for some w, since Rh and Ry commute. Thus we have [x]iiJ^[t/;]i?J^[z], as 
required. The other direction is similar and left to the reader. • 

As a consequence we immediately obtain: 

Theorem 5.28, Suppose L € {Kn, Tn, Dn, K4n, S4n, KD45„, S5„}. 
Then the decision problem for L x S5 is in coN2EXPTIME. 

The interested reader can find various generalizations of Theorem 5.27 in 
(Gabbay and Shehtman 1998).^ Further generaUzations will be discussed in 

În (Gabbay and Shehtman 1998) the related theorems are stated for products with SSm 
(not only with S5). However, for m > 1, there is a gap in the proof of Proposition 12.5, 
item (2.1). In fact, the theorem itself does not seem to hold for m > 1, cf. Theorems 6.71 
and 6.72, and the proof of Lemma 6.47 below. 
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Section 6.5. Note, however, that all these are about products where one of the 
components is S5. No filtration argument is known to the authors that works 
for other types of products. In particular, the following problem is open: 

Ques t ion 5.29. Find 'natural' unimodal logics L\ and L2 such that both Li 
and L2 are finitely axiomatizable, have the fmp (and hence are decidable), 
their product Li x L2 also has the fmp, but is undecidable. (This would mean 
that there is no algorithm capable of deciding whether a finite frame is a frame 
for Li X L2. In particular, Li x L2 would not be finitely axiomatizable.) 

Note that the bimodal Li = K x K and L2 = K satisfy these properties 
(see Corollary 5.11, Theorems 5.5, 8.24 and 8.28). Using the results of (Kracht 
and Wolter 1999) on Thomason's (1974b, 1975) reduction of bimodal logics to 
unimodal ones, it is not difficult to construct a pair of appropriate unimodal 
logics. However, the resulting logics are rather 'artificial.' The reader will 
find some related open questions in Chapters 6 and 7. 

On the other hand, there exist logics L such that L has the fmp but L x S5 
does not, for instance, L = S5 x S5 (see Corollary 5.11, Theorems 5.9, 5.25 
and 8.12). Another example was given by Reynolds (1997) who proved that 
Lin X S5 has no fmp. Here we use Reynold's idea to show the following more 
general result: 

Theorem 5.30. Suppose that C is a class of linear orders containing either 
(N, <) or (Z, <) . Suppose also that L is a Kripke complete unimodal logic^ 
having an infinite frame (W ,̂ R) with a point x € \V such that xRy, for all 
y ^ W, y :^ X. Then LogppC x L does not have the (abstract) fmp. 

Proof. Consider the formulas tpm n < UJJ defined inductively by taking 

It is not hard to see that, for every n < a;, we have 

tpn-^^F-'^n € LogppCxL. (5.19) 

Let 

X = i)oA OFV^I A D F O ( ' 0 O A OpV'i)' 

Let 5 be either (N, <) or (Z, <), and let ® = {W, R) be an infinite frame for 
L such that there is an a:o G VT with xoRy, for Sill y e W, y j^ XQ. Take an 
arbitrary enumeration {xi, X2,.. . } of a countably infinite subset ofW- {xo}, 

"*Almost all logics considered in this book satisfy the condition on L, e.g., K, K4, S5, 
S4.3, Log{(N, <)}, GL, Grz.3, etc. (a counterexample is Alt). 
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and define a valuation 2J in 5 x 6 by taking 9J(g) = {{n,Xn} | n € N}. Put 
an = (y X 6,93). It is not hard to compute that (OT, (0,a:o}) |= X-

On the other hand, assume that 3̂  = (W, Rh, Ry) is a frame for Logpp CxL 
and that 9Jl is a model based on 5 such that (971, w) \= x for some w € W. 
We show that then 5 must be infinite. 

Let Wo = w. Define inductively, for every n > 0, n G N, a world Wn in 5 
such that the following hold: 

(i) woRhWri, and 

(ii) {m,wn)^i^n^ A ^̂ fe-
k<n 

Since, by (ii), all Wn should be different, this will prove the infinity of 5 . 
To begin with, as (9Jl,tt;o) t= O F ^ I ? there is a Wi such that woRhWi and 
(9Jl,ti;i) 1= ^ 1 . By (5.19), we also have (OT,t/;i) |= -«^o- Now assume that, for 
all fc < n, points Wk satisfying (i) and (ii) have already been defined. Then, 
by the induction hypothesis, we have 

(JOT, Wn) h 0 (^0 A O F V ' I ) A ^n- (5.20) 

Claim 5.31. <J>(̂ o A O F ^ I ) A V „̂ -* Op'^n+i € Log^pC x L. 

Proof. Suppose (91, (u, v)) |= Oi'ipo A O F V ' I ) A ^n for some model 9t based 
on the product of a rooted frame {U, <) for Logpp C and a frame (V, S) for L. 
Then there are v' eV^u' e U such that vSv\ u < u\ (91, (u,v')) \= ̂ o and 

(<n, {u\ v')) \= Optimo A DpDp- '^o. 

It follows that 

there is no a: € t/ such that u < x <u'. (5.21) 

We claim that {%{u',v)) |= ^„+i . Clearly, (m,(w',i;)) |= Op^n- And, by 
(5.19) and (5.21), we also have (91, (u', v)) \= DpUp-^ipn (here we use the fact 
that < is transitive and weakly connected). Q 

Thus, by (5.20), we have (Tl.Wn) \= Op'^n+i, and so there is some t^n+i 
such that WnRh'^n-^i and (97t,iyn+i) |= t/^n+i- Finally, by the induction hy-
pothesis, the transitivity of Rh and (5.19), we obtain 

(fm,t£;n+i)h A "'^^^ 
fe<n-|-l 

as required. Q 
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We have already seen in Section 5.2 that by the quasimodel technique 
one can show not only the fmp, but the stronger product fmp for S5 x S5, 
and also obtain a better, coNEXPTIME, upper bound for its complexity. In 
Section 6.5 similar results will be proved for K x S5 and K x KD45 as well. 

On the other hand, the next theorem shows that products like K4 x S5 
and S4 x S5 do not enjoy the product fmp. 

Given a frame (W ,̂ i?), we call a sequence {xn \n < u) of distinct points 
from W an infinite ascending chain if xoRxiRx2R — If in addition we have 
(xi^Xj) ^ /?, whenever j < i, then we call {xn | n < tj) an ascending Lo-type 
chain. For instance, FrS5 contains frames having infinite ascending chains, 
but none of them have ascending a;-type chains. 

Theorem 5.32. Let C be a class of transitive frames at least one of which 
contains an ascending u-type chain. Suppose also that L is a Kripke complete 
unimodal logic having an infinite frame (VK, R) with a point x ^W such that 
xRy^ for ally ^W^ y ^ x. Then LogC x L does not have the product fmp. 

Proof. Consider the formula 

Let Jf be a frame in C containing an ascending a;-type chain {xn | n < a;}. Let 
(S = {W^R) be an infinite frame for L such that there is an x € Ŵ  with 
xRy^ for all y € W, y ŷ  x. Take an arbitrary enumeration {y^., 2/1,... } of a 
count ably infinite subset oi W - {x), and define a valuation 5J in J5 x (9 by 
taking 5J(p) = {{xn.yn) \ n < u;}. Put OT = (5 x 6,93). It is not hard to 
compute that (9Jl, (XQ, t/o)) t= v̂ - On the other hand, it is readily checked that 
if is not satisfiable in any finite product frame where the first component is 
transitive; see Fig. 5.9. Q 

There are products without the product fmp for which Theorem 5.32 does 
not apply. The following two theorems cover more cases. 

Theorem 5.33. Let C be a class of transitive frames at least one of which 
contains an infinite ascending chain. Then neither of the logics LogC x GL.3 
and LogC x Grz.3 has the product fmp. 

Proof. Consider the formula 

tp = B'^OpA Q'^a(p-> ^B'^'^p). 

Let 5 be a frame in C containing an infinite ascending chain (a:„ | n < a;) and 
let 0 be either ({0 ,1 , . . . ,a;}, >) or ( {0 ,1 , . . . ,a;}, >). Define a valuation 93 
in 5 X 6 by taking 93(p) = {{xn^n) | n € N}. Put 9Jl = (5 x 6,9}). It is 
not hard to compute that (9}t, {XQ.UJ)) \= tp. On the other hand, it is readily 
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-iQ"^-ip 
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Figure 5.9: (p is not satisfiable in any finite product frame where the first 
component is transitive. 
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Figure 5.10: tp is not satisfiable in any finite product frame where the first 
component is transitive and the second component is weakly connected. 
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checked that t/̂  is not satisfiable in any finite product frame, where the first 
component is transitive and the second component is weakly connected; see 
Fig. 5.10. • 

Note that none of the logics GL.3 x GL.3, Grz.3 x Grz.3, GL.3 x Grz.3 
has the product fmp either, see Theorem 7.10. 

Theorem 5.34. Let L be any Kripke complete unimodal logic having an 
infinite frame {W^ R) with a point x € W such that xRy^ for all y € VT, 
y ^ X. Then K^ x L does not have the product fmp. 

Proof. Take the formula 

a<j>p A i3D(p -^ o- 'p) A iaa(-ip -+ Q-^P) , 

and repeat the previous proof. • 

Note again that almost all unimodal logics we consider in the book satisfy 
the condition on L formulated in Theorems 5.30, 5.32 and 5.34. 

We conclude this section with the following observation which will be used 
in Section 14.4. 

Propos i t ion 5.35. Suppose that L\ and L2 are Kripke complete unimodal 
logics and L\ has the fmp. Then L\ x L2 has the product fmp iff Li x L2 is 
determined by product frames of the form J i x 52> where 5i is a frame for Li 
and ^2 is a finite frame for L2. 

Proof. Obviously, if Li x L2 is determined by finite product frames, then 
it is determined by product frames in which the second component is finite. 
Conversely, assume that Li has the fmp and that L\ x L2 is determined 
by product frames the second component of which is finite. Suppose that 
cp G MC2 and © = {W^ R) is a finite frame. We are going to encode 'the 
behavior of (5 as a second component of a product frame* by means of an 
A^£-formula (having modal operator O). To this end, for every w £ W and 
every xp € sub(p\J {^(p}, introduce a new propositional variable Pw.ip- Denote 
by code,ft the conjunction of the following A1£-formulas, for all w € W: 

A Pw,oi, *-" ^Pv>,i>^ 

A (Pw,<t>i> *^ V p .̂v-)-
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We claim that, for all frames 5, the following conditions are equivalent: 

(i) -^(f is satisfiable in 5 x (S; 

(ii) there exists a w e W such that Pw.-^^p A Q-"̂ *^^^^cocle(jj is satisfiable in 

Indeed, suppose (9Jt, {VQ, WQ)) \= (p for some model 971 based on 5 x 6 . Define 
a valuation 5J in 5̂  = (V, S) by setting, for all tx; G W and ^ € su6(/? U {-^(p}, 

53(p«;,v,) = {t; € F I (!OT, (t;,t/;)) |= ^ } , 

and let 9H' = (5,9J>. It is readily seen that 

(9Jt', t;o) 1= Pruo.^^ A Q^^^<^>code,5. 

Conversely, suppose pyj^-^(pAB-^^^^^co6e(s, is satisfied in a model Wl = {Ŝ , 53), 
for some w eW. Define a valuation 53' in J x 6 by setting, for all propositional 
variables p € sub (/?, 

^'{p) = {{v,w)\veV(p^,p)}. 

It is readily checked that -up is satisfied in the model (5̂  x 6,53'). 
Now suppose (p ^ LiX L2' By assumption, we find a frame 5 € FrLj and a 

finite frame 6 € FrL2 such that Sx(5 refutes v?. Then p^,-,^ A Q^^^^'^^codee 
is satisfied in 3̂ , for some point w in (5. Since Li has the fmp, there is a 
finite frame 5 ' ^ F^'^i which satisfies Pu,,-,,̂  A Q-^^'^'^^codeig. Therefore, (p is 
refuted in the finite product frame 5 ' x 6 . • 

5.4 Proving undecidability 

The aim of this section is to demonstrate on simple examples the three basic 
techniques of establishing undecidability we shall use later on in this book. 

Undecidability by tiling 

The following N x N tiling problem is known to be undecidable (see Berger 
1966, Robinson 1971, Borger et al, 1997). Given a finite set T of tile types^ 
which are 4-tuples of colors 

t = {left(t), right{t), up{t), down{t)), 

decide whether T tiles the grid N x N, i.e., whether there exists a function 
(called a tiling) r from N x N to T such that, for all i, j € N, 
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• up{r{ij)) = down{T{iJ -f 1)) and 

• rightiriij)) = left{T{i + 1, j ) ) . 

If we think of a tile as a physical 1 x 1-square with colors along its four edges, 
then a tiUng r of N x N is just a way of placing tiles, each of a type from T, 
together to cover the N x N grid, with no rotation of the tiles allowed and the 
colors on adjacent edges of adjacent tiles matching. The reader may find a 
useful survey of various tiling problems in (van Emde Boas 1997). 

We are going to use this tiling problem to prove the following result of 
Marx (1999): 

Theorem 5.36. The consequence relation hj^ x hj^ {and so, by Theorem 5.12, 
the global consequence relation ^~KXK) *̂ undecidable. 

Proof. Given a finite set T of tile types, we associate with every < € T a 
propositional variable p^ Using these variables, we then construct a formula 
ifT as the conjunction of the following formulas: 

\J Pi ^ l \ -^{Pt^Vt'). (5.22) 

«€T up{l)=down{t') 

teT right{t)=tefl{t') 

<!>TAOT. 

(5.23) 

(5.24) 

(5.25) 

We show that (pr is true in a model Wt based on a frame of the form 5i x ^2 
iff T tiles N X N. 

(=>) Suppose that 9Jl is based on a product frame 5 = (^iRhiHv) and 
9Jl 1= ifT- By (5.22), for every x e W there is precisely one variable pt,teT^ 
such that (Wt,x) |= pt. And in view of (5.25) every point has both Rh- and 
/?t;-successors. 

Now, fix some xoo € W and take infinite sequences 

xooRh^ioRh '' • Rh^noRh ' • • 

rCy . . . rtyX()n*^v • • • 

By the Church-Rosser property, we then have points Xij e W, for all ij £ N, 
such that 

^ijRvXi{j-^i)Rk^{i^i)U'^i) and XijRhX(^i^i)jRyX(i^i)(^j^i), 
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Define a map r from N x N to T by taking 

T{iJ) = t iff (Wl,Xij)|=Pt. 

Formulas (5.23) and (5.24) ensure color matching, so that r is a tiling of 
N x N . 

(<=) Suppose r is a tiling of N x N with T. The reader can readily check 
that (fT is true in the model 97t = ((N x N, Rh, Ry) ,2J), where 

{iJ)Rh{k,l) iff fc = i + l, i = j , 

{ij)Ry{kJ) iff fc = l, / = j + l, 

and 
2J(Pt) = {(t , j> |T(t , j ) = t} . 

Thus, we have proved: 

T tiles N x N iff not (fr {^K X ̂ k) -̂ • 

Since (^T is effectively constructed from T, it follows that hj^ x hj^ is unde-
cidable. • 

As we shall see in Section 6.1, the validity problem (and thus the local 
consequence relation) for K x K is decidable. Note also that, by Lemma 1.24, 
K X K enriched with the universal modalities (that is, (K x K)^) is undecid-
able. 

In Chapter 14 we will need the following consequence of Theorem 5.36: 

Theorem 5.37. K^ x K^ is undecidable. 

Proof. Denote the two universal boxes of K^ x K,̂  by Hi and (32- It is not 
hard to show that, for any two formulas if and t/j in the language of K x K, 

^i^k^^k)'^ iff iai(32V?-• V̂  G Kti X Ku. 

Details are left to the reader. • 

Undecidability by Turing machines 

We assume that the reader knows (at least at an intuitive level) what a Turing 
machine is, so we just fix the notation and terminology to be used later on. 

A single-tape right-infinite deterministic Turing machine A is given by 

• a finite set S of states containing, in particular, the initial state so and 
the halt state si (such that so ^ si)» 
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• a tape alphabet A (b e A stands for blank), and 

• a transition function g (or a set of instructions). 

Configurations of A will be represented by infinite sequences (words) of the 
form 

( £ , a i , . . . , a i , . . . , a n , 6 , . . . ) , 

where £ ^ A is SL symbol marking the left end of the tape, all a i , . . . , an save 
one, say a,, are in A, while a* belongs to S x A and represents the active cell 
and the current state (all cells of the tape located to the right of an are blank, 
i.e., contain b). If the machine starts on the empty tape (all cells of which are 
blank), then the start configuration is represented by the word 

{£ , (50 ,6 ) ,^ . . . } . 

The transition function 

^ : (5 - {si}) X (^ U {£}) -^ 5 X (^ U {L, R}) 

transforms each pair of the form (5, a) into one of the following pairs: 

• {s'^a') (write a' and come to state 5'), 

• {5', L) (move one cell left and come to state 5'), 

• (s', R) (move one cell right and come to state 5'), 

where L and R are fresh symbols. If a = jf (i.e., the leftmost cell of the 
tape is active) then we assume that g{s^a) = (s', R) (that is, having reached 
the leftmost cell, the machine always moves to the right). According to this 
definition, the machine always makes another step whenever the current state 
is different from 5i. 

Another important observation, which will help us to simulate the behavior 
of Turing machines via modal formulas, is that only the active cell and its 
neighbors can be changed by the transition to the next configuration, while 
all other cells remain the same. To make this property of Turing machines 
explicit, we represent the transition function ^ as a function S defined on 
triples of the form (a ,̂ (5,0^) ,0^), for ai e Au{£}, aj.ak € ^, 5 € 5 - {si} , 
by taking 

5{ai,{s,aj) ,ak) = 

'(tti, {s\ a'j), ak), if g{s,aj) = {s\ a'^), 

((«',ai), Oj.ak), if g{s, aj) = {s\ L) and a, :^ £, 

{£, (5', aj), Ok), if g{s, aj) = {s\ L) and ai = £ , 

^{ai,aj,{s',ak)), H gis^aj) = (5',R). 
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We call a (finite or infinite) sequence 

C o , C i , . . . , C f c , . . . 

of configurations a computation of A, if the state of CQ is 5o and, for all fc, 
Ck^i (if it exists) is obtained from c/t by replacing the triple 

(left neighbor of the active cell, active cell, right neighbor of the active cell) 

of Ck by its (J-image. We say that A halts (starting with the empty tape), if 
there is a finite computation CQ, . . . , ĉ  such that CQ is the start configuration 
and the state oi Ck is si. 

It is well known (see, e.g., Barwise 1977, Enderton 1972, Shoenfield 1967) 
that the halting problem for Turing machines is undecidable: no algorithm 
can decide, given a Turing machine A, whether A comes to a stop having 
started from the empty tape. A Turing machine A is called recurrent if, 
having started from the empty tape, it works forever and reenters the start 
state 5o infinitely many times. It is known (see Harel et al. 1983) that the 
problem 'given A, decide whether it is recurrent' is E}-complete. This means, 
in particular, that if we recursively enumerate all Turing machines AQ, A i , . . . 
then the set 

{n I An is not recurrent} is not recursively enumerable. (5.26) 

Recall from Section 2.1 the fragment PTL^^^ of propositional temporal 
logic PTL having only Dp and O as its temporal operators. We will use 
(5.26) to prove the following: 

Theorem 5.38. The product logic PTL^^ x FTL^^ is not recursively enu-
merable. 

Proof. Given a Turing machine A, we construct a formula ipA (in the lan-
guage with Q, • , G and O) such that 

ipA is P T L Q Q X PTLj-jQ-satisfiable iff A is recurrent. (5.27) 

Let A' = A U { £ } U ( 5 X A). With each x € A' we associate a propositional 
variable px- We also use three extra variables ^5, qi and Qr the meaning of 
which will be clear from the formulas below. Define (pA to be the conjunction 
of the following formulas, for all instructions 6{a,P,^) = {a\l3\Y) of A: 

• + Q + / \ - ( p , A p , 0 , (5.28) 

Pi;AG(p(,„,6)AQp6), (5.29) 
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•+a+(((7, ^ y P(5,a>)A(9(^G<?,)A(7, *-»Q(7r)), (5.30) 
(s,a)6Sx/t 

• +(<>+(« Ap„) A 0{qs/\p0) A 0((7r Ap,) ^ (5.31) 

Q+(((7, -» Op„,) A {q, -> Op/3') A (qr ^ Op^'))). 

m+a+ / \ (-9/ A -.9, A -.9r A p„ -» Op„), (5.32) 
a€/»U{X} 

- o o V p(*..«)' (̂ -̂ ^̂  

DOOVP<*o,a), (5.34) 

where CD'*'x = X /̂  °X» <5>"̂X = X ^ ^X» â d̂ similarly for Q"̂  and O"*". 
Now suppose that (fA is satisfiable in a model 9Jt based on a frame for 

PTLpQ X P T L Q Q . By Theorem 6.29, we may assume that this frame is 
(N, <, -f 1) X (N, <, -fl). So we have 

(9n , (0 ,0 ) )h^A. 

We may think of horizontal sequences 

rj = {{0,j),{l,j),{2J),...) 

of pairs as representations of configurations Cj of A (in the sense that the ith 
cell of Cj contains a iff (SDT, (ij)) \= Pa)- Then 

• (5.28) says that for all iyj < a;, there is at most one x £ A^ such that 
{ij) is marked by p î 

• (5.29) says that A starts with an empty tape; 

• (5.30) marks with ^s, qi and Qr the active cell and its left and right 
neighbors, respectively; 

• (5.31) and (5.32) ensure that the sequence ro,r i , . . . , r j , . . . represents 
a computation of A; 

• (5.33) says that A never halts and 

• (5.34) that it reenters the start state 5o infinitely often. 

Conversely, suppose that A is a recurrent Turing machine and CQ, . . . , c^,... 
is its computation starting with the empty tape. Define a valuation 03 in the 
frame (N, <, -f 1) x (N, <, -f 1) by taking, for all x € A', 

^{Px) = {(^ j) € N X N I the tth cell of Cj contains x} 
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and 

^{QS) = {(^ j} € N X N I the active cell of Cj is the ith one} 

V{qi) = { ( i - l , j ) | ( i , j ) € 5 3 ( ( 7 , ) } 

V{qr) = {{i + lJ)\{iJ)eV{qs)}. 

It is now readily checked that (pA is satisfied at point (0,0) in this model, 
which yields (5.27). 

Thus we obtain that 

-^ipA € P T L Q Q X PTLj_j^ iff A is not recurrent. 

So PTLj-jQ X P T L Q Q cannot be recursively enumerable. • 

As a consequence we also have: 

Corollary 5.39. PTL x PTL is not recursively enumerable. 

Undecidability by Post's correspondence problem 
The third undecidable 'master problem' we use in this book is known as 
PosVs correspondence problem or PCP^ for short (Post 1946). It is formulated 
as follows. Given a finite alphabet A = {a\,... ,am} and a finite set P of 
pairs {vi^wi) ^...^{vktV^k) of nonempty finite sequences (words) Vi,Wi over 
A, decide whether there exist an N > I and a sequence i i , •. . , 1 ^ of indices 
such that 

Vii* ' " *Vif^ = i^i, * • • • * Wij^ (5.35) 

(here * denotes the concatenation of sequences). A proof showing the unde-
cidability of PCP (via a reduction of the halting problem for Turing machines) 
can be found, e.g., in (Hopcroft et ai 2001). Here we use this fact to prove 
the following: 

Theorem 5.40. The product logic PTL^^ x K 4 is undecidable. 

Proof. Given a finite alphabet A and a set P = {{vi^wi),... j {vk,Wk)} of 
pairs of words over A, we construct a formula ifA.p (in the language with 
Q, G and Q) which is PTL^^ x K4-satisfiable iff there exist an iV > 1 and 
a sequence i i , . . . , 1 / / of indices such that (5.35) holds. The formula (pA,p is 
built from the propositional variables: 

• pair^, for every pair {vi^Wi)^ 1 < i < A:, 

• lefto and right^, for every a e A, 

• left and right. 



5.4. Proving undecidability 259 

For each 1 < t < fc, let /i and r̂  be the lengths of words Vi and Wi, respectively, 
and let 

Vi = (6J),...,fr}.), 

Wi = ( 4 , . . . , 4 , ) . 

The formula (pA,P is defined as the conjunction 

^A,P = (/?1 A (P2 A ifieft A ipright 

in which 

(̂ i = Q'^( Y pair̂  A / \ -^(pairi A pair^)j, 

aeA 

ipieft is a conjunction of (5.36)-(5.42), for all i with 1 < i < A; and for all 
J < Ih 

Q^m+( / \- i ( lefta Aleftb) A (left <-̂  \ / lefta)), (5.36) 

a.beA 

Q+m^ / \ (lefto -> Qlefta), (5.37) 

Heft A Q-^m-^(-.|eft -> m-nleft), (5.38) 

Q^(pairi -> a"^(-ileft -> Gm'»Heft)), (5.39) 

Q+(pairi --• m-̂ GCO-̂ left A -̂ O -̂̂ Meft -^ left^j _ . ) ) , (5.40) 

pair̂  -> o( left^ A <I>(left5i A OCIeft î A • • • A <!>leftb» ) . . . ) )^ (5-41) 

Q^pair^ -^ a"^(left A a-.left --> 

GO(left5t A <S>(left5̂  A - • • A Oleft î ) . . . ) ) ) • (5.42) 

The conjunct (fright is defined by replacing in ipieft all occurrences of left with 
right, lefto with right^ (for a e A)^ U with r̂  and the sequence of leftti (for 
1 < j < 't) with rightc* (1 < j < n) . (Note that pair̂  occurs in both (pieft and 

fright') 
We prove now that ipA.p is as required. Suppose first that (pA,p is satis-

fiable in a model 9Jt based on a frame for PTLp^ x K4. By Theorem 6.29, 
we may assume that this frame is the product of (N, <, 4-1) and some frame 
(V, S) for K4. Then we have 

(an,(0,2/o))|=^A,p, 
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for some t/o G V. Since (9Jl, (0, i/o)) |= <̂ 2, we can find an iV, 1 < iV < a;, such 
that 

(Wt, (iV, yo» h a + / \ (lefta ^ right J . (5.43) 
a€i4 

Let i i , . . . ,iN be the sequence of indices such that, for 1 < j < iV, we have 
(9Jl, {j — l,t/o)) 1= pa'^ (<̂ i ensures that there is a unique sequence of this 
sort). We claim that (5.35) holds. 

For every j with I < j < N, let 

Vj{\eh) = {yeV\{m,{j,y))\=\eh}. 

Given a sequence zi,. ..^zi of points from 5Jj(left), define 

leftwordj{zi, ...,zi)== ( c i , . . . , Q ) , 

where Ci = a for the (uniquely determined by (5.36)) a e A such that 
{VJl,{j,Zi)) \= lefta. Call a sequence {t/o,-• • ,2//-i) of (not necessarily dis-
tinct) points from V an S-path in ^^(left) if yoi",yi-i ^ 2Jj(left) and 
yoSyiS... Syi-i. The number / is called the length of the 5-path. We will 
show that, for every I < j < N, the following holds: 

(i) there exists an 5-path (t/o, . . . , t/nj-i) in 53j(left) of length 

nj = li,-\-"'-h U. 

such that 
leftwordjiyo,..., ynj-i) = Vî  * .. .* Vi.; 

(ii) every 5-path in 2Jj(left) is of length < HJ; 

(iii) for every 5-path {yo,- • - jUnj-i) in 2Jj(left), we have 

leftwordjiyo,..., yn^-i) = t;ii * .. .* Vi-. 

Indeed, for j = 1, we have (i) by (9^,(0, t/o)) N paî 'ii and (5.41), (ii) by 
(5.38) and (5.39), and (iii) by (5.40). Now assume inductively that (i)-(iii) 
hold for some 1 < j < N. Let {yo,--",ynj-i) be a maximal 5-path in 
53j(left). First, by (5.37), we have t/o,-• • ^l/uj-i € 93j+i(left). Second, since 
(OT,(j,t/n,-i)) h left AQ-ileft and (9n,(j,t/o)) t= pair^.^i, (5.42) now im-
plies that there exist t/n^,...,t/n^-f./..^^-i such that ^t/o, •,ynj+ii._^^-i^ is 
an 5-path in 2Jj-|_i(left), as required in (i). For (ii) and (iii), observe first 
that for every 5-path (t/o, • • i2//-i) in 23j-,.i(left), /yo, . • • ,t /f-^^j-iy is an 
5-path in 2Jj(left), by (5.39). So / < rij+i must hold. If / = Uj^i then 
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leftwoTxij{yo,..., yi^i^.^^^i) - Vi^t ...* Vi. by the induction hypothesis, and 
so leftwordj^i{yo,.. > ,yi^li.^^-i) = Vi^* . . . * Vt, by (5.37). On the other 
hand, leftwardj^i{yi^ii ^,. . . ,2//-i) = Vij^^ by (5.40), and therefore we have 
leftwordj^iiyo,...,yi^i) = v̂ , * .. .* Vi._^^, as required. 

We can repeat the argument above for the *right side' as well. Take, for 
1 < j < iV, 

2Jj(rlght) = {yel^|(9n,(j ,y))H=right}, 

and, for every sequence ^ i , . . . , 2/ of points from 9Jj(right), define 

rightword^{zu ... ,zi) = {cu... ,ci), 

where Ci =^ a for the uniquely determined a e A with (9Jl, (j, ̂ i)) |= right .̂ 
We then have, for every 1 < j < N: 

{ly there exists an 5-path (yo • • • ? ym^-i) in 53j(right) of length 

such that 

rightwordjiyo,..., 2/m,-i) = tt̂ », * .. .* ŵ î ; 

(ii)' every 5-path in 2Jj (right) is of length < rrij; 

(iii)' for every 5-path (t/o, • • • .ym,-i) in 5Jj(right), we have 

rightwordj{yo, •..,l/m^-i) = t̂ ii * • • •* t/̂ t̂ . 

Now, by (5.36) and (5.43), we have 5JN(left) = 5Jyv(right). By (i), there 
exists an 5-path (i/o,... ,2//-i) in 5JAr(left) such that / = nyv and 

leftwordf^iyo,..., yi-i) = Vî  * .. .* Vi^,. 

By (ii)', we have UM < rns- Similarly, using (i)' and (ii), we obtain ms < ns^ 
from which nyv = rns- Hence, by (iii)', 

rightword^iyo,..., ^//-i) = tî ti * • • •* tî i/v • 

Since, by (5.43), 

leftwordp^{yo,..., j//>i) = rightwordi^{yo,..., j//-.i), 

we finally obtain t̂ ti * .. .* î t/v = ŵ ti * • • * tî /̂v» ^ required. 

Conversely, suppose that there is an AT > 1 and a sequence i i , . . . ,iAr of 
indices such that (5.35) holds. Our aim is to show that ^PA.P is satisfiable in 
the product frame (N, <, 4-1) x (N, <). For each j > iV, choose an arbitrary 
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pair {vi., Wi-) from P. For every j with 1 < j < u;, let U. and Vi. be the 
lengths of words Vi- and Wi., respectively, and let 

Wi^*...*Wi. = ( c o , . . . , C m , - i > , 

where rij = U^ H h/î  and rrij = n, H hr̂ .̂ Note that, by our assumption, 
UN = TTiN and 6j = Cj, for every j < nyv-

Define a valuation ^ in (N, <, +1) x (N, <) by taking 

• 9J(pairJ = {{j - 1,0} | i = ij, for some j > 1}, for 1 < z < A:, 

• 93(lefta) = { 0 , 0 \j>l,l< rij, bi = a}, for a e A, 

• 2J(right^) = {(j, /) I j > 1, i < m ,̂ Q = a}, for a G ^, 

• Q3(left) = ( J 2J(lefta), Q3(right) = ( J Q3(rightJ. 
a€>4 aeA 

One can easily check that under this valuation we have (0,0) |= (PA.P- Q 

5.5 Proving complexity with tilings 

In this section we demonstrate how bounded tiling problems can be used 
to establish NEXPTIME and EXPSPACE lower bounds of computational 
complexity. 

Proving NEXPTIME lower bounds 

First we show that the NEXPTIME upper bound of the satisfiability problem 
for S5 X S5, obtained in Section 5.2, is optimal. To prove this, we will reduce 
a NEXPTIME-complete problem to the satisfiability problem for S5 x S5. 

In the spectrum of NEXPTIMEl-complete problems, the most suitable for 
dealing with many-dimensional logics seems to be the following k x k-bounded 
tiling problem: given fc < u;, a finite set T of tile types (see Section 5.4) and a 
0̂ € T, decide whether T can tile the fc x fc grid in such a way that to is placed 

onto (0,0). In other words, the problem is to decide whether there exists a 
function r from the set {(i, j) \ij < k} to T such that 

• up{T{i,j)) — down{T{iyj -f 1)), for all i < fc, j < fc - 1, 

• right{T{iJ)) = left{T{i -f-1, j)), for alH < fc - 1, j < fc, 

• r(0,0) = fo. 
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Figure 5.11: The binary tree f)i of depth 2. 

If k is given in its binary representation then this problem is known to be 
NEXPTIME-complete; see e.g., (Levin 1973, Lewis 1978, Lewis and Papadi-
mitriou 1981, van Emde Boas 1997). 

Suppose we are given a finite set T of tile types, a, to £ T and a natural 
number k in its binary form. Without loss of generality we may assume that 
A: = 2" for some n < cj. Our aim is to construct a formula (pn,T such that 

(i) the length of (fn,T is a polynomial function of | r | and n; 

(ii) T tiles 2^ x 2^ grid, with to being placed onto (0,0), iff (pn,T is S5 x S5-
satisfiable. 

At first sight it should not be too hard to reduce k x fc-tiling to S5 x S5-
satisfiability: the A: x A: grid looks like a perfect universal product S5 x S5-
frame. The problem, however, is that we are not able to refer in the language 
MC2 to 'my right neighbor,' 'my neighbor above,' etc., in order to ensure 
color matching simply because both Rh and Ry are equivalence relations. 

The idea of encoding k x A:-tiling in an S5 x S5-model proposed by Marx 
(1999) is as follows. It is known (see, e.g., Halpern and Moses 1992 or Chagrov 
and Zakharyaschev 1997) that there is a modal formula of length 0{'n?) which 
is satisfied in a K-model OT iff 971 contains as a submodel a binary tree 9)n = 
({iy,5) ,2B) of depth 2n with the valuation W depicted in Fig. 5.11 for the 
case n = 1. Here is such a formula: 

Xn = A °^((0P^ ^ O-'Pi) ^ MPi -" ^Pi) ^ (-"Pi ^ D-^Pi)))-
€<2n i<e 

The 2^^ leaves of the tree f)n are labeled by 2n-tuples containing either pi 
or -ipi, for each i < 2n. By replacing in such a 2n-tuple every pi with 1 and 
every -ypj with 0, we obtain a pair (f, m), where i and m are decimal numbers 
whose binary representations are the first and the last n bits in the resulting 
word of Is and O5, respectively. The pair (̂ , m) determined by a leaf x of Sin 
will be denoted by gnd{x). For example, if 

( ^ n , ^ ) 1= --po A • • • A -^Pn^l A p n A • • • A p 2 n - 1 
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then grid{x) - (0,IP- - 1). This way we get all the pairs (£,m), for i,m < 2"^. 
Moreover, it is easily seen that for each pair of leaves x and y, we have 
grid{x) = {i,m) and gnd{y) = (£,m + 1) iff the following conditions (5.44)-
(5.47) hold: 

{S^n,x) 1= Pi iff {!f)niy) t= Pii for all i < n, (5.44) 

and there exists an i, n < i < 2n, such that 

{9)niX) \= pj iff {S^ri, y) N Pji for all n<j<i, (5.45) 

{^n,x) \= -^pi and {^n,y) N Pi, (5.46) 

{^n,x) t= Pj and (i3n, t/) |= -.p^, for all i<j< 2n. (5.47) 

Similar conditions hold for 'horizontal neighbors' of the 2^ x 2" grid, which 
makes it possible to use the leaves of the tree Sjn to encode the grid. 

The problem, however, is that in S5 x S5-models we do not have the modal 
operators of K which are required to *grow' such a tree. But we can simulate 
it using the two S5-boxes in the following way. We represent the nodes of 
S^n by points which are marked with a special variable d (for 'diagonal'), and 
use another variable 5 as a pointer to the 5-successors of a given node. The 
K-diamond and K-box will be simulated as 

Otp = <^{sAO{d/\xlj)), Dip =-^O-^rp. (5.48) 

Then the points representing the leaves of î n will validate the formula dADX 
(see Fig. 5.12). 

We are now in a position to define the formula (pn,T' For each tile type 
t e T, take (with a slight abuse of notation) three propositional variables 
t, t^,t^, and for each i < 2n, take two variables pĵ  and p^. Then the formula 
(fn,T is the conjunction of the formulas (5.49)-(5.58), in which O and D are 
defined by (5.48): 

dAD^^-^^lAXn, (5.49) 

• Q ( d A a i ^ y t), (5.50) 

• Q A ( < - A -^O, (5.51) 
teT t,t'€T 

A (a(Opi -* Bp^) A a ( 0 - p i ^ Q-p.^)) , (5.52) 
2n 

A ( D ( 0 * -* Qt**) A a(<^-t -» D-t'')) , (5.53) 
teT 

A (Q(OPi -» D P D A Q(0-Pi ^ m - p n ) , (5-54) 

t<2n 

t<2n 
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• s» 

• 5» ©^ 
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«• • ©a • 
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®rf • • • 
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where 

Figure 5.12: Coding î i in an S5 x S5-model. 

QQ 
« i 6 r t£T 

up(ti)^down{t) 

QG f\[(3Aa,At\A\Jt^-^ V f'̂ ), 
« i e r t € T 

nght{ti) = teft{t) 

a s f d A D l A / \ --ipt-^^o), 
t<2n 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

t<n n<t<2n 

t<n j<t i<j<n 

A= V ( A (Pi'-pP^p^^-p"^ A (-p'^Pi))-
n<i<2n n<j<t i<j<2n 
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Clearly, the length of (^„,T is polynomial in n and |T|. Let us show that ipn.r 
really does the job. 

Suppose first that T tiles 2^ x 2^, and let 9)n = {{W, S), W) be the binary 
tree model as above. Define a valuation 93 on the universal product S5 x S5-
frame {W, W) by taking: 

53(d) = {(x,x) \xeW}, 

23(5) = {{x,y)\xSy}, 

V{pi) = {{x,x)\{^n.x)\=pi}, 

5J(pn = { {x ,y ) | (x ,x )e2J(p i ) } , 

9J(P?) = {{x,t/) |(y,y)G2J(pO}, 
93(f) = {(x,x) I X is a leaf in S)n and f tiles grid{x)}, 

5J(r) = { (x , t / ) | (x ,x )e93( t ) } , 

5J(t'') = {(x,t/)|(t/,t/)G2J(t)}. 

Let 9t = {{W, W) ,93). It is not hard to check that (pn^r is true in 91 at (u, u), 
where ix is the root of ftn- Indeed, the meaning of (5.49) was explained above. 
(5.50) says that only the diagonal points representing the leaves of Sjn (ie., 
those where D± holds) validate at least one *tile variable,' and (5.51) ensures 
that there is only one such variable for every leaf. Formulas (5.52)-(5.58) 
say in effect that the colors on adjacent edges of adjacent tiles match and 
that to is placed onto (0,0). That (5.52)-(5.55) and (5.58) are true at (n,n) 
follows directly from the definition of the valuation 93. Of the remaining two 
formulas, we check only (5.56). Assume that for some (x^y) e W x W and 
tieT 

{m,{x,y))\=aA(3iAt\A\/t\ 
teT 

By the definition of 93(t'*) and 93(t''), both x and y must be leaves in 5)n-
Since (91, (x, t/)) |= t\, we have (x,x) € 93(ti), which means that ti tiles 
grid{x). Let 2̂ tile grid{y), that is, {y,y) e 93(̂ 2) and so {%{x,y)) \= t j . 
As {% (x,t/)) 1= a A /?i, we have by (5.44)-(5.47) that grid{x) = {i,m) and 
grid{y) = {£,m + 1) for some i,m. It follows that up{ti) = down{t2). 

Conversely, suppose that (pn,T is S5 x S5-satisfiable. By Proposition 3.11, 
we may assume that the formula ipn.T is satisfied at a point (XQ, yo) in a model 
an = ((f/i, U2),93) based on a universal product S5 x S5-frame (f/i, 1/2)- Our 
aim is to show that T tiles 2*̂  x 2^ as required. 

For a set [/ C f/j X (72, let 93̂ / denote the restriction of 93 to [/, that 
is, 93c/(p) = 93(p) n f/, for all variables p. As (971, (xo,yo)) N Xm there 
is some U C. U\ x U2 and a binary relation R on U such that the model 
97tt/ = ((f/, R), 93(/) is isomorphic to the binary tree model 9}n (see Fig. 5.11), 
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with (xo,yo) being the root ofMu- Moreover, since (SOT, (a:o,yo)) |= D^̂ "*"̂ l 
and by (5.48), d A D l is true at all leaves in 9Jlt;. So, in view of (5.50) and 
(5.51), precisely one tile variable is true at each such leaf. Therefore, the 
following map r from {{i,m) | £,m < n} to T is well defined: 

T{i,m) = t iff grid{x) = {i,m) and (9Jl,x) |= t, for some leaf x in dJtu. 

To show that r is in fact a tiling, we have to check that the colors on adjacent 
edges of adjacent tiles match. 

Suppose, for instance, that T{(,m) = <i, T{(,m -f 1) = ^2, and for some 
leaves x,y of 97lt;, grid{x) = (^,m) and grid{y) = (^,m 4-1). Let x — (txi,U2) 
and y = (u^Wj). Take the point (u i ,^) - Then by (5.53) and (5.55) we have 

(97l,(ui,ixi))h«iAf5 

and by (5.52), (5.54) and (5.44)-(5.47), (SOT, (u^u's)) N « A/?i. In view of 
(5.51) and (5.56), we then obtain that up{t\) = down{t2)^ as required. 

We have proved that the satisfiability problem for S5 x S5 is NEXPTIME-
hard. Together with Theorem 5.26 this yields: 

Theorem 5.41. The satisfiability problem for S5 x S5 is NEXPTIME-com-
plete, and so the decision problem for S5 x S5 is coNEXPTIME-comp/eie. 

Actually, almost the same proof can establish NEXPTIME-hardness of the 
satisfiability problem for many other bimodal logics. The following theorem 
was also proved by Marx (1999): 

Theorem 5.42. Let L be a Kripke complete bimodal logic between K x K 
and S5 X S5. Then the satisfiability problem for L is NEXPTIME-ftorrf, and 
so the decision problem for L is coNEXPTIME-Zianf. 

Proof. One has to replace in ipn.T the modal operators Q, 0 , m, O with 
[3<2n̂  0<2n^ ^<2n ^^^ <t><2n̂  respectively (but leave those in the definition 
of D and O untouched). Using the fact that every frame for L must validate 
the commutativity and Church-Rosser axioms, it is not hard to see that this 
formula does the job. Q 

Proving EXPSPACE lower bounds 

Now we will use the 2^-corridor tiling problem which is EXPSPACE-complete 
(see van Emde Boas 1997 and references therein): given a finite set T of tile 
types, two tile types ^o,̂ i € T and n G N in binary, decide whether there 
is an m € N such that T tiles the m x 2'*-corridor in such a way that to is 
placed onto (0,0), t\ is placed onto (m - 1,0), and the top and bottom sides 
of the corridor are of some fixed color, say, white. We are about to prove the 
following: 
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Theorem 5.43. The satisfiability problem for PTL x S5 is EXPSPACE-/iord. 

Proof. Suppose that a finite set T of tile types, to^ti e T and a natural 
number n are given. Our aim is to construct a formula ipn,T (in the language 
with Uh, B, <^^ Q and [ 3 , 0 ) such that (i) its length is a polynomial function 
of \T\ and n, and (ii) ipn,T is PTL x S5-satisfiable iff there is an m € N such 
that T tiles the m x 2'^-corridor as described above. Moreover, we will see 
that ipn^T is PTL x S5-satisfiable iff it is satisfied in a model based on the 
product of (N, <} and a finite S5-frame.^ 

Suppose our formula (pn.T is satisfied in a model QJt based on a frame for 
PTL X S5. By Theorem 6.29, we may assume that this frame is the product of 
(N, <) and a universal S5-frame {W, R). Our first step in the construction of 
^n,T (which will contain, among many others, propositional variables t for all 
t GT)is to write down formulas forcing a finite sequence yoiVii" -, 2/m 2'»-i of 
distinct points from W for some m G N such that for each i < m'2'^, {i,yi) \= t 
for a unique tile type t. If t = fc • 2^ -f j for some fc < m, j < 2^ then we will 
use the point (i, yi) to encode the pair {k,j) of the m x 2^-grid. Thus the up 
neighbor (fc, j + 1) of (A:, j ) will be coded by the point {i -f-1,2/14.1), and its 
right neighbor (fc 4-1, j ) by (i- + 2^,yi+2"). 

Let qo,"' iQn-i be pairwise distinct propositional variables, and qj = qi, 
q^ = ->qi, for i < n. Set 

where d n - i . . . do is the binary representation of j <2^. The formula 

• + / \ ( a ( 7 i v a - g 0 (5.59) 
i<n 

says that the truth-values of the qi (and so those of the cij) do not change 
along the vertical axis. We force subsequent columns to satisfy the infinitely 
repeating sequence 

(To,Cri , . . . , ( 7 2 " ^ ! , ( 7 0 , ( 7 1 , . . . 

by the following 'counting' formulas (the length of which is polynomial in n): 

n - l 

(7oAQ+ / \ ( ( / \ (7 iA-(7fc)-^( A ( 9 j ^ O 9 i ) ) ^ Q ( A ' " ^ » ^ ^ 0 ) ' 
k<n i<k i=fe+l «<*: 

(5.60) 

Q + ( / \ 9 i - - 0 ( / \ - ^ 9 i ) ) . (5.61) 
i<n i<n 

^The finiteness of the SS-component will be used in Theorems 11.33 and 11.52 below. 
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Now let poi' • • »Pn~i be a fresh n-tuple of distinct variables such that their 
truth-values do not change along the horizontal axis. This requirement can 
be ensured by the formula 

B-^m /\{pi^Qpi). (5.62) 
i<n 

Let TTj = PQ° A • • A PnlTi , where d n - i . . . rfo is the binary representation of 
j <2'', and let 

i<n 

We also require 

mark ^ \J t^ 

tile = equ A mark A Q-imark. 

Now we can generate the required sequence of points using the following 
formulas: 

(<J>mark)W/i (CTQ A D'^'Q-imark), (5.63) 

tile A B (Omark ~> Otile). (5.64) 

Indeed, suppose that the conjunction of (5.59) (5.64) holds at (0, yo)) for some 
t/o € W. Then 

(l,2/o) h Omark ~> Otile. 

Since, by (5.60) and (5.63), we have (if n > 0) 

(l»2;o) 1= <J>mark, 

there is a point yi € W such that (l,2/i) |= tile. In particular, we have: 

(a) ( l ,yi) 1= equ, and so (A:,yi) [= TTI for all A: € N; 

(b) no point of the form (A:, t/i) with A; > 1 makes mark true. 

Note that i/i ^ yo) since (0, t/o) N Q-̂ mark, by (5.64). Now we consider (1, t/o) 
and by the same argument find a point y2 (which is different from yi by (b)), 
and so forth; see Fig. 5.13. By (5.63), this construction cannot go on forever, 
that is, there is some A: € N such that 

(A;, yo) 1= (To A Q'*"a-'mark, 
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and so, by (5.60) and (5.61), A: = m • 2^ must hold, for some m 6 N. Thus we 
have 'generated' distinct points 

from W. 
Our next aim is to write down formulas that could serve as pointers to the 

up and right neighbors of a given pair in the corridor (at this moment we do 
not bother about its top border). Let 

up = Gtile, 

right = equ A (-•equ) Uh tile. 

It is easy to see that: 

• for alH < m • 2*̂  — 1, (i, yi^i) \= up and (i, t/j) ^ up for all j ^ i + l, 

• for all i < (m - 1) • 2^, (i,t/i^-2n) |= right and (i,yj) ^ right for all 
j ^ i - f 2 - . 

Finally, the formulas below ensure that (0,0) is covered by Ôi (m — 1,0) is 
covered by f i, every point of the m x 2^-corridor is covered by at most one tile, 
the top and bottom sides of the corridor are white and the colors on adjacent 
edges of adjacent tiles match: 

toAQ+Q f\ -(/At')^ (5.65) 
tjt'eT, 

Q''"a(cro A mark A Q((To -^ a-^mark) -> t i ) , (5.66) 

Q-^aftTo Amark -^ Y f ) , (5.67) 
t€T, 

down{t)^whiie 

B"^n((T2n>i Amark - • \J t\, (5.68) 

up{t)=whiit 

Q+a(-a2n_i --> f\ {t-^ •(up -> Q-t')))» (5.69) 

UTp{t)^down(i') 

+•( l\ (<-+•(right-*a-t')))- (5.70) 

Hghtit)ji:left{t') 

Let ipn.T be the conjunction of (5.59)-(5.70). Suppose that 

(9n,(0,yo))|=<^n,r. 
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Then we define a map r : m x 2^ —• T by taking 

T{kJ) = t iff {m, {k . 2^ -f j,2/fc.2n .̂j» [= t. 

We leave it to the reader to check that r is indeed a tiHng of m x 2^ as 
required. 

For the other direction, Fig. 5.13 shows that (pn,T is satisfiable in a product 
of (N, <) and a universal S5-frame having m • 2" points. Q 

As PTL X S5 is polynomially reducible to PTL^^ x S5 (see Claim 6.25), 
we also obtain the EXPSPACE-hardness of the satisfiability problem for 
PTLQQ X S5. We give a generalization of Theorem 5.43 in Section 6.5 (see 
Theorem 6.63). 



S5 - - - - - - -  
. . . 5qU . . . 5qU . . . 

right 

VIYl0 . . FU . . . FU . . . fqU 0 0 0 
right up t~ le  

1 . FU . . . FU . . . PU 0 0 0 SU 
right up t~le 

Sq" . . . eq" 0 0 0 YU 0 
right up Zle - - - - - - - - - - - - -  

IK3-'ly7 . . . 5qU . . . = q u o  o o Y " o  o 
right up ;i~e 

g o  0 0 7 " .  0 0 

0 e d l U o  0 0 SU 

p71v4 * . . PU 0 0 0 BU 0 0 0 a" 0 
up t~ le  . . . . . . . . . . . . . . . . . . . . .  

I]&,,, . e q u o  0 0 S U 0  0 0 Y o  0 
up Zle 

0 S U o  0 0 ? " ' o  0 

Y U o  0 0 y u 0  0 0 0 

0 0 0 F " ' 0  0 F U 0  0 0 0 0 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

0 1 2  4 5 6 7 8 9 10 11 12 13 " '  

Figure 5.13: Satisfying 9 2 7  in the product of (N, C ,  +1) and an S5-frame having 3 . 22 elements. 



Chapter 6 

Decidable products 

The landscape of decidable product logics known so far can be roughly de-
scribed as follows: these are products with Kn- and S5n-type logics. 

We begin this chapter by proving the decidability of products of vari-
ous expressive multimodal logics with Km- First, in Section 6.1, we show 
on the example of K„ x K ^ how the method of quasimodels, introduced 
in Section 5.2, can be used to prove the decidability of products with K ^ . 
Then, in Section 6.2, we generalize the method to establish the decidability 
of CPDL X Km- In Section 6.3, we draw as consequences the decidability of 
products of epistemic logics (with common knowledge operators) with K ^ . In 
Section 6.4, we consider products of temporal logics with Km- In particular, 
we prove the decidability of PTL x Km by means of a reduction to K f x Km> 
We also show how to modify the quasimodel proofs to obtain the decidability 
of product logics like K4.3 x Km, Lin x Km, and Log;rp(Q) x Km-

None of the decision procedures for products with K we present in this 
chapter runs in ELEM. Although it is still a challenging open problem whether 
the product logic K x K is elementary, in Section 6.4 we show that the decision 
problem for PTL x K (and so for CPDL x K and most of the products of 
epistemic logics with K) does not belong to ELEM. 

None of these results depends on whether we consider products with un-
imodal K or multi-modal Km, m > 1. The situation changes drastically if 
we deal with S5 instead of K. Products with S5 turn out to be computa-
tionally simpler than products with K, while products with S5m, for m > 1, 
behave similarly to products with K. In particular, we show that the filtration 
technique used in Section 5.3 can be extended to prove that CPDL x S5 is de-
cidable in N2EXPTIME. One can also 'mix' the quasimodel techniques used 
in the proofs of the decidability of CPDL x Km and S5 x S5 (Theorem 5.22) 
to obtain another proof of the decidability of CPDL x S5. Product logics like 
K4.3 X S5, Lin x S5, and Logpp(Q) x S5 are decidable in 2EXPTIME. And 

273 
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finally, PTL x S5 is EXPSPACE-hard, which matches the upper bound to 
be established in Section 11.4. On the other hand, in Section 6.6, we consider 
products with S5m? m > 1, and show that both the 'positive' decidability 
results and the 'negative' nonelementarity results proved for products with K 
can be generalized to these logics as well. 

Properties of a representative family of product logics as well as open 
questions are summarized in Tables 6.2-6.4 at the end of this chapter. 

6.1 Warming up: K^ x K^ 

Let us begin by using the method of quasimodels to prove the following result 
of Gabbay and Shehtman (1998):^ 

Theorem 6 .1 . K„ x Km is decidable. 

Proof. To simplify notation, we confine ourselves only to the case of K x K; 
the reader should have no problems with generalizing the proof to the mul-
timodal case. Thus, as in the previous chapter, here we also work with the 
language MC2 the modal operators of which are denoted by Q, Q and O, O. 

Let us fix an A^£2-formula if and try to define a suitable notion of K x K-
quasimodel for (p following the pattern of Section 5.2. 

Again, by a type for (p we mean any Boolean-saturated subset of the set 
sub (f of all subformulas in (p. However, clusters of types cannot be used a^ 
quasistates for K x K. More promising structures are suggested by Proposi-
tion 1.8, viz., finite intransitive trees of depth not exceeding the modal depth 
Tnd{ip) of (f. 

A quasistate candidate for (̂  is a pair ((T, <) , t } , where {T, <) is a finite 
intransitive tree of depth < md{ip) and t a labeling function associating with 
each X € T a type t{x) for (p. (So we can think of a quasistate candidate as 
a tree of types.) Two quasistate candidates ((T, <) , t ) and {{T', <') , t ' ) are 
called isomorphic if there is an isomorphism / between the trees (T, <} and 
(T', <'} such that ^(x) = t ' ( / (x)) , for all x G T. 

A quasistate candidate ((T, < ) , t) is called a quasistate for tp if the follow-
ing conditions hold: 

( q m l ) {<>-saturation) For all x E T and Oip e sub(p, 

Otpetix) iff 3yeT{x<yArpet{y)). 

În fact, Gabbay and Shehtman (1998) give two proofs of the theorem which are different 
from ours: one shows that Kn x Km has the fmp (cf. Theorem 8.24 below), the other uses 
the method of normal forms due to Fine (1975a). Marx and Mikulas (2001) obtain the 
same result using a kind of filtration. 
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(qml') {smallness) For all a:,0:1,0:2 € T such that x < xi^ x < X2 and 
xi 71̂  0:2, the structures ((T^S <^0 >*""'> and ((T^S <̂ =») ,t*2) are 
not isomorphic, 

where (T^S <^*) is the subtree of (T, <) generated by Xi, and t̂ * is the re-
striction of t to T^S t = 1,2. 

As the number of different types for (f does not exceed 2^^^^"^^, the number 
of pairwise nonisomorphic quasistates for (f of depth 0 is at most 2'*̂ '*'̂ l as 
well. Now define inductively 

noiif) = 2«*^^ l̂, riMiip) = 2'^^''^' . 2"^(^>. 

Clearly, nk{^) is an upper bound for the number of nonisomorphic quasistates 
for (p of depth fc, and so 

md{ifi) 

%) = E nfc(v̂ ) (6.1) 

is an upper bound for the number of different quasistates for (p. The number 
of points in any quasistate for if is bounded by 

mrf(v3) k 

In what follows we assume that nonisomorphic quasistates are disjoint and 
that isomorphic quasistates actually coincide. 

A basic structure of depth m for cp is a pair (5, q) such that 5 = (M̂» ^) is 
a frame and q a function associating with each tz; G W a quasistate 

g(t/;) = ((r«„<^>,t^> 

for (/? such that the depth of each {T^y <w) is m. 
Let (ff, 7) be a basic structure for tp of depth m and let A: < m. A fc-run 

through (5, g) is a function r giving for each w € W o, point r(i(;) € T̂ ; of 
co-depth^ k. (That is, a run *goes along' the frame 5 and chooses a (location 
of a) type of the same co-depth from each type-tree {Tyj, Kw)-) Given a set 
DK of runs, we denote by JHjt the set of all fc-runs from 9 .̂ Clearly, if 5lo is 
not empty, then it is a singleton set, with its only member ro being the run 
through the roots of the quasistates. 

A run r is called coherent if 

Vti; e ly VOV' € subip (3v e W {wRv A -0 € ty{r{v))) -* 0 0 G t^{r{w))\ 

^The notions of depth and co-depth were defined in Section 1.4. 
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and W'saturated for w ^W if 

VOt/; € sub^p (<>XIJ e tw{r{w)) -^ 3veW {wRv A tp e tv{r{v)))Y 

A run is saturated if it is K;-saturated for all K; G W. 
Finally, we say that a quadruple £} = (5, g,9l,<} is a K x K-quasimodel 

for (f (based on ^) if (3 ,̂ g) is a basic structure for (f of depth m < md{ip) 
such that 

(qm2) 3wo eW ip e two{^o)i where XQ is the root of (T^Q, <ii;o>» 

91 is a set of coherent and saturated runs through (Ŝ , g), and <J is a binary 
relation on fH satisfying the following conditions: 

(qm3) for all r, r ' € 91, if r < r ' then r(ti;) <iy r^{w) for all ii; G W; 

(qm4) 9lo 7̂  0, and for all fc < m, r € 91A:, W e W and x G T«;, if 
r{w) <yj X then there is r' 6 91^+1 such that r'{w) = x and r<ir'. 

The notion of quasimodel has been defined, and now we have to prove the 
'quasimodel lemma:' 

Lemma 6.2. An MC2-formula if is satisfiable in a product frame ^ x (& iff 
there is aH x K-quasimodel for ip based on 5-

Proof. {<=) Suppose (3 ,̂ g, 91, <) is a quasimodel for (p and 3 = {W, R). Take 
the product frame 3 x (91, <) and define a valuation 2J in it as follows: 

^{p) = {{w,r) \ p e tru{r{w))} 

for every propositional variable p. Let 9Jl = (J x (91, <), 03). By induction 
on the construction of 0 € sub ip one can show that for every {w, r) in Tl we 
have 

(971, {w,r)) ^tp iff ipe tw{r{w)). 

For variables this is just the definition of 5J, and the case of Booleans follows 
from the fact that types are Boolean-saturated. Let ^ = Ox- We then have: 

(971, {w,r)) 1= Ox <^=> 3w' eW {wRw' A (971, {w',r)) f= x) 

<F=> 3w' e W (wRw' A X ̂  tu,'{r{w^))) [by the induction hypothesis] 

<=> Ox ^ tw{r{w)) [since r is coherent and saturated]. 

Suppose t/̂  = Ox- Then 

(971, {w, r)) h= Ox => 3r' G 91 (r <3 r ' A (97t, {w, r ')) |= x) 

=> 3r ' G 91 (r <ir' A x ^ twf{r^{w))) [by the induction hypothesis] 

=> 3r' G 91 (r(ii;) < ^ r'(t/;) A x € tti;(r'(ii;))) [by (qm3)] 

= > Ox € t,^(r(i/;)) [by (qml)] . 
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Conversely, 

Ox ^ t^{r{w)) => 3x£T^ {r{w) <wX A x^ tyj{x)) [by (qml)] 

Therefore, r e9\k for some k <m (where m is the depth of (J, g)), and so 

3r' G IH (r <ir' A x^ *ti;(r'(ti;))) [by (qm4)] 

= > 3r' G 91 (r <3r' A (971, (ty,r')) |= x) [by the induction hypothesis] 

= > (9n,(t/;,r))|=<I>x. 

In view of (qm2) and OKQ ¥" ̂  (which we have by (qm4)), it follows that ip 
is satisfied in 9Jl. 

(=>) Suppose that if is satisfied in a model 9Jl based on the product ff x (S 
of frames 5 = (Ŵ» -R) and (8 = (A, <}. By Propositions 1.7 and 3.10, we may 
assume that © is an intransitive tree of depth m < md{ip) and that 

{m,(wo,xo)) \=(p 

for some WQ £W^ with XQ being the root of (9. With every pair {w,x) € WxA 
we associate the type 

t{w^x) = ( 0 € 5ufrv? I (9W, (w^x)) f= V }̂. 

Now we have to construct a quasistate {{Tuj^ <xv) ^t^u,) for each w € W. The 
obvious choice of < and twi"^) = t{w^x) does not work, because 
A can be infinite. So let us make it finite in such a way that the resulting 
structure still satisfies (qml ) and also complies with the smallness condition 
( q m l ' ) . Fix a ta E TV and define a binary relation ~ti; on A as follows. If 
X, y G A are of depth 0 (i.e., they are leaves of ©) then 

X ^uiV iff t{w,x) = t{'w, y). 

For X, y € A of depth fc (0 < A: < md{ip)), let 

xrsj^y iff t{w, x) = t(w, y) 

A V2 € A (x < 2 -^ 32' € A (y < 2' A 2 ~,^ 2')) 

A V2 € A (y < 2 -^ 32' € A (x < 2' A zrs.^ z')). 

Clearly ~iy is an equivalence relation on A. Denote by [x\u) the ~ti;-equivalence 
class of X and put 

\x]wRw[y\w iff 3y' € [y\w x < y', 

'ti;([^]ti;) = t{w,x). 
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Then, by the definition of '^-^^ Rw is well-defined and the structure 

clearly satisfies (qml') . Observe that the map fw'Xi-^ [x]yj is a p-morphism 
from (A, <) onto {A,^, R^u), and so it also satisfies (qml) . However, (A,^, R^) 
is not necessarily a tree. The tree (Tty, <^) we need can be obtained by 
unraveling (AwyRw)'-

Tw = {([^o]«;, •. •, [xk]w) \ k <m, [xo]wRw[xi]wRw • •. Rw[3:k]w}i 

U<^V iff U= {[xo]w, • • . » [Xk]w) , V = ( M t i ; , . . . , [Xk]w, [^fc+llti;) 

and [xk]wRw[xk-hi]w' 

Let 
tw{([xo]w,'", [^k]w)) = lw{[xk]w) = t{w, Xk). 

It is not hard to see that, for any w e W, {{T^v, <w) itw) is a quasistate for 
ip. Moreover, ^ e two{{{^o]wo))' So, by taking 

q{w) = {{T^,<w),t^) 

for each it; G W we obtain a basic structure (5, g) for (f satisfying (qin2). 
It remains to define appropriate runs through (5? Q)- TO this end, for each 

k <m and each sequence {XQ, . . . , Xfc) of points in A such that rro < • • • < x^, 
take the map 

r :wy-^ {[xQ]yj,...,[xk]w) • 

It is easy to check that r is a coherent and saturated fc-run. Let 91 be the 
set of all such runs. For r^r' e IH, let r <r^ iff r{w) <yj r'{w) for all w e W. 
Then (qni3) holds by definition. It remains to prove (qin4). Let r € D̂ /t, 
V € W and 2 € T̂  be such that r{v) <v z. We have to show that there is 
r' G 5Hfc+i such that r <3 r' and r\v) = z. Since r(t;) <v z, we have r(y) = 
([a:o]t;i • • •, [̂ fclv) and z = ([xo]v, • • •, \^k\v, [^fc+ilv), for some x\,... ,Xfc,a:fe-|-i 
with xo < xi < • • < Xfc and [xjt]t;iit;[xfc+ilv By the definition of /?v, there 
is y € [xjb̂ -i]v such that x^ < y. But then the map 

r' : w; H-> ([xo]«„..., \xk\w, \v\w) 

is in !H. Thus, (3̂ , g, JH, <} is a quasimodel for ^. • 

Our next task is to provide an algorithm for deciding whether there exists 
a K X K-quasimodel for y?. In fact, we will show that instead of finding such 
a quasimodel, it is enough to find a finite set of finite ^building blocks' out of 
which a quasimodel for (p can be constructed, with the size of the set and the 
size of blocks in it being effectively computable. 

A block for ^ with root it; is a quadruple 55 = (5» 9,91? <) such that 
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• J = (A, <) is a tree of depth < 1 with root it;, 

• (5, q) is a basic structure for (̂  of depth m, for some m < md{(f)^ 

• 91 is a set of coherent and ti;-saturated runs through (5, g), 

• <3 is a binary relation on fH satisfying (qm3) and (qm4). 

Such a block is 'almost' a quasimodel for (/?: what is missing is that the runs 
are not necessarily leaf-saturated and that (qm2) may not hold, i.e., (p may 
not belong to the root of the type-tree at w. 

A set S of blocks for if is called satisfying if 

• all blocks in 5 are of the same depth m, for some m < md({/?), 

• 5 contains a block satisfying (qm2) and 

• for every block 03 = (5,9, £H, <) in S with 5 = (A, <) and every v e A 
there exists a block 53' = (5', 9', 5H', <') in 5 such that q(v) = q^(w^) for 
the root w' of 03'. 

Lemma 6.3. There is aKx K-quasimodel for (f iff there is a satisfying set of 
blocks for ip such that the number of quasistates in each block does not exceed 

M{(p) = 1 -f {md{ip) 4-1) • p(v?) • \sub(p\. 

Proof. (<=) First we show how a quasimodel for (f can be const ructed from a 
satisfying set S of blocks for (p. To begin with, we call a quadruple (5, g, 5H, <) 
a weak quasimodel for if if the following conditions hold: 

(wql) 5 = {W^R) is a finite frame and (5, g) is a basic structure for (p 
satisfying (qm2); 

(wq2) JH is a set of runs through (JJ, q) and < is a binary relation on IH 
satisfying (qm3) and (qm4); 

(wq3) for all w,v £ W such that w ^ v and wRv, there exists a block 

^wv ^ {^^v^q^v^^^v^<i^v^ in S with 5^^ = (A, <) such that 

• A C H^ and w,v e A, 

• for all u E A, q{u) = q^^(w), 

• for all w, ti' € A, if ni?u' then u < u', 

• for all r eO\, the restriction r^^ of r to A is a run in IH'̂ *'. 

We construct by induction a sequence (Qn | n < a;) of weak quasimodels that 
'converges' to a quasimodel for ^p. Let Qo = (S^o,9o'^o,<o) be a block in 5 
with root Wo for which (qm2) holds. Clearly, it is a weak quasimodel for (p 
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as well. Suppose now that we have already constructed On = (5n» Qn^^rn <n) 
with Sn = {WniRn)' FoF each w G Wn - Wn-i (here and in what follows 
W-i = {wo}) select a block ®^ = (5'^,g^,fH^,<i'^) from 5 with root w and 
grti; ^ (A^, <^) such that q^{w) = q'^iw). (The existence of such a block 
follows from (wq3).) We may assume that all the selected blocks are pairwise 
disjoint and A^ H Wn = {w}. Define (ffn+i»9n+i) ^Y taking 

/?n+l =RnU U { < " ' | W^Wn- Wn-l}, 

gn+li^; - \ g„(t,), if „ e Ty„. 

In other words, we 'glue together' the basic structures {dniQn) ^^^ i^^iQ^) 
at point w. 

Next we define ^ ^ i and <n4-i- Suppose that we have r € 91^ and a 
sequence 5 = (5"^ € IH'̂  | t/; G W„ - Wn-i) such that r{w) = 5̂ (̂11;), for all 
w G VVn — W^n-i- Define the extension r U 5 of r by taking, for all v G W n̂+i> 

weW„-Wn-u 

Let 9ln+i be the set of all such extensions and let 

(ri U si) <n+i (r2 U 52) iff ri <„ r2 and s"^ <"" s^, for all w e Wn - Wn_i. 

It can be readily checked that ^ ^ i and <n+i satisfy (qm3) and (qm4), and 
so On+i = (3^n+i,gn+i)^n+i,<n4-i) is a weak quasimodel. 

The 'limit quasimodel' is defined as follows: let ^ = {W, i?), where 

W=\JWn, R=[JRn, 
n<uj n<LJ 

and let 

Q= [JQn' 
n<uf 

For each sequence of runs {vn ^^n\Ti< uj) such that rn+i is an extension of 

Tn take r = Un<u;^'i- ^^^ ^ ^^ ^^^ ^^^ ^f '̂̂  ^"^^ ^^^^- ^^^ ^»^' ^ '^^ define 

r < r ' iff Tn <ln ^n ^^^ M U < LJ 

(where r ' = Un<u;^n)-
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It is not hard to see, using (wql)-(wq3), that (ff, g, 91, <) is a quasimodel 
for (p. Here we show only that all runs in 91 are coherent and saturated, i.e., 
for all r € 91, 1/; € W and OV̂  € subip^ 

Otp e K{r{w)) iff 3veW {wRv A ^ € tv{r{v))). 

Suppose that Ot/̂  € tti;(r(ti;)), and let n be such that w € Wn - W^n-i-
Then OV̂  € tw;(r„(t/;)) and, by the definition of Hn-i-i) there exists v e Wn^\ 
for which wRn^iv and 0 G tt;(rn4.i(v)). Conversely, suppose wRnV and 
t/̂  € tv{rn{v)). Then it follows from (wq3) that Ot/̂  € t^{rn{w)). 

(=1̂ ) Now we have to show how to extract a set of 'small' blocks from a 
given quasimodel O. = (if, g, 91, <) for if of depth m < md{ip) with 5 = {^i R)-

Note first that we may assume each world tz; in J to have arbitrarily many 
indistinguishable copies in O in the following sense. Say that two distinct 
worlds w^w^ eW are twins {in O) if 

• QM = gK); 
• for all t; € W, vRw iff vRw^^ and wRv iff ii;'i2t;; 

• and for all runs r € 91, r{w) = r{w^). 

To construct a satisfying set 5 of blocks, we will associate with each w eW a. 
block ®^ = (;j^,g^,9l^,<i*^) with root w such that q'^iw) = g H , and put 

The resulting 5 will clearly be a satisfying set of blocks for </?. 
So, let w eW. First we define inductively sets of runs 6jb C 91 ;̂, fc < m: 

• 6o = {ro}. 

• Given 6it, we construct 6/t+i as follows. For every run r £ 6k and 
every x € Tu) with r(t<;) <w x^ select an r' 6 9tit-f i such that r < r' and 
r'{w) = a:, and put it into 6it+i. (Such a run r' exists by (qm4).) 

Finally, let 6 = U<m ^k> Clearly, |S | < p(v;). 

For every r 6 S and every Oi/; € *u;(̂ (w )̂) we then let 

Sat{r, OV̂ ) = {t; € VT I ti;i?t;, tp e ty(r{v))}. 

As r is saturated, 5af(r, Oi/>) ^̂  0. We select a finite subset A^(r, <>V̂) of 
Sat{r, ^tp) in the following way. If Sat{r, Otp) = {w} then A* (̂r, <>\p) = {li;} 
as well. Otherwise, let A^(r, <>0) consist of a t; 7*̂  it; from Sat{r, 0^) together 
with m -f 1 twins of v. We may assume that the obtained sets A^(r, Ot/̂ ) are 
pairwise disjoint. 

Now we define 
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• A"' - {w} U U{A^(r, OV̂ ) I r G 6 , 0xP e tu^{r{w))}, 

• for all v,v' e A^, vR^v' iff v = ti; and vRv', 

• 5'^ = (A'^,i?^)and 

• for all V e A"", g^(v) = q{v). 

Then J'^ is a tree of depth < 1 and {d^^q^) is a basic structure for (p. The 
cardinality of A^ is clearly bounded by 1 -I- (md{(p) -h 1) 'p{^) • \sub(p\. 

It remains to define a set 9V" of coherent and ty-saturated runs through 
(5^,g^) and a binary relation <î  on ^"^ such that (qm3) and (qm4) hold. 
A natural candidate for 91*̂  seems to be the set 6 ~ of all restrictions of runs 
in S to A^. These runs are clearly coherent and ly-saturated. However, there 
may not be enough runs in 6 ~ : although there is a run in S~ coming through 
every x eT^u, there may exist x eTy^ for some v € A^, v ^ w, which is not 
in the range of any run r in 6 ~ . Another choice might be the set 1H~ of 
the restrictions of all runs in IH to A^. They clearly go through all points 
in (5^,^^), they are coherent, but, alas, not necessarily ly-saturated. So, to 
construct the required set W", we have to compose new runs out of old ones. 

Let V € A^, V ̂  w, and suppose that r and r' are functions whose domain 
contains A^ and r{w) = r^{w). Define a function r -\-y r' with domain A^ by 
taking, for all z € A"", 

(r +v r ){z) =: < ,) i .- . ' 
^ ^ 'V / 1̂  ^ ( 2 ) , if 2 TF V. 

(Note that a similar operation was used in the proof of Theorem 5.22.) Using 
this ^addition' function, we now define sets 91]̂  of runs, for every k <m. Let 
^Q consist of the restriction of ro to A'^. For fc > 0, we put all the restrictions 
of runs from &k into W]̂  (i.e., 6j^ C !H]̂ ) and also add there the functions 

r\ +V1 (̂ 2 ^V2 (• • • (n -f vi r),..)), 

where 1 < / < A;, r € 6it, r i , . . . , n G fHjt such that r{w) = ri{w)^ for 1 < i < i, 
and v i , . . . , v/ are pairwise distinct points in A^ different from w. 

Obviously every run 5 € 91^ is coherent. We show that it is ix;-saturated. 
This is clear if s belongs to S~ . Otherwise, s is of the form 

(r2 -\-v2 (• • • {rk +,;, r ) . . . ) ) 

for some k <m. So, we modified the i/;-saturated run r at < m places. Take 
some formula <>V ^ ^w{s{w)). Since we selected for A^ m-\-\ twins for each 
point in Sai(r^ ^'^)i there is still at least one v left to 'saturate s with respect 
to OV ,̂' that is such that 1/̂  € tv{s{v)). 
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Finally, let 

s = ri +„, (r2 +„, (... (r, +„, r) . . . )) , (6.2) 

s' = r i+„i(r i+„,( . . . (r;+„;r' ) . . . ) ) 

be two runs in 91^. (If either s or s' belongs to 6"" then we consider / or n 
as 0, respectively.) We let 5 <i 5' iff the following hold: 

• s e9\^ and 5' € JHJJ'+i, for some fc < m, 

• r<r\ 

• I <n and Vi = vj, for all 1 < i < /, 

• for all z e A^, ri(2) <z r[{z) whenever 1 < i < /, and r{z) <z r[{z) 
whenever / -I-1 < i < n. 

Then (qm3) holds by definition. We show that (qm4) also holds. Suppose 
that s is of the form (6.2), z € A^, x eTz and s{z) <z x. We need a run 5' 
in 91"̂  such that s <^ s' and s\z) = x. 

Case 1: z ^ Vj for some I < j < L Then ${z) = rj(2) = Vj for some 
ri e £H. As the original quasimodel Q satisfies (qm4), we have a run Vj € SH 
such that rj <rj and r̂ (-2:) = x. Similarly, for all i 7"̂  jf, 1 < i < /, take a run 
r| from JR such that r* <r[ and rj(it̂ ) = r̂ (t̂ ). Finally, take a run r' from 6 
such that r <ir' and r^{w) = r̂ (tt>). (Such a run exists by the definition of 6.) 
Then 

5' = r;+, , ( r i+ , , ( . . . (7-;+., r')...)) 
is a run in JĤ  as required. 

Case 2: z ^ Vj for any I < j < L Then s{z) = r{z). Select a run r(̂ .i 
from 9\ such that r <ri^^ and rĵ .i(-2r) = a:. For each t, 1 < i < /, take a run 
r[ from IH such that r̂  <ir. and rj(ii;) = rl^i{w). Finally, take a run r' from 
S such that r <ir' and r'{w) = ^[^^{w). Then 

s' = r;+^, (ri-f^3(...(r;^i-f.r')...)) 

is a run in W^ as required. 
Thus, (5̂ ,̂ g" ,̂m ,̂ < )̂ is indeed a block with root w. • 

To complete the proof of Theorem 6.1, it remains to observe that we can 
effectively construct all possible quasistates for </?, compose out of them, also 
effectively, the set of all blocks for (/? with < M{(p) quasistates, and then 
decide whether this set contains a satisfying subset. • 

As an almost immediate consequence of the proof above, we obtain the 
following result of (Gabbay and Shehtman 2000); a different proof can be 
found in (Marx and Mikulas 2002): 
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Theorem 6.4. Kn x Km has the product frnp. 

Proof. We again confine ourselves to the case of K x K. Suppose </? is 
K X K-satisfiable. Then, by Propositions 1.7 and 3.10, it is satisfiable in a 
product i3 X © of two intransitive trees of depths < md{ip). By Lemma 6.2, 
there exists a quasimodel O, for (p based on 9). Let £}' result from jQ by 
adding the twins required for constructing blocks. Although, in general, the 
underlying frame $)' of Q' is not a tree, it is still intransitive. So all the blocks 
of the satisfying set that are constructed out of Q' in the proof of Lemma 6.3 
are based on intransitive trees. 

The quasimodel for (p built from this satisfying set is based on an intrans-
itive tree 3̂  = {W, fl), it satisfies (f at its root WQ, and every point in J has at 
most M(ip) jR-successors. Now, if we stop the construction of this quasimodel 
after md{<p) steps, then we get a structure £}~ = (3^~,9~,9l~,<i~) based 
on a finite frame 5~- This structure satisfies all the required properties of 
quasimodels for ^p save only one: it is not necessarily leaf-saturated. How-
ever, we can use the proof of Lemma 6.2 to convert £J~ into a model based 
on the finite product frame 3̂ ~ x (9l~,<i~), and this model will clearly satisfy 
if at its root. • 

Observe that the upper bound b{ip) for the number of different quasistates 
(see (6.1) in the proof of Theorem 6.1) is a nonelementary function of the 
modal depth of (̂ . So the above decision procedure, as well as all other known 
decision algorithms for K x K, is nonelementary. (It is shown in (Marx and 
Mikulas 2001) that K x K-satisfiability of A^£2-formulas of modal depth < 2 
is already NEXPTIME-hard.) However, the following challenging question is 
still waiting for a solution: 

Question 6.5. What is the computational complexity of K x K? 

As a (relatively) easy exercise the reader can prove the following: 

Theorem 6.6. (i) The decision problem for K x Alt is in EXPTIME. 
(ii) Kn X A l t^ has the product fmp.. 

Hint: since in this case a quasistate is just a <I>-saturated chain of types 
of length < md{(p) -f 1, the upper bound b{ip) for the number of different 
quasistates for a formula (p can be defined as 

An EXPTIME satisfiabiHty-checking algorithm for K x Alt can be constructed 
similarly to that in the proof of Theorem 2.27. 

We do not know, however, whether this algorithm is optimal: 

Question 6.7. Is K x Alt EXPTIME-complete? 
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6.2 CPDL X Km 

Now we show how to generaUze the constructions of the previous section 
in order to prove the decidability of the product of CPDL (propositional 
dynamic logic with the converse operator) and Km- To simplify notation, we 
again consider products only with unimodal K; all the definitions and proofs 
are easily generalized to multimodal Km-

To begin with, we briefly explain how the definitions of the syntax and 
semantics for the products of modal logics introduced above can be extended 
to products with CPDL. Formulas and action terms of CWC ® MC are 
defined by parallel induction as in Section 2.4. (We only note that ^? is an 
action term of CWC 0 MC whenever V̂  is a CWC 0 A1£-formula.) The 
modal operators of CWC 0 MC are [a] and (a), for every action term a, as 
well as Q and <$>. 

Formulas oiCWC®MC are interpreted in CWC®MC-structures^ that 
is, frames of the form 

5 = (C/, Ta,, Taa,. . ., i?) , 

where {U.Ta^.Ta^,-..) is a PP£-structure and (t/,/?) is a Kripke frame. As 
usual, a valuation 93 in 5 is a map from the set of propositional variables into 
subsets of C/, and the pair 971 = (J, 93} is a model based on 3̂ . Given such a 
model 3Jl, we define the truth-relation (JOT, u)\= ^p and the compound trans-
ition relations T^ by parallel induction as we did for CWC in Section 2.4. 
In particular, the following clause defines T^ for a CWC 0 A<£-formula if\ 

• T^^ = {(u,u)|(lOT,u)|=V^}. 

Observe that if a does not contain test then T^ is determined only by the 
7^D£-structure (f/, Tai, Taa i • •>• 

The product 

of a 'PZ)£-structure 5 = {W, T^^, Taa,...) and a frame 6 = (A, R) is a special 
kind of CWC 0 A^£-structure defined by taking for all u\^U2 € W^ all 
xi,X2 € A, and all atomic actions ai, 

(t/i,xi)fa, (1/2,̂ 2) iff y'\TciU2 and 3:1=0:2, (6.3) 

{u\^xi) Rx}{u2,X2) iff x\Rx2 and 1/1=^2-

Note that if a contains test then (6.3) does not necessarily hold for TQ. How-
ever, for any model fOT based on 5 x C and any transition relation T^ , we 
have the following: 

if {ui,xi)f^ {u2,X2) then xi=X2. (6.4) 
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The logic CPDL x K is defined as the set of all CPI>£(8) A1£-formulas that 
are valid in all product CVT>C(S^MC-structmes. Similarly to Proposition 2.21, 
one can show that every CWC ^MC-formuldi is equivalent in CPDL x K to 
a formula in which the converse operator is applied only to action variables. 
So in what follows we consider only formulas of this form. 

As to finding an aociomatization for CPDL x K, first observe that all the 
axioms of CPDL (see Section 2.4) hold in every model based on a product 
CPVC (g) Al£-structure. Further, the formulas 

0{oci)p *-^ (oii)Op and (ai}ap -^ ^(ai)p (6.5) 

with atomic actions a, hold in such models as well. (Note that commutativity 
and Church-Rosser properties for all action terms a not containing test follow. 
On the other hand, it is easy to find models based on product frames where 
(6.5) does not hold for some action term having test.) So, a natural candidate 
for an axiomatization of CPDL x K could be obtained by putting together 
the CPDL-axioms and (6.5). It is not known, however, whether the resulting 
logic is complete with respect to 'standard' models, that is, models based on 
CWC(SiMC'StTUCtures, with each pair TQ. and R having the commutativity 
and Church-Rosser properties. So the following question is open: 

Question 6.8. Give an axiomatization for CPDL x K. 

An axiomatization for CPDL x S5 is given in Section 6.5. 

Remark 6.9. We can define the test-free fragment of CPDL x K as the set of 
those formulas in CPDL x K that do not contain action terms of the form (p?. 
The language of the test-free fragment of CPDL x K has the Q of A^£ and 
a modal operator [a] for every test-free action term a. So strictly speaking a 
frame interpreting this multimodal language is not a CWC (g) Al£-structure 
as introduced above, but any structure of the form 

:S={U,T^,.,,,R), 

where C/ is a (nonempty) set and the TQ are binary relations on (7, one for 
each test-free action term a (not only for atomic actions). 

It is easy to see that the test-free fragment of CPDL x K in fact coin-
cides with the usual product CPDL" x K, where CPDL~* is the test-free 
fragment of CPDL (which is a Kripke complete multimodal logic, see Re-
mark 2.23). Since all the axioms of CPDL"*^ hold in CPDL"^ x K, we 
obtain that in all (not just in the product) frames (of the above form) for 
CPDL"^ X K, the relation T^* is the reflexive and transitive closure of Ta^ 
Tau0 = Ta^T^, Ta;0 = T^oTp, and T^- = T ' S for all test-free action terms 
a, p (cf. Remark 2.23). 

In the remaining part of this section we prove the following result of Wolter 
(2000b): 
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Theorem 6.10. CPDL x Km is decidable. 

Proof. To begin with, let us fix a CWC 0 A<£-formula (p and define a 
notion of a CPDL x K-quasimodel for ^, 

As is well known, when treating logics related to PDL, it is not enough 
to consider only subformulas of (̂ : a somewhat larger set of formulas, known 
as the Fischer-Ladner closure of </?, is required. This set, denoted here by 
flc{(p)y is the smallest set of formulas containing (fi and satisfying the following 
conditions: 

• if V' A X € flc{ip) then tp € flc{(p) and x ^ flc{^)> 

• if ->!/> € flc{(p) then xp € flc{ip)^ 

• if Oip € flc{ip) then ip € /Jc((/?), 

• if (a) ip e flc{(p) then ip € flc{(p)y 

• if (a; (3)i)e flc{^) then (Q>(^) xp € flc{^)^ 

• \{{aU0)i}e flc{(p) then (a) rp € flc{^) and (/?> t/̂  € Mv^)» 

• if (Q*> V̂  € /Zc((^) then tp € yJc(v?) and (a) (a*) V' G /ic((/?), 

• if (o'~) t/' € /?c((/?) then (ai) tp e flc{(^), 

• if (tp?) X € flc{(p) then xp £ flc{(p) and x ^ Mv?). 

Note that |yic(v?)| is linear in the length (i.e., the number of symbols) of tp 
(for a proof see, e.g., Harel et al. 2000). 

Now, a type for (/? is a Boolean saturated subset t of /?c(v?) satisfying the 
following conditions: 

( t l ) (Q; P)tpetiS (a)(/3) V̂  € t, for all (a;l3)xpe flc{^), 

( t2) (a*) V̂  € t iff either V' € t or {a){a*) xpet, for all (a*) xp € /Ic(v?), 

( t3) (a U /?) V' € t iff either {a)xp£t or (/?) V̂  G t, for all (a U ̂ ) 0 € /fc((/?), 

( t4) {xpl) X € t iff V' G t and X € t, for all (V ?̂) x G /Jc((^). 

The number of pairwise distinct types for if does not exceed 2'-̂ *̂ ('̂ '̂. 

A quasistate for (̂  is defined word by word as in the previous section, but 
using the above definitions of types, flc{(f) instead of su6 v?, and the following 
modified definition of md{{p). 
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The modal depth md{ip) of a C7̂ X>£ (8) A^£-formula (p and the modal depth 
md{a) of a CWC (8) A1£-action term a are defined inductively as follows: 

md{p) = 0, md{^p A T/;) = max{md((^), md{rp)}, 

md{->ip) = md{ip), md{0(p) = md{(f) -h 1, 

md((a) y?) = md(a) -h md{ip)^ md{ai) = md{a^) = 0, 

md(a; j3) = max{md(a), md(/?)}, md(a U /3) = max{md(a), md(/3)}, 

md{a*) = md{a), md{rp?) = md{\l)). 

The upper bound 6((̂ ) for the number of different (i.e., nonisomorphic) quasist-
ates for <p and the upper bound p((/?) for the number of points in a quasistate 
for (/? are computed as in the previous section using flc{^p) in place of subi>p. 

A basic structure of depth m for (/? is a pair (3̂ , q) such that 

is an n-frame, where a i , . . . , an is an enumeration of all action variables in v?, 
and g is a function associating with each w ^W a quasistate 

for (p of depth m. 
As before, for any A: < m, a k-run through (3̂ , q) is a function r associating 

with each i/; € W a point r{w) G Tî  of co-depth k. Now we need to define 
analogs of the coherency and saturation conditions for the new ru)is. To this 
end, for each run r through (3̂ , g), we define first a binary relation T^ on W 
as follows: 

• wTl^.v iff wTa.v, 

• wT^'.v iff vT^.w, 

• wTl^v iff wCT^oTpt;, 

. wTl^^^v iff w{T^UT^)v, 

• wT^.v iff t<;(Ti)*u, 

• wT^fV iff u; = u and ip € t,„(r(w)). 

The relation T^ depends on r only when a contains test. 
Now, a run r is called coherent if 

ywewy{a)ipeflc{'p) 
(3v e W {wT^v Aipe tv(r(f))) -» (a) V e t^(r(t(;))). 
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It is called w-saturated^ for w e W^ if 

V{a)0€y?c((p) (^{a) tp € t^{r{w)) -^ 3v £ W {wT^v A tp € tv{r{v)))y 

A run is saturated if it is tt;-saturated for all w eW. 
Finally, CPDL x K-quasimodels for ip are defined precisely as K x K-

quasimodels in the previous section, using the new definitions of basic struc-
tures and runs. 

The following lemma, like Lemma 6.2, establishes a connection between 
models based on product frames and quasimodels: 

Lemma 6.11. A CWC <8) MC-formula ^ is satisfied in a model based on a 
product CWC 0 MC'Structure iff there is a CPDL x K-quasimodel for ^p. 

Proof. In principle, the proof follows the lines of the proof of Lemma 6.2, 
but of course it is a bit more tiresome. 

{<=) Consider a quasimodel (5>9,5H,<) for if with 

S = WT«,,. . . ,r«j, 

and let 5' = (VK, Tai , . . . , Ta^, Ta„^,,...) be any PP£-structure ^extending' 
S. Define a valuation V in the product CVDC 0 Al£-structure ;?' x (9t, <) by 
taking 

QJ(p) = { K r ) \pet^{r{w))} 

for every propositional variable p. Put 971 = (5' x (JH, <> ,5T). The following 
two equivalences can be proved by parallel induction for all it;, t; € W: 

• for every ip € flc{(f) and every r € 91, 

(071, {w, r))\=ip iff rpe K{r{w)); 

• for every action term a occurring in /?c(v?) and every r G 9t, 

wT^v iff {w,r)f^{v,r). 

We show only the induction steps for V̂  = (a) x and a = x?-

(97t,(ti;,r»h(a>X 
3veW,se^{{w,r)f^{v,s) A (97t,(t;,s))|=x) 
3veW {wT^v A X € ty{r{v))) [by (6.4) and IH] 
(a) X € tu}{r{w)) [since r is coherent and saturated]; 

wT^jV ^̂==> w ^v and x ^ *n;(^(^)) 
w ^v and (971, (t/;,r)) |= x [by the induction hypothesis] 
{w, r) f^ {v, r) [by the definition of 7^^]. 
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It follows then from (qm2) that (p is satisfied in 9Jl. 

{=>) Suppose that (f is satisfied in a model 9Jt based on the product 5) x (8 
of a PD£-structure 9) = {W,Ta^,...) and a frame 6 = {A, <>. By Proposi-
tion 1.7 and a straightforward generalization of Proposition 3.10, we may also 
assume that (& is an intransitive tree of depth m < md{ip) and that 

for some WQ £W and root XQ of (S. As before, with each pair (it;, x) inW x A 
we associate the type 

t{w,x) = {^ G flc{^) I (5rt, {w,x)) h xp}. 

Let a i , . . . , a „ be an enumeration of the action variables occurring in ip. A 
quasimodel for ip based on the frame 

can be then constructed in precisely the same way as in the proof of Lemma 6.2. 

• 
We now show how to extend the proof of Theorem 6.1 to obtain a decid-

ability proof for CPDL x K. 
Note first that trees of depth < 1 are no longer enough for constructing 

blocks. Now a block for if with root wo is a quadruple *B = (S, Q, ^, <) 
satisfying the following properties: 

( b l ) S = (A, r ^ i , . . . , Ta^) is a finite n-frame with a simple 'tree-like' struc-
ture: 

- for all w,v e A with w ^ v and i9i,/?2 € {OLJ.CX^ | 1 < j < n} , if 
wTp^v and wT^^v then /?i = /?2; 

- for every K; G A such that w ^ WQ^ 

\{v I 3/3 G { a i , a - \i<n) wT0v]\ < 2; 

- for every v G W, there exists a unique sequence (VQ, vi, • • •,Vm) of 
distinct points in A such that WQ = v^^ v ^ Vm and, for any i < m, 
there exists 0 G {ofj,a~ | 1 < j < n} with ViT^Vi^i; 

(b2) (3 ,̂ (7} is a basic structure for (/?; 

(b3) fH is a set of coherent and w;o-saturated runs through (5, q)\ 

(b4) < is a binary relation on 91 satisfying (qm3) and (qm4). 
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The definition of a satisfying set of blocks remains precisely the same as in 
the previous section. 

Our aim is to show that (f is satisfiable iflF there is a satisfying set S for ip 
such that the size of each block in S is at most iV(v?), for some natural number 
N{ip) effectively computable from the length of ip. In contrast to the upper 
bound M{(p) found for K x K, now the size of the blocks depends also on the 
number of nestings of action terms in (/?. In order to compute the necessary 
upper bound, we first have to make every action term in (p iteration-free.' 
Namely, for every natural number n and every action term a, we define an 
action term a{n) as follows: 

• a(n) = a, if a = Qi, a = a^", or a = tp?^ 

• (/?U7)(n) = /3(n)U7(n), 

• (/J;7)(n)=i9(n);7(n), 

• /?*(n) = i3^''{n), where 

n 

/?^^ = T?U/3U(/?;/3)U"-U/3" and / ? ^ = i 3 7 ^ ? ^ . 

In other words, a(n) results from a by replacing every occurrence of an ac-
tion term of the form (3* (which is not in the scope of a test tp?) with /9-". 
Therefore, a{n) contains no occurrence of *.. 

The length \a\ of an action term a without iteration is defined as follows: 

• m = 0, 

• |/3U7| = max{|/?|,|7|}, 

• l/3;7l = l/?Kl7|. 

Finally, we put 

/(V?) = max{|a(%)-p(v?))| | (a) i) e flc{^)}. 

(Recall that b{(p) and p{(p) are the upper bounds for the number of different 
quasistates for ip and the number of different points in a quasistate for v?, 
respectively.) We are now in a position to formulate and prove a satisfiability 
criterion. 

Lemma 6.12. There is a CPDL x K-quasimodel for (p iff there is a satisfying 
set of blocks for ip in which the size of each block is at most 

N{<p) = 1 -f (md(v )̂ -f 1). l(<p). p{ip). \fic{<p)\. 
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Proof. (<=) Suppose that 5 is a satisfying set of blocks for (f. The construc-
tion of the limit quasimodel {J, qf, 91, <) is analogous to that in the proof of 
Lemma 6.3. The only point where the proof gets more complicated is the argu-
ment showing that all the runs in 91 are coherent. Let 5 = (W^,Tai,...,Ta^). 
We claim that for all r € 91, ii; € W and (a) tp € flc{(f)y 

3w' e W {wT^w' A x/je tw'{r{w'))) -^ (a)tl^e tw{r{w)). 

The proof is by induction on the construction of a. 
Case 1: a = ai, where Q^ an action variable. Suppose that there is a 

w' £ W such that wTaiW' and ip e tw'{r{w^)). Then by (wq3), we have 
{ai)tljetw{r{w)),^ 

Case 2: a = a~ ^ ai an action variable. This case is analogous to Case 1. 
Case 3: a = x?- Then we have 

3w' £ W {wT^^w' A ^ G tvj'ir{w'))) 

==^ X ^ ttv{r{w)) A ^ € tw(r{w)) [by the definition of TJ^-f] 

= > {X?>^€t^(r(ti;)) [by(t4)] . 

Case 4' a = l3;j. Then 

3w' € W {WT;.^ A xpe t^u'{r{w'))) 

==> 3w' eW {w{T^ o T;)W' A 0 € tw' (r(tx;'))) [by def. of T | . ^] 

==> {0){i)i^etUHw)) [bylH], 
= > {/3;7)^€t^(r(ii ;)) [by ( t l ) ] . 

Case 5: a = /? U 7. Then 

3w' € W (wT^^y A tpe t « , ' ( r K ) ) ) 

==> 3w' eW {{wT^w' V WT;W') At/je t^'{r{w'))) [by def. of T^^^] 

= » (/?) ^ € t^(riw)) V (7) ^ € t^(r(ti;)) [by IH] 

= > ( /3U7)^€t^(r( tx;)) [by (t3)]. 

Ca^e ^: a — f3*. Suppose that wT^^w' and ^ € tti;'(r(t(;')), for some 
w' € W. Then, by the definition of T^., there are ti/o,.. .,ti;fe € W such 
that WQ = WJ Wk "= w' and tWjT îUj+i for all i < k. By ( t2) , we have 
{/?*) ^ € t^t}^{r{wk))' If fc = 0 then we are done. Otherwise, by the induction 
hypothesis, 

and so again by ( t2) , we have {^*)^ € tw^^AH'^k-i))' By repeating this 
argument we obtain {13*) tp € t«;o(r(ii;o)). 

This proves the implication {<=) of Lemma 6.12. 
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(=>) Suppose Q = (5»9»5^»<J) is a quasimodel for (p of depth m < md{ip) 
and J? = (ly, TQI , . . . , Ttt^). We may again assume that each world win's has 
arbitrarily many indistinguishable copies in O in the following sense. Two 
distinct worlds w^w* eW are called twins {in O) if 

• for all t; € W and i,l <i <n, vT^iW iff vT^iW', and wTonV iff tî 'To-t;; 

• for all runs r £dK^ r{w) = r{w'). 

We will construct a satisfying set 5 of blocks by associating with each WQ eW 
a block 03^" = (5'^«,g**'«,9l^«,<^o) with root w such that q^{w) = g(ti;). 

Fix 9, WQ e W. Similarly to the previous section, define first a set S of 
'auxiliary* runs as follows: 

• So = {ro}; 

• to construct Gk-^-ii for every r eGk and every x ^T^ with r{w) <yj x 
we take an r' € IHfc+i such that r<ir' and r'{w) = a:, and put it in &k-¥\ 
(such a run r' exists by (qm4)). 

Finally, let 6 = | J Sifc. Then we clearly have | S | < p(</?). 
k<m 

Next, we define 5^« = (A^«, 5 a , , . . . , S.^J. Recall the definition of A'̂  
from the proof of Lemma 6.3: in order to make the runs in S root-saturated, 
we put md{(f) -f 1 points to A^, for each r in S and O^ G txu{T{w)). Now 
it is not enough to choose points; we have to choose 'a-paths' whenever we 
have {a)xl) € tw{r{wiQ)). 

To this end, for every run r in 91 and every a occurring in flc{(f)y we define 
by induction the set pathr{ot)\ 

path^{ai) = {{w) I wTdiW) U {{w^ai^v) \w ^v, wTo^v) 

path^{a~) = {{w) I wTa^w) U {(ty,af ,t;) \w ^v, wT^-v) 

path^{a U /?) = pathria) U path^{p) 

path^{a\fi) = {(ti;,... ,t;,.. . ,u) | 

{Wy...yV) £ path^{a)y (v , . . . , u) € pathj.{l3)} 

path^{a*) = {(ti;) 11/; € Ŵ } U \J{path^{ot'') | n > 0} 

pai/i,(t/;?) = { H I V̂  € t^,(r(ti;))}. 

A path of the form (w) is called degenerate. For a path 

w)= {wo,(io,...,pk-uWk) 
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we put start{iv) = WQ, end{iv) = Wk and call k the length of w. Given two 
paths vi = {wo,f3o,...,Pk^i,Wk) and f;2 = {wkjPki •--,Pi-iiWe), we put 

^1*^2 = {wo,l3o,...,Pk-i,Wk,Pki" ">Pe--i,Wi). 

Two paths iD = {WQ, /JO, • • •, Pk^\,Wk) and v = (VQ, 7O, • • •, 7^-i» €̂> are called 
txuins if fe = ,̂ ti;o = vo» ft = 7t (i < fe), and II;J is a twin of Vj (1 < j < k). 
Since each point in our quasimodel can have arbitrarily many twins, we may 
assume that in fact each path has arbitrarily many twins as well. 

A straightforward induction shows the following: for all u^v £ W, all runs 
r € 91 and all action terms occurring in flc((p), 

uT^v iff 3w e path^{a) [start{w) = u & end{id) = v). (6.6) 

Observe that, for any action term a without iteration, the length of paths 
tD G path^{ot) is bounded by the length \a\ of a. However, if a contains itera-
tion, then these lengths are not necessarily bounded. To solve this problem, 
we define the 'truncated' version tr^{id) of each path w £ pathj.{a) by induc-
tion on the complexity of a. If a does not contain an occurrence of * then we 
put tr^{w) = w-

Suppose now that a contains iteration. If a = 0? then let tr^{w) = w. If 
a = /? U 7, then 

fr^r(-^ _ / tr'^^i^), if iv € path^{P), 
^ "^^ - ^ tr!:^{w), if tD € path^ij). 

If a = /?; 7, then tD = tDi * ti)2, where xDi € pathr{p) and xD2 G path^{'y). Then 
we put 

trl^{w) = trl{wi) * r̂!̂ (ti)2). 

Let a — 13*. Then there are a natural number A: and w\,.. .Wk € pathr{0) 
such that 

I/) = ti)j * . . . * ti)^. 

If fc < b{{p) • p(y?), then we put 

tr''^{w) = trl{wi) * • • • * tr''^{wk). 

Otherwise there must be t, j , 1 < i < j < fc, such that 

• end(wi) ^ start{wj)^ 

• q{end{wi)) = q{start{idj)) and r{end{iDi)) = r(5^a7i(tDj)). 

In this case we choose the largest such i and j , and put 

tr{iD) = tr^(tDi) * • • * tr^p{wi) * ̂ r]g(ii;j) * • • • * tr^^{ivk)-
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If A: - (j - I - 1) < 6((̂ ) • p(<p), then we put tr^(iD) = tr{ij)). Otherwise we 
continue truncating fr(ti)) in the same manner. 

It should be clear that in this way we always obtain a path trl^{iv) the 
length of which is bounded by /(v?). If tD and f; are twins then trl^{w) and 
tr^{v) are twins as well, with 

start{trl^{w)) = start{w) and end{tr^{id)) = end{w). 

We are now in a position to define A^° for the block 03^". For every r £ 6 
and every (a) 'tp e tti;o(^(^o)) let 

Sat{r, (a) il)) = 

{trl^iw) I w € path^{a), start{iv) = ti;o, t̂  G tend{w){r{end{w)))}. 

By (6.6), Sat{r,{a)tp) ^ 0, since r is saturated. We select a finite subset 
5e/(r,(a)V') of Sat{r,{a)xl)) as follows. If Sat{r, {a) tp) = {(ti;o)} then let 
Sel{r^ {a) xl)) = {(w^o)} as well. Otherwise, let Sel{r^ (a) V̂ ) consist of a nonde-
generate path trl^{w) from Sat{r^ {a) xp) together with its m-f 1 twins. Define 
A^°(r, (a) xp) as the set of points different from WQ which occur in a path in 
Sel{r^ (a) \l)). Clearly, the cardinality of A^o(r, (a) xp) is bounded by 

(md((^)4-l).|a(fr((p).p(v?))|. 

We may assume that the sets A^"(r, (a)V^) defined this way are pairwise 
disjoint. Now put 

• A«̂ « = {t/;o} U U{A^«(r, (a) V̂ ) | r € 6 , (a) V̂  € *t.o(r(t/^o))}, 

• for all v,v^ 6 A^" and 1 < i < n, vSaiV' iff there are (a) xp € *«;o(^(^o)) 
and tr^{iv) € 5e/(r, (a) xp) such that 

^^a(^) = (t<^o,...,t;,ai,t;',...,ti;ifc), 

• 5-o = (A«^o,5a, , . . . ,5aJ,and 

• for all t; e A^", q^°(t;) = g(t;). 

It is not hard to check that (5^°, g**̂ °) is a basic structure for (p. The cardin-
ality of A^° does not exceed l{(p). 

It remains to define a set £Ĥ ° of coherent and it;o-saturated runs through 
{^^o^qwo) and a binary relation <Ĵ o on JĤ « satisfying (qm3) and (qm4). 
This is done in the same way as in the proof of Lemma 6.3 using the following 
modified definition of the *run addition* function. Suppose that w € pathria)^ 
for some a occurring in flc{ip)y and that r and r' are functions whose domains 



296 Chapter 6. Decidable products 

contain A^° such that r{wo) = r'{wo). Define a function r+^j^r' with domain 
A^o by taking, for v e A^^, 

'(v) = / ^(^^' ^̂  ^ occurs in tr'^iw), 
^ ^ \ r\v), otherwise. r+wf 

Then the definitions of 9l^° and <^°, as well as the proofs that all runs in 
91^0 are coherent and two-saturated, and that 9l^° and <^° satisfy (qm3) and 
(qm4) follow the lines of the proof of Lemma 6.3. 

Thus, (J^o,g^o,9l^o,<3^«) is a block (of appropriate size) with root WQ, 
which proves Lemma 6.12. • 

The decidability of CPDL x K follows immediately. • 

Straightforward modifications of this proof show that CPDL x Tm and 
CPDL X Djn are also decidable. 

Note that, unlike in the case of K x K, we cannot use the above proof for 
constructing a finite product model satisfying a given formula: 

Theorem 6.13. CPDL x K does not have the product fmp. 

Proof. By Theorem 5.32, PTL x K lacks the product fmp. This logic 
is reducible to CPDL x K by Theorems 6.18 and 6.24 below. Since these 
reductions turn finite product models to finite product models, it follows that 
CPDL X K lacks the product fmp as well. 

(Alternatively, one can use the formula 

if = [aJJOp A [aJlm(p -> (aj) K ] - p ) 

like in the proof of Theorem 5.32.) Q 

However, the following problem remains open: 

Question 6.14. Does CPDL x K have the (abstract) fmp? 

The decision procedure we have obtained is clearly nonelementary, and 
the following theorem says that no elementary algorithm can be found: 

Theorem 6.15. The satisfiability problems for P D L x K and CPDL x K 
do not belong to ELEM. 

Proof. By Theorems 6.18 and 6.24 below, PTL x K is polynomially redu-
cible to PDL X K. On the other hand, by Theorem 6.37 below, PTL x K is 
not elementary. • 
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6.3 Products of epistemic logics with K^ 
In this section we consider products of epistemic logics—with and without 
common knowledge operators—and multimodal K. 

Since for every Kripke complete multimodal logic L, its ^common know-
ledge extension' L^ is a Kripke complete multimodal logic as well, we do not 
need new definitions to introduce the product logic L^ x Km-

L^xKm = Log(FrL^ x FrK^). 

Before turning to the decision and complexity problems, we notice first that 
Theorem 3.16 holds for this kind of product as well: 

Theorem 6.16. Let L and V be Kripke complete multimodal logics such that 
FrL and FrL' are first-order definable. Then L^ x V is determined by the class 
of its countable product frames. 

Proof. Suppose (f ^ L^ x V. Then, by Proposition 3.7, v? is refuted in a 
model 971 based on a product of a rooted frame for L^ and a rooted frame 
for V. Starting from 971, we define a first-order structure / as in the proof 
of Theorem 3.16. When applying the downward Lowenheim-Skolem-Tarski 
theorem, we take a countable elementary substructure J of / . 

Now let /?( , . . . , i?^ be the relations in / interpreting the Dj of L and 
let R{^ be the relation interpreting the common knowledge operator CMJ 
for nonempty M C { 1 , . . . ,n} (we use a similar notation for J as well). By 
Remark 2.16, R{f is the reflexive and transitive closure of UtcM ^l- Although 
the operation of taking the reflexive and transitive closure is not first-order 
definable, we can still deduce that R'lf is the reflexive and transitive closure of 
Ut̂ Af ^t '̂ Ii^deed, suppose uRj^v. Then uR^j^v^ and so there is a first-order 
formula //(x, y) of the form 

3ZQ... 3zk {xRi^xo A xoRi^xi A--- AxkRi^y) 

such that ij € M and / |= r]{x^y)[u^v]. It follows that J |= r/(x,t/)[u,v] as 
well, which means that there is a chain of /?/-arrows from u to v. Turning 
J into a modal model Vt as in the proof of Theorem 3.16, we end up with a 
model refuting ip and based on a product of countable rooted frames for L^ 
and L', as required. • 

As concerns finding an axiomatization for a logic of the form L^ x K^, a 
natural candidate could be obtained by putting together the axioms of L^ (see 
Theorem 2.17) and the commutativity and Church-Rosser axioms between 
the modal operators of L and Km- It is not known, however, whether the 
resulting logic is Kripke complete (cf. the discussion before Question 6.8). So 
the following question is open: 
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Quest ion 6.17, Suppose that either n > 1 and L G {Kn,T„} , or n > 1 and 
L e {K4n,S4n,KD45n,S5n}. Is L^ X K ^ finitely axiomatizable? 

The decidability of products of Km (Tm and D ^ ) with the standard 
epistemic logics can be easily obtained from the decidability results of the 
previous section if we can 'lift' the embeddings of epistemic logics into CPDL, 
given in Theorem 2.39, to products (all the reductions between product logics 
used in this chapter are shown in Table 6.1). 

Theorem 6.18. Suppose that L e {Kn,Tn ,K4n ,S4n ,KD45„ ,S5„} and 
that V is a Kripke complete m-modal logic. Then iP x V is polynomially 
reducible to CPDL x L'. 

Proof. We extend the translations t^, 1 < j < 6, of Theorem 2.39 (from 
MC^ into CVVC) to translations 

t; : MC^ 0 MCm -> CVVC 0 MCm 

by taking 

• tj{nnp) = •it^((p), for all boxes Di of MCm-

It is pretty easy to extend the proof of Theorem 2.39 to show that, for every 
MC^ 0 A^£m-formula (/?, 

ipeK^xV iff tl(<p) € PDL X L', 

ApeT^xV iff t^((p) 6 PDL X L', 

ipeK4^xL' iff t'2(</?) 6 PDL X L', 

if € S4^ X L' iff t^(y?) e PDL X L', 

< ^ G S 5 ^ X L ' iff ti((/?) G CPDL X L', 

y ? e K D 4 5 ^ x L ' iff [7*]x-^ t̂ (v?) € CPDL X L'. 

(The translations t̂  are similar to those defined and used in (Fischer and 
Immerman 1987).) • 

Remark 6.19. Note that in general it is not the case that the existence of a 
polynomial reduction of Li to L'l implies that Li x L is polynomially reducible 
to Lj X L. Consider, for example, Log{(N, <)} and S5. Both logics are coNP-
complete, so Log{(N, <)} is polynomially reducible to S5. On the other hand, 
according to Corollary 7.13, Log{(N, <)} x Log{(N, <)} is not even recursively 
enumerable, while S5 x Log{(N, <)} is in EXPSPACE by Theorem 6.60. 

As a consequence of Theorems 6.10 and 6.18 we obtain: 

Theorem 6.20. The logics K^ x K^, T^ x K^, K4^ x K^i, S4^ x K^, 
KD45^ X Km, and S5^ x K^ are decidable. 



Thm.6.71 
K,xS5 - ~ 5 f x ~ 5  

Thm.6.71 

Thm.6.24 Thm.6.18 
PTLxS5 - Thm.6.18 

+ 

Thm.6.71 Thm.6.71 

Thm.6.71 

Thm.6.71 

Thm.6.18 
Thm.6.71 

Thm.6.71 
K,xK 

Table 6.1: Reductions between decidable product logics. 
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Note that T x K ^ and KD45f x Km have the product fmp (cf. Theor-
ems 6.4 and 6.56, respectively). On the other hand, we have: 

Theorem 6.21. No logic in the following list has the product fmp: 

K f X K, T f X K, K4^ x K, S4^ x K, KD45^ x K, S5^ x K. 

Proof. By Theorem 5.34, Ku x K does not have the product fmp. According 
to Theorem 6.71 below, Kt̂  x K is reducible to all of the listed logics. Since 
these reductions work on the 'model' level (turning finite product models to 
finite product models), none of the listed logics can have the product fmp. 
(Alternatively, for K f x K and T f x K one can use the formula 

C<S>p A C • ( p - • OC-ip), 

for KD45^ x K 

0{p A g) A C(i,2} {O-^q -^ 0{p A q))A 

C{i,2} a ( p A g -> Oi(-^p AqA 02C{i,2}-'9)), 

and we leave it to the reader to find a suitable formula for showing that 
S 5 ^ X K lacks the product fmp.) • 

Yet, some of these logics may still have the abstract fmp. In particular, it 
would be interesting to find a solution to the following problem: 

Question 6.22. Do the products K4 x K and S4 x K have the fmp? 

As to the complexity of products of epistemic logics with K ^ , we first 'lift' 
the reduction of Theorem 2.36 to the product level: 

Theorem 6.23. For every Kripke complete multimodal logic L, K f x L is 
polynomially reducible to any o / T f X L, K4^ X L, S4^ x L and KD45^ x L. 

Proof. We prove the theorem only for unimodal L; the proof can be easily 
generalized to the multimodal case. First we show that K f x L is polynomially 
reducible to D f x L. Denote the modal operator of the language MCoi Lhy 
Ds. We extend the translation ^ defined in the proof of Theorem 2.36 (from 
MC^ into MC^) to a translation 

by taking {ns^pY = Ds^p^ . It is easy to extend the proof of Theorem 2.36 
to show that, for all MC^ 0 A1£-formulas ip, 

ipeKf xL iff 

p A D | ^ ^ ^ ' ^ ^ C ( ( P ^ Dsp) A {^p -^ (D3-P A C-p))) -* (̂ '̂ G D f X L. 
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Next, we extend the translation ^ in the proof of Theorem 2.36 (from MCf 
into MC2) to a translation 

«' : MCf 0 MC --• MC^ 0 MC 

by taking (D3(^)^' = Dstp^'. Now, given an MC^ 0 A<£-formula (/?, define 
the formula Xs4 ^ ^^^ result of replacing each occurrence of C{î 2} '^^ ^he 
formula Xs4 '^ *h^ proof of Theorem 2.36 with uf^ C{i,2}) and adding 
the conjunct 

•3-""'^''^C{i,2}((p ^ Dap) A (-P ^ Da-p)). 

It is straightforward to extend the proof of Theorem 2.36 to show that 

(i) if Xsl -^ V̂ '̂ ^ S4^ X L then (/? € D f x L; 

(ii) if V? € D f X L then Xs4 "^ ^^' € K ^ x L. 

To obtain a reduction to KD45^ x L, we extend the translation ^ in the 
proof of Theorem 2.36 to a translation 

^' : MC^ ^MC^ MCf ^ MC 

by again taking (D3V?)'' = D^ip^ . Given an A1£f(S>A^jC-formula (/?, we define 

the formula XKD46 ^ 

p A n|"*'^('^^C{i,2}((p -^ {OspAxtim A Di-P)) A (-P -^ (Da-p A Dap))), 

where x^tm ^̂  ^^ ^^ ^^^ proof of Theorem 2.36. One can extend the proof of 
that theorem to show that 

ipeBf xL iff XKD46 -^ V̂ "' ^ K D 4 5 ^ x L 

as required. Q 

The reduction of Theorem 2.38 can also be generalized to product logics: 

Theorem 6.24. Let L be any Kripke complete m-modal logic such that frL 
is first'order definable in the language having equality and m binary predicate 
symbols. Then PTL x L is polynomially reducible to K f x L. 

Proof. To simplify notation, we confine ourselves only to the case of a uni-
modal L, We denote the box of the language MC of L by D and, as before, 
the modal operators of K f by Di and C. 

First we 'get rid oV the U operator: 
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Claim 6.25. PTL x L is polynomially reducible to PTL^^ x L. 

Proof. Given an MCu^MC-foxmnla, (p^ denote by (p^ the result of replacing 
every subformula of (p of the form x = Xi^X2 with a variable p^. Let TZu(ip) 
be defined as in the proof of Proposition 2.10. Then it is straightforward to 
show (cf. the proof of Proposition 2.10) that for every MCu <S) A^iC-formula 

if e PTL xL iff a^^ (̂̂ >Dj; /\7if/M -^^^ e PTL^^^ X L, 

as required. • 

Now, for every W-free MCu <^ MC-formulsi ip, define the set H{ip) and the 
formula (p* as in the proof of Theorem 2.38. We claim that 

ipePTLQO X L iff n^^^(^>c(OiT/\/\n{ip)) ->(/?• e K f x L. 

