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Preface to the Encyclopaedia Subseries
on Operator Algebras and Non-Commutative

Geometry

The theory of von Neumann algebras was initiated in a series of papers by
Murray and von Neumann in the 1930’s and 1940’s. A von Neumann algebra
is a self-adjoint unital subalgebra M of the algebra of bounded operators
of a Hilbert space which is closed in the weak operator topology. According
to von Neumann’s bicommutant theorem, M is closed in the weak operator
topology if and only if it is equal to the commutant of its commutant. A factor
is a von Neumann algebra with trivial centre and the work of Murray and von
Neumann contained a reduction of all von Neumann algebras to factors and
a classification of factors into types I, II and III.

C∗-algebras are self-adjoint operator algebras on Hilbert space which are
closed in the norm topology. Their study was begun in the work of Gelfand
and Naimark who showed that such algebras can be characterized abstractly
as involutive Banach algebras, satisfying an algebraic relation connecting the
norm and the involution. They also obtained the fundamental result that
a commutative unital C∗-algebra is isomorphic to the algebra of complex
valued continuous functions on a compact space – its spectrum.

Since then the subject of operator algebras has evolved into a huge math-
ematical endeavour interacting with almost every branch of mathematics and
several areas of theoretical physics.

Up into the sixties much of the work on C∗-algebras was centered around
representation theory and the study of C∗-algebras of type I (these algebras
are characterized by the fact that they have a well behaved representation
theory). Finite dimensional C∗-algebras are easily seen to be just direct sums
of matrix algebras. However, by taking algebras which are closures in norm of
finite dimensional algebras one obtains already a rich class of C∗-algebras – the
so-called AF-algebras – which are not of type I. The idea of taking the closure
of an inductive limit of finite-dimensional algebras had already appeared in the
work of Murray-von Neumann who used it to construct a fundamental example
of a factor of type II – the ”hyperfinite” (nowadays also called approximately
finite dimensional) factor.
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One key to an understanding of the class of AF-algebras turned out to
be K-theory. The techniques of K-theory, along with its dual, Ext-theory,
also found immediate applications in the study of many new examples of
C∗-algebras that arose in the end of the seventies. These examples include
for instance ”the noncommutative tori” or other crossed products of abelian
C∗-algebras by groups of homeomorphisms and abstract C∗-algebras gener-
ated by isometries with certain relations, now known as the algebras On. At
the same time, examples of algebras were increasingly studied that codify data
from differential geometry or from topological dynamical systems.

On the other hand, a little earlier in the seventies, the theory of von Neu-
mann algebras underwent a vigorous growth after the discovery of a natural
infinite family of pairwise nonisomorphic factors of type III and the advent
of Tomita-Takesaki theory. This development culminated in Connes’ great
classification theorems for approximately finite dimensional (“injective”) von
Neumann algebras.

Perhaps the most significant area in which operator algebras have been
used is mathematical physics, especially in quantum statistical mechanics and
in the foundations of quantum field theory. Von Neumann explicitly mentioned
quantum theory as one of his motivations for developing the theory of rings
of operators and his foresight was confirmed in the algebraic quantum field
theory proposed by Haag and Kastler. In this theory a von Neumann algebra
is associated with each region of space-time, obeying certain axioms. The
inductive limit of these von Neumann algebras is a C∗-algebra which contains
a lot of information on the quantum field theory in question. This point of
view was particularly successful in the analysis of superselection sectors.

In 1980 the subject of operator algebras was entirely covered in a single
big three weeks meeting in Kingston Ontario. This meeting served as a re-
view of the classification theorems for von Neumann algebras and the suc-
cess of K-theory as a tool in C∗-algebras. But the meeting also contained
a preview of what was to be an explosive growth in the field. The study of
the von Neumann algebra of a foliation was being developed in the far more
precise C∗-framework which would lead to index theorems for foliations incor-
porating techniques and ideas from many branches of mathematics hitherto
unconnected with operator algebras.

Many of the new developments began in the decade following the Kingston
meeting. On the C∗-side was Kasparov’s KK-theory – the bivariant form of
K-theory for which operator algebraic methods are absolutely essential. Cyclic
cohomology was discovered through an analysis of the fine structure of exten-
sions of C∗-algebras These ideas and many others were integrated into Connes’
vast Noncommutative Geometry program. In cyclic theory and in connection
with many other aspects of noncommutative geometry, the need for going be-
yond the class of C∗-algebras became apparent. Thanks to recent progress,
both on the cyclic homology side as well as on the K-theory side, there is
now a well developed bivariant K-theory and cyclic theory for a natural class
of topological algebras as well as a bivariant character taking K-theory to
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cyclic theory. The 1990’s also saw huge progress in the classification theory of
nuclear C∗-algebras in terms of K-theoretic invariants, based on new insight
into the structure of exact C∗-algebras.

On the von Neumann algebra side, the study of subfactors began in 1982
with the definition of the index of a subfactor in terms of the Murray-von Neu-
mann theory and a result showing that the index was surprisingly restricted
in its possible values. A rich theory was developed refining and clarifying
the index. Surprising connections with knot theory, statistical mechanics and
quantum field theory have been found. The superselection theory mentioned
above turned out to have fascinating links to subfactor theory. The subfactors
themselves were constructed in the representation theory of loop groups.

Beginning in the early 1980’s Voiculescu initiated the theory of free prob-
ability and showed how to understand the free group von Neumann algebras
in terms of random matrices, leading to the extraordinary result that the von
Neumann algebra M of the free group on infinitelymany generators has full
fundamental group, i.e. pMp is isomorphic to M for every non-zero projec-
tion p ∈ M . The subsequent introduction of free entropy led to the solution
of more old problems in von Neumann algebras such as the lack of a Cartan
subalgebra in the free group von Neumann algebras.

Many of the topics mentioned in the (obviously incomplete) list above have
become large industries in their own right. So it is clear that a conference like
the one in Kingston is no longer possible. Nevertheless the subject does retain
a certain unity and sense of identity so we felt it appropriate and useful to
create a series of encylopaedia volumes documenting the fundamentals of the
theory and defining the current state of the subject.

In particular, our series will include volumes treating the essential techni-
cal results of C∗-algebra theory and von Neumann algebra theory including
sections on noncommutative dynamical systems, entropy and derivations. It
will include an account of K-theory and bivariant K-theory with applications
and in particular the index theorem for foliations. Another volume will be
devoted to cyclic homology and bivariant K-theory for topological algebras
with applications to index theorems. On the von Neumann algebra side, we
plan volumes on the structure of subfactors and on free probability and free
entropy. Another volume shall be dedicated to the connections between oper-
ator algebras and quantum field theory.

October 2001 subseries editors:
Joachim Cuntz
Vaughan Jones



Preface

This volume attempts to give a comprehensive discussion of the theory of
operator algebras (C*-algebras and von Neumann algebras.) The volume is
intended to serve two purposes: to record the standard theory in the Encyclo-
pedia of Mathematics, and to serve as an introduction and standard reference
for the specialized volumes in the series on current research topics in the
subject.

Since there are already numerous excellent treatises on various aspects of
the subject, how does this volume make a significant addition to the literature,
and how does it differ from the other books in the subject? In short, why
another book on operator algebras?

The answer lies partly in the first paragraph above. More importantly,
no other single reference covers all or even almost all of the material in this
volume. I have tried to cover all of the main aspects of “standard” or “classi-
cal” operator algebra theory; the goal has been to be, well, encyclopedic. Of
course, in a subject as vast as this one, authors must make highly subjective
judgments as to what to include and what to omit, as well as what level of
detail to include, and I have been guided as much by my own interests and
prejudices as by the needs of the authors of the more specialized volumes.

A treatment of such a large body of material cannot be done at the detail
level of a textbook in a reasonably-sized work, and this volume would not be
suitable as a text and certainly does not replace the more detailed treatments
of the subject. But neither is this volume simply a survey of the subject (a
fine survey-level book is already available [Fil96].) My philosophy has been to
not only state what is true, but explain why: while many proofs are merely
outlined or even omitted, I have attempted to include enough detail and ex-
planation to at least make all results plausible and to give the reader a sense
of what material and level of difficulty is involved in each result. Where an ar-
gument can be given or summarized in just a few lines, it is usually included;
longer arguments are usually omitted or only outlined. More detail has been
included where results are particularly important or frequently used in the
sequel, where the results or proofs are not found in standard references, and
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in the few cases where new arguments have been found. Nonetheless, through-
out the volume the reader should expect to have to fill out compactly written
arguments, or consult references giving expanded expositions.

I have concentrated on trying to give a clean and efficient exposition of the
details of the theory, and have for the most part avoided general discussions
of the nature of the subject, its importance, and its connections and applica-
tions in other parts of mathematics (and physics); these matters have been
amply treated in the introductory article to this series. See the introduction
to [Con94] for another excellent overview of the subject of operator algebras.

There is very little in this volume that is truly new, mainly some simplified
proofs. I have tried to combine the best features of existing expositions and
arguments, with a few modifications of my own here and there. In preparing
this volume, I have had the pleasure of repeatedly reflecting on the outstanding
talents of the many mathematicians who have brought this subject to its
present advanced state, and the theory presented here is a monument to their
collective skills and efforts.

Besides the unwitting assistance of the numerous authors who originally
developed the theory and gave previous expositions, I have benefited from
comments, suggestions, and technical assistance from a number of other spe-
cialists, notably G. Pedersen, N. C. Phillips, and S. Echterhoff, my colleagues
B.-J. Kahng, V. Deaconu, and A. Kumjian, and many others who set me
straight on various points either in person or by email. I am especially grate-
ful to Marc Rieffel, who, in addition to giving me detailed comments on the
manuscript, wrote an entire draft of Section II.10 on group C*-algebras and
crossed products. Although I heavily modified his draft to bring it in line
with the rest of the manuscript stylistically, elements of Marc’s vision and
refreshing writing style still show through. Of course, any errors or misstate-
ments in the final version of this (and every other) section are entirely my
responsibility.

Speaking of errors and misstatements, as far-fetched as the possibility
may seem that any still remain after all the ones I have already fixed, I would
appreciate hearing about them from readers, and I plan to post whatever I
find out about on my website.

No book can start from scratch, and this book presupposes a level of
knowledge roughly equivalent to a standard graduate course in functional
analysis (plus its usual prerequisites in analysis, topology, and algebra.) In
particular, the reader is assumed to know such standard theorems as the Hahn-
Banach Theorem, the Krein-Milman Theorem, and the Riesz Representation
Theorem (the Open Mapping Theorem, the Closed Graph Theorem, and the
Uniform Boundedness Principle also fall into this category but are explicitly
stated in the text sinced they are more directly connected with operator theory
and operator algebras.) Most of the likely readers will have this background,
or far more, and indeed it would be difficult to understand and appreciate the
material without this much knowledge. Beginning with a quick treatment of
the basics of Hilbert space and operator theory would seem to be the proper



Preface XIII

point of departure for a book of this sort, and the early sections will be useful
even to specialists to set the stage for the work and establish notation and
terminology.

September 2005 Bruce Blackadar
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I

Operators on Hilbert Space

I.1 Hilbert Space

We briefly review the most important and relevant structure facts about
Hilbert space.

I.1.1 Inner Products

I.1.1.1 A pre-inner product on a complex vector space X is a positive semi-
definite hermitian sesquilinear form 〈· , ·〉 from X to C, i.e. for all ξ, η, ζ ∈ X
and α ∈ C we have 〈ξ + η, ζ〉 = 〈ξ, ζ〉+ 〈η, ζ〉, 〈αξ, η〉 = α〈ξ, η〉, 〈η, ξ〉 = 〈ξ, η〉,
and 〈ξ, ξ〉 ≥ 0. An inner product is a positive definite pre-inner product, i.e.
one for which 〈ξ, ξ〉 > 0 for ξ �= 0.

We have made the convention that inner products are linear in the first
variable and conjugate-linear in the second, the usual convention in mathe-
matics, although the opposite convention is common in mathematical physics.
The difference will have no effect on results about operators, and in the few
places where the convention appears in arguments, a trivial notational change
will convert to the opposite convention. When dealing with Hilbert modules
(II.7.1), it is natural to use inner products which are conjugate-linear in the
first variable, with scalar multiplication written on the right.

I.1.1.2 A pre-inner product on a vector space induces a “seminorm” by
‖ξ‖2 = 〈ξ, ξ〉. The pre-inner product and “seminorm” satisfy the following
relations for any ξ, η:

|〈ξ, η〉| ≤ ‖ξ‖‖η‖ (CBS inequality)
‖ξ + η‖ ≤ ‖ξ‖ + ‖η‖ (Triangle inequality)
‖ξ + η‖2 + ‖ξ − η‖2 = 2(‖ξ‖2 + ‖η‖2) (Parallelogram law)
〈ξ, η〉 = 1

4 (‖ξ + η‖2 − ‖ξ − η‖2 + i‖ξ + iη‖2 − i‖ξ − iη‖2) (Polarization)

All these are proved by simple calculations. (For the CBS inequality, use
the fact that 〈ξ + αη, ξ + αη〉 ≥ 0 for all α ∈ C, and in particular for α =
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−〈η, ξ〉/〈η, η〉 if 〈η, η〉 �= 0.) By the triangle inequality, the “seminorm” is really
a seminorm. From the CBS inequality, we have that ‖ξ‖ = max‖ζ‖=1 |〈ξ, ζ〉|
for every ξ. If 〈· , ·〉 is an inner product, it follows that if 〈ξ, ζ〉 = 0 for all ζ,
then ξ = 0, and that ‖ · ‖ is a norm.

The CBS inequality is attributed, in different forms and contexts, to A.
Cauchy, V. Buniakovsky, and H. Schwarz, and is commonly referred to by
various subsets of these names.

I.1.1.3 An inner product space which is complete with respect to the in-
duced norm is a Hilbert space. The completion of an inner product space is a
Hilbert space in an obvious way. A finite-dimensional inner product space is
automatically a Hilbert space.

The standard example of a Hilbert space is L2(X,µ), the space of square-
integrable functions on a measure space (X,µ) (or, more precisely, of equiv-
alence classes of square-integrable functions, with functions agreeing almost
everywhere identified), with inner product 〈f, g〉 =

∫
X

fg dµ. If S is a set, let
µ be counting measure on S, and denote L2(S, µ) by l2(S). Denote l2(N) by
l2; this is the space of square-summable sequences of complex numbers.

I.1.1.4 The definition and basic properties of l2 were given in 1906 by D.
Hilbert, who was the first to describe something approaching the modern
notion of a “Hilbert space,” and developed by E. Schmidt, F. Riesz, and others
in immediately succeeding years. The L2 spaces were also studied during this
period, and the Riesz-Fischer theorem (isomorphism of L2(T) and l2(Z) via
Fourier transform) proved. The definition of an abstract Hilbert space was,
however, not given until 1928 by J. von Neumann [vN30a].

I.1.2 Orthogonality

I.1.2.1 Hilbert spaces have a geometric structure similar to that of Euclid-
ean space. The most important notion is orthogonality : ξ and η are orthogonal
if 〈ξ, η〉 = 0, written ξ ⊥ η. If S is a subset of a Hilbert space H, let

S⊥ = {ξ ∈ H : 〈ξ, η〉 = 0 for all η ∈ S}.
S⊥ is a closed subspace of H, called the orthogonal complement of S.

I.1.2.2 If S is a closed convex set in a Hilbert space H, and ξ ∈ H, and
η1, η2 ∈ S satisfy ‖ξ − η1‖2, ‖ξ − η2‖2 < dist(ξ, S)2 + ε, where dist(ξ, S) =
infζ∈S ‖ξ − ζ‖, then by the parallelogram law

‖η1 − η2‖2 = 2(‖ξ − η1‖2 + ‖ξ − η2‖2) − 2‖ξ − 1
2 (η1 + η2)‖2 < 2ε

so there is a unique “closest vector” η ∈ S satisfying ‖ξ − η‖ = dist(ξ, S).
If S is a closed subspace, then the closest approximant η to ξ in S is the
“orthogonal projection” of ξ onto S, i.e. ξ−η ⊥ S. It follows that every ξ ∈ H
can be uniquely written ξ = η+ζ, where η ∈ S and ζ ∈ S⊥. Thus (S⊥)⊥ = S.
Note that completeness is essential for the results of this paragraph.
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I.1.2.3 A set {ξi} of vectors in an inner product space is orthonormal if
〈ξi, ξj〉 = δij , i.e. it is a mutually orthogonal set of unit vectors. A maximal
orthonormal set in a Hilbert space is an orthonormal basis. If {ξi} is an or-
thonormal basis for H, then every vector η ∈ H can be uniquely written as∑

i αiξi for αi = 〈η, ξi〉 ∈ C; and ‖η‖2 =
∑

i |αi|2. Every Hilbert space has an
orthonormal basis, and the cardinality of all orthonormal bases for a given H
is the same, called the (orthogonal) dimension of H. Two Hilbert spaces of
the same dimension are isometrically isomorphic, so the dimension is the only
structural invariant for a Hilbert space. A Hilbert space is separable if and
only if its dimension is countable. In this case, an orthonormal basis can be
generated from any countable total subset by the Gram-Schmidt process; in
particular, any dense subspace of a separable Hilbert space contains an ortho-
normal basis (this is useful in applications where a concrete Hilbert space such
as a space of square-integrable functions contains a dense subspace of “nice”
elements such as polynomials or continuous or smooth functions.) Every sep-
arable infinite-dimensional Hilbert space is isometrically isomorphic to l2.

I.1.3 Dual Spaces and Weak Topology

Bounded linear functionals on a Hilbert space are easy to describe:

I.1.3.1 Theorem. [Riesz-Frèchet] Let H be a Hilbert space, and φ a
bounded linear functional on H. Then there is a (unique) vector ξ ∈ H with
φ(η) = 〈η, ξ〉 for all η ∈ H; and ‖ξ‖ = ‖φ‖.

So the dual space H∗ of H may be identified with H (the identification
is conjugate-linear), and the weak (= weak-*) topology is given by the inner
product: ξi → ξ weakly if 〈ξi, η〉 → 〈ξ, η〉 for all η. In particular, a Hilbert
space is a reflexive Banach space and the unit ball is therefore weakly compact.
A useful way of stating this is:

I.1.3.2 Corollary. Let H be a Hilbert space. If (ξi) is a bounded weak
Cauchy net in H (i.e. (〈ξi, η〉) is Cauchy for all η ∈ H), then there is a (unique)
vector ξ ∈ H such that ξi → ξ weakly, i.e. 〈ξi, η〉 → 〈ξ, η〉 for all η ∈ H.

The weak topology is, of course, distinct from the norm topology (strictly
weaker) if H is infinite-dimensional: for example, an orthonormal sequence of
vectors converges weakly to 0. The next proposition gives a connection.

I.1.3.3 Proposition. Let H be a Hilbert space, ξi, ξ ∈ H, with ξi → ξ
weakly. Then ‖ξ‖ ≤ lim inf ‖ξi‖, and ξi → ξ in norm if and only if ‖ξi‖ → ‖ξ‖.

Proof: ‖ξ‖2 = lim〈ξi, ξ〉 ≤ ‖ξ‖ lim inf ‖ξi‖ by the CBS inequality.

‖ξi − ξ‖2 = 〈ξi, ξi〉 − 〈ξi, ξ〉 − 〈ξ, ξi〉 + 〈ξ, ξ〉
which goes to zero if and only if ‖ξi‖ → ‖ξ‖.
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I.1.3.4 If H is infinite-dimensional, then the weak topology on H is not first
countable, and a weakly convergent net need not be (norm-)bounded. It is an
easy consequence of Uniform Boundedness (I.2.1.3) that a weakly convergent
sequence is bounded. For example, if {ξn} is an orthonormal sequence in H,
then 0 is in the weak closure of {√nξn}, but no subsequence converges weakly
to 0 ([Hal67, Problem 28]; cf. [vN30b]). If H is separable, then the restriction
of the weak topology to the unit ball of H is metrizable [Hal67, Problem 24].

I.1.4 Standard Constructions

There are two standard constructions on Hilbert spaces which are used re-
peatedly, direct sum and tensor product.

I.1.4.1 If {Hi : i ∈ Ω} is a set of Hilbert spaces, we can form the Hilbert
space direct sum, denoted

⊕
Ω Hi, as the set of “sequences” (indexed by Ω)

(· · · ξi · · · ), where ξi ∈ Hi and
∑

i ‖ξi‖2 < ∞ (so ξi �= 0 for only countably
many i). The inner product is given by

〈(· · · ξi · · · ), (· · · ηi · · · )〉 =
∑

i

〈ξi, ηi〉.

This is the completion of the algebraic direct sum with respect to this inner
product. If all Hi are the same H, the direct sum is called the amplification of
H by card(Ω). The amplification of H by n (the direct sum of n copies of H)
is denoted by Hn; the direct sum of countably many copies of H is denoted
H∞ (or sometimes l2(H)).

I.1.4.2 If H1, H2 are Hilbert spaces, let H1 � H2 be the algebraic tensor
product over C. Put an inner product on H1 �H2 by

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈ξ1, η1〉1〈ξ2, η2〉2
extended by linearity, where 〈· , ·〉i is the inner product on Hi. (It is easily
checked that this is an inner product, in particular that it is positive definite.)
Then the Hilbert space tensor product H1 ⊗H2 is the completion of H1 �H2.
Tensor products of finitely many Hilbert spaces can be defined similarly. (In-
finite tensor products are trickier and will be discussed in III.3.1.1.)

If H and H′ are Hilbert spaces and {ηi : i ∈ Ω} is an orthonormal basis for
H′, then there is an isometric isomorphism from H⊗H′ to the amplification of
H by card(Ω), given by

∑
i ξi⊗ηi 
→ (· · · ξi · · · ). In particular, Hn is naturally

isomorphic to H⊗ C
n and H∞ ∼= H⊗ l2.

If (X , µ) is a measure space and H is a separable Hilbert space, then the
Hilbert space L2(X,µ) ⊗ H is naturally isomorphic to L2(X,µ,H), the set
of weakly measurable functions f : X → H (i.e. x 
→ 〈f(x), η〉 is a complex-
valued measurable function for all η ∈ H) such that

∫
X
‖f(x)‖2 dµ(x) < ∞,

with inner product
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〈f, g〉 =
∫

X

〈f(x), g(x)〉 dµ(x).

The isomorphism sends f ⊗ η to (x �→ f(x)η).
Unless otherwise qualified, a “direct sum” or “tensor product” of Hilbert

spaces will always mean the Hilbert space direct sum or tensor product.

I.1.5 Real Hilbert Spaces

One can also consider real inner product spaces, real vector spaces with a (bi-
linear, real-valued) inner product (·, ·) satisfying the properties of I.1.1.1 for
α ∈ R. A real Hilbert space is a complete real inner product space. A real
Hilbert space HR can be complexified to C ⊗R HR; conversely, a (complex)
Hilbert space can be regarded as a real Hilbert space by restricting scalar mul-
tiplication and using the real inner product (ξ, η) = Re〈ξ, η〉. (Note, however,
that these two processes are not quite inverse to each other.) All of the results
of this section, and many (but by no means all) results about operators, hold
verbatim or have obvious exact analogs in the case of real Hilbert spaces.

Throughout this volume, the term “Hilbert space,” unless qualified with
“real,” will always denote a complex Hilbert space; and “linear” will mean
“complex-linear.”

I.2 Bounded Operators

I.2.1 Bounded Operators on Normed Spaces

I.2.1.1 An operator (linear transformation) T between normed vector spa-
ces X and Y (by convention, this means the domain of T is all of X ) is bounded
if there is a K ≥ 0 such that ‖Tξ‖ ≤ K‖ξ‖ for all ξ ∈ X . The smallest such
K is the (operator) norm of T , denoted ‖T‖, i.e.

‖T‖ = sup
‖ξ‖=1

‖Tξ‖.

An operator is continuous if and only if it is bounded. The set of bounded
operators from X to Y is denoted L(X ,Y) (the notation B(X ,Y) is also fre-
quently used). L(X ,X ) is usually denoted L(X ) (or B(X )). L(X ,Y) is closed
under addition and scalar multiplication, and the norm is indeed a norm, i.e.
we have ‖S + T‖ ≤ ‖S‖ + ‖T‖ and ‖αT‖ = |α|‖T‖ for all S, T ∈ L(X ,Y),
α ∈ C. The space L(X ,Y) is complete if Y is complete. The norm also satisfies
‖ST‖ ≤ ‖S‖‖T‖ for all T ∈ L(X ,Y), S ∈ L(Y,Z).

L(X ) is thus a Banach algebra if X is a Banach space. The identity oper-
ator on X , denoted I, is a unit for L(X ).
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I.2.1.2 It is easy to see (most easily using the adjoint) that an element
of L(X ,Y) is weakly continuous, i.e. continuous when X and Y are given
their weak topologies. Thus if X is a Hilbert space (or, more generally, a
reflexive Banach space) with closed unit ball B, and T ∈ L(X ,Y), then T (B)
is weakly compact and hence weakly (and therefore norm-) closed since the
weak topology on Y is Hausdorff.

We recall three fundamental results about bounded operators on Banach
spaces.

I.2.1.3 Theorem. [Uniform Boundedness] Let X and Y be Banach
spaces, T a subset of L(X ,Y). If {‖Tξ‖ : T ∈ T } is bounded for each ξ ∈ X ,
then {‖T‖ : T ∈ T } is bounded.

I.2.1.4 Theorem. [Open Mapping] Let X and Y be Banach spaces, T ∈
L(X ,Y). If T maps X onto Y, then T is an open mapping.

I.2.1.5 Theorem. [Closed Graph] Let X and Y be Banach spaces, and
T : X → Y an operator (recall this means that the domain of T is all of X ).
If the graph of T is closed in X × Y, then T is bounded.

All are consequences of the Baire Category Theorem. On Hilbert spaces,
there are direct proofs not using the Baire Category Theorem; cf. [Hal67]. Even
the first proofs of I.2.1.3 on general Banach spaces used a “gliding hump”
argument in place of the Baire Category Theorem. The proof using Baire
Category was given in [BS27]. I.2.1.4 and I.2.1.5 were first proved in [Ban32].
Nowadays, I.2.1.3 is usually obtained as a corollary of I.2.1.5, and I.2.1.5 as a
corollary of I.2.1.4.

Good general references for various aspects of operator theory are [DS88a],
[DS88b], [Hal67], [HP74], [RSN55], [Ped89a].

I.2.2 Sesquilinear Forms

I.2.2.1 If X and Y are Hilbert spaces, a sesquilinear form on (X ,Y) is a
function (· , ·) : X ×Y → C which is linear in the first variable and conjugate-
linear in the second. The form is bounded if there is a K such that

|(ξ, η)| ≤ K‖ξ‖‖η‖

for all ξ ∈ X , η ∈ Y. The smallest such K is called the norm of the form.

I.2.2.2 Proposition. Let (· , ·) be a bounded sesquilinear form on (X ,Y),
with norm K. Then there is a (unique) bounded operator T from X to Y such
that (ξ, η) = 〈Tξ, η〉 for all ξ ∈ X , η ∈ Y. This operator has ‖T‖ = K.

The proof is an easy application of the Riesz-Frèchet Theorem (I.1.3.1).
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I.2.2.3 Conversely, of course, any T ∈ L(X ,Y) defines a bounded sesquilin-
ear form (ξ, η) = 〈Tξ, η〉. There is thus a one-one correspondence between
bounded operators and bounded sesquilinear forms. Each point of view has
its advantages. Some early authors such as Hilbert used the form approach
exclusively instead of working with operators, but some parts of the theory
become almost impossibly difficult and cumbersome (e.g. composition of op-
erators) from this point of view. I. Fredholm and F. Riesz emphasized the
operator point of view, which is superior for most purposes.

I.2.2.4 The results of this subsection hold equally for operators on real
Hilbert spaces.

I.2.3 Adjoint

I.2.3.1 If H1 and H2 are Hilbert spaces, then each T ∈ L(H1,H2) has an
adjoint , denoted T ∗, in L(H2,H1), defined by the property

〈T ∗η, ξ〉1 = 〈η, T ξ〉2
for all ξ ∈ H1, η ∈ H2, where 〈·, ·〉i is the inner product on Hi. (The existence
of T ∗ follows immediately from I.2.2.2; conversely, an operator with an adjoint
must be bounded by the Closed Graph Theorem.) Adjoints have the following
properties for all S, T ∈ L(H1,H2), α ∈ C:

(i) (S + T )∗ = S∗ + T ∗, (αT )∗ = ᾱT ∗, and (T ∗)∗ = T ;
(ii) ‖T ∗‖ = ‖T‖ and ‖T ∗T‖ = ‖T‖2.

Properties (i) are obvious, and the ones in (ii) follow from the fact that
‖T‖ = sup‖ξ‖=‖η‖=1 |〈Tξ, η〉| ≥ sup‖ξ‖=1 |〈Tξ, ξ〉|.

If H = C
n, then L(H) can be naturally identified with Mn = Mn(C), and

the adjoint is the usual conjugate transpose.
The range R(T ) and the null space N (T ) of a bounded operator T are sub-

spaces; N (T ) is closed, but R(T ) is not necessarily closed. The fundamental
relationship is:

I.2.3.2 Proposition. If X and Y are Hilbert spaces and T ∈ L(X ,Y), then
R(T )⊥ = N (T ∗).

I.2.3.3 An operator on a real Hilbert space has an adjoint in the same man-
ner. We will primarily have occasion to consider conjugate-linear operators on
(complex) Hilbert spaces. A bounded conjugate-linear operator T from H1 to
H2 has a (unique) conjugate-linear adjoint T ∗ : H2 → H1 with

〈T ∗η, ξ〉1 = 〈Tξ, η〉2
for all ξ ∈ H1, η ∈ H2 (note the reversal of order in the inner product).
The uniqueness of T ∗ is clear; existence can be proved by regarding T as
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an operator between the real Hilbert spaces H1 and H2 with inner product
(ξ, η) = Re〈ξ, η〉, or directly using involutions.

An involution on a (complex) Hilbert space H is a conjugate-linear isom-
etry J from H onto H with J2 = I. Involutions exist in abundance on any
Hilbert space: if (ξi) is an orthonormal basis for H, then

∑
αiξi �→ ∑

αiξi

is an involution (and every involution is of this form). If ξ, η ∈ H, then
〈Jη, Jξ〉 = 〈ξ, η〉.

If T : H1 → H2 is a bounded conjugate-linear operator, and J is an
involution on H1, then TJ is a bounded linear operator from H1 to H2;
T ∗ = J(TJ)∗ is the adjoint of T (the proof uses the fact that 〈Jξ, η〉 = 〈Jη, ξ〉
for all ξ, η ∈ H1, i.e. J is “self-adjoint.”)

I.2.4 Self-Adjoint, Unitary, and Normal Operators

I.2.4.1 Definition. Let H be a Hilbert space, and T ∈ L(H). Then

T is self-adjoint if T = T ∗.
T is a projection if T = T ∗ = T 2.
T is an isometry if T ∗T = I.
T is unitary if T ∗T = TT ∗ = I.
T is normal if T ∗T = TT ∗.

Self-adjoint and unitary operators are obviously normal. The usual defin-
ition of an isometry is an operator T such that ‖Tξ‖ = ‖ξ‖ for all ξ. For such
a T , it follows from polarization that 〈Tξ, Tη〉 = 〈ξ, η〉 for all ξ, η, and hence
that T ∗T = I. Conversely, if T ∗T = I, then it is obvious that T is an isometry
in this sense, so the definitions are equivalent. If T is an isometry, then TT ∗

is a projection. Projections will be described in I.5.
If T is unitary, then T and T ∗ are isometries, and conversely; an invertible

or normal isometry is unitary.
Isometries and unitary operators between different Hilbert spaces can be

defined analogously.

I.2.4.2 If T is a normal operator on H, and ξ ∈ H, then

‖Tξ‖2 = 〈Tξ, Tξ〉 = 〈T ∗Tξ, ξ〉 = 〈TT ∗ξ, ξ〉 = 〈T ∗ξ, T ∗ξ〉 = ‖T ∗ξ‖2.

(Conversely, if ‖Tξ‖ = ‖T ∗ξ‖ for all ξ, then by polarization 〈Tξ, Tη〉 =
〈T ∗ξ, T ∗η〉 for all ξ, η, so T is normal.) Thus, if T is normal, N (T ) = N (T ∗) =
R(T )⊥.

I.2.4.3 Examples.

(i) Let (X,µ) be a measure space, and H = L2(X,µ). For every bounded mea-
surable function f : X → C there is a multiplication operator Mf ∈ L(H)
defined by (Mfξ)(x) = f(x)ξ(x) (of course, this only makes sense almost
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everywhere). Mf is a bounded operator, and ‖Mf‖ is the essential supre-
mum of |f |. MfMg = Mfg for all f, g, and M∗

f = Mf̄ , where f̄ is the
complex conjugate of f . Thus all Mf are normal. In fact, the Spectral
Theorem implies that every normal operator looks very much like a mul-
tiplication operator. Mf is self-adjoint if and only if f(x) ∈ R a.e., and
Mf is unitary if and only if |f(x)| = 1 a.e.

(ii) Perhaps the most important single operator is the unilateral shift S, de-
fined on l2 by

S(α1, α2, . . .) = (0, α1, α2, . . .).

S is an isometry, and S∗ is the backwards shift defined by

S∗(α1, α2, . . .) = (α2, α3, . . .).

S∗S = I, but SS∗ �= I (it is the projection onto the space of sequences
with first coordinate 0). S can also be defined as multiplication by z
on the Hardy space H2 of analytic functions on the unit disk with L2

boundary values on the circle T (if L2(T) is identified with l2(Z) via
Fourier transform, H2 is the subspace of functions whose negative Fourier
coefficients vanish).

I.2.5 Amplifications and Commutants

I.2.5.1 If H1 and H2 are Hilbert spaces, there are natural extensions of
operators in L(Hi) to operators on H1 ⊗ H2: if T ∈ L(H1), define T ⊗ I ∈
L(H1 ⊗H2) by

(T ⊗ I)(ξ ⊗ η) = Tξ ⊗ η.

Similarly, for S ∈ L(H2), I⊗S is defined by (I⊗S)(ξ⊗η) = ξ⊗Sη. T �→ T ⊗I
and S �→ I ⊗ S are isometries. The images of L(H1) and L(H2) are denoted
L(H1) ⊗ I and I ⊗ L(H2) respectively, called amplifications.

I.2.5.2 More generally, if S1, T1 ∈ L(H1), S2, T2 ∈ L(H2), we can define
S1 ⊗ S2 ∈ L(H1 ⊗H2) by

(S1 ⊗ S2)(ξ ⊗ η) = S1ξ ⊗ S2η.

Then
S1 ⊗ S2 = (S1 ⊗ I)(I ⊗ S2) = (I ⊗ S2)(S1 ⊗ I)

(S1 + T1) ⊗ S2 = (S1 ⊗ S2) + (T1 ⊗ S2)

S1 ⊗ (S2 + T2) = (S1 ⊗ S2) + (S1 ⊗ T2)

(S1 ⊗ S2)(T1 ⊗ T2) = S1T1 ⊗ S2T2

(S1 ⊗ S2)∗ = S∗
1 ⊗ S∗

2

‖S1 ⊗ S2‖ = ‖S1‖‖S2‖.
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I.2.5.3 If S ⊆ L(H), then the commutant of S is

S ′ = {T ∈ L(H) : ST = TS for all S ∈ S}.

S ′ is a closed subalgebra of L(H) containing I. We denote the bicommutant
(S ′)′ by S ′′. We obviously have S ⊆ S ′′, and S ′

1 ⊇ S ′
2 if S1 ⊆ S2. It follows

that S ′ = (S ′′)′ for any set S.

I.2.5.4 Proposition. If H1, H2 are Hilbert spaces and H = H1 ⊗H2, then
we have (L(H1)⊗ I)′ = I ⊗L(H2) (and, similarly, (I ⊗L(H2))′ = L(H1)⊗ I).
Thus, if S ⊆ L(H1), then (S ⊗ I)′′ = S ′′ ⊗ I.

The proof is a straightforward calculation: if {ξi} is an orthonormal basis
for H1, use the operators Tij ⊗ I ∈ L(H1) ⊗ I, where Tij(η) = 〈η, ξi〉ξj .

A similar calculation (cf. [KR97a, 5.5.4]) shows:

I.2.5.5 Proposition. Let H and H′ be Hilbert spaces, S1, . . . , Sn ∈ L(H),
T1, . . . , Tn ∈ L(H′). Then

∑
Si ⊗ Ti = 0 in L(H ⊗ H′) if and only if it is 0

in L(H) � L(H′), i.e. the natural map from L(H) � L(H′) to L(H ⊗ H′) is
injective.

I.2.6 Invertibility and Spectrum

In this section, we will essentially follow the first comprehensive development
and exposition of this theory, given by F. Riesz [Rie13] in 1913, abstracted
to Banach spaces and Hilbert spaces (which did not exist in 1913!) and with
some modern technical simplifications.

I.2.6.1 If T ∈ L(X ,Y) (X ,Y Banach spaces) is invertible in the algebraic
sense, i.e. T is one-to-one and onto, then T−1 is automatically bounded by
the Open Mapping Theorem. So there are two ways a bounded operator T
can fail to be invertible:

T is not bounded below (recall that T is bounded below if ∃ε > 0 such
that ‖Tξ‖ ≥ ε‖ξ‖ for all ξ)
R(T ) is not dense.

These possibilities are not mutually exclusive. For example, if T is a normal
operator on a Hilbert space, then N (T ) = R(T )⊥, so if R(T ) is not dense, then
T is not one-to-one and hence not bounded below. Thus a normal operator
on a Hilbert space is invertible if and only if it is bounded below.

I.2.6.2 Definition. Let X be a normed vector space, T ∈ L(X ). The spec-
trum of T is

σ(T ) = {λ ∈ C : T − λI is not invertible}
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The spectrum of T can be thought of as the set of “generalized eigenvalues”
of T (note that every actual eigenvalue of T is in the spectrum). The first
definition (not the same as the one here – essentially the reciprocal) and
name “spectrum” were given by Hilbert; the modern definition is due to F.
Riesz.

I.2.6.3 If |λ| > ‖T‖, then the series −λ
∑∞

n=0(λ
−1T )n converges absolutely

to an inverse for T − λI, so σ(T ) ⊆ {λ : |λ| ≤ ‖T‖}.
It follows from general theory for (complex) Banach algebras (cf. II.1.4)

that σ(T ) is nonempty and compact. Thus the spectral radius

r(T ) = max{|λ| : λ ∈ σ(T )}
makes sense and satisfies r(T ) ≤ ‖T‖.
I.2.6.4 The numerical range of an operator T on a Hilbert space H is

W (T ) = {〈Tξ, ξ〉 : ‖ξ‖ = 1}.
Set

w(T ) = sup{|λ| : λ ∈ W (T )}.
It is obvious that W (T ∗) = {λ̄ : λ ∈ W (T )}, so w(T ∗) = w(T ); if T = T ∗,
then W (T ) ⊆ R. (Conversely, if W (T ) ⊆ R, then T = T ∗: for ξ, η ∈ H, expand
〈T (ξ + η), ξ + η〉 ∈ R and 〈T (ξ + iη), ξ + iη〉 ∈ R.)

I.2.6.5 Proposition. If T ∈ L(H), then σ(T ) ⊆ W (T ) and r(T ) ≤ w(T ) ≤
‖T‖.

To see that σ(T ) ⊆ W (T ), note that if λ ∈ σ(T ), then either T − λI or
(T − λI)∗ is not bounded below, so there is a sequence (ξn) of unit vectors
such that either (T −λI)ξn → 0 or (T −λI)∗ξn → 0. In either case, we obtain
that 〈(T − λI)ξn, ξn〉 → 0.

I.2.6.6 Note that r(T ) = w(T ) = ‖T‖ does not hold for general operators:
for example, let T be the (nilpotent) operator on C

2 given by the matrix[
0 0
1 0

]

. Then σ(T ) = {0}, so r(T ) = 0; but ‖T‖ = 1. It can be shown by

an easy calculation that W (T ) = {λ : |λ| ≤ 1/2}, so w(T ) = 1/2. (There are
also operators on infinite-dimensional Hilbert spaces whose numerical range
is not closed.)

I.2.6.7 Definition. A (necessarily self-adjoint) operator T on a Hilbert
space H is positive if 〈Tξ, ξ〉 ≥ 0 for all ξ. Write T ≥ 0 if T is positive, and
write L(H)+ for the set of positive operators on H.

If T ∈ L(H), then T ∗T ≥ 0 (this is also true if T is conjugate-linear); if
T = T ∗, then λI −T ≥ 0 for λ ≥ ‖T‖. Sums and nonnegative scalar multiples
of positive operators are positive.

If S, T are self-adjoint operators, write S ≤ T if T −S ≥ 0, i.e. if 〈Sξ, ξ〉 ≤
〈Tξ, ξ〉 for all ξ.
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I.2.6.8 Let S be a positive operator, and let m and M be the inf and sup
of W (S) respectively. The form (ξ, η) = 〈Sξ, η〉 is positive semidefinite, and
thus satisfies the CBS inequality, yielding, for all ξ, η,

|〈Sξ, η〉|2 ≤ 〈Sξ, ξ〉〈Sη, η〉 ≤ 〈Sξ, ξ〉M‖η‖2 ≤ M2‖ξ‖2‖η‖2.

Setting η = Sξ and dividing through by ‖Sξ‖2, we obtain, for all ξ,

〈S2ξ, ξ〉 = 〈Sξ, Sξ〉 = ‖Sξ‖2 ≤ M〈Sξ, ξ〉 ≤ M2‖ξ‖2.

So we conclude:

I.2.6.9 Proposition.

(i) ‖S‖ = M and S2 ≤ MS.
(ii) If S is bounded below, then m > 0.

I.2.6.10 Proposition. If T is a self-adjoint operator on a Hilbert space
H, and m and M are the inf and sup of W (T ) respectively, then σ(T ) ⊆
[m,M ] ⊆ R and m,M ∈ σ(T ). Thus r(T ) = w(T ).
Proof: σ(T ) ⊆ [m,M ] by I.2.6.5. Applying I.2.6.9(ii) to T −mI and MI−T ,
we obtain m,M ∈ σ(T ).

I.2.6.11 Proposition. Let T be a self-adjoint element of L(H). Then
r(T ) = ‖T‖(= w(T )).

There are several simple proofs known. Perhaps the best proceeds by ap-
plying I.2.6.9 to S = (T + I)/2 if −I ≤ T ≤ I (so 0 ≤ S ≤ I) to conclude that
S2 ≤ S, so I − T 2 = 4(S − S2) ≥ 0, 0 ≤ T 2 ≤ I, ‖T 2‖ = ‖T‖2 ≤ 1 by I.2.6.9.

In particular, if T ≥ 0, then σ(T ) ⊆ [0, ‖T‖] and ‖T‖ ∈ σ(T ).
The statement r(T ) = w(T ) = ‖T‖ is true for an arbitrary normal operator

T (II.1.6.3).

Here is a useful generalization of I.2.6.8 (cf. [KR97b, 10.5.7]).

I.2.6.12 Proposition. Let S1, . . . , Sn ∈ L(H)+ with ‖S1 + · · ·+Sn‖ ≤ M ,
and ξ1, . . . , ξn ∈ H. Then

∑n
k=1 ‖Skξk‖2 ≤ M

∑n
k=1〈Skξk, ξk〉.

Proof: Define a pre-inner product on Hn by (
⊕

ηk,
⊕

ζk) =
∑n

k=1〈Skηk, ζk〉.
Set ηk = ξk and ζk =

∑n
j=1 Sjξj for all k, and apply the CBS inequality.

I.2.6.13 Corollary. Let S1, . . . , Sn ∈ L(H)+ with ‖S1 + · · · + Sn‖ ≤ M .
If λ1, . . . , λn ∈ C and T =

∑n
k=1 λkSk, then T ∗T ≤ M

∑n
k=1 |λk|2Sk. In

particular, ‖T‖ ≤ M max |λk|.
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Another application of the CBS inequality gives:

I.2.6.14 Proposition. Let T be a positive operator on a Hilbert space H,
and ξ, η ∈ H. Then 〈T (ξ + η), ξ + η〉 ≤ [〈Tξ, ξ〉1/2 + 〈Tη, η〉1/2]2.
Proof: We have 〈T (ξ + η), ξ + η〉 = 〈Tξ, ξ〉 + 2Re〈Tξ, η〉 + 〈Tη, η〉, and by
the CBS inequality Re〈Tξ, η〉 ≤ [〈Tξ, ξ〉〈Tη, η〉]1/2.

I.2.6.15 Corollary. Let T be a positive operator on H, and {ξi} a total
set of vectors in H. If 〈Tξi, ξi〉 = 0 for all i, then T = 0.

An important special case is worth noting:

I.2.6.16 Corollary. Let H1 and H2 be Hilbert spaces, and T a positive
operator on H1 ⊗ H2. If 〈T (ξ1 ⊗ ξ2), ξ1 ⊗ ξ2〉 = 0 for all ξ1 ∈ H1, ξ2 ∈ H2,
then T = 0. (Actually ξ1 and ξ2 need only range over total subsets of H1 and
H2 respectively.)

I.3 Other Topologies on L(H)

L(H) has several other useful topologies in addition to the norm topology.

I.3.1 Strong and Weak Topologies

I.3.1.1 Definition.
The strong operator topology on L(H) is the topology of pointwise norm-con-
vergence, i.e. Ti → T strongly if Tiξ → Tξ for all ξ ∈ H.
The weak operator topology on L(H) is the topology of pointwise weak con-
vergence, i.e. Ti → T weakly if 〈Tiξ, η〉 → 〈Tξ, η〉 for all ξ, η ∈ H.

The word “operator” is often omitted in the names of these topologies; this
usually causes no confusion, although technically there is a different topol-
ogy on L(H) (more generally, on any Banach space) called the “weak topol-
ogy,” the topology of pointwise convergence for linear functionals in L(H)∗.
This topology, stronger than the weak operator topology, is rarely used on
L(H). In this volume, “weak topology” will mean “weak operator topology,”
and “strong topology” will mean “strong operator topology.” (Caution: in
some references, “strong topology” or “strong convergence” refers to the norm
topology.)

