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“You've got to learn to think multi-dimensionally. ..

If you’d like to know, I can tell you that in your uni-
verse you move freely in three dimensions that you
call space. You move in a straight line in a fourth,
which you call time, and stay rooted to one place in
a fifth, which is the first fundamental of probability.
After that it gets a bit complicated, and there's all
sorts of stuff going on in dimensions 13 to 22 that
you really wouldn’t want to know about.’

Douglas Adams ‘Mostly Harmless’
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Preface

Modal logic is a discipline of many facets. It was baptized in philosophy, and
for a long time it was known as ‘the logic of necessity and possibility.” The
modal analysis of the ‘mathematical necessity’—provability—brought modal
logic to the foundations of mathematics. The discovery of topological and
algebraic semantics for modal logic connected it with general topology and
universal algebra, and the fact that first-order logic can be regarded as a
propositional modal logic opened a ‘modal perspective’ in classical mathem-
atical logic. But the most amazing metamorphosis happened when it turned
out that modal logic could provide languages for talking about various re-
lational structures, such as state transition systems for computer programs,
semantic networks for knowledge representation, or attribute value structures
in linguistics—languages that combined both sufficient expressive power and
effectiveness! This opened new rich and rapidly growing application fields in
computer science, artificial intelligence, linguistics, as well as in mathematics
itself.

A great many systems with various kinds of modal operators have been
constructed in the last few decades in order to provide effective formalisms for
talking about time, space, knowledge, beliefs, actions, obligations, etc.: tem-
poral, spatial, epistemic, dynamic, deontic, and so forth. However, modern
applications often require rather complex formal models and corresponding
languages that are capable of reflecting different features of the application
domain. For instance, to analyze the behavior of a multi-agent distributed
system we may need a formalism containing both epistemic operators for cap-
turing the knowledge of agents and temporal operators for taking care of the
development of this knowledge in time. In other words, we should construct a
suitable combination of epistemic and temporal logics. Borrowing the geomet-
rical terminology, one can call the resulting hybrid a many-dimensional modal
logic (later on we shall see that this name is not merely a nice metaphor).

The algorithmic properties of such many-dimensional hybrids that ap-
peared more or less independently and with different motivations in com-
puter science, artificial intelligence, algebraic logic, and modal logic, turn out
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to be quite different from those of their well-known and well-behaved one-
dimensional components. In particular, the complexity of decision algorithms
may increase dramatically, even up to undecidability; two fairly simple finitely
axiomatizable systems may give rise to a hybrid which is not even recursively
enumerable, etc.

To study the computational behavior of many-dimensional modal logics
is the main aim of this book. More precisely, as suggested by its title, our
aim is twofold. On the one hand, we are concerned with providing a solid
mathematical foundation for the discipline characterized in (Blackburn et al.
2001) as

...a branch of modal logic dealing with special relational struc-
tures in which the states, rather than being abstract entities, have
some inner structure. More specifically, these states are tuples or
sequences over some base set ... Furthermore, the accessibility re-
lations between these states are (partly) determined by this inner
structure of the states.

On the other hand, we show that many seemingly different applied many-
dimensional systems (e.g., multi-agent systems, description logics with epi-
stemic, temporal and dynamic operators, spatio-temporal logics, (fragments
of) first-order temporal or epistemic logics, etc.) fit in perfectly with this the-
oretical framework, and so their computational behavior can be analyzed using
the developed machinery. Thus, we contribute to filling in the gap between
the mathematical theory of modal logic and applications in computer science
and artificial intelligence, which were developing in parallel, often independ-
ently of each other (witness description logics created in the field of knowledge
representation and proved to be terminological variants of well-known modal
logics). This gap is clearly reflected in the existing literature. Take, for ex-
ample, two recent books: (Fagin et al. 1995) is an excellent exposition of ap-
plied epistemic logic, but it avoids difficult proofs, say, the complexity results
are only formulated; the first monograph on multi-dimensional modal logics
(Marx and Venema 1997), on the contrary, considers mostly mathematical
aspects of modal systems originating in algebraic logic.

This book also reflects a new direction in applied logic in general and in
modal logic in particular that has become apparent in the last few years:
we mean the direction towards constructing and investigating complex com-
bined systems out of relatively simple ones. It has manifested itself in a
number of international conferences (e.g., ‘Frontiers of Combining Systems’
FroCoS’96-FroCoS’02) and subsequent volumes (Baader and Schulz 1996,
de Rijke and Gabbay 2000, Kirchner and Ringeissen 2000, Armando 2002),
special issues of Notre Dame Journal of Formal Logic (de Rijke and Black-
burn 1996) and Studia Logica (Gabbay and Pirri 1997, Kurucz et al. 2002),
and the monograph (Gabbay 1999).
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Complex logical systems and knowledge representation formalisms present
many challenging problems for investigation. In this book we concentrate on
three of them that are regarded as fundamental in both mathematical logic
and theoretical computer science. These are:

o The decision problem, i.e., to find out whether there exists an algorithm
that is capable of deciding a given reasoning task (say, satisfiability or
entailment) for a logic.

o The complexity problem, i.e., to find lower and upper bounds for the
computational complexity of a possible algorithmic solution to the de-
cision problem.

e The ariomatization problem, i.e., to give an effective (preferably finite)
syntactical characterization of a semantically defined logic, or to provide
an adequate semantics for a syntactically defined one.

The first two problems are concerned with effectiveness (or programmability)
and efficiency (or fast programmability) of logical systems, which make them
fundamental in artificial intelligence and other practical fields of computer
science as well. The third problem is connected with the proof-theoretic ap-
proach: it can be understood as describing the most essential features of a
logic starting from which all others are derivable. Thus, the axiomatization
problem underpins possible implementations of decision procedures.

The direct practical use of decidability, complexity and axiomatizability
results may be not that obvious.

‘Negative’ results, say undecidability, are clearly useful: they warn us
not to waste time with implementing this or that ‘decision’ algorithm. These
results lead to a new research programme: (1) to find semi-decision (i.e., sound
but incomplete) procedures, (2) to search for decidable fragments of the logic
in question, (3) to modify the logic by making it decidable, etc. Similarly, a
result establishing a high computational complexity or non-axiomatizability
may force the researcher to devise another language to model her application
domain.

On the other hand, a positive decidability result does not yet guarantee
that trying to implement a decision procedure is not a waste of time: after all
the British Museum algorithm is also a decision procedure. It may seem that
the only use of a positive solution to the decision problem is the conclusion
that it is not provable (with the existing concepts in recursion and complexity
theory) that implementing a decision procedure is hopeless! This interpret-

1Even this cautious claim may appear too strong. Here, for example, is a citation
from (Johnson 1990): ‘Even those unimpressed with the difficulty of problems in 2- or 3-
EXPTIME will have to admit that if a problem is decidable but not in ELEMENTARY, it
might as well not be decidable at all.’ So, according to Johnson, there are concepts in com-
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ation of decidability results can hardly justify spending an enormous amount
of energy for obtaining them.

Actually, it is not only the result itself, not only the first ‘sanity check’ of
the system, not only an indication of how to implement a decision procedure
that motivates the researcher, but also a deep insight into properties of the
logical system that can be extracted from decidability and axiomatizability
proofs? It is the proof of a complexity result that provides the researcher
with insights into the sources of high computational costs and can be used to
guide the search for more eflicient languages—see (Gurevich 1990, 1995) for a
similar position. To conclude this discussion: we believe that the decidability,
complexity, and axiomatizability theorems we present in this book are of
interest mainly because their proofs provide a better understanding of the
logical formalisms we consider and, at the same time, are often useful for
the design of practical procedures (to a certain extent, this is illustrated in
Chapter 15 which presents tableau calculi for modal description logics).

The book is organized in the following way. Part I may serve as an easy
introduction to modal logic and its applications. Chapters 1 and 2 introduce
the basic modal logics we deal with, explain their roots, motivations, syntax,
semantics and application fields. At the end of Chapter 2 we show useful
‘semantical level’ reductions between many of these logics. In Chapter 3, we
consider a number of many-dimensional systems constructed in logic, artifi-
cial intelligence and computer science, and establish connections between the
various formalisms.

Part II is the technical core of the book. Here we develop a mathematical
theory for handling a spectrum of ‘abstract’ combinations of modal logics,
ranging from fusions (known also as independent joins or dovetailings), in
which the modal operators of different components do not interact at all,
to products of modal logics, where such an interaction is rather strong. The
ideas, tools and techniques developed in Part II as well as the obtained results
will be used in the subsequent two parts to investigate the computational be-
havior of first-order modal and temporal logics and some combined knowledge
representation formalisms.

In Part IIl we consider first-order modal and temporal logics in the two-

plexity theory which allow us to classify certain decidable problems as ‘non-implementable’
ones. We do not agree with this for the simple reason that a non-elementary problem may
be solvable in polynomial time in all practical cases. For certain highly complex prob-
lems a useful and complete decision algorithm may exist; see e.g. (Horrocks et al. 1999,
Hustadt and Schmidt 2000). Klarlund et al. (2002), writing about the prover MONA in
monadic second-order logic, observe that ‘perhaps surprisingly, this [NONELEMENTARY]
complexity also contributes to successful applications, since it is provably linked to the
succinctness of the logic.’

2That is why decidability results obtained by means of embeddings into extremely ex-
pressive formalisms (like monadic second-order logics S1S or SwS) may appear somewhat
disappointing.
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dimensional perspective. It has been known since the 1960s that it is ex-
tremely hard to deal with these logics (and that they can be very important
for applications). But in contrast to classical predicate logic, where the early
undecidability results of Turing and Church stimulated research and led to a
rich and profound theory concerned with classifying fragments of first-order
logic according to their decidability (see, e.g., Borger et al. 1997), there were
no serious attempts to convert the ‘negative’ results in first-order modal and
temporal logic into a classification problem. Apparently, the extremely weak
expressive power of the modal and temporal formulas required to prove unde-
cidability left no hope that any useful decidable fragments located ‘between’
propositional and first-order modal and temporal logics could ever be found.
However, the studies of many-dimensional propositional modal logics have
brought a new insight into the first-order case. In Part III we present a
number of recent results concerning decidable and axiomatizable fragments of
various first-order modal and temporal logics, and try to draw a borderline
between ‘the decidable’ and ‘the undecidable.’

Part IV applies the developed techniques and obtained results to analyze
the computational behavior of three kinds of knowledge representation form-
alisms: temporal epistemic logics, description logics with modal and temporal
operators, and spatio-temporal logics. In particular, we show how the method
of quasimodels, developed for proving decidability, can be used for devising
tableau decision procedures for some of these logics.

The genre of the book can be defined as a research monograph. It brings
the reader to the front line of current research in the field by showing both
recent achievements and directions of future investigations (in particular, mul-
tiple open problems). On the other hand, well-known results from modal and
first-order logic are formulated without proofs and supplied with references
to accessible sources.

The intended audience of this book is primarily those researchers who use
logic in computer science and artificial intelligence. More specific areas are,
e.g., knowledge representation and reasoning, in particular, terminological,
temporal and spatial reasoning, or reasoning about agents. For ‘pure’ logi-
cians Parts II and III may be of chief interest. Logicians looking for possible
applications may find some useful ideas in Parts I and IV. And we also be-
lieve that researchers from certain other disciplines, say, temporal and spatial
databases or geographical information systems, will benefit from this book as
well.

We conclude this preface by putting the subject of the book into a more
general perspective of ongoing and future research. As we have said above,
many-dimensional modal logics are just one example of ‘combined logical sys-
tems.’” And even within this smaller area there may be different ways of
constructing complex logics out of relatively simple ones. Our approach is
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basically semantical: given two (or more) classes of ‘one-dimensional’ Kripke
frames characterizing logics L;, we construct a class of two- (or higher-) di-
mensional Kripke structures reflecting some desirable features of the target
combination of the L;, and then investigate the logic determined by this class.
However, logics do not always come equipped with their Kripke semantics.
They may be given by some kind of algebraic structures or purely syntactic-
ally, as Hilbert-, Gentzen-, tableau-, resolution-, etc. style calculi. Thus, we
need a spectrum of methodologies providing us with means of combining homo-
geneously given logics (say, tableau systems) and perhaps meta-methodologies
for combining methodologies. These challenging problems are far beyond the
scope of this book; many of them are still open for investigation.
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Chapter 1

Modal logic basics

This chapter can serve as a concise introduction to modal logic. We define
a number of basic modal systems, introduce the possible world semantics
for propositional multimodal logics, establish connections with classical first-
order logic, and discuss the decision, complexity and axiomatization problems
which will be investigated later on in the book for much more complex many-
dimensional modal systems. As all the results of this chapter are well docu-
mented in the accessible literature, we omit the proofs and provide the reader
with references to available textbooks. The reader familiar with elements of
modal logic can safely skip this introduction and proceed with Chapter 2.

1.1 Modal axiomatic systems

Modal logic originated in philosophy. The creator of the first modal systems,
C.I. Lewis (1918, 1932), constructed them as an auxiliary tool in his attempts
to solve the paradoxes of ‘material’ (i.e., Boolean) implication! His idea was
to replace the material implication ‘if ¢ then v’ with the ‘strict’ implication
‘it is necessary that if ¢ then ¢’. And for this purpose Lewis constructed
five axiomatic systems with simple names: S1-S52 It seems that the only
intuition behind them was whether they could help to get rid of the paradoxes.
In any case, Lewis never clarified his understanding of the notions of necessity
and possibility. Yet, at least two of his systems, S4 and S5, became celebrities
in modal logic.

1Here is one such paradox: ‘If the moon is made of green cheese then 2 x 2 = 4. We
have to regard this statement as true in Boolean logic if we agree that 2 x 2 = 4. Those
who want to learn more about the paradoxes of material implication are referred to (Zeman
1973) and (Anderson and Belnap 1975).

2Actually, S5 was introduced before Lewis by H. McColl (1906).



4 Chapter 1. Modal logic basics

Approximately at the same time when Lewis formulated S4 in (Lewis and
Langford 1932), the very same logic was also constructed by Orlov (1928)
and Godel (1933). However, their aim was different. Both of them tried to
interpret the intuitionistic logic of Brouwer by embedding it into classical logic
extended with an operator ‘it is provable.’®

Unlike Lewis who used the necessity operator implicitly, having hidden
its properties in strict implication, Orlov and Gédel added it to classical pro-
positional logic* explicitly, thus arriving to the propositional modal language
which will be denoted in this book by ML.

The alphabet of ML consists of

¢ a (fixed, countably infinite) list pg, p1,... of propositional variables;

the logical constants: T (‘true’) and L (‘false’);

the Boolean logical connectives: A (‘and’), V (‘or’), — (‘implies’), and
= (‘not’);

the modal operators: O (‘it is necessary’) and © (‘it is possible’);

the punctuation symbols: ) and (.

Propositional variables can be thought of as ranging over arbitrary proposi-
tions—sentences in some (say, natural) language whose content can be eval-
uated as true or not true. Starting from these variables and the logical con-
stants, we construct inductively well-formed formulas of ML (ML-formulas,
for short, or simply formulas, if ML is understood) intended for representing
compound propositions:

» all propositional variables and the constants T and L are ML-formulas
(these are called atomic formulas or simply atoms);

e if ¢ and 9 are ML-formulas then so are (¢ A ¥), (p V¥), (¢ — ¥),
(=%), (Oyp), and (Op)®

Sometimes we use (¢ « ) as an abbreviation for ((¢ — ¥) A (¥ — ¢)).
In our metalanguage, we may denote propositional variables by lower case
Roman letters like p, q, 7, possibly with subscripts or superscripts; lower case
Greek letters like @, ¥, x are reserved for formulas, and upper case letters
¥, A, etc. for sets of formulas. To simplify notation, we use the following

3We discuss intuitionistic logic and this embedding in Section 2.7.

40rlov’s system was based on a logic weaker than classical propositional logic; actually,
it was the first system of relevant logic.

5To be absolutely precise, we should add here that no other objects, different from those
defined above, can be called ML-formulas. We will never formulate statements like this
explicitly, relying upon the reader’s common sense.
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standard conventions on formula representation: we assume -, 0 and © to
bind formulas stronger than A and V, which in turn are stronger than — and
~, and omit those brackets that can be uniquely recovered according to this
priority of connectives. Thus, the ML-formula

(O((po Ap1) = ((Opo) V p1)))

can be shortened to
O(po Ap1 — Opo V p1).

Instead of (... ((¢1V02) V3)V+--V,) and (... (01 Ap2) Aps) A+ Apn)
we write, respectively, o1 V@2 V-V, and w3 Az A+« Ay, or Vi, ¢
and A7, ¢i. By definition, Vo wi is L, while A;cq i is T.

Given a formula ¢, we write ©(q1,...,¢n) to indicate that all propositional
variables occurring in ¢ are among qi,...,¢n; suby denotes the set of all
subformulas of ¢ (i.e., the formulas used in the construction of ¢ according to
the definition above, including ¢ itself). Say, if ¢ is O(po Ap1 — Opo V p1)
then

suby = {po, 1,0 A P1, Opo, Opo V P1,po Apr — Opo V p1, 9}

A logical system in general, and a modal system in particular, is supposed
to single out and describe those formulas that represent certain ‘true’ propos-
itions no matter what values (propositions) are assigned to their variables.
There are two main ways of defining logics: semantical and syntactical. Usu-
ally, the semantical and syntactical definitions complement each other: the
former explains the (intended) meaning of the logical coustants and connect-
ives, while the latter provides us with a reasoning machinery.

We illustrate the semantical approach by reminding the reader of the clas-
sical semantics of the sublanguage £ of ML that results by omitting the
modal operators O, ¢ and all formulas containing them. There is a very
simple interpretation of this language based on the assumption that every
proposition is either true or false. Having assigned one of these truth-values T
(for true) or F (for false) to each propositional variable, we can then compute
the truth-value of an £L-formula (under that assignment) using the well-known
‘Boolean truth-tables,” reflecting the above readings of the logical connectives:

Y x| vAx vvx v-ox -9

F F F F T T
F T F T T T
T F F T F F
T T T T T F

(of course, the logical constants T and 1 are always evaluated as T and F,
respectively). Classical propositional logic Cl can be defined then as the set
of all those L-formulas that are true under every such assignment.
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Now, returning to modal logic, we see that this semantical definition of
ClI cannot be extended to the modal language in a straightforward way. The
apparent reason is that the modal operators are not truth-functional: the
truth-value of a formula of the form Oy can depend not only on whether ¢
is true or false. For example, we most likely agree that the proposition ‘it is
necessary that 2 x 2 = 4’ is true, while ‘it is necessary that NATO bombs
Belgrade’ is undoubtedly false, although both propositions ‘2 x 2 = 4’ and
‘NATO bombs Belgrade’ are true®

Perhaps this is one of the reasons why the first modal logics were defined
in another, syntactical, way with the help of inference systems (calculi). In
this book we consider mainly Hilbert-style inference systems” To define such
a system, one has to indicate which formulas are regarded as azioms of the
system and to specify its inference rules. A derivation of a formula ¢ in
the system is a finite sequence of formulas ending with ¢ and such that each
formula in the sequence is either an axiom or obtained from earlier formulas in
the sequence by applying one of the inference rules. The logic of this inference
system is defined then as the set of all derivable formulas. To put it another
way, the logic defined by the system is the smallest set of formulas which
contains the axioms and is closed under the inference rules.

For example, classical propositional logic Cl can be defined by the follow-
ing Hilbert-style calculus:

Axioms:

(A1)  po — (p1 — po),

(A2)  (po— (p1 > p2)) — ((Po = p1) — (po — p2)),
(A3) Po NP1 — Ppo,

(A4) poAp1L—p1,

(A5)  po— (p1— poAp1),

(A6)  po—poVp1,

(A7) p1—poVp,

(A8)  (po — p2) — ((Pr — P2) — (Do V 1 — P2)),
(A9) L — po,

(A10) poV(po— 1)

Inference rules:
Modus ponens (MP): given formulas ¢ and ¢ — 1, derive ¥;

Substitution (Subst): given a formula ¢(py,...,ps), derive the formula
o{¥1/p1,...,¥n/pn} which is obtained by uniformly
substituting formulas 91, .., v, instead of the vari-
ables py,...,pn in ¢, respectively.

SThis was written on 27 April 1999.
7For other kinds of modal inference systems the reader is referred to (Fitting 1983,
Wansing 1996) and references therein; see also Chapter 15 below.
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As the well-known soundness and completeness theorem of classical proposi-
tional logic says, the logic defined by this calculus coincides with Cl (see e.g.,
Chagrov and Zakharyaschev 1997, Enderton 1972).

The above calculus does not involve the connective ~ and the constant T. We
can define them as abbreviations:

“p=p- 1, T=1->1.

(These abbreviations ‘agree’ with the classical semantics in the sense that the
truth-values of the left-hand and the right-hand sides of these equalities are
the same under any assignment.}) Moreover, in classical logic we can further
reduce the number of basic logical connectives, say, to A and -, or to V and
=, by defining

pov=-(pA ), eVY==(~pA-9), L=poA-po

(a corresponding inference system can be found e.g. in (Shoenfield 1967)).
Throughout the book we will often use this fact to shorten inductive definitions
and proofs.

Let us now return to modal logic. If we agree to accept the reasoning prin-
ciples of classical propositional logic, then modal calculi can be constructed
by adding to the Hilbert-style calculus for Cl those axioms and inference rules
that reflect our understanding of the modal operators. A set of ML-formulas
which contains the axioms (A1)-(A10), the modal axiom

(K) O(po — p1) — (Opo — Opy),
and is closed under MP, Subst, and the rule of
Necessitation (RN): given ¢, derive Oy

is called a modal logic® The possibility operator ¢ can be regarded as an
abbreviation for —~0- (or, we can add the axiom Opy « ~0O-py). The min-
tmal modal logic is denoted by K: it is defined by the inference system having
(A1)-(A10) and (K) as its axioms and MP, Subst and RN as its inference
rules. Every other modal logic L can be obtained by extending this system
with a (possibly infinite) set ¥ of ertra azioms. In this case we write

L=Ka&ZX

If ¥ can be chosen finite, then we call L finitely aziomatizable. In general,
given a modal logic L and a set A of ML-formulas,

LoA

8Actually, such logics are usually called normal modal logics. We omit the epithet
‘normal’ because no non-normal modal logics are considered in this book.
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denotes the smallest modal logic containing LUA. We write L ¢ ¢ whenever
A = {p}. Using this notation, we can define the Lewis systems S4 and S5 as
follows:

54 = K & Ope — O0Opo & Opo — po,

S5 = S4® Opy — OOpy.

These axioms and rules of S4 were first introduced by Orlov (1928) and Gédel
(1933) in order to characterize the operator ‘it is provable.’” For example,
Opo — OQpe means that, given a proof of py, we can prove that it is indeed
a proof, and Opy — po says that everything provable is true. Godel observed,
however, that the O of S4 cannot be understood as the formal provability in
axiomatic theories like Peano Arithmetic PA (the formula O~0O.1, provable
in S4, would mean then that PA can prove its own consistency, contrary to
Gdodel’s second incompleteness theorem). This observation gave rise to a new
branch of mathematical logic—provability logic—studying the laws of formal
provability that are provable in PA and other theories (see, e.g., Boolos 1993).
One of the most important modal systems constructed in provability logic is
known as the Gédel-Léb logic GL. It can be obtained from S4 by replacing
Opg - po with the Léb axiom

O(Opo — po) — Opo
or, using the above notation,
GL = K ® Opp — DOpoe ® O(0po — po) — Opo.

Solovay (1976) showed that GL adequately describes those properties of
Godel’s provability predicate Bew(zx) which are provable in PA. Recently
Artemov (see (Artemov 2001) and references therein) has constructed a logic
of proofs LP extending Cl with atomic formulas of the form ‘¢ is a proof of ¢’
and showed that by replacing in LP all such formulas (and their subformulas)
with Oy we again get S4.

The O of S5 can also be read as ‘I know’ or ‘Mr X believes.’ By accepting
one or more of the axioms of 85 as properties of knowledge or belief we can
obtain new modal systems, like T and K4:

T = K& Opy — po,
K4 = K & Oppy — OOpe.

A more detailed discussion of these epistemic logics can be found in Sec-
tion 2.3.

The interpretation of O as ‘it is obligatory’ and < as ‘it is permitted’ gives
another family of modal logics known as deontic. It is a natural principle
of reasoning about norms (coming from law, moral, etc.) that everything
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obligatory is permitted. The minimal deontic logic D reflecting this principle
is defined as
D =K &Opy; — Opp.

We shall see many other modal systems later on in this book. At the
moment we have got enough examples to illustrate the semantical side of
modal logic.

1.2 Possible world semantics

The provability interpretation of the necessity operator O and its relation
to intuitionism gave a strong impetus to mathematical studies in modal lo-
gic, which resulted, in particular, in establishing connections with algebra
and topology by McKinsey and Tarski (1944, 1946, 1948), and finally led to
the discovery of relational representations of modal algebras by Jénsson and
Tarski (1951); see Section 1.5 for some details. This relational semantics was
also invented by philosophers: Carnap (1942, 1947), Prior (1957), Kanger
(1957a,b), Hintikka (1957, 1961, 1963), and Kripke (1959, 1963a,b) who ap-
parently were not aware of (Jénsson and Tarski 1951)° In philosophy, this
semantics can be traced back to the Leibnizean understanding of necessity as
truth in all possible worlds. Let us imagine a system of ‘worlds’ which can
have some alternatives (for instance, as an alternative to our world we can
consider another one where NATO does not bomb Belgrade and the coalition
forces do not bomb Baghdad). Denoting the alternativeness relation by R,
we write TRy to say that y is an alternative (or possible) world for z. Every
world z ‘lives’ under the laws of classical logic: an atomic proposition is either
true or false in it, and the truth-values of compound non-modal propositions
are determined by the Boolean truth-tables. A modal formula Oy is then
regarded to be true in a world z if ¢ is true in all worlds that are alternative
to x; Oy is true in x if @ is true in at least one world y such that zRy. It is
not hard to capture this intuitive picture in a precise definition.

Systems of worlds with alternativeness relations can be represented by
relational structures § = (W, R) in which W is a non-empty set and R a
binary relation on W. Such structures are known in modal logic as Kripke
frames or simply frames. Elements of W are called worlds, states or, more
neutrally, points. If xRy, we say that y is accessible from x, or z sees y. Other
synonyms are: y is a successor of x, x is a predecessor of y.

A wvaluation in a frame § = (W,R) is a map U associating with each
propositional variable p of ML a set U(p) of points in W (which is understood
as the set of those worlds where p holds true). A Kripke model for ML is a
pair M = (F, V), where § = (W, R) is a frame and U a valuation in §. We

9See, however, a footnote at the beginning of Section 2 in (Kripke 1963a).



10 Chapter 1. Modal logic basics

say that the model M is based on the frame J, or that § is the underlying
frame of 9. Let ¢ be an ML-formula and x a point in W. The truth-relation
(M, z) = ¢, read as

‘o is true at x in M,

is defined by induction on the construction of ¢ as follows:

(M, z) Ep if z € U(p) (p a propositional variable);

(m’ ) ET;

not (M, z) = L;

Mz)EYAx i (M) ¢ and (M,2) - x;
Mz)Eyvyx iff (Mz)E=yor (M2) =X

(M,z) =y —»x iff (M,2) | ¢ implies (M, z) |= x;

(M, z) =~ iff not (M, z) = 9;

(M,z) =0y i (M,y) = o for all y € W such that zRy;
(om, z) = Oy iff (M, y) = ¢ for some y € W such that zRy.

If (9M,z) E ¢ does not hold then we write (MM, z) & ¢ and say that M
refutes v at z. Instead of (M, z) = ¢ and (M, z) £ ¢ we write simply
z = @ and x }£ o, if M is understood. The truth-set of  in M is defined as
B(p)={zeW]|z oy}

Let M = (F, V) be a model based on the frame §F = (W, R). A formula ¢
is said to be true in 9 (in symbols: M |= ) if z = @ for all z € W, that is,
if B(p) = W. Dually, ¢ is satisfied in 9 if V() is not empty. We say that
@ is valid in the frame F (or §F validates p) and write § |= ¢ if V(p) = W
for every valuation U in §, or equivalently, if ¢ is true in all models based on
F. And @ is satisfiable in F, if it is satisfied in some model based on §. It
should be clear that ¢ is valid in § iff ~¢ is not satisfiable in §. For a set
T of ML-formulas, we say that § is a frame for T if all formulas from I are
valid in §. In this case we write § = I'. A formula ¢ is I'-satisfiable if it is
satisfiable in a frame for T

Now we can give a semantical characterization of (at least some) modal
logics by establishing a connection between logics and frames. Let C be an
arbitrary class of frames. It is not hard to check that

LogC={pe ML|VFeC T ¢}

is a modal logic. We call it the logic of C.

A modal logic L is said to be sound with respect to C (or C-sound) if § = ¢
for all ¢ € L and all § € C, that is, L C Log C. L is complete with respect
to C (or C-complete) if ¢ € L whenever p is valid in every frame in C, that
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is, Log C C L. We say that L is determined (or characterized) by C if L is
both C-sound and C-complete, that is, L = Log C. If L is determined by some
class of frames, we call L Kripke complete. It is worth noting that a Kripke
complete logic L can be characterized by different classes of frames (we shall
see many examples in what follows). If L is Kripke complete then it is clearly
determined by the class FrL of all frames for L, i.e., L = Log FrL.

Although Kripke frames provide us with a rather transparent semantical in-
strument for dealing with modal languages, this instrument is far from be-
ing universal: as was shown by Fine (1974a) and Thomason (1974a), not
every modal logic is Kripke complete. Equivalently, there exist two (actually
uncountably many; see (Blok 1978) or (Chagrov and Zakharyaschev 1997))
distinct modal logics having precisely the same Kripke frames. It is worth
noting, however, that every consistent modal logic L is determined by its
Kripke models in the sense that ¢ ¢ L iff there is a model 9 such that all
formulas of L are true in 9, while ¢ is not. Moreover, L is determined by a
single model 9, known as the canonical model for L: for every formula ¢,
we have ¢ € L iff ML = ¢. For more details and proofs consult (Chagrov
and Zakharyaschev 1997, Blackburn et al. 2001).

A very attractive feature of the possible world semantics is that many standard
modal logics are determined by ‘natural’ classes of frames. Let us see first
what kind of frames correspond to the modal logics introduced in the previous
section. First of all, we have:

Theorem 1.1. K is determined by the class of all frames.

Before describing frame classes for the other logics, we remind the reader
that a binary relation R on a set W is said to be transitive if

Vz,y,z € W(zRy AyRz — zRz).

R is reflerive if
Vz € W zRz.

A transitive and reflexive relation on W is called a quasi-order on W. We
denote by R* the reflexive and transitive closure of a binary relation R on W
(in other words, R* is the smallest quasi-order on W to contain R).
R is symmetric if
Vz,y € W(zRy — yRz).

A symmetric quasi-order is called an equivalence relation on W. If
vVz,y € W zRy,
then R is said to be universal on W. R is serial on W if

Ve e Wiy e W zRy.
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We say that a frame § = (W, R) is serial, if R is serial on W; § is a quasi-
ordered frame or simply a quasi-order, if R is a quasi-order on W, and so
forth.

One of the first remarkable results obtained by Kripke (1959, 1963a) was
the following completeness theorem (see, e.g., Hughes and Cresswell 1996,
Chagrov and Zakharyaschev 1997):

Theorem 1.2. The logics D, T, K4, S4 and S5 are Kripke complete.
o FrD is the class of all serial frames;
e FrT is the class of all reflerive frames;
o FrK4 is the class of all transitive frames;
o FrS4 is the class of all quasi-ordered frames;
o FrS5 is the class of all frames with equivalence accessibility relations.

Note that S5 is also determined by the class of all universal frames which
is a proper subclass of Fr85. The class of serial frames clearly coincides with
the class of frames validating the formula O T; in fact, O T is an alternative
extra axiom of D:

D=K&oT.

Frames for GL are somewhat more complex. A binary relation R on a
set W is said to be irreflerive if zRx holds for no x € W. An irreflexive
and transitive relation is known as a strict partial order. Call a sequence
To,T1,T2,... of points in W a strictly ascending chain if zoRx1 Rz, ... and
Tp # Tpel, for all n < w. A binary relation R is called Noetherian if there
is no infinite strictly ascending chain of points in W. The following result is
due to Segerberg (1971):

Theorem 1.3. GL is Kripke complete. FrGL is the class of all Noetherian
strict partial orders.

Many other ‘mathematically natural’ frame classes give rise to ‘sensible’
modal logics as well. Here are a few examples. The meaning of some of these
logics will be explained later on in the book.

Alt = K& Opp — Opo,

DAlt = At ® Opp — Opo =D & Opo — Opo,
KD45 = K4 ® Opg — Ope @ Opo — OOpy,
K4.3 = K49 0O(Otpy — p1) VO(O*p1 — po),

GL.3 = GLo0O(O%py — p1) VO(O*py — po),
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S4.3 = S4¢ 0O(0py — 1) VvV O(Opy — po),
Grz = S4® 0(0O(po — Opo) — po) — o,
Grz.3 = Grz & O(Opo — p1) V O(Op1 — po).
Here, by definition, O%p = ¢ AQy and Oty = p V Op.

A binary relation R on a set W is

o antisymmetric if Vz,y € W (zRy AyRx — = = y);

functional if Vz,y,2 € W (tRy AzRz — y = z);

Euclidean if Vx,y,z € W (zRy A xRz — yRz);
o weakly connected if Vz,y,z € W (ckRy ARz — yRzV y = z V zRy).

A transitive, reflexive and antisymmetric R is called a partial order.

Theorem 1.4. The logics Alt, DAlt, KD45, K4.3, GL.3, S4.3 and Grz
are Kripke complete.

FrAlt = {F|F is functional};
FrDAlt = {F | T is functional and serial},
FrKD45 = {§ | § is serial, transitive and Euclidean};
FrK4.3 = {§ | § is transitive and weakly connected};
FrGL.3 = {§| 3§ is a Noetherian weakly connected strict partial order};
FrS4.3 = {J | § is a weakly connected quasi-order};
FrGrz = {§ | § is a Noetherian partial order};
FrGrz.3 = {F | T is a Noetherian weakly connected partial order}.

We defined modal logics as certain sets of ML-formulas. It is natural to
ask which of the constructed logics is ‘stronger’ or ‘weaker’ with respect to
the set-theoretic inclusion C. The family of all modal logics together with
C form a structure the algebraists call a lattice. K is the least (smallest)
element of the lattice. The greatest (largest) one is clearly Log 9, i.e., the set
of all ML-formulas, called the inconsistent logic (because it contains both
and —p). An interesting observation, due to Makinson (1971), is that there
are precisely two maximal (with respect to C) consistent modal logics. These
are

Verum = Log {¢} = K4 ¢ Op,

Triv = Log {o} = K4 @ Op « p,

where o denotes a single irreflexive point (i.e., the frame ({w},®)) and o a
single reflexive point (i.e., the frame ({w}, (w,w))). Thus, every consistent
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Figure 1.1: Lattice of ‘standard’ modal logics.
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modal logic is contained either in Verum or in Triv or in both. To put it
another way, according to Makinson’s theorem, at least one of the frames o
or o is a frame for every consistent modal logic. As an exercise, the reader
can check the correctness of the diagram in Fig. 1.1, where an arrow from L,
to Ly means that Ly C Ls.

1.3 Classical first-order logic and the standard
translation

In this book we consider many different logical formalisms. To understand
how they are related to each other, to compare their expressive power and
thereby to elucidate possible areas of applications are among the main aims
of the book.

Perhaps the best known connection of that sort is the standard translation
which embeds modal languages into the language of classical first-order (or
quantified) logic. Although we assume some familiarity with the syntax and
semantics of first-order logic!® here we give a brief summary of the basic
definitions and properties we use later on.

Classical first-order logic

The first-order (or quantified) language QL we deal with in this book is based
on the following alphabet:

o predicate symbols: Po,Pl,.‘.. (or PLQ,R,S,...);

o individual constants: cg,cy,... (or a,b,¢,d,...);

® acountably infinite list of individual variables: z¢,zy,... (ot z,y,2,...);
o the logical constants: T and 1;

e the Boolean logical connectives: A, V, — and —;

o the universal quantifier ¥,

o the existential quantifier 3.

The predicate symbols and the individual constants together form the signa-
ture of QL. As usual, we assume that each predicate symbol is of some fixed
arity > 0, that the signature contains countably infinitely many predicate

19Good introductions to first-order logic are, e.g., (Enderton 2001, Shoenfield 1967, Bar-
wise 1977).
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symbols of each arity, and that the set of individual constants is also count-
ably infinite. And, of course, we assume that the language QL is recursive in
the sense that we can always effectively recognize its predicate symbols with
their arities, individual constants and variables. Sometimes we consider sub-
languages of QL with smaller signatures (but the same set of non-signature
symbols as in QL).

Note that equality = is not a symbol of QL, and that QL contains no function
symbols different from constants. Occasionally we shall use the language QL=
whose alphabet extends that of QL with the binary predicate symbol =.

Individual variables and constants are also known as terms. Formulas of any
sublanguage of QL are defined inductively as follows. If P is an n-ary signa-
ture predicate symbol and 7y, ..., 7, are signature terms, then P(my,..., 1) is
an (atomic) formula. (If P is binary then we sometimes write 71 P7, instead
of P(r,72).) Logical constants are (atomic) formulas as well.

In the case of QL™, we also have 11 = 72 as atomic formulas for all 7, and 7.