The implication (<^) follows from Theorem 6.29 below. Conversely, suppose 
that we have a model Wt = (5 x ©»5J) based on a product frame 5 x © for 
K f X L and such that 

(OT, {wo^xo)) h -(p* A D^-^(^)C(OiT A f\n{ip)). 

By Theorem 6.16, we may assume that 3̂  = {W,Ri,Rl) and & = (A,R) are 
countable rooted frames with roots WQ and XQ, respectively, and {\V, i?i) is an 
intransitive tree. 

We construct a countable sequence WQ^WI,. .. of distinct points in W such 
that WiRiWi^i, for all i e N. The construction is similar to the one in the 
proof of Theorem 2.38; the only difference is in the kind of defects we have to 
'fix.' 

Suppose that a sequence a — {WQ, . • • ^Wn) has already been constructed. 
Define 

A' = {xo}U{t/€ A I xoR...Rxk = y, XQ,. . .,Xfc G A, A; < md{ip)}. 

(Thus, A' = {y G A I dp{y) < k}.) We call a triple / x , m , O F ^ ) a a-defect if 

X € A', m < n, O F ^ ^ subip, and 

• {m,{wm,x)) 1= Oi-C-V^*, but 

• for all i with m -h 1 < i < n, we have (971, {wi,x)) \^ XIJ*. 

Since for each finite sequence a there can be only countably many a-defects, 
after fixing all defects in the limit we obtain a sequence (t/;i | i € N) as re-
quired. 
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Define a valuation 51' in the frame (N, <) x (A, R) by taking 

2J'(p) = {(n,x> € N X A I {Wn^x) € 2J(p)}, 

for every prepositional variable p, and let 9Jl' = ((N, <) x A,5J'}. It can be 
shown by induction that for all xp € sub^p^ n G N, and x € A', 

(9n,K,:r))hV^* iff (an',(n,a:))hV^. 

Hence, we have (97t', (0,a:o)) ^ (/?, as required. • 

In Theorem 6.37 we will show that the satisfiability problem for PTL x K 
is not elementary. So Theorems 6.23, 6.24 (cf. Table 6.1) and 6.37 yield: 

Theorem 6.26. The satisfiability problem for L x K does not belong to 
ELEM, whenever Le {Kf ,T^,K4^,S4^,KD45^}. 

Question 6.27. Is S5^ x K elementary? 

We will discuss the complexity of S5 x K in Section 6.5. The following 
question is also open: 

Question 6.28. What is the complexity of T x K, K4 x K and S4 x K? 

Note that, by Theorem 5.42, the satisfiability problem for these logics is 
NEXPTIME-hard. 

6.4 Products of temporal logics with K^ 

In temporal logic, we are often interested not in the class FrL of all frames for 
a logic L, but only in some class of the intended flows of time. For example, 
FrLog{(N, <)} contains all finite strict linear orders followed by clusters with 
one or more reflexive points, which are certainly not the intended models of 
time. However, according to the definition of products we have 

Log{(N, <)} X L = Log (Fr Log{{N, <)} x FrL), 

for any Kripke complete modal logic L. The question important for applic-
ations of products to temporal reasoning is whether this product logic is de-
termined by products with the intended flow of time (N, <} only. The follow-
ing theorem shows that this is often indeed the case. We formulate it not only 
for products with Log{(N, <)}, but also with Logpp(N), PTL and PTL^^. 

Theorem 6.29. (i) Let L be any of the logics Log{(N, <)}, Log/rp(N), PTL, 
and let V be any Kripke complete m-modal logic such that FrL' is first-order 
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definable in the language with equality and m binary predicate symbols. Then 
Lx V is determined by the class of frames 

J, <} X 3̂  I 5̂  5̂ a countable frame for L'}, 

and L X L^ is determined by the class of frames 

^,<) X ^ \^ is a countable frame for L ^ } . 

If V is also Log{(N, <}}, Logpp(N), or PTL then L x V is determined by 
the sole frame (N, <) x (N, <) . 

(ii) Let V be as in (i). Then PTL^^ x V is determined by the class of 
frames 

{(N, <, 4-1} x'S\'S is a countable frame for L '} , 

and P T L Q Q X L^ is determined by the class of frames 

{(N, <, 4-1) X ^ \^ is a countable frame for L ^ } . 

PTLj-,Q X P T L Q Q is determined by the sole frame (N, <, 4-1) x (N, <, 4-1). 

Proof. We prove the theorem only for L = Log{{N, < )} . The remaining 
cases are considered analogously. According to Remark 2.11, the class of 
rooted frames for Log{{N, <)} consists of (N, <) and all finite strict linear 
orders followed by a (possibly uncountably infinite) cluster of reflexive points. 
Observe that this class of frames is closed under taking elementary substruc-
tures. 

Suppose that some formula (̂  is refuted in the product of a rooted frame 
for Log{(N, <)} and a rooted frame for V (or for L ^ ) . Now we can follow the 
proof of Theorem 3.16, but take a countable elementary substructure when 
applying the downward Lowenheim-Skolem-Tarski theorem. This shows that 
(/? is refuted in the product of a countable rooted frame for Log{(N, <)} and a 
countable rooted frame for V. (In the case of L ^ we also need the argument 
from the proof of Theorem 6.16.) It remains to notice that any countable 
rooted frame for Log{(N, <)} is a p-morphic image of (N, <). Hence, by 
Proposition 3.10 (i), Log{(N,<)} x V (or Log{(N,<)} x L'^) is determined 
by the required class of frames. • 

As to flows of time different from (N, <), we consider here products with 
K4.3 and Log{(Q, <)} as well as their bimodal temporal variants Lin and 
Log/rp(Q). To begin with, we describe classes of product logics which are 
determined by their intended flows of time. 

Theorem 6.30. If V is a Kripke complete multimodal logic then both product 
logics K4.3 x L' and Lin x L' are determined by the class of all frames JJ x 3 '̂, 
where ^ is a strict linear order and 5 ' € FrL'. 
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Proof. Note that for any transitive connected frame {WQ^ <O) we can find 
a strict linear order (VFi,<i) such that the bimodal frame (Wo»<0)<o^) 
is a p-morphic image of the bimodal frame (Wi, < i , <j"^). (If (Wo,<o) is 
countable, then (Wi, <i) can be obtained from {WQ^ <O) by replacing each of 
its nondegenerate clusters C^ - {v € Wo \ w <o v Av <o w} with a copy 
of the integers (Z, <). For uncountable clusters take a sufficiently large well-
ordering and replace the cluster by a copy of the converse of the well-ordering 
followed by a copy of the well-ordering.) Now it is readily checked that the 
class of rooted frames for K4.3 is contained in the class of transitive connected 
frames and that all rooted frames for Lin are transitive and connected. The 
theorem follows immediately from Proposition 3.10 (i). • 

Theorem 6.31. (i) Let V be a Kripke complete m-modal logic such that ?rV 
is first'order definable in the language with equality and m binary predicate 
symbols. Then Log{(Q, <}} x L' and Logpp(Q) x V are determined by the 
class of frames 

{{Q^<) ^ d \d is a countable frame for L'}, 

and Log{{Q, <)} x L ^ and Logpp(Q) x L^ are determined by the class of 
frames 

{{Qi <) X S \ 5 is a countable frame for L^}> 

Proof. The class of rooted frames for Log{(Q, <)} consists of dense trans-
itive and connected frames without right-endpoints but with left-endpoints. 
The class of rooted frames for Logpp(Q) consists of dense transitive and 
connected frames without endpoints. Both of these classes are known to be 
first-order definable, so they are closed under taking elementary substructures. 
Hence, following the proof of Theorem 6.29 we can show that all the logics 
Log{(Q,<)} X L', Logpp(Q) X L', Log{(Q,<)} x L ' ^ , and Logpp(Q) x L ' ^ 
are determined by countable rooted product frames. It is not difficult to show 
that any rooted countable frame in FrLog{(Q, <)} is a p-morphic image of 
a generated subframe of (Q, <). This holds for the corresponding bimodal 
frames in FrLogpp(Q) as well. Hence, by Proposition 3.10 (i) and (ii), we 
obtain the classes we need. • 

It is to be noted, however, that not all products of temporal logics are 
determined by the intended product frames. 

Example 6.32. Consider, for instance, the formula Di02(p A Di-^p). It is 
clearly satisfied in the product of (M, <) and a cluster with continuum-many 
points, but not in (R, <) x (N, <). It follows that 

Log{(R,<>} X Log{(N,<>} C Log{(R,<) x (N,<)}. 
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In Section 7.3 we shall see that the logic Log{(R, <) x (Q, <)} is not recursively 
axiomatizable, while 

Log{(R,<)} X Log{(Q,<>} = Log{(Q,<>} x Log{(Q,<)} 

is recursively enumerable by Theorem 3.17, because the class of frames for 
Log{(Q, <)} is definable by a finite set of first-order formulas in the language 
with one binary predicate and equality (Segerberg 1970, Goldblatt 1987). 

Now, returning to products of temporal logics with Km, first observe that, 
by Theorems 6.20 and 6.24, we have (cf. Table 6.1): 

Theorem 6.33. PTL x Km (and so Log{{N, <)} x Km) is decidable. 

In Section 13.2 we give another proof for this result by a reduction to the 
monadic second-order theory of (N, <) (see Theorem 13.6). 

Let us turn to the complexity of PTL x K. In what follows, we denote 
the modal operators of PTL by W/i, Q, O, O, and the modal operators of K 
by Q and • . Given a formula (p in this language, we denote by vmd{ip) the 
maximal number of nested 'vertical* modal operators (i.e., Q and <!>) in (/?. 
For example, vmd(p) = 0 and vmd{<!>{pA{np)) = 2. Further, for each natural 
number d, we define the functions exp^ : N --> N by taking inductively for all 
m € N: 

expo(m) = m, exprf^i(m) ^ exp^{m) • 2^''P''^""^ 

We prove the following result:^ 

Theorem 6.34. Let d > 0. Then any problem 'x G X?' which is solvable 
by a deterministic algorithm in space bounded by expj(|x|) on input x is poly-
nomially reducible to the PTL x H.-satisfiability problem for formulas if with 
V7nd{(p) < d. 

Proof. The proof is conducted in two steps. First, we show that 'yardsticks' 
of the type used in (Stockmeyer 1974) can be encoded by PTL x K-formulas: 

Lemma 6.35. For all natural numbers d > 0 and d' > 1, there exist a formula 
6d4' '^th a propositional variable pd such that vm,d{5d4') = d - 1, the length 
of 5d,d' is linear in d-\'d', and the following hold: 

(a) for every model Tl based on the product of (N, <) and some frame {W^ R) 
and allneN, X e W, if (OT, (n, x))\=pd/\ Sd^'t then for each m>nj 

(971, (m, x)) \= Pd iff m> = n-{-j ' exprf(d') for some j € N. (6.7) 

^Our proof is very close to the one given in (Halpern and Vardi 1989) and showing that 
the satisfiability problem for PTL x S52 is nonelementary. 
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(b) Sd4' is PTL X K-satisfiable; moreover, for every k < expj(d') there 
exist a model 9Jlk based on a product frame (N, <) x {Wk/Rk) a^rf a 
point Xk € Wk such that 

- (ajt/t, {n,Xk)) h Sd4' for all n € N; 

~ (2nfc,(fc,Xifc))hPd-

Proof. The construction of 6d^d' is by induction on d. To begin with, let 
Si^d' be the conjunction of the following formulas: 

0 + P o A Q + ( ( p o ^ O ^ V o ) A ( p o ~ ^ A ^'-^Po)), (6.8) 

l<t<d' 

B^iqiUkPo -^ {qi ^ 0^'-(/ i)) , (6.9) 

a^(-(giWhPo) -^ {qi ^ G^'(7i)), (6.10) 

Q'^(Pi •-* (Po A -ngi A -•giWhPo)). (6.11) 

Suppose that 9Jt is a model based on the product of (N, <) and some frame 
{W, /?), and n 6 N, X € VT are such that 

( an , (n ,x ) ) |=p i A(5i,rf/. 

By (6.11), (9Jl, (n,x)) |= po^ and so by (6.8), the time points m>n such that 
(9Jl, (m,x)) ^ Po are precisely d' steps apart from each other. 

Let a < 2^ and a o a i . . . Orf.^i be the d'-bit binary representation of a (say, 
1 is represented as 0 0 . . . 01, and 2^ "^ as 100. . . 00). We say that an interval 
[n 4-j • d', n -f (j -h 1) • d' - 1], for some j e N, simulates a if for every i < d' - 1 , 

(9n,(n-f j - d ' - f t , x)) |=qfi iff Oi = 1. 

Recall that for two d'-bit binary numbers a = ao . . . a j ' - i and 6 = 6o . . . 6rf'_i 
we have 

6 = a -f 1 ( mod 2̂ '̂) iff Vi < d' (a* = 6i 4-> (3j > i a^ = 0)). 

It is not hard to see that if an interval (n -f j • d', n -I- (j 4-1) • d' - 1] simulates 
a number a, then formulas (6.9) and (6.10) force the next interval 

[n + ( j H - l ) . d ' , n - f (j-f 2 ) . d ' - l ] 

to simulate a 4-1 (mod 2^'), 
Finally, by (6.11) we have that the interval [n^n -f d' - 1] simulates the 

number 0, and for all Tn>ny 

(an, (m, x)) 1= pi iff m = n -f j • d' • 2*'' for some j e N, 
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as required in (a). 
To show (b), fix a number k < d! -2^ . Then there are unique numbers 

fc' < d', k" < 2^' such that fc = fc' -f fc" • d'. Let (5 be a frame with a single 
irreflexive point x. Define a model 971̂  = ((N, <) x (25,211̂ ) by taking 

• 21Jifc(po) = { f c ' 4 - j d ' | j € N } x { x } ; 

• 2IJit(pi) = {fc + j . d'. 2^' I j G N} X {x}; 

• for all n € N, 

(n,x) € mJikĈ i) iff 3i < d', j G N 
(n = fc' -h I 4- j • d' and the ith bit of the 

d'-bit binary representation of the number 
(2^' - k") -f j ( mod (2^')) equals l ) . 

The reader can readily check that (OT/t, {n,x)) |= <5i,d', for all n G N, and 

Assume now that we have constructed fid4' such that (a) and (b) hold. 
Our aim is to construct (5d-|.i,d'. First, let V'd,̂ / be the conjunction of the 
formulas 

Q"̂  [{Vd -̂* 0(r*d A pd)) A (pd ^ aCrd -• pd)) j , 

Q"^a((rd ^ Qrd) A (r^ ^ Or^)). 

Suppose that OT is a model based on the product of (N, <) and some frame 
(W, K). It is straightforward to show that the following claim holds: 

Claim 6.36. / / (Wl, (n ,x» |= '\\)d4' for some n G N, x G Ŵ  then 

(i) (9H, {m,y)) |= 8d4'y for allm>n and y eW such that xRy; 

(ii) for each m>n there isym ^^ such that xRym o,nd (9Jl, (m, t/m)) |= Pdl 

(iii) there is ay eW such that xRy and for every m>n, 

(an, (m, x))\=:pd iff (9Jl, (m, y)) h pd. 

Define 5d-\.i4' to be the conjunction of ^Jd^' and the following formulas: 

Q" (̂(9d4-i ^ Oqd+i) A (^d+i ^ CD^d+i)), (6.12) 

B-^lqd+iUhPd -> (gd+i ^ a(prf -* hPd)Kh{Pd A --^rf+i))) j , (6.13) 
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B-^ (-^{qa+iUhPd) -* (qfd+i ^ a(Pd -^ (-'Pd)W/i(Pd A^rf+i))) j , (6.14) 

Q'^(pd+l ^ (Pd A --qd+i A (-'qfd+l)^hPd)). (6.15) 

Now suppose that Wl is as above and 

(9Jt, (n, x)) 1= pd-hi A (5d-f i,d' 

for some n € N, a: € H .̂ By (6.15), we have (9Jt, {n,x)) |= p^. Although we 
do not know whether Sd4' holds at (n,a:), still we claim that the time points 
m>n such that (271, (m, x)) |= pd are precisely expj(d') steps apart from each 
other. Indeed, choose a y € Ŵ  as in Claim 6.36 (iii). Then, by Claim 6.36 
(i), we have (3JI, (n, y)) |= Pd A (Jrf,ds and so, by the induction hypothesis, the 
time points m> n such that (9Jl, (m, y)) |= pd are expd(d') steps apart from 
each other. The choice of y ensures that we also have, for all m>n^ 

(9Jt, (m, x)) 1= Pd iff m = n'\' j ' exp^(d') for some j € N 

(see Fig. 6.1). 

exp,i(d') expj(d') exp,i(d') 

exp,/(d') exp,<(d') exprf(d') 

Figure 6.1: Yardsticks of length exp^(d'). 

Similarly to the case d = 1, we want to use the intervals 

[m^m 4-expj(d') - 1] 

such that m > n and (9Jl, (m,x)) |= pd to simulate < 2̂ '̂ '̂'̂ '̂ '̂  numbers in 
such a way that consecutive intervals simulate consecutive (mod {2^^^'^^^'^)) 
numbers. The variable qd^i is used to encode the bits of the expd(d')-bit 
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binary representation of these numbers: qd+i encodes 1, while -^qd-\-i encodes 
0. 

Since we aimed to have a formula dd-\.i^d' of length linear in d -f-1 + d', we 
cannot simply use formulas similar to (6.9) and (6.10) to simulate the modulo 
2exPd(d ) successor function. However, we already have ^yardsticks' of length 
exp^(d'), so we use them as follows. Suppose that the jth bit of some number 
a < 2̂ P̂''('''> is ^stored' at a point {m, x). Then by Claim 6.36 (i) and (ii), there 
is a i/rn € Ĥ  such that xRym and (9Jl, (m,t/rn)) h Pd ^ ^d^'- Formula (6.12) 
ensures that, for all m>n^ ^^+1 is ^uniform' among (m, x) and all (m, y) with 
xRy^ so (m, ym) also stores the jth bit of our number a. Now by the induction 
hypothesis, the next m! > m with (OT, {m!^ym)) |= Pd is m' = m -f expj(d'). 
So formulas (6.13) and (6.14) force (m + expj(d'),ym) to store the jth bit of 
a -f 1 (mod (2^^P''( '̂))). Then, again by (6.12), (m 4-exprf(d'),x) stores the 
same bit as well (see Fig. 6.1). 

Finally, (6.15) guarantees that Pd+\ holds at (m,x) iff the number simu-
lated by the interval [m, m -h exp^(d') — 1] equals 0. So these numbers m are 
expj(d') • 2®'̂ P''̂ ^ ^ = exp^^i(d') steps apart from each other, as required in 
(a). 

For (b), take a number k < expj^i(d'). Then there are unique numbers 
k' < expd(d'), k" < 2̂ ''P'i(''') such that k = fc'-f-fc"exprf(d'). By the induction 
hypothesis, for each / < expj(d'), there exist a model 971̂  = (3 î,2Ji) based on 
a product frame 3̂ ( = (N, <) x {Wi.Ri) and a point xi e Wi such that 

• (9Jl/, (n,x/)) 1= Sd4' for all n € N; 

• {mi,{l,xi))\=pd. 

We may assume that the sets Wi are pair wise disjoint. Take a fresh point x 
and put 

W = {x}U U Wi, 
l<exp,i{d') 

R = {(x,x,) I / < exprf(d')} U y Ri, 
/<expj(d') 

d={N,<)x{W,R). 

For each number k as above, we define a new model *ni|. = (5,2IJfe) by taking 

• WkiPi) = U 5J,(Pi), for all i < d; 

• 2nfc(pd) = U 53/(pd) U {(n, x) I n = fc' + j • expd(d'), j 6 N}; 
«expj(d') 

• 2nfc(pd+i) = {{n,x)\n = k + j - expj+iCd'), j G N}; 

NK
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• 2»fc(r<) = ( J ^OjC-i). for all 1 < I < d; 
/<expj(d') 

• 2rJfc(rd) = N x {xfc-}; 

• miQi) = U 5J,(9i), for all 1 < i < d; 
/<exp,/(d') 

• for all n € N, y € W, 

(n,y) € 2ITife((7d̂ i) iff 3f < exprf(dO, J ^ N 
(n = fc' -f- i 4- j • expfji{d') and the ith bit 

of the exprf(d')-bit binary representation 
of {2^^PAd') ^ fc") 4-j ( mod (2*̂ P̂''(̂ '))) 
equals to l ) . 

It is not difficult to see now that (91^, (n,x)) |= <5d-|.i,rf', for all n € N, and 
(Ot/t, (fc, a;)) 1= Pd+i, which completes the proof of Lemma 6.35. • 

We now come back to the proof of Theorem 6.34. First, let us define 
briefly what it means to say that a single-tape right-infinite deterministic 
Turing machine solves a problem *x € X?' in bounded space. Such Turing 
machines were defined in Section 5.4. Here we use a slight variation of that 
definition: instead of one halt state si, a Turing machine A has two halt 
states, Syes (the accepting state)^ and Sno (the rejecting state). Otherwise we 
use the same notation as in Section 5.4. 

Let Y be any finite set having more than one element, and let Y* denote 
the set of all finite sequences (words) over Y. Let A be a Turing machine 
with tape alphabet i4 = K U {b}. Given an a: = {xi,X2,.. . ,Xn) in y*, the 
computation of A on input x is the (unique) computation of A starting with 
the configuration 

( £ , (so» Xi) , X2, . . . , Xn, 6, 6, . . .) . 

Clearly, for each configuration c = (-C, ao,ai , . . . ) in the computation of A on 
X there is a number Nc such that am — ^ for every m > Nc. If A halts on x, 
then define the space used by A on x as the maximum of these numbers Nc. 

Now, let A' be a subset of K*, for some set Y as above. Take a function 
/ : N —> N. We say that a Turing machine A with tape alphabet A — YiJ{b] 
solves the problem 'x € X?' in space bounded by / , if for all a: in F*, 

• A halts on input x, 

• the space used by A on a: is / ( |x | ) , and 

• X e X iS A halts on x at state Syes. 
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Fix a d > 0. Given any set X such that X C Y* for some Y and the 
problem *a: € X?' is solved by a Turing machine A in space bounded by exp^, 
we will construct a family of formulas (pA,x {x E Y*) such that for every 
xeY% 

• vmd{(pA,x) = d, 

• the length of (pA,x is linear in \x\, 

and 

(pA,x is PTL X K-satisfiable iff A halts on input x at state Syes. (6.16) 

To this end, we introduce a propositional variable ta for each a in the alphabet 
i4' = AU {£} U {S X A). We also use three extra variables ĝ , qi and ĝ  
the meaning of which will be clear from the formulas below. Fix an x = 
{xi,.,. ,Xd') € Y*. We define (pA,x as the conjunction of pd A tpd^' (see 
the proof of Lemma 6.35) and the following formulas, for all instructions 

Q"̂  V (*» ̂  A "̂ *»')' (6-1^) 

Q+(tx*^P<i), (6.19) 

«£ A 0{t(so,x,) A G(<X2 A G(- • • A G(tx„, A {tbUhtjc)) • • •))), (6.20) 

• + ( t a A G</3 A GGt.Y - • 

a(pd -* i^PdPhiPd A <a' A Gt^' A GG«.^'))). (6.21) 

Q"'((95^ V <(.,«>)^(«^Q<?»)A(9, ^Qgr) ) , (6.22) 

Q"̂  A ( - 9 J A - 9 . A-(7^At„-*m(prf^(-ipd)Wh(pdAt„))), (6.23) 
ae-4u{X} 

0+ V «(.,.„«> A - 0 + V <(,„„.„). (6.24) 

Suppose first that ipA,x is PTL x K-satisfiable. By Theorem 6.29, we may 
assume that 

(2n,(n,x))|=^A,^, (6.25) 

for some model 9Jl based on the product of (N, <) and some (countable) frame 
{W, R). We show that A halts on input x at state Syes-
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To begin with, we know that the space used by A on input x is exp^(d'). 
So we can represent each configuration of the computation of A on x as a 
finite word 

of length expj(d'). We will use the ^yardsticks' provided by Lemma 6.35 to 
encode these configurations by means of the intervals [m^m -f exp^(d') - 1] 
for which (9W, (m,a:)) |= pd for some m > n. Given such an m, we will say 
that the interval [m^m -f expj(d') - 1] encodes the configuration c if, for all 
A: < exp^(d') and a e A\ 

(OT, (m -f A:, x)) \= ta ifl a occupies the A:th cell of c. (6.26) 

As we shall see, (pj\^x also ensures that consecutive configurations in the com-
putation of i4 on a: are encoded by consecutive intervals. 

By (6.25), we have (9W, (n,a:)) |= Prf A ipd.d'- Choose a j / € U^ as in 
Claim 6.36 (iii). Then by Claim 6.36, (9Jl,(n,t/)) |= pd A (5rf,d'. So by 
Lemma 6.35, the numbers m > n for which (971, (m, y)) \= Pd holds are located 
exp^(rf') steps apart from each other. By the choice of y, we obtain that for 
the same numbers we actually have (9Jl, (m,x)) [= pd (see Fig. 6.1). 

Now the formula (6.17) says that for every m>n^ (n, x) validates precisely 
one ta- The formula (6.18) ensures that, for every m>n^ the ta are uniform 
among (m, x) and all (rn, y) with xRy. By (6.19), we have that the delimiters 
of the configurations coincide with the delimiters of the intervals. Formula 
(6.20) ensures that the start configuration 

{£, (so,xi) ,X2,.. .,a:d/,fe,.. .,6) 

is encoded by the interval [n^n -f expj(d') — 1]. It is not hard to see that 
formula (6.21) forces the correct transitions for the active cell and its left and 
right neighbors (for each m>n^ make use of the t/rn provided by Claim 6.36 
(ii)). Formula (6.22) marks with g ,̂ qi and qr the active cell and its left and 
right neighbors, respectively, and (6.23) ensures that at each step of A only 
the active cell and its left and right neighbors are changed. Finally, (6.24) 
says that A halts on x at state Syes-

Conversely, suppose that A halts on x at state Syes- We need to show that 
(fiA.x is PTL X K-satisfiable. Since V̂rf̂ /̂ is actually a conjunct of (5rf̂ i,rf', by 
Lemma 6.35 we know that there exists a model 971 based on a product frame 
(N, <) X {W,R) such that 

(97l,(0,a:))hPrf^iAV^rf,rf^ 

for some x eW. By (6.15), we also have (97t, (0,a:)) |= p j . It is not hard to 
see that by encoding the configurations of the computation of A on a: as in 
(6.26), the remaining conjuncts oi(fA,x are also satisfied at (0, J:). • 
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As a consequence of Theorem 6.34 we obtain that any problem in ELEM 
can be polynomially reduced to the satisfiability problem for PTL x K. So 
we have: 

Theorem 6.37. The satisfiability problem for PTL x K does not belong to 
ELEM. 

The following question still remains open: 

Question 6.38. What is the complexity of the products Log{(N, <)} x K 
and Logpp(N) x K? 

Note that by Theorem 5.32, Log{(N, <}} x K does not have the product 
fmp. 

Question 6.39. Does Log{(N, <)} x K have the (abstract) fmp? 

Now let us consider products of other temporal logics with Km- Using the 
ideas of (Wolter and Zakharyaschev 2000c), we show the following result: 

Theorem 6.40. The modal product logics K4.3 x K ^ and Log{{Q, <)} x K ^ 
and the corresponding temporal variants Lin x K ^ and Logpp(Q) x Km o-re 
decidable. 

Proof. We use the fact (established by Propositions 6.30 and 6.31) that 
K4.3 X Km and Log{(Q, <)} x K m '"̂ îre determined by their intended frames 
(i.e., products with strict linear orders and with (Q, <), respectively). 

We confine ourselves to considering K instead of arbitrary Km- Let us 
show first how to modify the quasimodel proof for K x K to obtain the 
decidability of K4.3 x K. The definition of a quasimodel and the proof of 
the corresponding * quasimodel lemma' are almost the same as in the K x K-
proof. The only difference is that the underlying frames 5 = (Ŵ j R) are not 
arbitrary: now they must be strict linear orders. 

Blocks, however, are significantly different from blocks in the K x K-
proof, not only in their shape, but also in that they are not necessarily root-
saturated. A block for ipisa, quadruple 03^^ = {5^^,g^^,9l'*^,<i'*^) such that 

• ĝ «t; __ ^1^^ yj^ ^^ |g ĝ  2-element strict linear order with u < v, 

• {d^^i Q^^) is a basic structure for ip of depth m, for some m < md{(p), 

• fH"̂  is a set of runs through (?'' ' ' ,g' ' ' ') such that, for all r € W" and 

if ^ € tviriv)) or 0x1; € tv{r{v)) then Oxp € t«(r(tx)), 

• <^^ is a binary relation on 91^^ satisfying (qm3) and (qm4). 
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(We remind the reader that quasistates occurring in such a block are denoted 
by g«^(u) = ((r„, <^>, tu) and qiv^^ = {{T,, <,), t,>.) 

A set S of blocks for (p is called satisfying if the following properties hold: 

(ssbl) all blocks in 5 are of the same depth m, for some m < md((/?); 

(ssb2) 5 contains a block satisfying (qm2); 

(ssb3) for every 03"'' in 5, if O^ € tv{r{v)) for some run r € 91"'' then 
there exist a block ^"""^ in S and a sequence {xseTyj\s€ W"") 
of points in Tw such that 

(i) g-(t;) = q'^iv), 

(ii) for every 5 € 9\y^, the function p defined by p{v) = s{v)j 
p{w) — Xs is a. run in OV^^, 

(iii) for all 5, s' € W", if 5 ̂ '̂̂  s' then x, <«; Xs^, 

(iv) V' e t,^(xr); 

(ssb4) for every block 03"'' in 5, if O^ € tu{r{u)), tp ^ tvir{v)) and 
O0 ^ ^v(^(v)) for some run r € IH"" then there are blocks 05""' 
and 03"'" in S and a sequence (x^ € T«; | s € IH"") of points in T^, 
such that 

(i) g""(u) = (/""'(u), g""'(a;) - g-^Ct;.), ^""'(t;) = g"'(i;), 

(ii) for every s € £H"", the function p' defined by p*{u) = s(u)^ 
p'{w) = Xj is a run in JH""̂ , and the function p" defined by 
p"(tx;) = Xs^ p"{'^) = 5(^) is a run in JH"'", 

(iii) for all 5, s' € «"", if 5 <"" 5' then Xs <w Xs', 

(iv) \l) etv,{xr)> 

Clearly, one can effectively check whether there exists a satisfying set of blocks 
for if. As satisfiability in a single element strict linear order is trivially de-
cidable, to establish the decidability of K4.3 x K, it is enough to prove the 
following 'block lemma:' 

Lemma 6.41. There is a K4.3 x K-quasimodel for (fi based on a strict linear 
order with > 2 elements iff there is a satisfying set of blocks for (p. 

Proof. The construction of a satisfying set from a quasimodel is easy. Sup-
pose that O = (diQi^y<) is a quasimodel for (̂ , with 5 = (W ,̂̂ ) being a 
strict linear order with > 2 elements. For all u^v €W such that uRv^ define 
the restriction 0"" of 0 to the 2-element strict linear order on {u^v} in the 
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natural way. It is straightforward to check that these CV^^ are blocks and that 
the collection S of them is a satisfying set. 

Now we show how a quasimodel for ip can be constructed from a satisfying 
set S of blocks for (p. Similarly to the K x K-proof, we call a quadruple 
O. = (di Qj 91? <) a weak quasimodel for (f if the following conditions hold: 

(wql') 5 = (W^R) is a finite strict linear order, W = {WQ.WI,. ., ,Wm} 
for some m > 0, WQRWIR . . . Rwm, and {5> Q) is a basic structure 
for ip satisfying (qm2); 

(wq2') fH is a set of runs through (5, q) such that for alH < j < m, r € fH 
and O ^ € subip, 

iitpe t^jiriwj)) or O ^ € t ^ j H ^ i ) ) then O ^ G twi{r{wi)), 

(wq2") <3 is a binary relation on ^ satisfying (qin4) and such that, for 
all r, s G SK, 

r<s iff r{wi) K^uji s(wi) for a l i i < m 

(this property is a bit stronger than (qm3)) , 

(wq3') for every i < m, the restriction of £J to the two-element strict 
linear order on {wi.Wi^i} is a block in S. 

A weak quasimodel is almost a quasimodel. What is missing is that runs 

are not necessarily saturated. To fix this, take a triple (i,r, O ^ ) such that 

i < m, r e 91 and Otp € sub (p. Such a triple is called a defect in Q if 
0ip e tyJ^{r{wi)) and for all j such that i < j <m^ if) ^ *w^(^(^i)) and O ^ ^ 
^ti;j(^(^j))- If i = m then such a defect is called an end-defect, otherwise it 
is a middle-defect. 

We construct a sequence (0n | n < a;) of weak quasimodels which *con-
verges' to a real quasimodel for ip. Take a block Qo = {doiQoj^Oi^o) in 
S satisfying (qni2). Clearly, it is a weak quasimodel for ip as well. Sup-
pose now that we have already constructed Qn = {^n^Qn1^n•,<n) such that 
dn = {Wn.Rn), Wn = {WQ^WI, . . . ,Wm} and W^RnWiRn . . , RnWm- If the 

set Dn of all defects in 0,n is empty then we are done: Hn is obviously a 

quasimodel for ip. Otherwise, we take some d= / i , r , Ot/;\ from Dn-

Case 1: d is a middle-defect, that is, i < m. By (wq3') , the restriction 
QWiWi+i Qf 0 ^ |.Q ĵ̂ g two-element strict linear order on {wi,Wi-^i} is a block 
in S. Choose two blocks fB"̂ **̂  and S^^»+i according to (ssb4) (with u = Wi 
and V = lUi-fi). We may assume that w ^ W^. Define a basic structure 
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(5j[,g?[) by taking 

R^^RnU [{Wj,w) I j < i, Wj € Wn} U {{w,Wj) \i<j <m,wje Wn], 

For all runs s,p £ IRn, «' e £H^» ,̂ 5" € JH^^'^^S such that s(wi) = s'(u;i), 
5'(ti;) = s"(it;), s"(it;,>i) = p(ti;i4.i), define the function 5 U s' U s" Up on W^ 
by taking, for all v £ IV^, 

{ s{v), if V = Wj, j < t, 

s'(t;) = 5''(i;), if v=^w, 
p{v)y if t; = Wjy i < j < m. 

Let JH^ be the set of all such functions. Elements in 91^ of the form sUs'Us^Us, 
for some s € 9ln> are called extensions of s. We call an extension sUs 'Us"Us 
goody if s'{w) = s"(t(;) = x^; cf. (ssb4). Observe that every s e ^n has a 
unique good extension in JH .̂ 

For all s,s^ e^^, define 
s <J[ s' iff s(t;) <v s'OO for all t; € W^̂ . 

In other words, we 'glue together' the blocks <B^*^ and QJ '̂̂ t+i at it;, and 
then 'insert' the resulting piece into Qn between Wi and Wi+\. It can be 
readily checked that O^ = {-Sn^Qn^^n^^i) is a weak quasimodel. Moreover, 
the defect d in O^ is 'cured' in the sense that (by (ssb4)) the good extension 
r"*" of r is such that ip € twif^'^M)-

Case 2: d is an end-defect. This case is analogous to Case 1, but we have 
to use (ssb3) instead of (ssb4) for 'gluing together' On and a block <8̂ »"*̂  
at Wm-

Next we turn the remaining defects in On to a subset D^ of the set of 

defects in O^ as follows. Suppose ( j , s. O x ) is a defect in Dn different from 

d. Let s"̂  be the good extension of s and let k == j it j < i and A: = j 4- 1 

otherwise. If (A:,s''", O x ) is a defect in 0^ then we put it into D^. Clearly, 

|I>nl ^ l^nl - 1. If ^ n 7̂  0 then we take a defect d' G Dj(, construct Oj[^', 
and so on. When all the finitely many defects in Dn are cured, we obtain a 
weak quasimodel On+i- Note that every run Tn € JHn has a unique extension 
^n+i € £Hn+i obtained by taking at every step the good extension of the 
previous run. We call this Tn-f 1 the good extension of Tn in On-^i-
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The limit quasimodel is defined as follows. Let 5 = (W,iZ), where 

W=[jWn, R=[JRn 
n<LJ 

and 

Q= [j^n-
n<uf 

Then clearly 5 is a strict linear order and {5, q) is a basic structure for (p. 
For every i < u and every sequence of runs (rn G 9ln | n > i) such that 

Tn^i is the good extension of rn in On+i for all n > i, take r = \J{rn \n>i}. 
Let 91 be the set of such runs. For r = \J{rn | n > i} and r' = U{^n I ^ ^ i } 
in fH, define 

r <J r ' iff Tn <n r^, for all n > max(i, j). 

We show that IH and <J satisfy (qmS) and (qiii4). Indeed, suppose that 
r and r ' are of the above form and r <r'. Take SL w € W. There is an 
n > max(t,j) such that w € W^. Then r{w) = rn(ti;), r'(t£;) = r^(ti;) and 
^n <3n ^n» which implies r{w) <yj r^{w) by (wq2"). For (qm4), suppose that 
r = \J{rn \ n > i} and r{w) <^ x for some x € Tti;. Then there is an n > i 
such that w € W^ and so r{w) = rnivi^)- Since 0 n satisfies (qin4), there 
is an Sn € ^Kn such that s„(ti;) = x and rn <in 5n- Let s = U{^m I ^ ^ ^}» 
where Sm+i is the good extension of Sm in £lm+i for all m > n. Then 
s(ti;) = Sn(w) = a:, and it is not hard to see that, by (ssb3), (ssb4) and 

^m ^m 5m hold for all m > n, from which r <xs. 
Finally, we show that all the runs in 91 are coherent and saturated. Indeed, 

suppose that r = |J{r„ \n>i) and ^\p € txv{r{w)) for some w € W. Then 

there is an n > i such that w £ Wn, and so r{w) = rn{w). If (w,rn^ ^ ^ ) is 

not a defect in On then there is a v € Wn such that tujRv, rn(t;) = r{v) and 

^ € tv(rn(v)). And if (w^Vm OV') is a defect in On then it is cured in its good 

extension Vn+i in On+i^ there is t; € Wn+i such that wRv, rn+i{v) = r{v) 

and tp G tv(rn+i(v)). Conversely, assume that ip € t,i;(r(t£;)) and let vRw. 

Then there is an n > i such that v^w € Wn- Thus r{w) = rn(iu), r(t;) = rn{v) 

and vRnW, and so OV' € tv(r(i;)) follows by (wq2') . 
Therefore, Q = (5,9,91, <3) is a quasimodel for <f, as required. Q 

The case of Log{(Q, <}} x K is similar. The only difference is that one has 
to extend the definition of a satisfying set of blocks with the following three 
properties: 

(ssb5) for every 53***̂  in 5 , there exist a block 53^^ in 5 and a sequence 
{xs€Tu,\s€ 91"^) of points in T^ such that (ssb3)(i)-(iii) hold; 
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(ssb6) for every 03"̂  in 5, there exist a block ®^^ in 5 and a sequence 
{xseTu,\se 9V''') of points in T^, such that 

(i) q--{u) = (7""H, 

(ii) for every 5 € £Ĥ ,̂ the function p defined by p{w) = a:,, 
p{u) = s{u) is a run in JĤ ", 

(iii) for all s, s' € W^, if 5 <3̂ ^ s' then x̂  <«; x^s 

(ssb7) for every 93"̂  in 5, there are blocks 53^^ and B'̂ '̂  in 5 and a 
sequence {xs eTxv\ s e 9\^^) of points in T^ such that (ssb4)(i)-
(iii) hold. 

Then in the construction of the sequence of weak quasimodels, after having 
cured all defects of Qn and constructed a weak quasimodel QJ,+i based on a 
finite strict linear order ^'^^^ = (^n+D^n+i)* where 

^n+i = {^Oiti;i,...,ii;m} and ii;o/?n-fi^iK+i • •--Rn+î m^ 

we define (with the help of (ssb5)-(ssb7)) a weak quasimodel Qn+i based 
on a finite strict linear order dn+\ = (W n̂-f-î n̂+i)) where 

Wn^i = WI^^^U {uo.uu... ,Um,Um^i}, and 

As a result, we construct a quasimodel ior (̂  which is based on a linear order 
isomorphic to (Q, <). 

The decidability of Lin x K î and Log/rp(Q) x Km can be established by 
mixing the t̂ricks' introduced so far. G 

Observe that the decision procedures given in the above proof are nonele-
mentary. In Section 13.2 we give another proof with the help of reductions to 
monadic second-order theories of certain linear orders (see Theorem 13.6). 

Question 6.42. What is the complexity of K4.3 x K, Log{{Q, <)} x K, 
Lin X K, and Log;rp(Q) x K? Are these logics in ELEM? 

Note that, by Theorem 5.32, none of the logics listed in Question 6.42 have 
the product fmp. 

Question 6.43. Do K4.3 x K or Log{(Q, <>} x K have the (abstract) fmp? 

6.5 Products with S5 

Products with S5 are usually not so complex as products with K or S5m, 
for m > 2. In this section we justify this claim by providing elementary 
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upper bounds for the computational complexity of logics like CPDL x S5 
and Lin x S5. On the other hand, we also show that the elementary decision 
procedures are still of considerable complexity by proving that almost all 
products with S5 are at least coNEXPTIME- or EXPSPACE-hard. 

First, observe that the definition of CPDL x K given in Section 6.2 can be 
extended to define the product of CPDL and any Kripke complete logic L, in 
particular, to define CPDL x S5 and CPDL x KD45. Now the quasimodel 
techniques for establishing the decidability of CPDL x K (Theorem 6.10) and 
S5 X S5 (Theorem 5.22) can be 'mixed' to prove the following: 

Theorem 6.44. The product logics CPDL x S5 and CPDL x KD45 are 
decidable. 

Proof. We give a sketch for CPDL x S5, emphasizing the important steps. 
The CPDL component suggests that types should be again Boolean saturated 
subsets of flc{ip); however, the S5 component makes it possible to define 
quasistates as just O-saturated subsets of types. So the number of points in 
a quasistate is now bounded by 

and the number of different quasistates by 

b{ip) = 2^ 

Besides, no ordering of the runs is needed. Thus, a CPDL x Sb-quasimodel for 
(̂  is a triple (diQi^) with 5 = ( ^ , ^ a n • • -iTa,,), which satisfies conditions 
(qm2) of the CPDL x K-proof, and (qml ) and (qm3) of the S5 x S5-
proof, where the coherency and saturation conditions on runs are taken from 
the CPDL X K-proof. Then the proof of the * quasimodel lemma' is straight-
forward: 

Lemma 6.45. A CWC (8) MC-formula ip is satisjiable in a product frame 
for CPDL X S5 iff there is a CPDL x SS-quasimodel for (p. 

A block for ip with root WQ is a triple (3 ,̂ g,iH) satisfying (b l ) - (b3) of the 
CPDL X K-proof and (qm3) of the S5 x S5-proof. A set S of blocks for (p 
is satisfying if 

• S contains a block satisfying (qm2) and 

• for every block 05 = (S ,̂ g, W) in S and every world v in 3̂ , there exists 
a block 55' = (5',g',lH') with root w' in S such that q{v) = q'{w'). 

Now we have the 'block lemma' as well: 
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L e m m a 6.46. There is a CPDLxS5'quasimodel for (f iff there is a satisfying 
set S of blocks for if such that 

• the number of quasistates in each block in S is at most 

N{^)^\-¥2-m-p{<f)-\flc{^)\, 

• the number of runs in each block in S is at most 

R{^)^p{^)-{\ + N{^)-\flc{<f)\-b{^)), 

where l{ip) is defined as in the C P D L x K'proof{that is, l{(fi) is a polynomial 
function of b{ip) -pi^))-

Observe that the factor md{(p) -f 1 in N{if) is now replaced by 2 due to 
the fact that in the construction of small blocks out of a quasimodel it is 
enough to take one twin copy of each path (cf. the S5 x S5-proof). Now the 
decidability of C P D L x S5 follows from Lemmas 6.45 and 6.46. • 

Observe that this proof provides us with a 3EXPTIME algorithm deciding 
C P D L X S5 in the following way. Call a block <8 = (3", g, W) for ip small 
if 13̂1 < N{ip) and \0\\ < R{ip), Take the set of all small blocks for ip (a 
straightforward computation shows that the cardinality of this set is at most 
3-exponential in the length of (f). Eliminate iteratively those blocks 55 = 
(5, q, 5H) for which there is a world i; in J such that for all the 'noneliminated' 
blocks 53' = (3 ' ,g ' ,9l ' ) , we have q{v) ^ q[(w^) for the root w' of 53'. This 
elimination procedure stops after at most 3-exponentially many steps in the 
length of V?. Obviously, the set V. of remaining blocks forms a satisfying set 
for V? if it contains a block satisfying (qm2). Conversely, if there exists a 
satisfying set S of blocks for (/?, then 7Z D S and 72. is a satisfying set for (p 
itself. Hence, if is satisfiable iff TZ contains a block satisfying (qm2). 

However, it is shown by Schmidt and Tishkovsky (2003) that by ^mixing' 
the filtration techniques for C P D L with the one discussed in Section 5.3, 
we can obtain a slightly better, nondeterministic 2-exponential, upper bound 
of the satisfiability problem for C P D L x S5. Here we give a sketch of this 
argument. 

To begin with, define C P D L • S5 as the set of all CWC 0 A1£-formulas 
that are true in every model based on a (not necessarily product) CVVC^MC-
structure (t/, T^x i ^aa* • • •»^) such that R is an equivalence relation and Tai 
commutes with /?, for each atomic action QJ. 

The following analog of Theorem 5.27 was shown by Schmidt and Tish-
kovsky (2003): 

L e m m a 6.47. C P D L • S5 has the 2'exponential fmp. 
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Proof. Suppose a CWC ® Al£-formula ^p is refuted in a model QOt = (J, 93} 
based on a CWC ® A<£-structure 5 = {W, r ^ j , T^^, . . . , R) such that R is an 
equivalence relation and each T^. commutes with R, Take the Fischer-Ladner 
closure flc{(p) of (p (see Section 6.2). Similarly to the proof of Theorem 5.27, 
we define, for each world x in W, 

E(x) = { V € / / c ( v ' ) | ( 9 R , x ) | = V } , 

and let ~ be the following equivalence relation on W: 

x^y iff E(a:) = E(y) and {i:{z)\xRz} = {i:{z)\yRz}. 

Now define a CWC ® Af£-structure ^^ = {W^,T^^,T^^,..., R^) as the 
smallest '^-filtration of 5? that is, by taking, 

• W " = {[x] I X € W}, where [x] denotes the ^-equivalence class of x; 

• for all X, y € W and all atomic actions ai, 

[x]TZ [y] iff 3x'3t/' (x' - x, y' - y and x'T^,y'); 

• for all x,y eW, 

[xlR'^ly] iff 3x'3y' (x' -- x, t/' ~ y and x'Ry'). 

It is not hard to show that R^ is an equivalence relation and each T^. com-
mutes with -R"" (cf. the proof of Theorem 5.27). Define a valuation 9J'" in 5 " 
by taking 

• ^^{P) = { N I ^ e 5J(p)}, for all p € /k((^), and 93'^(g) = 0, for all 
other propositional variables g, 

and let 9W = (^'",53"') (the compound transition relations in QW are defined 
as usual). A straightforward induction (see, e.g., Harel et al 2000) shows that 
for all worlds x in W and all CWC 0 A1£-formulas (/?, 

(a7i,x)|=(^ iff (9n-,[x])|=^, 

and so OT"' refutes ^ as well. Since \flc{ip)\ is linear in the length i{ip) of (̂ , 
the size of W"' is 2-exponential in i{ip) (cf. the proof of Theorem 5.27). • 

Now we can show that CPDL • S5 in fact coincides with CPDL x S5: 

Lemma 6.48. CPDL S5 = CPDL x S5. 
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Proof. The inclusion CPDL • S5 C CPDL x S5 is obvious. 
To prove the converse, first we observe that, by Lemma 6.47, it is enough 

to consider models for CPDL • S5 based on finite CWC O A1£-structures 
5 = (f/,Tax»^a2» "^^R) such that R is an equivalence relation and each T^i 
commutes with R, Given such a model 9Jt = (5,93), we can construct step-
by-step, Uke in the proofs of Lemmas 5.2 and 5.8, a p-morphism / from the 
product 5' of a PP£-structure and a frame for S5 onto J. Now define a 
valuation 53' in 5' by taking 

2J'(p) = [x I f{x) € 2J(p)}. 

Let 9JI' = (5',53'). Define the compound transition relations in 971' the usual 
way. It is not hard to show that / is still a p-morphism with respect to the 
compound relations, and for all x in 5' and all CWC 0 A<£-formulas (̂ , 

{m',x)^v iff (9Ji,/(x))|=.^ 
(for formulas not containing test it is straightforward; for those with test the 
proof is by induction on the nesting of tests). • 

Now, by Lemmas 6.47 and 6.48, we obtain: 

Theorem 6.49. C P D L x S S has the 2-exponential fmpy and so it is decidable 
in CON2EXPTIME. 

Using the reductions of Theorems 6.18 (see Table 6.1), we obtain: 

Theorem 6.50. Suppose L € {PDL, K^, T^, K4^, S4^, KD45^, S5^}. 
Then L x 85 is decidable in coN2EXPTIME. 

Since by Theorem 5.34, K^ x S5 lacks the product fmp, and the reductions 
in Theorems 6.18 and 6.71 (cf. Table 6.1) all turn finite product models to 
finite product models, we also have the following: 

Theorem 6.51. Suppose L € {CPDL, PDL, K^, T^, K4^, S4^, KD45^, 
S5^}. Then L x S5 does not have the product fmp. 

However, these reductions do not necessarily preserve the (abstract) fmp. 
One can repeat the above filtration argument for products of epistemic logics 
with S5 and obtain the following: 

Theorem 6.52. Suppose L e {K^, T^, K4^, S4^, KD45^, S5^}. Then 
L X S5 has the 2-exponential fmp. 

The above filtration also helps us to axiomatize products of dynamic and 
epistemic logics with S5. Define the logic [CPDL, 85],^; as the logic axiomat-
ized by putting together the CPDL-axioms, the S5-axioms and the axioms 

<>{ai)p^ (ai)Op, (6.27) 
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for all atomic actions a .̂ More precisely, let [CPDL,S5]iy be the smallest 
set of CWC (g) A4£-formulas containing classical propositional logic CI, the 
axioms (2.11)-(2.17) (for all action terms in CWC (g) MC), the S5-axioms 
for • , the axioms (6.27) (for all atomic actions ai), and closed under modus 
ponens, substitution, and the necessitation rules (for all [a] and • ) . The 
following analog of Proposition 5.7 was shown in (Schmidt and Tishkovsky 
2003): 

Proposition 6.53. [CPDL,S5]«; = CPDL S5. 

Proof. The inclusion [CPDL,S5]«, C CPDL • S5 is clear. To show the 
converse, we observe that in the canonical model for [CPDL,S5]ty the S5-
accessibility relation commutes with each of the atomic transition relations. 
Further, it can be shown (see, e.g., Harel et al. 2000) that by filtrating 
the canonical model in the same way as in the proof of Lemma 6.47, we 
obtain a 'standard' model, that is, a model based on a C7̂ X>£(8) A1£-structure 
([/, Tai, Toc21' ' 1^) where R is an equivalence relation and each TQ . commutes 
with R. • 

So, by Lemma 6.48 and Proposition 6.53, we obtain that CPDL x S5 is 
*kind of product-matching: 

Theorem 6.54. CPDL x S5 = [CPDL,S5]^. 

Note that, for action terms a containing test, the c ommutativity axioms 
(6.27) do not belong to the logic CPDL x S5. In fact, as is shown in (Schmidt 
and Tishkovsky 2003), if we add these axioms to [CPDL,S5]^, then the 
resulting logic is (linearly) reducible to CPDL. 

As concerns axiomatization of products of epistemic logics L with S5, we 
can define the logic [L, S5] by putting together the axioms of the epistemic 
logic L (see Theorem 2.17), those of S5, and commutativity. By repeating 
the above filtration argument, we then obtain: 

Theorem 6.55. Suppose L e {K^, T^, K4^, S4^, KD45^, S5^}. Then 
L x S 5 = [L,S5]. 

Note that Theorems 12.8 and 12.14 below can also be used to obtain the 
above axiomatization results. 

In some cases there are even better complexity bounds. As was shown in 
Theorem 5.41, S5 x S5 is coNEXPTIME-complete. Similarly, by ^simplifying' 
the proof of Theorem 6.44 for the case of K in place of CPDL we can obtain: 

Theorem 6.56. Every K x SS-satisfiable formula ip can be satisfied in a 
product K X S5'frame of size exponential in the length of ip. 
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Together with Theorem 5.42, this yields the following result of (Marx 
1999): 

Theorem 6.57. The satisfiability problem for K x S5 {and K x K D 4 5 ) is 
NEXPTIME-comp/efe, and so the decision problem is coNEXPTIME-comp-
lete. 

This theorem follows also from the tableau algorithm for the modal de-
scription logic KACC (see Theorem 15.15) and the reduction of Theorem 3.35. 

Moreover, the following holds: 

Theorem 6.58. The global consequence relation I~KXS6 *̂  decidable. 

Proof. By Theorem 14.8 below and the reduction of Theorem 3.36, we ob-
tain that Ku X S5 is decidable. 

Denote the universal box of Ku by Ei and the box of S5 by D2. It is not 
hard to show that, for any two formulas (f and tp in the language A1£2) 

<p (hJK X [-55) 0 iff D2S1V?-•-0 € Ku X S5. 

Since by Theorem 5.12, I~KXS5 '^ the same as hj^ x hgg, the decidability of 
^kxS5 follows. • 

Alt X S5 is even simpler than K x S5. The proof of the following theorem 
is left to the reader as an exercise: 

Theorem 6.59. Every Alt x SS-satisfiable formula ip can be satisfied in a 
product Alt X S5-/rame of size polynomial in the length ofip. So the decision 
problem for Alt x S5 is coNP-complete. 

Let us now consider products of temporal logics with S5. First, The-
orem 11.31 below provides an EXPSPACE decision algorithm for the one-
variable fragment of temporal first-order logic QLog^(N) and so, by The-
orem 3.29, for PTL x S5 and Log{(N, <)} x S5 as well. Thus we obtain: 

Theorem 6.60. The decision problems for Log{(N, <)} x S5 and PTL x S5 
are in EXPSPACE. 

Note that in Section 11.7 (see Theorem 11.78) we show that PTL x S5 is 
kind of product-matching. 

Next, by 'mixing' the quasimodel proofs of Theorems 6.40 and 5.22, we 
can show the following: 

Theorem 6.61. Suppose L is one 0 /K4.3 , Log{(Q, <)} , Lin, Logpp(Q). 
Then LxS5 andLx KD45 are decidable in 2EXPTIME. 
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Proof. We only give a sketch of how to modify the quasimodels used in 
the proof of Theorem 6.40. Given a formula cp, the S5 component makes it 
possible to define quasistates for ip as just O-saturated subsets of types for ip. 
So the number of points in a quasistate is now bounded by 

and the number of different quasistates by 

b{ip) = 2^ 

A basic structure for (̂  is a pair (J, q), where 3̂  = {W,<) is a strict linear 
order, and g is a function associating with each point li; in W a quasistate 
q{w). A run through such a basic structure is a function r associating with 
each point w mW a type r{w) from q{w). 

A block for cp in this case is a triple « ^ " = (5'' ' ' , g'*'',5H^'') such that 

• ĝ v̂ = ({w, v}, <} is a 2-element strict linear order with u <v, 

• {d^^^Q^^) is a basic structure for (f^ 

• yV"" is a set of runs through (S^^ '̂̂ g'̂ 'O such that 

- for all r G IH'*'' and O^/J € subip, 

if V̂  G r(t;) or O ^ ^ ^(^) then OV' € r(w), 

- for each w e {u^v} and each t e q^^{w), there is an r G ̂ ^^ such 
that r(t/;) = t. 

A set «S of blocks for (/? is called satisfying if 5 contains a block satisfying 
(qm2), and for every 03"^ in 5 the following properties hold: 

(ssb3') if O'tp G r{v), for some run r G W"", then there exist a block 05'̂ '̂  
in S and a sequence {ts\ s e W^^) of types in q^^{w) such that 

• for every s G 91^^, the function p defined by p{v) = s{v), 
p{w) = t^ is a run in 91''^, 
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(ssb4') if OV' ^ (̂̂ )» V̂  ^ Ĉ*̂ ) stnd O-^ ^ r(i;) for some run r € 91^^ then 
there are blocks 03^^ and 03^^ in S and a sequence (t^ I « ^ 9̂ '*'') 
of types in g"^(ti;) such that 

• for every s € IH"*̂ , the function p' defined by p'(u) = s{u), 
p\w) = ta is a run in W'*̂ , and the function p" defined by 
p*'{w) = ta, p^\v) = s(t;) is a run in W'̂ ,̂ and 

Then, as usual, one can prove the ^quasimodel' and *block' lemmas (cf. 
the proof of Theorem 6.40), and the decidability of K4.3 x S5 follows. For 
the remaining logics the proof has to be modified similarly to that of The-
orem 6.40. 

A 2EXPTIME decision algorithm is obtained as follows. Take the set of 
all blocks for ^p (a straightforward computation shows that the cardinality of 
this set is at most 2-exponential in the length of (f). Eliminate iteratively 
those blocks for which there are no *noneliminated' blocks satisfying (ssb3') 
and (ssb4'). This elimination procedure stops after at most 2-exponentially 
many steps in the length of ip. Now it is not hard to show that (/? is satisfiable 
iff the set S of remaining blocks contains a block satisfying (qm2). Q 

In Section 13.2 we give another proof of the decidability of PTL x KD45, 
PTL X S5 and the logics in Theorem 6.61 with the help of reductions to 
monadic second-order theories of certain linear orders (see Theorem 13.6). 

Note that a 2EXPTIME decision algorithm for Lin x S5 was first given 
by Reynolds (1997), who also showed that Lin x S5 has no fmp (see The-
orem 5.30). By Theorem 5.32, none of the logics K4.3 x S5, Log{{N, <)}x S5, 
Log{(Q, <)} X S5 have the product fmp. 

Question 6.62. Do any of the logics Log{(N, <)} x S5, Log{(Q, <)} x S5 or 
K4.3 X S5 have the fmp? 

So far our main concern was to obtain upper bounds for the computational 
complexity of products with S5. Now we prove an EXPSPACE-hardness 
result of (Hodkinson et al. 2003) generalizing Theorem 5.43: 

Theorem 6.63. Let C be any class of strict linear orders at least one of 
which contains an infinite ascending chain. Then the satisfiability problem for 
Log(C X FrS5) {and for Log(C x FrKD45)) is EXPSPACE-hard, The same 
lower bound holds if we consider satisfiability in products of frames from C 
and finite Sb-frames. 

Proof. Trying to modify the proof of Theorem 5.43, we are facing two main 
problems. First, the strict linear orders in C are not necessarily discrete, unlike 
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(N, <). So, having generated an infinite sequence of 'horizontal' points, we 
cannot ensure that the 'horizontal diamond' O actually refers to one of them. 
Second, even in the case of (N, <) we do not have the next-time operator G. 

In order to solve the first problem, here we will use a reduction of the 
following infinite version of the 2^-corridor tiling problem, which is also 
EXPSPACE-complete (the proof is left to the reader as an easy exercise): 
given a finite set T of tile types, a tile type to ^ T and n G N in binary, 
decide whether T tiles the N x 2^-corridor in such a way that to is placed onto 
(0,0} and the top and bottom sides of the corridor are of some fixed color, 
say, white. 

Suppose that a finite set T of tile types, to € T and a natural number n 
are given. Our first aim is to construct an A^£2-formula ipn.T such that (i) 
its length is a polynomial function of \T\ and n, and (ii) (pn,T is satisfiable in 
a frame from C x FrS5 iff T tiles the N x 2'^-corridor such that its top and 
bottom sides are white and to is placed onto (0,0). Later on we will modify 
(fn,T in such a way that the resulting formula tl^n^T is satisfiable in a frame 
from C X FrS5 iff it is satisfied in a model based on the product of a frame 
from C and a finite S5-frame. 

Take a strict hnear order (C/, <) € C, a universal frame {W, R) for S5, 
and suppose that a model 9Jl is based on J = (f/, <) x {W, R). Our first step 
in the construction of (fn,T (which will again contain, among many others, 
propositional variables t for all t £ T) is to write down formulas forcing not 
only an infinite sequence t/o, 2/i • • • of distinct points from Wj but at the same 
time an infinite sequence Xo < xi < X2 < • • of points from U such that, for 
each t 6 N, {xi,yi) [= t for a unique tile type t. As before, if i = k 2^ -h j 
for some j < 2^ then we will use the point (xi^yi) to encode the pair {k,j) 
of the N X 2"-grid. Thus the up neighbor {k,j -h 1) of (fc, j) will be coded by 
the point (xi4.i,yi_|-i), and its right neighbor (fc -f-1, j) by (xi+2",yi-|.2">-

Let go? • • iQn-i be pairwise distinct propositional variables, and q} = qi, 
q9 = -nq^^ for i < n. Set 

where d n - i . . . do is the binary representation of j < 2^. The formula 

Q + / \ ( a ( ? i V a - ( / i ) (6.28) 
i<n 

again says that the truth-values of the qi (and so that of the CTJ) do not change 
along the vertical axis. We call the set {{u,w) \ w € W}, for u G C/, a slice 
of 5, the U'Slice, to be more precise, and say that the u-slice is of type j , for 
u£UJ< 2^, if 

(w, w) \= Gj, for all w £W. 
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Let po, • • • ,Pn-i be a fresh n-tuple of distinct variables such that their truth-
values do not change along the horizontal axis. This requirement can be 
ensured by the formula 

• /\ {B-^pi V B-^-^pi). (6.29) 
i<n 

Let TTj = PQ^ A • • • A Pn'Sii where dn-i - • • ^o is the binary representation of 
j < 2^, and let 

equ= / \ ( P t ^ g t ) . 
i<n 

It should be clear that, for all u € f/, w; € W, if (u, tt;) |= equ and the u-slice 
is of type j (i.e., it makes (TJ true) then {u^w) |= ITJ for all w' € [/. 

We can now define 'counting' formulas of length polynomial in n. Suppose 
that SUGG is a propositional variable and that formulas (6.28), (6.29), 

B+m / \ n / \ ( 7 i A - ( ? f c ) - ^ (succ^ / \ - P i A p i f c A / \ {Pj^qj))\ 
k<n ^ i<k i<k j-k-hi ^ 

(6.30) 

Q + m ( / \ (?i -^ (suGG ^ / \ - P i ) ) (6.31) 

i<n i<n 

hold at some point (:ro,t/o) of Wl. If u > ao, (tA,ti') i=̂  SUCG and the u-slice is 
of type j for some j < 2^, then {u\w) |= 7rj_|.i(mod 2") for all t/' e U^ u' > XQ. 

Now we can generate the required infinite sequences of points using the 
formula 

(To A equ A tile A -i<>tileA 

Q-̂  [<I>tile -> 0(suGG A 0(equ A tile) A Q(0tile -^ -^Otile))], (6.32) 

where tile = Veer^- Indeed, suppose that the conjunction of (6.28)-(6.32) 
holds at some point (xo,yo) of 9H. Then (tx,t/o) N TTQ for all u e U, and the 
Xo-slice is of type 0. Since 

{^o,yo) h <!>(suGGAO(equ Atile) AQ(Oti le-> -•<3>tile)), 

there are points y\ eW and xi > XQ in U such that 

• i^OiVi) 1= SUGG (that is, (u,2/i) |= TTI for all ueU, and so t/i 7̂  yo), 

• (^i)l/i) h ^^" (^bat is, the xi-slice is of type 1), 

• (xi,t / i) |=tile. 
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• no point of the form {u^yi) with u> xi makes tile true, and 

• no point belonging to a u-shce such that XQ <u < xi makes tile true. 

Now we consider (xi,yo} and by the same argument find points y2 ^ {yoiVi} 
and X2 > xi such that the X2-sHce is of type 2, etc., and so forth till we get 
to a point X2n_i whose slice is of type 2 ^ - 1 , and then to a X2n-slice of type 
0 again; see Fig. 6.2. 

Our next aim is to write down formulas that could serve as pointers to the 
up and right neighbors of a given pair in the corridor (at this moment we do 
not bother about its top border). Let 

up = SUGG A Otile A Q(Otile --• --Otile) 

right = equ A Otile A Q(Otile A Otile - * -nequ). 

It is easy to see that for all i G N, 

• (Xi,yi+i) 1= up and {xi,yj) ^ up for all j 7̂  i + 1, 
ff 

• (Xi,t/i4.2") N right and (xi,yj) )^ right for all J V i + 2"*. 

Finally, the formulas below ensure that (0,0} is covered by to, every point 
of the N X 2'^-corridor is covered by at most one tile, the top and bottom sides 
of the corridor are white and the colors on adjacent edges of adjacent tiles 
match: 

toAQ-^m f\ --{tAt'), (6.33) 

Q"^mfao Atile - • \/ t V (6.34) 
teT, 

dou)n{t)=white 

B-^m(cT2n«i Atile -> Y t\ (6.35) 
t€T, 

up{t)=z white 

]+aMa2"- i -^ /\ (t -^ a(up -> Q-0))» 
t,t'eT, 

up{t)jtdoxim{t') 

+ • ( / \ (t-^a(right ^ Q - 0 ) ) - (6.37) 
t,t'6T, 

ri9/it(t)#le/t(t') 

Let (pn,T be the conjunction of (6.28)-(6.37). Suppose that 

(9n,(xo,yo)) \=^n,T' 
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Figure 6.2: Satisfying v?2,r in a frame from C x FrS5. 
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Then we define a map r : N x 2" -~> T by taking 

r{kj) = t iff (a:fc.2n4-j,t/ik.2-+j> |= t. 

We leave it to the reader to check that r is indeed a tiUng of N x 2" as required. 
For the other direction, take a strict hnear order 5 from C having an 

infinite ascending chain of distinct points Xi. Figure 6.2 shows then that (pn,T 
is satisfiable in a product of ^ and an arbitrary infinite universal S5-frame. 

Let us now turn to satisfiability in products of strict linear orders from C 
and finite S5-frames. By the pigeon-hole principle, any tiling of N x 2"̂  by 
T has two identical columns X^Y, so it can be converted into an eventually 
periodic tiling by iterating the 'interval' [X,y) between the columns. In 

start 1 ^^^ 

period 

Figure 6.3: Marking identical columns with start and end. 

order to force such a tiling, we modify (pn,T as follows. First, we introduce 
new propositional variables start and end (which are intended to mark the 
bottom tile of the columns following X and Y, respectively; see Fig. 6.3), and 
add the following conjuncts to ifn^T-

O(start A ao A <J>tile A <>(end A ao A Otile)), (6.38) 

Q"'" (start -> (mstart A Q-istart)) A Q"^(end -> (Qend A Q-^end)). (6.39) 

Then we replace the 'grid-generating' formula (6.32) with 

(To A equ A tile A -lOtlle A Q"*" Otile A Oend —• 

<!> (succ A 0(equ A tile) A Q(Otile -> -.<I>tile))l. (6.40) 
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Finally, to guarantee that the tiling is periodic, we add the conjunct 

B'^m / \ It A Ostart A -»0(cro A <J>tile A Ostart) -> 

• (equ - • Q[equ A tile A Oend A-nO((To A <I>tile A Oend) - * < ] ) ] • (6.41) 

Denote the resulting formula by ipn.T-
Suppose first that xpn^T is satisfiable in a frame from C x FrS5. By (6.40), 

we have points XQ and t/o as before. By (6.38) and (6.39), there are unique 
points Xstart > ^0 and Xend > ^start such that, for every y €W^ 

{xstart,y) N Start and {xend, y) N end. 

So, as before, we can generate 3:i,t/i, . . . ,Xi,t/i—as long as Oend holds at 
(xi^i,i/o)- Two cases are possible. 

Case 1: there is an i < a; such that x^nd < ^t- Then (6.38) and (6.40) 
guarantee that x^nd = ^t and t = A; • 2*̂  must hold for some A:, 0 < A; < a;. The 
same applies to xstart as well: we have xstart = i • 2^ for some /, 0 < / < A;. 
Define a periodic tiling r : N x 2*̂  —> T (repeating the pattern between 
columns (/ - 1) and (A; - 1)) by taking 

T{i,j) = t iff (x/(t).2--)-j, t//(i).2"+j) N t, 

where 
ffl\ = / '̂ if i < /, 
^ ' \ m + /, if t > / and i - / =mod(fc-o ^ • 

Case 2: Xend > Xi for all t < a;. Then we can recover the tiling r as in the 
'infinite case' above. Note that now formula (6.41) has no effect: it is satisfied 
simply because 

(xi»yt) H" equ A tile A Oend A -iO(cro A Otile A Oend), 

for all i <uj. 

Conversely, as we said above, if T tiles the N x 2"-corridor as required, 
then we can always assume that the tiling is eventually periodic. We leave it 
to the reader to check that t/^n^T Is satisfiable in the product of a (finite) strict 
linear order and a finite universal S5-frame. • 

As a consequence, we obtain the following theorem (which confirms a 
conjecture of Reynolds 1997): 

Theorem 6.64. Suppose that L is one of the logics Log{(N, <)} , Lin, K4.3, 
LogKQ, <)} , Log/rp(Q). Then the satisfiability problem for L x S5 [and for 
L X KD45) is EXPSPACE-Ziarrf. 
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Proof. By Theorems 6.29, 6.30 and 6.31, L x S5 is always determined by a 
class of product frames each of which is the product of a strict linear order 
and a frame for S5. Q 

So, by Theorem 6.60, we have: 

Theorem 6.65. Both Log{(N,<>} x S5 and PTL x S5 are EXPSPACE-
complete. 

Using the reductions of Theorems 6.18, 6.23, and 6.24, we also obtain the 
following (cf. Table 6.1): 

Theorem 6.66. Suppose Le{PDL, CPDL, Kf , T^, K4^, S4^, KD45^} . 
Then the satisfiability problem for L x S5 {and for L x KD45) is EXPSPACE-
hard. 

However, the exact complexity of these logics is not known. In particular, 
the following question is open: 

Question 6.67. What is the complexity of K4 x S5 and S4 x S5? 

M. Marx conjectures that these logics are also EXPSPACE-complete. 

6.6 Products with multimodal S5 
First, we show how to generalize the quasimodel technique used for estab-
lishing the decidability of CPDL x K (Theorem 6.10) in order to prove the 
following result: 

Theorem 6.68. CPDL x S5m and CPDL x K D 4 5 ^ are decidable. 

Proof. The proof is similar to the decidability proofs for CPDL x K and 
K X K. We only define the new notions of quasistates and quasimodels re-
quired in the proof of the decidability of K x S52. The extension of these 
notions to the case of CPDL x 8 5 ^ as well as the remaining steps of the 
proof are straightforward and left to the reader. 

Given an A^^a-formula (p (in the language with boxes Q, Di and 02), 

define a^{(p) to be the length of the longest chain •2? Qi? CD2) • • • of boxes start-

ing with ^2 and such that a subformula of the form •2(- • • ^\{- • • D2(- • •))) 

occurs in ip. The function a'^{(f) is defined analogously by swapping Qi and 

• 2 (cf. Section 4.4). 

A quasistate candidate for (̂  is a tuple ({T, < i , <2) , t ) , where 

• (T, < i U <2} is a finite intransitive tree of depth < max(a^((^),a^(</?)); 

• < i and <2 are disjoint; 
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• there are no x^y^z eT and i € {1,2} such that x <i y <i z\ 

• t is a function associating with each x € T a type t{x) for (f. 

Two quasistate candidates ((T, <i, <2) ,t) and ((T", <i, <2) ,t') are called 
isomorphic if there is an isomorphism / between the graphs (T, <i, <2) and 
(T', <;, <'2) such that t{x) = t\f[x)) for all x € T. 

Intuitively, every quasistate candidate ((T, <i, <2) ,t} corresponds to an 
S52-model 9Jl = ((T, i?i,/?2) »2J)) where Ri is the transitive, reflexive and 
symmetric closure of <i, i = 1,2, and 53(p) = {x G T | p € t{x)). It follows 
from the proof of Theorem 4.1 that S52 is determined by frames obtained in 
this way from quasistate candidates. 

Given a quasistate candidate q = ((r, <i, <2) ,*), we define, for every 
i = 1,2, and every x € T, 

^w={J: o, 
there is a y € T with x <i y, 

otherwise 

and 
there is a 2/ € T with 2/ <» x, 

otherwise. f̂ î W ~ I 0, otl 

Note that for no point x € T do we have both d^(x) = 1 and cd^{x) = 1. 
A quasistate candidate q = ((T, <i, <2), t) is called a quasistate for (̂  if the 
following conditions hold: 

(qml) {<>-saturation) For all x € T, i = 1,2 and <>î  € sub(f^ 

Oitp € t(x) iff 3yeT {xRiy Ai^e t{y)), 

and if in addition df (x) = 1, then 

Oitpet{x) iff 3y E T (x<iyAV^€ t(2/)). 

(qml') (smallness) For all i = 1,2 and all x,xi,X2 € T such that 
X <i xi, X <i X2 and xi ^ X2, the quasistate candid-
ates {(r^S<r,<2')»*^0 and ( ( r ^ S < % < 2 ' M ^ ' ) are not iso-
morphic. 

Observe that the number of nonisomorphic quasistates for (f is not bounded 
by an elementary function in the length of (p. 

A K X S52'basic structure of depth m for (/? is a pair {diQ) such that 
5 = (W,R) is a frame and g is a function associating with each w £ W a, 
quasistate q{w) = {{Tyj, <f, <^) ,t^) for (p such that the depth of each tree 
( r^ ,<f U < ^ ) i s m . 
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Let {diQ) be a basic structure for (f of depth m and let k < m. A k-run 
through (5, q) is a function r giving for each w e W a. point r{w) € T̂ i; such 
that 

• for every w eW, the co-depth of r{w) in {T^j, <!" U <^> is fc; 

• for all wuW2 € Ŵ  and i = 1,2, df'^'^riwi)) = df'"^\r{w2)) and 

cdf'''\r{wi)) = cdf'"'\r{w2)). 

Coherent and saturated runs are defined as in the proof of Theorem 6.1. 
Finally, we say that Q = (5, g, JH, <3i, <i2} is a K x S52'quasimodel for (p {based 
on J) if (5, Q) is a basic structure for (p of depth m < max(a^((/?), a^{(p)) such 
that 

(qm2) 3t/;o € Vy V? € t̂ ^C^̂ o), where XQ is the root of (T^^, <5̂ ° U <^°), 

fH is a set of coherent and saturated runs through (5, g), and <i, for i = 1,2, 
are binary relations on 91 satisfying the following conditions: 

(qmS) for all r, r' € fH, if r <3i r' then r{w) <^ r^{w) for every w e W; 

(qm4) for oil w e W, i =^ 1,2, x e T̂ , and r € 91, if r(t(;) <f x 
{x <f r{w)) then there is r' € fH such that r\w) = x and r <i r' 
(respectively, r' <ii r). 

Being equipped with these definitions, one can then proceed as in the proof 
of Theorem 6.1. • 

Using the reductions of Theorems 6.18 and 6.24 (see Table 6.1), we then 
obtain: 

Theorem 6.69. Suppose L is one ofK^, T^, K4^, S4^, KD45^, S5^, 
PDL, PTL, Log{(N, <)} . Then L x S5m (arid L x KD45m) are decidable. 

A similar generalization of the proof of Theorem 6.40 yields: 

Theorem 6.70. Suppose L is one o /K4.3 , Log{(Q,<)}, Lin, Log^p(Q). 
Then L x 8 5 ^ and L x KD45m are decidable. 

In Section 13.2 we give another proof of the decidability of PTL x KD45ni, 
PTL X S5m, and that of the logics in Theorem 6.70 with the help of reductions 
to monadic second-order theories of certain linear orders (see Theorem 13.6). 
Similarly to products with K, none of these decision procedures for products 
with S5m, m > 1, runs in elementary time. We now show that in most cases 
we cannot do better. Actually, this is easily done by 'lifting' the reduction of 
Theorem 2.37 to products: 

Theorem 6.71. Suppose L is either a Kripke complete multimodal logiCy or 
L € {PTL, PDL, CPDL}. Then 
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(1) L X Kti is polynomially reducible to L x K p , 

and, for every bimodal logic V between K2 and S52, 

(2) L X K is polynomially reducible to L x V, 

(3) LxKu is polynomially reducible to L x V^, 

Proof. We give a sketch of a proof for the case when L is a Kriplce com-
plete unimodal logic; the other cases are similar. Denote by D3 the modal 
operator of the language MC of L. To begin with, we claim that the decision 
problem for L x K^ can be polynomially reduced to the decision problem for 
MC (8) Al£jf-formulas in which no S occurs in the scope of another modal 
operator (D, 0 or Da). Indeed, given an MC 0 A<£?-formula v?, denote by 
if^ the result of replacing every subformula of the form x = 0 V̂  in v? with 
a fresh propositional variable p^. Define the set 'Ru{'^) as in the proof of 
Theorem 2.37. Then it is not hard to see that 

^^LxKu iff nl"^^^^^ / \ 7eu((/?) -^ (̂ ^ € L X K«, 

and the formula in the right-hand side is as required. 
Next, we extend the translations ^ and * of Theorem 2.37 to translations 

'̂ \MC^ MC\ ^MC^ MC^ 
^' \MC^ MC\ - . MC 0 MC^ 

by taking {U^^Y = ^2^^' and (D3V?)* = U^^f^', Note that if (^ is an 
MC^MC\'ioxxtm\?itheTHf^ is an A^£(8)A^£2-formula. It is straightforward 
to extend the proof of Theorem 2.37 to show that for every MC 0 MC\' 
formula ip without occurrences of S in the scope of another modal operator, 

• y? G L X K^ iff n f ^^^^^((p ^ Dap) A {-^p ̂  Da-p)) -xp^ ' € L x Kf; 

• if p A o f ^''^^^((p ^ Dap) A (-P -^ Da-p)) -> c^*' € L x S 5 ^ then 
ipeLx Ku] 

• if (f e L xKu then 

p A n|" ' '^^>((p ^ Dap) A (^p ^ Da-p)) ^ ^^' e L x K^ , 

as required. • 

As a consequence of Theorems 6.15, 6.37 and 6.26 we then obtain the 
following (see Table 6.1): 
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Theorem 6.72. Let L e {PTL, Kf, T^, K4^, S4^, KD45^, PDL, 
CPDL}. Then the satisfiability problem for L x S52 {and for L x KD452) 
does not belong to ELEM. 

For PTL X S52 this was first shown in (Halpern and Vardi 1989). 

Question 6.73. What is the complexity of K4.3 x 862, Log{(Q, <)} x 862, 
Lin X 852, and Logpp(Q) x 862? Are these logics in ELEM? 
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Table 6.3: Products of unimodal logics with S5. 

decidable 

Yes 
(Thm. 5.28) 

Yes 
(Thm. 5.22) 

Yes 
(Thm. 6.61) 

Yes 
(Thm. 6.50) 

Yes 
(Thm. 6.61) 

Yes 
(Thm. 6.59) 

has 
product fmp 

no 
(Thm. 5.32) 

Yes 
(Thm. 5.25) 

no 
(Thm. 5.32) 

:10 

(Thm. 5.32) 

no 
(Thnr. 5.32) 

Yes 
(Thm. 6.59) 

K4 x S5 

S5 X S5 

K4.3 x S5 

Log{(w 4) x s 5  

Log{(Q, <)) X S5 

Ah x S5 

complexity 

coNEXPTIME-hard 

in coN2EXPTIME 

(Thms. 5.42, 5.28) 

coNEXPTIME-compl. 

(Thm. 5.41) 

EXPSPACE-hard 

in ZEXPTIME 

(Thms. 6.64, 6.61) 

EXPSPACE-complete 

(Thm. 6.65) 

EXPSPACE-hard 

in 2EXPTIME 

(Thms. 6.64, 6.61) 

coNP-complete 

(Thm. 6.59) 

finitely 
axiomatizable 

Yes 
(Thm. 5.9) 

Yes 
(Thm. 5.9) 

El 
r.e. (Thm. 3.17) 

El 

El 
r.e. (Thm. 3.17) 

Yes 
(Thm. 8.55) 

has fmp 

Yes 
(Thm. 5.27) 

Yes 

El 

El 

Yes 
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X 

PTL 

Lin 

PDL 

Kf 

K4^ 

KD45f 

S5? 

K 

not in ELEM 

(Thm. 6.37) 

1 1 not in ELEM? | 

not in ELEM 

(Thm. 6.15) 

not in ELEM 

(Thm. 6.26) 

not in ELEM 

(Thm. 6.26) 

not in ELEM 

(Thm. 6.26) 

0 

S5n, n > 2 

not in ELEM 

(Thm. 6.72) 

not in ELEM? 

not in ELEM 

(Thm. 6.72) 

not in ELEM 

(Thm. 6.72) 

not in ELEM 

(Thm. 6.72) 

not in ELEM 

(Thm. 6.72) 

B 

S5 

EXPSPACE-complete 

(Thm. 6.65) 

EXPSPACE-hard 

in 2EXPTIME 

(Thms. 6.66, 6.61) \T] 

EXPSPACE-hard 

in CON2EXPTIME 

(Thms. 6.66, 6.50) | T | 

EXPSPACE-hard 

in CON2EXPTIME 

(Thms. 6.66, 6.50) [7 ] 

EXPSPACE-hard 

in CON2EXPTIME 

(Thms. 6.66, 6.50) [T] 

EXPSPACE-hard 

in CON2EXPTIME 

(Thms. 6.66, 6.50) \T\ 

0 
in CON2EXPTIME 

(Thm. 6.50) 

Table 6.4: Complexity of decidable products of multimodal logics with K and 
S5„. 
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Chapter 7 

Undecidable products 

The method of proving the decidabiUty of two-dimensional products developed 
in Chapter 6 was essentially based on the fact that every rooted frame can be 
unraveled into an intransitive tree (see Proposition 1.7). Since these trees are 
not frames for transitive modal logics, i.e., those containing K4, such logics 
need a different approach. 

Modal logics determined by transitive linear frames—in other words, ex-
tensions of K4.3—seem to be a good starting point for analyzing products of 
transitive logics. All of them are known to be Kripke complete (Fine 1974b). 
All finitely axiomatizahle extensions of K4.3 are decidable (Zakharyaschev 
and Alekseev 1995). All 'linear' modal logics determined by reflexive linear 
frames, i.e., extensions of S4.3, are finitely axiomatizahle and have the finite 
model property (Bull 1966, Fine 1971). The satisfiability problem in many 
natural classes of linear frames (say, arbitrary ones) is NP-complete (Ono and 
Nakamura 1980). So, what about products like K4.3 x K4.3 or S4.3 x S4.3? 
In this chapter we show that these logics—among many other products of 
linear' modal logics—are undecidable (some of them are not even recursively 
enumerable). Note that the transitivity of frames is essential for obtaining 
these kinds of undecidability results. For instance, the logics Alt and DAlt 
can be considered as the logics of some intransitive linear frames containing 
infinite ascending chains; yet the product logics Alt x Alt and DAlt x DAlt, 
and in fact all Ait" and DAlt'*, for n > 0, do have the product finite model 
property and are decidable, as will be shown in Section 8.5. 

Not too much is known about the computational properties of product 
logics whose both components are transitive and at least one of them is not 
necessarily linear (or of a fixed finite width). We discuss these logics in Sec-
tion 7.5 and show that Log{(N, <)} x K4 and Log{(N, <)} x S4 are undecid-
able. We also prove that many products with Ku are undecidable, and those 
with K f are not even recursively enumerable. 

343 
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Similarly to the previous chapters, the product of two frames 5 i = (W î» <i ) 
and 3̂ 2 = (Ŵ 2» <2) is denoted by 

The modal operators of product logics are B, • , O, and <I>. 

7.1 Products of linear orders with infinite as-
cending chains 

Let us recall from Sections 1.2 and 5.3 that a frame {W^R) is called weakly 
connected if 

Vx, y.zeW (xRy A xRz -^ yRz Wy^zV zRy). 

We call a sequence (xn \n <UJ) of distinct points from W an ascending uj-type 
chain if xoRxiRx2R • . . and {xi, Xj) ^ R whenever j <i (i.e., different points 
in the sequence belong to different clusters). 

Our main aim in this section is to prove the following general theorem due 
to Reynolds and Zakharyaschev (2001): 

Theorem 7 .1 . LetCi andC2 he classes of transitive weakly connected frames 
such that at least one frame in each of these classes contains an ascending 
uf-type chain. Then Log(Ci x C2) {and so LogCi x LogC2) is undecidable. 

As a consequence we shall have, in particular, the following results: 

Theorem 7.2. (i) Let Li and L2 be any logics from the list: 

K4.3, S4.3, Log{(0,<)}, Log{(0,<)}, /or O G {N,Z,Q}.i 

Then Li x L2 is undecidable. 

(ii) The logics Log{(0,<) x ( 0 ' , < ) } and Log{(0,<) x ( 0 ' , < ) } , where 
0 , 0 ' G {N,Z,Q,R}, are undecidable. 

We will see in Section 7.3 that many of the logics in Theorem 7.2 are in 
fact not recursively enumerable. 

Let us turn now to the proof of Theorem 7.1. 

Proof. The idea is to reduce the undecidable tiling problem for N x N (see 
Section 5.4) to the satisfiability problem in Ci x C2. Without loss of generality 
we will assume all frames in the classes Ci and C2 to be rooted. (Note that 

iNote that Log{(IR, <>} = Log{(Q, <)} and Log{(R, <)} = Log{(Q, <>} = S4.3. In fact, 
all the listed logics are finitely axiomatizable, see Section 2.1. 
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a rooted, transitive and weakly connected frame can be viewed as a chain of 
clusters.) 

As we saw in Section 5.4, such a reduction would be pretty simple if our 
frames were intransitive (or the language contained the 'next-time' operators); 
for then we would be able to refer to the tiles on the right and above directly. 
As this is not the case, we will use the idea of Marx and Reynolds (1999) 
to enumerate the pairs of natural numbers and refer to the right and above 
neighbors of a pair indirectly via special pointers. Another problem is that 
our frames are in general not irreflexive (so the diamond operators cannot say 
'here but not later') and that apart from the existence of an ascending a;-type 
chain we know nothing of the order type of these frames (for instance, they 
can be of type UJ -f 1). 

First we attack the latter problem by using the following trick (cf. Spaan 
1993), which makes it possible to deal with frames that may contain nonde-
generate clusters. Suppose that we have a product J = (VVi x ^2? <hi <v) 
of two rooted, transitive and weakly connected frames 5i = (W^i»<i) and 
^2 = (H^2»<2)- The relations <h and <v are not necessarily irreflexive, and 
our task is to 'simulate irreflexivity' in both directions of J. 

To this end, we partition a part of Wi x W2 into 'black' and 'white' squares 
using the following formulas with prepositional variables /lo, h\ (horizontal) 
and Vo, v\ (vertical): 

/lo A vo, 

a* ( / io -^ -^hi), 

n*(t;o -^ -nt;i), 

Q ( ( / i o - > 0 / i i ) A ( / i i -> O/ io) ) , 

a((i^o --> <!>vi) A (t;i - * <>i^o))» 

D* ( ( / i i -> m/ii) A (-n/ii ~> Q-^/i i )) , 

D*((t; i - • BVi) A {-^Vi -4 B-^t^i)), 

Q"^(0/io - * /lo V hi) A •"^(Ot;o ~> t;o V v i ) , 

where i € {0,1} and 

The conjunction of these formulas will be denoted by Chessboard. Let 

w = (/ii A VQ) V (/lo A t; i ) , b = (/lo A t;o) V (/ii A i;i). 

Say that a point a: in J (under some valuation) is white (or black) if x |= w 
(respectively, a: |= b). A point that is neither black nor white will be called a 
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cloud point The cloud points validate the formula 

cloud = (-i/ii A -•/lo) V {->Vo A -"Vi). 

A maximal set S of points in ff will be called a square if the following condi-
tions are satisfied: 

• all points in S are of the same color (i.e., either black or white) and 

• 5 is connected in the sense that, for any two distinct points x, y € 5, 
either there is a path of <v and </i-arrows between these points and 
every such path entirely belongs to 5, or 5 contains the two points w, 
V such that x <v u, y <h u, v <h x, v <v y (or symmetrically, x <h u, 
y <yU,v <y X, V <h y ) . 

It is not hard to check that if Chessboard is true at the root r of 5 (under some 
valuation) then the noncloud part of 5 can be viewed as a chess-board that is 
either infinite or finite 'circular' in each direction: this part of'S is divided into 
columns and rows of black and white squares in such a way that r belongs to a 
black square and every square has a horizontal and a vertical (not necessarily 
immediate) successor of different color (in particular, our chess-board may 
look like the Euclidean plane M̂  all points in which are squares). 

For squares Si and 52, we write 

Si <h S2 iff Vx e Si3y e S2 {x ^ y and x <h y), 

Si <v S2 iff Vx e Si3y e S2(x =^y and x <y y). 

Now we can define new possibility operators • and O by taking, for any 
formula ip, 

^ ^ = (ho -^ 0(/i i A O+V;)) A (hi - 0(/io A 0-^rp)), 

<^ip = (vo -^ <I>(vi A O'^t/j)) A (vi - • <I>(i;o A O'^ip)). 

Let B and 01 be the duals of • and O, respectively. 
For each noncloud point x in 3̂ , let square{x) denote the square containing 

X. It should be clear that for every x on the chess-board we have: 

X [= • ^ iff 3y {square{x) <h square{y) and y |= tp), 

X 1= <>^ iff 3y {square{x) <y $quare{y) and y [= ^) . 

Note that <h and <y are not necessarily irreflexive on squares either: if, say, 
{x I 3y (x,i/) E 5} is a <i-cluster with at least two elements, then S <h S 
holds. 

However, we can force certain squares to be 'irreflexive' with respect to 
<h and <y. Given a propositional variable p, a square 5 on the chess-board 
is called a p-square if the following three conditions hold: 
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• Va: G 5 x 1= p; 

• Vx € SWy i S{x <h yy X <v y -^ y ]^ p)\ 

• 5 is irreflexive^ i.e., S -fth S and S itv S. 

Let p-square be the conjunction of the following formulas (in which q^ and q'^ 
are auxiliary variables different from p): 

D*(p -> ~<cloud), 

D*(p~> --«OpA-n^p), 

D*(0pA-^^p-->p), 

a*(<!>pA-i<>p-^p), 

a*(p - * •(y' A Og" A -^^^q' A -00(?")» 

D*(p-> • ( V ' A O g " ~ > p ) ) . 

The reader can readily check that if p-square holds at the root of Jf and a: |= p 
then square{x) is a p-square: the first conjunct guarantees that x io on the 
chess-board, the second ensures that the second and third p-square conditions 
hold; the third and fourth conjuncts of p-square ensure that where p holds in 
a square it also holds to the left and downwards within that square; the last 
five formulas say that the auxiliary variables hold in the immediate right and 
upwards neighbors of a p-square and use this to ensure that where p holds in a 
square it also holds to the right and upwards in that square. (It is to be noted 
that there may be infinitely many different p-squares on the chess-board.) 

Given a square 5, from now on we will write 5 |= p whenever x |= p hold 
for all X e S. 

Let pair : N —• N x N be the enumeration of the points (m,n) in N x N 
defined recursively by taking: 

• pair{0) = (0,0), 

• if pair{n) = (0, j) then pair{n -f 1) = (j -f 1,0), 

• otherwise, if pair{n) = (i 4-1, j) then pair{n -f 1) = {ij + 1); 

see Fig. 7.1. Let right{n) denote the number of the pair to the right of pair(n) 
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wall 

( 0 , 4 ) . 

(0,3) 

(1,4) (2,4) (3,4) (4,4) 

floor 
(0,0) (1,0> (2,0) (3,0) (4,0) 

Figure 7.1: The enumeration pair. 

and above{n) the number of the pair above pair(n). For instance, right{3) = 6, 
above{3) = 7. An important property of the enumeration is that 

I above(n), if mw(n) is not on the wall; 
right{n-^ I) = i ^ ^ y \ > ' 7̂ ;̂ j 

\above{n) -hi, if paiiin) is on the wall. 

Given a set T of tile types, we can now write down a formula ^pr which is 
satisfiable in 5 iff T tiles N x N. The formula ipr will contain the propositional 
variables 

• t, for every tile type t eT, 

• tile (= y{t\te T}), 

• next (a pointer to the next tile according to the enumeration), 

• right (a pointer to the right-neighbor of a tile), 

• above (a pointer to the above-neighbor of a tile), 

• wall (marking the wall, i.e., the pairs (0,n)), 

• floor (marking the floor, i.e., the pairs (n,0)). 
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5j 

4+ 

3 

above!-^ 

next 
right 

tile 
wall 
floor 

0 

above right 

right 

."ext ^tile 
T{pair{7)) 

next tile 
> • floor 

above next tile. 
> • wall 

T{pair{6)) 

T{pair{5)) 

above right next ĵ|g 
r(pair(4)) 

right next tile 
• • • floor 

T{pair{3)) 
next tile. 

• • wall 
T{pair{2)) 

tile 
• floor 

T{pair{l)) 

T{pair{0)) 

Figure 7.2: The formula v?r in the product of {iscending cj-type cliains. 

Let Tiling be the conjunction of the following formulas: 

D*(tile^ V ' ) ' 

D* /\ (f -> [l(above ~> -^^t')), 

up{i)i^down{t') 

D* l\ (<-> j(right-^-n^f')). 

r%ght{t):^left{V) 

The intended meaning of these formulas should be clear. 
Define (̂ r to be the conjunction of Chessboard, Tiling, ^-square, for all 
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t e T, tile, next-square, right-square, above-square, wall-square, floor-square,̂  
and the following formulas as well: 

D*(tile-^ Onext), (7.2) 

D*(next->^ti le), (7.3) 

D*(t i le-><• right), (7.4) 

n*(r ight->^ti le) , (7.5) 

a*~^(OnextA^tile), (7.6) 

D*(next -> H(* t i le -^ -.0(right V above))), (7.7) 

a*(right-> Oabove), (7.8) 

a*(above-^*t i le) , (7.9) 

floor A wall A •-.•<»(floor A wall), (7.10) 

n*(wall - • [l(next - * H(tile - * floor))), (7.11) 

a * (wall - • [l(above -> B(tile -> wall))), (7.12) 

D*(tile A -iwall -> Cl(above -> H(tile -^ --wall))), (7.13) 

"-.<>(nextA-.right), (7.14) 

n*(<*above A • t i le -^ right V Oright), (7.15) 

[• (• ( t i le A -^wall) ~> (right V •right), (7.16) 

•*-^(Oright A •right), (7.17) 

-.<>(^wallA^right). (7.18) 

Figure 7.2 gives the reader some general intuition about these formulas. They 
will be explained in detail in the proof of the next lemma. 

Lemma 7.3. T tiles N xN iff ipr is satisfiable in a frame 3̂  G Ci x C2. 

Proof. (=>) Suppose r : N x N —• T is a tiling and 5 ^ Ci x C2 is the product 
of two rooted frames Ŝ i and ^2 with ascending a;-type chains and roots xo, 
t/o, respectively. Take ascending a;-type chains 

^0 ^1 ^1 ^1 2:2 ^1 . . . and yo ^2 Vi ^2 ^2 ^2 • • • 

in 5i a.nd 52- Define a valuation ^ of /IQ, /ii, vo and vi in 5 = i?i x S2 by 

^We always take distinct pairs of auxiliary variables q^ and g" in the square-formulas. 
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taking: 

^{ho) = {{x,y) \xn<ix <i Xn-fi, n< (J, Ti IS even}; 

5J(/ii) = {{x,y) \xn<ix <i Xn-i-i, n < tj, 71 is odd}; 

V{vo) = {(a:,i/> I j/n <2 2/ <2 2/n-fi, n < cj, n is even}; 

5J(vi) = {{x^y) \yn<2y <2 J/n+i, n < a;, n is odd}. 

The formula Chessboard is satisfied at the root of 5 under this valuation. For 
any m,n < ct;, let 

(m,n) = {{x,y) \ Xm <i x <i Xm+i, 2/n <2 2/ <2 2/n+i}-

Clearly, the (m, n) are all the squares on the chess-board. Now we extend 9J 
to the other variables in ipr by taking 

QJ(f) = \J{{n^m) I m = n and T{pai'r{n)) = t}; 

2J(tile) = U{(^»^) I ^ = ^ } ; 

93(next) = U{(^»^) I m = n -f 1}; 

a}(right) = U{(^>^) I ^ = right{n)}] 

5J(above) = \J{{n^m) | m = above{n)}; 

9J(wall) = \J{{n^m) | m = n and pair{n) is on the wall}; 

2J(floor) = \J{{n^m) \m — n and /?otr(n) is on the floor}. 

(This situation is depicted in Fig. 7.2.) It is not hard to check that under this 
valuation we have (0,0) |= (pr-

(<=) Suppose (fT is satisfied at the root xo of some 5 € Ci x C2 under 
some valuation. Then XQ belongs to a tile-square; let us denote this irreflexive 
square by (0,0). By (7.2) and (7.3), we have an infinite sequence of squares 

(0,0) <y (0,1) <^ (1,1) <^ (1,2) <k'"<k {hi) <t; (i,i + 1) </i . . . , 

in which every {n^n)^ n € N, is a tile-square and every {n^n -h 1) is a next-
square, so they are all irreflexive by the formulas next-square and f-square 
{t e T). In fact, it is not hard to see that, by (7.6), all the squares in the 
sequence are distinct. For all m, n € N, denote by (m, n) the square located 
in the same column with {m^m) and the same row with {n^n). (Note that 
there can be squares on the chess-board other than those of the form (m, n).) 
Given a square 5, we write row{S) < n?ti;(n,n) (or row{S) > row{n^n)) if for 
all X e 5 there are points y in ^ such that x <h y and square{y) <y (n^n) 
(respectively, x <hy and {n^n) <y square{y)). 

Consider an arbitrary square {n^n). By (7.4) and right-square, there is a 
unique right-square r̂  such that {n,n) <y r„. By (7.5) and tile-square, there 
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is a unique tile-square s such that Vn <h s. In this case we say that r„ points 
to s. Using (7.2) and (7.6), one can easily show that 

if row{rn) < row{k,k) then Tn = (n,i) for some i < k. (7.19) 

In other words, (7.19) means that r„ points to tile-square (i,z). 
By (7.4), (7.8) and above-square, there is a unique above-square an such 

that (n, n) <« an- By (7.9) and tile-square, there is a unique tile-square 5 such 
that a„ <h s. We will again say that an points to s. In the same way as 
above we can show that 

if row{an) < row{k, k) then an = (n, i) for some i < k. (7.20) 

Now, we will prove by induction on n > 0 that 

(i) if pair{right{n)) is on the floor, then {right{n), right{n)) \= floor; 

(ii) {right{n), right{n)) \= -"wall; 

(iii) Tn = {n,right{n)), i.e., r„ points to {right{n),right{n)),, 

(iv) a„ = (n, above{n)), i.e., an points to {above{n), a6ove(n)); 

(v) if pair{above{n)) is on the wall then (o6ove(n), above(n)) [= wall. 

For the base case n = 0, observe that by (7.10), (0,0) |= floor A wall. By 
(7.11) we then have (1,1) \= floor and by (7.10) again, (1,1) \= -.wall. By 
(7.14) ro = (0,1), and so TQ points to (1,1). 

Notice that by (7.8), (7.20), (7.15) and right-square, ao = (0,2) points to 
(2,2): if ao was further above (0,2) then (7.15) would imply that ro = (0,1) 
is not the unique right-square above (0,0), contrary to right-square. By (7.12), 
we have (2,2) \= wall. 

Now consider the induction step for n > 0 (below IH stands for 'induction 
hypothesis'). 

(i) If pair{right{n)) is on the floor, then pair{n) is on the floor as well, 
hence pair{n — 1) is on the wall. By (7.1), we have right{n) — 1 = above{n — 1) 
and so 

pair{right{n) — 1) = pair{above{n ~ 1)) 

is on the wall too, whence by IH (v), {right{n) — l,right{n) - 1) |= wall. It 
follows directly by (7.11) that we must have {right{n), right{n)) \= floor. 

(ii) If pair{right{n)) is on the floor then {right{n), right(n)) \= -iwall by 
(7.10) and (i). Otherwise right{n) = above{n — 1) and n - 1 = right{k) for 
some k with 0 < fc < n. By IH (ii), we have {right{k),right{k)) \= -iwall, 
hence (n — l ,n — 1) |= -iwall. Since IH (iv) tells us that a„_i points to 
{above{n — 1), above{n — 1)), by (7.13) we obtain 

{above{n ~ 1), above(n — 1)) [= -iwall 
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which is (right{n),right{n)) |= -"wall as required. 
(iii) It follows from (ii) and (7.16) that there is a right-square r of the form 

(m, right(n)). We will show that r — {n^ nght{n)). 
We cannot have m > right{n) by (7.5) and tile-square. By (7.7), there is 

some i such that 0 < i < right{n) with {i,i) <v r. It follows that r = Vi. If 
i < n then by IH r = (i, right{i))^ which is impossible. Suppose that i > n. 
Let us then examine rn- By right-square, Vn cannot be of the form (fc, nght{n)) 
for some fc. The case when row{rn) > row{right{n)^ right{n)) is impossible by 
(7.17). If row{rn) < row{right{n)^right{n)) then, by (7.19) Vn = (nj) for 
some n < j < right{n). If j = right{k) then fc < n, and by IH (iii) Vk = (fc, j ) , 
contrary to right-square. And if j ^ right{k) for any k < n then pair{j) is on 
the wall, i.e., j = above{k) for some fc < n, from which by IH (v) (j, j ) |= wall, 
contrary to (7.18). Thus i = n, that is, Vn - (n, right{n)). 

(iv) By (7.8), (iii), (7.15), (7.20) and right-square we have a = (n, a6ot;e(n)). 
(v) If pair{above{n)) is on the wall then pair{n) is on the wall as well. 

Since n > 0, n = above{k) for some k <n^ and so by IH (v) {n^n) |= wall. By 
(iv) an = (n, a6ot;e(n)) and by (7.12), {above{n)^ above{n)) |= wall. 

A tiling r of N X N is defined now as follows. Given a pair (m, n) of 
natural numbers, let T{m^n) be the unique t £ T such that the tile-square 
(pair''^{m^ n), pair''^{m, n)) is a f-square. Using the formula Tiling it is readily 
seen that r is indeed a tiling. Q 

To complete the proof of Theorem 7.1, it remains only to observe that, 
for any set T of tile types, we clearly have: --^ipT € Log(Ci x C2) iff v^r is not 
satisfiable in Ci x C2 iff, by Lemma 7.3, T does not tile N x N. It follows that 
Log(Ci X C2) is undecidable. • 

We conclude this section by proving an undecidability result concerning 
H S interval temporal logics (see Section 2.2). Given a class C of strict linear 
orders, the forward fragment HS^^ of logic HSc consists of those formulas of 
HSc that contain only modal operators D5, DJ^ and their duals (and do not 
contain DJ^ and D/) . The following result is a generalization of Theorem 2.13: 

Theorem 7.4. Let C be a class of strict linear orders at least one of which 
contains an infinite ascending chain of distinct points. Then HS^^ is unde-
cidable. 

Proof. Having recalled the two-dimensional representation of HS-logics from 
Section 3.9, it is straightforward to see that the forward fragment HS^^ is 
determined by the class 

{© I © is the *North-Western subframe' of 5 x 1?, for some 3̂  € C}. 
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(We remind the reader that the North-Western subframe of 5 x 5, where 
5 = {W^ <}, consists of all points (u, v) such that u < v.) 

Now, the undecidability of HS^^ follows from two facts. First, a close 
inspection of the formula c^r, constructed in the proof of Theorem 7.1, shows 
that if (fT is satisfiable in the North-Western subframe of 5 x 5 under some 
valuation, then this valuation can be extended to the whole product frame 
3̂  X Ŝ  without changing the truth values of (fr in the North-Western subframe. 
And second, if (fr is satisfied in 5 x 3̂ , for 3 G C, then we can always modify 
the valuation in such a way that squares are just singletons, the tile-squares are 
points above the 'diagonal' of 3 x 3» and (pr is satisfied in the North-Western 
subframe of 3 x J. Details are left to the reader. • 

7.2 Products of linear orders with infinite des-
cending chains 

In this section we prove the following result of Reynolds and Zakharyaschev 
(2001): 

Theorem 7.5. Let Ci and Ci he classes of transitive and weakly connected 
frames such that each of them contains a rooted Noetherian linear order having 
an infinite descending chain of distinct points. Then Log(Ci x C2) {and so 
LogCi X LogC2) is imdecidable. 

Proof. Given a finite set T of tile types, we are again going to construct a 
formula XT which is satisfiable in a frame from Ci x C2 iff T* tiles N x N. 

To this end, we again have to solve the problem of having not necessarily 
irreflexive frames. As in Section 7.1, we partition the frames into *black' and 
'white' squares. However, now this should be done in a somewhat different 
way. We will use the formulas: 

a*((/i V O/i -> mh) A (-ft V <I>-ft -> •-nft)), (7.21) 

n*{{v V Ov - • Bv) A {-^v V O-yy -* B-^v)), (7.22) 

-̂ ft A -.v A OOD*{h A v), (7.23) 

a * ( [ l l A H l - ^ p ) , (7.24) 

• • ( - p A H p ) , (7.25) 

BO{pA[M-^p), (7.26) 

D*(p- .H(pAOp)) , (7.27) 

n*(-np -> ll(-'p A •--p)), (7.28) 
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where 

•V' = (/i --̂  0(-n/i A 0-*-̂ )̂) A (-/i --> 0( ; i A 0'^rp)), 

<^i[) - (v -* 0{-^v A 0*^1/;)) A (-'t; -» <>{v A <!>"̂ V̂ )). 

Denote the conjunction of (7.21)-(7.28) by Diagonal. 

Lemma 7.6. Let J i = (Wi,<i) and ^2 = (W^2i<2) 6e roo^erf Noetherian 
linear orders such that each of them contains an infinite descending chain of 
distinct points. Then Diagonal is satisfied in ffi x 52* 

Proof. Take infinite descending chains 

xo ^1 xi ^1 a:2 ^1 . . . and yo ^2 yi ^2 2/2 ^2 • • • 

in 5i and 3̂2» respectively. Define a valuation 2J in 5i x 3̂ 2 by taking: 

9J(/i) = {{x,y) I Xo <i x} U {(x^y) | Xn+i ^ i x <i Xn, n < cj, n is even}; 

V{v) = {(x,t/) I yo <2 y}U {(x,y> | yn+i $2 V <2 Vw, n < u;, n is even}; 

5J(p) = {(a:,y) | xi ^ i x} U {(x,y> | Xn+i ^ i x, y <2 yn, n > 0} 

(see Fig. 7.3). Since J i is rooted and Noetherian, there is a <i-greatest point 
z\ in 5i such that z\ <\ Xn for all n < u. Similarly, there is a <2-greatest 
point Z2 in ^2 such that ^2 <2 Vn for all n < cj. The reader can easily check 
that under the valuation 03, we have (^i, 22) |= Diagonal. • 

Next, let us recall from Section 7.1 the notion of square and the extensions 
of the relations <h and <v to squares. 

Lemma 7.7. If x\= Diagonal in a frame ^ £ C\ x C2 under some valuation, 
then there are squares {m^n) in S {nym < uj) such that for all k^n^m < a;, 

(a) [m^n) is irreflexive, 

(b) (m^n) ^h (A:, n) and (n^m) ^y (n. A:), ifm>k, 

(c) (m, n)\=^ p iff m <n. 

Proof. Suppose (21,2:2) |= Diagonal for some (21,22) in 5 = 5i x t?2- By 
induction on n we define squares (A;, m), for A:, m < n, and show that for all 
A:,£, m < n, 

(i) (fc,m) is irreflexive, 

(ii) (Ar,m) ^^ {£,m) and (m,fc) ^^ (^»^)) if A; > ^, 

(iii) (A:, m) \= p iff k < m. 
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Figure 7.3: Satisfying Diagonal. 

First, let n = 0. By (7.23), there are some XQ ^i zi and yo ^2 2:2 such that 
{3:0,2/0) t= •*(^Az;). Define (0,0) as square{{xQ,y{s))' (For every point z in i?, 
square{z) exists by (7.21) and (7.22).) Then (0,0) is irreflexive, and (0,0) \= p 
holds by (7.24). 

Assume now that n > 0 and squares (fc, m) satisfying (i)-(iii) have been 
defined for all k,m<n. For each k < n, choose some Xk,yk such that {xk.Vk) 
belongs to (A:, k). By IH and (7.25), there is an Xfi such that 2̂1 ^1 Xn ^1 Xn—\ 
and (xn,l/n-i) 1= -̂ p A Bp. Let (n,A:) = square{{xn,yk)), for all k < n. 
Then by IH and (7.25), (n,fc) is irreflexive, and by IH and (7.27), we have 
{n,k) \= -̂ p, for all k < n. Next, by IH and (7.26), there is a t/n such that 
22 ^2 Vn %2 yn-i and (x„,t/n) [= P A Cl-.p. Let (fc,n) = 5gnare((xfc,yn)), for 
all k <n. Then by IH and (7.26), (fc,n) is irreflexive, and by IH and (7.28), 
we have (fc,n) |= p for all fc < n, as required. • 

Given a finite set T of tile types, we now construct a formula XT which is 
satisfiable in a Ŝ  G Ci x C2 iff T tiles N x N. As in the previous section, we 
will use the enumeration pair: N - • N x N and represent the tiles on N x N 
by squares in 5 of the form {n,n), using the variables tile and t, for t e T. 
Let left{n) denote the number of the pair to the left of pair(n) and below{n) 
the number of the pair below pair{n). As before, wall and floor will indicate 
that a certain pair is on the wall or on the floor. But instead of the pointers 
next, right and above we will now use the variables prev, left and below which 
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below 

Figure 7.4: The formula XT in the product of infinite descending chains. 

are supposed to point to the previous pair in the enumeration, to that on the 
left and below, respectively (see Fig. 7.4). 

Let Tiling be the conjunction of the following formulas: 

D* 

D' 

D 

D* 

A 
down{t)^up{t 

• A 

^(tile^ yt), 

A 

') 

{t-

left{t):^right{t') 

-^{tAt'), 

H( below -+ 

-* B(left -»• 

-Of)), 

-'Ot')). 

Given a propositional variable r, we define a formula r-square in almost the 
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same way as in Section 7.1: it is the conjunction of the formulas 

0*(r -> -•<>r A - • • r ) , 

D * ( O r A - i * r - ^ r ) , 

D*(<!>r A-n<>r -> r) , 

a*(r A • T -> • g ' A - • • • g O . 

a*(r A O T -^ Og" A --0<>g'0. ̂  

D*(r-^Q(- ig 'A^g' ->r) ) , 

D*(r -> a ( V ' A <>g" --> r)), 

D*((r A OX - • Qr) A (r A H I -> Or)). 

As before, it is readily checked that if r-square holds at the root of 5 and 
X 1= r then square{x) is a r-square. 

Now, we define XT to be the conjunction of Tiling, Diagonal, f-square, for 
all t € T, prev-square, left-square, below-square, wall-square, floor-square and 
the formulas: 

D*(ti le^pA-.<>p), (7.29) 

D*(prev *-• <>tile A -i<><>tile), (7.30) 

D*(tile A -.wall -^ • lef t ) , (7.31) 

D*( le f t - *<• tile), (7.32) 

a * (tile A -ifloor ~> •below), (7.33) 

D*(below->Otile), (7.34) 

a*(tile A --.floor A -^wall -> • ( lef t A •below A -^••below)) , (7.35) 

D* ( B l A 111 ^ floor A wall), (7.36) 

a * ( ( B l A a i ) V (tile A •(prev A Owall)) ^ floor), (7.37) 

D* (OT -^ (tile A •(below A Owall) ^ wall)), (7.38) 

D*(tile A -ifloor -> n(below -^ <»left A -.OOleft)), (7.39) 

n*(tile A floor -^ -••(Ofloor A • lef t ) ) , (7.40) 

D*(floor -^ B(left -^ Ofloor)). (7.41) 

L e m m a 7.8. T tiles NxNiffxT^s satisfiable in a frame ^ £Ci x C2. 

Proof. {=>) Take rooted Noetherian frames ^i € Ci and ^2 ^ C2 having 
infinite descending chains of distinct points. Define a valuation ^ of h, v and 
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p as in the proof of Lemma 7.6. Observe that under this valuation we have 
the following squares (m, n): 

{{x,y) I Xi ^1 Xy t/i $2 y} = (0,0), 

{(x,t/) |xn+2 ^1 X < i Xn4.i, Vi $2 v} = (rH-1,0), f o m <u, 

{(x, y) I xi ^1 X, yni4.2 ^2 ^ <2 1/m+i, } = (0, m -f 1), for m<uj, 

{(x,y) I Xn+i ^1 X <i x„, t/m+1 ^2 V <2 2/m} = (n,m), for 0 < n,m < a;. 

Suppose T : N X N — • T i s a tiling. Extend the valuation 9J to the remaining 
propositional variables by taking 

Q3(tile) = U{(^»^) I ^<'*^}) 

5J(f) = U{(^»^) I n < a;, r(patr(n)) = t} , f G T, 

5J(prev) = U{(^> n -f 1) I n < u;}, 

2J(left) = U{(^'^) I m,n < a;, m = left{n)}, 

9J(below) = U{(m,n) | m,n < a;, m = below{n)}j 

9J(wall) = \J{{nyn) | n < a;, pair{n) is on the wall}, 

5J(floor) = [jiin^n) | n < t*;, po2r(n) is on the floor} 

(see Fig. 7.4). Let (21,22) be the limit* point in 5i x 3̂ 2 as in the proof of 
Lemma 7.6. It is a matter of routine to check that under the defined valuation 
XT holds at (21,22)-

(^) Suppose XT is true at some point x in J under some valuation. Then 
X 1= Diagonal, and so we have squares (m, n) (n, m < LJ) satisfying conditions 
(a)-(c) of Lemma 7.7. 

By (7.29), tile holds in (n, n), for all n < a;, and is false in (n, m) whenever 
n ^ m. And by (7.30), prev holds in (m^n) iff n = m 4- 1. (Note that tile 
and prev may be true at some other points that do not belong to the depicted 
grid, but they are of no concern to us.) 

Now by induction on n we show that 

(i) pair{n) is on the floor iff (n, n) |= floor; 

(ii) if pair{n) is not on the floor then (6e/ow;(n),n) |= below; 

(iii) pair{n) is on the wall iff (n, n) (= wall; 

(iv) if pair{n) is not on the wall then (/eyi(n),n) f= left. 

By (7.36), (0,0) f= floor A wall. By (7.37), (1,1) |= floor and, in view of (7.36), 
(1,1) 1= -.wall. By (7.31), (0,1) |== left. Now suppose n > 1. Observe that by 
(7.32) and (7.34), if {m,n) |= left or {m,n) |= below then m < n. 

Suppose pair{n) is on the floor. Then pair{n - 1) is on the wall, and so by 
IH (n ~ 1, n - 1) f= wall. It follows that (n, n) |= tile A •(prev A <^wall). By 
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(7.37) we then have (n, n) f= floor. The converse impUcation also follows by 
IH from (7.37). This proves (i). 

Assume now that pair{n) is not on the floor, and so, by (i), (n, n) |= -ifloor. 
By (7.33), {k, n) \= below for some fc < n. By (7.39), we have (fc, n - 1 ) |= left. 
Since by IH we have {left(n - l ) , n - 1) |= left, k = left{n - 1) = below{n) 
follows by left-square. This yields (ii). 

