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Preface

This volume contains the papers presented at CMSB 2017, the 15th Conference on
Computational Methods in Systems Biology held on September 27–29, 2017 at the
Technische Universität Darmstadt (Germany).

The CMSB annual conference series, initiated in 2003, provides a unique discussion
forum for computer scientists, biologists, mathematicians, engineers, and physicists
interested in a system-level understanding of biological processes. Topics of interest
include formalisms for modeling biological processes; models and their biological
applications; frameworks for model verification, validation, analysis, and simulation of
biological systems; high-performance computational systems biology and parallel
implementations; model inference from experimental data; model integration from
biological databases; multi-scale modeling and analysis methods; and computational
approaches for synthetic biology. Case studies in systems and synthetic biology are
especially encouraged.

There were 30 regular submissions, 5 tool-paper submissions, 1 presentation-only
submission (for works already published in a journal), and 5 poster submissions. Each
regular submission, tool-paper submission, and presentation-only submission was
reviewed by 3 Program Committee members. The committee decided to accept 15
regular papers, 4 tool papers, the presentation, and 4 submitted posters. To complement
the contributed papers, we also included in the program one tutorial on Biocham, by
François Fages and Sylvain Solyman, and four invited lectures by: Michael Brenner
(Harvard University, USA), Russ Harmer (CNRS and École normale supérieure de
Lyon, France), Stefan Grill (Technische Universität Dresden, Germany), and Philipp
Hennig (Max Planck Institute for Intelligent Systems, Tübingen, Germany).

As program co-chairs, we have many people to thank. We are extremely grateful to
the members of the Program Committee and the external reviewers for their peer
reviews and the valuable feedback they provided to the authors. We thank also the
authors of the accepted papers for revising their papers according to the suggestions
of the Program Committee and for their responsiveness in providing the camera-ready
copies within the deadline. Our special thanks goes to François Fages and Ezio
Bartocci, and all the members of the CMSB Steering Committee, for their advice on
organizing and running the conference. We acknowledge the support of the EasyChair
conference system during the reviewing process and the production of these pro-
ceedings. We also thank Springer. Our gratitude also goes to the tool track chair, Pierre
Boutillier, and also to Christine Cramer, for her help and support before, during, and
after the conference. It is our pleasant duty to acknowledge the financial support of our
sponsors Analytikjena, Dispendix, the Profile Area Internet and Digitization of the
Technische Universität Darmstadt, IBM Research Zurich, IEEE, LOEWE CompuGene,
Nikon, and the support of the Bioinspired Communication Systems Lab at the



Technische Universität Darmstadt, where this year’s event was hosted. Finally, we
would like to thank all the participants of the conference. It was the quality of their
presentations and their contribution to the discussions that made the meeting a scientific
success.

September 2017 Jérôme Feret
Heinz Koeppl
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Bio-Curation for Cellular Signalling:
The KAMI Project

Russ Harmer(B), Yves-Stan Le Cornec, Sébastien Légaré,
and Ievgeniia Oshurko

Université de Lyon, CNRS – ENS Lyon – Université Claude Bernard Lyon 1, LIP,
Lyon, France

russell.harmer@ens-lyon.fr

Abstract. The general question of what constitutes bio-curation for
rule-based modelling of cellular signalling is posed. A general approach
to the problem is presented, based on rewriting in hierarchies of graphs,
together with a specific instantiation of the methodology that addresses
our particular bio-curation problem. The current state of the ongoing
development of the KAMI (Knowledge Aggregator & Model Instantiator)
bio-curation tool, based on this approach, is detailed along with our
plans for future development.

1 The Bio-curation Problem

In multi-cellular organisms, tissue development, maintenance and repair are
largely coordinated via decentralized signalling : cells send signals—usually small
proteins such as hormones, growth factors or cytokines—to be received by other
cells through the agency of dedicated receptor proteins embedded in their exter-
nal membranes. Reception of a signal is typically transduced across the external
membrane by a conformational change of the receptor protein which, in conse-
quence, triggers various intra-cellular signalling ‘pathways’ [9].

Despite their name, these latter do not exist physically, as actual pathways
in the cell, but rather as metaphors for the cascaded activation of enzymes that
perform post-translational modifications (PTMs)—most commonly phosphory-
lation and dephosphorylation—in order to control the assembly and disassembly
of protein complexes. The metaphorical ‘destination’ of a pathway is the cell’s
DNA and the ‘journey’ ends in the modulation of gene expression as effected
by the assembly or disassembly of complexes of transcription factors that bind
directly to the DNA.

This intrinsic signalling system can be perturbed by modifications to a
cell’s DNA—mutations or gene ablation, duplication or rearrangement—that
‘reroute’, ‘block’ or ‘short-cut’ its pathways; and by pharmacological interven-
tions intended to counteract such pathological changes.

Even in the absence of such extrinsic perturbations, different cells may
respond differently to the same signal. In particular, different cell types—which
express different repertoires of proteins—need not express the same receptors

c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-67471-1 1



4 R. Harmer et al.

so that the ‘starting point’ of a pathway may be present in some cases yet
absent in others. More generally, the intricate choreography of protein-protein
interactions (PPIs)—bindings, unbindings and PTMs—that we conceptualize as
pathways clearly depends on the gene expression profile of the cell (including its
expression levels): a ‘highway’ in one cell may be a ‘country lane’ in another.

1.1 Modelling Pathways

Considerable work has been done, e.g. [14,18,19], to determine statistical ‘mod-
els from data’, highly specific to the context of a particular cell type. Although
able to recapitulate successfully the principal highways known to operate in that
context, such models (unsurprisingly) tend to have limited predictive power in
other contexts. Indeed, this kind of work never intended, nor claimed, to seek
such predictive power; on the contrary, it was exploiting extreme contextuality
to provide deeper insight into the workings of particular cells. However, it also
illustrates very clearly the difficulty of trying to model directly in terms of path-
ways: such models have an inherently holistic nature and, realistically, can only
be built by unbiased, statistical learning methods.

Our approach, as initially advocated in [5], adopts a different stance: we step
down a level, instead seeking a de-contextualized representation of the PPIs that
underlie pathways; then provide the means to re-instantiate automatically that
knowledge in any context in the form of an executable model [2]. We then attempt
to reconstruct the biologist’s notion of pathway either by the extraction of a
(suitably post-processed) causal trace from a (stochastic) simulation of the model
[4,5]; or by direct construction of such a causal trace through static analysis of
the model [15].

This factorization of the modelling process allows us to focus attention on
bio-curation: the construction of the de-contextualized representation of PPIs.
The consequences of this knowledge in any particular cell context will be revealed
by the automatic generation of an executable model and subsequent analysis.
This contrasts with most modelling methodologies that require the modeller first
to understand sufficiently the very system they are seeking to model; instead, we
aim to enable an exploratory form of modelling as ‘tool for discovery’ in order to
investigate how a single ‘roadmap’ of PPIs can be deployed, in varying (normal
or pathological) contexts, to exhibit distinct cell type-specific signalling.

However, our approach poses certain constraints on what constitutes an
appropriate executable model. The principal requirement is that the model pro-
vides a notion of execution trace based on discrete events, i.e. occurrences of
PPIs, from which causal traces can be extracted, cf. Mazurkiewicz traces [17].
This immediately rules out ODE models. More subtly, although Mazurkiewicz’s
theory applies to reaction-based models—formulated either in terms of Petri
nets or multi-set rewriting—the resulting causal traces contain a great deal of
spurious causality since a single PPI is typically encoded as a family of reactions.

For example, suppose a protein B can independently bind proteins A and C
to form a complex ABC via intermediates AB or BC. In the event that an A and
B first react to form AB, via the reaction A,B → AB, a spurious causality would
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be identified to the subsequent AB,C → ABC event. Indeed, the independence
of B’s bindings to A and C are expressed by the fact that the system also admits
A,BC → ABC and B,C → BC. If these latter reactions were removed from the
system, this would imply a sequential assembly of ABC and the above causality
would no longer be spurious. This mismatch between the level of representation
and the desired notion of causality vastly complicates—and compromises the
scalability of—the use of reaction-based models for our purposes.

This mismatch can be alleviated through the use of models based on graph
rewriting, an approach known as rule-based modelling, exemplified by the BioNet-
Gen1 [13] and Kappa2 [5] languages. In this setting, a PPI is represented by a
single graph rewriting rule and the above issue of spurious causality no longer
arise: the protein B would have two binding sites, one for A and one for C, and
the rule ‘A binds B’ would not mention the binding site for C (and vice versa).
More generally, Mazurkiewicz traces can be generalized to such graph rewrit-
ing settings [1,4,12] although questions still remain as to the most appropriate
notion(s) of causal trace in the context of reversible systems3.

Kappa provides three notions of causal trace: an uncompressed trace that may
contain many uninformative ‘do-undo’ event pairs; a weakly compressed trace
that employs heuristics to eliminate such ‘do-undo’s; and a strongly compressed
trace that further quotients by conflating all instances, i.e. individual proteins, of
each agent, i.e. type of protein [4,15]. The latter two notions correspond closely,
in many cases, to the intuitive notions of pathway employed by biologists.

1.2 Representing PPIs

The protein-centric representation of Kappa—as opposed to the complex-centric
representation of reaction-based models—fixes, at least to a good first approx-
imation, the mismatch with the desired notion of causality. However, for the
purposes of providing a de-contextualized representation of PPIs, it has some
serious shortcomings. The principal difficulty comes from the fact that, although
one Kappa rule corresponds to one PPI, in practice many PPIs share a single
mechanism. If we wish to update our knowledge about such a mechanism, this
necessitates identifying, and then making ‘the same’ change to, every Kappa
rule corresponding to that mechanism. The significance of this problem became
apparent during the first author’s development (in 2007–08) of a Kappa model
of the erbB signalling network, as partially documented in [5], and led directly
to the work on MetaKappa [6,11].

MetaKappa provided a partial solution to this problem by enabling the defini-
tion of mechanisms as generic rules—that were automatically expanded into sets
of underlying Kappa rules—shared by splice variants, loss-of-function mutants
and even related genes. However, it was unable to treat the important case of
gain-of-function mutants and, critically, the fact that mechanisms had to be

1 http://bionetgen.org/index.php/Main Page.
2 http://dev.executableknowledge.org.
3 Ioana Cristescu, private communication.

http://bionetgen.org/index.php/Main_Page
http://dev.executableknowledge.org
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defined in MetaKappa implicitly required the modeller to have already in mind
an intended set of underlying Kappa rules. In other words, a choice of generic
rules expressed only one possible way of compressing a known, contextualized
set of Kappa rules.

Let us now state explicitly our bio-curation problem for signalling. We are
seeking to enable the de-contextualized representation of knowledge about PPIs:
specifically, the known necessary conditions under which a PPI may take place.
Furthermore, we need to be able to express this knowledge in such a way that a
single mechanism corresponds to a single ‘element’ of our knowledge represen-
tation in order to avoid the ‘update problem’ above. In particular, a mechanism
that is potentially shared by a family of splice variants and/or mutants of a given
gene should correspond to a single element.

We also need to provide the means to deploy this knowledge in context via
the automatic determination of which mechanisms give rise to which specific
PPIs: a mechanism may not apply to a particular splice variant that lacks, for
example, the necessary binding site; or a mutated protein may lose, or gain, the
ability to participate in a given mechanism. Finally, this contextualized knowl-
edge should then be automatically transformed into an executable model for
detailed analysis.

1.3 Plan of the Paper

In Sect. 2, we present briefly our ReGraph4 Python library which provides the
underlying graph rewriting machinery necessary for our bio-curation tool KAMI5

and discuss its use to support a de-contextualized representation of PPIs. In
Sect. 3, we discuss the front-end—which performs semi-automatic update of this
knowledge—and back-end of KAMI—which automatically instantiates this knowl-
edge into an executable Kappa model. We conclude with a discussion of perspec-
tives for future development of KAMI in Sect. 4.

2 KAMI’s Knowledge Representation

2.1 The ReGraph Library

In previous work [2], the first author presented a theoretical framework for graph-
based knowledge representation specifically tailored to the needs of representing
PPIs for the purposes of rule-based modelling. In this setting, one first defines a
so-called meta-model, a particular graph intended to define the kinds of entities
that can exist: genes, features of genes (regions, key residues, modifiable states)
and actions (binding, unbinding and state modification). The meta-model is
then used to type a second graph called the ‘pre-model’, but which we rename as
action graph in this paper, which defines the specific genes, features and actions
that occur in a model. By typing, we mean the existence of a homomorphism
4 https://github.com/Kappa-Dev/ReGraph.
5 https://github.com/Kappa-Dev/KAMI.

https://github.com/Kappa-Dev/ReGraph
https://github.com/Kappa-Dev/KAMI
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from the action graph to the meta-model [7,12]. Finally, the action graph types
a collection of nuggets that represent the PPIs in the model. A model thus
comprises an action graph typing a collection of nuggets.

This framework supports sesqui-push-out graph rewriting [3,12] so it can
express adding, deleting, cloning and merging of nodes and edges. An update
of knowledge about a PPI can thus be expressed as an appropriate step of
graph rewriting. An important technical point in this approach is that PPIs—
themselves graph rewriting rules—are reified as graphs. This enables updates of
PPIs to be written as ordinary graph rewriting rules even though, conceptually,
they should be thought of as second-order rules that rewrite rules, cf. [16]. This
is a particularity of our meta-model and clearly the generic framework could also
be used in completely different domains—with or without the need to ‘reduce’
second-order to first-order rewriting. However, the rather ad hoc nature of the
graphs used—simple graphs with two kinds of directed edges where nodes can
have attributes—imposes unnecessary limitations on applicability of the frame-
work.

We address this by adopting a more general theoretical framework based
on simple directed graphs where nodes and edges have attributes that can be
assigned sets of values. This still provides all the structure necessary to support
sesqui-push-out rewriting but provides greater flexibility; in particular, different
kinds of edges can be expressed by the use of edge attributes.

The well-known Python library networkX6 provides exactly this class of
graphs; as such, we chose to build our ReGraph library for (sesqui-push-out)
graph rewriting on top of networkX. The ReGraph library also provides support
for typing hierarchies: collections of graphs connected by (i) typing homomor-
phisms that form a forest or, more generally, a DAG (provided all typing paths
between two graphs coincide); and (ii) binary relations in the form of spans of
typing homomorphisms.

The notion of typing immediately extends to rewriting rules and, given a
rule and a graph G typed by T , the result of rewriting G remains typed by
T [12]. Conversely, if we rewrite T , we can restore typing by propagating the
rewrite to G: if a node/edge is deleted or cloned in T , we delete or clone all
nodes/edges typed by it in G [12]. This allows us to update an entire hierarchy
upon rewriting of one of its constituent graphs: we propagate the rewrite to
all other graphs typed—directly or transitively—by the rewritten graph and
restore all typing homomorphisms. This is exploited by the back-end of KAMI for
knowledge instantiation; see Sect. 3.2.

The notion of typing can be refined by placing constraints on the in- or
out-degree of certain nodes: a constraint in T must be satisfied by all graphs G
typed—directly or transitively—by T . This is used to express domain-specific
semantic constraints in the front-end of KAMI; see Sect. 3.1.

6 https://networkx.github.io.

https://networkx.github.io
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2.2 The Meta-model

The heart of KAMI is an instance of ReGraph with a particular hierarchy, rooted
in a meta-model, that includes—in addition to the action graph and nugget
graphs—background knowledge in the form of (i) domain-specific PPI templates,
e.g. ‘phosphorylation’, used to perform semantic checks or auto-completion; and
(ii) definitions of gene products, e.g. splice variants and mutants, used to instan-
tiate knowledge into specific contexts.

The meta-model, shown in Fig. 1, remains more or less unchanged from that
originally proposed in [2]. The principal difference lies in two new nodes, defining
tests of binding status, that were previously encoded in a rather opaque fashion;
these allow nuggets to express conditions that are tested, but not modified, by the
graph rewriting rules they reify. The ‘source’ and ‘target’ nodes, which played a
purely formal rôle in [2], have been replaced by a single kind of site which should
be thought of as representing a template of a physical binding site that can
occur in multiple genes. As before, there are two kinds of arrows—distinguished
by attributes: dotted arrows represent a belongs to relation, i.e. hierarchical
structuring of actors; while solid arrows relate actions and actors.

gene

region

state:0,1

residue

BRK

BNDsite

BND?

MOD

FREE?

Fig. 1. The meta-model of KAMI

The meta-model also defines some standard meta-data as attributes:

– for genes, a string-valued attribute for the UniProt7 accession number;
7 http://www.uniprot.org/uniprot/.

http://www.uniprot.org/uniprot/
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– for residues, an attribute aa with values in the set of twenty one-letter codes
for amino acids;

– for the dotted arrow from residues to genes, a positive integer-valued attribute
pos for its position in the sequence;

– for all actions, a positive real-valued attribute rc for its rate constant;
– for MOD actions, a {0, 1}-valued attribute val specifying the value written

by the modification.

Note that a state is simply an attribute whose value can be modified by actions
from within the system; as such, in order to be able to express such a MOD
action, it must be reified explicitly as a node.

2.3 Action Graphs

An instance of KAMI’s hierarchy contains two action graphs: one that is built
up during the development of a model; and a second that frames the built-in
domain-specific background knowledge. In ontological terms, where the meta-
model defines general concepts—genes, actions, &c.—the action graphs define
which entities actually exist: the specific genes, actions, &c. under consideration;
and the entities—binding domains, PTM states, &c.—for which the system has
background knowledge.

Shc1
gene

Grb2
gene

sh2 
reg.

st.res.

pos:{272,317,427} aa:Y

Sos1
gene

#6 
BND

PR
reg.

sh3
reg.

PTB
reg.

EGFR
gene

#5 
BND

#4 
BND

EGF
gene

#1 
BND

st.

phos:{0,1}

#3,#7 
MOD

#2 
BND

#1?
BND?

#5?
BND?

phos:{0,1}

Fig. 2. An example of action graph

Figure 2 shows a typical (small) example of the first kind of action graph.
It defines five actual genes, in the sense that those five nodes are typed by the
gene node of the meta-model, each of which defines a type—Shc1, Grb2, EGFR,
EGF and Sos1—that can be used by nugget graphs. The other nodes also have
this dual typing aspect which occurs in any graph which is neither a sink nor a
source node of its hierarchy.
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The current semantic action graph of KAMI is shown in Fig. 3. It defines three
types of regions—kinase domains, phosphatase domains and SH2 domains—and
other associated entities that will be referenced by semantic nuggets. These four
domains participate in three kinds of actions—phosphorylation, dephosphoryla-
tion and SH2–phospho-tyrosine motif binding.

kinase 
region

phosphatase 

region

phos 
state

PHOS 
MOD

DEPHOS 
MOD

val:1

val:0 res.

aa:{S,T,Y}

phos:{0,1}

BND
SH2 

region

1

1

1 1

gene    
gene

Fig. 3. The semantic action graph

The constraints state that (i) kinase (resp. phosphatase) domains have at
most one associated phosphorylation (resp. dephosphorylation) action; and (ii)
SH2 domains have at most one binding site for, and mechanism of binding
to, phospho-tyrosine motifs. These statements correspond to real physical con-
straints but, more importantly for our purposes, also allow KAMI to identify
whether or not an incoming input corresponds to a pre-existing action; see
Sect. 3.1 for a detailed discussion.

This semantic action graph is clearly very incomplete as it stands; our app-
roach has been to develop the ideas—and the code—in a small number of illus-
trative cases that should generalize broadly with little or no complication. We
return to this in Sect. 4 on future work.

Figure 4 shows the hierarchy introduced so far. The dotted line between the
action graph (AG) and the semantic action graph (SAG) represents a relation
between the two graphs which, internally, corresponds to a span from the graph
• to AG and SAG: the typing from • to AG picks out those nodes of AG that
have been assigned a semantic attribution in SAG; and the typing from • to
SAG specifies that assignment. Note that, in order to be a valid hierarchy, the
two paths from • to the meta-model (MM) must commute.

In our example, the node #3 of the AG is assigned to the PHOS node of
the SAG and the (unique) state of EGFR is assigned to the phos state of the
SAG; EGFR is also assigned to the gene node of the SAG. This means that
node #3 is a phosphorylation and any domain-specific constraints—expressed
in the SAG—of phosphorylation therefore apply. Additionally, node #4 of the
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•

AG SAG

MM

Fig. 4. The (partial) hierarchy of KAMI

AG is assigned to the SH2–pY node of the SAG and the region sh2 of Grb2 is
assigned to the SH2 node of the SAG; Grb2 is also assigned to the gene node of
the SAG. This means that node sh2 is an SH2 domain and node #4 is an SH2
domain–phospho-tyrosine binding.

2.4 Nuggets

An instance of KAMI’s hierarchy may contain many nuggets, representing spe-
cific (families of) PPIs, typed by the action graph. It also contains a built-in—
but modifiable—collection of semantic nuggets, typed by the semantic action
graph, that provide templates for certain generic PPIs such as domain-domain
or domain-motif bindings. These enable us to perform semantic checks that can
reject non-sense nuggets.

Figure 5 shows an example of a nugget typed by the action graph of Fig. 2.
Note how the nugget specifies all and only the (known) context—in this case,
the test that a state of EGFR called phos has value 1 and that Grb2 has a region
sh2—necessary for this PPI to occur.

EGFR Grb2#4 sh2

phos:1

Fig. 5. An example of nugget

A nugget N matches a semantic nugget SN iff there is a span of injective
homomorphisms N � • � SN . A matching is complete iff the right leg • � SN
of the span is an isomorphism, i.e. there is an injective homomorphism SN � N .
For example, the nugget in Fig. 5 matches the semantic nugget in Fig. 6—which
defines a template for SH2 domain–phospho-tyrosine binding—via the evident
complete matching.

A given semantic action may have several associated semantic nuggets,
e.g. Fig. 7 shows a more refined semantic nugget for SH2 domain–phospho-
tyrosine binding. These two semantic nuggets are related by a span which also
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gene SH2-
pY

SH2

phos

phos:1

Fig. 6. An example of semantic nugget

gene SH2-
pY

SH2

phosY

aa:Y phos:1

Fig. 7. Another example of semantic nugget

serves as a rewriting rule that can be applied to a nugget—provided (i) there is
a complete matching to the LHS semantic nugget; and (ii) we supply a typing of
the RHS into the action graph. This allows us to upgrade nuggets systematically
once we have all extra needed details.

2.5 Protein Definitions

We represent gene products, i.e. proteins, as rewriting rules typed by the meta-
model whose LHSs are injectively typed by the action graph, cf. complete match-
ings. A LHS comprises one gene and all features belonging to it; the RHS can
have multiple gene products, each of which must resolve all disjunctive aspects
of those features: a residue that has several admissible values of its aa or pos
attributes—due to mutations or different sequence numbering due to splice vari-
ants or truncations—must here be assigned exactly one for each. Moreover, each
feature may be removed, e.g. a region of a gene may not occur in some splice
variants.

p52

pos:317
aa:Y phos:{0,1}

PTB
reg.

Fig. 8. Definition of a gene product
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The gene Shc1 has a residue with three admissible values for pos. We repre-
sent the p52 splice variant, where pos= 317, of Shc1 as in Fig. 8. We use these
rewriting rules in Sect. 3.2 in the back-end of KAMI that generates Kappa models.
The full current hierarchy of KAMI is shown in Fig. 9.

•

−→
N

−−→
SN

•

−→
P AG SAG

MM

Fig. 9. The full ‘hierarchy type’ of KAMI including (semantic) nuggets and proteins

3 The KAMI Bio-curation Tool

In the previous section, we have seen how the generic framework of graph hier-
archies, as provided by ReGraph, can be exploited to build a knowledge repre-
sentation (KR) suitable for PPIs. Importantly, an update of the KR is defined
by a step of graph rewriting defined in the terms of the KR’s meta-model and,
as such, has an intrinsic semantic character: an update expresses more than just
a ‘diff’; it is stated in terms of a meaningful change in an expert’s knowledge
about something in the KR.

The history of updates thus provides an audit trail that recapitulates, in
properly semantic, domain-specific terms, the modelling process itself. In par-
ticular, it maintains a record of how knowledge was aggregated from various
sources—principally scientific papers but also potentially from databases—thus
providing some transparency and clarity—as well as support for model main-
tenance and future update—in the face of the fragmentary, dispersed nature of
the primary bio-medical literature.

In this section, we describe the current front- and back-end to the KAMI bio-
curation tool: the front-end takes input—either directly from the user via a GUI
or through INDRA8 statements9—and constructs, then applies, the appropriate
step of graph rewriting. As we will explain, the system can exploit domain-
specific background knowledge—in the form of semantic nuggets—to identify
whether or not the input speaks of an interaction that already exists in the KR.
We also very briefly describe the back-end of KAMI which takes a collection of
8 https://github.com/sorgerlab/indra.
9 http://indra.readthedocs.io/en/latest/modules/statements.html.

https://github.com/sorgerlab/indra
http://indra.readthedocs.io/en/latest/modules/statements.html
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protein definitions and calculates the instantiation of nuggets to that collection
of gene products, i.e. the contextualization of our representation to the ‘cell type’
defined by the given collection of proteins.

3.1 Knowledge Input and Aggregation

Given an (INDRA) input such as ‘EGFR phosphorylates Shc1 on Y317’ or ‘Grb2’s
SH2 domain binds Shc1 phosphorylated on Y317’, we need to compute the
rewriting rule(s) required to insert this knowledge into KAMI’s hierarchy. This
problem is an instance of the standard problem in semantics—given an input,
calculate its denotation—with a slight twist: the computed rules depend on the
current state of the hierarchy. Indeed, given such an incoming input, depend-
ing on the current state, we may need to perform a significant update or there
may be nothing to do at all as the input is subsumed by what the KR already
contains.

The key task in computing update rules concerns identifying whether, or
not, (i) each entity mentioned in the input already exists in the KR; and (ii)
the (inter)action in question already exists in the KR. The first question can
be resolved fairly easily using grounding : several standard names/IDs exist for
genes (UniProt, HGNC, &c.) and regions/domains (PFAM, InterPro, &c.). The
current version of KAMI takes inputs in the form of INDRA statements10 which
include such grounding information—at least for genes—as meta-data; however,
it should be a straightforward task to obtain grounding in cases where INDRA
does not provide it or, in the future, where we intend to use less pre-processed
input formats.

KAMI contains a module, called the gene anatomizer, which takes a UniProt
ID (or similar) and interrogates various databases (principally InterPro) to con-
struct a representation of the gene and all its (significant) regions, including
grounding information. By including all regions, not just those mentioned in an
input, we often enable stronger inference during the construction of a rewriting
rule: knowing that Grb2 has only one SH2 domain means that it must be the
one referred to in the above input. Moreover, the anatomizer need only be run
once on any given gene; the results are maintained in the action graph and can
be reused freely.

The second identification problem, for interactions, has sharper teeth: to the
best of our knowledge, no system of grounding for PPIs exists to date11. This
problem cannot be solved automatically in general: even if an input speaks of
‘A binds B’ and we already have a binding action between A and B, we cannot
immediately infer that they refer to the same action as A and B may be able to
bind in multiple ways. However, we can exploit background knowledge in some
cases to establish that an input speaks of an existing interaction.
10 We chose to use INDRA for now as it also provides us with import from BioPAX [8]

and a number of NLP systems. However, there is no obstacle to providing direct
import to KAMI from such sources; indeed, doing so would avoid losing certain kinds
of information that are not represented in the current version of INDRA, e.g. regions.

11 A notable side-effect of the KAMI project will be precisely to provide such a grounding.

http://www.uniprot.org
http://www.genenames.org
http://pfam.xfam.org
https://www.ebi.ac.uk/interpro/
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For example, given an input of the form ‘Grb2’s SH2 domain binds Shc1
phosphorylated on Y317’, KAMI would first construct a proto-nugget:

Shc1 Grb2#8 SH2

pos:317 aa:Y phos:1

It would then use grounding meta-data to resolve Shc1, its residue Y317, the
phos state of Y317, Grb2 and its SH2 domain to existing nodes in the action
graph. What about the remaining nodes—the two binding sites and the action?
Given that the proto-nugget matches the semantic nugget of Fig. 7, its action
is identified as an SH2-pY binding. The constraints imposed by the semantic
action graph now require that the binding site of the SH2 domain and the SH2-
pY action12 be identified with those in the action graph already, giving rise to
the following updated action graph (see Fig. 10).

Shc1
gene

Grb2
gene

#4,#8
BND

SH2
reg

st.res.

pos:{272,317,427} aa:Y phos:{0,1}

Sos1
gene

#6 
BND

PR
reg

SH3
reg

PTB
reg

EGFR
gene

#5 
BND

EGF
gene

#1 
BND

phos:{0,1}

#3,#7 
MOD

#2 
BND

#1?
BND?

#5?
BND?

Fig. 10. The updated action graph

Moreover, the two nuggets for Grb2 ’s SH2 domain will also be merged, giving
rise to a disjunctive nugget expressing ‘Grb2 ’s SH2 domain binds phosphorylated
EGFR or Shc1 phosphorylated on Y317’.

12 This also implies that the second binding site must be identified with that belonging
to EGFR as binding actions have at most two binding sites—a constraint, elided
until now, enforced by the meta-model—i.e. this site is a template with an instance
in EGFR and another in Shc1.
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Shc1

Grb2#4,#8 SH2

pos:317
aa:Y phos:1

EGFR

phos:1

The ability to express such disjunctive statements means that a nugget cor-
responds to a shared mechanism—a family of PPIs—so any update, concerning
Grb2, of a family member of this nugget—for example, that some mutation in
the SH2 domain abrogates binding to EGFR—would apply at the level of the
mechanism: Grb2 binds Shc1 in the same way as it binds EGFR; therefore the
mutation also abrogates Grb2 ’s binding to Shc1. This solution of the update
problem, discussed in the introduction, is a special case of what biologists call
by similarity inference; but it occurs in KAMI not through logical ‘inference’ but
by the merging of nodes.

3.2 Model Instantiation and Output

The back-end of KAMI performs two tasks. Firstly, given a collection of nuggets
and their action graph, and given a collection of rewriting rules defining gene
products, it applies those rewriting rules to the action graph13. This rewriting
step is then propagated to all nuggets from which we can easily determine, for
each gene product and each nugget, whether or not the nugget still applies. For
example, a nugget testing for a certain value of an aa attribute of a residue
would not apply to an instance of that gene that assigns a different value to
that attribute. We detect this because the original nugget no longer matches the
transformed one.

This effects a transformation from a gene- and mechanism-based level of
representation to a protein- and PPI-based level: it contextualizes the knowl-
edge with respect to the given collection of gene products. The second step now
amounts to a standard parsing task: the contextualized knowledge is translated
into Kappa. Each gene product defines a distinct agent type and the rules are
read off by ‘multiplying out’ disjunctions, e.g. ‘A1 or A2 binds B1 or B2’ gives
rise to four distinct rules.

4 Current and Future Work

We have presented an overview of the aims and functionality of our bio-curation
tool KAMI with particular focus on the importance of capturing mechanisms,

13 Unlike normal updates, this does not rewrite the action graph in-place; instead, it
copies the relevant part of the action graph and rewrites that in-place.
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not just individual PPIs, together with a curation procedure which exploits
domain-specific background knowledge and intrinsically provides an audit trail
documenting the curation process. The tool is based on solid theoretical foun-
dations, discussed to some extent in [2,12], that will be further developed in the
long version of the present paper.

The development of KAMI continues in earnest. The most immediate goals
concern providing additional background knowledge, principally for the binding
domains—PTB, SH3, WW, PDZ, &c.—and other enzymatic domains commonly
implicated in signalling. This additional knowledge will already substantially
increase the ability of the front-end to aggregate effectively through the merging
of nodes. However, a further powerful source of background knowledge concerns
closely related genes or, better, conserved regions of genes that typically share
mechanisms. This could be captured by the merging of region nodes; in this way,
we would extend the power of the system to identify automatically potential
merging to a far wider class of (binding) actions.

In the longer term, we intend to broaden KAMI’s current, very
much mechanistically-oriented representation to incorporate phenomenological
aspects. These will come in essentially two kinds: phenomenological states, such
as ‘activation’ of an enzymatic domain; and actions that typically express the
overall effect of an entire cascade of mechanistic actions. In a way somewhat
analogous to the refinement of semantic templates outlined above, the tool must
be able to support the gradual refinement of phenomenological knowledge about
signalling—of which there is a great deal in the bio-medical literature—into its
mechanistic ‘implementation’.

In this way, we hope that KAMI can become an authentic ‘tool for discov-
ery’ that provides automated support for the book-keeping aspects of curation,
allowing the expert user to focus on hypothesis testing and investigating the
consequences of curated knowledge in various contexts.

Related work. Our work bears a superficial similarity to the INDRA project devel-
oped in the Sorger Lab at Harvard Medical School [10]. However, the level of
representation employed by INDRA corresponds to that of rule-based modelling—
their agents are specific gene products, so mutants must be treated as distinct
agents; and statements have none of the disjunctive flavour of nuggets—and
therefore fails to solve the ‘update problem’.

Indeed, INDRA sets out to solve a different problem: its aim is not the decon-
textualization of knowledge but the (semi-)automation of model construction.
In line with this, INDRA does not seek a transparent and semantically rigorous
curation procedure; instead it invests in a battery of techniques—some based on
background knowledge, others on heuristics—to infer conflicts and other rela-
tionships between INDRA statements. The outcome of this assembly procedure
is an executable model, either ODEs or rule-based, but whose provenance and
built-in assumptions remain rather opaque since no meaningful audit trail can
be provided.
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Abstract. Motivated by the problem of verifying the correctness of
arrhythmia-detection algorithms, we present a formalization of these
algorithms in the language of Quantitative Regular Expressions. QREs
are a flexible formal language for specifying complex numerical queries
over data streams, with provable runtime and memory consumption
guarantees. The medical-device algorithms of interest include peak detec-
tion (where a peak in a cardiac signal indicates a heartbeat) and various
discriminators, each of which uses a feature of the cardiac signal to dis-
tinguish fatal from non-fatal arrhythmias. Expressing these algorithms’
desired output in current temporal logics, and implementing them via
monitor synthesis, is cumbersome, error-prone, computationally expen-
sive, and sometimes infeasible.

In contrast, we show that a range of peak detectors (in both the time
and wavelet domains) and various discriminators at the heart of today’s
arrhythmia-detection devices are easily expressible in QREs. The fact
that one formalism (QREs) is used to describe the desired end-to-end
operation of an arrhythmia detector opens the way to formal analysis
and rigorous testing of these detectors’ correctness and performance.
Such analysis could alleviate the regulatory burden on device developers
when modifying their algorithms. The performance of the peak-detection
QREs is demonstrated by running them on real patient data, on which
they yield results on par with those provided by a cardiologist.

Keywords: Peak Detection · Electrocardiograms · Arrythmia discrim-
ination · ICDs · Quantitative Regular Expressions

1 Introduction

Medical devices blend signal processing (SP) algorithms with decision algorithms
such that the performance and correctness of the latter critically depends on
that of the former. As such, analyzing a device’s decision making in isolation
c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 23–39, 2017.
DOI: 10.1007/978-3-319-67471-1 2
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Fig. 1. Rectified EGM during normal rhythm (left) and its CWT spectrogram (right)

of SP offers at best an incomplete picture of the device’s overall behavior. For
example, an Implantable Cardioverter Defibrillator (ICD) will first perform Peak
Detection (PD) on its input voltage signal, also known as an electrogram (see
Fig. 1). The output of PD is a timed boolean signal where a 1 indicates a peak
(local extremum) produced by a heartbeat, which is used by the downstream
discrimination algorithms to differentiate between fatal and non-fatal rhythms.
Over-sensing (too many false peaks detected) and under-sensing (too many true
peaks missed) can be responsible for as much as 10% of an ICD’s erroneous
decisions [23], as they lead to inaccuracies in estimating the heart rate and in
calculating important timing relations between the beats of the heart’s chambers.

Motivated by the desire to verify ICD algorithms for cardiac arrhythmia dis-
crimination, we seek a unified formalism for expressing and analysing the PD and
discrimination tasks commonly found in ICD algorithms. A common approach
would be to view these tasks as one of checking that the cardiac signal satisfies
certain requirements, express these requirements in temporal logic, and obtain
the algorithms by monitor synthesis. For example, PD evaluates to 1 if the sig-
nal (in an observation window) contains a peak, while the V-Rate discriminator
evaluates to 1 if the average heart rate exceeds a certain threshold.

As discussed in Sect. 2, however, this approach quickly leads to a fracturing
of the formalisms: PD algorithms and the various discriminators require different
logics, and some simply cannot be expressed succinctly (if at all) in any logic
available today. Thus, despite the increasingly sophisticated variety of temporal
logics that have appeared in the literature [6,11], they are inadequate for express-
ing the operations of PD and discrimination succinctly. It should be noted that
PD is an extremely common signal-processing primitive used in many domains,
and forms of discrimination appear in several cardiac devices besides ICDs, such
as Implantable Loop Recorders and pacemakers. Thus the observed limitations
of temporal logics extend beyond just ICD algorithms.

PD and discrimination both require reasoning, and performing a wide range
of numerical operations, over data streams, where the data stream is the
incoming cardiac electrogram observed in real-time. For example, a commer-
cial peak detector (demonstrated in Sect. 6) defines a peak as a value that
exceeds a certain time-varying threshold, and the threshold is periodically re-
initialized as a percentage of the previous peak’s value. As another example,
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the Onset discriminator compares the average heart rate in two successive win-
dows of fixed size. Thus, the desired formalism must enable value storage, time
freezing, various arithmetic operations, and nested computations, while remain-
ing legible and succinct, and enabling compilation into efficient implementations.

We therefore propose the use of Quantitative Regular Expressions (QREs) to
describe (three different) peak detectors and a common subset of discriminators.
QREs, described in Sect. 4, are a declarative formal language based on classical
regular expressions for specifying complex numerical queries on data streams [1].
QREs’ ability to interleave user-defined computation at any nesting level of the
underlying regular expression gives them significant expressiveness. (Formally,
QREs are equivalent to the streaming composition of regular functions [2]).
QREs can also be compiled into runtime- and memory-efficient implementations,
which is an important consideration for implanted medical devices.

To demonstrate the versatility and suitability of QREs for our task, we focus
on PD in the rest of the paper, since it is a more involved than any single dis-
criminator. Three different peak detectors are considered (Sect. 3): 1. detector
WPM, which operates in the wavelet domain, 2. detector WPB, our own mod-
ification of WPM that sacrifices accuracy for runtime, and 3. detector MDT,
which operates in the time domain, and is implemented in an ICD on the mar-
ket today. For all three, a QRE description is derived (Sect. 5). The detectors’
operations is illustrated by running them on real patient electrograms (Sect. 6).

In summary, our contributions are:

– We show that a common set of discriminators is easily encoded as QREs, and
compare the QREs to their encoding in various temporal logics.

– We present two peak detectors based on a general wavelet-based characteri-
zation of peaks.

– We show that the wavelet-based peak detectors, along with a commercial
time-domain peak detector found in current ICDs, are easily and clearly
expressible in QREs.

– We implement the QREs for peak detection and demonstrate their capabilities
on real patient data.

2 Challenges in Formalizing ICD Discrimination
and Peak Detection

This section demonstrates the difficulties that arise when using temporal logic to
express the discrimination and peak-detection tasks common to all arrhythmia-
detection algorithms. Specifically: different discriminators require the use of dif-
ferent logics, whose expressive powers are not always comparable; the formulas
quickly become unwieldy and error-prone; and the complexity of the monitor-
synthesis algorithm, when it is available, rapidly increases due to nesting of freeze
quantification. On the other hand, it will be shown that QREs are well-suited
to these challenges: all tasks are expressible in the QRE formalism, the result-
ing expressions are simple direct encodings of the tasks, and their monitors are
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efficient. The syntax and semantics of the logics will be introduced informally as
they are outside the scope of this paper.

An ICD discriminator takes in a finite discrete-timed signal w : {0, . . . , T} →
D. (Signal w will also sometimes be treated as a finite string in D∗ without
causing confusion). The discriminator processes the signal w in a sliding-window
fashion. When the window is centered at time instant t, the discriminator com-
putes some feature of the signal (e.g., the average heart rate) and uses this
feature to determine if the rhythm displays a potentially fatal arrhythmia in the
current window (at time t). The ICD’s overall Fatal vs Non-Fatal decision is
made by combining the decisions from all discriminators.

In what follows, several discriminators that are found in the devices of major
ICD manufacturers are described. Then for each discriminator, after discussing
the challenges that arise in specifying the discriminator in temporal logic, a
QRE is given that directly implements the discriminator. This will also serve
as a soft introduction to QRE syntax. Fix a data domain D and a cost domain
C. For now, we simplify things by viewing a QRE f as a regular expression r
along with a way to assign costs to strings w ∈ D∗. If the string w matches the
regular expression r, then the QRE maps it to f(w) ∈ C. If the string does not
match, it is mapped to the undefined value ⊥. The QRE’s computations can use
a fixed but arbitrary set of operations (e.g., addition, max, or insertion into a
set). Operations can be thought of as arbitrary pieces of code.

The first example of discriminator checks whether the number of heartbeats
in a one-minute time interval is between 120 and 150. This requires the use of
a counting modality like that used in CTMTL [16]. If p denotes a heartbeat,
then the following CTMTL formula evaluates to true exactly when the number
of heartbeats lies in the desired range: C≥120

[0,59]p ∧ C≤150
[0,59]p.

This is equally easily expressed as a QRE: match 60 signal samples (at a 1 Hz
sampling rate), and at every sample where p is true (this is a heartbeat), add 1
to the cost, otherwise add 0. Finally, check if the sum is in the range:

inrange(iter60−add(p?1 else 0))

The second discriminator determines whether the heart rate increases by at
least 20% when measured over consecutive and disjoint windows of 4 beats. In
logic, this requires explicit clocks, such as those used in Explicit Clock Temporal
Logic XCTL [14], since the beat-to-beat delay is variable. So let T denote the
time state (which keeps track of time) and let the xi’s be rigid clock variables
that store the times at which p becomes true. The following XCTL formula
expresses the desired discriminator:

�(p ∧ (x1 = T ) ∧ ♦(p ∧ . . . ♦(p ∧ (x9 = T ) ∧ [(x5 − x1) · 0.8 ≥ x9 − x5]) . . .))

Note the need to explicitly mark the 9 heartbeats and nest the setting of clock
variables 9-deep. This computation can be described in a QRE in a simpler, more
concise manner. Just like the usual regular expressions, simpler QREs can be
combined into more complex ones. We will now use the split−op combinator (see
Fig. 2): given the input string w = w1w2 which is a concatenation of strings w1
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and w2, and QREs f, g, split−op(f, g) maps w to the cost value op(f(w1), g(w2)),
where op is some operator (e.g., averaging). So let QRE fourBeats match four
consecutive beats in the boolean signal w and let it compute the average cycle
length of these 4 beats. Let inc(x, y) be an operation that returns True whenever
0.8x ≥ y. Then QRE suddenOnset does the job:

suddenOnset := split−inc(fourBeats, fourBeats)
fourBeats := iter4−avg(intervalLength)

intervalLength := split−left(countzeros, 1) // left(a, b) returns a

The third discriminator takes in a three-vaued signal w : N → {0, A, V }
where a 0 indicates no beat, an A indicates an atrial beat, and a V indicates
a ventricular beat. One simplified version of this discriminator detects whether
this pattern occurs in the current window: V 0a:bA0c:dV 0e:fA0g:hV . Here, a and
b are integers, and 0a:b indicates between a and b repetitions of 0. This can be
expressed in discrete-time Metric Temporal Logic [15]. E.g. the prefix V 0a:bA
can be written as w = V =⇒ X((w = 0)U[a+1,b](w = A)). And so on. This
quickly becomes unwieldy as the pattern itself becomes lengthier and with more
restrictions on the timing of the repetitions. On the other hand, this is trivially
expressed as a (quantitative) regular expression.

Our final example comes from Peak Detection (PD), which takes in a real-
valued signal v : N → R≥0. For one component of this PD, the objective is to
detect when v(t) exceeds a threshold value h > 0 which is reset as a function of
the previous peak value. Thus the logic must remember the value of that peak.
This necessitates freeze quantification of state variables, as used in Constraint
LTL with Freeze Quantification CLTL↓ [10] (↓z = v means that we freeze the
variable z to the value of v):

�(v > h =⇒ ↓BL=1 ♦ (ϕlocal-max =⇒ h = 0.8z2))
ϕlocal-max :=↓z1 = v X(↓z2 = v X(z2 > z1 ∧ z2 > v))

The nesting of freeze quantifiers increases the chances of making errors when
writing the specification and decreases its legibility. More generally, monitoring
of nested freeze quantifiers complicates the monitors significantly and increases
their runtimes. E.g., in [6] the authors show that the monitoring algorithm for
STL with nested freeze quantifiers is exponential in the number of the nested
freeze operators in the formula. This becomes more significant when dealing
with the full PD, of which the above is one piece. On the other hand, we have
implemented an even more complex PD as a QRE (Sect. 5.1).

The reader will recognize that the operations performed in these tasks are
quite common, like averaging, variability, and state-dependent resetting of val-
ues, and can conceivably be used in numerous other applications.

This variety of logics required for these tasks, all of which are fundamental
building blocks of ICD operation, means that a temporal logic-based approach to
the problem is unlikely to yield a unifying view, whereas QREs clearly do. In the
rest of the paper, the focus is placed on peak detection, as it is more complicated
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than discrimination, and offers a strong argument for the versatility and power
of QREs in medical-device algorithms.

3 Peaks in the Wavelet Domain

Rather than confine ourselves to one particular peak detector, we first describe a
general definition of peaks, following the classical work of Mallat and Huang [18].
Then two peak detectors based on this definition are presented. In Sect. 6, a third,
commercially available, peak detector is also implemented.

3.1 Wavelet Representations

This definition operates in the wavelet domain, so a brief overview of wavelets
is now provided. Readers familiar with wavelets may choose to skip this section.
Formally, let {Ψs}s>0 be a family of functions, called wavelets, which are obtained
by scaling and dilating a so-called mother wavelet ψ(t): Ψs(t) = 1√

s
ψ

(
t
s

)
. The

wavelet transform Wx of signal x : R+ → R is the two-parameter function:

Wx(s, t) =

+∞∫

−∞
x(τ)Ψs(τ − t) dτ (1)

An appropriate choice of ψ for peak detection is the nth derivative of a Gaussian,
that is: ψ(t) = dn

dtn Gμ,σ(t). Equation (1) is known as a Continuous Wavelet
Transform (CWT), and Wx(s, t) is known as the wavelet coefficient.

Parameter s in the wavelet ψs is known as the scale of the analysis. It can be
thought of as the analogue of frequency for Fourier analysis. A smaller value of
s (in particular s < 1) compresses the mother wavelet as can be seen from the
definition of Ψs, so that only values close to x(t) influence the value of Wx(s, t)
(see Eq. (1)). Thus, at smaller scales, the wavelet coefficient Wx(s, t) captures
local variations of x around t, and these can be thought of as being the higher-
frequency variations, i.e., variations that occur over a small amount of time. At
larger scales (in particular s > 1), the mother wavelet is dilated, so that Wx(s, t)
is affected by values of x far from t as well. Thus, at larger scales, the wavelet
coefficient captures variations of x over large periods of time.

Figure 1 shows a Normal Sinus Rhythm EGM and its CWT |Wx(s, t)|. The
latter plot is known as a spectrogram. Time t runs along the x-axis and scale s
runs along the y-axis. Brighter colors indicate larger values of coefficient magni-
tudes |Wx(s, t)|. It is possible to see that early in the signal, mid- to low-frequency
content is present (bright colors mid- to top of spectrogram), followed by higher-
frequency variation (brighter colors at smaller scales), and near the end of the
signal, two frequencies are present: mid-range frequencies (the bright colors near
the middle of the spectrogram), and very fast, low amplitude oscillations (the
light blue near the bottom-right of the spectrogram).
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3.2 Wavelet Characterization of Peaks

Consider the signal and its CWT spectrogram |Wx(s, t)| shown in Fig. 1. The
coefficient magnitude |Wx(s, t)| is a measure of signal power at (s, t). At larger
scales, one obtains an analysis of the low-frequency variations of the signal,
which are unlikely to be peaks, as the latter are characterized by a rapid change
in signal value. At smaller scales, one obtains an analysis of high-frequency
components of the signal, which will include both peaks and noise. These remarks
can be put on solid mathematical footing [19, Chap. 6]. Therefore, for peak
detection one must start by querying CWT coefficients that occur at
an appropriately chosen scale s̄.

Given the fixed scale s̄, the resulting |Wx(s̄, t)| is a function of time. The
next task is to find the local maxima of |Wx(s̄, t)| as t varies. The times when
local maxima occur are precisely the times when the energy of scale-s̄ varia-
tions is locally concentrated. Thus peak characterization further requires
querying the local maxima at s̄.

Not all maxima are equally interesting; rather, only those with value above
a threshold, since these are indicative of signal variations with large energy
concentrated at s̄. Therefore, the specification only considers those local
maxima with A value above a threshold p̄.

Maxima in the wavelet spectrogram are not isolated: as shown in
[19, Theorem 6.6], when the wavelet ψ is the nth derivative of a Gaussian, the
maxima belong to connected curves s 	→ γ(s) that are never interrupted as the
scale decreases to 0. These maxima lines can be clearly seen in Fig. 1 as being
the vertical lines of brighter color extending all the way to the bottom. Multiple
maxima lines may converge to the same point (0, tc) in the spectrogram as s → 0.
A celebrated result of Mallat and Hwang [18] shows that singularities in the sig-
nal always occur at the convergence times tc. For our purposes, a singularity is
a time when the signal undergoes an abrupt change (specifically, the signal is
poorly approximated by an (n + 1)th-degree polynomial at that change-point).
These convergence times are then the peak times that we seek.

Although theoretically, the maxima lines are connected, in practice, signal
discretization and numerical errors will cause some interruptions. Therefore,
rather than require that the maxima lines be connected, we only require them
to be (ε, δ)-connected. Given ε, δ > 0, an (ε, δ)-connected curve γ(s) is one such
that for any s in its domain, |s − s′| < ε =⇒ |γ(s) − γ(s′)| < δ.

A succinct description of this Wavelet Peaks with Maxima (WPM) is then:

• (Characterization WPM ) Given positive reals s̄, p̄, ε, δ > 0, a peak is said
to occur at time t0 if there exists a (ε, δ)-connected curve s 	→ γ(s) in the
(s, t)-plane such that γ(0) = t0, |Wx(s, γ(s))| is a local maximum along the
t-axis for every s in [0, s̄], and |Wx(s̄, γ(s̄))| ≥ p̄.

The choice of values s̄, ε, δ and p̄ depends on prior knowledge of the class of
signals we are interested in. Such choices are pervasive and unavoidable in signal
processing, as they reflect application domain knowledge. Such a specification
is difficult, if not impossible, to express in temporal and time-frequency logics.
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In the next section we show how WPM can be formalized using Quantitative
Regular Expressions.

3.3 Blanking Characterization

For comparison, we modify WPM to obtain a peak characterization that is com-
putationally cheaper but suffers some imprecision in peak-detection times. We
call it Wavelet Peaks with Blanking (WPB). It says that one peak at the most
can occur in a time window of size BL samples.

• (Characterization WPB) Given positive reals s̄, p̄ > 0, a peak is said to occur
at time t0 if |Wx(s̄, t0)| is a local maximum along t and |Wx(s̄, t0)| > p̄, and
there is no peak occurring anywhere in (t0, t0 + BL].

Section 6 compares WPM and WPB on patient electrograms.

4 A QRE Primer

An examination of discrimination and PD (Sects. 2 and 3) shows the need for a
language that: (1) Allows a rich set of numerical operations. (2) Allows matching
of complex patterns in the signal, to select scales and frequencies at which inter-
esting structures exist. (3) Supports the synthesis of time- and memory-efficient
implementations. This led to the consideration of Quantitative Regular Expres-
sions (QREs). A QRE is a symbolic regular expression over a data domain D,
augmented with data costs from some cost domain C. A QRE views the signal
as a stream w ∈ D∗ that comes in one data item at a time. As the Regular
Expression (RE) matches the input stream, the cost of the QRE is evaluated.

Formally, consider a set of types T = {T1, T2, . . . , Tk}, a data domain D ∈T ,
a cost domain C ∈T , and a parameter set X = (x1, x2, . . ., xk), where each xi is
of type Ti. Then a QRE f is a function

[[f ]]: D∗ → (T1 × T2 × . . . ×Tk → C)∪ {⊥}

where ⊥ is the undefined value. Intuitively, if the input string w ∈ D∗ does
not match the RE of f , then [[f ]](w) = ⊥. Else, [[f ]](w) is a function from
T1 ×T2 × . . . ×Tk to C. When a parameter valuation v̄ ∈ T1 × . . . ×Tk is given,
this then further evaluates to a cost value in C, namely [[f ]](w)(v̄). Figure 2
provides an overview of QREs and their combinators.

QREs can be compiled into efficient evaluators that process each data item
in time (or memory) polynomial in the size of the QRE and proportional to
the maximum time (or memory) needed to perform an operation on a set of cost
terms, such as addition, least-squares, etc. The operations are selected from a set
of operations defined by the user. It is important to be aware that the choice of
operations constitutes a trade-off between expressiveness (what can be computed)
and complexity (more complicated operations cost more). See [1] for restrictions
placed on the predicates and the symbolic regular expressions.
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Fig. 2. QREs and their combinators. (a) Basic QRE ϕ?λ matches one data item d
and evaluates to λ(d) if ϕ(d) is True. (b) QRE op(f1, . . . , fk) evaluates the k QREs
f1, . . . , fk on the same stream w and combines their outputs using operation op (e.g.,
addition). fi outputs a value of type Ti. (c) QRE f else g evaluates to f if f matches
the input stream; else it evaluates to g. (d) QRE split−op(f, g) splits its input stream in
two and evaluates f on the prefix and g on the suffix; the two results are then combined
using operation op. (e) QRE iter[p〉(f) iteratively applies f on substreams that match
it, analogously to the Kleene-∗ operation for REs. Results are passed between iterations
using parameter p. (f) QRE f � g feeds the output of QRE f into QRE g as f is being
computed.

The declarative nature of QREs will be important when writing complex
algorithms, without having to explicitly maintain state and low-level data flows.
But as with any new language, QREs require some care in their usage. Space
limitations preclude us from giving the formal definition of QREs. Instead, we
will describe what each QRE does in the context of peak detection to give the
reader a good idea of their ease of use and capabilities. Figure 2 illustrates how



32 H. Abbas et al.

QREs are defined and what they compute. Readers familiar with QREs will
notice that, when writing the QRE expressions, we occasionally sacrifice strict
syntactic correctness for the sake of presentation clarity.

5 QRE Implementation of Peak Detectors

We now describe the QREs that implement peak detectors WPM and WPB
of Sect. 3.2. It is emphasized that even complicated procedures such as these
two algorithms can be described in a declarative fashion using QREs, without
resorting to a programming language or explicitly storing state, etc.

Fig. 3. QRE peakWPM

5.1 QRE for WPM

A numerical implementation of a CWT returns a discrete set of coefficients. Let
s1 < s2 < . . . < sn be the analysis scales and let t1, t2, . . . be the signal sampling
times. Recall that a QRE views its input as a stream of incoming data items. A
data item for WPM is d = (si, tj , |Wx(si, tj)|) ∈ D := (R+)3. We use d.s to refer
to the first component of d, and d.|Wx(s, t)| to refers to its last component. The
input stream w ∈ D∗ is defined by the values from the spectrogram organized
in a column-by-column fashion starting from the highest scale:

w = (sn, t1, |Wx(sn, t1)|), . . . , (s1, t1, |Wx(s1, t1)|)︸ ︷︷ ︸
wt1

. . .

. . . (sn, tm, |Wx(sn, tm)|), . . . , (s1, tm, |Wx(s1, tm)|)
︸ ︷︷ ︸

wtm
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Let sσ, 1 ≤ σ ≤ n, the the scale that equals s̄. Since the scales si > sσ are not
relevant for peak detection (their frequency is too low), they should be discarded
from w. Now, for each scale si, i ≤ σ, we would like to find those local maxima
of |Wx(si, ·)| that are larger than threshold pi

1. We build the QRE peakWPM
bottom-up as follows. In what follows, i = 1, . . . , σ. See Fig. 3.

• QRE selectCoefi selects the wavelet coefficient magnitude at scale si from the
incoming spectrogram column wt. It must first wait for the entire column to
arrive in a streaming fashion, so it matches n data items (recall there are n
items in a column – see Fig. 3) and returns as cost d.|Wx(si, t)|.

selectCoefi := (dndn−1 . . . d1? di.|Wx(si, t)|).
• QRE repeatSelectCoefi applies selectCoefi to the latest column wt. To do so,

it splits its input stream in two: it executes selectCoefi on the last column,
and ignores all columns that preceded it using (dn)∗. It returns the selected
coefficient |Wx(si, t)| from the last column.

repeatSelectCoefi := split−right((dn)∗, selectCoefi)

Combinator split−right returns the result of operating on the right-hand side
of the split, i.e. the suffix.

• QRE localMaxi matches a string of real numbers of length at least 3:
r1...rk−2rk−1rk. It returns the value of rk−1 if it is larger than rk and rk−2,
and is above some pre-defined threshold pi; otherwise, it returns 0. This will
be used to detect local maxima in the spectrogram in a moving-window fash-
ion. In detail:

localMaxi := split−right(R∗?0, LM3) (2)

localMaxi splits the input string in two: the prefix is matched by R
∗ and is

ignored. The suffix is matched by QRE LM3: LM3 matches a length-three
string and simply returns 1 if the middle value is a local maximum that is
above pi, and returns zero, otherwise.

• QRE oneMaxi feeds outputs of QRE repeatSelectCoefi to the QRE localMaxi.

oneMaxi := repeatSelectCoefi � localMaxi

Thus, oneMaxi “sees” a string of coefficient magnitudes |Wx(si, t1)|,
|Wx(si, t2)|, . . . generated by (streaming) repeatSelectCoefi, and produces a
1 at the times of local maxima in this string.

• QRE peakTimesi collects the times of local maxima at scale si into one set.

peakTimesi := oneMaxi � unionTimes

It does so by passing the string of 1s and 0s produced by oneMaxi to
unionTimes. The latter counts the number of 0s separating the 1s and puts
that in a set Mi. Therefore, after k columns wt have been seen, set Mi

contains all local maxima at scale si which are above pi in those k columns.
1 pσ = p̄, pi<σ = 0, since we threshold only the spectrogram values at scale s̄. After

this initial thresholding, tracing of maxima lines returns the peaks.
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• QRE peakWPM is the final QRE. It combines results obtained from scales sσ

down to s1:

peakWPM := connδ(peakTimesσ, ..., peakTimes1)

Operator connδ
2 checks if the local maxima times for each scale (produced

by peakTimesi) are within a δ of the maxima at the previous scale.

In summary, the complete QRE is given top-down by:

peakWPM := connδ(peakTimesσ, ..., peakTimes1)
peakTimesi := oneMaxi � unionTimes

oneMaxi := repeatSelectCoefi � localMaxi

localMaxi := split−right(R∗?0, LM3)
repeatSelectCoefi := split−right((dn)∗, selectCoefi)

selectCoefi := (dn . . . d1? d.|Wx(si, t)|)

5.2 QRE Implementation of WPB

Peak characterization WPB of Sect. 3.2 is implemented as QRE peakWPB. See
Fig. 4. The input data stream is the same as before.

• QRE oneMaxσ (defined as before) produces a string of 1s and 0s, with the 1s
indicating local maxima at scale s̄ = sσ.

• QRE oneBL matches one blanking duration, starting with the maximum that
initiates it. Namely, it matches a maximum (indicated by a 1), followed by a
blanking period of length BL samples, followed by any-length string without
maxima (indicated by 0∗): oneBL := (1 · (0|1)BL · 0∗)

Wx(sσ, t2)Wx(sσ, t1) Wx(sσ, t3) Wx(sσ, tk+1) Wx(sσ, tk)

Wx(sσ, t2)Wx(sσ, t1) Wx(sσ, t3) Wx(sσ, tk) Wx(sσ, tk+1)

...

...

...

...

...

...

...

...

...

...

...

...

Wx(sσ, tk+1)

Wx(sσ, tk−1)

10oneMaxσ 10 0

1latestPeak 1

1
BLANKING PERIOD

0
BLANKING PERIOD

Fig. 4. QRE peakWPB

2 Operator connδ can be defined recursively as follows: connδ(X, Y ) = {y ∈ Y : ∃x ∈
X : |x − y| ≤ δ}, connδ(Xk, .., X1) = connδ(connδ(Xk, .., X2), X1).
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• QRE latestPeak will return a 1 at the time of the latest peak in the input
signal: latestPeak = split−right(oneBL∗?0, 1?1). It does so by matching all
the blanking periods up to this point using oneBL∗ and ignoring them. It then
matches the maximum (indicated by 1) at the end of the signal.

• QRE peakWPB feeds the string of 1s and 0s produced by oneMaxσ to the
QRE latestPeak: peakWPB = oneMaxσ � latestPeak

6 Experimental Results

We show the results of running peak detectors peakWPM and peakWPB on real
patient data, obtained from a dataset of intra-cardiac electrograms. We also
specified a peak detector available in a commercial ICD [22] as QRE peakMDT,
and show the results for comparison purposes. The implementation uses an early
version of the StreamQRE Java library [20]. Comparing the runtime and memory
consumption of different algorithms (including algorithms programmed in QRE)
in a consistent and reliable manner requires running a compiled version of the
program on a particular hardware platform. No such compiler is available at the
moment, so we don’t report such performance numbers.

The results in this section should not be interpreted as definitively establish-
ing the superiority of one peak detector over another, as this is not this paper’s
objective. Rather, the objective is to highlight the challenges involved in peak
detection for cardiac signals, an essential signal-processing task in many medical
devices. In particular, by highlighting how different detectors perform on differ-
ent signals, it establishes the need for a formal (and empirical) understanding of
their operation on classes of arrhythmias. This prompts the adoption of a formal
description of peak detectors for further joint analysis with discrimination.
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Fig. 5. peakWPM-detected peaks (red circles) and peakWPB-detected peaks (black
circles) on a VT rhythm (Color figure online).

Figure 5 presents one rectified EGM signal of a Ventricular Tachycardia (VT)
recorded from a patient. Circles (indicating detected time of peak) show the
result of running peakWPM (red circles) and peakWPB (black circles). These
results were obtained for s̄ = 80, BL = 150, and different values of p̄. The first
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setting of p̄ (Fig. 5 (a)) for both QREs was chosen to yield the best performance.
This is akin to the way cardiologists set the parameters of commercial ICDs:
they observe the signal, then set the parameters. We refer to this as the nominal
setting. Ground-truth is obtained by having a cardiologist examine the signal
and annotate the true peaks.

We first observe that the peaks detected by peakWPM match the ground-
truth; i.e., the nominal performance of peakWPM yields perfect detection. This
is not the case with peakWPB. Next, one can notice that the time precision of
detected peaks with peakWPM is higher than with peakWPB due to maxima
lines tracing down to the zero scale. Note also that the results of peakWPM are
stable for various parameters settings. Improper thresholds p̄ or scales s̄ degrade
the results only slightly (compare locations of red circles on Fig. 5 (a) with Fig. 5
(b)). By contrast, peakWPB detects additional false peaks (compare black circles
in Figs. 5 (a) and (b)).
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Fig. 6. WPM and peakMDT running on a VF rhythm (left) and peakMDT running on
an NSR rhythm (right) (Color figure online).

Figure 6 (left) shows WPM (red circles) running on a Ventricular Fibrillation
(VF) rhythm, which is a potentially fatal disorganized rhythm. Again, we note
that WPM finds the peaks.

Detector MDT works almost perfectly with nominal parameters settings on
any Normal Sinus Rhythm (NSR) signal (see Fig. 6 right). NSR is the “normal”
heart rhythm. The detected peak times are slightly early because peakMDT
declares a peak when the signal exceeds a time-varying threshold, rather than
when it reaches its maximum. Using the same nominal parameters on more
disorganized EGM signals with higher variability in amplitude, such as VF,
does not produce proper results; see the black circles in Fig. 6 left.

7 Related Work

Signal Temporal Logic (STL) [17] was designed for the specification of tem-
poral, real-time properties over real-valued signals and has been used in many
applications including the differentiation of medical signals [4,7]. In [6], STL
was augmented with a signal value freeze operator that allows one to express
oscillatory patterns, but it is not possible to use it to discriminate oscillations
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within a particular frequency range. The spectrogram of a signal can be repre-
sented as a 2D map (from time and scale to amplitude) and one may think to
employ a spatial-temporal logic such as SpaTeL [13] or Signal Spatio-Temporal
Logic (SSTL) [21] on spectrograms. However, both of their underlying spatial
models, graph structures for SSTL and quadtrees for SpaTeL, are not appro-
priate for this purpose. Logics for describing frequency and temporal properties
have been proposed, including Time-Frequency Logic (TFL) in [11] and the app-
roach in [8]. TFL is not sufficiently expressive for peak detection because it lacks
the necessary mechanisms to quantify over variables or to freeze their values.
Timed regular expressions [3,24,25] extend regular expressions by clocks and
are expressively equivalent to timed automata, but cannot express the computa-
tions required for the tasks covered in this paper. Even the recent work proposed
in [12] on measuring signals with timed patterns is not of help in our application,
since it does not handle, neither in the specification nor in the measurement, the
notion of local minima/maxima that is necessary for peak detection. Further-
more, the operator of measure is separated by the specification of the pattern to
match.

SRV [9] is a stream runtime verification language that requires explicit encod-
ing of relations between input and output streams, which is an awkward way of
encoding the complex tasks of this paper. Moreover, unlike Boolean SRVs [5],
QREs allow multiple unrestricted data types in intermediary computations and
a number of their questions are decidable for these arbitrary types.

8 Conclusions and Future Work

The tasks of discrimination and peak detection, fundamental to arrhythmia-
discrimination algorithms, are easily and succinctly expressible in QREs. One
obvious limitation of QREs is that they only allow regular matching, though
this is somewhat mitigated by the ability to chain QREs (though the streaming
combinator �) to achieve more complex tasks. One advantage of programming
in QREs is that it automatically provides us with a base implementation, whose
time and memory complexity is independent of the stream length.

As future work, it will be interesting to compile a QRE into C or assembly
code to measure and compare actual performance on a given hardware platform.
Also, just like an RE has an equivalent machine model (DFA), a QRE has an
equivalent machine model in terms of a deterministic finite-state transducer [1].
This points to an analysis of a QRE’s correctness and efficiency beyond testing.
Two lines of inquiry along these lines are promising in the context of medical
devices.

Probabilistic analysis. Assume a probabilistic model of the QRE’s input
strings. For medical devices, such a model might be learned from data. We
may then perform a statistical analysis of the output of the QRE under such an
input model. In particular, we may estimate how long it takes the ICD to detect
a fatal arrhythmia, or the probability of an incorrect detection by the ICD.
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Energy calculations. We may compute the energy consumption of an algo-
rithm that is expressed as a QRE, by viewing consumption as another quan-
tity computed by the QRE. Alternatively, we may label the transitions of the
underlying DFA by “energy terms”, and leverage analysis techniques of weighted
automata to analyze the energy consumption. Energy considerations are crucial
to implanted medical devices that must rely on a battery, and which require
surgery to replace a depleted battery.
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Abstract. Complex behaviour arising in biological systems is typically
characterised by various kinds of attractors. An important problem in
this area is to determine these attractors. Biological systems are usually
described by highly parametrised dynamical models that can be repre-
sented as parametrised graphs typically constructed as discrete abstrac-
tions of continuous-time models. In such models, attractors are observed
in the form of terminal strongly connected components (tSCCs). In this
paper, we introduce a novel method for detecting tSCCs in parametrised
graphs. The method is supplied with a parallel algorithm and evaluated
on discrete abstractions of several non-linear biological models.

1 Introduction

Biological systems as understood in systems biology are considered to be complex
dynamical systems with a large extent of non-linear interactions. Interactions
among systems components have the form of negative or positive feedback, the
interplay of which can cause hardly predictable or even chaotic behaviour to
emerge. In general, long-term systems behaviour may be significantly affected
by the coexistence of dozens of complex and concurrent flows of information. For
example, the irreversible decision processes observed in cell-cycle [24] or tissue
development [18] arise from feedback loops that allow the cell to stabilise in
several significantly different states each implying a unique phenotype.

Some of the problems related to the study of systems dynamics, which ini-
tially appear extremely complicated, can be greatly simplified if we concentrate
on their long-term behaviour, i.e. what happens eventually. This idea finds its
mathematical expression in the concept of an attractor.

Attractors can be seen as a special type of a portrait in the phase space.
Points in a phase space represent the value of each of the system’s variables at
each moment of time. As the system changes over time, the data points make up
a trajectory. Trajectories can be arranged into a phase portrait. Certain phase
portraits then display attractor(s) as the long-term stable sets of points of the
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dynamical system, i.e. the locations in the phase portrait towards which the
system’s dynamics are attracted after transient phenomena have died down.

Attractors can reveal important information about the causal elements oper-
ative in a system, e.g. that the variables are non-linearly related to one another
and so forth. That is why a quantitative and qualitative study of the geomet-
rical, topological, and other properties of the attractors can yield deep insights
into the system’s dynamics.

Complex behaviour arising in biological systems is thus typically charac-
terised by various kinds of attractors. An important problem of systems analy-
sis is to determine the number and position of attractors. Biological systems
are usually described by highly parametrised differential equations that can be
approximated and abstracted by discrete systems [3,11,16]. In discrete systems,
the most typical attractors can be observed in the form of terminal strongly
connected components (tSCCs) [23]. We use this fact to provide an efficient par-
allel algorithm for automatised detection of such attractors in discrete models
and in discrete abstractions of continuous models of dynamical systems. Alter-
natively, we could use a general method based on model checking for identifying
non-trivial phase portraits in systems dynamics [4]. That general method needs
to employ a hybrid temporal logic for which the algorithm is significantly more
computationally demanding. This is a motivation to focus on a specific method
targeting attractors.

Our Contribution. We introduce a novel approach for detection of attractors in
parametrised systems in which attractors are understood as tSCCs in graphs
representing the systems dynamics. We provide a parallel efficient algorithm for
detecting tSCCs in parametrised graphs. We supply the method with a set of
heuristics improving expected computation times. We evaluate the algorithm on
several non-linear biological models. We additionally provide efficient algorithm
variants for the simpler problems of tSCC counting and for deciding the question
whether the parametrised graph has at least a given number tSCC.

Related Work. The existing solutions to attractor detection in non-linear con-
tinuous models are typically based on numerical methods working in two-
dimensional systems while higher-dimensional systems remain a challenge [15].
In the case of discrete models, the problem is directly reduced to identification
of SCCs which can be done efficiently for higher-dimensional systems in the non-
parametrised case [8,9,17]. Owing to the fact that parameter space of a biological
system explodes combinatorially with the arity of component influences, para-
meter uncertainty results in enormously large sets of parameter values. To that
end, attractor detection in parametrised models remains to be a grand challenge
in general.

On the technical side, our algorithm adapts the known parallel algorithms [1]
to the parametrised setting and adds the possibility to accelerate the computa-
tion if only the number of tSCCs is requested without the need to enumer-
ate the attractors. Moreover, this paper shows that exploiting the projection of
parameters to the system dynamics gives an advantage of significantly faster
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computation than that achievable with a näıve execution of Tarjan’s algorithm
for SCC decomposition [25] scanning all parameter values one-by-one.

2 Methods

In the following, we will consider parametrised graphs which are directed graphs
with self-loops allowed and edges labelled by parameters taken from a given
parameter set.

Definition 1. A parametrised graph is a triple G = (V,E, P) where V is a finite
set of vertices, P is a set of parameter valuations and E ⊆ V × P × V is the
set of parametric edges. We write u

p−→ v instead of (u, p, v) ∈ E when E is clear
from the context. For a set of parameters P ⊆ P, we also write u

P−→ v to denote
that P = {p ∈ P | u

p−→ v}. For every p ∈ P, the restriction of G on p is the graph
Gp = (V,Ep) where Ep = {(u, v) | (u, p, v) ∈ E}.

Note that the P−→ notation allows us to see a parametrised graph as an edge-
labelled graph whose edges are labelled by sets of parameter valuations. The sets
of parameter valuations can be possibly encoded in a symbolic way (say, using
interval representation or formulae of a suitable logic).

In order to define our main problem, we now define the attractors of a graph.
In general dynamical systems theory an attractor [20] is the smallest set of states
(points in the phase space) invariant under the dynamics. Here we consider a dis-
crete abstraction of a dynamical system in the form of a parametrised graph in
which the dynamics is represented using paths. The respective abstraction of the
notion of an attractor coincides with the notion of a terminal strongly connected
component (tSCC) of a graph. We will thus use the notions of an attractor and
a tSCC interchangeably.

Definition 2. Let G = (V,E) be a directed graph. We say that a vertex t ∈ V
is reachable from a vertex s ∈ V if (s, t) ∈ E∗ where E∗ denotes the reflexive
and transitive closure of E.

A set of vertices C ⊆ V is strongly connected, if for any two vertices u, v ∈
C, we have that v is reachable from u. A strongly connected component (SCC) is
a maximal strongly connected set C ⊆ V , i.e. such that no C ′ with C � C ′ ⊆ V
is strongly connected. A strongly connected component C is trivial if C is made
of a single vertex c and (c, c) /∈ E, and is non-trivial otherwise. Furthermore,
C is called terminal (tSCC) if (C × (V \ C)) ∩ E = ∅.

In graph theory, tSCCs are also called knots [7,13], with the minor difference
that some authors require a knot to have at least two vertices.

We are now ready to state the algorithmic problem we are interested in.

Problem 1 (tSCCs Detecting Problem). Let G = (V,E, P) be a parametrised
graph. Our goal is to enumerate, for every parameter valuation p ∈ P, all tSCCs
in the graph Gp, the restriction of G on p.
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We may also sometimes be interested in certain simpler versions of the prob-
lem. In the counting version, we are only interested in the number of tSCCs,
i.e. we want to compute the function c : P → N that assigns to each parameter
valuation p the number of tSCCs in Gp. In the threshold version, we are given
a threshold number of tSCCs and want to partition the set of parameter valu-
ations P into those for which Gp contains at least the given number of tSCCs
and those for which it does not. Finally, in the existential threshold version, we
only aim to decide whether there exists a parameter valuation p for which Gp

contains at least the given number of tSCCs.

2.1 Algorithm

Our goal is to develop a parallel (shared-memory or distributed-memory) algo-
rithm for solving the tSCCs Detecting Problem. A simple sequential solution
to the problem is to use any reasonable SCC decomposition algorithm (e.g.
Tarjan’s [25]) and enumerate the terminal components in the residual graph.
However, all known optimal sequential SCC decomposition algorithms use the
depth-first search algorithm, which is suspected to be non-parallelisable [22].
There are known parallel SCC decomposition algorithms; for a survey we refer
to [1]. Our approach here, however, is based on the observation that we do not
have to compute all the SCCs in order to enumerate the terminal ones. Fur-
thermore, instead of scanning through all parameter valuations and solving the
problem for every one of them separately our approach deals with sets of parame-
ter valuations directly. This makes our algorithm suitable for use in connection
with various kinds of symbolic set representations.