If o, ¥ are formulas and z an individual variable, then @ A, @ V¥, ¢ — ¥,
-, Yz and Jzp are formulas. The conventions on punctuation and formula
representation of Section 1.1 are extended by the following one: Vx and 3z
have the same priority as ». An occurrence of a variable = in a formula ¢
is bound if this occurrence lies under the scope of Vx or 3z; otherwise the
occurrence of x is free. Formulas without free variables are called sentences.
If p is a formula, 7 a term, and x a variable, then p{7/x} denotes the result of
the simultaneous substitution of = for all free occurrences of = in . Say that
T 18 free for x in o, if no variable in 7 becomes bound in p{r/x}. We write
p(zo, .. -,In) to indicate that all free variables of ¢ are among zo, ..., Tp.
QL and its sublanguages are interpreted in first-order structures (or QL-
structures, if we want to mention the signature explicitly) of the form

I=(D"Py,....c},...),
where

e DI is a nonempty set, the domain of I;

e for any predicate symbol P; in the signature, P/ is a relation on D! of
the same arity as P;;

I

e for any individual constant ¢; in the signature, c; is an element of D!,

An assignment in I is a function a from the set of individual variables to
D!. The value a(7) of a term 7 in I under the assignment a is a(z) if 7 is a
variable z, and ¢! if 7 is a constant c.

The truth-relation I =* ¢ (in words: ‘p is true in I under the assignment
a’) is defined by induction on the construction of ¢ in the following way:



1.3. Classical first-order logic and the standard translation 17

IE° Pi(my,...,m) iff {a(r1),...,a(ma)) € P
TE*Tand I }£° L,
ITE*YAxIfTE*yand I =% x;

TRy Vit IE Yor I x;
I'E®* ¢ — x iff I =" x whenever I |=° ¢;
TE® -9 iff T 4,

I =% Vv iff I }=° o for every assignment b in I such that a(y) = b(y)
for all variables y different from z;

I |=° 3zyp iff T |=* ¢ for some assignment b in I such that a(y) = b(y)
for all variables y different from z.

In the case of QL=, we add one more item: I * 1 = 72 iff a(n1) = a(72).

It should be clear that the truth of a formula ¢(zx;,...,2,) in I under an
assignment a depends only on the values a; = a(21),...,a, = a(z,). So
instead of I = ¢ we sometimes write I k= ¢lay,...,a,).

If I =® ¢ holds for all assignments a in I, then we say that ¢ is true
in I and write I }= ¢. A set ' of formulas is true in I if every formula in
I' is true in I. T is true in a class C of first-order structures (in symbols:
CkT)ifI T forall I €C. The theory of C is the set of sentences that
are true in C. We say that a set I’ of sentences implies a sentence ¢ (or ¢
is a consequence of T') and write ' |= ¢, if ¢ is true in I whenever I is true
in I, for every first-order structure I. Given a sublanguage of QL, we define
classical first-order logic (of that sublanguage) as the set of formulas that are
true in all first-order structures (of the appropriate signature) and denote this

logic (slightly abusing notation) by QCI! (‘quantified CY’). Formulas in QCI
are often called classically valid.

Similarly, QCI™ denotes classical first-order logic with equality.

A class C of first-order structures of some signature S is said to be first-
order definable if there is a set T of QL= -sentences of signature S such that,
for every S-structure I,

IeC iff TI'ET.

In this case we also say that C is definable by I'. It should be clear that if C
is first-order definable, then it is definable by the theory of C.

Syntactically, QCI can be defined by a calculus with the following axiom
schemata and inference rules.
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Axiom schemata:

o (A1)-(A10) of classical propositional logic Cl in Section 1.1 regarded as
ariom schemata (in the sense that the propositional variables p; can be
replaced by arbitrary formulas of the given sublanguage of QL);

o Yz — p{r/x}, where 7 is free for z in y;
o p{r/x} —> 3z, where 7 is free for z in .
Inference rules:
¢ modus ponens (MP);
e given ¥ — ¢, derive ¥ — Yy, whenever z is not free in 1;
e given ¢ — 1, derive 3xy — 1, whenever x is not free in .

A formula ¢ is derivable from a set I' of formulas if there is a sequence of
formulas ending with ¢ and such that each member of the sequence is either
in I, or a substitution instance of an axiom schema, or obtained from some
earlier members of the sequence by applying an inference rule. According to
Godel’s completeness theorem, for every set I of sentences and every sentence
o, we have I' = ¢ iff ¢ is derivable from T'.

The standard translation

Consider the sublanguage of QL with countably many unary predicate sym-
bols Py, P, ..., and a single binary predicate symbol R. The standard trans-
lation -* of ML-formulas into this first-order language is defined inductively
as follows!! where z is a fixed individual variable:

p; = Pi(z)

T* =T 1*=1
(PAY) =" AY* (pV) =" Vvy*
(p— ) =¢" o y* (~)* = —p*

(O9)" =Vy (zRy - ¢™{y/z})  (O¥)" =Ty (zRy A ¥*{y/z}).

Here y is a fresh variable not occurring in ¥*. As ¢* always has at most one
free variable, we can define the translation -* in such a way that ¢* contains

11Here and below we provide the inductive definition of the translation for all logical
constants and connectives T, 1 A, V, - -, 0, and O, although it would suffice to define it
for, say, A, -, and 0. The reason is that later on in this book we shall consider a similar
translation for intuitionistic modal logic, where the connectives are not interdefinable.
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at most two variables altogether (simply re-use the available second variable,

which is not free in ¥*, in the definitions of (Oy)* and (O¥)*).
Every Kripke model M = (§F, ) can be regarded as a first-order structure

I(m) — <Dl(m)’Rl(f’R),POl(m)’P{(m), “>

for the above sublanguage of QC, where D™ is the set of worlds in §,
P,-'("m) = B(p;), for every i, and R!™) is the accessibility relation in §. It is
easily seen that for every ML-formula ¢, every Kripke model 9 and every
world w in 91, we have

OMw) I IO = 0wl

Conversely, every first-order structure of the form I = (D!,R!,P],...) can
be considered as a Kripke model

m(I) = (F(1), D)),
where §(I) = (D!, R") and B(I)(p;) = P/, for every i. And then we have
TE¢'w] iff (M), w) E e,
for all ML-formulas ¢, first-order structures I, and w € D!. Therefore,
pveK iff ¢* e QCL

Note that starting from a model 9t based on a universal frame § (where all
points are accessible from each other) we obtain a first-order structure I(90),
where ¢* is equivalent to the formula ¢! defined by taking:

p! = P(z)
TH=T =1
(e Ay)t =t Ayl (pvy)t =gt vyl
(=) =o' -9t (=)t = —p!
(Oy)' = Vay! (O9) = 3ay’.

Since S5 is characterized by universal frames, we then have
peS5 iff e QCL

Observe that x is the only variable which can occur in ! and that ¢! is a
monadic formula, that is, a formula having only unary predicate symbols. On
the other hand, it should be clear that every @L-formula with one variable
is equivalent to a one-variable monadic formula. Thus, modulo equivalence,
the translation -t is one-one and onto the set of all one-variable first-order
formulas. In other words, the logic S5 can be regarded as the one-variable
fragment of classical first-order logic (Wajsberg 1933).
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1.4 Multimodal logics

The modal language ML introduced in Section 1.1 contains only one pair of
(dual) modal operators. It is not hard, however, to imagine situations when
two or even more such pairs are required. For instance, to represent beliefs of
n agents developing in time we may need n+ 1 pairs of boxes and diamonds—
one pair to talk about time and one pair for each agent to represent its beliefs.
We shall see many examples of this kind later on in the book. Here we discuss
how to extend the concepts and results of the previous sections to multimodal
logic.

For each natural number n > 0, the propositional n-modal language ML,
is defined in almost the same way as the language ML. The only differ-
ence is that now we have n necessity and n possibility operators 0O0;,...,0,
and ©j,...,On, respectively, and that O;p and O;p are formulas of ML,
whenever 1 < i < n and ¢ is an ML,-formula. The modal depth md(y) of
an ML,-formula ¢ is defined inductively as follows:

md(a) = 0, for atomic a,
md(y © x) = max{md(y),md(x)}, for © € {A,V, -},
md(~y) = md(y),
md(Q;¢) = md(¥)+1, for 1 <i<n,
md(Oiy) = md(y)+1, for 1 <i<n.

To introduce n-modal logics syntactically we need the axiom (K) and the
necessitation rule formulated for each of the boxes Oy, . .., d,,. More precisely,
foreachi=1,...,n let

(K)q Oi(po — p1) — (Qipo — Oip1),

(RN);  given g, derive O;p.

A set of ML, -formulas is called an n-modal logic if it contains the axioms
(A1)-(A10) and (K);, for 1 <i < n, and is closed under the rules MP, Subst
and (RN);, for all ¢ = 1,...,n. (As before, the possibility operators ©; are
regarded as abbreviations for -0;-.) We define K,, as the minimal (i.e.,
smallest) n-modal logic. In general, for a n-modal logic Ly and a set " of

ML, -formulas, we denote by
. Lol

the smallest n-modal logic containing Lo U . Logics of the form K, & T,
for a recursive set I' are called (recursively) aziomatizable. If T is finite then
K, ®T is called finitely ariomatizable!?

12There exist other kinds of axiomatic systems for multimodal logics, for instance, those
using the so-called irreflerivity rules (e.g., given ~(p — O;p) — o, derive ¢, provided that
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As examples of multimodal logics we give here the n-modal variants of
K4, T, S4, KD45 and S5:

K4, =K,®{0Opo— 0;0:ipo|l<i<n},

Th = Kn®{Oipo - po|1<i<n},

S4,, = K4, ® {Oipo = po | 1 < i < n},

KD45, = K4, & {Oipy = Oipo, Oipo — 0;Oipo | 1 < i < n},
S5, = 84, ® {Oipo — 0:;0ipo | 1 < i < n}.

The axioms of K4,, require each 3; to behave like a K4-box. Similarly, Tp,
S4,, KD45,, and S5,, are the n-modal logics each box in which behaves like a
T-, S4-, KD45- and S5-box, respectively. No axiom with two different boxes
is postulated. In other words, there is no interaction between different modal
operators. These logics are the simplest examples of fusions of unimodal logics
to be discussed in detail in Section 3.1 and Chapter 4.

Let us now introduce the possible world semantics for n-modal logics.
Recall that the operator O is interpreted by means of the accessibility relation
R between worlds in a Kripke frame (W, R). To interpret ML,-formulas, we

need n accessibility relations Ry,..., Ry, one for each O0;. Thus we come
to the notion of an n-frame as a structure of the form § = (W, Ry,..., R,)
consisting of a non-empty set W of worlds and n binary relations Ry,..., R,
on W.

As before, a valuation in an n-frame § is a map U associating with each
propositional variable p a subset U(p) of W. The pair M = (F, V) is a
model for ML,. The inductive definition of the truth-relation = in M is
a straightforward generalization of that for the unimodal case: we simply
replace the clauses for O and ¢ with

(M, z) =09 if (M, y) = ¢ for all y € W such that zR,;y;
(M, z) = O iff (M,y) &= ¢ for some y € W such that zR;y,

foralli=1,...,n. Now, given a class C of n-frames, we define the logic of C
by taking

Log C = {p € ML, |VFe€C T |= o}
We will not reformulate here the other syntactical and semantical definitions of

the previous sections for the language ML,, relying upon the reader’s common
sense.

p does not occur in ). We do not consider such axiomatizations in this book and refer the
reader to (Gabbay 1981a, Marx and Venema 1997).



22 Chapter 1. Modal logic basics

Theorem 1.5. The n-modal logics K,,, K4,,, T,,, S4,, KD45, and S5,
are complete with respect to the classes of their n-frames, viz.,

FrK, = {§|§ is an n-frame};
FrK4, = {(W,Ry,...,Ry) | R; is transitive, 1 < i < n};
FrT, = {{(W,Ry,...,R,) | Ri is reflezive, 1 < i < n};
Fr84, = {{W,Ry,...,R,) | R: is a quasi-order on W, 1 < i <n};
FrKD45,, = {(W,R,,...,R,) | R; is serial, transitive,
and Euclidean, 1 <i < n},
FrS5, = {(W,Ry,...,Ry,) | R; is an equivalence relation on W,
1<i<n}

Note that this theorem is a special case of Theorem 4.1 claiming that
Kripke completeness is preserved under the formation of fusions.

The following theorem is an illustration of the use of the standard trans-
lation:

Theorem 1.6. Let L be an n-modal logic such that L = Log C, for some class
C of frames which is first-order definable in the language with n binary predic-
ate symbols and equality. Then L is determined by the class of its countable
frames.

Proof. Let I denote the first-order theory defining C. Suppose that p ¢ L,
i.e., (M, w) ¥ ¢ for some model IM based on a frame in C and some world w
in M. Consider M as a first-order structure I(M) of the language having n
binary and countably many unary predicate symbols (see Section 1.3). Then
I’ = TU{3z~y*(x)} holds in I(91) (where ©* is the standard translation of ).
By the downward Lowenheim-Skolem-Tarski theorem, there is a countable
first-order structure J such that J = I'V. Consider now J as a modal model
M(J). It is clearly based on a countable frame for L and refutes . a

Truth-preserving operations

We conclude this section by introducing three important truth-preserving op-
erations on n-frames and models.

P-morphism. Given two n-frames
§=(W,Ry,...,R,) and & =(V,S),...,S,),

amap f from W to V is called a p-morphism from § to & if it satisfies the
following two conditions, for al z,ye W,2e€Vandi=1,...,n:
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e if xRy then f(z)S:f(y),
o if f()S;z then there is y € W such that zR;y and f(y) = 2.

A function f satisfying only the former condition is called a homomorphism
from § to &. If a p-morphism f is onto then we say that & is a p-morphic
image of §, or § maps p-morphically onto 8. A p-morphism f from § onto &
is called a p-morphism from a model M = (F,V) onto a model N = (B, 44) if,
for every propositional variable p and every point x € W, we have z € U(p)
iff f(x) € YU(p). It is readily checked by induction that for all ML, -formulas
wand allz e W,

(Mz) = it (N f(2) e (1.1)

It follows, in particular, that if § maps p-morphically onto ® and § |= ¢ then
& = ¢ as well, for every ML, -formula ¢, or, to put it another way, ¢ is
satisfiable in § whenever it is satisfiable in .

An n-frame § = (W, Ry,..., R,) is called rooted if there is a wo € W such
that W = {w € W | woR*w}, where

R= |J R

1<i<n

Such a wyp is called a root of §. Given a rooted n-frame § with root wg, we
can construct another n-frame & = (V, Sy,...,S,) by taking V to be the set

consisting of (wg) and all the tuples (wy, Ry, ,wy,..., Ri,,wk), k > 0. of points

in W and accessibility relations R;; € {Ry,..., R,} such that w;R;,, w41

whenever j < k and, for any two points {wg,...,w,) and z in V,
(wo,...,wx) Sz if JweWazx= (wp,...,w, Rj,w).

The frame & is called the unraveling of § (see Fig. 1.2 in which the accessib-
ility relation in tuples is omitted). Two properties of ® make the unraveling
construction important in modal logic. First, it is not hard to show (see,
e.g., Chagrov and Zakharyaschev 1997, Blackburn et al. 2001) that the map
(wo,...,wg) — wg is a p-morphism from & onto §. And second, ® has a
rather special form known as an intransitive tree. A general definition is as
follows.

A rooted frame § = (W, Ry,..., R,) is said to be a tree if all the R; are
pairwise disjoint and, for every x € W, the set W, = {y € W | yR*z} is
finite and linearly ordered by the reflexive and transitive closure R* of the
relation R = |J, «;<, Ri (its restriction to Wy, to be more precise). § is called
intransitive if for any R, R; (1 <i,j < n) we have

Vr,y,2 € W (tRiy AyR;z — -~zR;iz A ~zR;z).
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¥ 8 {vo)

Figure 1.2: & is the unraveling of transitive §.

An intransitive frame is clearly irreflexive Let § = (W, Ry,...,R,) be an
intransitive tree and z,y € W. A path of length k from z to y in § is a
sequence (Tg, ..., Zx) such that o = x, zx = y and z; Rz, for each i < k
and some j, 1 < j < n. By the definition, there is a unique path from the
root of § to x. The length of this path is called the co-depth of £ and denoted
by cd(zx). (Thus, the co-depth of the root in § is 0.) If the set {cd(z) | z € T}
is bounded, then the depth of ¥ is the maximum of cd(x) for £ € W. By the
depth d(z) of x in § we understand the depth of the subtree of § with root z.
(Thus, the depth of a leaf in § is 0.)

Now, returning back to the unraveling, we obtain the following remarkable
result:

Proposition 1.7. Every rooted n-frame is a p-morphic image of some in-
transitive tree.

An immediate consequence of this proposition is that K,, is characterized
by the class of intransitive trees. Moreover, one can easily strengthen this
observation to the following one:

Proposition 1.8. If an ML, -formula ¢ is satisfiable in a frame then it is
also satisfiable in a finite intransitive tree of depth < md(yp).

Another important transformation of frames is known as bulldozing. It
operates on transitive frames by ‘bulldozing’ their ‘clusters’ into infinite as-
cending chains of points. For simplicity we define bulldozing for 1-frames.

Let 8 = (V,S) be a transitive frame and x € V. The cluster generated by
z is the set

C(z) = {z}U{y € V| zSy and ySx}.
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(09
®

Figure 1.3: Bulldozing ®.

We distinguish between three types of clusters: a proper cluster contains at
least two points (which see each other), a simple cluster consists of a single
reflexive point, and a degenerate cluster consists of a single irreflexive point.
Now, with every £ € V we associate a set z+ which is {{z,i) | i = 0,1,...}
if C(z) is nondegenerate and {(x,0)} if C(z) is degenerate. Let W be the
union of all z+. Fix some well-ordering zo,),...,Z¢,... of each cluster C in
® and define a relation R on W by taking

(xe,i) R{x¢,j) iff either i < jor § < and i =j, (1.2)
when C(z¢) = C(z¢) and, for distinct C(x) and C(y),
(z,9) R(y,5) ff xSy

(see Fig. 1.3). It is easy to see that R is a strict partial order and that the
map f : (z,i) +— z is a p-morphism from F = (W, R) onto ®. Note that if &
is reflexive then we can make § a partial order by replacing < in (1.2) with
<. Thus we have:

Proposition 1.9. (i) Every transitive frame is a p-morphic image of some
strict partial order.
(ii) Every quasi-ordered frame is a p-morphic image of some partial order.

As an easy consequence of Proposition 1.9 we obtain, for instance, the
following

Theorem 1.10. (i) K4 is characterized by the class of strict partial orders.
(ii) S4 is characterized by the class of partial orders.

Generated subframe. We say that an n-frame & = (V,5;,...,5,) is a
subframe of an n-frame § = (W, Ry,...,Rp) if V C Wand, foralli =1,...,n,
S; is the restriction of R, to V (i.e., S; = R;N (S x S)). A subframe ® of § is
called a generated subframe of F if for every y € W, we have y € V whenever
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zR;y for some x € V and 1 <1 < n (in other words, V' is upward closed in F).
A model N = (&, 4) is a generated submodel of M = (F, V) if & is a generated
subframe of § and i is the restriction of U to V (i.e., U(p) = V(p) NV for all
p). It should be clear that in this case we have

Mz) = i M)y, (1.3)

for every ML, -formula ¢ and every point z € V. If & is a generated subframe
of § and V is the upward closure of some set X C W (i.e., V is the smallest
upward closed set in F containing X), then we say that & is generated by
X. A generated submodel 9t = (&, 4) of M = (F, V) is called in this case a
submodel generated by X. Note that if ® is generated by a singleton {z} then
& is rooted, with z being its root. For a class C of n-frames, denote by C"
the class of all rooted subframes of frames in C; Fr" L is the class of all rooted
n-frames for an n-modal logic L. It follows from (1.3) that if (!N, z) = ¢ then
(M=, z) |= ¢, where 9M* is the submodel of 9 generated by {z}. So we have
the following:

Proposition 1.11. If an n-modal logic L is determined by a class C of n-
frames then

L=LlogC" =LlogFr'L,
that is, L is determined by the class of its rooted frames.

We say that a (strict) partial order (W, R) is a (strict) linear order if it
is connected, i.e., for any distinct points z,y € W, either Ry or yRz. It
is straightforward to see that a rooted, transitive, weakly connected frame is
connected. Therefore we obtain an easy consequence of (1.1}, Propositions 1.9
and 1.11, and Theorem 1.4:

Theorem 1.12. (i) K4.3 is characterized by the class of strict linear orders.

(ii) S4.3 is characterized by the class of linear orders.

(iii) GL.3 is characterized by the class of all finite strict linear orders as
well as by the single frame (N,>) (or by the frame obtained by adding a root
to (N,>)).

(iv) Grz.3 is characterized by the class of all finite linear orders as well
as by the single frame (N,>) (or by the frame obtained by adding a root to

Disjoint union. Let §; = <W_,-,R{,...,Rfl>, for j € J, be a family of n-

frames with pairwise disjoint sets of worlds, i.e., W; N Wy = 0 for all distinct
J, k € J. (If this is not the case, we can always take suitable isomorphic copies
of the §;.) The disjoint union of §; is simply the n-frame

ZS,~=<UW,~,UR{,...,UR£>,

j€J jeJ J€J Jj€J
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The disjoint union of models M; = (F;,V;), j € J, is the model

anj=<23j,Umj>.

jeJ j€J JEJ

Again, for all ML, -formulas ¢, j € J and = € Wj, we have

Wy,z) = D Mz ) e (14)
j€J

Summarizing (1.1), (1.3) and (1.4), we can formulate the following:

Theorem 1.13. For every ML, -formula o,
(i) if 8 is a p-morphic image of §, then § |= ¢ implies ® = ¢;
(i) if 8 is a generated subframe of §, then § k= p implies ® k= ¢;
(ili) if §; b= @, for all j € J, then Y §; k= .
Jj€J
In other words, for every n-modal logic L, FrL is closed under the formation
of p-morphic images, generated subframes and disjoint unions.

1.5 Algebraic semantics

As was said in Section 1.2, Kripke frames were constructed first as relational
(or Stone-Jénsson—Tarski) representations of modal algebras (see Jénsson and
Tarski 1951, Dummett and Lemmon 1959). Unlike Kripke frames, modal al-
gebras can be viewed as a straightforward translation of the language of modal
logic into the language of algebra (see, e.g., the construction of Lindenbaum
algebras in (Chagrov and Zakharyaschev 1997) or (Goldblatt 1989)), which
makes the algebraic semantics adequate for all modal logics.

Although not so intuitive and transparent as the possible world semantics,
the algebraic semantics brings us to the realm of universal algebra and makes
its rich and well-developed machinery available for studying modal logics. In
this section we give a brief overview of (a very small number of) elementary
algebraic concepts we need in what follows. For more detailed expositions see
(Burris and Sankappanavar 1981, Chagrov and Zakharyaschev 1997, Gold-
blatt 1989).

To begin with, we remind the reader that a Boolean algebra is a structure
of the form

o = (A, A, =% 02, 1%),
in which A, the universe of 9, is a non-empty set, A% is a binary operation
on A, -2 a unary one, 0%,1% € A, and the following conditions hold for all
a,b,ce A:
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e aA%b=bA%gq and a V¥ b = b V? a (commutativity of A% and V?);

o an?(bA%c) = (aA?a)A?cand aV2 (bV2c) = (aV? a) V2 ¢ (associativity
of A% and V%),

e (aA?b)V2b = b and (a V® b) A% b = b (absorption);

o aAZ (bV2c)=(an?b) V2 (aA?c) and aVZ (A% ) =(a V2 D) A% (aV2¢)
(distributivity);

o aA? ~%g = 0% and a V? =% = 1%,

where, by definition, a V® b = —-2(~%a A% -2b). It is readily checked that for
every set W, the structure

<2W’n, —amv W)

is a Boolean algebra, where 2% is the set of all subsets of W, and N and — are
the usual set-theoretic intersection and complementation in W, respectively.
By the Stone representation theorem, every Boolean algebra is embeddable
into such a set-algebra. For more details on Boolean algebras and their con-
nections with classical propositional logic the reader is referred to (Monk 1988,
Rasiowa and Sikorski 1963, Sikorski 1969).

An n-modal algebra is a Boolean algebra with extra n operations modeling
the n boxes 0O;, viz., a structure of the form

A= <A,/\“,—1“,0“,19‘, D‘;‘,...,D,‘*’,‘) ,
where (A, A%,-%,0%,1%) is a Boolean algebra and, for eachi = 1,...,n, O}
is a unary operation on A such that D?‘lgl =12 and, for all a,b € A4,
D2(a A® b) = O2a A* O2b.

ML, -formulas are interpreted in A by means of valuations U in A which
map these formulas into A in such a way that, for all ,¢ € ML,,, and all
i=1,...,n, we have

V(o Ap) = B(p) A* DY),
D(~p) = ~"V(y),
B(Oip) = OF B(yp).

It follows that the value B(p) of a formula ¢ under U is uniquely determined
by the values U(p) of the propositional variables p occurring in ¢. The pair
M = (A, V) is called an algebraic model for ML, based on .
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A formula ¢ is said to be true in M, M |= ¢ in symbols, if V(p) = 1%; ¢
is satisfied in 9 if V() # 02. We say that ¢ is valid in A and write A |= ¢
if ¢ is true in all models based on 2.

Given a class C of n-modal algebras, the set

LogC={pe ML, |VAEC A ¢}

is always a n-modal logic. It is called the logic of C. If L = Log C, we say that
L is determined (or characterized) by C. An n-modal algebra 2 validating all
formulas in some n-modal logic L is called an algebra for L; in this case we
write % = L. The class of all n-modal algebras for L is denoted by AlgL.

In contrast to the possible world semantics, the algebraic one is able to
characterize all n-modal logics:

Theorem 1.14. For every n-modal logic L, we have L = Log AlgL.
(The proof of this theorem is similar to that of Theorem 4.4.)

There can be a slightly different view on the algebraic semantics. Algebras in
general are first-order structures for a language having only function symbols
in its signature. In particular, n-modal algebras are first-order structures of
the signature having a binary function symbol A, unary function symbols -,
0: (1 £ i £ n), and individual constants 0 and 1. ML, -formulas can be
regarded then as terms, and—if we also have equality—equations of the form
¢ = 1 are well-formed formulas of this first-order language. And then for
every n-modal logic L and every ML,.-formula ¢,

pvel il AgLlky=1.

Thus, various problems concerning n-modal logics can be straightforwardly
reformulated as problems concerning equational theories of classes of n-modal
algebras and vice versa.

Every n-frame § = (W, Ry,..., R,) gives rise to the n-modal algebra
3 =(¥,n-owof’,...,af),
where, forall X CW andi=1,...,n,
O3 X ={zeW|VyeW (zRy—y e X)}.

Moreover, an ML,-formula is valid in § iff it is valid in F*. Thus, for any
class C of n-frames,

Log C = Log {§* | 5 € C}.

Note, however, that it is not the case that for every n-modal algebra 2 there
is an n-frame § such that 2A = F* (for instance, there are countable algebras,
while * is either finite or uncountable).
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The truth-preserving operations on n-frames considered in Section 1.4 cor-
respond to the well-known algebraic operations of taking subalgebras, homo-
morphic images, and direct products. Suppose we are given two n-modal
algebras

= (A4,A%,,0%18,08, .2,
B = <B,/\%,-‘93,095,1Q’,D?,...,Df>.
Then 2 is called a subalgebra of B if AC B, 02 = 0%, 1% = 1B, and for all
a,a'€ A, 1<i<n,
ana’ = anBa,
0%a = DPa.
A homomorphism from A to B is amap h : A — B such that, for all a¢,a’ € A,
1<i<n,
h(a A% a') = h(a) A® h(a'),

h(-=%a) = ~®h(a),

h(0%a) = OBh(a).
If h is onto then B is called a homomorphic image of A. Now suppose that
2A;, for j € J, is a family of n-modal algebras of the form

A = <A]-,/\mi,ﬂm",0mf,1ﬂf,D?j,...,D3j>.

The direct product

=[]

j€J
of the ¥, is defined by taking A to contain all functions g from J into | J ies Aj
such that g(j) € Aj, for all j € J, and defining the operations A%, -%, 1%, 0%
and 02 (1 < i < n) component-wise. For example, 0g is defined by taking

~ (@)6) =00 e0),

for1 <i<nandj¢€ J. Onecan show (see, e.g., Chagrov and Zakharyaschev
1997) that, given two n-frames § and &,

e if ® is a p-morphic image of §, then &+ is (isomorphic to) a subalgebra
of F*;

e if ® is a generated subframe of §, then 8% is a homomorphic image of

St

Similarly, given a family §; (j € J) of n-frames,
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o the n-modal algebra (3¢, §;)* is isomorphic to [],¢, 3t

For more information on the duality between frames and modal algebras
see (van Benthem 1984, Goldblatt 1989, Chagrov and Zakharyaschev 1997,
Blackburn et al. 2001).

We conclude this section by formulating the Birkhoff variety theorem from
universal algebra specialized for n-modal algebras.

Theorem 1.15. For every n-modal logic L, the class AlgL is closed un-
der the formation of subalgebras, homomorphic images, and direct products.
Moreover, if L = Log C for some class C of n-modal algebras, then AlgL is the
closure of C under taking subalgebras, homomorphic images, and (isomorphic
copies of) direct products.

The proof of this theorem can be found, e.g. in (Burris and Sankappanavar
1981) (in a universal algebraic setting) or in (Chagrov and Zakharyaschev
1997).

1.6 Decision, complexity and axiomatizability
problems

In general, neither the syntactical nor the semantical characterizations of a
modal logic L provides us with a means to decide, given an arbitrary formula
@, whether ¢ € L. If an algorithm (or a program) capable of solving this
decision problem does exist, then L is called decidable; otherwise it is unde-
cidable. The existence of a decision algorithm for L does not yet guarantee
that it can be used in practice: the amount of computational resources it
requires may be astronomic. That is why we need to know the optimal com-
putational complexity of the decision problem for L. Problems of this sort are
briefly discussed in this section. It is beyond the scope of the book to give a
formal treatment of the concepts from computability theory such as algorithm,
recursive (or computable) function and set, recursive enumerability, etc. The
reader can find all these in (Barwise 1977, Enderton 2001, Shoenfield 1967)
and other textbooks on mathematical logic and recursion theory.

Let us begin with complexity problems. A standard way of measuring
the difficulty of problems like ‘¢ € L?' is by the amount of time (number of
steps) and/or space (memory) required by the decision algorithm to solve the
problem, depending on the size of ¢. The size or the length ¢(¢) of a formula
@ is usually defined as the number of symbol occurrences!® in ¢. Here we give

13There are other ways of defining £(). For instance, one can understand by £(p) the
number of subformulas of ¢ or the size of memory required to store the symbols in ¢
(thereby taking into account the difference between pg and papo3). However, in this book
the complexity of the decision algorithms is not affected by the choice we make.
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a brief overview of the notions from complezity theory we use in this book; for
more details consult (Garey and Johnson 1979, Hopcroft and Ullman 1979,
Papadimitriou 1994).

Following the standard terminology, we call an algorithm deterministic
if each step of the algorithm is uniquely determined. On the other hand, a
nondeterministic algorithm may guess at each step which of a finite number
of possible next steps to take. We say that a problem ‘z € X?' belongs to
the complexity class

e P if it is solvable by a deterministic algorithm in polynomial time of the
size of x;

o EXPTIME if it is solvable by a deterministic algorithm in exponential
time of the size |z| of z, i.e., in time < 2""‘, for some k > 0;

o 2EXPTIME if it is solvable by a deterministic algorithm in doubly ex-

C gL . .. Jr |k
ponential time of the size of z, i.e., in time < 22" ;

e ELEM if it is solvable by a deterministic algorithm in time f(}z|) where
f is an elementary recursive function of the size of z, i.e., there is a
natural number n such that

vz f(lz)) <27 I

The problem ‘z € X7’ is in

e NP if it is solvable by a nondeterministic algorithm in polynomial time
of the size of x, and it is in

e NEXPTIME if it is solvable by a nondeterministic algorithm in expo-
nential time of the size of z.

Finally, we say that the problem is in

e PSPACE if it is solvable by a deterministic algorithm using polynomial
space of the size of ;

o EXPSPACE if it is solvable by a deterministic algorithm using expo-
nential space of the size of z.

According to Savitch's theorem (see, e.g., Papadimitriou 1994), nondetermin-
ism does not increase the level of space complexity. So the complexity classes

of nondeterministic polynomial space and nondeterministic exponential space
coincide with PSPACE and EXPSPACE, respectively. It should be clear that
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the complexity class of nondeterministic elementary time is the same as ELEM
and that

P C NP C PSPACE C EXPTIME C NEXPTIME C
C EXPSPACE C 2EXPTIME C N2EXPTIME C ... € ELEM.

It is also known that

P # EXPTIME, NP # NEXPTIME,
PSPACE # EXPSPACE, EXPTIME # 2EXPTIME,
NEXPTIME # N2EXPTIME, N2EXPTIME # ELEM.

Whether the remaining inclusions are strict or not is one of the most challen-
ging open problems in complexity theory.

Given a problem of the form ‘z € X7, its complement is the problem
‘z ¢ X7. For any complexity class C, the class coC consists of all problems
whose complement is in C. It is not hard to see that for deterministic classes
C = coC, while for nondeterministic C it is not known whether this equality
holds.

We say that a problem A is C-hard, for a complexity class C (above P),
if every problem B € C can be polynomially reduced to A, i.e., there is a
recursive function (program) f which, given a word b (in the language of B),
in deterministic polynomial time returns a word f(b) (in the language of A)
such that b € B iff f(b) € A. A problem is called C-complete, if it is C-hard
and belongs to C. Thus a standard technique for proving C-completeness
of a problem A is to show first that A is in C, and then give a polynomial
time reduction of some C-complete problem B to A. However, if our aim is to
establish that A is undecidable, then any recursive reduction of an undecidable
problem B to A will suffice.

For an n-modal logic L, the question if ‘there is an algorithm which, given
an ML, -formula ¢, decides whether ¢ belongs to L’ is called the decision
problem or the validity problem for L. We say that L is decidable (or C-
complete) if the decision problem for L is decidable (respectively C-complete).
Closely related is the satisfiability problem for L: ‘given ¢, decide whether
@ is satisfiable in a frame for L.’ It should be clear that, for any Kripke
complete logic L, ¢ is in L iff =y is not satisfiable in a frame for L. Thus,
validity and satisfiability are complementary problems connected by a very
simple reduction ¢ ~ —: one is decidable iff the other is decidable; if one is
C-complete for some complexity class C, then the other is coC-complete.

Let us consider, for instance, classical propositional logic Cl. Given a
formula ¢, we can nondeterministically assign (guess) truth-values to the pro-
positional variables in ¢, and then compute the truth-value of ¢ in polynomial
time. Thus the satisfiability problem for Cl is in NP. Moreover, according
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to Cook’s theorem (see e.g. Papadimitriou 1994), it is NP-complete. It fol-
lows that the decision problem for Cl is coNP-complete. A similar algorithm
can be used to show the NP-completeness of the satisfiability problem for
a modal logic characterized by a single finite frame—such logics are called
tabular. However, most of the modal logics considered in this book are not
tabular.

If a modal logic L is recursively axiomatizable then we can recursively
enumerate all formulas in L by systematically constructing all possible deriv-
ations. So we would have a decision algorithm for L if we could enumerate
those formulas that are not in L. Obviously, this can be done if

o L has the finite model property (fmp, for short), i.e., L is characterized
by the class of its finite frames!* and

o the class of finite frames for L is recursively enumerable (up to isomorph-
ism), which is clearly the case if L is finitely axiomatizable (for then we
can even decide whether a given finite frame is a frame for L).

However, the fmp itself says nothing about the complexity of the decision
algorithm. We can get more information about complexity by establishing a
stronger property which is sometimes called the effective (or bounded) finite
model property (efmp): L has the efmp if there is a recursive function f such
that, for any formula ¢, ¢ ¢ L iff there is a frame § for L such that F | ¢
and § contains at most f(£(y)) points. If f is a polynomial or exponential
function then we say that L has the polynomial or, respectively, exponential
fmp. Suppose now that for L the problem whether a frame § belongs to FrL
can be decided in polynomial time in the size of §. (Obviously, this is the
case for all modal logic introduced so far in this book.) Then the polynomial
and exponential fmp provide satisfiability checking algorithms that are in
NP and NEXPTIME, respectively: given a formula ¢, we guess a model
M = (F, V) of size polynomial or exponential in ¢, and check whether § € FrL
and (M, z) |= ¢ for some z in F. While the NP upper bound obtained in this
way is always optimal (because CL is already NP-hard), the NEXPTIME-
upper bound can often be improved by more fine-tuned arguments. Here are
some examples; for proofs consult (Ladner 1977, Ono and Nakamura 1980,
Chagrov and Zakharyaschev 1997).

Theorem 1.16. All the logics K, 84, S5, KD45, K4.3, S4.3, GL, GL.3,
K4, T and D are decidable. Moreover,

(i) S5, KD45, K4.3, GL.3 and S4.3 have the polynomial fmp and are
coNP-complete.

14 An equivalent formulation (which has actually given the name to the property): L has
the fmp if, for every v ¢ L, there is a finite model M such that 9 |= L and 9 }£ ¢. For a
proof that the two formulations are equivalent see e.g. (Chagrov and Zakharyaschev 1997).
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(ii) K, S4, GL, K4, T and D have the exponential fmp and are PSPACE-
complete.

An example of a coNEXPTIME-complete finitely axiomatizable logic with
the exponential fmp can be found in Section 5.5; examples of EXPTIME-
complete finitely axiomatizable logics with the exponential fmp are provided
by Theorem 1.26.

In Chapter 4 we shall see that many properties (such as the fmp and
decidability) of unimodal logics are preserved under joining them into mul-
timodal ones without postulating any interactions between their modal oper-
ators. However, this does not always apply to the complexity of the decision
algorithms, as the following theorem suggests:

Theorem 1.17. (i) K., T,, K4, and S4, are PSPACE-complete, for all
n>0.
(ii) If n > 1 then S5, and KD45,, are PSPACE-complete as well.

The proof can be found in (Halpern and Moses 1992). Note that the
addition of interaction axioms involving different boxes (say, commutativ-
ity) can drastically change the character of these rather ‘harmless’ logics; see
Chapter 8.

From a purely logical point of view, the most important reasoning task
for a logic L is to recognize, given two arbitrary formulas ¢ and ¢, whether
w is a logical consequence of ¢ in L. The notion of logical consequence may
be different depending on applications.