I.3.1.2 If (Ti) is a (norm-)bounded net in L(H), then Ti → T in the strong
[resp. weak] operator topology if and only if Tiξ → Tξ in norm [resp. weakly]
for a dense (or just total) set of ξ. Boundedness is essential here; a strongly
convergent net need not be bounded. (A weakly convergent sequence must be
bounded by the Uniform Boundedness Theorem.)
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I.3.1.3 There are variants of these topologies, called the σ-strong (or ultra-
strong) operator topology and the σ-weak (or ultraweak) operator topology . A
(rather unnatural) definition of these topologies is to first form the amplifi-
cation H∞ = H⊗ l2; then the restriction of the weak [resp. strong] topology
on L(H∞) to the image L(H) ⊗ I is the σ-weak [resp. σ-strong] topology on
L(H). An explicit description of the topologies in terms of sets of vectors in
H can be obtained from this. A more natural definition will be given in I.8.6;
the σ-strong and σ-weak topologies are actually more intrinsic to the Banach
space structure of L(H) than the weak or strong topologies.

I.3.1.4 As the names suggest, the weak operator topology is weaker than
the strong operator topology, and the σ-weak is weaker than the σ-strong. The
weak is weaker than the σ-weak, and the strong is weaker than the σ-strong.
The weak and σ-weak topologies are not much different: they coincide on all
(norm-)bounded sets, as follows easily from I.3.1.2. Similarly, the strong and
σ-strong coincide on bounded sets. All are locally convex Hausdorff vector
space topologies (the strong operator topology is generated by the family of
seminorms ‖ · ‖ξ, where ‖T‖ξ = ‖Tξ‖; the others are generated by similar
families of seminorms.) All of these topologies are weaker than the norm
topology, and none are metrizable (cf. III.2.2.28) except when H is finite-
dimensional, in which case they coincide with the norm topology. (The unit
ball of L(H) is metrizable in both the strong and weak topologies if H is
separable.)

I.3.1.5 Examples. Let S be the unilateral shift (I.2.4.3). Then Sn → 0
weakly, but not strongly. (S∗)n → 0 strongly, but not in norm.

I.3.1.6 This example shows that the adjoint operation is not strongly con-
tinuous. (It is obviously weakly continuous.) One can define another, stronger
topology, the strong-* operator topology , by the seminorms T �→ ‖Tξ‖ and
T �→ ‖T ∗ξ‖ for ξ ∈ H, in which the adjoint is continuous. There is similarly a
σ-strong-* operator topology.

Even though the adjoint is not strongly continuous, the set of self-adjoint
operators is strongly closed (because it is weakly closed).

I.3.2 Properties of the Topologies

I.3.2.1 Addition and scalar multiplication are jointly continuous in all the
topologies. Multiplication is separately continuous in all the topologies, and
is jointly strongly and strong-* continuous on bounded sets. However, mul-
tiplication is not jointly strongly (or strong-*) continuous. Example I.3.1.5
shows that multiplication is not jointly weakly continuous even on bounded
sets: Sn and (S∗)n both converge to 0 weakly, but (S∗)nSn = I for all n. The
separate weak continuity of multiplication implies that S ′ is weakly closed for
any S ⊆ L(H).
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I.3.2.2 The (closed) unit ball of L(H) is complete in all these topologies
[although L(H) itself is not weakly or strongly complete if H is infinite-
dimensional: if T is an unbounded everywhere-defined operator on H, for
each finite-dimensional subspace F of H let TF = T ◦ PF , where PF is the
orthogonal projection onto F . Then (TF ) is a strong Cauchy net in L(H)
which does not converge weakly in L(H). However, L(H) is σ-strongly and
σ-strong-* complete (II.7.3.7, II.7.3.11)!] In fact, since the σ-weak operator
topology coincides with the weak-* topology on L(H) when regarded as the
dual of the space of the trace-class operators (I.8.6), the unit ball of L(H)
is compact in the weak operator topology. This can be proved directly using
Banach limits, which are also useful in other contexts:

I.3.2.3 Let Ω be a fixed directed set. Let Cb(Ω) be the set of all bounded
functions from Ω to C. With pointwise operations and supremum norm, Cb(Ω)
is a Banach space (in fact, it is a commutative C*-algebra). For i ∈ Ω, let
πi : Cb(Ω) → C be evaluation at i; then πi is a homomorphism and a linear
functional of norm 1 (in fact, it is a pure state (II.6.2.9)). A pure Banach
limit on Ω is a weak-* limit point ω of the net (πi) in the unit ball of Cb(Ω)∗

(which is weak-* compact). We usually write limω(λi) for ω((λi)). A pure
Banach limit has the following properties:

(i) limω(λi + µi) = (limω λi) + (limω µi).
(ii) limω(λµi) = λ(limω µi).
(iii) limω(λiµi) = (limω λi)(limω µi).
(iv) limω λi is the complex conjugate of limω λi.
(v) lim inf |λi| ≤ | limω λi| ≤ lim sup |λi|.
(vi) If λi → λ, then λ = limω λi.

A Banach limit on Ω is an element of the closed convex hull of the pure
Banach limits on Ω, i.e. an element of ∩i∈Ωco{πj |j ≥ i}. A Banach limit has
the same properties except for (iii) in general.

I.3.2.4 Banach limits can also be defined in L(H). Again fix Ω and a Banach
limit ω on Ω. If (Ti) is a bounded net in L(H), for ξ, η ∈ H define (ξ, η) =
limω〈Tiξ, η〉. Then (·, ·) is a bounded sesquilinear form on H, so, by I.2.2.2,
there is a T ∈ L(H) with (ξ, η) = 〈Tξ, η〉 for all ξ, η. Write T = limω Ti. This
Banach limit has the following properties:

(i) limω(Si + Ti) = (limω Si) + (limω Ti).
(ii) limω(λTi) = λ(limω Ti).
(iii) ‖ limω Ti‖ ≤ lim sup ‖Ti‖.
(iv) limω(T ∗

i ) = (limω Ti)∗.
(v) limω Ti is a weak limit point of (Ti).
(vi) If Ti → T weakly, then T = limω Ti.

Property (v) implies the weak compactness of the unit ball of L(H).

The most useful version of completeness for the strong operator topology
is the following:
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I.3.2.5 Proposition. Let (Ti) be a bounded increasing net of positive op-
erators on a Hilbert space H (i.e. Ti ≤ Tj for i ≤ j, and ∃K with ‖Ti‖ ≤ K
for all i). Then there is a positive operator T on H with Ti → T strongly, and
‖T‖ = sup ‖Ti‖. T is the least upper bound for {Ti} in L(H)+.

For the proof, an application of the CBS inequality yields that, for any
ξ ∈ H, (Tiξ) is a Cauchy net in H, which converges to a vector we call Tξ.
It is easy to check that T thus defined is linear, bounded, and positive, and
Ti → T strongly by construction.

It follows that every decreasing net of positive operators converges strongly
to a positive operator.

I.3.2.6 Corollary. Let (Ti) be a monotone increasing (or decreasing) net
of positive operators converging weakly to an operator T . Then Ti → T
strongly, and T is the least upper bound (or greatest lower bound) of {Ti}.

Indeed, if (Ti) is increasing and weakly convergent to T , then 0 ≤ Ti ≤ T
for all i, so ‖Ti‖ ≤ ‖T‖.

Here is a simple, but useful, fact which is closely related (in fact, combined
with I.8.6 gives an alternate proof of I.3.2.5):

I.3.2.7 Proposition. Let (Ti) be a net in L(H), and suppose T ∗
i Ti → 0

weakly. Then

(i) Ti → 0 strongly.
(ii) If {Ti} is bounded, then T ∗

i Ti → 0 strongly.

Proof: (i): If 〈T ∗
i Tiξ, η〉 → 0 for all ξ, η, then for all ξ,

‖Tiξ‖2 = 〈Tiξ, Tiξ〉 = 〈T ∗
i Tiξ, ξ〉 → 0.

(ii) If ‖Ti‖ ≤ K for all i, then for any ξ, ‖T ∗
i Tiξ‖ ≤ K‖Tiξ‖ → 0.

I.3.2.8 Corollary. Let (Si) be a bounded net of positive operators con-
verging weakly to 0. Then Si → 0 strongly.

Proof: Set Ti = S
1/2
i (I.4.2).

Caution: I.3.2.6 and I.3.2.8 do not mean that the strong and weak topologies
coincide on the positive part of the unit ball of L(H)!

They do, however, coincide on the set of unitaries:

I.3.2.9 Proposition. The strong, weak, σ-strong, σ-weak, strong-*, and
σ-strong-* topologies coincide on the group U(H) of unitary operators on H,
and make U(H) into a topological group.

The agreement of the strong and weak topologies on U(H) follows immedi-
ately from I.1.3.3. The adjoint (inverse) is thus strongly continuous on U(H),
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so the strong and strong-* topologies coincide. The σ-topologies agree with
the others on bounded sets. Multiplication is jointly strongly continuous on
bounded sets.

Note, however, that the closure of U(H) in L(H) is not the same in the
strong, weak, and strong-* topologies. The strong closure of U(H) consists of
isometries (in fact, all isometries; cf. [Hal67, Problem 225]), and thus U(H)
is strong-* closed; whereas the weak closure includes coisometries (adjoints of
isometries) also. Thus the unilateral shift S is in the strong closure, but not
the strong-* closure, and S∗ is in the weak closure but not the strong closure.
In fact, the weak closure of U(H) is the entire closed unit ball of L(H) [Hal67,
Problem 224].

I.3.2.10 Theorem. [DD63] Let H be an infinite-dimensional Hilbert space.
Then U(H) is contractible in the weak/strong/strong-* topologies, and the
unit sphere {ξ ∈ H : ‖ξ‖ = 1} of H is contractible in the norm topology.
Proof: First suppose H is separable, and hence H can be identified with
L2[0, 1]. For 0 < t ≤ 1, let Vt ∈ L(H) be defined by [Vt(f)](s) = t−1/2f(s/t)
(setting f(s) = 0 for s > 1). Then Vt is an isometry, V1 = I, and t → Vt and
t → V ∗

t are strongly continuous. If Pt = VtV
∗
t , then Pt is a projection (it is the

projection onto the subspace L2[0, t]) and t �→ Pt is strongly continuous. In
fact, Pt is multiplication by χ[0,t]. Then, as t → 0, Vt → 0 weakly and Pt → 0
strongly, and the map from U(H) × [0, 1] to U(H) defined by

(U, t) �→ VtUV ∗
t + (I − Pt)

for t > 0 and (U, 0) �→ I is continuous and gives a contraction of U(H).
Similarly, if f ∈ L2[0, 1], ‖f‖ = 1, set

H(f, t) = t1/2Vtf + (1 − t)1/2χ[t,1];

this gives a contraction of the unit sphere of H.
For a general H, H ∼= L2[0, 1] ⊗ H. Use the same argument with Vt ⊗ I

and Pt ⊗ I in place of Vt, Pt.
If H is infinite-dimensional, then N. Kuiper [Kui65] proved that U(H) is

also contractible in the norm topology. The same is true for the unitary group
of any properly infinite von Neumann algebra [BW76] and of the multiplier
algebra of a stable σ-unital C*-algebra [CH87]. Note that the result fails if
dim(H) = n < ∞: the algebraic topology of U(n, C) is fairly complicated.

I.4 Functional Calculus

We continue to follow the exposition of [Rie13] with some modernizations.
There is a very important procedure for applying functions to operators

called functional calculus. Polynomials with complex coefficients can be ap-
plied to any operator in an obvious way. This procedure can be extended
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to holomorphic functions of arbitrary operators in a way described in II.1.5.
For self-adjoint operators (and, more generally, for normal operators), this
functional calculus can be defined for continuous functions and even bounded
Borel measurable functions, as we now describe.

I.4.1 Functional Calculus for Continuous Functions

To describe the procedure for defining a continuous function of a self-adjoint
operator, we first need a simple fact called the Spectral Mapping Theorem for
polynomials:

I.4.1.1 Proposition. Let T ∈ L(H), and let p be a polynomial with com-
plex coefficients. Then σ(p(T )) = {p(λ) : λ ∈ σ(T )}.
The proof is an easy application of the Fundamental Theorem of Algebra: if
λ ∈ C, write p(z) − λ = α(z − µ1) · · · (z − µn); then

p(T ) − λI = α(T − µ1I) · · · (T − µnI)

and, since the T − µkI commute, p(T ) − λI is invertible if and only if all the
T − µkI are invertible.

Combining this result with I.2.6.10, we get:

I.4.1.2 Corollary. If T is self-adjoint and p is a polynomial with real
coefficients, then ‖p(T )‖ = max{|p(λ)| : λ ∈ σ(T )}.

(This is even true if p has complex coefficients (II.2.3.2)).

I.4.1.3 If T is self-adjoint and m,M are as in I.2.6.10, then polynomials with
real coefficients are uniformly dense in the real-valued continuous functions
on [m,M ] by the Stone-Weierstrass Theorem. If f is a real-valued continu-
ous function on σ(T ) and (pn) is a sequence of polynomials with real coef-
ficients converging uniformly to f on σ(T ), then (pn(T )) converges in norm
to a self-adjoint operator we may call f(T ). The definition of f(T ) does not
depend on the choice of the sequence (pn). We have that f �→ f(T ) is an
isometric algebra-isomorphism from the real Banach algebra CR(σ(T )), with
supremum norm, onto the closed real subalgebra of L(H) generated by T .
(This homomorphism extends to complex-valued continuous functions in a
manner extending the application of polynomials with complex coefficients.)
Since f(T ) is a limit of polynomials in T , f(T ) ∈ {T}′′; in particular, the
f(T ) all commute with each other.

We have that f(T ) ≥ 0 if and only if f ≥ 0 on σ(T ); more generally, we
have σ(f(T )) ⊆ [n,N ], where

n = min{f(λ) : λ ∈ σ(T )}, N = max{f(λ) : λ ∈ σ(T )}.
(Actually, with a bit more work (II.2.3.2) one can show the Spectral Mapping
Theorem in this context: σ(f(T )) = {f(λ) : λ ∈ σ(T )}.)
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I.4.2 Square Roots of Positive Operators

Applying this procedure to the function f(t) = tα, we get:

I.4.2.1 Proposition. If T ≥ 0, then there is a continuous function α �→ Tα

from R+ to L(H)+ satisfying TαT β = Tα+β ∀α, β and T 1 = T . Tα ∈ {T}′′.
In particular, if α = 1/2 we get a positive square root for T .

I.4.2.2 Corollary. Every positive operator has a positive square root.
In fact, the operator T 1/2 is the unique positive square root of T

(II.3.1.2(vii)).
T 1/2 can be, and often is, explicitly defined using a sequence of polynomials

converging uniformly to the function f(t) = t1/2. For example, if ‖T‖ ≤ 1 the
sequence p0 = 0, pn+1(t) = pn(t) + 1

2 (t − pn(t)2) increases to f(t) on [0, 1],
and hence pn(T ) ↗ T 1/2.

I.4.2.3 If T is self-adjoint, we define T+, T−, and |T | to be f(T ), g(T ), and
h(T ) respectively, where f(t) = max(t, 0), g(t) = −min(t, 0), and h(t) = |t| =
f(t) + g(t). We have T+, T−, |T | ∈ {T}′′, T+, T−, |T | ∈ L(H)+, T = T+ − T−,
|T | = T+ + T−, T+T− = 0, |T | = (T 2)1/2. T+ and T− are called the positive
and negative parts of T , and |T | is the absolute value of T .

If T is an arbitrary element of L(H), define |T | to be (T ∗T )1/2.

I.4.3 Functional Calculus for Borel Functions

I.4.3.1 If T is self-adjoint, m,M as above, and f is a bounded nonnegative
lower semicontinuous function on [m,M ], choose an increasing sequence fn of
nonnegative continuous functions on [m,M ] converging pointwise to f . Then
(fn(T )) is a bounded increasing sequence of positive operators, and hence
converges strongly to a positive operator we may call f(T ). The definition of
f(T ) is independent of the choice of the fn, and f(T ) ∈ {T}′′. Similar consid-
erations apply to decreasing sequences and upper semicontinuous functions.

I.4.3.2 If f is a bounded real-valued Borel measurable function on [m,M ],
then f can be obtained by taking successive pointwise limits of increasing
and decreasing sequences (perhaps transfinitely many times) beginning with
continuous functions. We may then define f(T ) in the analogous way. This
is again well defined; f(T ) ∈ {T}′′. See III.5.2.13 for a slick and rigorous
treatment of Borel functional calculus. An alternate approach to defining f(T )
using the spectral theorem will be given in I.6.1.5.

I.5 Projections

Projections are the simplest non-scalar operators, and play a vital role
throughout the theory of operators and operator algebras.
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I.5.1 Definitions and Basic Properties

I.5.1.1 If H is a Hilbert space and X a closed subspace, then every ξ ∈ H
can be uniquely written as η + ζ, where η ∈ X , ζ ∈ X⊥. The function ξ �→ η
is a bounded self-adjoint idempotent operator PX , called the (orthogonal)
projection onto X . PX ≥ 0, P 2

X = PX , ‖PX ‖ = 1, and σ(PX ) = {0, 1}.
Conversely, if P ∈ L(H) satisfies P = P ∗ = P 2, then P is a projection:
P = PX , where X = R(P ). There is thus a one-one correspondence between
projections in L(H) and closed subspaces of H.

I.5.1.2 Proposition. If X ,Y are closed subspaces of H, then the following
are equivalent:

(i) PX ≤ PY (as elements of L(H)+).
(ii) PX ≤ λPY for some λ > 0.
(iii) X ⊆ Y.
(iv) PXPY = PYPX = PX .
(v) PY − PX is a projection (it is PY∩X⊥).

I.5.1.3 The set Proj(H) of projections in L(H) is a complete lattice (Boo-
lean algebra). PX ∧ PY = PX∩Y , PX ∨ PY = P(X+Y)− , P⊥

X = PX⊥ = I − PX .∧
i PXi

= P∩Xi
and

∨
i PXi

= P(
∑ Xi)− . If P and Q commute, then P∧Q = PQ

and P ∨ Q = P + Q − PQ.
If (Pi) is an increasing net of projections, then Pi →

∨
i Pi strongly; if (Pi)

is decreasing, then Pi →
∧

i Pi strongly.

I.5.1.4 Remark.Note thatL(H)+ is not a lattice unlessH is one-dimensional.

For example, P =
[

1 0
0 0

]

and Q = 1
2

[
1 1
1 1

]

have no least upper bound

in (M2)+. [The matrices I =
[

1 0
0 1

]

and P + Q = 1
2

[
3 1
1 1

]

are upper

bounds, but there is no T with P,Q ≤ T ≤ I, P +Q, i.e. (M2)+ does not have
the Riesz Interpolation Property.] Thus the supremum of P and Q in Proj(H)
is not necessarily a least upper bound of P and Q in L(H)+.

However, if (Pi) is an increasing net of projections in L(H), then P =
∨

Pi

is the least upper bound for {Pi} in L(H)+, since Pi → P strongly, and for
each T ∈ L(H)+, {S ∈ L(H) : 0 ≤ S ≤ T} is strongly closed.

I.5.1.5 The lattice operations are not distributive in general: if P,Q,R are
projections in L(H), then it is not true in general that (P ∨ Q) ∧ R =
(P ∧ R) ∨ (Q ∧ R) (this equality does hold if P,Q,R commute). But there
is a weaker version called the orthomodular law which does hold in general:

I.5.1.6 Proposition. Let P,Q,R be projections in L(H) with P ⊥ Q and
P ≤ R. Then (P + Q) ∧ R = P ∨ (Q ∧ R).
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I.5.1.7 As with unitaries (I.3.2.9), the strong, weak, σ-strong, σ-weak,
strong-* topologies coincide on the set of projections on H, using I.1.3.3,
since if Pi → P weakly, for any ξ ∈ H we have

‖Piξ‖2 = 〈Piξ, ξ〉 → 〈Pξ, ξ〉 = ‖Pξ‖2.

The set of projections is strongly closed. The weak closure is the positive
portion of the closed unit ball.

Projections in Tensor Products

Let H1 and H2 be Hilbert spaces, and P and Q projections in L(H1) and
L(H2) respectively. Then P ⊗ Q is a projection in L(H1 ⊗ H2): it is the
projection onto the subspace PH1 ⊗ QH2.

I.5.1.8 Proposition. Let {Pi : i ∈ I} and {Qj : j ∈ J} be sets of projec-
tions in L(H1) and L(H2) respectively. If

∨
i Pi = P in L(H1) and

∨
j Qj = Q

in L(H2), then
∨

i,j Pi ⊗ Qj = P ⊗ Q in L(H1 ⊗H2).
Proof: The span of {PiH1 : i ∈ I} is dense in PH1 and the span of {QjH2 :
j ∈ J} is dense in QH2, so the span of

{(Pi ⊗ Qj)(H1 ⊗H2) : i ∈ I, j ∈ J}

is dense in PH1 ⊗ QH2 = (P ⊗ Q)(H1 ⊗H2).

I.5.2 Support Projections and Polar Decomposition

I.5.2.1 If T ∈ L(X ,Y), then the right support projection of T is the projec-
tion PT onto N (T )⊥. PT is the unique projection in L(X ) with the property
that TPT = T and PT S = 0 whenever S ∈ L(X ) and TS = 0, and is the
smallest projection P such that TP = T . Similarly, the left support projection
of T is the projection QT ∈ L(Y) onto the closure of the range of T , i.e. the
right support projection of T ∗. QT satisfies QT T = T and SQT = 0 whenever
S ∈ L(Y) and ST = 0.

If T ∈ L(H) is normal, then its left and right support projections coin-
cide. If T ≥ 0, then Tα → P strongly as α → 0, so PT is a strong limit of
polynomials in T and therefore PT ∈ {T}′′. Also,

T (T + εI)−1 → PT

strongly as ε → 0. In general, PT = PT∗T and QT = QTT∗ = PTT∗ , so
(T ∗T )α → PT and (TT ∗)α → QT strongly as α → 0.

If P , Q are projections, then P ∨ Q is the support projection of P + Q;
thus P ∨ Q and P ∧ Q = I − [(I − P ) ∨ (I − Q)] are in {P,Q}′′.
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I.5.2.2 The operators |T | = (T ∗T )1/2 and T map PTX one-one onto dense
subspaces of PTX and QTY respectively. Also,

‖|T |ξ‖2 = 〈|T |ξ, |T |ξ〉 = 〈T ∗Tξ, ξ〉 = 〈Tξ, Tξ〉 = ‖Tξ‖2

for any ξ. Thus the map |T |ξ �→ Tξ is well-defined, linear, and isometric,
and extends to an isometry U from PTX onto QTY. U may be regarded
as an element of L(X ,Y) by setting U = 0 on (PTX )⊥. Then U satisfies
U∗U = PT , UU∗ = QT , and T = U |T |, and is the unique element of L(X ,Y)
with these properties. T = U |T | is called the (left) polar decomposition of T .
The operator T also has a right polar decomposition coming from the left
polar decomposition of T ∗; in fact,

TT ∗ = U |T |2U∗ = U(T ∗T )U∗

and by iteration (TT ∗)n = U(T ∗T )nU∗ for all n, so

|T ∗| = (TT ∗)1/2 = U(T ∗T )1/2U∗ = U |T |U∗

and hence T = U |T | = |T ∗|U . The uniqueness of polar decomposition implies
that if T ∈ L(H) with polar decomposition T = U |T |, and V ∈ L(H) is
unitary, then the polar decomposition of V T is (V U)|T |.

T (T ∗T + εIX )−1/2 converges strongly to U as ε → 0. So if T ∈ L(H), then
U ∈ {T, T ∗}′′, and obviously |T | ∈ {T, T ∗}′′ also. If T ∈ L(X ,Y) and T ∗T
is invertible, then U is an isometry, and U = T (T ∗T )−1/2. So if T ∈ L(H)
is invertible, then U (as well as |T |) is in the norm-closed algebra generated
by T and T ∗. Similarly, if T ∈ L(X ,Y) and TT ∗ is invertible, then U is a
coisometry and U = (TT ∗)−1/2T . If T is invertible (or, more generally, one-
one with dense range), then U is unitary.

I.5.2.3 In general, U is a partial isometry from PTX to QTX . A partial
isometry is an operator U ∈ L(X ,Y) such that U∗U is a projection P . A
partial isometry U is an isometry from N (U)⊥ onto R(U), and P = U∗U =
PN (U)⊥ ; UU∗ is also a projection Q = PR(U). The projections P and Q are
called the initial and final projections, or source and range projections, of U .

There is a useful generalization of the construction of U :

I.5.2.4 Proposition. Let S, T ∈ L(H) with S∗S ≤ T ∗T . Then there is a
unique W ∈ L(H) with W ∗W ≤ QT (hence ‖W‖ ≤ 1), and S = WT . If
R ∈ L(H) commutes with S, T , and T ∗, then RW = WR.
Proof: W is defined on R(T ) by W (Tξ) = Sξ (W is well defined since
‖Sξ‖ ≤ ‖Tξ‖ for all ξ). W extends to an operator on QTH by continuity; set
W = 0 on Q⊥

T H. Then W ∗W ≤ QT and S = WT . If RT = TR, RT ∗ = T ∗R,
and RS = SR, then for η = Tξ ∈ R(T ) we have

WRη = WRTξ = WTRξ = SRξ = RSξ = RWTξ = RWη
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and thus RWη = WRη for η ∈ QTH. Since R(TT ∗) = (TT ∗)R, RQT = QT R,
and thus R leaves (I−QT )H invariant; thus if η ∈ Q⊥

T H, then WRη = RWη =
0.

A simple matrix trick yields a multivariable version:

I.5.2.5 Proposition. Let S, T1, . . . , Tn ∈ L(H) with S∗S ≤ ∑n
k=1 T ∗

k Tk.
Then there are unique W1, . . . , Wn ∈ L(H) with

n∑

k=1

W ∗
k Wk ≤ Q∑

T∗
k Tk

(hence ‖Wk‖ ≤ 1), and S =
∑n

k=1 WkTk. If R ∈ L(H) commutes with S, Tk,
and T ∗

k (1 ≤ k ≤ n), then RWk = WkR (1 ≤ k ≤ n).

Proof: Identify L(Hn) with Mn(L(H)), and set S̃ = diag(S, 0, · · · , 0), and
T̃ the matrix with first column T1, . . . , Tn and other entries 0. Apply I.5.2.4
to obtain S̃ = W̃ T̃ . Then W̃ has first row W1, . . . ,Wn and other entries 0.

I.5.2.6 If T is a bounded conjugate-linear operator on H, and J is an in-
volution (I.2.3.3), then JT ∈ L(H), and T ∗T = (JT )∗(JT ), so |T | = |JT | is
well defined; if JT = U |JT | = U |T | is the polar decomposition of JT , then
T = V |T | is a polar decomposition for T , where V = JU is a “conjugate-linear
partial isometry,” i.e. V ∗V and V V ∗ are projections which are naturally the
right and left support projections for T . This construction is independent of
the choice of J (if K is another involution, then JK is unitary). We also have
JT = |T ∗J |U and (JTT ∗J)n = J(TT ∗)nJ for all n, so

|T ∗J | = (JTT ∗J)1/2 = J |T ∗|J
and hence T = J(JT ) = |T ∗|JU = |T ∗|V as in the linear case. Thus bounded
conjugate-linear operators have a well-defined and unique polar decomposition
with analogous properties to those of linear operators.

I.6 The Spectral Theorem

The spectral theorem gives a complete description of self-adjoint (bounded)
operators on a Hilbert space as generalized multiplication operators (I.2.4.3(i)).
There are also versions of the theorem for normal operators and for unbounded
self-adjoint operators. The version and exposition here comes essentially from
[Rie13] with some modernizations.

I.6.1 Spectral Theorem for Bounded Self-Adjoint Operators

I.6.1.1 If T is a self-adjoint operator on a Hilbert space H and λ ∈ R, let
E(λ,∞) = E(λ,∞)(T ) = P(T−λI)+ , the support projection of (T −λI)+ (I.4.2.3,
I.5.2). The family {E(λ,∞) : λ ∈ R} is called the spectral resolution of T , and
has the following properties:
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E(λ,∞) ≥ E(µ,∞) if λ ≤ µ
(E(λ,∞)) is strongly continuous from the right
If σ(T ) ⊆ [m,M ], then E(λ,∞) = I for λ < m and E(λ,∞) = 0 for λ ≥ M .

I.6.1.2 We then define E[λ,∞) =
∧

µ<λ E(µ,∞). We have that E[λ,∞) ≥
E(λ,∞), and E[λ,∞) − E(λ,∞) is the projection onto the eigenspace {ξ ∈ H :
Tξ = λξ}, so for “most” λ we have E[λ,∞) = E(λ,∞). Furthermore, for λ ≤ µ,
set E[λ,µ] = E[λ,∞) − E(µ,∞), and similarly define E(λ,µ], E[λ,µ), and E(λ,µ).
More generally, if B is any Borel subset of σ(T ), EB may be defined by suc-
cessive infima and suprema. (See III.5.2.13 for another way to define the EB .)
EB is called the spectral projection of T corresponding to B. The family {EB}
satisfies:

(i) EA ≤ EB if A ⊆ B
(ii) EA ⊥ EB if A ∩ B = ∅
(iii) If A ∩ B = ∅, then EA∪B = EA + EB

(iv) If
⋃

n Bn = B, then EB =
∨

n EBn

(v) E∅ = 0, Eσ(T ) = I
(vi) σ(EBT ) ⊆ B̄ ∪ {0}.
A family of projections with properties (i)-(v) is called a projection-valued

measure (or resolution of the identity) over σ(T ).

I.6.1.3 In addition, all EB are strong limits of polynomials in T and are
therefore in {T}′′; in particular, all the spectral projections of T commute
with each other and with T , and the range of EB is invariant under T . (ii)
and (vi) say that the range of EB is the “part” of H on which T “looks like”
a multiplication operator (with multiplicity) by a function taking values in B.
In particular, λI ≤ E[λ,µ]T ≤ µI on the range of E[λ,µ].

It follows easily that if σ(T ) ⊆ [m,M ] and {λ0 = m < λ1 < · · · < λn = M}
is a partition of [m,M ], then ‖T−∑n

i=1 λiE[λi−1,λi)‖ ≤ max{|λi−λi−1|}. Thus
we obtain:

I.6.1.4 Theorem. [Spectral Theorem] If T is a (bounded) self-adjoint
operator on a Hilbert space H, and {EB(T )} are its spectral projections, then

T =
∫ ∞

−∞
λ dEλ =

∫ ‖T‖

−‖T‖
λ dEλ

under any reasonable interpretation of the integral (e.g. in the sense that the
Riemann sum approximations to the integral converge in norm to T .)

One can also interpret functional calculus using the spectral resolution:
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I.6.1.5 Theorem. Let T be a self-adjoint operator on a Hilbert space H,
and f a bounded complex-valued Borel function on σ(T ). Then

f(T ) =
∫ ∞

−∞
f(λ) dEλ =

∫ ‖T‖

−‖T‖
f(λ) dEλ

where the integral can be interpreted as a Riemann (or Riemann-Stieltjes)
integral if f is (piecewise) continuous and a Lebesgue (Lebesgue-Stieltjes)
integral otherwise.

I.6.2 Spectral Theorem for Normal Operators

I.6.2.1 There is also a version of the spectral theorem for normal operators.
If N is a normal operator on H, write N = S+iT with S, T self-adjoint. Then,
since S and T commute, the spectral projections for S and T all commute
with each other and with S and T ; the ranges of the spectral projections
for S are invariant under T , and vice versa. Thus, if A and B are Borel
subsets of σ(S) and σ(T ) respectively, we may set EA×B(N) = EA(S)EB(T ).
By successive orthogonal sums, infima, and suprema, we may then define a
spectral projection EC(N) for any Borel subset C of σ(N) ⊆ C. The family
{EC(N)} is a projection-valued measure over σ(N) (I.6.1.2), and we have:

I.6.2.2 Theorem. [Spectral Theorem for Normal Operators] Let
N be a normal operator on a Hilbert space H, and {EC(N)} its spectral
resolution. Then

N =
∫

σ(N)

λ dEλ

where the integral can be interpreted as a Riemann integral over a rectangle
in C (or as a Lebesgue integral over σ(N)).

I.6.2.3 Although there is no actual (scalar-valued) measure associated to a
spectral resolution, there is a well-defined notion of a “set of measure zero”:
a Borel set B has N -measure zero if EB(N) = 0. There is thus a notion of
“N -almost everywhere.” In fact, there is a well-defined measure class corre-
sponding to the spectral “measure.” No nonempty open set has zero measure.

I.6.2.4 If f is a bounded Borel function on σ(N), then we may define the
functional calculus element f(N) by

f(N) =
∫

σ(N)

f(λ) dEλ

where the integral can be interpreted as a Riemann integral if f is continuous
and a Lebesgue integral in general. This functional calculus has the following
properties:
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(i) If p is a polynomial of two variables with complex coefficients, and f(z) =
p(z, z̄), then f(N) = p(N,N∗).

(ii) If fn → f uniformly on σ(N), then fn(N) → f(N) in norm.
(iii) If (fn) is a uniformly bounded sequence and fn → f pointwise N -a.e. on

σ(N), then fn(N) → f(N) strongly.
(iv) σ(f(N)) ⊆ {f(λ) : λ ∈ σ(N)}−, with equality if f is continuous.
(v) ‖f(N)‖ is the “essential supremum” of |f | on σ(N):

‖f(N)‖ = inf{α > 0 : E{λ:|f(λ)|>α}(N) = 0}
and if f is continuous, then ‖f(N)‖ = sup{|f(λ)| : λ ∈ σ(N)}.

(vi) f(N) is self-adjoint if and only if f(z) ∈ R N -a.e.; f(N) is a projection
if and only if f(z) = 0 or 1 N -a.e. (i.e. if f is a characteristic function);
f(N) is unitary if and only if |f(z)| = 1 N -a.e.

A consequence of the Spectral Theorem is a precise realization of any
normal operator as a multiplication operator:

I.6.2.5 Theorem. Let T be a normal operator on a separable Hilbert space
H. Then, for 1 ≤ n ≤ ∞, there are disjoint Borel subsets Xn of σ(T ), with
∪Xn = σ(T ), and finite regular Borel measures µn on Xn, such that T is
unitarily equivalent to

⊕
n Mz on

⊕
n L2(Xn, µn,Hn), where Hn is an n-

dimensional Hilbert space and Mz is multiplication by f(z) = z. The Xn are
uniquely determined up to sets of T -measure zero, and the µn are unique up
to equivalence.

In connection with functional calculus, the following fact is significant. It
was first proved by B. Fuglede [Fug50] in the case M = N , and the general
result was obtained by C. Putnam [Put51]. The proof given here is from
[Ros58].

I.6.2.6 Theorem. Let T,M,N ∈ L(H), with M,N normal. If TM = NT ,
then TM∗ = N∗T .
Proof: If p is any polynomial with complex coefficients, then Tp(M) =
p(N)T , so for any λ ∈ C, Teiλ̄M = eiλ̄NT , i.e. T = e−iλ̄NTeiλ̄M . Thus, if
f(λ) = e−iλN∗

TeiλM∗
, f is an entire function from C to L(H), and we have

f(λ) = e−iλN∗
e−iλ̄NTeiλ̄MeiλM∗

= e−i(λN∗+λ̄N)Tei(λ̄M+λM∗).

But λN∗ + λ̄N and λ̄M + λM∗ are self-adjoint for all λ, and thus f(λ) =
U(λ)TV (λ), where U(λ), V (λ) are unitary. Thus ‖f(λ)‖ is constant, and there-
fore f is constant by Liouville’s Theorem. So 0 = f ′(0) = −iN∗T + iTM∗.

I.6.2.7 Corollary. [Fuglede] If T,N ∈ L(H), N is normal, and T com-
mutes with N , then T commutes with N∗ (alternatively, T ∗ commutes with
N).
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I.6.2.8 Corollary. If T,N ∈ L(H), N is normal, T commutes with N ,
and f is a bounded Borel function on σ(N), then T and T ∗ commute with
f(N).

In particular, under the hypotheses, if N = U |N | is the polar decomposi-
tion, then T (and also T ∗) commutes with Re(N), Im(N), U , and |N |.

I.7 Unbounded Operators

It is beyond the scope of this volume to give a complete treatment of un-
bounded operators. However, at some points in the theory of von Neumann
algebras, it is very useful to work with unbounded operators, so we briefly
discuss the parts of the theory relevant to our applications.

I.7.1 Densely Defined Operators

I.7.1.1 Definition. Let H be a Hilbert space. A partially defined operator
on H with domain D consists of (1) a subspace D of H and (2) a linear
transformation T : D → H. A densely defined operator on H with domain D
is a partially defined operator on H whose domain D is dense in H.

One can also consider partially defined operators on real Hilbert spaces,
or conjugate-linear partially defined operators on (complex) Hilbert spaces.

A partially defined operator (or densely defined operator) may be bounded
or unbounded. We will be almost exclusively concerned with densely defined
operators.

Note that the specification of the domain is a very important part of the
definition of a partially defined operator (we usually write D(T ) for the do-
main of T ). We will sometimes omit explicit specification of the domain where
the omission should cause no confusion (as long as the need to specify the do-
main is kept in mind). Thus a partially defined operator on H is technically
not an operator on H in the sense of I.2.1.1 (sometimes called an everywhere
defined operator) in general. A bounded densely defined operator on H ex-
tends uniquely to a bounded (everywhere defined) operator on H, but we will
distinguish between the operator and its extension.

I.7.1.2 If S, T are partially defined operators on H, we say S = T if D(S) =
D(T ) and S = T on D(S); we say S ⊆ T if D(S) ⊆ D(T ) and S = T on D(S)
(T is called an extension of S). Define algebraic operations by letting S + T
be the partially defined operator whose domain is D(S + T ) = D(S) ∩ D(T )
and which is S + T on D(S + T ); ST is the partially defined operator whose
domain is

D(ST ) = {ξ ∈ H : ξ ∈ D(T ), T ξ ∈ D(S)}
and which is ST on D(ST ). Thus a sum or product of densely defined op-
erators is not necessarily densely defined. If T is a partially defined operator
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on H and S ∈ L(H), then S + T and ST have the same domain as T (but
TS may have a different domain, and need not be densely defined if T is).
If R,S ∈ L(H), then TR + TS ⊆ T (R + S), but equality does not hold in
general (e.g. if S = −R). We do always have (R + S)T = RT + ST .

One must be careful in defining commutation relations among partially
defined operators: ST = TS implies D(ST ) = D(TS). This is a very strong
requirement: T does not even commute with the 0 operator in this sense unless
T is everywhere defined. A more useful notion if S is bounded is:

I.7.1.3 Definition. Let T be a partially defined operator on H, and S ∈
L(H). Then S and T are permutable if ST ⊆ TS. More generally, if S ⊆ L(H),
T is permutable with S if T is permutable with every S ∈ S. In this case, we
say T is affiliated with S ′, written T ∼ S ′.

If P is a projection in L(H) which is permutable with T , then PTP ⊆
(TP )P = TP , but TP and PTP have the same domain, so TP = PTP . Also,

D((I − P )T ) = D(T ) = D(T − TP ) ⊆ D(T (I − P ))

and
(I − P )Tξ = Tξ − PTξ = Tξ − TPξ = T (I − P )ξ

for ξ ∈ D(T ), so (I−P )T ⊆ T (I−P ) and therefore T (I−P ) = (I−P )T (I−P ),
and hence P reduces T , i.e. both P and I − P map D(T ) into itself, T maps
PD(T ) and (I−P )D(T ) into themselves, and T = PTP +(I−P )T (I−P ) (in
the strict sense). Conversely, if P reduces T in this sense, then P is permutable
with T .

I.7.1.4 If T is a partially defined operator on H which is one-to-one on
D(T ), then there is an “inverse” T−1 with domain D(T−1) = R(T ); T−1T
and TT−1 are the identity maps on D(T ) and R(T ) respectively. If S and T
are both one-one on their domains with “inverses” S−1 and T−1, then ST is
one-one on its domain and its “inverse” (ST )−1 is precisely T−1S−1.

I.7.1.5 If T is a densely defined operator on H, then a core for T is a
subspace D of D(T ) such that the graph Γ(T |D) is dense in the graph Γ(T )
(viewed as subspaces of H ⊕H). A core for T is obviously a dense subspace
of D(T ); note, however, that if T is unbounded and D is a dense subspace of
D(T ), then the graph of T |D is not in general dense in the graph of T , even if
T is self-adjoint (I.7.3.2), so the notion of core is more restrictive than just a
dense subspace of D(T ). If T is a set of densely defined operators, then a core
for T is a subspace D of D(T ) =

⋂
T∈T D(T ) which is simultaneously a core

for each T ∈ T . (If T has a core, then D(T ) is dense, but the converse is not
true in general.) The notion of a core as a common domain for the operators
in T is a useful one, even for a single operator, since there is often a dense
proper subspace of D(T ) on which T is simpler to describe than on all of D(T )
(e.g. I.7.4.7).
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I.7.2 Closed Operators and Adjoints

A partially defined operator is not continuous unless it is bounded. But there
is a vestige of continuity in an important class of operators:

I.7.2.1 Definition. A densely defined operator T on H is closed if its graph
Γ(T ) is closed in H×H. A densely defined operator T is closable (or preclosed)
if T has a closed extension, i.e. if the closure of Γ(T ) is the graph of a (densely
defined) operator (called the closure of T ).

An everywhere defined closed operator is bounded by the Closed Graph
Theorem. Conversely, a bounded densely defined operator is closable, and
its closure is its unique everywhere defined extension. We will only consider
closed (or sometimes closable) operators.

If T is closed and S ∈ L(H), then S + T is closed. If T is closed and one-
to-one with dense range, then T−1 is also closed. If T is closed and bounded
below on D(T ), then R(T ) is closed.

Closable operators have a nice alternate characterization in terms of ad-
joints.

I.7.2.2 Definition. Let T be a densely defined operator on H. The adjoint
T ∗ of T is the partially defined operator defined as follows. The domain D(T ∗)
is the set of η ∈ H for which there is a (necessarily unique) vector ζ ∈ H such
that 〈ξ, ζ〉 = 〈Tξ, η〉 for all ξ ∈ D(T ) (i.e. η ∈ D(T ∗) if and only if the linear
functional ξ �→ 〈Tξ, η〉 is bounded on D(T ) and thus extends to a bounded
linear functional on H.) Set T ∗η = ζ.
A densely defined operator T is adjointable if D(T ∗) is dense in H.

If T is densely defined and bounded, then T ∗ is everywhere defined and
bounded, and is the usual adjoint of the closure of T . If T is a densely defined
operator on H, then R(T )⊥ ⊆ D(T ∗) and is the null space of T ∗. If S, T are
densely defined operators and S ⊆ T , then T ∗ ⊆ S∗ (so if T is adjointable, so
is S). If T is adjointable, then T ∗ is also adjointable and (T ∗)∗ ⊇ T .

If T is adjointable, then it is easily seen that T ∗ is closed. Thus, if T is
adjointable, then it is closable ((T ∗)∗ is a closed extension). The converse is
also true:

I.7.2.3 Proposition. Let T be a densely defined operator on H. Then T
is closable if and only if T is adjointable. If T is closable, then (T ∗)∗ is the
closure of T .
Proof: It suffices to show that if T is closed, then T is adjointable and
(T ∗)∗ = T . Let V be the unitary operator on H ⊕ H defined by V (ξ, η) =
(η,−ξ). V 2 = −I, and Γ(S∗) = [V Γ(S)]⊥ for any densely defined operator S
on H, and in particular Γ(T ∗) = [V Γ(T )]⊥. So, since V is unitary,

V Γ(T ∗) = [V 2Γ(T )]⊥ = Γ(T )⊥



30 I Operators on Hilbert Space

[V Γ(T ∗)]⊥ = Γ(T )⊥⊥ = Γ(T )

since T is closed. If η ∈ D(T ∗)⊥, then (0, η) ∈ [V Γ(T ∗)]⊥ = Γ(T ), so η = 0 and
D(T ∗) is dense. Furthermore, setting S = T ∗ above, Γ((T ∗)∗) = [V Γ(T ∗)]⊥ =
Γ(T ), (T ∗)∗ = T .

I.7.2.4 Proposition. Let T be a closed operator on H which is one-to-one
with dense range, and let T−1 be its “inverse,” with domain R(T ) (so T−1 is
closed). Then T ∗ is one-one with dense range and (T ∗)−1 = (T−1)∗.
Proof: Since N (T ∗) = R(T )⊥ and R(T ∗)⊥ = N (T ), T ∗ is one-one with
dense range. Let U be the unitary in L(H × H) defined by U(ξ, η) = (η, ξ),
and let V be as in the proof of I.7.2.3. U2 = I and UV = −V U . Then
Γ(T−1) = UΓ(T ), and

Γ((T−1)∗) = [V Γ(T−1)]⊥ = [V UΓ(T )]⊥ = [UV Γ(T )]⊥

= UΓ(T ∗) = Γ((T ∗)−1).

I.7.2.5 Definition. Let T be a densely defined operator on H. The spec-
trum σ(T ) is the complement of the set of λ ∈ C such that T−λI is one-to-one
on D(T−λI) = D(T ) with dense range, and (T−λI)−1 is bounded (i.e. T−λI
is bounded below on D(T ) with dense range).

The spectrum of an unbounded densely defined operator need not be
closed, bounded, or nonempty in general. If T is closed and T −λI is bounded
below, then T − λI has closed range; hence if λ /∈ σ(T ), then the range of
T − λI is all of H.

I.7.2.6 The results of this section hold also for densely defined operators on
real Hilbert spaces, or conjugate-linear densely defined operators on (complex)
Hilbert spaces, using the same arguments as in the bounded case (I.2.3.3).

I.7.3 Self-Adjoint Operators

I.7.3.1 Definition. Let T be a densely defined operator on H. Then T is
symmetric if T ⊆ T ∗, and T is self-adjoint if T = T ∗.

A symmetric operator is closable (its closure is also symmetric) and a self-
adjoint operator is closed. (Note, however, that the adjoint of a symmetric
operator is not symmetric in general.)