F \ B

B

B′ \ F

V \ B′

v

Fig. 1. Illustration of the non-parametrised version of our algorithm.

The main idea of the Terminal Component Detection (TCD) algorithm lies in
repeated reachability, which is known to be easily parallelisable. To explain the
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idea we start with a non-parametrised version of the algorithm first. The follow-
ing explication is illustrated in Fig. 1. Let us assume a given (non-parametrised)
graph G = (V,E). We initialise a tSCC counter to 1: clearly, every graph has at
least one tSCC. We choose an arbitrary vertex v ∈ V (denoted by the double
circle in the illustration) and compute all vertices reachable from v; let us call the
resulting set of vertices F . We further compute the set of all vertices backwards-
reachable from v inside F ; we call the resulting set B. Finally, we compute all
vertices backwards-reachable from any vertex of F ; let us call this set B′.

There are several observations to be made at this point. Clearly, B is an SCC
of the graph and moreover, it is a terminal SCC iff F \B is empty. Furthermore,
B′ \ F contains no tSCCs: all vertices in B′ \ F have a path to a vertex in F .
We are thus in one of the following situations:

– F \ B = ∅, V \ B′ = ∅: There are no further tSCCs and the algorithm ends.
– F \ B �= ∅, V \ B′ = ∅: We recursively run the algorithm in F \ B.
– F \ B = ∅, V \ B′ �= ∅: We have found one tSCC (namely, B) and there is at

least one tSCC in V \B′. We thus increase the counter by one and recursively
run the algorithm in V \ B′.

– F \ B �= ∅, V \ B′ �= ∅: Observe that no tSCC may intersect both F \ B and
V \ B′. We thus increase the counter by one (we know that there is one more
tSCC) and recursively run the algorithm twice: in F \ B and in V \ B′.

Note that when running the algorithm recursively twice, the two subgraphs
are independent (there is no path from F \ B to V \ B′ or vice versa) and
the tasks can thus be run in parallel. The correctness of the algorithm is based
on the following invariant. Let t be the number of concurrently running tasks
(i.e. invocations of the algorithm), let d be the number of discovered tSCCs
(see item 3 above), and let c be the value of the counter. The invariant is
t + d = c ≤ the number of tSCCs in the graph. Clearly, the algorithm even-
tually discovers every tSCC: every task is only run on a subgraph known to
contain a tSCC and every task ends with a tSCC discovery or a recursive run of
another task. Thus, at the end, d = c = the number of tSCCs in the graph.

We also enhance the TCD algorithm with the notion of trimming in the
manner of [19]. Before every recursive invocation of our algorithm, we iteratively
remove all vertices with no incoming edges until a fixed-point is reached. Clearly,
such vertices cannot be included in a tSCC (with a minor technical exception,
see below) and we thus want to avoid choosing such vertices as starting points.
In Fig. 1, the removed vertices are marked in grey; furthermore, the V \B′ part of
the graph contains one vertex that would be removed in the next recursive run.

Note that trimming may eliminate trivial tSCCs, i.e. tSCCs consisting of
a single vertex without any outgoing edges. If it is desirable to include trivial
tSCCs in the output, we simply modify the trimming algorithm to check whether
the eliminated vertices are tSCCs.
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2.2 Parametrised Algorithm

We now extend the basic idea with parameter valuations. We first need to modify
the reachability procedure to take parameter valuations into account. To be able
to formulate the algorithm, we need a notion of parametrised sets of vertices.

Formally, a parametrised set of vertices ̂A is a function ̂A : V → 2P. We say
that v is present in ̂A for p ∈ P if p ∈ ̂A(v). Clearly, whenever ̂A(v) = ∅, this
means that the vertex v is not present in the parametrised set for any parameter
valuation. We call a parametrised set ̂A empty if ̂A(v) = ∅ for all vertices v.

To deal with parametrised sets, we use a generalisation of the standard
set operations. All the operations are performed element-wise, i.e. the union
of parametrised sets ̂A ∪ ̂B is defined as the parametrised set ̂C such that
̂C(v) = ̂A(v) ∪ ̂B(v) for all v; similarly for intersection and set difference.

To define the forward and backward reachable sets, we first need a notion of p-
reachability. We say that v is p-reachable from s in G|

̂V if the restricted graph Gp

contains a path from s to v that only includes vertices that are present in ̂V for p.
We then define R

̂V (s, v) = {p | v is p-reachable from s in G|
̂V }. The reachability

sets are then defined as follows: cfwd(̂V , ̂X) denotes the parametrised set of
vertices forward reachable from ̂X inside ̂V and similarly for cbwd.

cfwd(̂V , ̂X) = ̂A, where ̂A(v) = ̂V (v) ∩
⋃

s∈V

(

̂X(s) ∩ R
̂V (s, v)

)

cbwd(̂V , ̂X) = ̂A, where ̂A(v) = ̂V (v) ∩
⋃

s∈V

(

̂X(s) ∩ R
̂V (v, s)

)

Both functions can be effectively computed using a fixed-point algorithm.
Algorithm 1 shows the resulting parametrised algorithm. The basic idea is

the one described above, extended with parametrised sets. There is, however,
one key difference. It is not sufficient to select just one vertex as the basis for
the first (forward) reachability. The reason is that as the algorithm proceeds,
the investigated parametrised set of vertices may contain vertices with various
incomparable sets of associated parameter valuations. Therefore, in the main
part of the algorithm we collect several starting vertices with disjoint parameter
valuation sets that together cover all parameter valuations that are present in
the currently explored parametrised set of vertices.

The problem is illustrated in Fig. 2. We start with a parametrised graph with
four vertices and two parameter valuations, depicted by the red (empty) and blue
(filled) coloured dots. In the first iteration of the algorithm, ̂V consists of all the
vertices with both parameter valuations. We select a starting vertex (depicted
by a double circle) and compute ̂F , which is in this case equal to ̂B as well as
̂B′. The parametrised set ̂V \ ̂B′ is non-empty, we thus increase the counter for
both parameter valuations. Note that the counter also has to be parametrised.

In the next iteration of the algorithm, let us first assume that we would only
select a single vertex (see the second row in Fig. 2). Let us thus select t and
compute ̂F again. It is again equal to ̂B and ̂B′; this means that ̂V \ ̂B′ is again
non-empty. In this case, however, it would be an error to increase the counter for
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1 procedure init(G = (V, E, P))
2 countp ← 1 for all p ∈ P

3 ̂V ← [∀v ∈ V : v �→ P]

4 main(̂V )

5 procedure main(̂V )

6 trim ̂V

7 P ← {p ∈ P | ∃u : p ∈ ̂V (u)}
8 ̂S ← [∀v ∈ V : v �→ ∅]
9 while P is not empty do

10 choose v such that ̂V (v) ∩ P 
= ∅
11 add v �→ ̂V (v) ∩ P to ̂S

12 P ← P \ ̂V (v)

13 ̂F ← cfwd(̂V , ̂S)

14 ̂B ← cbwd( ̂F , ̂S)
15 run in parallel
16 worker 1

17 P ← {parameters appearing in ̂B and not appearing in ̂F \ ̂B}
18 ̂B restricted to p is a tSCC for all p ∈ P

19 main( ̂F \ ̂B) if ̂F \ ̂B is not empty

20 worker 2

21 ̂B′ ← cbwd(̂V , ̂F)

22 countp ← countp + 1 for all p occurring in ̂V \̂B′

23 main(̂V \̂B′) if ̂V \̂B′ is not empty

Algorithm 1. Parallel algorithm for tSCC counting in parametrised graphs.

the red parameter valuation as there are, in fact, only two tSCCs for each of the
parameter valuations. We thus need to keep track of the parameter valuations of
the selected vertex and if they do not cover all parameter valuations, we select
another one. In the case of the example, it is correct to choose both t and u as
starting vertices (see the third row).

The example also illustrates that the choice of the vertex on line 10 may
influence the performance of the algorithm. Had we chosen v in the second iter-
ation of the algorithm, no other vertices would be necessary. It might, however,
be not always possible to find one vertex that covers all parameter valuations
in ̂V . Another issue is that a wrong choice of starting vertices may slice the
set of parameter valuations into too many small subsets. In Sect. 4.1 we discuss
and evaluate two vertex selection heuristics, one based on the cardinality of the
parameter valuation set and another that aims to choose vertices close to tSCCs.

It remains to describe how the parametrised TCD algorithm proceeds with
trimming and keeping the counter. The parametrised trimming works as fol-
lows: For every vertex v in ̂V , we compute the set of parameter valuations under
which v has no incoming edges. If all the sets are empty, the trimming is done.
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first
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Fig. 2. Illustration of Algorithm 1. (Color Figure Online)

Otherwise, we remove the parameter valuations from ̂V and repeat the process.
As for the counter, instead of a single number, we use a mapping P → N that
assigns to each parameter valuation the number of tSCCs in its induced graph.
The actual implementation of the counter depends on the (symbolic) represen-
tation of the parameter valuations and is discussed in Sect. 4.1.

Note that the algorithm as presented in Algorithm1 solves both the tSCCs
Detecting Problem and its counting version. If only the counting version is con-
sidered, we simply remove lines 17 and 18. Furthermore, if we are only interested
in the threshold version of the problem, we may stop considering all parameter
valuations p for which countp has already reached the threshold. Moreover, in
the existential threshold version, we stop the whole algorithm once any parame-
ter valuation has reached the threshold.

3 Applications

We apply the method to several models used in systems biology. Since most of the
existing and widely used models are represented by means of ordinary differential
equations (ODEs), we employ the piece-wise multi-affine approximation [16] and
rectangular abstraction procedures [2,11] to obtain a discrete representation of
the systems dynamics in the form of a finite parametrised graph.
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3.1 Discretisation of ODE Models

In this section, we briefly describe the format of the ODE models used and the
subsequent procedures of approximation and abstraction that allow us to apply
the method defined in Sect. 2.

Model. We consider P ⊆ R
m
≥0 as the continuous parameter valuation space

of dimension m. A biological model M is given as a system of ODEs of the
form ẋ = f(x, μ) where x = (x1, . . . , xn) ∈ R

n
≥0 is a vector of variables, μ =

(μ1, . . . , μm) is a vector of parameters such that μ is evaluated in P, and f =
(f1, . . . , fn) is a vector where each component is a function constructed as a
sum of reaction rates where every sum member is an affine or bi-linear function
of x, or a sigmoidal function of x. An important requirement is that each fi
must be affine in μ and there exist no k, l such that k �= l and μk, μl both
occur in some fi. Moreover, we assume that every variable xi has a bound
denoted by xmaxi

. In consequence, we require for all p ∈ P that no trajectory
can exit the bounds. Formally, ∀p ∈ P,∀i ∈ {1, ..., n} : (xi = 0 ⇒ fi(x, p) >
0) ∧ (xi = maxi ⇒ fi(x, p) < 0). Similarly to [2], we assume P includes almost
all parameter valuations excluding singular cases for which some trajectory can
slide along a threshold plane. In particular, any parameter valuation p for which
some component of f(x, p) can be zero on a boundary of some rectangle (as
defined below) is not allowed. In consequence, a fixed point can appear only in
a rectangle interior.

The restriction imposed on f covers mass action kinetics with stoichiometric
coefficients not greater than one and any sigmoidal kinetics such as all significant
variants of enzyme or Hill kinetics. Parameters must be independent and cannot
appear in an exponent or a denominator of the kinetic function employed.

Approximation. To proceed with discretisation, the model ẋ = f(x, μ) has to
satisfy the criterion that every fi is piecewise multi-affine (PMA) in x. To trans-
form the model into this form, we employ the approach defined in [16]. In par-
ticular, each sigmoidal function member in fi is approximated with an optimal
sequence of piecewise affine ramp functions. In this procedure, a finite number
of thresholds is introduced for every component of x. The crucial factor of the
approximation error is the number of piecewise affine segments. Though there is
not yet a method that would somehow propagate the information on approxima-
tion error into the trajectories of the resulting PMA model, it has been shown
on several case studies that the approximation does affect the system’s vector
field only negligibly [12,16].

Abstraction. We employ the rectangular abstraction [3,16]. We assume that we
are given a set of thresholds {θi1, . . . , θ

i
ni

} for each variable xi satisfying θi1 < θi2 <
· · · < θini

. Each fi is assumed to be multi-affine on each n-dimensional interval
[θ1j1 , θ

1
j1+1] × · · · × [θnjn , θnjn+1]. We call these intervals rectangles. Each rectangle

is uniquely identified via an n-tuple of numbers: R(j1, . . . , jn) = [θ1j1 , θ
1
j1+1] ×

· · · × [θnjn , θnjn+1], where the range of each ji is {1, . . . , ni − 1}. We also define
VR(j1, . . . , jn) to be the set of all vertices of R(j1, . . . , jn).
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The abstraction results in a symbolic description of a parametrised graph,
G = (V,E, P) where V = {(j1, . . . , jn) | ∀i : 1 ≤ ji < ni} such that each v ∈ V

represents the rectangle R(v). The relation u
P→ v is defined for a parameter

valuations set P ⊆ P between any two nodes u, v ∈ V , u �= v, for which R(u) ∩
R(v) forms an (n−1)-dimensional (hyper)rectangle (R(u), R(v) are neighbouring
in one dimension) and for which one of the following conditions holds:

– ∃!j.vj = uj + 1, ∀i, i �= j : vi = ui and for each p ∈ P there exists x̂ ∈
V R(u) ∩ V R(v) satisfying fj(x̂, p) > 0;

– ∃!j.vj = uj − 1, ∀i, i �= j : vi = ui and for each p ∈ P there exists x̂ ∈
V R(u) ∩ V R(v) satisfying fj(x̂, p) < 0.

Additionally, there is a self-loop defined for any u ∈ V and a parameter valua-
tions set P ⊆ P such that ∀p ∈ P : 0 ∈ hull{f(x̂, p)|x̂ ∈ V R(u)}.

Every edge is associated with a subset P ⊆ P of parameter values under
which it is enabled. Finite number of thresholds implies finite number of distinct
parameter sets that can appear on transitions in the model. Total number of
parameter sets for an abstraction of model M, denoted |P|M|, is thus finite.

The rectangular abstraction approximates the existence of a fixed point in
a rectangle. This is achieved conservatively by introducing reflexivity for every
rectangle such that there is a zero vector included in the convex hull of all vertices
of the rectangle. In other words, this is a necessary condition for the existence
of a point where the derivatives in all coordinates are zero. In this setting, it has
been shown that rectangular abstraction is conservative (overapproximation)
with respect to almost all trajectories of the approximated (PMA) model [2].

The conservativeness of the abstraction and the consideration of only those
parameter values for which the dynamics is bounded (cannot exit the interval
[θij1 , θ

i
jni

] for any i ≤ n) together imply that every tSCCs in the abstraction covers
an attractor in the PMA system. This implies that the number of discovered
tSCCs in the abstraction is a lower bound for the number of attractors in the
corresponding PMA system. To interpret the results for the original system, local
linearisation of non-linear vector field preserves topological equivalence implying
preservation of hyperbolic attractors [10]. For complex attractors, we are not
aware of any relevant mathematical results leaving it open for future research.

3.2 Case Studies

To demonstrate the applicability and benefits of our approach, it is applied to
three biological models. Two of them are motifs in genetic regulatory networks
and the third is the main part of the cell cycle control in mammalian cells. Note
that all the models in this section are PMA approximated models of the original
ODEs. Parameter sets for which the method is able to run, allowed parameters,
consist of independent parameters and parameters not nested in PMA system.

Bi-stable repressilator. The first model to be presented is the smallest repres-
silator motif, studied in [6,14]. It includes two nodes which inhibit each other
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d[X]
dt = k1

K
n1
1
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n1
1 +[Y ]n1

− φX [X]

d[Y ]
dt = k2
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n2
2

K
n2
2 +[X]n2

− φY [Y ]

k1 = k2 = 1, K1 = K2 = 5,
n1 = n2 = 5, φX = φY = 0.1

ki φI

(0.1, 10) (0, 1)

Fig. 3. The bi-stable repressilator regulatory network (left) and its ODE model taken
from [6] (middle). The parameters and their corresponding value intervals we have
considered for all i ∈ {1, 2}, I ∈ {X, Y } (right).

Fig. 4. The parameter space and the corresponding number of terminal components
(one in white, two in green). The remaining parameter interval, which is not shown,
exhibits one terminal component. Thanks to the symmetry of the model, there are only
3 pairs of allowed parameters (Color figure online).

(Fig. 3 left). In biology, this motif is very often present in gene regulatory net-
works, where X represents the product of geneX which inhibits the production
of geneY and vice versa.

According to [21], there is a bistability in the model with parametrised φX .
A bistability region has been discovered for φX ∈ (0.022, 0.119) ∪ (0.120, 0.138)
in [6]. Our algorithm has found a bistability region in (0.014, 0.156) for paramet-
rised φX . This extension of the parameter interval is caused by the presence of
a non-trivial terminal component, instead of a sink [5].

Additionally, we have managed to analyse this model for all pairs of parame-
ters allowed for the prototype implementation of the method (Fig. 4).

Tri-stable toggle switch. The tri-stable toggle switch is a model of a 3-variable
repressilator in which each node inhibits not only one but both of its neighbours
(Fig. 5 left). Just one of the two ingoing inhibitions is enough to repress any
entity. Therefore the ODE model contains a multiplication of negative Hill func-
tions in the entity regulation (Fig. 5 right).

We have analysed this model for all pairs of parameters allowed for the imple-
mentation. As predicted, the model shows tri-stability for specific parameter val-
ues (Fig. 6). Additionally, we have managed to analyse this model for a triple of
parameters (φX , φY , φZ) using a reduced state space.
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Fig. 5. The tri-stable toggle switch regulatory network (left) and its ODE model (mid-
dle). The parameter value intervals we have considered for all i ∈ {1, 2, 3}, I ∈ {X, Y, Z}
(right).

Fig. 6. The parameter space and the corresponding number of terminal components
(one in white, two in green, three in blue). Thanks to the symmetry of the model, there
are only 3 pairs of allowed parameters (Color figure online).

Regulation of the G1/S Cell Cycle Transition. As the last case, we have
investigated a well-known model representing the central module of the genetic
regulatory network governing the G1/S cell cycle transition in mammalian
cells [24]. In particular, the model explains the mechanism behind the irreversible
decision for cell division described by a two-gene regulatory network of interac-
tions between the tumour suppressor protein pRB and the central transcription
factor E2F1 (Fig. 7 left). In high concentration levels, E2F1 activates the G1/S
transition mechanism. In low concentration of E2F1, committing to S-phase is
refused and that way the cell avoids DNA replication. For suitable parameter
values, two distinct stable attractors exist. A numerical bifurcation analysis of
E2F1 stable concentration depending on the degradation parameter of pRB
(φpRB) has been provided in [24].

A bistability region has been discovered for φpRB ∈ [0.012, 0.0145] in [5]. Our
algorithm has found a bistability region in (0.010, 0.0146) for parametrised φpRB.
This extension of parameter interval has the same reason as in the first case
study—the presence of a non-trivial terminal component, instead of a sink [5].

Additionally, we have managed to analyse this model for all pairs of parame-
ters allowed for the implementation (Fig. 8).
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E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − φpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φE2F1 = 0.1
J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 7. The G1/S transition regulatory network (left) and its ODE model taken
from [24] (right). The parameter value intervals we have considered are as follows:
k1,(0.1, 10); φpRB ,(0, 1); k2,(0.16, 16); kp,(0.005, 0.5); φE2F1,(0, 1).

Fig. 8. The parameter space and the corresponding number of terminal components
(one in white, two in green). The remaining parameter interval, which is not shown,
exhibits one terminal component (Color figure online).

4 Evaluation

We evaluate a prototype implementing the method from Sect. 2 in several aspects
such as comparison with the näıve approach, scalability in model size, scalability
in |P|M|, different algorithm types and the heuristics for the initial node selection.
In this section, we use all biological models from Sect. 3 which are subject to
approximation and abstraction described in that section. In addition, we employ
a model of a four-stable switch—an extension of the tri-stable toggle switch with
four genes where each of the four genes represses the others. It exhibits four
different stable states. Moreover, there are the implementation details demanding
deeper understanding used in this section which are described next. Note that
all the time results in this section are in seconds and represent the average of
four runs on a server with two eight-core processors (Intel Xeon X7560 2.26 GHz)
and 448 GiB RAM.
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Table 1. The second and third row represent the number of states and the number
of parameter valuations for that particular model, respectively; B/R stands for the
Branch/Reach algorithm.

Cores Model1 Model2 Model3 Model4

720e3 320e3 1.5e6 750e3 125e3 75e3 390e3 280e3

7.1e6 2.8e6 5.5e6 1.8e6 160e6 57e6 255e6 124e6

B R B R B R B R B R B R B R B R

2 842 377 651 176 798 886 326 340 1083 871 416 367 1516 1203 799 705

4 735 261 603 122 511 562 256 247 1000 683 391 301 1319 837 722 519

8 690 208 567 107 392 436 192 203 987 544 377 237 1271 723 680 473

12 706 237 595 120 471 477 219 222 1016 497 387 232 1299 718 702 464

16 719 237 590 119 459 467 216 216 1020 476 389 219 1281 704 706 456

Table 2. The second row represents |P|M|, the number of parameter valuations for
that particular model variant; B/R stands for the Branch/Reach algorithm.

Cores Model1 (1250 states) Model2 (1600 states) Model3 (8e3 states) Model4 (10e3 states)

1058e3 159e3 2.7e6 1.1e6 21e6 3.2e6 9.6e6 668e3

B R B R B R B R B R B R B R B R

2 483 440 81 83 642 479 114 127 399 318 144 120 625 655 254 248

4 481 424 77 79 626 329 101 90 369 238 132 87 585 383 241 152

8 495 413 79 78 607 293 97 81 358 197 124 74 585 314 235 127

12 481 427 79 79 608 266 96 68 357 184 128 70 583 253 242 107

16 481 416 78 78 623 259 97 73 365 179 127 71 588 249 230 103

4.1 Implementation Details

In this section, we describe two algorithm variants: Branch and Reach. They
differ in the form of the parallelism employed. The Branch algorithm runs
two parallel workers each time the computation branches, as described in the
pseudo-code. The Reach algorithm uses a parallel reachability procedure. Here,
we describe some important implementation details of both algorithms:

Parameter representation. Due to the restrictions imposed on the model
parameters in Sect. 3, we can represent each parameter set as a grid of disjoint
hyper-rectangles. Each parameter set maintains its own grid which is refined or
simplified as needed to maintain optimal resource usage.

Component counter. The mapping described in Sect. 2 is implemented as a list
of disjoint parameter valuation sets. Intuitively, the set on position i contains all
the parameter valuations for which i terminal components have been discovered
so far.

Partition function. The Reach algorithm performs a partitioning of the state
space in order to parallelise the reachability computation. To that end, we exploit
the regular (rectangular) structure of our models and define a partitioning which
splits the model into almost equally sized rectangular blocks. The number of
blocks depends on the number of used cores.
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Selection heuristics. We also compare three state selection heuristics. None
is the näıve heuristics which selects the first available state in the set. The
CARD heuristics tries to ensure that the symbolic parameter representation is
well utilised during the computation. To that end, it selects the state with the
highest parameter set cardinality as the initial state. Finally, the CSTR heuristics
is designed to reduce the number of performed reachability computations by
selecting states which are part of (or close to) the terminal components. Our
observation is that a state is more likely to be a part of a terminal component if
there are more transitions entering the state than leaving it. The CSTR heuristics
therefore pre-computes this parametrised in/out ratio for all states and then uses
it to select the best state. If two states agree on the in/out ratio, the parameter
set cardinality is used to decide the winner, just as in the CARD heuristics.

4.2 Performance Evaluation

Comparison with the näıve approach. As the näıve approach we use Tar-
jan’s SCC decomposition algorithm followed by the counting of terminal com-
ponents; run once on Gp for each parameter valuation p ∈ P. This approach
was compared with the best results of our prototype for the same models. For
the Bi-stable repressilator with 900 states and 866761 parameter valuations the
näıve approach took 2520.46 s while our approach took 153.54 s. For the Tri-
stable toggle switch with 1000 states and 436921 parameter valuations the näıve
approach took 3815.66 s while our approach took 59.71 s.

Problem of the initial state. We analysed all heuristics on several models and
for all cases using either CSTR or CARD was always a better option; sometimes
even ten times faster. In some cases CARD was more efficient than CSTR.

Scalability in model size. These statistics were performed by both algorithm
variants on 4 models each for 2 different sizes. Here, by size we mean the size of
the state space together with |P|M|. These cannot be separated because the size
of P|M in this kind of models depends on the number of states due to the rectan-
gular abstraction. In Table 1 you may observe that for the majority of models
the Reach algorithm is the better option. For the models used we define abbre-
viations: Model1 for the G1/S switch, Model2 for the bi-stable repressilator,
Model3 for the tri-stable switch and Model4 for the four-stable switch.

Scalability in parameter space. These statistics were performed by both
algorithm variants on the four previously mentioned models each for two differ-
ently sized parameter spaces with constant size of the state space. In Table 2 you
may observe that for the majority of models the Reach algorithm is the better
option.

5 Conclusion

The novel result of this paper is a parallel algorithm for the detection of terminal
SCCs in parametrised graphs. The scalability of the algorithm has been analysed
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showing a significant speed-up w.r.t. the näıve approach using standard algo-
rithms. We have shown that the algorithm can be sufficiently applied to detect
attractors in dynamical systems. The case studies have shown the method can
deal with two parameters in a reasonable time and even with three parameters in
case of a smaller state space (for the tri-stable toggle switch model). The method
provides a fully automated and parallel efficient alternative to traditional bifur-
cation analysis focused on multi-stability as in [24]. Note that the precision of the
results is affected by settings of the approximation and abstraction procedures.
Possible imprecisions can be observed as discontinuities in plotted results, see
Fig. 4. This can be eliminated by manual fine-tuning of the approximation and
abstraction. However, we have been primarily interested in the functionality of
the algorithm here. Detailed study of the application aspects is left for future
work.
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Célia Biane and Franck Delaplace(B)
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Abstract. A major challenge in cancer research is to determine the
genetic mutations causing the cancerous phenotype of cells and con-
versely, the actions of drugs initiating programmed cell death in can-
cer cells. However, such a challenge is compounded by the complexity
of the genotype-phenotype relationship and therefore, requires to relate
the molecular effects of mutations and drugs to their consequences on
cellular phenotypes. Discovering these complex relationships is at the
root of new molecular drug targets discovery and cancer etiology inves-
tigation. In their elucidation, computational methods play a major role
for the inference of the molecular causal actions from molecular and bio-
logical networks data analysis. In this article, we propose a theoretical
framework where mutations and drug actions are seen as topological per-
turbations/actions on molecular networks inducing cell phenotype repro-
gramming. The framework is based on Boolean control networks where
the topological network actions are modelled by control parameters. We
present a new algorithm using abductive reasoning principles inferring
the minimal causal topological actions leading to an expected behavior at
stable state. The framework is validated on a model of network regulat-
ing the proliferation/apoptosis switch in breast cancer by automatically
discovering driver genes and finding drug targets.

Keywords: Dynamical system reprogramming · Boolean control net-
work · Abductive reasoning · Drug target prediction · Etiology of cancer

1 Introduction

In precision medicine, the discovery of causal genes and efficient drug targets
is challenged by the complexity of the genotype-phenotype relationship. A key
milestone in this challenge is the ability to understand how cell behaviour arises
from the synergistic effect of local molecular interactions [32]. Accordingly, cells
are envisioned as a web of macromolecular interactions constituting the “interac-
tome” from which phenotype changes are explained by perturbations of molecu-
lar interactions [33]. At the molecular level, the phenotypic changes are assessed
by the measure of the state of some molecules, called biomarkers, that are defined
as observable and objective characteristics of biological processes. They are used
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to assess the shift between normal and pathological conditions [31] and to pre-
dict the appropriate treatment [9]. Inferring, from the interactome, the molec-
ular causes of phenotypic switches assessed by biomarkers will thus constitute
the root for the development of efficient therapies, by predicting the actions at
the molecular level directing cells from a diseased toward a healthy state.

In cancer, cells acquire phenotypes with characteristic cancerous hallmarks
such as uncontrolled proliferative activity, apoptosis resistance and invasive-
ness [12]. These phenotypes are caused by multigenic mutations altering mole-
cular interactions. Therefore, a preliminary issue concerns the definition of the
effects of mutations on the interactome. In [38], the authors relate mutations to
their network effect and introduce the notion of edgetic perturbations of molecu-
lar networks: nonsense mutation, out-of-frame insertion or deletion and defective
splicing are interpreted as node or arc deletions whereas missense mutation and
in-frame insertion or deletion can be modelled as node or arc addition. More-
over, in [7], the authors classify mutations according to the way they affect sig-
nalling networks and distinguish mutations that constitutively activate or inhibit
enzymes and mutations that rewire the network interactions. The effect of muta-
tions on molecular networks can thus be described as elementary topological
actions of deletion or insertion of nodes and arcs. Symmetrically, targeted ther-
apies switch cancer cells phenotype toward growth arrest and apoptosis. Their
actions can also be interpreted as network rewiring [9]. A phenotypic switch fol-
lowing mutations or targeted therapies is therefore considered as the observable
trait of a dynamical system reprogramming caused by topological network actions
(TN-action).

The inference of TN-actions would provide major insights for etiological
investigation of disease, molecular pathogenesis and drug targets prediction
by assimilating them to the effects of causal gene mutations (a.k.a, drivers)
or actions of drugs. In this endeavour, it is worth noticing that generate-and-
test method checking the TN-actions exhaustively is often pointless. Indeed,
assuming that an expected phenotypic switch results from the application of a
specific gene action up to m amongst n genes, then the number of trials1 equals∑m

k=1

(
n
k

)
. For example, the number of trials for targeting up to 10% on 100

genes exceeds 19 billions2. Hence, automatically inferring the TN-actions from
observable effects is essential to meet this challenge. By considering biomarkers
as the entry point of the inference, the issue thus refers to an inverse prob-
lem (ie., causes discovery from effects) deducing the sufficient TN-actions from
biomarker-based properties variation at stable states.

In this article, we introduce a theoretical framework for TN-action based
system reprogramming formalized by Boolean control network. Based on this
framework, we develop an algorithm inferring the causal TN-actions that repro-
gram a Boolean network, redirecting its dynamics to fulfil an expected property.
The article is organised as follows: first, we define the Boolean control network
framework (Sect. 2), then we present the inference of causal actions represented

1 Corresponding to the number of parts of size 1 to m in a set with n elements.
2 Exactly 19 415 908 147 835 trials.
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by control parameters based on abduction principle (Sect. 3) and finally, we show
its application in breast cancer (Sect. 4).

2 Boolean Control Network

In this section we first review the main theoretical elements used in this article,
namely: propositional logic, Boolean network and then we introduce Boolean
control network.

2.1 Propositional Logic

A propositional formula is inductively constructed from atoms composed of con-
stants (False/0, True/1) and variables V , unary negation operator ¬, and binary
logical operators (e.g., ∧/conjunction/and, ∨/disjunction/or). A literal is either
an atom or its negation. Given a formula f , V (f) denotes the set of variables
occurring in f . For example, let fα be the propositional formula representing the
exclusive or between atom x1 and the negation of atom x2, fα = (x1 �¬x2), the
variables are V (fα) = {x1, x2} and the literals are x1 and ¬x2. Let X ′ ⊆ X be a
subset of variables f↓X′ is the restriction of a formula f to the literals involving
the variables of X ′.

A cube syntactically denotes a conjunction of literals and a clause a dis-
junction. In this article, cubes and clauses will be assimilated to literal sets
when needed. A disjunctive normal form (dnf) of a formula is a disjunction
of cubes (ie.,

∨
i

∧
ji

lji) whereas a conjunctive normal form (cnf) is a con-
junction of clauses (ie.,

∧ ∨
ji

lji). Any formula can be transformed in dnf
or in cnf. For example, a dnf of fα is (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) and a cnf is
(¬x1 ∨ x2) ∧ (x1 ∨ ¬x2).

Let an interpretation I : V → {0, 1} be a mapping assigning a truth value to
each variable3, a model of a formula f , I |= f , is an interpretation such that the
formula is evaluated to True and a satisfiable formula admits a model at least.
For example, fα is satisfiable because the interpretations I1 = {x1 = 1, x2 = 1}
and I2 = {x1 = 0, x2 = 0} are both models of fα.

Formula f1 entails formula f2, denoted by f1 |= f2, if and only if any model
of f1 is also a model of f2 (ie., f1 |= f2

def== ∀I : I |= f1 =⇒ I |= f2). Hence,
the entailment defines a partial order on formulas.

A minterm CI of an interpretation I is the unique cube such that V (I) =
V (CI) fulfilling I |= CI . For the example C1 = x1 ∧ x2 and C2 = ¬x1 ∧ ¬x2 are
the minterms of I1 and I2 respectively. A cube C entailing a formula f is said an
implicant of f and it is prime if it ceases to be one when deprived of any literal.
Considering the example, C1, C2 are both prime implicants of fα with I1 and
I2 as model respectively, thus entailing fα: C1 |= fα, C2 |= fα. Notice that by
contrast to a minterm, an implicant does not necessary involve all the variables
of the formula (e.g., x1 is an implicant of (x1 ∨ x2) ∧ (x1 ∨ x3)).

3 A mapping will be described x = v instead of x �→ v for the sake of simplicity.
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2.2 Boolean Network

A Boolean network is a discrete dynamical system operating on Boolean variables
X that determines the state evolution of variables xi ∈ X. It is defined as a
system of Boolean equations of the form: xi = fi(x1, . . . , xn), 1 ≤ i ≤ n where
each fi is a propositional formula. A Boolean state of s is an interpretation of the
variables (ie., s : X → B) and SX will denote the set of all states for variables
of X.
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F = {x1 = x2 ∨ x3, x2 = ¬x3, x3 = ¬x2 ∧ x1}

Fig. 1. Model of asynchronous dynamics and interaction graph.

The model of dynamics of a Boolean network describes all the trajectories
of the system by a labelled transition system. For each transition the states
of agents are updated with respect to a predefined updating policy. For the
asynchronous updating used in the article, one agent only is updated per tran-
sition. Hence, the labelled transition system for the asynchronous updating is
〈−→,X,Bn〉 where the transition relation −→⊆ SX × X × SX is labelled by the
updated agent, xi−→ such that:

s1
xi−→ s2

def== s1 �= s2 ∧ s2(xi) = fi(s1) ∧ ∀xj ∈ X \ {xi} : s2(xj) = s1(xj).

We denote −→=
⋃

xi∈X

xi−→. A state s2 is said reachable from state s1 if and
only if there exists a trajectory defined by the reflexive and transitive closure of
the transition relation connecting s1 to s2, s1 −→∗ s2.

A state s is an equilibrium for −→, if it can be infinitely reached once met,
ie., ∀s′ ∈ SX : s −→∗ s′ =⇒ s′ −→∗ s. An attractor is a set of equilibria
that are mutually reachable and a stable state is an attractor of cardinality 1. In
Fig. 1, the states 101 and 110 in grey are stable. Stable states remain identical
whatever the updating policy as they comply to Definition 1:

stblF (s) def== ∀1 ≤ i ≤ n : fi(s) = s(xi). (1)
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An interaction graph 〈X, 〉 portrays the causal interactions between vari-
ables of a Boolean network (cf., Fig. 1). An interaction xi xj exists if and only
if xi occurs as literal in a minimal dnf form of fj , ie.,

xi xj
def== xi ∈ V (dnf(fj)).

2.3 Boolean Control Network

Boolean Control Network (BCN) extends Boolean network by adding control
parameters that are Boolean variables, ui ∈ U without equation definition.
Hence, a BCN is defined as a function generating Boolean network parame-
trized by an interpretation of control parameters μ ∈ SU , called a control input :
Fu : SU → (SX → SX). For example, an extension of the Boolean network in
Fig. 1 to a BCN by adding four control parameters u1, u2, u3, u4 is:

Fu1,u2,u3,u4 =

⎧
⎨

⎩

x1 = (x2 ∧ u1) ∨ x3,
x2 = ¬(x3 ∨ ¬u2),
x3 = ((¬x2 ∧ x1) ∨ ¬u3) ∧ u4

(2)

The application of a control input μ to a Boolean control network Fμ therefore
reprograms the dynamics. Figure 2 describes the dynamics resulting from the
application4 of two control inputs μ1 = {u1 = 0, u2 = 1, u3 = 1, u4 = 1} and
μ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0}.

Fµ1 =

⎧
⎪⎨

⎪⎩

x1 = x3,

x2 = ¬x3,

x3 = ¬x2 ∧ x1

Fµ2 =

⎧
⎪⎨

⎪⎩

x1 = x2 ∨ x3,

x2 = ¬x3,

x3 = 1
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μ1 = {u1 = 0, u2 = 1, u3 = 1, u4 = 1} μ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0}

Fig. 2. Modification of the dynamics by control inputs for the example of Fig. 1.

4 The formulas resulting from the instantiation of the BCN by a control input are
simplified.
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Boolean control network provides a general framework for dynamical system
reprogramming. Indeed, let F be an initial Boolean network reprogrammed into
an other Boolean network G where the equations are modified, then the Boolean
control network Fu = (u ∧ F ) ∨ (¬u ∧ G) behaves as F if u = 1 and as G
if u = 0. The switch between F and its reprogramming G now depends on the
value of u only. This encoding can be trivially extended to address a family of
dynamical systems viewed as the different outcomes of the reprogramming by
triggering each particular system from a particular valuation of several control
parameters, e.g., Fu1,u2 = (u1 ∧ u2 ∧ F ) ∨ (¬u1 ∧ u2 ∧ G1) ∨ (u1 ∧ ¬u2 ∧
G2) ∨ (¬u1 ∧ ¬u2 ∧ G3) with G1, G2, G3 as reprogramming outcomes. However,
the control will be practically specified in another way in order to represent the
effective control operated in the real system (Sect. 2.4).

Finally, a Boolean control network can be associated to a control constraint
Φ : Um → B fixing the allowed control inputs.

2.4 Control-Freezing Category

Amongst the different possibilities to control a Boolean network, we focus on a
particular category called control-freezing where the control action fixes (freezes)
the variable states to a specific value. This category models the dynamical after-
maths on Boolean network of the TN-actions on the interaction graph. We define
two categories of control actions: Definition-freezing (D-freezing) that controls
the definition of a variable and Use-freezing (U-freezing) controlling the use of a
variable in an equation defining another variable. Therefore, D-freezing directly
assigns an invariant value to variables whereas U-freezing sets locally an invariant
value for their use in an equation. The immediate consequence on the interaction
graph of a freezing is to totally disconnect a node from its inputs for D-freezing
and to remove an arc for U-freezing. Therefore, D-freezing control models node
action whereas U-freezing control represents arc action (cf., Sect. 4 for their inter-
pretation in biological network). The D-freezing parameter governing the freeze
of variable xi will be denoted di and the U-freezing parameter is denoted ui,j

standing for the control by freeze of the variable xi in its use in fj . Moreover,
each control parameter has two distinct regimes: either it freezes the variable to
a specific value or remains idle. The convention, inspired by the freezing temper-
ature of water 0 ◦C, is as follows: the freezing action is triggered when the control
parameter is set to 0 whereas the idle situation corresponds to 1. As the value
of a parameter indicates the freezing activity (active or idle), the two possible
freezing outcomes 0 or 1 are supported by two distinct parameters respectively
denoted d0i , u

0
i,j and d1i , u

1
i,j . For example, by considering the following controlled

equation x1 = (¬x2) ∧ d01, d0i will freeze x1 to 0 if d01 = 0 otherwise x1 behaves
as the negation of x2 (See also (7)).

Control-Freezing Implementation to Boolean Network. The implemen-
tation of the freezing control on a Boolean network extends the formulas to
obtain the expected control behaviour depending on the type of control para-
meters: D0,D1 or U0, U1.
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D-Freezing Control Implementation. The D-freezing control of variable xi con-
sists in adding a D-freezing parameter to formula fi such that setting μ(dk

i ) =
0, k ∈ {0, 1} leads to freeze variable xi to k and remains idle otherwise
(μ(dk

i ) = 1). Formula fi is completed according to this control behaviour:

xi = fi(x1, . . . , xn) ∧ d0i for freezing to 0 (3)

xi = fi(x1, . . . , xn) ∨ ¬d1i for freezing to 1 (4)

D0 and D1 freezing parameters can be combined to trigger the freeze to different
values. To avoid a contradictory freeze to 0 and 1 simultaneously, the constraint
Φ = d0i ∨ d1i is added ensuring the mutual exclusion of the parameter activities.

U-Freezing Control Implementation. The U-freezing control application follows
the same principles as the D-freezing control but applied on the occurrence of
variables in the equations of other variables.

xj = fj(x1, . . . , xi ∧ u0
i,j , . . . , xn) for freezing to 0 (5)

xj = fj(x1, . . . , xi ∨ ¬u1
i,j , . . . , xn) for freezing to 1 (6)

Both controls can be also combined with a constraint avoiding to trigger con-
tradictory freezing controls simultaneously (ie., Φ = u0

i,j ∨ u1
i,j).

In Example (2), u1 is assimilated to the U-freezing parameter of x2 to 0 (u1 =
u0
2,1) used in x1 definition, u2 can be interpreted as the U-freezing parameter

of x3 (u2 = u1
3,2), and u3, u4 are the D-freezing parameters of x3 freezing the

variable to 1 and 0 respectively (u3 = d13, u4 = d03). Consequently, the BCN (2)
can be rewritten using the appropriate naming convention as:

Fu0
2,1,d0

2,d2
3,d1

3
=

⎧
⎨

⎩

x1 =
(
x2 ∧ u0

2,1

) ∨ x3,
x2 = ¬(x3 ∨ ¬u1

3,2),
x3 =

(
(¬x2 ∧ x1) ∨ ¬d13

) ∧ d03

(7)

The control activity is thus fully determined by the parameters assigned to 0
in a control input μ. The set of active control parameters collect these parameters
to trace the control activity (ie., {ui ∈ U | μ(ui) = 0}). In the sequel U will
represent the set of the freezing control parameters indifferently and ui ∈ U a
generic freezing control parameter.

3 Control Parameters Inference

The issue is to formally characterize the basic patterns specifying the changes of
the observable molecular traits resulting from biological system reprogramming.
Such variations will be questioned at equilibrium conditions in a twofold way:
either finding a particular property in some stable states, or finding a particular
property in all of them. We thus define two modalities: the possibility of meeting a
property in at least one stable state (PoP) and the necessity of meeting a property
in all stable states (NoP). Let p be a Boolean function on states (p : SX → B)
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standing for a property, the PoP and NoP inference problems are defined as
follows:

Find a control input μ fulfilling the constraints of Φ such that:

∃s ∈ SX :stblFµ
(s) ∧ p(s). (PoP) (8)

∀s ∈ SX :stblFµ
(s) =⇒ p(s). (NoP) (9)

Different control inputs may be suitable as solutions. For instance, gaining
stable state 010 for Boolean network of Fig. 1 with parameters defined in (7) can
be obtained with the following control inputs:

{
u0
2,1 = 0, u1

3,2 = 1, d13 = 1, d03 = 1
}

{
u0
2,1 = 0, u1

3,2 = 1, d13 = 1, d03 = 0
}

{
u0
2,1 = 0, u1

3,2 = 1, d13 = 0, d03 = 0
}

The plurality of solutions raises the question of their interpretation for identi-
fying the root factors causing the expected effects. The causal factors are defined
as the essential actions shifting the dynamics to the objective whereas the casual
factors behave neutrally and do not interfere with the objective whatever their
valuation. Focusing on the active parameters, only u0

2,1 = 0 matters for shifting
the dynamics to gain 010 (first solution) since it is shared by all solutions, and
without this assignment the system reprogramming fail to reach the expected
objective. The other parameters becoming active are casual because they can be
set to 0 or 1 without deviating the dynamics to the result.

The set of causal control parameters forms a core K∗ defined as a minimal
active parameter set under the inclusion which is equivalent to the entailment
order for cubes. Considering the example, the core K∗ = {u0

2,1} is included in
all other active parameter sets.

Several cores may be found for a given problem. For example, three different
cores {d13}, {u0

2,1}, {u1
3,2} enable the loss of equilibrium 110. Hence, the inference

algorithm aims at finding all the cores in regards to a reprogramming query
formulated by the possibility or the necessity of meeting a property at steady-
state.

3.1 Abduction Based Core Inference

Inferring a core corresponds to the determination of control parameters pro-
ducing an expected effect. In logic finding causes from effects is an abduction
problem. Abduction is a method of reasoning proposing hypotheses that provide
the best explanation for observable facts in regards to knowledge of the problem
constituting the theory [22,25,29]. In propositional logic, a cube C is an abduc-
tive explanation of a formula f formalizing the facts with respect to another
formula Φ representing the theory if and only if: C ∧ Φ |= f and C is consistent
with Φ (ie., Φ ∧ C is satisfied). Finding a parsimonious hypothesis introduces
the notion of minimal solution which is usually assimilated to a prime implicant.
Within this framework, the possibility and the necessity of property (8, 9) are
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formulated as abduction problems in propositional logic (10, 11) by considering
that p is a propositional formula. Lemma1 demonstrates this equivalence.

Find a cube Cμ such that:

(Cs ∧ Cμ) ∧ φ |= (stblFu
∧ p); (PoP) (10)

Cμ ∧ φ |= (stblFu
=⇒ p); (NoP) (11)

where Cs and Cμ are consistent with Φ, V (Cμ) = U, V (Cs) = X and the stability
condition is defined as:

stblFu

def==
n∧

i=1

(xi ⇐⇒ fi(x1, . . . , xn, u1, . . . , um)).

In Example (7), the components of the problem for gaining state 010 (Fig. 2, μ1)
are:

stblFu
= x1 ⇐⇒ (

x2 ∧ u0
2,1

) ∨ x3

∧ x2 ⇐⇒ ¬(x3 ∨ ¬u1
3,2)

∧ x3 ⇐⇒ (
(¬x2 ∧ x1) ∨ ¬d13

) ∧ d03

Stability condition

Φ = d03 ∨ d13 Exclusive activity of d3

p = ¬x1 ∧ x2 ∧ ¬x3 Minterm of s = 010

For the loss of stable state 101 (Fig. 2, μ2), only the property differs, now defined
as: p = ¬(x1 ∧ ¬x2 ∧ x3) corresponding to the negation of the minterm of 101.

Lemma 1. (10) and (11) define the PoP (8) and NoP (9) problems as abductive
problems in propositional logic. (See the extended version for the proof [2].)

3.2 Core Inference Algorithm

For a formula f , the core inference consists in finding a satisfiable implicant C∗

fulfilling C∗ |= f that minimizes the number of negative control parameters
(¬ui) with respect to the inclusion. The resulting core K∗ is trivially deduced
by collecting the negative control parameters of C∗. Computing a core is an
NP-Hard problem5. In this section, we present an algorithm adapted from the
method developed for prime implicants computation in [28] and based on 0-1
Integer Linear Programming (0-1 ILP). A 0-1 ILP problem is formulated as:

Minimize
h∑

j=1

mj .yj , subject to
h∑

j=1

Wi,j .yj ≤ vi, for 1 ≤ i ≤ r, y ∈ {0, 1}h.

where y is the unknown vector, and m, v vectors, W matrix are the parameters
of the problem.

5 By reduction of the minimum hitting set problem.
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The method, called ILP-Core, operates on a formula f in CNF and com-
putes the set of all the cores K∗. The method is based on the translation of the
constraints related to core definition into 0-1 ILP constraints such that a solu-
tion y is a binary representation of an implicant C∗. The algorithm is outlined
in Algorithm 1 and the main steps are fully described in the proof of Theorem 2.

Function ILP-Core(f : CNF formula )

(minm.yT ,Wy ≤ v) = Describe constraints on core as 0-1 ILP problem ;
// C∗ |= f minimizing the number of negative control parameters.

K∗ = ∅;
repeat

y = Solve (minm.yT ,Wy ≤ v) with a 0-1 ILP solver ;
if a solution y is found then

K∗ = Collect the negative control parameters from y;
K∗ = K∗ ∪ {K∗} ;
Exclude all solutions K,K∗ ⊆ K by adding constraints to Wy ≤ v ;

end

until No solution y is found ;

return K∗ // the set of all cores

end
Algorithm 1. Outline of the ILP-Core algorithm.

Theorem 2. The ILP-Core algorithm finds all and only the cores. (See the
extended version [2] for the proof.)

To properly specify the PoP and NoP resolutions, the method is called with
different formulas specifying the query. Applied to PoP (10), the complete for-
mula is passed as parameter since literals of C∗ contain control parameters as
well as variables identifying the state. For NoP (11), as C∗ must contain control
parameters only, each clause is then restricted to control parameters by remov-
ing the literals involving state variables (ie., xi ∈ X). The constraints on control
parameters Φ are already in CNF form by definition (Sect. 2.4).

ILP-Core(cnf(stblFu
∧ p) ∧ Φ) (PoP)

ILP-Core(cnf(stblFu
=⇒ p)↓U ∧ Φ) (NoP)

3.3 Related Works

BCN was recently introduced in systems biology to provide the theoretical foun-
dations and computational methods for investigating cell fate reprogramming
and therapeutic target discovery. In [17] the authors apply a stuck-at fault model
to simulate drug intervention in an acyclic growth factors pathway by a generate-
and-test method. Stuck-at fault model mimics the defects on combinatorial logic
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circuit which were assimilated here to malignant mutations. Based on this model,
authors identify drug actions for single mutations by correcting all possible sin-
gle faults. This framework was improved by [19] using a Max-SAT based method
dedicated to acyclic networks in order to directly compute the control parameter
values and final states. Inferring the drug targets on a network is also developed
by [23] using algebraic techniques (Gröbner basis) in order to modify the system
dynamics for creating or avoiding particular stable states. In [37], the authors
propose a heuristic method with the same goal but focused on the control of
key-nodes stabilizing “motifs” identifying sub-networks. Finally, we have intro-
duced the principle of the abductive inference of cores for drug target discovery
in [3] which is significantly extended here, in particular with the formalization
and the generalization of the TN-actions as control freezing, and with a more
efficient method for the core inference.

Our approach follows a similar orientation of these works by using BCN
for modelling disease and drug actions. By comparison, the target discovery is
modelled in an original way as an abductive problem. The resulting framework
supports any kind of networks including cycles with actions applied on both
nodes and arcs and find multiple targets qualifying the parsimonious TN-actions
(cores) reprogramming the system. The proposed algorithm infers the causes
of expected properties met at stable states and we formalize their query in a
general setting using propositional formulas with the Necessity and Possibility
modalities.

4 Application to Breast Cancer

This section shows the application of TN-actions inference for the study of breast
cancer. Mainly, cancer cells differ from normal cells by their uncontrolled pro-
liferation and apoptotic evasion. Accordingly, targeted drugs aim at inducing
apoptosis or stop the proliferation of cancer cells [12]. We therefore developed a
model (Sect. 4.1) focusing on the regulation of division and apoptosis. We infer
the causal TN-actions leading to a loss or gain of apoptosis (Sect. 4.2) and then
analyse the results (Sect. 4.3).

4.1 Aptoptosis/Cell Division Boolean Network

The model focuses on the regulation of cell division and apoptosis by the EGFR
signalling pathway and a BRCA1/TP53 DNA damage response module. These
genes have been identified as central in the process of tumor formation in breast
cancer [16,24]. The model incorporates the positive and negative interactions
between nuclear TP53 and MDM2 described by [6], the main messengers of the
PI3K/AKT and MAPK signalling following EGFR activation described by [35]
and adds BRCA1 and PARP1 regulation of DNA damage. These pathways are
gathered into a unique Boolean network through the lens of their role in the
regulation of the G1/S transition and the triggering of apoptosis in case of
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EGFR = ¬BRCA1

ERK1/2 = EGFR

PI3K = ¬PTEN ∧ EGFR

AKT = PI3K

GSK3β = ¬AKT

MDM2 = AKT ∧ TP53

TP53 = ¬MDM2 ∧ (BRCA1 ∨ ¬PARP1)

PTEN = TP53

PARP1 = ERK1/2

BRCA1 = ¬CYCD1

BCL-2 = AKT

BAX = ¬BCL-2 ∧ TP53

CYCD1 = (¬GSK3β ∧ ERK1/2)∨
(¬BRCA1 ∧ PARP1)

EGFR

ERK1/2 PTEN PI3K

PARP1 MDM2 AKT

TP53 BRCA1 GSK3β

BAX BCL-2 CYCD1
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Fig. 3. Boolean network (left) with its regulatory graph (right) representing the activa-
tory (green) and inhibitory (red) interactions, and stable states (below). (Color figure
online)

DNA damage. The corresponding Boolean network6, constructed from published
litterature and signalling pathways databases (KEGG [15] and Signor [26]), is
shown in Fig. 3 and the molecular mechanism for each interaction is detailed
and referenced in the extended version [2]). The Boolean dynamics is bistable
characterizing two cellular functions in normal cells: either (1) the cell enters
division by activation of the G1/S transition and inhibition of apoptosis, or (2)
it enters in apoptosis and arrest the cell cycle.

4.2 Inference Query

As network reprogramming effects biomarker profile changes, it is required to
(1) identify the biomarkers discriminating phenotypes and (2) define the repro-
gramming queries based on these biomarkers for causal genes and drug actions
inference.
6 For the sake of simplicity, the names of genes (by convention written in upper case

letters) can also denominate the proteins they encode.
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Since the proliferative activity of cells depends on the balance between divi-
sion and apoptosis, we selected CYCLIN D1 and BAX as biomarkers as they are
the key effector of the G1/S transition of cell division and initiation of apopto-
sis [1,11]. The pair (CYCLIN D1, BAX) distinguishes four phenotypes: apopto-
sis, division, quiescence (apoptosis balanced by division) and dormancy (neither
apoptosis nor division) [30] through to the following signatures: (0, 1) for apop-
tosis, (1, 0) for division, (0, 0) for quiescence and (1, 1) for dormancy.

Since cancer cells are characterized by their inability to trigger apoptosis, the
reprogramming query for the inference of causal genes corresponds to the loss of
apoptosis. Conversely, as drugs induce apoptosis in cancer cells, the reprogram-
ming query for the inference of drug actions corresponds to the gain of apop-
tosis. Apoptosis is formalized as a property by the minterm of (0, 1) signature:
p = ¬CYCD1 ∧ BAX. The loss of apoptosis thus corresponds to the necessity
of ¬p since the apoptosis must not occur in any stable state. To recover this
marking, the query can be either the necessity or the possibility of p. We have
tested both and the solutions providing stable states are the same.

Finally, the genetic events are modelled by control parameters as follows: the
loss of expression of a gene following loss-of-function mutations or other genetic
events such as gene deletion corresponds to D0-freezing; gene over-expression
following gain-of-function mutations or other genetic events such as gene ampli-
fication are represented by D1-freezing; and the loss of interactions between two
molecules is interpreted as U0-freezing. The Boolean network (Fig. 3) is auto-
matically completed with control parameters by following the rules set out in
Sect. 2.4. Notice that U1-freezing does not seem interpretable in terms of biolog-
ical events and not used here.

4.3 Analysis of the Results

We inferred the actions from combination of D0/D1-freezing on all variables
(molecules) except markers and the U0-freezing on all interactions separately
to compare them. The computed TN-actions are shown in Table 1. The TN-
actions for the gain of apoptosis have been inferred from the model with BRCA1-
deficiency (BRCA1 = 0).

Applied to the loss of apoptosis with D-freezing, the method retrieves the
main driver genes identified in breast cancer namely BRCA1, TP53, PI3K and
EGFR [5,14]. Moreover, it segregates tumor suppressor genes (ie., frequently
affected by gain-of-function mutations in cancers) from oncogenes (ie., frequently
affected by loss-of-function mutations in cancers) [8,21]: D0-frozen genes all cor-
respond to tumour suppressors and D1-frozen genes to oncogenes. For the gain
of apoptosis after application of BRCA1 deficiency, the single D-freezing inferred
actions recover the necessity of blocking PARP1, the synthetic lethal partner of
BRCA1. The pair BRCA1/PARP1 are called synthetic lethal partners because
the use of PARP inhibitors in patients with BRCA1-deficiency prevents any pos-
sibility of DNA-repair resulting in permanent DNA damage inducing apoptosis
of the cancer cell [10,20]. Finding such partnerships is critical for anticancer
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Table 1. Freezing actions causing the gain or loss of apoptosis.

- Health → Cancer: necessary loss of apoptosis -

n
o
d
e
a
c
t
io
n

Single D-freezing

BRCA1 = 0

TP53 = 0

PI3K = 1

AKT = 1

BCL-2 = 1

MDM2 = 1

Double D-freezing

GSK3β = 0, ERK1/2 = 1

PTEN = 0, EGFR = 1

GSK3β = 0, EGFR = 1

Single U0-freezing

TP53 BAX

Double U0-freezing

BRCA1 EGFR, TP53 PTEN

BRCA1 EGFR, BRCA1 CYCD1

BRCA1 EGFR, BRCA1 TP53

BRCA1 EGFR, PTEN PI3K

BRCA1 EGFR, GSK3β CYCD1

a
r
c
a
c
t
io
n

- BRCA1 mutation (Cancer) → Cell death: possible gain of apoptosis -

n
o
d
e
a
c
t
io
n

Single D-freezing

BRCA1 = 1

PARP1 = 0

ERK1/2 = 0

EGFR = 0

Single U0-freezing

ERK1/2 PARP1

EGFR ERK1/2

Double U0-freezing

PARP1 CYCD1, PARP1 TP53

a
r
c
a
c
t
io
n

treatment [13] but since the cancer target differs from the drug target, they are
hard to recover experimentally and computationally.

The algorithm also predicts double D-freezing actions for the necessary loss
of apoptosis which suggest that overexpression of EGFR alone would not be
sufficient to provoke a cancerous phenotype and must be combined with either
loss of PTEN or GSK3β. The validation of such result is less obvious than the
former and is based on the concomittent overexpression of EGFR and loss of
PTEN/GSK3β. Work in [18] confirms the existence of a co-occurence of EGFR
over-expression and loss of PTEN in 20% of the tumors of the studied population.
Moreover, authors also show that PTEN loss is associated to resistance to EGFR
inhibitors. Similarly in erlotinib resistant model cell lines [4] it has been observed
that GSK3β was upregulated. Thus, these works suggest the existence of the
predicted cooperation between these genes.

It is also predicted that EGFR inhibition would be synthetic lethal with
BRCA1 mutations. This is supported by the observation that the prolifera-
tion properties of BRCA-deficient cells are sensitive to EGFR inhibition by
erlotinib [5]. We found no published work suggesting that ERK1/2 inhibition
in such cells would be synthetic lethal.

In summary, in the studied model the method accurately predicts cancer-
ous genes and drug targets and segregate oncogenes from tumor suppressors.
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The inference also recovers cooperative gene mutations and synthetic lethal
partnerships. The double freezing results provide some insights on the neces-
sary cooperative combination of perturbations that are difficult to assess experi-
mentally [27,36]. Moreover by inferring cores, the method separate causal genes
to casual ones (passengers) and determine frequent drivers as well as rare ones
which is more difficult to obtain by statistical analysis that prioritize genes from
the frequency of their occurrence [34]. Usually, drivers are classified in subtypes
where a specific drug target is associated for each subtype. In the proposed
approach the drug target may be directly inferred from the application of the
TN-actions corresponding to drivers on the initial boolean network. Finally, arc
inference (U0-freezing) refines the results on nodes (D0-freezing) and, to the best
of our knowledge, the resulting predictions are not experimentally confirmed.

5 Conclusion

In this article, we have proposed a modelling framework discovering the repro-
gramming actions of a dynamical system using BCN and designed a new infer-
ence method based on abduction that identifies the minimal causes reprogram-
ming the network. A library called protaxion was developed in Mathematica
to support the application on concrete cases. It has been validated on a breast
cancer model and has shown that the method can retrieve driver genes and drug
targets.

A perspective of this work is to include the notion of resistance in the infer-
ence. Two sorts of resistances were established: the primary arising prior to a
classical treatment and the secondary which is an adaptive negative response
to a treatment. As the method infers all the causes responsible for a biomarker
profile shift, the primary resistance is interpreted in our framework as the varia-
tion of the input Boolean network of a patient in comparison to a generic one in
which the drug targets were deduced. In this context, we need to specialize the
network to a patient. The issue for the secondary resistance is more complex and
necessitates to predict the further alterations of the network once a TN-action
is applied. The prediction of secondary resistance requires to extend the BCN
model by including the notion of temporal sequence of control inputs instead of
a single control input.
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Abstract. Automating the process of model building from experimen-
tal data is a very desirable goal to palliate the lack of modellers for many
applications. However, despite the spectacular progress of machine learn-
ing techniques in data analytics, classification, clustering and prediction
making, learning dynamical models from data time-series is still challeng-
ing. In this paper we investigate the use of the Probably Approximately
Correct (PAC) learning framework of Leslie Valiant as a method for the
automated discovery of influence models of biochemical processes from
Boolean and stochastic traces. We show that Thomas’ Boolean influence
systems can be naturally represented by k-CNF formulae, and learned
from time-series data with a number of Boolean activation samples per
species quasi-linear in the precision of the learned model, and that pos-
itive Boolean influence systems can be represented by monotone DNF
formulae and learned actively with both activation samples and oracle
calls. We consider Boolean traces and Boolean abstractions of stochas-
tic simulation traces, and study the space-time tradeoff there is between
the diversity of initial states and the length of the time horizon, and its
impact on the error bounds provided by the PAC learning algorithms. We
evaluate the performance of this approach on a model of T-lymphocyte
differentiation, with and without prior knowledge, and discuss its merits
as well as its limitations with respect to realistic experiments.

1 Introduction

Modelling biological systems is still an art which is currently limited in its appli-
cations by the number of available modellers. Automating the process of model
building is thus a very desirable goal to attack new applications, develop patient-
tailored therapeutics, and also design experiments that can now be largely auto-
mated with a gain in both the quantification and the reliability of the observa-
tions, at both the single cell and population levels.

Machine learning is revolutionising the statistical methods in biological data
analytics, data classification and clustering, and prediction making. However,
learning dynamical models from data time-series is still challenging. A recent
survey on probabilistic programming [14] highlighted the difficulties associated

c© Springer International Publishing AG 2017
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with modelling time, and concluded that existing frameworks are not sufficient
in their treatment of dynamical systems. There has been early work on the use
of machine learning techniques, such as inductive logic programming [19] com-
bined with active learning in the vision of the “robot scientist” [4], to infer gene
functions, metabolic pathway descriptions [1,2] or gene influence systems [3],
or to revise a reaction model with respect to CTL properties [5]. Since a few
years, progress in this field is measured on public benchmarks of the “Dream
Challenge” competition [15,18]. Logic Programming, and especially Answer Set
Programming (ASP), provide efficient tools such as CLASP [11] to implement
learning algorithms for Boolean models. They have been applied in [12] to the
detection of inconsistencies in large biological networks, and have been subse-
quentially applied to the inference of gene networks from gene expression data
and to the design of discriminant experiments [26]. Furthermore, ASP has been
combined with CTL model-checking in [20] to learn mammalian signalling net-
works from time series data, and identify erroneous time-points in the data.

Active learning extends machine learning with the possibility to call oracles,
e.g. make experiments, and budgeted learning adds costs to the calls to the
oracle. The original motivation for the budgeted learning protocol came from
medical applications in which the outcome of a treatment, drug trial, or control
group is known, and the results of running medical tests are each available for a
price [8]. In this context, multi-armed bandit methods [7] currently provide the
best strategies. In [16], a bandit-based active learning algorithm is proposed for
experiment design in dynamical system identification.

In this paper, we consider the framework of Probably Approximately Correct
(PAC) Learning which was introduced by Leslie Valiant in his seminal paper on a
theory of the learnable [24]. Valiant questioned what can be learned from a com-
putational viewpoint, and introduced the concept of PAC learning, together with
a general-purpose polynomial-time learning protocol. Beyond the algorithms
that one can derive with this methodology, Valiant’s theory of the learnable
has profound implications on the nature of biological and cognitive processes, of
collective and individual behaviors, and on the study of their evolution [25].

Here we present PAC learning as a possible basis to develop a method for
the automated discovery of influence models of biochemical processes from time-
series data. To the best of our knowledge, the application of PAC learning to
dynamical models of biochemical systems has not been reported before. We show
that Thomas’ gene regulatory networks [22,23] can be naturally represented by
Boolean formulae in conjunctive normal forms with a bounded number of litterals
(i.e. k-CNF formulae), and can be learned from Boolean traces with a number
of Boolean transition samples per species quasi-linear in the precision of the
learned model, using Valiant’s PAC learning algorithm for k-CNF formulae. We
also show that Boolean influence systems with their positive Boolean semantics
discussed in [9] can be naturally represented by monotone DNF formulae, and
learned actively from a set of positive samples with calls to an oracle.

For the sake of evaluation, we consider Boolean traces and Boolean abstrac-
tions of stochastic simulation traces, and study the space-time tradeoff there is
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between the diversity of initial states and the length of the time horizon, and
its impact on the error bounds provided by PAC learning algorithms. In the
following, we first illustrate our results1 with a toy example, the Lotka-Volterra
prey-predator system as running example, and then on a Thomas regulatory net-
work of the differentiation of the T-helper lymphocytes from [17,21], composed
of 32 influences and 12 variables. We evaluate the performance of PAC learning
on this model, with and without prior knowledge, and discuss its merits as well
as its limitations with respect to realistic experiments.

2 Preliminaries on PAC Learning

2.1 PAC Learning Protocol

Let n be the dimension of the model to learn, and let us consider a finite set
of Boolean variables x1, . . . , xn, A vector is an assignment of the n variables
to B = {0, 1}; A Boolean function G : B

n → B; assigns a Boolean value to
each vector. The idea behind the PAC learning protocol is to discover a Boolean
function2, G, which approximates a hidden function F , while restricting oneself
to the two following operations:

– Sample(): returns a positive example, i.e. a vector v such that F (v) = 1.
The output of Sample() is assumed to follow a given probability distribution
D(v), which is used to measure the approximation of the result.

– Oracle(v): returns the value of F (v) for any input vector v.

Definition 1 ([24]). A class M of Boolean functions is said to be learnable if
there exists an algorithm A with some precision parameter h ∈ N such that:

– A runs in polynomial time both in n and h;
– for any function F in M, and any distribution D on the positive examples,

A deduces with probability higher than 1−h−1 an approximation G of F such
that

• G(v) = 1 implies F (v) = 1 (no false positive)
•

∑

v s.t. F (v)= 1∧G(v)= 0

D(v) < h−1 (low probability of false negatives)

Note that it is possible to use two different parameters h1 and h2 for the
probability of false negatives and the quality of the approximation, but here, we
used h1 = h2 = h for the sake of simplicity.

1 For the sake of reproducibility, the code used in this article is available at http://
lifeware.inria.fr/wiki/software/#CMSB17.

2 More generally, the PAC learning protocol can discover partial vectors, but for the
applications discussed in the current article it is enough to only consider total vectors.

http://lifeware.inria.fr/wiki/software/#CMSB17
http://lifeware.inria.fr/wiki/software/#CMSB17
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2.2 PAC Learning Algorithms

Valiant showed the learnability of some important classes of functions in this
framework, in particular for Boolean formulae in conjunctive normal forms with
at most k literals per conjunct (k-CNF), and for monotone (i.e. negation free,
positive literals only) Boolean formulae in disjunctive normal form (DNF).

The computational complexity of the PAC learning algorithms for these
classes of functions is expressed in terms of a function L(h, S), defined as the
smallest integer i such that in i independent Bernoulli trials, each with probabil-
ity at least h−1 of success, the probability of having fewer than S successes is less
than h−1. Interestingly, this function is quasi-linear in h and S, more precisely
for all integers S ≥ 1 and reals h > 1, we have L(h, S) ≤ 2h(S + loge h) [24].

Theorem 1 ([24]). For any k, the class of k-CNF formulae on n variables is
learnable with an algorithm that uses L(h, (2n)k+1) positive examples and no call
to the oracle.

The proof is constructive and relies on Algorithm 1 below. In this algorithm,
the initialization of the learned function g to the false constraint expressed as
the conjunction of all possible clauses (i.e. disjunctions of litterals) leads to
the learning of a minimal generalization of the positive examples with no false
positive and low probability of false negatives.

Algorithm 1. PAC-learning of k-CNF formulae.
1. initialise g to the conjunction of all the (2n)k possible clauses of at most k literals,
2. do L(h, (2n)k+1) times

(a) v : = Sample()
(b) delete all the clauses in g that do not contain a literal true in v

3. output: g

In our implementation of the PAC-learning algorithm for k-CNF formulae,
we shall make use of the lattice structure of k-clauses ordered by implication.
Interestingly, this data structure allows for

– O(1) access to any k-clause;
– and for a clause c, O(1) access to the smallest clauses implied by c and to the

biggest clauses that imply c.

The class of monotone DNF formulae is also learnable. Let the degree of
a Boolean formula be the largest number of prime implicants (i.e., minimal
formulae covering one of the product-terms of the Boolean formula expressed as
a sum of products) in an equivalent rewriting of the formula as a non-redundant
sum of prime-implicants.
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Theorem 2 ([24]). The class of monotone DNF formulae on n variables is also
learnable with an algorithm that uses L(h, d) examples and dn calls to the oracle,
where d is the degree of the function to learn.

The proof relies on Algorithm 2. As previously, the algorithm guarantees that
a minimal generalization is learned from both the samples and the oracle. The
polynomial computational complexity follows from the fact that each monomial
m is a prime implicant of f by construction, and that it is constructed by at
most n calls to the oracle.

Algorithm 2. PAC-learning of monotone DNF formulae.
1. initialise g with false (constant zero),
2. do L(h, d) times

(a) v := Sample()
(b) if v ⇒ g exit
(c) for i := 1 to n

i. if xi is determined in v
A. v∗ := v[xi ← ∗]
B. if Oracle(v∗) then

– v := v∗

– m :=
∧

v⇒xj
xj ∧∧v⇒¬xk

¬xk

– g := g ∨ m
3. output: g

3 Influence Models of Molecular Cell Processes

In this section, we present the formalism of influence systems used to model
regulatory networks in cell molecular biology. We assume again a finite set of
molecular species {x1, . . . , xn} and consider Boolean states that represent the
activation or presence of each molecular species of the system, i.e. vectors in B

n

that specify whether or not the ith species is present, or the ith gene activated.

3.1 Influence Systems with Forces

Influence systems with forces have been introduced in [9] to generalize the widely
used logical models of regulatory networks à la Thomas [22], in order to pro-
vide them with a hierarchy of semantics including quantitative differential and
stochastic semantics, similarly to reaction systems [10].

Definition 2 ([9]). An influence system I is a set of quintuples (P, I, t, σ, f)
called influences, noted in the examples below in Biocham v43 syntax,
f for P/I -> t if σ = +, and f for P/I -< t if σ = −, where
3 http://lifeware.inria.fr/biocham4.

http://lifeware.inria.fr/biocham4
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– P is a multiset on S, called positive sources of the influence,
– I a multiset of negative sources,
– t ∈ S is the target,
– σ ∈ {+,−} is the sign of the influence, accordingly called either positive or

negative influence,
– and f : R+

n → R+ is a function4 called the force of the influence.

The positive sources are distinguished from the negative sources of an influ-
ence (positive or negative), in order to annotate the fact that in the differential
semantics, the source increases or decreases the force of the influence, and in
the Boolean semantics with negation whether the source, or the negation of the
source, is a condition for a change in the target.

Example 1. The classical birth-death model of Lotka–Volterra can be repre-
sented by the following influence system between a proliferating prey A and
a predator B:

k1 * A * B for A, B -< A.
k1 * A * B for A, B -> B.
k2 * A for A -> A.
k3 * B for B -< B.

The influence forces can be used for differential or stochastic simulation as
above. This example contains both positive and negative influences but no influ-
ence inhibitor, i.e. no negative source in the influences: ({A, B}, ∅, A,−, k1 ∗A ∗
B), ({A, B}, ∅, B,+, k1∗A∗B), ({A}, ∅, A,+, k2∗A) and ({B}, ∅, B,−, k3∗B).
For an example of influence with inhibitor, one can consider the specific inhi-
bition of the proliferation rate of A by some variable C (which is distinguished
from a general negative influence of C on A) by writing C as an inhibitor of the
positive influence of A on A: k2 * A/(1 + C) for A/C -> A.

Definition 3 (Boolean Semantics). The Boolean semantics (resp. positive
Boolean semantics) of an influence system {(Pi, Ii, ti, σi, fi)}1≤i≤n over a set S
of n variables, is the Boolean transition system −→ defined over Boolean state
vectors in B

n by x −→ x′ if there exists an influence (Pi, Ii, ti, σi, fi) such that
x |= ∧

p∈Pi
p

∧
n∈Ii

¬n (resp. x |= ∧
p∈Pi

p) and x′ = x σi ti.

where adding (resp. subtracting) t amounts to making the corresponding coor-
dinate true (resp. false).

Equivalently, the Boolean semantics of an influence system over n species,
x1, . . . , xn, can be represented by n activation and n deactivation Boolean func-
tions, which determine the possible transitions from each Boolean state:
4 More precisely, in a well-formed influence system, f is assumed to be partially dif-

ferentiable; xi ∈ P if and only if σ = + (resp. −) and ∂f/∂xi(x) > 0 (resp. < 0) for
some value x ∈ R

n
+; and xi ∈ I if and only if σ = + (resp. −) and ∂f/∂xi(x) < 0

(resp. > 0) for some value x ∈ R
n
+.
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Definition 4 (Boolean Activation Functions). The Boolean activation
functions xk

+, xk
− : {0, 1}n → {0, 1}, 1 ≤ k ≤ n, of an influence system

M are

xk
+ =

∨

(P,I,xk,+,f)∈M

∧

p∈Pi

p
∧

n∈Ii

¬n xk
− =

∨

(P,I,xk,−,f)∈M

∧

p∈Pi

p
∧

n∈Ii

¬n

The positive activation functions are defined without negation by ignoring the
inhibitors.

Conversely any system of Boolean activation functions can be represented by
an influence system by putting the activation functions in DNF, and associating
an influence to each conjunct.

Note that the positive Boolean semantics simply ignores the negative sources
of an influence. This is motivated by the abstraction and approximation rela-
tionships that link the Boolean semantics to the stochastic semantics and to the
differential semantics, for which the presence of an inhibitor decreases the force
of an influence but does not prevent it to apply [9].