Given an n-modal logic L, we say that an ML, -formula ¢ is a global
consequence of ¥ in L and write ¢ I} ¢, if ¢ belongs to the smallest set of
ML, -formulas which contains L U {9} and is closed under the inference rules
MP and RN; (1 €i < n).

A formula ¢ is said to be a local consequence of v in L (in symbols:
¥ k) if ¢ belongs to the smallest set of ML,,-formulas which contains
Lu {y} and is closed under MP only. The consequence relation I; can be
easily reduced to validity in L via the following equivalence known as the
deduction theorem. For all ML, -formulas ¢ and 1,

YLy iff popel

It follows, in particular, that L is decidable if and only if the local consequence
relation I, is decidable, and that the decision problems for L and - always
have the same complexity.

For many n-modal logics L there is a very natural semantical interpretation
of -7 and k.
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Theorem 1.18. (i) For any Kripke complete n-modal logic L, we have ¥ -, ¢
iff (M, z) k= ¢ whenever (M, x) k= ¥, for every model M based on a frame for
L and every point £ in M.

(ii) For all n-modal logics L defined above, we have ¥ + ¢ iff M | ¢
whenever M = ¢, for every model M based on a frame for L.

Logics L such that, for all formulas ¢ and ¥, ¥ ] ¢ iff DM = ¢ implies
M k= o, for every model M based on a frame for L, are called globally Kripke
complete. Clearly, every globally Kripke complete logic is Kripke complete;
however, the converse does not hold (Kracht 1999). On the other hand, we
have the following general completeness result:

Theorem 1.19. Suppose L = Log C for some first-order definable class C of
n-frames. Then L is globally Kripke complete.

(This result does not seem to be stated explicitly in the literature. It
follows from the Fine-van Benthem Theorem, according to which any logic
Log C with first-order definable C is canonical, and from the fact that any ca-
nonical logic is globally Kripke complete. For details consult (Zakharyaschev
et al. 2001, Chagrov and Zakharyaschev 1997).)

If ] can be characterized by models 9t based on countable (or finite)
frames, then we say that I} is determined by countable (finite) frames. The
following theorem can be proved similarly to Theorem 1.6:

Theorem 1.20. Suppose L = Log C for some first-order definable class C of
n-frames. Then F} is determined by countable frames.

We also have:

Theorem 1.21. For all the logics K, S4, S5, KD45, K4.3, S4.3, GL, K4,
T and D, the global consequence relation is determined by finite frames.

For more details and further references consult (Goranko and Passy 1992,
Zakharyaschev et al. 2001).

It is not so simple to reduce the global consequence relation 7 to valid-
ity in L. The deduction theorem for I} is not constructive in general.
To formulate it, we require the following notation. For a formula ¢, put
M?n)go = M(Sno)go = ¢ and, for k > 0,

In the unimodal case, let 0% = 0<% = ¢ and, for k > 0,
Dk+l<p — Duk‘p,
k+1 5
Osk+ly, = /\j:ﬂ Dip.
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Theorem 1.22. For every n-modal logic L and all ML, -formulas ¢ and 9,
bFLe o Im>0 (Ma';‘1p—>¢ € L).

In particular, in the unimodal case we have
YvFL e if 3Im20 (Dsmd)—bgp € L).

In general, the parameter m above is not a computable function of £(y)
and £(3), even under the condition that L is decidable. In fact, we shall see
later on in the book a number of natural decidable n-modal logics L for which
t1, is undecidable. Note, however, that for every unimodal logic L containing

the axiom Opy — O0pg (saying that frames for L are transitive) we have
Yvri e iff YyAOY—pel. (1.5)

In particular, there is no difference between the complexity of the decision
problems for L and 7.

For some non-transitive unimodal logics there also exists a computable
bound on m; say, for K, D and T, m < 2lsub¥Usubyl (see e g. Chagrov and
Zakharyaschev 1997). This upper bound cannot be reduced substantially. As
folows from (Spaan 1993) and (Ladner 1977), the global consequence relations
for these logics are computationally more complex than the local ones:

Theorem 1.23. For L = K;,,D,, Ty, the problem of whether ¢ F} ¢ holds
is EXPTIME-complete.

The global consequence relation -} can be reduced to the decision problem
for a logic closely related to L. Recall that semantically ¢ -} ¢ means that ¢
is true everywhere in a model whenever ¢ is true everywhere in the model. We
can capture this by introducing another modal operator @ with the intended
meaning ‘everywhere in the model:’

(M, z) =@y iff (9, y) = ¢ for all points y in M.
Its dual & means ‘somewhere in the model:’
(M, z) E oy if (M,y) | ¢ for some point y in M.

The relation M | @y — ¢ would then read ‘if ¢ is true everywhere in 9
then ¢ is also true everywhere in 9.’ The modal operators @ and & are
known as the universal modalities. They were introduced and investigated
by Goranko and Passy (1992). Denote by ML} the language ML, enriched
with @ (and its dual @).



38 Chapter 1. Modal logic basics

Suppose now that we have an n-modal logic L and want to introduce in
it the universal modalities with their intended interpretation. As @ and &
should behave like the S5 box and diamond, the most natural way to do this
is to take the n + 1-modal logic

L, = L & {axioms of S5 for ® and @} ® {Mpy — O;po | 1 < i < n}

in the language ML.. It is not hard to check that in any rooted n + 1-frame
for L, the accessibility relation corresponding to ™ should be universal. The

connection between L and L, is established by the following two results of
(Goranko and Passy 1992):

Lemma 1.24. For every n-modal logic L and all ML,,-formulas ¢ and 1,
vrie W @Yo pe L

Theorem 1.25. For every n-modal logic L,
(i) L, is Kripke complete iff L is globally Kripke complete;
(ii) Ly, has the fmp iff -} is determined by finite frames.

In general, L, does not inherit ‘good’ properties from L. For example,
Spaan (1993) constructs a unimodal logic L such that L has the polynomial
fmp and is decidable in coNP, while L,, is undecidable. Using the filtration
technique (see e.g. Chagrov and Zakharyaschev 1997), one can prove the fol-
lowing:

Theorem 1.26. Let L be any of the logics K, S4, 85, KD45, K4.3, S4.3,
GL, K4, T and D. Then L, has the exponential fmp.

Some complexity results for modal logics with the universal modalities
follow from (Hemaspaandra 1996) and (Areces et al. 2000):

Theorem 1.27. (i) The logics K,,, T, and D, are EXPTIME-complete.
(ii) The logics K4, and S4, are PSPACE-complete.

However, a detailed complexity analysis of the decision problem for these
kinds of logics seems to be missing.

Another way of proving decidability of a multimodal logic L is to reduce
the decision problem for L to some known decidable problem, say, to a decid-
able set I' of formulas, written in some language £. The task then is to find
a recursive function f mapping ML, -formulas to £-formulas and such that,
for every ML,,-formula ¢,

pelLl iff f(p)el.

An example of a very expressive formalism is monadic second-order logic,
where various classes of structures are known to have decidable theories. As
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we will use reductions to such theories in Part III, here we briefly present all
the required definitions and results.

The monadic second-order language MSOL is based on the alphabet of
first-order logic QL™ extended with a countably infinite list Py, Py,... of
unary (or monadic) predicate variables. In what follows we consider the first-
order signature consisting of one binary predicate symbol < only. The formula
formation rules of MSOL are those of QL™ plus the following two:

e if z is an individual variable and P is a monadic predicate variable then
P(z) is an (atomic) MSOL-formula;

o if ¢ is an MSOL-formula and P is a monadic predicate variable then
VPy and 3Py are MSOL-formulas.

An MSOL-sentence is an MSOL-formula without occurrences of free indi-
vidual variables or free monadic predicate variables.

MSOL is interpreted in usual first-order structures I = (D!, <'). How-
ever, this time an assignment in I is a function a mapping each individual
variable = to an element a(z) € D! and each monadic predicate variable P
to a subset a(P) C D!. The truth-relation I * ¢, for an MSOL-formula
¢, is defined by induction on the construction of ¢ in the same way as for
QL™ -formulas in Section 1.3; the only missing clauses are:

o [ |=* P(z) iff a(x) € a(P), P a predicate variable;

o I |=° VPy iff I |=b ¢ for every assignment b in I such that a and b
agree on all individual variables and on all predicate variables different
from P;

o I =2 3Py iff I = ¢ for some assignment b in I such that a and b agree
on all individual variables and on all predicate variables save P.

An MSOL-formula ¢ is said to be true in I, if I = ¢ for all assignments
a in I. Given a class C of first-order structures, the monadic second-order
theory of C is the set of MSOL-sentences that are true in each I € C.

The following theorem is a consequence of results of Biichi (1962) and
Rabin (1969); for details consult (Gabbay et al. 1994):

Theorem 1.28. Let C be one of the following classes of first-order structures:
{(N, <)}, {{(Z, <)}, {{Q, <)}, the class of all finite strict linear orders. Then
the monadic second-order theory of C is decidable!®

15However, the monadic second-order theories of {(R, <)} and of the class of all strict
linear orders are undecidable according to results of Shelah (1975) and Gurevich and Shelah
(1982) (see also Gabbay et al. 1994).
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It is to be noted, however, that the price of proving decidability via a re-
duction to these decidable monadic second-order theories is that the resulting
decision algorithm is non-elementary (see Robertson 1974, Meyer 1974, Rabin
1977).

We conclude this section with a brief discussion of how to prove that a
logic is not recursively axiomatizable. As was observed by Craig (1953), every
recursively enumerable logic L is recursively axiomatizable as well. Thus, to
show that L is not recursively axiomatizable, it suffices to reduce a problem,
whose complement is not recursively enumerable, to the satisfiability problem
for L. It is well-known from computability theory that %}-hard problems are
such. Roughly, the membership problem ‘r € X7, for a set X of natural
numbers, is in 1 if there is a formula

AP ... 3P v(y)

of monadic second-order arithmetic such that, for all natural numbers n, we
have
neX iff (N,0,+,-) E=3F...3P ¢[n].

(Here Py, . .., Py are the only monadic predicate variables in ¢, y its only free
individual variable, and no quantification over predicate variables occurs in
@.) Then we say that a problem A is 1-hard if every problem in £} can
be recursively reduced to A. A problem is ©1-complete if it is £}-hard and
belongs to T1.



Chapter 2

Applied modal logic

So far we were considering modal logics with rather ‘abstract’ necessity and
possibility operators. Let us now concentrate on logical formalisms specially
designed for reasoning about certain concrete application domains, such as
time, space, knowledge, etc., and show how they can be related to modal
logics.

2.1 Temporal logic

Perhaps the most natural and intuitive use of modal logic is reasoning about
time. There are many different models of time. In the framework of the
possible world semantics we can imagine, for instance, that the flow of time is
represented as a frame § = (T, <) in which T is a set of moments of time and
< a binary precedence relation between them. If time is regarded to be linear
then we may assume that < is a strict linear order on T, i.e., < is transitive,
irreflexive and connected:

Ve,ye T (r<yVy<zVz=y)

(see Section 1.4). The necessity and possibility operators interpreted in such
frames can be understood then as ‘always in the future’ and ‘some time in
the future,’ respectively.

According to Theorem 1.12, the logic determined by the class of all strict
linear orders is K4.3. If we regard time to be infinite and discrete (in the
sense that between any two points there are only finitely many other points)
or, on the contrary, dense (that is, there is a third point between any two
distinct points) then we may need temporal logics determined by the flows of
time (N, <), (Z, <), (Q, <) or (R, <), where N, Z, @, and R are the sets of
natural, integer, rational and real numbers, respectively.

41
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Theorem 2.1. The following equalities hold true:

Log{(N, <)} = Log{(Z, <)} = K4.3® ©T & O(Op — p) — (<Op — Op),
Log{(Q, <)} = Log{(R,<)} = K4.3® 0T ® QOp — Op.

For proofs see, e.g., (Segerberg 1970, Goldblatt 1982). As both of these
logics have the fmp (for instance, Log{(N, <)} is determined by the class of
finite ‘balloons,’ i.e., finite strict linear orders ending with nondegenerate finite
clusters), they are decidable. Moreover, it is easy to show (see, e.g., Ono and
Nakamura 1980, Sistla and Clarke 1985) that we have the following:

Theorem 2.2. Log{(N, <)} and Log{(Q, <)} have the polynomial fmp and
are coNP-complete.

One can understand future as ‘from now on’ (i.e., including the present mo-
ment) and consider logics determined by classes of (reflexive) linear orders.
Again by Theorem 1.12, the logic determined by the class of all linear orders
is 84.3. For other reflexive flows of time we have:

Log{(N, <)} = Log{(Z,<)} = S4.3 ® O(0(p — Op) — p) — (OOp — Op),
Log{{Q, <)} = Log{(R, <)} = S4.3.

Similarly to the case of strict linear orders, both of these logics have the
polynomial fmp and are coNP-complete.

The unimodal language ML is able to speak only about the future, but we
can easily extend it to deal with the past by adding one more pair of necessity
and possibility operators interpreted by the converse <! of < (that is, by
>). Thus we come to the bimodal temporal language ML, with two boxes

Op (‘always in the future’) and Op (‘always in the past’), together with their
duals Of and ©Op, respectively. Although frames for this language are of
the form (T, <, >), we can safely write § = (T, <) keeping in mind that Op
is interpreted by the converse of <. The truth-relation for O and Op in a
model based on a flow of time § = (T, <) is defined as follows:

tEQpy i (V> P
tk=0Opy iff (VW <t)t 9.

Even this simple language is enough to say that some property ¢ will take
place infinitely often in the future or that ¢ is always caused by another

property :

OrOry,
Or(p — OpY) ADOp(p = OpY) Alp — OpY).
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Statements of this sort are used in the field of verification and specification
of reactive systems (such as operating systems); see, e.g., (Manna and Pnueli
1992, 1995).

We can also define operators @ and & which behave on linear frames like
the universal modalities:

By =¢AOrpAOpp,
Qp=pVOrpVOpy.

Moreover, we can say that some formula ¢ holds precisely at one point of a
flow of time:
®lp=&(pA-OrpA-Opyp).

Denote by Lin the bimodal logic determined by the class of all strict linear
orders, i.e.,

Lin = {¢ € ML2 | § k= ¢, § a strict linear order}.
This logic can be axiomatized as
Lin=K4,®p— 0OpOpp
®p— OpOFp
S OrOpPVOPOFP—pVOFpV Opp

(see, e.g., Gabbay et al. 1994). Roughly speaking, if Ry and Rp are (transit-

ive) accessibility relations interpreting Of and Op, then the first two axioms
describe the conditions Rp C R;l and Rp C R,‘,l, respectively, and the third
one says that these relations are connected.

Given a class C of flows of time, we denote by LogppC the bimodal logic

(with the operators Op and Op) determined by C. (Recall that LogC denotes
the unimodal logic determined by C.) To simplify notation, we will write
Logrp(T) instead of Logpp{(T, <)}, for T € {N,Z,Q, R}.

Theorem 2.3. The following equalities hold true:
Logrp(N) = Lin® OrT & Op(Qpp — p) — Opp
® Or(Orp — p) = (OrOFp — OFp),
Logpp(Z) = Lin® OrTH OpT
® Or(0rp — p) —» (OrQrp — Orp)
® Op(Tpp — p) — (OpOpp — Tpp),
Logrp(Q) = Lin® OprT @ OpT & OpOpp — OFp,
Logrp(R) = Logpp(Q) ® @ (Opp — OrOpp) — (Opp — OFp).
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We refer the reader to (Goldblatt 1982) for a proof of this theorem; see also
(Bull 1968, Segerberg 1970, Wolter 1996).

Theorem 2.4. The decision problem for the logics Lin, Logrp(N), Logrp(Z),
Logrp(Q) and Logpp(R) is coNP-complete.

The results for Lin, Logrp(Q) and Logpp(R) follow from the fact that
these logics have the polynomial fmp. For Logpp(N) and Logrp(Z) (which
do not have the fmp), the complexity results can be obtained by proving that
these logics are determined by some special models of polynomial size (Wolter
1996).

‘Always in the future’ and ‘always in the past’ are just one type of possible
temporal operators. When reasoning about the behavior of programs, we
quite often need to say that if at some moment of time the program is at
state ¢, then at the next moment it passes to a state 1. This behavior can be
captured by the next-time operator denoted by O and semantically defined in
linear orders § = (T, <) in the following way:

tl= Op iff there is an immediate <-successor ¢ + 1 of ¢
andt+1F ¢

The statement above about programs can be represented then as
(p — OY).

More expressive are the binary temporal operators ‘since’ and ‘until’ with
their natural meaning:

e ¢ since ¢: ‘@ has been the case since y’;
e o until ¥: ‘@ will be the case until 9’

We will denote these operators by S and U, respectively. Let MLgy be the
temporal language which results from the language £ of classical propositional
logic by extending it with the binary connectives S, U and the corresponding
formula formation clause: if ¢ and i are MLgy-formulas then so are Sy
and U1,

The semantics of the new operators is defined as follows. Let § = (T, <)
be a strict linear order and t,,t2 € T. Denote by (t1,t2) the open interval
{t€T|t1<t<t2}. Then

t1 |= @Sy iff there is t; < t; such that t2 =9y and t |= ¢ for all t € (ta,1),
t1 = U iff there is t; >ty such that t2 =9 and t |= ¢ for all t € (84, 12).
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Note that the operators O r and O p can be defined in MLgy as abbreviations
Opp =TUp, Opp=T8Sp, Op=1lUp.

In this language we can say, for instance, that a system will respond (p will
be true) only when it gets a request (q is true):

Orp — (-p)Ug.
The expressive power of the temporal language MLgy over the flows of time
(N, <), (Z, <) and (R, <) can be characterized in terms of the first-order sub-
language QL; of QL having one binary predicate symbol < and countably
infinitely many unary predicate symbols Py, P,.... (Here we denote indi-
vidual variables by ¢,t', etc.) The language QL is interpreted in flows of
time (T, <): the interpretation of < is given by the flow, and P; are inter-

preted by arbitrary subsets of T. Consider the following standard translation
* of MLsy into QL,:

pi = Pi(t), pi a propositional variable,
(P AY)" =" AYT,
(=) = —¢*,
(QUP)* =3t >t (P {t'/L} AVt <t” <t' - p*{t"/t})),
(pSy)" =3 <t (Y*{t'/t} AVE"(t' <t <t — *{t"/t})).
Observe that, for any MLgsy-formula ¢, ¢* is a QL;-formula with precisely

one free variable t Let M = (F, V) be a model for MLgy based on a flow of
time § = (T, <). Define a first-order structure

1(om) = <T,<,P0"‘””,p,"°’”,...>

by taking Pi'(m) = B(p;), for all ¢ < w. Then we clearly have, for everyt € T
and every MLgy-formula ¢:

M) e i IO kot

In other words, MLgy can be regarded as a fragment of QL,. Say that MLsy
is expressively complete for a class C of flows of time if, for any QL;-formula
¢(t) with one free variable, there exists an MLgy-formula ¢ such that, for
all models 9 based on some § € C,

I(M) =Vt (¢ & ).

This means that, modulo the flows of time in C, the temporal language MLsy
has the same expressive power as the fragment of the first-order language QL,
consisting of formulas with one free variable.

The following result is known as Kamp’s theorem; for proofs see (Kamp
1968) and (Gabbay et al. 1994).
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Theorem 2.5. MLgsy is expressively complete for the flows of time {(N, <)},
{{(Z,<)}, {{R,<)}, and the class of all finite strict linear orders.

Note that MLsy is expressively complete neither for {{Q, <)} nor for the
class of all strict linear orders. Expressive completeness for these classes can
be obtained by adding the so-called Stavi connectives to MLgsy; we refer the
reader to (Gabbay et al. 1994) for more information.

Given a class C of strict linear orders, we denote by Logg;,(C) the temporal
logic in the language MLgy determined by C. To simplify notation, if C
consists of a single flow of time § then we will write Logg,(¥) instead of
Logsy ({5})-

We denote by Ling;, the temporal logic determined by the class of all strict
linear orders. Logg,(N), Logg,(Z), Logg,(Q) and Logg,(R) are the logics
of (N, <), (Z, <), etc. All these logics are known to be finitely axiomatizable
and PSPACE-complete; see (Goldblatt 1982, Sistla and Clarke 1985, Gabbay
and Hodkinson 1990, Reynolds 1992, 1999, 2003). We present here an axio-
matization of a somewhat simpler logic which has found many applications
as a program verification and specification formalism (see Manna and Pnueli
1992, 1995). The logic is known as PTL, propositional temporal logic! It is
formulated in the S-free reduct MLy of the language MLgsy and has (N, <)
as its intended flow of time, i.e.,

PTL = Logg, (N) N MLy,.

Theorem 2.6. PTL can be ariomatized by the following Hilbert-style system:

Axioms:
Or(p — q) — (Arp — OFq),

O(p — q) — (Op — Og),

O-p « —Op, (2.1)
Opp + Op A OOpp, (2.2)
Or(p — Op) — O(p — Orp), (2.3)
pUg — OFq, (2.4)
plg — OqV O(p A pUUg). (2.5)

Inference rules: MP, Subst, and RN for Op.
Theorem 2.7. The decision problem for PTL is PSPACE-complete.

For proofs see e.g. (Segerberg 1989, Sistla and Clarke 1985, Gabbay et al.
1994) or Corollary 11.36.

1This logic is also called LTL (linear temporal logic); see, e.g., (Clarke et al. 2000).
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It may be of interest to note that as far as decidability and computational
complexity are concerned, it is enough to deal with PTL instead of Log g, (N),
for we have the following (see Gabbay et al. 1980):

Proposition 2.8. Logg,(N) is polynomially reducible to PTL.

Proof. It is sufficient to show that, given a MLgy-formula ¢, one can ef-
fectively construct an S-free formula ¢ (the length of which is linear in the
length of ¢) such that @ is satisfied in a model based on (N, <) iff ¢ is satis-
fied in a model based on (N, <). Suppose ¢ is given. Clearly, without loss of
generality we may assume that ¢ = 9V O g9, so that ¢ is satisfiable iff it is
satisfiable at time point 0. Given a subformula of © of the form 13 Sve with
S-free ¢y and 2, we introduce a fresh propositional variable py,sy,. Let ¢’
be the result of replacing every occurrence of ¥1Sv; in ¢ with py, sy,, and
let

¢" = @' A py,s4, A DF(Oszswa o (P2 V(t /\Pwlswz)))»

where O} x denotes x A Opx. We claim that ¢” is satisfiable at 0 iff ¢ is
satisfiable at 0. Indeed, suppose first that (9,0) k= ¢”, for some model M.
By induction on n € N one can show that (M, n) = py,sy, < V1SY2, for
every n € N. It follows that (9,0) = ¢.

Conversely, if (MM,0) = ¢ for some M = ((N, <), V), then we can extend
0 to V' by taking

D' (py,sy:) = {n | (M, n) = Y152}

It should be clear that ¢” is true at 0 in the resulting model ((N, <), 20’).
By iterating this process sufficiently many times we end up with an S-free

formula @. As @ is S-free, it is satisfiable at 0 iff it is satisfiable at all. Thus,

@ is as required. Q

As a consequence we obtain:
Theorem 2.9. The decision problem for Logg,(N) is PSPACE-complete.

We will also be considering the bimodal fragment PTL_, of PTL having
only O and O as its temporal operators, i.e.,

PTL ., = Log{(N, <, +1)}.

It is not hard to see that if we omit axioms (2.4) and (2.5), then the resulting
Hilbert-type system axiomatizes PTL . Actually, again it turns out that in
a sense PTL_ has the same expressive power as full PTL. For we have the
following:
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Proposition 2.10. PTL is polynomially reducible to PTL_,

Proof. Given an MLy-formula g, denote by U the result of replacing every
subformula of the form YUy in ¢ with a fresh propositional variable pyu/y.
Let Ry () be the union of the sets

{Pyux — OrxY | YlUx € subp} and

{Pyux = (OxY V (OyV A Opyuy)) | ¥UX € suby}.

We will show that, for every MLy-formula ¢,
pePTL if 0OF ARu(p) —¢” € PTL

Suppose first that
(M,0) = 0 ARu(e)

for some model M based on (N, <, +1). (This M can also be considered as a
model based on (N, <).}) We claim that for every subformula a of ¢ and every
neN,

M,n) Ea iff  (9,n) o (2.6)

The proof is by induction on the construction of «, where the only non-trivial
case is a = YUXx.

(=) If (M, n) & YUx then there is an n > n such that (M, m) |= x
and (M, k) = ¢ for all k € (n,m). It follows by the induction hypothesis
that (9, m) = xV, whence (M, m — 1) = OxY, and so (M, m ~ 1) = pyuy,
since we have (M,i) = ARu(p) for all i € N. If n < m — 1 then we
have (MM, m — 2) = Opyuy and (M, m — 1) = OyYY, from which we obtain
(M, m — 2) = pyuy. By repeating this argument sufficiently many times we
shall end up with (90, n) = pyuy, as required.

(«) If (I, n) = pyuy then (M, n) = oxV v (oyY A Opyuy)- We either
have (9, n+1) |= xY, whence by the induction hypothesis (9, n+1) = x, and
so (M, n) = YUx, or (M, n+1) E YWY Apyuy. Since (MM, n) | pyuy — OrxY,
there is an m > n such that (9, m) k= xV, and so by the induction hypothesis,
(9, m) = x. Now, by using the above argument at most m times, we can show
that 1 holds ‘everywhere in between,’ i.e., (M, n) | YUy, which completes
the proof of (2.6).

Now it follows from (2.6) that (90%,0) }~ ¢, as required.

Conversely, assume that ¢ is refuted in some model M = ((N, <),V).
Extend 0 to a valuation B+ by taking, for all YyUx € suby,

B (pyuy) = {n € N| (M, n) |= YUx},
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and let M+ = ((N, <, +1),0%). We leave it to the reader to show that for
all n € N and all ¢ € suby,

(Mm*,n) = ARu(e), and
M)y i (MFn)

Therefore, OF A Ru(p) — ¢V is refuted in M+, a

It follows from Theorem 2.7 that PTL_ is also PSPACE-complete. A
discussion of some related topics can be found in (Sistla and Zuck 1987).

Remark 2.11. It is worth mentioning that there exist rooted frames for PTL
different from (N, <, +1). However, all of them satisfy two important proper-
ties. First, by (2.1), the accessibility relation R interpreting O (as a box-like
operator) is a function (i.e., Vz3ly 2R y) and, by (2.3) and (2.2), the rela-

tion corresponding to O is the transitive closure of R (for a proof see, e.g.,
Blackburn et al. 2001). Second, every rooted frame for Log{{N, <)} (and for
PTL) different from (N, <) is a balloon—a finite strict linear order followed
by a (possibly uncountably infinite) nondegenerate cluster (see, e.g., Gold-
blatt 1987). So every rooted frame for PTL, different from (N, <, +1) is of
the form (W, R, f), where (W, R) is a balloon and f is a function on W that
is the R-successor on the ‘finite linear order part’ and arbitrary otherwise. In
particular, every countable rooted frame for PTL, is in fact a p-morphic
image of (N, <, +1).

2.2 Interval temporal logic

In Section 2.1 we considered temporal logics interpreted in Kripke models
the points of which are linearly ordered and represent moments of time. In
this section we discuss another approach to temporal reasoning which takes
as primitive temporal intervals rather than points. Interval-based temporal
logics originate from the same areas as modal logic in general: philosophy,
linguistics, computer science and artificial intelligence. They arise from the
observation that time-dependent assertions can be of different kinds. Some
of them describe instant situations and can be evaluated at single moments
(points) of time, for example:

My temperature is 37.8 C*

But there are also assertions that can be evaluated only at some period (in-
terval) of time, say:

Mary often visits her mother.
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And of course there are cases when we can regard temporal assertions as
both point-dependent and interval-dependent, perhaps with some difference
in meaning, for instance:

William Shakespeare is an actor.

The interplay between these types of propositions has been studied thor-
oughly in linguistical semantics, see e.g. (Dowty 1979, Kamp 1979, Bennett
1977, Nishimura 1980). Similar considerations can be found in works on com-
putational logic (Lamport 1985, Kowalski and Sergot 1985). We address the
reader to (van Benthem 1995) for further discussion and references.

Now let us consider some specific systems of interval logic. Allen (1983)
observed that relative positions of any two intervals ¢ and j can be described
by precisely one of the following thirteen basic interval relations: before(, j),
meets(i, j), overlaps(t, j), during(i,j), starts(Z, j), finishes(i,j), their inverses
(i.e., before(j,1), meets(j,i), etc.), and equal(i,j). Let us denote by .A0¢-13
the language whose alphabet contains these thirteen binary predicate symbols,
a sufficient supply of interval variables i, j, etc., and the Booleans. Formulas
of A€(-13 are just Boolean combinations of the above listed atomic ones.

In order to provide a semantics for A£¢-13 formulas, suppose that the flow
of time is represented as a strict linear order § = (W, <). (Often the intended
flow of time in interval logic is not just an arbitrary strict linear order, but
a dense order like (Q, <) or (R, <).) An assignment in § is a function a
mapping the interval variables into temporal intervals in §. There may be
different views on what the temporal intervals in § should be. First we take
perhaps the most ‘liberal’ version by defining them as arbitrary non-empty
convex sets in §. In other words, a temporal interval a(i) in § is a non-empty
subset of W such that

Vz,y € a(i) Vz€e W(x < z < y — z € a(i)).
For example, if u < v then the open interval (u,v), the sets
(v ={weW|u<w< v}
[u,v)={weW|u<w<uv},
and if u < v (i.e,, u < v or u = v) then the set
| [u,v)]={weW|u<w<v}

are temporal intervals. Now, following (Allen 1984), the truth-relation § |=* ¢
for atomic .A¢(-13 formulas can be defined as follows (see Fig. 2.1):

3 E° equals(i,j) iff a(3) = a(j),
F k=° before(i,j) iff Vz,y(zea(i)Ayea(j) oz<yAIz(z<z<y
Az ¢ a(i) Az ¢ a(5)),
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before(i, j)
meets(z, j)

overlaps(i, §)

during(%, )
starts(i, §)
finishes(t, 5)
equal(i, j)
before(j, 1)
meets(j,1)
overlaps(j,i)
during(j,1)
starts(j,1)

finishes(3, 1)
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Figure 2.1: The atomic formulas of A¢¢-13.

T &=° meets(i,j)  iff
¥ k=° overlaps(i, j) iff
J =0 starts(i,j)  iff
3 =° during(i, ) iff
§ = finishes(i, j)  iff

Vz,y (z€a(i)Ay€a(j) Dz <yAVz(z<z<y
— ze€a(i)Vzea(y)),

a(i)Na(j) #0A3z,y(z<y

Az €a(j) A ¢ ali) Ay € a(i) Ay ¢ a(j)),

a(i) C a(j) Aa(é) # a(j) AVz,y (z <y

Az €a(j) Ay € a(i) = z € a(i)),

Iz, y,z (z<y<zAz€a(j)Az ¢ a(i)

Ay €a(i)Az€a(j) Az ¢a(t)),

a(i) S a(j) Aa(d) # a(j) AVz,y (z<y

Ay €a(j) Az € a(i) -y € a(i)).
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The truth-conditions for the Booleans are the same as in Cl. We say that ¢
is satisfied in § if § = ¢ holds for some assignment a in §; ¢ is satisfiable
in a class C of flows of time if ¢ is satisfied in F for some F € C.

Using formulas of this language we can express various constraints on time
intervals, which can be used for representing qualitative temporal information,
for instance, in planning (see, e.g., Allen et al. 1991, Allen and Koomen 1983).
Usually A2£-13 serves as a basis for more complex languages which, besides
temporal constraints, use other predicates such as HOLDS(P,1) (property P
holds during interval i), OCCURS(E,i) (event E happens over interval 7).
Some examples will be provided in Section 3.2.

The reader may now be wondering why such a formalism as .A£¢-13 is
discussed in a book on modal logic. First, because it can be regarded as a
fragment of a suitable point-based temporal logic. Indeed, let us define a
translation -* from .A¢¢-13 into the temporal language ML5 of the previous
section (cf. Blackburn 1992). For atomic formulas we take:

(equals(i, j))* = ®(pi < p;),

(before(i, j))* = B(pi — —p;j A OFpj) A & (—pi A —pj A Oppi A OFpj),
(meets(i, j))* = 8B(p; — =p; A OFp;) A =& (~pi A ~p;j A Oppi A OFD;),
(overlaps(i, 7))* = &(p: Ap;) A & (p: A —p; A Oppj) A ®(pj A —pi A OFp;i),
(starts(4, 7))* = &(p: — p;) A &(p; A—ps) A®(p; Ap; — Op(p; — pi)),
(during(i, j))* = @(p:i — p;) A &(p; A =P AOPppi) A &(pj A—pi A OFpi),
(finishes(i, j))* = @(p: — p;) A ®(p; A ~pi) AB(p; Ap; = OF(p; — pi)).

Now, given an A¢¢-13 formula ¢, we replace in it all atomic subformulas
with ¢¥* and add to the result the conjunct

@pi NB(Oppi A OFPi — Pi), (2.7)

for every interval variable i occurring in ¢ (which ensures that the propos-
itional variable p; associated with the interval variable ¢ is interpreted by a
nonempty convex set). The resultant formula is denoted by ¢*. It is not
hard to see that, for every .A2¢-13 formula ¢ and every flow § of time, ¢ is
satisfiable in § iff * is satisfiable in §.

By appropriately changing the formulas of this translation one can capture
different understandings of the nature of temporal intervals. For example,
if we want temporal intervals to contain at least two points then the first
conjunct of {2.7) should be replaced by the formula &(p: A Orp:). The
reader can try to define modal formulas describing Allen’s relations between
only closed intervals [u, v] or between only open ones (u,v).
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As A€¢-13 clearly contains Cl (a propositional variable p; can be translated
to equals(i, j), for some interval variable j # i), the satisfiability problem for
A?£-13 formulas in any class of flows of time is NP-hard. Moreover, as follows
from (Vilain and Kautz 1986), we have:

Theorem 2.12. The satisfiability problem for Al€-13 formulas in any class
of strict linear flows of time is NP-complete.

For the interested reader, here we give a sketch of a simple proof of how
satisfiability of an ,A€£-13 formula ¢ in an arbitrary infinite strict linear flow
of time § = (W, <) can be reduced to satisfiability in the finite linear order

8 =({0,...,4n - 1}, <),

where n is the number of interval variables in ¢. (Theorem 2.12 will follow
immediately.)

Suppose  is satisfied in §. Without loss of generality we may assume §
to be Dedekind-complete. (This means that every convex set in § can be
represented as one of the four types of intervals: (u,v), (u,v), [, v) and [u, v},
where u,v € WU {~00, +00}, with the standard interpretation of the infinity
symbols: (u,+00) = {v € W v > u}, (~oo,u) = {ve W |v<u}, et
Examples of Dedekind-complete orders are (R, <), (N, <), (Z, <); however,
(@, <) is not Dedekind-complete.) If our § is not Dedekind-complete, then
we take its completion §' (the smallest Dedekind-complete order containing
F). It is readily seen that if ¢ is satisfied in § then it is satisfied in §'. So let
¥ be Dedekind-complete and let 29 < - -+ < &;n, m < 2n, be all the endpoints
of the intervals interpreting the variables in ¢. If a variable i is interpreted by
(zx,ze) ([2K, 20), (Tk, Te], [Tk, 2e]) in § then we interpret it as [2k + 1,2¢ ~ 1]
(respectively, {2k, 2¢ — 1), {2k + 1,2¢], [2k,2¢]) in &. It is not hard to check
that & satisfies ¢ under this assignment.

Now suppose that ¢ is satisfied in . As & is finite, all of its intervals can be
regarded as closed (e.g. (k,€) = [k+1,¢—1]). Select points zo < -+ < T4n in
§. Now, if ¢ is interpreted as [k, €] in & then we interpret it as [zx,z¢+1) in
§. It is readily checked that y holds in § under this assignment.

The second reason for considering interval temporal logic in this book is
that one can construct rather expressive modal logics of intervals (see, e.g.,
Humberstone 1979, van Benthem 1983, Allen and Hayes 1985, Halpern and
Shoham 1991). Here we present a variant of the Halpern-Shoham logic HS
following (Marx and Venema 1997). The language of HS is ML, with four
diamonds ©,, Of, O71, O;l, and the corresponding boxes O,, Oy, O,
0;!. Frames for HS, or simply HS-frames, contain closed intervals of the
form [u,v], u < v, of some strict linear order § = (W, <) as their worlds and
interpret O,, Oy, O;1, O;l by the relations iSj, iFj saying that interval i
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starts j, interval © finishes j, and their converses, respectively. More precisely,
let
In(F) = {lu,v] | u,v € W, u < v}

Then an HS-frame (corresponding to §) is the triple 3(3) = (In(¥), S, F),
where

[u1,v1]S[uz,v2] if  w; =uz and v; < vy,
[ur, vi}Fluz,v2] iff  uy; > uz and vy = v,.

Such a frame is called an HS-frame over §. Thus, for a model M = (J(F), V)
based on J(F), we have

O, [u,v]) | Osp  iff I >0 (M, [u,v]) o,
O, [u,v)) = Ol i Fu (u<u <vA(M,[u, ) o),

i.e., Ospis truein [u, v] iff ¢ is true in an interval which has [u, v] as a starting
subinterval, and O} !¢ is true in [u, v] iff ¢ is true in a starting subinterval of
[u,v]. The meaning of the other two diamonds is defined analogously.

This language is quite expressive. For example, [u,v] = D;ID;1<p iff ‘p is
true at all subintervals of [u,v].” Further, the modal operator O, represents
the basic relation starts of .4¢¢-13 in the following sense:

[u,v] E Os¢ iff [u, V'] |= o for some v’ such that starts({u, v], [u, v’]) holds.

In fact, we can define modal operators representing all the thirteen basic rela-
tions of .A#£-13 in the same sense. For instance, here is a formula representing
meets:

Omp = (A7 LA Osp) VOFHOF LA O49).