I.7.3.2 Examples. Let D2 be the set of f ∈ L2[0, 1] such that f is absolutely
continuous and f ′ ∈ L2[0, 1],

D1 = {f ∈ D2 : f(0) = f(1)}



I.7 Unbounded Operators 31

D0 = {f ∈ D2 : f(0) = f(1) = 0}.
Then D0 is dense in L2[0, 1], and Dk has codimension one in Dk+1 (k = 0, 1).
Let Tk be defined by Tkf = f ′ with domain Dk (k = 0, 1, 2). Then each Tk

is closed, T1 is self-adjoint, and T ∗
0 = T2, so T0 is closed and symmetric, but

not self-adjoint. D0 is dense in D(T1), but Γ(T0) is not dense in Γ(T1). (D2

with its inner product inherited from its natural identification with Γ(T2) is
the first Sobolev space.)

There exist closed symmetric operators with no self-adjoint extension (e.g.
the inverse Cayley transform of the unilateral shift). On the other hand, a
symmetric operator can have more than one self-adjoint extension, and they
can be essentially different (e.g. different spectra).

I.7.3.3 If T is symmetric, then 〈Tξ, ξ〉 ∈ R for all ξ ∈ D(T ). Thus, if T
is symmetric and λ ∈ C \ R, then T − λI is bounded below by |Im(λ)| and
hence is one-to-one and (T −λI)−1 is bounded. If T is closed and symmetric,
then T − λI is closed and bounded below and hence has closed range. If T is
self-adjoint, then (T −λI)∗ = T − λ̄I is also one-to-one, so R(T −λI) is dense
in H and therefore equal to H since it is closed; thus (T −λI)−1 is everywhere
defined and bounded. So, if T is self-adjoint, σ(T ) ⊆ R. Conversely, if T is
closed and symmetric and R(T − λI) is dense for some λ ∈ C \ R, then T is
self-adjoint.

The next proposition is an immediate corollary of I.7.2.4.

I.7.3.4 Proposition. Let T be a self-adjoint densely defined operator on
H which is one-one on D(T ) with dense range. Then the “inverse” T−1, with
domain R(T ), is self-adjoint.

I.7.3.5 Theorem. Let T be a closed operator on H. Then T ∗T is densely
defined and self-adjoint; I + T ∗T maps D(T ∗T ) one-to-one onto H, and
(I + T ∗T )−1 and T (I + T ∗T )−1 are everywhere defined, bounded, and of
norm ≤ 1, and (I + T ∗T )−1 ≥ 0. Also, D(T ∗T ) = R((I + T ∗T )−1).
Proof: Let V ∈ L(H × H) be as in the proof of I.7.2.3. Then Γ(T ) =
[V Γ(T ∗)]⊥, so if ζ ∈ H there are unique ξ ∈ D(T ) and η ∈ D(T ∗) such
that (ζ, 0) = (ξ, T ξ) + (T ∗η,−η), i.e. ζ = ξ + T ∗η, 0 = Tξ − η (so η = Tξ),
and

‖ξ‖2 + ‖η‖2 ≤ ‖ξ‖2 + ‖Tξ‖2 + ‖T ∗η‖2 + ‖η‖2 = ‖ζ‖2.

Set Rζ = ξ and Sζ = η. Then R and S are everywhere defined and bounded,
with ‖R‖, ‖S‖ ≤ 1, and R + T ∗S = I and TR − S = 0, so S = TR and

(I + T ∗T )R = I.

In particular, TR, T ∗S = T ∗TR, and (I +T ∗T )R are everywhere defined, i.e.
R(R) ⊆ D(T ∗T ). If ξ ∈ H, then
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〈Rξ, ξ〉 = 〈Rξ, (I + T ∗T )Rξ〉 = 〈Rξ,Rξ〉 + 〈TRξ, TRξ〉 ≥ 0

and thus R ≥ 0. R is clearly one-to-one and hence has dense range (I.7.1.1), so
T ∗T is densely defined. I + T ∗T is clearly one-to-one on its domain D(T ∗T ),
and hence has an “inverse” defined on its range. From (I + T ∗T )R = I, the
range of I + T ∗T is all of H, and therefore (I + T ∗T )−1 is defined everywhere
and equals R. Since R is self-adjoint, its “inverse” I + T ∗T is self-adjoint by
I.7.3.4, and hence T ∗T is also self-adjoint; and D(T ∗T ) = D(I+T ∗T ) = R(R).

Note that D(T ∗T ) is a proper subset of D(T ) in general (D(T ∗T ) is a core
for T ).

I.7.3.6 Many aspects of the theory of unbounded operators are somewhat
counterintuitive. For example, if S and T are closed densely defined operators
with S ⊆ T , then it is not true in general that S∗S ⊆ T ∗T (indeed, since both
are self-adjoint, it would follow that S∗S = T ∗T ). In fact, if T0, T1, and T2

are as in I.7.3.2, then T0 ⊆ T1 ⊆ T2, but T ∗
0 T0, T ∗

1 T1, and T ∗
2 T2 = T0T

∗
0 all

have incomparable domains, although they all agree on the intersection of the
domains, which is a dense subspace of L2[0, 1].

I.7.3.7 A densely defined operator S is positive if S is self-adjoint and
〈Sξ, ξ〉 ≥ 0 for all ξ ∈ D(S) (the first condition does not follow from the
second in the unbounded case). From I.7.3.5, if T is a closed operator, then
T ∗T is positive. If S is positive, then σ(S) ⊆ [0,∞).

I.7.4 The Spectral Theorem and Functional Calculus
for Unbounded Self-Adjoint Operators

I.7.4.1 The simplest route to the Spectral Theorem for unbounded self-
adjoint operators, and the approach taken by von Neumann in his original
work [vN30a], is via the Cayley transform. For t ∈ R, set c(t) = t+i

t−i . Then c

maps R one-one onto T \ {1}, and c−1(λ) = iλ+1
λ−1 .

If T is a self-adjoint operator on H, let

c(T ) = (T + iI)(T − iI)−1.

Then T + iI and T − iI map D(T ) one-one onto H (I.7.3.3), so c(T ) maps H
one-one onto H. Also, for ξ ∈ D(T ), a simple computation shows that

‖(T + iI)ξ‖ = ‖(T − iI)ξ‖

so c(T ) is unitary. We also have that 1 is not an eigenvalue of c(T ). Conversely,
if U is a unitary for which 1 is not an eigenvalue, so that U − I is one-to-one,
then U − I has dense range (I.7.1.1) and it is easily verified that

c−1(U) = i(U + I)(U − I)−1
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is a self-adjoint operator with domain R(U − I). If 1 /∈ σ(U), then c−1(U)
is everywhere defined and bounded. We have that c−1(c(T )) = T and
c(c−1(U)) = U ; c(T ) is permutable with T , and commutes with any S ∈ L(H)
which is permutable with T .

I.7.4.2 Definition. The operator c(T ) is the Cayley transform of T , and
c−1(U) is the inverse Cayley transform of U .

If E is a spectral projection of c(T ) corresponding to a Borel subset A of
T, then E is permutable with T ; in fact, EU is a unitary on EH, and it is
easily verified that c−1(EU), which is a self-adjoint operator on EH, agrees
with T |EH. Furthermore, E commutes with any bounded operator which is
permutable with T .

I.7.4.3 Definition. E is called the spectral projection for T corresponding
to B = c−1(A), denoted EB(T ).

I.7.4.4 If A is bounded away from 1, so that B = c−1(A) is a bounded
subset of R, then T |EH is bounded, and its spectrum is contained in B̄; and
if F is the spectral projection for c(T ) corresponding to A′ ⊆ A, then F is
the spectral projection in the usual sense for T |EH corresponding to c−1(A′).
Thus, if we set Eλ(T ) = Ec((−∞,λ))(U), we can by the ordinary Spectral
Theorem (I.6.1.4) write T |EH =

∫
B

λ dE(λ).
A byproduct of this argument is that

σ(T ) ∩ [−n, n] = σ(T |E[−n,n](T )H)

is closed for each n, so σ(T ) is closed in R.
So if (An) is an increasing sequence of Borel subsets of T \ {1}, each

bounded away from 1, with ∪An = T \ {1}, so that Bn = c−1(An) is an
increasing sequence of bounded Borel subsets of R with ∪Bn = R, and En =
EAn

(U) = EBn
(T ), then H0 = ∪EnH is dense in H, and is a core for T , i.e.

T is the closure of T |H0 . So we obtain:

I.7.4.5 Theorem. [Spectral Theorem for Unbounded Self-Ad-
joint Operators] Let T be a self-adjoint (densely defined) operator on a
Hilbert space H. Then there is a projection-valued measure {EB} on the Borel
subsets of R, consisting of projections permutable with T and commuting with
all bounded operators permutable with T , for which

T =
∫ ∞

−∞
λ dE(λ)

where the integral can be interpreted as an “improper Riemann integral” (in
the precise sense described above).

Just as in the bounded case, there is a notion of “T -almost everywhere”: a
Borel subset B of R has T -measure 0 if EB(T ) = 0. The complement of σ(T )
has T -measure 0.
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I.7.4.6 We can define functional calculus in analogy with the bounded case.
Let f : R → C be Borel measurable. We want to define f(T ) for a self-adjoint
T . f(T ) should be an operator which can be symbolically written

f(T ) =
∫ ∞

−∞
f(λ) dE(λ)

so we must properly interpret this expression; the only difficulty is with find-
ing the right domain. Let (Bn) be an increasing sequence of bounded Borel
subsets of R such that f is bounded on each Bn and ∪Bn = R, and let
En = EBn

(T ). Then f(T |EnH) =
∫

Bn
f(λ) dE(λ) in the usual sense (I.6.2.4),

and f(T |En+1H) agrees with f(T |EnH) on EnH, so this family defines a densely
defined operator f(T )0 with domain H0 = ∪EnH. (f(T )0)∗ ⊇ f̄(T )0, so f(T )0
is closable.

I.7.4.7 Definition. f(T ) is the closure of f(T )0.
The domain H0, and therefore the operator f(T )0, depends on the choice

of the En, but f(T ) is independent of the choice of the En. If T is bounded and
f is bounded on σ(T ), then f(T ) agrees with the usual definition. Functional
calculus has the following properties:

(i) If f = g T -a.e. (in particular, if f = g on σ(T )), then f(T ) = g(T ).
(ii) f(T )∗ = f̄(T ); in particular, f(T ) is self-adjoint if (and only if) f is

real-valued T -a.e.
(iii) f(T ) is bounded if (and only if) f is bounded T -a.e.; if f is bounded,

f(T ) is normal and ‖f(T )‖ is the T -essential supremum of f .
(iv) f(T ) is positive if (and only if) f ≥ 0 T -a.e.
(v) f(T ) is unitary if (and only if) |f | = 1 T -a.e.
(vi) If (fn) is a uniformly bounded sequence of functions converging pointwise

T -a.e. to f , then fn(T ) → f(T ) strongly.

Proof of (vi): Suppose |fn(t)| ≤ K for all n and t. For each m and k, let

Bm,k = {t : |fn(t) − f(t)| ≤ 1/m for all n ≥ k}

and Em,k = EBm,k
(T ). For fixed m, R\∪kBm,k has T -measure 0; so ∪kEm,kH

is dense in H. Thus, if ξ ∈ H, there is a k and η ∈ Em,kH with ‖ξ−η‖ ≤ 1/m,
and then

‖(fn(T ) − f(T ))ξ‖ ≤ ‖fn(T )(ξ − η)‖
+ ‖(fn(T ) − f(T ))η‖ + ‖f(T )(η − ξ)‖ ≤ 2K + 1

m

for all n ≥ k.
Note that the exact domain of f(T ) is rather subtle; the domain in general

depends on f , and need not contain or be contained in D(T ). However, if {fk}
is a countable set of functions, then there is a core for {fk(T )} which is also
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a core for T , namely ∪EBn
(T )H, where (Bn) is an increasing sequence of

bounded Borel sets on which each of the fk are individually bounded, and
such that R \ ∪Bn has T -measure 0.

This functional calculus procedure also works, and is interesting, for un-
bounded Borel functions of bounded self-adjoint operators, and can be ex-
tended to unbounded functions of bounded normal operators.

I.7.4.8 An important special case of functional calculus is to define T+,
T−, and |T | for a self-adjoint operator T . These are positive operators. In
addition, if T is positive, then Tα can be defined for any α > 0, and in
particular for α = 1/2. Thus every positive operator has a square root. We
have that |T | = (T 2)1/2 for any self-adjoint T .

I.7.4.9 If T is a closed operator, then there is a partial isometry V from
[R(T ∗)]− to [R(T )]− such that T = V |T | = |T ∗|V . (In particular, D(|T |) =
D(T ).) The proof consists of taking a dense subspace H0 of H as above, using
spectral projections for T ∗T , and then noting that ‖|T |ξ‖ = ‖Tξ‖ for ξ ∈ H0

just as in the bounded case. Thus there is polar decomposition for closed
operators. As in I.5.2.6, polar decomposition also works for closed conjugate-
linear operators.

Note that if S and T are closed operators with S ⊆ T , then

D(|S|) = D(S) ⊆ D(T ) = D(|T |)

but usually |S| �⊆ |T | (I.7.3.6). For example, if T0, T1 are as in I.7.3.2, then
|T0| has dense range since T0 is one-to-one, but |T1| does not have dense range.

Finally, there is a more nontrivial application of functional calculus which
is very important. Let H be a self-adjoint operator on H, and for t ∈ R

set Ut = eitH . Then Ut is unitary, Us+t = UsUt, and t �→ Ut is strongly
continuous ((Ut) is a strongly continuous one-parameter group of unitaries).
The map t �→ Ut is norm-continuous if and only if H is bounded. The converse
is also true [Sto32]:

I.7.4.10 Theorem. [Stone] Let (Ut) be a strongly continuous one-para-
meter group of unitaries on H. Then there is a unique self-adjoint operator
H on H, called the generator of the group, such that Ut = eitH for all t. The
domain of H consists of all vectors ξ for which limt→0 t−1(Ut− I)ξ exists, and
Hξ is this limit.

In fact, if (αt) is a strongly continuous one-parameter automorphism group
of L(H), then there is such a group of unitaries such that αt = adUt, i.e.
there is a unique (up to adding a scalar) self-adjoint operator H such that
αt(T ) = eitHTe−itH for all t ∈ R and T ∈ L(H).



36 I Operators on Hilbert Space

I.8 Compact Operators

Some of the simplest, yet most important, classes of operators are the compact
operators (often called completely continuous operators, particularly in earlier
references), and the subclasses of finite-rank, trace-class, and Hilbert-Schmidt
operators.

I.8.1 Definitions and Basic Properties

I.8.1.1 Definition. Let X and Y be Banach spaces. An operator T : X →
Y is compact if T sends bounded subsets of X to precompact subsets of Y.

In other words, if B is a bounded subset of X , then T (B) is a compact
subset of Y. Equivalently, whenever (ξn) is a bounded sequence of vectors in
X , then (Tξn) has a convergent subsequence.

I.8.1.2 It is obvious that a compact operator is bounded, and the compo-
sition (in either order) of a compact operator with a bounded operator is
compact. It is easily seen that a norm-limit of compact operators is compact.
The set of compact operators from X to Y, denoted K(X ,Y), is a closed
subspace of L(X ,Y); K(H) = K(H,H) is a closed two-sided ideal in L(H).

If X is a Hilbert space (or, more generally, a reflexive Banach space),
T ∈ K(X ,Y), and B is the closed unit ball of X , then it follows from I.1.3.2
and I.2.1.2 that T (B) is already closed and therefore compact.

I.8.1.3 Examples.

(i) Any finite-rank bounded operator is compact. Conversely, if T ∈ L(X ,Y)
is compact and bounded below, then X is finite-dimensional.

(ii) Let X and Y be measure spaces, and k ∈ L2(X × Y ). Define an operator
T : L2(X) → L2(Y ) by (Tf)(y) =

∫
X

k(x, y)f(x) dx. T is a compact
operator, called the integral kernel operator with kernel k. (In fact, T is
a Hilbert-Schmidt operator (I.8.5)).

A straightforward exercise shows:

I.8.1.4 Proposition. Let X ,Y,Z be Banach spaces, T ∈ L(X ,Y) compact,
and (Si) a uniformly bounded net of elements of L(Y,Z) converging strongly
to S. Then SiT → ST in norm.

I.8.1.5 If Y is a Hilbert space and {ηi : i ∈ Ω} an orthonormal basis, for a
finite subset F ⊆ Ω let PF be the projection onto the span of {ηi : i ∈ F}.
Then PF is a finite-rank projection, and PF → I strongly. So if T ∈ L(X ,Y)
is compact, then PF T → T in norm, i.e. T is a norm-limit of finite-rank
operators. [This can fail if Y is not a Hilbert space [Enf73].] Thus K(X ,Y) is
precisely the norm-closure of the set C(X ,Y) of bounded finite-rank operators.

As a corollary, the adjoint of a compact operator is compact. If T is com-
pact, T ∗T is too and so is f(T ∗T ) for any continuous function f vanishing at
0. In particular, |T | = (T ∗T )1/2 is compact.
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I.8.2 The Calkin Algebra

I.8.2.1 Since K(H) is a closed ideal in L(H) for a Hilbert space H (assumed
infinite-dimensional), we may form the quotient Banach algebra Q(H) =
L(H)/K(H), called the Calkin algebra of H. The term “Calkin algebra” with-
out further qualification will mean the Calkin algebra of a separable, infinite-
dimensional Hilbert space. We usually denote the quotient map from L(H) to
Q(H) by π.

Since K(H) is self-adjoint, the involution T �→ T ∗ on L(H) drops to a
well-defined involution on Q(H). Actually, Q(H) is a C*-algebra (II.5.1.1).

Thus all the properties and constructions for general Banach algebras, or
C*-algebras, are valid for Q(H); see Chapter 2. In this chapter we will need to
use only the elementary fact that the group of invertible elements in a unital
Banach algebra is open and contains the open ball of radius 1 around the
identity (II.1.3).

I.8.2.2 If T ∈ L(H), we define the essential spectrum σe(T ) to be the spec-
trum of π(T ) in Q(H), i.e.

σe(T ) = {λ ∈ C : π(T − λI) is not invertible in Q(H)}

Clearly σe(T ) ⊆ σ(T ), and in fact σe(T ) ⊆ ∩K∈K(H)σ(T + K) (the inclusion
is proper in general). By II.1.4.2, σe(T ) is a nonempty compact subset of C.

I.8.3 Fredholm Theory

The theory of Fredholm operators and Fredholm index is not only important
for applications, but (in retrospect) was a pioneering example of bringing
algebraic topology into the theory of operator algebras (cf. II.8.4.32, II.8.4.36).
In fact, it was one of the first examples of the process called “noncommutative
topology,” which underlies much of the modern theory of operator algebras.

I.8.3.1 Definition. Let X and Y be Banach spaces and T ∈ L(X ,Y). Then
T is a Fredholm operator if N (T ) is finite-dimensional and R(T ) has finite
codimension. The index of T is dim N (T ) − codim R(T ).

I.8.3.2 It follows easily from the Open Mapping Theorem that the range
of a Fredholm operator is automatically closed. Thus, if X and Y are Hilbert
spaces (the only situation we will consider), then T ∈ L(X ,Y) is Fredholm
if and only if R(T ) is closed and N (T ) and N (T ∗) are finite-dimensional,
and then index(T ) = dim N (T ) − dim N (T ∗). If T is Fredholm, then
T is bounded below on N (T )⊥; it follows that T ∗ is also Fredholm, and
index(T ∗) = −index(T ).
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I.8.3.3 Examples.

(i) If X and Y are finite-dimensional, then every operator from X to Y is
Fredholm with index dim X − dim Y.

(ii) If T is invertible, then T is Fredholm with index 0.
(iii) Let S be the unilateral shift (I.2.4.3). Then S is Fredholm with index

−1. Sn is Fredholm with index −n, and (S∗)n is Fredholm with index n.

The parts of the following proposition are easy consequences of the defin-
ition of a compact operator.

I.8.3.4 Proposition. Let H be a Hilbert space, T ∈ K(H), and λ ∈ C,
λ �= 0. Then

(i) N (T − λI) is finite-dimensional.
(ii) T −λI is bounded below on N (T −λI)⊥, and hence R(T −λI) is closed.
(iii) There is an n such that N ((T − λI)n) = N ((T − λI)n+1) [T − λI has

finite ascent .] The smallest such n is called the ascent of T − λI.

Applying the proposition to both T −λI and T ∗ − λ̄I = (T −λI)∗, we see
that

I.8.3.5 Corollary. Let H be a Hilbert space, T ∈ K(H), and λ ∈ C,
λ �= 0. Then

(i) T − λI is Fredholm.
(ii) There is an m such that R((T − λI)m) = R((T − λI)m+1) [T − λI has

finite descent .]

The next theorem [Atk53] gives a useful alternate characterization of Fred-
holm operators.

I.8.3.6 Theorem. [Atkinson] Let H be an infinite-dimensional Hilbert
space and π : L(H) → Q(H) = L(H)/K(H) the quotient map onto the Calkin
algebra of H. Then T ∈ L(H) is Fredholm if and only if π(T ) is invertible in
Q(H).
Proof: If T is Fredholm, then T is bounded below on N (T )⊥, so there is an
S ∈ L(H) mapping R(T ) to N (T )⊥ and zero on R(T )⊥ = N (T ∗), such that
ST = I − PN (T ) and TS = I − PN (T∗) (S is called a quasi-inverse for T ; we
have TST = T and STS = S). Thus π(S) is an inverse for π(T ).

Conversely, suppose π(T ) is invertible in Q(H), and let S ∈ L(H) such
that π(S) = π(T )−1. Then ST = I + K, TS = I + L for K,L ∈ K(H).
N (T ) ⊆ N (ST ) which is finite-dimensional by I.8.3.5; R(T ) ⊇ R(TS) has
finite codimension by I.8.3.2.
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I.8.3.7 Corollary.

(i) If S and T are Fredholm and K ∈ K(H), then ST and T +K are Fredholm.
(ii) The set F(H) of Fredholm operators on H is open.

The most important basic facts about the index function are:

I.8.3.8 Theorem. Let H be a Hilbert space.

(i) If S, T ∈ F(H), then index(ST ) = index(S) + index(T ).
(ii) The index is locally constant on F(H), and hence constant on connected

components (path components) of F(H).
(iii) If T ∈ F(H) and K ∈ K(H), then index(T + K) = index(T ).

The proof of (i) is a straightforward but moderately involved calculation,
and (ii) is a simple consequence of (i) and the fact that the invertible operators
form an open set. For (iii), note that T and T + K are connected by the path
{T + tK : 0 ≤ t ≤ 1} in F(H).

If T is a Fredholm operator of index 0 and K is a one-one map of N (T )
onto R(T )⊥, then S = T − K is invertible. Thus we obtain:

I.8.3.9 Corollary. A Fredholm operator T has index 0 if and only if
T = S + K, where S is invertible and K ∈ K(H). (So, since K(H) and the
set of invertible elements in L(H) are connected, index maps the connected
components of F(H) one-one onto Z.) In particular, if T ∈ K(H) and λ ∈ C,
λ �= 0, then T − λI has index 0.

This last result is often stated in the following form, called the Fredholm
Alternative:

I.8.3.10 Corollary. If T ∈ K(H) and λ ∈ C, λ �= 0, then T − λI is
injective if and only if it is surjective. So if λ ∈ σ(T ), λ �= 0, then λ is an
eigenvalue of T .

So, under the hypotheses of the corollary, either the equation (T−λI)ξ = η
has a unique solution for every η, or the homogeneous equation (T −λI)ξ = 0
has a nontrivial (but finite-dimensional) space of solutions. This result, applied
to integral kernel operators, is important in the theory of differential and
integral equations.

I.8.3.11 If T ∈ K(H) and λ �= 0, and n > 0 is the ascent of T − λI
(I.8.3.4(iii)), let H0 = N ((T − λI)n), H1 = R((T − λI)n). Then H0 and H1

are complementary closed subspaces of H invariant under T −λI, (T −λI)|H0

is nilpotent, and (T −λI)|H1 is invertible. It follows that λ is an isolated point
of σ(T ). Thus σ(T ) consists of 0 and a (possibly finite) sequence of eigenvalues
converging to 0.
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I.8.3.12 If T ∈ L(H), then the essential spectrum σe(T ) (I.8.2.2) is

σe(T ) = {λ ∈ C : T − λI is not Fredholm}.
It is not difficult to see that

∩K∈K(H)σ(T + K) = {λ ∈ C : T − λI is not Fredholm of index 0}.
The index is constant on connected components of C \ σe(T ) and vanishes on
C \σ(T ) and, in particular, on the unbounded component of C \σe(T ). Thus,
if C \ σe(T ) is connected, we have σe(T ) = ∩K∈K(H)σ(T + K).

I.8.3.13 Let G be the group of invertible elements of Q(H), and Go the
connected component (path component) of the identity in G. I.8.3.8 implies
that index is a homomorphism from G/Go to the additive group Z. This map
is a special case of the connecting map in the six-term exact sequence of
K-theory (V.1.2.22) associated with the extension

0 → K(H) → L(H) → Q(H) → 0

and I.8.3.8 and I.8.3.9 imply that index is actually an isomorphism from
G/Go

∼= K1(Q(H)) onto Z ∼= K0(K(H)).

I.8.3.14 Many of the properties of Fredholm operators carry over to semi-
Fredholm operators. A bounded operator T on H is semi-Fredholm if T has
closed range and either N (T ) or N (T ∗) is finite-dimensional. The index of a
(non-Fredholm) semi-Fredholm operator is well defined as ±∞, and the index
is additive where well defined (note, however, that the product of a semi-
Fredholm operator of index +∞ and a semi-Fredholm operator of index −∞
is not semi-Fredholm in general.) A compact perturbation of a semi-Fredholm
operator is semi-Fredholm of the same index. A version of Atkinson’s theorem
holds: an operator is semi-Fredholm if and only if its image in the Calkin
algebra is left or right invertible.

I.8.3.15 Many of the results above, suitably restated, apply to Fredholm
operators between different spaces.

I.8.4 Spectral Properties of Compact Operators

Compact operators behave almost like finite-rank operators with regard to
spectral theory. The spectral theory of compact operators in its modern form
was developed by F. Riesz, following important contributions of Fredholm and
Hilbert.

I.8.4.1 By I.8.3.4, if T ∈ K(H), each nonzero point of σ(T ) is an eigenvalue
of T , the corresponding eigenspace is finite-dimensional, and the eigenvalues
form a finite set or a sequence converging to 0. (If T ∈ K(H)+, this also follows
from the Spectral Theorem: for each λ > 0 the spectral projection E(λ,∞)(T )
has finite rank, since T is bounded below on its range.)
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I.8.4.2 If T ∈ K(H), the nonzero eigenvalues of |T |, counted with multiplic-
ity, can thus be arranged in a decreasing sequence

(µ0(T ), µ1(T ), · · · )

called the characteristic list (or list of characteristic numbers) for T . (The
characteristic list is finite if and only if T is finite-rank, in which case it is
expanded into an infinite sequence by adding zeroes.) The characteristic lists
for T and T ∗ are the same. By I.2.6.10, µ0(T ) = ‖T‖. The characteristic list
is sometimes called the eigenvalue list of T , especially if T ≥ 0.

The n’th characteristic number µn(T ) can alternately be characterized as
the distance from T to the (closed) set Cn(H) of operators in L(H) of rank
≤ n (cf. [GKn69]). From this we get several useful properties such as

|µn(S) − µn(T )| ≤ ‖S − T‖

µn+m(S + T ) ≤ µn(S) + µm(T )

µn+m(ST ) ≤ µn(S)µmT.

Denote the partial sum
∑N−1

n=0 µn(T ) by σN (T ).

I.8.5 Trace-Class and Hilbert-Schmidt Operators

The trace of a finite-rank operator on a vector space is an important invariant
in many contexts. The notion of trace can be extended to certain infinite-
rank operators on Hilbert spaces, and this trace plays a crucial role in many
applications, often acting as a “noncommutative integral.”

I.8.5.1 Let H be a Hilbert space and 0 ≤ T ∈ L(H). We define the trace
Tr(T ) to be

∑
i〈Tξi, ξi〉 ∈ [0,∞], where {ξi} is an orthonormal basis for H.

If S ∈ L(H), then a simple calculation shows that Tr(SS∗) = Tr(S∗S);
so Tr(T ) is well defined independently of the choice of the orthonormal
basis and satisfies Tr(T ) = Tr(U∗TU) for any unitary U . Also, obviously
Tr(T ) ≥ ‖T‖, Tr(S + T ) = Tr(S) + Tr(T ) if S, T ≥ 0, and Tr(S) ≤ Tr(T )
if 0 ≤ S ≤ T . We have that Tr(T ) < ∞ if and only if T is compact and its
characteristic list (µ0(T ), µ1(T ), · · · ) satisfies

∑
n µn(T ) < ∞, in which case

Tr(T ) =
∑

n µn(T ).

I.8.5.2 Tr is lower semicontinuous on L(H)+. In fact, if (Tj) is a net in
L(H)+ converging weakly to T , then 〈Tjξi, ξi〉 → 〈Tξi, ξi〉 for each i, so
Tr(T ) ≤ lim infj Tr(Tj). (Tr is not continuous if H is infinite-dimensional,
however: if Pn is a rank n projection and Tn = 1

nPn, then Tn → 0 but
Tr(Tn) = 1 for all n.)
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I.8.5.3 Definition. If H is a Hilbert space, then

L1(H)+ = {T ∈ L(H)+ : Tr(T ) < ∞}.
The set of trace-class operators on H, denoted L1(H), is the linear span of
L1(H)+.

L2(H) = {T ∈ L(H) : T ∗T ∈ L1(H)}
is the set of Hilbert-Schmidt operators on H.

I.8.5.4 L1(H) is a *-subspace of K(H), and Tr extends to a well-defined pos-
itive linear functional on L1(H). A polarization argument shows that L1(H)
is a left ideal in L(H), and hence a two-sided ideal since it is *-closed. In
particular, using polar decomposition we see that T ∈ L1(H) if and only if
|T | ∈ L1(H)+. A similar calculation shows that Tr(ST ) = Tr(TS) for all
S ∈ L(H), T ∈ L1(H).

I.8.5.5 L2(H) is closed under addition since

(S + T )∗(S + T ) ≤ (S + T )∗(S + T ) + (S − T )∗(S − T ) = 2(S∗S + T ∗T )

for any S, T , and is thus a *-subspace of K(H). Since T ∗S∗ST ≤ ‖S‖2T ∗T
for any S, T , it follows that L2(H) is also a two-sided ideal in L(H), and from
the polarization identity

S∗T =
3∑

n=0

in(S − iT )∗(S − iT )

for any S, T we see that the product of any two elements of L2(H) is in L1(H).
Conversely, every element of L1(H) is such a product since

T ∈ L1(H) =⇒ |T | ∈ L1(H)+ =⇒ |T |1/2 ∈ L2(H)

so T = U |T | = (U |T |1/2)|T |1/2 is a product of two elements of L2(H). Since
S2 ≤ ‖S‖S for S ≥ 0, it follows that |T | and hence T are also in L2(H), i.e.
L1(H) ⊆ L2(H). We also have Tr(ST ) = Tr(TS) for all S, T ∈ L2(H).

As a result, 〈S, T 〉 = Tr(T ∗S) is an inner product on L2(H). The norm
‖T‖2 = [Tr(T ∗T )]1/2 satisfies ‖T‖2 ≥ ‖T‖, so L2(H) is complete (i.e. a Hilbert
space) under this norm. If S ∈ L(H), T ∈ L2(H), then ‖ST‖2 ≤ ‖S‖‖T‖2.

I.8.5.6 It follows from the CBS inequality on L2(H) that if S, T ∈ L1(H),

Tr(|S + T |) ≤ Tr(|S|) + Tr(|T |)
(even though it is not true that |S + T | ≤ |S| + |T | in general!) Thus ‖T‖1 =
Tr(|T |) is a norm on L1(H) satisfying ‖ST‖1 ≤ ‖S‖‖T‖1 for all S ∈ L(H),
T ∈ L1(H). Since ‖T‖1 ≥ ‖T‖, L1(H) is complete (i.e. a Banach space) under
‖ · ‖1.
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I.8.5.7 It is clear that if T ∈ K(H) with characteristic list (µ0(T ), µ1(T ), · · · ),
then

T ∈ L1(H) ⇐⇒
∑

µn(T ) < ∞
and ‖T‖1 =

∑
µn(T ). Similarly,

T ∈ L2(H) ⇐⇒
∑

µn(T )2 < ∞

and ‖T‖2 = (
∑

µn(T )2)1/2. It is also easily verified that if T ∈ L2(H) and
{ξi} is an orthonormal basis for H, then

‖T‖2 = (
∑

i,j

|〈Tξi, ξj〉|2)1/2,

i.e. if T is represented by an infinite matrix, ‖T‖2 is the l2-norm of the set of
entries of the matrix.

The ideal C(H) of finite-rank operators is dense in both L1(H) and L2(H)
in their respective topologies.

I.8.6 Duals and Preduals, σ-Topologies

The next theorem may be regarded as a noncommutative analog of the well-
known fact that the Banach space dual (co)∗ of the Banach space co of se-
quences of complex numbers converging to zero, with supremum norm, is iso-
metrically isomorphic to the space l1 of summable sequences with its natural
norm, and that the dual (l1)∗ is the Banach space l∞ of bounded sequences
with supremum norm, using the natural pairings.

I.8.6.1 Theorem.

(i) If H is a Hilbert space and φ is a bounded linear functional on the Ba-
nach space (K(H), ‖ · ‖), then there is a unique S ∈ L1(H) such that
φ(T ) = Tr(ST ); and ‖S‖1 = ‖φ‖. So the Banach space dual of K(H) is
isometrically isomorphic to L1(H).

(ii) If H is a Hilbert space and φ is a bounded linear functional on the Ba-
nach space (L1(H), ‖ · ‖1), then there is a unique S ∈ L(H) such that
φ(T ) = Tr(ST ); and ‖S‖ = ‖φ‖. So the Banach space dual of L1(H) is
isometrically isomorphic to L(H).

Thus the second dual of K(H) is L(H).

I.8.6.2 Definition. The σ-weak operator topology on L(H) is the weak-
* topology from the identification of L(H) with L1(H)∗, i.e. the topology
generated by the family of seminorms {ωT : T ∈ L1(H)}, where ωT (S) =
|Tr(ST )|.

The word “operator” is often omitted in the name.



44 I Operators on Hilbert Space

It is easily checked that the weak (weak operator) topology on L(H) is
the topology generated by the family of seminorms {ωT : T ∈ C(H)}, so the
σ-weak topology is slightly stronger than the weak topology. The topologies
coincide on bounded sets.

In fact, L1(H) is the unique Banach space X such that X ∗ is isometrically
isomorphic to L(H) (III.2.4.1). So the σ-weak topology is intrinsic to the
Banach space structure of L(H).

I.8.6.3 Proposition. The σ-strong operator topology on L(H) is the topol-
ogy of pointwise convergence as left multiplication operators on K(H), i.e.
Si → S σ-strongly if SiT → ST for all T ∈ K(H). The σ-strong topology is
generated by the family of seminorms {ρT : T ∈ K(H)}, where ρT (S) = ‖ST‖.

The σ-strong-* operator topology on L(H) is similarly the topology of
pointwise convergence as left or right multiplication operators on K(H), gen-
erated by the seminorms {λT , ρT : T ∈ K(H)}, where ρT is as above and
λT (S) = ‖TS‖. Thus the σ-strong and σ-strong-* topologies are intrinsic to
the Banach algebra structure of L(H).

The strong operator topology [resp. the strong-* topology] is generated
by the seminorms {ρT : T ∈ C(H)} [resp. {λT , ρT : T ∈ C(H)}], so the σ-
topologies are slightly stronger; they agree on bounded sets (I.8.1.4). The
σ-strong-* topology is the strict topology when L(H) is regarded as the mul-
tiplier algebra of K(H) (II.7.3).

I.8.6.4 Proposition. Let H and H′ be Hilbert spaces. Then the map

L(H) → L(H) ⊗ 1 ⊆ L(H⊗H′)

is a homeomorphism for either the σ-weak or σ-strong topologies.
The proof is a simple and straightforward calculation. (Roughly speaking,

it amounts to the fact that if H is infinite-dimensional and H′ is separable,
then K(H⊗H′) ∼= K(H).)

I.8.7 Ideals of L(H)

I.8.7.1 The smallest nonzero ideal (unless otherwise qualified, “ideal” will
mean “two-sided ideal”) of L(H) is C(H). This is seen most easily by noting
that every rank-one operator is of the form Θξ,η for vectors ξ, η ∈ H, where
Θξ,η(ζ) = 〈ζ, η〉ξ. TΘξ,η = ΘTξ,η and Θξ,ηT = Θξ,T∗η, so every nonzero ideal
contains all rank-one operators, which span the finite-rank operators. (If H is
finite-dimensional, of course, C(H) = L(H) is a simple algebra isomorphic to
Mn(C).)

K(H) is thus the smallest nonzero closed ideal in L(H).
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I.8.7.2 If H is separable and infinite-dimensional, then K(H) is the only
nontrivial closed ideal in L(H). If H is nonseparable, there are larger nontrivial
closed ideals, for example the set of operators with separable range. In fact,
if dim(H) = ℵα, α ≥ 0, then for each ordinal β ≤ α there is a closed ideal Kβ

consisting of the closure of the set of all operators for which the closure of the
range has dimension < ℵβ (if β > 0 and is not a supremum of a countable
number of strictly smaller ordinals, e.g. if β is not a limit ordinal, then it
is unnecessary to take closure here.) Then K0 = K(H), and K1 is the ideal
of operators with separable range. It is easily seen that every closed ideal of
L(H) is of this form (observe that every closed ideal of L(H) is generated by
projections), so the nontrivial closed ideals of L(H) form a chain {Kβ : 0 ≤
β ≤ α}.

Nonclosed Ideals

I.8.7.3 There are many nonclosed ideals of L(H) intermediate between C(H)
and K(H) (if H is infinite-dimensional). For example, there are L1(H) and
L2(H). More generally, if p ≥ 1, let

Lp(H) = {T : |T |p ∈ L1(H)}.
Then Lp(H) is exactly the set of elements of K(H) with characteristic list
(µ1(T ), µ2(T ), · · · ) satisfying

∑
µn(T )p < ∞; Lp(H) is an ideal, and has a

norm
‖T‖p = (‖|T |p‖1)1/p = (

∑
µn(T )p)1/p

making it a Banach space and satisfying ‖ST‖p ≤ ‖S‖‖T‖p for S ∈ L(H),
T ∈ Lp(H). If p, q ≥ 1, then Lp(H) ⊆ Lq(H) if and only if p ≤ q. Also, if
1
p + 1

q = 1, the product of an element S ∈ Lp(H) and Lq(H) is in L1(H)
and the pairing (S, T ) �→ Tr(ST ) identifies (Lp(H), ‖ · ‖p)∗ isometrically with
(Lq(H), ‖ · ‖q). These are called the Schatten ideals.

I.8.7.4 There are lots of other ideals. In fact, they can be characterized
by order ideals in the space c+

0 of decreasing sequences of nonnegative real
numbers converging to zero, hereditary subsets closed under (coordinatewise)
addition (informally, a set of all sequences going to zero at at least a cer-
tain rate); the ideal corresponding to an order ideal consists of all compact
operators whose characteristic lists are in the order ideal.

I.8.7.5 Particularly important are the symmetrically normed ideals, an ideal
J with a norm ‖ · ‖J satisfying ‖T‖J ≥ ‖T‖ (so J is complete with respect
to ‖ · ‖J , ‖ST‖J = ‖TS‖J ≤ ‖S‖‖T‖J for S ∈ L(H), T ∈ J . The Lp(H)
are examples of symmetrically normed ideals. Symmetrically normed ideals
are in one-one correspondence with norming functions on the space c+

00 of
decreasing sequences of nonnegative real numbers which are eventually 0: a
norming function is a function Φ : c+

00 → R satisfying Φ(αξ) = αΦ(ξ) for
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α ≥ 0, ξ ∈ c+
00, Φ(ξ + η) ≤ Φ(ξ) + Φ(η) for ξ, η ∈ c+

00, Φ(ξ) > 0 for ξ �= 0, and
Φ(η1) = 1, where ηn = (1, · · · , 1, 0, 0, · · · ) (n ones). Φ defines a norm on C(H)
by ‖T‖Φ = Φ((µn(T ))), and a “norm” on K(H) by ‖T‖Φ = sup ‖TP‖Φ, where
P runs over all finite-rank projections. Set

JΦ = {T ∈ K(H) : ‖T‖Φ < ∞}.
Then JΦ is a symmetrically normed ideal with norm ‖·‖Φ, and every symmetri-
cally normed ideal is of this form. (For example, for Lp(H), the corresponding
Φ is Φ((ξ1, ξ2, · · · )) = (

∑
ξp
n)1/p.) See [GKn69] for a full treatment.

I.8.7.6 Some other examples of symmetrically normed ideals, described in
detail in [GKn69] or [Con94], are the ideals L(p,q)(H) for 1 < p < ∞, 1 ≤ q ≤
∞, defined by interpolation theory. We describe only the ideals with q = 1 or
∞, in which case p can also be 1 or ∞. If p < ∞, the ideal L(p,1)(H), often
denoted Lp+(H), is the strong Lp space

L(p,1)(H) = {T ∈ K(H) :
∞∑

n=1

n1/p−1µn−1(T ) < ∞}

with norm ‖T‖p,1 =
∑

n1/p−1µn−1(T ). Note that L(1,1)(H) = L1(H). (More
generally, L(p,p)(H) = Lp(H) for any p.)

L(∞,1)(H) = {T ∈ K(H) :
∑ 1

n
µn−1(T ) < ∞}

with norm ‖T‖∞,1 =
∑

1
nµn−1(T ). The ideal L(∞,1)(H) is called the Macaev

ideal . The weak Lp spaces, denoted Lp−(H) or L(p,∞)(H), are the ideals which
for 1 < p < ∞ are given by

L(p,∞)(H) = {T ∈ K(H) : µn(T ) = O(n−1/p)}
with norm ‖T‖p,∞ = supN≥1 N1/p−1σN (T ). For p = 1 the definition is slightly
different:

L(∞,1)(H) = {T ∈ K(H) : σN (T ) = O(log N)}
with norm ‖T‖∞,1 = supN≥2

1
log N σn(T ). For completeness, we set L(∞,∞) =

L(H). Then we have that L(p,q)(H) ⊆ L(p′,q′)(H) if and only if p < p′ or
p = p′ and q ≤ q′.

Let L(p,q)
0 (H) be the closure of C(H) in L(p,q)(H). Then L(p,q)

0 (H) =
L(p,q)(H) if q < ∞;

L(1,∞)
0 (H) = {T ∈ K(H) : σN (T ) = o(log N)}

and L(∞,∞)
0 (H) = K(H). We have L(p,q)(H)∗ = L(p′,q′)(H) if 1 < p, q <

∞, 1
p + 1

p′ = 1, 1
q + 1

q′ = 1; if 1
p + 1

p′ = 1, then L(p,∞)
0 (H)∗ = L(p′,1)(H)

and L(p,1)(H)∗ = L(p′,∞)(H). L(1,∞)
0 (H)∗ = L(∞,1)(H) and L(∞,1)(H)∗ =

L(1,∞)(H). In each case, the pairing is the ordinary one: (S, T ) �→ Tr(ST ).
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I.8.7.7 There is an important class of functionals on L(1,∞)(H), called
Dixmier traces, defined for positive T by Trω(T ) = limω

1
log N σN (T ), where

limω is a suitable Banach limit. The technical details can be found in [Con94].
For any ω, Trω(ST ) = Trω(TS) for all S ∈ L(H), T ∈ L(1,∞)(H). The trace
Trω depends on the choice of ω, but there is a large class of operators called
measurable operators for which Trω(T ) is independent of ω. The elements of
L(1,∞)

0 (H) are measurable, and Trω vanishes on this ideal. Thus Trω is a trace
which is very different from the ordinary trace. There are other such traces,
but the Dixmier trace is particularly important in noncommutative geometry,
as described in [Con94].

I.9 Algebras of Operators

The main subject of this volume is the study of operator algebras. A (concrete)
operator algebra is a *-subalgebra of L(H) which is topologically closed in a
suitable sense (there is also a subject of non-self-adjoint operator algebras, but
it is outside the scope of this volume.) A concrete C∗-algebra is a *-subalgebra
of L(H) which is closed in the norm topology. An important example is K(H).
This example shows that a concrete C*-algebra need not be unital. A von
Neumann algebra is a (necessarily unital) *-subalgebra M of L(H) such that
M = M ′′. A von Neumann algebra is weakly (hence strongly, norm-, · · · )
closed (and in particular is a concrete C*-algebra, albeit of a very special
kind.)

I.9.1 Commutant and Bicommutant

One of the first, yet still one of the most crucial basic theorems of operator
algebra theory is von Neumann’s Bicommutant Theorem [vN30b]. We say a
*-algebra A of operators on a Hilbert space H acts nondegenerately if Tξ = 0
for all T ∈ A implies ξ = 0. Since A is a *-algebra, this is equivalent to the
condition that the subspace

AH = span{Tξ : T ∈ A, ξ ∈ H}
is dense in H. If I ∈ A, then A obviously acts nondegenerately.

I.9.1.1 Theorem. [Bicommutant] Let A be a *-subalgebra of L(H) acting
nondegenerately. Then A is σ-strongly dense in A′′.
Outline of Proof: Using I.2.5.4, the proof reduces to showing that if ξ ∈ H
and T ∈ A′′, there is a sequence (Tn) in A with Tnξ → Tξ. If X = {Sξ :
S ∈ A}−, then PX ∈ A′ (since both X and X⊥ are invariant under A), so T
commutes with PX , i.e. T leaves X invariant. It remains to show that ξ ∈ X ,
so that Tξ ∈ X . This is trivial if I ∈ A. In the general nondegenerate case,
for each S ∈ A,
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S[(I − PX )ξ] = (I − PX )[Sξ] = 0

since Sξ ∈ X , so (I − PX )ξ = 0.
The Bicommutant Theorem relates a topological closure property with the

simple, natural, and purely algebraic property of being the bicommutant (or
just commutant) of a *-closed set of operators.