Definition 5 (Stochastic Semantics). The stochastic semantics (resp. pos-
itive stochastic semantics) of an influence system {(Pi, Ii, ti, σi, fi)}1≤i≤n

over a set S of n variables, relies on the transition system −→ defined
over discrete states, i.e. vectors in N

n, by ∀(Pi, Ii, ti, σi, fi),x −→
x′ with propensity fi if x ≥ Pi,x < Ii (resp. no condition on Ii) and x′ =
x σi ti. Transition probabilities between discrete states are obtained through nor-
malization of the propensities of all enabled transitions, and the time of next
transition is given by an exponential distribution [13].

We call a positive influence system, an influence system without inhibitors
or interpreted under the positive semantics.

3.2 Monotone DNF Representation of Positive Influence Systems

Definition 4 shows how to represent an influence system by 2∗n activation func-
tions in DNF, and positive influence systems by monotone DNF activation func-
tions.

Example 2. The activation functions of the Lotka–Volterra influence system of
Example 1 are monotonic DNF formulae with only one conjunct since in this
example there is only one signed influence per variable:

A+ = (A) B+ = (A ∧ B)

A− = (A ∧ B) B− = (B)
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3.3 k-CNF Representation of General Influence Systems

Monotone DNF formulae cannot encode the Boolean dynamics of influence sys-
tems with negation, which tests the absence of inhibitors, i.e., negative literals.
This is possible using a k-CNF representation of the activation functions, pro-
vided that there are at most k species that can play a given “role”. For instance,
in a hypothetic activation function in CNF (a ∨ b ∨ c)

∧
(d ∨ e)

∧ ¬f , each clause
can be interpreted as a role, and each role can be played by a limited number of
species, at most k.

Example 3. The activation functions of the prey-predator model with inhibition
of Example 1 cannot be represented by monotone formulae. They can however
be represented by the following 1-CNF formulae (k = 1 since there is only one
positive and one negative influence for each target):

A+ = (A) ∧ (¬C) A− = (A) ∧ (B)

B+ = (A) ∧ (B) B− = (B)

Example 4. In Sect. 5, we shall study a model of T lymphocyte differentiation
which contains 2-CNF activation functions, for instance

IFNg+ = (STAT4 ∨ TBet) IFNg− = (¬STAT4) ∧ (¬TBet)

3.4 k-CNF Models of Thomas Functional Influence Systems

Definition 6 ([22]). A Thomas network on a finite set of genes {x1, . . . , xn} is
defined by n Boolean functions {f1, . . . , fn} which give for each gene its possible
next state, given the current state.

The difference with the previous general influence systems is that the activa-
tion and deactivation functions are exclusive and defined by one single function.
As shown in [9], non-terminal self-loops cannot be represented in Thomas func-
tional influence systems. Given a general influence system with activation func-
tions xi

+ and xi
−, one can associate a Thomas network with attractor function5

fi(v) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
{

vi = 0 and xi
+(v) = 1

vi = 1 and xi
−(v) = 0

0 if
{

vi = 0 and xi
+(v) = 0

vi = 1 and xi
−(v) = 1

k-CNF formulae can again be used to represent Thomas gene regulatory
network functions with some reasonable restrictions on their connectivity. In
particular, it is worth noticing that in Thomas networks of degree bounded by
k, each gene has at most k regulators, each gene activation function fi thus
depends of at most k variables and can consequently be represented by a k-CNF
formula.
5 Note that this function ignores the cases where vi = 0 and xi

−(v) = 0, or vi = 1
and xi

+(v) = 1 which may create loops in non-terminal states in general influence
systems.
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Example 5. The above translation applied to Example 1 gives fA = A ∧
¬B, fB = 0. Note that the form of fB means that the only possible state change
for B is from 1 to 0.

Example 6. The T-lymphocyte model studied in Sect. 5 is originally a Thomas’
network, where we have, for instance: fIFNg = (STAT4 ∨ TBet)

4 PAC Learning from Traces

4.1 Diverse Initial States Versus Long Time Horizon

In practice, one cannot assume to have full access to the hidden Boolean function
as required by Sample and Oracle, but rather to data time-series, or traces,
produced from biological experiments. For the scope of this paper, we consider
simulation traces obtained from a hidden model which we wish to discover. Two
types of traces are considered: Boolean and stochastic simulation traces. In both
cases, the mapping to the concepts of PAC-learning is easy: a Sample for the
activation function x+ (resp. deactivaction function x−) is a state si such that
xi < xi+1 (resp. xi > xi+1). See Fig. 1 for an example.

Fig. 1. Illustration of a Boolean trace with three steps. Between a and b, the first gene
has been activated, and between b and c, the last one has been deactivated.

One striking feature of PAC learning is to associate a guarantee on the quality
h of each learnt Boolean function depending on the number of samples used,
namely L(h, (2n)k+1), where n is the number of genes/molecules observed, and
k is the maximum number of literals per conjunct. In practice, k seems to be
limited to 3 or 2, and the number 2n of different possible literals in a clause, can
also be reduced through prior knowledge (e.g. in Sect. 5.3).

It is worth noticing that the global guarantee on the learnt model is the
minimum of all precision bounds h. In order to perfectly recover a hidden model,
it is thus necessary to have sufficiently diverse samples. For this reason, one
should expect to get better performance with large sets of short traces obtained
from a uniformly distributed set of initial states, rather than with a small set of
long traces which introduce a bias in the distribution of the transition samples
(e.g. when looping in an attrator). The important point is that PAC learning
algorithms do provide bounds on the error according to this space-time trade-off.
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On the other hand, the Oracle procedure needs to evaluate the
(de)activation function on a given vector v, that is, it needs to be able to set
the system in a state abstracted by v and say whether or not a given gene can
be (de)activated from this state. In practice, this cannot be achieved without
approximation. The intuitive solution would be to set the system in the desired
state and see whether or not the gene is (de)activated. However, different atomic
steps are possible from a given state and we have no guarantee that the one we
are interested in will happen in a given finite number of runs. These considera-
tions militate for studying an extension of the PAC-learning framework with an
oracle that would be only probabilistic.

4.2 PAC Learning from Boolean Traces

A first experiment was to produce Boolean (de)activation traces by simulation
of a given influence model, and use them to learn the hidden model. Figure 2
reports our results obtained with 25 Boolean traces of short length equal to 2
(i.e. when trading time for space) on Example 1, where to increase readability
we used long names for the species. It is worth noticing that in this particular
model, the positive infuences cannot be learned from (de)activation traces, since
they contain their target as positive source and thus do not correspond to an
activation function. Indeed, the activation functions in the Lokta–Volterra mod-
els report the apparition on extinction of the species’ population as a whole and
not of individuals of it. The results in this tradeoff are perfect in the sense that
the negative influences are correctly inferred.

Fig. 2. The Lokta-Volterra prey vs. predator influence model of Example 1 with long
names (left panel) and the (most likely) influence model PAC-learned on 25 simulations
of length 2 (right panel) from random initial states.

Fig. 3. Most likely PAC-learned activation functions (left pane, where !A stands for
¬A), and corresponding influence model (rigth panel obtained by CNF-DNF conver-
sion), on a single random Boolean trace of length 50 from the standard initial state
with prey and predator present.
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On the other hand, PAC learning from a single Boolean trace obtained from
the standard initial state where both the prey and the predator are present
(i.e. trading space for time), most likely leads to the influence model shown in
Fig. 3. For the prey to go extinct, there must be both a prey in the first place and
a predator to eat it. This is correct. For the predator to disappear, it is necessary
that there is a predator in the first place and that there is no prey. The first part
of this conjunction is true, but the second is false: predators may disappear even
if there are preys left. However, this case is unlikely, the most likely case is that
the predator will go extinct only once there are no more preys left for it to eat.
As can be seen even on this very simple example, the “approximately” in PAC
has a precise meaning. Yet, as explained in Definition 1, the quantification of this
approximation relies on the knowledge of the distributions of the samples. In the
present case, the probability of a positive example v of (de)activation function
x± to be sampled is strongly and intuitively correlated to both the probability
that the system reaches state v and the probability of the actual (de)activation
of gene x from state v.

4.3 PAC Learning from Stochastic Traces

Let us now consider sets of stochastic traces. They can be produced from an
influence system with forces, using Gillespie’s algorithm (Definition 5), assum-
ing here mass-action kinetics with rate 1 for all influences. The initial states are
random, but with equal probability to be 0 or > 0 in order to facilitate the
observation of the inhibitions in the influences. The states in N

n can be

biocham: pac_learning(’library:examples/lotka_volterra/LVi.bc

’, 50, 1).

% Maxmimum K used: minimum number of samples for h=1: 18

% 14 samples (max h ~ 0.7777777777777778)

Predator -< Predator

% 7 samples (max h ~ 0.3888888888888889)

Predator ,Prey -> Predator

% 1 samples (max h ~ 0.05555555555555555)

Predator ,Prey -< Prey

% 21 samples (max h ~ 1.1666666666666667)

Prey -> Prey

Listing 1: Biocham running the k-CNF PAC learning algorithm on the Lotka–
Volterra influence model from stochastic simulation traces of length 1, obtained
from 50 random initial states. Among those 50 initial states, 7 had both prey
and predator absent, leading to no sample.
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abstracted to Boolean samples by the usual {0, > 0} abstraction for the states,
and the increasing/decreasing abstraction for choosing samples for the activa-
tion/deactivation functions. Using the same {0, > 0} abstraction to detect sam-
ples would again forbid to learn autocatalytic influences like Prey -> Prey for
the same reason as in the Boolean case.

Interestingly, Listing 1 shows that here again, even with a low number of
samples, and therefore a very low precision bound h, one can find the full model
with less than 50 simulations of length 1, all starting from random initial states.

5 Evaluation on a Model of T-Helper Lymphocytes
Differentiation

5.1 Boolean Thomas Network

In this section we evaluate the performance of the k-CNF PAC learning algo-
rithm on an influence system of 12 variables and 32 influences that models the
differentiation of the T-helper lymphocytes. This model, presented in [21] is actu-
ally a Boolean simplification of the original multi-level model of [17]. It studies
the regulatory network of stimuli leading to differentiation between Th-1 and
Th-2 lymphocytes from an original CD4+ T helper (Th-0). The model has three
different stable states corresponding to Th-0 (naive lymphocyte), Th-1 and Th-2
when IL12 is off, and two others when IL12 is on (the Th-0 one is lost). Figure 4
shows the influence graph of the model. The influence model is given in Listing 2.

Fig. 4. Figure 4 of [21] displaying the Th-lymphocyte differentiation model.
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STAT4 , TBet -> IFNg. / IFNgR -< STAT1.

/ STAT4 -< IFNg. IL4R -> STAT6.

/ TBet -< IFNg. / IL4R -< STAT6.

GATA3 / STAT1 -> IL4. IL12R / GATA3 -> STAT4.

/ GATA3 -< IL4. / IL12R -< STAT4.

STAT1 -< IL4. GATA3 -< STAT4.

IFNg / SOCS1 -> IFNgR. STAT1 -> SOCS1.

/ IFNg -< IFNgR. TBet -> SOCS1.

SOCS1 -< IFNgR. / STAT1 , TBet -< SOCS1.

IL4 / SOCS1 -> IL4R. STAT6 / TBet -> GATA3.

/ IL4 -< IL4R. STAT1 / GATA3 -> TBet.

SOCS1 -< IL4R. TBet / GATA3 -> TBet.

IL12 / STAT6 -> IL12R. GATA3 -< TBet.

/ IL12 -< IL12R. / STAT1 , TBet -< TBet.

STAT6 -< IL12R. / STAT6 -< GATA3.

IFNgR -> STAT1. TBet -< GATA3.

Listing 2: Influence system for the lymphocyte differentiation of Example 5.

All learning experiments described below run on a 3 GHz Linux desktop
in less than 3 s. However, the CNF (activation functions) to DNF (influence
model) conversions could be very slow, reaching more than 4 min in the worst
cases (e.g. with a single simulation of 106 steps). Note also that since IL12 is an
input, in all experiments the PAC learning algorithm only finds false as Boolean
function for its activation or deactivation. We thus removed it from the results
below for readability.

5.2 Ab initio PAC Learning from Stochastic Traces

When using stochastic simulations in this example, Fig. 5 shows that a sim-
ple randomization of the initial states (while keeping the total number of sam-
ples constant) provides a much more homogeneous repartition of activation and
deactivation samples (as shown by the decreasing standard deviation), and, as
expected, a much higher confidence h in the learnt model. The minimum number
of samples gives in fact a quasi-linear estimate of the model confidence h. Obvi-
ously, more diverse initial states reveal more about the model structure than
longer experiments.

On the other hand, the error measured as the number of false positive and
false negative influences (right scale divided by 10), reveals a non monotonic
behavior: in this example, there is a zone with sets of 10 to 100 traces, where
PAC learning produces models with very complex (de)activation formulae that
are not readable by humans and that produce many errors. Above 500 traces
from random initial states the learnt model is perfect.

The guarantee on the accuracy of the learnt model comes directly from
Valiant’s work with the approximation bounds. Note however that Valiant’s
results stand only if we actually have at least L samples for each of the
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Fig. 5. Minimum numbers of (de)activation samples with standard deviations, and
model errors (i.e. false positive and negative influences) obtained for the 24 boolean
functions of the Th-lymphocyte example, as a function of the number of initial states
(with total number of samples kept constant by adjusting the time horizon).

(de)activation functions, where L is Valiant’s bound. A first naive approach
might be to simply let the trace run for 2nL steps, or a constant factor of
it. Nevertheless, the repartition of samples for each function can be pretty non-
uniform. Interestingly, the minimal number of samples gives us the lowest L(h, S)
and thus quasi-linearly the lowest guarantee h.

Our simulation results show that when using PAC-learning to find the struc-
ture of a regulatory model, an approach based on mutants (knock-offs, over-
expression, etc.) is much more informative than an approach based on (repeated
or longer) similar observations. Note that this is in line with the pratice of inte-
grative analyses such as [6] and its more than 130 mutants.

5.3 PAC Learning with Prior Knowledge on the Influence Graph

Furhtermore, to improve the guarantee h and the corresponding accuracy of
the learnt models, especially for bigger models, it is necessary to look again at
what constrains h. We have samples = 2h(S + log h), where S is the number of
possible k-CNF clauses, bounded by (2n)k+1.

The previous section explored the diversity of the samples, another option
is to reduce S for a given n. This can be done by formalizing possible/known
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interactions as prior knowledge, as is common in Machine Learning, effectively
restricting the possible clauses for each activation/deactivation function.

Here we want the user to be able to specify, for each gene x, a set of gene
Vx which are the only ones on which x+ and x− may depend. If one views the
influences as a graph, this is akin to specifying a set of possible (undirected) edges
outside of which the algorithm cannot build its influence system. An example of
such hints for the lymphocyte model are given at http://lifeware.inria.fr/wiki/
software/#CMSB17.

In such an example, the number of possible clauses becomes bounded by 33

(maximum 3 effectors that are either a positive literal, a negative literal or not
in the clause at all) instead of 264 (Valiant’s bound). Since for a given number
of samples h varies quasi-linearly in S, the improvement is drastic (50000 times
less samples for the same h). The accuracy of the model is, as expected with
such guarantee, improving a lot.

6 Conclusion and Perspectives

We have shown that Valiant’s work on PAC learning provides an elegant trail,
with error bounds, to attack the challenge of inferring the structure of influence
models from the observation of data time series, and more precisely to auto-
matically discover possible regulatory networks of a biochemical process, given
sufficiently precise observations of its executions.

The Boolean dynamics of biochemical influence systems, including Thomas
regulatory networks, can be represented by k-CNF formulae without loss of gen-
erality, and k-CNF PAC learning algorithm can be used to infer the structure of
the network, and bound the errors made according to the distribution of the state
transition samples and the space-time tradeoff in the traces. When dimension
increases, we have shown on an example of T-lymphocyte differentiation from
the literature that the k-CNF PAC learning algorithm can also leverage avail-
able prior knowledge on the system to deliver precise results with a reasonable
amount of data.

The Boolean dynamics of positive influence systems can also be straightfor-
wardly represented by monotone DNF activation and deactivation functions, and
monotone DNF PAC learning algorithm applied with an interesting recourse to
oracles which are particularly relevant in the perspective of online active learning
and experimental design. More work is needed however to make comparisons on
common benchmarks with other approaches already investigated in this context,
such as Answer Set Programming (ASP) and budgeted learning, and to investi-
gate the applicability of these methods to real experiments taking into account
the noise in the observations.
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Abstract. The study of complex biological processes requires to forgo
simplified models for extensive ones. Yet, these models’ size and com-
plexity place them beyond understanding. Their analysis requires new
methods for identifying general patterns. The Transforming Growth Fac-
tor TGF-β is a multifunctional cytokine that regulates mammalian cell
development, differentiation, and homeostasis. Depending on the con-
text, it can play the antagonistic roles of growth inhibitor or of tumor
promoter. Its context-dependent pleiotropic nature is associated with
complex signaling pathways. The most comprehensive model of TGF-β-
dependent signaling is composed of 15,934 chains of reactions (trajecto-
ries) linking TGF-β to at least one of its 159 target genes. Identifying
functional patterns in such a network requires new automated methods.

This article presents a framework for identifying groups of similar tra-
jectories composed of the same molecules using an exhaustive and with-
out prior assumptions approach. First, the trajectories were clustered
using the Relevant Set Correlation model, a shared nearest-neighbors
clustering method. Five groups of trajectories were identified. Second, for
each cluster the over-represented molecules were determined by scoring
the frequency of each molecule implicated in trajectories. Third, Gene set
enrichment analysis on the clusters of trajectories revealed some specific
TGF-β-dependent biological processes, with different clusters associated
to the antagonists roles of TGF-β. This confirms that our approach yields
biologically-relevant results. We developed a web interface that facilitates
graph visualization and analysis.

Our clustering-based method is suitable for identifying families of
functionally-similar trajectories in the TGF-β signaling network. It can
be generalized to explore any large-scale biological pathways.

Keywords: TGF-β · Signaling pathways · Discrete dynamic model ·
Soft clustering · RSC model
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1 Introduction

Living cells use molecular signaling networks to adapt their phenotype to the
microenvironment modifications. In order to decipher the dynamic of signal-
ing pathways, mathematical models have been developed using different strate-
gies [4,10]. Differential equation-based models are limited to small networks
due to the explosion in the number of variables in complex networks and the
lack of known quantitative values for the parameters [1]. Qualitative model-
ing approaches based on events discretization have been successfully applied to
large networks. In qualitative models, signaling networks are represented as a
graph where each node (genes or proteins) is represented by a finite-state vari-
able and edges describe interactions between biomolecules as rules [17]. Such
models proved to be suitable for describing the qualitative nature of biological
information whithin large and complex signaling pathways [19].

Signaling by the polypeptide Transforming Growth Factor TGF-β is one of
the most intriguing signaling networks that govern complex multifunctional pro-
files. TGF-β was first described as a potent growth inhibitor for a wide variety of
cells. It affects apoptosis and differentiation thereby controlling tissue homeosta-
sis [7]. At the opposite, upregulation and activation of TGF-β has been linked
to various diseases, including fibrosis and cancer through promotion of cell pro-
liferation and invasion [24]. The pleiotropic effects of TGF-β are associated to
the diversity of signaling pathways that depend on the biological context [13].
TGF-β binding to the receptor complex induces the phosphorylation of intracel-
lular substrates, R-Smad proteins which hetero-dimerize with Smad4. The Smad
complexes move into the nucleus where they regulate the transcription of TGF-β-
target genes. Alternatively, non-Smad pathways are activated by ligand-occupied
receptor to modulate downstream cellular responses [14]. These non-Smad path-
ways include mitogen-activated protein kinase (MAPK) such as p38 and Jun
N-terminal kinase (JNK) pathways, Rho-like GTPase signaling pathways, and
phosphatidylinositol-3-kinase/protein kinase B (PKB/AKT) pathways. Combi-
nations of Smad and non-Smad pathways contribute to the high heterogeneity
of cell responses to TGF-β. Additionally, many molecules from these pathways
are involved in other signaling pathways activated by other microenvironment
inputs, which leads to complex crosstalks [12].

Numerical approaches using differential models have been developed to
describe the behavior of TGF-β canonical pathway involving Smad proteins [27].
Because of the numerous components and the lack of quantitative data, the non
canonical pathways have never been included in these TGF-β models. To solve
this problem, Andrieux et al. recently developed a qualitative discrete formalism
compatible with large-scale discrete models [2]. The Cadbiom language is a state-
transition formalism based on a simplified version of guarded transition [16]. It
allows a fine-grained description of the system’s dynamic behavior by introduc-
ing temporal parameters to manage competition and cooperation between parts
of the models (http://cadbiom.genouest.org). Based on the Cadbiom formalism,
Andrieux et al. integrated the 137 signaling pathways from the Pathway Inter-
action Database (PID) [20] and derived an exhaustive TGF-β signaling network

http://cadbiom.genouest.org
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that includes canonical and non-Smad pathways [2]. Using this model they iden-
tified 15,934 signaling trajectories regulating 145 TGF-β target genes and found
specific signatures for activating TGF-β-dependent genes.

Characterizing these 15,934 signaling trajectories remains a challenging task.
They are mainly composed of signaling molecules whose modularity and com-
bination are the base of cell response plasticity and adaptability [9,15,21]. We
developed a methodological approach to identify families of trajectories with
functional biological signature based on their signaling molecules content. The
major difficulty were the inner complexity of the networks, and the fact that
some molecules may be involved in multiple families, as suggested by TGF-β’s
context-dependent roles. To address these challenges, we used an unsupervised
soft-clustering method to compare signaling trajectories according to their mole-
cular composition. The clusters correspond to families of trajectories, and can
share common molecules. Our analysis does not rely on a priori knowledge on
the number of clusters nor on the membership of a molecule to a cluster. Based
on this approach, we identified five groups of signaling trajectories. Importantly
we further show that these five groups are associated with specific biological
functions thereby demonstrating the relevance of soft clustering to decipher cell
signaling networks.

2 Materials and Methods

Cellular signaling pathways are chains of biochemical reactions. Typically, they
encompass the interaction of signaling molecules such as growth factors with
receptors at the cell surface, the transmission of signal through signaling cas-
cades involving many molecules such as kinases and finally the molecular net-
works involved in regulation of target gene transcription within the nucleus. In
order to decipher the complexity of signaling TGF-β-dependent networks and
for characterizing these trajectories, we focus on the proteins involved in the
reactions (reactants, products and catalyzers). Note that a gene can encode for
a protein implicated elsewhere in the pathway, so proteins and genes form non-
disjoint sets.

The trajectories are first submitted to a pre-processing step to generate a non
redundant set of signaling trajectories. The second step groups similar trajecto-
ries using soft clustering. The third step characterizes the specificity of groups
of trajectories by determining the over-represented proteins and their biological
function using semantic annotations.

2.1 Available Data and Pre-processing

The original data-set contained the 15,934 signaling trajectories involved in the
regulation of 145 TGF-β-dependent genes as previously described in [2]. A signal-
ing trajectory is defined as a set of molecules required for activation of TGF-β-
dependent genes (Fig. 1A). Each original trajectory Tk was composed of TGF-β,
signaling molecules and a single target gene (Fig. 1B). There were 321 signaling
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Fig. 1. Example of the generation of trajectories from PID maps and their pre-
processing. (A) The signaling network made of 4 maps and is composed of proteins,
TGF-β and genes. (B) Trajectories are defined by a set of proteins containing TGF-
β, signaling proteins (pi) and target genes (gi). (C) Pre-processed trajectories are
restricted to signaling proteins. After pre-processing, the trajectories T1 and T3 are
represented by the trajectory t1; T2 and T4 are represented by t2; T5 is represented by
t3; T6 is represented by t4; T7 is represented by t5.

molecules (identified by their uniprot ID) involved in at least one of the 15,934
signaling trajectories. To compare the trajectories based on their molecule com-
position, we first discarded TGF-β which was belonging to all the trajectories.
Next we observed that several trajectories were composed of the same signal-
ing molecules but differed only by the target genes. We decided to discard the
target genes from the trajectories, and to represent separately the associations
between trajectories and target genes (Fig. 1C). The motivation was (i) to avoid
the artificial duplication of trajectories, and (ii) to have a model that represents
explicitly the fact that a single chain of reactions can influence several genes.
In the remainder of the article, the pre-processed trajectories are noted tk and
their set is noted S.

2.2 Clustering Method

We used the Relevant Set Correlation (RSC) model to identify clusters of tra-
jectories [6]. This model uses as input a function Q(t) that returns for every
trajectory t ∈ S a list of all the other trajectories in S sorted by their decreasing
correlation with t.
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Q(t) function for ranking the trajectories by decreasing correlation
to t . A trajectory ti ∈ S is represented by a binary vector vi whose dimension is
equal to the number of all proteins. The coordinate value of “1” indicates that
the trajectory contains the protein, and the coordinate value of “0” indicates
that the trajectory does not (see Table 1).

Table 1. Example of binary matrix representing the protein composition of trajecto-
ries. If a protein pj is present in a trajectory ti then the cell (i, j) is “1” else “0”.

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1 1 0 1 1 1 1 0 0 0

t2 0 1 1 1 1 1 0 0 0

t3 1 0 1 1 0 0 1 0 0

t4 0 1 1 1 0 0 1 0 0

t5 0 0 0 0 0 0 0 1 1

Based on the binary vectors, we apply the Pearson correlation formula and
construct a similarity matrix (see Table 2):

r(ti, tj) =
∑n

k=1(ti,k − ti)(tj,k − tj)
√∑n

k=1(ti,k − ti)2
∑n

k=1(tj,k − tj)2
(1)

where (ti,1, ti,2, ..., ti,n) and (tj,1, tj,2, ..., tj,n) are the vectors of trajectories ti and
tj with ti and tj their respective average.

Table 2. Example of correlation matrix of trajectories ti obtained from the trajectories’
composition of Table 1. If two trajectories ti, tj have exactly the same proteins the value
of the cell (i, j) is 1.0. If the trajectories do not share any proteins the value is 0.0.

t1 t2 t3 t4 t5

t1 1.000 0.550 0.350 −0.100 −0.598

t2 0.550 1.000 −0.100 0.350 −0.598

t3 0.350 −0.100 1.000 0.550 −0.478

t4 −0.100 0.350 0.550 1.000 −0.478

t5 −0.598 −0.598 −0.478 −0.478 1.000

For each trajectory tk ∈ S, the Pearson correlation gives a partial ordering
<ti>

|S|
i=1 of trajectories where i < j implies that r(tk, ti) ≥ r(tk, tj) (see Table 3).

If two trajectories have the same correlation score, they are sorted alphabetically.
We define the Q(t) function as follows:

Q(tk) = <ti>
|S|
i=1 ∀(i, j) ∈ [1, |S|]2, i < j ⇒ r(tk, ti) ≥ r(tk, tj) (2)
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Table 3. Example of partial ordering of all trajectories for every trajectory ti. All
trajectories are sorted for each trajectory tk in function of their Pearson correlation
score.

Q

1 2 3 4 5

t1 t1 t2 t3 t4 t5

t2 t2 t1 t4 t3 t5

t3 t3 t4 t1 t2 t5

t4 t4 t3 t2 t1 t5

t5 t5 t3 t4 t1 t2

Heuristic Algorithm for Clustering the Trajectories. The GreedyRSC
method is an heuristic algorithm to apply the RSC model [6]. It performs a soft
clustering, where the clusters may overlap and do not necessarily cover the entire
data set. In addition to the Q(t) function, it requires four parameters:

– x1: Minimum size of cluster
– x2: Maximum size of cluster
– x3: Maximum interset significance score between two clusters.
– x4: Minimum significance score.

Houle [6] defines the significance score by the function Z1(A) and the inter-set
significance score by the function Z1(A,B) where A and B are two clusters.

The minimum size x1 of pattern means that all clusters would be composed
of at least x1 trajectories. To respect this constraint, we have to choose the
minimum significance score x4 =

√
x1(|S| − 1) where |S| is the number of tra-

jectories. We can prove the computation of the minimum significance score as
follows:

Let A be a cluster (set of trajectory),

|A| ≥ x1 ≥ 0

SR1(A)
√

|A|(|S| − 1) ≥ SR1(A)
√

x1(|S| − 1)

Z1(A) ≥ SR1(A)
√

x1(|S| − 1)

where SR1(A) is the intra-set correlation measure. A value of 1 indicates total
identity among the trajectories of A, whereas a value approaching 0 indicates
total difference. Because 0 ≤ SR1(A) ≤ 1, we need a minimum significance
score x4 equal to

√
x1(|S| − 1) to ensure that all clusters have a minimum of x1

trajectories.
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For studying the RSC clustering robustness, we performed 64 (= 4 × 4 × 4)
analyses with four different values covering a wide range for the variables x1, x2

and x3:

– x1 = [2, 5, 10, 50]
– x2 = [1500, 2000, 3000, 6000]
– x3 = [0.1, 0.5, 1.0, 2.0]

Because RSC is a non-deterministic clustering method, we performed five
replicates of each of the 64 clustering analyses.

Next hierarchic clustering based on Jaccard index permitted to compare the
different clusters obtained by the 320 clustering. The clusters were classified
in several groups and we extracted the intersection for each group. We named
“core i” the intersection to the “group i”, for example i.e. the set of trajectories
that belong to all the clusters of “group i”.

2.3 Identification of the Over-Represented Proteins in Each Core

Trajectories clustering was performed using correlation score based on the pres-
ence and the absence of proteins. The core of each group can be characterized
by a set of over-represented proteins, i.e. the proteins that appear more often in
the trajectories of the core than we would expect if we had selected the same
number of trajectories randomly (Fig. 2).

We can compute the protein level of representation for each cluster with a
zScore of protein frequency:

ZA(p) =
NA(p) − FS(p)|A|

√
FS(p)|A|(1 − FS(p))

(3)

where p is a protein and A is a cluster of trajectories, NA(p) is the number of
trajectories in A involving p, FS(p) is the frequency of p in all trajectories S and
|A| is the size of cluster.

The zScore allows to normalize the frequency of proteins in the cluster of
trajectories compared to all trajectories. For each core, we computed the zScore
of all the proteins. We then identified a list of over-represented proteins with a
high zScore.

Based on the scores of over-representation of proteins in trajectories, we next
searched for the biological significance of the protein signatures that character-
ized the three cores. The Gene Set Enrichment Analysis (GSEA) is a method
which permits to identify significantly enriched classes of genes or proteins in a
large set of genes or proteins, that are associated with specific biological func-
tions. The analyses were performed using the GSEA tool developed by the Broad
Institute [22]. The lists of proteins and their respective score frequency were used
as input and biological processes from Gene Ontology database were selected as
gene sets database. The outputs were the “biological processes” terms signifi-
cantly enriched in the submitted lists of proteins from each core when compared
with the other cores.
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Fig. 2. Example of calculation for determining over-represented proteins between three
cores of trajectories. (A) t1, t2, t3, t4 and t5 are five trajectories containing proteins
p1, p2, p3, p4, p5, p6, p7, p8 and p9. (B) the clustering method identifies three cores
c1, c2 and c3. (C) distribution of representation level of proteins in c1, c2 and c3 cores.
For example, p1 and p2 are slightly over-represented in the cores c1 and c2 but not
over-represented in c3, contrary to p9. The core c3 can be characterized by p8 and p9.

3 Results

3.1 TGF-β Signaling Trajectories Are Highly Connected

In order to identify functional families of signaling trajectories based on the
comparison of their signaling molecules (proteins) content, we performed a pre-
processing step as described in material and method. Discarding TGF-β and the
target genes from the 15,934 trajectories led to 6017 trajectories composed of
321 different proteins.

As illustrated in Fig. 3, the number of proteins per trajectory varied from
1 to 50, with more than 90% of trajectories containing at least 10 proteins.
Analyses of the distribution of each protein in all trajectories showed a great
heterogeneity. More than 70 proteins were present in at least 500 trajectories,
and 6 proteins were present in more than 3000 trajectories (FOS, JUN, ATF2,
MAP2K4, ELK1, JAK2). Conversely 75 proteins appeared in fewer than 10
trajectories. Together these results showed that many proteins are shared by
many trajectories suggesting high degree of connectivity of TGF-β-dependent
signaling pathways.
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Fig. 3. Distribution of (A) the number of molecules for each trajectory and (B) the
number of trajectories involving each molecule. These results showed that most proteins
are shared by many trajectories suggesting high degree of connectivity of TGF-β-
dependent signaling pathways.

3.2 Relevant Set Correlation Method Identifies Five Families of
Trajectory Clusters

Using a greedy strategy and a large variety of parameters, we performed 320
clusterings over the 6017 trajectories. Each clustering generated 3, 4 or 5 clus-
ters leading to 1139 different clusters of trajectories. In order to compare their
similarity, we calculated the Jaccard index based on the number of shared tra-
jectories between two given clusters. Using a hierarchical classification of this
similarity between clusters, we identified five groups of clusters (Fig. 4).

To characterize the five groups of clusters, we analyzed the number of clusters
associated with each group, the number of trajectories associated with these
clusters (average cluster size) and the redundancy between clusters (union and
intersection). As described in Table 4, the groups 1 and 2 were characterized by
clusters generated from 320 and 319 clusterings respectively, suggesting a robust
classification of trajectories. The three other groups 3, 4 and 5 contained clusters
generated from 160 clusterings suggesting higher sensitivity to parameters. The
average cluster size expressed as the average number of trajectories contained in
clusters varied from 202 in group 4 to 2170 in group 1. The core of a group is
the intersection of the clusters of a group. It is the set of the trajectories that
belong to all the clusters of the group, so it allows to focus on the most stable
trajectories of the group. The cores of groups 1 and 2 contained 1485 (57%) and
1458 (67%) trajectories respectively, while the core size of groups 3, 4 and 5 were
either identical or very similar to the union of clusters. To further characterize
these cores, we determined the number of proteins implicated in the trajectories
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Fig. 4. Hierarchical classification of the clusters generated by the 320 clusterings using
varying parameters (x1, x2 and x3) according to their similarities (Jaccard index). The
parameter values are indicated by four different colors. Each cluster results from a
clustering characterized by a combination of the three parameters. The five groups of
clusters identified are numbered from 1 to 5 and the intensity of blue color indicates
the Jaccard index between two clusters. (Color figure online)

and the number of target genes activated by these signaling trajectories. While
the total number of proteins involved in trajectories from each group was almost
similar, the number of target genes was highly variable. The trajectories from
the most important core 1 (1485) were characterized by 114 proteins but only
3 target genes suggesting complex combinations of signaling for these genes. At
the opposite the trajectories from core 4 that contained only 202 trajectories
were characterized by 156 proteins that activate 19 genes.

3.3 Cores Are Characterized by Specific Over-Represented Protein
Signatures Associated with Biological Processes

In order to characterize the protein signature of each core, we investigated the
level of representation of proteins within all the trajectories from each core. For
that purpose, we calculated the zScore of protein frequency in each clusters.
The list of protein zScores for each core was provided as supplementary tables1.
1 http://www.irisa.fr/dyliss/public/tgfbVisualization/supplementaryData.

http://www.irisa.fr/dyliss/public/tgfbVisualization/supplementaryData
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Table 4. Statistics of clusters.

Group 1 Group 2 Group 3 Group 4 Group 5

Number of clusters 320 319 160 160 160

Average cluster size (Number
of trajectories)

2170.0 1905.58 899.62 202.0 877.12

Union of clusters (Number of
trajectories)

2590 2289 904 202 888

Core size = Intersection of
clusters (Number of
trajectories)

1485 1458 894 202 870

Number of proteins for each
core

114 188 110 156 151

Number of target genes for
each core

3 68 58 19 16

As shown in Fig. 5, the zScore distribution of the 321 proteins from trajectories
of each core was highly heterogeneous. Interestingly, the zScore distribution from
core 1 was inversely correlated with that of core 2 suggesting different biologi-
cal functions associated with trajectories. Together these observations suggested
that each core of trajectories was characterized by specific protein signatures.
During the course of the analysis of the zScore values, we showed that the prob-
ability to randomly find a protein in a group of trajectories with a zScore higher
than 4.0 is less than 0.006%. As a consequence, we decided to select the proteins
with a zScore superior to 4.0 to refine the protein signatures of the five cores of
trajectories.

Fig. 5. Distribution of zScore values of the frequences of 321 proteins in the trajectories
from cores of the five cluster groups. The zScore distribution of the 321 proteins from
trajectories of each core is highly heterogeneous. These observation suggested that each
core of trajectories was characterized by specific protein signatures
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Based on the scores of proteins over-representation in trajectories, we next
searched for the biological significance of the protein signatures that charac-
terized the five cores. Gene Set Enrichment Analysis (GSEA) is a method for
identifying significantly the elements of a set that appear more often in the set
that one would expect if the set had been randomly assembled. It is typically
used for determining which specific biological functions are specific of a set of
genes or proteins. The analyses were performed using the GSEA tool developed
by the Broad Institute [22]. The lists of proteins and their respective score fre-
quency were used as input for GSEA analysis and the outputs are the lists of
enriched biological processes (see supplementary tables, Footnote 1). As shown
in Fig. 6, each core was characterized by specific set of biological functions since
57%, 90%, 80%, 81% and 88% of GO-terms were specific of core 1, core 2, core 3,
core 4, and core 5, respectively. In order to identify the representative terms, we
used Revigo [23] that reduces the list of GO terms on the basis of semantic sim-
ilarity measures. Consequently trajectories from core 1 and core 2 were mainly
associated with antigen receptor-mediated signaling and serine-threonine kinase
activity, respectively (Fig. 6). The functional annotation of cores 3 and 4 were
more heterogeneous while core 5 clustered signaling trajectories that are clearly
involved in immune response. An important conclusion from these results is that
even if signaling trajectories share many proteins, our analysis revealed groups
of trajectories that correspond to different functional families.

Fig. 6. Gene ontology enrichment analysis. The lists of proteins and their respective
score frequency from each Core are used for GSEA. The lists of enriched GO terms
associated to biological processes are compared using Venn diagram and the score is
uniqueness score of the GO-term calculated by REVIGO tool.

Together our data demonstrate that our approach for clustering signaling
trajectories based on their protein content is powerful to discriminate TGF-β-
influenced networks. To illustrate the complexity of TGF-β-dependent signaling
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Fig. 7. Screenshot of the Web visualization of core 1. A node is a bio-molecule, the
node size corresponds to the number of trajectories involving this bio-molecule and the
node color correspond to the representation of the bio-molecule in the core (blue the
bio-molecule is under-represented and red it is over-represented). (Color figure online)

pathways, we compiled the trajectories from each core and the resulting networks
were illustrated in Fig. 7.

3.4 Web Visualization of TGF-β-Influenced Networks

To facilitate the exploration of the signaling trajectories clustered in each core,
we developed a web interface:

http://www.irisa.fr/dyliss/public/tgfbVisualization/
The interface is based on the Cytoscape JavaScript library (http://js.

cytoscape.org). Nodes are proteins and their size is correlated to the number
of trajectories involving this protein. Node color indicates the occurrence of
the protein in the trajectories from a core. The occurrence is based on the
zScore of protein frequency (blue for zScore< 0 and red for zScore> 0) and
selection of the level of occurrence permits to filter information. The black cir-
cle nodes illustrate biological reactions (association, dissociation, phosphoryla-
tion,degradation, migration etc.) as described in [2]. The black edges link pro-
teins to the input or the output of a reaction, green edges link the protein that
regulates positively the reaction and red edges link the protein that regulate neg-
atively the reaction (Fig. 7). Exploration of the graphs is facilitated by manually
repositioning nodes and edge. The graph can be exported in JSON format.

http://www.irisa.fr/dyliss/public/tgfbVisualization/
http://js.cytoscape.org
http://js.cytoscape.org
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4 Discussion

Cell signaling networks are essential to life. They allow cells to sense and inter-
pret microenvironment changes to provide adapted phenotypes such as differ-
entiation, proliferation and apoptosis. As a result, disturbance or alteration of
signaling networks have been associated with many diseases such as fibrosis and
cancer. In particular, TGF-β plays major roles both in physiological and patho-
logical processes through canonical and non canonical signaling pathways that
cross-react with other pathways [13]. Understanding how signaling molecules
combine to provide signaling trajectories is a prerequisite for future therapeu-
tic strategies, however analyses of large signaling networks remain a challenging
task.

While qualitative approaches are suited to large-scale networks, the analysis
of numerous signaling trajectories remains difficult. Reduction methods focus on
diminishing the size of large-scale boolean networks [18,25] or dividing methods
in several sub-networks [26]. However, these methods typically consist in per-
forming the reduction before the analysis, whereas for TGF-β we focused on an
exhaustive analysis of the signaling network.

In addition to exhaustivity, the originality of our approach lies in analyz-
ing the signaling trajectories according to their protein composition rather than
the genes they influence. Our approach was motivated by the fact that signal-
ing pathways share a large number of “modular domains” in various combi-
nations [11]. These combinations support the functional diversity of signaling
pathways.

These modular domains provide the underlying structure of the signaling
trajectories. Our goal was to identify groups of similar trajectories. When con-
sidering two trajectories, the more modules they share, the more similar they
are. There are many clustering methods (for example hierarchical, K-means,
distribution-based, density-based) [8]. As we mentioned previously, a modular
domain can be involved in multiple combinations, so their study required soft-
clustering methods which allows clusters to overlap and share some elements.
We selected shared nearest-neighbours (SNN) clustering, which have success-
fully been applied to handle the heterogeneity and large-scale of trajectories [5].
The Relevant Set Correlation method is further appropriate in that there is no
need to define the neighborhood size. Likewise, our approach does not rely on a
priori assumption on the number of clusters.

Relevant Set Correlation proved to be a robust clustering method for our
dataset. All 64 combinations of parameter values generated clusters that sys-
tematically belonged to group 1 and group 2 and one of groups 3, 4 and 5. Half
the simulations produced clusters that belonged to groups 3, 4 or 5. In Fig. 4, the
analysis of the influence of the parameter values for groups 3, 4 and 5 showed
that x1 and x3 had no influence on the groups, whereas pairs of values of x2

were associated to different groups: the two lowest with group 5, the two highest
with group 4 and a combination of the highest and the lowest with group 3.
Surprisingly, the two intermediate values of x2 (2000 and 3000) were markers of
groups 4 and 5, for which they were associated with their closest extreme value,
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whereas the lowest and highest values of x2 were associated to group 3. This
indicates that RSC produced either groups 3 and 5 for the low values of the
range of the clusters’ maximum size (x2), or groups 3 and 4 for the high values.
At this point, further analysis is required for determining either which of the
low or high values are the more adapted to our dataset, or if groups 3, 4 and
5 are all biologically-relevant and we are facing a limitation of RSC. Overall,
our study with the various combinations of parameter values showed that (1)
because it is non-deterministic, performing multiple runs with the same parame-
ter values is useful, (2) RSC is a robust clustering method for our dataset, (3)
groups 1 and 2 were independent from the parameter values whereas groups 3, 4
and 5 were not, and (4) low values of clusters’ maximum size produced clusters
in groups 3 and 5, whereas high values produced clusters in groups 3 and 4.
According to this observation, the over-represented proteins in trajectories from
core 1 and 2 clearly discriminate the canonical pathways associated with TGF-β
receptor-dependent cell response during injury and development (core 1) and the
non canonical pathways involving all other kinase-dependent signaling (core 2),
respectively. Together these two cores of clusters illustrated the so-called “Jekyll
and Hyde” aspects of TGF-β in cancer [3].

Although it does not rely on a priori knowledge, our approach may be depen-
dent on annotation bias. Since biological knowledge is by nature incomplete,
some well studied signaling processes may be described in details in databases,
whereas some lesser studied ones would be incompletely described, or with a
coarser granularity (usually both). This would then result in a higher frequency
of the well studied modules and give a misleading impression of being more
important. It should be noted that this is an intrinsic bias of the data we rely
on, and not of our analysis method. This bias should be taken into account by
the experts when analyzing the results.

5 Conclusion

We proposed an exhaustive and without prior assumption soft-clustering-based
method for identifying families of functionally-similar trajectories in signaling
network. Among 15,934 trajectories involved in TGF-β signaling, our approach
identified five groups of trajectories based on their molecular composition. The
functional characterization of these groups revealed that each group is involved in
different roles of TGF-β, which confirmed that our approach yields biologically-
relevant results. The approach can be generalized to explore any large-scale
biological pathways.
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2. Andrieux, G., Le Borgne, M., Théret, N.: An integrative modeling framework
reveals plasticity of TGF-β signaling. BMC Syst. Biol. 8(1), 1 (2014)



106 J. Coquet et al.

3. Bierie, B., Moses, H.L.: Tumour microenvironment: TGFβ: the molecular Jekyll
and Hyde of cancer. Nat. Rev. Cancer 6(7), 506–520 (2006)

4. ElKalaawy, N., Wassal, A.: Methodologies for the modeling and simulation of bio-
chemical networks, illustrated for signal transduction pathways: a primer. Biosys-
tems 129, 1–18 (2015)

5. Hamzaoui, A., Joly, A., Boujemaa, N.: Multi-source shared nearest neighbours for
multi-modal image clustering. Multimedia Tools Appl. 51(2), 479–503 (2011)

6. Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal.
Data Min. 1(3), 157–176 (2008)

7. Ikushima, H., Miyazono, K.: Biology of transforming growth factor-β signaling.
Curr. Pharm. Biotechnol. 12(12), 2099–2107 (2011)

8. Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques
in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3) (2013)

9. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs.
Proc. Natl. Acad. Sci. U.S.A. 102(39), 13773–13778 (2005)

10. Kestler, H.A., Wawra, C., Kracher, B., Kühl, M.: Network modeling of signal
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Abstract. When seeking to understand how computation is carried out
in the cell to maintain itself in its environment, process signals and make
decisions, the continuous nature of protein interaction processes forces
us to consider also analog computation models and mixed analog-digital
computation programs. However, recent results in the theory of analog
computability and complexity establish fundamental links with classi-
cal programming. In this paper, we derive from these results the strong
(uniform computability) Turing completeness of chemical reaction net-
works over a finite set of molecular species under the differential seman-
tics, solving a long standing open problem. Furthermore we derive from
the proof a compiler of mathematical functions into elementary chemi-
cal reactions. We illustrate the reaction code generated by our compiler
on trigonometric functions, and on various sigmoid functions which can
serve as markers of presence or absence for implementing program control
instructions in the cell and imperative programs. Then we start compar-
ing our compiler-generated circuits to the natural circuit of the MAPK
signaling network, which plays the role of an analog-digital converter in
the cell with a Hill type sigmoid input/output functions.

1 Introduction

“The varied titles of Turing’s published work disguise its unity of purpose.
The central problem with which he started, and to which he constantly
returned, is the extent and the limitations of mechanistic explanations of
nature.”, Max Newman.

The Church-Turing thesis states that there is only one notion of effective
computation over discrete structures (integers, words, . . . ), and in fact all mech-
anistic computation models devised up to now (Church’s λ-calculus, Post’s
rewriting systems, random access machines, programming languages, . . . ) have

c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 108–127, 2017.
DOI: 10.1007/978-3-319-67471-1 7
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always been shown to be encodable in Turing machines. The more recent phys-
ical Church-Turing thesis goes beyond the original thesis by stating that all
physically computable functions are Turing-computable.

In this view, it is theoretically possible to give a computational meaning to
information processing in the cell in terms of algorithms and programs. However,
while one lesson of Computer Science is that digital computation scales up to
very large circuits and programs, contrarily to analog computation, one has to
face the paradox that in a cell, even if one can observe an all-or-nothing activation
of genes, one cannot deny the importance of the continuous gradual activations
of protein complexes, of the time it takes, of the absence of clock signals, i.e. the
importance of analog computation in the cell [20,41,43].

Classical computability and complexity theories mainly focus on computa-
tion over discrete domains, i.e. words or integers. When dealing with reals or
functions, several approaches can be considered. In computational analysis, the
notion of computation over the real numbers is defined in terms of approximation
in arbitrary but finite precision:

Definition 1 ([48]). A real number r ∈ R is computable (resp. in polynomial
time) in the sense of computational analysis if there exists an effective approxi-
mation program of r in arbitrary precision, i.e. a Turing machine which takes as
input a precision p ∈ N and outputs a rational number rp ∈ Q s.t. |r − rp| ≤ 2−p

(resp. in a time polynomial in p).

Clearly, every real number can be represented as an infinite string represent-
ing a converging Cauchy sequence as above, and a computable real is one whose
representation is computable. In this setting, a computable real number can thus
be seen as a program which takes as input an accuracy, and returns as output
an approximation of the real number by a rational number at the requested pre-
cision. A computable function is then a program that maps any (computable or
not1) approximation of a real x to an approximation of f(x).

Definition 2 ([48]). A function f : R → R is computable if there exists a
Turing machine with oracle which computes an approximation of f(x) given x
as oracle. It is computable in polynomial time if this is done in a time polynomial
in p and m for x ∈ [−2m, 2m].

In this paper, we consider these notions to give a mathematical meaning to
the notion of biochemical computation with continuous concentrations. In this
view, the language of biochemical reactions is seen as a programming language
for computing with non negative real valued concentrations, i.e. over R+. We
consider elementary reactions, i.e. reactions with at most two reactants and with
mass-action-law kinetics. It is well known that the other classical biochemical
rate functions, such as Michaelis-Menten, Hill kinetics, are derived by reduction
of elementary reaction systems with mass-action law kinetics, using for instance
quasi-steady state or quasi equilibrium approximations [44].
1 Restricting the definition to computable arguments might seem quite natural but is

not the classical definition of computable analysis, see the Appendix of [48].
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We first show the Turing completeness in the strong sense of uniform com-
putability, of elementary biochemical reactions without polymerisation under
the differential semantics on a finite universe of molecular species. This solves
an open problem explicitly mentioned in [17]. where it was shown that a Turing
machine could be simulated by a chemical reaction network with a small prob-
ability of error. Although not surprising, this result is in sharp contrast to the
discrete semantics of reaction systems which are not Turing complete without
either the tolerance of a small probability error [17], or the addition of other
mechanisms such as the unbounded dynamic creation of membranes [2,9,38], or
the presence of polymerization reactions on an infinite universe of polymers [10]
or DNA stacks [40].

Furthermore, following [6] we generalize the purely analog characterization of
the complexity class PTIME to positive binary reaction systems which stabilize
on one component with a trajectory length bounded by a polynomial of the
input and the precision.

Then we derive from the proof of these results a compiler of behavioural
specifications2 into elementary reaction systems, without prejudging of their
biochemical implementation, by enzymatic reactions [37], DNA [13] or RNA for
instance.

We illustrate this approach with the compilation of trigonometric functions,
such as the cosine function, as either functions of time or of an input variable.
Then, we study different sigmoid functions which can serve as markers of pres-
ence or absence for implementing program control instructions and compiling
imperative programs.

Then we start comparing our compiler-generated circuits to natural circuits,
with the example of the MAPK signaling network, which plays the role of an
analog-digital converter in the cell with a Hill type sigmoid input/output func-
tion [28].

2 Computational Functions and Computational
Complexity over the Reals

The General Purpose Analog Computer (GPAC) of Shannon [46] is a model
of computation based on circuits built from analog blocks. A set of variables
or entries x, y, z, . . . including time t are considered and four types of blocks
(constants, sums, products, and Stieltjes integral of one variable with respect to
another variable - by default the time variable when it is not indicated) are con-
nected (with possibly feedback connexions) in order to generate a system whose
dynamic is considered as “generating” functions. Shannon’s original presentation
suffers from several problems, including the fact that some circuits may or may
not have a solution. This problem was solved in [26] which gives a satisfactory

2 For the sake of reproducibility, all the examples described in this paper are directly
executable online in Biocham v4 (http://lifeware.inria.fr/biocham4) notebooks avail-
able at http://lifeware.inria.fr/wiki/software/#CMSB17.

http://lifeware.inria.fr/biocham4
http://lifeware.inria.fr/wiki/software/#CMSB17
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definition of GPAC-generable functions in terms of the solution to polynomial
initial value problems in polynomial differential equations (PIVP):

Definition 3 [26]. A function f : R+ → R is GPAC-generable3 if it is one
component of the y(t) solution of some ordinary differential equation y′(t) =
p(y(t)) for a polynomial vector p ∈ R

n[Rn] and initial values y(0) ∈ R
n.

Fig. 1. GPAC circuit for generating the cosine function as a function of time, and
numerical simulation trace.

For example, the GPAC (y = integral integral -1 * y) shown in Fig. 1
is constructed with two integral blocks and a multiplication by −1 which gives
y′′(t) = −y(t). This circuit when initialized with y(0) = 1 generates the cosine
function, cos(t), as a function of time. The class of GPAC-generable functions
enjoys a number of properties, such as stability by addition, multiplication and
composition, and also contains elementary functions such as trigonometric func-
tions, exponential functions, logarithms, etc. This notion of generality has for
some time been considered synonymous with analog-computability, which made
the GPAC a computation model less expressive than computational analysis as
some functions such as Rieman’s Zeta function or Euler’s Gamma functions are
known not to be differentially algebraic [46].

However, it is possible to define a notion of GPAC-computability which is
both natural in terms of PIVP and equivalent to computational analysis. The
idea is to proceed by approximation of the result for any entry on one component
of the system, as follows:

Definition 4 [4]. A function f : R → R is GPAC-computable if there are
polynomial vectors p ∈ R

n[Rn], a polynomial q ∈ R
n[R] such that for all x there

exists some (necessarily unique) function y : R → R
n such that

y(0) = q(x), y′(t) = p(y(t))

and |y1(t) − f(x)| ≤ y2(t), with y2(t) ≥ 0 decreasing and limt→∞ y2(t) = 0.
3 This definition can be generalized to functions of several variables over different

domains [7].
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In other words, the computation of f with the argument x consists in putting
the system in a polynomially dependent state of x, then letting the system evolve
according to the dynamics described by p. The result of the computation is
obtained in one component of the system, say the first, with arbitrary precision
given by some other component of the system, say the second, is decreasing4 to 0.

Then the following theorem perfectly reconciles the notions of digital (i.e. by
Turing machines) and analog (i.e. by PIVP) computability:

Theorem 1 [4,5]. A function is computable in the sense of computational
analysis if and only if it is GPAC-computable.

While previous result is conciliating both notions at the computability level,
such a result was missing at the complexity level. A clear difficulty is that a
naive definition of the complexity in terms of the time necessary to reach a
given precision can not be appropriate, since it is always possible to contract
time in a PIVP by a change of the time variable, e.g. tfast = et, and multiply
the differential equations by an arbitrary term.

This has been solved recently in [39] by demonstrating that taking the length
of the trajectory as measure of computational complexity, i.e. a combination of
time and space (amplitude), which takes into account the cost of computing
for instance tfast = et, yields a valid notion of time complexity, equivalent to
classical time complexity. In particular, a purely analog characterization of the
complexity class PTIME has been given in [6]. Let ||y|| refers to the infinite norm
of y (i.e. the maximum absolute value of its components).

Definition 5 [6]. A function f : R → R is said to be Ω -computable in length,
where Ω : R2

+ → R, if there are polynomial vectors p ∈ R
n[Rn], a polynomial

q ∈ R
n[R] such that for all x there exists some (necessarily unique) function

y : R → R
n satisfying for all t ∈ R+:

– y(0) = q(x) and y′(t) = p(y(t)) with ||y′(t)|| ≥ 1 (holds if t is one variable),
– for any μ, if

∫ t

0
||y′(τ)|| dτ ≥ Ω(|x|, μ) then |y1(t) − f(x)| ≤ e−μ.

Theorem 2 [6]. The Ω-computable functions in length, where Ω is a polyno-
mial, are exactly the functions computable in polynomial time in the sense of the
computational analysis.

Taking unrestricted Ω leads back to the previous notion of computable func-
tions in the sense of computational analysis.

Theorem 1 implies in particular that polynomial differential equations
(PIVP) are universal. This is in a strong sense, compared to notions of uni-
versality used in articles such as [27,34] where it is basically shown that boolean
circuits can be realized, yielding a non-uniform notion of computability: for each
4 The decreasing assumption is here to yield a simple way to decide when the result on

the first component is correct with the required precision: given some precision ε, just
wait until the second component is less than ε.
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input there exists an ODE system computing the result. Here this is a uniform
computability result: a given polynomial differential equation is able to simulate
a Turing machine on all inputs, independently of the size of the input.

In order to be more concrete on the encoding of Turing machines, let us
rephrase [6]. One can fix a finite alphabet Γ = {0, .., k − 2} and encode a word
w = w1w2 . . . w|w| by the couple ψ(w) =

(∑|w|
i=1 wik

−i, |w|
)
. There is nothing

special about this encoding, other encodings may be used, however, two crucial
properties are necessary: (i) ψ(w) must provide a way to recover the word without
ambiguity, (ii) ||ψ(w)|| is O(|w|). In particular, over the alphabet Γ = {0, 1},
the use of base 3 (instead of base 2) simplifies the decoding.

Now consider any decision problem (language) L ⊂ Γ ∗. If L is decidable,
then there is a Turing machine that decides it. Then [6] provides (effectively
from the Turing machine) some polynomial vectors p ∈ R

n[Rn] and a polynomial
q ∈ R

n[R] such that for all w ∈ Γ ∗ there is a (unique) y : R+ → R
d such that

for all t ∈ R+:

1. y(0) = q(ψ(w)) and y′(t) = p(y(t)) with ||y′(t)|| ≥ 1,
2. if |y1(t)| � 1 for some t then |y1(u)| � 1 for all u � t (the decision is stable)
3. if w ∈ L (resp. /∈ L) then there is some t with y1(t) � 1 (resp. � −1)

Furthermore, if L is decided in polynomial time (i.e. is in class PTIME) then
there is some polynomial Ω (that can be obtained effectively from the polynomial
bound for L and from the Turing machine) such that this happens in polynomial
length: condition 3. is replaced by

3. if w ∈ L (resp. /∈ L) and
∫ t

0
||y′(τ)|| dτ ≥ Ω(|w|) then y1(t) � 1 (resp. � −1)

In other words, [6] is considering a notion of termination given by the fact
that some variable becomes of absolute value greater than 1: if the value is
greater than 1 (respectively: less than −1) this corresponds to acceptance (resp.
rejection). Other criteria for acceptance could be considered as seen from the
proofs of [6]. The fact that the acceptance region is at some distance from the
rejectance region (a value between −1 and 1 means the absence of decision) is
here only to avoid representation problems if one wants to simulate the involved
equations.

Notice that [6] was leaving open the issue whether the involved polynomial
in the polynomial ordinary differential equations could have non-rational coeffi-
cients (notice that the constructions were however using only computable coef-
ficients, but possibly irrational). It has been proved recently that only rational
coefficients are needed [3].

The notion of uniform computability is the strong notion of Turing univer-
sality involved in the rest of this paper.

3 Turing Completeness of Elementary Chemical Reaction
Networks

The previous results provide a solid foundation for studying biochemical ana-
log computation. However, a biochemical reaction system is a positive dynamical
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system living in the cone Rn
+, where the state is defined by the positive concentra-

tion values of the molecular species5. Furthermore, we wish to restrict ourselves
to elementary reaction systems, governed by the mass-action-law kinetics and
where each reaction has at most two reactants.

Let M be a finite set of n molecular species {y1, . . . , yn}.

Definition 6 [21]. A reaction is a triple (R,P, f), where R : M → N is a
multiset of reactants, P : M → N is a multiset of products and f : Rn

+ → R+,
called the rate function, is a partially differentiable function verifying R(yi) > 0
iff ∂f

∂yi
(y) > 0 for some y ∈ R

n
+.

A reaction system is a finite set of reactions.
A mass-action-law reaction is a reaction in which the rate function f is a

monomial of the form k ∗ Πy∈MyR(y) where k is called the rate constant.
An elementary reaction is a mass-action-law reaction with at most two reac-

tants.

For the sake of both readability and reproducibility, the examples will be
noted in the sequel in Biocham syntax, where a reaction (R,P, f) is written
f for R => P, or just R => P if the rate function is a mass action kinetics with
rate constant is equal to 1; the multisets are written with linear expressions
and stands for the empty multiset. Furthermore, a reaction with catalysts
f for R + C => C + P is abbreviated as f for R = [C] => P.

Definition 7. The differential semantics of a reaction system {(Ri, Pi, fi)}i∈I

is the ODE system

{y′ = Σi∈I(Ri(y) − Pi(y)) ∗ fi}y∈M.

The dynamics given by the law of mass action leads to a polynomial ODE sys-
tem of the form y′(t) = p(y(t)) with p(y)i =

∑
j(Pj(yi)−Rj(yi)∗kj∗Πn

i=1yi
Rj(yi).

There are thus additional constraints, compared to general PIVPs: the compo-
nents yi must always be positive, and the monomials of pi whose coefficient is
negative must have a non-zero yi exponent. These constraints are necessary con-
ditions for the existence of a set of biochemically realizable reactions that react
according to the dynamics y′ = p(y). Note however that we shall not discuss here
the choice of their possible implementations by particular biochemical devices,
such as DNA polymers [40], DNA double strands [33] or enzymatic reactions
[19,37] as this is beyond the scope of this paper.

Interestingly, the previous computability and complexity results can be gen-
eralized to elementary biochemical reaction systems. First, the restriction to
positive systems can be shown complete, by encoding each component yi by the
difference between two positive components y+

i and y−
i , which can be normalized

by a mutual annihilation reaction, y+
i + y−

i ⇒ , so that one variable is null. It
is worth noting that this encoding has been used in [36] for implementing linear
I/O systems.
5 Note that we do not impose that concentration values are small values, less than 1

for instance. We consider arbitrary large concentration and molecule numbers [25].
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Definition 8. A function f : R+ → R+ is chemically-computable if there exist
a mass-action-law reaction system {(Ri, Pi, fi)}i∈I over some molecular species
{y1, . . ., yn}, and a polynomial q ∈ R+

n[R+] defining the initial concentration
values, such that f is GPAC-computed by q and its (polynomial) differential
semantics p ∈ R+

n[R+
n].

A function f : R+ → R is chemically-computable if there exists a chemi-
cally computable function f+ : R+ → R+

2 (by straightfortward generalization
of Definition 4 to multiple computations) over {y+

1 , ..., y+
n , y−

1 , ..., y−
n } such that

f = f+
1 − f−

2 .

In this definition, to compute f(x), one has thus to design a reaction system
over a finite set of molecular species, initialized to some values defined by a vector
of polynomials q(x) (e.g. following [8,12]), which guarantees that the result is
obtained in the concentration of one distinguished molecular species, with a
precision indicated by another distinguished molecular species (see Definition 4).
Note however that in practice, in the examples of the following sections, the
precision parameter will be left.

How to design such a reaction system is shown by the proofs of the following
results.

Theorem 3. Any GPAC-computable function can be computed by a mass-
action-law reaction system under the differential semantics preserving the poly-
nomial length complexity.

Proof. Let us consider a GPAC-computable function by a polynomial differential
equation p ∈ R

n[Rn]. Each variable yi ∈ R can be encoded by a couple of
variables (y+

i , y−
i ) ∈ R

2
+ such that at any time, yi = y+

i − y−
i .

Let p̂i(y+
1 , y−

1 , . . . , y+
n , y−

n ) = pi[y = y+ − y−], we write p̂i = p̂+i − p̂−
i , where

the monomials of p̂+i and p̂−
i have positive coefficients. A positive system is then

defined by:

∀i ≤ n,

⎧
⎪⎪⎨

⎪⎪⎩

y+
i

′
= p̂+i − fiy

+
i y−

i

y−
i

′
= p̂−

i − fiy
+
i y−

i

y+
i (0)= max(0, yi(0))

y−
i (0)= max(0,−yi(0))

where the fi’s are polynomials with positive coefficients such that fi ≥
max(p̂+i , p̂−

i ), for instance fi = p̂+i + p̂−
i . The terms −fiy

+
i y−

i can be imple-
mented by annihilation reactions

fi for y+
i + y−

i

y+,y−
−−−−→

which ensure that one of the y±
i always remains small.

Note that we have: y+
i

′ ≤ p̂+i (1 − y+
i y−

i ) and y−
i

′ ≤ p̂−
i (1 − y+

i y−
i ), so that

(y+
i y−

i )′ ≤ q · (1 − y+
i y−

i ) where q is a polynomial with positive coefficients.
Since at t = 0 we have y+

i y−
i = 0, we deduce by a Gronwall inequality that

we always have y+
i y−

i ≤ 1. Therefore, |y±
i | ≤ |yi| + 1, and |y±| ≤ |y| + n.

Consequently, if the original system is increased in space by a polynomial in the
size of the input and the time, then this is still the case for the positive system
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obtained by the preceding construction. Furthermore, each monoid of the form
λyα1

1 . . . yαm
m , λ > 0 appearing in the right term of an equality of the form y = p

can be implemented by a reaction of the form

α1y1 + . . . + αmym
λ−→ y + α1y1 + . . . + αmym. 
�

Second, one can remark that we can also restrict ourselves to elementary
reactions, since every PIVP is equivalent to a quadratic PIVP.

Theorem 4 [11]. Any solution of a PIVP is the solution of a PIVP of degree
at most two.

Proof. The proof consists in introducing variables for each monomial as follows

vi1,...,in = yi1
1 yi2

2 , . . . , yin
n .

We have y1 = v1,0,...,0 and so on. The substitution of these variables in the
differential equations of y′

i gives equations of the first degree in the variables
vi1,...,in . The differential equations for variables that are not yi are of the form

v′
i1,...,in =

n∑

k=0

ik ∗ vi1,...,ik−1,...,in ∗ y′
k

i.e. a polynomial of degree two since the y′
k differentials are linear combinations

of the variables vi1,...,in . 
�
These results show that elementary biochemical reaction systems under the

differential semantics have the expressive power of PIVPs. By Theorems 1, 3
and 4, we get

Theorem 5. Elementary reaction systems on finite universes of molecules are
Turing-complete under the differential semantics.

It is worth noticing that this result differs from previous results on the uni-
versality of continuous chemical reaction networks or neural networks which were
based on a non-uniform notion of computability [27,34]. Here we obtain a uni-
form computability result: a given reaction system on a finite set of molecular
species is able to simulate a Turing machine on all inputs, independently of the
size of the input. This result can be considered as solving the open problem
mentioned explicitly in Sect. 8 of [17].

Furthermore, our translation of PIVPs to positive quadratic PIVPs preserves
the polynomial time complexity defined in PIVPs as the trajectory length up to
some precision. The translation of Theorem 2 together with Theorems 3 and 4
give.

Theorem 6. A function over the reals is computable (resp. in polynomial time)
if and only if it is computable by an elementary reaction system using only syn-
thesis reactions with at most two catalysts of the form

- => z or = [x] => z or = [x+y] => z
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and degradation reactions by annihilation of the form

x p + x m =>

(resp. with trajectories of polynomial length).

Proof. In the proof of Theorem 3, we have shown that one consequence of the
annihilation reactions with fast kinetics is to make xp and xm not larger than
|x|+1 for all x, and thereby ensure the preservation of the polynomial complexity.
This inequality also shows that annihiliation reactions are useful to ensure the
convergence of the result components.

One can remark in this proof that the encoding of real valued variables by
two signed variables allows us to replace substractions by additions in the ODEs
just by sorting the monomials according to their sign. Furthermore, the proof of
Theorem 4 rewrites the terms with terms of degree at most 2 without changing
their sign. As a consequence, all the terms of the ODE are monomials of the
forms k, k ∗ x, k ∗ x ∗ y or −f ∗ xp ∗ xm which can be encoded with synthesis
reactions with at most two catalysts, and annihiliation reactions. 
�

The possible implementations of the particular synthesis and degradation
reactions used in Theorem 6 are beyond the scope of this paper. Let us just
remark that a formal synthesis reaction as =[x] => z does not need to be a
real synthesis reaction with DNA or RNA, but can be implemented with pro-
teins, for instance by a phosphorylation reaction by kinase x, i.e. of the form
iz = [x] => z where iz assumed to be in excess is the (inactive) dephospho-
rylated form of z. Similarly, the annihilation reaction z p + z m => might be
thought as representing in reality, among many other possibilities, a complexa-
tion reaction which produces an inactive (stable) complex.

4 Biochemical Compilation of Analog Functions

4.1 Compilation of GPAC-Generable Functions

The proof of Theorem3 shows how a PIVP can be implemented with biochemical
reactions by doubling the number of variables for the positive and negative parts,
and by implementing each monomial of the differential equations by a catalytic
reaction of synthesis or degradation according to its sign. Similarly, the proof of
Theorem 4 shows how to restrict code generation to elementary reactions of at
most two reactants, by increasing the number of variables (i.e. molecular species),
that is to say by sacrificing the dimension of the system to the minimization of
the degrees.

These are the principles of our biochemical compiler which translates a math-
ematical function defined by a PIVP into a system of elementary reactions. For
implementation reasons however, our compiler departs from the previous the-
oretical framework in a few places. The annihilation reactions (which play no
role in the computability but in the complexity only) are implemented with a
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sufficiently large rate constant called fast, instead of with a large polynomial.
The approximation error is not computed since we are not interested in the pre-
cision of the result and assume to know in advance some time horizon sufficient
to get the results6.

As a first example, let us consider the biochemical compilation of the oscil-
lator defined by the cosine function f = cos(t) as a function of time, itself
defined by the PIVP f ′′ = −f with f(0) = 1, i.e. {f ′ = z, z′ = −f} with
f(0) = 1, z(0) = 0. This example compiles into the six elementary synthesis
reactions below, where the first four reactions implement the PIVP, and the last
two reactions the normalization reactions by mutual annihilation of the positive
and negative variables.

biocham: compile_from_expression(cos, time, f).

_ = [z2_p] => f_p.

_ = [z2_m] => f_m.

_ = [f_m] => z2_p.

_ = [f_p] => z2_m.

fast*z2_m*z2_p for z2_m+z2_p => _.

fast*f_m*f_p for f_m+f_p => _.

present (f_p, 1).

biocham: list_ode.

d(f_p)/dt = z2_p-fast*f_m*f_p

d(f_m)/dt = z2_m-fast*f_m*f_p

d(z2_p)/dt = f_m-fast*z2_m*z2_p

d(z2_m)/dt = f_p-fast*z2_m*z2_p

This reaction system, produced with initial concentration value fp = 1 at
time 0 (and 0 for all other variables), is designed for the differential semantics.
Its robustness to extrinsic noise can be measured with respect to perturbations of
the parameter values [42]. Such a reaction system can also be interpreted in the
stochastic semantics [22], and simulated using Gillespie’s SSA algorithm [24] to
analyze its robustness to intrinsic noise. Figure 2 shows a differential simulation
trace and one stochastic simulation trace.

4.2 Compilation of GPAC-Computable Functions

Let us first remark that a PIVP that computes the value of y = f(x) at any point
x can be derived from a PIVP that generates f(t) as a function of time [39]. The
idea is to replace the PIVP that generates f(t) by a PIVP that generates f(γ(t))
where lim

t→∞ γ(t) = x, starting from a point x0 such that f(x) does not diverge

along the trajectory γ(t) [39]. Taking the trajectory γ(t) = x+(x0−x)e−λt with
λ > 0, we have γ(t)′ = −(x0 − x)e−λt = x − γ(t).

Although not totally general since all GPAC-computable functions are not
GPAC-generable, we limit ourselves to this method for compiling computable
functions: with the following:

6 Note also that the transformation to at most binary reactions is temporarily not
included in our compiler.
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Fig. 2. Differential and stochastic simulation traces of the compiled reactions for gen-
erating the cosine function as a function of time.

Algorithm 1. Transformation of a PIVP that generates a function f(t) in a
PIVP that computes the function f(x) for any x as f(γ(t)).
1. replace t by γ(t) in the ODE that generates the function f(t);
2. multiply all the terms of the ODE by x − γ(t);
3. add the equation γ′ = x − γ;
4. initialize γ to x0 and the result variable to f(x0).

For instance, the compilation of the cosine function cos(x) for any input
concentration x generates the following elementary synthesis reaction system,
where the first four reactions compute γ(t) in g p and g m (with λ = 1), and
the other reactions result from the multiplication by x−γ of the ODE terms for
cos(t) which basically translates to the addition of catalysts x p and g m to the
reactions for cos(t):

biocham: compile_from_expression(cos, x, r).

_ = [g_m] => g_p.

_ = [x_p] => g_p.

_ = [g_p] => g_m.

_ = [x_m] => g_m.

_ = [g_m+z4_p] => r_p.

_ = [g_p+z4_m] => r_p.

_ = [x_m+z4_m] => r_p.

_ = [x_p+z4_p] => r_p.

_ = [g_m+z4_m] => r_m.

_ = [g_p+z4_p] => r_m.

_ = [x_p+z4_m] => r_m.

_ = [x_m+z4_p] => r_m.

_ = [g_m+r_m] => z4_p.

_ = [g_p+r_p] => z4_p.

_ = [x_p+r_m] => z4_p.

_ = [x_m+r_p] => z4_p.
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_ = [g_m+r_p] => z4_m.

_ = [g_p+r_m] => z4_m.

_ = [x_m+r_m] => z4_m.

_ = [x_p+r_p] => z4_m.

fast*z4_m*z4_p for z4_m+z4_p => _.

fast*r_m*r_p for r_m+r_p => _.

fast*g_m*g_p for g_m+g_p => _.

fast*x_m*x_p for x_m+x_p => _.

present (r_p, 1).

biocham: present (x_p, 4).

This reaction system then computes cos(x) by initializing the argument to
the desired value, for instance xp = 4 for which simulation traces are shown in
Fig. 3.

Fig. 3. Differential and stochastic simulation traces of the compiler-generated reactions
for computing cos(4).

5 Compilation of Sigmoid Functions

A sigmoid function is a bounded differentiable real function that is defined for
all real input values and has a positive derivative at each point. Sigmoid func-
tions have an “S” shape. They can be used to implement analog/digital con-
verters which produce all-or-nothing outputs for a wide range of input levels.
In biochemistry, Hill functions, of the form xn/(k + xn), over R+ are examples
of sigmoid functions that have been shown to approximate the input/output
response of, first historically, cooperative allosteric enzymatic reactions [44], and
more recently of the MAPK signaling network [28] for instance. In this section
we study the biochemical compilation of various sigmoid functions which is key
to the implementation of digital logic with molecular reactions [31,32].



Strong Turing Completeness 121

5.1 Logistic, Hyperbolic Tangent, Arc Tangent and Hill Sigmoids

For the sake of simplicity, we restrict here to the generation of sigmoid functions
as functions of time, with the idea of using Algorithm1 for computing those
functions as functions of some input variable. The logistic function S(t) = 1/(1+
et) is a sigmoid function over R whose derivative can be written in terms of itself
as S′(t) = S(t) − S(t)2. It can be generated over R

+ by two simple elementary
reactions, one autocatalyzed synthesis and one autocatalyzed degradation:

S => 2*S. S = [S] => . present(S,0.5).

The hyperbolic tangent tanh(t) has also a simple derivative expression
tanh′(t) = 1 − tanh(t)2 which can be implemented with two elementary reac-
tions:

=> HT. 2*HT => HT.

The arc tangent atan(t) has for derivative atan′(t) = 1/(1 + t2) which can
be implemented by

=> T. 1/(1+T^2) for /T => AT.

Note however that in this presentation, the second synthesis reaction uses T as
reaction inhibitor, which is beyond the scope of this paper.

