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Preface

Despite the development of a now vast body of knowledge known as modern
control theory, and despite some spectacular applications of this theory to practical
situations, it is quite clear that some of the theory has yet to find application, and
many practical control problems have yet to find a theory that will successfully deal
with them. No one book, of course, can remedy the situation. The aim of this book
is to construct bridges that are still required for the student and practicing control
engineer between the familiar classical control results and those of modern control
theory. It attempts to do so by consistently adopting the viewpoints that:

1. many modern control results have interpretation in terms of classical control
notions;

2. many modern control results do have practical engineering significance, as
distinct from applied mathematical significance;

3. to achieve practical designs, classical design insights and modern control tools
are synergistic.

As a consequence, linear systems are very heavily emphasized, and the discussion
of some results deemed fundamental in the general theory of optimal control has
been kept to the barest minimum, thereby allowing emphasis on those particular
optimal control results having application to linear systems. It may therefore seem
strange to present a book on optimal control which does not expound in detail the
Pontryagin Minimum Principle, but it is nonetheless consistent with the general
aims of the book.

ix



x Preface

In selecting the material for the book, the aim has not been to locate optimal
control theory of linear systems within the broader framework of optimal control
theory per se. Rather, the aim is to present results of linear optimal control theory
interesting from an engineering point of view, consistent with the ability of students
to follow the material.

For the most part, continuous-time systems are treated, since engineering
systems operate in continuous time, and a good deal more of the discussion is on
time-invariant than is on time-varying systems. Infinite-time optimization problems
for time-varying systems involve concepts such as uniform complete controllability,
which the authors consider to be in the nature of advanced rather than core mate-
rial, and accordingly discussion of such material is kept to a minimum. For com-
pleteness, some mention is also made of discrete-time systems, including imple-
mentation of continuous-time controller designs in discrete time, but it seemed
to us that an extended discussion of discrete-time systems would involve undue
repetition.

The text is aimed at the first or later year graduate student. The background
assumed of any reader is, first, an elementary control course, covering such notions
as transfer functions, Nyquist plots, root locus, etc.; second, an elementary intro-
duction to the state-space description of linear systems and the dual notions of
complete controllability and complete observability; and third, an elementary intro-
duction to linear algebra. However, exposure to a prior or concurrent course in
optimal control is not assumed.

The book contains three major parts. Part One introduces and outlines the
basic theory of the linear regulatorhracker for time-invariant and time-varying
systems, emphasizing the former. The actual derivation of the optimal control law is
via the Hamilton-Jacobi equation which is introduced using the Principle of Opti-
mality. The infinite-time problem is considered. Part Two outlines the engineering
properties of the regulator. Degree of stability, phase and gain margin, tolerance of
time delay, effect of nonlinearities, asymptotic properties and various sensitivityy
problems are all considered. Part Three considers state estimation and robust con-
troller design using state estimate feedback. Loop transmission recovery, frequency
shaping, and techniques of controller reduction and implementation are consid-
ered.

The problems at the end of each section are, in the main, extensions and
completions of theoretical material for which hints are often provided. The solu-
tions are available in a Solutions Manual. There are also open-ended problems set
in some chapters which require computer studies. No solutions are provided for
these problems.

We would like to emphasize that the manuscript was compiled as a truly joint
effort. We wish to acknowledge discussions with Boeing flight control engineers
Dagfinn Gangsaas, Jim Blight, and Uy-Loi Ly. These people motivated us in
revising our original manuscript of 1971, published as Linear Optimal Control.

For those readers who are familiar with our earlier work, Linear Optimal
Control, we record briefly the main changes:



Preface xi

1. We have omitted material on relay control systems, dual-mode controllers,

and so-called specific optimal regdator problems,

2. We have added material on second variation theory, frequency shaping, loop
recovery, and controller reduction.

3. We have rewritten many sections, but especially the material on robustness
and tracking.

4. We have included new appendices on the Pontryagin Principle, Lyapunov
Stability, and Riccati equations, deleting from the main text a chapter on
Riccati equations which appeared in Linear Optimal Control.

5. The title is changed to focus on linear-quadratic methods, as opposed to the
so-called H“ and L1 methods now being developed.

We are appreciative of the typists Kay Hearder, Dong Feng Li, Marilyn
Holloway, and Dawn Jarrett for their efforts, particularly in reading our hand-
writing.

BRIAN D.O. ANDERSON
JOHN B. MOORE
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Part 1. Basic Theory of the Optimal Regulator

1
Introduction

1.1 LINEAR OPTIMAL CONTROL

The methods and techniques of what is now known as “classical control” will be
familiar to most readers. In the main, the systems or plants that can be considered
by using classical control ideas are linear and time invariant, and have a single input
and a single output. The primary aim of the designer using classical control design
methods is to stabilize a plant, whereas secondary aims may involve obtaining a
certain transient response, bandwidth, disturbance rejection, steady state error,
and robustness to plant variations or uncertainties. The designer’s methods are a
combination of analytical ones (e. g., Laplace transform, Routh test), graphical ones
(e.g., Nyquist plots, Nichols charts), and a good deal of empirically based knowl-
edge (e. g., a certain class of compensator works satisfactorily for a certain class of
plant). For higher-order systems, multiple-input systems, or systems that do not
possess the properties usually assumed in the classical control approach, the de-
signer’s ingenuity is generally the limiting factor in achieving a satisfactory design.

Two of the main aims of modern, as opposed to classical, control are to
de-empiricize control system design and to present solutions to a much wider class
of control problems than classical control can tackle. One of the major ways modern
control sets out to achieve these aims is by providing an array of analytical design
procedures that facilitate the design task.

In the early stages of a design, the designer must use his familiarity with the
engineering situation, and understanding of the underlying physics, to formulate a

1



2 Introduction Chap. 1

sensible mathematical problem. Then the analytical design procedures, often
implemented these days with commercial software packages, yield a solution—
which usually serves as a first cut in a trial and error iterative process.

Optimal control is one particular branch of modern control that sets out to
provide analytical designs of a specially appealing type. The system that is the end
result of an optimal design is not supposed merely to be stable, have a certain
bandwidth, or satisfy any one of the desirable constraints associated with classical
control, but it is supposed to be the best possible system of a particular type—hence,
the word optimal. If it is both optimal and possesses a number of the properties that
classical control suggests are desirable, so much the better.

Linear optimal control is a special sort of optimal control. The plant that is
controlled is assumed linear, and the controller, the device that generates the opti-
mal control, is constrained to be linear. Linear controllers are achieved by working
with quadratic performance indices. These are quadratic in the control and
regulation/tracking error variables. Such methods that achieve linear optimal con-
trol are termed Linear-Quadratic (LQ) methods. Of course, one may well ask: why
linear optimal control, as opposed simply to optimal control? A number of justifica-
tions may be advanced; for example, many engineering plants are linear prior to
addition of a controller to them; a linear controller is simple to implement phys-
ically, and will frequently suffice.

Other advantages of optimal control, when it is specifically linear, follow.

1.

2.

3.

Many optimal control problems do not have computable solutions, or they
have solutions that may be obtained only with a great deal of computing effort.
By contrast, nearly all linear optimal control problems have readily com-
putable solutions.

Linear optimal control results may be applied to nonlinear systems operating
on a small signal basis. More precisely, suppose an optimal control has been
developed for some nonlinear system with the assumption that this system will
start in a certain initial state. Suppose, however, that the system starts in a
slightly different initial state, for which there exists some other optimal con-
trol. Then a first approximation to the difference between the two optimal
controls may normally be derived, if desired, by solving a linear optimal
control problem (with all its attendant computational advantages). This holds
independently of the criterion for optimality for the nonlinear system. (We list
two references [1] and [2] that outline this important result .+)

The computational procedures required for linear optimal design may often
be carried over to nonlinear optimal problems. For example, the nonlinear
optimal design procedures based on the theory of the second variation [1–3]

‘Referencesare locatedat the endofeachchapter.



Sec 1.1 Linear Optimal Control 3

and quasilinearization [3, 4] consist of computational algorithms replacing the
nonlinear problem by a sequence of linear problems.

4. Linear optimal control designs where the plant states are measurable turn out
to possess a number of properties, other than simply optimality of a quadratic
index, which classical control suggests are attractive. Examples of such prop-
erties are good gain margin and phase margin, and good tolerance of non-
linearities. Such robustness properties can frequently be achieved even when
state estimation is required. The robustness properties suggest that controller
designs for nonlinear systems may sometimes be achieved by designing with
the assumption that the system is linear (even though this may not be a good
approximation), and by relying on the fact that an optimally designed linear
system can tolerate nonlinearities—actually quite large ones—without impair-
ment of all its desirable properties. Hence, linear optimal design methods are
in some ways applicable to nonlinear systems.

5. Linear optimal control provides a framework for the unified treatment of the
control problems studied via classical methods. At the same time, it vastly
extends the class of systems for which control designs may be achieved.

Linear optimal control design for time-invariant systems is largely a matter of
control law synthesis; see the flow chart of Figure 1.1-1 for the approach empha-
sized in this text. Recall that the designer’s first task is to use his or her engineering
understanding to formulate a mathematical problem. This is embodied in the top
two blocks. If we disregard the iteration in this and later steps (the iterations are
illustrated in the flowchart), there are three essential steps covered by the modern
analytical procedures of this text. These are

full-state feedback design (where it is assumed that all states are measured and
available for feedback)

state estimator design (where the concern is to estimate values of the states
when they cannot all be measured directly, but certain measurements are
available)

controller reduction (where the concern is to approximate a complicated state
estimate feedback controller obtained from the above two steps by a simpler
one-complication usually being measured by the state dimension)

The final major stage of design, involving the implementation of the controller, may
involve the derivation of a discrete-time approximation to the controller.

In the second step (state estimator design), a variation is to estimate only the
state feedback control signal, rather than the fulI state vector.

Linear quadratic methods that from the start build in controller constraints
such as controller order are dealt with only briefly in this text. For full details see,
for example, [5, 6].
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1.2 ABOUTTHISBOOKINPARTICULAR

This is not a book on optimal control, but a book on optimal control via linear
quadratic methods. Accordingly, it reflects very little of the techniques or results of
general optimal control. Rather, we study a basic problem of linear optimal control,
the “regulator problem,” and attempt to relate mathematically all other problems
discussed to this one problem. If the reader masters the mathematics of the regu-
lator problem, he should find most of the remainder of the mathematics easy going.
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We aim to analyze the engineering properties of the solution to the problems
presented. We thus note the various connections to classical control results and
ideas, which, in view of their empirical origins, are often best for providing a
framework for a modern control design and assessing a practical design.

1.3 PART AND CHAPTER OUTLINE

In this section, we briefly discuss the breakdown of the book into parts and chap-
ters. There are three parts, listed below with brief comments.

Part l—Basic theory of the optimal regulator. These
chapters serve to introduce the linear regulator problem and to set up the basic
mathematical results associated with it. Chapter 1 is introductory. Chapter 2 sets up
the problem by translating into mathematical terms the physical requirements on a
regulator. It introduces the Principle of Optimality and the Hamilton–Jacobi equa-
tion for solving optimal control problems, and then obtains a solution for problems
where performance over a finite (as opposed to infinite) time interval is of interest.
The infinite-time interval problem is considered in Chapter 3, which includes sta-
bility properties of the optimal regulators, and shows how to achieve a regulator
design with a prescribed degree of stability. Also considered is the formulation of an
optimal linear regulator problem by linearization of a nonlinear system and
computation of the second variation of an optimized index. Chapter 4 considers
tracking problems by building on the regulator theory. In tracking, one generally
wishes the plant output to follow a specific prescribed time function or a signal from
a class, for example, a step function of unknown magnitude.

Part n-Properties of the optimal regulator. In Chapter
5, frequency domain formulas are derived to deduce sensitivityy and robustness
properties, In particular, the return difference relation is studied along with its
interpretation as a spectral factorization. Robustness measures in terms of sensi-
tivity and complementary sensitivity functions are introduced, and for the multi-
variable case, the role of singular values is explored. Gain and phase margins and
tolerance of sector nonlinearities are optimal regulator properties studied. The
inverse problem of optimal control is briefly mentioned. In Chapter 6, the relation-
ship between quadratic index weight selection and closed-loop properties is studied,
with emphasis on the asymptotic properties as the control cost weight approaches
infinity or zero.

Part Ill—State estimation and Iinear-quadratic-
gaussian design. When the states of a plant are not available, then the
certainty equivalence principle suggests that state estimates be used instead of states
in a state feedback design. Chapter 7 deals with state estimation, including the case
when measurements are noisy, with, in the ideal case, additive gaussian noise.
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Design methods and properties are developed, to some extent exploiting the theory
of Parts I and II. Chapter 8 deals with control law synthesis using full state feedback
designs and state estimation. It is pointed out that when the plant is precisely
known, then in the linear-quadratic-gaussian (LQG) case, certaint y equivalence is
the optimal approach. This is the separation theorem. Otherwise, there can be poor
robustness properties, unless loop recovery and frequency shaping techniques are
adopted, as studied in Chapters 8 and 9, respectively. State estimate feedback
designs, particularly when frequency shaped, may result in controllers of unac-
ceptably high order. Controller reduction methods are studied in Chapter 10. These
attempt to maintain controller performance and robustness properties while reduc-
ing controller complexity. Finally, in Chapter 11, some practical aspects concerning
implementation of controllers via digital computers are studied.

Appendices. Results in matrix theory, linear system theory, the Mini-
mum Principle, stability theory and Riccati equations relevant to the material in the
book are summarized in the appendices.

.
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r2
The Standard Regulator
Problem—1

2.1 A REVIEW OF THE REGULATOR PROBLEM

We shall be concerned almost exclusively with linear finite-dimensional systems,
which frequently will also be time invariant. The systems may be represented by
equations of the type

i (t) = F(t)x (r) + G (C)U(t) (2.1-1)

y (t)= H ‘([)x (t) (2.1-2)

Here, F(t), G(t), and H(t) are matrix functions of time, in general with continuous
entries. If their dimensions are respectively n x n, n x m, n x p, the n vector x(t)
denotes the system state at time t,the m vector u(t) the system input or system
control at time t,and the p vector y(t) the system output at time t.The superscript
prime denotes matrix transposition.

In classical control work, usually systems with only one input and output are
considered. With these restrictions in (2. l-l) and (2.1-2), the vectors u(t) and y (t)
become scalars, and the matrices G(t) and H(t) become vectors, and accordingly
will often be denoted by lowercase letters to distinguish their specifically vector
character. The systems considered are normally also time–invariant. In terms of
(2. l-l) and (2. 1-2), this means that the input u(t) and output y(t) for an initially zero
state are related by a time-invariant impulse response. Furthermore, the most
common state-space descriptions of time-invariant systems are those where F(t),
g(t), and h(t) are constant with time. Note, though, that nonconstant F(t), g (t), and

7



8 The Standard Regulator Problem—1 Chap. 2

h(t) may still define a time-invariant impulse response+. g., F(t)= O, g(t) = e’,
h(t) = e -‘ defines a time-invariant impulse response via the map

J
y(t)= ‘exp[–(t –T)]u(T) d7

lo

The classical description of a system is normally in terms of its transfer func-
tion matrix, which we denote by W (s), s being the Laplace transform variable. The
well-known connection between W(s) and the matrices of (2. l-l) and (2.1-2), if
these are constant, is

W(s) =H’(sZ–~-*G (2.1-3)

A common class of control problems involves a plant, for which a control is
desired to achieve one of the following aims:

1. Qualitative statement of the regulator problem. Suppose that initially the plant
output, or any of its derivatives, is nonzero. Provide a plant input to bring the
output and its derivatives to zero. In other words, the problem is to apply a
control to take the plant from a nonzero state to the zero state. This problem
may typically occur where the plant is subjected to unwanted disturbances that
perturb its output (e.g., a radar antenna control system with the antenna
subject to wind gusts).

2. Qualitative statement of the tracking (or servomechanism) problem. Suppose
that the plant output, or a derivative, is required to track some prescribed
function. Provide a plant input that will cause this tracking (e.g., when a radar
aritenna is to track an aircraft, such a control is required).

In a subsequent chapter, we shall discuss the tracking problem. For the
moment, we restrict our attention to the more fundamental regulator problem; thus
no external input is applied.

When considering the regulator problem using classical control theory, we
frequently seek a solution that uses feedback of the output and its derivatives to
generate a control. A controller with a transfer function description is interposed
between the plant output and plant input. The plant output is the controller input,
and the controller output is the plant input. The feedback arrangement is shown in
Fig. 2.1-1. Both the plant and controller have a single input and output, and are
time-invariant. Each possesses a transfer function.

In the optimal control approach of this text, it is assumed in the first instance
that the plant states are available for measurement, If this is not the case, it is
generally possible to construct a physical device called a state estimator driven by
both the plant input and output. This produces at its output estimates of the plant
states, and these may be used in lieu of the states. This will be discussed in a later
chapter. In addition to assuming availability of the states, it is usual in the first
instance to seek controllers that are nondynamic, or memoryless. In other words,
the controller output or plant input u(t) is assumed to be an instantaneous function
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of the plant state x(t). The nature of this function may be permitted to vary with
time, in which case we could write down a control law

2.4(1) = k (x (t), f) (2.1-4)

to indicate the dependence of u (t) on both .x(t) and t.
Of interest from the viewpoint of ease of implementation is the case of the

linear control law, given by

u (t)= K ‘(t)x (t) (2.1-5)

for some matrix K of appropriate dimension. [When K(t) k a constant matrix,
(2. 1-5) becomes a constant or time-invariant control law, and, as will become clear,
a number of connections with the classical approach can be made.] Figure 2.1-2
shows the arrangement resulting from combining (2. 1-5) with a state estimator for
generating x(t), or an estimate i?(t) of x (t). The plant is assumed to be linear, but
may have multiple inputs and outputs and may be time varying. The state estimator
constructs the plant state vector or an estimate of it from the input and output
vectors, and is actually a linear, finite-dimensional system itself. Linear combina-
tions of the states are fed back to the system input in accordance with (2.1-5).

When attempting to construct a controller for the regulator problem, we
might imagine that the way to proceed would be to search for a control scheme that
would take an arbitrary nonzero initial state to the zero state, preferably as fast as
possible. Could this be done? If F and G are constant, and if the pair [F, G] is

u(t)

Figure2.1-2 State estimate feedback
arrangement.
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completely controllable, the answer is certainly yes [1]. Recall (see Appendix B),
that the definition of complete controllability requires that there be a control taking
any nonzero state x(to)at time toto the zero state at some time T. In fact, if F and G
are constant, T can be taken as close to tOas desired, and likewise for some classes of
time-varying F(t), G(t). What, therefore, would be wrong with such a scheme? Two
things. First, the closer T is to to,the greater is the amount of control energy (and
the greater is the magnitude of the control) required to effect the state transfer. In
any engineering system, an upper bound is set on the magnitude of the various
variables in the system by practical considerations. Therefore, one could not take T
arbitrarily close to to without exceeding these bounds. Second, as reference to [1]
shows, the actual control cannot be implemented as a linear feedback law for finite
T, unless one is prepared to tolerate infinite entries in K(T), that is, the controller
gain at time T. In effect, a linear feedback control is ruled out.

Any other control scheme for which one or both of these objections is valid is
equally unacceptable. In an effort to meet the first objection, one could conceive
that it is necessary to keep some measure of control magnitude bounded or even
small during the course of a control action; such measures might be

J

T
u ‘(t)u (t)dt,

\
T [U ‘(t) u(t)]’” dt, , :yn IIu(t) II,

ro 10

or

J

T
U ‘(t) R (t) U (t) dt

[o

where R (t) is a positive definite matrix for all t,which, without loss of generality,
can always be taken as symmetric. We shall discuss subsequently how to meet the
second objection. Meanwhile, we shall make further adjustments to our original
aim of regulation.

First, in recognition of the fact that “near enough is often good enough” for
engineering purposes, we shall relax the aim that the system should actually achieve
the zero state, and require merely that the state as measured by some norm should
become small. If there were some fixed time T by which this was required, we might
ask that x‘ (T)Ax (T), with A some positive definite matrix, be made small.

Second, it is clearly helpful from the control point of view to have 11x(t)\]small
for any t in the interval over which control is being exercised, and we can express
this fact by asking, for example, that ~,$ x ‘(t)Q (t)x (t) dt be small, where Q(t) is
symmetric positive definite. In some situations, as we shall see, it proves sufficient
to have Q (t)nonnegative definite.

In defining our optimal regulation task, we seek one that has engineering
sense in that the appropriate quantities are penalized, is tractable of solution, and
yields an optimal controller that is suitable for implementation, preferably linear. In
static optimization, with quadratic indices and linear constraints, the linearity prop-
ert y is observed. For example, consider the minimization through choice of UOof the
index x: Qxl + ujRuO when xl = FXO+ Gun, with X. prescribed. A straightforward
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calculation shows that the minimum is achieved with UO= – (G’ QG + R)-*G’ QFxO,
which means that UOdepends linearly on x().

All this suggests that we could get a linear control law if for the
constraint (2. l-l) we seek to minimize the quadratic performance index

V(x(c,,), u (.), f,,)=
J

‘(U’~U +x’Qx)dt +x’(T)Ax(T)
(O

As the notation implies, the value taken by V depends on the initial state
time to,and the control over the interval [to, T].

Let us consider the following as a formal statement of the regulator problem.

dynamic

(2.1-6)

x (to) and

Regulator problem. Consider the system (2. l-l), where the entries of F(t)
and G(t) are assumed to be continuous. Let the matrices Q(t) and R(t) have
continuous entries, be symmetric, and be nonnegative and positive definite,
respectively. Let A be a nonnegative definite symmetric matrix. Define the
performance index V(x (to), u(.), to) as in (2. 1-6) and the minimization problem
as the task of finding an optimal control u *(t), t c [to, T], minimizing V, and
the associated optimum performance index V *(x (tO),to)—that is, the value of V
obtained by using the optimal control.

With T finite, the problem is termed a finite time, or sometimes finite horizon,
problem. With T infinite, an infinite time or infinite horizon problem is obtained.
We shall postpone consideration of infinite time problems to the next chapter.

Notice that earlier it was suggested that A should be positive definite, whereas
the statement of the regulator problem merely suggests that it should be non-
negative definite. As we shall see subsequently, the size of the final state x(T) can
frequently be made small merely by the relaxed requirement. Indeed, the choice
A = Owill often lead to a satisfactory result.

As already foreshadowed, the minimization of (2.1-6) turns out to be
achievable with a linear feedback law. All of the other nonquadratic measures
suggested do not, in general, lead to linear feedback laws.

Before studying the minimization problem further, we note the following
references. Books [2] and [3] are but two of a number of excellent treatments of the
regulator problem, and, of course, optimal control in general. Several older papers
dealing with the regulator problem could be read with benefit [4-7].

Main points of the section. The quadratic performance index of
the regulator problem penalizes nonzero states and controls. Its minimization will
be shown to lead to a linear state feedback law, which may require a state estimator
for its implementation.

Problem 2.1-1. Consider the system

i = F(t)x + G(t)u
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with F, G possessing continuous entries. Show that there does not exist a control law

u = K ‘([)x (t)

with the entries of K(t) continuous, such that with arbitrary x (to)and some finite T,
x(T) = O. [Hint: Use the fact that if i = ~(t)x where ~ has continuous entries, then
a transition matrix exists.]

Problem 2.1-2. Electrical networks composed of a finite number of inter-
connected resistors, capacitors, inductors, and transformers can normally be de-
scribed by state-space equations of the form

.i=Fx+Gu

y= H’x+Ju

The entries of the state vector will often correspond to capacitor voltages and
inductor currents, the entries of the input vector to the currents at the various ports
of the network, and the entries of the output vector to the voltages at the various
ports of the network (sign convention is such that current x voltage = inflowing
power). Assuming the initial x (to) is nonzero, give a physical interpretation to the
problem of minimizing

J
‘(U ‘~U + X’~U) dt

10

2.2 THE HAMILTON-JACOBI EQUATION

In this section, we temporarily move away from the specific regulator problem
posed in the last section to consider a wider class of optimization problems requiring
the minimization of a performance index. We shall, in fact, derive a partial differen-
tial equation, the Hamilton–Jacobi equation, satisfied by the optimal performance
index under certain differentiability and continuity assumptions. Moreover, it can
be shown that if a solution to the Hamilton-Jacobi equation has certain differ-
entiability properties, then this solution is the desired performance index. But since
such a solution need not exist, and not every optimal performance index satisfies the
Hamilton–Jacobi equation, the equation represents only a sufficient, rather than a
necessary, condition on the optimal performance index.

In this section, we shall also show how the optimal performance index, if it
satisfies the Hamilton–Jacobi equation, determines an optimal control. This will
allow us in Sec. 2.3 to combine the statements of the regulator problem and the
Hamilton-Jacobi theory, to deduce the optimal performance index and associated
optimal control for the regulator problem.

Other approaches will lead to the derivation of the optimal control and opti-
mal performance index associated with the regulator problem, notably the use of
the Minimum Principle of Pontryagin, combined with the Euler–Lagrange equa-
tions, [2], [3], and [8]. The Minimum Principle and Euler–Lagrange equations are
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lengthy to derive, although their application to the regulator problem is straight-
forward, as shown in Appendix C. The simplest route to take without quoting
results from elsewhere appears to be the development of the Hamilton–Jacobi
equation with subsequent application to the regulator problem. Actually, the
Hamilton–Jacobi equation has so far rarely proved useful except for linear regulator
problems, to which it seems particularly well suited.

The treatment we follow in deducing the Hamilton–Jacobi equation is a blend
of treatments to be found in [3] and [7]. We start by posing the following optimal
control problem. For the system

i =f(x, u,t) x (to) given (2.2-1)

find the optimal control u *(t), t E [to,T],which minimizes

1

T

V(x(t”), u(”), to)= 1(X(T), U(T), T) dT + ??l(X(~)) (2.2-2)
to

Without explicitly defining for the moment the degree of smoothness—that is, the
number of times quantities should be differentiable—we shall restrict ~, 1, and m to
being smooth functions of their arguments. Otherwise, ~(x, u, t) can be essentially
arbitrary, whereas 1(x (T), u(T), T), and m (x (T)) will often be nonnegative, to reflect
some physical quantity the minimization of which is desired. As the notation
implies, the performance index depends on the initial state x (to)and time to, and the
control u(t) for all tE [to,T].The optimal control u *(.) may be required a priori to
lie in some special set, such as the set of piecewise continuous functions, square-
integrable functions bounded by unity, and so forth.

Let us adopt the notation U[a,b] to denote a function u(o) restricted to the
interval [a, b]. Let us also make the definition

V* (x (t), 1)= ~i; V(x(t), u(”), t) (2.2-3)

That is, if the system “tarts in state x(t) at time t, the minimum value of the
performance index (2.2-2) is V* (x (t), t). Notice that V *(x(t), t) is independent of
u(.), precisely because knowledge of the initial state and time abstractly determines
the particular control, by the requirement that the control minimize V(x (t), u (.), t).
Rather than just searching for the control minimizing (2.2-2) and for the value of
V*(X (to), to) for various x (to), we shall study the evaluation of (2.2-3) for all tand
x(t), and the determination of the associated optimum control. Of course, assuming
we have a functional expression for V* in terms of x(t) and t, together with the
optimal control, we solve the optimization problem defined by (2.2-1) and (2.2-2)
by setting t = to.

Now, for arbitrary tinthe range [to, T] and tl in the range [t, T], recognize that
U[,,qis the concatenation of U[,,,,1and U[,,,n, so that minimizing over U[,.nis equivalent
to minimizing over U[,,,,1and U[,,,n. Then

V* (x (t), t)= min
[J

‘f(X(T), U(T), T) dT + Vl(X(~))
U[t,Tj t 1
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{ [1tl= min min 1(x(T), u(T), T) dT
U[r,r,] U[f,, rl r

!
+ ‘~(X(7), u(T), T) d7+rn (x(T))

11 1}
where the inner minimum and the minimizing U[,,,n necessarily depend on u[~,,,1.
Now further examine this inner minimum. The first summand is independent of
U[,l,q, while the second summand is itself an optimal performance index. Thus

{J

11
V* (x (t), t)= min l’(X(’r), U (T), T) dT

U[r,11] ,

+ min
[J

‘1(X(T), U(T), T) dT + WZ(X(~))
U[fl. q ,1 11

or

[J:1V* (x (t), t)= min 1(X(T), U(T), T) dT + V* (X(t,), t,) 1 (2.2-4)
U[r,t,] ,

Equation (2.2-4) is an expression of the Principle of Optimality [9, 10], which is in
some ways self-evident, but nevertheless needs to be carefully considered. Consider
various trajectories resulting from different controls, all commencing with state x(t)
at time t.Three are shown in the Fig. 2.2-1. Suppose that over [t],T] the control
is optimal. Thus the cost incurred in optimally traversing from xi(tJ to x,(T) is
V *(x, (t,), t,) for each i. At this stage, the trajectory over [t, t,] is arbitrary. What
(2.2-4) says is that the optimal cost for trajectories commencing at t and finishing at
T is incurred by minimizing the sum of the cost in transiting to xi(tl),and the optimal
cost from there onwards, that is,

1

c1
1(x (T), u (T), T) dT and V*(x(t,), t,)

1

A

X,(tl)

x x1(T)

X2(T)

x(t)
%(T)

t t, T

Figure2.2-1 IllustrationofPrincipleofOptimality;trajectoriesover[~,,T]are all
optimal.
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This statement of the Principle of Optimality focuses on costs. Below, we shall give
a restatement focusing on controls.

In (2.2-4), let us now set t, = t + At, where At is small. Applying Taylor’s
theorem to expand the right-hand side (noting that the smoothness assumptions
permit us to do this), we obtain

V* (x (t), t)= min
{
Atl(x(t +cIAt), u(t +ct At), t +aAt)

u[r,r+ Af)

‘v*(x(t)>t)+[~(x(’)t)l’
+ av*

— (x(t), t) At + O(At)2
at 1

where a is some constant lying between Oand 1. Immediately,

{
$(x(t), t)= -rein l(x(t +ci At), u(t +uAt), t +aAt)

u[(,I+At]

‘[~(x(t)t)l’f(x(t)u(t)t)+O(At)l
Now, let At approach zero, to conclude that

{
$ (x(t), t) = - In} l(x(t), u(t), t) +

[~(x(t)t)l’f(x( f)u(t)t)l

In this equation, f and 1 are known functions of their arguments, whereas V* is
unknown. In order to emphasize this point, we shall rewrite the equation as

av*

[
— = –rnlp 1(X(t), 2.4(t), t) +

at
*f (X(t),,u (t), t)1 (2.2-5)

This is one statement of the Hamilton–Jacobi equation. In this format, it is not
precisely a partial differential equation but a mixture of a functional and a partial
differential equation.

The value of u (t) minimizing the right-hand side of (2.2-5) will depend on the
values taken by x (t),dV */dx, and t.We shall denote it by il (x (t),av */dx, t).

Note also that to minimize V(x (t), u (.), t), the value of the minimizing control
at time t is precisely z (x (t),13V*/dx, t). To achieve our objective of expressing the
optimal control as an explicit known function of x (t)and t, we shall have to deter-
mine dV */dx as an explicit known function of x (t)and t.

With this definition of z (., ., .), (2.2-5) becomes

(2.2-6)

av* av”
— = –l[x(t), ii(x(t), ~ , t), t]

at
av. I

—
---f [(x(t)> ~(x(’), ~ , ‘), t]
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Despite the bewildering array of symbols, (2.2-6) is but a first-order partial differen-
tial equation with one dependent variable, V*, and two independent variables, x(t)
and t, because f, ~, and D are known functions of their arguments.

A boundary condition for (2.2-6) is very simply derived. Reference to the
performance index (2.2-2) shows that V(x (T), u(“), T) = m (x(T)) for all u (.), and,
accordingly, the minimum value of this performance index with respect to u(“) is
also m (x (T)). That is,

v*(x(z-), T)= Tn(x(T)) (2.2-7)

The pair (2.2-6) and (2.2-7) may also be referred to as the Hamilton–Jacobi equa-
tion, and constitute a true partial differential equation.

If the minimization implied by (2.2-5) is impossible—that is, if il (“, ., “) does
not exist—then the whole procedure is invalidated and the Hamilton–Jacobi
approach cannot be used in tackling the optimization problem.

We now consider how to determine the optimal control for the problem
defined by (2.2-1) and (2.2-2). We assume that (2.2-6) and (2.2-7) have been solved
so that V *(x(t), t) is a known function of x (t) and t, and define

ti (x(f),t)= ti[x (t),~ (x(t), t), t] (2.2-8)

That is, ii is the same as ti, except that the second variable on which ii depends itself
becomes a specified function of the first and third variables.

This new function ii (“, “) has two important properties. The first and more
easily seen is that d (x (t), t)is the value at time t of the optimal control minimizing

V(X(t), u(”), t) = ~~l(x(~), u(7), T) d~ + m(x(T)) (2.2-9)
1

That is, to achieve the optimal performance index V* (x (t), t), the optimal control to
implement at time t is d (x (t), t).

The second property is that the optimal control u “(”) for the original minimi-
zation problem defined by (2.2-1) and (2.2-2)—with toas the initial time and t as an
intermediate value of time—is related to cl(“, “) simply by

u *(t)= ti(x (t), t) (2.2-lo)

when x(t) is the state at time t arising from application of u *(.) over [to, t). To some,
this result will be intuitively clear, being in fact one restatement of the Principle
of Optimality, to the effect that a control policy, optimal over an interval [to, T], is
Optimal over all subintervals [t, T]. To demonstrate it rigorously, we examine a
variant of the arguments leading to (2.2-4). By definition,

V* (x (to), to) = min
~J

‘1(X(T), U(T), T) dT + ~(X(~))
u[f@q ,0 1

and the minimum is achieved by u *(.). With u*(.) regarded as the sequential use of
u~O,,,and u~,T],and with the assumption that u~O,,)is applied until time t, evidently
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[JTV* (x (~(~),tt))= min /(X(T), U(T), 7) dT + Vl(X(~))
U[r.~ ,“ 1 (2.2-11)

1
= ‘ /(X(T), U(T), T) d7

f(1

+ min
[J

‘1(X(T), U(T), T) dT + Wl(X(~)) 1 (2.2-12)
U[f,Tl ,

The minimization in (2.2-11), and therefore (2.2-12), is achieved by ui?T]. In other

words, Z&~1is the optimal control for the system (2.2-1) with performance index

1
‘1(X(T), U(T), T) dT + WZ(X(~)) (2.2-13)

r

with initial state x(f), where x(t) is derived by starting (2.2-1) at time tOin state x (to),
and applying Ufo,,). But ti (x (t), t) is the value of the optimal control at time tfor
the performance index (2.2-13), and so

ti(x(t), t) = u~q(t) = u*(t) (2.2-14)

Several points should now be noted. First, because of the way it is calculated,
d (x (t), t) is independent of to. The implication is, then, that the optimal control at
an arbitrary time u for the minimization of

V(X(U), U(”), u) = j_T/(X(T), U(T), T) dT + VZ(X(~)) (2.2-15)
u

is also ii (x (u), u). Put another way, the control L(x (.), “) is the optimal control for
the whole class of problems (2.2-15), with variable x (u) and u.

The second point to note is that the optimal control at time t is given in terms
of the state x(t) at time t,although, because its functional dependence on the state
may not be constant, it is in general a time-variable function of the state. It will be
theoretically implementable with a feedback law, as in Fig. 2.2-2. (Other schemes,
such as the Minimum Principle and Euler–Lagrange equations, for computing the
optimal control do not necessarily have this useful property; in these schemes, the
optimal control may often be found merely as a certain function of time. )

PLANT
STATE

VECTOR

ll(x(t), t)

Figure2,2-2 Feedbackimplementationof the optimalcontrol.
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The third point is that the remarks leading to the Hamilton–Jacobi equation
are reversible, in the sense that if a suitably smooth solution of the equation is
known, this solution has to be the optimal performance index V*(X (t ), r).

Finally, rigorous arguments, as in, for example, [4] and [5], pin down the
various smoothness assumptions precisely and lead to the following conclusion,
which we shall adopt as a statement of the Hamilton–Jacobi results.

Hamilton–Jacobi equation. Consider the system

i= f(x, u,t) (2.2-1)

and the performance index

V(X(t), U(”), f) = ~T/(X (T), U(T), T) dT+ VZ(X(~)) (2.2-9)
t

Suppose that f, 1, and m are continuously differentiable in all arguments, that
there exists a unique minimum+ of 1(x, u, t) + A’f(x, u, t) with respect to u (t)
of the form ti (x (t ), h, t), and that z is continuously differentiable in all its
arguments. Furthermore, suppose that V*(X (t ), t) is a solution of the
Hamilton-Jacobi equation (2.2-5) or (2.2-6) with boundary condition (2.2-7).
Then V*(O, “) is the optimal performance index for (2.2-9), and the control
given by (2.2-8) is the optimal control at time tfor the class of problems with
performance index (2.2-15).

Conversely, suppose that f, 1,and m are continuously differentiable in all
arguments, that there exists an optimal control, and that the corresponding
minimum value of (2.2-9), V *(x(t), t), is twice continuously differentiable in
its arguments. Suppose also that

1(X, u, t)+ (av*/dx)’f(x, u, t)

has a unique minimum with respect to u(t) at i (x (t), t), and that L(“, .) is
differentiable in x and continuous in t.Then V *(., .) satisfies the Hamilton–
Jacobi equation (2.2-5) or (2.2-6) with boundary condition (2.2-7).

We conclude this section with a simple example illustrating the derivation of
the Hanlilton–Jacobi equation in a particular instance. Suppose we are given the
system

with performance index

V(X(0), U(.), O)= j_T(U2 +X2 +; X4) dt
o

+Thoughthepointisunessentialtoourdevelopment,weshouldnotethatu(t) maybeconstrained
a priori to lie in someset U(r) strictlycontainedin the Euclideanspaceof dimensionequal to the
dimensionof u. Allminimizationsare thensubjectto the constraintu(t) E U(r).
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Using Eq. (2.2-5), we have

{
—=-rein u’+x’+~x’+wu
av*

dl U(r) dx 1

The minimizing u(t) is clearly

and we have

- HE)V* 1 C3V*2 1_x2–_x4

dt = i ax 2

as the Hamilton–Jacobi equation for this problem, with boundary condition
V* (x (7’), T) = O. The question of how this equation might be solved is quite
unresolved by the theory presented so far. In actual fact, it is rarely possible to solve
a Hamilton–Jacobi equation, although for the preceding example, a solution hap-
pens to be available [11]. It is extraordinarily complex, and its repetition here would
serve no purpose.

Main points of the section. Under smoothness and other condi-
tions, the optimal performance index, as a function of initial time and state, satisfies
a partial differential equation. The optimal control can be expressed using the
optimal performance index. The Principle of Optimality is a major intuitive aid in
understanding optimal control.

Problem 2.2-1, Consider a system of the form

i = f(x) + gu

with performance index

V(x(f), u(.), f) = jT(u’ + h(x)) dt
1

Show that the Hamilton–Jacobi equation is linear in aV */at and quadratic in
av”lax.

Problem 2.2-2. Let u be an r vector, and let p and x be n vectors. Let A, 1?,C
be constant matrices of appropriate dimensions such that the following function of
u, x, and p can be formed:

Q(u, x,p)=u’Az4 +2x’Bu+2u’cp

Show that Q has a unique minimum in u for all x and p if, and only if, ~(A + A‘) is
positive definite.
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2.3 SOLUTION OF THE FINITE-TIME REGULATOR
PROBLEM

In this section, we return to the solution of the regulator problem, which we restate
for convenience.

Regulator problem. Consider the system

i = F(t)x (t) + G (t)u (f) x (to) given (2.3-1)

with the entries of F(t), G(t) assumed continuous. Let the matrices Q(t) and
R (t) have continuous entries, be symmetric, and be nonnegative and positive
definite, respectively. Let A be a nonnegative definite matrix. Define the
performance index.

/
V(x(t(,), u(.), to)= ~(u’Ru +x’Qx) dt +x’(~)Ax(~) (2.3-2)

10

and the minimization problem as the task of finding an optimal control u *(t),
t E [to, T], minimizing V and the associated optimum performance index
V*(X (to), to).

For the moment, assume that T is finite.
To solve the problem, we shall make use of the results on the Hamilton–Jacobi

equation summarized at the end of the last section. An outline of the problem
solution follows.

1. We shall show by simple arguments independent of the Hamilton–Jacobi
theory that the optimal performance index V *(x(t), t), if it exists, must be of
the form x‘ (t)P(t)x (t), “where P(t) is a symmetric matrix.

2. With the assumption that V*(X (t), t) exists, result 1 will be used together with
the Hamilton–Jacobi theory to show that P(t) satisfies a nonlinear differential
equation—in fact, a matrix Riccati equation.

3. We shall establish existence of V*(X (t), t).

4. We shall find the optimal control.

To carry out this program, it is necessary to make the following temporary
assumption.

Temporary Assumption 2.3-1

Assume that F(t), G(t), R(t), and Q(~) have entries that are continuously differ-
entiable.

This assumption is removed in Prob. 2.3-2.
We note that some treatments of the regulator problem assume a priori the

form x‘ (t)P(t)x (t) for the optimal performance index. It is therefore interesting to
observe a simple derivation of this form, most of which appears in [12].
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The quadratic form of V*(X (t), t). The necessary and sufficient
conditions for a function V* (x (t), t) to be a quadratic form are that V *(x(t), t) is
continuous in x (t), and

V*(AX, t) = A*V*(x, f) for all real A (2.3-3)

V*(X,,t)+ V*(X,,t)=;[v*(xl +x,,f)+ V*(X,–x,, f)] (2.3-4)

(The student is asked to verify this claim in Problem 2.3- l.) To show that (2.3-3) and
(2.3-4) hold, we adopt the temporary notation u: to denote the optimal control over
[t, T] when the initial state is x(t) at time r. Then the linearity of (2.3-1) and the
quadratic nature of (2.3-2) imply the following equalities, whereas the inequalities
follow directly from the fact that an optimal index is the minimum index. We have
that

V*(AX, f) = V(AX, Au:(”), f) = A2V*(X, f)

A’V*(x, f) SAW(X, A-’ UL(.), f) = V*(AX, f)

for all real constants A. These imply (2.3-3) directly. Similar reasoning gives the
inequality

V*(X,, f) + V*(X,, t) =~[v* (2x,, f) + V*(2X,, f)]

+ V(2X2, U:,+X2– w;, -x2j f)]

=i[v(xl +X2, u:,+.,, f)
(2.3-5)

+ V(xl —X2, @-x2, f)]

= ;[V*(X, + X2, t) + V“(X, - X2, f)]

By making use of the controls u~, and u:,, we establish the following inequality in a
like manner:

;[V*(X1 +X2, f) + V“(X, -x,, t)]= V*(X,, t) + V*(X2, f) (2.3-6)

Then (2.3-5) and (2.3-6) imply (2.3-4).
It is trivial to show that V*(X (r), r) is continuous in x(f), We conclude that

V*(X (r), r) has the form

V“(x(f), t) = x ‘(t) P(f)x (t) (2.3-7)

for some matrix P(t), without loss of generalit y symmetric. {If P(f) is not symmetric,
it maybe replaced by the symmetric matrix ~[P(f) + P ‘(f)] without altering (2.3-7)}.

Derivation of the matrix Riccati equation. Now we shall
show, using the Hamilton–Jacobi equation, that the symmetric matrix P(f) satisfies
a matrix Riccati equation.
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The first form of the Hamilton–Jacobi equation is now repeated:

!uc-waA=
dt [

–tn:; /(x(t),u’(t), t) +
[~(x(’)’)l’f(x(f)u( f)f’l ‘23-8)

In our case, 1(x(t), u(t), t) is u ‘(t)R (t)u (t) + x ‘(t)Q (t).x(t); [(dV*/13x)(x (t), t)]’ from
(2.3-7) is 2x ‘(t)P(t), whereas ~(x (t),u (t), f) is F(t)x (t) + G (t)u (t). The left side of
(2.3-8) is simply x ‘(t)~(t)x (t). Hence, Eq. (2.3-8) becomes, in the special case of the
regulator problem,

X’PX ==–rn;~[u’Ru +x’Qx +2x’pFx +2x’PGu] (2.3-9)

To find the minimum of the expression on the right-hand side of (2.3-9), we
note the following identity, obtained by completing the square:

U’RU +x’Qx +2x’PFx +2x’PGu ‘(U +R-l G’Px)’R(u +R-’G’Px)

+X’(Q– PGR-’G’P+PF+F’P)X

Because the matrix R (t) is positive definite, it follows that (2.3-9) is minimized by
setting

ii(r) = –R-l(r)G’(t)P (t)x(t) (2.3-10)

in which case one obtains

X ‘(t)~(t)x (t) = ‘X ‘(t)[Q (t) – P(t)G (t)R ‘l(r)G ‘(t)p(t)

+P(r)F(t) + F’(r) P(t)]x(t)

Now this equation holds for all x(t); therefore,

-~(t) = P(t)F(t) + F’(t)P(t) – P(r)G (t)R ‘l(r)G ‘(t)P(t) + Q (t) (2.3-11)

where we use the fact that both sides are symmetric.
Equation (2.3-11) is the matrix Riccati equation we are seeking. It has a

boundary condition following immediately from the Hamilton–Jacobi boundary
condition. We recall that V*(X (T), T) = m (x (T)), which implies in the regulator
problem that x ‘(T) P(T)x (T) = x ‘(T)Ax (T). Since both P(T) and A are sym-
metric, and x(T) is arbitrary,

P(T) =A (2.3-12)

Before we proceed further, it is proper to examine the validity of the pre-
ceding manipulations in the light of the statement of the Hamilton–Jacobi equation
at the end of the last section. Observe the following:

1.

2.

The minimization required in (2.3-9) is, in fact, possible, yielding the continu-
ously differentiable minimum of (2.3-10). [In the notation of the last section,
the expression on the right of (2.3-10) is the function il(., ., .) of x (t), c?V*/dx,
and t.]

The loss function x‘ Qx + u ‘Ru and function Fx + Gu appearing in the basic
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system equation have the necessary differentiability properties, this being
guaranteed by temporary assumption 2.3-1.

3. If P(t), the solution of (2,3-11), exists, both ~(t) and ~(t) exist and are
continuous, the former because of the relation (2.3-11), the latter because
differentiation of both sides of (2.3-11) leads to ~(t) being equal to a matrix
with continuous entries (again, temporary assumption 2.3-1 is required).
Consequently, x ‘(t)P(t)x (t) is twice continuously differentiable.

Noting that Eqs. (2.3-11) and (2.3-12) imply the Hamilton–Jacobi equation
(2.3-8), with appropriate initial conditions, we can then use the statement of the
Hamilton–Jacobi equation of the last section to conclude the following.

1. If the optimal performance index V *(x(t), t) exists, it is of the form
x ‘(t)F’(t)x (t), and P(t) satisfies (2.3-11) and (2.3-12).

2. If there exists a symmetric matrix P(t) satisfying (2.3-11) and (2.3-12),
then the optimal performance index V* (x (t), t) exists, satisfies the Hamilton–
Jacobi equation, and is given by x ‘(t)P(t)x (f).

In theory, P(c), and in particular P(t,)), can be computed’ from (2.3-11) and
(2.3-12). Thus, aside from the existence question, the problem of finding the opti-
mal performance index is solved.

Existence of the optimal performance index V*(x(t), t).
Here we shall argue that V* (x (t), t) must exist for all t s T. Suppose it does not.
Then, by the preceding arguments, Eqs. (2.3-11) and (2.3-12) do not have a solution
P(t) for all t s T.

The standard theory of differential equations yields the existence of a solution
of (2.3-11) and (2.3-12) in a neighborhood of T. For points sufficiently far distant
from T, a solution may not exist, in which case (2.3-11) exhibits the phenomenon of
a finite escape time. That is, moving back earlier in time from T, there is a first time
T’ such that P(t) exists for all t in (T’, T], but as t approaches T’, some entry or
entries of P (t) become unbounded. Then P(t) fails to exist for ts T’. Moreover, the
only way that the solution of (2.3-11) and (2.3-12) can fail to exist away from T is if
there is a finite escape time.

Since our assumption that V*(X (t), t) does not exist for all ts T implies that
there is a finite escape time, we shall assume existence of a finite escape time T’ < T
and show that this leads to a contradiction. We have V *(x(t), t) exists for all t in
(T’, T], and, in particular, V*(x(T’ + ●), T’+ ●) exists for all positive ● less than
(T - T’). NOW

O< V*(x(T’ +~), T’ +~)=x’(T’ +~)P(T’ +6)x(T’ +6)

‘By thewordcomputed,wemeanobtainablevianumericalcomputation.Thereisno implication
that an analyticformulayieldsP(r).
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the inequality holding because of the nonnegativity of both the integrand for all u
and the final value term in (2.3-2). Hence, P(T’ + ~) is a nonnegative definite
matrix. As ● approaches zero, some entry becomes unbounded; without loss of
generality, we can conclude that at least one diagonal entry becomes unbounded. If
this were not the case, a certain 2 X 2 principal minor of P (T’ + e) must become
negative as 6 approaches zero, which contradicts the nonnegative definite property
of P (T’ + ~). Therefore, we suppose that a diagonal element—say, the ith—is
unbounded as 6 approaches zero; let e, be a vector with zeros for all entries except
the ith, where the entry is 1. Then

V*(ei, T’+ E) =Pii(T’ + E)

which approaches infinity as e approaches zero. (Here, pi, denotes the entry in the
ith row and jth column of P.)

But the optimal performance index is never greater than the index resulting
from using an arbitrary control. In particular, suppose the zero control is applied to
the system (2.3-l), and let @(t, T) denote the transition matrix.

Starting in state ei at time T’ + E, the state at time 7 is cD(7, T’ + ~)e,, and the
associated performance index is

!

T

V(ei, O, T’ + E) = e,’@’(T, T’ + E) Q(7)@(~, T’ + ●)e, d7
T’+,

+ e,’@’(T, T’ + ~)A@(T, T’ + c)e,

which must not be smaller than pii (T’ + ●). But as ~ approaches zero, V(ei, 0, T‘ + ●)
plainly remains bounded, whereas pli(T’ + ●) approaches infinit y. Hence, we have a
contradiction that rules out the existence of a finite escape time for (2.3-11).

Thus, (2.3-1 1) and (2.3-12) define P(t) for all t s T, and therefore the index
V*(X (t), t)= x ‘(t)P(t)x (t) exists for all ts T.

The optimal control. In the course of deriving the Riccati equation,
we found the optimal control at time t for the regulator problem with initial time t

when constructing the minimizing u(t) of (2.3-9)in Eq. (2.3-10). But, as pointed out
in the last section, this gives the optimal control u *(o) for an arbitrary initial time
[see (2.2-10)]; thus,

u“(t) = –R-l(t)G ‘(t)p(t)x (t) (2.3-13)

Note that in (2.3-10), P(t) is unknown. The product 2P (t)x (t)represents dV */ax,
and z(r) is to be regarded as being defined by independent variables x (t)(actually
absent from the functional form for z), dV*/dx, and t. Subsequently, we are able to
express dV */dx explicitly in terms of t and x, since P(t) becomes explicitly deriv-
able from (2.3-1 1). This leads to the feedback law of (2.3-13). Notice, too, that
Eq. (2.3-13) is a linear feedback law, as promised.

Problem 2.3-2 allows removal of temporary assumption 2.3-1, and, accord-
ingly, we may summarize the results as follows.
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Solution of the reguhztor problem. The optimal performance index for the
regulator problem with initial time t and initial state x([) is x ‘(t)P (f)x (t),
where P(t) is given by the solution of the Riccati equation (2.3-11) with initial
condition (2.3-12). The matrix P(t) exists for all r s T. The optimal control for
the regulator problem with arbitrary initial time is given by the linear feedback
law (2.3-13) for any time t in the interval over which optimization is being
carried out.

To illustrate the previous concepts, we consider the following examples.
The system equation we consider first is the scalar system

i =fx +gu, g+o

and the performance index is

~
‘(m’+qx’) dt, q>o, r>O

10

To find the control, we solve the scalar Riccati equation

–P =2fP –r-lg2P2+q, P(T)=O

Since r-lg2 + O, then 2f~ – r-lgz~z + q = O has two solutions PIs O, P22 O, both
real when q z O. Since qr-lgz + O, then Pl, ~z + O, so that PI< O, P2 >0 and
(Fl – Pz) <0. The Riccati equation can now be organised as 12(P – ~J
(P – ~J = P, where 12= r-’gz, or

-(’’2’’=!;,, (P-~P-F2,

[J J]1 0 dP 0 ‘P. __ _ — _
PI – P* P(t) P – P1 P([) p – P2

Carrying out the integrations gives

12(T – t) => [1P,-P,’n %%

whence

p(t) = ~1~2{exp [(F1 - Pz) 12(T - t)] – 1}

–Pl + ~2 exp [(FI – ~2) 12(T - t)]

Observe that P(t) is well defined for all ts T, and for large (T – t), P(t)= P2>0,
where, we recall, ~z = [(f + ~fl + r-1g2q)/(r ‘lg2)]. The optimal control is

u*(t) = –r-lgP(t)x(t)

As a second example, consider the system equation
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and the performance index is

J

T
(2e “u’+ ~e “x’) dt

(o

We require, of course, the optimal control and associated optimal performance
index. The Riccati equation associated with this problem is

–P=P–~e’P2+~e-’ P(T)=O

The solution of this equation maybe verified to be

P(t) = (1 – e’e-~(e’+ e2’e-~-l

The optimal control is thus

u(t) = –~(1 – e’e-~(l + e’e-~-]x(t)

and the optimal performance index is

V*(x(to), to) = X’(to)(l – e’(’e-T)(e’[]+ e2’(]e-~-lx (to)

The above examples give little insight into how one might solve the Riccati
equation. Some discussion of this point occurs in Appendix E, and we note here
several key points. First, there is in general no analytic formula for solving the
equation. Second, an n x n Riccati equation can be connected with a
2n -dimensional linear differential equation (see Problem 2.3-6), so that a formula
expresses the solution of the Riccati equation in terms of the transition matrix and
boundary condition of the linear equation. Third, when F, G, Q, and R are all
constant, the exponential formula for the transition matrix of a linear equation gives
a type of analytic solution for the Riccati equation. Fourth, if F, G, Q, and R are all
constant and of dimension 1, an analytic solution is available, as per the first
example above.

Main points of the section. The optimal performance index is a
quadratic form in the initial state, computable by solving a matrix Riccati equation.
The optimal feedback law is linear, and involves the Riccati equation solution.

(a)

(b)

Problem 2.3-1

Suppose that W(x) = x ‘Px for some symmetric P. Obviously, W is continuous
in x. Show that W(AX) = A*W(x) for all x and scalar A, and W(XJ + W(X2) =
j[W(xl + xj) + W(XI – x2)] for all xl, x2.

(This is a technically difficult problem.) Suppose that W is continuous in
x, that IV(AX)= A2W(.X) for all x and scalar h, and W(xi) + W(XZ) =
j [W(X, + x2) + W(XI - X2)]. Prove that W is necessarily a quadratic in x of the
form x‘ Px for some symmetric P. Do this as follows;
(i) Define pi, = W(e,), p,, = pi]= ~ [ W(e, + e,) - W(e, - e,)]
(ii) Show W(el t e2) =pll +p2, * 2p12.
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(iii)

(iv)

(v)

(vi)
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By induction, show that W(rnei t eJ = rnzpll + pzz ~ 2mp1z for all posi-
tive integers m.
By induction, show that W(mel ~ ne~) = WZ2PII+ n2p2~ ~ zmnp12 for all
positive integers m, n.
Using continuity, show that W(ulel + cxzeJ = CI;PII+ a;P22 + zuI~2p12 for
all real al, a.z.

(. )By induction on r, extend the calculation of W i Ciie, from r = 2 to
\l=l I

r = dimension x. Use the fact that
r+l
,~1 ci,e, = (rj’~,e, +~er+l) + (are, +~er+l]

icl

Problem 2.3-2. Consider the regulator problem posed at the start of the
section, without Temporary Assumption 2.3-1, and let P(t) be defined by (2.3-11)
and (2.3-12). [Continuity of the entries of F’(t),and so on is sufficient to guarantee
existence of a unique solution in a neighborhood of T.] Define the control law (nor
known to be optimal)

u**(t) = -R-’(t)G ‘(t)P(t)x(t)

and show that

V(x (to), u (.), t“) = x ‘(fo)P(to)x (to) +
1

‘(u -U**)’R(U -u**)dT
to

Conclude that if P (t) exists for all t~ [to,T],the optimal control is, in fact, u**.

Problem 2.3-3. Find the optimal control for the system (with scalar u and x)

X=u x (to) given

and with performance index

~
V(x(to),u(. ), f,) = ‘(U*+Xz)dr +X2(T)

[O

Problem 2.3-4.

and with performance

Find the optimal control for the system (with scalar u and x)

i=x+z’f x (to)given

index

V(x (to), u (“), to)=
J

‘(u’+ h’)dt
f()

Sketch (or compute) the solution for T = 10, t[,= O.

Problem 2.3-5. Another version of the regulator problem imposes a further
constraint—namely, that x(T) = O at the final time T. A class of performance
indices implies intrinsic satisfaction of this constraint:
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V(x (t”),u (“), Cl))=1
‘(U’~U +x’Qx) dt

fo

+ lim nx’(T)x(T)
n+.

Show that if P satisfies the Riccati equation

–P =PF+F’P –PGR-’G’P +Q, P(T) = nl

and if W. = P” exists, then Wn satisfies a Riccati equation, associated with the
optimization problem

x = –F’x + Du

!
V = ‘(u’u +x’GR-’G’x)dt +n-’x’(T)x(T)

fo

Here, D is any matrix such that DD’ = Q. Show that W(T) = O gives a solution
W.(t) to the Riccati equation for W, with Wn(t) ~ W.(t) as ne ~. It turns out that
x‘ (t)W; l(t)x (t) defines the optimal performance index for the constrained regulator
problem [2].

Problem 2.3-6. Consider the Riccati equation – P = PF + F‘ P –
PGR “G ‘P + Q with P(T, T) = A and the linear differential equation

[1[x = F(t)

IM [M=[’d

-G(t) K’(t)G ‘(t) X
Y - Q (t) –F’(t)

Show that if X(t) is nonsingular on [to, T], then Y(t)X-l(t) is a solution of the
Riccati equation satisfying the boundary condition. [Hint: Recall that d/dt X-l(t) =
–X-l(t)X(t)X-l( t)J. Show further that if @(t,s)is the 2n x 2n transition matrix of
the linear differential equation and it is partitioned into n x n submatrices, then

P(t, T)= [@,,(t, T)+ O,,(t, T)A][@ll(t, T)+ @,,(t, T)A]-l

2.4 DISCRETE TIME SYSTEMS

This section is devoted to a brief exposition of linear regulator design for discrete-
time systems. Our starting point is the state-space equation

X (t + 1) = F(t)x (r) + G(t)u (t) x (to) given (2.4-1)

and the performance index

V(X(tO),u(”), to)= ~ [x’(t) Q(t)x (t) + u’(t – l) R(t)u(t - 1)]
f=f~+l
T-1

= ~ [x’(t) Q(t)x (t) + u’(t)R(t + l)u(t)]
f=lo

+ x’(T) Q(T)x(T) ‘~ ’(to)Q(fo)~(to)

(2.4-2)
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In these equations, x (t) is the state at time tand u (t)the control at time t.Generally,
but not always, t is assumed to take on integer values. The plant (2.4-1) is initially—
that is, at time to—in state x (to), and the aim is to return the plant state to the origin,
or a state close to the origin. To do this, we set up a performance index (2.4-2), in
which Q(t) and R(t) are nonnegative definite symmetric matrices. [Note: We do not

assume R(t) to be positive definite. ] The performance index has the property that
“large” values of the state will tend to make the performance index large. Hence, by
choosing the control sequence u (to),u (to+ 1), . . . . which minimizes the perform-
ance index, we can expect to achieve the desired regulator effect.

It might be thought curious that R(t) is not positive definite, since in the
corresponding continuous time performance index, the corresponding matrix is
positive definite. In the latter case, the presence of the matrix rules out the possi-
bility of using an infinitely large control to take the state to zero in an infinitely short
time. In the discrete time case, it is not possible to take the state to zero in an
infinitely short time, and the possibility of an infinitely large control occurring does
not even arise. Hence, there is no need to prevent such a possibility by using a
positive definite R(t).

We shall solve the optimization problem for the case of finite T, showing that
the optimal control is a state feedback law, and that the optimal performance index
is quadratic in the initial state x (to)—results that are, of course, analogous with
the corresponding continuous-time results, although existence questions are much
simplified.

The route to a derivation of the optimal control is via the Principle of Opti-
mality. Thus, if until time t optimal controls u (to),u(f.+ 1), . . . . u (t – 1) have been
applied, leading to a state x(t), then the remaining terms in the optimal control
sequence, u(t), u (t + 1), . . . . u (T – 1) must also be optimal in the sense of min-
imizing V(x(t), u(.), t).

Now let V *(x(t), t) denote the optimal performance index associated with an
initial state x(t) at time t.Then, by the Principle of Optimality,

V* (X (t), t)= rn$ {[~(t)X (t) + G(t)u (t)]’Q (t + l)[F(t)x (t) + G(t)u (t)]

+ u’(t)R(t + l)u(t)

+ V*(f’(t)x(t)+ G (t) U(t), t + 1)}
(2.4-3)

= n$ {U ‘(t)[G’(t)Q(t + l)G(t) + R(t + l)]u(t)

+ fi ‘(t) F’(t)Q(t + l) G(t)u (t)+ X ‘(I)F’(t)Q (t + l) F(t)x (t)

+ V* (F(t)x (t)+ G (~) U(f), t + 1)}

Bearing in mind the corresponding continuous time results, it would be
reasonable @guess that V* (x (t), t) would be of the fortn x‘ (t)P (t)x (t). Since it proves
convenient to make use of this result almost immediately, we build into the follow-
ing argument an inductive proof of the result.
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We require first the following assumption

Assumption 2.4-1

For all t, G ‘(t – l) Q(t)G(t – 1) + R(t) is positive definite.

This assumption may, in fact, be relaxed. However, when it does not hold, the
optimal control law becomes nonunique (although still linear), and we wish to avoid
this complication. Notice that the assumption will very frequently hold, for exam-
ple, if R (t) is positive definite for all r, or if Q (r) is positive definite for all tand the
columns of G(t) are linearly independent, and so forth.

With Assumption 2.4-1, it is easy to evaluate the “starting point” for the
induction hypothesis—viz., V*(X(T – 1),T – 1). We have

V(.r(T - I), u(.), T- 1) =.x’(T) Q(T)x(T)+u’(T - l) R(T)u(T - 1)

and, in view of the system equation (2.4-l), this becomes

V(X(T - 1),u(.),T– 1) ‘x’(T - l) F’(T - l) Q(T)F(T– 1)x( T- 1)

+2x’(T– I) F’(T– l) Q(T)G(T– l)u(T– 1)

+ u’(T– I)[G’(T– l) Q(T)G(T– l)+ R(T)]u(T– 1)

Evidently, the control u (T – 1) that minimizes this performance index is a linear
function of x (T – 1)—that is,

u*(T–l) =K’(T–l)x(T–1) (2.4-4)

for a certain matrix K(T – 1). Moreover, the resulting optimal index V*(X (T – 1),
T – 1) becomes quadratic in x (T – 1)—that is,

V*(x(T– 1), T– 1) =x’(T– l)P(T– 1)x(T– 1) (2.4-5)

a certain nonnegative definite symmetric P( T – 1). The actual expressions for
K(T – 1)and P(T – 1) are

K’(T - 1) = -[ G’(T - l) Q(T) G(T - 1)

+R(T)]-’G’(T– l) Q(T)F(T– 1) (2.4-6)

P(T - 1) =F’(T - l){ Q(T)- Q(T) G(T - l)[G’(T - l) Q(T) G(T - 1)

+ R(T)] -lG’(T – l) Q(T)}F(T – 1) (2.4-7)

Observe that V*(X (T – 1), T – 1), P(T – 1),K’(T – 1) exists under Assumption
2.4-1.

We now turn to the calculation of the matrices K(t), determining the optimal
control law, and P(t), determining the optimal performance index, for arbitrary
values of t. As part of the inductive hypothesis, we assume that V* (x (t + 1),
t + 1) = x ‘(t + l)P(t + l)x(t + 1) for a certain matrix P(t + 1). By proving that
V* (x (t), t) is of the form x‘ (t)P (t)x (t) for a certain P(t), we will have established
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the quadratic nature of the performance index. [Of course, the expression for
V*(X (T – 1),T – 1) derived in Eq. (2.4-5) serves as the first step in the induction. ]

Applying the inductive hypothesis to (2.4-3), we have

V* (x(t), t) = :$ {U ‘(t)[G’(f)Q(t + I)G(t) + R(t + I)]u(t)

+2x ‘(t)F’(t)Q(r + l) G(t)u (t) + x’(t) F’(t)Q(t + l) F(t)x (f)

+ x’(t) F’(t)P(t + l) F(t)x (t) + 2x’(t)F’(t)P(t+ l) G(t)u (t)

+ u’(t)G ‘(c)P(t + l) G(t)u (t)}

Again, the minimizing u (t), which is the optimal control at time t, is a linear function
of x (t),

u “(t) = K’(t)x (t) (2.4-8)

and the optimal performance index V* (x (t), t), resulting from use of u *(t), is
quadratic in x (t)—that is,

V*(X(t), t) = x ‘(t)P(t)x (t) (2.4-9)

The expression for K ‘(t) is

K’(t)= –[G’(t)Q(t + l) G(t) +R(t +1)

+ G’(t)P(t + l) G(t)] -’[G’(t)Q(t + l)F(t) + G’(t)P(t + I) F(t)]

= -[ G’(t)S(t + l)G(t) + R(t + l)]-’G’(t).S(t + l)F(t) (2.4-10)

where
S(t+l)= Q(t+l)+P(r+l) (2.4-11)

The expression for P(t) is

P(t) = F’(t){S(t + 1) - S(t + l) G(t)[G’(t).S(t + l)G(t)

+ R(c + l)]-lG’(t)S(t + l)}F(t) (2.4-12)

Observe that V*(X (t), t), P(t), S(t), K(t) exist for all tunder Assumption 2.4-1.
Of course, (2.4-11) and (2.4-12) together allow a backwards recursive determina-
tion of P(t), S(t). More specifically, setting P(T)= O, (2.4-11) gives S(T)= Q (T),
(2.4-12) gives P(T - 1), compare with (2.4-7), then (2.4-11) gives S(T - 1) and so
on. Equation (2.4-10) expresses the optimal feedback law in terms of known quanti-
ties and either the sequence P(t) or, more conveniently perhaps, the sequence S(t).

If in (2.4-12), S(t + 1) is replaced by Q(t + 1) + P(t + 1), a recursion in one
matrix only (which one can term a discrete-time Riccati equation) is obtained for
P(t). If in (2.4-1 1) with t + 1 replaced by t,the expression for P(t) is replaced by
(2.4-12), we obtain a Riccati equation for S(t):

S(t)= F’(t){S(t+ 1) - S(t + l) G(t)[G’(t)S(t + l)G(t)

+ R(t + l)]-’G ‘(t),S(t+ l)}F(t)+ Q(t) S(T) =Q(T) (2.4-13)
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This is perhaps the most convenient vehicle for recursion. The boundary condition
can be replaced by S (T + 1) = Oif desired.

Two primary references to the quadratic minimization problem for discrete-
time systems are [13] and [14]. For another textbook discussion, see [2]. For con-
venience, we shall summarize the principal results.

Finite time regulator. Consider the system

x (t + 1) = F(t)x (t) + G(t)u (t) x (to)given (2.4-1)

Let Q(t) and R(t) be nonnegative definite matrices for all t, with
G‘ (t– l)Q (t)G (t – 1) + R(t) nonsingular for all t. Define the performance
index

V(x(tO), u(.), to)= ~ [x’(t) Q(t)x (t) + u’(t - l)R(t)u(i - 1)] (2.4-2)
t=t~+l

Then the minimum value of the performance index is

V*(X(f,), to)=x ‘(t,) P(t,)x(to)

where P(t) is defined via

P(t) =S(t)- Q(t)

and S(t) satisfies the recursion

S(f) = F’(t){S(f+ 1)- S(t+ l) G(t)[G’($S(t + l)G(t)

+ R(t + l)]-lG’(r)S(t + l)}F(t) + Q(t) S(T) = Q(T) (2.4-13)

The associated optimal control law is given by

u*(t) = –[G ‘(t)S(t + l)G(t) + R(t + l)]-lG’(t)S(t + l) F(r)x (t) (2.4-14)

Main points of the section. The optimal performance index for
the linear-quadratic problem is a quadratic form in the state, with weighting matrix
computable via a recursion commencing at the terminal time and evolving back-
wards in time. The optimal feedback law is linear in the state.

Problem 2.4-1. Find the optimal control law and optimal performance index
for the system

X(t+l)=x(t)+ u(t) x(0) given

[where x(.) and u(“) are scalar quantities] with the performance index

,$,[~z(t) + U’(t - 1)]

Problem 2.4-2. When Assumption 2,4-1 fails—that is, G ‘(t– l)Q (t)
G (t – 1) + R(t) is singular for some t—in the case of single-input systems this



Chap. 2 References 33

quantity is zero. Now the inverse of this quantity occurs in the formulas for
K’(T–l) and P(T–l)in (2.4-6 )and (2.4-7). Show, byexamining the derivation
of the optimal control u*(T – 1), that if G’(T – l) Q(T)G(T – 1) + R(T) is zero,
u *(T – 1) = Owill be a value, but not the unique value, of the optimal control, and
that the inverse may be replaced by its pseudo-inverse, namely zero. Show that for
t< T– 1, if G’(t – l) Q(t)G(t – 1) + G’(t – l) P(t)G(r – l)+ R(t) is zero, the in-
verse of this quantity in the expressions for K(t) and P(t) may be replaced by its
pseudo-inverse, namely zero.

Problem 2.4-3. Given an n-dimensional completely controllable time-
invariant system, show that the optimal control minimizing the performance index

V(x(tO), u(.), f,)= x’(tO + n) Qx(t,J + n)

where Q is positive definite, will result in a deadbeat (x (to+ n) = O) response. [Hint:
First prove that under controllability there exists a K such that (F + GK)” = O.]

Problem 2.4-4 (Open-ended problem requiring computer). Study the tran-
sient solution of a first-order Riccati equation and associated gains for various (say
three) scalar time invariant plants and various (say two) performance indices with
control Q, R in discrete (or continuous time). In each case plot transient response
for the closed-loop system starting from a nonzero initial state. Also examine one
case for T increasing. Suggestion: Perhaps choose a stable plant, an integrator and
an unstable plant for this exercise. (This exercise is continued in Problems 3.3-3,
5.4-7.)
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r3
The Standard Regulator
Problem—11

3.1 THE INFINITE-TIME REGULATOR PROBLEM

In this section, we lift the restriction imposed in the last chapter that the final time
(the right-hand endpoint of the optimization interval), T, be finite. We thus have the
following problem.

Injinite-time regulator problem. Consider the system

i = F(f) x (t) + G(t)u (t) x (tO)given (3.1-1)

with the entries of F(t), G(t) assumed continuous. Let the matrices Q (t) and
R(t) have continuous entries, be symmetric, and be nonnegative and positive
definite, respectively. Define the performance index

V(x(to), u(”), f,)=
!

=(u ‘(t)R(/)u (t) + x ‘(t)Q(t)x (f)) dt (3. 1-2)
lo

and the minimization problem as the task of finding an optimal control
u *(t), t = to,minimizing V and the associated optimum performance index
V*(+O),CO).

It is not always possible to solve this problem as it is stated
of the difficulty, consider the system

[::I=[::I+[:IU[W=[d
To give some idea

35
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with performance index defined by R = [1] and

[1Q=:;

It is readily established that

V(X(LJ), u (“), to)= !
‘(u’+e’’-’’o)d
to

In a sense, V is minimized by taking u = O; but the resulting value of V is still
infinite.

With the finite-time problem, the optimal V is always finite; this may not be so
in the infinite-time case. For the example given, it is clear that V becomes infinite
for the following three reasons:

1. The state xl(t~) is uncontrollable.

2. The uncontrollable part of the system trajectory is unstable (xl(t)= e’).

3. The unstable part of the system trajectory is reflected in the system per-
formance index (ez’ is integrated).

The difficulty would not have arisen if one of these reasons did not apply.
It is intuitively clear that any regulator problem where one had a situation

corresponding to that described by 1, 2, and 3 cannot have a finite optimal
performance index. Therefore, to ensure that our problems are solvable, we shall
make the following assumption.

Assumption 3.1-1

System (3. l-l) is completely controllable for every time t. (See Appendix B for defini-
tion.)

Actually, this condition can be relaxed to requiring complete stabilizability for
all t(and even this condition can sometimes be further relaxed). However, for the
sake of simplicity, relaxation to complete stabilizability is considered in this text
only for the time-invariant case—see next section.

We now state the solution to the infinite-time regulator problem, under
Assumption 3.1-1.

Solution to the in$inite-time regubtor problem. Let P(t, T) be the solution of
the equation

–p=PF+F’p –PGR-’G’p+Q (3.1-3)

with boundary condition P (T, T) = O. Then #+mmP(t, T) = ~(t) exists for all t

and is a solution of (3.1-3). Moreover, x ‘(t)~(t)x (t) is the optimal perform-
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ante index V*(X (t), t), when the initial time is t and the initiaI state is x (t).The
optimal control at time twhen the initial time is arbitrary is uniquelyt given by

u “(t) = –R ‘l(t)G ‘(t)P(t)x(t) (3. 1-4)

(assuming tlies in the optimization interval).
Evidently, we need to establish four separate results: (1) the existence of P(t);

(2) the fact that it is a solution of (3.1-3); (3) the formula for the optimal per-
formance index; and (4) the formula for the optimal control. The proof of (3) and
(4) will be combined.

Existence of ~(t). Since (3. 1-1] is completely controllable at time t,
there exists for every x(t) a control L(“) and a time tzsuch that ti (“) transfers x (t) to
the zero state at time tz. Although U(“) is initially defined only on [t, tz], we extend
the definition to [t,CO)by taking L(O) to be zero after tz. This ensures that the system
will remain in the zero state after time ta. The notation V(x (t), u(.), t, T) will be
used to denote the performance index resulting from initial state x(t) at time t,a
control u(.), and a final time T, which is finite rather than infinite as in (3. 1-2). Then
P(t,T) exists for all T and ts T. Since the performance index is the integral of a
nonnegative quantity, P (t, T) is nonnegative symmetric, Moreover

x ‘(t)P (t, 7)x (t) = V*(X (t), t, T)

= V(x(t), ~[~,n, t, T)

= V(x (t), fi(l,~), t, ‘)

= V(x (0, L [1,f~],t, ~2)

<m

Since x(t) is arbitrary, it follows that the entries of P (t, T) are bounded indepen-
dently of T. [Note that as T approaches infinity, if any entry of P(t, T) became
unbounded, there would have to be a diagonal entry of P(t, T) which became
unbounded, tending to infinity, or else P (t, T) could not be nonnegative symmetric;
consequently, for a suitable x (t), x‘ (t)P (t, T)x (t) would be unbounded.]

Reference to (3.1-2), with T replacing+ cc on the integral, and use of the
nonnegative definite and positive definite character of Q and R, respectively, shows
that

X ‘(t)p(t, TO)x(t) = X ‘(t)~(t, Tl)x (t)

for any TI > TO.The bound on P(t, T) together with this monotonicity relation
guarantees existence of the limit ~(t).In more detail, the existence of the limit P,,(t)

t At least,u“(t)isuniquely definedup to a set of measure zero, unless we insist on some property
such as continuity. Henceforth, we shall omit reference to this qualification. (Those unfamiliar with
measure theory may neglect this point. )
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will follow by taking x(t) = ei,for each i, and applying the well-known result of
analysis that a bounded monotonically increasing function possesses a limit. (Recall
that ei is defined as a vector with zeros for all entries except the ith, where the entry
is 1.) The existence of ~ij(t) will follow by observing that

ap,, (t, ~)= (e, + e,) ’1’(t, ~)(t?i + e,) – pii(f, O – P,j(t, ‘)

and that each term on the right possesses a limit as T approaches infinity.

~(f) satisfies the Riccati equation (3.1 -3). Denote the
solution of (3.1-3) satisfying P (T) = A by P(t, T; A). [Then P (t, T), defined earlier,
is P (t, T; O).] Now a moment’s reflection shows that

P(r, T; O)=P(t, T1;P(TI, T; O))

for ts T, 5 T, and thus

P(t) = ~ifl P(t, T; O)= ~ir P(t, T,; P(T1, T; O))

For fixed time T,, the solution P(t, T,; A) of (3.1-3) depends continuously on
A; therefore,

~(t)= P(t, T,; ~i= P(T1, T; O))

= P(t, T,; ~(TJ),

which proves that ~(t) is a solution of (3.1-3) defined for all t.

Optimal performance index and control formulas. We
show first that if the control defined by (3.1-4) is applied (where there is no
assumption that this control is optimal), then

V(x(t),u“ (o), t, ~)= ;+i V(x(t),U* (.), t, T)= X’(t) p(f)X (t) (3.1-5)

Direct substitution of (3.1-4) into the performance index (3.1-2), with the initial
time replaced by t and the final time by T, leads to

V(x(t), u“(.), t, T) =x’(t) P(t)x(t) -X’(T) P(T)X(7’)

= x ‘(t)F(f)x (f)
and, therefore,

lim V(x(t), U*(.), t, T) <x’(t) p(t)x(t)
T+x

Also ,
V(x(t), u*(.), t, T)= v’(x(t), t, T) =x’(t)P(t, T)x(t)

and, therefore,
lim V(x(t), u“ (o), t, T) zx’(t)~(t)x (t)
T-.
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The two inequalities for lim V(x (t), u ‘(”), t, T) then imply (3.1-5). Since u ‘(.) has
T-.

not yet been shown to be optimal, it follows that

V“(x(t), t, =) = V(x(t), U*(.), t, ~) (3. 1-6)

We now show that the inequality sign is impossible. Suppose that strict in-
equality holds. Then there is a control U1,different from u*, such that

lim V(x (t), u,, t, T)= V* (x(t), t, =)
T*.

Since, also, from the first and third members of (3.1-5),

lim V* (x(t), t, T)= V(x(t), u* (.), t, ~)
T-cc

it follows that strict inequality in (3.1-6) implies

lim V(x (t), u,, t, T)< ~+~V* (x (t), t, T)
T-=

This, in turn, requires for suitably large T

V(x(t), u,, t, T)< V*(x(t), t, T)

This is plainly impossible by the definition of the optimal performance index as
the minimum over all possible indices. Consequently, we have established that
x‘ (t)F(t)x (t) is the optimal performance index for the infinite-time problem, and
that –R ‘l(t)G’ (t) P(t)x (t) is the unique optimal control because it achieves this
performance index, thereby completing the formal solution to the infinite-time
regulator problem.

Time-invariant case. It is of interest, for practical reasons, to deter-
mine whether time-invariant plants (3. l-l) will give rise to time-invariant linear
control laws of the form

u (t) = K ‘X (t) (3.1-7)

For finite-time optimization problems of the type considered in the last chapter, no
choice of T, R(“), and Q(. ) will yield a time-invariant control law when F and G are
constant, unless the matrix A takes on certain special values. (Problem 3.1-2 asks
for this fact to be established.) For the infinite-time problem, the case is a little
different. Let us state an infinite-time problem that will be shown to yield a constant
control law. Later in the chapter, we shall consider a variation
statement which also yields a constant (and linear) control law,
weighting matrices become time varying.

Time-invariant regulator problem. Consider the system

k= Fx+Gu x (to) given

on this problem
even though the

(3.1-8)
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where F and G are constant. Let the constant matrices Q and R be non-
negative and positive definite, respectively. Define the performance index

/

.
V(x(tJ, u(”), tO)= (u ‘Ru + x’Qx) dt (3.1-9)

(o

and the minimization problem as the task of finding an optimal control u *(.)
minimizing V, together with the associated optimum performance index.

To ensure solvability of the problem, it is necessary, as before, to make some
additional restrictions. We shall require the following relaxation of Assumption
3.1-1 specialized to the time-invariant c;se.

Assumption 3.1-2

The system (3.1-8) is completely stabilizable

Solution to the time-invariant reguhztor problem. Let P(t, T) be the solution
of the equation

–P=PF+F’p –PGR-lG’P+Q (3.1-3)

with initial condition P (T, T) = O.Then lim P (t, T) = ~ exists and is constant;
_ T-.

also, ~ = lim P (t, T). Furthermore, P satisfies (3.1-3); that is,
t- –.

PF+F’F– PGR-’GIF+Q=O (3.1-10)

and x ‘(t)Px (t) is the optimal performance index when the initial time is t and
the initial state is x(t). The optimal control at time t when the initial time is
arbitrary is uniquely given by the constant control law

u“(t) = –R-lG’~x (t) (3.1-11)

First, we show that when F, G are constant, the solution to the infinite-time
regulator problems (3. 1-3) and (3. 1-4) is still obtainable on relaxing Assumption
3.1-1 to Assumption 3.1-2.

The proof of the first part of the claim rest-s on the existence, under Assump-
tion 3.1-2, of a feedback control law L(t) = K ‘x (t) which achieves exponential
stability of the system I(t) = (F + Gk ‘)x(t). It is clear then that, following the
earlier proof,

x ‘(t)P(t, T)x(t) 5 V(x (t), L [,,=),t, ~) < m

which leads to existence of ~(t)as in the earlier proof. (Similar arguments can be
applied for the time-varying case in terms of K (t) under a stabilizabilityy assumption,
but we do not formally state results for this case.)

Now using the time-varying results, we can straightforwardly establish the
various other claims just made.

First, lim P (t, T) certainly exists. Now the plant is time invariant, and the
T- ...-

function under the integral sign of the performance index is not specifically time
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dependent. This means that the choice of the initial time is arbitrary—that is, all
initial times must give the same performance index, which is to say that

is independent of t.We denote it by ~, Likewise, because the initial time is
arbitrary,

P = #im P(t, T)= ~im P(O, T -t)= lim P(O, T – t) = ,ljrnmP(t, T)
r+–x

To illustrate the preceding concepts, we can consider the simple scalar exam-
ple discussed in the previous chapter. The prescribed system is

i =fx +gu g#o

and the performance index is

!

.
V(X(G), U(”), to)= (?l.f’ + qx2) dt q>o r>O

to

To find the optimal control, we solve the scalar equations

–P =2fP –r-lg2P2+q P(T, T)= O

The steady state solution is the positive solution of 2 f~ – r ‘1g2~2 + q = O, which is
identical to the limiting solution of P (t, T) as T a m studied in the previous chapter,
namely

~,= f+ (f2+g2q/r)’’2>o

r-1g2

The associated control law is

* =~tx K’= –r”~g~z= –
f+ (f 2+ g2q/r)”2

u
g

and closed-loop system is

i = –(f2+g2q/r)lnx

Notice that it is only the ratio of q to r that influences the feedback gain K.
Also, as qlr increases, the gain increases in magnitude and approximates
-(sgn g)(q/r)”2. Then the closed-loop equations approximate i = -Ig l(q/r)’nx with
a high magnitude negative real closed-loop pole. That is, as (q/r) increases, the
system bandwidth increases.

As (q/r) decreases, the feedback gain approximates K = – [f + If []/g when
the open loop is stable (f< O), so that K = Oand the closed loop approximates the
open loop. When the open loop is unstable (f> O), then K = –2 f/g and the closed-
loop system approximates i = –fx. That is, the closed-loop pole reflects the open-
loop pole into the left half-plane, and the system bandwidth remains the same.

This example foreshadows more general results studied in later chapters,
namely that for multivariable situations, as Q+@ (or R-+ O) then the feedback gain
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K becomes large and the bandwidth of the resulting closed-loop system become
high. In practical designs, the required bandwidth is often known a priori, so that
the designer searches for appropriate Q, R to achieve these. A second more general
result is that for a stable open-loop plant, as Q+ O (or R+ CO),then K+ Oand the
closed-loop poles move to the open-loop poles, whereas for an unstable plant,
K+ O, but the closed-loop poles move to the stable reflections through the imag-
inary axis of the unstable open-loop poles.