I.9.1.2 Thus a unital (or just nondegenerate) *-subalgebra of L(H) is a von
Neumann algebra if and only if it is σ-strongly closed.

There is an important technical strengthening of the bicommutant theorem
[Kap51b]:

I.9.1.3 Theorem. [Kaplansky Density] Let A be a *-subalgebra of L(H)
acting nondegenerately. Then the unit ball of A [resp. Asa] is σ-strongly dense
in the unit ball of A′′ [resp. A′′

sa].
The proof, while not difficult, uses material from succeeding chapters, so

will not be given here; see, for example, [Ped79, 2.3.3] or [KR97a, 5.3.5].

I.9.1.4 There is a duality between a von Neumann algebra M and its com-
mutant M ′, most of which will be described in Chapter III. The center Z(M)
is M ∩ M ′ = (M ∪ M ′)′, and thus Z(M) = Z(M ′) is also a von Neumann
algebra. If M is a von Neumann algebra on H and P ∈ M ′ is a projection,
then PH is invariant under M and the restriction PM = PMP of M to PH
is a von Neumann algebra on PH whose commutant is PM ′P and whose
center is PZ(M). Dually, if Q is a projection in M , then QMQ is a von Neu-
mann algebra of operators on QH with commutant QM ′ = QM ′Q and center
QZ(M).

I.9.1.5 A von Neumann algebra M is called a factor if Z(M) = CI. For
example, L(H) is a factor. M is a factor if and only if M ′ is a factor. If M is
a factor and P is a projection in M or M ′, then PMP is a factor.

I.9.2 Other Properties

I.9.2.1 Many of the results of this chapter are really facts about operator
algebras in disguise. Here are some of the particularly important ones. If
T ∈ L(H), write C∗(T ) for the C*-algebra generated by T , i.e. the norm-
closure of the subalgebra generated by T and T ∗; and V N(T ) = {T, T ∗}′′ the
von Neumann algebra generated by T . Of course, C∗(T ) ⊆ V N(T ) (they are
equal if and only if V N(T ) is finite-dimensional).

(i) If A is a concrete C*-algebra of operators, T ∈ A is normal, and f ∈
Co(σ(T )), then f(T ) ∈ A, and f �→ f(T ) is an isometric *-isomorphism
from Co(σ(T )) onto C∗(T ) ⊆ A. In particular, if T = T ∗, then Tα, T+,
T−, |T | are all in C∗(T ).
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(ii) If M is a von Neumann algebra on H and {Pi} is a collection of projec-
tions in M , then

∧
Pi and

∨
Pi are in M , i.e. the projections in M form

a complete lattice.
(iii) If M is a von Neumann algebra on H and T ∈ M with polar decom-

position T = U |T |, then U ∈ V N(T ) ⊆ M (and of course by (i),
|T | ∈ V N(T ) ⊆ M). More generally, if S, T ∈ M and S∗S ≤ T ∗T ,
then there is a W ∈ M with ‖W‖ ≤ 1 and S = WT .

(iv) If M is a von Neumann algebra and T ∈ M is normal, then all the
spectral projections of T are in V N(T ) ⊆ M , and more generally f(T ) ∈
V N(T ) ⊆ M for any bounded Borel function f on σ(T ) (and f �→ f(T )
maps the bounded Borel functions on σ(T ) onto V N(T )).



II

C*-Algebras

II.1 Definitions and Elementary Facts

In this section, we give the basic definitions of Banach algebras and C*-
algebras, some of the important related terminology, and elementary facts
about functional calculus and spectrum of elements. We consider only complex
Banach algebras and C*-algebras; there is a similar theory of real C*-algebras
(see, for example, [Goo82], [Sch93], or [Con01]).

The standard references for C*-algebra theory are the classic [Dix69b],
[Sak71], [Arv76], [Ped79], [Mur90], [KR97a]–[KR97b], [Dav96], and [Tak02]–
[Tak03b]. These references can be consulted for more details on the theory.
There are also numerous more specialized books on various aspects of the
theory, which are referenced in appropriate sections below.

II.1.1 Basic Definitions

II.1.1.1 Definition. A Banach algebra is a (complex) algebra which is a
Banach space under a norm which is submultiplicative (‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A).

An involution on a Banach algebra A is a conjugate-linear isometric
antiautomorphism of order two, usually denoted x �→ x∗. In other words,
(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (λx)∗ = λ̄x∗, (x∗)∗ = x, ‖x∗‖ = ‖x‖ for all
x, y ∈ A, λ ∈ C. A Banach *-algebra is a Banach algebra with an involution.

An (abstract) C*-algebra is a Banach *-algebra A satisfying the C*-axiom:

‖x∗x‖ = ‖x‖2 for all x ∈ A

The deceptively simple and innocuous C*-axiom turns out to be extremely
powerful, forcing rigid structure on a C*-algebra. For example, it follows that
the norm is completely determined by the algebraic structure and is thus
unique (II.1.6.5), that *-homomorphisms of C*-algebras are automatically
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contractive (II.1.6.6), and that every C*-algebra can be isometrically rep-
resented as a concrete C*-algebra of operators (II.6.4.10). One obvious, but
useful, consequence is that in a C*-algebra, x∗x = 0 ⇒ x = 0. [In fact, in a
C*-algebra,

∑
x∗

jxj = 0 implies that each xj = 0 (II.3.1.2(i), II.3.1.3).]

II.1.1.2 In many older references, abstract C*-algebras were called B*-
algebras, with the name “C*-algebra” reserved for concrete C*-algebras. The
term “C*-algebra,” first introduced in [Seg47] (for concrete C*-algebras, but
viewed in a somewhat abstract manner), did not become universal until well
after the publication of [Dix69b] in 1964 (there were occasional references to
“B*-algebras” in the literature at least as late as 1980). According to [DB86, p.
6], the “C” in “C*-algebra” originally meant “closed”, and not, as commonly
believed, “continuous”, although the interpretation as standing for “continu-
ous” is nicely in line with the modern point of view of C*-algebra theory as
“noncommutative topology.”

The issue of terminology is clouded by the fact that several different (but
ultimately equivalent) axiom schemes have been used for C*-algebras over the
years. For example, it is easily seen that the C*-axiom implies that the invo-
lution is isometric, so it is unnecessary to include isometry of the involution
as an axiom. The C*-axiom has sometimes been replaced by the apparently
weaker axiom that ‖x∗x‖ = ‖x∗‖‖x‖ for all x. It turns out that this weaker
axiom also implies isometry of the involution (a much harder result), so the
weakened axiom is equivalent to the C*-axiom. See also II.3.1.4. See [DB86]
for details about the C*-algebra axioms.

II.1.1.3 Examples.

(i) Any concrete C*-algebra of operators (I.9) is a C*-algebra with the usual
operator norm and involution (I.2.3.1). In particular, L(H) and K(H) are
C*-algebras for any Hilbert space H. If H is n-dimensional, we obtain
that the n × n matrices Mn = L(Cn) form a C*-algebra with the usual
involution (conjugate transpose) and operator norm. We denote by K

the C*-algebra of compact operators on a separable, infinite-dimensional
Hilbert space. More generally, if X is any (complex) Banach space, then
the algebra L(X ) of bounded operators on X is a Banach algebra with
the operator norm. L(X ) does not have a natural involution in general
(in fact, see [KM46]).

(ii) Let X be a locally compact Hausdorff space, and Co(X) the complex-
valued continuous functions on X vanishing at infinity. Give Co(X) its
usual pointwise operations and supremum norm. Define an involution
by f∗(x) = f(x). Then Co(X) is a commutative C*-algebra. In fact,
every commutative C*-algebra is of this form (II.2.2.4). Co(X) has a
unit (identity) if and only if X is compact; in this case, we usually write
C(X). More generally, if B is a C*-algebra, then the set Co(X,B) of
(norm-)continuous functions from X to B vanishing at infinity, with
pointwise operations and supremum norm, is a C*-algebra. In particular,
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Co(X, Mn) ∼= Mn(Co(X)) is a C*-algebra. (In fact, a matrix algebra over
any C*-algebra is a C*-algebra (II.6.6); this is a special case of the tensor
product for C*-algebras (II.9)).

(iii) Let G be a locally compact topological group with (left) Haar measure
µ. Then L1(G,µ) becomes a Banach *-algebra under convolution. It is
not a C*-algebra unless G is trivial. This example will be treated in more
detail in II.10.

Many more examples and constructions of interesting and important C*-
algebras are given in II.8–II.10. Parts of these sections are elementary and can
be consulted to give a general picture of the scope of the subject.

II.1.1.4 If A is a Banach algebra and I is a closed ideal (“ideal” will always
mean “two-sided ideal” unless otherwise specified) in A, then the quotient
norm makes A/I into a Banach algebra. If A is a Banach *-algebra and I is
a *-ideal (i.e. closed under *), then A/I is a Banach *-algebra. It turns out
that if A is a C*-algebra and I is a closed ideal in A, then I is automatically
a *-ideal and A/I is a C*-algebra in the quotient norm (II.5.1.1).

II.1.2 Unitization

II.1.2.1 A Banach algebra, even a C*-algebra, need not be unital (e.g. K,
Co(X) for X noncompact). However, every nonunital Banach algebra A can be
embedded in a unital Banach algebra Ã. Let A† be A⊕C with coordinatewise
addition,

(a, λ)(b, µ) = (ab + λb + µa, λµ)

and ‖(a, λ)‖ = ‖a‖ + |λ|. [A embeds via a �→ (a, 0), and the unit is (0, 1); we
often write a+λ1 for (a, λ).] If A is a Banach *-algebra, define (a, λ)∗ = (a∗, λ̄);
then A† becomes a (unital) Banach *-algebra. With this norm A† is not a C*-
algebra; but if A is a C*-algebra the operator norm on A† as left multiplication
operators on A, i.e.

‖(a, λ)‖ = sup{‖ab + λb‖ : ‖b‖ = 1}

is an equivalent C*-norm on A†. The algebra A† contains A as a (closed) ideal,
and A†/A ∼= C. If A is unital, A† ∼= A ⊕ C as C*-algebras (under the map
(a, λ) �→ (a − λ1, λ)). Set Ã = A if A is unital, and Ã = A† if A is nonunital.

II.1.2.2 As an example, if X is a locally compact noncompact Hausdorff
space, it is easy to see that C̃o(X) ∼= C(X†), where X† is the one-point
compactification of X.

II.1.2.3 A bounded homomorphism between the Banach algebras A and
B extends uniquely to a bounded unital homomorphism from A† to B̃. A *-
homomorphism between Banach *-algebras extends to a unital *-homomorph-
ism between the unitizations.
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II.1.2.4 The unitization process allows reduction of many aspects of the
theory of Banach algebras or C*-algebras to the unital case. However, there
are important reasons not to restrict attention to only the unital case. For
example, we want to regard closed ideals in a C*-algebra as C*-algebras them-
selves. Many C*-algebras which arise in applications, such as C*-algebras of
nondiscrete locally compact groups, are nonunital. Also, in many parts of the
advanced theory of C*-algebras one needs to work with stable C*-algebras
(II.6.6.12), or suspensions (II.5.5.10), which are always nonunital. Every C*-
algebra has an approximate unit (II.4).

II.1.3 Power series, Inverses, and Holomorphic Functions

II.1.3.1 In a Banach space, every absolutely convergent infinite series con-
verges. In particular, if A is a unital Banach algebra and x ∈ A with ‖x‖ < 1,
then

∑∞
n=0 xn converges to an inverse for 1−x. Thus we obtain the following

fundamental facts:

II.1.3.2 Proposition. Let A be a unital Banach algebra. Then

(i) The invertible elements in A form an open set; if x is invertible, the open
ball around x of radius ‖x−1‖−1 is contained in the invertible elements of
A. In particular, if ‖1 − y‖ < 1, then y is invertible.

(ii) Every maximal ideal in A is (norm-)closed.

II.1.3.3 There is a theory of holomorphic (analytic) functions from open
sets in C taking values in a Banach space, which is nearly identical to the
usual complex-valued theory. In particular, most of the standard theorems of
complex analysis, such as the Cauchy Integral Formula, Liouville’s Theorem,
and the existence and radius of convergence of Taylor and Laurent expansions,
have exact analogs in this setting. See [DS88a, III.14] for details.

II.1.4 Spectrum

II.1.4.1 Definition. Let A be a Banach algebra, x ∈ A. The spectrum of
x in A is

σA(x) = {λ ∈ C : x − λ1 is not invertible in Ã}
If A is nonunital, then 0 ∈ σA(x) for every x ∈ A.

II.1.4.2 Proposition. Let A be a Banach algebra, x, y ∈ A. Then

(i) σA(x) is a nonempty compact subset of the plane.
(ii) max{|λ| : λ ∈ σA(x)} = limn→∞ ‖xn‖1/n = inf ‖xn‖1/n. This number is

called the spectral radius of x, denoted r(x).
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(iii) If f is a polynomial with complex coefficients, then

σÃ(f(x)) = {f(λ) : λ ∈ σA(x)} .

(iv) σA(xy) ∪ {0} = σA(yx) ∪ {0}.
(v) If B is a Banach subalgebra of A and x ∈ B, then σA(x)∪{0} ⊆ σB(x)∪

{0} and ∂(σB(x))∪{0} ⊆ ∂(σA(x))∪{0}, where ∂ denotes the topological
boundary in C. In particular, the spectral radius of x in B is the same
as the spectral radius in A (so the notation r(x) is unambiguous).

The proofs of (iii) and (iv) are simple algebraic computations [cf. I.4.1.1,
II.1.5.2 for (iii); for (iv), if r = (1−xy)−1, then xyr = rxy = r−1, so 1+yrx =
(1−yx)−1], and the other parts follow from straightforward applications of the
theory of II.1.3, using the fact that the function λ �→ (x−λ1)−1 is holomorphic
on the complement of the spectrum of x (called the resolvent set of x).

A simple consequence of (i) is:

II.1.4.3 Corollary. [Gelfand-Mazur] The only (complex) Banach di-
vision algebra is C.

II.1.5 Holomorphic Functional Calculus

If f is a polynomial with complex coefficients, without constant term (i.e.
f(0) = 0), and x is an element of an algebra A, then there is an obvious way
to apply f to x to obtain an element f(x) ∈ A. If A is a Banach algebra, there
is a very important way of extending this procedure to holomorphic functions,
called functional calculus.

II.1.5.1 If X is a compact subset of C, denote by H(X) the algebra of
functions holomorphic in a neighborhood of X and vanishing at 0 if 0 ∈ X,
with functions identified if they agree on a neighborhood of X. Functional
calculus gives a homomorphism from H(σA(x)) to the Banach subalgebra of A
generated by x extending the map for polynomials. The image of f is denoted
f(x). The element f(x) can be defined using the Cauchy Integral Formula, but
in some cases (e.g. if f is entire) it is also given by a power series. If A is unital,
functional calculus is also defined for holomorphic functions not vanishing at
zero. Functional calculus has the following properties, which (along with the
elementary definition for polynomials) determine it uniquely:

II.1.5.2 Proposition. Let A be a Banach algebra and x ∈ A. Then

(i) For any f ∈ H(σA(x)), σA(f(x)) = {f(λ) : λ ∈ σA(x)}.
(ii) If f ∈ H(σA(x)) and g ∈ H(f(σA(x))) = H(σA(f(x))), so g ◦ f ∈

H(σA(x)), then (g ◦ f)(x) = g(f(x)).
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(iii) If fn, f ∈ H(σA(x)) and fn → f uniformly on a neighborhood of σA(x),
then fn(x) → f(x).

(iv) If B is a Banach algebra and φ : A → B a continuous (bounded) homo-
morphism, then φ(f(x)) = f(φ(x)) for any f ∈ H(σA(x)).

Proof: (i): Suppose A is unital. Let f be analytic on U containing σA(x).
If λ ∈ σA(x), then f(z) − f(λ) = (z − λ)g(z) with g analytic on U ; then
f(x)− f(λ)1 = (x− λ1)g(x), and since x− λ1 and g(x) commute and x− λ1
is not invertible, f(λ) ∈ σA(f(x)). Conversely, if µ /∈ {f(λ) : λ ∈ σA(x)}, then
h(z) = (f(z) − µ)−1 is analytic on {z ∈ U : f(z) �= µ}, which contains σA(x),
and h(x) = (f(x) − µ1)−1.
(ii)-(iv) are straightforward.

II.1.5.3 An especially important case of functional calculus uses the expo-
nential function f(z) = ez. If x is any element of a unital Banach algebra A,
then f(x) is defined and denoted ex. The element ex is given by the power
series

∑∞
n=0

xn

n! . For any x, ex is invertible, with inverse e−x; ex+y = exey if x

and y commute. If A is a Banach *-algebra, then (ex)∗ = e(x∗). Conversely, if
σA(x) is contained in a simply connected open set not containing 0, let f(z)
be a branch of the logarithm holomorphic in a neighborhood of σA(x); then
y = f(x) satisfies ey = x. In particular, if ‖1 − x‖ < 1, then there is a y ∈ A
with ‖y‖ < π/2 with ey = x (use the principal branch of log).

II.1.5.4 If A is a unital Banach algebra, write A−1 (also often written
GL1(A)) for the (open) set of invertible elements in A, and A−1

o (or GL1(A)o)
for the connected component of the identity in A−1. Then

exp(A) = {ey : y ∈ A} ⊆ A−1

is path-connected, and by the above the subgroup of A−1 generated alge-
braically by exp(A) is a connected open subgroup, hence equal to A−1

o . In
particular, A−1

o is an open subgroup of A−1, and every element of A−1
o is a

finite product of exponentials.

If A and B are unital Banach algebras and φ is a bounded homomorphism
from A onto B, and y ∈ B−1, then there is not necessarily an x ∈ A−1 with
φ(x) = y:

II.1.5.5 Example. Let D be the closed unit disk in C, and T its boundary.
There is a *-homomorphism φ : C(D) → C(T) given by restriction. But if
g ∈ C(T) with g(z) = z, then g ∈ C(T)−1, but there is no f ∈ C(D)−1 with
φ(f) = g.

The image in the Calkin algebra of a Fredholm operator of nonzero index
is another example.

However:
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II.1.5.6 Proposition. If φ : A → B is a surjective bounded homomor-
phism of unital Banach algebras, then φ(A−1

o ) = B−1
o .

This can be proved either by an application of the Open Mapping Theorem
(I.2.1.4) or by noting that if x ∈ A, then φ(ex) = eφ(x).

We now restrict our attention to C*-algebras. Certain types of elements
have standard names arising from operator theory, reflecting the types of
operators they become when the C*-algebra is represented as a concrete C*-
algebra of operators:

II.1.5.7 Definition. Let A be a C*-algebra and x ∈ A. Then x is

self-adjoint if x = x∗.
normal if x∗x = xx∗.
a projection if x = x∗ = x2.
a partial isometry if x∗x is a projection.

If A is unital, then x is

an isometry if x∗x = 1.
a coisometry if xx∗ = 1.
unitary if x∗x = xx∗ = 1.

II.1.5.8 The self-adjoint elements of A form a closed real vector subspace
Asa of A. (Note, however, that Asa is not closed under multiplication unless
A is commutative.) If A is unital, then the set of unitaries of A forms a group
U(A). Every self-adjoint or unitary element is normal. If x is self-adjoint, then
eix is unitary. 0 and 1 are projections; isometries (and, in particular, unitaries)
are partial isometries. (Coisometries are too; in fact, it follows from II.2.3.5
that if x is a partial isometry, then so is x∗.)

II.1.5.9 If x is any element, then a = (x + x∗)/2 and b = (x − x∗)/2i are
self-adjoint, and x = a + ib; thus Asa + iAsa = A. The elements a and b are
called the real and imaginary parts of x. It is obvious from their definitions
that ‖a‖, ‖b‖ ≤ ‖x‖.

II.1.6 Norm and Spectrum

II.1.6.1 It follows from the C*-axiom that every nonzero projection, and
hence every nonzero partial isometry (in particular, every unitary) has norm
1. Thus, if x is unitary, then σA(x) ⊆ {λ : |λ| ≤ 1}. Since x−1 = x∗ is also
unitary and hence σA(x−1) = {λ−1 : λ ∈ σA(x)} is also contained in the unit
disk, σA(x) is actually contained in the unit circle.

II.1.6.2 If x is self-adjoint, then eix is unitary, so

σA(eix) = {eiλ : λ ∈ σA(x)}

is contained in the unit circle, i.e. σA(x) ⊆ R.
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II.1.6.3 If x is self-adjoint, then from the C*-axiom ‖x2‖ = ‖x‖2, and by
iteration ‖x2n‖ = ‖x‖2n

for all n. Thus r(x) = limn→∞ ‖x2n‖2−n

= ‖x‖. More
generally, if y is normal, then

r(y) = lim
n→∞

‖y2n‖2−n

= lim
n→∞

‖(y∗)2
n

y2n‖2−n−1

= lim
n→∞

‖(y∗y)2
n‖2−n−1

= [r(y∗y)]1/2 = ‖y∗y‖1/2 = ‖y‖ .

II.1.6.4 Corollary. A C*-algebra is a semisimple algebra.
Proof: If A is a C*-algebra with radical R, and x ∈ R, then x∗x ∈ R; so x∗x
is nilpotent, r(x∗x) = 0, x∗x = 0, x = 0.

II.1.6.5 Corollary. If A is a C*-algebra and x ∈ A, then ‖x‖ = r(x∗x)1/2.
So the norm on a C*-algebra is completely determined by its algebraic struc-
ture and is thus unique.

II.1.6.6 Corollary. If A is a Banach *-algebra, B a C*-algebra, and φ :
A → B a *-homomorphism, then ‖φ‖ ≤ 1.
Proof: If x ∈ A, then σB(φ(x)) ∪ {0} ⊆ σA(x) ∪ {0}. Thus

‖φ(x)‖2 = ‖φ(x∗x)‖ = r(φ(x∗x)) ≤ r(x∗x) ≤ ‖x∗x‖ ≤ ‖x‖2 .

A *-algebra thus has at most one norm making it a (complete) C*-algebra;
if it has one, it has no other (even incomplete) norm satisfying the C*-axiom
(II.2.2.9). [A C*-algebra can have other C*-seminorms; and a *-algebra (e.g.
a polynomial ring) can have many different (incomplete) norms satisfying the
C*-axiom.]

II.1.6.7 Corollary. If B is a unital C*-subalgebra of a unital C*-algebra
A and x ∈ B, then σB(x) = σA(x). If B is a general C*-subalgebra of a
general C*-algebra A, and x ∈ B, then σB(x) ∪ {0} = σA(x) ∪ {0}.
Proof: This is true if x = x∗ by II.1.4.2(v). For general x, if x − λ1 is
invertible in A, then so are (x − λ1)∗(x − λ1) and (x − λ1)(x − λ1)∗. Thus
they are invertible in B, so x − λ1 is left and right invertible in B.

There are unitary analogs of II.1.3.2(i) and II.1.5.6. If A is a unital C*-
algebra, write U(A) for the unitary group of A and U(A)o the connected
component of the identity in U(A).



II.2 Commutative C*-Algebras and Continuous Functional Calculus 59

II.1.6.8 Proposition. Let A be a unital C*-algebra. Then

(i) U(A)o is a path-connected open subgroup of U(A), and every unitary in
U(A)o is a finite product of exponentials of the form eix for x = x∗.

(ii) If φ : A → B is a surjective *-homomorphism, then φ(U(A)o) = U(B)o.

Part (ii) follows from (i) and the fact that φ(Asa) = Bsa.
In fact, if u is a unitary in A and ‖u−1‖ < 2, then there is an x ∈ Asa with

u = eix and ‖x‖ < π. In this case, u is connected to 1 by a path (ut = eitx)
of length < π.

If φ : A → B is a surjective *-homomorphism of unital C*-algebras, then
it is not true in general that φ(U(A)) = U(B) (II.1.5.5).

II.2 Commutative C*-Algebras and Continuous
Functional Calculus

II.2.1 Spectrum of a Commutative Banach Algebra

II.2.1.1 If A is a unital commutative Banach algebra, let Â be the set of
(unital) homomorphisms from A to C, and Prim(A) the set of maximal ideals
of A. Every maximal ideal is closed (II.1.3) and hence every homomorphism
is continuous. In fact:

II.2.1.2 Proposition. If φ ∈ Â and x ∈ A, then φ(x) ∈ σA(x). Conversely,
if λ ∈ σA(x), then there is a φ ∈ Â with φ(x) = λ. Thus, for any φ ∈ Â,
x ∈ A, |φ(x)| ≤ r(x) ≤ ‖x‖, and hence ‖φ‖ = 1.
Proof: φ(x − φ(x)1) = 0, so x − φ(x)1 is not invertible. For the converse,
x − λ1 generates a proper ideal of A, which is contained in a maximal ideal
I. Let φ : A → A/I be the quotient map. A/I ∼= C by II.1.4.3.

There is a useful consequence for general Banach algebras:

II.2.1.3 Corollary. Let B be a unital Banach algebra, x, y ∈ B. If xy =
yx, then

σB(xy) ⊆ σB(x)σB(y) = {λµ : λ ∈ σB(x), µ ∈ σB(y)}

and σB(x + y) ⊆ σB(x) + σB(y).
Proof: First suppose B is commutative. If γ ∈ σB(xy), then there is a φ ∈ B̂
with φ(xy) = γ. We have φ(x) ∈ σB(x), φ(y) ∈ σB(y), and γ = φ(x)φ(y).

For a general B, let A be the closed subalgebra generated by 1, x, y, and
(x− λ1)−1, (y − µ1)−1 for all λ /∈ σB(x), µ /∈ σB(y). Then A is commutative,
and σA(x) = σB(x), σA(y) = σB(y). We have

σB(xy) ⊆ σA(xy) ⊆ σA(x)σA(y) = σB(x)σB(y).

The proof for σB(x + y) is almost identical.
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II.2.1.4 We return to the case where A is a commutative unital Banach
algebra. Then Â may be identified with a closed subset of the unit ball of
the dual space A∗, and can thus be given the weak-* topology (topology
of pointwise convergence). So Â is a compact Hausdorff space, called the
spectrum of A. Prim(A) may be given the Jacobsen or hull-kernel topology
(the closure of a set J is the set of all maximal ideals containing ∩I∈J I).
Prim(A) is compact, but not necessarily Hausdorff (e.g. if A is the “disk
algebra” of functions continuous on the closed unit disk in C and analytic on
the open disk).

There is a continuous injective map Ω : φ �→ Ker(φ) from Â to Prim(A).
This map is surjective: if I ∈ Prim(A), then A/I is a Banach algebra in the
quotient norm and also a field, hence is C by II.1.4.3.

II.2.2 Gelfand Transform

II.2.2.1 C(Â) is thus a commutative C*-algebra. There is a natural homo-
morphism Γ : x �→ x̂ from A to C(Â) given by x̂(φ) = φ(x), called the Gelfand
transform. The image obviously contains the constant functions and separates
the points of Â.

II.2.2.2 If A is a C*-algebra, then every φ ∈ Â is a *-homomorphism [it
suffices to show that φ(x) ∈ R if x = x∗; but

{φ(x)} = σC(φ(x)) ⊆ σA(x) ⊆ R

by II.1.6.2.] Thus the Gelfand transform is a *-homomorphism.

II.2.2.3 If A is nonunital, let Prim(A) be as before, and Â the set of nonzero
homomorphisms to C. Then Prim(A) and Â may be homeomorphically iden-

tified with the open sets Prim(Ã)\{A} and ˆ̃A\{Ã/A} respectively, and thus
they are locally compact spaces. The Gelfand transform maps A to Co(Â).

II.2.2.4 Theorem. [Gelfand-Naimark] If A is a commutative C*-algebra,
then the Gelfand transform is an isometric *-isomorphism from A onto Co(Â).
Furthermore, Ω : Â → Prim(A) is a homeomorphism.
(There are actually two “Gelfand-Naimark theorems,” the other being II.6.4.10.)

Proof: We may assume A is unital. For the first part, it remains only to
show that Γ is isometric (then the range will be closed, hence all of Co(Â)
by the Stone-Weierstrass Theorem). By the C*-axiom and II.1.6.6, it suffices
to show that if x = x∗, then ‖x̂‖ ≥ ‖x‖. By II.2.1.2 there is λ ∈ σA(x) with
|λ| = ‖x‖, so there is a φ with |x̂(φ)| = ‖x‖. It is a routine exercise to prove
that Prim(C(X)) is homeomorphic to X, and thus Ω is a homeomorphism for
C(X).
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II.2.2.5 If X and Y are compact Hausdorff spaces, and φ : X → Y is
continuous, then φ defines a *-homomorphism φ̂ : C(Y ) → C(X) by φ̂(f) =
f ◦ φ. The map φ̂ is injective [resp. surjective] if and only if φ is surjective
[resp. injective]. Conversely, if ψ : C(Y ) → C(X) is a *-homomorphism and
x ∈ X = Ĉ(X), then φx ◦ ψ ∈ Ĉ(Y ) = Y ; set ψ̌(x) = φx ◦ ψ. [Here φx is the
homomorphism from C(X) to C corresponding to x, i.e. φx(f) = f(x).] It is
easy to check that ψ̌ is continuous. These maps are inverses of each other. In
other words:

II.2.2.6 Theorem. The correspondence X ↔ C(X) is a contravariant cat-
egory equivalence between the category of compact Hausdorff spaces and con-
tinuous maps and the category of commutative unital C*-algebras and unital
*-homomorphisms.

II.2.2.7 There is a version of this theorem for locally compact spaces and
general commutative C*-algebras. However, *-homomorphisms from Co(Y )
to Co(X) do not correspond to continuous maps from X to Y , but rather to
proper continuous maps from open subsets of X to Y . It is much cleaner to
phrase things in terms of pointed compact spaces and basepoint-preserving
continuous maps, identifying the locally compact space X with (X†,∞) and
to the pointed compact space (Y, ∗) associating the C*-algebra Co(Y \{∗}).

II.2.2.8 Theorem. The correspondence (X, ∗) ↔ Co(X \ {∗}) is a con-
travariant category equivalence between the category of pointed compact
Hausdorff spaces and basepoint-preserving continuous maps and the category
of commutative C*-algebras and *-homomorphisms.

An important immediate consequence is:

II.2.2.9 Corollary. Let A and B be C*-algebras, φ : A → B an injective
*-homomorphism. Then φ is isometric, i.e. ‖φ(x)‖ = ‖x‖ for all x ∈ A.
Proof: If x ∈ A, then ‖φ(x)‖2 = ‖φ(x∗x)‖, so replacing A and B by C∗(x∗x)
and C∗(φ(x∗x)) respectively, it suffices to assume A and B are commutative,
where the result is obvious from the theorem.

II.2.3 Continuous Functional Calculus

II.2.2.4 allows us to extend the holomorphic functional calculus of II.1.5 to
continuous functions of normal elements. An immediate corollary is:

II.2.3.1 Corollary. Let A be a C*-algebra, and x a normal element of A.
Then C∗(x) is isometrically isomorphic to Co(σA(x)) under an isomorphism
which sends x to the function f(t) = t.

In fact, polynomials in x and x∗ without constant term are uniformly
dense in C∗(x), and by the Stone-Weierstrass theorem polynomials in λ and
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λ̄ without constant term are dense in Co(σA(x)). If p is a polynomial in two
variables with complex coefficients and no constant term, then

‖p(x, x∗)‖ = max{|p(λ, λ̄)| : λ ∈ σA(x)}.

Thus, if f is a complex-valued function which is continuous on σA(x), with
f(0) = 0 if 0 ∈ σA(x), then there is a corresponding element f(x) ∈ C∗(x).
This extended functional calculus has the same properties as in II.1.5.2, with
a stronger continuity property:

II.2.3.2 Proposition. Let A be a C*-algebra and x ∈ A a normal element.
Then

(i) For any f ∈ Co(σA(x)), σA(f(x)) = {f(λ) : λ ∈ σA(x)}.
(ii) If f ∈ Co(σA(x)) and g ∈ Co(f(σA(x))) = Co(σA(f(x))), so g ◦ f ∈

Co(σA(x)), then (g ◦ f)(x) = g(f(x)).
(iii) If fn, f ∈ Co(σA(x)) and fn → f uniformly on σA(x), then fn(x) → f(x).
(iv) If B is a C*-algebra and φ : A → B a *-homomorphism, then φ(f(x)) =

f(φ(x)) for any f ∈ Co(σA(x)).

II.2.3.3 Proposition. Let Y be a compact subset of C, and (fn) a sequence
of elements of Co(Y ) converging uniformly on Y to f . Let A be a C*-algebra,
(xn) a sequence of normal elements of A with xn → x ∈ A and σA(xn) ⊆ Y
(so σA(x) ⊆ Y ). Then fn(xn) → f(x).

For the proof, let ε > 0, and approximate f uniformly on Y within ε/4 by
a polynomial p; then

‖fn(xn) − f(x)‖ ≤
‖fn(xn) − f(xn)‖ + ‖f(xn) − p(xn)‖ + ‖p(xn) − p(x)‖ + ‖p(x) − f(x)‖.

If n is large enough that |fn−f | is uniformly less than ε/4 on Y , the first term
is less than ε/4; the second and fourth terms are < ε/4 by choice of p, and
the third term goes to 0 as n → ∞ by continuity of addition, multiplication,
and involution.

This result is often used when (fn) is a constant sequence.
From functional calculus we obtain:

II.2.3.4 Corollary. Let A be a C*-algebra, and x a normal element of A.
Then

x is self-adjoint if and only if σA(x) ⊆ R.
x is unitary if and only if σA(x) ⊆ {λ : |λ| = 1}.
x is a projection if and only if σA(x) ⊆ {0, 1}.
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II.2.3.5 So if u is a partial isometry (i.e. u∗u is a projection), then by
II.1.4.2(iv) and II.2.3.4 uu∗ is also a projection. [There is a simpler direct
proof: it is elementary to see that u is a partial isometry if and only if u =
uu∗u. One direction is obvious; for the other, if u∗u is a projection and y =
u − uu∗u, then y∗y = 0, so y = 0.] u∗u and uu∗ are called the initial and
final projections, or the source and range projections, of u, and u is called a
partial isometry from u∗u to uu∗. (The terminology is inspired by I.5.2.3.)

II.2.3.6 Proposition. Let a = a∗ in a C*-algebra A. Then there is a unique
self-adjoint b ∈ A with b3 = a.
Proof: We can take b = f(a), where f(t) = t1/3. For uniqueness, suppose
c = c∗ and c3 = a. Then c commutes with a, and hence with b which is a
limit of polynomials in a. So C∗(b, c) is commutative, and contains a. But a
self-adjoint element of a commutative C*-algebra obviously (by the Gelfand
transform) has a unique self-adjoint cube root.

The same is true for n’th roots, for any odd n. See II.3.1.2(vii) for an
analogous statement for even roots.

II.3 Positivity, Order, and Comparison Theory

II.3.1 Positive Elements

II.3.1.1 Definition. Let A be a C*-algebra. An element x ∈ A is positive
if x = x∗ and σ(x) ⊆ [0,∞). The set of positive elements in A is denoted A+.
If x ∈ A+, we write x ≥ 0.

Note that by II.1.6.7, the property of being positive is independent of the
containing C*-algebra, i.e. if B is a C*-subalgebra of A, then B+ = B ∩ A+.

A positive element of Co(X) is just a function taking only nonnegative
real values. The following facts are obvious from II.2.2.4:

II.3.1.2 Proposition. Let A be a C*-algebra and x, y ∈ A. Then

(i) If x ≥ 0 and −x ≥ 0, then x = 0.
(ii) If x is normal, then x∗x ≥ 0. In particular, if x = x∗, then x2 ≥ 0.
(iii) If x ≥ 0, then ‖x‖ = max{λ : λ ∈ σ(x)}.
(iv) If x = x∗ and ‖x‖ ≤ 2, then x ≥ 0 if and only if ‖1 − x‖ ≤ 1 (in Ã).
(v) If x, y ≥ 0 and xy = yx, then x + y and xy are positive.
(vi) If x = x∗, then there is a unique decomposition x = x+ − x−, where

x+, x− ≥ 0 and x+x− = 0. We have x+, x− ∈ C∗(x). [x+ = f(x) and
x− = g(x), where f(t) = max(t, 0) and g(t) = −min(t, 0).] Thus every
element of A is a linear combination of four positive elements.
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(vii) Every positive element of a C*-algebra has a unique positive square
root. More generally, if x ≥ 0 and α is a positive real number, there is
a positive element xα ∈ C∗(x)+; these elements satisfy xαxβ = xα+β ,
x1 = x, and α �→ xα is continuous. If x is invertible xα is also defined
for α ≤ 0.

(viii) (x, λ) ≥ 0 in A† if and only if x = x∗ and λ ≥ ‖x−‖.

For (vii), set xα = gα(x), where gα(t) = tα. Then gα−1(xα) = x. If b ∈ A+

with gα−1(b) = x, then x commutes with b, hence xα commutes with b; thus
b = xα in C∗(xα, b) ⊆ A.

The two crucial facts about positive elements are:

II.3.1.3 Proposition. Let A be a C*-algebra. Then

(i) A+ is a closed cone in A; in particular, if x, y ≥ 0 then x + y ≥ 0. [A
cone C in a real or complex vector space is a subset closed under addition
and under scalar multiplication by R+, often (but not always) with the
property that C ∩ (−C) = {0}.]

(ii) If x ∈ A, then x∗x ≥ 0.

To prove (i), since R+A+ ⊆ A+ it suffices to show that A+ ∩B is a closed
convex set, where B = B1(A) is the closed unit ball in A. But A+ ∩ B is
the intersection of the closed convex sets Asa, B, and {x : ‖1 − x‖ ≤ 1}
(II.3.1.2(iv)).

The proof of property (ii) uses the fact that if x = a + ib ∈ A with
a, b ∈ Asa, then x∗x ≥ 0 if and only if xx∗ ≥ 0 by II.1.4.2(iv), and

x∗x + xx∗ = 2a2 + 2b2 ≥ 0

by (i) and II.3.1.2(ii). If x∗x = c = c+ − c− as in II.3.1.2(vi) and y = xc−,
then −y∗y = c3

− ≥ 0, so

yy∗ = (y∗y + yy∗) + (−y∗y) ≥ 0

and thus y∗y ≥ 0. So y∗y = 0 by II.3.1.2(i), c− = 0, x∗x ≥ 0.

II.3.1.4 These properties were mysterious in the early days of the subject,
and property (ii) was originally assumed as an axiom for C*-algebras (in the
equivalent form that 1 + x∗x is invertible for all x). Property (i) was proved
independently in [Fuk52] and [KV53], and (ii) was proved by Kaplansky (cf.
[Sch52]). [Kap68] and [DB86] contain an account of the history of the devel-
opment of the C*-axioms.

II.3.1.5 Corollary. If A is a C*-algebra and a ∈ A+, then x∗ax =
(a1/2x)∗(a1/2x) ≥ 0 for any x ∈ A.
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II.3.1.6 In light of II.3.1.5, the following useful polarization identity, valid
for all x, y, gives a simplified proof of the last statement of II.3.1.2(vi) (in the
nonunital case, II.3.2.1 is needed to show that A = A2 for a C*-algebra A):

4y∗x = (x+y)∗(x+y)− (x−y)∗(x−y)+ i(x+ iy)∗(x+ iy)− i(x− iy)∗(x− iy)

More generally, for any x, y, a we have

4y∗ax =
3∑

k=0

ik(x + iky)∗a(x + iky) .

II.3.1.7 If A is a C*-algebra and x ∈ A, define |x| = (x∗x)1/2 ∈ A+. If
x = x∗, then |x| = x+ + x− = f(x), where f(t) = |t|.

II.3.1.8 Because of II.3.1.3(i), it makes sense in a C*-algebra A to write
x ≤ y if y − x ≥ 0. This defines a translation-invariant partial order on A (it
is usually only used on Asa). Note that x ≤ y is well defined independent of
the containing C*-algebra. If x = x∗ and σA(x) ⊆ [α, β], then α1 ≤ x ≤ β1
(in Ã). If a ≤ b, then x∗ax ≤ x∗bx for any x. If x ∈ A, a ∈ A+, then
x∗ax ≤ x∗(‖a‖1)x = ‖a‖x∗x.

II.3.1.9 Proposition. Let A be a C*-algebra, x, y ∈ A. Then

(i) −(x∗x + y∗y) ≤ x∗y + y∗x ≤ x∗x + y∗y
(ii) (x + y)∗(x + y) ≤ 2(x∗x + y∗y). More generally, for any x1, . . . , xn,

(x1 + · · · + xn)∗(x1 + · · · + xn) ≤ n(x∗
1x1 + · · · + x∗

nxn)

(iii) If 0 ≤ x ≤ y and x is invertible, then y is invertible and 0 ≤ y−1 ≤ x−1.

Proof: For (i), (x + y)∗(x + y), (x − y)∗(x − y) ≥ 0. The first statement of
(ii) is just (x + y)∗(x + y) + (x − y)∗(x − y) = 2(x∗x + y∗y); for the general
statement, if ω is a primitive n’th root of unity, then

n
n∑

j=1

x∗
jxj =

n∑

j=1

[(
n∑

k=1

ωj(k−1)xk

)∗( n∑

k=1

ωj(k−1)xk

)]

.

(iii): If x is invertible, then ε1 ≤ x for some ε > 0, so ε1 ≤ y and y is invertible
by II.2.2.4, and x−1, y−1 ≥ 0. The inequality y−1 ≤ x−1 is obvious from
II.2.2.4 if x and y commute, and in particular if y = 1. For the general case,
if x ≤ y, then

y−1/2xy−1/2 ≤ y−1/2yy−1/2 = 1

1 ≤ (y−1/2xy−1/2)−1 = y1/2x−1y1/2

y−1 = y−1/21y−1/2 ≤ y−1/2(y1/2x−1y1/2)y−1/2 = x−1.
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II.3.1.10 Proposition. Let A be a C*-algebra, 0 ≤ x ≤ y ∈ A, and
0 < α ≤ 1. Then xα ≤ yα. (We say the function t �→ tα is operator-monotone.)

Proof: Let S = {α ∈ (0,∞) : t �→ tα is operator-monotone}. Then 1 ∈ S,
and S is (topologically) closed in (0,∞) and also closed under multiplication.
Two other observations:

(i) α ∈ S if and only if 0 ≤ x ≤ y and y is invertible implies xα ≤ yα: For
general x, y, 0 ≤ x ≤ y, we then have xα ≤ (y + ε1)α (in Ã) for all ε > 0,
and thus xα ≤ limε→0(y + ε1)α = yα (II.2.3.3).

(ii) If x, y ≥ 0 and y is invertible, then

xα ≤ yα ⇐⇒ y−α/2xαy−α/2 ≤ 1

⇐⇒ ‖y−α/2xα/2‖2 = ‖y−α/2xαy−α/2‖ ≤ 1.

Next we show 1/2 ∈ S. If 0 ≤ x ≤ y, and y is invertible, then y−1/2xy−1/2 ≤ 1,
so ‖y−1/2x1/2‖ ≤ 1. By II.1.4.2(iv),

r(y−1/4x1/2y−1/4) = r(y−1/2x1/2) ≤ ‖y−1/2x1/2‖ ≤ 1

so y−1/4x1/2y−1/4 ≤ 1, x1/2 ≤ y1/2.
Similarly, if α, β ∈ S, we show γ = (α + β)/2 ∈ S. If 0 ≤ x ≤ y, and y is
invertible, we have

r(y−γ/2xγy−γ/2)=r(y−γxγ)=r(y−α/2xγy−β/2) ≤ ‖(y−α/2xα/2)(xβ/2y−β/2)‖

≤ ‖y−α/2xα/2‖‖xβ/2y−β/2‖ ≤ 1.

So S contains all of (0, 1].
For an alternate proof, see [Ped79, 1.3.8].

II.3.1.11 The result can fail if α > 1 unless x and y commute. There are

counterexamples in M2, for example x =
[

2 2
2 2

]

, y =
[

3 0
0 6

]

; x ≤ y, but

xα �≤ yα for any α > 1. Thus S is precisely (0, 1].

II.3.1.12 While discussing inequalities, the following simple analog of
Bessel’s inequality is useful: if a1, . . . , an are elements of a C*-algebra A, and
a∗

i aj = 0 for i �= j, then for any x1, . . . , xn ∈ A we have

‖
n∑

i=1

aixi‖2 = ‖(
n∑

i=1

aixi)∗(
n∑

i=1

aixi)‖ = ‖
n∑

i=1

x∗
i a

∗
i aixi‖

≤
n∑

i=1

‖x∗
i a

∗
i aixi‖ =

n∑

i=1

‖aixi‖2.
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Orthogonality

II.3.1.13 Two projections (or, more generally, positive elements) p, q of a
C*-algebra A are orthogonal , written p ⊥ q, if pq = 0. Orthogonal positive
elements commute, and if p ⊥ q, then ‖p+ q‖ = max(‖p‖, ‖q‖). Orthogonality
is usually used only for positive elements, but can be defined in general: if
x, y ∈ A, then x ⊥ y if xy = yx = x∗y = yx∗ = 0 (hence x∗y∗ = y∗x∗ =
xy∗ = y∗x = 0 also).

Following [Ber72], we say p, q ∈ A+ are very orthogonal , written p ⊥⊥ q,
if pxq = 0 for all x ∈ A. This is equivalent to saying that the ideals generated
by p and q are orthogonal. Unlike orthogonality, the notion that p and q are
very orthogonal depends on the containing C*-algebra. If p ⊥⊥ q in A, then
p ⊥ q, even if A is nonunital (pq = lim pq1/nq; in fact, p ⊥⊥ q in A if and only
if p ⊥⊥ q in Ã).

II.3.2 Polar Decomposition

Polar decomposition (I.5.2.2) cannot be done in general in a C*-algebra, but
there is a weak version which is extremely useful. In fact, we have a weakened
version of I.5.2.4.