Suppose pairi^n) is on the wall. Then by (i), (nyu) \= -^floor and, by (ii), 
{below{n),n) \= below. Since below{n) < n and pair{below{n)) is also on the 
wall, by IH we have {n,n) (= tileA^(belowA<>wall). And since (n^n) \= OT , 
we obtain by (7.38) that (n^n) \= wall. The converse implication follows from 
IH and (7.38). Thus we have (iii). 

Finally, to prove (iv), suppose that pair{n) is not on the wall. Then by 
(iii), {n^n) |= -»wall. By (7.31), {k,n) \= left for some k <n. If pair{n) is not 
on the floor, then by (i), {n,n) |= -ifloor. So by (7.35) and left-square, we have 
{k — l ,n) 1= below. But then by (ii) and below-square, fc - 1 = below{n), from 
which k = below{n) + 1 = left{n) as required. If pair{n) is on the floor, then 
again by (i), {n,n) \= floor. Since left{n) < n and pair{left(n)) is also on the 
floor, by IH left{n) is the largest m < n such that (m, m) |= floor. But then, 
by (7.40) and (7.41), we have k = left{n). 

Now define a map r : N x N —> T by taking 

T{i^j) =t iff t eT^ pair{n) = {i,j) and {n^n) f= t. 

It follows from left-square, below-square, (ii), (iv) and x |= Tiling that r is 
well-defined and a tifing of N x N. Q 

Theorem 7.5 follows immediately from Lemma 7.8. Q 

Observe that as a consequence of Lemmas 7.6 and 7.7 above we also obtain: 

T h e o r e m 7.9. Let Ci and C2 be classes of transitive and weakly connected 
frames such that each of them contains a rooted Noetherian linear order having 
an infinite descending chain of distinct points. Then Log(Ci x C2) {and so 
LogCi X LogC2) does not have the product finite model property. 

Since all frames for the logics GL.3 and Grz .3 are transitive and weakly 
connected (see Section 1.2), and since the addition of a root to (N, >) and to 
(N, >) results in frames for GL.3 and Grz.3 , respectively, our theorems have 
the following corollaries: 

T h e o r e m 7.10. The logics GL.3 x GL.3, Grz .3 x Grz .3 , GL.3 x Grz.3 
are undecidable and do not have the product finite model property. 

By Theorem 1.12, GL.3 and Grz.3 are also characterized by classes of 
finite frames. Similarly, it is not hard to show that both Log{{N, >} x (N, >)} 
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and Log{(N, >) x (N, >)} are characterized by (recursive) classes of finite 
product frames, that is, they have the product fmp. Thus we obtain: 

T h e o r e m 7.11. GL.3 x GL.3 j^ Log{(N, >> x (N, >)} , 

Grz.3 X Grz.3 ^ Log{(N,>> x (N,>)}. 

We will see in Sections 7.3 and 7.4 that in fact all the logics mentioned in 
Theorem 7.11 are not recursively enumerable. 

7.3 Products of Dedekind complete linear or-
ders 

Harel (1986) proved that the following problem is E}-complete: 

• Given a finite set T of tile types and RIQ eT, can T tile N x N in such 
a way that to appears infinitely often in the first column? 

We will use this result to show that logics of certain classes of products of linear 
frames are not recursively enumerable, and so not recursively axiomatizable. 

Say that a transitive and weakly connected frame 3̂  = (W î <) is Dedekind 
complete if every bounded (with respect to <) subset K C IV has a least upper 
bound in 5) ie. , the set 

{w eW \^v eV V <w} 
has a least element. It is not hard to see that both (N, <) and (IR, <) are 
Dedekind complete, but (Q, <) is not. Also, all Noetherian linear orders, like 
(N, >) and (N, >), are Dedekind complete. 

Theorem 7.12. LetC be a class of products of transitive and weakly connected 
frames satisfying the following conditions: 

min there is a frame {Wi, < i}x (W^2»<2) ^ C with each (H^t»<i)^ fori = 1,2, 
containing an ascending uj-type chain; 

max if {W\,<\) x (W'2, <2) € C, then (W î, <i> is Dedekind complete. 

Then the satisfiability problem for M€2-formulas in C is E}-/iard, and so 
LogC is not recursively enumerable. 

Proof. Given a set T of tile types and a fo € T, let tpr be the conjunction 
of (pT defined in Section 7.1 and the following three formulas: 

a*(tile~^0^(foAwall)), (7.42) 

H((-n<>tile A -lO^tile) V Otile V 0(^tile A -inext A -i^next)), (7.43) 

[•(•tile ~> next V •next). (7.44) 
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We will show that xpr is satisfiable in C iff T tiles N x N with ô appearing 
infinitely often on the wall. 

If we have a tiUng with to appearing infinitely often on the wall then it 
is clear that tpr has a model based on a frame in C: just define a valuation 
as in the proof of Lemma 7.3 (=4>) in a product frame in C whose component 
frames have ascending a;-type chains in both dimensions (see Fig. 7.2). The 
three new conjuncts are obviously satisfied. 

Conversely, if ipr has a model based on a frame (W'l, <i ) x (1^2, <2) from 
C then this is also a model of (pr- So in the same way as in the proof of 
Lemma 7.3 {<=) we can construct a tiling of N x N. (Recall that we use a 
sequence of tile-squares (0,0), (1 ,1 ) , . . . , that is, squares in which tile holds.) 

We will show that the only points at which tile A wall holds are those in 
squares (i,i) for which pair{i) is on the wall. (7.42) then tells us that to 
appears infinitely often as a tile on the wall in the tiling, which is precisely 
what we need. In fact it is sufficient to show that there are no tile-squares 
apart from {n,n), n € N. This is because in Section 7.1 we had shown that 
{n,n) is a wall-square iflF pair{n) is on the wall (i.e., not a right-neighbor of 
any other pair{k)). 

To this end, for each n € N, choose Xn € Wi and t/n € W2 such that 
{^myn) belongs to the square (n^n). If the ascending a;-type chain 

^0 < i 3:1 < i . . . 

is unbounded in {Wi, <i) then we are done as tile-square, (7.2) and (7.6) can 
easily be used to show that there are no other tile-squares. 

So consider the situation in which XQ <i xi <i . . . is bounded in (H î, < i ) . 
As (Wi, <i ) is Dedekind complete, there is some least upper bound z to the 
sequence. We will show that 'from z on' there are no more tile-squares, i.e., 

Vu € W2yz' e Wi {z' >xz-^ (z',u) t̂  tile). 

By (7.43), there are three possibilities for the pair {2,yo)* 

case 1: We may have -'<>tile A -"O^tile true at (2:,t/o). But then indeed tile 
is false from z on. Let us show that the other cases cannot occur. 

case 2: {z^yo) makes Otile true. Then tile is true at (2:,w) for some u >2 yo-
By (7.44), next is true at (z',u) for some z' > i XQ. By (7.3) and tile-
square, we have z* <\ z. As 2: is the least upper bound of the sequence 
of XnS, we know there is some Xn such that z' <\ Xn- There are three 
cases depending on the ordering of u and i/n- We cannot have u <2 yn 
by (7.2) and (7.6). We cannot have u >2 t/n by (7.6). And finally, we 
cannot have u = t/n by tile-square. 



7.3. Products of Dedekind complete linear orders 363 

case 3: 0(^tile A -«next A -••next) is true at (2,2/0)- This case is similar to 
case 2 and cannot happen. 

So all the tile-squares lie before the least upper bound z. But then we can use 
(7.2) and (7.6) to show that there are no other tile-squares. Q 

Corollary 7.13. None of the logics 

Log{(0, <) X (O', <)}, Log{(0, <) X (O', <)}, 

forOe {N,Z,R} andO' € {N,Z,R,Q}, is recursively enumerable. 

It is not hard to see that all frames for Log{(N, <)} and Log{(N, <)} are 
Dedekind complete (see the axiomatizations in Section 2.1). So we also have 
the following: 

Corollary 7.14. Let Li € {Log{(N,<)},Log{(N, <)}} and let L2 = LogC, 
where C is a class of transitive and weakly connected frames at least one of 
which contains an ascending u-type chain of distinct points [e.g.y L2 is any 
logic mentioned in Theorem 7.2). Then Li x L2 is not recursively enumerable. 

By using an equally devious set of extra formulas we can also produce a 
similar theorem for classes of frames with infinite descending chains. 

Theorem 7.15. LetC be a class of products of transitive and weakly connected 
frames satisfying the following conditions: 

min there is a frame (H^i, <i) x (W2» <2) € C with each (Wi, <i), fori = 1,2, 
being rooted^ Noetherian and containing an infinite descending chain; 

max if {Wu <i) x {W2, <2) € C, then both {Wi, >i) and {W2, >2) are Dede-
kind complete. 

Then the satisfiability problem for MC2'formulas in C is E}-/iard, and so 
LogC is not recursively enumerable. 

Proof. As before, suppose that we have a finite set T of tile types and a 
to € T. We extend XT of Section 7.2 to ^T by choosing a new propositional 
variable r and adding the following conjuncts to xr* 

-<^^XT, (7.45) 

a*(^P~*-^r), (7.46) 

D*(foAwall-^rAQr), (7.47) 

• ( O r - 4 0(<oAwall)), (7.48) 

HOr. (7.49) 

These are designed to ensure that: 
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• ^T can be true only at the 'Dedekind limit' of the diagonal squares 
{n^n), n e N, (7.45) (for x r holds at this limit), 

• r is false above the diagonal squares (7.46), 

• r is true 

- in every to-square which is a wall-square, and at the points which 
are to the right of such a square (7.47), 

- and only there (7.48), 

• if one moves even a bit to the right from the square where ^T holds, one 
sees r above (7.49). 

Thus, if ^T is satisfied in some square then r (and so to on the wall) must be 
infinitely close to this square. 

Condition min guarantees that if T tiles N x N so that to appears infinitely 
often on the wall, then ^T is satisfiable in C. • 

It is not hard to see that all Noetherian frames are Dedekind complete 
(see the axiomatizations for GL.3 and Grz.3 in Section 1.2), so we have the 
following: 

Corollary 7.16. GL.3 x GL.3, Grz.3 x Grz.3, and GL.3 x Grz.3 are not 
recursively enumerable. 

7.4 Products of finite linear orders 

This section proves the following theorem due to Reynolds and Zakharyaschev 
(2001): 

Theorem 7.17. IfCi and C2 are classes of finite (strict) linear orders both 
containing arbitrarily long {but finite) chains, then the logic Log(Ci x C2) is 
undecidable. 

Proof. For simplicity we will assume here that both Ci and C2 contain only 
strict linear orders. If this is not the case, one can use variables h and v and 
the formulas (7.21)-(7.22) to partition frames into black and white squares, 
and then use the modal operators • and <• as in the previous sections. 

We are going to reduce the undecidable halting problem for Turing ma-
chines (see Section 5.4 for definitions and notation) to the satisfiability prob-
lem in C\ X C2. Given a Turing machine A, we construct a formula ipA which 
is satisfiable in a frame from Ci x C2 iff A comes to a stop having started from 
the configuration (£ , {SQJ 6), 6,6,. . .) . 
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The proof consists of two basic steps. First, using the enumeration depic-
ted in Fig. 7.1, we generate a sequence of ^diagonal points' to represent (now 
a finite part of) the N x N grid. The formulas doing this job are similar to 
formulas (7.2)-(7.18) but much simpler, since now we are dealing with finite 
(and so discrete) linear orders: 

tm A a*(tm A OT -4 Onext A -n<I><J>next), (7.50) 

D*(nextAOT-> Otm A-i<^Otm), (7.51) 

floor A wall A -.<!>0(floor A wall), (7.52) 

•(next -> right), (7.53) 

a*(right A <̂ T —• <I>above A -><I><0>above A -"Oabove), (7.54) 

•*(-nwall A tm -+ •(above AOT -^ Oright A -.OOright)), (7.55) 

a*(wall A tm --• •(above A OT -* Oqf A -^OOg A -^Oright)), (7.56) 

n*{q A OT - • <>right A --OOrlght), (7.57) 

•*(wall - • •(next -> Q(tm - • floor))), (7.58) 

D*(wall ~> •(above - • Q(tm -> wall))), (7.59) 

•*(above -^ -.0floor), (7.60) 

a*(right->>-Owall), (7.61) 

•*-^(pA(<I>pVOp)), (7.62) 

where p ranges over all the variables occurring in (7.50)-(7.61). 
Next, we represent a run of the Turing machine A as a sequence of consec-

utive rows on the grid, each of which represents a configuration of A. (Note 
that although our grid is finite, its rows are suitable for representing infinite 
configurations because any configuration in a computation of A starting from 
(£, (5o, fr), 6,6,...) can contain only finitely many symbols different from 6.) 
This can be done by the conjunction of the following formulas, for all instruc-
tions (5(a,/3,7) = (a ' ,^ ' ,y) of A: 

xeA' 

a* A ''iP^^P^')^ 
x.x'eA' 

p£ A 0(right A <^ip{s„,b) A ̂ (right A Opb))), 

D*(qi <-> tm A 0(right A Oq»)), 

(7.63) 

(7.64) 

(7.65) 

(7.66) 
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{s,a)eSxA 

a * {QS ^ <I>(right A 0 ( tm A qr))), (7.68) 

D* [Pa A g/ A 0 (right A 0(p/3 A <J>(right A Op^))) --> 

O(above A 0(pa' A 0(right A 0(p^. A <l>(right A Opy) ) ) ) ) ] , (7.69) 

O* A C"'̂ ' '̂  ""̂ ^ '̂  "̂ ^̂  A Pa - • a(above - • Q(tm -^ p^))). (7.70) 
a6i4U{jC} 

Define ipA to be the conjunction of (7.50)-(7.70). Suppose that frames 
5i £ Ci and ^2 ^ C2 are given, and ipA is true at the root of the frame 5i x 3̂ 2 
under some valuation. Then there are points XQ, . . . , x^ in Ŝ i and yoy-iVe 
in ^2, for £ < LJ, such that {xiyyi) \= tm for all i < £. It is not hard to show 
that, for i,j<£,^e have 

• (xi,yj) f= next iff j = i -h 1, 

• {̂ i»2/i> 1= "ght iff right{i)=:j, 

• (xi,i/j) 1= above iff above{i) = j , and 

• the variables wall and floor mark the wall and the floor of the grid, 
respectively. 

Every point marked by tm is also marked by a propositional variable px, for 
some X 6 A'. Configurations are represented by tuples 

such that (xio,yio) |= wall and (xi^,2/i^^i) [= right, for all j < k. We also have 
{xi^,yij) h 95 iff {xi^»2/ii) N P{3,a) for some (5,a) e SxA, {xi._^,yi._^) \= qi 
and (xi^^j, t/î .̂ i) [= gr- The formula (7.65) says that A starts working on the 
empty tape. Finally, the formulas (7.69) and (7.70) describe the effect of the 
transition function S: we move to the next row above and change the active 
cell and its left and right neighbors, leaving other cells intact. 

With this explanation, it is not hard to show that (fA is as required. We 
leave this to the reader. • 

Corollary 7.18. Log{(N, >) x (N, >)} and Log{(N, >) x (N, >)} are not re--
cursively enumerable. 

Proof. As we already mentioned in Section 7.2, it is not hard to see that 
these logics are determined by recursive classes of finite frames. So if they 
were recursively enumerable, then they would be decidable, contrary to The-
orem 7.17. • 
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7.5 More undecidable products 

First we use a modification of the 'chess-board' technique of the previous 
sections to show undecidabiHty of certain product logics, where one of the 
components is K enriched with either the universal modality or the common 
knowledge operator. The results below will be applied in Part IV to show un-
decidability and nonaxiomatizability of certain temporal epistemic and modal 
description logics. 

Theorem 7.19. Let C be a class of transitive and weakly connected frames 
such that at least one frame inC contains an ascending LJ-type chain of distinct 
points. Then Log(C x FrKu) and LogC x K^ are undecidable, and the logics 
Log(C X FrKf) and LogC x K f are not even recursively enumerable. 

Proof. First we show the undecidability of Log(C x FrK^) and then explain 
how to modify the proof for Log(C x FrKf). The statements for product 
logics LogC X Ktt and LogC x K f will clearly follow. As before, we use O and 
Q to denote the 'horizontal' modal operators. In the 'vertical' dimension, the 
K-modalities are denoted by 0 and • , and the universal box by 09. 

The undecidable problem we are going to reduce to the satisfiability prob-
lem for Log(C X FrKu) is the halting problem for Turing machines (see Sec-
tion 5.4). Given a Turing machine A, our aim is to construct a formula V'A 
which is satisfiable in a frame from C x Fr Ku iff A does not come to a stop 
having started from the configuration (£, (SQ, 6), 6,6,.. .). 

Suppose that 5 = (W^ <) is a frame in C and (S = {U^R^Ru) is a frame 
for Ku. Without loss of generality we may assume 3̂  and (5 to be rooted (i.e., 
Ru — U X U). First, we generate consecutive disjoint 'slices' in ff x (S by 
generating consecutive disjoint 'intervals' in 5- (We call a nonempty subset 
/ of W an interval if, for all u^v^w € W, whenever u^v £ I and u < w < v 
then w € / .) This can be done using propositional variables ho and hi and 
the following formulas (which are similar to the conjuncts of Chessboard in 
Section 7.1, cf. also (Spaan 1993)): 

B'^{ho - • -n/i i) , 

ho A B-^iiho ~> O/ii) A {hi - • 0/io)), 

Q"^(0/io->/ioV/ii), 

^'^{(ho -^ ^ho) A (-./lo - • ffl-i/io)), 

Q-^((/ii - ^ mhi) A (-i/ i i -> QO-i/ii)). 

The conjunction of these formulas will be denoted by Scale. Say that a point 
x in 5 (under some valuation in 5 x (S) is white (or black) if (x, y) |= ho 
(respectively, (x,y) |= hi) for all y in 6 . A point that is neither black nor 
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white will be called a cloud point. If Scale is true at a point (xo,t/o) in 3̂  x © 
under some valuation, with XQ being the root of 5, then the noncloud part of 
3̂  can be viewed as a scale that is either infinite or finite ^circular:' this part 
of 3 is divided into intervals in such a way that XQ belongs to a white one and 
every interval has (not necessarily immediate) successors of different color. 

For intervals / i and I2, we write 

/ i < I2 iff Vx e Ii3y e I2 {x ^ y and x < y). 

As before, we can define a new possibility operator • by taking, for any 
formula tp, 

•t/; = {ho -^ 0( / i i A O-^XIJ)) A {hi -^ 0{ho A O+t/;)); 

H is the dual of • . For any noncloud point x in 3, let inte'rval{x) denote the 
interval containing x. It should be clear that, for every y in 6 , we have: 

(x, y} 1= • ^ iff 3w {interval{x) < interval{w) and {w,y) \= x/^). 

Note that < is not necessarily irreflexive on intervals either: if / is a <-cluster 
having at least two elements, then I < I holds. 

However, as before, we can force certain intervals to be irreflexive. Given 
propositional variables p and q, define a formula next(p, q) as the conjunction 
of the following formulas: 

B^(pVg-^( / ioV/ i i ) ) , 

•"^(OpA-i^p-^p), 

B'^{p-^ • g A- i^^g) , 

B-^{q-,-.^q)^ 

B^{p^B{^qA^q-^p)) 

(cf. the p-square formulas in Section 7.1). It is easy to see that if 

(xo,y) 1= 0"^pAnext(p,g) 

then there are points x and w > x such that (x', y) \= p for all x' G interval{x)^ 
{w,y) \= q, interval{x) < interval{w), both interval{x) and interval{w) are 
irreflexive, and for all u with x < u < K; we have either u G interval{x) or 
u € interval{w). It follows in particular that if 

(xo,t/) 1= O'^qo A next{qo,qi) A next{qi,q2) A • • • A next(gn-i,gn) 
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then there exist n consecutive irreflexive intervals /Q, . . . , / n - i such that we 
have {w^ y) |= qj for all w € Ij^ j < n, and (u, y) |= Qn for some point u such 
that u ^ / n - i and u > it; for all w € /n - i -

Now we can encode runs of the Turing machine A as consecutive rows 
of 5 X ©, each of which represents a configuration. Consider the following 
formulas, for all instructions (J(a,/?,7) = (a',/3',7') of A (here d and d' are 
dummy variables): 

aiQ-^ / \ - (pxAp: ,0 . (7.71) 

P£ A next(px,p(,„,b)) A next(p(,„,b),d) A G+(pi: Vp(,„,(,) Vpb), (7.72) 

SlQ+(9, ^ V p<,,„>), (7.73) 

Si{<>'*'qi A next(g/,q'a) A next(9s,9r) A r\ext{qr,d')), (7-74) 

Sl(0+(q, Ap„) A 0(95 Ap<5) A <&(9r Ap.y) -» OTA (7.75) 

B+iiqi -^ apa>) A (g, -* Qp^') A (gr -»tIlP7'))). 

ffilQ"^ / \ (-^9/ A -.9, A -n r̂ A po - • Qpa), (7.76) 
o€/iU{Z} 

Let 0>i be the conjunction of Scale and (7.71)-(7.77). We leave it to the reader 
to check that ipA is satisfied in a model based on a frame for Log(C x FrK„) 
iff A has an infinite computation which starts from the empty tape. 

That Log(C X Fr K f ) is not recursively enumerable can be proved as follows. 
Replace all occurrences of 09 in tpA by C{i}, and add the conjunct 

C{l}-'C{i}-nO y P{so,a)' 
aeA 

It is not hard to see that the resulting formula XA is satisfied in a model based 
on a frame for Log(C x FrKf ) iff A is recurrent (see Section 5.4). Q 

As a consequence of the reductions of Chapter 6 (see Table 7.1) we obtain: 

Theorem 7.20. Suppose L € {PDL, CPDL, Kf, T^, K4^, 84^, KD45^, 
S5^}. Then LxKu and L x K f are undecidable. 

Proof. By Theorem 7.19, we know that PTL x K^ is undecidable. The 
undecidability of the remaining product logics of the form L x Ku—save 
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S5f xK ,4—now follows from the reductions of Table 7.1. Finally, 8^2 x K^ 
is undecidable, because Ku x K,* is undecidable (Theorem 5.37) and polyno-
miaily reducible to S5^ x Ku (Table 7.1). 

For any L listed in the theorem, L x K^ is polynomially reducible to 
L X Kf, see Theorem 6.71 (1). Hence, L x Kf is undecidable. Q 

It seems that neither the undecidability proofs of this chapter nor the 
method of quasimodels developed in Chapter 6 can be applied to 'nontriviar 
products of unimodal logics whose both components are transitive and at least 
one of them is not necessarily linear (or of a fixed finite width); see Table 7.2. 
In fact, the only known result concerning this kind of logic is Theorem 7.24 
below. 

In particular, the following challenging problems are open: 

Question 7.21. Are any of the products K4.3 x K4, K4 x K4, S4 x S4 
decidable? 

It is worth noting that K4.3 x K4.3 is known to be undecidable (see 
Theorem 7.2). Since K4.3 is in coNP-complete and K4 is PSPACE-complete, 
K4.3 is polynomially reducible to K4. However, without knowing how such 
a reduction works, it is not clear how to lift' it to the product level, and 
deduce, for instance, the undecidability of K4.3 x K4 from the undecidability 
of K4.3 X K4.3 (cf. Remark 6.19). 

As concerns the fmp of these logics, by Theorem 5.32 we know that Li x L2 
does not have the product fmp, whenever Li and L2 are any logics from the 
list 

K4, S4, K4.3, S4.3, Log{{0,<)}, Log{(0,<)}, for O € {N,Z,Q}. (7.78) 

However, these logics may still enjoy the (abstract) finite model property: 

Question 7.22. Do any of the logics in (7.78) have the fmp? 

A positive answer to this question for K4 x K4 and S4 x S4 would also 
solve affirmatively the corresponding parts of Question 7.21, since both these 
logics are finitely axiomatizable by Corollary 5.10. Note that even solutions 
to the following problems are not known: 

Question 7.23. Are any of the logics (K4 (g) K4) © (D1D2P <-> •2^1?) and 
(S4 (g) S4) © (Dia2P ^ O2D1P) decidable? Do they have the fmp? 

Note that, by Theorem 5.40, we do know that PTL x K4 is undecidable. 
Here we prove the following generalization of this result: 

Theorem 7.24. Log{(N,<)} x K4 and Log{{N,<)} x S4 are undecidable. 
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Proof. First we show that Log{(N, <)} x K4 is undecidable by modifying 
the proof of Theorem 5.40. Throughout, we will use the notation of that 
proof. 

Given a finite alphabet A and a set P = {{vi,wi),... ^ (vk^Wk)} of pairs 
of words over A, we construct a formula ^pA,p (in the language with Q and • ) 
which is Log{(N, <)} x K4-satisfiable iff there exist an AT > 1 and a sequence 
hi" -yiN of indices such that 

Vh*"'*Vij^ =Wi,*"-*Wij^. (7.79) 

Let the formula ipuft be v?/e/e as defined in the proof of Theorem 5.40, but 
(5.39) replaced by 

••^(pair^ ^ •+(- left -^ Om'»-left)), (7.80) 

(5.40) replaced by 

Q+fpair^ -^ •"^(-.left AQleft - • Q(<I>-̂ left A-.<J>-̂ +Meft -^ left^j _ . ) ) ) , (7.81) 

(5.41) replaced by 

pair, -^ B(leftfcj A O(left^ A 0(left^ A • • • A 0\ef%i^)...)), (7.82) 

and (5.42) replaced by 

Q Tpair, -> Q^ (left A Q-^left -> 

QO(left^ A 0(left^ A . . . A Oleft̂ .̂  ) . . . ) ) ) • (7-83) 

Define tpright from (Pright in a similar way, and let 

'^A,P = V?! A (̂ 2 A tpieft A t/Jright, 

where ipi and (f2 are as in the proof of Theorem 5.40. 
We show that t/̂ A,p is as required. First, if there exist an iV > 1 and a se-

quence i i , . . . , iiv of indices such that (7.79) holds, then IIJA,P is satisfied in the 
same model based on {N, <) x (N, <) as in the proof of Theorem 5.40. Con-
versely, suppose that ipA.p is Log{(N, <)} x K4-satisfiable. By Theorem 6.29, 
we may assume that 

(9n,(0,t/o))|=^>v,P 
for a model 9Jl based on the product of (N, <) and a frame (V, 5) for K4. By 
V?2j we can find an AT, 1 < AT < a;, such that 

(971, (iV,yo» N D"" A C f̂*- ^ '''e*̂ *«)-
aeA 
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Let ti,...,tAr be the sequence of indices such that, for 1 < j < iV, we 
have (971, (j - l,yo)) N ps'*'* (by (fi we have such a sequence and it is 
unique). Now one can almost repeat the proof of Theorem 5.40 with the 
points 0,1,2,... in place of Xo,xi,0:2, The only difference is that the (in-
ductive) proofs of statements (i)-(iii) and (i)'-(iii)' are a bit more complex. 
We show how to prove (i)-(iii). 

For j = 1, we have (i) by (9Jl, (0,t/o)) |= pair̂ ^ and (7.82), (ii) by (5.38), 
(7.80) and (5.37), and (iii) by (7.81) and again (5.37). Now assume inductively 
that (i)-(iii) hold for some I < j < N, Let (t/O)... ,t/nj-i) be a maximal 5-
path in 2Jj(left). First, we have t/o» • • • »2/n -̂i ^ 5Jj4.i(left) by (5.37). Second, 
(a«,0*,t/n,-i)) 1= left AD-left and (an,(i,yo)) \= pa ' \ ^p so (7.83) now 
implies that there exist t/n.̂  • • -lynj-^h.^^-i such that ^2/0, • • - ^ynj+U.^^-i/ is 
an 5-path in 5Jj^i(left), as required in (i). For (ii) and (iii), observe first that 
for any 5-path (t/o, • • • ,yf-i) in 5Jj^.i(left), ^t/o,... ,1//./, .^^ - 1 ^ is an 5-path 
in 53j(left), by (7.80) and (5.37). So / < n^+i must hold. If / = rij^i then 
leftwordj{yo^..., yi^ii. ^ -1) = Vi^* .,,* Vi. by the induction hypothesis, so 
leftwordj^i{yo,.. ,yi^ii. j~i) = t̂ n * • • •* t;î  by (5.37). On the other hand, 
by the induction hypothesis and (5.37), we have 

(jm,(j,i//^/,.^^))h-leftABleft. 

Now (7.81) implies that leftword^^i{yi^i,,^^,..., t//^i) - Vi., j , so 

leftwordj^^{yo,..., t//^i) = t;̂ ^ * .. .* Vy.^,, 

as required. 

To prove the undecidability of Log{(N, <)} x S4, we need to modify the 
formula ipA,p constructed above. We apply a trick similar (but simpler) to 
the one in Sections 7.1-7.4: we use an extra variable s to imitate the K4-
modalities on S4-frames. 

Let 
V?o = C]((s -> Qs) A (-^s -> Q-15)). 

Introduce a 'strict' possibility operator O by taking, for any formula Xi 

Ox = (s -^ 0(-i5 A Ox)) A (-.s -• 0{s A <I>x))» 

and let CI be the dual of <•. Now, the formula (7A,P is obtained from ipA,p 
above by replacing each occurrence of • or <> with II or <•, respectively, and 
taking the conjunct of the resulting formula and (̂ o-

We show that (TA,P is as required. Suppose first that there is a sequence 
of indices i i , . . . ,iA ,̂ AT > 1, such that (7.79) holds. Then (TA,P is satisfiable 
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in the product frame (N, <) x (N, <). Indeed, define a valuation 5J in this 
frame as in the proof of Theorem 5.40 and extend it to s by taking 

5J(5) = {{n,2m) | n , m € N } . 

One can readily check that under this valuation we have (0,0) |= CTA^P-

Conversely, suppose that (9Jt, (0,yo}) |= <^A,P for some model 971 based on 
a product frame (N, <) x {V, R), where i? is a reflexive and transitive relation 
on V. Define a new relation 5 on V by taking, for all x, y € V, xSy iff one of 
the following conditions hold: 

• (971, (0,x)) 1= s and there is a z in V such that (971(0,2)) |= -*s and 
xRzRy, or 

• (971, (0,x)) 1= -"S and there is a z in V such that (971(0,2;)) \= s and 
xRzRy. 

Clearly, 5 is a transitive relation and (since ipo is a conjunct of CFA^P), the 
operator <• is nothing but the modal operator interpreted by the 'vertical' 
relation of the product frame (N, <) x (V, 5). Now one can repeat the above 
proof given fox ̂ |JA,P' Q 

Now by the reductions in Theorems 6.18, 6.23 and 6.24 we obtain: 

Theorem 7.25. Suppose L € {PTL, PDL, CPDL, Kf, Tf , K4^, S4^, 
KD45^} . Then L x K4 and Lx S4 are undecidable. 
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Chapter 8 

Higher-dimensional 
products 

As we saw in the previous three chapters, the computational complexity of 
two-dimensional product logics may grow dramatically as compared with the 
complexity of their components. This suggests that we can hardly expect 'de-
cent' computational behavior from higher-dimensional products. The main 
aim of this chapter is to show that actually no n-modal logic between K^ and 
SS'* is decidable if n > 3 and that no logic in this interval is finitely axiomat-
izable. Examples of finitely axiomatizable and decidable higher-dimensional 
product logics are given in Section 8.5. For the reader's convenience Table 8.1 
summarizes the properties of higher-dimensional products of some standard 
logics. 

Let us begin by recalling the basic definitions of Section 3.3. The (n-
dimensional) product of Kripke frames 5i = (Wi, J?i ) , . . . ,5n = i^mRn) is 
the n-frame 

3̂ 1 x - x 5 n = (V î X . . .X Vni ,^ i , . . . ,^n>, 

where, for each i = 1 , . . . , n, ^i is a binary relation on Ĥ i x • • x Wn such 
that 

(u i , . . . , Wn) Hi (t;i , . . . , Vn) iff UiRiVi and Uk = Vk for k ^ i. 

The {n-dimensional) product of Kripke complete modal logics Li, i = 1 , . . . , n, 
is the n-modal logic 

Li X •.. X Ln = Log{5i X . . . X 5n I 5i € FrLi, i = 1 , . . . , n}. 

377 
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S5" (n > 3) 

K4^ (n > 3) 

K " (n > 3) 

Alt^ 

finitely 
axiomatizable 

no 
(Thm. 8.2) 

no 
(Thm. 8.30) 

no 
(Thm. 8.30) 

yes 
(Thm. 8.46) 

has fmp 

no 
(Thm. 8.12) 

B 

yes 
(Thm. 8.24) 

yes 

has 
product fmp 

no 

no 
(Thm. 8.31) 

no 
(Thm. 8.31) 

yes 
(Thm. 8.52) 

decidable 

no 
(Thm. 8.6) 

no 
(Thm. 8.28) 

no 
(Thm. 8.28) 

yes 
coNP-complete 

(Thm. 8.53) 

Table 8.1: Some higher-dimensional product logics. 

Similarly to the two-dimensional case, any two coordinates of a product 
frame satisfy the property of left and right commutativity, as well as the 
Church -Rosser property. To put it another way, all product frames of any 
dimension n > 2 validate the formulas: 

ccrni 

comlj 

chvij 

OjOip-^OiOjP, 

OiOjP -* OjOiP, 

As before, the logic that results by extending the fusion of the Li with 
these axioms will be denoted by [Li , . . . , ! /^] and called the commutator oi 
L i , . . . , Ln- In other words, 

[Lu..,,Ln] = {Li0'"0Ln)® 0 {comij®chrij), 
i^*.i<^ 

where corriij = com\j A comjj. By Proposition 3.13, we always have 

[Li , . . . ,Ln] C Li X •. X in -
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8.1 S 5 x S 5 x - . . x S 5 

We begin our investigation of higher-dimensional products by considering 
the products of S5. These logics—their algebraic counterparts, to be more 
precise—have been thoroughly studied in algebraic logic (Henkin et ai 1971, 
1985, Andreka et aL 2000). As we know from Section 1.5, every n-frame 
5 = (VT, / ? ! , . . . , Rn) gives rise to the n-modal algebra (f̂  of all subsets in W^ 
where for every X CW and every t = 1,. . . , n, 

ofx ^{weW\3ueX wRiu}. 

Thus, elements of the algebraic dual ^'^ of a universal product S5"-frame 5 
are all subsets of some Cartesian product Wi x • • • x Wn and, for each such 
subset X and each t = 1, . . . , n, 

o f X = {{wu.,.,Wn) \3ueWi {Wu..,,Wi-uU,Wi^u,..,Wn) E X}. 

In algebraic logic, these kinds of algebras are called full diagonal-free cylindric 
set algebras of dimension n} By Proposition 3.11, these algebras generate 
the variety (equational class) AlgS5^ of n-modal algebras for S5^ which is 
known in the algebraic logic literature as the variety RDfn of representable 
diagonal-free cylindric algebras of dimension n. The class Alg[S5, S5 , . . . , S5] 
is known in algebraic logic as the class Df„ of diagonal-free cylindric algebras 
of dimension n; see (Henkin et al, 1985). 

Axiomatization 
As we know, [S5,S5,... ,S5] C S5^. However, unlike the 2D case, now 
this inclusion is proper. To show this, we note first that all n-dimensional 
product frames satisfy the following 'cubifying' properties whenever n > 3 
and i, j . A: € {1 , . . . , n} are distinct: 

^^J^fj-'ixlyjZyv{xRiVAxRjy/\xRkZ -> 3a,b,c,d {vRjCAvRkbA 

yRiC A yRka A zRib A zRja A aRid A bRjd A cRkd)). 

Vf yf—h-Wc 

Ri ^ 

^Note that we enumerate 'dimensions' starting from 1, while the standard algebraic logic 
convention is to start from 0. 
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Figure 8.1: An [S5,S5, S5]-frame refuting cub 123 

It is not hard to check that a [S5, S 5 , . . . , S5]-frame ^ satisfies this property iff 
the following modal formula cub"^^ is valid in 5 (cf. Henkin et al, 1985 [3.2.67]): 

cub"^^ = OiP A OjQ A Ofcr -> 

OiOjOk{Ok{OjpAOiq) A OjiOkpAOir) A Oi{Okq A O^r)). 

Thus cub^^^ belongs to S5^. On the other hand, Fig. 8.1 shows a 23-element 
[S5, S5, S5]-frame refuting cub^'^^ (see again Henkin et al. 1985 [3.2.67]). So 
[S5, S5, S5] and S5^ must be different. But the situation is even worse: 

Theorem 8.1. (Johnson 1969) The equational theory o/RDfn is not finitely 
axiomatizable, whenever n > 3. 

Translating this result into the language of modal logic, we obtain: 

Theorem 8.2. For no n>3 is the logic SS'^ finitely axiomatizable. 

(This result also follows from Theorem 8.30 below.) The only consolation 
can be the following consequence of Theorem 3.17: 

Corollary 8.3. S5^ is recursively enumerable. 
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The interested reader can find an infinite recursive axiomatization of RDfn 
(and thereby of 85"*) in (Hirsch and Hodkinson 1997). 

Question 8.4. Is it possible to axiomatize S5^ using only finitely many pro-
positional variables? (For related questions in algebraic logic consult (Andreka 
1997).) 

Undecidability 

That S5^ is undecidable for any n > 3 was first proved (in the algebraic 
setting) by Maddux (1980), who used a reduction of the word problem of 
semigroups. 

Theorem 8.5. (Maddux 1980) Let V be a variety such that RDfn C V C Dfn. 
Then the equational theory ofV is undecidable whenever n > 3. 

Reformulating this result in the language of modal logic, we obtain: 

Theorem 8.6. Any n-modal logic L in the interval 

[ S 5 , S 5 , . . . , S 5 ] C L C S 5 ' * 

is undecidable whenever n > 3. 

Here we show a different proof which uses a reduction of a tiling problem. 
To make the proof more transparent and to illustrate the important connec-
tion between SS'^ and a fragment of classical first-order logic, we consider only 
the case of S5^. (However, the proof can be generalized to cover all logics 
mentioned in Theorem 8.6.) 

Note first that by Proposition 3.15, it is enough to show that S5*̂  is unde-
cidable. We will reduce an undecidable fragment of first-order logic to S5^. 
This fragment—Q£2'~—^^^ introduced in Section 3.10. It consists of all 
first-order formulas with equality that contain only binary predicate symbols 
and at most three distinct individual variables x^y^z. The undecidability of 
this fragment follows from Theorems 3.40 and 3.44. Since Theorem 3.40 is 
not proved in this book, below we give a direct proof by reducing the unde-
cidable N X N tiling problem (see Section 5.4) to the satisfiability problem for 
Q£2'"^-formulas. 

Proposition 8.7. The satisfiability problem for QC2'^-formulas is undecid-
able. 

Proof. Suppose we are given a finite set T of tile types. With every f € T we 
associate a binary predicate Pt^ and let < i , <2 be two extra binary predicates. 
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Using 
(8.6): 
Using these we construct a QC2 -formula ^ T as the conjunction of (8.1)-

Vx3y x < i y A Vx3y x <2 y, (8.1) 

yx^y^fz (x < i y A a: <2 z -* 3x{z < i x A y <2 x)), (8.2) 

VxV^e(ar ,x) , (8.3) 
teT 

Vx / \ -(Pe(x,x) APe.(x,x)), (8.4) 

VxVy (x < i y -^ / \ -n(Pe(x,x) A Pt.(y,y))) , (8.5) 
right{t)^left{t') 

VxVy (x <2 y -^ / \ -(Pe(x,x) APe.(y,y))). (8.6) 
up{t):^down{t') 

It should be clear that (f)T has a model whenever T tiles N x N (<i and <2 
are Interpreted as the horizontal and vertical successor functions in the N x N 
grid, and Pt{x^ x) holds iff t tiles x, for any x € N x N and t € T). 

Conversely, suppose that (t>T has a model. Take any point yoo in it. By 
(8.1), we have two infinite ascending chains of (not necessarily distinct) points: 

2/00 < i J/10 <i y20 < i •••, 

yoo <2 yoi <2 yo2 <2 • • • • 

By (8.2), there is yn such that yoi <i yii, yio <2 S/ii- For the same reason, if 
we have already constructed points yt(j+i) and y{i-\-i)j for which yij <i y{i^i)j 
and yij <2 t/t(j+i), then we can find a point y{i^i){j^i) such that 

yiU-¥i) < i y(i+i)(i+i) and y(t-|.i)j <2 y(i+i)(j+i). 

Define a map r from N x N to T by taking T{i,j) = t iff Pi{y%j,yij) holds 
in the model under consideration. It follows then from (8.3)-(8.6) that r is 
well-defined and gives a tiling of N x N. • 

Now we construct a recursive translation % of QC2^'loxmM\d& into the 
language A I A of S5^. Let Dip denote U\n2Uzip^ and let dij and p£ be 
propositional variables, for 1 < i < j < 3 and i < uj. Note first that without 
loss of generality we may assume that the only atoms in Q£2'~-formulas are 
equalities Xi = Xj, for 1 < t < j < 3, and predicates of the form Pi{Xjy), 
i<(jj (cf. Section 3.5). 

Given such a formula 0, we replace in it every occurrence of 

• 3xi with Oi, Vxi with D^, for i = 1,2,3, 
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• Xi = Xj with dtj, for 1 < i < j < 3, 

• Pi{Xyy) with OsPii for £ <(JJ. 

The resulting 3-modal formula is denoted by (t>^. Let (5̂  be the conjunction 
(8.7)-(8.13) 

nOidij, 

DO jdij, 

D{Okdij -* dij), 

a{di2 A d23 -" dia). 

D(di2 A di3 -» d23). 

n(di3 A d23 -» di2), 

D(d<j A 0<(dy A Oap) - • Oap), 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

in which l < i < j < 3 , t , j ^ A : , l < A ; < 3 , and p ranges over the propositional 
variables occurring in 0^ Finally, we put 

Proposition 8.8. A QC^"^-formula (f> is satisfiable iff its translation <t>^ is 
satisfiable in an Sb^-frame. 

Proof. (=>) Suppose (/> is satisfied in a first-order structure / with domain 
D. Consider the model 971/ = ((D, D, D), 93) based on the universal product 
frame (£>, D, D) (cf. Section 3.3) and such that 

V{pe) = {{^1,02,03) € £)3 I / 1= Pi{x,y)[aua2]}, 

^{dij) = {(ai»a2,a3) € D^ | a* = aj} {l<i<j< 3). 

It should be clear that 9Jt/ |= (5 ,̂ and by a straightforward induction on the 
construction of 0 one can easily show that, for all 01,02,03 € -D, 

I |=</>(^)2/i'2:)[oi,02,03] iff (Wt/, (01,02,03)) | = 0 ^ 

( ^ ) Suppose now that 0^ is satisfied in a model 971 = (5,93) based on 
an SS'^-frame J . By Proposition 3.11, we may assume that 5 is a uni-
versal product frame (H^i, VV̂* W â)- Further, we may assume that, for all 
{wi,W2)'W3) eWixW2xW^ and all variables pi in (^^ 

(97l,(t/;i,tx;2,ti;3)) h Pi iff "iveWs {m,{wuW2,v)) f=p£, (8.14) 

(97l,(ti;i,ti;2,t/;3)) [=^12 iff Vv € ^"3 (97t, (ti;i,ti;2,t^)) N ^̂ 12, (8.15) 

{M,{wi,W2,W3)) |=cfi3 iff Vve W2 (97l,(ii;i,t;,ti;3)) 1=^13, (8.16) 

(9n,(ti;i,ti;2,ti;3)) h ci23 iff Vt; € Wi {m,{v,W2,W3)) h ^23, (8.17) 
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and 9J(g) = 0 for all other propositional variables q. Indeed, (8.14) follows 
from the fact that pe occurs in 0^ only in the context of Ospe, and (8.15)-
(8.17) from (8.9). Such a model VJl will be called binary generated to reflect 
that the truth-values of variables in 971 depend only on at most two coordinates 
of the worlds. 

Our aim is to construct from 971 an S5^-model 91 = {{V, F, V) ,il), based 
on a cubic universal product frame, such that 0* is satisfied in 91 and, for all 
t, j with 1 < i < j < 3, 

iX{dij) = {(t;i,t;2,V3) eV^\vi= Vj}. 

Then by taking 

Im h= Pi{x,y)[vi,V2] iff 3vs € V {%{vuV2,V3)) \= Pei 

we will obtain a first-order structure /gt (with domain V) satisfying 0. 

That such a model 91 exists is a consequence of Lemmas 8.9 and 8.10 to 
be proved below. These lemmas are due to Johnson (1969) (who used ideas 
of Halmos (1957)) and were proved for representable diagonal-free cylindric 
(and polyadic) algebras; see also (Henkin et al. 1985). 

L e m m a 8.9. (Johnson, Halmos) Let 97t = ((1^1,^2,^3) ,93) be an S5^-
model and let U be the disjoint union of the sets Wi, i = 1,2,3. Then there 
is an S5^-model 97?'̂  = ((f/, f/, f/) ,93"*") having 971 as its p-morphic image. 
Moreover, if formulas (8.7)-(8.12) are true in 971, then 93"*" can be chosen so 
that 

"V-^idij) D {(ui,U2,U3) eU^\ui = uj} (8.18) 

hold forl<i<j<3. 

Proof. As we saw in the proof of Proposition 3.12, if a set U is such that 
there are surjections /« : [/ -^ ly^, for i = 1,2,3, then the map / defined by 

f{ui,U2,U3) = ( / l (Ui) , /2(U2), /3(U3)) 

is a p-morphism from the model 971"̂  = (([/, [/, U), 93"̂ ) onto 971, where 

93+(p) = {{ui,U2,us) € U^ I f{ui,U2,U3) e 9J(p)}. 

Assume now that (5̂  is true in 971. Take U to be the disjoint union of Wi, 
W2 and W3. We will define surjections fi :U —^Wi'in such a way that (8.18) 
holds. But first let us define an auxiliary function g onU. 

We claim that for every u e Wi there is a world g{u) = {u,v,w) in 
Wi X W2 "x Ws such that (97t,^(it)) f= di2 A dis A ̂ 23. Indeed, take some 
{u,v\w'). By (8.8), there is a t; € W2 with (971, {u,v,w')) \= du, and there 
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is Bi w € Ws with {Tl,{u,v,w)) |= ^23- By (8.9), {9Jl,{u,v,w)) \= di2, and 
so, by (8.10), (9H, (u, t;, K;)) ^ di3. In the same way one can show that 
for every v e W2 (every w € W3) there is 5f(t;) = {u^VjW) (respectively, 
g{w) = {u^v^w)) in Wi x Ŵ2 x ^ 3 such that {VJl^g{v)) |= di2 Adia Ad23 (and 
(OT,^(t/;)) hrfi2Adi3Ad23). 

Construct maps /» from U onto W^ (i = 1,2,3) by taking fi{u) to be the 
i-th coordinate of g{u)y for every u £ U, (Since / , is identical on Wi, /i is 
surjective.) Let JOT"*" be the model as defined above. We show that it satisfies 
(8.18). Suppose, for instance, that (w, u,t;) € U^ and u € W3. Then 

/ ( u , u , u ) = fif(w) € 2J(di2), 

and so {u^u^u) € 93*^(^12). In view of (8.9), it follows that (u, u,v) € 53"^(di2). 
Other cases are treated analogously. • 

As was mentioned above, we may assume that the constructed model 9Jt"̂  
is binary generated. By the p-morphism theorem, 9Jt"'" satisfies 0^. Since 9JI"** 
is based on a universal product S5^-frame and (Ĵ  is a conjunction of formulas 
prefixed by DiD2D3, this actually means that 971"̂  f= (5<̂ . 

L e m m a 8.10. (Johnson, Halmos) Let fUt"*" = ((f/, t/, [/) ,93'^) be a binary 
generated SS^-model satisfying condition (8.18) and such that OT"*" |= (J .̂ 
Then there is a p-morphism from WH^ onto an S5^-model 91 = ((F, V, V) ,11) 
such that \V\ < \U\ and 

fori <i <j <3. 

Proof. For every pair i, j such that 1 < i < j < 3, we define a relation 
Rij CU X U hy taking 

Rij = {{u,v) eU xU \ 3{wi,W2,W3) € V^{dij){wi = uAWj = v)}. 

In fact, these three relations coincide. Let us check, for instance, that we 
have R\2 C Ri^. Suppose that (9JI+, (t/,t;,ii;)) (= di2. By (8.9), we have 
(m-^.iu.v.v)) 1= di2 and by (8.18), (371-̂ , (t/,t;,t;)) |= ^23. It follows then 
from (8.10) that (9n+, (u, v,t;)) \= dis. 

So we denote Rij by R and prove that it is an equivalence relation on 
U X U. By (8.18), it is reflexive. Let us show that it is symmetric. Suppose 
(Wl'^,{u,v,w)) h=^i2- Then, as we saw above, (9Jl''",(u,i;,i;)) |= c(i3. By (8.9), 
(fm+,(u,u,t;)) 1= di3 and by (8.18), (On^-, (u,u,i;)) |= di2, from which by 
(8.11), (971 -̂, (u,u,v)) 1= d23. In view of (8.9), we have (971"̂ , {v,u,v)) |= ^23. 
Then, by (8.18), (art+, (t;,u,i;)) |= di3 and by (8.12), (971+, (t;,w,i;)) |= d^. 
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Thus, (v, u) £ Ri2 holds. To prove transitivity, suppose uR^v and VR23W. 
This means that we have (UTl"*", {u,v,x)) \= du and (OT"*", (y^v^w)) \= 2̂3 for 
some X and y. It follows from (8.9) that (971 ,̂ (w, t;,it;)) [= di2 A 0(23, and by 
(8.10) we obtain (OTl"'", (it,i;,it;)) \= di3, i.e., ui?i3ti;. 

Denote by [u] the /^-equivalence class containing u. Let V = {[it] | u G C/}. 
Define a valuation il on V x V x V by taking 

il(p) = {(Kl, [ui], H ) I {txi,U2,U3) G 2J+(p)}. 

This definition does not depend on the choice of (txi, 1x2, U3). Indeed, suppose 
that UiRvi, for each i = 1,2,3. We show that in this case 

(wi,W2,M3) e 53+(p) iff {vi,t;2,t^3) e 2J"*"(p), 

for every variable p in </>̂  
Suppose first that p does not depend on coordinate 3, that is, p is either 

some Pi or d^. Let (1*1,̂ 2,1*3) e 53" (̂p). We show that (ui,t;2,U3) € 53" (̂p). 
By (8.8), we have (971"̂ , (ui,U2,ii;)) [= ^23 for some ti;. It follows that U2R23'^ 
and (371"*", (ui, U2, t/̂ )) [= p (since 93"*"(p) does not depend on coordinate 3). So 
(OTl"*", {uijV2,w)) \= 02 (03p A d23)- By the transitivity of R, we have viRw, 
and so there is u such that (971"̂ , (w,t;2, ̂ 0) 1= ^23- In view of (8.9), we then 
have {m'^,{ui,V2,w)) |= ^23- Therefore, by (8.13), {dJl^,{ui\V2,w)) \= O3P, 
from which (Wt"*", (u 1,^2)^3)) |= P- Starting from this, in a similar way we 
can show that (971"*", (vi, V2,U3)) 'j= p. But then (971"*", (i;i,'y27^3)) N P (see 
Fig. 8.2). 

pAd23 
- ~ 02(03pAd23) 

^23 
O3P 

Wi W2 W3 

Figure 8.2: il(p) is well-defined. 
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Now suppose that p = dia, i.e., (ui, 1̂ 2)̂ 3) € 5J"^(di3) and UiRvi^ for 
each i = 1,2,3. Then uiRus and, since R is an equivalence relation, viRv^^ 
from which (vi^w^vs) € 2J'*"(di3), for some w. Using (8.9), we then obtain 
(t;i,t;2,t̂ 3> € 5J'*"(di3). The case of p = 2̂3 is treated similarly. 

It follows from the definition of il that 

H{dij) = {{VUV2,V3) £V^\Vi= Vj}. 

It remains to observe that the map / from U^ onto V^ defined by 

f{ui,U2,U3) = ([txi],[u2],[w3]) 

is a p-morphism from 971"̂  onto 91 = (V x V x V,ll), which completes the 
proof of Lemma 8.10. • 

Returning to the proof of Proposition 8.8, we see that if (f>^ is satisfied in 
an S5^-model 9Jt then (f>^ is satisfied in 971"*" (by Lemma 8.9), and so it is also 
satisfied in 5t (by Lemma 8.10), as required. • 

As a consequence of Propositions 8.7 and 8.8 we obtain that S5^ is unde-
cidable. 

Corollary 8.11. S5" does not have the product fmp whenever n > 3. 

Proof. By Corollary 8.3, S5^ is recursively enumerable. It is easy to see 
that finite product S5^-frames are recursively enumerable as well. Thus, by 
Theorem 8.6, S5^ cannot have the product fmp. • 

As [S5,.. . , S5] is finitely axiomatizable and undecidable, it does not even 
have the (abstract) fmp. But actually a much more general result holds. 

Lack of t h e finite mode l property 

Theorem 8.12. No n-modal logic L in the interval 

[S5,S5, . . . ,S5]CLCS5^ 

has the finite model property^ whenever n > 3. 

Proof. The proof we present here is based on an idea of Nemeti (1984) (for 
another proof using a property of finite semigroups see (Kurucz 2002)). 

Let $ be the conjunction of formulas (8.7)-(8.13) above and the following 
formulas: 

(a) D(p A Oi(p A di3) —> ^13) ('p^^ is a function'), 

(b) D(p ^ O3P) (*p is binary'), 

(c) DO2P {'Domp^ T'), 

(d) -02(OipAdi2) {'Rngp^T). 
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Lemma 8.13. $ is S5 -satisfiable. 

Proof. Consider a model JOT = (3^,9J), where 3̂  is the universal product 
frame on N x N x N and 

5J(p) = {{x,x-hhz)\x,zeN}, 

V{dij) = {{Xi,X2,X3) \Xi,X2,X3eN, Xi=Xj} (1 < i < j < 3). 

Then it is readily seen that (9Jl, (0,0,0)) [= $ . • 

Lemma 8.14. $ is not satisfiable in any finite frame for [S5, S5, S5]. 

Proof. Suppose that 5 = {W,Ri,R2,R3) is a frame for [S5,S5,S5] (i.e., 
the Ri are commuting equivalence relations on W) and that 3Jl is a model on 
^ such that (971, x) \= ̂  for some x. We show that then Ŝ  must be infinite. 

For each n < cj, we define a formula (fn and worlds Xn^Vn in 5 as follows: 

(fo = - '02(OipAdi2) , 

<^n+l = 02(0l(<^n Ap) Adi2). 

Let xo = X. Assume that Xk has already been defined. By (c) and (8.7), there 
are yk,ook+i such that XkR2ykR\Xk+\, yfc h P and x/fc+i |= d\2. 

Vk 

Vk+i 

dn 
Xk^l 

^k 

Claim 8.15. Vn < a; i/n N V'n-

Proof. An easy induction on n is left to the reader. 

Claim 8.16. Vn < cj (it; ^ (/?n & wR^w' -^ w' \= ipn)-

• 

Proof. The proof is also by induction on n. Let w' ^ ipo- Then, by com-
mutativity, there are u, v such that 
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Then, by (8.9), u \= di2, by (b), v t= P» ̂ ^d so tx; ̂ ^ (po» 
Now let w t= (̂ n-fi- Then, by commutativity, there are u,v such that: 

Then u \= d\2 by (8.9), f h v:?n Ap by (b) and the induction hypothesis, from 
which w' 1= (^n+i- Q 

Claim 8.17. Vn < a; 9Jl |= D(di3 A Oi(di3 A v?n) -> V?n). 

Proof. Case n = 0. Suppose that w ^ rfi3 A Oi(di3 A-i02(OipAdi2)) and 
It; 1= 02(OipAdi2). Then there are u^v and (by commutativity) w^ such 
that: 

A 

p 

di3 
g 
% 

u 
g 

d 

fe 
p 

w 

> 

\2 

di3 A 

- i 

r 
v̂  

'^02(OipAdi2) 

t; 

Then w (= c/13 and t/;' f= rfi3, by (8.9). So u (= ^23, by (8.11), and w^ |= ^23, by 
(8.9). It follows from (8.12) that w^ |= di2, contrary to t; |= -•02(0ip Adi2). 

Case n -f 1. Let w \= dis A Oi[di3 A 02(0i(v?n Ap) A ^12)]. Then there 
are u and (by commutativity) w^ such that: 
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di3 

w 

w 

d 13 
- • 

g 
u 

V • • • 

d 12 

A 
'"•• " W 

^n^V 

Then u |= dis and w* |= di3, by (8.9). So by (8.11), u |= 0(23. Then tx;' [= ^23, 
by (8.9), and w' |= di2, by (8.12). Thus it;' |= Oi(</?o Ap) A di2, from which 
^ h 0 2 ( O i ( v ? „ A p ) A d i 2 ) . • 

Claim 8.18. VA:,n < a;Vti; (A: < n —• ii; ^̂  ĉ it A(^n)-

Proof. The proof is by induction on fc. Let n > 0 and A: = 0. If w; |= (/?„ 
then ti; /Z2-sees a di2-world which iii-sees a p-world. On the other hand, if 
t/; ^ (̂ Q then w does not jR2-see a di2-world which i?i-sees a p-world. 

Suppose now that w |= (̂ fc+i A v?n+i- Then there is a world w' such that 
w' 1= di2 A Oi(<^n Ap). By (8.8), there is u for which w'RsU and u [= ^13. 
Hence, by commutativity, there are v,x,w",y such that: 

ifk^P 

Then u 1= du, by (8.9), tx |= ^23. by (8.11), and v [= 2̂3 again by (8.9). 
Further, v h V̂ n, by Claim 8.16, and y \= ip^, by the definition of ipn- On the 
other hand, t/;" |= dn A c/13, by (8.9), and so it;" [= d23» by (8.11). Therefore, 
y N ^23, by (8.9). Finally, y\=p, by (8.13). Since x |= (̂ ^ Ap, by Claim 8.16 
and (b), we obtain that x and y are such that 

xRiy, x[=(pk/\p and 2/ [= <̂ „ A p. 
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By (8.8), there is some s such that yRss and 5 |= di3, and by commutativity, 
there is tt;'" for which: 

(/?fc A p <̂ n A p 

By (b) and Claim 8.16, it;"' (= (̂ fc Ap and 5 |= (̂ n Ap. It follows from (a) that 
w '̂" 1= c'la- Then, by Claim 8.17, tt;'" f= (^„. Thus u;'" t= V̂ife A (/?„, contrary 
to the induction hypothesis. • 

Lemma 8.14 follows immediately from Claims 8.15 and 8.18. Q 

Finally, Theorem 8.12 follows from Lemmas 8.13 and 8.14. • 

8.2 Products between K4" and S5" 

In this section we show that S5" can be easily reduced to any product logic 
between K4^ and S5^, and thus all these logics are undecidable. 

Theorem 8.19. Let n > 3 and, for each i = 1 , . . . ,n, /ei Lt 6e a Kripke 
complete unimodal logic from the interval K4 C Li C S5. Then the product 
logic Li X '" X Ln is undecidable and does not have the product fmp. 

Proof. By Proposition 3.15, it is enough to prove the theorem for n = 3. So 
we define a reduction of S5^ to any logic L1XL2XL3 such that K 4 C Li C S5, 
i = 1,2,3. 

Given an A^£3-formula y?, we construct two AljCa-formulas (p^ and ip'^ as 
follows. First, ip^ is obtained from v? by inductively replacing each subformula 
of (f of the form O*^ (or 0^^^) with Oftp = V̂  V OtV^ (or Uft/j = x/j A Diip, 
respectively,). Second, with every subset E of the set sub(p of all subformulas 
in ip we associate the formula 

a^-A^^ A ""̂ * 

Further, for every collection S of subsets of subip and every i = 1,2,3, we 
construct the formula 
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Finally, we define 

|{i,j,fc}j=3 \ 5C2«"''v» 

and take 

Lemma 8.20. For every MC^-formula y?, the following conditions are equi-
valent: 

(i) ip is satisfiable in S5 , 
(ii) ip'^ is satisfiable in Li x Z/2 x ^3-

Proof. The implication (i) =» (ii) is easy. If (f is satisfied in a product frame 
for S5^ then a^ is also satisfied in this frame. As (p and ip^ are equivalent 
in reflexive models, (/?̂  is satisfied in the same product frame too. And since 
Li C S5 for alH = 1,2,3, this product frame is a frame for Li x L2 x L3, 

(ii) => (i). By Proposition 3.11, we may assume that (p'^ is satisfied at 
the root f = (ri,r2,r3) of a model Tl = {i?,93) based on a rooted product 
Li X L2 X La-frame 5 = {Wi,Ri) x {W2,R2) x (^3,^3). Let 

^•^ = {WuW2,W3) 

be the universal product S5 -frame based on W = Wi x W2 x IV3 and let 
QJl"*" = (Ŝ "*", 5J). We show by induction on the construction of V̂  € sub ^ that 
for every x = (xi,0:2,0:3) G W, 

(OT,x)t=V^'" iff (3Jl+,x) hV'. 

The basis of the induction and the case of the Booleans are trivial. Suppose 
that, for some i € {1,2,3}, (Qn,x) h= (OtX)"*, that is, {M.x) |= X"* V OiX''-
Then there is y = (t/i, y2, ys) in W such that either y = XOT xiRiyi and Xj — yj 
for j ^ t, and (9n,y) |= X̂ - By the induction hypothesis, (9Jt"'',y) |= x and 

s o ( 9 n + , x ) h O i X . 
Conversely, let i = 1 and let (VJl'^.x) \= OiX? ie. , (9H"'",y) |= x» for some 

y = (yi,y2»y3) ^ Ŵ  such that t/2 = ^2 and 1/3 = X3. By the induction 
hypothesis, we have (9H,y) [= x̂ ? but the relation xiRiyi may not hold. 

Let E = {V' € 5w6(̂  I (9Tt,y) h V'''}- Then clearly x ^ S and 

( 9 n , y ) h ( « ^ r . (8.19) 

Now, by assumption, (971, f) |= a^p, and so there is a collection 5 of sub-
sets of sub(p such that (9H, {ri,X2,X3)) \= Djf'a^'^ As K4 C Li, (W^i,/?i) 
is a transitive frame with root ri. So either riRiXi or ri = xi . In any 
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LOIXJ 1 a .̂i 

''JL 

Figure 8.3: The induction step for OiX-

case, (DJlyX) \= a^'^ holds. Note that E € 5, for otherwise we would have 

(9Jl, (ri,X2,a:3)) |= ^Ofia^Y, contrary to (8.19) and (Wi.Ri) being trans-

itive with root r i . It follows that (9Jl,x) |= Oi"(a^)^. And since x € E, we 

obtain (9W, x) \= X^ ^ ^iX^- The cases of i = 2,3 are considered analogously 

(see Fig. 8.3). • 

Theorem 8.19 is an immediate consequence of Lemma 8.20 and The-
orem 8.6. a 

Note that the proof above transforms finite product Li x L2 x La-frames 
into finite product S5^-frames. So, as a consequence of Corollary 8.11 we 
obtain the following: 

Corollary 8.21. Let Li be any Kripke complete unimodal logic in the interval 
K 4 C Li C S5 (t = 1,2,3). Then the product logic Li x L2 x L3 does not 
have the product fmp. 

The proof of Lemma 8.20 can be extended to so-called weakly transitive 
logics. These are logics of the form 

K4(A:) = K e Dp A . • • A D^p ~> D^-^^p, 

where fc > 0. It is easily checked that K4(A:) is determined by the class of 
k-transitive frames (VT, R) which satisfy the condition 

Vx, y e WixR^'-^^y -> xRy V • • • V xR^y). 

Theorem 8.22. Let k > 0 and let Li be any Kripke complete logic from 
the interval K4(fc) C L^ C S5 (t = 1,2,3). Then the logic Li x L2 x L3 is 
undecidable. 
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Proof. It suffices to use the following modification of the translation defined 
in the proof of Lemma 8.20. For each A<£3-formula (f, let u?^^^ be the result 
of replacing in ip each subformula of the form Diip with D^ xf^. The formulas 
a^, a^'*, a,^ and ip'^ are defined in the same way as above, but using uf^rp 

instead of D+V' and tp^^"^ instead of ip^. The remaining steps of the proof are 
left to the reader. • 

Question 8.23. Do product logics like K4^, S4^, K 4 x S4 x S5 have the 
fmp? 

8.3 Products with the fmp 

In this section we prove the following theorem of Gabbay and Shehtman 
(1998): 

Theorem 8.24. Any product of Alt and K has the fmp. In particular, K", 
Alt'* and K^ x Alt*^ have the fmp, for any n,m>> 1. 

Proof. We obtain Theorem 8.24 as a consequence of Lemmas 8.25 and 8.26 
to be proved below. 

As in Section 1.4, we say that an arbitrary n-frame 5 = {W, i ? i , . . . , Rn) 
is of depth fe if A: is the length of the longest path in J . An n-modal logic L is 
said to have the finite depth property if L is determined by a class of frames 
of finite depth. Note that the depth of a frame S does not exceed fc < a; iff 

Lemma 8.25. Any product Li x • • • x L^ of Alt and K has the finite depth 
property. 

Proof. Suppose (̂  ^ Li x • • • x Ln for some n-modal formula (f. Then there 
are rooted frames 5ij i = l , . . . , n , such that 5i \= Li and (p is refuted at 
the root of 5i x • • • x J^- By Proposition 1.7, for each i = 1 , . . . , n, there is 
an intransitive tree % and a p-morphism hi from % onto 5i- Note that if 
Li = Alt then the unraveling % of 5t is just a chain of irreflexive points. So 
we always have %i \= Li. It is straightforward to check that the function h 
defined by 

/ l ( X i , . . . , X „ ) = ( / l l ( x i ) , . . . , / l n ( X n ) } 

is a p-morphism from Ti x • • x T„ onto 5i x • • • x 5n (cf. Proposition 3.10(i)). 
Now we prune all the trees % down to the modal depth md{(p) of y?. Clearly, 
the resulting product frame Tj" x • • • x T;;̂  is of depth n • md(y?); it validates 
Li X • • • X Ln and refutes (p at its root. • 

Lemma 8.26. / / an n-modal logic L has the finite depth property, then it has 
the fmp as well. 
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Proof. Suppose that 9Jl ^ v?, for some A1£„-formula (f and some model 
m = (3̂ ,53) based on an n-frame 5 = {W,Ri,...,fl„) such that d ^ L and 
the depth of ff is A: < cj. Suppose also that the propositional variables of (p 
are among pi, . . . ,Pm> and so without loss of generality we may assume that 

2J(Pj) = 5J(pm) for all j > m. (8.20) 

Let E be the set of all A<£n-formulas built up from pi, . . . ,Pm- Consider any 
filtration 971̂  = (3^ ,̂93 )̂ of SDT through E, which is defined as follows. The 
worlds of 5^ are the equivalence classes [x] of the equivalence relation ^ E 
defined by taking, for all x^y eW^ 

a: ~E y iff V^ € E {{Wl,x) |= rp <=> {M,y) |= ^J). 

The accessibility relation Rf^ for each i = 1,... ,n, is any relation between 
points in 5^ satisfying two conditions: 

• if xRiy then [x]i?f [y], and 

• if [a:]i?f [y] then, for all rp, 

if Di^ e E and {Wl,x) |= Dii) then (9H,y) |= rp. 

The valuation 93^ is defined by taking 

aj^(p) = {[x]|(an,x)|=p}, 

for every propositional variable p; cf. (8.20). By induction on the construction 
of V', it is readily checked that 

vv̂  € EVx € Ĥ  {{m,x) \=tij <=> (art^,N) h V')- (8.21) 

It follows that an^ t̂  V?, On̂  h ^ and JOT̂  h A f̂̂ )̂ -L. Therefore, OT^ is of 
depth A:. 

We will show now that not only its depth, but SOt̂  itself is finite. To this 
end, observe first that each world in 9Jl̂  is uniquely determined by the set 
of propositional variables that are true in it and the set of worlds accessible 
from it: 

Claim 8.27. Let [x] and [y] be such that 

(i) (On ,̂ [x]) h Pi iff (Ort̂ , [y)) f= Pi, for every l<i<m; 

(ii) (x]i??[2:] iff [y]Rf[z], for every world [z] and I <j <n. 

Then [x] = [yj. 
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Proof. We prove by induction that for all V' G E, 

{m,x)\=i; iff {m,y)\=^p. 

The basis of induction follows from (i), and the case of Booleans is trivial. 
For DiX we have: 

( 9 J l , a : ) h a a "'^'^ ( a r t ^ [x ] )hD.X « ^ 

• 
Now, for each j < fc, let Nj denote the number of worlds [x] in 5^̂  such 

that the length of the longest path in J ^ starting from [x] is j . By Claim 8.27, 
we have the following upper bound for Nji 

No < 2^ , Nj^i < 2^(^o+-+A^i) . 2m 

Therefore, Nj is finite for every j < fc, and so Tl^ is finite as well, which 
completes the proof of Lemma 8.26. • 

Theorem 8.24 follows immediately. Q 

It is to be noted that even for recursively enumerable product logics the 
fmp does not always imply decidability. Although Alt*^ is decidable for any 
n (Theorem 8.53), K" turns out to be undecidable if n > 3 (Theorem 8.28). 
The reason for this is that we do not necessarily have an algorithm deciding 
whether a finite frame is a frame for the logic in question (cf. Theorem 8.29). 

8.4 Between K^ and SS"" 

The fact that K" has the fmp (Theorem 8.24), while SS"" does not (for n > 3, 
Theorem 8.12), might give some hope that the computational properties of 
K^ are ^better' than those of 85^^. In this section we show that this is not the 
case: in higher dimensions all logics between K" and 85'^ are quite complex. 

To begin with, we note that 

[ K , K , . . . , K ] $ K " . 

Indeed, one can generalize the first-order 'cubifying' property $^^^ of Sec-
tion 8.1 as follows. For each ^ > 0 and distinct z, j € { 1 , . . . , n} , let 

Vxi,. ..,a:£,x,i/, z, [xRiXi AxiRiX2 A-• •/^xe-iRiXe AxRjy AxRkZ —> 

3u, t / i , . . . 2/̂ , 2 1 , . . . , 2^, u i , . . . , ix̂  {yRkU A zRjU A yRiViA 

yiRiy2 A • • • A yk-iRiye A zRiZi A ziRiZ2 A • • • A Zk-iRiZe A uRiUiA 

uiRiU2 A • • • A Uk-iRiUi A XiRjye A xeRkZe A yeRkUe A ZiRjUi))\ 
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see Fig. 8.4. 

u ui U2 ue 

y 
V 

JD O 0~ . . . —O JO 

IT • • . . . • • IT • • . . . • 9 
Xi X2 Xi X X\ X2 Xi 

Figure 8.4: The property ĵf̂ ^C )̂. 

Then clearly ^ -̂ĵ ^ = Ĵ.'Ĵ bCl) and n-dimensional product frames satisfy 
^cl'fc(̂ ) for all ^ > 0. On the other hand, it is routine to check that a [K, K, K]-
frame 5 satisfies ^lll{l) iff the following A1£3-formula cube is valid in 5* 

cti6^= [of(n2/>i2An3Pi3) A 02(aiP2i A D3P23) A 03(0^^31 A D2P32) 

A DiD2(pi2 Ap21 -* 03^3) A Dfn3(pi3 Ap31 -^ D292) A 

A D2D3(P23 Ap32-• Df^l)J —• o f 0203(^1 A 2̂ A 93) • 

It is proved in (Kurucz 2000b) that, for every £ > 0, 

cube i [K,K,K]e 0 cub), 
0</t<€ 

and that these formulas can be used to show that K^ is not finitely axiomatiz-
able whenever n > 3. Here we prove this in different way, using the following 
general results of (Hirsch ei al. 2002). 

From now on let n > 3 and let L be any n-modal logic such that 

K^ C L C S5^. 

Theorem 8.28. L is undecidable. 

Theorem 8.29. It is undecidable whether a finite frame is a frame for L. 

Theorem 8.30. L is not finitely axiomatizable. 

Theorem 8.31. L does not have the product finite model property in the 
following strong sense: there is an MCs-formula which does not belong to L, 
but which is valid in all finite k-dimensional product frames for all k>3. 

In the proofs we use the following result of Hirsch and Hodkinson (2001) 
about relation algebras (all the necessary definitions will be given below): 
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Theorem 8.32. It is undecidable whether a finite simple relation algebra is 
representable? 

Given a natural number n > 3 and a finite simple relation algebra 21, we 
will define below a finite n-frame â̂ n and an Al^a-formula (̂ a such that the 
following lemmas hold: 

Lemma 8.33. The following conditions are equivalent: 

(i) d^,n is a frame for L; 

(ii) the formula -K^a does not belong to L; 

(iii) 3^a,3 is a p-morphic image of some universal product Sb^-frame. 

Lemma 8.34. 2t is representable iffd^.s is a p-morphic image of some uni-
versal product S5^-frame. Moreover, 21 is representable with a finite base iff 
i?2i,3 is a p-morphic image of some finite universal product S5^-frame. 

Now, Theorems 8.28 and 8.29 follow immediately from Theorem 8.32 and 
Lemmas 8.33, 8.34. Theorem 8.30 follows from Theorem 8.29, since if L 
were finitely axiomatizable then there would be an effective test for finite 
frames being frames for L. Note that if L is recursively enumerable and finite 
product frames for L are also recursively enumerable (such as, e.g., for K^, 
K4'*, S5") then the fact that L does not have the product fmp follows already 
from Theorem 8.28. 

Note also that as a consequence of Theorems 3.21 and 8.28 we obtain the 
following result of Gabbay and Shehtman (1993): 

Theorem 8.35. For any unimodal logic L between K and S5; the two-
variable fragment of the first-order modal logic QL is undecidable. 

We are about to prove Lemmas 8.33, 8.34 and Theorem 8.31. 

Frame formulas in product frames 

In this subsection we establish a connection between arbitrary product frames 
and product frames for S5^. This connection (Claim 8.37 below) is the heart 
of the proof of Lemma 8.33. 

Let ff = (F, -Ri, /?2> ^3) be a finite 3-frame with the following property: 

Vp,j>' € F 3si,S2 6 F (pRiSi k S1R2S2 & szflap')- (^22) 

For example, all universal product S5^-frames have this property. With each 
point p € F we associate a prepositional variable, denoted also by p. The 

^Although Hirsch and Hodkinson (2001) formulated this theorem for arbitrary finite 
relation algebras, the algebras constructed in their proof are in fact simple. 
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following formula ip^ can be regarded as (a variant of) the frame (or Jankov-
Fine) formula for S (see Chagrov and Zakharyaschev 1997): 

AD^ / \ {p-^Oip') (8.24) 
1=1,2,3, 

py€F,pRip' 

Aa+ / \ (p---Oip'). (8-25) 
t=l,2,3, 

p,p'eF,--{pRiP') 

Here and below, Dftp abbreviates tpADiXp^ and D"*'V' stands for Di"D2"D3"̂ . 
It is easy to see that (f^ is satisjRable in J: it is enough to take the model 

an = (5,5J) with 9J(p) = {p}, and then {9Jl,q) |= (f^, for every q e F. 
Moreover, we have the following claim: 

Claim 8.36. Let 5 = (F,i?i,i?2,^3) and !F) be 3-frames satisfying (8.22), 
with d being finite. Iff) satisfies (̂ 5 then ^ is a p-morphic image of f). 

Proof. Suppose that ip^ is satisfied in some model 9Jt based on a 3-frame 
f) = (t/, 5i, 52,53) satisfying (8.22). Define a function h : U -^ F by taking, 
for all u e U^ 

h{u) = p iff (971, u) 1= p. 

Then, by (8.23), /i is well-defined. By (8.23), (8.24) and since 5 satisfies (8.22), 
h is 'onto.' Finally, (8.24) and (8.25) guarantee that /i is a p-morphism from 
S) onto 3̂ . • 

Now, given an n-dimensional product frame (n > 3) 

f) = {UuSl) X ( t / 2 , 5 2 ) X ( t / 3 , 5 3 ) X . . . X ( f / n , 5 n ) 

and a world u = (txi, tX2,..., Un) in it, define the sets 

Ui{u) = {v G t/i I V = Ui or UiSiv}^ for i = 1,2,3. 

Define a universal product S5 -̂frame f){u) by taking 

SJiu) = {Ut{u),U2iu),U3{u)). 

Clearly, {ui,U2,ti3) is in f){u)^ and f){u) (like any universal product S5^-
frame) satisfies (8.22). Observe that if i3 is finite then f){u) is finite as well. 

Claim 8.37. Let ff = (F, i?i, /?2» -̂ 3) be a finite S-frame such that the Ri are 
equivalence relations and (8.22) holds in Jf. If(p^ is satisfied at some point u 
in an n-dimensional product frame f) for some n > 3, then (p^ is satisfiable 
in the universal product SS^-frame S){u). 
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Proof. Suppose OT is a model based on an n-dimensional product frame S) 
such that 

{m,u)\=ip^ (8.26) 

holds. Define a model 9Jl' based on ^{u) by taking, for all (vi,V2^V3) in 
Ui{u) X U2{u) X Usiu) and p 6 F , 

{m\ {VuV2,Vz)) 1= p iff {m, {VuV2,V3, U4, • • • ,Un)) |= p. (8.27) 

We claim that (9Jt', {^1,^2,^3}) N ^d- Indeed, (8.23) clearly holds by (8.27) 
and (8.26). To prove (8.25), we show that if i = 1,2,3, (vi, i;2i ̂ 3)? {^1»t/̂ 2j 'u^s) 
are in Ui{u) x U2{u) x (/^{u), Vj = Wj for j 7*̂  i, (SDt', (t;i,t;2,t;3)) \= p and 
( W , {wijW2^ ws)) 1= p', then pRip'. Without loss of generality we may assume 
that i = 1. By the definition of Ui{u), either vi = ui or t^iSiVi, and similarly, 
either w\ = t̂ i or UiSiWi. By (8.23), there is a unique p" G F such that 
(an', {ui,t;2, V3>) N p". So, by (8.27), we have 

{^,{vi,V2,V3,u^,.,.,Un))\=^p and (Wt,(wi,t;2,t;3,W4,.• • ,t^n)) NP"-

We claim that p"R\p and p"R\p', Indeed, if Vi = ui then p = p" , and so 
p"Rip holds by the reflexivity of Ri, If tiiSiVi then 

(an, {ui,V2, V3, U4,. . . , Un)) \= p" A OlP 

which, by (8.26), implies p"R\p. Similarly, one can show that p"Rip'. There-
fore, we must have pR\p\ because Ri is symmetric and transitive. 

For (8.24), we show that if {rn,V2,V2) € Ui{u) x U2{u) x Uz{u), pRip' and 
(an', {t;i, t;2, V3)) 1= p then there is a it; G U\{u) such that (an', {w, ̂ 2,^3)) |= p'. 
Similar statements hold for 2 and f/2(w), and 3 and Uz{u), respectively. As 
we saw in the previous paragraph, p"R\p for the unique p" € F such that 
(an', (ui,t;2, vs)) t= p". As /li is transitive, p"flip'. By (8.27) and (8.26), we 
have 

(an,(tii,t;2,t;3,tX4,...,Un)) h Oip ' . 

Hence, there is some w e Ui such that uiSiw and 

(an, (ti;, V2, V3, U4, . . . , tin)) 1= p' . 

Since such a w; is in t/i(w) and in view of (8.27), we finally obtain that 
(an', (ty, V2J V3)) \= p ' , as required. Q 

Relation algebras and product frames 

Recall from Section 3.10 that a relation algebra is a modal algebra for arrow 
logic A L H ^ I . In other words, a relation algebra is a structure of the form 

2i = ( A A , - , o , i , ; r , W > 

satisfying the following properties, for all x, t/, z G A: 
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• (i4, A, -1,0,1) is a Boolean algebra, 

• x\{y;z) = {x;y);z, 

• X = a: and x\Id=^ Id\x =^ x^ 

• ; and "" distribute over V (so they are monotone with respect to the 
Boolean <), 

• the cycle law holds, i.e., 

a:A(t/;2) = 0 iff yA(a:;2"') = 0 iff 2 A (t/" ;a:) = 0. 

It is not hard to see that these two definitions of relation algebras are equival-
ent; consult (Maddux 1991) and (Hirsch and Hodkinson 2002) for a discussion 
and a detailed introduction to relation algebras.*^ 

A relation algebra is atomic if its Boolean reduct is an atomic Boolean 
algebra (see Section 4.2). Thus, all finite relation algebras are atomic. A 
relation algebra is simple if it has no nontrivial homomorphic images. It is 
well-known (see e.g., Maddux 1991, Theorem 17) that a relation algebra 21 is 
simple iff 1; a; 1 = 1 holds for all a 7̂  0 in 21. 

A natural example is the (simple) relation algebra of all subsets of f/ x f/, 
for some nonempty set U, Here ; is the composition (relative product) of 
binary relations. " is the converse, and Id the identity relation on U, 

A simple relation algebra is called representable with base U if it is em-
beddable into the relation algebra of all subsets oi U x U. As we already 
mentioned, it follows from the main result of (Hirsch and Hodkinson 2001) 
that there is no algorithm deciding whether a finite simple relation algebra is 
representable. 

Now, take some finite simple relation algebra 21. Call a triple (^i,i2»^3) of 
atoms of 21 consistent if f J < ^1 ; ^2-

tl/^\t2 

Note that, by the cycle law, if a triple (^1,^2,^3) is consistent then (^2»^3»^i), 

(^3? î»^2)? (^r>^J»^2^)» (^3^»^2^»^r) ^^d (^2 '^f '^ j ) ^^^ ^^^^ consistent. 

We are now in a position to define the n-frame Jj2i,n and the Al^s-formula 
ip<2[. With each consistent triple (^1, ̂ 2? ^3) of atoms of 21 we associate a point 
t = tit2t3. The set of all such points will be denoted by T<^, For f,f' € Ta 

^Note that in the algebraic logic literature, " is usually denoted by " and Id by 1'. We 
use "" and Id to be consistent with our arrow logic notation. 
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and i = 1,2,3, define tRif iff ti = tj . For 4 < i < n, let Ri be the identity on 
TQI. Finally, set 

52l,n = {"Tky Rli R21 Rsi " ' 1 Rn) • 

Clearly, Ja.n is finite and the Ri are equivalence relations. 

Claim 8.38. ^21,3 satisfies (8.22). 

Proof. Take some t , s € T^. Since ; and " are monotone and 21 is simple, 
there are atoms x,t/ of 21 such that tj" < x~ ; 5 j ;i/. It follows that there is 
an atom z for which t^ < z,,y and 2 < x" ; 53 . So the following chain of 
consistent triples 

t i / \ f 2 ^ 1 / ^ X 2 x y ^ \ z siy/\s2 
C > i?i C > fl2 ^ ^ fis ^- ^ 

^3 y *3 53 

is as required. • 

Thus, we can define (^a as the frame formula for 5a,3. 

Proof of Lemma 8.33. (i) => (ii). Suppose 52i,n [= i*- Since ^^ is an Al^a-
formula satisfiable in 2̂1,31 it is satisfiable in 52i,n» for any n > 3. Therefore, 
~«cp5i is not valid in 3̂ 2i,n» and so does not belong to L. 

(iii) ^ (i). Suppose ^21,3 is a p-morphic image of some universal product 
SS^-frame 61 x 62 x ^ 3 . Then clearly Jgi.n is a p-morphic image of the 
universal product S5^-frame (3i x 62 x ^3 x • • * x ^ m where (3i is the one-
point reflexive frame, for each 4 < z < n. Since L C S5^, 5a,n is a frame for 
L. 

Finally, if (ii) holds, that is, if -^Kp% ^ L then, in view of K*̂  C L, ^p^ 
is satisfiable in an n-dimensional product frame, and so (iii) is an immediate 
consequence of Claims 8.36 and 8.37. • 

Proof of Lemma 8.34. The proof is obtained from a chain of known res-
ults in algebraic logic using the duality between Kripke frames and Boolean 
algebras with operators. Here we present the arguments in the modal logic 
setting, as *modal mirror images' of the algebraic proofs of Halmos (1957), 
Johnson (1969) and Monk (1961). 

Claim 8.39. (Monk) Ijthe {finite and simple) relation algebra 21 is represent-
able with base U then the Z-frame ^21,3 is a p-morphic image of the universal 
product S5^ -frame {U,U,U). 

Proof. Suppose that there is a function rep embedding 21 into the relation 
algebra of all subsets of U x U. Define a function h from U x U x U to the 
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set T of consistent triples of atoms of 21 by taking 

iff (tii,ti2> € repih), {u^.ui) € rep(<2), (tX2,ti3> € rep(ti). 

It is easy to check that /i is a well-defined p-morphism onto 52i,3- Q 

Take a finite simple relation algebra 21 and define, for 1 < i < j < 3, a 
subset Eij of Ta as follows. Let k € {1,2,3} be different from both i and j . 
Then 

Eij =={teT<^\tk< Id}. 

(Recall that Id denotes the identity element of 21.) It is not hard to see that 
the following properties hold whenever l < i < j < 3 , 1 < A ; < 3 and k ^ i, j : 

V̂  € TQI 3t'X € Eij {tRit' & tRjt''), (8.28) 

Vt, t' €T^{te Eij & t/?ifct' -^t' e Eij), (8.29) 

£̂ 12 n Ei3 C ^237 •£'12 ^ -'̂ 23 Q -£̂ 13 > -̂ 13 ^ -̂ 23 Q -^12) (8.30) 

Vt, t' e Eij [tRit' V tRjt' -^t^t'). (8.31) 

The following claim is a consequence of Lemma 8.9. 

Claim 8.40. Assume that h is a p-morphism from a universal product S5^-
frame (1/1^1/2,1/3) onto d%3' L^t U be the disjoint union of the sets Ui, 
i = 1,2,3. Then there is a p-morphism f from the universal product 85^-
frame (f/, [/, U) onto 2̂1,3 such that 

for all ui,U2,ii3 G f/, 1 < t < j < 3, 

if Ui = Uj then f{u\,U2,U3) € Eij. (8.32) 

Proof. Suppose our propositional variables are rfi2, di3, d23 and o, for each 
atom a of 21. Define a model 9Jl = ((f/i, C/2, t/3),93) by taking 

2J(o) = {(U1,U2,U3) I /l(ui,ti2,ti3)3 =a}> 

^{dij) = {(tAl,U2,U3) I h{uuU2,U3) € £»j} , 

and 2J(p) = 0 for all other variables p. Using (8.28)-(8.30), it is readily 
checked that all formulas (8.7)~(8.12) are true in 9Jl. Therefore, by Lemma 8.9, 
there is an S5^-model 971"̂  = ((t/, t/, C/) ,53"̂ ) and a p-morphism k from SUt"̂  
onto 9Jl such that 

2J^(dij) 2 {(wi,W2)W3) I Ui = Uj}. 

Define a function / from f/ x [/ x [/ to Ta by taking, for all ui,U2, U3 € t/, 

/(t i l ,U2,U3) = /l(A:(Ui,U2,U3)). 

It should be clear that / is a p-morphism from (t/, [/, U) onto 5a,3 satisfying 
(8.32). ' • 
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Our next claim is a consequence of Lemma 8.10: 

Claim 8.41. Suppose f is a p-morphism from a universal product S5^-frame 
{U,U,U) onto Ja.a satisfying (8.32). Then there is a set V with \V\ < \U\ 
and a p-morphism g from (K, V, V) onto Ja.a such that 

for all vi, t;2, vs eV, 1 < i < j < 3, 

Vi = Vj iff g{vi,V2,vs) e Eiy (8.33) 

Proof. Define a model m^ = ((U, U, U), 53"̂ ) by taking 

5J"^(«) = {(l*l»W2,ti3) I /(til,W2,tX3)3 = a } , 

2J+(dij) = {{ui,U2,uz) I f{ui,U2,uz) e Eij}, 

and V^{p) = 0 for all other variables p. By (8.28)-(8.30), all formulas (8.7)-
(8.12) are true in OT+, and by (8.31), (8.13) holds in 2rt+ as well. Moreover, 
by the definition of V'^ and (8.29), 9Jl^ is binary generated. Therefore, by 
Lemma 8.10, there is an S5^-model 91 = ((V, V̂, V) ,il) and a p-morphism £ 
from 9K+ onto 91 such that \V\ < \U\ and 

U{dij) = {{t;i,t;2,t;3) I Vi = t;^}. 

Define a function g from V x V x V̂  to T^ by taking, for all vi, 1/2,̂ 3 € V, 

g{vi,V2,V3) = /(^""Ht;i,t;2,V3))-

(Here i~^ denotes the inverse of i.) Since £ is a p-morphism and by the 
definition of ^'*'(a), the function g is well-defined. It is readily checked that 
^ is a p-morphism from (V, V, V) onto 5a,3 satisfying (8.33). • 

Claim 8.42. (Monk) Suppose g is a p-morphism from a universal product 
S5^-frame {V,V,V) onto 3̂ 21,3 satisfying (8.33). Then the relation algebra 21 
is representable with base Vj that is^ 21 is embeddable into the set relation 
algebra of all subsets ofVxV. 

Proof. Recall that the points of ^21,3 are the consistent triples of atoms of 
21. Define the representation rep of 21 with base V as follows. For each atom 
c of 21, take 

rep{c) = {{u,v) eV xV \3w eV g{u,v,w)z = c}. 

Then, by the definition of 5a,3, rep{c2) and rep(c3) are disjoint whenever 
C2 / C3. Extend rep to an arbitrary element x of 21 by taking 

rep{x) — |J{rep(c) | c is an atom of 21 and c<x}. 
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It is straightforward to check that rep is a Boolean embedding. We show 
that it is a relation algebra homomorphism. First, rep{Id) = {(u,iz} | u G V} 
holds because of (8.33). Since ; and " distribute over the Boolean join V, it 
is enough to show that rep preserves ; and ~ for atoms. To this end, we need 
the following claim: for all u, v, t/; € V and atoms a, 6, c of 21, 

g{u,v,w) = abc iff {u,v) € rep{c)y {v,w) € rep{a), {w,u) € rep{b), (8.34) 

We use the following property of ^21,3: for all f € TQI, 1 < i < j < 3 and 
1 < A: < 3 with k^ij, 

teEij => tk<Id =^ U^^j' (8-35) 

Suppose that g{u,v,w) = abc. Then {u,v) € rep{c) by definition. In order 
to prove {v^w) € rep{a)^ we show—with the help of (8.33) and (8.35)—that 
g{v^w^u) = bca: 

g{Uy v, w) = abc g{Uy t;, w) = abc g{u^ v, w) = abc 
R2 R3 Ri 

g(u^w^w) = *66" g{u,v^u) = c'^^c g{VyV^w) = aa~* 
Rs Ri i?2 

g{uy Wy u) = 6*6" g{v^ 1;, u) = c'^c^ g{v^ it;, w) = *a"'a 
fil i?2 i?3 

^(t;. It;, u) = 6** g{v^ it;, ti) = *c* g{v^ ty, w) = **a. 

In the same way one can show g{w^ u, v) = cab. So (it;, u) € rep{b). 
For the other direction, we know by (8.35) that g{w^u,w) = 6"*6 and 

g{v^w^w) = *a^a. So again an argument similar to that above proves 
g{u^ t;, It;) = abc. 

Using (8.35) and (8.34), it is not hard to check that rep{c)'' = rep{c^) 
and rep{c2 ; C3) = rep{c2) I rep{c3) hold for all atoms c, C2, C3. Q 

Lemma 8.34 is a direct consequence of Claims 8.39-8.42. Q 

Lack of product fmp 

First we show how Theorem 8.31 follows from what we have so far and then 
give a concrete, relatively simple, formula which forces an infinite product 
frame. 

Proof of Theorem 8.31. Take some finite, simple, representable relation 
algebra 21 which is representable only with an infinite base (e.g., the linear 
or point relation algebra; see (Maddux 1991)), and consider the 3-frame 3 â,3 
and the A^£3-formula ip^. Then, by Lemmas 8.33 and 8.34, -'v?2i is not in 
L. We show that -i(/?2i is valid in all finite A:-dimensional product frames, for 
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any A: > 3. Suppose that there is a finite product frame satisfying (^a. Then, 
by Claims 8.36 and 8.37, ^21,3 is a p-morphic image of some finite universal 
product S5^-frame, contrary to Lemma 8.34, since 21 is representable only 
with an infinite base. Q 

Now we construct a 6-element 3-frame J and show that the frame formula 
for 5 can be satisfied only in an infinite product frame. This 5 is a simpli-
fication of the 3-frame 5QI,3 obtained from the linear (point) relation algebra 
used in the proof of Theorem 8.31. 

Let F consist of all permutations of the set {1,2,3}. For i = 1,2,3, define 
Ri as ^forgetting about i in the triples,' that is, for p^q e F, let pRiQ iff 

PU) < p{k) QU) < 9(fc)» whenever {i, j,fc} = {1,2,3}, 

and let 5 = {F, R\,R2i Rz)- To simplify notation, given some p G F , we write 
Pi for p''^{i) and identify p with the triple P1P2P3; see Fig. 8.5. We also write 
p = ^i * j * whenever p{i) < p{j) holds. 

Ri 
312^ 321 

231 

R2 
312,.^ ^321 

132 231 

123 213 123 

132 231 

V213 

132 

123 213 

Figure 8.5: The 6-element 3-frame ff. 

The Ri are clearly equivalence relations, and it is not hard to see that ^ 
satisfies (8.22). Let ip^ be the frame formula for J : 

5̂ = °"̂  V(̂ ^"^ V^')^ 

D+ / \ (p -^ O y ) A D^ / \ (p -^ -Oip ')-
1=1,2,3, t=l,2,3, 

p,p'£F,-^(pRiP') 

Claim 8.43. There is a product frame satisfying (p^. 

Proof. Let Qi , Q2 and Q3 be three pairwise disjoint dense subsets of the 
rationals. Take the universal product S5^-frame (Qi,Q2>Q3) and define a 
valuation 93 in it as follows: 

2J(p) = {(xi,a:2,X3) € Qi x Q2 x Q3 | Xp, < Xp^ < Xp^}. 
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Let 971 = ((Qi,Q2,Q3) »2J). It is not hard to check that 

for any (xi,X2,a:3). • 

Claim 8.44. Any prvduct frame satisfying (p^ is infinite. 

Proof. Let JJJt be a model on the product frame ([/, Su) x (V, Sy) x {W, Sw)-
For simplicity, points {x,y,z) in Tl will be denoted by xyz. Suppose that 
0̂ ^ Uj yo £Vy zo €W are such that 

{9Jl,xoyoZo) 1= (fi^ and, say, {^.XoyoZo) |= 312. (8.36) 

We will show then that both U and V must be infinite sets. Let 0 < n < a; 
and assume inductively that we have already defined points Xi e U and yi EV 
for each i <n such that 

xoSuXi and y^Syyu for 0 < i < n, 
Xi ̂  Xj and yi ^ yj, for ij < n, i ^ j , 
{dJl.XiyjZo) 1= 312, for i < j < n, (8.37) 
{m.XiyjZo) \= 321, for j < t < n. (8.38) 

Define :rn and j/n- We have 312i?i321 and, by (8.37), (m,xoyn^iZo) M 312. 
By (8.36), there is some Xn ^U such that 

xoSuXn and (DH, Xn2/n-1̂ o) h 321. (8.39) 

By (8.36) and (8.37), rr„ 7̂  a;i, for i < n. We show that 

(m.XnyiZo) 1= 321 for all t < n - 1 (8.40) 

(see Fig. 8.6). To this end we first prove the following claim: there are no 
points UQ^UI € U and Vo^i ^ ^ such that 

• (9n,uot;o2o) h 321 and (9n,wii;i2o) N 321, 

• {9Jl,uoViZo) h 312 and {Tl.uiVoZo) |= 312, 

and, for each i < 2, 

• either Ui = XQ or xoSyUi^ and 

• either v̂  = yo or yoSyVi, 
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• = 312 
O = 321 

Vn 

2/1 • 

yo • 

XQ 

o 
Xi 

yn-i • • • • 

• • • O O 

O 

Xn-l 

Figure 8.6: The points Xn and y„ 

O 

Suppose that such points t*Ot t^i, VOT ^i do exist; see Fig. 8.7. Since we have 
{Wll,UoViZo) \= 312 and 312^3132, there is a z € W such that ZQSWZ and 

{m,uoViz)\=n2. (8.41) 

Then (Wd^uoyoz) \= a, for some a e F with a = ^1*3*, from which 

(9JT,UQVQZ) [= b, for some be F with 6 = *1 * 3 * . (8.42) 

On the other hand, (dJl^uoVoZo) |= 321 by assumption. Thus 6 = • 2 * 1 * , 
which, by (8.42), means that 

6 = 213. (8.43) 

By (8.41), (9Jt, xoviz) \= c for some cG F with c = *3*2*. So (OT, uiViz) |= d, 
for some d E F with d = *3*2*. On the other hand, since by assump-
tion (WI^UIVIZQ) (= 321, we have d = *2*1* , and so d = 321. Therefore, 
(Wl^uiyoz) 1= e for some e e F with e = *3*1*. Hence {MJUIVQZ) [= / , for 
some f e F with / = *3*1*. By (8.43), we have (VJl^xoVoz) |= 9 for some 
g € F with g = *2*3*, whence / = *2*3*, and so / = 231. It follows that 
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W 
*\*3* 

Figure 8.7: The points uo, ui, vo^ vi. 

(9Jl, UIVQZO) \= h for some h ^ F with h = *2*1*, contrary to the assumption 
Im.UiVoZo) 1=312. 

Now one can prove (8.40) as follows. Take some i < n - 1. By (8.38), we 
then have {dJl^Xn^iViZo) \= 321. Therefore, {OJlyXoyiZo) h A: for some k e F 
with A: = *3*2*. Thus {Wl^XnyiZo) |= £ for some £ € F with £ = *3*2*. On 
the other hand, by (8.39), (OT, Xnl/o^o) N ^ for some m £ F with m = *3*1*, 
and so £ == •3*1*. Hence, either £ = 312 or ^ = 321. Finally, we use the claim 
above with Uo = Xn-i, u\ = Xn^ VQ ^ pi and Vi = Pn-i to obtain £ = 321. 

Now we can define i/n- We know that 321/?2312 and we have just shown 
that {9Jl^XnyoZo) \= 321. By (8.36), there is some t/n € V such that 

yoSvVn and {WlyXnVnZo) \=il2. (8.44) 

By (8.36), (8.39) and (8.40), yn ^ yu for i < n. It remains to show that, for 
all i < n, (3Jl,a:t2/n2o) h= 312 holds as well. To this end, take some i < n. 
By (8.44), we have {dJl.XoynZo) (= P for some p e F with p = *3*2*. Thus, 
(an, XiynZo) f= g for some q £ F with g = *3*2*. On the other hand, by (8.37) 
and (8.38), q = *3*1*, and so either q = 312 or g = 321. Now apply the above 
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claim with t̂ o = ^i, u\ — ^m ^o = Vn and vi = t/n-i to obtain q = 312. Thus, 
we have shown that both U and V are infinite, which completes the proof of 
Claim 8.44. • 

We conclude this section with three open problems: 

Question 8.45. Let n > 3. 

(1) Give an (infinite) axiomatization of K'^. 

(2) Is it possible to axiomatize K^ (or any product logic between K^ and 
S5^) using only finitely many propositional variables? 

(3) Is S5^ finitely axiomatizable over K*^? 

8.5 Finitely axiomatizable and decidable prod-
ucts 

Although the previous section shows that many higher-dimensional products 
are neither decidable nor finitely axiomatizable, there are some (not com-
pletely trivial) examples of product logics with a better computational be-
havior. In this section, we prove the result of Gabbay and Shehtman (1998) 
according to which all (finite) products of the logics Alt and DAlt are finitely 
axiomatizable (in fact, product-matching) and decidable. 

Theorem 8.46. Any product of Alt and DAlt is finitely axiomatizable. In 
particular, Alf^, DAlt^ and Alf^ x D A l t ^ are finitely axiomatizable, for 
all n , m > 1, namely, 

Alt^ = [A l t ,A l t , . . . ,A l t ] , 

DAlt^ = [DAlt, D A l t , . . . , DAlt], 

Alt" X DAl t^ = [ A l t , . . . , Alt, D A l t , . . . , DAlt ]. 

Proof. We remind the reader that every rooted Kripke frame for Alt is the 
p-morphic image of an intransitive chain, i.e., an intransitive tree with a single 
branch. Rooted frames for DAlt are p-morphic images of infinite intransitive 
chains. The proof of the theorem is based on the fact that for products of 
Alt and DAlt the following higher-dimensional analog of Lemmas 5.2 and 
5.8 holds: 

Lemma 8.47. Every countable rooted n-frame for [Alt, A l t , . . . , Alt] is a 
p-morphic image of the product of n countable intransitive chains. 
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Proof. We consider only the case of n = 3; for n > 3 the proof is similar. 
Like in the proof of Lemma 5.2, we formalize the step-by-step argument with 
the help of two-player games. Suppose that 

(5 = (G,5i,52,53) 

is a countable rooted frame for [Alt, Alt, Alt]. The game G((8) over (S is a 
modification of the game in the proof of Lemma 5.2. Namely, a (5-network is 
a tuple 

Â  = ( t / ^ , v ^ l y ^ , / ^ ^ / ^ ^ / ^ 3 ^ / ^ ) , 

where 5^ = {U^^R^), 5 ^ = (V^,/?^) and 5^ = {W^,R^) are finite 
intransitive chains and f^ is a homomorphism from 5i^ x t?2̂  x Ja^ to (S. 

As before, the players V and 3 build a countable sequence of finite (6-
networks 

No C Ni C ... C Ni C ,.. , 

In round 0, V picks the root r of (S. 3 responds with some (S-network NQ such 
that C/̂ ,̂ V^^ and W^^ are all one-element sets, the accessibility relations 
R^^ are empty, for all t = 1,2,3, and /^° takes the only triplet to r. 

In round i (0 < i < a;), some sequence M) ^ * • • £ Ni^i of (S-networks is 
already built. V picks 

• a triplet {u,v,w) € U^'-' x V^-^ x W^'-', 

• a 'direction' d such that 1 < rf < 3, 

• a world g in (6 such that f^'^^{u,v^io)Sd9' 

Player 3 can respond in two ways. Assume that V picked direction d = 1. If 
there is some ti' G C/̂ »-i with uR^ '"^u^ then f^'-^^a^v^w) = g must hold, 
since f^'~^ is a homomorphism and (G, 5i) (= Alt. In this case 3 responds 
with Ni = Ni^\. Otherwise, she responds (if she can) with some (S-network 
Ni extending Ni^\ in such a way that 

• f/M = U^i'i \j {t̂ +} (where u"*" is a fresh point), 

• ^^' =5r"'>forA; = 2,3, and 

• f^'{u^,v,w) =5. 

If V picked direction 2 or 3, 3̂ s move is similar, possibly extending ^2 *~* or 
^3 *~V Note that in any case the frames ffj^* are finite intransitive chains 
again, for all A; = 1,2,3. 

3 has a winning strategy in the game G(C5) if she can respond in each 
round i < a;, whatever moves V chooses to make. Similarly to Claim 5.3, one 
can prove the following: 



412 Chapter 8. Higher-dimensional products 

Claim 8.48. / / 3 has a winning strategy in G(©) then there are countable 
intransitive chains ffi, 3̂ 2? 3̂ 3 such that (6 is a p-morphic image of^i x3^2xSa-

Using the fact that 6 is a frame for [Alt, Alt, Alt], it remains to define 
a winning strategy for 3 in the game G{(&). In round 0, her response is 
determined by the rules of the game. In round t (0 < i < u;), some sequence 
No Q " • Q Ni-i of (8-networks is already constructed. Assume that V picks 
the triplet {u,v,w) G f/̂ *-̂  x V^»-i x W^'-\ direction d and world g in (& 
such that f^*~^{u,v,w)Sdg. 

Suppose d= 1 (the cases of d = 2,3 are similar). By the rules of the game, 
if there is u' G f/̂ *-̂  such that WJRJ *~^U' then 3 responds with Ni = Ni-i. 
Otherwise, she has to add a fresh point tx"*" to [/^*-i and respond with some 
6-network Ni satisfying the above conditions. f^'{u'^^v,w) is defined to be 
g by the rules. The remaining task is to define /^* on all the triplets of 
the form (u+,v',tz;'), where v' G V^' = V^'-\ w' G W^' = W^'-', and 
{v\w') 7̂  (v,w). 

Claim 8.49. There are enumerations {vo,vi^... ,VMI} and {WQ^WI^. .. ^10^2} 
ofV^*-^ and W^*-^ J respectivelyy satisfying the following properties: 

• vo = V and WQ = w; 

• for all k, 0 < k < Mi, there is a unique index pred{k) < k such that 

either Vpred{k)R2 *~^^^ ^^ '̂ A;̂ 2 '~^'^pred{k)y 

• for allf,0<i< M2, there is a unique index pred{£) < £ such that either 

'^pTed{i)Rz'~^'^e or WeR^ '~'Wpred{i)' 

-^o • • -

ve vs V4 V3 V2 vi V = Vo V7 vs vg 

Figure 8.8: Enumerating ^2 " 

Proof. Take, for example, the unique R2 * ^-path, starting from the root 

of the chain 32*"^ înd ending with v, and enumerate it backwards; then 

continue with enumerating the chain starting with the i?2 *" -successor of v; 

see Fig. 8.8. Do the same for 33 '"^ and w. • 

In order to define f^' on the new triplets, first define -< to be the lexico-
graphic ordering on the pairs of numbers induced by the above enumerations: 

(j, £) -< (A:, m) iff either j < k OT j = k and £ <m. 
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Now let (0,0) X (fc,m) -< (Mi 4- 1,M2 -h 1) and assume inductively that we 
have already defined f^'{u'^,Vj,wt), for all {j,f) -< {k,m) such that 

/ ^ ' (u, Vj,we)Sif^' {u-^.Vj.Wi), 

f^'{u-^,Vj,Wi)S2f^'{u'^,Vpred{j)im)^ if j > 0 and VjR2'''VpredU)i 

f^'{u-^yVpred{j)im)S2f^'{u-^,Vj,Wt), if j > 0 and VpredU)^2'~'^J^ 

f^'{u-^,Vj,we)S3f^'{u'^,Vj,Wpred(i))^ if ^ > 0 and WiR^'''wpred(e)^ 

f^'{u-^,Vj,Wpred(e))S3f^'{u'^jVjiWi)y if i > 0 and Wpred{i)R3'~'^^' 

We will now define f^^iW^^Vk^Wm)- By Claim 8.49, we have to consider the 
following cases: 

(1) m = 0, i.e., Wm = w and either 
( l a ) Vpred{k)R2'''^k OT 

( l b ) VkR2"^'^pred{k)' 

(2) A: = 0, i.e., Vk = v and either 
(2a) iyprcrf(m)^r'"*'^m or 

(2b) WmRs^'^'^predim)' 

(3) m. A: > 0 and either 
(3a) VkR2 '~^Vpred{k) and t/^m^a *~^^pre(i(m)) OT 

(3b) Vpred{k)R2'~''^k and ti;^fi^'"'ti;pred(m)» or 
(3c) Vfc-R2 '~^^pred(fc) and Wpred{m)I^3 *'*^m» or 

(3d) Vpred{k)R2'~'^k and Wpred{m)R3'^''^m' 

Cases (la)-(2b) are similar to cases 1 and 2 in the proof of Lemma 5.2. In 
order to define f^*{u'^^Vk^Wm)y one has to use properties chri2, comi2, 
c/iri3 and com\3 of 0, respectively. Consider case (3a). Figure 8.9 shows 
the relevant points of (5 and the relations among them which hold by the 
induction hypothesis. Since (G, 5i) (= Alt and com\2 A com\3 holds in (S, 
there is a (unique) s € G such that 

f^'{u,Vk,Wm)SiS, sS2f^'{u'^yVpredik)i'^m) and sS3f^'{u'^,Vk,Wpredim))' 

Put /^'(W^yVk.Wm) = 5. The cases (3b)-(3d) are similar; see Fig. 8.9. It is 
straightforward to see that F^' satisfies the induction hypothesis. Finally, as 
in the proof of Lemma 5.2, the induction hypothesis can be used to show that 
/^» is a homomorphism from ^i* x t?^* x 5^* to (5. • 

To complete the proof of Theorem 8.46, let 

L = [Alt , . . . , Alt,DAlt, . . . ,DAlt]. 
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Case (3a): 

f^*-^{u,Vpred(k),Wm) 

/^<-i(u,Vfc,ii;p„4m)) 

52 / I/-

/ ^ i - 1 (U+ ,Vprrd{k) ^Wprcd(m) ) 

i 

Case (3b): fNi^u,, „ ,., x 
f'^^-^ {U-^ ,Vk,Wpred(m)) 

/ ^ i - l K V f c . l i ; ^ ) / /I 
5 2 

5 3 

/ '^<-l ( t i ,Vpred(fc) , tym) ^ i ^ ^ ^ Z ^ ' " Mti+,Vp^,rf(fc) ,«;„») 

Case(3c): /^i-i(u,t;, 'pr^d(k),Wm) ^ ^^ /^* -Mw"^,Vprrd( ik ) ,W'm) 

Vprec/(fc)>tfprfid(m)) 

/^» - i (u , i ; f c , t i ; .n ) ; 1 _ ^ 0 

/^i-i(u,t;fc,ti;p^,(^)) • ^"^•/^«-i(ti+,i;fc,ti;p..d(m)) 

Case (3d): /^i-i(tx,t;fc,t.^) 

f'^*-^{u,Vk,Wpred(m)) ^pred(m)) 

f'^*-Hu,Vpr,d(k).Wm) J f^'-Hu+,Vpr^d(k).Wm) 

• f^*-^(u+,Vpr^a(k),yfpredim)) 

Figure 8.9: Case (3). 
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As we know, FrL is the class of all commutative and Church-Rosser frames 
with n functional and m functional and serial accessibility relations. Thus, it 
is first-order definable in the language having n-hm binary predicate symbols. 
Therefore, by Theorem 1.6, y? ^ L means that there is a countable n-fm-frame 
ff for L and a model 9Jl based on 5 such that (371, u) ^ (f for some point u. 
Then we also have (5 [̂  v?, for the countable subframe 6 of 5 generated by u. 
Now ip ^ Alt^ X DAlt^ follows from Lemma 8.47, since infinite intransitive 
chains are frames for DAlt. • 

As consequences of Theorem 8.46 and Lemma 8.47 we obtain: 

Corollary 8.50. Let LuL2,L^ € {Alt,DAlt}. Then 

Li X L2 X Lz - (Li X L2) X L3 = Li X {L2 x L3). 

Corollary 8.51. Let Li,L2 € {Alt,DAlt}. Then L\ x L2 is globally Kripke 
complete, Qi^d^l^^^i^^ coincides with h-^^^xl-^^^. 

Given a formula if ^ Alt^ x DAlt^, one can cut the component chains 
of a product frame refuting (p at the modal depth md{{p) of ip. In the DAlt-
components, the last point of the corresponding chain should be made reflex-
ive. The resulting product frame is still a frame for Alt^ x DAlt^, it refutes 
ip and its size is polynomial in the length of (f. Thus, we obtain the following 
theorem (which is also a consequence of Theorem 8.24): 

Theorem 8.52. Alt'*, DAlt'* and Alt'* x DAlt"^ have the polynomial product 
fmp, for a// n, m > 1. 

Putting together the results obtained earlier in this section, we arrive at 
the following: 

Theorem 8.53. The decision problem for Alt'*, DAlf* and Alt'* x DAlt"* 
is coNP-complete, for a// n, m > 1. 

On the other hand, the proof of Theorem 5.36 also yields the following: 

Theorem 8.54. The global consequence relations for logics like Alt x K, 
D X D, Alt X Alt and DAlt x DAlt are undecidable. 

Note that by Lemma 1.24 we also obtain the undecidability of (D x D)^, 
(Alt X Alt)u and (DAlt x DAlt),^. A proof similar to that of Theorem 5.37 
gives the undecidability of Du x Du, Alt^ x Alt,̂  and DAlt î x DAlt̂ .̂ 

Finally, we observe that by ^mixing* the proofs of Lemmas 8.47 and 5.8 
one can show that every countable rooted 2-frame for [Alt, L] is a p-morphic 
image of a product frame for Alt x L, whenever L is a Kripke complete and 
Horn axiomatizable logic. From this we obtain: 
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Theorem 8.55. Let L be a Kripke complete and Horn axiomatizable unimodal 
logic. Then Alt x L = [Alt, L). 

Note that this theorem together with Theorem 8.24 gives another proof of 
the decidability of Alt x K (cf. Theorem 6.6). 



Chapter 9 

Variations on products 

So far in Part II we have been considering two ways of combining modal logics: 
fusions and products. 

Fusions (which can actually be defined for a wide range of knowledge 
representation formalisms called in (Baader et ai 2002) abstract description 
systems) are used to speak about different but not interacting aspects of 
application domains. For example, we may take the fusion of n copies of S5, 
each of which representing knowledge of a single agent, and of n copies of 
KD45 representing their beliefs. The resulting combination 

S5n (S) KD45n 

is capable of reasoning about knowledge and beliefs of the n agents living 
independently and knowing nothing of each other.' Moreover, it provides no 
connection between what is known and what is believed by agent i whatsoever, 
say, the formula 

('if agent i knows ip then i believes that ip holds') does not belong to the 
fusion. 

It is the absence of any interaction between the modal operators of the 
fused logics that ensures good algorithmic behavior of the fusions, as was 
shown in Chapter 4.̂  

Products of logics do provide such interactions, which makes them a good 
tool for constructing formalisms suitable for, say, spatio-temporal representa-
tion and reasoning; see Section 3.2 and Chapter 16. However, as we saw earlier 

^Note, however, that the classes of models of the fused logics must be closed under 
disjoint unions, which is not the case when we form fusions of, say, description logics with 
nominals or negations of roles. To overcome this difficulty, another method of combining 
logics, called e-connections, was introduced in (Kutz et ai 2002). 

417 
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in this part, the formation of products can dramatically increase the computa-
tional complexity of logics (remember, the compass logic of Section 2.6—i.e., 
the product of two NP-complete logics Log{(N, <)}—is not even recursively 
enumerable; see Corollary 7.13). 

Some examples considered above—say, modal description or modal first-
order logics with expanding, decreasing, and arbitrary domains, or spatio-
temporal logics with the finite state assumption—suggest two possible ways 
of reducing the expressive power of product logics in the hope of obtaining 
more 'user-friendly' and still useful many-dimensional formalisms. 

First, in Section 9.1 we consider sublogics of product logics determined 
by classes of certain (not necessarily generated) subframes of their product 
frames. This kind of restriction on the 'domains' of modal operators is similar 
to 'relativizations' of the quantifiers in first-order logic and algebraic logic, 
where it indeed results in improving the bad algorithmic behavior of logics, 
cf. (Nemeti 1995, Marx and Venema 1997). 

And second, in Section 9.2 we impose various restrictions on possible valu-
ations in product frames. 

Unfortunately, neither of these ways has been studied systematically yet. 
The modest aim of this chapter is only to give a few (sometimes nontrivial) 
observations and, perhaps, some warnings. 

9.1 Relativized products 

Product logics are determined by classes of product frames. The attractive 
feature of product frames is their geometrically intuitive many-dimensional 
structure: worlds are tuples and the accessibility relations act coordinatewise. 
However, this nice structure results in strong interaction, like commutativity, 
between the different modal operators. A natural way of loosening this strong 
connection but keeping the transparent many-dimensional structure is to con-
sider subframes of product frames. Worlds are still tuples, the relations still 
act coordinatewise, but not all tuples of the Cartesian product are available, 
so the commutativity and Church-Rosser properties do not necessarily hold. 