Indeed, we have
[u,9) F Omy iff [v,w] = ¢ for some w such that meets([u, v], [v,w]) holds.

One can also characterize many standard properties of linear orders using
HS-formulas. Say, the formula ~(O;7!T A O;10; 1) is valid in 3(F) iff §
is dense. For more examples consult (Halpern and Shoham 1986, Marx and
Venema 1997).

Various classes of strict linear orders give rise to different HS-logics. For
such a class C, let

HSc = {9y € MLy | I(F) EE ¢, for all §F e C}.

Halpern and Shoham (1986) show that the decision problem for HS¢ is very
complex for almost all interesting classes C of linear orders:



2.3. Epistemic logic 55

Theorem 2.13. Let C be any class of linear orders such that at least one
member of C contains an infinite ascending chain of distinct points. Then
HS¢ s undecidable.

Note that (Halpern and Shoham 1986) contains many other results con-
cerning the high complexity of HS-logics. Explicit axiomatizations of some
HS-logics can be found in (Marx and Venema 1997). However, they are not
finite in the sense of Section 1.4, because they use the irreflexivity rule of
Gabbay (1981a). We will return to HS-logics in Section 3.9, where it will
be considered from a two-dimensional perspective, and in Section 7.1, where
Theorem 2.13 will be obtained as a consequence of a more general result.

We have defined only those temporal languages that will be used later on
in this book. For other kinds of temporal logics designed for various applic-
ations in philosophy, computer science, artificial intelligence, computational
linguistics and other fields, for instance, branching time temporal logics, or
computation tree logics, we refer the reader to (Clarke and Emerson 1981,
1982, Emerson 1990, Emerson and Halpern 1985, Thomason 1984, Zanardo
1990, 1996, Gabbay et al. 1994, 2000) and references therein.

2.3 Epistemic logic

Epistemic logics, or logics of knowledge, have been studied in philosophy with
the aim of analyzing formal properties of reasoning about knowledge and belief
since the 1950s (see, e.g., Hintikka 1962, Lenzen 1978). Over the last 20 years,
however, epistemic logic has found applications in various other disciplines.
Here are some of them:

¢ in game theory, it is used for an epistemic analysis of games with in-
complete information (Aumann 1976, Bacharach 1994, Kaneko and Na-
gashima 1997);

¢ in artificial intelligence, epistemic logic is applied in order to find out
what an agent has to know (in particular, about what it knows) to show
intelligent behavior (Laux and Wansing 1995, Meyer and van der Hoek
1995, Halpern and Moses 1992, Fagin et al. 1995);

¢ in computer science, it is employed to analyze the behavior of multi-
agent systems; see (Fagin et al. 1995) and references therein.

This list is by no means complete; other applications can be found in (Fagin
et al. 1995, Meyer and van der Hoek 1995).

In all these cases the use of the multimodal language ML,, for capturing
properties of knowledge and belief seems quite natural. Suppose, for instance,
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that we have a group of n agents called 1, .. ., n. For each of them we introduce
a modal operator O; which is read as ‘agent i knows’ or ‘agent i believes.’
The axioms

(1) Oi(po — p1) — (Qipo — Oipr),
(2) Oipo — po,
(3) Oipo — O;0;po,
(4) ~0ipo — 0;~0ipo
mean then that

(1) agent i knows all the logical consequences of its knowledge (this phe-
nomenon is known in the literature as logical omniscience),

(2) everything that i knows is true,
(3) agent i knows what it knows (positive introspection), and
(4) agent i knows what it does not know (negative introspection).

Recall now that (1) is an axiom of every normal modal logic, (2) an axiom
of T, (3) an axiom of K4, and (2)-(4) are axioms of S5. All the epistemic
logics to be considered in this book contain axiom (1) for every agent and
are closed under the necessitation rules ¢/0;p, which mean that agents know
what is valid; in particular, they know all the tautologies of classical logic.
Of course, this assumption gives a somewhat idealized model of knowledge
for human agents (and perhaps for robots as well), but for many purposes
of modeling the behavior of multi-agent systems in artificial intelligence this
simplification seems to be justified or at least the best possible approximation.
For a philosophical discussion of principles which can be acceptable under this
or that interpretation of knowledge and belief the reader is referred to (Lenzen
1978).

The basic epistemic logics in the language ML,, are the following mul-
timodal variants of the systems K, T, K4, S4, KD45 and S5 defined in
Section 1.4:

e K,.: no property different from logical omniscience of all agents is as-
sumed,

e T, : besides logical omniscience, it is assumed that what is known is
true,

o K4,: besides logical omniscience, positive introspection is assumed,



2.3. Epistemic logic 57

e S4,.: besides the properties of T, we have positive introspection,

e KD45,,: besides logical omniscience and positive introspection, negat-
ive introspection, and consistency of what is known is assumed,

e S5,,: besides the properties of S4,,, we have negative introspection.

It was shown in (Halpern and Moses 1992) that all these logics are decidable
and their decision problems are PSPACE-complete; see Theorem 1.17.

Having postulated (1) and the necessitation rules for epistemic logics, we
get again into the class of normal multimodal logics which can be interpreted
in Kripke models. The question is how these models fit into the epistemic con-
text. According to the possible world semantics, the meaning of the formula
0,y is analyzed as follows: O;¢ is true in a world w if and only if ¢ is true
in every world (or situation) which agent i regards as possible. And a world
v is regarded as possible by 1 in w if v is accessible from w via the relation
interpreting 0;. It follows that i does not know ¢ iff there exists a world,
which is considered possible by i, where ¢ is false. The following example?
illustrates how elegant this analysis is.

Example 2.14. (The wise men puzzle.) Imagine that there are three
wise men and a king who has two white and three red hats, and that all wise
men know that he only has these hats. The king puts a hat on the head of
each of the three wise men. Each of them sees the colors of the hats of the
other two men, but not the color of his own hat. Now the king asks whether
any of them knows the color of his hat. No one says he does. The king asks
again—and again none of them knows. But having been asked the third time,
all of them say that they know the color. How did the wise men solve the
puzzle?

We analyze this puzzle in the framework of the possible world semantics.
Assume that the three wise men are called A, B, and C. The following seven
situations (alias worlds) are possible:

¢ all wise men have red hats; this situation is represented by the triple
(ryryr);

o A has a white hat, B and C have red hats, or (w,r,r), in symbols;
¢ B has a white hat, A and C have red hats, i.e., {r,w,r);
o C has a white hat, A and B have red hats, i.e., (r,r,w);

o A and B have white hats, C has a red hat, i.e., (w,w,7);

2The reader can find numerous examples of this sort in the literature, cf. (Fagin et al.
1995).
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e B and C have white hats, A has a red hat, i.e., (r,w, w);
e A and C have white hats, B has a red hat, i.e., (w, r, w).

Denote this collection of triples by W. Since they describe all possible situ-
ations, no world outside W is possible.

Now, A sees the hats of the two other wise men. So he knows their
colors. Therefore, only one the following four sets of worlds can be regarded
as possible by A:

o Vorr = {{c1,c0,e3) €W lea =1, c3 =7},

o Voyr = {{c1,¢2,¢3) e W |2 = w, ¢3 =T},
® Voyw = {{c1,¢2,¢3) e W | = w, ¢c3 = w},
* Vo = {{c1,¢2,¢3) € W |2 =7, c3 = w}.

As A does not know the color of his hat, the set of worlds he considers possible
must contain at least one world in which he has a white hat and at least one
world in which his hat is red. This excludes V34,,,. Similarly, the sets of worlds
considered possible by B and C are V., Vyru, or V7., and Vypz, Ve, or
Vwr?, respectively.

After the wise men have stated that they do not know the colors of their
hats, it is common knowledge that none of them knows the color of his hat.
Thus, it is common knowledge that at least two of them have red hats. So,
now the set of worlds A considers possible belongs to the list V2., {{r,w,1)}.
and {{r,7,w)}. Similarly, the sets of worlds considered possible by B and
C are among Vo, {{r,r,w)}, {{w,7,7)} and Vipr, {{r,w,7)}, {{w,7,7)}, re-
spectively.

In the second round each of the three wise men again says that he does
not know the color of his hat. This means that the set of worlds A considers
possible contains a world in which he has a red hat and a world in which
he has a white hat. The same holds for B and C. It follows that the sets
of worlds A, B and C consider possible are V2,.., V2, and V,..7, respectively.
This is common knowledge after all of them have stated that they don’t know
the colors of their own hats. But then the only remaining possible world is
(ryr,7).

Observe that a number of assumptions have been made to derive this
conclusion. For example, we assumed that the three wise men are logically
omniscient (and that each of them knows that the other wise men are logically
omniscient). Moreover, we used the facts that (i) at the beginning all wise
men know that there are three red hats and two white hats, that (ii) every
wise man knows that every wise men knows that there are three red hats
and two white hats, and that (iii) every wise man knows that every wise men
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knows that every wise men knows that there are three red hats and two white
hats.

This phenomenon—the need to take a potentially infinite iteration of epi-
stemic operators—turns out to be fundamental for various representations of
multi-agent systems in game theory, artificial intelligence and computer sci-
ence. In a finitary language like ML,, we are not able to express directly the
infinite conjunction saying that ¢ is common knowledge among a group M of

agents, that is
N Ehre,
k<w

where
Eme= /\ Oip, Ehp=9p, Ejf'e=EmElep.
€M

The standard solution to this problem is to take the common knowledge oper-
ators Cypy, ‘it is common knowledge among the agents in M|’ as primitive and
interpret them by the transitive and reflexive closure of the relations | J;¢ »s Ri,
i.e., by (U,ep Ri)", where the R; interpret the operators O, for i € M. In
other words, we define

wkECye ff YweW (w (Uiem Ri)" v implies v |= (p)
iff  Vk<wwk Efe.

Remark 2.15. An alternative way would be to interpret Cps by the trausitive
(but not reflexive) closure of | J,cp, R as is done, e.g., in (Fagin et al. 1995).
From the technical point of view these two ways are equivalent. Indeed, let
C}y denote the operator interpreted by the transitive closure of Uienr Ri
Then Carp can be defined as ¢ A C},p and C}yp as EpCup.

Let MLS denote the language that results from ML, by extending it
with the common knowledge operator Cps for every nonempty subset M of
{1,...,n} (and the corresponding formula formation rules).

Given a normal modal logic L in the language ML,,, denote by L the
(n + 2™ — 1)-modal logic formulated in MLS and determined by the class of
all frames of the form

<W,R1,...,Rn,{( UR) IMcq,... n} M;é(b}>, (2.8)

€M
where (W, Ry,...,R,) is a frame for L and the common knowledge operators
Cpm are interpreted by (¢ Ri)*

Remark 2.16. It is to be noted that this kind of semantic definition leaves
a possibility for LC to have nonstandard (or not intended) frames that are



60 Chapter 2. Applied modal logic

different from those above (for example, the operation of the transitive reflex-
ive closure is not first-order definable). Fortunately, this is not the case. As
follows from the axiomatization given in Theorem 2.17 below, all frames for
L€ are standard frames of the form (2.8) (and the operation of the transitive
reflexive closure is modally definable). That is why, when dealing with frames
for L€, we need to know only the relations R;. So, to simplify notation, we
will usually represent frames for LC as (W,Ry,...,Ry).

Note that in S4S and S5S the operators C(;; have the same interpretation

as the operators O;, while in KS, TC, K4S, and KD45S their behavior is
different. In particular, S4¢ and SS? are just notational variants of S4 and
S5, respectively.

The following theorem summarizes the most important facts about epi-

stemic logics with common knowledge operators:

Theorem 2.17. Suppose that either n > 1 and L € {K,,T,}, orn > 1 and
L € {K4,,S84,,KD45,,85,}. Then

e LC can be ariomatized by adding the following azioms and inference
rules to those of L, for all nonempty sets M C {1,...,n}:

Cumpo < (po AEMCrpo), (2.9)
given po — py A Eppo, derive pp — Cpupr; (2.10)

o the decision problem for L¢ is EXPTIME-complete;
o LC has the finite model property.

Remark 2.18. An alternative axiomatization for any epistemic logic L€ above
can be obtained by omitting rule (2.10) and adding the following axioms and
inference rules to those of L and (2.9), for all nonempty sets M C {1,...,n}:

e Cu(po — p1) = (Cmpo — Cup1),
o Cap(po — Empo) — (po — Cmpo),
o given pg, derive Cpspp.

(Observe the similarities with the axiomatization of PTL in Theorem 2.6.)
We leave it to the reader to show that the two axiomatizations are interde-
rivable.

Axioms for common knowledge appear in (Lehmann 1984, Milgrom 1981,
McCarthy et al. 1979), although in these papers only the operator C express-
ing common knowledge of all agents is used. A completeness proof, based on
the ideas of Kozen and Parikh (1981), can be found in (Halpern and Moses
1992). The decidability and complexity results are based on the fact that—as
will be shown in Section 2.8—the above logics are embeddable into proposi-
tional dynamic logics PDL and CPDL (Halpern and Moses 1992).
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2.4 Dynamic logic

Propositional dynamic logic PDL was designed for reasoning—at a rather ab-
stract level—about the behavior of programs. The field of computer science
which is concerned with formal languages that are able to express various
properties of programs, in particular their correctness, is known as program
verification and specification. One of the most influential approaches to veri-
fication of ordinary sequential programs (e.g., programs for sorting lists of
integers) proposed by Floyd (1967) and Hoare (1967) uses correctness asser-
tions of the form
{v}a{y}

which state that any execution of program (command or action type) a start-
ing from a state where ¢ holds reaches a state where 9 holds. The formulas
@ and 9 are called the pre- and post-conditions of this assertion. The idea
of using such assertions is based on the fact that the program’s underlying
semantics can be described in terms of a transformation from an initial state
to a final state? The transition graph representing this transformation can
be regarded as a Kripke frame whose accessibility relations are labeled with
commands. So if we associate with every program a the modal operator [o]
with the intended meaning ‘w |= [a]¢ iff every possible execution of « at state
w arrives at a state in which ¢ holds,’ then the correctness assertion above
can be represented as an ordinary modal formula:

¢ — [afy.

(Note that [a]y is the weakest pre-condition for which any execution of
reaches a y-state.)

As computer programs are usually composed from commands, our ‘ab-
stract’ programs can also be complex entities composed from primitive ones.
Our operations on programs are sequencing (or composition) ‘;’, nondetermin-
istic choice ‘U’, iteration '*’, and test ‘?’ (see Fig. 2.2). For example, for
programs «, 3 and a statement , we can represent the compound program
‘if ¢ then a else 8' as (p?;a) U (—¢7?;3). The programs ‘while ¢ do o’ and
‘repeat o until ¢’ can be represented as (¢?;a)*; ~p? and a;(~p?, a)*; ¢?,
respectively.

Before turning to the precise definitions of the syntax and semantics of
PDL, it may be worth noting that apart from its ability to describe abstract
properties of programs, PDL and its extensions turned out to be useful for
at least two other reasons as well.

30bserve that assertions of this form are not appropriate for the verification and spe-
cification of continuously operating reactive programs which are usually nonterminating.
Since there is no final state, post-conditions are of no use to describe the behavior of such
programs. In this case temporal logic provides an appropriate formalism (see, e.g., Clarke
and Emerson 1981, Emerson and Halpern 1985, Manna and Pnueli 1992, 1995).
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a; do a followed by 3,
aU B do either a or 8, nondeterministically,

*

a repeat « a finite number of times,

p? proceed if ¢ is true, else fail.

Figure 2.2: The intended reading of operations on programs.

First, various important modal logics can be embedded into propositional
dynamic logics, and so inherit some of their properties, say, decidability or
upper bounds for their computational complexity. We will discuss the em-
bedding of expressive epistemic logics with the common knowledge operator
(Halpern and Moses 1992) in Section 2.8. Fischer and Immerman (1987) em-
bedded temporalized epistemic logics into CPDL—an extension of PDL with
the ‘converse operator.” A variant of their embedding can be found in Sec-
tion 6.3. Description logics have also been analyzed by means of embeddings
in propositional dynamic logics (Schild 1991, De Giacomo and Lenzerini 1994,
De Giacomo and Lenzerini 1996); see Section 2.5. And second, in artificial
intelligence and philosophy, propositional dynamic logics are often taken as a
basis for constructing deontic logics and logics intended for reasoning about
actions; see, e.g., (Segerberg 1980, Prendinger and Schurz 1996, De Giacomo
and Lenzerini 1995, Meyer 1988, Fischer and Immerman 1987}.

Besides the alphabet of classical propositional logic (where A and - are
regarded as the only primitive connectives), the alphabet of the language PDL
contains

e a countably infinite set ag,c),... of atomic actions (or atomic pro-
grams),

e the symbols ;, U,* and 7.

The sets of PDL-formulas and action terms are defined by simultaneous in-
duction as follows:

e every propositional variable is a formula,
e every atomic action is an action term,

e if p and ¢ are formulas and « is an action term, then ¢ A ¢, ¢ and
[a]yp are formulas,

o if o and B are action terms and ¢ is a formula, then aU g, a; 3, o* and
p? are action terms.
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As before, we define () ¢ as an abbreviation for —~[a]—~yp. Observe that the
internal structure of the modal operators is the only difference between the
language PDL and the standard multimodal language ML, with infinitely
many boxes.
The language PDL is interpreted in PDL-structures which are frames of
the form
5= (mTaoaTun‘--%

where W is a (nonempty) set of states and the T,,, are binary relations—this
time called transition relations—on W, one for each atomic action ;. Unlike
the possible world semantics, now wT,,v reads as ‘there is an execution of a;
which starts at state w and ends at state v.’

As usual, a valuation U in § is a map from the set of propositional variables
into the set of all subsets of W. Given a model M = (F, V), we define
the truth-relation (M, w) = ¢ (or w |= ¢, if understood) and the compound
transition relations T2 (or T,) by parallel induction, for any state w, formula
v and action term o:

o wl=piff we V(p),
e wkpAYifwlkpand w =y,
o wkE ~y iff not w = ¢,

w = [a]p iff v = ¢ for every v € W such that wT,v.

Toup = Ta UTg (ie., x(To UTg)y iff 2Ty or z1zy),

Ta; g is the composition (or relative product) Ty 0 Ty of T and T (i.e.,
z(To o Tg)y iff 3z € W T, 2Tpy),

To+ = (Ta)* (i-e., Ta- is the reflexive and transitive closure of Ty),

T¢7 = {(.’L‘,.’L‘) I z l= ‘P}~

Observe that T, depends on the valuation U only if a contains test, otherwise
it is completely determined by §.

We say that ¢ is true in M if (M, w) | ¢ for all w € W and define the
logic PDL as the set of all PDL-formulas that are true in all models based
on PDL-structures. Note that the fragment of PDL with only atomic action
terms is just a syntactic variant of the multimodal logic K., with infinitely
many K-boxes. One can define (along the lines of Section 1.5) an algebraic
semantics for PDL. These modal algebras are studied in the literature under
the name of dynamic algebras; see (Kozen 1981, Pratt 1991).

Syntactically, PDL can be characterized as follows (see Berman 1979,
Gabbay 1977a, Nishimura 1979, Parikh 1978, Pratt 1978, Segerberg 1977).
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Theorem 2.19. PDL is the smallest set of PDL-formulas containing clas-
sical propositional logic Cl, the arioms

[al(p — 9) — (ledp — [oq), (2.11)
[a; Blp = [of[B]p, (2.12)
[aUBlp  [alp A (Blp, (2.13)
[a"]p < p Afalfa*]p, (2.14)
[e")(p — [e]p) — (p — [@”]p), (2.15)
[a?lp « (g~ p), (2.16)

for all action terms a, B, and closed under modus ponens, substitution, and
the necessitation rules
‘given @, derive [a]p,’

for all action terms a.

Theorem 2.20. PDL has the fmp and is decidable, with the decision problem
being EXPTIME-complete.

The fmp is shown by filtration using the Fischer-Ladner closure in (Fischer
and Ladner 1977). The decidability of PDL and the exponential lower bound
is proved in (Fischer and Ladner 1979). The exponential upper bound was
established in (Pratt 1979).

A more expressive language, called CPDL (converse PDL), is obtained by
extending PDL with a constructor for representing backward executions of
programs. Namely, we add to the alphabet of PDL the converse operator ~
on action terms, so that o~ is an action term of CPDL whenever a is an
action term, and associate with a~ the transition relation

o T, =T (ie., 2T 'y iff yToz).

(Note that [a~]p is the strongest post-condition satisfied after any execution
of a starting from a state at which ¢ holds.)

The logic CPDL is defined to be the set of all valid CPDL-formulas. It
is not hard to see that the following identities always hold:

Ta" = Ta, T(auﬁ)“ = Ta‘Uﬁ‘?
T’(a;ﬂ)‘ =Tﬁ';a_v T(u‘)‘ :T(a—)"
Tipry- =T

Thus we have:

Proposition 2.21. Every CPDL-formula is equivalent in CPDL to a for-
mula in which the converse operator is applied only to atomic actions.
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The above axiomatization of PDL can be extended to an axiomatization
of CPDL by adding the axioms (see Parikh 1978):

p—la{a”)p and p— fa](a)p. (217)

The filtration for PDL goes through for CPDL as well, and as was shown
in (Pratt 1979, Vardi 1985, Vardi and Wolper 1986), the complexity of the
extended logic does not increase:

Theorem 2.22. CPDL has the fmp, and the decision problem for CPDL
1s EXPTIME-complete.

Remark 2.23. Observe that the test-free fragment CPDL~7 of CPDL (i.e.,
those formulas in CPDL that do not contain action terms of the form ¢?)
is in fact a Kripke complete multimodal logic. Indeed, the language of this
fragment has a modal operator [a] for every test-free action term a. So,
strictly speaking, a frame interpreting this multimodal language is not a PDL-
structure as introduced above, but any structure of the form

F=(W,Ta,..)), (2.18)

where W is a (nonempty) set and the T, are binary relations on W, one for
each test-free action term a (not only for atomic actions). Then CPDL ™’
is the multimodal logic determined by the class C of all frames of this kind
such that the relations T}, for nonatomic test-free action terms o« are obtained
as above. In principle, there can be frames for CPDL“7 that are not in C.
It can be shown, however, that by omitting (2.16) froin the axiomatization
of CPDL, we obtain an axiomatization for CPDL"". So, actually, in every
frame for CPDL ™7 of the form (2.18), the relation T,- is the reflexive and
transitive closure of Ty, Toug = TaUTg, To:s = TaoTg, and T,- = T}, for all
test-free action terms a, 8 (see Remarks 2.11, 2.16 and observe the similarities
between the axiomatizations for PDL, PTL_ and epistemic logics L€ given
in Remark 2.18).

Different variants of PDL as well as first-order dynamic logic can be found
in (Goldblatt 1987, Harel et al. 2000); see also Section 3.6. The reader may
find useful surveys of other dynamic formalisms in (van Benthem 1996, van
Eijck and Visser 1994, Goldblatt 1982, Harel 1984, Kozen and Tiuryn 1990,
Ponse et al. 1996); see also Section 3.10.

2.5 Description logic

Description logic is not a modal logic. It was created at the beginning of
the 1980s as a formalism for knowledge representation and reasoning in arti-
ficial intelligence. And only ten years later it was observed that description
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logic and modal logic are more than close: to a large extent they are simply
notational variants of each other.

Briefly, the history of description logic is as follows. After the straight-
forward attack on knowledge representation with the help of the heavy artil-
lery of first-order logic failed in the 1960s, a number of ideas were proposed
the essence of which was to treat knowledge in a more structural, visual,
object-oriented way (see Quillian 1967, 1968, Minsky 1975 and the collection
Brachman and Levesque 1985) without using logic.

Homo_sapiens

TN

[Male]

is is
1S 1S

is Child is
parent/' parent
/ loves

e
. °
Eve Adam

Figure 2.3: Semantic network.

Figure 2.3 shows a simple example of representing some information about
human relationships in the form of a semantic network of Quillian (1967,
1968) and Raphael (1968). The application domain in this example—human
beings—is divided into (not necessarily disjoint) classes (Homo_sapiens, Fe-
male, Male, Father, Mother, Child), concrete individuals (Eve, Adam), and
the relations between them (is, has, parent, loves) are depicted in the form of
labeled arrows.

The main deficit of such representations was the lack of semantics, and
as a consequence, ambiguities. (For how can we be sure that a reasoning
program our company has bought provides us with a complete set of correct
answers, if it was not even precisely formulated in the manual what a correct
answer is?) In the depicted network it is not clear, for instance, whether all



2.5. Description logic 67

members of the class Child are children of Eve or only some of them.

Description logic appeared as a sort of compromise between the above
mentioned features of semantic networks and Minsky frames, on the one hand,
and logic- (and so semantic-) based formalisms, on the other. It originated
from the KL-ONE system of Brachman and Schmolze (1985), which combined
in itself many ideas of its predecessors.

Like modal logic, description logic consists of a wide spectrum of lan-
guages. Since our road in this book comes from modal logic, as the basis of
our description language we choose the language ALC of Schmidt-Schaufl and
Smolka (1991) which, as we shall see, is closely related to multimodal K.

The alphabet of ALC consists of

e concept names Cy,Cy,...;

¢ role names Ry, Ry,... (or R, S,...);

s object names ag,a,,... (or a,b,...);

e the Boolean concept constructors N, —;
e the existential quantifier 3;

e the Boolean formula constructors A, —;
¢ the symbols . (dot), : (colon) and =.

Concept names are supposed to denote classes of objects in a certain domain
A (say, Mother, Male, etc. in the example above), role names are intended
for denoting binary relations between elements of A (has, loves), and object
names stand for some concrete elements in A (Eve, Adam).

Now we define by induction (complex) concepts and formulas of ALC.
Every concept name is an (atomic) concept. If C and D are concepts, a and
b object names, and R is a role name, then

e CND, -~C and 3R.C are concepts,
e a:C, aRb, C = D are atomic formulas, and
¢ Boolean combination of atomic formulas are formulas.

The intended meaning of C M D is simply the intersection of C' and D; -C
means the complement (in the domain under consideration) of C; 3R.C de-
notes the class of all objects from which at least one object in C is accessible
via R. In the usual way we can also define concepts VR.C, CU D, C — D,
Ceo D T,1: eg,YVRCis ~3R-C,CUD is ~(-CN=D), Tis CU-C.
The formulas a : C and aRb mean that object a belongs to concept C, and
that a and b are related by role R, respectively; C = D says that concepts C
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and D contain the same elements (a precise definition of semantics of ALC is
given below).

Traditionally, in ‘standard’ description logic the Booleans are not among
the formula constructors; all formulas are atomic. Instead of equality C = D
often inclusion (subsumption) C T D is preferred. (Note that C C D can
be expressed as (C M -D) = 1. Conversely, C = D is defined via C as
(CED)A(DEC))

An ALC knowledge base is just a finite set of ALC formulas. As usual
in knowledge representation, we distinguish between knowledge bases con-
taining only terminological knowledge and those containing only assertional
knowledge. More precisely, we call a knowledge base ¥ a TBoz (termino-
logical bozx) if it contains formulas of the form C = D only; ¥ is an ABoz
(assertion boz) if it contains only formulas of the form a : C or aRb. Note
that without loss of generality we may assume all concept equations to be of
the form C = T, since C = D is equivalent to (C «» D) = T.

Example 2.24. The following ALC knowledge base represents the semantic
network in Fig. 2.3:

Female LI Male . Homo_sapiens
Mother C Female

TB
Father C Male ox
Child © Jhas.Mother 1 Jhas.Father
Eve : Mother
Adam : Father
Eve loves Adam ABox

Eve : Fparent.Child
Adam : Iparent.Child

Observe that the relation is in Fig. 2.3 is represented in the form of C T D
if it connects concepts (like Mother and Female) and a : C if it holds between
an object name and a concept (like Eve and Mother).

Formally, the semantics of ALC is defined in the following way. A model
for ALC is a structure of the form

I={(ARg,...,Cq,...,a5,...), o (219)

where A is a nonempty set, the domain of I (elements of which are often called
objects), and for all i = 0,1,..., R are binary relations on A (interpreting
the role names), C/ subsets of A (interpreting the concept names), and a!
are elements of A (interpreting the object names).
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The value C! of a concept C in I, and the truth-relation I |= ¢, ¢ a
formula, are defined inductively as follows:

e (CND) =C'nD;

o (-C) =A-C,

(3R:.C)! = {z € A| Iy € C! zRly});
IEa:C iff ol €eCF;

Ik=aRb iff a! RIY,

I=C=D iff ¢! =D/,
TEpAy iff Tk pand ]k,
I'= -y iff not I = o.

A formula ¢ is said to be true in I if I = ¢; we then also say that [ is a
model for p. A formula p is called satisfiable if there exists a model for p. A
concept C is satisfiable if there is a model I in which C! # 0.

Suppose we are given (or have constructed) a set £ of ALC-formulas de-
scribing an application domain. This is our knowledge base. How can it be
used? There are several typical reasoning tasks we should be able to solve.
We formulate them in terms of the consequence relation £ = ¢ defined as
follows.

Say that an ALC-formula ¢ is a logical consequence of the knowledge base
3 and write X = ¢ if p is true in every ALC-model where all formulas in X
are true.

For instance, let ¥ be the knowledge base of Example 2.24. Then we
clearly have

¥ = Mother C Homo_sapiens, ¥ = Eve : Female.

The main reasoning tasks for a knowledge base ¥ are:

o Concept satisfiability: ¥ ¢ C = L. (Is there is a model I for T such
that CT # ¢7)

o Subsumption: ¥ = C C D. (Does C! C D! hold in every model I for
7

o Consistency: X = L. (Is there a model for £7)

e Instance checking: £ = a : C, a an object name. (Does a! belong to
C! in every model I for £?)
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Since knowledge bases are supposed to be finite, all the listed reasoning tasks
are reducible to the

o Satisfiability problem: given an ALC-formula ¢, determine whether it is
satisfiable.

Indeed, we have ¥ |= ¢ iff the formula /\ X A - is not satisfiable. Note also

XET
that concept satisfiability, subsumption, consistency and instance checking
are reducible to each other: for example

TECCD if TECN-D=1, (2.20)

and
YgCc=L iff TECC.L

(see Table 2.1, where A — B means that problem A is reducible to problem
B).

The reader must have already observed that the concept fragment of ALC
is just a notational variant of multimodal K2 Indeed, assuming that ALC
contains n role names Ry, ..., R,_i, we can define a translation -t from the
set of ML, -formulas onto the set of ALC-concepts by taking:

P.f' = C;
(e Ap)t = ot Ny,
(-p)t = -,

(Oicp)t = 3R,».<p'.

Every MLy,-model M = (F, V) with § = (W, Sy,...,Sn-1) can be trans-
formed to an ALC-model

I I I I
Iop = <W,R0”‘,...,Rn"fl,Co”‘,...,ao”',...>,

where R{"" = S, Ci"’" = Y(p;) and ai’”" € W arbitrary. Then it should be
clear that for every ML,-formula ¢, every ML,,-model 9, and every world
w in 9,

Mw) e iff we (ph).

Conversely, every ALC-model of the form (2.19) gives rise to an ML,,-model
M; = (F1,B1), where 5 = (A,R(’,,...,R,'l_l) and V(p;) = C{, for all

4Note, however, that a modal logic is intended to represent schemes of correct reasoning
that involves modal operators; formally, it is a set of formulas containing some basic axioms
and closed under certain inference rules (in particular, substitution). Description logic was
designed to represent knowledge about some application domains rather than universal
logical truth. In mathematical logic such ‘knowledge bases’ are known as theories.
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i = 0,1,.... Take the inverse { of translation t from ALC-concepts onto
ML, -formulas. Then clearly 9 is isomorphic to 9My,,, and for every ALC-
concept C, every ALC-model I and every object w in I,

weCl iff (M,w) = CL.

As a consequence we have that the problem of ALC concept satisfiability with
empty knowledge base is equivalent to the satisfiability problem for K,,. Thus
by Theorem 1.17 we obtain:

Proposition 2.25. The problem of ALC concept satisfiability and the sub-
sumption problem, both with empty knowledge bases, are PSPACE-complete.

On the other hand, ALC-formulas can refer explicitly to the names of ob-
jects (worlds) in the models and express some facts about these objects. Thus,
the formula part of ALC is more expressive than multimodal K. Moreover,
even pure terminological reasoning is more complex than reasoning in K,
because the global consequence relation F§ is equivalent to the concept sat-
isfiability problem relative to TBoxes, i.e., "to the problem ‘X £ C = 17
where X is a TBox (see Table 2.1). First, for all ML,,-formulas ¢ and ¥,

o, v i ot =Ty =
iff -4 is not satisfiable in a model for ot = T,

Conversely, given a TBox I and a concept C, we have
LT¥EC=1 iff {C‘«»D*[C:DGE}V;(" -CH.

As a consequence of Theorem 1.23 we obtain then the following result, which
was first proved by Schild (1991) who embedded (an extension of) ALC
(without assertion formulas) into PDL.

Theorem 2.26. The ALC concept satisfiability problem relative to TBozes
ts EXPTIME-complete.

It is worth mentioning that standard tableau procedures for TBox-reaso-
ning in ALC—as implemented, for example, by Horrocks (1998)—do not run
in exponential time, but are double-exponential. Only recently Donini and
Masacci (2000) have presented a satisfiability checking tableau algorithm for
TBoxes running in exponential time.

As follows from Theorem 2.26, the satisfiability problem for ALC-formulas
is EXPTIME-hard. Moreover, we have a matching upper bound:

Theorem 2.27. The satisfiability problem for ALC-formulas is EXPTIME-
complete.
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subsumption with subsumption
empty knowledge base relative to TBoxes

| |

concept satisfiability with concept satisfiability . -
— ) — | satisfiability
empty knowledge base relative to TBoxes
K, Fk

"

Table 2.1: Reasoning tasks in ALC.

As this result does not seem to appear explicitly in the existing literature,

we show here a satisfiability checking algorithm for ALC-formulas running in
exponential time. An alternative proof would be a generalization of the proof
of the exponential upper bound for Fj .

Suppose ¢ is an ALC-formula. Let oby be the set of all object names ir ¢
and let con ¢ and sub g denote the closure under negation of, respectively, the
set of all concepts in ¢ and the set of all subformulas in . By identifying E
and ——E, for every concept or formula E, we have

lobyl < £(p), lcony] < 26(¢), and |subyl < 26(p),

where £(¢) is the length of ¢, i.e., the number of symbol occurrences in ¢.

We call a concept type for ¢ any subset ¢ of con ¢ such that

e CNDeciff C,D € ¢, for every CN D € cony;
e ~C € ciff C ¢ ¢, for every C € con .

A formula type f for y is a subset of suby such that

e YAx € fiff ,x € f, for every ¥ A x € suby;
o e fiff o ¢ f, for every ¢ € sube.

Clearly, there are at most 2'°°™#! concept types and at most 2!***¥! formula
types for ¢. We are going to use these types to construct a model for ¢, if
any.

Let us call a model candidate for ¢ a triple (T, o, f) such that T is a set of

concept types for ¢, o is a function from oby to T, f a formula type for ¢,
and (T, o, f) satisfies the conditions:
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(8) € f;
(b) {(a:C) € f implies C € o(a);
(c) aRb € f implies {~C | -3R.C € o(a)} C o(b).

A model candidate (T o0, f) for ¢ is said to be a quasimodel for ¢ if the
following conditions hold:

(d) for every concept type ¢ € T and every concept IR.C € ¢, there is a
¢’ € T such that {~D|-3R.D € c}U{C} C ¢’;

(e) for every concept type ¢ € T and every concept C, if ~C' € ¢ then
(C=T)¢f;

(f) for every concept C, if ~(C = T) € f then there is a ¢ € T such that
Cédc

(g) T is not empty.

We now show that our formula ¢ is satisfiable iff there is a quasimodel for ¢.
Suppose first that we have found a quasimodel (T, 0, f) for ¢. Define a model
I=(ARS,....CL, ... ab,...) by taking

e A=TUoby;

o a! =aq, for a € ob;

e Cl={ceT|Ciectu{acoby|Cicola)};

e cR!c'iff {(~C|-3R.Cec}Cc, forec,c €T

e aR'biff aRbe f, for a,b € oby;

e aR'ciff (~C|-3R.C€o0(a)} Cc,foracobpandceT.

It is readily proved by induction that
C'={ceT|Ceclufacoby]|C € ola)},
for every C € cony, and that I |= f. Therefore, I = .

Conversely, suppose that I |= ¢ for some model
I= <A,R{,,...,Cé,...,a(l,,...>.
Define a triple (T, o, f) as follows:

o T = {c(x) |z € A}, where ¢(z) = {C € conyp |z € C'};
e o(a) = c(a’);

e f={xesubp |l x}
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It is easily seen that (T, o, f) is a quasimodel for .

Our exponential time satisfiability-checking algorithm runs as follows. Given
a formula ¢, we first enumerate all model candidates (T, o, f) for ¢ in which
T contains all concept types for ¢; denote these candidates by €;,...,Cx. It
should be clear that

b b 2¢()? +2¢
N < gleoneliobyl glsubyl < @)+ ()

and so this enumeration can be performed in exponential time. Set i = 1 and
consider €; = (T 0, f).

Step 1. Enumerate all pairs (¢, D}, where ¢ € T and D € ¢. Call such a
pair a defect (in T) if either (i) D is of the form JR.C and thereisnoc’ € T
such that {-D | -3R.D € ¢} U {C} C ¢'; or (ii) D is of the form ~C and
(C =T) € f. If we find such a defect (¢, D) in T and c is not in the range
of o, then we set T := T — {c} and then proceed further with Step 1. If ¢
belongs to the range of o, then we stop considering €; and go to Step 3. When
all defects are exhausted, we go to Step 2.

Step 2. Check whether the resulting triple (T”, 0, f) satisfies (f) and (g). If it
does, then we stop with a verdict: {T”,0, f) is a quasimodel for p. Otherwise
we go to Step 3.

Step 3. Set i :=i+ 1. If i < N then we go to Step 1. Otherwise we stop
with a verdict: there is no quasimodel for ¢.