In the last chapter, we found an expression for the solution of the Riccati
differential equation P (t, Z’). We see that one can write

P(t, T)= [a + b exp(-2~(t - T))] [c + dexp(-2~(t - T))]-’

where a, b, c, d are certain constants and ~ is a certain quantity which turns out
to be identical with the closed-loop mode ~ + gk (see Problem 3. 1-4). It follows that
ast~–~, P(t, T)~F2 = ac ‘1 with a time constant given by half the time constant of
the closed-loop system. This is in fact a general phenomenon, that the Riccati
differential equation converges to its steady state solution with time constants
one-half those associated with the closed-loop system. Proving this result would
take us too far afield at this point.

Let us consider now the very simple plant (open-loop integrator)

~=u

so that ~ = O, g = 1 above. Then ~z = (rq)l’2, K = – (q/r)ln so that the closed-loop
system is

~ = –7-1X, T = (r/q)l’2

Then

That is, the control cost is identical to the state cost, each being half the total
optimal cost V* = (rq)l’2x~.

A further example is provided by a voltage regulator problem, discussed in
[1]. The open-loop plant consists of a cascade of single-order blocks, of transfer
functions

3 3 6 3.2 2.5
0.1s + 1’0.04s + 1’0.07s + 1’2s + 1’ 5.$+ 1

In other words, the Laplace transform Y(s) of the deviation from the correct output
is related to the Laplace transform U(s) of the deviation from the reference input by

Y(s) = 3 3 6 3.2 2.5
“—U(S)

O.ls+l” 0.04s+1” 0.07.s+1”2.s+1 5s+1

State-space equations relating u(.) toy (.) are readily found to be
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[Here, x,, x2, . . . ,x5have physical significance; X5is the output of a block of transfer
function 3(0. 1s + 1)-1 with input u, X4the output of a block of transfer function
3(0.4s + 1)’1 with input x5, and so on. Also, xl = y is the tracking error voltage to be
regulated to zero. ]

As a first attempt at optimization, the performance index

1
m(X;+ U’) dt
10

is considered, that is, it penalizes directly the tracking error cost. (Of course,
x; = x‘ Qx, where Q is a matrix the only nonzero entry of which is unity in the 1– 1
position.)

Appendix E describes methods for solving the Riccati equation, and there is
also some discussion in the next section. In this example, the important quantity
calculated is not so much the matrix F but the optimal gain vector. The optimal
control law is, in fact, found to be

u = –[0.9243 0.1711 0.0161 0.0492 0.2644]x

Stabilizability has been crucial in our arguments which show that F exists, and
it is reasonable to ask whether stabilizabilityy is necessary for existence. Indeed, it is
not, at least when one considers contrived examples. For example, suppose
i = x + u, R = 1, Q = O. Then the optimal control is u * = O. Once, however, the
performance index “observes” all states, stabilizability is essential. Problem 3.1-3
asks for this to be established. The point is reexamined at the end of the next
section.

Main points of the section. Complete controllability or stabiliz-
ability of the state space equations ensure existence of optimal linear quadratic
indices and associated Riccati equation solutions in the infinite-time case.

Problem 3.1-1. Consider the time-invariant problem, and suppose F and G
have the form

‘=[~’ d ‘=[:’1
so that the pair [F, G] is not completely controllable and [Fll, Gl] is completely
controllable; see Appendix B. Suppose that the solution P(t) of the Riccati equa-
tion associated with the finite-time regulator problem is partitioned as
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Show that PII satisfies a Riccati equation, that PI* satisfies a linear differential
equation—assuming Pll is known—and that Pzz satisfies a linear differential
equation—assuming Plz is known.

Problem 3.1-2. Consider the finite-time regulator problem posed in the
previous chapter, where the linear system is time-invariant. Show that if A = O,
there is no way, even permitting time-varying R (t) and Q(t), of achieving a constant
nonzero control law. Show that if R and Q are constant and if [F, G] is stabilizable,
then there is at least one particular A that will achieve a constant control law, and
that this A is independent of the final time T. [Hint: For the second part of the
problem, make use of Eq. (3. 1-10).]

Problem 3.1-3. Consider x = Fx + GM, assumed to have an uncontrollable
unstable mode. Suppose that R >0 and Q >0. Show that P (O, T) is unbounded
with T and conclude that the infinite time problem has no finite solution. [Hint:
Change the coordinate basis to that used in Problem 3.1-1, choose an initial state
[x;(O) x;(O)]’ such that exp (Fd)x2(0) diverges, and argue that x ‘(0)P(O, T)x(0)
diverges as T+ CO.]

Problem 3.1-4. For the system x = ~x + gu with performance index
V(X(to),to,u(“))=.(,;(ru2 + qx’) & we f~und in the last section that P(t! T) z
[a + b exp_(-2 f(t - ~))][c + d exp (–2 f(t– T))]-’ for certain a, b, c, d and ~.
Show that ~= ~ + gk with k the gain for the steady state problem.

Problem 3.1-5. Consider the system i = GM where G is n x n and non-
singular. Show that the infinite-time problem is solvable, and the optimal control
causes

J

m

J

x
x’Qxdt= u’Rudt

to 10

Problem 3.1-6. An angular position control system is described by the
equation

k]=!-Wl+[wt)
(Here, xl denotes angular position, X2angular velocity, and the control is a torque).
Choose R = 1, and Q = diag [q, O], penalizing angular position but not velocity.
Show that the optimal control is

u * = -[~ ~ - 10]X

and the closed-loop poles are the zeros ofs 2+ V’1OO+ 2~s + 6. [Hint: Write
down the steady state Riccati equation and by examining each term, solve for the
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entries of P, applying the nonnegative definiteness of F to eliminate certain
solutions].

3.2 STABILITY OF THE TIME-INVARIANT
REGULATOR

In this section, we shall be concerned with the stability of the closed-loop system
formed when the control law resulting from an infinite-time performance index is
implemented. Throughout, we shall assume a constant system that is stabilizable:

$= Fx+Gu (3.2-1)

We shall also assume a performance index with constant nonnegative definite Q and
constant positive definite R:

V(x (to), u (.), t,) = ! “(u’Ru+x’Qx)dt (3.2-2)
to

We recall that the optimal performance index is x‘ (tO)Fx(to), where F is the limiting
solution of a Riccati equation; also, ~ satisfies the algebraic equation

FF+F’P– FGR-lG’F+Q=O (3.2-3)

The optimal control is given by

u * = _R-~G!~x (3.2-4)

and, accordingly, the closed-loop system becomes

i = (F– GR-lG’~)x (3.2-5)

We ask the question: When is (3.2-5) an asymptotically stable system? Cer-
tainly, (3.2-5) is not always stable. Consider the example i = x + u, with V =
f,; u’ dt. Immediately, the optimal control is u = O, and the closed-loop system is
i =x, which is plainly unstable. In this instance, there are two factors contributing
to the difficulty.

1. The original open-loop system is unstable.

2. The unstable trajectories do not contribute in any way to the performance
index—in a sense, the unstable states are not observed by the performance
index.

Intuitively, one can see that if 1 and 2 were true in an arbitrary optimization
problem, there would be grounds for supposing that the closed-loop system would
be unstable.

Accordingly, to ensure asymptotic stability of the closed-loop system, it is
necessary to prevent the occurrence of 1 and 2. This motivates the introduction of
the following assumption, which will be shown to guarantee stability of the
closed-loop system.
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Assumption 3.2-1

The pair [F, D] is detectable, where D is any matrix such that DD’ = Q (see
Appendix B).

We can note at once that the question of whether Assumption 3.2-1 holds is
determined by Q alone, and not by the particular factorization DD’. To see this,
suppose D1 and Dz are such that DID1 = DzD~ = Q. Recall that [F, DJ detectable
tells us Fw = kjw, Djw = O, w + O, only if Re(A, [F’]) <0. Since Diw = O implies
D,D(w = O, Qw = O, D2D1w = O, which in turn implies Djw = O then [F, DJ de-
tectable implies [F, DJ detectable, and the converse. Hence, either [F, DJ and
[F, D,] are detectable simultaneously, or they are not detectable simultaneously.
(Notice incidentally that [F, D] is detectable if and only if [F, Q] is detectable.)

Assumption 3.2-1 essentially ensures that all potentially unstable trajectories
will show up in the x‘ Qx part of the integrand of the performance index. Since the
performance index is known a priori to have a finite value, it is plausible that any
potentially unstable trajectories will be stabilized by the application of the feedback
control.

The actual proof of asymptotic stability can be achieved via the Lemma of
Lyapunov (see Appendix A), and properties of detectability. A direct proof is now
given.

Denoting (F – GR ‘lG ‘~) as ~, then ~ satisfies

Let ~w = kw, w #O; then we need to show Re [k]< O. Now pre- and postmultipli-
cation of the above equation for ~ by w*, w where here superscript * denotes com-
plex conjugate transpose, gives

(A+h*)w*~w = -w*DD’w - w*~GR-’G’~w

If A+ k’ =0, then D’w =0, R-’G’~w =0, andinturn Fw = ~w =Aw, which
leads to a contradiction, since Re [k]< O under detectability—see Appendix B
definitions. Again, if A+ A*>0, then the nonpositivity of the right side implies
w *Fw s O, while the nonnegativity of ~ forces w *Pw a O, so that in fact Fw = O.
Then, as before, D ‘w = O, R-lG’Pw = O, Fw = Aw for Re [A]> O, contradicting
detectability.

The practical implications of the stability result should be clear. Normally no
one wants an unstable system; here, we have a procedure for guaranteeing that an
optimal system is bound to be stable, irrespective of the stability of the open-loop
plant. The result is in pleasant contrast to some of the results and techniques of
classical control, where frequently the main aim is to achieve stability and questions
of optimality occupy an essentially secondary role in the design procedure. The
contrast will actually be heightened when we exhibit some of the additional virtues
of the optimal regulator solution in later chapters.

The interested reader may wonder to what extent the stability result applies in
time-varying, infinite-time problems. There are actually two key issues in the
infinite-time, time-varying case. The first is to secure boundedness of the matrices
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P(t) defining the optimal index, and ~(t), the control gain. The second is to secure
exponential stability of the regulator, since mere asymptotic stability inevitably
leads to robustness problems.

It clearly makes sense to restrict attention to F(t), G(t), Q(t), R(t), R “(l)
bounded. Then with [F(t), G(t)] uniformly controllable, [F(t), D(t)] uniformly
observable (see Appendix B), it may be shown, see [2], that the desired bounded-
ness and exponential stability are achieved. This stability result is not altogether
easy to achieve. Actually, it is possible to define concepts of uniform stabilizability
and detectability (which are much more subtle concepts in the time-varying case
than the time-invariant case), and to establish the boundedness and exponen-
tial stability when these weaker concepts replace uniform controllability and
observabilityy. Such treatments are more immediate in the discrete-time case [3].

There is one further property of interest. In the finite time problem, P(t, T) is
nonnegative for all t,T. It follows that ~(t) in the infinite time problem is non-
negative, as is Pin the time-invariant problem. When is ~ actually positive definite?
This question is answered as follows.
Lemma

Consider the time-invariant regulator problem as defined by Eqs. (3.2-1) through
(3.2-5) and the associated remarks. Adopt Assumption 3.2-1. Then ~ is positive
definite if and only if [F, D] is completely observable.

Proof. From the form of the performance index (3.2-2), it is clear that
x‘ (to)Px (to) must be nonnegative for all x (to).Suppose for some nonzero XOwe have
x; Fxo = O, with observability holding. Now the only way the integral in (3.2-2) will
turn out to be zero is if the nonnegative integrand is always zero. This requires the
optimal control to be zero for all t;consequently, the system state at time twhen
the optimal control is applied is simply exp [F(t – to)]xo.Furthermore,

!

m

/

m
O= XAPX(I= x’Qxdt= XLexp [F’(t– to)]DD’ exp [F(t – to)]xodt

:0 10
Now, we have a contradiction, because the preceding equation implies
D ‘exp [F(t – to)]x,,= Ofor all t, but we have assumed XOto be nonzero and we have
assumed observability. So observability implies nonsingular F.

To establish the converse, suppose there exists a nonzero xC,such that
D ‘exp [F(t – to)]X. = Ofor all t. Apply the control u(t) = Ofor all tto the open-loop
plant. It then follows that the associated performance index is zero. Since the
optimal performance index is bounded below by zero, it follows that it, too, is
zer~that is, XLFxO= O, which implies finally that F is singular.

To illustrate these ideas, we recall briefly the two examples of the previous
section. In the first case, we had

~

.
i =fx +gu V(x(to), u(.), to) = (ruz + qxz) dt

10
Obviously, with g #O, q # O the stabilizability and detectability conditions are
satisfied. Therefore, it is no surprise that the closed-loop system, computed to be
~ = – (~z + g2q/r)l’2x, is asymptotically stable.
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For the voltage regulator example, we recall that the F matrix is

I
–0.2 0.5 0 0 0 “

o –0.5 1.6 0 0
00 —y ~ o
000 –;5 75
0000 – 10,

and the weighting matrix Q is

:1
10000
00000
00000
00000
00000

A matrix D such that DD’ = Q is given by D‘ = [1 O 0 0 O]. Let us examine
the rank of [D F’D . . . (~’)’~]. This-matrix is readily checked to be triangular
with nonzero elements all along the diagonal. Hence it has rank 5. Consequently
[F, D] is observable, and thus detectable. Hence the closed-loop system is known to
be asymptotically stable.

It is natural to ask whether detectability is necessary for stability of the closed-
loop system. The answer is yes. Roughly speaking, if there exists an unstable mode
that is not observed, then the cheapest control for it is u = O, and obviously that will
not stabilize it. Details of the arguments are requested in Problem 3.2-1.

A related question is whether for existence and stability of the closed-loop
system (and finite performance index), detectability and stabilizability are both re-
quired. (Recall from the last section that if there is no closed-loop stability require-
ment, stabilizability is sufficient but not necessary for closed-loop system exis-
tence, )

The answer is easy: stabilizability is required, since stabilizability is equivalent
to the existence of a stabilizing feedback gain K, that is, the opportunity to obtain a
stable closed-loop system. In summary

Role of detectability and stabilizability. For the infinite-time, time-invariant
problem parametrized by F, G, Q = DD’ and R = R‘ >0, there exists a stable
closed-loop optimal system with finite performance index if and only if [ F, G]
is stabilizable and [F, D] is detectable.

This result has its origins in the work of [2] and [4-6].

It is appropriate to comment further on the task of solving the Riccati equa-
tion. We noted in the last section that constant F, G, Q, R allow the linear differen-
tial equation associated with the Riccati equation to be solved (in terms of a matrix
exponential); a solution to the Riccati differential equation can then be obtained
and from it, a solution to the steady state equation. Appendix E sets out a number
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of other approaches applicable in the time-invariant case (where the detectability
and stabilizability conditions are fulfilled). A derivation of some of the background
theory is sought in the problems. In particular, there is only one nonnegative
definite solution to the steady state equation (see Problem 3,2-2), and there is only
one solution to the steady state equation which defines a stabilizing control law
K = –~GR” (see Problem 3.2-7).

The Hamiltonian matrix

[
~= F –GR-l G!

-Q –F! 1

appearing in the associated linear differential equation has the property that if k is
an eigenvalue, so is – k, and no eigenvalue is pure imaginary (see Problem 3.2-8).
The steady state solution of the Riccati equation can be described in terms of the
eigenvectors of M associated with negative real part eigenvalues (see Problem
3.2-9). The negative real part eigenvalues of M are also the eigenvalues of the
closed-loop matrix F – GR ‘lG’~ (see Problem 3.2-10). Finally, ~ can be expressed
by using a Schur form for M (see Problem 3.2-11).

The results of Problem 3.2-8 and 3.2-10 provide a convenient way to show that
P (r, T) approaches F with time constants determined by half those of the closed-
loop system (see Problem 3.2-12).

Main points of the section. For the time-invariant, infinite-time
linear quadratic problem, stabilizability and detectability ensure existence and
asymptotic stability of the closed-loop system. The optimal controller is time-
invariant, and the optimal closed-loop system is time-invariant.

Problem 3.2-1. Suppose for the conventional time-invariant problem de-
fined by matrices F, G, Q = DD’ and R >0, the pair [F, D] is not detectable;
conclude that the closed-loop system will not be stable. [Hint: Choose a nonzero
possibly complex w for which Fw = Aw, Re k >0 and D ‘w = O. Choose an initial
state x(0) = Re w. Show that x ‘(0) P (O, T)x (0) = O for all T by observing that
u (t) = Oachieves zero performance index. Infer the instability result. ]

Problem 3.2-2. The scalar version of (3.2-3) is a simple quadratic equation,
which, in general, has more than one solution. Likewise, when (3.2-3) is a true
matrix equation, there is generally more than one solution. Show that there is only
one nonnegative definite solution under Assumption 3.2-1 and a stabilizability
assumption. [This identifies the limiting solution of the Riccati equation uniquely
as the nonnegative definite solution of (3.2 -3).] [Hint: Suppose there are two solu-
tions, PI and ~z, both nonnegative definite. Define F, = F – GR ‘]G ‘pi and show
that both Fi have eigenvalues with negative real parts. Prove that (PI – ~2)F1 +
Fj(~l – ~2) = O and use the result that the matrix equation AX+ XB = O has the
unique solution X = O, provided A,[A ] + h, [1?]# Ofor any i and j; see also Appen-
dix A for this result.]
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Problem 3.2-3. Consider the two infinite-time performance indices V:=
~,;(u’Ru +x’Qx)dt, Vf=V, +~lix’(T)Ax(T)with F,G, Q =DD’, R =R’>0,

A = A‘ 20, stabilizability of [F’, G] and detectability of [F, D]. Show that the op-
timum values of VI and Vz are the same; conclude that the Riccati equation
–P = PF + F’ P – PGR-lG’P + Q with P(T, T) =A and solution P(t, T) yields
lim P(t, T)=~forany A= A’a O.
T+ w

Problem 3.2-4. In the standard problem of this section, with the detect-
abilityy condition strengthened to observabilityy, now ~ is positive definite. Show
that x‘ ~x is a Lyapunov function associated with the closed-loop system i =
(F - GR “G ‘F)x, under Q >0. Relax the condition on Q to [F, D] completely
observable for DD’ = Q. Use the Lyapunov theorems in Appendix D.

Problem 3.2-5. For the standard problem of this section, show that the
closed-loop system is more stable than the open-loop system in that the center of
gravity of the closed-loop eigenvalues lies to the left of the center of gravity of the
open-loop eigenvalues. [Hint:For a square matrix A, 2 Ai(A) = trace A ].

Problem 3.2-6. Consider the driven harmonic oscillator with damping ~
(positive or negative, but I~I < 1).

Consider also the performance index in which R = 1 and Q = diag [ql, qz]. Solve the
steady state Riccati equation and verify that the closed loop is stable. Consider the
effect of ql, qze O when ~>0 and ~<0 on the closed-loop characteristic poly-
nomial. [Hint: Write out the steady state Riccati equation term by term, and solve
the resulting equations, using the nonegativity property to define which solution out
of several possibilities should apply.]

Problem 3.2-7. Problem 3.2-2 sought demonstration that there is only one
nonnegative definite solution to the Riccati equation. Use the ideas of Problem
3.2-2 to show there is only one solution ~ such that K = – ~GR - *is stabilizing.

Problem 3.2-8. Let 1, M be the matrices

‘=[fl d ‘=[-[‘G~JG’l
Show that J*= –I, JMJ = M‘ and conclude that if AOis an eigenvalue of M, so is
–Ao. Show that M has no pure imaginary eigenvalue under the detectability/
stabilizability assumptions. Do this by postulating that w = [w1 w;]’ is an eigen-
vector corresponding to eigenvalue j w for real W, and examine the quantity
[w; wT]Mw = jp.(w~w, + wr wJ.
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Problem 3.2-9. By virtue of Problem 3.2-8, there exists a nonsingular W
such that

[1W-IMW=AI~
O Az

where Al, A2 are real Jordan matrices with all eigenvalues possessing negative real
and positive real part eigenvalues respectively. With W partitioned into four n x n
blocks, show that ~ = W,l W1l-’. [Hint: Express P(t, T) in terms of W,,, exp A,t and
exp A2t and evaluate the limit as T – t- CO.]

Problem 3.2-10. Using the result of Problem 3.2-9, show that the eigen-
values of Al are the same as those of F – CR ‘lG’~.

Problem 3.2-11. Suppose that

where U is orthogonal, and L is a real Schur form with Lll, L22possessing negative
real part and positive real part eigenvalues respectively. Verify that P = U:flUlz
solves the steady state Riccati equation and is stabilizing. [Hint:Equate the 2-1 and
2-2 terms in the identity UA4 = LU, and eliminate LZZto show that a solution of
the steady state equation is – U;; Uz,, assuming UZZis nonsingular. Show that the
transpose also satisfies the equation. By considering the 2-2 term, show that
F + CR’1 G‘ (U~2’Uzl)’ has eigenvalues with negative rea~parts, so that – (U~jUzl)’
is the desired solution. Using orthogonality of U, verify P = U;: U12.]

Problem 3.2-12. Show that, under the usual assumptions, P(t, T) =
[A + B (t)][C + D (t)]-l where B (t) and D (t) consist of linear combinations of terms
exp [–(k, + A,)(t – T)] where A,, kj are eigenvalues of F – GR ‘lG ‘~. (Assume that
M has no repeated eigenvalues, for convenience, and use the idea of Problem
3.2-9),

3.3 SUMMARY AND DISCUSSION OF THE
REGULATOR PROBLEM RESULTS

In this section, we first summarize all the important regulator problem results
hitherto established.

Regulator problem and solution. Consider the system

i = F(t)x + G(t)u x (to) given (3.3-1)

with the entries of F and G assumed continuous. Let the matrices Q(t) and
R(t) have continuous entries, be symmetric, and be nonnegative and positive
definite, respectively. Let A be a nonnegative definite matrix. Define the
performance index
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!V(x (t,), U(.), t,)= ~(u ‘(t)R (t)u (t) + x ‘(t)Q (t)X(t)) dt
to

+x’(T)Ax(T) (3.3-2)

where T is finite. Then the minimum value of the performance index is

V*(X(f,), to)= x ‘(to)P(to,T)x (to) (3.3-3)

where P (to, T) is the solution of the Riccati equation

–P=PF+F’P –PGR-lG’P+Q (3.3-4)

with boundary condition P (T, T) = A. The matrix P (t, T) exists for all ts T.
The associated optimal control is given by the linear feedback law

u“(t)= –R-l(t)G ‘(t)P(t, T)x(t) (3.3-5)

Injinite-time regulator problem and solution. Suppose the preceding
hypotheses all hold, save that A = O. Suppose also that the system (3.3-1) is
completely controllable for all time. Then

~(t) = :+: P(t, T) (3.3-6)

exists, and the minimum value of the performance index (3.3-2) with T re-
placed by infinity is x ‘(tO)~(tO)x(to). The matrix ~ satisfies the Riccati equation
(3.3-4), and the optimal control law is

u“(t)= –R-’(t)G ‘(t)~(t)x (t) (3.3-7)

Time-invariant regulator problem and solution. Suppose that the
infinite-time regulator problem is specialized to the time-in~~riant case with
matrices F, G, Q, and R constant. Suppose also that [F, G] is stabilizable.
Then

(3.3-8)

is constant, and satisfies the algebraic equation

iT+F’P– iWR-lGIp+Q=O (3.3-9)

The optimal control law is a time-invariant law

u“(t)= –R-lG’~x (t) (3.3-lo)

Asymptotically stable time-in variunt regulator problem and solution.
Suppose in addition that [F, D] is detectable, for any DD’ = Q. Then F is
nonnegative definite and, see Problem 3.2-2, is the only solution of (3.3-9)
with this property. Moreover, the optimal closed-loop system

X=[f’-GR-lG’~]x (3.3-11)

is asymptotically stable. If the pair [F, D] is completely observable where D is
any matrix such that DD’ = Q, then ~ is positive definite. Furthermore, x ‘Fx
is a Lyapunov function.



Sec. 3.3 Summary and Discussion of the Regulator Problem Results 53

The corresponding discrete-time results are now summarized—with proof of
the infinite-time results (not given in the text) relegated to the Problem 3.3-1. See
also [7].

Finite time regulator. Consider the system

x(t + 1) = F(t)x(t)+ G(t)u (t)

Let Q(t) and R(t) be nonnegative definite
G ‘(t – I)Q (t)G (t – 1) + R(t) nonsingular for all
index

T

x (to) given (3.3-12)

matrices for all t, with
t.Define the performance

(3.3-14)

V(x(i,,), u(.), to)= ~ [x’(t) Q(t)x (t) + u ‘(r – l)R(t)u(t – 1)] (3.3-13)
l=f~+l

Then the minimum value of the performance index is

v*(x(to), @ = x ‘(f,)P(fo, 7-)X(t(l)

where

P(t, Z’) =S(t) -Q(t)

with S(t) defined recursively via

S(t)= F’(t){S(t+ 1) - S(t + l) G(t)[G’(t).S(t + l)G(t)

+ R(t + 1)]-’ G’(t)S(t + l)}F(t) + Q(t) S(T) = Q(T) ‘3”3-15)

The associated optimal control law is given by

u’(t) = –[G’(t)S(t + I)G(t) + R(t + l)]-* G’(t)S(t + l) F(t)x (t) (3.3-16)

Infinite-time regulator. Assuming now that T+ m, and that the pair
[F’(t), G(t)] is completely controllable for all t,then

~(t)= :+%P(r,T) (3.3-17)

exists, and the optimum value of the performance index (3.3-13), with T
replaced by infinity, is x‘ (to)~(fo)x (to).The matrix ~ satisfies the recursion
relations (3.3-14), (3.3-15) (apart from the boundary condition) and the
optimal control law is given by (3.3-16).

Time-invariant regulator. When F, G, Q, and R are constant, with
[F’, G] stabilizable, F is constant and maybe obtained via

~ = lim P(t, T) (3.3-18)
f+ –m

The matrix

~=P+Q (3.3-19)

satisfies the steady state version of (3 .3-15), viz.

S = F’{S - sG[G’llG + R]-’G’S}F + Q (3.3-20)
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The optimal control law is also constant, being given by

u * = -[G’~G +R]-’G’SFX (3.3-21)

With D any matrix such that DD’ = Q, complete detectability of the pair
[F, D] guarantees asymptotic stability of the closed-loop system. Under obser-
vability of [F, D], then ~ >0 and x‘ (k)~x (k) is a Lyapunov function.
Now that the solution to the regulator problem has been determined, we

might ask if this solution is of interest for application to situations other than those
in which everything is set up as in the formal statements just summarized.

Frequently, the system states are not available for use in a controller input. In
Chapters 7 and 8 we show that if the system is specified in the form

i= Fx+Gu ~ =H’x

where only the input u and output y are available for controller inputs, a state
estimator can be constructed with inputs u and y and output .f, an estimate of the
state x. Implementing the control law u = –R ‘lG ‘Pi is a satisfactory alternative to
implementing the control law u = –R ‘lG ‘Px.

So far in our discussions, we have assumed that the performance index
matrices R and Q are specified. Since specification is usually up to the designer, a
range of values for these matrices can be considered and by trial and error the most
suitable values can be selected. Chapter 6 considers methods to guide this trial and
error approach. Of course, if we are interested only in stability, then the closed-loop
system .i = (F – GR ‘lG ‘~)x is always stable, irrespective of the choice of Q and R
within their prescribed limits, In other words, we have a general method for
stabilizing multiple input linear systems (assuming that state estimators may be
constructed).

We are now led to ask whether linear regulators, optimal in the sense pre-
viously discussed, have desirable properties for the engineer other than simply
“stability.” Or we might ask whether there are methods for selecting the index
parameters Q and R so that desirable properties, such as good transient response
and good sensitivity characteristics, are achieved.

With these questions in mind, we now move on to the next sections and
chapter, which discuss various extensions of the regulator problem, and then to the
following few chapters, which deal with further properties of regulator systems.

Main points of the section. For continuous and discrete time, the
linear-quadratic problem in finite time yields a linear control law and optimal
performance index quadratic in the state. With detectabilityy and stabilizability
assumptions, the infinite-time time-invariant problem yields a stabilizing feedback
law.

Problem 3.3-1. For the discrete-time problem with constant F, G, Q, and R,
derive the results claimed above under stabilizability and detectability assumptions
(Follow the continuous-time theory. Also see [7]).
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Problem 3.3-2. (Compare with Problem 2.4-l). Find the optimal control and
performance index for

X(t+l)=x(t)+ u(t)

[where x(.) and u(.) are scalar quantities] with performance index

i [2X’(C)+ U’(f - 1)]
,=1

Check that the optimal control is stabilizing

Problem 3.3-3. (Open problem requiring computer) For the cases studied in
Problem 2.4-4, examine the corresponding infinite time Riccati equation solutions
and associated feedback gains. For each of the designs examine the closed-loop
eigenvalues. This problem is continued as Problem 5.4-7.

Problem 3.3-4

(a) Consider the index

1
T[U ‘(t)~ (t)U (f) + X ‘(t)Q (t)x(t)] dt + X ‘(T)Ax(T)

IO

for the system i = F(t)x + G (t)u with the usual assumptions. Suppose that a control
u(t) = K‘ (t)x (t) is implemented. Show that the value assumed by the performance
index is given by x‘ (to)PK(tO)x (to) where PK(“) is the solution of the linear differen-
tial equation

–P~=P~(F +GKf)+(F +GKf)P~+KRKf+Q

P.(T) =A

Verify that if K = – P~GR’1, then PK satisfies the usual Riccati equation.

(b) For the discrete time system x (t + 1) = F(t)x (t) + G (t)u (t) and performance
index

~ [x’(t) Q(t)x(t) + U’(t - l)R(t)u(t - 1)]
f~+l

with the usual assumptions, suppose that the control law u(t) = K‘ (t)x (t) is im-
plemented. Show that the value of the performance index is given by
x‘ (tO)[S~(tO)– Q (tO)]x(to) where

S~(t) = [F(t) + G(t) K’(t)] ’S~(t + l)[F(t) + G(t) K’(t)] + K(t)R(t + l) K’(t)

+ Q (t) S.(T) =Q(T)

Verify that if K(t)= –[G’(t)S~(t + l)G(t) + R(t + l)]-lG ‘(t)SK(t+ l) F(t), then
SK(t) agrees with the optimal S(t). This fact offers a numerically more attractive
procedure for iteratively determining S(t), in that nonnegative matrices are added
rather than difference as part of the solution process.
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Problem 3.3-5. Let P~ be as defined in the previous problem and rewrite the
Riccati equation for P as

–p=p(F+ GK’)+(F’ +KG’)P– PGKI –KG’P– PGR-lGIP+Q

Show that Z = P~ – P satisfies

–.Z=Z(F +GK’)+(F’ +KGf)Z+ (K+ PGR-l)R(Kf+R-l G’P)

Z(z-’)=o

Express the solutions of this equation, regarding everything as known except Z as
an integral. Conclude that Z (to) a O for all to, so that PK z P. This shows the
optimality of P.

3.4 CROSS-PRODUCT TERMS AND SECOND
VARIATION THEORY

There are many avenues along which the regulator problem can be extended; a
number of them will be explored throughout the text. The approach used in develop-
ing the extensions is to reduce by a suitable transformation the given problem to the
standard regulator problem.

In this section, we first consider extension of our theory for the case when
there are cross-product terms in the quadratic performance index. Such terms can
well arise when power into a system is penalized—see Problem 2.1-2, for example.
Another very important application of such results is to the case when an open-loop
optimal control is in place for a nonlinear plant and/or nonquadratic index, but
additional closed-loop regulation is required to maintain as closely as possible the
optimal trajectory in the presence of disturbances that cause small perturbations
from the trajectory. In this case, under reasonable smoothness assumptions, opti-
mal linearization of the plant and “quadraticization” of the index about the optimal
trajectory yield a linear time-varying plant with quadratic index containing cross-
product terms. This will be demonstrated later in the section. Meanwhile the case of
cross-product terms in the index will be studied.

We consider the determination of an optimal control and associated optimal
performance index for the system

i = F(t)x + G(t)u x (to) given (3.4-1)

when the performance index contains cross-product terms as

!
V(.X(to), u (.), to)= ~[u ‘(t)R (t)u (t) + 2.x‘(t)S(t)u (t)

r“

+ x ‘(t)Q (t)X (t)] dt

with R positive definite and the following constraint holding:

(3.4-2)

Q- SK’S’>(I (3.4-3)
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(shorthand for Q - SR “S’ is nonnegative definite). If desired, T can be infinite,
and F, G, Q, R, and S constant.

To reduce this problem to one covered by the previous theory, we note the
following identity, obtained by completing the square:

U’RU +2x’SU +x’Qx ‘(U +R-lS’X)’R(U +R-lS’X)+X’(Q –SR-lS’)X.

Making the definition

ul=u+R-lS’x (3.4-4)

the original system (3.4-1) becomes equivalent to

~ = (F – GR-’S’)X + (hl (3.4-5)

and the original performance index is equivalent to

V(x(tl)),u,(”), t“)= 1 ‘[u; Ru, +x’(Q-SR-’S’)x]dr (3.4-6)
10

If u and UI are related according to (3.4-4), the trajectories of the two systems
(3.4-1) and (3.4-5) are the same [provided they start from the same initial state
x (to)], Furthermore, the values taken by the two performance indices—viz., (3.4-2),
which is associated with the system (3.4-l), and (3.4-6), which is associated with the
system (3 .4-5)—are also the same. Consequently, the following statements hold.

1.

2.

3.

The optimal controls u * and UTfor the two optimization problems are related
byu~=u*+R-lS’x.

The optimal performance indices for the two problems are the same.

The closed-loop trajectories (when the optimal controls are implemented) are
the same.

Now the optimization problem associated with (3.4-5) and (3.4-6) is certainly
solvable [and here we are using the nonnegativit y constraint (3.4-3)]. The optimal
u? is given by

U~(f) = –R-l(t)G’(t)P(t, T)X(t) (3.4-7)

where

–P =P(F– GR-lS’) + (F’ –SR-~G’)P

–PGR-lG’P+Q– SR-lS’
(3.4-8)

with P (T, T) = O. The optimal index is x‘ (tO)P(tO,T)x (fO).The optimal control for
the optimization problem associated with (3.4-1) and (3.4-2) is thus

U“(t) = –R-l(t)[G’(t)P(f, T)+ S’(t)] x(t) (3.4-9)

and the optimai performance index is again x ‘(tO)P(to, 7)x (to).
The assumption (3.4-3) allows ready application of all the preceding theory.



58 The Standard Regulator Problem—n Chap. 3

Actually, it may not be fulfilled in certain applications, especially those involving
second variation theory. What happens if it is absent?

With reference to (3.4-6), recall that (3.4-3) serves to guarantee an under-
wound on V*(X (to), to), of zero. Given an overbound too (choose say u = O), the
Riccati equation (3.4-8) could have no escape time. Without an underbound on
V* (x (to), to) there does arise the possibility that for some tl, !\rn P (t, T) is not finite,

so that, for some w, w ‘P (t, T)w~ –CCas t ~ cl.When tl is the closest such point to
the left of T, it is called a conjugate point; V* (x (to), to) is well defined for all x (to)
only when to> tl, but may be negative.

Let us now discuss the infinite-time problem, assuming that (3.4-3) holds. To
consider the infinite-time problem [i.e., T in (3.4-2)is replaced by infinity], we
make the following assumption.

Assumption 3.4-1

The system (3.4-1) is completely controllable at every time t.

To ensure existence of the limit as T approaches infinity of P(t, T), one
evidently requires that the system (3.4-5) be completely controllable at every time t.
[Then the optimization problem associated with (3.4-5) and (3.4-6) is solvable and
yields a solution of the optimization problem associated with (3.4-1) and (3.4-2).]
The complete controllability of (3.4-5) is an immediate consequence of Assump-
tion 3.4-1, since controllability y is invariant under state variable feedback—see
Appendix B.

The control law for the infinite-time problem will be constant if F, G, Q, R,
and S are all constant, as may easily been seen. The closed-loop system will be
asymptotically stable if the pair [F – CR - 1S’,D] is completely detectable where D
is any matrix such that DD’ = Q – SR ‘lS’. (If D were such that DD’ = Q, note that
complete detectabilityy of [F, D] or [F – CR - *S’,D] would not necessarily imply
asymptotic stability.)

Let us now show how linear quadratic problems with cross-product terms arise
when dealing with linearized plants and “quadraticized” indices. We return to the
nonlinear optimal control task of Chapter 2, Section 2, that is, the minimization of

/

T

V(g(to), v (.), to)= 1(5(T), v(T), T) d~ + m (~(7))
to

(3.4-lo)

subject to the constraint

g =f(E, v,O, ~(to) given (3.4-11)

under suitable smoothness assumptions on 1(.), m (.), f (.).
A linearization about an optimal state [control] trajectory ~“(.)[v *(.)], both

assumed available as time functions, is readily achieved using Taylor series expan-
sions, and neglecting higher order terms. Thus for x ~ ~ – ~“, u ~ v – v*, with both
small,

f(&, v>t)=f(g*, v*, t)+ F(t)x(t)+G(t) u(t)



Sec. 3.4 Cross-Product Terms and Second Variation Theory 59

(3.4-12)

[Here the ijth component of F(t) is the partial derivative with respect to .$jof the ith
component of f (.) evaluated at E“(t), v* (t). Likewise for G(t).] The linearized
“plant” is now (an approximation)

x (t) = F(t) x(f) + G(t) u (t) (3.4-13)

where x(t), u(t) are small departures from the optimal trajectories ~’(t), v *(t) and
F(t), G(t) are the first partial derivatives associated with f (~, v, t) evaluated along

V*(”)>E*(”).
Our concern is with the following issue. Suppose that, for whatever reason, in

applying the optimal control to (3.4-11) the state at time t is not ~*(f) but is
~“(t) + x(t) with x (t) small. What should the optimal control value now become?
Intuitively, one would expect a control v “(t) + u(t) with u(t) small, and related
to x (t).

The cost of using v “(t) + u(t) over [to,T] differs from that obtained using
v *(t). The first-order difference is zero, while the second-order difference is (see

Appendix C)

“~=[[~’ ~’1[% RINf’++x’@)~@@)‘34-14
where

H = 1(E, v, t)+p’f(~, v, t) (3.4-15)

and p is the adjoint variable arising in the determination of C*(”), v*(”) using the
Pontryagin Minimum Principle (see Appendix C). The derivatives in the integral in
(3.4-14) are of course evaluated on the optimal trajectory ~“(t) with the optimal
control v *(t), and mc~is evaluated at E*(7’).

Obviously, the increment in cost depends on u. It is minimized by taking u as
the solution of the linear quadratic problem defined by (3.4-12) and (3.4-14). In
relation to our earlier notation,

Q (t)=H&g R (t)= HVV s (t) = H<, A = met

For these ideas to work, smoothness is essential (and is not present in every optimal
control problem). Further, H., must be positive definite (although v minimizes H,
this only guarantees that H.. is nonnegative definite).

Notice that the cross-product term S(“) is not, in general, zero, or even con-
stant. Also we stress that the Q, R, S, A selection depends on the optimal tra-
jectory, assumed calculated off line, by means not explored in this text. It is quite
possible that crude approximations to v*, ~“, and also Q, R, S, A can be used
effectively in practice. See References [7, 8] for more details.

Discrete-time case. Analogous “linearizing” and “quadraticizing”
procedures as above apply to the discrete-time case. For details see [7].
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Main points of the section. More general quadratic performance
indices arise in dealing with regulation about a general nonlinear optimal control
trajectory. Theory for the case when cross-product terms are involved can be
derived from results when they are not present.

Problem 3.4-1. Consider a one-port passive electric network with input
current u and voltage y, so that uy represents the instantaneous power flow into the
network. Suppose that the network equations are i = Fx + GM,y = H ‘x + Iu, with
J >0. Suppose the network is initially storing energy, and we seek to extract the
maximum energy from the network, that is, we aim to maximize ~0”(– uy) dt or
minimize .f’0”(uy) dt. Show that the associated linear quadratic problem does not
have the equivalent of Q – SR ‘lS’ 20. Argue that there is no conjugate point for
the Riccati equation with boundary condition P (T, T) = O, and that the associated
Riccati equation solution is nonpositive definite. [Hint: Recognize that a passive
network initially storing energy can only deliver a finite amount of energy to the
outside world].

Problem 3.4-2. Consider an optimization problem for a linear system
i = F(t) x + G(t) u and nonquadratic performance index. Suppose that the optimal
trajectory x* (.) and control u *(“) have been obtained for a certain initial condition,
but that the associated costate trajectory (adjoint variable trajectory) p(.) is not
known. Show that there is sufficient data to formulate the second variation
problem, assuming adequate smoothness.

3.5 REGULATOR WITH A PRESCRIBED DEGREE
OF STABILITY

As we show in this section, it is possible to define a modified regulator problem
which achieves a closed-loop system with a prescribed degree of stability ci. That is,
for some prescribed 0.>0, the states x (t) approach zero at least as fast as e ‘a’ in the
continuous time case. We will focus on the time-invariant case, when the optimal
controller is constant and achieves closed-loop eigenvalues with real parts less than
– ci. Of course, the larger is ci, the more stable is the closed-loop system. A high
degree of closed-loop stability may only be achieved at excessive control energy
cost, or controller complexity cost, so that the selection of a must be a considered
one, as discussed later in the section. The results of this section first appeared in [9].

Modified reguhztor problem. Consider the system

,i=Fx+Gu x (to) given (3.5-1)

where F and G are constant and the pair [(F + cd), G] is completely
stabilizable. Consider also the associated performance index
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!

.
V(X(to),u (.), f,)= e2”’(u‘Ru + x ‘Qx) dt (3.5-2)

10

where R and Q are constant, symmetric, and respectively positive definite and
nonnegative definite. Let u be a nonegative constant (which will turn out to be
the minimum degree of stability of the closed-loop system). With D any matrix
such that DD’ = Q, let [F + cd, D] be completely detectable. Define the
minimization problem as the task of finding the minimum value of the
performance index (3.5-2) and the associated optimal control.

The strategy we adopt in solving this modified problem is to introduce
transformations that convert the problem to an infinite-time regulator problem of
the type considered earlier in the chapter. Accordingly, we make the definitions

i(t) = ea’x (t) (3.5-3)

d(t) = e% (t). (3.5-4)

Just as x(.) and u(.) may be related [via Eq, (3.5-l)], so ~(.) and i(.) may be
related. Observe that

i = $ (e”’x (t)) = ae”’x (t) + eari(t)

– M? + e“’Fx + e“lGu— (3.5-5)

=(F+cil)i+Gti

Thus, given the relations (3.5-3) and (3.5-4), the system equation (3.5-1) implies the
system equation (3.3-5). The converse is clearly true, too. Corresponding initial
conditions for the two systems (3.5-1) and (3.5-5) are given by setting r = to in
(3.5 -3)–i.e. .f(tO)= es’”x(tO).

The integrand in (3.5-2) may also be written in terms of cland i:

e2”’(u’Ru +x’ Qx)=fi’Rfi +~’Qj.

Consequently, we may associate with the system (3.5-5) the performance index

~

.
i(,i(to),ti(.), to)= (i2’Rti +~’Q~) dt (3.5-6)

to

Moreover, there is a strong connection between the minimization problem
associated with the equation pair (3.5-l), (3.5-2), and the pair (3.5-5), (3.5-6).
Suppose u *(t) is the value of the optimal control at time twhen the initial state
is x (to),Then the value of the optimal control at time tfor the second problem is
ii *(t) = ea’u*(t),and the resulting value of the state at time t is given by i(t) =

e“’x (t), provided-i? (to) = e“’ox (tO), Also, the minimum performance index is the same
for each problem.

Moreover, if the optimal control for the second problem can be expressed in
feedback form as
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r.1“(t) = k (i (t), t) (3.5-7)

then the optimal control for the first problem may also be expressed in feedback
form; thus

u*(t) = e-a’ ti*(t) = e-”’k(e”’x(t), t) (3.5-8)

[We know that the control law (3.5-7) should be a linear one; and, indeed, we shall
shortly note the specific law; the point to observe here is that a feedback control law
for the second problem readily yields a feedback control law for the first problem,
irrespective of the notion of linearit y. ]

Our temporary task is now to study the system (3.5-5), and to select a control
h *(. ) that minimizes the performance index (3.5-6), where R and Q have the
constraints imposed at the beginning of the section.

To guarantee existence of an optimal control, via the theory of an earlier
section, we require that [F + al, G] be completely stabilizable. One of the
problems seeks a proof that a sufficient condition is that [F, G] is completely
controllable.

Given this complete stabilizability constraint, let us apply the material of Sec.
3.3. Let P (t, T) be the solution at time t of the equation

–p=p(F+ aQ+(F’+u I)p-PGR-’G’P +Q (3.5-9)

with boundary condition P (T, T) = O. Then

P = lim P(t, T) (3.5-lo)
* –.

exists as a constant matrix, satisfying the steady state version of (3.5-9):

P(F+a Z)+(Ff+ a~P-PGR-’G’P+ Q=o (3.5-11)

Then the optimal control becomes

cl”(r) = – R-lG’~~(f) (3,5-12)

and the closed-loop system is

l=(F+a Z–GR-lGIP)i (3.5-13)

We recall from the results of an earlier section that a necessary and sufficient
condition ensuring asymptotic stability of (3.5-13) is that [F + a 1, D] should be
completely detectable, where D is any matrix such that DD’ = Q. (A sufficient con-
dition is that [ F, D] is completely observable.)

We can now apply these results to the original optimization problem.
Equations (3.5-7) and (3.5-8) show us that

u“(t)= –e-”’R-lG’~e”’x (t) = –R-lG’~x(t) (3.5-14)

This is the desired constant control law; note that it has the same structure as the
control law of (3.5-12).

To demonstrate the degree of stability, we have from (3.5-3) that x(t) =
e ‘a’ -i?(t). Since the closed-loop system (3.5-13) is asymptotically stable by virtue
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of the complete detectability assumption on [F + a 1, D], we know that i(t)
approaches zero as tapproaches infinity, and, consequently, that x(t) approaches
zero at least as fast as e ‘“[ when tapproaches infinity.

The minimum value achieved by (3.5-2) is the same as the minimum value
achieved by (3.5-6). As was shown in the previous chapter, the optimal performance
index for (3.5-6) is expressible in terms of ~ as i ‘(to)pi(to).Consequently, the
minimum value achieved by (3.5-2) is x‘ (to)e ‘2”’” Px (to). Let us now summarize the
results.

Solution of the regubtorproblem with prescribed degree of stability. The opti-
mal performance index for the modified regulator problem stated at the start
of this section is x‘ (tO)e‘za’’)Px(to),where P is defined as the limiting solution of
the Riccati equation (3.5-9) with boundary condition P (T, T) = O.The matrix
P also satisfies the algebraic equation (3.5-11). The associated optimal control
is given by the constant linear feedback law (3.5-14), and the closed-loop
system has degree of stability of at least a.

One might ask if there are positive functions ~(t) other than e=’ such that
minimizing the index V = .(,; f(t)(u ‘Ru + x ‘Qx) dt under (3.5-1) leads to a linear
constant control law. It is not difficult to show that (apart from trivial situations such
as Q = O) essentially the only possible ~ (t) are those already considered—that is,
those of the form ea’—with cxreal.

One might well ask also if it is possible to construct a performance index with a
equal to zero such that the control law resulting from the minimization is the same
as that obtained from the preceding problem when a is nonzero. The answer is yes
(see Problem 3.5-2). In other words, there are sets of pairs of matrices R and Q such
that the associated regulator problem with zero ci leads to a closed-loop system with
degree of stability a. However, it does not appear possible to give an explicit
formula for writing down these matrices without first solving a regulator problem
with a nonzero.

Let us now return to the question implicit in an earlier discussion. When is the
cost of achieving a degree of stability u large? As a preliminary, consider the simpler
question, when is the cost of solving a linear quadratic problem likely to be large?
We know that a necessary condition for solvability is that the pair [F, G] be
stabilizable, so that all unstable modes are controllable. But what if such modes are
barely controllable, that is, what if it takes a large amount of control energy to bring
to zero an initial state x (co)with 11x(to)II= 1 and Fx (to) = Ax (to), Re A> O?Then any
stabilizing control gain K will necessarily be large, control values will be large, and
the optimal cost itself will be large.

Now for the problem of this section, the above argument needs to be modi-
fied. Any eigenvalue of the original open-loop system to the right of Re s = –a
becomes an eigenvalue of the modified system of (3.5-5) to the right of Re s = O.
Since controlling the original system is equivalent in a sense to control of the
modified system, it follows that any barely controllable mode of the original system
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in Res a –U will give a large value of performance index, control gain, and control
signal.

What will happen if we choose a <O? As one might expect, this tends to
destabilize the closed-loop system. Recall the example of Section 2.3 when the
index ~,$ (2e “u 2+ ~e “X2) dt is minimized subject to -t = ~x + u. Here a = –~ is
negative and Q = ~, R = 2, F = ~, G = 1. The optimal control, recall is

u(t) = –~(1 – e’e-~(l + e’e-~-lx(t)

Notice that as T+ ~, u (t)= –j.x (t), .i (t) = O and there is only a marginal stability
result.

Consider the general scalar example when ~,~e2”’(ru2+ qx2) dt is minimized
subject to i = ~x + gu with q + O, g # O, a a O. The results for the case a = Ogiven
in Section 3.1 can be applied here with ~ replaced by a + ~. Thus now

~2=(a+f) +[(a+f)’ +g2q/r]l’2>o

r-1g2

* _ (a +f) + [(a +f)2 + g2q/r]l’2x
u ––

/?

,i = –{a + [(a +f)z + g2q/r]l’2}x

Notice that as a increases ~2 increases, the controller
closed-loop bandwidth increases.

By way of another example, consider an idealized

gain increases, and the

angular position control
system where the position of the rotation shaft is controlled by the-torque applied,
with no friction in the system. The equation of motion is

J6=T

where 6 is the angular position, T is the applied torque, and J is the moment of
inertia of the rotating parts. In state-space form, this becomes

where xl = 0, X2= (1, u = T, and a = l/J. As a performance index guaranteeing a
degree of stability a, we choose

/

m
e2”’(u2+ x?) dt

o

The appropriate algebraic equation satisfied by ~ is

One possible way to solve this equation is to write down simultaneous equations for
the entries of p; thus,

2ci~11–p?2a2+ 1 = O
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PN + z~jZ2 –F12F22a2 = O

2~12+ 2a~22–@2a2 = O

Substitution for Z,, from the first equation, 2712from the

65

third equation, into the
second equation’gives a fourth-orde~ equation, yielding solutions that can be used
to find P >0. For the case a = 1, a positive definite ~ is verified to be given from

[
pll’j 2+2m+; (2+2dm]

llz=j[l+-+~z+zml

p22=; [2+v2+2m]
a

The optimal control law is

u * = –g’Px

[

—

1[]

:(l+m+v2+2tim~) ‘ x,

.

-:(2+ v2+2m) X2

This is implementable with proportional plus derivative (in this case, tacho, or
angular velocity) feedback. The closed-loop system equation is

[

o 1

1‘=-(l+m+v2+2um) -(2+v2+2vm) x

for which the characteristic polynomial is

S2+(2+V 2+2tim),s +(l+m+v2+2m)

It is readily checked that the roots of this polynomial are complex for all a; there-
fore, the real part of the closed-loop poles is

–l–; V2+2VW<–1

Thus, the requisite degree of stability is achieved.

Discrete-time results. Analogous results accrue for the discrete-
time case. The relevant index is

V(x(tO), u(.), ?.)= ~ A-2’[x’(t)Qx(t) + U’(t - l)Ru(t - 1)] (3.5-15)
[=r~+l

for some 0< hs 1. Now Fin the standard Riccati equation is replaced by A-*F, to
yield control laws that achieve a degree of stability A—that is, all closed-loop
eigenvalues are less than k in magnitude. Further details are left to the reader in one
of the problems.
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Main points of the section. Introducing a weighting term into the
performance index allows us to achieve a prescribed degree of stability in the
closed-loop system. This must be applied with caution in those cases where stable,
lightly damped open-loop system modes are present.

Problem 3.5-1. Consider the system (with constant F and G)

,t?=Fx+Gu x (to) given

and the associated performance index

!

m

e’”’ [(u ‘u)’ +(x ‘Qx)’] dt
to

where Q is a constant nonnegative definite matrix. Find a related linear system and
performance index where the integrand in the performance index is not specifically
dependent on time (although, of course, it depends on u and x). Show that if an
optimal feedback law exists for this related system and performance index, it is a
constant law, and that from it an optimal feedback law may be determined for the
original system and performance index.

Problem 3.5-2. Consider the system

i= Fx+Gu x (to) given

where F and G are constant and [F, G] is completely controllable. Show that
associated with any performance index of the form

~

.
eza’(u‘Ru + x ‘Qx) dt

to

where R is constant and positive definite, Q is constant and nonnegative definite,
and cxis positive, there is a performance index

~
“(u’Ru+x’Qx)dt
to

where Q is constant and nonnegative definite, such that the optimal controls associ-
ated with minimizing these indices are the same. [Hint:Define Q, using the solution
of the first minimization problem.]

Problem 3.5-3. Consider the second-order example of the section for the
case a = 1, a 2= 3. Derive an expression for a~/&x. Use this to estimate the effect on
the control law, and closed-loop poles when a = 2.

Problem 3.5-4. Consider the modified regulator problem as stated at the
beginning of the section, and let ~ be defined as in Eqs. (3.5-9) through (3.5-11).
Suppose that [F, D] is completely observable. Show that the degree of stability
result follows by using the Lyapunov function V = x ‘~x.
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Problem 3.5-5. Prove that complete controllability of [11 G] implies and is
implied by complete controllability y of [F + ci1, G]. Conclude that complete con-
trollability of [F, G] implies [F + a 1, G] is stabilizable.

Problem 3.5-6. Imagine two optimization problems of the type considered
in this chapter with the same F, G, Q, and R but with two different a—viz., u,
and U2, with al> ci2. Show that ~.l – ~.z is positive definite. [Hint.’Refer to
Problem 3.5-3.]

Problem 3.5-7. Recall the worked example in the text where

‘=[:i!)lx+[:lu
and the performance index is ~t~e2a1(u2+ x:) dt. Show that the closed-loop char-
acteristic polynomial is (s + ci)2+ [2cx2+ 2~]1’2 (s + a) + ~. [Hint:
Using Appendix E, write down the Hamiltonian matrix for the modified problem
and evaluate its characteristic polynomial. Factor this characteristic polynomial as
p (s)p (–s) where p (s) is stable. Argue that p (s) is the characteristic polynomial for
the closed loop of the modified system, and conclude the result.]

Problem 3.5-8. Using the performance index (3.5-15), develop the results of
this section for the discrete-time case.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

P. Sannuti and P. V. Kokotovic, “Near Optimum Design of Linear Systemsby a Singular
Perturbation Method,” IEEE Trans.Auto. Control, Vol. AC-14, No. 1 (February 1969),
pp. 15-21.
R. E. Kalman, “Contributions to the Theory of Optimal Control,” Bol. Sot. Matem.
Mex., (1960),pp. 102-119.
B. D. O. Anderson and J. B. Moore, “Detectability and Stabilizability of Time-varying
Discrete-time Linear Systems,” SIAM J. of Control and Optimization, Vol. 18, No. 1
(January 1981),pp. 20-32.
R. E. Kalman, “When is a Linear Control System Optimal?”, Trans. ASME Ser. D: J.
Basic Eng., Vol. 86 (March 1964),pp. 1-10.
W. M. Wonham, “On a Matrix Riccati Equation of Stochastic Control,” SIAM J.
Control, Vol. 6, No. 4 (1968), pp. 681%97.
K. Martensson, “On the Matrix Riccati Equation,” Information Sci., Vol. 3 (1971),
pp. 1749.

F. L. Lewis, Optimal Control. New York: John Wiley and Sons, 1986.
A. E. Bryson, Jr, and Y. C. Ho, Applied Optimal Control. New York: Hemisphere,
1975.
B. D. O. Anderson and J. B. Moore, “Linear System Optimization with Prescribed
Degree of Stability,” F’roc.ZEE, Vol. 116, No. 12 (December 1969),pp. 2083-2087.



4
Tracking Systems

4.1 THE PROBLEM OF ACHIEVING
A DESIRED TRAJECTORY

In previous chapters, the regulator problem—viz., the problem of returning a
system to its zero state in some optimal fashion—is considered. This problem is, in
fact, a special case of a wider class of problems where it is required that the outputs
of a system follow or track a desired trajectory in some optimal sense. For the
regulator, the desired trajectory is, of course, simply the zero state. In this chapter,
we apply regulator theory and give extensions to solve the wider class of control
problems that involves achieving a desired trajectory.

The regulator theory developed so far results in linear nondynamic (propor-
tional) state feedback controllers, although we have foreshadowed the use of state
estimation and state estimate feedback resulting in dynamic feedback controllers.
In the trajectory following theory of this chapter, based on the earlier regulator
results, the controllers consist of state (or state estimate) proportional feedback
controllers together with feed-forward controllers involving processing of the de-
sired trajectory. Of course, more general regulators/trackers involving dynamic
state (or state estimate) feedback such as proportional plus integral state (or state
estimate) feedback may be more useful in certain applications. For example, a
particularly common form of servo problem involves havifg the output of a plant
track a step input (set-point control). Such trajectory problems are often encoun-
tered in classical control, and integral control is often a feature of the controller

68
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design. The controller design of this chapter will, however, make limited contact
with this idea; later in the book, particularly in our discussion of frequency shaping
in Chapter 9, we will return to this classical idea. See also Problem 4.3-5 of this
chapter.

It is convenient to refer to trajectory following problems by one of three
technical terms, the particular term used depending on the nature of the desired
trajectory. If the plant outputs are to follow a class of desired trajectories, for
example, all polynomials up to a certain order, the problem is referred to as a servo
(servomechanism) problem; if the desired trajectory is a particular prescribed func-
tion of time, the problem is called a tracking problem. When the outputs of the plant
are to follow the response of another plant (or model), the problem is referred to as
the model-following problem.

The remainder of this section is devoted to a discussion of considerations
common to all three of these problems, with particular attention being given to the
selection of a performance index.

We recall that in selecting a performance index for a regulator, cost terms are
constructed for the control energy and the energy associated with the states. More
specifically, for the linear system

,i=Fx+Gu x (to) given (4.1-1)

the principal performance index adopted throughout the book is the quadratic
index

V(x(to), u(.), T)= JT(u’Ru+x’Qx)dt (4.1-2)
to

where R is some positive definite matrix and Q is some nonnegative definite matrix
(the matrices being of appropriate dimensions). The quadratic nature of the cost
terms ensures that the optimal law is linear, and the constraints on the matrices Q
and R ensure that the control law leads to a finite control.

When one is attempting to control the system (4. l-l) such that its output y (.)
given by

~ =H’x (4.1-3)

tracks a desired trajectory j(.), there clearly should be a cost term in the per-
formance index involving the error (y – j). A performance index that comes to
mind immediately as a natural extension of the index (4,1-2) is the following

V(x(to), u(.), T)=~~[u’Ru + (y –j)’Q(y –j)]dt (4.1-4)
fo

where Q is nonnegative definite and R is positive definite. For ease of presentation,
we wi!l neglect in this section any terminal cost term [y (T) – j (T)]’A [y (T) – j(T)],
A = A ‘ ? O. Once again, we have quadratic terms that, as the next sections show,
give rise to linear control laws.

Attempting to minimize y – j amounts to attempting to constrain H ‘x (in
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general to a nonzero value). If H has rank m, this imposes m constraints on x. It
is clearly legitimate to aim for n – m further constraints on x without creating a
conflict of objectives. The right way to do this is as follows: generalize the perform-
ance index (4. 1-4) to

!
V(x(tO), u(.), to) = ~[u’Ru +Y’QJ + (y –j)’Q, (y –j)]dt (4.1-5)

to

where Q1 and Qz are nonnegative definite symmetric matrices and

~=px ~=]–LH! L = H(H’~-’ (4.1-6)

Notice that H’Y = O.
It is now immediate that the index (4. 1-5) may be written in the convenient

form

J
V(x(tO), u(.), tO)= ‘[u’Ru +(x –.i)’Q(x –j)]dt (4.1-7)

10

where

Q = HQ@ + HQ2H’, ~=Lj (4.1-8)

The interpretation of the terms in the preceding index is straightforward enough. It
appears that the cost terms of the index (4.1-5) involving the state and the error
between the system output and the desired output are replaced by a single term
involving the error between the state and some special state trajectory i, related to
the desired output trajectory j. We have from (4.1-8) that H ‘x?= j, and thus, if by
some means i were to become the state trajectory x, then the system output y would
be the desired output trajectory ~. What characterizes the trajectory -i is the impor-
tant property, that its component in the null space of H‘ is zero. The specified prop-
erties of i suggest that it be referred to as the desired state trajectory.

For any particular application of the performance index just developed,
selections have to be made of the matrices QI and Q2 and R. Also, a selection may
have to be made of the terminal time T. It maybe necessary to try a range of values
of these quantities and to select the particular one that is most appropriate for any
given situation. A case of particular interest is the limiting case as the terminal time
T approaches infinity. For this case, when all the matrices are time invariant, part,
if not all, of the optimal controller becomes time invariant. However, difficulties
may arise for this case, because it may not be possible for the plant with a finite
control law to track the desired trajectories so that the error approaches zero as
time becomes infinite. In particular, if dim j > dim u, one could not expect gener-
ally to ever get perfect tracking of j by y, even asymptotically. Moreover, even if it is
possible to track in this sense by using a finite control law, unless the control
approaches zero as time approaches infinity, other difficulties arise due to the fact
that the performance index would be infinite for all controls and therefore attempts
at its minimization would be meaningless.

The next section considers finite terminal-time servo-, tracking-, and model-
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following problems. The final section considers the limiting situation as the integra-
tion interval becomes infinite. Of particular interest in this section are the cases
where the desired trajectory is either a step, ramp, or parabolic function. Key
references for the material that follows are [1] through [4].

Main points of the section. The quadratic performance index
(4. 1-7) is a natural one in conjunction with plants (4. l-l) so as to achieve state
trajectories x that track closely a specified trajectory i. When the objective is for
y = H ‘x to track closely j, then again such an index is convenient where i and Q are
specified as in (4. 1-8).

Problem 4.1-1. Verify that under (4. 1-6) the second and third terms in the
index (4. 1-5) are not conflicting. [Hint: First decompose x into the sum of two
orthogonal components, one in the range space of H, and show that the second and
third terms depend separately on these two orthogonal components].

Problem 4.1-2. Verify that the index (4.1-7) under (4. 1-6) and (4.1-8) is
equivalent to the index (4.1-5). [Hint: Show first that -iZ,the component of i in the
null space of H‘, is zero, so that i ‘~Q,~i = O.]

4.2 FINITE-TIME RESULTS

The servo problem. As stated in the previous section, the servo
problem is the task of controlling a system so that the system output follows a
reference signal, where all that is known about the signal is that it belongs to a
known class of signals, such as step changes. We consider a useful servo problem.

Optimal servo problem. Suppose we are given the n-dimensional linear sys-
tem having state equations

i= Fx+Gu x (to) given (4.2-1)

y =H’x (4.2-2)

where the m entries of y are generically linearly independent or, equivalently,
the matrix H has rank m. Suppose we are also given an m-vector incoming
reference signal j, which is the output of the known p-dimensional linear
reference model

~=& (4.2-3)

j=c’~ (4.2-4)

for some initial state z (tO). Without loss of generality, the pair [A, C] is
completely observable. The optimal servo problem is to find the optimal
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control U* for the system (4.2-l), such that the output y tracks the incoming
signal j, minimizing the index

J
V(x(tO), u(.), t(J = ~{u’Z?u +(x –i)’Q(x –i)}dt

:0
~=Lji (4.2-5)

where Q is nonnegative definite symmetric, and R is positive definite sym-
metric. Here Q, L are to be identified as in (4.1-6) and (4.1-8). The selections
for Q, L in the index (4.2-5) can be guided by the discussions of the previous
section to ensure appropriate penalties for control cost, tracking error cost,
and state excitation costs. (As usual, all the various matrices are assumed to
have continuous entries.)

Observe that we are requiring that our desired trajectory j be derived from a
linear differential equation. This, of course, rules out trajectories j, which have
discontinuities fort > to.We also note that the special case when C is a vector and A
is given by

i 1
01”””0
.01”

. . .A=”
. .

.1
0.”””0

leads to the class of j consisting of all polynomials of degree (p – 1).
Throughout the book, various minimization problems are solved by first

applying a transformation to convert the minimization problem to a standard regu-
lator problem. The standard regulator results are then interpreted, using the trans-
formations to give a solution to the original minimization problem. This will also be
our method of attack here. To convert the preceding servo problem to a regulator
problem, we require the following assumption, the relaxation of which will be dis-
cussed subsequently.

Assumption 4.2-1

The reference model state z is directly measurable.

We now define a new variable

[1
xf=

and new matrices

fi=[{ N z‘=[:1
d=[!cL~QZ~’~L~’ 1

(4.2-6)

(4.2-7)
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These variables and matrices are so constructed that when applied to the problem of
minimizing (4.2-5) with the relationships (4.2-1) and (4.2-3) holding, we have the
standard regulator problem requiring minimization of the quadratic index

JV(i(to), u(”), to) = ‘(U’RU +i’Qi)dt (4.2-8)
(O

with relationship

~=fi~+~u .f (to) given (4.2-9)

holding. This result is readily checked.
Applying the regulator theory of Chapter 3, to the minimization problem,

(4.2-8) and (4.2-9), gives immediately that the optimal control u* is

u * = _R-@t~~ (4.2-10)

where ~(.) is the solution of the Riccati equation

-fi=P~+$’P -PGR-’G’P+Q P(T)=O (4.2-11)

The minimum index is

V“(i (fO),to) = i ‘(to)t(to)i (f,) (4.2-12)

We now interpret these results in terms of the variables and matrices of the
original problem, using the definitions (4.2-6) and (4.2-7). First, we partition P as

(4.2-13)

where P is an n x n matrix. Substituting (4.2-7) and (4.2-13) into (4.2-10) gives the
optimal control u * as

u * =K’x + K~z

where

K!=–R-~G!P

K; = –R-~G’P1l

The Riccati equation (4.2-11) becomes now

–F=pF+F’P –PGR-~GIP+Q

–Plz = PIZA + F’PI1 – PGR-lG’Plz – QLC’

–Pzz= PZZA +A’P22– P;ZGR-’G’PIZ+ CL’QLC’

with boundary conditions P(T) = O, PIZ(T) = O, and P22(T) = O.
index is

V*(X (to), to)= x ‘(to)P(fo)x (to) + h ‘(to)P,2(to)z (to)

+ z ‘(to)P22(to)z(to)

(4.2-14)

(4.2-15)

(4.2-16)

(4.2-17)

(4.2-18)

(4.2-19)

The minimum

(4.2-20)
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Figure4.2-1 Regulator control of
augmented system.

Figure 4.2-1 shows the augmented system (4.2-9) separated into its component
systems (4.2-1) and (4.2-3) and controlled by use of linear state-variable feedback,
as for a standard regulator. Figure 4.2-2 shows the same system redrawn as the
solution to the servo problem. We observe that it has the form of a regulator de-
signed by minimizing the index

\
V(x(tO), u(.), tO)= ‘(u ‘Ru + x’Qx) dt

to

for the system (4.2-1) using regulator theory. There is the addition of an external
input, which is the state z of the linear system (4.2-3) and (4.2-4). The feedback part
of the control is independent of A, C, and z (tO).

The optimal servo in the finite time case is what is known as a two-degrees-of-

1
x

~ = Fx+Gu

J

I +

Figure4.2-2 Rearrangement of regulator system of Fig, 4,2-1
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Figure4.2-3 Four forms for the optimal servo-system

freedom controller with time-varying feed-forward and feedback gains. In contrast
the optimal regulator is a one-degree-of-freedom controller with but a feedback
time-varying gain.

The results to this point depend on Assumption 4.2-1, namely, that the state z
is directly measurable. Certainly, if z is available, the servo problem is solved. How-
ever, often in practice, only an incoming signal j is at hand. For this case, a state
estimator may be constructed with j as input and, of course, an estimate ~ of z as
output. With the pair [A, C] appearing in (4.2-3) and (4.2-4) completely observable,
the estimator may be constructed by using the results of Chapter 7. If A and C are
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Figure 4.2-4 Desired trajectory for
Generator model-following problem.

constant, the estimator can achieve 2 approaching z arbitrarily fast. The resulting
system is shown in Fig. 4.2-3(a). It is redrawn in Fig. 4.2-3(b) to illustrate that the
state estimator for 2 and control law K; can be combined to give a (dynamic)
feedforward controller.

Likewise, if the state x of the plant is not directly measurable, the memoryless
linear state feedback may be replaced by a dynamic controller, which estimates the
state x and then forms the appropriate linear transformation of this estimate, always
assuming complete observability of [F, H] (see Chapter 7). Figure 4.2-3(c) shows
this arrangement. Figure 4.2-3(d) shows one further possibilityy, where the esti-
mation of x and z is carried out simultaneously in the one estimator; this arrange-
ment may yield a reduction in the dimension of the linear system comprising the
controller. We shall now summarize the optimal servo problem solution.

Solution to the finite-time optimal servo problem. For the systems (4.2-l),
(4.2-2), and (4.2-3), (4.2-4) and performance index (4.2-5), the optimal control
u* is given by (4.2-14) through (4.2-19). The minimum index is given in
(4.2-20). With Assumption 4.2-1 holding, the form of the optimal controller is
indicated in Fig. 4.2-2(a). If only an estimate 2 is available, then an approxi-
mation to the optimal controller is as indicated in Fig. 4.2-3(b). The closer the
estimate .2 is to z, the better is the approximation. Further possibilities are
shown in Figs. 4.2-3(c) and 4.2-3(d), where estimation of x is required.

We remark that at no stage in the above analysis did we use the fact that Q, L
possessed the special structure of (4.1-8). Of course, it is this special structure which
gives the performance index (4.2-5) meaning for the servo problem so the benefit of
relaxing the constraints on Q and L is not clear.

Model-following (servo) problem. This problem is a mild gen-
eralization of the servo problem, and is stated as follows.

Optimal model-following (servo) problem. Find a control u* for the linear
system (4.2-1) (4.2-2) which minimizes the index (4.2-5) where Q is non-
negative definite symmetric, R is positive definite symmetric, and ~ is the
response of a linear system or model
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.21=Alzl+Blr Zl(to) given

j=cjz, (4.2-21)

to command inputs r, which, in turn, belong to the class of zero input
responses of the system

.22= AIzZ z2(tO)given

r= C~z2 (4.2-22)

as indicated in Fig. 4.2-4.

The two systems, (4.2-21) and (4.2-22), together form a linear system

Z=AZ (4.2-3)

jj=c’z (4.2-4)

where z = [zj z;]’ and the matrices A and C‘ are given from

‘=K’::IC’=[C’ 0]
(4.2-23)

For the case when ZI and ZZare available, the equations for the solution to the
model-following problem are identical to those for the servo problem, with A and C
given by (4.2-23). In case of nonavailability of 22, state estimation is required, again
in the same manner as in the servo problem.

The tracking problem. It may be that the desired trajectory j (t)
for all tinthe range tos ts T is known a priori. Such a tracking problem arises, for
example, in the altitude control of a terrain-following aircraft, where there is knowl-
edge of the future terrain. To address the tracking problem, we shall set up tempo-
rarily a servo problem, and then show that with knowledge of j (t) for all t,it is not
necessary to have available the servo model state or its estimate. This represents a
considerable saving if j is the output of a high-order system.

We now define the optimal tracking problem and give its solution.

Optimal tracking problem. Suppose we are given the n-dimensional linear
system having state equations (4.2-1) and (4.2-2), where the m entries of y are
linearly independent. Suppose we are also given an m vector ~ (t) for all tin
the range COsts T for some times toand T with 10< T. The optimal tracking
problem is to find the optimal control u * for the system (4.2-l), such that the
output y tracks the signal j, minimizing the index (4.2-5), where Q is non-
negative definite symmetric and R is positive definite symmetric. In general, L
and Q are as in (4.1-6) and (4.1-8).

We first make the following temporary assumption.
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Temporary Assumption 4.2-2

The vector j(t) for all t in the range tos t s T is the output of a linear finite dimen-
sional system

~=Az (4.2-3)

j=c’~ (4.2-4)

with the pair [A, q not necessarily assumed to be completely observable.

With this assumption holding, the optimal control u * is given using the opti-
mal servo results (4.2-14) through (4.2-19) in terms of b ~ Plzz as

u *= K’x+u.X, (4.2-24)

where

Z&= -R-’G’b (4.2-25)

The matrix K is calculated as before from (4.2-15) and (4.2-17). See Fig. 4.2-5.
Moreover, the minimum index V*, given from (4.2-20), may be written by using
b and c L z’PZZZas

V*(X (tO),fO)= X ‘(t “)P(tO)x(t,) + 2X ‘(t~)b (t,) + C(t,) (4.2-26)

The values of the matrices P12and P22and the vector z cannot be determined
independently unless the matrices A and C are known. However, the products
b = P,zz and c = z ‘Pzzzcan be determined directly from ~ (.), as follows.

Differentiating the product (P12Z)and applying (4.2-18) for P12and (4.2-3) for
z, we get

– j (P,2Z) = –F’12Z– P,22

= F’-P12Z+ P12Az – PGR-~G’Plzz – QLC’Z – PIZAZ

= (F - GR-’G’P)’(P12Z) - QLj

with the boundary condition P12(T)z (T) = O,following from P12(7’)= O.This means
that with ~(f) known for all t in the range hs ts T, the term b can be calculated
from the linear differential equation

–b =(F– GR-*G’P)’b – Qi b(T)=O (4.2-27)

x
H’

+

Figure4.2-5 Optimal tracking system.
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The optimal control law (4.2-24) and (4.2-25) is therefore realizable without
recourse to using z, or an estimate 2 of z: This equation is solved, backward in time,
to determine b(t), which is then used in the optimal control law implementation.
Matrices A and C do not play any role in determining u *.

An equation for c (“) is determined by differentiating c = z ‘PJZZas follows:

: (z ‘P2,Z)= z ‘P22Z+22 ‘P,22

= z ‘P;2GR-l G’P12z – z’CL ‘ QLC’Z

Using the identifications b = P,zz and c = z ‘Pzzz,we have that c (“) is the solution of
the differential equation

k= b’GR-lG’b–~’Q~ C(T)=O (4.2-28)

We observe by using (4.2-27) and (4.2-28) that the matrices A and C do not play any
role in determining V* from (4.2-26).

Since the differential equations for b(.) and c(“) can, in fact, be solved without
Temporary Assumption 4.2-2, we indicate in outline a procedure for veri-
fying that the control given by (4.2-24) and (4.2-25) is optimal without Assumption
4.2-2. With u * so defined, but not assumed optimal, and with V*(X (to), G) defined
as in (4.2-26)—again, of course, not assumed optimal—Problem 4.2-1 asks for the
establishing of the following identity:

JV(x(t,), u(”), to) = ‘(u – u*)’R(u – u*)dt + V“(x(t,), to) (4.2-29)
:0

Here, u(.) is an arbitrary control. Optimality of u * and V* is then immediate. The
preceding results are now summarized.

Solution to the finite-time tracking problem. For the system (4.2-1) and (4.2-2),
and performance index (4.2-5), with the desired trajectory i = H (H ‘E1-lj (t )
available for all t in the range tosts T, the optimal control u * is given from

u *= –R-lG’(p~ +b)=K’x –R-~G’b

where P(. ) is the solution of

–P=pF+F’P –PGR-lGIP+Q P(T) = O

and b (.) is the solution of

–b = (F– GR-lG’P)’b – Qi b(T)=O (4.2-27)

The minimum index is

V*(X (to), to) = x ‘(to)p(to)x (to) +2X ‘(tO)b(to) + c (to) (4.2-26)

where c (to) is determined from

~=b’GR-lG’b–~’Q~ c(T)=O (4.2-28)

The optimal controller is as indicated in Fig. 4.2-5,
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The section problems ask for alternative derivations of the optimal tracker
using the Hamilton–Jacobi approach, and (for those familiar with the notion) the
Minimum Principle.

In the above optimal tracking solution, it is assumed that the states x are
measurable. If not, then as in the regulator problem they may be replaced by state
estimates, under observability of F, H—see Chapter 7.

It is also assumed in the above optimal solution that the desired trajectory j is
known precisely over the interval [to, T]. In practical applications, it may be that
at any particular time tl G [to, T], the future desired trajectory is known only over
[t], tl + A], where A is fixed. (Consider aircraft control with a terrain-following
radar: A corresponds to the “look ahead” time. ) As discussed in more detail in the
next section, b (tl), needed for the optimal control at tl, will often depend mainly on
values of j (t ) for values of t near tl, so that knowledge of j (t ) over [tl, t] + A] maybe
adequate for computing b (tl). The boundary condition b(T) = Ocould be replaced
by b (t, + A) = O, or alternatively, one could retain b (T) = Oand set i (t) = i (tl + A)
fort ~ [t,+ A, T].

The tracking results presented so far do not penalize the final state.
Problem 4.2-1 seeks generalization to the case when there is a terminal cost
[x ‘(T) -i ‘(T)]D [x(T) - ,i(T)]. Of course, we would anticipate (and correctly so)
that the only likely change would be to the boundary conditions on the Riccati
equation for P(“), namely from P(T) = O to P(T) = D, and the equations for b(.),
c(.). A special case is terminal state control when we must exactly achieve a final
state i(T); then, as can be shown rigorously, P ‘l(T) = Ois the appropriate bound-
ary condition. Clearly for this case, at least in the vicinity of T, it is more reasonable
to work with a Riccati equation for P ‘l(t). Such an equation is readily derived.
Since differentiating PP-l = I yields dP-lldt = –P-l dPldtP ‘1, then pre- and
postmultiplication of the Riccati equation for P by P‘1 yields

dp-l/dt = FP-l + P-lF + P-lQP-l – (JR-~Gt

Of course, in the case when Q = O, then this collapses to a linear equation. Note
however, that the value P is still needed to obtain the control law.

Model-following tracking problem. This problem arises
when the command signal r is known a priori. It may be solved by direct application
of the tracking problem results; the solution is left to the reader (see Problem 4.2-5).
There is another approach to solving such a problem which is of interest.

Observe that an augmented system maybe defined along the lines previously
studied with
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The optimization task is to minimize

J
V(i(to), u(.), to)= ‘(U’RU +i’Qi)dt (4.2-31)

10

subject to

d= fii+Gu+f’r (4.2-32)

where r is known in the interval [to, T]. Such a task is linear quadratic regulation in
the presence of known plant disturbances r, and is of interest in its own right.
Problem 4.2-6 asks for a formal solution to this optimization task.

There is a further type of model-following problem, for which we offer no
clean linear-quadratic solution. It arises when the command inputs r are completely
unknown. There is then no a priori knowledge of the desired trajectory j. All one
can do is design for a particular r, for example, a step, and later check that for those
r which are near a step, some sort of adequate model-following still occurs.

Discrete-time tracking. The discrete-time
similar to the continuous-time problem. Suppose the plant is

x(t+ 1) = ~(t)X(t) + G(t)u (t)

and take as the performance index
T

tracking problem is

(4.2-33)

V(x(to), u(.), to)= ~ {[x(t) -i(t) ]’Q(t)[x(t) -i(t)]
t=(~+l

+ U’(t – l) R(t)u(t – 1)} (4.2-34)

[Here i(.) is a reference trajectory, R(t) and Q(t) are positive and nonnegative
definite symmetric]. Let P (t, T), S(t) be as for the regulator problem that is, where
-i (t) = O. Then the optimal control is

U“(t) = –[G’(t).S(t + l)G(t) + R(t + l)]-* G’(f)[S(t + l) F(t)x (t) + b(t + 1)]
(4.2-35)

where

b(t) = [F’(t)+ K(t) G’(t)]b(t + 1) - Q(t)i (t) b(T) = O (4.2-36)

The optimal performance index is

V“[x(t), t] =x’(t) P(t)x(t) + 2x’(f)b (t) + C(t) -i’(t) Q(t),i(f) (4.2-37)

with

c(t) = c(t + 1) – b’(t + l) G(t)[G’(t)S(t + l)G(t)

+ R(t + l)]-lG’(t)b(t + 1) +.i(t)Q(t)i(t) (4.2-38)

The derivation can be achieved by modification of the argument used in Chapter 2
for the regulator problem.
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Main points of the section. The optimal servo system can be de-
rived by using regulator theory. There results a two-degrees-of-freedom controller
involving a standard optimal feedback regulator and a feed-forward controller. In
the finite time case, the gains are time-varying. When the states of the plant and/or
desired trajectory generating system are not directly measurable, these can be esti-
mated, leading to dynamics in the feedback and feed-forward controllers respec-
tively. There may be virtue in a realization of the two controllers as a single con-
troller with inputs j, y and output the optimal control u*.

The optimal tracking controller design requires a standard feedback regulator
design involving the backwards solution of a Riccati equation, and an external
signal that results from the backwards solution of a linear differential equation.

One model-following problem can be reorganized as a servo problem for an
augmented desired trajectory signal model. A second model-following task can be
organized as a standard tracking problem.

Problem 4.2-1. Show that the index (4.2-5), may be written in the form
of (4.2-29), where u * is given from (4.2-24) and (4.2-25) and V* is given from
(4.2-26). [Hint: Show that (u –u*)’Z?(U –u*)=u’Ru +(.K –,i)’Q(x –i)+
d/dt [X’PX + 2x’b + c].]

Problem 4.2-2. Derive the tracking problem results directly, using the
Hamilton–Jacobi theory of Chapter 2 (i.e., without using the regulator theory
results). [Hint: Try a solution to the Hamilton–Jacobi equation of the form
x ‘Px + 2x ‘b + c.] For those who have studied the Minimum Principle, see Appen-
dix C, a further problem is to derive the results that way [Hint: Set p(t)=
P(t)x (t) + b(t).]

Problem 4.2-3. Consider the servo problem of the section. Derive a solution
using the coordinate basis

‘=[x-:c’’l=F;il

instead of that of (4.2-6). This means that we expect a control law given directly as
* = K‘ (x – i) + Z@ for some K‘, Kj, which is attractive from the implementation

~iewpoint. Use the following definition in formulating replacements for (4.2-7):

d(LC’)
M= FLC’+LC’A +7

[Hint: Find a state-variable equation linking i and u, and express the integrand in
the performance index (4.2-5) in the form u ‘Ru + i?’Q~ for some Q. Then follow
the derivation of the text, with obvious changes.]

Problem 4.2-4. (Error form of the optimal tracker). It is sometimes con-
venient to describe the solution of the optimal tracker in terms of a feedback signal
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depending on x – i and a feed-forward signal depending on i. When d.ildt is
available, it turns out that this is possible. Prove that, for the usual optimal tracker
problem with no terminal weighting,

with

b(T)=O

and

v* = [X(LJ)–i(to)]’P(to)[x (to) –i(fO)] + 2[x(to) –i(to)]’F (to) + ~(to)

[Hint: Show that ~ = b + G ‘Pi, and use the equation for b. Proceed similarly for ~,
or proceed from the servo solution as given in Problem 4.2-3 along the lines of the
text derivation of the tracking results.]

Problem 4.2-5. Describe how the tracking problem results will yield solu-
tions to the model-following problems as stated in the section, for the case when the
command signal r is known a priori and construction of a state estimator for the
command signal generator is out of the question. Assume known the initial state of
the model.

Problem 4.2-6. (i) For the linear quadratic regulation task (4.2-31),
(4.2-32), where known disturbances r E [to, T] are present, solve for the optimal
control. Use either the Hamilton–Jacobi or Minimum Principle method and show
that

u *=–R-@1(Pi+6)

where

–fi=Pfi+~’~ -PGR-’G’P+Q

–~ = [~– GR-lG’f’]’6 –~?r

Notice the similarity to the optimal tracking solution.

(ii) Using the definitions (4.2-30) for ~, G, etc. which apply for the optimal model-
following (tracking) problem, show that the optimal control for this case is

u * = –R-lG’(PX + pl~zl + bl)
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where P, Pu, bl come from the partitioning

@=[:,236=[71
–~1 = (F– GR-lG’P)’bl– PB1r

Remark: The techniques of this problem can be used to give optimal
tracking results in the presence of known disturbances.

4.3 INFINITE-TIME RESULTS

In this section, we restrict attention to plants and performance indices with time-
invariant parameters, and we extend the finite-time results of the previous section
to the infinite-time case. This is done as earlier for the regulator, by letting the
terminal time T become infinite. As one might expect, the state (or state estimate)
feedback part of the controller becomes time-invariant.

Crucial issues to be considered include signal and performance index
boundedness and steady state tracking error. We shall begin our treatment with the
tracking problem.