This idea gives rise to the following *product-like' combinations of logics. 
First, we choose a class of 'desirable' subframes of product frames. This 
can be any class: the class of all such subframes, the so-called 'locally cubic' 
frames, frames that 'expand' along one of the coordinates (see below for precise 
definitions), a class of frames satisfying some (modal or first-order) formulas, 
etc. Having chosen such a class /C, we then take the logic determined by those 
subframes of the appropriate product frames that belong to /C. Thus, each 
choice of /C defines a new product-like operator on logics. As we shall see, 
in many cases the resulting logics are indeed located between the fusions and 
the products of the components. 
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Formally, let n be a positive natural number and /C a class of subframes 
of n-ary product frames. Given Kripke complete unimodal logics Li , . . . , L„, 
the fC-relativized product (Li x • • x Ln)^ of Li , . . . , L„ is defined by taking 

(Li X .. . X Ln)^ = Log{(S G /C I « C 5 for some 3̂  € FrLi x • • • x FrLn}. 

The usual product logics are then special cases of /C-relativized product logics: 

Li X . . . X L„ = ( I i X . . . X Lnf'^''"'"'^'^-, 

Relativized products were first suggested as a modification of the product 
construction by Mikulas and Marx (2000). The results of this section were 
obtained in (Kurucz and Zakharyaschev 2003). 

Arbitrary relativizations 

We begin by considering the product operator determined by the class SFn of 
all subframes of n-ary product frames. SFn-relativized products of logics will 
be called arbitrarily relativized products. Clearly, for all classes /C such that 
FrLi X • • • X FrLn Q /^ Q SFn, we have 

(Li X • • • X Ln)^ C Li X • • • X Ln-

Note that if n > 2 and /C contains a frame which does not satisfy either com-
mutativity or the Church-Rosser property (e»g., /C = SFn) then this inclusion 
is proper. 

On the other hand, unlike product logics, arbitrarily relativized products 
of logics do not necessarily contain the fusion of the components. For example, 
the formula O2T clearly belongs to the fusion K 0 D, but is refuted in any 
finite subframe of, say, (u;, <) x (a;, <), and so O2T ̂  (K x D)^'^', However, 
as we shall see below, for a large class of natural logics, arbitrarily relativized 
products do contain the fusions. 

A Kripke complete modal logic L is called a subframe logic if for all 5 6 FrL 
and (5 C J , we have (6 € FrL as well (for a general theory of subframe 
logics consult (Fine 1985, Chagrov and Zakharyaschev 1997, Wolter 1997, 
Zakharyaschev et al, 2001) and references therein). Typical examples of 
subframe logics are those determined by classes of Kripke frames that are 
definable by universal first-order formulas. The reader can easily check that 
all logics in Fig. 1.1 except D, DAlt, and KD45 are subframe logics. (Note 
that GL, GL.3 and Grz are subframe logics but not first-order definable.) 

Proposition 9 .1 . / / L i , . . . , Ln are subframe logics then 

L i ( 8 ) . . - 0 L n C (Li X . . .xLn)^*"-. (9.1) 
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U2 

^ivh 

Ui 

Figure 9.1: 'Coordinatewise' subframes. 

Proof. The proof is similar to that of Proposition 3.8. Suppose that an 
n-frame © = {W, 5 i , . . . , Sn) is a subframe of some product frame 

(f/i,i?i) X ..• X {Un,Rn) € FrLi X ••• X FrLn. 

Fix some t, 1 < i < n. For every n — 1-tuple Ui = ( u i , . . . , Ui-i, Ui+i , . . . , Un) 
with Uj € Uj, for j ^ i, we take the set 

Wui = { ( u i , . . . , W n ) € W^ I Ui € C/t, { u i , . . . , U i _ i , U i 4 . i , . . . , U n ) = t l i } , 

and let Su. be the restriction of Si to W^., i.e., 5ui = -Si fl (W^. x W^.) (see 
Fig. 9.1). Then clearly we have the following: 

• if Wij. is not empty then (W ĵ, ,5^,) is isomorphic to a subframe of 
(Ui,Ri); 

• {W^Si) is the disjoint union of the frames {Wui^Sui)^ for all possible 
n ~ 1-tuples Ui with nonempty Wxj.. 

Therefore, since Li is a subframe logic, {W,Si) [= Li. • 

As we shall see below, the converse of inclusion (9.1) does not always 
hold. However, as the following theorem shows, for many standard subframe 
logics, their arbitrarily relativized product coincides with their fusion. Thus, 
'arbitrary relativization' can be regarded as a 'many-dimensional' semantical 
characterization of fusions of these logics. 

Theorem 9.2. Let Li G {K, T, K4, S4, S5, S4.3}, /or i = 1 , . . . ,n . Then 

(Li X • • • X Ln)^^'' = Li 0 • • • (8) Ln. 

Proof. According to Proposition 1.11 and Theorems 1.16, 4.1, 4.2, all fusions 
Li (g) • • • (g) Ln mentioned in the formulation of the theorem are characterized 
by countable (in fact, finite) rooted n-frames (6 = (M^,Si,... ,5n), where 
{W, Si) is a frame for Li, i = 1 , . . . , n. We now prove the following analog of 
Lemma 5.8: 
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Lemma 9.3. Suppose that Li € {K, T, K4, S4, S5, S4.3}, i = 1 , . . . , n, and 
let (8 = {W^ 5*1,..., Sn) be a countable rooted n-frame such that {W^ Si) f= Li 
for all i = 1 , . . . ,n . Then (8 is a p-morphic image of a subframe of some 
product frame for Li x • • • x Ln-

Proof. First we show that every countable rooted n-frame 

(8 = (M^,5i,...,5n> 

is a p-morphic image of a subframe of some product frame. Similarly to the 
proof of Lemma 5.2, we will construct, step-by-step, frames 5i = {Ui^Ri) 
(t = 1 , . . . , n), a subframe i5 C J i x • • x Sn) and a p-morphism / from Sj 
onto ©. As before, we formalize this step-by-step argument by defining a 
game G((8) between two players V and 3 over 6 . 

Define a (B-network to be a tuple 

N = {U,^ U!:,V\R^,...,R^J'') 

such that di^ = (f//^,i?f^) are finite intransitive trees for all i = l , . . . , n , 
V^ C U{^ X • • X f/;̂ , and f^ is a homomorphism from the subframe S)^ of 
ffi^ X • • X J/^, having V^ as its set of worlds, to (S. In other words, for all 
wi e t/i,...,tXn € f/ni ^ = l , - . - , n , and u[ e Uiy 

if ( t / i , . . . , t in) € V^, (ui,. . . , iii-i,t/J,iXi4.i, . . . ,u„> G V^ and UiR^u^ 

then f^{uu . . . , u , , . . . , Un)Sif^{uu..., u j , . . . , Un) 

The players V and 3 build a countable 'expanding' sequence of finite 6-net-
works as follows. 

In round 0, V picks the root r of (5. 3 responds with a (S-network iVo such 
that all the t//^° are singleton sets, F^« = C//̂ ° x • • • x 17^°, the relations R^"" 
are all empty, and f^^ maps the only n-tuple in V^^ to r. 

Suppose now that in round j , 0 < j < a;, the players have already built a 
finite (8-network Nj^i. Now player V challenges player 3 with a possible defect 
of Nj-i which indicates that the homomorphism f^^-^ is not a p-morphism 
onto 6 yet. V picks such a defect which consists of 

• an n-tuple (u i , . . . ,w„) G V ^ ^ - \ 

• a coordinate i e { 1 , . . . , n} , and 

• a world w in (8 such that / ^^"^(n i , . . .^Un)RiW, 

Player 3 can respond in two ways. If there is some u[ such that 

( u i , . . . , u ; , . . . , U n ) € K ^ ^ - S Uii?f^-^u;and/^^-^( txi , . . . ,u ; , . . . ,Un) = ti;, 

then she responds with Nj = iVj«i. Otherwise, she responds with the follow-
ing ©-network Nj extending Nj-i: 
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. f/f ^ = C/f ̂ -* u{u+} , 1/+ being a fresh point, R^' = R^'-'u{{ui, u+>}, 

• V ^ ^ i = y ^ i - i U { ( u i , . . . , u , . i , u + , t / , ^ i , . . . , i z , } } , 

• dk' =^k'^' for all fc 7̂  t, and 

Observe that 3 can always respond this way. In other words, she always has 
a winning strategy in the a;-long game G((&). It is straightforward to see 
that the union (in the natural sense) of the constructed ©-networks gives 
the required p-morphism / from a subframe -̂  = (V,...) of a product frame 
5i X • • • X 5n onto 6 . This proves the lemma for Li = K, z = 1 , . . . , n. 

However, in the other ceises nothing guarantees that the 'coordinate' frames 
di = {Ui,Ri) are actually frames for Li. In what follows we fix some i with 
1 < i < n and try to transform ^i into a frame for Li and keep all other 
frames ^j for j ^ i and the set V intact. Without loss of generality we may 
assume that z = 1. 

To begin with, we show that the frames ^i and the subframe i} = (V,...} 
have some useful properties. First, it should be clear from the construction 
that 

for each i = 1 , . . . , n, the frame ^i is an intransitive tree. (92) 

To formulate another property, we require an auxiliary definition. 
Given an odd natural number A*, a sequence {v^,. ..,v^) of distinct n-tuples 

v^ = (vfj • • • > Vn)» ^ ^ ^^ from V is called a path in V between v^ and v^ if 
the following two conditions hold: 

• for each even number £ < k, Vj ^ v^^^ whenever j ^ 1^ and 

• for each odd number £ < k, v{ — v{'^^ 

(see Fig. 9.2). We call k the length of such a path. If in addition vj = vf 
also holds then we call (v^, . . . , v*̂ ) a circle in V (since all the n-tuples are 
distinct in a path, this can happen only if A: > 3; see Fig. 9.3). 

Observe that if (v^, . . . ,v^) is a circle then, for every £ < k, and every i, 
1 < i < n, there exists an £' < k, £' ^ £, such that vf = vf . 

The second important property is that 

there are no circles in V. (9.3) 

For suppose otherwise. Take a circle (v^, . . . yV^) in V and enumerate all of 
its n-tuples according to their 'creation time' in the game. Let v^ be the last 
one in this list. By the rules of the game, one of the coordinates of v^ should 
be fresh, contrary to the observation above. 
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• • 

/ . . . . I . . . . .* 

• • -#„ 

: . . . . f . . . . ; 

# •# 

Figure 9.2: A three-dimensional path of length 5. 

...... I. 
• I-

:•.... I. 
• I-

# # 

Figure 9.3: A three-dimensional circle. 

Note that as a special case of (9.3) we conclude that there are no squares 
in K, i.e., four distinct n-tuples of the form (x, W2j..., Wn)i (x, lyj, •.., t̂ n)» 
{y,W2,...,Wn), and {y.wt^,... ,w'J. 

Now in order to transform 5i = (Ui^Ri) into a frame for Li, we will 
extend, step-by-step (like in the proof of Lemma 5.8), the accessibility relation 
i?i (but always leave the sets t/i, V and the frames ^j for j ^ 1 unchanged). 

First let Li == K4. Define an infinite ascending chain 

fl? C /?} C .. . C fl7» C ... 

of binary relations on Ui by taking /?? = Ri and, for m < a;, 

j^m+i ^jim^ {(xi,yi) eUixUi] xiR'l'zi and ziR'Pyi for some zi € C/i}. 

For every m < a;, let ST = (i/i, /^r) and let ft"^ be the subframe of 
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with V as its set of worlds. Finally, let 

Rr=\J RT< dr = {UuRr), 
m<(jj 

and let 9)^ be the corresponding subframe of 5i° x 3̂ 2 x * • * x ffn-
Clearly, 3̂ f° is a frame for K4. We are about to show that / is still a 

p-morphism from 9)^ onto (S. Since the 'backward' p-morphism condition 
always holds after extending the accessibility relation of the pre-image, it is 
enough to show that / is a homomorphism from 9)^ onto 6 . We will prove by 
parallel induction on m that the following two statements hold, for all m < a; 
and for Xi,yi € Ui'. 

(1) If x\R^yi then there are X2, . . . , Xn, 2/2, • • •, yn such that there is a path 
in V between a: = (xi,a:2,... ,Xn) and y= (t/i,y2, • • • ,2/n). 

(2) \i x\R^y\ and both w^ = {x\^W2,'• • .Wn) and w^ — (t/i,tt^2, • • • »^n) 
are in V for some Wj G C/;, j = 2 , . . . ,n, then f{w^)Sif{w^). In other 
words, / is a homomorphism from 9)^ onto (5. 

Assume first that m = 0. Then by the definition of î , (2) holds and there exist 
W2,..., î n such that both w^ = {xi,W2i..., Wn) and w^ — {yi,W2,..., Wn) 
are in V. By (9.2), xi ^ yi, and so the sequence {w^,w'^) is a path in V as 
required. 

Let us assume inductively that (1) and (2) hold for some m < a;, and let 
xiyyi € t/i be such that xiR^^^yi, but xiR^yi does not hold. Then there is 
a zi e Ui such that xiR^Zi and ziR^^yi, It is not hard to see that, by (9.2), 
x i ,y i and zi should be all distinct. By item (1) of the induction hypothesis, 
there are Xj, Zj, Zp yj, for j = 2 , . . . , n, such that 

• there is a path in V between X = (xi ,X2,. . . ,x„) and 2 = (21,^2, • • • ,Zn); 

• there is a path in V between 2' = (21, Zj? • • • 1 ^n) ^^^ 2/ = (yi» ^2, • •»2/n)-

If z ^ z' then the concatenation of these two paths gives a path between x 
and y. If z = z' then leave out z from the concatenated sequence, and the 
rest gives a path as required in (1). 

For (2), suppose that w^ = (xi, 1^2,..., Wn) and w^ = (yi, t/;2, • • •, Wn) are 
in V for some ii;̂  € f/j, j = 2 , . . . , n. Let K;̂  = (21,it;2,..., i/̂ n)- Consider the 
n-tuples x,y,z, z' given above. We claim that 

X = vf, y — w^ and z = z' = w^, (9.4) 

Suppose otherwise. Then several cases are possible. We are going to show 
that any of them means that there is a circle in V, contrary to (9.3). Let 
p = (x,t;^,... ,v*^,y) denote the path in V between x and y (which exists 
because of (1)). 



9.1. Relativized products 425 

• Suppose first that x ^ w^ and y ^ w^. Then the concatenation of 
{w^^w^) and /9 is a circle in V. 

• Suppose X =^ w^ and y ^ w^. Then the length of p is > 3, so 
{w^^ t;^ . . . , i;'̂ , y) is a circle in V. The case when x ^ w^ and y — w^ 
is similar. 

• Finally, suppose x = w^ and y ^ w^. II z ^ w^ and 2' ^ t/;̂  then the 
length of p should be > 5, and {y^,v^,.. ..v^"^) is a circle in V. The 
cases when one of z and z' coincides with w^ but the other does not are 
similar. 

As a consequence of (9.4), we obtain that w^ is in V. So by item (2) of the 
induction hypothesis, 

f{w^)Sif{w') and / K ) 5 i / K ) . 

Since Si is transitive, we have f{'W^)Sif{w^)y which completes the proof of 
Lemma 9.3 for Li = K4. 

If Li = S4 or Li = T, we simply make all worlds of 5i reflexive and / is 
still a p-morphism. In the case of Lx = S5, we have to 'close* 5i under both 
transitivity and symmetry. It is not hard to see that this causes no problem, 
since there are no squares in V. 

For Li = S4.3 we need a slight modification of the above proof for K4. 
We have to turn 5i to a reflexive, transitive and weakly connected frame. To 
this end, we modify the definition of the accessibility relation R^"^^ {m <uj). 
First, we make all the points in f/i reflexive. Then for all distinct xi, t/i € f/i, 
we define (xi, t/i) to be in R^"^^ iff one of the following three conditions hold: 

• xifif yi; 

• there is a ^i € f/i such that XiR^Zi and ZiR^yi; 

• there is a >2ri 6 Ĉ i such that ziR^^xi^ ziR^yi^ and 

- either there are no ti;2, • • •»^n such that both w^ = (xi, t/;2,..., t/̂ n) 
and w^ = {y\yW2^..., Wn) are in V, 

- or there exist W2^.>> •^Wn such that both w^ and w^ are in V, and 
f{w^)Sif{w^) holds. (Note that although w^ ^w^, it can happen 
that /(t/;^) = f{wy).) 

Since there are no squares in V, R^^^ is well-defined. The very same induct-
ive proof as above shows that the frame ^f obtained this way is reflexive, 
transitive and weakly connected, and / is still a p-morphism from S^^ onto 
«. • 
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Now we can complete the proof of Theorem 9.2. Let </? ^ Li 0 • • • (8) Ln, 
Take a countable rooted n-frame © = (W,5i , . . . ,S„) refuting ip and such 
that, for every i = 1 , . . . , n, {W, Si) is a frame for Li. Now, using Lemma 9.3, 
we can find a subframe ij of a product frame for Li x •• x Ln having © as 
its p-morphic image. It follows that f) ^ (p^ and so (/? ^ (Li x • • x Ln)^^". 
Therefore, (Li x • • x Ln)^''" Q Li 0 • • (g) in- Proposition 9.1 gives the 
converse inclusion. • 

It is not clear how far Theorem 9.2 can be generalized. On the one hand, 
we conjecture that it holds for Li e {K4.3, Grz, GL, GL.3} as well. For K4.3 
even Lemma 9.3 may hold, although a somewhat different, 'more careful' proof 
would be needed. However, it is not true that every countable (even finite) 
frame for, say, Grz (g) Grz is a p-morphic image of a subframe of a product 
of two Grz-frames. Consider, for instance, the 2-frame {{x,y^z,w},Ri,R2) 
with xR\yR2zR\wR2X, It is not hard to see that if this frame is a p-morphic 
image of a subframe of ^\ x 3̂ 2 then both 5i and 3̂ 2 must contain infinite 
strictly ascending chains of points, and so cannot be frames for Grz. 

On the other hand. Theorem 9.2 does not hold for all subframe logics, 
not even for those of them that (unlike Grz) are characterized by universally 
first-order definable classes of frames. Take, for instance, the logic 

K5 = K e ODp -* Dp. 

It is well-known (see, e.g., Chagrov and Zakharyaschev 1997) that K5 is 
Kripke complete and characterized by the class of Euclidean frames, i.e., 
frames (W, R) satisfying the universal (Horn) sentence 

\fx\/yWu {R{u, x) A R{u, y) -^ R{x, y)). 

In particular, frames for K5 have the property 

VxVu [R{u,x) -* R{x^x)). 

Now consider the formula 

if = Oi{pA 02{q A -p)) A 0102(9 -^ -Oig ) . 

It is clearly satisfiable in the following frame for K5 (gi K: 

Ri 
fii O R2 

P Q 

On the other hand, it is not hard to see that (p is not satisfiable in any subframe 
of a product frame for K5 x K. Therefore, 

K5(8)K S (K5 X K) '̂'̂  C K5 x K. 
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In fact, a similar statement holds for any logic K ® 0*Dp -• D V (t > 1) in 
place of K5. Further, the same argument shows that 

K45 0 K4 g (K45 x K4f^^ $ K45 x K4, 

where K45 = K4 8 ODp -• Dp. 
Other kinds of logics for which Theorem 9.2 does not hold are those having 

frames with a finite bound on their branching, e.g. Alt. Recall that {W, R) 
is a frame for Alt iff every point in W has at most one /^-successor. Now 
consider the formula 

^ = pAOi(-^pA02g) A02(-^pA0ir) A 0102(9-> -^r). 

xp is clearly satisfiable in the Alt (g) Alt-frame 

Ri r q 
f ^ » 

R2 

Ri 

R2 

On the other hand, it should be clear that V̂  is not satisfiable in any subframe 
of a frame for Alt x Alt. Thus, 

Alt 0 Alt Q (Alt X Alt)^''^ g Alt X Alt. 

However, in general the behavior of arbitrarily relativized products re-
mains unexplored. It would be of interest, for instance, to find solutions to 
the following problems. 

Question 9.4. Are arbitrarily relativized products of finitely axiomatizable 
logics also finitely axiomatizable (in those cases when they differ from the 
fusions)? 

Question 9.5. Are arbitrarily relativized products of decidable logics also 
decidable? 

Question 9.6. Find a general characterization of those arbitrarily relativized 
products of logics that coincide with their fusions. 

Cubic and locally cubic relativizations 
To motivate another kind of relativization, let us briefly discuss a possible way 
of creating new, more expressive logics from products. Given the product of 
n unimodal logics, one may want to add new operations to Oi , . . . , On that 
^connect' the different dimensions. Perhaps the simplest and most natural op-
erations of this sort are the diagonal constants dij which have already showed 
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up in various disguises in this book. Given two natural numbers i and j with 
1 ^ »̂ j ^ »̂ the truth-relation for the constant dij in models over subframes 
of n-ary product frames is defined as follows: 

(971, (u i , . . . ,Wn)) |=di j iff Ui = Uj. 

The set of n-tuples satisfying dij is usually called the (i^j)-diagonal element. 
Actually, the main reason for introducing such constants is to give a 'modal 

treatment' of equality of classical first-order logic: one can extend the trans-
lation • of Section 3.5 by taking 

yXi = Xj) = Oijj 

for all variables Xi^Xj. Let (SS*^)^ denote the logic (in the language MCn with 
the diagonal constants) determined by the class of cubic universal product 
S5^-frames extended with the diagonal elements (interpreting the dij). Modal 
algebras for this logic are called representable cylindric algebras and are ex-
tensively studied in the algebraic logic literature; see, e.g., (Henkin et al. 1981, 
1985, Hirsch and Hodkinson 2002) and the references therein. By the algeb-
raic results of (Monk 1969) and (Maddux 1980), (S5'')= is neither finitely 
axiomatizable nor decidable. Note also that (S5^)^ is not a conservative 
extension of S5" (Henkin et al. 1985). 

Another natural way of connecting dimensions is via so-called 'jump' mod-
alities. Given a function TT : { 1 , . . . , n} -^ { 1 , . . . , n} (such a map can be called 
a jump)^ define the truth-relation for the unary modal operator ŝ r in models 
over subframes of product frames as follows: 

(97l,(wi,...,Wn)) \=s^(p iff (9Jl, (w^(i),...,t/^(„))) \=(^. 

These modal operators are often called (generalized) substitutions, since by 
taking 

^(^7r(i)-i, • • • i^7r(n)-i)* = SnP{xo, • • • ,Xn~i) {P an atomic formula) 

one can extend the translation * of Section 3.5 from formulas with a fixed order 
of the variables to arbitrary first-order formulas. Note that in cubic universal 
product S5"-frames certain substitutions are expressible with the help of the 
boxes and the diagonal constants (Henkin et al. 1985). Various versions of 
modal algebras corresponding to products of S5 logics with substitutions and 
with or without diagonal constants (e.g., polyadic and substitution algebras) 
are studied in (Halmos 1957, 1962, Pinter 1973, 1975); see also (Daigneault 
and Monk 1963, Nemeti 1991, Sagi 2002, Sain and Thompson 1991). Again, 
the algebraic results show that most of these logics are nonfinitely axiomatiz-
able and undecidable. 
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Arbitrary relativizations of these extensions of S5-products do result in 
new, decidable many-dimensional logics; see (Nemeti 1995, Venema and Marx 
1999). Moreover, both the diagonal constants and the substitutions can *de-
tect' some properties of the set of worlds, so it makes sense to consider, for ex-
ample, those frames whose sets of worlds are closed under jumps. A nonempty 
set W of n-tuples is called a local n-cube if for all maps 

TT: { l , . . . , n } --> { l , . . . , n } 

and all (u i , . . . »Un) € W^ we have (ti7r(i),. •. iU^{n)) ^ ^' I* is easy to see 
that VF is a local n-cube iff for every (ui,... ,Un) € W, the Cartesian power 
{t/i , . . . ,u„}^ is a subset of W, that is, W is the union of 'n-dimensional 
cubes.' In particular, local 2-cubes are just the reflexive and symmetric binary 
relations. 

A set W such that W = C/̂ , for some nonempty set t/, will be called an 
n-cube. Clearly, n-cubes are special cases of local n-cubes. Let 

LCn = {(W ,̂ 5 i , . . . , Sn) € SFn I Ŵ  is a local n-cube}, 

Cn = {(H^,5i,...,5n> eSFn I Ŵ  is an n-cube}. 

Note that cubic universal product frames belong to Cn. In general, we will 
refer to frames whose sets of worlds are n-cubes as cubic. 

Locally cubic relativizations of the above extensions of S5-products again 
give new logics that are also different from the arbitrarily relativized versions. 
Moreover, all these ^extended relativized SS-products' turn out to be decidabie 
and often finitely axiomatizable. A comprehensive treatment of relativized 
versions of (SS'*)" and products of S5 logics extended with substitutions can 
be found in (Marx and Venema 1997) under the respective names of cylindric 
modal logics and modal logics of relations. 

Note that one can also establish connections between different dimensions by 
introducing polyadic modal operators on product frames. This is the road 
taken by arrow logics (see Section 3.10), where a binary modal operator is 
considered. Relativized versions of arrow logics are among the main topics 
of (Marx and Venema 1997); see also references therein and in Section 3.10 
above. 

Question 9.7. What can be said about extensions with diagonals and/or 
substitutions of arbitrarily and locally cubic relativized products of modal 
logics other than S5? 

As mentioned in (Mikulas and Marx 2000), decidability of these extensions 
of relativized K" can be proved by a reduction to the n 4- 1-variable packed 
fragment of first-order logic. According to (Mikulas 2000), the mosaic method 
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(which has been so successful for extensions of relativized S5") can also be 
used to show decidability of extensions of 

(Li X . . . X Ln)^^-" and (Li x • • • x Ln)^^'', 

whenever Li e {K, T, K4, S4, S5}. 

The following two propositions show that if we do not enrich the language 
MCn, then locally cubic and cubic relativizations do not yield an3rthing new. 

Proposition 9.8. For all Kripke complete unimodal logics Li,.., ,Ln and all 
classes K such that LCn Q^Q SF^, 

(Li X . . . X Ln)*-^" = (Li X . . . X L„)^ = (Li X . . . X Ln)S»^-. 

Proof. The inclusions 

(Li X . . . X Ln)^"^- 2 (Li X . . . X Lnf D (Li X . . . X Lnf^--

are obvious. To prove the converse ones, we show that any rooted n-frame 
9) in (FrLi x . • x FrLn)̂ '̂ '* is isomorphic to a generated subframe of some 
(Q in (FrLi x . . x FrLn)*"^". Indeed, suppose that i3 C 3̂  for some 3̂  in 
FrLi X . . . X FrLn of the form 

( f / l , / l l ) x . . . x ( C / n , i ? n > . 

Take an isomorphic copy of J such tliat the Ui are pairwise disjoint. By 
Makinson's theorem (see Section 1.2), for each Kripke complete unimodal logic 
L, either the one-element reflexive frame (o) or the one-element irreflexive 
frame (•) is a frame for L. For all i, j e { 1 , . . . , n}, we define binary relations 
E?^ on Uj by taking 

f fit, ift = J, 
Ri = { 0, if • h i t , 

[ {{u,u) \ueUj}, \{o\=zLi. 

Now let [/ = \^ Ui. For every i e { 1 , . . . , n } , set fit = [^ jR̂ , and take 
l<t<n l<j<n 

^i^{U,Rt). 

Since each 3i is a disjoint union of L^-frames, the product frame 

3+ = Ji X . •. X 3n 

is then a frame for Li y. - • -^Ln- Let W denote the set of worlds of ^. Define 
VT"*" as the smallest local n-cube containing W, that is, 
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1/2 

t/ i 

k î 

Ll 1— 

Ux U2 

Figure 9.4: The smallest local 2-cube containing W, 

and let (8 be the subframe of J"*" with IV"̂  as its set of worlds (see Fig. 9.4 
for the case n = 2). Then clearly 

© € (FrLi X . . . X FrLn)*-̂ ** 

and i} C (8. It is not hard to see that S^ is in fact a generated subframe of ©, 
because W+ n (I7i x • . x t/n) = M .̂ • 

Proposition 9.9. For all subframe logics L i , . . . , Ln, 

(Li X . . . X Ln)^" = Li X . . . X Ln. 

Proof. The inclusion Li x •. • x L„ C (Li x . • • x Ln)^" is easy, since the Li 
are subframe logics and every cubic subframe of a product frame is in fact a 
product of some subframes of the components. 

To prove the converse, we show that every frame ff = 5i x .. • x Jn with 
Jt f= Li is a p-morphic image! of a cubic product frame, that is, a frame 
(& — (6iX'X(6n such that every ©j has the same set of worlds and (S, N ^t-
Indeed, take a cardinal K > maxi<i<ri \di\ and let (Sj be the disjoint union 
of K-many copies of 5i. Then |(Si| = K and ?» is a p-morphic image of (9t, 
whenever 1 < i < n. Therefore, by Proposition 3.10, 5 is a p-morphic image 
of 6 . Since all the (St have the same cardinalities, we may assume that they 
are frames over the same set of worlds. • 

Expanding and decreasing relativizations 
First-order modal and intuitionistic logics as well as modal description logics 
motivate our third group of relativizations. Fix a subset N of { l , . . . , n } . 
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An n-frame © = {W, 5 i , . . . , Sn) is called an N-expanding (or N-decreasing) 
relativized product frame if there are frames ^i — {C/i, fii), • . . , 5n = {Unj Rn) 
such that 

• 6 is a subframe of 5i x • • • x 5„; 

• for all {wi,,.., Wn) £W,je N, and u € Uj, if WjRjU (or uRjWj) then 
(t(;i,...,ti;j_i,w,it;j4.i,...,ii;n} G IF. 

If iV = {1} then we call 6 an (n-ary) expanding (decreasing) relativized 
product frame. Examples of decreasing relativized product frames are the 
two-dimensional frames for the interval temporal logic H S from Section 3.9 
(they are also {2}-expanding). In what follows we consider only expanding re-
lativizations. The reader should have no problem in reformulating all notions 
and results for the case of decreasing ones. 

Define EXn to be the class of all n-ary expanding relativized product 
frames. In case n = 2, we omit the index and write EX. 

It is easy to see that every expanding relativized product frame has left 
commutativity and Church-Rosser properties between coordinates 1 and i, 
for alH = 2 , . . . , n : 

Mx^lfiz {xRiy A yRiz -^ 3u (xRiu A uRiz))^ 

yx'i'i/iz {xRifj A xRiz -* 3u [yRiu A zRiu)) 

(cf. Section 5.1). Therefore, the formula?? com[i and chru are valid in ex-
panding relativized product frames for all i = 2 , . . . , n (see Chapter 8). 

Let us consider first the axiomatization problem for two-dimensional ex-
panding relativizations. Given logics Li and JD2, define 

[Li, 1/2]^^ = {Li 0 L2) e comi2 ® chr 12. 

T h e o r e m 9.10. Suppose Li and L2 are Kripke complete unimodal logics such 
that Li € {K, T, K4, S4, S5} and L2 is Horn axiomatizable. Then 

( L i x L 2 ) ^ ^ = [Ii ,L2]^^. 

Proof. It is easy to see that if comi2 and chr 12 are valid in 3̂  = (Wi i?i, R2) 
with symmetric /?i, then com\2 is valid in J as well. By Theorem 5.9, we 
then have 

(S5 X Ls)^^ = S5 X L2 = [S5, L2] = [S5,12]^^. 

In the other cases we can prove, similarly to Lemma 5.2, that every count-
able rooted 2-frame validating comi2 ^^^ chr 12 is a p-morphic image of an 
expanding relativized product frame. Then, like in the proof of Lemma 5.8, 
we add the missing pairs to Ri and i?2, if needed. By adding new pairs to Ri 
we are not forced to extend the set of worlds, because Li € {T, K4, S4}. Q 
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Question 9.11. What can we say about axiomatizations of higher-dimensi-
onal expanding relativized products? 

As to decidability, expanding relativizations can be reduced to products 
almost in the same way as first-order modal logics with expanding domains 
were reduced to logics with constant domains in Section 3.6 (cf. also Pro-
position 3.32). Let (fi be an MCn-formnldi and e a propositional variable 
which does not occur in (p. Define by induction on the construction of (/? an 
MCn'iormnla, (f^ as follows: 

p^ = p (pa propositional variable), 

{Ditpr = Di(e-^V^') (i = 2, . . . ,n) . 

Theorem 9.12. For all Kripke complete unimodal logics L i , . . . , L„ and all 
MCn'formulas (/?, the following conditions are equivalent: 

• (^€ (Li X .-. X Lnf^*'; 

• (e A of ""^^Wf^'f ^^(e ^ Die)) ~> ̂ ^ G Li x • • • x Ln, 

where M ^ ^ t ^ = i^ and Afg^^V^ = ^Un)^^ M2 DiA^^^n)-
In particular, for n = 2, 

V? 6 (Li X L2f^ iff (e A nf'^'^^''^nf'^'^^''\e ^ Die)) ^ ip^ e Li x L2. 

Proof. Similar to the proof of Proposition 3.20. • 

As a consequence of this theorem we obtain that expanding relativized 
products are decidable in all those cases when the corresponding products are 
decidable. 

Question 9.13. Does the decidability of an expanding relativized product 
logic imply that the corresponding product logic is decidable as well? 

We conjecture that in some higher-dimensional cases the answer may be 
affirmative in the sense that expanding and decreasing relativized products— 
like the corresponding products—are undecidable. In particular, it was shown 
in (Hodkinson et al. 2002) that the product of any Kripke complete modal 
logic between K and S5 with the Dp-fragment of branching time temporal 
logic CTL* is undecidable. We believe that a similar proof can show the 



434 Chapter 9. Variations on products 

undecidability of the decreasing relativization of K4 x S5 x L, for any Kripke 
complete modal logic L between K and S5. 

Let us conclude this section by observing the (lack of) connections between 
expanding relativized products and finite variable fragments of first-order 
modal logics with expanding domains. To begin with, as we saw in Sec-
tion 3.6, modal product logics of the form 

L X S5 X . . . X S5 

can be reduced to n-variable fragments of first-order modal logics QL with 
constant domains (cf. Theorem 3.21). It is readily checked that if n = 1 then 
the translation ^ defined in Section 3.6 reduces (L x S5)^^ to the one-variable 
fragment of the first-order modal logic Q^L having models with expanding 
domains. 

On the other hand, as far as we see, for n > 3 there is no such reduction 
of expanding relativized products of the form 

( L x S 5 x . . . x S 5 ) ^ ' ' - + i (9.5) 

to Q^L, since quantifiers Vxj and Vxj of the latter always commute, while 
there is no interaction between the boxes Di and D^ of the former whenever 
i ^ j and i,x > 1- An alternative approach can be to consider instead of (9.5) 
the two-dimensional expanding relativized product 

(L X S5^)^^. 

Note that for n > 3 it is not known whether the n -\- 1-dimensional product 
logic L X S5 X • • • X S5 and the two-dimensional product logic L x S5" are 
the same; see Section 3.3. Moreover, since we do not know what frames for 
S5" look like when n > 3 (cf. Theorem 8.29), it is not clear how to turn a 
model for (L x 85"*)^^ into a model for Q^L. 

For n = 2 we do have a characterization of (countable) S5 x S5-frames; 
see Lemma 5.8. Therefore, it is not hard to see that we have the required 
reduction: for every Al£3-formula ip, 

cp G (L X (S5 X S5))^^ iff ip^ € Q U . 

9.2 Valuation restrictions 
One may try to loosen the strong interaction between the components of 
product logics by imposing restrictions on possible valuations in models. 
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Examples of specifying ^acceptable' valuations we have already met in this 
book are the finite state assumption (FS A) and the finite change assumption 
(FCA) of Section 3.2. 

We also face the problem of valuation restrictions if we try to extend 
the definition of products of frames to products of models. In order to keep 
the notation transparent, in what follows we confine ourselves to the two-
dimensional case (however, all the definitions and results can be generalized to 
higher dimensions in a straightforward manner). Suppose that 9Hi = (5i,5Ji> 
and 9JI2 = (3̂ 2,2J2) are models based on frames ^i = {Wi, Ri), t = 1,2. Recall 
that a model over the product frame 5i x 3̂ 2 is a pair OT = (3i X i?2» 9J)» where 
93 is a function mapping propositional variables to subsets of Wi XW2. Now 
we call a model JOT over 5i x 3̂ 2 an i-flat product of 9Jli and 9)t2 (i = 1,2) if, 
for all propositional variables p and all worlds Wi € Wi, U2 € VV2J 

{uuU2)e^{p) iff UiG^iip). 

9Jt is called a flat model if it is an t-flat product model, for some i = 1,2, and 5J 
is called a flat valuation. Flat valuations are discussed for many-dimensional 
temporal logics in (Gabbay and Guenthner 1982, Gabbay et al. 1994) and for 
temporal arrow logics in (Marx and Venema 1997). 

A more general way of classifying valuation restrictions (or defining prod-
ucts of models) is as follows. Take the first-order language with two unary 
predicate symbols Vi, V2 and two binary predicate symbols, and let $(a!:i,a:2) 
be a formula of this language. Then a model 

is said to be a ^-flat product of 97ti and 97l2 if, for all propositional variables 
p and all ui € Ŵ i, W2 € Ĥ2» 

(til,U2)€2J*(p) iff /ph*[t/l,ti2], 

where Ip is the first-order structure 

/p = (Ŵ i U H^2,2Ji(p),2J2(p),/2i,i?2). 

For example, a 1-flat product model defined above is $-flat with $ = V\{x\). 
If $ is a Boolean combination of V\{x\) and V2(x2) then we say that 971* is a 
Boolean-flat model (see (Hasimoto 2002) for an example). Rabinovich (2003) 
considers flat products of Kripke models in a wider perspective by showing 
that they are special cases of the generalized product construction of Feferman 
and Vaught (1959). 

Satisfiability in Boolean-flat models can be reduced to satisfiability in the 
component models, as the following 'flat product decomposition theorem* of 
Gabbay and Shehtman (1999) shows: 
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Theorem 9.14. Let 971^ be a Boolean-flat product of models Wli and 97t2. 
Then for every ^AC2-formula if, there are a finite set lip and unimodal formu-
las (fj (with D i j and iff (with 02 j , i ^ I^p, such that, for all worlds {ui,U2) 
in 9Jt*, 

(971^,(^1,W2)) \=ip iff 3i € I^dmuui) |= ^} and (!B?2,W2) N ¥>f)-

Corollary 9.15. Let L\ and L2 be unimodal logics having the fmp. Assume 
that an M£2-formula ip is satisfied in a Boolean-flat product 9Jt* of models 
VfJli and Wt2; where VJli \= Li, for i = 1,2. Then if is also satisfied in a 
Boolean-flat product Vt^ of finite models 9ti and 9I2 such that Ot̂  |= L^, for 
i = l , 2 . 

P roo f of T h e o r e m 9.14. First note that, since $ is a Boolean combination 
of Vi(a:i) and ^2(0:2)5 we may assume that 

^XuX2) = \/{^j{xi)A^^{X2)h 
i€l 

where, for each i € J, #^ is a (possibly empty) conjunction of Vj{xj) and 
^VS(x^)(j = l ,2) . 

We prove the theorem by induction on the construction of (p. First assume 
that ^ = p. for some propositional variable p. Then let I^p = I and, for each 
i € / , take 

7 i f $ J = V , ( X l ) , 

-,p if $J = -.Vi(xi), 

1 i f$J = K , ( i , ) A - F i ( x i ) , 

T if $J is empty, 

Pi 
1 _ 

P? = 

7 i f $ f - F 2 ( X 2 ) , 

-p if $f = -V2(X2), 

L i f$f = V2(x2)A-V2(X2), 

T if #? is empty. 

The cases when <̂  = 0 V x or (/? = -"V' ar<̂  straightforward. Suppose now that 
ip = OiV'. Then 

( !m^,(u i , tX2» |=Oi^ iff 
3ui (uiiJiwi & (9Jl*, (ui,U2)) 1= ^ ) iff (by the induction hypothesis) 

3u[ 3i e I^ {uiRiu[ k {muu[) 1= ̂ Pl & (9^2,U2) 1= t/;?) iff 

3i € / ^ ((Wli,Ui) h Ol^.l k (9n2,U2) h ^^^). 
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Now the statement follows by taking lip — Ixi^y (f} = Oitp}^ and v?f = xpf 
{i G lip). The case of (/? = 02^^ is similar. • 

Question 9.16. Find other types of $-flat product models for which the 
corresponding variant of Theorem 9.14 holds. Does it hold for arbitrary first-
order formulas $? 
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Chapter 10 

Intuitionistic modal logics 

In Section 3.11, we introduced the intuitionistic modal logic FS as the set of 
unimodal formulas ^ whose standard translations (̂ * belong to intuitionistic 
first-order logic Qlnt. In other words, FS can be regarded as a ^solution' to 
the equation ^^ = ^ ^ , i.e., as an intuitionistic analog of classical K. 

MIPC is an intuitionistic analog of classical S5. It was defined as the set 
of unimodal formulas (/? whose translations (̂ ^ into the one-variable fragment 
of first-order logic belong to Qlnt and thereby can be regarded as a ^solution' 
to the equation ^ = 9 | ^ . 

In this chapter we provide axiomatizations of these two logics and show 
that both of them enjoy the finite model property relative to a certain class 
of so-called FS-frames. Remember that they do not have the finite model 
property with respect to their standard semantics (see Proposition 3.46). The 
proofs will use axiomatization results for products of classical modal logics and 
clearly show the two-dimensional character of FS and MIPC. To 'warm up,' 
we begin by investigating the simpler intuitionistic modal logic IntK^ having 
just one necessity operator and no possibility operator at all. This logic turns 
out to be embedded into the fusion S4 % K. 

10.1 Intuitionistic modal logics with D 

The language we consider in this section is £p (the language of propositional 
logic extended with a single box operator) and the basic logic we are interested 
in is IntKp which is obtained from Int by adding the axioms 

D ( p A g ) ^ a p A a g and DT 

439 
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and taking the closure under modus ponens, substitution and the regularity 
rule for D: 

if —^ tp 
Dip -> D ^ 

Our first aim is to develop a semantical machinery for both this logic and 
all intuitionistic modal logics (im-logics, for short) containing it, i.e., for all 
subsets L of C^ containing In tK^ and closed under the regularity rule, modus 
ponens and substitution. 

As a technical tool we first introduce an algebraic semantics. An In tK^-
algebra is a structure of the form 

a = ( ^ , - . ^ , A^, V^, D^, 0^, 1^) (10.1) 

such that { i4 , ->^,A^,V^,0^, l^) is a Heyting (= pseudo-Boolean) algebra 
(see Section 2.7) with unit element 1^ and, for all a,b e A, 

D ^ l ^ = 1^, n ^ ( a A^ b) = D^a A^ D^6. 

Similar to classical modal logics (see Section 1.5), every im-logic contain-
ing In tKg corresponds to a variety of IntK^-algebras. More precisely, C^-
formulas are interpreted in IntK^-algebras 21 by means of valuations 5J which 
map £p into A in such a way that, for all ip,ip e C^,we have 

m{ipAxp) = 5J(vp) A ^ 5 J ( » , 

aj((^ -^tp) = 2J((^) -^^ t»f^), 

2J(X) = 0^, 

5J(D^) = D^aJ(v?). 

A formula ip is true in the algebraic model (21,2J) if 93(v?) = 1^. We say that 
(p is valid in 21 and write % \= ip if ip is true in all models based on 21. An 
im-logic L containing I n t K ^ is said to be characterized (or determined) by a 
class C of IntKp-algebras when ip e L iS tp is valid in every algebra in C. 

T h e o r e m 10 .1 . Every im-logic containing I n tKp is determined by a class 
of IntK^-algebras. Conversely^ the set of all formulas valid in a class of 
IntK^'algebras is an im4ogic containing I n t K ^ . 

Proof. The proof is based on the standard Lindenbaum construction (see 
also the proof of Theorem 4.5). Let L be an im-logic containing In tK^ . 
Define an equivalence relation ~ on the set C^ by taking 

ip rs^ tp iff ((f —* ip) A{'ip —^ (p) e L 
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and denote by [(f] the '^-equivalence class generated by (p. Using the fact that 
L is closed under the regularity rule, it is easily seen that '̂ ^ is a congruence 
relation on £ Q , i.e., for all £Q-formulas (/;i, (̂ 2? V̂ i» ^2» if V̂ i ^ ^2 and 
tpi ~ t/̂ 2 then (̂ 1 0 v?2 ~ V̂ i 0 ^̂ 2) where 0 is any binary connective of £p , 
and (fi ^ if2 implies Difi ~ D(/?2- Therefore, we can define an algebra^ 
21 = ^ ^ ^ ^ , A ^ , V ^ , 0 ^ , 0 ^ , 1 ^ ) , where A = ( M \ip€C^} and 

MA'»[^] 
M -=• [V'] 
M v« [V] 

o'» 
D«M 

= bAV), 
= [¥'-• V*], 
= bvt/»l, 

= w. 
= [D^]. 

It is not difficult to show that 21 is an IntK^-algebra validating L (i.e., 21 |= v? 
for all ip e L). Moreover, 21 ^ V̂  whenever ip ^ L. To prove this, it is enough 
to consider the valuation 93 defined by taking 2J(p) = [p] for all propositional 
variables p. In this case 93(< )̂ ^ 1^ because 53((^) = [v?] and if <-^ T ^ L. 

This proves the former claim of the theorem; the latter one is left to the 
reader as an easy exercise. • 

Now we apply this completeness theorem for algebraic semantics to establish 
completeness of IntK^-j with respect to the intended Kripke semantics defined 
in Section 3.11. Kripke completeness of various naturalextensions of IntKj-, 
can be proved in a similar way; see e.g., (Bozic and Dosen 1984, Sotirov 1984, 
Wolter and Zakharyaschev 1999a). 

?̂ • ^ 

^ a . ^ 0 R^ 

R 

D 

-^# 
R 

Figure 10.1: Properties of IntK^-frames. 

Recall that IntK^-frames are structures of the form 5 = (H^,i?,-Rg), 
where Ŵ  is a nonempty set, /? a partial order and R^ an arbitrary binary 
relation on W such that 

or, equivalently. 

RoR^oRC R^ 

RoR^ ^ R^oR = R^ 

^This algebra is often called the Lindenbaum algebra for L. 
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(see Fig. 10.1). A valuation in 3̂  is a map 5J from the set of prepositional 
variables into the set UpS of i?-closed subsets of W. Given a model Wfl = 
(y,5J), the truth-relation (97t,x) \= (p is defined in such a way that —> is 
interpreted by R (as in intuitionistic logic) and D by R^ (as in classical 
modal logic); for details consult Section 3.11. A formula (p is valid in 5 if 
(971, x) \= tp for every x e W and every model 9H based on 5- It is easily 
checked that every formula from IntK^ is valid in every IntK^-frame. 

Similarly to the classical modal case (see Section 1.5), every IntK^-frame 
J = (W, i?, i?p) gives rise to its dual IntK^-algebra 

where, for all X,Y e Up^, 

X-^Y = {xeW\\/yeW {xRyAyeX -^ y € F)}, 

ax = {xew\yyew {xR^y -> yeX)}. 

Moreover, 3̂  |= (̂  is obviously equivalent to 3^ |= ip, for every £Q-formula ip. 
Conversely, with every IntKp-algebra 21 of the form (10.1) we can associ-

ate an IntKp-frame /c5l = (W, R, fi^) by taking W to be the set of all prime 
filters in 21 and, for x, t/ € W, 

xRy iff X C y, 

xR^y iff Va € A (D^a € x -^ aey). 

We remind the reader that a prime filter a: in 21 is a subset of the power-set 
of A such that, for all a^b e A, 

• 0^ ^x and 1^ € x; 

• b e X whenever a e x and a < b (here and in what follows < is the 
lattice partial order on A defined by a < 6 iff a A^ 6 = a); 

• aA^bex whenever a, 6 G x; 

• a € X or b e X whenever a V^ 6 € x. 

The following two lemmas are required to prove the completeness theorem. 
The first one is a standard lemma on the existence of prime filters with certain 
properties; see, e.g., (Rasiowa and Sikorski 1963). 

Lemma 10.2. Suppose that 21 = {A, ->^, A^, V^,0^, 1^) is a Heyting algebra 
and B, C are nonempty subsets of A such that (i) 6i A^ • • • A^ 6„ ^ c, for 
any 6 i , . . . , frn ̂  ^^ c € C, and (ii) for all Ci, C2 € C, there is c£ C for which 
ci V^ C2 < c. Then there exists a prime filter V in S such that B C V and 
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The second lemma connects IntK^-algebras 21 with their IntK^-frames 
K21. 

Lemma 10.3. Let 21 = / A , - ^ ^ , A^, V^,D^,0^, l^ \ be an IntK^-algebra 

and K21 = {Wy R^R^). Then the map h : A —^ UpK% defined by taking 

h{a) =^{xeW \aex}, 

for each a £ A^ is an injective homomorphism from 21 to (K21)"^. 

Proof. We show only that h is injective and leave it to the reader to check 
that /i is a homomorphism. Suppose a ^ b. Without loss of generality we 
may assume that a ^ 6. Then, by Lemma 10.2, we can find a prime filter 
X £W such that a £ x and b ^ x. Hence h{a) ^/^ h{b). Q 

The completeness theorem follows now almost immediately: 

Theorem 10.4. IntK^ is determined by the class of IntK^-frames. 

Proof. We know already that every formula from IntK^ is valid in every 
IntK^-frame. Conversely, suppose that ip ^ IntK^. Then there exists an 
IntKp-algebra 21 such that 9i \^ if. By Lemma 10.3, 21 is isomorphic to a 
subalgebra of (̂ 21)"̂ . Hence (K21)"^ ^ (/?, and so K^\^ (f. Q 

Recall that one of the main reasons for introducing modal logics, in partic-
ular S4, was the desire to find a classical interpretation of intuitionistic logic. 
This was done via the Godel translation T of Int into S4; see Section 2.7. Now 
we show that this translation can be extended to an embedding of IntK^ into 
the fusion S 4 0 K . (Actually, it can be lifted to an embedding of all im-logics 
containing IntK^ into normal modal logics containing S4 (8) K; see (Wolter 
and Zakharyaschev 1997, 1999a).) 

Let us assume that S4 (g) K is formulated in the language MC2 with two 
necessity operators D/ and DM- Define inductively a translation T* from C^ 
into MC2 by taking: 

T*(P) 

r(i) 
T*(v5 -» V) 

T{<fiAtP) 

J*{<fiViP) 

T*{n<p) 

= 

= 

= 

= 

= 

= 

D/p, p a variable. 

• / I , 
n/(r(yp)-r(v>)), 
D!{r{v)/\r{m 
D/(r(vp)vr(t/̂ )), 
D/DA/T^CV?). 

NK
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Theorem 10.5. For every C^-formula if, 

(^GlntK^ iff T*((^)€S4(g)K. 

Proof. Suppose </? ^ IntK^. Then there is a model ^)Jt = (3 ,̂ 93) based on 
an IntK^-frame ^ = (W,R^R^) such that (9Jl,x) ^ <p for some x in 5-
Construct a 2-frame cr^ = {W, Rj, RM) simply by taking Rj — iJ, RM = R^-
It should be clear that a j is a frame for S4(8)K. Define a valuation C793 in a j by 
putting cr93(p) = 2J(p) for all propositional variables p. Let crSlJl = (cr5,cT53}. 
Then one can easily show by induction that 

(OT,j/)|=V iff ((TaJl,j/)|=T*(V), 

for every £Q-formula ^ and every y in 3̂ . Hence aZ refutes T*((^), and so 
T*(( /?)^S4®K. 

Conversely, suppose that T*(v?) ^ S4 0 K. Let 3 = (H ,̂ i?/,i?Af) be a 
2-frame validating S4(8)K and refuting T*((^). We construct an IntK^-frame 
p3 refuting (/? in three steps. 

First, define a 2-frame 5* = (IV, i?/, i?^) by taking, for all x, t/ G H ,̂ 

xi?]^!/ iff x{Ri o i?^/ o /?/)y. 

Since /?/ is a quasi-order, we clearly have RM ^ ^ M - Moreover, the following 
is easily checked: 

(i) The equality 
Rl o Rl. =:Rl^oRi = Rl^ 

holds in 5* or, which is equivalent, 3* validates the formula 

mix = (a /DMP ^ D M P ) A ( D M D / P ^ Q M P ) -

(ii) For every £Q-formula X/J, 

r h T * w iff 3hT*w. 

Suppose now that a 2-frame © = (K, SI,SM) for S4 (g) K validates m i x . 
Define an equivalence relation ~ on V by taking x ^ y iS x and y belong 
to the same 5/-cluster in © (i.e., xSjy and ySjx) and let [x] — a:/^, for any 
XGV. Put 

[x][5/][t/] iff xSiy, 

N [SM] [y] iff XSMV-

(Since 5 / is transitive and since, by mix, XSMV iff ZSMVI for every x and 
z belonging to the same 5/-cluster, the definition of [5/] and [SM] does not 
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depend on the choice of representatives in the classes [x] and [y].) The struc-
ture [e] = {[VI[SII[SM])I where [V] = {[y] \y eV}, is called the skeleton 
o{ (&. It is easy to see that if (6 validates mix and 5/ is a partial order then 
(5 ĉ  [©*]. The following is easily checked: 

• the map x »-• [x] is a p-morphism from (& onto [C]; 

• [5/] is a partial order on [V] and 

[SI] O [SM] = [5M] O [SJ] = [5M|; 

• © (= T*(t/;) iff [«] 1= T*(0), for every r^-formula tp. 

Now, given our original 2-frame ff = {W^RhRM)j we first form the frame 
[r] = ([H/̂ ], [/?/], [i?]l/]> and then define pd = ([H^j,/?,/?•> by taking R = 
[/?/] and i?p = [̂ A/]- I<̂  should be clear that pd is an IntKp-frame. By 
induction on the construction of ^ one can readily show that 

5hV^ iff p5l=rw, 
for every /I^-formula tp. It follows that (/? is refuted in pS- • 

Since the fusion S4 0 K is PSPACE-complete and has the fmp (see The-
orem 4.19), as an immediate consequence of Theorem 10.5 and its proof we 
obtain the following result (the fmp was first proved in (Sotirov 1984)): 

Corollary 10.6. IntK^ is PSPACE-complete and has the fmp. 

10.2 Intuitionistic modal logics with D and O 

Recall from Section 3.11 that an im-logic in the language C^^ with both D 
and O is a set of £p^-formulas containing IntK^^ and closed under modus 
ponens, substitution and the regularity rules for both D and O. In this section 
we concentrate on two such logics, FS and MIPC, which were introduced in 
Section 3.11 as 

PC = {(^€£n^ | (p^€QInt} , MIPC=: 

where v?* is the standard translation of (fi into first-order logic QCI and (p^ is 
the translation of (^ into the one-variable fragment of QCI (see Section 1.3). 

Our first aim is to axiomatize FS and MIPC, and then to prove their 
decidability by means of embedding them into relativized products (S4xK)^^ 
and (S4 x S5)^^, respectively. 

NK
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Theorem 10.7. 

FS = I n t K j 3 ^ e O ( p - > g ) - ^ ( D p - ^ 0 ^ ) e 

{Op^nq)-^n{p-^q), 

M I P C = FS e Dp -* p e Dp -> DDp ® Op -* DOp ® 

p - • Op © OOp - • Op ® ODp -> Dp. 

Proof. Let us denote the logics in the right-hand sides of these equalities 
by FS' and MIPC', respectively. Thus, we have to prove that FS = FS' 
and M I P C = MIPC'. This will be done in four steps, each of which is of 
independent interest on its own: 

Step 1. First we provide an algebraic and a Kripke-type semantics for 
im-logics in the language C^^. In particular, we obtain completeness results 
for FS' and MIPC'. 

Step 2. Then we observe that FS 2 FS' and MIPC D MIPC'. 

Step 3. Next, we extend the translation T* from the previous section to 
a translation from C^^ into the bimodal language At£2 with the boxes D/ 
and D M by taking 

T * ( 0 ( ^ ) = D / O M T * ( V P ) . 

We show that, for every £p^-formula ip, 

V^eFS = ^ T*((^) 6 (S4 X K)^'^ (10.2) 

and 
T*(vj)6(S4,K]^'^ = > v ' e F S ' . (10.3) 

Similarly, we show that, for every £Q^-formula <̂ , 

^ € M I P C = » T*(v?) e (S4 X S 5 ) ^ (10.4) 

and 
T*(^)6[S4,S5]^'^ => V J 6 M I P C ' . (10.5) 

Step 4- Finally, we apply Theorem 9.10, according to which 

(S4xK)^ '^ = [ S 4 , K l ^ and (S4 x S5)^'^ = [S4 ,S5]^ , 

and obtain for all £p^-formulas ip the following equivalences: 

VJeFS <=> T*(¥J) € (S4 X K)EX <;=-. yj e FS', 

( p e M I P C <?=> T*(<p) € (S4 X SS)^'^ «;=> ( ^ S M I F C . 

This will prove Theorem 10.7. Moreover, we shall clearly have: 



10.2. Intuitionistic modal logics with D and O 447 

Theorem 10.8. For every C^^-formula ip, 

EX (^€FS iff r(v?) € (S4 X K) 

and 
if € MIPC iff r(v?) e (S4 X S5) EX 

As the products S4 x K and S4 x S5 are decidable by Theorems 6.20 and 
5.28, and (S4 x K)^^ and (S4 x SS)"̂ ^ are reducible, respectively, to S4 x K 
and S4 x S5 by Theorem 9.12, we also obtain the following results of Bull 
(1965), Ono (1977), Simpson (1994) and Grefe (1998): 

Theorem 10.9. Both MIPC and FS are decidable. 

We begin the realization of this plan by providing an algebraic semantics 
for im-logics under consideration. In fact, it can be obtained by generalizing 
the algebraic semantics from the previous section in a straightforward way. 
An IntK^^'algebra is a structure of the form 

21 = ( A ~>'',A^,V^, 0^,0^,0^,1^) 

such that /^,->^,A^,V^,a^,0^,l^\ is an IntK^-algebra and, for all ele-
ments a, 6 € i4, 

-.0^0^ = 1^, 0^(a V^ 6) = O^a V^ 0^6. 

£Q^-formulas are interpreted in IntK^^-algebras 21 by means of valuations 
5J which map C^^ into A in such a way that the restriction of QJ to C^ is 
a valuation in the sense of the previous section into the reduct of 21 without 
O^ and, for every £p^-formula V', 

93(OV') = O'^Virp). 

As before, a formula (/? is said to be true in the model (21,9J) if 2J((̂ ) = 1 ;̂ (/? 
is valid in 21 (21 [= <̂ , in symbols) if (p is true in all models based on 21. 

Given a class C of IntK^^-algebras and an im-logic L containing IntK^^, 
we say that L is characterized (or determined) by C when (p e L iS (f is valid 
in every algebra in C. 

Theorem 10.10. Every im4ogic containing IntK^^^ is determined by a class 
of IntK^^-algebras. Conversely, the set of all formulas valid in a class of 
IntK^^-algebras is an im-logic containing IntK^^. 

Proof. Similar to the proof of Theorem 10.1. • 
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To obtain completeness results for IntK^^^, FS' and MIPC' with respect 
to certain classes of so-called FS-frames (which are generalizations of the 
standard FS-frames), we require the Stone-Jonsson-Tarski representations of 
IntK^^-algebras. But first we remind the reader what such representations 
of Heyting algebras look like. 

A general intuitionistic frame is a structure of the form 3̂  = {W,R,F), 
where {W, R) is an intuitionistic (Kripke) frame and P is a collection of sets 
in UpS containing 0 and closed under fl, U and the operation 

X-^Y = {xeW\\/y^W {xRy AyeX -^ye Y)}, 

If P contains all the upward closed subsets of W then we identify 5 with 
{W, R) and call it, as before, an intuitionistic (Kripke) frame. Given a Heyting 
algebra 21 = (i4,-^^,A^,V^, 0^,1^), we define its dual^^ to be the structure 
(W^,R,P), where 

• W is the set of prime filters in 21, 

• xRy iff X C y, for all x, y € W, 

• P = {Xa \a€ A}, where Xa = {x e W \ a e x}. 

(For more details on duality between Heyting algebras and general intuition-
istic frames consult (Chagrov and Zakharyaschev 1997).) 

Now, given an IntK^^^-algebra 21 = (^A, -^^, A^, V^, D^, O^,0^, 1^), we 

define its dual 21̂ . as the structure (W, R, R^,R^,P), where (W, /I, P) is the 
dual of the Heyting algebra underlying 21 and, for all a:, y G VF, 

xR^y iff ^a e A (Da € x —> a G y), 

xR^y iff Va G i4 (a G y - • Oa G x). 

It follows immediately from the definition that 

RoR^oRCR^, (10.6) 

RoR'^oRCR-\ (10.7) 

Observe that condition (10.6) was already introduced to characterize IntK^-
frames. Structures of the form 5 = {W,R,R^,R^,P), where {W,R,P) is 
a general intuitionistic frame, P^, R^ are binary relations on W satisfying 
(10.6) and (10.7), and P is closed under the operations D and O defined by 

DX = {xeW\WyeX {xR^y ^y€ X)} , 

OX = {xeW\3yeX xR^y}, 
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will be called general IntK^^'frames. The dual of a general IntK^^-frame 

5 is then the algebra 3̂ "̂  = / p , -*, 0, U, D, 0,0, w\. It is not hard to check 
that 5"*" is an IntK^^-algebra and that 21 is isomorphic to (21^)'^, for every 
IntKj-i^-algebra 21. Say that a general IntK^^-frame 5 is descriptive if 5 is 
isomorphic to (5"̂ )-h-

A valuation 5J in a general frame Ŝ  = {W,R,R^,R^,P) associates with 
every propositional variable p a set 53(p) € P. Given a model 9H = (55,53), 
the truth-relation (OT, x) |= v? is defined by extending the truth-relation from 
the previous section in a straightforward way: 

(9Jl, x) h 0(/? iff 3yeW {xR^y & t/ h V̂ )-

A formula v? is valid in 5 if (9}t, x) |= (/?, for every model 9JT based on 5 and 
every a; in J. 

Since the general frames of the form 21+ are clearly descriptive, we have: 

Proposition 10.11. Every im4ogic containing IntK^^ is determined by a 
suitable class of descriptive IntK^^-frames, IntK^^ is determined by the 
class of all descriptive IntK^^ -frames. 

The following internal characterization of descriptive IntK^^-frames is 
obtained by a straightforward combination of the corresponding characteriza-
tions of descriptive modal and intuitionistic frames; for details consult (Gold-
blatt 1993, Chagrov and Zakharyaschev 1997). 

Proposition 10.12. A general IntK^^-frame 5 - {W, R, i?^, P^ , P) is de-
scriptive iff^ is tightRy tightn and tightn , i.e., 

xRy iff yxeP {xeX -^yeX), 
xR^y iff yx eP {xenx -^yeX), 
xR^y iff ^XeP{yeX^xe OX), 

and compact, i.e., for all X C P and y C {W - X \ X e P}, if Xuy has 
the finite intersection property^ then fKA* Kjy) ^0. 

A general IntK^^-frame 5 = (W ,̂ Ry R^i ^o^ ̂ ) ^^ called a/?/// (or Kripke) 
IntKp^-frame if {W, P, P) is an intuitionistic Kripke frame. The underlying 
full frame of a general IntK^^-frame 5 is denoted by K^^An im-logic L 
containing IntK^^ is said to be d-persistent if K^ \= L whenever 5 is a de-
scriptive frame validating L. All d-persistent im-logics are clearly determined 
by full IntK^^-frames. 

We are about to show that FS' and MIPC' are d-persistent. 

2 A collection 2 of sets is said to have the finite intersection property if the intersection 
of any finite number of sets in Z is nonempty. 
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Proposition 10.13. FS' is d-persistent. Hence it is determined by a class 
of full IntK^^'frames. 

Proof. It suffices to show that any full IntK^^-frame satisfying the condi-
tions 

VxVy {xR^y -> 3z {yRz A xR^z A xR^z)), (10.8) 

VrrVt/ {xR^y -* 3z {xRz A zR^y A zR^y)) (10.9) 

(see Fig. 10.2) validates FS', and that (10.8) and (10.9) hold in any descriptive 
frame validating FS'. To prove the former claim, suppose that a full IntK^^-

A ' •• o . ••• ••ft 
^o/ \R R/ \^o 

X R^ y X R^ y 

Figure 10.2: Properties (10.8) and (10.9). 

frame d = {W,R,R^,R^) satisfies (10.8), but 0{p -^ q) -^ {Dp -^ Oq) is 
refuted in 'S under some valuation. Then x |= 0 ( p -^ ^), x |= Dp, x ^ Oq, for 
some X in 5? and so there is y such that xR^y and y [= P "* q- By (10.8), we 
have yRz, xR^z and xR^z for some point z. But then z \= p —> q (since the 
truth-set of any formula is fi-closed), z \= p and z \^ q, which is impossible. 
The second axiom of FS' is considered analogously with the help of (10.9) 
and (10.6). 

Suppose now that 5 = {^^ Ri RQ^ ^ O ' ^ ) ^̂  ^ descriptive frame validating 
FS' and show that it satisfies (10.9). Without loss of generality we may 
assume that J ~ 21+ for some IntK^^-algebra 21 validating FS'. Thus, 
points in 5 are prime filters in 21. Let x,y eW and xR^y. Put 

B = x U { 0 6 | bey}, C = {Dc\ c^y} 

and show that B and C satisfy (i) and (ii) in Lemma 10.2. Suppose 

a A 06i A • • • A Obn < Oc 

for some a € x (x is closed under A), 6 i , . . . , 6n € y and c^ y. Then 

a A 06 i A • • • A Obn —• Dc = T 

in 21, from which, by the second axiom of FS', we obtain 

a —• D(6i A • • • A 6„ -> c) = T . 
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It follows that D(6 —• c) € X for some b £ y and c ^ y. Since xR^y, we then 
have b -* c e y and c € y, which is a contradiction. Therefore, (i) holds. To 
show (ii), suppose ci, C2 ̂  y. Since y is prime, ci Vc2 ^ j/ and so D(ci VC2) € C 
and Dci V ac2 < n(ci V C2). 

By Lemma 10.2, there is a prime filter z e W such that B C z and 
C n 2 = 0. This means that x/lz, zR^y and zft^y, as required by (10.9). 

In the same way, using Lemma 10.2 and the first axiom of FS', one can 
show that 5 satisfies (10.8). We leave this to the reader. • 

Using the same sort of technique it is not hard to prove the following 
proposition, in which D'* and O^ are strings of n boxes and diamonds, re-
spectively. 

Proposition 10.14. For all kjym^n > 0, the logic 

L(ik,/,m,n) = IntK^^ e 0*=D'p-^ D^O^^p 

is d-persistenty with every descriptive IntK^^-/rame 5 = {W^»^»-RQ>-RO»-P) 

forL{kJymyn) satisfying the condition 

'ixiy'iz {xR^^y A xR'^z -^ 3u {yR^^u A zR'^u)). 

As MIPC' is axiomatized by adding axioms of the form L(A:,/,m,n) to 
FS', we also obtain: 

Corollary 10.15. MIPC' is d-persistent Hence it is determined by a class 
of full IntK^^'frames, 

We now introduce a more compact representation of IntK^^-frames for 
FS', so-called FS-frames. An FS-frame is a triple of the form J = {W, R, 5), 
where /? is a partial order on W, and i?, S satisfy the Church-Rosser property 

Wxyy'iz {xRy A xSz --• 3u {ySu A zRu)) (10.10) 

and left'Commutativity 

VxVyV^ {xSy A yRz -> 3u {xRu A uSz)) (10.11) 

(cf. Sections 5.1 and 9.1). A valuation 9J in J? associates with every variable p 
an /i-closed subset 5J(p) of W, The truth-relation |= is defined in the standard 
way for the intuitionistic connectives; the truth-conditions for D and O look 
as follows: 

It; 1= D<̂  iff Vt; € Ĥ  {wRv —• Vu [vSu --> u f= v?)), 

w \= O^p iff 3v eW {wSv A v 1= V?). 
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It is readily checked that all FS-frames validate F S ' and that an FS-frame 
(W, /?, S) validates MIPC' iff S is an equivalence relation on W. 

The following lemma establishes a close connection between IntKj-j^-
frames for F S ' and FS-frames. 

Lemma 10.16. For each descriptive IntK^^'frame 5 = {W, R, R^,R^,P), 
the following conditions are equivalent: 

(i) 5 h FS', 
(ii) Ŝ ' = {W,R,R^nR^) satisfies (10.10) and (10.11), i.e., is an SF-

frame. 

Moreover, ^ and 5 ' validate precisely the same C^^-formulas. 

Proof. Exercise (hint: use (10.8) and (10.9)). Q 

As a consequence we obtain the following completeness results and thereby 
complete Step 1. 

Theorem 10.17. FS' is characterized by the class of FS-frames. MIPC' 
is characterized by the class of FS-frames ^ = (W^R^S) in which S is an 
equivalence relation. 

Step 2. We have to show that FS D FS' and MIPC D MIPC'. This can 
be easily done by proving that all the axioms of F S ' and MIPC' belong to 
FS and MIPC, respectively, and that FS and MIPC are closed under the 
inference rules of Int^^. 

Another way of proving the claim is to show that every standard FS-
frame can be transformed into an FS-frame. Indeed, assume that we have a 
standard FS-frame 5 = (^ , <,^) with X>{w) = (A'^, S^). First, we make the 
sets A^, ti; G W, disjoint by subscribing each element x € A^ with w. The 
set of worlds V of the FS-frame (V, R, S) under construction will consist of 
all Xty, where w ^W and x € At,;. Now define relations 5 and /? on V by 
taking 

XuSyv iff u = t; and xS^y, 

XuRyv iff u<v and x = y. 

(Thus, the relation S is the disjoint union of the relations S^ for all w G W.) 
It should be clear that (V, R, S) is an FS-frame validating the same formulas 
as 5. 

Step 3. We start with the proof of (10.2). Suppose T*((^) ^ (S4 x K)^^. 
Then we can find a product 5i x 3̂ 2 of frames 5i = (C î, ^ i ) with transitive 
and reflexive R\ and 3̂ 2 = {f̂ 2, ̂ 2) , a subframe 0 = (V, S\, 52) of J i x ^2 such 
that {u\,U2) € V whenever (111,^2) G V and u\R\u'i, a model 9Jl = {(5,53), 
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and a point {wi,W2) € V for which {VJt,{wi,W2)) ^ T*(v?). In fact, we 
may assume that R\ is a partial order (if this is not the case, we can take 
the skeleton of (t/i,/?i> as in the previous section). Moreover, we may also 
assume that for every u\ € U\ there exists a tX2 € f/2 such that (ui, 1*2) € V. 

Define a standard FS-frame (5' = (W', <,D) by taking W ^\Ji, <i^ Rx 
andDM = (E'^, 5^), where E^ = {u | (ti;,tx) G V} and 5^ = ii2n(A^xA^). 
Let 971'= {«',2J'), where 

aj'(t/;,p) = {u € E^ I (9Jt,Ku» 1= Dp} 

for all t/; € W and all propositional variables p. One can show by induction 
that for every Z^^^-formula t/; and every (ui,U2) G V, 

(an',(ui,«2))|=x iff (an,(ui,u2»hT*(V). 

It follows that 6 ' ^ (̂ , and so (̂  ^ FS, which proves (10.2). 
To show (10.3), suppose (/? ^ FS'. By Corollary 10.17, we have a model 

an = (5,5J) based on an FS-frame ff = (VF, /?, 5) and refuting (/?. Note that 
5 is clearly a frame for [S4,K]^^. Moreover, it is easily proved by induction 
that, for every £Q^-formula ^, 

(9n,t/;)l='V^ iff (9n,ti;)K'"r*(V'), 

where |=' is the truth-relation in FS-models and j=" the standard truth-
relation for classical bimodal logic. It follows that T*(<̂ ) ^ [S4, K]^^. 

The proof of (10.4) and (10.5) is similar and left to the reader. This 
completes Step 3 and thereby the proof of Theorem 10.7 as well. Q 

10.3 The finite model property 
Unfortunately, the embeddings of FS and MIPC, constructed in the previous 
section, do not provide us with any information as to whether these logics have 
the fmp with respect to FS-frames. In this section we show how to establish 
the fmp of FS by means of an elaborated version of the filtration method. 
The proof is due to Grefe (1998); a somewhat different proof can be found in 
(Simpson 1994). But before that we illustrate the difference between standard 
FS-frames and (nonstandard) FS-frames by a simple example. 

Example 10.18. Remember that according to the proof of Proposition 3.46 
the formula 

(p = D~»-^p —• - i - i D p 

does not belong to MIPC, but is valid in all standard FS-frames. On the 
other hand. Fig. 10.3 shows a three-point FS-frame for MIPC refuting v?. 

NK
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R 

Figure 10.3: An FS-frame for M I P C refuting y?. 

Theorem 10.19. FS has the finite model property mth respect to FS-frames. 

Proof. Suppose (p ^ FS . Then there exists a descriptive IntK^^-frame 
(Q = (W, R, R^, R^^ P) and a valuation 2J in it such that ip is refuted in 
(©,2J). Let S = R^ n R^. As we know from the previous section, the triple 
{W, R, S) is an FS-frame. Our aim is to find a countermodel for ip based on 
a finite FS-frame 3̂  = {W, R\ S'). 

To this end, we will construct a sequence of frames 5AI = {Wh^Rh^ Sh), for 
h <ijL), such that the sets Wh and both relations, regarded as sets, grow with 
increasing h. It will turn out that there is ho < uj such that for all h > AQ, 
dh — dho; the frame ^ho will be the frame 5 we are looking for. We refer to the 
elements of Rh and Sh as intuitionistic and modal arrows, respectively. With 
every point t in one of the sets Wh, we associate a set E(f) of subformulas of 
(f and a point i from (5. E(t) can be regarded as the set of formulas whose 
truth-value at the point t is relevant for the construction of a countermodel 
for (p. Every point t of the model to be constructed can be thought of as a 
point i selected from 6 . However, we do not identify t and i, because the 
same point in (8 might be selected several times, producing distinct points in 
the model to be constructed. For every h, the structure {WhiRh) will be a 
forest, i.e., a disjoint union of trees. 

To select points in (S, we use the following fundamental property of de-
scriptive frames observed by Fine (1974b) (for a proof see (Chagrov and Za-
kharyaschev 1997)). Say that a point a: in (S is maximal relative to a formula 
IIJ, ii X ^ tp and for all ?/ 7̂  x such that xRy, we have y ^ ip. 

Lemma 10.20. Ifx^^ip then there is a point y £ W such that xRy and y 
is maximal relative to xp. 

We are now in a position to define the whole construction in full detail. 
We start with the frame Jo = ({^o}>{(^o,^o)}»0) and E(to) = sub (p, where 
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to is any point x in © such that x }^ (p. ^h+i is constructed from 5/i in the 
following three steps. 

Step A: where possible, we apply recursively the following rules {A^) and 

{A^) Suppose that t € Wh or t was constructed previously in Step A of the 
construction of 5/i+i» and xp € E(f) is a formula of the form 06 such 
that i 1= 0<5, but for no point s € Wh do we have tShS and s^ S. 

Then choose a point a: in (5 such that iSx and x\= S. Add a new point 
s to Wjfi, set 

E(5) = E~(0 = |J{su6 V̂  I 0 0 € E(t) or OV' € E(0}, 

5 = X, and, finally, add the arrow (t,s) to 5/i. 

(̂ 4̂ ) Suppose that t € W^ or t was constructed previously in Step A of the 
construction of ff/i+i, and ip € E(f) is a formula of the form 0/3 such that 
i is maximal relative to ip. Suppose further that for no point s eWh do 
we have tShS and 5^/3. 

Then choose a point x in © such that iSx and x ^ /?. Add a new point 
s to VK/i, set s = X, E(s) = E~(f) and, finally, add the arrow (t,5) to 

5tep 5; where possible, we apply the following rule (B). 

(B) Suppose that t e Wh and ip € E(f) is a formula either of the form a -* a 
or of the form D/3, such that f t̂  0, but i is not maximal relative to tp. 

Then choose a point x in (S such that iRx and x is maximal relative to 
ip. Add a new point s to Wh, set 5 = x, E(5) = E(f) and add the arrow 
(t, s) to the relation Rh. 

Step C: where possible, apply recursively the following rules (CI), (C2): 

(CI) Suppose that f,5 € Wh, tShS and that f' was constructed previously 
in Steps B or C of the construction of Sh-^i such that tRht^> Suppose 
further that there is no point s' 6 Wh such that fShs' and sRhs\ 

Then choose a point x such that i^Sx and 5/?x. If 5 = x then add {t', s) 
to Sh' Otherwise, add a new point s' to Wh, set 5' = x, E(5') = E(5) 
and add the arrows (t',s') and (5,5') to 5/i and Rh, respectively. 
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(C2) Suppose that t,s e Wh, sSht and t' was constructed previously in Steps 
B or C of the construction of dh+i so that tRht\ Suppose further that 
there is no point 5' G Wh such that s'Sht' and siJ/^s'. 

Then choose a point x such that xSP and sRx. li s = x then add (5, t') 
to Sh' Otherwise, add a new point 5' to Why set 5' = x, E(5') = T,{s) 
and add the arrows {s',f) and (s, s') to 5/i and Rh, respectively. 

End of the construction: after closing the structure under these rules, we 
replace Rh by its reflexive and transitive closure, and denote the result by 
5/1+1 = (W)i+i,fi/i+i,5/1+1}. Finally, we set 

\/i<u; h<uj h<<jj I 

Observe that all the choices we have to make during the construction 
are possible in the sense that there really is at least one point with the de-
sired properties. This is immediate from the definition of a model (Step A), 
Lemma 10.20 (Step B) and the fact that FS is d-persistent and thus the 
descriptive frame (3 satisfies (10.10) and (10.11) (Step C). 

Lemma 10.21. 5/i satisfies (10.10) and (10.11), and so is an FS-frame. 

Proof. A straightforward induction on h is left to the reader as an exercise. 

• 
Lemma 10.22. For every h, the frame {WhiRh) is a forest. 

Proof. The relation Rh is transitive and reflexive by definition. So we just 
have to show that it contains no infinite descending chains and that no point 
has two distinct immediate /i/i-predecessors. But both claims follow immedi-
ately from the fact that none of the above rules allows the introduction of an 
intuitionistic arrow that leads to an already constructed point. • 

We will refer to the trees in the forest {Wh, Rh) as Rh-trees. The following 
observations are readily checked. 

Claim 10.23. If s and t belong to the same Rh-tree, then T,{s) = E(t). / / 
sRht then sRi. 

The points introduced in Step A will be referred to as original m-points. 
These points, together with the very first point to, are obviously the roots of 
the Rh'trees. The points introduced in Step B are called original i-points. 
Every point 5' which is constructed in Step C is called an immediate copy. 
More precisely, in the case of rule (CI), it is a copy of its immediate Sh-
predecessor t', and in the case of rule (C2) it is a copy of its immediate 
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5/i-successor f'. Let « be the least equivalence relation containing all pairs 
(s, t) such that one of the points is an immediate copy of the other. Let us 
declare the starting point to be an original as well. Then we easily find: s ^t 
iff s and t are iterated copies of the same original, and the following holds: 

Claim 10.24. Every equivalence class of « contains exactly one original. 

Lemma 10.25. 

(a) Every chain in ^h contains at most £{(p) original i-points. 

(b) The number of original m-points which are Sh-successors of the points 
of the same chain in ^h is not greater than ({(p)> 

(c) Every point in Jfh has at most ({(f) Rh-incomparable Sh-successors. No 
point has Rh-incomparable Sh-predecessors. 

Proof, (a) Let the original s be introduced by applying rule (B) to t with 
respect to the formula tp. Then s is maximal relative to ^ . Thus (B) cannot 
be applied to any successor of s with respect to ip. Hence, for a fixed element 
of E(t) C subif, we have at most one original i-point per chain. 

(b) Let the original m-point s be introduced by applying either rule {A^) 
or (A^) to t with respect to ip. We show that the same rule cannot be applied 
to a proper successor of t with regard to the same formula. Let {A^) be 

applied to t with regard to 06. Then, t has an 5h-successor s such that s\= 6. 
Now, let f' be a proper /?/i-successor of t and assume that t' € Wh^] - W^. 
Since J^+i satisfies (10.10) and (10.11), there is a point s' such that t'Sh-\is' 
and s/?/i4.is', whence s' |= 6. Thus, rule (A^) cannot be applied to t with 
regard to OS. Let (^4^) be applied to t with respect to D0. Then f is maximal 
relative to D/?. Since from tRht^ we have tRP by Claim 10.23, we get P |= D^, 
whence (^4^) is not applicable with respect to D/J. 

(c) For the first claim, observe that the number of incomparable Sh-
successors of a point t does not exceed the number of original m-points that 
are 5h-successors of points fRht. Indeed, suppose otherwise. Then there is a 
point t which is i?/i-minimal with respect to having two incomparable modal 
successors si and S2 that are /?/i-successors of the same original m-point s\ 
From the minimality of f, it follows that 5i and 52 have the same immedi-
ate i?/i-predecessor, and we may assume that this is 5'. Suppose that si was 
introduced earlier than S2- Then 52 must have been created by rule (CI). 
But s' is a 5fi-successor of a point f which is either t itself or its immediate 
/?/i-predecessor. Thus, we have tShSi and s'/?^si, so it is impossible to ap-
ply rule (CI) to the points t,t^ and s' in order to create 52, contrary to the 
assumption that S2 actually exists. The second claim is proved analogously: 
we just have to exchange the roles of (CI) and (C2) and to reverse all modal 
arrows involved. • 
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Lemma 10.26. There is no sequence soShSiSh . . . ShSmfi{(p)+i' 

Proof. If tShS, then the maximal modal depth of a formula in E(5) is exactly 
one less than the corresponding value for E(t). The claim follows from the 
fact that the maximal modal depth of a formula in E(to) = sub^p is md{ip), 

• 
Let us define (,h to be the set of i?/i-leaves in 5h-

Lemma 10.27. The frame {£hiSh) is a forest of intransitive trees. These 
intransitive trees are £{(f)'ary and of depth < md{(f). Moreover, i^ is finite. 

Proof. By putting together Lemmas 10.25 (c) and 10.26, we obtain the first 
two statements. Each intransitive 5/i-tree contains at most K = YlTLo [^{^)Y 
nodes. So it remains to show that £h is finite. Clearly, £o is finite. So, let 
us assume that £k is finite. In Step A of the construction of 5fc+i, to every 
leaf t € £fc an intransitive 5h-tree with at most K nodes is appended. Thus, 
when entering Step B, there are still finitely many leaves. In Step B, rule (B) 
is applied at most once to every leaf t with respect to some fixed subformula 
'tp of if. Now consider Step C. Obviously, the points of a fixed equivalence 
class of « all belong to the same 5/i-tree. In particular, there are at most 
K iterated copies made of the same original i-point. It follows that 5fc+i is 
finite. • 

For every point t € W/i-i-i — W^, let us denote by [/] the 5/i-tree that t 
belongs to in £h-k-i' 

Say that a set of points in a FS-frame {W^ R, S) is a chain (or an an-
tichain) if any two distinct elements in it are comparable (or, respectively, 
incomparable) with regard to -R. 

Lemma 10.28. Let {st)^<;^, A < u;, be a chain in ^. Then there is no anti-
chain with K -\-l elements in Ui<A [̂ «1-

Proof. Suppose otherwise. Then there is a natural number n < X such that 
the antichain is contained in Ui<n [̂ *1* ^^^ ^^is we can conclude that every 
element of the antichain has an /i/i-successor in [sn]- Since (W, Rh) is a forest, 
all these itfi-successors are distinct. But this implies |[5n]| > K + 1, contrary 
to Lemma 10.27. • 

Lemma 10.29. 5 is finite. 

Proof. Suppose otherwise. Since ^h has finitely many leaves for every h <uj, 
there is an infinite ascending chain {si)^^^^ such that Si < Si^i for all i < u. 
By Lemma 10.28, U = Ui<u;[^i] contains no antichain of size K + 1. On the 
other hand, U contains an original from every set [si], i <u. Thus, there are 
infinitely many comparable originals, contrary to Lemma 10.25. Q 
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Now, having constructed the desired finite frame, we have to show that ip 
is refuted in ^. Consider the model 9Jl = (5» 23), where 9J is defined by taking 
t e 2I(p) iff p e E(0 and f |= P-

Lemma 10.30. (9Jl,f) ^ \p iff i \= rp for all t in ^ and i) e E(t). In 
particulary (OTt,fo) ^ ^' 

Proof. The proof proceeds by induction and is straightforward. We show 
the least trivial, though still simple, cases for ~* and O. 

Let tp = a —^ a e E(f) and t € W^+i - Wh^ Assume i\^ rp. Ut is maximal 
relative to tp, then f [= a and f [î  cr. By the induction hypothesis, (9Jt, t) \=^ a 
and (OT, f) ^ (T. Hence (9Jl,t) ^ tp. So, take t not to be maximal relative to 
tp. Then in 5h+2) ^ is given an ii/i+2-successor 5 such that 5 [= a and 5 t̂  a. 
By the induction hypothesis, we get (3Jl, s) ^ t/;, and hence (9H,̂ ) ^ 0. 
Conversely, suppose that {9Jl,t) ^ V̂. Then there is s with tRkS for some /i 
such that (971, s) \= a and (OTl, s) ^ cr. By the induction hypothesis, we have 
s 1= a and s ^ a. Since fi?s, we get f ^ V̂, as required. 

Let ^p = 0(5, t G W/i+i - Wh. Assume that i\= xp. Then there is 5 € W /̂i+i 
such that tSh-^is and 5 |= (J. By the induction hypothesis, (971,5) |= S and 
hence (9Jl, t) |= OS. Conversely, let (97t, t) |= OS. Then there is an s such that 
tShS^ for some /i, and (971,5) |= (5. Hence s |= (J by the induction hypothesis 
and, since tSs^ we eventually have f |= ^. • 

Thus, our construction really provides us with a finite countermodel for 
any formula which is not in FS. Q 

In a similar but much simpler way one can prove the following theorem 
the algebraic version of which is due to Bull (1965): 

Theorem 10.31. MIPC has the fmp with respect to FS-frames. 

Unfortunately, the following problem is still open: 

Question 10.32. What is the computational complexity of the decision prob-
lem for FS and MIPC? 

While for FS no elementary upper bound of its computational complexity 
is known (observe that the size of the model constructed in the proof above 
is not bounded by any elementary recursive function), it is not difficult to see 
that any (f ^ MIPC can be satisfied in an FS-frame validating MIPC and 
containing at most 2^^ ^ points, for some polynomial p. So the satisfiability 
problem for MIPC is decidable in N2EXPTIME. It is not known whether this 
upper bound is optimal. 

Question 10.33. Is the 'transitive analog' of FS decidable? Does it have 
the fmp with respect to FS-frames? 
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For more information about intuitionistic modal logics (in particular, their 
connections with classical modal logics) see (Wolter and Zakharyaschev 1997, 
1999a). 
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This part seems to need some introductory words. Indeed, how can the *mon-
ster' logics mentioned in its title be discussed in a book the main concern of 
which is decidability, axiomatizability, and complexity? 

First-order modal and temporal logics contain classical predicate logic; so 
they cannot be decidable. Moreover, as we saw in Section 8.4, even the two-
variable fragment of many first-order modal logics is undecidable. Further, 
as we shall see later on in this part, the two-variable monadic fragment of 
some natural first-order temporal logics is not even recursively enumerable. 
The picture is completely different from what we have in classical predicate 
logic, where the early undecidability results of Turing and Church stimulated 
research and led to a rich and profound theory concerned with classifying 
fragments of first-order logic according to their decidability. Here are only 
three (out of dozens) examples of decidable fragments of classical first-order 
logic: 

• the monadic fragment containing only unary predicate symbols (Lowen-
heim 1915); 

• the fragment with only two individual variables (Scott 1962, Mortimer 
1975);! 

• the guarded fragment containing formulas of the form 

where the guard G(x,y) is atomic^ (Andreka et ai 1998). 

The current state of the art in this field is presented in the monograph (Borger 
et ai 1997). 

As none of the results above holds for first-order modal and temporal 
logics, the question arises as to whether these logics contain anything at all 
which can be nontrivial, decidable and axiomatizable? It turns out that they 
do. 

The main aim of this part is to define and investigate a new kind of sub-
language of the first-order modal and temporal languages which, on the one 
hand, is considerably more expressive than the propositional language, and 
yet, on the other hand, gives rise to decidable fragments of first-order modal 
and temporal logics. Roughly speaking, these fragments are obtained by: 

(1) restricting the pure classical (nonmodal) part of the language to a de-
cidable fragment of first-order logic, and 

^The fragment with binary predicates and three variables is undecidable (Surdnyi 1943). 
^For a precise definition see Section 11.2. 
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(2) restricting the modal or temporal part of the language to the monodic 
formulas whose subformulas beginning with a modal/temporal operator 
have at most one free variable. 

Condition (1) allows the use of classical decidability results to select a suitable 
first-order part of the language, while (2) leaves enough room for nontrivial 
interactions between quantifiers and modal/temporal operators. Thus, we can 
talk about objects in the intended domain using the full power of the selected 
fragment of first-order logic; however, modal or temporal operators may be 
used to describe the behavior of only one object. 

Besides proving the decidability of various monodic fragments, our concern 
in this part is 

• to provide Hilbert-style axiomatizations for full monodic fragments of 
first-order temporal logic QLog2 (̂N) and standard first-order epistemic 
logics, 

• to determine the computational complexity of the most important de-
cidable monodic firagments of QLog^(N), and 

• to investigate the possibility of adding equality to decidable monodic 
fragments. 

Some of these results will be used in Part IV to prove the decidability and 
determine the computational complexity of certain modal description and 
spatio-temporal logics. 



Chapter 11 

Fragments of first-order 
temporal logics 

11.1 Undecidable fragments 
First-order temporal logics have become notorious for their bad computational 
behavior since the unpublished results of Scott and Lindstrom in the 1960s and 
a series of incompleteness theorems (Abadi 1987, Andreka et aL 1979, Gabbay 
et ai 1994, Garson 1984, Merz 1992, Szalas 1986, Szalas and Holendorsk? 
1988) which show that many of the first-order temporal logics most useful 
in computer science are not even recursively enumerable. In this section we 
prove two such theorems in order to indicate some limits outside which one 
cannot hope to find decidable fragments of first-order temporal logics. 

We remind the reader that given a class C of strict linear orders, we denote 
by QLog5^(C) the temporal logic of C, i.e., the set of QT£-formulas (see 
Section 3.7) that are true in all models based on frames in C: 

QlogsuiQ = {^ € QTC I (an, w) |=" (̂  for all m = (;?, D, / ) with J € C, 

all w in Sy and all assignments a in /?}. 

QLog;5jy(C) stands for the set of those QT£-formulas that are true in all 
models based on linear orders in C and having finite domains. Instead of 
QLog5w({(N, <)}), QLog^i?({(N, <)}) we write QLog5w(N) and QLog ĵ̂ CN), 
respectively; similar notation is used for (Z, <), (Q, <), and (R, <). We will 
also be considering here the sublanguage QTCu of QTC without the temporal 
operator S, and the corresponding logics 

QLogt̂ (C) = QlogsuiQn QTCu, 

QLogi'"(C) = QLog l̂yCO n QTCu. 

465 
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For £ <(Vj let QTC^ be the £-variable fragment of QTC (i.e., every formula 
in QTC^ contains at most I distinct individual variables). And by QTC^^ we 
denote the monadic fragment of QTC (i.e., the set of formulas which contain 
only unary predicates and propositional variables). 

Theorem 11.1. LetC be either {{N,<)} or {(Z,<)}. Then the set 

QTC^ n QTC^"" n QLogw(C) 

is not recursively enumerable. In fact, already those formulas in 

QTC^ n QTC'^'' n Qlogu(C) 

that contain only the temporal operators OF? D F o,'nd O are not recursively 
enumerable. 

Proof. We show this by reducing the following recurrent tiling problem to 
the satisfiability problem for the monadic QT£^-formulas without the oper-
ator S in C: 

• Given a finite set T of tile types and a to € T, can T tile N x N in such 
a way that to appears infinitely often in the first row? 

Harel (1986) proved that this problem is Ej-complete (see also Section 7.3). 
Given a set T of tile types, we associate with each t € T a unary predicate 

Pt. We also require two unary predicates, Qi and Q2, which will be used in 
the formula 

i?(a:,y) = OF(Qi(x)AQ2(t/)). 

Now define a first-order temporal formula (pr in QTC^ n QTC^^ as the con-
junction of the following formulas: 

\fx3yR{x,y), 

Va:Vt/(iR(x,i/)-^DFi?(a:,t/)), 

D+Vx(V^e(x)A f\{Pt{x)^^PAx))), 
t€T t,t'eT 

Opx^y f\ {Pt{x) A Rix, y) ^ V Pf (y)), 

up{t)=down{t') 

Dpx f\{Pt{x) ^ O V Pt'ix)). 

Hght{t)=left{V) 
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Let us show that (fr is satisfiable in a model based on the frame in C iff T 
tiles N X N with to appearing infinitely often in the first row. 

Suppose first that r : N x N -* T defines a tiling with to appearing 
infinitely often in the first row. Put D = N, 

p/(") = { m € D | r ( n , m ) = : t } , 

for n € N, and select for every i € N an infinite set Mt C N such that 
Mi n Mi' = 0 whenever i ^ i\ Now put, for i € D and n € N, 

i e Qi^""^ and ii-le Q^^""^ iff n € M .̂ 

Also specify that 0 ^ Q2 • ^̂  should be clear that ^pr is satisfied in 
((N, <) ^Dyl). It follows that ipr is satisfiable in C. 

Conversely, suppose that y?r is satisfied in a first-order temporal model 
rot = {'S.Dyl), for Ŝ  € C. Then ^ = (VF, <) contains an infinite ascending 
chain, say 0,1,2,... such that (9}l,0) |= ipr and i 4-1 is the immediate suc-
cessor of i in JJ. By the first conjunct of (/?T» we find an ao € D for which the 
set {n € N I (9Jt,n) |= Pto[«o]} is infinite. Let 

iJ^W = {(a,6) € D2 I (OT,n) 1= O F ( Q I AQ2)[a,fr]}. 

By the second conjunct, we have an i?-ascending chain aoR^^^^aiR^^^^a2 . . . 
of elements in D. And by the third conjunct, aoR^^^^aiR^^'^^a2 . . . , for every 
n € N. Now define a function r by taking, for all i, j € N, 

T{iJ)^t iff {m,i)\=Pt[aj]. 

It is straightforward to check that r is a recurrent tiling of N x N. • 

It follows, in particular, that QLoĝ ĈN) and QLogjY(Z) are not recursively 
axiomatizable, cf. (Gabbay et al. 1994). 

Note that although the two-variable fragment of classical first-order logic 
has the finite model property (that is, each satisfiable formula is satisfied in 
a model with a finite domain; see (Mortimer 1975, Borger et al. 1997)), this 
is not the case for first-order temporal logics over many flows of time, even if 
we consider formulas with only one individual variable and unary predicates: 

Theorem 11.2. (i) Let 1 < £ < a; and let C be a class of strict linear orders 
at least one of which is infinite. Then 

QTC^ n QT£^^ n QlogsuiC) ^ QTC^ n QT£;̂ ^ n QLoĝ jy(C). 

(ii) Let 1 < £ < (J and let C be a class of strict linear orders at least one 
of which contains an infinite ascending chain. Then 

QTC^ n QTC^^ n QLogê (C) j^ QTC^ 0 QTC^^ n QLog/̂ *"(C). 
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Proof, (i) Consider the following formula 

t/; = n-^D^3x{Q{x) A - O p Q ( x ) ) , 

and let (p be the conjunction of ip and the formula 

po A (n^(po -> O F P O ) V nJ(po -* Oppo)). 

It is readily checked that (p is satisfiable in a model based on an infinite flow 
of time, and that if V̂  is satisfied in a model with a set W of time points and 
domain D, then \D\ > \W\. On the other hand, ip cannot be satisfied over 
finite flows of time. 

(ii) is proved similarly using the formulas 

D-^3x{Q{x) A - . O F Q ( X ) ) and po A Dj(po -^ OFPO)-

Details are left to the reader. • 

The negative result of Theorem 11.1 also holds for first-order temporal 
logics determined by models with finite domains: 

Theorem 11.3. Let C be one of the following classes of temporal frames: 
J, <)} , {(Z, <)} , the class of all strict linear orders. Then 

QTC^ n QTC'^'' n QLog^^^(C) 

is not recursively enumerable. 

Proof. We are going to reduce the undecidable halting problem for Turing 
machines (see Section 5.4) to the satisfiability problem for the monadic two-
variable QT£2Y-formulas in models with finite domains. Given a Turing ma-
chine A, we will construct a monadic QT£i^-formula ipA having two variables 
which is satisfiable in a model with a finite domain D (based on a frame in C) 
iff A comes to a stop having started from the configuration (-C, (SQ, 6}, 6,6,. . .). 
This will mean that the set QTC^ O QTC^"" n QLog^*''(C) is undecidable. 
On the other hand, its complement (in the set of monadic QT£-formulas) is 
recursively enumerable. For it is not hard to see that satisfiability of monadic 
and indeed arbitrary QT£-formulas in models based on frames in C and hav-
ing domains of < n elements, for a fixed n, can be reduced to satisfiability 
of propositional temporal formulas in C, which is known to be decidable (see 
e.g. Gabbay et al. 1994). 

So, let us define the required formula ipA- Roughly, the idea is to represent 
configurations of A by elements x e D using the behavior of x over time. We 
use the notation introduced in Section 5.4. First, the formula 

D+GT (11.1) 



ILL Undecidable fragments 469 

ensures that every moment of time (starting from the one satisfying this for-
mula) has an immediate successor. Next, with every a G -4' we associate a 
unary predicate Pa- The formulas 

Va:(Pr(a:)A / \ -Pa(x)), (11.2) 

• F V X V (Pa(x)A / \ -P^x)) , (11.3) 

mean that *now' all objects in D are in p£ and not in P^ for any other a £ A\ 
while later each of them belongs to precisely one of the sets Pa^ for a € i4', 

To mark the object representing the active cell of a given configuration 
and its immediate predecessor and successor, we use three unary predicates, 
5, L, and P, defined by the formulas: 

np/x{S{x)^ V P(,,a)(x)), (11.4) 

<s,o)e5x/l 

npx{{L{x) <-• 05(x)) A (5(x) «-̂  Oil(x))), (11.5) 

D^Vx(S(x) -• - .OFS(X) ) . (11.6) 

The transition from one configuration to another is simulated by means of the 
formula: 

X(x,y) = V [ O ^ ( L ( X ) A P „ ( X ) A O ( P ^ ( X ) A O P ^ ( X ) ) ) A 
«(a,/3,7)=(a',/3',y> 

n+((L(x) -^ PAV)) A (5(x) ̂  P^-(j/)) A {R{x) -* Py,(y)) 

A / \ (-L(x) A -.S(x) A -.i?(x) A P<,(x) -- P„(y)))]. 
aeA' 

We have to ensure that each configuration save the start one on the empty 
tape has a predecessor: 

Vt/(-(Px(l/)AO(P(,„6)(t/)AnFP6(y))-^3xx(x,t/)), (11.7) 

and that there exists a domain point representing a halt configuration: 

3XOF V P{si,a){^)' (11'8) 
a£A 

Finally, the following two formulas define a unary predicate C (clock); its 
intended meaning is to ensure that there are no loops in the 'time line' along 
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which the Turing machine 'runs:' 

Vx(o|;c(x) A aj(c(x) ^ -OFCCX))), (11.9) 
VxVt/(x(x,t/) -^ OUC{x)AOC{y))). (11.10) 

Let ipA be the conjunction of ( l l . l ) - ( l l . lO) . It is not hard to check that (pA 
is satisfied in a model with a finite domain (based on a frame in C) iff A comes 
to a stop having started from the empty tape. 

Indeed, the ^-^'-part of the proof should be clear. For the converse, sup-
pose that (fA is satisfied in a world w oi a model based on some strict linear 
order {W, <) and having a finite domain D. By (11.8), there are h £ D and 
V > winW such that v |= P^ ĵ ̂ a) W for some a e A. We shall see that v is just 
^finitely many steps' from w, and so h represents a halt configuration. First, 
observe that, by (11.9) and (11.10), we cannot have objects co,...,Cn € D 
such that 

co = Cn and tx; (= x(co,ci] A •• • Ax[cn-i,Cn]. 

Now let Co,. . . , Cn be a maximal chain in D for which w \= x[ci,Ci^-i] {i < n) 
and Cn = h. Such a chain exists since D is finite. So there is no c € D with 
w \= x(c, Co]. In view of (11.7), this can only mean that c© represents the start 
configuration on the empty tape. Thus, by (11.2)-(11.6) and the definition 
of Xi the sequence CQ, . . . jCn represents a halting computation of A starting 
from the empty tape. Q 

Theorem 11.4. QLoĝ <7»̂ (N) h polynoinially reducible to QLog5^(R), and 
QLog5jJ(N) is polynomially reducible to QLog5^(K). 

Proof. Given a QT£-formula (/?, introduce a new propositional variable p 
and define the variable-free QT£-formula 

t/ = <|>-iOpp A M{OFP A -^pST A -ipWT) 

(recall firom Section 2.1 that <l>t/? abbreviates ip V Opi^ V O p ^ and B^) abbre-
viates - i ^ - i ^ ) . So 1/ states that p is bounded below, unbounded above, and 
that there is no accumulation point of p. Clearly, the models of i/ with flow of 
time (R, <) are precisely those in which the interpretation of p is isomorphic 
to (N, <) . Now define the relativization ip^ of the temporal connectives in 
(fi to p, by induction in the usual way: a^ = a for atomic a, {^ipy = -^ip^, 
(Vi A i)2)^ = V'P A V 5̂, (VxV;)P = VxV P̂, and ( ^ I W ^ 2 ) P = (P -^ O W (p A ̂ 5), 
plus a similar clause for 5 . Then it is easily seen that (p has a first-order 
temporal model with flow of time (N, <) (and finite domains) iS i/A(p^ has a 
model with flow of time (R, <) (and finite domains). • 

Since the formula i/ A(p^ above belongs to QTC^ n QTC^^ whenever (p 
does, from Theorems 11.1 and 11.3 we obtain (see also (Gabbay et al. 1994)): 
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Theorem 11.5. The fragments 

Qr£2nQT£^^nQLog5w(K) and QTr^ n e T £ ^ ° nQLog^j:?(R) 

are not recursively enumerable. 

It is not clear whether the 5-free fragment QLog^(N) of QLog5^(N) is 
polynomially reducible to QLog^(R). We conjecture, however, that the frag-
ment 

QTC^ nQTC'^'T) QloguiR) 

is not recursively enumerable either. 

11.2 Monodic formulas, decidable fragments 

Note that both undecidability proofs of Section 11.1 use temporal formulas 
of the form (pUi> (DFV', to be more precise) with two free variables. We now 
consider the *monodic* fragment of QTC without formulas of that sort.̂  

Denote by QTC^ the set of all QT£-formulas ip such that any subformula 
of (f of the form V̂ iWV'a or \l)\S\l)2 has at most one free variable. Such formulas 
will be called monodic. In other words, monodic formulas allow quantification 
into temporal contexts only with one free variable. 

Here are some examples of monodic formulas: 

• all nontemporal first-order formulas, i.e., QC C QTC^ ; 

• all QT£-formulas which contain at most one individual variable (i.e., 
QTC' C QT£aj); 

• BOTOFV^C )̂ ^ OF3xip{x) (the Barcan formula); 

• WpSx {OP{x) A -i(T5P(x))) (*at every moment, someone starts to get 
old'); 

• D'pnp3x{Q{x) A -^OpQ(j:)) ('every day has its dog'); 

• WxD'p{Sub{x) —• DF-^Sub{x)) (this is a constraint for temporal data-
bases from (Chomicki and Niwinski 1995): 'an order can be submitted 
only once'); 

• Op3y Works{x^ y)A-^3y Works{Xf 2/)AOF3y Works{Xj y) (this is a query 
to a temporal database from (Chomicki and Toman 1998): 'list all per-
sons who have been unemployed between jobs'). 

^ Monody is a composition with only one melodic line. 
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The following formula—one more query from (Chomicki and Toman 1998)—is 
not monodic: 

• n'^n'^-^3y{Works{x,y)AOWorks{x,y)AOOWorks{x,y)) ('find all job-
hoppers—people who never spent more than two years in one place'). 

Now imagine that we need to find out whether a QT£-formula (p is sat-
isfiable. Following the motto 'divide and conquer,' we separate the temporal 
and the pure first-order parts of QTC, focusing attention mainly on the former 
and pretending that we have a friend who knows how to deal with the latter. 
As we will see, this approach really works if our formula is in QTC^ . (Note 
that we may confine ourselves to dealing with QTC^ -sentences only, because 
an arbitrary monodic formula (^(t/i,.. • ,ym) is satisfied in a first-order tem-
poral model iff the monodic sentence 3y\... 3ym^{yi,..., t/rn) is satisfied in 
the same model.) 

For every formula V'(x) = <p\Uip2 or V (̂x) = ipiS^2 with one free variable 
X, we reserve a unary predicate symbol R^ix), and for every sentence V̂  = 
(piU(p2 or V' = (fiS(f2 we fix a propositional variable p^. R^{x) and p^ are 
called the surrogates of ip{x) and ip, respectively. For clarity of presentation, 
we assume that these surrogates are not in the signature of QC, and define QC 
as the first-order language obtained by extending the signature of QC with 
countably infinitely many fresh propositional variables and unary predicates. 
Given a QTC^ -formula (/?, we denote by If the formula that results from if 
by replacing all its subformulas of the form V'iZYV'2 and ip\Sil)2i which are not 
within the scope of another occurrence oilA or <S, by their surrogates. Thus, Tp 
contains no occurrences of temporal operators at all—i.e., it is a Q£-formula. 
Observe that, for all QTC^ -formulas (/? and xf), we have 

(f Ax/j = (f All), -"(̂  =-ly? and Vxip ^Vxip. (11.11) 

For a QT£-formula (/?, denote by subn (p the closure under negation of the set 
of all subformulas of ip containing < n free variables; sub ip denotes the set of 
all subformulas in (/?, and comp the set of all constants in tp. Without loss of 
generality, we may identify xl) and -̂ -•V'; so subn ̂  is finite. Let x be a variable 
not occurring in (p. Put 

5u6x ^ = {'^{x/y} I '^{y) ^ subi (p}. 

Given a QTC^ -sentence (/?, by a type for (p we mean any Boolean-saturated 
subset t of ^ 

{i^lxl^e sub^ip}, 

that is, 

• xi^Ax^t iSxl) et and xet, for every xjj Ax^ subx^\ 
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• ->xp e t iS '(p ^ t^ for every tp € subx if-

We say that two types t and t ' agree on subo (f if 

tn {ijj \tp e. subo (/?} = t ' n {i/> I 0 € subo ^} 

(i.e., t and t ' contain the same sentences). Given a type t for (f and a constant 
c € cone/?, the pair (c, t) will be called an indexed type for (/? (indexed by c). 

To a certain extent, every state I{w) in a first-order temporal model can 
be characterized—modulo c/p—by the set of types that are 'realized' in this 
state under some assignment to x and the set of types that hold on constants 
in couif. This motivates the following definition. A pair C = {T,i,T^^^) is 
called a state candidate for (f if Tft is a (nonempty) set of types for v? that 
agree on subo (f and 

Ti''''C cornp X Tc 

is a set of indexed types such that for each c € con ip there is a unique t eT^ 
with (c,t) € r^^"*. Indexed types (c,t) in Tl''^ will also be denoted by t^. 

Not all state candidates can represent states in first-order temporal models. 
To single out those that can, we require one more definition. Consider a Q£-
structure 

/ = (Z ) ,P j , . . . , c5 , . . . ) (11.12) 

and suppose that a e D. The set 

t^{a) = {V? I 0 e sub:, V?, / h ^[a]} 

is clearly a type for (f. Say that / realizes a state candidate C = {Tc)T^^^) if 
the following conditions hold: 

• T^ = {t^{a) I a € Z)}, 

• r |^^ = { ( c , t ^ ( cO) | c€conv ;} . 

A state candidate said to be {finitely) realizable if there is a (finite) QC-
structure realizing it. 

Given a state candidate € = (TcTI^'*), consider the Q£-sentence: 

realcr ^ / \ 3x / \ ^l){x) ^ l \ l \ i>{c/x) A ^x \/ / \ rP{x). (11.13) 

Note that the number of different types for (p is bounded by 

\>{(f) =2'^'''^^*^L 

The number tf(v̂ ) of distinct realizable state candidates for (f is bounded by 

tKv?) <2''('^^-b((^)'^^'''^l. 

It follows immediately from the definitions that we have: 
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Lemma 11.6. A state candidate (t for (p is {finitely) realizable iff real(r is 
satisfied in some (respectively, finite) QC-structure. 

We are now in a position to formulate the general decidability results of 
Hodkinson et al. (2000): 

Theorem 11.7. Let QTC! C QTC^ and suppose that there is an algorithm 
which is capable of decidingy for any QTC'-sentence ify whether an arbitrarily 
given state candidate for ^ is realizable. Let C be one of the following classes 
of flows of time: 

(1) m<)), 
(2) {(Z,<>}, 

(3) {(Q,<>}, 

(4) the class of all finite strict linear orders, 

(5) any first-order definable^ class of strict linear orders—for example, the 
class of all strict linear orders. 

Then the satisfiability problem for QTC'-sentences in models based onflows of 
time from C, and so the decision problem for the fragment QLog^^(C)nQT£', 
are decidable. 

We prove this theorem in a more general form in Section 11.3 (see The-
orem 11.21). However, the following problem is still open: 

Question 11.8. Let QTC' C QTC^ and suppose that there is an algorithm 
which is capable of deciding, for any QT£'-sentence </?, whether an arbitrarily 
given state candidate for (p is realizable. Does it follow that 

QLog5^(R) n QTC 

is decidable? 

Similar results hold for satisfiability in models with finite domains: 

Theorem 11.9. Let QTC' C QTC^ and suppose that there is an algorithm 
which is capable of deciding, for any QTC'-sentence (p, whether an arbitrarily 
given state candidate for ^ is finitely realizable. Let C be one of the following 
classes of flows of time: 

(1) {(K,<>}, 

(2) {(N,<)} , 

^We mean definability in the language with equality and a binary predicate symbol <. 



11,2. Monodic formulaSy decidable fragments 475 

(3) {{Z,<>}, 

(4) {(Q,<>}. 

(5) the class of all finite strict linear orders^ 

(6) any first-order definable class of strict linear orders. 

Then Qlog^J^{C) n QTC' is decidable. 

This theorem will be proved in Sections 11.5 and 11.6. 
The same kind of decidability results can be obtained for fragments of the 

two-sorted first-order language TS introduced in Section 3.7. Recall that the 
set TSu consists of all T5-formulas without subformulas of the form Vxrp 
such that tp has more than one free temporal variable. Similarly, define TSix 
as the set of all T5-formulas without subformulas of the form V<t/> such that 
if) contains more than one free domain variable. Let TSi = TSn D TSix-

Theorem 11.10. LetC be any class of Dedekind-complete^ flows of time (for 
example^ the class {(N, < ) , (Z, < ) , (R, <}} U {if | 5J a finite linear order}). 
Then QTC^ is expressively complete for TS\ over C. 

Proof. It is enough to observe that if ^ € TSi then xp G QTC^ (see the 
proof of Theorem 3.28). • 

For a class C of flows of time, denote by TSLog(C) the set of all TS-
sentences that are true in all first-order temporal models based on flows in 
C, and by TSLog^*'*(C) the set of T5-sentences true in all models based on 
frames in C and having finite domains. Given a set QTC! C QTL^ , let 

T 5 ' = {v?€T5i | ( ? e Q T £ ' } , 

where (p is as defined in the proof of Theorem 3.28. Since (p is construc-
ted effectively from ^ (see Kamp 1968), as an immediate consequence of 
Lemma 3.27 and Theorem 3.28 we obtain the following: 

Theorem 11.11. Suppose that every ^ € C is Dedekind-completey and that 
QTC! C QTC^ , If the fragment Qlogsu[C) D QTC is decidable, then the 
fragment TSLog(C) n TS' is decidable. If the fragment Qlog^J^{C) D QTC' is 
decidable, then the fragment TSLog"̂ *̂ (C) fl TS' is decidable. 

Now we apply the conditional decidability criteria of Theorems 11.7, 11.9 
and 11.11 to single out a number of decidable fragments of various first-order 
temporal logics. 

^See Section 7.3. 
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Two-variable fragment 

Denote by QTC^ the language that contains all monodic QT£-formulas with 
at most two variables, that is, Q T £ Q J = QTC'^ n QTC^. Let TSJ be the 
sublanguage of TSi whose formulas contain at most two domain variables. 
Clearly, TSJ = {ip£TSi\(pe QTC^ }. 

Theorem 11.12. Let C he any of the following classes of flows of time: 
{(N, <)} , {(Z, <)} , {(Q, <)} , the class of all finite strict linear orders^ any 
first-order definable class of strict linear orders. Then the fragment 

QlogsuiQnQTC^ 

is decidable. IfCis one of the listed classes and all frames in C are Dedekind-
complete then TSLog(C) Pi TS^ is decidable. 

Proof. The Q£-sentence real^ corresponding to a state candidate € for a 
sentence (p G QTC^ (see (11.13)) contains at most two individual variables. 
As is well known (see Scott 1962), the satisfiability problem for such formulas 
is decidable. All that remains is to use Theorems 11.7 and 11.11. • 

Theorem 11.13. Let H be any of the following classes of flows of time: 
{(E,<)} , {{N, <)} , {(Z, <)} , {(Q, <)} , the class of all finite strict linear or-
ders, any first-order definable class of strict linear orders. Then the fragment 

QLog^j;(7<) n QT£2, 

is decidable. IfH is one of the listed classes and all frames in H are Dedekind-
complete then TSLog-̂ * (̂K) C\TSl is decidable. 

Proof. As the two-variable fragment of first-order logic has the finite model 
property (see Mortimer 1975), finite satisfiability for two-variable Q£-sen-
tences is decidable. Frow now on the proof is the same as the previous one, 
but this time we use Theorem 11.9 in place of Theorem 11.7. • 

As Q T £ Q J contains the set QTC^ of QT£-formulas with at most one 
individual variable, TS^ contains the set TS\ of T5i-formulas with at most 
one domain variable, and TS\ = {(̂  € TSi \ (p € QTC^}, we also have: 

Corollary 11.14. LetC be as in Theorem 11.12, andH as in Theorem 11.13. 
Then the fragments QLogsu{C)nQTC^, TSLog(C)nr5}, Qlog^J^{n)nQTC^ 
and TSlog^'"'{n)nrs\ are decidable. 

We remind the reader that in many cases the one-variable constant-free 
fragment of QLog5^(C) is ^equivalent' to the product logic Log^if{C) x S5; see 
Theorems 3.29, 6.29, 6.30, and 6.31. 
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Monadic fragment 

One more interesting fragment of QTC is the set QTC^^ of monadic temporal 
formulas. The corresponding two-sorted fragment TS^^ consists of those TS-
formulas involving only predicate symbols of the sort 'temporal x domain' or 
'temporal.' As wa^ shown in Section 11.1, both QTL^nQTC^''PiQlogsu{^) 
and QTC^ n QTC^"" n QLog^i;(N) are undecidable. However, this is not the 
case for the languages 

QTC^"" = QTC^ n Qr£^^ and T57^^ = TSx n TS'^^ 

For then the sentence real̂  corresponding to a state candidate C for y? in 
QTCl^^ is a monadic Q£-sentence, and as is well-known (see Lowenheim 
1915), the monadic fragment of first-order logic is decidable and has the finite 
model property. This yields: 

Theorem 11.15. LetC he as in Theorem 1L12, andH as in Theorem 11,13. 
Then QlogsuiC) n QTC^^ TSLog(C) n T 5 ^ ^ QLog ĵyCW) n QTC^' and 
TSLog^ '̂'(W) nT57*° « ^ decidable. 

Fluted fragment 

The monodic fragment can be naturally combined also with the fluted frag-
ment of classical first-order logic, which was shown to be decidable and to 
have the finite model property in (Purdy 1996a, Purdy 1996b). 