The Hill functions of degree d (resp. negative Hill functions) are defined by
Hd(t) = td/(k + td) (resp. NHd(t) = 1/(k + td)) for some parameter k ∈ R. One
can easily check that they are solutions of the PIVP H ′

d = d ∗ k ∗ td−1 ∗ NH2
d ,

NH ′
d = −d ∗ td−1 ∗ NH2

d with Hd(0) = 0 and NHd(0) = 1/k, which leads to the
following (non elementary) reactions for their generation:

MA(d) for NHd = [(d-1)*T+NHd] => . present(NHd,1/k).

MA(d*k) for = [(d-1)*T+2*NHd] => Hd.

5.2 Comparison to MAPK Signaling Circuits

MAPK (mitogen-activated protein kinases) signaling networks are very common
biochemical reaction modules which are found in multiple copies in eukaryotic
organisms. In these signaling cascades the proteins activated by phosphorylation
are themselves kinases which catalyze in cascade other phosphorylations. Thus,
the MAPK cascade has three stages of phosphorylation for a total of 30 ele-
mentary reactions: the entry E1 of the cascade, directly linked to the membrane
receptor, catalyses the phosphorylation of the kinase KKK of the first stage,
which in turn phosphorylates the kinase KK of the second stage, which in this
doubly phosphorylated form phosphorylates the protein K of the last stage of
the cascade, which, when doubly phosphorylated in Kpp, is able to migrate into
the nucleus and promote or inhibit gene transcription.

In [28] Huang and Ferrell have proposed an explanation for this structure by
showing that the MAPK cascades exhibit a (stationary) response in the form
of a Hill function which produces a nearly all-or-nothing response. That is, by
denoting (u, y) the input-output relation of the system, they could approximate
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the dose-response diagram by an equation of the form Y (u) ≈ λ ud

cd+ud with d in
the order of 4.9 at the third level Kpp d ∼ 1.7 to the second KKpp and d = 1
at the first level KKKp.

The Hill function, as a function of an input, can be compiled in biochemical
reactions by applying Algorithm1 to the PIVP given in the previous section
for the Hill function as a function of time. This leads to the following reaction
system:

⎧
⎪⎪⎨

⎪⎪⎩

γ →
x → x + γ

2y1 + x → y1 + x
2y1 + γ → 3y1 + γ

y2 + d + x + y1 → d + x + y1 + 2y2
2y2 + d + x + y1 → d + x + y1 + y2
y2 + d + γ + y1 → d + γ + y1
2y2 + d + γ + y1 → d + γ + y1 + 3y2

⎫
⎪⎪⎬

⎪⎪⎭

with the initial conditions (γ, y1, y2)t=0 = (1, 1, 1/2). This system satisfies
y2 = xd

1+xd at steady state, and therefore constitutes a binary presence indi-
cator: if x � 1, then y2 = 1, and if x � 1, then y2 = 0, the greater d, the greater
the discrimination. Note that this value is given here by a fixed concentration
of molecule but could be represented more simply by a kinetic constant. This
converter, however, fails to create an intermediate value in 1

γ which gives an
exponential amplitude for x = 0, and therefore an exponential computational
complexity in the sense of the previous section. If we restrict ourselves to taking x
in an interval of the form [ε,+∞[, with ε > 0, then the complexity becomes poly-
nomial. On the other hand, if we restrict to degree 2 and compile the expression
x2/(1 + x2), the command compile from expression(id*id/(1+id*id),x,y)
produces a system of 259 reactions over 23 species (70 reactions over 19 species
for the function of time). However, the generated species for the possibly neg-
ative values, and their reactions, are useless in this example. Furthermore, our
syntax-directed compilation strategy currently associates one variable per term
occurrence, thus twice for the two occurrences of the expression x2, and performs
division in another variable. The computational complexity is polynomial, but
with one component of amplitude x2 which is computed in that strategy.

The natural MAPK circuit of 30 reactions [28] thus currently appears both
more concise, and with a lesser computational complexity, than the system of
reactions produced according to our first principles of compilation without any
optimization.

6 Compilation of Sequentiality and Program Control
Flows

The negative Hill sigmoid c
c+xd provides a binary absence indicator of higher

quality than those proposed in [45] or even [29] for implementing sequentiality
and program control flows, for which leakage phenomena may occur: even in
the relative absence of the x species, the presence indicator remains at a suffi-
ciently high concentration to catalyze certain reactions, or the opposite effect,
the absence indicator may be too small. This is particularly visible in the sequen-
tiality implementation: given the Ri reactions, if we want R2 to be executed only
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once R1 is completed, one can impose an indicator of the absence of one species
consumed by R1 as catalyst of R2, ditto between R2 and R3, etc This leads how-
ever to the following phenomenon: the reactions are made all the more slowly as
i is large, in other words, the reactions accumulate delay in their execution due
to the retention of absence indicators.

With a sufficiently powerful absence indicator, it is possible to implement
the sequentiality, the conditional instruction, and loop structures of algorithmic
programming. It has been shown in [29] how to compile small imperative pro-
grams into a system of biochemical reactions wherein the molecular species are
used as markers of the position of the program in a control flow graph. This
was illustrated with the compilation of Euclidean division and greatest common
divisor programs, and with strategies for species minimization in [30].

Fig. 4. ODE simulation trace of the generated reactions for the cell cycle loop.

Along the same lines, a minimalist specification of the cell division cycle can
be specified by the program

while true do {Growth; Replication; Verification; Mitosis;}

The compilation of this program in elementary reactions implements the sequen-
tiality of the four phases of the cycle by the degradation of the markers of each
of the phases, depicted in Fig. 4. Interestingly, the resulting simulation curves
are quite similar to the concentration curves obtained in cell cycle models [23]
for the cyclin proteins, which appear here as necessary markers for implementing
sequentiality with biochemical reactions.

7 Discussion and Perspectives

Though one lesson of Computer Science is that analog computation does not
scale up, while digital computation does, the biological perspective provides
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a new impetus to the study of analog computation and mixed analog/digital
parallel programs.

We have shown that recent results in computable analysis and theoretical
complexity establish solid links between analog and digital computation, and
can be used to compile analog specifications and mixed analog/digital programs
into elementary biochemical reactions. This opens new research avenues to ana-
lyze natural protein interaction circuits not only from point of view of the size
and the static complexity of the networks [1], but also from the computational
complexity and robustness points of view [39], to revisit the important particular
case of linear time invariant systems [14–16], to design reaction code optimizers,
and compare natural circuits acquired by evolution to engineered and compiler-
generated synthesized circuits.

The concept of biochemical computation and compilation can also be exper-
imented in vitro and in vivo, either in Synthetic Biology, through the modifi-
cation and reprogramming of living cells [18,35], or in Synthetic Biochemistry,
through the creation and programming of non-living microfluidic vesicles [19],
with various applications including the design of biomarkers [18].

Furthermore, the formal specification by mathematical functions of the
input/output or transient behaviors of biochemical reaction systems under the
differential semantics, establishes novel ways to study the functions of natural
circuits mathematically, and on this route investigate their evolution history and
evolution capabilities [47].
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Abstract. Parameter inference and model selection in systems biology
often requires likelihood-free methods, such as Approximate Bayesian
Computation (ABC). In recent years, this approach has frequently been
combined with a Sequential Monte Carlo (ABC-SMC) scheme. In this
scheme, the approximation of the posterior distribution through a popu-
lation of particles is iteratively improved by a sequential sampling strat-
egy. However, it has been difficult to give general guidelines on how to
choose the size of these populations. In this manuscript, we propose a
method to adaptively and automatically select these population sizes.
The method exploits the cross-validated approximation error of a kernel
density estimate of the particles in the current population to select the
number of particles for the subsequent population.

We found the proposed method to be robust to the initially chosen
population size and to the number of posterior modes. We demonstrated
that the method is applicable to parameter inference as well as to model
selection. The study of a computationally demanding multiscale model
confirmed the method’s scalability. In conclusion, the proposed method
is applicable to a wide range of parameter and model selection tasks. The
method makes the influence of the population size on the approximation
error explicit simplifying the application of ABC-SMC schemes.

Keywords: Parameter estimation · Likelihood-free inference · Approxi-
mate Bayesian Computation · Model selection · Sequential Monte Carlo ·
Population size

1 Introduction

Computer simulations have become an indispensable tool for scientific research.
They facilitate to investigate regimes which are not analytically tractable any-
more. It is often easy to simulate an experimental outcome for a model with given
c© Springer International Publishing AG 2017
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parameters. However, it is often difficult to select the model and its parameters
which are likely to explain a given experimental finding [1].

The Bayesian paradigm provides a natural framework to treat parameter
estimation and model selection. Unfortunately, for stochastic models it is often
impossible to calculate the likelihood efficiently, prohibiting a range of meth-
ods, such as e.g. variational inference [7], to approximate the Bayesian posterior.
This has lead to the development of Approximate Bayesian Computation (ABC)
schemes [2,14]. Amongst the different ABC schemes (see e.g. [1,24] and refer-
ences therein) one particularly popular scheme uses a Sequential Monte Carlo
(SMC) technique and is therefore called the Approximate Bayesian Computa-
tion - Sequential Monte Carlo (ABC-SMC) scheme [22,25,26]. In ABC-SMC,
the posterior distribution of a parameter is approximated through a particle
population. This population is sequentially refined from generation to genera-
tion improving the approximation. However, “it appears unfortunately difficult
to give useful general guidelines how to select the population size as it is highly
case depending” [16]. This is problematic as too small population sizes yield
large approximation errors and might even hamper convergence, while too large
population sizes result in an unnecessary computational burden.

We therefore investigated a method to select population sizes for ABC-SMC
adaptively and automatically and describe it in this paper. The method is
applied to examples with multimodal posteriors, model selection for Markov
jump process models and multiscale, agent-based models. An implementation
of the proposed method is provided as part of the pyABC framework (http://
pyabc.readthedocs.io/en/latest).

2 Methods

In the following, we introduce the ABC-SMC method and provide the corre-
sponding algorithms. Transition kernels are discussed and related to kernel den-
sity estimation. Based on this relation, we suggest a scheme for the adaptive
selection of population sizes.

2.1 ABC-SMC Algorithm

In ABC-SMC, populations of weighted parameter samples are sequentially con-
structed to approximate the posterior distribution of the parameter of interest.
The ABC-SMC scheme considered in this study, and provided in Algorithm1,
is similar to the one from [25]. By P = {(wi, θi)}n

i=1 we denote a population1 of
size n of weighted parameter samples with weights wi > 0,

∑
i wi = 1 and para-

meters θi ∈ R
dpar of dimension dpar. We denote the sequence of corresponding

weighted distances δi ∈ R
+ by D = {(wi, δi)}n

i=1. The distance δi is determined
by evaluating the distance function d = ComputeDistance : S × S → R

+ for a

1 A population is a sequence of pairs. Pairs (w, θ) can occur multiple times in a pop-
ulation. The curly braces {} denote a finite sequence (not a set).

http://pyabc.readthedocs.io/en/latest
http://pyabc.readthedocs.io/en/latest
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pair of simulated data s ∈ S, obtained by a stochastic simulation of the model
for parameter θi via the function Simulate : Rdpar → S, and the observed data
sdata ∈ S. In [25], a transition kernel was used to perturb samples of the previ-
ous population to generate proposals for the subsequent population. We refor-
mulated the generation of parameter proposals using a generic (non-degenerate)
density function K. This density is obtained from a kernel density estimator
KDE : P �→ K mapping a population P to a density function K : Rdpar → R

+,∫
R

dpar K = 1. The density K estimated on the current population serves as pro-
posal distribution for the subsequent population. For the first population, the
prior p0 serves as proposal distribution. After each generation, the acceptance
threshold ε is adapted via the function AdaptThreshold : D �→ ε and the popu-
lation size n is adapted via the function AdaptPopulationSize : (P,KDE) �→ n,
which is described in Sect. 2.3 (Algorithm 3). Throughout this paper the accep-
tance threshold is adapted by setting the threshold for the subsequent population
to the median of the weighted distances D of the previous population. The pop-
ulation size is initialized with n0 ∈ N. Sampling is stopped when either the
maximum number of allowed generations tmax or the final acceptance threshold
εmin > 0 is reached.

Algorithm 1. ABC-SMC
Input: tmax, εmin, n0, sdata, p0, KDE, Simulate, ComputeDistance
Output: P

t ← 0
K ← p0

ε ← ∞
n ← n0

while t < tmax and ε > εmin do
(P,D) ← SamplePopulation(K, p0, ε, n, sdata, Simulate,
ComputeDistance)

K ← KDE(P )
n ← AdaptPopulationSize(P , KDE)
ε ← AdaptThreshold(D)
t ← t + 1

end

The function SamplePopulation is described in Algorithm2. There, a single can-
didate parameter θ is stochastically drawn from the density K by the function
SampleSingleParameter : K �→ θ. The model is then stochastically evaluated by
the function Simulate : θ �→ s at this parameter θ, yielding the simulated data s.
The parameter θ is added to the next population P only if the distance δ of the
simulated data s to the observed data sdata is smaller than the current accep-
tance threshold ε. The two empty braces {} denote the empty sequence with
which the population P and the corresponding distances D are initialized. The
+ operator applied to sequences denotes the concatenation of these sequences.
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For model selection, the parameter θ, the prior p0, as well as the proposal den-
sity K can be decomposed into a component over the models and one over the
model specific parameters. Assuming M models, the parameter θ is a sequence
θ = (θm)M

m=1 with θm ∈ R
dpar,m and dpar,m the dimension of the parameter

space of model m. Moreover, the prior factorizes as p0(θ) = p0(θm|m)p0(m) and
similarly the proposal density as K(θ) = Kparameter(θm|m)Kmodel(m).

Algorithm 2. SamplePopulation
Input: K, p0, ε, n, sdata, Simulate, ComputeDistance
Output: (P,D)

P ← {}, D ← {}, Z ← 0

while |P | < n do
repeat

repeat
θ ← SampleSingleParameter(K)

until p0(θ) > 0;
s ← Simulate(θ)
δ ← ComputeDistance(s, sdata)

until δ < ε;
w ← p0(θ)/K(θ)
Z ← Z + w
P ← P + {(w, θ)}, D ← D + {(w, δ)}

end
P ← {(w/Z, θ)|(w, θ) ∈ P}, D ← {(w/Z, δ)|(w, δ) ∈ D}

The result of the ABC-SMC Algorithm 1 detailed above is an approximation of
the posterior density, represented by a particle population (or by a KDE of it).
The algorithm is implemented as part of the pyABC framework (http://pyabc.
readthedocs.io/en/latest).

2.2 Kernel Density Estimation

In ABC-SMC the populations of weighted parameters are sequentially refined
by decreasing the acceptance threshold from generation to generation. Of cru-
cial importance in this process is the sampling of parameter proposals based on
parameters accepted in the previous generation. This is commonly achieved by
selecting an accepted parameter and perturbing it to generate a proposal [25].
This method is equivalent to sampling proposals from a non-parametric distrib-
ution approximation K, i.e. a kernel density estimate. In this study, the proposal
densities K in Algorithms 1 and 2 were determined by kernel density estimators
sharing the same general form.

http://pyabc.readthedocs.io/en/latest
http://pyabc.readthedocs.io/en/latest
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General form: A density estimate K is expressed as sum of normally distrib-
uted kernels

K(θ′) =
n∑

i=1

wi N (θ′|θi, Σ(P, θi)),

in which P = {(wi, θi)}n
i=1 is a population of weighted parameters with weights

wi ∈ R
+,

∑
i wi = 1 and parameters θi ∈ R

dpar . The kernel N (θ′|θ,Σ) is a
normal density with mean θ ∈ R

dpar and covariance matrix Σ ∈ R
dpar×dpar , in

the following referred to as bandwidth, evaluated at the parameter θ′ ∈ R
dpar .

Three different strategies were used to determine the bandwidth Σ.

Global bandwidth: The global bandwidth is a scaled covariance of the com-
plete population. The population covariance matrix Cov(P ) is calculated from
the population P = {(wi, θi)}n

i=1, taking into account the sample weights:

Cov(P ) =
n∑

i=1

wi (θi − μ)(θi − μ)t, μ =
n∑

i=1

wi θi.

The scaling factor bSilv is estimated with Silverman’s rule of thumb [21],

bSilv =
(

4
neff(dpar + 2)

)1/(dpar+4)

, neff =
1

∑
i w2

i

,

in which dpar denotes the parameter dimension, {wi}n
i=1 the sample weights

and neff the effective population size. The kernel bandwidth is then Σ =
bSilv

2 Cov(P ). The bandwidth does thus not depend on the sample location θ
and is therefore called “global”.

Local bandwidth: The global bandwidth can be ill-suited for an accurate local
approximation [19,21]. We therefore considered local bandwidths as well. The
local bandwidths Σk,nn(P, θi) are constructed for each sample θi individually as
twice the covariance matrix of the k nearest neighbors (in Euclidean distance)
of sample θi. The overall density K is then given by

K(θ′) =
n∑

i=1

wi N (θ′|θi, Σk,nn(P, θi)).

Similar bandwidths were examined before and were shown to yield good accep-
tance rates [6].

Cross-validated bandwidth: Since the scaling factor bSilv is known to be too
large for multimodal distributions [21], we also used cross-validated selection of
the scaling factor for the population covariance matrix Cov(P ), according to
the following scheme: the largest probed scaling factor is the Silverman scaling
factor bSilv. Five-fold cross-validation is used to determine the best of the down-
scaled factors bc = 2−e(c)bSilv with e(c) = c/(2C), c ∈ {0, 1, . . . , C}, C = 4.
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The score function S of a scaling factor bc with density Kc on a sub-population
P̃ = {(wi, θi)}i is

S(Kc, P̃ ) =
∑

i

wi log Kc(θi).

The score function is evaluated on the sub-population P̃ of P which is not used
for density estimation. The scaling factor bc, whose corresponding density Kc

yields the highest cumulative score summed over the five folds, is subsequently
selected for the final density estimation on the complete population P .

2.3 Population Size Adaptation

The quality of an ABC-SMC scheme is determined by the accuracy and efficiency
with which the posterior distribution is approximated. Besides the bandwidth
selection strategy, a key parameter is the population size, i.e. the number of
parameter samples of which a population consists. Not only the size of the last
population but also the sizes of the intermediate populations have substantial
influence. If intermediate populations are chosen too large, unnecessary compu-
tation is performed, rendering ABC-SMC inefficient. If intermediate populations
are chosen too small, information about the posterior might get lost which can-
not be efficiently recovered in the last population, rendering ABC-SMC inac-
curate. For example, if the true posterior is multimodal, a small intermediate
population might lack samples representing one of the posterior modes. This
mode is unlikely to be recovered in the last population, unless the population
size is chosen extraordinarily large. However, this would render ABC-SMC again
inefficient and essentially equivalent to rejection sampling. Similarly, in model
selection, one model with a small posterior probability might get completely
extinct in an intermediate population. Hence, a consistent approximation qual-
ity across all intermediate populations is important for an accurate and efficient
ABC-SMC scheme.

We thus developed an ABC-SMC scheme in which the population sizes are
adaptively selected trying to match a specified target accuracy. We propose to
express this accuracy in terms of the variation associated with kernel density
estimates on a population (smaller variation corresponding to larger accuracy).
To select the necessary population size to achieve the target variation, the effect
of increasing or decreasing the population size (Fig. 1a) on the variation of the
density estimate for the current population is determined with bootstrapped
populations of varying sizes. By a parametric approximation to this population
size dependent variation, a population size for the next generation is selected by
interpolating to smaller population sizes if the current variation is too small and
by extrapolating to larger population sizes if the current variation is too large.

Denoting by ECV the desired target density variation, we propose the fol-
lowing scheme for adaptive population size selection: The number of particles in
the initial population t = 0 is set to n0. Given population Pt = {(wi, θi)}nt

i=1,
t ≥ 0, of size nt, tentative population sizes n∗

t,q, evenly spaced between �nt/3	
and 2nt with step size �nt/10	, are considered:
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Fig. 1. Adaptive population size selection. (a) True density and kernel density
estimates (KDEs) on populations of size n, sampled from the true density. The weighted
differential density variation is computed by calculating the pointwise variation (at each
parameter θ) and weighting it by the true density at this point. The density variation is
the integrated weighted differential density variation and is higher for smaller popula-
tion sizes n. (b) Fit of the density variation ECV parametrized as ECV (n; α, β) = αn−β

on bootstrapped populations (black points) of tentative sizes n∗
t,q (see (1)) and corre-

sponding estimated variations ECV (n∗
t,q) (see (2)). Bootstrapped populations are drawn

from the KDE of population t. The population size nt+1 of the subsequent population
t + 1 is selected to match the target variation ECV , correcting the current variation
ECV (nt). Control estimates were directly obtained from populations of varying sizes
n of the underlying true, unimodal normal distribution. The bandwidth was selected
according to the Silverman rule (Sect. 2.2, global bandwidth).

n∗
t,q = �nt/3	 + (q − 1) �nt/10	, q ∈ {1, . . . , Q}, Q = max{q|n∗

t,q ≤ 2nt}. (1)

To estimate the variation for each tentative population size n∗
t,q, a bootstrapped

population Pt,q,b of size n∗
t,q is drawn from the density K = KDE(Pt) for each

bootstrap repetition b ∈ {1, . . . , B} (usually B ≈ 10). Next, a density estimate,
Kt,q,b = KDE(Pt,q,b) is calculated on each of the bootstrapped populations Pt,q,b.
The density variation ECV is then defined for each tentative population size n∗

t,q

according to

ECV (n∗
t,q) =

nt∑

i=1

wi CV
({Kt,q,b(θi)}B

b=1

)
, (2)

with the coefficient of variation CV given by

CV({xb}B
b=1) =

Std
({xb}B

b=1

)

Mean
({(xb}B

b=1

) ,

computed from mean Mean and (biased) standard deviation Std:

Mean({xb}B
b=1) =

1
B

B∑

b=1

xb, Std({xb}B
b=1) =

√
√
√
√ 1

B

B∑

b=1

(
xb − Mean

({xb}B
b=1

))2
.
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For the inter- and extrapolation of ECV a functional approximation f is used.
The functional form of f is motivated by the scaling of the KDE mean squared
error as function of the population size n [3]. Silverman [21] showed that the
mean squared error of KDEs decreases with α n−β , depending on the proper-
ties of the distribution and the choice of the selected KDE. In this study, this
functional form is employed on ECV . The parameters α and β of the function
f(n;α, β) = α n−β are fitted to the points {(n∗

t,q, ECV (n∗
t,q))}Q

q=1 (Fig. 1b, black
points) with non-linear least squares and the Levenberg-Marquardt algorithm
[11,15], yielding the optimized parameters αt and βt as well as the correspond-
ing curve (Fig. 1b, interpolation and extrapolation). Finally, the size nt+1 of the
subsequent population is selected such that the target variation is expected to
be achieved: nt+1 = round(f−1(ECV ;αt, βt)). In the case of multiple models,
this scheme is performed on the joint parameter space. The pseudo-code is pro-
vided in Algorithms 3 and 4. There, Fit denotes fitting the function f , Round
rounding to the nearest integer, Sample(K,n∗) drawing n∗ samples from K and
n∗

q corresponds to n∗
t,q of (1).

Algorithm 3. AdaptPopulationSize
Input: P , KDE
Output: n
N∗ ← [n∗

1, . . . , n
∗
Q]

C∗ ← [EstimateCV(n∗,KDE, P ) for n∗ in N∗]
f ← Fit(N∗, C∗)
n ← Round(f−1(ECV ))

Algorithm 4. EstimateCV
Input: n∗, KDE, P
Output: cv
K ← KDE(P )
K∗ ← [KDE(Sample(K,n∗)) for b in {1, ..., B}]
cv ← ∑

(w,θ)∈P w CV([K ′(θ) for K ′ in K∗])

The population size is selected before the sampling of a population starts, instead
of being continuously re-evaluated during sampling (after acceptance of each
particle), to avoid potential bias towards distributions yielding lower variation
for the same population size.

3 Results

To assess the proposed adaptation scheme, we applied it to problems with known
true parameters and to problems of high practical relevance. We first assessed
the appropriateness of the functional approximation, then examined the example
of an analytical model with a multimodal posterior. We next applied the scheme
to model selection of Markov Jump Process models and finally investigated a
multiscale tumor growth model.
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3.1 Appropriateness of the Functional Approximation of ECV

for Normal Distributions

We first asked if the chosen functional form ECV (n;α, β) = αn−β did indeed
capture the relation between population size and density variation reasonably
well. A perfect approximation was not necessary, only an approximation which
was good enough to ensure that the population size evolved towards the desired
ECV was required. For a first assessment we considered the case of a unimodal
normal distribution. Indeed, the chosen functional form matched the relation
between ECV and n on the bootstrapped populations (Fig. 1b). Control samples
from the true density revealed that in the extrapolated regime, the curve seemed
to slightly overestimate ECV but still captured the scaling behavior (Fig. 1b).
We therefore continued with the first example.

3.2 Stability of the Population Size Adaptation for an Analytical
Model

We considered a model, with a multimodal posterior (similar to [10]) to investi-
gate the stability of the population sizes over the course of the generations, as
well as a possible dependency on the number of posterior modes or the employed
KDE. In this model, the simulated data s ∈ R

2 were obtained by sampling from
s ∼ N (sq(θ, nmodes), σ2I), in which I denotes the identity matrix in R

2, σ2 > 0,
nmodes ∈ {1, 2, 4} denotes the number of posterior modes, and sq a squaring-like
function squaring θ = (θ1, θ2) elementwise according to

sq(θ, nmodes) =

⎧
⎪⎨

⎪⎩

(θ1, θ2) if nmodes = 1,

(θ2
1, θ2) if nmodes = 2,

(θ2
1, θ

2
2) if nmodes = 4.

The form of the squaring function sq ensured that the number of posterior modes
equaled nmodes. The parameter θ ∈ [−10, 10]2 was subject to posterior inference,
with uniform prior θ ∼ U([−10, 10]2) over the square [−10, 10]2. The distance
function d was d(s, sdata) = |s1 − sdata,1| + |s2 − sdata,2|. For this model, B = 10
bootstrapped populations were used to estimate the density variation.

We performed ABC-SMC runs for nmodes = 1, 2, 4 modes, with observed
data sdata = (1, 1), σ2 = 0.5 and ECV = 0.1. The modes were correctly cap-
tured after a few generations for all scenarios (see Fig. 2a for nmodes = 4). We
then investigated how the population size evolved. To our surprise, even though
the acceptance threshold decreased substantially (Fig. 2b1), the population size
and effective population size decayed only slightly (Fig. 2b2). Runs with ini-
tial population sizes n0 = 101, 102, 103, 104 converged within 3 generations to
approximately the same population size (Fig. 2c). There was no further sys-
tematic dependency of the population sizes of later generations on the initial
population size n0 (Fig. 2c).

Furthermore, we found that the actually achieved variation matched the
target ECV well on average (Fig. 2d), confirming the adaptive population size



A Scheme for Adaptive Selection of Population Sizes 137

0 5

Generation t

0.0

0.1

0.2

D
en

si
ty

va
ri
at
io
n

ECV

0.05
0.1
0.2

0 10

Generation t

101

102

103

104

P
op

ul
at
io
n
si
ze

n0

101

102

103

104

0 8

Generation t

10−1

100

101

102

A
cc
ep

ta
nc

e
th

re
sh

ol
d

ε

0 8

Generation t

0

500
P
op

ul
at
io
n
si
ze

n neff

0 10

Generation t

101

102

103

P
op

ul
at
io
n
si
ze

n

ECV

0.05
0.07
0.1
0.15
0.2

0.1 0.2

Density
variation ECV

−10

0

10

θ 2
t = 1 t = 2

−10

0

10

θ 2

t = 3 t = 4

−10 0 10

θ1

−10

0

10

θ 2

t = 5

−10 0 10

θ1

t = 6

0.00 0.08

Probability density

Generation t b
1

e
1

d

c

1 2 4

No. modes nmodes

101

102

103

P
op

ul
at
io
n
si
ze

n

KDE
Global
Cross-val.
Local

f

a

b
2

e
2

Fig. 2. Adaptive population size selection for multimodal posteriors. (a)
Probability density of the first six generations of an ABC-SMC run with variation
ECV = 0.1, initial population size n0 = 500, observed data sdata = (1, 1), model
parameters σ2 = 0.5 and nmodes = 4. The bandwidth was selected according to the
Silverman rule (global bandwidth, Sect. 2.2). (b) (b1) Acceptance threshold ε; (b2) pop-
ulation size n and effective population size neff for (a). At generation t, ε is set to the
median of the observation–particle distances of generation t − 1. (c) Mean population
size for initial population sizes n0 = 101, 102, 103, 104, ECV = 0.1, nmodes = 4, σ2 = 2
and sdata = (1, 1) averaged over 10 ABC-SMC runs. (d) Target ECV (dashed) and
actual density variation (solid) for ECV = 0.05, 0.1, 0.2, σ2 = 0.5, sdata = (1, 1) and
nmodes = 4. (e) Variation ECV and population size n for nmodes = 4, σ2 = 0.5 and
sdata = (1, 1). (e1) Population size n over generation t for different variations ECV .
(e2) Median population size n as function of ECV . (f) Population size n as function of
the number of posterior modes nmodes for global (Silverman), cross-validated and local
bandwidth selection with ECV = 0.1, σ2 = 2 and sdata = (1, 1).

selection. We then examined the dependency of the population size n on the vari-
ation ECV . First, the population sizes remained approximately constant over the
generations for each fixed ECV (Fig. 2e1). Second, the median population sizes
increased with decreasing ECV (Fig. 2e2), as expected.

As quantitative changes of the distribution related to changes of the accep-
tance threshold did not influence the selected population size, we assessed its
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dependence on the number of posterior modes. Since we expected the type of
kernel density estimator to influence this dependency, we probed three differ-
ent estimators: a local estimator, a global (Silverman) estimator and a cross-
validated estimator. We found that for all investigated KDE types the popu-
lation size was roughly independent of the number of posterior modes nmodes

(Fig. 2f). The population sizes for the cross-validated KDE were larger (Fig. 2f),
as expected due to the (generally) smaller bandwidth (see Sect. 4).

3.3 Model Selection for Markov Jump Process Models

Markov jump process models constitute a practically relevant class of models.
For example, they can be used to describe chemical reactions [8]. In this context,
a common task is model selection for stochastic reaction kinetics models [23,27].
We investigated whether the adaptive population size method could be applied
to such model selection and studied the two Markov jump process models m1

and m2 for conversion of (chemical) species X to species Y ,

m1 : X + Y
k1−→ 2Y, m2 : X

k2−→ Y,

considered before in [5,18,25]. The chemical reaction kinetics were simulated
with the Gillespie algorithm [8] and representative simulations are depicted in
Fig. 3a. The distance d between two trajectories s1 = (X1, Y1) and s2 = (X2, Y2)
was defined as the absolute sum of concentration differences of species X evalu-
ated at N = 20 time points:

d(s1, s2) =
N∑

n=1

|X1(tn) − X2(tn)| , tn =
n

N
T, N = 20.

The simulation was run from t0 = 0 until T = 0.1. The initial molecule numbers
were X(t0) = 40 and Y (t0) = 3 for every simulation. The reference reaction
rate, used for generation of the observed data sdata, was k1 = 2.1 (log10 k1 =
0.32) [25]. The priors over the log-rates log10 k1 and log10 k2 were uniform priors
log10 ki ∼ U([−2, 2]) for both rates i = 1, 2. The prior over the models was
also uniform p0(m1) = p0(m2) = 1/2. The proposal density Kmodel,t(m) for
model m at generation t with model probabilities pt was given by Kmodel,t(m) =
pstaypt(m) + (1 − pstay)pt(m′) if pt(m)pt(m′) > 0 and Kmodel,t(m) = pt(m) if
pt(m)pt(m′) = 0, in which m′ denotes the other model m′ = m and pstay = 0.7.

To assess the performance and reliability of the proposed scheme for adap-
tive selection of population sizes in model selection, we performed ABC-SMC
inference for the generated artificial data sdata with ECV = 0.05. While the
posterior probability of m1 was comparable to the one of m2 for the first gen-
erations, we observed that as the generations progressed and the acceptance
threshold decreased, the probability of m1 increased as well (Fig. 3b). In the last
generations, the posterior probability of m1 was close to one, resulting in the
selection of the true model. Accordingly, the parameter posterior distribution
p(log10 k1|m = m1) contained the parameter used to generate the artificial data
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Fig. 3. Model comparison of two chemical reaction kinetics models. (a)
Species concentrations X and Y over time t for a single realization of each of the
two models m1 and m2 with rates k1 = 2.1 and k2 = 30. (b–d) Results of an ABC-
SMC run for data generated from model m1, k1 = 2.1 (log10 k1 = 0.32) for ECV = 0.05:
(b) Model posterior distribution; (c) Parameter posterior distribution and true para-
meter (dashed line) used to generate the data; and (d) Population size n and effective
population size neff for different generations t. (e) Model posterior distribution for
adaptively selected population sizes and large, constant population size. In all cases
sampling of new populations was stopped as soon as the acceptance threshold reached
1.5. Inset shows model m2 only. (f) Kolmogorov-Smirnov distances of adaptive popu-
lation size posteriors and large, constant population size posteriors for log10 k1, relative
to the reference posterior. For each scenario, four independent runs were performed.
(g) Mean population size n over all generations for different values of ECV .

(Fig. 3c). The adaptation for ECV yielded population sizes between 1458 and
2699 and effective population sizes between 1101 and 2284 particles (Fig. 3d).
Unexpectedly, the population sizes decayed in the last generations (Fig. 3d).

We then examined the quality of the posterior approximation as a function
of ECV . As the posterior was not analytically accessible we used as reference an
average ABC-SMC estimate obtained from four repetitions with the large and
constant populations size of 60000 particles. We found that non-zero mass was
attributed to both models by the reference posterior although the mass at model
m2 was small (Fig. 3e). For ECV = 0.2, 0.1 model m2 was completely extinct
(Fig. 3e), only for smaller ECV = 0.05 we obtained p(m2) > 0. We quantified
the mismatch between posterior approximation and reference posterior for the
log-rate log10 k1 in terms of the Kolmogorov-Smirnov (KS) distance (Fig. 3f)
between the posteriors obtained using adaptation of the population sizes and the
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mean reference posterior. This KS distance increased as ECV increased (Fig. 3f).
The number of required particles decreased however substantially for increasing
ECV (Fig. 3g), resulting in a decrease of the computation time.

3.4 Multiscale Models

The parameter estimation problems considered in the previous sections possessed
up to two unknown parameters and their computational complexity was com-
paratively low. To assess if the method is also applicable to higher-dimensional
parameter spaces and computationally more demanding problems, we considered
a multiscale model for tumor growth on a two-dimensional plane, as described in
[9]. This model possessed seven unknown parameters, which we estimated from
artificial data generated by drawing 100 independent samples (Fig. 4a) from the
model at the reference parameters as given in [9]. The artificial data sdata was
obtained from these samples via averaging. We imposed on each parameter a
prior which was uniform in the log10 domain with upper and lower bounds given
in [9]. We also used the distance function from [9]. For ABC-SMC we employed
a KDE with local bandwidth considering for each particle only the 20% nearest
neighbors, measured in Euclidean distance (see Sect. 2.2).

The populations slowly contracted around the true (reference) parameters
and clustered already for generation t = 13 around them (Fig. 4b). The last
generation t = 40 showed that the posterior converged to the true parameters
(Fig. 4b). To evaluate the quality of the posterior approximation, we drew 100
samples from the maximum a posteriori (MAP) parameters. We found that the
distances (to the observed data) of samples from the MAP parameters were
comparable to the distances of samples from the true parameters (Fig. 4c). This
indicated that the population size adaptation method, paired with a local pro-
posal distribution, worked successfully for the investigated multiscale model. We
then examined the adaptation of the population sizes (Fig. 4d). The acceptance
threshold (Fig. 4d1) and the effective population size (Fig. 4d2) decreased over
the generations. Surprisingly, the population size increased instead (Fig. 4d2).
The estimation of ECV took in this example a fraction of about 2.08 · 10−5 of
the total computation time and was therefore negligible.

4 Discussion

In many systems biology applications, model developers face the parameteri-
zation of complex computational models. While ABC-SMC algorithms are well
suited for this task, the need of manually tuning population sizes – a task which
requires substantial experience – limits their applicability. In this manuscript, we
proposed a method to adaptively select population sizes based on the uncertainty
of kernel density estimates. Our method complements existing methods for the
adaptive choice of perturbation kernels [6], acceptance thresholds [20], and sum-
mary statistics [13,17]. We illustrated the method’s applicability to parameter
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Fig. 4. Multiscale tumor growth model. (a) Tumor growth data. 100 samples
from the reference parameters listed in [9]. The data were: (1) the spheroid radius
over time, (2) the fraction of proliferating cells over distance to the spheroid rim, and
(3) the extracellular matrix intensity over distance to the spheroid rim. (b) Posterior
distributions obtained from an adaptive population size ABC-SMC run with ECV =
0.25. Axis limits correspond to the support of the uniform prior. The purple crosses
and dashed lines “True” indicate the reference parameters. Lower triangle: distribution
of generation t = 13. Upper triangle: distribution of generation t = 40. Diagonal:
distributions across the generations: light to dark: earlier to later generations. (c)
Distribution of distances to the observed data sdata which was obtained as average
of 100 samples from the reference parameter values [9]. True (black): Distances of
the same 100 samples which were used to generate the observed data sdata. MAP
(orange): Distances of 100 samples from the maximum a posteriori parameters. (d)
(d1) Acceptance threshold ε; (d2) Population size n and effective population size neff

for (b). At generation t, ε is set to the median of the observation–particle distances of
generation t − 1. (Color figure online)
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Fig. 5. Influence of the kernel bandwidth on the density variation. (a) True
(unimodal normal) distribution and kernels with bandwidths b, relative to the Silver-
man bandwidth bSilv for population size n = 103. (b) Density variation for kernels
with bandwidths b, relative to the Silverman bandwidth bSilv. Population size n = 103,
drawn from the true (unimodal normal) distribution from (a).

inference and model selection as well as its scalability and compatibility with a
range of transition kernels (proposal densities).

The approximation quality, expressed in terms of the target variation of the
density ECV , has to be specified in our method. While selecting ECV adequately
is important, the method does not simply replace manually tuning population
sizes by manually tuning ECV . Instead, ECV is easier interpretable and thus eas-
ier to select. The examples with increasing, decreasing or approximately constant
population sizes indicate that the proposed method is not a mere reparameteri-
zation. Empirically, 0.1 ≤ ECV ≤ 0.2 worked reliably in many cases.

Our method can be employed together with arbitrary density estimators. The
choice of the estimator, however, affects the population sizes. Over-smoothing
estimators (e.g. Silverman) yielded smaller population sizes. This is consistent
with the lower variation of estimators with larger bandwidths (Fig. 5). Inappro-
priately chosen estimators can yield poor results with respect to approximation
quality and computation time. For instance, cross-validated bandwidth selection
can generate a notable computational overhead if the model simulation is fast.

We found no obvious difference between bootstrapping from the density or
directly from the particle population; we therefore decided to bootstrap from the
density. This avoids drawing the same particles of a population repeatedly as it
would likely occur in bootstrapping from the population (with replacement). The
assumed functional relation between the density variation and the population
size was motivated by the Silverman rule [21] but might be further improved.
For the considered applications, however, the approximation was sufficient and
extrapolation of larger population sizes was facilitated.

The difficulty of choosing population sizes has been discussed in the literature
before [16]. Our results suggest that probing population sizes over an order of
magnitude, as done in some studies (e.g. [9]), can be avoided. To the best of
our knowledge, this is the first attempt to adaptively and automatically select
population sizes for ABC-SMC.
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In the future, the interplay of density estimators and population sizes could
be further explored. While the effect of density estimators on acceptance rates
has been already investigated [6,10], it has not been related to population sizes
yet. Alternative approaches to population size adaptation, for instance aiming
for a constant effective population size, could be considered. Comparisons to
methods requiring more specific problem structures than ABC-SMC, such as
accelerated maximum likelihood [4] or the generalized method of moments [12],
could be conducted where applicable. The adaptation scheme proposed here is
compatible with virtually any ABC-SMC scheme. We expect our method to be
applied to a wide range of model selection and parameter estimation tasks.
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Abstract. Biomedical research results are being published at a high
rate, and with existing search engines, the vast amount of published
work is usually easily accessible. However, reproducing published results,
either experimental data or observations is often not viable. In this work,
we propose a framework to overcome some of the issues of reproducing
previous research, and to ensure re-usability of published information.
We present here a framework that utilizes the results from state-of-the-
art biomedical literature mining, biological system modeling and analy-
sis techniques, and provides means to scientists to assemble and reason
about information from voluminous, fragmented and sometimes incon-
sistent literature. The overall process of automated reading, assembly
and reasoning can speed up discoveries from the order of decades to the
order of hours or days. Our framework described here allows for rapidly
conducting thousands of in silico experiments that are designed as part
of this process.

Keywords: Literature mining · Modeling Automation · Cancer

1 Introduction

Modeling, among many other advantages, facilitates explaining systems that
we are studying, guides our data collection, illuminates core dynamics of sys-
tems, discovers new questions, or challenges existing theories [2]. However, the
creation of models most often relies on intense human effort: model developers
have to read hundreds of published papers and conduct numerous discussions
with experts to understand the behavior of the system and to construct the
model. This laborious process results in slow development of models, let alone
validating the model and extending it with thousands of other possible compo-
nent interactions that already exist in published literature. At the same time,
research results are published at a high rate, and the published literature is
voluminous, but often fragmented, and sometimes even inconsistent. There is a
pressing need for automation of information extraction from literature, smart
assembly into models, and model analysis, to enable researchers to re-use and
reason about previously published work, in a comprehensive and timely manner.
c© Springer International Publishing AG 2017
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In recent years, there has been an increasing effort to automate the process of
explaining biological observations and answering biological questions. The goal
of these efforts is to allow for rapid and accurate understanding of biological
systems, treatment and prevention of diseases. To this end, several automated
reading engines have been developed to extract interactions between biological
entities from literature. These automated readers are capable of finding hun-
dreds of thousands of such interactions from thousands of papers in a few hours
[10]. However, in order to accurately and efficiently incorporate these pieces of
knowledge into a model, we need a method to distinguish useful relationships
from vast amounts of extracted information. The revised model often retains
properties of the baseline model, but at the same time reflects new properties
that the baseline model fails to satisfy, or suggests minimal interventions in the
model that can lead to significant changes in outcomes.

To this end, the contributions of our work include: (i) Method to utilize
previous research and published literature to validate existing knowledge about
diseases, test hypotheses and raise new questions; (ii) Framework to rapidly
conduct hundreds of in silico experiments via stochastic simulation and statis-
tical model checking; (iii) Pancreatic cancer microenvironment case study that
demonstrates the framework’s effectiveness.

Fig. 1. Steps of our model extension approach.

Our framework is summarized in Fig. 1. The remainder of the paper is orga-
nized as follows. In Sect. 2 we provide details about the types of events extracted
from literature. In Sect. 3, we outline methods to extend models. In Sect. 4,
we describe model analysis methods. The results of applying our framework to
pancreatic cancer microenvironment model are presented in Sect. 5. We discuss
several important issues in Sect. 6 and conclude the paper with Sect. 7.

2 Events in Biomedical Literature

In this work, we focus on cellular pathways, that is, signal transduction,
metabolic pathways and gene regulation. The literature that covers cellular path-
ways usually includes details such as molecular interactions, gene knock outs,
inhibitors, stimulation with antigens. We conducted a brief exercise on a sam-
ple set of paragraphs from such published literature. The descriptions found
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Fig. 2. Reading output: (a) Examples of the three types of interactions found in papers
and the average number of occurrences of each type in a sample paragraph set; (a)
Types of interactions and their arguments (entities).

in papers can be organized in three groups: qualitative, quantitative and semi-
quantitative. Figure 2a shows examples of these three types of descriptions and
the average number of occurrences for each type of interaction in the sample
paragraph set. Automated reading engines [10] can extract events in the form
of frames that contain an interaction with two entities (arguments). We list in
Fig. 2b the interaction and entity types that are recognized by reading engines
and that we use in this work. Here, we represent each interaction as a pair (u, v),
where u is the regulator and v is the regulated element. For the first example sen-
tence in Qualitative description in Fig. 2b, we can obtain two interaction pairs,
(Ras, PIK3CA), and (Ras,BRAF ).

2.1 Baseline Model Type

The interaction map of a model can be expressed as a directed graph G = (V,E).
The set of vertices, V , represents model elements, vi ∈ V , i = 1..N , where N
is the number of elements in the model. The set of edges, E, (vj , vi) ∈ E,
represents causal interactions between elements, that is, relationships of type
affects/is-affected-by. The polarity of interactions (positive or negative) is also
included in the interaction map.

In order to capture the type of information that most often occurs in pub-
lished texts, as outlined in Fig. 2(a), we are using logical modeling approach. In
logical models of cellular signaling, each element from the interaction map G
has a corresponding Boolean variable xi ∈ {0, 1}. The update rule for a vari-
able xi is a logic function of variables xj ’s, where each xj has a corresponding
vertex vj ∈ V , such that (vj , vi) ∈ E. That is, fi : {0, 1}ki → {0, 1}, where
ki = |{vj : (vj , vi) ∈ E}| is the in-degree of vertex vi. For a logical model with n
elements, there are 2n possible configurations of variable values, and each config-
uration is called a state. The logical modeling approach works well with informa-
tion extracted from text data, since the logical rules can be used to express the
qualitative descriptions easily. For example, from the second example sentence in
Qualitative description in Fig. 2a, we could extract two interactions (GTP,Ras)
and (!GDP,Ras), where ‘!’ indicates negative regulation. We can implement all
three elements, GTP, GDP, and Ras as Boolean variables, and write a logical rule
for updating value of variable Ras as, for example, Ras = GDP and not GTP .
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2.2 New Interaction Classification

Often, the computational modelers start with a baseline model, and they add the
information extracted from literature to the model. In order to add the extracted
events, they first need to be classified according to their relationship to a given
model. The output from reading engines can be related to the model in several
ways:

(i) Corroborations: The interaction from reading output matches an interaction
already in the model. An example of corroboration is shown with green
arrow in Fig. 3a.

(ii) Extensions: The interaction from reading output is not found in the baseline
model. An example of extension is shown with blue arrow in Fig. 3a.

(iii) Contradictions: The interaction from reading output suggests a different
mechanism from the model (for example, activation vs. inhibition). An
example is shown with red arrow in Fig. 3a. In this work, we study extensions
only, that is, new interactions that can be added to the model. Handling
contradictions is part of our future work.

3 Model Extension

In Fig. 3b we show a toy example of model interaction map (solid arrows) and
several extensions extracted by automated reading (dashed arrows). There are
three kinds of model extensions (illustrated in Fig. 3b):

1. Interactions where both elements are already in the model (edges (E,D) and
(F,D) in Fig. 3b). This kind of extension usually has a direct influence on
the behavior of the model: when adding a new interaction between elements
in the model, we are creating a new pathway or generating feed-forward or
feedback loops. These structural changes may lead to a significant difference
in the regulatory behavior.

2. Interactions where only one element is in the baseline model (for edge (H,A)
in Fig. 3b the regulated element is in the baseline model, while the regulator is
not; for edge (G, I) the regulator is in the baseline model while the regulated
element is not). In cases where the regulated element is not in the baseline
model, the regulated element will just hang from a pathway without having
direct influence on the model. On the other hand, in extensions where the
regulator is outside the baseline model, the regulator can act as a new model
input, allowing for additional network control.

3. Interactions consist of elements outside the baseline model (edges (M,K),
(K,J)). Such interactions alone do not affect the behavior of the model.
However, when we are considering multiple extensions simultaneously, addi-
tional regulatory pathways may be constructed that will have effect on model
behavior. The path M → K → J → H → A in Fig. 3b is an example of newly
formed pathway.
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Fig. 3. Relationship between reading output and model. (a) The literature reading-
assembly flow with example. (b) Example baseline model (solid arrows) and new inter-
actions extracted by automated reading (dashed arrows). The circled numbers represent
classification described in Sect. 2.2 (Color figure online)

3.1 Interaction Map Extension

Each interaction of extension type can be regarded as a candidate new edge
in the model’s interaction map. Let Eext be the set of interactions provided
by reading. Suppose the baseline model is G = (V,E). Each new candidate
model can be obtained by adding a group of selected edges Enew ∈ Eext and its
corresponding elements, that is, G′ = (V ′, E′), where E′ = E∪Enew. However, it
is impossible to enumerate all configurations of whether or not to add a new edge,
as the number of candidate models will become extremely large. For example,
if there are 100 new interactions extracted by the automated reader, there are
2100 possible extensions of the model. This number is impossible to handle,
therefore, we need heuristic methods to search for suitable configurations of
model extensions.

A possible way to tackle the issue of large number of model extension config-
urations, is to list the elements of interest in the baseline model, and include, as
an extension, interactions that are related to those elements. The set of model
elements of interest can be defined by user, depending on the questions asked or
hypotheses tested. Still, the extension configurations need to be constructed in
a systematic manner. Here we introduce the concept of ‘layer’, where layer S0 is
the set of elements of interest. The next layer, S1, is the set of direct parents of
elements in S0, and in general, Si is the set of direct parents of elements in Si−1.
Elements in S1 are direct regulators of S0, and thus, the extensions including
elements in S1 may influence the model. Using this concept, we propose four
different methods to create extension configurations.

Cumulative parent set with direct extensions (CD): In this method, we
define the number of layer, n, that we want to consider, and include all new
interactions that affect any element from layer 0 up to layer n. In other words,
we add an extension e = (u, v) to the model when at least one of the nodes u
and v is mentioned in layers S0 to Sn. Figure 4b demonstrates the result of this
method where n equals 1. Starting from S0 = {A,B,E}, we find its direct parents
S1 = {C,D}. The edges in the figure represent the union of layers S0 and S1.
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Fig. 4. Results from different extension methods: (a) The baseline model and the
extensions from automated reading; (b) The result from method CD with n = 1;
(c) The result from ND with n = 1; (d) The result from CI with n = 1; (e) The result
from NI with n = 1 and m = 1.

The advantage for this method is that it includes as many relevant extensions
as possible within a certain distance from the elements of interest. However, due
to the large number of elements added, the behavior of the model may become
intractable within a few layers, that is, if the behavior deviates from what we
expect, it is hard to pin-point the source of the change.

Non-cumulative parent-set with direct extensions (ND): This method
can be used when we want to know the influence only from the nth layer. When
creating each layer, we exclude the elements that are already mentioned in the
previous layer, and repeat this process for n times. As a result, from all elements
in the ND set, layer 0 can be reached within n steps. We add extension e = (u, v)
to the model if and only if u or v is in the ND set. Figure 4c is an example with
n = 1. After acquiring the layer S1, we exclude the elements in the previous
layer S0, so we only include edges containing elements in S1. Compared to the
results of the CD method, ND method helps identify individual extension layers
that may cause significant changes to the performance in different properties.

Cumulative parent-set with indirect extensions (CI): In the previous two
methods, we find each layer only by looking for direct parents of previous layer,
that is, the regulators that are already in the baseline model. In this method,
we also look for indirect parents. In the example shown in Fig. 4d, we start from
S0 = {A,B,E}, which has as direct parents nodes C and D, and as an indirect
parent node F . Therefore, if we consider indirect parents, S1 includes {C,D,F}.
The result in Fig. 4d is obtained by adding edges including elements in S0 or
S1 into the model. This method incorporates more elements into the model,
allowing us to examine the behavior of the model including all edges within
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certain layers. It also includes pathways outside the baseline model more often
then the other methods. However, just like the first method, the behavior here
may become intractable when n is large, especially when the network outside
the baseline model is complicated.

Non-cumulative parent-set with indirect extensions (NI): This method
is the combination of the two previous methods. The goal of this method is to
provide information about influence on property values of m layers containing
indirect edges, starting from the nth layer. In other words, we first look at the
nth layer using the ND method, and perform the operation of CI for m times
to find all the layers we are interested in. From Fig. 4e, we can see that using
one ND step, we get the layer S1 = {C,D}. Using CI for another time, we have
the set S1,1 = {G,H}. Adding elements mentioned in S1 and S1,1 results in the
structure in Fig. 4e. This method can be more comprehensive than ND, giving us
a more thorough understanding of the extensions. However, it could also suffer
from the issue of being intractable if m is large.

3.2 Executable Rule Updating

After choosing extension classification method and proper parameters for layer
numbers, we create model extension sets. These sets extend the static interaction
map of the model. Logical rules, on the other hand, allow for dynamic analysis of
the model, as variable states change in time according to their update functions.
Therefore, the set of logic update rules represents executable model. Incorporat-
ing new components into executable model rules can be done in several different
ways. For example, if the original rule is A = BorC, and the extension interac-
tion states that D positively regulates A, then the new update rule for A can
be either A = (BorC)andD, or A = BorCorD. Other logic functions could be
derived as well, but this largely depends on the information available in reading
output about these interactions. Given that individual reading outputs only pro-
vide information of type ‘participant a regulates participant b’ (in our example,
D positively regulates A), and no additional information about interactions with
other regulators is given (in our example, that would be combined regulations of
A by B, C and D), we use two naive approaches, which is to add new elements
to update rules using either OR or AND operation.

4 Property Testing

After obtaining different extended models using the methods in Sect. 3, we eval-
uate the performance of each model by checking whether each extended model
satisfies a set of biologically relevant properties. While simulations of logical
models are known to be able to recapitulate certain experimental observations
[5], verifying the results of the simulation against the properties manually is
tedious and error-prone, especially when the number of models or properties
becomes large. A feasible way to tackle this problem is to use formal methods.
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We use statistical model checking that combines simulation and property check-
ing on simulation traces to compute the probability for satisfying each property.
We elaborate each framework component in the following subsections.

4.1 Stochastic Simulation

The original logical model and all the extended model versions are simulated
using stochastic method. We identify initial states for all model elements,
x = (x1, ..., xN ), by assigning initial values to their corresponding Boolean vari-
ables x0 = {0, 1}n. Next, we use update rules to compute new variable values,
that is, new states of all model elements. The simulator we use is publicly avail-
able [6,8]. In the simulator, several different simulation schemes were designed
to reflect different timing and element update approaches occurring in biological
systems. The simulation scheme we use for this work is called Uniform Step-
Based Random Sequential (USB-RandSeq). In each simulation step, one model
element is randomly chosen, its update function is evaluated, and the value of its
corresponding variable is updated. At the beginning of simulation the number of
these sequential steps is defined. In the case of uniform update approach, all vari-
ables have the same probability of being chosen. The variable values in each step,
starting from the initial state, x0, are recorded in a trace σ = (x0,x1, . . . ,xn).
With the trace file at hand, we can use model checker to automatically verify
whether or not the model meets several properties. Since the order of updating
elements is random, when we run simulator to obtain multiple traces, the traces
of variable values across different runs can vary.

4.2 Statistical Model Checking

The simulation of logical models is similar to discrete-time Markov chain, which
means the verification problem is equivalent to computing the probability of
whether a given temporal logic formula is satisfied by the system. One approach
is to use numerical methods to compute the exact probability; however, this naive
implementation suffers from the state explosion problem, and does not scale well
to large-scale systems [14]. Statistical model checking provides an excellent solu-
tion to this problem, by estimating the probability using simulation and thus,
avoiding a full state space search. To verify a model via statistical model check-
ing against interesting properties, we first need to encode each property into
temporal logic formulae. Here we use Bounded Linear Temporal Logic (BLTL)
[3]. BLTL is a variant of Linear Temporal Logic [7], where the future condition
of certain logic expressions is encoded as a formula with a time bound (see the
supplementary material (http://ppt.cc/XlWF7) for BLTL’s formal syntax and
semantics). To verify whether a model satisfies the properties, statistical model
checking treats it as a statistical inference problem for the model executions
generated using the randomized sampling. For a stochastic system, the prob-
ability p that the system satisfies a property φ is unknown. Statistical model
checking can handle two kinds of questions: (i) for a fixed 0 < θ < 1, determine
whether p ≤ θ, and (ii) estimate the value of p. The first problem is solved using

http://ppt.cc/XlWF7
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hypothesis testing methods, while the second is solved via estimation techniques.
Statistical model checking assumes that, given a BLTL property φ, the behavior
of a system can be modeled as a Bernoulli random variable M with parame-
ter p, where p is the probability of the system satisfying φ. Statistical model
checking first generates independent and identically distributed samples of M .
Each sample σ is then checked against the property φ, and the yes/no answer
corresponds to a 1/0 sample of the random variable M . The sample size does
not need to be fixed, as the checking procedure will stop when it achieves the
desired accuracy. This reduces the number of samples needed. The statistical
model checking ha been applied in the past to the type of stochastic simulation
that we use here, [11].

5 Results

The system that we studied is pancreatic cancer microenvironment, including
pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs). We adopted
here the model created by Wang et al. [13], which has three major parts: (1)
intracellular signaling network of PCC; (2) intracellular signaling network of
PSC; (3) network located in extracellular space of the microenvironment, which
contains mainly ligands of the receptors. In this model, several cellular functions,
such as autophagy, apoptosis, proliferation, migration, are also implemented as
elements of the model, which enables modeling of the system’s behavior that can
result from turning various signaling components ON or OFF. In total, there are
30 variables encoding intracellular PCC elements and 3 variables encoding PCC
cellular function. For PSC, there are 24 variables for intracellular elements and 4
variables for PSC cellular function. In extracellular microenvironment, there are
8 variables encoding extracellular signaling elements with 1 environment func-
tion variable. Accordingly, there are 70 variables in the model that have associ-
ated update functions used to compute next state of those model elements. The
interaction rules of this model are summarized in Table 1 in the Supplementary
material (http://ppt.cc/XlWF7).

The framework is implemented in Python. The simulator described in
Sect. 4.1 is implemented in Java [8]. We use PRISM [4] as our statistical model
checker, which is a C++ tool for formal modeling and analysis of stochastic
systems. Evaluating a model against one property, including running the sim-
ulations, takes about 10 min on a regular laptop (1.3 GHz dual-core Intel Core
i5, 8GM LPDDR3 memory). The other components in the framework take less
than 1 min. We used the REACH automated reading engine [9] output produced
from 13,000 papers in publicly available domain. This output consists of 500,000
event files, with 170,000 possible extensions of our model (other events are cor-
roborations or contradictions).

To demonstrate how our framework works, we identified elements of inter-
est in the model (which were suggested by cancer experts), and defined a set
of relevant properties reflecting important biological truths that the PCC-PSC
model should satisfy [12]. In Table 1, we list 20 properties that we tested using

http://ppt.cc/XlWF7
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Table 1. System properties for model testing.

statistical model checking. There are five major functions or phenomena that we
are interested in: (1) increased secretion of important growth factors; (2) over-
expresion of oncoproteins in PCC and PSCs; (3) inhibition of tumor suppressors
in PCCs; (4) cell functions of PCCs; (5) cell functions of PSCs.

5.1 Impact of Proposed Extension Approaches on Model

The baseline model [13] has 70 elements and 114 regulatory interactions.
Although there are 170,000 model extensions produced by reading, many of
them are repetitions, and some of the reading outputs were missing one of the
interaction participants. Therefore, in this work we used overall 1232 different
interactions from reading output, which could lead to 21232 possible models.
Studying all possible model versions is impractical, and therefore, we used the
four extension methods described in Sect. 3, to generate 46 different models.
Using the CD method, we generated 2 models by having 1 or 2 layers. For ND,
the number of layers we considered varied between 1 and 10, which resulted in
10 models. With CI, we used either 0, 1, 2 or 3 layers, which led to 4 different
models. Finally, for NI, we have n ranges from 1 layer to 10 layer, and m ranges
from 1 to 3, resulting in 30 models. We also test the model with all extensions
being added to the baseline model.
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Figure 5 summarizes results of our extension methods on 1232 interactions
with respect to new node connections to the model:

(i) number of new nodes regulating baseline model elements, not regulated by
baseline model elements (dark blue);

(ii) number of new nodes regulating baseline model elements, not regulated by
any element, baseline or new (red);

(iii) number of new nodes regulated by baseline model elements, not regulating
any elements in the baseline model (yellow);

(iv) number of new nodes regulated by baseline model elements, not regulating
any element, baseline or new (purple);

(v) number of new nodes inserted into existing pathway - new regulators of
baseline model elements that are also regulated by baseline model elements
(green);

(vi) number of new nodes as intermediate elements of new pathways when mul-
tiple extensions are connected (light blue);

(vii) total number of all elements used in the extension method (dark red).

In Fig. 6(a), four different sections can be observed, and each section corre-
sponds to one of the extension methods. Each method has its unique feature. For
example, the ND method only includes relationships relevant to one layer, and
this makes the number of new elements added to the model significantly smaller
than other methods. Also, the light blue nodes indicate the number of newly
added elements that are in a newly formed pathway. Since CD and ND do not
include indirect parent interactions, we can see that the number of elements in
new pathway is 0. While in CI and NI, we can tell that indirect interactions are
included. The numbers within one method show higher similarity, but we can
still observe some patterns. For example, the cumulative parent-set methods,
CD and CI show an increase in the number of new nodes when more layers are
considered. Furthermore, since NI has cumulative parents when they finish the
noncumulative part, they also experience an increase when the step of noncu-
mulative part is fixed. The numbers saturate at around 600, which is due to the
limited size of baseline model and extensions we have. This is also the reason we
choose to perform the cumulative approach for at most 3 steps.

In general, choosing the method to extend the model depends on the scenario
a user is interested in. For example, if the focus is on the regulation of a specific
element, one can track down each layer of parents using ND, and see the change
of the model after modifying that specific layer. On the other hand, if the goal
is to include as many new stimuli as possible with a fewer number of layers,
cumulative methods such as CI or CD will fit better. We selected 20 elements
as part of the base layer, since these elements appear in properties that we are
testing, leading to relatively large base layer given the size of the baseline model.
Therefore, by incorporating elements related to more than one layer, we capture
almost all extensions related to the baseline model. Thus, the ‘All In’ method,
which adds all extension interactions to the baseline model at once, does not
change the counts shown in Fig. 6(a), when compared to many cases of CD, CI
and NI methods.
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Fig. 5. Counts for newly added elements with certain structure (Reg. - regulator,
Tgt. - regulated element, Orig. - baseline model elements, New - newly added ele-
ment). All models studied are listed on x-axis, and y-axis is the count of new elements
having certain structure. (Color figure online)

Fig. 6. (a) Results of statistical model checking of 20 properties in 68 different models.
Each entity in x-axis is a model, and each row is the estimated probability for the
corresponding property. (b) The Max and min difference from the baseline model of
each property.
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5.2 Impact of Model Extension on System Properties

Figure 6(a) shows the results of testing 48 models (baseline + All-In + 46
extended models) with different extension method (AND/OR) and different ini-
tialization of the newly added elements (True/False) against the 20 properties
in Table 1. The values displayed are the estimated probabilities of each property.
Just like the basic numbers of each model, different extension methods lead to
different results of the properties. For example, we can see that the results from
ND are different from other methods. The reason is that each ND method only
deals with one layer at a time, and it will not insert new edges between elements
mentioned in the properties. This leads to a more conservative extension. Also,
for example, there are differences between OR-based ND models in properties
9 to 13 or property 4 in AND-based ND models, which are related to Inhibi-
tion of tumor suppressors and Autophagy in PCCs. By comparing the extension
interactions added to those models, we found that the EGF (Epidermal Growth
Factor) pathway plays the most important role. The p21 (regulator of cell cycle
progression) pathway also influences the difference.

If we compare the models with different initialization of newly added nodes,
we can see the results are actually quite similar. This means that the model
is mostly influenced by the input elements in the baseline model, and to some
degree, it emphasizes the robustness of the original model. On the other hand,
if we compare extending the models with OR operations and those with AND
operations, there is a huge difference. But the interesting part is that the behavior
of models with the two types of extensions is opposite. They behave similarly only
in properties 9, 13, 16, 19 and 20, while differently in all other 15 properties. This
shows a drastic difference between AND-based and OR-based extension, and can
be further designed according to the property we want to fit. Figure 6(b) shows
the maximum/minimum difference compared to baseline that each model can
achieve for each property. If a property probability is low in both max and min
difference, it is relatively conservative to the extension interaction. An example
is property 16, which depicts the relationship between p53 and Apoptosis. On
the other hand, if a property probability is high in both max and min difference,
it is a property susceptible to changes via extensions.

6 Discussion

The framework we describe here, although designed to extend an existing base-
line model, can also be used to search for pathways or interactions that are vital
to certain functions, and to suggest targets for drug development. For example,
using the ND models and statistical model checker, we can study closely how
each layer of elements influences the elements we are interested in. Then, we
can pin-point the models that satisfy several properties that we desire, and we
should be able to identify a few candidates that play important roles in the
regulation. Or, by using NI method, we can further observe whether there is
actually an upstream network that controls the behavior of the elements. This
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gives us a deeper understanding of the network and helps us in further model
development.

One of our next steps is to improve the approach to incorporate new ele-
ments into logical rules. In this work we naively incorporate those rules using
OR and AND operation. However, in reality the mutual relationships between
the regulators are not necessary an AND or OR relationship. For example, a
ligand and a receptor induce further response if they both exist, and there is
another unrelated element activating the same target. This results in a format
A = B ∗ C + D. We are not able to capture this since the automated reader
does not output this information, but from online databases such as UniProt
[1], we are still able to gather pieces of knowledge about the true interaction
between regulators. Also, the automated reader does not output the location
of the interaction. For example, two types of cells, PCCs and PSCs, are in our
baseline model, but we only extend the interactions to PCCs. More information
of the location can also help us refine the extension method. As a future work,
incorporating the on-line database should give us a more accurate extension of
the model. But in the long run, if the automated reader can take into account
these features, we should be able to construct a better model more easily. Finally,
aside from extensions, the automated reader provides us with contradictions. In
this work we ignore this kind of relationship and assume absolute correctness of
interaction in the baseline model, but the contradictions serve as a great starting
point to examine the validity of the baseline model, as well as to point to further
improvements of reading engines.

7 Conclusion

We propose a framework that utilizes published work to collect extensions for
existing models, and then analyzes these extensions using stochastic simulation
and statistical model checking. With biological properties being formulated as
temporal logic, model checker can use the trace generated by the simulator to
estimate the probability that a certain property holds. This gives us an efficient
approach (speed-up from decades to hours) to re-use previously published results
and observations for the purpose of conducting hundreds of in silico experiments
with different setups (models). Our methods and the framework that we have
developed comprise a promising new approach to rapidly and comprehensively
utilize published work for an increased understanding of biological systems, in
order to identify new therapeutic targets for the design and improvement of
disease treatments.
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Abstract. DNA methylation is an epigenetic mechanism whose impor-
tant role in development has been widely recognized. This epigenetic
modification results in heritable changes in gene expression not encoded
by the DNA sequence. The underlying mechanisms controlling DNA
methylation are only partly understood and recently different mecha-
nistic models of enzyme activities responsible for DNA methylation have
been proposed. Here we extend existing Hidden Markov Models (HMMs)
for DNA methylation by describing the occurrence of spatial methylation
patterns over time and propose several models with different neighbor-
hood dependencies. We perform numerical analysis of the HMMs applied
to bisulfite sequencing measurements and accurately predict wild-type
data. In addition, we find evidence that the enzymes’ activities depend
on the left 5’ neighborhood but not on the right 3’ neighborhood.

Keywords: DNA methylation · Hidden Markov model · Spatial sto-
chastic model

1 Introduction

The DNA code of an organism determines its appearance and behavior by encod-
ing protein sequences. In addition, there is a multitude of additional mechanisms
to control and regulate the ways in which the DNA is packed and processed in
the cell and thus determine the fate of a cell. One of these mechanisms in cells is
DNA methylation, which is an epigenetic modification that occurs at the cyto-
sine (C) bases of eukaryotic DNA. Cytosines are converted to 5-methylcytosine
(5mC) by DNA methyltransferase (Dnmt) enzymes. The neighboring nucleotide
of a methylated cytosine is usually guanine (G) and together with the GC-pair
on the opposite strand, a common pattern is that two methylated cytosines are
located diagonally to each other on opposing DNA strands. DNA methylation
at CpG dinucleotides is known to control and mediate gene expression and is
therefore essential for cell differentiation and embryonic development. In human
somatic cells, approximately 70–80% of the cytosine nucleotides in CpG dyads
are methylated on both strands and methylation near gene promoters varies
considerably depending on the cell type. Methylation of promoters often corre-
lates with low or no transcription [20] and can be used as a predictor of gene
c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 160–178, 2017.
DOI: 10.1007/978-3-319-67471-1 10



A Stochastic Model for the Formation of Spatial Methylation Patterns 161

expression [12]. Also significant differences in overall and specific methylation
levels exist between different tissue types and between normal cells and can-
cer cells from the same tissue. However, the exact mechanism which leads to a
methylation of a specific CpG and the formation of distinct methylation pat-
terns at certain genomic regions is still not fully understood. Recently proposed
measurement techniques based on hairpin bisulfite sequencing (BS-seq) allow to
determine on both DNA strands the level of 5mC at individual CpGs dyads [15].
Based on a small hidden Markov model, the probabilities of the different states
of a CpG can be accurately estimated (assuming that enough samples per CpG
are provided) [1,13].

Mechanistic models for the activity of the different Dnmts usually distin-
guish de novo activities, i.e., adding methyl groups at cytosines independent of
the methylation state of the opposite strand, and maintenance activities, which
refers to the copying of methylation from an existing DNA strand to its newly
synthesized partner (containing no methylation) after replication [10,17]. Hence,
maintenance methylation is responsible for re-establishment of the same DNA
methylation pattern before and after cell replication. A common hypothesis is
that the copying of DNA methylation patterns after replication is performed
by Dnmt1, an enzyme that shows a preference for hemimethylated CpG sites
(only one strand is methylated) as they appear after DNA replication. More-
over, studies have shown that Dnmt1 is highly processive and able to methylate
long sequences of hemimethylated CpGs without dissociation from the target
DNA strand [10]. However, an exact transmission of the methylation informa-
tion to the next cellular generation is not guaranteed. The enzymes Dnmt3a and
Dnmt3b show equal activities on hemi- and unmethylated DNA and are mainly
responsible for de novo methylation, i.e., methylation without any specific pref-
erence for the current state of the CpG (hemi- or unmethylated) [17]. However,
by now evidence exists that the activity of the different enzymes is not that
exclusive, i.e., Dnmt1 shows to a certain degree also de novo and Dnmt3a/b
maintenance methylation activity [2]. The way how methyltransferases interact
with the DNA and introduce CpG methylation was investigated in many in
vitro studies. Basically, one can distinguish between two mechanisms. A distrib-
utive one, where the enzyme periodically binds and dissociates from the DNA,
leaping more or less randomly from one CpG to another and a processive one
in which the enzyme migrates along the DNA without detachment from the
DNA [9,11,16], as illustrated in Fig. 1. Note that for Dnmt1, for instance, it is
reasonable to assume that it is processive in 5’ to 3’ direction since it is linked to
the DNA replication machinery. In particular for the Dnmt3’s different hypothe-
ses about the processivity and neighborhood dependence exist [3,5], but the
detailed mechanisms remain elusive.

Several models that describe the dynamics of the formation of methylation
patterns have been proposed. In the seminal paper of Otto and Walbot, a dynam-
ical model was proposed that assumed independent methylation events for a
single CpG. The main idea was to track the frequencies of fully, hemi- and
unmethylated CpGs during several cell generations [18]. Later, refined models
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allowed to distinguish between maintenance and de novo methylation on the
parent and daughter strands [7,19]. More sophisticated extensions of the origi-
nal model of Otto and Walbot models have been successfully used to predict in
vivo data still assuming a neighbor-independent methylation process for a single
CpG site [2,8]. However, measurements indicate that methylation events at a
single CpG may depend on the methylation state of neighboring CpGs, which is
not captured by these models.

Fig. 1. Dnmts can methylate DNA in a distributive manner, “jumping” randomly from
one CpG to another or in a processive way where the enzyme starts at one CpG and
slides in 5’ to 3’ direction over the DNA.

Here, we follow the dynamical HMM approach proposed in [2] where knockout
data was used to train a model that accurately predicts wild-type methylation
levels for BS-seq data of repetitive elements from mouse embryonic stem cells. We
extend this model by describing the methylation state of several CpGs instead
of a single CpG and use similar dependency parameters as introduced in [4].
More specifically, we design different models by combining the activities of the
two types of Dnmts and test for both, maintenance and de novo methylation the
hypotheses illustrated in Fig. 1. The models vary according to the order in which
the enzymes act, whether they perform methylation in a processive manner or
not, and how much their action depends on the left/right CpG neighbor. We use
the same BS-seq data as in [2], i.e. data where Dnmt1 or Dnmt3a/b was knocked
out (KO) and learn the parameters of the different models. Then, similar as in
[2], we predict the behavior of the measured wild-type (WT), in which both
types of enzymes are active, by designing a combined model that describes the
activity of both enzymes and compare the results to the WT data.

We found that all proposed models show a similar behavior in terms of pre-
diction quality such that no model can be declared as the best fit. However,
our results indicate that Dnmt1 works independently of the methylation state of
its neighborhood, which is in accordance to the current hypothesis that Dnmt1
is linked to the replication machinery and copies the methylation state on the
opposite strand. On the other hand, Dnmt3a/b shows a dependency to the left
but no dependency to the right, which supports hypotheses of processive or
cooperative behavior.
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2 Preliminaries

Consider a sequence of L neighboring CpG dyads1, which is represented as a
lattice of length L and width two (for the two strands). Each cytosine in the
lattice can either be methylated or not, leading to four possible states at each
position l:

– State 0 : Both sites are not methylated.
– State 1 : The cytosine on the upper strand is methylated, the lower one not.
– State 2 : The cytosine on the lower strand is methylated, the upper one not.
– State 3 : Both cytosines are methylated.

A sequence of four CpGs, each of which is in one of the four possible states, is
shown in Fig. 2.

Fig. 2. A lattice of length L = 4 containing all possible states 0, 1, 2 and 3, forming
the pattern 0123.

For a system of length L there are in total 4L possibilities to combine the
states of individual CpGs. These combinations are called patterns in the follow-
ing. A pattern is denoted by a concatenation of states, e.g. 321, 0123 or 33221.

In order to represent the pattern distribution as a vector it is necessary to
uniquely assign a reference number to each pattern. A pattern can be perceived
as a number in the tetral system, such that converting to the decimal system
leads to a unique reference number. After the conversion an additional 1 is added
in order to start the referencing at 1 instead of 0.

Examples for L = 3:

000 −→ 1 (= 0 + 1)
123 −→ 28 (= 27 + 1)
333 −→ 64 (= 63 + 1)

This reference number then corresponds to the position of the pattern in the
respective distribution vector.