Infinite-time tracking problem. Let us return to the statement
of the optimal tracking problem in the last section, but with the obvious changes.
We are given

.i=Fx+Gu (4.3-1)

~ =H’x (4.3-2)

with H of rank m. We are given an m-vector function j(t) for t E (to, w). We
suppose that [F, G] is stabilizable, and we seek the optimal control u * minimizing

lim V(x(to), u(.), T) = hm
J

;+X ,~[u’Ru +(X -.i)’Q(x -.i)]dr (4.3-3)
T+.

Here

~=L~ (4.3-4)

for some matrix L, usually given by

L = H(H’~-l (4.3-5)

and Q is usually of the form

Q = [Z -LH’]’Q1[Z -LH’] +HQ2H’ (4.3-6)

for nonnegative QI and Q2. We suppose that [F, D] is detectable, where DD’ = Q.
One way to proceed is to write down the finite time problem solution and then

let T ~ ~. Obviously, by virtue of stabilizability P (t, T) ~ ~. Importantly also, we
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shall show that b (t) for all finite tapproaches a finite quantity 6(t). From (4.2-24)
and the fact that K = – PGR’1 in the limiting case, we obtain, as T ~ ~

.
G(t) = –~ exp[(F + GK’)’(7– t)]Qi(7)d~ (4.3-7)

1

Note that differentiation of (4.3-7) yields

~= –(F+GK’)’~ +Qi (4.3-8)

Because (F + GK’)’ has all eigenvalues with negative real parts, under the stabili-
zability and detestability assumptions, it is easy to establish that bounded i(“)
implies bounded b(.): to see this, suppose that

Ilexp(f ’+GK’)tll =aexp(-~t) a,13>0

and

llQ~(s)ll = Y

Then

I16(C)[I=CXYJ”exp[-p(s - t)]ds =?
[

Even though P, b remain well defined as T ~ ~, in general c (t) does not. Recall that

When T- CC,c(t) is defined by an integration over the interval (t, ~) of a quantity
which in general is not zero. This means that the limiting “optimal” performance
index is infinite, and so the label of the control u = K’x – R ‘lG’~ as optimal is in
part a misnomer. It should be noted that the infinite index is unavoidable; apart
from some special cases, which are considered later, it is impossible to secure simul-
taneously u ~ O and x – i ~ O as T+ cc [which would be necessary for a finite
index; see (4.3-3)].

A step-function tracking example. By way of example, con-
sider a single-input, single-output plant

k= Fx+gu, ~=h’x

with j a unit step function. Suppose further that Q1 = O, Q2 = 1, R = p, and the
regulation feedback law is u = k ‘x where k‘ = –p-lg ‘~. Now Q = hh’, Q.i = hj =
h, and so (4.3-8) yields

~(t) = [(F +gk’)’]-’h

for all t.Thus the optimal control is

u = –p-lg’~x – p-lh’(F +gk’)-lg
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With this control, the plant becomes

i = (F +gk’)x –gp-’h’(F +gk’)-lg

and the limiting state becomes

x(m) = (F +gk’)-’gp-’(F(F +gk’)-’g

The limiting output is

y(=) = p-l[h ‘(F + gk’)-lg]z

and the steady state control is

u(m) = p-l[k’(F +gk’)-lg – 1]/Z’(F +gk’)-lg

Of course, the “optimal” performance index is in general infinite.

Approximately optimal trackers. Returning to the general
tracking task, various approximately optimal trackers can be constructed. The for-
mula (4. 3-7) for ~(t) shows that ~(t) in e~~ectdepends on i (s) only fors ~ [t, t+ Al,
where A is five times the dominant time constant associated with the eigenvalues of
F + GK’. So one only really need look a finite time in the future, and use

~(t) = –~’+Aexp[(F+ GK’)’(7–t)]Qi(7)dT (4.3-9)
1

or define ~ (t) as the solution at time t of

db(T, t+ A)=_(F+ GKt)~b(T, t+ A)+ Qi(T)

dT
b(t + A, t+ A) = O (4.3-10)

If i (.) is slowly varying, then one can use the approximation

6(t)= [(F+ GK’)’]-l.i(t) (4.3-11)

obtained by setting ~ = Oand solving the differential equation for b. Note that this
becomes an exact solution of (4.3-7) or (4.3-8) if .x?(t)is constant.

Example with integrator as plant. To understand better the
error involved, and from this understanding to deduce another approximation
again, consider the simple scalar example

~=~ y=x

with
.

V(X(()), U(”)) = j [(JJ ‘j)*+ T2U2]dt
o

and
ji =() O=t <t,

=a(t–tl) t1St<t2

=a(tz–tl) t2<t<w
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Solving the tracking problem leads to P = T,

Setting ~ = Oleads to a suboptimal control u = –T-lX + T-lj.

Integrating the differential equation for ~(.) leads to a more complex control.
The resulting tracking performance is depicted in Figure 4.3-1. Notice the antici-
pating characteristic of the optimal response due to prior knowledge of j. The
optimal and suboptimal feedforward controls are depicted in Figure 4,3-2. Again
notice the anticipation in the optimal command signal. The case x (0) = Ois depicted
throughout.

These characteristics suggest a further approximation, viz. to set

~(t) = ‘Tj(t + T) (4.3-12)

and achieve a refined suboptimal control

~ = –T-’x + T“’j(t+ T) (4.3-13)

(The effect in Figures 4.3-1 and 4.3-2 would be of course to shift the suboptimal y
and suboptimal feedforward commands left by T units. ) There is a good justification
for this. The transfer function linking j to ~ is (jw – T-l)-I, which has a phase of
q = tan-l (OJT). The group delay is -dqJd@ = –T(W2T2 + 1)-’ so that for low fre-
quency signals, the mapping from j to 6 advances the signals by T(CD2T2 + 1)-1 = T.

The gain of the transfer function for small cois –T. Hence we get, approximately,
~(t) = ‘Tj(t + T).

I i—
Suboptimal y — — -_ .---->.

Optimal y ----

I I b

t, t2 t

Figure4.3-1 Tracking performance of two control laws
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Suboptimal command —— ~. -..= ———
Optimal command ----- ,“”” /

/
‘“” /

‘“ /
+:;e
,/’

/
.“ //,/’

t, t

Figure4.3-2 Optimal and suboptimal feedforward controls.

Equation (4.3-8) can be handled in the same way if F + GK’ has real eigen-
values and is diagonalizable, by changing the coordinate basis so that (F + GK’) is
diagonal. Then the new (4.3-8) is a collection of uncoupled first-order equations of
the type

and the approximate solution, valid for low frequency pi(t), is

Pi(t) = ‘AI’l.k(t+ A,’) (4,3-14)

When (F + GK’) has complex eigenvalues, such simplification is not always
possible. We sum up these ideas as follows:

Solution to injinite-time tracking problem. With time-invariant F, G, H, Q,
R, and L and with detectability and stabilizability assumptions holding, the
optimal control for (4.3-1) and (4.3-3) becomes u = K ‘x + ~ where K =
– FGR’*, F being the nonnegative definite and stabilizing solution of the
steady-state Riccati equation, and 6 being given by (4.3-7). If j (.) is bounded,
so are ~(.), u(“), and x(.). Approximations to ~ are available—the finite
horizon4approximation (4.3-9) of (4,3-7), the evaluation (4.3-11), obtained by
setting b = O in the defining differential equation, and, in case (F + GK’) has
all real eigenvalues and is diagonalizable, the gain-and-advance approxima-
tion exemplified by (4.3-12). The last two approximations rely on the refer-
ence trajectory’s being slowly varying.

Infinite-time servo problem. In the last section, we derived the
tracking results from the servo results. Here, we shall use the reverse procedure. We
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simply observe that a servo problem is a tracking problem where j is generated
according to

~=Az (4.3-15)

Jl=c’z (4.3-16)

Let us distinguish these cases.

1. Re k, (A) <0 for all i. Then j(t) and i (t) decay to zero exponentially fast. As a
result, so does ~ (t),as defined by (4.3-7). (Problem 4.3-1 requests checking of
this fact. ) It follows that with the feed-forward part of the optimal control
decaying to zero exponentially fast, so also does x (t), and the optimal index is
finite.

2. Re k, (A)s O with Re h,(A) = O for some i, and A has no repeated pure
imaginary eigenvalues. It follows that j is bounded, but does not decay, in
general, to zero. This is akin to the usual tracking situation.

3. Re ki(A)> Ofor some i or A has repeated pure imaginary eigenvalues. Obvi-
ously, j is unbounded. The quantity ~ (t) defined in (4.3-7) may not even exist.
However, under the constraint

Rehi(F+ GK’)+Re A,(A)<O Vi and j (4.3-17)

the integrand (for fixed t) in (4.3-7) is guaranteed exponentially decaying and
~(t) exists, but will not be bounded. Accordingly u(t) is unbounded. [Since
the feedback control stabilizes the plant and the output of the plant is desired
to follow an unstable trajectory, it is not surprising that the “optimal” (feed-
forward part of) u is unbounded.]

Actually, there is a further possibility, to which we now turn.

Internal models and zero-error servo behavior. We
now examine the possibility of obtaining zero asymptotic error and finite value of
the performance index using infinite-time servo results. Assuming that Q and L
have the typical specialized structure, it is clear that to achieve our objective, we
must have y – j ~ O and also u -+ O. If now j is derived as in a typical servo
problem, it consists of a linear combination of exponential. The ones of interest are
those which do not decay to zero as t+ CO.If y – j ~ O, then y must equally contain
these exponential. And if y contains these exponential while u a O, then they
must be modes of the open-loop plant. This means that there should be a coordinate
basis for z and x such that

(4.3-18)

where Re Ai(Al) >0 for all i, Re Ai(A2)<O. But also, in order to secure y – j a O
when u + O, we must have the possibility of matching zero-input responses at the
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output of the plant. This means that the coordinate basis must also ensure that for
some a # O

c’ = [cl Cj] H ‘ = [cYC] Hj] (4.3-19)

Then given zl(t~), there exists a, xl(t~) for which the zero-input responses match as

C; exp [A,(t – to)]zl(t,) = aC~ exp [A,(t – t~)]x,(to)

In summary, we have given an argument for the

Internal Model Principle. Consider a servo problem in which Re A,(A) 20.
In order that there hold y – j ~ Oand u -+ Ofor all servo initial conditions, it
is necessary that there be a coordinate basis for the servo and plant state so
that (4.3-18) and (4.3-19) hold.

The reason for the name is obvious: the plant must internally model the non-
asymptotically stable part of the servo model. More general statements of this prin-
ciple can be made by allowing relaxation of the requirement that u ~ Oand allowing
dynamic feedback controllers. Then the internal model must be in the plant-
controller open loop. This motivates the study of proportional plus integral feed-
back for tracking constant inputs in Chapter 9 on frequency shaped designs. See
also Problem 4.3-5.

We shall now show that under the assumptions in the above internal model
principle, the servo problem with

V(x(to), u(.)) = ~“[u’Ru + (y –j)’Q,(y –j)]dt (4.3-20)
to

is readily reducible to a regulator problem, and as a consequence yields u a O,
y – j ~ Oand V* finite. First, the two system equations

‘3”‘=h”l(4.3-21)

and this has a stabilizability property if [F, G] is stabilizable. Denote the new state
variable in (4.3-21) by w. Observe that the performance index (4.3-20) is then
quadratic in u and w. If detectability holds for the regulator problem obtained with
j = O in (4.3-20), it holds for the new situation involving state w. Hence, under
optimality, u + O, w -O, and V* is finite, as we claimed.
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Example. In the first example in this section, we considered a tracking
problem for a scalar plant with j a unit step function. Let us return to that example,
postulating now that the F matrix is singular. Thus the plant can reproduce at its
output with zero excitation a signal y that would cancel j, a unit step function.

Because the plant transfer function has a pole at the origin and because all
signals are bounded, it ought to turn out that u (CC)= O. Let us check that this is so.
Observe that

l-/c’(F +gk’)-’ g=det[k -( F(+gkg)’*g]g]

=det [1 - (F+gk’)-*gk’]

=det [[F+ gk’]-’ [F+gk’ –gk’]]

det F
= det [F+ gk’]

Hence 1 – k‘ (F + gk’ ) - lg = O. The formula for the steady state control then shows
that u(~) = O. It should also turn out that y(~) = 1. Let us verify that this is so, The
Riccati equation yields

PF+F’~– ~gp’lg’~+hh’=O

or

~(F+gk’) +(F’+kg’)~ +kpk’+hh’ =0

Premultiply by p-lg’ (F’ + kg ‘)-1 and postmultiply by (F + gk’) ‘lg. There results,
since k’ = –p”lg’P,

–2k’(F+gk’)-’g + [k’(F+gk’)-1g]2+ p-*[h’(F +gk’)-’g]2=0

Recalling that k‘ (F + gk ‘)- lg = 1;there follows

y(~) = p-l[h’(F +g/1’)-1g]2= 1

Of course, we could have setup this problem ab initio as a servo problem, and
converted it to a regulator problem, and obtained these results in a far more trans-
parent way.

Model-following: Step commands. Sometimes for a two-
degrees-of-freedom time-invariant controller design, a natural framework to adopt
is that of an infinite-time model-following task where the plant is forced to track the
step response to a specified model; that is, the external reference input r is a unit
step. It may be, for instance, that a flexible wing aircraft (the plant) is required to
perform (after connection of feed-forward and feedback control) in the same man-
ner as a rigid body aircraft (the reference model). Then we build on the finite-time
model-following results of the previous section to achieve time-invariant controller
designs.
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In the notation of the finite-time, model-following problem, let us work with
an augmented plant consisting of the original plant with input u, state x, output y
and the model with input r, state Z1,and output j. Thus consider

The plant control u is to be selected so that the original plant output y tracks the
model plant output j in the presence of the known step function external input r.
The model is assumed to be asymptotically stable.

The quadratic i~dex ~hould~ena~ize a term u ‘Ru and a term ( y – j)’ Q ( y –Aj),
orAequi~alent[y, -i ‘(H1 – HJQ (HI – HJ’~ for some R >0, Q >0. Thus with Q =
(H, - HJQ (H1 - HJ’, consider the optimization of

.
V=~ [u’Ru+~’Qi]dt (4.3-24)

10

over u(. ) subject to

~=i%+du+tr (4.3-22)

with r a known constant.
We take the limiting solution of the finite-time results explored in Problem

4.2-6 as

u *=–R-l~’(~i+~)

and ~ is the limiting solution of

–b=[8 –GR-lG’P]’h –~~r ~(m)=o

namely, since r is constant,

Now with ~, $ partitioned as

further manipulations show that P satisfies the usual steady state Riccati equation
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for the original plant, and P12is the solution of a linear matrix equation; the stability-.
of A and of F – CR ‘lG ‘P guarantees existence of P12.Also,

u * = –R-lG’(Px + PIZZ,+ ~1)

with

bl = (F’ – PGR-’G’)-lPBlr

Thus the optimal control law has the simple form

u *= K’x+K~2zl +K~r=Krx+uf

K! = –R-lG!P, K;z = –R-~G’P1z

K{ = –R-lG’(F’ – PGR-~G’)-~PB,

The feed-forward controller to the original plant generating
incorporating the model is

21= AIzl + B1r

u~ = K(zzl + Kir

We stress that such a feed-forward controller does not

(4.3-25)

uf, driven by r, and

(4.3-26)

include anticipatory
characteristics for variable reference signals r, being optimal only for r = constant.
Any adjustment to the feed-forward controller to give improved transient response
will usually involve some lead-lag network to replace the constant gain K1. Such
design adjustments involve classical rather than optimal techniques, and will not be
discussed further here.

It is known from classical design theory that improved step performance
response can be achieved by using proportional plus integral feedback, rather than
just proportional feedback as here. Then zero steady state error can be achieved by

Model

r

5

\ /

Time - invariant, dynamic
feedforward controller

Figure4.3-3 Optimal model-following.
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virtue of the internal model (integrator) in the feedback loop. This aspect is devel-
oped in Chapter 9 on frequency shaping. See also one approach in Problem 4.3-5.

Main points of the section. With time-invariant parameters, and
assumption of detectability and stabilizability, the infinite-time optimal tracking
problem (regarded as the limit of a finite-time problem) has a solution that yields
bounded u(.) and y(“) when j(“) is bounded, but generally yields an infinite per-
formance index. Several approximations to the feed-forward control are available,
all of which involve limiting the look-ahead requirement. Servo problems are con-
veniently divided into those with asymptotically stable, neutrally stable, and unsta-
ble servo model: the latter may have no solution. When the plant itse!f contains a
copy of the nonasymptotically stable part of the servo model, asymptotically zero
tracking error is secured, with a finite optimal performance index.

Problem 4.3-1. Suppose that i(t) decays to zero exponentially fast and
F + GK’ has all eigenvalues with negative real parts. Let

~(~) = –~m exp[(F + GK’)’(T – f)] Qi(T)dT
t

Show that 116(t) IIdecays to zero exponentially fast.

Problem 4.3-2. Suppose we are given a time-invariant completely sta-
bilizable and detectable plant ,i = Fx + Gu, y = H ‘x and a servo problem in which
2 = Az, j = C’z and Re k,(A) <0 for all i. Suppose that the performance index is

f,~[u’Ru + (y -j)’Q(Y -j)]~f with R, Q positive definite to achieve model-
following with the plant output y tracking the model output j. Show that this
model-following (servo) problem can be solved as a regulator problem.

Problem 4.3-3. Consider a servo problem in which Re k, (A) < a for all zand
some positive U, while Re h,(A) >0 for some i. Show how a performance index can
be chosen which will ensure that the optimal control is finite at all times.

Problem 4.3-4. In this section, a number of optimization problems have
been identified where the optimal index becomes infinite. Suppose the performance
index is varied to

[JIim ~ ‘[u’Ru +(x -,i?)’Q(x -.i)]dt
T-x to

For the servo problem with j a step function, show that this index remains bounded.

problem 4.3-5. Suppose a plant does not have a pole at the origin, and it is
desired that the plant output should follow a unit step j with zero steady state error.
The classical approach is to use a controller incorporating an integrator. One
approach to achieving this is to first augment the plant at its input with an integra-
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tor. Consider the following servo/tracking problem, which generalizes this approach
to the multivariable case. The system is

[:1=[::Itl+[:l’‘=H’X
with {F, G, H} controllable and observable. (Here, ti is a new external input, driving
an integrator connected in each line at the input of the plant. ) The index is

1
;+= ,:[ti’Rti+(y -j)’Q(y -j)] (itV(.x(rt,), u(rO), ti(. )) = hm

with Q positive definite and j is a constant m -vector. Assume that H ‘F”lG is m x m
square and nonsingular. Show that a regulator problem is obtained which leads to
y – j ~ O. Show that the control for the plant is defined by an equation of the form
ti = Llu + Lzx + Lj. [Hint: Let W = (H ‘F-*G)-l and examine the state vector

[

~ = x –F-’GW~

U+wy 1

4.4 A PRACTICAL DESIGN EXAMPLE

Before concluding Part 1, on the basic theory of the optimal regulator, and before
moving on to the next part, which explores properties of the optimal controllers, we
will study an actual engineering design using much of the theory so far.

An underlying assumption of Part I is that the states of the plants are meas-
urable in a noise-free environment. Of course, if a satisfactory engineering design in
terms of performance and robustness cannot be achieved with a full-state design,
then there is no point in proceeding to incorporate state estimation, or working with
any output feedback controller employing less than full-state information. Clearly,
the actuators are inadequate and must be upgraded or the plant modified to be
“more controllable. ”

The application we study here is drawn from [5] and [6]. The example illus-
trates the design of a controller for the lateral motion of a B-26 aircraft. The main
idea is to provide control to cause the actual aircraft to perform similarly to a model;
the way this qualitative notion is translated into quantitative terms will soon become
clear. A servo approach will be used.

The general equations governing the aircraft motion are the linear set

01 0 0-
0 L, Lp L,

11 0 yp
v

–1

N@
v

Np Np + NPYP N, – N~
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In these equations, @denotes the bank angle, ~ the sideslip angle, r the yaw rate, 8,,
the rudder deflection, and & the aileron deflection. Of course, we identify x with
[+ ~ (3 r]’, and so forth. The quantities L,, and so forth, are fixed parameters
associated with the aircraft. For the B-26, numerical values for the F and G matrices
become

[

o 1 0 0
0 -2.93 –4.75 –0.78

F = 0.086 0 –0.11 –1.0
o –0.042 2.59 –0.39 1

[1

o 1

G = :035 ‘; ’91

–2;53 31

However, the dynamics represented by this arrangement are unsatisfactory. In
particular, the zero-input responses are preferred to be like those of the model

[

o 1 0 0
j=Az A=O –1 –73.14 3.18

0,086 0 –0.11 –1
0.0086 0.086 8.95 –0.49 1

This model is derived by varying those parameters in the F matrix corresponding to
aircraft parameters which could be physically varied. For this reason, the first and
third rows of A are the same as the first and third row of F. The eigenvalues of A are

–1.065, +0.00275, –0.288 ? j2.94

Although one is unstable, the associated time constant is so large that the effect of
this unstable mode can be cancelled by appropriate use of an external nonzero
input.

To achieve actual performance resembling that of the model, we pose the
quantitative problem of minimizing

I
“[u’u + (x -z)’Q(x -z)] (it

o

Thus, we are considering a servo problem that differs from the standard one only by
the specializations H = C = L =1.

As we know, the optimal control becomes of the form

u =K’x -+K;z
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where K and K1 are determined by the methods given previously. In practice, the
control

u =K’x +K:z +U,X,

would be used, where u.X, denotes an externally imposed control. Likewise, in
practice, the model equation 2 = Az would be replaced by

At this stage, we are faced with the problem of selecting the matrix Q in the
performance index. From inspection of the performance index, it is immediately
clear that the larger Q is, the better will be the following of the model by the plant.
This is also suggested by the fact that large Q leads to some poles of the closed-loop
system

i=(F+GK’)x

being well in the left half-plane—that is, leads to the plant with feedback around it
tending ‘to respond fast to that component of the input, K~z, which arises from the
model.

On the other hand, we recall that the larger Q is taken, the larger are likely to
be entries of K, and, for the aircraft considered, it is necessary to restrict the
magnitude of the entries of K to be less than those of

[1
55

&aX = ~.5 2
20

51

To begin with, a Q matrix of the form PI can be tried. Either trial and error, or
an approximate expression for the characteristic polynomial of F + GK’ obtained
in [6], suggests that Q = 51 is appropriate. This leads to eigenvalues of F + GK’
which have the values

–0.99, –1.3, –5.13, –9.14

Larger Q leads to more negative values for the last two eigenvalues, whereas the
first two do not vary a great deal as Q is increased. Comparison with the model
eigenvalues suggests the possibility of further improvement, in view of the fact that
the ratio of the nondominant eigenvalue of F + GK’ nearest to the origin to the
eigenvalue of the model most remote from the origin is about 5. On the other hand,
the gain matrix K associated with Q = 51 is

H
–2.53 –2.21
–0.185 –1.83

1.58 0.7
–2.34 –0.01
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and at least one of the entries (the 2–2 one) is near its maximum permissible value in
magnitude.

This suggests that some of the diagonal entries of Q should be varied. To
discover which, one can use two techniques

1.

2.

This

One can plot root loci for the eigenvalues of F + GK’, obtained by varying
one qil. Variations causing most movement of the eigenvalues leftward and
simultaneously retaining the constraints on K can be determined.

One can examine the error between the model state z(t) and the plant state
x(t) obtained for several initial conditions, z(0) = x(0) = [1 O 0 O]’,
[0 1 0 O]’, [0 O 1 O]’ and [0 O 0 1]’, for example, using the de-
sign resulting from Q = 51. One can then adjust those diagonal entries of Q
which weight those components of (z – x) most in error.

Case 2 leads to the greatest errors being observed in (zz – XJ and (z4 – xi).
suggests adjustment of q22 and/or q%, and this is confirmed from Case 1.

Howeve-r~ adjustment of q2*causes the 2–2 entry of K to exceed its maximum value.
On the other hand, adjustment of qti, from 5 to 20, proves satisfactory. The new
eigenvalues of F + GK’ become

–0.908, –0.66, –9.09, –11.2

and the gain matrix K is

!1
–0.201 –2.23
–0.185 –1.83

1.42 0.164
–4.42 –0.264

For completeness, we state the feed-forward gain
the model states. For Q = diag [5, 5, 5, 20], this is

matrix KI associated with

[1
0.101 2,045

K, = 0.344 2.172
–2.153 –1.54

5.61 2.42

Although the model is unstable, the sum of any eigenvalue bf the model
matrix A and the matrix F + GK’ is negative, which as we know guarantees the
existence of K1.

Main points of the section. At this stage in the text, we have
powerful tools available for practical controller design. These must not be used
naively, but with insights from classical control design. The rather ad hoc method of
performance index selection and the necessity to have all states measurable, mo-
tivates the next parts of the text, which deal with state estimation, and systematic
design methods using the tools of Part I.
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Problem 4.4-1. (Requires computer solution). Confirm the results of this
section, using standard software packages.
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Part II. Properties and Application of the Optimal Regulator

Properties
of Regulator Systems
with a Classical
Control Interpretation

5.1 THE REGULATOR FROM AN ENGINEERING
VIEWPOINT

We have earlier intimated a desire to point out what might be termed the “engineer-
ing significance” of the regulator. Until now, we have exposed a mathematical
theory for obtaining feedback laws for linear systems. These feedback laws mini-
mize performance indices that reflect the costs of control and of having a nonzero
state. In this sense, they may have engineering significance. Furthermore, we have
indicated in some detail for time-invariant systems a technique whereby the closed-
loop system will be asymptotically stable, and will even possess a prescribed degree
of stability. This, too, has obvious engineering significance.

Again, there is engineering significance in the fact that, in distinction to most
classical design procedures, the techniques are applicable to multiple-input systems,
and to time-varying systems. (We have tended to avoid discussion of the latter
because of the additional complexity required in, for example, assumptions guaran-
teeing stability of the closed-loop system. However, virtually all the results
presented hitherto and those to follow are applicable in some way to this class of
system. )

But there still remains a number of unanswered questions concerning the
engineering significance of the results. For example, we might well wonder to what
extent it is reasonable to think in terms of state feedback when the states cf a system
are not directly measurable. All the preceding, and most of the following, theory is

101
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built upon the assumption that the system states are available; quite clearly, if this
theory is to be justified, we shall have to indicate some technique for dealing with a
situation where no direct measurement is possible. We shall discuss such techniques
in a subsequent chapter. Meanwhile, we shall continue with the assumption that the
system states are available.

In classical control, the notions of gain margin and phase margin play an
important role giving quantitative measures of robustness to uncertainties or
changes at the plant input. Thus, engineering system specifications will often place
lower bounds on these quantities, since it has been found, essentially empirically,
that if these quantities are too small, actual system performance, as distinct from
nominal system performance, will be degraded in some way. For example, if for a
system with a small amount of time delay a controller is designed neglecting the
time delay, and if the phase margin of the closed loop is small, there may well be
oscillations in the actual closed loop. The natural question now arises as to what
may be said about the gain margin and phase margin (if these quantities can, in fact,
be defined) of an optimal regulator.

Of course, at first glance, there can be no parallel between the dynamic
feedback of the output of a system, as occurs in classical control, and the memory-
less feedback of states, as in the optimal regulator. But both schemes have associ-
ated with them a closed loop. Figure 5.1-1 shows the classical feedback arrangement
for a system with transfer function h‘ (s1 – F)-’g, where the output is fed back
through a dynamic controller with transfer function ~(s). Figure 5.1-2 shows a

Y

l—F+—Jcfrivenbysystern.

Figure5.1-1 Classical feedback
arrangement with dynamic controller

x
ir=Fx+gu * h’ +

+

-tIP
Figure5.1-2 Modern feedback arrangement with memoryless controller driven by
system states.
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system with transfer function k‘ (sZ – F)- lg but with memoryless state-variable
feedback. Here a closed loop is formed; however, it does not include the output of
the open-loop system, merely the states. This closed loop is shown in Fig. 5.1-3.

Now it is clear how to give interpretations of the classical variety to the
optimal feedback system. The optimal feedback system is like a classical situa-
tion where unit y negative feedback is applied around a (single-input, single-
output) system with transfer function – k ‘(sZ – F)- *g. Thus, the gain margin of the
optimal regulator may be determined from a Nyquist, or some other, plot of
W(jco) = –k’(jwl – F)-’g in the usual manner.

We may recall the attention given in classical control design procedures to the
question of obtaining satisfactory transient response. Thus, to obtain for a second-
order system a fast response to a step input, without excessive overshoot, it is
suggested that the poles of the closed-loop system should have a damping ratio of
about 0.7. For a higher-order system, the same sort of response can be achieved if
two dominant poles of 0.7 damping ratio are used. We shall discuss how such effects
can also be achieved by using an optimal regulator; the key idea revolves around
appropriate selection of the weighting matrices (Q and R) appearing in the
performance index definition.

A common design procedure for systems containing a nonlinearity is to
replace the nonlinearity by an equivalent linear element, and to design and analyze
with this replacement. One then needs to know to what extent the true system
performance will vary from the approximating system performance. As will be
seen, a number of results involving the regulator can be obtained, giving
comparative information of the sort wanted.

We return to the question of control loop robustness; it is important to dis-
cover how well an optimal regulator will perform with variations in the parameters
of the forward part of the closed-loop system. One of the common aims of classical
control (and particularly that specialization of classical control, feedback amplifier
design) is to insert feedback so that the input-output performance of the closed-loop
system becomes less sensitive to variations in the forward part of the system. In
other words, one seeks to desensitize the performance to certain parameter
variations.

The quantitative discussion of many of the ideas just touched upon depends on

➤ ���� ���� ✿✿✿✿ ✿✿✿ ✿✿✿✿ ✿✿✿
1

I
/

- k’ *
I

+ L––––––_____ –––––––____;

Figure5.1-3 The closed-loop part of a feedback system using modern feedback
arrangement.
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the application of one of several basic formulas, which are derived in the next
section. Then we pass on to the real meat of the regulator ideas in this and the next
chapter.

5.2 RETURN DIFFERENCE EQUALITY AND
RELATED FORMULAS

To fix ideas for the remainder of this chapter, we shall restrict attention to closed-
loop systems that are completely stabilizable, time-invariant, and asymptotically
stable. Thus, we shall take as our fundamental open-loop system

.i=Fx+Gu (5.2-1)

with [F, G] completely stabilizable. As the performance index, we take

J

m
V(X(lO),u(.), tO)= (u ‘Ru + x’Qx)dt (5.2-2)

to

with the usual constraints on Q and R, including that [F, D] be completely detec-
table for any D such that DD’ = Q. Let K be the optimal control law. Then we have:

Return difference equality and consequences. The
following identity holds:

R + G’(–jwl – F’)-’Q(jcol – F)-lG

= [1 - G’(-jwl - F’)-’K]R[l - K’(jcol - F)-’G] (5.2-3)

and the following are consequences of this identity:

[1+ G’(-jcoZ -F’ - KG’) -lK]R[l + K’(jcol - F - GK’)-’G]

= R – G’(–jcol – F’ – KG’) -lQ(jwZ – F – GK’)-lG (5.2-4)

[1 - G’(-jo.d - F’)-’K]R[l - K’(jcol - F)-’G] >R (5.2-5)

[1+ G’(-jcDl -F’ - KG’)”lK]RII + K’(j(.oI - F - GK’)-lG] SR (5.2-6)

The name “return difference equality” is given to (5.2-3), since the quantity
Z – K‘ (jwl – F)-lG, at least in the scalar case, has long been known as the return
difference, when the plant and controller combination is organized as shown in
Fig. 5.1-3.

We shall prove (5.2-3). The steady state Riccati equation yields

or

~(jwl – F) + (–jwl – F’)~ + KRK’ = Q
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Multiply on the left by G ‘(–jwZ – F“)-’ and on the right by (jcol – ~-lG. Use the
fact that PC = – KR. There results

G’(–jo.d – F’)-’KR + RK’(jcol – F)-lG + G’(–joZ – F’)-’KRK’(jwl – F)-’G

= G’(–jcd –F’’)-lQ(jd –F)-’G

from which (5.2-3) follows easily.
The proof of (5.2-4) is dealt with in Problem 5.2-1. The inequalities (5.2-5)

and (5.2-6) are simply consequences of (5 .2-3) and (5.2-4), once it is recognized that
A *QA ? Owhen Q z Oand A is arbitrary.

Equation (5.2-3) is also a form of spectral factorization. Spectral factorization
is concerned with the following problem. Given a matrix Q(jo) which is positive
definite hermitian on the j~-axis, find a transfer function matrix IV( jo) with

@(jw) = W’(–jw) W(jw) (5.2-7)

for all w. Often, W( jw) and/or W ‘I( jw) may be restricted to being stable. In fact,
the factorization (5.2-7) is unique to within left multiplication of W (jw) by an
orthogonal matrix if both W(jw) and W-l(jw) are stable. In our case, we have

@(jw) = R + G’(-jwl - F“)-lQ(jtil - F)-lG (5.2-8)

which is certainly positive definite hermitian. Indeed, cD(j w)s R >0. Also, we have

W(jw) = R“*[l – K’(jwl – F)-iG] (5.2-9)

This is not necessarily stable. However,

W-’(jw) = [1 + K’(jwl – F – GK’)-1G]R””2 (5.2-10)

as may be checked—see Appendix B or Problem 5.2-l—and thus is stable.
In the single-input case, K‘ (jwl – F)- *G becomes a scalar transfer function.

Then (5.2-3) becomes (using lowercase letters to emphasize that certain quantities
are scalar or vector rather than, as normal, matrices):

r +g’(–jwl – F’)-~Q(jwl – F)-lg = rll – k’(jwl – ~-]glz (5.2-11)

and in case Q = hh’, there holds

i- + lh’(jwZ –F’-lg12=rll –k’(jwl –F)-lg12 (5.2-12)

The inequality (5.2-5) is simply

II-k’(jd -F)-lg12z 1 (5.2-1.3)

The return difference is thus lower bounded by 1 for all w. In case R =1, the
inequality (5.2-5) tells us that in the vector input case, the singular values of the
return difference are lower-bounded by 1. [Recall (see Appendix A) that the
singular values of a matrix A are the quantities [Ai(A *A)]l’2. When A *A a 1,
L,(A *A) a 1 for all i].
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Positive real and bounded real transfer function
matrices. Positive real and bounded real transfer function matrices are im-
portant in network theory [1], and stabilit y theory [2]. A real rational matrix Z (s) is
positive real if all poles lie in Re [s] s Oand

Z(s)+ z’(s”)=o

for alls in Re [.s]>0. A real rational S (s) is bounded real if all poles lie in Re [s]< O
and

I – S’(–jw),s(jco) =0

From (5.2-6), it is virtually immediate that

S(jco) = R1’2[1+ K’(jwI – F – GK’)-lG]R-l’2 (5.2-14)

is bounded real. It turns out that the following matrix is positive real:

z(s) = –RK’(SZ – F –jGK’)-’G (5.2-15)

(see Problem 5.2-2). Actually, it is a standard network theoretic result that if S is
bounded real, (1 – S)(1 + S)-’ is positive real. The Z (s) of (5 .2-15) is in fact given as
2(1 – S)(Z + S)-l. These properties will be exploited subsequently.

The closed-loop eigenvalues. The return difference equality
allows a characterization of the system closed-loop poles, that is, the eigenvalues of
F + GK’, in terms of F, G, Q, and R. The result is as follows:

Closed-loop characteristic polynomial characterization. The quantity, para-
metrized by F, G, Q, R,

CX(S)= det [R + G’( –s1 – F’)-’Q(sZ – F)-lG]det (sl – F)det (–s1 – F’)

(5.2-16)

is a polynomial that is even ins. It can be factored as

a(s) = p(s)p(–s) (5.2-17)

where ~(s) has all roots in Re [s] <O. Then ~(s) is (a scalar multiple of) the
closed-loop characteristic polynomial det [s1 – F – GK’].

Why is this so? Observe first that

det [1 – K’(.sZ – F)-*G] = det [1 – (s1 – F)-lGK’]

= det (s1 – F)-l det(sl – F – GK’)

_det(sl-F-GK’)—
det (s1 - F’)
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Taking determinants in (5.2-3) withs replacing jw and using the above definition of
a(s) yields

a(s) = det (–sl – F’ – KG’) det R det (s1 – F – GK’)

Obviously, ~(s) = (det R)’” det (s1 – F – GK ‘).

Scalar plants: the closed-loop eigenvalues and feed-
back gain. For scalar input plants, the result becomes especially simple.
Define PO(S)= det (s1 – F) and p,(s) = det (s1 – F – GK’). Then

po(-s)po(s)g’(-sl – F’)”’Q(sl – F)-’g = q(s) (5.2-18)

for some even polynomial q(“), nonnegative on the jo-axis, and (5.2-3) becomes

po(–s)po(s) + r-’q (s) = p, (–s)pC(s) (5.2-19)

Note also that for scalar plants, if one knows F, g, and p, (s), then from

P. (s)1 –k’(sZ– F)-’g =—
Po(s)

(5.2-20)

it is trivial to find k. So we have for scalar plants another way of determining k: first,
one obtains the closed-loop characteristic polynomial using (5 .2-19)—note again
that p.(s) has all roots in Re (s) < O—and hence one obtains k via (5.2-20). Actually,
this construction can be generalized to multiple-input plants, and we outline the
ideas for the interested reader.

Polynomial matrix fraction descriptions.t For some pur-
poses, it can be convenient to represent a real rational transfer function matl ix as a
fraction of two polynomial matrices, for example, W(s) = B (s)P ‘1(s), generalizing
the obvious scalar description. Notions of coprimeness can be defined. Also, if
[F, G] is completely controllable, one can find a PO(S)such that when H varies in
H‘ (sZ – F)- *G, the only variation in the associated fraction is in the numerator, that
is, there is a bijective mapping H e BH(s) so that

H’(sl – F)-*G = BH(s)P~*(s) (5.2-21)

Let Q = DD’. Then the return difference equality (5.2-3) states, with jco replaced
by S,

R + [P; ’(–s)]’B6(–s)B~ (s)P[’(s)

= {I - [P[l(-s)]’B~(-s)}R[l - B~(s)p~l(s)]

which is equivalent to

P{(–S)RPO(S) + Bj(–s)B~ (s)

(5.2-22)= [P~(-s) - B~(-s)]RIPo(s) - B~(s)]

+This subsection maybe omitted if desired
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Since F, G, Q, and R are part of the problem data, the left side of (5 .2-22) is known.
The right side is a polynomial matrix generalization of the right side of the scalar
identity (5.2-19). Also, PO(S)– B~ (s) 1 P.(s) has determinant which is det
(sZ - F – GK’), and so is stable. It turns out that stability of this polynomial, plus
the knowledge that B~ (S)P{l(S) is strictly proper, is enough to factor the left side of
(5.2-22) and determine B~(s) uniquely. Using the bijection behind (5.2-21), we find
that this gives K.

The zeros of the transfer function matrix K ‘(sZ – F,)‘lG will not be the same
as those of the state variable realization {F, G, K} if the latter is nonminimal. (The
distinction is made in the appendix). Let us observe that if [F, G] is stabilizable and
[F, D] is detectable, then [F’,K] is necessarily detectable, so all nonminimal modes
are stable, for the following reason. If K’w = O and (AZ– F)w = O, then
(M - F – GK ‘)WI= O, so that Re k <0, since F + GK’ is necessarily stable. Hence
the conclusion extends to zeros of the state-variable realization.

Minimum phase property of loop gain. The zeros of the
loop gain K ‘(sZ – F)-*G necessarily lie in Re [s]s O. To see this, consider first the
single-input case, and suppose (to secure a contradiction) there is a zero so with Re
[s.] >0. Now so must also be a zero of k ‘(sI - F – gk ‘)-’g, since zeros are un-
affected by state-variable feedback. It follows that the bounded real function
S(s) = 1 + k ‘(sZ – F – gk ‘)-]g obeys S(s.) = 1. Now S(s) is analytic in Re [s] z ()
and bounded in magnitude by 1 on the jo-axis. Therefore, by the maximum modu-
lar theorem of complex analysis, S(s)= 1 for alls, that is, k ‘(sI – F)-’g = O, which
is nonsense (unless Q = O). A variant on this argument can be developed for the
multivariable case, but of course the use of the maximum modulus theorem is
more involved. Notice that the zeros do not necessarily lie in Re [s] <O, but only
in Re [s] s O. However, if G’(jcoZ – F’)-lQ(jwl – F,)-LG >0 for all w, then
1 – S ‘(jti)S(jco) >0 for all w, and it is impossible to have S(jcoo)v = v for some O.
and v # O; so it is impossible to have K’(jtid – F – GK’)-l Gvo = O; that is, it is
impossible to have joo as a zero of K ‘(sZ – F)-lG. Another way of seeing the
minimum phase property is available for those who are familiar with the properties
of positive real transfer functions and matrices. Such objects necessarily have all
zeros in Re [s] s O. Now (5.2-15) is positive real and has the same zeros as
K‘ (sZ – F) ‘lG. Positive real functions can have jw-axis zeros; they are necessarily
simple. This fact naturally carries over to the zeros of the loop gain.

.
Main points of the section. The Return Difference Equality re-

lates the return difference 1 – K ‘(sZ – F’-lG to an expression formed from F, G,
Q, and R. Several related equalities or inequalities can be obtained. For single input
systems, one of these states that 11– k ‘(j w] – F’,-lg 121 for all w. The equality is a
form of spectral factorization and from it, the positive realness and bounded
realness of two different transfer function matrices can be established. It also yields

a polynomial spectral factorization formula, which yields the closed-loop
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characteristic polynomial, and for single-input plants, the gain vector k can be found
therefrom.

Problem 5.2-1. Establish the identity (5.2-4). [Hint: Establish first that

H’(jcol - F)-lG[l - K’(j(ol – F)-’G]-’

= H’(jcol – F – GK’)-*G

and that

[Z - K’(jwl - F)-’G]-’ = 1 + K’(jcol - F - GK~-’G]

Problem 5.2-2. In the notation of this section, show that

Z(S) = –RKf(.d – F –~GK’)-lG

is positive real. Hint: Show that the steady state Riccati equation can be written as

P(F+~GK’) +(F’++KG’)P=–Q

Rewrite this as

P(sI– F–*GK’) +(s*I– F’–~KGf)F=Q +2 Re[s]~

Premultiply and postmultiply by certain quantities to achieve Z(s) + Z ‘(s *) on the
left side and a nonnegative matrix on the right.

Problem 5.2-3. In the notation of this section, suppose that Q >0 and F has
no pure imaginary eigenvalues. For a single input system, show that for all finite w,
ll-k’(jaJ -F)-’gl>l.

Problem 5.2-4. Consider a collection of performance indices with the same
Q, R but indexed by a ? O:

/

m

V(x(t,), 24(”),CL)= eza’(u‘Ru + x ‘Qx) dt
fo

Let pa, K. denote the corresponding steady state Riccati equation solution and
optimal gain. Establish a return difference equality, involving F, G, Q, R, pa, and
K~(sl – F) ‘lG. Show that if G is a vector, there holds, whenever al< IXZ,

11- k~,(jol - F)’lgl <11- k:,(jtil - F)-lgl

for all finite o. [Hint: An intermediate result is F., < F.,.]

Problem 5.2-5. Consider the system i = Fx + Gu with performance index

!

m

V= (u’Ru+2x’Su +x’Qx)dt
(O
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Assume that an optimum exists and that the optimal control law u = K ‘x is sta-
bilizing. The steady state Riccati equation turns out to be

P(F– GR-lSI) + (F’ –SR-lG’)P –PGR-’G’F + (Q –SR-lS’) =0

with K = – (FG + S)R’1. Establish the return difference equality

R + G’(–sl – F’)-’S + S’(SZ – F)-*G + G’(–sZ – F’)-’Q(sZ – F)-’G

= [Z - G’(-sI - F’)-’K]R[Z - K’(sI - F)-’G]

Problem 5.2-6. The Hamiltonian matrix

[

~= F –GR-lGf

-Q -F’ 1
is used to develop properties of the matrix ~, or as a basis for computing ~. Show by
direct manipulation involving M that

det (sZ – M) = det (sZ – F) det (s1 + F’)

det [R + G’(–.sl – F’)-’Q(sl – F)-’G]det R-’

5.3 SOME CLASSICAL CONTROL IDEAS:
SENSITIVITY,
COMPLEMENTARY SENSITIVITY,
AND ROBUSTNESS

In the previous section, a classical control concept, the return difference, appeared.
In this section, we shall digress from the discussion of optimal systems to review
some classical control ideas. For the sake of generality, we shall discuss
multivariable systems. A good reference is [3].

We refer first to Fig. 5.3-1, assumed to depict a multivariable loop. The
quantities r, e, u, y, d, and n are respectively the external (reference) input, the
measured tracking error, the plant input, the plant output, the disturbance signal

d

+
r

c(s) L P(s) +

—

Figure5.3-1 Classical control loop including disturbance and noise
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(referred to the plant output), and measurement or sensor noise. The quantity r - y
is usually termed the tracking error. To distinguish it from the measured tracking
error e = r – ( y + n), we can term F = r – y the noise free tracking error.

The following equations are easily established:

y =PC(l + PC)-’(r –n)+ (1 +PC)-* d (5.3-1)

e=r–y–n =(l+PC)-l(r–d)– (I+PC)-in (5.3-2)

(5.3-3)u = C(1+ PC)-l(r –n –d)

We assume that the closed loop is stable. This means that there is no unstable
pole-zero cancellation in forming the product PC, and that each transfer function
matrix in (5.3-1) to (5.3-3) is stable. Alternatively, if we were to introduce a further
external input v, adding on to the plant input so that u = v + Ce, then stability
would correspond to all the transfer functions from r, v (also d and n) to u, e (and y)
being stable. For a good discussion of such ideas, see [2], and Problem 5.3-1.

The quantities

s = (z + PC)”* (5.3-4)

and

T = PC(l + PC)-’ (5.3-5)

are known as the sensitivity function and complementary sensitivity functions. Of
course, S -1 is the return difference.

Notice that

S+ T=] (5.3-6)

We now make some key observations.

1. For good tracking, i.e. IIr – y IIsmall when d and n are zero, (5.3-2) shows that
(1+ PC)-l should be small. More specifically, at any frequency co, for good
tracking we need

G[s(jw)]<<1 (5.3-7)

(Here, B denotes largest singular value; see Appendix A. In the scalar case,
G[S] = IS1.) Of course, (5.3-7) is like the large loop gain condition of classical
control.

2. For good disturbance suppression, that is, d affects y to the least extent
possible, (5.3-1) shows gain that (1+ PC)-’ should be small; that is, (5.3-7)
should hold.

3. For good noise suppression, that is, n affects y to the least extent possible,
(5.3-1) shows that PC(Z + PC)-* should be small; that is,

GIT(jco)] <<1 (5.3-8)

The inconsistency between the objectives of good tracking and disturbance
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rejection on the one hand, and good noise suppression on the other, is manifest,
given (5.3-6) through (5.3-8).

Let us note a further potential difficulty with enforcing (5.3-7), at least in a
certain frequency range.

4. Under (5.3-7),

U=r’(r- n-d) (5.3-9)

and so if (5.3-7) holds at frequencies outside the bandwidth of the plant, that
is, where G [P] is small or g [1’‘1] = [6 [P]]-l is large, then u will be large (and
may cause plant saturation).

Both S and T play a role in considering the effects of plant variation. Consider
the open-loop control arrangement of Fig. 5.3-2, where ~(s) is so chosen that the
same transfer function matrix from r to y is secured. Thus ~ = C (1 + P~-*. Sup-
pose further that the plant depends on a parameter P which can vary without any
corresponding change in ~. Variations of p. in the open-loop arrangement have a
direct effect on the output y. In contrast, if p, varies in the closed-loop setup, y is
varied, and the variations are fed back. They may inject a signal that compensates
for the variation in L—historically, this was one of the earlier aims of using feed-
back, and perhaps the main aim in electronic amplifier design where the “plant”
included a vacuum tube with highly variable gain. For the open-loop design, there is
no such compensation. Let us compare the two possibilities. With r(o) fixed for the
first setup, we have

Yc= ~(j@; P)c(jw)[l + P(jco; p)c(jo)]-lr

and

‘p(~w; ~)qjti)[l+P(jcl); l-L)c(j(D)l-l~!$= [1 + P(jw; p)c(jo)]-’ ~p

For the second setup, we have

YO= ~(j~; p)c(j~) [1+ P(jo; pnom)C(jw)]-’r

ayl) _ Cw(jw; ~)
~– ap C(jco)[l + P(jw; pnoJC(jcd)]-lr

Hence if the derivatives are evaluated at p,nOm,

~= [1+ P(jw; pnom)c(jcl))]-’*

=~(j~)$ (5.3-lo)

Thus we can state our next observation; see [4, 5]:
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‘+~A”~J” Figure-1.

Figure5.3-2 Open-loopcontrolequiva-
lent to the closed-loop arrangement of

5. The sensitivityy to structured plant parameter variations of a closed-loop con-
trol loop is much less than that of the equivalent open-loop control when the
sensitivity function is small, that is, when (5.3-7) holds. (Hence the attempt in
classical design to keep the loop gain high to suppress the effect of plant
parameter variations.)

There is a second type of plant variation we need to consider also, and that is
unstructured multiplicative variation in the plant, which is typically associated with
high-frequency uncertainty. Thus suppose that P(jw) can be perturbed to

P.(jw) = [1 + Z,(jco)]P(jw) (5.3-11)

with

G(L(jco)) < /(jw) (5.3-12)

for some scalar l(co), and suppose further that P~ (jo) has the same number of
unstable modes as P (jm). This type of variation is in some ways more useful than an
additive variation where PL(jo) = P( jw) + L (jw). It is preserved when a pre-
compensator is ahead of the plant. It captures more easily the neglect of high
frequency dynamics. Thus suppose that P~ ( jo) is really a( jti + a)-lP ( jw) for some
large a. Then L = –j~(jw + cx-l and f(w) = 1 + ~ for arbitrary positive ● . If one
overestimates the roll-off rate in P (jw), 1(jw) can be unbounded. Again, if there is
phase uncertainty (as is frequent) at high frequencies, this can be captured by
L (jco) in a way which usually requires sup f (jw) to be at least 2. The model even
captures sensor failure, where L ( jo) c& be a diagonal [– 1, 0, . . . . O] and thus
1(o) = 1 + ● for arbitrary positive ● .

Now let us ask the question: what conditions on P, C, and L or f will ensure
retention of closed-loop stability? Consider Figure 5.3-3a, which is a rearrangement
of the perturbed plant with controller. The transfer function matrix from X to Y is
– C(Z + PC)-l, It is possible to argue then that if the loop gain in the equivalent
Figure 5.3-3b is less than 1, stability is retained. The stability condition is then

ti(LPC(l + PC)-*) <1 (5.3-13)

By invoking (5 .3-12) and the fact that 6 (All) ~ G (A)G (B), a sufficient condition for
(5.3-13) becomes

6(7’) =ti[PC(l + PC)-l] <l-l(jw) (5.3-14)

In fact, this condition is effectively both necessary and sufficient. If (5.3-14) holds,
then for all L satisfying (5.3-12), perturbations of P (jti) via (5.3-11) which preserve
the unstable pole count will not destroy preexisting stability, while if the reverse
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Figure 5.3.3 Redrawing ofperturbed plant and controller combination.

inequality holds in (5.3-14), there exists a particular L(jw) perturbing P(jti) but
preserving the unstable pole count such that preexisting stability is changed to
instability via the perturbation. (For aderivation, see[3]. )Inequality (5.3 -14) also
has the simple reformulation

f(jw) <g[(z + PC)(PC)-’] =g[z + (pC)-’] (5.3-15)

Reference [6] makes a general argument for the association of stability robustness
and sensitivity improvement conditions. Evidently, the complementary sensitivity
function is associated here with stability robustness. We can thus make the obser-
vation:

6. For the retention of stability in the face of unstructured multiplicative plant
variations, or structured variations modeled in like manner, it is desirable [and
essential if all variations subject to (5.3-12) are possible] to have a com-
plementary sensitivity function bounded as in (5.3-14), or an inverse-loop gain
function bounded as in (5.3-15).

It is well-known from classical control that to avoid the effects of plant uncer-
tainty at high frequencies, the loop gain must be kept small. Inequality (5.3-15) is a
multivariable generalization.
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We have already stated that it is virtually essential to satisfy the bound on
G(T), which normally means keeping G(T) small in certain frequency ranges. The
other reason for keeping G(T) small, viz. the desirability of minimizing the effects
of measurement noise, may be rendered nugatory by the use of good sensors, but
there is no such escape from (5.3-14).

So the fundamental limitation on securing good performance for a control
system, as indicated by G (S) <<1, is the necessity to limit G(T) in certain frequency
bands. Generally, this leads to the requirement that G(S) should be low in the
passband and 6 (T) low in the stopband, and in turn that G (PC) is large in the
passband and g (PC)-l large in the stopband. It is regarded as good practice for all
the singular values of S or of S-1 = 1 + PC to have roughly the same cross-over
frequency.

We have covered above some of the main issues in classical design which
involve the sensitivity and complementary sensitivity functions. We have not dis-
cussed a range of results (gain–phase constraints) which in the scalar case have the
effect of constraining average values of S, or its logarithm, and mathematically
highlight the greater difficulties of controlling nonminimum phase plants; see, for
example, [7]. Extensions to the multivariable case of some of these results have
begun to appear [8].

Our discussion of multiplicative uncertainty focused on uncertainty at the plant
output. One can also consider input uncertain y, with P~(jw) = P ( jco)[l + L (jw)].
In this case, (5.3-15) is replaced by

Actuator failure corresponds to l(jti) >1. Of course, it is only in the multivariable
case that there is a distinction between having ~ [1 + (CP)-l] and g [1 + (PC)-l].

Main points of the section. Two key transfer function matrices,
the sensitivity function S and complementary sensitivity function T, can be defined
for closed-loop systems. They sum to the identity matrix. Table 5.1 sums up some
key properties.

Generally, one needs 6 (S) small in the passband of the plant, and G (T) small
in the stopband.

TABLE 1 THE ROLE OF SENSITIVITY AND COMPLEMENTARY
SENSITIVITY IN CLASSICAL CONTROL

Property Desired S or T Constraint

Tracking u (S) small
Disturbance suppression u (S) small
Noise suppression @(T) small
Control magnitude limitation u (S) not small when = (P) is small
Sensitivity to structured plant parameter variations u(S) small
Sensitivityto unstructured multiplicativeuncertainty 6 (T) small
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Problem 5.3-1. Consider Fig. 5.3-1 with theinsertion ofa further additive
input v at the plant input, so that u =V + Ce. Verify that all transfer function
matrices from r, v to e, u are stable if and only if the following transfer function
matrices are stable:

(1+ PC)”’,

or equivalently,

Problem 5.3-2.
values. Show that

(I+ CP)-’, C(l + Pc) -’, (1+ Pc) -lP

[1I –P “
CI

is stable

Let G(A), g (A) denote maximum and minimum singular

~(Pc) + 1]-’ =6(S) s ~(Pc) - 1]-’

[6(s) ]-’ - lscJ(Pc)s [G(s)]-’+ 1

These inequalities relate small sensitivity functions to large loop gain. [Hint: Estab-
lish first that g (A) – 1 s q (A + Z)s Q (A) + 1 by using the characterization
g (M) = min IIM-xII, together with the triangle inequality. The identity q (A) =
~=(A _, 11X11=1

)]-I maybe helpful also.]

5.4 GAIN MARGIN, PHASE MARGIN, AND
TIME-DELAY TOLERANCE

In this section, we shall examine certain properties of the closed-loop scheme
depicted in Fig. 5.4-1, where K arises from a linear quadratic design with no
cross-product terms in the performance index. We shall be especially interested in
the gain margin, phase margin, and time delay tolerance of the scheme for the scalar
input case. Where corresponding conclusions apply for the multivariable case, we
shall seek to make them. We shall also relate our conclusions to the ideas of the
previous section.

Single-input systems. We recall that the gain margin of a closed-
loop system is the amount by which the loop gain can be changed until the system
becomes unstable. If the loop gain can be increased without bound—that is, insta-
bility is not encountered, no matter how large the loop gain becomes—then the
closed-loop system is said to possess an infinite gain margin.

Of course, no real system has infinite gain margin. Such parasitic effects as

r+
-K’(s1 -F)-lG

—
Figure5.4-1 Closed-1oop optimal
scheme redrawn as unity negative
feedback scheme,
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stray capacitance, time delay, and the like will always prevent infinite gain margin
from being a physical reality. Some mathematical models of systems may, however,
have an infinite gain margin. Clearly, if these models are accurate representations
of the physical picture—save, perhaps, for their representation of parasitic
effects—it could validly be concluded that the physical system had a very large gain
margin.

We shall now show that the optimally designed regulator possesses the infinite
gain margin property, as well as a “downside” gain margin, by noting a character-
istic feature of the Nyquist diagram of the open-loop gain of the regulator. The
scheme of Fig. 5.4-1 is arranged to have unity negative feedback, so that we may
apply the Nyquist diagram ideas immediately. The associated Nyquist plot is a curve
in the complex plane, obtained from the complex values of –k’ (jwl – F)-lg as ~
varies through the real numbers from minus to plus infinity. Now the Nyquist plot of
–k’ (jwl – F)-’g is constrained to avoid a certain region of the complex plane,
because the return difference equality implies (in the case of no cross-product terms
in the quadratic index)

ll-k’(jcol -F)-’gIal (5.4-1)

which is to say that the distance of any point on the Nyquist plot from the point
– 1 + jO is at least unity. In other words, the plot of –k ‘(jwl – F’-’g avoids a circle
of unit radius centered at – 1 + jO.

See Fig. 5.4-2 for examples of various plots. (The transfer functions are

.

6)=10 f

Figure5.4-2 Nyquist plots of –k’( jd – F/-’ g avoiding a unit critical disc center
(-1, O).Points A are at unity distance from the origin.
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irrelevant. ) The arrow marks the direction of increasing w. Note that the plots end
at the origin, which is always the case when the open-loop transfer function, ex-
pressed as a numerator polynomial divided by a denominator polynomial, has the
numerator degree less than the denominator degree (i. e., the transfer function is
strictly proper).

There is yet a further constraint on the Nyquist plot, which is caused by the
fact that the closed-loop system is known to be asymptotically stable. This restricts
the number of counterclockwise encirclements of the point – 1 + jO by the Nyquist
plot to being precisely the number of poles of the transfer function –k ‘(sI – F)-’g
lying in Re [s] >0. We understand that if a pole lies on Re [s] = O, the Nyquist
diagram is constructed by making a small semicircular indentation into the region
Re [s]< Oaround this pole, and plotting the complex numbers –k ‘(sI – F)-lg ass
moves around this semicircular contour.

Thus, if –k ‘(sZ – F) “g has no poles in Re [s] a O, a diagram such as that in
Fig. 5.4-2(b) may be obtained. Figure 5.4-3 illustrates a case where –k ‘(sI – F)-’g
has two poles in Re [s]> O.

The key observation we now make is that the number of encirclements of the
point – 1 + jO is the same as the number of encirclements of any other point inside the
circle of unit radius and center – 1 + jO. The best way to see this seems to be by visual

10 1

Figure5.4-3 Nyquist plot for which open-loop transfer function has two poles in
Re [s]> O, and closed-loop is stable.



Sec. 54 Gain Margin, Phase Margin, and Time-Delay Tolerance 119

inspection: a few experiments will quickly show that if the preceding remarks were
not true, the Nyquist diagram would have to enter the circle from which it has been
excluded.

It is known that the closed-loop system with gain multiplied by a constant
factor p will continue to be asymptotically stable if the Nyquist diagram of
– ~k’ (jcol – F)-’g encircles – 1 + jO in a counterclockwise direction a number of
times equal to the number of poles of – ~k ‘(s1 – F)-*g lying in Re [s] 20. Equiva-
lently, asymptotic stability will follow if the Nyquist diagram of –k ‘(joZ – F)-’g
encircles – (1/13)+ jO this number of times. But our previous observation precisely
guarantees this for a range of ~. The points – (1/13)+ jO for all real ~ > ~lie inside
the critical circle, and thus are encircled counterclockwise the same number of times
as the point – 1 + jO. As we have argued, this number is the same as the number of
poles of –k ‘(s1 – F) ‘lg in Re [s] a O. Consequently, with asymptotic stability fol-
lowing for all real 13> ~, we have established the infinite gain margin property, and a
downside margin of ~.

Let us now turn to consideration of the phase margin property. First, we recall
the definition of phase margin. It is the amount of negative phase shift that must be
introduced (without gain increase) to make that part of the Nyquist plot corre-
sponding to w z Opass through the – 1 + jO point. For example, consider the three
plots of Fig. 5.4-2; points A at unit distance from the origin on the w a Opart of the
plot have been marked. The negative phase shift that will need to be introduced in
the first case is about 80 deg, and that in the second case about 280 deg. Thus, 80
deg is approximately the phase margin in the first case, and 280 deg in the second.

We shall now show that the phase margin of an optimal regulator is always at
least 60 deg. The phase margin is determined from that point or those points on the
w a Opart of the Nyquist plot which are at unit distance from the origin. Since the
Nyquist plot of an optimal regulator must avoid the circle with center – 1 + jO and
unity radius, the points at unit distance from the origin and lying on the Nyquist plot
of an optimal regulator are restricted to lying on the shaded part of the circle of unit
radius and center the origin, shown in Fig. 5.4-4. The smallest angle through which

Figure5.4-4 Shaded points denote
permissible points on Nyquist plot of
optimal regulator at unit distance from
origin.
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one of the allowable points could move in a clockwise direction to reach – 1 + jO is
60 deg, corresponding to the point N of Fig. 5.4-4. Any other point in the allowed
set of points (those outside the circle of center – 1 + jO, and unity radius, but at unit
distance from the origin) must move through more than 60 deg to reach – 1 + jO.
The angle through which a point such as N must move to reach – 1 + jO is precisely
the phase margin. Consequently, the lower bound of 60 deg is established.

Note that there is no assertion here that stability is retained if both a phase
shift of no more than 60 deg is introduced and the gain is changed by a factor in the
interval (~, ~).

We now turn to a discussion of the tolerance of time delay in the closed loop.
Accordingly, we shall consider the scheme of Fig. 5.4-5, where T is a certain time
delay. (The delay block could equally well be anywhere else in the loop, from the
point of view of the following discussion.) We shall be concerned with the stability
of the closed-loop system.

The effect of the time delay is to insert a frequency-dependent negative phase
shift into the open-loop transfer function. Thus, instead of – k‘( j wl – ~-’g being
the open-loop transfer function, it will be – k ‘(jcol – F’-lge ‘~w~.This has the same
magnitude as – k‘ (jod – F)-lg, but a negative phase shift of WTradians.

It is straightforward to derive allowable values of the time delay that do not
cause instability. Suppose the transfer function –k ‘(jtiZ – I’-lg has unity gain at
the frequencies ml, COZ,. . . . 0, with O< WI< OZ<.. . < w,, and let the amount of
negative phase shift that would bring each of these unity gain points to the – 1 + jO
point be ql, 92, . . . . q,, respectively. Of course, ~i 27r/3 for all i. Then, if a time
delay T is inserted, so long as tiiT < qi or T < ~i /w~for all i, stability will prevail. In
particular, if T < 7r/(3cor),stability is assured.

The introduction of time delay will destroy the infinite gain margin property.
To see this, observe that as w approaches infinity, the phase shift introduced—viz.,
COTradian-becomes infinitely great for any nonzero T. In particular, one can be
assured that the Nyquist plot of –k’ (jwl – F)-lg will be rotated for suitably large w
such that the rotated plot crosses the real axis just to the left of the origin. (In fact,
the plot will cross the axis infinitely often.) If for a given T, the leftmost point of the
real axis that is crossed is – (1/~) + jO, then the gain margin of the closed loop with
time delay is 20 logl@ dB.

Of course, the introduction of a multiplying factor, phase shift, or time delay

-sT

Figure5.4-5 Single-input optimal regulator with time delay T inserted
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in the loop will destroy the optimality of the original system. But the important
point to note is that the optimality of the original system allows the introduction of
these various modifications while maintaining the required closed-loop stability.
Optimality may not, in any specific situation, be of direct engineering significance,
but stability is; therefore, optimality becomes of engineering significance indirectly.

The key to the above conclusions is the inequality (5.4-l). Notice that this
gives an upper bound on the return difference. In the notation of the previous
sections, it states that for all w,

1s]s1 (5.4-2)

Other implications of this inequality are explored in the last section. The
complementary sensitivity function is

T=l– S

= 1 -[1 - k’(jwl - F)-’g]-’ (5.4-3)

(The last equality follows from an Appendix B result, which can be established by
direct algebraic manipulation.)

Observe that

limjwT= –k’g =r-’g’~g (5.4-4)
.4.

Except in the abnormal case when k = O, and so ~g = O, there holds g ‘~g >0.
So IT] rolls off at a rate of ~-’. This is not an attractive property if multiplicative
unstructured uncertainty in the plant is contemplated, as it might not be fast
enough. (Recall that ITI should be small where the uncertain y is large. ) In a sense,
this is the penalty being paid for the attractive features such as good gain margin and
phase margin described earlier.

To reemphasise the fact that the attractive properties described hitherto will
not resolve all robustness or sensitivity issues satisfactorily, let us note another
potential danger. Suppose a design of k is obtained from a relatively low penalty in
control energy with the property that the closed-loop bandwidth, dictated by the
eigenvalues of F + gk’, significantly exceeds the open-loop bandwidth, dictated by
the eigenvalues of F. (CIassical control would suggest that this is unwise, requiring
overly large control signals. ) Reference [9] shows via one example that there can be
reduced robustness to variations in individual entries of the g vector, and with very
large k, there maybe almost no robustness. The idea is developed in Problem 5.4-3.

The infinite gain margin property is consistent with the just proved result on
the roll-off rate (relative degree of k‘ (sZ – ~-’g) and the minimum phase property
established earlier of k‘ (sZ – F)-*g. The minimum phase property indicates that as
the loop gain goes to infinity, certain closed-loop poles tend to the zeros of
k‘ (s1 – F) ‘lg and the remainder tend to infinity, with the number of such poles
equal to the relative degree of k‘ (s1 – F)-lg.
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Multi-input systems. Multi-input systems are, as one might expect,
more awkward to consider than single-input systems, However, our starting point is
still the return difference equality, from which we have

[1 - G’(-jcol - F’)-lK]R[l - K’(jcol - F)-lG] =R (5.4-5)

So if R = pZ, we can state that

g[Z – K’(jd – F)-lG] 21 (5.4-6)

for all w and further that

G[,s]sl (5.4-7)

since S-l = 1 – K’(jol – F)-lG.
The inequality (5.4-7) also gives us an inequality for 6 (T). Since T = 1 – S,

G(T)sl+G(S)S20r

z=~(o (5.4-8)

It is not hard to find particular examples where the bound in (5 .4-8) can be attained.
So (5.4-8) is the best general result. In the light of (5.3-14), this means that
multiplicative unstructured uncertainty which is guaranteed not to disturb stability
must satisfy 1-‘( jw) >2 or 1(j w)<~. This rules out, for example, an unmodeled
high-frequency mode. This disappointing fact is consistent with the slow roll-off
rate, viz. 0-1, of G (T,)as o ~ w. But note that for some particular examples, there
may be greater tolerance of multiplicative unstructured uncertainty,

For more general R, we can claim only that

g{R1’2[1 – K’(jd – F)-1G]R-1’2}> 1 (5.4-9)

and

~ {R 1/2sR‘1/2}s 1 (5.4-lo)

Are (5.4-9) and (5.4-10) even desirable? We shall study this question, investi-
gating in the process the gain and phase margin results that flow from (5 .4-7) in case
R = pZ for some p.

Our first goal will be to show that with R any positive definite diagonal matrix
we do again get attractive gain and phase margin properties, as outlined in [10]. To
establish this claim, we need two preliminary results, one a result of linear algebra
and the second a robust stability result.

Lemma A: Let V, W be square complex matrices of the same dimensions
such that

(1+ V“)(Z+ V)=l (5.4-11)

W“+W>I (5.4-12)

Then 1 + VW is nonsingular.
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Proof. Suppose VWu = – u for some u # O to secure a contradiction. Now
1 + V* + V + V*V=I implies W*V*W + W* VW+ W* V* VW* =0. Premultiply
by u * and postmultiply by u. There results –u * Wu – u * W’u + u *u 20, that is,
u*[W* + W – l]u s O. This is a contradiction.

Lemma B: Consider the closed-loop system defined in Fig. 5.4-6. Suppose
there are no unstable pole-zero cancellations in the product VW, and that for all co,
V(jO) and W (~m) satisfy (5.4-11) and (5.4-12). Suppose also that with W replaced
by Zthe closed loop is stable. Then the closed loop of Fig. 5.4-6. is stable.

Proof. Replace Wby ~, = (1 – ●)1 + ●W, where ~ can vary in [0, 1]. Observe
that ● = O corresponds to a known stable situation, and 6 = 1 to the situation of
interest. Further,

w: + W.=2(1 –E)] +E(W* + w)

>2(1 – E)] + El

=(2 - E)l

Also, since (1 + V “)(1 + V) a 1, by assumption, then from Lemma A,
1 + V(jco)WC(jti) is nonsingular for all ~, ● E [0, 1].

Now with W replaced by ~,, the closed-loop transfer function matrix is
VW,(Z + W—,)”’. With some work, one can argue that unstable pole-zero cancel-
lations pose no problem. Then as ~ moves from Oto 1, an instability can arise only
when a closed-loop pole moves from the open left half-plane to the right half-plane.
In so doing, it must cross the jw-axis. That is, 1 + V(jw)~,(jco) becomes singular
for some e ~ [0, 1] and some w, a contradiction. Thus there is closed-loop stability
with W present.

Lemma B provides the recipe for obtaining phase and gain margin type results.
Let us identify

V(s) = –R’’2K’(jwl – F)-lGR-”2

The return difference equality states

(1+ v*)(l + v)=]

T-T Figure5.4-6 Closed-loop systems used
for robustness result.
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which is (5.4-11). Suppose that W satisfies (5.4-12) and has the structure W (jw) =
R 1’2L(jw) R ‘“2. Then reference to Fig. 5.4-7 indicates that the setup of Fig. 5.4-7(b)
will be stable when

(R -1/2)~ *R 1/2 + R 1/2~R ‘1/2 > ~

or equivalently

L* R+ RL>R (5.4-13)

Now suppose R is diagonal and L is diag (11,. ... 1~). Then (5.4-13) is satisfied
if and only if

1~+1, >1 (5.4-14)

In particular if li is real, in the interval (~, CC),this is satisfied. This is the gain margin
analogy. Also, if 1,= e ‘iv with Iql < IT/3, (5.4-14) is satisfied. This is the phase
margin analogy. Notice that simultaneous variations in different /i, 1,are permitted.

In summary, if R is diagonal we can tolerate independent scalar gain variations
between ) and ccand phase variations less than 60 deg in each scalar input, without
disturbing stability. Of course, in any one scalar input, there cannot be simulta-
neously a gain variation of ~and phase shift of 60 deg.

This result may suggest that any diagonal R is acceptable. This is a misleading
statement. If one diagonal entry of R is much lower than the others, the correspond-
ing entry of the control vector defines a signal that may take very large, even
unacceptably large, values. Further, there is a limit on the cross coupling that can be
tolerated. Suppose that

(a)

and

[1L=IX
01

(5.4-15)

(5.4-16)

~1/2 ~ ~jm) ~-1 /2
-R1’2K’(jwl-F)-lG R-1’2 E

.

(b)

L (j@) -K’(jml -F)-lG b

Figure5.4-7 Two structures with the same stability properties
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Thus X represents a unidirectional cross coupling. Then (5.4-13) is satisfied when

k~in(R2)
G*(X) <

k~,X( RI)
(5.4-17)

Problem 5.4-6 seeks verification of this. A consequence of the condition (5.4-17) is
that if there is the possibility of coupling in only one direction, but this direction is
unknown, that is, if there is a possibility that

then the bound is

[

k~in (Rl) k~in (R2)
62(X) < min

& (R2) ‘ k~,, (R,) 1

(5.4-18)

(5.4-19)

The greater the discrepancy between the eigenvalues of R, and Rz, the smaller this
will be.

If R is diagonal and the cross coupling can be
collections of lines, then

Amin(R)
77*(X) < —

A~,X(R)

between any two input lines, or

(5.4-20)

Of course, (5.4-19) and (5.4-20) are only sufficient conditions. But they serve
nevertheless to highlight the potential difficulties arising when R departs from the
form pl.

Having seen what happens when R is diagonal, let us note the effect of non-
diagonal R. Reference [10] includes an example that shows with nondiagonal R, the
gain margins can become arbitrarily small; see Problem 5.4-5. Of course, it may also
be the case for some examples that with a nondiagonal R, there is nevertheless a
considerable gain margin on each line.

Main points of the section. The return difference equality en-
sures for single-input plants that ISIs 1 and for multiple-input plants that
~[R II*SR- 1’2]s 1 and for all frequencies. This condition translates, provided that R

is diagonal in the multivariable case, to gain margins in each loop of (~, ~) and
phase margins of 60 deg or more. However, the loop gain and complementary
sensitivity function roll off at a rate of only w-l, and there is poor tolerance of
multiplicative unstructured uncertainty. For multiple input systems, having a diago-
nal R with entries of very different sizes gives poor robustness to input cross
coupling. In the nondiagonal R case there is no guarantee in a universal way of
robustness to gain or phase variations on any single input.

Problem 5.4-1. Show for a single-input plant that if e2a’is introduced in the
usual performance index to secure degree of stability a, this degree of stability is
preserved if the loop gain is varied by a factor in the range (~, ~). [Hint: Study the
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Nyquist plot of k‘ (j wl – al – F)-lg and prove a return difference equality involv-
ing this transfer function. ]

Problem 5.4-2. Suppose that g(Z –X)21. Show that E(Z – X-l) 2 ~.
[Hint: Observe that (Z - X-’)-’= I-(Z - X)-l and use the triangle inequality.]

Problem 5.4-3. Suppose that G is n x m with rank m. For the multivariable
case, show that for large co, T(jw), the complementary sensitivity function, is
approximated by (jw) ‘lN, where N is a product of two positive definite m x m
matrices.

Problem 5.4-4. Consider the system

4-: -%+[’PIU

and performance index
m

V = ~ [ru’(t) + (XI– X2)2]dt
o

(i) Suppose ● = O. Show, using the return difference equality, that

1 –k’(sl –F)-’g =
sz+~s+y

S2+3S+2

where y = ~.

Deduce the value of k‘.

(ii) With the k from (i), consider the stability of

[-: -I+[W

Show that, given any 6>0, there exists r(~) such that with r s r(~), instability
results.

Problem 5.4-5. Consider a system with

‘=X+[:!?1[::1
m

V=j (u’Ru+x’x)dt
o

with

[1
R = ~ : [N-2+ 2N-’]-1[: ~]
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and N >0 is arbitrary but not diagonal. Show that ~ = N is the solution of the
steady state Riccati equation. Consider an input perturbation by the constant
matrix

L=[: Al
Write down the closed-loop matrix F + GLK’ parametrized in terms of the entries
of P-’, (3, and c. Show that for any ● + O, there exists a 13 which makes
tr(F + GLK’) >0, implying closed-loop instability.

Problem 5.4-6. Suppose that

[1
~=Rl O

[1
IX

O R~
and L =

01

Show that

implies L *R + RL – R >0
A> O, C> O, then

G 2(X) < A~in(R2)/k~.X(R1)

[Hint: Evaluate L *R + RL - R. Use the fact that if

[1
AB
B* C ‘0

if and only if C – B*A-’B >O. ]

Problem 5.4-7. (Requires computer solution). For the cases studied in Prob-
lem 3.3-3 examine Nyquist and Bode plots of the various designs, noting gain and
phase margins.

5.5 INSERTION OF NONLINEARITIES

In the previous section, we considered the introduction of various linear system
perturbations at the plant input, corresponding to gain changes, introduction of
phase shift, and so on. In this section, we consider the arrangement of Fig. 5.5-1.
The input nonlinearity depicted might well capture the inexact behavior of an
actuator.

Nonlinearity $(.) -K’(sI-F)-l G b

—

Figure5.5-1 Introduction of an input nonlinearity.
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For simplicity, we shall first consider the single-input case. We shall impose a
restriction on the nonlinearity.

Nonlinearity description. The nonlinearity q(u) is memoryless and confined
within a sector that itself is confined strictly within a first-third quadrant
sector. The outer sector slope bounds are ~and ~; see Fig. 5.5-2. Analytically

(5.5-1)

for all u + O, and small positive ●1, ●z.

We showed in the last section that for all linear gains in the sector, closed-loop
stability is preserved. This result is now generalized to achieve the following
remarkable robustness result.

Robustness prope?7y. For the optimal state feedback gain K‘ arising from an
optimal linear quadratic design (with no cross-product terms), the optimal
closed-loop system maintains asymptotic stability when arbitrary non-
linearities q(.) satisfying (5.5-1) are inserted at the plant input. That is, the
closed-loop system of Fig. 5.5-1 is stable under (5.5-l). Moreover, the non-
linearities maybe arbitrarily time-varying.

pe ~

lope

+ E,

Figure5.5-2 Sector bounds.
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Prorf. t For those readers familiar with the circle criterion [2], the result
follows from the fact that the Nyquist plot avoids the critical unit disk centered at
[-1, 0]–a direct consequence of the return difference equality.

For those who know that a positive real system back to back with a strictly
passive system is asymptotically stable [2],it isinstructive to see that the feedback
arrangement of Fig. 5.5-1 can be reorganized as the positive real system Z(s) of
(5.2-13) with a feedback nonlinearity @(T)= q(u) - ~u scaled to be in the range
(O, ~), that is, [~,, ●;’]. This rearrangement is achieved by adding and subtracting a
feedback gain of ~ into the loop. Now the resealed +(c) defines a strictly passive
system since, with input u and output ~(u)

/

1

/

r

U(T)Q[U(T)] dT = EI u*(7) d7 for all t
o 0

These observations constitute alternative proofs of the robustness result,
which extend to the multivariable case and are valid whether q(”) is time-varying or
not.

For those more familiar with Lyapunov theory, we shall establish the result for
the case when the regulator is designed with [F’,g] controllable and [F, D] observ-
able, where DD’ = Q. The result is extendable to the stabilizable/detectable case,
but the details are intricate. We shall assume that q(.) is time-invariant. Under the
stated conditions, V(x) = x ‘~x (with ~ the steady state Riccati equation solution) is
positive definite. We shall evaluate V(x) along trajectories of the closed-loop
system, which is evidently

-i = Fx +gq(k’x) (5.5-2)

We have

V =x’P[Fx +gq(k’x)] + [x’F’ + (p(k’x)g’]~x

Use the fact that ~F + F’~ = krk’ – Q, and Pg = –kr. Then

v = –X ‘Qx + r(k ‘x)’ – 2rq(k ‘x)(k ‘x) (5.5-3)

The restriction on q ensures that q(k ‘x)(k ‘x) 2 (~+ ●l)(k ‘X)2.So

V = –x’Qx – ●lr(k’x)2 (5.5-4)

Since Vs O, we obviously have stability. To show asymptotic stability, we have to
show that V = O implies x = O (see Appendix D). Now V = O implies k ‘x = O,
D ‘x = O. Also k’x = O implies that i = Fx + gq(k’x) = Fx. Whh -i = Fx and
D ‘x = O, it follows that x = O. Hence asymptotic stability is established.

The multivariable case is almost as straightforward. Suppose that the plant
input is O(K ‘x) instead of K ‘x. Here, @ is a vector function of K ‘x. We shall restrict
it below. Now with V = x ‘~x, from the closed-loop system

i =Fx + G@(K’x) (5.5-5)

t This proof maybe omitted without loss of continuity.
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we derive

v = –x’Qx +x’KRK’x –x’KR@(K’x) – c@’(K’x)llK’x (5.5-6)

Obviously, we need some condition that forces

2x’KR@(K’x) >x’KRK’x (5.5-7)

One simple way to ensure this (as checked below) is to require that R is diagonal,
and that 0(. ) is a diagonal nonlinearityy satisfying (5.5-1); that is,

Q (K’x) =

with

‘d

92[

K’x)l]
K ‘x)z]I (5.5-8)

Note the analogy with the last section, where with R diagonal we concluded that
independent linear gain variations between ~ and cc on each scalar input do not
destroy stability.

Let us check (5.5-7).

2X‘KRO(K’.X) = ~ 2r,(K ‘x)i~i[(K’x)i]

=(1 + 2E,)X’KRK’X

The rest of the proof of stability, of course, proceeds as before.
For the time-varying 0(.) case, because V s O, the proof of asymptotic sta-

bility as opposed jus~ to stability is awkward; one cannot appeal in the time-varying
case to the fact that V = Oimplies x = O. Problem 5.5-2 deals with time-varying @(.).

Main points of the section. Nonlinear, in fact time-varying, in-
put gains that are sector restricted to be strictly inside a sector bounded by slopes ~
and ~ do not destroy the stability of a single-input optimal system. A multivariable
result is also available which has an attractive interpretation in case R is diagonal.

Problem 5.5-1. Assume a regulator is designed to have degree of stability a,
by the inclusion of the exponential weighting e2“’in the performance index inte-
grand. Show that nonlinearities of the type discussed in this section allow retention
of the degree of stability a. [Hint: Show first that V/Vs –2a.]

Problem 5.5-2. Extend the Lyapunov-based proof to the case of time-varying
q(”) for single-input systems. Do this as follows:
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(i) From V >0 and ~s O, show that k ‘x and q(k ‘x) are square integrable.

(ii) Show that if i = Ax + bu with Re k, (A) stable and u is square integrable then

Ik(oll+ o
(iii) Use the fact that i = (F + gk ‘)x + g~ where v is square integrable.

5.6 THE INVERSE OPTIMAL CONTROL PROBLEM?

The inverse optimal control is easily stated. Given a triple {F, G, K}, does K have
the property that it is the optimal control law associated with F, G, some non-
negative symmetric Q, and some positive definite R ?

In this section, we shall give a reasonably complete answer to this question.
Relevant references include [11, 12, 13].

What assumption is it reasonable to make? Certainly, stabilizability of [F, G]
and stability of F + GK’. Also, we know that a return difference equality neces-
sarily holds, and thus it is reasonable in the inverse problem to postulate its satis-
faction. For scalar systems, this implies that for all w

ll-k’(jcol -F)-’gl>l (5.6-1)

and for multivariable systems, it implies that for some positive definite R,

g{R1’2[1– K’(jcoZ – F)-1G]R-1’2}a 1 (5.6-2)

Note that (5.6-2) is equivalent to

(R-1’2)’[1 – G’(-jwl - F’)-’K]RII - K’(j(-oI - F)-lG]R-’n>l

or

[1 - G’(-jwl - F’)-lK]R[l - K’(j(I)l - F)-’G] 2R (5.6-3)

It is much easier to postulate that R is part of the data than to regard it, as well
as Q, as unknown. In the scalar case, this is a costless assumption. Now with the
assumptions that (1) {F, G, K, R} are known, (2) [F, G] is stabilizable, (3) F + GK’
is stable, (4) the return difference inequality (5.6-3) holds, the crucial question
becomes: Does there exist Q = DD’ z Owith [F, D] detectable such that the associ-
ated optimal control law is K? Equivalently, does there exist Q = DD’ with [F, D]
detectable such that

[1 -g’(-jcol - F’)-’k][l - k’(jcol - F)”g]

= 1 +g’(-jd – F’)-lQ(jcoI – F)-lg
(5.6-4)

or

[1 - G’(-jwI - F’)-’K]R[l - K’(jcol - ~-’G]

= R + G’(–jwl – F’)-lQ(jol – F)-’G (5.6-5)

t Thissection may be omitted without loss of continuity.
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and such that the K we started with is the solution of the optimal control problem
defined by F, G, Q, and R.

The first question is relatively easy to answer. For the second question, it turns
out that the best we can achieve, given stabilizability of [F, G] rather than control-
lability, is to show that ~’(jwl – F’)-lG = K’(jwl – F’)-lG, where ~’ is the opti-
mal gain. Of course, this is as much as one could hope for, and is a satisfactory
resolution of the problem. See also Problem 5.6-1.