II.3.2.1 Proposition. If A is a C*-algebra, x ∈ A, a ∈ A+, x∗x ≤ a,
and 0 < α < 1/2, then there is a u ∈ Aa ⊆ A with u∗u ≤ a1−2α (hence
‖u‖ ≤ ‖a1/2−α‖), uu∗ ≤ (xx∗)1−2α, and x = uaα. In particular, x = u(x∗x)α

for some u with u∗u = (x∗x)1−2α (and ‖u‖ = ‖(x∗x)1/2−α‖). So every element
of A can be written as a product of n elements of A, for any n.

The proof consists of showing that the sequence un =x[(1/n)+a]−1/2a1/2−α

is norm-convergent to an element u with ‖u‖ ≤ ‖a1/2−α‖ (see [Ped79, 1.4.4]
for details). Then, if yn = 1 − [(1/n) + a]−1/2a1/2, we have

‖x − unaα‖2 = ‖xyn‖2 = ‖ynx∗xyn‖ ≤ ‖ynayn‖ = ‖a1/2yn‖2 → 0

since fn(t) = t1/2[1 − (t/[(1/n) + t])1/2] → 0 uniformly on [0, ‖a‖] by Dini’s
Theorem.

A closely related result, which can be used to give an alternate proof of
II.3.2.1 (and in fact a slight generalization), will be discussed in III.5.2.16.

II.3.2.2 By applying the proposition to x∗ and taking adjoints, we obtain
the “right-handed version”: if xx∗ ≤ a, then for 0 < α < 1/2 there is a
v ∈ aA ⊆ A with ‖v‖ ≤ ‖a1/2−α‖ and x = aαv.

There is a closely related result about existence of “cube roots,” with a
simpler proof, which gives an alternate proof of the last statement of II.3.2.1:
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II.3.2.3 Proposition. Let A be a C*-algebra and x ∈ A. Then there is a
unique y ∈ A with x = yy∗y.

A proof of existence can be obtained from II.3.2.1: if x = y(x∗x)1/3 with
y ∈ Ax∗x, then it can be shown that y∗y = (x∗x)1/3. Uniqueness can also
be shown directly. (See III.5.2.18 for a version of this argument using polar
decomposition in the second dual.) But there is also a slick elementary proof
of the proposition using functional calculus in 2 × 2 matrices (II.6.6.4).

II.3.2.4 If 0 ≤ z ≤ a in a C*-algebra A, we cannot in general write z =
a1/2ca1/2 or z = x∗ax for x, c ∈ A, even if A is commutative [consider f(t) = t
and g(t) = t sin2(t−1) in C([0, 1])], although this can always be done if A is a
von Neumann algebra. But there is an approximate version:

II.3.2.5 Corollary. Let 0 ≤ z ≤ a in a C*-algebra A. Then

(i) For any 0 < α < 1/2 there is a c ∈ A+ with z = aαcaα and ‖c‖ ≤ ‖a1−2α‖.
(ii) There is a bounded sequence (xn) in A with x∗

naxn → z, and a bounded
sequence (cn) in A+ with a1/2cna1/2 → z.

Proof: Take x = z1/2 in II.3.2.1, and find for each α a uα with z1/2 =
uαaα = aαu∗

α and ‖uα‖ ≤ ‖a1/2−α‖ ≤ max(1, ‖a1/2‖). Then z = aαuαu∗
αaα =

uαa2αu∗
α. Set kn = 1/2 − 1/n, xn = u∗

kn
and cn = ukn

u∗
kn

.

Riesz Decomposition

II.3.2.6 As a related matter, we do not have the usual Riesz Decomposition
property in noncommutative C*-algebras: if a, b, c ∈ A+ and a ≤ b + c, there
are not necessarily a1, a2 ∈ A+ with a1 ≤ b, a2 ≤ c and a = a1 + a2 (consider

b =
[

1 0
0 0

]

, c =
[

0 0
0 1

]

, a = 1
2

[
1 1
1 1

]

in M2). However, we have the

following version of the Riesz Decomposition property in any C*-algebra:

II.3.2.7 Proposition. Let A be a C*-algebra, x, y1, . . . , yn ∈ A with x∗x ≤∑n
j=1 yjy

∗
j . Then there are u1, . . . , un ∈ A with u∗

juj ≤ y∗
j yj for each j, and

xx∗ =
∑n

j=1 uju
∗
j .

The proof, similar to the proof of II.3.2.1, can be found in [Ped79, 1.4.10].
If A is a von Neumann algebra, there is a simplified proof using the argument
of I.5.2.5. Note that the distinctions between x∗x and xx∗, and the y∗

j yj

and yjy
∗
j , are merely for convenience, giving broader applicability; x and the

yj may be replaced in the statement by (x∗x)1/2 and (yjy
∗
j )1/2 respectively.

[However, the distinction between u∗
juj and uju

∗
j is essential, as the previous

example shows.]
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Well-Supported Elements

True polar decomposition can be done for invertible elements, and somewhat
more generally:

II.3.2.8 Definition. An element x in a C*-algebra A is well-supported if
σA(x∗x)\{0} is closed (i.e. σA(x∗x) ⊆ {0} ∪ [ε,∞) for some ε > 0).

The property of being well-supported is independent of the containing C*-
algebra. Invertible elements and partial isometries are well-supported. The
image of a well-supported element under a homomorphism is well-supported.

II.3.2.9 It follows from II.1.4.2(iv) that if x is well-supported, then so is
x∗. From II.1.4.2(iii), if x = x∗ (or, more generally, if x is normal), then x is
well-supported if and only if xn is well-supported for some n.

If f(0) = 0 and f(t) = 1 for t > 0, then f is continuous on σA(x∗x) if
x is well-supported, and p = f(x∗x) is a projection, called the right support
projection of x. This projection has the properties that xp = x and py = 0
whenever xy = 0. Similarly, q = f(xx∗), the left support projection of x,
satisfies qx = x and yq = 0 whenever yx = 0. If x is normal, then its left
and right support projections coincide. If g(0) = 0 and g(t) = t−1/2 for t > 0,
then g(x∗x) is defined and u = xg(x∗x) is a partial isometry with u∗u = p,
uu∗ = q, and x = u(x∗x)1/2 gives a true polar decomposition for x. If x is
invertible, then p = q = 1 and u is unitary; in this case, g(x∗x) = (x∗x)−1/2,
and if x = va with v unitary and a ≥ 0, then v = u and a = (x∗x)1/2. Also,
if xn → x with xn, x invertible, and xn = unan, x = ua, then un → u and
an → a.

II.3.2.10 Well-supported elements in a C*-algebra are precisely the ele-
ments which are von Neumann regular in the ring-theoretic sense of having a
quasi-inverse (y is a quasi-inverse for x if xyx = x) [Goo91]. Well-supported
elements are also precisely the elements which have closed range when the
C*-algebra is represented as an algebra of operators on a Hilbert space (or
a Hilbert module; cf. II.7.2.8). Thus well-supported elements are sometimes
called elements with closed range. This term is also justified by the following
observation:

II.3.2.11 Proposition. Let A be a C*-algebra, x ∈ A. The following are
equivalent:

(i) Ax is closed.
(ii) xA is closed.
(iii) x∗Ax is closed.
(iv) x is well-supported.
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Convex Combinations of Unitaries

We now have enough machinery to obtain a sharpening, due to R. Kadison
and G. Pedersen [KP85], of a result of B. Russo and H. Dye ([RD66]; cf.
[Har72], [Gar84]). We begin with a simple observation:

II.3.2.12 Proposition. Every element of a unital C*-algebra A is a linear
combination of four unitaries. In fact, if x = x∗ ∈ A and ‖x‖ ≤ 2, then x is a
sum of two unitaries in U(A)o.
Proof: Set a = x/2. Then 1 − a2 ≥ 0 and a ± i(1 − a2)1/2 are unitaries. If
0 ≤ t ≤ 1, then (ta ± i(1 − t2a2)1/2) gives a path of unitaries from ±i1 to
a ± i(1 − a2)1/2, so a ± i(1 − a2)1/2 ∈ U(A)o.

II.3.2.13 Lemma. Let A be a unital C*-algebra, y ∈ A, ‖y‖ < 1, and
u ∈ U(A). Then there are unitaries w1, w2 ∈ A with u + y = w1 + w2. If
u ∈ U(A)o, then w1, w2 may be chosen in U(A)o.
Proof: Write u+y = u(1+u∗y). Then 1+u∗y is invertible, 1+u∗y = v|1+u∗y|
with v ∈ U(A)o, and |1+u∗y| is a sum of two elements of U(A)o by II.3.2.12.

II.3.2.14 Theorem. If A is a unital C*-algebra, x ∈ A, ‖x‖ < 1 − 2/n,
then there are u1, . . . , un ∈ U(A)o with x = (u1 + · · · + un)/n.
Proof: Let y = (n−1)−1(nx−1); then ‖y‖ < 1. By repeated use of II.3.2.13,
we have

nx = 1+(n−1)y = u1+w1+(n−2)y = u1+u2+w2+(n−3)y = · · · = u1+· · ·+un

for some u1, . . . , un ∈ U(A)o.
In fact, an element of norm 1 − 2/n in a unital C*-algebra A can also

be written as a mean of n unitaries in A [Haa90]. This result is sharp: if v
is a nonunitary isometry and λ > 1 − 2/n, then λv cannot be written as a
convex combination of n unitaries in any containing C*-algebra [KP85]. The
minimal number of unitaries necessary for an element x ∈ A is closely related
to the distance from x to the invertible elements of A ([Rør88], [Ped89b]; cf.
II.3.2.19).

II.3.2.15 Corollary. [Russo-Dye] Let A be a unital C*-algebra. Then
co(U(A)o) (the convex hull of U(A)o) contains the open unit ball of A. Thus
co(U(A)) = co(U(A)o) is the closed unit ball of A.

II.3.2.16 Corollary. Let A be a unital C*-algebra, B a normed vector
space, and φ : A → B a bounded linear map. Then ‖φ‖ = sup ‖φ|C‖, where
C runs over all unital commutative C*-subalgebras of A.

For the proof, note that ‖φ‖ = sup{‖φ(u)‖ : u ∈ U(A)}, and C∗(u) is
commutative.

Not every element of the closed unit ball of a unital C*-algebra is a convex
combination of unitaries. In fact, we have:
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II.3.2.17 Theorem. Let A be a C*-algebra. If A is nonunital, then there
are no extreme points in the closed unit ball of A. If A is unital, then the
extreme points of the closed unit ball of A are precisely the elements x such
that

(1 − xx∗)A(1 − x∗x) = 0

(i.e. (1− xx∗) ⊥⊥ (1− x∗x) (II.3.1.13)). Such an x is automatically a partial
isometry. So every isometry or coisometry (in particular, every unitary) is an
extreme point of the closed unit ball of A.

It is easy to see that an extreme point x in the unit ball of A is a partial
isometry: if not (i.e. if x∗x is not a projection), write x = u(x∗x)1/4 for some
u, ‖u‖ = 1, and by functional calculus find a small positive a in C∗(x∗x) such
that ‖(x∗x)1/4(1 + a)‖ = 1 (where 1 ∈ Ã is used symbolically); then x is the
average of u(x∗x)1/4(1 ± a), a contradiction. So if x is extreme, 1 − xx∗ and
1 − x∗x are projections in Ã.

Hence, if x is extreme and a ∈ (1 − xx∗)A(1 − x∗x) with ‖a‖ = 1, then
ax∗x = 0, so ax∗xa∗ = 0, ax∗ = 0, a∗a ⊥ x∗x, and similarly a∗x = 0,
aa∗ ⊥ xx∗. So

‖x ± a‖2 = ‖(x∗ ± a∗)(x ± a)‖ = ‖x∗x + a∗a‖ = max(‖x∗x‖, ‖a∗a‖) = 1

and x = [(x + a) + (x− a)]/2, a contradiction; thus (1− xx∗)A(1− x∗x) = 0.
So if x is extreme, and if y ∈ A, then

(1 − x∗x)(1 − xx∗)y∗y(1 − xx∗)(1 − x∗x) = 0

and thus y(1 − xx∗)(1 − x∗x) = 0. Therefore (1 − xx∗)(1 − x∗x) = 0, 1 =
x∗x + xx∗ − (xx∗)(x∗x), and A is unital.

Showing that an x satisfying (1− xx∗)A(1− x∗x) = 0 is an extreme point
is more difficult (cf. [Sak71, 1.6.4], [Ped79, 1.4.7]), but there is an elementary
proof that a unitary u in a unital C*-algebra A is an extreme point in the unit
ball. Since left multiplication by u is an isometry from A onto A, it suffices
to show that 1 is an extreme point. The result holds in a commutative C*-
algebra by the functional representation. In a general A, if 1 = (x + y)/2
with ‖x‖ = ‖y‖ = 1, write x = a + ib, y = c + id; then 1 = (a + c)/2 and
‖a‖, ‖c‖ ≤ 1, and C∗(a, c) is commutative, so a = c = 1; thus x and y are
normal, so C∗(x, y) is commutative and x = y = 1.

There is a simple argument that an isometry U ∈ L(H) is an extreme point
of the unit ball of L(H), which can be combined with the Gelfand-Naimark
Theorem (II.6.4.10) to show that isometries (and coisometries) in general C*-
algebras are extreme points. If U = tS+(1−t)T with ‖S‖ = ‖T‖ = 1 and 0 <
t < 1, let ξ ∈ H, ‖ξ‖ = 1. If η = Uξ, then ‖η‖ = 1, and η is an extreme point
of the unit ball of H by the parallelogram law. But η = t(Sξ) + (1 − t)(Tξ),
so Sξ = Tξ = Uξ. Since ξ is arbitrary, S = T = U .
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II.3.2.18 Thus a nonunitary isometry is not a convex combination of uni-
taries. In fact, if A is unital, the convex hull of U(A) is the whole closed unit
ball of A if and only if A has stable rank 1 (V.3.1.5) [Rør88]. See [PR88] and
[HR93] for further related results. One simple related result is useful:

II.3.2.19 Proposition. Let A be a unital C*-algebra, and u a nonunitary
isometry in A. If z is an invertible element of A, then ‖u − z‖ ≥ 1.
Proof: Suppose z is invertible in A and ‖u − z‖ < 1. Set x = zu∗, p = uu∗,
and r = 1− p �= 0. Then x is right invertible with right inverse y = uz−1, and
xp = x, so

‖p − pxp‖ = ‖p − px‖ = ‖p(p − x)‖ = ‖p(u − z)u∗‖ ≤ ‖u − z‖ < 1

and pxp is invertible in pAp. Since py = y, we have (pxp)(pyr) = pxyr = pr =
0, and since pxp is invertible in pAp, pyr = 0. But (rxp)(pyr) = rxyr = r �= 0,
a contradiction.

Since 0 is in the closure of the invertible elements of A, the distance from
u to the invertible elements of A is exactly 1.

II.3.2.20 An interesting consequence of these theorems is that the (closed)
unit ball of a unital C*-algebra is the closed convex hull of its extreme points,
even though in general it is not compact in any natural topology.

Quasi-Invertible Elements

II.3.2.21 In [BP95], an element of a unital C*-algebra A of the form yuz,
where y and z are invertible and u is an extreme point of the unit ball of A,
is called a quasi-invertible element of A. The set of quasi-invertible elements
of A is denoted Aq. Every left or right invertible element or extreme point
of the unit ball is quasi-invertible. A quasi-invertible element x of A is well-
supported, and the right and left support projections p and q of x satisfy
(1−p) ⊥⊥ (1−q); and conversely, every element of this form is quasi-invertible
[if x = u|x| is the polar decomposition, then u is an extreme point of the unit
ball and x = u(|x| + 1 − p)]. Unlike invertibility (II.1.6.7), quasi-invertibility
depends on the containing C*-algebra.

II.3.3 Comparison Theory for Projections

Just as in L(H), the order structure on projections in a C*-algebra has nice as-
pects not shared by general positive elements, summarized in the next propo-
sition:
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II.3.3.1 Proposition. If p and q are projections in a C*-algebra A, then
the following are equivalent:

(i) p ≤ q.
(ii) p ≤ λq for some λ > 0.
(iii) pq = qp = p.
(iv) q − p is a projection.

If these conditions hold, we say p is a subprojection of q.
Note that unlike in L(H) (or in a von Neumann algebra), the projections

in a C*-algebra do not form a lattice in general:

II.3.3.2 Examples.

(i) Let c be the C*-algebra of convergent sequences of complex numbers.
Let p(m) = (p(m)

n ) be the projection in c with p
(m)
n = 1 for n ≤ m odd,

and p
(m)
n = 0 otherwise. Then the sequence (p(m)) has no supremum in

Proj(c).
(ii) Let A be the C*-algebra of convergent sequences in M2. Let p = (pn)

and q = (qn) be the projections in A with pn = q2n−1 = diag(1, 0) and

q2n =
[

1 − n−1
√

n−1 − n−2
√

n−1 − n−2 n−1

]

. Then {p, q} has no supremum or

infimum in Proj(A) (note that in M2, p2n ∧ q2n = 0 and p2n ∨ q2n = I).
(iii) Let A be as in (ii), and let B be the (nonunital) C*-subalgebra of A

of sequences converging to a multiple of diag(1, 0). Then p, q ∈ B, but
{p, q} has no upper bound in Proj(B).

It is very useful to have a notion of equivalence of projections:

II.3.3.3 Definition. If p and q are projections in A, then p and q are
(Murray-von Neumann) equivalent (in A), written p ∼ q, if there is a partial
isometry u ∈ A with u∗u = p, uu∗ = q, and p � q if p is equivalent to a
subprojection of q, i.e. if there is a partial isometry u ∈ A with u∗u = p and
uu∗ ≤ q (we say p is subordinate to q).

Although the notation does not reflect it, equivalence of projections is, of
course, relative to a specified containing C*-algebra.

Unitarily equivalent projections are equivalent; the converse is false in gen-
eral (in L(H), for example), but is “stably” true (V.1.1.2). Note that p � q and
q � p do not together imply p ∼ q in general, e.g. in On, n > 2 (II.8.3.3(ii),
V.1.3.4), i.e. there is no Schröder-Bernstein theorem for equivalence of pro-
jections (although there is for von Neumann algebras (III.1.1.9)).

The next proposition is fundamental, and may be regarded as one of the
starting points for the K-theory of C*-algebras. It has an analog for general
Banach algebras [Bla98, 4.3.4].
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II.3.3.4 Proposition. Let A be a C*-algebra, p, q projections in A. If
‖p − q‖ < 1, then p ∼ q. In fact, there is a unitary v(p, q) ∈ Ã with
v(p, q)pv(p, q)∗ = q. The assignment (p, q) �→ v(p, q) has the following proper-
ties:

(i) v(p, p) = 1 for all p.
(ii) (p, q) �→ v(p, q) is jointly continuous in p and q; for any ε > 0 there is a

δ > 0 such that ‖v(p, q) − 1‖ < ε for any p, q with ‖p − q‖ < δ.
(iii) (p, q) �→ v(p, q) is functorial in the sense that if φ : A → B is a *-

homomorphism, then φ̃(v(p, q)) = v(φ(p), φ(q)), where φ̃ : Ã → B̃ is the
induced map.

Proof: If x = qp + (1 − q)(1 − p), then 1 − x∗x = 1 − xx∗ = (p − q)2, so
‖1 − x∗x‖ = ‖1 − xx∗‖ = ‖p − q‖2 < 1 and x is invertible in Ã. Let v(p, q)
be the unitary in the polar decomposition of x, i.e. v(p, q) = x(x∗x)−1/2,
x = v(p, q)(x∗x)1/2. We have xp = qx = qp, px∗ = x∗q = pq, so x∗xp =
x∗qx = px∗x, and so (x∗x)1/2 commutes with p. Since xpx−1 = qxx−1 = q,
we obtain v(p, q)pv(p, q)∗ = q. Let γ = ‖p−q‖. We have x∗x = 1−(p−q)2 ≤ 1,
so ‖x‖ ≤ 1, and

‖x−1‖ = ‖qp+(1−q)(1−p)−p−(1−p)‖ ≤ ‖qp−p‖+‖(1−q)(1−p)−(1−p)‖

≤ ‖q − p‖ + ‖(1 − q) − (1 − p)‖ = 2γ .

Since (1 − γ2)1 ≤ x∗x ≤ 1, we have

‖(x∗x)−1/2 − 1‖ ≤ α := (1 − γ2)−1/2 − 1

‖v(p, q)−1‖ = ‖x(x∗x)−1/2−x+x−1‖ ≤ ‖x[(x∗x)−1/2−1]‖+‖x−1‖ ≤ α+2γ .

A similar argument shows the following useful technical result:

II.3.3.5 Proposition. For every ε > 0 there is a δ > 0 such that, whenever
A is a C*-algebra and p, q are projections in A with ‖pq − q‖ < δ, then there
is a projection p′ ∈ A with q ≤ p′ and ‖p − p′‖ < ε.
Proof: Suppose 0 < δ < 1 and p, q are projections in a C*-algebra A with
‖pq − q‖ < δ. Then ‖qpq − q‖ < δ, so qpq is invertible in qAq with inverse a,
and q ≤ a ≤ (1−δ)−1q. If b = a1/2, then ‖q−b‖ < α := (1−δ)−1/2−1, and pq
has polar decomposition u(qpq)1/2, where u = pqb is a partial isometry with
u∗u = q. We have

‖u − q‖ = ‖u − pq + pq − q‖ ≤ ‖pqb − pq‖ + ‖pq − q‖

= ‖pq(b − q)‖ + ‖pq − q‖ < β := α + δ

and ‖u∗ − q‖ < β, so, since u = uq,

‖uu∗ − q‖ = ‖uu∗ − uq + uq − q‖ ≤ ‖u(u∗ − q)‖ + ‖(u − q)q‖ < 2β
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and r = uu∗ ≤ p. If ε > 0 is given and β is small enough, then the
unitary v(q, r) ∈ Ã (II.3.3.4(ii)) satisfies ‖v(q, r) − 1‖ < ε/2. Then, if
p′ = v(q, r)pv(q, r)∗, we have

‖p′ − p‖ ≤ ‖p′ − v(q, r)p‖ + ‖v(q, r)p − p‖
= ‖v(q, r)p[v(q, r)∗ − 1]‖ + ‖[v(q, r) − 1]p‖ < ε

and q = v(q, r)rv(q, r)∗ ≤ v(q, r)pv(q, r)∗ = p′.

II.3.4 Hereditary C*-Subalgebras and General Comparison Theory

II.3.4.1 Definition. Let A be a C*-algebra. A C*-subalgebra B of A is
hereditary if 0 ≤ a ≤ b, a ∈ A, b ∈ B implies a ∈ B.

II.3.4.2 Proposition. Let A be a C*-algebra, B a hereditary C*-sub-
algebra, and x ∈ A. Then

(i) BAB ⊆ B (so BAB = B since B = B3 (II.3.2.1)).
(ii) x∗Ax = (x∗x)A(x∗x) is a hereditary C*-subalgebra of A containing x∗x,

and is the smallest such algebra.
(iii) If A is separable, then every hereditary C*-subalgebra of A is of the form

hAh for some h ∈ A+.

Proof: (i): First note that if z ∈ B, then z∗Az ⊆ B: it suffices to show
z∗A+z ⊆ B+, which follows from II.3.1.8. Now let x, y ∈ B, and set b =
xx∗ + y∗y. Then there are u, v ∈ B with x = b1/4v and y = ub1/4 (II.3.2.1),
so, for a ∈ A,

xay = b1/4vaub1/4 ∈ b1/4Ab1/4 ⊆ B.

(ii): (x∗x)A(x∗x) ⊆ x∗Ax, and x∗Ax ⊆ (x∗x)1/4A(x∗x)1/4 since x =
u(x∗x)1/4 for some u (II.3.2.1). x∗Ax is a C*-subalgebra of A.

(x∗x)3 = x∗(xx∗)2x ∈ x∗Ax,

so
(x∗x)α ∈ C∗((x∗x)3) ⊆ (x∗x)A(x∗x) ⊆ x∗Ax

for any α > 0. Thus we have

(x∗x)1/4A(x∗x)1/4 ⊆ (x∗x)A(x∗x)

by (i), so x∗Ax = (x∗x)A(x∗x). It follows that b ∈ x∗Ax if and only
if limα→0(x∗x)αb(x∗x)α = b. Thus, if 0 ≤ a ≤ b and b ∈ x∗Ax, write
a = b1/4cb1/4 (II.3.2.5) to see that a ∈ x∗Ax.
(iii): Let (xn) be a dense sequence in the unit ball of B, and let h be the
element

∑∞
n=1 2−nx∗

nxn; then B = hAh.
See II.5.3.2 and II.5.3.9 for additional comments about hereditary C*-sub-

algebras.
As with projections, it is useful to have some other notions of comparison

between general positive elements in addition to the ordinary order ≤. Here
are two other useful ones:
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II.3.4.3 Definition. Let A be a C*-algebra, a, b ∈ A+. Then

(i) b ! a if ab = b.
(ii) b � a if there is a sequence (xn) in A with x∗

naxn → b (equivalently, for
any ε > 0 there is an x ∈ A with ‖x∗ax − b‖ < ε).

(iii) a ≈ b if a � b and b � a.

Of course, � and ≈ depend on the choice of A (! is independent of
the choice of the containing C*-algebra). These relations are transitive; �
is reflexive, and ≈ is an equivalence relation. [It is not entirely trivial that
� is transitive, since the sequence (xn) cannot be chosen to be bounded in
general; but if b � a and c � b, and y satisfies ‖y∗by− c‖ < ε/2, choose x with
‖x∗ax− b‖ < ε/2‖y‖2; then ‖y∗x∗axy − c‖ < ε.] It is easy to see that if p and
q are projections, this definition of p � q is equivalent to the previous one.

II.3.4.4 If ‖b‖ ≤ 1, then b ! a =⇒ b ≤ a. We have a ! a if and only if a
is a projection. If p and q are projections, then p ! q if and only if p ≤ q. If
b ! a, then a and b obviously commute.

II.3.4.5 By II.3.2.5, b ≤ a ⇒ b � a. But � is a much weaker relation:
x∗ax � a for any x, and if b ∈ aAa, then b � a, so aAa = bAb ⇒ a ≈ b.
In particular, a ≈ αa ≈ aα for any α > 0. Also, by II.3.2.1 x∗x ≈ xx∗ for
any x. The relations � and ≈ measure the “width” (size of the support) of
an element rather than its “height” or “location”. The relation b � a roughly
means that the hereditary C*-subalgebra generated by b is “smaller” than the
one generated by a.

II.3.4.6 Proposition. If a, b, c ∈ A+, b ! a, ‖a‖ = 1, and ‖a−c‖ = η < 1,
then (1 − η)b ≤ b1/2cb1/2 ≤ (1 + η)b, so b1/2cb1/2 ≈ b and b � c.

For the proof, note that b1/2cb1/2 = b1/2(c− a)b1/2 + b1/2ab1/2 ≥ −ηb + b.

II.3.4.7 Proposition.

(i) If a, b, bn ∈ A+, bn � a for all n, and bn → b, then b � a.
(ii) If a1, a2, b1, b2 ∈ A+, b1 � a1, b2 � a2, and a1 ⊥ a2 (i.e. a1a2 = 0), then

b1 + b2 � a1 + a2.

The proof of (i) is straightforward. For (ii), bi � a3
i for i = 1, 2, so choose

xn, yn with x∗
na3

1xn → b1, y∗
na3

2yn → b2; then

(a1xn + a2yn)∗(a1 + a2)(a1xn + a2yn) → b1 + b2.

II.3.4.8 There are several other very similar relations used in [Cun78],
[Rør92], and other references (the same symbols have been used for distinct re-
lations in various references, so the symbols we use do not necessarily coincide
with those of the references):
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Let A be a C*-algebra, a, b ∈ A+. Then

b # a if there is a z ∈ Ã with z∗az = b.
b � a if there are x, y ∈ Ã with b = xay.
b � a if b ≤ z∗az for some z ∈ Ã.
b ∼ a if there is an x ∈ A with x∗x = a, xx∗ = b.
b $ a if b # a and a # b.

It is obvious that #, �, and � are transitive. The relations #, �, and �

are practically the same, although there are nuances of differences between
them. We have

b # a =⇒ b � a =⇒ b � a =⇒ b � a

[if 0 ≤ b = xay for a ≥ 0, then b ≤ (x∗ + y)∗a(x∗ + y), so b � a =⇒ b � a].
b � a �=⇒ b � a (II.5.2.1(iii)); it appears to be unknown whether b � a
implies b # a, but is likely false in general. � is a “soft” version of each of
these relations.

Using I.5.2.4, it can be shown that if A is a von Neumann algebra, then #,
�, and � agree on A+. Combining similar arguments with II.3.2.1, one can
show:

II.3.4.9 Proposition. Let A be a C*-algebra, a, b ∈ A+. If b � a, then
bβ # aα for all α, β, 0 < α < β. In particular, b # aα for all α, 0 < α < 1.

The relation ∼ is transitive and thus an equivalence relation, although
this is not obvious [Ped98]. It is obvious that $ is an equivalence relation. We
have a ∼ b =⇒ a ≈ b and a $ b =⇒ a ≈ b; $ is a much “looser” equivalence
relation than ∼ (e.g. a $ αa for any α > 0), although a ∼ b does not quite
imply a $ b in general (it does in a von Neumann algebra). The relation ≈ is
looser yet: we have a ≈ a2 for any a, but we rarely have a $ a2 (only if a is
well-supported, i.e. if a $ p for a projection p).

II.3.4.10 There is a version of � for arbitrary elements: we say x � y if
there are sequences (zn), (wn) with znywn → x, and x ≈ y if x � y and
y � x. The relation � also obviously extends to general elements. It is not
hard to see that these agree with the previous definitions if x, y ∈ A+; we
have x ≈ x∗ ≈ x∗x for any x. II.3.4.7 remains true in this context, provided
that a1 ⊥ a2 in the C*-algebra sense, i.e. a1a2 = a2a1 = a∗

1a2 = a1a
∗
2 = 0.

There are some useful functions for comparison theory, as well as other
purposes (cf. [Cun78]):

II.3.4.11 Definition. For ε > 0, let fε be the continuous function on R

which is 0 on (−∞, ε], 1 on [2ε,∞), and linear on [ε, 2ε].
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II.3.4.12 If x ∈ A+, then the elements fε(x) have the following properties:

0 ≤ fε(x) for all ε; ‖fε(x)‖ = 1 if ‖x‖ ≥ 2ε.
fε(x) ! fδ(x) for 0 < δ ≤ ε/2.
ε �→ fε(x) is continuous.
fε(x) = xgε(x) = gε(x)1/2xgε(x)1/2 = x1/2gε(x)x1/2, where gε(t) =
t−1fε(t); in particular, fε(x) ≤ ‖gε(x)‖x and fε(x) � x.
If hε(t) = tfε(t) for t ≥ 0, then hε(x) = xfε(x) and fε(x) = gε/2(x)hε(x),
so hε(x) $ fε(x) and hence hε(x) ≈ fε(x); as ε → 0,

hε(x) = xfε(x) = x1/2fε(x)x1/2 = fε(x)1/2xfε(x)1/2 → x.

If xn → x, then fε(xn) → fε(x) for each ε (II.2.3.3).

II.3.4.13 It is also useful to consider the functions �ε, where �ε(t) =
max(0, t − ε); if x ∈ A+, then �ε(x) = (x − ε1)+ ∈ A+ (computed in Ã).
Then ε �→ �ε(x) is continuous, ‖�ε(x)‖ = max(0, ‖x‖ − ε), and �ε(x) → x
as ε → 0. We have ‖�ε(x) − hε(x)‖ ≤ ε, and there are nonnegative continu-
ous functions φ and ψ vanishing at 0 (depending on ε) such that �ε = φhε

and hε = ψ�ε, so �ε(x) = φ(x)hε(x), hε(x) = ψ(x)�ε(x), and in particular
�ε(x) $ hε(x) $ fε(x).

The main technical virtue of the �ε is that �δ ◦ �ε = �δ+ε for δ, ε > 0. There
is no such simple relationship for the fε or hε, although fδ(fε(x)) $ fγ(x) for
γ = ε + εδ (if δ ≤ 1).

II.3.4.14 If x is well-supported, then for any sufficiently small ε, fε(x∗x)
and fε(xx∗) are the left and right support projections of x respectively. The
elements fε(a) behave like “generalized support projections” of an element
a ∈ A+ and can often be used as a substitute for an (in general nonexistent,
at least in A) actual support projection.

We have the following corollary of II.3.4.6:

II.3.4.15 Proposition. If xn → x in A+, then, for any ε > 0, fε(xn) �
fε/2(x) and fε(x) � fε/2(xn) for all sufficiently large n.

This result can be improved to show that for any 0 < δ < ε, fε(xn) � fδ(x)
and fε(x) � fδ(xn) for all sufficiently large n [KR00, 2.5]. The proof uses the
following version of II.3.4.6:

II.3.4.16 Proposition. [Rør92, 2.2] If x, y ∈ A+, ‖x−y‖ < ε, then fε(x) �

y.
Proof: If δ = ‖x − y‖, then x − δ1 ≤ y (in Ã). So

(ε − δ)fε(x) ≤ fε(x)1/2(x − δ1)fε(x)1/2 ≤ fε(x)1/2yfε(x)1/2

so fε(x) ≤ z∗yz with z = (ε − δ)−1/2fε(x)1/2.
One can then show:
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II.3.4.17 Proposition. [Rør92, 2.4] Let A be a C*-algebra, a, b ∈ A+. The
following are equivalent:

(i) b � a.
(ii) There are xn, yn ∈ Ã with xnayn → b.
(iii) There are xn, yn ∈ A with xnayn → b.
(iv) fε(b) # a for all ε > 0.
(v) For every ε > 0, there is a δ > 0 such that fε(b) # fδ(a).

II.4 Approximate Units

While a C*-algebra need not be unital, it always contains an approximate
unit (sometimes called an approximate identity) which can often be used as a
substitute. Some, but not all, Banach algebras have approximate units in an
analogous sense.

II.4.1 General Approximate Units

II.4.1.1 Definition. Let A be a C*-algebra. An approximate unit for A is
a net (hλ) of positive elements of A of norm ≤ 1, indexed by a directed set
Λ, such that hλx → x for all x ∈ A. If hλ ≤ hµ for λ ≤ µ, the approximate
unit (hλ) is increasing.

An approximate unit (hλ) is idempotent if each hλ is a projection; it is
almost idempotent if hλ ! hµ for λ < µ.

An approximate unit (hλ) is sequential if Λ = N; it is continuous if Λ =
(0,∞) (or a cofinal subinterval) and λ �→ hλ is continuous.

In many references, approximate units are assumed to be increasing, but
we will not do so since there are situations where this assumption is not
natural. At the other extreme, the assumption that ‖hλ‖ ≤ 1 for all λ, or
even that ‖hλ‖ is bounded, is not universal.

An approximate unit in a unital C*-algebra is just a net of (eventually)
invertible positive elements in the unit ball converging to 1.

II.4.1.2 Proposition. If (hλ) is an approximate unit for a C*-algebra A,
and α > 0 is fixed, then for all x ∈ A:

(i) xhλ → x and hλxhλ → x; if x ≥ 0, then x1/2hλx1/2 → x.
(ii) hα

λx → x, i.e. (hα
λ) is an approximate unit for A. [However, if α > 1, (hα

λ)
need not be increasing even if (hλ) is (II.3.1.11).]

For the first part of (i), hλx∗ → x∗; for the second part, note that if x ≥ 0,
then hλx1/2 → x1/2. For (ii), we have

‖hλx − xhλ‖ ≤ ‖hλx − x‖ + ‖x − xhλ‖ → 0
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so
‖h2

λx − x‖ ≤ ‖h2
λx − hλxhλ‖ + ‖hλxhλ − x‖ → 0

and similarly ‖h2n

λ x− x‖ → 0 for any n. If α > 0, choose n so that α ≤ 2n−1;
for ε > 0 we have ‖x∗h2n

λ x − x∗x‖ < ε for large λ, and since

x∗h2n

λ x ≤ x∗h2α
λ x ≤ x∗hα

λx ≤ x∗x

we have ‖x∗hα
λx − x∗h2α

λ x‖ < ε and ‖x∗x − x∗hα
λx‖ < ε, so, for large λ,

‖x − hα
λx‖2 = ‖(x∗ − x∗hα

λ)(x − hα
λx)‖ = ‖x∗x − 2x∗hα

λx + x∗h2α
λ x‖

≤ ‖x∗x − x∗hα
λx‖ + ‖x∗hα

λx − x∗h2α
λ x‖ < 2ε.

If A is a C*-algebra and I is a dense (two-sided) ideal in A, let ΛI be
the set of all positive elements of I of norm strictly less than 1. Give ΛI its
ordering as a subset of A+.

II.4.1.3 Proposition.

(i) ΛI is a directed set.
(ii) ΛI is an increasing approximate unit for A.

Proof: (i): By II.3.1.9(iii), h �→ (1− h)−1 − 1 is an order-isomorphism of ΛI

onto I+, which is a directed set. (The computation is done in Ã, but it is easy
to check that the map and its inverse h �→ 1 − (1 + h)−1 map I into I by
considering the quotient map Ã → Ã/I.)

(ii): It suffices to show that for any x ∈ A, the decreasing net

{x∗(1 − h)x : h ∈ ΛI}

converges to 0, for then

‖(1 − h)x‖2 = ‖x∗(1 − h)2x‖ ≤ ‖x∗(1 − h)x‖ → 0.

Since ΛI is dense in ΛA [if x ∈ A+, choose y ∈ I close to x1/2; then
y∗y ∈ I+ is close to x], we need only find for each x and ε an h ∈ ΛA with
‖x∗(1 − h)x‖ < ε. By II.3.1.2(vi), we may assume x ≥ 0 and ‖x‖ < 1. But
then ‖x(1 − x1/n)x‖ < ε for sufficiently large n.

II.4.1.4 Corollary. If A is a C*-algebra and I is a dense (two-sided)
ideal in A, then there is an increasing approximate unit for A contained in I.
If A is separable, then the increasing approximate unit may be chosen to be
sequential or continuous.

To construct an increasing sequential approximate unit for a separable A,
let {xn} be a dense set in A, and inductively find hn in ΛI with hn ≥ hn−1

and ‖hnxk − xk‖ < 1/n for 1 ≤ k ≤ n. For a continuous approximate unit,
set ht = (n + 1 − t)hn + (t − n)hn+1 for n ≤ t ≤ n + 1.

The following simple fact is worth noting:
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II.4.1.5 Proposition. Let A be a C*-algebra, (hλ) an approximate unit
for A, and p a projection in A. Then phλp is well-supported (II.3.2.8) for all
sufficiently large λ.

The proof consists of noting that phλp → p, so phλp is invertible in pAp
for sufficiently large λ.

II.4.2 Strictly Positive Elements and σ-Unital C*-Algebras

In the case where there is a countable approximate unit, we can do better.

II.4.2.1 Proposition. If A is a C*-algebra and h ∈ A+, the following are
equivalent:

(i) hA is dense in A
(ii) hAh is dense in A
(iii) (fε(h)) is an (increasing) approximate unit for A as ε → 0.

If ‖h‖ ≤ 1, then these are also equivalent to

(iv) (h1/n) is an (increasing) approximate unit for A.

[The condition in (iv) that ‖h‖ ≤ 1 is not critical – it only insures that (h1/n)
is in the unit ball and increasing.]
An h satisfying these conditions is strictly positive in A.

II.4.2.2 If A has a unit, then h is strictly positive if and only if it is invert-
ible. A positive element h ∈ A is strictly positive in C∗(h), and in hAh. If h
is strictly positive in A and h ≤ a ∈ A+, then a and hα are strictly positive
for any α > 0.

II.4.2.3 A function in Co(X) is strictly positive in this sense if and only if
it takes strictly positive values everywhere. There is a similar characterization
of strictly positive elements in general C*-algebras: it follows from the Hahn-
Banach Theorem and the results of II.6.3 that h ∈ A+ is strictly positive if
and only if φ(a) > 0 for every state φ on A.

II.4.2.4 Proposition. A C*-algebra contains a strictly positive element if
and only if it has a countable approximate unit. (Such a C*-algebra is called
σ-unital.)
Proof: One direction is obvious from II.4.2.1. Conversely, suppose A has a
countable approximate unit, which may be chosen sequential, say (hn). Set
h =

∑∞
n=1 2−nhn. Then for each n and m, h1/m ≥ 2−n/mh

1/m
n ≥ 2−n/mhn,

so (h1/m) is an approximate unit for A.
Of course, every unital C*-algebra is σ-unital. Every separable C*-algebra

is σ-unital, but there are nonseparable nonunital σ-unital C*-algebras, as well
as non-σ-unital C*-algebras: for example, Co(X) is σ-unital if and only if X
is σ-compact.
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II.4.2.5 Corollary. If A is a σ-unital C*-algebra, then A has a sequen-
tial increasing almost idempotent approximate unit, and has a continuous
increasing approximate unit consisting of mutually commuting elements.

The next fact is useful in the theory of stable and real rank (V.3.1).

II.4.2.6 Proposition. Let h be a strictly positive element in a C*-algebra
A, and p a projection in A. Then php is invertible in pAp and hence well-
supported.

Indeed, ph1/np is invertible in pAp (and hence well-supported) for some
n = 2k by II.4.1.5. Thus ph2−k+1

p ≥ (ph2−k

p)2 is also invertible in pAp, and
proceeding inductively php is invertible in pAp.

II.4.3 Quasicentral Approximate Units

II.4.3.1 If I is an ideal in a C*-algebra A, it is frequently useful to have an
approximate unit (hλ) for I which asymptotically commutes with all elements
of A, i.e. ‖[x, hλ]‖ → 0 for all x ∈ A, where [x, y] = xy − yx is the usual com-
mutator. Such an approximate unit is called quasicentral for A. Quasicentral
approximate units were first introduced independently in [AP77] and [Arv77].

II.4.3.2 Proposition. If A is a C*-algebra, I a closed ideal of A, and (hλ)
an [increasing] approximate unit for I, then there is an [increasing] approx-
imate unit for I, contained in the convex hull of (hλ), which is quasicentral
for A. If (hλ) is almost idempotent, the quasicentral approximate unit may
be chosen almost idempotent. If A is separable, the quasicentral approximate
unit may be chosen sequential or continuous.

The proof is based on the following two facts: (1) for any x ∈ A, [x, hλ] → 0
in the weak topology of A; and (2) a norm-closed convex subset of a Banach
space is weakly closed.

II.4.3.3 Note that even if (hλ) is idempotent, the quasicentral approximate
unit cannot in general be chosen idempotent. And even if I is separable, if A is
not separable the quasicentral approximate unit cannot in general be chosen
countable. For example, if H is a separable infinite-dimensional Hilbert space,
it can be shown that although K(H) has a sequential idempotent approximate
unit, it does not have either a countable approximate unit or an idempotent
approximate unit which is quasicentral for L(H). This is closely related to the
notion of quasidiagonality, which will be discussed in V.4.2.

II.5 Ideals, Quotients, and Homomorphisms

Recall that “ideal” means “two-sided ideal” unless otherwise specified. We
assume that all ideals (left, right, or two-sided) are closed under scalar
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multiplication; this is automatic in a unital C*-algebra or for a closed ideal
(using an approximate unit for the algebra), but not in general (cf. II.5.2.1(v)).

II.5.1 Closed Ideals

II.5.1.1 Proposition. Let I be a closed ideal in a C*-algebra A, and π the
quotient map from A to the Banach algebra A/I. Then

(i) I is self-adjoint (so I is a C*-algebra and there is an induced involution
on A/I).

(ii) I is a hereditary C*-subalgebra of A, and x∗x ∈ I ⇔ xx∗ ∈ I ⇔ x ∈ I.
(iii) If (hλ) is an approximate unit for I, then for all x ∈ A,

‖π(x)‖ = lim
λ

‖x(1 − hλ)‖ = inf ‖x(1 − hλ)‖.

(iv) A/I is a C*-algebra in the quotient norm.

Proof: (i): If x ∈ I, then (x∗x)1/n ∈ I for all n.

‖x∗ − (x∗x)1/nx∗‖2 = ‖x − x(x∗x)1/n‖2

= ‖(1 − (x∗x)1/n)x∗x(1 − (x∗x)1/n)‖ → 0.

(ii) follows immediately from (i) and II.3.2.1.
(iii): ‖π(x)‖ = inf{‖x + y‖ : y ∈ I} ≤ inf ‖x − xhλ‖. But if y ∈ I, then

‖x − xhλ‖ ≤ ‖(x + y)(1 − hλ)‖ + ‖y − yhλ‖ ≤ ‖x + y‖ + ‖y − yhλ‖,

so lim sup ‖x − xhλ‖ ≤ ‖π(x)‖.
(iv): For any x ∈ A,

‖π(x)‖2 = inf ‖x(1 − hλ)‖2 = inf ‖(1 − hλ)x∗x(1 − hλ)‖

≤ inf ‖x∗x(1 − hλ)‖ = ‖π(x∗x)‖ = ‖π(x)∗π(x)‖.

II.5.1.2 Corollary. Let A and B be C*-algebras, φ : A → B a *-
homomorphism. Then φ(A) is closed in B, and therefore a C*-subalgebra.

Proof: Let I = Ker(φ). I is closed since φ is continuous (II.1.6.6), and φ
induces an injective *-homomorphism from the C*-algebra A/I to B, which
is an isometry by II.2.2.9.
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II.5.1.3 Corollary. Let A be a C*-algebra, I a closed ideal of A, and B
a C*-subalgebra of A. Then, for any x ∈ B,

inf{‖x + y‖ : y ∈ I} = inf{‖x + z‖ : z ∈ B ∩ I}.

B + I is closed in A (and is therefore a C*-subalgebra), and (B + I)/I is
isometrically isomorphic to B/(B ∩ I). In particular, if I and J are closed
ideals in A, then I + J is a closed ideal in A.
Proof: The inclusion of B into A drops to a map from B/(B ∩ I) into A/I,
which is injective, hence an isometry. The range is (B + I)/I, and B + I is
the inverse image in A of this C*-subalgebra of A/I.