Let Xm == (xQy... yXm--i) be the ordered list of the first m individual 
variables. For any t < a;, an atomic temporal fluted formula over Xi is an 
atom of the form P{xk^Xk-^ij... ,Xt_i) for some k < i — 1. Temporal fluted 
formulas are now defined inductively as follows: 

• any atomic temporal fluted formula over Xi is a temporal fluted formula 
over Xi] 

• any Boolean combination of temporal fluted formulas over Xi is a tem-
poral fluted formula over Xi; 

• if (̂  and ip are temporal fluted formulas over Xi then (pUil) and ipStl^ are 
temporal fluted formulas over Xi; 

• if V? is a temporal fluted formula over Xt+i, then both Bxi^i^p and 
"^Xi^np are temporal fluted formulas over Xi. 

Denote by TJFCU the set of all temporal fluted formulas in QTL, and let 
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Theorem 11.16. Let C be any of the following classes of flows of time: 
{(N, <)} , {(Z, < )} , {{Q, <}}, the class of all finite strict linear orders, any 
first'order definable class of strict linear orders. Then 

QlogsuiC) n QTC^ n T^£W 

is decidable. IfH is any of the listed classes orH — {{i?, <)} then 

Qlog^J^iH) nQTC^nTTCU 

is decidable. 

Proof. By Theorems 11.7, 11.9 and Lemma 11.6 it is enough to show that, 
given a monodic T^£W-sentence (̂ , the Q£-sentence real^: corresponding to a 
state candidate C for ip belongs to fCU. But this is almost obvious. Indeed, 
by only renaming the variables in formulas from the types for (f, we can rewrite 
them as fluted Q£-formulas over Xi with at most one free variable XQ. The 
resulting real,̂  clearly belongs to TCU. Q 

Guarded fragments 

Let us consider now the following natural generalization of the first-order 
guarded formulas of Andreka et al. (1998). 

Denote by TQT the smallest set of QT£-formula^ such that 

• every atomic formula is in TQJ^; 

• ii ip and ^ are in TQT, then so are ^p A'lp, -tcp, (fSip, and ipU'tp] 

• if (7 is an atomic formula (called the guard) ^ (p € TQT, every free 
variable of (p occurs in G, and y is a tuple of variables occurring in G, 
then 3y{G A (p) is in Tgj='. 

The set TQT is called the guarded fragment of the first-order temporal lan-
guage (or the temporal guarded fragment, for short). We write QJ^ for the 
guarded fragment {^\^ ^ TQT) of the first-order language QC. 

Note that unUke QT, which is known to be decidable (see Andreka et 
aL 1998), the temporal guarded fragment interpreted over the flows of time 
(N, <) and (Z, <) turns out to be not recursively enumerable. 

Theorem 11.17. LetC be either {{N,<)} o r { ( Z , < ) } . Then 

Qlogi^iQnQTC^nTGJ' 

is not recursively enumerable. 
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Proof. The proof is similar to that of Theorem 11.1. We simply write down 
the required formula (fr for a given set T of tile types and a special tile type 
toeT. 

Let fi be a binary predicate symbol and Pt (f e T), Q unary ones. Define 
(fiT to be the conjunction of the following formulas: 

3x(Q(x)ADFOFPeo(^)). 
Vx(Q(x)-^3y(/?(x,t/)AQ(2/))), 

n^Vx(Q(x) -^ OQ{x)), 

Va:Vy(i?(a:,2/)-^aF/?(x,j/)), 

Dpx{Q{x) ^ V Pt{x) A / \ {Pt(x) ^ - P r ( x ) ) ) , 
teT t,t'€T 

up(0=rfo«'n(t') 

r%ght(t)^ieft(t') 

Clearly, y?r belongs to QTC^ n T^J^ and does not contain 5 . It is readily 
seen that y?r is satisfiable in a model based on the frame in C iff T tiles N x N 
with 0̂ appearing infinitely often in the first row. • 

However, if we restrict it to monodic formulas, the temporal guarded frag-
ment becomes decidable. Moreover, we can allow for more complex formulas 
as guards. A Q£-formula 7 is said to be a packing guard if 7 is a conjunction 
of atomic and existentially-quantified atomic formulas such that for any two 
distinct free variables x, y of 7, there is a conjunct of 7 in which x, y both 
occur free. Now, a natural temporal generalization of the first-order packed 
fragment^ of Marx (2001) can be defined as follows. 

Let TVT be the smallest set of QT£-formulas such that 

• every atomic formula is in TVT\ 

• if V? and xl) are in TVJ^^ then so are if /\ip^ -̂ y?, ^SI/J^ and (pUi(); 

• if 7 is a packing guard, ip € TVT^ every free variable of (/? is free in 7, 
and y is a tuple of variables free in 7, then 3y (7 A (p) is in TVJ^, 

Clearly, TVJ^ contains the temporal guarded fragment TQT, We write VJ^ 
for the packed fragment {^ | (̂  € TVT) of the first-order language Q Z . Let 

"* A syntactic variant of the packed fragment was considered by Gradel (1999a) under the 
name clique, guarded fragment. 
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Theorem 11.18. Let C be any of the following classes of flows of time: 
{(N, <}}, {(Z, <)} , {{Q, <}}, the class of all finite strict linear orders, any 
first'order definable class of strict linear orders. Then 

is decidable. IfH is any of the listed classes orH — {{M, <)} then 

is decidable. 

Proof. Since VT is known to be decidable (Gradel 1999a, Marx 2001) and to 
have the finite model property (Hodkinson 2002a, Hodkinson and Otto 2003), 
by Theorems 11.7,11.9 and Lemma 11.6 it would suffice to show that, given a 
TVT^ -sentence (̂ , the Q£-sentence real^ corresponding to a state candidate 
C for if belongs to VT. Although this is not the case, we can transform real(r 
into a "P^-sentence as follows. Let P be a new unary predicate symbol. For 
any Q£-formula V̂ , define the relativization tp^ of ip to P by taking, for atomic 
^ , ipP = t/', (-V^)^ = -V^^, (V̂ i A ^^2)^ = V r̂ A V'f, (3xV^)^ = 3x(P(x) A V^^). 
Observe that if V' € VT then xp^ is logically equivalent to a P^-formula. 
The atomic and the Boolean cases are trivial; and for the case of ^packing 

guarded quantification' {{3yi... 3yn{l A V')) is logically equivalent to the 
P.F-formula 

3yi . . .3yn( / \ P(yi) A7 A V^^). 
l < i < n 

Now, real^ is (equivalent to) 

/ \ 3x(P(x) A / \ V^(x)) A 
teT ti^et 

/\ /\ V'̂ 'cc) A vx(p(x) -> V A v '̂'(̂ )) 

which is in VT. Finally, by classical model theory, real(r has a (finite) model 
iff real^ has a (respectively, finite) model. Thus, it is decidable whether reale 
has a (finite) model, as required. Q 

We can also define the packed fragment of the two-sorted language TS. 
We call a T5-formula 7 a TSVJ^-guard if 7 is a conjunction of atomic and 
existentially 'domain-quantified' atomic formulas such that for any two dis-
tinct free domain variables x, y of 7, there is a conjunct of 7 in which x, y both 
occur free. Now let TSVT be the smallest set of T5-formulas such that every 
atomic formula is in TSVT^ TSVT is closed under the Boolean connectives 
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and temporal quantification Vt, and if 7 is a TSVT-gueird, (f € TSP^F, every 
free variable of tp is free in 7, and y is a tuple of domain variables free in 7, 
then 3y{y A if) is in TSVT. Let TSVTi = TSVTnTSi. 

Theorem 11.19. Let C be either {(N,<)}, or {(Z, <)} , or the class of all 
finite strict linear orders. Then TSLog{C)r\TSVJ^i is decidable. IfH is any 
of the listed classes orH^ {(R, <)} then TSLog^ ' " (W)nr5P^i is decidable. 

Proof. It is obvious from the proof of Theorem 3.28 that 

So the theorem follows from Theorems 11.11 and 11.18. • 

Remark 11.20. It maybe of interest to note that, over the flow of time (N, <), 
one can extend the monodic fragment by allowing applications of the next-
time operator O to arbitrary formulas (i.e., with any number of free variables), 
provided that no occurrence of such a O is in the scope of W. In fact, as was 
shown by A. Degtyarev, M. Fisher and B. Konev (2003a), the satisfiability 
problem for this extended fragment can be polynomially reduced to satis-
fiability for the original monodic fragment. By using the resolution-based 
approach of (Degtyarev et al. 2003b), they also prove the decidability of 
some 'prefix' fragments with additional requirements on subformulas starting 
with temporal operators, e.g., the temporalized Godel and Maslov classes. 

The computational properties of monodic first-order branching temporal 
logics have been recently investigated in (Hodkinson et al. 2002, Bauer et al. 
2002). 

11.3 Embedding into monadic second-order 
theories 

In this section we first formulate and prove our most general decidability cri-
terion (Theorem 11.21) concerning monodic fragments of first-order temporal 
logics, and then show how this criterion yields Theorem 11.7 as a special case. 
An application of Theorem 11.21 to proving decidability of temporal epistemic 
logics can be found in Section 13.1. 

We generalize Theorem 11.7 by considering satisfiability in first-order tem-
poral models whose first-order 'bits' are not arbitrary, but taken from a spe-
cific class of Q£-structures, say, those in which the interpretation of a binary 
relation S is the transitive closure of the interpretation of another binary re-
lation R. To be more precise, given a class /C of Q£-structures, we call a 
first-order temporal model 9JT = (5, D, / ) a K-model if for every time point w 
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in 3̂ , the Q£-structure I{w) belongs to /C. Now, given a QTC^ -sentence v?, 
a state candidate C for ip is said to be IC-realizable if there is a Q£-structure 
realizing C and such that its QC-reduct belongs to /C (the Q£-reduct of a 
Q£-structure is obtained by omitting the interpretations of the surrogates). 

Theorem 11.21. Let QTC^ C QTC^ , and let K he a class of QC-structures 
such that the follouring two conditions hold: 

(a) there is an algorithm which is capable of deciding^ for every QTC' -
sentence v?, whether an arbitrarily given state candidate for (p is /C-
realizable; 

(b) for every QTC*-sentence </?, there is an infinite cardinal K^ such that 
for every cardinal K>_ K^p and every fC-realizable state candidate C for 
(Pf there is a QC-structure I realizing (L and such that the QC-reduct of 
I is in IC and the sets 

/t = {a G DM / h A ^W} 

are of cardinality K, for all types t eT^, 

Then the satisfiability problem for QTC'-sentences in first-order temporal 
K-models that are based on a flow of time from C is decidabkj whenever C is 
one of the following classes: 

(1) {(N,<>}, 

(2) {(Z,<)}, 

(3) { (Q,<)} , 

(4) the class of all finite strict linear orders, 

(5) any first-order definable class of strict linear orders. 

Proof. Fix some QTC' C QTC^^ and a class /C of Q£-structures as above. 
First we show that, modulo a given QT£'-sentence ip, every first-order tem-
poral /C-model can be represented as a structure which we again call a quasi-
model. Roughly, quasimodels in this case consist of /C-realizable state can-
didates for (p linked together by special functions (runs) coding the flow of 
time and tracing the evolution of the domain elements. Having represen-
ted first-order temporal models as quasimodels, we translate the statement 
that a quasimodel satisfying (p exists into monadic second-order logic and use 
decidability results of Theorem 1.28. 
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Let us begin with the definition of a quasimodel. A K-basic structure for 
(/? is a pair (Jf, q) such that 3̂  = {W^ <) is a strict hnear order and g is a map 
associating with each it; € W a /C-reaHzable state candidate 

for if. Such a map q is called a state function over 5. By a run through (3̂ , q) 
we mean a function r from W into the set Utwew ^«; such that r(w) € T^^ for 
all It; G W. A run r is called coherent and saiwraied if 

• for every ipiUip2 ^ sub v̂? and every w e W, we have ilJ\Uip2 € r(ti;) iff 
there is t; > it; such that V̂2 ^ ^(v) and V̂ i € r{u) for all w G {Wy v), and 

• for every ipiS\p2 ^ 5u6xy? and every w € W, we have \l)\Sxl)2 G r(t/;) iff 
there is t; < ti; such that V̂2 ^ ^(^) and V̂ i E r{u) for all u € {v^w). 

Finally, we say that a triple O == (J, g, 91) is a {first-order temporal) K-quasi-
model for ^ {based on 3) if (diQ) is a /C-basic structure for if such that 

( tqml) there is a it; G M̂  such that ^ G t, for some (or, equivalently, all) 
€ G i u;, 

and JH is a set of coherent and saturated runs through (3, q) satisfying the 
following conditions: 

(tqm2) for every c e coUip, the function fc defined by rc{w) = t, for 
{c,t) G T;̂ ^̂ *, w eW, is a run in « , and 

(tqin3) for every w e W and every t eTu,^ there exists a run r G 9̂  such 
that r{w) = t. 

In this case the state candidates q{w) are called quasistates of £J. 
Note that, for any two sets IHi and 9^2 of coherent and saturated runs 

through (5, g), if 9̂ i C £H2 and (5, g,lHi) is a /C-quasimodel for ip then 
(3»9j9t2) is a /C-quasimodel for (f as well. Consequently, we may always 
assume that a /C-quasimodel for (p is of the form {5, g, IH )̂, where 91^ denotes 
the set of all coherent and saturated runs through (diq)-

Lemma 11.22. Let QTC! and /C satisfy condition (b) of Theorem 11.21, 
and let J = {W, <) be a strict linear order in C. Then a QTC*-sentence 
ip is satisfiable in a first-order temporal IC-model based on 5 iff there is a 
IC-quasimodel for (p based on 5. 

Proof. Suppose that our formula (p is satisfied in a first-order temporal 
/C-model 971 = (J, /?, / ) . For every ae D,w£W, let 

ta,w - {'^I'ip e subx tp, {9Jl,w) 1= ip[a]}. 
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For all weW, define q{w) = {T^.T!^'"'') by taking 

Tw — {ta,w I CL ^ D}^ 

T^̂ " = {(c,t , , ( . ) ,^) |cGcony?}. 

It is easy to see that for every a £ D, the function r{w) = ta,w (^ ^ Ŵ ) is a 
coherent and saturated run through (Ŝ , q). Let fH be the set of all such runs. 
Then (3̂ , g, 9\) is clearly a /C-quasimodel for (p. 

Conversely, suppose that 0. = {diQi^q) is a /C-quasimodel for ip. We 
intend to build a first-order temporal /C-model satisfying ip by using the QC-
reducts of the Q£-structures which realize the state candidates q{w), w eW. 
The problem is that they do not necessarily have the same domains. Here we 
make use of condition (b). 

Take an infinite cardinal K exceeding both «;<̂  and the cardinality of the 
set 9lg, and put 

Fix some w eW. Then, by (tqm3), for any type t eT^, 

\{{r,O^D\r(w)=t}\=K. (11.14) 

By condition (b), there exists a Q£-structure I{w) with domain D{w) such 
that I{w) realizes the state candidate q{w)^ the Q£-reduct r{w) of I{w) is 
in K\ and for every t G ^ ly there are K many elements in D{w) realizmg t. 
Hence, by (11.14), we can identify each D{w) with D in a 'type-preserving' 
way, that is, we may assume that, for all w eW, t eTyj, 

{a e D{w) I I{w) h / \ ^[a]} = {{r ,0 € D \ r{w) = t} , 

and c^^^^ = (rc,0), for every c e corup (where Vc is defined in (tqnni2)). In 
other words, for allweW,re 91^ and ^ < /̂ , we have 

r{w) = U^\ije sub^if, I{w) \= V^[(r,01}. (11.15) 

Let 9Jl = (5, D, V). We show by induction on t/' that for all \l) G sub (/?, ti; G W, 
and assignments a in D, 

I{w) h"* V̂  iff (Wl.^) N" V̂- (11-16) 

The basis of induction—i.e., the case when xp = Pi(a:i,... ,X£)—is clear; for 
then if) = \l). The induction steps iov xp — tpi Atl)2i i^ = ^V î, and ^ = Vx̂ î 
follow by the induction hypothesis from (11.11). 



11,3. Embedding into monadic second-order theories 485 

Let tp = Xi^X2' By renaming the free variable in ^ , we may assume 
that V' € suhx^> Suppose that a(x) = ( r , 0 - By (11.15) and the induction 
hypothesis, we have 

I{w) h=« XiWX2 

iff X\l^X2 € r{w) 

iff ^v > w (x5 € r{v) and Vu € (it;, t;) xT ^ ^(t^)) 

iff 3t; > w; (/(v) |=° xi and Vu 6 (t/;, v) I{u) 1=** xl) 

iff 3v>w ((9Jl, t;) 1=** X2 and Vu € (u;, v) (9n, u) f=° x i ) 

iff (9n ,u ; )KxiWX2. 

The formula V̂  = X 1*̂ X2 is considered analogously. 
Since, by ( tqml) and (tqm3), Tp e r{w) for some w ^W and r G IH^, 

in view of (11.15) we have I{w) |= ^ , and so (11.16) gives {^^w) |= v?, as 
required. • 

We can now deduce Theorem 11.21 by translating into monadic second-
order logic the statement that there exists a /C-quasimodel for (/?. We will use 
some auxiliary formulas. Let E;c be the set of all /C-realizable state candidates 
for y?. Introduce a unary predicate variable Pi^ for each C = {T^^T^^^) in E^: 
and a unary predicate variable R^ for each 0 G subx<^> 

Given a type t for (̂ , let 

Xt(H(x)) = l \ R^[x) A /\^R^{x), 

saying that the type t at x is defined with the help of 

R{x) = (/?t/;(x) I tp € subx ^). 

Let run(P, i?) denote the conjunction of the three formulas 

Vx / \ [Pt[x)-^ V xt (^(x)) ) , 

VX / \ [iJv'iWV^aW ^ 3y(^<yAi?^2( t / ) AV2(X <-2 < J/-^iiVi('2^))]» 

Vo: / \ [i?^i5^2(a:) ^ 3t/(t/ < x A R^^{y) A'iziy < z < x -^ J^i^A^))] 

which says that R defines a coherent and saturated run through a sequence 
of /C-realizable state candidates defined with the help of P = (P(r | C € E^:). 
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We now define the monadic second-order sentence qrn^̂  by taking 

e.:fi€' 

A Y 3x Pc(x) 

A / \ 3 il^[run(P,fl)AVx / \ (Pc(x) ^ xt|(P(x)))] 

AVx / \ [Pc(x)^ / \ 3 iZvMP, f l )Ax t ( f i ( x ) ) ) ] ) . 

Evaluated in a flow of time 5 = (W »̂<}7 the first fine of qm^^^ says that 
the sets Pc ^ W {€ e T,jc) form a partition of W. By defining the map 
g : W ~> Ejc as 

q{w) = £ iff ti; € P(r 

we obtain a quasimodel (5, g,9lg) for (p: the second, third and fourth fines 
of qrrij^ ^̂  state the conditions ( tqml ) , (tqm2) and (tqinS), respectively. 
Therefore, it is easy to see that we obtain the following: 

Lemma 11.23. For any strict linear order 5, 5 |= ^^fc.ip ^ff ^here eooists a 
K^-quasimodel for (p based on 5-

Clearly, if Ex: can be constructed from (f by an algorithm (and by condition 
(a), it can be), then so can qm^; <̂ . Hence we can now apply known facts on 
decidable theories of monadic second-order logic to obtain the decidability 
results of Theorem 11.21. The first four statements of the theorem follow 
from Theorem 1.28. 

To prove statement (5), take a class C of strict linear orders definable in 
the first-order language with equality and a binary predicate symbol <. By 
considering the translation (f^ of (p into the two-sorted first-order language 
TS (see Section 3.7) and applying the downward Lowenheim-Skolem-Tarski 
theorem, it can be seen that ip has a model with flow of time in C iff it has a 
model with a countable flow of time in C. By Lemmas 11.22 and 11.23, this 
holds iff ^v[^f^^^ is true in some countable strict linear order in C. 

For every ISormula tp of monadic second-order logic and a monadic predicate 
variable P not occurring in ip, define the relativization i/;^ of xp to P induct-
ively by taking rp^ = xp for atomic ip, {-^ip)^ = -^ip^, {ip\ A 1/̂ 2)̂  = -^f A V'I't 
(VxV')^ = Vx(P(x) -> i)^), and (VQ^)^ = VQV^ .̂ Obviously, for any sen-
tence tp and any strict linear order 5, we have 5 |= 3F(3xP(x) A \p^) iff 
'^' \=ip for some (nonempty) suborder 5 ' of 5—the intended interpretation of 
P is the domain of 5 ' . 
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Now any countable strict linear order is a suborder of (Q, <). Let A be 
the first-order sentence defining C. Then qm^^ (assumed not to involve P) 
is satisfiable in some countable 5 € C iff 

{Q,<)\=lP{3xP{x)A{XAqm^y). 

By Theorem 1.28, this last statement is decidable. 
This completes the proof of Theorem 11.21. • 

We can prove now Theorem 11.7. Suppose Q T £ ' is a sublanguage of 
QTC^ such that there is an algorithm which is capable of deciding, for any 
QT£'-sentence </?, whether an arbitrarily given state candidate for (p is realiz-
able. We claim that conditions (a) and (b) of Theorem 11.21 are satisfied if we 
take /C to be the class of all Q£-structures. Indeed, (a) holds by assumption. 
The following claim shows that condition (b) also holds (where K,̂  = Ko* for 
all QT£'-sentences ip): 

Claim 11.24. For every QTC*-sentence (/?, every infinite cardinal K, and 
every realizable state candidate C for (f, there is a QC-structure I realizing £ 
and such that, for every type t G r,t> the set It is of cardinality K. 

Proof. Let (p be a QT£'-sentence and £ a realizable state candidate for (/?. 
Since the language QC is countable, _bŷ  the downward Lowenheim-Skolem-
Tarski theorem there is a countable Q£-structure J = ( P ' ' , PQ^ . . . , CQ , . . . ) 
realizing £. Take an infinite cardinal K. If there is some t € T(f such that 
\Jt\ < K then we *blow up^ J by making K copies of each element of its domain 
as follows. Define a new Q£-structure / by taking 

c' = {(c^,0)}, 

P' = {( (a i»6>," . ) (an ,Cn» I (oi , . . . ,an> € P ^ , ? i , . . . , ^n < K } , 

for each constant symbol c and each n-ary predicate symbol P . Given an 
assignment a in / , we can define an assignment o"" in J by putting, for each 
variable y, o~(t/) = a iff a{y) = (o,$) for some ^ < K. Then a straightforward 
induction shows that for all Q£-formulas xp and assignments a in / , 

/ [=*» V' iff J h"""* ^' 

Here we use the fact that our language does not contain equality. Hence, / 
also realizes £ and the sets 

are of cardinality K, for all t € T^. Q 
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11.4 Elementary decision procedures for frag-
ments of QLog52Y(N) and their complexity 

The translation into monadic second-order logic given in the preceding section 
reduces the satisfiability problem for monodic sentences to decidable problems 
of high computational complexity—for example, the complexity of the mon-
adic second-order theory of (N, <} is itself nonelementary (see (Rabin 1977) 
and references therein). In this section we demonstrate another way of proving 
decidability of monodic fragments of first-order temporal logics over (N, <), 
which is more direct, makes plain the structure of the models, and does yield 
an elementary decision procedure, provided of course that determining the 
realizability of state candidates is elementary. Assuming an algorithm for the 
latter with a better complexity bound, we show how to obtain better bounds 
for satisfiability of monodic sentences. A summary of the obtained complexity 
results can be found in Table 11.1 on page 504. 

First we show that, as far as decidability and computational complexity are 
concerned, it is sufficient to deal with the 5-free part QLog2^(N) of QLog5^(N): 

Proposition 11.25. QLog5j^(N) is polynomially reducible to QLog^(N). 

Proof. We simply *lift' the proof of Proposition 2.8 to the first-order case 
in a straightforward way. The only difference is that, given a QT£-formula 
(f and its subformula of the form il^iS'ip2 with 5-free t/jy, V'2 and with free 
variables X — X i , . . . , X|71, w e introduce a fresh m-ary predicate symbol P^^s^^ 
and construct the formula 

^' = ^ 'AVx-P^^5^Jx) An^(Vx(OP^,s^ , (x) ^ (V'2V(V^i AP^,5^,(x))))) , 

where (/?' is the result of replacing every occurrence of {\l)\S'4)2){x) in (/? by 
P^j5^2(*)- Then (^" is satisfiable at time point 0 iff (̂  is satisfiable at 0. By 
iterating this process sufficiently many times we end up with an 5-free formula 
(p as required (for details, see the proof of Proposition 2.8). • 

In view of this proposition, we will be considering here only fragments 
of QLog^(N). All the results presented in this section will hold true for the 
corresponding fragments of QLog5^(N) as well. (For one can easily check that 
the translation ipy-^ Cp defined in the proof of Proposition 11.25 does not carry 
us outside the fragments of QTC we consider below. The only case when it 
does is the temporal guarded fragment. However, in this case we can add 
equality to the language (see the proof of Theorem 11.86), and then make use 
of the harmless guard xi = xi in the translation above as x contains at most 
one variable.) 
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Let QT£^/[jj denote the monodic fragment of the 5-free sublanguage 
QTCu of QTC, i.e., 

QTCum = Q^^m ^ QT^u^ 

Roughly, the idea in the elementary decidability proofs is to show that every 
quasimodel for a given QT£t/[j|-sentence v? can be converted into another 
quasimodel for ^ which has a ^periodical' state function, with the period 
being of some appropriately bounded length. 

Fix a QTCu\^ -sentence (p. A pair (t, t') of types for ^p is called suitable if 
for every tpiUip2 € sub^^^ 

\l)\U\l)2 et iff either V̂2 € *' or ipi e t' and ipiUi)2 € t'. 

Suppose that ( to , . . . , tn) is a finite sequence of types for if and il)\U\l)2 € to-
We say that (to, "-',tn) realizes il)\U\l)2^ if 

• there is / with 0 < / < n such that 1/̂ 2 ^ */ and t/̂ i € tk for all k € (0, /), 

• the pair (tt,ti^i) is suitable for every i <n. 

Recall that b((/?) and tt(v̂ ) bound the number of distinct types for ip and the 
number of distinct realizable state candidates for v?, respectively. 

Theorem 11.26. A QTCu\^ -sentence <p is satisfiable in a first-order tem-
poral model based on (N, <) iff there are natural numbers I1J2 O'l^d a sequence 

((ro,ro*'^'),..., (r/,-|./2-.i,Ti^j°^,^^i)) 

of realizable state candidates for (p such that 

h < tJ(v̂ ), 0 < /2 < \sub^^\ . \>^ip). tt((̂ ) -f tt(v̂ ) 

and the following conditions hold: 

(1) Tp et for some t € To; 

(2) for every i < li -{-12 - 1 and every t € Ti there is at^ e Ti+i such that 
the pair (t^t^) is suitable, and for every t G Ti^^i^^i there is at' e Ti^ 
such that the pair {t^t') is suitable; 

(3) for every i with 0 < i < li -^ I2 and every t € Ti there is at' e Ti-i 
such that the pair (f, t) is suitable, and for every t G T/j there is also a 
t" € Ti^^i^^x such that the pair {t"^t) is suitable; 

(4) for every type t € T/̂  there are types t i , .>.,ti^ such that U € Ti^+i for 
I <i < hf ti^ e Ti^ and all formulas of the form i)\Uil)2 in t are realized 
by the sequence (t, t i , . . . j t /J; 
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(5) for every c e corupy the pairs (t^,*i+i) are suitable whenever i < h 
and all formulas of the form rpiUilj2 in tf^ are realized by the sequence 

(*Fi»---'*Fi-i-i2~i'*?i)' 

Proof. We slightly modify the definition of quasimodels introduced in Sec-
tion 11.3 (page 483). First, as now /C is the class of all Q£-structures, we 
will not mention it at all. Second, since all quasimodels for (p in this section 
are based on (N, <), instead of triples we use pairs of the form (9,91} (with 
q{n) = (Tn,T^°^}, n G N) to denote them. We also assume the following 
modification of condition ( tqml) : 

(tqnil)o ^ G t for some (or, equivalently, all) t € TQ. 

Further, we identify a state function q over (N, <) with the infinite sequence 
of realizable state candidates 

g = (g (0) ,g ( i ) , . . . , g (n ) , . . . ) 

and a run r with the infinite sequence of types 

r = ( r ( 0 ) , r ( l ) , . . . , r ( n ) , . . . ) . 

Thus, an infinite subsequence (^(io)»9(ii)» • • •) of a state function q for (f 
will also be understood as a state function q' for (p over (N, <) defined by 
g'(n) = g(in), n 6 N. 

We will use the following notation regarding sequences. Given a se-
quence s = (s(0),s(l) , . . . ) and n > 0, we denote by s-^ and s^^ the head 
(5(0) , . . . , s{n)) and the tail (5(71 -f 1), s{n -f 2) , . . . ) of 5, respectively; si * 52 
denotes the concatenation of sequences Si and 52; |5| denotes the length of 5, 
and 

S* = 5 * 5 * 5 * . . . . 

Now, the '^'-direction of,the theorem is easy. Given numbers li,l2 and a 
sequence of realizable state candidates as above, we are going to construct a 
quasimodel for (f. Then, by Lemma 11.22, we are done. 

Define two sequences g^ and ^2 of realizable state candidates by taking 

gi = ( ( T o , T o = - ) , . . . , ( r , . _ i , T f - , ) ) , 

and let 

Q = Qi*Q2 

Since 2̂ > 0, g is clearly a state function over (N, <) and ( t qml )o holds by 
condition (1). Let q{n) = {QniQ^)- First, we observe that by condition (5) 
the sequence 

( to , . . . , t f j_ i ) * (tfj,...,tf^_,.^2^l) 



11.4, Complexity of decidable fragments of QLog5^ (N) 491 

is a coherent and saturated run through q, for every c € corup. Hence we 
have (tqm2). 

To show (tqm3), we have to construct a coherent and saturated run 
coming through an arbitrarily given type tn ^ Qnt for every n € N. Let 
fc € N be such that m> — li -^ k -12 > n. We first use conditions (2) and (3) to 
construct a sequence (*o» • • •»*n) • • M*m) such that ti € Qi for all i < m and 
the pairs (tt , t t+i) are suitable for all i < m. After that, in accordance with 
condition (4), we continue this sequence to (to, • • •»*m> • • •»^m+/2} ^^ order to 
realize all formulas of the form tpiUip2 in tm (and thus in tn). Then we again 
use (4) to continue it to (to> • • • »*m-f/2» • • • )*m+2/a)> realizing all formulas of 
the form i()\Urp2 in <m+/2 • And so forth. The resulting sequence is clearly a 
coherent and saturated run through q. By collecting all runs constructed this 
way into a set JH we obtain a quasimodel (g, JH) for ip. 

For the *=>*-direction, we need a series of lemmas. First we show that it 
is always possible to delete the interval between two identical quasistates: 

Lemma 11.27. Let (g,JH) be a quasimodel for (p such that q{n) = g(m) for 
some n < m>. Then {q-^ •g>^,£H-^ * JH>^) is also a quasimodel for tp, 
where 

y^<n ^ 5^>m ^ ^̂ <̂n ^ ^>m | n , r 2 € « , r i(n) = r2(m)}. 

Proof. Observe that if r i , r2 6 JH and r i(n) = r2(m), then rf^ * fj"*^ is a 
coherent and saturated run through g-^ • q^^. Indeed, suppose first that 
ipiUip2 ^ n^'^) for some k < n. Then, since ri is saturated, there is / > A: 
such that ^2 € ri(/) and ^1 € ri(/ ') for all /' € (fc,/). If I < n then we are 
done. If / > n then, by the coherency of r i , we have 01^02 € ri{n) = r2(m), 
and so are done again, since r2 is saturated. For the other direction, the only 
interesting case is when k < n and there is an / > m such that ip2 € r2(/), 
V̂ i € r i ( r ) for all ^ € (fc,n), and Vi € r2(/') for all /' € (m,/). Since r2 is 
coherent, we have ifiUtp2 ^ r2(m) = ri(n). Finally, since ri is saturated and 
coherent, we obtain that tpiUip2 € fi{k). 

The pair (g^'* * g>'",lR^^ * « > ^ ) satisfies ( tqml)o because ( tqml)o 
holds for (g,JK). By condition (tqmS) for (g,5l), we have that for every 
ri € IH there is r2 € 91 such that r i(n) = r2(m), and vice versa (by swapping 
n and m). It follows that (g^** • g>"*, JH^" • !H>"^) also satisfies (tqm3). 

Finally, observe that for every c € con (̂ , we have rf^ * r^*^ € W-*̂  *91^*", 
and hence (tqm2) holds. • 

If g' is a subsequence of g, and both (g,JH} and (g',JH') are quasimod-
els for (p, then we call (g',JHO ^ subquasimodel of (g,JH). For instance, 
(g^" * g>^ ,9 l^ ' ' * 1R>^) above is a subquasimodel of (g,lH>. 
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Letnma 11.28. Every quasimodel (g,lH) for (f contains a subquasimodel of 
the form {QI * q2i^') such that \qi\ < ^{(f) and each quasistate in the sequence 
q2 occurs in it infinitely many times. 

Proof. If each g(n), for n € N, occurs infinitely often in q then let qi be 
empty, q2 — q and 91' = EH. Otherwise, we take n to be the maximal number 
such that q{n) ^ q{m), for all m > n. Then put ^2 = Q^^ and apply 
Lemma 11.27 to the quasimodel (q,9l} deleting from the head q-^ of q all 
repeating quasistates, which yields us a subquasimodel (g^ * q2, OV) satisfying 
the required properties. • 

Lemma 11.29. Let (g^ * ̂ 2*'^') ^^ ^ quasimodel for (f {with quasistates of 
the form {Ti^T^^^) for i G N) such that IgJ < tt(v̂ ) and each quasistate in 
^2 occurs in it infinitely often. Then there is a subquasimodel of the form 
{QI * ̂ 0 * Q2^i^'^)j /^^ some I > 0, such that 

{i)\qo\<\sub,v\-m-^Hv) + Uf); 
(ii) for every type t G T|gj there is a run r € 91" such that r(|qfj|) = t and 

all formulas V'î V'2 G r(|gi|) are realized by the sequence 

{r(k i l ) , r ( |g i |4 - l ) , . . . , r ( |g i |4 - |go l )> 

of types; 

(iii) for every c G con (p the sequence 

Ml9i l ) , r c ( |g i l + l ) , . . . , r c ( | g i | - f |(7ol)) 

realizes all formulas i)\U%l)2 G rc{\q\\); 

(iv) go(0) = g^'(O). 

Proof. Observe that for any coherent and saturated run r and i G N, the 
pair {r(i),r(i 4-1)) of types is always suitable. 

Now let n = (g^ * q2,^') and n = \qi\. Suppose that * € T^, iAiWV'2 € t 
and r{n) = t, for r G 91'. Take the minimal m > 0 such that V̂2 ̂  ^(^ 4- m) 
and V̂ i G r{n 4- fc) for all k G (0, m). Assume now that we have i, j such that 
0 < i < j < m, r(n-f-i) = r(n-f j ) and ^2(0 = 920)- ^^ ^^^^ of Lemma 11.27, 
there is a subquasimodel ( g i * g |* * g2^^,S) of Q, and r-^^^^r^^'^^ is a run 
in 6 coming through t. It follows that we can construct a subquasimodel 
(^i * ^2" * 93>^ i / ^f ^ and a run ri in 9li such that r i(n) = t and the 

sequence ( r i (n ) , . . . , r i (n -h mi)) realizes xl^il(rp2 for some mi < b((^) • tt(< )̂-
Then we consider another formula of the form 'tp[Uilj2 G t and assume that 

( r i (n) , . . . , r i ( n + m')) realizes it for some m' > mi . Using Lemma 11.27 
once again (and deleting repeating quasistates between gaCmi) and gaCm')) 
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we select a subquasimodel (QI * g p * qf^^ * Q4^^2) of Q and a run r2 in 

9t2 such that r2(n) = t and (r2(n) , . . . ,r2(n + m2)) reaHzes both i)\U'\p2 and 
tpiUtp2 for some m2 < 2 • b(v?) • tt(v^). 

Having analyzed all distinct formulas of the form V îW 2̂ in t, we obtain 

a subquasimodel (QI * ̂ p • g' * Q^^i^t) of O and a run rt € JHt such that 

rt{n) = t and ( r t (n) , . . . , r t (n 4-me)) realizes all such 'Until-formulas' for 

some mt < \subx <f\ • b((^) • tt(v^). 
After that we consider in the same manner another type t^ €Tn^ However, 

this time we can delete quasistates only after q^{mt)^ and so to realize in 
some run through t ' a formula ^iW^2 ^ *^ we need again < b{ip) • tt(^) new 
steps. Since \Tn\ < b(v?), at most \subx ^\ 'b^{^)'i{^) quasistates are required 
to satisfy (ii). Observe that if we 'cut' the runs Vc € W corresponding to 
c € corup this way, then we obtain runs satisfying (iii). 

Finally, not more than tt(v )̂ quasistates may be needed to comply with 
(iv). So we end up with a subquasimodel (QI * ^Q * Q2^>^'') of O satisfying 
(i)-(iv). • 

We are now in a position to prove the *=>'-direction of Theorem 11.26. Sup-
pose that ip is satisfiable in a first-order temporal model based on (N, <). Then 
by Lemma 11.22, there is a quasimodel (g,SH) for (p with q{n) = (Tn,r^^^) 
for n E N. Clearly, we may assume that ^ € t for some t € TQ. By ap-
plying Lemmas 11.28 and 11.29 we obtain a quasimodel for (f of the form 
(^1 *9o*92*^^") described in Lemma 11.29. It remains to observe that 
the numbers /i = IgJ, I2 = l^ol ^^^ ^^e sequence q^ * q^ of realizable state 
candidates for if satisfy conditions (l)-(5) of Theorem 11.26. Q 

Given two numbers 1\J2 and a finite sequence q of state candidates for 
V?, we can effectively check whether they satisfy conditions (l)-(5) of The-
orem 11.26. The only missing thing to make the criterion of Theorem 11.26 
effective is therefore an algorithm for detecting whether a given state candid-
ate for ip is realizable. If such an algorithm is elementary then the resulting 
satisfiability checking algorithm for monodic formulas is elementary as well. 
In particular, we have the following: 

Theorem 11.30. Let QTC! he a sublanguage of QTCu^j^, and suppose that 
there is an algorithm whichj given a state candidate C for a QTC'-sentence v?, 
can recognize whether € is realizable using space < 2̂ ^̂ ^̂ ^̂  for some polynomial 
function p. Then the fragment QLogi^(N)nQT£' is decidable in EXPSPACE. 

Proof. We present a nondeterministic EXPSPACE satisfiability checking 
algorithm for QT£'-sentences. It is based on the criterion of Theorem 11.26. 
First we guess two numbers li < tt(v )̂ and I2 < \subx ^\ • b (̂v?) • tt(v )̂ + t)(v^)' 
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As neither of the numbers exceeds 2 '̂ ^ , for some constant d > 0, we can 
write them in binary using space exponential in i{ip). 

Then we guess a state candidate q{0) — {To,To^"} for ^p such that some 
type in To contains Ip. The algorithm provided by the formulation of the 
theorem can check whether g(0) is realizable using space exponential in (̂< )̂. 
Suppose that g(0) is realizable. Then we guess another state candidate q{\) = 
{Ti,Tf*^) for (̂ , check whether it is realizable and whether the pair (g(0),g(l)) 
satisfies the following conditions, for i = 0: 

(a) for every teTi there is t' e Ti^i such that the pair (t,t'} is suitable; 

(b) for every t' E Ti+i there is t £Ti such that the pair {t,V) is suitable; 

(c) all pairs of the form (t^, t^+i), for c € corup are suitable. 

Clearly, this can be done using space exponential in £{(p). After that we 
remove q(0), guess a state candidate g(2) and check conditions (a)-(c) for 
2 = 1. We proceed in this way till we reach q{li). If this state candidate is 
realizable, we keep it in memory together with the set U containing all pairs 
of the form (t, H), where t is a type in Ti^ and E is the set of all formulas of 
the form tpUx in t. Then we guess a state candidate q{li -h 1), check whether 
it is realizable and whether conditions (a)-(c) hold for i = li. Besides, for 
every pair p = (*»S} G f/ we guess a type to{p) € Ti^^i such that the pair 
{tytoip)) is suitable and to{p) = tf^^i whenever t = tf^ for some c € conip. 
Now we update U by replacing each pair p = (t, H) in 17 by (to(p), H'), where 

E' = E-{rpUx\xeto{p)}. 

(Note that U may contain more than one pair starting with the same to{p) 
and that not all t G Ti^^i are in the range of to.) The updated I/, q{li) and 
q{li 4-1) are stored in memory. The next step is similar to the previous one: 
we guess q{li -\- 2), check whether it is realizable and whether conditions (a)-
(c) hold for i = Ji 4-1. We also guess for every p = (t, E) € t/ a ti{p) € Ti^^2 
such that the pair (t,ti(p)) is suitable and ti(p) = tf^^2 whenever t = tf^^^ 
for some c € con (p. We update U as before and store in memory only f/, q{li) 
and qf(/i-f 2). We proceed in this way till we reach g(/i4-/2 —!)• Then we check 
whether q{li 4- ̂ 2 - 1) and q{li -h ̂ 2) = Q(h) satisfy (a)-(c) for i = li -\-12 - I 
and update U, If these conditions hold and, for every (t,H) e f/, we have 
S = 0 then the algorithm returns: V is satisfiable.' 

It should be clear that this nondeterministic algorithm is sound and com-
plete, and that it uses space exponential in i{ip). And by Savitch's (1970) 
theorem, there is a deterministic algorithm checking satisfiability of an arbit-
rary QT£'-sentence ip and requiring space exponential in £(ip). Q 

As a consequence of this result and Theorems 3.30 and 5.43, we obtain:^ 

^This and the next two theorems are joint results with R. Kontchakov. 
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Theorem 11.31. The fragments QLog^(N) n QTC^\ QLog^(N) D QTC^ 
and QLogê (N) n QT£^ are EXPSPACE-complete. 

Proof. The lower bounds follow from Theorems 3.30 and 5.43. (They also 
follow from Theorem 11.33 below.) 

Let us establish the matching upper bounds, using the criterion provided 
by Theorem 11.30. Suppose first that £ is a state candidate for a QTC^^-
sentence (p. As we know from Lemma 11.6, (t is realizable iff the Q£-sentence 
real^ is satisfiable. And by Proposition 6.2.1 of (Borger et o/. 1997), real(r is 
satisfiable iff it is satisfied in a model of cardinality < 2^'^^^^^ Thus, we have to 
check only models of exponential size, which can be done in nondeterministic 
exponential time, and so in EXPSPACE as well. 

Now consider a state candidate € for a QTC^ -sentence (p. For each for-
mula ip e subx^p take a fresh unary predicate Qv(^)- ^^^ •'̂ '̂̂  ^^ ^^^ sentence 

/ \ Vy3x / \ Q^{x) A / \ / \ Q^{c) A VyVx \ / / \ Q^{x) A 

/ \ Vx(Qv-(x) ^ TA), 

for some (dummy) variable y. Clearly, real^ is satisfiable iff realj. is satisfiable. 
Following the proof of Lemma 8.1.2 from (Borger et aL 1997), transform the 
last conjunct of real^ into its Scott's normal form 

n 
(T = ^x\/yaA /\Vx3yPi, 

where Q and the /?i are quantifier-free. The length of c can be bounded by 
a polynomial of the length of <̂ . Replace that conjunct with a and denote 
the resultant formula by real J. According to the construction of (T, real J. is 
satisfiable iff real J is satisfiable. Now we can apply Proposition 8.1.4 from 
(Borger et al, 1997) to realj, which says that if realj is satisfiable then it is 
satisfiable in a model of size ^(realj) • 2̂ ^̂ ^̂  for some polynomial function p, 
where r is the number of predicate symbols in real J. The remaining part of 
the proof is the same as in the previous case. Q 

Next, we will use the results of (Gradel 1999b) on the complexity of the 
so-called loosely guarded fragment^ of first-order logic to prove the following 
theorem: 

Theorem 11.32. The fragment QLogu{N)nTVJ^^ is 2EXPTmE'Complete. 

^The loosely guarded fragment was introduced in (Andreka et ai 1998). 



496 Chapter 11. Fragments of first-order temporal logics 

Proof. The lower bound follows from Theorem 4.4 of (Gradel 1999b) stating 
that the guarded fragment QT of first-order logic is 2EXPTIME-hard. Let us 
establish the matching upper bound. 

It follows from the proof of Theorem 11.30 that it suffices to find an al-
gorithm which, given a state candidate (t for a TVT^ -sentence (̂ , is capable 
of checking whether C is realizable in deterministic double exponential time 
of the length i{if) of if. As we know from the proof of Theorem 11.18, C 
is realizable iff the P/'-formula real^ is satisfiable. Note that £(real^) is an 
exponential function of ^((/?), and the number of variables and the number and 
arities of predicate symbols in real^ are bounded by a polynomial function 
of £((/?). Now we apply to real^ two transformations. First, we turn real^ 
to a loosely guarded formula real^ (of an extended signature) as was done in 
the proof of Theorem 3.3 of (Hodkinson 2002a), the length of which is still 
bounded by an exponential function of (,{^) and the number of variables and 
the number and arities of predicate symbols in real^ are still bounded by a 
polynomial function of (.{if). Then transform real^ to the normal form of 
Lemma 3.1 of (Gradel 1999b). Both transformations preserve satisfiability. 
The length of the resulting formula, real^, is still bounded by an exponential 
function of ^((^), and the number of variables and the number and arities 
of predicate symbols in real^ are still bounded by a polynomial function of 
^((^). It remains to use the proof of Theorem 4.3 of (Gradel 1999b), according 
to which one can check whether realj; is satisfiable in deterministic double 
exponential time of (̂</?). • 

We have seen above that even the one-variable fragment of QLogjY(N) is 
considerably more complex (namely, EXPSPACE-complete) than its propos-
itional fragment PTL (which is PSPACE-complete). But where precisely is 
the borderline between PSPACE and EXPSPACE? To answer this question 
we will now define two rather similar languages, located between proposi-
tional MCu and one-variable QTClf, and show that one of them is PSPACE-
complete, while the other one is EXPSPACE-complete. 

Denote by QTC}^ the fragment of QTC^ in which only the next-time 
operator O can be applied to open formulas, while U and 5 are applied to 
sentences only (thus, we regard O as a primitive operator). 

Theorem 11.33. The fragment QLog2^(N) D Q T £ ^ is EXPSPACE-Ziard. 

Proof. We will appropriately modify the reduction given in the proof of 
Theorem 5.43. 

To this end, first consider U, Dp and O as primitive temporal operators 
of QTC ( O F is regarded as an abbreviation). Let the sublanguage QTC^'^ 
of QTC^ consist of those QT£^-formulas (p for which the following hold: 

• W is applied only to subsentences of ĉ ; 
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• for every subformula of (p of the form Dptpix) (with free variable x)^ if 

Dptp{x) is under the scope of -• in y?, then V̂  is a QT£Q- fo rmu la and 

ip contains a conjunct OF^xUtPtl). 

Claim 11.34. The fragment QLogif{N)r\QTC^"^ is polynomially reducible to 
QLog^(N)n Q T £ ^ . 

Proof. Given a QT£^^-formula v?, denote by ip^ the result of replacing 
every subformula of the form [3fril){x) (with free x) in v? with a fresh unary 
predicate P^.{x). Let 

n^i^p) = {P^^(x) ^ (OV°(x) A OP^^ix)) I Dpi>{x) 6 sub^}. (11.17) 

We will show that, for every QT£^"^-formula v?, ip is satisfiable in a first-order 
temporal model over (N, <) iff 

{Dpxf\n^{ip))Aip° (11.18) 

is satisfiable in a first-order temporal model over (N, <}. 
Suppose first that 

(an,o)K(a?Vx/\7io(^))A¥.° 

for some model Wt and assignment a. We claim that for every subformula a 
of v?, every assignment b and every n € N, 

if {m, n) 1=̂  a^ then {M, n) H^ «• 

The proof is by induction on the construction of a. Clearly, if a is a QTCQ^ -

formula then a^ = a. Since -^0-»t? <-̂  Ot̂  is a valid formula, we may assume 
that (̂  is in a kind of ^normal form:' -̂  is always 'pushed down to' Dp. So 
the only nontrivial cases are a = DF^(a:) and a = -^DFV^(-X). 

First let a = Drxpix). Suppose {M,n) \=^ P^^. Then (9n,n -f 1) [=** V^̂ , 

(art,n -f 1) 1=̂  Pp^, and so, by the induction hypothesis, (9}t,n -f 1) |=^ t/j. 

By iterating this we obtain that (97t, A:) \=^ xp for all k > n^ from which 

(9n,n) h=̂  QFV^. 

Next, let a = -^Dpipix). Suppose (9Jt,n) |=^ DFV^- We will show that 
(971, n) 1='' P^^ follows. Indeed, we have, for all m> n, (371, m) [=^ V̂ , and so 

(since 0 is a QT£0-formula) (9Jt,m) |='' V^̂ , for all m> n. Therefore, 

for all m > n , (an,m) |=^ O^^ . (11.19) 
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On the other hand, since O F V X D F V ' is a conjunct of (̂ , (OFV^D/TV^)^ = 

O F V X F Q ^ is a conjunct of (p^. So there is a fc G N such that (9Jl, k) \=^ P^.. 

Now by (11.17) and (11.19), we obtain {Tl,n) [=^ P^^, as required. 

Thus, we have (9Jl,0) |=° (p. 

Conversely, suppose that (3TI, 0) |=° (/? for some model 9Jl = ((N, < ) , Z?, / ) 
and assignment a in D. For each n G N, extend /(n) to I'^{n) by taking, for 
all DFV^(3:) € 5ii6(^, 

P ^ ^ ( ^ U { a € D | ( 9 J t , n ) h n F V ^ l a l } , 

and let Wl"̂  = ((N, < ) , J9, /•••). We leave it to the reader to show that for all 
n G N, all assignments a in Z>, and all t/j G sub (/?, 

( a n + , n ) h V x A ^ o ( v ^ ) ' a^d 

(OT,n) h"" V' iff (an+,n) [=" V^̂ . 

Therefore, (11.18) is satisfiable in 9JI+. • 

Now recall the formula ipn,T from the proof of Theorem 5.43. It is shown 
there that (pn,T is PTL x S5-satisfiable iff there is an m G N such that T tiles 
the m X 2^-corridor as required. Consider the first-order temporal translation 
^n,T (̂ ^^ Section 3.7) of iPn^T- By Theorem 3.30, 

ifn/r is PTL X S5-satisfiable iff cplj, is satisfiable over (N, < ) . (11.20) 

A close inspection shows that ifl^ j , 'almost' belongs to QTC^^. Its only 'prob-
lematic' part is the subformula right' = right(x) which contains an occurrence 
of W applied to the open formula tile^ = tile(x). Now replace right(x) in (p\^ j . 
with equ(x) A i?(x), where equ(x) = equ^ and /? is a fresh unary predicate 
symbol, and add the conjuncts 

aJ;Vx(fi(x) <-> (Otile(x) V (O-nequ(x) A Oi?(x)))y (11.21) 

a^Vx(/?(x) -^ OFtile(x)) (11.22) 

to (fl^ rp. Denote the resulting formula by xl^n,T- By Theorem 3.30 and the 
proof of Claim 6.25, we obtain that 

ifl^ rj, is satisfiable over (N, <) iff '4)nj is satisfiable over (N, < ) . (11.23) 

Moreover, we may assume that the models satisfying ^p\ ^ and tpn.T have the 
same domains (so if one of them is finite, then the other is finite as well). Let 
Xn,T be obtained from xl^n,T by omitting the conjunct (11.22). We claim that 

ipn,T is satisfiable over (N, <) iff Xn,T is satisfiable over (N, < ) , (11.24) 
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and that again we may assume the models satisfying tpn^r and Xn,T to have 
the same domains (so if one of them is finite then the other is finite as well). 
Indeed, suppose that Xn,T is satisfied at time point 0 in some first-order 
temporal model 9Jl over (N, <) with domain D, Assume that 

(9Jl,n) ^ OFtile[a] 

for some n € N and a £ D. As is shown in the proof of Theorem 5.43, we 
may assume that D is finite and so there is some k > n such that 

(9Jl,A;) |=equ[o]. 

Let N be the smallest k with this property. But then, by (11.21), we obtain 
(an, AT - 1) ^ R[a] from which, using (11.21) N -n times, (aJt,n) ^ /i[o], as 
required. 

Finally, we claim that Xn,T belongs to QTC^'^, Indeed, the only subfor-

mula of XriyT of the form Dpip{x) (with free x) that is under the scope of -»in 

Xn,T is the occurrence of nF-imark(x) in (11.21) (it is a conjunct of tile(a:)). 

But -»mark(a:) is a QTZIQ-formula, and OFVa;aF->mark(a:) can be considered 

as a conjunct of Xn,T by (5.63). 
So the theorem follows from (11.20), (11.23), (11.24), Claim 11.34, and 

Theorem 5.43. Q 

Thus, as soon aj? we allow for applications of only O to formulas with one 
free variable, exponential space is required for satisfiability checking. Let us 
consider now the case when none of the temporal operators can be applied to 
open formulas. 

Denote by QTC^ the sublanguage of QTC^ in which all temporal oper-
ators are applied only to sentences, cf. (Finger and Gabbay 1992). The 5-free 
fragment of QTC^ is denoted by QTCu^ . Then the following result holds: 

Theorem 11.35. Let QTC! be a sublanguage of QTCu^, (f a QTC'-sen-
tencey and suppose that the problem ^given a setH C. subo^ff decide whether 
the formula Aw,eE ^ ^̂  satisfiable* belongs to a complexity class C D PSPACE. 
Then the satisfiability problem for the fragment QLog^(N) D QTC' is in C. 

Proof. The proof—a modification of the proof of Theorem 11.30—is left to 
the reader as an exercise. (We note only that state candidates for a QTCu^ -
sentence (f are of the form [xl) \tl) £ swftoV̂ } and we do not need runs in the 
quasimodels.) • 

This theorem means that the complexity of the satisfiability problem for 
a fragment of QLog^(N) fi QTC^ is the maximum of the complexity of the 
satisfiability problem for PTL (i.e., PSPACE) and that of the pure first-order 
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part of the fragment. For example, denote by QTC^ , QTC^ and QTC^"" 
the one-variable, two-variable, and monadic fragments of QTC^ , respectively. 

Then we have the following: 

Theorem 11.36. (i) The satisfiability problem for QLog^(N) D QTC^^ is 
PSPACE'Complete. 

(ii) The satisfiability problems for the fragments QLog^(N) fl QTC^ and 
QLogi^(N) n QTC^"" are NEXPTIME-comp/eie. 

Proof. Follows from Theorem 11.35 and the complexity results for the cor-
responding fragments of first-order logic, which can be found, e.g., in (Borger 
et at. 1997). • 

These results will be used for establishing the complexity of some tem-
poralized description logics (Section 14.3) and spatio-temporal logics (Sec-
tion 16.3). 

In this section we have discussed the complexity of some monodic frag-
ments of first-order temporal logics over (N, <) . The following questions re-
main open: 

Question 11.37. What is the computational complexity of the decision prob-
lem for the other decidable monodic fragments, mentioned in Section 11.2, 
over {N, <)? What is the complexity of decidable monodic fragments over 
other flows of time? 

Note that as a consequence of Theorems 3.29 and 6.63 we obtain the 
following result of (Hodkinson et al. 2003): 

Theorem 11.38. Let C be any class of strict linear orders at least one of 
which contains an infinite ascending chain. Then QLogj^(C) fl QTC^° and 
QloguiC) n QTC^ are EXPSPACE-ftarrf. 

By Theorems 3.29, 6.30, 6.31 and 6.61,'̂  we also have: 

Theorem 11.39. The fragment QLogsu{C) n QTC^ is in 2EXPTIME when-
ever C = {(Q, <)} orC is the class of all strict linear orders. 

Remark 11.40. Tableau decision algorithms for a number of decidable frag-
ments of the logic QLog^(N) fl QTC^ have been constructed in (Kontchakov 
et al. 2003). 

^Theorem 6.61 is formulated only for the case when Up and Dp are the only temporal 
operators, but it is not hard to generalize it for the case of S and U as well. 
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1L5 Satisfiability in models over (N, <) with 
finite domains 

Our aims in this section are to prove Theorem 11.9 (2) and to determine the 
complexity of the satisfiabiUty problem in models with finite domains based 
on the flow of time (N, <) for a number of monodic fragments of QTC. As 
we will actually see, for all these fragments, the complexity does not depend 
on whether domains are (arbitrarily) finite or infinite (see Table 11.1). 

Suppose that we are given a QTC^ -sentence tp and a strict linear order 
5 = {W, <). We call a quasimodel {d,(J,^) for ip finitary if q{w) is a finitely 
realizable state candidate for every w €W and fH is finite. Now, the finitary 
analog of Lemma 11.22 (with /C being the class of all Q£-structures) is the 
following: 

Lemma 11.41. A QTC^ -sentence (p is satisfiable in a first-order temporal 
model based on JJ and having finite domains iff there is a finitary quasimodel 
for (f based on J . 

Proof. First, suppose that (f is satisfied in a first-order temporal model 
gjt = (J, D, / ) with finite D. It is easy to see that the quasimodel (5, g, 9\) 
defined in the proof of Lemma 11.22 is finitary. 

Conversely, suppose that 0 = (5, g, IH) is a finitary quasimodel for ip. We 
require the following claim which is a 'finite version' of Claim 11.24: 

Claim 11.42. There is a natural number m^ such that, for every finitely 
realizable state candidate (L = (T, T^^^) and every sequence {nt\t e T) of 
numbers with Ut > m^, t ^T, there is a QC-structure I realizing (T and such 
that \It\ = Hi, for every t € T. 

Proof. Suppose that €o^... ^dk are all the distinct finitely realizable state 
candidates for y? (hence k < tt(v )̂) and that for each j < fc, P is a finite 
Q£-structure realizing €j = (Tj^T^^^). Then, using the 'blow up' technique 
of the proof of Claim 11.24, it is not hard to see that 

m^ = max{ | / / | 11 € T^, j < k] 

does the job. Again we use here the fact that our language does not contain 
equality. • 

Now let m^p be the number supplied by Claim 11.42. Put 

D^{{r,i)\r^%i<m^}. 

Fix some w eW. Then for any type teTy^, 

| { ( r , 0 € D I r{w) = t]\ = m^ • |{r € JH | r{w) = t]\ = m^ • fcf (11.25) 
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By Claim 11.42, there exists a Q£-structure I{w) with domain D{w) such 
that I{w) reahzes the state candidate q{w) and for every t £ Ty, there are 
m<p • kt elements in D{w) realizing t. Hence, by (11.25), we can identify each 
D{w) with D in a 'type-preserving' way, that is, we may assume that, for all 
w eW,r e^, 

r{w) = {ii\xpe sub^if, I{w) 1= V^[(^01}» 

and that c^(^) = (re, 0), for every c e con (f. Let VJl = (J, D, f) be the first-
order temporal model, where / ' is the Q£-reduct of / . In precisely the same 
way as in the proof of Lemma 11.22 one can show that ip is satisfied in 9Jl. Q 

It is worth noting that models with finite domains are closely connected 
to models satisfying the finite state assumption (which was introduced in 
Section 3.2 for topological temporal models). 

Say that a first-order temporal model 971 = (JJ, £>,/), where J = (W >̂<)» 
satisfies the finite state assumption (FS A) if the set {I{w) \ w G W} is finite. 
A quasimodel (5, q^ 91) satisfies FS A if the set 9^ of its runs is finite. (Note 
that every finitary quasimodel satisfies FSA, but there are quasimodels with 
FS A that are not finitary: their realizable state candidates are not necessarily 
finitely realizable.) 

The following lemma shows that first-order temporal models with FSA 
correspond to quasimodels with FSA: 

Lemma 11.43. A QTC^ -sentence <p is satisfiable in a first-order temporal 
model with FSA based on a flow of time 5 iff there is a quasimodel for if with 
FSA based on 5-

Proof. The implication (=>) was shown in the proof of Lemma 11.22, be-
cause the set of runs 91 constructed in that proof is finite whenever the first-
order temporal model satisfies FSA. (This is because every run r is determ-
ined by its values on a finite subset of its domain.) 

Actually, the converse implication (<=) also follows from that proof. In-
deed, suppose that we are given a quasimodel (5, g, 91) satisfying FSA. Then 
instead of 9lg we take the finite set 91 of runs and choose the Q£-structures 
/(ti;), w eW/iii such a way that I{w) = I{w^) whenever q{w) = q{w') and 
r{w) = r(w') for all r € 91. • 

As a consequence we obtain the following: 

Theorem 11.44. Suppose that QTC! C QT£QJ and that every realizable 
state candidate for an arbitrary QTC'-sentence is finitely realizable. Then a 
QTC'-sentence ^ is satisfiable in a first-order temporal model based on a flow 
of time 5 o,nd having finite domains iffip is satisfiable in a first-order temporal 
model with FSA based on J. 
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Proof. The implication (=») is trivial. Suppose now that ip is satisfied in a 
first-order temporal model with FSA based on a flow of time 5- Then, by 
Lemma 11.43, there is a quasimodel (J, g, 91) for (̂  with FSA. We know that 
all q{w) are realizable state candidates for (p. Hence they are finitely realizable 
and (5, g,9t) is actually a finitary quasimodel for ^p. So, by Lemma 11.41, 
our sentence (f is satisfied in a first-order temporal model with finite domains 
based on J . • 

We will use this theorem in Section 16.3. 

Now we show how to obtain an elementary decision algorithm for any 
monodic fragment of QLog;5jy(N) for which the finite realizability of state 
candidates can be decided by an elementary procedure. The complexity res-
ults we are going to prove are presented in Table 11.1. 

To begin with, we have the following ^finite domain' analog of Proposi-
tion 11.25: 

Proposition 11.45. QLog;5j^(N) is polynomially reducible to QLog^*^(N). 

Proof. Similar to the proof of Proposition 11.25. • 

Thus, similar to Section 11.4, we may confine ourselves to considering the 
temporal language without 5 . As explained in Section 11.4, all the results 
below will hold true for the corresponding fragments of QLog;5*J(N) as well. 

The following theorem is an appropriate modification of the criterion in 
Theorem 11.26: 

Theorem 11.46. A QTCu^ -sentence ^ is satisfiable in a first-order tem-
poral model based on (N, <) and having finite domains iff there are natural 
numbers /i,/2 O'^d a sequence 

{{To-^TD {Tu+h-un,Z.-i)) 

of finitely realizable state candidates for ^ such that 

h < ii^h 0 < /2 < \subM . \>{^f . tt(^) • 2^(^>' -f tt(v )̂ • 2^^^^', 

and conditions (l)-(3), (5) of Theorem 11.26 and the following condition (4)-^ 
hold: 

{Ay for every type t € T/j there are types < i , . . . ,ti^-i such that U € Ti^^i 
for 1 < i < I2 and all formulas of the form 0iW02 ifi t are realized by 
the sequence (t, t i , . . . , t / 2 . i , t ) . 
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MCsu 

QTC'^ 1 

QTCl 

QTC^' 

Qrc}^ 

QTC^ 

QTCl 

1 QTr^^ 

1 TVTm 

QTC^ 

QTC^ 

arbitrary domains 

PSPACE-complete 

(Thms. 2.7, 2.9) 

PSPACE-complete 

(Thm. 11.36) 

NEXPTIME-complete 

(Thm. 11.36) 

NEXPTIME-complete 

(Thm. 11.36) 

EXPSPACE-complete 

(Thms. 11.31, 11.33) 

EXPSPACE-complete 

(Thm. 11.31) 

EXPSPACE-complete 

(Thm. 11.31) 

EXPSPACE-complete 

(Thm. 11.31) 

2EXPTIME-compIete 

(Thm. 11.32) 

1 r.e. 

(Thm. 11.71) 

not r.e. 

(Thm. 11.80) 

not r.e. 

(Thm. 11.1) 

finite domains 

PSPACE-complete 

(Thms. 2.7, 2.9) 

PSPACE-complete 

(Thm. 11.55) 

NEXPTIME-complete 

(Thm. 11.55) 

NEXPTIME-complete 

(Thm. 11.55) 

EXPSPACE-complete 

(Thms. 11.52, 11.53) 

EXPSPACE-complete 

(Thm. 11.53) 

EXPSPACE-complete 

(Thm. 11.53) 

EXPSPACE-complete 

(Thm. 11.53) 

2EXPTIME-complete 

(Thm. 11.54) 

not r.e. 

(Trakhtenbrot 1950) 

not r.e. 

(Trakhtenbrot 1950) 

not r.e. 

(Thm. 11.3) 

models with FSA 

PSPACE-complete 

(Thms. 2.7, 2.9) 

PSPACE-complete 

(Thms. 11.44, 11.55) 

NEXPTIME-complete 

(Thms. 11.44, 11.55) 

NEXPTIME-complete 

(Thms. 11.44, 11.55) 

EXPSPACE-complete 

(Thms. 11.44,11.52,11.53) 

EXPSPACE-complete 

(Thms. 11.44, 11.53) 

EXPSPACE-complete 

(Thms. 11.44, 11.53) 

EXPSPACE-complete 

(Thms. 11.44, 11.53) 

2EXPTIME-complete 

(Thms. 11.44, 11.54) 

1 not r.e.? | j 

1 not r.e.? | 

1 not r.e.? 

Table 11.1: 
without 5). 

Complexity of first-order temporal logics over (N, <} (with and 
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Proof. For the '<='-direction, given numbers I1J2 and a sequence of fi-
nitely realizable state candidates as above, we have to construct a finitary 
quasimodel for (p. Then, by Lemma 11.41, we are done. 

Define the state function g = ^i * gj ^s in the proof of Theorem 11.26. A 
finite set fH of runs through q will be defined using condition (4)'^ which 
guarantees that formulas of the form ip\U^2 € */i are realized in loops' 
(t/i,...,tfi4-i2 = t / i } . Say that a sequence (to,. . . , t j t) (k > 0) of types is 
suitable if every pair of adjacent types in the sequence is suitable. We call a 
sequence (to, • . . , tfc) root saturated if the sequence (to, • • •, f̂c»*o) is suitable 
and realizes all formulas of the form i)\Uxl)2 € to-

Now let IH consist of all infinite words of the form 

si * (52 * S3)* and 5i*(s3*S2)*» 

where 

• 5i = (̂ o» • • • )*/i-f/2-i) is a suitable sequence such that U G Tt, for all 
i < /i -h l2\ 

• 52 = ( t o , . . . '>t'i^^\) is a suitable sequence such that t^ € Ti^j^j^ for all 
3 < h; 

• 53 = (to, • . . , tl'2-1) is a root saturated sequence such that t'J € Ti^^jy 
for all j < h', 

• the pairs (t/i+/2-.i,to) and (ti^-i^tQ) are suitable and 

It is readily checked that every such word is a coherent and saturated run 
through q. Conditions (l)-(3), (4)"̂  and (5) guarantee that ( tqml)o-(tqm3) 
hold, and hence (g,9t) is a quasimodel for tf. Needless to say IH is finite. 

For the '=>'-direction, we again need a series of lemmas which are stronger 
than the corresponding Lemmas 11.27-11.29. Suppose that (g,JH) is a quasi-
model for if. Define an equivalence relation ^<j\ on N by taking 

i ~<H j iff q{i) = q{j) and ^r e^ r{i) = r(j) , 

and denote by [n]iH the ~iH-equivalence class of n. 
Besides, for each n € N, we define one more equivalence relation ~ ^ on N 

by taking i ^gj j iff q{i) = q{j) and 

• for every r e^ there is r ' € 91 such that r{n) = r\n) and r(i) = r ' ( j ) , 

• for every r € 91 there is r" G 91 such that r{n) = r^^{n) and r{j) = r"(2). 
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Lemma 11.47. For every n € N, the number of pairwise distinct ^^-equiv-
alence classes does not exceed 

Proof. Let (to,..., t„^_i) be an enumeration of all types for (p, Utp < b{(p). 
Fix some n € N and define a function (Ti(A:, /), for i € N, A:, Z < n,^, by taking 

M*,/) = {J; I 3r G 91 {r{n) = tk and r{i) = ti), 
otherwise. 

We then have i ~ ^ j iff q(i) = q(j) and ai{kj) = (Tj{kJ), for all k,l < n^p. 
It remains to observe that the number of functions from {0 , . . . , n,̂  - 1}^ into 
{ 0 , l } i s 2 < <2^(^)' . Q 

We again need to show that one can delete the interval between two 
identical quasistates. However, in the finitary case a somewhat subtler de-
leting technique than the one in Lemma 1L27 is required: 

Lemma 11.48. Let {g,!H) he a quasimodel for (f and i ~Pj j for n < i < j . 
Then (g-* • q^^,&) is also a quasimodel for (/?, where 

6 = fH^̂  *n ^""^ = {rf * r>^ | ri,r2 € m, r i( i) = raCi), r i(n) = r2(n)}. 

Moreover, for all n' > j , if n ~fH n' then n ~ e ^ ' — (j "" 0-

Proof. Follows immediately from the definition of i ~ ^ j . Q 

The following finite analog of Lemma 11.28 is proved with the help of 
Lemma 11.48 in a way similarly to how Lemma 11.28 is proved by using 
Lemma 11.27: 

Lemma 11.49. Every quasimodel (qf, 91) for (p with finite 9t contains a sub-
quasimodel (9 i*92»^ ' ) ^^ '̂̂  finite 9V such that \qi\ < ^{ip) and [n]fy{^ is 
infinite, for every n > jg^l. 

The finite analog of Lemma 11.29 is the following: 

Lemma 11.50. Let {qi* q2i^') f>e a quasimodel for tp {with quasistates 
of the form {T^T^'''') for i £ N) such that IgJ < ^{(p), 91 is finite, and 
[m]m is infinite for all m > \qi\. Then there is a subquasimodel of the form 
{QI * 9O * 92^^^ '0 ' -̂ ^̂  some I > 0, such that 91" is finite and 

(i) l̂ ol < \subM ' K^f ' tl(<̂ ) + k{<f); 
(ii) for every type t eT\q \ there is a run r € 91" such that r{\qi\) = t and 

all formulas V̂ iWt/̂ a € r(|gj|) are realized by the sequence 

(r"(kil),r( |9i | + l ) , . . . , r ( | g i | + |gol)>; 
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(iii) for every c € con ^ the sequence 

( rc( |g i l ) , rc ( |g i |4 - l ) , . . . , re ( |g i | + |gol)) 

realizes all formulas i)\U^l>2 ^ ^c(l^il)/ 

(iv) 1̂ 11 ̂ w- |gi*^ol-

Proof. Let £J = (g^ * q2^^') and n = IgJ. Suppose * € Tn,ihKi^2 € t and 
r € iH' with r{n) — t. Then there exists m > 0 such that V̂2 ^ ^(^ + m) 
and V̂ i € r(n + A:) for all A: € (0, m). Assume now that 0 < i < j < m, 
r[n -f i) = r(n -f j ) and n-^-i '^^z n H- j . In view of Lemma 11.48, there is a 

subquasimodel (QI * g |* * ĝ "*̂ , Sy of Q with 6 being finite, r-^'^^ * r̂ "̂*"-̂  is 

a run in 6 through t, and for all n' > n-f j we have n ^e ^ ' - 0 ""0 whenever 

n '̂ vH/ n'. Thus we can construct a subquasimodel (q^ * g | ^ * Qsi^i) of Q 

with JHi being finite, and a run n G j H i such that r i(n) = t, the sequence 

( r i (n ) , . . . , r i (n -f mi)) realizes il)iUip2 for some mi < b((p) • li((^) and, for all 

n' > n -f mi we have n ~iHj n' - (j - i) whenever n ~5H/ n'. In particular, 
[n]iHi is infinite. 

After that we consider another formula of the form ipiU^2 ^ ^ and assume 
that {r i (n) , . . . , r i (n + m')) realizes it for some m' > mi- Using Lemma 11.48 
once again (and deleting repeating quasistates between qf3(mi) and qs{m')) 

we select a subquasimodel (qy * qf^ * qf^^ * q^^^?.) of Q with 9̂ 2 being 
finite, and a run r2 in 9̂ 2 such that 7'2{n) = t, ( r2(n) , . . . , r2(n + m2)) realizes 
both ip\U^2 and ip[U\p2 for some m2 < 2 • b((/?) • t|(v?) and [n]iH2 is infinite. 

Having analyzed all distinct formulas of the form ipiUip2 in t we obtain 
a subquasimodel (q^ * gf^ * g '* g^'^,9^t) of £J with finite SHt» and a run 
rt e ^t such that rt(n) = t and ( r t (n) , . . . , r t (n-f mt)) realizes all such 
'Until-formulas' for some mt < \subxip\ • b(v?) • l)((p). The equivalence class 
[n]«Ht is still infinite. 

Then we consider in the same manner another type t^ eTn. However, this 
time we can delete quasistates only after q'{mt). And so forth. Observe that if 
we 'cut' the runs TC € 9t' corresponding to c 6 COTK^ this way, then we obtain 
runs satisfying (iii). Finally, not more than []((/?) quasistates may be needed 
to comply with (iv). So we end up with a subquasimodel (q^ * ^Q * 9 2 ' ' ^ " ) 
of £} satisfying (i)-(iv). • 

We can now complete the proof of the '=»'-direction of Theorem 11.46 as 
follows. Suppose that ^p is satisfiable in a first-order temporal model based on 
(N, <) and having finite domains. Then by Lemma 11.41, there is a finitary 
quasimodel (g,lH) for ip with q{n) = {TnyT^"^^) for n € N. Clearly, we may 
assume that ^ € t for some t e TQ. By applying Lemmas 11.49 and 11.50 we 
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obtain a finitary quasimodel for (p of the form (^q^ * q^* ^2^', IH") as described 
in Lemma 11.50. It remains to observe that the numbers h — |g | | , I2 = l^ol 
and the sequence g^ * q^ of finitely realizable state candidates for ^p satisfy 
conditions (l)-(3), (4)^ and (5) of Theorem 11.46. • 

We are now in a position to show that over the flow of time (N, <) the 
complexity of the satisfiability problem in models with finite domains coin-
cides with that of arbitrary domains. First, we have the following analog of 
Theorem 11.30: 

Theorem 11.51. Let QTC' be a sublanguage of QTCy^ , and suppose that 
there is an algorithm which, given a state candidate £ for a QTC'-sentence if, 
can recognize whether £ is finitely realizable using space < 2^^^^^^^ for some 
polynomial function p. Then the fragment QLog^*'̂ (N) fl QTC' is decidable in 
EXPSPACE. 

Proof. A straightforward modification of the proof of Theorem 11.30 is left 
to the reader. (Use Theorem 11.46 instead of Theorem 11.26.) • 

As far as the lower bound is concerned, we have the following analogue of 
Theorem 11.33 which can actually be established using the very same proof, 
since the formula Xn,T constructed in it is satisfiable in a first-order model 
over (N, <) iff it is satisfiable in such a model with finite domains. 

Theorem 11.52. 27ie/ra(;m/:n/. QLog/^'"(N) Pi Q T £ ^ is EXPSPACE-hard. 

Now, since finite realizability of state candidates coincides with realizabil-
ity in arbitrary models for all the fragments considered in this section (Borger 
et al. 1997, Hodkinson 2002a), we have the following 'finite domain' versions 
of Theorems 11.31 and 11.32: 

Theorem 11.53. The fragments QLog^^^(N) fi QTC^"", QLog^ '̂̂ CN) n QTC^ 

and Q\.og(i''{n) n Q T £ ^ o,re EXPSPACE-comp/e^e. 

Theorem 11.54. QLog^*"(N) nTP/ ' ju is 2EXPTIME-complete. 

Finally, it should be clear that for fragments of QTCu^ the complexity 
of the satisfiability problem does not depend on whether we take models with 
finite or arbitrary domains—as long as any satisfiable formula of the first-
order part of the fragment is satisfiable in a finite model. So, we obtain the 
following analog of Theorem 11.36: 

Theorem 11.55. (i) The satisfiability problem for QLog '̂̂ ^CN) fl QTC^ is 
PSPACE'Complete. 

(ii) The satisfiability problem for the fragments QLog^^^(N) n Q T £ | , and 

QLog^ '̂̂ CN) n QT£g^ is NEXPTIME-compfe^e. 
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In this section we have discussed the complexity of some monodic frag-
ments of first-order temporal logics over (N, <). 

Question 11.56. What is the computational complexity of the decision prob-
lem for the other decidable monodic fragments, mentioned in Section 11.2, in 
models with finite domains over (N, <)? What is the complexity of such 
fragments over other flows of time? 

Note that as a consequence of the proof of Theorem 3.29 and Theorem 6.63 
we obtain the following result of (Hodkinson et al, 2003): 

Theorem 11.57. Let C be any class of strict linear orders at least one of 
which contains an infinite ascending chain. Then QLog^*"(C) D QTC^'^ and 
Qlogli''{C)nQTC^ ore EXPSPACE-ftard. 

11.6 Satisfiability in models over (R, <) with 
finite domains 

Now we prove all statements in Theorem 11.9 by presenting a third method, 
due to Hodkinson et al (2000), of reducing decidability of monodic fragments 
to classical decision problems. We will consider only case (1), that is, the 
following statement: 

(*) Let QTC^ C QTC^ and suppose that there is an algorithm which is 
capable of deciding, for any QT£'-sentence (̂ , whether an arbitrarily 
given state candidate for (/? is finitely realizable. Then the fragment 
QLog^*j(R) n QTC is decidable. 

Before starting the rather involved proof, let us first see how the other cases 
in Theorem 11.9, that is, the satisfiability problems for models with finite 
domains over the other listed flows of time reduce to the case of (R, <). Con-
sider first (N, <) as the flow of time. Given a QT£'-sentence (/?, recall the 
QT£-sentence u A(f^ defined in the proof of Theorem 11.4 and observe that 
it is monodic. It is not hard to see that types (and thus state candidates) for 
if and (̂ P are 'isomorphic' (they differ only in the names of their surrogate 
variables). So by the condition on QTC\ it is decidable whether an arbit-
rarily given state candidate for (fi^ is finitely realizable. Further, since F is a 
Boolean combination of propositional variables, it is also decidable whether 
an arbitrarily given state candidate for i/ A (p^ is finitely realizable. Thus, 
the decidability of QLog;^J7(N) n Q T £ ' follows from Theorem 11.4. The cases 
of (Z, <) and the class of all finite linear orders can be proved by similar 
reductions. 
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Let (7 be a first-order sentence (in the language with equaUty and a binary 
predicate symbol <) defining a class C of strict linear orders, and let P be a 
fresh unary predicate symbol. Consider the first-order formula 

a\t) = 3xP{x) A a^ A (P(t) -^ P{t)). 

By Theorem 2.5 (see also Gabbay et al. 1994, p.356), there is an MCsw 
formula a such that 

(R,<>h=V^((7'^a") (11.26) 

and a contains a propositional variable p with p* = P{t) (here * denotes the 
standard translation of MCsu-^ovvavXas). Given a QT£'-sentence (̂ , we then 
have the following equivalences: 

V? is satisfiable in a model with finite domains and a flow of time in C 

iff if is satisfiable in a model with finite domains and a countable flow of 
time in C (by considering the translation -̂  into the two-sorted 
first-order language TS (see Section 3.7) and applying the downward 
Lowenheim-Skolem-Tarski theorem) 

iff y? is satisfiable in a model with finite domains over (K, <) 
(since every countable strict linear order is a suborder of (R, <)) 

iff (f^ Aa is satisfiable in a model with finite domains over (M, <) 
(by (11.26)). 

Now one can complete the proof as in the case of (N, <) above. The case of 
(Q» <) follows because ip has a first-order temporal model with dense flow of 
time without endpoints (a first-order definable property) iff it has a model 
over (Q, <). The details are left to the interested reader. 

The rest of this section is devoted to the proof of (*). The method is 
model-theoretic, based on that of (Burgess and Gurevich 1985, Gurevich 1977, 
LauchU and Leonard 1966); see also (Gabbay et al. 1994, Chapter 6.9). Very 
roughly, the idea of the proof is as follows. By Lemma 11.22, we need only 
decide whether there is a finitary quasimodel for a given sentence (p G QTC^ 
based on flow of time (R, <). Such a quasimodel has a finite set of runs through 
(R, <), a ^snapshot' of the runs at any moment of time giving a finitely real-
izable state candidate. Thus, each finitely realizable state candidate gives an 
instantaneous description of the runs in the quasimodel. We will show how to 
describe the runs over longer intervals of R, ranging from one-point intervals as 
above, to the whole of R. We may decide whether each possible description of 
the runs is satisfiable: for one-point intervals using the algorithm provided by 
the assumption in (*), and for more complex ones by decomposing them into 
simpler parts for which we can already decide satisfiability (cf. Lemma 11.58 
(2, 4) below). We will then show that a description of the runs on the whole 



11.6. Satisfiability in models over (R, <> with finite domains 511 

of R can always be built up in finitely many steps from instantaneous descrip-
tions (finitely realizable state candidates)—cf. Lemma 11.58 (3). Combining 
these ideas serves to prove (*); formally, (*) follows from Lemma 11.58. 

3-theories. We begin our proof with the definitions needed to describe runs 
over intervals of R. Let C^ denote the sublanguage of the first-order language 
QC with the signature {<, /?^ | V' 6 subx < }̂, where the R^ are unary predic-
ate symbols. An C^-order is an £,^-structure 

where {W^ <) is a linear order and the i?^ are subsets of W. 
A ^'theory (in £^) is a set cr of £,^-sentences of the form 

3'th{I) = {& I 0 an £j^-sentence of quantifier depth at most 3, / |= 0}, 

for some £< -̂order / . 
Up to logical equivalence, there are finitely many 3-theories. Note that 

by definition, any 3-theory has a model. Let T,̂  be the set of all types for 
(p; recall that T^ is finite, with \T^\ < b((^). If {W^ <) is a linear order and 
r : W -^ T^p^ define the C^-ordeT 

That is, Ir H Rii){w) iR V' € r{w)y ior w eW and tp e subx V̂- We let 3'th{r) 
denote the 3-theory 3-th{Ir)' 

Now let (T be a 3-theory. We say that 

• (T has a left endpoint\ if cr |= 3x'iy-^{y < a:), 

• that cr has a right endpoint^ if <T |= 3xWy-^{x < y), 

• and that a is degenerate^ if cr |= VxV^-i(a: < y). 

Let (t/, <) be a linear order and 

be £,^-orders. We write 

for the £,^-order where 2„gt/ W^ = Uu€t/ ^ « ^ ("}' ordered lexicographically 
by (w, u) <••• (w', u') iff either u <u' or u = u' and w <„ w', and with 

(w,u)eR'^ iff weR"^, 
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for {w,u) € W and ip G subx (f- We also write the underlying linear order 
<+ of / 

^ Ylueu "̂ w* When U = {0,1} with 0 < 1, we write simply 
/o 4- / i = (Wo 4- Wi, <o 4- < i , . . . ) . 

A well-known Feferman-Vaught argument (see, e.g., Theorem A.6.2 of 
(Hodges 1993)) shows that if lu and Ju, for w € I/, are £(^-orders and 
3'th{Iu) = 3'th{Ju) for all w, then 3-th(£^^yIu) = 3-th(£uqu J^)- Hence, 
we may use the following notation. Let (t/, <) be a linear order and for each 
u £ U let Cu be a 3-theory. We write Yl^^u Ou for the unique 3-theory a such 
that a = 3'th{Y,^^y ly) for any £{^-orders lu with lu \= CTU {U £ U). AS with 
£y,-orders, we write CTQ + ai when U = {0,1} with 0 < 1. 

Cha rac t e r s . Given a state function q for (f over a linear order (W,<), a 
coherent and saturated run r through g is completely described by the C^-
order /r- The 3-theory 3-th{r) does not completely determine r, but it does 
carry a great deal of information about r. For example, for an arbitrary 
run through g, 3-th{r) determines whether r is coherent and saturated, and 
whether ^ € r{w) for some w E W, Moreover, 3-theories are finite syntactic 
objects and can be used in algorithms. So we will use them to represent 
quasimodels. 

We aim to decide satisfiability of (p by deciding whether a finitary quasi-
model for (f exists. Such a quasimodel has a set of coherent and saturated 
runs, and it can be described by a set of 3-theories—simply the 3-theories 
of its runs. The quasimodel also contains distinguished runs associated with 
constants, so we will also distinguish certain of the descriptive 3-theories. This 
leads us to the following definition. 

A character is a pair (S, S^*'"), where 5 is a set of 3-theories and S^^^ is a 
function from comp to 5. Clearly, there are only finitely many characters. A 
character (5, S^^^) is said to have a left (right) endpoint if every a £ S has a 
left (right) endpoint. A character (S, S^^^) is said to be degenerate if 

• each (T € 5 is degenerate, 

• for each a e S, the set t^ = {tp \ tp E subx ^, cr \= 3xi?^(a:)} is a type 
for ifj 

• {{t(T \ cr £ S}, {{c, tscon^f,)) I c € con y?}) is a finitely realizable state can-
didate for ip. 

Suppose that ((M, < ) , g, !H) is a finitary quasimodel for (p. Then the values 
of the state function g are finitely realizable state candidates, and fH is a 
finite set of coherent and saturated runs through g. We may 'restrict' such a 
quasimodel to any suborder (W, <) of (R, <), by restricting g and the runs in 
fH to W. In general, such a restriction need not be a quasimodel, since its runs 
are not necessarily coherent and saturated (we will call it a 'pre-quasimodel'). 
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but it still has a character associated with it in the same way as for a 'full' 
quasimodel, by taking the 3-theories of the restrictions of the runs to W. The 
smallest possibility is when W consists of a single point of R—the restriction 
of the quasimodel to W is then essentially a finitely realizable state candidate, 
and the associated character is degenerate. 

We aim to try to build a quasimodel for ^p from smaller pre-quasimodels 
which are restrictions of it. These smaller pre-quasimodels are in turn built 
from even smaller ones, and so on, leading eventually to one-point restrictions. 
We will calculate the character of each successively larger pre-quasimodel from 
the characters of the next smaller ones, starting from degenerate characters 
describing the one-point restrictions, and stopping when the character tells 
us that we have a genuine quasimodel. The allowed operations in build-
ing a pre-quasimodel from smaller ones are, roughly speaking: concatenating 
two pre-quasimodels; iterating a fixed pre-quasimodel u times, forwards or 
backwards; and merging finitely many pre-quasimodels together in a densely 
ordered 'shuffle'. We note that these operations can in general be effected in 
more than one way, so are nondeterministic, and that certain preconditions 
borrowed from (Burgess and Gurevich 1985) have to be met in order to ensure 
that the final quasimodel is based on (R, <). 

Since we are representing pre-quasimodels by their characters, we need 
to calculate the character of a pre-quasimodel resulting from smaller ones 
by these operations. The following definition will allow us to do this. The 
building operations cited above are represented by clauses ( b l ) - ( b 4 ) in the 
definition. We should note that there can be more than one pre-quasimodel 
with a given character, and given that the building operations are also non-
deterministic, the character of the resulting pre-quasimodel is not uniquely 
determined by the characters of the smaller ones. Therefore, we define only 
a relation ' = ' between the 'input' and 'output' characters, not a function. 

We will need the notion of a condensation of (R, <): namely, a linear order 
( / ,< / ) where / is the set of equivalence classes of some equivalence relation on 
R whose equivalence classes are convex, the ordering < / on / being induced 
from the ordering < on R in the obvious way. For more information on 
condensations see, e.g., (Rosenstein 1982). 

Now let ( / ,< / ) be a linear order, and x = (5,5^^^*) and Xi = (^i^Sf^") 
{i e I) be characters. We write 

if 

( a l ) for each c e corup, S'^'^ic) = Y.ia •^^''(c)) 

(a2) for each cr e S there are (Ti € Si {i e I) such that a = Yliel ^*' ^^^ 
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(a3) for all i e / and ai e Si, there are aj G Sj {j € I - {i}) such that 

We write 

iei 

if one of the following holds: 

( b l ) (/, </} is a 2-element order, say / = {0,1} with 0 < / 1, either xo has a 
right endpoint or xi a left endpoint (not both), and X « Xo 4- Xi) 

(b2) (/, </) = (N, <}, Xi = Xo for all i G N, xo has either a left or a right 
endpoint (not both), condition ( a l ) above holds, and 

5 = 1 ^2^i I ^i ^ 5o, (Ji = (To for all i € J [ . 

(b3) As for (b2) but with (/, </) = (N, >) . 

(b4) (/, </) is a dense condensation of (R, <) without endpoints, conditions 
( a l ) and (a2) above hold, and for alH G / (so that z is a convex subset 
ofR): 

• i and Xi have a left and a right endpoint, 

• i is a singleton subset of R iff <j |= VxVt/-i(x < y) for all r/ € Si, 

• for each a e Si there are CTJ G SJ {j G / ) with Yljei^j ^ '^^ 
iXj^cTj) = (xiiO-) for some j G / , and for each j G / , the set 
{k^ I\ {Xk,(Tk) = iXj^f^j)} is dense in ( / , < / ) . 

We will see later that the conditions for x = Yliei Xi are decidable. 

Legal and perfect characters. We now define those characters that are 
reachable from degenerate ones by finitely many applications of ( b l ) - ( b 4 ) 
above. Let A denote the smallest set of characters containing all degenerate 
characters and such that if (/, < / ) is a linear order, Xf ^ A for i G / , and 
X = ^i£i Xii then x ^ A. A character x is said to be legal if x € A. 

We also define those characters that may be descriptions of quasimodels. 
A character x = (•?, S^^^) is said to be perfect if for every cr e S, 

• (7 1= 'ix{R^^ui)2{^) ^ 3y(x < y A R^^{y) A^zix < z < y -^ Rxl^Az)))) 
for every tpiU'tp2 € subx<Pj 

• a \= Vx(i?^i5^2(^) *^ 3y(i/ < x A i?^2(2/) A V2(t/ < z < x ^ ^ 1 ( 2 ) ) ) ) 
for every il^iSip2 ̂  subx^p, 
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• (T (= ^x3y3z {y < X < z)^ and 

• (T \= 3xR^p(x)^ for some a € S. 

By an interval of (K, <) we mean a linear order whose domain is a 
nonempty convex subset of R, the ordering on it being induced from (R, <>. 
We will often abuse notation by identifying the subset of R with the linear 
order. Note that up to isomorphism there are just five intervals of R, repres-
ented by [0,1], [0,1), (0,1], (0,1), and {0}. Here and below, we use standard 
notation for intervals: [x^y) = {z eR\ x < z < y} if x <y^ etc. 

Characters describe runs over some interval of a potential finitary quasi-
model. We now make this precise. We call a triple O = (5» 9i 9 )̂ a pre-quasi-
model if 5 is a Unear order isomorphic to an interval of (R, <), (Jf, q) is a basic 
structure for ^p and IH is a set of (not necessarily coherent and saturated) runs 
through (Ŝ , g) satisfying (tqm2) and (tqm3). Clearly any quasimodel for if 
based on (R, <) is a pre-quasimodel. 

A pre-quasimodel Q = (If, g,lH) is a model of a character x = {S^S^^^) 
(Q 1= X» in symbols) if 

• {S'thir) I r G fH} = 5, and 

• 3-th{rc) = S''''''{c) for each c € corxip. 

Our main lemma is the following: 

Lemma 11.58. 

(1) If X 5̂ o perfect character^ £} = (ff, g, JH) is a pre-quasimodel, and 
il\=- Xy ^^^'^ H is a finitary quasimodel for ^ based on 5 o-nd 5 is isomorphic 
to (R,<) . 

(2) If X 5̂ ^ legal character, then there exists a pre-quasimodel O with 

(3) If H — ((R, <) ,9,5^) is a finitary quasimodel for (/?, then there is a 
perfect legal character x '^^th £l }^ x-

(4) Given an algorithm which is capable of deciding, for any QTC'-sentence 
if, whether a given state candidate for if is finitely realizable, it is decidable 
whether there exists a perfect legal character. The decision algorithm is uni-
form in (fi. 

Having this lemma, we can prove the statement (*) (and so Theorem 11.9) 
as follows. Lemma 11.41 and parts (l)-(3) of Lemma 11.58 show that (p is 
satisfiable in a first-order temporal model over flow of time (R, <) having 
finite domains iff there exists a perfect legal character. Finally, by part (4) of 
Lemma 11.58, given QTC^ C Q T £ Q J and an algorithm that decides for any 
sentence (/? G Q T £ ' whether a given state candidate for (f is finitely realizable, 
it is decidable whether such a character exists. 
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Proof of Lemma 11.58 (1). This is straightforward. Let x = (5,5^*'") 
be a perfect character, 0 = (5, g,lH) a pre-quasimodel with 3̂  = {W,<w), 
and let Q \= x- Then by the definitions, UK is finite, and for every r e 91 we 
have 3'th(r) G 5, and so r is coherent and saturated. Let a £ S he such that 
cr 1= 3XJR(P(X), and let r € 5H such that 3'th{r) = a. Then clearly, ^ G r{w) 
for some ii; G W. So Q is a finitary quasimodel for ip based on 5- Since 
CT f= yx3y3z{y < x < z), ^ is isomorphic to an interval of (M, <) . And J has 
no endpoints, so it must be isomorphic to (R, <). • 

Proof of Lemma 11.58 (2). By definition of A, it suflSces to prove that 

• if X is a degenerate character, then there is a pre-quasimodel O. with 
Q [= X. and 

• if {/, </) is a linear order, Xt (̂  ^ I) are characters having pre-quasi-
models, and x = Yli^r Xii *hen O |= X for some pre-quasimodel 0 . 

So first let X = (-S, S^^^) be a degenerate character. Then by definition, 
t<T "= {i^ \ i^ ^ subx if, (T \= 3x/Z^(x)} is a type for (f, for every a e S. Let 5 be 
a one-point ordering with domain {w}, define q{w) to be the finitely realizable 
state candidate {{ta \ a G 5} , {(c,t5con(c)) | c G corup}) for (/?, and for each 
a e S put rer(ii;) = t<r. Observe that 3-th{ra) = a. For, by definition of 7 .̂̂ , 
for every ip G subx^ we have /r^ [= R^{w) iff V̂  G r^(iy) iff cr |= 3x7?^(x). 
As a t= VxVy-»(x < y), we see that if J |= a then J must be isomorphic to 
Ir„> Since such a J exists, we have /r^ \= cr. Hence, S-th{rtr) — 3-th{Ir„) = cr. 
As 5 is isomorphic to a (one-point) interval of (M, <), we clearly have that 
Q = (5, g, {r<j I cr G 5}} is a pre-quasimodel such that £} |= x-

For the inductive step, let {/, </) be a linear order, x = (5,5^^^), Xi = 
{5i,5f^"), Oi = {{Vri,<i) ,g^,lHi} (i G / ) characters and pre-quasimodels 
with hi t= Xi (for all t G / ) , and suppose that x = Yliei ^*- ^ ^ ^^'^ define a 
pre-quasimodel Q = {{W, <w), Q, UK) and show that 0 [= x-

Let W - Yji^j Wi and <w- Yliei ^«- ^ ^ ^^^^ ̂ ^^^ '̂̂ ^^ 

(W, <yy} is isomorphic to an interval of (R, <). (11.27) 

If / is the 2-element order 0 < 1 on {0,1}, then our assumptions show that 
either (Wb, <o) has a right endpoint or {W\,<\) a left endpoint, and not both, 
so that (11.27) is clear. (For example, if (WQ, <O) is isomorphic to ([0,1], <) 
and (M^i,<i) isomorphic to ((1,2),<) then {W,<w) is isomorphic to the 
interval ([0,2),<) of (R,<).) If {/,</) = (N,<), then each {Wi,<i) has a 
left (say) endpoint, so again, {W, <w) is isomorphic to an interval of (R, <); 
the case {I,<i) = (N, >) is similar. Finally, suppose that {/,</} is a dense 
condensation of (R, <) without endpoints whose elements have left and right 
endpoints. Then by definition of =, (Wi, <i) is isomorphic to the interval i 
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for each i e I, so (11.27) follows. All cases ( b l ) - ( b 4 ) in the definition of = 
are now covered, so we are done. 

Next, for any functions gi defined on Wi (t € / ) , we write Yli€i9^ ^^^ ̂ ^® 
function ^ on W defined by g{w^ i) = gi{w). 

Claim 11.59. Ifn :Wi-^T^(ie I), then 3'th(J2ia^i) = Ei€/ ^'H^)-

Proof. Write r for X^i^/ '̂ *- ^ ^ definition, 

3-th{r) ^ 3Ah{Ir) and 3^th{ri) ^ 3-th{Ir,), 

for each i € / . Clearly, Ir = Hi^i^ri^ So Ylia ^'^K'^i) by definition equals 
3'th{r), • 

Define a state function q = J^i^iQi on W, and write q{w) = {T^^T^^^) 
for ti; € H .̂ The definition of D\ will divide into cases according to the parts 
of the definition of =, but in all cases we will arrange that each r e OK has 
the form J^te/ *̂ ^̂ ^ some ft G IHt {i ^ I)> ̂ ^d that r^ = X^^^/ r?* is in JH for 
each c € con tp. Given this much, we can already check that 

r{w) € T^, for a\lr€% we W, (11.28) 

^4/i(r^) = 5"^'^(c). (11.29) 

For (11.28), let {w,i) € H^ and r = Er^/^^ ^ ^ - ""̂ ^^^ 

So as Qi is a pre-quasimodel, r{w^i) ~ (Zli^/^*)(^»0 = ^t(^) ^ ^<ii;,i)) as 
required. For (11.29), as Qi |= Xi for each t, we have 3'th{rV) = 5f''"(c). By 
the definitions and Claim 11.59, we obtain 

?̂ = 1C^?S and (11.30) 

t E / t € / 

= ^ Sl^''{c) = 5^^^(c) € 5. (11.31) 
16/ 

Now we go through the cases ( b l ) - ( b 4 ) above in defining 9t and checking 
that Q = {{W, <w) ,9^51) is a pre-quasimodel and O |= x-

Case ( b l ) : (/, </) is a 2-element order on {0,1} with 0 </ 1. We define 

IR = {ro H- n I ro € Wo ri € IHi, 5-^/i(ro + n) G 5 } . 
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This 91 is clearly finite, since 9lo and IHi are finite. By (11.30) and (11.31), 
we have r? € 91. 

Let w £W and t € T^] we seek r € 91 with r(t(;) = t. Let w = {w\ i) for 
w^ eWi,i e I. As Qi is a pre-quasimodel, there is r̂  G 9li with ri(K;') = t. As 
Qi 1= Xi» we have 3'th{ri) = <Ji e Si. As x « Xo4-Xi, there is (7i_i € 5i_i with 
tTo-f (Ti G 5 , and as Oi_i |= Xi-u there is ri_i € 9li_i with 3-th{r\^i) = G\-i. 
Then by Claim 11.59, r = ro -f r i satisfies 

3'th{r) = 5-</i(ro 4- r i ) = 5-f/i(ro) 4- 3-th{ri) = CTQ -f ai € 5, 

so clearly r 6 91 and r(tt;) = ri{w') = t. 
To prove S = {5-<ft(r) | r G 91}, we only need check that if a € 5 then 

there is r G 91 with a = 3-th{r). By (a2) above, there are cr̂  G 5^ (i = 0,1) 
with a = CTQ +cTi, and since Q^ [= ^t, there are r̂  G 91^ with 3-th{ri) = di, for 
each i. We may take r = ro -f r i . 

Case (b2): (/, </) = (N, <) . We may assume that Qi = Oo for all i G / , 
since Xi = Xo- We define 

91 = {r I 3-th{r) e S, r = ^.^j n for some r̂  G 9li (z G / ) , 

and ri — ro for all i G / } . 

Clearly |9l| < |9to|, so « is finite. If c G con(/? then rV = r?^ for all i G / , 
since Hi = Oo- It now follows from (11.30) and (11.31) that r? G 91. • 

We let It; G W and t G T^ and find r G 91 with r[w) — t. Suppose that 
w = {ti;',n), for w^ G Wn, n G N. As £}„ is a pre-quasimodel, we may pick 
fn ^ ^ with rn(ti;') = t. As On 1= Xn? we have 3-th(rn) G 5n. Define r̂  = Vn 
for all z G / . Then by definition of =, we have 

^-<ft(^r,) = J]5-^/i(ri)G5, 

SO r = ]Ci^/ n G 91 and r{'w) - r„(tx;') = t. 
By definition of =, each cr G 5 has the form X^ie/ ^^ "̂̂ ^ ^* G 5^ (i G / ) 

with all Gi equal to ^o. By £lo |= Xo» there is ro G 9to with 3'th{ro) = (TQ. 
Let Vi = ro, for each t, and r = Yliei ^i- Then 3-th{r) = cr, so r G 91. Hence, 
5 C {5-t/i(r) I r G 91}. The converse inclusion is clear by definition of 9t. 

Case (b3): (/, </) = (N, >) . This is similar to the preceding case. 

Case (b4): (/, </) is a dense condensation of (M, <). This is the most 
involved case. Again, we may as well suppose that if Xt = Xj then Q^ = Qj , 
for i, j G / . The definition of 91 has two parts. First, observe that by condition 
(a2), for each a E S there are (Ti e Si {i e I) such that a = X^ie/^** ^^^ 
each i, pick r̂  G 91^ with 3'th{ri) = cTi, and let r̂ y = Ylti^i'^i- Next, noting 
that it follows from the definition of = that for each character x» the set 

'X = {i^I\Xi = x] 
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is either empty or dense in (/, < / ) , choose an equivalence relation '>̂  on / with 
the following properties: 

Vi,j el {ir^j = » Xi = Xj). and (11.32) 

Vi € / {Ixi is partitioned by ~ into |5t| equivalence classes, 

each dense in / ) . (11.33) 

If Vi € 0{i for i € / , the sequence {ri\i e I) is said to be simple if i ^ j 
implies n = rj, for all ij e L Note that there are only finitely many simple 
sequences. We let 

« = { r J ( T e 5 } U 

{ Si€/^* \ {^i\^ ^ ^) ^ simple sequence, 54/if X^ie/^O ^ *^}* 

Observe that if c € con ip then by (11.32) and (11.33), (r?* | i € / ) is simple, 
so by (11.30) and (11.31), r? € « . 

Since by Claim 11.59 3'th{ra) = cr e 5, we have 5 = {3'th{r) | r € JH}. 
Let {w^j) e VK, and t € T^. We require r € IH with r{wj) — t. As Qj 

is a pre-quasimodel, we may pick Vj € JHj with rj(t/;) = t. By (b4), there 
are (Ji e Si for i e I such that X̂ ^̂ / cTi € 5, (xn<''t) = (Xji ^-^K'^j)) for some 
i € / , and {A: G / | (xit»crfc) = (Xti^^t)} is dense in {I,<i) for each i € / . 
We may therefore choose a new equivalence relation '^' on / satisfying the 
conditions (11.32) and (11.33) such that if i ~ ' ?*' then (Ti = Gi^. So, writing 
i/^* for the ^'-class of i (and similarly for ~ ) , we may define (T,/^/ to be (Ti^ 
for z 6 / . Let /^/^^ denote the set of ^-classes contained in 7;̂ , and define 
/ x / ~ ' similarly. By (11.32) and (11.33), |/;^/~| = \Ixh'\ for every x, and we 
know that 3'th{rj) — a^ for some e G I^j/^^- Since j 6 7;̂ ,̂ we may pick a 
bijection 9 : 7 / ~ —* 7/̂ ^̂ ' such that 

• 0{lx/^) = ^x/~'» for all characters x» 

• ^U/^) = C) so that (Te{j/^) = 3-th(rj), 

Now pick Ti 6 9̂ i for each i G 7 ~ {j} in such a way that for all i e 7, 
3'th{ri) = (r0{i/^) € Si and for all i,fc € 7, i ^̂^ A: imply r̂  = r̂ t. Thus, the 
sequence (r̂  11 € 7) is simple. For every i e 7, the set 

{keI\{xk.3'th{rk)) = {Xu3-th{ri))} 

contains f/~, so by (11.32) and (11.33) it is dense in 7. We saw that an 
analogous property holds for ((Ti)te/. A Feferman-Vaught argument (cf. The-
orem A.6.2 of (Hodges 1993)) now shows that Yli^i 3'th{ri) = Eig/^* ^ '̂ • 
Hence, r = X)i€/ »̂ ^ ^» ^^^ ^(^» J) = ĵCi'̂ ) = *• Q 
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Remark 11.60. The last paragraph of the above argument seems to fail in the 
arbitrary-domain case— then there is no obvious analog for the last, density 
condition of (b4). This does not necessarily mean that the finite-domain case 
is *easier\ as opposed to ^different.' We conjecture that the argument of the 
first half of (Burgess and Gurevich 1985) may apply to arbitrary domains. 

Proof of Lemma 11.58 (3). The argument is very similar to one in (Burgess 
and Gurevich 1985). Let Q = ((R, <) ,g,9l) be a finitary quasimodel for (p. 
For any interval {E, <) of (R, <) , we put 

Q\E = {{E,<),q\E,{r\E\re9\}). 

Note that 0r£? is a pre-quasimodel. We write XE for the character 

XE = {{3-th{r\E) I r € « } , {(c, 3Ah{r^,\E)) \ c e con^}). 

It is clear that iH\E \= XE for all E, and that XR is perfect. We are going to 
show that XR is legal. 

Claim 11.61. Let (/, </) be a linear order and let {Ei, <) be an interval of 
(R, <) for each i £ I such that for E = Uie/ ^*' (^ ' ^) ^̂  ^'^^ ^''^ interval of 
(R, <) , and x <y whenever i < j in I, x e Ei, and y £ Ej. Then 

(i) 3-th{r\E) = Y.i^i S'th{r\Ei) for each r G 91, and 

(ii) XE^ 'E iG/XE, . 

Proof. Let r € 91. Then by definition, 

3-th{r\E) = 3-th{Ir\E) and 3'th{r\Ei) = 3-th{Ir\Ei), 

for each i. Clearly, Ir\E = Zlie/ ^r\Ei • So Yliei 3'th{r\Ei) by definition equals 
3'th{r\E). 

We now check that XE « Hi^jXEi- Let XE = (5,5*^^^), and XEi = 
{Su Sf^"") for iel.Ucecomp then by definition, S''''''{c) = 3-th{r^ \E) and 
S^'^'^ic) = 3th{r^\Ei) for i e I. Of course, r? G 91. By (i) we conclude that 

5 - - ( c ) = E i 6 / 5 r W -
Conditions (a2) and (a3) follow easily from the fact that 

S = {3-th{r\E) \re9{} = i^J2 ^-^Kr\Ei) | r € 9 l} , (11.34) 

which completes the proof of the claim. • 

We say that an interval (£ , <) of (R, <) is good if the character XE is legal. 

Claim 11.62. Any one-point interval of (R, <) is good. 
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Proof. Let E == {e}. We claim that XE - {S, 5^^"^), say, is degenerate. Each 
(T € 5 has the form 3-th{r\E) for some r G 91. Then Ir\E \= VxVt/-»(a: < y), 
so (T = 3'th{Ir\E) is degenerate. Further, 

tff - {i^\tl^ ^ subx V̂,<T 1= 3xRti,{x)) = 

{VJ' I t/̂  € su6x <̂» /rtE h ^t/;(e)} = r(e) 

is a type for y?. As O is a finitary quasimodel for v?, 

({t^ I (T € 5},{(c,t5con(c)) I c € conv?}) = 

({r(e) I r € « } , {(c,r?(e)> | c G coTup]) = (/(e) 

is a finitely realizable state candidate for (̂ . • 

Claim 11.63. Assume the conditions of Claim 11,61^ that (I^<i) is a 2-
element linear order with / = {0,1} and 0 < / 1, and that {EQ^ <) and (Ei, <) 
are good. Then (E, <) is good too. 

Proof. It suffices to prove that XE = XEO + X^̂ i- As (E, <) is an interval 
of (R, <), either (£o» <> has a right endpoint or {Ex, <> a left endpoint. As-
sume the former; the other case is similar. If r € IH then, by definition, we 
have 3-th{r\Eo) — 3'th{Ir\Eo)' So as Ir\Eo \= ^xiy-^{x < y), we also have 
3'th{r\Eo) \= 3xyy-^{x < y). Hence, XEO has a left endpoint. 

By Claim ll-61(ii), v/e have XE ^- XEo +XEn and so we can conclude that 
XE =XEo+XEx' Q 

Claim 11.64. Assume the conditions of Claim 11.61, that 

( / ,< / ) e { ( N , < ) , ( N , > ) , ( Z , < > } , 

and that every {Ei, <) {i G / ) is good. Then (£ , <) is good. 

Proof. We only consider the case (/, </) = (N, <); the case (N, >) is similar, 
and (Z, <> is handled using (N, >), (N, <), and Claim 11.63. For i < j in N, 
let Eij = Ut</b<j ^k- By Claim 11.63 and induction on j - i, Eij is good. 
There are only finitely many characters, so by Ramsey's theorem (Ramsey 
1930), there is an infinite X C N such that XE^ is constant for all i < j in 
X. Let X e X he minimal. As (Eo,ar><) is good, by Claim 11.63 it suffices 

to prove that (Ut>ar ^ ^ < ) is good. Therefore, by renaming, we may assume 
that XEij is constant for all i < j in N. As IH is finite, we may further assume 
(by Ramsey's theorem) that for each r e 9\y 3'th(r\Eij) is the same for all 
i < j in N. 

We will show that XE = Yltel ^^i' ^^ know that XEi = XEo for ^H ^ ̂  I-
Since EQ^EI are disjoint convex subsets of R whose union is convex, either 
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{Eo,<) has a right endpoint or {Ei,<) a left endpoint—and not both. It 
follows as in Claim 11.61 that XEQ has either a left or right endpoint. Let 
XE = {S, 5^^^) andxEi = {Si, 5f^") for i G / , as usual. Then by Claim 11.61, 

i € / i € / 

for each c € con ^. We also have 

5 = I ^ (Ji I cTi G 5o, cTi = CTQ for alH G / [ 

because of (11.34). And, by the above, r\Ei = rf£o for each r e "tJK, i e I. 
Now (b2) gives XE = Zlie/ XEi- Since the XEi are assumed legal, so is XE, 
and we conclude that E is good. • 

We define a binary relation ' ^ o n R b y x ~ y i f f x = 2/, o r x < t / and every 
convex subset contained in [x, y] is good, or y < x and every convex subset 
contained in [y, x] is good. 

Claim 11.65. The relation ^ is an equivalence relation on R, and any ^-class 
is itself an interval o/R. 

Proof. Only transitivity needs a proof. Assume that x ~ y ~ z in R; we 
check that x ^ z. There are various cases, depending on the order-type of 
x,y,z. \l X < z < y, it is clear. Assume that x < y < z, let J? be a convex 
subset of [x, z], EQ = E n [x, y), and Ei = E n [y, 2). If either Eo or Ei is 
empty, then certainly (£*, <} is good. Otherwise, we are in the situation of 
Claim 11.63, so again {E,<) is good. The other cases are similar. Hence, 
X '^ z, as required. 

It is clear by definition that any '^-class is convex. • 

Claim 11.66. Any subinterval {E, <) of any ^-class is good. 

Proof. There are four cases, depending on the endpoints of E. li E = [x, y] 
for some x < y in R, then x ~ y and the result is trivial. Assume that {E, <) 
has a left-hand endpoint XQ but no right-hand endpoint. Choose an increasing 
sequence xo < xi < • • • in £?, of order type (N, <) and unbounded in E, and 
let Ei = [xi,Xt4.i). Since x* ~ Xi+i, (£»,<) is good. Now we are in the 
situation of Claim 11.64, and we conclude that {E, <) is good. The other two 
cases, when (£ , <} has no left-hand endpoint, can be covered using the cases 
(N, >) and (Z, <) of Claim 11.64. • 

Claim 11.67. Each ^-class is a closed interval o/R. 
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Proof. Let £ be a ^-class, and suppose that E has a least upper bound 
6 € R. We show that b e E. Take e € E, and any interval (D, <> of (R, <) 
with D C [e,6]. Claim 11.66 shows that {DnE,<) is good. U D C E, we 
are done. Otherwise, D = {DnE)\J{b}, and Claims 11.62, 11.63, and 11.66 
show that (D, <) is good. So 6 '̂ ^ e and b e E. Similarly, E contains any 
greatest lower bound for it. So it is closed. • 

We aim to show that R is a single ~-class. To this end, assume not: so 
the condensation (C, <c) where C = R / ~ has at least two elements. Because 
(R, <) is dense, Claim 11.67 now shows that (C, <c) is a dense ordering. Let 
AT = |!H|, enumerate 9t as (r^ | n < TV), and choose an open interval (/, </) 
of (C, < c ) such that the finite set 

{{XE,S-thir'^lE),...,3-thir''-'\E)) \ E e 1} 

has least possible cardinality. It follows that for each open interval J C I and 
each sequence ^ = (x» <̂ 0i • • •»(^N-i) of a character and N 3-theories, the set 

{E€J\ (xE, 5-</i(r°r£),..., 3-th{r^-' \E)) = 0 

is empty or dense in (J, < /} . 
It can now be seen that X[JJ = ^E^JXE by dint of (b4). Certainly, 

(J, </) is isomorphic to a dense condensation of (R, <} without endpoints. 
By Claim 11.61 (2), conditions ( a l ) and (a2) hold. By Claim 11.67, each 
E e J has a right and a left endpoint, and since if r € 91 and E e J then 
Ir\E 1= 3'th{r\E) and the underlying order of Ir\E is (JE, <), XE has left and 
right endpoints too. Similarly, \E\ = 1 iff 3'th{r\E) 1= 'ix'iy-^{x < y) for all 
r £9\. The last part of (b4) holds because for any r G 9^ and E £ J, the set 

{E'€J\ {xE',3.th{r\E')) = {xE,3-th{r\E))} 

is dense in (J, < / ) . 
So U*^ is good. By Claim 11.66, each E e J is good, and Claim 11.63 

now shows that if (J, </) is any subinterval of (/, </) then U "̂  is good. 
Take x < y in [Jl with x ^ y. So there is an interval X C [x, y] that 

is not good. Let IC =^ {E e I \ E C X}. Then ( X , < / ) is a subinterval 
of ( / ,</>, so U ^ is good. Let X^ == {z e X \ z < V for all v G U ^ } ) 
and define X>_similarly. By Claim 11.66, X< and X> are good. We have 
AT = A'< + (J A" -f A'>, so by Claim 11.63, X is itself good, a contradiction. 

Hence indeed, R is a single ~-class, so is good—XR is legal. This completes 
the proof of Lemma 11.58 (3). • 

Proof of Lemma 11.58 (4). Assume that we have an oracle telling whether 
a given state candidate for (p is finitely realizable. We show how to use it to 
decide whether there exists a legal perfect character. The decision procedure 
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is uniform in (f. Our method is to reduce the problem to the satisfiabiUty 
of certain existential monadic second-order sentences in (R, <). By Theorem 
2.9 (d) of (Burgess and Gurevich 1985), such problems are decidable. This 
reduction is quite quick to present, avoiding several semantic subtleties, but 
since (Burgess and Gurevich 1985) uses much the same methods as here, it is 
a very convoluted way of obtaining decidability. It is easy but tedious to give 
a more direct algorithm. 

Recall that up to logical equivalence there are finitely many 3-theories. In-
deed, we may easily construct from ip a finite set T<̂  of £(^-sentences of quanti-
fier depth at most 3, closed under single negations and containing every such 
sentence up to logical equivalence, and in particular containing the sentences 
3x\/y-^{y < x), 3xVy~i(x < t/), VxVi/-'(a: < y), and 3xi?^(x) for tp e subx^p, 
and their negations. Any 3-theory can be taken to be a certain subset of T< ,̂ 
and a character a pair (5,5^^") where S C 2̂ *̂  and S^^^ is a map from corup 
to 5. 