We shall describe first the construction of Q for the single-input case. Let
Isl – FI = PO(S)and Isl - F - GK’I = PC(S), which is a stable polynomial. Assume
also that [F, G] is controllable, not just stabilizable. Then (5.6-1) implies that, via
(5.2-20),

Pc(–j@)Pc(~@ > ~

pO(–j+O(j@ –

whence

Pc(–j~)pc(j~) – pO(–j@o( jw) a O (5.6-6)

The quantity on the left is the evaluation on the jw-axis of a polynomial, call it e (s),
for which e(s) = e (–s). Such a polynomial necessarily has zeros that are sym-
metrically located with respect to the jw-axis; that is, one can write e(s) =
*m (s)m ( —,s)for some polynomial m(s) with real coefficients and with all roots in
Re [s] s O. A polynomial factorization procedure gives us m (.s).Taking into account
that e (jw) z Ofor all w, we see that the plus sign applies. Then

e(jw) =pC(–jw)pC(jw) –po(–jw)po(jw) = m(–jw)m(jw) (5.6-7)

from which

P. (–j~)pc (~w) = ~ + m(–jw)m(jw)

pO(–jw)pO(jw) pO(–jw)pO(jw)
(5.6-8)

Now p. and po are both monic, of degree n if n = dim F, So e (s) has degree at most
2n – 2, and m(s) has degree at most (n – 1). Hence m (s)/pO(s) is strictly proper.
Accordingly, there exists an n-vector d such that

m(s)
—= d’(sl – F)-lg
Po(s)

(5.6-9)

And now with Q = dd’, we recover (5.6-4) from (5.6-8). Is [F, d] detectable? Lack
of detectability would mean that m and p. have one or more common zeros in Re
[s] 20. Since m(s) has all zeros in Re [s]s O,we see that lack of detectability implies
for some w,, that po(joo) = m (jwo) = O and then from (5.6-8) pC(–jwo)p.( jwo) = O.
Since p, (–j wo) = p: (jwo), this means that p. (jwo) = O, which contradicts the as-
sumption that F + GK’ has all negative real part eigenvalues, or equivalently, pC(s)
has all zeros in Re [s] <O.

In the multivariable case, a similar argument can be given, if we agree to
represent transfer function matrices using polynomial matrix fraction descriptions.
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Associated with any controllable pair [F, G] there exists a polynomial matrix A (s)
with det A (s) = det (s1 – F) and a bi]ection H ~ BH(s) (with BH(s) polynomial)
such that

H’(sZ – ~-’G = BH(s)A “(s) (5.6-10)

We represent 1 – K ‘(.s1– F)-lG as [A (s) – B~(s)]A ‘1(s), and infer from (5.6-3) a
matrix polynomial inequality analogous to (5.6-6). We can then appeal to a factori-
zation theorem [14] to conclude a matrix version of (5.6-7). Analogues to (5.6-8)
and (5.6-9) follow straightforwardly, and finally the detectability can be checked.

In the above discussion, we assumed that [F, G] was controllable, not sta-
bilizable. The argument can be extended to cover this last case. Problem 5.6-1 sets
up the argument for the single-input case.

To conclude the argument, we need to show that if [F, G] is stabilizable and
Re hi(F + GK’) <0, and if (5.6-5) is satisfied, then K’(jcoZ – ~-lG =
~(jwZ – F)-lG, where ~’ is the optimal control gain associated with F, G, Q, and
R. Now ~ appears in a return difference equality by virtue of its optimality, and so

[Z - G’(-jwl - F’)-’K]RII - K’(jwl - F)-lG]

= [1 - G’(-jd - F’)-’~]R[l - ~’(jwl - F)-’G]

whence

R[l – K’(jwl – F)-lG][Z - ~(jcol – F)-lG]-l

= [1 - G’(-jwl - F’)-’K]-’[l - G’(-jwl - F’)-’~]R

or, after some manipulation,

R[l + (~ – K’)(jcol - F – G~)-’G] = [1 - G’(-jod – F’ - KG’) -l(~– K)]R

The left side is a transfer function matrix with all poles in Re (s)< O, the right side
with all poles in Re [s] >0. Hence each side is a constant, obtainable by setting
“=W:

R + (~ - K’)(jcol - F - G~)-’G = R (5.6-11)

If [F, G] is completely controllable, (5.6-11) implies that K = ~. Otherwise, it
implies merely that K’(sl – F)-lG = F(sZ – F)-lG.

Let us summarize what we have achieved:

Inverse optimal control problem. Suppose a quadruple {F, G, K, R} satisfies
(1) [F, G] is stabilizable; (2) Re Ai(F + GK’) < O; (3) the return difference
inequality (5.6-3) holds. Then there exists Q = DD’ with [F, D] detectable
such that the optimal control gain ~’ associated with the optimal control
problem {F, G, Q, R} satisfies ~(jwl – F)-*G = K’(jcol - F)-lG.

In the multivariable case, one can examine a more complicated problem.
Given F, G, K, one can ask if there exists a positive definite R such that (5.6-3)
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holds. There does not seem a tidy answer to this question. Problem 5.6-2 states a
necessary condition.

Main points of the section. Under assumptions of stabilizability
of [F’, G] and stability of F + GK’, satisfaction of a return difference inequality is
not just necessary but in practical terms sufficient for K to be optimal.

Problem 5.6-1. Suppose that (5.6-1) holds with [F, g] stabilizable and
F + gk’ stable. Suppose further that

with Re hi(Fz2) <0. Observe that k ‘(sZ – ~-lg = ~’(sl – F)-*g where ~’ = [k~~],
and F + g~’ is stable. Verify that there exists d with [F, d] detectable such that k is
the optimal control law associated with F, g, Q = dd’ and r = 1.

Problem 5.6-2. Show that a necessary condition for (5.6-3) to hold for some
R= R’>Oisthat

Idet [1 - K’(joZ - F)-IG]I a 1

for all w.

Problem 5.6-3. Consider two optimal control problems parametrized by F,
G, Ql, R, and F, G, Qz, R with all the usual restrictions satisfied. Suppose further
that [F, G] is completely controllable, and

G’(–d – F’)-’QI(sZ – F)-’G = G’(–sl – F’)-lQ,(sZ – F)-’G

even though QI ~ Qz. Show that the optimal control laws for the two problems are
the same. Is it possible for the optimal performance indices to be the same for all XO?

5.7 RETURN DIFFERENCE EQUALITY FOR
DISCRETE-TIME REGULATORS

In this section, we shall present the return difference equality for the discrete-time
regulator, and explain some variations that must be made to the continuous-time
robustness results (e. g., gain margin) which follow. Recall that for a problem
parametrized by F, G, Q, R, the optimal performance index is x ‘(to)Fx (tO)with
F = $ – Q, and S satisfying

S = F’{3 – SG[G’SG + R]-lG’S7}F + Q (5.7-1)

The optimal control is u * = K ‘x when

K’= –[G’~G +R]-lG’SF (5.7-2)
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Rewrite (5.7-1) as

~ – F’~F + F’$G[G’3G + R]-lG’~F = Q

or

(Z-ll - F) ’~(zl -F)+ (2-11 - F’)~F + F’S(ZZ - F)

+ F’$G[G’$G + Rj-~G’$F = Q

Now premultiply by G‘ (z ’11 – F’)-l and postmultiply by (zZ – ~-lG. There results

G’~G + G’~F(zl – F)-’G + G’(z-’~ – F’)-lF’~G

+ G’(z-ll – F’)-~F’~G[G’~G + R]-lG’~F(zl – F’-lG

= G’(z-ll –F’)-lQ(zZ –F)-lG

Now use (5.7-2):

G’SG – [G’~G + R] K’(zl – F)-lG - G’(z-’l – F’)-lKIG’~G + 1?]

+ G’(z-ll – F’)-lKIG’~G + R]K’(zZ – F)-lG

= G’(z-lz – F’)-lQ(zZ – F)-IG

or

[1 - G’(z-’l -F’) -lK][G’~G +R][I ‘~’(Zz -F)-lG]

=R + G’(z-l] –F’)-lQ(z~ –F)-lG (5.7-3)

This is the sought return difference equality. There are two differences with the
continuous-time result: –s is replaced by z‘1, which is not a surprise, and R on the
left side is replaced by G ‘~G + R, but not on the right side. This perhaps is a
surprise.

From (5.7-3), it is easy to follow the continuous-time argument to establish an
equation involving the closed-loop characteristic polynomial. Suppose p.(z) = det
(zI - F - GK’) and po(z) = det (zI - F). Then

P,(z-l)pc(z) =h(z-’)dz)det[R + G’(z-’z – F’)-lQ(zZ - F)-lG]
det [G’~G + R]

(5.7-4)

Without knowing ~, we can find pC(z) in the following way. Evaluate the numerator
on the right side of (5 .7-4). It will be a polynomial in z and z‘1 with the propert y that
if Z. is a root, so is z~l. Find all roots z, with Iz,I<1. Then p,(z)= II(z – z,).

In the continuous-time case, the return difference equality is used to infer
robustness results, especially those concerned with phase and gain margin and
tolerance of sector nonlinearities at plant inputs. The same can be done in discrete
time, but some important differences occur, For example, let us consider the gain
margin property. In a continuous-time problem, when the optimal gain K is
replaced by ~K and (3~ ~, all closed-loop eigenvalues remain stable, and one or
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more tend to infinity. In discrete time, similarly if K is replaced by (3K and 13~ CO,
one or more of the zeros of 1 – K‘ (zZ – F)-l G, which are the closed-loop eigen-
values, must tend to infinity. But in discrete time, stability is equivalent to having all
closed-loop eigenvalues inside the unit circle. This means that an infinite gain
margin result cannot be expected.

The lack of parallel is a consequence of an immediately observable difference
in the continuous-time and discrete-time return difference equalities. Consider a
single-input problem, with R = 1. Then we have for continuous and discrete time

11-k’(jcol -F)-lgl=l (5.7-5)

and, using (5.7-3),

Because g ‘~g >0, this means that the Nyquist plot of k ‘(ej”l – ~-*g avoids a
smaller circle centered at the – 1 point than does the Nyquist plot of
k ‘(jcol – F)-lg. In particular, the Nyquist plot of k ‘(ej”l – F)-lg must avoid the
interval (– 1 – -y, – 1 + y) where

(5.7-7)~ = (g’sg + 1)-”2< 1

and the gain margin has a lower limit of (1 + Y)-* and an upper limit of (1 – Y)-*.
(See Fig. 5.7-l). The point A on the circle boundary is at unit distance from the

Figure5.7-1 Circle of center – 1 + jO and radius y <1 avoided by Nyquist plot of
k’(exp (jco)2 – ~-’g.
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origin, and the acute angle between AO and the real axis defines the phase margin.
This is evidently 2 sin-] (y/2), and is smaller than 60 deg.

Most of these ideas can be found in [15], which points out that there exist
first-order systems for which the guaranteed margins are arbitrarily small. In [16], a
multivariable version of these results is discussed. More complicated formulas,
involving Q, R, F, and so forth are used to define the equivalent of y above.

Discrete-time plant models very frequently arise through discretization of a
continuous-time model. The discretization interval can be chosen by the designer. It
turns out that as the discretization interval approaches zero and the adjustments to
F, G, Q, and R are made to maintain the appropriate relationship with the continu-
ous-time model, the quantity y ~ 1; that is, the continuous-time results are
recovered. Of course, this is not altogether surprising.

Main points of the section. A discrete-time return difference
equality can be found. From the equality, robustness results, including phase and
gain margin bounds, can be derived. These are not as attractive as in continu-
ous-time, but this is to be expected, since no discrete-time system could have an
infinite gain margin.

Problem 5.7-1. Suppose that F is nonsingular. In the discrete-time regu-
lator, it is possible to construct a discrete-time Hamiltonian matrix

[
~ = F+ GR-’G’(F-l)’Q -GR(~l~(F-’)’

-(~-l),Q 1

Show that the characteristic polynomial of M is, to within multiplication by a scaling
constant, and powers of z,

det (zl –F)det (z-’] - F’)det[R + G’(z-’l – F’)-lQ(zl – F)-’G]

Hint: An intermediate result is

det (zI – M) = det
[: (F$ldet[z’;F Kllde’[i :,1
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r6
I Asymptotic Properties

and Quadratic Weight
Selection

6.1 SINGLE INPUT SYSTEMS

In this chapter, we shall address many of the factors associated with quadratic weight
selection, some of which were foreshadowed by consideration of the scalar example
of Chapter 3. A great many of the ideas are most readily approached by considering
the simpler case of single-input systems, so we begin with this case. It is very
revealing to study situations in which the ratio of state to control weighting is very
large or small, so much of our attention will be given to these situations.

Low state weighting. Consider a collection of optimization prob-
lems parametrized by F, g, r = 1, and pQ, where p is variable. (We shall be
especially interested in p- O.) Of course, we assume the usual stabilizabilityy and
detectability y conditions. Also, there is no loss of generality in taking r = 1. (Why
not?)

If the open-loop plant is stable, the control u = Owill incur a cost

/

m
pxl$ e “’QeF’ dtxo

o

which tends to zero as p+ O. So we might expect that the control gain k ~ O as
pe O. On the other hand, if the plant is unstable, we could not expect k ~ O, for

139
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then the closed-loop would be unstable for suitably small Ilk[1.To understand what
happens, consider the return difference equation

[1 -g’(-sI - F’)-’kp][l - k:(sl - F)-’g]

= 1 + pg’(–sl –F’)-’Q(sl –F)-’g (6.1-1)

With p~(s) and p,,(s) denoting the open-loop and closed-loop characteristic poly-
nomials, we know that for some polynomial q(s), even in s and nonnegative for
s =jw,

PcP(–~)PcP(~)= Po(–~)Po(~) + P9 ($) (6.1-2)

This is the relevant version of (5 .2-19). Clearly, as p-O,

PcP(–~)PcP(~)+ Po(–~)Po(~) (6.1-3)

Suppose no zero of po(s) lies on the jcwaxis. Then as p+ O, the zeros of p,,(s), which

must be stable, approach the stable zeros of po(s) and the reflection through the
jw-axis of the unstable zeros of p,,(s). If po(s) has a jw-axis zero, then p.,(s) has a zero

that approaches the zero of po(s) on the joaxis, from the left half plane. Now

PC,($1 – k;(sl – F)-’g =—
Po(s)

(6.1-4)

If pCP(s)-+ po(s), then k~(sl – F) “g - O; that is, k,- O. Otherwise, kPapproaches a
nonzero quantity, call it ko. Clearly, k. is independent of the particular Q used in
defining k, for p # O, since po(s) is independent of Q.

High state weighting. Now our interest is in letting p+ X. It is a
little easier to see what happens if we make the restriction that Q = dd’ for some
vector d. Then if we identify

m (s)
d’ (Sl – F)-lg =—

PO(S)
(6.1-5)

with degree m (s) < degree p(l(s), (6. 1-2) is replaced by

PCp(-s)PCP(s) = P(](-S)PO(S) + pm (-s)m (s) (6.1-6)

In case we do not have Q = dd’, the polynomial q (s), being even in s and non-
negative for s = jw, necessarily has a factorization q (s) = m (–s) m (s). The choice
Q = dd’ simply makes the origin of m (jw) more transparent.

Suppose that degree m (s) = 1and degree po(s) = n. It is immediately clear that
any zero of the left side which remains finite as p~ x must approach a zero of
m (–s)m (s). Hence any zero of p,P(s) which remains finite as p~ cc must ap-
proach a stable zero of m (–s)m (s). Since there are only 21zeros of m (–s)m (s), we
must expect the remaining 2(n – 1) zeros of p,p(–s)p,P(s) to become infinite.

Suppose that m( –s)rn (s) = (– 1)’as2{+ lower-order terms; note that IX>0, and
that po(–s)po(s) = (– l)nszn + lower-order terms. It follows that the zeros of
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PC,(–S)PCP(S)which tend to infinity must also tend to the nonzero roots of the
equation

(-1)% ’”+(-1)’pws”=o

or of

~2(n-o= (-1)’-’’+’P~ (6.1-7)

In summary then, as p-~, 21 zeros of p~( –s)p~(s) + pm (–s)m (s) approach
the zeros of m (–.s)m (s) and 2(n – /) zeros approach the roots of (6.1-7). The zeros
of p,P(s) tend to the f zeros of m (–.s)m (s) which have negative real parts, and the left
half plane roots of (6.1-7). The latter zeros lies in a pattern on a circle of radius

1’2“- 2’) which network theory terms a Butterworth configuration [1]. The phase(Pa) (
angles are given in the following table.

~–[=1 +18(P
~–[=z t 135°
~–[=3 ~120”,+18W
~= [=4 ~112.5°,f157.5°

etc.

Of course, if d is chosen so that d ‘(s1 – F)-lg is minimum phase, then the zeros of
m (–s)m (s) that are relevant are the zeros of m (s).

In Figure 6.1-1 we illustrate the effect of changing p from a very small value
through to a very large value. The example has

d’(sZ –F)-’g =
s+a

s’+2@+1

with the four cases

a = 0.5 ~= 0.1
a = 0.5 ~= -0.1
a = –0.5 ~= 0.1
a = –0.5 {=-0.1

Figure 6.1-1 displays the root locus for the closed-loop regulator poles as p varies
from Oto 1000. The root locus is the same for all four cases. (Why?) Notice that for
small p, the poles in all cases approximate those ofs 2+ 0.2s + 1, and for large p, one
approximates –0.5.

Pole positioning and loop gain setting via high state
weighting. High state weighting evidently provides a technique for position-
ing closed-loop poles. First, one can control up to (n – 1) poles of the closed-loop
system, by choosing Q = dd’ with the zeros of d‘ (sZ – F)- *gcoinciding with these
(n - 1) poles. Then one can choose p to move the remaining pole towards infinity,
Of course, the smaller p is, the less accurate will be the pole positioning.
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In the high state weighting case, we can obtain an approximate expression for
kPwhen d’(sl – F)-lg has left plane zeros and [F, g] is controllable, rather than just
stabilizable. [The assumption that [F, d] is detectable remains, so that if there are
pole-zero cancellations in forming d ‘(sZ – F)-lg, they are in Re [s]< O]. The
approximate expression is

k,= f~d (6.1-8)

(with f p-1’2 k,+ d as p+ w) In case d ‘g #O, the plus sign applies if d ‘g <O, and
the minus sign if d ‘g >0. Otherwise, the sign is determined by the requirement that
the zeros of 1 – k~(sl – ~-’g must be stable.

This result comes about as follows. From the return difference
have

11- k~(jcol - F)-’gl = [1 + pld’(jcol - F)-’g12]1’2

It follows as p- = that for w # cc(so that [d ‘(~wI – F)-’g I # O),

II- k~(jwl - F)-’gl = $’2 Id’(jwl - F)-’gl

equality, we

Since this can only hold if lk~(jwl – F)-lg Igrows as fast as pl’2,the following further
approximation is valid:

lk~(jwl - F)-lgl = P1’ Id’(jwl - F)-’gl (6.1-9)

This equality forces the zeros of k~(sl – F)- ‘g and d‘ (s1 – F)-lg to be related (either
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equal or reflections through the imaginary axis of one another). We now must show
that all zeros of one coincide with all zeros of the other as p+=.

Recall from the last chapter that all zeros of k~(sl – F)-lg must necessarily be
in Re [s ]s O; that is, k~(sl – F)-lg is minimum phase. Now d ‘(sZ – F)-*g is also
minimum phase. In view of (6.1-9) and the fact that both k~(jwl – F)-lg and
d ‘(sZ – F)-lg are minimum phase, it follows that both transfer functions agree, to
within a multiple *W. Then (6.1-8) follows, when we appeal to controllability y.

Cross-over frequency and closed-loop bandwidth
setting. With p large, it is also possible to obtain an approximate value for the
cross-over frequency of the loop gain k~(jcol – F’- ‘g. At high frequencies, there
holds

Ik:(jd - F)-’gl +

and so the loop gain is approximately 1 where

wl=k;g=~ld’gl (6.1-10)

Equations (6. 1-8) and (6. 1-10) provide information about shaping of the loop
gain k ‘(sZ – F)-lg in an optimal design. Choose d so that d ‘(sl – F)-lg has the
desirable shape, apart from a multiplicative gain factor. Then set p by invoking a
specification regarding the cross-over frequency, see (6. 1-10).

By way of example, consider the control of a simple harmonic oscillator

~=[-!:IX+[UU

Suppose we wish to have a single dominant pole ats = – 1 + jO. Suppose also that
we seek (and can tolerate) a cross-over frequency of about 10 rad/sec. (Thus
unstructured uncertainty ought all be confined to 10I > 10.)

We take

d’(d – F)-’g =@
S2+1

which implies that d‘ = [1 1]. Then d ‘g = 1, and (6.1-10) with W1= 10 leads to
p = 100. For convenience, we seek to minimize the index

1
V = m[U2+ 99(x1 + X2)2]dt

o

The return difference equality (in its polynomial form) yields here

pc(-s)pc(s) = (s2 + 1)(s2 + 1) + 99(-s + 1)(s + 1)

=s4– 97s2+ 100

=s4+20s2+ 100– 117s2

= (s2 + ms + 10)(s2 - ms + 10)
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Hence

1 –k’(sl –q-’g =
s*+ms+lo

S2+1

from which we derive

k’=[–9 - m]

The actual closed-loop poles are –1.02 and –9.80. The loop gain [k ‘(jd - I’-’g]
is plotted in Fig. 6.1-2. The cross-over frequency is close to 10 rad/s.

It is also possible to exercise some control over the closed-loop system band-
width by choice of p. The closed-loop transfer function is defined as

WC(S) = k~(sl – F – gkP9-lg (6.1-11)

and its bandwidth may be defined (somewhat arbitrarily) by that WOfor which

Iwc(joo)lz =+1 Wc(o)l’ (6,1-12)

We assert that W.is approximately determined as that frequency for which

iii
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Proof of this result is left to the problems. In the example above, choice of COO=10
rad/s leads to p = 100. The closed-loop frequency response is depicted in Fig. 6.1-3
and exhibits a bandwidth (3 dB cut-off frequency) of approximately 12 rad/s.

The cross-over frequency and the closed-loop bandwidth are not independent.
For a first-order system IX(S+ 111-*with associated closed-loop transfer function
a(s + p + cl-l, the open-loop cross-over frequency is CO1= ~ while the
closed-loop 3-dB frequency is a + ~. These will be approximately the same when rx.
is large. Similarly, as a rough approximation (to be checked after a design), one
could assume that with p large, there holds WI= COO.

now

1.

2.

Design insights. Some remarks pertinent to design problems are
made.

If a d can be selected to achieve (modulo scaling) a desirable open-loop
transfer function d‘ (s1 – ~-lg with left half-plane zeros, then the per-
formance index parameter Q can be taken as pdd’, with p selected as in a
subsequent remark.

A simpler approach than in the above remark is to merely select some dl such
that dl(sl – F)- *g has a desirable magnitude response. The zeros of
d;(sl – F)-lg and its phase response can be ignored, since we know that
quadratic designs with Q = pdld~ give attractive phase margins, irrespective of

,,,,,,,,,,,,,,,,,,,,,,,,,,, \
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Figure6.1-3 Closed-loopfrequencyresponse.
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the p selection, and for large p will yield a loop gain (apart from a scaling
factor) with the desired magnitude response. But, of course, we do not have
kP = * ~dl unless d; (sZ – F)-lg is minimum phase.

3. What, then, is a desirable gain characteristic shape for dj(sl – J’-lg ? The
answer is that usually something like an integrator response or a first- or
second-order bandpass filter characteristic is ideal, since such systems yield
desirable closed-loop characteristics in classical control design. Of course,
such characteristics for plants higher than second order may not be possible to
achieve, even approximately, with any d selection. There may be notches in
the high gain region indicating zeros in unfortunate locations. In such cases it
may then be possible to use the frequency shaping ideas of Chapter 9. [That is,
augment the plant with filters to achieve “nice” gain responses d~(sZ – Fa)-lgo
for the augmented plant. Here the subscript a denotes augmented matrices.]

4. After d has been set to achieve a “nice” open-loop gain characteristic shape,
how then is p selected? An initial selection can be made to aim for an appropri-
ate bandwidth for the closed-loop system. This is often roughly the cross-over
bandwidth of the open-loop system, denoted here by ~1. With such a selec-
tion, a trial design can be carried out with a view to refining the selection in
subsequent trials. If the bandwidth achieved in a trial is too low, then increase
p, keeping in mind that o, is proportional to V$.

Low control weighting. We conclude this section by making an
observation that tells us very little more about Q and R selection, but does highlight
one further property associated with high state weighting. In computing an optimal
control law, an alternative to increasing the state weighting is to decrease the
control weighting. (The optimal performance index is naturally affected. ) Let us
then suppose the index is ~Om(PU2+ x‘ Qx) dt, where we think of p going to zero.
Clearly, for fixed p the optimal control for JO”(p,u 2+ x‘ Q-x)dt is the same as that for

~; (~’+ t.-’~ ‘Qx)dt),so that all we havesaidabout the optimal control cIosed-loop
poles, loop gain and so on with high state weighting applies with p+ O, with only
unessential notational adjustment caused by replacement of p with P-l. The value
of the optimal index is, however, a different matter, Clearly, we are penalizing the
control less and less and it is almost immediate that the optimal cost x~~Pxo
decreases with p,. The question then arises: in the limit as p ~ O, wiI1 the optimaI
cost also be zero, or is there some irreducible minimum below which we cannot go?
If there are uncontrollable states, they will necessarily contribute to the irreducible
minimum of the performance, irrespective of the control signals. Let us therefore
separate out this issue by eliminating it from consideration.

Suppose that with the usual assumptions and with [F, g] controllable,

g’(–d – F’)-’Q(sl – F)-lg =
q (s) =rn(-s)rn(.$)

Po(–~)Po(s) Po(–s) ‘DO(s)
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where m(. ) is obtained by factoring q(“), and assigning all left half-plane roots to
m(.). Suppose that d is then defined from m(s) by

m(s)
d’(sz – F)-’g =—

Po(s)

We know that with Q as given, or replaced by dd’, the closed-loop poles are the
zeros of the stable polynomial P,W(S) given @

PC.(–S)PCK(S) = PO(–S)PO(S) + W-’m (–~)m (s)

and so the optimal kw is the same with weighting Q or dd’. The corresponding
Riccati equation solutions satisfy

PIPF + F’P,, – ~,,g~-lg’~lw + Q = O

P~PF+ F’~zF -1 1– +dd,=o–~2,gP g P2,

with ~lg 1-1-1= ~z~ W-l = –kp. We also know from the high state weighting result—
see (6. 1-8)—that pl’zk+~ d as p+ O. Consequently, as v ~ O, these two equations
give

~2FF+F’~2w–dd’+ Q-0

~lWF+ F’~lP~O

From the first of these limits, it is clear that if Q # dd’, then FZW74O. (Argument by
contradiction is trivial. ) The second implies ~1~-+ O, by the following argument.
Observe that ~lg = – pkw ~ – ~wd ~ O as p+ O. Multiplying the second limit
above by g yields ~lWFg+ F’PIWg + O and so PIWFg~ O. Similarly, ~l~F2g,
F1pF3g, . . . ~ O whence Pi,+ O. Hence, we conclude that if Q = dd’ with
d‘ (sZ – F)- lg possessing zeros in the left half-plane, the optimal index goes to zero
as P+ O. Otherwise, it tends to a nonzero quantity.

If we set y = d ‘x, the index is JO”(p,u 2+ y ‘y) dt. If we think of the transfer
function d‘ (sZ – F)-*g as that of a controllable plant with input u and output y, we
have argued that the cost of controlling this plant with vanishingly small control
penalty will be zero if the plant is minimum phase and nonzero otherwise.

Main points of the section. As state weighting goes to zero, the
closed-loop poles approach the stable open-loop poles or the reflections through the
jw-axis of the unstable poles. If Q = dd’ with d‘ (s1 – F)-lg possessing stable zeros,
as the state weighting goes to infinity, the closed-loop poles that remain finite
approach the zeros of d‘ (sZ – F)-’g and the remainder lie in a Butterworth pattern
on a circle with radius that grows as p1’(2”- ~ where 1, n are the numerator and
denominator degree of d‘ (sZ – F)-’g. With p large, approximate expressions are
available for the optimal gain, the open-loop response and in particular the loop
gain cross-over frequency, and the closed-loop bandwidth. If high state weighting is
replaced by low control weighting, the optimal cost tends to zero as the weighting
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tends to zero if and only if the transfer function from u to y = d ‘x is minimum phase,
where Q = dd’, and [F, g] is controllable.

The just noted asymptotic properties lead to a design approach for weighting
coefficient selection to achieve robustness.

Problem 6.1-1. Show that for any second-order single-input system
i = Fx + gu with performance index defined by r = 1 and Q a O (under stabiliza-
bility and detectability), the closed-loop poles can be determined analytically.
Suppose that det (s1 – F’) =s2+ as + b and g’(–sl – F’)-lQ(sZ – ~-lg =
(-c’s’ + d’)(s’ + as + b)-’(s2 - as + b)-’. Find the closed-loop characteristic poly-
nomial.

Problem 6.1-2. For the standard problem with Q = dd’, with d ‘(sZ – F)-lg
possessing stable zeros, define the closed-loop transfer function as

WC(S)= k;(sl – F – gk;)-lg

and its cut-off frequency by that COOfor which

]W’c(j”o)p=j Iwc(o)l’

Show that approximately (p large)
.

Id’(jtiol - F)-’gl’ = p + ~2,1~,F_,g12) (Fnonsingular)

= P-’ (F singular)

Problem 6.1-3. Consider a system

with performance index VI = ~om(U2+ x? + x:) dt

(i) Find the optimal control law

(ii) Change the index to V, = ~~ [u* + 900(x~ + x;)] dt

Determine approximately the optimal control law and cross-over frequency.
Compare the results with the actual values.

6.2 MULTIVARIABLE SYSTEMS

For a single-input system -i = Fx + gu, once the closed-loop eigenvalues of F + gk’
have been specified, there is no further freedom that can be taken up in the choice
of k. However, for a multi-input system

.i=Fx+Gu (6.2-1)

knowledge of the eigenvalues of F + GK’ does not of itself determine K uniquely.
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It is this additional freedom which, in a rough sense, lies behind the greater com-
plexity of the asymptotic properties of multivariable systems.

As in the previous section, we shall focus our attention first on low state
weighting, and then low control weighting. Throughout this section, we shall as-
sume for convenience that [F, G] is controllable, and not just stabilizable.

Low state weighting. For the problem parametrized by F, G, PQ,

R with Re Ai(F)< O, the optimal performance index, call it x&PxO, is overbounded
by the value obtained with u = O, viz.

~

z
px~ Pxo = px; eF’Qe F’ dt X.

o

(Here, P is the solution of ~F + F’~ = – Q; see Appendix A). It follows that as
p~ O, ~,-+=O. Hence K,+ O. Thus, as for the single-input case, the gain goes to
zero. Further, the return difference equality, viz.

[1 - G’(-sl - F’)-’KP]RII - K;(s1 - F)”’G]

=R + pG’(–s~ –F’)-*Q(sI –F)-lG

yields as p+ Ofors = jw

ldet [1 - KJ(jcoZ - F)-’G]I’ det R

= det [R + pG’ (–jcd – F’)-* Q(jcol – F)-lG]~det

Now

det [1 - K~(jcol - F)-’ G] =
det (jcol – F – GKj)

det (jcol – F)

So asp-+0,

det (jd – F – GKj) ~1

det (jd – F)

That is, as p~O

Pcp(–j~)Pcp(j~) ~PO(–j~)PO(j~)

(6.2-2)

R

(6.2-3)

Again, this parallels the single-input case. When p~ Othe closed-loop eigenvalues
approach the stable open-loop eigenvalues, and the reflections through the imag-
inary axis of the unstable open-loop eigenvalues. It is not hard to show that the
matrix F, defining the optimal performance index decreases with p and thus P. = ~ ~

P
~p exists. Let K.= –~oGR’1 be the associated control law. An interesting fact is
that if some of the open-loop eigenvalues are unstable, F + ~GK6 has this number of
eigenvalues on the jw-axis. (See Problem 6.2-1.)

High state weighting. As for the single-input case, when the state
weighting becomes very high, some of the closed-loop eigenvalues approach left
half-plane zeros associated with G‘ (–s1 – F’)- IQ (sl – F)-lG and other eigen-
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values become arbitrarily large. We shall consider only the most important case
here, following [2]. This is also the easiest case to grasp. For more complicated
cases, see, for example, [3].

In conjunction with each closed-loop eigenvalue, there is also a closed-loop
eigenvector. Thus if SIPis a closed-loop eigenvalue, a vector wipfor which

(Slpl- F - GK~) wip= O (6.2-4)

is the associated eigenvector. Then if wip is the initial state for the closed-loop
system i = (F – GKP’)x, the response will be exp (~ipt)wip.One practical conse-
quence of this is that if wiphas a zero entry in some position, the response retains a
zero entry for all time in this position. Suppose F is n x n and G is n x m. If m = 1,
specification of SIP,. . . . S.P alone determines the gain vector kP and (apart from
pathological situations) the eigenvectors. But if m >1, K, is not fully determined
and neither are the eigenvectors. Thus they become more important in the multiple
input case, since they carry additional degrees of freedom. Hence in the following
material, we shall focus attention not just on the closed-loop eigenvalues but also on
the closed-loop eigenvectors. A later example will illustrate their importance in
design.

Let us now adopt the following assumption.

Assumption 6.2-1

The weighting matrix is pDD’, where D is m x n with D ‘G nonsingular, and the zeros
of det D ‘(sI – F)-l G are distinct, have negative real parts, and differ from the eigen-
values of F.

In the single-input case, much of our discussion focused on the case where this
assumption held. This assumption underpins [2]. We shall now summarize (without
proof) two key results set out with supporting arguments in [2].

Finite eigenvalues and eigenvectors. The first main result
concerns the finite closed-loop eigenvalues and associated eigenvectors: as p~ CO,
there are (n – m) eigenvalues of the closed-loop system sip which approach the
n – m zeros of det D ‘(sZ – F)-lG. Call these zeros s?. The associated close-loop
eigenvectors ~ipapproach limits defined by

x) = (s)1 – ~-*Gv~ (6.2-5)

where v: is a null-vector of D ‘(s!l – F)-lG:

D’(sfl – F)-lGv) = O (6.2-6)

Note the immediate implication, holding for all i:

D’X[=O (6.2-7)

Of course, the v! and x: are defined only to within scaling constants. We show below
that given a list of sf and m-vectors v:, i = 1, . . . . n – m (and if a complex S: occurs,
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so must its complex conjugate, and similarly for v: ), then one can find a D satisfying
the requirements of the assumption. Thus via choice of D, we have approximate
control (approximate because we never set p = m) over (n – m) closed-loop eigen-
values, and some control over the associated eigenvectors [through (6.2-5)]. A later
example will show how we can exploit this element of choice in the eigenvectors.

The actual construction from prescribed SI and v: of a D to satisfy (6.2-6) is
easy. Suppose that with x; defined by (6.2-5),

[1[x:xi’. ..m]=x]l=Tl=T zo

where T is nonsingular n x n and the identity matrix is (n – rn) X (n – m). (In case
XO, which is n X m, has rank less than m, a corresponding change can be made.)
Then, to secure D ‘XO= O, clearly we can use

where * is an arbitrary (m x m) matrix.
Evidently, there are (m x m) degrees of freedom in D. This is what one

should expect from (6. 2-6) and (6.2 -7)—premultiplication of D‘ by any constant
nonsingular m x m matrix will leave the equation unaltered.

Unbounded eigenvalues and their eigenvectors. The
second main result culled from [2] concerns the closed-loop eigenvalues, which
become very large as p+ w: as p+ w, there are m eigenvalues s,, which approach
quantities W s,=and associated closed-loop eigenvectors ~jpapproaching limits

“=Gv;xl (6.2-8)

where in turn the s,’ and v,”satisfy the generalized eigenproblem

[(s,”)2R -G’DD’G]v~=O j=l, . . ..m (6.2-9)

Normally, one would think of (6.2-9) as determinings; and v;, given R, G, D. But
one could turn the idea around. Having selected D, one could seek to select R to
secure desired s,’ and v,’. In case all s,” are different, it turns out that there is a
unique positive definite R satisfying (6.2-9) if and only if v,”’G ‘DD’ Gv,” = Ofor all
i # j (see Problem 6.2-3). In case all s,” are the same, then R = G ‘DD ‘G works and
the v, span m-space. In case two or more s,” are the same, in-between cases result.

Of course, once Q and R are selected, there remains the task of selecting p. In
this connection, we note the following facts—see, [4]—for example, paralleling
results already stated for the single-input case:

1. (Asymptotic behavior of K,):

for some orthogonal W.

(6.2-10)
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2. (Asymptotic singular value behavior)

U,{R1’2[1– Kj(jcol – F) - lG] R ‘1’2}

= {Ai(l + pR-’’2(’jcoIoI - F’)-lDD’(jcol - F)-’GR-’n}2’2

-+~U,[D’(j(OZ - F)-1GR-1’2] (6.2-11)

3. (High frequency behavior of loop gain)

K’G P112R-1[2WD‘G
Kj(jwl – F)-lG~~=

JO jti
(6.2-12)

4. (Cross-over frequency)

w,= p“2i7 [R-’’2WD ‘G] (6.2-13)

Naturally, when R is a multiple of the identity, simplifications accrue above.
Note in particular that the matrix W drops out of (6.2-13).

Example. We shall now look at an example, drawn from [2]. The lateral axis
dynamics of an aircraft are

a?= Fx+Gu

where

[

–0.746
0.024

F= 0.006
1

I o
0

stability axis roll rate
stability axis yaw rate
sideslip angle
bank angle
rudder deflection
aileron deflection

[1[
8 rudder commandu= ,. =

8 ac aileron command 1

0.387 –12.9 o 0.952
0.174 4.31 0 –1.76
0.999 –0.0578 –0.0369 0.0092

0 0
0 0
0 0

G.

o 0
0 – 10
0 0

‘o o“
00
00
00
20 0
0 10.

6.05
0.416
0.0012

0
0

–5
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The last two rows and columns of F capture the actuator dynamics.
The desired finite asymptotic eigenvalues sf available from a specification are

s! Roll subsidence mode –4.0
sj, S$ Dutch roll mode –0.63fj 2.42
s: Spiral mode –0.05

The roll subsidence mode should show up as little as possible in the state elements
yaw rate and sideslip. Why? Imagine a correction requiring roll of the aircraft. Then
we do not want to introduce yaw or sideslip in making the correction. This suggests
that we desire (with * denoting don’t care)

X!=[l o 0 * * *]’

We would expect that the bank angle will change, as well as at least one of the
actuators functioning when the aircraft rolls. So we would expect at least two of the
don’t care entries to end up nonzero. Similarly, physical considerations suggest that
it is desirable if the Dutch roll mode (which is oscillatory) not show up in the state
elements’ roll rate or bank angle. The spiral mode should show up primarily in the
bank angle, and not in the side slip. Allowing for normalization of the eigenvalues,
we find that this implies

X;= Y;=[O “+jl l+j” O * *]’

or

Rex$=[O 1 * O * *]’

Imx$’=[0 * 1 0 * *]’

Also
x:= [* *01**’ 1

In the case of a real vector like x) we proceed as follows. Let y! denote the subvector
of x! formed by deleting the don’t care entries, and let A ~ denote the rows of
(s/1 - F)-*G obtained by retaining the same rows as the entries of x! used to form

Y;. Then we desire A ~vf = y!. If this is not exactly achievable, then we choose v? to
secure a best fit, that is, minimize IIy! – A ~v~llz.Thus

In the case of a complex vector like x}, let y) and y$ be formed from Re X! and Im x)
just as y! was formed from xf’. Let A! and A! denote the corresponding (complex)
submatrices of (sjl – F)-lG. Then

v! = (A$* A~)-l A)*yj + j(A$’*A$)-l A~*y$

v: = ~:

Note that in x: only two entries are constrained. Hence we would expect that by
choice of v} (which is a 2-vector) we should be able to actually attain this x$.
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However, there are more than two constraints with x!, and so one could not a priori
expect they will be met.

When the v? are chosen in this way, the actual x! = (sf 1 – F)-*Gv/’ which are
secured are

x:= [1 –0.007 o -0.25 0.13 –0.56]’

X$J=Y$=[O 15.6 1 0 7.88 –0.103]’

+j[o 1 6.16 0 –9.49 14.6]’

Xf = [–0.05 0.037 0 1 –0.0014 -0.0079]’

It can be seen that the differences with the desired eigenvectors are not great.
The matrix D can now be found to satisfy Equation (6.2-6), or equivalently

(6.2-7 ),viz. D’x} = O,i =1, . . . . 4. Utilizing the 2 x 2 freedom in D to force the last
two columns of D‘ to be the identity, we find

D,=
[

–0.131 –0.612 1.64 0.0175 1.0 0
0.567 0.160 –2.39 0.0303 0 1.01

This choice of normalization of D implies that D‘ G is diagonal:

[1
20 0

“G= o 10

The remaining two closed-loop eigenvectors are associated with the large p
modes. These eigenvectors necessarily lie in the range space of G—see (6.2-8). As
such, they are intimately associated with the operation of the actuators, both for this
problem and in general. In this problem, the bandwidth of the actuators is explicitly
displayed in the F matrix, as 10 and 5 radls. Now with control, the associated modes
will be ~s: and V$s;. It may make sense to chooses; ands; in the ratio 2:1, and
then later to adjust p so that the actuator bandwidths are comfortably employed.
Accordingly, set SY= 1,s; = 0.5. It also makes sense to associate x;, X; with each of
the two actuators, so that X7= [0 O 0 0 1 O]’, x;= [0 O 0 0 0 11.
Appeal to (6.2-9) and the evaluation of D ‘G above shows that

‘=[4Y:01
satisfies (6.2-9).

The final step in the design is to choose p. A reasonable choice turns out to be
p = 400. (This apparently doubles the actuator bandwidths, which are %$s~ and
V’&:, and ~s, but as explained in [2], there is some conservativeness in the use of
the earlier bandwidths of 10 and 5.)

When the transient responses are examined, the various transients all display
at least qualitatively the desired decay rate and cross-coupling characteristics.

The feedback gain matrix turns out to be

K;=–
[

–0.132 –0.882 1.576 0.026 0.681 –0.026
0.524 0.420 –2.827 0.021 –0.013 0.8601
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In this case P-12R‘2 = 1, and formula (6,2-10) is approximately verified with W = I:

Kp’==D’

The cross-over frequency predicted from (6.2-13) is col= 20.

Low control weighting. We shall conclude this section by com-
menting briefly on the problem where V = JO”(PU ‘Ru + x‘ Qx) dt and p ~ O. Obvi-
ously, the optimal gain is the same whether R is replaced by pR or Q is replaced by
pQ with p = ~-1. What of the optimal performance index X(~WXO?Suppose that
Q = DD’. In [5], the following results are stated. They generalize the results for
single-input plants. See also [6].

1. If dim D ‘x > dim u (more outputs to control than inputs), then li,r&#o.

2. If [F, G] is controllable, if dim D ‘x = dim u, and if det [D ‘(.s1– ~-lG] is not
identically zero and has all its zeros in Re [s] <0 (minimum phase assump-
tion), then li~ P* = O.

3. If [F, G] is controllable, if dim D ‘x < dim u, and if there exists M such that
D‘ (s1 – F)GM is square, and has a determinant that is not identically zero
with all zeros in Re [s] <0 (plant can be squared down to minimum phase),
then li~ Fw= O.

Not surprisingly, as the control weighting tends to zero, signals can get arbi-
trarily large. More precisely, near t = O,x (t) will be at least discontinuous and may
contain an impulse, doublet, and so on while u(t) contains an impulse, or may
contain a doublet, triplet, and so on, see for example [6] for a discussion.

Main points of the section. With low state weighting, multiple-
input plants behave like single-input plants: closed-loop eigenvalues are made up of
the stable open-loop eigenvalues and reflection through the imaginary axis of the
unstable open-loop eigenvalues. With high state weighting, closed-loop eigenvalue
behavior is similar to that for single-input plants. In addition, there is some control
over the closed-loop eigenvectors. The closed-loop eigenvalues that are asymp-
totically infinite and the associated eigenvectors are affected by both p and R. The
low control weighting result mimics the single-input case; the optimal cost is only
zero when a minimum phase “plant” is being controlled,

Problem 6.2-1. Consider the optimal control problem parametrized by 11 G,
pQ, R with F possessing one or more eigenvalues in Re [s]> O. Let ~P, KP be the
associated Riccati equation solution and optimal gain, and let FO,KObe the limits
as p~ O. Show that F + ~GK6 has a pure imaginary eigenvalue. (Assume for con-
venience that F + ~GK~ is diagonalizable. ) [Hint: Start with the identity
F,(F + ~GK;) + (Ff +; KPG’)PP+ pQ = 0.]
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Problem 6.2-2. Consider the optimal control problem with ~ G, pQ, R with

[1
~= F, O

0 FZ

where F, has all eigenvalues in Re [s] <0 and Fz has all eigenvalues in Re [s]> O.
Show that l~ir ~p is of the form

and that ~fil satisfies a linear equation. [Hint.’ Find an equation satisfied by pm and
verify that the form given satisfies the equation and ensures that F – GR ‘*G ‘POis
stable.]

Problem 6.2-3. Consider the equation

[(s~)2R -G’DD’G]v~=0 j=l, . . ..m

in which D‘ G is nonsingular and m x m, the s,? are distinct, and the vj” are
independent. Show that there exists a unique R = R‘ >0 satisfying this equation if
and only if (v:) ‘G ‘DD ‘Gv,m= O for all i #j. [Hint (only if): Premultiply the ith
equation by’ v,%’and postmultiply the jth by VT. Hint (if): Show the equation is
equivalent to RVS = (G ‘DD ‘G)V, where S and V ‘(G ‘DD’ G)V are diagonal.]

6.3 FURTHER ISSUES IN C?,F?SELECTION

In the preceding two sections, we have given a number of insights into Q, R
selection. In particular, we have indicated how some control of closed-loop eigen-
values, eigenvectors, and bandwidth can be exercised. The benefits of choosing R
diagonal, and even as a multiple of the identity, have been mentioned. We shall now
record a number of miscellaneous points that can also be borne in mind. Four
preliminary qualifying remarks ought, however, to be made.

1.

2.

3.

4.

Designers need to be prepared to combine Q, R selection with iteration. The
translation of specifications into Q, R selection is imprecise, and so often
initially chosen Q, R may be inappropriate.

Selection of Q, R may interact with the state estimator design process. This
course will be addressed in Chapter 8.

It is possible to use Q and R that are frequency dependent as we discuss in
Chapter 9. This provides another degree of freedom again for the designer,

It is generally advisable to describe the plant with a state space coordinate
basis in which individual entries of the state vector have physical significance.
Then the choice of Q, R entries is more readily reflective of physical insights,
especially if diagonal Q, R are used. Moreover, if scaling of each variable can
be used so that all are expressed in the same units, rather than one being in
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millinewtons and another in kilonewtons, or even as dimensionless quantities,
so much the better.

Limiting the magnitude of key variables. Specifications
may impose limits on the excursions of a control in bringing certain nonzero states
to zero. Specifications may also limit the mean square excursion of state vector
entries under certain noise excitations, or the maximum excursion of one state
vector entry during the control of another. The general principle is: when a variable
of interest takes too high a value in a trial design, increase the weighting given to it
in the performance index. Thus if R = dlag (rl, rz, . . , r~) and U2is taking too great
a value, then rz is increased. Or if Q = dd’ and X3is taking too great a value, .x’Q-xis
replaced by x ‘dd ‘x + cut for some positive a.

Generally speaking, if one variable is penalized this way, there is a corre-
sponding reduction of penalty on the other variables, and the excursions of these
other variables may become correspondingly greater. If state entry .q is directly
affected by control uj, one should certainly expect increased weighting on ~i to cause
greater excursions of Z.fj.

In reference [7], the following variant on these ideas appears. For a finite-time
problem over the interval [10,T], choose Q, R diagonal with the ith diagonal entry
of Q-l as n (T – to) times maximum acceptable value of x? (t) and the ith diagonal
entry of R‘1 as m (T – to) times maximum acceptable value of u;(t); the matrix A
weighting the terminal state is diagonal, with ith diagonal entry as n times maximum
acceptable value of xj (tf); here, the dimensions of x and u are n and m, respectively.
For an infinite time problem (with no A terminal weighting present), one would
choose Q, R the same way, neglecting the common factor (T – to).

Dealing with variable input cross-coupling in a multi-
input system. Suppose that the nominal plant is

.i=Fx+Gu (6.3-1)

but G can be varied to GL, where

[1
L=IX

01
(6.3-2)

for some X about which we have little information. However, the uncertain input
cross-coupling is known to occur only from input block 2 to input block 1, Recall
from Chapter 5 that if a design is executed for the nominal plant, with

[1~=Rl O
0 R2

then stability is retained when G varies to GL if

(6.3-3)

k~in(R2)
52(X)<

k~,X(Rl)
(6.3-4)

Greater tolerance of X will be achieved if eigenvalues of R2 are increased and
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eigenvalues of RI are decreased. The effect of such changes in RI, Rz is to more
heavily penalize U* (weighted by Rz) than UI (weighted by Rl). Since the cross-
coupling is Xuz, the amount of cross-coupling signal will be reduced if X is kept the
same, and this provides a qualitative justification of (6.3-4). There is an important
principle here, which we separately enumerate.

Dealing with uncertain parameters in the plant. In the
discussion above, we arrived at an adjustment to R which increased the penalty on
the term providing the input to the uncertain parameter (here the term X). Gen-
erally speaking, this is a sound procedure to cope with any uncertain parameters.
Thus if a particular entry, j, say, of the F matrix is likely to be highly variable, we
can increase the penalty on x: in the index. The result should be that the signal f,
x,(t) becomes smaller in magnitude, and so the perturbations introduced by varying
fi, will become smaller also. This idea is not, however, a universal panacea.
Consider, for example, a single-input plant in which only the first entry gl of the
g-vector is variable. Increase of the control weighting will have a number of addi-
tional consequences that may not be attractive. Nevertheless, a successful ap-
plication of this idea arises in an example included in a problem of Chapter 5. The
dant is.

with performance matrix V = JO”[ruz(t) + (xl + X2)2]dt. Of course, E represents
uncertainty, and we can assume that Iels EOfor some positive so, with &otherwise
unknown. Design is achieved with E = O. It turns out that for any Eo,there exists an
r. such that if r < ro, the closed-loop system will be unstable when &= – Ea. The
solution is simply to keep the control weighting large enough.

A second interesting example appearing in [8] applies some of these ideas to a
pitch-axis control system for a high-performance aircraft. The plant equations are
third order and linear, but contain parameter variations arising from different
dynamic pressures. With

xl = angle of attack
X2= rate of pitch angle
X3= incremental elevator angle

and u = control input into the elevator actuator

the state equations are

I–0.074 1 –0.012

1[1

o
~= –8.0 –0.055 –6.2 X+o u

o 0 –6.6667 6.6667

for a dynamic pressure of 500, whereas for a dynamic pressure of 22.1, they become

[

–0.0016 1.0 –0.0002

1[1

o
~= –0.1569 –0.0015 –0.1131 X + O u

o 0 –6.6667 6.6667
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The performance index minimized is ~,~ (U2+ x‘ Qx) dt for two different matrices
Q—viz.,

Q=r! i!’ ;1 and Q2=Pxr 4:’05 !

Two optimal control laws u = k;x and u = kix are calculated, based on the first state
equation in both cases, and on performance indices including Q1 and Qz, respec-
tively. The control laws are then used not just for the first state equation (for which
they are optimal) but for the second state equation, for which they are not optimal.
The following table summarizes the results achieved; the sensitivity improvement
refers to the sensitivity in xl.

State Equation Control Law Step Response Sensitivity Improvement

First k, Very good Moderate
Second k, Very poor
First k, Good Huge
Second k, Acceptable

The weighting Qz penalizes xl, X2much more. These are the inputs driving~l Ixl, ~21xl
and fzzx2, all variable on account of the high variability of fll, f21, and f22. Even
though f,s and fzs are highly variable also, suggesting that X3might be more heavily
weighted, this does not prove necessary.

Use of a root locus. In the previous two sections, we have suggested
approaches for choosing R and Q with a scaling factor p on Q being introduced near
the end of the procedure. It is common for designs to be evaluated with a range of
values of p before one is settled on; a root locus of the closed-loop eigenvalues can
be generated, and, as earlier noted, p can be used as a direct control over band-
width. The point is that trial and error selection of a single scalar parameter is a
comparatively straightforward exercise.

Incidentally, theory implies an indirect loose control over bandwidth in the
following way. Observe (in the usual notation) that

2 Ai(F+ GK’) = trace (F + GK’)

= trace F – trace (GR-lG’~)
(6.3-5)

– trace F – trace (R- ’12G‘FGR ‘1’2)—

<2 A;(F)

So the center of gravity of the closed-loop eigenvalues must always move left from
the center of gravity of the open-loop eigenvalues. One can also show (see Problem
6.3-1) that

IIIL;(F + GK’)1 a II\ki(F)l (6.3-6)
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Both (6.3-5) and (6.3-6) crudely suggest that the bandwidth is pushed out when the
loop is closed.

Setting an internal time constant. Suppose that within the
state vector x there are two components xl and x2, with il = X2.Suppose also that in
the closed-loop control situation, we should like to have a time constant governing
decay in xl of approximately T. Then inclusion of a term P(X: + ~x~) tends to pro-
mote this. To understand why this might be so, consider an index

m
V = ~ [U2+ P(X? + T2X;)] dt

o

We shall have

::1

a,(s)
set,(s)

(Sl - F)-’g = det ~s: _ ~, .

for a certain polynomial al(s), and so, with

Q ‘diag[l, T2,0, . . .]

g’(–sz – ~’)-lQ(~z _ ~)-lg = %(-S) al(S) (-S2T2 + 1)
PO(–S)PO(S)

As p~ w, one of the closed-loop eigenvalues will approachs = –T-l, since this is a
root in Re [s]< Oof al( –S)al(S)( –S2T2+ 1). Now notice that if Q were replaced by
dd’ with d chosen so that

d’(sl – F)-lg =
flI(S)(ST + 1)

Po(s)

We obtain the same closed-loop control law, since g ‘(–sZ – F’)-*Q (sZ – ~-lg is
unaffected by this change. Observe that d ‘x = xl + TX2. So we will get the same
control law as if we were using the index

cc
V = ~ [U2 + P(XI + TX2)2] dt

o

For large p, this will encourage x, + 7X2to be small, that is, xl + Til to be small. This
is like saying that xl roughly acquires a decay with time constant T.

An alternative approach to securing certain transient behavior of a particular
variable is the following. Suppose that one seeks to have y = h ‘x behave like j =
– ay for a certain a. Then one can incorporate an additional term like p~ + ay)z in
the index. If h ‘g = O, this amounts to an adjustment of Q, since

P@ + ~y)’ = p[(h ‘F + ah ‘)x]*

and so Q is increased by p(F ‘h + cih)(h ‘F + ah ‘). On the other hand, if h ‘g # O
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then y +ciy is of the form h’x+(h’g)u. On adding the further term to the
performance index, onethen loses thestructure of theperformance index as the
sum of two terms, one penalizing control and the other penalizing state, since a
cross-product term enters. Such terms can destroy robustness properties.

Control of integral squared error. Suppose one has desired
values for Jo=X;(t) dt and ~Omu; (t)dtfor a standard initial condition, these quantities
being associated with the closed-loop system. One rule of thumb is

1. Select Q as diagonal, with elements equal to the inverses of the desired
integral squared state responses.

2. Select R as diagonal, with elements equal to the inverses of the desired
integral squared input responses.

This is indeed crude. Consider the scalar system i = bu, with V = ~~ [ruz + qx’] dt,
b #O, r >0, q >0. LetxO= 1. Suppose one desires ~~x’dr = p,, ~~ u’df = u. The
rule suggests q = p-l, r = U-l. The actual values turn out to be

There is nevertheless some rationale for this choice. Recall, or recognize (some
computation is required) that the optimal u and x lead to

J

.

/

.
ru’dt = qx2 dt

o 0

Therefore, if

so that

this identity forces

~

.
–1—

q– X2dt
o

1

.
qx’ dt = 1

0

1

.
ru’ dt = 1

0

or

In other words, the Q selection having been made in accord with rule 1, rule 2 is
forced by the problem structure.
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Real part pole-placement by C?,m selection. It turns out
to be possible to position individually and arbitrarily the real parts of the poles of an
optimal LQ system where there is also a selection of the prescribed degree of
stability variable U. Reference [9] introduces and develops results on this topic. The
approach requires evaluation of a collection of solutions of the steady state Riccati
equation, rather than the single solutions we have used up to now. The additional
solutions are used to perturb the Q matrix at the same time as the F matrix is
perturbed by addition of d (to enforce a degree of stability constraint). The net
effect is to move a nominated subset of the original closed-loop eigenvalues to the
left by an amount a.

Main points of the section. The choice of Q, R can be governed
by the following factors:

desired closed-loop eigenvalues, eigenvectors, and bandwidth

choosing R diagonal to secure robustness properties

the magnitude of key variables

input cross-coupling

uncertain plant parameters

insight provided by a root locus

setting of an internal time constant

control of integral squared error

pole-placement

Problem 6.3-1. With the usual notation, show that

~lhf(F + GK’)1 > Hlhi(F)l

[Hint: Consider a return difference inequality fors = O, and take its determinant.]
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State Estimator Design

7.1 THE NATURE OF THE STATE ESTIMATION
PROBLEM

The implementation of the optimal control laws discussed hitherto depends on the
states of the controlled plant being available for measurement. Frequently, in
practical situations, this will not be the case, and some artifice to get around this
problem is required. Before outlining the various approaches that may be used,
let us dismiss upon practical grounds one “theoretically” attractive state estimation
procedure.

Given a completely observable system, the state vector may be constructed
from linear combinations of the output, input, and derivatives of these quantities, as
we now show. Consider for simplicity a single-output system: thus,

i= Fx+Gu

~=h’x

Differentiation of (7.1-2) and substitution for ~ from

y–h’Gu=h’Fx

(7.1-1)

(7.1-2)

(7.1-1) leads to

(7.1-3)

Differentiating again, and substituting again for i, we get

y–h’Gu–h’FGu=hrF2x (7.1-4)

164
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Continuing in this way, we can obtain a set of equations that maybe summed up as

!1
~,

h ‘F

*=” X

~tp-1

or

z’=~’[~ F’h . . . (F’)n-lh] (7.1-5)

with z‘ a row vector, the entries of which consist of linear combinations of y, u and
their derivatives.

Now one of the results concerning complete observability is that the pair
[~ H] is completely observable if and only if the matrix [H F’H ““. (F’)n - ‘H] has
rank n. (See Appendix B. ) In the scalar output case, the matrix [h F’h . . . (F’)n - lh ]
becomes square, and thus has rank n if and only if it is nonsingular.

Therefore, with the system of (7. l-l) and (7.1-2) completely observable, Eq.
(7. 1-5) implies that the entries of the state vector x are expressible as linear combi-
nations of the system output, input, and their derivatives.

From the strictly theoretical point of view, this idea for state estimation works.
From the practical point of view, it will not. The reason, of course, is that the pres-
ence of noise in u and y will lead to vast errors in the computation of x, because
differentiation of u and y (and, therefore, of the associated noise) is involved. This
approach must thus be abandoned on practical grounds.

However, it maybe possible to use a slight modification of the preceding idea,
because it is possible to build “approximate” differentiators that may magnify noise
but not in an unbounded fashion. The rate gyro, normally viewed as having a trans-
fer function of the form Ks, in reality has a transfer function of the form lGzs/(s + a),
where a is a large constant. Problem 7.1-2 asks the student to discuss how this trans-
fer function might approximately differentiate.

Generally speaking, a less ad hoc approach must be adopted to state esti-
mation. Let us start by stating two desirable properties of a state estimator (also
known as an observer).

1. It should be a system of the form of Fig. 7.1-1, with inputs consisting of the
system input and output, and output x,(t) at time t,an online estimate of x (t).
This should allow implementation of the optimal control Iaw u = K’x,,
according to the scheme of Fig. 7.1-2. (A variation on this approach is to seek

- estimator.
Figure7.1-1 Desiredstructureof
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Y
i= Fx+Gu, y=H’x

+

Xe ~

K’ 4 Estimator

4

Figure7.1-2 Useofestimatorin implementinga controllaw,

only an estimate of K ‘x, this being merely a linear function or collection of
linear functions of the states, rather than the full state vector x. )

2. It should function in the presence of noise. Preferably, it should be possible to
optimize the action of the estimator in a noisy environment—to ensure that
the noise has the least possible effect when the estimator is used in connection
with controlling a system.

As we shall show, these properties are both more or less achievable. Estima-
tors designed to behave optimally in certain noise environments turn out to consist of
linear, finite-dimensional systems, if the system whose states are being estimated is
linear and finite-dimensional. Moreover, if the dimensions of the system whose
states are being estimated and the estimator are the same, and if the system whose
states are being estimated is time-invariant and the associated noise is stationary,
the estimator is time-invariant. Also, all these properties hold irrespective of the
number of inputs and outputs of the system whose states are being estimated.

A further interesting property of such estimators is that their design is inde-
pendent of the associated optimal feedback law K‘ shown in Fig. 7.1-2, or of any
performance index used to determine K‘. Likewise, the determination of K‘ is
independent of the presence of noise, and certainly independent of the particular
noise statistics. Yet, use of the control law u = K ‘x, turns out to be not merely
approximately optimal, but exactly optimal for a modified form of performance
index. This point is discussed at length in Chapter 8.

If satisfactory rather than optimal performance in the presence of noise is
acceptable, two simplifications can be made. First, the actual computational proce-
dure for designing an estimator (at least for scalar output systems) becomes far less
complex. Second, it is possible to simplify the structure of the estimator, if desired.
In other words, the designer can stick with the same estimator structure as is used
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for optimal estimators (although optimality is now lost), or he or she may opt for a
simpler structure. In general, the estimator with simpler structure is more noise
prone. The nature of the structural simplification is that the dimension of the esti-
mator is lowered. Even with full state estimation, the dimension can be lowered by
one for a single-output system and sometimes by a larger number for a multiple-
output system. With estimation of K ‘.x, further dimension reductions may be
possible.

Because they are simpler to understand, we shall discuss first those estimators
that are not designed on the basis of optimizing their behavior in the presence of
noise; this class of estimators maybe divided into two subclasses, consisting of those
estimators with the same dimension as the system and those with lower dimension.
Then the class of estimators offering optimal noise performance will be discussed.
The next chapter will consider the use of estimators in implementing control laws,
and the various properties of the associated plant-controller arrangement.

One point to keep in mind is that the output of the estimator at time t, x,(t), is
normally an estimate rather than an exact replica of the system state x (t), even when
there is no noise present. In other words, no estimator is normally perfectly accu-
rate, and thus feedback laws using an estimate rather than the true state will only
approximate the ideal situation. Despite this, in many cases little or no practical
difficulty arises in controller design as a result of the approximation.

Main points of the section. There is a need for state estimators
that yield estimates of a system state without recourse to differentiation. There can
be a trade-off in the design between noise filtering performance, performance in the
absence of noise, and estimator complexity.

Problem 7.1-1. In what sense can the transfer function Ks be approximated
by the transfer function Kas /(s + a)? What is the significance of the size of a?

Problem 7.1-2. Show that the circuit of Fig. 7.1-3 can be used as an approxi-
mate differentiator. Discuss the effect of noise in ei.

o I

Iei e.

o 1 0 Figure7.1-3 Circuitfor Problem 7.1-2.
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7.2 DETERMINISTIC ESTIMATOR DESIGN

In this section, we will first consider the case of deterministic estimator design with
estimator dimension equal to that of the plant. Next, the design of reduced order
estimators, exploiting the outputs as state information, is studied.

Full-order estimator design. We consider the design of esti-
mators for systems of the form

i= Fx+Gu (7.2-1)

~ =H’x (7.2-2)

We assume that 5 G, and H are time-invariant, although it is possible to extend the
theory to time-varying systems. The estimators will be of the general form

X, =Fcxe + Gl, u + Gtiy (7.2-3)

with F, of the same size as F. Equation (7.2-3) reflects the fact that the inputs to
the estimator are the input and output associated with Eqs. (7.2-1) and (7.2-2),
hereafter called the plant input and oufput. The estimator itself is a linear, finite-
dimensional, time-invariant system, the output of which is the estimated state vec-
tor of the system.

Before we give a detailed statement specifying how to choose Fe, Gle, and GZ,
it is worthwhile to make two helpful observations:

1. It would be futile to think of constructing an estimator using (7.2-3) if the plant
equations (7.2-1) and (7.2-2) did not define a detectable pair [F, H], because
lack of complete detectability implies the impossibility of determining, by any
technique at all, the state of the plant from the plant input and output.
Actually, if there is lack of observability we cannot determine the entire state
either. But under a detectabilityy assumption, we are assured that the indeter-
minable part of the state will decay to zero under zero input conditions.

2. One might expect the estimator to be a model for the plant, for suppose that at
some time to, the plant state x (to) and estimator state xc(to) were the same.
Then the way to ensure that at some subsequent time xc(t) will be the same as
x(t) is to require that the estimator, in fact, model the plant as

i, = Fx. + Gu (7.2-4)

Clearly, though, Eq. (7.2-4) is not satisfactory if Xc(to)and x (to)are different.
What is required is some modification of (7.2-4) that reduces to (7.2-4) if X,(to) and
x (to) are the same, and otherwise tends to shrink the difference between x,(t) and
x(t) until they are effectively the same. Now we may ask what measure we could
physically construct of the difference between x, (t)and x (t).Certainly there is no
direct measure, but we do have available H ‘x, and therefore we could physically
construct H‘ [x,(t) – x(t)]. It is to be hoped the complete observability of the plant
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would ensure that, over a nonzero interval of time, this quantity contained as much
information as x, (t) – x(t).

These considerations suggest that instead of (7.2-4), we might aim for

& =Fx, + Gu +KCH’[X, –x] (7.2-5)

as an estimator equation. This scheme is shown in Fig. (7.2-l). The equation has the
property that if x and x, are the same at some time to, then they will be the same for
all t 2 to,the third term on the right-hand side being zero for all t.Furthermore, it
has the property that possible judicious selection of Kc—that is, judicious intro-
duction of a signal into the estimator reflecting the difference between H ‘x, (t) and
y(t) = H ‘x(t)-may ensure that the error between x, (t) and x (t) becomes smaller as
time advances. Let us now check this latter possibility.

Subtracting (7.2-5) from (7.2-l), we find that

$(x -x,) =F(x -x,) +K.H’(x ‘Xc)

=(F+KcH’)(x -x.) (7.2-6)

follows. Consequently, if the eigenvalues of (F + K. H‘) have negative real parts,
x – x. approaches zero at a certain exponential rate, and x,(t) will effectively track
x(t) after a time interval determined by the eigenvalues of F + KcH’.
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Figure7.2-1 Estimator,illustratingplantmodelconcept.
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Let us recapitulate, We postulated the availability of the input and output of
the plant defined by (7.2-1) and (7.2-2), together with complete detectability of the
plant. By rough arguments, we were led to examining the possibility of an estimator
design of the form of Eq. (7.2-5), which maybe rewritten as

& ‘(F+ &H’)x. + Gu ‘&y (7.2-7)

[Figure 7.2-2 shows how this equation can be implemented.] Then we were able to
conclude that if K, could be chosen so that the eigenvalues of F + K. H‘ had nega-
tive real parts, Equation (7.2-7) did, in fact, specify an estimator, in the sense that
x, – x approaches zero at some exponential rate. Note that at this stage, we have
not considered any questions relating to the introduction of noise.

The natural question now arises: When can K, be found so that F + K. H‘ has
all eigenvalues with negative parts? The answer is precisely when the pair [~ H]
is completely detectable; see Appendix B, If the stronger condition that [F, H] is
completely observable is fulfilled, then the eigenvalues of F + K, H‘ can be arbi-
trarily positioned by choice of K,. In the detectable, unobservable case, certain
eigenvalues of F + K. H‘ are unaffected by K., and one would have to consider
whether their presence made the decay of x – x, unacceptably slow. So far then,
aside from the computational details involved in determining K,, and aside from
checking the noise performance, we have indicated one solution to the estimator
problem.

The scheme of Fig. 7.2-1, earlier regarded as tentative, has now been shown to
constitute a valid estimator. The estimator is a model of the plant, with the addition
of a driving term reflecting the error between the plant output y = H ‘x and the
variable H ‘x,, which has the effect of causing x, to approach x. Figure 7.2-2 shows

u

‘w
L

w
Figure7.2-2 Estimator with minor simplification.
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an alternative valid estimator representation equivalent to that shown in Fig. 7.2-1.
In this second figure, however, the concept of the estimator as a model of the plant
becomes somewhat submerged.

Let us now consider the question of the effect of noise on estimator operation.
If noise is associated with u and y, then inevitably it will be smoothed by the esti-
mator; and if white noise is associated with either u or y (i.e., noise with a uniform
power spectrum), the spectrum of the noise in x. will fall away at high frequencies.
In general, the amount of output noise will depend on the choice of K,, but the
problem associated with passing noise into a differentiator will never be encoun-
tered. The choice of K. also affects the rate at which X. approaches x, because this
rate is, in turn, governed by the eigenvalues of F + K, H‘. It might be thought that
the best way to choose K, would be to ensure that the eigenvalues of F + K, H‘ had
real parts as negative as possible, so that the approach of x, to x would be as rapid as
possible. This is so, with one proviso. As the eigenvalues of F + K, H’ get further
into the left half-plane, the effective bandwidth of the estimator could be expected
to increase, and, accordingly, the noise in xc due to noise in u and y could be ex-
pected to increase. Therefore, noise will set an upper limit on the speed with which
x, might approach x. The situation with using differentiation to estimate x is that the
noise becomes infinite, with the estimation time infinitesimally small. The use of
estimators of the form just described is aimed at trading off speed of estimation
against minimization of loss of performance due to noise. The optimal estimators of
Sec. 7.4 essentially achieve the best compromise.

The task of computing K, to achieve assigned poles is a standard one, [1],
though involving somewhat complicated procedures in the multiple-output case. If
the plant has a single output, Ackermann’s formula achieves a specified closed-loop
characteristic polynomial A(s) as

K,=–e~[h F’h . . . (F’-’h]h]-’ A(F’) (7.2-8)

where e~=[O O . . . 1], [1]. For the multivariable case, the procedures are
considerably more complicated. Of course, linear quadratic regulator results can
also be used to achieve a stabilizing control law for the system ti = F’w + Hv to
achieve a closed-loop system ti = (F’ + HK,’)w with attractive properties, at least
when [F’, H] is stabilizable, or equivalently [F, H] is detectable! Indeed, any pre-
scribed degree of stability ci can be achieved in the closed-loop system by applying
the techniques of Chapter 3, Section 5, so that the eigenvalues of F’ + HK~ can be
guaranteed to be to the left of Re [s] = –a. Generalizations to the time-vz(rying F,
H case can likewise be achieved under uniform observability of [F, H]. In the next
section, we develop this regulator approach to achieve optimal designs for stochastic
noise environments.

We remarked earlier that it is impossible to estimate all the states of a plant
that are not observable, However, in general, it is still possible to estimate the
observable components of the states of such a plant; if the unobservable com-
ponents decay extremely rapidly, this partial estimation may be adequate. Problem
7.2-2 asks for an examination of estimator design in these circumstances.
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Estimator design with reduced estimator dynamics.
Our aim in this subsection is similar to that of the previous subsection, with a few
modifications. We assume that a plant is given with the following equations:

x= Fx+Gu (7.2-9)

~ =H’x (7.2-10)

with F, G, H constant. Without loss of generality, we assume H has full rank, viz.
~ ~ ~+ Then measurement of y gives us information about m independent linear

functional of x. We seek in addition an (n – m) – dimensional system of the form

w= F,w+Gl, u+Gzy (7.2-11)

such that from w and y together, x can be estimated. In case [F, H] is observable, we
would like to be able to control the rate at which the estimation error goes to zero.
Figure 7.2-3 illustrates the concept.

Reduced order estimators were first described in [2] by Luenberger for the
scalar output case; then the multiple-output case was given in [3]. Our treatment
follows that of [1].

The first step is to change the coordinate basis so that entries of y agree with
entries of x. Let T be a nonsingular n x n matrix of the form

(7.2-12)

(Here L‘ is arbitrary, provided that T is nonsingular.) Now change the coordinate
basis so that (7.2-9) and (7.2-10) are replaced by

? = TFT-l %+ TGu (7.2-13)

=[0 1]7 (7.2-14)

We shall explain how to estimate x. The estimate will be of the form

[1
~= w+A4y

e
Y

(7.2-15)

with w generated as in (7.2-11) and M a certain matrix to be determined. Since

‘= T-’x,=T-*[: ?1[!1
(7.2-16)

the linear transformation block in Figure 7.2-3 will be achieved through multiplica-
tion by the matrix

(7.2-17)
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u Y
* k= Fx+Gu , y= H’x

w
+ w z F,w + G1~U+ G2ey

Xe Linear

~ Transformation
Y

Figure7.2-3 Generalstructureof the reducedorderestimator

Now with appropriate partitioning,

173

(7.2-18)

(7.2-19)

.—
We claim that [F, Hl completely observable with ~~= [0 Z] implies that [~,1, ~~1]
is completely observable. To see this, assume that [Fll, ~jl] is not observable so that
there exists a nonzero eigenvector v of ~11such that ~11v = Au, and ~zl v = O. As a
consequence

so that [~, ~ is not observable. (Actually, the argument is reversible to establish
that the converse claim is also true. Further, [~, ~ is detectable if and only if
[~11, ~~,] is detectable.)

Now with [~, ~ completely observable, giving [~11, ~~1]completely observ-
able as above, there exists some Kc such that ~ = [~11i- K,~zl]~ is asymptotically
stable, perhaps with specified eigenvalues. Let 71. be defined by

~1, = (~11 + Ke~21)Y1.– K,(Y – ~22y – ~2u) + ~12y + ~lt.1 (7.2-20)

Of course, there could be implementation difficulties in generating xl., because of
the presence of j. We will see how to circumvent this problem later. Let us first
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observe that Zl, is indeed an estimate of 71. From (7.2-18) and (7.2-19), it is evident
that

j – F22y – @ =21 – F22X3– @ = F21X, (7.2-21)

It follows that

-j (7, - 7,.) = (F,, + Z@J(z, - x,,) (7.2-22)

Consequently, %,– Yle~ O at a rate determined by the eigenvalues of F, =
~11+ K,~zl.

It remains to be seen how (7,2-20) can be adjusted so that Xl, is obtainable
without introducing y. Figure 7.2-4(a) illustrates (7.2-20). Simple manipulation in

●

o-Ke

+
~e

Y ~2+ KeF22 qg D

+

(a) u G,+ KeG2 &F, , +KeF21

Y

+ —

u
‘1 e
b

(b)

(c)

Fe=F1,+ KeF&

Y

+
%e

u D

+

Figure7.2-4 Generationof2,,.
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the block diagram shows that Figure 7.2-4(c) is equivalent, at least from an input-
output point of view. [Initialization of the integrator would have to be varied to
secure identical outputs over (O, CO),rather than just asymptotically. ] So the xl. of
Figure 7.2-4(a) and of Figure 7.2-4(c) may differ by a quantity decaying ex-
ponentially fast, at a rate determined by the eigenvalues of F,. Consequently,
(7.2-22) rema~s valid for the YI. of Figure 7.2-4(c). In terms of equations, with
F, = ~11+ K,FZI,

and

71, = w – Key (7.2-24)

Then with

the overall estimator is depicted in Figure 7.2-5,

u G, + KeGz

+

Y

+

s 2

Y
b

I ,

Figure7.2-5 Overallconstructionofestimator.

We now give qualitative comments on the effect of noise in the reduced order
estimator. As for estimators of the last section, it will be noise that limits the extent
to which the eigenvalues of F, can be made negative, that is, the rapidity with which
xc will approach x. But there is a second factor present in the reduced order
estimator which is absent in the full order estimator. Suppose that the plant output y
includes white noise. When a full order estimator is used, the resulting noise in x. is
band-limited, essentially because there is always integration between y and xc. This
is not the case with the reduced order estimators. In fact, there will be more
non-bandlimited noise in x. arising from that in y, because x, is partly determined
by a memoryless transformation on y. Consequently, one might expect the per-
formance of a reduced order estimator of this section to be worse than that of a full
order estimator.

To complement the above qualitative statements about performance in noise
environments, let us remark about the situation when there is uncertainty in the
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plant model. Without loss of generality let us assume a coordinate basis where y is a
component of the state vector. The estimation of y by a full order estimator will be
inaccurate if there is model uncertainty, but for the reduced order estimator there
will be no such inaccuracy, since an estimate of the output y in this case is y itself.

As noted earlier, further estimator order reductions can be achieved if only
linear functions of the state need to be estimated, such as when estimating a control
signal u = K ‘x. Details for such designs are beyond the scope of this text; see, for
example, [4] and its references.

We conclude this section by stressing that estimator design is a trade-off
between complexity, robustness to plant uncertainty, noise filtering performance,
and transient performance.

Main points of the section. For rzth order plants with states x,
state estimators of order n can be constructed yielding state estimates x, with x,
approaching x exponentially fast according to

:(x -X,) =FC(X -Xe)

Here the eigenvalues of F. completely determine the rate of convergence, and can
be chosen arbitrarily in the design given observability, and stably given detecta-
bility.

For nth order plants with m independent outputs, reduced order estimators
can be constructed of order (n – m). In an appropriate coordinate basis, the plant
outputs y comprise elements of the state vector which need not be estimated. The
remaining elements comprising an (n – m)-vector xl are estimated by an (n – tn)th
order estimator as xl, where convergence of xl. to xl is given from

:(x1 -xl.) =F. (xl ‘Xl,)

Again the eigenvalues F. [now (n – m) x (n – m)] can be prescribed arbitrarily
given observability.

At the qualitative level, it is clear that in estimator design there is a trade-off in
terms of complexity, robustness, noise filtering properties, and transient per-
formance.

Problem 7.2-1. Design an estimator for

y =[1 O]x

such that F + k,h’ has two eigenvalues of –5.

Problem 7.2-2. If a system is not completely observable, by a coordinate
basis change it maybe put into the form
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Fll O

x = FII Fzz x

y =[Hj O]x
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[1+G,
G2 u

where [Fll, HI] is completely observable. Show how to estimate certain of the
components of x arbitrarily quickly, and show why it is impossible to estimate the
remainder arbitrarily fast. What can be done? Distinguish the two cases of detecta-
bility and lack of detectability.

Problem 7.2-3. Devise a computational procedure for estimator design for
the following system.

1 I

-00–110000 1
1O–3IOOOO 2
01–310000 3
––––—–+– –—–—–– –-

i= 41 9 [000 –lX+l U
21 3[100–4 1
00 OIO1O–6 2

.1 1 11001–4 1

[
00 110000”

Y=oo 1Ojooolx

[Hint: Examine Kc of the form

[

apyloooo
Ke’=ooo~ 8Eq~ 1

where Greek letters denote elements that are, in general, nonzero.]

Problem 7.2-4. Consider the scheme of Fig. 7.2-6. Write down state space
equations for the individual blocks, and design a state estimator, assuming avail-
abilityy of the signals labeled u, yl, and yz. Discuss the situation where u and yz alone
are available.

Problem 7.2-5. Consider the scheme of Fig. 7.2-6. Write down state space
equations for the individual blocks, and design a reduced order state estimator,
assuming availabilityy of the signals u, yl and y2.

Problem 7.2-6. Design a second-order estimator for

‘=[! : !Ix+llu

y=[l 1 l]X
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. .
u 10(s+1) S+lo

h * +
S+lo 7
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Y1 Y2

Figure7.2-6 System for Problems 7.2-4 and 7.2-5.

Problem 7.2-7. Consider the plant

~=[-: -:IX+HU
y =[0 I]x

and assume that adding on to y is white noise, that is, noise with power spectral
density M (co)= cr. Design a first-order estimator with the F, matrix equal to – a for
a positive constant a. The estimator is driven by u, and y plus the noise. Compute
the spectral density of noise in both components of Xeas a function of a. [Hint:

Obtain the transfer functions relating y to each component of x,. If these are tl(jw)
and tz(j~), the spectral density of the noise in the components is ultl(jw)12 and
ult*(j@)12.]

Problem 7.2-8. Repeat Problem 7.2-7 with replacement of the estimator by
a second-order estimator with F + k,h’ possessing two eigenvalues at –u. Compare
the resulting noise densities with those of Problem 7.2-7.

7.3 STATISTICAL ESTIMATOR DESIGN
(THE KALMAN–BUCY FILTER)

In this section, we touch upon an enormous body of knowledge perhaps best
described by the term @ering theory. Much of this theory is summarized in the two
books [5] and [6]. The particular material covered here is discussed in the important
paper [7], although to carry out certain computations, we make use of a method
discussed in [8] and [9].

The authors have presented a more complete treatment of optimal filtering, its
properties, and applications in a companion text written for discrete-time systems
[10].

Broadly speaking, we shall attempt to take quantitative consideration of the
noise associated with measurements on a plant when designing an estimator. This
means that the design of the estimator depends on probabilistic data concerning the
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noise. We shall also aim at building the best possible estimator, where by “best
possible” we mean roughly the estimator whose output is closest to what it should
be, despite the noise. In other words, we shall be attempting to solve an optimal
filtering, as distinct from optimal control, problem.

We warn the reader in advance of two things:

1. The treatment we shall give will omit many insights, side remarks, and so on in
the interests of confining the discussion to a reasonable length.

2. The discussion will omit some details of mathematical rigor. We shall perform
integration operations with integrands involving random variables, and the
various operations, although certainly valid for deterministic variables, need
to be proved to be valid for random variables. However, we shall omit these
proofs. Moreover, we shall interchange integration and expectation operations
without verifying that the interchanges are permissible.

In outline, we shall first describe the optimal estimation or filtering problem—
that is, we shall describe the systems considered, the associated noise statistics, and
a specific estimation task. Then, by the introduction of new variables, we shall
convert the filtering problem into a deterministic optimal regulator problem, of the
sort we have been discussing all through this book. The solution of this regular
problem will then yield a mathematical solution of the filtering problem. A tech-
nique for physical implementation of the solution will then be found, leading to an
estimator structure of the same form as that considered in Sec. 7.2, except that noise
is present at certain points in the plant, and as a consequence in the estimator; see
Fig. 7.3-1. (The figure does not show the structure of the plant, which is assumed

u
Plant 1 Y

1-

+

Figure7.3-1 Structureofoptimalestimator.
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to be of the standard form i = Fx + Gu, y = H ‘x, with additional terms in these
equations representing noise, to be indicated precisely later.)

Since the structures of the optimal estimator and the estimator of Sec. 7.2 are
the same, we can regard the present section as describing a technique for optimally
designing one of the estimators of Sec. 7.2. The computations required for optimal
design are a good deal more involved than those for the earlier design for a time-
invariant single-output plant. However, for a multiple-output plant it is possible that
the calculations to be presented here might even be simpler than the appropriate
multiple-output plant generalization of the calculations of Sec. 7.2. The calculations
here also extend to time-varying plants.

Description of plants and noise statistics. The plants we
shall consider are of the form

dx (t)
—= F(t)x(t) +G(t)u(t)+ v(t)

dt
(7.3-1)

y(t) =H’(t) x(t) + w(t) (7.3-2)

Here, v(t) and w(t) represent noise terms, which will be explained shortly. The
dependence of ~ G, and H on r, indicated in the equations, is to emphasize that, at
least for the moment, these quantities are not necessarily time-invariant. However,
for infinite-time interval problems, which are considered later, we shall specialize to
the time-invariant case. Without further comment, we assume that the entries of
F(.), G(.), and H(o) are all continuous. There is no restriction on the dimensions of
u and y in these equations, and the subsequent calculations will not, in fact, be
simplified significantly by an assumption that either u or y is scalar.

The properties of the noise terms will now be discussed. First note that the
model of (7.3-1) and (7.3-2) assumes additive noise only, and it also assumes that
noise is injected at only two points (see Fig. 7.3-2). The latter restriction is not so
severe as might at first appear. Thus, for example, any noise entering with u(t) [and
passing through the G(t) block] is equivalent to some other noise entering at the
same point as v(t).