1 The exact nucleotide distance between two neighboring dyads is not considered here,
but we assume that this distance is small. For the BS-seq data that we consider, the
average distance between two CpGs is 14 bp and the maximal distance is 46 bp.
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3 Model

We describe the state of a sequence of L CpGs by a discrete-time Markov chain
with pattern distribution π(t), i.e., the probability of each of the 4L patterns
after t cell divisions. For the initial distribution π(0), we use the distribution
measured in the wild-type when the cells are in equilibrium. Note that other
initial conditions gave very similar results, i.e., the choice of the initial distribu-
tion does not significantly affect the results. The reason is that also the KO data
is measured after a relatively high number of cell divisions where the cells are
almost in equilibrium. Transitions between patterns are triggered by different
processes: First due to cell division the methylation on one strand is kept as it
is (e.g. the upper strand), whereas the newly synthesized strand (the new lower
strand) does not contain any methyl group. Afterwards, methylation is added
due to different mechanisms. On the newly synthesized strand a site can be
methylated if the cytosine at the opposite strand is already methylated (mainte-
nance). It is widely accepted that maintenance in form of Dnmt1 is linked to the
replication machinery and thus occurs during/directly after the synthesis of the
new strand. Furthermore, CpGs on both strands can be methylated independent
of the methylation state of the opposite site (de novo). The transition matrix P
is defined by composition of matrices for cell division, maintenance and de novo
methylation of each site.

3.1 Cell Division

Depending on which daughter cell is considered after cell replication, the upper
(s = 1) or lower (s = 2) strand is the parental one after cell division. Then, the
new pattern can be obtained by applying the following state replacements:

s = 1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 −→ 0
1 −→ 1
2 −→ 0
3 −→ 1

s = 2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 −→ 0
1 −→ 0
2 −→ 2
3 −→ 2

(1)

Given some initial pattern with reference number i, applying the transforma-
tion (1) to each of the L positions leads to a new pattern with reference number

j (notation: i
(1)� j). The corresponding transition matrix Ds ∈ {0, 1}4L×4L has

the form

Ds(i, j) =

{

1, if i
(1)� j,

0, else.
(2)

3.2 Maintenance and De Novo Methylation

For maintenance and de novo methylation, the single site transition matrices are
built according to the following rules:
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Fig. 3. Possible maintenance and de novo transitions depicted for the lower strand,
where ◦ denotes an unmethylated, • a methylated site and ? a site where the methy-
lation state does not matter. Note that the same transitions can occur on the upper
strand.

Consider at first the (non-boundary) site l = 2, . . . , L − 1 and its left and
right neighbor l−1 and l+1 respectively. The remaining sites do not change and
do not affect the transition. The probabilities of the different types of transitions
in Fig. 3 have the form

p1 =0.5·(ψL + ψR)x, (3)
p2 =0.5·(ψL + ψR)x + 0.5·(1 − ψL), (4)
p3 =0.5·(ψL + ψR)x + 0.5·(1 − ψR), (5)
p4 =1 − 0.5·(ψL + ψR)(1 − x), (6)

where x = μ is the maintenance probability, x = τ is the de novo probability
and ψL, ψR ∈ [0, 1] the dependency parameters for the left and right neighbor.

A dependency value of ψi = 1 corresponds to a total independence on the
neighbor whereas ψi = 0 leads to a total dependence. Hence, μ and τ can be
interpreted as the probability of maintenance and de novo methylation of a sin-
gle cytosine between two cell divisions assuming independence from neighboring
CpGs. Moreover, all CpGs that are part of the considered window of the DNA
have the same value for the parameters μ, τ , ψL, and ψR, since in earlier exper-
iments only very small differences have been found between the methylation
efficiencies of nearby CpGs [2].

In order to understand the form of the transition probabilities consider at
first a case with only one neighbor. The probabilities then have the form ψx if
the neighbor is unmethylated and 1 − ψ(1 − x) if the neighbor is methylated.
Note that both forms evaluate to x for ψ = 1, meaning that a site is methylated
with probability x, independent of its neighbor. For ψ = 0 the probabilities
become 0 and 1, meaning that if there is no methylated neighbor the site cannot
be methylated or will be methylated for sure if there is a methylated neighbor
respectively.
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The probabilities for two neighbors are obtained by a linear combination of
the one neighbor cases, with ψL for the left and ψR for the right neighbor, and
an additional weight of 0.5 to normalize the probability.

The same considerations also apply to the boundary sites however there is
no way of knowing the methylation states outside the boundaries (denoted by
?). Therefore instead of a concrete methylation state (◦ for unmethylated, •
for methylated site) the average methylation density ρ is used to compute the
transition probabilities at the boundaries (depicted here for de novo):

? ◦ ◦ → ? • ◦ p̃1 = (1 − ρ)·p1 + ρ·p2, (7)
? ◦ • → ? • • p̃2 = (1 − ρ)·p3 + ρ·p4, (8)
◦ ◦ ? → ◦ • ? p̃3 = (1 − ρ)·p1 + ρ·p3, (9)
• ◦ ? → • • ? p̃4 = (1 − ρ)·p2 + ρ·p4. (10)

Note that the same considerations hold for maintenance at the boundaries if the
opposite site of the boundary site is already methylated.

For each position l, there are four transition matrices: two for maintenance
and two for de novo, namely one for the upper and one for the lower strand in
each process. In order to construct these matrices consider the three positions
l−1, l and l+1, where the transition happens at position l. Only the transitions
depicted in Fig. 3 can occur. Furthermore the transitions are unique, i.e. for a
given reference number i the new reference number j is uniquely determined. For
patterns not depicted in Fig. 3 no transition can occur, i.e. the reference number
does not change.

The matrix describing a maintenance event at position l and strand s has
the form

M (l)
s (i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i = j and � ∃j′ : i � j′,
1 − p, if i = j and ∃j′ : i � j′,
p, if i �= j and i � j,

0, else,

(11)

where the probability p is given by one of the Eqs. (3)–(10) that describes the
corresponding case and x = μ. Note that M

(l)
s depends on s and l since it

describes a single transition from pattern i to pattern j, which occurs on a
particular strand and at a particular location with probability p. We define
matrices T

(l)
s for de novo methylation according to the same rules except that

x = τ and the possible transitions are as in Fig. 3, right.
The advantage of defining the matrices position- and process-wise is that

different models can be realized by changing the order of multiplication of these
matrices.

It is important to note that 5mC can be further modified by oxidation to 5-
hydroxymethyl- (5hmC), 5-formyl- (5fC) and 5-carboxyl cytosine(5caC) by Tet
enzymes. These modifications are involved in the removal of 5mC from the DNA
and can potentially interfere with methylation events. However, our data does
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not capture these modifications and therefore we are not able to consider these
modifications in our model.

3.3 Combination of Transition Matrices

For all subsequent models it is assumed that first of all cell division happens and
maintenance methylation only occurs on the newly synthesized strand given by s,
whereas de novo methylation happens on both strands. Given the mechanisms
in Fig. 1, the two different kinds of methylation events, and the two types of
enzymes, there are several possibilities to combine the transition matrices. We
consider the following four models, which we found most reasonable based on
the current state of research in DNA methylation:

1. first processive maintenance and then processive de novo methylation

Ps =
L∏

l1=1

M (l1)
s

L∏

l2=1

T
(l2)
1

L∏

l3=1

T
(l3)
2 , (12)

2. first processive maintenance and then de novo in arbitrary order

Ps =
1

(L!)2

L∏

l1=1

M (l1)
s

(
∑

σ1∈SL

L∏

l2=1

T
(σ1(l2))
1

) (
∑

σ2∈SL

L∏

l3=1

T
(σ2(l3))
2

)

, (13)

3. maintenance and de novo at one position, processive

Ps =
L∏

l=1

M (l)
s T

(l)
1 T

(l)
2 , (14)

4. maintenance and de novo at one position, arbitrary order

Ps =
1
L!

∑

σ∈SL

L∏

l=1

M (σ(l))
s T

(σ(l))
1 T

(σ(l))
2 , (15)

where SL is the set of all possible permutations for the numbers 1, . . . , L.
Note that the de novo events on both strands are independent, i.e. the de

novo events on the upper strand do not influence the de novo events on the lower
strand and vice versa, such that [T (l)

1 , T
(l′)
2 ] = 0 independent of ψi

2. Obviously it
is important whether maintenance or de novo happens first, since the transition
probabilities and the transitions themselves depend on the actual pattern. Fur-
thermore in the case ψi < 1 (dependency on right and/or left neighbor) the order
of the transitions on a strand matters, i.e. [M (l)

s ,M
(l′)
s ] �= 0 and [T (l)

s , T
(l′)
s ] �= 0

for l �= l′. The total transition matrix is then given by a combination of the cell
division and maintenance/de novo matrices.

2 [A, B] = AB − BA is the commutator of the matrices A and B.
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u m

T C

c 1 − c d1 − d

Fig. 4. Conversions of the unobservable states u, m to observable states T, C with
respective rates.

Recall that we consider two different types of Dnmts, i.e., Dnmt1 and
Dnmt3a/b. If only one type of Dnmt is active (KO data) the matrix has the
form

P = 0.5·(D1 ·P1 + D2 ·P2) (16)

and if all Dnmts are active (WT data)

P = 0.5·(D1 ·P1 ·P̃1 + D2 ·P2 ·P̃2), (17)

where Ps and P̃s have one of the forms (12)–(15). This leads to four different
models for one active enzyme or 16 models for all active enzymes respectively.
In the second case Ps represents the transitions caused by Dnmt1 and P̃s the
transitions caused by Dnmt3a/b. Note that if ψL = ψR = 1 all models are the
same within each case.

3.4 Conversion Errors

The actual methylation state of a C cannot be directly observed. During BS-
seq, with high probability every unmethylated C (denoted by u) is converted
into Thymine (T) and every 5mC (denoted by m) into C. However, conversion
errors may occur and we define their probability as 1− c and 1− d, respectively,
as shown by the dashed arrows in Fig. 4. It is reasonable that these conversion
errors occur independently and with approximately identical probability at each
site and thus the error matrix for a single CpG takes the form

Δ1 =

⎛

⎜
⎜
⎝

c2 c(1 − c) c(1 − c) (1 − c)2

c(1 − d) cd (1 − c)(1 − d) d(1 − c)
c(1 − d) (1 − c)(1 − d) cd d(1 − c)
(1 − d)2 d(1 − d) d(1 − d) d2

⎞

⎟
⎟
⎠ . (18)

Due to the independency of the events this matrix can easily be generalized for
systems with L > 1 by recursively using the Kronecker-product

ΔL = Δ1 ⊗ ΔL−1 for L ≥ 2. (19)

Hence, ΔL gives the probability of observing a certain sequence of C and T
nucleotides for each given unobservable methylation pattern. In order to compute
the likelihood π̂ of the observed BS-seq data, we therefore first compute the
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transient distribution π(t) of the underlying Markov chain at the corresponding
time instant3 t by solving

π(t) = π(0) · P t (20)

and then multiply the distribution of the unobservable patterns with the error
matrix.

π̂ = π(t) · ΔL. (21)

Note that this yields a hidden Markov model with emission probabilities ΔL. In
the following the values for c were chosen according to [2]. Since the value for
d was not determined in [2], we measured the conversion rate d = 0.94 in an
independent experiment under comparable conditions (data not shown).

3.5 Maximum Likelihood Estimator

In order to estimate the parameters θ = (μ, ψL, ψR, τ), we employ a Maximum
(Log)Likelihood Estimator (MLE)

θ̂ = arg max
θ

�(θ), �(θ) =
4L∑

j=1

log(π̂j(θ))·Nj , (22)

where π̂ is the pattern distribution obtained from the numerical solution of (20)
and (21) for a given time t and Nj is the number of occurrences of pattern j

in the measured data. The parameters θ = θ̂ are chosen in such a way that
� is maximized. Visual inspection of all two dimensional cuts of the likelihood
landscapes showed only a single local maximum.

We employ the MLE twice in order to estimate the parameter vector θ̂1 for
Dnmt1 from the 3a/b DKO (double knockout) data and the vector θ̂3a/b for
Dnmt3a/b from the Dnmt1 KO data, where transition matrix (16) is used. The
corresponding time instants are t = 26 for the 3a/b DKO data and t = 41 for
the 1KO data.

We approximate the standard deviations of the estimated parameters θ̂ as
follows: Let I(θ̂) = E[−H(θ̂)] be the expected Fisher information, with the
Hessian H(θ̂) = ∇∇ᵀ�(θ̂). The inverse of the expected Fisher information is a
lower bound for the covariance matrix of the MLE such that we can use the
approximation σ(θ̂) ≈

√

diag(−H(θ̂)).
A prediction for the wild-type can be computed by combining the estimated

vectors such that in the model both types of enzymes are active. For this, we
insert θ̂1 in Ps and θ̂3a/b in P̃s in (17) to obtain the transition matrix for the
wild-type.

3 The number of cell divisions is estimated from the time of the measurement since
these cells divide once every 24 hours.
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4 Results

For our analysis we focused at the single copy genes Afp (5 CpGs) and Tex13 (10
CpGs) as well as the repetitive elements IAP (intracisternal A particle) (6 CpGs),
L1 (Long interspersed nuclear elements) (7 CpGs) and mSat (major satellite)
(3 CpGs). Repetitive elements occur in multiple copies and are dispersed over
the entire genome. Therefore they allow capturing an averaged, more general
behavior of methylation dynamics. If a locus contains more than three CpGs,
the analysis is done for all sets of three adjacent sites independently, in order to
keep computation times short and memory requirements low. In the sequel, we
mainly focus on the estimated dependency parameters ψL and ψR and on the
prediction quality of the different models.

The estimates for all the available KO data and all suggested models obtained
using the transition matrix in Eq. (16) are summarized as histograms in Fig. 5.
Because of the different possibilities to combine the four different models in
Eqs. (12)–(15) and because of the different loci considered, in total there are 84
estimates for each KO data set. We plot the number of occurrences N of ψL

(left) and ψR (right) in different ranges for both sorts of KO data (Dnmt1KO
and Dnmt3a/b DKO).

The estimates of ψL spread over the whole interval [0, 1] while in the case of
ψR, nearly all estimates are larger than 0.99 and only in a few cases the depen-
dency parameter is significantly smaller than 1. Hence, in most cases the methy-
lation probabilities are independent of the right neighbor for both Dnmt1KO and
Dnmt3a/b DKO. For ψL the dependency parameter in the Dnmt3a/b DKO case
occurs more often close to 1, meaning that the transitions induced by Dnmt1 have
little to no dependency on the left neighbor. On the other hand for Dnmt1KO
the dependency parameter occurs more often at smaller values giving evidence
that there is a dependency on the left neighbor for the activity of Dnmt3a/b.
Note that all models show a similar behavior in terms of the dependency para-
meters for a given locus or position within a locus respectively, i.e. either ψi ≈ 1
or ψi < 1 for all models. The difference between the behaviors at different loci
and positions may be explained by explicitly including the distances between
the CpGs and is planned as future work.

Since ψR is usually close to 1 a smaller model with only three parameters
θ = (μ, ψ, τ) can be proposed, where ψ is a dependency parameter for the left
neighbor. This model can either be obtained by fixing ψR = 1 in the original
model and setting ψ = ψL or by redefining the transition probabilities to ψx
if the left neighbor is unmethylated and 1 − ψ(1 − x) if the left neighbor is
methylated. In that case ψ and ψL are related via ψ = 0.5(ψL + 1). Note that
both versions yield the same results.

In order to check whether there is a significant difference in the original and
the smaller model, we performed a Likelihood-ratio test with the null hypothesis
that the smaller model is a special case of the original model. Since the original
model with more parameters is always as least as good as the smaller model,
our goal is to check in which cases the smaller model is sufficient. Indeed if ψR

was estimated to be approximately 1 the Likelihood-ratio test indicates that the
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Fig. 5. Histograms for the estimated dependency parameters ψL and ψR for all sets of
three adjacent CpGs in all loci and for all suggested models.

smaller model is sufficient (p-value ≈ 1). On the other hand, for the few cases
where ψR differs significantly from 1 the original model has to be used (p-value
< 0.01).

As a next step we used the estimated parameters from the KO data to predict
the WT data. The models from Eqs. (12)–(15) are referred to as Models 1–4. For
the prediction, the notation (x, y) is used to refer to Model x for the Dnmt3a/b
DKO (only Dnmt1 active) and Model y for the Dnmt1KO case (only Dnmt3a/b
active). One instance of the prediction, for which Model 1 was used for both
Dnmt1KO and Dnmt3a/b DKO, i.e. (1, 1), are shown in Fig. 6. Note that all
wild-type predictions yielded a very similar accuracy. We list the corresponding
estimations for the parameters for an example of a single copy gene (Afp) and a
repetitive element (L1) in Table 1. While the standard deviation of the estimated
parameters for μ is always of the order 10−2 and for τ of order 10−3, it is usually
of order 10−2 for ψi. Depending on the model, locus and position, standard
deviations up to order 10−1 may occur for the dependency parameters in a few
cases.

In Fig. 6 the predictions for the pattern distribution together with the WT
pattern distribution and a prediction from the neighborhood independent model
(ψL = ψR = 1) for all loci are shown in the main plot. As an inset the distribu-
tions are shown on a smaller scale to display small deviations. With the exception

Table 1. Estimated parameters for the KO data and model based on Eq. (12) for the
loci Afp and L1 with sample size n.

KO μ ψL ψR τ n Locus

Dnmt1 0.452± 0.062 0.383± 0.076 1.000± 0.094 0.091± 0.016 134 Afp

Dnmt3a/b 0.990± 0.003 0.984± 0.011 1.000± 0.006 10−10 ± 0.011 186 Afp

Dnmt1 0.334± 0.051 0.576± 0.067 1.000± 0.122 0.038± 0.004 1047 L1

Dnmt3a/b 0.789± 0.037 1.000± 0.038 0.984± 0.045 10−10 ± 0.002 805 L1
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of patterns 0 and 64 (which corresponds to no methylation/full methylation of
all sites) in L1 and pattern 64 in all loci, where the difference between WT and
the numerical solution is about 10%, the difference is always small (< 5%) as
seen in the insets.

In general all 16 models show a similar performance for all loci and positions
in terms of accuracy of the prediction. On the large scale the differences are
not visible and even for the smaller scale the differences are small, as shown
for mSat in Fig. 7. This is in accordance to the corresponding Kullback-Leibler
divergences

KL =
4L∑

j=1

πj(WT) log
(

πj(WT)
πj(pred)

)

(23)

that we list in Table 2. The difference in KL between the “best” and the “worst”
case is about 0.01. The mean and standard deviation for KL was obtained via
bootstrapping of the wild-type data (10.000 bootstrap samples for each model).
Since no confidence intervals of the parameters are included, this standard devi-
ation can be regarded as a lower bound. However, even with these lower bounds
the intervals of KL overlap for all models, such that no model can be favorized.

Table 2. Kullback-Leibler divergence KL for the 16 models.

Model (1, 1) (1, 2) (1, 3) (1, 4)

KL 0.1398 ± 0.0134 0.1398 ± 0.0134 0.1398 ± 0.0134 0.1337 ± 0.0127

Model (2, 1) (2, 2) (2, 3) (2, 4)

KL 0.1438 ± 0.0137 0.1439 ± 0.0136 0.1439 ± 0.0137 0.1374 ± 0.0133

Model (3, 1) (3, 2) (3, 3) (3, 4)

KL 0.1399 ± 0.0134 0.1399 ± 0.0134 0.1398 ± 0.0133 0.1337 ± 0.0127

Model (4, 1) (4, 2) (4, 3) (4, 4)

KL 0.1410 ± 0.0137 0.1411 ± 0.0136 0.1409 ± 0.0135 0.1349 ± 0.0130

5 Related Work

In [4] location- and neighbor-dependent models are proposed for single-stranded
DNA methylation data in blood and tumor cells. The (de-)methylation rates
depend on the position of the CpG relative to the 3’ or 5’ end and/or on the
methylation state of the left neighbor only. The dependency is realized by the
introduction of an additional parameter. In our proposed models we use double-
stranded DNA and can therefore include hemi-methylated sites and even distin-
guish on which strand the site is methylated. Furthermore we allow dependen-
cies on both neighbors by introducing two different dependency parameters. In
contrast [6] copes with the neighborhood dependency indirectly by allowing dif-
ferent parameter values for different sites. In order to reduce the dimensionality
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Fig. 6. The figures show an example for the predicted (neighborhood dependent and
neighborhood independent) and the measured pattern distribution for each locus. The
inset shows a zoomed in version of the distribution.

of the parameter vector, a hierarchical model based on beta distributions is pro-
posed. Another difference to our model is the distinction between de novo rates
for parent and daughter strand. However, this can easily be included in future
work. A density-dependent Markov model was proposed [14]. In this model, the
probabilities of (de-)methylation events may depend on the methylation den-
sity in the CpG neighborhood. In addition, a neighboring sites model has been
developed, in which the probabilities for a given site are directly influenced by
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Fig. 7. The figures show the predicted and the measured pattern distribution for all
16 models for mSat. The inset shows a zoomed in version of the distribution.
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Fig. 7. (continued)
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the states of neighboring sites to the left and right [14]. When these models
were tested on double-stranded methylation patterns from two distinct tandem
repeat regions in a collection of ovarian carcinomas, the density-dependent and
neighboring sites models were superior to independent models in generating sta-
tistically similar samples. Although this model also includes the dependence on
the methylation state on the left and right neighbor for double-stranded DNA the
approach is different. The transition probabilities of the neighbor-independent
model are transformed into a transition probability of a neighbor-dependent
model by introducing only one additional parameter. The state of the left and
right neighbor are taken into account by exponentiating this parameter by some
norm. In addition, this approach does not allow the intuitive interpretation of
the dependency parameter.

6 Conclusion

We proposed a set of stochastic models for the formation and modification of
methylation patterns over time. These models take into account the state of the
CpG sites in the spatial neighborhood and allow to describe different hypotheses
about the underlying mechanisms of methyltransferases adding methyl groups
at CpG sites. We used knockout data from bisulfite sequencing at several loci
to learn the efficiencies at which these enzymes perform methylation. By com-
bining these efficiencies, we accurately predicted the probability distribution of
the patterns in the wild-type. Moreover, we found that in all cases the mod-
els predict values for the dependency parameters ψL and ψR close to 1 and
therefore independence of methylation for the Dnmt3a/b DKO meaning that
Dnmt1 methylates CpGs independent of the methylation of neighboring CpGs.
For Dnmt3a/b on the other hand we could identify dependencies on the neigh-
boring CpGs. Both findings are in accordance with current existing mechanistic
models: Dnmt1 reliably copies the methylation from the template strand to
maintain the distinct methylation patterns, whereas Dnmt3a/b try to establish
and keep a certain amount of CpG methylation at a given loci. Interestingly,
our models only suggest dependencies of de novo methylation activity on the
CpGs in the 5’ neighborhood. This indicates that Dnmt3a and Dnmt3b show a
preference to methylate CpGs in a 5’ to 3’ direction and could point towards a
processive or cooperative behavior of these enzymes like recently described in in
vitro experiments [5,11]. Compared to a neighborhood independent model with
ψL = ψR = 1, a neighborhood dependent model shows better predictions and
furthermore allows to investigate (possible) connections of adjacent CpGs and
their methylation states.

As future work, we plan to investigate models in which we distinguish between
the actions of Dnmt3a and Dnmt3b and in which we allow a diagonal dependency
for de novo methylation, i.e., a dependency on the state of neighboring CpGs
on the opposite strand. Moreover, we will design models that take into account
the number of base pairs between adjacent CpG sites. To investigate a potential
impact of oxidized cytosine forms on the methylation at neighboring CpG sites
we further plan to include the CpG states 5hmC, 5fC and 5caC in our model.
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Abstract. Cellular reprogramming, a technique that opens huge oppor-
tunities in modern and regenerative medicine, heavily relies on identify-
ing key genes to perturb. Most of computational methods focus on finding
mutations to apply to the initial state in order to control which attrac-
tor the cell will reach. However, it has been shown, and is proved in this
article, that waiting between the perturbations and using the transient
dynamics of the system allow new reprogramming strategies. To identify
these temporal perturbations, we consider a qualitative model of regu-
latory networks, and rely on Petri nets to model their dynamics and
the putative perturbations. Our method establishes a complete charac-
terization of temporal perturbations, whether permanent (mutations) or
only temporary, to achieve the existential or inevitable reachability of
an arbitrary state of the system. We apply a prototype implementation
on small models from the literature and show that we are able to derive
temporal perturbations to achieve trans-differentiation.

1 Introduction

Regenerative medicine is gaining traction with the discovery of cell reprogram-
ming, a way to change a cell phenotype to another, allowing tissue or neuron
regeneration techniques. After proof that cell fate decisions could be reversed
[17], scientists need efficient and trustworthy methods to achieve it. Instead of
producing induced pluripotent stem cells and force the cell to follow a distinct
differentiation path, new methods focus on trans-differentiating the cell, without
necessarily going (back) through a multipotent state [8,9].

This paper addresses the formal prediction of perturbations for cell repro-
gramming from computational models of gene regulation. We consider qualita-
tive models where the genes and/or the proteins, notably transcription factors,
are nodes with an assigned value giving the level of activity, e.g., 0 for inactive
and 1 for active, in a Boolean abstraction. The value of each node can then
evolve in time, depending on the value of its regulators.
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The attractors, or long term dynamics, of qualitative models typically corre-
spond to differentiated and stable states of the cell [13,18]. In such a setting, cell
reprogramming can be interpreted as triggering a change of attractor: starting
within an initial attractor, perform perturbations which would de-stabilize the
network and lead the cell to a different attractor.

Current experimental settings and computational models mainly consider
cell reprogramming by applying the set of perturbations simultaneously in the
initial state. However, as suggested in [14] and as we will demonstrate formally
in this paper, considering temporal reprogramming, i.e., the application of per-
turbations in particular moments in time, and in a particular ordering, brings
new reprogramming strategies, potentially requiring fewer interventions.

Contribution. This paper establishes the formal characterization of all possible
reprogramming paths between two states of asynchronous Boolean networks by
the means of a bounded number of either permanent (mutations) or temporary
perturbations. Solutions account both for perturbations applied only in the ini-
tial state, and perturbations applied in a specific ordering and in specific states.
Moreover, the solutions can guarantee that the target state may be reached, or
will be reached inevitably.

Our method relies on a Petri net modelling jointly the asynchronous dynamics
of the Boolean network and the candidate perturbations. The reprogramming
solutions are identified from the state transition graph of the resulting model.
We apply our approach on biological networks from the literature, and show that
the temporal application of perturbations brings new reprogramming solutions.

Related work. The computational prediction for reprogramming of Boolean net-
works has been addressed mainly by considering mutations to be applied in the
initial state only, letting then the system stabilize itself in the targeted attractor
[1,6,7,15,16,19]. Our method includes temporal perturbations, which none of
these methods do: perturbations which takes into account the latent dynamics
of the system for the reprogramming, allowing more solutions to be found, and
possibly some needing fewer nodes to be perturbed.

Other approaches consider stochastic frameworks for exploring by simulation
potential reprogramming event in Boolean networks, such as [10] for stochastic
transitions between cell cycles. Statistical methods are also used to extract com-
binations of transcription factors that are key for cellular differentiation from
gene expression data [3,14]. In [14], starting from expression data, they derive
a continuous dynamical model from which control strategies for reprogramming
can be computed. They show that time-dependent perturbations can provide
potential reprogramming strategies.

Most of mentioned methods provide incomplete or non-guaranteed results.
Our aim is to provide a formal framework for the complete and exact character-
isation of the initial state and temporal reprogramming of Boolean networks.

Outline. Section 2 details an example of Boolean network which motivates tem-
poral reprogramming. Section 3 introduces our model of temporal reprogram-
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ming, Sect. 4 establishes the identification of temporal reprogramming strate-
gies, and Sect. 5 applies it to biological networks from the literature. Section 6
concludes the paper.

Notations: The set {1, ..., n} is noted [n]; Given x ∈ {0, 1}n and i ∈ [n], x̄{i} ∈
{0, 1}n is such that for all j ∈ [n], x̄{i}

j
Δ= ¬xj if j = i and x̄

{i}
j

Δ= xj if j �= i.

2 Background and Motivating Example

This section illustrates the benefit of temporal reprogramming on a small Boolean
network in order to trigger a change of attractor. We consider both perturba-
tions to be applied solely in the initial state, and perturbations to be applied
in a specific sequence in specific states. We show that, in the first setting, 3
perturbations are always required for the reprogramming, whereas the temporal
approach necessitates only 2.

2.1 Boolean Networks

A Boolean Network is a tuple of Boolean functions giving the future value of
each node with respect to the global state of the network.

Definition 1 (Boolean Network (BN)). A Boolean Network of dimension
n is a function f such that:

f : {0, 1}n → {0, 1}n

x = (x1, ..., xn) �→ f(x) = (f1(x), ..., fn(x))

The dynamics of a Boolean network f are modelled by transitions between its
states x ∈ {0, 1}n. In the scope of this paper, we consider the asynchronous
semantics of Boolean networks: a transition updates the value of only one node
i ∈ [n]. Thus, from a state x ∈ {0, 1}n, there is one transitions for each vertex
i such that fi(x) �= xi. The transition graph (Definition 2) is a digraph where
vertices are all the possible states {0, 1}n, and edges correspond to asynchro-
nous transitions. The transition graph of a Boolean network f can be noted as
STG(f).

Definition 2 (Transition Graph). The transition graph (also known as state
graph) is the graph having {0, 1}n as vertex set and the edges set {x → x̄{i} |
x ∈ {0, 1}n, i ∈ [n], fi(x) = ¬xi}. A path from x to y is noted x →∗ y.

The terminal strongly connected components of the transition graph can be
seen as the long-term dynamics or “fates” of the system, that we refer to as
attractors. An attractor may model sustained oscillations (cyclic attractor) or a
unique state, referred to as a fixpoint, f(x) = x.
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2.2 Cell Reprogramming: The Advantage of Temporal
Perturbations

Let us consider the following Boolean Network:

f1(x) = x1 f2(x) = x2 f3(x) = x1 ∧ ¬x2 f4(x) = x3 ∨ x4

Figure 1 gives the transition graph of this Boolean Network, and the different
perturbation techniques. To understand the benefit of temporal perturbations,
let us consider the perturbations to apply in the fixpoint 0000 in order to reach
the fixpoint 1101.

Because 0000 is a fixpoint, there exists no sequence of transitions from 0000
to 1101. It can also be seen that if one or two vertices are perturbed at the same
time, by affecting them new values, 1101 is not reachable, as shown in Fig. 1(top).
However, if two vertices are perturbed, but the system is allowed to follow its own
dynamics between the changes, 1101 can be reached, as shown in Fig. 1(bottom),
by using the path 0000 x1=1−−−→ 1000 → 1010 → 1011 x2=1−−−→ 1111 → 1101, i.e. we
first force the activation of the first node, then wait until the system reaches (by
itself) the state 1011 before activating node 2. From the perturbed state, the
system is guaranteed to end up in the wanted fixpoint, 1101.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0100

0000 0001

0010 0011

0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

x1 = 1

x2 = 1x2 = 1

Fig. 1. Transition graph of f and candidate perturbations (magenta) for the repro-
gramming from 0000 to 1101: (top) none of candidate perturbations of one or two
nodes in the initial state allow to reach 1101; (bottom) sequences of two temporal
perturbations allow to reach 1101.
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Inevitable and existential reprogramming. Thus, this example shows that some
attractors may be reached by changing the values of vertices in a particuliar
order and using the transient dynamics. We remark that there exists another
reprogramming path, where node 2 is perturbed when the system reach 1010.
Note that, in this case, after the second perturbation, the system can reach
1101, but it is not guaranteed. We say that, in the first reprogramming path,
the reprogramming is inevitable, whereas it is only existential in the second case.

Permanent and temporary solutions. The previous example shows the difference
between what we will call temporal and initial reprogramming. How perturba-
tions are made has also to be considered. The model can either only be slightly
perturbed, by changing the value of a vertex i for a time (setting i to 0 or 1), or
the change can be permanent, by changing the function of the vertex (setting fi

to 0 or 1). On the example above, making permanent changes would not change
the solutions found. However, if the initial state is 1011 and the target state is
1100, then it has different solutions (Fig. 2).

Indeed, if the objective is to go from 1011 to 1100 in the same transition
graph using only permanent perturbations, then their order does not matter.
Perturbating x2 and x4 from the initial state is enough to make 1100 the only
reachable state. On the other hand, if the perturbations are temporary, x2 has
to be perturbed first, then when 1101 is reached, x4 can be perturbed. If this
order is not followed, 1101 is reachable as well as 1100.

In most case, the perturbations done in permanent reprogramming and the
ones done in temporary reprogramming can be on different nodes.

1000 1001

1010 1011

1100 1101

1110 1111

1000 1001

1010 1011

1100 1101

1110 1111\

x2 = 1, x4 = 0 x2 = 1

x4 = 0

Fig. 2. Right part of the transition graph of f from initial state 1011 to 1100, with
permanent perturbations (left) and temporary ones (right)

3 Modelling Temporal Reprogramming with Petri Nets

In this section, we introduce a new model for the temporal reprogramming of
Boolean Networks (BNs) using Safe (1-bounded) Petri nets [2]. We take advan-
tage of the transition-centred specification of Petri nets and their ability to
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define specific coupled transitions (the simultaneous change of value of several
components) to model the candidate perturbations.

Definition 3 (Safe Petri Net). A Petri net is a tuple (P, T,A,M0) where
P and T are sets of nodes, called places and transitions respectively, and A ⊆
(P × T ) ∪ (T × P ) is a flow relation whose elements are called arcs. A subset
M ⊆ P of the places is called a marking, and M0 is a distinguished initial
marking.

For any node u ∈ P ∪ T , we call pre-set of u the set •u = {v ∈ P ∪ T |
(v, u) ∈ A} and post-set of u the set u• = {v ∈ P ∪ T | (u, v) ∈ A}.

A transition t ∈ T is enabled at a marking M if and only if •t ⊆ M . The
application of such a transition leads to the new marking M ′ = (M \•t) ∪ t•, and
is denoted by M

t−→ M ′. A marking M ′ is reachable if there exists a sequence of
transitions t1, . . . , tk such that M0

t1−→ . . .
tk−→ M ′.

A Petri net is safe if and only if any reachable marking M is such that for
any t ∈ T that can fire from M leading to M ′, the following property holds:
∀p ∈ M ∩ M ′, p ∈ •t ∩ t• ∨ p /∈ •t ∪ t•.

Less formally, a safe Petri Net is a Petri Net where in all reachable markings
from the initial marking, all places have at most one token. A subset of places
{p1, . . . , pk} ⊆ P is mutually exclusive if every reachable marking M contains at
most one these place.

3.1 Encoding Asynchronous Boolean Networks

The equivalent representation of the asynchronous semantics of a Boolean net-
work of dimension n f = (f1, · · · , fn) in Petri net has been addressed in [4,5].
Essentially, to each node i ∈ [n] of the Boolean network f is associated two
places, i0 and i1, acting respectively for the node i being inactive and active.
Then, transitions are derived from clauses of the Disjunctive Normal Form (DNF;
disjunction of conjunctive clauses) representation of [¬xi ∧fi(x)] for i activation,
and from [xi ∧ ¬fi(x)] for i inactivation.

Given a logical formula [e], we write DNF[e] for its DNF representation.
DNF[e] is thus a set of clauses, where clauses are sets of literals. A literal corre-
spond to the state of a node, and is either of the form xi (node i is active), or ¬xi

(node i is inactive). Given such a literal l, place(l) associates the corresponding
Petri net place: place([xi])

Δ= i1 and place([¬xi])
Δ= i0.

The safe Petri net encoding the asynchronous semantics of a Boolean network
f is defined as follows.

Definition 4 (PN(f)). Given a Boolean network f of dimension n and an ini-
tial state x ∈ {0, 1}n, PN(f) = (Pf , Tf , Af ,M0) is the corresponding Safe Petri
Net such that:

– Pf =
⋃

i∈[n]{i0, i1} is the set of places,
– Tf and Af are the smallest sets which satisfy, for each i ∈ [n],
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• for each clause c ∈ DNF[¬xi ∧ fi(x)], there is a transition ti,c ∈ Tf with
Af such that •ti,c = {place(l) | l ∈ c} and ti,c

• = {i1} ∪ •ti,c \ {i0};
• for each clause c ∈ DNF[xi ∧ ¬fi(x)], there is a transition t¬i,c ∈ Tf with
Af such that •t¬i,c = {place(l) | l ∈ c} and t¬i,c

• = {i0} ∪ •t¬i,c \ {i1},
– M0 = {ixi

| i ∈ [n]} is the initial marking.

Note that [5] also extends the encoding to multi-valued networks into 1-
bounded Petri nets (contrary to the encoding of multi-valued networks of [4]
which does not result in a safe Petri net). For the sake of simplicity, we restrict
the presentation to Boolean networks. However, our encoding of temporal per-
turbations can be easily extended to multi-valued networks.

Example 1. Figure 3 gives the resulting Petri net encoding of the Boolean func-
tion f3(x) = x1 ∧ ¬x2. In this case, DNF[¬x3 ∧ (x1 ∧ ¬x2)] = {{¬x3, x1,¬x2}}
and DNF[x3 ∧ (¬x1 ∨ x2)] = {{x3,¬x1}, {x3, x2}}.

31

11

10

30

20

21

t¬3,{¬x1} t¬3,{x2}

t3,{x1,¬x2}

Fig. 3. Safe Petri net encoding of f3(x) = x1 ∧ ¬x2. Places are drawn as circles and
transitions as rectangles. Marked places have a dot.

3.2 Encoding Temporal Perturbations

Perturbations are modelled as additional transitions which modify the state of
nodes of the BN f . These perturbations can be performed at any time during
the transient dynamics, and independently of the current state of the network.

In the scope of this paper, we consider two kinds of perturbations: tempo-
rary perturbations induce a state change of nodes, but these nodes can later
be updated according to their Boolean function. Such perturbations can model,
for instance, the transient activation of transcription factor through a signalling
pathway. Permanent perturbations induce a permanent state change of nodes.
These perturbations model mutations (loss or gain of functions).

In both cases, we consider a limited amount of allowed perturbations: only
up to k successive perturbations can be performed.
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Temporary Perturbations. In addition to the places for the BN node values,
we add k mutually exclusive places c1, . . . , ck and two mutually exclusive places
p0 and p1. Essentially, cj is marked if the next perturbation is the j-th; and p0

is marked if the j-th perturbation is yet to be performed, and p1 is marked if
the j-th perturbation has been performed.

The transitions are the same as in PN(f), with additional transitions ti,0 and
ti,1 for each node i ∈ [n] which set their value to 0 and 1 respectively. To be
enabled, these transitions need p0 to be marked, and after the transition, p1 is
marked. Finally, a transition tcj re-enabling p0 is defined for each cj , j ∈ [k−1],
which moves the marking of cj to cj+1.

Definition 5. Given a Boolean network f of dimension n, the Petri net
(P, T,A,M0) modelling its k temporary perturbations is given by

– P = Pf ∪ {p0,p1, c1, . . . , ck},
– T and A are the smallest sets which satisfy

(a) BN transitions Tf ⊆ T , Af ⊆ A;
(b) Perturbation transitions for i ∈ [n],

ti,0 ∈ T with •ti,0 = {i1,p0} and ti,0
• = {i0,p1}

ti,1 ∈ T with •ti,1 = {i0,p0} and ti,1
• = {i1,p1};

(c) Perturbation enabling for j ∈ [k − 1],
tcj ∈ T with •tcj = {p1, cj} and tcj

• = {p0, cj+1},
– M0 = {ixi

| i ∈ [n]} ∪ {p0, c1},
where (Pf , Tf , Af ,M

′
0) = PN(f).

Example 2. Figure 4(top) shows part of the transitions added by the modelling
of k = 2 temporary perturbations in the example of Fig. 3. In the given marking,
the perturbation are enabled, therefore, any of the 3 shown perturbation tran-
sitions can be applied. The application of one such transition disable the other
perturbation transitions (as p0 is no longer marked). By applying the transition
tc1, the perturbations transitions are then re-enabled, allowing a second (and
last) one to be applied.

Permanent Perturbations (mutations). Contrary to temporary perturba-
tions, once a node has been (permanently) perturbed, its state should no longer
change. This is modelled by locks: if the i-th lock is active the node i cannot
perform any transition. In addition to the places introduced for temporary per-
turbations, our encoding add mutually exclusive places locki0, locki1 for each
each node i ∈ [n], locki0 being marked if the node i has not been perturbed,
locki1 being marked otherwise.

The transitions of the BN are then modified so that a transition changing
the state of node i requires the place locki0 to be marked. For each node i, 4
perturbations transitions are defined: two for the value changes (0 to 1 and 1 to
0) also inducing the marking of locki1; and two for the marking of locki1 without
value change: indeed, a mutation does not necessarily have to change the current
value of the node, but it prevents any further evolution of it.
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c1

tc1

c2

p0 p1

t1,1

11

10

t2,0

21 20

t3,0

31

30

31

lock30 lock31

t3,1′

p0 p1

t3,1

t′¬3,{¬x1}

3010

Fig. 4. (top) Excerpt of the encoding of temporary perturbations. (bottom) Excerpt
of the encoding of permanent perturbations.

Definition 6. Given a Boolean network f of dimension n, the Petri net
(P, T,A,M0) modelling its k permanent perturbations is given by

– P = Pf ∪ {p0,p1, c1, . . . , ck} ∪ ⋃
i∈[n]{locki0, locki1}

– T and A are the smallest sets which satisfy
BN transitions ∀tl,c ∈ Tf , with l = i or l = ¬i, i ∈ [n],

t′l,c ∈ T with •t′l,c = •tl,c ∪ {locki0} and t′l,c
• = tl,c

• ∪ {locki0}
Perturbation transitions for i ∈ [n],

ti,0 ∈ T with •ti,0 = {i1,p0, locki0} and ti,0
• = {i0,p1, locki1}

ti,0′ ∈ T with •ti,0′ = {i0,p0, locki0} and ti,0′ • = {i0,p1, locki1}
ti,1 ∈ T with •ti,1 = {i0,p0, locki0} and ti,1

• = {i1,p1, locki1}
ti,1′ ∈ T with •ti,1′ = {i1,p0, locki0} and ti,1′ • = {i1,p1, locki1}

Perturbation enabling for j ∈ [k − 1],
tcj ∈ T with •tcj = {p1, cj} and tcj

• = {p0, cj+1}
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– M0 = {ixi
| i ∈ [n]} ∪ {p0, c1}

where (Pf , Tf , Af ,M
′
0) = PN(f).

Example 3. Figure 4(bottom) shows part of the transitions added by the mod-
elling of k = 2 permanent perturbations. The transition t3,{¬x1} of Fig. 3 is
modified so that it is enabled only if lock30 is marked, i.e., the node 3 has not
been perturbed yet. Permanent perturbation transitions t3,1 and t3,1′ lock the
node 3 to its value 1. Once applied, none of the transitions modifying the value
of node 3 can be enabled. Transitions for re-enabling perturbations are identical
to the temporary case.

3.3 State Transition Graph

Given a BN f and an initial state x, the above modelling allows to compute
all the states reachable by any combination and succession of k perturbations,
temporary or permanent.

The next section establishes the complete characterisation of perturbations
for the existential and inevitable reprogramming of f from x. It relies on an
explicit state transition graph which is composed of two classes of transitions: the
transitions induced by BN f , and the transitions induced by the perturbation.

It can be remarked that our encoding uses an additional kind of transition:
the transitions for re-enabling the perturbation transitions, when strictly less
than k perturbations have been applied (transitions noted tcj , j ∈ [k−1]). These
transitions are artefacts of the modelling, and can be skipped during the state
transition graph construction.

Let us define a state transition graph among states S with two classes of
transitions E (induced by f) and M (induced by the perturbations), as the
smallest digraph (S, E ,M) such that M0 ∈ S, and for each M ∈ S, for each
t ∈ T such that •t ⊆ M , let M ′ = (M \ •t) ∪ t•,

– if p1 ∈ M and ck /∈ M , then ∃j ∈ [k] : •tcj ∈ M ′; let M ′′ = (M ′ \ •tcj) ∪ tcj
•,

M ′′ ∈ S and (M,M ′′) ∈ E,
– otherwise, M ′ ∈ S, and if t = tl,c, then (M,M ′) ∈ E , else (M,M ′) ∈ M.

Given any marking M ∈ S of the resulting state transition graph, the number
of perturbations applied to reach M is given by j+b where cj ∈ M and pb ∈ M .

4 Complete Identification of Temporal Reprogramming
Strategies

This section explains how, from the transition graph obtained by the model of
Sect. 3, the complete set of reprogramming solutions leading to a set of final
states F ⊆ S can be identified.

The Perturbation Transition Graph (Definition 7) gathers the transitions of
the Boolean network from the state x, and the perturbation transitions with a
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label specifying the performed perturbation. Each node of the original transition
graph have multiple copies, given how many perturbations are used to reach it:
thus, a state of the perturbation transition graph is composed of the state of
the Boolean network and a perturbation counter. A transition of the Boolean
network is necessarily between two states with the same counter; a perturbation
transition is necessarily between a state with counter i to a state with counter
i + 1. This Perturbation Transition Graph can be directly computed from the
Petri net of Sect. 3. Given a subset M of perturbation transitions, a Perturbation
Path (Definition 8) is a sequence of Boolean networks transitions and transitions
in M .

Definition 7 (Perturbed Transition Graph). Given a Boolean network
f of dimension n and a maximum number of allowed perturbations k, the
Perturbed Transition Graph is a tuple (S0, E0,M0) where

– S0 = {0, 1}n × {0, .., k} is the set of states;
– E0 ⊆ {(s, i) → (s′, i) | i ∈ [0; k], (s → s′) ∈ Ef}, where STG(f) =

({0, 1}n, Ef ), is the set of normal transitions, which corresponds to a sub-
set of the asynchronous transitions of the Boolean network f ;

– M0 ⊆ {(s, i) → (s′, i + 1) | i ∈ [0; k − 1], s, s′ ∈ {0, 1}n} × L is a set of per-
turbation transitions, where L is the set of labels describing the perturbation.

Definition 8 (Perturbation path (→∗
M)). Given a Perturbation State Graph

(S, E ,M) and a set of perturbation transitions M ⊆ M, →∗
M⊆ S ×S is a binary

relation such that

(s, i) →∗
M (s′, i′) Δ⇔ (s, i) = (s′, i′) or ∃(s′′, i′′) ∈ S with

(s, i) → (s′′, i′′) ∈ E ∪ M and (s′′, i′′) →∗
M (s′, i′)

4.1 Complete Identification of Reprogramming Solutions

In the scope of this paper, we consider two classes of reprogramming solutions:
the reprogramming solutions which build a path that reaches one of the final
states, referred to as existential reprogramming (Definition 9); and the repro-
gramming solutions which ensure that a final state is always reached, referred
to as inevitable reprogramming (Definition 10).

Definition 9 (Existential Reprogramming). Given a Perturbation Tran-
sition Graph (S, E ,M) of a Boolean network f , a state (s0, i0) ∈ S has an
existential reprogramming to a set of states F ⊆ S if and only if there exists a
set of perturbation transitions M ⊆ M such that there is a path from (s0, i0) to
a state w ∈ F using only E and M transitions, i.e., (s0, i0) →∗

M w.

Definition 10 (Inevitable Reprogramming). Given a Perturbation Tran-
sition Graph (S, E ,M) of a Boolean network f , a state (s0, i0) ∈ S has an
inevitable reprogramming to a set of states F ⊆ S if and only if there exists
a set of perturbation transitions M ⊆ M such that from any state (s, i) ∈ S
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reachable from (s0, i0) using E and M transitions, there exists a path from (s, i)
to a state in F using E and M transitions: ∀(s, i) ∈ S with (s0, i0) →∗

M (s, i),
∃w ∈ F such that (s, i) →∗

M w.

Given a reprogramming property, the set of nodes that verify it (called “valid
nodes” below) can be computed iteratively, by browsing the transition graph in a
reverse topological order of the strongly connected components. As a topological
order is used, the complexity is linear in the number of states in the Perturbed
Transition Graph.

It can be noted that all strongly connected components have the same value
of perturbations counter, as there are no edges that decrease the counter. As a
consequence, all edges between two strongly connected components are either
only normal edges, or only perturbation edges.

In the following part, we only consider the condensed graph G = (S, E ,M)
of the perturbed transition graph. For a graph G0 = (S0, E0,M0), the condensed
transition graph G, is defined by:

– A set of strongly connected components of the states. ∀u ∈ S0,∃s ∈ S, u ∈ s.
S is a partition of S0.

– A set of normal edges between the strongly connected components: E =
{((s, i) → (s′, i)) | s, s′ ∈ S, ∃s0 ∈ s, s′

0 ∈ s′ such that ((s0, i) → (s′
0, i)) ∈

E0}
– A set of perturbation edges between the strongly connected components:

M = {((s, i) l−→ (s′, i + 1)) | s, s′ ∈ S, ∃s0 ∈ s, s′
0 ∈ s′ such that ((s0, i)

l−→
(s′

0, i + 1)) ∈ M0}
Given the construction of the graph, G is a Perturbed Transition Graph as well.

Existential Reprogramming: In the case of existential reprogramming, a
node is valid if it is one of the final nodes or if it has an edge (a normal edge or
a perturbation edge) that leads to a valid node.

Definition 11. Given a Perturbation Transition Graph (S, E ,M), the set of
valid nodes for existential reprogramming VE ⊆ S is defined by:
VE = {(u, i) ∈ S | ∃M ⊆ M, ∃(v, j) ∈ F , (u, i) →∗

M (v, j)}

Inevitable Reprogramming: In the case of inevitable reprogramming, a valid
node is either: (a) a final node, (b) a node from which all children through
normal edges are valid nodes, or (c) a node that reaches a valid node through
one perturbation edge.

Definition 12. Given a Perturbation Transition Graph (S, E ,M), the set of
valid nodes for inevitable reprogramming VI ⊆ S is defined by:
VI = {(u, i) ∈ S | ∃M ⊆ M, ∃(v, j) ∈ F , (u, i) →∗

M (v, j) and ∀(u′, i′) ∈
S verifying (u, i) →∗

M (u′, i′), ∃(v′, j′) ∈ F , (u′, i′) →∗
M (v′, j′)}
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Validity of the Initial Node: If the initial node is not valid as defined above,
then there is no reprogramming solution given the settings. Otherwise, there
exist one or more paths that correspond to reprogramming solutions. This will
be illustrated on examples from the literature in Sect. 5.

4.2 Example

Applied on the example of Sect. 2 for the inevitable reprogramming from 0000 to
1101 with k = 2, the algorithm returns the graph of Fig. 5, with nodes verifying
the reprogramming property in black and the other ones in gray.

The temporal reprogramming path identified in Sect. 2 is the only strategy
for inevitable reprogramming.

0000,0 0001 1000,1

1010,1 1011,1

1111,2

1101,2

0010 0011

0100 0101

0110 0111

1001

1100

1110

x1 = 1
x2 = 1

Fig. 5. The perturbation path returned by the algorithm on the example of Sect. 2

4.3 Initial Reprogramming Vs Temporal Reprogramming

In most other works, perturbations are performed only in the initial state. Our
method allows finding temporal perturbations paths, which accounts for the
transient dynamics of the system between the perturbations. We also capture
perturbations of the sole initial state: they correspond to paths where all the
first edges are perturbation edges, only followed by normal edges.

We consider that temporal reprogramming can return new reprogramming
strategies when the perturbations act on different nodes than perturbations of
the initial state only. Given the Perturbation Transition Graph, one can first
compute the reprogramming solutions for the initial state, and then enumerate
the perturbation paths that use different sets of perturbations.

5 Case Studies

5.1 Identifying Reprogramming Paths

The set of reprogramming paths can be summarized by the perturbations they
involve and their ordering. These perturbations can be extracted from the valid
node computation introduced in Sect. 4 as follows.
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To each valid node u ∈ VE or VI of the Peturbation Transition Graph,
we associate a set Su of sequences of perturbations, specified by the label of
perturbation transitions. Su gathers all possible perturbations to get from the
node u to a final state in F .

If u ∈ F , Su = {∅}, i.e., no perturbation is necessary. Otherwise, Su consists
of the union of Sv for every children v where (u → v) ∈ E and of the union of
{l⊕ s | s ∈ Sv} for every children v where u

l−→ v ∈ M, and l⊕ s is the sequence
starting with l and followed by s.

To get a minimal set of temporal perturbations, every perturbation sequence
that is equal or a superset of initial perturbations are removed, and only the
smallest sub-sequences (in terms of sequence inclusion) are kept.

5.2 T-Helper Cells

We applied a prototype implementation of our algorithm1 on the model of the
multi-valued T helper regulatory network introduced in [12].

The initial model has 17 nodes, with 2 or 3 possible values for each. We
applied the identification of inevitable reprogramming of the initial state where
all the nodes are inactive, except GATA3, IL4, IL4R and STAT6 that have
an initial value of 1, to any attractor where Tbet is active, using at most 2
permanent perturbations. The Perturbed Transition Graph has 21,647 nodes,
and 20,941 connected components. The set of temporal reprogramming paths
uses the following perturbations:

– IFNg = 2, then, after several transitions, IFNgR = 0
– IFNg = 2, then, after several transitions, STAT1 = 0
– IFNgR = 2, then, after several transitions, STAT1 = 0

The graph in Fig. 6 gives an example of a possible perturbation path that
uses INFg = 2 and STAT1 = 0:

From the initial state, a permanent perturbation (INFg = 2) is performed.
The new perturbed state, 1, has several possible futures, one of which leads to
the state 4 in the graph. From this state, the system can continue to follow
its usual dynamics, or can be perturbed again with STAT1 = 1 to go to the
state 5, that will always reach the final state. It can be seen that there are
branching paths: our method guarantees that from each reachable node there is
perturbation path leading to the final state, using one the three perturbation
paths given above.

If one applies these perturbations (IFNg = 2 and STAT = 1) directly in the
initial state, the attractor where Tbet is active is not reachable. Therefore, this
perturbation path gives a new reprogramming strategy. Moreover, the temporal
reprogramming solutions returned by our method are complete.

1 Scripts and models available at http://www.lsv.fr/∼mandon/CMSB2017.zip.

http://www.lsv.fr/~mandon/CMSB2017.zip
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initial state 1

2

3 ...

... 4

5

6 ...

...

...

f ∈ F

IFNg = 2

STAT1 = 1

Fig. 6. Simplification of a perturbation path for T-helper cells

5.3 Cardiac Gene Regulatory Network

The same algorithm has been applied to the Boolean model of the cardiac gene
regulatory network built in [11]. The Boolean network has 15 nodes. Its Per-
turbed Transition Graph with at most 3 permanent perturbations has around
60,000 reachable states.

In this example, we computed the fixpoints of the Boolean network and
identified reprogramming solutions to change from one fixpoint to another.

For some cases, we observe that temporal reprogramming provides solutions
requiring only two perturbations when at least three perturbations are required
when applied only in the initial state.

For instance, let us consider the inevitable reprogramming from the fix-
point where all nodes are active except Bmp2, Fgf8, Tbx5, exogen BMP2 I,
and exogen BMP2 II to the fixpoint where all nodes are inactive but Bmp2,
exogen BMP2 I, and exogen BMP2 II. Our method identifies 1 set of 3 pertur-
bations to apply in the initial state; and 14 sequences of temporal perturba-
tions, one of which requires only 2 perturbations (the loss of function of exo-
gen CanWnt I, followed later by the gain of function of exogen BMP2 I).

6 Discussion

Temporal reprogramming consists in applying perturbations in a specific order
and in specific states of the system to trigger and control an attractor change.

This paper establishes the complete characterization of temporal perturba-
tions for Boolean networks reprogramming. Perturbations can be applied at the
initial state, and during the transient dynamics of the system. This later feature
allows to identify new strategies to reprogram regulatory networks, by providing
solutions with different targets and possibly requiring less perturbations than
when applied only in the initial state.

Our method relies on a Petri net modelling the combination of Boolean net-
work asynchronous transitions with perturbation transitions. The identification
of temporal reprogramming solutions then relies on a explicit exploration of
the resulting state transition graph. Our framework can handle temporary (e.g.,
through signalling) and permanent (e.g., mutations) perturbations for the exis-
tential and inevitable reprogramming to the targeted state.

Future work will focus on increasing the scalability of temporal reprogram-
ming predictions. Notably, we aim at using partial order exploration and unfold-
ing of the Petri net model in order to exploit the concurrency of transitions.
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Abstract. Toxicology aims at studying the adverse effects of exoge-
nous chemicals on organisms. As these effects mainly concern metabolic
pathways, reasoning about toxicity would involve metabolism model-
ing approaches. Usually, metabolic network models approaches are rule-
based and describe chemical reactions, indirectly depicting equilibria as
results of competing rule kinetics. By altering these kinetics, an exoge-
nous compound can shift the system equilibria and induce toxicity. As
equilibria are kept implicit, the identification of possible toxicity path-
ways is hindered as they require a fine understanding of chemical reac-
tions dynamics to infer possible equilibria disruptions. Paradoxically, the
toxicity pathways are based on a succession of very abstract (coarse
grained) events. To reduce this mismatch, we propose a more abstract
framework making equilibria first-class citizens. Our rules describe quali-
tative equilibrium changes and the chaining of rules is controlled by con-
straints expressed in extended temporal logic. This higher abstraction
level fosters the detection of toxicity pathways, as we will show through
an example of endocrine disruption of the thyroid hormone system.

Keywords: Discrete dynamic systems · Rule-based modeling · Tempo-
ral logic · Computational toxicology

1 Introduction

The purpose of toxicology is to study the adverse effects caused by chemical
substances on living organisms. In this perspective, the central paradigm of the
discipline assumes that the more an organism is exposed to a compound, the
greater the effects of this compound will be.

This dose-response relationship underpins toxicity studies, where toxicolo-
gists aim at determining the threshold of toxicity of a compound (i.e. the lowest
exposure from which an induced toxicity is observable). These studies also aim
at identifying how a chemical disrupts physiological equilibria, and how these
disruptions propagate in an organism, linking the exposure to a chemical to
its observable toxicity. This causal chain of equilibrium changes, also known as
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pathway of toxicity, is widely used by regulating authorities to assess the toxicity
of a compound.

Indeed, as our exposure to chemical products is becoming an area of great
concern for society, authorities are implementing increasingly strict regulations.
As a consequence, chemical manufacturers must now conduct extensive toxicity
studies to demonstrate the innocuousness of their products, skyrocketing the
development cost of such products.

Related works. This context provides ground for modeling toxicity, and so far,
most of these modeling approaches are quantitative [9]. They aim at either infer-
ring the toxic threshold of a chemical substance or confirming its specific path-
way of toxicity. These objectives require a lot of biological data, which can be
restrictive given the current acquisition cost of such data. An alternative app-
roach consists in shifting the focus from toxic thresholds to toxicity pathways.
Indeed, describing these pathways in a qualitative manner would allow to focus
only on equilibrium changes and would therefore require comparatively less bio-
logical data. Moreover, such an approach would allow to use automated reasoning
tools.

Several generic formalisms have already been developed to qualitatively
model biological processes [3,5,15,16,19]. These formalisms use formal methods
to reason about these standard processes. However, expressing toxicology prob-
lems in terms manageable for the formalism is frequently troublesome. Several
specificities of toxicology make these environments not optimal. As an exam-
ple, Biocham [7] is based on rules able to qualitatively model many biochemical
processes thanks to either Boolean or discrete semantics. The transformation
of A into B thanks to the catalyst C can for instance be written A =[C]=> B.
However, this formalism does not allow to express intuitively the possibility for
this process to be further enhanced by an entity E, or conversely, to be stopped
by the presence of an inhibitor I, two very common situations in toxicology.

In addition, these formalisms describe chemical reactions, only depicting
equilibria as indirect results of competing rule kinetics. Yet, toxicity pathways
are sequences of equilibrium changes. As such, keeping equilibria implicit while
building a toxicological model can thus prove confusing for toxicologists, hinder-
ing the identification of possible toxicity pathways. In this mind, several aspects
of automata networks and René Thomas’ theory, especially its asynchronicity or
the continuity of its variables, fit nicely with toxicology. However, it is common
in toxicology to see cases where two entities A and B affect the level of a third
one. This influence is classically linked to the concentration of both A and B,
with the less concentrated entity limiting the influence of both entities. This con-
cept is actually poorly handled by René Thomas’ formalism, such cases leading
to an explosion in the number of model parameters.

A two layers formalism. To solve these limitations, we present in this article
a domain-oriented formalism directly describing qualitative equilibrium changes
thanks to two layers. First, a rule-based language allows to express the different
equilibrium changes present in a biological system. Then, the chaining of rules



198 B. Miraglio et al.

can be corseted thanks to constraints expressed in an extended temporal logic.
These constraints are usually based on toxicological observations regarding spe-
cific conditions of the system. Finally, automated reasoning tools can be used
on the resulting dynamics to detect possible toxicity pathways, providing useful
insights to improve the experimental strategies of toxicity studies.

As our formalism is presented alongside examples inspired from the thyroid
hormone system, the next section sketches an overview of this system. In Sect. 3,
we explain how to use the new formalism to describe the equilibrium changes
of a system. In Sect. 4, we show how to integrate toxicological knowledge in the
system using an extended temporal logic. Finally, this formalism is applied to a
model of the thyroid hormone system in Sect. 5.

2 The Thyroid Hormone System in a Nutshell

The thyroid hormone system plays a crucial role in the organism homeostasis.
For example, alteration of thyroid hormones (TH) levels leads to troubles in the
energy metabolism and in the adaptive thermogenesis in adults. This crucial
role is even further highlighted during the organism development, where a slight
disruption of the thyroid hormone homeostasis can lead to severe adverse effects
such as neuronal defects, deafness or impaired bone and muscle formation [22,23].

Consequently, as most endocrine systems, the thyroid hormone homeostasis
is maintained by a complex regulation network involving a central control car-
ried out by cerebral regions. However, this regulation is unusually strengthened
peripherally by dedicated enzymes, the deiodinases. Indeed, contrarily to most
endocrine systems, the blood circulating form of TH, tetraiodothyronine (T4)
is inactive and must be 5’-deiodinated into triiodothyronine (T3) to act on its
target receptors.

Another metabolite of T4, reverse triiodothyronine (rT3), can be obtained
through 5-deiodation. Similarly to T4, rT3 is not able to activate thyroid hormone
receptors and is thus considered to be inactive. It should be noted that recent exper-
iments suggest that both T4 and rT3 have other biological activities [14]. However,
these actions need further investigations and will not be developed through this
article.

TH Synthesis. As deiodinases are also present in the thyroid gland, the gland
produces both thyroid hormone forms (T3 and T4). However, T4 still accounts
for roughly 90% of the gland production [11]. The synthesis process in itself starts
with thyroid follicular cells extracting large quantities of iodide from the blood.
This import is carried out thanks to dedicated iodide transporters. Thyroid
iodide is then used by an enzyme, thyroid peroxidase (TPO), to assemble TH in
the follicle [10]. Finally, TH are released in the blood, where they are associated
with transporter proteins, as neither T3 nor T4 are soluble in water.

Central regulation. The thyroid hormone synthesis, from iodide uptake to TPO
activity, can be stimulated by thyroid-stimulating hormone (TSH) [12]. TSH syn-
thesis is performed in the pituitary gland when triggered by thyrotropin-releasing
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hormone (TRH), itself produced in the hypothalamus [23]. Both TSH and TRH
synthesis aredown-regulatedbyhighconcentrations ofT3, creatinganegative feed-
back loop described as the thyroid hormone central regulation, or hypothalamo-
pituitary-thyroid axis (HPT axis, see Fig. 1).

Fig. 1. Representation of the HPT axis integrating deiodinases action. Plain arrows
show the deiodination of T4 in T3 by D1 or D2. Dashed arrows represent positive or
negative regulations.

Peripheral regulation. Only a minor part of circulating T3 is synthesized by
the thyroid gland, the remaining part is produced by deiodinases directly in
tissues sensitive to thyroid hormone [11,22]. The activation in situ of T4 places
deiodinases as key actors in thyroid hormone level regulation. This regulation is
even more fine tuned thanks to three types of deiodinases, performing either 5’-
or 5-deiodations, respectively activating or inactivating TH.

Type 3 deiodinase (D3) is the main TH inactivator [6]. By catalyzing
5-deiodations, D3 converts T4 in rT3 and T3 in 3,3’-diiodothyronine, both inactive
compounds.D3 physiological role is toprotect tissues froma local hyperthyroidism.
As such, high concentrations of T3 increase D3 activity and conversely, the activity
of the enzyme is reduced in hypothyroidism conditions.

Diametrically opposed to D3, type 2 deiodinase (D2) is the main TH activator
[22]. D2 catalyzes the 5’-deiodation of T4 into T3 and is down-regulated by T3. As
such, hyperthyroidism inhibitsD2 while low levels ofT3 increasesD2 activity. Inter-
estingly enough, D2 also plays a crucial role in the HPT axis (see Fig. 1). Indeed, D2

is required to transform T4 into T3 in the pituitary gland [22], making D2 necessary
to complete the negative feedback of T3 on TSH production.

Finally, type 1 deiodinase (D1) has several roles. This enzyme is able to
catalyze both 5- and 5’-deiodations but is extremely inefficient when compared
to D2 or D3 [22]. Despite this inefficiency, D1 is able to mitigate the effects
of the absence of D2 by converting enough T4 into T3, preventing any global
hypothyroidism. On top of this, D1 primary role actually concerns iodine recy-
cling [11]. Indeed, D1 is highly affine with sulfated TH (i.e. hormones about to
be eliminated, see next paragraph). As the thyroid hormone system is extremely
dependent on iodine intake, D1 role is then to recycle as much iodine as possible
from sulfated TH before their excretion.
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TH Metabolism. TH metabolism is mainly carried out by hepatic enzymes. These
enzymes are referred to as detoxifying enzymes since they are apt to inactivate
a vast range of compounds (either exogenous or endogenous). This inactivation
involves the conjugation of the compound with a specific residue, marking the
compound for excretion. For instance, the action of the hepatic enzyme sulfo-
transferase results in sulfated TH [21].

Possible endocrine disruptions. The synergy of the different mechanisms evoked
previously provides a clockwork regulation of the thyroid hormone system. How-
ever, several weak points can hinder this complex machinery:

1. TH synthesis relies heavily on iodide availability in the thyroid gland. An
interruption of iodide intake, or the malfunction of the dedicated iodide trans-
porters can then lead to severe hypothyroidism. Such effects can also result
from an impaired TPO activity in the thyroid follicle [23].

2. Disruption in deiodinases activity also leads to troubles, but not necessarily as
expected at first sight. Indeed, if considering only thyroid hormone levels, the
absence of one of the activating deiodinase (D1 or D2) can be counterbalanced
by the remaining activating deiodinase. However, D2 is unable to recycle
iodide efficiently. The absence of D1 can thus lead to a iodide shortage [11].
Conversely, D2 key role in the pituitary gland cannot be matched by D1.
An absence of D2 thus leads to local hypothyroidism in the pituitary gland,
leading to an unnecessary overproduction of TSH, finally resulting in an global
hyperthyroidism [17].

3. The presence of some exogenous compounds in the organism can trigger a dra-
matic increase of hepatic detoxifying enzymes. This augmentation helps the
organism to address the irregular presence of exogenous compounds, but also
abnormally increases TH disposal, leading to global hypothyroidism [1]. The
hypothyroidism is combined with excessive TSH levels, as the organism tries
to counterbalance the lack of TH. In turn, the excess in TSH overstimulates
the thyroid gland and can lead to the formation of tumors [8]. This sequence
of events - from the presence of an exogenous compound to the apparition
of a tumor in the thyroid gland - constitutes the well-defined liver-mediated
thyroid toxicity pathway [13].

3 Describing Equilibrium Changes with Transformation
Rules

A biological system can be abstracted as a set of biological entities interacting
with each other at different concentrations. In parallel, each entity has a concen-
tration regarded as normal in a given organism. This concentration tends to be
maintained in normal conditions, and a modification of this concentration can
lead to adverse effects. For instance, the normal blood concentration of glucose
is about 1 g/L in an adult human, and a concentration greater than 1.3 g/L can
lead to several complications.
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Consequently, our domain-oriented formalism represent the evolution of the
concentration of each entity as a change in its equilibrium level. In that line, we
introduce four qualitative equilibrium levels depicting increasing concentrations
of an entity:

– ε stands for a negligible concentration (i.e. a concentration too low to trigger
any reaction in the biological system).

– ι stands for an abnormally low concentration (i.e. a relative lack of this entity,
affecting some mechanisms in the biological system).

– Δ stands for a normal concentration.
– θ stands for an abnormally high concentration (i.e. an excess of this entity).

Notation 1 (Concentration levels). We note L the set {ε, ι,Δ, θ} equipped
with the total order relation such that: ε < ι < Δ < θ. The elements of L are
called concentration levels.

In a given biological system and depending on the studied issue, not all levels
are regarded as useful. For example, the modeler may be only interested in the
normal (Δ) or excessive (θ) presence of an entity. Therefore, an entity must have
at least two levels, but not necessarily more. The signature of a biological system
allows the definition of the set of biological entities considered in the system and,
for each entity, its admissible concentration levels.

Definition 1 (Signature). A signature is a map E : E → P(L) where E is a
finite set and for all e ∈ E, |E(e)| � 2. Elements of E are called entities and for
each entity e, E(e) is the set of admissible levels of e.

For instance, E = {T3,T4,TPO, I} can be the signature of a thyroid model,
with E(T3) = {ε, ι,Δ, θ}, E(T4) = {ε, ι,Δ, θ}, E(TPO) = {ε, ι,Δ, θ} and E(I) =
{ε,Δ, θ}.

After defining the system signature, a state of the system is defined as the
qualitative level of each entity present in the system. For example, a state η0
where T3 is at the level Δ, noted η0(T3) = Δ and where η0(T4) = ε, η0(TPO) = ι
and η0(I) = θ. This state can also be written:

η0 = (Δ, ε, ι, θ) (1)

where the entities order is (T3, T4, TPO, I).

Definition 2 (State). A signature E being given, the set of states ζ is the set
of functions η : E → L such that for all e ∈ E, η(e) ∈ E(e).

In our formalism, the evolution of an entity can follow two functions: the
incrementation, incr, and the decrementation, decr. They return the level of
this entity just above (resp. below) its current level. For instance, as E(TPO) =
{ε,Δ, θ}, incrTPO(Δ) = θ and decrTPO(Δ) = ε. Note that the incrementation
(resp. decrementation) function is not defined on the maximal (resp. minimal)
admissible levels. As such, incrTPO(η(TPO)) is not defined if η(TPO) = θ.

Besides these functions, the formalism also makes use of formulas to describe
properties about the entities concentration levels.
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Definition 3 (Formula). The set F of formulas on a signature E is induc-
tively defined by:

– any atomic formula of the form a � b (where a and b can be any element of
E ∪ L) belongs to F .

– if ϕ and ψ are elements of F , then ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ ⇒ ψ are also elements
of F .

Definition 4 (Satisfaction relation). A state η and a formula ϕ ∈ F on a
signature E being given, the satisfaction relation η � ϕ is inductively defined by:

– if ϕ is an atom of the form a � b, then η � ϕ if and only if η(a) � η(b) where
η is the extension of η to E ∪ L by the identity on L.

– if ϕ is of the form ϕ1∧ϕ2 then η � (ϕ1∧ϕ2) if and only if η � ϕ1 and η � ϕ2.
We proceed similarly for the other connectives.

“η � ϕ” is read “η satisfies ϕ.”

We use the abbreviation a = b as a shortcut for (a � b) ∧ (b � a) and we
proceed similarly for a < b, a > b and a � b.

Examples of formulas can be ϕ ≡ (I = θ), stating an excessive presence of I
or ψ ≡ (T4 > TPO), stating that the qualitative level of T4 is strictly greater
than the one of TPO. The state η0, previously described in Eq. 1, satisfies ϕ but
not ψ.

To describe possible evolutions of the system, a set of rules of the following
form is then used:

r : A1 + · · · + Am ⇒ Am+1 + · · · + An when(ϕ) boost(ψ)

Beside its identifier r, each rule includes two sets of entities Ai. The first one,
for all i in [1,m], constitutes the set of consumables, whose level may be reduced
by the application of the rule. The other set, for all i in [m + 1, n], represents
the set of produceables whose level may be increased by the application of the
rule. A rule also includes two modulating conditions when(ϕ) and boost(ψ) (ϕ
and ψ being formulas). Intuitively, ϕ the role of the guard of the rule and ψ will
relax some restriction on the increasing of produceable levels.

Definition 5 (Biological action network). A biological action network on a
signature E, or E-action network, is a set R of rules of the form:

r : A1 + · · · + Am ⇒ Am+1 + · · · + An when(ϕ) boost(ψ)

where:

– r is an identifier such that there are not two rules in N with the same r.
– ∀i = 1 . . . n,Ai ∈ E.
– {A1 . . . Am} ∩ {Am+1 . . . An} = ∅.
– ϕ and ψ are elements of F .
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For short, we will call such rules E-rules and we will call a “state of R” a
state on the signature of R.

Let us emphasize that a rule represents possible equilibrium changes. There-
fore, it makes no sense to have an entity being part of both consumables and
produceables of a same rule.

Moreover, a rule can be devoid of any consumable or produceable: In the
previous definition, the index m can be equal to zero (the rule does not need
any consumable from the signature E) or m can be equal to n (the rule has
no produceable from the signature E). A rule without consumable can be con-
sidered as a constitutive production of an entity in a given model and a rule
without produceable can be interpreted as a constitutive depletion of an entity.
In either cases, conventionally, the empty set of entities is denoted Ω, depicting
the biological system in the broad sense, outside the signature.

Also, if no modulation is known for a given rule, when and boost regulations
are not displayed in the rule representation, i.e. when(True) and boost(False)
are left implicit.

It is worth mentioning that despite the obvious syntactic resemblance
between a rule and a chemical reaction, a rule must not be interpreted as quanta
of consumables converted into quanta of produceables but as a possible evolu-
tion of the levels of entities present in the rule, representing possible equilibrium
shifts.

As a basic example of rule, the production of T3 and T4 from I can be
represented by the following rule:

rA : I ⇒ T3 + T4 when(TPO > ε)

In order to be applicable at a given state, a rule must meet basic crite-
ria. First, since the level ε is interpreted as a negligible concentration, a rule
is applicable only if all its consumables are present at least at the level ι. In
addition, a rule cannot be applied if the formula ϕ of the modulating condition
when is not satisfied.

Definition 6 (Applicable rule). Let us consider a state η on a signature E.
An E-rule r ∈ R of the form:

r : A1 + · · · + Am ⇒ Am+1 + · · · + An when(ϕ) boost(ψ)

is said applicable at the state η if and only if:

– ∀i = 1 . . . m, η(Ai) �= ε.
– η � ϕ.

For instance, the rule rA is applicable if and only if the levels of I and TPO
are strictly greater than ε. By the way, note that the catalysis, namely the
necessary presence of an enzyme to the proper conduct of a reaction, can be
expressed using the when condition as in the previous example, but the catalyst
cannot be present both on the left and right parts of the rule.
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Definition 7 (Potential next level). Let R be an E-action network, let η be
a state of R and r be a rule of R of the form:

r : A1 + · · · + Am ⇒ Am+1 + · · · + An when(ϕ) boost(ψ)

We note η�
r : E → L the partial function such that η�

r (e) is defined if and only if
r is applicable and one of the following conditions is satisfied:

– e ∈ {A1 . . . Am} and η�
r (e) = decre(η(e)).