Note that not every such object is a 3-theory (or character). Nonetheless, 
we have: 

Claim 11.68. Given a C r^ and x = {8,8'''''') where 8 C 2̂ "̂  and 5^^" a 
function from con (p to 8, it is decidable whether a is a 3-theory and x ^s a 
character. 

Proof, a C. T^isa 3-theory iff it contains every sentence in T^^ or its negation, 
and the sentence Sipesubr^p^^ ^^ ^^ ^^^^ ^^ some linear order. Hence, by 
the decidability of the universal monadic second-order theory of linear order 
(Gurevich 1964, Burgess and Gurevich 1985), it is decidable whether cr is a 
3-theory or not. Therefore, whether x is a character is also decidable. • 

By this result, it suffices to show that it is decidable (using the oracle) 
whether a given character is legal or perfect. We can decide by inspection 
whether a character is perfect. For legality, there are two parts. 

Claim 11.69. Given 8 C 2̂ "̂  and 5̂ *̂̂  : comp —> 5, it is decidable {using 
the oracle) whether x = {8,5*^^") 25 a degenerate character. 

Proof. We simply check that x is a character and that each a £ 8 contains 
VxVi/-i(x < y). Then we check by inspection that for each a e 8, the set 
tff z= [xj; \ ij; e subx ^^ 3xR^{x) G a} is a type for ip. Finally, we check with 
the oracle that ({tfr | tr G 5} , {{c,tsconce)) I c G comp}) is a finitely realizable 
state candidate for (p. Our x is a degenerate character iff all these checks 
succeed. Q 

Claim 11.70. Let T. be a set of characters and x^e a character. It is decidable 
whether there exist a linear order {/, </) and characters Xt G S, i € / , such 
thatx = Y^ieiXi' 
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Proof. We can certainly decide whether a character has a left or right end-
point. 

For the remainder, we need some notation. If a is a Q£-formula with 
X and perhaps other variables free, and ^ is a Q£-formula, we define the 
relativization 9°" oi 9 to a in the usual way, by first renaming variables of 
9 so that they do not occur in a, and then setting 9^ ^ 9 for atomic 0, 
[e A 9T = ^" A 0"*, (-0)« = - e « , and (3y0)« = 3y{a{ylx} A 0"). We will 
always use the variable x for relativization, and 9 will always be a sentence, 
so that it is harmless to rename its variables. 

We note that any 3-theory a is satisfiable in a countable £^-order, and 
that any countable linear order embeds in (R, <). Hence, if P is a new unary 
predicate symbol, a^^^^ is true in some expansion of (R, <} interpreting the 
symbols oi C^{J{P}. 

Now we go through the cases ( b l ) - ( b 4 ) once more: 

Case ( b l ) . Introduce new unary predicate symbols Po» A- For 3-theories 
<''»<7o,(Ti, we have <T = (TQ -f cTi iff the following sentence is true in some 
expansion of (R, <): 

(A^o)''"^"^ A {/\(Txf'^^^ A (/\(7)^«^^^(-> A / \ 3xPi{x) A 
i<2 

\/x^y{Po{x)APi{y)-^x<y), 

By the result of (Burgess and Gurevich 1985) already mentioned, this is de-
cidable. The definition of x = Xo + Â i is a Boolean combination of such 
conditions, and is therefore decidable. So we can decide whether X ~ Xo + Xi 
for some Xo»Xi ^ ^i by considering all of the finitely many possibilities for 
Xo,Xi-

Case (b2). Let P^Q be new unary predicate symbols and let u be the 
conjunction of the sentences 

\/x--{P{x)AQ{x)), 

3a:(Q(x) A Vy < x{-^P{y) A -Q(t/))), 

Vx3y > xQ{y), 

>/x3y < xV2(y < z < x -^ ^QC^)), 

VxBy > x'izix <z <y -^ '^Q{z))i 

Wx3y > xP{x). 

An expansion of (R, <) is a model of u iff the interpretations of P and Q are 
disjoint and unbounded above in R, Q has order type (N, <}, and there is no 
P-point before the first Q-point. Let 

a{x,y) = P(x) A'izdx < z < y \/ y < z < x) -^ -nQ(z)), 
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Let (T,<Ti {i G / ) be 3-theories with ai = CTQ for all i. Then a = Yliei *̂ ̂ ^ 

1/ A a^(^) A Vy(P(y) ^ ((TQ)"^"'^)) 

is true in some expansion of (R, <} (relativizing on x as said before). This 
statement is decidable, so given characters x» Xo = Xi = * * *» we can check 
effectively whether 5^ '̂*(c) = Ei€/'^r"(c) for all c e corup and whether 
5 = {J^i^jCTi I (Ti e Si, ai = (Jo for all i } . Thus, whether x = X^ie/Xi for 
some Xo = Xi = * • • is in E is decidable. 

Case (b3) is analogous to (b2). 

Case (b4). We will need to make 'copies' Cg of £,^, for various objects 
s, by renaming the symbols R^ of the signature of C^. We assume that if 
s ^ s' then the intersection of the signatures of £s and £«/ consists of just the 
symbol <. If £« is such a copy, and 9 is an £(^-sentence, we write Oc^ for the 
result of replacing the predicate symbols R^ of C^p in 0 by the corresponding 
ones of £5. 

For a unary predicate symbol P, we let 

a{x,y,P) = Wz{{x <z<y\/y<z<x) -* P{z)), 

Let {xO) • •»Xn-i} be a set of characters, with n > 2, and let x = (•5,5^°") 
be another character. Write Xt = {Si,Sf^^)y as usual. Introduce new unary 
predicate symbols Xi {i < n), and consider the following sentences: 

\/x\/{Xi{x)A/\-^Xj{x)), 
i<n j^i 

l \ Vx3y32(y < x < 2 A Xi(j/) A Xi{z)), 
i<n 

WxWyf\{x < y AXi{x) A X^(y) ^ / \ 32(x < 2 < y A Xfc(2))). 
i^j k<n 

These three sentences say that the condensation given by 

x^y iff \J a{x,y,Xi) 
i<n 

is dense without endpoints, and indeed that the classes included in any Xi 
occur densely. 

Now for each c e con (/?, take a copy Cc of £<̂  and add the sentences 

(Â ''"*(c))£= and MMy)^i^sr{c))t'''''''^), 

for each i <n. 
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Then for each cr € 5, take a copy C^ of C^^ and add the sentences 

{/\<r)c, and V y / \ ( X , ( y ) - . V (A''^)?'"''''^)-
i<n (TieSi 

Finally, for each n = (J,(T) where j <n and a £ Sj, introduce new unary 
predicate symbols Qn.i^a' for i < n and cr' e 5i, and add the sentences: 

• 'the Qn,i,(T' are pairwise disjoint', 

• / \ V x ( X i ( x ) ^ V Q^,i,^'(x)), 
«<n (T'eSi 

• (3xQ,(x)) -^ VxVy(x < y hQr,'{x)hQr,"{y) -^ 3z(x < 2 < yAQ„(2))), 
for any three triples T},rf,rji" of the form (7r,t,<T') for fixed TT as above 
and with rj' ̂  t]", 

• MQ^,i,Ay) ^ (A'^')?;'''''^'''*''^ for each i,a', 

It is not so hard to check that the conjunction of these sentences is true in 
some expansion of (R, <) iff x = IZt€/ Xti where (/, </} is a condensation of 
(R,<}, {Xt I i ^ / } = {Xo, . .>Xn-ih a^d the provisions of (b4) are met. 
Hence, as before, it is decidable whether x = I^t6/^<^^^ C^ )̂ ^̂ ^ some 
Xi € E. • 

Now we decide whether a character A is legal as follows. Build the set AQ 
of all degenerate characters, using Claims 11.68 and 11.69. Given An, check 
for each character x ^ An whether x = Yli^i Xi for some linear order (/, <} 
and some Xt ^ An, using Claim 11.70. If so, put x 1̂  An-n- Increment n, 
and repeat. Terminate when An+i = An, and check whether A € An- This 
determines whether A is legal, and completes the proof of Lemma 11.58 and 
Theorem 11.9. • 

11.7 Axiomatizing monodic fragments 
The full monodic fragments of first-order temporal logics are certainly un-
decidable: they contain full classical predicate logic. However, unlike, say, 
QLog^(N) which is not recursively enumerable (cf. Theorem 11.1), the mon-
odic fragments may be finitely axiomatizable. To present an example of such 
an axiomatization is the aim of this section. 

We are going to axiomatize the monodic fragment of first-order temporal 
logic over the flow of time (N, <). To simpUfy presentation, we consider 
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only the * future' sublanguage QTCu of the language QTC having temporal 
operators O, D F , and U. 

Define an axiomatic system MOM by putting together the axiomatic sys-
tems for classical first-order logic QCl (Section 1.3) and propositional tem-
poral logic PTL (Section 2.1), and adding the Barcan formula for O. More 
precisely, let MOM be the calculus with the following axiom schemata and 
inference rules (all instances of which are restricted to monodic formulas only): 

Axiom schemata (ranging over monodic QT£^/-formulas): 

the axiom schemata of classical first-order logic QCl, 

Upi^ -> V') -> {UF^ -^ DFV^), (11.35) 

0(<^ _> ^) -^ (0(^ -> O^), (11.36) 

0-,(^ <-̂  -lOv?, (11.37) 

UF^P ^ 0 ( ^ A OUF^, (11.38) 

O F ( ^ -^ Oif) -^ 0{if -^ HF^), (11.39) 

i^Uxp^OFi^, (11.40) 

ifUrp ^Oipy 0{ip A ^Uij), (11-41) 

OWxip ̂  \/xOip, (11.42) 

Inference rules (ranging over monodic QT/T^^-formulas): 

the rules of QCl, 
given (/?, derive DF^- (11.43) 

A monodic QT£iY-formula (f is MOM-derivable (in symbols: \-MOM ^) if 
there is a sequence of monodic QT£i^-formulas ending with if and such that 
each member of the sequence is either a substitution instance of an axiom 
schema, or obtained from some earlier members of the sequence by applying 
one of the inference rules. 

In the remainder of this section we prove the following result of Wolter 
and Zakharyaschev (2002): 

Theorem 11.71. For every monodic QTCu-formula ^y ^e have 

^MOM ^ iff ^^ QLog2^(N). 

Proof. It is easy to check the soundness part (=>) of the theorem. 
To prove the completeness part (4=), we have to show that if ^MOM ^ ^hen 

there is a first-order temporal model based on (N, <) in which (p is not true. To 
put it another way, we can show that if \/MOM ~^^—ie., ^ is consistent with 
MOM—then ip is satisfiable in a first-order temporal model based on (N, <). 
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(Without loss of generality we may assume that (/? is a sentence. Indeed, 
if a monodic QT£e^-formula ip{xi^.. .,Xn) is in QLog2^(N), then so is the 
monodic sentence Va:i. .yxn^{xi^... ,a:n). So if we succeed in proving that 
^MOM Va:i... VxnV^Cari,... jXn)^ then we will also have ^MOM <^(^I? • • • j^n)? 
because MOM contains the axiom schemata of classical first-order logic.) 

Thus, we need some means of constructing models. As in Sections 11.3 and 
11.4, we will be using for this purpose some kind of quasimodels, appropriately 
modified for the needs of this proof. First, note the following formula and rule 
can be derived in MOM using (11.36), (11.38) and (11.43): 

0((p hi))^ {Oif A Ot/^), (11.44) 

given (p, derive 0(/?. (11.45) 

Fix a monodic QT£t/-sentence (p. Recall that suh<p and con^p denote the 
sets of all subformulas and constant symbols in <̂ , respectively. Let 

suh^_^ if = sub (̂  U {-'^ I ̂  € sub if) U 

{O^ I i) € subif) U {O-^ip I ip € subif). 

Denote by subn ^ the subset of sub^^ ^ containing formulas with < n free 
variables. Without loss of generality we may assume that subn ^ is closed 
under negation, at least modulo equivalences -i-̂ t/̂  *-> t/̂  and (11.37). Let x 
be a variable not occurring in <̂ . Put 

sub:r ^ = {^{^ly) I i^iv) € subx ip]. 

Now by a type for ^ we mean any Boolean-saturated subset t of subx v̂ . As 
before, we say that two types t and t' agree on subo (p if tOsubo ip = t^Dsubo if. 
Given a type t for (f and a constant c e cornf^ the pair (c, t) will be called an 
indexed type for ^ (indexed by c). 

A pair € = {T^^ T|^") is called a state candidate for ip if Tc is a (nonempty) 
set of types for (̂  that agree on subo p̂, and 

Tl''''C couif X Tt 

is a set of indexed types such that for each c € con if there is a unique f € Tc 
with {c,t) € r^^"*. As before, indexed types {c,t) in r | ^ " will also be denoted 
by tl. 

In what follows we will often identify a type t with the QT£^/-formula 
Av>€t ^ ' Given a state candidate (£, we put 

realc = /\ 3xt{x) A / \ tU^/x} A "ix \J t{x). 
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Say that a state candidate € is consistent if the sentence real(r is consistent 
with MOM. A pair (ti , t2) of types for (/? is called suitable if the formula 
t i A 0*2 is consistent with MOM. A pair of state candidates (£1,^2} is suit-
able if real^j AOrealcrj is consistent with MOM. Note that if the pair {ti,t2} 
is suitable then, by (11.37) and (11.45), both t i and t2 are consistent. The 
same applies to suitable pairs of state candidates. 

Let g = (C„ = (Tn, r;j^^) | n G N) be a sequence of state candidates for (f. 
A run through g is a map r associating with every n € N a type r{n) in Tn. 
We call such an r coherent and saturated if the following hold: 

• the pairs {r{n),r{n -h 1)) are suitable for all n G N, 

• ifUil; e r{n) iff there exists m> n such that ip G r{m) and ip € r(fc) for 
all k e {n,m,). 

A MOM-quasimodel for (/? is a pair Q = (9,91), where g = (C„ | n € N) 
is a sequence of state candidates for ^p such that 

( m q m l ) (p € t for some n € N and t € Tn, 

(inq]ii2) the pairs ((tn,CIn+i) are suitable for all n G N, 

and 91 is a set of coherent and saturated runs through q satisfying the following 
conditions: 

(mqinS) for every c G coup, the function TC defined by rdn) — t, for 
{c,t) G T^"^, n G N is a run in 9 ,̂ 

(inqin4) for every n G N and every type t in Tn there exists a run r in 91 
such that r{n) = t. 

Lemma 11.72. Given o monodic QTCu-sentence (/?, i/ iAere i5 a MOM-
quasimodel for (fy then tp is satisfiable in a first-order temporal model based 
on (N,<) . 

Proof. The proof is almost the same as the corresponding part of the proof 
of Lemma 11.22. The only difference is that now we are not given that the 
state candidates in £I are realizable. We know, however, that every state 
candidate €n is consistent. By treating subformulas of real^^ of the form 
Otp, OFV^J and x^V^ that are not in the scope of another temporal operator 
as unary predicate symbols or propositional variables, we obtain that the 
resulting sentence real^^ is consistent with the axiomatic system of classical 
first-order logic (since MOM contains the axiom schemata and rules of the 
latter). So, by Godel's completeness theorem, there is a first-order structure 
^realizing' €n- The remaining part is precisely the same as that of the proof 
mentioned above; see also Claim 11.24. Q 
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Thus, to prove Theorem 11.71, it suffices to show the following: 

Lemma 11.73. Suppose a monodic QTCu-sentence (p is consistent with 
MOAf. Then there is a MOM-quasimodel for (f. 

Proof. We require a series of claims. 

Claim 11.74. (i) Let (ti,t2) he a suitable pair of types for (f. Then 

• for every Oip € subx v?, Oip € ti implies ip €t2f 

• for every x^^ € subx^t X^i^ ^ î i'fuplies that either tp e t2 or x^t2 
andx^i^^t2. 

(ii) Let (Ci,£2) be a suitable pair of state candidates, £i = (TijTf^^) and 
C2 = (T2,r2-->. Then 

• for every ti € Ti, there exists a t2 £ T2 such that the pair (ti,t2} is 
suitable, 

• for every 2̂ € T2f there exists a ti e Ti such that (ti,t2) is suitable, 
and 

• for every c € conip, the pair {t^^^t^^) is suitable. 

Proof, (i) Suppose Oil) e ti, but 0 ^ ^2- Then --^i) € f2. Since ti A 0^2 is 
consistent with MOM, by (11.44) the formula Oil) A 0 - i ^ is also consistent 
with MOM, which is impossible, again by (11.44). 

Suppose now that x^i^ ^ ^i- ^^ view of (11.41), (11.44) and consistency 
of t i , we then have either Oil) € ti or Ox» 0{xUxl)) € t\. And as we have just 
shown, either ^ € t2 or x> X^i> ^ *2 follow. 

(ii) Assume that there is ti € T\ such that none of the pairs (t i , t2), for 
^2 € T2, is suitable. It follows that 

t2€T2 

from which 

t26r2 

andso, by (11.37) and (11.42), 

^"^10^'~'(3xtl AOVo: Y ^2), 
t2€T2 

contrary to (£1,^2) being suitable. 
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Now suppose that there is 2̂ € T2 such that none of the pairs (t i , t2), for 
ti G Ti, is suitable. Then 

^>iOAr 3 x O t 2 - • 3x-i \J ti, 
t i€Ti 

which is equivalent to 

^MOAT -"(Vx \ / t i A 3x0*2) , 
ti€Ti 

contrary to (Ci,C^2) being suitable. 
Finally, assume that c € conip. Then t^^ AOt^^ '̂s consistent with MOAf, 

and so the pair (t^i^t^^) is suitable. Q 

A pointed state candidate for (̂  is a pair ?P = {C,t}, where C = ^J'^rcon^ 
is a state candidate for 9? and t a type in T. 

Say that ^ = (C, t) is consistent if the formula real(r A t is consistent with 
MOM. A pair ^ 1 = {Ci, t i ) , ^ 2 = (<̂ 2, ^2) of pointed state candidates for ip is 
called suitable (in symbols, ^ 1 -< ^2) if the formula real(rj Ati AO(real(i:2 Af2) is 
consistent with MOM. Given a c G con^p, a pair *Pi = (Ci, t i}, ^ 2 = (^2,^2} 
of pointed state candidates for (p is called suitable for c (in symbols, ^ 1 -<c ^2) 
if q3i ^ qjo, <c,t,) G Tf^" and {cM) G T|^", where (ti = (Ti,7;^^^), i = 1,2. 

Claim 11.75. (i) There is a consistent state candidate C = (^T^T^^^) for if 
such that if £ t for all t G T. 

(ii) For every consistent pointed state candidate *Pi = (C^i,ti) for ip, there 
is a pointed state candidate ^ 2 = {^21^2) such that ^ 1 ^ ^ 2 -

(iii) Let c G camp. For every consistent pointed state candidate for ip 
of the form ^ 1 = {^i,t^^) and every state candidate £2 such that the pair 
(^1,^2) is suitabky we have ^ 1 ~<c ^ 2 for ^2 = {^2itc2)' 

Proof. Let TT̂^ be the disjunction of formulas real(r A t, for all pointed state 
candidates (C, t) for (p. By treating subformulas of n^p of the form Orp^ Optp, 
and x^V' that are not in the scope of another temporal operator as unary 
predicate symbols or propositional variables, we obtain that the resulting 
sentence W^ is clearly true in all (classical) first-order structures. Since MOM 
contains the axiom schemata and rules of classical first-order logic, by Godel's 
completeness theorem we obtain 

^MOAfTT^' (11.46) 

(i) Since (p is consistent with MOM, from (11.46) we obtain that iVip A(p 
is consistent with MOM. Then there is a disjunct real(r A t of TT,̂  such that 
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real(r A t A (/? is also consistent with MOM, so (p e t. Since (̂  is a sentence, 
(pet' follows for all types t ' of C. 

(ii) By (11.45) and (11.46), we have ^-MOU OTT^. Hence, real^j Ati AOTT^ 

is consistent with MOM, and so, by (11.37) and (11.44), there must be a 
state candidate £2 = {T2,T^°^) and a type t2 € T2 such that the formula 
real^r, A t i A 0(real(r2 A12) is consistent with MOM. 

(iii) Suppose that c G conv?, ^ 1 = (Ci, t^j) and that the pair (£1,^2) is 
suitable. Let ^ 2 = (^2^*12)• Then ^\ -<c ^ 2 niust hold, for otherwise we 
would have 

^MOM realci ^^'U ^ -^0(real(i:2 A t ^ J , 

and so 

i.e., \^MOM realifj --> -"Orealcj, which is a contradiction. Q 

Suppose ?Po = (£o»^o) is a consistent pointed state candidate for (f and 
xUxl) e to. Suppose also that (^o» • • •»Vn)i for some n G N, is a sequence of 
pointed state candidates ^ t = {^i^U) such that 

and there exists 0 < fc < n for which i) e tk and x e ti iox a\\ {) < i < k. 
Then we say that this sequence realizes x ^ ^ in to- If for some c 6 conip 

then we say that the sequence (^o^ • • • »^n) c-realizes xUxl) in to-

Claim 11.76. For every consistent pointed state candidate ^ 0 = (£o»*o) o.'^d, 
every formula x^^ G to, there is a sequence (fPo* • • • iVn) realizing x^^ ^^ 
to- Moreovery if to = t^^ then we can find a sequence (^oi"">Vn) which 
c-realizes x ^ ^ ^^ to. 

Proof. Suppose otherwise. Let /C be the set of all pointed state candidates 
^ such that there exist n > 1 and pointed state candidates ^ 1 , . . . , ^ n with 

? o -̂  ? i ^ • • • -̂  ^ n and ^ n = V' 

Consider the (nonempty, by Claim 11.75 (i)) disjunction 

1?= V (real^At). 

Note first that 
HA^OAT t ? - ^ - ^ . (11.47) 
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Indeed, otherwise the formula i? A V' is consistent with MOM, and so 

\J (real(r AtAip) 

is consistent with MOM as well. Hence there is ^ = (^J*) ^^ ^ such that 
real(r A t A V' is consistent with MOM, which means, in particular, that if) is 
in t (for otherwise -^I/J e t and real(r A t A V̂  cannot be consistent). Thus we 
have a sequence 

such that n > I and i^ € tn for *Pi = {di^U). As all pairs (ti,tt-|_i}, i < n, 
are suitable, it follows from Claim 11.74 (i) that the sequence (^o? • • • »^n} 
realizes x^i^ in to, contrary to our assumption. Thus, we have (11.47). 

Let us show now that 
^MOAT^-^Od. (11.48) 

If this is not the case then the formula i? A O-it? is consistent with MOM, 
and so there is ^ = (C, t) in /C such that real(r A t A 0-»^ is consistent with 
MOM. By Claim 11.75 (i), we have a pointed state candidate ^ ' = (C',t') 
for which ^ -< ^'. But then ^ ' € /C and real(r A t A 0(real(r/ A t') is consistent 
with MOM, contrary to consistency of real(r A t A O A(<»:',t')€/c "̂ (•'̂ '̂c' A t'). 
Thus, we have (11.48). 

Now, from (11.47) we obtain, by (11.43) and (11.35), that 

^MOAf OF^ -> DF-V^. (11.49) 

Further, from (11.48) we have: 

^MOU •F(t? - - O^) (by (11.43)), 

\-MOM 0(t? -^ DFI?) (by (11.39)), 

\-MOAr Oi? -> ODFt? (by (11.36)), 

l-Â OAA OT?-^ DFI? (by (11.38)), 

-̂MOAT t? ^ (-V' A DF-V^) (by (11.47), (11.48) and (11.49)). 

Now take any ^ i = (£i , t i ) from /C with ?Po ^ ^ i . As real(ri Ati is a disjunct 
of 1?, we then have 

^MOAT (real^j A ti) -^ {-^xp A DF-'V') , 

from which, by (11.45), (11.36), (11.44), and (11.38), 

^MOAf 0(real(!:j A f i ) - • DF"^?/^, 
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and so 
^MO^/ (reaico A to A 0(reala:, A ti)) -^ DF^IP- (11.50) 

On the other hand, by xW0 € to and (11.40), we have 

^MOM (real̂ to A to A 0(realc, A ti)) -* Ori^, 

contrary to (11.50) and ^o -̂  ?Ji-
The existence of a c-realizing sequence, for each c G comp^ is proved 

analogously. • 

Now we can complete the proof of Lemma 11.73 as follows. In view of 
Claim 11.75 (i), there is a consistent pointed state candidate (Co? to) such that 
(f €to' Co will be the starting state candidate in the underlying sequence 

q^{ii = {TuTD\ieN) 

of the quasimodel O = (^,91) to be constructed. 
Take some t € To and x^^ ^ t. The pointed state candidate (Co)t) is 

clearly consistent. So, by Claim 11.76, there is a sequence 

((c:o,t),((2:i,ti),...,(c:ife,tO) ( i i .5 i ) 

of pointed state candidates realizing XUX/J in t. Next we take another formula 
x'W0' € t, if any, which is not realized in this sequence. In this case, by 
Claim 11.74 (i), we have x'? x'^V'' ^ t/t- Using Claim 11.76 once again, we 
extend (11.51) to 

((Co, t ) , (Ci, t i ) , . . . , (Cit, tfc),..., (£/, t^) (11.52) 

realizing x^Utp^ in t. Following this way, we can construct a sequence extend-
ing (11.52) and realizing all formulas of the form x̂ V^ in t. Let (11.52) be 
such a sequence. 

Now take another type t' € To. By Claim 11.74 (ii), there are types 
t- e Ti, i < /, such that (Co^f) X {€x,t[) -< --- ^ (C/,tJ). In precisely the 
same manner as before we extend the sequence 

((c:o,t'),(e:i,t;),...,((!:/,t;)) 

to a sequence realizing all formulas of the form xUtp in t'. After that we 
consider yet another type t" € To, and so forth. When all types are exhausted, 
we shall have a sequence ((To,..., £n) of state candidates. (If no type in €o 
contains formulas of the form x̂ V̂ » we take a state candidate Ci such that 
the pair (Co^̂ î) is suitable and put Cn = Ci.) 
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We have not taken care of the constants yet. So suppose c € con (p and 
XU^P € tl^. By Claim 11.75 (ii), we have 

If x^'^ is not c-reahzed by the sequence 

«<2^o,*|„),<<2:i,t^.),...,(en,t«c„)) (11-53) 

in tg-g, then x, X^V' G t | ^ . By Claim 11.75 (ii), we can extend (11.53) to 

((<!^-tc„).(Ci,t^c.),---.(<2^n,t^,„),...,(€n',t^e,,)) (11.54) 

c-reaUzing x^i^ ^^ ^CQ- Next we take another d € comp and x'W e 4^ 
which is not rf-realized by the sequence 

{{u,4^),{<!^i,4^),..-,{<tn,4J,...,{<!:„;ti^,)). (11.55) 

We extend (11.55) so that X^UI/J' is d-reahzed by the new sequence. After 
that we consider yet another e G con (f and x"W^" G t |^, and so forth. When 
all constants c € con (p and all x^^ ^ Ĉo ^^^ exhausted, we have a sequence 
{€o,..., Cm) of state candidates for </?. 

Then we consider the types and indexed types from (Ern and construct a 
sequence (<tm, • • • »<2̂ m') as if €m were (£o- After that we take care of dV '̂, 
and so on. Let g = (Ci | z G N) be the resulting infinite sequence of state 
candidates. 

It is readily seen (using Claim 11.74) that £} = {q^9{q) is a quasimodel for 
(/?, where 9iq is the set of all coherent and saturated runs through q. Q 

This completes the proof of Theorem 11.71. • 

Question 11.77. Give axiomatizations of the monodic fragments of other 
first-order temporal logics considered above. 

It is of interest to note that the very same proof provides an axiomatization 
of the one-variable constant-free fragment of QLog^(N)—in other words, the 
propositional product logic PTL x S5. Indeed, define the axiomatic system 
M.OM by taking the axiom schemata and inference rules as above, but now 
ranging over one-variable constant-free QT£iY-formulas only. Observe that 

• all the types for a given one-variable constant-free QT£eY-sentence ip 
(and so the sentences real(r for any state candidate C) contain only 
constant-free one-variable formulas as well, and 
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• the restriction of the axiomatic system for classical first-order logic 
(given in Section 1.3) to one-variable constant-free formulas axiomat-
izes the one-variable constant-free fragment of QCL (see, e.g., Henkin 
et al. 1971). 

So from the above proof we obtain that, for every one-variable constant-free 
QT£t/-formula v?, 

hj^oj^i^ iff (^€QLog^(N). (11.56) 

Using this result we can show now that the product logic PTL x S5 is finitely 
axiomatizable (in fact, a kind of product-matching). Indeed, define the logic 
[PTL, S5] by putting together the axioms and rules of PTL (see Theorem 2.6) 
and S5, plus the commutativity axiom for the O of PTL and the D of S5. 
Then we have: 

Theorem 11.78. PTL x S5 = [PTL,S5]. 

Proof. The inclusion [PTL, S5] C PTL x S5 is clear. To prove the con-
verse, take some MCu ^ A^£-formula ^p such that ip G PTL x S5. Consider 
the translation ^p^ ofif defined in Section 3.7 which is a one-variable constant-
free QT£^/-formula. Then, by Theorem 3.29, we have (f^ e QLogiY(N), and 
so ^MOJ^' V̂ ^ by (11.56). We claim that ^p e [PTL,S5] follows. To show 
this, observe first that each one-variable constant-free QT£t/-formula xl) ac-
tually coincides with x^ for some MCu 0 A1£-formula x- Now consider a 
MOM'^'prooi of (p^ and replace each formula 0 in it with its '^-inverse', say 
xp*. The resulting sequence is 'almost' a [PTL, S5]-proof of ip. Indeed, the 
translations of axiom schemata (11.35)-(11.42) and rule (11.43) are clearly 
[PTL,S5]-valid. Let us discuss briefly what to do with translations of the 
axiom schemata and rules of QCl. The axiom schema 

• 'Vx0 —• V^{r/x}, where r is free for x in i/̂ ' 

translates to an instance of the S5-axiom Dp —> p (since the only term now 
is x). The rule 

• 'given V̂  —• x» derive tp —• V^x, whenever x is not free in ip^ 

translates to 'given ip* -> x* ^^d either ip* ^ Dip* or 0* ^ 0 0 * , derive 
^* -^ Dx*.' It is not hard to show, using the axioms and rules of S5, that 
this is a valid inference in [PTL,S5]. The axiom schema and rule involving 
the existential quantifier are treated analogously. • 

Remark 11.79. A resolution type semi-decision procedure for the full monodic 
fragment of QLog^(N) has been developed in (Degtyarev and Fisher 2001, 
Degtyarev et al. 2003b). 
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11.8 Monodicity and equality 

So far we have considered first-order languages without equality and function 
symbols. A natural question is whether our decidability and axiomatizability 
results concerning monodic fragments can be generalized to the language with 
these ingredients. It should be clear that function symbols easily destroy 
the nice properties of monodic fragments: in the proof of Theorem 11.1 we 
can replace Q2(y) and Pt{y) with Q2(/(^)) and Pt{f{x)), respectively, thus 
obtaining a monodic monadic one-variable formula xpTi associated with a set 
T of tile types, such that tpr is satisfiable in a first-order temporal model iff 
T recurrently tiles N x N. 

In this section we investigate the possibility of adding equality to the first-
order temporal language QTC^ . Let QTC^ denote the resulting language. 
First we prove the following result of Wolter and Zakharyaschev (2002), which 
is in contrast with Theorem 11.71: 

Theorem 11.80. The set of QTC^ -formulas that are valid in all first-order 
temporal models based on (N, <) is not recursively enumerable^ and so not 
recursively axiomatizable. 

Proof. Let us fix a unary predicate symbol P and denote by x the conjunc-
tion of the following formulas: 

3xP{x) A Va:Vy(F(x) A P{y) -* x = y), (11.57) 

D^Va:(F(x) -> OF(x)), (11.58) 

nprfx^yiOPix) A OP{y) A ̂ P{x) A -^P{y) -^x = y), (11.59) 

O F V X ( P ( X ) ^ OFP{X))> (11.60) 

The reader can readily check that the following lemma holds: 

Lemma 11.81. For every first-order temporal model 9Jl = ((N, < ) , D, / ) , we 
have (9Jl, 0) |= x ĵ9̂  ̂ ^^ following conditions are satisfied: 

• |P^(0)| = 1; 

• for all n € N, P^^") C pHn+i) and |P^("+i) - P^M\ < 1; 

• there is an m € N such that for all k>m, P'^"^^ = P'^^h 

(In other words, there is a unique element OQ e D for which P(ao) holds 
true at moment 0; P(ao) remains true always in the future. At moment 1 
there may be only two elements ao,ai € D for which P is true, at moment 
2 only three such elements, etc. We eventually reach a moment m starting 
from which P is stable.) 
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Suppose now that we are given an arbitrary Q£-sentence if) which does not 
contain occurrences of P. Let Q be a unary predicate symbol not occurring 
in tp either. Put 

X' - Vx(Q(x) ^ OP(x)) , 

and denote by ip^ the relativization of ^ to Q (i.e., ip^ = ip for atomic v?, 
(^^)Q = ^^Q^ (^^ ;̂  ^^)Q ^^Q ^ ^Q^ and (Vxv:^)^ = Vx(Q(x) -^ c/.^)). 
Clearly, all the formulas x» x'» and V'̂  are QT£^-formulas. 

Lemma 11.82. The following conditions are equivalent: 

• tp is valid in all finite QC-structures; 

• X '̂  x ' ~* V̂ ^ ^̂  yo,lid in all first-order temporal models based on (N, <) . 

Proof. Suppose x A x ' ~^ 0 ^ is refuted in OT = ((N,<) , D , / ) . Without 
loss of generality we may assume that (9Jl,0) [= x A x' and (9^,0) ^ tp^. 
By Lemma 11.81, Q^^^^ is finite. Let J be the Q£-structure with domain 
Q^ °̂̂  and n-ary predicates i?'^, n > 0, defined by taking, for every n-tuple 
(o i , . . . ^Qn) of elements in Q^^^\ 

(ai , . ..,an) eR^ iff ( a i , . . . , fln) € R^^^l 

It is easily checked by induction that for every assignment a in Q^^^^ and 
every Q£-formula i?, we have (IBt, 0) f=° t?^ iff J 1=** t?. It follows that the 
finite Q£-structure J refutes V̂ . 

Conversely, suppose that J = ( / ? , . . . ,ii*^,...) is a finite Q£-structure 
refuting tp and having domain D = {ao» • • • i «n}- Define a first-order temporal 
model m = ((N, < ) , D, / ) by taking i?^(^) = R^ for the predicate symbols R 
in t/̂ , Q (̂̂ > = D, and for every i € N, 

p!{i)^{ (̂ o» - .^at} , if i < n , 
\ D, if i > n. 

Clearly, we have (971,0) \^ tp^. On the other hand, (9Jl,0) f= x A x ' holds by 
Lemma 11.81. Q 

Now recall that by Trakhtenbrot's (1950) theorem (see also Borger et al. 
1997) the set of Q£-formulas that are valid in all finite first-order structures 
is not recursively enumerable. As a consequence we obtain our theorem. • 

We can formulate a general decidability criterion, similar to Theorem 11.21, 
for fragments of QTC^ as well. To this end, for every QTC^ -sentence v?, 
define 

Cx^ = subx (fU {x — c^x ^ c\ c£ con (f). 
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By a type for ip we mean this time any Boolean saturated^ subset t of the set 

(see Sections 11.2 and 11.3). A type t is said to be a constant type if (x = c) G t 
for some c G con if. A state candidate for (/? is a set T of types. Given a class 
/C of Q£-structures, a state candidate T is called JC-realizable if there is a 
Q£-structure / (with domain D') such that its Q£-reduct belongs to /C and 

T^{t^{a)\aeD^}, 

where t^(a) = {xjj \ xp e Cx^, I |= V'N}- If ^ is the class of all (finite) 
Q£-structures, then we simply say that such a state candidate is (finitely) 
realizable. Recall that for Q£-structure / and type t for cp, 

The following general decidability criterion is an analog of Theorem 11.21: 

Theorem 11.83. Let QTC' C QTC^ , and let IC be a class of QC-structures 
such that the following two conditions hold: 

(a) there is an algorithm which is capable of deciding, for every QTC'-
sentence if, whether an arbitrarily given state candidate for ^ is /C-
realizable; 

(b) for every QTCJ-sentence if, there is an infinite cardinal n^p such that 
for every cardinal K > K^p and every K-realizable state candidate T for 
^p, there is a QC-structure I realizing T and such that the QC-reduct of 
I is in fC and the sets It are of cardinality K, for all nonconstant types 
teT, 

Then the satisfiability problem for QTC'-sentences in first-order temporal 
K-models that are based on a flow of time from C is decidable, whenever C is 
one of the classes from the following list: {(N, <)} , {(Z, <)} , {(Q, <)} , the 
class of all finite strict linear orders, any first-order definable class of strict 
linear orders. 

Proof. We modify the proof of Theorem 11.21. Fix some QTC' C QTC^ 
and a class /C of Q£-structures. We again define quasimodels. Suppose that 
5 = (VT, <) is a strict linear order in C. A IC-state function over 5 is a map q 
associating with each w eW o, /C-realizable state candidate for tp. By a run 

®One might also require types to be closed under 'equational reasoning,' but we do not 
need this in the proofs. 
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through q we mean a function r from W into the set Uti/eW' ^ (^) ^^^^ ^^^^ 
r{w) e qiw)^ for all it; G W" and 

Vc € con if \/w,w' € W ((a: = c) € r{w) iff (x = c) € r(ti;'))- (11.61) 

Coherent and saturated runs are defined as in the proof of Theorem 11.21. A 
IC-quasimodel for (f based on 5 is a triple £1 = (Jf, g,9l), where g is a /C-state 
function and IH is a set of coherent and saturated runs through q satisfying 
( tqml) and (tqm3) with T ,̂ = q{w)^ w eW (see page 483). 

We have the following analog of Lemma 11.22: 

Lemma 11.84, Let QTC^ and K, satisfy (b) of Theorem 11.83, and let S be a 
strict linear order in C. Then a QTC^-sentence ip is satisfiable in a first-order 
temporal tC-model based on 5 iff there is a K-quasimodel for (p based on S-

Proof. The '=^'-direction of this lemma is proved in precisely the same way 
as the corresponding part of Lemma 11.22. 

For the '4='-direction, suppose that S = (Ŵ» <) is in C and (5, g, £R) is a 
/C-quasimodel for (f. Take an infinite cardinal K exceeding both K^ supplied 
by condition (b) and the cardinality of the set £H of runs, and put 

jD = {(r,^) I r € 5H, r{w) is not a constant type, for all it; € VT, ^ < K} U 

{(r,0) I r G 91, r{w) is a constant type, for some w e W}. 

Fix some w eW. For each type t in qiw)^ let 

Xtiw) = \{{r,^)&D\r{w) = t}\. 

We claim that 

• Xt{w) = 1 if t is a constant type, and 

• Xt{w) = K otherwise. 

The second claim clearly holds. For the first, if t is a constant type, then 
(r, 0) e D for some r G W, so At(t/;) > 1. Suppose that r, r ' € fH satisfy 
r{w) = r'{w) = t. We show that r =^ r^ must hold, that is, for all tx € H ,̂ we 
haver(u) = r '(u). Choose a c G con(p with x — c e t. Sox = c e r{w)r)r^{w). 
Since r and r ' are runs, by (11.61) we have x = c£ r{u)nr^{u) for all u £W. 
Pick a first-order structure J realizing g(tx), and let a^a^ be elements of its 
domain such that t'^ia) = r(u) and t^(a') = r'(ti). Then a — c^ and a' = c^, 
so a = a', which implies r{u) = r\u). As u was arbitrary, r = r ' as claimed. 

By condition (b), for each w ^W there exists a Q£-structure I{w) with 
domain D{'w) such that I{'w) realizes the state candidate q{w)^ the Q£-reduct 
Viw) of I{w) is in /C, and for every t G q{w) there are \t[w) elements in D{w) 
realizing t. So we can identify D{w) and D in a 'type preserving and constant 
respecting' way and complete the proof as for Lemma 11.22. Q 
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We can now deduce Theorem 11.83 by translating into monadic second-
order logic the statement that there exists a /C-quasimodel for (p, and using 
Theorem 1.28, as it was done in the proof of Theorem 11.21. • 

Although, as we saw, the full monodic fragment with equality is not re-
cursively enumerable, one might still hope that the criterion of Theorem 11.83 
applies to the monodic fragments listed in Section 11.2, and these fragments 
remain decidable with equality added to the language. The next result of 
Degtyarev et al. (2002) shows that this is not the case, at least for the mon-
odic monadic two-variable fragment over the flow of time (N, <} (cf. Theor-
ems 11.12 and 11.15). 

Theorem 11.85. The set of monadic two-variable QTC^ -formulas that are 
valid in all first-order temporal models based on (N, <) is not recursively enu-
merable. 

The proof goes via encoding of the behavior of Minsky machines (see 
Minsky 1961). We leave it to the reader as an exercise. 

Better news is the following analog of Theorem 11.18 for the monodic 
temporal packed fragment with equality, due to Hodkinson (2002b). Define the 
fragment TVT^ of QTCr the same way as TVT was defined in Section 11.2, 
but now also allowing equations as atomic formulas (in the guards as well), 
and let 

rVT^ = TVJ"^ n QT£5 . 

Theorem 11.86. Let C be any of the following classes of flows of time: 
{(N, <)} , {(Z, <)} , {(Q, <)}; the class of all finite strict linear orders, any 
first-order definable class of strict linear orders. Then it is decidable whether 
a TVT^ -sentence is satisfiable in a first-order temporal model based on a flow 
of time in C. 

If H is any of the listed classes or H = {(R, <)} then it is decidable 
whether a TVT^ -sentence is satisfiable in a first-order temporal model based 
on a flow of time in H and having finite domains. 

Proof. Let us consider first satisfiability in first-order temporal models with 
arbitrary domains. We show that conditions (a) and (b) of Theorem 11.83 
hold, for QTC' = TVJ^ and K being the class of all Q£-structures. Indeed, 
(a) has already been shown in the proof of Theorem 11.18, since the packed 
fragment VT of first-order logic is decidable even with equality added. In 
order to establish (b), we prove the following analog of Claims 11.24 and 
11.42: 
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Claim 11.87. For every TVf^-sentence (p, there is a {finite) cardinal K^p 
such that, for every (finitely) realizable state candidate T for (p, and every 
sequence 

(At 11 € T, t is not a constant type) 

of (finite) cardinals with At > K^, there is a QC-structure I realizing T and 
such thatf for every type t eT, 

j , I _ J At, iftis not a 
' *' ~ (̂  1, otherwise. 

constant type^ 

Proof. Suppose that To,...»Tit are all the distinct (finitely) realizable state 
candidates for (p and that for each j < fc, P is a (finite) Q£-structure realizing 
Tj. Put 

K^ = mm{\li\ \teTjJ<k}. 

Suppose that T is a (finitely) realizable state candidate for ip and for each non-
constant type t in T, we are given a (finite) cardinal At > /i<p. By the defin-
ition of K(̂ , we can choose a (finite) Q£-structure J = (D* ,̂ PQ y..., CQ , . . . ) 
realizing T and such that all the sets Jt^ t eT^ have cardinality < At-

Now the idea again is to make copies of the elements of D'^, but this time 
carefully, only of those that are not named by constants. For each type t € T, 
choose an arbitrary element at € Jt and define the cardinal Aot such that 

Ih - {at}\-¥ Xat ^h. 

and for all other elements 6 € Jt, let At = I. Note that XCJ = 1 for each 
c € con (p. Now define a new domain D^ by taking 

D^ = { { a , 0 | a € Z > ^ ^ < A a } . 

A subset S of D^ is said to be thin if whenever (o,^i), (0,^2) € S then 
Ci = ?2- We define a Q£-structure / with domain D^ by taking, for each 
constant symbol c and each n-ary predicate symbol P, 

c' = {(c^O)}, 

P^ = {((ai ,6>, . . . , (an,en)) | (a i , . . . ,0n)€P'^ ,et <Aa,, 

{(aitCi),-.M{an,^n)} is thin}. 

We call an assignment 0 in / thin if its range is a thin set. 
Given an assignment a in / , we can define an assignment a"* in J by 

putting, for each variable y, a'"(y) = a iff a(y) = (a,^) for some ^ < Xa-
Observe that for all atomic Q£'*-formulas a and assignments 0 in / , 

if / h** a then J (=**" a, (11.62) 
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Conversely, given an assignment b in J and a thin assignment a in / 
such that b agrees with a~ except perhaps on some y, we can *hft' b to an 
assignment b^ in / by taking 

^ ^ ~ I {Hv)^0), other 
) = a (2) for some variable z, 

otherwise. 

Then it is easily checked that b" is well-defined, thin, (b")"" = b, and b** agrees 
with a except perhaps on y. 

Now we claim that for all P^^-formulas I/J and thin assignments a in / , 

J 1=** ^ iff J 1="" tp. (11.63) 

We prove this by induction on tp. For i/) atomic, observe that (since XCJ = 1 
for all c € con if) the union of the range of a and the set {c^ | c € corup} is 
still thin. The Boolean cases are easy and we leave them to the reader. So 
consider a 'PJ'^-formula 6 of the form 35 (̂7 A ^ ) , where 7 is a packing guard, 
and ^ is a 7^^~-formula for which (11.63) is assumed inductively. 

Assume first that J |=° 0, Then there is an assignment b in J agreeing 
with o"* except perhaps on y such that J f=^ 7 A ^ . So by the induction 
hypothesis, we have I \=^ t/̂ . To see that / |=^ 7 holds as well, take any 
conjunct 3za of 7 (2 can be empty). Since J \=^ 7, there is an assignment D 
in J agreeing with b except perhaps on 2 such that J \=^ a. By the induction 

hypothesis for atoms, we have / (=** a, and so / 1=** Jza. Hence / |=^ 7 A^, 
which certainly implies / |=̂ ^ 0. Since a and b** agree on the free variables of 
0, we obtain / |=** 0. 

For the converse, assume that / (=" 0. Then there is some assignment b 
in / agreeing with a except perhaps on y such that / |=^ 7 A ^ . Then for any 
conjunct 3za of 7 (2 can be empty), there is an assignment D in / agreeing 
with b except perhaps on 2 such that / |=^ a. By (11.62), we have J |=^ a, 
and so J \=^ 3za. Hence, we have J |=^ 7. 

We need to show that J |=^ ip also holds. Since, by assumption, all 
variables in y and all free variables in ^ occur free in 7, we may assume that 
y is a nonempty tuple of free variables of 7, and that for some y in y we have 
b(t;) = b{y) for every variable v that does not occur free in 7. 

We claim that b is thin. For, let v and w be distinct variables such that 
b(t;) = (a,^i) and b{w) = (0,^2}- We need to show that ^1 = ^2. By the 
assumption just made, we can suppose that v, w occur free in 7. So there is a 
conjunct 3za of 7 in which both v, w occur free. If a is an equality then we 
have b{v) = b(zi;), and so ^1 = ^2- Suppose that a is of the form P{xi,..., Xn). 
We have 11=** 3'zP{xi,..., Xn), so there is an assignment Din I agreeing with 
b except perhaps on 2 (in particular, D{v) = b{v) and d{w) = b{w)) such that 
/ 1=̂  P ( x i , . . . ,Xn). Then, by the definition of P^, the set {t>(xi),... ,D(xn)} 
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must be thin. Since this set contains (a,^i) and (0,^2)^ it follows again that 

So by the induction hypothesis, J \=^ tp holds. Since a and b agree 
except perhaps on y, we have J [=** ,̂ proving (11.63). 

Now by (11.63) we have, for all ( a , 0 € Z)^ 

since types consist of 7^/'~-formulas with at most one free variable, and the 
set {(a,4)} is thin. So for all types t in the state candidate T, we have 

\h\ = \{{at,0 U < Aat} U {(6,0) I 6 G Je - {at}}\ = A,, -f \Jt - {at}\ = At, 

as required. • 

For satisfiability of TVT^ -sentences in first-order temporal models with 
finite domains, we proceed as follows. Given a TP/jJ-sentence v? and a strict 
linear order 5 = (W, <) in H, we call a quasimodel (5,9, JH) for </? finitary^ if 
all the state candidates q{w)^ w e W^ are finitely realizable, and £H is finite. 
Now one can repeat the proof of Theorem 11.9 given in Sections 11.5 and 11.6 
for the case QTC' = TVT^, using Claim 11.87 in place of Claim 11.42. • 

Question 11.88. Do the other decidable monodic fragments of first-order 
temporal logics inentioiied in Section 11.2 remain decidable after adding equal-
ity to the language? 
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Chapter 12 

Fragments of first-order 
dynamic and epistemic 
logics 

Now we extend some of the results of the previous chapter to the monodic 
fragments of the dynamic first-order logics QDL and CQDL, and the epi-
stemic first-order logics QL, for L e {K^, T^, K4^, S4^, KD45^, S5^} 
(these logics were introduced in Section 3.6). In Section 12.1 we formulate 
decidability criteria and single out a number of decidable monodic fragments. 
In Section 12.2 we give Hilbert-style axiomatizations for the full monodic 
fragments of the logics above. These results are due to (Sturm et al. 2002). 

12.1 Decision problems 

Non-recursively enumerable fragments 
To begin with, we show that, similarly to the temporal case, the express-
ive first-order modal logics mentioned above and even the restrictions to the 
two-variable, the monadic or the guarded fragments of some of them are unde-
cidable; in fact, they are not even recursively enumerable. Define the guarded 
fragments VQf and SG^n of QVC and QMC^ in the same way as we defined 
the temporal guarded fragment TQJ^ of QTC in Section 11.2. 

Theorem 12.1. (i) The two-variable monadic fragment of QDL and the 
two-variable fragment of VQ!F 0 QDL are not recursively enumerable. 

(ii) Let L € {Kf ,T^,K4^,S4^,KD45^}. Then the two-variable mon-
adic fragment of QL and the two-variable fragment of £QT 0 QL are not 

547 
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recursively enumerable. 

Proof. By 'lifting' the reductions given in the proofs of Theorems 2.36, 2.38 
and 2.39 to the first-order case, one can reduce the decision problems for 
the two-variable, the monadic and the guarded fragments of QLog^(N) to 
the decision problems for the fragments mentioned in the formulation of the 
theorem (we leave the more or less obvious details to the reader). It remains 
to use Theorems 11.1 and 11.17. • 

However, the following problem is still open: 

Question 12.2. Is the two-variable fragment of QS5^ recursively enumer-
able? 

Note that this fragment is undecidable because, by Theorem 8.35, already 
the two-variable fragment of any logic between Q K and QS5 is undecidable. 
The reader may find a proof of the following partial result in (Wolter 2000a): 

Theorem 12.3. The three-variable monadic fragment o/QS5^ is not recurs-
ively enumerable. 

For undecidable and decidable fragments of first-order provability logic see 
(Japaridze and de Jongh 1998) and references therein. 

Decidable monodic fragments 

Similarly to the temporal case, several monodic fragments of the logics under 
consideration—i.e., fragments in which the modal operators can be applied to 
formulas with at most one free variable—turn out to be decidable. We denote 
the monodic fragments of the languages CQVC and QMC^ by CQVJC^ and 
QMC^^ . The corresponding monodic fragments with equality are denoted 
by CQVC^ and QMC^^ . 

As in the temporal case, for every QMC^^ -formula ^(y) of the form 
^iX{y) or CMX(y) with one free variable t/, we reserve a unary predicate P^(t/) 
that does not occur in (p. Likewise, for every QMC^^-sentence xp — D^x or 
^ = CMX? we fix a propositional variable p^ not occurring in (p. P^{y) 
and p^ are called the surrogates for tp{y) and V̂ , respectively. Now, given 
a QMC^^ -formula (f, we denote by ^ the formula that results from (p by 
replacing all subformulas of the form Diip{y), DtV ,̂ CAfV'(y), and CMV^ which 
are not within the scope of another epistemic operator (D^ or C M ) with their 
surrogates. Observe that the formula ^ contains no occurrences of epistemic 
operators at all—i.e., it is a Q£-formula (see Section 11.2). We can define Tp 
for a CQVC^-formula, (f a similar way, by replacing all subformulas of the 
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form [a]i/>, a an action term, which are not within the scope of another [/?] 
operator with their surrogates. 

Types and state candidates for monodic formulas, and their /C-realizability, 
are defined as it was done for the temporal case in Section 11.2 (and in Sec-
tion 11.8, for monodic formulas with equality). 

Now decidable monodic fragments of first-order dynamic and epistemic 
logics can be singled out using a criterion similar to Theorem 11.83 in the 
temporal case. 

Theorem 12.4. Let CJ be a sublanguage of either CQVC^ or QMC^^ , and 
let K be a class of QC-structures such that the following two conditions hold: 

(a) there is an algorithm which is capable of deciding^ for any C^-sentence 
If, whether an arbitrarily given state candidate for ip is K-realizable; 

(b) for every C-sentence v?, there is an infinite cardinal K^ such that for 
every cardinal K > K^ and every IC-realizable state candidate T for ip, 
there is a QC-structure I realizing T and such that the QC-reduct of I 
is in K and the sets It are of cardinality K, for all nonconstant types 

teT. 

Then the satisfiability problem for C^-sentences in^ respectively, 

• first-order dynamic IC-models for CQDL", 
• first-order modal IC-models for QL^, where L € {K^, T ^ , K 4 ^ , S4^ , 

KD45^, S5^} 

is decidable. 

Proof. By lifting' the reductions given in the proof of Theorem 2.39 to 
the first-order case, one can reduce the satisfiability problems for all the lo-
gics listed in the theorem to the satisfiability problem of the corresponding 
monodic CQDL~-fragment, so it suffices to prove the theorem for this case. 
Quasimodels for monodic CQP£"-sentences can be defined in a way similar 
to the first-order temporal case (see Sections 11.2 and 11.8). Then one can 
prove the analog of the 'quasimodeP Lemma 11.84. Finally, we can obtain de-
cidability with the help of an analog of the block-technique used in the proof 
of decidability of CPDL x S5 (Theorem 6.49). Details are left to the reader. 

• 
Now the following analog of Theorem 11.7 can be obtained as a corollary: 

Theorem 12.5. (i) Suppose CJ C CQVC^ and there is an algorithm which is 
capable of deciding, for any C^-sentence ip, whether an arbitrarily given state 
candidate for (f is realizable. Then CJ fl CQDL is decidable. 
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(ii) Suppose C C QMC^^, and L € {K^, T^, K < , S4^, KD45^, 
S5^}. If there is an algorithm which is capable of deciding, for any C^ -sentence 
if, whether an arbitrarily given state candidate for if is realizable, then £ ' n Q L 
is decidable. 

Let the packed fragments of CQVC^ and QMC^^ be defined similarly 
to the temporal packed fragment TVT"^ of QTCT in Section 11.8. As a 
consequence of the theorems above we obtain, in particular, the following 
decidability results: 

Theorem 12.6. Suppose L € {QK^, QT^, QK4^, QS4^, QKD45^, 
QS5^, CQDL}. Then 

• the monadic monodic fragment of L, 

• the two-variable monodic fragment of L, 

• the monodic packed fragment of L with equality 

are decidable. 

We remind the reader that the one-variable const ant-free fragment of QL, 
for all the dynamic and epistemic logics L considered above, is 'equivalent' to 
the propositional product logic L x S5; see Theorem 3.21. 

For some other results on decidable first-order epistemic logics see (Japar-
idze 2000). 

12.2 Axiomatizing monodic fragments 

In contrast to Theorem 12.1 and similar to the temporal case, the monodic 
fragments of first-order epistemic and dynamic logics turn out to be axiomat-
izable. The Hilbert-style axiomatizations below can be obtained by putting 
together the axiom schemata and inference rules of classical first-order logic 
QCl (Section 1.3), those of the corresponding propositional epistemic or dy-
namic logic (Sections 2.3 and 2.4), the corresponding Barcan axioms, and by 
restricting the range of the schemata and rules to monodic formulas. More 
precisely, let MOAfK^ be the axiomatic system with the following axiom 
schemata and inference rules: 

Axiom schemata (ranging over monodic QA^£„-formulas): 

the axiom schemata of classical first-order logic QCl, 

Dii^p -^tp) -^ {Uiif -> DiV^), for 1 < i < n, (12.1) 

CM^^{^/\^MCM^), f o r M C { l , . . . , n } , | M | > 1 , (12.2) 

DiVxV^ ^ VxDit/;, for 1 < z < n. (12.3) 
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Inference rules (ranging over monodic QA1£^-formuias): 

the rules of QCl, 

given (p, derive DiV?, for 1 < i < n, (12.4) 

given ip •-* tp A EM^J derive ip -+ CA/V^, 

f o r M C { l , . . . , n } , | M | > 1 . (12.5) 

Let MOMT^ be the axiomatic system obtained by adding to MOMK^ the 
schema {AT), MOMKJE the system obtained from MOMK^ by adding the 
schema (i44), MOMS4n <̂ he axiomatic system obtained from MOMT^ by 
adding {A^i), let MOMKD4^ be MOAfK^ extended by {AD), {A4), and 
{A^), and let MOMS^ be MOMKD4^ plus {AT), where 

{AD) Di^ —• OiV?, for 1 < i < n; 

{AT) QtV̂  —• ^, for 1 < i < n; 

(i44) Uiip —• DiDtV?, for 1 < i < n; 

(i45) -^Uiif -^ Di-iDtV?, for 1 < i < n, 

all ranging over monodic QA^£^-formulas. 
Let MOMC be one of the axiomatic systems 

MOMK^, MOMT^, MOMKf^, MOMS4^, MOMKD4^, MOAfS^. 

A monodic QA^£^-formula (p is MOMC-derivable (in symbols: ^MOMC ^) 
if there is a sequence of monodic QM Cn-formnlas ending with (p and such 
that each member of the sequence is either a substitution instance of an axiom 
schema of AiOMC^ or obtained from some earlier members of the sequence 
by applying one of the inference rules of MOMC. 

Remark 12.7. Using the axiomatizations of propositional epistemic logics for-
mulated in Remark 2.18, one can also give the corresponding alternative ax-
iomatizations for the monodic fragment of first-order epistemic logics. 

Theorem 12.8. Let MOAfC be one of the axiomatic systems MOMK^, 
MOMJ^, MOMK4^, MOMS4^, MOMKD4^, MOMS^, and let L be 
the corresponding logic from the list K^, T^, K4^, S4^, KD45^, S5^. 
Then for every monodic QMC^-formula v?, we have 

^MOMc ^ iff ^^ QL. 

Proof. The soundness part (=>) is easy; we leave it to the reader as an 
exercise and concentrate on the completeness part {<=). It suffices to show 
that every A^OA/'C-consistent monodic QA^£^-formula ip (i.e., a formula y? 
such that \/MON'C "'V') is satisfiable in a first-order Kripke model based on a 
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frame for L. Fix such a cp. As before, without loss of generality we may assume 
that (/? is a sentence. Indeed, if a monodic QA^£^-formula (^(xi,. . . ,Xn) is 
in QL then so is the monodic sentence V x i . . . Vxn^Cxi,.. .^Xn)- So if we 
succeed to prove that \-MOA/C Vxi . . .Va:n<^(xi,.. .,Xn), then we will also 
have \-MOM'c < (̂̂ i» • • • j^n)? since MOAfC contains the axiom schemata of 
classical first-order logic. To simplify notation, we will also assume that if 
contains occurrences of the operators C = C{i . ŷ j and E = E{i^.. „} only. 

(Recall that E is expressible via the Dj.) 
Similarly to the proof of Theorem 11.71, we will be constructing models 

using a kind of ^syntactical quasimodels.' 
Given a set F of monodic QA1£^-formulas, we denote by conF and subF 

the sets of all constants and all subformulas of formulas in F, respectively, 
and denote by subc F the following set: 

subcT = subTU {ECxlj\Ci^esubr}U{niCip\ CtpesubT, i = l , . . . , n } . 

Further, let 
subcF = subc r U {-i^ I ̂  € subc T}, 

and let subn F be the subset of subc F containing only formulas with < n free 
variables. Note that modulo equivalence i? •-> -•-•i? we may assume that subn F 
is closed under -i. If F is a singleton set, say F = {^}, we write con ^ instead 
of con {tp}, subn ^ instead of subn {^}, etc. As before, we do not distinguish 
between a finite set F of formulas and the conjunction A F of formulas in it. 
Let X be a variable not occurring in F. Put 

suba^r = W x / y } I ip{y) € subiT} U {Di±, -DiX | i < n} U { T , ± } . 

All formulas in subx F have at most one free variable, and that variable is x. 
If F is finite, then subx F is finite as well. 

As before, by a type for (p we mean a Boolean-saturated subset t of subx ^ . 
We say that two types t and t' agree on subo(f ii id subo(p = t' n subo(p. 
Given a type t for ip and a constant c G comp^ the pair {c,t) is called an 
indexed type for (p (indexed by c). 

A pair C = {Tc, T^^^) is called a state candidate for ip if T^r is a (nonempty) 
set of types for ip that agree on subo (p^ and 

Ti'''' CcompxTe 

is a set of indexed types such that for each c € con (p there is a unique t eT^r 
with {c^t) € T^^^. As before, indexed types {c^t) in r | ° ^ will also be denoted 
b y t | . 

Given a state candidate C, we put 

realc = / \ 3x t(x) A / \ t^{c/x} A Vx Y t(x). 
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Say that a state candidate C is MOMC-consistent if the sentence realc is 
consistent with MOMC. A pair (ti,t2) of types for ^ is called i-suitable for 
MOMC, i = 1 , . . . ,n, if the formula t i A Oit2 is consistent with MOMC, 
A pair of state candidates (C î, £2) is i-suitable for MOAfC^ i = 1 , . . . , n, if 
real^i A Otreal^a is consistent with MOMC, Note that if the pair {t\,t2) is 
2-suitable for some i = 1 , . . . , n, then the A^OA/^C-consistency of both t\ and 
t2 follows by (12.4). The same applies to suitable pairs of state candidates. 

A basic MOMC-structure for (̂  is a pair (5,g) such that 

5 = W < l , . . . , < n ) 

is an intransitive tree, and g is a map associating with every ti> € W an 
AlOA/'C-consistent state candidate q{w) = {Tyj.T^'^) for v?. 

A run through (5, Q) is a map r associating with every ti; € W a type r{w) 
in T^. We call such an r coherent if 

• the pair (r('u;i),r(ti;2)> is i-suitable for MOMC^ whenever w\ <{ W2\ 

and saturated if the following hold: 

• if -^Ditp € r{w) then there is w^ e W such that K; <t w' and V' $̂  r(t/;'); 

• if -^Cxp e r{w) then there is t/;' G VK such that w{ [ J <i)*t/;' and 
i<»:<n 

tp ^ r(tt>'). 

A MOMC-quasimodel for (̂  is a triple Q = (J,gf,JH}, where (5,g) is a 
basic -MOA/*C-structure for ^p such that 

(meqml) (̂  € t for some w eW and t € Tiy, 

(meqm2) the pair (g(t/;i),9(it;2)) is t-suitable for MOMC^ whenever 

and IH is a set of coherent and saturated runs through (5, Q) satisfying the 
following conditions: 

(meqmS) for every c 6 con^, the function TC defined by rc{w) = t, for 
(c, t) G T^'''', w; € Ŵ , is a run in 91, 

(meqm4) for every w ^W and every type t in T̂ t; there exists a run r in 
£H such that r(u;) = t. 

Note that, for any two sets JHi and JH2 of coherent and saturated runs through 
(5, g), if Jfti C JH2 and (5,9. £Hi) is a A^OA/'C-quasimodel for (/? then (5, g, 9t2> 
is a A^OA/'C-quasimodel for ^ as well. Consequently, we may always assume 
that a AiOA/'C-quasimodel for ^ is of the form (5, g, JHg), where JR^ denotes 
the set of all coherent and saturated runs through (5, g). 
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Lemma 12.9. Suppose MOAfC is one of the axiomatic systems MOAfK^, 
MOMT^, MOMK4n. MOMS4^, MOMKD4^, MOAfS^, and let L 
be the corresponding logic from the list K^, T^, K4^, S4^, KD45^, S5^. 
Then for every monodic QMC^-sentence ipy if there is a MOMC-quasimodel 
for </?, then if is satisfiable in a first-order Kripke model based on a frame for 
L. 

Proof. The proof is similar to the corresponding part of the proof of Lemma 
11.22. Suppose that £J = (3̂ , g, 9l<,} is a A^OA/^C-quasimodel for (̂ , where 3̂  = 
(W; < i , . . . , <n) and q{w) = {T^^T^"^), for w eW. We know that the state 
candidate q{w) is AlO-A/'C-consistent, for every w eW. As before, by turning 
subformulas of realg(u;) of the form DiXp and Cxfj that are not in the scope 
of another epistemic operator to unary predicate symbols or propositional 
variables, we obtain a sentence realq(^) of the first-order language we used to 
denote by QC (cf. Section 11.2). The Q£-sentence realq(^) is consistent with 
the axiomatic system of classical first-order logic (since MOAfC contains the 
axiom schemata and rules of the latter). So, by Godel's completeness theorem, 
for every w eW, there is a Q£-structure J{w) such that J{w) |= realq(^). We 
intend to build a first-order Kripke model satisfying (p by using the Q£-reducts 
of these Q£-structures. The problem again is that they do not necessarily have 
the same domains. 

To overcome this, take an infinite cardinal K exceeding the cardinality of 
the set 9Kq, and put 

D = { ( r , O i r € l H „ C < « } . 

Fix some w eW. Then for any type t eT^, 

\{{r,OeD\r{w)=t}\=K. (12.6) 

A proof similar to that of Claim 11.24 shows that one can *blow up' each J{w) 
to obtain a Q£-structure I{w) with domain D{w) such that I{w) \= realq(^) 
also holds, and for every t eT^j there are K many elements in D{w) 'realizing' 
t: 

\{aeD{w)\I{w)\=t[a]}\ = f^. 

(Here we use the fact that our language does not contain equality.) It is not 
difficult to see that, using (12.6), we can identify each D{w) with i? in a 
'type-preserving' way, that is, we may assume that, for all w e W, t e T^, 

l{w)\=t[{r,0] iff r{w) = t, 

and ĉ "̂*) = (re, 0), for every c € con (p. In other words, for all w eW,r € IH, 
and ^ < K, we have 

r{w) = {V € sub^if I I{w) h lp[(r, 0]}- (12.7) 
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Let us now define the frame 

on which the first-order Kripke model we are constructing is based. The 
definition of the accessibility relations JRJ (t = 1, . . . , n) depends on the choice 
of MOMC. In particular, if MOMC = MOMK^ then each Ri =<t, that 
is, ^ = 5- In the other cases, we define Ri to be 

W), if MOMC = MOMT^] 

• the transitive closure <f of <», if MOMC = MOMK4^\ 

• the reflexive and transitive closure of <i, if MOMC = MOMS4^\ 

^ <t ^ {{^^'^') I 3v € H^(t;<tw;, v<f w', and -iBtt u<it;)}, whenever 
A^OATC = MOMKD4^; 

• the reflexive, symmetric and transitive closure of <i, if MOMC = 
MOMS^. 

The reader can easily prove that in each case, i} is a frame for the correspond-
ing epistemic logic (for instance, the frame for M0MKD4^ is serial because 
by (AD) the formula -^Dtl belongs to all types in all state candidates). We 
claim that, for each choice of MOMC^ we have the following: 

Claim 12.10. For all re^q.weW, DiV̂  € sub:, ^, Q%1) e subx if, 

Ditp£r{w) iff >/w'{wRiW^—^rp£r{w^)); 

Crper{w) iff ^w'{w{ | J Rj^w' —^ t/; e r{w')). 
l<j<n 

Proof. The (^) directions of both statements follow from the saturation 
conditions on runs and from the fact that <iC i?,, for each choice of MOMC. 

Let us prove the (=>) directions. Fix some r € 9\q and w € W. First we 
prove the statement for Di, so suppose that DiV' € r{w). 

(i) Let MOMC = MOMK^. Then Ri =<i. Take any w^ with w <i w^, 
and suppose rp ^ r{w^). Then we have \^MOUC r{w^) —• -•V') frowi which, by 
contraposition, (12.4) and (12.1), we obtain 

^MOAfc DiV^ -> Di-^r(w;'). (12.8) 

On the other hand, as Diip € r(w), we have y-MOMc T{W) -> Dt0. Now, 
by (12.8) we obtain y^MOUC r{w) -> Di-^r{w'), contrary to the MOMC-
consistency of r{w) A Otr(t/;'), which follows from the coherency of r. 
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(ii) Let MOAfC = MONl^. If wRiw' then either W <i w' OX W — W'. 
In the former case, it follows from (i) that t/̂  € r{w'). In the latter, if) G r{w) 
follows from {AT). 

(iii) Let MOMC = MOMK4^. Take any w' with wRiw'. Then there are 
worlds vo» • • •»^m-i-i such that VQ — w, Vm+i = w', and Vj <i Vj^i for every 
j < m. By induction on j one can show that DiV^ € r(t;j), for all j < m. 
(Indeed, for j = 0 this holds by assumption. Let Dixl) ^ r{vj) for some j > 1. 

Then we have I-A^OATC DiV' —> ~'̂ (''̂ j)» and so ^MOATC ^i^ii^ —> •t- ir(vj) , 
by (12.4) and (12.1). On the other hand, by the induction hypothesis, we have 
Diip € r{vj-i), and so \-MOUC ^(^j-i) - • Di^- Finally, by (^44), we obtain 
^MOATC ̂ (vj-i) -^ Di~'^(^j)» contrary to {r{vj-i),r{vj)) being i-suitable for 
MOMK4n) III particular, we have Ditp e r{vm)' Since Vm <i w', we have 
ip e r{w^) by (i). 

(iv) Let MOMC = MOMS4^. In this case, a combination of the argu-
ments given in (ii) and (iii) works. 

(v) Let MOMC = MOMS^. Take any w' with wRiw'. Then there are 
worlds VQ,. .., Vm+i such that VQ — w, Vm+i = ^ ' and, for every j < m, either 
Vj <i Vj^i or Vj = Vj+i, Vj-i-i <i Vj. By induction on j one can show that 
Diip e r{vj), for all j < m -h 1. (Indeed, for j = 0 this holds by assumption. 
Now suppose Di ^ r{vj) for some j > 1. By the argument in (iii), this 
can only happen if Vj <i Vj-i- Then we have ^MOUC f{'^j) ~^ "'DiV'? so 
^MOMc ^(^j) —* Di-»nit/;, by {Ait). On the other hand, by the induction 
hypothesis, we have Diip € r(i;j_i), and so \-MON'C ^(^j~i) —* QiV -̂ This 
implies ^MOMC •i-'OiV^ —̂  Ui-^r{vj-i), by contraposition, (12.4) and (12.1). 
Finally, we obtain \-MOAfc f{yj) —̂  ^i'~'f{yj-i)i which is a contradiction.) In 
particular, we have Diip e r{w'), and so ^ G r{w^) by (>IT)-

(vi) Let MOMC = MOMKD4^. By the definition of/?i, either tt; </" t/;' 
or there exists a v such that t; < ^ w, v <f w' and Su u <i v. In the 
former case, we have ip G r{w) by (iii). In the latter case, there are worlds 
vo,... jVm+i such that VQ — v, Vm+i = '^ and Vj <i Vj+i for every j < m. 
As the arguments in (iii)-(v) show, we have DiV̂  G r{vj), for all j < m, from 
which if G r(t/;'). 

Now, to prove the claim for C, we suppose that C V̂  G r{w). Take any w^ 

with K;( M Ri)*w'. Then there are worlds vo, •. • ,t;m-M such that VQ = w, 
l<i<n 

Vy„_̂ i = w^ and, for every j < m, either VjRiVj^i for some i = 1 , . . . ,n, or 
v̂  = Vj-^i. By induction on j one can show that Ci/' G r{vj), for all j < m-f 1. 
(Indeed, for j = 0 this holds by assumption. Now suppose that CV' G r{vj) 
and VjRiVj^i. Since both EC^ and DiCi/j are in subx^, in view of (12.2) 
we then have ECV' G r(t;j), and so DiCip G r(i;j). As we have shown above, 
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C V? € r{Vj^i) follows, for all choices of MOMC.) So we have C V̂  € r{w'). 
Using (12.2) again, we obtain xl) € r(t/;'), as required. • 

Now we can complete the proof of Lemma 12.9 as follows. For each w £W^ 
let V(w) be the Q£-reduct of I{w). Consider the first-order Kripke model 
971 = {?),D,r), We show by induction on xl) that for all xl) £ subip, w e Wy 
and all assignments o in D, 

/(i^)PV^ iff {m,w)^''xp, (12.9) 

The basis^f induction, i.e., the case when xp = Pi(Ti, . . . ,rm), is clear; for 
then xp - xp. The induction step for ^ = ^ i A ̂ 2, V̂  = "^^1, and xp = Vy0i 
follows by the induction hypothesis from the equations 

V̂ i A t/̂ 2 = V̂ i A V̂2» -1^1 = -iV î, Vt/V î = Vt/01. 

Let t/̂  = DtX- By renaming the free variable in V̂ , we may assume that 
xp £ subx^> Suppose that a{x) = (r,^). By (12.7), Claim 12.10, and the 
induction hypothesis, we have 

I{xv) |=" DiX iff OiX e r{xv) 

iff Vti;' {xvRiXV^ — > x ^ r{xv')) 

iff Vti;' {tvRiiv' —* lixv') |=° x) 

iff Wxv' {wRiXv' — (9Jl, xju') f=° x) 

iff (9n , t i ; )KDiX. 

The formula V̂  = C x is considered analogously. 
Since, by (meqml) and (meqm4), (p € r{xv) for some w e W and r e^q, 

by (12.7) we have I{xv) |= ^ , and so (12.9) gives (97t, it;) |= (/?, as required. • 

Thus, to prove Theorem 12.8, it suffices to show the following: 

Lemma 12.11. Suppose that a monodic QAiC^-sentence ip is consistent 
xvith MOAfC. Then there is a MOMC-quasimodel for ^, 

Proof. We require a series of claims. 

Claim 12.12. Let i^x^^i) be a pair of state candidates that is i-suitable for 
MOMC, (ti = {ri , rf^") and (t2 = {T2,W). Then 

(i) for every t i G Ti, there is at2 £ ?2 such that (ti,t2} is i-suitable for 
MOMC; 

(ii) for every t2 € T2, there is 0 t i € Ti such that (ti ,t2) is i-suitable for 
MOMC; 

(iii) for every c € compf the pair (t^^jt^^) ^̂  i-suitable for MOMC. 
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Proof. We first show that for every monodic QA^£^-formula of the form 
Dt^ we have 

^MOATC ̂ xDiip -^ Uilxij. (12.10) 

Indeed, we have ^-MOArc ̂  —• 3x^, and so, by (12.4), (12.1) and contraposi-
tion, ^^MOMc -"OiBxxl) -* -»Di^. It follows from classical first-order logic that 
^MOATc -^OiJxip —* Va:-iDi^, from which we obtain (12.10) by the definition 
of 3 and contraposition. 

(i) Suppose now that t i € Ti, but there is no t2 € T2 for which (ti ,t2) 
is i-suitable for MOMC. This means that V-MOMC *I -* D»"~'*2 for each 
t2 € T2, and so 

^MOMC ti —• Dt- ' y t2 . 
t2€T2 

Then we have 
^MONc 3x t i -* axDi-* \J t2, 

t2€T2 

from which, by (12.10), 

^MOMC 3x t i -> Uilx-y \J t2-
t2€T2 

Since 

^MOMc^X"* V 2̂ —̂  "'•'ealcTj and I"A^OJVC »'ealci —̂  3x t i , 
^26X2 

we finally obtain ^MOMC realci "^ Di-realca, contrary to {Ci,€2) being 
t-suitable for MOMC. 

(ii) Now suppose that ^2 € T2, but there is no t i G Ti for which (ti,t2) is 
i-suitable for MOMC. This means that 

^MOMC y h -* Di-'t2. 

Hence 

^MOMC Vx Y t i -* VxDi-«*2 

and, by (12.3), 

^MOATC Vx Y t i - • DiVx-'t2, 

contrary to (€1, C2) being i-suitable for MOMC. 

(iii) Finally, assume that c € cornp. Then t | j A Ott^^ ^̂  consistent with 
MOM, and so the pair (*c,.*€2)»s suitable. Q 
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A pointed state candidate for (p is a pair ^ = (£,t), where C = (jr^T^^^) 
is a state candidate for (f and t a type in T, called the poin* of ^ . 

Say that a pointed state candidate ^ = (£, t) is MOMC-consistent if the 
formula 

pointjp = real̂ r A t 

is consistent with MOMC, A pair <Pi = (Ci,ti), ^2 = {^2M) of pointed 
world candidates is i-suitable for MO^C, i = 1,. . . , n, if the formula 

point̂ pj A Oipoint^j 

is consistent with MOAfC, In this case we write ?Pi -<» ^2- Given ace con (̂ , 
a pair ^ i = (£i,ti>, ^2 = (C2)*2) of pointed state candidates is called 
i'Suitable for MOAfC relative to c (in symbols, ^1 -<̂  ^2) if ^1 ^t V2) 
(c,ti> 6 Tf̂ ^ and (c,t2> G Tf̂ ", where Ci = (ri,rf*'"> and €2 = (r2,r2^^^>. 

Claim 12.13. (i) There is a MOUC-consistent state candidate C = (r,r^^"> 
for (f such that (pet for all t eT. 

Let ?P = (£, t) be a MOMC-consistent pointed state candidate for (/?, 
where t = (7,7*^^^). Then the following hold: 

(ii) If -^Uixl) e t, then there exists ^ ' = {^*,t') such that ^ -<i qj' and 
-^xl) e t'. 

(iii) Suppose c e corup. If -^Uixl) e t | , then there exists ?P' = {£',*') such 
that qj Xĵ  <P' and -i^; € t'. 

(iv) // -^C^ €: t, /̂icn there is a sequence (̂ O) • • • iVk)) k < (jjy of pointed 
state candidates ^j ~ {^j^^j) such that 

for some 1 < t i , . . . , tit < ^̂  o^d "̂V̂  G t^. 
(v) Suppose c e contf, If-^Cx/j € t^, then there is a sequence (̂ o> • • • iVk)> 

k < LJ, of pointed state candidates ^j = (£j,tj) such that 

for some 1 < t i , . . . ,tifc < n, and -^ip € tk' 

Proof. Let 1^^p be the disjunction of formulas point<p for all pointed state 

candidates ^ for (f. By treating subformulas of ^^^p of the form Dii) and Cip 
that are not in the scope of another epistemic operator as unary predicate 
symbols or propositional variables, we obtain that the resulting sentence WiJ is 
clearly true in all (classical) first-order structures. Since MOMC contains the 
axiom schemata and rules of classical first-order logic, by GodeFs completeness 
theorem we obtain 

^MOMCT^^' (12.11) 
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(i) Since tp is consistent with MOAfC, from (12.11) we obtain that T^^N^ 
is consistent with MOMC. Then there is a disjunct real(t A t of 7r<̂  such that 
real̂  A t A (/? is also consistent with MONC^ from which (pet. Since (̂  is a 
sentence, we have (/? € t' for all types t' of £. 

(ii) We claim that 

pointy A Oiiir^p A -^ip) is consistent with MOMC. (12.12) 

Suppose otherwise. Clearly, pointip A-̂ DiV^ is consistent with MOMC. So we 
have \-MOMC ^{Oi{7r^ A --V )̂), that is, \-MOAfc Qi(^(^ -^ i^)- By (12.4) and 
(12.11), ^MOATc Qî v?, and so, by (12.1), we obtain \-MO/src ^i'^i contrary to 
the AlOA/'C-consistency of pointy A -̂ DiV .̂ Thus we have (12.12). By (12.1), 
it follows that there is a pointed state candidate ^ ' with point t' such that 
polntfp A Oi(pointvp/ A -"V̂ ) is consistent with MOAfC. Therefore, -^ip € t'. 

(iii) is proved analogously to (ii). 
(iv) Suppose that such a sequence does not exist. Let T be the minimal 

set of pointed state candidates for ip such that 

• if Di e T and Di Xi S2 for some i, then ©2 ^ T. 

First, we claim that 
^MOUC t? -^ V̂ . (12.13) 

Indeed, otherwise the formula 1? A -^rp is consistent with MOMC^ and so 

\J (pointjj A -•V') 

is consistent with MOMC as well. Hence there is S) in T such that pointy, A-»V̂  
is consistent with MOMC^ which means, in particular, that ->V̂  is in t' for 
the point t' of 2). Thus we have a sequence 

^ = qjo <n ^1 <i2'" <ik ^fc = 2) 

such that -^ij) G t', contrary to our assumption. Thus, we have (12.13). 
Let us now show that 

^MOMC ^ -> Di^, for alH = 1 , . . . , n. (12.14) 

If this is not the case then the formula d h-^Uid is consistent with MONC 
for some i, and so there is 2) in T such that pointj) A Oi-ii? is consistent with 
MOMC. By (ii) above, there is a pointed state candidate ^ ' = {£',t') for 
which S Xi ^'. But then ?P' G T and pointj, A Oipoint^j/ is consistent with 
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MOMC, contrary to the consistency of pointj, A Ot /\^>^r "^pointj)/. Thus, 
we have (12.14), and so ^MOJS/C t? —• ET?. 

Together with (12.13) this yields \-MOMC t? -> t/̂  A Et?. By (12.5), we 
obtain ^MOUC t̂  ~^ Ct/;, and so ^MOUC polnt^p -^ Crp, since ^ € T. But ^ 
is a A^OwVC-consistent pointed state candidate and -̂ C V̂  G t for its point t, 
which is a contradiction. 

(v) is proved analogously to (iv). • 

We are now in a position to complete the proof of Lemma 12.11. By 
Claim 12.13 (i), there is a A^OA/'C-consistent state candidate £* = (7̂ *̂  jcon*^ 
for (̂  such that (^ e tfor all t eT*. We are going to construct a basic MOMC-
structure underlying the required quasimodel as the limit of a sequence 

( 5 m , 0 = ( ( ^ m , < r , - - - , < n > , 0 . 

of basic A^OA/'C-structures, m <u). 
Let Ĥ o = {^*} and q^iw*) = (J*. Suppose now that (Jfm> Qm) has already 

been defined. For every w G W^ ~ H^m-i we then construct a number of new 
points 'saturating' q^i'^) (where W^\ = 0 ) . 

Let C = g^(ti;), £ = ( r , r ^ °" ) , and let t € T. We then do the following. 
(al) For every x = "'OtV^ in t we take two points a^ and 6̂ ,̂ add them 

to H^ni, put w <7^^^ a^, w <7*^^ b^, and qm^i{a^) = gm+iC'x) = ^'^ ^ r 
some ^ ' = (£ ' , t ' ) such that (£,t) Xj ^ ' and V̂  ^ t'. That such a ^' exists is 
guaranteed by Claim 12.13 (ii). 

(a2) Suppose cornf ^ 0. Then we also do the following for all c € cornf\ 
for every x = "^Clt0 in t^ we take a point a^, add it to Win) pnt w <7*^^ flx» 
and qm-^Mx) = ^'» ^ r some ^ ' = (C',*') such that ((r , t | ) -(^ <P' and V̂  i t'. 
That such a ^ ' exists is guaranteed by Claim 12.13 (iii). 

(bl) For every x — "-"CV̂  in t we take two sequences a]^^...^a^ and 
6j[^,... ,6^ and put 

^ ^ i i " x ^ t 2 ^ U " x ' ^ ^ t i ^X ^ t 2 ^ik ^X' 

and 

9 m + i ( 4 ) == Qm^iH) = ^ ^ for all 1 < j < fc, 

where the (£^,t^) form a sequence of pointed state candidates such that 

and -^ip € t^. Claim 12.13 (iv) ensures the existence of such a sequence. 
(b2) Suppose corup ^ 0. Then we also do the following for all c € c(m^\ 

for every x - ""C^ in i\ we take a sequence aj^, . . . ,a^ and put 

^ ^ i i " x ^ i 2 ^ifc ^X 
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and 

9 m + i K ) = ^ ' ' f o r a l l l < j < f c , 

where the {C^^V) form a sequence of pointed state candidates such that 

and --»V ̂  ^'^' Claim 12.13 (v) ensures the existence of such a sequence. 

In the same manner we consider all the other types in T and all the other 
worlds V € Wm - W^m-i- Wm+i is then defined as the (disjoint) union of Wm 
and the new points constructed by performing steps (al)-(b2). The relations 
<7*''"^ and the function qm-\.\ coincide with, respectively, <^ and q^ on Wm 
and are defined by (al)-(b2) for the new points. This gives us (S^m+ij ^m+i)-

Finally, we put (5, q) = {{W, < f , . . . , <;r)» Q)^ where 

W^{}Wm. <,= U <r, g= U qm 
m<uj m<uj m<uj 

Let 9lq be the set of all coherent and saturated runs through (3^,g). Let us 
prove that 0 = (5,9,9^^} is a A^OA/'C-quasimodel for if. 

First, conditions (meqml) and (meqm2) hold by the definition of £J. 
For (meqniS), it is enough to show that the TC are coherent and saturated: 
the coherency condition follows from Claim 12.12 (iii), and the two saturation 
conditions from the construction described under (a2) and (b2), respectively. 

It remains to show that (ineqin4) holds, that is, for every w £ W and 
every type t in q{w), there exists a run r G 9̂ <j such that ^(w) -- t. Using 
Claim 12.12 (ii), we find a sequence 

W* = WQ < i i Wi < i2 • • • <tfe Wk ='W 

and types tj in q{wj), j < fc, such that tk = t and tj A Oij^^tj^i is consistent 
with MOAfC for all j < k. 

Define r on the worlds Wj in V = {WQ, ,..,Wk}hy taking r{wj) = tj. Now 
by induction we extend r to the sets V U Wi. Suppose that we have defined r 
on VuH^n. Then for every v e Wn - Wn-i with r{v) = t we do the following: 

• If -•DiV' e t, then we take v' € Wn+i - (M n̂ U V) and t ' in q{v^) such 
that V <i v\ t AOit ' is consistent with MOMC and V̂  ^ t'. This can be 
done because, according to (al), we always took two saturating worlds. 
Put r{v') = t'. 

• If -'C V̂  G t, then we take a sequence v i , . • . , vjfe from Wn-\-i — (Wn U V) 
and types tj in qf(t;j), 1 < j < fc, such that 

and 



12,2. Axiomatizing tnonodic fragments 563 

- (t ,ti) is lo-suitable for MOMC, 

- (tj,tj-|.i} is ij-suitable for MOMC, 1 < j < fc, 

Again this can be done because, according to (bl), we always took two 
saturating sequences. Put r{vj) = t j , for all \ < j <k. 

To define r on the remaining v € Wn+i, we do inductively the following. 
Suppose that r is not yet defined on v, but defined on the unique v' such that 
v' <t V, Then, using Claim 12.12 (i), we take a t in q{v) such that (r(t;'),t} 
is i-suitable for MOMC and put r{v) = t. 

It is now straightforward to see that the constructed r is a coherent and 
saturated run. • 

This completes the proof of Theorem 12.8. • 

One can also prove a similar theorem for the monodic fragment of the 
first-order dynamic logic CQDL: 

Theorem 12*14. A monodic CQVC'formula^ ip belongs to CQDL iff^p is 
derivable in the axiomatic system defined by the following axiom schemata 
and inference rules: 

Axiom schemata (ranging over monodic CQVC-formulas): 

• the axiom schemata of QCl, 

• [a](v? --• V̂ ) - • {[ot\ip -^ [a ]^) , 

• [a U/?](/? ^ [ a j v ? A [/?](/?, 

• [a*]v?^v?A(al[a*]v?, 

• [a1(v? -^ Hv?) -^ (V̂  -* [alv?), 

* Recall that CQP£-formulas do not contain tests. 
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Inference rules {ranging over monodic CQVC-formulas): 

• the rules of QCl, 

• given ip^ derive [a](/?, for all action terms a. 

Proof. The proof is similar to the proof of Theorem 12.8 (observe also the 
similarities with the axiomatic systems in Remarks 12.7 and 2.18). We leave 
the details to the reader. • 

Note that the above proofs provide axiomatizations for the one-variable 
fragments of the logics under consideration, and so we can obtain alternative 
proofs of Theorems 6.54 and 6.55 on the axiomatization of the corresponding 
products with S5 (see the proof of Theorem 11.78 for details). 
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Chapter 13 

Temporal epistemic logics 

In Section 3.4 we introduced combinations of temporal and epistemic logics 
intended for reasoning about multi-agent systems. For any epistemic logic L 
from the list Kn, Tn, K4n, S4n, KD45n, S5n and any class C of strict linear 
orders, we considered the class TSi^c of all temporal epistemic structures of 
the form 

(^x7^, <,/?!,...,fln) 

such that (T, <} € C and {T x Tl.Ru. . ,Rn) |= L. Theorem 3.19 showed 
that if C consists of only one How of time J, then the temporal epistemic logic 
ELog^if (TSL^^) determined by this clasj coincides with the fusion of L (or 
L^, if we consider epistemic logics with the common knowledge operators) 
and the propositional temporal logic Log5^(5). 

Different features of agents—that they know the time, do not learn, or 
do not forget—were reflected by imposing various constraints on the tem-
poral epistemic structures. The results obtained and techniques introduced 
in Part III cannot be directly applied to all logics determined by classes of 
temporal epistemic structures corresponding to possible combinations of these 
constraints. However, besides the simplest case of fusions considered above, at 
least two nonempty sets of constraints can be treated using the methodology 
developed so far: 

(1) For synchronous systems, that is, for classes of temporal epistemic struc-
tures modeling agents who know the time^ one can show that the res-
ulting logics can easily be embedded into decidable monodic fragments 
of first-order temporal logics. Moreover, for various important flows of 
time (like (Z, <), (Q, <), and (M, <)), the resulting logics do not reflect 
any interaction between time and knowledge, i.e., we again obtain the 
fusions of the corresponding temporal and epistemic logics. 

567 
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(2) Temporal epistemic structures modeling agents who know the time, do 
not forget and do not learn can be regarded as product frames (see page 
139) and therefore we can apply the results and techniques introduced 
for deaUng with products of modal logics. 

In the next section we consider case (1), and then, in Section 13.2, turn to 
case (2). For complexity results including 'intermediate logics' which are not 
covered by (1) and (2) we refer the reader to Table 13.1 which lists the results^ 
of (Halpern and Vardi 1989). For these 'intermediate' constraints, so far only 
logics based on 85^ or S 5 ^ and the flow of time (N, <) have been considered. 

no constraints 

sync 

nf 

nl . 

sync, nf 

sync, nl 

nl, nf 

sync, nl, nf 

S5 

PSPACE-complete 

PSPACE-complete 

2EXPTIME-complete 

EXPSPACE-complete 

2EXPTIME-compIeie 

EXPSPACE-complete 

EXPSPACE-complete 

EXPSPACE-complete 

S5n, n > 2 

PSPACE-complete 

PSPACE-complete 

not in ELEM 

not in ELEM 

not in ELEM 

not in ELEM 

not in ELEM 

not in ELEM 

S 5 ^ , n > 2 

EXPTIME-complete 

EXPTIME-complete 

E}-complete 

E}-complete 

E}-complete 

E J-complete 

E}-complete 

EJ-complete 

Table 13.1: The results of Halpern and Vardi (1989) on the complexity of 
the satisfiability problem for some temporal epistemic logics based on the 
flow of time (N, <}, with the sole temporal operator U, interpreted in models 
combining the constraints of synchronicity (sync), not forgetting (nf), and not 
learning (nl). 

^Spaan (1993) proved that the E J-completeness results of Table 13.1 hold for the lan-
guage with the sole temporal operator Dp as well. 
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13.1 Synchronous systems 

Let us recall from Section 3.4 that synchronous systems, that is, multi-agent 
systems with agents who know the time, are modeled by temporal epistemic 
structures (T x 71, < , i? i , . . . ,i?n), where, for all t,t' € T, / , / ' € 7̂ , and 
i < n, 

{t,f)Ri{t\f) implies t = f'. 

In this section, we consider temporal epistemic logics determined by these 
kinds of structures. It turns out that the interaction between the temporal and 
epistemic operators interpreted in synchronous structures is rather limited. 
In some important cases there is no interaction at all, i.e., we obtain fusions 
of the temporal and epistemic components. Therefore, it should not come 
as a surprise that the resulting logics are almost always decidable, no matter 
whether we consider languages with or without common knowledge operators. 

Given an epistemic logic L and a class C of strict linear orders, let 

SyMCi^c-TEi^c^SyMC, 

where SyNC denotes the class of all synchronous temporal epistemic struc-
tures. Observe that for every structure (T x 72., <, i ? i , . . . , Rn) in SyMC^ 
the n-frame (T x 7?., fli,..., i?„) is in fact the disjoint union of the n-frames 
{{t} X 7?.,/?!,... ,iifĵ ) for t € r , where each R\ is the restriction of Ri to 
{̂ } X 7̂ . This observation provides a key to the reduction of temporal epi-
stemic logics to first-order temporal logics presented below. 

Recall from Section 1.3 the standard translation * of the unimodal lan-
guage MC into the sublanguage of QC having a binary predicate symbol and 
countably many unary predicate symbols. Now consider the sublanguage of 
QC with countably many unary predicate symbols PQ? A» • • •» binary predic-
ate symbols /?!,...,/?„» plus a binary predicate symbol RM for each nonempty 
set M C { 1 , . . . , n}. The following natural generalization of * translates for-
mulas of MC^ into this first-order language: 

{ifi A V)* = ¥5* A V* 

{Uiti>Y = Vy (xRiV ^ r{y/x}) 

(CA/V)* = Vj/ {XRMV -* r{y/x}). 

Here, as before, x Is a fixed individual variable and y is a fresh variable not 
occurring in ip*. Now we extend this standard translation to a translation of 
the temporal epistemic language MCsu ® MC^ into the first-order temporal 
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language QTC by taking 

{^iSi^2r = risr2' 
Observe that x is the only variable that can occur free in (f^ and that (/?* is 
always a monodic QT£-formula. 

For each L € {K„,T„,K4n,S4n,KD45n,S5n}, define classes KL and 
ICic of Q£-structures by taking, respectively, 

ICL = {I = {D',R[,...,RIPI,...)\{D',R{,...,R'„)\=L}, 

and 

(Z? ,̂ JR(, . . . , /J^) t= i and i?j^ is the reflexive and transitive 

closure of M Hf, for all nonempty M C { l , . . . , n } > . 

Now every model 9Jl = (6 ,©) based on a temporal epistemic structure 
© = (T X 72., <, i? i , . . . , Rn) in SyAfCi^^r^K) can be turned into a first-order 
temporal /C^^c-model ((T, <) ,72,/gn), where, for every t eT^ 

. fl{™(') = ({ / , / ' ) I {t, f) R, (t, / ' ) } , for i = 1 , . . . , n, 

. p/'^W = { / I f{t) e aj(pj)}, for j < w. 

It is easily seen that, for every MCsu ^ MC^-ioxm\x\a ip and every (t, / } in 
T X 7J, we have 

(9n,{<,/))t=(^ iff (((T,<),72,/3n>,t)hV'*W-

Conversely, every first-order temporal /Cx^c-model 91 = {(T, < ) , D, 7) can be 
turned into a temporal epistemic model OT^n as follows. Define a set S of 
states as 5 = T X D. For every a e D, define a function fa from T to 5 by 
taking 

fa{t) = {t,a), 

and let 
D+ = {fa\ae D}. 

Now define a temporal epistemic structure 

<S<n = {TxD+,<,Ri,...,Rn) 
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by taking, for each t = 1, . . . , n, 

Ri = {{{tja), (^',/a'» \t = t' and aRl^'^a'}. 

Then define the model 9Jl<n = {©m,2Jgi) by letting, for each propositional 
variable Pi, 

Again we have, for every MCsu ^ A<£^-formula v?, every t in T, and every 
a in JD, 

(((r,<),D,/),0N^1a] iff (m^,{tja))\=^^. 
As a consequence we obtain the following: 

Theorem 13.1. Suppose that L € {Kn, Tn, K4n, S4n, KD45n, S5n} and 
that C is a class of strict linear orders. Then 

(i) for every MCsu ®MCn'formula ^p, ip e ElogsuiSyAfCi^c) iff'^^'' is 
not satisfiable in any first-order temporal Ki-model based on a flow of time 
inC; 

(ii) for every MCsu (S) MC^-formula (f, (f e £Log%{SyMCi^c) iff'-'^'' 
is not satisfiable in any first-order temporal Kic-model based on a flow of 
time in C. 

We can now apply the criterion of Theorem 11.21 to obtain the following 
result: 

Theorem 13.2. Suppose that L E {Kn, Tn, K4n, S4„, KD45„, S5n}, 
and let C be one of the following classes of flows of time: {(N, <)}, {(Z, <)}, 
{(Qi<)}, the class of all finite strict linear orders, any first-order definable 
class of strict linear orders {for example, the class of all linear orders). Then 
the temporal epistemic logics 

ElogsuiSyAfCL^c) and ELog^^^ (SyATCLx) 

are decidable. 

Proof. We only consider the language with common knowledge operators. 
Fix a logic V € {K, T, K4, S4, KD45, S5}, and let 

L = L' (g) • • • 0 L'. 

Let QTC = {^^ \(p is an MCsu ® MC^-formnld,}. Then QTC' C QTC^ . 
We show that QT£' and /C = lC[,c satisfy conditions (a) and (b) of The-
orem 11.21. 
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To this end, recall first that, for every QT£{jj-formula i/;, we denote by 
V̂  the Q£-formula that results from ip by replacing all its subformulas of the 
form X\^X2 and Xi«5x2, which are not within the scope of another occurrence 
of U or 5 , by their surrogates. Now observe that, given an MCsu ^ -MC^-
formula (f, we can obtain the Q£-formula ^ in a different way. First, we 
turn if into an jM£^-formula (p by replacing each of its subformulas of the 
form X\^X2 and X\Sx2^ that is not within the scope of another occurrence of 
U or 5 , by a fresh propositional variable (its surrogate). Then, by applying 
the standard translation *, we turn (p into a Q£-formula (p*^ see Fig. 13.1. It 
should be clear that we have (/?* = (p*. 

MCsu^MC^ MC^ 
ip • ip 

ip* •- (p* = (p* 

QTC 'QC 

Figure 13.1: Translations from MCsu <8) MC^ to QC. 

Now fix an AiCsu ^ A^£„-formula (p. Recall that a type for (/?* is any 
Boolean-saturated subset t of {V̂  | ^ G subx (^*}. For every such type t, define 
a set t of A1£^-formulas by taking 

t = {i/; I ̂  is an MCsu <8> Al£^-formula and il)* ^i}. 

It is not hard to see (since for every il) 6 subx ^*» there is an MCsu ^ MC^-
formula x such that t̂  = X*) that 

t = {V;* IV^Gt}. (13.1) 

As (/?* does not contain any constants, a state candidate for (p* is just a set of 
types for ip*. Given such a state candidate T, define 

f={t\teT}. 

Say that T is L^-realizable if there exist an n-frame 5 = {W, H i , . . . , Rn) for 
L and a model 971 = (3 ,̂ V) such that the following hold: 

• for every t eT, there exists w eW with (9Jl, w) \= fS^ip,, 
xl^et 
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• for every w eW, there exists t € T such that (9JI, w) \= ^ V'-
vet 

It should be clear that a state candidate T is /C^^c-realizable iff T is L^-
realizable. Hence it sujffices to prove that the realizability problem for sets 
of 'types' of the form T is decidable. Of course, this would follow from the 
decidability of the extension of L^ with the universal modality. Since we have 
not proved this decidability result, here we provide a different argument which 
implicitly uses the fact that in many respects the common knowledge operator 
C{i,...,n+i} of -^^n+i behaves similarly to the universal modality added to 
the language MC^. Observe that T is L^-realizable iff the A^£^^i-formula 

C{i, ..,n+i} y A ^ ^ A""^{i.' ^n+i}- A ^ 

is satisfiable in a frame for (L (g) V)^. Since, by Theorem 2.17, (L (g) L')^ is 
decidable, we have proved that condition (a) of Theorem 11.21 holds. 

To prove (b), observe that again by Theorem 2.17, {L<^V)^ has the fmp. 
So any L^-realizable set T as above is in fact 'realizable' in a finite model 
9Jl based on a frame for L^. Now take K,̂  = l<o, and let K be an infinite 
cardinal. Take the disjoint union 97t' of K isomorphic copies of 9}t. Then 9K' 
still realizes T and, moreover, 

for every t eT. Let 7(971') denote the Q£-structure corresponding to 9Jl' (see 
Section 1.3). By (13.1), we also have 

{w I /(on') h A ^H} = K, 

for every t € T, as required in (b). Q 

The result above does not cover the flow of time (K, <) simply because 
we do not know of any significant decidability result for monodic fragments 
of first-order temporal logics based on (R, <) and arbitrary (possibly infinite) 
domains. However, it turns out that the interaction between the temporal 
and epistemic operators in synchronous structures is much weaker than the 
interaction between temporal operators and quantifiers in monodic first-order 
temporal logic. 

Call a flow of time 5 = {T,<) homogeneous if, for any t,f G T, there 
exists an isomorphism / from ^ onto 5 such that f(t) = t\ For example, 
(Z, <), (Q, <), and (R, <) are clearly homogeneous, while (N, <) is not. 
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Theorem 13.3. Let L be one of the epistemic logics Kn, Tn, K4n, S4n, 
KD45n, S5n, and let ^ = {T,<) be a homogeneous flow of time. Then 

(i) the temporal epistemic logic ELog^if{Syj\l'CL^^) coincides with the fu-
sion of the temporal logic Log^if{S) and L; 

(ii) for d e {(Z, < ) , (Q, < ) , (E, <)} , ELogsi^{Syj\rCL^:s) ̂ ^ decidable; 

(iii) the same results hold for £Log^if{SyAfCL^^). 

Proof. Let 3̂  = (T, <) be a homogeneous flow of time. The inclusion 

ELogsuiSyATCL^^) D Log5i^(5) 0 L 

(as well as its version with common knowledge operators) is clear. 
For the converse inclusion, we consider only the case L = K and show 

that ELog^y{SyAfCL,^) C L o g 5 ^ ( 5 ) 0 K ^ . The remaining cases are similar 
and left to the reader. It follows from the proof of Theorem 4.1 (and can 
also be proved by means of an unraveling argument) that Log52^(5) (g) K ^ is 
determined by the class of frames {W, 5, R) (which may be called ^-cactuses) 
satisfying the following conditions: 

• {W, S) is the disjoint union of a family ^i = {Ti, <t), i € / , of isomorphic 
copies of 5 = ( r , < ) ; 

• {W, R) is the disjoint union of intransitive trees; 

• the frame (/, <) , where <3 is defined by taking 

i<j iff 3te Ti 3t' e Tj tRt', 

is an intransitive tree; moreover, if we have t, f eTi, 5,5' € Tj, tRs and 
t^Rs\ then t = t' and s = s'. 

So it is enough to show that any MCsu ^ At>C^-formula ^p satisfiable in such 
an S^-cactus is satisfiable in a temporal epistemic structure from Sy/sfCK,d-
Suppose a formula (f is satisfied in a model 9Jl = ((5,93), where 6 = (W, 5, R) 
is an 5-cactus. For every i in / , we define an isomorphism fi : 5 —̂  5i- With 
the root to of (/, <) we associate an arbitrary isomorphism fi^ from 5 onto 
5io- Suppose, inductively, that fj is defined for the <-predecessor j of i. Take 
the (uniquely determined) t e Ti and t' G Tj such that t'Rt and let fi be an 
isomorphism from 5 onto 5i such that f~^{t) = fj^^it')- Let 

I^ = {fi\ie I}. 

We can regard W as a set of states, and members of I^ as functions from T 
to W. So we can define a temporal epistemic structure (S' = (T x J* ,̂ <, jR') 
by taking 

{tJi)R'{t'Ji.) iff t = t' and fi{t)Rfi\t), 
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and a model based on ©' by taking 9Jl' = (©',53). An easy induction shows 
that, for all I G /, t G T, and formulas ipy 

{mji{t))\=rp iff (art',(^/,))|=^. 

Note that the induction steps for the temporal operators follow from the 
equivalence f < '̂ iff fi{t) <i fi{t'). • 

Observe that this result cannot be extended to nonhomogeneous flows of 
time. For example, D p l - - > n D p ± i s valid in all synchronous systems based 
on (N, <} but does not belong to the fusion Log5^(N) ® S5. 

13.2 Agents who know the time and neither 
forget nor learn 

As we saw in Section 3.4, if our agents know the time, do not forget and do not 
learn simultaneously, then the corresponding temporal epistemic structure 

( rx7e,<, /? i , . . . , f ln) 

is isomorphic to the product of the frames (T, <} and (7J, ^ i , . . . , 5n}, where 

fSif iff 3t,t'€T {tJ)Ri{t\r) iff ^teT {tJ)Ri{tJ'). 

This observation enables us to use the machinery developed in Parts II and 
III to analyze the computational behavior of the logics modeled by such struc-
tures. 

Denote by tCM the class of all temporal epistemic structures of this form. 
Given an epistemic logic L and a class C of flows of time, let 

and let ELog5 (̂/CA/*L,c) denote the temporal epistemic logic formulated in 
the language MCsu ® MCn and determined by the class /CA/'L,C- Similarly, 
ELog^^(/CJVL,C) is the corresponding temporal epistemic logic in the language 
MCsu ^ MC^. We also let 

• ELogC/CA L̂.c) = ELogsuitCAfi^c) n (MC 0 M£n), where MC is the 
unimodal language with the sole temporal operator Dp, and 

• ELogppilCJ^Lx) = ElogsuilCJ^Lx) ^ {MC2 ® MCn), where MC2 is 
the bimodal language with the temporal operators Dp and Dp. 



576 Chapter 13. Temporal epistemic logics 

If the language contains the common knowledge operators, then the logics are 
denoted by ELog^(/CA/'L,c) and ELogpp(/C7VL,c)j respectively. 

The plan of this section is as follows. First we consider the temporal epi-
stemic logics defined above and containing no common knowledge operators. 
It turns out that we have two different cases. If the epistemic component 
is K 4 or S4 (or their multimodal versions K4n or S4n) then the logics are 
undecidable (at least for the flow of time (N, <}). All the other epistemic 
logics (Kn, Tn, KD45n, S5n) give rise to decidable combinations (at least 
for important flows of time like (N, <}, (Q, <), and the class of all strict linear 
orders). On the other hand, for almost all interesting flows of time, temporal 
epistemic logics with the common knowledge operator modeling agents who 
know the time, do not forget and do not learn are undecidable. 

Without common knowledge 

Some of the decidability and complexity results follow immediately from those 
obtained in Sections 6.4-6.6, since our temporal epistemic logics coincide with 
product logics: 

T h e o r e m 13.4. Let L € {K^, Tn, K4n, S4n, KD45n, S5n} and let C be 
a class of strict linear orders. Then 

ElogilCAfLx) = logic xfrL). 

Proof. Fix an MC^MCn-formuldL (p. Suppose first that (f' ^ Log(C x FrL). 
Then (f is refuted in some model 971 = (6,5J) based on the product of some 
6 = (T, <) in C and a frame 5 = (W, ^ i , . . . , 5„) for L. We can turn M into a 
temporal epistemic model as follows. Let us regard T x W as a set of states. 
For every w € W, define a function f^ from T to T x W by taking, for every 
t € T, f^{t) = {t,w), and let 

n={u\we w}. 
Now define a temporal epistemic structure f) = (T x 72., < , / l i , . . . , i t„) by 
taking, for each i = 1 , . . . , n, 

Ri = {{{t, U), (t', M) \t = t' and wSiw'}. 

It is straightforward to see that (T x 72., / ? i , . . . , Rn) is isomorphic to a disjoint 
union of isomorphic copies of 5 (cf. the proof of Proposition 3.8), and so 
9) € ICMLC' Finally, ^p is clearly refuted in the temporal epistemic model 

Conversely, ifip ^ ELog(/CA/'L,c), then (p is refuted in a model 9Jl = (i}, 53} 
based on a temporal epistemic structure 

i) = ( T x 71,<, /?! , . . . , f in) = ( r , < ) x (71 ,5 i , . . . , 5n ) , 
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where (T, <) is in C, 7̂  is a set of functions from T to some set of states, and 

{Txn,Ru...,Rn) 

is a frame for L. Since (T x 7?., i? i , . . . , Rn) is the disjoint union of isomorphic 
copies of 5 = (72-, 5 i , . . . , 5n), we obtain that 5 is a frame for L as well, and 
so i3 is a frame in C x FrL. Define a valuation QU in i3 by taking, for every 
prepositional variable p, 

2U(p) = {(«,/> I / ( t )e5J(p)} . 

It should be clear that (p is refuted in the model (^3,20). • 

In particular, we have: 

Theorem 13.5. Let L € {Kn, Tn, K4„, S4„, KD45„, S5n}. Then the 
following equalities hold: 

(i) i / F € { N , Q } , then 

ELog(/CA/'̂ ,{<F.<)}) = Log{(F,<)}xL, 

ELogpp(K;A/*L,{(F,<>}) = Log^p(IF) X L, 

ELog5u('CA/'L,{(F,<>}) = Log5i^(F) X L; 

(ii) i/C is </ie class of all strict linear orders, then 

ELogilCAfL^c) = K4.3 x L, 

ELog/rp(/CA/'L,c) = Lin x L, 

Elogsu{l^J^L,c) = Ijinsu x L. 

Proof. To prove ELog(/CA/'£,,{(p ,̂<)}) = Log{(N, <)} x L, observe that by 
Theorem 6.29, we have 

Log({(N, <)} X FrL) = Log{(N, <>} x L. 

The proofs of the other equalities in (i) are similar. For (ii), one has to use 
Theorems 6.30 and 6.31, respectively, in place of Theorem 6.29. (Note that 
these theorems are not stated for the logics when both 5 and U are present, 
but the reader should have no difficulty in proving them for these cases.) • 

Thus we can use results of Chapter 6 to obtain decidability and complexity 
results on some of the temporal epistemic logics above. Instead of doing this, 
here we prove a general decidability theorem, comparable to Theorem 11.7, 
by combining the kind of quasimodels introduced in Chapter 6 with the em-
beddings into monadic second-order theories of strict linear orders used in 
Chapter 11. 
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Theorem 13.6. Suppose that L € {Kn,Tn,KD45n,S5n} and C is one of 
the follomng classes of strict linear orders: 

(1) {(N,<>}. 

(2) {{Z,<>}, 

(3) {(Q,<>}, 

(4) the class of all finite strict linear orders^ 

(5) any first-order definable class of strict linear orders—for example^ the 
class of all strict linear orders. 

Then £Log^n{1CML,C) is decidable. 

Proof. We prove this theorem first for L = K. Let us begin with a straight-
forward modification of the notion of a quasimodel used in the proof of de-
cidability of K X K (Theorem 6.1). Fix an MCsu ® MC-fonnxxla. (p. 

By a type for ip we mean any Boolean-saturated subset of sub (p. A quasist-
ate for tp is a. pair q = {{T, <} , t ) , where (T, <} is a finite intransitive tree 
of depth < md{ip) and t is a labeling function associating with each x € T 
a type t(x) for (p such that conditions (qml ) and (qml') from the proof 
of Theorem 6.1 hold. Two quasistates {{T, < } , t) and ((T', < ') ,* ' ) are called 
isomorphic if there is an isomorphism / between the trees (T, <) and (T', <') 
such that t{x) = t ' ( / (x)) , for ali x € T. In what follows we assume that non-
isomorphic quasistates are disjoint and that isomorphic quasistates actually 
coincide. 

Now fix a flow of time 5 = {W, <) from C. A basic structure of depth m 
for (p is a, pair {S,Q), where g is a function associating with each w e W a, 
quasistate 

q{w) = {{T^,<^),ty,) 

for ip such that the depth of each {T^ui <w) is m. 
Let (5, q) be a basic structure for ip of depth m and let fc < m. A k-run 

through (3 ,̂ q) is a function r giving for each w e W a. point r{w) e Tyj of 
co-depth k. Given a set IM of runs, we denote by 91^ the set of all fc-runs from 

A run r is called coherent and saturated if the following holds: 

• for every ip\Uil)2 G sub^p and every ti; € W, we have V̂ iWV'2 ^ ty}{r{w)) 
iff there is v > w such that xl)2 € *i;(r(t;)) and V̂ i € tu{T{u)) for all 
u € {w,v)^ and 

• for every ipiStp2 ^ subip and every w G W, we have tpiS'ip2 € ty}{r{w)) 
iff there is i; < K; such that xp2 ̂  ^v(^(^)) and ipi € tt4(r(t/)) for all 
u e {v,w). 
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We say that a quadruple 0 = (5, g, 91, <) is a quasimodel for (p based on ff if 
(5, g) is a basic structure for (fi of depth m < md{ip), £H is a set of coherent 
and saturated runs through (5) q) and < is a binary relation on JH satisfying 
the following conditions: 

(eqm2) 3wo £W if e t«;o(ro(t/;o))> where ro € 9lo; 

(eqm3) for all r, r ' € JH, if r < r ' then r{w) <w r'{w) for all w £W; 

(eqm4) for all fc < m, r € 9\ki w £ W and x € Tiy, if r(ti;) <,i; x then 
there is r ' € 5Hit+i such that r'(tii;) = x and r <3r'. 

The following can be proved in the same way as Lemma 6.2: 

Lemma 13.7. An MCsu ^ MC-formula tp is satisfiable in a product frame 
S X ^ iff there is a quasimodel for (f based on J . 

As was shown in the proof of Theorem 13.5, an MCsu ^ MC-formula (p is 
satisfiable in a product frame 5 x (S iff (̂  is satisfiable in a temporal epistemic 
structure 5 x (B' from /CA/*, where 6 ' is isomorphic to (8. 

We can now deduce the decidability of ELog5^(/CA/'K,c) by translating 
into monadic second-order logic the statement that there exists a quasimodel 
for (f based on some ^ e C. We require a number of auxiliary formulas. Fix 
some m < md{if). Denote by Em the set of all quasistates for (p of depth m. 
Given a quasistate g = {(T^, <q), tq) from E ^ and a point a in Tg, we denote 
the co-depth of a by cdq{a). 

Introduce a unary predicate variable Pq for eiich q e E ^ and a unary 
predicate variable R^ for each ip € suhip and each A: < m. Given a type t for 
(p and fc < m, let 

xtimx)) = A v̂'(=̂ ) ̂  A ^^J^(^)' 

saying that the type t at point x of co-depth k is defined with the help of 

W^ix) =^ {R!^{X) \ tp e subip). 

For each k <m, let runo(P, R^) denote the conjunction of the three formulas 

Vx l\ (P , (x ) - V Xt,(„)(^(x))), 

cdq{a)^k 

Vx A K i i / V a W ^ 32/(^ < y Afl{^,(j/) AV2(x <z<y-* -R^. («))]. 

Vx A [4.5V2 (^) ^ 3y(y < X A fl^, (j/) A ^z{y < z < x-^ R'^^ (Z))] 
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—this is intended to say that R^ defines a coherent and saturated fc-run 
through a sequence of quasistates defined with the help of P = (Pg | q e Em}-

However, we have to refine this definition in order to ensure that condition 
(eqm4) holds. To this end, we define, by 'backwards' induction on fc, another 
formula run(P, J?*̂ ) as follows. If fc = m (that is, we are at the 'leaf-level') 
then take run(P,fi^) = runo(P,S^) . 