In the case of both v(t) and w(t), the noise is assumed to be white, gaussian,

v(t) w (t)

u(t)

+

w
Figure7,3-2 Plantwithadditivenoise.
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and to have zero mean. The first propert y implies that it is uncorreIated from instant
to instant; if it were also stationary, it would have a constant power spectrum. The
second property implies that all probabilistic information about the noise is summed
up in the covariance of the noise—viz., E[v (t)v ‘(~)] for v (t) and likewise for w(t).
This convenient mathematical assumption is fortunately not without physical basis,
for many naturally occurring noise processes are, indeed, gaussian, and such pro-
cesses normally have zero mean. Therefore, in mathematical terms,

E[v(t)v ‘(~)]= Q(t)i3(t – T) E[v (t)] = o (7.3-3)

E[w(t)w ‘(T)]= R (t)8(t – ~) E[w(t)] = o (7.3-4)

for some matrices Q(o) and R(.), which we assume without further comment to
have all entries continuous. The presence of the ~(t – T) term guarantees the
whiteness property. Precisely because the quantities on the left sides of (7.3-3) and
(7.3-4) are covariances, the matrices Q(t) and R(t) must be symmetric and non-
negative definite. But we shall make the additional assumption that R(t) is positive
definite for all t. If this were not the case, there would be some linear combination
of the outputs that was entirely noise free. Then, in an appropriate coordinate basis,
one entry of the state vector would be known without filtering. As a result, the
optimal estimator would not have the structure of Fig. 7.3-1 and a different optimal
estimator design procedure would be required. We shall omit consideration of this
difficult problem here; the interested reader should consult references [10] and [11].

Because it is often the case physically, we shall assume that the noise processes
v(t) and w(t) are independent. This means that

E[v (t)w ‘(~)] = O for all tand T (7.3-5)

The final assumptions concern the initial state of (7.3-l). State estimation is
assumed to commence at some time to,which maybe minus infinity or may be finite.
It is necessary to assume something about the state x (to),and the assumptions that
prove of use are that x (to)is a gaussian random variable, of mean m, and covariance
P-that is,

E{[x(to)– rn][x(to)– m]’} = Peo E[x(to)] = m (7.3-6)

Furthermore, x (to) is independent of v(t)and w (t)--that is,

E[x (to)v ‘(t)] = E[x(to)w ‘(t)] = O for all t (7.3-7)

Notice that the case where x (to) has a known (deterministic) value is included: If
P.. = O, then x (tO)= m, rather than just E[x (to)] = m.

Let us now summarize the plant and noise descriptions.

Assumption 7.3-1

1.The plant is described by the equations (7.3-1) and (7.3-2).
2. The noise processes v(t) and w(I) are white, gaussian, of zero mean, and

independent, and have known covariances [see Eqs. (7.3-3), (7.3-4), and
(7.3-5)]. The matrix R(t) in (7.3-4) is nonsingular.
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3. The initial state of the plant is a gaussian random variable, of known mean
and covariance [Eq. (7.3-6)]. It is independent of v(t) and w(t) [see Eq.
(7.3-7)].

Notice that an assumption of detectability or observability of the plant has not
been made. Such will be made later in considering infinite-time problems.

Although all the assumptions made often have some physical validity, there
will undoubtedly be many occasions when this is not the case. Many associated
extensions of the preceding problem formulation have, in fact, been considered,
and optimal estimators derived, but to consider these would be to go well beyond
the scope of this book.

Statement of the optimal estimation problem. We shall
now define the precise task of estimation. The information at our disposal consists
of the plant input u (t) and output y (t) for tos t s tl,and the probabilistic descrip-
tions of x (tO),v(t), and w(t). To obtain a first solution to the estimation problem, it
proves convenient to make two temporary simplifications.

Temporary Assumption 7.3-2

The external input to the plant u(t) is identically zero, and the mean m of the initial
state x (to)is zero

and

Temporary Assumption 7.3-3

The initial time tois finite.

These assumptions will be removed when we have derived the optimal esti-
mator for the special case implicit in the assumptions. With Temporary Assump-
tions 7.3-2 and 7.3-3 in force, the data at our disposal is simply the plant output y (t)
for tos ts tl,and our knowledge of the covariances of v (.), w(.), and x (to).

The sort of estimate for which we shall aim is a minimum variance estimate—
that is, we want to construct from a measurement of y (t),tosts tl,a certain vector,
call it x. such that

Error variance = E{[x (tl) – x. (tl)]’[x (t,) – x, (t,)]} (7.3-8)

is minimum. Then x, (tl) is the minimum variance estimate of x (tl). It turns out that
because all the random processes and variables are gaussian, and have zero mean,
the vector x, can be derived by linear operations on y(t), tosts tl—that is, there
exists some matrix function M (t; tl), tos ts tl such that

J

11
x, (tJ= M’(t; t,)y(t) dt (7.3-9)

fo
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(This is a deep result which we shall not prove here.) The introduction of M(; tl)

now allows the following formal statement of the optimal estimation problem.

Optimal estimation problem. Given the plant of Eqs. (7.3-1) and (7.3-2),
suppose that Assumptions 7.3-1, 7.3-2, and 7.3-3 hold. Then, for a fixed but
arbitrary value tl 2 to> – CO,find a matrix function of time M (t; tl), tos ts tl,
such that the index defined by (7.3-8) and (7.3 -9)-a form of performance
index—is minimized, the expectation being over all possible realizations of the
two noise processes and over the random variable x (to).[A minimum variance
estimate of x (tl) is then provided by ~~ M ‘(t; tl) y (t) dt. ]

A further problem is to state how this estimate might be physically imple-
mented to produce an on-line estimate x, (tl) at time tl of x (tl), which is continuously
updated, rather than a single estimate of the vector random variable x (tl) for fixed
t,.

Without further comment, we shall use the notation M (t)and M (“) as shorthand for
M (t; tl), provided no ambiguity occurs.

At this stage, let us pause to review what we have done so far, and what we
shall do in the next part of this section. So far, we have accomplished the following:

1. We have described the plants considered, together with the noise associated
with the plants.

2. We have posed a problem of estimating the state vector at a particular time
[i.e., x(tl) for fixed t,],using input and output measurements till t,. The
estimate is to be a minimum variance one.

3. We have posed the problem of constructing a device which at every time tlwill
produce an estimate of x (tI).That is, we have posed the problem of construct-
ing an on-line estimate of x (tl).

In the remainder of this section, we shall do the following:

1. We shall show how the first of the preceding optimal estimation problems can
be reformulated as an optimal control problem. We caution the reader that the
existence of such a reformulation k probably not intuitively reasonable, and the
parameters appearing in the regulator problem are only suggested by hindsight.
Therefore, the reader will have to suppress such natural questions as “Why
pick such-and-such set of system equations?” and be content that justification
for the choice of such-and-such system equation lies in the fact that it works,
somewhat surprisingly.

2. Using the optimal regulator problem reformulation, and our knowledge of the
general regulator problem solution, we shall solve the specific optimal
regulator problem.
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3, Next, we shall do a natural thing—use the solution of the regulator problem to
write down a solution of the optimal estimation problem associated with
estimating x (Cl)for specific tl.

4. We shall then show how to obtain an estimate of x (tl)on line.

5. Elimination of restrictive assumptions, examples, and some extensions will
then follow.

Reformulation of the optimal estimation problem as
an optimal regulator problem. To carry through the reformulation,
we introduce a new square matrix function of time Z(“), of the same row dimension
as x (.). This function is defined from M(.) via the equation

:Z(t) = -F’(t) z(t) +H(t)lf(t) Z(t,)=1. (7.3-lo)

Observe that Eq. (7.3-10) has a similar structure to the familiar vector state equa-
tion A?= Fx + GM,with prescribed boundary condition x (to) except that it involves a
matrix, and that we shall be interested in the solutions of (7.3-10) for ts tl rather
than for tz tl.

We now rewrite the performance index (7.3-8) as a quadratic performance
index involving Z(. ) and Al(.). From (7.3-1) and (7.3-10), we have

-$[z’(t)x(t)] =z’(t)x (t)+ z’(t) i(t)

=–Z’FX +M’H’x +Z’FX +Z’v

=M’y– Jf’w+z’v

Integrating this equation from toto tl,using the boundary condition on Z, leads to

x (q) – z ‘(ti))x(ti)) = ~M’(t)y(t) dt–fl M’(t) w(t)dt+ ~Z’(t)v(t)dt
to to to

or

J

~1

J

(I

J

11
X(t,) – M’(t) y(t) dt = Z’(to)x(to) – M’(t) w(t) dt + Z ‘(t) V(t) dt

(O to 10

The next step is to essentially square each side, and take the expectation.
Because of the independence of x (to), w(t), and v(t),there results

E {[x(tl)-~M’(t) y(t) dt][x(tl) -~ M’(t) y(t) dt]’]
10 to

u ~

11 fl

= EIZ’(to) x (to)x ‘(to)Z(to)] + E M’(t) w(t)w’(7)M(T)dtdT
to to 1

[J 1
11 t]

+E Z’(t) V(t) v’(T) Z(T) dtdT
to to 1
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Now Z(.) and M(“), although unknown, are deterministic. So they can be pulled out
of the expectations. The first summand on the right is then, by using (7.3-6),

E[z ‘(t,) x (L))x ‘(to)Z(to)] = z ‘(to)E[x (to)~ ‘(to)]Z(to)

= z ‘(L))Pa Z(ql)

To handle the second summand, we must first interchange integration and expecta-
tion. The validity of this interchange ought to be established, but we ask the reader
to accept it. Then, using (7.3-4), we have

H

11 tl
—— M’(t) E[W(t) W‘(T)] M(7) dt d~

to (o

H

11 II
—— M ‘(t) R (t)~(t – T) M(T) dt d~

10 r~

1

11—— M ‘(t) R (t) M(t) dr
10

The third summand is similarly evaluated. Recalling (7.3-9), we see that

E{[x (?,) – x, (t,)][x (tl) – Xe(tI)]’} = z ‘(to)PeoZ(to)

/
+ “ [M’(t) R(t)M(t) + Z’(t) Q(t) Z(t)] dr (7.3-11)

to

Now take the trace of both sides. Thus

E{[x (tl) – X, (tl)]’[x (t,) – X. (t,)]}

[
= tr Z ‘(to)P,. Z(to) + ~: [M’(t) R(r)M(t) + Z’(t) Q(t) Z(t)] dt} (7.3-12)

Now all quantities on the right of (7.3-12) are deterministic, with M(c) free to be
chosen and Z(. ) related to M(“) via (7.3-10). Therefore, the problem of choosing
M(.) to minimize the left side of (7.3-12) is the same as the deterministic problem of
choosing M(.) to minimize the right side of (7.3-12), subject to (7.3-10) holding.

Let us summarize the reformulation of the optimaI estimation problem as
follows.

Reformulated optimal estimation problem. Suppose we are given the plant of
Eqs. (7.3-1) and (7.3-2), and suppose that Assumptions 7.3-1,7.3-2, and 7.3-3
hold. Let tl > tobe an arbitrary time. Find a function M (t; tl) for tOs ts tlsuch
that the (deterministic) performance index (7.3-12) is minimized, subject to
Eq. (7,3-10) holding.

We shall now comment upon this reformulated problem. Recall that R is
positive definite for all t; Q is nonnegative definite for all t; and PO, being the
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covariance of a vector random variable, is also nonnegative definite. Therefore, the
only factors distinguishing the problem of finding the function M(“), which mini-
mizes (7.3-12) subject to (7.3-10), from the usual optimal regulator problem are (1)
that the boundary condition of Z(t) occurs at the final time tl rather than the initial
time to,(2)thatthe term Z ‘(tO)Z’.OZ (to) represents an initial rather than a final value
term, (3) that the state variable Z(o) and control variable M(o) are matrices rather
than vectors, and (4) that the index is the trace of a nonnegative definite symmetric
matrix. In a sense, the problem we face here is a regulator problem for matrix state
equations with time running backward.

Explicit solution of the optimal estimation problem.
We claim that the optimal “control” M*(.) has the form

M *(t)= R ‘l(t)H’(t)P, (t)Z(t) (7.3-13)

where P,(t) is the solution of the Riccati equation

P. (t)= P, (t) F’(t) + F(t) P,(t) – P.(t)H(t)R ‘*(t)H ‘(t)P,(t) + Q (t) (7.3-14)

This is solved forward in time with boundary condition P. (to)= Pd. The proof of
optimality is almost immediate. It turns out that one can reorganize (7.3-11) as

E{[x(tl) – x, (tJ][x(tJ – Xe(tl)]’} = z’(q) Pe(tl) Z(tl)

J
+ “[M(t) - R-’(t) H’(t) P.(t) Z(t)] ’R(t) [M(t) - R-’(t) H’(t) P,(t) Z(t)] df

10

(7.3-15)

Obviously, with M(“) free to be chosen and Z (tJfixed (as the identity matrix), we
make the trace of the left side (and indeed the matrix left side) as small as possible
by selecting ~(t)= R ‘l(t)H ‘(t)P,(t) Z(t). To actually compute the optimal M(f), we
must solve Z = –F’Z + HR ‘lH ‘P. Z backwards from tland use the solution in
(7.3-13).

Notice that this choice of M (o) leads [because Z(tl) = 1] to

E{[-x(tl) – .&(t,)][x (t,) – x, (t,)]’}= Pe(tl) (7.3-16)

The reorganization yielding (7.3-15) follows the pattern of that explored for
the standard regulator in Problem 2.3-2. The fact that Z, Mare matrices rather than
vectors, as in the standard regulator problem, has only a trivial effect on the
manipulations. Problem 7.3-7 seeks details.

The time reversal in the formulation of the regulator problem is also but a mild
variation of the standard theory. Note that this time reversal reflects itself as sign
changes in the time derivatives, in the Riccati equation, for example.

In the above argument, we have implicitly assumed that the Riccati equation
(7.3-14) necessarily has a solution fort 2 to. It is possible to argue this by observing
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that h is a Riccati equation associated with a regulator problem, albeit one in
disguise. Alternatively, one can argue as follows. We have asserted that

z ‘(to)PeoZ(t”) +
1

“ [M’(t) R(t) M(t)+ Z’(t) Q(c) Z(t)] dt
10

= z ‘(tJ P,(tJ Z(tl) +
!

“ [M(f) - R-’(t) H’(t) P.(t) z(t)] ’R(t)
to

X [M(t) – R-l(t) H’(t) P,(t) Z(t)] dt

Noting that Z (tl)= Z and that the second summand on the right is nonnegative, we
see that it follows that the left side, for all M(.), is an upper bound for P, (tI). Also,
setting M(t) = R ‘l(t)ll’ (t)P, (t)Z (t) shows that P, (tl) is a nonnegative matrix; that
is, O is a lower bound. [In fact, the identification of P, (tl) as a covariance of the
optimal estimate via (7.3-16) indicates also that P, (tl) 20. Thus 11P,(tl)ll for any
finite tla tocannot become infinite. Hence the Riccati equation has no finite escape
time.

To this point, we have explained how x.(tJcan be computed, for fixed tl. The
steps are

1.

2.

3.

The

Solve the Riccati equation (7.3-14) forward to tl.

Solve 2 = –F’Z + HR ‘lH’P, Z backwards to tofrom Z(tl) = 1
Set X,(tl) = J:: M ‘(t; tJ y (t) dt where M(t, tl) =

R ‘l(t)H ‘(t)P. (t)Z(t; tl). Here Z(t; tl) denotes the solution of Z = –F’Z +
HR ‘lH’P, Z with Z(tl; tl) = 1. Thus

!

!I

xe (tJ= Z’(t; tl)P, (t) H(t) R-l(t) H’(t) y(t) dt (7.3-17)
(o

auestion now to be addressed is: How mav one obtain an on-line estimate
xc(tl)? Notice that Z (t; tl) k a transition matrix. Hence Z (t; fl) = Z “(tl; t) and

;Z(t; t,) =; Z-ytl; o

= –Z-l(t,; t){[–F’(tl) + H(tl)R-l(t,)H’(tl) Pe(tl)]Z(tl; t)} Z-’(tl; t)

= -Z(t; t,)[-F’(tJ + H(t,)R-’(tJ H’(t,)Pe(tJ]

so

~ Z’(t; tl) = [F(tl) – Pe(tJH(tJ R-l(tJH’(tl)]Z’(t; tJ

Now it is easy to differentiate (7.3-17). There results
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~ x, (tJ
dtl

!
= “ [F(tl) – Pe(t,) ~(4:

fo

State Estimator Design Chap. 7

R-l(tJH’(tJ] 2’(c; t,)P.(t)H(t)R-’(t)H’(t)y(t) dt

+ P,(tl) H(tl) R ‘l(tl) H’(tl)y (tl)

= [F(t,) - P.(t,) H(tl) R ‘](t,) H’(t,)]x,(t,)

+ P.(t,) H(tl) R ‘l(tl) H’(tl)y (tl)

The initial condition, from (7.3-17), is X.(tO)= O. We have therefore established the
following.

Construction of an on-line optimal estimate.Let P,(t) be the solution of the
Riccati equation (7.3-14) with P, (to) = PeO.Then the optimal estimate x, (t)of
x(t) is defined by

: Xe(t) = F(t) XC(t)+ Kc(t)[H ‘(t) Xe (t) – y (t)] Xe (to) = o (7.3-18)

where

Kc(t)= -Pe (t)H(t)R ‘l(t) (7.3-19)

Moreover

E{[x (t) – Xe (t)][x (t) – Xe (t)]’} = P.(t) (7.3-20)

Figure 7.3-3(a) shows a realization of this equation, with the identification

Fe(t) = F(t)+ Ke(t)zf’(t) (7.3-21)

Figure 7.3-3(b) shows a rearrangement. We reiterate that the equation is valid
under the various provisos, including u(t) = O, E [x (to)] = m = Oand tofinite.

We have now covered the basic optimal estimation problem, and our task for
the remainder of this section consists in tidying up some loose ends, and presenting
examples. Here, in order, is what we shall do.

1.

2.

We shall eliminate the restrictive Assumption 7.3-2, which required a zero
plant input and zero mean initial state—the resulting change in the estimator
is very minor. Then we shall present a simple example.

We shall show how to cope with the case to= –CO,drawing special attention to
time-invariant problems, and including one example.

Elimination of Assumption 7.3-2. We wish to consider situ-
ations where u(t) can be nonzero, and E [x (to)] = m can be nonzero. The effect of
nonzero values of either of these quantities will be to leave the plant state covar-
iance and output covariance the same as before, but to change the mean of the plant
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y(t) Xc(t)

+

(a)

r x=(t)

Y(t) –

+

(b)

Figure7.3-3 (a) Firstestimatorstructure[u(t)= O,m = O];(b) Second estimator
structure [u (f) = O,m = O].

state and plant output. Without carrying out a direct derivation, we merely state the
modified equations:

: xc(t) = Fe(t) x, (t) – K, (t) y (t) + G (t) u (t) X,(to) = m (7.3-22)

or

: Xc(t) = F(t) x,(t) + K,(t) [H’(t) x,(t) – y (t)]+ G(t) u(t) x. (to) = m

(7.3-23)

where, as before, K,(t) is given by (7.3-19) and P,(t) satisfies the Riccati equation
(7.3-14). Figure 7.3-4(a) shows plant and estimator according to (7.3-22) and Fig.
7.3-4(b) shows plant and estimator according to (7.3-23). Part of the estimator in
Fig. 7.3-4(b) is enclosed in dotted lines, to emphasize the fact that the estimator is a
model of the plant with additions.

Of course, the estimation structure obtained is just like that of the previous
section. We find interesting also to note, using the plant equation (7.3-1) and
estimation equation (7.3-22), that

~ [x(t) - x,(f)]= Fe(t)[x(t) - x,(t)]+ v(?)+ K,(t) w(t) (7.3-24)

This error equation for x(t) – x, (t) is driven by zero mean processes, viz. v(t) and
w(t), and E [x (to) – XC(tO)]= O. As a consequence E[x (t) – x. (t)] = O for all r; that
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v(t) w(t)

—

(a)

)

+

w

+

t)

v(t) w(t)

1 + 1 +

+

1 II
I *

%\~)

I
(b) ➤ ––––––––_–––– J

Figure7.3-4 (a) Full plant estimator structure; (b) Redrawn estimator,

is, the estimate Xe(t) is an unbiased estimate of x (t). Also, for readers who under-
stand how covariance matrices propagate, (7.3-24) provides insight into the opti-
mality of P,(t). Suppose that K,(t) in (7.3-23) is replaced by a not necessarily
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# Then we obtain, using (7.3-24), an error covariance P:(t) foroptimum matrix K. .
E{x (t) – x, (t)][x (t) – x, (t)]’} defined by (see Appendix B)

P: = (F + KtH’)Pt + P:(F’ + HKe’#) + Q + KtRKe’# Pt(to) = P,O (7.3-25)

Now P: and indeed tr [P: (t)] is minimized for all t over K:(.), see Problem 7.3-8,
when K: is set equal to – P. HR’1. Then

P; =(F– P. HR-l H’)P~ +Ps(F’– HR-l H’Pe)+Q +P. HR-l H’P,

P: (to) = Peo (7.3-26)

As we know, P$ = P. then solves this equation, as comparison with (7.3-14) shows.
The argument just developed does not tell us that the optimal full-order

estimator is the best estimator among all possible estimators for the stochastic signal
model here, since the argument presumes an estimator structure of the form
(7.3-23). This must come from the earlier main results.

To summarize, we have

Optimal Estimator Construction. Given the plant equations

i (t)= F(t)x (t) + G (t)u (t) + v (t) (7.3-1)

y (t)= H’(t)x (t) + w (t) X(to) (7.3-2)

with initial time to finite, suppose that v(o), w(o), x (to) are independent and
gaussian with

~[v(t)v’(T)] = Q(t) S(t – T) E[v(t)] = O (7.3-3)

~[~(t)W’(T)] =R(t) 8(C ‘T) ~[w(t)] = O (7.3-4)

E{[x(to) – m][x(to) – M]’} = Pco E[x(to)] = m (7.3-6)

Then an on-line unbiased estimate xt.(t) of x (t) is provided at time tby the
arrangement of Fig. 7.3-4 with equations (7,3-22) or (7.3-23) where the filter
gain K. and estimation system matrix F, are given from

K,(t) = –P, (t)H(t)R “(t) (7.3-19)

and

F. (t)= F(t)+ K, (t)H’(t) (7.3-21)

where P,(t) is the solution of the matrix Riccati equation

~,(t) = P,(t) F’(t) + F(t) P,(t) – P,(t)H(t)R “(t)H’(t)P,(t) + Q(t) (7.3-14)

which is solved forwards in time with boundary condition P, (to) = Pa. The
matrix P@(t) exists for all t a to, and is symmetric nonnegative definite, being
the minimum error covariance E{[x (t) – xe(t)][x (t) – x, (t)]’}.

By way of example, we consider the following problem. The plant is time-
invariant, with transfer function 1/(s + 1), and there is input noise of covariance
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18(t – T), and additive noise at the output of covariance 28(t – T). At time zero, the
initial state has a known value of 1. The problem is to design an optimal state
estimator. In state-space terms, the plant equations are

,i=-x+zf+v X(o)=l

y=x+w
(7.3-27)

with E[v (t)v (T)] = Q8(t – ~) = li3(t – ~) and E[w(t)w(~)] = R?i(t – ~) = 28(t – ~).
The initial state covariance matrix F’Ois zero. From Eq. (7.3-14), we have

Pe = –2Pe –;P: +1

This equation yields

1

P(t) dP.
/

1 ‘dt
O P?+4P, –2=–~ O

whence

[

P,+2– V% P(’) 1
~ in 126 P,+ ’2+%%0 ‘–jt

or

Pe(t)=
(W - 2)[1 - exp (-V% t)]

1 + [(N% – 2)/(%% + 2)] exp (–N% t)
(7.3-28)

The gain matrix K,(t) for the optimal estimator, here a scalar, is given from (7.3.19)
as –~ P, (t). Figure 7.3-5 shows the plant and estimator. Notice that although the
plant is time-invariant and v (o), w(“) are stationary, the finite initial time leads to a
time-varying estimator (7.3. 19) as –~ P, (t).

The following example is discussed in [12]. The position and velocity of a
satellite are to be estimated; the measurements available are, first, a position
measurement including a constant random variable measurement error, accounting
for drift, and the like. The motion of the satellite is linear and one-dimensional, and
there is a constant gaussian random acceleration, independent of the measurement
error in the acceleration measurement.

With xl denoting position and X2velocity, the equations of motion are

,&=a

where a is the constant acceleration and is a gaussian random variable. Now the
problem data concerning measurements and noise do not immediately allow
construction of the standard system equations; therefore, we proceed as follows.
The measurement of acceleration is yz = a + b, where b is a constant gaussian
random variable. Then

u:
‘2=o%+o#’2+(~~dyrb)
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r.t 44
Iv X(o)-1

+
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‘x+ y

+
t

4zl-
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-;P(t)

b
Xc(t)

+

Figure7.3-5 Plantandoptimalestimator.

where U. = E [a2]and ub = E [b 2].Observe that [u~/(u~ + u? )]y2 and
[ui /(w~ +ui)fi* - b are independent, for

=0
So this equation is of the form

i*=u +x3

where u is known and independent of x3. Moreover, X3 is a constant gaussian
random variable whose variance is easily checked to be [~ db/(U~ + db)], a quantity
that we shall call p from now on.

The full system equations thus become

o
1
0

u

y=[l o O]x+w
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We assume that u is known and that the initial values of xl and Xz are known,
whereas E[x~(0)] = p, and E[w(t)w(T)] = r~(t – T).

The Riccati equation becomes

‘e=pell ! !]+l! i {Ipe-pe
with initial condition

[1

000
P,(o)= o () o

Oop

1
: r-’[l o O]P,

o

The fact that the right side of the differential equation for P. contains no term
independent of P. underpins the analytic solvability of the equation. The solution to
this equation turns out to be

t4 t3 t2

7??
3

‘e(c) = ts,~or+ ~,p ~~tzt

;Cl

and the optimal gain vector is

k:=–

[

t4 t3 t2

4(r5/20 + r/p) 2(t’/20 + r/p) 2(ts/20 + r/P) 1
In the limit as t+ CD,P, (t) = Oand k, (t) = O.Essentially what happens is that X3

is exactly identified at t ~ CO.Since X1(0)and X2(0)are both known, this means that
x1 and X2become exactly identified as t+ W. In consequence, the error covariance
approaches zero-that is, P.(t) ~ 0, Simultaneously, the noisy measurements be-
come of no use, and thus k,(t) ~ O. (This is actually not a good property for a
practical filter to have; see, for example [10].)

Duality. The reader will by now have observed the close parallels be-
tween the optimal estimator and control problems. They are often termed duals of
one another. The duality can be summed up in the following way:

Estimator-Regulator Duality. Consider a regulator problem defined by F(t),
G(t), Q(t), R(t), terminal time tl, and initial time to.Let P(t) be the associated
Riccati equation solution, and K(t) the control law gain. Define matrices
~(t) = F’(–t), fi(t)~= G (Tt)l Q(t) = Q (–t), R (t) = R(=t), and define a filter-
ing problem using F, H, Q, R with initial time –tl.Let P,(t) be the associated
Riccati equation solution, and Kc(t) the associated filter gain. Then

P.(t) = P(-t) Kc(t) = K(-t) (7.3-29)
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How does this come about? Observe that

#e= P.(t)i’(t) + F’(t) Pe(t) - Pe(t)Z2(t)li -’(t)ll’(tp’e(t) + Q (f)

Fe(–t,)=o

Since this holds for all t,it holds when we replace tby –t.Thus

-&,(-t) = Fe(-t)P(-t) + F(–t)Pe(–t)

-P.(–t)fi(-t)t’(-t)z’2’(-t)Pe(-t)+Q(-t) Pe(–t, )=o

that is,

+=(-t) = Fe(–t)F(t)+ F’(t)Pe(–t)

–~e(-t)G(t) R-’(t) G’(t) ~,(–t) + Q(t) f’e(-t,)=o

Obviously, ~,(-t)= P(t)satisfies this equation. Also, K,(t)= –~.(t)fi(t)fl-’(t)=

-P(–t)G(–t)R-’(–t) = K(–t).
It is not hard to check a further conseque~ce of duality, namely that

[F(t), G(t)] is controllable at all times if and only if [F(t), ~(t)] is obs~rvable at all
times. This is done as follows. From the relation between F(t)and F(t),one can
establish that the associated transition matrices satisfy @ (t, s) = 0’(–s, –t) (see
Problem 7.3-9). It follows that

/

fz .
@‘(s, t,) Aft’@ (s, t,) d

(I

J

12
—— @(–tl, –s) G(–s) G’(–s)W(-CI, –s) ds

tl

!

–f1—— @(–t,,–s) G(–s) G’(–s)@’(–tl, –s) d(–s)
–~2

Positive definiteness of the first quantity is equivalent to [~, Q] being observable
at rl. Positive definiteness of the second is equivalent to [F, G] being controllable
at –tz.

Initial times in the infinite past. The interpretation of P(t)as
the error covariance will now be used in a discussion of the estimation problem for
to= – W. At this stage, therefore, we drop Assumption 7.3-3, but introduce a new
one.

Assumption 7.3-4

For all t, the pair [F’(t),H(t)] is completely observable, or in the case E H constant, the
pair [F, H] is detectable.
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To get a rough idea of the reason for this assumption, consider a time-
invariant plant having all unobservable, unstable states. Suppose also that at time
to= –w, the initial state of the plant has mean zero. Since any estimator can deduce
absolutely no information about the plant state from the available measurements,
the only sensible estimate of the plant state is x, (tl) = O. Now the covariance of the
plant state vector will be infinite at any finite time, and therefore so will the error
covariance. Consequently, if P.(t) retains the significance of being the error covar-
iance in the to= – w case, it is infinite. The gain K, of the optimal filter will certainly
have some, if not all, entries infinite also. The purpose of Assumption 7.3-4 is to
prevent this sort of difficulty. In fact, under this assumption, and, to simplify
matters, under the assumption Pea= O, we claim that P.(t) exists as the solution of
(7.3-14) (and is finite, of course) when (7.3-14) has the boundary condition

lim P.(to) = O
to-–m

This result is an immediate consequence of the estimator–regulator duality, and the
known results for the regulator.

One feature that distinguishes the filter from the regulator should be noted. It
is an issue in the time-varying and time-invariant case, but most easily understood
for the latter. Suppose Re Ai(F) >0 for some F and [~ G] is completely control-
lable. Then E [x (t) x‘ (t)] will be infinite when to+ –~. We are asking the estimator
to estimate a variable with an infinitely large variance! It follows from this remark
that one does not normally contemplate to+ –m in conjunction with an unstable
signal model.

If F and H are constant (i.e., the plant is time-invariant) and if Q and R are
constant (i.e., the noise is stationary), it follows (again, by examining the dual
regulator problem) that the value of P,(t) obtained by letting to+ – m is indepen-
dent of time, and can therefore be computed by evaluating ~~~ P,(t) where P,(t)
satisfies (7. 3-14) with the initial condition P.(0) = O. Also the constant matrix P, is a
solution of the quadratic matrix equation

P,F’ +FP, -P. HR-~H’P. + Q =0 (7.3-30)

The gain of the optimal estimator is then constant, being given by

K, = –P, HR-l (7.3-31)

and if G is constant, the optimal estimator is a time-invariant system:

&=Fx, +Gu +K, [H’x. –y] (7.3-32)

However, this equation is of little importance from the practical point of view
unless it represents an asymptotically stable system or, equivalently, F, + K,H’ has
eigenvalues with negative real parts. The way to ensure this is to require the
following:

Assumption 7.3-5

With constant F and Q, and D any matrix such that DD’ = Q, the pair [~ D] is
stabilizable.
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One way to prove the asymptotic stability of the optimal estimator under this
assumption (with also G, H, and R constant, to= –CO)is to examine the associated
regulator problem and to apply the results of earlier chapters. The assumption
serves to provide a detectabilityy assumption for the regulator problem, which guar-
antees asymptotic stability for the optimal regulator. This carries over to the opti-
mal estimator.

For the time-invariant plant, under Assumptions 7.3-4 and 7,3-5, P, = ~~iIP,(t)
is the only solution of (7.3-30) that is nonnegative definite, and the only solution of
(7.3-30) for which F – P.HR “H’ has all eigenvalues in Re [s] <0. In case Assump-
tion 7.3-5 is strengthened to requiring [F, D] reachable (which roughly says that the
input noise affects all states), P, is positive definite (which states that no state can be
estimated with zero error).

Since the time-invariant problem is so important, we shall summarize the
results,

The time-invariant optimal estimator. Given the plant equations (7.3-1) and
(7.3-2), suppose that ~ G, and H are constant. Suppose also that Assumptions
7.3-1 and 7.3-4 hold, that Q and R are constant, and that to= –m. The matrix
P,, which is the error covariance, is constant and satisfies (7.3-30); it maybe
computed by taking a limiting boundary condition of the form ,~$-I@P, (to) = O

for (7.3-14) and evaluating P,(t) for any t, or by evaluating ~~r P,(t) where

P,(t) satisfies (7.3-14) but with boundary condition P,(0) = O. The optimal
estimator is time-invariant. Moreover, if Assumption 7.3-5 holds, the optimal
estimator is asymptotically stable.

The result is, of course, closest to the ideas of Sec. 7.2. There, we confined our
attention to time-invariant systems, and time-invariant estimators. There, also, the
estimators were asymptotically stable, as a result of
assumption.

To illustrate the nature of the optimal estimator,
example. Suppose

i =fx +V, y=hx+w

the complete observability

let us consider a first-order

with associated noise intensities r >0, q >0. The transfer function is h /(s – f). The
steady state Riccati equation is 2p,~ – pjh 2r’1 +
this equation is

q = O and the positive solution of

The filter gain is

k. = –p,hr-’ = -h-’[~+ 1$~2 + h2qr-’]

and the filter is

i, = –~f2+h2qr-lx. –key
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Notice that the filter gain depends only on the process noise to measurement
noise ratio q/r, rather than on the individual covariance levels, although of course
the error covariance ~, depends also on r.

For the case when there is zero process noise (q = O), then

ie = –If[xe– key

and the estimator pole is the reflection of the plant pole into its image in the left
half-plane, if it is not there already. As (q/r) increases, the filter pole moves left and
approaches the plant zero at –~ as (q/r) ~ ~. Correspondingly, the filter gain
magnitude IkeI increases to infinity. Notice that if the plant is stable and q = O, then
~, = O, k, = O; a stable plant and q = O imply x(t)= O and the best estimate is
x,(t) = O; that is, one should not use the measurements. When ~ = O, q = O then
clearly [~, q 1’2]is not detectable and the estimator is unacceptably only neutrally
stable. In such a situation, the idealized process model should be made more
realistic by including a process noise term, even if very small.

It is clear that the noise intensities q, r are akin to the state and control
weighting parameters in the dual control problem, in that adjustments to these
allow adjustments to a filter design. In practice, the noise characteristics may not be
known precisely, but a desired filter bandwidth is known. Then q, r can be used as
tuning parameters to achieve the desired bandwidths. If in a first-cut design the
bandwidth is too high (low), then (q/r) should be decreased (increased). There are
obvious qualitative implications for the case of high-order multivariable filters.

Let us consider a further example. We suppose white noise of covariance
q 8(c – T) is the input to a plant of transfer function 1/[s (s + 1)], starting from time
tO= – m. There is additive output noise of covariance r~(t – 7). Thus, we take

‘=[:-!1 g=[d “=[0 1]

Figure 7.3-6(a) shows the scheme. To put this in the standard form, we set

E[v (t)v ‘(T)]= [: :] ~(t - T)

The input noise is not available to the estimator as an input. Denoting by pi the
entries of the P, matrix, the quadratic equation (7.3-30) becomes

or
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Figure7.3-6 A specificplantandstateestimator.

–:p;2+q=o

Pll –P12 – :P12P22 = o
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2p12– 2pzz– :p:z = o
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It follows that p,, = %’@ from the first equation, p,, = r[~ – 1] from the
third equation, and pll = _ from the second equation. Alternative solutions
are ruled out as not leading to positive definite P,. The estimator gain from Eq.
(7,3-31) is

[

~ = -~r
e

--r + 11
If, for example, q = 16, r = 1, we have ki = [–4 –2]. The matrix F, is F + k,h’, or

[1
o –4
1 –3

It is readily checked to have eigenvalues with negative real parts. The plant and
estimator are shown in Fig. 7.3-6(b) for the case q = 16, r = 1.

Spectral factorization and the innovations process.
Consider the time-invariant signal model and filter under Assumptions 7.3-4,7.3-5.
The steady state Riccati equation (7.3-30) gives, dualizing the result for regulators,
the spectral factorization

R + H’(jcol – F’-lQ(-jwl – F) ’)-*H

= [1 - H’(jod - F’-’K,] R[l - K[(-jcol - F’)-lH] (7.3-33)

The left side is the spectrum @YY(jw) of the measurements y arising from the signal
model (7.3-1) through (7.3-5) in the case to= –w. The spectral factor on the right
side has the property that [1 – H’(sl – @-lK.]-l = [1 + H ‘(sI – F – Kt.H’)-*K, ] is
asymptotically stable. As for the regulator problem, it is in effect uniquely specified
by this requirement.

The spectral factorization identity allows a quick derivation of an important
property of the random process

v(r) = y (t) – H ‘(t)x.(t) (7.3-34)

which is termed the innovations process. This process can be thought of as the error
in estimating y(t) using y(s) fors < t, or as the new information in y(t) not carried
by that in y (s), s < t(hence the name innovations). The property is

E[v(t)v’(s)] = R(t)i3(t – s) (7.3-35)

So the innovations process is white, with the noise intensity as the measurement
noise. This property is much more easily seen in the time-invariant case, and we
shall content ourselves with a demonstration for that case. The innovation process is
illustrated in Fig. 7.3-7. A deterministic external input to the plant plays no real role
in the estimation process (other than, in effect, to reset the mean), and so is sup-
pressed. Now the transfer function matrix from y to v is 1 + H ‘(sZ – F – K,H ‘)-*KC.
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Figure7.3-7 The innovations process v is white.

It follows that the spectrum of v is

@vv(jw) = [1 + H’(jwI – F – K,H’)-lK.]@Yy(jw)[Z + K:(–jwZ – F’ – HKJ)-lH]

=R (7.3-36)

by (7.3-33). This is the frequency domain equivalent of (7.3-35).
One way of testing whether an estimator is optimal is to measure the inno-

vations process and see if it is white [10]. Note too that the spectral factorization
identity and the innovations process allow ready connection with Wiener filtering
concepts; see [10].

Discrete-time estimator. The corresponding discrete-time opti-
mal estimator algorithm is now summarized without a separate derivation. For
further details, see [10].

Consider the signal model

x(t + 1)= F(t)x(l) + G(t)u (t) + v(t) (7.3-37)

y(t) = H ‘(t)x (t) + w (t) (7.3-38)

where the process v(.), w(.) are white, with v(t), w(s),and x (to) independent
and zero mean for all t, s, with E [.x(to)x’ (to)] = Zo, E [v (t)v’ (~)] = Q (t)?i(t – ~),
E[w(t)w ‘(7)] = R (t)a(t – T) where ~(t – T) = 1 if t= T and is zero otherwise.

Two forms of the optimal filter are in use. One makes explicit the optimal
one-step-ahead prediction x, (t It – 1), which minimizes the covariance

X (tit – 1) = E{[x(t) - x,(tlt - l)][x (t) – x.(tit - l)]’} (7.3-39)

Here, x, (tIt– 1) is a minimum variance estimate of x(t), conditioned on mea-
surements y (to), y (t.+ 1), . . ., y (t – 1). The other form of optimal filter gives, in
obvious notation, x, (t It) with conditioned error covariance Z(t It). We have, for the
one-step predictor,

X,(t + llt) = [F(t) + K,(t)H’(t)]x, (t It – 1) – K,(t)y (t) + G (t)u(t) (7.3-40)
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with

K,(t)= F(t) 2 (tit - l) H(t)[H’(t)x (Clt– I)H(t) + R(t)]-’ (7.3-41)

and

x (t + Ilf) = F(t){2 (t]t– 1)– s (tit– l)H(t)[H’(t) 2 (tit – l)H(t) + R(f)]-1

x H’(t) X (tit – l)}F’(t) -t-Q(t) (7.3-42)

initialized by S (tOltO–1) = XO.It is assumed that the inverse in the Riccati equation
exists, this being guaranteed of course if R (t) >0 for all t.Moreover,

xe(tlt)= x,(tlt– 1)+X (tit– l)li(t)[fl’(t) 2 (t]r– l)li(t) + R(t)]-]

x [y(t) – H’(t)xe(tlt– 1)] (7.3-43)

and

Z (tit)=X (tit– 1) -2 (tit – l) H(t)[H’(t) Z (tit – l)H(t) + R(t)]-’

x H’(t)x(t\t– 1) (7.3-44)

If F, H, Q, and R are constant and [L H] is detectable, the limiting Riccati solutions
lim X (tit – 1), &I ~(tlt) exist, and the estimator is asymptotically (as t+ m)
1+.
time-invariant. If in addition, [F, D] is stabilizable for any D with DD’ = Q, then
there is asymptotic stability of the optimal estimator.

The innovations process

v(t) = y(t) – H’(t)xe(tp – 1) (7.3-45)

is white.
We conclude this section with two comments. First, an optimally designed

estimator may be optimal for noise covariances differing from those assumed in its
design. This holds for precisely the same reasons that a control law resulting from an
optimal design may be optimal for more than one performance index, a point we
discussed earlier.

Second, in the interests of achieving an economical realization of an estima-
tor, it maybe better to design a suboptimal one that is time-invariant, rather than an
optimal one that is varying. For example, suppose the plant whose states are being
estimated is time invariant, and that estimation is to start at time zero. Suppose also
that at this time, the initial state of the plant is known to be zero. Then there would
not normally be a great deal of loss of optimality if, instead of implementing the
optimal estimator that would be time-varying, a time-invariant estimator were im-
plemented, designed perhaps on the assumption that the initial time towere –CCand
not zero,

Main points of the section. Under certain specific assumptions
(gaussianness, independence, and whiteness of the noise processes), full order
estimators can be designed which yield a minimum variance of the plant state.
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Riccati equations are involved, and the whole construction is dual to regulator
design. With initial time at –CCand with a time-invariant plant and constant noise
statistics, detectabilityy and stabilizability assumptions yield a time-invariant, asymp-
totically stable estimator.

Increase of Q or decrease of R results in general in the estimator bandwidth
increasing, so that less filtering of the measurement noise takes place.

The results for the stationary model case connect with spectral factorization.

Problem 7.3-1. Consider the plant i=x+v, y=x+w, with
E[v (t) v (~)] = E[WJ(t) w(T)]= ~(t – ~) and v and w independent. Suppose that at
time zero, x(0) is known to be zero. Design an optimal estimator.

Problem 7.3-2. Repeat Problem 7.3-1 for the case when the initial time tois
– m. Then with to= – w, suppose that an additional measurement becomes avail-
able; that is, suppose now

[1
Y=Y1

y2

where yl = x + w1, YZ= x + WZand E[wl(t)wl(~)] = E[wz(t)wz(7)] = b(t – ~) with v,
WI, and W2independent. Design an optimal estimator for this case. Compare the
error covariances for the single- and multiple-output cases.

Problem 7.3-3. Suppose that i = ax + v, yl = x + w1, y2 = x + Wz, where v,
WI, and W2 all are independent, with covariances q ti(t – 7), rllb(t – ~), and
r228(t – ~), respectively. For the to= –m case, derive analytic expressions for the
error covariance, assuming that yl alone is available and that both yl and yz are
available. Observe that the former case can be obtained from the latter by setting
r22= m.

Problem 7.3-4. Giveni =Fx +Gu +v, y =H’x + w, with~ G,and Hcon-
stant and v and w stationary white noise, suppose that to is finite. Show that the
estimator will be time-invariant if E [x (b) x ‘(to)] takes on a particular value—in
general, nonzero. Assume v (.), w(o) independent for simplicity.

Problem 7.3-5. Consider the standard estimation problem with u(t) = O,
E [x ([0)] = O, and tofinite, save that v (.) and w (“) are no longer independent: rather,
E [v (t) w‘ (T)] = S (r)8(t – T) for some matrix S (t). Show that the problem of finding a
minimum variance estimate of x (tl) for arbitrary tl is again equivalent to a quadratic
regulator problem, with a cross-product term between state and control in the loss
function. Attempt to solve the complete estimation problem.

Problem 7.3-6. (The smoothing problem). Let x,(toltl) denote the minimum
variance estimate of x (to), given measurements y(t) up till time tl 2 to, where, as
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usual, i = Fx + Gu + v, y = H’.x + w, E[v(~)v’(T)] = Q(t)8(t – T), E[w(f)w’(T)] =

R (t)S(t – ~), E [x (t~)x’ (to)]= P.0, E [x (to)]= m, and v, w, and x (to) are independent
and gaussian, the first two also being zero mean. It is desired to define a procedure
for computing x. (toltl).

Consider the scheme of Fig. 7.3-8. Observe that x,,(tlt) = x, (t It) and X2(t It) =
x, (toIt), implying that the smoothing problem may be viewed as a filtering problem.
Show that

ile= (F – P1lHR ‘lH’)xl, + P1lHR ‘ly xl, (tolto)= m

X2 = –P;2HR ‘lH ‘Xle+ P~zHR‘ly Xti(tolto)= m

where

Pll = PIIF’ + FPI1 – PIIHR-]H’P1l + Q Pll(to) = P@

Show also how to find x. (tzltl) for arbitrary tz< tl. [Hint: Represent the system of
Fig. 7.3-8 as a n -dimensional system with augmented matrix F., and so forth, and let

[1
p = P,, P,2

e P;Z PZZ

be the solution of the associated filtering Riccati equation. Use P, to define the
optimal 2n -dimensional filter, and show that the two differential equations shown
follow from the optimal filter description. This technique is used in [9].]

r ——— ——— ——— ——— —
1

I I F

I

I
x#o) ❑ Xl(to)

I I
1 Augmented

L
System

~?. j

—— . . —. —. —— .— —

Figure7.3-8 Systemaugmentedwithintegrators.
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Problem 7.3-7. Suppose that

:Z(t) = -F’(t) z(t) +H(t)fw(t) z(q) = ZI

and suppose that P,(t) exists as the solution of

P. (t)= P,(t) F’(t) + F(t) P.(t) - P.(t)H(t)R “(t)H’(t)P,(t) + Q (t)

P, (to)= P@

with R(t) positive definite symmetric. Show that for all M(.)

z ‘(to)P@Z(t,) + J
‘1[M’(t) R(t) M(t)+ Z’(t) Q(t) Z(t)] dt
10

= z ‘(f,) Pe(tJ Z(tl) +
~

“ [M(t) - R-’(t) H’(t) P,(t) Z(t)] ’R(t)
to

x [M(t) – R ‘1(t) H’(t) P,(t) Z(t)] dt

[Hint: Evaluate - ~ [Z’P,Z] + M’RM + Z’QZ.]

Problem 7.3-8. Consider the linear system (7.3-24), but with K, replaced by
K:, and with (7.3-25) holding. Show that P:(t) is minimized for all twith a selection
of K: given by – P, HR’1, P, being the filtering Riccati equation solution. [Hint:
Write the equation for P. as

P, =(F+K~H’)P, +P, (F+ K~H’)’+Q

– K~H’P, – P.HK~’ – P, HR-lH’P,

Set A = P: – P, and show that

A=(F+K~H’) A+ A(F+K~H’)’+Q

for some Q z O, with A(tO)= O. By using an explicit solution for A, show that
A(t) a Ofor all t,with = A(t) Oif and only if K: = –PCHR “].

Problem 7.3-9. Suppose that ~(t)= F’(–t). Show that the corresponding
transition matrices satisfy @(t,s)= 0’(–s, – t).

REFERENCES

[1]

[2]

[3]

T. Kailath, Linear Systems. Englewood Cliffs, New Jersey: Prentice-Hall, 1980.
D. G. Luenberger, “Observing the State of a Linear System,” IEEE Trans. Military
Electron., Vol. MIL-8, No. 2 (April 1964), pp. 74-80.

D. G. Luenberger, “Observers for Multivariable Systems,” IEEE Tram. Auto. Control,
Vol. AC-11, No. 2 (April 1966),pp. 190-197.



206 State Estimator Design Chap. 7

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J. O’Reilly, Observers for Linear Systems. New York: Academic Press, 1983.
N. Wiener, Extrapolation, Interpolation and Smoothing of Stationa~ Time Series.
Cambridge, Mass: M.I.T. Press, 1949.
A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York: Academic Press,
1970.
R. E. Kalman, and R. S. Bucy, “New Results in Linear Filtering and Prediction
Theory,” Trans. ASME Ser. D: J. Basic Eng., Vol. 83 (March 1961),pp. 95-108.
A. E. Bryson and M. Frazier, “Smoothing for Linear and Nonlinear Dynamic Sys-
tems,” Proc. Optimum Systems Synthesis Conf., USAF Tech. Rep. ASD-TDR-063-119,
February 1963.
L. E. Zachrisson, “On Optimal Smoothing of Continuous Time Kalman Processes,”
Inform. Sci., Vol. 1 (1969),pp. 143-172.
B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, New Jersey:
Prentice-Hall, 1979,
A. E. Bryson and D. E. Johansen, “Linear Filtering for Time-Varying Systems Using
Measurements Containing Colored Noise,” IEEE Trans. Auto. Control, Vol. AC-10,
No. 1 (January 1965),pp. 4-10.
R. E. Kalman and T. S. Englar, “A User’s Manual for the Automatic Synthesis
Program,” NASA Contractor Rep. NASA CR-475, June 1966.



r8

System Design Using
State Estimators

8.1 CONTROLLER DESIGN—BASIC VERSIONS
AND VARIATIONS

This chapter is concerned with tying together the notions of state-variable feedback
and estimation. In other words, we consider controllers of the sort shown in Fig.
8.1-1, where state estimates x. are used in lieu of the states x in a full-state feedback
design. Attention in this chapter is focused on the time-invariant plant/controller
case.

In this section, we concentrate primarily on transfer functions or transfer func-
tion matrices from ue,, to y in Fig. 8.1-1 and the associated closed-loop eigenvalue
locations. We show that the closed-loop transfer function matrices are the same for
the state-estimator feedback design as for the full-state design. Also, the closed-
loop eigenvalues consist of those of the full-state regulator together with those of
the estimator—this is termed an eigenvalue separation properly. Variations to the
scheme of Fig. 8.1-1 are studied based on classical compensator configurations.
These will achieve the same closed-loop transfer function matrices but different
closed-loop eigenvalues (some of which are uncontrollable), and usually, but not
always, the same loop gain or open-loop transfer function matrix.

In the remainder of the chapter, optimality of the arrangement of Fig. 8.1-1 is
studied for the stochastic case, leading to the Separation Theorem (also known as the
Certainty Equivalence Principle). It is also pointed out that with the introduction of
observers, input or output robustness properties, such as attractive gain and phase

207
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margins, can evaporate. However, roll-off rates can improve, enhancing high-
frequency robustness. The so-called loop recovery technique is outlined as a
method to recover robustness properties associated with the state feedback design.
On a different tack, the class of all stabilizing controllers is introduced as a vehicle to
achieve variations of the basic state estimate feedback structure. The variations
involve feedback of residuals (y – ye), and allow robustness of a state estimate
feedback design to be varied or “optimized” while preserving performance proper-
ties of a nominal design. We do not give explicit optimization procedures in this
text, except where the optimum is given analytically in a straightforward manner.

Basic controller design. As our basic plant, we take the time-
invariant system

,i=Fx+Gu (8,1-1)

y =~’x (8.1-2)

For the observer, we shall take for the moment the full-order structure of Chapter 7,
Sees. 7.2 and 7.3-viz.,

.& = (F + K,H’)x, + Gu – K.y (8.1-3)

We assume that K. is chosen so that all eigenvalues of F + K,H’ have negative real
parts. Whether it is optimal for some noise statistics is irrelevant for our consid-
erations here; either the scheme of Sec. 7.2 or that of Sec. 7.3 can be assumed to
lead to the choice of K,. Subsequently in this section we shall consider the use of
reduced order observers in controller design.

We further assume that we should like to implement the control law u =
K ‘x + u.,t. Here u,., denotes an external input, possibly derived by optimal or
suboptimal tracking results as in Chapter 4. It may include a term –K ‘i where x?is a
desired state trajectory, or a feedforward term K~r where r is a reference trajectory.
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Also presumably, K has been selected as an optimal control law. However, for
obvious reasons, we implement the following law instead:

u = K ‘X, + U.,t (8,1-4)

Another arrangement useful for y to track a reference may have the external input
combined with y prior to entering the state estimator. This case is discussed later in
the section.

Equations (8. l-l) through (8. 1-4) sum up the entire plant-controller arrange-
ment. We shall now study some properties of the arrangement using these equa-
tions. From (8.1-1)–(8.1-4),

x = (~ + GK’)x – GK’(x ‘X,) + GUCXL (8.1-5a)

i, = (F + GK ‘ + K<H‘)X, – K,y + Gu.Xt (8.1-5b)

Subtracting and exploiting (8. 1-2), we have

f (x -x,) = (F + K,H’)(x ‘X.) (8.1-6)

which holds independently of ue.1. Now we regard the 2n vector, whose first n
entries are x and whose second n entries are x – x,, as a new state vector for the
overall plant-controller scheme. (It would, of course, be equally valid to take as a
state vector a 2n vector with the first n entries consisting of x and the second n
entries consisting of x,. )

The plant-controller arrangement, then, has the following description—the
first equation following from (8. 1-5) and (8. 1-6), the second from (8. 1-2):

HX:XJ=[F+:K’ F~T~][x~xe]+[~]ucx ‘81-7)

Y ‘[H’ Ol[x ~x, 1
(8.1-8)

With input U,X,and output y, the plant-controller arrangement has the following
transfer function matrix, derivable by manipulating (8.1-7) and (8.1-8):

W(s) = H’[sl - (F+ GK’)]-’G (8.1-9)

This is exactly the transfer function matrix that would have resulted if true state-
variable feedback were employed. The poles of the open-loop plant, corresponding
to the zeros of det (s1 – F), are shifted to the zeros of det [s1 – (F+ GK ‘)]. The
zeros of a scalar W(s) are unaltered.

Thus, from the steady-state (or zero initial state) point of view, use of the
estimator as opposed to use of true state-variable feedback makes no difference.
This is, of course, what should be expected. For the case in which the steady state
has been reached, x – x, has approached zero and x = x,, or, in the case of zero
initial state, x = O and x – x, = O, so that again x = XC.Clearly, with x = x,, the
control used is precisely that obtained with true state-variable feedback.
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From the transient point of view, the plant-controller scheme of Eqs. (8.1-7)
and (8. 1-8) will behave differently from a scheme based on true state-variable feed-
back. Equation (8. 1-7) defines a 2n -dimensional system, whereas state-variable
feedback yields an n-dimensional system. However, the 2n -dimensional system is
still asymptotically stable; inspection of (8.1-7) shows that the eigenvalues of
F + GK’ and of F + K,H’ determine the characteristic modes. (The eigenvalues of
F + K.H’ are, of course, associated with the additional new modes, which are
evidently uncontrollable from u~~t.)

The open-loop transfer functions depend on where the loop is opened. Of
course, if the loop is opened just after the summing function in Fig. 8.1-1, then the
open-loop transfer function is simply K ‘(sI – F’-*G, being identical to that with
full-state feedback. However, to analyze input robustness it is usual to open the loop
at the plant input. Then the loop gain is the product of the plant transfer function
matrix H‘ (s1 – F,-lG and that of the controller K ‘(sI – F – GK’ – K,H ‘)-’(– K,).
The latter is the transfer function from the controller input y to its output K’x,,
being most easily obtained from (8. l-5b) with u.., = O. The open-loop gain transfer
function matrix is thus

W,.(s) = [K’(s1 - F – GK’ - K,H’)-l(–Ke)][H’(sl - ~-lG] (8.1-10)

The situation is depicted in the regulator of Fig. 8.1-2 (u.,, = O), where the loop is
opened at the point X.

x“ Plant Y

H’(s1 - F)-i G
b

Controller

K’(sl-F-GK’-KeH’ jl(-KJ
Figure8.1-2 Regulatorstructure.

This is not the same as for full-state feedback when the loop gain is K’(s1 – ~-’G.
Notice that in view of this fact, we cannot expect the return difference inequality to
hold, with its associated guaranteed robustness properties, for the new return
difference. Notice also that the roll-off rate of the loop gain now is necessarily faster
than 6 dB/octave, the roll-off rate for the full-state feedback case. Thus there is the
potential to gain in high-frequency robustness and to lose passband robustness by
introducing state estimation.

Controller with a reduced-order observer. We now discuss
briefly the equations of the plant-controller arrangement when a reduced-order
observer is used. We first observe that there is no loss of generality involved in
describing the plant and controller by state-space equations with a special coordi-
nate basis when we are seeking to compute the overall transfer function matrix, or
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the qualitative stability properties of the arrangement. Overbars will indicate this
special coordinate basis. Thus ~ = ~~ + ~u, u = FY + U.,t, where

The reduced-order estimator of Sec. 7.2 gives state estimates

A state vector for the overall plant-controller arrangement is, therefore, provided
by the vector

[1
x

xl?

However, a more appropriate, but equally acceptable, choice for state vector proves
to be

[1
T

xl —Xle

Recall from Sec. 7.2 that the errors (Xl– Xl,) satisfy the differential equation, see
(7.2-22),

where K, is the state estimator gain. There results the overall closed-loop system
equations

: [I&l=[F+om’ -G:IL%I+[W, ‘81-”)

~=p~ (8.1-12)

These two equations then imply again that the transfer function matrix re-
lating uCX,to y is H‘ [s1 – (F+ GK ‘)]- lG, and that the zero-input response of the
plant-controller arrangement is determined by the eigenvalues of F + GK’ and of
F=.The only difference between the reduced-order estimator and that considered
earlier is that the n x n matrix F + K,H’ is replaced by the reduced-order matrix F,.

There are reduced-order controller designs, not studied here, which seek to
estimate the control signal K ‘x directly, rather than by means of a state estimate x,.
In such methods, a state estimate x, cannot usually be extracted from the controller.
See, for example, [1, 2] and their references.

Classical controller structures. The aim of what follows is to
indicate some parallels with classical control ideas. This will be done by exhibiting
some variants on the controller arrangement of Fig. 8.1-1, the structures of which
will be familiar from classical control.
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We will derive controller structures as indicated in Fig. 8.1-3. We now list
some general properties of these controller structures.

1.

2.

3.

4.

The controller structures will be derived by manipulations on the controller
structure of Fig. 8.1-1. These manipulations do not affect the input-output
steady-state performance (or zero-state performance) of the overall scheme.
In other words, the transfer function or transfer function matrix of the overall
scheme is still If’[sl – (F + GK’)]-lG, where II’(sI – ~-l G is the transfer
function (matrix) of the plant and u = K ‘x is the desired feedback law.

There is no restriction to single-input or single-output plants.

The dimensions of the compensators are the same as the dimensicn of the
controllers from which they are derived. This means that if, for example, an
n-dimensional single-output system employs an (n – 1)-dimensional control-
ler, then the series compensator and the feedback compensator will each have
dimension (n – 1).

In view of 3, there are additional modes again in the controller of Figs.
8.1-3(b) and 8.1-3(c) beyond those introdu~ed in the controllers of Fi@.
8.1-3(a) and 8.1-3(d). In the case of the controllers of Figs. 8.1-3(c), these

uext Y
b

(a)

‘ext Series Y
Compensator Cl b

+

uext + Series Y
Compensator C, b

+

(c) Feedback
Compensator C3

r Series u Y
b

(d)
Figure8.1-3 Controllerstructures
familiarfromclassicalideas.



Sec. 8.1 Controller Design—Basic Versions and Variations 213

additional modes are always asymptotically stable. However, this is not the
case with the scheme of Fig. 8.1-3(b), which may thus prevent its use.

We shall now proceed with the derivation of the structures. We start with the
controller of Fig. 8.1-1, reorganized as having inputs u.,~, y and outputs u, as in Fig.
8.1-4. This has the desired structure of the two-degrees-of-freedom compensator
scheme of Fig. 8.1-3(a). For the full-order state estimator case, the state equations
are

x?,= (F + K,H ‘ + GK ‘)X, + GM,,,– K,y
(8.1-13)

u = K ‘X,+ U.,t

Its transfer function matrix, linking [u:., y ‘]’ to u, is

C(s) = K’(sI - F – K,H’ - GK’)-’[G –K,] + [1 O]~ [C,(s) C,(s)] (8.1-14)

There is no guarantee in any of our theory that the compensator of (8.1-13) and
(8.1-14) is (open-loop) stable, that is, that F + K.H’ + GK’ has all eigenvalues with
negative real parts. Indeed, it is known that for a single-input, single-output plant,
any stabilizing compensator is (open-loop) unstable unless there is an even number
of right half-plane real poles between successive right half-plane real axis zeros [3].
Further, a stabilizing compensator may need to have dimension far greater than that
of the plant if it is also to be open-loop stable.

Engineers are understandably hesitant to implement open-loop unstable con-
trollers, and a search for alternative designs may be indicated, perhaps using alter-
native sensors and actuators to avoid this open-loop instability. Of course, from a
theoretical point of view, working with a linear unstable compensator is no different
from working with a linear unstable plant. In practice, saturation and a possible
desire to maintain some acceptable level of performance in the face of sensor or
actuator failure will alter this view.

If the compensator denoted Cl in Fig. 8. l-3(a) is open-loop stable, then the
arrangement of Fig. 8.1-3(b) can be implemented with the series compensator Cl
and the feedback compensator Cz. Notice that the orders of Cl and Cz are each the

----- ----- ----- ----- ----- ----,
1
1

‘ext ; + Compensator C= [Cl C2]~ u

1 1
I 1
1 1
1 1
1
1
1
1
1

1----- ----- ----- ----- ----- ----

Figure8.1-4 The basic controller scheme rearranged
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same, in general, as the order of C = [Cl Cl], so there is a complexit y cost increase
here. The extra modes introduced, in addition to those of the basic control scheme
of Fig. 8.1-3(a) (with modes that are eigenvalues of F + GK’, F + K,H ‘), are the
poles of Cl(s), being the eigenvalues of F + GK’ + K,H’. Details on this derivation
are left to Problem 8.1-4.

The two-compensator scheme of Fig. 8.1-3(b) is not recommended here, but it
is of interest to make comparisons with classical designs. The scheme could be of
interest with an incorporated tracking series compensator, as in Chapter 4, and
compensator order reductions, as in Chapter 10.

In the series-feedback arrangement of Fig. 8. 1-3(c), the series compensator is
Cl, as in the previous arrangements. The feedback compensator is the subsystem of
the Fig. 8.1-4 scheme with input y and output feeding into the summing node. Its
transfer function is

C,(s) = K’(sI - F - K,H’)(-K,) (8.1-15)

Notice that there must hold Cl(s) Cq(s) = Cl(s), given the equivalence of the arrange-
ments of Figs. 8.1-3(a) and 8.1-3(c). This is readily checked via algebraic manipu-
lations. Again, there is an increase in total compensator complexity over the basic
control scheme in such an arrangement. The additional modes beyond those for the
basic control scheme are those of the estimator, which are known to be stable, and
are under the designer’s control. Details are explored in Problem 8.1-4.

The classical compensator structures studied so far are all direct variations of
Fig. 8.1-1 with u.,, as indicated. A further variation is easily organized to achieve the
perhaps most familiar classical arrangement of all—the unity feedback scheme of
Fig. 8.1-3(d). The idea is that y should track an external reference r and indeed, y
will track r in the bandwidth of the closed-loop system. Because of this property, the
unity feedback arrangement is perhaps the main alternative to that of Fig. 8.1-3(a)
for linear quadratic-based design.

Of course, the same rearrangements as in Fig. 8.1-3 can be achieved by using
reduced-order estimators, whether or not there is an explicit state estimation.
Again there is the possible additional complexity and extra modes that must be
weighed against any conceivable gains in the rearrangements. The following exam-
ple is instructive.

Illustrative example. We consider a second-order position control-
ler for a plant with transfer functions ‘2. Suppose that

y = [1 o]~:
1

Also let the control be u = [– 1 – l]x. Let us use a reduced-order estimator with
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a single eigenvalue at s = –a. Then xl, = y, and x2. = w + ay, where ti =
–aw – a2y + u. Also

z’f=–y- (w+cxy)+c4ex1

Inserting this into the expression for w yields
~=_aw—a2y—y —(w+ Cly)+clcxt

= -(ci+l)w -(l+ rx+cl’)y +Uex,

The transfer function from u,., to u is (s + ci)(s + a + 1)-1, and from y to u it is
-[(1 +U)s +cl](s +ci+ l)-’.

The associated two-degrees-of-freedom controller, with input u,,~ where
u = – [1 l]x + u.,,, is shown in Fig. 8.1-5(a). The closed-loop eigenvalues are the
zeros of (s 2+s + 1)(s + a,). Alternative arrangements are depicted in Figs. 8.1-5(b)
and 8.1-5(c). Notice that the product of the series and feedback compensator

uext
+

S+cx +1

(a)

‘ext + Y
b

—

(c) ](l+cr)s+a~
S+rx

I I

(d)
Figure8.1-5 Controllers
discussedinexample.
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transfer functions in Fig. 8.1-5(c) agrees with the feedback compensator in
Fig. 8.1-5(b). The eigenvalues associated with the arrangements of Fig. 8.1-5(b)
and 8.1-5(c) are the zeros of (s2 +s + 1)(s + a)(s + a + 1) and (s2 +s + 1)
(s + a)’, respectively.

A classical design, set up with a different external input point, might actually
have led to the scheme of Fig. 8.1-5(d). [Compare with Fig. 8.1-5 (c).] With a = 10,
which would be suggested by the requirement that the estimator have a much faster
time constant than that of the closed-loop transfer function, the compensator is

11s + 10
S+ll

This is evidently introducing a phase-lead. Since it emphasizes high frequencies
more than low frequencies, too large an a will give problems with noise. The choice
ci = 10 is in accord with classical control. The associated root locus diagram is shown
in Fig. 8.1-6, parametrized with the gain K. The value K = 1 corresponds to the
nominal value, and leads to closed-loop poles at – 10, –0.5 *j=, whereas pure
state-feedback would have given poles at –0.5 + j ~. Observe that the infinite
gain margin property is retained here; in Section 8.3, we shall return to the question
of gain margins when state estimators are used.

Notice that the open-loop transfer function

Wods)=(l ‘~)s +oi~S+lx+l S2

has a roll-off rate of 12 dB/octave.
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Figure8.1-6 RootlocusplotforsystemofFig.8.1-5(d),
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Main points of the section. Stateestimatefeedback designs have
the same transfer functions as full-state feedback designs. Their closed-loop eigen-
values consist of those for a full-state feedback design together with those of the
estimator. When reorganized in terms of classical compensator configurations, the
compensators are of high order relative to classical compensators, introducing
uncontrollable and unobservable modes into the closed-loop system equations.

Problem 8.1-1. Consider the plant

i=[: ;] X+[:]U y=,, (),x

Calculate an optimal state feedback control law that will minimize the performance
index ~,~(u 2+ 2x; + 3x:) dt. Using the concepts of this section, design dynamic out-
put feedback controllers of both dimension 2 and dimension 1 with poles that
have real parts with significantly larger magnitude than the closed-loop system poles
associated with the state feedback design. Present the controllers as for a unity
negative feedback scheme.

Problem 8.1-2. Consider the first-order plant

i=x+u, y=x

The control law u = –3x is an optimal law for this plant. Design state estimators of
dimension 1 with poles at – 1, –5, – 10. Then sketch the response of x (t), given
x(0) = 1 for the following eight cases. In case 1, no estimator is used, and in cases 2
through 8 an estimator is used.

1. The feedback law is u = –3x.

2. Estimator pole is at – 1 and x, (tO)= O.

3. Estimator pole is at – 1 and x. (tO)= ~.

4. Estimator pole is at – 1 and x, (tO)= – 1.

5. Estimator pole is at –5 and x, (t,) = O.

6. Estimator pole is at – 10 and Xc(to)= O.

7, Estimator pole is at – 10 and x, (to)=$.

8. Estimator pole is at – 10 and x, (tO)= – 1.

Comment.

Problem 8.1-3. Consider the 2n-dimensional system defined by Eqs. (8. l-l)
through (8. 1-3) and let u = K ‘x be an optimal control law resulting from minimiza-

Ption of a performance index ,0(u ‘u + x‘ Qx) dt. Show that if Q is positive definite,
there exists a positive definite Q such that u = K ‘x, is the optimal control for a

rperformance index ,0 [u ‘u + (x’ x‘ – x[)Q (x’ x‘ – x;)’] d. Indicate difficulties
in extending this result to the case where Q is singular. (The conclusions of this
problem are also valid when reduced-order estimators are used.) [Hint:Take as the
state vector z, where z‘ = (x’ x‘ – x:). ]
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Problem 8.1-4. Consider the basic control scheme Fig. 8,1-1 for the full-
state estimator case. Show that additional modes in the reorganizations of Fig.
8.1-3(b), (c) are, respectively, eigenvalues of F + GK’ + K,H’ and of F + K.H’.
[Hint: In the second case, use a state vector consisting of x, x, (the state of C,), and
(x -x, - xl), where x, is the state of C,.]

8.2 THE SEPARATION THEOREM AND
PERFORMANCE CALCULATION

This section is confined to a brief treatment of a theoretical result known as the
Separation Theorem or Certainty Equivalence Principle. Performance calculations
are also studied for state estimate feedback LQG design, and a design example is
included.

We assume that we are given a linear system with additive input noise:

i = ~(t)x + G(t)u + V (8.2-1)

The input noise v is white, gaussian, of zero mean, and has covariance Q (t)i3(t– T),

where Q is nonnegative definite symmetric for all t.The output y of the system is
given by

y =H’(t)x +W (8.2-2)

where ~ is white gaussian noise of zero mean, and has covariance R (t)~(t– T),

where R(t) is positive definite for all t.The processes v and w are independent. The
initial state x (to) at time to is a gaussian random variable of mean m and covariance
Po, and is independent of the processes v and w. The matrices F, G, H, Q, and R are
all assumed to have continuous elements.

It is not possible to pose an optimal control problem requiring minimization of

V =~’[x’Q(t)x + u’R(t)u]dt (8.2-3)
to

where Q(t) is nonnegative definite symmetric and R(t) is positive definite sym-
metric, even if one restricts the optimal u(t) to being derived from the measurement
y(.), because the performance index V must actually be a random variable, taking
values depending on v(.), w(.), and x (to),which, of course, are random.

To eliminate this difficulty, one can replace (8.2-3) by

V= E[~~[x’Q(t)x +u’R(t)u]dt] (8.2-4)

where the expectation is over x (to) and the processes v(. ) and w(. ) on the interval
[to,T1.It is understood that at time t,the measurements y (T), tO5 T< tare available
along with the initial statistics of x (to)(in principle m and Po, but in practice only m
is needed). Equivalently (but not altogether obviously), u(t) is allowed to depend on
y(~) and u(T) for to 5 T < t, as well as the initial statistics of x (to).Note: The optimal
u (t) is not required to be an instantaneous function of y (t).
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The solution of this problem, which has come to be known as the Separation
Theorem for reasons that will be obvious momentarily, is deceptively simple. It falls
into three parts:

1. Compute a causal minimum variance estimate x,(t) of x(t) at time t, using
u(T), tos T < t and y(7), ks ~ < C.As we know, this problem has a solution
wherein x,(t) is the output of a linear system excited by u(“) and y(.). This
linear system is independent of the matrices Q(t) and R (t)—that is, the same
linear system generates x,(r), irrespective of what Q (t) and R(t) are.

2. Compute the optimal control law u(t)= K ‘(t)x (t), which would be applied if
there were no noise, if x (t) were available, and if (8.2-3) were the performance
index.

3. Replace x by its estimate x,. That is, use the control law u(t) = K’(t)x. (t),
where x.(c) is obtained as in (l). This law is optimal for the noisy problem.
Notice that the calculation of K(t) is independent of H(f), and the statistics of
the noise.

Evidently, the calculation of x, (t) and of the control law gain matrix K(t) are
separate problems that can be tackled independently. Hence the name “Separation
Theorem, ” Figure 8.2-1 shows the optimal controller.

* Noisy Linear System b

Control Law Xe (t)
from Optimum

4
Deterministic Estimator

Problem

Figure8.2-1 Illustrationof the SeparationTheorem.

A proof of the Separation Theorem is given at the end of the section.
The Separation Theorem does not extend to arbitrary nonlinear stochastic

optimal control problems. In a sense, the result is surprising. One might have
expected that in the face of the additional uncertainty caused by the presence of
noise, a more cautious form of control would be used, perhaps with lower gains, as
in the case of plant uncertainty.

A most important special case of the Separation Theorem deserves to be
highlighted. Suppose that (8.2-1) holds, while x(t) is available for measurement,
with no noise. Thus we have a linear estimation problem with white input dis-
turbances, with output equal to state, and with no measurement noise. In this case
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the Separation Theorem states that u(t) = K‘ (C)x(t) is again optimal, of course in
the sense of minimizing the index (8.2-4), not (8.2-3).

In case T ~ ~, (8.2-4) needs replacement. It is clear that there is no way that u
and x will decay to zero as t ~ CO,if in (8,2-l), the random process v(“) remains
active; that is, Q(t) + Oas t+ w. As a result, the index (8.2-4) will diverge to CO,no
matter what control is employed. Restricting consideration for simplicity to the
time-invariant case, the natural replacement for (8.2-4) becomes

V = lim *E
{J

‘[x’Qx+u’Ru]dt
}

(8.2-5)
T-. o

with the same restrictions as before on u(t) [viz. u(t) depends either on past y (.),
u(.), and X. statistics, or on current x(.)] together with one new restriction: u(t)
must be generated by a time-invariant controller, or state feedback law. Without
this latter restriction, it would be possible to change the controller on a finite
interval arbitrarily without affecting the value of the performance index.

The Separation Theorem continues to apply to the minimization of (8.2-5),
with the steady state control gain K and filter gain K, defining the controller. [Of
course, if x (.) is available for measurement, K. does not enter the picture.]

In any properly posed LQG problem, the optimal closed-loop will be stable,
and consequently, x(.) and u(.) will be stationary random processes. There results
the following rewriting of (8.2-5):

V= E[X’QX+U’RU] (8.2-6)

The discrete-time case. Not surprisingly, the Separation Theorem
applies also in discrete time. If the admissible control strategies restrict u(t) so that
it is a function of only y(0), y(l),. . . . y (t – 1), then x,(t It – 1) is used in lieu of
x (t)—leading to strictly proper controllers. If there is only a properness restriction
rather than a strict properness restriction, then x, (t It) is used in lieu of x(t). This
issue is explored in Problem 8.2-2.

Performance calculations. It is important to know how to com-
pute the optimal performance index when noise is present. Let us begin with the
case when x(t) is available for measurement. Then we implement u (t)= K‘ (t)x (t),
so (8.2-1) becomes

-i = [F(t) + G (t)K’(t)]x + v(t) (8.2-7)

Let M(t) be the solution of

ti=(F+GK’)M +M(F+GK’)’+Q

M(tlJ) = Z’o+mrn’ (8.2-8)

Then M(t) = E[x (t)x ‘(t)]; see Appendix B. Further

J
V = ‘{E[x ‘(t) Qx(t)] + E[x ‘(t)K(t)R (t) K’(t)x (t)]} dt

to

J

(8.2-9)
= ~tr [(Q + KRK’)M] dt

10
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[It is not hard to verify that if Q = O, PO= O, and m = x (to),then this formula is
consistent with the earlier deterministic result. ] In case T ~ cc and we use index
(8.2-6), we have as a replacement for (8.2-8),

(F+ GK’)A4+A4(F +GK’)’+Q=O (8.2-10)

and, replacing (8.2-9),

V = tr[(Q + KZ?K’)M] (8.2-11)

The initial statistics of x (to) play no role in this expression; they are forgotten, or
become irrelevant, in an infinite time interval.

In case x (t) must be estimated, the style of calculation above still applies, but
is more complicated. We shall set out the details for the infinite time case only. Then
we have

[H
i =
i, -:H F::e’H+ GKr]k]+[: -L]

‘r [A1=[F+:K’ Ffie’’][x.~xl+[-~ flKe][Ll (82-12)

The covariance matrix

{[
‘(f) ] [x’(t) X:(t) -x’(t)]]= [;;: ;:] (8.2-13)

E Xe(t) – x (t)

can now be evaluated from

(8.2-14)

(It is easily verified that S22= P,.) Also, from (8.2-13), it follows that

E [X,(t)x[(t)] = (Sll + Slz + Sjz + S2Z) (8.2-15)

Finally,

V= E[X’QX+U’RU]

= tr {QE(xx ‘)}+ tr{RK’E(xAC ‘)K} (8.2-16)

= tr [QSII] + tr [Z7K’(S11+ Slz + S{z+ S22)K]

Notice that this calculation does not appeal to the optimality of K, K, (except
in our side remark that SZZ= P,), It could therefore be used with suboptimal
controllers.

Lastly, we comment on an alternative way of expressing (8.2-16). Call T(jw)
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and T,(jw) the transfer function matrices from the vector [v’ w‘ ]‘ to x and xc
respectively. Then, the second equality in (8.2-16) can be reorganized by using

(8.2-17a)

(8.2-17b)

(see Appendix B). We sha~l now illustrate the use of this type of frequency domain
formulation as an aid to comparing the efficacy of various controllers.

A resonance suppression design example. We consider
here a low-order model of an aircraft in level flight subjected to wind gust tur-
bulence. The objective is to suppress horizontal vibrations at the flight deck and in
the tail section by means of LQG (yaw-damper) control. Measurements are the
forward and aft acceleration readings yf, y., and the scalar control is the rudder
position u. In this design example, h makes sense to work with modal coordinates.

Consider a stochastic plant model x = Fx + Gu + rv, y = H ‘x + w in the
usual form where x = [xl X2 X3 X4 X5 X6]’,y = [y~ ya]’ and

r-2.82 X10-8 o 1

F=

1

–6,76 X 10-3

[
–0.122 1.57

–1.57 –0.122 1
0

[

–4.06 x 10’4 –1.65 X 10-7’
–2.20 x lo” 7.61 x 10-5

[G r]=
8.84 X 10’2 3.05 x 10-2

–3.08 X 10’1 –1.05 x 10-2
6.39 X 10-2 4.46 x 10-3

–1.08 –1.02 x 10-2.

H.

–3.5 x 10-4 –2.05 x 1o-4”

–1.57 x 10-] –1.54X 10-’

–1.56 X 10-1 2.81 X 10-1

4.61 X 10-3 -9,85 x 10-2
–3.37 x 10-’ –1.02
-–2.40 X 10-2 –7.68 x 10-2.

–0.71 21.3
-21.3 –0.71 1I

Figure 8.2-2 shows the open-loop resonances at 1.5 rad/s, 21 radls with process and
measurement noise invariance Q = 1, A = 10-6J. The figure actually plots the
power spectral densities of yf, y.. With H; the first row of H‘, that of yf is



Sec. 8.2 223
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Frequency (Rads I sec )

Figure8.2-2 Open-loopperformanceshowingresonances.

[Hj(jo-sl - P’-’r]2Q, due to v, ph.Is the 1-1 entry of ~, due to w. That of y. is
obtained similarly. Figure 8.2-3 shows the closed-loop responses when there is an
LQG controller design included. The index is chosen reasonably as

v, =E[y; +y: +0.2U’]

Notice the reduction in vibration both fore and aft. We comment that further
adjustments to the relative magnitude of the individual cost terms in VI do not
appear to give any improvement. However, since the high resonances are clearly
associated with the states x3, x4, it makes sense to consider penalizing directly these
terms by using an index such as

v*= E[y} +y: +4x:+ 4xf+ u’]

The dramatic further improvement thereby achieved is shown in Figure 8.2-4.
The use of the frequency response (power spectral density) plots in per-

formance index selection is clearly a crucial ingredient to achieve a good LQG
design in this case. We can call the final design a frequency-shaped LQG design.
This concept of frequency shaping is developed further in Chapter 9. This example
has not, of course, illustrated directly the calculation of a performance index,
though the fact that the performance index has a frequency domain interpretation
underpins the entire approach of the example.

In the remainder of this section, we turn to a proof of the Separation Theorem.
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Figure 8.2-3 Closed-loop performance with LQGcostterms(y} + Y? + 0.2u2)
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Figure8.2-4 Closed-1oop performance with LQG cost terms (y} + Y: + 4x;+ 4x;+ u 2).
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The material is not essential for later concepts in the book, is quite difficult, and can
of course be omitted.

Proof of Separation Theorem—Part 1. We appeal to two
related results beyond the scope of this text to establish the Separation Theorem in
a rigorous manner; see [4]. The first is that the optimal state estimation errors are
orthogonal to the optimal state estimate in the sense that

E [(x – x,)x:]= O (8.2-18)

The second is that the innovations process v(t) = y(t) – H ‘(t)x, (t) is white, satis-
fying

E[v(t)] = O, E[v(t)xC(t)] = O, E[v(t)v’(~)] = ~ (t)?i(t – T) (8.2-19)

Recall that (8.2-19) is established in Chapter 7, Section 3, for the stationary
time-invariant case. Note also that it is readily shown that (8.2-18) holds if a linear
control law u(t) = L (t)x, (t) is used—see Problem 8.2-1. The orthogonality property
(8.2-18) follows from what is known as the Projection Theorem [4], which is de-
picted in Fig. 8.2-5. Here x, (t) is viewed as the orthogonal projection on the space S,
of all random variables obtained through all causal operations in u(T), y(7) over the
interval [0, t).

x(t)
Space St of all random
variables obtainable through
cauaal operations on
u(~), y(~) for Os T <t

Figure8.2.5 ProjectionTheorem

The above two concepts can, incidentally, be connected. Notice that the
innovations v(t) is y (t) – y, (t), where y,(t) = H ‘x,(t) is the orthogonal projection of
y(t) onto the space S,, so that then v(t) = y(t) – y, (t) is orthogonal to S,. Now S,
includes v(7) for any 7 E [0, t), since y, (T) is obtainable by operations on u (u), y(u),
u <~, and v(T) = y(T) – y,(7). Since v(7) E S,, there holds ~[v(t)v’(T)] = O for T < t,

and v(t) is seen to be white, as claimed in (8.2-19).

Part Il. Let us proceed with the Separation Theorem proof. First consider
the following reorganization
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E[x’Qx] = ~{[Xe +(X ‘X,) ]’Q[xe +(X -x,)]}

=E[x[Qx,]+ E[(X -x,)’Q(x -x,)] +2E[x:Q(x –x,)]

= E[x~Qxc] + E{tr [ Q(x - x,)(x - x,)’]}

+ 2E{tr [Q (x – x,)x:]}

The trace and expectation operators can be interchanged, so that with
P, ~ E[(x – x,)(x – x,)’] and E[(x –xc)x~] = O, then

E [x’ Qx] = E[x:Qx,] + tr (QP,) (8.2-20)

This result allows a reformulation of the optimal control task, assuming that we can
interchange expectation operators and integrations, as follows. Minimize over u(.)
the index

!

T

V =E ‘(x:QxC + U’RU)dt +
J

tr (QP,) dt (8.2-21)
:0 10

subject to

i. =Fx, + Gu –K, v (8.2-22)

where v = y – H ‘x, is the white innovations process satisfying (8.2-19). Note that
(8.2-22) is just a rewrite of the Kalman filter equation, exploiting the fact that
v(t) = y(t) – H‘ (c)x,(t). Now (8.2-21) and (8.2-22) together define a stochastic regu-
lation task, but with complete state information, in that x, is available. It is a special
case of the more general study of this section.

Part Ill. We proceed to the solution of the complete-state information
stochastic regulation task (8.2-21), (8.2-22), and we shall make use of (8.2-19) and a
result concerning linear systems driven by white noise, which can be derived by
using the Ito differential rule. Such derivations are beyond the scope of this text, so
we merely quote that with E [x, (t)x~(t)] denoted by W,(t), and with the control u(t)

integrable in that ~0~1u (t)l dt < ~ almost surely for all finite T, then under (8.2-22).

w, (tO)= x, (tO)x:(to)= E [X(tO)]E[X‘(to)]

w, = FWc + W,F’ + K,i?KJ + E[Gux~ + x,u’G ‘]
(8.2-23)

For the case u = Othis result specializes to a well-known result in Appendix B.
Also with u(t) = Lx.(t) this appendix result generalizes immediately to (8,2-23) with
E [Gux~ + X,U’G‘] = GLW, + W=L’G‘. The integrability condition on u(t) is rather
weak and will be satisfied by most practical control laws derived from external
inputs and state estimates.

Recall that the state estimate feedback gain is, when we delete time argu-
ments,

K!=–R-lG!P (8.2-24a)

–P = PF + F’P – PGR-lG’P + Q, P(T)=O (8.2-24b)
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Observe now that

~(PW,) =PW, + PW, = (PGR-’G’P-Q -PF-F’P)W,

+ P{FW, + W.F’ + K,~KJ + E[Gux: +X,~ ‘G ‘]}

Taking the trace, recalling that tr (AB) = tr (lIA), and applying (8.2-24a) yield

[d 1
tr ~ (PW,) = tr [KRK’ W. – Q W, + PK,RK: – 2E[x: KRu]}

Consequently,

E [x: Qx,] = tr (Q W.)