– e ∈ {Am+1 . . . An}, η(e) < max(E(e)), and:
• if η � ψ and η(e) < min

i∈{1...m}
(η(Ai)) then η�

r (e) = incre(η(e))

• if η � ψ then η�
r (e) = incre(η(e)).

Where conventionally, min
i∈∅

(η(Ai)) = η(Ω) = Δ.

If the entity Ai acts as a consumable, its potential next level is the one
returned by the decrementation function.

If it acts as a produceable, its potential next level depends on the boost
statement:

– if the boost statement ψ is not satisfied, a produceable level can increase only
if all the consumables levels are strictly greater. In this case, the potential
next level of a produceable is thus the one returned by the incrementation
function applied to the produceable.

– if the boost statement ψ is satisfied, the previous restriction no longer applies.
In such cases, the potential next level of a produceable is returned by the
incrementation function applied to it, independently of the consumable levels.
These levels must still be greater than ε, as the rule is applicable.

So, in the case of a rule deprived of consumables, produceables levels cannot
exceed Δ unless the boost statement is satisfied.

Moreover, let us note that the potential next level is returned either by the
incrementation or decrementation function. Therefore, when these functions are
not defined, the potential next level of an entity is also not defined.

Keeping the synthesis of T3 and T4 as an example, we can also specify that an
excess of TPO can cause trouble in T3 and T4 levels by adding a boost condition
to the rule rA:

rB : I ⇒ T3 + T4 when(TPO > ε) boost(TPO > Δ)

Here, assuming that the rule is applicable at the state η0 and that η0(T3) = Δ,
thepotential next level ofT3 by this rule canbeθ only ifη0(I) = θ or ifη0(TPO) = θ.

The dynamics is fully asynchronous. Among all the applicable rules at a given
state, at most one is applied at a time. When a rule is applied, one and only one
of its entities sees its level changing to its potential next level. Similar ideas have
been firstly developed for discrete gene models by Thomas and Snoussi [18,20].
This behavior reflects the possibility for an entity to cross a threshold without
all the other entities levels doing likewise.
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In brief, starting from a given state, it is possible to determine which rules
of the system are applicable at that state. The application of one of these rules
is not required but if so, it changes the level of one entity. It is possible to stay
indefinitely at a same system state thanks to a special transition called Id (whose
application does not change the levels of the system entities and that is always
applicable).

It is then possible to establish a transition graph, mapping all the possible
transitions between the states of a system. An infinite succession of transitions
such that the output state of a transition is the input state of the next one is
here called a path of the transition graph.

Definition 8 (Transition graph). The transition graph of an E-action net-
work R is the labeled graph whose set of vertices is the set of states ζ and the
set of edges T is the set of transitions of the form η

r−→ η′ such that one of the
following condition is satisfied:

– r = Id and η′ = η
– r ∈ R and there exists an entity e ∈ E such that η�

r (e) is defined and:
• η′(e) = η�

r (e)
• ∀ e′ ∈ E � {e}, η′(e′) = η(e′).

So, the transition graph of an E-action network R canonically defines a labeled
Kripke structure L = (L, Σ, T ) as follows:

– L(η) = {α ∈ A | η � α} where A ⊂ F is the set of atomic formulas.
– Σ = R ∪ {Id}.
– T can obviously be seen as the set of triplets (η, r, η′) such that (η r−→ η′) is a

transition of T .

A path (π ≡ η0
r0−→ η1

r1−→ . . .
ri−1−−−→ ηi

ri−→ . . . ) is then an infinite sequence of
labeled transitions such that the input state of ri is equal to the output state of
ri−1 for all i > 0. The set of paths is called ΠR.

4 Integrating Toxicological Knowledge into Constraints

As the transition graph of a biological system includes many toxicologically
improbable paths, it is necessary to filter out the irrelevant ones and to charac-
terize the interesting paths for toxicologists. Temporal logic and model checking
tools have already been successfully applied to biological systems [2,7]. Here,
since we seek to filter paths in details, we need a logic able to express both state
and transition properties, such as the state/event linear temporal logic (SE-LTL)
developed by Chaki [4].

Since a path can be seen as an infinite alternation between states and tran-
sitions, atomic temporal formulas concern either a state or a transition. For
states, atomic temporal formulas are similar to atomic formulas of Definition 3.
For transitions, atomic temporal formulas involve a rule identifier or the identity
transition.
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Definition 9 (Temporal formula). Given an E-action network R, the set TR

of temporal formulas on R is inductively defined by:

– (A ∪ R ∪ {Id}) ⊂ TR

– if ϕ and ψ are formulas of TR, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒ ψ, Xϕ, Fϕ, Gϕ,
ϕUψ are formulas of TR.

Definition 10 (Temporal formula satisfaction). Given an E-action net-
work R and a path (π ≡ η0

r0−→ η1
r1−→ . . . ) ∈ ΠR, the satisfaction relation

�⊂ ΠR × TR is inductively defined by:

– π � α (where the atom α belongs to A) if and only if η0 � α,
– π � r where r ∈ R ∪ {Id} if and only if r = r0,
– π � ϕ ∧ ψ where (ϕ,ψ) ∈ T 2

R if and only if π � ϕ and π � ψ, other proposi-
tional logic connectives are treated similarly,

– π � Xϕ where ϕ ∈ TR if and only if (η1
r1−→ η2

r2−→ . . . ) � ϕ,
– π � Gϕ where ϕ ∈ TR if and only if for all i ∈ N, (ηi

ri−→ ηi+1
ri+1−−−→ . . . ) � ϕ,

– π � Fϕ where ϕ ∈ TR if and only if there exists i ∈ N, (ηi
ri−→ ηi+1

ri+1−−−→
. . . ) � ϕ,

– π � ϕ U ψ where (ϕ,ψ) ∈ T 2
R if and only if there exists j ∈ N, (ηj

rj−→ . . . ) �
ψ and for all 0 � i < j, (ηi

ri−→ . . . ) � ϕ.

Furthermore, for all r ∈ R of the form r : A1 + · · · + Am ⇒ Am+1 + · · · +
An when(ϕ) boost(ψ), we note app(r) the temporal formula (

∧m
i=1 Ai > ε)∧¬ψ

stating that r is applicable at the current state (see Definition 6).
In addition, for all e ∈ E , we note ↓ e the temporal formula stating that the

level of the entity e decreases in the next state:
∨

l ∈ E(e)�{ε}
(
e = l ∧ X

(
e = decre(l)

))
.

We proceed similarly for ↑ e.
For instance in our running example, the propertyχ characterizing paths where

an excess of I leads to a future excess of T3 can be written as: G((I > Δ) ⇒ F (T3 >
Δ)) and the formula ξ stating that the rule rB is the first applied when T4 is absent
from the system can be written as: G((T4 = ε) ⇒ rB). In this situation, the path
beginning with (η0

rB−−→ η1), where η0 = (Δ, ε, ι, θ) and η1 = (θ, ε, ι, θ) satisfies
both χ and ξ.

Finally, the association of the transition graph of a system with a set of
properties representing the relevant biological pathways is called a constrained
network. This constrained network is actually a subset of paths from the tran-
sition graph, with each path in this subset satisfying all the SE-LTL biological
properties.

Definition 11 (Constrained network). An E-constrained network is a cou-
ple N = (R,Ax) where R is an E-action network and Ax is a set of temporal
formulas.

Definition 12 (Dynamics of a constrained network). Given an E-
constrained network N = (R,Ax), the dynamics of N is the
subset ΠN of ΠR such that π ∈ ΠR belongs to ΠN if and only if π � Ax.
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Since properties filter out irrelevant paths from the transition graph, it is
thus possible to use them in conjunction to formal methods to insure that the
final constrained network satisfies basic biological and toxicological properties
as well as specific properties related to the studied issue.

5 Application to the Thyroid Hormone System

The formalism described in the previous section can be illustrated with the
thyroid hormone system developed in Sect. 2. This system contains the following
entities: blood iodide (IB), thyroid iodide (IT), thyroid peroxydase (TPO), blood
triiodothyronine (T3B), blood tetraiodothyronine (T4B), pituitary triiodothyro-
nine (T3Pit), thyroid-stimulating hormone (TSH), type 1 to 3 deiodinases (D1,
D2, D3) and hepatic detoxifying enzymes (Detox).

On top of these endogenous entities, we can also introduce exogenous com-
pounds able to disrupt the thyroid hormone system. Each compound is an
endocrine disruptor triggering one of the disruptions listed in Sect. 2: XI impacts
the dedicated iodide transporters in thyroid, XD1 and XD2 respectively inacti-
vates D1 and D2, and XHep increases hepatic enzymes levels.

Finally, the signature of our example corresponds to the set:

Ethy = {IB, IT, TPO, T3B, T4B, T3Pit, TSH, D1, D2, D3, Detox, XI, XD1, XD2, XHep}

The Ethy-action network Rthy is made of 21 rules. However, for the sake of
clarity, only a part of these rules is presented in this section. The complete model,
including the list of rules, is available in appendix.

Central regulation. The HPT axis is modeled thanks to the following rules:

Itransfer : IB ⇒ IT when(TSH > ε ∧ XI = ε)
TPOsynth : Ω ⇒ TPO when(TSH > ε) boost(TSH = θ)
TPOdestr : TPO ⇒ Ω when(TSH = ε ∨ (TPO = θ ∧ TSH < θ))
THsynth : IT ⇒ T3B + T4B when(TPO > ε) boost(TPO = θ)
Pitsynth : T4B ⇒ T3Pit when(D2 > ε) boost(D2 = θ)
Pitdestr : T3Pit ⇒ Ω when(T4B = ε ∨ D2 = ε ∨ (T3Pit = θ ∧ D2 < θ))
TSHsynth : Ω ⇒ TSH when(T3Pit < θ) boost(T3Pit = ε)
TSHdestr : TSH ⇒ Ω when(T3Pit = θ ∨ (TSH = θ ∧ T3Pit > ε))

Rule TPOsynth expresses the ability of the organism to restore normal levels
of TPO only when TSH is present in the system. Conversely, TPOdestr conveys
that levels of TPO tend to decrease when TSH is absent. Moreover, TSH is also
required for the production of the dedicated iodide transporters. Note that these
transporters are abstracted in this model. Consequently, actions of TSH and XI

directly apply to Itransfer.
The synthesis of TH requires the presence of both IT and TPO. However,

TPO levels are not affected by THsynth since TPO is a catalyst of the reaction.
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The negative feedback of T4B on TSH production mediated exclusively by
D2 (as illustrated in Fig. 1) is highlighted in TSHsynth and TSHdestr. Indeed,
T3Pit can only be obtained through deiodination of T4B by D2 (rules Pitsynth

and Pitdestr).

Activation and metabolism of TH. The activation of blood TH is handled by D1

and D2. Their equilibria and their impact on the system are handled thanks to
the following rules:

D1synth : Ω ⇒ D1 when(XD1 = ε) boost(T3B = ε)
D1destr : D1 ⇒ Ω when(XD1 > ε ∨ (D1 = θ ∧ T3B > ε))
D2synth : Ω ⇒ D2 when(T3B < θ ∧ XD2 = ε) boost(T3B = ε)
D2destr : D2 ⇒ Ω when(T3B = θ ∨ XD2 > ε ∨ (D2 = θ ∧ T3B > ε))
Irecycling : T4B ⇒ IB when(D1 > ε)
THactivation : T4B ⇒ T3B when(D1 = θ ∨ D2 > ε) boost(D2 = θ)

Both D1 and D2 levels are induced by a lack of T3B in the system. On the
contrary, D2 levels are reduced by an excess of T3B. On top of that, the presence
of exogenous disruptors such as XD1 or XD2 alters D1 and D2 levels.

As the vast majority of sulfated TH is composed of T4B, Irecycling models
accurately the preponderant recycling role of D1. D1 also intervenes marginally
in T4B deiodation, as shown in THactivation, where D1 needs to be at level θ
to satisfy the when statement. As for D2, the enzyme acts essentially on T4B

deiodation in T3B, as shown by both when and boost statements of THactivation.
The metabolism of TH is mainly provided by D3 and Detox. The rules involv-

ing these entities are:

D3synth : Ω ⇒ D3 when(T3B > ε) boost(T3B = θ)
D3destr : D3 ⇒ Ω when(T3B = ε ∨ (D3 = θ ∧ T3B < θ))
Detoxsynth : Ω ⇒ Detox boost(XHep > ε)
Detoxdestr : Detox ⇒ Ω when(Detox = θ ∧ XHep = ε)
T3destr : T3B ⇒ Ω when(D3 = θ ∨ Detox = θ ∨ (T3B = θ ∧ D3 > ε))
T4destr : T4B ⇒ Ω when(D3 = θ ∨ Detox = θ ∨ (T4B = θ ∧ D3 > ε))

The regulation of D3 levels is symmetrical to D2 regulation, as T3B is an
inducer of D3 levels. The case of Detoxis interesting: since we are only interested
in an excessive activity of the hepatic detoxifying enzymes, the set of admissible
levels of this entity is {Δ, θ}. An excess of Detox is only triggered by the presence
of XHep, as seen in Detoxsynth and Detoxdestr.

Furthermore, the when statements of rules T3destr and T4destr reflects two
important notions on the metabolism of T3B and T4B:

1. An excess of D3 or Detox is enough to decrease the levels of both TH.
2. If TH are in excess, the presence of D3 is enough to restore normal TH levels.

It is capital to note that when both levels of D3 and TH are normal, D3 does
not trigger the decrease of TH levels.

The set of all these rules allows to generate the system dynamics. It is then
possible to constrain these dynamics thanks to biological observations expressed
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through SE-LTL properties. For instance, we express the fact that THactivation

always primes on Irecycling as long as there is no shortage of blood iodide:

ϕ0 ≡ G((IB > ε ∧ app(THactivation) ∧ app(Irecycling)) → ¬Irecycling)

Literally, ϕ0 means that if IB is present in the system, and both THactivation and
Irecycling are applicable, then Irecycling does not apply. The G operator indicates
that the property must be satisfied at every step of the path.

It has also been observed that an excess of detoxifying enzymes quickly leads
to the depletion of T4B:

ϕ1 ≡ G((Detox = θ ∧ app(T4destr)) → T4destr)

We can also check that the model verifies global biological properties such
as the fact that without any disruption in D2 functionning, an hypothyroidic
state (i.e. where T4B is lacking) leads to a state where TSH is in excessive
concentration:

ϕ2 ≡ G(T4B = ε ∧ XD2 = ε) → F (TSH = θ))

Of course, several paths belonging to Rthy do not satisfy the previous prop-
erties. For instance, let π1 and π2 the portions of path represented in Fig. 2. In
state η12 of π1, the conditions of ϕ0 are satisfied and Irecycling should not be
applied. Therefore, π1 does not satisfy ϕ0, contrary to π2.

As such, if we consider Axthy = {ϕ0, ϕ1, ϕ2} and the constrained network
Nthy = (Rthy, Axthy), paths including π1 do not belong to Nthy.

π1 = Δεε
︸︷︷︸

η10

THsynth−−−−−−→ ΔΔε
︸ ︷︷ ︸

η11

THactivation−−−−−−−−−→ ΔΔΔ
︸ ︷︷ ︸

η12

Irecycling−−−−−−−→ ΔεΔ
︸ ︷︷ ︸

η13

π2 = εεε
︸︷︷︸

η20

THsynth−−−−−−→ εΔε
︸︷︷︸

η21

THactivation−−−−−−−−−→ εΔΔ
︸ ︷︷ ︸

η22

Irecycling−−−−−−−→ ΔΔΔ
︸ ︷︷ ︸

η12

Fig. 2. Possible path segments belonging to Rthy. For the sake of simplicity, states
depicted here only contain the levels of respectively IB, T4B and T3B.

Finally, we can use the constrained network Nthy to search for existing path-
ways of toxicity. Indeed, possible disruptions described in Sect. 2 correspond to
sets of paths belonging to Nthy. These sets of paths can be identified thanks
to temporal formulas. For example, the inactivation of D2 by XD2 leading to
hyperthyroidism corresponds to paths satisfying ϕD2:

ϕD2 ≡ G(XD2>ε U (D2=ε U (T3Pit=ε U (TSH=θ U (T4B=θ)))))
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π3 = ΔΔΔΔΔ
︸ ︷︷ ︸

η30

D2destr−−−−−→ ΔΔΔεΔ
︸ ︷︷ ︸

η31

Pitdestr−−−−−→ ΔεΔεΔ
︸ ︷︷ ︸

η32

TSHsynth−−−−−−−→ ΔεθεΔ
︸ ︷︷ ︸

η33

THsynth−−−−−−→ θεθεΔ
︸ ︷︷ ︸

η33

Fig. 3. Possible path segment belonging to Rthy. For the sake of simplicity, states
depicted here only contain the levels of respectively T4B, T3Pit, TSH, D2 and XD2.

π4 = ΔΔΔΔΔ
︸ ︷︷ ︸

η40

Detoxsynth−−−−−−−−→ ΔΔΔθΔ
︸ ︷︷ ︸

η41

T4destr−−−−−→ εΔΔθΔ
︸ ︷︷ ︸

η42

Pitdestr−−−−−→ εεΔθΔ
︸ ︷︷ ︸

η42

TSHsynth−−−−−−−→ εεθθΔ
︸ ︷︷ ︸

η43

Fig. 4. Possible path segment belonging to Rthy. For the sake of simplicity, states
depicted here only contain the levels of respectively T4B, T3Pit, TSH, Detox and XHep.

The effect of XHep, namely the trigger of hepatic detoxifying enzymes leading
to decreased levels of T4B and then high levels of TSH can also be expressed
thanks to ϕHep:

ϕHep ≡ G(XHep>ε U (Detox=θ U (T4B=ε U (TSH=θ))))

Path π3 and π4 as depicted in Figs. 3 and 4, are examples of interesting
trajectories for toxicologists. Indeed, both these paths start in the initial state
(init) defined as follow: the biological system is considered healthy (all the
endogenous entities at Δ) but contains also an exogenous compound (XD2 or
XHep greater than ε). Then, as an exogenous compound leads the organism
towards pathological states (here respectively a chronic hyperthyroidism and a
thyroid cancer), we can enumerate its possible pathways of tocixity by filtering
paths satisfying temporal formulas (here, init ∧ FG(T4B = θ) and init ∧
FG(TSH = θ)).

6 Conclusion

We presented a new formal framework able to handle several specificities of
the toxicology domain not taken into account so far. This rule-based model-
ing framework allows for a direct description of equilibrium changes happening
in a biological system. This description does not model the strength differences
between equilibrium rules, which can affect the global behavior of the system. For
this reason, we integrated biological and toxicological knowledge about equilibria
kinetics through formulas expressed in SE-LTL. As demonstrated on a simple
model of the thyroid hormone system, the expressive power of the formalism
enable us to describe equilibrium changes in the organism as well as knowl-
edge about equilibrium kinetics. This knowledge allows then the filtering out of
irrelevant paths from the initial model and the search for toxicity pathways.

In the future, our formalism will be coupled with a SE-LTL model checker
in order to list the most probable toxicity pathways present in a model. Indeed,



Detecting Toxicity Pathways with a Formal Framework 211

it is possible to define pathological states and enumerate the paths leading to
these states. Furthermore, filtering the resulting paths could also highlight gaps
in the current toxicological knowledge and help toxicologists in their design of
new experimental strategies.

Finally, as this formalism is now well-defined, it will serve as a basis to develop
a software platform dedicated to toxicology. This platform is currently under
development and it is already possible to run simulations on biological action
networks. In the near future, the platform will also be able to integrate the
temporal formulas and to use these biological constraints to filter out irrelevant
paths. This will be achieved by generating all the paths allowed by a biological
action network while checking these paths for their biological relevance. Finally,
by defining states regarded as pathologic, the platform will then be able to
compute all the paths leading to pathologic states and propose putative pathways
of toxicity.

Appendix

See Tables 1 and 2

Table 1. The signature of Ethy, including the different set of admissible levels.

Entity Biological name Admissible levels

IB Blood iodide {ε, Δ}
IT Thyroid iodide {ε, Δ}
TPO Thyroid peroxydase {ε, Δ, θ}
T3B Blood triiodothyronine {ε, Δ, θ}
T4B Blood tetraiodothyronine {ε, Δ, θ}
T3Pit Pituitary triiodothyronine {ε, Δ, θ}
TSH Thyroid-stimulating hormone {ε, Δ, θ}
D1 Type 1 deiodinase {ε, Δ, θ}
D2 Type 2 deiodinase {ε, Δ, θ}
D3 Type 3 deiodinase {ε, Δ, θ}
Detox Hepatic detoxifying enzymes {Δ, θ}
XI Iodide transporter inactivator {ε, Δ}
XD1 D1 inactivator {ε, Δ}
XD2 D2 inactivator {ε, Δ}
XHep Detoxifying enzymes inducer {ε, Δ}
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Table 2. The Rthy action network.

Iintake : Ω ⇒ IB
Itransfer : IB ⇒ IT when(TSH > ε ∧ XI = ε)
TPOsynth : Ω ⇒ TPO when(TSH > ε) boost(TSH = θ)
TPOdestr : TPO ⇒ Ω when(TSH = ε ∨ (TPO = θ ∧ TSH < θ))
THsynth : IT ⇒ T3B + T4B when(TPO > ε) boost(TPO = θ)
Pitsynth : T4B ⇒ T3Pit when(D2 > ε) boost(D2 = θ)
Pitdestr : T3Pit ⇒ Ω when(T4B = ε ∨ D2 = ε ∨ (T3Pit = θ ∧ D2 < θ))
TSHsynth : Ω ⇒ TSH when(T3Pit < θ) boost(T3Pit = ε)
TSHdestr : TSH ⇒ Ω when(T3Pit = θ ∨ (TSH = θ ∧ T3Pit > ε))
D1synth : Ω ⇒ D1 when(XD1 = ε) boost(T3B = ε)
D1destr : D1 ⇒ Ω when(XD1 > ε ∨ (D1 = θ ∧ T3B > ε))
D2synth : Ω ⇒ D2 when(T3B < θ ∧ XD2 = ε) boost(T3B = ε)
D2destr : D2 ⇒ Ω when(T3B = θ ∨ XD2 > ε ∨ (D2 = θ ∧ T3B > ε))
D3synth : Ω ⇒ D3 when(T3B > ε) boost(T3B = θ)
D3destr : D3 ⇒ Ω when(T3B = ε ∨ (D3 = θ ∧ T3B < θ))
Detoxsynth : Ω ⇒ Detox boost(XHep > ε)
Detoxdestr : Detox ⇒ Ω when(Detox = θ ∧ XHep = ε)
Irecycling : T4B ⇒ IB when(D1 > ε)
THactivation : T4B ⇒ T3B when(D1 = θ ∨ D2 > ε) boost(D2 = θ)
T3destr : T3B ⇒ Ω when(D3 = θ ∨ Detox = θ ∨ (T3B = θ ∧ D3 > ε))
T4destr : T4B ⇒ Ω when(D3 = θ ∨ Detox = θ ∨ (T4B = θ ∧ D3 > ε))
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Abstract. We present a fully closed-loop design for an artificial pan-
creas (AP) which regulates the delivery of insulin for the control of
Type I diabetes. Our AP controller operates in a fully automated fash-
ion, without requiring any manual interaction (e.g. in the form of meal
announcements) with the patient. A major obstacle to achieving closed-
loop insulin control is the uncertainty in those aspects of a patient’s daily
behavior that significantly affect blood glucose, especially in relation to
meals and physical activity. To handle such uncertainties, we develop a
data-driven robust model-predictive control framework, where we cap-
ture a wide range of individual meal and exercise patterns using uncer-
tainty sets learned from historical data. These sets are then used in the
controller and state estimator to achieve automated, precise, and person-
alized insulin therapy. We provide an extensive in silico evaluation of our
robust AP design, demonstrating the potential of this approach, without
explicit meal announcements, to support high carbohydrate disturbances
and to regulate glucose levels in large clusters of virtual patients learned
from population-wide survey data.

1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease where the pancreas is not able
to autonomously produce a sufficient amount of insulin to regulate blood glu-
cose (BG) levels, thereby inhibiting glucose uptake in muscle and adipose (fatty)
tissue. In healthy subjects, pancreatic β cells are responsible for the release of
insulin in amounts commensurate with current BG levels. This regulation main-
tains healthy BG values within tight ranges, normally between 70–200 mg/dL.
In T1D, T cell–mediated destruction of insulin-producing β cells occurs, leading
to high BG levels.

In the U.S. alone, more than 29 million people suffer from diabetes, among
which about 5% have T1D [2]. T1D patients need to wear an insulin pump for
the injection of basal and bolus insulin. Basal insulin is a low and continuous
dose that covers insulin needs outside meals. Bolus insulin is a single high dose
for covering meals.

c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 214–232, 2017.
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The concept of closed-loop control of insulin, a.k.a. the artificial pancreas
(AP), involves a continuous glucose monitor (CGM) that provides glucose mea-
surements (with a typical period of 5 min) to a control algorithm running inside
the insulin pump or on a peripheral device (e.g. smartphone or tablet) connected
to the pump [38]. The controller adjusts the insulin therapy to maintain healthy
BG levels and to avoid hyperglycemia (BG above the healthy range) as well as
hypoglycemia (BG below the healthy range). AP systems have been extensively
studied in the last 20 years [10], but only lately cleared for clinical trials [17,22]
and commercialization.

The recently FDA-approved MINIMED 670G by Medtronic1 is the first com-
mercial AP system, and can regulate the basal insulin rate automatically. It
is referred to as a “hybrid closed-loop” device as patients need to manually
announce the amount of carbohydrate (CHO) and time of each meal to receive
the appropriate bolus insulin dose. This manual procedure is a burden to the
patient and inherently dangerous as incorrect information can lead to incorrect
insulin dosage and, in turn, harmful BG levels.

While meals are the major source of uncertainty in BG control, another
important factor is physical activity, which accelerates glucose absorption and
thus requires a reduced insulin dosage. To build fully automated closed-loop AP
systems, it is essential to design insulin control algorithms that are robust to the
patient’s behavior and activities.

In this paper, we propose a data-driven, robust model-predictive control
(robust MPC) framework for the closed-loop control of insulin administration,
both basal and bolus, for T1D patients under uncertain meal and exercise events.
Such a framework seeks to eliminate the need for meal announcements by the
patient, to fully automate insulin regulation. We capture the wide range of indi-
vidual meal and exercise patterns using uncertainty sets learned from historical
data.

Following [1], we construct uncertainty sets from data so that they cover
the underlying (unknown) distribution with prescribed probabilistic guaran-
tees. Leveraging such information, our robust MPC system computes the insulin
administration profile that minimizes the worst-case performance with respect
to these uncertainty sets, so providing a principled way to deal with uncertainty.

Besides uncertainty, another challenging aspect of closed-loop control is state
estimation, which is needed to recover the full state of the model (used within
MPC) from CGM measurements. Not only are these measurements noisy and
delayed with respect to BG (the CGM detects glucose in the interstitial fluid),
but we also need to estimate, along with the state, current meal and exercise
uncertainties.

For this purpose, we designed a moving-horizon state estimator (MHE) [6,20,
27] that, similar to MPC, exploits a prediction model to find the most likely state
estimate given the observations. Crucially, data-driven uncertainty sets improve
the estimation by constraining the admissible meal and exercise uncertainties.

1 https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-
system.

https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system
https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system
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To the best of our knowledge, our robust MPC design for an AP is the first
approach to leverage data-driven techniques to enhance robust insulin control
and state estimation, supporting at the same time both meal and exercise uncer-
tainties. In summary, our main contributions are the following.

– We formulate a closed-loop AP design based on robust MPC to optimize BG
levels under meal and exercise uncertainties.

– We apply data-driven techniques to construct uncertainty sets that provide
probabilistic guarantees on the robust MPC solution.

– We design an MHE that leverages data to make informed estimates for BG
and uncertainty parameters.

– We provide an extensive in-silico evaluation of our design, including one-
meal simulations, one-day high carbohydrate intake scenarios, and one-day
simulations of large clusters of virtual patients learned from population-wide
survey data sets (CDC NHANES).

– Overall, our robust closed-loop AP is able to keep BG within safe levels
between 84% and 100% of the time, outperforming an implementation of a
hybrid closed-loop AP and state-of-the art robust control algorithms [31].

2 System Overview

The design of our proposed data-driven robust artificial pancreas is illustrated
in Fig. 1. The robust MPC component (described in Sect. 4) is responsible for
computing the insulin administration strategy (both basal and bolus) that opti-
mizes, over a finite time horizon, the predicted BG profile against worst-case
realizations of the uncertainty parameters, used to capture unknown meal and
exercise information.

Uncertainty sets describe the domains of the uncertainty parameters and are
derived by the data-driven learning component (see Sect. 4.2), starting from a
dataset about the patient’s meal and exercise schedules. Uncertainty sets can be
also updated online as new data (estimated or announced) comes along, in this
way enabling the continuous learning of the patient’s behavior.

Fig. 1. Robust artificial pancreas design.

At this stage, we ana-
lyze our robust artificial pan-
creas design in silico. Thus,
the plant is given by a
system of differential equa-
tions (see Sect. 3) describing
the gluco-regulatory dynam-
ics of a virtual T1D patient,
as well as the effects of
insulin and random distur-
bances (i.e. unknown realiza-
tions of the uncertainty para-
meters).
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In order to faithfully reproduce real-life settings, we assume that the state
of the plant (BG) cannot be observed by the controller, but that we can only
access (noisy) CGM measurements. We designed a moving-horizon state estima-
tor (described in Sect. 4.1) that, based on a bounded history of CGM measure-
ments and estimations, computes the most likely plant state. Importantly, this
component also provides estimates for the uncertainty parameters, which can be
used to update the uncertainty sets.

3 Plant Model

3.1 Uncertainty Parameters

To account for uncertainty in meal consumption, we consider the parameter Dt
G,

which describes the rate of CHO ingestion at time t. As in the exercise model of
[9,13,21,28], physical activity is represented by parameters MM t, the percentage
of active muscular mass at time t, and O2 t, the percentage of maximum oxygen
consumption which can be combined to reproduce arbitrary kinds of physical
activity.

MM t corresponds to the ratio between the active muscular mass and the total
muscular mass, with typical values being MM t = 0% at rest and MM t = 25%
for a two-legged exercise. O2 t describes the oxygen consumed relative to the
maximum oxygen consumption of the subject, and thus, represents a subject-
independent measure of exercise workload. As in [9,21], typical values are 8%
at rest, 30% for light activity, 60% for moderate activity, and 90% for intense
activity. In our scenario, these meal and exercise parameters are not observed
or measured, and are thus represented by an uncertainty parameter vector ut =
(Dt

G,MM t,O2 t). The effects of these parameters on blood glucose are described
in Sect. 3.2, in which the patient’s gluco-regulatory model is presented.

3.2 Patient Model

We consider the nonlinear ODE gluco-regulatory model of Jacobs et al. [13,28],
which extends Hovorka’s well-established model [11,36,37] to capture the effect
of exercise on BG. The model describes the dynamics of glucose and insulin in the
human body, i.e., their absorption, metabolism, excretion and transport between
compartments (tissues and organs). In addition to insulin, Jacobs’ model also
allows for the automated control of glucagon, i.e. the hormone antagonistic to
insulin that protects against hypoglycemia. In our work, however, we leave aside
glucagon. Model parameters (available in the technical report [24]) are deter-
ministic and represent the physiological characteristics (e.g. transport or con-
sumption rates) of a single virtual subject.

At time t, the inputs to the system are the subcutaneous insulin infusion rate,
ιt (mU/min), and the uncertainty parameter values, ut = (Dt

G,MM t,O2 t). The
output corresponds to the CGM measurement. The state-space representation
of the system is as follows:
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ẋ(t) = F
(
x(t), ιt,ut

)
(1)

y(t) = h (x(t)) + vt (2)

where x is the 14-dimensional state vector that evolves according to the ODE
system F, which is given below (see the technical report [24] for the full set
of equations). Equation 2 describes the CGM measurement y, which is derived
from x with the measurement model h and subject to an additive measurement
noise vt ∈ N (0, qt), where qt is the noise variance. We fix qt = 0.1521 mmol2/L2

constant for all t, corresponding to a standard deviation equal to 5% of the ideal
glucose value.

Figure 2 illustrates a high-level schema of the ODE system F. The gut absorp-
tion subsystem [37] uses a chain of two compartments, G1 and G2 (mmol), to
describe digestion of ingested CHO, given by the uncertainty parameter Dt

G.
The glucose kinetics subsystem describes the glucose masses in the accessible

(where BG measurements are made) and non-accessible compartments, respec-
tively through variables Q1 and Q2 (mmol). BG concentration, G (mmol/L), is
the main variable we aim to control, and is derived from Q1 as G(t) = Q1(t)/VG,
where VG is the glucose distribution volume. Variable C is the glucose concentra-
tion in the interstitial fluid, which has a delayed response w.r.t. the concentration
in the blood G. C corresponds to the glucose detected by the CGM sensor and
thus, the measurement function h of Eq. 2 maps the state vector x(t) to C(t).

Fig. 2. Schema of the gluco-regulatory ODE
system and its four main subsystems. White
circles: ODE variables; black boxes: uncer-
tainty parameters; white rounded box: insulin
input; solid black arrows: flows of glucose
or insulin; dashed green/red arrows: posi-
tive/negative interactions between variables.
(Color figure online)

The insulin kinetics subsys-
tem models the absorption of the
fast-acting insulin ιt, i.e. our con-
trol input (in mU/min), and its
transport through compartments
Q1a, Q1b, Q2i and Q3 (in mU)
[36]. This model assumes a slow
insulin absorption pathway con-
sisting of compartments Q1a (sub-
cutaneous insulin mass) and Q2i

(non-accessible insulin), and a fast
pathway that includes only Q1b

(subcutaneous). K represents the
proportion in which the input
insulin ιt is distributed into the
two pathways. Q3 is the plasma
insulin mass, from which we derive
the plasma insulin concentration
I (mU/L) as I(t) = Q3(t)/VI ,
where VI is the insulin distribution
volume.

The insulin dynamics subsystem defines the effects of insulin on blood glucose
through variables x1, x2, x3. Variable x1 (min−1) promotes glucose distribution;
x2 (min−1) promotes glucose disposal ; and x3 (unitless) inhibits endogenous glu-
cose production. The overall subsystem decrease blood glucose masses Q1 and
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Q2 and in turn, BG concentration G. Plasma insulin levels I directly increase
x1, x2, x3. Uncertainty parameters MM t (active muscular mass) and O2 t (target
workload in terms of oxygen consumption) increase x1, x2, x3 indirectly, through
state variables UA (mg/min) and O2m (unitless), not shown in the figure. They
characterize physical activity and describe, respectively, the glucose uptake due
to active muscular tissue and the actual percentage of maximum oxygen con-
sumption.

Initial Conditions: The initial state of the system is derived at a steady-state
BG level of 7.8 mmol/L [31], assuming no meal and exercise. We use a non-
linear equation solver (MATLAB’s fsolve) to find x(0) and the basal insulin
level ῑ such that ẋ(0) = F

(
x(0), ῑ,u0

)
= 0 (see Eq. 1), where the uncertainty

parameters u0 are given by D0
G = 0, MM 0 = 0 and O2 0 = 8 (oxygen consump-

tion at rest). Following [13], we further assess the physiologic feasibility of the
initial conditions by checking that: (1) in absence of insulin, steady-state BG
is above 300 mg/dL, and (2) delivery of high-dose insulin (15 U/h) results in a
steady-state BG below 100 mg/dL.

4 Robust MPC

Since we want to optimize the BG profile against worst-case realizations of the
uncertainty parameters, at each time step t, the robust MPC computes the
insulin infusion ιt as the solution of the following non-linear minimax optimiza-
tion problem:

min
ιt,...,ιt+Nc−1

max
ut,...,ut+Np−1

Np∑

k=1

d(x̃(t + k)) + β ·
Nc−1∑

k=0

(Διt+k)2 (3)

subject to: ιt+k ∈ Dι (k = 0, . . . , Nc − 1) (4)

ιt+k = ῑ (k = Nc, . . . , Np − 1) (5)

ut+k ∈ U t+k (k = 0, . . . , Np − 1) (6)
x̃(t) = x̂(t) (7)
˙̃x(t + k) = F (x̃(t + k), ιt+k,ut+k) (k = 0, . . . , Np − 1) (8)

where Nc and Np are the control and prediction horizon (in minutes), respec-
tively; constraint (4) states that the control input ι must belong to some set
Dι of admissible insulin infusion rates; through (5), we impose that ι is fixed to
the basal insulin rate ῑ outside the control horizon; (6) states that, at any time
point t + k in the prediction horizon, uncertainty parameters ut+k must belong
to the corresponding uncertainty sets U t+k; constraint (7) and (8) restrict how
the robust MPC computes the predicted state vector x̃: for the initial state, it
uses the estimated plant state at time t, x̂(t), while following states are predicted
using the same plant model (see Eq. 1). We set control and prediction horizons
to Nc = 100 min and Np = 150 min, respectively, as opposed to [28] where
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Nc = 20 and Np = 200: preliminary experiments suggested that large Np values
and small Nc values cause excessive insulin therapy and hypoglycemia.

We design the cost function so as to optimize the following two objectives:

1. Minimize the sum of squared distances between the predicted BG level x̃G(t+
k) and a target trajectory R(t + k):

d(x̃(t + k)) = γ(t + k) · (x̃G(t + k) − R(t + k))2 (9)

where γ(t + k) = γ if x̃G(t + k) < R(t + k) and 1 otherwise. (Remind that
xG(t) = G(t) = Q1(t)/VG in the glucose kinetics subsystem) Parameter γ ≥ 1
allows defining asymmetric cost functions where predicted BG values below
the target are penalized more than those above the target. Glucose control
is naturally asymmetric given that hypoglycemia leads to more severe conse-
quences than (temporary) hyperglycemia, and, as shown in [7], asymmetric
costs effectively contribute avoiding hypoglycemia.

2. Minimize step-wise changes in the control input (Διt+k)2, where Διt+k =
ιt+k − ιt+k−1, and ιt−1 corresponds to the control input in the previous iter-
ation, or to the basal insulin rate ῑ if t = 0.

In our setup, we fix the target trajectory to R(t + k) = 7.8 mmol/L for all time
instants and set penalty β to 1/50. We set the asymmetric cost penalty to γ = 2,
after experimenting with different values (reported in [24]).

Optimization Algorithm: We solve problem (3) using non-linear optimization
techniques, where, for a fixed control strategy ιt, . . . , ιt+Nc−1, the objective func-
tion value is given in turn as the result of maximizing the objective function over
the uncertainty parameters (and with fixed ιt, . . . , ιt+Nc−1). To solve both min-
imization and maximization problems, we use MATLAB’s fmincon. To reduce
the computational cost of this optimization method, we decrease the number
of decision variables by assuming that, in the prediction model, control inputs
change with period 10 min, and uncertainty parameters with period 30 min.

Hybrid Closed-Loop (HCL) Variant: To compare with our robust MPC approach,
we develop a hybrid closed-loop insulin pumps where only basal insulin is auto-
matically regulated and the patient is responsible for bolus insulin. This reduces
to a MPC that has no knowledge of meals and exercise, and thus, approximates
the behavior of a current state-the-art approved device that requires explicit
meal announcement. In our settings, this is equivalent to fixing the uncertainty
parameters to their default values at rest.

Then the optimization problem of the HCL controller reduces to:

min
ιt,...,ιt+Nc−1

Np∑

k=1

d(x̃(t + k)) + β ·
Nc−1∑

k=0

(Διt+k)2 (10)

subject to (4, 5, 7, 8) and ut+k = (0, 0, 8) (k = 0, . . . , Np − 1).

Note that the constraints on the insulin therapy are the same of the robust
controller (4–5) meaning that the HCL controller is free to synthesize bolus-
like therapy profiles too. This will also serve as the baseline controller in the
evaluation part of Sect. 5.
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4.1 State Estimation

This component allows to recover an estimate of the current state, which is used
in the following iteration by the robust MPC as the initial state for its predic-
tions (see Eq. 7). Following [8,27], we designed a moving-horizon state estimator
(MHE) that works in a finite-horizon fashion similar to an MPC problem, and
allows estimating the current state starting from previous estimations and a
bounded history of observed CGM measurements.

For an estimation window of size N , MHE is based on simulating a model
of the plant from time t − N to t and aims at finding the model trajectory
x(t − N), . . .x(t) that minimizes the discrepancies between simulated and esti-
mated states, and between simulated and measured outputs (CGM). Then, x̂(t)
is chosen as the final state of the optimal trajectory.

Crucially, our estimator also works as a meal and physical activity detector
[3,19,34]: in addition to the plant state, we compute the most likely sequence of
uncertainty parameters ut−N , . . . ,ut, corresponding to decision variables in our
optimization problem as they are inputs of the model. The MHE problem boils
down to the following non-linear optimization problem:

min
x(t−N),...x(t),ut−N ,...,ut

μ · ‖x(t − N) − x̂(t − N)‖2 +

N−1∑

k=0

‖vt−k‖2

qt−k
(11)

subject to: vt−k = y(t − k) − h(x(t − k)) (k = N − 1, . . . , 0) (12)

ẋ(t − k) = F (x(t − k), ιt−k,ut−k) (k = N, . . . , 0) (13)

ut−k ∈ U t−k (k = N, . . . , 0) (14)

where (12) defines the measurement discrepancy vt−k at time t − k as the dif-
ference between the measured and simulated output, y(t − k) and h(x(t − k)),
respectively (see also Eq. 2); and (13) states that x evolves according to the
same ODE model of the plant, with ιt−k being the insulin input previously com-
puted by the robust MPC. We remark that data-driven uncertainty sets play
an important role also in state estimation, since they constrain the domain of
the corresponding estimated uncertainty parameters, as per (14). The problem
is solved using MATLAB’s fmincon non-linear solver.

The first addend of the cost function penalizes the discrepancy between the
initial state of the simulated trajectory and the corresponding state estima-
tion, where μ > 0 is a weighting factor. The second addend penalizes measure-
ment discrepancies, weighted by the inverse of the measurement noise variance
qt−k (see Eq. 2). In the original formulation of the MHE [8,27], the cost func-
tion includes discrepancies for all the states in the trajectory. Our simplification
comes from the fact that we do not consider random noise in the model (but
only in the measurements), and thus, the trajectory x(t − N), . . . ,x(t) is fully
determined by the initial state x(t − N) and by the uncertainty parameters
ut−N , . . . ,ut. Further, this greatly improves computational efficiency because
variables x(t−N+1), . . . ,x(t) are strictly constrained by the ODE in Eq. (13). In
practice, this means that the decision variables reduce to x(t−N),ut−N , . . . ,ut.
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The MHE has an important probabilistic interpretation: when N = t
(unbounded horizon), the MHE problem corresponds to maximizing the joint
probability for the trajectory of states x(t − N), . . . ,x(t) given the measure-
ments y(t − N), . . . , y(t) [27].

4.2 Building Data-Driven Uncertainty Sets

In this section, we describe how to build the uncertainty sets used within the
robust MPC and the state estimator to restrict the domain of the admissible
meal and exercise parameters. We apply the approach of [1] where the authors
present a general schema for designing uncertainty sets from data for robust
optimization (of which robust MPC is an instance). The key idea is to define an
uncertainty set that captures possible realizations of the uncertain parameters
and then optimize against worst-case realizations within this set. Importantly,
this method requires no information about the underlying distribution of the
parameters and provides a probabilistic guarantee (an upper bound) on the
likelihood that the true realized cost is higher than the optimal ‘worst-case’ cost
computed by the robust controller.

Let us characterize an uncertainty set U by means of a so-called robust con-
straint f(u,x) ≤ 0, where u is the uncertainty parameter and x is the optimiza-
tion variable, corresponding in our case to the state vector plus insulin input.
Recall that the true distribution P

∗ of u is unknown. Given confidence level
ε > 0, U should satisfy two conditions: (1) the robust constraint f is computa-
tionally tractable. (2) U implies a probabilistic guarantee for P

∗ at level ε, that
is, for any solution x∗ ∈ R

k and for any function f(u,x) concave in u for all x,

if f(u,x∗) ≤ 0 ∀u ∈ U , then P
∗(f(u,x∗) ≤ 0) ≥ 1 − ε.

The data-driven schema we follow is based on sampling a set of data points S
i.i.d. from the true distribution P

∗ and uses hypothesis testing to construct the
uncertainty sets with such guarantees. In particular, for confidence level α < 1,
the schema employs the corresponding (1−α) confidence region to build U . With
the proper construction, the following theorem from [1, Sect. 3.2] holds.

Theorem 1. With probability at least 1 − α with respect to the sampling, the
resulting set U(S, ε, α) implies a probabilistic guarantee at least ε for P

∗.

In [1], the authors show how different uncertainty sets are built depending
on the assumptions about P

∗, and, in turn, on the suitable statistical test. In
this work we consider box sets (i.e. multi-dimensional intervals), which make
no assumptions on P

∗ and are suitable for data with missing values (see the
technical report [24] for further details on assumptions and set construction).
The application of other types of uncertainty sets, able for instance to capture
temporal dependencies and correlation between meals and exercise, is in our
future plans.

To shrink the size of uncertainty set, we employ the following two strategies:
(1) prior to set construction, we classify the input data and partition it into a
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number of clusters so as to obtain tighter sets and more customized, patient-
specific control strategies. (2) based on Algorithm 1 of [1], we use bootstrapping
[5] to approximate the threshold of the test statistics, by estimating the sampling
distribution of the statistics through re-sampling with replacement.

We remark that the construction of uncertainty sets is performed off-line and
thus has no computational footprint on the robust controller.

5 Results and Discussion

We evaluate our robust control algorithm through a number of experiments
for simulating: intake of a single meal (Sect. 5.1), exercise (Sect. 5.2), one-day
meal intake scenario with patient behavior learned from population-wide survey
data (Sect. 5.3), and two-day scenario with irregular meal timing and unusually
high CHO intake (Sect. 5.4). Section 5.5 is dedicated to the analysis of state
estimation. For each experiment, we compare the robust controller with the non-
robust, hybrid closed-loop (HCL) variant introduced in Sect. 4. We also report
the ideal performance by running a so-called perfect controller, that can access
both the full plant state (i.e. does not need state estimation) and the exact values
of the uncertainty parameters in the plant.

Hardware and Performance: We ran the experiments on a Windows 8 machine
with an Intel Core i7 processor and 32 GB of DDR3 memory. We used MATLAB
version 2016b. With this configuration, the average time to compute the insulin
therapy over all the experiments ranged from 4 to 18 s, which is well within
the CGM measurement period of 5 min. This means that the controller works
faster than real-time. Given the significant performance improvement of modern
embedded and mobile devices, we expect our algorithm to perform similarly as
well once deployed on such hardware platforms.

Performance Indicators: To measure the efficacy of our robust controller design
over multiple runs, we consider the following indicators:

– t<3.9, t3.9−11.1, t>11.1: mean percentage of time spent in, respectively, hypo-
glycemia (BG < 3.9 mmol/L), normal ranges (BG between 3.9 and 11.1),
and hyperglycemia (BG > 11.1). Clearly, we wish to maximize t3.9−11.1 and
minimize the other two indicators, keeping in mind that we can tolerate some
temporary postpandrial hyperglycemia while hypoglycemia should be avoided
as much as possible.

– BGmin, BGmax: average low BG level and peak BG level, respectively, in
mmol/L. An effective robust controller should keep BGmin and BGmax as
close as possible to the target BG level.

–
∑

ι: mean total non-basal insulin (in U). This indicator measures the amount
of insulin injected by the controller in order to cover meals, and thus excludes
the contribution of basal insulin.

To evaluate state estimation, we further consider indicators EDG
, EMM , EO2,

i.e. the mean absolute error between plant and estimated uncertain variable
values, and EBG, the mean absolute error between plant BG and estimated BG.
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5.1 One-Meal Experiments

We consider 300-minute simulations comprising a single meal, and three different
synthetic scenarios (illustrated in Fig. 3(a–c)), i.e. where meals are sampled from
arbitrary distributions. For each scenario and controller, we collect results for 50
repetitions. Further details on the construction of uncertain sets from arbitrary
distributions are available in the technical report [24].

Scenario 1, Meals as Expected: in the uncertain plant, we assume a uniformly
distributed meal with start time ts = unif(30, 90), total amount of CHO (grams)
CHO = unif(42, 78) and meal duration fixed to 20 min, during which CHO inges-
tion happens at a constant rate. Given that uniform distributions have bounded
support, we can build tight box-type uncertainty sets (i.e. intervals) that contain
all possible realizations. This scenario allows us evaluating the adequacy of the
controller when the plant behaves according to a known distribution, in other
words, when we have accurate information for building uncertainty sets.

Scenario 2, Outliers: in this case, random meals behave as statistical outliers,
i.e. they are constantly distant from the expected value of the underlying dis-
tribution. To this purpose, we build the uncertainty sets under the assump-
tion that meals are normally distributed with parameters ts = N (60, 15) and
CHO = N (60, 9). The uncertainty sets are built so as to cover all possible realiza-
tions with z-score between −3 and 3 (i.e. between −3 S.D. and +3 S.D. around
the mean). However, to reproduce outliers, meals in the uncertain plant are
sampled from the tails of the distributions (z-scores in [−4,−3] and [3, 4]).

Scenario 3, Late Meals: here we consider the same settings as in Scenario 1, but
with each random meal delayed of one hour. This models the situation where
the controller has wrong information about the meal schedule, since it expects
the meal to start, on the average, one hour earlier.

Results in Fig. 3 show that our robust controller attains very good performance,
closely following the ideal behavior of the perfect controller in the first and
third scenarios, where the virtual patient stays in normal ranges for >97% of
the time. In the outliers scenario, we register some postprandial hyperglycemia,
because this scenario is characterized by frequent high CHO intake. Overall, the
robust controller is able to limit the time spent in hypoglycemia below 1% and
consistently outperforms the HCL controller, staying in normal BG ranges for
3% to 31% more (full statistics are available in the report [24]).

5.2 Regulation During Exercise

We evaluate the behavior of the robust controller when the virtual patient is
involved in physical activity, which, contrarily to meals, contributes to decreasing
BG levels. We simulate a two-legged exercise consisting of two phases:

1. Moderate activity, with start time ts = unif(40, 80), duration d = unif(24,
36), active muscular mass MM = unif(0.15, 0.35), and oxygen consumption
O2 = unif(45, 75); followed by
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Fig. 3. One-meal, 300-minute experiments (50 repetitions). Top: uncertainty sets and
random realizations of parameter DG (rate of CHO ingestion). Middle: BG profiles
(with solid black lines indicating the normal BG range). Bottom: synthetized insulin
therapies. Thick solid lines indicate average BG/insulin values, and are surrounded by
an area spanning ± 1 S.D. In the table, we highlight in bold the best value of each
index between the robust and the HCL controllers.

2. Light activity, where parameters stay as in the previous phase except for
02 = unif(15, 45).

Results, reported in Fig. 4, evidence that both the robust and the HCL controller
can maintain BG within very tight ranges, as confirmed by the BGmin and
BGmax indicators. BG profiles are almost indistinguishable from the ideal ones
(i.e. those of the perfect controller) and for 100% of the times within healthy
ranges. Note that both controllers correctly reduce the insulin therapy below
the basal level to counteract the decrease of BG due to exercise. Hence, the
negative values of

∑
ι. The main difference is that the robust controller, due

to the superior predictive capabilities, is more timely in cutting insulin therapy
than the HCL controller, leading to a smaller excursion from the target BG
value.

Resalat et al. [28] realized a similar scenario to test their dual-hormone MPC
(300-minute simulation with a 45-minute exercise at fixed 02 = 60 and MM =
0.8). While we use their same plant model, their MPC design is different in two
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Fig. 4. Regulation during random exercise (50 repetitions). (a) and (b) show uncer-
tainty sets and realizations for active muscular mass (MM ) and oxygen consumption
(02 ). Legend is as in Fig. 3.

ways: it can regulate both insulin and glucagon (to prevent hypoglycemia) and is
not robust, meaning that exercise must be announced in order for the controller
to make correct predictions. Despite that, however, their evaluation resulted into
some episodes of hypoglycemia and hyperglycemia, while our controller is able
to keep BG for 100% of the time in healthy ranges without meal announcements.

5.3 One-Day Experiments Using NHANES Survey Data

We test our robust controller with real population data from the CDC’s National
Health and Nutrition Examination Survey (NHANES) database.2 We consider
the 2013 survey, comprising 8,611 participants, and classify the participants into
10 groups using k-means clustering. In this experiment, we selected the cluster
whose meal patterns are characterized by a CHO-rich breakfast at around 9am,
as visible in the uncertainty set of Fig. 5(a). From this cluster, we extract meal
information to parameterize the virtual patient and build the uncertainty sets
as explained in Sect. 4.2 (choosing α = 0.2 and ε = 0.2). Due to the poor quality
of physical activity data in NHANES, we generated one random exercise event
for each patient. Details on the other clusters and on extraction and processing
of data are reported in [24].

Results were obtained with 20 repetitions and are reported in Fig. 5. In this
experiment, our robust controller has a close-to-ideal performance, with >93%
of time spent in normal BG ranges. It outperforms the HCL controller, which
fails to predict the correct BG levels during sleep (time < 500 min), leading to
excessive insulin therapy and to dangerous overnight hypoglycemia.

2 https://www.cdc.gov/nchs/nhanes/.

https://www.cdc.gov/nchs/nhanes/


Data-Driven Robust Control for Type 1 Diabetes 227

(a) DG

0 500 1000
Time (min)

2

4

6

8

10

12

14

B
G

 (
m

m
ol

/L
)

(b) BG

t<3.9 t3.9−11.1 t>11.1

Perfect 0% 100% 0%
HCL 18.5% 80.97% 0.53%

Robust 2.02% 93.45% 4.52%

Fig. 5. BG regulation for virtual patient learned from NHANES database (20 repeti-
tions). Legend is as in Fig. 3.

5.4 High Carbohydrate Intake Scenario

We assess the behavior of the controller under irregular meal timing and unusu-
ally high CHO intake, following the protocol of [31], reported in Table 1. In this
protocol, no physical activity is considered. Uncertainty sets were derived follow-
ing the same construction of the one-meal experiments. Results, obtained with
50 repetitions, are shown in Fig. 6.

Table 1. High carbohydrate intake simulation parame-
ters of [31]. Meals in the plant are sampled uniformly
based on the above intervals and probabilities.

Chance of occurrence CHO (g) Time of day (h)

Breakfast 100% 40–60 6:00–10:00

Snack 1 50% 5–25 8:00–11:00

Lunch 100% 70–110 11:00–15:00

Snack 2 50% 5–25 15:00–18:00

Dinner 100% 55–75 18:00–22:00

Snack 3 50% 5–15 22:00–00:00

Our robust controller
resulted in 87.56% of time
within healthy BG ranges,
against the 80.6% of the
HCL controller. Despite
hypoglycemia amounts to
3.11% of the total time, it
corresponds only to minor
episodes, as visible by the
standard deviation inter-
vals in the plot and by
the average minimum BG
(BGmin = 3.84 mmol/L) that falls only slightly below the hypoglycemic level
(3.9 mmol/L).

We also report that our approach outperforms the robust LPV approach of
Jacobs et al. [31], discussed in the related work (Sect. 6). With the same plant
model and scenario, they obtain t<3.9 = 0%, t3.9−11.1 = 83.08% and t>11.1 =
16.92%, meaning that our robust controller stays >4% of the time longer in
healthy ranges. We remark that the results of Jacobs et al. are as reported
in [31], and were not obtained by running their controller on our machine.

5.5 Evaluation of State Estimator

We chose an MHE scheme for state estimation (see Sect. 4.1) after having eval-
uated extended Kalman filters (EKF) [35], which are commonly employed for
the state estimation of non-linear systems. MHE overcomes some of the typi-
cal problems of Kalman filtering, namely, the inability to accurately incorporate
state constraints (e.g. non-negative concentrations); poor use of the nonlinear
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Fig. 7. BG estimation error of Moving Horizon Estimator (MHE) and Extended
Kalman Filter (EKF), at different sensing noise variances q (20 repetitions).

model [8]; and estimations that often diverge, or converge to wrong state predic-
tions [26,32]. Moreover, “off-the-shelf” Kalman filters only support zero-mean
disturbances (white Gaussian noise), thus preventing the estimation of random
meal and exercise episodes.

We compare the state estimation accuracy between our MHE design and an
EKF scheme, according to the meals as expected scenario (see Sect. 5.1). In the
EKF, to predict the state estimate at time t, x̂(t), we use the model of Sect. 3
as follows: ˙̂x(t) = F (x̂(t), ιt,E[ut]), where ιt is the (known) insulin input and
uncertainty parameters ut are replaced with their expected value E[ut]3.

To evaluate if the estimators are robust with respect to sensing noise, we
tested two different variance values for the sensing noise: q = 0.1521 (default)
and q = 1 (increased noise). As visible in Fig. 7, the MHE outperforms the EKF,
with a consistently lower state estimation error. The imprecise state predictions
of the EKF lead to a wrong behavior of the overall closed-loop system, with
only ∼44% of time spent within normal BG ranges, against >94% of the MHE.
Unlike the EKF, the MHE is robust to sensing noise, with an average estimation
error (column EBG) that stays relatively constant from q = 0.1521 to q = 1.

3 The real expected value of ut is known because here we work with arbitrary distri-
butions.
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6 Related Work

Robust control methods are able to minimize the impact of input disturbances
on the plant, and thus have the potential to enable fully closed-loop insulin
delivery. Earlier approaches [14,25,29] are based on the theory of H∞ control
[30], a technique where the robust controller is synthesized offline as the result of
an optimization problem that minimizes the worst-case closed-loop performance
of the controlled system. However, H∞ control only supports linear systems,
thus requiring linearization of physiological, non-linear gluco-regulatory models,
with inevitable loss of accuracy.

Kovacs et al. [15,16,31] introduce robust linear parameter varying (LPV)
control, a technique that consists on deriving a piecewise-linear approximation
of the non-linear plant and synthesizing a robust H∞ controller for each linear
region, and thus, improves on previous H∞ approaches. In Sect. 5.4, we have
compared our robust controller to [31], showing that our algorithm is able keep
glucose levels within normal ranges for a longer time.

In contrast to the above techniques, our data-driven robust MPC supports
not just meal disturbances, but also physical activity, and is based on non-
linear optimization, meaning that it does not require to approximate the system
dynamics, leading to more precise predictions. Further, MPC is known to be
superior for individualized control strategies [4,23,33], even though is computa-
tionally more demanding than offline techniques like H∞ or LPV control, but still
feasible within the update periods typical of the artificial pancreas (5–10 min).
Finally, our data-driven scheme supports continuous learning of the patient’s
behavior, thus enabling the synthesis of robust and adaptive insulin therapies.
On the other hand, H∞ and LPV controllers are offline and need to be synthe-
sized from scratch in order to adapt to changing patient conditions.

A simpler strategy employed in a number of AP studies, see e.g. [12,18], is
that of PID control, where the control input results from applying tunable gains
to the error between the system output and a desired setpoint. Synthesizing these
gains to obtain robustness guarantees, however, becomes difficult for systems
with nonlinear and probabilistic dynamics.

7 Conclusions

Thanks to modern wearable sensing devices, patient-specific data about meals
and physical activity is becoming more readily available, making it possible to
offer significantly enhanced personalized medical therapy for type 1 diabetes.
Accordingly, we presented a data-driven robust MPC framework for T1D that
leverages meal and exercise data to provide enhanced control and state esti-
mation. Our results show that learning a patient’s behavior from data is key
to achieving fully closed-loop therapy that does not require meal and exercise
announcements.
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Abstract. In the face of incomplete data on a system of interest,
constraint-based Boolean modeling still allows for elucidating system
characteristics by analyzing sets of models consistent with the avail-
able information. In this setting, methods not depending on consider-
ation of every single model in the set are necessary for efficient analysis.
Drawing from ideas developed in qualitative differential equation theory,
we present an approach to analyze sets of monotonic Boolean models
consistent with given signed interactions between systems components.
We show that for each such model constraints on its behavior can be
derived from a universally constructed state transition graph essentially
capturing possible sign changes of the derivative. Reachability results of
the modeled system, e.g., concerning trap or no-return sets, can then
be derived without enumerating and analyzing all models in the set.
The close correspondence of the graph to similar objects for differential
equations furthermore opens up ways to relate Boolean and continuous
models.

1 Introduction

Mathematical modeling in systems biology is often hampered by lack of infor-
mation on mechanistic detail and parameters. Constraint-based Boolean model-
ing still allows investigations based on restricted knowledge, e.g., on component
dependencies and impact of certain interactions, by considering sets of mod-
els consistent with such constraints. However, analysis of every single model in
the set is costly. Exploiting formal verification techniques still allows to investi-
gate the behavior of large numbers of models in this context [10,14]. A different
approach aims at avoiding enumeration and explicit analysis of every model in
the set by deriving properties directly from the given constraints, e.g., inferring
dynamical information from coinciding structural characteristics of all models
[9,11–13]. Here, we adopt the latter approach for sets of Boolean networks con-
sistent with a given signed interaction graph Σ capturing dependencies between
system components and the type of influence exerted, activating or inhibiting.
This constitutes a scenario of particular interest in application, where interac-
tion information is usually more readily available than details on the processing
logic of multiple influences on a target component.

c© Springer International Publishing AG 2017
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A similar scenario motivates the theory of qualitative differential equations
(QDE) [4]. Here, a signed interaction graph is interpreted as the sign structure
of a Jacobi matrix of an ordinary differential equation (ODE) system. All ODE-
systems, which are consistent with a given interaction graph are collected in a
so-called monotonic ensemble M (Σ). For this ensemble, a qualitative state tran-
sition graph (QSTG) can be constructed whose nodes represent derivative signs
of the system components and edges indicate possible changes in the derivative
over time. It can then be used to describe the behavior of the ensemble. Similar
ideas have been exploited successfully for piecewise linear differential equations
by de Jong and colleagues for systems biology modeling [2,3].

Motivated by the results in the QDE setting, we show that a similar graph G
carries meaning in the Boolean framework as well. Here, for each Boolean func-
tion f consistent with a given interaction graph, we are interested in the asyn-
chronous state transition graph (ASTG) capturing the dynamics of the model.
We show that while the ASTG cannot be related directly to G this becomes pos-
sible for a quotient graph derived from the ASTG by identifying system states
with the same image under f . This quotient graph needs to be a subgraph of G.
Consequently, analysis of G allows to infer reachability constraints valid for all
models consistent with the interaction graph. In particular, universal statements
about trap sets and attractors become possible. The close correspondence of G
to the QSTG of a family of ODEs furthermore allows to relate discrete and con-
tinuous model ensembles, which can facilitate the preprocessing of continuous
data for Boolean models as well as prove useful in model validation.

Our paper is structured in the following way: In the first section we state def-
initions and notions about Boolean regulatory networks. Afterwards, we review
existing results for monotonic ensembles in the continuous setting and transfer
these ideas to the Boolean framework in Sect. 3. Subsequently, we exploit the
results by investigating how information about trap sets and no-return sets can
be obtained for sets of models consistent with a given interaction graph without
enumeration. Section 5 then touches upon some aspects relating Boolean and
ODE models. A short discussion concludes the paper. To allow for easy repro-
duction of our results, our Python implementation is publicly accessible in the
following git-repository: https://github.com/RSchwieger/QDE.

2 Preliminaries

Throughout the paper we consider a system of components 1, . . . , n, n ∈ N. As
general notation for different and coinciding entries or arbitrary vectors, we use
for v, w ∈ Sn, S any set:

diff(v, w) :=
{
i ∈ {1, . . . , n}|vi �= wi

}
,

comm(v, w) := {1, . . . , n}\diff(v, w).

https://github.com/RSchwieger/QDE
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2.1 Boolean Networks

We consider an arbitrary Boolean function f : {0, 1}n → {0, 1}n, n ∈ N cap-
turing the dynamics of n interacting components represented by 0/1 variables.

Definition 1. The discrete derivative of the function f : {0, 1}n → {0, 1}n is
defined by

(∂jfi)(x) :=
fi(x ⊕ ej) − fi(x)

(xj ⊕ 1) − xj
∈ {−1, 0, 1},

where ⊕ is the addition modulo 2. Furthermore, we denote with ∇fi the vector(
∂1fi , . . . , ∂nfi

)t.

As is standard, we then derive an interaction graph from the derivatives that
captures dependencies between the components, either locally, i.e., in a given
state, or globally summarizing all possible interactions between components.

Definition 2. The local interaction graph IGf (x) := (V,E), x ∈ {0, 1}n of
a Boolean function f : {0, 1}n → {0, 1}n consists of n vertices V := {1, . . . , n}
and a signed edge-set E

(
IGf (x)

)
, which is defined as

(i, j, ε) ∈ E
(
IGf (x)

) ⇔ (∂ifj)(x) = ε

with ε ∈ {−1, 1}. We denote with IGglobal(f) the global interaction graph
defined as the union of all local interaction graphs, i.e.,

IGglobal(f) =
⋃

x∈{0,1}n

IGf (x)

For convenience, we often identify an interaction graph with its signed adjacency
matrix.

In general, the global interaction graph can contain two edges with oppo-
site signs between two components. However, here we consider only func-
tions f , which lead to interaction graphs with maximally one edge between
two components. That is, in the following we only consider Boolean functions
f : {0, 1}n → {0, 1}n, where

∀x, y ∈ {0, 1}n∀ε ∈ {1,−1} : (s, t, ε) ∈ E
(
IGf (x)

) ⇒ (s, t,−ε) �∈ E
(
IGf (y)

)

holds. We call such functions monotonic. This should not be confused with
the notion of monotone functions as defined for example in [8], which is more
restrictive. The assumption poses no severe restriction for application since most
models of bioregulatory systems lack parallel edges of different signs (cf. model
repositories as e.g. for PyBoolNet [7]1).

1 https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository.

https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository
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In addition to the (local) interaction graph(s), we attribute to f a second
graph, which describes the dynamics of the components. Here, we use an asyn-
chronous update scheme attributing to f an asynchronous state transition graph
Gasync(f) = (Vasync(f), Easync(f)) with Vasync(f) := {0, 1}n and

Easync(f) =
{
(s, t) ∈ Vasync(f) × Vasync(f) | (diff(s, t) = {i} and fi(s) = ti

)

or s = t = f(s)
}
.

Example 1. Let f(x1, x2, x3, x4) = (1 − x4, x1, x2 · (1 − x4), 1 − x3) be a Boolean
function. Its global interaction graph and asynchronous state transition graph is
depicted in Fig. 1. The global interaction graph is given by the adjacency matrix

Σ =

⎛

⎜
⎜
⎝

0 0 0 −
+ 0 0 0
0 + 0 −
0 0 − 0

⎞

⎟
⎟
⎠ ,

x1

x2

x3

x4

0000

0001

1000

0010

1010

0011

0100

0101

0110

1100

1110

0111

1001

1101

1011

1111

Fig. 1. Left: Global interaction graph of the running example. Right: ASTG of the
running example.

2.2 Monotonic Ensembles and Qualitative Differential Equations

The motivation of our results on sets of Boolean models comes from approaches
to analyze families of ODE models ẋ = f(x) which share some qualitative prop-
erties. Mainly, these are sign constraints on the Jacobi matrix of the right hand
sides of the ODE-System. Instead of the solutions x(·) of the ODE-systems,
so-called “abstractions” are considered. In the context of this paper, these
abstractions are sequences of sign vectors of the derivatives of the solutions.
A state transition graph on the sign vectors can be constructed based on
the sign matrix, which captures restrictions on the behavior of the solutions.
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This graph will be our focus in the subsequent sections. Notions and definitions
in this section are taken from [4].

We define an ensemble of ODE systems whose corresponding Jacobi matrices
share a sign structure. The usual sign operator is denoted [·] := sign(·), taking
values in {−1, 0, 1} and extended componentwise to vectors and matrices.

Definition 3 ([4, p. 22]). For a given n×n matrix of signs Σ = (σi,j)i,j=1,...,n,
σi,j ∈ {−1, 0, 1} and a state space X ⊆ R

n we define the monotonic ensemble

M (Σ,X) = {f ∈ C1(X,Rn) | ∀x ∈ X : [J(f)(x)] = Σ}, where

J(f) denotes the Jacobian of f .
We call a function x ∈ C1([0, T ],Rn), T ∈ [0,∞], reasonable, if there is only

a finite set of points t with ẋ(t) = 0 in any bounded interval. We define the space
of admissible trajectories by

E = {x ∈ C1([0, T ],X)|x is reasonable}.

The solution set SM (Σ,X) for an initial value problem with x(0) = x0 ∈ X
contains all reasonable solutions of corresponding ODE systems whose right hand
side function is contained in the monotonic ensemble M (Σ,X), i.e.,

SM (Σ,X) := {x ∈ E |∃f ∈ M (Σ,X), x0 ∈ X s.t. ẋ = f(x), x(0) = x0}.

The restriction to reasonable solutions is a technical detail needed to allow for
a discretization which tracks the sign vectors [ẋ(t)] for each solution and can be
deduced directly from Σ [4, p. 22]. For conciseness, we will identify an ODE with
its right hand side function, talking about ODEs as elements of the monotonic
ensemble

We illustrate the notions on our running example.

Example 2. Consider all solutions of ODE-systems ẋ = f(x) with f ∈
C1([0, 1]4,R4) having a Jacobi matrix with the sign structure

Σ =

⎛

⎜
⎜
⎝

0 0 0 −
+ 0 0 0
0 + 0 −
0 0 − 0

⎞

⎟
⎟
⎠ ,

corresponding to the signed adjacency matrix of the interaction graph of the
Boolean function given in Example 1. They constitute a monotonic ensemble
denoted by M (Σ).

As an example for elements of this monotonic ensemble, we construct now
a function f ∈ M (Σ). To connect to our Boolean example, we construct an
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ODE-System from the function f given in Example 1 by using one of the methods
explained in [15]2. We obtain:

ẋ = f̃(x) − x

x(0) = x0

with f̃ : [0, 1]4 → [0, 1]4 given by

f̃(x) =
(
1 − x4

x4+0.5
x1

x1+0.5
x2

x2+0.5 · (
1 − x4

x4+0.5

)
1 − x3

x3+0.5

)t
.

It can easily be checked that the map f̃ is in the monotonic model ensem-
ble M (Σ). Figure 2 shows the solution of the ODE-System, if we choose
x0 =

(
0.6 0.6 0.6 0.6

)t, and illustrates that it is a reasonable function, thus
belonging to the solution set.

Fig. 2. Trajectories of a solution of an ODE in the model ensemble. Its abstrac-
tion is given by (−1, −1, −1, −1)→(1, −1, −1, −1)→(1, 1, −1, −1). The ODE was para-
metrized with x0 = (0.6, 0.6, 0.6, 0.6), d = (1, 1, 1, 1), θ = (0.5, 0.5, 0.5, 0.5) and
k = (1, 1, 1, 1).

We are now looking for qualitative features of solutions in order to find
properties common to all ODEs in the ensemble. The idea is to obtain a rough
description of solution trajectories by keeping track of the sign changes in the
derivative. In general, to each reasonable solution x : [0, T ] → X, T finite, we
can assign a unique ordered, maximal sequence (tj)j ∈ {0, . . . , M}, tj ∈ [0, T ],
with t0 = 0, tM = T and tj ∈ (0, T ) with the vector ẋ(tj) having a zero entry
for j ∈ {1, . . . , M − 1} indicating sign jumps of the trajectory. If T is infinite
we can define a similar sequence not ending in T . In the interval between the

2 More specifically speaking, we use a multivariate interpolation and a subsequent
concatenation with Hill Cubes to obtain an ODE-System, which is guaranteed to
have a Jacobi matrix, whose abstraction coincides with the matrix Σ on the off
diagonals. Then we choose arbitrarily Hill coefficients and thresholds.
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points in the sequence the sign of the solution derivative is then constant. We
are now interested in the sequence of those signs. Formally, we get the following
definition.

Definition 4 ([4, p. 23]). For a solution x ∈ E , consider the ordered sequence
(tj) in [0, T ] consisting of 0 and all boundary points of the closure of all sets
{t ∈ [0, T ]

∣
∣[ẋ(t)] = v} with v ∈ {−1, 1}n. A sequence (τj) s.t. τj ∈ (tj , tj+1)

gives rise to the sequence x̃ = (x̃j) := ([ẋ(τj)]) which is called abstraction of
x(·). We denote the set of abstractions of the solutions of a monotonic ensemble
M (Σ) by

S̃M (Σ) := {x̃ | x̃ is the abstraction of x(·) for some x ∈ SM (Σ)}.

To illustrate the notion, we extract the abstraction for a solution of the running
example.

Example 3. Consider the solution of the ODE depicted in Fig. 2. Its abstraction
is given by ((−1,−1,−1,−1), (1,−1,−1,−1), (1, 1,−1,−1)), since on the begin-
ning of the trajectory all components are decreasing. Then the first component
starts increasing followed by the second one.

Based on the abstractions a state transition graph can now be constructed. The
states correspond to the signs of ẋ(·) and edges indicate subsequent sign vectors
in some abstraction.

Definition 5 ([4, p. 23]). The directed state transition graph GQDE(Σ) of the
monotonic ensemble is defined by the vertex set

VQDE(Σ) := {−1, 1}n,

called qualitative states, and the edge set

EQDE(Σ) := {(v, w)|∃x̃ ∈ S̃M (Σ), j ∈ N : x̃j = v and x̃j+1 = w},

called qualitative transitions.

In the following, we indicate the edge relation with →.

Example 4. The state transition graph of our running example is depicted
in Fig. 3. We see that we can find the trajectory (−1,−1,−1,−1) →
(1,−1,−1,−1) → (1, 1,−1,−1) of Example 3 in this graph.

Naturally, this graph would not be very helpful in application if we would
need to solve all ODEs in the ensemble to construct it. The following proposition
constitutes a different approach. It basically says that a change in sign of a
component i must be caused by a consistent dependency on a component j in
the right hand side function f , as captured in the i, j-th entry σij of the sign
matrix Σ.
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(-, +, -, -)

(-, -, -, -)

Fig. 3. Left: State transition graph of the monotonic ensemble in the running example.
Right: The quotient graph Gasync(f)

/
φf from Example 5. Self-loops are not shown.

Proposition 1 ([4, p. 25]). Let v, w ∈ {−1, 1}n = VQDE(Σ), v �= w. Then,
(v, w) ∈ EQDE(Σ) iff

∀i ∈ diff(v, w)∃j ∈ comm(v, w) : wi · vj = σi,j (1)

The proof of Proposition 1 is given in [4, p. 25]. In the following section, we
will transfer the statement into the Boolean setting.