Clearly, if the algorithm says that (T, o, f} is a quasimodel for ¢, then this
is indeed the case. On the other hand, if (T”, 0, f) is a quasimodel for ¢ then
there is €; = (T, 0, f) and no concept type from 7" can ever occur in a defect.
So the algorithm will stop at Step 2 producing a quasimodel for .

Actually, from the application point of view we may be interested not in
arbitrary models satisfying a given formula, but only in finite ones. For logics
like ALC there is no difference between these two variants of the satisfiability
problem:

Proposition 2.28. ALC has the fmp: every satisfiable ALC-formula can be
satisfied in a finite model.

(This fact follows immediately from the proof above: given a satisfiable
formula ¢, our algorithm constructs a model for ¢ of size < 2!<o™%l 4 |ob¢|.)

However, there are much more expressive description languages that do
not enjoy the fmp; some of them will be discussed later on in this section.

There are several ways of reducing the complexity of the reasoning tasks.
Of course, all of them mean reducing the expressive power of the language as
well. One can restrict the use of some concept constructors. For instance, by
allowing applications of — only to atomic concepts we cannot form the union
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(U) of concepts. The subsumption problem for such a restricted language
(with empty knowledge base) becomes NP-complete (see Donini et al. 1995
and references therein).

Another way is to impose restrictions on formulas that may be used in our
knowledge bases. Suppose a TBox I consists of statements of the form

A=C,

where A is a concept name. The equation A = C can be regarded as a
definition of A. Say that ¥ is a simple TBoz if, for every concept name
A, there is at most one definition of A in ¥. Thus, to define a concept
A in a simple TBox means to single out necessary and sufficient conditions
for an object to be in A. In simple TBoxes, one can distinguish between
defined concepts—those which appear in the left-hand side of an equation—
and atomic ones, i.e., those that are not defined. Of course, in order to obtain
explicit definitions of defined concepts one has to require that no defined
concept name occurs in its own definition. To make this more precise, let us
define a binary relation < on the set of concept names occurring in £ by taking
A < B if A is defined and the definition of A in ¥ contains an occurrence of
B. Now call £ acyclic if the relation < contains no cycles (i.e., no sequences
of the form Ay < Ay < .- < Ap), otherwise it is eyclic.

Acyclic simple TBoxes are an important type of knowledge bases for ap-
plications. The reason for this is that for a simple acycliz TBox L, the sub-
sumption problem

LECCED

reduces to the subsumption problem with empty knowledge base
EC'CD,

where C’ and D’ are obtained from C and D by replacing recursively every
defined concept by its definition, so that the resultant C’ and D’ contain only
atomic concept names. Unfortunately, as was shown by Nebel (1990), this
‘unfolding’ technique may result in an exponential blowup of the concept size,
and so we can’t use Proposition 2.25 to obtain a PSPACE algorithm. Nev-
ertheless, such an algorithm exists: Lutz (1999) presents a PSPACE tableau
procedure for checking satisfiability of ALC-concepts with respect to acyclic
simple TBoxes. (We remind the reader that by Theorem 2.26, both concept
satisfiability and subsumption for arbitrary TBoxes are EXPTIME-complete.)

Suppose now that our knowledge base I is a cyclic simple TBox. Then a
statement of the form
A=T(A)

is contained in X, where T'(A) denotes a concept with an occurrence of A.
According to the interpretation given above, A = T(A) is understood as a
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constraint stating that an object belongs to A’ iff it belongs to T(A)!. There
are two other interpretations of such equations in the literature, known as
the least and the greatest fized point interpretations: according to them, A!
is understood as the least (respectively, greatest) solution of the equation
A = T(A) if it exists; see (Baader 1990, Nebel 1991). However, this topic is
beyond the scope of this book.

The natural desire to improve the computational behavior of description
logics comes across the need to increase their expressive power. For instance,
in the knowledge base of Example 2.24 we might want to refine the information
by stating that

e Eve and Adam have only two children;
e every child has only one mother; and
e all children have Eve and Adam as their ancestors.

This desire may lead to richer description languages, say, to the one introduced
by De Giacomo and Lenzerini (1996) and De Giacomo (1995) under the name
CQ.

The language of CQ is an extension of that of ACC with a number of role
and concept constructors. First, by a basic role we mean any role name R;.
Now, if R, S are roles, B is a basic role, C, D are concepts and n a natural
number, then

e RUS, RoS, R* are roles, and
e CND, =C, 3R.C, 3>,B.C are concepts.

The intended meaning of the introduced constructors will be clear from the
following definition (which extends the corresponding definition for ALC). Let
I be a model of the form (2.19). Then

e (RUS)! =RIUST

e (RoS) = R 08! (the composition of R! and S');

e (R*)! = (R")* (the transitive and reflexive closure of R');
e € (3>.RC) iff |{yeCl|zRIy}| >n.

Concepts of the form 3>, R.C are called in description logic qualified number
restrictions; in modal logic they appeared under the name of graded modalities
in (Fine 1972b, van der Hoek 1992). Observe that

z€(-35.RC) iff |[{yeC'|zR'y}| <n.
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So we denote =35>, R.C by 3<,_1R.C, and 35,R.C A3<,R.C by -, R.C.
It is easy to extend the translation -' from multimodal K onto ALC-
concepts above to a translation of PDL into C Q-concepts (see Section 14.1).
On the other hand, De Giacomo (1995) showed that the satisfiability prob-
lem for CQ-concepts relative to CQ TBoxes is polynomially reducible to the
satisfiability problem for CPDL. This reduction is easily generalized to a
reduction of CQ formula satisfiability to PDL. By Theorem 2.22, we obtain:

Proposition 2.29. The satisfiability problem for CQ-formulas is EXPTIME-
complete.

In CQ, we can extend the knowledge base of Example 2.24 with the fol-
lowing formulas:
Eve : 3_aparent.Child

(Eve has two children),
Child C 3-,has.Mother
(every child has one mother),
Eve : First_Parent, Adam : First_Parent
(Eve and Adam are first parents),
First_Parent C 3(parent o parent™).3drives.Car

(the first parents have a descendent who diives a car). Note, however, that
we cannot express in CQ that Eve and Adam are the only first parents, To
be able to do this we need a constructor allowing us to form concepts {a}
out of object names a. The concept {a} is interpreted in a model I in a
straightforward way:

{a} = {a'}.

Such concepts are closely related to nominals in modal and hybrid logics; see,
e.g., (Blackburn 1993). Using this construct we can define

First_Parent = { EFve} U { Adam}.

The extension CQO of CQ with the constructor of nominals above was in-
troduced by De Giacomo (1995). Observe that having concepts of the form
{a}, there is no need to define a : C and aRb as atomic formulas: they are
equivalent to {a} - C = T and {a} — 3R.{b} = T, respectively. It is shown
in (De Giacomo 1995) that the satisfiability problem for CQOQ is EXPTIME-
complete.

The language CQ and its extensions are not available yet in implemented
systems. A less expressive but important extension of ALC, which is part of
almost all working systems, adds to the syntax of ALC
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(i) a set of transitive role names Tp, Ty, ... interpreted by transitive binary
relations, and

(ii) the possibility to use role inclusion axioms of the form
51 C S

in TBoxes, where S; and S; are transitive or standard role names. Such
a role inclusion axiom is satisfied in a model I iff S] C SJ.

Now, instead of defining the role descendent as the transitive closure of the role
parent in the example above, one can approximate the properties of descendent
by introducing it from the very beginning as a transitive role name and adding
the role inclusion axiom

parent C descendent

to the TBox. Of course, some information is lost, since now the interpretation
of descentent does not coincide with but only contains the transitive closure of
parent, but in implemented systems the computational behavior of transitive
role names is much better than that of transitive closures. ALC extended with
transitive roles was introduced under the name ALC g+ in (Sattler 1996), but
now is usually called S; see e.g. (Horrocks et al. 2000b). As S is already
reserved for the temporal operator ‘Since,’ in what follows we will use the
original name ALC g+. ALC g+ with role inclusion axioms is called ACCHg+.

Since ALCH g+ can obviously be embedded into CQ, we immediately ob-
tain:

Proposition 2.30. The satisfiability problem for ALCg+- and ACCHpg+-
formulas is EXPTIME-complete.

For more information about description logic we refer the reader to the
Description Logic Handbook (Baader et al. 2003) and the surveys (Donini et
al. 1996, Calvanese et al. 2001).

2.6 Spatial logic

‘Spatial logic’ is a collective name for various logical languages and systems
describing topological and geometric sets and relations. Some of them have
been motivated by applications in computer science and artificial intelligence,
such as image processing, visual databases, geographical information systems,
robotics, etc. Others come from pure mathematics and mathematical phys-
ics (in particular, topology, projective geometry, relativity theory). Of the
enormous number of spatial formalisms developed in these diverse fields, we
concentrate in this book only on those that were devised within the knowledge
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representation and reasoning branch of artificial intelligence. Most of these
logics are of qualitative rather than quantitative character because quite often
precise numerical information is either not available or not appropriate for
(common sense) reasoning about spatial structures in knowledge representa-
tion systems (Cohn 1997)°

Even within the field of knowledge representation and reasoning there exist
different approaches to logical description of spatial structures; see, e.g., the
collection (Stock 1997) and references therein, and monographs (Casati and
Varzi 1999, Galton 2000). In this book, we will consider only some of them
which—explicitly or implicitly-—are based on the formalism of modal logic.

Let us begin by discussing a ‘naive’ approach to representing space in the
framework of possible world semantics.

Compass relations on the plane

In human everyday practice, most spatial structures are attached to coordin-
ate systems; such are, for example, maps (geographical, celestial, anatomical,
etc.) or images (fixed or moving). This observation suggests the following
straightforward use of Kripke frames to represent coordinates. Consider the
real plane R x R as an infinite map. The compass relations between points
(z,y) and (z’,y’) are defined by taking:

!

(z,y) Re(«',y') ff z<a', y=y ((z',y’) is to the East of (z,y));
(x,y) Ry (' y") iff =2, y<y ((z.y) is to the North of (z,y));
(z,y) Rs (z',y') iff z=2, y>y ((z,y) is to the South of (z,y));
(xz,y) Rw (',y') if z>2z', y=y ((z/,y’) is to the West of (z,y)).

The plane with these relations can be regarded as the 4-frame
(R x R, Rg, Rw, RN, Rs),

and one can consider the corresponding modal logic with four necessity op-
erators: Og, Ow, On and Og. Instead of R we can take any other linearly
ordered set, for instance Z, thus obtaining a grid-like map. Of course, the
change of the basic set may affect the resulting logic. But some formulas are
valid in any plane of this sort, say,

OpOnp ~ OnOgp

5Traditionally, spatial structures are investigated by many mathematical disciplines from
different viewpoints. The closest ones to the modal logic ideology are those studying qual-
itative properties and behavior of space structures. A typical example is the mathematical
theory of dynamical systems (with its more recent parts, such as catastrophe theory and
chaos theory). The basic concept here is a ‘phase space’ consisting of ‘states,’ the coordin-
ates of which are parameters of a certain system. This allows one to represent various
structures {mechanical, biological, economical) as spatial.
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and the other commutativity axioms. Instead of the whole plane one can
restrict attention only to a certain subset, say, the North-Western half-plane

{{z,v) |z < y}.

The formula
OnOgp — Og0Onp

is valid in this half-plane, while its converse
OegOnp — ONOEep

is not. Note that the logic of this half-plane can also be regarded as a variant
of interval temporal logic—it will be considered in Section 3.9.

There are at least two big flaws in this simple approach to spatial rep-
resentation and reasoning. First, the resulting ‘spatial logics’ often turn out
to be undecidable and even not recursively axiomatizable; see Chapter 7.
And second, the language of the compass logic speaks only about points, but
not about spatial regions, that is the space occupied by physical bodies, say,
countries, which are much more important for applications.

Region connection calculus

RCC—Region Connection Calculus-—is a first-order theory devised by Ran-
dell, Cui and Cohn (1992) for qualitative spatial representation and reasoning.
The signature of RCC contains only one binary predicate symbol C. Atomic
formulas of the form C(X,Y’) are read as ‘region X is connected with region
Y.’ (We denote individual variables of RCC by X,Y, Z, etc.) Using C one can
define other relations between spatial regions. Here are some of them:

DC(X,Y) — ‘X and Y are disconnected,’

P(X,Y) — ‘Xisapartof Y,

EQ(X,Y) — ‘X is identical with Y

o(X,Y) — ‘X overlaps Y’

PO(X,Y) ~ ‘X partially overlaps Y’

EC(X,Y) ~— *X is externally connected to Y,
PP(X,Y) — ‘X is a proper part of Y,

TPP(X,Y) — ‘X is a tangential proper part of Y,
TPPi(X,Y) — 'Y is a tangential proper part of X,’
NTPP(X,Y) — ‘X is a nontangential proper part of Y,

NTPPi(X,Y) — ‘Y is a nontangential proper part of X.’
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DC(X,Y) = -C(X,Y)

P(X,Y) = VZ(C(Z,X) - C(2,Y))

EQX,Y) = P(X,Y)AP(Y,X)

0(X,Y) = 32 (P(2,X)AP(Z,Y))

PO(X,Y) = O(X,Y)A-P(X,Y)A-P(Y,X)
EC(X,Y) = C(X,Y)A-O(X,Y)

PP(X,Y) = P(X,Y)A-P(Y,X)

TPP(X,Y) = PP(X,Y)A3Z (EC(Z,X)AEC(Z,Y))

il

NTPP(X,Y) PP(X,Y) A~3Z (EC(Z, X) AEC(Z,Y))

Figure 2.4: Some relations between spatial regions, defined in terms of C.

Their definitions via C are given in Fig. 2.4. The axioms of RCC can be found
in (Randell et al. 1992). We will not use them in this book.

From the computational point of view RCC turns out to be too expressive:
as was observed by Gotts (1996b) (and actually follows from Grzegorczyk
1951), the full first-order theory of RCC is undecidable. Fortunately, there
are various decidable (and even tractable) fragments of RCC. One of the
most important is known as RCC-8. It was constructed (independently and
almost simultaneously) by two parallel research streams of spatial knowledge
representation and reasoning: in the framework of geographical information
systems (Egenhofer and Franzosa 1991, Egenhofer and Mark 1995, Bennett et
al. 1997, Haarslev et al. 1999) and as an effective fragment of RCC (Randell
et al. 1992).

RCC-8

If we are interested only in relationships between spatial regions without tak-
ing into account their topological shape, then the eight predicates in Fig. 2.5
are enough: they turn out to be jointly exhaustive and pairwise disjoint,
which means that any two (non-empty) regions stand precisely in one of these
eight relations. Moreover, according to the experiments reported in (Renz
and Nebel 1998), the eight predicates turn out to be conceptually cognitive
adequate in the sense that people indeed distinguish between these relations.

Formally, the language of RCC-8 consists of a countably infinite set of
individual variables Xg, Xi,... (or XY, Z,...), called region variables, eight
binary predicate symbols DC, EQ, PO, EC, TPP, TPPi, NTPP, NTPPi and
the Booleans out of which we construct in the usual way spatial formulas.
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®
53 ® @

DC(X,Y) EC(X,Y) TPP(X,Y)  TPPi(X,Y)

3 O 0 ©

PO(X,Y) EQ(X,Y)  NTPP(X,Y) NTPPi(X,Y)

Figure 2.5: The RCC-8 predicates.

For example, using the language of RCC-8 we can compose spatial knowledge
bases like

EC(Catalunya, France),

TPP(Catalunya, Spain) v NTPP(Catalunya, Spain),
DC(Spain, France) Vv EC(Spain, France),
NTPP(Paris, France).

Then the formulas
EC(Spain, France), TPP(Catalunya, Spain), DC(Spain, Paris)

should be consequences of this knowledge base.
Note that the other relations in Fig. 2.4 can be expressed as Boolean
combinations of the RCC-8 predicates as follows:

P(X,Y)=TPP(X,Y)VEQ(X,Y)VNTPP(X,Y),
P(Y,X) =TPPi(X,Y) VEQ(X,Y) VNTPPi(X,Y),
O(X,Y) =PO(X,Y) VP(X,Y) VP, X).
Spatial formulas can be interpreted in topological spaces. We remind the
reader that a topological space is a pair T = (U,I) in which U is a nonempty

set, the universe of the space, and I is the interior operator on U satisfying
the following Kuratowski arioms: for all X,Y C U,

(XnY)=IXnIY, IXCIHX, IXCX, WW=U
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Figure 2.6: Regular closure.

The operator dual to I is called the closure operator and denoted by C. Thus
CX=U-IU-X),forall X CU. Aset X CU is called open if IX = X,
and closed if CX = X. We will also consider some special topological spaces,
such as the connected spaces (which are not unions of two disjoint nonempty
open sets), and the Euclidean spaces (R™, 1) for n > 1 (where a point z € R"
belongs to LX if, for some € > 0, all points in the e-neighborhood® of x belong
to X).

Region variables range over regular closed sets of the topological space T,
i.e., an assignment in T is a map a associating with every variable X a set
a(X) C U such that a(X) = Cla(X). (For instance, @ and U are regular closed
sets. Examples of sets that are not regular closed in, say, the two-dimensional
Euclidean space are balloons—circles with attached threads (1D lines)—or
sets with isolated points, etc., which can hardly be regarded as regions; see
Fig. 2.6 where the region CIX consists of two disconnected parts, with one of
them containing a ‘hole.’) Often it is also assumed that regions are nonempty,
i.e., a(X) # 0. However, this constraint can be expressed in RCC-8 explicitly:
for instance, ~DC(X, X), according to the interpretation below, guarantees
that region X is not empty.

The truth-relation T }=° ¢ for atomic formulas of RCC-8 is defined in the
following way:”

T =2 DC(X1, X3) iff -3z z € a(X1) Na(Xy),
T EEQ(X1,X,) iff Vz (ze€a(X)) e ze€a(Xy)),
T =2 PO(Xy, X2) iff 3z z € la(Xy) Nla(Xy)
A3z zea(X)NU -a(X3))
Adzz e (U -a(Xy))Na(X2),
T i=n EC(Xl,Xz) iff dJxze Q(Xl) n Q(Xz)
A -3z z € a(Xy) Nla(X>3)
A -3z z € la(X1) Na(Xa),

SThe e-neighborhood of = (xy,...,Zn) in R™ consists of all points ¥ = (y1,...,¥n)
such that 30| |24 — 9|2 < 2.

"Note that since we allow regions to be empty, the RCC-8 predicates are no longer
pairwise disjoint. For instance, both DC(@, X) and NTPP(®, X) hold in every topological
space whenever X # @, as well as DC(9, 0) and EQ(9, ).
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T E*TPP(X1,X2) iff Vzze (U-a(Xy))Ua(Xy)
Adz z € a(Xy) Na(X2) N (U - Ta(X3))
Adzze (U -a(X1))Na(Xz),
T E*NTPP(Xy,X;) iff Vrze (U-a(X)))Ula(Xs)
Adz z e (U - a(X1))Na(Xz).
Note that although the full RCC formalism was originally presented as a
naive theory without any specific models, Gotts (1996a) and Bennett (1998)

showed that it can also be interpreted in classical point-set topology. The
truth-definition for C(X,Y’) is formalized then as follows:

TR C(X,Y) iff 3zea(X)na(y).

As was proved by Gotts (1996a), the syntactical definitions of Fig. 2.4 are
correct in Euclidean spaces, and these spaces are models of the RCC axioms
as well,

It is not hard to see that the above truth-definition and the Kuratowski axioms
together yield the following equivalences (which one might consider as more
natural truth-definitions):

T E° PO(X, X?2) if 3z zela(Xy)Nla(Xa)
A 3dz z € la(X1) N (U — a(X2))
Az z e (U~ a(Xy)) nla(Xa),
T =* EC(X1, X2) if 3z zxea(Xi)Na(Xs)
A -3z z € Ia(X) Nla(X>),
T E° TPP(X4, X2) if Vrze (U-a(X1))Ua(Xa),
A3dz z € a(X1) N (U - la(X2))
Adz z e (U - a(Xy)) Na(X2).

Indeed, it is readily checked that for any sets A, B,
ANB =0 implies CANIB=0. (2.21)

Now, in order to prove that the two definitions of PO are equivalent, it is
enough to show that for all regular closed sets V and W,

WV -W#0 iff V-W#0.

One direction is obvious. For the other, suppose that V — W # 0. Since
V~-W=CIVnI{U - W), by (2.21) we have IV — W # 0.

In the case of EC, we have to show that for all regular closed sets V and W,

VNIW =@ iff VNIW =0 and IVAW = 0.
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The implication (¢=) is obvious. For the converse, suppose that IVNIW =9,
Then by (2.21) we have

0 =CIVNIW = VNIW,
P=0VNCIW =IVNW.

Finally, in the case of TPP we have:
a(X1) Na(X2) N(U - Ta(X2)) = a(X1) N (U - Ta(X2)),
because a(X,) C a(Xz2).

The main reasoning task for RCC-8 is the following entailment problem: given
a finite set ¥ of spatial formulas and a formula ¢, decide whether ¢ is a logical
consequence of L (or L entails @), i.e., for every topological space T and every
assignment a in it, we have T =% ¢ whenever T |=* ¢ forally € &, If p is
a logical consequence of £, then we write & = . It should be clear that the
entailment problem is reducible to the satisfiability problem: given a spatial
formula g, decide whether ¢ is satisfiable (or realizable) in a topological space,
i.e., whether there exists a topological space T and an assignment a in it such
that T |=° . Indeed, we have T |= ¢ iff the formula A LA -y is not satisfiable
in any topological space. Sometimes satisfiability in more restricted classes
of topological spaces is considered, say, only in connected spaces or in the
Euclidean spaces (R",[), for n > 1.

That the satisfiability (and so entailment) problem for RCC-8 formulas in
topological spaces is decidable was observed by Bennett (1994, 1996). Renz
and Nebel (1999) showed the NP-completeness of the satisfiability problem
and described maximal tractable fragments of RCC-8, i.e., those that belong
to P.

Bennett (1994, 1996) embedded RCC-8 into the bimodal logic S4,, i.e.,
Lewis’s 84 with the universal modality, using the fact that S84, is complete
with respect to topological spaces. But before considering this connection in
more detail, let us extend RCC-8 with Boolean operations on regions.

BRCC-8

One apparent ‘deficit’ of RCC-8 is that it operates only with atomic regions.
We cannot form unions () or intersections (M) of regions to say, for instance,
that

EQ(EU, SpainU ltalyu...)
(‘the EU consists of Spain, Italy, etc.’),

P(Alps, ItalyU FranceU...)
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(‘the Alps are located in Italy, France, etc.’),
EC(Austria, Alps N Italy)

(‘Austria is externally connected to the alpine part of Italy’), and deduce from
these that there is a country Z such that TPP(Z, EU) (i.e., ‘Z is a tangential
proper part of the EU’), or that if EC(X, EU), for some country X, then
EC(X,Y) for some country Y in the EU. Note, by the way, that TPP(Z, EU)
is a correct conclusion only if we interpret our formulas in Euclidean (or, more
generally, connected topological spaces (and if there are non-EU countries):
in a discrete topological space (where all sets are open) the EU may be an
open set with empty boundary. This simple observation and the result of
(Renz 1998), according to which every satisfiable RCC-8 formula is satisfiable
in all Euclidean spaces (R",I}, n > 1, show that the Boolean operations on
region terms indeed increase the expressive power of RCC-8.

Denote by BRCC-8 the extension of RCC-8 which allows the use of Boolean
region terms, i.e., combinations of region variables using the Boolean operators
U, M and -, as arguments of the RCC-8 predicates. The value a(t) of a Boolean
region term ¢ in a topological space T = (U, II) under assighment a is defined
inductively as follows:

a(tut’) = Cl{a(t)Ua(t) = a(t) Ua(t'),
a(tMt’) = Cl{a(t) Na(t')),
a(-t) = CI(U — a(t)).

As the Boolean operators do not in general preserve the property of being
regular closed, we need the prefix CI in the right-hand parts of these defini-
tions. Thus, every region term is interpreted as a regular closed set of T. Note
that a(X N -X) =0 and a(X U-X) = U for any a and T. We denote the
region terms X M-X and X =X by L and T, respectively. The constraint
-EQ(X, L) asserts that X is a nonempty region.

S4, as a spatial formalism

In the late 1930s and early 1940s several logicians (Stone 1937, Tarski 1938,
Tsao Chen 1938, McKinsey 1941) noticed that S4 can be interpreted in to-
pological spaces. Actually, there is a striking similarity between the axioms
of S4 and Kuratowski’s axioms for the interior operator. (Axiom (K) and
rule (RN) of S4 can be replaced with O(py A p2) < (Opy A Op2) and OT,
corresponding to the first and the last topological axioms above.) Using this
observation, it is readily seen that every topological space T = (U,I) gives
rise to the modal algebra

T+ =(2Y,n,-,L,0,U)
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which is an algebra for S4 (see Section 1.5). Moreover, one can show that S4
is complete with respect to algebras of this sort. This follows, in particular,
from the fact that given a Kripke frame § = (W, R) for S4, we can construct
the topological space T3 = (W,13), where for any X C W,

Iz X={ze X|Vye W (zRy - y € X)}.

Moreover, § and ‘I; validate the same modal formulas, i.e., Log¥ = Log‘I;
Therefore,

S4 = {p € ML | T k= p for every (finite) topological space T},

where the relation T |= ¢ is defined as follows. Given a topological space
T = (U,1), a valuation U in T maps each propositional variable to a subset
of U. The pair (%,V) is then called a topological model (based on T). The
valuation 20 can be extended to all ML-formulas by interpreting O as I, O
as C, A as N, and - as —. Now we say that  is satisfiable in T if V(yp) # 0,
for some topological model (%,V); ¢ is valid in T (T = ¢ in symbols) if
U(p) = U for all topological models based on T. Thus, S4 can be regarded
as the logic of topological spaces.

We can increase the expressive power of ML by enriching it with the
universal box @ and diamond & (see Section 1.6}, the topological meaning
of which is ‘for all points in the space’ and ‘for some point in the space,’
respectively. More precisely, for every formula ¢ in the language of ML" and
for every topological model (%, %) based on T = (U, 1), we have:

_J U ifBp)=U, _J U, ifB(p) #9,
B(By) = { @, otherwise; B(@yp) = { @, otherwise.

In view of the connection between S4-frames and topological spaces mentioned
above and Theorem 1.26, we have:

S4,={pe€ ML | T k=  for every (finite) topological space T}.

S4, is expressive enough to encode the topological meaning of the RCC-8 pre-
dicates and that of Boolean region terms.® Indeed, let us denote the box and
the diamond of S4 by, respectively, I and C (to emphasize their topological
interpretation as the interior and closure operators). For a Boolean region
term ¢, define inductively a modal formula t¥ by taking:

X} = Clp;, (X, is a region variable, p; a propositional variable),
(t1 Mtz)™ = CI(t A L),
(U t)™ = CI(E v £5),
(—t)™ = CI-t™.

8Recently, the expressive power of the language of S4, has been characterized in terms
of bisimulations by Aiello and van Benthem (2000). The associated topo-games have been
used in (Aiello 2001) to measure the difference between spatial regions.
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Then, with every atomic BRCC-8 formula P(s,t) we associate a modal formula
(P(s,t))™ defined by:

(DC(s, 1)) = =@ (s A ™),
(EQ(s,8))™ = B(s™ & t™),
(PO(s,1))™ = (I AIt) A S(s™ A =t™) A (s A ™),
(EC(s,t)™ = @ (s A ™) A =& (Is¥ A Tt™),
(TPP(s5,))™ = @(~s™ V™) A &(s™ A =TIt A & (=™ ALY,
(NTPP(s,t))™ = @(—s™ VIt™) A &(~s™ A ™).

Finally, given a BRCC-8 formula ¢, denote by ¢™ the result of replacing all
occurrences of atomic formulas P(s,t) in ¢ by (P(s,t))™. Note that in view
of CICIp « CIp € S4, the translations of all region variables and terms in
™ are interpreted in topological spaces as regular closed sets.

Since the definition of the translation ™ mimics the truth-definition of
the RCC-8 predicates, and since S4,, has the fmp (see Theorem 1.26), we
immediately obtain:

Theorem 2.31. For every BRCC-8 formula ¢, the following conditions are
equivalent:

(i) o i3 satisfiable in a topological space,

(i) @™ is satisfiable in a topological space,

(iii) ™ is satisfiable in a finite Kripke frame for S4,,

(iv) ™ is satisfiable in a finite topological space,

(v) @ is satisfiable in a finite topological space.

As a corollary we have:
Theorem 2.32. The satisfiability problem for BRCC-8 formulas is decidable.

Actually, S4, makes it possible to express much more complex relations
among regions than those available in BRCC-8. For example, we can define a
ternary relation

EC3(X,Y, 2) = @~(IX AIY) AB~(IY AIZ)AB-(IZ ALX)AS(X AY A 2Z)

and write EC3(Russia, Poland, Lithuania) to say that Russia, Poland and
Lithuania have a common border, but no common interior point. Unlike
RCC-8 and BRCC-8, where regions are usually assumed to be regular closed,
S4, gives more flexibility. In the extreme, we can express such ‘pathological’
properties of sets as ‘X is dense in Y, but has no interior:’

@-I1X AB(CX « Y).



2.6. Spatial logic 89

Embedding BRCC-8 into S5

The modal translation ™ of a BRCC-8 formula ¢ has a rather special form.
Renz (1998) used this form to show that satisfiable RCC-8 formulas can be
satisfied in very simple topological spaces, namely in those determined by
S4,-frames that we call quasisaws. (Renz used this result to show that all
satisfiable RCC-8 formulas can be satisfied in (R",I) for any n > 1. Note,
however, that 84, is not complete with respect to {(R",I) | n > 1}; for a
counterexample see Proposition 16.20.)

A quasisaw is a 2-frame § = (W, R, Ry) such that Ry is the universal
relation on W and (W, R) is a partial order of depth < 1 and width < 2
(that is, no R-chain has more than two distinct points, and no point has more
than two distinct proper successors). An example of a quasisaw is shown in
Fig. 2.7. A fork is a frame f = (W}, R;) such that Wy = {bs,l;, 7} and Ry

VAV VANAVAR

fork §
Figure 2.7: Quasisaw.

is the reflexive closure of {(by,l;), (bs,;)}. Thus, by is the root of f with two
immediate successors /s and r. It should be clear that if an S4,-formula is
satisfied in a quasisaw then it is satisfied in a disjoint union of forks (equipped
with the universal relation) as well.

The following generalization of Renz’s result was proved in (Wolter and
Zakharyaschev 2000a); see Theorem 16.4 for a further generalization:

Theorem 2.33. A BRCC-8 formula o is satisfiable in a topological space iff
™ is satisfiable in a quasisaw containing < €(p™) forks.

Thus, the satisfiability problem for BRCC-8 formulas ¢ in topological
spaces reduces to the satisfiability problem for their translations o™ in quas-
isaws which are disjoint unions of forks. We can make one step further by
observing that the latter problem can be reduced to the satisfiability of pro-
positional unimodal formulas in S5-models. The idea behind this reduction
is to represent every subformula ¥ of ™ by means of three S5-formulas ¥?,
¥, ¥" which encode the ‘behavior’ of ¥ at the three points of a fork.

Given such a formula ¢™, we define inductively three translations b, -/
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and -7 by taking

(p)* = p*, p and p* propositional variables, i € {b,L,7},
(WAx) = AX:, forie {bl,r},
Wvx)=v'vx forie {bl,r},
(—9)' = ¢, fori € {b1,r},
(Ip)> = v Ayl A YT,
(Iy)' = ¢, forie {I,r},
(Cy)’ =v* vyl vy,
(@) = 0@t vyl vyn), forie {b,r,1},
(@) = a@® Ay A7), forie {b,r1}.

Finally, we define the S5-translation ¢® of a BRCC-8 formula ¢ as (¢™)°. It
should be clear that the length of ¢© is polynomial in the length of .

Theorem 2.34. For every BRCC-8 formula @, ¢™ is satisfiable in a quasisaw
iff ¢© is S5-satisfiable.

Proof. (=) Suppose that ©™ is satisfiable in an S4,-model M = (&,7)
based on a frame & = (V, R, Ry), where Ry is the universal relation on V
and (V, R) is a disjoint union of forks. Without loss of generality we can
clearly assume that ¢™ is satisfied at the bottom point b; of some fork f.
Construct an S5-model M = (F, i) by taking § = (U, S), where U consists
of all forks in &, S = U x U, and for every propositional variable p in ™,

U@p®) = {fe U | (M, b) = p},
Up') = {fe U | (ML) = p},
Up") = {fe U | M,7) E p}.

Now, by induction on the construction of a subformula 1 of ©™ we show that,
for every fork { in ® and every i € {b,l,r},

L) v (i) . (2.22)

The basis of induction follows from the definition of 91, and the case of the
Boolean connectives is trivial.

Suppose ¢ = Ix. Ifi € {l,r} then (2.22) holds by the induction hypothesis,
since (M, is) = Ix « x and (Ix)' = x*. And if i = b then, on the one hand,

(m’ bf) ‘= IX iff (mv bf) '= X (me) '= X (i)n7 Tf) l= X
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and on the other, by the definition of the translation,

L) = (Dx)° i (L) E x5 L) X, L) E X,
which yields (2.22) by the induction hypothesis.
Suppose now that ¥» = ®x. Then

L) Ey i 3 eUIelblr} (M) EX
iff 3F eU3je{bl,r} (Mjp) E=x
iff (M) &= ox.

The remaining cases are considered analogously.

It follows that ¢ is satisfied in 9.

(¢=) Assume that ¢@ is satisfied in an S5-model M = (§, ), § = (U, S).
With every point £ € U we associate a fork f; = (W, R;) so that the sets
Wy, for z € U, are pairwise disjoint. Construct an S4,-model M = (&, V)
by taking & = (V| R, Ry),

o V=U,cyWes Ru=V xV,
s uRvifu=vordzelU (u=b, Alv=1I, Vv=ry,)),
e BV(p)={ij, e V|(M2z) E=p', i=blr}

Then & is clearly a quasisaw. By a straightforward induction one can show
that for every z € U, every subformula v of ¢™, and every i = b,l,r, we have

(m’ x) t= "/)i iff (m’ih) }= Y.
For example,
M,z) = (Ix)° i (M) =X, forie {bl,r}

if (OM,i5,) = x, forie {b,1,r}

if (9, by,) EIx.
It follows that ™ is satisfied in 9. Q

As S5 is NP-complete and RCC-8 can encode propositional classical logic

(using the predicate EQ), we immediately obtain that the computational be-

havior of BRCC-8 in arbitrary topological spaces is precisely the same as that
of RCC-8:

Theorem 2.35. The satisfiability problem for BRCC-8 formulas in topological
spaces is NP-complete.

However, if only Euclidean (or even connected) topological spaces are re-
garded as possible interpretations, the satisfiability problem for BRCC-8 for-
mulas becomes PSPACE-complete (for details consult Wolter and Zakharya-
schev 2000a).
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2.7 Intuitionistic logic

Intuitionistic logic is yet another type of logic which can be embedded in S4;
actually, as we have already said, to provide such an embedding was the main
reason for constructing S4 by Gaodel (1933) and Orlov (1928).

Intuitionistic logic, and more generally intuitionism as the trend in the
foundations of mathematics initiated by Brouwer (1907, 1908), aimed to single
out and describe the principles of ‘constructive’ mathematical reasoning, con-
structive in the sense that it provides (at least) an algorithm constructing an
object the existence of which is proved. Classical logic Cl, as well as all other
logics having Cl as their fragment, are not constructive: using the law of the
excluded middle (A10) we can establish the existence of objects by reductio
ad absurdum without even giving a hint of how to find them (mathematical
textbooks abound with proofs of this sort?).

Intuitionistic propositional logic Int was first constructed syntactically by
Kolmogorov (1925), Glivenko (1929) and Heyting (1930). It has the same
language £ as Cl, and an L-formula ¢ belongs to Int iff ¢ can be derived
from the axioms (Al)-(A9) using MP and Subst. In other words, Int is
obtained from CI by discarding axiom (A10). (It should be noted, however,
that unlike Cl, the connectives A, V, — and 1 are independent: they cannot
be expressed via each other.)

The intended meaning of the intuitionistic connectives was explained first
in terms of the proof interpretation due to Brouwer, Kolmogorov and Heyting:

e a proof of a proposition ¢ A1 consists of a proof of v and a proof of ¢;

o a proof of ¢ V ¢ is given by presenting either a proof of ¢ or a proof of

P;

e a proof of ¢ — 1 is a construction which, given a proof of p, returns a
proof of i

o 1 has no proof and a proof of ~y is a construction which, given a proof
of ¢, would return a proof of 1.

According to this interpretation, Int contains only those formulas that have
proofs. The existence of open mathematical problems (e.g., ‘P = NP?’) shows
that the formula p V ~p has no proof, and so cannot be accepted as an intu-
itionistically valid principle.

9Here is a well-known example: to prove that there exists an irrational number z such
that zV2 is rational, we observe first that, by (A10), \/Eﬁ is either rational or irrational;
if it is rational then we take z = v/2, otherwise z = \/iﬁ.
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Various more formal semantics have been constructed for Int (see, e.g.,
Kleene 1945, Godel 1958, Kreisel 1962, Medvedev 1962, Skvortsov 1979, Arte-
mov 2001). Here we briefly consider three of them: the topological, the al-
gebraic and the relational (or possible world) semantics.

Stone (1937) and Tarski (1938) discovered that Int can be interpreted in
topological spaces ¥ = (U, I) by associating with each variable p an open set
B(p) C U, the value of p in T under the valuation Y. The values of arbitrary
L-formulas in T are defined inductively as follows:

B(L) =0,
B(p A y) = D(p) N V(Y),
Do V) = B(p) UB(Y),
B(p = 9) = I((U - B(p)) UB(¥)).

If B(p) = U for every valuation U in T, then we say that ¢ is valid in T and
write T |= . It turns out that ¢ € Int iff  is valid in all topological spaces
iff © is valid in R™, for any n > 1; see, e.g., (Rasiowa and Sikorski 1963).