[
= tr – it (PW, ) + PK,RK: + KRK’ W,

1
– 2E [Xi KRu]

while also

E[(u – K’x,)’R(u – K’x,] = E[U ‘Ru – 2x~KRu + x; KRK’x,]

= E[u ‘Ru] – E[2x~KRu] + tr [KRK’ W,]

Now using (8.2-25) and (8.2-26), we can organize the index (8.2-21) as
.7

(8.2-25)

(8.2-26)

V = j‘ E[(u – K’x. )’R(u – K’x, ) + tr (QP,) + tr (PK,fiK~)] dt – [tr (PW,)]~,
~o

which is clearly minimized by

u *=K’x~

with optimal index

J
V*= Ttr (QPC + PK,RK~) dt – [tr (PW, )]:

[o

This completes the proof.

Remark. We have avoided explicit use of an advanced tool termed the
Ito differential rule in this proof, although it is implicit in the Appendix B result on
linear systems driven by white noise. This level of technical difficulty is avoided in
the discrete-time separation theorem.

Main points of the section. The practical suggestion that state

estimates x. be used in lieu of states x in a control law is in fact the optimal strategy
in the linear quadratic Gaussian (LQG) case of this text. This result is known as
the Separation Theorem or Certainty Equivalence Principle. Its proof is based on
the Projection Theorem, which tells us that the errors x – x,, v are orthogonal to the
measurements, controls, and optimal estimates x,.

Convenient performance index calculations for the stochastic case, and fre-
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quency domain interpretations for the infinite time stationary stochastic cases are
available.

Problem 8.2-1. Consider the stochastic signal model of (8.2-1) and (8.2-2)
and optimal minimum variance state estimator of Chapter 7, Section 3 giving
optimal estimates x, with x, (to)= E [x (to)]. Show that (8.2-18) holds when the con-
trol u = Lx. for some L(t). [Hint.’ Apply the Appendix B output covariance formula
for a linear system driven by white noise. Work with an augmented system with
states x,, x – x, and establish that a certain submatrix of the covariance matrix is
zero. ]

Problem 8.2-2. Consider a discrete-time version of (8.2-21) and (8.2-22), as

V = E~ [xi(t) Qxt.(t) + u’(t - l)Ru(t – 1)]
to

x,(t + I/t) = Fx, (tit – 1) + Gu(t) – K,v(t)

(1) Show that with a strict causality constraint on the controller, that is, u(t) can
depend only on y(s), u(s) for s <t, then the optimal control law is u “(tit– 1)=
K’x,(tit- 1).(2) Show also that when u (t)can depend on y (0), y (1),. . . . y (t), and
u (s), s < t,then

u*(tlt)=K’[x, (tit – 1)–K, v(t)]

= K’[(l+ Keii’).xe(t]t- 1)- Key(t)]

= K’xe(tlt)

Note that v(t) = y (t– H’xe(t]t– 1).

8.3 LOSS OF PASSBAND ROBUSTNESS
WITH OBSERVERS

Linear quadratic controllers using state estimate feedback have a certain notoriety
in the control community. Although optimal for the nominal model, the per-
formance may be far from satisfactory in a real-life situation in which the plant
differs somewhat from the model. The guaranteed passband robustness properties
established in Chapter 5 for all full-state feedback designs can simply evaporate with
the introduction of a state estimator. In this section, we give some details concern-
ing possible loss of robustness, with approaches to recovering robustness being
developed more fully in the next sections. Before proceeding, we should note that
with the introduction of a full-order state estimator, the roll-off rates improve from
6 dB/octave to 12 dB/octave or more, since the LQG controller is strictly proper, as
is the plant. As a consequence, we expect enhanced robustness to unmodeled
dynamics at high frequencies.

Figure 8.3-l(a) shows a redrawing of the basic state estimate feedback plant-
controller arrangement of Fig. 8.1-1, as a unity positive feedback system. The
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Figure8.3-1 Redrawingsof theplant-controllerarrangement.

quantity fed back is K ‘x,, which in the steady state becomes K ‘x. Therefore, the
transfer function matrix of the augmented plant enclosed in dotted lines must
be K‘ (s1 – F’-lG. This is precisely the same transfer function that arises when true
state feedback is employed.

Figure 8.3-1 (b) shows a more likely plant controller arrangement for use in
practice. Opening the loop at the point X gives the loop-gain transfer function
matrix, recalling (8. 1-10),

We,(s) = [K’(sI – F – GK’ - K,H’)-’(-K,)][H’(sI – F)-’G] (8.3-1)

which is, of course, usually not close to that when state feedback is used, namely
K’(sI – F,-lG.

We conclude that, in general, the same guaranteed passband input robustness
results due to the return difference inequality of Chapter 5 do not hold for the
scheme of Fig. 8.3-l(b). They do, however, hold for the scheme of Fig. 8.3-l(a)
where the input is to the augmented plant—this not being the input to the original
plant. Let us examine this situation in more detail.

Recall that the return difference inequality associated with optimal deter-
ministic designs of earlier chapters permitted arbitrary nonlinearities (possibly
time-varying) in a sector to be inserted into the control loop prior to the plant,
without loss of stability. This property translates to the augmented plant arrange-
ment since, as noted, there is the same return difference inequality. Note also that
X,~ x asymptotically, irrespective of the nonlinearity introduction. The situation is
depicted for the scalar input case in Fig. 8.3-2, where @(.) denotes an arbitrary
(possibly time-varying) nonlinearity in the sector (~, w). This can be tolerated in the
otherwise optimal design without inducing instability. This property specializes to
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uext + Nonlinearity Y
Linear Plant

0(”)
+

(a) W
1---------------- -.---_l

(b)
linearity Figure8.3-2 Robustnessto

insertionofnonlinearities.

saying that at the nonlinearity insertion point there is a gain margin (~, CD)and a
phase margin of 60 deg.

Now it is important to understand that this guaranteed robustness occurs
where it is not needed. There is not usually any unmodeled nonlinearity or uncer-
tainty ~(. ) where indicated in the control scheme of Fig. 8.3-2. Rather, the more
realistic situation is as in Fig. 8.3-3(a), where the control u is fed to the estimator
prior to any plant input nonlinearities or uncertainty.

One way out of this dilemma is to introduce the same nonlinearity into the
controller as in Fig. 8.3-3(b), so that the estimator once again becomes a true model
of the plant. Correct estimation now takes place, and the guaranteed robustness
property depicted in Fig. 8.3-2 is recovered.

However, there is a potential difficulty with this somewhat artificial arrange-
ment. If the exact nature of the input nonlinearity to the plant is unknown, then it is
impossible to construct the estimator. Of course, if the nature of the nonlinearity is
roughly known, and the nonlinearity included in the estimator approximates that in
the plant, then presumably performance will be satisfactory.

Another approach to exploiting the guaranteed passband robustness proper-
ties at the “wrong” place in the loop is to organize the design of estimator/controller
gains K,/K so that the pathway from the control u to the estimator is relatively
inconsequential; that is, the estimator output is far more dependent on the plant
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output y than on the plant input u. In the extreme, if this pathway is effectively
deleted, without upsetting optimality and the associated robustness properties, then
the schemes of Figs. 8.3-2, 8.3-3 would be equivalent, and the guaranteed robust-
ness properties would be just as useful as in the full-state feedback design.

A procedure that renders the path between the control u and the estimator
less consequential as a parameter u increases is the loop-recovery technique of the
next section.

So far in this section, we have focused on robustness at the plant input. For the
single-input, single-output case, of course, plant output robustness is identical to
plant input robustness, since the Nyquist plots are identical whether the loop is
opened at the plant input or output. Needless to say, for the mutivariable plant case,
there is in general a different open-loop gain transfer function matrix for the loop
opened at the plant output, being given from

Vo. (s) = [H’(sl - F,-’G][K’(sI - F - GK’ - K, H’)-’(-K,)] (8.3-2)

Properties of this are not studied further here.
One general reason for loss of robustness on insertion of an estimator is that

when the plant differs from its model in the estimator, there is bound to be inaccu-
rate state estimation. This means that even when the state feedback gains are
appropriate for the actual plant, the inaccurate state estimates fed back can cause
reduced performance or stability properties. A corollary of this remark is that this
particular reason for poor robustness (viz., use of inaccurate state estimates) does
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not arise when only output nondynamic feedback is used. Such an observation
suggests that when one is designing for robustness as distinct from noise immunity,
then it may be preferable to work with reduced order observers that have direct
feedthrough of plant outputs. Preliminary studies not reported here support this
approach.

Can there be any advantage of an LQG design over an LQ design in terms of
robustness? We have not shown that there is always a loss of robustness, and indeed
one could perhaps devise examples where there is an improvement in robustness
properties due to the insertion of an estimator. Certainly, in the scalar input case,
the introduction of an estimator will increase the roll-off rate of the open-loop gain
matrix at high frequencies. This follows since both the plant and controller are
strictly proper so that the open-loop gain will have a roll-off rate of at least 12
dB/octave as compared to 6 dB/octave for K ‘(s1 – ~-lG. As a consequence of the
higher roll-off rate associated with an LQG design, we would expect improved
robustness at frequencies well beyond the cut-off frequency of the LQG design. Of
course, at such frequencies, robustness mayor may not be a problem. With reduced
order observers, the controllers are proper but not strictly proper, and there is no
roll-off rate advantage.

For the remainder of this section, we present two examples that point up the
possible poor passband input robustness properties of an optimal state-estimate
feedback design. One example will be explored further in subsequent sections to
demonstrate the benefits of the loop recovery technique and frequency shaping.

We consider now the first demonstration in the literature of a dramatic loss of
robustness due to insertion of estimators into a linear quadratic design [5]. The
system, with two associated eigenvalues at +1, is

El=[: X:I+[W+EI’

[1
y=[l O]xl +W

X2

(8.3-3)

in the notation of this text. Here the noise intensities for v, w are Q = u >0, A = 1,
respectively. The performance integral has weights Q = p[l 1]‘[l 1], R = 1. [Note
that the estimation and control problems have identical (dual) solutions when
p = (r.]

Analytical solutions for the gain matrices are

K’ = –a[l 1], ci=2+~4+p

K:= ~[1 1], p=2+G

The full system matrix is readily constructed as

[

110 o“
01 –ma —ma
pol-pl
p o –p–a l–a.

(8.3-4)
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with m = 1. The case when there is an actual plant input gain m, not necessarily
unity, isalsogiven bythe above matrix. Thecharacteristic polynomial has the form

s4+*.s3+ *s2+[(3+a-4+2(m– l)@]s+l+(l-rn)c@=O

where * denotes complicated expressions not involving m. It is necessary for sta-
bility that the last two coefficients are positive. For sufficiently large a, 13(that is,
sufficiently large U, p), then there is instability for arbitrarily small perturbations in
m from unity in either direction. Thus LQG designs exist with arbitrary small gain
margins.

As a second example drawn from [6], we use a relatively simple model repre-
senting a stable scalar plant that is disturbed by a colored noise process. It is
assumed that the low-frequency dynamics are modeled with good precision. How-
ever, the plant contains observable and controllable lightly damped high-frequency
modes that are not well defined. These are modeled by a reduced-order model. The
objective is to design a controller that will reduce the disturbance response of the
low-frequency mode.

The plant model and the process-noise model are combined to form the
following stochastic model of the nominal plant, depicted in Fig. 8.3-4.

v 0.45 X4

S+l
w

u

+

1000

s* + 0.2s +100
10X2

(8.3-5)

Figure8.3-4 Thestochasticsignalmodel.
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Also, here [xl X2 X3 X4]’is the state vector, u is a single control, and y is a single
measurement. Also v is white process noise and w is white measurement noise with
the following properties:

E[w(f)] = E[v(t)] = o, E[w(t)v (T)] = o

E[v (r)v(T)] = a(t - ‘T), E[w(t)w(T)] = O.ola(t – T)
(8.3-6)

First, a linear quadratic (LQ) regulator is designed based on the following cost
function, recalling the formulations as in (8.2-5) and (8.2-6),

J
V= E[4X:+ U*]= liim+E ‘(4x? +u*)dt

o
(8.3-7)

and subjected to the differential equation constraint of (8.3-5). Second, a nominal
Kalman state estimator is designed based on the model. This state estimator is
inserted into the control loop and forms with the full-state gain matrix a linear
quadratic Gaussian (LQG) regulator which we term the nominal LQG regulator.

With the system subjected to process noise and measurement noise with
intensities specified by (8.3-6), the value of the cost function, V, (8.3-7) is calculated
for three cases: (1) with the control loop open, in that u is set to u = O, (2) with the
control loop closed, using the full-state feedback LQ regulator, and (3) with the
control loop closed, using the nominal LQG regulator. Table 8.3-1 shows that
the regulator performance [as measured by the value of the cost function V, evalu-
ated as in (8.2-16)] of the LQG regulator is within 3 percent of that of the LQ
regulator. Both of these control laws provide a significant reduction in the response
of the plant to stochastic disturbances. In this particular case, it turns out that most
of the response is due to the process noise, and the contribution from the mea-
surement noise is so small that it can be ignored. Thus by means of (8.2-16) and
(8.2-17), the index (8.3-7) can be approximately written as

.
v =*J_ [41t1(jo)l* + lt2(jw)[*]dw

.
(8.3-8)

where tl(s), tz(s) are the transfer functions between v and xl, u. The reason for the
small loss in performance when the nominal Kalman filter is inserted into the
control loop is illustrated in Fig. 8.3-5, which for the two control laws shows that
Itl(jco)l and It,(jw)lfor the LQ and LQG designs are close to one another in the
bandwidth of the system, This we would expect, since both regulators are optimal

TABLE 8.3-1 DIS”R.JRBANCE RESPONSE

Performance
cost

Open-loop plant 3.64

Closed-loop plant with full-order
state feedback LQ regulator 0.77

Closed-loop plant with LQG regulator 0.79
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with respect to the same cost function, the effects of measurement noise are very
small when compared to the effects of process noise, and state estimation error
covariances for the nominal plant case are small.

In order to illustrate the passband robustness of the two control laws, consider
Nyquist plots of the open-loop control-loop transfer functions Wo~(jco) as shown in
Fig. 8.3-6. Here Wo~ (s) is the appropriate specialization of (8.3-1). Applying the
classical Nyquist criterion, we see that the LQ regulator has excellent gain and
phase margins. However, these same margins are very small and totally inadequate
for the nominal LQG regulator. In fact, the phase margin is approximately 1 deg and
the gain margin is for all practical purposes zero. The LQ regulator has acceptable
magnitude roll-off characteristics with increasing frequency. For example, the
control-loop gain is reduced to approximately – 18 dB at a frequency of 10 rad/s.
Since we know that the uncertainty in the model increases with increasing fre-
quency, it is necessary that at these higher frequencies the control-loop gain is as low
as – 18 dB so as not to destabilize any modeled or unmodeled modes. In fact, such a
roll-off characteristic allows arbitrary phase at these higher frequencies. The LQG
regulator has a much higher bandwidth than the LQ regulator with a crossover
frequency at 10 rad/s. Certainly then, arbitrary phase changes cannot be tolerated at
these higher frequencies for the LQG regulator, and there is the possibility that the
mode at 10 rad/s and/or unmodeled modes at higher frequencies will be signifi-
cantly, and unnecessarily, excited.

This example has illustrated the loss of robustness introduced in going from an
LQ design to an LQG design.
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Main points of the section. Passband robust properties of opti-
mal state feedback designs can degenerate upon the introduction of a state esti-
mator. On the other hand, high-frequency robustness can improve due to higher
roll-off rates for the open-loop gain. It is suggested that poor passband robustness
due to poor state estimation in a full-order state estimator can be to some extent
ameliorated by using a reduced-order observer with direct feedthrough of plant
outputs .

Problem 8.3-1. Consider the first example. Evaluate the estimator transfer
functions from y, u to K’x.. Compare their relative significance as U, p increase and
robustness deteriorates.

8.4 LOOP RECOVERY

As noted in previous sections, the attractive passband robustness properties of
full-state feedback optimal quadratic designs may disappear with the introduction
of a state estimator. Can LQG designs be organized by appropriate weighting
matrix selections so that they have the return difference inequality satisfied, and
associated robustness properties guaranteed? In other words, can we recover the
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loop properties of an LQ design by a suitable adjustment to the LQG design
process?

In this section, we first focus on one relatively simple technique, based on
work in [7], for state estimator design such that loop recovery takes place for
minimum phase plant models. That is, the open-loop gain transfer functions for the
LQG designs recover those of the LQ design, and there is recovery in associated
robustness properties. We envisage a design situation where one starts with a
nominal stochastic model and associated LQG design that lacks the robustness
properties of the LQ design. By adding fictitious noise to the plant input model,
representing in perhaps a loose way plant variations, uncertainty, or unmodeled
dynamics, there is an adjustment to the estimator design. For the case of minimum
phase plants there is loop recovery as the fictitious noise becomes larger and larger.
In coping with the fictitious noise, the LQG controller becomes more robust to gain
and phase changes at the plant input. Of course, there is no longer optimality for the
original nominal stochastic model. This is a disadvantage when the response to
disturbances as modeled in the nominal model is an important consideration. In this
case there must be a trade-off in design between the performance loss for the
nominal model and robustness gain. Otherwise, for a deterministic controller de-
sign environment when the noise intensities of an assumed original nominal sto-
chastic model are merely convenient design parameters, there is no such trade-off
required, although trade-offs between other performance and robustness measures
associated with a nominal design may still be important.

A dual technique of loop recovery to recover output robustness properties
associated with an estimator design will be discussed.

Loop recovery techniques can be applied to the nonminimum phase plant case
with care. In the nonminimum phase plant case, classical control theory tells us that
it may be difficult or impossible to design a robust controller. Such difficulties are
not expected to be hurdled by any simple loop recovery technique. Some methods
and results for this case are noted in this and the next section.

At this stage, we caution that loop recovery is one technique to achieve a
restricted class of robustness properties. It may not achieve robustness to
unmodeled dynamics or certain plant parameter variations. It is certainly not a
universal panacea for solving robustness problems.

Asymptotic estimator properties. Here we exploit some dual
properties to the asymptotic regulator properties of Chapter 6. We consider time-
invariant stochastic plant models, as usual stabilizable and detectable:

.i=Fx+Gu+v, y=ll’x+w (8.4-1)

The associated optimal estimator/regulator is

i, = (F+ GK’)x, – K,(y –H’x,), u =K’x, (8.4-2)

and it is also time-invariant.



238 System Design Using State Estimators Chap. 8

For the main results of this section, we assume that the plant H ‘(sZ – ~-1 G is
square, and is such that

H‘ (s1 – ~-’G is nonsingular in Res a O (8.4-3)

For nonsquare plants that have full column rank or full row rank in Re [s] z O,
results can be achieved, but they are more complicated. They involve building a
square minimum phase plant out of a nonsquare one [8].

Asymptotic properties of the estimator are now studied with the intensity of
the process noise added to the plant input becoming infinite. Thus we assume

E[V (t)v ‘(T)] = Qg8(t – 7), Q.= CTGG ‘

E[w(t)w’(T)] = Aa(f – T), 2?>0
(8.4-4)

and study the situation when the positive scalar u becomes infinite. The first prop-
erty is a direct dual of that in Sec. 6.2, namely that under the minimum phase
assumption (8.4-3) and with [F, H] not just detectable but in fact completely
observable,

lim ~-1/2K,o~ “2= GV (8.4-5)
l?+.

for some orthogonal V, where K,a denotes K, parametrized by cr. This property
follows from the spectral factorization relation (7.3-33); details are omitted here.

From (8.4-5), we can argue that the estimator state x, becomes much more
influenced by y than by u; consider, for example, Fig. 7.2-1, and observe that the
estimator inputs are coupled through gain matrices G and K, (or here K,a). Now
(8.4-5) shows that one of these, K,m, tends to infinity as U- CO.This asymptotic
property suggests that the schemes of Figures 8.3-3(a) and 8.3-3(b) may become
equivalent as u+ w, so that the effect of the nonlinearity 4(”) becomes the same for
both arrangements. In other words, the robustness properties of the full state
feedback design may be recovered. We now move on to give greater precision to this
robustness recovery, also termed loop recovery.

From (8.4-5), a further limiting property can be readily established; for all
finite W,

lim [1 – (jo.d – F’-’UHU]’(jcolcol – F,-*G = O (8.4-6)
m+.

To see this, note that asymptotically the left side is, when we recall (8.4-5),

[1 - u“2(jol - ~-’GV~-’’]H’]-’( jcol - ~-’G

= (jd – F,-’GII – U“2V~-’’2(jcoIoI – ~-lG]-’

which in turn approaches zero as u-~ when H‘ (jcol – F)- lG is nonsingular, and
this is guaranteed by (8.4-3) for all finite co.

State feedback regulator loop recovery. Let us now apply
the asymptotic property (8.4-6) to examine the behavior of the loop gain transfer
function matrix
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w~, (s)= C2(S)P(s) (8.4-7a)

P(s) = H’(sl – ~-’G (plant) (8.4-7b)

C2(s)=K’(sl –F– GK’– K,mH’)-1(–K,o) (compensator) (8.4-7c)

A left factorization of Cz(s), easily checked, is

c,(s) = xi’ (S)Y. (s) (8.4-8a)

XL(S) =1 – K’(sI – F – K,OH’]-*G (8.4-8b)

= Z – K’[1 – (S1 – ~-lKcOH’)-@ – F,-IG

Y.(s) = K’(s1 – F – K,OH’)-’(–K.O) (8.4-8c)

[In the notation of the last section Y, (s) = Cs(s) and XE1(s)= C,(s).] Application of
(8.4-6) gives immediately that, for all finite w

lim X~(jw) = 1, lim Wo. (jw) = Y~(jw)P(jw) (8.4-9)
c+. .+.

Moreover, since

K’(sI – ~-lG – y~(s)p(s) = K’[1 + (SI – F – K,UH’)-’K,OH’](SI – ~-’G

= K’[1 – (s1 – ~-lK,uH’]-l(sl – ~-lG

taking limits as u+= for s = jti, w finite, and applying (8.4-6) and (8.4-9) gives
immediately an asymptotic property known as the loop recovery property:

lim Wo. (jo) = K’(jwl – F’-’G for all finite w (8.4-10)
0+.

Summarizing then, we have established:

State feedback regulator loop recovery property. Consider a state-estimate
feedback regulator for a stabilizable, completely observable, time-invariant,
standard stochastic process model of this chapter. Suppose the plant is strictly
minimum phase in that (8.4-3) holds. Consider the plant noise process (8.4-4)
parametrized in terms of u and let the filter gain K, also parametrized in terms
of u be denoted by K,v. Then the associated control scheme loop gain transfer
function matrix Wo. (s) has the limiting property, (8.4-10).

Loop recovery and controller design. When a plant has the
same number of inputs or, as noted in [8], more outputs than inputs, then there is
a chance of exploiting loop recovery as so far described. (Certain changes are
needed for nonsquare plants. ) When there are the same number of inputs or more
inputs than outputs, the dual loop recovery technique described later in this section
can be used (again with changes for nonsquare plants). The loop recovery property
tells us that for stabilizable, observable minimum phase plants satisfying (8.4-3),
the loop gain transfer function matrix in a full-state feedback design, namely
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K‘ (jwl – F) ‘lG, is recovered in a full-order state estimate feedback design under a
certain limiting operation. As the signal model plant process noise injected at the
plant input becomes infinitely intense, then loop recovery takes place. The con-
sequence is that the return difference inequality is guaranteed to be satisfied in the
limit, and this means that the passband input robustness properties guaranteed by
this inequality are recovered. Thus in the scalar input case, phase margins of 60 deg
are approached and gain margins of ($, m) can be achieved, and so on. It is very
important that for each injected noise intensity U, the parameter of a class of
designs, the controller designs are stabilizing for the nominal plant, so that u can be
selected to achieve an acceptable design withoutnecessarily having to become very
large.

Are there disadvantages to applying loop recovery with u large to achieve
robust designs? The poor roll-off rate of 6 dB/octave associated with a full-state
design is also “recovered” at finite frequencies, and poor high-frequency robustness
(to unstructured plant uncertainty) can accrue. Another disadvantage is that loop
recovery relies on pole-zero cancellations in the open loop. Thus in the scalar
variable case, plant zeros are cancelled and replaced by zeros of K ‘(jcol – F)-lG.
(This explains why the plant must be minimum phase with left half-plane zeros.) If
the plant zeros are lightly damped, then any approximate cancellation due to p!ant
variations from the nominal one could cause gross differences between the desired
nominal open-loop transfer function and that actually achieved. Even with exact
pole-zero cancellations of lightly damped zeros, there are concerns with oscillations
associated with these modes during transients. More generally, designers are cau-
tious of loop designs with high loop gains because of intolerance of unmodeled
dynamics and plant parameter variations.

We have already foreshadowed that a controller exploiting loop recovery is no
longer optimal for any original nominal stochastic plant, because the noise statistics
adopted for loop recovery design differ from the actual noise statistics. This Ioss of
optimality may be a severe disadvantage in terms of achieving good disturbance
response characteristics.

How then can the loop recovery property be exploited in practice for con-
troller design purposes? Let us consider a stabilizable, observable, minimum phase
plant where we seek a controller and our use of the stochastic model only facilitates
the design. Here then u is merely a convenient design parameter, as maybe Q, R,
and ~. First a full-state feedback design is carried out with acceptable input pass-
band robustness properties. Next a number of stochastic designs are tried with
increasing values of u until there is adequate loop recovery as measured by input
passband robustness properties. The value of u is not increased excessively to avoid
problems associated with high gain loops. Some compromise between input robust-
ness properties, and other robustness/performance measures may have to be
reached. An example is studied later in the section which shows that there may be
no reasonable compromise, and the more powerful frequency-shaped loop recovery
techniques may be needed.
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Frequency-shaped loop recovery. In frequency-shaped loop
recovery, the “fictitious” plant process noise is frequency-shaped in that its intensity
is frequency dependent. We typically model the fictitious noise as arising from a
linear system (shaping filter) driven by white noise. For the case when the fictitious
noise is limited largely to a certain frequency band, then loop recovery will take
place more so in this frequency band, and the system behavior will be relatively
unaffected outside this band. In practice, if there are unacceptably poor phase
margins in an LQG design, it is reasonable to inject fictitious plant noise in the
vicinity of the cross-over frequency, and possibly in a frequency band where there is
high plant input (actuator) uncertainty for a loop recovery LQG design. It is usual
to use low-order high-pass, low-pass, or bandpass filters driven by white noise to
generate the fictitious noise. These filters augment the plant model, as illustrated in
an example later in the section; see also Problem 8.4-1. A rigorous asymptotic
theory as the noise intensity increases can be derived by applying the known results
for the standard (nonfrequency shaped) loop recovery to the augmented plant
models; details are in [6].

If an LQG design is modified by the inclusion of frequency-shaped loop
recovery, the closed-loop characteristics outside the frequency band of the loop
recovery are not affected. If loop recovery takes place in a low-frequency band, for
example, the roll-off rate characteristics of the original LQG design are preserved.
A design example is given later in the section to show the advantages of, and
perhaps the necessity of, frequency shaping when loop recovery is applied.

The notion of frequency-shaped LQG designs, including frequency-shaped
loop recovery, is developed further in the next section and chapter.

The case of nonminimum phase pIants. What, then, about
the nonminimum phase plant situation? A property of linear quadratic loop gain
transfer functions K‘ (s1 – F)- *G is that they are minimum phase. Thus to recover
such open-loop transfer functions with a series compensator a plant must be mini-
mum phase. Otherwise, there would have to be open-loop unstable pole-zero
cancellations leading to instabilityy. Even so, there are two possible roles for the loop
recovery ideas so far described in designing state estimate feedback controllers for
nonminimum phase plants. These are now studied in turn.

First trial approach. One approach to applying loop recovery tech-
niques to nonminimum phase plants is to proceed tentatively as if the plant were
minimum phase. Just increase noise variances until there is a maximum degree of
robustness enhancement—never expecting a full recovery of state feedback open-
loop properties, nor expecting continual improvement in robustness as the noise
variance continues to increase. In this approach frequency shaping could well per-
mit adequate loop recovery in the frequency band of interest, as long as the non-
minimum phase zeros are outside this band. This general approach is studied in
more detail in [9] when there is present one right half-plane zero. As expected, the
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approach is shown to work reasonably well when this zero is outside the frequency
band of the feedback loop.

A factored plant model approach. In exploring further the
application of loop recovery ideas when there are nonminimum phase plants, it
proves convenient to work with a minimum-phase, all-pass factorization of the plant
P(s) = P~P (s)P~P (s), as in Fig. 8.4-1; see also [10]. The stable all-pass factor has its
transfer function PAP(s) = ~~p + H4P(sI – F~P)-lG~P satisfying PjP(–s)P~P (s) =1,
so that it introduces only phase changes. Its zeros are the right half-plane zeros of
the plant. Spectral factorization techniques lead to achieving a minimum phase
factor P~P(s) = H~P(sl – F~P)-’G~P associated with a plant P(s), having the same
poles as P(s). The factorization is straightforward in the scalar plant case, and
more complex in the nonscalar case, as studied in [11]. Details for this latter case are
not studied here. The factored plant is assumed to have an all-pass factor state x~p
and a minimum phase factor state x~P. The plant has a nonminimal state vector
x ‘ = [XAP’ x~”], and the nonminimal modes are all unobservable and stable,
being poles of P~P(s) if XAPand x~p are separately minimal.

A factored plant model design approach is now described.

Step 1. First design a stabilizing state feedback law for the nonminimal
model of Figure 8.4-1 as

U1= Kid ‘p + K~Px‘p + Uext (8.4-11)

Nonminimal plant representation P(s)

I I

u
All-pass Minimum Phase y

b Factor PAP(s) ● Factor PMP(s)

~A P MP
x

Figure8.4-1 Plantfactorization,

Such a design can be achieved by using the linear quadratic approach to achieve a
robust design.

Step 2. Achieve a partial state estimate feedback design as follows. Con-
sider a state estimate of XAp,denoted X$p, constructed from a parallel model driven
only from u, and not also from y, as follows: X$P(s) = (sl – FAP)-lG~Pu(s). Consider
also

‘p + K~pxUZ= Kipx, ‘p + Uext (8.4-12)
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Notice that since PAP(s) is stable, x~p (f) ~ xAp(t) as t+ ccfor arbitrary plant inputs
u (including U2,of course), so that u2(t)~ ul(t) as t ~ CC,and U2is stabilizing as is U1.

Step 3. Organize the control UZas dynamic feedback of x“” as follows:

U2(S) = KjP(sI – FAP)-1GAPU2(.S) + K,&pxMp

= KLP(s)xMP(s)
(8.4-13a)

K~p(s) = [1 – K.jP(.sl – FAP)-lG~p]- *K~P (8.4-13b)

This is a stabilizing controller leading to closed-loop modes being those of the state
original feedback design and those of PAP(s).

Step 4. Implement the state estimate feedback law

U3(S)= Ktip(s)x,!p(s) + U,X@) (8.4-14)

where X,%Pis a state estimate of XMPwith fictitious noise variance u, as for the
minimum phase plant case, save that now the nominal plant model is used with
input u, output y, and states x = [x‘P’xMP’]’. Thus x~p is in fact a subvector of the
full state estimate X.u. The associated open-loop transfer function of this design is
denoted Wo~ (s). It is easily checked that it has the structure X(S)PAp (s) for some
x(s).

We use the same theoretical techniques as those for establishing the standard
loop recovery property; the relevant generalization is as follows:

Loop recovery property. In the notation of this section,

lim Wo~ (j W) = K~P(s)(sI – F~p)-lG~PPAP(s) (8.4-15)
.+.

Proof. We present here a simple heuristic proof outline. The state esti-
MP for the model of Figure 8.4-1 leads to estimates viamation of the states XAP,x

i:’(t) = (FMP+ K,JiLp)x:p(t) - K,uy(t)

+ GMp[~jpx:p(t) + ~APU(t)]

In fact, K.a is identical to what is obtained for the case when PAP(s) is set to 1 (not
proved here). Thus K,u satisfies (8.4-5) with G~P replacing G as

for some orthogonal V. As a consequence, as u-~, then in calculating x,~p the
term K,ay (t) = U1’2G~PVy(t) dominates the term G~P [H,jpx$p(t)+ ~.4pU(t)]. This
domination is a mild generalization of that for the minimum phase case, and leads
likewise to the loop recovery property. Further details are omitted; see [10].

Clearly, this result specializes to the standard one given earlier in this section
when the plant is minimum phase so that PAP(s) =1, PMP(s) = P(s), and
K~P(s) = K ‘.
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We stress again that since the designs do not achieve minimum phase open-
loop transfer functions, a property of linear quadratic designs, they will not achieve
the input robustness properties in terms of the return difference inequality of the
linear quadratic designs. Even so, if a design with acceptable performance and
robustness is achieved with the control law (8.4-13), then loop recovery can be
achieved in a state estimate feedback design.

For some situations, it makes sense to replace the plant P(s) for design
purposes by its minimum phase factor P~p(s). Thus a state estimate feedback design
is implemented on the assumption that the plant has PAP(s) =1. The resulting
design must be robust to the inclusion of PA~(s) into the loop at the nominal plant
input. For example, let us consider a scalar input plant case such that in the
frequency band where loop gains exceed unity, the all-pass factor introduces phase
changes Aq(jw) small relative to IT/3. Then it is reasonable to set PAP(s) = Z for
LQG designs with loop recovery, since such designs achieve phase margins of near
m/3 degrees, and thus could tolerate the introduction of the all-pass factor with its
small phase changes in the region of the cross-over frequency.

It now makes sense to ask for what class of plants would the all-pass factor
introduce relatively small phase changes in the vicinity of the cross-over frequency.
A loose answer is when the original plant has right half-plane zeros near the jco axis
and outside the cross-over frequency region.

If the all-pass factor in the above discussion has the property that lAq(jw) + ml
is small relative to 7r/3 where the loop gain exceeds one, and in the cross-over
frequency band, then the all-pass factor can be approximated by a simple gain of
– 1. This situation arises, in loose terms, when the original plant has (an odd
number of) zeros with large positive real parts as compared with the bandwidth
where the loop gain exceeds 1.

Dual asymptotic regulator property. So far, in discussing
loop recovery, we have focused on recovering input robustness properties of a
full-state feedback design. There are dual results for plant output robustness,
relying on the regulator asymptotic properties of Chapter 6. In these, the estimator
is a standard full-state estimator as in Sec. 7.3, but the regulator design is modified.
Thus the controller Q matrix is selected as

Q=pHH’ (8.4-16)

and the following asymptotic regulator property of Chapter 6 is exploited. Under
the plant minimum phase assumption (8.4-3), and with [F, G] not just stabilizable
but completely controllable, then

limp ‘ll*R ll*K;= WH ‘ (8.4-17)
P-”

for some orthogonal W. Here Kp denotes the state feedback gain K parametrized by
p. This result leads to duals of the estimator asymptotic properties including the
loop recovery property given earlier. In particular, the dual of (8.4-6) is, for all
finite w,
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limll’(jod – F,-*[Z – G&(jd – ~-’] = O
P+.

(8.4-18)

This result now leads to the dual loop recovery properties explored in the next
subsection.

Dual state estimator loop recovery. Nowwedefine a loop
gain transfer matrix with the loop opened at the plant output, as

VOL(s)= P(s) c,(s) = P(S)Y, (S)xi’ (s) (8.4-19)

where

P(s) =H’(sI –~-’G (plant)

cZ(.S)= Kj(d – F – GK:– KH ‘)-l(–K) (compensator) (8.4-20)

and

X.(s) = I – H’(sI – F – GK;)-’K,

y,(s) = Kj(sl - F – GK;)-l(-K,) (8.4-21)

Dualizing the loop recovery properties then gives, for all finite w, under (8.4-4)

lim X~(jco) =1, lim VO.(jw) = P(jco)Y. (jco)
P-+” P-+”

lim VoL(jw) = H’(jcol – ~-’K.
P-”

(8.4-22)

Now as p+ CO,the control scheme of Fig. 8.4-2(a) behaves as that of Fig.
8.4-2(b). This tells us that the estimator design is crucial to the closed-loop system
behavior. Now consider the return difference inequality associated with Fig.
8.4-2(b), namely

[1 - H’(jcol - F’-’Kc]~[I - Kt.’(-jwl - F’)-lH] al? (8.4-23)

for all w, where R is the measurement noise covariance matrix. This inequality
guarantees robustness properties at the plant output. For example, the inequality
(8.4-23) guarantees in the scalar case phase margins of 60 deg and gain margins of
(~, ~). Indeed there can be tolerated output nonlinearities (possibly time-varying) in
the sector (~, CO),without disturbing stability.

We conclude that in this dual asymptotic result there is a form of estimator
loop recovery and output passband robustness recovery. There is also, unfortu-
nately, a recovery of the poor roll-off rates of 6 dB/octave (20 dB/decade). Also with
high loop gains, there is again the possibility of poor robustness to unmodeled
dynamics and plant parameter variations.

Design using dual loop recovery. When there is concern
about output robustness, or when a plant has more inputs than outputs, or when
simply there is a desire to achieve a certain loop gain, then it makes sense to
consider this dual loop recovery technique (with adjustment in the nonsquare plant
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Figure8.4-2 Twocontrolschemes,

case). The estimator design for K, remains unchanged, while the state feedback
control law design KP, parametrized in terms of p, is adjusted with trial values. The
value of p is increased until the desired loop gain is adequately approximated, or
there is acceptable output robustness, without too much loss in noise rejection
capability, and other performance robustness properties associated with an original
design with p = O. Notice that the unity negative feedback version of the controller
design as depicted in Fig. 8.4-2(a) approaches that of the estimator loop of Fig.
8.4-2(b) as p--+OJ.Ironically then, the estimator design dominates the controller
behavior as p becomes large.

For the nonminimum phase plant situation, then the case p- ccwill not lead to
loop recovery—the dual of the earlier situation. Frequency shaping has a role in this
dual design procedure—the model of the plant is augmented at the output by a band
limiting filter, giving an augmented output yf which is then penalized in the regu-
lation performance index in lieu of y. Such designs are the subject of the next
chapter. There is also a dual of the factored plant method for achieving loop
recovery for nonminimum phase plants.

Design example. Consider the plant model (8.3-5)-(8.3-6) of the
previous section, but with fictitious noise Vf,representing plant input uncertainty,
injected at the plant input. The equations are

1

1! 1

0 1
0 0

[1
Ovu+

00 100 Vf
(8.4-24)

o 0.45 0
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(8.4-25)y=xl+loxz+%+w

We consider first the cases when Vfis white noise. The cost index is again (8.3-7),
repeated as

V= E[4X; +U2] (8.4-26)

Tie plant here, even apart from Vf, is a stochastic One, and noise performance
is important. A full loop recovery by using white noise Vfof high intensity turns out
to achieve satisfaction of the return difference inequality and associated input
robustness, as expected by the theory, but very poor rejection of the noise terms v,
w, as subsequently depicted.

Let us look then more closely at our design objectives. We require robustness
to unmodeled lightly damped dynamics at high frequency. Thus we require that the
LQG regulator exhibit the same or better magnitude roll-off as the LQ design
beyond a frequency of 5 rad/s. More specifically, as discussed in the last section, we
require the control-loop gain to be equal to or less than – 18 dB at a frequency of 10
rad/s. Recall from the last section that the LQ design certainly achieves this objec-
tive, but not the original LQG design. Since, in this case, the model is fairly accurate
at the lower frequencies, it is not necessary to modify the optimum LQG controller
characteristics to match the (excellent) gain and phase characteristics of the I-Q
design below 5 rad/s at a performance cost at low frequencies. Instead, we impose
the requirements that the cross-over frequency be at or below 1 rad/s and that the
minimum gain margin and phase margin are equal to or better than 2 dB and 20 deg,
respectively. This approach is typical for many practical situations with imprecisely
modeled high-frequency dynamics.

With the above objectives in mind, it is proposed here to employ frequency-
shaped loop recovery. The fictitious noise, representing plant uncertainty, is em-
phasized in the frequency band above 5 radls.

Thus we consider for this second case the plant (8.4-24) augmented with a
filter driven by white noise T as

,i5= –lox5+q, vf=–lox5+q (8.4-27)

The transfer function from -q to Vfiss (s + 10)-1, which is a simple high-pass filter.
More sophisticated band-limited filter designs turn out to give no significant further
benefit so are not discussed further. We expect to achieve a greater degree of loop
recovery (input robustness) at frequencies above 5 rad/s than below with a conse-
quent loss of performance significant only in the handling of signals above 5 rad/s,
where the presence of the fictitious noise renders the modified LQG design
nonoptimal. With the filter (8.4-27) specified, then applying loop recovery tech-
niques to the augmented plant of (8.4-24) and (8.4-27) can be interpreted as
frequency-shaped loop recovery for the original plant.

Several modified LQG regulators are designed for the two cases (standard
loop recovery and frequency-shaped loop recovery) using various intensities for the
fictitious noise. The trade-off between performance and robustness as a function of
fictitious noise intensity is shown implicitly in Fig. 8.4-3, where the vertical axis is
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Figure 8.4-3 Performance versus control-loop gain roll-off.

the value of the cost index V, and the horizontal axis shows an appropriate robust-
ness measure for this example, namely, the loop gain at the critical frequency of 10
rad/s. (Note that the fictitious noise is used to design the controller, but not to
compute the performance V, precisely because it is fictitious. ) We see that if we
attempt to achieve a small loop gain at 10 rad/s for robustness purposes, for example
– 18 dB, then the cost index increases dramatically in the white noise Vfcase, but
remains close to the LQ cost with the frequency-shaped noise injection. The per-
formance index V takes values that are large when the effects of the disturbance v (“)
are not well countered by u(o); in frequency domain terms, V becomes large when
the transfer functions tl(jo), tz(jw) from v to x, and v to u respectively have large
mean square values; see the approximate expression for V of (8.3-8). The amplitude
Bode diagram for tl(jw), t2(jw) thus gives insight into the values of V obtained.
Looking at Figs. 8.4-4, 8.4-5, we see that using the colored noise rather than white
noise has less impact on the frequency response between the process noise and the
variables in the cost function. Fig. 8.4-6 (which should be compared with Fig. 8.3-6),
shows that when fictitious white input noise is used, the control loop frequency
response approaches that of the LQ regulator, in particular with regard to the phase
characteristics. On the other hand, when colored fictitious input noise is used, the
control-loop frequency response is modified only enough to meet our design re-
quirements for gain roll-off at high frequency as well as gain and phase margins
within the control bandwidth.

Many examples illustrating the features of loop recovery-based design are
studied in the literature—see, for example, [7, 12].
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Figure 8.4-6 Control-loop frequency responses (compare with Fig. 8,3-6),

Discrete-time loop recovery. The continuous-time techniques
for loop recovery apply also to the discrete-time case. Two cases are of interest. The
first is when calculation time is negligible compared to the discrete-time sampling
interval, and the other is when there must be a unit lag in the feedback due to
processing time. Asymptotic recovery properties for square minimum phase plants
are explored in [13 and 14].

Main points of the section. For minimum phase plants, loop re-
covery methods can be applied to achieve trade-offs between performance for a
nominal plant and noise environment and input (or output) robustness in LQG
designs. There is a scalar parameter that can be varied between zero and infinity to
achieve a range of stabilizing controllers with attractive performance properties for
a nominal plant when zero, and attractive input or output robustness properties
associated with return difference inequalities of full state designs when infinity.

In the case of nonminimum phase plants, two approaches have been presented
to achieve loop recovery results.

Working with filters that augment the plant, frequency-shaped designs allow
different performance/robustness trade-offs in different frequency bands.

Problem 8.4-1. Show a loop-recovery property in the presence of plant
process noise in~ariant with respect to u. In particular, show that (8.4-5) holds with
Qq=uGG’ +Qforany~~O.
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Problem 8.4-2. Consider frequency-shaped plant process noise produced by
white noise driving a (minimum phase) filter. Show that the full-order state esti-
mator in this case can be viewed as that for the white noise case but with the filter
gain K. replaced by a filter K, (s), which reflects the frequency shaping of the process
noise. Conclude heuristically that if K.(s) is thought of as a frequency-shaped gain,
then loop recovery is frequency-shaped. [Hint:Work with an augmented plant
consisting of the original plant augmented with the noise filter—see also [6] for loop
recovery properties in this case. ]

Problem 8.4-3. (Requiring computer solution). Introduce various all-pass
factors in series with the plant of the design example of this section, to see the effect
of zeros on the Nyquist plots.

8.5 ROBUSTNESS IMPROVEMENT VIA
RESIDUAL FEEDBACK

The loop recovery technique limits itself to working with state estimate feedback
designs. Can we achieve robustness enhancement of an LQG design by relaxing the
constraint of working only with state estimate feedback? In Sec. 8.1, it is pointed
out that a key property of a state estimate feedback design as depicted in Fig. 8.1-1
is that the transfer function matrix from u,x~to plant output y is invariant with
respect to aspects of the estimator design, being identical to that of a full-state
regulator design. Can we modify the state estimate feedback controller in such a
way as to preserve the transfer function matrix from U,X[to y and at the same time
improve robustness properties?

To lead into answers to these questions we now discuss the class of all sta-
bilizing one-degree-of-freedom controllers. This section is perhaps a bridge be-
tween the now “classical” LQ theory and current and possibly future trends in
linear control theory. Consider a plant P(s) and negative feedback controller C(s).
The control loop is well-posed and the controller C(s) is said to stabilize P(s) if and
only if

[

I
1

c(s) -’
–P(s) 1

exists and is stable and proper

Equivalently, the four possible closed-loop transfer function matrices (Z+ CP)-’,
P (1 + CP)-l, (1 + CP)-l C, P (1 + CP)”l C exist and are stable and proper. These
conditions, of course, exclude open-loop unstable pole-zero cancellations. We seek
the class of all proper C(s) satisfying this stability property, that is, the class of all
one-degree-of-freedom stabilizing controllers. To this end, let us begin by consid-
ering a particular basic stabilizing state estimate feedback controller of Sec. 8.1 (see
Fig. 8. l-l), but modified to include a filter Qf with transfer function matrix Qf(s)
driven from the residuals ~ of the estimator, defined as (y + rz – H ‘x,) in the usual



252 System Design Using State Estimators Chap. 8

notation, and with output g adding to the state estimate feedback K ‘x.. The
situation is depicted in Fig. 8.5-l(a). Of course, when the estimator is an optimal
one for the noise processes rl, rz then the residuals are precisely the innovations. So
as to emphasize that the controller is driven from the plant output y and feeds to the
plant input u, it is redepicted in Fig. 8.5-l(b) for the case u.,, = O. [Fig. 8.5-l(b) also
implicitly defines the transfer function matrix Y(s) used below]. The figure high-
lights the fact that the controller transfer function matrix is dependent on the filter
transfer function matrix Qf(s).

Class of all stabilizing one-degree-of-freedom controllers. Consider the plant-
controller arrangement of Fig. 8.5-l(a) and (b) with the estimator stable and
K ‘.xa stabilizing state feedback law. Then the controller class characterized in
terms of Qf(s), with Qf(s) stable and proper but otherwise arbitrary, is the
entire class of stabilizing proper one-degree-of-freedom controllers for the
plant. Moreover, transfer function matrices between external additive plant
inputs rl, r2 and responses u, y are affine in Qf(s), and from u..~to u and y are
independent of Qf(s).

Close examination will show that the order of Y(s) together with Qf (s) is
generically higher than the order of the plant, so that low order controllers are
achieved by appropriate cancellations within the .J(s), Qf(s) arrangement.
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A proof of the above result is now given with certain details requested in
Problem 8.5-1. This proof may be omitted by readers with no interest or back-
ground in matrix fraction descriptions. Let us denote the plant transfer function
matrix as P(s) and the negative feedback controller transfer function matrix in the
case Qf (s) = Oas C(s). Then there exist factorization as

F’(s) = B.(s)Ai’ (s) = A~l (s)BL (s) (8.5-la)

c(s) = YR(s)xi’ (s)= xi’ (S)Y. (s) (8.5-lb)

with stable proper factors

[
A. (S)

1[1
–YR(s) = K’

B. (S) x, (s) ~, (s1 –F– GK’)-l[G [1
–K.]+ ~ ~ (8.5-2a)

[
x. (s) Y.(s) _ K’

–B,(s) A.(s)
] - [H, ](SZ –F-K,H’)-l [-G K.]+ [: :] (8,5-2b)

This may be checked by back substitution of (8.5-2) into (8.5-1); see also Appendix
B. Now straightforward manipulations give the “double Bezout” equations

[
AR(S)

1[
– Y, (s) XL (s) Y. (s)

B~ (S) XR (s) -B, (S) AL (S)1

[
XL (s)

1[
Y. (s) A. (S) – Y.(s).

–B. (S) A. (S) B, (S) XR(s)1
(8.5-3)

[1
IO

’01

which tells us that the factorization (8.5-2) are coprime, [15]. This means that there
are no unstable common zeros in the factors BR,AR, and so on of (8.5-l). Also, with
reference to Fig. 8.5-l(b) and 8.5-l(c), straightforward manipulations
out in detail here give

J,,(s) .J12(S) = –c(s)

‘(s) = L,(s) J2JS) 1[
xi’ (s)

xi’ (s) –Xi’ (s) BR(s) 1

]!T,,(s) ~12(s) = !P(s) c!)]-’ kg]m)= [ T2,(S) T22(S)

[B,(s) A,(s)] o 1

not spelled

(8.5-4)

(8.5-5)

Now let us denote the transfer function matrix of the controllers of
Fig. 8.5-l(b) as a function of Qf as C(Q,, s) (note that .I,I(s) = - C(s)=
– C(Qf, s)lQf = O). Then manipulations involving the Bezout relations (8.5-3) give
the Youla parameterizations [16]

C(Qf, S) = C(s) - X~l (S)Qf(S)[~ - J22(s)Qf(s)]-’X~1 (S)

= YR(Q~,s)K ‘ (Q~,s) (8.5-6)

==Xi’ (Qf, s)YL(Qf, s)
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YR(Qf, s) = YR(s) – AR (s)Q~(s) (8.5-7a)

X. (Qf, s) = X. (s) + B. (s) Q~(s) (8.5-7b)

Y.(Qfi s) = Y. (s) – Q~(s)AL (s) (8.5-7c)

XL (Qf, s) = XL (s) + Q~(s)BL (S) (8.5-7d)

are stable and proper. It is readily shown that under (8.5-7), then the Bezout
identity (8.5-3) holds with YR(s) replaced by YR(Qf, s), and so on, so that the
various inverses in (8.5-6) exist and the factorization (8.5-6) are coprime. The
mapping (8.5-6) is called a linear fractional map and it yields a unique C (Qf, s) for
each Qf; conversely, for each proper stabilizing controller ~(s) for P(s) there is a
unique proper stabilizing Qf(s) such that ~(s) = C (Qf, s). A simple derivation
follows below.

Also with reference to Fig. 8.5-l(c) and (8.5-5), manipulations give the trans-
fer function from [rl r~]’ to [u’ y‘ + rj], as

(8.5-8)
[

z

1
c(Q~>s) ‘1=

–P(s) z
Tll(s) + T,*(s)Qf(s)Tz(s)

[
xl

– P (s) ‘!)l-’+[%;l QAs)[AL (s) B~(s)l

Pre- and postmultiplication by [Y.(s) X.(s)] and [X{(s) Yi(s)]’, respectively,
and applying the Bezout identity (8.5-3) gives a unique solution for Qf(s) in terms of
any proper stabilizing controller ~(s) = C(Qf, s), as

Q,(s) = [YL(S) XL(S)][[:p(S) C!) ]-’ - [:P(s) C!) ]-’}[:$j] (85-9)

Now from (8.5-8), C(Qf, s) is a stabilizing proper negative feedback controller
for P(s) when a proper C(s) is a stabilizing negative feedback controller for P(s),
and when Qf (s) is proper and stable. Also from (8.5-9), if ~(s) and C(s) are proper
stabilizing negative feedback controllers for P(s), then Qf(s) such that ~(s) =
C(Qf, s) is stable and proper. This completes the proof of the first claim.

Now from (8.5-8), it is clear that the transfer functions from rl, rz to u, y + r2

are affine in Qf(s). Also observe that since the state estimation error (x – x, ) is
known to be independent of U.X,,it follows immediately that the transfer function
from U.X,to the residuals $ is zero, and consequently the transfer functions from U.X,
to u, y, x,, and so on in the closed-loop system are independent of Qf(s).

This completes the proof of our claims concerning the class of all stabilizing
controllers. Incidently, this constitutes a proof of the Appendix B Section 11, 12
results, viz. that the class of all stabilizing controllers is given by (8.5-6) and (8.5-7)
in terms of any coprime factorization satisfying (8.5-1) and (8.5-3). Here, the
particular factorization (8.5-2) are the relevant ones satisfying (8.5-1) and (8.5-3).
Some remarks are now in order.
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1. That T2Z(S)is zero can be seen directly from the fact that the transfer function
matrix from U,,t to ~ is zero, independently of Qf(s). For 7’22(s)is the transfer
function matrix from q to E; see Fig. 8.5-l(c). Referring to Fig. 8.5-l(a), we see
this is identical with the transfer function matrix from u,,, to ~. This property is
crucial to achieving the linearity with respect to Qf(s) in the closed-loop
transfer functions (8.5-8). This linearity assists any optimization of per-
formance or loop robustness with respect to Qf(s) selections. Some details are
given subsequently. The fact that Tzz(s) is zero also makes clear an eigenvalue
separation property, viz. that with Qf realized as a separate subsystem, the
closed-loop modes consist of those of the state feedback regulator, the esti-
mator, and those of Qfi

2. We stress that a stabilizing regulator designed by any technique whatsoever
can be viewed as a state estimate feedback controller designed with particular
Q, R, Q, R and with insertion of some filter Qf(.s)between residuals ~ and the
control u.

3. The introduction of the filter Qf(s) does not change the transfer functions
from UCX,to u, y, these being identical to the optimal linear quadratic design.
But the introduction of Qf does change the loop gain properties and response
to disturbances rl, rz. This allows us in principle to select Qf(s) to optimize
such disturbance responses or loop gain properties without affecting the track-
ing capabilities of a linear quadratic design. (Recall that uC,,could be optimally
designed to achieve a tracking objective. ) Two approaches to Qf selection are
now studied. Also the frequency-shaping LQG design techniques of the next
chapter can be viewed as methods to select QP

4. The mapping from Qf(s) to C(Qf(s), s) is bijective as can be seen from
manipulations on (8.5-6); see Problem 8.5-4.

5. A dual result can of course be obtained concerning the class of all proper
rational plants stabilized by a single fixed negative feedback controller C(s).
Such a class can be parametrized in terms of one such plant P (.s) and an
arbitrary proper stable QP(s) as

P(QP(s), s) = P(s) + Ai’(s)Qp(s)[z– Ail(S) yR(S)QP(S)]-lAi’ (S)

being a dual of the first equality in (8.5-6). The other duals of (8.5-6) are easily
written down. Of course P (O, s) = P(s), and the mapping from QP(s) to
P (QP(s), s) is bijective, there being an obvious dual of the result of Problem
8.5-4.

Let us now think of P(s) as a nominal plant for the design of a nominal
negative feedback controller C(s). Then any actual plant P.(s) can be organized in
the form P (QP(s), s) for some QP(s), not necessarily stable [although if C(s) were
stabilizing for P(QP (s), s), then QP(s) would be stable]. Let us now apply a control-
ler C (Qf (s), s), derived as described earlier, as a negative feedback controller to
P.(s) = P (Qp (s), s). It is interesting to ask when this control loop is stable. It turns
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out (see Problem 8.5-5) that there is stability if and only if Qf(s) stabilizes QP(s).
Thus the problem of tuning a controller for stabilization is equivalent to the
problem of tuning Qf (s) to stabilize QP(s). Notice from Problem 8.5-4 and its dual
that Qf(s) and QP(s) are frequency-shaped versions of [C(s) – C(Qf (s), s)] and
[P(s) - F’(QP(s), s)], respectively.

Sensitivity/loop recovery by Q, selection. As noted in the
previous section, one technique for passband robustness improvement of an LQG
design is loop recovery. Such must also be achievable by a suitable Qf selection in
view of the second remark above. Indeed, one can seek Qf(s) to minimize some
measure of the difference between the open-loop gain matrices K ‘(sI – ~-*G
obtained with full-state feedback and – C (Qf, s)P (s). The procedure we develop is
termed sensitivity recovery rather than loop recovery for reasons which will become
clear as we proceed, following [15].

Let us denote the maximum singular value of the sensitivity function differ-
ence over all frequency w fors = jw as

AS, = IIIZ- K’(jwl -~-lG]-l - [1+ C(Qf,jw)P(jco)] -’]l. (8.5-10)

We choose the index (8.5-10) for two reasons. First, the sensitivity function is affine
in Qf(s) as

[1+ C(Qf,jw)P(jco)]-’ = A,(jco)[~.(s) + Qf(s)B.(s)]

Thus the difference term is affine in Qf(s) as follows:

AS, = llA,(jo)[l - x.(jo)] -A,(jw)Qf(jo)B, (jw)l[.

Minimizing this index is really a sensitivity recovery process. A second reason to
work with this index in that it is an appropriate frequency-shaped loop recovery
index as can be seen by its reorganization as

AS, = llA,(jw)[K’(jd - q-’G + c(Q~,jo)P(jw)][I + C(Q~,jti)P(jW)] -’il.

The inner term K ‘(jwl – F’-lG + C(Q~, jw)P(jw) is simply the error between the
desired loop gain and the achieved loop gain. The first and third factors serve to
frequency-weight this error. Since AR(jw) = [1 – K’(jwl – F)”lG]-l, this weight
will be small when the loop gain is large, and thus tends to emphasize the unity
gain cross-over frequency in the expression for ASI. The same holds true of
[Z+ I’(jw)C(Qf, jw)]-’.

A dual index to (8.5-10) is

AS, = IIIZ + P(jco)C(jw)]-l - [1 + F’(jco)C(Qf,jw) ]-’ll.

= 11[1- X.(~CO)]A.(~W) - ~.(j~)Q~(j~)A~(jw)ll.
(8.5-11)

Now when P(s) is minimum phase, with full column rank in Res >0, then a
left inverse B~~ (s) exists and is stable, although not proper if P(s) is strictly proper.
In this case ASI is optimized with a selection

Qf(s)= [z- XL(S)]B:L (s) (8.5-12)
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which is stable but not necessarily proper, (The issue of nonproperness is discussed
subsequently). The optimum index is AS: = O. Likewise in the dual situation when
B~R(s) exists and is stable, then ASZis optimized with

Q,(s) = BRR(S)[Z- XR (s)] (8.5-13)

It is readily shown that Qf (s) in (8.5-12) or (8.5-13) has poles which are the set (or a
subset) of the zeros of B~L or BiR, being the zeros of the plant.

When the plant P(s) is nonminimum phase, an optimization procedure known
as H“ optimization can be used to find the optimum Qf [17]. Details are omitted
here.

The optimum stable Qf will not be proper for plants of relative degree 1 = 2 or
more, although s ‘{~-lJQf(s) will be proper. In practice then the optimum Qf(.s), if
improper, must be approximated by a proper transfer function. This can be
achieved by approximatings by a.s/(a +s) for suitably large CY>0.

When we introduce nonzero Qf to an LQG optimally designed regulator, we
can worsen the closed-loop performance, while improving robustness. Trade-off
between performance and robustness in a sensitivity recovery operation can be
achieved by using a filter Qf from (8.5-12) or (8.5-13) with a gain m that can range
from zero to unity. The controllers will be stabilizing for all m z Osince [nzQf(,s)] is
stable. With m = Othe original design can be recovered, and with m = 1 fuI1 sensi-
tivity and loop recovery can be achieved, so that a suitable trade-off can be made
with a selection of Os m s 1. Design examples showing the strength of this sensi-
tivityy recovery approach are given in [17], one of which is included below. The
relative attractiveness of the sensitivity recovery approach over the recovery
approach of the previous sections is not surprising, since more parameters are used
in the design and there is a natural in-built frequency-shaping to the loop recovery in
sensitivity recovery.

Frequency-shaped sensitivity recovery methods can be readily devised. In
such cases, as indeed for the Qf selections above, the controller order may be
excessive, so that controller reduction via the techniques in Chapter 10 could well
be in order for a final design.

A design example. Consider the nonminimum phase plant

s-’ =[, -,](s+ -j-’ [;]‘(s)=~2_3~+3

with nonminimum p~ase zero at 1 and unstable poles at (1.5 + j~/2). Here R = 1,
Q = [1 11’[1 1], R =1, Q = [1 0]’[1 0], and the controller/estimator LQG
gains

[K’ = –6.21 -0.16] and K:= [0.16 6.53]

Consider now minimization of the sensitivity index ASI over stable proper Qf. The
H“ optimization algorithm of [17] gives an optimal nonproper Qf as Qf =
6.05(s + 3.5), which we approximate as

6.05(s + 3.53)

‘a= (0.05s + 1)
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In this nonminimum phase plant case, only partial loop and sensitivity recov-
ery can be achieved. Figure 8.5-2 shows the Nyquist plots for the various open loop
transfer functions. Curve 1 shows the plot of the open-loop transfer function for the
nominal LQG implementation with K, K. given as above. When the loop recovery
technique of Sec. 8.4 is used, with fictitious noise intensity 10,000, Curve 2 is
obtained. There is a marginal improvement over the nominal case. With the fic-
titious noise intensity increased further, no improvement is recorded. In fact, there
is a degradation over certain frequency ranges.

Using the sensitivity recovery technique with Q. as above, we obtain Curve 3
of Fig. 8.5-2. Clearly there is an improvement over the nonfrequency-shaped loop
technique as far as robustness in the critical frequency band is concerned. The
improvement in the critical frequency band is obtained at the expense of some
degradation in the noncritical frequency band. This demonstrates clearly the effec-
tiveness of the in-built frequency weighings of the sensitivity recovery to achieve
the desired loop properties.

Other robustness optimization. We mention in passing that
Qf(s) can be selected with robustness measures other than loop recovery in mind.
For example, one can select stable proper Qf(s) to minimize the sensitivityy function-
based index

11[1+ c(Q~,s)Hs)l”’11== IIAR(jw)[xL(jco)+ Q,(jo)B/r(s)]ll.
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Figure 8.5-2 Nyquist plots for sensitivity/loop recovery.



Sec. 8.5 Robustness Improvement Via Residual Feedback 259

which has Qf(s) entering in an affine manner. The optimization of Qf(s) is again an
H“ optimization task [18]. In a like manner duals or complementary sensitivity
functions can be optimized. Further details are omitted here.

All stabilizing two-degrees-of-freedom controllers.
In dealing with external inputs, as in tracking, controllers are driven by both the
plant output and a reference signal giving rise then to two-degrees-of-freedom
controllers. This motivates us to conveniently characterize the class of all stabilizing
proper two-degrees-of-freedom controllers. A key nontrivial observation is that the
class of all two-degrees-of-freedom controllers for a plant P (s) can be viewed as the
class of all one-degree-of-freedom controllers for the augmented plant [0 P‘ (.s)]’.
Some derivations for this are requested in Problem 8.5-2—see also [19]. A special
subset of the class of all two-degrees-of-freedom controllers is the class of model
matching controllers that achieves a prescribed input-output transfer function, per-
haps that of a nominal optimal design. Results for this are studied in [20]. Again the
classes of controllers of interest can be constructed by means of LQG designs with
added arbitrary stable proper filters Qf(s).

Main points of the section. Stateestimatefeedback arrange-
ments with additional arbitrary stable proper residual feedback filters Qf(s) can be
used to generate the class of all stabilizing proper controllers. With differing Qf(s)
selections, differing robustness properties can be achieved, including sensitivity and
loop recovery, while maintaining closed-loop transfer functions.

Problem 8.5-1. Verify (8.5-1) to (8.5-8) by back substitution.

Problem 8.5-2. Consider the factorization for the augmented plant
[0 P ‘(s)]’ and stabilizing controller C(s)= [C,(s) Cz(s)], in the notation of
Sec. 8.1.

‘(s) = [)(~)]=~R(S)~R* (S) = ~:’ (s)z. (S)

C(S) = ‘~R(.$)~~’ (S)= ‘~~’ (S)~. (S)

with

[1
o

~R(S) = ~R(S) , [1
o

EL (S)= ~L (S) , zR(s) = AR(s),
‘.(s)=[; A:(s)l

~R (s)= [–AR (s) xL(.s) C,(S) YR (s)]

[

o
‘R (s)= BR(s) X:(s) C,(S) XR (s) 1

~L (s)= [–XL (s) C,(s) Y. (s)], XL(S)= XL (S)
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Write down the class of all one-degree-of-freedom controllers for ~(s) using (8.5-6)
and (8.5-7). Then reinterpret to give formulations for the class of all two-degrees-of-
freedom stabilizing controllers for P(s), using these factorization.

Problem 8.5-3

(a) Consider a plant P,(s)= (s1 - ~-lG with a stabilizing (positive feedback)
controller K‘; then show that factorization exist as

[$:;] =[;’] (SZ - F - GK’)-’G + [:]
r

[&L(s) AL(s)] = (d - F - GK’)-’[G GK’]+ [0 z]

X,L (s)= X,R (s) =1, Y,. (s) = Y,R(s)= –K ‘

which satisfy the double Bezout equation

[

x,. (s)
1[

y,. (s) A,~ (S)
–Br~ (s) A,. (S) B,~(S) -21]1=[{ !1

(b) Propose duals for K. stabilizing P,(s)= H’(s1 - F,-’

(c) Generate the class of all stabilizing controllers for P,(s)= (s1 - ~-’G in terms
of arbitrary stable proper Qf(s) using the coprime factorization of (a) and (8.5-6),
(8.5-7).

Problem 8.5-4. Derive the relationship from (8.5-6)

Q~= XL(QJ[C - c(Qf)]X~

= XL [C – C(Qf)]X,(Q)

Suppose C is strictly proper. Then show that C (Qf) is strictly proper if and only if Qf
is strictly proper.

Problem 8.5-5. Derive the expression

[
I

–p(Q, )
C(QJ-’=[:P :]-’+~: :][[!Qp ‘Y]-’-z}[5 21

and conclude that C(Qf) as a negative feedback controller stabilizes the plant P(QP)
if and only if Qf stabilizes QP.
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9
Frequency Shaping

9.1 BLENDING CLASSICAL AND LINEAR
QUADRATIC METHODS

In the development of linear quadratic methods for control system design so far, we
have been able to assess the quality of the designs from a robustness point of view in
terms of classical frequency domain insights. We have focused on their strength in
achieving attractive gain margins of (~, w), guaranteed 60-deg phase margins, or
multivariable equivalents. We have suggested that in the adjustment of design
parameters, bandwidth considerations should be taken into account, as in classical
designs.

In this chapter we go further in blending classical control design insights and
techniques with linear quadratic methods so that each is used at its point of strength.
The objective is to achieve in a systematic manner designs that are as good as, or
better, than those which can be achieved by purely classical techniques where these
apply, and yet extend to situations intractable to classical design methods; we seek
also to improve on the standard linear quadratic-based designs. The new designs
will be termed frequency-shaped designs. Basic results for such designs are devel-
oped in [1-4].

Linear quadratic methods are in essence time-domain methods, and yet they
result in designs with attractive frequency domain properties associated with the
return difference inequality. There are also useful interpretations of asymptotic

262
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properties as weight gains increase with transmission zeros playing their expected
role.

Classical control methods are executed in the frequency domain, with compen-
sators designed to appropriately frequency-shape the return difference, or equiv-
alently the open-loop gain. There is an emphasis on setting bandwidths for effective
control action. There is also the concept of closed-loop system poles approaching
open-loop zeros as the loop gain increases, suggesting that the designer may intro-
duce suitably located zeros via series compensators. Such concepts may be imple-
mented by using proportional plus integral PI compensators or proportional plus
integral plus differential PID compensators. These are almost universal in classical
designs, and allow good disturbance rejection, including asymptotic rejection of
constant disturbances.

How then can linear quadratic methods with their computational elegance and
power harness more fully the classical notions of frequency shaping, transmission
zero adjustment, and PID compensation?

In the previous chapter, Sec. 8.2, the notion of studying stochastic system
performance of an LQG design in the frequency domain is introduced. Also, the
use of such insights to modify the quadratic performance index to yield an improved
design is illustrated by a design example. The resulting controllers are primitive
frequency-shaped designs. The frequency-shaping approach can be carried a step
further by augmenting the plant with frequency-shaped filters so as to penalize their
outputs in addition to other cost terms in the performance index. For example, if the
performance response spectrum shows too much control (or output) energy in a
certain frequency band, then the plant can be augmented by a filter driven from the
control (or output) with a response only in this passband. Penalizing the output of
such a filter in the performance index associated with the augmented plant may well
improve the performance response=r at least allow trade-offs to be made. To
illustrate this simple approach to achieving a frequency-shaped design, we return to
the design example of Sec. 8.2.

Yaw damper frequency-shaped design. Recall from Sec.
8.2 that the open-loop spectral response of a low-order model of an aircraft subject
to wind gusts is as in Fig. 8.2-2, showing resonances at 1.5 and 22 rad/s. A simple
LQG design with the index E [yj + yj + 0.2u 2]leads to the closed-loop response of
Fig. 8.2-3. There is a considerable reduction in the resonances (factors of two or
three). To achieve further improvement in performance, it makes sense to work
with a modified index, further penalizing the aft response ya at less than 3 radls.
Thus, let us filter y. to achieve a filtered response y~as

and work with the new performance index

V= E[yj +y} +8(yj)z+0.1uz]

(9.1-1)

(9.1-2)
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This index is, of course, a standard quadratic index for the plant augmented with the
frequency-shaping filter at the plant output. This augmented plant has a state-
variable representation of the form

(9.1-3)

where the original plant is described by i = Fx + Gu, Y. = H ‘x, and the filter is
described by if = F’fxf+ Gfuf, y{= Hf’xf. Of course, Uf = ya, and Hf’(sl – Ff)-l Gf
= Wf(s).

The augmented plant state vector entries consist of those of the original plant
x, together with those of the filter Xf. The state feedback law for the augmented
plant is obtained by standard methods to yield a feedback law u = K ‘x + K~xf. It is
easily shown that the augmented plant feedback controller is equivalent to the
dynamic state feedback law for the original plant as

u (s) = K’(s)x (s), K’(s) = K’ + K~(sl – Ff)-lGfH’ (9.1-4)

In an LQG design, there is a corresponding dynamic state estimate feedback
u (s) = K ‘(S)X.(s).

For the design problem of Sec. 8.2, it turns out that the frequency-shaped
design gives a significant improvement over the nonfrequency-shaped design. This
is depicted in Fig. 9.1-1. Notice also the improvement at less than 1 rad/s and mild
improvement elsewhere over the primitive frequency-shaped design of Fig. 8.2-4.
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Of course, the improvement is gained at the cost of controller complexity increase
(by an order increase from 6 to 8).

Notice that were we dealing with a deterministic index and had closed-loop
stability, the cost term penalizing y{ could be written in the frequency domain as

Clearly, the constant weight on y~ can be interpreted as a frequency-shaped weight-
ing on y..

The concept of augmenting a plant with filters to lead to frequency-shaped
designs applies to designs with only deterministic objectives as well as those with
stochastic objectives, such as studied in the above design. A number of possible
augmentation arrangements are depicted in Fig. 9.1-2.

In the remainder of this section, we further discuss the augmented plant
approach to frequency-shaping, appealing at times to examples studied in earlier
chapters, and then summarize the work of the next sections.

Figure ?. 1-2(a) shows the addition of a filter on the control signal leading to an
augmented plant having the original plant input u and output y, but with state

,------ ------ ------ -------- .,. . . . .

+-+!--+
------- -------- --------- --------- -

j AugmentedPlant
,------------- . . . . . . . . . . . . . . . . . . ..

(c)

(a) ‘--” ----------------------------’

-------- ------- ------- ------- -----:
. . . . . . .

Ui!i--k
I

! =1
: AugmentedPlant
.. ----- . . . . . . . . . . . . . . . . . ------- . . .

(b)

d--H4-~~
: AugmentedPlant
. . . . . . . . . . . . . . . . . . . . . . . . . . . -------

(d)

Figure 9.1-2 Augmented plants.
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variables consisting of those of the filter, denoted Xf, as well as those of the original
plant. Thus a performance index of the form

V =E[x’Qx + U’RU +xf’Qfxf] (9.1-6)

can be considered, for example. Of course, it may well be that Uf= Hf’xf for some
Hf and Qf = HfHf’, so that (9.1-6) in effect is penalizing u! Figure 9.1-2(b) shows
the addition of a filter, with states Xf, driven from the plant states.

Augmentations that lead to a plant with a modified input are shown in Fig.
9.1-2(c), and those that modify process and/or sensor noise are illustrated in Fig.
9.1-2(d). Of course, combinations of filters can be employed if desired.

Design examples using this augmented plant approach have been studied
earlier in the text. For example, in the previous chapter, Sec. 8.4, there is intro-
duced fictitious frequency-shaped plant process noise Vf to achieve a frequency-
shaped loop recovery in a design example. There results a state estimator for the
original plant with a frequency-shaped filter gain K,(s) instead of the usual constant
gain K.. Another case studied earlier is in Chapter 4, Problem 4.3-5, where a plant is
augmented with an integrator at its input. This means that the augmented plant
input u“ is L, the derivative of the original plant input. Thus in penalizing the
augmented plant input by the quadratic term u“’R.ua, there is a penalty on the rate
of change of u, namely ti ‘Rati. There results a dynamic state feedback controller
K ‘(s) for the original plant rather than a constant state feedback gain K‘ as in
nonfrequency-shaped designs. The disadvantage of this particular augmentation is
that the return difference inequality is satisfied at the augmented plant input, and
not the original plant input. Thus input robustness properties usually associated
with an LQ design could well be lost.

The use of a frequency-dependent weighting that emphasizes high frequencies
in the penalty on control effort is studied in [5]. The weighting is motivated by the
assumption that the plant model may not be accurate at high frequencies, so that
control activity should be attenuated at high frequency. The conclusion from ana-
lytical studies in [5] is that such frequency weighting will improve robustness of a
state feedback design to unstructured uncertainty outside the passband, relative to
the nonfrequency-dependent weighting situations, but in the process some robust-
ness may be lost in the passband, with gain and phase margins being reduced. We do
not explore input augmentations for frequency-shaped designs further in this
chapter.

The frequency shaping based on augmented plants discussed above can actu-
ally be interpreted as working with the original plant and a frequency-shaped per-
formance index. Thus the cost term u“’R. u“ = ti ‘R.u is really a time domain version
of u ‘(–jw)(w2R.)u (jw). What has happened is that instead of working with a con-
stant penalty matrix R, there is a frequency-shaped penalty matrix R (jw) = W2R..
All the frequency-shaping concepts based on plant augmentations of Fig. 9.1-2 can
be likewise interpreted as generalizing the original performance index matrices for
regulation and state estimation, as

R(s), Q(s), i(s), Q(s) (withs =jw)
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Moreover, the consequence of such generalizations is to replace the constant gains
K‘, K, by frequency-shaped gains

K’(s), K,(s)

Problem 8.4-2 develops this interpretation for the case of state estimation when the
constant matrices R, Q, K, for the constant R case generalize to R(s), Q(s), (with
s = jco) and K,(s). Also recall that Problem 4.3-5 in effect illustrates the same
concept for the state feedback regulator case when R, Q, K‘ generalize to W2R,Q,
K’(s).

In Section 2 of this chapter, we view the class of all stabilizing strictly proper
controllers for a nominal plant as frequency-shaped state estimate feedback ar-
rangements with the frequency shaping in the state estimator gain K,, or the state
feedback gain K, or both. That is, we permit a generalization of the gain, K, to a
transfer function K(s) or the gain K, to K,(s), or both K, K, to K(s), K,(s). As
pointed out, such designs with dynamic gains K(s) andlor K, (s) can be achieved by
using the linear quadratic approach where there is a ~eneralization of the
performance index weights Q, R and noise intensities Q, R to transfer functions
Q(s), R (s) and Q(s), R (s). Thus frequency-shaped penalties are applied to control
signal and state costs, and in the state estimation.

In Sections 3 and 4, we show how to achieve in a systematic manner practical
linear-quadratic-based design exploiting classical ideas, focusing on the case when
K, K, become proportional plus integral filters. The properties of such designs are
studied, including their rejection of constant disturbances in both state estimation
and control. The approach can be generalized for rejection of ramp or periodic
disturbance inputs.

Of course, the frequency-shaped LQG designs have an increased complexity
over standard designs, but controller reduction techniques set out in Chapter 10
offer the possibility of taking care of this problem in a systematic manner. There is
also increased designer effort in the approach of this chapter. With the increase in
flexibility and performance/robustness trade-offs there is now not only the task of
selecting performance index weights, but the frequency shaping. The challenge
addressed in this chapter is to present one or two possible paths for the designer to
follow in making such decisions—with no superiority claims over other approaches.

Main points of the section. Although the linear quadratic (LQ)
design approach is in the time domain, aspects of performance can be viewed in the
frequency domain. Moreover, cost terms in a performance index can be penalized
in the frequency domain by appropriate augmentation of the plant with
frequency-shaping filters. Standard LQ designs for the augmented plants can be
interpreted in terms of a frequency-shaped design for the original plant.

Problem 9.1-1. (Requiring computer). For the yaw damper design of this
section, try first-order frequency-shaping filters W’(s) to improve resonance sup-
pression.
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9.2 STATE ESTIMATE FEEDBACK WITH
FREQUENCY SHAPING

In designing a controller associated with a nominal plant, the first requirement is
that the controller stabilize the nominal plant and thus belongs to the class of all
stabilizing controllers for the nominal plant. Of course, state estimate feedback
LQG designs belong to a rather restricted subset of this class, and it is not surprising
that improved robustness properties can be achieved by designs outside the set of
standard LQG designs.

In this section, we reexamine the class of all stabilizing strictly proper control-
lers for a nominal plant as studied in Chapter 8, Section 5. We show that one can
view this class as feedback of state estimates from a fixed but arbitrary standard
state estimator via dynamic filters K ‘(s), rather than via constant gains K‘. The class
of filters K ‘(s) is the class of all stabilizing proper state feedback filters for the plant.
Alternatively, the class of all proper stabilizing controllers maybe viewed as coming
via a fixed but arbitrary stabilizing constant gain state estimate feedback, where the
state estimator has a stabilizing proper dynamic gain K,(s) rather than a constant
one. These results motivate and indeed justify our study in the next sections of
linear quadratic methods to design suitable K(s) and/or K,(s). We shall also exam-
ine benefits that can accrue from such designs. In the remainder of this section, we
make precise and prove the above statements.

The results we develop are specializations of those presented in [6]. We
suggest that the reader having difficulty with factorization theory move on to the
next section.

Let us work with the notation of previous chapters and assume a plant with
transfer function matrix

P(s) =H’(sl –~-’G (9.2-1)

For regulator and estimator designs, we work also with components of this
plant, namely,

P,(s) = (sZ – ~-lG, P,(s) = H’(S1 – F’-’ (9.2-2)

Observe that stabilizing negative feedback controllers for P,(s), P.(s) are provided
by stabilizing state feedback regulator gains (– K ‘), and stabilizing filter gains
(–K,), respectively. Now, as foreshadowed in Problem 8.5-3, the class of all sta-
bilizing controllers for P,(s), P,(s) can be conveniently parametrized in terms of
arbitrary stable proper Q,(s), Q.(s), respectively, as follows.

Define factorization as

P, (s)= B,~ (s) A,R’ (s)= Ar~’(s) B,L (s)

(-K ‘)= Y,,(s) Xtil (s)= Xi’ (s) Y,. (s)

(9.2-3a)

(9.2-3b)

(9.2-4a)

with
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[B,.(s) A,.(s)] = (sl - F - GK’)-l[G GK’] + [0 1] (9.2-4b)

X,L(s)= x,. (s)= 1, Y,, (s) = Y,, (s)= (-K’) (9.2-4c)

These are stable and proper, and indeed coprime, since they are readily seen to
satisfy the double Bezout identity

[
x,. (s)

1[
Y,~(s) A,~ (s)

–B,~ (S) A,. (S) B,. (S) -2[]I=K :1
(9.2-5)

We now appeal to Section 8.5. The class of all stabilizing controllers for P,(s)
is depicted in Fig. 9.2-1 in terms of an arbitrary stable proper Q,(s) and

J,(s) = [:’ -B:R(s)] (9.2-6)

~ P, (s) = (sI-F] lG ~ Pe(s) = H’ (sl-Fj 1 —
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Figure 9.2-1 Stabilizing controllers K(Q,, s), K,(Q,, $).

The dual for P,(s) is also depicted in terms of arbitrary stable proper Q,(s) and

(9.2-7a)

B,~(s) = ~’(S~ – F – K,~’)-l (9.2-7b)

The verification of the above results follows by direct manipulation as for the results
in Chapter 8, Section 5; see also Problem 8.5-3.

Let us now consider state estimate feedback schemes with the usual state
feedback gain K‘ replaced by a frequency-shaped gain K‘ (Q,, s), and the usual state
estimation gain K, replaced by a frequency-shaped gain K, (Q,, s); see Fig. 9.2-2. Of
course, K (Q,, s) and K, (Q,, s) are constructed as explained above. The main result
of this section is now stated.
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Figure 9.2-2 Frequency-shaped state estimate feedback,

Class of all Strictly Proper Stabilizing Controllers. Consider the plant P(s),
and a stabilizing state estimate feedback controller with constant state
estimate feedback gain K‘, and constant state estimator gain K,. Consider
also the transfer function matrices K(Q,, s), K, (Q,,s) parametrized in terms
of arbitrary stable proper Q,(s), Q,(s) with K = K (Q,, s)]Q, = O, K, =
K, (Q,, s) IQ, = O. Then the class of all stabilizing strictly proper controllers for
P(s) can be generated by the frequency-shaped state estimate feedback
scheme with K replaced by K (Q,, s) and K, replaced by K, (Q,, s), as depicted
in Fig. 9.2-2. Moreover, if K has full column rank, then the class can be
generated with the gain pairs K, K, (Q,, s) in terms of arbitrary stable proper
Q,(s), and if K. has full column rank, then the class can be generated with the
gain pairs K(Q,, s), K,.

The proof that the classes described above are stabilizing follows since
K‘ (Q,, s), K, (Q,, s) stabilize P,(s), and P,(s) respectively, for all stable proper
Q,(s), Q,(s), and the modes of the closed-loop system are the union of the modes of
the two closed-loop systems of Fig. 9.2-1; see Problem 9.2-1. For full details, see [6].

That the classes described generate the entire class of stabilizing strictly proper
controllers is more difficult to prove. A key intermediate result is that the classes in
this result are equivalent to the class of strictly proper controllers of Sec. 8.5
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obtained by constraining Qf(s) to be strictly proper. Of particular interest are the
following two cases.

If Q,(s)= O, then Qf(s) = –K’(sl – ~ – &H’) -’Qe(s), (9.2-8a)

If Q,(s)= O, then Qf(s) = –Q,(s)(sl – F – GK’)-’K, (9.2-8b)

Details to establish the claims of (9.2-8) are in [5] and are not repeated here. Notice
that under the full column rank conditions on K and Kc, then (9.2-8) suggests how
Q, or Q, can be defined from Qf.

If Q,(s)= O, then Q.(s)= –(s1 - F - K,H’)K(K’K)-lQf(s) (9.2-9a)

If Q,(s)= O, then Q,(s)= – Qf(s)(K:K.)-lK:(sl – F – GK’) (9,2-9b)

Hence if Q, (s) = Oan arbitrary proper stable Q,(s) maps via (9.2-8a) into a strictly
proper Qf (s), and consequently leads to a stabilizing controller via the theory of Sec.
8.5. Likewise, for any stabilizing strictly proper controller there is an associated
strictly proper Qf (s) and via (9.2-9a) an associated proper Q,(s). Corresponding
results hold for the case Q,(s) = O. These special cases give insight into the more
general results claimed above.

The relevance of the above result for us here is that with frequency shaping
allowed in either the state feedback gain or state estimator gain, the class of all
stabilizing strictly proper controllers can be generated, given constant K, or K,
assuming the full rank conditions on K, or K. With K, K. resulting from an LQG
design then the full rank conditions are satisfied with G, H full rank and the Riccati
solutions P and P, positive definite. Notice that with the frequency shaping in the
state feedback gain, then the state estimates x, are unaffected by the frequency
shaping, whereas when the frequency shaping is in the estimator gain, then x. is no
longer a standard state estimate but should be thought of as a frequency-shaped
estimate.