Suppose, inductively, that for fc < m we have already defined run(P, i?* )̂. 
Then let run(P,i?^"'^) be the following formula: 

Vx / \ / \ [Pg(x)Axt , (a ) («^(x) ) 

/ \ 3 4 (run(P, R^) A XtM^Hx)) A 
beTgi^esubip 
a<gb 

Vz A A {Ps{z)AxtM(^^{z))^ V Xt,(<i)W^))))]. 

cds{c)=k-l c<sd 

Finally, we define a monadic second-order sentence qm^ by taking 

q m - = 3 P g [ v . x y {P,{x)A / \ -.Pg.(x)) A 
a€Em g€Em g'eSm 

V 3x(p,(x) A 3 4 (run(P,l^) A XtAa)^^))))] • 

crf«(a)=0 

Evaluated in a flow of time 5̂  = {W, <}, the first Hne of qm^ says that the sets 
Pq CW {q e Em) form a partition of W. By defining the map q :W -^ Em 
as 

q{w) = g iff w e Pq 

and a relation <3 on the runs by taking r <i r ' iff r is defined by R^"^ and r' 
is defined by R^ for some A: < m, we obtain a quasimodel 0 = {S, g, 91, o) 
for (f: the second line of qmJJ* states condition (eqiii2); conditions (eqmS) 

and (eqin4) are satisfied by the definitions of <i and the formulas run(P, R^), 
respectively. Therefore, it is easy to see that we obtain the following: 

L e m m a 13.8. For any strict linear order d? d \= qrnJJ* for some m < md{ip) 
iff there exists a quasimodel for if based on 5-
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Clearly, Em can be constructed from ip by an algorithm. So we can now 
apply Theorem 1.28 stating the decidability of certain theories of monadic 
second-order logic to obtain the first four statements of our theorem for the 
case L = K. To prove statement (5), the reader should repeat the corres-
ponding part of the proof of Theorem 11.21. 

Straightforward modifications of the above proof give the statements when 
L is multimodal Kn or T^. For L = KD45n and L = S5n, the reader should 
have no difficulty in repeating the proof above by appropriately modifying 
quasimodels similarly to what was done in the proofs of Theorems 6.49 and 
6.68. • 

In Table 13.2 we summarized the upper bounds for the computational 
complexity of temporal epistemic logics. All the decidability (but not the 
complexity) results of Table 13.2 follow from Theorem 13.6. 

ElogsuilCAfLfi) 

L 

K„, T„ (n > 1) 

S5, KD45 

S5„, KD45„ (n > 2) 

C 

mo) 

decidable 

in EXPSPACE 
1 (Thms. 3.30,11.31, 

Prop. 11 25) 

decidable 

{(Q-<>}. 
all strict linear orders 

decidable 

in 2EXPTIME 

(Thms. 6.61 ,̂ 13.5) 

decidable 

Table 13.2: Upper bounds for the complexity of temporal epistemic logics 
with 5 and W, but without common knowledge operators. 

As concerns lower bounds, by Theorems 6.63 and 13.4 we have: 

Theorem 13.9. Let C be a class of strict linear orders such that at least one 
flow of time in C contains an infinite ascending chain. Then ELog(/CA/'s5,c) 
is EXPSPACE'hard. 

As a consequence of Theorems 7.24 and 13.5 we obtain: 

Theorem 13.10. The logics ELog(/CA/'K4,{{N,<)}) a^c( ELog(/CA/'s4,{(N,<)}) 
are undecidable. 

'̂ Theorem 6.61 is formulated only for the case when Df and Dp are the only temporal 
operators, but it is not hard to generalize it for the case of S and U as well. 
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With common knowledge 

Similarly to Theorem 13.4, we again see that our temporal epistemic logics 
coincide with the logics of the corresponding product frames: 

Theorem 13.11. Let L € {Kn, Tn, K4n, S4„, KD45n; S5n} and let C be 
a class of strict linear orders. Then 

Elog^ilCAfi^c) = Log(C X FrL^). 

Thus, by Theorem 7.19, we obtain that the addition of the common know-
ledge operators to temporal epistemic logics modeling agents who know time, 
do not forget and do not learn almost always results in undecidable or even 
not recursively enumerable formalisms: 

Theorem 13.12. Let C be a class of linear orders such that at least one flow 
of time in C contains an infinite ascending chain of distinct points. Then 
ELog^(/CA/'L,c) is not recursively enumerable^ whenever L € {K, T2, K42, 
S42, KD452}. ELog^(/CA/'s52,c) is undecidable. 

Proof. For ELog^(/CjVK,c) the statement follows from Theorems 13.11 and 
7.19. 

The proof of Theorem 6.23 shows that Log(C x FrKf) is polynomially 
reducible to Log(C x FrL^), for any L e {T2, K42, S42, KD452}. Therefore, 
the statements for L ^ S52 follow from Theorems 13.11 and 7.19. 

The proof of Theorem 6.71 (3) shows that Log(C x FrKu) is polynomi-
ally reducible to Log(C x FrS52 )• But Log(C x FrK^) is undecidable, by 
Theorem 7.19, so the undecidability of ELog^(/CA/'s52,c) follows from The-
orem 13.11. • 



Chapter 14 

Modal description logics 

In this chapter we investigate the decision problem for description logics 
with temporal, epistemic, dynamic, and standard modal operators. In most 
cases we obtain decidability and complexity results by means of reductions to 
products of modal logics or suitable fragments of first-order modal logics and 
using results of Chapters 6 and 11. We consider the decidability and com-
plexity of three different reasoning tasks for 'modalized* description languages 
with modal component L. 

Section 14.1 investigates the concept satisfiability problem relative to empty 
knowledge base for concepts without modalized roles for modal extensions of 
ACC. This reasoning problem is important for knowledge representation sys-
tems because the global concept satisfiability problem relative to a knowledge 
base consisting of a simple and acyclic TBox is reducible to that problem by 
^unfolding' the knowledge base (see below for definitions). 

As was proved in Section 3.8, for a given Kripke complete modal logic L, 
the satisfiability problem mentioned above is equivalent to the satisfiability 
problem for L x Km—at least when we consider the language without local 
role names. So numerous decidability results can be obtained as direct con-
sequences of our investigation of L x Km in Chapter 6. We also see that, 
although decidable in many cases, this reasoning problem can be nonelement-
ary, since satisfiability for L x Km is nonelementary if L € {PTL, Kf, T2̂ , 
K4^, S4^, KD45^, PDL, CPDL}, cf. Chapter 6. What happens if we add 
local role names to the language? Fortunately, it turns out that we can do this 
'for free.' More precisely, we show that the concept satisfiability problem for 
LACC with local role names is polynomially reducible to the same problem for 
LACC without local role names. Finally, we address the question of whether 
these decidability results can be extended to more expressive description lo-
gics, like ACC with primitive transitive roles or CQ, The answer is *no,' and 
this will be proved again by a reduction to undecidability results for products 
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of modal logics. 

Section 14.2 investigates the full formula satisfiability problem (that is, the 
satisfiability problem for formulas having both local and global role names, 
as well as modalized roles). Or, equivalently, it investigates the local concept 
satisfiability problem (with possibly nonempty knowledge base) in the full 
modal description language. Of course, this reasoning problem is much harder 
than the previous one. In fact, it turns out that only for very few logics—like 
K>^£C and Sbj^cc—is the problem decidable. This is the only part of this 
chapter where useful reductions to products or first-order modal logics are 
not available. Products are useless here, because we do not have anything like 
modalized accessibility relations. Our results on first-order modal logics are 
not helpful either, because the translation of a modalized role is not monodic. 
Decidability results will be obtained by employing the method of quasimodels 
once again, namely by generalizing the proof of the decidability of Kn x K ^ . 

Next, we consider reasoning tasks which can be analyzed by means of em-
beddings into monodic fragments of first-order modal logics. Section 14.3 is 
concerned with the formula satisfiability problem for formulas without mod-
alized roles and global role names. Such formulas can be regarded (via the 
embedding of Section 3.8) as members of the monodic fragment of the cor-
responding first-order modal logic. Thus, if the description logic part of the 
modal description logic is contained in a decidable fragment of first-order logic 
without equality—say, its two-variable or guarded fragment—(as is indeed the 
case for ACC.^^ee Section 3.8), then the decidability of the satisfiability prob-
lem, as well as upper bounds for its computational complexity, are immediate 
consequences of results obtained for monodic fragments of first-order modal 
logics. On the other hand, lower bounds for the computational complexity of 
this reasoning problem can be quickly derived from the polynomial reduction 
of L X S5-satisfiability to satisfiability of MC^cc-formulas without any roles 
at all; see Theorem 3.35 and our results on the complexity of L x S5 in Sec-
tions 5.5 and 6.5. The results on monodic fragments of first-order temporal 
logics are not directly applicable when the description logic component con-
tains number restrictions or transitive closure operators, which are present, 
for example, in CQO. In Section 14.3 we show, however, that even for such 
strong description logics the criteria provided by Theorem 11.83 (for temporal 
logics) and Theorem 12.4 (for CPDL and epistemic logics) can be applied to 
obtain decidability results. 

Finally, in Section 14.4 we consider various reasoning tasks for modal 
description logics interpreted in models with finite domains. 

The syntax and semantics of basic modal description logics were intro-
duced in Section 3.8, so a few remarks on the definition of expressive modal 
description logics like C P D L ^ ^ c , PTLACCI or {S5^)ACC should be enough. 
In what follows we omit the test-operator '? ' from CWC. Without 'T the 
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language CVVC can be regarded as an ordinary modal language with infin-
itely many modal operators [a], where a is composed from atomic actions 
a o , a i , . . . using ;, U, and •*, and interpreted by relations T^ as defined in 
Section 2.4. Now CWCj^cc Is defined in the same way as MCACC and can 
express, for example, that 

Ordered-object C [construct; send] Delivered .object 

(an ordered object is a delivered one after the actions ^construct' and 'send' 
have been performed). By CPDL^£c we denote the set of all CWC^cc-
formulas that are valid in all models. We omit *?' only to simplify the 
definitions of syntax and semantics. (Recall that test-free CPDL is a Kripke 
complete multimodal logic, see Remark 2.23.) All our results can be extended 
to full CWCACC (with appropriately extended semantics); for details see 
(Wolter 2000a). 

Similarly, epistemic logics with common knowledge operators, say S5^, 
can be regarded as standard modal logics. We denote the resulting epistemic 
description logic by (S5^)^£c-

14.1 Concept satisfiability 

In this section we are concerned with the following reasoning task. Suppose 
L is some Kripke complete modal logic. Then the problem is to decide, given 
an A^£,4£c-concept C without modalized roles, whether C is satisfiable in a 
model for L^cc-

A decision procedure for this problem can be used to provide the following 
standard reasoning service in description logic systems. As in Section 2.5, we 
call a set E of A^£^£c-formulas a simple and acyclic TBox if E consists of 
definitions 4̂ = C, where i4 is a concept name and C is an AiC^cC'^oncept 
without modalized roles, such that every concept name is defined at most once 
in E and no defined concept name is used in its own definition, explicitly or 
implicitly. (The first two 'modalized' equations of the 'car salesman knowledge 
base' and the definition of 'mortal' in Section 3.8 are typical (toy) examples 
of simple and acyclic knowledge bases.) 

Now, the global concept satisfiability problem for Lj^,cc relative to simple 
and acyclic TBoxes is formulated as follows: given a simple and acyclic TBox 
E and a concept C, decide whether there exists a model 971 = (5»^) such 
that 5 is a frame for L, (9Jl,i/;) (= 4̂ = Z) for every world i/; in 5 and every 
definition i4 = D in E, and C^^^^ ^ 0 for some v in J. (This reasoning 
service is important because quite often knowledge bases, used in applications, 
are acyclic and simply introduce abbreviations for complex concepts.) It is 
not difficult to see that 971 meets the conditions above if and only if the 
concept, obtained from C by replacing recursively every defined concept with 
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its definition, is satisfied in 9Jl. So the reasoning task above is polynomially 
reducible to the concept satisfiabiUty problem relative to empty knowledge 
base (see Table 14.1). In this section we concentrate on the latter problem. 

global concept satisfiability 
relative to simple and acyclic Tboxes 
without modalized roles 

concept satisfiability 
with empty knowledge base 
without modalized roles 

concept satisfiability 
with empty knowledge base 
without local role names 
without modahzed roles L x K ^ 

Table 14.1: Reductions between some reasoning tasks for Lj^cc-

We are going to prove the following decidability results: 

Theorem 14.1. The satisfiability problem for concepts without modalized 
roles relative to empty knowledge base is decidable for the following logics: 

(1) the dynamic description logic CPDL^£c> 

(2) the epistemic description logics with common knowledge operators L^cc* 
where L e {Kn,Tn,K4n,S4n,KD45n,S5n}, 

(3) the temporal description logics PTL^£C; ^i^ACCj a^d Logpp(Q)^£C; 

(4) K4.3^£c, Log{(N,<}}^£c, and Log{{Q,<}U£c. 

These satisfiability problems are not in ELEM for PDLACCf PTL^£c and 
' L%c^ where L e {Ki, T2, K42, S42, KD452}. 

If we consider the language without local role names and modalized roles, 
then these decidability results follow already from Theorems 6.10 and 6.40 
(stating the decidability of CPDL x K^, Lin x K^ and Logpp(Q) x K^), 
and the reductions in Tables 3.1 and 6.1. Further, the nonelementary lower 
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bound is a consequence of the reductions in Table 3.1 and Theorems 6.15, 
6.26 and 6.37. 

Thus, we only have to prove the following (cf. Table 14.1): 

Theorem 14.2. Let L be a Kripke complete multimodal logic. Then the 
concept satisfiability problem for Lj^cc-concepts without modalized roles rel-
ative to empty knowledge base is polynomially reducible to the same problem 
for concepts urithout local role names and modalized roles. 

Proof. We assume for simplicity that L is a unimodal logic formulated in 
the language MC. In what follows, we call a model (Ŝ , /) an Lj^cc-f^odel if 
ff is a frame for L. 

First we show that any L^^c-satisfiable concept C (with both local and 
global role names, but without modalized roles) is satisfied in an L^£c-niodel 
(Jf, /) with a set of worlds W and the domain A of / such that, for every 
a: € A and every (global or local) role name T, 

\{ye^\3weW t/r^(^>x}| < i. (I4.i) 

Indeed, suppose that C is satisfied in a model (ff,/). Suppose also that 
xoGC^(^),5=(^,<3)and 

/(!.) = ( A , Co^(^),...,/?o'^-\...,5o'(^),...). 

(Throughout the proof, we omit interpretations of object names from models, 
since object names do not occur in concepts and we are dealing with empty 
knowledge bases.) For each local role name Si, let 

Rm' = u 5/̂ '"̂  
weW 

and suppose that Q2t = RI^^^ and Q2i+i = RlSiY, for i < uj. Using the 
unraveling technique we construct a model (5, J) by taking, for it; 6 W, 

J{w) = {^',ci^''\...X^''\••^.si^'"\..), 

where 

A' = {(xo,Q<,,xi,...,C?j„,x„) | m < w , Vj(l < j <m^ Xj-iQi^Xj)}, 

/?j is defined by taking 



588 Chapter 14. Modal description logics 

S^^""^ is defined by 

(xo, Qii,. • •, Qim^ ^m) Sf^'^^x iff 

3y (x = (xo,(5il,...,Q^^,Xnl,i^[5^]^t/> ~^nAxmSl^'^\), 

and C^ ^^' is defined by taking 

(xo,gM,...,Qi„,x„,>ec/<'") iff x^ec /^ '^ 
Clearly, (5,«/) satisfies (14.1). By induction on the construction of a concept 
D, one can readily prove that 

(X0,Qi,,...,Q^^,X^)€D•^("> iff XmeD'^^\ 

It follows that (xo) G C*^^ \̂ as required. 
Next, for any local role name S take a new concept name reach^ and a new 

global role name Rs, Define a translation -^ from the set of A^£^£c-concepts 
without modalized roles into the set of A<£>\/:c-concepts without modalized 
roles and local role names by taking: 

(Ci)^ — Ci, Ci a concept name, 

( D c r = aC'^. 
{3R.C)^ = 3R.C^, H a global role name, 

(35.C)^ = 3H5.(reach5 n C ^ ) , 5 a local role name. 

We claim that for every A^£^£c-concept C without modalized roles, 

C is satisfied in an Lj\cC'^odel iff C^ is satisfied in an L^^c-model. 

{=>) Suppose that C is satisfied in an L^^c-model 9Jl = (iJ, /} for which 
(14.1) holds. Let xo e C^^'"\ 5 = {W, <) and 

/ ( t . ) = . ( A , C o ^ ( - \ . . . , f l ^ ( - \ . . . , 5 o ' ( " \ . . . ) . 

Define a model (3̂ , J) with 

J W = ( A , Co"("'^.., reach^l'"\..., i?o'^"'),..., fl^;-'),...) 

by taking: 

• c/^^^ = Cl^^\ for any concept name Ci different from reach5^; 
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t;€W 

• fl/^"^^ = /?,^^'^\ for any global role name Ri. 

By induction on the construction of a concept D one can now prove that 
Di{w) ^ (^D^)JM^ for all w e W. We only show the induction step for 
C = SSi.D. Suppose that x € C^(^\ Then there exists y such that xSl^'^^y 
and y € D^^^^ By the induction hypothesis, we have xRg:^^y, y € reach^l^^ 
and y e (D^)'^(^). Hence y € (3i?5,.(reach5, n (D^))')*^^^). Conversely, 
suppose that x € (C'^)^^^). Then we find y € reach^J^^ with x/i^J'^^y and 
y e {D^y^'^l By the definition of Ril'^\ there exists v e W such that 
xS^^^^y and, by the definition of reach^J^^ we find a:' with x'5/**^^. By 

(14.1), X = x' and so xS^ y- By the induction hypothesis, y 6 D^^^^ from 
which we obtain x G C'^^\ 

(<=) Suppose that C^ is satisfied in a L^£c-niodel (S^,/) of the form 

Define 

/ H = ( A , Co^(«'\..., reaches;',..., i?i<"'\..., 4 ! ; \ . . . ) 

by leaving the interpretations of concepts Ci and global role names Ri un-
changed and putting for any local role name 5, 

xS^^'^^y iff xRs^'^^y and y € reach^^^\ 

Again, by an easy induction on the construction of D one can show that 
DJ{W) ^ (£)M)/(ti;)̂  foj. ̂ 11 concepts D and all weW. • 

Note, however, that the following problems are still open: 

Question 14.3. What is the computational complexity of the satisfiabil-
ity problem for concepts without modalized roles for (S5^)^£c> Lin^£C) 
LogFp(Q)^£C, K4.3^£c, Log{(N,<>}^£c and Log{(Q,<)}^£c? 

Thus we see that, although of high computational complexity, the sat-
isfiability problem for concepts without modalized roles relative to empty 
knowledge base is decidable for modalized ACC with rather expressive modal 
components. Unfortunately, this result cannot be extended to modal descrip-
tion logics with expressive description components. Here we prove a 'negative' 
result for the description logics ACCR^ (alias 5) and CQ introduced in Sec-
tion 2.5. 
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Theorem 14.4. The satisfiability problem for concepts without modalized 
roles relative to empty knowledge base is undecidable for the following logics: 

(1) the dynamic description logic PDL^£c 
R+' 

(2) the epistemic description logics L^cc + ^^'^ common knowledge oper-
ators, where L € {Ki,T2,K42,S42,KD452}, 

(3) the temporal description logic PTLj^cCj^^ • 

Proof. Let L € {PTL,PDL,Kf , T^, K4^, S4^, KD45^}. To begin 
with, recall that the translation -̂  (given in Section 3.8) polynomially re-
duces the satisfiability problem for L x K^i to the satisfiability problem for 
i>4£C-concepts without local role names and modalized roles relative to empty 
knowledge base (see Table 3.1). Now, set in the translation -̂  for the K4-
operator O of L x K4: 

where jR is a transitive role of ACCfi+. Then we obtain a polynomial re-
duction of the satisfiability problem for L x K4 to the concept satisfiability 
problem with empty knowledge base for L>i£c„+ • By Theorem 7.25, L x K4 
is undecidable, for all the listed logics L. • 

Note that 862 does not occur in the list of epistemic logics above: 

Question 14.5. Is the concept satisfiability problem with empty knowledge 
base for (S5^)^£Cfl,+ decidable? 

Theorem 14.6. The satisfiability problem for concepts without modalized 
roles relative to empty knowledge base is undecidable for the following logics: 

(1) the dynamic description logic P D L C Q , 

(2) the epistemic description logics with common knowledge operators LQQ, 
where L e {Ki,T2,K42,S42,KD452,S52}, 

(3) Log(C)cQ, where C is any class of strict linear orders such that at least 
one of them contains an infinite ascending chain of distinct points. 

Proof. For any L listed in the theorem, L x K f is polynomially reducible 
to the satisfiability problem for LcQ-concepts without local and modalized 
roles relative to the empty knowledge base by extending in a straightforward 
manner the reduction of L x Km to LACC, given in Section 3.8; cf. Table 3.1 
(details are left to the reader as an exercise). Now the theorem follows from 
Theorems 7.19 and 7.20. • 
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14.2 General formula satisfiability 

In this section we consider the formula satisfiability problem for modalized 
description logics in which modal operators can be applied to concepts, global 
and local roles, and formulas. In other words, we deal with the full modal 
description languages introduced in Section 3.8. The price we have to pay for 
this expressive power is high—only very few logics turn out to be decidable. 

We start with the following 'negative' result: 

Theorem 14.7. The satisfiability pwblem for formulas without modalized 
roles and local role names is undecidable for the following logics: 

(1) the dynamic description logic PDLACC) 

(2) the epistemic description logics L^cc '^^^ common knowledge operators^ 
where L € {Ki,T2,K42, S42,KD452,S52}, 

(3) log(C)ACCf where C is any class of strict linear orders such that at least 
one of them contains an infinite ascending chain of distinct points. 

Proof. First, we know from Theorems 7.19 and 7.20 that L x K^ is unde-
cidable, for any modal logic L listed in the theorem. And, by Theorem 3.36, 
L X Ku is polynomially reducible to the formula satisfiability problem for 
LACC without modalized roles and local role names. • 

On the other hand, the following positive result is shown in (Wolter and 
Zakharyaschev 1999b): 

Theorem 14.8. Let L € {K„, Tn, KD45n, S5n}. Then the formula satis-
fiability problem for L^cc is decidable. 

Proof. To simplify presentation, we begin by considering the modal descrip-
tion logic KACC with only one modal operator. It is straightforward (and left 
to the reader) to generalize the proof to the other logics mentioned in the 
theorem—some hints will be given at the end of the proof. 

The proof is a generalization of the proof of Theorem 6.1 (stating the 
decidability of Kn x K^i), and is organized as follows. First, we represent 
K>i£c-niodels in the form of quasimodels and then show that these quasimod-
els can be constructed like mosaics from a finite number of relatively small 
finite pattern pieces (which again are called blocks). 

A number of notions—types, quasistates, basic structures, runs, quasimod-
els, blocks, etc.—which were used in the proof of Theorem 6.1 will be used 
here as well. While their role in the present decidability proof is quite similar 
to the role they played before, the definitions do not coincide. As before, the 
use of the same name for different objects in different proofs turns out to be 
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rather helpful, since this clarifies the similarities (and the differences) between 
these proofs. 

Let us fix an arbitrary MCj^^cc^onnulei (f and try to define a suitable 
notion of K^£c-quasimodel for (/?, following the pattern from the proof of 
Theorem 6.1. We again require a number of auxiliary definitions. Let ob^p, 
con (p, and rol (f be the sets of all object names, concepts, and roles in (̂ , 
respectively, and let sub (f denote the set of all subformulas of if. 

A concept type for </? is a subset c of con ^ such that 

• C n Z) G c iff C, D € c, for every C n D G con (/:?; 

-"C G c iff C ^ c, for every -^C G con ^p. 

A named concept type is a pair Ca — (c, a) in which c is a concept type and 
a £ ob(p. A formula type for (/? is a subset / of sub(f such that 

• V' A X ̂  / iff V̂» X ^ /? for every t/' A x G sub (f; 

• "'^ ^ / iff V' ^ /» for every -^tp G subip. 

A named formula type is the pair / ^ = {/, a) in which / is a formula type 
and ae obif. Finally, by a type for ^p we will mean the pair t = (c, / ) , where 
c is a concept type and / a formula type for (/?; ta = {Ca, / « ) is a named type 
for (p. 

To simplify notation we will write C € t and I/J e t whenever t = (c, / ) , 
C e c and V' G / (in the case of named types, C e ta and i/^ e ta mean 
that ta = {Ca,fa)^ ^a = {c,a), / „ = ( / , a ) , and C G c, V̂  G / ) . Two types 
^1 = (ci? / i ) and ^2 = (c2, /2) are said to be formula-equivalent if / i = /2-

A quasistate candidate for (/:? is a pair ((T, <) , t ) , where (T, <) is a finite 
intransitive tree of depth < md{(p) and t a labeling function associating with 
each X G T a type t{x) for ip. (So we can think of a quasistate candidate as 
a tree of types.) Two quasistate candidates ((T, <) , t) and ((T', <') , t ' ) are 
called isomorphic if there is an isomorphism / between the trees (T, <) and 
(T', <') such that t{x) = t ' ( / (x)) , for all xeT. 

A quasistate candidate ((T, < ) , t) is called a quasistate for (̂  if the follow-
ing conditions hold: 

(dlqml) For all x eT, OC G con(f, and OV' ^ sub(p, 

OC G t(x) iff 3yeT{x<yACe t{y)), 

Oxl) G t{x) iff 3y G T (x < 1/ A V' G t(y)). 

(dlqml') For all x,xi,X2 G T such that x < xi , x < X2 and xi ^ X2, 
the structures ((T^», <^ i ) , t^^ and ((T^^^ <^2) ^^^2^ ^j .^ not iso-
morphic, 
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where (T^S <^») is the subtree of (T, <) generated by Xj, and t̂ » is the re-
striction of t to T^S i = 1,2. 

Quasistates are intended to represent the 'behavior' of a single object in 
models (modulo if). 

As the number of different types for (f does not exceed 2l̂ "̂* l̂ • 2>^^ '̂̂ l, 
the number of pairwise nonisomorphic quasistates for (fi of depth 0 is at most 
2|con< |̂ . 2\^ub^\ ^g ^^11 ^Q^ j^fij^g inductively 

Clearly, nk{^) is an upper bound for the number of nonisomorphic quasistates 
for (f of depth fc, and so 

md(v?) 

fc=0 

is an upper bound for the number of different quasistates for ip. The number 
of points in any quasistate for (p is bounded by 

In what follows we assume that nonisomorphic quasistates are disjoint and 
that isomorphic quasistates actually coincide. 

A basic structure of depth m for v? is a pair (A,g) such that A is a 
nonempty set and q a function associating with each w; € A a quasistate 

g(ti;) = ( ( r^ ,<^) , t« ; ) 

for if such that the depth of each {Ttvy <w) is m and, for every a 6 A O o6(^, 
the set {ta{x) \ x e Ta} consists of only named types of the form *«. 

Let (A, q) be a basic structure for (f of depth m and let fc < m. A k-run 
through (A, q) is pair of the form 

r = {r,{Rr I Re rot if}) 

in which Rr is a binary relation on A, for each R € rol (/?, and r is a function 
giving, for each ii; G A, a point r{w) e T^j of co-depth A: such that all the 
types t^{r{w))^ w; G A, are formula-equivalent to each other. Given a set JH 
of runs, we denote by Oik the set of all fc-runs from !H. 

A run r is called coherent if the following conditions hold, for all w e A: 

• for every C = £) in sub if, {C = D) e tu}{r{w)) iff for all t; G A, we have 
{Cetv{r{v))^Det^{r{v))); 
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• for every a : C in sub if ̂  {a : C) e tii;(r(it;)) iff C € ta{r{a)), provided 
that a G A; 

• for every aRb in subip^ we have {aRb) e tw{r{w)) iff aRrb, provided 
that a,6 G A; 

• for every 3R.C in con (p, if there exists a t; € A such that wRrV and 
C € tv{r{v)) then 3R.C e tw{r{w)). 

A run r is called w-saturated for it; € A if 

• for every 3R.C in comp, 3R.C G tti;(r(K;)) implies that there is a t; G A 
such that wRrV and C G tv(r(i;)). 

A run is saturated if it is K;-saturated for all n; G A. 
Finally, we say that a quadruple Q. = (A, g,9l,<) is a KACcQUO'Simodel 

for <p {based on A) if (A,g) is a basic structure for ip of depth m < md((/?) 
such that A D 06 y?, 91 is a set of coherent and saturated runs through (A, g), 
and < is a binary relation on 91 satisfying the following conditions: 

(dlqm2) there is an r G 91 such that tp G tw{r{w)), for some (or, equival-
ently, all) li; G A; 

(dlqmS) for all r, r' G 91, if r < r' then r{w) <w r'{w) for all w e A; 

(dlqm4) 9lo ^ 0, and for all A: < m, r G 91^, w e A and x G Tyj, if 
r{w) <yj X then there is r ' G 9tfc-|.i such that r'{w) = x and 
r <3 r'; 

(dlqtn5) for all i/;,v G A, OJR G ro/y?, k < m, and r G 91^, we have 
w{OR)rV iff there is r ' G 91̂ 4-1 such that r <r' and wRr>v\ 
for all it;,t; G A, D/? G roi(^. A: < m, and r G 91^, we have 
w{nR)rV iff for all r ' G 9tjfe4.i, r < r ' imply wRr'V\ 

(dlqm6) for all r ,r ' G 91, we have Rr = Rr', whenever i i is a global role 
name in rol (/?. 

The notion of quasimodel has been defined, and now we have to prove the 
'quasimodel lemma' (cf. Lemma 6.2): 

Lemma 14.9. An MCACC-formula y? is satisfied in a KAcc-'f^odel iff there 
is a KACC'Quasimodel for ip. 

Proof. (<=) Suppose that (A,g,9l,<3) is a quasimodel for ^p. Construct a 
K^£C-inodel M = (3 ,̂ / ) based on the frame 5 = (91, <) by taking, for all 
r G 91, 

/ ( r ) = (A, i?^>, . . . ,Co ' (^>, . . . , a i<^>, . . . ) , 

where. 
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• WRI^^K iff w{Ri)rV, 

. c/^^) = {weA\Ci€ tu,{r{w))}, 

I{r) 

whenever Ri e rol v?, Ci € con (/?, and Ot € 06 y?, and arbitrary otherwise. By a 
straightforward induction on the construction of concepts, roles and formulas 
one can check (using conditions (dlqm3)-(dlqm5)) that for all C € corup, 
R^roltf, rp £ subip^ t/;, v € A, and r € JH, we have: 

wR^^^'h if! wRrV, 

w e C^(^) iff C € K{r{w)), 

(an, r ) \= ip iff 'ip € tyj{r{w)) for some (or, equivalently, all) it; G A. 

Therefore, by (dlqm2), ip is satisfied in 9Jl. 
(=>) Suppose now that (p is satisfied in a KACc^odel 9Jt = (dil) with 

domain A D ob(p. An argument similar to the one proving Proposition 1.8 
shows that we may assume Ŝ  = (IV, <) to be an intransitive tree of depth 
m < md{(p) and 

(9n,xo)hv? 

for the root xo of J . For every pair w e A, x eW^ let 

c{iv,x) =^ {C ecornp\w e C^^^ }̂, 

/ ( x ) = {V' € stzbv' I (an, a:) f= tp], 

t{w,x) = (c(i(;,x),/(a:)). 

Clearly, t{w,x) is a type for ip; t(o,x) is regarded to be a type named by a, 
for a £ obif. Now we have to construct a quasistate ((T^y, <^) ^t^) for each 
w € A. The obvious choice of T^} = PV, <ti;=< and tw{x) = t(t(;,x) does 
not work, because W can be infinite. So let us make it finite in such a way 
that the resulting structure still satisfies (dlqml) and also complies with the 
smallness condition (dlqml') . Fix a t/; 6 A and define a binary relation ^^ 
on W as follows. U x^y eW are of depth 0 (i.e., they are leaves of ff) then 

X'^yjy iff t{w,x) = t[w, y). 

For x,y £W oldepth fc (0 < A: < md(v?)), let 

X ^u>y iff t{Wj x) = t{w, y) 

^'iz£W {x<z -^ 3z' eW{y<z' ^ zr.^ z')) 

^^zeW {y<z -> 3z' £W{x<z' ^ zr^.^ z')). 
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Clearly ^^v is an equivalence relation on W. Denote by [x]^} the '^^-equivalence 
class of X and put 

W^ = {[x]^\xeW}, 

[x]wSuj[y]^ iff 3y'e[y] w X *^ y 1 

lw{[x]w) = t{w,x). 

Then, by the definition of is well-defined and the structure 

clearly satisfies (dlqml') . Note that the map fw-^^-^ [x]w is a p-morphism 
from {W,<) onto {Ww,Su,)j and so it also satisfies (d lqml) . However, 
(Wyj^Sw) is not necessarily a tree. The tree {Tyj,<yj) we need can be ob-
tained by unraveling {W^, 3^)' 

Tw = {([^o]ii;, • • •, [xk]w) I A: < m, [xo]wSw[xi]wSw • • • Sw[xk]w}, 

U <yjV iff U- ([xo]u;, . . . , [Xk]w) , V = ([Xojti;, • • • , [Xk]w, [Xk-\-\]w) 

and [xfc]w;5ti;[xfc4.i]ti;. 

Let 

It is not hard to see that, for any i/; € A, 

q{w) = {{T^,<w)^K) 

is a quasistate for (p. It remains to define appropriate runs through the 
basic structure (A,g). To this end, for each k < m and each sequence 
X = (xo , . . . , Xk) of points in W such that XQ < • • • < xjk, take the map 

ri :w^ ([xo]ty,...,[xfc]^), 

and, for each Rerolip, define a binary relation Rr^ on A by taking 

wRr.v iff wR^^'^'^K. (14.2) 

It is easy to check that 

rx = {rxi {Rrr \ R^rol (f}) 

is a coherent and saturated fc-run. Let IH be the set of all such runs. Then 
(dlqm6) holds by definition. For rx,ry e 91, let r^ <3 r^ iff x = (XQ, . . . ,xj t) , 
y = (xo,.. .,Xjt,x/t-|-i) for some points XQ < • • • < Xjt < Xjt-i-i in W. Then 
(dlqmS) holds by the definition of <iy. Condition (dlqm2) holds since we 
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have if € tw{roM) for the run VQ € IHo with ro{w) = ([xolti;), for all w e A. 
For (dlqm4), let r e 9\k, v G A and z e T^ be such that r{v) <v z. We 
have to show that there is r ' € IH/fc+i such that r <r^ and r'(i;) = z. Since 
r{v) <v z, we have r{v) = ([a:o]v,...»[^fc]t;) and z = ([xo]t;,..., [xk]vj [xk-^i]v), 
for some x i , . . . ^Xk^Xk-^i such that XQ < a:i < • • • < x^ and [xAjlv^vfxfc -̂ilt;. 
By the definition of Sy, there is y € [xfc+ijv such that Xk < y> Take the map 

r' :w^ {[xo]wi '"1 [xk]w^ [y]w), 

and, for each R € rol v?, define a binary relation Rr* on A by taking 

wRr'V iff wR^^^^v. 

Then the pair r ' = (r', {i?r' | /? € ro/ (^}) is in 91. 

It remains to prove (dlqmS). We check only the condition for D; the O 
case is treated analogously. Suppose that w{nR)rV and r<r\ Then r = r̂ g, 
r ' = Ty, for some sequences x = (xo , . . . , f̂c)» y = (̂ o» • • •» /̂e» ^fc+i) of points 
from W such that XQ < • • • < x/t < a:/fe-|.i, and w{nRy^''^h holds by (14.2). It 
follows by definition that we have wR^^^^v for all y > Xkt and so in particular, 
^^/(xfc+i)^ Using (14.2) again, we obtain wRr>v, Conversely, suppose that 
wRr'V holds whenever r <r\ for some r = r^, x = (a:o,... ,0:^:). We need to 
show that w{nR)rV, that is, wR^^^^v hold for all y > Xk in W. For every 
y > Xk', take the run r^ corresponding to the sequence j / = (xo , . . . , Xjt, y). By 
the definition of < we have r <] r^, from which wRr^v. Therefore, by (14.2), 
wR^^^^v^ as required. 

Thus, (A, g, 91, <) is a quasimodel for if, • 

Suppose that O. = (A,g,£H, <) is a quasimodel for (f^weA.Re roltp^ 
and R == MRi for some (possibly empty) string M of O and D, and role name 
Ri. Consider the tree 5ti; = {Twi<w) as a usual Kripke frame. If we have 
idw^f^M) \= M±, for r G 91, then let us say that R is r-universal. This name 
is explained by the fact that if R is r-universal then /?r = A x A, which can 
be easily established by induction on the length of the string M. 

We also say that objects t;, v' G A are twins {in £1) relative to w e A if 

• Q{^) = 9(^0; 

• for all r € 9t, r{v) = r(t;'); and 

• for all r 6 91 and R € rol v?, we have wRrV iff wRrv'. 

Lemma 14.10. For every satisfiable MC^cc-formula v?, there is a quasimodel 
£}* = (A*,g*,9l*,<*) for (fi such that the following conditions hold: 

(i) for any distinct w^v e A*, the object v has infinitely many twins in Q* 
relative to w; 
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(ii) the relation 

{{v,v') \v,v' ^ obif and vRrv' for some r € fH*, 

R€ rolip is not r-universal} 

is a disjoint union of intransitive tree orders on the set A — obcp. 

Proof. Suppose that there is a quasimodel 0. = (A, q, IH, <) for (p. For each 
ti; € A we take an infinite set X^^j containing w so that XyjHX^f = 0 whenever 
w ^ w'. For every v G X^ let q'{v) be an isomorphic copy of q{w)^ and let 
A' = U{^w I tx; € A}. Thus we have got a basic structure {A',g'). Now 
we extend every run r G 9t to a run r ' through (A',g') simply by taking 
r\v) = r{w) for all v G Xyj^ and w'Rr'v' iflF wRrV, for all w' € Xyj, v' G Xy 
The resulting set of runs is denoted by W; we put r'l <' ri^ iff r i <3 r2, for all 
r i , r 2 G 91. It is readily seen that O' = {A^g^fH^<J') is a quasimodel for (p 
satisfying condition (i). 

To satisfy (ii), we apply the unraveling technique to O'. Denote by A* 
the set of all finite tuples {wi,.. .,Wn) of objects in A' such that Wi ^ obip 
for i ^ 1, and let q*{{wi,... ,Wn)) = q'{wn)i which yields us a basic structure 
(A*,g*). Given a run r G !H', we construct r* by taking 

r*((tx;i,...,t/;n)) = r{wn) 

and, for every R G rol if, {wi,. ..,!£;«) Rr* (^ i , . . . , v^) iff either H is r-uni-
versal or {wi,... ,ti;„) = (vi , . . . ,Vm-i) and WnRrVm- It is not hard to check 
that r* is a run through (A*,g*). Finally, we put r j <i* r2 iff r i <]' r2, for all 
r i , r 2 G IH'. The structure 0* = (A*,g*,9l*,<i*) is then a quasimodel for (/? 
satisfying both conditions (i) and (ii). Q 

Our next task is to provide an algorithm for deciding whether there exists 
a K^^c-quasimodel for (f. In fact, we will show that instead of finding such 
a quasimodel, it is enough to find a finite set of finite 'pattern blocks' out of 
which a quasimodel for (p can be constructed, with the size of the set and the 
size of blocks in it being effectively computable. 

A W'block for (/? is a quadruple 05 = (A,g,9l,<3) such that 

• A is a finite set disjoint from obip,w€ A, and (A, q) is a basic structure 
for (̂  of depth m, for some m < md{ip)\ 

• 91 is a set of coherent and lu-saturated runs through (A, q) satisfying 
(dlqm6); 

• <3 is a binary relation on 91 satisfying (dlqm3)--(dlqiii5); and 
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• the relation 

{{v^v') I vRrv' for some r £^^ Re rol^p is not r-universal} 

is an intransitive tree order on A with root w, 

A kernel block over 06 (/? ̂  0 is a structure of the form !Bo = {ob tp, q^, 9lo, <o) 
in which 

• (ofr V?, q^) is a basic structure for (p of depth m < md{if) (recall that for 
every a e ob(f^ the set {ta{x) \ x £Ta} consists of only types named by 
a, whenever q^{a) = ({Ta, <«> ,ta)); 

• IHo is a set of coherent runs through {ob(f^q^) satisfying (dlqm6); and 

• <io is a binary relation on 9\o satisfying (dlqm3)-(dlqm5). 

Kernel and t/;-blocks defined above are also called blocks for (p. A nonempty 
set S of blocks for (f is called satisfying if 

• all blocks in S are of the same depth m, for some m < md{(fi)] 

• S contains a single kernel block for (f whenever obif ^0; 

• every block in S satisfies (dlqm2); 

• for every block 53 = (A, g, 91, <) in S and every tt; G A, there is precisely 
one a;-block 03' = (A',g',JH',<i') in S such that q{w) = q^{w); 

• for every a e ob(p^ there is precisely one w;-block 55 = (A, g, 91, <} in S 
such that qoict) = ((^o> <o) , to> is isomorphic' to q(w) = ((T«,, <ti;), t̂ y) 
in the following sense: There is an isomorphism / between the trees 
{Ta, <o> and {T^, K^v) such that, for all x e To, if ta{x) = {Ca, fa) then 
tM{x)) = {cJ). 

Lemma 14.11. There is a Kj^ccQ^'O'Simodel for ^ iff there is a satisfying 
set of blocks for (p such that the domain of each nonkemel block contains at 
most 

1 -f {md{(p) -f 1) • p{(p)' \con (p\ 

objects. 

Proof. (4=) First we show how a quasimodel for (p can be constructed from a 
satisfying set 5 of blocks for (p. To begin with, we call a quadruple (A, g, JH, <j) 
a weak quasimodel for ip if the following conditions hold: 

(wdlql) A is a finite set containing 06^? and (A,g} is a basic structure 
for ip\ 
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(wdlq2) iH is a set of runs through (A, q) and < is a binary relation on 9^ 
satisfying (dlqin2)-(dlqm6); 

(wdlq3) for all w,v e A such that wRrV for some r e 9t, there exists a 

block 53̂ ^̂  = {A^^(7^^9l^^<^^) in S such that 

• A'^^C A a n d i / ; , i ; e A^^, 

• for all w € A^^, q{u) = qf^^(z/), 

• for all r € 91, the restriction r'^^ of r to A'^^ is a run in 

We construct by induction a sequence £Jn = (An,q'n»^j'^n)> n < a;, n > 0, 
of weak quasimodels that 'converges' to a quasimodel for <f. \i ob(p ^^ then 
let Hi be the kernel block ®o in 5 . Otherwise, let 0 i be any nonkernel block 
from S, Clearly, in both cases £Ji is a weak quasimodel for </?. 

Now let n > 1, and suppose that we have already constructed Ojt, for 
0 < A; < n. Let AQ = 0. For each w e An - An- i , select a tz;-block 
03^ = (A^,g^,lH^,<]'^) from 5 such that q^{w) = g^(i/;). (The existence of 
such a block follows from (wdlq3).) We may assume that all of the selected 
blocks are pairwise disjoint and A^ D An = {w}. Define (A„4.i,qf„^i) by 
taking 

An+l = An U U { A " I ti; € An - A n - l } , 

^ (,A _ / ^ " ( ^ ) ' if t; e A - , It; € An - An- i , 

In other words, we 'glue together' the basic structures (An, qn) and (A^, g^) 
at object w. 

Next we define fHn+i and On+i- Suppose that we have r € 9ln and a 
sequence s =^ {s"" e^"" \w e An - An- i ) such that r{w) = s'^(ti;), for all 
w G An — An- i . Define the extension r U s of r by taking r U s = (r U 5, -Rrui) 
where, for all u,t; € An+i, 

^ ^ \ r{v), if v G An, 

/Jrus = An-f 1 X An-Hi if fi is r- or s^-universal for some w e An- An- i , and 

J uRrV, if W,T;G An, 
u/t^u.-v m I ^j^^^^^ liu.ve A^, ii; 6 An - An-i -

Let 9ln+i be the set of all such extensions and let 

( r i U Si) <]n+i (r2 U S2) iff ^1 <3n ^2 and s^ "̂̂  s^, for all ti; € An - An-i-

It can be readily checked that 9tn+i and <in-fi satisfy (dlqm3)-(dlqm6), and 
so Qn-fi = (An+i,q'n+i^'^n+i»<n+i) is a Weak quasimodel. 
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The iimit quasimodel' is defined as follows. First, let 

A = U An, g = U g„. 
n<u} 0<n<u; 

Next, for each sequence of runs {Vn ^^{n \0 < n < u) such that Vn+i is an 
extension of r „ take r = Uo<n<u; ^n- Let JH be the set of all such runs. For 
r^r^ e9i, define 

r<r^ iff Vn <n ^n fo^ all 0 < n < cj, 

where r ' = Uo<n<u;< • 
It is not hard to see, using (wdlql)-(wdlq3), that all the runs in W are 

coherent and saturated, and (A,q,9l,<i) is a quasimodel for if (see the proof 
of Lemma 6.3 for some details). 

(=>) Now we have to show how to extract a set of 'small' blocks from a given 
quasimodel Q = (A,g,9l, <} for if of depth m < md{ifi). Note that we may 
assume that our quasimodel £1 meets conditions (i) and (ii) of Lemma 14.10. 

To begin with, it is readily seen that iiob(p ^ 0 then Q3o = (o6 v?, q^^ 9to, <3o) 
is a kernel block for v?, where q^ is the restriction of q to ob(p, each run r© 
in 9\o is the restriction of some run r € W to o6v?, and for all Vo.r^o ^ ^o» 
^o <o rj, iff r <J r ' . 

To construct a satisfying set S of blocks, we will associate with each w in 
A-obifa ti;-block 03^ = (A^, g" ,̂ 9t^, <«̂ ) such that q'^iw) = g(ti;), and put 

5 = { B ^ | u ; 6 A-o6(p}U{aJo}. 

The resulting 5 will clearly be a satisfying set of blocks for (p. 
So, fix a it> € A - o6 if. First we define inductively sets of fc-runs &k Q^^k^ 

for k < m: 

• Let &o = {ro} for the unique run VQ in IHo-

• Given &k^ we construct 6^4.1 as follows. For every run r € (5fc and 
every x e T^, with r{w) <w x, select an r ' € IHfe+i such that r <\r' and 
r'(w;) = x, and put it into Sfc+i. (Such a run r ' exists by (dlqm4).) 

Finally, let 6 = Ufc<m ©it- Clearly, | e | < p{ip). 

For every r G 6 and every 3R.C 6 tti;(^(t/^))» we then let 

Sat{r, 3R.C) = {1; € A | wRrV, C € t^(r(t;))}. 

As r is saturated, 5of (r, 3R.C) ^ 0. We select an m -f- 1-element subset 

A^(r ,3i?.C) = { t ; i , . . . , t ;^^ i} 
of Sat{r^3R.C) such that v i , . . .,^m-)-i are twins relative to w. We may 
assume that the obtained sets A^(r , 3R.C) are pairwise disjoint. 

Now we define 
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• A^ = {w} U U{A^(r, 3KC) | r 6 6 , 3R,C e t^{r(w))}, and 

• for all V e A^, q'^iv) = q{v). 

Then (A^, g^) is a basic structure for if, and the cardinality of A^ is clearly 
bounded by 1 H- (md(</?) -h 1) • p((/?) • |con y?|. 

According to Lemma 14.10, we may assume that for every run r G 91 and 
every R G rol (f, we have: 

• if {{Tyj, <yj) ,r{w)) ^ M± then, for all u,v e A^, uRrV implies u = w 
and V ^ w; 

• if ((T^, <^) ,r{w)) \= M l then Rr = Ax A. 

Let V e A^, V ̂  w, and suppose that the pairs r = (r, {ilr \ R ^ rol (f}) and 
^' = (̂ '? {^r' I i i 6 ro/ (/?}} are such that the domains of the functions r and 
r' contain A^, r{w) = r'(ii;), and Rr, Rr' are binary relations on A, for all 
R € rol^p. We define the pair r -^-y r' = (r 4-t; r', {Rr+^r' \ R G rol^p}) as 
follows. For all 2 G A^, 

and, for each R G ro/ (̂ , 

• Rr^^r' = ^ ^ >< A^, whenever R is r-universal (and so r'-universal as 
well), 

• wRr^^r'"^ iff u = V and wRrt\ ov u ^ v and wRr'U, otherwise. 

Using this 'addition' function, we now define sets DK^ of A:-runs through 
(A^, g^), for every k < m. Let 9KQ consist of the restriction of VQ to A^. For 
A: > 0, we put all the restrictions of runs from &k into 91^ and also add there 

r i -Tvi ( r 2 - f i ; 2 ( . . . ( n4 - t ; , r ) . . . ) ) , 

where 1 < / < A:, r G 6fc, r i , . . . ,r/ ^ 51^ are such that r{w) = ri{w), for 
1 < i < /, and v i , . . . , Vf are pairwise distinct points in A'̂  different from w. 

Obviously, every run s G 91^ is coherent. We show that it is ly-saturated. 
This is clear if s is the restriction of some run in 6 . Otherwise, s is of the 
form 

for some k <m. So, we modified the t/;-saturated run r at < m places. Take 
some concept 3R.C G tw{s{w)). Since we selected for A^ m -f 1 twins for 
each point in Sat{r^ 3/l.C), there is still at least one v left to 'saturate s with 
respect to 3/t.C,' that is, such that 3R.C G tv{s{v)). 
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Finally, let 

5 = r i -f̂ , (r2 -ft,, (... (n -^vt r ) . . . ) ) , (14.3) 

s' = r[ +,; (r'2 +.i (... « 4-.;̂  r ' )) . . . ) (14.4) 

be two runs in W". (If either 5 or 5' is the restriction of a run in S, then we 
consider / or n as 0, respectively.) We let 5 < 5' iff the following hold: 

• 5 € IH^ and 5' € 9l]fcVi> for some A: < m, 

• r <r'^ 

• I <n and Vi = v[^ for all 1 < i < /, 

• for all z e A^, ri{z) <z r[{z) whenever 1 < t < /, and r{z) <z r[{z) 
whenever / -f 1 < t < n. 

Then (dlqmS) holds by definition. We show that (dlqm4) also holds. Sup-
pose that 8 is of the form (6.2), z € A"', x e Tz and s{z) <z x. We need a 
run s' in U\^ such that s <^ 5' and s^{z) = x. 

Case 1\ z ^ Vj for some 1 < j < i Then s{z) = rj(z) = Vj for some 
Vi G IH. As the original quasimodel Q satisfies (dlqm4), we have a run 
rj € £H such that Vj <rj and rj{z) = x. Similarly, for all i ^ j , 1 < i < /, 
take a run r[ from 91 such that Vi o r J and r-(u') = rj{w). Finally, take a 
run r ' from S such that r <3 r ' and r^{w) = r^(i^). (Such a ran exists by the 
definition of 6.) Then 

5' =: r[ -f t;̂  (ri 4-v. (... (r; +v, rO .. .)) 

is a run in 5H ,̂ as required. 
Case 2: z ^ Vj for any I < j < L Then s{z) = r(2). Select a run rf^j 

from JH such that r <rj^j and r^^iiz) = x. For each i, 1 < i < /, take a run 
rJ from 9\ such that r^ < r[ and rj(it') = ^[^^{w). Finally, take a run r ' from 
6 such that r <3r' and r'(K;) = rj^i(i/^). Then 

5'=:r;4-v, (r '2+t,2(. . . (r ;^i+^r ') . . . )) 

is a run in JH ,̂ as required. 

We check only the first condition of (dlqmS); the second is similar and left 
to the reader. First, suppose that 5 € JHJĴ  is of the form (14.3) and w{OR)sZ, 
for some z € A^. Let us assume first that OR is not 5-universal. 

Case 1: z ^Vj for some 1 < j < /. By (dlqmS) in the quasimodel 0 , we 
have a run r^ € 9lfĉ -l such that Tj<r^^ and wRr'Vj, For all i 7̂  j , 1 < i < /, we 
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select (by (dlqm4) in £2) a run r • € ^k-^i such that ri<r[ and r-(i(;) = 'rj{w). 
Finally, take a run r ' from 6 such that r<r' and r'(i/;) = rj{w). Then 

5' = r ;4-^ , (r '2+^, ( . . . ( r ; - f ^ , r ' ) . . . ) ) 

is in iH^^j, s <î  5' and wRg'Z. 
Case 2: z ^ Vj for any 1 < j < L By (dlqmS) in Q, we have a run rj^j 

in !Hit-f-i such that r < rj_,_i and wRr^ ^ z. For each i, 1 < i < /, take a run r[ 
from Wfe+i such that r^ <Jr̂  and r!^{w) = rj^.i(ti;). Finally, take a run r ' from 
6 such that r<r^ and r^{w) = rj_,.i(i/;). Then 

« ' = ^'1+V1 (^2+V2 (. • • W + i + ^ O • • •)) 

is in 91)̂ 4.1, s <3̂  s', and wR^'Z. 

Assume now that OR is 5-universal and u{OR)sV^ for t/,t; G A^, with 
5 being of the form (14.3). Then OR is r^- and r-universal too. Suppose 
R = MRj, Rj a role name. Then there exists x € T^ such that r{w) <yj x 
and {{%wi <w) ,^) \= M±. Take an r ' G ̂ k-^i such that r o r ' , r'(i(;) = r{w), 
and also take r[ € IH^+i such that r^ <3rJ and r^(iy) = ri(ii;), for all 1 < i < /. 
Then 

s' = r ; + ^ , ( r ' 2 + v 2 ( . . . W + t ; , r O . . . ) ) 

is in 9lfc!̂ .i, ^ "̂ ^ '̂» ^^^ ^ ^̂  ^'-universal. Thus we have proved the (=>)-part 
of (dlqm5). 

To show the converse, suppose that s and s' are of the form (14.3) and 
(14.4), respectively, s <^ s' and wRg'Z^ for some OR G rolip that is not 5-
universal. If 2; = Vi, for some 1 < i < i, then we have ri<r\, and so, in view 
of (dlqm 5) in Q, 'w{OR)riZ^ from which w{OR)sZ follows. Let z = Vj for 
some i 4- 1 < j < fc. Then r <rj, w{OR)rZ, and so w(OR)sZ. Finally, if 
z ^ Vi for any i with 1 < t < A:, then r < r ' , and we again have w{OR)rZy 
from which w{OR)sZ follows. The case of an 5-universal Oi? is trivial. 

Finally, it is straightforward to see that (dlqm6) holds. Thus, the struc-
ture {A'^.q'",Ol'^, <^) is indeed a it;-block. • 

Since one can effectively check, given a jM£>i£c-formula (/?, whether there 
exists a satisfying set for (̂ , as an immediate consequence of Lemmas 14.9 
and 14.11 we obtain a proof of Theorem 14.8 for Kj^cc- It should be noted 
that the obvious 'brute-force' algorithm is nonelementary. The complexity of 
the satisfiability problem for A^£^£c-formulas remains open. Recall, how-
ever, that even for K x K—which is embedded in our logic—no elementary 
algorithm is known either (see Question 6.5). 

It is not hard to adopt the developed technique in order to prove The-
orem 14.8 for the other modal description logics listed in its formulation. In 
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particular, for S5 one can modify the proof above in the following way (cf. 
also the proofs of Theorems 5.22 and 6.44). 

First of all, quasistates for a given formula (f are now simply sets T of 
types for (f such that, for all t G T, OC € compy and Oip e subip, 

OC£t iff 3e eTCe t\ 

OtA € t iff at ' € r v̂  € t'. 

Besides, no ordering of the runs is needed. Thus, an S^Acc-quasimodel for 
(/9 is a triple (A,g,9l), where A 3 o6v?, g is a function associating with each 
t/; € A a quasistate q{w) = T^ and 91 is a set of runs through (A,g} such 
that 

• for all t/; G A, t € T^ there is a run r € JH such that r{w) = t; 

• for all tt>, t; 6 A, O/? 6 ro/(^, and re 91, we have 'w{<>R)rV iff there is 
r ' G IH such that wRr'v; 

• for all w,v £ A, DR € ro/(^, and r € £H, we have ii;(a/?)rt^ iff wRr'V 
hold for all r ' G JH. 

The remaining part of the proof is similar to the proof given above. It may 
be worth noting that now in the construction of the block A^, it is enough 
to take only two twins 1̂ 1,̂ 2 relative to w. • 

14.3 Restricted formula satisfiability 
In this section we consider the satisfiability problem for formulas without mod-
alized roles and global role names. It turns out that in this case we can prove 
decidability for description logics which are considerably more expressive than 
ACC, say, CQO defined in Section 2.5. 

The modal description languages MCCQO^ {MCSU)CQO and CVVCCQO 

are obtained from MC^cc^ {MCSU)ACC and CWCACCI respectively, by al-
lowing the use of arbitrary CQO-concepts; the modal operators are applicable 
only to concepts and formulas. Nominals in CQO are interpreted as rigid des-
ignators, since in every world Wy we have {a}^^^^ = {o^^^^} for all object 
names a. 

Theorem 14.12. The satisfiability problem for formulas without modalized 
roles and global role names is decidable for the logics LcQOf where L is one 
of the following dynamic^ epistemic and temporal logics: 

(1) CPDL, 

(2) K^, T^, K4^, S4^, KD45^, S5^, 



606 Chapter 14. Modal description logics 

(3) Log^if(C)f where C is one of the following classes: {{N, <)} , {(Z, <)} , 
{(Q, <}}, the class of finite strict linear orders^ any first-order definable 
class of strict linear orders. 

Proof. The result is proved using Theorem 11.83 (for temporal logics) and 
Theorem 12.4 (for CPDL and epistemic logics). We will confine ourselves to 
considering the temporal case and leave the remaining dynamic and epistemic 
logics to the reader as an exercise. So let L = Log5^(C) for any of the listed 
classes C. 

Recall that in Section 3.8 we introduced a translation -^ from MCj^cc into 
first-order modal logic. As modalized roles are available in AiC^cCi the map 
•^ is not an embedding into the monodic fragment of QTC. However, since 
we consider here the language without global role names and modalized roles, 
•̂  can be extended to a translation from {MCSU)CQO without such roles 

into the monodic fragment QTC^ of first-order temporal logic with equality. 
First, define inductively for all roles R and S (we consider the new clauses 
only) 

{R o Sf = 3z (fi^(x, z) A S'^iz, 2/)), 

(H*)^ = :R(x,y), 

where R is a fresh binary predicate symbol. Now, for every basic role B, any 
concepts C and D, and every object name a, we let: 

i3>nB.Cf = 3x1... 3x„( / \ B^\x,xi) A / \ C'^{xi/x} A / \ Xi ^ xj), 
l < i < n l<»<n l < t < j < n 

{CUDf = C'^UD^, 

{{a}Y = {x = a). 

Finally, for all formulas (/? and i) we set: 

Denote by /C the class of all first-order structures 

/ = (D ,/?o» •.. jC'o,... ,H , . . . , a o , . . . ) , 

where R is the transitive and reflexive closure of the relation 

{{a,b)eD^ xD' \I\=R^[a,b]}, 
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for each CQO-vole R. Let 

QTC^ = {(f^ I V? is an {MCsu)cQO'formuldi}. 

Clearly, QTC' is a set of sentences from QTC^. We claim that conditions 
(a) and (b) of Theorem 11.83 hold for QT£' and K. 

To show (a), recall first that, having concepts of the form {a}, there is 
no need to define a : C and aRb as atomic formulas: they are equivalent to 
{a} —• C = T and {a} -• 3JR.{6} = T, respectively. Therefore, we may 
assume that all atomic {MCsu)cQO'ioYmnldLS are of the form C = T, and so 
their translations are of the form WxC^{x). 

Further, we remind the reader that, for every QTC^ -formula tpy we denote 
by tp the Q£-formula that results from ^ by replacing all of its subformulas 
of the form Xi^X2 and Xi«5x2) which are not within the scope of another 
occurrence of U or 5, with their surrogates. Now, observe that, given an 
{MCsu)cQO'^oncept C (or {MCsu)cQO'foYmu\di (p) without modalized roles, 
we can obtain the Q£-formula C^ (or (/?̂ ) in a different way. First, we turn 
C into a CQC?-concept C (or (f into a CQO-formula (f) by replacing each of 
its subconcepts of the form D1UD2 and D1SD2 (or subformulas of the form 
Xi^X2 and Xi*5x2) that is not within the scope of another occurrence of W or 
5, by a fresh concept name (or, in case of formulas, by an atom C ^ T with 
a fresh concept name C). Then, by applying the translation ••̂ , we turn C 
into a Q£-formula C^ (or (f into a Q£-sentence (f'^). It should be clear that 
we have C^ = C^ (and ^p'^ = (f^). 

Now fix an QT£'-S£ntence ^p^. Recall that a type for ip'^ is any Boolean-
saturated subset t of {ip \ ip e subx ^^U{x = a^x j^ a\ a e ob(p}}. For every 
such type t, define a set t consisting of CQO-concepts and CQO-formulas by 
taking 

? = {C I C is an {MCsu)cQO'Concept and C^ e t} U 

{0 I ̂  is an {MCsu)cQO'foTm\xla and 0'^ € t}. 

It is not hard to see (since for every ip e subx v?"̂  U {x = a, a: 7̂  a | a € oby?}, 
either there is an {MCsu)cQO'^oncept C such that I/J = C^ or there is an 
{MCsu)cQO'foTmn\?L x such that tp = x^) that 

t^{C^\Cet} u {i)^\rpet}. (14.5) 

Recall that a state candidate for v?̂  is a set of types for (̂ .̂ Given such a 
state candidate 5, define 

5 = { t | t € 5 } . 
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Then it is not hard to see that S is /C-reaUzable iff the CQ(9-formula 

tes ipei cei 

V A V ' A ( ( | j n ^ ) = T) (14.6) 
testpei tes cet 

is satisfied in a CQC?-model. So, the decidability of the problem of whether 
a given state candidate for (/?̂  is /C-realizable follows from the decidability of 
the formula satisfiability problem for CQO. 

To prove (b), it suffices to show that there exists a cardinal KQ such that, 
for any /c > KQ and any satisfiable CQC?-formula (fs of the form (14.6), there 
exists a CQO-model / = ( A , R Q , . .. ,CQ,. .. ,aQ,...) satisfying (ps and such 
that the set 

{weA\weC^{or all C et} 

is of cardinality K for any t € 5, whenever no nominal {a} occurs in t. 
To prove this, define KQ to be the smallest infinite cardinal such that any 

satisfiable (ps is satisfiable in a model of cardinality < KQ. (Note that we could 
actually choose KQ = ^̂O by a Lowenheim-Skolem-Tarski argument.) Assume 
now that a given (ps is satisfiable. Take a model 

/ = ( A , / ? o » - • • »^o» • • • 1^0? • • •) 

of cardmality < KQ satisfying ips and take a K > KQ. Let N = {a^ \ a e obtps} 
and 

J = ^A , RQ , . . . , CQ , . . . , OQ »• • V » 

where 

• A' = iVu{(t ; ,0 \veA-N, ^<K}, 

• C/ = (C/ n iV) U {(i;,0 h € (A - iV) n C/, ^ < /.}, 

• a*̂  = a ,̂ for all a G chips^ 

• {v,i)Ri{w,i) iffi;/?V 

• a^Ri^ \fi a^R{b\ 

• (v,Oi?*^a*^ iff ̂ ;/^^a^ 

• a-^RJ {v,i) iff a^Rlv and ̂  = 0. 

It is not difficult to show that J is as required (we leave this to the reader). 
Our theorem follows now from Theorem 11.83. • 
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What is the computational complexity of the algorithmic problems con-
sidered in the theorem above? Actually, not too much is known. To begin 
with, here is a 'negative' result: 

Theorem 14.13. If L e {PDL, PTL, K4.3, Log{(N,<>}, Log{(Q,<)}, 
Logpp(Q), Kf, T^, K4^, 842*, KD45^} then the L^CC'satisfiability prob-
lem for formulas without modalized roles and global role names is EXPSPACE-
hard. 

Proof. Follows from Theorems 6.64 and 6.66, and the reduction of The-
orem 3.35. • 

By Theorems 3.35 and 5.42, we also have: 

Theorem 14.14. Let L be any Kripke complete multimodal logic between 
Kn and S5n. Then the L^ccsatisfiability problem for formulas (without any 
roles at all) is NEXPTIME-/iord. 

Note that for {Kn)ACC a matching upper bound is given in Theorem 15.15 
below. The following theorem establishes one more matching upper bound: 

Theorem 14.15. The VThj^cc-satisfiability problem for formulas without 
global role names and modalized roles is EXPSPACE-comp/eie. 

Proof. EXPSPACE-hardness was shown in Theorem 14.13. To obtain the 
matching upper bound, we first extend the translation --̂  from the language 
of MCj^cc defined in Section 3.8 to a translation from {MCU)ACC to QTCy 
by taking 

[CUDf = C^UD^. 

Let QTC' = {if^ I (f an {MCu)ACC'^oxm\i\di}. Now, to prove our theorem 
it suffices to observe that QTC' C QTC^ and that, by Theorem 11.31, 
QLog^(N) n QTC"^ is EXPSPACE-complete. A more direct proof can be 
given as follows: it actually suffices to show that the language QTC^ satisfies 
the conditions of Theorem 11.30. But this is fairly clear if we observe that 
state candidates for a QT£'-sentence (p^ correspond to model candidates for 
if defined in the proof of Theorem 2.27. This proof actually provides an 
algorithm which, given a state candidate C for v?^, can recognize whether € 
is realizable using space < 2̂ ^̂ *̂̂ ^̂  for some polynomial function p. • 

It is worth noting that if we consider the fragment of PTL^^c in which the 
temporal operators can be applied only to formulas then QTC^ C QTCu^ . 
Therefore, by using Theorem 11.35 instead of Theorem 11.30, from The-
orem 2.27 we obtain an EXPTIME upper bound for the satisfiability problem. 
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14.4 Satisfiability in models with finite domains 

Some applications of description logics may require satisfiability-checking in 
models with finite domains. For example, if the description logic is used for 
conceptual data modeling, then finite domains seem more appropriate than 
infinite ones; see, e.g., (Calvanese 1996, Calvanese et al. 1998). 

Note first that, as was shown in Section 2.5, for most (nonmodal) descrip-
tion logics there is no difference between satisfiability in finite and arbitrary 
models. (However, there are description logics which do not enjoy the fmp. 
Typical examples are logics with number restrictions and inverse roles; see, 
e.g., (Calvanese 1996).) On the other hand, many modalized description logics 
can distinguish—often already on the concept level (with empty knowledge 
base)—between models with finite domains and models with infinite domains. 
We explain this observation by connecting finite models for modal description 
logics with finite product models. For simplicity, we will confine ourselves to 
considering logics based on ACC. 

Theorem 14.16. Suppose L is a Kripke complete multimodal logic with the 
fmp. Assume also that E is the set of MCj^cc-concepts containing no mod-
alized roles. Then the following are equivalent: 

(i) a concept in E 25 Lj^ccsatisfiable {relative to empty knowledge base) 
iff it is satisfiable in an Lj^cC^odel with finite domains; 

(ii) a concept in E is Lj^cc-satisfiable {relative to empty knowledge base) 
iff ii is satisfiable in a finite L^cC'Tnodel; 

(iii) the product logic L x Kn has the product fmp, for every n > 1. 

Proof. In view of (the multimodal generalization of) Proposition 5.35, for 
concepts without modalized roles and local role names the equivalence follows 
from the fact that the reduction on page 174 associates Lj^cc^odels having 
finite domains with product models in which one component is finite, and 
finite Lj^cc-^odels with finite product models. 

As to local role names, their reduction to global ones provided in the proof 
of Theorem 14.2 is easily modified in such a way that it preserves finiteness 
of the ^£C-domain: when unraveling the ^£C-part of a model for a concept 
C, we take only those points from the resulting tree that are reachable by a 
path of length < rd{C) from the root. • 

Since K ^ has the fmp (see Theorem 1.16) and K^^ x K„ has the product 
fmp (see Theorem 6.4), we obtain: 

Proposition 14.17. Every {Km)ACCsatisfiable concept without modalized 
roles is satisfiable in a finite {Km)ACC'''^odel {and so in a {Km)ACC''>^odel 
with finite domains). 
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A similar statement holds for Tm in place of Km- On the other hand, by 
Theorems 1.16, 2.2, 2.17, 2.22, Remark 2.11 and Theorems 5.32, 6.13, 6.21, 
we have: 

Proposition 14.18. For all modal description logics beloWy one can find con-
cepts without modalized roles which are satisfiable {relative to empty knowledge 
base) in models with infinite domains but not in models with finite domains: 

(1) the dynamic description logic CPDLj^cCy 

(2) the epistemic description logics Ly^cc, where L € {K4n,S4n}, 

(3) the epistemic description logics with common knowledge operators L^cc^ 
where L e {Kn,Tn,K4n,S4n,KD45n,S5n}, 

(4) the temporal description logics PTL^cCy Lin^£c, and {Logpp{Q))j^cCt 

(5) K4.3^£c, Log{(N,<>}^/:c, and Log{(Q,<)}^£C. 

However, the following questions remain open: 

Question 14.19. Is the satisfiability problem for concepts without modalized 
roles relative to empty knowledge base decidable in models with finite domains 
for any of the logics listed in Proposition 14.18? 

As concerns formula satisfiability, if we allow global role names, then the 
following holds: 

Proposition 14.20. Suppose L is a Kripke complete multimodal logic with 
the fmp. If L X Ku does not have the product fmp, then the sets of formu-
las with global role names {but without modalized roles and local role names) 
satisfiable in arbitrary Lj^cC'f^odels and in those with finite domains are dif-
ferent. 

Proof. By (the multimodal generalization of) Proposition 5.35, if L x K^ 
does not have the product fmp, then it is not determined by frames of the 
form 5i X ^2, where 5i ^ FrL and 5J2 is a finite frame for Ku- Take any 
formula v? of the language of L x K« which is L x Ku satisfiable but not in 
a product model for L x K^ with finite second component. It is not hard to 
see (by repeating the proof of Theorem 3.36 for the finite domain case) that 
there is a formula of the language of L^cc such that it is satisfiable in an 
L^£C-niodel but not in an L^£c-n^oclel with finite domains. • 

Since almost all logics L considered in this book have an infinite frame 
{W^ /?,.. .) with a point x eW such that xRy, for all y € VK, t/ 7̂  x, we can 
use Theorem 5.34, according to which, for every such L, L x K^ does not have 
the product fmp. So, if such a logic L has the fmp (like K or S5), then the 
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set of formulas with global role names satisfiable in L^£c-niodels with finite 
domains is properly contained in the set of formulas satisfiable in arbitrary 
^>l£C~J^odels. 

Question 14.21. Is there an 'interesting' modal logic L such that the formula 
satisfiability problem in L^^c-models with finite domains is decidable? 

Let us consider now the satisfiability problem in models with finite domains 
for formulas having neither modalized roles nor global role names. To begin 
with, we note that (Km)ACC does not 'feel' the difference between finite and 
infinite domains: 

Proposition 14.22. / / a formula without modalized roles and global role 
names is {Km)ACC-satisfiablef then it is satisfiable in a finite {Km)ACC'fnodel 
{and so in a model with finite domains). 

Proof. The tableau algorithm of Section 15.2 constructs a finite model for 
any satisfiable formula without modalized roles and global role names. • 

Mostly, however, the set of formulas satisfiable in models with finite do-
mains is properly contained in the set of formulas satisfiable in models with 
arbitrarily large domains: 

Proposition 14.23. Suppose L is a Kripke complete multimodal logic with 
the fmp. If L X S5 does not have the product fmp, then the sets of formu-
las {containing neither modalized roles nor global role names) satisfiable in 
arbitrary Lj^cC'f^odels and only in those with finite domains are different. 

Proof. Assume for simplicity that L is a unimodal logic. By Proposi-
tion 5.35, if L X S5 does not have the product fmp, then it is not determined 
by frames of the form 5i x 3̂ 2? where 3̂ i € FrL and ^2 is a finite frame 
for S5. Take any MC2-fonnu[di (f which is L x S5 satisfiable but not in a 
product model for L x S5 with finite second component. It is not hard to see 
(by repeating the proof of Theorem 3.35 for the finite domain case) that the 
MCACC-iovmuldi -«((/?** = J_) ADj-"^ ^^X defined in the proof of Theorem 3.35 
is satisfiable in an LACC^odel but not in an L^£c-niodel with finite domains. 

• 
So, by Theorems 1.16, 2.2, 2.17, 2.22 and Theorems 5.32, 5.33, 6.51, we 

have that, for all dynamic and epistemic logics L mentioned in Theorem 14.12, 
for L = logsuiC), C e {{(N, <}}, {(Z, <}}, {(Q, <)}}, and for L = GL.3, the 
sets of formulas (without modalized roles and global role names) satisfiable 
in arbitrary LACC'^odels and only in those with finite domains are different. 

It is of interest to note that if we have neither global role names nor 
modalized roles, then satisfiability in models with finite domains is decidable 
at least for some temporal description logics: 
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Theorem 14.24. The satisfiability problem in models with finite domains for 
formulas containing neither modalized roles nor global role names is decidable 
for the logics L^cCf where L = Log5^(C) andC is one of the following classes: 
{{^^<)}f {(Z, <)} , {(Q, <)}, {(K, <)} , any first-order definable class of strict 
linear orders. 

Proof. This can be proved in the same way as Theorem 14.12. Just apply 
Theorem 11.9 instead of Theorem 11.83 and use the fact that any satisfiable 
ACC'formxxla. is satisfiable in a finite model (see Proposition 2.28). • 

For P T L ^ £ c we also have the following complexity result: 

Theorem 14.25. The satisfiability problem for formulas {containing neither 
global role names nor modalized roles) in PTLj^cc'i^odels with finite domains 
is EXPSPACE-complete. 

Proof. As was shown in the proof of Theorem 5.43, the logic determined 
by products of PTL-frames and finite S5-frames is EXPSPACE-hard. Now, 
the EXPSPACE-hardness of the satisfiability problem for our formulas in 
PTL^£C-ttiodels with finite domains follows from the fact that the reduction 
of Theorem 3.35 associates this kind of 'half finite' product frames with models 
having finite domains. 

The proof of the upper bound is similar to the proof of Theorem 14.15. In 
this case use Theorems 2.27 and 11.51, together with Proposition 2.28. • 

This result is of particular interest when temporal description logics are 
used for reasoning about conceptual schemas, where it is natural to assume 
domains to be finite. It shows that various results presented in (Artale et al. 
2002) can be lifted to finite domain models. 

The following question remains open: 

Ques t ion 14.26. Is the satisfiability problem for formulas (containing neither 
global role names nor modalized roles) in L>t£c-niodels with finite domains 
decidable whenever L is one of the logics mentioned in Theorem 14.12 (1), 
(2)? 
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Chapter 15 

Tableau decision 
algorithms for modal 
description logics 

The proofs of decidability presented so far are based on a semantical approach. 
They do not provide us with any ^practical' decision procedures that could 
be implemented in reasoning systems which are reasonably fast on reasonably 
large sets of problems. 

The aim of this chapter is to show how potentially Implementable' sound 
and complete tableau algorithms (D'Agostino et aL 1999) deciding the satis-
fiability problem for various modal description logics can be designed. Tableau-
based algorithms have been shown to be 'practical* for standard descrip-
tion logics of rather high complexity such as ACC with number restrictions 
and transitive roles; see, e.g., (Haarslev and MoUer 1999, Horrocks 1998, 
Horrocks et al. 2000a). Here we explore how tableaux can be lifted to modal 
description logics. 

To make this chapter self-contained, we start with a tableau decision al-
gorithm for 'pure* ACC. Then, in Section 15.2, we show in detail how to 
extend it to a tableau system for the modal description logic K^cc (without 
global and modalized roles) interpreted in models with constant domains. 
The tableau procedure will be shown to run in NEXPTIME, which matches 
the lower bound of Theorem 14.14. Section 15.3 provides tableaux for two 
extensions of KACC- First, by adding two rules we obtain a tableau procedure 
for KJXCCUI the extension of K^cc with the universal role U. And second, 
we modify the resulting tableaux to obtain an algorithm checking not only 
formula satisfiability but also the more complex global concept satisfiability 
(see Section 3.8). 

615 
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15.1 Tableaux for ACC 

To decide whether a given ^£C-formula t? is satisfiable, a tableau algorithm 
tries to construct a model for 'd by repeatedly applying so-called completion 
rules to an appropriate data structure. Usually, in modal logic these data 
structures are just sets of formulas, cf. (Gore 1999). In the case oiACC, which 
contains assertions of the form a : C and aRb, we require also variables. The 
data structures are then constraint systems^ where each constraint can be 

• an ^£C-formula, 

• an expression of the form x : C, where x is either a variable or an object 
name and C is a concept, 

• or an expression of the form xRy, where x and y are variables or object 
names and Ris a role 

(see, e.g., HoUunder and Nutt 1990, Baader and Hanschke 1991, Baader and 
Laux 1995). 

For now, it is convenient to think of variables as representing domain 
objects: the expression x : C says that concept C applies to the object rep-
resented by X, while xRy says that the object represented by x stands in 
relation Rio y. 

A tableau algorithm checking satisfiability of t? starts with a constraint 
system containing only i? (and v : T, for some technical reasons). The comple-
tion rules are applied until (i) an 'obviously' contradictory constraint system 
is obtained or (ii) a contradiction-free (or clash-free) and complete constraint 
system is found, complete in the sense that no further rule is applicable to it. 
By an 'obvious contradiction' we mean that the constraint system contains, 
for example, both ip and -"(̂  for some formula (p. To illustrate what comple-
tion rules look like, we sketch some standard rules which can be found in most 
tableau algorithms for description logics: see, e.g., (Hollunder and Nutt 1990, 
Baader and Hanschke 1991, Baader and Laux 1995, Horrocks et al. 1999). 

1. If a constraint system S contains the formula C = T and a variable or 
an object name x, then we add x : C to S. 

2. If a constraint system S contains x : C U D, then we add to S either 
X : C or X : D. 

3. If a constraint system S contains x : 3R.C, then we add to S two 
constraints v : C and xRv^ where v is a fresh variable that was not used 
in S before. 

The second rule above is nondeterministic: its application yields more than 
one possible outcome. In the presence of nondeterministic rules, a tableau al-
gorithm terminates successfully if the completion rules can be applied in such 
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a way that the result is a complete and clash-free constraint system. The 
tableau algorithm is sound if, whenever it terminates successfully on input t?, 
then t? is satisfiable. The tableau algorithm is complete if, whenever it does 
not terminate successfully on input t?, then t? is not satisfiable. Finally, the 
tableau algorithm terminates if, on any input t? after finitely many applica-
tions of completion rules to t?, it terminates in the sense that no completion 
rule is applicable any more. Of course, a sound, complete and terminating 
tableau algorithm provides a decision procedure for the satisfiability problem 
for formulas. We now describe such a tableau calculus for ACC in full detail. 

Say that an ^iZ^C-formula (f is equivalent to an ^£C-formula i) if {(f} |= tp 
and {t/̂ } 1= (f. Similarly, an ^£C-concept C is equivalent to a concept D if 
C^ = D^ for all ^£C-models / . The formula C = D is clearly equivalent to 
(-•C U D) n (-•£) U C) = T. So without loss of generality we can assume that 
in every atomic formula of the form C = D the concept D is T. Furthermore, 
we generally assume formulas and concepts to be in negation normal form 
which is defined as follows. 

A concept C is said to be in negation normal form (NNF, for short) if 
negation occurs in C only in front of concept names. A formula (f is in 
negation normal form if negation occurs in (f only in front of concept names 
and atomic formulas of the form C = D or aRb. 

Each concept C can be transformed into an equivalent concept in NNF by 
pushing negation inwards with the help of De Morgan's laws and the duality 
between 3 and V. The NNF of -^C will be denoted by '-^C. Similarly, each 
formula can be transformed into an equivalent one in NNF by employing De 
Morgan's laws and the fact that -^(o : C) is equivalent to a : - iC 

Let us now define formally what we mean by a constraint system for a 
given ^£C-formula iS. As before, we denote by 

• obd the set of all object names occurring in t?; 

• cond the set of all concepts occurring in i?; 

• subd the set of all subformulas of i?; 

• rol d the set of roles occurring in i?. 

The fragment induced by i? is defined as the set 

F f̂ t? = o61? U su6t?U cont?Uro/t?U{~C I C € cont?} U {T} . 

Fix a count ably infinite set V of {individual) variables. The variables in V 
and the object names in o6t? will be called terms for t?. We will assume that 
we have a well-ordering < on the set of terms. Throughout this chapter, we 
denote variables by v and ti, and terms by x and y. 
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An ACC'constraint for 'd is either a formula in sub-d, an expression xRx\ 
where Re raid and x, x' are terms for t?, or an atom of the form x : C, where 
C is a concept in Fg'd and x a term for t?. A constraint system for t? is a 
finite set S of constraints for t?. A variable v is called fresh for 5 if v does not 
occur in S. 

To ensure termination of repeated applications of the completion rules, we 
use the so-called 'blocking' technique (see e.g., (Baader and Laux 1995) and 
references therein). Say that a variable u in a constraint system S is blocked 
by a variable v' in 5 if v' < t; and 

{C\{v',C)eS}C{C\ (v' : C) e S}. 

Note that only variables, rather than object names, may block terms. Also, 
only variables can be blocked. 

A constraint system S is said to be clash-free if it contains no formulas 
-iT and x : -iT, and neither a pair of the form x : Ci, x : ->Ci, nor a pair 
of the form xRy^ -->{xRy) occurs in it. Otherwise we say that S contains a 
clash. A constraint system 5 is complete if no completion rule from Fig. 15.1 
is applicable to S. 

To decide whether a given formula t? in negation normal form is satisfiable, 
we form the initial constraint system S^ = {i9,v : T} , where v is <^-minimal. 
After that we repeatedly apply the ^£C-completion rules from Fig. 15.1 in 
such a way that the ^£C-generating rules are applied only if no other rule 
is applicable. This strategy prevents the introduction of a large number of 
variables to which the same concepts apply. It is, however, not required for 
termination or correctness. The tableau algorithm is shown in Fig. 15.2 in a 
pseudocode notation. 

We prove now that this tableau algorithm is sound, complete and termin-
ates. 

Theorem 15.1 (soundness). Suppose that S is a complete clash-free con-
straint system for d. Then t? is satisfiable. 

Proof. Given a complete and clash-free 5, we construct a model 

/ = (A , /?Q, . . . , CQ , . . . , ttg, . . .) , 

where 

• A is the set of terms occurring in 5; 

• X G C/ iff (x : C) € 5, for all x G A; 

• a^ = a, for all a € o6t?; 

• xR^y iff xRy € 5 or zRy G 5 for some z which blocks x in S. 
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ACC-rules on formulas 
RA If (<P A V') € 5 and {(f.^j) % 5, 

then set 5 := 5U{v?,V^}. 

Rv If ((̂  V V̂) e 5 and {(/?, ^} fi 5 = 0, 
then set 5 := 5 U {0}, where 0 = v? or ^ = V̂. 

>4£C-nongenerating rules on concepts 

Rn If (x : C n D) € 5 for a term x and {x : C, a:: D} g 5, 
then set S := 5,U {x : C,x : D}. 

Ru If (x: CUD) e 5 and {x : (7,x : D} 0 5 = 0, 
then set 5 := 5 U {x : E}, where E = C or E = D, 

R= If (C = T) e S, a term x occurs in 5, but (x : C) ^ 5, 
then set 5 : = 5 U { x : C } . 

Rv If {x : WR.C, xRy} C 5 but (y : C) ^ 5, 
then set 5 : = 5 u { y :C}. 

>l£C-generating rules 

R/ If -i(C = T) € 5 and there is no term x in 5 such that 
(x : --C) € 5, 

then choose the <-minimal fresh variable v for S and set 
S '= SU{v:^C}, 

Rg If (x : 3R,C) € 5, x is not blocked in 5 and there is no term y 
in S such that {xRy^y : C)} C 5, 

then choose the «:-minimal fresh variable v for 5 and set 
5:=5U{t; :C,xfl i ;}. 

Figure 15.1: Completion rules for ACC, 

Claim 15.2. For all concepts C € cont? and all x e A, if {x : C) e S then 
xeC^, 

Proof. The proof is by induction on the construction of concepts. Recall 
that all concepts we deal with are in NNF. For atomic concepts the claim 
follows from the definition. Suppose now that C = -yCi^ for an atomic concept 
Ci, and (x :C) e S. Then {x : Ci) ^ S, since 5 is clash-free, and so x $? Cj 
by definition. Hence x € (-^Cj)^. 

Suppose C = D n E and (x : C) € 5. Since 5 is closed under Rn, we then 
have (x : D) € 5 and {x : E) £ S, By the induction hypothesis, x € D^ and 
X € £'^ and so x € (D n E)^. 
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define procedure sat{S) 
if S contains a clash t hen 

return unsatisfiable 
if a nongenerating rule r is applicable to S 

tlien apply r to 5 
return sat{S) 

if a rule re {R^, R3} is applicable to 5 
then apply r to 5 
return sat{S) 

return satisfiable 

Figure 15.2: The satisfiability-checking algorithm for ACC. 

Suppose C = DUE and {x : C) G S. Since S is closed under Ry, we have 
{x : D) e S ox {x : E) £ 5 , and so, by the induction hypothesis, x e D^ or 
X 6 E', from which xe{DU EY . 

Suppose C = yR.D and {x : C) e S. Let xR^y. Then, by definition, 
either xRy e S or there is z which blocks x in 5 and such that zRy e S. 
Since S is closed under Ry, we have {y : D) e S. Hence, by the induction 
hypothesis, y e D^. This holds for all y with xR^y, and so x € (WR.DY. 

Suppose C = 3R.D and (x : C) € S. Assume first that x is not blocked 
in 5. Then, since S is closed under R3, we find y such that xRy € S and 
(y : D) G S. Hence xR^y and, by the induction hypothesis, y e D^ so that 
X € {BR.ny. Assume now that x is blocked by a variable y in S. As <^ is a 
well-ordering, we can find a <C-minimal y which blocks x in 5. It follows that 
y is not blocked in S by another variable and that 

{E I (x : E)eS}C{E\ {y : E) € 5} . 

As shown above, we then have a variable z such that yRz € S (and so yR^z) 
and z e D'. But then xR^z, and so x € {BR.DY. • 

Claim 15.3. For all formulas (f G sub'd, iftpeS then I \= (p. 

Proof. The proof is again by induction on the construction of ip. 
Case 1: {a : C) e 5. Then, by Claim 15.2, a^ £ C' amd so I \= a : C, 
Case 2: aRb € S. Then, by definition, a^R^b^ and so / |= aRb. 
Case 3: ->[aRb) e S. Then, since S is clash-free, a^R^b^ does not hold, 

and so / ^ -*aRb. 
Case 4' {C — T) e S. Let x G A. Then, since S is closed under R=, 

(x : C) G 5 , and so, by Claim 15.2, x £ C'. Hence C' = A. 
Case 5: -i(C = T) G 5. Since S is closed under R^, we find y such that 

{y : r^C) G 5. Hence, by Claim 15.2, y G (- 'C)^ 
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Case 6: xpi Aip2 ^ S. Since S is closed under RA, we then have ipi £ S 
and V'Q £ S. By the induction hypothesis, / |= V'l and / ^ ^̂ 2* from which 
/ 1= t/̂ l A 1/̂ 2. 

Case 7; tpiV tp2 £ S. Since 5 is closed under Rv, V̂ i € 5 or t/̂ 2 ^ 5'. By 
the induction hypothesis, / |= V̂ i or / |= V̂2) and so / |= V̂ i V V̂ 2- Q 

To complete the proof of soundness, it remains to observe that / |= t? 
follows from t? 6 5. • 

Theorem 15.4 (termination). The number of iterated rule applications to 
S^ does not exceed 2^^!^^^^'^ for some polynomial function p. 

Proof. Note first that the only rules introducing new variables are the gen-
erating rules R^ and Rg. R^ can introduce at most \Fgi9\ variables. Because 
of the priority of nongenerating rules over generating ones, if Rg is applied to 
V : 3i?.C, then v will never be blocked by another variable. Now, there are 
at most 2'^^^' unblocked variables, and so the number of terms to which R3 
can be applied is bounded by |o6i?| -f 2'^^^'. Therefore, the number of terms 
does not exceed 

|F^t?| + (|o6i?| + 2l^^^«). ( |F^t? | -M). 

The upper bound we need follows now from the observation that every rule 
introduces a new member of Fg d or an expression of the form x : C, for 
CeFgd. • 

Theorem 15.5 (completeness). Suppose t? is satisfiable. Then there exists 
a complete clash-free constraint system containing S^. 

Proof. Take a model / = (A, /?o, • • , C Q , . . . , C Q , . . . ) which satisfies 1?. We 
use / as a 'guide' for applications of the nondeterministic rules to construct 
a complete and clash-free constraint system. Say that a constraint system S 
for T9 is compatible with / if (i) / f= (p whenever <̂  is a formula and v? € 5, 
and (ii) there exists a map TT from the set of terms in S into A such that 

• 7r(a) = a^ for all a e obd] 

• n{x) e C^ whenever {x : C) e S\ 

• 7t{x)R^n{y) whenever xRy € S. 

We claim that if a constraint system 5 is compatible with / and a rule R 
is applicable to 5, then it can be applied in such a way that the result is 
compatible with / as well. 
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Indeed, suppose that 5 is a constraint system for t? compatible with / and 
that TT is a function satisfying the conditions listed under (ii). Consider all 
possible cases for rule applications: 

(a) Let the RA rule be applicable to a formula (p A xl^ in S. Since S is 
/-compatible, / [= y? A0 and so I \= ip and I \= tp. The application of RA to 5 
adds if and ip to 5, so (i) holds after the application. The very same function 
TT satisfies (ii). 

(b) Suppose that the Ry rule is applicable to a formula (/? V ^ in 5. Then, 
as we know, / |= (/? V V', and so either I \= ip or I \= ip. By applying the Rv 
rule to S accordingly, we clearly obtain an 5' for which (i) holds; TT remains 
unchanged. 

(c) Suppose that the Rn rule is applicable to a constraint x : Cn D in S. 
Then 7r(x) e {CnDY, and so n{x) e C^ and IT{X) G D^. The application of 
the Rn rule adds x : C and x : D to S. Clearly, (i) still holds. The function 
TT is as required for (ii). 

(d) Suppose the Ry rule is applicable to a constraint x : CuD in S. Then 
7r(x) € {CUDY and so 7r(x) € C^ or 7r(a;) € D^. By applying the Ry rule to 
5 accordingly, we see that (i) still holds and the function TT is still as required. 

(e) Suppose that the R=: rule is applicable to a formula C = T and a term 
X in 5. Then I \= C = T. Hence 7r(x) € C' and so n is still as required after 
the application of R= to S. 

(f) The application of Ry is treated in the same manner. 

(g) Suppose R^ is applicable to ->{C = T) in 5. Then / \= -i(C = T) and 
there is d € A such that d ^ C^. We introduce the <C-minimal fresh variable 
X and define TT' as an extension of TT to x by taking 7r'(x) = d. The function 
TT' is then as required for the resulting constraint system. 

(h) Let R3 be applicable to x : 3R.C in 5. We have 7r(x) € (^/^.C)^ Let 
d G A with 7r{x)R^d and d e C^. Now we proceed as in the R^-case. 

By Theorem 15.4, after finitely many rule applications we obtain a com-
plete constraint system S which is compatible with / . Obviously, S is clash-
free. • 

It can be shown that the exponential upper bound in Theorem 15.4 cannot 
be improved. Thus, the tableau procedure checking satisfiability of ACC-
formulas presented above runs in NEXPTIME and does not have the optimal 
worst case behavior: according to Theorem 2.27, this satisfiability problem is 
EXPTIMEl-complete. For a discussion and comparison of different approaches 
to satisfiability checking in modal and description logic see (Baader and Tobies 
2001). 
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15.2 Tableaux for KACC with constant domains 

In this section we construct a tableau-based decision procedure for KACC 

containing neither global nor modalized roles and interpreted in models with 
constant domains. The algorithm runs in NEXPTIME and thus matches the 
lower bound established in Theorem 14.14. The result is due to Lutz et al. 
(2002). 

We know from the preceding section what tableaux for ACC look like. 
Having recalled from Section 2.5 the connection between modal and descrip-
tion logics, we can easily construct a tableau system for K. So at first sight 
it should not be a problem to design a tableau algorithm for KACC- Indeed, 
given an MCAcc-formula t?, we can first apply to it the tableau rules for 
ACC^ thus constructing an •4£C-model for the nonmodal part of t? in the 
initial world wo- Then we apply the rules of a tableau system for K to the 
modalized concepts and formulas in this model and thereby introduce a num-
ber of new worlds Wi ^populated' by the same objects as WQ^ After that we 
use the ACC-rnles in the Wi and possibly extend their domains. And so forth. 
However, this straightforward approach, first proposed and investigated in 
(Baader and Laux 1995), works perfectly well only if MCACC is interpreted 
in models with expanding domains. In the case of models with constant do-
mains, after expanding the domain of Wi with a new object a, we have to add 
a to the domain of WQ which, in turn, may force us to expand this domain— 
and so the domains of the Wi as well—with some new objects, and so on. As 
we shall see a little later, the resulting algorithm does not terminate. 

The main technical contribution of this section is that it shows how the 
quasimodel technique can be used to solve this problem and to design a ma-
chinery for constructing tableaux with constant domains. The fundamental 
idea is that the tableau algorithm constructs not a model itself but its rep-
resentation in the form of a quasimodel, the worlds in which are 'populated' 
by (partial) types of objects rather than real objects. 

The section is organized in the following way. First we discuss in more 
detail some diflSculties in designing tableau procedures for modalized descrip-
tion logics under the constant domain assumption and give an overview of 
the tableau algorithm developed later in this section. In the next subsection 
we define constraint systems for A^£^£c-formulas and then show how to en-
code K^£c-niodels in the form of quasimodels. Finally, the tableau decision 
algorithm is presented and analyzed. 

All MCjxcC'formuldiS we deal with in this chapter contain neither global 
nor modalized roles. 
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Tableau algorithms and constant domains 

To begin with, we generalize some basic definitions of the previous section from 
ACC to AiCj^cC' Say that an ^ACJ^cc-^onnul^^. (p is equivalent to an J M £ ^ £ C -

formuia rp when (Wl, w) ^ ip iS (M, w) \= X/J, for every model 971 = (J, / ) and 
every world w in it. Similarly, an A^£>t£c-concept C is equivalent to an 
A^£^£C-concept D if C^^^^ = D^^""^ for all models 971 and their worlds w. 
Without loss of generality we may assume that in every atomic formula of 
the form C = D the concept D is T. The negation normal form (NNF) is 
defined in precisely the same manner as for ACC. Again, we will assume that 
all formulas and concepts are in NNF. 

The completion rules for ACC operate on constraint systems. In the case 
of MCj^cCi a more complex data structure is required: we need completion 
trees whose edges represent the accessibility relation and whose nodes are 
labeled with constraint systems representing ACC models. The tableau al-
gorithm starts with a completion tree consisting of a single node labeled with 
a constraint system containing only the input formula i? (and some additional 
constraints). Again the completion rules are applied until a clash is obtained 
or a complete clash-free completion tree is found. Besides the rules introduced 
in the previous section, we now obviously need rules of the following kind: 

• If the label 5 of a node ^ in a completion tree T contains the constraint 
X : OC, then we add to T a new node p' as a successor of g and label it 
with the constraint system containing x : C and x : D, for every x : DD 
in S. 

But then we are facing the problem of keeping the domain of the model 
under construction the same in every world. To illustrate this problem, let 
us consider the following example from (Baader and Laux 1995). Suppose 
that we have a completion tree T with one node g labeled with the constraint 
system 

Cig) = {v:T, {03R.C) = T} . 

An application of the rule R= from Fig. 15.1 yields an additional constraint 
V : 03R.C. By applying the rule above, we construct a new node p' in T 
with the label C{g^) = {v : 3R.C}, which is then extended to 

C{g') = {v : 3R.C, vRv\ v' : C} 

by an application of R3 from Fig. 15.1. Since we assume constant domains 
and since the variables represent domain objects, the presence of v' in £(p') 
forces us to add v' to C{g). This can be done by extending C{g) with the 
constraint v' : T, which triggers the rule R= again: now it adds v' : OB/i.C 
to C{g). This constraint and the rule above give a new node g" with label 
C{g ) = {v^ : 3R.C} which is then extended by the rule R3 with v'iiv" and 
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t;" : C. Thus we obtain a new variable t;" which has to be added to both 
C{g) and C{g^). As these steps are to be repeated infinitely many times, the 
algorithm does not terminate. 

What can we do to prevent the introduction of more and more variables? 
The key idea is that similar to types in the quasimodels introduced in Sec-
tion 5.2 the variables in tableaux can represent partial types of domain objects 
rather than domain objects themselves. Dealing only with types, we construct 
not a model satisfying the input formula, but its representation in the form 
of a quasimodel. We illustrate this idea by the following example. Suppose 
that r is a completion tree consisting of a single node g labeled with 

C{g) = {DD = T, i;: 03R.C, v : D-iC, v : DD}, 

An application of the rule above generates a successor g' of g with the label 
{v '. 3/?.C, V : -'C, V : D}^ which is then extended by R3 to 

C(g') = {v : 3R.C, vRv\ v : -^C, v. D, v' : C}. 

The constructed completion tree represents models with the set W = {w, w^} 
of worlds such that 

• < = {{w,w^)}, 

• in the interpretation I{w)^ there are domain objects *of type t;,' and 

e in the interpretation I{w^)i there are domain objects of type t* and of 
type v\ 

Let us now see how the algorithm copes with constant domains. Fix a model 
described by the completion tree and let d be an object in I{w') of type v'. As 
we make the constant domain assumption, d is also an element of the domain 
of I{w). However, in I{w) this element cannot be of type v because otherwise 
d would satisfy -^C in I{w*) which is impossible, since it also satisfies C. A 
straightforward approach to attack this problem would be to introduce a new 
type into C{g) (thus overruling blocking). But then again we would face the 
problem of termination. Lutz et al. (2002) take a different way: the solution 
is to generate a set of minimal partial types in each constraint system C(g) so 
that every domain object in the corresponding ^£C-interpretation I{w) is of 
exactly one of the types in the set. To this end we distinguish between two 
kinds of variables. A variable may be marked in a constraint system, which 
indicates that it represents a minimal (partial) type, or it may be unmarked, 
which means that the variable represents an 'ordinary' type. We illustrate 
the difference between marked and unmarked variables as well as the role of 
minimal partial types by reconsidering the example above. 

According to the minimal type strategy, we have to introduce into C{g) 
a marked variable Vm together with the constraint Vm > T before generating 
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Figure 15.3: The fully expanded completion tree. 

the node g\ In nearly all completion rules marked variables are treated like 
unmarked ones. An application of the first rule adds Vm - ^D to C{g). This 
constraint means that every domain object in the >t£C-interpretation I{w) 
is in {nDy^^\ After that we construct the node g' and the variable v' as 
above. In models described by the resulting completion tree, domain objects 
may be of types v and v' in I{w') and of types v and Vm in I{w). Again, we 
face the problem of finding a 'predecessor type' for v', i.e., a type for objects 
in I{w) which are of type v' in I{w^). According t:» the minimal type strategy, 
we must choose this predecessor among the marked variables in C{g)] in our 
case this can only be Vm- However, since the constraint Vm - ^iD is in C{g) 
and Vm was chosen as the predecessor type for t;', we must add v^ : D to 
C{g'). Figure 15.3 shows the resulting completion tree. Note that using the 
minimal type strategy, there is no need to reconsider constraint systems that 
have already been treated, which helps to avoid the termination problem. 

To conclude this subsection, we give a brief overview of how the set of 
minimal types is generated. Consider a completion tree consisting of a node 
g labeled with 

C{g) = {A = T, B U C = T, v:C}. 

Again we start by introducing a single marked variable Vm together with the 
constraint Vm'T. Applications of the rule R= from Fig. 15.1 above add both 
Vm ' A and Vm ' BuC. According to the rule for U, we must now decide 
where to put Vm' to 5 or to C However, it may be the case that neither of 
these two choices is the correct one: that all domain objects in interpretations 
corresponding to C{g) satisfy BuC does not imply that all of them satisfy 
B or that all of them satisfy C. So for marked variables, disjunction must be 
treated in a special way. Namely, first we introduce a new marked variable 
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v'^ which is a 'copy' of Vm, ie., we have v[^ : A and v!^: BuC in C{g), And 
then we add constraints Vm - B and v^ : C saying that each object is either 
of type Vmy and so belongs to B, or of type v^, and so belongs to C. To be 
more precise, we need a nondeterministic rule. In one case, we explore both 
disjuncts as has just been described; in the two additional cases, we explore 
only one of the disjuncts (which is necessary to deal with disjuncts that lead to 
a contradiction). Similar modifications are required for all nondeterministic 
rules dealing with marked variables. 

Constraint systems 

Given a MCACC-iormula t?, define the sets 061?, cont?, su6t?, rol'd and Fgi9 
in precisely the same manner as in the previous section. Terms are again 
variables or object names. 

A constraint for t? is either a formula in sub d or an atom of the form xRy 
or X : C, where R e rol'd^ C € cowd and x^y are terms for t?. A constraint 
system for t? is a finite set 5 of constraints for t? such that 

1. each variable occurring in S is either marked or unmarked] 

2. a : T is in 5 for every a € 06 1?; 

3. S contains at least one atom of the form x,: C. 

We assume again that the set of variables is wqll-ordered by < and use the 
same notion of blocking as before. The completion rules of the tableau al-
gorithm are divided into two classes: 

• local rules operate exclusively on constraint systems, while 

• global rules operate on completion trees; they involve more than one 
constraint system. 

The local rules are the rules in Fig. 15.1 of the previous section, where the 
formulas and constants now range over MCj^cc and 

• the ^£C-rules on formulas are now called local rules on formulas^ 

• the ACC'generatmg rules are now called local generating rules; they 
introduce unmarked variables v, 

• the ^£C-nongenerating rules are now called local nongenerating rules 
on concepts and the rule Ry is replaced with the two rules shown in 
Fig. 15.4, where the operation *-f' is defined as follows: 

Let 5 be a constraint system and $ a set of concepts. Then 
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Ru U{x:CuD) e S for unmarked x and {x : C,x : Z>} Pi 5 = 0, 
then set S := S\J{x: £ } , where E^C ox E = D. 

Ru' li{v\CuD)eS for a marked v and {t;: C, i;: D} D 5 = 0, 
then either (i) set 5 := 5 U {v : E } , where E = C ox E = D, 

or (ii) set 5 := (5 U {t;: C}) + ({D} U { £ | (v : E) € 5}). 

Figure 15.4: Local rules for U. 

• 5 4- $ is 5 if 5 contains a marked variable v for which 

$ = {E I (i;: £ ) € 5} ; 

• 5 - f $ i s 5 U { ( t ; : J 5 ) | E € $ } otherwise, where v is <C-minimal fresh 
for S and marked in 5 -f ^ . 

Note that the rule Ry is as before: it takes care of unmarked variables. The 
need for the rule Ry' operating with marked variables was explained above. 

Quasimodels 
In this subsection we show how K^£c-wiodels can be represented in the form 
of quasimodels. As in Sections 11.7 and 12.2, here we characterize quasimodels 
syntactically. Quasimodels of this iiort were first introduced in (Sturm and 
Wolter 2002). 

Let t? be a AiCj^cc^oxxmil^.. A quasistate for T? is a complete clash-free 
constraint system for T? all variables in which are unmarked. 

A frame 3̂  = {W, <) whose worlds are (labeled with) quasistates for H will 
be called a d-frame. More precisely, a t?-frame is a triple 5 = (Wi <, cr), where 
W ^ (H^ < CW xW and a is a map from W into the set of quasistates for d. 

Let 3̂  = (lV,<l,cr) be a t?-frame. A run r in 5 is a function associating 
with every w eW a term r{w) occurring in the quasistate (T{W) in such a way 
that 

• if {r{w) : OC) € cr(w) then there exists aw^ eW such that w<w^ and 
{r{w') : C) e <T{W')] 

• if {r{w) : DC) € (T{W) and w < w\ then (r(t/;') : C) G a{w^). 

A 1?-frame ^ = {W, <], cr) is called a quasimodel for i? if the following conditions 
hold: 

1. for every object name a £ obd, the function ra defined by ra{w) = a, 
for K; E W, is a run in J; 
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2. for every it; € W and every variable v in (T{W)^ there exists a run r in 5 
such that r{w) = v\ 

3. for every it; € W and every 0(^ € cr{w), there exists a it;' G W such that 
It; <3 K;' and ip € (T{W^)] 

4. for every tt; € Ŵ  and every D(/? € <T(II;), whenever w<w^ then (p e cr{w^). 

We say that i? is quasisatisfiable if there is a quasimodel ^ = {W^ <3,(T) for t? 
such that "d e (7{w) for some w eW. 

Theorem 15.6. An MCj^ce'formula t? in NNF is satisfiahle iff it is quas-
isatisfiable. 

Proof. (=») Suppose r? is satisfiable. Then there is a model 9Jl = {{W^ <), / ) 
such that (9Jl,it;^) |= t? for some Wi) € W. Let A be the domain of 9Jl. For 
all It; € W and d € A we then put 

Let 
T^ = { r ^ ^ ^ ^ ( d ) | d e A } . 

For each t = r^^^^(d), take an individual variable Vt and define a constraint 
system (T{W) as the union of the following sets: 

{if € 5w6t? I {Tl,w) 1= ip}, 

{a:C\ae obd, C € Fgi), â ^̂ ^ € C^^^^}, 

{t;̂  : C I C € t} for t € T^, 

{ai?t;e | a € o6t? and 3d (f = r'^'^^d) k a^^^^ii^^^^d)}. 

All variables are unmarked in a{w). We show that 5 = (ly, <],(T) is a 
quasimodel for 19. 

It should be clear that the cr(it;) are quasistates for t? and that 5 satisfies 
conditions (1), (3) and (4) in the definition of quasimodels. Let us check 
(2). Suppose that w e W and Vt is a variable from (T{W). Take a d 6 A 
such that T^^^\d) = t and define a function r with domain W by putting 
r{u) = t>^/(ti)(^), for each u €W. It is easy to see that r is a run in 5 coming 
through Vt. That t? is quasisatisfiable follows from t? € cr(it;t?). 

(<=) Suppose that t? is quasisatisfied in a world it;,? G W of a quasimodel 
(W ,̂<3,(T>, i.e., t?€a(t/;,9). 

Define OT = ((l^, <3>, / ) with I{w) = (A, / i^(^\ . . . , C^^""^,..., a^^^^,...) 

as follows: 
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• A is the set of all runs in (W, <l, a); 

• a^W = r a , for a l ia €o6t?; 

• C /^^ = {r e A I {r{w) : Ci) € (T{W)}, for all concept names Ci in Fg'd] 

• for every pair r i , r2 € A and every role name R, we have riR^^^^r2 iff 
ri{w)Rr2{w) € a{w) or zRr2{w) e a{w) for some z which blocks ri{w) 
in a(ie;). 

We are about to show that i? is satisfied in 2Jl. 

Claim 15.7. For allw eW, C £ Fgd, and r e A, if {r{w) : C) € <7{w) 
thenreC^^'^l 

Proof. The proof is by induction on the construction of C. All steps save 
C = OD and C = UD can be proved in the same manner £is in the proof of 
Claim 15.2. 

Suppose C = OD and {r{w) : OD) € a{w). By the first clause in the 
definition of runs, there is w' eW such that w <w' and (r{w') : D) G a{w'). 
So, by the induction hypothesis, r G D^^'"'\ from which r G (OD)^^'^^ 

Suppose C = UD. By the second clause in the definition of runs, we then 
have {r{w') : D) G (T{W'), and so r G D^^^'\ for all w' eW such that tt; <] it;'. 
It follows that r G (nD)^(^>. • 

Claim 15.8. For every w £ W and every ^ G sub'd, if (f £ a{w) then 
(97l,ti;)f=c^. 

Proof. This claim is also proved by induction. Let (p G a{w) be atomic. 
Consider three cases. First, suppose ip = {a : C). By the first clause in the 
definition of quasimodels, we have [raiw) : C) G G{W). Hence, by Claim 15.7, 
ra G C^^^^ Recall that â ^^^ was defined as ra- So (9JI,K;) |= a : C Second, 
assume (p = {C = T). Let r G A. As (7{w) is closed under R=, we then have 
{r{w) : C) G (7{w). It follows from Claim 15.7 that r G C^^^^. Finally, for 
(̂  = aRb the claim follows immediately from the definition of R^^^K 

Next, let (/? = - 1 ^ for atomic tp. Since t? is in NNF, V̂  has the form {C = T) 
or aRb. We consider only the former case. As a{w) is closed under R^, we 
have {x : ~C) G (T(t/;) for some x. By the second clause in the definition of 
quasimodels, there exists a run r such that r{w) = x. Moreover, it follows from 
Claim 15.7 that r G (-C)^(^>. So there is a d G A such that d G (-C)^^^), 
from which {M,w) \= --(C = T). 

The induction step is straightforward (it is based on (3) and (4) in the 
definition of quasimodels; see also the proof of Theorem 15.1). • 

It follows from Claim 15.8 that (OH, w^) |= i?. • 
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The algorithm 

We are now in a position to define completion trees, the global completion 
rules and the tableau algorithm itself. Fix a countably infinite set N of nodes. 

A completion tree for a Kj^cc-fovrnxxla t? is a tree T whose nodes g £ N 
are labeled with constraint systems C{g) for t?. If there is an edge (^f,̂ ') in 
T, then we say that g^ is a successor of g in T. 

The global completion rules operate on completion trees. To introduce the 
rules we require the following definitions. Given a constraint system S, define 
an equivalence relation ^s on the set of variables (not terms) occurring in S 
by taking 

V - 5 v' iff {C\{v'. DC) e 5} = {C I {v' : DC) € S}. 

Denote by [v]s the equivalence class (with respect to ^s) generated by a 
variable t;, by min(X) the ^-minimal member of a set X of variables, and 
put 

5. = U {min(H5)}. 
V occurs in 5 

The global completion rules intended for constructing a completion tree for 
a formula i? are shown in Figs 15.5 and 15.6. Note that there we have two 
versions of the R| rule: one for unmarked variables and one for marked ones. 
This can be explained analogously to the double Ru rule above. Indeed, the 
two versions of the rule are needed, since R] is nondeterministic. As for Ru^ 
it is not sufficient to explore each nondeterministic choice separately, but, 
additionally, we must explore all possible combinations of nondeterministic 
choices simultaneously. The interested reader may check, for example, that 
the satisfiable formula 

(T = DDC U DDD) A (a : 00{3R.C H 3R.--C)) 

would be judged unsatisfiable if the /?| rule is used for marked variables 
instead of the Ri' rule. 

We say that a completion tree T contains a clash if there exists a node g 
in T such that C{g) contains a clash; otherwise T is called clash-free. T is 
said to be complete if no completion rule is applicable to T. 

To decide whether a given formula t? in NNF is satisfiable, we form the 
initial completion tree T^ consisting of a single node f̂o labeled with the initial 
constraint system 

S^ = {i9}U{a:T\aeobi)}U{v: T}, 

where v is <-minimal and marked. After that we repeatedly apply both local 
and global completion rules with the following priority: the rules R^, and 
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R^f If 0(f e C{g) and (̂  ^ ^{g')^ for all successors g' of g^ 
then construct a new successor g' of g and set C{g') to 
the union of the following sets: 

W) {V̂  I DV; € C{g)} 
{a:T\aeobd] {v : T} 

{a:C\[a:UC)eC{g)} [j [u : C \ {u : UC) e C{g)} 

ue{C{9)U 
where v is the only marked variable in C{g^) and v ^ (£(^))^. 

^Oc If (x : OC) G £(y) and for all successors g' of g and terms y, 

{C} U{E\{x: • £ ) 6 £(ff)} %{E\iy:E)e £{9')} 

then construct a new successor g^ of ^ and set C{g') to 
the union of the following sets: 

W ' c} {i^lu^pe C{g)} 
{v^:D\{x: DD) e C{g)} 
{a:T \aeobd} {v''^} 
{a:C\{a:DC)£ C{g)} \J {u : C \ {u : DC) € C{g)} 

u€(£(9))^ 

where v is the only marked variable in C{g^), v ^ v^, 
and r,t; ' ^ (£(p))~. 

Figure 15.5: Global generating rules for 'KACC-

R^^ are applied only if no other rule is applicable, and the local generating 
rules are applied only if no rule different from R^, and R^^ is applicable; see 
Fig. 15.7. 

Theorem 15.9 (soundness). / / there is a complete clash-free completion 
tree for a K^cc-formula t?, then d is satisfiable. 

Proof. Let T be a complete clash-free completion tree for t?. By The-
orem 15.6, it is sufficient to show that t? is quasisatisfiable. Define a structure 
!S = {W,<,(T) by taking 

• W to be the set of nodes in T, 

• w; < 1/;' iff I/;' is a successor of w in T, 

• (7{w) = unmark(£(t(;)), 

where unmark(£(tx;)) is the constraint system obtained by 'unmarking' the 
marked variables in C{w). Obviously, 5 is a i?-frame. We now show that 5 
has the following properties: 
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If g' is a successor of 5f, v an unmarked variable in C{g^)^ and 
for no term a: in £(^) do we have 

{C I (x : DC) € C{g)} C { C \ {v. C) € C{g')}, 
then nondeterministically choose a marked variable v' in C{g) 

and set £(p') := C{g') U {v: C \ {v' : DC) G C(g)}. 

If g' is a successor of ^, t; a marked variable in C{g^), 
for no term x in C{g) do we have 

{C I (x : DC) € £(5)} C { C I (t;: C) e C{g')}, 
and A" is the set of marked variables occurring in C{g) 

then nondeterministically choose 
a nonempty subset Y = {v\^... ^Vk} of X 
and set Si := C{g') U {v : D \ {vi : DD) € C{g)}, 
Sj := 5,^1 4- ({D I (i;, : DD) € C{g)} U {E \ {v : E) € C{g^)}), 
for all 1 < j < fc, and C{g') := 5^. 

Figure 15.6: Global nongenerating rules for Kj^cc-

(i) if (Oif) € (T{W) for some w eW^ then there exists a w^ e W such that 
ti; <3 It;' and ip G cr(t/;'); 

(ii) if (a : OC) G a{w) for some it; € W and a € 06 1?, then there exists a 
w^ eW such that u < w^ and (a : C) € cr(n;'); 

(iii) if {v : OC) € (T{W) for some t/; € TV and * = {£? | (i; : DE) € cr(ti;)}, 
then there exist a world w^ € W and a term x such that w <w' and 

* U { C } C {f; | (a::E)€tr(i / ; ' )}; 

(iv) if ti; < It;' then: 

(a) (D(^) G (T{W) implies ip G cr(ti;'), 

(b) {E\{a: DE) G a(i/;)} C {E \ {a : E) e a{w')} for all a G ofrt?, 

(c) for each variable v in (T{W)^ there exists a term x in cr(w;') such that 
{E\{v'. DE) G a H } C{E\{x:E)e ( T K ) } , 

(d) for each variable v in (T(II;'), there exists a term x in (T{W) such that 
{E I (x : DE) G (T(ti;)} C {E \ {v : E) £ (T{W')}. 

Conditions (i)-(iii) are satisfied simply because the rules R^, and R^̂  are not 

applicable to T in view of its completeness. Let Dip G C{w) and w<w^. Then 
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define procedure sat{T) 
if T contains a clash then 

return unsatisfiable 
if a rule r ^ {R3, R^, R^,, R^^} is applicable to T 

then apply r to T 
return sat{T) 

if a rule re {R3, R^} is applicable to T 
then apply r to T 
return sat{T) 

if a rule r € {R^/, R^^} ^̂  applicable to T 
then apply r to T 
return sat{T) 

return satisfiable 

Figure 15.7: The satisfiability-checking algorithm for KACC-

w' has been generated by an application of a global generating rule (either 
R^, or R^^). As these rules are applied only when no other rule is applicable, 

Uif was already in C{w) by the moment of the application of that rule, and 
so (/? G C{w'). This proves (iv.a). Conditions (iv.b) and (iv.c) are proved 
analogously, and (iv.d) follows from the fact that the rules R| and R|/ are not 
applicable to T. 