To conclude this section, we note that there is no one-to-one correspondence
between the qualitative state transition graph and the corresponding sign matrix
Σ. It is possible to change elements on the diagonal of Σ without changing the
graph GQDE(Σ). This is due to the fact that the sets diff(v, w) and comm(v, w)
are disjoint and thus the diagonal elements do not play a role in Eq. (1). Conse-
quently, the edge set does not change when changing the diagonal of Σ.

Remark 1. Let Σ be a sign matrix. Then

GQDE(Σ) = GQDE(Σ − D),

where D is any diagonal matrix with entries in {−1, 0, 1}.

In the following we will examine analogues to the graph GQDE(Σ) and the
set M (Σ) in the Boolean setting.

3 Quotient graphs for Boolean networks

In the Boolean setting, paths in the asynchronous state transition graph can
be seen as trajectories of the system. To transfer the results from the previous
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section, we first need to adapt the notion of derivative sign vectors and abstrac-
tions. A first approach could be to consider the difference vectors of a state and
its image under the Boolean function f to capture the tendencies to increase
or decrease. It turns out, however, that for transferring the results of Sect. 2.2
the better choice is to just assign values 1, if the image value under f is 1, and
−1, if the image value is 0. This choice becomes more meaningful when relating
Boolean to corresponding ODE systems as we will discuss later.

To formalize this value assignment, we introduce the function

φf : {0, 1}n → {−1, 1}n, φf (s) → (
(−1)1−fi(s)

)
i=1,...,n

. (2)

Using φf we can now assign a sign vector to every state in the state transition
graph of f . Naturally, several states correspond to the same sign vector. To
associate the set of these states to the corresponding sign vector, we consider
the equivalence relation induced by φf on the vertices Vasync(f):

s ≈ t :⇔ φf (s) = φf (t).

Since two states are in the same equivalence class if and only if their images
under φf are the same we identify the equivalence classes with the states of φf .
In a next step, we want to obtain abstractions. The trajectories of the Boolean
system are the paths in the asynchronous state transition graph, so we infer
edges between sign vectors (representing sets of nodes of the state transition
graph) from the edges in the state transition graph. For this, we simply consider
the quotient graph Gasync(f)

/
φf , which consists of the node set induced by the

above equivalence class, identified with the images of φf , and an edge between
two equivalence classes if there is at least one edge between two nodes in the
preimages of φf in Gasync(f).

Since fi(s) = 0 ⇔ φf (s)i = −1 and fi(s) = 1 ⇔ φf (s)i = 1, we see that f and
φf induce the same equivalence relation, and thus Gasync(f)

/
φf = Gasync(f)

/
f .

Example 5. We illustrate the notions using the Boolean function f from Exam-
ple 1 again. Its ASTG Gasync(f) is depicted in Fig. 1. In Fig. 3 the quotient graph
Gasync(f)

/
φf is depicted. Each vertex represents an equivalence class on the ver-

tices of Gasync(f) represented using φf . The state (−1, 1,−1,−1) for example
represents the equivalence class φ−1

f (−1, 1,−1,−1) = {(1, 0, 1, 1), (1, 1, 1, 1)}.

Looking at the example, we can detect some similarity between the quo-
tient graph and the state transition graph of the monotonic ensemble in
Fig. 3. To understand this similarity better we will derive a Boolean version of
Proposition 1. We obtain a nearly identical statement. One adjustment concerns
negative self-loops, which in the time-discrete other than in the continuous set-
ting potentially instigate oscillation in one component. We need to exclude such
an immediate sign switch in the following statement.

Theorem 1. If there is an edge (s, t) ∈ Easync(f) for a Boolean function
f : {0, 1}n → {0, 1}n then

(∀i ∈ diff(f(s), f(t)) ∃j ∈ comm(f(s), f(t)) : φf (t)i · φf (s)j = ∂jfi(s)
)

(3)

or
(
diff(s, t) ∩ diff(f(s), f(t)) = {j} and ∂jfj(s) = −1

)
.



242 R. Schwieger and H. Siebert

Proof. Let (s, t) ∈ Easync(f). By definition of the asynchronous update diff(s, t)
is either empty, and the statement holds trivially, or contains one element. In
the following let j ∈ diff(s, t) be this element. Consider the following two cases:

Case 1: j ∈ comm f(s)f(t). For i ∈ diff(f(s), f(t)), we can build the following
table by considering all possible values of fi(s) and listing in the corresponding
row some inferred values.

fi(s) = 0 φf (s)i = −1 fi(t) = 1 φf (t)i = 1 fi(t) − fi(s) = 1

fi(s) = 1 φf (s)i = 1 fi(t) = 0 φf (t)i = −1 fi(t) − fi(s) = −1

Since j ∈ comm(f(s), f(t)), j ∈ diff(s, t) and (s, t) ∈ Easync(f), we obtain:

sj = 1 fj(s) = 0 tj = 0 fj(t) = 0 φf (s)j = −1 tj − sj = −1

sj = 0 fj(s) = 1 tj = 1 fj(t) = 1 φf (s)j = 1 tj − sj = 1

Taking the last two columns of these tables, we obtain by substitution

φf (t)i · φf (s)j =
[
fi(t) − fi(s)

] · [tj − sj

]
=

fi(t) − fi(s)
tj − sj

=
fi(s ⊕ ej ) − fi(s)

sj ⊕ 1 − sj
= ∂jfi(s).

Case 2: j ∈ diff f(s)f(t). Due to tj �= sj , tj = fj(s) and fj(t) �= fj(s) we get:

sj tj fj(s) fj(t) tj − sj fj(t) − fj(s)

0 1 1 0 1 −1

1 0 0 1 −1 1

From the last two columns we can deduce that there is a negative self-loop:

∂jfj(s) =
fj(s ⊕ ej) − fj(s)

sj ⊕ 1 − sj
=

fj(t) − fj(s)
tj − sj

= −1.

��
Before we continue, we want to emphasize the importance of Theorem 1 with
respect to two aspects. First, if we restrict ourselves to Boolean functions without
self-loops, it gives us a condition for an edge in Gasync(f) purely in terms of f .
Indeed, we will see later that in principle it is enough to know the image of
f and IGf (·) This means, we can deduce information about Gasync(f)

/
φf =

Gasync(f)
/
f from IGf (·) without having full information about f . Second, if we

compare Theorem 1 with Proposition 1, we notice that they are identical, if we



Graph Representations of Monotonic Boolean Model Pools 243

consider monotonic functions without negative self-loops. This suggests that it
is reasonable to interpret the states of the quotient graph as signs of changes in
the continuous setting as well. This gives us another set of predictions Boolean
models are capable to make. We will discuss this aspect further in Sect. 5.

To explain the first point better, we state the following corollary.

Corollary 1. Consider a Boolean monotonic function f : {0, 1}n → {0, 1}n

with an interaction graph IGglobal(f) = (σi,j)i,j∈{1,...,n} without negative self-
loops. Assume there is an edge (v, w) in Gasync(f)

/
φf then

∀i ∈ diff(v, w)∃j ∈ comm(v, w) : wi · vj = σi,j , (4)

where we identified the equivalence classes v, w with the corresponding elements
in the image of φf .

Proof. Assume there is an edge (v, w) in Gasync(f)
/
φf . According to the def-

inition of the quotient graph there exists an edge (s, t) ∈ Easync(f) such that
φf (s) = v and φf (t) = w. According to Theorem 1 and the assumption that the
interaction graph has no negative self loops Condition 3 is satisfied in the local
interaction graph IGf (s) and consequently also in IGglobal(f). ��
Example 6. Consider the states s = (1, 0, 1, 1), t = (1, 0, 1, 0) for our running
example. Their images under φf are v = (−1, 1,−1,−1), w = (1, 1,−1,−1). As
can be seen in Fig. 3 there is an edge (v, w) in Gasync(f)

/
φf and Condition 4

should be satisfied for these nodes. Indeed w1 · v4 = 1 · (−1) = σ1,4.

4 Boolean Monotonic Ensembles

Motivated by the treatment of families of ODEs using QDEs, we now discuss
families of Boolean functions defined by a n×n sign matrix Σ = (σi,j)i,j∈{1,...,n}
taking values in {−1, 0, 1}. Here, Σ fixes the structure of Boolean model. In
addition to the constraints captured by Σ we assume throughout the section
that the considered functions do not have negative self loops.

Definition 6. For a given n × n matrix of signs Σ = (σi,j)i,j =1,...,n we define
the Boolean monotonic ensemble

MB(Σ) =
{
f : {0, 1}n → {0, 1}n

∣
∣IGglobal(f) = Σ

}
.

As in the QDE setting, we are now looking for a compact representation of
possible trajectories for all models in the ensemble. The QDE graph GQDE(Σ)
and Theorem 1 motivate the following definition.

Definition 7. We call the graph GBoolean
QDE (Σ) = (V Boolean

QDE , EBoolean
QDE (Σ)) with

V Boolean
QDE = {−1, 1}n,

EBoolean
QDE (Σ) = {(v, w)|∀i ∈ diff(v, w)∃j ∈ comm(v, w) : wi · vj = σi,j}

the Ensemble state transition graph (ESTG) of Σ.
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This graph, which is due to Proposition 1 the same object as GQDE(Σ), can be
constructed without any consideration of specific functions in the ensemble. Nev-
ertheless, Theorem 1 enables us to extract information on specific state transition
graphs using the quotient graph.

Theorem 2. Let f ∈ MB(Σ). The map φf is a graph homomorphism from
Gasync(f) into GBoolean

QDE (Σ).

Proof. By definition, φf maps the vertex set {0, 1}n of Gasync(f) into the vertex
set of GBoolean

QDE (Σ). Now, we show that φf conserves the edges. Let (s, t) ∈
Easync(f) and set v := φf (s), w := φf (t).

By definition and as discussed in Sect. 3, φf is a graph epimorphism from
Gasync(f) onto Gasync(f)

/
φf . Therefore, we only need to show that Gasync(f)

/
φf

is a subgraph of GBoolean
QDE (Σ). But this is clear, since the criterion for an edge in

Gasync(f)
/
φf is according to Theorem 1 just Condition (4), which in turn defines

the edges in GBoolean
QDE (Σ). ��

We can utilize this theorem to obtain reachability constraints for every Boolean
function f in the monotonic ensemble since the lack of an edge in GBoolean

QDE (Σ)
implies the lack of the corresponding edge in the ASTG of f . The following
corollary illustrates this point for trap sets, i.e., sets of states no trajectory can
leave, and no-return sets, i.e., sets of states that no trajectory enters.

Corollary 2. Assume the set T ⊆ V Boolean
QDE is a trap set (or a no-return set) in

GBoolean
QDE (Σ). Then for any f ∈ MB(Σ) the set φ−1

f (T ) is a trap set (no-return
set) in Gasync(f). More generally speaking: If T1, T2 ⊆ V Boolean

QDE and there is no
path between T1 and T2 in GBoolean

QDE (Σ) then for any f ∈ MB(Σ) there is no path
from φ−1

f (T1) to φ−1
f (T ) in Gasync(f).

Trap sets are of particular interest in application since they always contain
at least one attractor. However, not every trap set in GBoolean

QDE (Σ) gives rise to
a trap set in Gasync(f) since the preimage might be empty. Conversely, since
GBoolean

QDE (Σ) can be interpreted as a supergraph of a corresponding ASTG, there
might be trap sets in Gasync(f) that cannot be identified in GBoolean

QDE (Σ). In
any case, to obtain explicit information on a function f in the ensemble, we
need to calculate preimages, which in general is a hard problem [6]. However,
in some situations we can test very cheaply if a preimage is empty or if it is
worth computing it with respect to the long term behavior of the system as we
illustrate with the following statements.

For easier notation, we now identify the nodes GBoolean
QDE (Σ) with the elements

in the image of any f ∈ MB(Σ) (and thus Boolean states), as previously done
for φf .

Corollary 3. Assume the set {t} ⊆ V Boolean
QDE is a trap set of cardinality 1 in

GBoolean
QDE (Σ). Then for any f ∈ MB(Σ) the set f−1(t) is either empty or f(t) = t.

If f(t) = t every trajectory in f−1(t) ⊆ Gasync(f) ends in t.



Graph Representations of Monotonic Boolean Model Pools 245

Proof. Since {t} ⊆ V Boolean
QDE is a trap set in GBoolean

QDE (Σ), f−1(t) is a trap set in
Gasync(f). For each s ∈ f−1(t) it holds f(s) = t, so there must exists a path to
t in the trap set. In particular, t is in the trap set, so f(t) = t ��

We illustrate the last two corollaries by finding trap-sets and no-return sets
of the Boolean monotonic ensemble in our running example.

Example 7. Consider the sign matrix from our running Example 1, depicted in
Fig. 1. The graph GBoolean

QDE with its strongly connected components is depicted
in Fig. 4. They are:

A0 = {(0, 0, 0, 1)}
A1 = {(1, 1, 1, 0)}
A2 = {0, 1}4\(

A0 ∪ A1 ∪ A3 ∪ A4

)

A3 = {(1, 0, 1, 1)}
A4 = {(0, 1, 0, 0)}.

We can now infer that for any f ∈ MB(Σ) the sets f−1(A1), f−1(A0) are trap-
sets while the sets f−1(A3), f−1(A4) are no-return sets.

Both the function f introduced in Example 1 as well as g ∈ MB(Σ) given by
g(x) = (1 − x4, x1, x2 + (1 − x4) − x2 · (1 − x4)) are elements of the ensemble.

For function f we see its asynchronous state transition graph Gasync(f) in
Fig. 1 and its quotient graph Gasync(f)

/
f in Fig. 3. We easily compute that

f−1(A1), f−1(A0) are non-empty by checking that (0, 0, 0, 1), (1, 1, 1, 0) are fixed
points of f .

5 The Quotient Graph Gasync(f)
/
φF as Discretization

of Continuous Data

In application, the choice of modeling formalism is not always straight forward,
since continuous and discrete approaches have complementing strengths. Bridg-
ing the formalisms is therefore of high interest. The QDE formalism is a suitable
way to do so, as illustrated by the results for piecewise linear systems utilizing
similar ideas with successful applications in systems biology [3].

The results we presented here give a precise link between a Boolean model
f and a QDE system, since the ESTG GBoolean

QDE (Σ) of a Boolean monotonic
ensemble coincides with the QDE state transition graph corresponding to Σ,
and the quotient graph Gasync(f)

/
φf is a subgraph of this ESTG. Trajecto-

ries in Gasync(f)
/
φf thus capture the qualitative behavioral patterns encoded in

abstractions of ODEs. The −1 and 1 values of φf reflect the decreasing or increas-
ing tendencies of a continuous trajectory, taking into account that for example a
negative value of (φf )i for some i ∈ {1, . . . , n} is either caused by a component
i in the Boolean system switching from 1 to 0 or by remaining 0, which is nor-
mally in a continuous system realized by an asymptotically decreasing behavior.
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Fig. 4. This example illustrates how statements about MB(Σ) can be derived from
Σ using its strongly connected components (see Example 7). Left: Strongly connected
components of GBoolean

QDE . Right: The graph GBoolean
QDE . Self-loops are not shown.

Since GQDE(Σ) summarizes the behavior of the corresponding ODE systems,
one could argue that the more realistic trajectories of the Boolean system are to
be found in Gasync(f)

/
φf rather than the ASTG.

The nodes of the graph Gasync(f)
/
φf can be interpreted as the slope signs of

the component trajectories in the regulatory networks directly without using the
ASTG at all. This addresses one of the difficulties often occurring when informing
a Boolean model with experimental data, where it is often not at all obvious what
discretization thresholds and basal values to assign when processing quantitative
data. Here, considering just changes in the measurements, e.g., when exploiting
time series data, allows the direct comparison with the ESTG resp. Gasync(f)

/
φf .

6 Conclusion

Motivated by the theory of QDEs, we presented the notion of an ensemble state
transition graph GBoolean

QDE (Σ) for a family of monotonic Boolean functions with
coinciding global interaction graphs without negative loops. Every asynchro-
nous state transitions graph for a function f in the ensemble can be mapped by
a graph homomorphism via their natural quotient graph Gasync(f)

/
f into the

graph GBoolean
QDE (Σ). Consequently, analysis of the ensemble graph yields informa-

tion valid across all ASTGs in the ensemble, in particular, on trap sets, no-return
sets and reachability properties in general. This may be exploitable when looking
for control strategies for model ensembles, e.g., for identifying knock-out candi-
dates in the interaction graph that assure certain reachability properties in the
ASTGs of the corresponding functions as has been done for differently defined
ensembles [5].
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Construction of the graph GBoolean
QDE (Σ) is easily done based on information

encoded in Σ. At first glance the computational cost for the construction using
Condition (4) is not cheap. However, in application interaction graphs are often
rather sparse and the condition need only be tested for non-zero entries of Σ.

Interpretation of the information encoded in the ESTG for a particular func-
tion in the ensemble is hampered by the fact that the nodes represent sets of
preimages of the node state. Since the possibility of these sets being empty is
not excluded, information can not always be transferred in a straight-forward
manner. For this problem, we want to explore two aspects in future research.
First, we would like to clarify whether the existence of an edge in the ESTG
implies the existence of an ensemble function f with corresponding edges in its
ASTG. In the QDE setting this statement is true. Second, we want to investigate
which subgraphs of GBoolean

QDE (Σ) arise as quotient graphs of Boolean functions
f ∈ MB(Σ) and, related, derive constraints from ensemble graph edges for the
models that exhibit them.

In the last section, we shortly touched upon the connection the QDE frame-
work offers between ODE and Boolean models. In the constraint-based view
adopted here, we saw that the ensemble graphs GQDE(Σ) and GBoolean

QDE (Σ) are
the same. The interpretation of the nodes as signs of change gives us an alter-
native way of interpreting the Boolean states of the graph Gasync(f)

/
f in a

continuous setting, based on differences rather than absolute values, as is often
more natural when processing experimental data. The fact that graphs GQDE(Σ)
and GBoolean

QDE (Σ) are identical, but carry different meaning, could in future lead
to new network inference algorithms for predicting edges in Σ, based on network
inference algorithms for Boolean functions. Since QDEs and ODEs are intrin-
sically related, such predictions could be very robust. Beyond this aspect, we
would like to investigate ways to assign a family of ODE systems to a Boolean
function f ∈ MB(Σ) such that the subgraph of GQDE(Σ) induced by this family
via their set of abstractions S̃M (Σ) resembles the quotient graph Gasync(f)

/
f

more closely. This could provide approaches for validating Boolean models tak-
ing dynamics on a higher resolution level consistent with the qualitative model
properties into account.

Lastly, our results raise the question in how far logic constrains obtained from
different abstractions than Proposition 1 lead to similar results [1]. For many
biological applications it could make sense to consider a more restricted class of
ODE-systems. For example in [5] ODE-systems (models of reaction networks)
stemming from different kinetic rate laws are abstracted. It would be interesting
to see in how far such results are comparable to QDEs in general and in how far
they are related to the results in this paper.
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Abstract. Pathway Logic (PL) is a general system for modeling signal
transduction and other cellular processes with the objective of under-
standing how cells work. Each specific model system builds on a knowl-
edge base of rules formalizing local process steps such as post transla-
tional modification. The Pathway Logic Assistant (PLA) is a collection of
visualization and reasoning tools that allow users to derive specific exe-
cutable models by specifying of an initial state. The resulting network of
rule instances describes possible behaviors of the modelled system. Sub-
nets and pathways can then be computed (they are not hard wired) by
specifying states to reach and/or to avoid. The STM knowledge base is a
curated collection of signal transduction rules supported by experimen-
tal evidence. In this paper we describe methods for using the PL STM
knowledge base and the PLA tools to explain observed perturbations of
signaling pathways when cells are treated with drugs targeting specific
activities or protein states. We also explore ideas for conjecturing tar-
gets of unknown drugs. We illustrate the methods on phosphoproteomics
data (RPPA) from SKMEL133 melanoma cancer cells treated with differ-
ent drugs targeting components of cancer signaling pathways. Existing
curated knowledge allowed to us explain many of the responses. Con-
flicts between the STM model predictions and the data suggest missing
requirements for rules to apply.

1 Introduction

Understanding how cells work is a fundamental question in Biology. It is impor-
tant for basic science, as well as for practical applications including under-
standing disease, drug discovery, and synthetic biology. There are many aspects,
including the different processes within a cell (metabolism, signaling, transcrip-
tion/translation, . . . ), how these processes interact, what are the normal states,
and what happens in response to some perturbation.

Executable mechanistic models [7] play an important role in understanding
cellular processes, as they support in silico experiments, hypothesis generation,
and feedback between laboratory experiments and model development. In the
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case of drug discovery such models help to determine details of the mechanism
of action (MOA) and dually, drugs with a known MOA are used to learn details
about how cells work.

The work reported here was done as part of a DARPA Big Mechanism
project. The challenge was to use our Pathway Logic Signal Transduction model
(STM) to explain how drugs with a known mechanism of action caused the
changes in protein expression and/or phosphorylation measured by Reverse
Phase Protein Array (RPPA) using data from [10].

The contributions of this paper are

– methods to explain effects of drugs on exponentially growing cells as measured
by high throughput phosphoproteomics assays.

– a method to build a model of exponentially growing cells from a knowledge
base of rules describing cellular events.

– methods to derive the mechanism (network of events) underlying response to
treatment by drugs with known specific targets

– methods to hypothesize targets of unknown drugs, i.e. perturbations of the
network that could explain measured responses.

Using these methods we were able to explain many of the observed changes in
expression and phosphorylation in SKMEL133 cells when treated with drugs
with known targets, and to make some conjectures regarding possible targets of
two of the unknown drugs.

The SKMEL133 model is available at pl.csl.sri.com/online.html as part of
the Pathway Logic suite of models. The accompanying guided tour is available
as a link from the Online launcher, or directly from pl.csl.sri.com/ along with a
techreport version of this paper.

Plan. We provide a brief introduction to Pathway Logic and describe the general
method for explaining drug study data in Sect. 2. In Sect. 3 we describe the data
set and how it was processed in order to map the data to a PL model. The model
of exponentially growing SKMEL133 cells is presented in Sect. 4. In Sect. 5 we use
the model to explain the data for drugs with known, experimentally validated,
targets. In Sect. 6 we analyze the data for two of the unknown drugs, with
consistent results in one case and many mysteries in the other case. Some related
work is discussed in Sect. 7, and we conclude with a summary and discussion of
future work in Sect. 8.

2 Pathway Logic Models and Their Use to Analyze Data

The objective of Pathway Logic (PL) is to understand how cells work. A recent
overview of PL can be found in [16]. The PL collection of models, knowledge
bases, software, documentation, papers, and tutorials are available from the PL
website [13]. The PL model collection includes models of metabolism, protease
signaling in bacteria, protein glycosylation, and fragments of the human immune
system. The most highly developed model is STM (Signal Transduction Model).
This will be our starting point for modeling response to drugs.

http://pl.csl.sri.com/online.html
http://pl.csl.sri.com/
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2.1 PL Concepts and Reasoning Tools

Curation Inference Reasoning

Datums Rules Exploration

Executable
RuleKB

Literature

Fig. 1. From data to models in PL.

As shown in Fig. 1, the STM Pathway
Logic models are founded on two formal
knowledge bases: a curated datum knowl-
edge base (DKB), and a rules knowl-
edge base (RKB), that share a controlled
vocabulary formalized in Maude [4].

A datum formalizes an experimental
observation of the state or location of pro-
tein or other biomolecule (RNA, Lipids, . . . ) either in some well-defined experi-
mental condition, or a change in response to some signal or perturbation [12].

Signaling events are formalized as rewrite rules. They are generally inferred
from datums, although rule sets can also be curated from review articles and text
books, or simply hypothesized. A rule contains terms representing the change
(before and after state) as well as terms representing the biological context
required for the change to take place. A rule may be parametric, containing vari-
ables that can be instantiated in multiple ways to give different rule instances
usable in different contexts. Rules in PL do not have rates.

The RKB can be thought of as a global model. Executable models of spe-
cific situations are generated by specifying initial conditions and constraints,
formalized using a notion of dish (as in Petri dish). A dish is a term representing
the initial state of the modeled system. It can be thought of as representing an
experimental setup: cell type, growth conditions, and treatments or other pertur-
bations. The cell type and growth conditions are represented by specifying which
proteins and other biomolecules are present, their location, and their modifica-
tion and/or activity state. The PL STM consists of rules concerning response to
over 35 different stimuli as well as common rules that formalize local changes
independent of a particular stimulus.

In PL, model elements and state are represented using a controlled vocabu-
lary that is specified as a functional module in Maude. There is a core vocabulary
shared by all PL knowledge bases/models and a model specific vocabulary that
declares specific model elements (proteins, chemicals, modifications, locations,
. . . ). The PL controlled vocabulary has several roles: organizing concepts via a
sort/type hierarchy; determining legal/well-formed/meaningful terms by speci-
fying constants and typed term constructors, and giving meaning to constants
by providing metadata linking constant symbols to external references (Uniprot,
HMDB, . . . ).

A PL executable model state is multi-set of occurrences of entities (proteins,
chemicals, genes, . . . ). An occurrence specifies an entity, its modifications and/or
activity state, and its location. For example Braf-act@CLc is an occurrence of
active Braf in the cytoplasm (CLc), PIP3@CLm is an occurrence of the lipid PIP3 in
the cell membrane (CLm), S6k1-phos!T412@CLc is an occurrence in the cytoplasm
of S6k1 phosphorylated on threonine 412.

The STM model uses the term family for groups of proteins that cannot be
differentiated by antibodies. For example, the anti-Akt antibody (CST#4691)
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used in [10] detects Akt1, Akt2, and Akt3. We cannot determine whether the
increase in the level of protein expression is due to one and/or two and/or three
of the Akts so we use the constant Akts to refer to some or all members of this
family. Similarly, the antibody used to detect Akt1-phos!S473 (CST#9271) also
recognizes Akt2-phos!S474 and Akt3-phos!S472. We use a site code (symbolic
name) to represent the corresponding residues in all three proteins. The families
and site codes used in the current work are shown in the table below.

Site code Refers to and/or and/or

Akts-phos!FSY Akt1-phos!S473 Akt2-phos!S474 Akt3-phos!S472

Akts-phos!KTF Akt1-phos!T308 Akt2-phos!T309 Akt3-phos!S307

Gsk3s-phos!SFAE Gsk3a-phos!S21 Gsk3b-phos!S9

Mek12s-phos!SMANS Mek1-phos!S218-phos!S222 Mek2-phos!S222-phos!S226

Erks-phos!TEY Erk1-phos!T202-phos!Y204 Erk2-phos!T185-phos!Y187

An important part of the PL system is the Pathway Logic Assistant (PLA),
which is a tool to generate, visualize, browse, and analyse executable PL models.
Given a dish and an RKB, PLA uses a symbolic reasoning and abstraction
technique called forward collection to infer a minimal set of rule instances that
cover all situations reachable from the initial state. The resulting concrete rule
set naturally forms a network, linking rules by shared output/input elements.
The initial state together with the collected rules forms an executable model.
A theory transformation is used to convert the model to a Petri Net to be able to
use reasoning tools for Petri Nets. PLA can now be used to specify goals and/or
knockouts, derive the subnet of all pathways satisfying the goals (omitting the
knockouts), invoke a model checker [15] to find specific pathways, and export nets
as images or data structures for use by other tools.1 Within a subnet one can ask
for all the execution pathways leading to the goal, using an inference algorithm
described in [6]. Knowing all the pathways one can compute properties such as
single and double knockout occurrences or essential rules. If a single knockout
occurrence is removed from the model, the goal will no longer be reachable.
Similarly for double knockouts and essential rules.

2.2 Use of PL to Explain Data: Generating a Model

The first step in explaining experimental results is to define a model of the
unperturbed cell system being studied. For the drug studies we want a snap-
shot of an exponentially growing cell system that is perturbed by addition of
one or more drugs. Ideally, a model is built by defining an initial state (using
expert knowledge, literature, the datum KB, and the COSMIC database (for

1 One can knockout an occurrence, either from the initial state or a potentially reach-
able occurrence, or a rule. Each choice corresponds to a different experimental per-
turbation.
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mutations). Then, using PLA, we do a forward collection from this initial state,
to collect all reachable rules in the STM RKB.

However, the world is not ideal, and the above steps may not work without
some refinement. One problem is finding information about protein expression
levels of a given cell line under different growth conditions, and the other is that,
a priori, the rules in the RKB may capture different levels of detail (say Yphos
vs phos!Y123) due to different experimental methods, and the rules may be more
specific than necessary, or a rule may represents a set of more specific rules, for
example by referring to a family of proteins rather than specific members.

To address the first problem, we only attempt to include in the model the
measured entities and any relevant up/down stream entities. We do this by a
combination of “fuzzy” backward and forward collection (currently implemented
by hand). The idea is (i) identify rules that would cause the changes seen in the
data; (ii) identify rules that would meet the requirements of the first set of
rules; and (iii) iterate until there are no more requirements to be met. Now
we prepare an initial state: for each entity in the collected rules, determine the
locations and modifications that cannot be produced by any rules. Modify the
result using any available information about mutations and deletions for the
cell line being studied. The unperturbed network is generated from the rule set
and the resulting initial state using ‘fuzzy’ forward collection. The idea here
is that some rules may need to be generalized in order to apply to generated
states. For example a rule may require Mek1-act@CLc but the state may contain
Mek1-act-phos!SMANS@CLi. Adding a variable to the modification set of the
occurrences of Mek1 in the rule solves the problem. After these adaptations,
the PLA forward collection process can be used to generate a model of the
unperturbed system.

2.3 Use of PL to Explain Data: Using the Model

In PL, explanations for measured changes in response to treatment of a cell
system with a given drug can be found in several ways. One way is to knock out
the drug target and use model checking to see if increases/decreases observed
in the data agree with reachability results. We can also find all the paths (in
the network model) to different observed significant changes and combine this
information to suggest targets if the drug or its mechanism of action is unknown.

Here we focus on direct comparison of models of untreated and treated sys-
tems. Given a drug that is known to inhibit some occurrence in the model, we
generate a model of the treated system by removing that occurrence from the net-
work and use PLA to do a forwards collection to determine the remaining reach-
able subnet. Now we can compare the unperturbed (untreated) and perturbed
(treated) model networks to obtain a qualitative prediction of increase/decrease
in levels of some of the network occurrences. Three principles for inferring
expected change are illustrated in Fig. 2.

Note that some of the drugs inhibit activity by direct allosteric inhibition.
The conformational change caused by the drug should not be interpreted as the
inhibition or enhancement of an upstream kinase. Some of the changes cannot
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Fig. 2. Three principles

be explained by a PL model because they are caused by things other than signal
transduction.

3 The Experiment and Data

To correctly interpret data, it is important to understand how it is generated
and the criteria for interpreting measurements.

Primer on Interpreting the Results of Cell Based Assays

– An experiment starts with seeding cells into the containers (petri dish, flask,
test tube) where they will be treated.

– The number of biological replicates is the number of containers used for each
treatment. This detects differences in results caused by the seeding and treat-
ment procedures.

– The number of technical replicates is the number of measurements made for
each biological replicate. This gives you the probability that your detection
method will give you the same value for the same sample.
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– The number of experimental replicates is the number of times the procedure
is performed from different cell seedings. This gives you the probability that
the change observed will occur in another experiment.

– The convention for publication in a cell biology data paper is to perform at
least three independent experiments using three biological replicates for each
treatment and control.

– The number of technical replicates required depends on the detection method
used. The noisier the detection method, the more technical replicates required.

For the data set to be analyzed here, exponentially growing SKMEL133 cells
were treated with 12 drugs at two concentrations. Change in protein expres-
sion/phosphorylation was measured for 138 entities at 24 h using Reverse Phase
PhosphoProteomics Analysis (RPPA) [3].

The data to be explained was available in two formats: (i) fold-change mea-
surements using 3 biological replicates from one experiment based on an unre-
ported number of technical replicates; (ii) relative concentration values for each
of the 3 biological replicates from one experiment and from 1 to 4 technical
replicates. Variance analysis showed that the noise from the provided technical
replicates was larger than that of the biological replicates. This tells us that one
technical replicate is not sufficient for realistic quantitation. Without quantita-
tive information we resorted to using the fold-change measurements with a cutoff
of 1.2 fold change (up or down) based on the number of changes that we would
expect to see in response to what is known about the mechanism of action of
the drugs.

Only the highest drug concentration was considered. Changes in the phos-
phorylation of a protein were normalized to the total expression of that protein.
If the total expression was not measured, the phosphorylation change could not
be reliably determined, so we didn’t attempt to explain those results. The one
exception is the change in the Erks TEY site because the protein concentration
of Erks rarely changes over 24 h perturbations.

To map the data onto a PL model it is necessary to determine what each
antibody actually detects and map this to PL terms. The antibodies used in
the RPPA analysis were obtained from commercial suppliers and validated by
the MD Anderson Cancer Center RPPA Core Facility. Information about the
validation status and source of the antibodies was obtained from the Standard
Antibody List downloaded from [2]. We determined the antibody targets by
mapping the antibody name reported in the data set to the Official Antibody
Name used in the Standard Antibody List. Specificity and site information was
obtained from the supplier. The protein or family names of the target proteins
were converted into Pathway Logic names and the sites were adjusted to agree
with the canonical sequence of each protein in UniProt. In the case of protein
families, letter codes were used to match all members, as described in Sect. 2.

To explain the response to a drug treatment it is useful to know what the
drug is, i.e. its chemical structure, to have clear experimental evidence of the
target and its action on the target, and to know whether there are off-target
effects. We were able to identify (find a PubChem identifier for) 8 of the 12 drugs
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used in the experiment. Subsequent literature search revealed solid evidence for
proposed mechanisms of action for 5 of the 8. This is summarized in Sect. 5 as
part of the explanation of the data.

4 Inferring the SKMEL133 Model

As discussed in Sect. 2 our idea is to build the minimal model needed to explain
the data, rather than attempting a full model of SKMEL133 cells. Thus we
include as a minimum the proteins such that the change in protein expression or
phosphorylation passed the 1.2 fold cutoff. We carried out (by hand) the fuzzy
backwards collection starting from the changed occurrences, adding occurrences
with a degradation modification to represent a possible cause of change in protein
expression. For example rule 3823c

rl[3823c.Irs1.degraded]:

Irs1-ubiq-phos!S270-phos!S307-phos!S636-phos!S1101@CLc

=>

Irs1-degraded@Sig

if Cul7@CLc

is collected to account for changes in Irs1 expression level. This also introduces
the protein Cul7 into the model. Here we use informal rule notation where fol-
lowing the if are the controls (the required biological context) of the reaction.

rl[109c.Akts.by.Pdpk1]: Akts@CLc => Akts-phos!KTF@CLc if Pdpk1-act@CLc

Rule 109c is collected to produce Akts-phos!KTF, which then introduces a
requirement for Pdpk1-act. This can be satisfied by rule 3818c

rl[3818c.Pdpk1.by.PIP3]: Pdpk1@CLc => Pdpk1-act@CLc if PIP3@CLm

which leads to collecting rule 3820c

rl[3820c.PIP3.from.PIP2]: PIP2@CLm => PIP3@CLm if Pi3k@CLi

to produce PIP3. This chain stops here, as PIP2 is a common component and
there are no rules producing the protein Pi3k so we assume it is expressed by
SKMEL133 cells normally.

Collecting the occurrences that can not be produced by a rule we have a pre-
liminary version of the initial state. SKMEL133 cells contain the constitutively
active mutation BrafV600E so we replaced wild-type Braf with BrafV600E. They
also have a homozygous deletion of Pten, so we eliminated Pten. The result,
called the SKMEL133dish, contains 31 occurrences (listed in Appendix 1 of the
techreport version).

As discussed in Sect. 2 some iteration is required to achieve a connected set
of rules because the curated rules reflect what experiments measured and may
have different levels of detail, or need generalization. Also, the following rule was
added to model the BrafV600E activity.

rl[3808c.BrafV600E.act]: BrafV600E@CLc => Braf@act@CLc
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Fig. 3. The unperturbed SKMEL133 model.

This rule reflects the observation that the mutated form of Braf behaves like
the active form of wild type Braf. This is a simplification which is adequate in
the context of the current model, although it would fail if there were rules to
deactivate Braf, since the mutated form can not be deactivated. After adding
the above rule and generalizing some rules by hand, PLA is used to assemble
the executable model, called the SKMEL133dishnet, shown in Fig. 3.2

5 Explaining Response to Known Drugs

As discussed in Sect. 3, we selected 5 drugs for which we could determine a well-
defined chemical id (PUBCHEM), and for which there is reasonable evidence
for the proposed mechanism of action (determined by literature search): AktI12,
PD0325901, PLX4720, Temsirolimus, and ZSTK474 (described in more detail
below). For each of these drugs we determined occurrences that changed signif-
icantly using the fold change table from [10] and a fold change cutoff of 1.2 for
increase and 0.8 for decrease as described in Sect. 3. A table summarizing these
changes is included in Appendix 1. Using the methods described in Sect. 2 we could
explain 42 out of 107 changes in response to the 5 drugs. Many of the unexplained
changes are in protein expression levels, which was generally not the focus of our
curation efforts in the past. In the following we illustrate the analysis for AktI12
2 Although in printed form the node labels are not readable, zooming in with a pdf

reader reveals all the details.
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and Temsirolimus in some detail, and briefly summarize the results for the other
three drugs. Recall that the SKMEL133 model and a guided tour allowing the user
to reproduce these results and carry out other gedanken experiments are available
for download or in the Online collection at [13].

5.1 Effects of AktI12

AktI12 (PubChemCID 10196499) is a reversible allosteric inhibitor of Akt1 and
Akt2 which prevents the conformational change that permits phosphorylation
and activation [11]. To model the effect of AktI12 we use PLA to block (avoid)
the occurrence Akts-act-phos!FSY-phos!KTF@CLc in the SKMEL133 dishnet.
Recall, this occurrence can be interpreted as Akt1 phosphorylated at S473/T308
and/or Akt2 phosphorylated at S474/T309 in the cytoplasm. Now we compute
the resulting reachable network, and compare it to the untreated model to deter-
mine what has become unreachable.

Figure 4 shows the explanation as an annotated version of network pro-
duced by PLA in the context of the unperturbed model. It shows how drug
perturbations interrupt the path between the initial state and the measured
goals. The key in the figure describes the color coding in detail. Yellow col-
oring highlights the unreachable part of the SKMEL133 dishnet. Occurrences
outlined in red are directly inhibited by the drug. Occurrences outlined in
green decrease in response to the drug. In particular the measured decrease in
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Fig. 4. The SKMEL133 model treated with AktI12.
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Eif4ebp1-phos!S65, Eif4ebp1-phos!T37, Gsk3b-phos!S9, Gsk3s-phos!SFAE,
Rps6-phos!S235, Rps6-phos!S240, S6k1-phos!T412, and Tsc2-phos!T1462 in
response to AktI12 is explained by the unreachability of the corresponding occur-
rences. The increase in Irs1 protein expression is explained by the inhibition of
the degradation of Irs1 by ubiquitination and degradation in the proteasome.
The remaining changes are increases in protein expression of Cav1, Fn1, Pai1,
and Tp53 and a decrease in Cox2 and CyclinB1, which are not represented in
our model.

5.2 Effects of Temsirolimus

Temsirolimus (PubChemCID 23724530) inhibits Mtorc1 activity (a complex of
Mtor, Mlst8, and Raptor) but enhances Mtorc2 activity (a complex of Mtor,
Mlst8, Sin1, and Rictor) [5]. Figure 5 shows the annotated model of Temsirolimus
response.

The model explains measured decrease in events downstream of Mtorc1:
Eif4ebp1-phos!T37, Rps6-phos!S235, Rps6-phos!S240, S6k1-phos!T412, and
Irs1-degradation. It also explains measured increase in events that are down-
stream of Mtorc2: Akts-phos!FSY, Akts-phos!KTF.

The model also predicts increases in Eif4ebp1-phos!S65@CLc (the data
shows a decrease) and Gsk3s-phos!SFAE@CLc (the data shows no change). What
might cause this discrepancy? A common cause of such discrepancy is a miss-
ing control on the phosphorylation rule, either because there are no published
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Fig. 5. The SKMEL133 model treated with Temsirolimus.
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experiments giving evidence, or because they have not yet been curated. It is also
possible that there are alternative activities of the Akts. Note that the RPPA
experiments do not measure activity directly. Unraveling this mystery is a topic
of ongoing/future work.

5.3 Effects of PD0325901, PLX4720 and ZSTK474

PD0325901 (PubChemCID 9826528) is an allosteric inhibitor of Mek1 and Mek2
kinase activity [14]. To represent the effects of PD0325901, the SKMEL133 model
can be blocked at the occurrence Mek1-act-phos!SMANS@CLc which can be inter-
preted as Mek1 phosphorylated at S218 and S222. Although the antibody used
in generating the data identifies both phospho-Mek1 and phospho-Mek2, the
STM DKB lacks sufficient datums to include Mek2 in the rules. The result-
ing unreachable set explains decreases in Erks-phos!TEY, Rps6-phos!S235,
Rps6-phos!S240, Rsk1-phos!T359, S6k1-phos!T412, and Ybx1-phos!S102.
Using the decrease in Bim-degraded@Sig, it also explains the increase in Bim
protein expression.

PLX4720 (PubChemCID 24180719) binds to the ATP binding site of active
Braf and Raf1. It is 10 times more effective towards BrafV600E than wild-type
Braf or Raf1. At the concentration used to produce the dataset (120 nM) it
should be more effective on BrafV600E than Raf1 [17]. As expected, the pertur-
bation profile PLX4720 is almost identical to that of PD0325901, since Braf is
responsible for phosphorylation of Meks.

ZSTK474 (PubChemCID 11647372) inhibits all four isoforms of the cat-
alytic subunit of Pi3k [5]. This then inhibits Akts-phos!FSY-phos!KTF@CLc via
decrease in the activity of the upstream kinase Pdpk1. The perturbation profile
is the same as that for AktI12 except that the decrease in Akts-phos(FSY) and
Akts-phos(KTF) are caused by a decrease in the activity of the upstream kinase
Pdpk1.

6 Conjecturing Mechanisms of Unknown Drugs

We looked at two of the drugs that were not identifiable: (1) a drug referred
to as SR with claimed target Src (although the data shows no significant effect
on measured Src), and (2) a drug referred to as RY, with claimed target CDK4
although no form of CDK4 was measured. Our approach to analyzing the data
for these unknown drugs consisted of the following steps.

1. Identify changed occurrences in the model (for protein expression we use
change of opposite sign in degradation of the protein as a representative).

2. Form the subnet containing all the pathways to these occurrences
3. For each occurrence with negative change, compute the subnet of pathways

leading to that occurrence and use the pathway analysis tool to list the rules
and occurrence that are single knock outs (i.e., if removed from the network
the goal occurrence is no longer reachable).
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4. Make a table with columns corresponding to the negatively changed occur-
rences and rows labeled by the knockouts. The entry in a cell is 1 if the
knockout labeling the row is in knockout list of the occurrence labeling the
column and 0 otherwise.

Now we want minimal subsets of rows that add to 1 for each column. Then
inhibiting each of the row labels in such a subset will explain all the negative
changes. Of these minimal sets, we prefer those that are furtherest down stream,
since otherwise there are likely to be off-target effects.

Given a candidate drug target list, we need to check if this predicts changes
consistent with the data. This can be done as for the drugs with known action.
Namely, starting with the unperturbed model (the SKMEL133 dishnet), knock
out the hypothesized drug target(s), compute the subnet, compare to the unper-
turbed net to see what is missing. Clearly, the set of occurrences used to generate
the knockout lists will be unreachable and thus consistent with the hypothesized
targets. Are the other unreachables plausible? We also need to look for explana-
tions for occurrences that increased, such as blocked or diverted branches. As for
the case of drugs with known targets we use the 1.2/.8 fold cutoff to determine
the list of changed occurrences, and require phosphorylation change relative to
protein expression change to meet the cut off criteria. In the following we dis-
cuss the for SR. The results for RY can be found in the techreport version of
the paper.

6.1 Analysis of the Effects of SR

From the data for the drug SR we determined 2 instances of increase
in protein expression (1 is in the model), 3 instances of decrease in pro-
tein expression (none in the model), 2 instances of increase in phosphory-
lation (none in the model) and 8 instances of decrease in phosphorylation
(6 in the model). Converting the one increase in protein expression to a
decrease in degradation, the decreases represented in the model to consider are:
Bim-degraded@Sig, Eif4ebp1-phos!S65-phos!T37-phos!T46-phos!T70@CLc,
Eif4ebp1-phos!S65@CLc, Erks-phos!TEY@CLc, Gsk3s-phos!SFAE@CLc,
Rps6-phos!S235@CLc, and S6k1-phos!T412CLc.

After computing the subnet containing these changed occurrences and com-
puting the knockouts for each of these occurrences, we find that no single knock-
out can explain the observed decreases. There are many double knockouts that
can explain the decreases. They all involve blocking Mek1 activity and Akts
activity, either directly or by an upstream effect. Thus the minimal pair is

[Akts-phos!FSY-phos!KTF@CLc, Mek1-act-phos!SMANS@CLc]

Although these occurrences are not decreased in response to SR, it is quite possi-
ble that the drug blocks their action and hence causes the observed downstream
effects. Choosing targets upstream of this pair, say [Braf-act@CLc, Pi3k@CLi]
would be inconsistent with the observed data as in this case one should observe
a decrease in the phosphorylation of Akts and Mek1.
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Now we check whether blocking this pair of occurrences is consistent with
the measured response to SR. We start with the unperturbed model, knockout
(avoid) the conjectured pair of occurrences, compute the resulting reachable
subnet, and the unreachable set. The following occurrences that are predicted
by the model to decrease are measured:

– Irs1-degraded@Sig: protein expression did not change.
– Occurrences involving Rsk1-phos!T359: neither Rsk1 protein expression or

Rsk1-phos!T359 changed. Note that the antibody for Rsk1 is labeled “use
with caution” and the antibody for Rsk1-phos!T359 is not validated.

– Ybx1-phos!S102@CLc: This decreased, which is consistent. The total protein
for Ybx1 was not measured, so it was not included in the list of changes to
explain.

7 Related Work

We focus on the use of RPPA data to analyze cellular systems. Existing work
generally focuses on inferring network models that fit the data in order to identify
interactions and possible causal relations among responding proteins and/or to
use the resulting models to predict response to new perturbations. To the best
of our knowledge our approach of using an existing curated model to explain the
mechanisms underlying cellular response to drugs, and consequently validate or
find gaps or problems with the parts of the model, or to hypothesize alternative
actions of a drug is unique.

The work presented in [10] is the source of the data explained in the present
paper. The work was motivated by the problem of drug resistance, particularly
in cancers. The paper describes a combined experimental/computational per-
turbation biology method to look for anti-resistant target combinations. The
experiment was described in Sect. 3, with cells being treated by pair-wise com-
binations of drugs as well as the single drug treatments. A space of executable
ODE models corresponding to influence network topologies with weighted edges
are derived from the data using belief propagation techniques. The process is
seeded with a prior network extracted from Pathway Commons using the PERA
tool [1]. The 4000 best models were selected to make predictions of phenotypic
effects of thousands of combinations of perturbations. As a result they propose
cMyc as a co-target of Mek or Braf.

The results of the HPN-DREAM network inference challenge are summarized
in [9]. This challenge focused on learning causal influences in signaling networks.
The objective here was to train models capable of predicting context-specific
phosphoprotein time courses, in contrast to the Big Mechanism objective to
provide mechanistic explanations for the effects of perturbations. Participants
were provided with RPPA phosphoprotein data from four breast cancer cell lines
under eight ligand stimulus conditions combined with three kinase inhibitors and
a vehicle control (dimethyl sulfoxide). Data for each biological context (cell line,
stimulus combination) comprised time courses for approximately 45 phosphopro-
teins. Models were assessed using context-specific test data that were obtained
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under a different intervention (inhibition of the kinase mTOR). While some of
the models succeeded in reasonable predictive power, more work is needed to
obtain more detailed mechanistic explanations.

Reverse Phase Protein Arrays (RPPAs or RPLAs) were used in [8] to profile
signaling proteins in 56 breast cancers and matched normal tissue as a method to
discover phosphorylation-mediated signal transduction patterns in human tumor
samples. The paper discusses the process of validating antibodies (100 antibodies
validated of 400 screened), and methods for quantitation of data in some detail.
Unsupervised hierarchical clustering was used as a first step in discovering pat-
terns of co-regulation. The hierarchy was cut to yield twelve clusters, which were
mapped onto pathways derived from Gene Network Central Pro. This revealed a
cluster involving increased abundance of the Axl receptor tyrosine kinase (RTK)
and the cMet RTK pathway. Structured Bayesian inference was then used to
further analyze this cluster to find the interaction network topology with good
generalization properties and that best classified cancer vs non-cancer data. The
results suggested two cancerous categories: (1) where MET is highly phosphory-
lated and cRAF is always highly phosphorylated and (2) where MET phospho-
rylation is low and cRAF phosphorylation is low at sites consistent with cRaf
inactivation.

8 Conclusions and Future Directions

We have shown how the Pathway Logic STM model, capturing what we know
about intracellular signal transduction, can be used to explain experimental
results. The rules used in the model are derived from experimental results, so if
the model were complete we should be able to use the network derived from expo-
nentially growing cultured cells to trace the paths from a known perturbation
to the measured effects. In some of the cases, we were successful. Our successes
were predominantly in the phosphorylation cascades and protein degradation
events used in growing cells. We were less effective in explaining the decreases in
expression of proteins due to inhibition of translation or transduction, or changes
in the cell cycle. There is still a lot of experimental evidence in the literature
to collect and make into rules. There are still a lot of experiments that need to
be performed and published. Work is in progress to automate this fuzzy back-
wards and forwards collection carried out by hand to generate the SKMEL133
model. We are also investigating representation of executable models, network
perturbations, and experimental observations as constraints and using abductive
reasoning to generate potential explanations. This would unify the treatment of
various aspects and help automatic the end to end reasoning process.

One caveat, not all of the unexplained results are due to an incomplete model.
Only one experiment was performed so the probability that the results could be
reproduced cannot be measured. Although 3 biological replicates were used -
no information about the variance were provided. In addition, we obtained the
mechanism of action of the drugs from a small sampling of the literature. Any
of the drugs could have additional effects that we did not find.

Learning about how a cell works is still a work in progress. The Pathway
Logic STM model is a tool designed to help. Hopefully it does.
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Abstract. Identifying non-trivial requirements for large complex
dynamical systems is a challenging but fruitful task. Once identified such
requirements can be used to validate updated versions of the system
and verify functionally similar systems. Here we present a technique for
discovering behavioural properties of bio-pathway models whose dynam-
ics is modelled as a system of ordinary differential equations (ODEs).
These models are usually accompanied at best by high level functional
requirements while undergoing many revisions as new experimental data
becomes available. In this setting we first specify a set of property tem-
plates using bounded linear-time temporal logic (BLTL). A template
will have the skeletal structure of a BLTL formula but the time bounds
associated with the temporal operator as well as the value bounds asso-
ciated with the system variables encoded as atomic propositions will
be unknown parameters. We classify a given model’s behavior as corre-
sponding to one of these templates using a convolutional neural network.
We then synthesize a concrete property from this template by estimating
its parameters via a standard search procedure combined with statistical
model checking (SMC). We have synthesized and validated properties of
a number of pathway models of varying complexity using our method.

Keywords: Property synthesis · Statistical model checking · Bounded
linear-time temporal logic · ODEs models of bio-pathways

1 Introduction

Synthesizing specifications of system models is a useful but challenging task. This
is especially so for bio-pathway models. These models are rarely come with con-
crete temporal specifications. Instead, they are accompanied by functionalities
such as “EGF-NGF stimulation of PC12 cells discriminates between prolifer-
ation and differentiation”. Synthesizing more concrete temporal specifications
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from these models is appealing for at least two reasons. First, the synthesized
specifications can point to mechanistic chains of events that determine the over-
all functionality such as “transient activation of Erk1/2 leads to proliferation
while its sustained activation results in differentiation”. (We hasten to add that
this is merely an illustration using the functional specification and the concrete
mechanistic property presented in [5]). Second, the construction of a model is
rarely complete. Instead, it is repeatedly updated as fresh experimental data
becomes available. In such settings, the temporal specifications synthesized from
a previous version of the model can be used to assess whether the new model is
qualitatively different from the older one.

As is well known there are two major classes of models to describe the dynam-
ics of bio-pathways, namely deterministic ones based on ODEs [2] and stochastic
ones [13] based on continuous-time Markov chains (CTMCs). In this paper, we
shall focus on ODEs based models. In both types of models many rate constants
of the reactions as well as the initial concentrations will be unknown. Here we
consider this to be an important but orthogonal issue. Hence for evaluating our
proposed method, we consider curated models with known parameter values
taken from the Biomodels database [18].

We first build a set of property templates that capture parametrized fam-
ilies of pathway dynamical properties. Each template is built out of a BLTL
(bounded linear time temporal logic) formula but whose time bounds associated
with the temporal operators are integer-valued parameters. Furthermore, the
atomic propositions appearing in the formula will be of the form (� ≤ x ≤ u)
where x is a system variable and � and u are parameters that take values from
the value domain of x. (These template parameters are not to be confused with
the (model) parameters associated with the ODEs model). The choice of BLTL
as the specification logic -and the accompanying atomic propositions- is guided
by the nature of the experimental data that is usually available for our models
of interest, namely signaling pathways. Here the experimental data (i.e. obser-
vations of the system states) will typically consist of finite precision and noisy
measurements regarding a small subset of system variables at a finite number
of discrete time points. Further, only qualitative temporal properties will be
applicable.

To focus on the main issues, we restrict our attention to four templates that
capture key behavioural patterns of interest such as: “the concentration of a
species x starts from an initial level in the interval [c1, c2], rises to a level [d1, d2]
within k time units and remains in this interval until tmax”. Based on these tem-
plates we develop a synthesis framework as shown in Fig. 1. First, by assuming
an initial probability (usually uniform) distribution over the initial states of the
system variables, a set of trajectories is generated through numerical simula-
tions. Next, the trajectories are presented to a pre-trained convolutional neural
network to identify the template ψ that best corresponds to the trajectories.
We then employ a simulated-annealing [21] based global optimization proce-
dure to estimate the parameters of the template. Specifically, in each step of
the procedure, the value generator instantiates from ψ a concrete property ̂ψ.
We then use statistical model checking to evaluate the quality of satisfaction
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of ̂ψ. Subsequently, the loss function computes the loss, and reports it to the
simulated-annealing procedure which then terminates, or generates a new set of
values for the parameters.

Value
Generator

Simulated Annealing

Statistical
Model Checker

Trajectories

Concrete
Property

Estimated
PropertyTemplate

Loss

Loss
Function

Bayes Factor

Convolutional
Neural Network

Fig. 1. Overview of the property synthesis framework

1.1 Related Work

Learning temporal logic formulas from data (or a generative model) is becom-
ing a well explored field. The applications come from both cyber physical sys-
tems [8,15,17] and biological domains [3,7,12]. In the latter domain—which is
our interest—the line of work reported in [7] is particularly relevant. The authors
first learn a stochastic hybrid system from data and then use the model to gen-
erate data for learning the temporal logic formulas of interest in two steps. First,
using an evolutionary algorithm, the structure (template as we call it) of the for-
mula is learned. Then the parameters in the template are calibrated using a pre-
viously developed stochastic optimization method called the Gaussian Process
Upper Confidence Bound (GP-UCB) algorithm [4]. The specification logic is
bounded metric temporal logic. In our setting the model is available as a system
of ODEs. We fix a set of templates in advance and train a convolution net-
work using synthetic data not generated by the model in order to avoid bias.
Then using this network and trajectories randomly generated by the model we
match a template to the model. We then learn its parameters using simulated
annealing combined with statistical model checking. Finally we use BLTL as our
specification logic since it is a good fit for the class of models we wish to study.

An important aspect of parameter learning is to determine how well the
formula instantiated by a particular choice of parameters matches the training
data. Here again there is a good deal of literature on “robustness of satisfaction”
[3,9,10,28]. Specifically, [28] is illustrative for ODEs based models in which a
continuous notion of satisfaction is combined with an evolutionary search pro-
cedure to estimate kinetic parameters meeting temporal logic specifications. On
the other hand the work reported in [3] formulates a robustness of satisfaction
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notion for stochastic systems and then uses this notion to optimize chosen con-
trol parameters of a stochastic system in order to maximize the robustness of
satisfaction.

The paper is organized as follows. Section 2 presents the preliminaries and
property templates. In Sects. 3 and 4, we explain our search procedure. Section 5
presents the experimental results and we conclude in Sect. 6.

2 Preliminaries

We introduce the basic notations we will be using in connection with ODEs,
BLTL, statistical model checking. We conclude with the introduction of property
templates.

2.1 Trajectories of a System of ODEs

Suppose there are n molecular species {x1, x2, . . . , xn} in the pathway. For each
species xi, an equation of the form dxi

dt = fi(x, Θi) describes the kinetics of the
reactions that produce and consume xi where x is the concentrations of the mole-
cular species taking part in the reactions. Θi consists of the rate constants gov-
erning the reactions. Each xi is a real-valued function of t ∈ R+, the set of non-
negative reals. We shall realistically assume that xi(t) takes values in the interval
[Li, Ui], where Li and Ui are non-negative rationals with Li < Ui. Assuming there
are m reactions, we let Θ = {θ1, θ2, . . . , θm} be the set of rate constants. We
define for each variable xi an interval [Linit

i , U init
i ] with Li ≤ Linit

i < U init
i ≤ Ui.

We assume the value of the initial concentration of xi to fall in this interval.
We also assume the nominal value of the rate constant θj falls in the interval
[Linit

j , U init
j ] for 1 ≤ j ≤ m. We set INIT = (

∏

i[L
init
i , U init

i ])×(
∏

j [L
init
j , U init

j ]).
Here INIT is meant to capture the variability in the initial concentrations of the
variables and the rate constants across a population of cells. Further, we let v
to range over

∏

i[L
init
i , U init

i ] and w to range over
∏

j [L
init
j , U init

j ]. We define
in the usual way the notion of a trajectory σv,w starting from (v,w) ∈ INIT at
time 0. We let TRJ denote the set of all finite trajectories that start in INIT.

As mentioned earlier we assume a probability distribution over INIT and for
convenience assume it to be the uniform one. The ODEs systems arising in our
setting will induce vector fields that satisfy a natural continuity property. Hence
one can define the probability that a trajectory starting from a randomly chosen
state in INIT will satisfy a given BLTL formula. Consequently one can develop
a statistical model checking procedure to verify whether the system of ODEs
meets the given BLTL specification with required probability [27].

2.2 Bounded Linear-Time Temporal Logic

An atomic proposition for our setting will be of the form (L ≤ xi ≤ U) with
Li ≤ L < U ≤ Ui where L, U are rationals. The proposition (L ≤ xi ≤ U) says
“the current concentration level of xi lies in the interval [L,U ]” and we fix a
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finite set of atomic propositions. BLTL formulas are then defined in the usual
way.

We fix a finite set of time points T = {t0 < t1, . . . , tK} and interpret a BLTL
formulas over a trajectory σ in TRJ observed at the time points in T as usual.
We say that σ is a model of ψ if σ, t0 |= ψ.

For a formula ψ the statement P≥r(ψ) where r ∈ [0,1) will mean “the prob-
ability that a trajectory in TRJ is a model of ψ is at least r”. To verify this,
we consider the sequential hypothesis testing problem where the null hypoth-
esis is H0 : P≥r(ψ) and the alternate hypothesis H1 : P<r(ψ). A convenient
termination criterion here is the Bayes factor [16,19].

B =
Pr(d|H0)
Pr(d|H1)

(1)

where d is the collection of Bernoulli random variables denoting the outcome
whether a random trajectory generated by the ODE system satisfies ψ. Com-
paring B against a pre-defined threshold h, the property is accepted if B is larger
than h and is rejected if it is less than 1/h. Unlike the SPRT ratio test one doesn’t
have to specify an indifference region.

2.3 Templates

A template is a BLTL formula in which the bounds on system variable values
in the atomic propositions and the integer bounds associated with the tempo-
ral operators are replaced by symbolic variables. These variables will be called
propositional variables and temporal variables respectively in what follows. In
addition, the template is augmented by a set of constraints. These constraints
will be of the form [uj ≤ �k] or [uk ≤ �j ] given two atomic propositions of the
form (�j ≤ xj ≤ uj) and (�k ≤ xk ≤ uk).

Here is an example of a template:

p1 ∧ F≤t1G≤t2p2 | [u1 ≤ �2]

where p1 = (�1 ≤ x1 ≤ u1) and p2 = (�2 ≤ x1 ≤ u2).

This template represents the statement “value of x1, starting from a low level
(p1) reaches within t1 time units a high level (p2) and stays at p2 for at least t2
units”. [u1 ≤ �2] captures the constraint the level (�1, u1) is lower than (�2, u2).

The main idea is to search over the temporal and atomic proposition variables
and use Bayes factor to measure of how well a synthesized property characterizes
the observed behavior. A property with a Bayes factor larger than a given Bayes
factor threshold is accepted while one with a small Bayes factor is rejected. In
this initial study we consider the templates listed in Table 1.

3 Classifying Templates Using a Convolutional Neural
Network

Our workflow first trains a convolution network to recognize trajectories pre-
sented to it as belonging to one of the set of templates we have fixed. It then
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Table 1. Basic templates

No. Template Description

1 p1 ∧ F ≤t1G≤t2p2

where p1 : (�1 ≤ x ≤ u1)
p2 : (�2 ≤ x ≤ u2)

Starting from the level p1, within t1
steps, the value of x reaches the level
p2 and stays there for at least t2 steps.
Typically describes sustained
activations or deactivations.
Constraints can be used to specify
whether x decreases or increases from
the initial level

2 p1 ∧ F ≤t1(p2 ∧ F ≤t2p3)
where p1 : (�1 ≤ x ≤ u1)
p2 : (�2 ≤ x ≤ u2)
p3 : (�3 ≤ x ≤ u3)

Starting from an initial level p1, the
value of x reaches the level p2 within
t1 steps. Then, from p2, x reaches a
level p3 within t2 steps. Formulates
evolution of species concentration
from an initial level to a new level and
then further to another new level or
back to the initial level

3 p1 ∧ F ≤t1(p2 ∧ F ≤t2G≤t3p3)
where p1 : (�1 ≤ x ≤ u1)
p2 : (�2 ≤ x ≤ u2)
p3 : (�3 ≤ x ≤ u3)

Similar to Template 2, the value of x
starts from the level p1, reaches the
level p2 within t1 steps. Then within
the next t2 steps, reaches a level p3

and stays in p3 for at least t3 steps.
Characterizes transient or sustained
activations, can be extended to
formulate bistability

4 p1 ∧ F ≤t1(p2 ∧ F ≤t2(p3 ∧ F ≤t1(p4)))
where p1 : (�1 ≤ x ≤ u1)
p2 : (�2 ≤ x ≤ u2)
p3 : (�3 ≤ x ≤ u3)
p4 : (�4 ≤ x ≤ u4)

Starting from an initial level p1, the
value of x reaches the level p2 where
(u1 < �2) within t1 steps. Then, from
p2, x reaches a level p3, (u3 < �2)
within t2 steps. Further from p3, x
reaches a level p4 where (u3 < �4).
Imposing constraints [u1 < �2] ∧ [u1 <
�4] ∧ [u3 < �2] ∧ [u3 < �4] characterizes
oscillations

classifies a set of random trajectories generated by a model as belonging to one
of the templates and then proceeds to synthesize a concrete property using the
template.

3.1 Data Preprocessing

The evolution of a variable x is mainly reflected by changes in its value over
time. We first transform the trajectories by evaluating the change in x at each
time point, and computing the normalized Δx(t) data over time as indicated by



Automated Property Synthesis of ODEs Based Bio-pathways Models 271

the formula below. This transformed data is then fed to the convolutional neural
network for classification.

Δx(t) =
x(t) − x(t − 1)

max(x) − min(x)
, (2)

where max(x) and min(x) are the maximum and minimum values of x across
all the time points in the simulation.

3.2 Training and Deploying the Convolutional Neural Network

A convolutional neural network (CNN) is a type of feed forward neural network
proposed in [24]. It has been successfully used to classify time series data and
other features [30]. In this paper, we have adopted a standard convolutional
neural network and implemented it using Tensorflow, a deep learning framework
by Google [1]. There is a vast literature available including [24] on CNNs.

The CNN receives the pre-processed inputs described in Sect. 3.1 and feeds it
to two convolutional and pooling layers, connected to two fully connected layers.
Then it outputs to four output neurons, corresponding to the four templates.
Due to space limitations we present the architecture and other details of the this
CNN in the full report [31].

Our CNN is trained for the templates listed in Table 1. The training set is
generated from mathematical functions found in [29]. Specifically, we selected 25
functions that conform to the four templates. For each of these functions, we gen-
erated 68 ‘seed’ curves using different random initial parameters. Next, we trans-
formed these into the frequency domain using Fast Fourier Transform (FFT).
In the frequency domain, we perform further randomization before transforming
them back into curves in time domain using the inverse FFT. We obtained 2, 000
randomized curves from each seed curve. In total, 136, 000 curves were used to
train the CNN.

After training, the CNN is deployed to identify a template that best matches
a set of trajectories randomly generated by a given model. Since neural networks
take as inputs fixed-length data, the trajectories need to be re-scaled using a
different sampling rate of simulation as follows. We first generate 20 trajectories.
The same simulation time as given in the literature for the respective model is
divided up into 200 equally spaced time-points, and sampled. The trajectories
are then transformed into Δx(t) as mentioned before in Sect. 3.1, and fed to
the neural network. A simple majority across the results of classifying these 20
trajectories is used to determine the final template.

4 The Search Procedure

Given a template ψ identified from the convolutional neural network with time
variables VarT , and propositional variables VarAP , we automatically mine the
values of VarT and VarAP such that the concretized formula is optimal in a
certain sense.
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In order to reduce the search complexity, we assume the BLTL based tem-
plate is given as a conjunction of component formula skeletons. We consequently
optimize each conjunct in the template.

We adopt a simulated annealing based procedure presented in Algorithm1
to estimate the parameters.

Algorithm 1. optimizeProperty
Input : Template ψ
Output: Synthesized property ψsyn

1 ̂ψ ← Initialize VarT and VarAP using random values;
2 while Simulated Annealing decides to continue do

3 Compute Bayes Factor B
̂ψ ← SMC( ̂ψ) ;

4 Compute Loss
̂ψ ← Loss Function( ̂ψ, B

̂ψ);

5 Simulated Annealing ← Loss
̂ψ;

6 Update VarT and VarAP ;

7 return ψsyn ← ̂ψ with minimum loss if exists;

We generate values for the propositional variables using the constraints spec-
ified in the propositional variables and the template constraints. Though the
constraint satisfaction problem is NP-complete the constraints in our framework
are simple inequalities which enables us to adopt a tree-based solution. The value
intervals of a variable are parsed as a tree structure where the values of the child
nodes are larger than the parent nodes.

For example, for the template p1 ∧ F≤t1(p2 ∧ F≤t2p3) suppose we have the
constraints [u1 < �2] and [�2 < u3], together with the implicit constraints [�1 <
u1], [�2 < u2] and [�3 < u3] the tree is constructed as shown in Fig. 2. We generate
values for the leaf variables (u2 and u3) first and then use them to bound the
value range of parents (�2 and �3), recursively till the root (�1) is reached.

�1 �2

�3

u2

u1 u3

Fig. 2. Generating values for propositional variables using a tree

4.1 Loss Function

Each instantiated property ̂ψ is scored using a loss function and the score will
guide the direction of the search. The score is composed out of the “loss” suf-
fered by three factors: temporal variables, atomic propositions and the quality



Automated Property Synthesis of ODEs Based Bio-pathways Models 273

of satisfaction. For the temporal variables we use the intuition that if ψ1 and ψ2

are two instantiations such that ψ1 implies ψ2 then ψ1 is to be preferred. This
suggests that if ψ1 = F≤t1ϕ and ψ2 = F≤t2ϕ are two instantiations and t1 ≤ t2
then t1 is preferred to t2. Similarly t2 is preferred to t1 if G≤t1ϕ and G≤t2ϕ are
two instantiations with t1 ≤ t2.

The loss component LT of the temporal variables is given by:

LT =
∏

ti∈VarT

(

ti

)sgn(ti)

sgn(t) =

{

−1, if temporal operator of ti is G or U

1, if temporal operator of ti is F
.

Next, we define LAP , the loss function component contributed by the propo-
sitional variables. For each atomic proposition, we consider both the tightness of
the value range, and how precisely it describes the behaviour of the trajectories.

For each atomic proposition api, we define the tightness as (ui − �i)/(maxi −
mini), the range normalized to the maximum value range of the variable in
trajectories. The idea is to keep the value range as small as possible.

Besides the tightness, we also measure the fitness of the atomic propositions
in ̂ψ to the trajectories based on the constraints. Essentially for each constraint of
the form uj < �k attached to the atomic propositions apj and apk, the estimated
levels of apj is expected to be lower than apk. This information is also used to
optimize ̂ψ. To this end, we compute the mean value of api as ( �i+ui

2 ). The
weight wi associated with each api is evaluated as follows. We first initialize
the set of weights WAP for all the atomic propositions in ̂ψ to 0. Then for each
constraint uj < �k, we decrease wj by 1 and increase wk by 1. The fitness of an

atomic proposition is thus
(

�i+ui

2

)wi

. Intuitively, the level of apj tends to be in
the lower range of value space while apk to be in higher range.

Combining these two factors, we define the loss function component due to
the propositional variables as

LAP =
∏

api∈VarAP

(

( ui − �i

maxi − mini

)( �i + ui

2 · maxi

)wi

)

.

Finally, in each iteration of the simulated-annealing procedure, if the Bayes
factor B

̂ψ is larger than a pre-defined threshold h (in our case it is set to 100),
we apply the loss function and continue with the iterations according to the
search procedure. Otherwise, the loss is set as ∞ and the current combination
of parameters is rejected. The search then continues with another combination
of parameters.

Thus

Loss
̂ψ =

{

LAP · LT , B
̂ψ > h

∞, otherwise
.
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We use the multiplicative form of the loss function since we found that the
additive form performs badly. For instance, if two temporal variables and one
propositional variable appear in a formula the search gets biased towards opti-
mizing just one the three variables while fixing a trivial value for the other two
variables. Admittedly the current formulation of the loss function is just a first
and preliminary step. A systematic study of the various possibilities -including
other notions of quality of satisfaction- needs to be carried out in the future.

5 Experimental Evaluation

We applied our method to six bio-pathway models taken from the Biomodels
database [23]. For the purposes of experimentation we fixed ±5% range around
the nominal values as the initial interval of values of each species and we assumed
a uniform distribution over the resulting set of initial states. Using the convolu-
tional neural network and randomly generated trajectories using the model, the
most suitable BLTL template was then identified followed by a concrete instan-
tiation for this template to a high satisfaction probability, namely, r ≥ 0.9.

Table 2 shows |x|, the number of system variables and |Θ|, the number of rate
constants of the ODEs systems associated with the six models. The time unit
for the F and G operators is ‘minutes’. Furthermore, the number of time points
to simulate (i.e. tK) for each of the models was fixed using the literature of the
respective models [5,6,11,14,20,25]. We next present the synthesized properties
for the important species in each of the bio-pathway models. Across all the six
case studies, there is a total of 13 such species.

Table 2. Characteristics of the models

Bio-pathway
models

EGF-NGF Segmentation
clock

MAPK
cascade

Atorvastatin Va factor CD95
signalling

|x| 32 16 8 18 30 23

|Θ| 48 71 22 30 9 17

Validation. In the six case studies we present here, we compared the synthe-
sized properties against the observed qualitative trends of species documented in
[5,6,11,14,20,25]. For one of the models we provide further validation by using
the synthesized properties in the context of rate constants estimation problem
as explained in Sect. 5.3.

5.1 Template Recognition

We first generate 20 trajectories from the model and use these as inputs to
the CNN. For each trajectory and for each species (variable) of interest the
CNN returns the confidence level in classifying the trajectory to each of the four
templates and the template with the highest confidence is chosen. Finally, the
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template with most votes from all the trajectories is chosen as the template to
be the candidate for synthesizing a concrete formula.

For each of the case studies in Sect. 5.2, we observed that the CNN returns
the same template overwhelmingly for all the 20 trajectories with high confidence
(above 98%). This data is reported in [31].

5.2 Case Studies

EGF-NGF Pathway. The EGF-NGF signalling pathway [5] captures the dif-
ferential response of PC12 cells to two growth hormones, EGF and NGF. EGF
induces cell proliferation while NGF stimulates cell differentiation. It has been
reported that the signal specificity is correlated with different Erk dynamics. A
transient activation of Erk has been associated with cell proliferation, while a
sustained activation has been linked to differentiation. The model has 32 ODEs
and 48 kinetic rate parameters. We simulated this model for 60 min.

Table 3(a) shows three properties that describe the sustained activation of
Erk*, bound-EGFR and C3G*, rising rapidly (within 10 min) to a high level. It
has been verified from experimental data that under NGF stimulation, sustained
activation of Erk* is induced by the phosphorylation of C3G. The synthesized
property captures this behaviour: ([0 ≤ Erk∗ ≤ 0]∧F≤5G≤55([477401 ≤ Erk∗ ≤
571121])) returned that the concentration level of Erk* rises from an initial level
[0 ≤ Erk∗ ≤ 0] to a peak level [477401 ≤ Erk∗ ≤ 571121] and stays at that level
for 50 min.

Segmentation Clock Network. Formation of segments in vertebrate embryos
is controlled by coupled oscillations in the Notch, Wnt and FGF signalling path-
ways governed by a segmentation clock network that periodically activates the
segmentation genes [11]. The model consists of 16 ODEs and 71 kinetic rate
parameters. We simulated this model for 250 min.

From Table 3(b), one can find that both properties characterize the oscil-
lation of Lunatic fringe-mRNA and cytosolic NicD, capturing the peak values.
Although the search space of 11 parameters is large, the mined properties are
closed to the nominal ones from literature. For example, the Lunatic fringe-
mRNA property is close to the one observed in [27]:

(([Lunatic fringe mRNA≤ 0.4]) ∧ (F≤40([Lunatic fringe mRNA ≥ 2.2] ∧
F≤40([Lunatic fringe mRNA ≤ 0.4] ∧ F≤40([Lunatic fringe mRNA ≥ 2.2] ∧
F≤40([Lunatic fringe mRNA≤ 0.4])))))).

MAPK Cascade. From yeast to mammals, mitogen activated protein kinase
(MAPK) cascades are bio-molecular networks widely involved in signal transduc-
tion of extracellular stimulus from the plasma membrane to the cytoplasm and
nucleus. They play a major role in processes involving cell growth, mitogenesis,
differentiation and stress responses in mammalian cells. The MAPK pathway [20]
consists of three levels where the activated kinase at each level phosphorylates
the kinase at the subsequent level down the cascade. It has been shown that
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Table 3. Properties synthesized for the six case studies.