It is important to realize that even low-order stabilizing strictly proper control-
lers with order much less than that of the plant can be viewed as belonging to the
class of frequency-shaped state estimate feedback schemes-even though gener-
ically these are actually of higher order than that of the plant. In such cases, the
frequency shaping to some extent cancels some dynamics of the state estimation
step in a controller design.

An extension of the result of this section, established in [6], is that for the
scheme of Fig. 9.2-2 with an additional arbitrary stable proper filter Qf(s) driven
from the residuals ~ = (y – H ‘x,) and with output adding to the state estimate
feedback K‘ (Q,, s)x,, there is still stability of the closed-loop system. Moreover,
with Q,(s), Q,(s) fixed and chosen such that either K (Q,,s) or K, (Q., .s) is minimum
phase (full rank in Res 2 O), then the entire class of stabilizing proper controllers is
characterized in terms of Qf(s). This is a generalization of the results in Sec. 8.5 and
this section. This observation leads to results, proved in [6], which allow the strict
properness controller constraint on the results of this section to be relaxed to just a
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properness constraint. Thus, with Q,(s) fixed such that K(Q,, s) is minimum phase,
then the class of all stabilizing proper controllers is parametrized in terms of arbi-
trary stable proper Q,(s) and arbitrary constant Qt The dual also holds, in that with
Q,(s) fixed such that K, (Q,, s) is minimum phase, then the same class is generated
in terms of arbitrary stable proper Q,(s), and arbitrary constant Qfi

In a practical design situation, it may well be better to include some frequency
shaping in the estimator and some in the state estimate feedback law, rather than
trying to achieve all the effects in the one step of the design. This is suggested by an
example in the next section; however, theory provides at this stage no overall
guidance as to the best allocation of the frequency shaping.

In the next section, we explore the case when K(Q,, s), K, (Q., s) are propor-
tional plus integral gains rather than merely constant gains as treated in earlier
chapters.

Main points of the section. All stabilizing strictly proper control-
lers for a nominal plant can be viewed as state estimate feedback arrangements with
frequency shaping in either the state feedback gain, or the gain in the state esti-
mator, or both. The addition of an arbitrary constant gain between the estimator
residuals and feedback control allows generation of all proper stabilizing control-
lers. The message of this section is, then, that frequency-shaped linear quadratic
designs have the potential to improve on nonfrequency-shaped designs, provided
that systematic procedures for introducing the frequency shaping can be advanced.

Problem 9.2-1

(a) For frequency-shaped state estimate feedback controlled as in Fig. 9.2-2, give a
proof that the controllers are stabilizing for arbitrary stable proper Q.(s), Q,(s).
[Hint: Generalize the proof for the situation of the previous chapter when
Q,(s) =0, Q,(s) =Oand K.(Q,, S)= KC,K’(Q,, s) =K’.]

(b) Consider the scheme of Fig. 9.2-2, with the introduction of arbitrary stable

QAs) drivenfrom the residuals &= (y – H’x,) and adding to the state estimate
feedback control. Establish that this is stabilizing. [Hint: Build on the proof
approach of part (a)].

9.3 PROPORTIONAL PLUS INTEGRAL
STATE FEEDBACK

In classical control design, it is known that proportional plus integral control can
yield attractive controller performance and robustness properties. Also, such con-
trollers reject (asymptotically) constant external disturbances, and have attractive
low-frequency disturbance response properties. They are used for set point regu-
lation. In this section we study proportional plus integral state feedback regulation
in a linear quadratic optimization context, and give frequency domain interpreta-
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tions of the frequency-shaped designs achieved. The work of this section is dualized
in the following section to achieve proportional plus integral estimators which are
then used in conjunction with the proportional plus integral state feedback regu-
lators to achieve state estimate feedback designs with frequency shaping in both the
estimator gains and state feedback gains, thus making connection with the results of
the previous section.

The emphasis of this section is on exploiting properties and results of earlier
chapters for design purposes rather than developing new theory. The design process
here is a series of steps now presented with some rationalization at each step. We
focus first on augmentations of the plant states with frequency-shaped filters.

Our starting point is the plant state space description, assumed minimal,

x= Fx+Gu (9.3-1)

~ =H’x (9.3-2)

We have in mind the situation when the plant input is subject to constant
disturbances u.,, which are unknown, and we seek to regulate the plant states to
zero in the presence of such disturbances. For the set point regulation case, there is
an external reference r, assumed constant, and we seek a controller such that the
plant output y tracks r in the presence of constant unknown disturbances u,.,.

A first trial approach. A simple approach to tackling the above
regulation problem is to assume in the design stage that r = Oand u,.~= O, and work
with a performance index that penalizes the integral of y, or rather its square, as
well as the usual terms (x’ Qx + u ‘Ru). Thus we work with the original plant
augmented with integrators at the output. We shall apply standard LQ theory to the
augmented plant, recognizing that the integral of y, denoted yf, is now a linear
combination of the states of the augmented plant, and so can be penalized in the
performance index for the augmented plant. The augmented plant is described by

[;fl=[lr Wfl+[:lu
(9.3-3)

Here yf, the integral of y, is penalized in a performance index associated with the
augmented plant as follows:

!
V = ‘(x’Qx +U’RU +yf’Qfy~) dt

=i([x’ Y;’l[: :flKfl+@)d’
(9.3-4)

The optimal linear quadratic control has the form K ‘x (t) + K,’yf(t) for some optimal
gains K‘, K;. The situation is depicted in Fig. 9.3-1. Here ue.t is an external
(constant) disturbance and r is a (constant) reference signal, both ignored in the
initial design stage, but now recognized to be present. The control in the arrange-
ment of Fig. 9.3-1 is now
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u(f) =K’x(t)+Kf’
J@T)-d~T+%, (9.3-5)

This is clearly a form of proportional plus integral feedback. Instead of proportional
state feedback gains K‘ we now have

K’(s) = (K’ + K/H’s-’) (9.3-6)

Classical controllers frequently employ integral feedback. A well-known by-
product is rejection of constant disturbances and/or achieving of set point regulation
properties. The idea is that the input to the integrator can be asymptotically zero,
yet the output asymptotically constant so as to allow cancellation of the disturbance
UCXCand/or asymptotic set point reference tracking of the reference r.

For set point regulation, which includes standard regulation with a reference
signal r = O, in the absence of u,., the requirement is that the closed-loop transfer
function matrix from r to (y – r) be zero ats = O. Equivalently, as it turns out,

H ‘F-lGK~ is nonsingular (9.3-7)

That is, the poles of the integrator (at the origin) must not be cancelled by zeros in
the transfer function matrix H ‘(sI – F)’ ‘GK~. A necessary condition is that the
dimension of the plant input u be no less than that of the plant output y, to achieve
H’F-lG full row rank.

For rejection of disturbances u.X,having arbitrary constant values, clearly the
dimension of yf must be no less than that of ue,,. This and the previous dimension
constraint suggest that we can achieve fully the goals of arbitrary set point regu-
lation only in the presence of arbitrary constant disturbance inputs, when the plant
is square and with no zero at the origin.

Further incorporation of classical control ideas. The
first trial approach just described may not always lead to suitably high performance
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robust designs. We offer the following design steps, each one based on insights from
classical control.

Step 1. Squaring the plant. Output variables (termed regulated
variables) yl are now defined, being linear combinations of the states as

yl=D’x (9.3-8)

The elements of y, wiIl usually consist of actual plant measurements or combina-
tions of such. The intention is to regulate the variables yl to zero, or have them track
a constant reference r of arbitrary magnitude in the presence of arbitrary constant
plant input disturbances. From our discussion above, it makes sense to seek such
properties only when the dimension of y, is the same as that of u—thus the phrase
“squaring the plant. ” Our approach is to penalize YI, or filtered YI, in the per-
formance index. Clearly, it is preferable if the elements of YI have physical signifi-
cance. This will usually be the case in a set point regulation situation. If yl is not
measured, then it will be subsequently estimated, and this estimate set point
regulated.

In squaring the plant we ensure that

Pi(s) = D“(s1 – F’-lG is square with [F, D] completely observable, and in
addition when F is nonsingular there are no zeros at the origin (D ‘F-lG is
nonsingular) (9.3-9a)

and where possible achieve the following desirable property (discussed further
below).

Pi(s) is minimum phase within the bandwidth of significant control energy and
has a smooth gain characteristic “close” to that of an easy-to-control low-
order plant [any zeros of PI(s) in the pass band should be well
damped]. (9.3-9b)

The nonsingularity of D ‘F-lG permits infinite loop gains at the origin with use of
integral feedback. (When F is singular, the plant itself contains a pure integration,
and it may not be necessary to use full integral feedback. ) The minimum phase
property for Pi(s) is desirable if measurements y, are used to recover the state x
through an estimator and the robustness associated with exact state feedback is not
to be lost in using an estimator. Note also that the intention is to penalize y, in the
performance index, and consequently the zeros of PI(s) will be attractors of closed-
loop poles in the frequency band of significant loop gain. It may be for all reason-
able sensor selections and combinations of measurements in squaring the plant that
Pi(s) is nonminimum phase in the bandwidth of the control action. In this case, the
requirement here of “squaring the plant” could reasonably be relaxed to “squaring
the augmented plant. ” Such an approach is discussed subsequently.

The idea of ignoring the phase characteristic of Pi(s) is that linear quadratic
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state feedback designs give automatic attention to plant input phase margins via the
return difference inequality. The desire tohave~l(s) minimum phase is motivated
by the fact that a state estimate feedback design can inherit the phase margins of the
state feedback design. Thereason forseeking smooth gain characteristics of Pi(s)
close to those of a low-order system with well-damped zeros is that experience tells
us that LQG designs give robust high performance controllers for such plants,
whereas for arbitrary high-order plants there can be real robustness problems in an
LQG design.

In order to apply proportional plus integral plus derivative (PID) classical
control concepts, as distinct from proportional plus integral (PI) concepts, there is a
requirement to achieve a proper controller that

D’G=O (9.3-lo)

If no suitable D can be found satisfying this constraint, then either the PI approach
should be used and in the following development the differentiator gains K~, k~ set
to zero, or a filter with a proper transfer function employed, perhaps as an approxi-
mation to a PID filter. The constraint that D‘ G = Oallows the construction of the
derivative YIas

jl=D’k= D’Fx+D’Gu=D’Fx

Step 2. Assigning zeros— Augmented plant construc-
tion. The next step is to append proportional plus integral plus derivative (PID)
filters to each element of yl. Now a PID filter (kP + k,s’1 + k~) has a pair of zeros
and a pole at the origin. The PID gains are selected to achieve minimum phase
target zeros intended to attract the closed-loop poles in a closed-loop design. This
means that the zero assignments are approximate closed-loop pole assignments, so
should be suitably damped and in appropriate frequency ranges. Again, classical
control experience comes to bear in the assignment of PID coefficients. Notice,
however, that the PID filters are not controllers so that their design is much more
straightforward than for a classical controller design.

This step in our design process is where frequency shaping takes place. We
have now constructed an augmented plant as in Fig. 9.3-2 with output

y2 =

State model

!
Kpyl i- K1 yldt + K~jj (9.3-11)

PID filter

Y, Y*
(S! - FjiG ‘* D’D ● KP + KIS-l+ & +

Frequency shaping assigns zeros

Figure9.3-2 Augmentedplant,
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and transfer function matrix, easily verified to be

P,(s) = [(KID ‘ + KDD ‘F) + K,D ‘S-’](SI – ~-’G (9.3-12)

where Kp, K~, K1 are diagonal matrices with elements Kf’), Kf?, Kf) being the
individual PID filter coefficients. Its states consist of x and xl = ~ yldt, and its state
equations are

(9.3-13)

[1
y,= [(KPD’ + KDD ‘F,) K,] xxl

(9.3-14)

Linear quadratic state feedback control laws for this augmented plant which penal-
ize the augmented plant output y2 have the structure

u =K’x +K;xl

!
‘K’x + K; (D(x) dt (9.3-15)

being proportional plus integral state feedback as in Fig. 9.3-2. Thus instead
of proportional state feedback K‘, we have dynamic state feedback K ‘(s) =
(K’ + K~DJ-’). The situation is depicted in Fig. 9.3-3 wherein the figure, we have
additionally introduced rl, an arbitrary constant set point reference signal, and ut.xt,
an external constant disturbance of arbitrary magnitude. For set point regulation
(including the case r = O), in the presence of a constant external disturbance u,., of
arbitrary magnitude, theory developed earlier in the section tells us that K1 must be

‘ext

+

I i 1 I v

I I I 1

X Control loop breaking point

Y Reference loop breaking point

Figure9.3-3 Proportionalplus integral state feedback.
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nonsingular; see also Problem 9.3-1. The (strict) minimum phase assumption on the
PID augmentations ensures that no unstable pole-zero cancellations can take place
in forming the augmented plant, thereby ensuring stabilizability and detectability of
the augmented plant. As a consequence, the linear quadratic controller exists and is
guaranteed to be stabilizing.

Of course, a designer can choose more complex frequency-shaping filters than
the simple decoupled PID filters. The filters used to replace the PID filter can
reasonably be proper, obviating the need of (9.3-10), and have poles and zeros such
that the augmented plant has a boosted response in any frequency band of interest.
For example, it may be that there is a desire to suppress resonances at a particular
frequency. In this case it makes sense to have the frequency-shaping filter empha-
size the resonance frequency band so that the performance index more heavily
penalizes response in this frequency band. Such a situation arises in a design
example studied subsequently. Clearly, when PID filters are used, the integrators
emphasize low frequencies and the differentiators emphasize high frequencies.
Alternative frequency shaping may well be more appropriate. The appropriate
selection of more general frequency-shaping filters appears a more difficult task
than for the PID filters studied here.

Should the squared plant Pi(s) have nonminimum phase zeros, then P,(s)
augmented with filters, as above, will also have the same zeros. To avoid such a
situation in the case when there are more plant sensors than controls, it could well
be possible to achieve a squared augmented minimum phase plant via a non square
Pi(s). In this case Pi(s) is augmented with PI/PID filters that are coupled.

Step 3. Performance index formulation. Consider now a
performance index associated with the augmented plant with input u, output yz, and
transfer function matrix Pz(s) of (9.3-12), as

J

.
V = ( yjQjy2 + U ‘~u) dt (9.3-16)

o

This index is seen to penalize the augmented plant outputs y2 which are
frequency-shaped versions of the regulated variables yl. Optimizing this index is a
means to achieving appropriate control signal bandwidths and reference signal
response bandwidths in the system, constrained by the fact that each actuator is
known (or assumed) to be effective only over a certain range of frequencies. Thus
any index optimization, irrespective of the physical meaning of the index, must
achieve realistic bandwidth goals consistent with actuator/plant constraints, Like-
wise, any regulated response with physical interpretations is known to be effectively
controlled over a certain frequency band, associated with the modes that influence
strongly the variables. Again, any index optimization must achieve results
consistent with this knowledge.

Here we propose to start with a crude trial selection Q2 = 1, R =1, and pro-
ceed in a trial and error design. Other starting designs based on Chapter 5 results
could also be used.
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Step 4. Trial and error weight selection. With a trial design,
examine the open-loop frequency response and adjust weights as follows. Open the
control loop at point X in Fig. 9.3-3 at the first input and examine the cross-over
frequency, which we recall approximates the closed-loop control system bandwidth.
If this bandwidth is too high (low) to achieve a practical design, then increase
(decrease) the first component of the diagonal matrix R. Repeat for all inputs.
Likewise, when considering response to reference signals rl, the reference loop is
opened at point Y in Fig. 9.3-3, and the following rule applied. Increase (decrease)
the ith diagonal element of QZif the reference-loop bandwidth is too low (high) for
a practical design. Repeat for all i.

One can repeat the above trial adjustments a number of times until the
resulting design achieves reasonable control-loop and reference-loop bandwidths.
These bandwidths may differ depending on the bandwidth of reference signal and
desired system response. For this stage of the design, it is of course important to
introduce engineering insight associated with the plant to be controlled. It must be
known what are the frequency ranges for actuators and sensors to be effective. In
this design process the weights Qq, R are merely design parameters.

The rationale for the weights adjustment/bandwidth trade-off follows closely
that of Chapter 6, and is not repeated here. Experience supports the approach, but
we offer no guarantees. We do not suggest that trial and error adjustments to the
frequency shaping is an essential part of the design approach, although in some
cases such may be necessary to refine a controller design.

Design example. To illustrate aspects of the PID design approach of
this section, and also what can go wrong in such an approach, let us return to the
yaw damper problem of Sees. 8.2 and 9.1. Here there is a single-input, two-output
plant. Our first step is to select a scalar regulated variable yl = D ‘x to achieve, if
possible, a minimum phase plant with a Bode gain plot that is like that of a
second-order system. In addition, we require that its response closely reflect the
response for the original plant outputs Y., yf Since selecting yl as ya, or yf, or a linear
combination of ya and yf leads to a nonminimum phase PI(s), we first discuss the
simpler case when yl is selected so that PI(s) is minimum phase. Thus we select

D’=[0 O 3 –2 O O]

There result minimum phase zeros at

{-3.3, -0.88 t jo.93, -0.007, -4.7x 10-’}

Three designs are studied for illustration purposes. The objective we now
examine is to minimize the response of yl = D ‘x to the noise disturbance—
irrespective of the response to the plant outputs y‘ = [ya, yf]’,

Case 1. Here we just penalize u and yl in a performance index and over a
few trials “minimize” the peaks of the spectral response. We select the response
achieved with the index E[ y; + 0.005u2].
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Case 2. Here the integral of y,, denoted y2, is penalized in the index
~~ + 10u 2]and the weight on U*is selected to get the “best” spectral response of yj.

Case 3. Here y, is passed through an approximation to a PI filter to yield

S2+ 5s + 100
Y2(S)= s~+5s Yl(s)

The approximation avoids differentiation. Again, the response yl is “optimized,”
penalizing yz in the index as f (y:+ 0.01u2) dt

The spectral responses for the three cases are presented in Fig. 9.3-4 indi-
cating that a much more dramatic reduction is achieved by the PI augmentation.

0.3

0.2

0.1

0

Frequency (rads / sec )

Ffgure 9.3-4 Improvement with PID frequency shaping

So far, in this design example we have illustrated the power of the PID
augmentation approach when Pi(s) is so constructed as to be minimum phase. We
also wish to point out the limitation of the approach when PI(s) is not minimum
phase, as when y, is set as ya or yf or a linear combination. In this case, this PID
approach, without modification, is unattractive in the state estimate feedback
situation. In fact, the more sophisticated frequency shaping of the design of Sec. 9.1
turns out to lead to a better state estimate feedback design. To improve this PID
approach, the augmented plant output should be selected as a combination of
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filtered versions of both ya and yf so that the augmented plant output is minimum
phase, as suggested in Step 2 above. Of course, a special case of this approach is the
design of Sec. 9.1, so further designs are not repeated here.

The notion of proportional plus integral feedback as developed in this section
can be extended to proportional plus integral plus double integral and so on,
although details are not spelled out here.

Problem 9.3-3 studies an alternative approach to achieving proportional plus
integral state feedback designs. It works with the augmentation of an integrator at
the plant input for an initial design, being in the first instance a special case of the
approach of [5].

The reader is referred to [7] for certain quite general frequency-shaped linear
quadratic regulator results in the case of dynamic output feedback. Spectral factori-
zation techniques are used rather than the augmentations of this section. For
minimum phase plants the input robust properties associated with standard linear
quadratic design are guaranteed.

Main points of the section. Proportional plus integral state feed-
back designs can be achieved by applying linear quadratic methods to plants aug-
mented with integrators or proportional plus integral plus derivative (PID) filters or
approximations to these. The PID filters can be designed to give specified zeros
between the controls and frequency-shaped regulated variables and to give open-
Ioop gain responses that are like those of a low-order easy-to-control system. The
zeros then attract closed-loop system poles in a state feedback design for the
augmented plant and so shape the closed-loop response. The weights of the quad-
ratic index can be systematically selected to achieve reasonable bandwidths associ-
ated with the control variables. The Riccati theory takes care of plant input phase
margins. As in the case of classical controllers designed with proportional pIus
integral controllers, there is asymptotic cancellation of constant disturbances at the
plant input for state proportional plus integral feedback designs (with K1 non-
singular). Also, there is asymptotic tracking of constant reference signals even in the
presence of unknown constant plant input disturbances. The more realistic situation
of state estimate feedback is considered in the next section.

Problem 9.3-1. Consider a linear quadratic design associated with the aug-
mented plant of Fig. 9.3-1 and index (9.3-16) resulting in the controller arrange-
ment of Fig. 9.3-3. Show that K1 is nonsingular if Qz >0, and K1has full rank. [Hint:
Examine the 22-block of the associated Riccati equation.]

Problem 9.3-2. Show how to obtain a pair of complex zeros with poles at the
origin by means of a proportional plus integral (PI) filter having two inputs and two
outputs. Using such an arrangement in multivariable designs obviates the need for
the differentiator and thus the constraint D‘ G = O assumed in this section, and its
dual H ‘D. = Oof the next section.
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Problem 9.3-3

(a) Set up a frequency-shaped regulator design by augmenting the plant X=
Fx + Gu at the input with integrators, so that the augmented plant has an input c1.

(b) Showhow state feedback fortheaugmented plant results inadynamicfeedback
controller for the original plant.

(c) Give amethod toreorganize this asproportional plus integral state feedback.
[Hint: In achieving proportional plus integral state feedback, use the plant state
equations as well as those of the controller.]

(d) Show that constant input disturbances are asymptotically rejected by such
designs.

(e) When applying linear quadratic methods for the augmented plant state feed-
back design, interpret the index in terms of the original plant variables.

(f) What can be said about input robustness properties of this form of frequency-
shaped linear quadratic design?

9.4 PROPORTIONAL PLUS INTEGRAL STATE
ESTIMATE FEEDBACK

In this section we first briefly present procedures dual to those in the previous
section for state estimator design. These result in state estimators with proportional
plus integral gains, and asymptotic rejection in the state estimation of certain
constant plant disturbances entering with the process noise. Such estimators are
then combined with the proportional plus integral regulator designs of the previous
section to achieve frequency-shaped state estimate feedback.

Estimator with proportional plus integral gain. The full-
order state estimators of Chapter 7 have the property that if constant disturbances
enter where the process noise normally enters, but otherwise the process noise and
the measurement noise are zero, state estimates x, do not approach the states x. Of
course, by increasing the estimator loop gains there can well be a decrease in the
asymptotic errors x – x., but then sensor noise may not receive adequate filtering.
Here we propose a frequency-shaped estimator having proportional plus integral
gains rather than just a proportional gain as in the standard case. There is then,
under reasonable conditions, asymptotic rejection of constant disturbances appear-
ing with the process noise in that x, ~ x, assuming zero process and measurement
noise. This property suggests strongly a more robust design than for the standard
estimator. The design stages presented are duals of those for the proportional plus
integral state regulator, and are therefore only briefly outlined.
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Step 1. Square the signal process model. Our starting
point is a stochastic signal model based on the deterministic model (9.3-1) and
(9.3-2).

,i=Fx+Gu+D,vl (9.4-1)

y= H’x+w (9.4-2)

Here we have included a fictitious colored process disturbance D,vl and white
sensor noise w, where D, is selected so that the transfer function P,l(s) =
H‘ (s1 – F) ‘lD, is square and desirably minimum phase, and in the case that F is
nonsingular with H ‘F-lDe nonsingular. Further, any constant disturbance later
postulated to be acting on the plant must be of the form Deb, for some constant b.
(It is such a disturbance for which we shall demonstrate rejection). This is a further
restriction on De. In the case that PID concepts are employed rather than just PI
concepts, there is the additional constraint H ‘D, = 0. Again, it is preferable that
P,I(s) either have no zeros, or have heavily damped zeros, and again relaxation of
these requirements can be achieved as discussed for the dual results of the previous
section.

Step 2. Zero assignment. Now append PI filters (or approximate
PID filters) at the process noise input point as in Fig. 9.4-1. (For simplicity, we
consider only PI implementations, and VZis a zero mean, white noise having
covariance Q28(t– s).Later, we shall allow the possibility of constant disturbances
being introduced at Vl, but this will occur after the estimator design). In Fig. 9.4-1
K.P and K,l can be block diagonal, allowing zero assignment with the view to
attracting closed-loop filter poles in a state estimator design for the augmented
model. The augmented signal model has a transfer function

Z’e2(s)= H ‘(sI – F)-’(D,K.P + DCK.{S‘])

The noise D, K,, f V2dt represents for design purposes either plant or disturbance
uncertainty at low frequencies, and is actually a Wiener process.

PI Filter
w

v,
‘2

v

KeP+Kels-l + De

‘1
I

1 ‘gG

Frequency shaping zero assignment

‘u

Figure9.4-1 Augmentedsignalmodel.
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Nowapplying afull-order state estimator design for this model kxtds to the
frequency-shaped estimator design structure of Fig. 9.4-2.

Step 3. Setting bandwidths. The quadratic weights are now theA A
intensities R of the sensor noise w, and intensities QZof the process noise vZ.Here
these parameters arc adj usttxl to set es~imato[ loop bandwidths, rather than being
known a priori quantities. Initially set R = 1, Qz =--I in the absence of further infor-
mation. Evaluate open-loop bandwidths by breaking the resulting estimator design
at the points X,, Y. of Fig. 9.4-2. The loops are broken one at a time for each line in
the vector of lines at the points X., Y,. The loops are termed sensor (estimator) and
uncertain y loops, respectively, as indicated in Fig. 9.4-2. The term uncertainty loop
is used because the loop exists to take care (in part) of plant uncertainty at low
frequencies. Associated with the break point X, at the ith sensor there is a sensor
(estimator) loop cross-over frequency. If this coincides with the bandwidth over
which the ith sensor gives reliable information then accept the ith diagonal element
of R. If the cross-over frequency is too low (high), then decrease (increase) the ith
di~gonal element of R, I.ikewise for the b~-eak point Y, giving rise to unce~tainty
lL)OPS,illcl,::lsr ([!ecretise) tile itil chagmai element of Qz to increase (decrease) the

cross-ovur trequency associtited with the ith uncertainty loop, which copes with
the ith clement of the disturbance (uncertainty) vI; see discussion below. Repeat the
process of adjustments tour times or so until there is a reasonable compromise
reached in terms of loop bandwidths.

The above procedure exploits the rough equality between open-loop
Crcrss-oicr hcquency and clos~d-!oop bandwidth mentioned in Chapter 6. For the
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ith sensor, the bandwidth of significance is that of the transfer function linking y ‘;)to

Y:), the estimate Of Y‘i). Typically, sensors tend to be fairly accurate over some
low-frequency band and become unreliably noisy at high frequency. Knowledge of
such sensor characteristics sets the estimator bandwidth in the above design proce-
dure. Now the disturbance VI represents plant uncertain y together with process
noise, and is frequency shaped. We expect a bandpass characteristic between VIand
a state estimation error (x – x,), with the low-frequency corner frequency associ-
ated with the dominant time constant of this state estimation.A It is this frequency
(time constant) which is adjustable via the diagonal entries of Qz.

Properties of proportional plus integral estimator.
Some of these have been foreshadowed. The estimator loop gain is high at low
frequencies by virtue of the integrator in the loop and the nonsingularity conditions.
It is optimum for a plant process noise which is high in intensity at low frequencies,
relative to the plant sensor noise. We conclude that the estimator relies on sensor
data more at low frequencies and the model more at higher frequencies. This is a
desirable property for an estimator in practice, since frequently sensor information
is unreliable at high frequencies. Of course, one could attempt to achieve similar
estimator properties with a signal model which involves a differentiation in a model
for the sensor noise, and a nonfrequency-shaped plant process [loise; however, such
an approach with differentiation of white noise in the model is not a well-defined
filtering task.

A crucial property for robustness to low-frequency disturbances or errors in
modeling at low frequencies is the steady-state response properties of the estimator.
These are studied in Problem 9.4-1. The key property is that with K,, and H ‘F-lDC
nonsingular then x, --x, irrespective of the presence of an extra constant dis-
turbance entering the plant through a gain D,. This disturbance introduces a con-
stant error—H’B “lDCIJ into y and –F ID. into x; the stability of the estimation ioop
ensures that there will be a corresponding –H ‘F lD,b part of y,. As a result the
input to the integrator in the estimator will not depend on b, while the integrator
output will have a DC value b in order to cause x, = F“*D,b. This is an auractive
robustness property not achieved in a standard estimator.

A design example. Let us consider the first-order signal model

X=–X-+2U+V, y=x+~

with noise intensities Q = 1, R = 1. The estimator gain is then K, = –0.414, and the
estimated closed-loop pole is at – 1.414. The unit step response from plant (noise)
input v to filtered estimate gives an unacceptable steady state filtered output error
y (CO)– j (=) = 0.7, in contrast to a zero steady state error from a step input applied
to the controls u. In a robustness test, changing the plant to

~=--l.5~+4u+2v y==x+~

and preserving the estimator design leads to a steady state filtered output error of
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0.44from aplantinput step response and 0.96from the(noise) input v. These are
now both unacceptable.

The steady state errors can be reduced by increasing the filter loop gain. Thus
consider that Q = 1, R = 0.01 leading to an estimator gain K, = –9.05 and closed-
loop pole at – 10.05. For the nominal plant, the steady state filtered error step
response is still zero for a step input at u, and is reduced to 0.1 for a step from v, but
the filter bandwidth is now too high and there is insufficient filtering of mea-
surement noise.

Now consider a proportional-plus-integral-estimator designed using the nomi-
nal signal model augmented at the process noise input term with a proportional plus
integral filter (1 + 2s ‘l). The associated filter gain for the case ~ = ~ = 1 is K, =
(1.5 + 2,s”) and the closed-loop poles are at a frequency and damping w = 1.414,
~ = 0.86. The step responses from u and v now both lead to zero steady state error in
the filtered estimate for the nominal plant model and also for the second model used
for a robustness test. Moreover, the filter bandwidths can be set as described earlier
for good noise filtering and transient responses.

State estimate feedback. The frequency-shaped design approach
of this chapter is to use proportional plus integral estimators in conjunction with
proportional plus integral state feedback regulator designs, replacing states in the
control law with state estimates as in Fig. 9.4-3. There results what we term propor-
tional plus integral LQG controllers. Clearly they are a subset of the class of all
stabilizing controllers studied in Sec. 9.2, with the frequency-shaped gains being
proportional plus integral gains. In Fig. 9.4-3, as sketched, the regulated variable y,
is estimated as yl, and is fed back via the integral feedback gain. Of course, if

Uext
Y Xe

● Proportional-

+
plus-integral

~ Estimator

D’

+

K’

,e can beY
replaced by
y, if available

1

Proportional plus integral state estimate feedback

Figure9.4.3 Proportionalplusintegralstateestimatefeedback.
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yl = Ly for some known L, then y, could be used h lieu of y,, in the feedback
arrangement depicted in Fig. 9.4-3. They have the important properties that under
appropriate nonsingularity conditions, yl, tracks the arbitrary constant reference
signals r] in the presence of arbitrary constant disturbances uCXC.Moreover, this
applies when there are constant plant input disturbances.

The eigenvalue separation property holds for the proportional plus integral
LQG designs of this section, being a specialization of the eigenvalue separation
property of more general frequency-shaped designs. By assigning the frequency-
shaping minimum phase zeros, there is a crude assignment of those closed-loop
poles attracted to these zeros in a closed-loop design.

By adjustment of the weights in the individual state feedback regulator and
estimator designs, there is achieved a compromise in terms of control loop, and
estimator loop bandwidths. In this regard, a significant property is that these sen-
sor, reference, and uncertainty loop gains associated with the state estimator and
state feedback regulator remain invariant upon switching to state estimate feed-
back. Derivations of this property are requested in the problems.

It is not surprising then that in the hands of an experienced designer, with
classical and linear quadratic design insights, the frequency-shaped LQG design
approach of this chapter can yield enhanced designs compared to the more standard
ones of Chapter 8. The relative attractiveness of the frequency-shaped LQG design
approach has been verified by a number of high-order designs for realistic aircraft
models—see, for example, [8]. The ideas also build on other experience to achieve
practical controllers as studied in [9].

Main points of the section. Just as proportional plus integral plus
differential (PID) controllers give robust classical designs, rejecting constant
disturbances asymptotically, so frequency shaping with PI or PID filters in applying
linear quadratic methods gives robust “optimal” designs involving proportional plus
integral state estimate feedback and asymptotic suppression of certain constant
disturbances. The last two sections show how to achieve proportional plus integral
state estimate feedback designs in a systematic manner by using insights from
classical control theory and the theory of earlier chapters. There is no claim that the
approach is the best or universal, but rather that it is a systematic one that can lead
to enhanced designs.

Problem 9.4-1 Consider the proportional plus integral estimator of this sec-
tion. It is easily shown that the dual resultAof Problem 9.3-1 is that the integral gain
K,l is nonsingular, if K,, is full rank, and Qz >0.

(a) Referring to Figure 9.4-2 for the case u = Owith K,l nonsingular, show that the
steady state response of the proportional plus integral estimator to an asymp-
totically constant input y is y,(~) = y(=). [Hint: First show that the input to this
integrator block in Fig. 9.4-2 is zero in steady state. ]

(b) Suppose that the proportional plus integral estimator is driven by the plant with
state x, constant input VI in place of process noise and having a transfer function
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H ‘(sZ -- F)”-‘D,. Suppose also that K,l is nonsingular as is the zero frequency gain
H ‘F”-lD,. Then show the steady-state state estimator error [x(~) – x. (=)] is zero.

Problem 9.4-2. Consider the frequency-shaped LQG design of Fig. 9.4-3
with estimator of Fig. 9.4-2, applied to the augmented plant model of Fig. 9.4-1.
Verify that the sensor, uncertainty and reference loop gains are those of the open-
loop estimator, and state feedback regulator as appropriate. It is assumed that the
loops are opened at points ~,, Y, indicated in Fig. 9.4-2 and the point Z, in Fig.
9.4-3. [Hint: Referring to Fig. 9.4-2, first note that the effect of u cancels that of y as
far as opening the loop at X,, Y,. When opening at Z,, first see that x, - x asymp-
totically.]
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10.1 INTRODUCTION: SELECTION
OF FREQUENCY WEIGHTING

The techniques presented in this book to this point generally lead to controllers
with order roughly equal to the plant order. In case the plant order is above four or
five, it is natural to consider whether there might be a simpler (i. e., lower order)
controller that will perform almost as well as the full-order controller resulting from
a linear-quadratic design. Low-order controllers are normally to be preferred to
high-order controllers, given comparable performance: there are fewer things to
go wrong in the hardware, or bugs to fix in the software; their operation is easier
to grasp at the conceptual level; that is, one is more likely to be able to identify parts
of the controller as achieving certain subgoals of control, such as canceling a pole,
or injecting a phase compensation; and in a discrete-time implementation the com-
putational requirements (operations per unit time and, probably, word length) are
less.

These considerations motivate us to ask how a low-order design might be
achieved. One approach is to seek to obtain a low-order controller directly; that is,
one formulates the controller design problem ab initio with an order constraint in it.
Call this the direct approach. Examples of the direct approach include the work of
[1, 2], and we offer some discussion on this in Section 10.4. Generally, a quadratic
optimization problem is posed with an order constraint and, naturally, a closed-loop
stability constraint. Then there are two main issues to be considered. The first is

289
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that of providing a satisfactory numerical procedure for executing the optimization.
This is far from being a trivial task, and at the time of writing, no procedures are
yet available in commercial control system software design packages, although it
appears that future provision would not be out of the question. Moreover, even
in-house packages that do exist require considerable experience and expertise for
effective use. This leads us to the second issue, which relates to utility of the whole
approach for achieving closed-loop design goals apart from minimization of a per-
formance index. Much of our discussion has implicitly, and sometimes explicitly,
focused on the fact that a quadratic index may possess little intrinsic significance,
but rather serves as a vehicle for securing (via full-order LQG design) a number of
closed-loop properties—relating to bandwidth, robustness, modal eigenvectors,
and so on. The extent to which such closed-loop properties could be reflected in a
quadratic index for a constrained order controller problem is simply not clear.

In contrast to the direct approach to low-order controller design, we can con-
ceive of an indirect approach in which we use LQG methods to design a full-order
controller, and then perform a further step, approximation of that full-order con-
troller by a low-order controller. In this chapter, we shall study methods for carry-
ing out this approximation.

There is a third possible approach to achieving low-order controller design
which deserves mention. One begins the whole design procedure by approximating
the plant with a low-order model. One designs (by LQG methods) a controller for
this low-order model. The controller is, of course, attached to the original plant.
There are two objections to this approach. First, in any design method involving
approximation, it is logical to postpone approximation where possible until the later
steps of the process. This is particularly so when it is not straightforward to keep
track of the effect in later stages of a design process of an approximation made in an
early stage of that design process. Performance of a low-order controller must be
assessed for a model that approximates the plant as closely as possible, so that there
should be no incentive to only define a low-order plant model and work with this ex-
clusively. A second and more specific objection is that what constitutes satisfactory
approximation of the plant necessarily involves the controller: it is the closed-loop
behavior that one is ultimately interested in, and it is clear that a controller design
could yield a situation in which very big variations in the open-loop plant in a limited
frequency range had little effect on the closed-loop performance, while rather small
variations in another frequency range could dramatically affect the closed-loop
behavior. Now since the definition of a good plant approximation involves the con-
troller, and since the controller is not known at the time of approximation, one is
caught in a logical loop. Iteration might provide a way out, but the situation is by no
means clear.

So let us return to the second idea, that of approximating a high-order con-
troller by a low-order controller. For most designs, it is crucial to accept that the
problem of controller reduction is distinct from the problem of (open-loop) model
reduction, because of the presence of the plant, and because of the desire to have
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~ Figure10.1-1 Redrawingofclosedloop
with compensation C,.

good approximation in the closed-loop performance, which depends not just on the
controller transfer function, but necessarily involves the plant.

Frequency weighting. First and foremost, controller reduction has
to preserve closed-loop stability. We want it also (as far as possible) to preserve
other closed-loop properties, such as the closed-loop transfer function. Also, we
may wish to maintain robustness properties in a controller reduction process. To
preserve phase margins, for example, we may seek to preserve open-loop transfer
functions in the vicinity of the cross-over frequency. Turning such goals into a
quantitative statement generates a frequency-weighted approximation problem, as
we shall now see. We focus first on closed-loop stability.

Let P(s) be the transfer function matrix of a given plant, and let C(s) be a
stabilizing high-order series compensator with unity negative feedback. Let C,(s) be
a low-order compensator, which we are seeking. Regard the system with compen-
sator C,(s) replacing C(s) as being equivalent to that of Fig. 10.1-1. Suppose that
C(s) and C,(s) have the same number of poles in Re (s) a O, and in addition that,
with G{.} denoting maximum singular value,

1S= mjx G{[c(jw) - Cr(jW)lP(jCO)[l+ C(jw)P(jo)]-’} <1 (10.1-1)

Then it is possible to show that C,(s) is also stabilizing. [The idea is very similar to
one used in Chapter 5 in discussing the robustness of a design to plant variation,
the difference here being that it is the controller rather than the plant which is vary-
ing. The result is suggested, but not proved, in the more restricted situation where
C – C, is stable; now C – C, is stabilized by P(I + CP)-’ as in Fig. 10.1-2. This is a
redrawing of Fig. 10.1-1 to include a single transfer function matrix from X to Y,
which is necessarily stable in view of the stabilizing property of C(s). In Fig. 10.1-2,
the two blocks are stable, and (10. l-l) states that the loop gain is smaller than 1.
Hence stability of the closed loop in Fig. 10.1-2 follows, and thus also stability of the
closed loop formed by C, and P.]

4=-P Figure10.1-2 Redrawing of loop in
Fig. 10.1-1.
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Note that the requirements of C(s) and C,(s) to have the same number of
poles in Re [s] z O and for (10. l-l) to hold are sufficient conditions, not necessary
conditions, for stability with the reduced-order controller. Again, in place of
(10. l-l), one can have the condition

.l~=m~x ti{[l+l'(jco)C( jw)]-]P(jO)[C(jco) -Cr(jw)]}<l (10.1-2)

as an alternative sufficiency condition, when taken with equality of the pole count in
Re [s]= Oof C and C,. This is obtained by virtually the same argument that led to
(10. l-l), but is a different condition as soon as P, Care not scalar transfer functions.

Condition (10. l-l) and the condition that C and C, have the same number of
unstable poles suggest the following procedure for constructing a reduced-order
controller. Write

c(s) = c+(s)+ c-(s) (10.1-3)

where C+(s) is strictly proper; that is, C+(w) = O, with all poles in Re [s] a O, and
C_[s] has all poles in Re [s]< O. Copy the unstable part of C+(s) into C,(s); thus

c,(s) = c+(s)+ c-,(s) (10.1-4)

where C-, (s) has all poles in Re [s] <O. Choose C-,(s) so that .1,is minimized over
all C-, (s) of prescribed degree. (How this last step can be performed will be
considered later. ) Should the value .I, turn out to be less than 1, stability with C,(s) is
assured. Should J, exceed 1, then instability may be associated with the minimizing
C,(s), or it may not. Because (10.1-1) is part of a sut%cient, rather than necessary,
condition, one cannot be sure.

It is interesting to consider the significance of the weighting P(1 + PC)-l.
Were this weighting replaced by the identity matrix, and were we working with
scalar C and C,, this minimization problem would require us to obtain frequency
response (Nyquist) diagrams as close as possible for C, C, subject to a constraint on
the number of unstable poles, and total number of poles of C,. The weighting term
implies that it is more important to have C and C, close in some frequency ranges
than others. Notice that 6 {P[l + CP]-*} will be small when either the maximum
singular value G(P) is small or the minimum singular value ~ (C) is large. Thus this
weighting will be small in the stopband, or in the passband, If the latter corresponds
to use of a C to produce high-loop gain. On the other hand, it is more likely to be
large near the unity gain cross-over frequencies for the loop gain C. This means that
the weighting matrix tends to require greater accuracy in the controller approxi-
mation near the cross-over frequency, an idea which should be familiar from
classical control with its concern for phase margins.

A further issue deserving of comment is that of scaling. Consider Fig. 10.1-1.
Suppose that P(s) is replaced by P(s)A and C(s) and C,(s) are replaced by A-*C(s),
A-lC, (s), for some constant nonsingular A. This introduces an apparently unes-
sential coordinate basis change at the plant input; if A is diagonal, it amounts to a
scaling of the different inputs. Now observe that J, in (10. l-l) is changed to

.1$= mjx iF{A-’[C(j~) - Cr(jO)]P(jti)[I + C(jw)F’(jw)]-’A} (10.1-5)
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which is certainly not the same, except in certain trivial cases, for example, scalar
P(s) or A = M for some scalar A. With a different criterion, a different optimal C, is
to be expected.

How should A be chosen? In the event that process and measurement noise
signals are present, u(.) will be a stationary random process with spectrum @uti(jo),
and it might make sense to scale the zero-lag covariance matrix of u, viz.

.
E[u(t)u ‘(t)]=& J_ @.u(jw) dul

.

so that the diagonal entries are all unity. More generally, the notion of equalizing
signal levels on different inputs seems sensible. But it is no guarantee of appropri-
ateness of scaling constants.

The frequency weighting P(1 + CP)-’ is derived above by focusing exclusively
on stability considerations. Let us note two other ways whereby a weighting could
be advanced. First, suppose the original closed-loop system with high-order control-
ler C(s) operates in the presence of stationary process and measurement noise. Let
q(t) be the input signal to C(s). In the absence of driving signals other than the
noises, q (t) will be a stationary random process with spectrum computable from C,
P, and the driving noise spectrum. Let the spectrum of q (t) be @~~(jw). Now one
could argue that it is most important for C (jw) to be accurately approximated by
C,(jw) in those frequency bands where most signal energy is present in actual
operation. So if V(jw) is a spectral factor of @~~(jw) in the sense that V(s) and
V-l(S) are stable, and

V(jw)V’(–jw) = @,, (jw) (10.1-6)

one could seek C, such that C and C, have the same number of unstable poles and

J. = m~x ti{[C(jw) – Cr(jw)]V(jw)} (10.1-7)

is minimized. [Note: Given @g~( jw), it is possible to compute V(jw); see [3],[4]].
A further alternative to the selection of a weighting is as follows. One could

seek to choose C, so that the closed-loop transfer function PCII + PC]- 1is closely
approximated. Now

PC[l + PC] - PC,[l + PC,]-’ ==[1 + PC]-’P[C, - C][l + PC]-’ (10.1-8)

This suggests use of a two-sided weighting for C, – C, that is, the minimization of

JC= mjx{G[l + PC]-’P[C, – C][l + PC]-’} (10.1-9)

The weighings in .lCshould be compared with those in J; (see (10.1-2)). Evidently,
errors between C, and C receive less weighting in the high loop gain bands with
(10.1-9) than with (10.1-2).

For a further variant on (10. 1-9), one could incorporate a multiplicative factor
to reflect knowledge about the spectrum of external inputs (if it were available).
Thus one might seek to minimize, over C, of prescribed order with the same
unstable pole count as C, an index
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.J1= mjx{G[l + PC]-’P[C, – C][l + PC]-’fi(jO)} (10.1-10)

where the input spectrum is V(jti)ti ‘(–jw).
None of the indices advanced are free from some criticism. Thus .T., .lC,J; take

no direct account of stability, which is a disadvantage. On the other hand, .I,, J,’ take
no account of performance issues apart from stability, and address the stability issue
only via a sufficiency condition. For no index can it be said that it will assure that PC
and PC, have the same roll-off rate as w+ w. Some of these disadvantages will be
addressed in Section 10.3 when we describe the use of fractional representation of
the controllers; by using such representations, alternative indices can be found.

What of the problem of actually achieving the minimization of a particular
index, with the constraints on C,? It turns out that there is a straightforward
approach to an approximate minimization. We discuss this in the next section.

Main points of the section. Practical considerations suggest the
desirability of low-order controllers. Reduction of the order of an LQG controller
should usually be contemplated. Intelligent inclusion of the plant in setting up a
formulation of the reduction problem leads to a frequency-weighted approximation
problem. The weight may reflect concern with stability, spectra, or closed-loop
transfer functions, that is, performance. Scaling of plant inputs affects the approxi-
mation problem.

Problem 10.1-1. Suppose that C,(s) = C(s)[l + L(s)] and that C(s) is stabi-
lizing. Suggest a criterion involving L(s) that would be pertinent for controller
approximation, basing the criterion on stability issues. [Hint: Recall Section 5.3
results. ]

10.2 FREQUENCY-WEIGHTED BALANCED
TRUNCATION

In this section, we focus on the following problem. Given transfer function matrices
C(s) of order n and W(s) with all poles in Re[s] <0, find C,(s) of order r <n, with
all poles in Re [s] <O, such that

J = mfx G{[C(jw) - C,(jw)]W(jw)} (10.2-1)

is minimum. Of course, the choice of W for the controller reduction problem can be
pursued as described in the last section. Note also that there is no real loss of
generality in requiring C(s) and C,(s) to be stable—if C (s) is unstable, its unstable
part is copied into C,(s),

We shall not solve the problem in the form given. Rather, we shall give a
construction for a C,(s), in general not minimizing J, which nevertheless proves
attractive in many examples, and is partly motivated by results for the case when
W(s) =1. We shall first review this identity weighting case.

Consider (10.2-1) with W(jw) = 1 and the problem of minimizing Y. Let the
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Hankel singular values of C(s) in decreasing magnitude be UI, u2, . . . . u., and
suppose U, # U,+I (see Appendix B). Then it is possible, see [5], to prove that all
stable C,(s) of degree r satisfy

max6{[C(jti) – C,(jo)]}aur+l (10.2-2)
m

while the procedure of balanced realization truncation (reviewed below and noted
in Appendix B) leads to

max G{[C(jco) – Cr(jco)]}<2(crr+l + . . “+ u.) (10.2-3)

(this result being es~ablished in [5] and [6].) An alternative procedure of [5], called
Hankel singular value approximation, will lead to the removal of the multiplier 2 in
(10.2-3) but with a possible penalty being incurred: if C(s) is strictly proper, C,(s)
will not be. Now if u,+z, . . . , u. are much smaller than u,+ 1, from (10.2-2) and
(10.2-3) it is clear that balanced realization truncation necessarily comes close to the
optimum. By “close,” we mean that the error is effectively within a factor of 2 of
the optimum, If the optimum is a constrained one, requiring C,(s) to be strictly
proper if C (s) is, then the lower bound in (10.2-2) is conjectured to be 2u,, ~.In this
case, balanced realization truncation is likely to give something very near the
optimum if u,+2, . . . , u. are very small. Comparisons on practical examples suggest
that balanced realization has its own in-built frequency shaping which appears to
enhance more often than degrade a controller approximation. This reason and its
relative simplicity are behind our current preference for the balanced realization
approach.

The discussion so far suggests that we should seek to replace the minimization
of J in (10.2-1) by a variant on balanced realization truncation, which somehow
allows incorporation of a frequency weight. This we shall do. To assist in under-
standing this variant, we shall first recall the procedure for balanced realization
truncation.

Suppose that

c(s) = P(.$Z – F)-*G (10.2-4)
——

with {F’, G, ~} minimal. Of course, Re Ai(~) <0 since C(s) is stable. Let ~, D be
the infinite time controllability and observability gramians, satisfying

~.~+p~+cc’=() (10.2-5)
——
QF+~~+~~’=0 (10.2-6)

Then there exists a nonsingular matrix T such that in a new coordinate basis with
~ = T-iF, F = T-~~T, G = T-~~ and H’ = ~T, there holds

FE-4EF’+GC’=0 (10.2-7)
2F-t F’2+HH’=0 (10.2-8)

where

2=diag[ul, u2, . . ..crn] Ui=u,+l (10.2-9)
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with the ~ the eigenvalues of ~~; that is, the ~i are the Hankel singular values.
Most control system software design packages contain procedures for “balancing” a
linear system realization. See Problem 10.2-1 also for insight into the construction
of T.

Unweighed approximation of C(s) is easy: one simply selects the first r rows
and columns of F, and the first r rows of G and of H, to define submatrices F,, G,,
H, for which

C,(s) = HJ(sI – F,)-lG, (10.2-10)

Provided that u, > U,, ~, it turns out that Re Ai(F,)< O for all i. In case u, =
u,+ ~,there is some nonuniqueness in the construction of T and thus in {F,, G,, H,}.
The nonuniqueness can be exploited to obtain Re hi (F,) <0 for all i, but if it is not
exploited, then there is a possibility that Re hi(F, ) = Ofor some i; see [7] for a full
discussion. Let us assume here that u, # u,+ ~.Then, as proved in [6], the bound of
(10.2-3) holds.

Now let us define a procedure, frequency-weighted balanced truncation,
designed to generate a reduced order C,(s) such that COW, as a function of
w, is close to C(jco)W(jw). Thus minimization of J in (10.2-1) is not achieved. But it
is hoped that the procedure yields an acceptable C,(s) in a simple way. The idea was
first developed in [6], and extends the procedure above.

Suppose that C(s) is as in (10.2-4) and further that

W(s) = D. + HL(sI – FW)-lGW (10.2-11)

This means that

c(~)~(~) = [F Ol[sz; F i%il-’[%] (102-12)

The formula on the right is obtained by “cascading” the two given realizations of
C(s) and W(s). The state vector of the combined realization is

[1
xcy=
x. (10.2-13)

where z., x. are state vectors associated with individual realizations of C(s) and
W(s). Set up the equations defining the controllability and observability gramians
for (10.2-12). Call these matrices P, ~ and partition them:

WC k]+[f T’Y+[T”l[~’@’ ‘;]=O(102-14
[L W+Q[TTV+[%’ 0]=0 (102-”)

‘=[;; %1 Q=[%; k]
(10.2-16)

The top left corner FCCof ~ can be thought of as the weighted controllability
gramian for C(s). The top left corner of ~, viz. ~.., satisfies
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(10.2-17)

and is evidently unaffected by the weight. Obviously, it is the observability gramian
for C(s). Now we find a coordinate basis change matrix for Z,, but not for x.. Thus
x. = T-~%C,and

[1
~= T-l O

0 lY
(10.2-18)

such that in the new coordinate basis P~, = Q.c = diag [Al, Az, . . . , A.], Ai2 h,+ 1.
(The procedure explained in Problem 10.2-1 can again be used for this.) The k; are
the eigenvalue~ of PCCDC,and can be thought of as weighted singular values of C(s).
With F = T-l FT, G = T-l~, H’ = ET, the triple {F, G, H} is termed a frequency-
weighted balanced realization of C(s). A frequency-weighted degree r approximant
C,(s) of C(s) is obtained by eliminating all but the first r rows and columns of F, and
all but the first r rows of G, H. The resulting F,, G,, H, define C,(s) by (10.2-10),
and Re A;(F, ) <0 provided k, # k,+ 1. (The arguments are virtually the same as in
the unweighed case.)

We stress again that this procedure does not ensure that C,(s) minimizes the
index (10.2-1). Indeed, we do not even have available analogues for the frequency-
weighted case of the error formulas (10.2-2) and (10.2-3). We can justify the scheme
only by appealing to its simplicity and its efficacy as displayed by examples.

The procedure just described dealt with “input” weighting; that is, W(j~)
affected the controllability, not observability gramian of C, and in (10.2-1), multi-
plication of a vector by (C – C,)W implies multiplication first by W, then by C – C,.
It is easy to formulate a dual procedure allowing output weighting (see Problem
10.2-3), It is in fact possible to formulate a procedure allowing simultaneous input
and output weighting (as would be required if the index associated with closed-loop
transfer function approximation is used; see [6]. This index is described in the previ-
ous section. )

It is instructive to note the size of the matrix equation involved in weighted
balanced truncation. Suppose C(s) is of order n (and is stable) and W(s) is of order
1. Then ~ is defined by an equation of dimensions (n + f) x (n + 1). Now if W is the
weighting associated with the first (stability based) approximation procedure noted
in the previous section, then W = P (Z + CP)-] and if P has order n, one expects W
to have order f = 2n. Thus ~ is defined by a 3n X 3n equation so the search for
an order 10 approximation to an order 50 controller may involve an equation of
dimension 150 x 150, which is sizeable.

Actually, when P(s) = H’(sl–F)-*G and C(s)= K’(sl–F– GK’–K,H’)-lK,
(as in a linear quadratic design), and also Re ki(F + GK’ + K,H’) <0 for all i, then
the equation for P, the controllability gramian, can be decomposed easily into three
n x n equations (see Problem 10.2-2).

Another rather ad hoc procedure for easing the dimensionality burden in-
volves initially finding unweighed approximations of P and C for the purposes of
obtaining a lower-order weight W, which is then used with the original C, or even an
unweighed reduction of C if there is negligible “error” in this, to determine a



298 Controller Reduction Chap. 10

weighted approximation. It seems likely that as long as this lower-order W, captures
the gross characteristics of W, there will be little effect on the resulting C,.

The controller reduction scheme presented above has been applied to a num-
ber of examples, [6]. These include a controller for a plant comprising four spinning
disks. The disks are connected by a flexible rod, a motor applies torque to the third
disk, and the angular displacement of the first disk is the variable of interest. The
plant transfer function is

with

~,= 0.02 W“=l

<,= -0.4 WI = 5.65

C2 = ~, = (, = 0.02 W2= 0.765

a =4.84 W3= 1.41

W4 = 1.85

Note that the system is nonminimum phase (because ~,< O). A minimal realization
in modal coordinates is provided by

0.026-
–0.251

0.033
–0.886
–4.017

0.145
3.604
0.280.

h=

–0.996”
–0.105

0.261
0.009

–0.001

1–0.043
0.002

–0.026. J

Now the loop shape constraints imposed by performance (low-frequency con-
straint) and robustness in the face of unstructured uncertainty (high-frequency
constraint) turn out to require the loop gain to lie outside the shaded region in Fig.
10.2-1. Note that the unity gain cross-over frequency can be kept well below the
frequency associated with the nonminimum phase zeros, so they should present
little problem in securing an adequate design.

The first step is to design a state feedback law k. Note that, because the
high-frequency constraint rolls off at 40 dB/decade, while k ‘(jtil – ~-’g can roll
off at only 20 dB/decade, this state feedback law cannot result in k ‘(jcol – F)-*g
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log IF’(jro)C(jw)]
40 dB / decade

w

0,07 0.3

40 dB I decade /

Figure 10.2-1 Constraints on loop gain for disk example

satisfying the high-frequency constraint. We must rely on an additional roll-off
being provided by the estimator.

We determine the gain k by trial and error. using a state weighting matrix Q
that is diagonal. Entries of Q are adjusted, up or down as required. to give a loop
gain k‘ (jwl – F)-lg which in some way meets the constraint as far as possible; in
particular, the low-frequency constraint is met. The choice of Q is

Q = diag{2 X 10’3,2 X 10-3,8 X 10-2,8X 10-2,8x 10-3,8x 10-3,3X 10-3,3X 10-3}

while r = 1. The resulting k is

k’ = [4.47 x 10-2 6.61 x 10-1 4.14 x 10-3 3.59 x 10-1

1.03 x 10-1 –3.70 x 10-2 –4.38 X 10-2 3.38 X 10-2]’

The Nyquist plot for – k‘( jwl – F)-lg is depicted in Fig. 10.2-2. Note the avoidance
of the disk of center – 1 + jO and radius 1. The magnitude of the loop gain is plotted
in Fig. 10.2-3. As foreshadowed above, the magnitude constraint is not met at high
frequencies.

Next, an estimator gain is determined. Using a noise covariance matrix

Q = Sgg’s

where

S = diag [0.346 0.346 0.024 0.024 0.042 0.042 0.077 0.077]
A

and R = 1 results in

k: = [4.111 x 10-1 8,70 x 10-2 3.78x 10-4 –3.66 X 10-s

–8.24 x 10”-~ 8.72 x 10-3 –7.41 x 10-5 1.41 x 10-’]

The effect of S can be explained in the following way. The process noise is coupled
into modes with different intensities as changed by S. The coupling into the modes
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associated with poles at the origin is high, while the coupling associated with
high-frequency modes is much lower. As a result, there is more suppression by the
estimator of high frequencies; that is, the loop gain is effectively decreased at high
frequencies.

The loop gain when the full-order control is used is

lzJ(j@)c(j6J)l= I/z’(j(l)]-F)-’gk’(jd -F-gk’-k,h’)-’kel

and is plotted in Fig. 10.2-4. Notice that the constraints are met. For controller
reduction, we need to form the weighting function

W(jw) = P(/@)[l+ C(jw)l’(jm)]-’

The magnitude of this function is plotted in Fig. 10.2-5. Of course, large values
correspond to frequencies where more accurate controller approximation is de-
sired.

When the controller is reduced to a dimension of four, we obtain

0.0513 (jw)3 + 0.00424 (jco)2 + 0.0296(jw) + 0.00157

Cr(jw) = (jW)’ + 0.693 (jw)3 + 0.779 (jw)2 + 0.293(jw) + 0.0739

The loop gain P (jw)C,(j w) is plotted in Fig. 10.2-6, together with the con-
straints, Actually, the constraints are violated in a very minor way. The two closed-
loop transfer function magnitudes obtainable from C and C, are plotted for com-
parison in Fig. 10.2-7. The two step responses are virtually indistinguishable in a
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graphical presentation. Two other measures of comparison come
margin and phase margin:

Gain margin with C, C, = 8.94 (dB), 8.6 (dB)

Phase margin with C, C, = 37.53 (deg), 37.88 (deg)

from the gain

Main points of the section. An algorithm that is an extension of
balanced realization truncation can be used to solve in an approximate manner the
frequency-weighted minimization problem associated with controller reduction.

Problem 10.2-1. Suppose that for a minimal triple F, G, H with Re A,(~) <
——.

O, there holds ~~ + ~~ + ~~’ = O, ~~+ ~~ + HH’ = O. Perform a Cholesky
——

decomposition of ~, that is, ~ = R ‘R, with R upper triangular. Then R~R’ is posi-
tive definite symmetric. Find an orthogonal U and positive definite diagonal 2 such
that R~R’ = U22 U’. Set T = E-~12U’R. Show that if F = T~T-l, G = T~, H’ =
~’T-l, there holds ~F’+F~+GG’ =0, ~F+F’E+HH’=O.

Problem 10.2-2. Let W = P(l + CP)-’ where P = P(sZ – ~)-1~, C =——
F(sI – ~– GK’ – ~e~)-’~,, with ~+ GK’, ~+ ~,~, and ~+ GK’ + K,H’ all

—— ——— —

possessing stable eigenvalues. Show that
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Consider the Lyapunov equation for the controllability gramian of CW, viz.

where W = HL(sI – Fw)-lGW. Write the equation as

Consider the transformations ~~ ~ = T~T-’, ~+ B = T~, ~+ P = T~T’,
where

[1

I 01
T=OIO

o –z I

Show that ~ has first block row and colum~ equal to zero and that three n x n
matrix equations define the other entries of P.

Problem 10.2-3. The index associated with output weighting is .l~ =
m~x 6{[1 + P(jti)C(jO)]-lP (jO)[C(jW) – C,(jw)]}. Set W = [1 + PC]-lP =
P[l + CP]-l, and let {Fw, Gw, Hw} and {~, ~, ~ define minimal realizations of
W(s) and C(s). Describe how frequency-weighted balanced truncation can take
place.

10.3 APPROACHES TO CONTROLLER REDUCTION
VIA FRACTIONAL REPRESENTATIONS

Various other approaches to controller reduction exist, some quite distinct concep-
tually from those discussed in the last section. For example, methods of [8] attempt
to match impulse response and covariance data. In this section, we concentrate on a
method that is close in spirit to the scheme of the last two sections. The ideas are
drawn from [9–12] in the main.

The key difference is that we represent the controller transfer function matrix
in a different manner. Effectively, in the last two sections, each controller transfer
function matrix is decomposed additively into a stable part and an unstable part,
and the stable part is reduced. In this section, we represent the controller transfer
function matrix as a fraction of transfer function matrices that are themselves stable.
Then we reduce both the numerator and denominator of this fraction. The reduced
numerator and reduced denominator together define a fractional representation of
the new controller.

What are the reasons for doing this? First, the method of the past two sections
seems overly restrictive, in that the unstable part of the controller is not varied at all.
One would imagine that, even if the number of unstable poles of the controller were
maintained in a reduction procedure, preservation of their locations and residues is



Sec. 103 Approaches to Controller Reduction Via Fractional Representations 305

unlikely to be optimum. Second, the derivation of the stability based indices J,, J,’
involves use of sufficient conditions for stability. The derivation of the correspond-
ing indices in this section similarly involves sufficient conditions of stability, but
modern treatments—see, for example, [13]—suggest that the conditions used in
this section are less conservative. Third, the methods of the past two sections all
involve nonconstant weighting matrices in the various indices. In contrast, the index
derived from spectral considerations in this section involves no such weighting. Such
simplicity is appealing, but is by no means a particularly compelling reason for pre-
ferring one method over another. Fourth, no one method is universally the best
method, so it seems desirable to allow a designer the opportunity to use more than
one method.

We need to note one restriction of the methods of this section. In contrast
to the situation applying earlier in the chapter, we shall assume that the plant is
defined by

I’(s) =H’(d –F)-’G (10.3-1)

with {F, G, H} minimal, and the controller is defined by

C(s) =K’(sl –F– GK’ –K,H’)-’K, (10.3-2)

where F + GK’ and F + K,H’ both have all eigenvalues in Re [s] <O.
It is possible, as we have seen earlier, to give fractional representations of the

plant, as follows:

P(s) =H’(sI– F– GK’)-’GII+K’(sl– F– GK’)-lG]”

= B,(.s)A~l (s) (10.3-3)

P(.s)=[l +H’(sl –F– K,H’)-IK,]-’H’(sI –F– K.H’)-lG

= A~l (s)B. (s) (10.3-4)

Similarly, it is possible to write

C(s) = K’(sZ – F – GK’)-’K,[I – H’(sl – F – GK’)-lK,]-l

= Y, (S)xi’ (s) (10.3-5)

C(s) =[1 –K’(sI –F– K.H’)-lG]”*K’(sl –F– K,H’)-lK,

= xi’ (s)Y~ (s) (10.3-6)

As noted in Appendix B, (10.3-3) and (10.3-5) are termed right fractions and
(10.3-4) and (10.3-6) are left fractions. Note that each denominator and numerator
is stable, because of the eigenvalue restrictions on F + GK’ and F + K,H’.

Derivation of a noise-induced index. Consider the arrange-
ment of Fig. 10.3-1 in which the controller with transfer function matrix
K’(sI – F – GK’ – K.H’)-lK,, is depicted in a certain way. In fact, the controller is
depicted as a feedback system with an open-loop representation
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z

;+
r Plant

P(s)
—

\ Controller C(s)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Figure 10.3-1 Controller-plant interconnection exhibiting controller as a one-
input, two-output system with one output feedback.

[1[
u K’(sI – F – GK’)-’K,—
z 1– H’(sl– F– GK’)-’K, v

10.3-7)

The input to the controller is r – y, and v = z + (r – y). This way of thinking about
the controller is reflected in the fractional representation (10.3-5).

Now suppose that K, is an optimal Kalman filter gain. This means that the
signal v, which is the innovation signal as described in Chapter 7, has a white
spectrum; that is, for a positive definite R,

E[v(l)v’(s)] = R ?l(t – s) @,.(j@) = R (10.3-8)

Now if we think of the controller as being defined by (10.3-7) together with an
interconnection rule [viz., generate v by v = (r – y) + 2], the reduction problem
becomes one of finding a stable pair X~ (s), Y~(s) such that

(10.3-9)

is minimized, and such that [~j(s) xi(s)]’ has prescribed order. With A =
F + GK’, this is simply a matter of approximating

‘(s) 1 [fi~](sz –A)”-’Z@l/2 (10.3-10)

[derived from (10.3-7) wit~l weighting~ntroduced] by a lower-order strictly ~roper
transfer fu~ction matrix V(s). With ~V(s) ~ [~j(s) ~j(s)]’ there follows X~ (s) =
1 – V2(S), Y~(s) = Vi(s) and CL(S)= Y~(s)X~l (s). Note that the order of Cr(s) will
be identical with the order of V(s).

Of course, balanced realization truncation provides a very convenient tool for
obtaining ~(s) from V(s), but the resulting ~(s) will not in general minimize 1..

There are several further points to note. First, knowledge of the plant is
included, albeit implicitly, in the reduction procedure—after all, one could not form
the fractional representation (10.3-5) knowing C(s) as a transfer function, and
nothing about the plant. Thus the dictum that the plant needs to be taken into
account in the reduction process is not violated.
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Second, in contrast to the scheme of the last section, the number of unstable
poles of C,(s) may not be the same as the number of unstable poles of C(s)—these
numbers being determined by the numaber of right half-plane zeros of 1 – Vz(s) and
1 – Vz(s), respectively. (Of course, if VZand VZare close, the numbers are likely to
be the same). If the numbers are different, this does not of itself imply that C, (s) will
not be stabilizing.

Third, the replacement of C by C, will cause the signal v to lose its white
character; thus one of the premises behind the approximation becomes invalid in
the process of doing that approximation. Naturally, if C, is close to C there should
be little problem—but there is a warning implicit in the observation.

Fourth, even if v is a scalar, there is a scaling possibility open. Increase of
the weighting on u in (10.3-7) would imply a view of the designer that it is more
important to get the plant input accurately approximated than an internal feedback
in the compensator; but note that, precisely because of this feedback, inaccuracies
in z will produce inaccuracies in u, even if K‘ [s1 – (F + GK ‘)]-lK, could be approxi-
mated with zero error. The transfer function from v to u is associated with controller
zeros, and that from v to z with controller poles. So variation in scaling could be
regarded as change of emphasis on the approximation of zeros as opposed to poles.
Generally speaking, unstable poles and zeros need to be well approximated.

Example. To illustrate the idea, we use the example of the last section.
With the values of F, g, h, k and k, presented earlier, we work with the single-input,
two-output transfer function

[1VI(S)= f: [s1 – (F+ gk’)]-’k.

As a first attempt at scaling, let us approximate not Vi(s) but

V.(S) = [~k,’][sz - (F+ gk ‘)]-lke

where

m$xll – h ‘[jwl – (F+ gk’)]-’k,l

a = m~xlk’[jwl – (F+ gk’)]-lk,l

This is simply an attempt to give equal weighting after scaling to approximation of
the two signal paths within the compensator. As it turns out, ci is approximately 30.
The choice ci = 30 with balanced truncations of VSO(S)yields a third-order approxi-
mation of the eighth-order originaI as

A

[1
~30(~)= 3$ ‘ (.Sl-A)-’k,

where

‘=[-%:l “[!%] ‘e=[iiil;
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[

–0.0681 0.0627 0.0556
A= –0.1042 –0.0504 0.0490

–0.0647 –0.0888 –0.1220 1
Of course, what is more important is the controller transfer function

c,(s) =
f’(sl– A)-’k,

1 – k’(sz –A)”%e

0.0446s2 + 0.0133s + 0.00049
= S3+ 0.6630s2 + 0.2270s + 0.02482

The loop gain with the low-order controller appears in Fig. 10.3-2. Figure 10.3-3
compares the closed-loop transfer functions resulting from use of C(s) and C,(s),
while Fig. 10.3-4 compares the corresponding step responses. Gain and phase
margin comparisons are

Gain margin with C, C, = 8.94 dB, 9.32 dB

Phase margin with C, C, = 37.53 deg, 35.57 deg

Derivation of a stability-criterion-induced index. In the
first section of this chapter, we argued that one way of capturing the controller
reduction problem was to formulate a frequency-weighted transfer function matrix
approximation problem. Different weights could be advanced, depending on the
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particular aspect of closed-loop performance to which attention was most directed.
In particular, one could obtain weights induced by noise considerations, and by con-
siderations of stability. The same is, of course, true when we work with fractional
representations of controllers. Having just considered the noise-induced weight, we
turn now to consider stabilivj-induced weights.

Lying behind the construction of an associated index is a so-called Bezout
equation. In terms of the definitions in (10.3-3) through (10.3-6) of AL, BL, AR, B~,
~~, Y1,, X~, and Y~, one can write the following; see [14] and also Appendix B.

(10.3-11)

The 1-2 and 2-1 block terms yield X~Y~ = YL.X~and B~A~ = ALB~; the first is
immediate from the pair (10.3-5) and (10.3-6), and the second is immediate from
the pair (10.3-3) and (10.3-4). The identities for the 1-1 and 2-2 terms follow by
direct calculation; see Problem 10.3-1.

Now let us return to the controller as depicted in Fig. 10.3-1 and represented
by a right fraction. We shall tie together the Bezout identity and a stability
robustness result. We can redraw Fig. 10.3-1 as i! Fig. 10.3-5.

We can think of there being a new “plant” P(s) and “controller” C(s) defined
by

P(S) = [P(s) -1]= [H’(sI - F)-’G -1] (10.3-12)

C(S)=[; ’/](s1-F- GK’)-’K, (10.3-13)

Now if we t~ke the stability weighting point of view set out in Section 10.1, we
should seek C,(s) to minimize

J( = m~x ={~(jto)[l + ~(jti)~(jw)]-’[ ~(jw)- ~,(s)]} (10.3-14)

Now observe that we can easily express P, ~ in terms of AL, B~, X~, and Y~. Then

P[l + eF]-’ = [1 + PC]-’F

{
= 1 + [A~’BL -11[ -x:+ ~1}

[A~lB. -z]

{ -4:+111-’

(10.3-15)
= AL + [B. “[BL –A.]

= [BL –A, ]

r+
z

Q- [1
K’, [~1.F.G K’]- lKe b
H

* [P(s) -1 ]

—

Figure 10.3-5 Redrawing of controller-plant interconnection to allow derivation of
stability robustness index.
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(The last line follows when the Bezout identity is used.) Now with the full-order
C(s) given by

Y. (s)~(s)=[–xR(~)+z1

the reduced order ~(s) is given by

P. (s)
w)= [_j@ +~1

and

[
Y. (s) – i! (s)

C(S) – Cr(s) = –[xR(S) – XR(S)I
1

The index J; is accordingly

(10.3-16)

{ [

‘Y, (j(l))+ i~(j@)
1/ = m~x G [–ll~(jco) AL(jco)] X,(j@) _xR(j.)

1}
(10.3-17)

The parallel with the formation of the 2-2 term of the Bezout identity should be
obvious: the new controller ~, (jw)XR *(j@) should leave the 2-2 terms of the
Bezout identity as little changed from 1 as possible when ~,, fR replaces XR, YR.
This view of stability robustness is actually set out in [13], with further conceptual
and intuitive backing.

In place of the index J;, we could have worked with the index J,, but the
conceptual insight is not so attractive.

Summarizing to this point, we have argued that with plant and controller
fractional representation as in (10.3-3) through (10.3-6), robust stability arguments
suggest that we seek to approximate

[

y, (S)

1[1
_ K’

‘x,(~) + Z – ~, (sI – F – GK’)”’Ke

using a weighting (on the left), of

[-B. AL] = [-H’(SZ -F- K,H’)-’G I +H’(sZ- F- K,H’)-’K,]

A dual construction is possible. Start with the description of the controller via
(10.3-6). Figure 10.3-6 illustrates the controller depicted as a two-input, one-output
system with feedback. The associated transfer function matrix is

C(S) = K’(sZ - F – K,H’)-’[-G K,] = [X.(s) –1 Y,(s)] (10.3-18)

Define also

(10.3-19)

We can redraw the arrangement of Fig. 10.3-6 as in Fig. 10.3-7, in order to write
down an index reflecting stability robustness. With
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Y
*

—

— K’ [sI-F-KJ-I’]-l[-G KJ -

Figure 10.3-6 Representation of controller in dual fashion to Fig. 10.3-5

J, = m~x ={[~(jo) – ~r(jw)]~(jco)[l + C(jO)P(jO)]-l (10.3-20)

we can show (see Problem 10.3-2) that

P(s)[l + L(S)P(S)]-’=~j (10.3-21)

Consequently, J, can be written as

Evidently, this index looks at what happens to the 1-1 block of the Bezout identity
(10.3-11) when XL, Y. are approximated.

Of course, as in the last section, we do not necessarily seek to minimize J; in
(10.3-14) or J, in (10.3-20) exactly. Rather, we use the form of the index to set up a
frequency-weighted balanced realization and then truncate that realization. Of
course, all transfer function matrices that arise are stable. If we w:~k withAt~e ~, P
of (10.3-18) and (10.3-19), the weighted transfer function matrix CP[Z + CP]-l has
order 2n x 2n and so apparently a 2n x 2n Lyapunov matrix equation has to be
solved for the controllability gramian. However, it is not hard to check that actually,
this 2n x 2n equation is equivalent to a single n x n equation. (See Problem 10.3-3.)

Example. When we apply two procedures (using a right and left co-
prime factorization with weighting) to the example treated to this point, the results
are far more attractive with right factorization than with left. The frequency-
weighted Hankel singular values for the two cases are

r+

[1 ~
6(s) = ‘

P(s)
t(s)

—

Figure 10.3-7 Redrawing of Fig. 10.3-6.
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Right Left

1,095 x 10’ 1.936
5.295 x 10-’ 1.735
1.240 X 10-2 1,270
6.035 x 10”’ 1.180
5.887 x 10-4 9.290 X 10-’
3.298 X 10-’ 3.417X 10-’
1.231 X 10-’ 3.188x 10-’
1.073 x 10-4 9.851 X 10-’

A reduction to order two proves possible with the right factorization, while even a
reduction to order seven with the left factorization produces instability. This sort of
behavior is suggested by the weighted Hankel singular values.

Figures 10.3-8, 10.3-9, and 10.3-10 depict for a second-order controller the
loop gain, closed-loop transfer function, and step response, with the latter two
showing the full-order case for comparison.

The gain margin and phase margin with the reduced order controller are,
respectively, 10.46 dB and 37.42 deg, with the corresponding figures for the full-
order controller being 8.94 dB and 37.53 deg.

Approximating other variables. There is a straightforward
embellishment of the reduction procedure associated with (10.3-18); see also Fig.
10.3-6. Suppose that it is desired that a certain linear functional or collection of
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Figure 10.3-8 Loop gain with second-order controller



314 Controller Reduction Chap. 10

20

2nd order
0.

-20 -

iii
m Full

-40 - Order
4
3
,-
C
m -60-

2

-80-

-100 I I I 111111 I I 1111111 I I I 111111 1 I

.001 .01 .1 1

Frequency (rads/see)

Figure 10.3-9 Closed-1oop transfer function magnitude

1.6

1.4 –

1.2 -

1
-——

.8 !

.6
2nd order

.4

.2

0. I I I I I I

o 20 40 60 80 100 120 140

Time (see)

Figure 10.3-10 Step response comparison.
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linear functional of the plant, L ‘x, be little affected by the controller approxi-
mation process. Note that L ‘x may well include or be identical withy = H ‘x. Now
the controller is a combination of an estimator and a state feedback law and L ‘x can
be asymptotically recovered by drawing an additional output out of the estimator
part of the controller; see Fig. 10.3-11. This suggests that there may be value in
approximating not

K’(sI – F – K,H’)-’[–G Kc]

but

[1
:; (sZ- F - K,H’)-’[-G

When L‘ = H‘, we observe that this transfer function

[
XL(s) – z Y. (s)

–B.(s) A.(s) – 11

KC]

matrix is precisely

Apart from the –1 terms, which reappear in the approximation, this matrix is pre-
cisely one of the two product matrices in the Bezout identity. By introducing a
scaling constant a, and working with

[1
$ (s1 -F- K,H’)-’ [-G K,]

one can examine a range of situations with a = O corresponding to a stability-
oriented reduction procedure, and a >>1 corresponding to a performance-oriented
reduction procedure. Some examples of this procedure can be found in [10].

Main points of the section. Alternative procedures for controller
reduction are obtained when one works with fractional representations of control-
lers, and the controllers are obtained by combining an estimator with state estimate
feedback. Taking a viewpoint suggested by the whiteness of the innovations process
in a Kalman filter, one is led to a reduction problem without weighting. Otherwise,

*

I

—

—-

-L’x
4 – [1

K’ [S1-F-&H’]-l[-G Kel *

L’ 9

Figure 10.3-11 Introduction of further signals that should be well approximated
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taking a robust stability viewpoint leads to weights which appear in the so-called
Bezout equation. This relates fractional representations of the plant and controller.

Problem 10.3-1. Define

[

XL (s)
“(s)l=[: !l+[nsz-F-K.H’)-–B. (S) AL(s)

[B,(s) >;$)l=[: :l+[:I(SZ-F-GK)-l
AR (S)

[-G Kc]

G –K,]

Show that these two matrices are inverses of one another.

Problem 10.3.2. Suppose that P(s) = B. (s)A~’ (s) = A~* (s)B. (s) and
C(s) = Xil (s)Y~ (s) = Y~(s)X~l (s), and that the Bezout identity

[% 21B; ‘21=[: !1

holds. Suppose further that

d(s) = [x. (s) -1 Y.(s)] $(~) = [p{s) 1

Show that

[1
P[z + C+]-l = ;:

Problem 10.3-3. Suppose that

~(s) = K’(sI - F – K.H’)-*[-G K,]

1 + K’(sl – F – GK’)-lG
fi(~) = ~(S)[I + ~(s)~(s)]-’ = [H,(S1 _ F _ CK,)-lC

1

A realization of ~(s)l$(s) is provided by

[
p= F+ K,H’ K,H’– GK’

o F+GK’ 1

fi(=[K’ o]

Suppose that fl solves fi~’ + ~fi + GG’ = O. Show

[
I

an n x n Lyapunov equation. [Hint: With T = _l
so forth.]

Problem 10.3-4. Consider the left fraction

that
o

1I’

fl is obtained by solving

replace ~ by T-~FT, and

representation of the usual
compensator C(s) = [1 – K’(sl – F – K, H’)-* G]-l K’(sl – F – K, H’)-l K, =
X~l (s) Y~ (s). Suppose that K, is designed by a loop recovery process with measure-
ment noise covariance matrix = 1 and that H‘ (s1 – F’-l G is minimum phase and
nonsingular. Show that as the process noise covariance pGG’ changes with p-+ ~,
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XL (s)+ 1

l’.(s)+ –K’(sl -~-’GIH’(sl -F,-’G]”’

Notice that

[xL(j@) YL(jLIJ)]
[1$[f;] ~ –[K’(joJ – F)-lGP-’(jti)]B~ (jW)
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and show that the procedure of the previous section leads to a problem of reducing
K’(jwI – ~-lGP-l(jo) weighted by ll~(jti) also.

DIRECT DESIGN OF LOW-ORDER
CONTROLLERS

As noted earlier, it is possible to contemplate a search ab initio for a low-order
controller minimizing a quadratic performance index. In this section, we shall
introduce the reader to these ideas. We shall begin by considering a very simple
problem, that of the determination of a constant feedback gain from the output to
the input of a system; see [15].

We consider a time-invariant system

-i= Fx+Gu ~ =H’x (10.4-1)

where the control is constrained to be of the form

(10.4-2)

with performance index
m

V(x(()), U(-))= ~ (u’Ru +x’Qx) dt (10.4-3)
o

The performance index value can readily be determined provided (10.4-2) is sta-
bilizing. It is

V(x(o), u(.))= X’(0) PX(O) (10.4-4)

where

P(F + GKIH’) + (F’ + HKOG’)~ + HKORK4H’ + Q =0 (10.4-5)

In general, the KOthat minimizes (10.4-4) will depend on x (0). Clearly, we want a
single gain as the solution to an optimization problem. So, a little arbitrarily, we
adopt as the index tr (~), and seek KO to minimize tr (~). It is obvious that a
necessary condition for an optimum KO to exist is that there exist a stabilizing
feedback law for (10.4-1). (At this stage, only rather complicated algorithms not
discussed here are available for answering the existence question; see [16, 17]).

We shall now derive necessary conditions on KOto achieve optimality. Sup-
pose that in (10.4-5), KOis perturbed to (KO+ 8KO), causing a perturbation of ~ to
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(P+8F). Writing down a perturbed version of (10.4-5), subtracting from it
(10.4-5), and neglecting second-order terms yields

(?P)(F + GZW’) + (F + GK(JZ’)’(8~) + (PG + HZGR)(W))’H’

+ H(SKo)(G’~ + RK&f ’) = O

whence

/

.
tip = , exp[(F + GKAH ‘)’t]{(FG + HKOR )(8 KO)’H’ + H(8KO)(G ‘P + RKIIH’)}

x exp[(F + GKAH’)t] dt

Taking the trace, and using some of its simple properties yields

!
tr (8P)= 2 tr “ (?iKO)(G’~ + RK~H’) exp[(~ + GK~H’)t]

o

x exp [(F + GK~H’)’t]H dt

= 2 tr [(8KO)(G’~ + RK:H’)MH] (10.4-6)

where

M(F+ GK~H’)’ + (F+ GK~H’)A4 +1=0 (10.4-7)

A necessary condition for tr (~) to be minimized for all i3K0is then

H’M(~G + HKOR) = O (10.4-8)

Equations (10.4-5), (10.4-7), and (10.4-8) together implicitly define the opti-
mal control law. The number of unknowns is equal to the number of (independent)
scalar equations, but the equations are nonlinear. The structure of the solution set is
far from clear, and in particular, it is not certain whether there may be a multiplicity
of solutions. The equations must be satisfied by every local minimum or local
maximum, and so that extraction of the correct solution is by no means straight-
forward. Suggestions for solution methods are contained in [151and the predecessor
of this book, [18].

A characteristic of the solution procedures is that they require the initial
identification of a stabilizing gain; an iterative procedure is then used which
recovers a sequence of gains. If at any stage one of these gains fails to be stabilizing,
the algorithm fails, and no simple scheme of recovery is available. A procedure to
avoid much of this difficulty is due to Ly, [19]. It is based on the following
observation. The two matrices ~ and M provided K. is stabilizing are given by

1F = “ exp [(F’ + HKOG ‘)t][HKoRKLH + Q] exp [(F + GK~H’)t] dt (10.4-9)
o

M = ~ exp[(F + GKLH’)t] exp[(F’ + HKOG’)’t] dt (10.4-10)
o
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In case Ktl is not stabilizing, the upper limit of czis replaced by T for some fixed T.
The formula (10.4-6) is then used to iterate on the current value of & to reduce
trace (8F); thus a gradient search is used (which should terminate in a local min-
imum) rather than a procedure based on seeking directly a solution to the nonlinear
equation satisfied by the optimum KO.The value of T can be increased during the
successive iterations.