A more general algebraic semantics was constructed by McKinsey and
Tarski (1944, 1946). A Heyting (or pseudo-Boolean) algebra is a structure of
the form

A = (A, A%, V3 2 0% 1%)

such that A%, V@ and —2 are binary operations on 4. 04.1% ¢ A, A% and
v2 are commutative, associative and have the absorption property (like in
Boolean algebras, see Section 1.5) and for all a,b,c € A,

e cA?a<?biff c <? a —2 b (a — bis the greatest element in the set
{ce A|cA?a <P b});

o 02 <% ¢ <% 1% (0% and 1? are the least and greatest elements in 24,
respectively),

where the binary relation <2 on A is defined by taking
a<?b if an?b=a

Note that one can also define Heyting algebras as the algebras of open elements
of modal algebras for 84 (see Sections 1.5 and 2.6).

Int is sound and complete with respect to the class of all Heyting algebras;
moreover, every extension of Int (closed under MP and Subst)—these exten-
sions are known as intermediate or superintuitionistic logics—is characterized
by the class of Heyting algebras validating its formulas; see, e.g., (Chagrov
and Zakharyaschev 1997).
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The possible world semantics for Int defined by Beth (1956) and Kripke
(1965b) (see also Grzegorczyk 1964) reflects the epistemic character of intu-
itionistic logic, namely that it takes into account the development of know-
ledge.

Let us imagine that our knowledge is developing discretely, nondetermin-
istically passing from one state to another. Being at some state of knowledge
(or information) x, we can say which facts are known at = and which are not
established yet. Besides, we know what states of information are possible in
the future (i.e., do not contradict the knowledge at z). This does not mean,
however, that we shall reach all these possible states (for instance, we can
imagine now not only a course of events under which the equality P = NP
will be proved, but also situations when it will remain unproved or will be
refuted). It is also reasonable to assume that when passing to a new state,
all the facts known at = are preserved, and some new facts can possibly be
established. The propositions established at x are regarded as true at x; they
will remain true at all further possible states. But a proposition which is not
true at x cannot be said to be false, because it may become true at one of the
subsequent states.

Possible states of information are represented as Kripke frames § = (W, R)
in which R is a partial order on W, i.e., R is reflexive, transitive and anti-
symmetric (Vz,y (tRy AyRz — = = y)). A valuation U in § indicates which
atomic propositions hold true in each state £ € W. Thus U is a map from
the set of propositional variables into the set UpF of upward closed subsets
of W (X € Up§ it Yz € XYy € W (rRy — y € X)). The pair M = (F, D) is
called an intuitionistic (Kvipke) model of the language £. The truth-relation
(9, ) = ¢ (or simply z |= ¢) is defined inductively as follows:

Mz)Ep iff =€ B(p);
(f’ﬁ, :L') bé L;
OM,z)EpAx i (T,2) = ¢ and (M,2) = x;
Mz) =yvx i (Mz)EPor (Mz)Ex;
M, z) =y - x iff for all y € W such that xRy,
(M, y) = ¢ implies (M, y) = x-
1t follows from this definition that
M, z) =y iff for all y € W such that =Ry, (M,y) £ ¢.

(Observe that an intuitionistic model based on the single-point frame is noth-
ing else but a standard model for Cl.) For example, Fig. 2.8 shows an intu-
itionistic mode! refuting axiom (A10).

Int is sound and complete with respect to the class of all intuitionistic
frames. Moreover, it has the exponential fmp, and the decidability problem
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Figure 2.8: An intuitionistic model refuting pVv (p — 1).

for Int is PSPACE-complete. (It should be noted that the problem of whether
a given intuitionistic formula is satisfiable is NP-complete: it is enough to
check satisfiability in single-point—i.e., classical—models.)

The constructive character of Int is reflected by the fact that it has the
so-called disjunction property: for all L-formulas ¢ and v,

peVyeInt iff pelnt or ¢ € Int.

Note, however, that this property is not characteristic for Int: there are
proper extensions of Int having the disjunction property..

We conclude this section with the deﬁnmon of the Godel translation T
which embeds Int into S4:

e T(p) = Op, p a propositional variable;
o T(L)=

e T(eAY) =T(P)AT(¥);

e T(eVY) =T(p) VT(¥);

o T(p — ) =0(T(p) — T(¥)).

If we understand the S4-box as ‘it is provable’ then the intuitionistic connect-
ives are transformed by T into the corresponding classical ones, but they are
understood now in the context of ‘provability.’ One can show that for every
L-formula o,

pelnt iff T(p)e€ S4.

For more information about intuitionistic logic we refer the reader to (van
Dalen 1986) or (Chagrov and Zakharyaschev 1997).
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2.8 ‘Model level’ reductions between logics

We conclude Chapter 2 by establishing a number of useful polynomial reduc-
tions between modal, epistemic, dynamic and temporal logics, summarized
in Table 2.2. On the one hand, that such reductions exist follows immedi-
ately from the complexity results presented in this chapter. For example, K{
and K4§v (introduced in Section 2.3) are polynomially reducible to each other
simply because they are both EXPTIME-complete. However, such reductions
via Turing machines usually do not give any information on how models of the
two logics are connected. In contrast, our reductions below work on the ‘model
level,” and this will enable us to generalize the results to many-dimensional
logics in Sections 6.3 and 6.5.

1o
Thm. 238 _ . Thm. 236 12 .  Thm. 2.39
PTL — K§ K4; ~ PDL
\84?‘ \
Thm. 2.36 Thm 2.39
Thm. 2.37 KD45¢ CPDL

Thm. 2.37 c Thm. 2.39

Table 2.2: ‘Model level’ reductions between modal, epistemic, dynamic, and
temporal logics.

Theorem 2.36. K$ is polynomially reducible to TS, K4S, 845 and KD45S .

Proof. First, we show that K¢ is polynomially reducible to D{. Fix a fresh
propositional variable p and define a translation ” from Mllf-formulas (with
modal operators 00 and C) into MLS by taking

r

qg =pAg, (¢ a propositional variable)

(Y1 AP2)" = YT AYy,
(=) = pA-y,
(O¥)" = pAQ(p —9¥7),

(CY)" = pAC(p—¥).
Our aim is to show that for all ML{-formulas ¢,
e K if pAC(-p—C-p)—y" eDf.
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Suppose first that ¢ ¢ K§. Then there is a model MM = (§, V) based on a
frame § = (W, R) with root r and such that (9,7) i ¢. Let X be the set of
all points in W having no R-successors. For each x € X, take a fresh point
z*, and define a new model M’ = (F', V') based on a frame §' = (W', R') by
setting

e W =Wu{zt|ze X},

e R =RU{{(z,z*) |z € X} {{zt,z*) |z € X},

e U'(p) =W,

e V'(q) = B(q), for any other propositional variable ¢.

Then clearly R’ is serial and 9 = -p — C-p. An easy induction shows that
for all MLS-formulas ¢ and all z € W,

M)y M (W,z) "

It follows that (', r) b ¢".

Conversely, suppose that p A C(-~p — C-p) A —¢" is satisfied at the root
of a model M = (F, V) based on § = (W, R). Define a model M’ = (§', V')
based on §’ = (W', R’) by taking

o W' =2(p),
e R\ =Rn (W' x W),
e U'(q) = V(p) N V(q), for any variable g.

We leave it to the reader to show that (I, r) £ ¢.

Thus, it suffices to construct the reductions we need from DY instead of
K§. Take a fresh variable p and define a translation * from MLS-formulas

into MLS -formulas (with 0;, Oz and C{y )) as follows:

¢ = phyg, (¢ a propositional variable)

¥ o= vl Ayl

)ﬂ =pA -‘wn,

(O9)* = pAD(-p — D2(p — V")),
¥ = pACuyl— v

a
<
"
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Given an ML -formula g, we set:

X§a = PAC,23(p = O1p) ACy,23(=p — O2p) A (2.23)

Ci1,2)(p — O2p) ACpy23(-p — O1-p) A (2.24)

Can( A PAY T 9DA@AY »Da0) A (225)
PEsub p?

(~PAY = D) A(PAY = Ta(-p > 9))). (2.26)
Our aim is to show that
(i) if x§, — ¢ € S45 then ¢ € DY,
(ii) if ¢ € DY then x§, — ¢* € K§.

It will follow then that ¢ € DY iff XS4 — ¢! € LC, for all Kripke complete
modal logics L between K2 and S4,, in particular, for the logics mentioned
in the theorem—save KD455 .

To prove (i), suppose that ¢ ¢ D{. Using Proposition 1.7, it is not hard
to see that (9, r) b o, for some model MM = (F, V) based on an intransitive
tree § = (W, R) without endpoints and with root r. Define a new 2-frame
3’ = (W,1 Rly R2) by taking

e W =Wu((W x {1}),
e xRy iff either z € W and y={(r,l)orx =y,
e TR,y iff either there is z € W such that £ = (2,1) and zRyorz =y

(see Fig. 2.9). Obviously, both R; and R. are partial orders, which means
that § = (W', Ry, Rp) is a frame for S4,. Further, it is straightforward to
see that, for all x,y € W,

Ry if  z(R;UR2)"y.
Now define a model MM’ = (F',V’) by taking
s W(p)=W,
e U'(q) = V(q), for any other propositional variable ¢.
An easy induction shows that, for all x € W and all subformulas ¢ of ¢,
M)y i (1) =y

Thus, (9, 7) I ¢*. It is not hard to check also that (9V,7) |= x&,, and so
we have

(O, 7) I x§y — &%,
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R, R
(all points are Rj-reflexive) (all points are Rz-reflexive)
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Figure 2.9: (W', Ry, Ry) is a frame for S4,.

from which x§, — @' ¢ S45.

Let us now show (ii). Suppose that x§, A —-p! is satisfied at the root of a
model M = (F, V) based on some frame § = (W, Ry, Rz). For i =1,2, let

R? = RN (B(p) x B(p)) and R;” = RN ((W - B(p)) x (W - B(p))).

Define a new frame §' = (W', R) by taking W’ = U(p) and, for all z,y € W',
zRy iff there are z’,y' € W and 2/, 2" € W — W, such that

(RYURD)'Z, 'Ry, Z'(R{PUR;P)*Z", 2'Ray', y'(RYURE)*y
(see Fig. 2.10). By (2.23), R is serial. Clearly, for all x,y € W',
if zR*y then z(R; U R2)*y. (2.27)
On the other hand, it is not hard to show using (2.24) that, for all z,y € W',
if z(R1 U R2)™y then either £(RY U RE)*y or zR*y. (2.28)

Now define a model M’ = (F’, V') by taking V'(q) = V(q) N W’. We claim
that, for every x € W’ and every subformula 9 of ¢,

(Mz) =y f (Ma) =yt

We show only the induction steps for ¥ = Oy and ¢ = Cx. First, suppose
that (9, z) = O1(-p — O2(p — x*)) and let zRy. We need to show that
(M, y) E x. By the definition of R, there are z', 2/, 2, y' as above. Since
01(-p — Oz2(p — x")) is a subformula of @?*, by (2.25) we have

(M, z') | O1(-p - Oz2(p — xP)),
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{'(p)

Figure 2.10: The accessibility relation R.

and so (M, 2) = Oz2(p — x*). By (2.26), we have (M, 2") |= O2(p — x*),
and so (M, y’) = x*. Finally, again by (2.25) we obtain (9,y) = x*. Thus,
by the induction hypothesis, we have (9,y) k= x, 8s required. The other
direction for O-formulas is straightforward.

Now suppose (M',z) = Cx and let y € W’ be such that z(R; U Ry)"y.
We need to show that (91,y) = x*. By the induction hypothesis, we have
(M, 2) = x*, for all z with R*z. By (2.28), we have either z(R} U R})*y
or zR*y, so in the latter case we have (M,y) = x*. If z(RY U R%)*y holds
then we obtain this by (2.25). The other direction for C-formulas follows from
(2.27).

Finally, as the root of § belongs to §, it follows that 1’ refutes .

In the case of KD45S we need another reduction. Define a translation !
from MLS -formulas into MLS -formulas as follows. First, we associate with
each MLY -formula of the form C’ a new propositional variable pcy,. Take a
fresh variable p. Then define inductively:

¢" = pAg, (g a propositional variable)
(W1 A¥2)' = ¥] AP,
(-9 = pA—yt,
(O%)" = pADi(-p — Oa(p — %)),
(C¥)' = pApcy.
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Figure 2.11: (W', Ry, R3) is a frame for KD45,.

Finally!? given an ML -formula ¢, we set
Xom= N (Pcw — P AOy(=p — O2(p = Cp1,23(p — 11’")))),
Cy€suby
Xkpas =P A C1.2)((p = (X5im A B17p)) A (=p — O2p)).
Our aim is to show that
peDf iff  x%pes — " € KD45S. (2.29)

To prove the (<=) direction, suppose ¢ ¢ D§. Then (9, 7) £ ¢, for some
model M = (§F, V) based on an intransitive tree § = (W, R) without endpoints
and with root r. Define a 2-frame §' = (W', R;, R;) by taking

o W =Wu(W x{1)}),
o Ry iff eitherz € W and y = (z,1),0orz,y € W x {1} and z = y,

® R, to be the closure of R} under the rule ‘zSy A 28z = yS2’ (i.e.,
the Euclidean closure), where xRy iff there exists z € W such that
z = {z,1) and zRy

(see Fig. 2.11). It is not hard to check that both R, and R; are transitive,
serial and Euclidean. So §’ = (W', Ry, R;) is a frame for KD45,. Observe
that, for all z,y € W,

zRy iff thereisa z € W' — W such that zR;2 and zRzy. (2.30)

101t would be more natural to define (C )" = ¢! A Oy (~p — D2(p — Ci1,2)(p — Y1)

However, this would not be a polynomial translation, since ¢! would occur twice in the
right-hand side.
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Now define a model M’ = (F, V') by taking
* U(p)=W,
* U(pcy) ={z e W| (M) = Cy},
o (q) = V(q), for any other propositional variable q.

An easy induction shows that, for all z € W and all subformulas 9 of ¢,
Mz Ey i (W) gt (2.31)

Thus, (M, r) = . Further, we claim that (', 7) | x%p4s. Indeed, we
clearly have (M, 7) |= Cqy 93 ((p » O1=p) A (-p — O2p)). Now let z € W.
We need to show that (9, z) = x¥, .. Take a subformula of ¢ of the form
C 1. Suppose first that

(O, z) = " A O (=p — Oa(p — Cpa,23(p — ¥7))),

and let zR*y. Then, by (2.30), we have (9',y) k= ¢*, and so, by (2.31),
(MM, y) = . It follows that (M, z) = C¢, from which (M, z) = pcy.

Conversely, suppose that (9, z) E pcy, and so (M, z) | Cy. By (2.31),
we have (M',z) = Y Now let y € W/ — W and z,u € W be such that
zRyy, yR2z, and z(Ry U R;)*u. Using the transitivity of Rs it is not hard
to show that in this case u can be reached from x via an alternating chain of
nonreflexive R;- and Rz-arrows. Then, by (2.30), zR*u, and so (M, u) = .
Using (2.31) once again, we finally obtain (9, ) |= v, as required.

So we have (I, 1) F x&pas — ¢ whence x&pas — ¢ ¢ KD455.

Let us now show the (=) direction of (2.29). Suppose that x%p4s A ~¢"
is satisfied at the root r of a model 9 = (¥, V) based on a KD45,-frame
¥ = (W, Ry, Ry). Define a model M’ = (§F, V') based on §F = (W', R) by
taking

o W' =2(p),
e zRy iff there exists z € W — U(p) such that xR;z and zRyy,
* T'(q) = V(g) N V(p)-

Then clearly R is serial. We claim that, for every z € W'’ and every subformula
Y of ¢,
@,z) =y it (M) Y

We show only the induction step for 9 = Cx. Suppose first that (9, z) = Cx.
According to the definition of x§ 45, We need to show that

(M, z) = x' A 0, (-p — O2(p — Cazlp— Xh)))-
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We have (90t,z) = x" by the induction hypothesis. Now let 2’ € W’ — W,
z",y € W be such that zR;z', 'Rx” and z"(Ry U Ry)*y. Using that
(M, r) E x¥&pas and the transitivity of Ry and Ry, it is not hard to see
that then zR*y holds. So by the induction hypothesis, we have (O,y) = x°
as required. The other direction for C-formulas is straightforward.

As the root of § belongs to §, it follows that 9’ refutes . Q

Theorem 2.37. (1) K, is polynomially reducible to K. Further,
(2) K is polynomially reducible to L, and
(3) K, is polynomially reducible to LC,

for any bimodal logic L between Ko and S53.

Proof. First, observe that the decision problem for K, can be polynomially
reduced to the decision problem for ML} -formulas in which no B occurs in

the scope of a modal operator (O or @). Indeed, given an ML}-formula ¢,

denote by ¢* the result of replacing every subformula of the form y = @y
with a fresh propositional variable p,. Let

Ru(p) = {(BY* o Bpy) A(Opy = Bpy) | x = By € subp}.

Then it is not hard to see that
peK, iff  ARulp) - ¢* €K,

and the formula in the right-hand side is as required.
In order to show (1), we take a fresh propositional variable p and define a
(polynomial) translation ¢ from MLY into ML as follows:

q° =q, (g a propositional variable)
(—9)° = —f,
(X A)° = X A Y5,
(@) = O(p — ¥°),
(@9)° = Cy~.

Let us show that for every ML}-formula ¢ without occurrences of @ in the
scope of a modal operator,

peK, iff ¢°eKfS.

First, suppose ¢ ¢ K,. By a straightforward generalization of Proposi-
tion 1.7, we may assume that (9, r) }£ ¢ for some model M based on a frame
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¥ = (W, R, R,), where (W, R) is a disjoint union of intransitive trees with r
being the root of one of them, and R, is the universal relation on W,

Now extend the relation R to a relation R’ by connecting the roots of the
trees with each other. Define a new model MM’ based on (W, R’, R’*) by taking
p to be true everywhere but at the roots of the above trees. One can first
prove by induction that, for all z € W and all subformulas v of ¢ without

the operator &,
Moy € (W,3) "

Now, since no ®@ occurs within the scope of a modal operator, we derive for
all subformulas v of ¢:

M=y i (O,r) = y°

It follows that (9, r) B~ ¢°.

Conversely, suppose that ¢° ¢ KC Then (9, 1) £ ¢ for a model M based
on a rooted frame with root r. Remove from this frame all arrows leading to
points where —p holds in 9, and define the accessibility relation interpreting
® as the universal one. Since ¢ has no occurrences of @ in the scope of a
modal operator, it is not hard to see that ¢ is refuted at r in the resulting
model.

Claims (2) and (3) are proved simultaneously. Define a translation #® from
ML} -formulas into Mﬁg"—formulas (with Oy, O, and Cy, 3)) by taking

® =phrg, (g a propositional variable)
W A d)® = v AP,
(~¥)* = pA-y*,
(@Y)* = pADI(-p A —e — D2(p — ¥*)),
(@)% = pACp(p - v*),

where p and e are fresh variables. Note that if ¢ is an ML;-formula then y*
is an ML,-formula.

We now show that, for every ML} -formula ¢ without occurrences of 8 in
the scope of a modal operator,

(i) ifp—p® e S52C then p € K,,,
(ii) if ¢ € K, then p — o® € K§.
We will then have, for any bimodal logic L between K, and S5,
peK if p-oy*el,
peK, iff p-oye*elC.
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To prove (i), suppose that ¢ € K,. Then (9M,r) & ¢ for some model
M = (§, V) based on a frame § = (W, R, R,), with R, being the universal
relation on W. Define a model 9’ = (§', V') based on §F = (W', Ry, Ry) by
taking

o W'=WU(W x W),

e R, to be the reflexive, transitive and symmetric closure of R}, where
zRyy iff z € W and y = (x, 2), for some z € W,

¢ R; to be the reflexive, transitive and symmetric closure of R}, where
zRyy iff y € W and z = (z,y), for some z € W,

° U'(p)=W,
o W(e) ={(z,y) e Wx W|(z,y) ¢ R},
e V'(q) = V(q), for any other propositional variable q.

Thus, § = (W', Ry, Ry) is a frame for 852. Further, it is not hard to see that
(Ry URy)* is the universal relation on W’. An easy induction shows that, for
all z € W and all subformulas ¢ of v, we have

Ma) =y i (,2) = *

It follows that (', 7) & p — ¢™®, and so p — o™ ¢ S5

Now let us prove (ii). Suppose that p A ~¢® is satisfied at the root r of a
model M = (F, V) based on § = (W, Ry, R;). Define a model M’ = (F', V')
based on § = (W', R, R,) by taking

W' = 9(p),
zRy iff there exists z € W ~ (U(p) U V(e)) such that R,z and 2 Ryy,

R, to be the universal relation on W/,
U'(q) = V(q) N B(p).

One can first prove by induction that, for all z € W’ and all subformulas ¢
of ¢ without the operator @,

M,z)=y if (Mz)k=y*

Now, since no 8 occurs within the scope of a modal operator, we derive for
all subformulas 9 of ¢:

@)= (M) Yt
It follows that (9N, r) b ¢. Q



106 Chapter 2. Applied modal logic

Theorem 2.38. PTL is polynomially reducible to K§.

Proof. By Proposition 2.10, PTL is polynomially reducible to PTL_.
Hence, it suffices to show that PTL_ is polynomially reducible to K¢.

For a formula ¢ of the bimodal language ML, (with Of and O), we put
sub®p = subp U {Ox | x € subyp}

and denote by * the result of replacing all occurrences of O and Op in ¢
with ¢ and ©;-C~, respectively. Let

R(p) = {O1x* — O1x" | x € sub%¢p}.
We show now that for every MLy-formula ¢,
pePTL,, iff C(01TAAR(p)) —¢* €K

The implication (<) should be clear. Conversely, suppose that

(M, wo) k= —¢° AC(O1T A A\ R(p)) (2.32)
for some model M = (F,V) based on a rooted intransitive tree § = (W, R;)
with root wy. First we construct a countable sequence wg, wy,... of distinct

points in W such that w; Ryw, 4+, for all i € N. This sequence will then be
used as the flow of time in which we refute .
Suppose that a sequence ¢ = (wyp, ..., w,) has already been constructed.

Call a pair <m, <>p1/)> a o-defect if m < n, Opy) € subyp, and

o (M wp) | ©1-C~y*, but
o for all : with m + 1 < i < n, we have (I, w;) = ¢¥°.

If there are no o-defects then we take some w,4+; € W such that w, Rywn 41
(wp41 exists because (9, wy) = ©O1T) and continue with the new sequence
o = (wo, .o ,wn,wn+1).

Otherwise, we list all the o-defects (there are finitely many of them). Take
the first o-defect <m, < p¢> in the list. One can prove by induction that for
ali=m,...,n,

(M, w;) = O1-C-y°. (2.33)

Indeed, for ¢ = m this holds by the definition of a o-defect. Now suppose that
(2.33) holds for some i with m < i < n. Then either

(a) (M, wy) |= O19°, or
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(b) (M, w;) = ©101-C-y°.
In the former case, in view of (2.32), we have (0, w;) = 019*, contrary to

<m, <>p1/)> being a o-defect. So case (b) must hold. Since OO py € sub®yp,

(M, w;) | ©101-C* - O0;01-C¢°,

and so

(ms wi) # D1<>1—'C“1/)°,

from which (9, w;41) | O1~C9*.
We have shown that (9, w,) | ©1~C-9°®. So we can find distinct points
Wity ., Wk, in W such that

o w;Rjw; 1 for all i with n < i < ky, and
i (m’wkx) t’= ¥

Now consider the sequence a1 = (wp,...,Wn, Wn41,...,Wk, ), 8nd take the
second o-defect from the previous list o (if any). If it is also a o)-defect then,
by repeating the above argument, we can extend ¢; to some

02 2= (W0, o+, Wny ooy Whyyee ey Why)

and so on. After fixing all the o-defects this way, we obtain a new sequence
o’. Then we list all the o’-defects, ‘fix’ them, and so forth.

In the limit we obtain a sequence (w; | ¢ € N). Define a valuation U’ in
the frame (N, <, +1) by taking

B'(p) = {n € N|w, € B(p)},

for every propositional variable p, and let MM’ = ((N, <, +1),%’). It can be
shown by induction that for all ¢ € suby and all n € N,

(Mwa) Ey*  if (D,n) ¢
Hence, by (2.32), we have (9, 0) [~ ¢, as required. Q

We conclude this section by showing that all epistemic logics LS, intro-
duced in Section 2.3, as well as the temporal logic PTL, can be embedded
into dynamic logics PDL and CPDL. First, with every operator O; of ML,,
(1 £ i < n) we associate an action term t;(0;), j < 5. To this end, we fix
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action variables ay,...,an, B1,...,0, and put, for i <n,

m(0;) = ay,

m(0;) = a;;0f,

m3(0;) = ay,

mg(0;) = (s Ua ),

ms(0;) = a; U (o] ;05) U (B U B)".

Define translations ty, .. ., tg from the language MCS into the language CPDL
by taking for every non-empty set M = {i;,...,ix} € {1,...,n} and every
j=1,...,6

ti(pi) = pi,
ti(p AY) = ti(p) A ti(Y),
ti(~p) = -t (p),
m oy S mi(@a)ltie), if j # 6;
() = {ts(‘P) Alm(@)]te(y), otherwise
ti(Came) = [(M;(04,) U Umy(04, )" ti ().
Theorem 2.39. If L € {K,,T,,K4,,84,,KD45,,,S5,.} then the epistemic

logic L€ is polynomially reducible to CPDL. More precisely, for every Mﬁ,c; -
formula ¢, we have

(i) ¢ € K§ iff ti(p) € PDL,

(i) p € TS iff te(v) € PDL,

(i) ¢ € K4S iff ta(p) € PDL,

(iv) p € 845 iff ta(p) € PDL,

(v) ¢ € S5¢ iff t4(p) € CPDL,

(vi) ¢ € KD45 iff [v*]x — ts(p) € CPDL, where

y=mUaj U...Ua,Ua, UGLUBT U...UB UG,
X = /\[ai;a,-].L/\/\(aan;‘>T—»[ﬁiUﬂ{]_L.

i<n isn

Proof. The proofs are rather straightforward. Here we only sketch the proof
of (vi). Suppose a KD45,,-frame § = (W, Ry,..., R,) refutes ¢ in a world w
under some valuation. Without loss of generality we may assume that w is
the root of §. Define a PDL-structure & = (W, Ty,,...,T3,,...) by taking,
foralu,veW,1<i<n,
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o uT, v iff uR;v and not vR;u;

o ulyv iff uR;v, vR;u and there is no x € W such that zR;u and not
uR;z.

It is easy to show that & refutes [y*]x — t5(¢).

Conversely, suppose that a PDL-structure 8 = (W, T,,,...,Ts,,...) re-
futes [y*] x — ts(p) at its root w. Define an n-frame § = (W, R,,...,R,) by
taking, for all u,v e W,

e uR;v iff either uTov or uT,- ., , v, or uTg 5-).0.
One can readily show that F is a frame for KD45S refuting . Q

Observe that the translations above embed the epistemic logics in question
into the test-free fragments of PDL and CPDL.

Since the composition of two polynomial reductions is a polynomial reduc-
tion, Theorems 2.38 and 2.39 yield:

Theorem 2.40. The temporal logic PTL is polynomially reducible to PDL,
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Chapter 3

Many-dimensional modal
logics

So far we have been considering modal formalisms intended for reasoning
about time, knowledge, beliefs, actions, space independently of each other.
We have completely abstracted from the fact that in reality all these entities
exist in close interaction: knowledge, beliefs and spatial regions can change
over time and under actions, agents in a multi-agent system may have their
own knowledge bases, and so forth. In this chapter we discuss possible ways
of constructing many-dimensional (or combined) modal logics which are able
to capture such interactions. Computational properties of these logics will be
investigated in Parts II-IV.

3.1 Fusions

The formation of fusions, or independent joins, is the simplest and perhaps
most frequently used way of combining logics. Let Ly and Ly be two mul-
timodal! logics formulated in languages £, and L3, both containing the lan-
guage L of classical propositional logic, but having disjoint sets of modal
operators. Denote by £y ® L2 the union of £y and £;. Then the fusion
Ly ® Ly of Ly and Ly is the smallest multimodal logic L in the language
Ly ® L3 containing Ly U Lo, In particular, if Ly is axiomatized by a set of
axioms Az, and L, is axiomatized by Azx,, then Ly ® Ly is axiomatized by
the union Az, U Az,. This means that no axiom containing modal operators
from both languages £; and £, is required to axiomatize the fusion of L; and

1Here by a multimodal logic we mean a logic formulated in any of the languages MLy,
ML, MLy, or MLsy.

111
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L,. The modal operators in £; and £, remain ‘independent,’ they ‘do not
interact;’ however, both L, and L, contain classical propositional logic Cl
Note that the formation of fusions is clearly an associative binary operation
on logics. Thus, one can define the fusion L; ® Ly ® --- ® L,, of n logics in a
straightforward way, for any natural number n > 2. For example, we have

K,=K®---®K, S5, =55®---®8S5, etc.
Nt e’ D e

n n

(see Section 1.4).

Fusions of modal logics have been studied for a relatively long time. The
first explicit result about fusions was obtained by Thomason (1980), who
proved that fusions of consistent modal logics turn out to be conservative
extensions of their components. Further results showing that many important
properties of logics are preserved under fusions were obtained by Kracht and
Wolter (1991), Fine and Schurz (1996), Goranko and Passy (1992), Spaan
(1993), Gabbay (1996) and Wolter (1998).

So far we have considered fusions only from the syntactical point of view.
However, fusions have a very natural semantical interpretation as well, at least
for logics which are Kripke complete. Consider two classes C; and C; of m- and
n-frames, respectively, that are closed under disjoint unions and isomorphic
copies. The fusion C; ® C2 of Cy and C; is the class of all n + m-frames of the
form

(W,Ry,...,Rm,S1,.--,5n)

such that (W, Ry,...,Rpn) € C; and (W, Sy, ..., S,) € Ca.

Thus, C; ® C2 consists of arbitrary combinations of frames from Cy and C,
sharing the same set of worlds. It should be clear that if C; and C2 determine
logics Ly and Lg, respectively, then all frames in Cy ® Ca validate the fusion
L1 ® L;. However, it is rather nontrivial to prove that actually the converse
also holds, i.e., C; ® C2 characterizes L) ® L.

Another important preservation theorem shows that the fusion of two de-
cidable logics is decidable as well. Thus, modulo decidability, fusions can be
reduced to their components. This result heavily relies upon the fact that we
combine propositional modal logics rather than, say, first-order theories, where
such a result does not hold. For example, the first-order theory of one equi-
valence relation ~ has the finite model property and is decidable. However,
the first-order theory of two equivalence relations ~; and ~5 is undecidable
(Janiczak 1953, Ershov et al. 1965).

These results as well as other preservation theorems concerning fusions are
proved in Chapter 4.

We conclude this introductory section by illustrating the role of fusions
with some simple examples.
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Example 3.1. First we explain in more detail why it is natural to consider
the basic epistemic logics, introduced in Section 2.3, as fusions. Take an
agent A and an epistemic logic Ly with the modal operator 04 (‘agent A
knows’) intended for reasoning about the knowledge of A. Assume now that
L g is another epistemic logic formalizing the knowledge of another agent B by
means of the operator Op (‘agent B knows’). If agents A and B are supposed
to interact, we may need a formalism which is able to represent not only the
knowledge about A’s and B’s ‘objects,” but also their knowledge about each
other’s knowledge.

Naturally, we then take the bimodal epistemic language with both oper-
ators 04 and Opg. But what are the principles (axioms) of the logic intended
for reasoning in the combined language? Of course, it should contain L4UL g,
since the principles governing a single knowledge operator should remain the
same in the combined logic. Thus, the logic will contain the fusion L ® Lg.
If no information about the relation between A and B is available, then we
have no grounds to add any axioms containing both boxes 04 and Og. So
in this case the fusion L4 ® Lp is the epistemic logic which can serve for
reasoning about the knowledge of two agents A and B.

It is not hard to imagine various situations when interaction axioms are
required, for instance, when A knows everything that B knows. Then we
should extend the fusion with the axiom

Opgp — Oap.

Another example: A knows about B’s knowledge (when, say, A has construc-
ted B). Then we need the extra axiom

Opp — OaOpp.

But in any case the formation of fusions is the first basic step towards con-
structing multi-agent logics of knowledge.

Example 3.2. Epistemic logics are used in order to formalize reasoning about
knowledge of agents having incomplete information. However, such logics are
able to describe only static pictures. They do not have enough expressive
power to reason, for instance, about changes of knowledge when new informa-
tion becomes available or certain facts are forgotten. To construct a language
which can capture various dynamic features of knowledge, a new temporal ‘di-
mension’ should be added to the epistemic one. Suppose, for example, that an
epistemic logic is extended by means of the temporal operator U (until). The
resulting temporal epistemic language will then contain the modal operators
0; (‘agent © knows’) and U, so that we can express conditions like

(-0ip) U(T;p)
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saying that agent j will know property p, and not later than agent i.

Again, it seems natural to start constructing an axiomatization of the
desirable combination of the epistemic and temporal logics by taking their
fusion. When doing that, we assume no interaction between time and know-
ledge, so agents may forget, learn, etc. Actually, such a fusion is the basic
temporal epistemic logic introduced in (Fagin et al. 1995). In Section 3.4
we discuss this temporal epistemic logic as well as some other logics having
interactions between time and knowledge.

Example 3.3. The nice behavior of fusions of modal logics is particularly
useful in description logic. For instance, having a decidable description logic
with one transitive role, another decidable description logic with one func-
tional role, and one more decidable description logic with one ordinary role,
and taking a suitable fusion of them, we can construct a decidable description
logic with arbitrarily many transitive, functional, and ordinary roles. More
advanced applications of fusions in description logic are explored in (Baader
et al. 2002).

From the semantical point of view, the formation of fusions does not change
the ‘dimension’ of logics: worlds in their frames are still regarded as points
without any ‘many-dimensional feature’ (cf., however, Section 9.1). Let us see
now what happens when we combine logics whose modal operators are sup-
posed to interact. Perhaps the most intuitively transparent is the combination
of temporal and spatial logics.

3.2 Spatio-temporal logics

Suppose that we need a logical formalism which is able to represent knowledge
and reason about spatial regions changing over time. We can then choose a
spatial logic and a temporal logic that reflect our views on space and time
(and satisfy the required effectiveness and expressiveness parameters), say,
BRCC-8 and Loggy(C), for some class C of flows of time, and try to combine
them into a single spatio-temporal system?

This choice (together with common sense considerations) almost uniquely
determines the semantical paradigm of the hybrid under construction. As
we saw in Sections 2.6 and 2.1, static spatial regions are interpreted in a
topological space T = (U,I), and the flow of time is represented by a frame
F = (W, <), where < is a strict linear order on W. It is reasonable to assume
that space with its topology always remains the same. However, the spatial
regions occupied by the objects under consideration may move with time

2Qur choice is motivated mainly by the fact that both components are ‘modal’ logics
considered in this book.
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topological space

e

5

flow of time

Figure 3.1: Spatial regions moving in time.

passing by (see Fig. 3.1). This naive picture can be formalized by means of
the following concept of topological temporal model.

A topological temporal model (or tt-model, for short) based on a flow of
time § = (W, <) and a topological space T = (U, 1) is a triple M = (F, T, a),
where a, an assignment in 9%, associates with every region variable X and
every moment of time w € W a regular closed set a(X,w) € U (that is,
a set a(X) C U such that a(X) = Cla(X)), the state of X at w. Thus,
tt-models can be regarded as two-dimensional structures. Having fixed a
moment of time, we can move in the ‘spatial dimension’ representing the
states of regions at this moment. Having fixed a spatial region, we can move
along the ‘temporal dimension’ tracing the evolution of this region in time.

Let us turn now to the syntactical parameters of spatio-temporal hybrids.
Actually, there are different ways of introducing a temporal dimension into the
syntax of BRCC-8, which give rise to a hierarchy of possible spatio-temporal
languages

ST C ST, C 8T,

The spatio-temporal language STy. The most obvious one allows ap-
plications of the temporal operators § and U only to spatial formulas of
BRCC-8. More precisely, the spatio-temporal language ST is defined as fol-
lows. Every formula of BRCC-8 is also an ST-formula, and if ¢ and ¢ are
STo-formulas then so are pSY¥, ¢UY, ¢ A ¢, and —~p. As usual, we use
abbreviations Op = LUy, Orp = TUp, Orp = ~OpF-p; a new one is
oWy = Orp V (pUy), where W stands for ‘waiting for’ (it is also known as
‘unless;’ see Manna and Pnueli 1992).

For a tt-model 9 = (§,%,a), an STo-formula ¢, and w € W, define
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the truth-relation (MM, w) = ¢ (‘¢ holds in M at moment w’) by induction
on the construction of ¢. Denote by a, the assignment in T defined by
aw(X) = a(X, w), for every region variable X and every w € W. (Recall that
the truth-relation ¥ =" ¢ was introduced in Section 2.6.) Now,

¢ if  contains no temporal operators, then (M, w) = ¢ iff T =% ¢;
o (M, w) = Uy iff there is v > w such that (M, v) = ¢ and (M, u) E ¢

for every u in the interval w < u < v;

o (M, w) = pSY iff there is v < w such that (M, v) = ¢ and (M, u) E ¢
for every u in the interval v < u < w.

Although the interaction between time and space in ST is rather weak, the
language ST is expressive enough to capture some aspects of continuity of
changes (see, e.g., Cohn 1997):

DC(X,Y) — DC(X,Y) WEC(X,Y),

EC(X,Y) — EC(X,Y) W(DC(X,Y) vV PO(X, Y)),

PO(X,Y) — PO(X,Y) W (EC(X,Y) V
TPP(X.Y)VEQ(X,Y)V TPPi(X,Y)),

etc.