II.5.1.4 Here are some other facts about closed ideals. Using II.3.2.7 and
II.5.1.1(ii), one can show:

(i) If I and J are closed ideals of A, then (I + J)+ = I+ + J+.

Using the fact that in a C*-algebra, every element is the product of two
elements (II.3.2.1), we obtain:

(ii) If I and J are closed ideals in A, then I ∩ J = IJ .
(iii) If I is a closed ideal in A and J is a closed ideal of I, then J is an ideal

of A.

From (ii) and II.5.1.3, we can easily show:

(iv) If I, J , K are closed ideals of A, then (I + K) ∩ (J + K) = (I ∩ J) + K.

Indeed, if A is any ring, we have

(I + K)(J + K) ⊆ IJ + K ⊆ (I ∩ J) + K ⊆ (I + K) ∩ (J + K) .

Let A be a C*-algebra, J a closed ideal, π : A → A/J the quotient map.
If y ∈ A/J , then by definition of the quotient norm, for any ε > 0 there is an
x ∈ A with π(x) = y and ‖x‖ < ‖y‖ + ε. But we can do better:

II.5.1.5 Proposition. Let A be a C*-algebra, J a closed ideal in A, and
π : A → A/J the quotient map. If y ∈ A/J , then there is an x ∈ A with
π(x) = y and ‖x‖ = ‖y‖. If y = y∗ [resp. y ≥ 0], then we can choose x with
x = x∗ [resp. x ≥ 0].
Proof: We may assume ‖y‖ = 1. If y = y∗, let z be any preimage of y and
set w = (z + z∗)/2; if y ≥ 0, let z be a preimage of y1/2 and set w = z∗z. In
the general case, let w be any preimage of y. In any case, π(w) = y.

If f(t) = min(t, 2), then x = w(1+w∗w)−1f(1+w∗w) (computed in Ã, but
x ∈ A) is a preimage of y of norm 1, which is self-adjoint [positive] if y is self-
adjoint [positive]. [Note that x∗x = g(w∗w), where g(t) = t(1+ t)−2f(1+ t)2.]

In fact, we have the following [Ped79, 1.5.10]:
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II.5.1.6 Proposition. Let A be a C*-algebra, J a closed ideal in A, and
π : A → A/J the quotient map. If a ∈ A+ and y ∈ A/J with y∗y ≤ π(a),
then there is an x ∈ A with x∗x ≤ a and π(x) = y.

II.5.2 Nonclosed Ideals

A C*-algebra can have many nonclosed ideals, and their structure can be
enormously complicated. (See, for example, [GJ76] for a description of the
ideal structure of C(X).) Several of the results of II.5.1 can fail for nonclosed
ideals: they need not be self-adjoint, a self-adjoint ideal need not be hereditary
or even positively generated, and an ideal of an ideal of A need not be an
ideal of A. (In a von Neumann algebra, it is an easy consequence of polar
decomposition that every ideal is self-adjoint, positively generated, hereditary,
and strongly invariant (II.5.2.3).)

II.5.2.1 Examples.

(i) Let A = C([−1, 1]), f ∈ A with f(t) = t for t ≥ 0, f(t) = it for t < 0, I
the principal ideal generated by f . Then I is not self-adjoint since f̄ /∈ I.

(ii) Let A = C([−1, 1]), g ∈ A with g(t) = t for all t, I the principal ideal
generated by g. Then I is self-adjoint, but not positively generated: g is
not a linear combination of positive elements of I.

(iii) Let A = C([0, 1]), f ∈ A with f(t) = t for all t, I the principal ideal
generated by f . Then I is self-adjoint and positively generated, but not
hereditary: if g(t) = t sin2(1/t), then 0 ≤ g ≤ f but g /∈ I.

(iv) Let A = Cb((0, 1]), I = Co((0, 1]), J = {f ∈ I : limt→0 f(t)/t exists }.
Then I is a closed ideal of A, and J is an ideal of I [note that if f ∈ J
and g ∈ I, then limt→0[f(t)g(t)]/t = [limt→0 f(t)/t][limt→0 g(t)] = 0.]
But J is not an ideal of A: if f(t) = t ∈ J and h(t) = sin(1/t) ∈ A, then
fh /∈ J .

(v) Let A, I, J be as in (iv), and K = {f ∈ J : limt→0 f(t)/t ∈ Z}. Then
K is a ring-theoretic ideal of the C*-algebra I which is not closed under
scalar multiplication.

(vi) [Ped69] Let A be the C*-algebra of sequences from M2 converging to 0,
and let

I =
{([

an bn

cn dn

])

: |an| = O(1/n), |bn|, |cn|, |dn| = o(1/n)
}

.

Then I is a positively generated hereditary ideal of A (or of Ã), but if

x =
([

0 0
n−1/2 0

])

, then x∗x ∈ I, xx∗ /∈ I (cf. II.5.1.1(ii)).

This example can be modified to take any combination of |an|, |bn|, |cn|,
|dn| to be O(1/n) and the remaining ones o(1/n), giving examples of
ideals in A which are not self-adjoint (using an and bn or just bn) or are
self-adjoint but not positively generated (using bn and cn).
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While we will be mostly concerned with closed ideals in C*-algebras, there
are occasions where nonclosed ideals play an important role (e.g. in II.6.8.2).
The ideals normally encountered are self-adjoint, positively generated, and
hereditary. Such ideals can be described by their positive cones, and conversely
the positive cones of such ideals can be nicely characterized:

II.5.2.2 Proposition. Let A be a C*-algebra, and M a unitarily invariant
hereditary cone in A+ (unitarily invariant means u∗xu ∈ M for any x ∈ M
and u unitary in Ã). Then Span(M) is a self-adjoint, positively generated,
hereditary ideal J of A with M = J ∩ A+.
Proof: Suppose b ∈ M and u is a unitary in Ã. Write x = b1/2 and y = b1/2u;
then 4u∗b =

∑3
k=0 ik(x + iky)∗(x + iky) (II.3.1.6), and by II.3.1.9

(x + iky)∗(x + iky) ≤ 2(x∗x + y∗y) = 2(b + u∗bu) ∈ M

so u∗b ∈ J . By II.3.2.12, ab ∈ J for all a ∈ A, so AJ ⊆ J . Since J = J∗, also
JA ⊆ J . If y =

∑n
k=1 λkxk ≥ 0 for x1, . . . , xn ∈ M , then

0 ≤ y = y∗ =
∑

λ̄kxk = (y + y∗)/2 =
∑

(Reλk)xk ≤
∑

|λk|xk ∈ M

so y ∈ M .

II.5.2.3 A hereditary cone M in A+ is strongly invariant if x∗x ∈ M =⇒
xx∗ ∈ M . A positively generated ideal I is strongly invariant if I+ is strongly
invariant. A strongly invariant hereditary cone is unitarily invariant, but the
converse is not true in general (II.5.2.1(vi)).

There is one especially important and well-behaved ideal in any C*-
algebra:

II.5.2.4 Theorem. Let A be a C*-algebra. Then there is a dense ideal
Ped(A) in A which is contained in every dense ideal of A. Ped(A) is called
the Pedersen ideal of A, and has the following properties:

(i) Ped(A) contains Ac
+ = Af

+, and is the ideal generated by this set, where

Ac
+ = {b ∈ A+ : ∃a ∈ A+ with b ! a}

Af
+ = {f(a) : a ∈ A+, f ∈ Co([0,∞))+ vanishes in a neighborhood of 0}.
In particular, Ped(A) contains all projections (more generally, all well-

supported elements) in A.
(ii) Ped(A) is self-adjoint, hereditary, and spanned by its positive elements;

x∗x ∈ Ped(A) ⇐⇒ xx∗ ∈ Ped(A) ⇐⇒ x ∈ Ped(A).
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(iii) If x1, . . . , xn ∈ Ped(A), then the hereditary C*-subalgebra of A generated
by x1, . . . , xn is contained in Ped(A). In particular, C∗(x1, . . . , xn) ⊆
Ped(A).

See [Ped79, 5.6] for a discussion and proof. To see that Af
+ = Ac

+, if b ! a,
and ‖b‖ = 1, set c = f1/2(a)(b+1)/2; then c ≥ 0 (note that a and b commute)
and b = f1/2(c), so Ac

+ ⊆ Af
+, and the other containment is obvious.

II.5.2.5 If A is unital, then Ped(A) = A, and this can even happen (but
is unusual) if A is nonunital (e.g. V.2.3.6). It is difficult, if not impossible, to
effectively describe the Pedersen ideal of a general C*-algebra. However, there
are two illuminating examples where it can be easily described: Ped(K(H)) is
the ideal of finite-rank operators on H; and if X is a locally compact Hausdorff
space, then Ped(Co(X)) = Cc(X), the ideal of functions of compact support.

II.5.2.6 If A is a C*-algebra and a ∈ A+, then there is a sequence
an ∈ Ac

+ ⊆ Ped(A)+ with a =
∑

an and ‖an‖ ≤ 2−n for n > 1: let (hn)
be a sequence of nonnegative continuous functions on (0,∞), vanishing in a
neighborhood of 0, with

∑
hn(t) = t for all t and ‖hn‖ ≤ 2−n for n > 1 (e.g.

h1(t) = tf1/4(t), hn(t) = t(f2−n−1(t)−f2−n(t)) for n > 1), and set an = hn(a).

II.5.2.7 If π : A → B is a quotient map (surjective *-homomorphism), then
π(Ped(A)) = Ped(B). This is obvious from II.5.2.4(i) since π(Af

+) = Bf
+.

II.5.2.8 If B is a C*-subalgebra of A, then Ped(A) ∩ B is an ideal of B

containing Bf
+, and hence it contains Ped(B); but it may be strictly larger

than Ped(B) in general (consider the case where A is unital and B is an ideal
in A).

The Pedersen ideal is a useful technical device in many arguments. Here
is an example.

II.5.2.9 Proposition. Let A be a C*-algebra, {Ji} a set of ideals of A.
Then ∩Ji is dense in ∩J̄i.
Proof: Let x ∈ ∩J̄i. Then, for any ε > 0, xfε(|x|) ∈ Ped(J̄i) ⊆ Ji for each i,
and xfε(|x|) → x.

Principal Ideals

If A is a C*-algebra and a ∈ A, then the “principal” ideal generated (alge-
braically) by a is

Ia = {
n∑

j=1

yjazj : yj , zj ∈ A}.
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Write Ja for the closure of Ia. If a = a∗, then Ia is self-adjoint, and by
polarization (II.3.1.6) every element of Ia is a linear combination of elements
of the form x∗ax, x ∈ A. In particular, every self-adjoint element of Ia has
the form

∑n
j=1 x∗

jaxj −
∑m

k=1 y∗
kayk.

If a ∈ A+, then Ia is spanned by positive elements of the form x∗ax, x ∈ A.
If b ∈ (Ia)+, then it is plausible that b could be written as

∑n
k=1 x∗

kaxk (finite
sum; cf. II.5.2.13). However, it is unknown, and probably false, that this can
be done in general. But it is possible within a slightly smaller ideal. Let Io

a be
the linear span of {y∗az : y, z ∈ aA}. Then Io

a ⊆ Ia, and is dense in Ia since
aα ∈ Io

a for all α > 1 (thus Ja = Io
a and Ped(Ja) ⊆ Io

a); Io
a = Ia if a ∈ Io

a

(and conversely if A is unital). This happens frequently, but not always: for
example, if a ∈ Ped(Ja) (e.g. if a is a projection or if Ja is algebraically
simple), then Ia = Io

a = Ped(Ja).

II.5.2.10 Proposition. Let A be a C*-algebra, and a ∈ A+. If b ≥ 0 is in
the ideal Io

a , then there are x1, . . . , xn in aA ⊆ Ja with b =
∑n

k=1 x∗
kaxk.

Proof: Write b =
∑m

j=1 y∗
j azj . Then

2b = b + b∗ =
m∑

j=1

(y∗
j azj + z∗j ayj) ≤

m∑

j=1

(y∗
j ayj + z∗j azj)

=
n∑

k=1

w∗
kawk =

n∑

k=1

(w∗
ka1/2)(w∗

ka1/2)∗

with wk ∈ aA (the inequality uses II.3.1.9(i)); and, applying II.3.2.7, we can
write b =

∑n
k=1 uku∗

k, where u∗
kuk ≤ a1/2wkw∗

ka1/2. Then by III.5.2.17, uk =
x∗

ka1/2 for some xk ∈ aA, and b =
∑n

k=1 x∗
kaxk.

II.5.2.11 Corollary. Let A be a C*-algebra, and a ∈ A+. If b ∈
Ped(Ja)+, then there are x1, . . . , xn in aA ⊆ Ja with b =

∑n
k=1 x∗

kaxk. In
particular, if p is a projection in Ja, then there are x1, . . . , xn in aA with
p =

∑n
k=1 x∗

kaxk.
The case of a projection has a simpler direct proof not requiring II.3.2.7.
There is a nice reformulation in terms of matrix algebras (a matrix algebra

over a C*-algebra is again a C*-algebra by II.6.6):

II.5.2.12 Corollary. Let A be a C*-algebra, a ∈ A+. If b ∈ (Ja)+, then
for any ε > 0 there is an n such that diag(fε(b), 0, . . . , 0) � (a, a, . . . , a) in
Mn(A).

Combining II.5.2.10 with II.5.2.6, we obtain:

II.5.2.13 Corollary. Let A be a C*-algebra, a ∈ A+, and Ja the closed
ideal of A generated by a. If b ∈ (Ja)+, then there is a sequence (xk) in
aA ⊆ Ja with b =

∑∞
k=1 x∗

kaxk.
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II.5.3 Left Ideals and Hereditary Subalgebras

II.5.3.1 If A is a C*-algebra and B a hereditary C*-subalgebra, then B+ is
a closed hereditary cone in A+. If L is a closed left ideal of A, then L ∩ L∗ is
a C*-subalgebra B of A with B+ = L+. If C is a hereditary cone in A+, set
L(C) = {x ∈ A : x∗x ∈ C}.

II.5.3.2 Proposition. Let A be a C*-algebra. Then

(i) If L is a closed left ideal in A, then L∩L∗ is a hereditary C*-subalgebra
of A, and hence L+ is a hereditary cone in A+.

(ii) If C is a closed hereditary cone in A+, then L(C) is a closed left ideal in
A and Span(C) is a hereditary C*-subalgebra of A.

(iii) If B is a hereditary C*-subalgebra of A, then AB = {ab : a ∈ A, b ∈
B} = {x ∈ A : x∗x ∈ B} is a closed left ideal in A.

(iv) The maps C �→ L(C) and L �→ L+ are mutually inverse bijections be-
tween the set L of closed left ideals of A and the set C of closed hereditary
cones in A+; L �→ L ∩ L∗ and B �→ AB are mutually inverse bijections
between L and the set H of hereditary C*-subalgebras of A; and B �→ B+

and C �→ Span(C) are mutually inverse bijections between H and C.

Proof: (i): If 0 ≤ a ≤ b and b ∈ B = L ∩ L∗, then b1/4 ∈ B+ = L+ and
a1/2 = ub1/4 ∈ L (II.3.2.1), so a ∈ L.

(ii): L(C) is closed by continuity of multiplication, closed under left multi-
plication by A by II.3.1.8, and closed under addition by II.3.1.9(ii). If a ∈ C,
then a2 ≤ ‖a‖a, so a2 ∈ C, a ∈ L(C)+. On the other hand, if a ∈ C, then
a1/2fε(a) ∈ C for all ε > 0 since C is hereditary, so a1/2 ∈ C; hence if
b ∈ L(C)+, then b2 ∈ C, so b ∈ C. Thus L(C)+ = C, and Span(C) is the
hereditary C*-subalgebra L(C) ∩ L(C)∗.

(iii): If x ∈ AB, then x∗x ∈ BAB = B, so (x∗x)1/4 ∈ B and x =
u(x∗x)1/4 ∈ AB. The same argument shows that if x ∈ A, then x∗x ∈ B
if and only if x ∈ AB. If x = a1b1 + a2b2 with bi ∈ B, then

x∗x ≤ 2(‖a1‖2b∗1b1 + ‖a2‖2b∗2b2) ∈ B

(II.3.1.8, II.3.1.9(ii)), so x∗x ∈ B, and AB is closed under addition.
(iv): It was shown in (ii) that if C ∈ C, then L(C)+ = C. Conversely, let

L ∈ L, and let C = L+. If x ∈ L, then x∗x ∈ C, so L ⊆ L(C); on the other
hand, if x∗x ∈ C, then (x∗x)1/4 ∈ C so x = u(x∗x)1/4 ∈ L, so L = L(C)
and the first statement is proved. For the third statement, if B ∈ H, then
B = Span(B+); conversely, if C ∈ C, then Span(C) = L(C) ∩ L(C)∗, so
Span(C)+ = L(C)+ = C by (ii). The second statement follows from the
other two by noting that (AB)+ = B+: B = B2 ⊆ AB, and conversely if
x = ab ∈ (AB)+, then x2 = b∗a∗ab ≤ ‖a‖2b∗b ∈ B+, so x2 ∈ B+, x ∈ B+.



90 II C*-Algebras

II.5.3.3 One consequence worth noting is that if (hλ) is an approximate
unit for B, then (hλ) is a right approximate unit for AB, i.e. every closed left
ideal in a C*-algebra has a right approximate unit. (A closed left ideal need
not have a left approximate unit.)

II.5.3.4 If B is a hereditary C*-subalgebra of A, let KB = Span(ABA) be
the closed ideal of A generated by B. Note that ABA is not closed under
addition in general, and the generated ideal Span(ABA) of A is not generally
(topologically) closed, for example A = K, B = Ce11.

II.5.3.5 Proposition. Let A be a C*-algebra, B a hereditary C*-subal-
gebra, KB as above. Then I �→ I ∩ B = BIB and J �→ Span(AJA) are
mutually inverse bijections between the closed ideals of A contained in KB

and the closed ideals of B.
The simple proof is similar to previous arguments.

Factorizations

The first statement in II.5.3.2(iii) is true even if B is not hereditary. This fol-
lows from a general factorization result for Banach modules over C*-algebras,
a version of Cohen’s Factorization Theorem for Banach algebras [Coh59] and
Banach modules [Hew64].

II.5.3.6 Definition. Let B be a C*-algebra. A right Banach B-module is a
Banach space X which is a right B-module, for which there is a K satisfying
‖xb‖ ≤ K‖x‖‖b‖ for all x ∈ X, b ∈ B. Left Banach B-modules are defined
analogously.

If B is unital, we do not assume that x1B = x for all x ∈ X. A module
with this property is called a unital module.

Caution: by convention, the term “Banach B-module” without “left” or
“right” means a B-bimodule (II.5.5.15).

The K is not very important: a right Banach B-module has a natural
structure as a unital right Banach B†-module, and has an equivalent norm
with K = 1 for this extended action.

II.5.3.7 Theorem. [Ped98, 4.1] Let B be a C*-algebra, X a right Banach
B-module. For any y in the closed span Y of XB, and ε > 0, there are x ∈ Y
and b ∈ B+ with y = xb and ‖x − y‖ < ε. So Y = XB, and XB is a closed
submodule of X. An analogous statement holds for left Banach B-modules.
Proof: Y becomes a unital right Banach B̃-module in the evident way; let
K be the corresponding constant, i.e. ‖yb‖ ≤ K‖y‖‖b‖ for all y ∈ Y , b ∈ B̃.
Let (hλ) be an approximate unit for B. Then yhλ → y for any y ∈ Y . Fix y
and ε. Set x0 = y and b0 = 1 ∈ B̃. Inductively let hn = hλn

for some λn with

‖xn−1 − xn−1hλn
‖ < 2−nε/K
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and let
bn = bn−1 − 2−n(1 − hn) ∈ B̃.

Then bn = 2−n1 +
∑n

k=1 2−khk ≥ 2−n1, so bn is invertible in B̃ and ‖b−1
n ‖ ≤

2n. Set xn = yb−1
n ∈ Y . We have

xn − xn−1 = yb−1
n−1(bn−1 − bn)b−1

n = 2−nxn−1(1 − hn)b−1
n

so ‖xn − xn−1‖ < 2−nε. Thus (xn) and (bn) are Cauchy sequences; let x and
b be the limits. We have b =

∑∞
k=1 2−khk ∈ B+ and ‖x − y‖ < ε, and y = xb

since y = xnbn for all n.

II.5.3.8 Corollary. Let A be a C*-algebra, B a C*-subalgebra of A, and
R a closed right ideal of A. If L is the closed linear span of RB, then L =
RB = LB. In fact, every y ∈ L can be written as xb, where x ∈ L, b ∈ B+.
In particular, the closed left ideal of A generated by B is AB.
Proof: L is a right Banach B-module. Since L is the closure of the span of
RB, if (hλ) is an approximate unit for B we have yhλ → y for every y ∈ L,
and thus LB is dense in L. For the last statement, set R = A, and note that
the span of AB is a left ideal in A and B = B2 ⊆ AB.

This result is most frequently applied when R is a two-sided ideal of A.
An important special case is when R is a C*-algebra and A is the multiplier
algebra M(R) (II.7.3).

II.5.3.9 Corollary. Let B be a C*-subalgebra of a C*-algebra A. Then
the hereditary C*-subalgebra of A generated by B is equal to

BAB = {x∗ax : x ∈ B, a ∈ A} = {bab : b ∈ B+, a ∈ A}.

In particular, if x ∈ A, then x∗Ax =
⋃

b∈C∗(x∗x)+
bAb.

Proof: Let D be the hereditary C*-subalgebra of A generated by B. Then
AD = AB by II.5.3.2 and II.5.3.8. We have BAB ⊆ DAD = D (II.3.4.2(i)).
If x ∈ D, write x = ycdz with y, c, d, z ∈ D. Then (yc)∗ = sb1 and dz = tb2

for s, t ∈ A, b1, b2 ∈ B+, so x = b1(s∗t)b2. If b = (b2
1 + b2

2)
1/4 ∈ B+, then

b1 = bu and b2 = vb for some u, v ∈ B ⊆ A (II.3.2.1), so x = b(us∗tv)b.

Full Elements and Hereditary Subalgebras

II.5.3.10 If A is a C*-algebra and a ∈ A, then a is full in A if the closed
ideal of A generated by a is all of A. Similarly, if B is a subalgebra of A, then
B is full in A if the closed ideal of A generated by B is all of A. A strictly
positive element in A is full, so a σ-unital C*-algebra contains a full element.
The converse (that a full positive element is strictly positive) is true if A is
commutative (in particular, a full element in a unital commutative C*-algebra
is invertible), but not in general (II.6.4.15).
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II.5.3.11 Proposition. Let A be a unital C*-algebra, B a full hereditary
C*-subalgebra. Then B contains a full positive element.
Proof: Since 1 is in the closed ideal of A generated by B, there are pos-
itive elements c1, . . . , cn ∈ B and elements y1, . . . , yn, z1, . . . , zn ∈ A with∑n

k=1 ykckzk close to 1 and hence invertible. Then

n−1

(
n∑

k=1

ykckzk

)∗( n∑

k=1

ykckzk

)

≤
n∑

k=1

z∗kcky∗
kykckzk ≤

n∑

k=1

‖yk‖2z∗kc2
kzk = r

(II.3.1.9(ii)), so r is invertible. Let a =
∑n

k=1 c
1/2
k ; then by II.3.2.1 we can

write c2
k = uka, 1 =

∑n
k=1 ‖yk‖2r−1z∗kukazk, so a is full.

Nonclosed Left Ideals and Hereditary *-Subalgebras

II.5.3.12 A nonclosed *-subalgebra (even an ideal) of a C*-algebra can be
hereditary in the sense of II.3.4.1, yet fail to be generated by its positive
elements (e.g. the last part of II.5.2.1(vi)). We say a *-subalgebra B of a
C*-algebra A is positively generated if B is spanned by B+ = B ∩ A+. If
x ∈ A, then x∗Ax is a positively generated *-subalgebra of A, although not
hereditary in general.

If B is a positively generated hereditary *-subalgebra of a C*-algebra A,
and b ∈ B+, then the C*-subalgebra fε(b)Afε(b) of A is contained in B for any
ε > 0, and thus the union of the hereditary C*-subalgebras of B has dense
intersection with B+. Thus B has an approximate unit (hλ) such that, for
each λ, the hereditary C*-subalgebra of A generated by λ is contained in B.

II.5.3.13 Some, but not all, of the results of II.5.3.2 hold for nonclosed left
ideals. Suppose N is a left ideal in a C*-algebra A. By approximating the
elements of a right approximate unit for the (norm-)closure of N by elements
of N, there is a right approximate unit in N. (In fact, with more care, it can be
shown that any left ideal in a C*-algebra has an increasing right approximate
unit; see e.g. [SZ79, 3.20].)

There are two *-subalgebras of A naturally associated to N, N ∩ N∗ and

M(N) = Span{y∗x : x, y ∈ N}

Of course, M(N) ⊆ N ∩ N∗; they coincide if N is closed by II.5.3.2, but not
in general. Using a right approximate unit for N, it is easily seen that the
(norm-)closure of M(N) (and hence also of N∩N∗) is L∩L∗, where L is the
closure of N. By polarization, M(N) = Span{x∗x : x ∈ N}, and in particular
M(N) is positively generated.

N ∩N∗ and M(N) are not hereditary *-subalgebras of A in general, even
if N is a two-sided ideal (II.5.2.1(iii)). A condition on N which insures that
M(N) is hereditary is:
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II.5.3.14 Definition. A left ideal N in a C*-algebra A is weighted if
x1, . . . , xn ∈ N, y ∈ A, y∗y ≤

∑n
k=1 x∗

kxk implies y ∈ N.
Every left ideal in a von Neumann algebra is weighted (I.5.2.5). It fol-

lows from II.5.3.2 and II.5.3.15 that every norm-closed left ideal in a C*-
algebra is weighted. The examples of II.5.2.1(i)–(v) are not weighted. The
term “weighted” will be explained in II.6.7.9.

If M is a positively generated hereditary *-subalgebra of a C*-algebra A,
as before set L(M) = {x ∈ A : x∗x ∈ M}. It is obvious that L(M) is a
weighted left ideal of A. Similarly, if C is a hereditary cone in A, define L(C)
in the same way. Essentially the same arguments as in the proof of II.5.3.2
show:

II.5.3.15 Theorem. Let A be a C*-algebra. The maps N �→ M(N),
M �→ L(M), M �→ M+, C �→ Span(C), N �→ M(N)+, C �→ L(C) give mutu-
ally inverse bijections between the set of weighted left ideals of A, the set of
positively generated hereditary *-subalgebras of A, and the set of hereditary
cones in A.

If N is a weighted left ideal in a C*-algebra A, even in a von Neumann
algebra, then N ∩ N∗ is not hereditary in general. However, it is “almost
hereditary.” Specifically, it is 2-hereditary:

II.5.3.16 Definition. Let A be a C*-algebra, and M a positively generated
*-subalgebra. M is α-hereditary (α > 0) if x ∈ M+, y ∈ A+, yα ≤ xα imply
y ∈ M. M is completely hereditary if it is α-hereditary for all α > 0.

If M is α-hereditary, it is β-hereditary for β > α. M is 1-hereditary if and
only if it is positively generated and hereditary in the usual sense.

II.5.3.17 Example. Let 0 < α ≤ 2. Let A be a C*-algebra and x ∈ A+.
Set

M = {y ∈ A : (y∗y)α/2, (yy∗)α/2 ≤ kxα for some k > 0}.
Then M is a *-subalgebra of A (cf. the proof of II.5.3.2(iii)), and is α-
hereditary. For suitable choice of A and x, M is not β-hereditary for any
β < α.

II.5.4 Prime and Simple C*-Algebras

II.5.4.1 Definition. A C*-algebra A is simple if it has no nontrivial closed
ideals. A is algebraically simple if it contains no nontrivial ideals.

A simple unital C*-algebra is algebraically simple by II.1.3.2. A nonunital
simple C*-algebra need not be algebraically simple (e.g. K). The only examples
of simple C*-algebras seen so far are Mn and K (and the Calkin algebra on a
separable infinite-dimensional Hilbert space), but there are many others, and
the study of simple C*-algebras is one of the main thrusts of the classification
program [Rør02a].

If A is simple, then any hereditary C*-subalgebra of A is simple by II.5.3.5.
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II.5.4.2 Proposition. Let A be a simple C*-algebra, B a hereditary C*-
subalgebra of Ped(A) (II.5.2.4). Then B is algebraically simple.
Proof: Let x, b be nonzero elements of B, with b ≥ 0. It suffices to show
that b is in the ideal of B generated by x. We have that y = (xx∗)x(x∗x) �= 0,
and b1/3 is in the ideal of A generated by y (which is equal to Ped(A)). Thus
there are elements ci, di ∈ A (1 ≤ i ≤ n) with b1/3 =

∑n
i=1 ciydi; thus

b =
n∑

i=1

[b1/3cixx∗]x[x∗xdib
1/3]

and the elements in brackets are in B (II.3.4.2(i)).

We have the following immediate consequence of II.5.2.10 and II.5.2.13:

II.5.4.3 Proposition. Let A be a simple C*-algebra, a, b ∈ A+ with a �= 0.
Then

(i) There is a sequence (xk) in A with b =
∑∞

k=1 x∗
kaxk.

(ii) If b ∈ Ped(A) (in particular, if A is unital or, more generally, algebraically
simple), then there are x1, . . . , xn ∈ A with b =

∑n
k=1 x∗

kaxk.

II.5.4.4 Definition. A C*-algebra A is prime if, whenever J and K are
ideals of A with J ∩ K = {0}, either J or K is {0} (i.e. {0} is a prime ideal
in A).

Any simple C*-algebra is prime. By II.5.2.9, A is prime if, whenever J and
K are closed ideals of A with J ∩ K = {0}, either J or K is {0}. A closed
ideal I of A is a prime ideal if and only if A/I is a prime C*-algebra.

II.5.4.5 Proposition. A C*-algebra A is prime if and only if, whenever
x, y ∈ A are nonzero elements, there is a z ∈ A with xzy �= 0.
Proof: If J and K are nonzero ideals of A, let x ∈ J and y ∈ K be nonzero.
Then, for any z ∈ A, xzy ∈ J ∩ K. Conversely, if x �= 0 and J is the ideal
generated by x, let

K = {y ∈ A : xzy = 0 for all z ∈ A}.

Then K is an ideal in A with J∩K = {0} [if y ∈ J∩K, write y∗y =
∑n

i=1 aixbi;
then (y∗y)2 =

∑n
i=1 aixbiy

∗y = 0.]

II.5.4.6 Corollary. If A is a concrete C*-algebra of operators acting ir-
reducibly on a Hilbert space H, then A is prime.
Proof: If S, T ∈ A, T �= 0, and ‖S‖ = 1, let ξ, η ∈ H with Tξ �= 0 and
Sη �= 0. Then by irreducibility there is an R ∈ A with ‖RTξ − η‖ < ‖Sη‖; so
‖SRTξ − Sη‖ < ‖Sη‖, SRTξ �= 0, SRT �= 0.
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II.5.4.7 If J is a closed ideal in a C*-algebra B, set

J⊥ = {x ∈ B : Jx = {0}}.

J⊥ is the annihilator of J . (This notation is consistent with the notation of
Hilbert modules: J⊥ is the orthogonal complement of J in the Hilbert module
B.) J⊥ is a closed ideal of B. J is essential in B if J⊥ = {0}; equivalently,
J is essential if J ∩ I �= {0} for every nonzero closed ideal I of B. If X is
an open subset of a compact Hausdorff space Y , so that Co(X) is an ideal in
C(Y ), then Co(X)⊥ is Co(Z), where Z is the interior of Y \ X, so Co(X) is
essential in C(Y ) if and only if X is dense in Y .

A is prime if and only if every nonzero ideal of A is an essential ideal.

II.5.5 Homomorphisms and Automorphisms

II.5.5.1 If A and B are C*-algebras, denote by Hom(A,B) the set of *-
homomorphisms from A to B. If A and B are unital, let Hom1(A,B) be the
set of unital *-homomorphisms from A to B. The set of *-automorphisms of
a C*-algebra A is denoted Aut(A).

Unless otherwise specified, “homomorphism” and “automorphism” for C*-
algebras will always mean “*-homomorphism” and “*-automorphism” respec-
tively. (One occasionally, but rarely, considers homomorphisms of C*-algebras
which are not *-homomorphisms; cf. [Gar65], [Chr81], [Pau02, Chapter 19]).

II.5.5.2 There is a natural composition from Hom(A,B) × Hom(B,C) to
Hom(A,C), and also for Hom1 if A,B,C are unital. Hom(A,A) is a monoid
(semigroup with identity) and Aut(A) is a group; Hom1(A,A) is also a monoid
if A is unital. The identity element of each is the identity map idA.

Topologies on Homomorphisms

II.5.5.3 There are two natural topologies on Hom(A,B):
The norm topology, induced from the operator norm on homomorphisms

regarded as bounded operators from A to B.
The point-norm topology , induced by the pseudometrics

da(φ, ψ) = ‖φ(a) − ψ(a)‖

for a ∈ A. This is the topology of pointwise (norm-)convergence.

II.5.5.4 Proposition.

(i) Composition is jointly continuous for either the norm or point-norm
topologies.

(ii) Aut(A) is a topological group in either the norm or point-norm topologies.
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II.5.5.5 If B is a von Neumann algebra, one can also consider other topolo-
gies on Hom(A,B) such as the point-weak, point-σ-strong, etc. In fact, it
follows easily from I.3.2.9 and II.3.2.12 that these topologies all coincide. But
II.5.5.4 fails in general for these topologies, although there is a closely related
topology under which Aut(B) is a topological group (III.3.2.1).

Homotopy Theory for Homomorphisms

The point-norm topology is in general much more useful than the norm topol-
ogy, which is too strong for most purposes. A good example is homotopy of
homomorphisms:

II.5.5.6 Definition. Let φ0, φ1 be in Hom(A,B). A homotopy from φ0 to
φ1 is a *-homomorphism φ from A to C([0, 1], B) (the continuous functions
from [0, 1] to B with pointwise operations and sup norm) such that φ0 = π0◦φ,
φ1 = π1 ◦ φ, where πt : C([0, 1], B) → B is evaluation at t. Write φ0 $ φ1 if
φ0 and φ1 are homotopic.

It is straightforward to check that this is an exact generalization of the
notion of homotopy of continuous functions in topology: if A = C(X) and
B = C(Y ), then a homotopy of unital homomorphisms from A to B exactly
corresponds to an ordinary homotopy between the corresponding continuous
functions from Y to X.

II.5.5.7 Proposition. If φ is a homotopy from φ0 to φ1, and φt is defined
to be πt ◦ φ for 0 < t < 1, then (φt) is a point-norm continuous path in
Hom(A,B) from φ0 to φ1. Conversely, any point-norm continuous path (φt)
defines a homotopy by [φ(a)](t) = φt(a).

II.5.5.8 Definition. Let A and B be C*-algebras. A homotopically domi-
nates B if there are *-homomorphisms φ : A → B and ψ : B → A such that
φ ◦ ψ $ idB . A and B are homotopy equivalent if there are φ : A → B and
ψ : B → A such that φ ◦ ψ $ idB and ψ ◦ φ $ idA.

A C*-algebra A is contractible if it is homotopy equivalent to (or homotopy
dominated by) the C*-algebra {0}, i.e. if there is a point-norm continuous
path (φt) (0 < t ≤ 1) of *-homomorphisms from A to A with φ1 = idA and
limt→0 ‖φt(x)‖ = 0 for all x ∈ A.

A C*-algebra is subcontractible if it is isomorphic to a C*-subalgebra of a
contractible C*-algebra.

These notions are not exact analogs of the corresponding notions in topol-
ogy, although Co(X) is contractible in the C*-sense if and only if the one-point
compactification X† is contractible to {∞} relative to {∞}.
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II.5.5.9 Since any nonzero projection has norm one, a [sub]contractible C*-
algebra cannot contain any nonzero projections. In particular, a [sub]con-
tractible C*-algebra is always nonunital. If A is contractible, then Ã is homo-
topy equivalent to C, and conversely (if A is nonunital).

The most important examples of contractible and subcontractible C*-
algebras are cones and suspensions:

II.5.5.10 Definition. Let A be a C*-algebra (not necessarily unital). The
cone over A, written C(A) or often CA, is the C*-algebra Co((0, 1], A) of
continuous functions f : [0, 1] → A with f(0) = 0. [C(A) ∼= Co((0, 1]) ⊗ A
(II.9.4.4).]
The unital cone C1(A) is C̃A. If A is unital, C1(A) may be thought of as the
set of f : [0, 1] → A such that f(0) ∈ C1A.
The suspension of A, written S(A) or often SA, is Co((0, 1), A) ∼= Co(R, A).

One can inductively define higher cones CnA = C(Cn−1A) and suspen-
sions SnA = S(Sn−1A) for any n.

II.5.5.11 CA is contractible for any A: let [φ1−t(f)](s) be 0 if s ≤ t and
f(s− t) if t < s ≤ 1. SA is a C*-subalgebra of CA and hence subcontractible,
but SA is not contractible in general (it is easy to see that SC ∼= Co(R) is not
contractible, for example).

Automorphisms

II.5.5.12 Definition.

(i) An automorphism α of a C*-algebra A is inner if there is a unitary u ∈ Ã
with α = Ad u, i.e. α(x) = uxu∗ for all x ∈ A. The set of all inner auto-
morphisms of A is denoted In(A); In(A) is a normal subgroup of Aut(A),
and the map U(Ã) → In(A) sending u to Ad u is a homomorphism whose
kernel is the center of U(Ã).

(ii) φ, ψ ∈ Hom(A,B) are unitarily equivalent if there is a unitary u ∈ B̃
with ψ = (Ad u) ◦ φ.

(iii) φ, ψ ∈ Hom(A,B) are approximately unitarily equivalent if there is a net
(ui) of unitaries in B̃ with (Ad ui) ◦ φ → ψ in the point-norm topology.

(iv) φ, ψ ∈ Hom(A,B) are asymptotically unitarily equivalent if there is a
(norm-continuous) path (ut) (t ∈ [to,∞)) of unitaries in B̃ with (Ad ut)◦
φ → ψ in the point-norm topology.

(v) An automorphism of A is approximately inner [resp. asymptotically in-
ner ] if it is approximately unitarily equivalent [resp. asymptotically uni-
tarily equivalent] to idA.



98 II C*-Algebras

II.5.5.13 Remarks.

(i) Using multiplier algebras (II.7.3), one can similarly define multiplier uni-
tary equivalence, multiplier approximate unitary equivalence, and mul-
tiplier asymptotic unitary equivalence as in II.5.5.12(ii)-(iv), replacing
B̃ by M(B), and multiplier inner automorphisms, multiplier approxi-
mately inner automorphisms, and multiplier asymptotically inner auto-
morphisms as in II.5.5.12(i),(v) with Ã replaced by M(A). Denote the
group of multiplier inner automorphisms of A by Inn(A); Inn(A) is a nor-
mal subgroup of Aut(A) containing In(A). If B is unital, there is of course
no difference between inner and multiplier inner, etc. If B is nonunital,
there is in general some difference between inner and multiplier inner,
and between unitary equivalence and multiplier unitary equivalence, al-
though the difference is not great and can often be overlooked. In at least
many cases, approximate unitary equivalence and approximate multiplier
unitary equivalence coincide even if B is nonunital. For example, if B is
stable (II.6.6.12), then it is not hard to show that U(B̃) is strictly dense
in U(M(B)), so the two relations coincide for homomorphisms from any
A into B. If A is AF (II.8.2.2(iv)), then the two relations coincide for
maps from A into any C*-algebra B. Asymptotic and asymptotic multi-
plier unitary equivalence similarly coincide in at least the most important
cases.

(ii) If t �→ ut is norm-continuous [resp. strictly continuous (II.7.3)], then
t �→ Ad ut is norm-continuous [resp. point-norm-continuous].

(iii) If φ1, φ2 : A → B, ψ1, ψ2 : B → C, and the φi and ψi are unitarily equiv-
alent [resp. approximately unitarily equivalent, asymptotically unitarily
equivalent], then so are ψ1 ◦ φ1 and ψ2 ◦ φ2. A similar statement is true
for multiplier unitary equivalence, etc., if ψ1, ψ2 are strict (II.7.3.13).

(iv) If A is separable and φ, ψ : A → B are approximately unitarily equivalent,
then there is a sequence (un) of unitaries in B̃ with (Ad un) ◦ φ → ψ in
the point-norm topology.

II.5.5.14 Example. Every automorphism of L(H) is inner. For an auto-
morphism must preserve rank-one projections, and then by an easy argu-
ment must be spatially implemented. Since an automorphism must preserve
K(H), Aut(K(H)) = Aut(L(H)) is isomorphic to the quotient of U(H) by
its center TI. The point-norm topology on Aut(K(H)) is the quotient of the
weak/strong/strong-* topology on U(H); the norm topologies on Aut(K(H))
and Aut(L(H)) coincide and are the quotient of the norm topology on U(H).
The point-norm topology on Aut(L(H)) is distinct from both of these (if H
is infinite-dimensional), and is more difficult to describe (cf. [Haa75b]). Since
L(H) is the multiplier algebra of K(H), every automorphism of K(H) is mul-
tiplier inner, i.e. Inn(K(H)) = Aut(K(H)). However, In(K(H)) is a smaller
group (dense in Aut(K(H)) in the point-norm topology).
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Derivations

The subject of derivations on C*-algebras is a vast and important one which
is treated in detail in [Bra86] (see also [Sak91] and [BR87]). We give only a
quick overview here. The subject arises naturally not only in studying differ-
entiability on manifolds and actions of Lie groups, but also in the mathemat-
ical formulation of quantum mechanics. Derivations are also important in the
structure theory of operator algebras.

II.5.5.15 Definition. Let A be a C*-algebra. A Banach A-module is an A-
bimodule X which is a Banach space, such that there is a K with ‖ax‖, ‖xa‖ ≤
K‖a‖‖x‖ for all a ∈ A, x ∈ X .

The term “Banach A-module” is conventionally used instead of the more
strictly correct “Banach A-bimodule”, leading to unfortunate confusion with
the definition of a left or right Banach module (II.5.3.6). Standard examples
of Banach A-modules are A itself, or any C*-algebra containing A, and A∗

(or B∗ for any B containing A). More generally, if X is a Banach A-module,
then X ∗ has a natural structure as a Banach A-module by [aφ](x) = φ(xa),
[φa](x) = φ(ax) (note reversal of order); such a Banach A-module is called a
dual Banach A-module. This dual module has the property that φ �→ aφ and
φ �→ φa are weak-* continuous maps from X ∗ to X ∗ for all a ∈ A.

If A is a von Neumann algebra, one also considers normal Banach A-
modules (IV.2.5).

II.5.5.16 Definition. Let A be a C*-algebra and X a Banach A-module.
A derivation from A to X is a linear map δ from a dense *-subalgebra A of A
to X satisfying δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A. A is called the domain
of δ.

A derivation δ from A to X is closed if it is closed (I.7.2.1) as a partially
defined operator from A to X .

A derivation δ from A to X is inner if there is an x ∈ X with δ(a) =
[a, x] = ax − xa for all a ∈ A. An inner derivation is bounded.

Any linear combination of derivations (with the same domain) is a deriva-
tion. The closure of a closable derivation (i.e. a derivation which is a closable
operator) is a derivation. There exist derivations which are not closable, al-
though an everywhere-defined derivation is automatically closed (bounded)
([Sak60], [KR97a, 4.6.66]).

If X has an involution compatible with the action of A, a derivation δ from
A to X has an adjoint δ∗ with the same domain, defined by δ∗(a) = [δ(a∗)]∗.
The derivation δ is self-adjoint, or a *-derivation, if δ = δ∗. A general δ can be
written as a linear combination of the *-derivations δr = (δ + δ∗)/2 and δi =
(δ − δ∗)/2i, so the study of general derivations can be reduced to considering
*-derivations; in some references, “derivation” means “*-derivation.” Other
authors prefer to work with antihermitian derivations, where δ∗ = −δ. With
the above notation, if δ is an arbitrary derivation, the derivations δa = iδi

and δb = −iδr are antihermitian, and δ = δa + iδb.
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II.5.5.17 There are three flavors of derivations usually considered on C*-
algebras, the second and third being generalizations of the first:

(i) Bounded *-derivations from a C*-algebra A to itself (or occasionally to
a larger containing C*-algebra). Such a derivation is called a bounded
derivation on A. The domain of a bounded derivation on A can (and
will) be taken to be all of A.
There are classes of C*-algebras on which every bounded derivation is in-
ner (as a derivation from A to M(A) in the nonunital case): von Neumann
algebras [Sak66] and more generally AW*-algebras [Ole74], simple C*-
algebras [Sak68], and commutative C*-algebras and unital continuous-
trace C*-algebras [AEPT76] (direct sums of these exhaust all separable
C*-algebras with this property [Ell77]).

(ii) Unbounded *-derivations from a C*-algebra A to itself. Among other ap-
plications, these are important in the theory of one-parameter automor-
phism groups of A, in a manner analogous to Stone’s theorem (I.7.4.10):
if α is a (point-norm-)continuous action of R on A, let A be the set of
all a ∈ A for which the limit

δ(a) = lim
t→0

αt(a) − a

t

exists; then it turns out that A is a dense *-subalgebra of A and δ is
a closed *-derivation from A to A with domain A, called the generator
of α. Conversely, it is easy to check that if δ is a bounded *-derivation
of A, then αt = eitδ (computed in L(A)) is an automorphism of A for
each t, and t → αt is a continuous action of R on A, with generator δ.
The same can be done for certain closed unbounded derivations, which
can be intrinsically characterized. There is thus a one-one correspondence
between such derivations and one-parameter groups of automorphisms.

(iii) Bounded derivations from A to a general (usually dual) Banach A-module
X are important in the cohomology theory of operator algebras (see
[KR71a]). A C*-algebra A is amenable if every bounded derivation from A
to a dual Banach A-module is inner. This definition will be explained and
justified in IV.3.3; it turns out that amenability is equivalent to nuclearity
for C*-algebras. There is a von Neumann algebra version, discussed in
IV.2.5.