Clearly, a comparatively simple problem statement has created a computa-
tionally complicated set of equations to study. The situation is even more formid-
able when we consider dynamic controllers.

Optimal fixed-order dynamic compensators. We shall
outline some of the ideas of [2]; these can be regarded as significant extensions of
the theory just presented. We are given an n-dimensional stochastic system

,i=Fx+Gu+v (10.4-lla)

y=li’x+w (10.4-llb)

with E[v (t)v ‘(s)] = Q8(t – s), E[w(t)w ‘(s)] = fi~(t – s). We seek a fixed order
time-invariant dynamic compensator of order n.

ic = A&, + BCy (10.4-12a)

u = C&c (10.4-12b)

such that the closed-loop system is stable, and such that the following performance
index is minimized:

J(AC, B., Cc)= ~~ E[x’(t)Qx(t) + u’(t) l?u(t)] (10.4-13)

We shall not derive, but simply state here the equations yielding necessary
conditions on Ac, Bc, Cc, referring the reader to [2] for a derivation. Of course, the
basic idea behind the derivations is like that used for the constant output feedback
problem. To present the equations, we define the concept of a (A, (3, r) factoriza-
tion of a product of two n x n nonnegative definite matrices M and M,. Suppose the
product has rank nC.Then there exist A, r both n. x n and an n. x nc matrix @with
diagonal Jordan form and positive eigenvalues such that

MM, = A’@r rA’ = 1nC (10.4-14)

We also define the (oblique) projection operator

~ = A’r (10.4-15)

(Notice that ~’= ~, but in general, ~ # ~’). Then if (Ac, Bc, Cc) minimize J with
a stable closed-loop system, there exist n x n nonnegative definite symmetric
matrices P, P, such that

A. = r’(F – GR-lG’P – P,HR-lH’)A’ (10.4-16a)

B. = I’P,HR ‘1 (10.4-16b)
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cc = –R-@tpAt (NI.4-16c)

while P, P., M, and M. satisfy equations given below. The similarity of (10.4-16)
with the theory of full-order compensators is striking; indeed, if we had r = A = I,
and if P, P, had their earlier significance, we would exactly recover the earlier
theory.

Now let us consider the equations satisfied by P, P,, M, and M,. These are

P(F – GR-’G’P7) + (F – GR-’G’P7)’P
(10.4-17a)

+ #PGR-lG’P~ + Q = O

P.(F – 7PeHfi-’H’)’ + (F – ~P,H~-’H’)P, (10.4-17b)
+ TP.H~-lH’P,T’ + ~ = O

T[M(F – GR-lG’P)’ + (F – GR-lG’P)M + PeHfi-lH’P, ] =0 (10.4-17C)

[M,(F - PCHfi-’H’) + (F - PCHR-’H’)’MC + PGR-’G’P]~ = O (10.4-17d)

In the special case that nc = n, one can show that T =1, and P and P, can be
identified with matrices arising in the standard LQG problem.

As noted in [2], the above remarks do not address several issues, including:
(1) conditions for the existence of a stabilizing compensator of a certain order;
(2) sufficiency conditions, that is, conditions additional to the above which single
out the global minimum; (3) numerical algorithms.

As it turns out, the number of distinct solutions of equations (10.4-14),
(10.4-15), and (10.4-17) can be enormous. Methods for solving them so as to extract
the desired global minimum are being developed, using homotopy theory; see [20].
This reference suggests there can be up to n !/[(n – n,)! n. !] solutions of the equa-
tions, while with homotopy methods, there is either only one solution that is
obtained, or with a = dim (unstable subspace of F) and ~ = min (dim u, dim y)
and with n. < ~, there are (~,=%)candidate solutions, one of which yields the global
minimum.

Another hitherto unexplored possibility could involve using as a first iterate to
the solution a controller obtained by one of the schemes presented earlier in this
chapter. Assuming such methods become sufficiently well developed as to allow
their inclusion in widely used design packages, there will then be two very distinct
routes to the design of low-order controllers for high order systems. However, the
extent to which the robustness ideas associated with the return difference equations
and the techniques for Q, R selection can be carried over to the methods of this
section unknown. So even with good numerical methods for solving a given prob-
lem, performance index selection may still be a major issue.

A number of other constrained controller optimizations can be handled by
similar techniques to those above. For example, if one sought a decentralized con-
troller for a multiple-input, multiple-output system, one could evaluate the gradient
of a performance index (deterministic as for the first problem considered above, or
stochastic as in the second problem) with respect to the elements of the controller.
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Naturally, questions of solvability, and determination of a global minimum among
many extremes or local minima again arise.

Other types of controller constraints, such as bounds on magnitudes of gains,
can be handled in principle by invoking more sophisticated ideas of nonlinear opti-
mization in conjunction with the above.

Main points of the section. Sets of coupled nonlinear equations
can be found that are satisfied by the solutions of a constrained order linear
quadratic problem. Extraction of the globally minimizing solutions is a separate
difficult task,

Problem 10.4-1. Show that if H is invertible (H’ has a left inverse) in the first
problem considered in this section, the solution is essentially equivalent to the
normal regulator problem.

Problem 10.4-2. Show that if nc = n in the second problem considered in this
section, the controller obtained is that predicted by the usual LQG theory.
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11
Digital Controllers

11.1 CONTROLLER IMPLEMENTATION

To this point, we have focused almost exclusively on the problem of designing
analog controllers for analog plants. Our concern now is with the problem of
implementing these controllers in digital form.

If the controller is ultimately to be implemented in digital form, it is reason-
able to ask why a digital design, using a sampled-data representation of the plant,
might not be done ab initio. In favor of initially doing an analog design, we note that
physical insight concerning an analog plant will often be lost when a sampled-data
representation is introduced—a sparse F matrix with entries associated with physi-
cally meaningful parameters transforms into a possibly nonsparse exp (Fh) in the
sampled data matrix, in which the physical parameters are much more buried. Here
his the sampling interval. Evaluation of a design, and iterative adjustment of design
parameters such as performance index weighting matrices is made easier when
physical insight is preserved. Insight related to frequency domain notions is also
more straightforward to achieve in continuous time, due to an absence of aliasing
effects and possible distortion of frequencies in the mapping from continuous to
sampled-data descriptions—points that are discussed later. Of course, easier insight
means easier design iteration. Are there any clear-cut disadvantages of doing ana-
log design first? One is that certain design freedoms may be lost: deadbeat
responses are not obtainable by taking an analog controller and implementing it in
digital form, while direct digital design can secure such responses. Again, it maybe

323
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that multirate digital designs offer freedoms not achievable with analog designs,
while proceeding from an analog design to a multirate digital design throws up
additional difficulties, for example, in the choice of anti-aliasing filters, which are
discussed subsequently. However, experience and intuition both indicate that if it is
not possible to obtain a good design in continuous time, it will not be possible to do
so in discrete time, and vice versa. In practice, both transformation to digital form
of an analog design and direct digital design can be found.

The structure that replaces an analog compensator is shown in Fig. 11.1-1.
Key issues that need to be addressed include:

1.

2.

3.

4.

Choice of sampling rate

Role and design of the analog prefilter

The determination of the discrete-time transfer function matrix implemented
in the computer

The choice of the state-variable realization for the transfer function matrix
referred to in 3.

No digital compensation can exactly mimic an analog controller, and it is
important to understand the broad trade-off between costs in performance and
costs of implementation of the digital compensator. At the broadest level, one may
note that if the sampling rate becomes infinitely fast, and infinite precision arith-
metic is used, the digital controller will (in principle) duplicate the behavior of the
analog one. The cost incurred stems from the requirement to provide hardware to
do the calculations extremely fast (infinitely fast being out of the question). This
cost is not just proportional to the sampling frequency, but rises additionally be-
cause the higher the sampling frequency, the greater the word lengths usually
required to maintain accuracy. Of course, there are also practical (hardware cost

+
———

Anti-al iasing Linear system

~ analog AID + implemented
DIA

prefilter in computer + and hold ~

A 4 A

Clock

Figure 11.1-1 Digital implementation of a compensator
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constrained) upper limits to the word lengths within the compensator and also in the
AID and DIA converters.

Problem 11.1-1. Consider the arrangement depicted in Fig. 11.1-1 and sup-
pose that the discrete-time linear system implementation on the computer is perfect
and the A/D, D/A, and hold operations are perfect (i. e., there is no quantization
error anywhere). The system from input of the anti-aliasing analog prefilter to out-
put of the D/A converter and hold is not a linear time-invariant system. Is it non-
linear, and if so, in what special way? Is it time-varying, and if so, in what special
way?

11.2 SAMPLING TIME SELECTION

Underlying the issue of sample time selection is the Nyquist sampling theorem: Let
s(t) for t ~ (– CO,CO)be an analog signai strictly bandlirnited to frequency @N,and
suppose samples ofs (t)are obtained at a frequency of ws. Then one can reconstruct
s(t) for all t from these samples if and only if cos> 2ti~. The frequency 20~ is termed
the Nyquist frequency. For a proof and discussion, almost any book on digital filters
can be consulted; for example, [1, 2].

The theorem deals with the potential loss of information when sampling
occurs, and specifies circumstances under which no loss will occur: Ideal band-
limiting (which is only possible with infinite dimensional filters), noiseless samples
(impossible), and no bound on the time required for reconstruction (again impos-
sible). Practical utilization of the sampling theorem then demands at the least that
the sampling frequency be significantly greater than twice the maximum frequency
of interest. What does this mean for a compensator implementation? Let T, be the
rise time of a signal and h be the sampling interval, so that N, = T, /h is the number
of samples per rise time. Considering typical step responses of a first-order system
or a second-order system, we see that it appears reasonable to take IV,= 2 to 4. This
leads too, /w” = 2 to 4 for first-order systems (where WOis the 3-dB bandwidth) and
w, /coO= 6 to 12 for second-order systems (with COOthe resonant frequency, and a
damping ratio of 0.7).

Perhaps a more fundamental pointer to the required sampling time is provided
by the closed-loop bandwidth, call it wO.There is no universally agreed relationship
between o, and wO,but figures of co,/00 in the interval 4 to 20 have been suggested
[3, 4] as a basis for capturing the essential content of the sampling theorem by using
a digital compensator. Such a choice should be the starting point in the selection of
sampling frequency, but there are a number of other factors that need to be taken
into account, which might drive an initial choice upwards. Any advantages from in-
crease in sampling rate must be weighed against hardware cost increases, including
the possible need for higher-precision calculations. We now list some of the factors
that might dictate an increase in sampling frequency.
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Regulator effectiveness. Onetaskof a regulatoris to suppress
the effect of random disturbances. In a digital controller, there will be a delay in act-
ing to oppose random disturbances of, on average, one-half the sampling interval.
Consequently, the suppression will not be as effective as with the analog compen-
sator. Essentially, the compensator acts in open-loop mode between one sample
and the next.

Sensitivity to plant parameter variation. The point at issue
is the ability of a compensator to suppress the effects of plant parameter variation
away from the nominal value used for controller design. Examples exist—see [4]—
which show that the lower the sampling frequency, the greater the deleterious effect
on performance of a particular parameter variation in the plant.

Responsiveness to command changes. Often, the inter-
connection of a controller and plant will provide a unity feedback system in which
the plant output should follow externally applied reference signals. One effect of a
digital compensator is to introduce a delay between the application of the externally
applied reference and the commencement of the plant response. The delay might be
unacceptable.

Smoothness of response to command change. The D/A
converter and hold typically replaces a discrete-time signal by a piecewise constant
continuous time signal equal to the most recent discrete value. (By contrast, a
first-order hold does a linear extrapolation of the last two discrete values, and so
produces a signal with piecewise constant derivative. The zero-order hold is much
more common. ) With the plant input a piecewise constant signal, two distinct un-
wanted effects can arise. First, the response may be unacceptably jerky, despite the
obvious filtering produced by the plant itself, and perhaps its actuator. Second,
unwanted resonances, that is, lightly damped, high-frequency modes, may well be
excited, even when these are outside the closed-loop bandwidth. The solution is to
decrease the sampling interval.

Some properties of the zero-order hold and first-order hold are examined in
the problems.

Implications for closed-loop stability. We have already
noted that one of the effects of use of a digital compensator is to introduce some
time deIay. On average, this will be one-half the sampling interval. Indeed, a
transfer function model of the zero-order hold uses

~_e-sh

s
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where h is the sampling interval. Observe that for oh not large

This is another way of looking at the time delay introduction. It follows that the
phase margin has to be available to accommodate this delay. If it is not, h has to be
reduced (or a redesign must be performed).

Actually, the zero-order hold and first-order hold display amplitude variation
with coas weil as phase shift. In [3], it is noted that with a sampling frequency 20
times a driving frequency, the percentage errors in tracking a sine wave are 15 per-
cent and 5 percent, respectively, for a zero-order hold and first-order hold. This
error represents the combined effects of phase and amplitude variation.

As an alternative to increasing the sampling frequency, one approach to deal-
ing with the delay of a hold is to allow for it ahead of time; that is, the continuous-
time plant model is augmented by the inclusion of further dynamics approximating
the delay before the design of the analog controller.

Accornmodat; ng the anti-aliasing analog filter. We
shall see in t!le next section that the sampling frequency choice may in fact be
dictated by the presence of an anti-aliasing filter.

Performance index. The performance index with a sampled data
controller will take a value greater than that with a continuous-time controller; as
the sampling time becomes smaller, the error will become smaller, and the error
may influence the choice of sampling time.

Main points of the section. The sampling frequency co,should be
chosen as 4 to 20 times the system bandwidth coo.As a first step, account must also
be taken of regulator effectiveness, sensitivity to plant parameter variations, delay
and smoothness of the external response to command changes, closed-loop stability
retention in the presence of additional delay, inclusion of the anti-aliasing analog
filter, and performance index value.

Problem 11.2-1. The zero-order hold sets

f(t) = f(kh) kh=t<(k+l)h
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Suppose there is an underlying signal g(t) with g (kh) = ~(kh). Then ~(t) should
approximate g(t) in (kh, k + 1 h). Show that with the zero-order hold,

and for the first-order hold,

Problem 11.2-2. The first-order hold transfer function has the property that
if injected at time –h with n impulse u.l~(t + h) and at time O with an impulse

1Uoti(t),it produces over [0, h) the (nonimpulsive) output

t(uo – u_,)
2.40+

h

(i.e., it extrapolates from UOwith a slope defined by the last two samples). Show that
the impulse response is

g(t)= l+; ()<t<h

__(t-l)—
h

h<t<2h

=0 Zh<t

and that the associated transfer function is

K ‘(hs+l)G(s)=h[ h~
1

Show that the phase characteristic has zero slope at zero frequency (DC).

11.3 ANTI-ALIASING ANALOG PREFILTER

To understand the role of the anti-aliasing filter, a key property of the sampling
process must be understood. Let f(t)be a continuous time signal, with Fourier
transform F(jco). Let h be the sampling interval, w, the sampling frequency in
radians per second, and f(kh), k = O, t 1, t2 ,.. . the discrete samples of f(t).

Suppose that the z-transform of f(kh) is evaluated on the unit circle. Thus

F, (e~”’)= ~f(kh)e -W. (11.3-1)
—m
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Then F, (e~”k)and F(jco) are related, by the formula

F,(e)’’”) =*~F(jw + k~,) (11.3-2)
.

This is a standard result in signal processing; see, for example, [1, 2]. The sampling

theorem deals with the case when F(j@) = O for w z ~ = ~. Then the sum in

(11.3-2) contains for m <~ just one term and

(11.3-3)

Thus the discrete-time spectrum is a copy of the continuous-time spectrum.
But what happens if the sampling theorem condition is not fulfilled? Then the

discrete-time spectrum at cois a sum of values of the continuous-time spectrum at
LO+kq, k=o,tl, *2, . . . . Many frequencies before sampling map into one
frequency after sampling, in a way which would not allow their subsequent disen-
tangling, no matter what form of signal processing was used. One says that the
frequencyco is the alias of w + kco,, k = ~1, A2,. . . .

Nowsuppose the A/D converter in the digital compensator is operated with no
anti-aliasing filter ahead of it. Then the converter will map frequencies in excess of
w, /2 into frequencies less than w, /2. If w, is, say, 5–20 times the closed-Ioop system
bandwidth, is this likely to be a problem? Yes, it is. Sensor noise, which is generally
wideband, would go straight into the ND converter and be in effect amplified
through the aliasing process. Also, there may be ripples or slowly decreasing rapid
oscillations in the plant output outside the closed-loop bandwidth which are there
because the plant is excited with a piecewise constant signal. These too might be
aliased downwards.

We need to prevent aliasing of these unwanted signals, especially if aliasing
into the passband of the closed-loop system is involved, because this will have a
deleterious effect on performance. The solution, not a perfect one, of course, is to
use an anti-aliasing filter, normally a low-pass first-order, second- or higher-order
filter with transfer function q (s + cof)-l or w; (s2 + V%+s + 0~)-1, and so on.

The introduction of such filters brings another problem: an increase in phase
lag in the closed-loop. The phase lag at the frequency WOdefining the system band-
width must be such as not to use up all the phase margin of the system. How, then,
should the cut-off frequency c+ of the anti-aliasing filter be chosen, in order to
satisfy the requirements that it must have significant attenuation at w, /2, but modest
phase shift at COO?

The conservative approach is to select the multiple w,/oOsufficiently large that
there is no problem in fulfilling the two possibly conflicting objectives. The prefilter
cut-off frequency o+is chosen well above COOso that the phase shift at WOis small, and
w, is chosen as 5–10 times o+. Consequently, w, may be 20 to 100 times Wo.The
prefilter is independent of the design of the analog loop in the first instance.
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The alternative is to lower the ratio wf/@Osubstantially, and to design the
analog loop with extra phase margin to accommodate the phase lag introduced by
the analog prefilter. The ratio w, /uf can also be reduced, the cost being progressive
degradation of performance due to the aliasing of undesired signals into the system
passband.

Main points of the section. The analog anti-aliasing prefiher is
used to avoid the aliasing of undesirable signals such as sensor noise into the pass-
band. The cut-off frequency of of the filter is related to the sampling frequency co,
(to secure adequate anti-aliasing) and to the system bandwidth ~o (to avoid exces-
sive phase shift). If phase shift introduced by the filter is a problem, it can (ideally)
be avoided by taking 0,/cw sufficiently large, or by designing the analog loop to pro-
vide extra phase margin that will be absorbed by the prefilter phase lag.

ProbIern 11.3-1. Consider a prefilter with transfer function C$(s2 +
Wwfs + 0;)-’. Suppose that at the system bandwidth COO,the phase shift should be
5 deg while the attenuation at the Nyquist frequency w, /2 should be 20 dB. Express
o+and w, in terms of oxj.

11.4 THE DISCRETE-TIME TRANSFER FUNCTION

Suppose that the sampling rate and anti-aliasing filter have been determined. We
now consider the case of proceeding from the continuous-time transfer function
C(s) to a discrete-time D(z), to be implemented on the digital computer, so that the
cascade of A/D converter, D(z) and the D/A converter and hold behaves like C(s).

We begin the discussion assuming the compensator is strictly proper. Suppose
that

C(s) = H’(sZ – F)-’G (11.4-1)

with {F, G, H} a minimal triple. The variables e and u are chosen to designate the
compensator input and output, since often the input will be an error between a
reference signal and the plant output, while the compensator output will serve as
the plant input. Then to approximate the equations

i= Fx+Ge (11.4-2a)

~ =H’x (11.4-2b)

we can use

x (k + lh) = exp (Fh)x (kh) + [~”exp (Fs) ds] Ge (kh) (11.4-3a)
o

u (k/z)= H ‘X(kh) (11.4-3b)
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This is the most straightforward approach. Other approaches are discussed subse-
quently. Associated with (11.4-3) is the transfer function

D(z) = H’(zZ –A)-lB (11.4-4)

where

A = exp (Hz)
[ 1

B = ~hexp (Fs) ds G (11.4-5)
o

Each eigenvalue of F in Re [s] <O, Re [s] = O and Re [s] >0 corresponds to an
eigenvalue of A in Iz I <1, Iz I = 1, or Iz I >1. In fact, ifs, is an eigenvalue of F
or a pole of C(s), the corresponding eigenvalue of A or poles of D(z), call it z,, is
given by zi = exp (s,h). Observe that Re si <0 @ Iz, I <1. Hence if the poles of C(s)
are stable, so are the poles of D(z) = H‘ (zZ – A)-lB. When h is small, the finite
zeros s, of C(s) map into zeros zi of D(z) with zi = es’h. (An exact formula is not
available. ) Hence left half-plane zeros map into the interior of the unit circle.

In general, though, we must also deal with the infinite zeros of C(s). For scalar
C(s), the number of such zeros is the difference between the denominator degree
and the numerator degree. When C(s) has one infinite zero, so does D(z). When
C(s) has two, D (z) has one infinite zero at infinity, and one zero inside the unit
circle which approaches – 1 as h ~ O. When C(s) has more than two zeros ats = m,
D(z) necessarily has for small h one or more zeros outside Iz I = 1, [3]. Note that
such zeros are nonminimum phase.

At least three other approaches to the discretization of (11.4-2) have been
proposed. These are, in contrast to (11.4-3), not exact when e (kh) is piecewise con-
stant. But of course, e(t) will rarely if ever be piecewise constant, and so (11.4-3) is
also an approximation. The first two of these other approximations use a forward
difference or a backward difference; that is, i (t) k replaced by

i(t)= ; [x(/t + l)h – x(kh)] (11.4-6)

and

~(c) ‘~[x(kh)–x(k –lb)] (11.4-7)

with, in each case, the rest of (11.4-2) being evaluated at t = kh. This is equivalent
to using transformations in the frequency domain; for the forward difference, this is

S=z–lz=l+sh —
h

so that

D(z) = c [+] C(S)= D(l +sh)

(11.4-8)

(11.4-9)
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For the backward difference

1 ~=l–z-l
‘=l–sh h

with

D(Z) = c [~] C(S)= D [+

The forward difference maps Re s <0 into Re z <1 and conversely.

Chap, 11

(11.4-10)

(11.4-11)

This seems

unattractive—but if the sampling rate is high enough, a stable pole will map into
Iz I <1, in fact map into a point close to z =1.

The third alternative approach rests on a trapezoidal integration formula,
rather than a forward or backward difference. As such, it lies between the former
two approaches. The frequency domain transformation is

1 +sh12 s=~z–l
‘=1–sh12 hz+l

(11.4-12)

This bilinear transformation certainly maps Re [s]< O onto Iz I <1. However, if
C(joxj) = O, it does not follow that D (exp jcooh) = O. Rather, D (exp j7@) = O

where Go= Z tan
h

‘1$. Thus there is some frequency domain warping. It is possible

to eliminate warping at one frequency, WIsay, by using

(01 z–1
s ‘tancolh/2 z + 1

(11.4-13)

This ensures that C( jcol) = Oimplies D (exp jolh) = O. However, distortion remains
at other frequencies. These ideas are all discussed in [3, 4].

Allowing for computation time. Implicit in our discussion to
this point has been the assumption that the calculation of x (k + 1 h) for x (k/z) and
e (kh) can be completed before time (k + l)h, in order that the correct value of
u (k + 1 h) can be generated and applied beginning at time (k + l)h. This assump-
tion will be valid if we match hardware capability to the requirement, and this is in
principle possible. But the situation changes as soon as we allow C(s) to be nonzero
ats= co:

C(s) =H’(sl–~-’G +1 (11.4-14)

Equation (11.4-2a) is unaltered, as is (11.4-3a). On the other hand, we have

u= H’x+Je (11.4-15)

and

u (kh) = H ‘x (kh) + Je (M) (11.4-16)
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Equation (11 .4-16) apparently demands that u (kh) be available instantaneously
with the sample e (kh). If the computation time is very small, the assumption im-
plicit in (11.4-16) may be harmless. But otherwise, there is here another source of
time delay in the system, and possible problems of synchronization. There is, how-
ever, a way out. Suppose that 8 is the computation time, always assumed less than
h. Then we aim to produce a sequence u (kh + S), instead of u(W) and introduce
clock skew to the output D/A converter. Of course, the sequence u (kh + 8) must
be produced with information available at time kh. Now with e(t) constant over
[kh, kh + 8], the basic state differential equation implies

1
x(kh + 8) = exp (F%)x (kh) + [~aexp (Fs) ds Ge(kh)

o

This means that from (11.4-15) that

u(kh +8)= H’x(kh +ti)+.le(kh)

= H’ exp(F8)x(kh) + [H’~a exp(Fs) dsG + .l]e(kh) (11.4-17)

= ~x(kh) + ~e (kh)
—.

for some new pair H, 1 defined in an obvious way.

Main points of the section. There are several approaches to
forming discrete-time linear equations from continuous-time equations. No one
procedure appears to be uniformly preferable. It is possible to make allowance for
computation time by introducing clock skew into the D/A converter at the
compensator’s output.

Problem 11.4-1. When h is very small, approximations of A = exp Fh and
B = [J$ exp (Fs) ds]G are provided by 1 + Fh and hG. Also, 1 + ~ih is an approxi-
mation of exp (~ih). Show that the finite zeros of C(s) = H‘ (s1 – ~-lG map into
zero zi of D(z) = H’(zZ —A)-]l? via zi =eSfh when h is small, by using the above
approximation.

Problem 11.4-2. Suppose that

l)(z)=++
1

and C, = H‘ (s1 – ~-lG. Show that a state variable realization for D(z) is provided
by

D(z) =~H’[l-~]-’G +hH’[l-$]-’[z[l [f]fl-l

x [’+YI)-’[’-51G
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Problem 11.4-3. Find the discrete time equations corresponding to applica-
tion of the forwards and backwards integration rules to i = Fx + Gu.

11.5 STATE-VARIABLE IMPLEMENTATION OF THE
DISCRETE-TIME TRANSFER FUNCTION

Were it practical to do all calculations in the digital computer with infinite precision
arithmetic, and to use infinitely long words in the A/D and D/A converters, the
question would not arise of how one should implement the discrete-time transfer
function. In practice, there are at least two issues that must be addressed—what
word lengths and state-variable realizations should be used?

Word length requirements are linked to quantization errors, and quantization
errors occur for one of several reasons:

1. The A/D converters replace an analog signal by a digital signal with finite
word length.

2. Coefficients in the linear discrete system are quantized.

3. Arithmetic operations in the computer can lead to small quantization errors
(due to round-off or truncation) or large errors, due to overflow. (Designs
ought to be made which always avoid overflow. )

Quantization errors can also cause limit cycles.
Many of these issues are addressed in treatments of digital filtering; see, for

example, [5–8]. These treatments also explain that the particular state-variable
realization employed can make a great difference in the word length required to
secure a given amount of accuracy in the compensator’s output. Canonical form
realizations tied to companion matrices are particularly to be avoided. On the other
hand, particularly for high-order systems, a relatively sparse set of matrices in the
state-variable equations is desirable, in order not to overload the processor with too
many arithmetic operations per clock cycle. These considerations have led to the
conclusion that generally, a scalar transfer function should be realized as a cascade
or parallel connection (or mixture) of second-order sections, together with a first-
order section if required. The determination of scaling issues, and word lengths to
secure a prescribed level of quantization error, and the avoidance of limit cycles
under zero input conditions all become relatively straightforward.

It is, however, not straightforward to ensure avoidance of limit cycles under
nonzero inputs, and there seems little alternative to testing in the presence of non-
zero inputs a design that is free of limit cycles under zero inputs.

Because of the general desirability of minimizing the computation time, which
absolutely must be less than the sampling interval, attention can also be given to
structures that allow parallel computation. Many of these issues are discussed in [5].

Much less is known about the realizations of matrix transfer functions. Also,
should the open-loop compensator be unstable, a possibility in a control problem,
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digital filtering concepts may be less relevant, since some digital filtering results
presuppose a stable open-loop system. Scaling is, however, easy to address-one
simply uses the closed loop, assumed stable, as the basis for scaling.

It is fair to say that all these ideas are in a current state of development, and it
will be some time before the key concepts will be presentable in a matured form.

Main points of the section. The best practical realizations are
those based on cascading and/or paralleling second-order sections, which are opti-
mized for scaling and round-off error,
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—A A

Brief Review
of Some Results
of Matrix Theory

The purpose of this appendix is to provide a rapid statement of those particular
results of matrix theory used in this ‘book. For more extensive treatments standard
textbooks—for example, [1–3]—should be consulted. Increasingly, there have be-
come available specialized software packages dealing with linear algebra manipu-
lations, and familiarity with one or more of these packages is also desirable.

1. Matrices and vectors. An m x n matrix A consists of a collec-
tion of mn quantities Uij(l’ = 1, 2,..., m; j = 1, 2,..., n) written in an array of m
rows and n columns:

A=

all alz . . . al.
a21 a22 . . . a2n
. .
. .
. .

Z~l a~2 . . . am.

Sometimes, one simply writes

A = (aij)

The quantity aij is an entry (the (i-j)th entry, in fact) of A.

tThe a,, will be assumed real in most of our discussions.

336
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An m vector, or, more fully, a column m Vector, k a matrix with 1 column and
m rows; thus,

11

xl
X2

~= “

Xm

defines x as column m vector, whose ith entry is the quantity x,. A row n vector is a
matrix with 1 row and n columns.

2. Addition, subtraction, and multiplication by a
scalar. Two matrices A and B with the same number of rows and also the same
number of columns maybe added, subtracted, or individually multiplied by a scalar.
With kl, kz, scalar, the matrix

C = klA + k2B

is defined by

Ci,= kla;, + k2bil

Thus, to add two matrices, one simply adds corresponding entries; to subtract two
matrices, one simply subtracts corresponding entries, and so forth. Of course,
addition is commutative—that is,

A+ B=B+A

3. Multiplication of matrices. Consider two matrices A and B,
with A an m x p matrix and B a p x n matrix. Thus, the number of columns of A
equals the number of rows of B. The product AB is an m X n matrix defined by

C=AB

with
P

cij = z Ulkbkj
k=l

Notice that C has the same number of rows as A, and the same number of columns
as B.

The product of three (or more) matrices can be defined by

D = ABC= (AB)C = A (BC)

In other words, multiplication is associative. However, multiplication is not commu-
tative—that is, it is not in general true that

AB = BA
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In fact, although AB can be formed, the product BA may not be capable of being
formed.

For any integer p, the p x p matrix

[

10 ...0
01 0

II=””” . .
. .

00 ...1

possessing p rows and columns is termed the identity matrix of order p. It has the
property that with A any m x p matrix,

AZ=A

Likewise, the identity matrix of order m has the property that

IA=A

Any matrix consisting entirely of entries that are zero is termed the zero matrix. Its
product with any matrix produces the zero matrix, whereas if it is added to any
matrix, it leaves that matrix unaltered.

Suppose A and B are both n x n matrices (A and B are then termed square
matrices). Then AB is square. It can be proved then that

lAB/ = 1AIIBI

where 1AI is the determinant of A.
[The definition of the determinant of a square matrix is standard. One way of

recursively defining 1AI for A an n x n matrix is to expand A by its first row; thus

azl a23 a24 . . . az.
a22 . . . a2.

a31 a33 a34 . . . a3.

1AI= all . . - a12 ;

a.z . . . a~~
a. 1 a.3 a.4 . . . am.

a21 a22 a24 . . . a2.
a31 a32 a34 . . . a3n

+ a13 . —.. .

a. 1 a~z a~4 . . . a..

This expresses 1AI in terms of determinants of (n – 1) x (n – 1) matrices. In turn,
these determinants may be expressed by using determinants of (n – 2) x (n – 2)
matrices, and so on. ]
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4. Direct sum of two matrices. Let A be an n x n matrix and
B an m x m matrix. The direct sum of A and B, written A ~ B, is the (n + m) x
(n + m) matrix

[1
AO
OB

5. Transposition. Suppose A is an m X n matrix. The transpose of
A, written A‘, is an n x m matrix defined by

B=A’

where

bij = a,,

It is easy to establish the important result

(AB)’=B’A’

which extends to

(ABC)’ = C’B’A ‘

and so on. Also, trivially, one has

(A+ B) ’= A’+B’

6. Singularity and nonsingularity. Suppose A is an n x n
matrix. Then A is said to be singular if IA I is zero. Otherwise, A is termed non-
singular.

7. Rank of a matrix. Let A be an m x n matrix. The rank of A is a
positive integer q such that some q x q submatrix of A, formed by deleting (m – q)
rows and (n – q) columns, is nonsingular, whereas no (q + 1) x (q + 1)submatrix is
nonsingular.

The rank of A is also the maximum number of linearly independent rows of A
and the maximum number of linearly independent columns of A.

It can be shown that

rank (AB)s min[rank A, rank B]

If rank A is equal to the number of columns or the number of rows of A, A is
often said to have full rank. If A is n x n, the statement rank A = n is equivalent to
the statement A is nonsingular. If, for an arbitrary matrix A, rank A = O, then A is
the zero matrix.

8. Range space and null space of a matrix. Let A be an
m x n matrix. The range space of A, written 92[A ], is the set of all vectors Ax,
where x ranges over the set of all n vectors. The range space has dimension equal to
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the rank of A—that is, the maximal number of linearly independent vectors in 91[A ]
is rank A. The null space of A, written N[A ], is the set of vectors y for which Ay = O.

An easily proved property is that 9’t[A’] and N[A ] are orthogonal—that is, if
yl = A ‘x for some x, and if y~ is such that AY*= O, then Y;Y2= O.

9. Inverses and pseudoinverses. Let A be a square matrix.
If, but only if, A is nonsingular, there exists a unique matrix, call it B, termed the
inverse of A, with the properties

BA=AB=I

The inverse of A is generally written A‘1. There are many computational proce-
dures for passing from a prescribed A to its inverse A ‘1. A formula is, in fact,
available for the entries of B = A ‘1, obtainable as follows.

Define the cofactor of the i – j entry of A as (– I)i ‘j times the determinant of
the matrix obtained by deleting from A the ith row and jth column, that is, the row
and column containing a,,. Then

b“=* xcofactor‘f‘“
It easily follows that

(A-l), = (A,)-,

If Al and Az are two n x n nonsingular matrices, it can be shown that

(AIA,)-’ = AjlAil

When A is singular, one can define a unique object A‘, the Moore-Penrose
pseudoinverse of A, such that A #A acts as the identity matrix on as large a set of
vectors as practical [viz, R (A’)]. The following provide the definition.

A#Ax=x Vx ●91!(A‘)

A#~=o Vx ●N(A ‘)

(Should Abe nonsingular, then A # = A “).
There are many key properties, for example, (Ax – y) ‘(Ax – y) for fixed y is

minimized with respect to x by x = A #y; if A is scalar and nonzero, then A # = A‘1,
otherwise A # = O; if A is diagonal, A# = diag k:; if A = T’AT with T nonsingular
and A diagonal, A* = T-lA#(T’)-l, and

(A #)# = A A#AA#=A# AA#A =A

10. Powers of a square matrix. For positive m, A” for a square
matrix A is defined as AA . . . A, there being m terms in the product. For negative
m, let m = –n, where n is positive; then A m= (A ‘l)”. It follows that APA’ = AP+9
for any integers p and q, positive or negative, and likewise that (AP)q = Apq.

A polynomial in A is a matrix p (A) = z. ~aiA i where the a, are scalars. Any
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two polynomials in the same matrix commute—that is, p (A)q (A) = q (A)p (A),
where p and q are polynomials. It follows that p (A)q ‘I(A) = q ‘l(A)p (A), and that
such rational functions of A also commute.

11. Exponential of a square matrix. Let A be a square ma-
trix. Then it can be shown that the series

l+ A+~A2+~A3+oo”

converges, in the sense that the i-j entry of the partial sums of the series converges
for all i and j. The sum is defined as eA. It follows that

eA’=l+At+~A2t2+ . . .

Other properties are: p (A)eA’ = “e P(A) for any polynomial A, and e ‘A’= [eA’]-’.

12. Differentiation and integration. Suppose A is a function
of a scalar variable t, in the sense that each entry of A is a function oft. Then

dA alai,
()x=x

It follows that

dB
$AB)=~B+A~

Also, from the definition of eA’,one has

The integral of a matrix is defined in a straightforward way as

ht=(kf’)
Suppose @is a scalar function of a vector x. Then

4+=
d-x

avector whose ith entry is+

Suppose @is a scalar function of a matrix A. Then,

Q= 3
dA

a matrix whose i-j entry N ~a,,
1)

Suppose z is a vector function of a vector x. Then,

dz azi

z
= a matrix whose i-j entry is —axj
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13. Eigenvalues and eigenvectors of a square matrix.
Let A be an n x n matrix. Construct the polynomial Isl – A 1. This is termed the
characteristic polynomial of A; the zeros of this polynomial are the eigenvalues of A.
If Aiis an eigenvalue of A, there always exists at least one vector x satisfying the
equation

Ax = A;X

The vector x is termed an eigenvector of the matrix A. If k, is not a repeated eigen-
value—that is, if it is a simple zero of the characteristic polynomial, to within a
scalar multiple x is unique. If not, there may be more than one eigenvector associ-
ated with k,. If hi is real, the entries of x are real, whereas if Aiis complex, the entries
of x are complex.

If A has zero entries everywhere off the main diagonal—that is, if a,, = Ofor all

i, jl with i #j> then A is termed diagonal. (~ote: Zero entries are still permitted on
the main diagonal.) It follows trivially from the definition of an eigenvalue that the
diagonal entries of the diagonal A are precisely the eigenvalues of A.

It is also true that for a general A,

IAl=fik,
icl

If A is singular, A possesses at least one zero eigenvalue.
The eigenvalues of a rational function r (A) of A are the numbers r (Ai), where

hi are the eigenvalues of A. The eigenvalues of e~’ are e ‘I’.

14. Trace of a square matrix A. Let A be n x n. Then the trace
of A, written tr [A], is defined as

n

tr[A]=zaii
i=l

An important property is that

tr[A]=~Ai
i=l

where the hi are eigenvalues of A. Other properties are

tr[A+B] =tr[B+A] =tr[A]+tr[B]

and, assuming the multiplications can be performed to yield square product
matrices

tr[AB] = tr[B’A’] = tr[BA] = tr[A ‘B’]
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15. Orthogonal, symmetric, skew-symmetric, unitary,
hermitian and skew-hermitian matrices, and their eigen-
value properties. If a square A is such that AA’ = Z, and thus A ‘A = I, A
is termed orthogonal, The eigenvalues of A then have a magnitude of unity. If
A = A‘, A is termed symmetric, and the eigenvalues of A are all real. Moreover, if
xl is an eigenvector associated with Al, X2with Az,and if Al# Az,then X1X2= O. The
vectors xl and X2are termed orthogonal. (Note: Distinguish between an orthogonal
matrix and an orthogonal pair of vectors. ) If A = –A’, A is termed skew or skew
symmetric, and the eigenvalues of A are pure imaginary.

The corresponding properties for complex matrices are important. Let a su-
perscript asterisk denote complex conjugate transpose. A square U with U*U = Z
(and thus UU* = Z) is termed unitary, and all eigenvalues have magnitude unity. If
U = U*, U is termed hermitian, and all eigenvalues are real. Moreover, if x, and X2
are eigenvectors associated with differing eigenvalues kl and Az, then X?xz= O. If
U = – U*, U is skew hermitian, and all eigenvalues are pure imaginary.

16. The Cayley-Hamilton theorem. Let A be a square ma-
trix, and let Is1 –Al =S”+CY1Sn-l+ . . . +an; then,

From the Cayley-Hamilton theorem, if follows that A m for any m a n and eA
are expressible as a linear combination of 1, A, . . . . A n-‘.

17. Similar matrices and diagonalizability. Let A and 1?
be n x n matrices. If there exists a nonsingular n x n matrix Tsuch that B = T-*AT,
the matrices A and B are termed similar. Similarity is an equivalence relation. Thus:

1. A is similar to A.

2. If A is similar to B, then B is similar to A.

3. If A is similar to B and B is similar to C, then A is similar to C.

Similar matrices have the same eigenvalues. This maybe verified by observing
that

sl _B = T-lslT– T-lAT= T-I(sZ –A)T

Therefore,

IS1-BI= IT-’IISZ-A IITI=ISZ -A IIT-lI]TI

But T-l T = Z so that IT-lll TI = 1. The result is then immediate.
If, for a given A, a matrix T can be formed such that
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is diagonal, then A is termed diagonalizabie, the diagonal entries of A are eigen-
values of A, and the columns of T turn out to be eigenvalues of A. Even when A is
real, T may be necessarily complex.

Not all square matrices are diagonalizable, but matrices that have no repeated
eigenvalues are diagonalizable, as are orthogonal, symmetric, and skew-symmetric
matrices, and unitary, hermitian, and skew-hermitian matrices.

In fact, when A is real symmetric, it can be diagonalized by a real orthogonal
matrix, and when it is unitary, hermitian, or skew-hermitian, it can be diagonalized
by a unitary matrix. When it is orthogonal or skew symmetric, a real orthogonal
matrix can be found that will almost diagonalize A, in fact T-lAT = T’AT becomes
a direct sum of 2 x 2 matrices of the form

[
COSOi
sin Oi ‘~1~~1 ‘r [N@ 81

respectively, together with possibly 1 and –1 for orthogonal A.

18. Jordan form. Not all square matrices are diagonalizable. But it
is always possible to get very close to diagonal matrix via a similarity transformation.
In fact, there always exists a matrix T such that

Al 1
Al

h,
AZ 1

AZ
T-lAT = A3 1

A3 1
AJ

or something similar. Here, all blank entries are zero, the eigenvalues of A occur on
the main diagonal, and there may or may not be entries of 1 above and to the right of
repeated eigenvalues—that is, on the superdiagonal. For any A, the distribution of
1s and 0s on the superdiagonal is fixed, but different A yield different distributions.
The preceding almost-diagonal matrix is called the Jordan canonical form of A. The
Jordan blocks of A are the matrices

If A is real and also the matrix T is restricted to being real, one can obtain a
“real” Jordan form. Eigenvalues necessarily occur in complex conjugate pairs
~i t j ~i, and instead of there being, say, two 1 x 1 Jordan blocks [a; + j pi] and
[al – jpi], these are replaced in the real Jordan form by a real 2 x 2block
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The idea extends to multiple eigenvalues.

19. Schur form. With A an arbitrary real matrix, there exists a uni-
tary U such that U*A U is upper triangular. The eigenvalues of A necessarily appear
on the diagonal, but with arbitrary ordering. Thus although one talks of “the Schur
form” in relation to U *A U, it is not unique. When A is real, and U is restricted to
being real orthogonal, one can find U so that U ‘AU is block upper triangular, with
the diagonal blocks being either 1 x 1, or 2 x 2 of the form

20. Positive and nonnegative definite matrices.
Suppose A is n x n and real and symmetric. Then A is termed positive definite, if
for all nonzero real vectors x the scalar quantity x ‘Ax is positive. Also, A is termed
nonnegative definite if .x‘Ax is simply nonnegative for all nonzero x. Negative
definite and nonpositive definite are defined similarly. The quantity x ‘Ax is termed
a quadratic form, because when written as

n

x ‘Ax = ~ a,,xix,
i,j=1

it is quadratic in the entries xi of x.
There are simple tests for positive and nonnegative definiteness. For A to be

positive definite, all leading minors must be positive—that is,

all alz a13
all

all >0 ’12>0 alz
alz

azz a23 >0 etc.
azz

a13 a23 a33

For A to be nonnegative definite, all minors whose diagonal entries are diagonal
entries of A must be nonnegative. That is, for a 3 x 3 matrix A,

all alz all a13 azz a23
all, azz, a33Z O 20

alz azz ‘ a13 a33‘ a23 a33

all alz a13
alz azz a23 20
a13 a23 a33

A symmetric A is positive definite if and only if its eigenvalues are positive,
and nonnegative definite if and only if its eigenvalues are nonnegative.

If D is an n x m matrix, then A = DD’ is nonnegative definite, and positive
definite if and only if D has rank n. An easy way to see this is to define a vector y
by y = D ‘x. Then x ‘Ax = xDD ‘x = y ‘y = X yl a O. The inequality becomes an
equality if and only if y = Oor D ‘x = O, which is impossible for nonzero x if D has
rank n.
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If A and B are nonnegative definite, so is A + B, and if one is positive definite,
so is A + B. If A is nonnegative definite and n x n, and B is m x n, then BAB’ is
nonnegative definite.

If A is a symmetric matrix and A~,, is the maximum eigenvalue of A, then
k~.~1 – A is nonnegative definite.

If A is nonnegative definite, there exists a matrix B that is a symmetric square
root of A; it is also nonnegative definite. It has the property that

1’2 If A is positive definite, so is A 1’2,and A 1’2is thenand is often denoted by A .
unique.

Given a positive definite symmetric A, it is easy to construct a lower triangular
B with positive diagonal entries such that

BB’=A

(The nonzero entries of B can be determined successively, beginning with the first
row, then the second, third, and so forth working from the first entry through to the
diagonal entry in each row). This construction is termed a Cholesky decomposition
and B is termed a Cholesky factor. One can also demand that

BE B’=A

where 2 is diagonal positive definite, and B is lower triangular with 1’s on the
diagonal.

Virtually all the above notions remain valid with but minor change for positive
definite hermitian matrices.

21. Singular value decomposition. Let A be a real or com-
plex n x n matrix. The eigenvalues of A *A are all real and nonnegative, and
positive if A is nonsingular. The square roots A*’2(A*A) are termed the singular
values of A. There exist unitary matrices U, V such that

UAV = diag [h}’z(A *A)]

and if unitary U, V yield UAV to be a diagonal nonnegative definite matrix, the
diagonal entries are necessarily the singular values of A.

22. Norms of vectors and matrices. The norm of a vector x,
written 11x11,is a measure of the size or length of x. There is no unique definition, but
the following postulates must be satisfied.

1. 11xII20 for all x with equality if and only if x = O.

2. IIaxII= la 111xIIfor any scalar a and for all x.

3 IIx +Y/I ~ IlxIl+ Ily]lfor allx andy.
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Ifx=(xl, xz, ..., ‘.)> ‘hree common norms are

11X11= [i x:]“2, 11x11= m~ l~il and 11xII= ,~1Ixil
,G1

the first being the Euclidean norm.
When the Euclidean norm is used, the Schwartz inequality states that

lx‘y Is (lxIIIlyII for arbitrary x and y; with equality if and only if x = ky for some
scalar k.

The norm of an m x n matrix A is defined in terms of an associated vector
norm by

The particular vector norm used must be settled to fix the matrix norm. Corre-
sponding to the three vector norms listed, the matrix norms become, respectively,
[h~,x(A ‘A)]’”, m?x (x~. IIa,jl) and max (X;. ~laijl). Note that [Ama(A‘A)]”2 is the
largest singular value of A. Importan{ properties of matrix norms are

IIAx IIs 11A1111xII, [IA + Bll s IIAII + IIBII

and

IIABII= 11AIIIIB]I

23. Kronecker Product and Vet.
matrices. The mp x nr matrix C, defined as

1

alll? . . . alnB
a21B . . . a2.B

h
~=“

a~lB . . . a~nB

Let A, Bbemxnandpxr

and written C = A @ B is termed the Kronecker product of A and B. In case A and
B are square, the set of eigenvalues of C is given by Ai(A) kj(B) for all i, j. The
Kronecker product is associative, (A @B) (C@ D) = AC @ BD, and (A @ B)’=
A’ @B’.

Let A be an m X n matrix. The column mn -vector, obtained by stacking
column 2 of A after column 1, column 3 after column 2, and so forth, is termed
vec A.

If M, N are matrices for which the product MN can be formed, then

vec(MN) = [1 @M]vec N

=[N’@l]vec M
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24. Linear matrix equations. If A, B, and Care known matrices,
of dimension n x n, m x m, and n x m, respectively, we can form the following
equation for an unknown n x m matrix X

AX+ XB+C=O

This equation is merely a condensed way of writing a set of mn simultaneous
equations for the entries of X. It is solvable to yield a unique X if and only if
hi(A) + k,(B) # O for any i and j—that is, the sum of any eigenvalue of A and any
eigenvalue of B is nonzero.

The vec operation yields

[Z@ A+ B’@Z]vecX=-vec C

and it can be shown that the eigenvalues of [1 @A + B‘ @1] are precisely the
collection ki(A) + A,(B).

If C is positive definite and A = B‘, the lemma of Lyapunov states that X is
positive definite symmetric if and only if all eigenvalues of B have negative real
parts.

The equation

X–Ax B=C

is equivalent to

[l– B’@A]vecX=vec C

and has a unique solution if and only if Ai(A) Aj(B) # 1 for any i, j. If B = A‘ and
lki(A)l <1 for all i, the equation has a solution for all C which is symmetric if C is
symmetric, and positive definite if C = DD’ with [A, D] completely controllable.

25. Strengthened version of Lemma of Lyapunov.
The Lemma of Lyapunov states that for positive definite C, there exists a unique
positive definite P such that PA + A ‘P + C = Oif and only if Re hi(A) <0. The first
strengthening states that if [A, D] is completely observable, there exists a unique
positive definite P such that PA + A ‘P = –DD’ if and only if Re k,(A)< O. The
second strengthening states that if [A, D] is completely detectable, there exists a
unique nonnegative P such that PA + A ‘P = – DD’ if and only if Re Ai(A)< O. In
all cases where P exists,

26. Matrix inversion lemma and block matrix inver-
sion. Suppose that A and C are nonsingular matrices (not necessarily of the
same dimension), and B, D are such that A + BCD can be formed and is non-
singular. Then

(A + BCD)-’ =A-l -A-’B(DA-’B + C-’) -’DA-’
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with DA ‘lB + C-‘ guaranteed to be nonsingular.
As a special case, we have that if F is n x n, G and K are n x m, then

[1 -K’(sI -~-lG]”’=l +K’(sl -F- GK’)-’G

Suppose that the following matrix is invertible:

[1
~=AB

CD

Suppose further that A -1, D” exist. Then

~-l =
[

(A - BD-lC)-l -(A - BD-lC)-lBD
–D-lC(A –BD-’C)” (D - CA-lB)-’

and

(A - BD-’C)-’B1-l =A-lB(D - CA-IB)-I

1

1

27. Common differential equations involving matrices.
The equation

: x (t)= A (t)x (t) x (to) = x~

commonly occurs in system theory. Here, A is n X n, and x is an n vector. If A is
constant, the solution is

x(f) = exp [A (f – to)Jro

If A is not constant, the solution is expressible in terms of the solution of

dX(t)
— = A (t)X(t)

dt
X(t,) = I

where now X is an n x n matrix. The solution of this equation cannot normally be
computed analytically, but is denoted by the transition matrix @(t, to), which has the
properties

@(to,to) = I @(t2,tJ@(t~,to)= @(t*,to)

and

@(t,to)qto,t)= 1

The vector differential equation has solution

x (t)= @(t, to)xo

The solution of

dx (t)
— = A (t)X (t) + B (l)u (t)

dt
X(tl)) = Xo
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where u(t) is a forcing term is

!
r

x (f) = @(t, to)xo+ @(t, T)~(T)U (T) dT
[o

The matrix differential equation

$$=AX+XB+C(t) X(to) = Xo

also occurs commonly. With A and B constant, the solution of this equation may be
written as

X(t) = exp [A (t – to)~o exp [1?(t – to)]

J+‘exp [A (t –T)]C(T) exp [B(t – T)] dT
ro

A similar result holds when A and B are not constant.
When A, B, and C are constant and A, B have eigenvalues with negative real

parts, then X(t) ~ ~ as t ~ CD,where

X= ~eA’CeB’df
o

and also

A~+~B+C=O

The Lemma of Lyapunov formula (see 25 above) is a special case.

28. Several manipulative devices. Let f(A) be a function of
A such that

f(A) = ~ aiA’
izo

and ~(z), where z is a scalar, is analytic. Then,

T-~(A)T =f(T-lAT)

This identity suggests one technique for computing f(A), if A is diagonalizable.
Choose T so that T-’AT is diagonal. Then ~(T-’AT) is readily computed, and~(A)
is given by Tf(T-lAT) T-’. It also follows from this identity that the eigenvalues of
f(A) are~(~i) where k, are eigenvalues of A; the eigenvectors of A and~(A) are the
same.

For n vectors x and y, and A any n x n matrix, the following trivial identity is
often useful:

x’Ay=y ’A’x

If A is n x m, B is m x n, 1~ denotes them x m unit matrix, and Z. the n x n unit
matrix, then
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lZn+ABl=lZm+BAl

If A is a column vector a and B a row vector b‘, then this implies

lZ+ab’I=l+b’a

Next, if A is nonsingular and a matrix function of time, then

~[A-l(t)]=–A-l*A-I

(This follows by differentiating AA”= l.)
If @(t, to) is the transition matrix associated with A (t), then

~ [l@(t,tdl= tr[A (t)][@(t,CO)I

[@(t,fo)l= exp [~~tr[A (s)]ds ]

If P is an n x n symmetric matrix, we note the value of grad (x ‘Px), often written
just (d/dx) (x ‘Px), where the use of the partial derivative occurs since P may depend
on another variable, such as time. As may be easily checked by writing each side in
full ,

$(x ‘Px) = 2PX

The derivative ~ of a scalar function q of a matrix X is readily defined, as a

tkp
matrix with i-j element ~. If X is square and nonsingular,

l]

&log lx]= x
-f

and

*( tr WX-l) = –x-lwx-1

If X is square, nonsingular and n x n,

loglXIStr X–n

with equality if and only if X = 1.
If X, Y are symmetric, nonnegative definite and n x n,

[i 1

2
tr X tr Y a X k~’2(XY)

[,
trX+tr Ya2 Z A}’2(XY)

1

+-

with equality in the first case when X = pY, p scalar and in the second case when
X=Y.
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-B
Briqf Review
of Some Major Results
of Linear System Theory

This appendix provides a summary of several facts of linear system theory. A basic
familiarity is, however, assumed. Source material may be found in, for example, [1]
through [3].

1. Passage from state-space equations to transfer
function matrix. In system theory, the equations

i= Fx+Gu

y=ll’x+.lu

frequently occur. The Laplace transform may be applied in the same manner as to
scalar equations to yield

sX(S) = FX(S) + X(0) + GU(S)

Y(s) = H’X(s)+Ju(s)
whence

Y(s) = [H’(sl - F,-’G +J]u(s)

with x(0) = O. The transfer function matrix relating U(s) to Y(s) is
J +H’(sl –F’-*G.

In discrete time, one has
Xk+l=FXk+GUk

yk = H ‘xk + JUk

353
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and with X(z) = ~f.oxkz ‘k, and so on,

zX(Z) = FX(Z) + x(0) + GU(Z)

Y(z) = H’X(z) + W(z)

Thus
Y(z) = [Y+ H’(z1 – ~-’G]U(z)

when x(0) = O.
The impulse response in continuous time is H‘ exp (Ft)G for t 20 and the

impulse response sequence {w~}in discrete time is H ‘Fk-l G for k z 1, .l for k = O.
A transfer function matrix that is finite fors = @or z = ~ is termed proper. It

corresponds to a causal impulse response. If the transfer function matrix is zero at
s = cnor z = CO,it is termed strictly proper.

2. Conditions for complete controllability and observ-
ability. A pair of constant matrices [F, G] with F n x n and G n x r is termed
completely controllable if the following equivalent conditions hold:

1.

2.

3.

4.

5.

6.

7.

8.

Rank [GFG” . “F’-lG]=n.

w’eF’G = Ofor all timplies w = O.
~~e,cc,eF, dt is positive definite for all T >0.

There exists an n x r matrix K such that the eigenvalues of F + GK’ can take
on arbitrary prescribed values.

Given the system i = Fx + Gu, arbitrary states xO,xl, and arbitrary times to,tl,

with to< t],there exists a control taking the system from state XOat toto state xl
at tl.[In contrast to (1) through (4), this is also valid for time-varying F and G
if to= to(tl, Xo, X1).]

There exists no complex A and nonzero complex n-vector w such that
w*[M-F G]=O.

There exists no state coordinate basis change such that

F=[?21 G=[:’]

with F22of nontrivial dimension.

w ‘FiG = Ofor all i implies w = O.

A pair of matrices [F, Hl with F n X n and H n X r is termed completely observable
if [F’, H] is completely controllable.

Complete controllability is preserved under state variable feedback; that is,
[F, G] is completely controllable if and only if [F + GK’, G] is completely control-
lable. Likewise, [F, H] is completely observable if and only if [F+ LH’, H] is
completely observable.

3. Complete stabilizability and detectability. The pair
[F, G] is completely stabilizable if all uncontrollable modes are asymptotically
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stable. More precisely, complete stabilizability is equivalent to any of the following:
(The continuous time version only will be stated)

1. w*[M-F G]= Oforsomew*# Oimplies ReA<O.

2. There exists a coordinate basis change such that

with the pair [Fll, Gl] completely controllable, and, if F22 has nontrivial
dimension, Re k~(F22)<0 for all i.

3. There exists a K such that

Reki(F+GK’)<OVi

Complete detectability is the dual, so that [F, H] is completely detectable if and
only if [F’, H] is completely stabilizable.

As with controllability and observability, [F, G] is stabilizable if and only if
[F+ GK, G] is stabilizable, and similarly for detectability.

4. Minimality. If a transfer function matrix W(s) is related to a matrix
triple F, G, H by

W’(s) = H’(s1 – F,-*G,

then F has minimal dimension if and only if [F, G] is completely controllable and
[F, H] is completely observable. The triple F, G, H is termed a minimal realization
of w(s). Given two minimal realizations of IV(s) -callthem F1, G], H1, and Fz, GL,
H2—there always exists a nonsingular T such that

TFIT-~ = F2 TGI = Gz (T-l) ’H, = HL

5. Passage from transfer function matrix to state
space equations. The determination of state-space equations correspond-
ing to a transfer function, as distinct from transfer function matrix, is straight-
forward. Given a transfer function

bns”-l+ bn_ls”-2+”””+b,
w(s) =

sn+aHs”-l+. ..+al

state-space equations i = Fx + gu, y = h ‘x yield the same transfer function relating
u(s) toY(s) if

F.

o 1 0 ““” o
001””0

. .
1

–al – a2 —a3 . . –a.

g=

o
0

h=

1

b,
b2

b,n
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1:
OO. ..–al
10. ..–a2

~=O1...–aJ
. . .
. .

l“”” . 1 –a. H
bl
bz

~= “

b. 11
0
0

h= “

1

These formulas are valid irrespective of whether the numerator and denomi-
nator of W(s) have common factors. The first pair of F and g is completely control-
lable, and there exists a coordinate basis transformation taking any other set of F, g,
and h which are completely controllable to the prescribed form. The second pair of
F and h is completely observable, and there exists a coordinate basis transformation
taking any other completely observable set to the prescribed form.

If the numerator and denominator of W(s) have no common factor, both sets
are simultaneously completely controllable and observable.

When W(s) is no longer scalar, procedures for securing a minimal realization
are much more complicated. See, for example, [1] and [2]for a collection of meth-
ods, including a discussion of the multivariable generalization of the above canoni-
cal forms.

6. Hankel Matrix, Markov Matrix Parameters, and
Realizations. When W(s) is a matrix—say, p x m —an algorithm due to
Ho [4] provides a convenient route to determining matrices F, G, and H given
certain data concerning W(s). First, W(s) is assumed to be strictly proper, that is,
zero ats = CXJ.It is then expanded as

W(s)=$’+f$+$+...
where the Ai are termed Markov matrices. In discrete time, the Markov matrices are
nothing but the entries of the impulse response matrix, that is, A~ = w~+1 where
W(z) = X z ‘~w~. Then the Ai are arranged to form truncated Hankel matrices H~ as
follows:

[

AO Al o . . A~_l
Al A2 AN 1

HN. “

1“AN- I AN . . . Az~_l“J

The next step requires the checking of the ranks of H~ for different N, to
determine the first integer r such that rank H, = rank H,+ ~= rank H,, ~= . . . . If
W(s) is rational, there always exists such an r, and it is a classical result (at least for
the scalar case) that r = dimension of minimal realization of W(s).
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A realization can be constructed as follows. Nonsingular matrices P and Q are
found so that

where n = rank H,. The following matrices realize W(s),
H’(s1 – F’-’G:

G = n x m top left corner of PH,
H‘ = p x n top left corner of H,Q

in the sense that W(s) =

F = n X n top left corner of P(uH,)Q

where

1 !
AI AZ. ”.A,
AZ AJ A,+l

~Hr = “

A, A,+l . 0 . Azr-l

Moreover, [F, G] is completely controllable and [F, H] is completely observ-
able.

7. Controllability and observability
lV(S)= H ‘(sZ – F)-lG. The matrices

P(O, T) = ~TeF’GG’eF”dt
o

Q(O, T) = ~TeF’’HH’eF’dt
o

gramians. Suppose

are termed controllability and observability gramians, and are nonsingular when
{F, G, H} is minimal for all T >0. If Re ki(F) <0, the gramians are defined for
T = ~, and also are given as the solutions of

FP+PF’+GG’=0

QF+F’Q+HH’=0

8. Balanced realization of a stable transfer function
matrix. Let W(S) = H’(s1 – F)-lG with {F, G, H} minimal and Re A;(F)< O.
A realization in which the (infinite time) gramians satisfy

P= Q=diag[ul, up,...,].]

is termed a balanced realization. Generally, al z U22. “. z crn, and if strict in-
equality applies, the balanced realization is unique. If W(s) = ~’ (sZ – ~)-1 ~ is
minimal but not balanced, standard procedures allow construction of a coordinate
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basis change to balanced coordinates. The quantities Ui are determined by W(s)
alone, rather than the particular realization, and are also the singular values of the
n x n Hankel matrix defined using the Markov parameters of W(s). They are,
therefore, known as the Hankel singular values.

If {F, G, H} is balanced and

with F1l r x r, G1, and HI possessing r rows, and if ui 2 u;+ 1for all i with u, > u,+ 1,
then

W,(s) = Hi(sZ – FII)-lGI

is termed an rth degree balanced approximation of W(s); further Re hi(Fll) <0 and
for all real CD

\lw(jo) - W,(jco)ll S2(U,+, + ..0 + Un)

(The Euclidean norm applies.)

9. Poles and transmission zeros. Suppose that W(s) =
J + H ‘(sI – F)”lG. Any pole of W(s) is necessarily an eigenvalue of F, and con-
versely if {F, G, H} is minimal. A transmission zero of the realization {F, G, H, 1} is
an so for which

[
rank so l-F –G

1 [
sI– F –G

H
< max rank H

JS J 1

and if {F, G, H, J} is minimal, and sOis not a pole of W(s), rank W(SO)< m:x rank
W(s). In case W(s) is scalar, this just says that W(SO) is zero, and accords with
convention. For matrix W(s), W(so) drops rank. Thus for a certain input signal
u exp (ss), where H is a null vector of W(SO), the steady state output from W(. ) will
be zero. If W(s) is not scalar, it is possible to have so which are both poles of W(s)
and zeros of a minimal realization. If W is square and nonsingular almost
everywhere, the transmission zeros of a minimal realization of W are the poles of
W‘1 If they are all stable, one terms W minimum phase. In case W(s) is not square,
and F, G, H, J are generic, there are generically no zeros. In particular, if
W(s) = (sZ – F)-lG, and [F, G] is controllable, there are no zeros.

10. Time domain response. The solution of

i= Fx+Gu ~ =H’x

is

Jy(t) = H’eF’x(0) + H’ ‘[exp F(t – 7)]Gu(7) d7
o
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If F has the so-called modal form, that is, is a real block diagonal Jordan form, or is
a direct sum of 1 x 1 or 2 x 2 matrices, the matrices exp F’(t – T) are readily com-
putable for different tand ~. With A a sampling time, the differential equation can
be approximated by

x[(k + 1) A] = exp (FA)x(kA) + ~Aexp (Ft) dt Gu (kA)
o

y(kA)=H’x(kA)

and the matrix multiplying u (k A) can be readily computed in case F has real block
diagonal Jordan form.

11. Coprime matrix fraction description. It is sometimes
convenient to represent a rational transfer function matrix as a left or right quotient
of stable, proper transfer function matrices. Thus

W’(s) = A~’ (s)B. (s) = B, (.s)A~l (s)

where AL(s), and so on have entries which are finite ass + m, and have all poles in
Re (s)< O. A left matrix fraction description is termed left coprime if and only if
there exist stable proper X~ (s), Y~(s) such that a Bezout identity

AL (s)X. (s) + B. (s)Y, (s) = 1

holds, and similarly the right matrix fraction description is termed coprime if and
only if there exist stable proper XL(s), Y~(s) such that

XL (s)A, (s) + Y. (s)B, (s) = 1

If

W(s) = A~:(.s)B~l(s) = A~~(s)B~2(s)

are two coprime realizations, there exists a nonsingular Z(s) such that Z(s) and
Z ‘*(s) are stable and proper, for which

Z(S)A,,(S) = A.2(s)

Z(S) B.l(S) = B~z(s)

Suppose that W(s) = H ‘(sZ – F)-lG with {F, G, H} minimal. Let K, K, be such that
F + GK’ and F + K,H’ have all eigenvalues with negative real parts. Then suitable
factorization are

A, =1 + K’[sl – (F+ GK’)]-lG B. = H’[sl – (F + GK’)]-lG

A. = Z + H’[sZ – (F+ K,H’)]-’K, B. = H’[sZ - (F+ K.H’)]-’G

Also, if

X. =1 – K’[sl – (F+ K,H’)]-lG Y. = K’[sl – (F + K,H’)]-’K,

X, = 1 – H’[sZ – (F + GK’)]-lKc Y. = K’[sl – (F + GK’)]-lK,
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there holds the double Bezout identity [5]:

12. Class of all stabilizing controllers. Let P(s)=
Ail (S)BL (s) = B~ (s)A~l (s) with AL, BL, AR, B~ stable, proper coprime factoriza-
tion. Let C(s) be a transfer function matrix of a proper stabilizing negative feed-
back controller. The control loop is well posed and stable if and only if

[-L:1-’
exists and is stable

Equivalently, (1 + PC)-l, C(I + PC)-*, (1 + PC)-*P and (1 + CP)-l are all stable
proper transfer function matrices. Under the conditions above, there exists a right
coprime realization YR(s)X~l (s) for C(s) such that ALXR + BLYR = Z and left co-
prime realization X~l (s) Y~(s) such that XLAR + YLBR =1. Furthermore, the set of
all stabilizing controllers for P(s) is given by

C(Q) = YR(Q)X~l(Q) = X,jl(Q)YL(Q)

where Q ranges over the set of all proper stable transfer functions and

YR(Q) = YR –ARQ, X~(Q) = XR + BRQ

YL(Q) = Y~ – QAL, XL (Q)= XL + QBL

Exploiting the Bezout relationship, another formulation is

C(Q) = C –X.j’Q(l +XR’BRQ)-lX~l

The linear fractional maps between Q and C(Q) are bijective, and moreover

Q=XL(Q)[C - C(Q)IXR

= XL[C - C(Q)lX, (Q)

13. Stable linear system excitation by white noise.
Consider the linear system

x= Fx+Gu ~ =H’x

in which u(.) is a zero mean stationary white noise process, with E[u (t)u’ (7)] =
Q ~(t – ~). Suppose Re Ai(F) <0. Then E[x (t) x ‘(t)]= P where P is the unique
solution of

PF’+FP+GQG’=O

and E[x (t)x’ (s)] is given by [exp F(t – s)]P if tas and P exp F’(s – t) if s 2 t.

Further,
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E~ (f)y ‘(s)]=H’ exp F(t – s)PH t~~

= H’P exp F’(s – t)H t<,$

The spectrum matrix of y (), which is the (two-sided) Fourier transform of the
covariance E~ (t) y‘ (0)] is

@,Y(jw) = H’(jo.d – F)-lPH + HP(–jcol – F’)-lH

= H’(jwI – F)-’GQG’(–jwl – F’)-*H

= W(jm)QW’’(-jco)

where W(s) = H’(sZ – F’-lG.
Setting t = Oin the inverse transform leads to the important result

E[y(0)y ’(0)] =&~~”W(jti)QW’(-jw)dw.
while this expression is also H ‘PH, in view of the formula for E~ (t)y ‘(s)]. Since P,
the solution of the Lyapunov equation, is expressible as

P = ~eF’GQG’eF’dt
o

there holds
.

E[y(0)y ’(0)] = ~ H’eF’GQG’eF’Hdt
o

which relates to the frequency domain formula by Parseval’s theorem.
In case F, G, Q are time-varying, then the state covariance P is time-varying

and satisfies

P= PF’+FP+GQG’ P(to) = E[x (to)x ‘(to)]

14. Controllability, etc. for time-varying systems. The
system A?= F(t)x + G (t)u is controllable at time toif, given arbitrary x (to),there
exists a control such that for some tl, x (tl) = Ois secured. This will hold if and only if
for some tl,the following controllability gramian is nonsingular:

J~c(to,tl)= “@(tl,s)G (s)G ‘(S)@ ’(tI, s) ds
10

The property is invariant under state variable feedback. If F(t) and G(t) are
bounded, the pair is termed uniformly completely controllable if for some A >0 and
al >0, there holds WC(to, to+ A) > aJ for all to. This property is invariant under
bounded state feedback. A uniformly controllable system has the property that
there exists a bounded K(t) such that -i = (F + GK ‘)x has arbitrary degree of sta-
bility; that is, given ci >0, one can find K(t) such that [exp atlx (t) ~ Ofor all x (to).
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rc

The Pontryagin
Minimum Principle
and Linear
Optimal Control

For the sake of completeness, we give treatment in this appendix, albeit in outline,
of the regulator problem using the Pontryagin Minimum Principle. Other references
include [1], [2].

1. General form of the Minimum Principle. Consider the
system

i =f(x, u, t) (cl)

and performance index

V(X(0), u(.))= ~T@(~), U(T), T) dT + rn[x(T)] (C2)
o

Define, with p termed the costate vector,

H(x, u,t, p) =p’f(x, u,t) + l(x, u,t) (C3)

and

H“(x, t,p) = ~=ml,p)H(x, u,t, p) (C4)

(assuming the minimum exists and at the minimum, ~ = O). Then the equations

~ = dH*

ap
x(0) prescribed (C5a)

363
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(C5b)

are satisfied along the optimal trajectory, and if x* (. ), p* (O) denote the solution of
(C5) corresponding to the optimal trajectory, the optimal u“ (“) is

u“(t) = argmin H[x* (r), u, t,p* (t)] (C6)

(Smoothness assumptions are omitted.) Note that (C5) are coupled ordinary differ-
ential equations with two-point boundary conditions. Also, (C6) does not yield an
optimal feedback control law, but an optimum open-loop control (time func~ion).

2. Specialization of Minimum Principle equations to
the linear quadratic problem. Take ~(x, u, t) = F(t)x + G(t)u,
l(x, u,t)=~[u’~(t)u +x’Q(t)x] (with R =R’>O and Q = Q’20) andrn[x(T)]=
~‘ (T)Ax (T). (The ~is to yield a “tidier” result). Then

H(x, u,t, p) ‘p’F(C)x +p’G(t)u +~u’R(t)u + k’Q(t)x (C7)

H* (X, t,p) ‘p ‘F(t)x – ~p’G(t)R-l(t)G ‘(t)p + ~’Q(t)x (C8)

U*(t) = –R-l(t)G’(t)p* (t) (C9)

“* = F’(t)x* – G(t)R-’(t)G’(t)p*x x(0) prescribed (Clo)

P* = –Q(t)x” – F’(t)p* p(T) =Ax(T) (Cll)

Were it not for the awkward boundary condition in (C1O) and (Cll), one could
in principle solve these equations and use the solution in (C9)to obtain the open-
loop optimal control.

3. Solving the Minimum Principle equations in the
linear-quadratic case. With hindsight, define P(t)as the solution of

–p=PF+F’p –PGR-lGIP+Q P(T) =A (C12)

on [0, T]. One can then verify, using (C1O) and (Cll), that

p* (t)= P(C)X*(t)

for t~ [0, T]. (Differentiate p* (t) – P(t)x* (t), and use (C1O) through (C12) to show
it is zero). It follows from (C9) that, as with the Hamilton-Jacobi approach,

U*(t) = –R-*(t)G’(l)P(t)x* (t)

One could, if desired, work out p* (t) as an explicit function of time, and then U*(t)
as an explicit function of time—but the beauty of the trick in (C12) is that u* (t) is
given as a feedback law.

Deeper theory of Riccati equations throws up an intimate connection between
(C12) and the linear equation

[1[
x F(t) - G @~R;:/;]G ‘(t) x(t)
Y= -Q (t) 1[ 1Y(t)

(C13)
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where X(t), Y(t) are square matrices. Notice that (C13) is nothing but a rewriting of
(C1O) and (Cll) with x, p replaced by X(t), Y(t).

4. First variation in performance index. Whh smooth ~, 1
and m, the Pontryagin principle is obtainable by studying first order variations in V
resulting from first-order variations in u, and requiring that these be zero at the
optimum. Following the concept of Lagrange multipliers in constrained optimiza-
tion problems, let p(t) be an n -vector function and seek to minimize, with respect to
U(.), p(’)

V(x(o), u(”), p(”)) = ~T{&u,t) +p’[f(x, u,t) -i]}dt + rn[x(T)]

!

(C14)
= ~[H(x, z4,t,p)-p’,i]dt +m[x(T)]

subject to i – ~(x, u, t) = O. Let 8x, 8U denote deviations from the optimum tra-
jectory and control, and 8~ the corresponding variation. Then

bti = ~~[lf:fix + H~8u –p’8i] dt + mI&xlT
o

Requiring the first-order variation to be zero yields (after some nontrivial argu-
ment)

HU=O ~ = –H, p(T) =rn. (x(T)) (C16)

while the constraint -i = ~(x, u, t) is equivalent to i = HP. Let u = u (x, t, p) mini-
mize H (i .e., solve Hu = O), and let H“ be the minimized H as in (C4). Then

g-?’=(:)’+(%)’:.=.(.,,)=(:)’
(%)’=(%9’+(%3’%.=U(::P,=(%)’,,

and so (C5) result.

5. Second variation in performance index. Suppose we
have been able to solve for the optimal control u* (r) and trajectory x* (t) for the
general problem of (Cl) and (C2), assuming smooth ~, 1, and m. A first-order per-
turbation in the control yields a first-order perturbation in V which is zero, but a
second-order perturbation that must be nonnegative. This second-order perturba-
tion is

+ $5x ‘(T)mXxlX(q8X(T)
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-D
Lyapunov Stability

1. Stability definitions. Lyapunov theory is a technique for study-
ing the stability of free or unforced equations; see [1, 2]. Consider

i =“f(x, t) (Dl)

in which it is assumed that ~(0, t) = O, so that x, = Ois an equilibrium state, and that
solutions of (D 1) are defined on [to, ~) for all toand x (to) of interest. [The set of x (h)
normally includes a ball containing the origin].

Definition. The equilibrium state x, = Ois stable if for arbitrary toand ~ >0,
there exists a 8(6, to)such that 11x(to)II<8 implies [lx(t) II< E for all t> to.

The idea is that one can keep the entire trajectory close to zero by starting off
close enough to zero.

Definition. The equilibrium state x, = Ois asymptotically stable if h is stable
and if a convergence condition holds: for arbitrary to,there exists &(to)such
that 11x(tO)\l< &(fJ implies 11x(t)l\ + X.

Important specializations occur allowing definition of uniform stability and
uniform asymptotic stability: 8 and 81must be selectable independently of to. If (Dl)
is autonomous, that is,

i = f(x) (D2)

then stability and asymptotic stability (if they hold) are automatically uniform.

367
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Global asymptotic stabili~ arises when 81can be taken arbitrarily large. Expo-
nential asymptotic stability arises when 11x(to)[1< ~l(to)implies additionally

IIx(t)ll S Kllx(tO)[lexp[-cx(t - tO)]

for some positive a and K.

2. Lyapunov theorem for autonomous systems (D2).
Let V(x) be a real scalar function of the n-vector x and E be a closed bounded
region in W containing the origin.

Definition. V(x) is positive definite (semidefinite) in S, written
V >0 (V a O), if V(0) = O, V(x) >0 (V(x)= O) for all x # O in ~. T(.x) is
negative definite (semidefinite) if and only if – T(x) is positive definite (semi-
definite).

Theorem 2.1 (Stability). If the~e exists in some ~ containing the origin a
positive definite V(x) with 02 V = (grad V)f (x), the derivative of V along
trajectories of (D2), then X. = Ois stable.

Theorem 2.2 (Asymptotic Stability). ~f there exists in some Z containing the
origin a positive definite V(x) with V(x) negative definite, then x. = O is
asymptotically stable.

Theorem 2.3 (Asymptotic Stability): If there exists in some ~ containing the
origin a positive definite V(x) with V(x)s O and with V not identically zero
along any trajectory except x = O, then x, = Ois asymptotically stable.

Theorem 2.4 (Global Asymptotic Stability). If in Theorems 2.2 or 2.3,
s = R“ and V(x) ~ w as 11xII+ m, then x. = Ois globally asymptotically stable.

Theorem 2.5 (Exponential Asymptotic. Stability). If in Theorem 2.2 one has
all]xl]zs V(x)s CY211X112and —a311x112= V(X) s —U411X112for some positive ~i,
then x, = Ois exponentially asymptotically stable.

A function V(x) which allows proof of a stability result via one of these
theorems is termed a Lyapunov function.

3. Lyapunov theory for time-varying systems (DI ).
Slight modifications are needed. We consider real scalar functions V(x ,t) of the
n-vector x and time tin a closed bounded region E containing the origin.

Definition. V(x, t) is positive definite in S, written V >0, if V(O, t) = O and
there exists W(x) with V(x, t) z W(x) for all x, t and W >0. V(x, t) is non-
negative definite in ~ if V(O, t) = Oand V(x, t) 20 for all x, t.
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Observe then that in relation to (Dl),

V = (grad v) ’~(x, t) +%

With this change, Theorems 2.1 and 2.2 both hold. If V(x, t)s Wl(x) for all tand
some positive definite WI uniformity holds in these theorems. In Theorem 2.4, if
Wl(x) 2 V(x, t) 2 W(x) with W(x)+ ~ as 11xII- ~, global uniform asymptotic
stability holds. Theorem 2.5 remains valid without change.
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.E
The Riccati Equation

1. Relation with linear equations. Consider the Riccati equa-
tion (with time-varying coefficient matrices)

–p=PF+F’P –PGR-~G’P+Q P(T, T)=A (El)

and the linear equation

[1[
X=F
Y –Q ‘G:;’lG’l[:l [%;l=[;l

(E2)

Then the solution of (El) exists on [tO,T] if X(t) is nonsingular on [to,T],and there
holds, see [1-4],

P(t, T) = Y(t)x-’(t) (E3)

(This is straightforward to verify). Conversely, if the solution of (El) exists on [to, T],
and O(t,s) denotes the transition matrix of i (t) = [F(t) – G (t)R “(t)G ‘(t)P(t)~ (t),
then X(t) = O(t, T), Y(t) = P (t)O(t, T) is the solution of (E2), with X(t) nonsingular
on [to, T], and with (E3) holding. This again is straightforward to verify. If @(t,s) is
the 2n x 2n transition matrix associated with (E2) and it is partitioned into four
n x n submatrices, then

P(t, T) = [@21(t,T) + %(f, T)A ][@ll(t, T) + %(t> T)A ]-’ (E4)

2. Exponential formula for time-invariant problem.
Suppose that F, G, Q, and R are all constant. One can define the so-called Hamil-
tonian matrix
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With
[

~= F –CR-ICI

-Q
–F! 1

[1
~=oz

–z o
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(E5)

it satisfies M =.1M’.l = –.lM’J-*. It has no imaginary eigenvalue, given detect-
ability and stabilizability, and if Aisaneigenvalue, so is –A [5]. Thus there existsa
real W such that

(E6)

and Al, A2 are real Jordan matrices such that the real parts of all eigenvalues are
respectively negative and positive.

It follows that

[

W,, exp A,t W12exp Alt L——
1[ 1Wzl exp A,t W22exp A# RL

where L is an unimportant matrix and

R = –[W22 – AW12]-1[Wzl – AWIJ (E7)

Moreover,

P(t, T) = [W21+ WzzeA*(r- ~ Re-Al@ V][WII + Wlze A2(f-~Re-Al(r-~]-1 (Es)

3. Evaluating the limiting solution. It follows from (E8) and
because e ‘“ and e -A,:decay to zero as t ~ ~, that

lim P(t,T) = ~+mmI’(t,T) = P = W21Wfil (E9)
t+.

(Existence of the inverse can be established). Notice that the limit is approached at
an exponential rate equal to twice the smallest real part of any eigenvalue of Az and
is independent of the boundary condition A. From (E6) and (E9) one has

and so

F – GR-@’~ = –WllAIW;’ (E1O)

So the eigenvalues of Al are the closed-loop system modes.

4. Transient solution expressed in terms of limiting
solution. With ~ such that A – ~ is nonsingular, P(t,T) can be expressed in
terms of ~ as follows. Let ~= F – GR “IG’~ and let ~ satisfy
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—— ——
XF’ + FX= GR-lG ‘ (En)

Then

P(t, T) = F + exp[-~(t - T)]{exp(-~(t - T)lXexp[-~(t - 7’)]

+ (A – ~)-’ –~}-’exp[–~(t – T)] (E12)

5. Steady state Riccati equation solution from Hamil-
tonian matrix. Formula (E9) expresses the steady state ~ in terms of the
eigenvectors of the Hamiltonian matrix M. It is also possible (and numerically
preferable) to use a Schur form:

r..7

‘=U’h“ NJ
(E13)

where L is a Schur form of M with -1,,,possessing all negative real part eigenvalues,
and U is orthogonal. Then

P = U1*’(U;’)’ (E14)

In case (E13) is any Schur form, without the restriction that the eigenvalues of
Lll possess negative real parts, the formula X = Ui2(Ufi1)’ yields a solution of the
quadratic matrix equation XF + F“X – XGR ‘IG ‘X + Q = O. To see this note that
(E13) implies

4;:]=%’]

or

XF – XGR-lG’X = U;2(~1)-1U~lLll(~l)-1

= UizLl,(ul)-l = –Q – F’X

The eigenvalues of the “closed-loop” system matrix F – GR ‘*G ‘X are those of L,,,
since F – GR-IG’X = UilLll(Vll)-l.

There is an excellent discussion of the issues involved in this method for
solving the steady state equation in [6]. Reliable software exists for state dimension
up to 100, and the requirement that Lll possess negative real part eigenvalues, not
standard in Schur algorithms, can be achieved through a stable algorithm based on
orthogonal transformations with starting point an arbitrary Schur decomposition.

6. Recursive determination of steady state solution.
The steady state P can also be found by a limiting process, [7]. Let KObe such that
F + GKA has all eigenvalues with negative real parts. Define PI, K, recursively by

Pi(F + GKi’) + (F + GK~)’Pi = –KiRK~ – Q (E15)

Ki+l = –PiGR-l (E16)
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Then Pi 2P,+ 1 and ~~ir P, = ~. Further, 11P,+1– ~11~ c 11P,– ~112that is, conver-

gence is quadratic. Reference [6] advocates the use of the Schur algorithm to deter-
mine a “first estimate” POof F and then the use of the above algorithm initialized
with KO= –POGR ‘1.

7. Steady state Riccati equation solutions via dis-
crete time transformations. The steady state ~ can also be found by
setting up a discrete-time linear-quadratic problem for which the limiting solution of
the discrete-time Riccati equation is also ~. Given F, G, Q = DD’ and R, define

A =(1 + F)(Z – F)’l

B=~(A+Z)G =ti(l-F)-lG
V(2

C=R +~B’QB

D= ~(z+Af)Q(I+A)G

= W(Z - F’)-’Q(l - F)’lG

E = 2(1 – F’)”lQ(l – ~-’

=j(Z+A’)Q(l+A)

Then with

@i+l=A’@~ –[A’@lB +D][C+B’@iB]-l [A’@iB +D]’+E (E17)

there holds ~~~@i = ~; see [8], where the calculation is done in a trivially different
coordinate basis.

8. Steady state Riccati solution from spectral factori-
zation. Suppose that the characteristic polynomial of M is factorized as
p (s)p (–s), where p (s) has all stable eigenvalues. Then ~ is uniquely defined by

p(kf)[;]=o (E18)

This observation, from [9], follows easily from (E6):

[
p(Al)

W-’p(kl)w= o
p(i2J=[: P(i2)l

whence

P(M) [q’] ‘o

9. Other methods. Several other methods for solving the steady
state Riccati equation exist, especially in discrete time, where their development
has been driven by Kalman filtering problems. These include doubling algorithms,
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Chandrasekhar algorithms, square root algorithms, “information filter” algo-
rithms, and matrix sign function algorithms. For an introduction to these ideas, see
[10] and [11].
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