The first of these formulas, for instance, says that if two regions are discon-
nected at some moment, then either they will remain disconnected forever or
they are disconnected until they become externally connected. If the flow of
time is discrete then these conditions can be rewritten as:

DC(X,Y) — O(DC(X,Y) VEC(X,Y)),
EC(X,Y) — O(EC(X,Y) vDC(X,Y) V PO(X,Y)),
PO(X,Y) —» O(PO(X,Y) VEC(X,Y) Vv
TPP(X,Y) VEQ(X,Y) VTPPI(X,Y)),
etc.

The spatio-temporal language ST;. Of course, the expressive power of
STy is rather limited. In particular, we can compare regions only at one
moment of time, but we are not able to connect a region as it is ‘today’
with its state ‘tomorrow’ to say, for example, that it is expanding or remains
the same. In other words, we can express the dynamics of relations between
regions, say,

-0 rP(Kosovo, Yugoslavia)
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(‘it is not true that Kosovo will always be part of Yugoslavia’), but not the
dynamics of regions themselves, for instance, that

O%P(EU,OEU),

where OEU at moment n intends to denote the space occupied by the EU
at the next moment (so for the flow of time (N, <) the last formula means:
‘the EU will never contract’). This new constructor may also be important
to refine the continuity assumption by requiring that

OA(EQ(X, 0X) v O(X, 0X)),

i.e., ‘regions X and OX either coincide or overlap.’ (Recall from Section 2.6
that the predicates P and O are expressible in BRCC-8.)

To capture this dynamics, we extend ST by allowing applications of the
next-time operator O not only to formulas but also to Boolean region terms.
Thus, arguments of the predicate symbols in BRCC-8 can be now arbitrary
region O-terms which are constructed from region variables using the Booleans
and O. For instance, OOX represents region X as it will be ‘the day after
tomorrow.” Denote the resulting language by S7. If M = (F,T,a) is a
tt-model and ¢ a O-term, then put

a(t,w’), if v’ is an immediate successor of w in §,
a(Ot,w) = i . . .
0, if ' has no immediate successor in §.

Note that for every O-term and every time point w, a(t,w) is a regular closed
set in T. Using ST we can express over (N, <) that region X will always be
the same (i.e., X is rigid):

OEEQ(X,0X),

or that it has at most two distinct states, one on ‘even days,’ another on ‘odd
ones:’

OLEQ(X,00X).
Note, by the way, that the ST 1-formula

OENTPP(X,0X)

is satisfiable only in models based on infinite topological spaces—in contrast
to BRCC-8 formulas, for which finite topological spaces are enough (see The-
orem 2.31).

It may appear that ST, is able to compare regions only within fixed time
intervals. However, using an auxiliary rigid variable X we can write, for
instance,

DEEQ(X, 0X) A © rEQ(X, EU) A P(Russia, X).
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This formula is satisfiable iff ‘some day in the future the present territory of
Russia will be part of the EU.” Note that the formula

O pP(Russia, EU)

means that there will be a day when Russia—its territory on that day (say,
without Chechnya but with Byelorussia)—becomes part of the EU.

The spatio-temporal language S7 2. Imagine now that we want to ex-
press in our spatio-temporal language that all countries in Europe will pass
through the euro-zone, but only Germany (in its present territory) will use the
euro forever. Unfortunately, we do not know which countries will be formed
in Europe in the future, so we cannot simply write down all formulas of the
form

O pP(X, Euro-zone).

What we actually need is the possibility of constructing regions OrX and
OrX which contain all the points that will belong to region X in the future
and only common points of all future states of X, respectively. Then we can
write:

EQ(Europe, Ot Euro-zone)

and
EQ(Germany, O} Euro-zone).
The formula
P(Russia, O pEU)
says that all points of the present territory of Russia will belong to the EU in
the future (but perhaps at different moments of time).

So let us extend ST by allowing the use of temporal region terms, con-
structed from region variables, the Booleans, and the temporal operators U
and S with all their derivatives, as arguments of the RCC-8 predicates. In
other words, every region variable is a temporal region term, and if ¢; and t;
are temporal region terms then so are ¢; Nty t; Lty, -y, Ofty, Orty, Opty,
Opty, Oty, t1l4ts and t1Sty. The resulting language will be denoted by ST 5.

The intended semantics of temporal region terms is as follows. Suppose
M = (§,T,a) is a tt-model. Define inductively the value a(t,w) of a temporal
region term t under a at w in M by taking:

a(Ort,w) = CI | J a(t,v),

v>w

a(Opt,w) = CI ﬂ a(t,v),
row

a(tildtz,w) = Cl{z | Fv > w(z € a(tz,v) AVu(w < u <v — x € a(t1,u)))},
a(t1Stz, w) = Cl{z | v < w(x € a(t2,v) AVu(w > u > v — 1 € a(t1,u)))},
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and the corresponding clauses for ©p, Op and the Booleans. For example,
the formula

DC(Russia S Russian_Empire, Russia S Germany)

can be used to say that the part of Russia that has been remaining Russian
since 1917 is not connected to the part of Germany (Konigsberg) that became
Russian after the Second World War.

Note that the operators O r and Of on temporal region terms are dual in
the sense that for every assignment a, every region term t, and every moment
w we have

a(Ort,w) = a(-0Op-t, w).

Indeed, suppose that a(t,v) = CIX, for v > w. Using the duality of C, I and
U, N, it is easy to see that the equality above is equivalent to the following
one

ct | J cix, = cic | Icix,

> w v>w

which holds in any topological space.
The inclusion 2 follows from

CIC U ICIX, = CICI U ICIX, = CI U ICIX,.

vo>w vOw v>w

To show C, it suffices to observe that for every v > w, we have CIX, C
CICLX,, from which CIX, C C | J ICIX,, whencel | J CIX, C C | J ICIX,,

v>w v>w y>w

and so CI | CILX, € C | ICIX, = CI | J ICLX, because CX is the smal-
v>w v>w v>w
lest closed set containing X and every union of open sets is open.

Further, ¢ r and O can be defined via U as usual:
Opt = TUt, Ot = 1Ut.

(So ST is in fact an extension of ST.)

It is also worth noting that in the definition above we have to use the
prefix CI in the right-hand parts because infinite unions and intersections of
regular closed sets are not necessarily regular closed, while all temporal region
terms are supposed to be interpreted by ‘regions’ of topological spaces. For
example, an infinite union of closed intervals in R can be open and an infinite
intersection of closed intervals can be just a single point, the regular closure
of which is empty:

[o,0]

[1/n,1-1/n] = (0,1), n[—l/n’l/n] = {0}.
1 n=1

n=
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Actually, as we shall see below, infinite operations bring various semantical
complications. To avoid this problem, we can try to restrict assignments in
models in such a way that infinite intersections and unions can be reduced to
finite ones. There are different ways of doing this.

One idea would be to accept the Finite Change Assumption:

FCA No region can change its spatial configuration infinitely often.

This means that under FCA we consider only those tt-models M = (F, ¥, a)
that satisfy the following condition: for every temporal region term t there
are pairwise disjoint convex sets I1,..., I, of points in § = (W, <) such that

W=LU---UI,

and the state of t remains constant on each I; (i.e., a(t,u) = a(t,v) for all
u,v € I;). Note that for the flow § = (N, <) FCA can be captured by the
ST 3-formulas O pOrEQ(E, OF).

Of course, FCA excludes some mathematically interesting cases. Yet,
it is absolutely adequate for many applications,® for example, when we are
planning a job which eventually must be completed (consider a robot painting
a wall). Optimists would accept FCA to describe the geography of Europe
in the examples above. In temporal databases the time line is often assumed
to be finite, though arbitrarily long, which corresponds to FCA.

Another, more general, way of reducing infinite unions and intersections
to finite ones is to adopt the Finite State Assumption:

FSA Every region can have only finitely many possible states (although it
may change its states infinitely often).

Say that a tt-model M = (¥,T, a) satisfies FSA, or is an FSA-model, if
for every temporal region term ¢ there are finitely many regular closed sets
Ay, ...,Am C U such that {a(t,w) |w € W} = {A;,...,An}.

Example 3.4. We illustrate possible applications of the language introduced
above by showing a toy spatio-temporal knowledge base. Consider the follow-
ing scenario of how the foot and mouth epidemic spreads across a country.
Assume that the country consists of disjoint regions: farms, towns, forests,
rivers, etc. The map of the country can clearly be represented as a database
of RCC-8 formulas. Besides, we require that all these regions are rigid, i.e.,
OLEQ(X, OX) (as quantification over regions is not allowed, we have to write
such formulas for all regions X on the map). Now, suppose that at moment
0 foot and mouth has been detected only at one farm Xo:

EQ(F&M, Xo) A P(Xo, Farm).

3‘What has been is what will be and what has been done is what will be done; there is
nothing new under the sun.’ (Ecclesiastes)
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The region F&M, representing the current contaminated part of the country,
is not rigid. Nor is the region Stock representing the farms with live-stock.
Let Xo,..., X, be all the farms in the country. We then should clearly have,
for all i < n:

07 (O(X;, Stock) — P(X;, Stock)).

OLP(Stock, Xo U -+ U Xp).

0L ((O(Xi, F&M) — P(X;, F&M)).
+
F

OLP(F&M, Stock).

Suppose also that if one farm suffers from foot and mouth, then at the next
moment the disease will spread to all neighboring farms with stock, but not
further, i.e., for all 1,7 < n,

OF (P(X:, F&M) AEC(X:, X;) A P(X;, Stock) — OP(X;, F&M)).
Of (~EC(X;, F&M) — O-P(X;, F&M)).

As the government takes proper measures against the disease, in a few mo-
ments (say, two for definiteness), a farm with foot and mouth will have no
live-stock. On the other hand, the government is going to help the farmers
to continue their business, so eventually new stock will be purchased (but
nobody knows when):

03 (P(X,, P&eM) ~ 0O(-O(X,, F&eM) A ~O(X,, Stock) ).
0% (P(X, Stock) — © ¢P(X;, Stock)).

Denote the resulting knowledge base by ¥. We can use it to answer queries
like ‘how much time the government needs to get rid of the disease’ or ‘when
it is safe to buy new animals,’ for instance, by checking whether formulas of
the form

O...0EQ(F&M,1), 0O...0(~0rP(X;, F&M))

are logical consequences of .

It is worth noting that in this example we have a typical mixture of ‘a
sort of’ model checking and deduction: while the map of the country is sim-
ulated by taking all RCC-8 relations which hold true between farms, towns,
forests, etc., knowledge about regions like F& Mand Stock is incomplete, since
it depends on the future development. So to decide whether ¥ |= ¢ holds or
not proper deduction (or theorem proving) is required; cf. (Halpern and Vardi
1991).
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Modal formalisms for spatio-temporal reasoning

As we saw in Section 2.6, BRCC-8 can be embedded into the bimodal logic
S4,,. Similarly, the constructed temporalizations of BRCC-8 can be translated
into the language

PST = MLsy @ MLY,

or propositional spatio-temporal language, which contains the temporal oper-
ators S and U, and the modal operators of S4, (which we denote, to em-

phasize their topological interpretation, by I, C, and @, @) as well. The
intended models of PST, called topological PST -models, are triples of the
form M = (F, T, U), in which F = (W, <) is a flow of time, T = (U, I) a topolo-
gical space, and 4, a valuation, is a map associating with every propositional
variable p and every w € W a set U(p,w) C U. U is then extended to arbitrary
PST-formulas in the following way:

o WY A x,w) = (¥, w) NU(x, w);

o U(~v,w) =U — Uy, w);

o Y(@yY,w) = U if U(y,w) = U, and U(@¢, w) = @ otherwise;
o U(Iy, w) = LUy, w);

o z € U(ypUx,w) iff there is v > w such that x € U(x,v) and x € U(¢, u)
for all u in the interval w < u < v;

e z € U(PSx,w) iff there is v < w such that € U(x,v) and z € U(, u)
for all 4 in the interval v < u < w.

In particular,

WOrp,w)y = J Uw,v),  WOrp,w) = [ Uw,v),

v>w v>w
(O, w) = (¢, w'), if w' is an immediate successor of w in §,
R0, if w has no immediate successor in §.

A PST-formula ¢ is satisfied in N if U(p,w) # B, for some w € W. We
say that a topological PST-model M = (F, T, U) satisfies FSA if for every
variable p there are finitely many sets Uy,...,U, C U such that

{U(p,w) |we W} ={Uy,...,Upn}.
The following toy example illustrates the expressive power of PST:
Op®@(—Icockroach A (Ccockroach — habitat)),
O rM®(habitat — Ohabitat),
®C O pcockroach.
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These formulas say that (a) cockroaches form a dense set in their habitat (but
for humans they are invisible), (b) the cockroach habitat will never contract,
and (c) sooner or later, cockroaches will appear in the neighborhood of every
place on Earth.

Let us encode now ST ;-formulas in the language PST by extending the
translation > of Section 2.6. For a temporal region term ¢, define a PST-
formula t™ by taking:

XX = Clp;, (X; is a region variable),  (t; Mt2)™ = CI(t} A t3),
(t1 Ltx)™ = CI(t} v i), (t1Ut2)™ = CI(tTULY),
(=t)™ = CI-t™, (t1St2)™ = CI(t}'Sty).

Note that we also have
(ot)™ = CIOt™, (OFt)™ = CIO pt™, (Opt)™ = CIOp™.

For atomic S7 ;-formulas, let

(=)
A

(t1,82))™ = ~®(t] A L3),
(EQ(t1,t2))™ = B(tY & ¢3),
(PO(ty, t2))™ = S(ItT ALtY) A (1T A ~th) A @(=tT A L),
(EC(t1,t2))" = (T A7) A MY A TLY),
(TPP(t1,t2))™ = B(-tY Vi5) A (17 A -ItF) A S (T A LY),
(NTPP(t1,t2))™ = @(—t} VItH) A &(—t7 A tY).

Suppose now that y is an arbitrary ST >-formula. Then ¢™ denotes the result
of replacing all occurrences of atomic formulas R(ty,t2) in p with (R(¢;,¢2))™.
It should be clear from the definition that we have:

Theorem 3.5. An ST 3-formula ¢ is satisfiable in a tt-model (with FSA)
based on a flow of time § iff ¥™ is satisfiable in a topological PST -model
(with FSA) based on §.

The two-dimensional character of spatio-temporal logics becomes even
more apparent if we interpret spatial formulas of BRCC-8 in rooted Kripke
frames & = (V, Ry, Ry) for 84, (i.e., where (V, Ry) is a quasi-order and Ry
is the universal relation on V). Let § = (W, <) be a flow of time. Then
PST-formulas are interpreted in 3-frames of the form

Fx6 = <W X sz9ﬁl,-ﬁ\1>1

where W x V is the Cartesian product of W and V, le., the set of all pairs
(w,z), for w € W and = € V, and the relations <, R; and Ry are defined
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coordinate-wise: for all (w;,z;) and (wg,z2) in W x V,

(w1, 21) < (wq, x2) if w; <wpand =1z,
(wl,xl)ﬁl ('w2,.’l:2> iff w1 = Wy and leI.’Eg,

(w1,71) Ry (wa,x2)  iff  wy = we.

The temporal operators S and U are interpreted by means of the relation
<, while the interior and closure operators of S4, (into which we embed
BRCC-8) are interpreted by Ry, and the universal modalities of S4,, by Ry.
The frame § x ® is known as the product of Kripke frames § = (W, <)
and & = (V,R1, Ry). (Products of frames and the corresponding many-
dimensional modal logics are among the main topics of this book; we will
introduce them in Section 3.3.)

As we saw in Section 2.6, every Kripke frame & for S4, gives rise to
a topological space ¥¢. Similarly, every Kripke model (§ x ®,%), where
¥ = (W, <) is a flow of time and & = (V, Ry, Ry) is a rooted S4,-frame, can
be transformed into a topological PST-model (F, Te,4l) in which, for every
propositional variable p, every w € W and every v € V,

vedlpw) iff (w,v)eD(p).
Now it is straightforward to prove the following:

Proposition 3.6. For every PST -formula o, if ¢ is satisfied in the Kripke
model (§F x &,), then ¢ is satisfied in the topological PST -model (¥, Te, ).

It is worth noting, however, that the sets of PST -formulas satisfiable in the
above Kripke models and in topological PST-models turn out to be different.
Consider, for example, the formula

OrCp &« COFpp.

It is clearly valid in every Kripke model based on the product of a flow of
time and a rooted S4,-frame. On the other hand, we can refute this formula
in a topological PST-model: it suffices to take T = (R, 1) with the standard
interior operator on the real line and the flow of time § = (N, <}, then select a
sequence X, of closed sets such that | ),y Xn is not closed, and put #(p,n) =
X,. As we shall see in Section 16.2, the two types of models are equivalent
with respect to the modal translations of ST o-formulas under the finite state
assumption FSA.

BRCC-8 + At¢-13

We conclude this section by showing how one can design a temporal extension
of BRCC-8 based on the interval approach to temporal representation and
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reasoning. Such a combination may appear to be rather natural because the
region-based approach to spatial reasoning closely mirrors the interval-based
approach to temporal reasoning—they both take extended entities rather than
points as primitives.

Following (Allen 1984) we write HOLDS(¢, i) to say that a formula ¢ holds
during a time interval i. For example, HOLDS(PO(X,Y’), 1) means that during
interval 7 regions X and Y partially overlap. Let us call an ARCC-8 formula
any Boolean combination of atomic A#¢-13 formulas and formulas of the form
HOLDS(¢, i), where ¢ is a BRCC-8 formula.

ARCC-8 formulas are interpreted in interval topological models which are
triples of the form Mt = (§F, %, a), where § = (W, <) is a strict linear order,
T = (U,I) a topological space, and assignment a associates with every interval
variable 1 a non-empty convex set a(i) in §, and with every region variable
X and every moment of time u it associates a regular closed set a(X,u) in
T. Now, the truth-relation for the .A#¢-13 atomic formulas is defined as in
Section 2.2, and HOLDS(¢p, 1) is true in 9 iff for every point u € a(i) we have
% =% ¢ (as defined in Section 2.6). Here is a simple example of a formula of
this unsophisticated language which holds in every interval topological model:

meets(i, j) A during(i, k) A during(j, k)
A HOLDS(TPP(Hong-Kong, UK) A EC(Hong_Kong, China), t)
A HOLDS(DC(Hong-Kong, UK), )
A HOLDS(EC(UK, China) vV DC(UK, Chine), k)
— HOLDS(EC(UK, China),1).

By combining the translations -* of Section 2.2 and ™ of Section 2.6, it is
not hard to embed ARCC-8 into the language PST interpreted in topolo-
gical PST-models based on arbitrary flows of time. Moreover, a combin-
ation of satisfiability-checking algorithms for A42£-13 and BRCC-8 yields a
satisfiability-checking algorithm for ARCC-8, also showing that the satisfiab-
ility problem for ARCC-8 is in NP. We leave details to the reader as an
exercise.

3.3 Products

In the previous section we saw how spatio-temporal logics can be interpreted
in products of certain frames. The formation of Cartesian products of vari-
ous structures—vector and topological spaces, algebras, etc.——is a standard
mathematical way of capturing the multidimensional character of our world.
In modal logic, products of Kripke frames are natural constructions allowing
us to reflect interactions between modal operators representing time, space,
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knowledge, actions, etc. Products of modal logics (i.e., the sets of multimodal
formulas valid in products of Kripke frames for those logics) have been studied
in both pure modal logic (see, e.g., Segerberg 1973, Shehtman 1978, Gabbay
and Shehtman 1998, Marx 1999) and applications in computer science and
artificial intelligence (see, e.g., Reif and Sistla 1985, Fagin et al. 1995, Baader
and Ohlbach 1995, Reynolds 1997, Finger and Reynolds 1999) since the 1970s.

Two-dimensional products

We define the product of an n-frame §, = (Wl, R{, ey Ri‘) and an m-frame
F2 = (Wy, R}, ..., RY) as the n + m-frame of the form

31 x F2 = (WL x Wo,R},...,RL,R),...,R))
in which, for all uy,us € W; and vy,v2 € Wy,
(u1,v1) R}, (u2,v2) iff uiRiuz and vy =v2 (1 <i<n),
(u1,v1) R (uz,v2) iff u; =u and viRjv; (1<j<m).

Such a frame will be called a product frame. The subscripts h and v appeal
to the geometrical intuition of considering the R} as ‘horizontal’ accessibility
relations in §; x F2 and the R} as ‘vertical’ ones; see Fig. 3.2 for an illustration.

Given a class C; of n-frames and a class C; of m-frames, we define their
product C; x Cq by taking

C1 xCy = {F: xF21F1 € C1,F2€Ca}.

Let Ly and L, be two Kripke complete multimodal logics formulated in
languages £; and L. As in Section 3.1, denote by £, ® L2 the smallest
multimodal language containing the language L of classical propositional logic
together with the disjoint union of the modal operators of £; and £,. (For
example, if £ = ML, and Ly = ML,, then £ ® L2 = MLy 1+1n.) We define
the product of Ly and L3 as the multimodal logic

Ly x Ly = Log(FrLy x FrLj)

in the language £1 ® L. In other words, Ly x Lo is the set of £} ® Lo-formulas
that are valid in all product frames §; x §2, where §; is a frame for L; and J»
a frame for L,. For example, K,, x K, is the n + m-modal logic determined
by all product frames §; x §2, where §; is an n-frame and §2 an m-frame;
S4 x 85 is the bimodal logic determined by all product frames §; x F2 such
that §; |= S4 and §, = S5.

It is worth emphasizing that in the definition of Ly x L, we take the
classes of all Kripke frames for L, and L;. The reason is that the equalities
LogCy = LogC; and LogC; = LogC; do not necessarily imply that

Log(C1 x Cz) = Log(C} x C})
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(an example will be given in Theorem 7.11 of Section 7.2). Actually, instead
of the classes of all frames for L; and L, in this definition we can take the
classes Fr" Ly and Fr" L of rooted frames for L{ and L. Indeed, the inclusion

Ll‘X L2 - Log(Fr'Ll X FerQ)

is clear. To show the converse, suppose ¢ € Ly x Lq, i.e., ¢ is refuted at a
point (u,v) in some §; x F2 € FrL; x FrL, under some valuation. Let ®,
and @, be the subframes of ¥, and J2 generated by u and v, respectively.
Then by Theorem 1.13 &, |= L, for i = 1,2. On the other hand, it is readily
checked that &; x ®; is isomorphic to the subframe of F; x 2 generated by
(u,v). It follows that ¢ ¢ Log(Fr"Ly x Fr"Ly). Thus we obtain the following:

Propaosition 3.7. For all Kripke complete modal logics Ly and L,

Ly x Lz = Log(Fr" Ly x Fr"Ly).
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Products of logics always contain their fusions. Indeed, given a product
frame

$1xF2= (W1 x Wo,R},...,RR,R,,...,RT)

and points x € W1, y € W, we define

WY = {(w,y) | w e W1},
Wz—{( yv) | v e Wa},
SY=R,n(W¥xW}) (1<i<n),
S = R’ﬂ(Wz’xWﬁ (1<j<m),

and the ‘coordinate-wise’ frames
l, 3 1 ¥
§=(WhSiv . sY), 35 = (WE,ShE,., 5.

Then for all z € Wy, y € Wy, the frames §¥ and §% are isomorphic to §; and
2, respectively, and

(WIXW2’R)1U"', >— 2311 <WIXW27 v - Rm)“ 232

yEW, TEW,

Now suppose that §; = L; (i = 1,2). Then, by Theorem 1.13, §; x ¥, is a
frame for the fusion L1 ® L, of Ly and I.,. Thus we have proved the following:

Proposition 3.8. For all Kripke compiete modal logics L, and Lo,
L1®L2 g Ll x Lz.

As we shall see in Section 5.1, this inclusion is proper: product logics al-
ways include certain interactions between the modal operators of their com-
ponents. Note, however, that the modal operators within each component are
not affected by these interactions. More precisely, we have:

Proposition 3.9. For any two consistent Kripke complete modal logics L,
and Lo, their product Ly x L, is a conservative ertension of both L, and L.

Proof. Let ¢ be a formula in the language of L; such that ¢ ¢ L;. Then
1}~ o for some §; | L. Take any frame §2 for L. It should be clear that
S1xF2 -, andso p ¢ Ly x La. Q

The following simple result showing that the product construction com-
mutes with the three basic operations on frames (see Section 1.4) will be often
used in Part II. We leave the proof to the reader as an exercise.
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Proposition 3.10. For all frames §, ®, 9, H;, 1 € I, the following hold:

(i) If § is a p-morphic image of $, then F x 6 is a p-morphic image of
HxG.

(ii) If § is a generated subframe of $H, then F x G is a generated subframe
of Hx B,

(iii) If § is o disjoint union of $;, i € I, then § x ® is isomorphic to the
disjoint union of H; x G, i € I.

Similarly to products of logics, one can also define products of consequence
relations. Given Kripke complete modal logics Ly and L formulated in lan-
guages £, and L3, respectively, define the consequence relation +j x Fj.
between formulas in the language £, ® £, by taking

p(FpxFL)w  iff  for all models M based on a frame in FrLy x FrLy,
M = ¢ whenever M |= ¢.

A natural question arises then as to how F} x I} relates to the global con-
sequence relation -7, ; . Clearly, if L, x L3 is globally Kripke complete then
+1,% F1, always contains 7 . ;.. In fact, as we shall see in Theorem 5.12,
in many cases they coincide.

The reader should have no difficulties with defining products of logics in the
languages MLy and MLgsy (say, PTL x PTL, PTL x S5, Logg;, (N) x S4;)
by extending the definitions above in a straightforward way.

Higher-dimensional products

In principle, there are two ways of defining products of three or more modal
logics. First, we can generalize in a straightforward way the definitions of
the previous subsection. (To simplify notation, we consider here products
of unimodal logics.) The product §1 x --- x §, of frames F; = (W;, Ry),
i=1,...,n,is the n-frame

<W1 X ---XWn,Rl,...,Rn)

where, for each i = 1,...,n, R; is a binary relation on W) x .- x W, such
that

(uty..oyun) Ri(vr,...,vn) iff w;Ryv; and up = vg, for k # 1.

Then, given Kripke complete (unimodal) logics L; (i = 1,...,n), we define
the product logic Ly X - - - x L,, as the set of all n-modal formulas that are valid
in all product frames §; x - -+ x §, such that §; |= L; forevery i = 1,...,n.
For example, K" is the logic determined by all n-dimensional product frames;
85" is the logic determined by all product frames §; x - - - x §,, where §; = S5
foreachi=1,...,n.
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The second way would be to define Ly x --- x L,, as
(((L] X Lg) X L3) X - X Ln—l) X Ln.
The easily established fact that the frame §; x --- x §,, is isomorphic to

(((F1 x F2) X F3) X -+ X Fn1) X Fn

might seem to suggest that the two definitions are equivalent. However, the
situation is not that simple. For example, it is an open question (asked by
V. Shehtman) whether the equalities

K!=K3>xK and S5'=85%x8S5

hold. The problem here is that K* is characterized by the class of products of
four 1-frames, while K3 x K by the class of products of arbitrary 3-frames for
K3 and 1-frames for K. Now, the thing is that these arbitrary K3-frames are
not necessarily isomorphic to product frames (in fact, we do not even know
what they look like; see Theorem 8.29).

For this reason, we take as the only ‘official’ definition of Ly x --- x L,
the equality

Lyx---x L, =Log(FrLy x --- x FrLy,).

Note, however, that in Section 5.1 we provide a characterization of arbit-
rary (countable) frames for K x K and S5 x S5 (among many other 2D
logics), and prove—with the help of this characterization—that for many
three-dimensional products the two definitions coincide. For instance,

K3
S53

(K xK) x K,
(S5 x S5) x S5

(see Corollary 5.11).
Similarly to Proposition 3.7, we have:

Proposition 3.11. For all Kripke complete modal logics Ly, ..., Ly,
Ly x---x Ly =Log(Fr"Ly x --- x Fr"Ly,).

In particular, S5" is determined by products of frames (W;, R;) where
R; = W; x W; is the universal relation on W;, for every i = 1,...,n. Product
frames of this kind will be called universal product S5"-frames. We denote
such a frame by (W;,...,W,) and sometimes call it the universal product
frame on Wy x --- x W,. It is to be noted that each universal product frame
(W1, ...,W,) is a p-morphic image of a cubic universal product frame, i.e.,
a frame of the form (W,...,W). Indeed, it is easy to see that if a set W is
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such that there are surjections f;: W — W;, for i = 1,...,n, then the map f
defined by

f(wl» <o awn) = (fl(wl)’ v ’fn(wn))
is a p-morphism from the frame (W,..., W) onto (Wy,...,W,). Such a set
and surjections can be found, for example, by taking the disjoint union of the
W; as W and defining f; so that it is the identity map on W, and arbitrary
otherwise. Thus we obtain:

Proposition 3.12. 85" is determined by the cubic universal product frames.
Observe that the n-dimensional analogs of Propositions 3.8 and 3.9 hold:
Proposition 3.13. For all Kripke complete modal logics Ly,. .., Ly,
Li®Ll,® QL CLyxLyx.--xLy.

Proposition 3.14. The product Ly x - -+ x L,, of consistent Kripke complete
logics Ly, ..., Ly ts a conservative extension of each of them.

Moreover, we also have:

Proposition 3.15. Let L,,...,L,, L4, be consistent Kripke complete un-
tmodal logics. Then the logic Ly X -+ x L, X L4 is a conservative extension
of Ly X -+- x Ly, i.e., for every ML, -formula p,

pe€Lix---xLy #ff wp€Lix--+xLyxLps.

Proof. We prove this only for L; = L, i = 1,...,n,n + 1; the general case
is considered in a similar way. First, it is readily checked that for any n + 1-
dimensional product frame

F=(Wr1x - x Wy x Wayr,Riy..., R, Rutr),
the projection map
flwi, ... wn, Wayt) = (Wi, .., wh)
is a p-morphism from the ‘n-reduct’
Sy = (Wi x - x Wy x Wy, Ry, ..o Rn)
of § onto the n-dimensional product frame
§ =(Wix- - xWu,Ry,...,Rp).

Now suppose that ¢ € L™*! and & is an n-dimensional product frame
for L™. As L is consistent and Kripke complete, there exists a frame $ for
L. Then the product § = ® x £ is a frame for L™*!, and so § = ¢. Since
§~ = ®, by the p-morphism theorem we finally obtain & }= .

Conversely, suppose that ¢ € L", and let § be an n + 1-dimensional
product frame for L™*!. Then clearly §~ is a frame for L", and so § = ¢. Q
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Product logics were defined as sets of modal formulas that are valid in
classes of product frames. It is important to stress that in general there are
frames for product logics which are not product frames. Thus, in the case
of product logics, it is meaningful to speak not only about the finite model
property, but also about product finite model property. a product logic L has
the product fmp if L is characterized by the class of its finite product frames.
Note that by Proposition 3.13, for every product frame § = §; X - - X §n and
product logic L = Ly x --- X Ly,

SEL ff F.EL,foralll <i<n.

Obviously, the product fmp implies the fmp. However, the converse does not
hold: we shall see a number of counterexamples in Section 8.4.

We can enumerate the formulas that are not in a product logic L (and
thereby obtain a decision algorithm for L whenever L is recursively enumer-
able) if

¢ L has the product fmp, and

o finite product frames for L are recursively enumerable (up to isomorph-
ism).
The latter property clearly holds if L is a product of finitely axiomatizable
Kripke complete logics such as K, K4, S5, etc. However, not so many product
logics enjoy the product fmp.
We can say much more about countable product frames:

Theorem 3.16. Let L; be a Kripke complete unimodal logic such that FrL;
is first-order definable in the language having equality and a binary predicate
symbol R;, for eachi = 1,...,n. Then L, x --- x L, is determined by the
class of its countable product frames. -

Proof. For each 1, let I'; denote the first-order theory defining FrL;. Extend
our first-order language having equality and Ry, ..., R, with n unary function
symbols fi,..., f,. For each ¢ € I';, denote by ¢’ the formula obtained by
substituting f;(z) for all occurrences of each variable z in ¢ (i = 1,...,n).
Let

L={¢'|pely,i=1,...,n}U{r},

where 7 is the following sentence:

VaVy (fi(z) = AW A A falz) = faly) = z=y) A
Vzy...V2 3y (fi(y) =21 A A faly) = 24) A

Ava¥y (zRy o (F@RSW A N 5@ = £)).
i=1 j=1
J#i
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Now suppose that ¢ ¢ Ly x -+ x Ly, for some ML, -formula ¢. Then ¢ is
not true in a model M = (F, V) based on the product F X - -+ x F, of frames
Fi = (W, S;) such that &, |=T'; for i = 1,...,n. Take the first-order language
having equality and R;,..., Ry, f1,..., fn as above and also countably many
unary predicate symbols Py, P,.... Define a first-order structure I of this
language by taking

I= <Wl XX Wn)s'lv---ygnaprl"-'1mn,m(p0)1m(pl)7"'>1

where pr; : W) x -+ x W, — W, are the projection functions. It is readily
checked that I |= . Since without the projections I is nothing but the modal
model M considered as a first-order structure (see Section 1.3), we also have
I £ Vxp*(x) (where ¢* is the standard translation of ). In other words,
¥ = U {3z—¢*(x)} is true I. By the downward Léwenheim-Skolem-Tarski
theorem, there is a countable first-order structure

J=(W,Ri’,..‘,Ri,fi],...,f,{,Pd’,P{,...)
such that J = £'. Foreachi=1,...,n, define

Ui = {f/(w) | we W},
Qi = R{n(U; x Uy),

and for each j < w,
Pl = {{f{(w),.... fl(w)) |we P}}.

Since J |= 7, the map h(w) = (f{(w),..., f;/(w)) is an isomorphism between
J and the first-order structure

I'= <Ul X "'xUn!Q—lv‘“$Q-n»prl’---7prn7P0"P1’lv"'>'

Thus, I’ = ¥ and I' £ Vre*(x). Let 8; = (U;,Qy), i = 1,...,n. Define a
valuation 20 in the (countable) product frame

B=06;x:--x6,

by taking 20(p;) = Pj’ " for j < w. Then I' without the projections is just the
modal model Mt = (®,20) considered as a first-order structure, and so ¢ is
not true in N.

Note that in fact we have also proved that

pwe€lyx - xLy if ¥ Ve (), (3.1)

for any ML,,-formula . Q
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In many cases the product construction preserves recursive enumerability
of the components:

Theorem 3.17. Let L; be a Kripke complete unimodal logic such that FrL;
is definable by a recursive set of first-order sentences in the language having
equality and a binary predicate symbol R;, for each i = 1,...,n. Then the
product logic Ly x - -- X Ly, is recursively enumerable.

Proof. We use the notation of the proof of Theorem 3.16. Since now the sets
I'; are recursive, ¥ is recursive as well. And since the consequence relation
of first-order logic QCIl is recursively enumerable, it follows from (3.1) that

Ly x --- x Ly, is recursively enumerable. Q
Modal description logics First-order modal logics
Section 3.8 Sections 3.6,3.7

Chapters 14,15 \ /

Modal products
/ \ Sections 8.1,8.4

Sections 3.5,8.1 Chapter 9

Classical first-order logic Algebraic logic

Figure 3.3: Products and other many-dimensional formalisms.

Besides their obvious connection to fusions, products of modal logics are
related to other many-dimensional formalisms considered in this book. We
saw in Section 3.2 how they show up in spatio-temporal representation and
reasoning. In the next section we shall see a family of temporal epistemic logics
ranging from fusions to products. Fig. 3.3 indicates some other connections
which will be discussed later on in the book. Product logics themselves will
be investigated in detail in Chapters 5-8.

3.4 Temporal epistemic logics

A large family of combined modal logics has been constructed with the aim
of formalizing the behavior of multi-agent systems; see, e.g., (Ladner and
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Reif 1986, Lehmann 1984, Parikh and Ramanujam 1985, Sato 1977). In this
section we briefly discuss the approach proposed by Fagin et al. (1995), which
gave rise to various combinations of propositional temporal and epistemic
logics ranging from fusions to products of these logics.

Consider a certain system & about which we know only that the state of
S at each moment of time belongs to some set S of states. Suppose further
that the flow of time is § = (T, <). Then every possible evolution of & over
J can be represented by means of a function f associating with each moment
t € T the state f(t) € S of & at t. Such an f will be called a run over §.
Thus, the collection of all possible runs over § is the set of all functions from
TtoS.

Example 3.18. We illustrate these concepts using the ‘multi-agent system’
of three wise men from the ‘wise men puzzle’ analyzed in Section 2.3. The
‘agents’ of the system are the three wise men, denoted by A, B and C. Each
of them wears either a red or a white hat. Thus, for each D € {A, B,C} we
can define the set of (relevant) local states Sp of D as

Sp = {r,w}.

The meaning of ‘D is in state v’ or ‘D is in state w’ is ‘D’s hat is red’ or
‘D’s hat is white,’ respectively. The set S of states of the whole multi-agent
system is then the Cartesian product

S=SAXSBXSC.

A run f in this example is a function which associates with every moment
of time t the distribution of the red and white hats among the wise men at
t. As the king does not change the location of the hats, we may assume that
each run in the wise men puzzle is a constant function associating with every
t € T the same triple {c}, 2, c3) of colors. We will come back to this example
later on in this section.

Assume now that the states s € S come equipped with the set of classical
propositional (i.e., nontemporal) formulas that are true in s. In other words,
assume that there is a valuation U which associates with every propositional
variable p the set of states B(p) C S in which p is true. Now, for each run f
over §, we can define a valuation iy over § by taking

Up(p) = {t € T | f(t) € V(p)}

for each propositional variable p. Then, for every MLgsy-formula ¢, every
moment ¢ € T, and every run f over §, we can define the truth-relation

t,f) E e
tHEe f (FuUt)kE=e
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This formalism is nothing else but a special representation of the temporal
logics discussed in Section 2.1.

Example 3.18 (cont.) From now on, we assume that the flow of time T
consists of the natural numbers N, ie., § = (N, <). At moment 0 the wise
men do not answer questions: they observe the hats of each other. The first
round of answers to the king’s question happens at moment 1, the second
round at moment 2, and so on.