II.6 States and Representations

We have gotten fairly far into the structure of C*-algebras without showing
any direct connection with operator theory on Hilbert space except that alge-
bras of operators provide some examples of C*-algebras. But the connection
is a very close one and is important to understand, since it provides much
of the motivation and applications of the theory. In addition, some structure
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facts can be easily proved using representation theory which cannot be done
reasonably in any other way (e.g. II.6.6).

II.6.1 Representations

II.6.1.1 Definition. A representation of a C*-algebra A is a *-homo-
morphism from A to L(H) for some Hilbert space H.
Two representations π and ρ of A on X and Y respectively are (unitarily)
equivalent if there is a unitary operator U ∈ L(X ,Y) with Uπ(x)U∗ = ρ(x)
for all x ∈ A.
A subrepresentation of a representation π on H is the restriction of π to a
closed invariant subspace of H.
A representation is irreducible if it has no nontrivial closed invariant sub-
spaces.
If πi (i ∈ Ω) is a representation of A on Hi, then the sum ⊕iπi of the πi is the
diagonal sum acting on ⊕iHi. If each πi is equivalent to a fixed representation
ρ, then ⊕iπi is a multiple or amplification of ρ by card(Ω).

II.6.1.2 A representation is always norm-decreasing (II.1.6.6) and hence
continuous. Thus the kernel of a representation is a closed ideal. A represen-
tation with kernel 0 is called faithful. By II.2.2.9, a faithful representation is
isometric.

II.6.1.3 If J is a closed ideal of A, then any representation of A/J gives
a representation of A by composition with the quotient map, whose kernel
contains J . Conversely, if π is a representation of A whose kernel contains J ,
then π drops to a representation of A/J .

II.6.1.4 If π is a representation of A on H and X is a closed subspace
of H, then the following are easily seen to be equivalent because π(A) is a
self-adjoint subset of L(H):

(i) X is invariant under π(A).
(ii) X⊥ is invariant under π(A).
(iii) PX ∈ π(A)′.

II.6.1.5 If N is the largest subspace of H on which π(x) = 0 for all x ∈ A,
then N is closed, and X = N⊥ is an invariant subspace, called the essential
subspace of π. X is the closed span of {π(x)ξ : x ∈ A, ξ ∈ H}. (Actually, by
II.5.3.7, X = {π(x)ξ : x ∈ A, ξ ∈ X} = {π(x)ξ : x ∈ A, ξ ∈ H}.) If A is
unital, then PX = π(1A); in general, if (hλ) is an approximate unit for A, then
π(hλ) → PX strongly. The representation π is nondegenerate (or essential) if
X = H. An irreducible representation is always nondegenerate.
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II.6.1.6 If J is a closed ideal in A, let E be the essential subspace of π|J .
Then E is invariant under π(A), so PE ∈ π(A)′. So π decomposes into a sum
of a representation essential on J and a representation which is zero on J (a
representation of A/J). Conversely, if ρ is a nondegenerate representation of
J on an H, and (hλ) is an approximate unit for J , then for any a ∈ A the net
(ρ(ahλ)) converges strongly in L(H) to an operator we call ρA(a) (cf. II.7.3.9),
defining a representation of A extending ρ, and we have ρA(A)′′ = ρ(J)′′. (This
ρA is the unique extension of ρ to a representation of A on H.)

II.6.1.7 Note that for a nondegenerate representation π, the strong (or
weak) closure of π(A) is π(A)′′ by the Bicommutant Theorem (I.9.1.1); for
a general π, the strong closure of π(A) is PXπ(A)′′, where X is the essential
subspace of π. (Note that PX is a central projection in π(A)′′.)

Irreducible and Factor Representations

Since π(A)′ and π(A)′′ are von Neumann algebras and are thus generated
by their projections, we get the following fact from an application of the
Bicommutant Theorem:

II.6.1.8 Proposition. Let π be a representation of a C*-algebra A on a
Hilbert space H. Then the following are equivalent:

(i) π is irreducible.
(ii) π(A)′ = CI.
(iii) π(A)′′ = L(H).
(iv) π(A) is strongly dense in L(H).

It follows from II.6.1.6 that if π is an irreducible representation of A, and
J is a closed ideal of A, then π|J is either zero or irreducible. More generally,
we have:

II.6.1.9 Proposition. Let B be a hereditary C*-subalgebra of a C*-algebra
A, and let π be an irreducible representation of A on a Hilbert space H. Let P
be the projection onto the essential subspace of π|B . Then B acts irreducibly
on PH.
Proof: Let ξ, η ∈ PH with ξ �= 0. Then for any ε > 0 there is an x ∈ A
with π(x)ξ = π(x)Pξ within ε/2 of η, so Pπ(x)Pξ is within ε/2 of Pη =
η. Let (hλ) be an approximate unit for B. Then π(hλ) → P strongly, so
‖π(hλxhλ)ξ − η‖ < ε for sufficiently large λ.

II.6.1.10 We say a representation π of A is a factor representation if π(A)′′

is a factor (I.9.1.5). An irreducible representation, or any multiple of an irre-
ducible representation, is a factor representation.
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II.6.1.11 Proposition. The kernel of a factor representation of a C*-
algebra is a (closed) prime ideal.
Proof: The kernel of any representation is closed. Let π be a factor represen-
tation of a C*-algebra A on H. Replacing A by A/ ker(π) we may assume π
is faithful. Suppose there are nonzero ideals J and K of A with J ∩K = {0}.
If (hλ) and (kµ) are increasing approximate units for J and K respectively,
then (π(hλ)) and (π(kµ)) converge strongly to the projections P and Q onto
the closures of π(J)H and π(K)H. Then P and Q are nonzero projections in
π(A)′′, and P ⊥ Q. Since π(J)H and π(K)H are invariant under π(A), we
also have P,Q ∈ π(A)′, a contradiction.

See III.1.1.8 for another proof.

There is a potential ambiguity in the definition of an irreducible represen-
tation. We say a representation is algebraically irreducible if it has no non-
trivial invariant subspaces, closed or not. But R. Kadison [Kad57] showed the
following:

II.6.1.12 Theorem. [Kadison Transitivity] Let π be an irreducible rep-
resentation of a C*-algebra A on a Hilbert space H and ξ1, · · · , ξn, η1, · · · , ηn

vectors in H with {ξ1, · · · , ξn} linearly independent. Then there is an x ∈ A
such that π(x)ξk = ηk for 1 ≤ k ≤ n. In particular, π is algebraically irre-
ducible.

This theorem is an immediate corollary of the next result:

II.6.1.13 Theorem. Let π be an irreducible representation of a C*-algebra
A on a Hilbert space H, X a finite-dimensional subspace of H, and T ∈ L(H).
Then, for any ε > 0, there is an a ∈ A with ‖a‖ < ‖T‖+ ε and π(a)|X = T |X .
If T = T ∗ [resp. T ≥ 0], we may choose a = a∗ [resp. a ≥ 0].

For the proof, it follows from The Kaplansky Density Theorem (I.9.1.3)
and II.5.1.5 (or its preceding comment) that there is a a1 ∈ A with ‖a1‖ ≤ ‖T‖
and ‖(π(a1)−T )|X ‖ < ε/4, with a1 = a∗

1 [resp. a1 ≥ 0] if T = T ∗ [resp. T ≥ 0].
Inductively choose ak (k ≥ 2) of the same form with ‖ak‖ < 2−kε and

‖(
n∑

k=1

π(ak) − T )|X ‖ < 2−n−1ε.

Then a =
∑∞

k=1 ak satisfies ‖a‖ < ‖T‖ + ε and π(a)|X = T |X .
One can actually obtain ‖a‖ ≤ ‖T‖ by a modified functional calculus

argument [KR97a, 5.7.41].

II.6.2 Positive Linear Functionals and States

The connection between C*-algebras and Hilbert spaces is made via the notion
of a state:
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II.6.2.1 Definition. Let A be a C*-algebra. A linear functional φ on A is
positive, written φ ≥ 0, if φ(x) ≥ 0 whenever x ≥ 0. A state on A is a positive
linear functional of norm 1. Denote by S(A) the set of all states on A, called
the state space of A.

II.6.2.2 A positive linear functional is automatically bounded [it suffices
to show it is bounded on A+ by II.3.1.2(vi); if it is not, for each n choose
xn ≥ 0 with ‖xn‖ = 1 and φ(xn) ≥ 4n, and then x =

∑∞
n=1 2−nxn satisfies

φ(x) ≥ 2−nφ(xn) ≥ 2n for all n, a contradiction.]

II.6.2.3 Examples.

(i) If A is a concrete C*-algebra of operators acting nondegenerately on H
and ξ ∈ H, and φξ(x) = 〈xξ, ξ〉 for x ∈ A, then φξ is a positive linear
functional on A of norm ‖ξ‖2, so φξ is a state if ‖ξ‖ = 1. Such a state is
called a vector state of A. This example is the origin of the term “state”:
in the mathematical formulation of quantum mechanics, the states of a
physical system are given by probability distributions (unit vectors in
an L2-space), and observables are self-adjoint operators; the value of the
observable T on the state ξ is 〈Tξ, ξ〉 (cf. [BR87]).

(ii) By the Riesz Representation Theorem, there is a one-one correspondence
between bounded linear functionals on Co(X) and finite regular complex
Baire measures (complex Radon measures) on X. A bounded linear func-
tional is positive if and only if the corresponding complex measure takes
only nonnegative real values (i.e. is an ordinary measure). Thus the states
on Co(X) are precisely given by the regular Baire probability measures
on X. Any homomorphism from Co(X) to C is a state by II.2.1.2 and
II.2.2.2.

A positive linear functional takes real values on self-adjoint elements, and
thus φ(x∗) = φ(x) for any x if φ ≥ 0. So if φ is a positive linear functional on
A, then φ defines a pre-inner product on A by 〈x, y〉φ = φ(y∗x). Thus we get
the CBS inequality:

II.6.2.4 Proposition. Let A be a C*-algebra, φ a positive linear func-
tional on A, x, y ∈ A. Then |φ(y∗x)|2 ≤ φ(x∗x)φ(y∗y). More symmetrically,
|φ(xy)|2 ≤ φ(xx∗)φ(y∗y).

II.6.2.5 Proposition. Let A be a C*-algebra and φ a bounded linear func-
tional on A. Then

(i) If φ ≥ 0, then ‖φ‖ = sup{φ(x) : x ≥ 0, ‖x‖ = 1} = lim φ(hλ) for any
approximate unit (hλ) for A (in particular, ‖φ‖ = φ(1A) if A is unital),
and φ extends to a positive linear functional on Ã by setting φ(1) = ‖φ‖
(or φ(1) = t for any t ≥ ‖φ‖). In particular, any state on A extends
uniquely to a state on Ã.
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(ii) If A is unital and φ(1A) = ‖φ‖, then φ ≥ 0.

For the first part of (i), if (hλ) is an approximate unit for A, we have
‖φ‖ ≥ sup{φ(x) : x ≥ 0, ‖x‖ = 1} ≥ sup φ(hλ); but if y ∈ A, ‖y‖ = 1,
|φ(y)|2 > ‖φ‖2 − ε, then, using II.6.2.4,

‖φ‖2−ε < |φ(y)|2 = lim |φ(h1/2
λ y)|2 ≤ lim inf φ(hλ)φ(y∗y) ≤ ‖φ‖ lim inf φ(hλ).

The second statement of (i) follows from the first and II.3.1.2(viii).
To prove (ii), if x ≥ 0, restrict φ to C∗(x, 1) ∼= C(X); then φ corresponds to

a complex measure µ on X, and µ(X) = |µ|(X), so µ ≥ 0. A more elementary
alternate argument can be based on II.1.6.3: if φ(1A) = ‖φ‖ = 1, and x ≥ 0,
suppose φ(x) /∈ [0,∞). Then there is a λ ∈ C and ρ ≥ 0 with σ(x) ⊆ D =
{z ∈ C : |z − λ| ≤ ρ}, but φ(x) /∈ D. If y = x − λ1A, then y is normal and
‖y‖ = r(y) ≤ ρ, so |φ(x) − λ| = |φ(y)| ≤ ‖y‖ ≤ ρ, a contradiction.

For a generalization of II.6.2.5 and another alternate argument for (ii), see
II.6.9.4.

As a corollary, we obtain Kadison’s inequality for states (cf. II.6.9.14):

II.6.2.6 Corollary. Let A be a C*-algebra, x ∈ A, φ a state on A. Then
|φ(x)|2 ≤ φ(x∗x).
Proof: Extend φ to a state on Ã and apply II.6.2.4 with y = 1.

II.6.2.7 Any sum or nonnegative scalar multiple of positive linear function-
als on a C*-algebra A is positive. A weak-* limit of a net of positive linear
functionals on A is positive. II.6.2.5(i) shows that if φ and ψ are positive linear
functionals on A, then ‖φ + ψ‖ = ‖φ‖ + ‖ψ‖. In particular, a convex combi-
nation of states is a state, so if A is unital, S(A) is a compact convex subset
of the dual of A. If A is nonunital, then the states of Ã are in natural one-one
correspondence with the set of positive linear functionals on A of norm ≤ 1,
and S(A) is locally compact but noncompact.

II.6.2.8 Definition. A state of a C*-algebra A is pure if it is an extreme
point of S(A). Denote the set of pure states of A by P(A).

II.6.2.9 If A is unital, then S(A) is the closed convex hull of the pure
states; in general, the set of positive linear functionals of norm ≤ 1 is the
closed convex hull of the pure states and the zero functional. The pure states
of Co(X) are precisely the homomorphisms to C, i.e. the states corresponding
to point masses (II.6.2.3(ii)).

States can be defined more generally on operator systems:
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II.6.2.10 Definition. An operator space is a closed subspace of a C*-
algebra.
An operator system is a closed self-adjoint subspace of a unital C*-algebra A
which contains the unit of A.
(Sometimes operator spaces or operator systems are not required to be closed.)
If X is an operator system, then a positive linear functional on X is a linear
functional φ with φ(1) = ‖φ‖. A positive linear functional φ on X is a state if
φ(1) = 1. Pure states are the extreme points of S(X), the state space of X.

The key feature of an operator system X in a C*-algebra A is that it is
spanned by its positive cone X+ = X ∩ A+. In fact, if x ∈ X, its real and
imaginary parts are in X; and if x = x∗ ∈ X, then x = ‖x‖1− (‖x‖1−x) and
‖x‖1, ‖x‖1− x ∈ X+. Positive linear functionals on X are precisely the linear
functionals taking nonnegative values on X+.

II.6.3 Extension and Existence of States

II.6.3.1 If A is a unital C*-algebra, X is an operator system in A, and
φ is a state on X, then by the Hahn-Banach Theorem φ extends to a linear
functional ψ on A of norm one. Since ψ(1) = 1, ψ is a state on A. If B is a (not
necessarily unital) C*-subalgebra of a (not necessarily unital) C*-algebra A,
and φ is a state on B, first extend φ to B̃, regard B̃ as a unital C*-subalgebra
of Ã and extend to Ã, and then restrict to A to get an extension of φ to a
state on A.

II.6.3.2 If φ is a pure state on an operator system X in a unital A, or
on a C*-subalgebra of a (not necessarily unital) C*-algebra A, then the set
of extensions of φ to A is a weak-* compact convex subset of S(A), and any
extreme point of this set (extreme points exist by the Krein-Milman Theorem)
is a pure state of A. Thus we get:

II.6.3.3 Proposition. Let A be a C*-algebra, x ∈ Asa. Then there is a
pure state φ on A with |φ(x)| = ‖x‖.
Proof: Note that there is a pure state (homomorphism) φ on C∗(x) ∼=
Co(σ(x)) with |φ(x)| = r(x) = ‖x‖, and extend φ to a pure state on A.

There is also a noncommutative version of the Jordan Decomposition The-
orem for signed measures:

II.6.3.4 Theorem. Let A be a C*-algebra, and φ a bounded self-adjoint
linear functional on A. Then there are unique positive linear functionals φ+

and φ− on A with φ = φ+ − φ− and ‖φ‖ = ‖φ+‖ + ‖φ−‖.
Since every linear functional φ can be canonically written as φre+iφim with

φre, φim self-adjoint [define φ∗ by φ∗(x) = φ(x∗), and let φre = (φ + φ∗)/2,
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φim = (φ−φ∗)/2i], every bounded linear functional can be written canonically
as a linear combination of four states. A simple consequence of this and the
Hahn-Banach Theorem is:

II.6.3.5 Corollary. Let A be a C*-algebra, x ∈ A.

(i) If φ(x) = 0 for all φ ∈ S(A), then x = 0.
(ii) x = x∗ if and only if φ(x) ∈ R for all φ ∈ S(A).
(iii) x ≥ 0 if and only if φ(x) ≥ 0 for all φ ∈ S(A).

In fact, S(A) can be replaced by P(A) in this result.

II.6.4 The GNS Construction

The GNS construction, discovered independently by Gelfand and Naimark
[GN43] and I. Segal [Seg47] (the essential idea appeared earlier in [Gel41]),
while quite simple, is an “ingenious construction” (E. Hille [Hil43]) and one
of the most fundamental ideas of the theory of operator algebras. It provides
a method for manufacturing representations of C*-algebras.

II.6.4.1 Let A be a C*-algebra, φ a positive linear functional on A. Put a
pre-inner product on A by 〈x, y〉φ = φ(y∗x). If

Nφ = {x ∈ A : φ(x∗x) = 0},

then Nφ is a closed left ideal of A, and 〈· , ·〉φ drops to an inner product on
A/Nφ. If a ∈ A, let πφ(a) be the left multiplication operator by a on A/Nφ,
i.e. πφ(a)(x + Nφ) = ax + Nφ. Since

x∗a∗ax ≤ ‖a‖2x∗x

(II.3.1.8), πφ(a) is a bounded operator and ‖πφ(a)‖ ≤ ‖a‖; so πφ(a) extends
to a bounded operator, also denoted πφ(a), on the completion (Hilbert space)
Hφ = L2(A,φ) of A/Nφ. The representation πφ is called the GNS representa-
tion of A associated with φ.

II.6.4.2 There is also a (unique) distinguished vector ξφ ∈ Hφ such that
φ(a) = 〈πφ(a)ξφ, ξφ〉φ (and ‖ξφ‖2 = ‖φ‖). If A is unital, then ξφ is just
the image of 1A in Hφ. In general, let φ̃ be the unique extension of φ to Ã

with ‖φ̃‖ = ‖φ‖; then from φ̃(1) = lim φ(hλ) = lim φ(h2
λ), where (hλ) is an

approximate unit for A, it follows that φ̃((1− hλ)2) → 0, so A/Nφ is dense in
Ã/Nφ̃ and thus Hφ can be identified with Hφ̃, and ξφ may be taken to be ξφ̃.
This ξφ is a cyclic vector for πφ, i.e. πφ(A)ξφ is dense in Hφ.

II.6.4.3 This construction is the inverse of II.6.2.3(i): if π is a representation
of A on a Hilbert space H and ξ is a cyclic vector for π, and φ(a) = 〈π(a)ξ, ξ〉,
then (Hφ, πφ, ξφ) is unitarily equivalent to (H, π, ξ). Thus there is a precise
one-one correspondence between positive linear functionals on A and (cyclic)
representations of A with a specified cyclic vector.
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II.6.4.4 Example. Let A = Mn, with Tr the (ordinary) trace on A. Then
HTr can be identified with Mn with the Hilbert-Schmidt norm, with ξTr = I.
The action πTr is the ordinary one by left multiplication. Mn acting on itself
in this way is called the standard form representation of Mn. Its commutant
is also isomorphic (or, more naturally, anti-isomorphic) to Mn, acting by right
multiplication. Each von Neumann algebra on a Hilbert space has a standard
form generalizing this example (III.2.6.5).

II.6.4.5 If φ is a positive linear functional on A, then φ has a canonical
extension to a positive linear functional on L(Hφ) of the same norm, also
denoted φ, by φ(T ) = 〈Tξφ, ξφ〉φ.

The next simple result is a version of the Radon-Nikodym Theorem
(the classical Radon-Nikodym theorem is essentially the special case where
A = L∞(X,µ) for a finite measure space (X,µ), and φ(f) =

∫
f dµ). Other

more difficult (and useful) versions of the Radon-Nikodym Theorem for von
Neumann algebras appear in III.2.3.3 and III.4.7.5.

II.6.4.6 Proposition. Let φ and ψ be positive linear functionals on A,
with ψ ≤ φ (i.e. ψ(x) ≤ φ(x) for all x ∈ A+). Then there is a unique operator
T ∈ πφ(A)′ ⊆ L(Hφ), with 0 ≤ T ≤ I, such that ψ(x) = φ(Tπφ(x)) =
〈Tπφ(x)ξφ, ξφ〉φ for all x ∈ A.
Proof: For x, y ∈ A, define (πφ(x)ξφ, πφ(y)ξφ) = ψ(y∗x). Then (· , ·) extends
to a bounded sesquilinear form (pre-inner product) on Hφ, and thus there is a
T ∈ L(Hφ), 0 ≤ T ≤ I, such that (η, ζ) = 〈Tη, ζ〉φ for all η, ζ ∈ Hφ (I.2.2.2).
If x, y, z ∈ A, then

〈Tπφ(x)[πφ(z)ξφ], πφ(y)ξφ〉φ = ψ(y∗(xz)) = ψ((x∗y)∗z)

= 〈Tπφ(z)ξφ, πφ(x∗)[πφ(y)ξφ]〉φ = 〈πφ(x)T [πφ(z)ξφ], πφ(y)ξφ〉φ
so, fixing x and letting y, z range over A, we conclude that Tπφ(x) = πφ(x)T .

II.6.4.7 In fact, if ψ ≤ φ and ω = φ − ψ, so that φ = ψ + ω, then πφ is
unitarily equivalent to the subrepresentation of πψ ⊕ πω with cyclic vector
ξψ ⊕ ξω, and T is projection onto the first coordinate, compressed to this
subspace.

Because of the abundance of states on a C*-algebra described in (II.6.3.3),
every C*-algebra has many representations. We can say even more:
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II.6.4.8 Proposition. If φ is a state of A, then πφ is irreducible if and only
if φ is a pure state.
Proof: It follows immediately from II.6.4.6 and II.6.1.8 that if πφ is irre-
ducible, then any positive linear functional ψ ≤ φ is a multiple of φ, and
hence φ is pure. Conversely, if φ is pure, suppose there is a projection P in
πφ(A)′, P �= 0, I. Then Pξφ �= 0, for otherwise

0 = πφ(x)Pξφ = P [πφ(x)ξφ]

for all x ∈ A, so P = 0. Similarly, (I − P )ξφ �= 0. For x ∈ A, write

φ1(x) = 〈πφ(x)Pξφ, P ξφ〉φ = φ(Pπφ(x))

φ2(x) = 〈πφ(x)(I − P )ξφ, (I − P )ξφ〉φ = φ((I − P )πφ(x)).

Then φ1, φ2 are positive linear functionals on A, φ = φ1 + φ2, and φ1 = λφ,
φ2 = (1 − λ)φ for some λ, 0 < λ < 1, because φ is pure. For any ε > 0, there
is an x ∈ A with ‖πφ(x)ξφ − Pξφ‖φ < ε and ‖πφ(x)ξφ‖2

φ = φ(x∗x) = ‖Pξφ‖2
φ.

Then ‖(I − P )πφ(x)ξφ‖φ = ‖(I − P )(πφ(x)ξφ − Pξφ)‖φ < ε, and

(1 − λ)‖Pξφ‖2
φ = (1 − λ)φ(x∗x) = φ2(x∗x) = ‖(I − P )πφ(x)ξφ‖2

φ < ε2

contradicting λ �= 1 and therefore the existence of P . Thus πφ(A)′ = CI.

II.6.4.9 Corollary. If A is a C*-algebra and x ∈ A, then there is an
irreducible representation π of A with ‖π(x)‖ = ‖x‖.
Proof: Let π = πφ, where φ is a pure state of A with φ((xx∗)2) = ‖(xx∗)2‖ =
‖x‖4 (II.6.3.3). Then

‖x‖2 = 〈xx∗, xx∗〉1/2
φ = ‖xx∗‖φ = ‖π(x)x∗‖φ ≤ ‖π(x)‖‖x∗‖φ ≤ ‖π(x)‖‖x‖ .

By considering sums of irreducible representations, we obtain

II.6.4.10 Corollary. If A is a C*-algebra, then A has a faithful represen-
tation, i.e. A is isometrically isomorphic to a concrete C*-algebra of operators
on a Hilbert space H. If A is separable, then H may be chosen to be separable.

This result is also called the “Gelfand-Naimark theorem” (cf. II.2.2.4).
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II.6.4.11 Proposition. Let A be a C*-algebra, B a C*-subalgebra of A,
and ρ a representation of B on a Hilbert space H0. Then ρ can be extended
to a representation π of A on a (possibly) larger Hilbert space H, i.e. there is
a Hilbert space H containing H0 and a representation π of A on H such that
H0 is invariant under π|B and π|B agrees with ρ on H0. If ρ is irreducible,
then π may be chosen irreducible.

Since every representation is a direct sum of cyclic representations, it suf-
fices to show the result for ρ cyclic, i.e. ρ is the GNS representation corre-
sponding to a state ψ of B. Extend ψ to a state φ of A (with φ pure if ψ is
pure; see II.6.3.2), and let π be its GNS representation.

Using these results, facts about elements of C*-algebras can be deduced
from corresponding facts about operators. The next result is an example.

II.6.4.12 Theorem. [Fuglede] (cf. I.6.2.7) Let A be a C*-algebra, x, y ∈
A with x normal. If y commutes with x (i.e. if [x, y] = 0), then y commutes
with x∗. So y and y∗ commute with f(x) for any f ∈ Co(σ(x)).

Various other results such as the next two can also be proved using irre-
ducible representations.

II.6.4.13 Proposition. Let A be a C*-algebra, x ∈ A. Then x is in the
center Z(A) if and only if π(x) is a scalar multiple of the identity for every
irreducible representation π of A.
Proof: If x /∈ Z(A) and [x, y] �= 0, then there is an irreducible representation
π of A for which π([x, y]) = [π(x), π(y)] �= 0.

II.6.4.14 Proposition. Let A be a noncommutative C*-algebra. Then
there is a nonzero x ∈ A with x2 = 0 (equivalently, x∗x ⊥ xx∗).
Proof: If A is noncommutative, there is an irreducible representation π of
A with π(A) noncommutative and hence more than one-dimensional. Thus
there is an a = a∗ ∈ A such that σ(π(a)) contains two distinct numbers λ
and µ. Let f and g be continuous functions from R to [0, 1], with disjoint
suppports, and with f(λ) = g(µ) = 1. Then f(a) and g(a) are orthogonal,
and π(f(a)) = f(π(a)) and π(g(a)) = g(π(a)) are nonzero. Since π(A) is
prime (II.6.1.11), there is a z ∈ π(A) with π(f(a))zπ(g(a)) �= 0 (II.5.4.5).
If y ∈ A with π(y) = z, then x = f(a)yg(a) �= 0 and x2 = 0. For the last
statement, if x2 = 0, then (x∗x)(xx∗) = 0; conversely, if (x∗x)(xx∗) = 0, then
[(x∗)2x2]2 = 0, so (x2)∗x2 = 0, x2 = 0.

II.6.4.15 Corollary. Every noncommutative unital C*-algebra contains
a full positive element which is not invertible.
Proof: Let A be unital and noncommutative, and x ∈ A with ‖x‖ = 1 but
x2 = 0. Fix ε > 0 small enough that z = fε(xx∗)x = xfε(x∗x) �= 0, y =
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xfε/2(x∗x), a = 1− yy∗. Let J be the closed ideal of A generated by a. Then
y∗y ∈ J since y∗y ≤ a, and hence yy∗ ∈ J . Also, a ∈ J , so 1 = a + yy∗ ∈ J ,
J = A. But a is not invertible since a ⊥ zz∗.

Extending States from Ideals

Using the GNS construction, we can obtain an extension of II.6.2.5(i) and a
sharpening of II.6.3.1 in the case that the subalgebra is an ideal. This result
is also closely related to II.6.1.6.

II.6.4.16 Proposition. Let J be a closed ideal in a C*-algebra A, and ψ
a positive linear functional on J . Then there is a unique extension of ψ to
a positive linear functional φ on A with ‖φ‖ = ‖ψ‖. If (hλ) is an increasing
approximate unit for J , then φ(x) = lim ψ(hλx) = lim ψ(xhλ) for all x ∈ A;
if x ∈ A+, then

φ(x) = lim ψ(x1/2hλx1/2) = supψ(x1/2hλx1/2).

Any other positive linear functional φ′ on A extending ψ satisfies φ′ ≥ φ.
Proof: By II.6.3.1 there is a φ extending ψ with ‖φ‖ = ‖ψ‖, but we will not
use this result. Instead we define φ directly as follows.

Let πψ be the GNS representation of J on Hψ with cyclic vector ξψ. Extend
πψ to a representation π of A on Hψ as in II.6.1.6. Then ξψ defines a positive
linear functional φ on A by φ(x) = 〈π(x)ξψ, ξψ〉. We have ‖φ‖ = ‖ξψ‖2 = ‖ψ‖,
and (Hφ, πφ, ξφ) can be naturally identified with (Hψ, π, ξψ). Since π(hλ) → I
strongly, we have, for any x ∈ A,

ψ(hλx) = 〈π(hλ)π(x)ξψ, ξψ〉 → 〈π(x)ξψ, ξψ〉 = φ(x)

and similarly ψ(xhλ) → φ(x) and, if x ≥ 0, ψ(x1/2hλx1/2) → φ(x).
If φ′ is any extension of ψ to a positive linear functional on A, and x ∈ A+,

then φ′(x) ≥ φ′(x1/2hλx1/2) = ψ(x1/2hλx1/2) for all λ, so φ′(x) ≥ φ(x). Thus
ω = φ′ − φ is a positive linear functional, and we have ‖φ′‖ = ‖φ‖ + ‖ω‖ =
‖ψ‖ + ‖ω‖, so if ‖φ′‖ = ‖ψ‖, then ω = 0, φ′ = φ.

II.6.5 Primitive Ideal Space and Spectrum

It is common in mathematics (e.g. in algebraic geometry) to associate to a ring
A a topological space of ideals of A, generally either the set of prime ideals
(denoted Spec(A)) or the set of maximal ideals (denoted Maxspec(A)), with
the hull-kernel topology (II.2.1.4). For C*-algebras, the most useful variant is
to consider the primitive ideal space:

II.6.5.1 Definition. Let A be a C*-algebra. A primitive ideal of A is an
ideal which is the kernel of an irreducible representation of A. Denote by
Prim(A) the set of primitive ideals of A. The topology on Prim(A) is the
hull-kernel topology, i.e. {Ji}− = {J : J ⊇ ∩Ji}.



112 II C*-Algebras

II.6.5.2 A primitive ideal is closed by II.6.1.2 and prime by II.6.1.11. (In
fact, the kernel of any factor representation is a closed prime ideal (II.6.1.11)).
If A is separable, then every closed prime ideal of A is primitive (II.6.5.15).
Recently, N. Weaver [Wea03] constructed a nonseparable prime C*-algebra
with no faithful irreducible representation, so not every closed prime ideal in
a nonseparable C*-algebra is primitive. It is not known whether the kernel of
a factor representation of a nonseparable C*-algebra must be a primitive ideal
(Weaver’s example has no faithful factor representations, in fact no faithful
cyclic representations).

II.6.5.3 By II.6.4.9, the intersection of the primitive ideals of a C*-algebra
A is {0}. By considering irreducible representations of A/J , it follows that
every closed ideal J of A is an intersection of primitive ideals. In particular,
every maximal ideal is primitive. There is thus a natural one-one correspon-
dence between the closed sets in Prim(A) and the closed ideals of A. If A is
commutative, then every closed prime ideal is maximal and hence primitive,
and Prim(A) agrees with the set defined in II.2.1.4 and may be identified with
Â as in II.2.2.4.

II.6.5.4 If J is a closed ideal in A, then we can identify Prim(A/J) with

PrimJ(A) = {K ∈ Prim(A) : J ⊆ K},

the corresponding closed set in Prim(A). If K ∈ Prim(A), J �⊆ K, and π is
an irreducible representation of A with kernel K, then π|J is an irreducible
representation of J (II.6.1.6) with kernel K ∩ J . So there is a map ρJ from

PrimJ(A) = {K ∈ Prim(A) : J �⊆ K}

to Prim(J), defined by ρJ (K) = K ∩ J , which is surjective by II.6.1.6. Also,
ρJ is injective: if K1,K2 ∈ Prim(A) and K1 ∩ J = K2 ∩ J �= J , then by
II.5.1.4(iv) we have

(K1 + K2) ∩ (J + K2) = (K1 ∩ J) + K2 = (K2 ∩ J) + K2 = K2

and, since K2 is prime and J + K2 �= K2, we have K1 + K2 = K2, K1 ⊆ K2.
Symmetrically, K2 ⊆ K1, so K1 = K2. Thus Prim(J) may be identified with
PrimJ(A) = Prim(A) \ PrimJ (A), an open set in Prim(A).

II.6.5.5 If J is a closed ideal in a C*-algebra A and x ∈ A, write ‖x‖J

for the norm of x mod J . If {Ji} is any collection of closed ideals in A and
J = ∩Ji, then ‖ · ‖J = supi ‖ · ‖Ji

(by II.1.6.5 it suffices to note that this
formula defines a C*-norm on A/J); and if (Ji) is an increasing net of closed
ideals with J = [∪Ji]−, then ‖ · ‖J = infi ‖ · ‖Ji

(this follows immediately from
the definition of the quotient norm). A simple consequence is:
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II.6.5.6 Proposition. Let A be a C*-algebra.

(i) If x ∈ A, define x̌ : Prim(A) → R+ by x̌(J) = ‖x‖J . Then x̌ is lower
semicontinuous.

(ii) If {xi} is a dense set in the unit ball of A, and Ui = {J ∈ Prim(A) :
x̌i(J) > 1/2}, then {Ui} forms a base for the topology of Prim(A).

(iii) If x ∈ A and λ > 0, then {J ∈ Prim(A) : x̌(J) ≥ λ} is compact (but not
necessarily closed) in Prim(A).

Proof: Part (i) is obvious. For (ii), let J ∈ Prim(A). A neighborhood of J
is a set of the form V = {I ∈ Prim(A) : K �⊆ I} for a closed ideal K not
contained in J . Choose y ∈ K\J , and 0 < ε ≤ 1

2‖y‖2
J , and let x = fε(y∗y).

Then x ∈ K, and ‖x‖ = ‖x‖J = 1. Choose xi with ‖xi − x‖ < 1/2; then
J ∈ Ui and Ui ⊆ V .
To show (iii), let {Ki : i ∈ Ω} be a set of closed ideals in A, K the closed ideal
generated by ∪Ki (so K = [

∑
Ki]−), and

Ui = {J ∈ Prim(A) : Ki �⊆ J}.
Then {Ui} is an open cover of F = {J ∈ Prim(A) : x̌(J) ≥ λ} if and only if
‖x‖K < λ. In this case, there are i1, . . . , in such that if K0 = Ki1 + · · ·+ Kin

,
then ‖x‖K0 < λ, so {Ui1 , . . . , Uin

} is a cover of F .

II.6.5.7 Corollary. Prim(A) is a locally compact space T0-space which is
compact if A is unital. If A is separable, then Prim(A) is second countable.

II.6.5.8 The function x̌ of II.6.5.6 is not continuous in general; in fact, if
Prim(A) is not Hausdorff, then the x̌ cannot all be continuous since {x̌ : x ∈
A} separates the points of Prim(A). But if Prim(A) is Hausdorff, II.6.5.6(iii)
shows that x̌ is continuous for all x ∈ A. If x is in the center of A, then x̌ is
continuous (II.6.5.10).

II.6.5.9 Examples.

(i) Let A = K̃. Then Prim(A) = {0, K}; {K} is a closed point, and {0} is a
dense open point. Thus Prim(A) is not T1.

(ii) Let A be the C*-algebra of all sequences of elements of M2 which converge
to a diagonal matrix. Then Prim(A) consists of a sequence of points
simultaneously converging to two closed points at infinity. Thus Prim(A)
is T1 but not Hausdorff.

(iii) Let A be the C*-algebra of all sequences in K̃ converging to a scalar
multiple of 1. Then Prim(A) is the one-point compactification of a disjoint
union of two-point spaces as in (i). This A gives a counterexample to
problems 4.7.8, 4.7.9, and 10.10.11 of [Dix69b].

If A is commutative, then the Gelfand-Naimark Theorem (II.2.2.4) iden-
tifies elements of A with continuous functions on Â = Prim(A). There are
various generalizations; the next result of Dauns and Hoffman [DH68] is one
of the most important.
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II.6.5.10 Theorem. [Dauns-Hoffman] Let A be a unital C*-algebra, and
Z(A) its center. Then, for each x ∈ Z(A), the function x̌ of II.6.5.6 is con-
tinuous, and x �→ x̌ (x ∈ Z(A)+) extends to an isomorphism from Z(A) onto
C(Prim(A)).

The theorem also holds for nonunital A: if M(A) is the multiplier algebra of
A (II.7.3), then Z(M(A)) is isomorphic to Cb(Prim(A)), the bounded contin-
uous complex-valued functions of Prim(A). See IV.1.6.7 for another “Dauns-
Hoffman Theorem.”

For the proof, let Z = Z(A). If π is an irreducible representation of A, then
π maps Z into the scalars, so defines a homomorphism from Z to C, i.e. an
element of Ẑ. So if J ∈ Prim(A), then α(J) = J∩Z ∈ Prim(Z) ∼= Ẑ. The map
α : Prim(A) → Prim(Z) is obviously continuous from the way the hull-kernel
topology is defined, and α is surjective since every irreducible representation
of Z extends to an irreducible representation of A (II.6.4.11). Thus there is
an induced homomorphism α∗ : Z ∼= C(Ẑ) → C(Prim(A)), which is injective
since α is surjective.

If x ∈ Z ⊆ A, and x̂ is the corresponding function in C(Ẑ) (cf. II.2.2.4),
then x̌ = |α∗(x̂)| = |x̂ ◦ α|, so x̌ is continuous. If x ∈ Z+, then x̌ = α∗(x̂).

To show that α∗ is surjective, the key lemma in the proof given in [EO74]
is the following, which is also useful for other purposes:

II.6.5.11 Lemma. Let A be a C*-algebra, a ∈ A+, f a continuous function
from Prim(A) to [0, 1], and ε > 0. Then there is a b ∈ A+ such that

‖b − f(J)a‖J < ε

for all J ∈ Prim(A). If b′ is another such element, then ‖b − b′‖ < 2ε.

Proof: Choose n such that 2‖a‖
n < ε, and for 1 ≤ k ≤ n let Jk be the ideal

of A corresponding to the open set

{J ∈ Prim(A) : (k − 1)/n < f(J) < (k + 1)/n}.

Then J1 + · · ·+Jn = A, so by II.5.1.4 there are ak ∈ (Jk)+ with a = a1 + · · ·+
an. Set b =

∑
k

k
nak. Then it is easily checked that b has the right properties.

If b′ is another element with the same properties, then ‖b − b′‖J < 2ε for all
J , hence ‖b − b′‖ < 2ε by II.6.4.9.

In the situation of II.6.5.11, let bn be a b corresponding to ε = 1/n. Then
(bn) is a Cauchy sequence and thus converges to b ∈ A. So we obtain an exact
version of II.6.5.11 which is equivalent to surjectivity of α∗ (take a = 1; then
b ∈ Z by II.6.4.13):

II.6.5.12 Corollary. Let A be a C*-algebra, a ∈ A+, and f a continuous
function from Prim(A) to [0, 1]. Then there is a unique b ∈ A+ such that
b = f(J)a mod J for all J ∈ Prim(A).
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II.6.5.13 For a general C*-algebra A we define Â to be the set of unitary
equivalence classes of irreducible representations of A. There is a natural map
from Â onto Prim(A) sending π to ker(π). This map is not injective in general,
i.e. there can be inequivalent representations with the same kernel. We will
return to this in IV.1.5.7. There is also an obvious map from P(A) onto Â,
sending a pure state to its GNS representation; the composite map from P(A)
to Prim(A) is continuous and open when P(A) is given the relative weak-*
topology. Â can be given a unique topology making the maps P(A) → Â
and Â → Prim(A) continuous and open, but Â is not T0 unless the map to
Prim(A) is injective (and hence a homeomorphism).

By II.6.1.6, if J is a closed ideal in A, we may identify Ĵ and Prim(J) with
open subsets of Â and Prim(A) respectively; the complements are naturally
identified with Â/J and Prim(A/J). We may do the same with P(J) since if
φ ∈ P(A), then either φ|J = 0 or φ|J is a pure state of J .

A theorem of G. Choquet (cf. [Dix69b, B14]) says that the set of extreme
points of a compact convex set in a locally convex Hausdorff topological vector
space is a Baire space (i.e. the intersection of a countable family of dense open
sets is dense). Since P(A) is such a set for A unital, and P(A) is a dense open
subset of P(Ã) for nonunital A, we get:

II.6.5.14 Theorem. Let A be a C*-algebra. Then P(A), Â, and Prim(A)
are Baire spaces.

II.6.5.15 Corollary. Let A be a separable C*-algebra. An ideal of A is
primitive if and only if it is closed and prime.
Proof: A primitive ideal in any C*-algebra is closed and prime. If A is sep-
arable and J is a closed prime ideal in A, by replacing A by A/J we may
assume J = {0}. {0} is an intersection of countably many primitive ideals
{Jn}; each Jn is essential in A since A is prime, so the corresponding open set
Prim(Jn) is dense in Prim(A). If {0} is not primitive, then ∩nPrim(Jn) = ∅,
contradicting II.6.5.14.

II.6.5.16 Another way of describing the topology on Â is to fix a Hilbert
space H and let IrrH(A) be the set of irreducible representations of A on H.
IrrH(A) has a natural topology, the topology of elementwise convergence, and
the map from IrrH(A) to Â is continuous and open, i.e. Â has the relative
quotient topology (more care must be taken in describing the topology if
A has irreducible representations of different dimensions; cf. IV.1.4.7. The
difficulty can be avoided by stabilization (II.6.6.11) if A is separable, since
there are natural homeomorphisms [A⊗K]̂ ∼= Â and Prim(A⊗K) ∼= Prim(A)
(II.7.6.13)). This procedure also yields a Borel structure (the Mackey Borel
structure) on Â, the quotient of the natural Borel structure on IrrH(A) induced
by its topology, which is finer than the Borel structure on Â induced by its
topology, and which is more useful than the topology if Â is not T0 (e.g.
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the Mackey Borel structure separates points of Â). See IV.1.5.12 for more
discussion of the Mackey Borel structure and its relation to the topology.

II.6.6 Matrix Algebras and Stable Algebras

As an example of a basic fact which can be proved easily by representation
theory but for which there seems to be no decent space-free proof (there is a
quick proof using Hilbert modules (II.7.2.6)), we observe that a matrix algebra
over a C*-algebra is also a C*-algebra.

II.6.6.1 If H is a Hilbert space, then L(Hn) is naturally isomorphic to the
matrix algebra Mn(L(H)). (More generally, L(Hn,Hm) can be identified with
the m × n matrices over L(H).) So if A is a concrete C*-algebra of operators
on H, then the matrix algebra Mn(A) acts naturally as a concrete C*-algebra
of operators on Hn. The adjoint of a matrix (aij) is the matrix (bij), where
bij = a∗

ji.

II.6.6.2 Thus, if A is a C*-algebra, we need only to take a faithful repre-
sentation π of A on a Hilbert space H; then π defines entrywise a faithful
representation π(n) of Mn(A) (with involution defined as above) on Hn, and
thus Mn(A) is a C*-algebra with the induced operator norm.

II.6.6.3 Of course, by general theory, this operator norm is the unique C*-
norm on Mn(A) with this involution. In the future, we will often use matrix
algebras over C*-algebras, and will always implicitly use this involution and
norm. Note that there is no explicit formula for the norm of a matrix in terms
of the entries in general. (There is, however, a simple estimate: if a = (aij) is
a matrix, then

max
i,j

‖aij‖ ≤ ‖a‖ ≤
∑

i,j

‖aij‖

since it is easily seen that if b is a matrix with exactly one nonzero entry x,
then ‖b‖ = ‖x‖.)

II.6.6.4 As an example of the use of matrices, we give a proof of II.3.2.3
(cf. [RW98, 2.31]). Let x be an element of a C*-algebra A. Note that if b is a
self-adjoint (or normal) element in a unital C*-algebra B, and u is a unitary
in B, then f(u∗bu) = u∗f(b)u for any f ∈ C(σ(b)); thus, if u∗bu = −b,

then u∗b1/3u = (−b)1/3 = −b1/3. Applying this to b =
[

0 x∗

x 0

]

and u =
[

1 0
0 −1

]

in M2(Ã), we obtain that b1/3 =
[

0 y∗

y 0

]

for some y ∈ A, and

x = yy∗y. For uniqueness, if x = zz∗z, let c =
[

0 z∗

z 0

]

; then c is self-adjoint

and c3 = b, so c = b1/3 by II.2.3.6.
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Order and Norm

There is a tight relationship between the order structure and norm in a C*-
algebra: II.3.1.2(iv) is an example. The next result is another example.

II.6.6.5 Proposition. Let A be a unital C*-algebra, and x ∈ A. Then[
1 x
x∗ 1

]

≥ 0 in M2(A) if and only if ‖x‖ ≤ 1.

The proof is a simple inner product calculation if A ⊆ L(H) (cf. [Pau02,
3.1]); for the general case, just choose a faithful representation of A. There is
also a simple and elegant space-free proof [ER00, 1.3.2]. A similar proof shows
more generally:

II.6.6.6 Proposition. Let A be a unital C*-algebra, x, y ∈ A. Then[
1 x
x∗ y

]

≥ 0 in M2(A) if and only if x∗x ≤ y.

There is also a tight relationship with the algebraic structure:

II.6.6.7 Theorem. [Wal03] Let A be a unital C*-algebra, u, v ∈ U(A). If

x ∈ A, then




1 u x
u∗ 1 v
x∗ v∗ 1



 ≥ 0 in M3(A) if and only if x = uv.