Conditions (i)-(iv) do not mean that 3̂  is a quasimodel. However, it is not 
difficult to modify 5 in such a way that the resulting structure is a quasimodel. 
Namely, we can just introduce sufficiently many 'copies' of worlds and convert 
the i?-frame 3̂  into a structure Ŝ ' = {W',<l',a') which additionally has the 
following property: 

(v) if {v : OC) € (T^iw), for some w G W , and fc < cj, then there exist 
pairwise distinct wi,... ,Wk G W^ such that w < ' Wj for 1 < j < fc, and 
there are terms x i , . . . , x ^ for which 

{E\{v: DE) G (T\W)} U {C} C {E \ {xj : E) G (j\wj)}. 

We now show that 3 ' is a quasimodel for d. Conditions 1, 3 and 4 in the 
definition of quasimodels follow immediately from (ii), (i) and (iv). Let us 
prove condition 2 claiming that, for every variable v in every (T'(t/;o), WQ G W , 
there is a run r coming through v. We construct r by induction. To begin 
with, we put r{wQ) = v. Now two cases are possible. 

Case [: Suppose that r{w') has already been defined and w <' w' with 
undefined r['w). By (iv.d), there is a term x such that 

{E\{x: UE) G G'{W)) C {E \ {r{w') : E) G (T\W')}. 
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Then we put r{w) = x. We proceed with Case i till (in finitely many steps) 
we reach the root of Jf'. After that we switch to 

Case T: Suppose that r{w) has already been defined, but there is w^ > w 
with undefined r{w'). Let O C i , . . . , OQ be all distinct concepts in FgiS of 
the form OC such that {r{w) : OCj) € (T{W), 1 < j < L For every such OC 
we choose by (v) a world Wj with undefined r{wj) and a term Xj such that 

{E\{v: DE) e a'{w)} U {Cj} C {E \ {xj : E) € (T\WJ)} 

and ti;j ^ i/;̂  whenever j ^ i. Put r{wj) = Xj. If we still have a world w^ >w 
with undefined r{w^)^ then we use condition (iv.c), according to which there 
is a term x such that 

{E I {r{w) : DE) € (7'(ti;)} C {E \ {x : E) e (T'{W')}. 

Then we set r{w^) = x. 
It should be clear from the definition that r is a run in 5 ' coming through 

V in a^{w). Thus 5 ' is a quasimodel for t?. That t? is satisfied in 5 ' follows 
from 1? € a'(K;^). • 

Theorem 15.10 (termination). Having started on the initial completion 
tree T-o^ the {nondeterministic) completion algorithm terminates after at most 

p is a polynomial function. 

Proof. Recall that the depth of a tree is the number of edges in its longest 
branch; the outdegree of the tree is the maximal number of immediate suc-
cessors of nodes in it. 

Claim 15.11. Let g be a node in T, Then the number of constraints of 
the form x : C in C{g) does not exceed 2^^^'^^*^'^ where pi is a polynomial 
function. 

Proof. We determine an upper bound for the number of distinct terms per 
node label. By the definition of completion trees and constraint systems, all 
object names occurring in node labels are from o6t?. So the number of distinct 
object names in a label does not exceed \Fg'd\, 

At the moment of its generation, the node g (its label, to be more precise) 
contains not more than 2'^^ ̂ ' distinct unmarked variables and a single marked 
one. Consider now the rules that can introduce new variables in C{g). First, 
the marked variables. They are introduced by the Ry' and Rj' rules. Define 
a tree T whose nodes are the marked variables in C{g) and whose edges are 
labeled with either Ry' or R|' as follows: 

• the root node is the initial marked variable in C{g); 
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• if a completion rule r € {Ru^Ri'} is applied to a marked variable v 
generating new marked variables i^i,. . . , v/t, then Vi is a successor of v 
in T and the edge between v and Vi is labeled with r for 1 < t < k. 

Using the definition of Ry', Rj' and FgiS, it is not hard to see that the depth 
of T is bounded by |Fpi?|. Moreover, each node has at most \Fg'd\ H- 2'^^^' 
successors: at most |Fpt?| outgoing edges labeled with Ru' and at most 2'^^^^' 
outgoing edges labeled with R|/. Hence, the number of nodes in the tree is 
bounded by 2"*'^^^' , which is therefore the maximum number of marked 
variables in C{g). Now, for the unmarked variables: R^ can add to C{g) at 
most \Fg T^l new variables. There are at most 2^^^^' unblocked variables and 
so the number of terms to which R3 can be applied is at most |o6t?| -h 2'^^^L 
So the number of marked variables does not exceed 

\Fgi)\ + (|o6i?| -f 2>^^^>). {\Fgi)\ 4-1). 

Claim 15.11 follows immediately. • 

Claim 15.12. The depth of T is bounded by |Fpi?| and the outdegree ofT 
does not exceed 2^'^^^', where d is a constant. 

Proof. If g' is a successor of g in T, then clearly 

max{md(C) \ {x : C) e C{g)} > max{mrf(C) | (x : C) € C(g')} 

and 
max{md{ip) \ (f G C{g)} > max{md{ip) \ (/? G ^^(^f')}, 

where md{C) and md{ip) denote the modal depth of a concept C and a formula 
(^ defined in Section 3.8. So the depth of T is at most md{d). Now we compute 
the outdegree. Let ^ be a node in T. Each successor of ^ in T is generated 
by an application of the R^, rule to some formula <>(/? or by an application of 

the R^^ rule to some constraint x : OC in C{g). The number of applications 
of the R^, rule is obviously bounded by the number of distinct formulas in 
C{g), i.e., by | F ^ ^ | . Moreover, by the definition of the R^^ rule, the number 
of applications of this rule is bounded by 2'^^^^ (i.e., the number of distinct 
subsets of concepts in Fgd). • 

We are now ready to prove the theorem. By Claim 15.12, there is a 
constant e such that the number of nodes in each completion tree constructed 
by the algorithm is at most 2 ' ^ ^ ^ ' \ As every global generating rule adds a 
new node, the number of applications of such rules is bounded by the same 
number. Now let us compute the number of applications of local rules on 
formulas. Each local rule on formulas introduces a new formula to a node 
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label. Hence there may be at most |F^t?| applications of rules of this type 
per node. So the total number of applications of local rules on formulas is 
bounded by 2^^^^'' -{Fg^l 

Finally, each of the local nongenerating rules on concepts, local generating 
rules and global nongenerating rules adds a new constraint of the form x : C 
to a constraint system C{g), By Claim 15.11, the number of such constraints 
per node is < 2^^^'^^^'^ for some polynomial function pi. Thus, the number 
of applications of these rules per node is < 2^*^'^^^'^ The total number of 
such rule applications is then bounded by 2(1^^^'' • 2^^^^^^"^^^ • 

Theorem 15.13 (completeness). If a K^cc-formula i? is satisfiable theUy 
having started from T^, the satisfiability-checking algorithm for VLACC con-
structs a complete clash-free completion tree for d. 

Proof. Consider a model 9Jl = {{W^ < ) , / ) and a world w^ eW such that 
w^ 1= t?. We use 9Jl as a 'guide' for applications of the nondeterministic rules 
to construct a complete clash-free completion tree for t?. 

Say that a completion tree T for t? is ^-compatible if the following holds: 

1. there is a map TT from the set of nodes in T to ly such that 

• if g' is a successor of g in T, then 7r(^) < T^{g') and 
• if (̂  € C{g) then '^{g) \= if, for every (f € subi9] 

2. for each node g in T, there is a total surjective function Tg from A to the 
set of marked variables in C{g) such that if {v : C) € C{g) and Tg{d) = v 
then d € C^('^(^)^ and 

3. for each node g in T, there is a total function TTg from the set of unmarked 
terms in C(g) to A such that if (x : C) € C{g) then TTg{x) € C^(^(»)). 

Claim 15.14. / / a completion tree T for d is 9JI-compatible and T' is the 
result of an application of a rule R to T, then T ' 25 VJl-compatible as well. 

Proof. Let T be an 3Jl-compatible completion tree, g a node in T and let 
TT, Tg and TTg be the functions supplied by the definition of 9Jl-compatibility. 
Consider all possible cases for R. 

Suppose that the RA rule is applicable to a formula v? A V̂  in C{g). Since T 
is aJl-compatible, n{g) |= y? A 0. The application of RA to C{g) adds ip and rp 
to C{g). Then the very same functions TT, Tg and rcg ensure that the resulting 
completion tree T ' is 97t-compatible. 

Suppose that the Rv rule is applicable to a formula v? V V' in C{g). Then, 
as we know, 7r{g) |= (̂  V0, and so either (p or ipis in (T{ir{g)), By applying the 
Rv rule to C{g) accordingly, we clearly obtain an 9Jl-compatible completion 
tree. 
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Suppose that the Rn rule is appUcable to a constraint x : CnD in C{g), Let 
d G A be such that either ng{x) = d {x is unmarked in C{g)) or Tg{d) = x {x 
is marked in C{g)). In both cases we have d e (Cn Z))̂ ^̂ ^̂ )̂  So d E C^^^'^a)) 
and d € C^^'^^^)) ̂  An application of the Rn rule adds x : C and x : D to C{g). 
Hence, the functions TT, Tg and ng are as required for the resulting completion 
tree T'. 

Suppose that the Ry rule is applicable to a constraint x : C U D in 
C{g). Then x is unmarked in C{g). Clearly, either ng{x) G Ĉ ^̂ ^̂ ^̂  or 
TTg{x) € D (̂̂ ^ )̂̂  By applying the Ry rule to £(p) accordingly, we see that 
the functions TT, iVg and r̂  are as required. 

Suppose that the Ry' rule is applicable to t; : C U D in £(^). Then v is 
marked in C{g). Let Y be the set of d in A for which Tg{d) = v. Since Tg is 
surjective, Y is nonempty. Clearly, d e C^^'^^^)) or d € D̂ ^̂ ^̂ ^̂  for any d e y . 
Put 

y^ = { d € r | d € C ^ ( ^ ( ^ » } , 

YD = Y - YC. 

An application of Ry' adds either (\) v : C or (ii) v . D to C{g), or (iii) it 
creates 'a marked copy' v' of v, for which, additionally, (v' : £)) G C{g) holds, 
and then adds t; : C to C{g). If Vc = 0, apply the rule in such a way that 
t;: Z? is added. If Yp = 0, apply the rule so that t;: C is added. Otherwise we 
apply the rule in the third possible way. In the first two cases, TT, TT̂  and Tg 
are as required for the resulting completion tree T'. In the third case, define 

T'(d) = I '̂' ifdeYo 
1 '̂ 9(̂ )1 otherwise 

and r^ = Th for all h ^ g. The functions TT, TT̂  and r̂  ensure that T' is 
9Jl-compatible. 

Suppose that the R= rule is applicable to a formula C — T and a term x in 
C{g). Then 7r(5f) [= C = T and we find d € A such that either 7r (̂x) = d (x is 
unmarked in C{g)) or Tg{d) = x (x is marked in C{g)). We have d G C^^'^^^^\ 
Hence, after an application of R= (which adds x : C to C{g)), the functions 
TT, Tg and TTp will be as required for the resulting completion tree T'. 

Suppose that R^ is applicable to -^{C = T) in C{g). Then there is d G A 
with d G (~C)̂ ^^ (̂̂ ^^ By applying R^ to £(y), we introduce a new (un-
marked) variable x. Define TT̂  as the extension of ng to x with 7r (̂x) = d, and 
put TTĴ  = iTh for all /i 7̂  ̂ . The functions TT, r̂  and TT̂  are then as required 
for the resulting completion tree T'. 

Let Rg be applicable to x : 3R.C in C{g). Let d G A be such that either 
7rp(x) = d (x is unmarked in C{g)) or Tg{d) = x (x is marked in C{g)). In 
both cstses we have d e (Efl.C)^("(»)> and can proceed as in the R^ case (note 
that the newly generated variable is unmarked in any case). 



15.2, Tableaux for KACC ^ith constant domains 639 

Now we come to the global rules and suppose that R^. is applicable to 

O^p in C{g). Let ̂ {g) = it;. Then Off € cr{'w). The rule application generates 
a successor g' oi g. We find w^ £ W such that w <w^ and w' \= tp. Set 
7r(̂ ') = w\ It remains to define TT̂ / and r '̂. The terms occurring in C{g') 
are the object names in 061?, one marked variable v, and a set of unmarked 
variables Vi , . . . , v/fe. Put 

1. ngf{a) = a^ for every a e ob'd^ 

2. iTg.{vj) £{d\{E\ {vj : E) e C{g')} C{E\de E^^^')}} for 1 < j < fc, 

3. Tgf{d) = V for every d € A. 

The function iTg' is well-defined for all unmarked variables v i , . . . , r̂  in C{g). 
Indeed, fix a j G {1 , . . . , / : } . By the definition of the R^, rule, there is a 
variable v such that 

{E\iv: DE) e C{g)} = {E \ {vj : E) € rC^)}. 

By the definition of 9Jl-compatibility, it follows that there is a term d € A 
such that 

{E\{vj:E)€C{9')}C{E\deE'^-'^}. 

It is easy to see that the defined functions TT, Tg and TT̂  are as required. The 
case of R^̂  is considered analogously. 

Suppose that R| is applicable to a variable v in a £(p') and n{g^) — w'. 
Then v is unmarked in C{g^) and there is a node g such that g' is a successor 
of ^ in T. Let T^g'{v) = d and 'n(g) = tx;. By the definition of 9Jt-compatibility, 
we have w <w^ The rule application nondeterministically chooses a marked 
variable v' in C{g) and augments £(p') with {v : D \ {v^ : DD) € £(^)}. 
Take v' = ry(d). The functions TT, r̂  and TT̂  are as required for the resulting 
completion tree T'. 

Finally, assume that the R̂ / rule is applicable to a marked variable vi in 
C{g^) and that 7r(g') = w'. Then there is a node g such that g^ is a successor 
of g. Let AT be the set of d € A for which Tgf{d) = Vi and let 7r{g) = w;. As 
r̂ / is surjective, X ^ ^. The rule application chooses a nonempty subset Y 
of the marked variables in C{g), Let 

Y^{v'\3deXTg{d):=v'). 

Since r̂  is total, Y is nonempty. Let v[,,,.,v'f^ be all its elements. The 
application of R|/ does the following: 

• it generates fc - 1 ^marked copies' V2) • • > îk of t; 1 and then 

• augments C{g') with {vj : D \ {v'^ : UD) € C{g)} for 1 < j < fc. 
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Put 
// ,x _ r Vj, if de X and Tg{d) = Vj 
^ ^ \ rg{d), otherwise 

and Tf^ = Tfi ii h ^ g. It is obvious that the functions IT and TTg are as 
required for the resulting completion tree T' (note that iTg(vj) is undefined 
for 1 < j < fc). We show that r̂  is also as required. Assume that the rule 
application added a constraint {vj : D) to C{g') and fix a term d G A such 
that rg'{d) = Vj. Then {vj : UD) G C{g). By the definition of X and r /̂, we 
have Tgid) = v ,̂ which yields d € (aD)^(^>. Then d G D^(^'). Q 

Now, returning to the proof of the completeness theorem, we show that it 
follows from the claim above. Let T^ be the initial completion tree for i?, p 
the node in T^^ and v the marked variable in C{g). Set 7T{g) = w^ (recall that 
we have i? G Wi)), Tg{d) = v for all d € A, and iTg{a) = a^(ti;) for all a e ob'd. 
It is readily checked that these functions ensure that T^ is 9Jt-compatible. 

By the claim above, the completion rules can be applied in such a way 
that the resulting completion trees are 9Jl-compatible. According to The-
orem 15.10, we then eventually construct a complete 9Jt-compatible comple-
tion tree T. Obviously, T is clash-free. • 

Theorem 15.10 states that the nondeterministic tableau algorithm ter-
minates after exponentially many steps (in the length of the input formula). 
Together with the soundness and complf teness theorems this provides us with 
a NEXPTIME satisfiability-checking procedure for K^£c-formulas, which 
matches the lower bound of Theorem 14.14. Thus we have: 

Theorem 15.15. The satisfiability problem for AiCj^cc-formulas without 
global role names and modalized roles is NEXPTIME-comp/ete. 

15.3 Adding expressive power to K^cc 

It is not difficult to extend the tableau procedure for KACC (without global 
and modalized roles) introduced above in both the modal and the descrip-
tion logic dimensions. For example, Sturm and Wolter (2002) and Lutz et al. 
(2001) present tableau systems for the temporal description logic PTL^£c- In 
this section we show tableaux for the two following extensions. First, we add 
to ACC the universal role 17, thus obtaining ACCU, and extend the tableaux of 
the preceding section to K^ccu (again without global and modalized roles). 
Second, we construct a tableau algorithm deciding the global concept sat-
isfiability problem for Kj^ccu without global and modalized roles, which is 
more difficult than the formula satisfiability problem (see Section 3.8). 
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Rvt; 

Rat; 

If {x : W.C} CS,y occurs in 5, but {y : C) ^ 5, 
then set 5 := 5U{y :C}. 

If (a:: 3U.C) € 5, and there is no term y in 5 
such that y :C e Sy 

then choose the «:-minimal fresh variable v for 5 and set 
S'.= SU{v:C}. 

Figure 15.8: Additional local rules for K^ccu-

define procedure sat{T) 
if T contains a clash tiien 

return unsatisfiable 
if a rule r ^ {R3, R^, R^., R^ ,̂ Rsu) is applicable to T 

then apply r to T 
return sat{T) 

if a rule r e {R3, R^, Rac;} is applicable to T 
tiien apply r to T 
return sat{T) 

if a rule r G {Ro/? R<;>c} is applicable to T 
then apply r to T 
return sat{T) 

return satisfiable 

Figure 15.9: The satisfiability-checking algorithm for KACCU-

Adding the universal role 
Denote by ACCU the description logic obtained by adding to ACC the uni-
versal role U. Models of ACCU are ^£C-models 

in which t/^ = A x A. 
A tableau procedure for Kj^ccu is obtained by extending the tableau sys-

tem for Kj\,cc with the two local rules shown in Fig. 15.8. The rule Rva 
is nongenerating and has the same priority as the 'old' local nongenerating 
rules. The rule Rw is local generating and has the same priority as the local 
generating rules Rg and R^. The tableau algorithm for KACCU is presented 
in Fig. 15.9. 

Soundness, termination and completeness can be proved in precisely the 
same manner as in the previous section. The algorithm runs in NEXPTIME 
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C\ 
DC • • • 

cU s 
35.-CI OC:-C OC 

OC OC OC 

Figure 15.10: Satisfying T relative to E. 

as well. Thus, in view of Theorem 15.15, we obtain 

Theorem 15.16. The satisfiability problem for MCj^ccwformulas contain-
ing neither global role names nor modalized roles is NEXPTIME-comp/ete. 

Global concept satisfiability 
Let us fix a finite set E of A^£^£cw-formulas and an MCj^ccu-^oncept F. 
Remember that F is called globally satisfiable relative to E if there exists a 
model 971 = {^, I) such that F^^^^ ^ 0, for some world v in 3̂ , and w \= (p for 
all worlds w and all <̂  G E. 

The global concept satisfiability problem for K^ccu is obviously more 
difficult than formula satisfiability. For example, T is satisfiable relative to 

E = {C C DC, 35 . -C = T, 0C = T} 

only in infinite models (see Fig. 15.10), whereas every satisfiable MCj^ccw 
formula is satisfied in a finite model. 

As was shown in the proof of Theorem 15.6, every finite quasimodel can 
be transformed into a finite model. So finite quasimodels are not enough to 
characterize global concept satisfiability. The tableau algorithm we present 
below constructs what one might call finite 'quasi-quasimodels' from which 
(possibly infinite) quasimodels can be obtained by a sort of unraveling (see 
Section 1.4). The related new ingredient of the tableaux is that—to ensure 
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termination—we have to apply a blocking strategy also in the modal dimen-
sion. 

To implement the global blocking strategy, we now assume that the set N 
of nodes of completion trees is well-ordered by some relation <Cm- Roughly, 
a node g blocks another node g^ if g <̂ m y' and C{g) coincides with C{g^) 
modulo renaming of variables. More precisely, let 5 and 5' be constraint 
systems. 5' is called a variant of S if there is a bijective function n from 
the variables occurring in 5 onto the variables occurring in 5' which respects 
markedness (i.e., unmarked variables are mapped to unmarked variables and 
marked variables to marked variables) and 5' is obtained from S by replacing 
each variable v in 5 with n(v). A node g is said to be blocked by a node g^ in 
T if 5f' <̂ m g and C(g') is a variant of C{g). 

Denote by Fg{E, F) the union of all Fp t? for t? € S U {-.(F = 1 ) } . To 
decide whether F is globally satisfiable relative to E, we form the initial tree 
TY:,F consisting of the <m-niinimal node go labeled with the initial constraint 
system 

5s,F = E U {-^(F = 1 ) } U {o : T I a e o6E} U {t;: T}, 

where v is the ^-minimal variable and marked. The tableau algorithm applied 
to 5i:,F is obtained by replacing the rules R^, and R^̂  in Fig. 15.9 with 
R^ and R^ in Fig. 15.11, respectively (we use the notation of the previous 
section). 

Note that a new node is added as a successor of a node g only if g is not 
blocked. Another difference from the previously introduceld rules is that each 
formula from E is automatically put into each C{g) because all of them has 
to be true in every world of the model constructed using the completion tree. 

The completeness and termination of this algorithm are proved similarly 
to Theorems 15.10 and 15.13; we leave this to the reader as an exercise. Note 
only that the proof of Claim 15.11 still goes through. As far as Claim 15.12 is 
concerned, it is no longer true that the depth of T is bounded by |F^(E, F)|. 
However, the blocking strategy ensures that there does not exist a branch 
in T containing distinct nodes g and g' such that C{g) is a variant of C{g'). 
Hence, the depth of T does not exceed 

where pi is the polynomial function from Claim 15.11. The remaining steps 
are again the same as in the proof of Theorem 15.10. 

Theorem 15.17 (soundness). If there is a clash-free completion ofT^^fj 
then F is globally satisfiable relative to E. 
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Rp If Oip e C{g), g is not blocked in T, 

and (f ^ C(g'), for all successors g' of g, 
then take the <Cm-niinimal fresh g^ from N 
as a new successor of g and set C{g^) to 
the union of the following sets: 

M U E {ilj\DrPeC{g)} 
{a:T\a€obi)} {̂  • T} 

{a : C I (a : DC) € £(p)} ( J {u : C \ {u : DC) € £(p)} 
ti€(£(p))^ 

where v is the only marked variable in C{g') and v ^ (£(y))^. 

R^^ If (x : OC) G £(^), g is not blocked in T, and 
for all successors g' of ^ and all terms y, 

{C} U {E I (x : DE) e £(g)} ^ {E I ( j / : E) e £(g')} 

then take the <^^-minimal fresh g^ from N 
as a new successor of g and set C{g^) to 
the union of the following sets: 

{ t ; ' : C } u E {i/; | D^̂  G £(^)} 
{v':D\{x: DD) € £(p)} 
{ a : T | a 6 o 6 i 9 } {̂  : T} 

{a : C I (a : QC) G £(^)} | J {u : C \ {u : DC) G £(p)} 

where v is the only marked variable in C{g^), v ^ v' 
and v,v^ ^ (£(p))~-

Figure 15.11: E-global generating rules with blocking. 

Proof. Let T be a clash-free completion of TY:^F with root go. By the 
definition of the E-global generating rules with blocking, E C C{g) for all 
nodes g in T. Besides, -^{F = 1 ) G £(yo)- Now, the proof of Theorem 15.9 
shows that it is sufficient to build a structure 5 = {^i <icr) which is 

• a (/\ E A ->{F = l))-frame and 

• satisfies conditions (i)-(iv) listed in the proof of Theorem 15.9. 

Define J by taking 

• W to be the set of finite sequences {goi9i^" - i9n) of nodes in T such 
that (a) pi-i-i is a successor of ^i in T or (b) gi is blocked by a node with 
successor gi^i in T; 
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• wi <W2 iS wi,W2 ^ W and W2 = wi^g for some node g (where * is the 
operation of concatenation); 

• a{w) = unmark(£(5r)), where g is the final node of it; and unm^rk{C{g)) 
is the constraint system obtained by *unmarking' the marked variables 
in C{g). 

Obviously, J is a (/\ E A -^{F = l))-frame. So it remains to show that S 
satisfies (i)-(iv). Conditions (i)-(iii) are satisfied because the rules R^ and 

R^ are not applicable to T in view of its completeness. Let D(f G (T{W) and 
w < w'. Then, for w = (5̂0? • • • ^9n) and w^ — w * g^ the node g has been 
generated by an application of a global generating rule (either R^ or R^ ) 

to gn or gn is blocked by a node g'^ such that g has been generated by an 
application of a global generating rule to g'^. As these rules are applied only 
when no other rule is applicable, Dĉ  was already in C{gn) (respectively C{g!^)) 
by the moment of the application of that rule, and so (̂  € C{g). This proves 
(iv.a). Conditions (iv.b) and (iv.c) are proved analogously, and (iv.d) follows 
from the fact that the rules R| and R|' are not applicable to T. • 
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Chapter 16 

Spatio-temporal logics 

In this chapter, we analyze the algorithmic properties of the spatio-temporal 
languages 

STo C STi C ST2 

introduced in Section 3.2 and interpreted in various kinds of topological tem-
poral models. These languages are combinations of the fragment BTZCC-S 
of the region connection calculus with the standard point-based temporal 
language MCsu- According to Theorem 3.5, all these languages can be em-
bedded into the propositional spatio-temporal language 

We obtain the following results. First, in Section 16.1, we connect sat-
isfiability of 'PST-formulas in topological 'P5T-models with satisfiability in 
Kripke models based on products of linear orders and S4u-frames. We use this 
connection to show that the satisfiability problem for the full propositional 
spatio-temporal language VST in topological 7^5T-models over discrete flows 
of time like (N, <) is undecidable, no matter whether we adopt the finite state 
assumption FSA or not. 

In Section 16.2, we embed the smaller spatio-temporal languages STi 
{i = 0,1,2) into the one-variable fragment of the first-order temporal language 
QT£, and prove that the satisfiability problem for 5Ti-formulas in tt-models 
over various flows of time (like (N, <), (Q, <), the class of all strict linear 
orders) is decidable (in the case of ST2 we assume that models satisfy FSA). 

In Section 16.3, we analyze the computational complexity of the satis-
fiability problem for 5Ti-formulas (i = 0,1,2) in tt-models over the flow 
(N, <). For 5T2-formulas (interpreted in tt-models satisfying FSA) and for 
5Ti-formulas we show EXPSPACE-completeness, while 5To-formula satis-
fiability is shown to be PSPACE-complete. We also consider the fragment 

647 
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ST^ of ST\^ which is based on WZC-% rather than Bl^C-S, and prove 
that the satisfiabiUty problem for «STf-formulas in tt-models over (N, <) is 
PSPACE-complete—i.e., considerably less complex than the corresponding 
5Ti-formula satisfiability problem. 

And finally, in Section 16.4, we show that 5T2-formulas can distinguish 
between tt-models based on arbitrary and Euclidean topological spaces. On 
the other hand, we prove that over countable discrete flows of time STi-
formula satisfiability in tt-models based on arbitrary topological spaces is 
equivalent to satisfiability in tt-models based on Euclidean spaces (R'^,!}, 
n > 1. 

16.1 Modal formalisms for spatio-temporal rea-
soning 

To begin with, we remind the reader (see Section 3.2) that the propositional 
spatio-temporal language VST contains the temporal operators S and U 
of MCsu as well as the modal operators of MC^ which are denoted by 
I (interior), C (closure), 0 and ^ (universal box and diamond). VST-
formulas are interpreted in topological VST-models which are triples of the 
form 91 = {5,T,il), where 5 = {W,<) is a strict linear order, T = (f/,I) a 
topological space, and il is a valuation associating with every propositional 
variable p and every w e W a set il(p, w) C. U. ^ is extended to arbitrary 
7^«ST-formulas in a standard way. For example, 

• il(V' ^x,w)= il(V ,̂ w) n ii(x, w); 

• il(l3V',ti;) = U if U(V',i(;) = t/, and ll(SV^,Ti;) = 0 otherwise; 

v>w u^{w,v) 

We say that a topological 'PST-model (5,T,il) satisfies FSA if, for every 
propositional variable p, the set 

{H{p,w)\weW} 

is finite. It is easy to show by induction that actually in topological VST-
models satisfying FSA, for every ?^5T-formula ip, the set {il(V ,̂ w) \w e W} 
is finite. 

As we know from Section 3.2, P5T-formulas can also be interpreted in 
usual Kripke models based on the product of a strict Unear order 5 and a 



16.L Modal formalisms for spatio-temporal reasoning 649 

rooted S4w-frame^ ©. Since the S4ti-frame C gives rise to a topological space 
Tis5 (see Section 2.6), every Kripke model based on 5 x © can be transformed 
into a topological TST-model of the form (5,1<»,il). As Proposition 3.6 and 
the "P^T-formula 

O F C P ^ C O F P (16.1) 

show, the set of P5T-formulas satisfiable in such product models is properly 
contained in the set of P5T-formulas satisfiable in topological "PST-models. 

Our aim now is twofold. First, we want to identify classes of formu-
las which do not distinguish between topological VST-models and product 
Kripke models. And second, we want to show that P5T-formulas do not 
distinguish between topological 7^5T-models and product Kripke models, if 
these models satisfy FSA. 

Say that a Kripke model 9Jl = (if x 6,2J) satisfies FSA if for every pro-
positional variable />, the set 

{{x\ {w,x) e 5J(p)} \winS} 

is finite. Again, it is easy to show by induction that if 971 satisfies FSA then, 
for every P5T-formula 0, the set {{x \ (971, {w^x)) \= tp} \w in S} is finite. 

Denote by PST^ the sublanguage of VST in which O is the only temporal 

operator. A 1^5T-formula of the form ^ip or <̂ V̂ , where ^̂  is a P57^-formula, 
will be called a basic u-formula. And by a u-formula we mean a ^5T-formula 
constructed from basic u-formulas using arbitrary connectives of VST. It is 
to be noted that the formula (16.1) is not a u-formula. On the other hand, 
the translation (^^ of an 5Ti-formula (/? defined in Section 3.2 is a u-formula. 

Now we have the following: 

Lemma 16.1. (i) / / a VST^-formula or a u-formula ip is satisfied in a topo-
logical VST-model based on a flow of time S, then (f is satisfied in a Kripke 
model based on the product of ^ and a rooted S4u -frame (&. 

(ii) / / a VST-formula (p is satisfied in a topological VST-model satisfying 
FSA and based on a flow of time J, then (p is satisfied in a Kripke model 
satisfying FSA and based on the product of^ and a rooted SAu-frame (5. 

Moreover^ in both cases we can choose the S4u-frame (55 = (V, /?i, i?v) fl^rf 
the Kripke model 971 based on ^ x (6 in such a way that, for all w in^, x in 
0 and xpf the set 

Aw,x,ip = {2/ € K I xRiy and (971, {w,y)) |= V̂ } 

contains an Ri-maximal point."^ 

^We remind the reader that a rooted S4u-franie is a frame d5 = (V,/?i,/?v), where 
(V, Ri) is a (not necessarily rooted) quasi-order and /?v is the universal relation on V. 

^A point z is said to be Ri-maximal in A C V if, for every 2' € A, we have z'Riz 
whenever zR\z'. 
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Proof. The proof is based on the Stone-Jonsson-Tarski representation of 
topological Boolean algebras (in particular, topological spaces) in the form of 
general frames (see Goldblatt 1976 or Chagrov and Zakharyaschev 1997). All 
the necessary definitions are given below. 

(i) Suppose V? is satisfied in a topological 7^5T-model Vt = (5, *!, il) based 
on a flow of time 5 = (W, <) and a topological space T = ([/, I). An ultrafilter 
X over J7 is a subset of the powerset 2^ of U such that 

• U ex; 

• if A ex and AC B, then Bex; 

• An B e X iS A,B e xJoT a\\ A,B C U\ 

• A U B € a; iff either .4 G x or B G x, for all A,BC U\ 

• A e X \R U - A ^ X, iox every ACU. 

Denote by V the set of all ultrafilters over U. This set is not empty: as is 
well known, for every set y C 2^ with the finite intersection property (i.e., 
such that i4i n • • • n ^ i t 7̂  0 for any Ai,...,Ak e y and fc < a;) there exists 
an ultrafilter xDy. (For instance, the set {>l C [/ | u G ^4} is an ultrafilter, 
for every ueU.) So if a set i4 C [/ is in every ultrafilter over [/, then A must 
be U itself. For any two ultrafilters Xi,X2 G V, put 

X1R1X2 iff ^ACU {lAexi^ Ae X2). 

It is easy to see that i^i is a quasi-order on V. Let R^ be the universal relation 
on V, Define a Kripke model SlJl = (5 x ^,2J) by taking (& = {V, Rj, fly) and 

QJ(p) = {{w,x) eW xV \ ii{p,w) e x}. 

We show by induction on the construction of X/J that, for all VST^- and u-
formulas xp, for ollweW and x G V, 

(OT, {w, x)) h V̂  iff 11(̂ 1̂1/̂ ) € ic- (16.2) 

For propositional variables (16.2) follows from the definition of 9Jl. Let us 
prove it for 7^57^-formulas. 

Case V' = V̂ i A 'tp2- We have: (9Jt, (K; ,X)) [= ^ iff (2)T» (^>aj)) t= V'l and 
(ii;,x) [= V̂2 iff (by IH) !d{rpi,w) e x and il(V'2,iy) G x iff (by the definition 
of ultrafilters) !d{xl^i,w) nil{'tp2,w) G x iff ll(V î t\il)2,w) G x. 

Case V̂  = -"V '̂. In this case, (9Jl, (ti;,x)) |= V̂  iff (OT, (tt;,x)) ^̂  V̂ ' iff (by 
IH) il(V'', li;) ^ X iff f/ - H(i/;', t/;) G x iff H(V', i/;) G x. 

Case V̂  = IV''. Suppose that (Wl, (t/;,x)) |= Ixl)', but U(IV^',it;) ^ x. Then 
lIil(V^',n;) ^ X which means that C(f/ - U(V'',ti;)) G x. Observe that the set 

yo = {[/ ~ il(0', t/;)} U {^ C [/ I M G x} 



16.1. Modal formalisms for spatio-temporal reasoning 651 

has the finite intersection property. Indeed, otherwise we would have sets 
Ai,...,AkQU such that lAi € x, for 1 < i < A;, and 

{U - U(t/;', ti;)) n .4i n • • • n yl/c = 0. 

But then, by (2.21) on page 84, 

0 = C(C/ -iXW,w))nl{Ai n-'-nAk) 
= C(f/-ii(t/;',It;))nMln-.-nMfc e x, 

which is impossible, since in this case U ^ x. Take an ultrafilter y D VQ. 
Then xRiy, and hence (9H, (it;,y)) |= tp^ i.e., by IH, iX{'ip\w) € y, contrary 
to{U^UW,w))eyoCy. 

Conversely, suppose (971, (it;, a?)) ^ Iip\ Then we can find y such that 
xi?iy and (971, {w, y)) t̂  V̂ '. By IH, ll(i/^', i/;) ^ y, and so, by the definition of 
Ri, I!d{rp',w) ^ X, which means that ilitp.w) ^ x. 

Case xl) = m\l}\ Suppose that (971, {w.x)) t= 0^ ' . Then (971, {w,y)) |= xj)^ 
for all y € V, and so, by IH, U(V'',ti;) e y for all y € V. But then 

U(at/;',ti;) =U(t/^',tx;) = t/ e X. 

Conversely, if il(l3t/^',ti;) € x then il(l3V'',ti;) ^ 0, and so il(EV '̂,tz;) = U. It 
follows that il(V '̂,tt;) = f/, i.e., ll(V'',ti;) € y for all y € V, from which, by IH, 
(97l,(ti;,x>) 1= mi)\ 

Case ij) = O^'. We have (971, {w^x)) |= OV̂ ' iff there exists an immediate 
successor w^ of w and (971, (it;', x}) |= V' lff» by IH, there is an immediate 
successor w' of w and U(^',it;') € x. It remains to recall that 

is an immediate successor of w^ 
has no immediate successor. 

So we have proved (16.2) for every 7^57^-formula xj). In order to show 
(16.2) for every u-formula, first observe the following properties of u-formulas: 

Claim 16.2. For every u-formula xp, 

• for all VST-models (ff, (17,1) ,il) and points xv in JJ, either !d{xp^xju) = 0 
or iX{xp, xv) = U; 

• ifi^i (̂ > 3:)) 1= V' for some point (xv^ x) in a model 971 based on a product 
frame ff x C, then (971, (to, j/)) [= i/; holds for every y in&. 

The claim can be proved by a straightforward induction on the construc-
tion of xp. Using this claim and (16.2) for P57^-formulas, we obtain (16.2) 
for every u-formula as well. 
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It follows immediately that (f is satisfied in 971. Indeed, take w e W 
such that H{ip,w) ^ 0, and let x be an ultrafilter containing !d(ip,w). Then 
{Wl, {w,x)) \= (p. Thus, we have proved (i). 

(ii) Suppose that a P5T-formula if is satisfied in a topological P^T-model 
91 = (3 ,̂ T, U) with F S A based on a flow of time 5 = (VF, <} and a topological 
space T = (C/,I). The construction of the Kripke model 971 is the same as in 
(i). Observe that this time 971 satisfies FSA. We show by induction that, for 
every subformula xp o( ip, we have 

(97t, {w, x)) 1= V̂  iff il(V ,̂ w) e X. 

The proof is almost the same as above. This time, however, instead of O we 
need induction steps for U and S. 

Case ip = '̂ iWV 2̂- Assume that (971, (ttf,x}) |= V'i^V'2- Then there is 
V > w such that (97t, (i;,cc)) \= t/̂ 2 and (971, (u, a;}) |= ipi for all u in the 
interval {w^v). By IH, 11(̂ ^2? )̂ ^ ^ and !d{ipi,u) G x for all u € (ty,i^). Since 

il(T/;iWV^2,t/^)2il(tA2,t^)n f l U(V^i,u), 
u€(ti;,t;) 

we shall have ii{'(piUtl^2i w) e x ii we show that 

(il(0,M;)n P I il(t/;i,t/)) € X . (16.3) 

In view of FSA, we can find time points u i , . . . , t/f € {w, v) such that 

U(i/;i,ui)n--.nli(t/;i,u/)= P I il(V^i,u), 

which yields (16.3) because ultrafilters are closed under finite intersections. 
Conversely, let ii(V îWV 2̂i ŵ ) ^ a;. By FSA, there are time points v i , . . . v/ 

such that 

U{rl^iUtlJ2M = U ("(V^2,t;i)n P I il(V^i,u)). 

And since x is an ultrafilter, we have 

ili{^2.Vi)n p il(V^i,u)Gx, 
uG(ti;,i;t) 

for some i, 1 < i < /. So, by IH, (971, {vi,x)) \= ip2 and (971, {u,x)) |= ipi for 
all u G (iy,t;i). Hence (971, {w,x)) \= il^il(tp2' 
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Case il) = V î5i/̂ 2 is considered analogously. 

The existence of i?i-maximal points in sets of the form Aw,x,\i) (where 
vD £ W^ X £ V, and V' is a 7^5T-formula) follows from a result of Fine 
(1974b) (see Theorem 10.36 in Chagrov and Zakharyaschev 1997). Here is a 
sketch of the proof. Consider the family 

A' = {X C Axu,x,ii) I fli n ( X x X ) is a linear order with smallest element x } . 

Let C be a C-maximal set in X (i.e., for every C £ X^ C C O implies 
C' — C)\ its existence can be readily proved with the help of Zorn's lemma. 
Now take the set 

yo = {>l C f/ I az e C Vz' G C [zRiz' -^Ae z')). 

This set is not empty, since U(t/^,ti;) € j/o? ^^d clearly J/Q has the finite inter-
section property. Hence we can find an ultrafilter y containing i/o- Then it is 
easy to see, using the definition of i?i, that 

Vz € C zRiy, (16.4) 

We claim that y is i?i-maximal in A^^^.x^xi)- Indeed, take some y ' € A^^^x,^ 
such that yi?iy'. If y' € C then y'i?iy holds by (16.4). If y ' ^ C then, by 
the C-maximality of C in A*, C U {y'} is not linearly ordered by R\. Since 
by (16.4) and yRiy\ we have zi?iy' for all z € C, there exists o. z' £C such 
that y'Riz\ and so, again by (16.4), y'R\y as required. • 

We now use Lemma 16.1 to show that the full language VST is *too 
expressive,' at least when interpreted in topological temporal models over 
discrete flows of time. 

Theorem 16.3. Suppose that C is one of the following classes of flows of 
time: {(N, <)} , {(Z, <)} , or the class of all finite strict linear orders. Then 

(i) the satisfiability problem for VST-formulas in topological VST-models 
over the flows of time in C is undecidable; 

(ii) the satisfiability problem for VST-formulas in topological VST-models 
with FS A over the flows of time in C is undecidable. 

Proof. We consider only the case of C = {(N, <)}; the other cases are sim-
ilar and left to the reader. The proof is a slight modification of the proof of 
Theorem 7.24 (note that (i) does not follow from Theorem 7.24 because sat-
isfiability in topological P5T-models is not equivalent to Log{(N, <)} x 84^-
satisfiability). 

Given a finite alphabet A and a set P = {{vi^'Wi) ^.., ^{vk^wic)} of pairs of 
words over A, we construct the formula tpA.P as in the proof of Theorem 7.24 
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using I, C, D F and O F instead of • , O, B and O, respectively. Let r be a 
fresh variable. Consider the P5T-formula 

'^A,P = ^ ^ O F - T A DFC-̂ r -> D j0 - . r ) A D^(r -^ 0r) A V'̂  p, 

where ^^ p is obtained from V'>\,p by relativizing all of its temporal operators 

with respect to r, i.e., by replacing recursively O F X with O F ( ^ Ax), and D F X 

with DF(r —> x)-

We show that the following statements are equivalent: 

(1) ipA,p ŝ satisfied in a topological P5T-model over (N, <); 

(2) ^^ p is satisfied in a topological P5T-model with FSA over (N, <); 

(3) tp'^p is Log{{N,<)} X S4„-satisfiable; 

(4) tpA.P is Log{(N,<)} X S4-satisfiable; 
(5) there exist a natural number TV > 1 and a sequence i i , . . . , iiv of indices 

such that Vij* • • • * Vif^ — Wi^* • - • * Wij^. 

Since (5) is undecidable, this is enough to prove our theorem. 
The implication (1) => (2) is obvious, (2) =̂  (3) follows from Lemma 16.1 

(ii), and (3) =̂  (1) follows from Theorem 6.29 and Proposition 3.6. The 
implication (3) => (4) is again obvious, and (4) =̂  (5) was shown in the proof 
of Theorem 7.24. Finally, (5) => (3) can be proved by appropriately modifying 
the valuation ^ in the product frame (N, <) x (N, <) that was given in the 
proof of Theorem 7.24. • 

16.2 Embedding spatio-temporal logics in first-
order temporal logic 

As we saw in Section 3.2 (Theorem 3.5), the spatio-temporal languages STi 
{% — 0,1,2) are embeddable into the propositional modal language VST. 
However, because of the undecidability results for VST above, this fact 
alone does not shed any light on the algorithmic behavior of 5Ti-formulas 
in tt-models. In this section we first provide a fine-tuned analysis of the 
modal models required to satisfy the modal translations of 5Ti-formulas and 
show that actually rather simple ones are enough to do the job. Then we 
use the obtained results to embed ST2 into the one-variable fragment of the 
first-order temporal language QTC. 

The modal translations of 5T2-formulas form a rather special fragment of 
the modal language VST. Renz (1998) showed that an 71CC-8 formula ^ is 
satisfied in a topological space iff its translation if^ is satisfied in a Kripke 

NK
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model based on some special S4u-frame that we call a quasisaw. Recall from 
Section 2.6 that a quasisaw is a 2-frame S = (^i Ri Ru) such that Ru is the 
universal relation on W and {Wy R) is a partial order of depth < 1 and width 
< 2 (that is, no i?-chain has more than two distinct points, and no point has 
more than two distinct proper successors). It turns out that Renz's result can 
be generalized to 5T i - and 5T2-formulas: 

Theorem 16.4. (i) An STi-formula Kp is satisfied in a tt-model based on a 
flow of time 5 iff ^^ is satisfied in a Kripke model based on the product of 5 
and a quasisaw (6. 

(ii) An ST2-formula (f is satisfied in a tt-model satisfying FSA and based 
on a flow of time 5 iff ^^ is satisfied in a Kripke model satisfying FSA and 
based on the product ofS and a quasisaw 0 . 

Proof. The proof proceeds via a series of lemmas. To begin with, we define 
a set of PtST-formulas which contains the modal translations of all 5T2-
formulas. 

Say that a 7^5T-formula is a CI-term if it can be obtained by prefixing 
CI to every subformula of an MCsu-iormnla x- If X contains occurrences 
of only the temporal operator O, then the corresponding Cl-term is called a 
ClQ-term. By definition, the translation t^ of every region term t of ST2 
is a Cl-term, while the translation t^ of every region term t of STi is a 
Clo-term. 

A Cl-formula (ClQ-forniula) is a formula constructed, using W, 5, and 
the Booleans, from formulas of the form <̂ V̂ , where each rp has one of the 
forms 

^1 A '02> "̂01 A ̂ 2» "01 A -'I'02 or IV̂ i A 1-02) 

with ipi and ^̂ 2 being Cl-terms (respectively, Clo-terms). Note that every 
Clo-formula is a u-formula. 

By replacing every E with --i<l>~' in the modal translation of atomic 5T2-
formulas given in Section 3.2, we obtain: 

(DC(ti,<2)r = -<3>(*rAt^), 

(EQ(ti, « 2 ) r = -<t>(<r A -«^) A -<i>(-ntr A t^), 
{P0{tt,t2))'' = <S>(I<̂  A It^) A 4>(t5' A H^) A <3>(-tf A t^), 

(EC(<i, «2)r = <i>(<r A t^) A ̂ <i>(Kr A K ? ) , 

(TPP(ti, ta))'' = -<l>(<r A H^) A <$>(«̂  A -.1/^) A 4>{-^t'^ A f^), 

(NTPP(<i,t2)r = -<t>(<^ A -^It^) A <l>(-tt' A t^). 

It follows immediately from the definition that 
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( sp l ) the modal translation of every iSTi-formula is equivalent (in topolo-
gical P5T-models) to a Clo-formula; 

(sp2) the modal translation of every 5T2-formula is equivalent (in topolo-
gical P5T-models) to a Cl-formula. 

Lemma 16.5. Suppose that a Cl-fonnula ip is satisfied in a Kripke model 
9Jl based on the product of a strict linear order J = (W, <) and a rooted 84^-
frame & = (F,/?i,/?v)- Suppose also that for any w € W, x G V, and any 
Cl'formula tj) the set 

^{yeV\ xRiy and (9Jl, {w, y)) |= V̂ } 

contains an Ri-maximal point Then (p is satisfied in a Kripke model 9Jt' 
based on the product ofS and a rooted SAu-frame & — {V, i?j, fly) such that 
iy\ /?j) is a partial order of depth < 1. IfdJl satisfies FSA, then OT' satisfies 
FSA 05 well. 

Proof. Suppose that M = {^ x (S,aJ>. Define & = {V\R[,R!^) by taking 
V = V,R^ = R^ = VxV, and R[ to be the reflexive closure of Rin{Vi x VQ), 
where 

Vo = {xeV\^y {xRiy ^ yRix)}, V, = V - Vo-

In other words, & keeps the same set of worlds as (3, but only those jRi-arrows 
from the latter that lead to points in final clusters (/?i-arrows within these 
clusters are also omitted). By the condition of the lemma, for every x e V 
there exists a t/ € VQ such that xRiy (take ^ = T). Finally, we put 5J' = ^ 
and fOT' = (5 X 0' ,2J '}. Clearly, if 9Jl satisfies FSA, then Wl' satisfies FSA 
as well. 

First we show that for every Cl-term V̂ , every t/; G W, and every x G V, 

{m',{w,x))\=ij iff {m,{w,x))\=:^. (16.5) 

The proof is by induction on the construction of 'ip. If ^ is a propositional 
variable then (16.5) follows from the definition of 9Jt'. Since the truth values 
of A^£5i^-formulas do not depend on the S4u-component of the underlying 
product frame, we have (16.5) for every A^£5i^-formula ip as well. 

Now it is not hard to see that, for every Al£5^/-formula tp, we have: 

(an, {w, x)) 1= C I ^ iflF 3y {xRiy and V2 {yRiz -> (On, {w, z)) \= rp)) 

iff 3y G Vb {xR[y and (971, {w, y)) ^ tp) 

iff 3y G Vo {xR[y and (971', {w, y)) h i^) 

iff 3y G Vo {xR[y and (971', {w, y)) h IV )̂ 

iff (97l',(ii;,x))|=CIi/;. 
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Next, we extend (16.5) to formulas of the form Ix, where x is a Cl-term. 
If {dJl, {w,x)) 1= Ix then (9Jl, {w, y)) |= x whenever xRiy, and so, by flj C i?i, 
we have (9Jt', {w, x)) |= Ix- Conversely, suppose (JOT', {w, x)) |= Ix- Take any y 
with xRiy and any z e VQ with yRiz. We claim that (OT, {w^ z)) |= x- Indeed, 
ii X £ Vi then this follows by IH from xRiZ, U x e VQ then zRix, Since we 
have (9W, (t/;,x)) |= x? by IH and x = C I ^ , we obtain (9)t, {w^z)) \= x- Now 
(9Jt, (it̂ , t/)) 1= X follows by t//?i2 and x = CI^^. Since y was arbitrary with 
xRiy^ we have (971, (t^,x)) |= Ix-

Finally, we can easily extend (16.5) to arbitrary Cl-formulas simply be-
cause they are constructed from terms of the form Ix and x? where x Is a 
Cl-term, by means of the Boolean operators, temporal operators, and 4>, 
and because none of these operators depends on the structure of the under-
lying partial order. Q 

Lemma 16.6. / / a Cl-formula (f is satisfied in a Kripke model 9Jl based on 
the product of a strict linear order 5 and a rooted S4u'frame (6 = (V, /?i, i?v) 
such that (K, Ri) is a partial order of depth < 1, then (f is satisfied in a Kripke 
model 9Jl' based on the product of^ and a quasisaw &. IfWl satisfies FSA, 
then 9Jl^ satisfies FSA as well. 

Proof. Suppose that (p is satisfied in a Kripke model 9JT = (5 x (JJ,5J) such 
that (6 = (V,/?i,/fv) and {V,Ri) is a partial order of depth < 1. It is not 
hard to see that then V is the disjoint union of two sets, say, VQ and Vi, such 
that Ri is the reflexive? closure of a subset of Vi x VQ- The points in Vi are 
said to be of depth i, for i — 0,1. 

Every Cl-formula (p is composed (using the temporal operators and the 
Booleans) from formulas E,̂  = {<l>Xi) • • •» ̂ Xn}» where the Xi are of the form 

i^X A i/̂ 2, V̂ l A -n02, IV l̂ A 102, i>l A -'IV>2, 

with V^i,02 being Cl-terms. We write {Tl^w) \= 4>V̂  if there \s x e V such 
that (On, {w,x)) (= ^ 0 (or, equivalently, if (971, {w,x)) |= 4>0 for all x € V). 

For every <$>V̂  € S<̂  and every w e W with (971, w) |= <t>V̂ , we fix a point 
x^p^w € V such that (9Jl, (w^x^^u))) f= t/). We may assume that the Xtp^^) are 
pairwise distinct and that all x of depth 1 are of the form x^^^) for some 
w e W and <$>V̂  € E^ .̂ Moreover, we may assume that no point y e V has 
more than one proper i?i-predecessor. 

Let us construct a new model 9Jt' = (5 x (S',93') as follows. First, for 
every w eW and every <̂V̂  G S<̂  such that there is a point x of depth 0 with 
(971, {w,x)) \= xj), we remove the point x^^^o from V whenever it is of depth 1. 
Denote the resulting set of points by V. 

Next, given a point x = x^^xu € V , we delete some /?i-arrows coming from 
X depending on the form of ij). There are four possible cases. 
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Case 1. ip = Clipi A CIV'2- Then we select points xi,X2 € V of depth 
0 such that (37t, (it;,Xi)) |= CItpi and xRiXi, for z = 1,2, and remove all 
i?i-arrows leading from x to points different from Xi,X2. 

Case 2. tp = CIV'i A -iCI^2- Then we select xi,X2 € V of depth 0 such 
that (9Jl, (ti;,xi}) |= CIV'i, (971, (tt;,X2)) |= -^CI}p2, xi?iXi, and remove all 
i?i-arrows leading from x to points different from xi,X2. 

Case 3. ip = ICI^ î A ICIV 2̂- Then we select Xi,X2 G V of depth 0 such 
that {9Jl, {w,Xi)) \= ICIx/ji, xRjXi, and remove all iii-arrows leading from x 
to points different from Xi,X2. 

Case .̂ V' = CIT/'I A -•ICIV^2- Then we select xi,X2 € V of depth 0 such 
that (971, (t/;,xi)) |= CIipi, (971, (w;,X2}) |= -«ICIV'2» x/JiXi, and remove all 
/?i-arrows leading from x to points different from xi,X2. 

Denote by flj the resulting relation and put i?y = V x V and & = 
(V',/Zi,/iy). It should be clear that C is a quasisaw. Finally, we define 21' 
by taking, for every propositional variable p, every it; € W, and every x G V , 

{w, x) e 93'(p) iff there is y G F' of depth 0 such that 

xRjy and (ti;,y) G 93(p). 

Clearly, if 971 satisfies FSA, then 971' satisfies FSA as well. 
To show that (p is satisfied in 971', we first prove that, for all it; G W and 

all <t>V' G E^, 
{m',w)\=<$^xp iff (97t,ti;) |=<I>V'. 

It is readily proved by induction that (971', (it;, x}) |= x iff (̂ H, (it;,x)) |= x 
for all points x of depth 0, all it; G W and all CI-terms x- Then, by the 
construction, we also have that, for all 4^il^ G T,^ and all it; G W, (971, it;) |= 4>IIJ 

implies (971', it;) \= ^X/J. SO it remains to show that (971, it;) |= ->4>tp implies 
(971', I/;) \= -^^ipj for all <t>V' G T,^ and all it; G W. Consider all four possible 
cases for rp. 

Case 1. xl) = CIV î A 01x1^2- Suppose that we have (971', (it;,x)) |= xp and 
(97t,it;) 1= -^<$>xp. Then there are xi,X2 G V of depth 0 such that xRiXi and 
(971', (it;,Xt)) 1= Clxpi. But then (971, {it;,x)) |= xp, which is a contradiction. 

Case 2. xp — Clxpi A -•CIV'2- Suppose that we have (97t', (it;,x)) |= xp but 
(971, It;) 1= -^^xp. Then (971', {xv, y)) \= CIxpi for some y of depth 0 with xfijy. 
But then (971', (it;,y)) \= -yxp2, so (97t, (it;,y)) [= xp, which is a contradiction. 

Case 3. xp = ICI^i A ICIV 2̂- Suppose we have (971', (it;, x)) |= xp but 
(971, It;) 1= -^^xp. Then for every iij-successor y of x of depth 0, we have 
(971', (it;,y)) \= xp, and so (971, (it;,y)) \= xp, which is again a contradiction. 

Case 4. xp = CIxpi A -•ICIV'2- Suppose that we have (971', (it;, x)) \= xp 
and (971, It;) |= -^<$^xp. Then (9Jl', (it;,y)) |= CIV'i for some y of depth 0 with 
xRjy. Thus (97t, (i/;,y)) |= CI^i, and so (97t, (i/;,x)) |= ICIV'2» which means 
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that {M,{w,z)) 1= CIV̂ 2 whenever xRiz. So {9Jl\{w,z)) |= CI'02 whenever 
xRiZ, contrary to (971', {w,x)) |= -iICIV'2-

Now, by a straightforward induction we can easily show that, for allw eW 
and all Cl-formulas tl) built from E<̂  using the temporal operators and the 
Booleans, we have 

(9n',t/;) |=V^ iff (an,!/;) |=V .̂ 

It follows that (f is satisfied in 971'. • 

We are now in a position to complete the proof of Theorem 16.4. 
(i) Suppose that an 5Ti-formula (p is satisfied in a tt-model based on a 

flow of time ^. By ( sp l ) , (p^ is (equivalent to) a Clo-formula satisfied in a 
topological VST'inodel based on J. Since every Clo-formula is a u-formula, 
it follows from Lemmas 16.1 (i), 16.5, and 16.6 that (̂ ^ is satisfied in a Kripke 
model based on the product of 5 and a quasisaw (S. The converse implication 
follows from Proposition 3.6. 

(ii) is proved in the same way using (sp2) and Lemmas 16.1 (ii), 16.5, 
16.6. • 

Now we define a translation from 5T2-formulas into the one-variable frag-
ment QTC^ of first-order temporal logic. This translation in a sense extends 
the translation -^ from BTZCC-S into S5 (which was introduced in Section 2.6), 
so—with a slight abuse of notation—we also denote it by •®. First, we *ex-
tenci' the translations •**, •', and •'' of MC^ into MC to translations (denoted 
also by •'', •', and •̂ ) from VST into QTC^. Fix an individual variable x. 
For every propositional variable p, we reserve three different unary predicate 
symbols Bp, Lp, Rp^ and set 

p^ = Bp{x), p' = Lp(x), p^ = Rp{x). 

Then set inductively 

{tpAxY^^'/^x'. f o r t € { 6 , / , r } , 

{^tpy^-.tp\ f o r i € { 6 , / , r } , 

{IrPy = rP\ f o r t € { / , r } , 

(cv^)^ = '̂̂  V V''V v^^ 
(CV )̂* = V̂ \ f o r t € { / , r } , 

{^x/jy = 3x [xl)^\/i)^yi)^), for % £ {6,r,/}, 

{Btpy = Vx (i)^ A V̂ ' A t/;*"), for i € {6,r, i} , 
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{i^iUiP2y = i^\Uxl^^. for i e {bj,r}, 

{ipiSilJ2y = ^{Si^i, for i e {bj,r}. 

Finally, we define the QTC^-translation (p^ of an 5T2-formula (p as {<f^)^. 
The length of (p^ is polynomial in the length of (p. We now have the following 
analog of Theorem 2.34: 

Theorem 16.7. Suppose ^ is a flow of time and (p an ST2-formula, Then 
the following conditions are equivalent: 

• ip^ is satisfiable in a Kripke model {with FSA) based on the product of 
3̂  and a quasisaw; 

• (p^ is satisfiable in a first-order temporal model {with FSA) based on 5-

Proof. The proof is a straightforward modification of the proof of The-
orem 2.34 and left to the reader. • 

Now we obtain the following: 

Theorem 16.8. (i) The map -^ is a polynomial translation of STi-formulas 
into the one-variable fragment QTC} of QTC such that, for any flow of time 
3̂ , an ST I-formula ^p is satisfiable in a tt-model based on J iff^^ is satisfiable 
in a first-order temporal model based on 3-

(ii) The map -^ is a polynomial translation of ST2-formulas into the one-
variable fragment QTC} of QTC such that, for any flow of time S, an ST2' 
formula (p is satisfiable in a tt-model with FSA based on 3 iff ^'^ i-"^ satisfiable 
in a first-order temporal model based on S o>f^d having finite domains. 

Proof, (i) Follows from Theorems 16.4 (i) and 16.7. 
(ii) Follows from Theorems 16.4 (ii), 16.7 and Theorem 11.44. • 

The decidability results for first-order temporal logics obtained Section 11.2 
now yield the decidability of the satisfiability problem for 5Ti-formulas: 

Theorem 16.9. Suppose C is any of the following classes of flows of time: 
{(N, <)} , {(Z, <)} , {{Q, <)} , the class of all finite strict linear orders, any 
first-order definable class of strict linear orders. Then the satisfiability problem 
for STi-formulas in tt-models based on flows of time in C is decidable. 

Proof. Follows from Theorem 16.8 (i) and Corollary 11.14. • 

Theorem 16.10. Let H be any of the following classes of flows of time: 
{(N,<)}, {(Z,<)}, {(Q,<)}, {(M,<)}, the class of all finite strict linear or-
ders, any first-order definable class of strict linear orders. Then the satisfiab-
ility problem for ST2-formulas in tt-models with FSA based on flows of time 
in H is decidable. 
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Proof. Follows from Theorem 16.8 (ii) and Corollary 11.14. • 

Remark 16.11. The (properly optimized) tableau- and resolution-type proced-
ures for the one-variable fragment of QLog^(N) mentioned in Remarks 11.40 
and 11.79 may provide ^practical' satisfiability-checking procedures for the 
spatio-temporal logics STi over the flow of time (N, <). 

16.3 Complexity of spatio-temporal logics 

Theorems 16.8, 11.31 and 11.53 provide us with EXPSPACE satisfiability 
checking algorithms for 5 T i - and 5T2-formulas in tt-models based on the 
flow of time (N, <) (and satisfying FSA in the latter case). To obtain the 
matching lower bounds, we encode 

• the constant-free fragment of QTC^ in ST2^ 

• the constant-free fragment of QTCQ^ in 5 T i , 

and then use Theorems 11.52 and 11.33, respectively (constants were not 
involved in the proofs of these theorems). We will also see that our translation 
encodes 

• the constant-free fragment of QT£gg in 5To, 

from which we can conclude, by Theorem 11.36, that the satisfiability problem 
for 5To-formulas in tt-models based on the flow of time (N, <) is PSPACE-
complete. 

Besides, we will single out a PSPACE-complete fragment sitting between 
STo and STi by forbidding applications of the Boolean operators to region 
terms in 5Ti-formulas. 

The results of this section were obtained in (Gabelaia et al. 2003). 

Complexity of the satisfiability problem for «STi-formulas 
over (N, <) 

In order to define an embedding of the constant-free fragment of QTC^ into 
5T2,we first require some simple facts about QT£^-formulas. A basic Q-for-
mula is a QT£^-formula of the form Vxi?(a:), where t?(a:) is quantifier-free 
and contains neither constant symbols nor propositional variables. Say that 
a QT£^-sentence (p is in Q-normal form if it is built from basic Q-formulas 
using the Booleans and temporal operators. In other words, sentences in 
Q-normal form contain neither nested quantifiers nor constants, and use only 
unary predicate symbols. Then we have the following: 

NK
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Lemma 16.12. For every constant-free QTC^ -sentence ^py one can effectively 
construct a QTC^-sentence (p in Q-normal form such that ip is satisfiable in 
a first-order temporal model based on a flow of time J {and having finite 
domains) iff (p is satisfiable in a first-order temporal model based on 'S {and 
having finite domains). Moreover^ the length of (p is linear in the length of ip. 

Proof. The proof is similar to that of Theorem 3.35. Without loss of gen-
erality we may assume that ip contains no occurrences of 3. To transform (p 
into its Q-normal form, we first introduce a fresh unary predicate symbol Pi 
for every propositional variable pi in ip and replace each occurrence of pi with 
VxPi(x). Denote the resulting formula by (/?o- For every subformula xj) of (/?o 
define a formula ^^ by taking inductively 

(P(x))« 

(V-i A V2)" 

hi'f 
(V îWV'a)" 

(Vl5^2)» 

(VxV')" 

= P(x), 

= V'JAVS, 
= -V", 

= i>\u^l 

= AsA 
= -fVivW' 

where /Vx^ is a fresh unary predicate symbol. 
Now, denote by x the formula 

f\ (Vx/Vx^(x) V Vx-fVxt/;(a:)) A f\ (Vx/\xt/;(x) 4» Vx^»). 

One can readily show by induction that 

(p = --'Va:-i<^Q A DpDpx 

is satisfiable in a first-order temporal model based on J (and having finite 
domains) iff (p is satisfiable in a first-order temporal model based on ^ (and 
having finite domains). Moreover, (p is in Q-normal form. • 

We are now in a position to define a translation -^ from QT£^-sentences 
in Q-normal form into 5T2-formulas. Given such a sentence (/?, denote by 
ip^ the result of replacing all occurrences of basic Q-formulas \/x'd{x) in ip 
with EQ(i?^, U U -»[/), where [/ is a region variable and the translation t?^ of 
quantifier-free formulas t?(a:) is defined by taking: 

{Pi{x))^ = Xi, {Pi a unary predicate symbol, 

Xi a region variable), 
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(V;iAi/;2)^-t/;f nV^^, 

Lemma 16.13. A QTC^-sentence v? m Q-normal form is satisfiable in a first-
order temporal model based on a flow of time 5 {and having finite domains) iff 
(if^)^ is satisfiable in a Kripke model based on the product of^ and a (finite) 
quasisaw. 

Proof. (=4>) Suppose that if is in Q-normai form and 9Jl = (5, D,/) is a 
first-order temporal model, where 5 = (Ŵ? <) ^^d, for all t/; G W, 

/(«;) = (D,PO^("'\ . . .) . 

Assume also that (9Jl, w) (= v?, for some w eW^ and construct a Kripke model 
JUl' = (5 X 0,9J) by taking the quasisaw 0 = (D, Ri, /?v>, where 

i?i = {{a,a) I a € D}, R^ = D x D 

and 
5J(pO = {(t«,o)|o€/^'<""}. 

Note that the topological space T,̂  = (Z),l(») induced by 0 is disci^te^ i.e., 
for all X C D, 

It follows by induction that, for every constant-free and quantifier-free QTC^-
formula t?, all w; 6 IV and all a € D, we have 

(an, w) h t?[a] iff (an', (t/;, a » h (t?"̂ )"". 
Therefore, for every basic Q-formula Vi:t?(x), all it; € W and all (or, equival-
ently, some) o € D, 

(an,!/;) h Vxt?(x) iff (an',(ti;,o)) |= (EQ(t?'^,C/U-t/))''. 

It follows by induction that {<p^)^ is satisfied in an'. 

(<{=) Suppose that {(fi^)^ is satisfied in a Kripke model an = (5 x 0,2J) 
based on the product of 5 and a quasisaw 0 = {V, /?i, /?v). Denote by VQ C V 
the set of points of depth 0 in (V, i?i) and define a first-order temporal model 
an' = (5,Vo,/) by taking 

I{w) = {Vo.Pi^'^\...) 
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and 
Pl^'"^ = {aeVo\{m,{w,a))^Pi}. 

Clearly, for every X C V, we have 

l^X n Vb = C^X nVo = XnVo, 

where T^ = (F,I(g} is the topological space induced by (6. So we obtain by 
induction that for every constant-free and quantifier-free QT£i-formula t?, all 
w eW and all a G VQ 

(9Jt', w) \= i)[a] iff (9Jl, {w, a)) \= (i?^)^. 

A regular closed set X C V in T^ coincides with V if and only if it contains 
VQ. SO, for all basic Q-formulas Vxt?(x), all it; G W and all (or, equivalently, 
some) a G Vo, 

{m',w)\=yxi){x) iff {m,{w,a)) \= (EQ(t?^,C/U-C/))' '. 

It follows by induction that (/? is satisfied in 9Jl'. • 

Now it is easy to define the fragments of QTC^ corresponding—in the 
sense of Lemma 16.13—to STQ and STi, First, observe: 

Lemma 16.14. For the translation ip \-^ (p of Lemma 16.12 the following 
hold true, for all constant-free QTC^-formulas vr.* 

• (p is a QTCQ^ -formula whenever ^ is a QTC^^ -formula. 

• (p is a QTC^ -formula whenever ip is a QTC^ -formula. 

So, (p^ is an 5Ti-formula whenever (/? is a constant-free QT£Q-sen tence , 
and it is an 5To-formula whenever (/? is a constant-free QTC\^ -sentence. We 
then obtain: 

Theorem 16.15. (i) A constant-free QTC^ -sentence ip is satisfied in a first-
order temporal model based on a flow of time 5 {and having finite domains) 
iff the ST0-formula (p^ is satisfied in a tt-model based on 5 {and satisfying 
FSA). 

(ii) A constant-free QTC^ -sentence (p is satisfied in a first-order temporal 
model based on a flow of time 5 {and having finite domains) iff the STi-
formula (p^ is satisfied in a tt-model based on 5 {and satisfying FSA). 

(iii) A constant-free QTC^ -sentence ^p is satisfied in a first-order temporal 
model based on a flow of time 5 and having finite domains iff the ST2-formula 
(p^ is satisfied in a tt-model based on ^ and satisfying FSA. 

Proof. This follows from Lemmas 16.12, 16.13, 16.14 and Theorem 16.4. • 
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Finally, we can derive the following tight complexity results: 

Theorem 16.16. (i) The satisfiability problem for STQ-formulas in tt-models 
{satisfying FSA) based on (N, <) is PSPACE-complete. This holds true for 
S'free STo-formulas as well, 

(ii) The satisfiability problem for STi-formulas in tt-models {satisfying 
FSA) based on (N, <) is EXPSPACE-complete. This holds true for S-free 
STx-formulas as well, 

(iii) The satisfiability problem for ST2-formulas in tt-models with FSA 
based on (N, <) is EXPSPkCE-complete. This holds true for S-free ST2' 
formulas as well. 

Proof. For the upper bound in (i), observe that ^^ is a QT£gg-formula 
whenever ^p is an 5To-formula, and apply Theorems 11.36 and 16.8. The 
upper bounds in (ii) and (iii) follow from Theorems 11.31, 11.53 and 16.8. 

The PSPACE lower bound in (i) follows from Theorems 16.15 (i) and 
11.36, because the PSPACE lower bound proof of the latter goes through for 
the constant-free fragment of QTC\^, The EXPSPACE lower bound in (ii) 
follows from Theorems 16.15 (ii) and 11.33, and from the observation that the 
EXPSPACE lower bound proof of the latter goes through for the constant-free 
fragment of QTC}^, The EXPSPACE lower bound in (iii) is shown in the 
same way using Theorems 16.15 (iii) and 11.53. As explained in Section 11.4, 
everything will hold true for 5-free formulas as well. • 

A PSPACE-complete fragment between ST^ and STi 

As we saw above, the satisfiability problem for 5Ti-formulas in tt-models 
over (N, <) is EXPSPACE-complete. It turns out, however, that if we do not 
allow applications of the Boolean operators to region terms then satisfiabil-
ity becomes PSPACE-complete. Let us denote the resulting spatio-temporal 
language by 

(its region terms are of the form O^X^ ^ > 0, where X is a region vari-
able). Our aim is to show that the satisfiability problem for 5T5"-formulas in 
tt-models over (N, <) is PSPACE-complete. To this end, we first prove that 
TlCC-8 has a kind of'completion property' (Theorem 16.17). It turns out that, 
because of this property, we can check the satisfiability of 5TJ"-formulas by a 
simple, almost modular, combination of the satisfiability checking algorithm 
of Sistla and Clarke (1985) for PTL and any algorithm checking satisfiability 
of 1ZCC-S formulas. This approach to determine the computational complex-
ity of combinations of PTL with constraint systems like Allen's interval al-
gebra Ai£-13 (see Section 2.2) and the orientation logic of Ligozat (1998) has 
been introduced by Balbiani and Condotta (2002) and further developed for 
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constraint systems without the 'completion property' by Demri and D'Souza 
(2002). 

To simpUfy presentation, throughout the remaining part of this section 
we assume that at each moment of time region variables are interpreted as 
nonempty regular closed sets. This means, in particular, that the eight TZCC-S 
relations are jointly exhaustive and pairwise disjoint; in other words, in any 
model and at any moment of time precisely one of the eight relations holds 
true between the interpretations of two 5Tj"-region terms, while the other 
seven do not hold. The results presented in this section are easily generalized 
to the framework in which empty regions are permitted; we refer the reader 
to the discussion at the end of this section. 

To begin with, we remind the reader that a fork is a frame f = (W^, R^) 
such that W^ = {6 ,̂ /f, rj} and R^ is the reflexive closure of {(6f, l^), {6j, rj)}. A 
saw is a disjoint union of forks (in which the universal modality is interpreted 
by the universal relation). 

A fork model is a Kripke model m = (f, a), where f is a fork and, for every 
variable p, we have 

6f € o(p) iff /f G t)(p) or rj € t)(p). 

A saw model is a disjoint union of fork models. Note that every saw model 
validates p ^ CIp, for every propositional variable p. By Theorem 2.33 (or 
16.4), an TZCC-8 formula (p is satisfiable iff (f^ is satisfiable in a saw model. 

Given a set V of propositional variables, say that fork models rui = {fi, di) 
and m2 = {hi^2) aie V-equivalent when x^^ € Oi(p) iff Xfj € t)2(p), for every 
p € V and every x G {i,r}: If V is of cardinality n, then there exist precisely 
A^ pairwise non-V-equivalent fork models. Denote by Forky the set of fork 
models containing one member of each V-equivalence class (over the variables 
inV). 

To simplify (and slightly abuse) notation, from now on we denote by X the 
propositional variable associated by the translation -^ with a region variable 
X. As we are going to consider only saws models, without loss of generality 
we may assume that X^ = X (not CIX as in the original definition). For 
instance, 

(DC(x,y))'' = ivi(-xv-r), 
(EQ(X,y))'' = 0(X -> y) A B{Y ^ X), 

(cf. Section 2.6 where -^ was introduced in a somewhat different but equivalent 
form). Define the universal part -^ of the translation -^ by taking 

(DC(x,y))̂  = 0(-xv-r), 
(EQ(x, r))^ = si(x -> y) A s(y -̂  x), 
(PO(x,y))^ = T, 
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(EC(x,y))'' = s(-'ixv-iy), 
(TPP(x,y))^ = i 3 ( x ^ y ) , 

(TPPi(X,y))^ = Sl(K-»X), 

(NTPP(x,y))^ = s i ( x ^ i y ) , 

(NTPPi(X,y))^ = E l ( y ^ I X ) . 

Fix some set V of region variables Xi,...,Xn- For every pair {Xi, Xj), where 
I < i < j < n, vre also fix a unique 1ZCC-8 relation Ry and let 

$ = {R< (̂X<, A: , ) I 1 < i < j < n} . (16.6) 

Say that $ is satisfied in a saw model 9Jt and write 9JI |= $ if 

R(X,y)€* 

We are now going to introduce some special models satisfying $ (if $ is 
satisfiable at all). First we let 

Fork4> = {m € Forky | m |= / \ (R(X, F) )^} 
R(X,K)€* 

and then take the disjoint union of countahly infinitely many isomorphic cop-
ies of each member of Fork4>. The resulting saw model 9Jl will be called the 
^-exhaustive model. It should be clear that this model satisfies $ whenever 
$ is satisfiable. 

Theorem 16.17. Let Y be a fresh region variable not occurring in V and let 

* = $ U { R i ( X i , y ) | 1 < i < n } , 

for some IZCC-S-relations Rt. Suppose * is satisfiable and let 9Jl = (©,2J) be 
the ^-exhaustive model. Then there exists a valuation 5J' in (3 which coincides 
xvith 5J on V and such that the saw model (6,53'} is "i-exhaustive. 

Proof. It is sufficient to show that, for every fork model m € Fork$, there 
exists a V-equivalent fork model m' which is VU {F}-equivalent to a member 
of Fork r̂ (we will simply say that m' is a member of Fork^^). 

So suppose that m = (f, o) is a member of Fork^ ,̂ where f = {W^,R^), 
W^ = {b],l],r^} and R^ is the reflexive closure of {(6f,/f), (fef^n)}- '^^e set 
Forkvu{r} contains four fork models which are V-equivalent to m, namely, 
'Tioo^'Tioijmicmii, where 

• m,,« = (f, o^«) and \>tA^i) = D(Xi), for every X^ € V and L, /? € {0,1}, 
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• t)oo(n = 0, t)oi(y) = {n,6j}, Dio(y) = {/f,6f} and Dn(y) = {/f,n,6j}. 

We will show that Fork^ contains at least one of moo,tTioi,mio,mii. 
First observe that if EQ{Xi, F) G ̂ , for some Xi e V, then Fork^ contains 

the fork model m̂ H with Of,«(Xi) = K)i^n{Y). Therefore, we may assume that 
for no Xi does EQ{Xi,Y) € * hold. Second, all the four fork models satisfy 
{PO{Xi,Y))^ and so the formulas PO{Xi,Y) in $ need no consideration. 

Now consider the following sets of regions: 

M={Xi\ NTPP(Xi, y ) e * and (m, 6̂ ) \= Xi}, 

T, = {Xi I TPP{Xi,Y) € * and (m,/0 |= X J , 

r„ = {Xi I TPP(X,,y) e * and (m,rj) |= Xi}. 

Fours cases are possible. 
Case 1: A/̂ UT^UT^ = 0 (i.e., 6j does not belong to any region in V which is 

a proper part of y ) . Then moo is contained in Fork ,̂ since moo |= (R(Xi,y))^ 
for every R{Xi,Y) e ^. Indeed, for every Xi we have: 

moo h 0 ( - X , V - y ) if D C ( X , , y ) € * , 

moo f= 0 ( - I X i V - l y ) if E C ( X i , y ) € * , 

moo \= ^{y-^ Xi) if TPPi (X , , y )G* , 

mool^mY ^IXi) if NTPPi(Xi ,y)G*. 

IfTPP(Xi,y) € ^orNTPP(Xi ,y) € * , then by assumption (moo, fcf) N ^Xi. 
Therefore, 

m o o | = 0 ( ^ i - ^ n if T P P ( X , , y ) € ^ , 

moo N 0 ( ^ i - ^ I^) if N T T P ( X i , y ) € * . 

Case 2: A/' U T̂  = 0 and 7^ 7̂  0 (i.e., 6f is on the border of some region 
from V which is a tangential proper part of y , and 6f does not belong to 
any region in V which is a non-tangential proper part of Y). Then moi is in 
Fork^, since moi |= {R{Xi,Y))^ for every R{Xi,Y) e ^. Indeed, for every Xi 
we have 

moi\=^{Xi-^Y) if T P P ( X i , y ) G * , 

moi h S(^ i -^ ^y) if NTTP(Xi,y) e * , 

since in both cases (moi,/f) |= -^Xi (by assumption) and (moi,rf) |= Y. Fur-
ther, let Z e Tn, i.e., TPP(Z,y) G * , (m,/f) \= -.Z and (m,rf) |= Z. Consider 
four remaining cases for Xi. 
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Let DC(Xt, Y) € * . We have to show that moi |= (3(-'Xi V -^Y). Suppose 
otherwise. Then (moi,frf) |= Xi and (m,6f) |= Xi. On the other hand, as 
both DC{Xi, Y) and TPP(Z, Y) are in * (which is satisfiable), we obtain that 
DC(Z, Xi) € $, contrary to (m, 6j) |= Xi A Z. 

Let EC(Xi,y) e * . Suppose moi ^ ^{-^IXiV-^IY). Then (moi,rf) |= Xi 
and (m,rj) |= X .̂ On the other hand, EC{Xi,Y) € * and TPP{Z,Y) e * 
imply that we have either DC{Z,Xi) € $ or EC{Z,Xi) € $, contrary to 
( m , n ) | = X i A Z . 

Let TPPi(Xi,r) G * . Suppose moi ^ J^{Y -^ Xi). Then (moi,n) h ^^t 
and (m,r^) [= -iXi. On the other hand, TPPi(Xi,y) G * and TPP(Z,r) € * 
imply that we have either TPP(Z,Xt) G $ or NTPP(Z,Xi) € $, contrary to 

Let NTPPi(Xi,r) € * . Suppose that moi ^ S1(K ~> IX^). Then we 
have (moi,r|) |= -^Xi and (m,rf) |= --Xi. But NTPPi(Xi,r) 6 * and 
TPP(Z,K) € * imply NTPP(Z, ATi) G $, contrary to (m,r^) [= ^Xi A Z. 

Case 3: M UTn = 0 and T;, ^̂  0. Then mio is in Fork̂ .̂ This case is a 
mirror image of Case 2. 

Case A: J\f UTi^ ^ 9 and Af U Tn ^ 0. Then mn is in Fork ,̂, since 
mn h {H{Xi,Y))^ for every R{Xi,Y) G *. Indeed, for every Xi we have: 

mn\= ^{Xi-^Y) if T P P ( X i , y ) G * , 

mn h E1(X, -^ i r ) if NTTP(Xi , r )G* . 

Now consider four remaining cases for Xi. 
Let DC(Xi, y ) G * and suppose that mn ^ Sl(-iXt V -^y). Then we have 

(mil,6f) h= Xi and (m,6j) |= Xi. On the other hand, there is Z G V such that 
(m,6f) f= Z and either TPP(Z,y) G * or NTPP(Z,y) G * , which together 
with DC(Xi,y) G * imply DC(Z,XO G $, contrary to (m,6f) h ^t A Z. 

Let EC(Xi,y) G * and suppose mn ^ E(-.IA'i V - i iy) . Then we have 
(minfef) f= IXi and (m,6f) |= IXi. On the other hand, there is a Z G V 
such that (m,frj) f= Z and either TPP(Z,y) G * or NTPP(Z,y) G * , which 
together with EC{Xi,Y) G * imply either DC(Z,Xi) G $ or EC(Z, X )̂ G $, 
contrary to (m, 6j) |= IXi A Z. 

Let TPPi(Xi,y) G *. Suppose that mn ^ 0 ( y -^ AT,). Then either 
(tnii,/f) 1= -'Xi or (mii,rf) ^ -iXt. Therefore, (mmfrf) \= -'IXi and 
(m,6j) 1= -'IXi. Then two cases are possible: 

(1) There is a Z G V such that (m,6|) [= Z and NTPP(Z,y) G * . Then 
we have NTTP(Z,Xi) G $, contrary to (m,6f) f= -^IXi A Z. 

(2) There are Z/,Zr G V with (m,/f) |= Z/, (m,rf) |= Zr and both 
TPP(Z/,y) and TPP(Zr,y) are in * . Then either TPP(Z/,Xi) G ^ or 
NTTP(Z/,Xi) G $, and either TPP{Zr,Xi) G $ or NTTP(Zr,Xi) G $. 
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In all these four cases we get a contradiction with (m, /j) \= -«Xi A Zi or 

Let NTPP\{Xi,Y) e * . Suppose that mn ^ B{Y -> IXi). Then either 
(mii,/f) 1= -^Xi or (mii,rf) \= ̂ Xi. So, (mii,6j) |= -ilXi and (m,6j) |= -iIX^. 
On the other hand, there exists Z e V such that (m,6f) \= Z and either 
TPP(Z,y) € * or NTPP(Z,y) e * , which together with NTPPi(Xi,y) € ^̂  
imply NTTP(Z, Xi) G *, contrary to (m, 6j) |= -^IXi A Z. • 

As a consequence of the proof of Theorem 16.17 and the uniqueness of 
exhaustive models we obtain the following: 

Corollary 16.18. Suppose that V C V and 

$ ' = {R{Xi,Xj) I R{Xi,Xj) e $, Xi,Xj £ V}. 

Then by restricting the valuation of the ^-exhaustive model to V we obtain a 
^'-exhaustive model. 

We are now in a position to prove: 

Theorem 16.19. The satisfiability problem for ST^ -formulas in tt-models 
over the flow of time (N, <) is decidable in PSPACE {and so is PSPACE-
complete). 

Proof. The proof of Proposition 11.25 shows that it is sufficient to prove this 
result for <STj"-formulas without S. Suppose that we have an «5Tj"-formula 
(/? without S. Note first that without loss of generality we may assume that 
every region term occurring in (f is of the from X or OX, where X is a region 
variable (if this is not the case, then for each O^X, n > 1, in (̂  we introduce 
fresh region variables X i , . . . , Xn, replace O'^X with Xn and add the formulas 

D+EQ(Xi,OX) and a+EQ(Xi+i,OX,), 

for i == 1 , . . . , n — 1, as conjuncts to the resulting formula). 
Let V be the set of region variables occurring in (p and let 

V° = V u { O X | X € V } . 

Replace every occurrence of an TZCC-8 relation R(ti,t2) in if (remember that 
^1,^2 G V°) with a propositional variable R̂ ^̂ ^ and add to the result the 
following conjunct 

° F A ( R ^ ' ^ ^ ' ^ ^ O R ^ ^ ) , (16.7) 
x.Yev 

where TZ = {EQ, EC, DC, PC, TPP, TPPi, NTPP, NTPPi}. Denote the resulting 
MCu-fovtrmldL by (p. It should be clear that the length of ^ is a polynomial 
function in the length of (p. 

We claim that (/? is satisfiable in a tt-model over (N, <) ilBF 
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(i) there exists a Kripke model 9t = ((N, <) ,il) satisfying (p and 

(ii) for every n € N, the set 

$n = mut2) I {%n) f= R'^'\ tut2 e V°} 

of TICC'S relations is satisfiable if we regard all region terms ^ € V^ as 
region variables. 

The implication (=>) is obvious. To show {<=)^ given a Kripke model 
9t = ((N, <} ,U) satisfying ^ and condition (ii) above, we construct inductively 
a model 9Jl = ((N, <) x (J5,93) such that 6 is a saw and OTt satisfies (f^. Then, 
by Theorem 16.4 (i), (f is satisfiable in a tt-model over (N, <). 

To begin with, we take the $o-exhaustive model 9Jlo = (6,5Jo>- It exists 
because $o is satisfiable. Set 

(0,x>€QJ(X) iff xeVo{X), 

for all points a; in 6 , and for all region variables AT € V. 
Consider now the model m[ = ((&,2Ji>, where V\{X) = 5Jo(OX), X G V. 

By Corollary 16.18, this model can be regarded as the $i-exhaustive model 
for 

$; = {R(x,y)|R(ox,or)€$o} 
over the variables in V. By the second conjunct of (16.7), ^[ C $ i and by 
Theorrm 16.17, there is a valuation V\ coinciding with QJi on V and such 
that VJli = (©,53i; is a $i-exhaustive model over V°. Set 

{l,x)eV{X) iff a:€2Ji(X), 

for all X in (&, and for all X eV. 
Then we consider the model 371̂  = {(6,^2), where 53^(A:) = 53i(OX), 

X £ Vy and use it in precisely the same way as above to define when (2,a;) 
belongs to ^{X). And so forth. 

Now by induction on the construction of (f we show that 971 satisfies (f^. 
The basis of the induction follows from the fact that, for every n € N and all 
tiyt2 G V°, we have 

(aT,n)f=R^^*^ iff {m,{n,x))\^{R{tut2)r. 

for all (some) x. The induction steps are trivial and left to the reader. 
We are now in a position to formulate a PSPACE satisfiability checking 

algorithm for «STj"-formulas. Given such a formula v?, we construct ip. Take 
the well-known PSPACE satisfiability checking algorithm for PTL of Sistla 
and Clarke (1985) or the proof of Theorem 19.8.1 from (Gabbay et al. 1994). 
(Actually, this algorithm is a simple variant of the algorithm presented in the 
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proof of Theorem 11.30 above.) To comply with condition (ii), at each step 
of the algorithm which guesses a set of subformulas of ip that are true at a 
certain time point n, we should now check whether the corresponding $„ is 
satisfiable in a topological space. According to Theorem 2.35, this can be 
done by a nondeterministic polynomial time algorithm. • 

As mentioned above, in Theorems 16.17, 16.19, Corollary 16.18, and their 
proofs we made the assumption that region variables are interpreted as non-
empty sets. In this case the set $ of (16.6) is equivalent to the set 

$ U \J{^5ij{Xi,Xj) I S,, ^ R,„ 1 < i < j < n}, 

where Sij are TZCC-S relations. In the proofs above, the negated TZCC-S re-
lations are covered implicitly because the TZCC-S relations are pairwise dis-
joint and jointly exhaustive. This is no longer the case for empty regions. 
However, the proofs can be easily modified to cover the empty regions by 
taking care of negated relations explicitly. For example, in (16.6) we should 
include for any pair (Xi,Xj), 1 < t, j < n, and any TZCC-S relation R either 
R{Xi,Xj) or -^R{Xi,Xj). Note that DC{Xi,Xi) implies that Xi is empty, 
while ->DC{Xi,Xi) means that Xi is nonempty. Now, with this modification 
of $ and corresponding modifications of the definitions of $ , $ ' , and $„» one 
can easily obtain a proof for the general case. 

Figure 16.1 summarizes the obtained complexity results. Here the spatio-
temporal logics 5 T ~ , for i = 0,1,2, are the STi with the restriction that 
only the corresponding temporal operators (but not the Booleans) and region 
variables can be used to construct region terms. 

16.4 Spatio-temporal models based on Eucli-
dean spaces 

Although the region connection calculus TICC (see Section 2.6) was formu-
lated as a first-order theory that can be interpreted in arbitrary topological 
spaces, of course the intended models for various applications are one-, two-, 
or three-dimensional Euclidean spaces, i.e., (R",I) for n = 1,2,3 with the 
standard interior operator.^ Renz (1998) showed that for pure TICC-S formu-
las satisfiability in arbitrary topological spaces coincides with satisfiability in 
(R,I), and so in (R^,I) for any n > 0; (R*^,!) is enough to realize any set of 
satisfiable TZCC-S formulas using only connected regions. 

Let us observe first that this result of (Renz 1998) cannot be generalized 
to TZCC'S extended with the operation U intended to form unions of regions. 

^Cohn (1997) notes, however, that in some applications discrete or even finite topological 
spzices may be preferable. 
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VST 

ST2 

\srx 

1 "̂̂^ 
^ T j 

\ST-, 

\srz 

in tt-models 

undecidable 
(Thru. 16.3 (i)) 

0 
EXPSPACE-complete 

(Thm. 16.16 (ii)) 

PSPACE-complete 

(Thm. 16.16 (i)) 

B 
PSPACE-complete 

(Thm. 16.19) 

PSPACE-complete 

(Thms. 2.7, 16.16 (i)) 

in tt-models with FSA 

undecidable 
(Thm. 16.3 (ii)) 

EXPSPACE-complete 

(Thm. 16.16 (iii)) 

EXPSPACE-complete 

(Thm. 16.16 (ii)) 

PSPACE-complete 

(Thm. 16.16 (i)) 

in EXPSPACE 

(Thm. 16.16 (iii)) [T] 

in EXPSPACE 

(Thm. 16.16 (ii)) |T] 

PSPACE-complete 

(Thms. 2.7, 16.16 (i)) 

Table 16.1: Complexity of spatio-temporal logics over (N, <). 

Recall that a topological space is called connected if it cannot be represented 
as a union of two disjoint nonempty open sets. 

Proposition 16.20. There exists a satisfiable BTICC-S formula ip which is not 
satisfiable in any connected topological space. In particular, (p is not satisfiable 
in {W,l)y for any n > 1. 

Proof. Take the conjunction ip of the following predicates: 

EQ(XiUX2,y), NTPP(Xi,r), NTPP(X2,r), NTPP(K,Z) . 

Clearly, if is satisfied in the topological space consisting of three points and 
having the interior operator I such that IX = X, for every set X. 

Now suppose that T [='* (/? for some topological space % = (f/,I). Then 
the region a(Xi UX2) is closed and included in Ia(y). On the other hand, it 
coincides with a(y). Hence o(y) is both closed and open. However, a{Y) is 
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not the whole space because it is a proper part of a(Z). So U is the union of 
the disjoint nonempty open sets a{Y) and U — a{Y). • 

Thus, if we want to generahze Renz's result to spatio-temporal logics, we 
should base them on TiCC-S rather than BTZCC-S. Denote the corresponding 
reducts of the STi by 5 T ~ , i = 0,1,2. (Remember that 5 T ^ was already 
defined in Section 16.3.) However, in general even this restriction is not 
enough. Since the operation of forming unions of regions is implicitly available 
in the language ST2 in the form of O F , we obtain the following: 

Proposition 16.21. There is an ST2 -formula satisfiable in some it-model 
with FSA, but not in a model based on a connected topological spacCf in par-
ticular not in (R'^,!!), for any n > 1. 

Proof. Let if be the conjunction of the predicates: 

EQ(OF^, Y), NTPP(OX, r), NTPP(OOFA:, r), NTPP(K, Z). 

Suppose that (9Jl, w) \= if for some tt-model 9Jl = ( 5 , 1 , a) with FSA, where 
5 = (W,<) is a discrete flow of time, T = ([/,!} a topological space and 
w £W, Let w' be the immediate successor of it;. Then we have: 

aiOpX^w) = CI y a{X,v) = Cl{a(X,w')U \J a{X,v)) 
V>'W V>W' 

^=^Cla{X,w')VJCl \J aiX,v) 

v>w' 

= a{X,w')Ua{OFX,w') = a(OX,w)U a{OOFX,vj). 

The remaining part of the proof is the same as that of Proposition 16.20. • 

Fortunately, this is not the case for 5TJ". 
Theorem 16.22. The following conditions are equivalent for every ST^-
formula (/?, every countable discrete flow of time ^, and every n> 1: 

• ip is satisfiable in a tt-model based on 5/ 

• if is satisfiable in a tt-model based on 5 o,Tid the Euclidean space {W^, I). 

Proof. Fix some n > 1, a countable discrete flow of time 5 = {W, <) and 
an 5TJ"-formula (p which is satisfied in a tt-model 9Jl = (5,1? o)-

Suppose { X i , . . . , Xm} are the region variables occurring in ip. For every 
w e W, take m fresh region variables X^, 1 < i < m, and define a set F of 
TiCC'S formulas by taking 

r = {R{X^\Xp) I WUW2 eW,l< ij < m, and R is an 

TiCC-S relation or its negation for 

which R{a{XijWi),a{Xj,W2)) holds in T}. 
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We claim that if the set F is satisfied in a topological space V under an 
assignment b (i.e., T' |=^ t/̂  for all 0 G F), then (p is satisfied in a tt-model 
9Jl' = (5,1',a'). Indeed, for every w e W and every i = l , . . . ,m, set 
a^{Xi,w) = b(Xj^). We show by induction that for every subformula x of V̂  
and every w eW, 

(9Jt,u;)hx iff (2n',ti;)f=X. 

Given w £ W and fc < a;, define w^ by taking w^ = w and ti;'̂ "'"̂  to be 
the immediate successor of w^. Let x = R(0"*Xi,0"^Xj). Suppose first 
that (m,w) 1= X' Then R(a(Xi,ti;'^0,o(^j>ti;"0) holds and R{Xf\Xf') 
belongs to F. Thus, T |=^ R(^r''»^j""')» and so R(a'(Xi,ii;^^), o'(X^, t/;̂ ^)) 
holds, from which (2JI',K;) |= X-

Conversely, suppose that (lOT', ti;) |= x- Then T' |=^ R(J\:f "*, Xf), which 
implies (since V |=^ t/; for all tp £ T) that R(X,^"',Xf"0 belongs to F. 
Hence {dJl^w) \= x- The induction steps for the Booleans, U and 5 are 
straightforward and left to the reader. 

So it is enough to prove that F is satisfiable in (R^,I). To this end, we 
first show that 

F is satisfiable in (R,1I>. (16.8) 

Indeed, F is clearly satisfiable in T (simply put b{X^) = a{Xi,w)). Now 
an inspection of the proof of Theorem 16.4 shows that Tlieorem 2.33 can be 
generalized from BIICC-S formulas to arbitrary sets ot BTICC-S formulas: such 
a set E is satisfiable in a topological space iff the set 

E^ = {tA^ I tA € E} 

of A^£^-formulas is satisfiable in a quasisaw (9 (in the sense that there is a 
model 971 based on 0 and such that (JOT, x) |= tjj^ for all ^̂  € E and all—or, 
equivalently, some—points a: in (S). So F"̂  is satisfiable in a quasisaw. Since 
S is countable, F*̂  is countable as well. Now, by using the standard first-order 
translation of A1£"-formulas and then applying the downward Lowenheim-
Skolem-Tarski theorem, we can assume that this quasisaw is the disjoint union 
of count ably many forks. 

As before, with a slight abuse of notation, we identify each region vari-
able A" in F with its translation X^. Moreover, as we are going to work 
in a quasisaw, without loss of generality we may assume that X^ = X is a 
propositional variable (and not CIX as in the original definition), that is, we 
may assume that the model satisfying F^ is a saw model (see Section 16.3). 

So suppose that F*̂  is satisfiable in a saw model 9Jl = {©,5J) such that 6 
is the disjoint union of countably many forks fjt, fc < u;, where fA; = (Wjfc, Rk), 
^k - {bkilki^k} and Rk is the reflexive closure of {{bkylk) A^kif^k)}-
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Denote by A'̂  the set of all region variables X such that 

<0{X)nWk = {bk,lk}. 

Analogously, X^ and A'ŷ  are the sets of all region variables X such that 

ViX)nWk = {bk,rk}, 

V{X)nWk = {bk,lk,rk}, 

respectively, and let X'' = X^i U X^ U X^^^. 
For each k <w,vfe then choose three maps 

/£:-V*-> (0,0.2), 

f^:X^-^ (0,0.2), 

/Mr ^'t'bi-^ (0.3,0.4) 

in such a way that, for every e e {bl, br, blr} and all X,Y e X^, 

fHx)<f^{Y) if aj(X)c5j(y), 

and 
fHx)^fHy) if 5j(x)^5j(y). 

Clearly, such maps exist. Then we put, for every X m T, 

iiXeX^, 

b'̂ CX) 
if X € Xt, 

{ [fc-/£(X),fc], 
[k,k^fl{X)], » - - - b . , 

[k - f^iX), k + f^,{X)], if X € X,%, 

10 , ifX^A-*, 

(16.9) 

(16.10) 

see Fig. 16.1. Finally, let b{X) = M b*(X), for every region variable X. 
k<ui 

k-O.i k-0.3 k-0.2 
1 1 1 h 

lfc+0.2 lfc + 0.3 fc+0.4 
1 1 1 

b*(X) 

b^X) iiX€X^ 

b'iX) ifXeA:"*, 

Figure 16.1: The assignment b* 



16.4. Models based on Euclidean spaces 677 

It is a matter of routine to show now that (R,I) |=** ip for all xl) eT. We 
will consider here only two cases. 

Suppose EC(X, Y) e T. Then 

m 1= ^(X A y ) A -<S>(IX A lY). (16.11) 

By the first conjunct in (16.11), there is a fc < u; such that M̂ /t nQ3(X)093(7) 
is not empty, and so X , r € X^> It follows that b^{X) D b^(y) ^ 0 (see 
Fig. 16.1). On the other hand, by the second conjunct in (16.11), we have 
that 5J(X)n2J(y) is disjoint from [Ji<uj{h.^i}' So iiWknV{X)nV{Y) ^ 0 
then either X € X^i and Y € X^^, or F € X^^ and X € X^. In both cases, 
b^{X) and b^{Y) are externally connected. 

Suppose NTPP(X,y) € T. Then 

m h I3(-X V IK) A <3>(-X A y ) . (16.12) 

First, observe that, by the first conjunct in (16.12) and the reflexivity of (3, we 
have V{X) C 2J(y) and, by the second conjunct in (16.12), 2J (y) -a j (X) ^ 0. 
So, by (16.9) and (16.10), there is a ifc < CJ such that b'^iY) - b^(X) =̂  0. 
It suffices to show that b{X) is included in the interior of b{Y). Suppose 
b^{X) / 0, for some k < uj^ that is, X € X^. Then, by the first conjunct in 
(16.12), we have Y E X^^^. There are two cases: 

Case 1: X £ X^iU A^. Then b^{X) is included in the interior of b^{Y) 
by the definition of b^ (see Fig. 16.1). 

Case 2: X e X^^^. Then f^i^iX) < / ^^ (y ) , by (16.9) and (16.10). So 
b^{X) is included in the interior of b'^(y) (see Fig. 16.1). 

The cases of the other IZCC-S predicates and their negations are similar 
and left to the reader. So we have shown (16.8). 

It is not hard to see that if F satisfiable in (R, I), then it is also satisfiable 
in (R^, I) for any n > 1 (if b is an assignment in (R, I) satisfying F, then put 
b'(X) = b{X) X R^- i ) . This completes the proof of Theorem 16.22. • 

As a consequence of Theorems 16.9 and 16.22 we finally obtain: 

Theorem 16.23. Let C be any of the following classes of flows of time: 
{(N, <)} , {(Z, <)} , the class of all finite strict linear orders^ any discrete 
first-order definable class of strict linear orders. Then satisfiability of ST^-
formulas in tt-models based on a flow of time in C and on the topological space 
(R'^,!), for any n> 1^ is decidable. 

Moreover, as a consequence of Theorems 16.19 and 16.22 we obtain: 

Theorem 16.24. The satisfiability of ST J -formulas in tt-models based on 
the flow of time (N, <) and on the topological space (R",I), for any n > 1, w 
PSPACE-complete. 
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Epilogue 

We have considered so many different languages and logics in this book that, 
although most of the presented results are collected and systematized in nu-
merous tables and diagrams, a brief summary from a 'bird's-eye view' of what 
has been done and what lies ahead may still be helpful. 

Our main objects of investigation have been modal-like languages inter-
preted in many-dimensional structures. Three important observations motiv-
ate our interest in these formalisms: 

(1) Various kinds of languages stemming (directly or indirectly) from Modal 
Logic^ have been recognized as major representation and reasoning tools 
in many fields of computer science, artificial intelligence, philosophy, 
computational linguistics, the foundations of mathematics, etc. To a 
large extent, this success of 'modal' logics is due to their being a reas-
onable compromise between expressivity and effectiveness. In fact, one 
can often implement a reasoning procedure for a standard modal lo-
gic in a rather straightforward way, even without bothering about its 
computational behavior. 

(2) On the other hand, realistic applications of modal logics in computer 
science, artificial intelligence, philosophy and other disciplines usually 
require a number of interacting modal operators. It is not sufficient 
to model time, space, belief, terminology, action, etc., independently of 
each other. What we actually need is semantically well-founded com-
posed logics, which leads us to models of many (at least two) dimensions. 

(3) While standard 'one-dimensional' modal logics were celebrated for their 
robust computational behavior (Vardi 1997, Gradel 2001), many-dimen-
sional ones often exhibit rather nasty computational properties, and 

^Unfortunately, the name of the discipline—Modal Logic—no longer reflects the diversity 
of logical systems sheltered under its roof, implying that all of them belong to Philosophical 
Logic. However, no better name has been suggested so far (shall we announce a competi-
tion?), and the only consolation is that many fields of traditional modal logic have become 
full-fledged research areas with their own names: temporal logic, dynamic logic, description 
logic, etc. 

679 
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the toolkit of standard modal logic is no longer directly applicable. 
Moreover, straightforward naive constructions of many-dimensional for-
malisms from one-dimensional ones will almost certainly result in com-
putationally useless 'monsters.' 

In this monograph we develop a mathematical framework which could guide 
(nonmathematician) users when constructing their many-dimensional form-
alisms. We provide two fundamental and interrelated kinds of mathematical 
abstractions for such a framework: products of propositional modal logics and 
{decidable fragments of) first-order temporal, epistemic, etc. logics. We de-
veloped a mathematical machinery for dealing with these logics in Parts II 
and III and then, in Part IV, we applied it to three case studies from the 
field of knowledge representation and reasoning, in particular, with the aim of 
illustrating the subtle trade-off between expressivity and computational prop-
erties of multidimensional formalisms. In all three cases—temporal epistemic 
logics, modalized description logics, and spatio-temporal logics—we sugges-
ted hierarchies of more and more expressive languages and showed how the 
computational complexity of the resulting logical systems increases. Although 
the formalisms we discussed cannot be directly transformed into 'real systems 
for industrial application,' we believe that they provide sufficient guidance for 
the designer of such systems. 

Now v/e very briefly sum up the major technical results and open problems 
of this book. 

Products of modal logics 

The investigation of products of modal logics constitutes the mathematical 
core of our approach. As traditional methods of handling modal logics (say, 
canonical models and filtration) are very rarely applicable to products, we 
introduced the new fundamental method of quasimodels for obtaining posit-
ive results (decidability, axiomatizability) and used various (sometimes rather 
sophisticated) 'encoding techniques' for establishing lower bounds of the com-
putational complexity (in particular, undecidability or nonrecursive enumer-
ability). Numerous results for applied many-dimensional logics were obtained 
by reductions to products of modal logics or by generalizing methodologies 
first explored in the context of products. Three main conclusions can be 
drawn from our investigation: 

1. While 'standard' one-dimensional modal logics are usually finitely axio-
matizable and decidable in PSPACE or EXPTIME, already two-dimen-
sional products of such (or even 'simpler') logics are often not finitely 
axiomatizable and at least NEXPTIME-hard. 
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2. There is a huge gap between two- and higher-dimensional products: 
while in the former case we obtain an unexpected diversity of decidable 
and undecidable, finitely axiomatizable and nonrecursively enumerable 
logics, in the latter case almost all logics are undecidable and nonfinitely 
axiomatizable. 

3. When in trying to improve the bad computational behavior of product 
logics, we move from interpretations in full product frames to interpret-
ations in their substructures, the resulting logics may unexpectedly lose 
the genuine many-dimensional character and degenerate to fusions of 
modal logics (with all their nice computational properties, but without 
interacting modal operators). 

Let us now consider in more detail the three main problems we focused 
on in this book. 

Decidability. As mentioned above, two-dimensional product logics exhibit 
a rather diverging computational behavior. The first 'rule of thumb' can be 
formulated as follows: 

•s* The product of two modal logics is decidable if one of them is ^similar^ 
to Km or S5m^ while the other one can be ^very expressive/ say, dy-
namic logic CPDL, epistemic logic S 5 ^ , temporal logic PTL, etc. The 
formation of two-dimensional products of other kinds of logics may be 
^dangerous:' there is a good chance that they may be undecidable. 

The term 'similar' in this rule excludes all logics which are 'nonlocal' in the 
sense that one can quantify over 'sufficiently many points with sufficiently 
rich structure,' e.g., K4, K^, or S4.3 (for instance, Log{(N, <)} x K4 is un-
decidable). We still do not have enough information to refine the 'dangerous' 
part of this rule. The following approximation may serve as the second 'rule 
of thumb' reflecting our current knowledge: 

•^ Products of modal logics determined by linear orders are usually unde-
cidable. 

The picture becomes absolutely unclear if both components of the product 
are sort of 'weak standard' modal logics^ different from Km and SSm- In fact, 
the main challenging open question is whether products of transitive logics 
like K4 x K4 or K4 x K4.3 are decidable. In this connection, we should 
admit that a deep and systematic investigation into the structure of abstract 
(i.e., not necessarily product) frames for these logics is still missing. 

As mentioned above, higher-dimensional products are often very complex: 

^We mean logics similar to those in Fig. 1.1. 
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»y For n > 3, n-dimensional products of modal logics are usually undecid-
able. 

Complexity. Two-dimensional products of standard modal logics are at 
least NEXPTIME-hard, but often they are even more complex (for example, 
K4.3 X S5 is EXPSPACE-hard). The main distinction here is between prod-
ucts of expressive one-dimensional modal logics with (a) logics similar to S5, 
which are usually in ELEM, and (b) products of those expressive logics with 
logics similar to Km (for m > 1) or S5n (for n > 2), which are usually not 
in ELEM. If both modal logics are weak standard logics, however, numerous 
complexity questions remain open. Perhaps, the most challenging problem is 
whether K x K belongs to ELEM or not. 

It is important to remember that the formation of products is not mono-
tonic: logics Li and L2 may be less complex than L'^ and Lj^ stnd yet L\ x L2 
is more complex than L\ x Lj. For example, S4.3 is NP-complete and there-
fore less complex than, say, K; however, S4.3 x S4.3 is undecidable, while 
K X K is decidable. It is this fact that makes it rather difficult to describe a 
general picture of the computational complexity of product logics. 

Axiomatizabil i ty. Here again the landscape is rather diverse. Our first 
'rule of thumb' says: 

«^ The product of any number of modal logics whose classes of frames are 
definable by recursive sets of first-order formulas is recursively enumer-
able. Moreover^ the product of two Horn definable logics is product-
matching: it can be axiomatized by putting together the axioms of the 
components and the natural interaction aaioms. So if the two compon-
ents are finitely aociomatizable and Horn definable, then their product is 
finitely axiomatizable as well. Two-dimensional products of other kinds 
of logics may not be such. 

The term 'may not be' in the last sentence refers to the fact that products of 
transitive logics with either K4.3 or Grz are usually not product-matching. 
However, we do not know any example of a pair of finitely axiomatizable logics 
such that their product is recursively enumerable but nonfinitely axiomatiz-
able. It can happen that the product of two finitely axiomatizable logics 
is not even recursively enumerable: such product logics are, for example, 
Log{{N, <)} X Log{{N, <)} and Grz.3 x Grz.3. 

In some cases the main obstacle in proving an axiomatization result for 
products is that we do not know that the logic, obtained by putting together 
the axioms for the components and the natural interaction axioms, is Kripke 
complete. It would be interesting to find an example when it is not. 

In higher dimensions good news is rare: 
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»y Forn > 3, n-dimensional products of modal logics are usually nonfinitely 
axiomatizable. 

Fragments of first-order modal logics 

First-order modal logics have become notorious for their extremely bad com-
putational behavior since the 1960s: their two-variable or monadic fragments 
are usually undecidable; such fragments of expressive modal logics (like quan-
tified PTL or epistemic modal logics with the common knowledge operator) 
are not even recursively enumerable. Given the 'negative* results on three-
(or more) dimensional products of propositional modal logics, this fact should 
not be too surprising, however, because the n -I- 1-dimensional product logic 
L X S5 X • • • X S5 is embeddable into the n-variable fragment of the first-order 
extension of L, for any Kripke complete modal logic L. 

In Part III we introduced the first general methodology for constructing 
relatively expressive, but still reasonably well-behaved fragments of first-order 
modal logics. Roughly, the idea behind the construction is that we have to 
be 'closer* to two-dimensional products than to three-dimensional ones.'' It 
turned out that this can be achieved by restricting applications of modal 
operators to formulas with at most one free variable; the resulting formulas 
were called monodic. The two main results on monodic fragments can be 
formulated as follows: 

•* The monodic fragments of first-order extensions of very expressive one-
dimensional modal logics {like PTL or epistemic modal logics with com-
mon knowledge operators) are usually recursively axiomatizable. 

»• / / the pure first-order (nonmodal) part of a subfragment of the monodic 
fragment of a very expressive first-order modal logic is decidable^ then 
usually the subfragment itself is decidable as well. This applies^ for 
example, to the two-variable monodic fragment, the monadic monodic 
fragment, and various guarded monodic fragments. 

These results require a few of comments: (a) they apply only to languages 
without function symbols and equality (although equality can be used in the 
guarded fragments); (b) they apply to models with arbitrary constant domains 
and finite constant domains; (c) the qualification 'usually* should be taken 
seriously: for example, it is one of the main open problems in the field whether 
the latter result holds for the first-order extension of the temporal logic over 
the real line (R, <). (It holds true under finite domains!) 

În this connection it may be of interest to refer to a result of Hodkinson et al. (2002) 
which shows that no '2^0' product of any (ID) modal logic located between K and 85 
with the (I5D) computational tree logic CTL* is decidable. 



684 Epilogue 

We have already mentioned that the properties of monodic fragments 
can be partly explained by the fact that they are closer to two-dimensional 
products than to three-dimensional ones. In fact, the monodic fragments of 
the first-order extension of a modal logic L are in a sense similar to L x S5 
(which, in turn, is equivalent to the one-variable fragment of the first-order 
extension of L), so that the quasimodel technique we used to investigate the 
monodic fragments closely resembles the quasimodel technique for products 
with S5. Therefore, again, it should not come as a surprise that decidable 
subfragments of monodic fragments are mostly in ELEM, in contrast to the 
nonelementarity of products with K„ (for n > 1) and S5n (for n > 1). 
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for ACC, 69 
for LACC, 174 

global, 174 
concept type, 72, 592 

named, 592 
condensation, 513 
connected partial order, 26 
connected topological space, 83 
consistency, 69 
consistent logic, 13 
constant domain assumption, 145, 167 
constraint, 616, 618 

for MCACC, 627 

constraint system, 616, 618 
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dense flow of time, 41 
dense relation, 41 
deontic logic, 8 
depth of a partial order, 89 
depth of point in frame, 24 
derivation, 6 
descriptive IntK^^-frame, 449 
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first-order definable class of structures, 

17 
first-order dynamic logic, 153 
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first-order modal language, 143 
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flat model, 435 
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fork model, 666 
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formula, 4 
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true in first-order structure, 17 
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true under assignment, 16 
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formula satisfiability, 174 
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functional, 13 
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frame formula, 232 
free variable, 16 
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379 
full IntK^^-frame, 449 
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fusion of frames, 112 
fusion of logics. 111 

game, 224 
general IntK^^-frame, 449 
general intuitionistic frame, 448 
generalized substitution, 428 
generated subframe, 25 
generated submodel, 26 
global concept satisfiability, 174, 585, 

642 
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585 
global consequence, 35 

determined by countable frames, 
36 

determined by finite frames, 36 
global instance checking, 174 
global Kripke completeness, 36 
global role name, 166 
global rule, 627 
global subsumption, 174 
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Halpern-Shoham interval logic, 53 
halting problem, 256 
Heyting algebra, 93 
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classical first-order, 17 
homogeneous flow of time, 573 
homomorphic image, 30 
homomorphism, 23, 30 
Horn axiomatizable logic, 228 
Horn formula, 228 
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individual variable, 15 
inference rule, 6 
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instance checking, 69, 174 

global, 174 
interior operator, 82 
intermediate logic, 93 
interpolant, 216 
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interpolation 

uniform, 216 
interpolation property, 216 
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interval variable, 50 
intransitive frame, 23 
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intuitionistic Kripke model, 94 

first-order, 154 
intuitionistic modal logic, 189 
intuitionistic propositional logic, 92 

intuitionistic provability logic, 189 
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iteration, 61 

Kamp's theorem, 45 
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/C-model, 481 
knowledge base, 68 
Kripke completeness, 11 

global, 36 
Kripke frame, 9 
Kripke model, 9, 21 

based on a frame, 10 
A;-run, 275 
Kuratowski axioms, 82 

Lambek calculus, 187 
language 

first-order, 15 
first-order modal, 143 
first-order temporal, 157 
monadic second-order, 39 
propositional modal, 4 
propositional n-modal, 20 
propositional spatio-temporal, 

122 
least upper bound, 361 
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linear order, 26 

strict, 26 
local consequence, 35 
local n-cube, 429 
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11 

classical first-order, 17 
classical propositional, 5 
common knowledge, 137 
consistent, 13 
cylindric modal, 429 
decidable, 31 
deontic, 8 
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first-order temporal, 158 
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superintuitionistic, 93 
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temporal epistemic, 137 
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minimal deontic logic, 9 
minimal modal logic, 7 
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model 
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first-order temporal, 158 
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topological P 5 T - , 122, 648 
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monadic second-order language, 39 
monadic second-order logic, 38 
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monodic formulas, 471 
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n-modal algebra, 28 
n-modal logic, 20 
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partial order, 13 
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strict, 12 
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PCP, 258 
perfect character, 514 
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polynomial reduction, 33 
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possible world semantics, 9 
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post-condition, 61 
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product fmp, 132, 236 
product frame, 126 

decreasing relativized, 432 
expanding relativized, 432 

product logic, 129, 222 
product of consequence relations, 129 
product of frames 
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algebra, 379 
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theory of first-order structures, 17 
3-theory, 511 



746 Subject index 

tile type, 252 
tiling, 252 
tiling problem, 252 
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topological model, 87 
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topological space, 82 
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discrete, 663 
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topological temporal model, 115 
transition relation, 63 
transitive relation, 11 
tree, 23 
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truth-relation, 10 

classical first-order, 16 
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first-order modal, 144 
first-order temporal, 158 
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truth-set, 10 
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recurrent, 256 

twin, 242, 281, 293, 597 
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undecidable logic, 31 
uniform interpolant, 216 
uniform interpolation, 216 
universal Horn sentence, 228 
universal modality, 37 
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validity problem, 33 
valuation, 9, 21 
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variable 

bound,16 
free, 16 
individual, 15 
marked, 625 
unmarked, 625 

variable free formula, 228 
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