Assume that the respective colors of wise men A, B and C are hy, h,
and h3. Take a propositional variable p which intends to mean this. In other
words, we have a valuation U in S5 x Sg X S¢ with

B(p) = {(h1,h2, h3)}.

Now, if f, denotes the run which is constantly (hi, hs, h3) then (n, f,) = p,
for every n € N.

As we see, the pure temporal perspective does not enable us to model the
interesting part of the three wise men puzzle. Recall that the main ingredients
in the analysis of this puzzle were statements of the form ‘agent A knows that
agent B knows ...." So the question is how to represent within the temporal
framework the fact that an agent A; knows ¢ at a moment ¢ € T under the
assumption that the evolution is represented by a run f. To put it another
way, if we mix the temporal and epistemic languages then how shall we define
the truth-relation (¢, f) = O;¢?

In epistemic logic we defined O;yp to be true in a world w iff ¢ is true in
every world which is considered possible by agent A;. In the current frame-
work this means: O;¢p is true in (¢, f) iff ¢ is true in (t’, f') for every moment
t’ and every run f’ that are regarded possible by agent A;. Thus, in order to
define a truth condition for (¢, f) = O,p, we require accessibility relations R;
between pairs (¢, f) and (¢/, f').

The following definition of the semantics for temporal epistemic logics with
n agents should appear natural now. Suppose S is a non-empty set (of states)
and § = (T, <) is a strict linear order. Suppose also that R is a non-empty
set of functions from T to S (the available runs over §), and let R;,..., R,
be binary relations on T x R. Then the tuple

& =(TxR,<,Ry,...,Ry)

is called a temporal epistemic structure. A valuation U in & is a function
from the set of propositional variables into the set 2% of all subsets of S. The
pair M = (S, D) is called a model based on &.

We will consider two modal languages interpreted in temporal epistemic
structures: the language MLgsy ® ML,, consisting of modal formulas with
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the temporal operators S and U, and the epistemic boxes Oy,...,0,, and its
extension MLsy ® MLS with the common knowledge operators.
Suppose M = (S, D) is a model based on a temporal epistemic structure
= (T'xR,<,Ry,... R,.). Define the truth-relation = between elements
of T xR and MLsy ® ME -formulas as follows:

o (Mt f) = piff f(t) € D(p),
o (M (L, f)) =AYt (M (¢ f)) e and (L f) = ¢,
o (Mt f) = ~¢ iff not (M, (¢, f)) = &,
o (M, (t, ) k= ¢Sy iff there exists t' < ¢t such that (M, (', f)) = ¢ and
(9M, (s, f)) k= ¢ for every s in the interval t' < s < t,
y (t

)
o (M, (L, f)) k= U iff there exists t’ > ¢t such that (9N, (t', f)) = ¥ and
(M, (s, f)) = @ for every s in the interval t < s < t/,

o (M, (t, ) = Qg iff (M, (¢, f')) = ¢ whenever (t, f) Ri (t', f'),
o (M, (t, ) = Cup iff (M, (', f) b= o when (¢, £) (Ui R)™ (', f).

As usual, we say that ¢ s true in 9 (in symbols: M = ) if (M, (¢, ) E ¢
holds, for every (t, f) € T x R.

" For any epistemic logic L from the list K,,, T,, K4,, S4,,, KD45,,, S5,
and any class C of strict linear orders, we let T€, ¢ denote the class of all
temporal epistemic structures of the form

(T xR,<,Ry,...,Ry)

such that (T, <) € C and (T' x R, Ry,...,Ry) = L. If C consists of a single
flow of time §, then we write 7€, 3 instead of 7€, ¢. The temporal epistemic
logic determined by a class K of temporal epistemic structures,

ELogsy (K)

in symbols, is the set of all MLsy ® ML,-formulas that are true in every
model based on a structure in K. The common knowledge logic ELog$,,(K) is
defined analogously.

The following result is a consequence of Theorems 4.1 and 4.12 stating the
transfer of some properties under the formation of fusions.

Theorem 3.19. Let L be one of the epistemic logics K,,, T,, K4,, S4,,
KD45,,, S5,,, and let § = (T, <) be a strict linear order. Then the following
holds:
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e The temporal epistemic logic ELogg, (T €L, 3) coincides with the fusion
of the temporal logic Logsy,(T) and L. That is to say, ELoggy(T€L 3)
can be ariomatized by putting together the sets of arioms and inference
rules for Logg,(¥) and L.

e Elogs, (TEL 3) is decidable whenever § is one of (N, <), (Z, <), (Q, <)
or (R, <).

The same results hold for the common knowledge extensions ELog%, (TEL 3)
of these logics.

Theorem 3.19 does not necessarily hold for classes C containing more than
one flow of time. For example, while the formula

Orfl - 0)(0Orpl vOpOrpl)

does not belong to the fusion Lingy, ® S5, it is easy to see that it belongs to
Elogg, (T Ess,c), where C is the class of all strict linear orders.

By imposing various constraints on temporal epistemic structures, we can
reflect some interesting features of agents; see (Fagin et al. 1995). Here are
some examples.

Synchronous systems

A temporal epistemic structure G models agents who know the time if, for all
t,/eT, f,feR,and i <n,

{t, YR {t', f') implies t = t'.

In other words, if A; believes that at moment t relative to an evolution f
the pair (t', f’) represents a possible state of affairs, then t = t’. So at each
moment ¢t the agents are assumed to know that the clock is at . Systems
represented by structures of this type are known as synchronous.

In Section 13.1 we will show that many temporal epistemic logics determ-
ined by classes of synchronous systems are decidable by embedding them into
decidable fragments of first-order temporal logics.

Agents who know the time and neither forget nor learn

A temporal epistemic structure models agents who do not learn if, for all
agents A;, f,f' € Rand t,t’ € T, we have

(t, fYR;(t',f') impliesVs >t 3s’' > t' (s, YR (s, f').

Intuitively, an agent A; does not learn if, whenever it regards w as a possible
state of affairs at moment t, then it regards w as a possible state of affairs at
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every moment s > ¢t as well. Under the condition that agents know the time,
this means that if agent A; regards an evolution f’ as possible at ¢ then it
regards f' as possible at every s > t.

A temporal epistemic structure models agents who do not forget if, for all
A, t,t' € T and f, f' € R, we have

(t, /YR (t', f') implies Vs <t 3s' <t' (s, YR (s', f').

The intuition behind this definition is dual to that behind the models for
agents who do not learn. Systems of this type are known also as systems with
perfect recall.

Observe that if a temporal epistemic structure models agents who know
time, do not forget and do not learn, then, for all agents A;, t,t’ € T and
f, f' € R, we have

{t, fY R {t', f') implies t =¢' and Vs (s, f) Ri (s, f').

Thus, & is isomorphic to the product of frames § = (T, <) and (R, Sy, ..., Sn),
where

fSF M P ET (AR S) M VT (& HR(LS).

Example 3.18 (cont.) Let us complete the analysis of the ‘wise men puzzle’
by collecting first the information we already have. We hav+ a temporal
epistemic structure

S = (NXR,<7RA7RB’RC)’ ‘

where R is the set of all constant functions from N to {r,w} x {r,w} x {r,w}.
(We will identify such a run f with its only value.} But what are the access-
ibility relations R4, Rp and Rc? There is also some model M = (S, V)
with

B(p) = {(h1,h2,h3)},

for some triple (hy, ha, h3) of colors. For D € {A, B,C}, we denote by Op
the knowledge operator for agent D. Then the following should hold in 90,
forall f e R:

(0, f) - OapV OppV Ocp, (3.2)
(0, f) - O(OapV OppV Ocp). (3.3)
We show how to define—using some of our implicit assumptions—the relations

Ra, Rp and Rc in order to find out what (hy, ha, h3) should be. We assume
that the wise men are logically omniscient, capable of positive and negative
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introspection and that they know only true things. In other words, 04, Op
and O¢ are S5-boxes, and so R4, Rp and Re must be equivalence relations.
Further, we assume that the wise men know the time and do not forget.
Therefore, for every D € {A, B,C},

Rp=RLURLURLuU...
where R}, (n < w) is a binary relation on the set {{(n, f) | f € R} and
R, DRLORLD ...

holds.
Consider first the RY,. Since all the three wise men see the other two, we
have
(0, (c1,¢2,¢3)) R% (0, (c}, ch, b)) iff ¢z =ch and c3 = ¢,
(0, {e1, 2, c3)) Ry (0, {c}, c3, ¢

)
5)) iff ¢ =¢} and ¢3 = cf,
<07 <Clv €2, 63)) R(C)J' (0, (clly c,21 cé)

) iff ¢; =c} and ¢c2 = c).
Now state (r,w,w) has only one RY-successor (itself), (w,r,w) has only one
RY%-successor, and (w,w,r) has only one R%-successor. Thus by (3.2), B(p)

cannot have any of these states as its only element. Since all three wise men
have this knowledge, R}, is defined as follows, for all D € {4, B,C}:

fRLf iff f=for (FRYf' avd f ¢ {(r,w.,v), {(w,r,w), (w,w,7)})
(see Fig. 3.4). Therefore, by (3.3), the only possibility which remains for

(w,r,7)
L
Rl
A RL,
. > - - -0 {rrw)
{r,r,7)
Ry &
o‘" .
(r,w,r)

Figure 3.4: The relations R}, and R},.

B(p) is {{r,r,7)}, since every other state has only one R}-successor for some
D € {A, B,C}. This also shows that

fRpf' it f=f
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must hold for all n > 2. Note that while the wise men do not forget, they do
learn (at least at the beginning) because

Rp 2 Rp 2 Rp
for all D € {4, B,C}.

3.5 Classical first-order logic as a propositional
multimodal logic

As we saw in Section 1.3, the standard translation, mapping the modal oper-
ators to the corresponding first-order quantifiers, embeds propositional modal
logic S5 into classical first-order logic. Moreover, the inverse map is an em-
bedding of the one-variable fragment of first-order logic into S5. A natural
question arising in this situation is whether we can generalize the inverse trans-
lation by considering quantification over each variable as a new modal oper-
ator and thereby representing full first-order logic as a propositional modal
logic. The idea of such a ‘modal approach’ to first-order logic was suggested
by Quine (1971) and Kuhn (1980), and fully realized by Venema (1991). On
the other hand, ‘approximating’ first-order logic with logical systems of pro-
positional character was an important motive in the algebraic treatment of
classical first-order logic; see the work of Tarski and his school (Halmos 1962,
Henkin et al. 1971, 1985, Craig 1974, Blok and Pigozzi 1989, Németi 1991,
Andréka et al. 2000).

In this section we exploit this idea to establish connections between clas-
sical first-order logic and products of propositional 85.

Let us fix a natural number n > 0 and consider the sublanguage rQL"
of the n-variable fragment of Q£ which contains no individual constants and
whose atomic formulas are of the form P(zy,...,zy-1), where P is an n-ary
predicate symbol and zg,...,z,-) are the first n individual variables (r in
rQL" stands for ‘restricted’).

Note that by allowing atomic formulas of the form P(xo,...,Zn-1) only, we re-
strict the expressive power of the n-variable fragment of Q. As was observed
by Tarski, if we extend the language with equality then variable substitutions
like P(xo,o,%2,...,2n-1) become expressible in rQL":

P(:co,:x:o,a:z, . ‘amn—l) ~ dz (3:0 =I1 A P(wo,:n,a:z, e ,:L‘n_l)).
However, even with the help of equality, variable interchanges like
P(m1,:l:o,zz, e -;371—1)

are expressible only by using an extra n + lst variable; see (Henkin et al.
1985).
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Define a translation -*

ML, by taking

of rQL"-formulas into the multimodal language

Pi(zo,...,Zn-1)" = i
(pAP)* =" AY®,
(—p)* = —¢°,
(Vz:i9)* = Oiyp® (i <n),
(Bziv)® = Cit¥® (i < n).

Every rQL"-structure I = (D’ P, .. ) can be considered then as a modal
model M(I) = ((W, Ry, ...),T), where

e W is the set of all variable assignments in I, i.e., the set of all functions
from the variables zy, ..., Z,_; into D/;

e aR;b iff a(z;) = b(z;) for all variables z; different from z;, i < n;
o B(p:) = P/

It is not hard to see that for all rQL"-formulas ¢, rQL™-structures I, and all
assignments a in I, we have

IE e i ((D),0) " (3.9)

The set W of all assignments in 7 can be regarded as the n*t Cartesian power
of the domain D’. The underlyirg frame of (1) then turns into a product
frame for S5™: the nth power of the Kripke frame (DI S >, where S is the
universal relation on D’.
Conversely, we can turn every modal model 9t = (¥, ) based on a cubic
universal product S5™-frame § = (W, W, ..., W) into the first-order structure
1(m) = <W,...,P.'(m),...>,

1

where P{“m = 0(p;) for each i. Then for all rQL"-formulas ¢ and all worlds
(wy,...,wy) in § we clearly have:

(M, (wy,...,wy)) Eo® iff I(M) = plwy,...,ws). (3.5)

According to Proposition 3.12, S5™ is determined by the class of cubic uni-
versal product frames. Thus, by (3.4) and (3.5), for every rQL"-formula o,
we obtain

p € QCl iff ¢* e S5

This equivalence shows that, since the translation ® is clearly onto the set of
ML, -formulas, the logic S5" can be regarded as the n-variable ‘substitution
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free’ fragment of classical first-order logic. To put it in another way, the fol-
lowing inverse translation, mapping ML,-formulas to QL-formulas, extends
Wajsberg’s map ! (see the end of Section 1.3) and embeds S5™ into QCI:

pI = R(xO) e ,-Tn_l),
(p A9 =o' Ay,
(~p)' = -,
(@) = Vot (G=1,...,n),
(O) = Fmiayt ((=1,...,n).

We shall return to interconnections between classical first-order logic and
modal product logics in Sections 8.1 and 9.1. The reader can find more
information on algebraization and modalization of other versions of first-order
logic in (Andréka et al. 2000, Blok and Pigozzi 1989, Marx and Venema 1997).

3.6 First-order modal logics

After the previous section it should not come as a surprise that we intro-
duce first-order modal logics here, in the chapter on many-dimensional sys-
tems, rather than in Chapter 1 dealing with basic modal logics; the more so
that first-order modal logics can be regarded as combinations of propositional
modal logics with classical first-order logic. Many interesting features of the
resulting systems arise because of subtle interactions between the quantifiers
and the modal operators independently of the underlying modal logic. It is
in fact the ‘combined system’ aspect that makes first-order modal logic so
exciting. To illustrate this claim, let us consider two formulas

t

O3z p(r) and 3zrOp(z).

Under the epistemic reading of O, the former formula means that the agent
knows that there exists an x to which ¢ applies, while the latter means that
there exists an x for which the agent knows that ¢ applies to . For example,
suppose () stands for

‘z is the telephone number of Mary.’

Then the former formula is true if the agent knows that Mary has a telephone,
while the latter one is true if the agent knows the telephone number of Mary.
(In the former case O is called a modality de dicto and in the latter a modality
de re.)

Our first-order (or quantified) modal language QMUL; is based on the al-
phabet of QL (Section 1.3) extended with the necessity operators Oy, ..., 0,
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for | > 1. The formulas of QML, are defined using the formula-formation
rules of QL together with the rule for the O;: if ¢ is a QML;-formula then
so is O;¢p, for every 4, 1 < ¢ < l. As in propositional modal logic, we regard
<Ciy as an abbreviation for —~(; -y and write QML for QML;.

Another reason to consider first-order modal logics in this chapter is that
their models are in a sense two-dimensional. Actually, there is a spectrum
of different semantics for first-order modal logics. In this book we will be
considering perhaps the simplest one of them. It was first introduced by
Kripke (1963b) and is characterized by ‘constant (or common) domains’ and
‘rigid designators.” More precisely, we interpret QMJL; in first-order Kripke
models which are structures of the form M = (F, D, I}, where

o § = (W,Ry,...,Ry) is an [-frame (the R; being binary relations on a
nonempty set of worlds W),

o D is a nonempty set, the domain of M, and

e [ is a function associating with every world w € W a first-order QL-
structure

Iw) = (D, R™,...,i™,..)

such that P,-l(w), for each 1, is a relation on D of the same arity as P,
I(w)

and c/™ is an element in D such that ¢/ ™ = ¢/ for all u,v € W.

(As before, we say that 9 is based on § or that § is the underlying frame of
2M.) To simplify notation we will omit the superscript I and write P, ¢,
etc., if this does not cause ambiguity.

An assignment in D is a function a from the set of individual variables to
D. The value 7™* of a term 7 in 9 under the assignment a is a(x) if 7 is a
variable z, and (the unique) ¢!/*) if 7 is a constant c.

According to the given definition, our models have rigid designators in the
sense that they interpret each term (a constant or a variable) by the same
element of D in all worlds of W. Under the temporal interpretation (see
Section 3.7) of the modal operators this means that the names of objects do
not vary in time so that we can refer to an object by its name even if it does
not exist yet (or does not exist any more). Under the epistemic interpretation,
rigid designators mean, in particular, that we assume all agents to know which
object a constant denotes. It is to be noted that, from the technical point of
view, not too much will change if we consider models with nonrigid constants
{but not variables)—to allow names like the Queen to denote different objects
at different moments of time.

The truth-relation (M, w) = ¢ (or simply w =2 ¢, if 9 is understood)
in the model M under the assignment a is defined by induction on the con-
struction of ¢ in the following way:
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o w=® Pi(m,...,m) iff <‘r;‘m‘“, .. .,7‘3”“‘> € Pi’('") (this fact will also be
written as I(w) k= P[rI",..., 72%));

s wkE*YAxiffwk® ¢ and wE* x;
o w =" -9 iff not w =* y;

o w = Vzvp iff w =¥ ¢ for every assignment b in D that may differ from
a only on z;

o w =" O;p iff v |=* p for all v € W such that wR;v.

We say that a formula ¢ is true in M if (M, w) =2 ¢ holds for all assignments
a in D and all worlds w in W. The set of QMJL;-formulas that are true in all
models is denoted by QK, (quantified K;). In general, given an I-modal logic
L, we denote by QL the set of QMUL;-formulas that are true in all models
based on frames for L. For instance, QT,, QK4, and QS4; are the sets of
OML;-formulas that are true in all models based on reflexive, transitive and
quasi-ordered frames, respectively.

The models introduced above are known as models with constant domains.
In other words, we make the constant domain assumption. Under this assump-
tion all constants and variables do denote some objects, and the quantifiers
range over the same domain everywhere in the model. It follows immediately
that the resulting logic is a conservative extension of classical predicate logic
QCIl. (Note that under the epistemic interpretation of the modal operators
the constant domain assumption says that the domain is common knowledge.)

However, the defined semantics is just one of a dozen possible alternatives.
Imagine, for example, that we deal with a temporal interpretation of the modal
operators. Then our everyday life experience suggests the following:

1. The domains of I(w) can all be different for different w, because their
elements can ‘die’ and ‘be born.’

2. When we name an element x then its name is a rigid designator whenever
T exists.

3. Predicates at moment w can apply to elements not existing at w. We
are all familiar with young expectant parents talking about their babies
(yet to be born), buying things for them, or similarly talking about their
dead parents, etc.

This leads us to models with varying (or changing) domains which contain

one more function d associating with every world w € W a nonempty set

9(w) € D—the existing elements in w—such that D = U 9(w). The only
weW
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difference in the definition of the truth-relation above is in the truth-condition
for Yz, which now looks as follows:

o w =" Vzip iff w |=° ¢ for every assignment b that may differ from a
only on z, provided that b(z) € o(w).

Thus, d(w) is regarded as the ‘true’ domain of I(w). The set of QML-
formulas that are true in all models with varying domains under all assign-
ments will be denoted by Q,K;, quantified K; with varying domains. It is
worth noting that Q,K; has a number of ‘unorthodox’ properties. For ex-
ample, neither

VzP(z) — P(c) nor VzP(z)— P(y)

belongs to Q,K; simply because there may be a world w such that P* = o(w),
but ¢ ¢ 9(w) and a(y) & o(w). This means, in particular, that Q,K; does
not obey the principles of classical first-order logic. Various authors have
regarded this as an argument against the semantics defined above (see, e.g.,
Garson 1984). The interested reader can find various alternative approaches
to the semantics of first-order modal logics in (Garson 1984, Hughes and
Cresswell 1996, Fitting and Mendelson 1998).
One way to ‘repair’ Q,K; is to require that

. cf("') € ?(w) for every w € W and every constant ¢;

and to modify the notion of truth in a model by saying that a formula o is
true (satisfied) in a model 9 with varying domains if (9, w) =* v holds for
every (some) w € W and every (respectively, some) assignment a in D such
that a(x) € o(w) for all individual variables . The set of QML,-formulas
that are true in all ‘repaired’ models with varying domains will be denoted
by QYK;. By definition,

peQK;, iff Vz...Vz,p € QK|

for any QML;-formula ¢ and list x,,...,z, of all variables which occur free
in ¢. It is easy to see that QYK is a conservative extension of QCIl and that
QYK and Q,K; contain precisely the same constant-free sentences; however,
Q.K: ¢ Q°K,.

Two other important classes of models consist of models with expanding
domains and with decreasing domains, i.e., models with varying domains in
which 9(u) € 9(v) or d(u) 2 9(v) whenever uR;v, respectively. Under the
‘old’ understanding of truth, these models also give rise to some unorthodox
properties. For instance, the formula VyO(VzP(z) — P(y)) is true in all
models with expanding domains, while O(VzP(z) — P(y)) is not (contrary
to the classical principle ¢ € QCIl iff Vzp € QCI). As mentioned above, this
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does not happen under the new definition of truth, which will be considered
as the only ‘official’ definition from now on.

Actually, later on in this section we will show that both varying and ex-
panding domains can be reduced to constant ones, at least as far as the
decidability of (fragments of) the logics in question is concerned. For that
reason we will mostly be considering models with constant domains.

On the syntactic level, the difference between the domain assumptions can
be captured by the Barcan formulas

VO, — QVryp
and the converse Barcan formulas
O:Vzp — YzO,p.

It is not hard to see that the Barcan formulas are true in all models with
decreasing domains (but refuted in a model with nondecreasing domains),
while the converse Barcan formulas are true in all models with expanding
domain (and refuted in a model with nonexpanding domains). So, both types
of Barcan formulas are true in models with constant domains.

The (converse) Barcan formulas can be used to axiomatize QK;: it can be
represented by the calculus containing all the axiom schemata and inference
rules of classical predicate calculus, the Barcan and converse Barcan formulas,
the modal schemata

Oi(p — ¥) = (Cup — O:9),

for 1 < ¢ £, and the necessitation rules ¢/0;p.

By adding to QK the standard modal axiom schemata of T, K4, S4
we obtain modal predicate logics QT, QK4, QS4 (see, e.g., Hughes and
Cresswell 1996).

Let us now see how satisfiability in models with varying and expanding
domains can be reduced to satisfiability in models with constant domains.
Let ¢ be a QML,-formula, and let E(x) be a unary predicate symbol which
does not occur in ¢. By induction on the construction of ¢ we define its
relativization ¢ | E:

Pf(Tl""?Tﬂ)lE = R(Th---"rn)’

(WAX)LE = (WIE)A(XIE),

(~Y)ILE = ~(¢|E),

(Vzy) | E = Vz(E(z) = (Y| E)),
(OwW)E = Oy(lE) (i=1,...,1).

As before, we denote by md(yp) the modal depth of p, i.e., the maximal
number of nested modal operators in .
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Proposition 3.20. Let ¢ be a QML -sentence, cy,...,c, all the constants
occurring in ¢ and E(C) = E(ci) A--- AN E(cn). Then for any Kripke frame
&= (W,Ry,...,R), we have

(i) ¢ is satisfied in a model based on § and having varying domains iff

oL EAMG" D (E(z) A E(R)

is satisfied in @ model based on § and having constant domains;
(i) @ is satisfied in a model based on § and having expanding domains iff

¢' =@l EAJE() A E@) A MG NV(E(x) - /\ 0 E(z))
i=1

is satisfied in a model based on § and having constant domains.

Proof. We prove only (ii), leaving the simpler case (i) to the reader. Assum-
ing that ¢ is satisfied in a model M = (F, D,9,I) with expanding domains

and that
I(w) = <D, P(,"‘”’,...,c{,<‘”’,...>

for w € W, we construct a model 91 = (§, D, J) with constant domains by
taking

J(w) = (D, B/, P, ™)),

where EY(*) = d(w). It is readily checked by induction that (9, w) = ¥
iff (M, w) = ¢ | E, for every w € W, every subformula ¢ of ¢, and every
assignment a in 9(w). It follows that ¢’ is satisfied in N.

Conversely, suppose ¢’ is satisfied at root v of a model M = (F, D, J) with
constant domains and

J(w) = (D, B, B/, . ™,
for w € W. Consider the model M = (§, D,d,I) such that

I(w) = (D,PJ“”’,...,C{,‘"’),..)

for all w € W, o(w) = E/(*) whenever w is accessible in < md(y) steps from
v (via the relation |J,.,; Ri) and ?(w) = D otherwise, c fw) f(")

occurs in ¢ and ¢; @) 5 an arbitrary element of 9(v) otherwise. By the fourth
conjunct of ¢', zm has expanding domains. Now, using that the truth-value
of p at v depends only on the worlds accessible in < md(yp) steps from v, one
can easily show by induction that ¢ is satisfied at v in 9. Q

c; if ¢;
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The connection between products 85" and classical first-order logic QCI
we established in Section 3.5 suggests that modal product logics of the form

n

e e,
LxS5x..-x85

can be reduced to the n-variable fragments of first-order modal logics QL
(with constant domains). Indeed, fix some natural number n > 0 and take
the sublanguage rQML} of the n-variable fragment of QML; which con-
tains no constant symbols and whose only atomic formulas are of the form
P(zg,...,Tn-1), where P is an n-ary predicate symbol and zg,...,z,-) are
the first n individual variables. The translation ! from ML, onto rQL"
defined in Section 3.5 can be extended to a translation from ML, onto
rQML}-formulas by taking

pI = Pi(xg,...,&n-1),
(At = ot AT,
(~o)t = =,
(@)t = O, fori=1,...,1,
(@;9) = Va9, forj=10+1,...,0+n.

An argument similar to the proof of Proposition 3.12 shows that the product
logic L x 85 x .- x 85 is determined by product frames of the form

B=Fx(D,DxD)x- x(D,Dx D),

where § = (W, Ry,..., Ry) is a frame for L and D is a nonempty set. Now,
(propositional) Kripke models (8,) based on such a product frame & and
first-order Kripke models of the form (¥, D, I) are in one-to-one correspond-
ence with each other:

(w1a1$' . ,an> € m(pg) iﬁ (al,... ,an) € Pil(w),

for all propositional variables p;, w € W and a,,...,a, € D. It should be
clear that in fact, for all ML, ,-formulas ¢, we have

((‘5ym>’(wval"-~’an>) Ee iff ((S’Dv”’w) ':u ‘Pt’

where a is the assignment in D such that a(z;) = @41 (i < n). As a con-
sequence we obtain the following:

Theorem 3.21. Let L be a Kripke complete l-modal logic. Then for every
MLy -formula o,

n

e N
p€Lx85x...x85 f ¢ eqQL.
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This observation will be used in Section 8.4 (Theorem 8.35) to show the
undecidability of the two-variable fragment of any logic between QK and
QS5.

First-order epistemic logics

Let us now have a closer look at the interaction between modal operators and
quantifiers in epistemic logics with common knowledge operators. Denote by
QMCS the language of modal predicate logic with epistemic operators O;,
1 € i < n, and common knowledge operators Cps for all nonempty subsets
M of {1,...,n} (see Section 2.3 for the propositional case). For a proposi-
tional logic L € {Kp,, T, K4,,54,,KD45,,S5,}, let QLC be the first-order
epistemic logic which consists of those QMLS-formulas that are true in all
first-order Kripke models based on frames for L and having constant domains.

Note that unlike standard first-order modal logics like QK,, and QS4,,
which can be axiomatized in a natural way by putting together the axioms of
their propositional fragments and those of QCl, first-order modal logics with
common knowledge operators behave quite differently. The following result
of (Wolter 2000a) will be partly proved in Section 12.1:

Theorem 3.22. Let L € {K,,T,,K4,,54,,KD45,,85,}, where n > 1.
Then QLC is not recursively enumerable.

First-order epistemic logic has found interesting applications in game the-
ory; see, e.g., (Kaneko and Nagashima 1997) and references therein. A static
noncooperative strategic normal form 2-person game G consists of two agents
(or players), say, 1 and 2. The players have finite sets S; = {s},...,s}(l)}
and Sz = {s?,..., 512(2)} of actions, respectively. Payoff functions u;, i = 1,2,
from § = Sy x Sz into the set of rational numbers determine the payoff of
the players: u;(si, s2) is the payoff of player ¢ when player 1 performs action
sy € S and player 2 performs action s3 € Ss.

Here is a variant of a game known as Prisoner’s Dilemma (Gibbons 1992).
Two partners in a crime (the players in this game) have been captured, placed
in separate cells and offered an opportunity to confess. Their actions can be
‘confess’ and ‘not confess.” The payoff functions are defined as follows. If
neither suspect confesses, they go free and split the proceeds of the crime
(which we represent by, say, 5 units of utility). If one player confesses and the
other does not, the one who confesses testifies against the other, and so goes
free and gets the entire 10 units of utility. The other prisoner goes to prison
and gets nothing. If both prisoners confess, then both are given a reduced
term, but both are convicted (which we represent by 1 unit of utility). The
following table summarizes the definition:
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not confess | confess
not confess (5,5) (0,10)
confess (10,0) (1,1)

For an intelligent individual it is always best to confess: if his partner does
not confess, he receives 10 units (instead of 5) and if the partner confesses
as well, he receives 1 (instead of 0). (Note however, that for the common
good it would be better if neither of them confessed. This conflict between
the pursuit of individual goals and common good is the driving force behind
many game theoretic problems.)

The argument above is formalized by the notion of Nash equilibrium (Nash
1991): the strategy (s, sz2) is a Nash equilibrium for G if

ui(s1,s2) > ui(s,s2) and wug(sy,s2) > ua(sy,s’)

for all actions s and s’ of players 1 and 2, respectively. The Prisoner’s Dilemma,
has precisely one Nash equilibrium: (confess, confess).

Not all games have a Nash equilibrium in this sense. However, extended
to mixed strategies (which are probability distributions over the sets of ac-
tions S;—modeling, for example, that you flip a coin to choose an action),
Nash equilibria (which are now defined via the ezpected payoff) exist for any
game. In fact, for every game G with strategies S, = {s},...,s}(l)} and

S2 = {s},...,s{4}, one can construct a fornwula denoted by Nashg(Z,7),

where (Z,7) = (z1,....Zy1), Y1, - - - 1 Yi(2))s such that

(Ra e ) }: NBShG[al, e 1al(l)vblv e -1bl(2)]

holds iff the probability distributions Pi(s}) = a; and Py(s?) = b; define a
Nash equilibrium for G. Here Nashg (T, 7) is a first-order formula in the lan-
guage of real closed fields, and (R, ...) is the standard model for this language
based on the real numbers. (Our first-order language QL does not contain
function symbols of arity > 1, so operations like ‘+’ should be represented
by appropriate predicate symbols.) The reader can consult (Kaneko and Na-
gashima 1997, Wolter 2000a) for details of the construction.

Now, in the epistemic analysis of games one has to be aware of the differ-
ence between Cyy 7)3TIgNashc(Z,7), which states that it is common know-
ledge among the two players 1 and 2 that game G has a Nash equilibrium
(knowledge de dicto), and 3735Cqy 2)Nashg(T,7), which says that at least
one Nash equilibrium for G is common knowledge among 1 and 2 (know-
ledge de re). Knowledge de re is useful for playing the game, while knowledge
de dicto is not. Actually, it turns out that the relation between these two
assertions depends on the formal representation. For example, assume that
mathematics is common knowledge and that both players know the game.
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One possibility to formalize this assumption is to accept
Ci123VZ (Cia,2y P(T) & P(3)),

for every ‘mathematical predicate’ P (say, the ternary predicate for ‘+’) and
to assume that the constant symbols representing the payoffs u;(s;, s2) are
interpreted globally. The last condition need not be added explicitly, since
it is ‘built into’ the semantics of constants. What are the consequences for
‘common knowledge about Nash equilibria’? Since all relevant predicates are
global, there is no difference between de re and de dicto knowledge! The two
formulas are equivalent.

The outcome is completely different if another natural interpretation of the
phrase ‘mathematics is common knowledge’ is chosen. This time we formalize
this by the assumption that the theory of real closed fields is common know-
ledge without requiring that the mathematical predicates are global. So, we
just accept

{C{1,2}1/} I ¢ € Q}v

where ® is an axiomatization of the theory of real closed fields. Under this
formalization, it is common knowledge that every game has a Nash equilibrium
(since, according to (Nash 1991), every game has a Nash equilibrium in R
and the theory of real closed fields is complete (Tarski 1948)), but it does
not follow that a Nash equilibrium is common knowledge; see (Wolter 2000a)
for details. The following result illustrates formally the fact that common
knowledge about theories implies common knowledge about objects only if
these objects are denoted by global constant symbols:

Proposition 3.23. Let L € {Kj, T,K4,,S4;, KD45,,85,}. Suppose that
p(x) and ¢ are QL-formulas (without epistemic operators), x is the only free
variable in @, and ¢ is a sentence. Then Cy 239 — FzCyy 930(7) € QLS iff
there exists a constant ¢ such that ¢ — ¢(c) is in classical logic QCl.

Proof. The implication (<) is clear because constants are interpreted glob-
ally. Conversely, suppose there is no constant ¢ such that ¢ — ¢(c) € QCL
Then for each constant ¢ we have a QL-structure

I(c) = <D p'<'—'>,...,cg<c>,...>

such that I{c) = ¢ — ¢(c), where D is the set of all constants and c{ © = ¢
for all ¢ € D (such a term model exists, since QL does not contain equality).
Define 9 = (§, D, I) by taking § = (D, Ry, R2), where Ry = R, = D x D.
Then ¢ }= 9 and ¢ £ ¢(c) holds for all c € D. So ¢ |= Cyy 23 A—-3FzCyy 2}<p(:z:)
for all c € D.
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A detailed discussion of alternative formalizations and the connection with
issues in the philosophy of mathematics lies outside the scope of this book.
We just wanted to show that the interaction between quantifiers and epistemic
operators is not as simple as it may appear when only ‘telephone numbers’
are considered.

First-order dynamic logics

First-order dynamic logic has a flavor that is quite different from first-order
modal logic and even propositional dynamic logic: its modal operators are
not constructed from abstract atomic programs, but from concrete programs
of the form z := 7 which assign the value of a term 7 to a variable z. The
worlds (or states) of models of standard dynamic logics consist of structures
interpreting first-order logic together with assignments of values to variables.
The accessibility relation interpreting the program x := 7 consists of all pairs
(a1, 02) of assignments such that a; is obtained from a; by taking az(z) =
ay(7). Obviously, this language allows for natural representations of many
concrete programs; we refer the reader to (Harel et al. 2000) for details.
First-order dynamic logic in this sense is outside the scope of this book.

The languages QDL (‘quantified PDL’) and CQDL (‘quantified CPDL’)
we consider here extend PDL in the same manner as first-order modal logics
extend propositional modal logics. We will use logics based on these languages
as expressive formalisms into which other logics (like first-order epistemic or
temporal logics) can be embedded. For simplicity, we will not even allow for
the test operator ‘?’. Thus, the modal operators of QDL are composed from
abstract atomic programs ag,ay,... by means of ;, U, and *. In CQDL we
allow for the converse operator as well. Now the syntax and semantics of
QDL and CQDL are defined in the obvious manner. By QDL and CQDL
we denote the respective sets of valid formulas. As in the propositional case
(Theorem 2.39), all first-order epistemic logics can be embedded into CQDL:

Theorem 3.24. Let L € {K,,T,,K4,,54,,KD45,,85,}. Then QLC is
polynomially reducible to CQDL.

First-order intuitionistic logic

As its propositional fragment Int, first-order intuitionistic logic QInt was
originally constructed by Heyting (1930) in the form of an axiomatic system
reflecting the constructive proof interpretation of the propositional connect-
ives —, A, V, L (see Section 2.7) and the quantifiers:

o a proof of Jzyp(x) is a construction presenting an object a together with
a proof of ¢(a);
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e a proof of Vzy(zx) is a construction which, given an object a as an input,
returns a proof of ¢(a).

Similar to the propositional case, such a system can be obtained from the
classical first-order calculus of Section 1.3 by deleting the law of the excluded
middle (A10).

Intuitionistic first-order Kripke models can be defined as a special case of
first-order modal Kripke models: they are of the form

M = <3vD1D1I>7
where
e § = (W, R) is an intuitionistic frame, i.e., R is a partial order on W,

e I is a function associating with every w € W a first-order QL-structure

I(w) = <D, Po’(‘”),...,c(’,““),...}

such that ¢/™ = c!™ for all u,v € W,
e M has expanding domains, i.e., () C d(v) whenever uRv,
. cf(") € o(u) for everyue W,

o the truth of predicates is preserved in all accessible worlds, i.e., for every
n-ary predicate symbol P, if uRv then P/(®) ¢ pI(v),

An assignment in D is a function a from the set of individual variables to
D. The value 7™° of a term 7 in 9 under the assignment a is a(z) if 7 is
a variable z, and (the unique) ¢/(*) if 7 is a constant c¢. The truth-relation
(I, w) E=* o (or simply w |=*° @) is defined as follows:

o wk* P(r,..., ) iff <T;‘m’°,...,r,?7'“> € I’i’(w);
wkE*YAxiff wE® ¢ and w E* x;
wE'YpVxifw R porw k" x;

w = 9 — x iff for all v such that wRv, v % ¢ implies v E° x;

w e L

w =° Vo iff v |=° ¢ for every v € W with wRv and every assignment
b in D such that b(z) € ?(v) and a(y) = b(y) for all variables y # z;

w = Izep iff w =° ¢ for some assignment b in D such that b(z) € d(w)
and a(y) = b(y) for all variables y # z.
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(Note that this definition generalizes the truth-cond