Simulation profile Synthesized property
(a) EGF-NGF Pathway Model

p1 ∧ F ≤5G≤55p2

p1 : 0 ≤ Erk∗ ≤ 0
p2 : 477401 ≤ Erk∗ ≤ 571121

p1 ∧ F ≤3G≤57p2

p1 : 0 ≤ C3G∗ ≤ 0
p2 : 111035 ≤ C3G∗ ≤ 138166

p1 ∧ F ≤2G≤58p2

p1 : 0 ≤ bound-EGFR ≤ 0
p2 : 81639.9 ≤ bound-EGFR ≤ 86368.9

(b) Segmentation Clock Network Model

p1 ∧ F ≤58(p2 ∧ F ≤23(p3 ∧ F ≤75(p4)))
p1 : 0.096 ≤ Lunatic fringe mRNA ≤ 0.102
p2 : 2.42 ≤ Lunatic fringe mRNA ≤ 2.68

p3 : 0.000 ≤ Lunatic fringe mRNA ≤ 0.008
p4 : 1.83 ≤ Lunatic fringe mRNA ≤ 2.65

p1 ∧ F ≤40(p2 ∧ F ≤56(p3 ∧ F ≤26(p4)))
p1 : 0.199 ≤ cytosolic NicD ≤ 0.207
p2 : 1.11 ≤ cytosolic NicD ≤ 1.23
p3 : 0.25 ≤ cytosolic NicD ≤ 0.46
p4 : 0.86 ≤ cytosolic NicD ≤ 1.03

(c) MAPK Pathway Model

p1 ∧ F ≤4(p2 ∧ F ≤13(p3 ∧ F ≤15(p4)))
p1 : 9.50 ≤ Mos-P ≤ 10.50
p2 : 81.38 ≤ Mos-P ≤ 88.97
p3 : 0.00 ≤ Mos-P ≤ 5.13

p4 : 44.24 ≤ Mos-P ≤ 68.94

p1 ∧ F ≤6(p2 ∧ F ≤24(p3 ∧ F ≤11(p4)))
p1 : 9.50 ≤ Erk2-PP ≤ 10.50

p2 : 275.68 ≤ Erk2-PP ≤ 328.35
p3 : 1.77 ≤ Erk2-PP ≤ 40.22

p4 : 263.68 ≤ Erk2-PP ≤ 299.09
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Table 3. Continued

(d) Atorvastatin Pharmacokinetics Model

p1 ∧ F ≤160(p2 ∧ F ≤434p3)
p1 : 0 ≤ ASc ≤ 0

p2 : 42419.6 ≤ ASc ≤ 45998.8
p3 : 15109.7 ≤ ASc ≤ 15314.1

p1 ∧ F ≤245(p2 ∧ F ≤352p3)
p1 : 0 ≤ ASLc ≤ 0

p2 : 739.05 ≤ ASLc ≤ 773.13
p3 : 520.33 ≤ ASLc ≤ 526.39

(e) Va Factor Inactivation Model

p1 ∧ F ≤7G≤33p2

p1 : 1.9 × 10−7 ≤ Va ≤ 2.1 × 10−7

p2 : 0 ≤ Va ≤ 6.72−9

p1 ∧ F ≤8(p2 ∧ F ≤32p3)
p1 : 0 ≤ Va5 ≤ 0

p2 : 1.02 × 10−7 ≤ Va5 ≤ 1.11 × 10−7

p3 : 0 ≤ Va5 ≤ 7.96 × 10−9

(f) CD95 Signalling Model

p1 ∧ F ≤143(p2 ∧ F ≤139p3)
p1 : 0.00 ≤ C8∗ ≤ 0.00
p2 : 4.53 ≤ C8∗ ≤ 4.63

p3 : 0.789 ≤ C8∗ ≤ 0.832

p1 ∧ F ≤27(p2 ∧ F ≤132G≤204p3)
p1 : 0.000 ≤ NF-κB-IκB-P ≤ 0.000
p2 : 0.021 ≤ NF-κB-IκB-P ≤ 0.024
p3 : 0.000 ≤ NF-κB-IκB-P ≤ 0.000

a negative feedback loop of MAPK cascade results in sustained oscillations in
MAPK phosphorylation [20]. This ODEs model of this MAPK cascade consists
of 8 species and 22 rate parameters. We simulated the model for 60 min.

Table 3(c) illustrates the properties for the two species, namely, phosphory-
lated Mos (Mos-P) at the initial level of the cascade, and biphosphorylated kinase
Erk (Erk-PP) at the terminal level of the cascade. With the increased production
of Erk-PP, the negative-feedback due to Erk-PP affects the phosphorylation of
the initial level kinase, Mos. This in turn affects downstream phosphorylation of
intermediate kinases, and ultimately the concentration of Erk-PP is decreased.
Thus an oscillation cycle is triggered. The two properties synthesized by our
method reflect this behaviour.
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Experimental findings [22] indicate that “dual serine/threonine phosphoryla-
tion of SOS by Erk has been found to cooperatively inhibit MKKK phosphory-
lation”. When the ODEs model is updated to reflect this change in the network,
our method synthesized the following property:

[9.5 ≤ Erk2-PP ≤ 10.5] ∧ F≤17([251.30 ≤ Erk2-PP ≤ 262.66]
∧F≤15([0 ≤ Erk2-PP ≤ 42.74] ∧ (F≤14[173.20 ≤ Erk2-PP ≤ 192.45]))).

From this synthesized property, one can infer that the amplitude of the oscilla-
tions has decreased compared to the nominal model presented in Table 3(c).

Atorvastatin Pharmacokinetics. Drug metabolism of statins inside the liver
cells plays an important role in reducing cholesterol synthesis, and the stimu-
lation of the uptake of LDL-cholesterol from the blood [6]. This ODEs model
describes the pharmacokinetics of transport processes and metabolic enzymes
in the biotransformation of atorvastatin. It consists of 18 ODEs and 30 rate
parameters and the model was simulated for 600 min.

Table 3(d) shows two requirements synthesized for the atorvastatin pathway.
AS (a hydrophilic hydroxyl-acid) and ASL (a very lipophilic lactone), the two
forms of atorvastatin are transported into the cell and converted into different
metabolites. The properties: [0 ≤ ASc ≤ 0]∧F≤160([42419.6 ≤ ASc ≤ 45998.8]∧
F≤434([15109.7 ≤ ASc ≤ 15314.1])) and [0 ≤ ASLc ≤ 0] ∧ F≤245([739.05 ≤
ASLc ≤ 773.13] ∧ F≤352([520.33 ≤ ASLc ≤ 526.39])) describe this behaviour.
The estimated value bounds [42419.6 ≤ ASc ≤ 45998.8] and [739.05 ≤ ASLc ≤
773.13] are close to the peak observed in the system. The subsequent fall in the
concentration due to the conversion of ASc and ASLc to their corresponding
para- and ortho-hydroxy metabolites is also captured accurately by the value
bounds [15109.7 ≤ ASc ≤ 15314.1] and [520.33 ≤ ASLc ≤ 526.39].

Va Factor Pathway. The regulation of Va factor plays a crucial role in
hemostasis. As studied in [14], activated-protein-C (APC) causes inactivation
of bovine factor Va and this model involves bond cleavage and dissociation of Va
and its associated intermediate complexes produced in the process. The model
consists of 30 ODEs and 9 kinetic rate parameters and was simulated for 20 min.

The two properties synthesized by our method characterizes the behaviour
of the three species, namely Va and Va5 are shown in Table 3(e). In particular,
the properties synthesized using our method captures the rapid dissociation of
Va by APC within 7 min.

CD-95 Signalling. Activation of CD-95 [25] in some situations results in cell
death, and, in some other situations, induces activation of the NF-κB pathway.
This has been found to be due to the cleavage of an anti-apoptotic protein,
cFLIPL and Procaspase-8. This model has 23 variables and 17 parameters and
was simulated for 360 min.
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The properties synthesized in Table 3(f) show the activation of Caspase-8 and
the NF-κB-IκB-P by CD-95. Our method was able to mine the properties which
characterize the rise and fall of the two proteins. More specifically, the third
property mined for NF -κB-IκB-P reflects transient activation within 150 min.
It has been reported that CD-95 results in parallel – and not mutually-exclusive
– transient activation of NF-κB and the Death Inducing Signalling Complex
(DISC). This is in agreement with our findings.

5.3 Rate Constants Estimation Based on the Synthesized Properties

To further demonstrate the efficacy of the property synthesis procedure, we
used the synthesized properties to estimate the unknown rate constants w of a
pathway model in the context of the method developed in [27]. In this method
both time course experimental data and known qualitative trends are encoded
as BLTL formulas and the rate constant estimation problem is solved through
evolutionary search combined with statistical model checking. In the present
setting, we use the synthesized properties ψsyn as sole inputs (i.e. no experi-
mental data) to this estimation procedure. We then compared the quality of the
rate constants obtained using our synthesized properties with the rate constants
reported in the literature [25].

We applied our method to the CD-95 signalling pathway. We assumed 10 (k2,
k3, k5, k6, k7, k11, k12, k14, k15, k17) out of 17 rate constants to be unknown.
The inputs to the estimation procedure of [27] consists of 7 BLTL properties
synthesized by our method. Figure 3 shows the simulation profiles generated
using the predicted rate constant values. More precisely, 1, 000 trajectories were
generated using the rate constants estimated by our method and plotted against
trends observed using the constants reported in [25].
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Fig. 3. Parameter estimation results for the CD-95 pathway using the synthesized
properties

6 Conclusion

We have proposed an automated method to mine dynamic properties from ODEs
based models of bio-pathways. Using simulated trajectories, our method first
identifies a BLTL template matching their behaviour with the help of a convo-
lutional neural network. A simulated-annealing based procedure combined with
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statistical model checking is then applied to this template to mine a concrete
property. By checking the synthesized properties against the ones given in the lit-
erature as well as using them to do rate constants estimation of biopathways we
have provided strong evidence that the mined BLTL formulas faithfully describe
the behaviour of various species in our case studies.

In this preliminary study we have started with four templates. It will be
useful to expand this templates library. Equally important, we have considered
here only templates involving a single system variable. It will be challenging
but very fruitful to learn properties that involve (at least) two system variables.
This will enable for instance, to learn regulatory trends; for instance how an
upstream variable representing a perturbation generates a pathway response in
terms of a downstream variable.

Here we have focused on synthesizing properties for biological pathways mod-
elled as a system of ODEs. However, our technique can be applied to ODEs
systems arising in other settings as well.

To improve computational scalability, it will be important to port our current
implementation to a GPU platform and exploit parallel search strategies such
as parallel simulated annealing [26]. Finally it will be interesting to extend our
method to the setting partial differential equations based models that capture
spatial aspects of biopathways dynamics.
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26. Onbaşoğlu, E., Özdamar, L.: Parallel simulated annealing algo-
rithms in global optimization. J. Glob. Optim. 19(1), 27–50 (2001).
http://dx.doi.org/10.1023/A:1008350810199

27. Palaniappan, S.K., Gyori, B.M., Liu, B., Hsu, D., Thiagarajan, P.S.: Statistical
model checking based calibration and analysis of bio-pathway models. In: Gupta,
A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 120–134. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40708-6 10

28. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of
temporal logic specifications with applications to parameter optimization
and robustness measures. Theor. Comput. Sci. 412(26), 2827–2839 (2011).
http://dx.doi.org/10.1016/j.tcs.2010.05.008

29. von Seggern, D.: CRC Standard Curves and Surfaces, 1st edn. CRC Press, Boca
Raton (1993)

30. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using
multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S.,
Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer,
Cham (2014). doi:10.1007/978-3-319-08010-9 33

31. Zhou, J., Ramanathan, R., Wong, W.F., Thiagarajan, P.S.: Automated prop-
erty synthesis of ODEs based bio-pathways models. http://www.comp.nus.edu.
sg/∼zhoujun/full report.pdf

http://dl.acm.org/citation.cfm?id=303568.303704
http://dx.doi.org/10.1023/A:1008350810199
http://dx.doi.org/10.1007/978-3-642-40708-6_10
http://dx.doi.org/10.1016/j.tcs.2010.05.008
http://dx.doi.org/10.1007/978-3-319-08010-9_33
http://www.comp.nus.edu.sg/~zhoujun/full_report.pdf
http://www.comp.nus.edu.sg/~zhoujun/full_report.pdf


Tool Papers



TransferEntropyPT: An R Package to Assess
Transfer Entropies via Permutation Tests
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Abstract. The package TransferEntropyPT provides R functions to
calculate the transfer entropy (TE) [6] for time series of (binned) data.
The package provides a function to assess the statistical significance of
the TE using permutation tests on the sequential data of the time series.
The underlying code base is written in C++ for computational efficiency
and makes use of the boost and OpenMP libraries for parallelization of
the data-parallel tasks in the permutation tests. In addition to p-values
from hypothesis tests on independence, the package provides direct access
to the percentiles themselves. An anticipatory toy model, as well as a
biological network is used as show cases. Here, every time series concen-
trations of a single molecular species is tested and assessed against each
other.

1 Introduction

A potential interdependence of two random variables can be analyzed by a vari-
ety of measures. Among the classical ones, we find Pearson’s correlation coeffi-
cient or the mutual information. The Transfer Entropy (TE) introduced in [6]
overcomes some of the shortcomings of these traditional measures when applied
to time series data, such as only being able to identify linear correlations. To this
end, TE employs conditional probabilities with respect to the specific time order
of events in a time series. In recent years, TE has gained traction in many appli-
cations, e.g. the analysis of gene regulatory networks [7] or analysis procedures
for magnetoencephalography in neuroscience [9]. Furthermore, Bauer et al. [1]
were able to show the causal relationship between perturbations in process vari-
ables such as pressure of chemical processes. At present, there is no software
package readily available to compute the TE and assess its significance in sta-
tistical software systems like R. The growth in the number of TE applications
prompted us to adapt previous work [2] as a package explicitly for the statistical
software R.

1.1 Background: Information Theory

First, we want to review some basic concepts of information theory to illus-
trate the issues the package addresses. The Kullback-Leibler-Divergence mea-
sures the amount of information needed (in bits) to get from the distribution
c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 285–290, 2017.
DOI: 10.1007/978-3-319-67471-1 17
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p(Z) of a random variable Z from a sample space Z to another distribution
q(Z): KLDp|q =

∑

z∈Z
p(z) log2

p(z)
q(z) . In the subsequent parts of this study, we use

the convention “0 · log = 0”. Note, that the KLDp|q is therefore well defined as
long as ∀z ∈ Z : q(z) > 0. The Mutual Information (MI) is a special case of the
Kullback-Leibler-Divergence which is used to quantify the information that one
random variable X contains about another variable Y - and vice versa. Here,
the distribution q is set to the independent joint probability of X and Y , namely
q(X,Y ) := p(X) · p(Y ), while p(X,Y ) is the empirical joint probability of the
two random variables, and p(X) and p(Y ) the respective marginals. The MI
measures how much the empirical p(X,Y ) deviates from the independent case.
Eventually, the MI becomes a generalized correlation coefficient. Then:

MIX,Y =
∑

x∈X ,y∈Y
p(x, y) log2

(
p(x, y)

p(x) · p(y)

)

(1)

using the same notation as above.
The obvious extension of the MI to address dynamics in time series of sta-

tionary processes, is a time-delayed MI (TDMI) [5]. To this end, let X and Y be
two time series written in vector form. Then, the probability to find a realization
xn ∈ X at time n is p(xn). The same holds for yn, then one can compute the MI
between time-lagged xn+n′ and yn with lag n′. As previously discussed, however,
such a TDMI is inferior to other methods of time series analysis in the detection
of potential causal relations [4].

The motivation for the TE is to quantify the dependency of one process
({xn}) on another ({yn}) by a mutual information of conditional probabilities,
rather than time-lagged ones.

Then, we can – in analogy to Eq. 1 – express the dependency of one variable
x in relation to the other variable y in a time dependent manner by using:

TEY →X =
∑

p(x(k)
n+1, x

(k)
n , y(l)

n ) log
p(xn+1 | x

(k)
n , y

(l)
n )

p(xn+1 | x
(k)
n )

(2)

The indices k and l represent the time windows being used (time lags) for each
variable creating the multi-dimensional probabilities via histogram techniques.
We now detect how much information flows from Y to X by checking whether
the state of X is dependent on the history of both variables – expressed in a
non-trivial p(xn+1 | x

(k)
n , y

(l)
n ) – or only depends on its own history which can be

quantitatively assessed via p(xn+1 | x
(k)
n ). Note, that TEY →X �= TEX→Y .

1.2 Statistical Significance via Permutation Tests

To test data for statistical significance under the null hypothesis of independence
between the x and y measurements we employ permutation tests. Our R package
TransferEntropyPT features the parallelized calculation of such a null model.
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It is inspired by the method proposed in [8] and facilitates a shuffling within
each time series to destroy potential correlations.

Each time series is randomized by shuffling the order of the data points.
Neither the scale of measurements nor the overall composition, meaning the
probabilities p(xn) of occurrence of individual measurements, of the vector itself
is altered. Therefore the overall entropy of times series does not change, but the
information transfer between both vectors and the temporal information flow of
each vector is disrupted. Eventually, signatures of causality are being destroyed.

The number of necessary repetitions in the permutation test depends strongly
on the sample size of the used data. Since the shuffling runs are independent from
each other (data parallelism), the randomization can be easily parallelized and
therefore optimized for several CPU cores (Fig. 1).

Fig. 1. Schematic of the null model. The sequential
time series are shuffled to remove any causal rela-
tion between them. The entropy of each time series
is kept constant, since the procedure only random-
izes the order of the series, but not their respective
composition.

To test for statistical sig-
nificance we perform the
permutation test and com-
pute from the repeatedly
computed TEs the so called
Z-score for the informa-
tion transfer of TEY →X and
TEX→Y individually.

ZTE =
TE − TEs

σ(TEs)
(3)

With TEs being the
mean Transfer Entropy of
all shuffle runs and σ(TEs)
the respective standard devi-
ation. The resulting score gives the distance of the Transfer Entropy for the
original, raw data in units of standard deviation from the mean of the Trans-
fer Entropy for the shuffled data. Z can be converted to, e.g., p-values under
Null-Hypothesis testing under applicable distributions of the test statistics TE.

1.3 Illustrative Application: Coupling of Clocks

In Fig. 2 we show a more involved model of two oscillators, that could implement,
e.g., intracellular clocks. We have four species x, y, u, and v whose concentrations
form four time series that we analyze via the tools implemented in our R package.

2 Results

Here, we show how to detect the coupling of molecular species in our toy model of
Fig. 2. We created time series for the four variables u, v, x, y, adding N (μ, σrel =
5%) relative noise to account for sampling and measurement errors.

Applying get.te we obtain the results in Fig. 4. In Fig. 5 we show the results
for varying the coupling kvy between the two oscillators x, y and u, v. In Fig. 5(a)
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Fig. 2. A network with two coupled feedback loops that eventually implement two
(almost) independent clocks. They can, however, influence each other via the interac-
tion parametrized by kvy. Note the positive feedback depicted by an arrow and the
down-regulating interaction illustrated by an square-like arrow head. We show the
parameters used in our subsequent analysis.

Fig. 3. (a) Sample time series for the four molecular species of the intracellular network
of Fig. 2. (b) u, v after binning using partition data; note, that the overall scales are
adjusted by this procedure.

we clearly see the difference in the TE favoring an interpretation of a coupling
from v to y as the system shows by design where v and y are coupled via kvy.
Note, however, that under a null hypothesis testing (NHST) the p values do not
meet the value of ∼ 5% under the well-established Fisher rule. Thus, we would
in most cases reject the TE values anyway; only for larger values of kvy do we
obtain significance values conforming to the threshold.

Further example applications and detailed usage instructions are discussed
in the supplemental material to this paper [3].

3 Availability

The code for package TransferEntropyPT is made available under GPL-
license. The current version can be downloaded from http://www.cbs.
tu-darmstadt.de/TransferEntropy. Installation in R can be achieved via the com-
mand R CMD INSTALL TransferEntropyPT x.y.z.tar.gz where x, y, z are the
(sub)version numbers for the downloaded file.

http://www.cbs.tu-darmstadt.de/TransferEntropy
http://www.cbs.tu-darmstadt.de/TransferEntropy
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Fig. 4. TE for the toy molecular system in Fig. 2 and kvy = 0.001. Note, the “+” signs
indicates significant Z > 4 values. NHST values for TEs of other species combinations
are non-significant, thus we cannot conclude on any dependency.

Fig. 5. (a) TE(v → y) for the toy molecular system in Fig. 2 for varying kvy1. The
black points mark TE(y → v) and the red ones show TE(v → y). (b) The percentile
for the respective TE permutation test; run over 100 repetitions.

A tutorial (pdf) on how to use the package is available under the same URL.
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4. Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J.: Causality
detection based on information-theoretic approaches in time series analysis. Physics
Rep. 441(1), 1–46 (2007)
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1 INRIA, École normale supérieure, CNRS, PSL Research University,
75005 Paris, France
campores@di.ens.fr
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Abstract. Kappa is a formal language that can be used to model sys-
tems of biochemical interactions among proteins. It offers several seman-
tics to describe the behaviour of Kappa models at different levels of
abstraction. Each Kappa model is a set of context-free rewrite rules.
One way to understand the semantics of a Kappa model is to read its
rules as an implicit description of a (potentially infinite) reaction net-
work. KaDE is interpreting this definition to compile Kappa models
into reaction networks (or equivalently into sets of ordinary differential
equations). KaDE uses a static analysis that identifies pairs of sites that
are indistinguishable from the rules point of view, to infer backward and
forward bisimulations, hence reducing the size of the underlying reaction
networks without having to generate them explicitly. In this paper, we
describe the main current functionalities of KaDE and we give some
benchmarks on case studies.

1 The Differential Semantics of Kappa

Kappa [1] is a rule-based language which describes the behaviour of some agents
that may be bound together on interaction sites. In applications to Systems Biol-
ogy, agents usually abstract proteins and interaction sites specific regions on their
amino acid chains. Mechanistic interactions among proteins are described by the
means of rewriting rules. For instance, the rule on the left in Fig. 1 stipulates
that two proteins may bind via their respective right and left sites. Graphically
(we have used GKappa [2] to draw the rules), the shape of a protein implicitly
denotes its type. The same way, sites in proteins are identified by their positions

This material is based upon works partially sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the U. S. Army Research Office under
grant number W911NF-14-1-0367, and by the ITMO Plan Cancer 2014. The views,
opinions, and/or findings contained in this article are those of the authors and should
not be interpreted as representing the official views or policies, either expressed or
implied, of DARPA, the U.S. Department of Defense, or ITMO.

c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 291–299, 2017.
DOI: 10.1007/978-3-319-67471-1 18
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Fig. 1. Two rules. (left) Two proteins may bind. (right) The protein on the left may
activate the right site of the protein on the right.

Fig. 2. From rules to reactions. The first rule in Fig. 1 is refined into two reactions
according to whether or not right site of the right protein is phosphorylated.

(left, right). Sites may also carry an internal state which stands for an activation
level (such as phosphorylation). In Fig. 1, the rule on the right stipulates that
the bond between both proteins may activate the second one.

In a rule, the left hand side denotes some precondition, whereas the right
hand side stands for a transformation. Some agents may miss some sites. This
is the “Don’t Care, Don’t Write” convention [3]. The sites the state of which
influences neither an interaction nor its kinetics are omitted. Each rule may
be understood extensionally as a (finite or not) set of reactions, obtained by
refining it according to its potential application contexts, until getting fully
specified connected components. For instance the rule on the left in Fig. 1 may
be applied with the protein on the right phosphorylated or not, as depicted in
Fig. 2. In the differential semantics, rule applications preserve disconnectedness,
unless specified explicitly. Thus, each connected component in the left hand side
is refined separately. Agents may contain many sites and form arbitrary long
chains. Thus Kappa models are usually highly combinatorial. A small number
of rules may lead to a large (if not infinite) reaction networks [4,5].

The ODE semantics is defined in the following way. Each connected com-
ponent in a reaction denotes an instance of a bio-molecular species. For every
bio-molecular species S, a reaction R1 + . . . + Rm −→ P1 + . . . + Pn gives the
following contribution to the derivative of the concentration of the species S:

d[S]
dt

+=
∑

r

γ(r) · [r,R] · Δ(R,S) · [R1] · . . . · [Rm]

where: 1. γ(r) is the corrected rate of the rule r (a fraction of the rate of the rule
r is taken according to a convention defining how automorphisms are taken into
account); 2. [r,R] is the number of different ways to induce the reaction R from
the rule r; 3. and Δ(R,S) is the difference between the number of occurrences of
the species S in the sequence P1, . . . , Pn and the one in the sequence R1, . . . , Rm.
We use the symbol += because we totalise the contribution for each reaction R.
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2 ODEs Generation with KADE

KaDE generates the differential semantics of Kappa models. In command-line
mode, KaDE is called with a list of Kappa files and a list of options. A rudimen-
tary graphical interface is available as well. The syntax of Kappa is described in
its reference manual [6]. KaDE generates output for the numerical integration
tools Maple [7], Mathematica [8], Matlab [9], and Octave [10], and for the
modelling standard languages DOTNET [11,12] and SBML [13]. DOTNET
is the internal format of BioNetGen, we use it for compatibility with Erode
[14], a tool to evaluate and reduce systems of ODEs. SBML output may be con-
verted into LaTEX thanks to SBML2Latex [15]. SBML is also compatible with
CellDesigner [16] which provides several tools dedicated to reaction networks.

The Kappa modelling platform extends the core Kappa language with tokens,
algebraic expressions, and the possibility to allow the application of binary rules
in unary contexts. Tokens are specific continuous variables which may be con-
sumed and produced by rules according to user-specified stoichiometric coeffi-
cients. Kappa also supports arbitrary algebraic expressions both in rate para-
meters and in stoichiometric coefficients. These expressions may depend on the
simulation time and on the concentration of some patterns in the current state of
the system. They permit the encoding of kinetics laws beyond mass action. This
feature is restricted to some specific backends. For instance, neither SBML, nor
DOTNET cope with non-constant stoichiometric parameters. Lastly, a rule the
left hand side of which is made of two connected components, may be provided
two rates according to whether it is applied in a binary context (each connected
component of the left hand side of the rule being embedded in two instances of
bio-molecular species), or in a unary context (both connected components being
embedded in the same instance of a bio-molecular species).

Some options let the end-user select the backend and change the name and
the repository of the output file. Some other options tune the semantics of the
model. It is also possible to truncate the ODES in order to ignore the bio-
molecular species that would have more agents than a user-specified threshold.
Three conventions exist for interpreting rate constants. In the following rule:

k

with the first convention (used by the simulator KaSim [6,17]), rates of rules are
not corrected; with the second one (used by the simulator Simplx [3]), rates are
divided by the number of automorphisms in the left hand side of rules (here 24);
the third convention (used by the simulator NFSim [18]) accounts only for the
permutations among the agents that are undistinguishable from a mechanistic
point of view (here 2). The same issue occurs with reactions, where permutations
among identical species are considered instead of automorphisms.

KaDE lets the end-user pick the convention for the rate constants of rules
(in input files) and the one for the rate constant of reactions (in output net-
works). BioNetGen uses the third convention for rules and the first one for
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reactions. Lastly Erode takes the first convention for reaction rate constants in
the differential setting and the second one in the stochastic one.

Some options tune the numerical integration parameters. This concerns the
range for simulation time, the frequency of simulation plots, error tolerance
parameters, and the size of integration steps. Moreover, the computation of the
Jacobian may be disabled/enabled. It is also possible to warn numerical solvers
that concentrations shall remain nonnegative.

Comparison with other tools. Both BioNetGen and Kappa can convert rules
into reactions. BioNetGen supports compartmentalisation unlike Kappa. In
BioNetGen, equivalent sites can be specified. In contrast, KaDE detects them
automatically. BioNetGen does not support tokens.

3 Equivalent Sites

Some sites may have exactly the same capabilities of interaction. This may be
used to generate more compact systems of ODEs, by partitioning the set of
bio-molecular species up to permutation of equivalent sites [19–21].

Consider the rules in Fig. 3. Each rule may be obtained from one another
by swapping pairs of sites in agents: we say that these sites are equivalent.
Equivalent sites may be used to induce forward and backward bisimulations
over the stochastic and the differential semantics of Kappa [19–23].

Let us consider two sites x and y in a given kind of agent. A set of rules is
symmetric with respect to the sites x and y if the corrected rates of every two
rules that may be obtained one from the other by permuting the sites x and y in
some agents, are inversely proportional to their numbers of automorphisms. The
same way, a valuation from bio-molecular species to real numbers is symmetric
with respect to the sites x and y if the images of every two bio-molecular species
that can be obtained one from the other by permuting the sites x and y in some
agents, are inversely proportional to their numbers of automorphisms. Lastly an
expression over bio-molecular species is symmetric with respect to the sites x
and y if and only if it takes the same values for every two symmetric valuations.

Whenever the set of rules and the initial state of the model are symmet-
ric with respect to two sites, ignoring the difference among these sites in each
bio-molecular species induces a backward bisimulation (i.e. the state of the sys-
tem remains symmetric at every time [19,24]). Whenever the set of rules and
each algebraic expression in rates or in stoichiometric coefficients are symmetric,
ignoring the difference between these sites induces a forward bisimulation (we
can define the ODEs directly over the equivalence-classes of species [19,24]).

KaDE may be parameterised for detecting the forward and backward bisim-
ulations that are induced by pairs of equivalent sites. Then, it generates the
corresponding reduced ODEs without relying on the initial reaction network.

Comparison with other tools. In BioNetGen [11,12] pairs of equivalent sites
may be user-specified. In KaDE, equivalent sites are inferred automatically.
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k1 k2 k3

Fig. 3. Sites are equivalent, if the corrected rates of the third rule is twice the corrected
rate of each other rule.

The expressive power of equivalent sites in BioNetGen and in KaDE are sim-
ilar. Yet in BioNetGen equivalent sites must be equivalent in the rules, in the
algebraic expressions, and in the initial state, whereas KaDE may exploit pairs
of sites that are equivalent in the rules and in the algebraic expressions, but not
necessarily in the initial state (forward bisimulation), or that are equivalent in
the rules and in the initial state, but not necessarily in the algebraic expressions
(backward bisimulation). Moreover, the kinetics conventions are a bit different.
As a consequence, some models require more rules to be described in Kappa and
some others require more rules to be described in BioNetGen (more details
are provided in Supplementary Information [25]). From a combinatorial point
of view, BioNetGen reasons on agents with multiple occurrences of equiva-
lent sites, which may make the detection of embeddings exponentially costly
(with respect to the number of agents). In constrast, KaDE quotients the set
of bio-molecular species on the fly: it reasons on rigid site graphs for which the
detection of embeddings is at worst quadratic [26,27].

Erode [14] is a tool for lumping systems of ODEs. In particular, it offers some
primitives to discover the best forward bisimulation (resp. the best uniform back-
ward bisimulation) induced by an equivalence relation over the bio-molecular
species of a reaction network [28,29]. Erode can capture more forward bisim-
ulations than KaDE since equivalent sites can induce only a particular kind of
equivalence relations over species. Erode and KaDE are incomparable on back-
ward bisimulations: on the first hand, KaDE focuses on equivalence among sites,
but on the second hand, Erode focuses on uniform bisimulation which means
that it cannot assign weights to bio-molecular species. For instance, Erode can-
not express the backward bisimulation that gathers every kind of dimer in the
example of Fig. 3 since the dimer made of a protein bound on its top site to the
bottom site of another protein is twice abundant as the dimer made of two pro-
teins bound together on their top sites (whenever the initial state and the rate
constants are such that sites x and y are equivalent). As far as computation cost
is concerned, Erode works on a fully expanded description of the system (either
a reaction networks, or an ODE system), which may be impossible to compute
for large models. KaDE discovers equivalent sites directly on the set of rules.
Another difference is that KaDE applies on uninterpreted parameters (KaDE
reductions remain valid if the value of rate parameters is modified) whereas
Erode can compute bisimulations only over fully instantiated networks.

On fully instantiated networks, KaDE and Erode may be combined. Firstly,
KaDE may quickly detect equivalent sites and generate reduced networks
accordingly. Then Erode may look for further reductions. When focusing on
forward bisimulation, Erode also provides a proof that final reductions are
optimal.
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4 Benchmarks

We test the reduction power and the time efficiency of our framework on three
families of models offering various conditions about the ratio of the number of
Kappa rules to the number of reactions and about the ratio of the number of
different bio-molecular species configurations to the number of their equivalence
classes. In KaDE, the computation time for generating networks (or ODEs)
depends mainly on the number of rules and the number of equivalence classes of
bio-molecular species configurations. The data-structure described in [17] is used
to generate reactions efficiently. More examples, including most of the BioNet-
Gen test suite, are provided in Supplementary Information [25].

model sites rules
species reactions

original reduced original reduced
kinase/phosphatase n 6n 2 + 4n 2 + n+3

3

)
6n4n−1 2n n+2

2

)

multiple phosphorylation n n2n 2n n + 1 n2n 2n
mult. phosphoryl. with counter n 2n2 2n n + 1 n2n 2n

Fig. 4. Key attributes of our models with respect to the parameter n.

The first family involves a kinase, a phosphatase, and a target protein. The
target protein has n sites (n is left as a parameter). The kinase may bind and
unbind to each non-phosphorylated site of the target protein. The kinase may
phosphorylate a site when releasing it. Conversely, the phosphatase may bind
and unbind to each phosphorylated site of the target protein. The phosphatase
may also dephosphorylate a site when releasing it. We assume that every site has
the same mechanistic properties and that the rate of reactions does not depend
on the state of the other sites in the target protein.

The second and third families of models are inspired by the protein Kai.
This protein plays a crucial role in the control of the circadian clock oscillations.
We consider a protein with n sites (n is left as a parameter) which may each
be phosphorylated, or not. The kinase and the phosphatase are not described
explicitly. We assume that the rate constants of phosphoralylation (resp. dephos-
phorylation) of a site in a protein depend on the number of sites that are already
phosphorylated in this protein. In the third family of models, a trick suggested
by Pierre Boutillier is used to reduce drastically the number of rules that are
required to describe the models. We use a fictitious site that is bound to a chain
of fictitious proteins the length of which encodes the number of phosphorylated
sites. When a site is phosphorylated, a new protein is inserted in the chain and
removed when a site gets dephosphorylated. Thus the phosphorylation level of
a protein can be checked by looking at the length of this chain, without having
to enumerate the different combinations fot the sites that are phosphorylated.

In Fig. 4, we give the number of rules, species and reactions, for each family
of models for the parameter n ranging from 1 to 10, as well as the number of
reactions and species when equivalent sites are considered. In Fig. 5, we compare
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(a) kinetase/phosphatase model. (b) multi-phosphorylation site model.

(c) multi-phosphorylation site model with counter. (d) legend.

Fig. 5. Comparison between the time performances of KaDE, BioNetGen, and
Erode, on a MacBookPro with a 2,8 GHz Intel Core i7 CPU and a 16 Go 1600

MHz DDR3 memory and with a 10 minutes time-out.

the computation time to generate the original and the reduced networks with
BioNetGen and KaDE. The generation of reduced models with KaDE (which
does not require explicit annotation of equivalent sites) is much faster than
the one of the unreduced networks. KaDE and BioNetGen generate exactly
the same reduced networks. Lastly, we apply the fast version of Erode of the
bisimulation inference algorithm [29] on the original networks and the complete
version on the reduced ones [28]. But we found not further reduction this way.
In [25], we observe as good results on the BioNetGen test suite.
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Abstract. We present a computational tool DSGRN for exploring net-
work dynamics across the global parameter space for switching model
representations of regulatory networks. This tool provides a finite par-
tition of parameter space such that for each region in this partition a
global description of the dynamical behavior of a network is given via a
directed acyclic graph called a Morse graph. Using this method, para-
meter regimes or entire networks may be rejected as viable models for
representing the underlying regulatory mechanisms.

1 Introduction

An important challenge in systems biology today is the lack of robust tools that
can translate static network information into actionable information about a
network’s dynamics. It is the dynamics of the network that ultimately correlates
with the cellular state and determines its phenotype. Lack of understanding of
all potential dynamics that a network structure supports is one of the reasons
for the apparent lack of correspondence between genotype and phenotype.

We have developed an efficient mathematically rigorous computational tool-
box, called Dynamic Signatures Generated by Regulatory Networks (DSGRN),
that computes the range of dynamic behaviors supported by a given network.
DSGRN is based on a new mathematical framework for nonlinear dynamics,
which moves away from consideration of individual solutions at particular para-
meter values. In networks with 5–10 nodes with 30–50 parameters any random
sampling of parameters and initial conditions will only cover a negligible portion
of possible dynamical behaviors. Furthermore, comparing individual solutions to
experimental data, which typically carries significant uncertainty, cannot be used
to reject potential models because many nearby parameters and initial condi-
tions will produce solutions that fit the data equally well. The main applications
of our tool have been to (1) describe coarse dynamics for the entire parameter
space for a given network, allowing exploration and quantification of different
dynamic signatures supported by the network architecture, and (2) compare
c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 300–308, 2017.
DOI: 10.1007/978-3-319-67471-1 19
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dynamics across hundreds of networks with data allowing rigorous exploration
of the space of networks. To illustrate this aspect, in Sect. 3 we examine 4994
networks that are a perturbations of a transcriptional network underlying cell
cycle progression in yeast. We evaluate each network by the prevalence of stable
oscillatory behavior in the parameter space and doing so we find those networks
that most robustly exhibit oscillatory behavior.

2 Database for Dynamics

The current state of modeling gene network dynamics is characterized by a
trade-off between the model’s ability to quantitatively match the experimental
data, and the need for a large number of kinetic parameters to parameterize the
model [1–3]. A popular modeling approach uses Boolean networks, where each
protein, ligand or mRNA is assumed to have two states (ON and OFF), and
the discrete time evolution of the states is based on logic-like update functions
[4–6]. The highly constrained character of the states and the update rules allows
relatively easy parameterization of the model from data, but it limits the power
of generalization and typically results in a poor quantitative match with data.
In contrast, properly parameterized ordinary differential equation models can
provide a good quantitative match and are easily generalized [7,8], but we lack
first principle methods to select proper nonlinearities, and the parameters are
usually poorly constrained, or unknown.

Our approach is derived from Conley theory [9–11] and the computations
we perform allow us to identify trapping regions. As a consequence we are able
to combinatorialize the approximation of the dynamics and the parameter rep-
resentation of the system, while retaining the capabilities of providing rigorous
descriptions of the dynamics without explicit knowledge of the nonlinearities [12].
Furthermore, we obtain computational efficiencies similar to those of Boolean
nets while preserving the quantitative richness of ODEs.

It should be noted that there are a variety of techniques that have been
developed and implemented that are similar in spirit, but vary in focus and
detail. A complete review is beyond the scope of this note, but we remark on
the following examples. The focus of [13] is on minimizing models that exhibit
a particular transition system over a finite set of states. The goals of [14] a
similar in spirit, but make use of piecewise linear nonlinearities. As a consequence
the decomposition of parameter space is more involved and dealt with via a
hierarchical decomposition [15]. Perhaps closest to our approach in the context
of this work is [16] in which the dynamics and parameterization makes use of [17].
With regard to [17] our approach allows for broader state space decompositions
and less restrictions on parameters. However, [16] focuses on detailed matching
of dynamics to time series and thereby providing more powerful tools for model
and parameter rejection.
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Switching Systems of Regulatory Networks. A regulatory network involv-
ing N genes is often modeled by a system of ordinary differential equations

ẋi = −γixi + fi(x), i = 1, . . . , N, (1)

where xi denotes the concentration level of protein associated with gene i, where
each gene i is associated to a node in the regulatory network. The nonlinearity
fi is meant to capture how production of one gene is regulated by other genes,
but in practice it is impossible to derive fi from first principles. Biologists use
a phenomenological choice of fi; the default is usually to express fi in terms of
Hill functions. We build upon ideas of Glass and Kaufmann [18,19] and consider
a particularly simple form of (1) called a switching system;

ẋi = −γixi + Λi(x), i = 1, . . . , N, (2)

where Λi is defined as sums and products of piecewise constant functions of the
variables xj .

The parameters of the switching systems are directly relatable to the para-
meters of Hill function based models and include decay rates γi, and for each
regulating edge j → i in the regulatory network, there are three parameters: a
threshold value θi,j of xj , at which the piecewise constant function Λi changes
values, and li,j < ui,j , the two values of Λi in a neighborhood of θi,j . We note
that because Λi is not continuous, classical solutions to (2) are not guaranteed
to exist. This does not hinder our ability to use switching systems to combinato-
rialize the dynamics of a network. Furthermore, in our perspective the switching
system, rather than being a model on its own right, is only a computational
model to understand the dynamics of the unknown biologically relevant model
that has the form of (1) where the nonlinearities are sufficiently smooth to guar-
antee existence and uniqueness of solutions.

A general mathematically precise exposition of how switching systems natu-
rally admit discretization of the phase space, dynamics, and the parameter space
is nontrivial and has been developed in [20]. In this contribution, our emphasis
is on description of DSGRN as a computational tool and we only briefly describe
the underlying theory.

Combinatorial Dynamics. The threshold parameters θ, which denote the
locations of the abrupt changes in Λi define a decomposition of phase space
into domains, and in each domain system (2) is readily solvable. Furthermore,
by representing domains as nodes of a State Transition Graph (STG) we can
unambiguously assign edges between nodes that represent the directions of all
solutions between the domains. To be more formal we let X denote the set of
nodes of STG and to emphasize that we are interested in dynamics we represent
the directed graph as a multivalued combinatorial map F : X ⇒ X where a node
ξ′ ∈ F(ξ) if and only if there is an edge ξ → ξ′ in the directed graph.

Observe that F depends on the choice of parameter values. A key insight
of [20] is that F is locally constant, that the boundaries of regions where F is
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constant are semi-algebraic sets, and that the decomposition of parameter space
into regions of constancy is explicitly computable. This decomposition of high
dimensional parameter space is codified via a Parameter Graph PG. The nodes
of PG correspond to regions of parameter space with identical F , and edges
correspond to co-dimension 1 boundaries between the regions which capture the
geometry of the decomposition.

Storing the entire collection of multivalued maps over all parameter ranges
is prohibitive. We use the concept of a Morse graph to extract the essential
recurrent dynamics information from the combinatorial map F : X ⇒ X . We use
linear time algorithms to identify maximal sets of nodes in X mutually related
by directed paths from one node to another. These maximal sets of nodes are
called Morse sets of F and are identified by nodes in the Morse graph. The
directed edges in the Morse graph indicate the reachability from one Morse set
to another via paths in F . Thus, minimal nodes in the Morse graph represent
stable or attracting dynamics (see Fig. 1 (c), (e), (g), (i), (k)).

The parameter graph along with the associated Morse graphs provides an
extremely condensed representation of the global dynamics over all of parameter
space. We augment the Morse graph with labels on the Morse sets that describe
the recurrent dynamics they represent. In our graphical output, described in
detail in the Supplement, we denote by FP a Morse set that corresponds to a
stable equilibrium (Fixed Point). FP OFF means that every protein concentra-
tion is below its lowest threshold, and FP ON means that every variable is above
its lowest threshold. We use FC (Full Cycle) to denote a Morse set in which each
coordinate crosses at least one threshold (this must happen an even number of
times).

The output of the DSGRN software is a SQL database, which allows the
user to query for particular types of dynamics and/or for the dynamics in dif-
ferent regions of parameter space. Although the DSGRN database is computed
using switching systems (2), the Morse graph structures are valid for smooth
systems taking the form (1) under the assumption that fi and Λi are sufficiently
close. Furthermore, explicit expressions for what sufficiently close means can be
obtained [12]. Thus the DSGRN framework allows us to make mathematically
rigorous statements about the global dynamics of regulatory networks even if
the nonlinearities are not explicitly known.

3 Examples

(1) Characterizing the dynamics of a network over global parameter
space. To illustrate the range of dynamics being detected by DSGRN, we show
five STGs and the associated Morse graphs from the two-dimensional network
shown in Fig. 1 (a). These STGs and associated Morse graphs arise from five of
the 120 regions in parameter space for this system.

The network graph in Fig. 1 (a) implies that X has two thresholds and Y
has one, decomposing phase space into six domains. We label each domain by a
pair of integers denoting the locations of X and Y compared to their thresholds.
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X Y

1000

01

20

11 21 FC

FP

(a) (b) (c)

1000

01

20

11 21

FC 1000

01

20

11 21 FC

FP

(d) (e) (f) (g)

1000

01

20

11 21

FC 1000

01

20

11 21 FP ON

FP

(h) (i) (j) (k)

Fig. 1. (a) Two dimensional network. The pairs (b)-(c), (d)-(e), (f)-(g), (h)-(i) and (j)-
(k) provide examples of STG (first panel in each pair) and their associated augmented
Morse graphs (second panel in each pair). See beginning of Sect. 3 for description of
labeling of nodes in STG (panels (b), (d), (f), (h), (j)) See latter part of Sect. 2 for a
description of labeling of nodes in Morse graphs (panels (c), (e), (g), (i), (k)).

For example, 00 is the domain where both X and Y are below their respective
lowest thresholds, and 21 is where they are above their respective highest thresh-
olds. We use these domain labels to represent the nodes in STG, and the arrows
between them represent the flow between domains in phase space (Figs. 1 (b),
(d), (f), (h), (j)). From STGs, we calculate the corresponding Morse graph for
each parameter, shown in Figs. 1 (c), (e), (g), (i), (k).

(2) Comparing dynamics across networks. We use DSGRN to find a net-
work that exhibits robustly cyclic dynamics in a neighborhood of a given net-
work. The network in Fig. 2 (a, top) is a potential network driving cell cycle
progression in yeast [21]. The backbone of the network, which includes all mole-
cules except CdH1, is a subnetwork of Fig. 4 (c) in [21]. This backbone network
shows highly prevalent oscillatory dynamics in form of a Morse graph with sta-
ble FC. Experimental evidence showed that in the network where all cyclins
are knocked out, the system does not oscillate, but approaches an equilibrium.
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Fig. 2. A perturbation study of the network in (a, top). The histogram in (b) counts
the number of nearby networks with a certain percentage of parameters that exhibit
at least one stable FC. The network in (a, bottom) is one of the top 23 networks that
exhibit more than 40% stable FC.

This observation showed that the backbone network is not the network that
remains after cyclin knockout. However, when we include CDH1 in the net-
work, analysis via DSGRN shows that the network in Fig. 2 (a, top) with CDH1
exhibits no stable full cycles (FCs) across all of parameter space, thus recapit-
ulating the cyclin knockout phenotype. We now address the next question on
how the unknown knocked-out cyclins impinge on the network in Fig. 2 (a, top)
in such a way that their inclusion will cause the full network to oscillate.

To address the question what changes to the network will produce robust
stable FC, we take the network in Fig. 2 (a, top) and add parsimonious num-
bers of randomly chosen nodes and/or edges to the network to sample nearby
networks in the space of all networks. We analyzed 4994 such networks, seeking
stable FCs using DSGRN. The resulting histogram is shown in Fig. 2 (b) with the
number of networks plotted against the percentage of parameters that exhibit
at least one stable FC. Most of the networks (all but 814) show no stable FCs
at all. We assume that a high percentage of parameters exhibiting at least one
stable FC is a reasonable proxy for robustness of full cycle oscillations. There-
fore, we hypothesize that the 23 networks exhibiting at least 40% of parameters
with stable FCs are the best networks in this parsimonious neighborhood of the
original network, and are most likely to represent real regulatory mechanisms
in the cell cycle. One of these top 23 networks is shown in Fig. 2 (a, bottom).
Our method suggests that adding nodes X7 and X8 with the appropriate edges
depicted in Fig. 2 (a, bottom) will produce a robustly oscillating network. This
suggestion can be used as a guide for experimentalists to find molecular actors
that fulfill these roles. Taking a different point of view, unchecked progression
through cell cycle is one of hallmarks of cancer. A stable cycle oscillation can
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be considered a representation of such unchecked progression through the cell
cycle. While the original network does not exhibit this behavior, the extended
network does. From this perspective, X7 and X8 can be viewed as a prediction
of new oncogenes, or product of oncogenes.

4 Code Availability

DSGRN is publicly available [22]. The website contains complete documentation
including installation instructions, access to the GitHub repository, a graphical
interface that allows user to construct the network to be analyzed, and a collec-
tion of databases for networks that have already been computed. DSGRN can
work in two different modalities.

1. Exploration of the parameter space. In this mode, which is described
in the Documentation directory on the DSGRN website [22], the program
computes an SQL database from a network file. (See the Documentation on
Network Specification Files for the format of input network files.) Included
with this software is a command line tool dsgrn that accesses meta-data about
the network directly from the network file without computing the whole data-
base. Many precomputed databases can be viewed in the Databases directory
on the DSGRN website [22]. The output of each database is presented as a
collection of Morse graphs in descending order based on the number of para-
meter nodes where this Morse graph is observed. Selected filters are available
that allow the user to limit the types of dynamics that are visible. To view
a database that is not pre-computed, go to https://dsgrn.com and request
an account. Follow the documentation on that page and also see the tutorial
Bistable Repressilator Jupyter notebook in the top level Tutorial directory
in the DSGRN GitHub repository (the repository is linked from [22]). These
documents explain how to compute a database on the server and view it on
a personal website.

2. Computation at selected parameter nodes. The installation described
in the Documentation directory on the DSGRN website [22] downloads, but
does not install, a package of Python tools that can be used to compute the
State Transition Graph and other details about the dynamics at parame-
ter nodes of the parameter graph. The parameters of interest can be chosen
from examining Morse graphs in step 1. The installation instructions for the
Python package and its dependencies are described in the README file
in DSGRN/software/Python/ on GitHub. Furthermore, Jupyter Notebooks
with tutorials on the python tools (DSGRN Getting Started) and on prepro-
grammed SQL queries wrapped in python (QueryTutorial) can be found in
the GitHub repository in DSGRN/software/Python/doc.

There are two main limitations on the size of the network that can be com-
puted. One limitation is the type of node in the network; currently, nodes with
up to 3 inputs and 5 outputs can be computed, with selected higher orders avail-
able. The reason is that the structure of the parameter graph corresponding to

https://dsgrn.com
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each type of node has to be precomputed using Cylindrical Algebraic Decom-
position (CAD). The current set of computed input-output logic files can be
found at /usr/local/share/DSGRN/logic/ in the local installation of DSGRN.
The interpretation of the logic files are given in the Documentation linked from
the DSGRN website [22]. The second limitation is the size of the parameter
graph. This size is a product of parameter graphs of all the nodes and grows fast
with the type of the node, as well as number of nodes. The command line tool
dsgrn can compute the size of the parameter graph based on the network struc-
ture, so that the user can check its size (see Documentation, section High-Level
API) before committing to the calculation.
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Université Paris-Saclay, 91405 Orsay, France

loic.pauleve@lri.fr

Abstract. The software Pint is devoted to the scalable analysis of the
traces of automata networks, which encompass Boolean and discrete net-
works. Pint implements formal approximations of transient reachability-
related properties, including mutation prediction and model reduction.

Pint is distributed with command line tools, as well as a Python mod-
ule pypint. The latter provides a seamless integration with the Jupyter
IPython notebook web interface, which allows to easily save, reuse, repro-
duce, and share workflows of model analysis.

Pint can address networks with hundreds to thousands interacting
components, which are typically intractable with standard approaches.

1 Introduction

The computational analysis of the qualitative dynamics of biological networks
faces the state space explosion problem, limiting the tractability of detailed
models. Many studies have to use reduced models which often lose important
properties and may lead to approximative results.

Pint provides formal and scalable analysis for the transient discrete dynam-
ics (traces/trajectories) of automata networks, which subsume Boolean and
multi-valued networks. Pint implements an abstract interpretation of traces
based on a static analysis of causality of transitions. It results in over- and
under-approximations of PSPACE-complete problems by P· exp(k − 1) and
NP· exp(k − 1) problems, where k is the number of qualitative levels of net-
work nodes (2 for Boolean networks). Pint then relies on Boolean constraint
satisfaction (SAT) and Answer-Set Programming (ASP, [3]) for their efficient
resolution.

Besides simple transient reachability analysis (from state s0 there exists
a succession of transitions leading, even briefly, to a state satisfying a given
property), Pint features include the prediction of mutations to control the reach-
ability properties, the identification of bifurcation transitions responsible for dif-
ferentiation processes, and model reduction which preserves transient reachabil-
ity properties. For each case, returned results have formal guarantees on their

This work was supported by ANR-FNR project “AlgoReCell” (ANR-16-CE12-0034)
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correctness (under-approximations, satisfying sufficient conditions) or complete-
ness (over-approximations, satisfying necessary conditions).

Most of Pint analysis can typically handle networks with several hundreds
of components. Pint also provides interfaces with exact model-checkers, such as
NuSMV [5], ITS [16] and Mole [25], taking advantage of implemented static
model reduction to enhance their tractability on large models. Usual explicit
reachable state graph analysis are also available, although other tools dedicated
to Boolean or multi-valued networks already provide them, e.g., [10,14,18].

User Interfaces. Pint can be invoked either using command line executables,
suited for batch deployments, or through a programmable python interface.
Moreover, its embedding in the Jupyter IPython notebook allows a user-friendly
web interface to ease the management of models and calls to Pint. Jupyter note-
books provide a convenient environment for editing, saving, sharing, and repro-
ducing model analysis workflows. It is a common framework for data-oriented
bioinformatics tools [2,6,12], and has promising suitability for computational
systems biology, where reproducibility is very important as well.

Distribution. Pint is written mainly with the OCaml programming language
and is actively developed since 2011. It is distributed under the free software
licence CeCILL, and is available at http://loicpauleve.name/pint where binary
packages are provided for Ubuntu Linux and Mac OS X.

The Docker1 image pauleve/pint provides a ready-to-use Pint environment
for usual operating systems (Windows, Mac OS X, Linux), and notably the
Jupyter web interface. Such a kind of distribution becomes standard for providing
accessible and reproducible analyses in bioinformatics, e.g., BioContainers [15].

2 Input Model

Pint takes as input asynchronous automata networks specified in plain text.
Automata networks are sets of finite-state machines having local transitions
conditioned by the state of other automata in the network. The global state
space of the network is the produce of the local states of individual automata,
and transitions are applied non-deterministically.

Figure 1 shows an example of automata networks with its plain text repre-
sentation in Pint format. By convention, the file names end with .an.

Automata networks are expressive enough to encode the asynchronous
semantics of Boolean and multi-valued networks. The main difference with these
latter frameworks is the explicit specification of local transitions for each automa-
ton (node) of the network, compared to a function-centred specification for
Boolean and multi-valued networks [7,19].

Pint can automatically convert models expressed as Boolean or multi-valued
networks using the pint-import command or pypint.load() python function.
Most of the conversions are performed using GINsim [10], enabling the support
1 http://docker.com.

http://loicpauleve.name/pint
https://hub.docker.com/r/pauleve/pint/
http://docker.com
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Fig. 1. (a) graphical representation of an automata network: automata are labelled
boxes and their local states by circles where ticks are their identifier within the automa-
ton. The initial state is composed of the local states in gray. A local transition is a
directed edge between two local states of an automaton. Transitions can be labelled
with states of other automata which are necessary to trigger the transition. (b) equiv-
alent Pint plain text representation

for SBML-qual, GINsim, as well as various text formats. Models can be directly
imported from URLs and from CellCollective database [13]. Biocham reaction
networks are also supported, following their Boolean semantics [4].

3 Main Features and Benchmarks

The main originality of Pint resides in the static analysis for transient reacha-
bility properties: such an approach avoids building the reachable state transition
graph, neither explicitly nor symbolically. Therefore, the analysis aims at being
tractable on large networks, at the price of giving possibly incomplete results.

We present the related features, illustrated in Fig. 2, with benchmarks to
support their tractability on large biological networks. Computation times have
been obtained on an Intel R© CoreTM i7-4770 3.40GHz CPU with 16GiB RAM.

Reachability analysis: formal approximation and model reduction —
Given an initial state, a usual problem is to determine the existence of a sequence
of transitions which leads to the activation or de-activation of key components
(e.g., transcription factors) or to a particular attractor. Reachability verification
is a PSPACE-complete problem and its resolution often explodes on large net-
works. Pint implements over- and under-approximation of reachability [9,21]
which allow tackling large models, although being potentially inconclusive when
the over-approximation is satisfied but not the under-approximation. In such
cases, one should fall back to classical model-checking. To that aim, the goal-
oriented reduction [19] identifies transitions that do not contribute to the goal
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Fig. 2. Illustration of main features of Pint related to the transient reachability of a
set of goal states from (a set of) initial state(s). Circles represent global states of the
network and plain arrows dynamical transitions. Gray (resp. white) states are states
which are (resp. are not) connected to a goal state.

reachability, and hence can be removed prior to the reachability analysis. This
model reduction preserves all minimal traces to the goal, and can enhance greatly
the tractability of model-checking. See Table 1 and [19] for benchmarks.

Prediction of mutations for controlling reachability — Given an initial
state and a goal state of interest, Pint provides several methods to control the
transient reachability of the goal.

The most scalable approach identifies cut sets of all the paths of transi-
tions leading to the goal. A cut sets consists in one or several local states of
automata which are necessary for the goal reachability: if one prevents the tran-
sitions involving these local states, the goal is disconnected from the initial state.
Pint provides extremely scalable under-approximation of cut sets [20], which is
tractable on Boolean networks with thousands of nodes (Table 2). Cut sets can
thus be implemented as mutations which lock automata to its initial local state.

An alternative approach relies on a combination of static analysis and SAT
solving and allows to directly infer mutations (gain or loss of function) which
prevent the goal reachability. Whereas less scalable than cut set computations, it
provides in general complementary solutions to cut sets, notably by identifying
mutations which modify the initial state of the network.

Identification of bifurcation transitions — Pint implements static analy-
sis for identifying so-called bifurcation transitions [8] after which the systems
loses the capability to reach a given goal. Bifurcation transitions correspond
to local transitions of the automata network which turn out to be important
decision steps during differentiation processes. They can be fully identified by
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Table 1. Benchmark† of goal reachability verification with two exact methods
(NuSMV and ITS-reach) and Pint, before (normal font) and after (bold font) goal-
oriented model reduction; |T| is the number of local transitions in automata networks;
|state| is the number of reachable global states, when computable. KO indicates an
out-of-memory/time computation. In all cases Pint is conclusive.

Verification of goal reachability

Model (|nodes|) |T| |states| NuSMV (EF g) ITS-reach Pint

TCell-d (101) [1] 381 ≈ 2.4 · 108 2 s 40 Mb 0.5 s 26 Mb 0.02 s

profile 1 0 1

TCell-d (101) 381 KO KO 960 s 1.6 Gb 4.5 s

profile 2 221 75,947,684 470 s 270Mb 15 s 160Mb

RBE2F (370) [22] 742 KO KO KO 0.2 s

56 2,350,494 3 s 37Mb 4 s 13Mb

MAPK (309) [24] 1251 KO KO KO 48 s

429 KO KO KO

Scripts and models available at http://loicpauleve.name/pint-benchmarks.tbz2

Table 2. Performance† of cut sets and mutations under-approximations with Pint
depending on the maximal cardinality of returned sets.

Goal TCell-d (101) Egf-r (104) [23] MAPK (309) PID (10,229) [20]

FOXP3=1 AP1=1 ERK-PP=1 SNAIL=1

3-cut sets 0.06 s 35 0.02 s 34 0.06 s 24 1.2 s 7

4-cut sets 0.10 s 101 0.02 s 34 0.1 s 48 5 s 37

6-cut sets 0.60 s 495 0.03 s 34 1 s 60 10m 907

3-mutations 0.30 s 15 0.30 s 20 5 s 222 50m 7

4-mutations 0.30 s 15 0.30 s 22 10 s 1896 50m 67

6-mutations 0.30 s 15 0.30 s 22 KO 50m 367

Scripts and models available at http://loicpauleve.name/pint-benchmarks.tbz2

Table 3. Performance† (Scripts and models available at http://loicpauleve.name/
pint-benchmarks.tbz2) of exact and approximated identification of bifurcation transi-
tions with NuSMV and Pint, respectively; |tb| is the number of identified bifurcation
transitions.

|T| |states| goal NuSMV Pint

|tb| time |tb| time

EGF/TNF (28) [17] 53 3968 NFkB = 0 5 0.2 s 2 0.1 s

MAPK (53) [11] 173 KO Proliferation = 1 KO 13 40 s

TCell-d (101) 381 KO FOXP3 = 1 KO 4 58 s

Scripts and models available at http://loicpauleve.name/pint-benchmarks.tbz2

http://loicpauleve.name/pint-benchmarks.tbz2
http://loicpauleve.name/pint-benchmarks.tbz2
http://loicpauleve.name/pint-benchmarks.tbz2
http://loicpauleve.name/pint-benchmarks.tbz2
http://loicpauleve.name/pint-benchmarks.tbz2
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model-checking, but the static analysis in Pint allows tackling larger models, at
the price of returning incomplete results (Table 3).

4 Integration with Jupyter IPython Web Notebook

Jupyter (http://jupyter.org) provides an interactive web interface for creat-
ing documents, named notebooks, which contain code, equations, and format-
ted texts. A notebook typically describes a full workflow of analysis, both
with textual explanations and the full code and parameters to reproduce the
results. It is a very popular framework in data science, including in bioinfor-
matics [6,12]. A notebook is a single file which can be easily modified, shared,
re-executed, and visualized online. For instance, the companion quick tutorial
is available at http://nbviewer.jupyter.org/github/pauleve/pint/blob/master/
notebook/quick-tutorial.ipynb.

The pypint module provides custom integration within the Jupyter IPython
notebook, with custom menus and actions for loading models and executing
Pint commands, as well as direct visualization of data structures. See Fig. 3
and the companion quick tutorial for a preview.

Fig. 3. Screen capture of Jupyter web interface running pypint in a notebook.

5 Conclusion

In this paper, we presented the prominent features of Pint on the static analysis
for transient reachability of automata networks, from property verification to
inference, which are tractable on large biological networks. Pint also implements
classical state transition graph analysis, from fixpoint computation (using SAT
solving) to explicit state space exploration, with a limited scalability. A tour of
features is given at https://loicpauleve.name/pint/doc/#Tutorial.

http://jupyter.org
http://nbviewer.jupyter.org/github/pauleve/pint/blob/master/notebook/quick-tutorial.ipynb
http://nbviewer.jupyter.org/github/pauleve/pint/blob/master/notebook/quick-tutorial.ipynb
https://loicpauleve.name/pint/doc/#Tutorial
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In the next major release, we plan to add full support for synchronized
local transitions, i.e., transitions that modify simultaneously the state of sev-
eral automata. This improvement will allow to import any safe (1-bounded)
Petri nets, broadening the class of supported dynamical models.
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20. Paulevé, L., Andrieux, G., Koeppl, H.: Under-approximating cut sets for reachabil-
ity in large scale automata networks. In: Sharygina, N., Veith, H. (eds.) Computer
Aided Verification. LNCS, vol. 8044, pp. 69–84. Springer, Heidelberg (2013)
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Bifurcation analysis is a central task of the analysis of parameterised high-
dimensional dynamical systems that undergo transitions as parameters are
changed. To characterise such transitions for models with many unknown para-
meters is a major challenge for complex, hence more realistic, models in systems
biology. Its difficulty rises exponentially with the number of model components.

The classical numerical and analytical methods for bifurcation analysis are
typically limited to a small number of independent system parameters. To
address this limitation we have developed a novel approach to bifurcation analy-
sis, called discrete bifurcation analysis, that is based on a suitable discrete
abstraction of the given system and employs model checking for discovering
critical parameter values, referred to as bifurcation points, for which various
kinds of behaviour (equilibrium, cycling) appear or disappear. To describe such
behaviour patterns, called phase portraits, we use a hybrid version of a CTL
logic augmented with direction formulae.

Technically, our approach is grounded in a novel method of parameter syn-
thesis from temporal logic formulae using symbolic model checking and imple-
mented in a new high-performance tool Pithya1 [1]. Pithya itself implements
state-of-the-art parameter synthesis methods. For a given ODE model, it allows
to visually explore model behaviour with respect to different parameter values.
Moreover, Pithya automatically synthesises parameter values satisfying a given
property. Such property can specify various behaviour constraints, e.g., maximal
reachable concentration, time ordering of events, characteristics of steady states,
the presence of limit cycles, etc. The results can be visualised and explored in a
graphical user interface.

We demonstrate the method on a case study taken from biology describing
the interaction of the tumour suppressor protein pRB and the central tran-
scription factor E2F1 [3]. This system represents an important mechanism of a
biological switch governing the transition from G1 to S phase in the mammalian
cell cycle. In the G1-phase the cell makes an important decision. In high con-
centration levels, E2F1 activates the phase transition. In low concentration of
E2F1, the transition to S-phase is rejected and the cell avoids division.

This work has been supported by the Czech National Infrastructure grant
LM2015055 and by the Czech Science Foundation grant GA15-11089S.

1 http://biodivine.fi.muni.cz/pithya/.

c© Springer International Publishing AG 2017
J. Feret and H. Koeppl (Eds.): CMSB 2017, LNBI 10545, pp. 319–320, 2017.
DOI: 10.1007/978-3-319-67471-1

http://biodivine.fi.muni.cz/pithya/


320 N. Beneš et al.
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We propose a simple parallel stochastic dynamics for understanding random
association cluster formations of 2n = 40 Mus musculus domesticus bivalents
during pachytene in early prophase and provide statistically optimized para-
meters for ensuring adequate fitting of the model with available experimental
data [2]. This work represents a continuation of the discrete dynamical app-
roach started in [2, 3] while modeling randomness for chromosome associations
in 2n = 40 - Mus m. domesticus spermatocytes. We focus on pachytene in
prophase I (see [1]).

During pachytene, at the prophase stage of meiosis, the homologous chro-
mosomes synapse along a proteinacious structure, called synaptonemal com-
plex (SC), thus enabling recombination between them, a process that produces
genetic variation. The synapsed chromosomes are called bivalents and are found
to be attached to the nuclear envelope by both their ends, being able to move or
glide upon the internal surface of it. Chromosomal bivalent’s associations are said
to be given by intersecting domains of constitutive pericentromeric heterochro-
matin(CPCH’s), which are known to create rich dynamic and diverse scenarios
via the participating elements. These are triggered by the corresponding inter-
section domains of CPCH located at the short arms of each bivalent, but also by
the associated convergence of the rest of the constituent chromatin along them.
These structures are revealed by means of squashes (or spreads), in which the
nuclear envelope is removed and the spermatocyte’s nucleus content is projected
to a flat surface.

Data from 400 pachytene spermatocyte spreads of 2n = 40 Mus domesticus
treated by immunocytochemical techniques taken from [2] is used for contrasting
theoretical results: we model the spermatocyte’s nucleous as an (almost) six
regular graph, which ensure maximal connectivity for the nodes. They represent
the positions of the bivalents attached to the nuclear envelope.
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Fig. 1. Parallel evolution in G. Red
lines indicate direction of displace-
ment (Color figure online).

Upon this discrete surface, the SC evolu-
tion follows a parallel rewriting rule as in
Fig. 1. Here, the bivalent’s structures are rep-
resented as attributes of the vertices: The
synaptonemal complex SC attached to the
envelope and a random neighborhood of ver-
tices for the CPCH. Pathwise connected
domains of overlapping CPCH are considered
to build an association cluster between the

corresponding bivalents and we describe and analyze their statical and dynami-
cal distribution.

Fig. 2. Squash v/s model: An immunocytochemichally treated nucleous with an artist
conception of its mathematical counterpart.

The model can now be used for interrogating different phenomena associated
to the superposition of chromatin domains of the bivalents during pachytene, as
well as providing a theoretical description of the kind of randomness involved in
these phenomena (Fig. 2).

Undoubtedly, a model-theoretical approach to the general principles behind
bivalent’s associations in prophase meiotic nuclei, as well as precising the type of
randomness being at play at this stage could bring us also a step closer to a better
understanding of the different chromosome combinations present in the gametes.
Since these associations and combinations persist until the meiotic divisions, the
chromosomal associations as described here necessarily leave some imprint in the
chromosomal sets passed on to gametes and hence their importance to evolution.

Acknowledgements. This work has been partially supported by Chilean MINEDUC
Grant MECE-SUP 2016-2017 and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)
funded by the French program Investissement d’avenir.
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3. López-Fenner, J., Berŕıos, S., Manieu, C., Page, J., Fernández-Donoso, R.: Bivalent
associations in Mus domesticus 2n = 40 spermatocytes: are they random? Bull.
Math. Biol. 76(8), 1941–1952 (2014)



Non-disjoint Clustered Representation
for Distributions over a Population of Cells
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1 Motivation

We consider a large homogenous population of cells, where each cell is governed
by the same complex biological pathway. A good modeling of the inherent vari-
ability of biological species is of crucial importance to the understanding of how
the population evolves. In this work, we handle this variability by considering
multivariate distributions, where each species is a random variable. Usually, the
number of species in a pathway -and thus the number of variables- is high. This
appealing approach thus quickly faces the curse of dimensionality: representing
exactly the distribution of a large number of variables is intractable.

To make this approach tractable, we explore different techniques to approxi-
mate the original joint distribution by meaningful and tractable ones. The idea
is to consider families of joint probability distributions on large sets of random
variables that admit a compact representation, and then select within this family
the one that best approximates the desired intractable one. Natural measures of
approximation accuracy can be derived from information theory. We compare
several representations over distributions of populations of cells obtained from
several fine-grained models of pathways (e.g. ODEs). We also explore the interest
of such approximate distributions for approximate inference algorithms [1, 2] for
coarse-grained abstractions of biological pathways [3].

2 Results

Our approximation scheme is to drop most correlations between variables.
Indeed, when many variables are conditionally independent, the multivariate
distribution can be compactly represented. The key is to keep the most relevant
correlations, evaluated using the mutual information (MI) between two variables.

The simplest approximation is called fully factored (FF), and assumes that
all the variables are independent. It leads to very compact representation and
fast computations, but it also leads to fairly inaccurate results as correlations
between variables are entirely lost, even for highly correlated species (MI = 0.6).
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Alternately, one can preserve a few of the strongest correlations, selected
using MI, giving rise to a set of disjoint clusters of variables. For efficiency
reason, we used clusters of size two. This model was able to capture some of
the most significant correlations between pairs of variables (representing around
30% of the total MI), but dropped significant ones (MI = 0.2).

A better trade-off between accuracy and tractability was obtained by using
non-disjoint clusters of two variables, structured as a tree, called the tree-
clustered approximation (TCA). The approximated joint distribution is fully
determined by the marginals over each selected cluster of 2 variables. This gives
a compact representation (<800 values in our experiments). Further, any mar-
ginal over k out of n total variables can be computed with time complexity
O(nvk+1), where each variable can take v possible values. Last, a tractable algo-
rithm [4] allows to compute the best approximation of any distribution by a
tree of clusters. TCA succeeded in capturing most correlations between pairs of
variables (representing around 70% of the total MI), losing no significant ones
(MI < 0.1).

Regarding inference, FF, disjoint clusters and TCA were compared to Hybrid
FF (HFF) [2]. In short, HFF preserves a small number of joint probabilities
of high value (called spikes), plus an FF representation of the remaining of
the distribution. The more spikes, the more accurate the approximation, and
the slower HFF inference. Overall, TCA is very accurate, while HFF generates
sizable errors, even with numerous spikes (32k). Further, TCA is faster than
HFF, even with few spikes (3k). FF and disjoint-clusters are even faster (1 to 2
order of magnitudes) than TCA, but the accuracy of both remains problematic.

3 Perspectives

We now aim at modeling and studying a tissue, made of tens of thousands of
cells. In this context, capturing the inherent variability of the population of cells
is crucial. In order to study multi-scale systems in a tractable way, we advocate a
two-step approach: Firstly, abstract the low level model of the pathway of a single
cell into a stochastic discrete abstraction, e.g. using [3]. Secondly, use a model of
the tissue, which does not explicitly represent every cell but qualitatively explains
how the population evolves. In this way, one need not explicitly represent the
concentration of each of the tens of thousands of cells, but rather only keep one
probability distribution.

Acknowledgement. This work was partially supported by ANR-13-BS02-0011-01
STOCH-MC.
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Abstract. Asymmetries in the distribution of time intervals between consecu-
tive RNA productions from a gene can play a critical role in, e.g., allowing/
preventing the RNA and, thus, protein numbers to cross thresholds involved in
gene network decision making. Here, we use a stochastic, multi-step model of
transcription initiation, with all rate constants empirically validated, and explore
how the kinetics of its steps affect the temporal asymmetries in RNA production,
as measured by the skewness of the distribution of intervals between consecutive
RNA productions in individual cells. From the model, first, we show that this
skewness differs widely with the mean fraction of time that the RNA polymerase
spends in the steps preceding open complex formation, while being independent
of the mean transcription rate. Next, we provide empirical validation of these
results, using qPCR and live, time-lapse, single-molecule RNA microscopy
measurements of the transcription kinetics of multiple promoters. We conclude
that the skewness in RNA production kinetics is subject to regulation by the
kinetics of the steps in transcription initiation and, thus, evolvable.

Keywords: Transcription initiation � Asymmetries in RNA production �
Stochastic models � Single-RNA measurements

Gene expression regulation in bacteria occurs mostly in transcription initiation [1]. In
Escherichia coli, this process is sequential [2], starting with an RNA polymerase
(R) binding to an active promoter (PON) and forming a closed complex (RPcc). Next,
the open complex (RPoc) forms. Relevantly, the subsequent steps of RNA elongation
[3], termination, and RNA and R release are much faster. Thus, dynamically, tran-
scription can be approximately modeled as:

ð1Þ
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Here, RNA production kinetics is controlled by kcc and koc. The probability density
function (pdf) of the distribution of intervals between transcription events is the con-
volution of their pdfs: fDt tð Þ ¼ kcc�koc

koc�kcc
e�kcc�t � e�koc�t� �

. To measure asymmetries in this

distribution, we use skewness, S ¼ m3

m3=2
2

, where mr ¼ 1
nR xi � �xð Þr [4]. We estimate the

sample skewness Ss ¼
ffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

p
n�2 � S, where n is the sample number [5]. To obtain con-

fidence boundaries for Ss we use non-parametric bootstraps as in [6].
In (1), kcc is the inverse of the mean time for R to bind the promoter and complete a

closed complex (scc), while koc is the inverse of the mean time for an open complex to
form (soc). The mean time between transcription events: Δt = scc + soc.

To validate the model predictions of skewness, we collected empirical data for Δt
and scc/Δt for various promoters (PTetA, PBAD, PLac-ara-1, and PLac-ara-1 under oxidative
stress) [7–9] (Fig. 1). Next, given the mean Δt of each promoter, we varied scc/Δt (from
0 to 1) while maintaining Δt constant. Then, for each value of scc/Δt, we calculated
S from the pdf of the distribution of intervals between transcription events (solid line,
Fig. 1). Interestingly, we observed that S is independent of the mean value of Δt.
Finally, from Fig. 1, we find that the model predictions of S fit the empirical data.

Importantly, as S is tunable by scc and soc, which are sequence dependent and
subject to regulation, we expect it to be evolvable and adaptive to environment shifts.
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