Tensor Product Notation

II.6.6.8 Mn(A) is isomorphic to A⊗Mn = A⊗C Mn, and it is convenient to
use tensor product notation in matrix algebras. In Mn, let eij be the matrix
with 1 in the (i, j)’th entry and zeroes elsewhere, and write a ⊗ eij for the
element of Mn(A) with a in the (i, j)’th entry and zeroes elsewhere. The eij

are called the standard matrix units in Mn. (There is a similar set of standard
matrix units in K.)

Stable Algebras

II.6.6.9 As in II.6.6.1, L(H∞) can be identified with an algebra of infinite
matrices over L(H) (although it is impossible to give an explicit description
of which matrices give bounded operators). If A is a concrete C*-algebra of
operators on H, let M∞(A) denote the infinite matrices over A with only
finitely many nonzero entries. Then M∞(A) acts naturally as a *-algebra of
bounded operators on H∞, and its closure in L(H∞) is denoted A ⊗ K.

II.6.6.10 If A is an (abstract) C*-algebra, we can form M∞(A) in the same
manner, and by choosing a faithful representation π of A, M∞(A) may be
identified with M∞(π(A)) and thus given a norm. Using the uniqueness of
norm on Mn(A) for each n, it is easily seen that the norm on M∞(A) does
not depend on the choice of π.
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II.6.6.11 Definition. The completion of M∞(A) is called the stable alge-
bra of A, denoted A ⊗ K.

This is also a special case of a tensor product of C*-algebras (II.9.4.2).

II.6.6.12 Definition. A C*-algebra A is stable if A ∼= A ⊗ K. Two C*-
algebras A and B are stably isomorphic if A ⊗ K ∼= B ⊗ K.

II.6.6.13 Proposition. K(H) ⊗ Mn = K(Hn) and K(H) ⊗ K = K(H∞).
In particular,

K ∼= Mn(K) ∼= Mn ⊗ K ∼= K ⊗ Mn

for all n, and K is isomorphic to K ⊗ K. In fact, the map from K to K ⊗ Mn

or K ⊗ K given by x → x ⊗ e11 is homotopic to an isomorphism.
The first statement is almost obvious. To prove the last statement, by

a judicious choice of bases it suffices to find a strongly continuous path of
isometries on a separable Hilbert space linking the identity to an isometry
with infinite codimension. The operators Vt on L2[0, 1] defined in I.3.2.10, for,
say, 1/2 ≤ t ≤ 1, do the trick.

II.6.6.14 Similarly, it is easily verified that (A⊗K)⊗K ∼= A⊗K for any A,
so the stable algebra A ⊗ K of a C*-algebra A is a stable C*-algebra, and A
is stably isomorphic to A ⊗ K. Two stable C*-algebras are stably isomorphic
if and only if they are isomorphic. In the same way, A and Mn(A) are stably
isomorphic for any A and n. Stably isomorphic C*-algebras are “the same
up to ‘size’;” a stable C*-algebra has uniformly infinite “size.” (This must be
taken with a grain of salt in the non-σ-unital case; but can be made precise
in a nice way for σ-unital C*-algebras (II.7.6.11, II.7.6.13)).

II.6.7 Weights

Weights are one of the two most important generalizations of positive linear
functionals.

II.6.7.1 Definition. A weight on a C*-algebra A is a function φ : A+ →
[0,∞] such that φ(0) = 0, φ(λa) = λφ(a) for a ∈ A+ and λ > 0, and φ(a+b) =
φ(a) + φ(b) for all a, b ∈ A+. The weight φ is densely defined if {x ∈ A+ :
φ(x) < ∞} is dense in A+, and φ is faithful if φ(x) = 0 implies x = 0.

II.6.7.2 Examples.

(i) Any positive linear functional defines a continuous finite weight. Every
weight which is finite everywhere comes from a positive linear functional
(and hence is continuous).

(ii) Tr is a lower semicontinuous weight on L(H).
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(iii) Any sum of weights is a weight. Any sum of lower semicontinuous weights
is a lower semicontinuous weight. In particular, any sum of positive linear
functionals is a lower semicontinuous weight. (The converse is also true
(III.2.2.18)).

(iv) The function φ defined by φ(0) = 0, φ(x) = ∞ for x �= 0 is a (degenerate)
lower semicontinuous weight.

(v) Let X be a locally compact Hausdorff space and µ a Borel measure on
X, and set φ(f) =

∫
X

f dµ for f ∈ Co(X)+. Then φ is a weight on
Co(X), which is lower semicontinuous by Fatou’s lemma.
Every lower semicontinuous weight on a commutative C*-algebra is of
this form. To see this, if φ is a lower semicontinuous weight on Co(X)
and U is an open set in X, set µ(U) = supφ(f), where f : X → [0, 1] is
supported in U . If V is the union of all U such that µ(U) < ∞, then the
Riesz Representation Theorem gives an extension of µ to a locally finite
Borel measure on V . We can set µ(Y ) = ∞ for any nonempty Y ⊆ X\V .
Then φ(f) =

∫
X

f dµ for any f ∈ Co(X)+.
The correspondence between weights and measures is not one-to-one,
however: two measures give the same weight if and only if they agree on
the σ-compact open sets.

(vi) Let I be a hereditary *-subalgebra (e.g. an ideal) in A, and ψ a positive
linear functional on I (not necessarily bounded). Define φ(x) to be ψ(x)
if x ∈ I+ and φ(x) = ∞ if x ∈ A+ \ I+. Then φ is a weight on A which is
not lower semicontinuous in general (e.g. if I is dense and ψ is bounded).

(vii) As an example of (vi), let A = co (I.8.6), and I = {(an) : (nan) is bounded};
let ω be a free ultrafilter on N, and for a = (an) ∈ I set ψ(a) = limω nan.
Since φ vanishes on coo, the dense ideal of sequences which are eventu-
ally 0, the only positive linear functional θ on A with θ(a) ≤ φ(a) for all
a ∈ A+ is θ = 0.

II.6.7.3 We can do constructions with weights generalizing the description
of the trace-class and Hilbert-Schmidt operators (I.8.5.3) and the GNS con-
struction (II.6.4). If φ is a weight on A and 0 ≤ a ≤ b, then φ(a) ≤ φ(b) =
φ(a) + φ(b − a). Thus

Nφ = {x ∈ A : φ(x∗x) < ∞}

(sometimes written D2
φ) is a left ideal of A containing

Nφ = {x ∈ A : φ(x∗x) = 0}

(Nφ and Nφ are closed under addition by the argument in the proof of
II.5.3.2(iii)). Nφ is closed if φ is lower semicontinuous, but Nφ is not closed in
general unless φ is continuous. φ extends to a positive linear functional, also
denoted φ, on the span Mφ (sometimes written D1

φ) of {a ∈ A+ : φ(a) < ∞}.
Since by polarization y∗x ∈ Mφ for any x, y ∈ Nφ, φ defines a pre-inner prod-
uct on Nφ as in the GNS construction (i.e. 〈x, y〉φ = φ(y∗x)) which drops to
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an inner product on Nφ/Nφ. A acts by bounded operators on this space by
left multiplication, thus giving a GNS representation πφ on the completion
Hφ.

II.6.7.4 There is no natural cyclic vector ξφ in this case, however. In fact,
the GNS representation from a weight is not even nondegenerate in general
unless the weight is lower semicontinuous (e.g. the example of II.6.7.2(vii)).

II.6.7.5 Example II.6.7.2(iv) shows that we must make further restrictions
to get interesting weights. It is tempting to say that a (lower semicontinuous)
weight φ on A is semifinite if, for every x ∈ A+,

φ(x) = sup{φ(y) : y ∈ (Mφ)+, y ≤ x}.

It turns out that this definition is too restrictive unless φ is a trace. A better
definition comes from the following:

II.6.7.6 Proposition. Let φ be a lower semicontinuous weight on a C*-
algebra A. The following are equivalent:

(i) For every approximate unit (hλ) for Mφ and x ∈ A+,

φ(x) ≤ lim inf
λ

φ(hλxhλ).

(ii) For every approximate unit (hλ) for Mφ and x ∈ A+ with φ(x) = ∞,
limλ φ(hλxhλ) = ∞.

(iii) For every approximate unit (hλ) for Mφ and x ∈ A+ with φ(x) = ∞,
supλ φ(hλxhλ) = ∞.

The weight φ is semifinite if it satisfies these conditions.
For the proof, (i) ⇔ (ii) is clear, since the condition of (i) is automatically

satisfied for x ∈ Mφ by lower semicontinuity. (ii) =⇒ (iii) is trivial; the con-
verse is not entirely trivial since (hλxhλ) and hence φ(hλxhλ) is not increasing
in general, but (iii) =⇒ (ii) follows easily by passing to a subnet of the given
approximate unit, which is again an approximate unit.

II.6.7.7 If φ is semifinite, then M⊥
φ = {0}; the converse is unclear. If φ is

lower semicontinuous and Nφ is dense in A, then φ is semifinite. The converse
is false in general, but see III.2.2.20. If φ satisfies the condition of II.6.7.5, and
x ∈ A+ with φ(x) = ∞, for any K > 0 there is a y ∈ (Mφ)+ with y ≤ x and
φ(y) > K. If (hλ) is an approximate unit for Mφ, then φ(hλyhλ) > K for
some λ by lower semicontinuity. Since hλyhλ ≤ hλxhλ, φ(hλxhλ) > K, so φ
is semifinite by II.6.7.6(iii).

II.6.7.8 If φ is a faithful semifinite weight (e.g. a faithful state), then πφ is
a faithful representation. Note, however, that πφ can be faithful even if φ is
not faithful: for example, if A is simple, then πφ is always faithful (unless φ
is degenerate, i.e. takes only the values 0 and ∞). If φ is semifinite, then πφ

is faithful if and only if Nφ contains no nonzero ideal.
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II.6.7.9 If φ is a weight on A, then the left ideal Nφ is a weighted left
ideal (II.5.3.14). Conversely, if N is a weighted left ideal of a C*-algebra A,
and M = M(N) (II.5.3.13), define a weight φ on A by fixing a positive
linear functional f on A, and setting φ(x) = f(x) if x ∈ M+, φ(x) = ∞ if
x ∈ A+ \ M+. Then N = Nφ. Thus the weighted left ideals of a C*-algebra
A are precisely the “ideals of definition” of weights on A, justifying the term
“weighted.”

II.6.8 Traces and Dimension Functions

The most important special kinds of weights (or states) on a C*-algebra are
the traces, which play a crucial role in several places in the structure theory.

II.6.8.1 Definition. A trace on a C*-algebra A is a weight τ on A satisfying
τ(x∗x) = τ(xx∗) for all x ∈ A. A tracial state (or normalized trace) is a state
which is a trace.

There is some nonuniformity of terminology concerning traces: in some
references, “trace” means “tracial state.”

II.6.8.2 It is immediate that if τ is a trace on A, then τ(u∗xu) = τ(x) for
any x ∈ A+ and u unitary in Ã, and that Mτ , Nτ , and Nτ are ideals of A;
by polarization τ(xy) = τ(yx) for any x, y ∈ Nτ . If τ is lower semicontinuous,
then Nτ is a closed ideal of A. In particular, a nonzero lower semicontinuous
trace on a simple C*-algebra is automatically faithful.

II.6.8.3 Examples.

(i) Any weight on a commutative C*-algebra is a trace, and every state is a
tracial state.

(ii) Tr is a trace on L(H) (or on K(H)). τ = 1
n · Tr is a tracial state on Mn.

(iii) If τ is a trace on A, define τn on Mn(A) by

τn((xij)) =
n∑

i=1

τ(xii).

Then τn is a trace on Mn(A). If τ is a tracial state, then so is 1
nτn. Con-

versely, if σ is a trace on Mn(A), for x ∈ A+ set τ(x) = σ(diag(x, 0, · · · , 0));
then τ is a trace on A and σ = τn.

(iv) The degenerate weight of II.6.7.2(iv) is a trace.
(v) The Dixmier trace (I.8.7.7) on K (or on L(H)) is a trace which is not

lower semicontinuous.
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II.6.8.4 If τ is a trace on A and u is a unitary in Ã, then τ(u∗xu) =
τ(x) for every x ∈ A+ (τ is unitarily invariant). An interesting question
is whether the converse holds: is a unitarily invariant weight necessarily a
trace? The following example shows that the answer is no in general; but a
lower semicontinuous unitarily invariant weight is a trace (II.6.8.7), as is any
unitarily invariant linear functional.

II.6.8.5 Example. Let A and I be as in II.5.2.1(vi). If a =
([

an bn

cn dn

])

is in A+, define τ(a) = a1 + d1 if a ∈ I and τ(x) = ∞ if a /∈ I. Then it is
easily seen that τ is unitarily invariant since I+ is unitarily invariant. But if

x =
([

0 0
n−1/2 0

])

, then τ(x∗x) = 1 and τ(xx∗) = ∞.

II.6.8.6 Proposition. Let A be a C*-algebra, I an ideal of A (not neces-
sarily closed), and φ a linear functional on I such that φ(u∗xu) = φ(x) for all
x ∈ I and all unitaries u ∈ Ã. Then φ(xy) = φ(yx) for all x ∈ I, y ∈ A.
Proof: If u is a unitary in Ã, and x ∈ I, then

φ(ux) = φ(u∗(ux)u) = φ(xu).

If y ∈ A, write y as a linear combination of unitaries (II.3.2.12) to obtain
φ(xy) = φ(yx).

II.6.8.7 Proposition. A lower semicontinuous unitarily invariant weight
is a trace.
Proof: Let φ be a lower semicontinuous unitarily invariant weight on A. Then
Mφ is a two-sided ideal of A (II.5.2.2), and φ defines a linear functional on Mφ,
also denoted φ. Let (hλ) be a right approximate unit for Nφ (II.5.3.3). Suppose
x ∈ Nφ, i.e. φ(x∗x) < ∞. Then xh2

φx∗ → xx∗, so φ(xx∗) ≤ lim inf φ(xh2
λx∗).

But since x, hλ, (x∗x)1/2 ∈ Nφ, we have xhλ, (x∗x)1/2hλ ∈ Mφ, and therefore
by II.6.8.6, for all λ,

φ(xh2
λx∗) = φ(hλx∗xhλ) = φ((x∗x)1/2h2

λ(x∗x)1/2) ≤ φ(x∗x)

and so x∗ ∈ Nφ and φ(xx∗) ≤ φ(x∗x). By the symmetric argument φ(xx∗) =
φ(x∗x). (Actually, for all λ, φ(xh2

λx∗) ≤ φ(xx∗), so φ(xx∗) = limλ φ(xh2
λx∗),

and similarly φ(x∗x) = limλ φ((x∗x)1/2h2
λ(x∗x)1/2).)

II.6.8.8 We usually restrict attention to semifinite traces. For C*-algebras,
we most frequently consider densely defined lower semicontinuous traces (in
the von Neumann algebra case, σ-weakly densely defined), which are auto-
matically semifinite.
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II.6.8.9 Proposition. Let τ be a lower semicontinuous trace on a C*-
algebra A. The following are equivalent:

(i) τ is semifinite.
(ii) For every x ∈ A+, τ(x) = sup{τ(y) : y ∈ (Mτ )+, y ≤ x}.
(iii) Mτ is an essential ideal (II.5.4.7) in A.
(iv) Nτ is an essential ideal in A.

This follows easily from II.6.7.6 and the observation that if τ is semifinite,
then

τ(hλxhλ) = τ(x1/2h2
λx1/2) → τ(x)

for every x ∈ A+ and every approximate unit (hλ) for Mφ, since x1/2h2
λx1/2 ≤

x.

II.6.8.10 The set T (A) of tracial states of A is a closed convex subset of
S(A), and hence is a compact convex set if A is unital.

II.6.8.11 Theorem. Let A be a unital C*-algebra. Then T (A) is a Choquet
simplex.

See [Sak71, 3.1.18] for a proof.
S(A) is a Choquet simplex if and only if A is commutative (and unital).

(See [AS03] for a complete description of the structure of S(A) as a compact
convex set.)

There is a close connection between traces and dimension functions:

II.6.8.12 Definition. A dimension function on a C*-algebra A is a func-
tion d : A+ → [0,∞] such that d(x) ≤ d(y) if x � y (II.3.4.3) and
d(x + y) = d(x) + d(y) if x ⊥ y, and such that d extends to a function
on Mn(A)+ with the same properties. A dimension function d is normalized
if sup{d(x) : x ∈ A+} = 1.

Dimension functions measure the “size of the support” of the elements of
the algebra. Dimension functions are often defined just on the projections of
the algebra, particularly in the von Neumann algebra case; such a dimension
function can be extended to all elements by setting d(x) = d(px), where px is
the support projection of x. The technical condition that a dimension function
extend to matrix algebras is automatic in most cases; in general, it suffices
that it extend to 2 × 2 matrices [BH82].

II.6.8.13 A lower semicontinuous trace τ on A defines a dimension function
dτ . The definition can be made in several ways. Most elegant is to proceed
as follows: if B ∼= Co(X) is a commutative C*-subalgebra of A, τ defines a
lower semicontinuous weight on Co(X) and hence a Borel measure µ on X. If
f ∈ Co(X)+, let

dτ (f) = µ({x ∈ X : f(x) �= 0}).
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It is easily checked that this gives a well-defined dimension function on A,
which is lower semicontinuous. Explicit formulas for dτ , which can be used as
alternate definitions, are

dτ (a) = lim
n→∞

τ(a1/n) = lim
ε→0

τ(fε(a))

(II.3.4.11). If τ is a tracial state, then dτ is normalized.

II.6.8.14 The procedure can be (almost) reversed. If d is a dimension func-
tion on A, and B ∼= Co(X) is a commutative C*-subalgebra of A, then d
defines a finitely additive measure µ on the algebra of subsets of X generated
by the σ-compact open sets, where if U is open and σ-compact, µ(U) = d(f),
where f is any function in Co(X)+ nonzero precisely on U . If d is lower semi-
continuous, then µ extends to a countably additive Borel measure on X and
hence a lower semicontinuous weight τ on B. The definition of τ on all of A+

is unambiguous, and τ is a lower semicontinuous quasitrace:

II.6.8.15 Definition. A quasitrace on a C*-algebra A is a function τ :
A+ → [0,∞] such that τ(x∗x) = τ(xx∗) for all x ∈ A, τ(λa) = λτ(a) for
all λ ≥ 0 and a ∈ A+, and τ(a + b) = τ(a) + τ(b) if a and b are commuting
elements of A+, and such that τ extends to a map Mn(A)+ → [0,∞] with
the same properties. τ is normalized if sup{τ(a) : 0 ≤ a ≤ 1} = 1. Denote by
QT (A) the set of normalized quasitraces on A. QT (A) is a convex set, which
is compact in the topology of elementwise convergence if A is unital.

II.6.8.16 One of the oldest, most famous, and most important open general
structure questions for C*-algebras is whether every quasitrace is a trace (i.e.
additive on A+). The general question can be reduced to the case of AW*-
factors (III.1.8.3) [BH82]. U. Haagerup showed that the answer is yes for
well-behaved C*-algebras:

II.6.8.17 Theorem. Every quasitrace on an exact C*-algebra (II.9.6.6,
IV.3) is a trace.

The first proof of this theorem was in [Haa92], which remains unpublished;
see [HT99] for a proof using random matrices. Actually, these references only
treat the case of normalized quasitraces on unital C*-algebras; E. Kirchberg
(cf. [Kir97]) observed that the general case follows from this.

It is at least true that QT (A) is a Choquet simplex if A is unital, which
is metrizable if A is separable [BH82]. T (A) is a face in QT (A).

II.6.9 Completely Positive Maps

The other crucial generalization of positive linear functionals is the notion of
completely positive map.

If A and B are C*-algebras and φ : A → B is a function, let

φ(n) : Mn(A) → Mn(B)

be the induced map obtained by applying φ entrywise.
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II.6.9.1 Definition. Let A, B be C*-algebras, and φ : A → B a linear
function. φ is positive (written φ ≥ 0) if a ∈ A+ implies φ(a) ∈ B+. φ is
n-positive if φ(n) : Mn(A) → Mn(B) is positive, and φ is completely positive
if it is n-positive for all n.

Positive, n-positive, and completely positive maps can more generally be
defined on operator systems.

A map φ : A → B is an order embedding if φ is isometric and φ(x) ≥ 0 if
and only if x ≥ 0 (i.e. if φ and φ−1 : φ(A) → A are both positive contractions).
The map φ is a complete order embedding if φ(n) is an order embedding for
all n.

In some contexts, completely positive maps (or completely positive con-
tractions) are the appropriate morphisms between C*-algebras.

II.6.9.2 A positive map is automatically bounded (the proof is essentially
the same as for positive linear functionals). In fact, a unital positive map is a
contraction (II.6.9.4).

II.6.9.3 Examples.

(i) Any *-homomorphism φ is positive, since a ≥ 0 ⇒ a = x∗x for some
x ∈ A, so φ(a) = φ(x)∗φ(x) ≥ 0. Since φ(n) is also a *-homomorphism,
it follows that a *-homomorphism is completely positive.

(ii) If φ : A → B is n-positive and v ∈ B, then ψ : A → B defined by
ψ(x) = v∗φ(x)v is also n-positive. ψ is called the compression of φ by
v. In particular, any compression of a *-homomorphism is completely
positive.

(iii) An (n + 1)-positive map is n-positive, but the converse is not true in
general. The simplest example is the transpose map τ on M2. It is easily
seen that τ is positive. But τ is not 2-positive. For example,

a =







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1





 ≥ 0, but τ (2)(a) =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





 �≥ 0.

[M2(M2) ∼= M4, and τ (2) takes the transpose in each 2 × 2-subblock.]
(iv) A positive map φ from C

n to a C*-algebra B is just a map of the form

φ(λ1, . . . , λn) = λ1b1 + · · · + λnbn

where b1, . . . , bn ∈ B+. If ‖φ(1)‖ ≤ 1, i.e.
∑

bk ≤ 1, then ‖φ‖ ≤ 1 by
I.2.6.13. In fact, any positive map from C

n to any B is completely positive
(II.6.9.10).

(v) A (completely) positive unital map from C
n to C(X) is of the form

(λ1, . . . , λn) �→
∑

λkfk
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where f1, . . . , fn are nonnegative functions summing to 1, i.e. a partition
of unity in X. If g1, . . . , gm are finitely many elements of C(X) and ε > 0,
choose a finite open cover U of X such that each gk varies by less than ε/2
on each U ∈ U , and let {f1, . . . , fn} be a partition of unity subordinate to
U . Then the corresponding (completely) positive unital map from C

n into
C(X) has elements (λk1, . . . , λkn) ∈ C

n with ‖(λk1, . . . , λkn)‖ = ‖gk‖ and
‖gk − φ(λk1, . . . , λkn)‖ < ε for all k.

II.6.9.4 Proposition. [RD66, Cor. 1]) Let A and B be unital C*-algebras,
and φ : A → B a unital linear map. Then φ is positive if and only if φ is a
contraction.
Proof: Suppose φ is a contraction. Let π be a faithful unital representation of
B on H. For any unit vector ξ in H, define σ : A → C by σ(x) = 〈π(φ(x))ξ, ξ〉.
Then σ is a linear functional on A, ‖σ‖ ≤ 1, and σ(1) = 1, so σ is a state on
A (II.6.2.5(ii)); so if x ∈ A+, 0 ≤ σ(x) = 〈π(φ(x))ξ, ξ〉. Since ξ is arbitrary,
π(φ(x)) ≥ 0.

We give an alternate argument using an idea which first appeared in
[Kad51]. We first show that φ is self-adjoint. If not, choose a ∈ A, a = a∗,
‖a‖ = 1, such that φ(a) = b + ic, b = b∗, c = c∗, c �= 0. Replacing a by −a if
necessary, we may assume there is 0 < λ ∈ σ(c). Then for any n > 0 we have

λ+n ≤ ‖c+n1B‖ ≤ ‖b+i(c+n1B)‖ = ‖φ(a+in1A)‖ ≤ ‖a+in1A‖ = (1+n2)1/2

which is a contradiction for sufficiently large n. Positivity now follows from
II.3.1.2(iv).

Now suppose φ is positive. By II.6.9.2, φ is bounded; and from II.3.2.16
we have that the norm of φ is the supremum of its restrictions to unital
commutative C*-subalgebras of A. We may thus assume A is commutative,
i.e. A = C(X). By the construction in II.6.9.3(v), ‖φ‖ can be approximated
by ‖φ ◦ ψ‖, where ψ is a unital positive map from C

n to C(X); thus we may
assume A = C

n. But a unital positive map from C
n to B is a contraction by

I.2.6.13.

II.6.9.5 Proposition. Let φ : A → B be a positive contraction. Then the
extended unital map φ̃ : A† → B̃ is positive.
Proof: Suppose a + λ1 ≥ 0 in A†. Then a = a∗ and λ ≥ 0. If λ = 0, then
φ̃(a+λ1) = φ(a) ≥ 0. If λ > 0, then −λ−1a ≤ 1, ‖λ−1a‖ ≤ 1, ‖φ(λ−1a)‖ ≤ 1,
φ(a) ≥ −λ1, φ̃(a + λ1) = φ(a) + λ1 ≥ 0.

II.6.9.6 It is not obvious that a positive linear functional is a completely
positive map to C, but by the GNS construction a state φ on A is the com-
pression of a *-homomorphism (πφ : A → L(Hφ)) by a projection onto a
one-dimensional subspace (spanned by ξφ). Thus a positive linear functional
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is completely positive. (Another argument and a generalization will be given
below.)

W. Stinespring [Sti55] was the first to study completely positive maps in
detail, and he proved the following dilation theorem, which is a generalization
of the GNS construction, and which shows that every completely positive map
is the compression of a *-homomorphism:

II.6.9.7 Theorem. [Stinespring] Let φ : A → L(H) be a completely
positive map. Then there is a Hilbert space Hφ, a representation πφ of A on
Hφ, and Vφ ∈ L(H,Hφ) with ‖Vφ‖2 = ‖φ‖, such that φ(a) = V ∗

φ πφ(a)Vφ

for all a ∈ A, and such that (Hφ, πφ, Vφ) are canonical and minimal in the
sense that if H′ is another Hilbert space with a representation ρ of A, and
W ∈ L(H,H′) with φ(a) = W ∗ρ(a)W for all a ∈ A, then there is an isometry
U : Hφ → H′ onto a subspace invariant under ρ and intertwining πφ and ρ,
and such that W = UVφ.

If A and φ are unital, then Hφ can be chosen to contain H, and φ(a) =
PHπ(a)PH.

The proof is just a few lines (plus a routine check of many details): define
a pre-inner product on the algebraic tensor product A �H (over C) by

〈x ⊗ ξ, y ⊗ η〉φ = 〈φ(y∗x)ξ, η〉H

and then divide out by vectors of length 0 and complete to get Hφ, and let
πφ(a) be left multiplication

πφ(a)(x ⊗ ξ) = ax ⊗ ξ.

If (hλ) is an approximate unit for A, then (hλ ⊗ ξ) is a Cauchy net in Hφ for
any ξ; call the limit V ξ. If (H′, ρ,W ) are as in the statement of the theorem,
define U(x ⊗ ξ) = ρ(x)(Wξ).

The great contribution of Stinespring (in connection with this result) was
to observe that complete positivity of φ is precisely what is needed to make
〈· , ·〉φ positive semidefinite. This can be conveniently summarized in the fol-
lowing proposition, one direction of which is the crucial technical point in the
proof of the theorem, and the converse a corollary of the theorem.

II.6.9.8 Proposition. Let A be a C*-algebra, and φ : A → L(H) a linear
map. Then φ is completely positive if and only if, for every a1, . . . , an ∈ A
and ξ1, . . . , ξn ∈ H,

n∑

i,j=1

〈φ(a∗
i aj)ξj , ξi〉 ≥ 0.

Proof: For the direction used in the proof of Stinespring’s Theorem, let
a ∈ Mn(A) be the matrix with first row (a1, . . . , an) and other entries 0.
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Then a∗a ≥ 0, and (a∗a)ij = a∗
i aj . If φ is completely positive, then the

matrix T ∈ Mn(L(H)) ∼= L(Hn) with Tij = φ(a∗
i aj) is positive. Conversely,

if φ satisfies the condition in the statement, the construction in the proof of
Stinespring’s Theorem works to give a dilation of φ to a *-homomorphism, so
φ is completely positive.

By breaking up H into a direct sum of cyclic subspaces, we can rephrase
this result as follows:

II.6.9.9 Proposition. Let A be a C*-algebra, and φ : A → L(H) a self-
adjoint linear map. Then φ is completely positive if and only if, for every
a1, . . . , an and x1, . . . , xn in A and ξ ∈ H,

n∑

i,j=1

〈φ(x∗
i )φ(a∗

i aj)φ(xj)ξ, ξ〉 ≥ 0.

In fact, it suffices to let ξ run over a set {ξi|i ∈ I} such that the closed span
of {φ(x)ξi|x ∈ A, i ∈ I} is H.

II.6.9.10 An examination of the proof of Stinespring’s Theorem shows that
if H is n-dimensional, then it suffices to assume that φ is n-positive, and it
then follows from the conclusion that φ is actually completely positive. Since
φ : A → B is m-positive if and only if ρ ◦ φ is m-positive for all ρ ∈ B̂, we
conclude that if every irreducible representation of B has dimension ≤ n, then
any n-positive map from a C*-algebra A into B is completely positive. This
is also true if all irreducible representations of A have dimension ≤ n [Sti55].
(Conversely, if B is a C*-algebra and any n-positive map from any C*-algebra
A into B is completely positive, then every irreducible representation of B has
dimension ≤ n [Tom82].)

II.6.9.11 In fact, there is a one-one correspondence between completely
positive maps from a C*-algebra A into Mn and positive linear functionals
on Mn(A). If σ is a positive linear functional on Mn(A), and a ∈ A, define
φσ(a)ij = nσ(a ⊗ eij); then φσ is a completely positive map from A to Mn.
Conversely, if φ : A → Mn is completely positive, define σφ by

σφ((aij)) =
1
n

∑

i,j

φ(aij)ij .

Then σφ is a positive linear functional on Mn(A). The two assignments are
easily checked to be mutually inverse. If A is unital and φ is unital, then σφ

is a state (this is the reason for the convention of including the n and 1/n in
the formulas); however, if σ is a state, then φσ is not necessarily unital.

More generally, the same procedure gives a one-one correspondence be-
tween cp-maps from A to Mn(B) and cp-maps from Mn(A) to B, for any
C*-algebra B.

Combining this correspondence with II.6.3, we get the finite-dimensional
case of the following theorem [Arv77]:
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II.6.9.12 Theorem. [Arveson Extension] Let A be a C*-algebra, X an
operator system in A, H a Hilbert space, and φ : X → L(H) a completely
positive map. Then φ extends to a completely positive map from A into L(H),
of the same norm.

If X is a C*-subalgebra B of A, the general case of Arveson’s Extension
Theorem follows easily from Stinespring’s Theorem: let (Hφ, πφ, Vφ) be the
Stinespring dilation of φ : B → L(H), extend the representation πφ of B
to a representation ρ of A on a Hilbert space H′ containing Hφ, and define
ψ(a) = V ∗

φ PHφ
ρ(a)Vφ; ψ is an extension of φ to A.

II.6.9.13 A C*-algebra C for which the statement of II.6.9.12 is true with
L(H) replaced by C is called an injective C*-algebra (it is an injective ob-
ject in the category of C*-algebras and completely positive maps). Thus, any
finite direct sum of copies of L(H)’s (in particular, any finite-dimensional C*-
algebra) is injective. The description and classification of injective C*-algebras
which act on separable Hilbert spaces is one of the great achievements of the
theory of operator algebras; see IV.2.1.

Another useful consequence of Stinespring’s Theorem is Kadison’s inequal-
ity :

II.6.9.14 Proposition. Let φ : A → B be a completely positive contrac-
tion. Then φ(x∗x) ≥ φ(x)∗φ(x) for all x ∈ A.

Indeed, by embedding B in L(H) for some H and letting (Hφ, πφ, Vφ) be
the Stinespring dilation, we have

φ(x∗x) = V ∗
φ πφ(x∗x)Vφ = V ∗

φ πφ(x)∗πφ(x)Vφ

≥ V ∗
φ πφ(x)∗VφV ∗

φ πφ(x)Vφ = φ(x)∗φ(x)

since VφV ∗
φ ≤ I.

The Kadison inequality actually holds for 2-positive contractions [Cho74]:
if φ : A → B is a 2-positive contraction, extend φ to a unital 2-positive

map from A† to B̃. If x ∈ A, then
[

1 x
x∗ x∗x

]

≥ 0 by II.6.6.6, so
[

1 φ(x)
φ(x)∗ φ(x∗x)

]

≥ 0. Apply II.6.6.6 again.

II.6.9.15 Conversely, a positive map φ : A → B satisfying the Kadison
inequality must be a contraction: if ‖φ‖ > 1 choose x ∈ A with ‖x‖ = 1 and
1 < ‖φ(x)‖ ≤ ‖φ‖ < ‖φ(x)‖2; then

‖φ(x)‖2 = ‖φ(x)∗φ(x)‖ ≤ ‖φ(x∗x)‖ ≤ ‖φ‖

since ‖x∗x‖ = 1, a contradiction.
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Complete Order Isomorphisms

II.6.9.16 Recall that a map φ : A → B is an order embedding if φ is
an isometry and φ(x) ≥ 0 if and only if x ≥ 0, and φ is a complete order
embedding if φ(n) is an order embedding for all n. A surjective [complete]
order embedding is a [complete] order isomorphism. If A and B are unital,
a complete order isomorphism must be unital; and a unital bijection φ is a
[complete] order isomorphism if and only if both φ and φ−1 are [completely]
positive (II.6.9.4).

If φ : A → B is a complete order isomorphism (it is enough that φ(2)

be an order isomorphism), then φ and φ−1 satisfy Kadison’s inequality, i.e.
φ(x∗x) = φ(x)∗φ(x) for all x. Then, using polarization (II.3.1.6), we obtain:

II.6.9.17 Theorem. Let A and B be C*-algebras, and φ : A → B a com-
plete order isomorphism. Then φ is an algebraic *-isomorphism.
Proof: Let x, y ∈ A. Then

4φ(y)∗φ(x) =
3∑

k=0

ik(φ(x)+ikφ(y))∗(φ(x)+ikφ(y)) =
3∑

k=0

ikφ(x+iky)∗φ(x+iky)

=
3∑

k=0

ikφ((x + iky)∗(x + iky)) = φ

(
3∑

k=0

ik(x + iky)∗(x + iky)

)

= 4φ(y∗x) .

Thus, the algebraic structure of a C*-algebra is completely determined
by its complete order structure (or just its 2-order structure). An explicit
derivation of the algebraic structure from the complete order structure can be
obtained from II.6.6.7, giving an alternate proof of the theorem. [There is a
technicality in obtaining the theorem from II.6.6.7, since it is not clear how to
characterize unitaries order-theoretically; but a complete order isomorphism
from A to B gives a complete order isomorphism from C1(A) to C1(B), and
the unitaries in these C*-algebras are precisely the extreme points of the
unit balls. Note that it is sufficient to prove multiplicativity on unitaries by
II.3.2.15.]

Note that the order structure on a C*-algebra is not sufficient to deter-
mine its algebraic structure: for example, if A is any C*-algebra, then A and
Aop are order-isomorphic by the identity map, but need not be *-isomorphic
(IV.1.7.16).

In fact, we have:

II.6.9.18 Proposition. Let φ : A → B be a completely positive contrac-
tion, and x ∈ A. If φ(x∗x) = φ(x)∗φ(x), then φ(yx) = φ(y)φ(x) for all y ∈ A.

The proof consists of applying Kadison’s inequality to
[

x y∗

0 0

]

(and

thus works if φ is just 4-positive). See e.g. [Pau02, 3.18] for details.



II.6 States and Representations 131

Matrix Ordered Spaces

II.6.9.19 If X is an operator space in A (II.6.2.10), then the set of n × n
matrices with elements in X can be naturally identified with an operator space
in Mn(A), which is an operator system if X is an operator system. Thus, if
X is an operator system, Mn(X) has an induced order structure (which in
general depends on how X is embedded in A), and it makes sense to consider
completely positive maps from X to a C*-algebra B (or to an operator system
Y ).

II.6.9.20 The situation can be abstracted [CE77a]. A matrix ordered space
is a Banach space X with involution such that Mn(X) is equipped with a norm
‖ · ‖n for each n, and a partial order defined by a set Mn(X)+ ⊆ Mn(X)sa

(using the induced involution), such that c∗[Mm(X)+]c ⊆ Mn(X)+ for any
c ∈ Mm,n(C).

Every operator system is a matrix ordered space as above. It makes sense
to talk about completely positive maps between matrix ordered spaces in the
obvious way.

If X and Y are matrix ordered spaces, then L(X,Y ) can be partially
ordered by taking the completely positive maps as the positive cone. If x ∈
Mn(X), define Θ(x) : Mn → X by Θ(x)(a) =

∑
i,j aijxij . Then Θ : Mn(X) →

L(Mn,X) is an order isomorphism.

II.6.9.21 Besides C*-algebras themselves, the most important matrix or-
dered spaces are duals of C*-algebras; indeed, one of the main motivations
for developing the theory of matrix ordered spaces was to provide a setting
to treat C*-algebras and their duals on an equal footing as ordered spaces.
If X is a matrix ordered space (e.g. C*-algebra) with dual space X∗, then
Mn(X∗) can be identified with the *-vector space dual of Mn(X) and can
thus be ordered by the dual cone; X∗ then becomes a matrix ordered space.

If X and Y are matrix ordered spaces, denote by CP (X,Y ) ⊆ L(X,Y )
the set of completely positive maps from X to Y .

Completely Bounded Maps

An operator space also inherits a matricial structure from its containing
C*-algebra. The resulting matricial spaces can be axiomatized [Rua88] (cf.
[ER00]).

II.6.9.22 If φ : X → Y is a linear map between operator spaces X and Y ,
then φ is completely bounded if ‖φ‖cb = supn ‖φ(n)‖ is finite. The map φ is a
complete contraction if ‖φ‖cb ≤ 1.

A completely positive map φ (between C*-algebras or operator systems)
is completely bounded, and ‖φ‖cb = ‖φ‖. Conversely, a unital complete con-
traction between operator systems is completely positive (II.6.9.4).
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The elementary theory of completely bounded maps can be largely reduced
to the completely positive case using the following dilation technique of V.
Paulsen [Pau02]. The proof is similar to II.6.6.5.

II.6.9.23 Proposition. Let A and B be unital C*-algebras, X an operator
space in A, and φ : X → B a complete contraction. Set

Y =
{[

λ1 x∗

x µ1

]

: λ, µ ∈ C, x ∈ X

}

.

Y is an operator system in M2(A), and ψ : Y → M2(B) is completely positive,
where

ψ

([
λ1 x∗

x µ1

])

=
[

λ1 φ(x)∗

φ(x) µ1

]

.

II.6.9.24 One can obtain completely bounded analogs of Stinespring’s The-
orem [Pau84] and Arveson’s Extension Theorem [Wit84]. See [Pau02] for de-
tails. See also [ER00] for a complete discussion of the theory of operator spaces
and completely bounded maps.

II.6.10 Conditional Expectations

Conditional expectations from a C*-algebra onto a C*-subalgebra play an
important role in several parts of the theory, and are especially important in
the theory of subfactors.

II.6.10.1 Definition. Let B be a C*-subalgebra of a C*-algebra A. A
conditional expectation from A to B is a completely positive contraction θ :
A → B such that θ(b) = b and such that θ(bx) = bθ(x) and θ(xb) = θ(x)b for
all x ∈ A, b ∈ B (θ is B-linear).

A conditional expectation is an idempotent map from A to A (a projection
onto B) of norm one. The converse is also true [Tom57]:

II.6.10.2 Theorem. Let A be a C*-algebra, B a C*-subalgebra, and θ :
A → B a projection of norm 1. Then θ is a conditional expectation.
Proof: (cf. [Str81, 9.1]) We first prove the module property in the case where
A is unital and B is generated by projections; the general case can be reduced
to this by considering the second dual θ∗∗ : A∗∗ → B∗∗ (III.5.2.10). Let p be
a projection in B, and q = 1 − p. Then pb and qb are in B for any b ∈ B,
and in particular θ(pθ(x)) = pθ(x) and θ(qθ(x)) = qθ(x) for all x ∈ A. Using
II.3.1.12, we obtain, for any λ ∈ R and x ∈ A,

(1 + λ)2‖qθ(px)‖2 = ‖qθ(px + λqθ(px))‖2 ≤ ‖px + λqθ(px)‖2
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≤ ‖px‖2 + ‖λqθ(px)‖2 = ‖px‖2 + λ2‖qθ(px)‖2

Thus (1 + 2λ)‖qθ(px)‖2 ≤ ‖px‖2 for all λ, so qθ(px) = 0, θ(px) = pθ(px).
Interchanging p and q in the argument, we obtain pθ(qx) = 0, pθ(x) = pθ(px).
Thus pθ(x) = θ(px) for any x ∈ A and projection p ∈ B. Since B is generated
by its projections, θ(bx) = bθ(x) for all x ∈ A, b ∈ B.

Taking x = 1, we obtain that θ(x) is a projection in B which is a unit for
B. Thus θ is a unital contraction from A to B and hence positive by II.6.9.4;
in particular, it is self-adjoint, from which it follows that θ(xb) = θ(x)b for all
x ∈ X, b ∈ B.

Regard B ⊆ L(H) for some H by a faithful representation. If a1, . . . , an

and x1, . . . , xn are in A and ξ ∈ H, we have, using

n∑

i,j=1

θ(xi)∗a∗
i ajθ(xj) = (

n∑

i=1

aiθ(xi))∗(
n∑

i=1

aiθ(xi)) ≥ 0

and positivity of θ,

n∑

i,j=1

〈θ(xi)∗θ(a∗
i aj)θ(xj)ξ, ξ〉 =

n∑

i,j=1

〈θ(θ(xi)∗a∗
i ajθ(xj))ξ, ξ〉

= 〈θ(
n∑

i,j=1

θ(xi)∗a∗
i ajθ(xj))ξ, ξ〉 ≥ 0.

Thus θ is completely positive by II.6.9.9.

II.6.10.3 Corollary. Let A be a C*-algebra, B a C*-subalgebra, and
θ : A → B an idempotent positive B-linear map. Then θ is a conditional
expectation.
Proof: Expanding θ((x−θ(x))∗(x−θ(x))) ≥ 0 for x ∈ A shows that θ satisfies
Kadison’s inequality and is thus a contraction (II.6.9.15). Apply II.6.10.2, or
simply use the last part of its proof to conclude that θ is completely positive.

II.6.10.4 Examples.

(i) Let (X,A, µ) be a probability measure space, and let B be a sub-σ-
algebra of A. Let A = L∞(X,A, µ) and B = L∞(X,B, µ). Then an
ordinary conditional expectation from A to B in the sense of probability
theory is a conditional expectation in the sense of II.6.10.1.

(ii) If A is unital and B = C1, a conditional expectation of A onto B is just
a state on A.

(iii) If B is a C*-subalgebra of A isomorphic to L(H) (or a finite direct sum
of copies of such algebras), then the identity map from B to B extends
to a conditional expectation from A onto B by II.6.9.12. In particular,
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if B is a finite-dimensional C*-subalgebra of a C*-algebra A, there is
always a conditional expectation from A onto B. (See II.6.10.13 for a
more general result.)

(iv) Let B be a finite-dimensional C*-subalgebra of a C*-algebra A, and U(B)
its unitary group. For x ∈ A, define

θ(x) =
∫

U(B)

u∗xu dµ(u)

where µ is normalized Haar measure on U(B). Then θ is a conditional
expectation from A onto B′ ∩ A (or 1B(B′ ∩ A) if B is not a unital
subalgebra of A).

(v) As a generalization of (iv), let G be a compact topological group acting as
automorphisms {αg} of a C*-algebra A, with g �→ αg continuous for the
point-norm topology, and let AG (often written Aα) be the fixed-point
algebra

AG = {x ∈ A : αg(x) = x for all g ∈ G}.
Define

θ(x) =
∫

G

αg(x) dµ(g)

where µ is normalized Haar measure on G. Then θ is a conditional ex-
pectation from A onto AG.
See IV.2.2.14 for a closely related result.

(vi) Let X and Y be compact Hausdorff spaces, and π : X → Y a (necessarily
finite) covering map. Regard B = C(Y ) as a C*-subalgebra of A = C(X)
by identifying g with g ◦ π. For f ∈ A, define θ(f) ∈ B by

[θ(f)](y) =
1

|π−1({y})|
∑

x∈π−1({y})
f(x).

Then θ is a conditional expectation. (If X is path-connected, then this
example is a special case of (v) using the group of deck transformations.)

(vii) Other important examples come from tensor products; see II.9.7.1.

II.6.10.5 If A is a C*-algebra and B a C*-subalgebra, there is not generally
a conditional expectation from A onto B; in fact, the existence of a conditional
expectation is fairly exceptional. For example, if θ : Ã → A is a conditional
expectation, then for x ∈ A we have

x = θ(x) = θ(1x) = θ(1)x

so θ(1) is a unit for A and A is unital. If A = C(X) is commutative and
unital and B = C(Y ) a unital C*-subalgebra, the embedding C(Y ) ⊆ C(X)
corresponding to a map f from X onto Y , a necessary (but not sufficient)
condition for the existence of a faithful conditional expectation from A onto
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B is that the cardinality of the fibers f−1({y}) (y ∈ Y ) must be lower semi-
continuous, which implies that f is an open mapping. Nonfaithful conditional
expectations exist in slightly greater generality; in the commutative case, a
nonfaithful conditional expectation is the composition of a faithful conditional
expectation and a quotient map. (Note that the first part of [Str81, 10.16] is
in error.)

The simplest example of this type where there fails to be a conditional ex-
pectation is obtained by letting X = Z∪{±∞}, so A = C(X) is the C*-algebra
of sequences (xn)n∈Z such that limn→+∞ xn and limn→−∞ xn exist, and B is
the C*-subalgebra of sequences (xn) such that limn→+∞ xn = limx→−∞ xn.

The C*-subalgebras of L(H) admitting conditional expectations are de-
scribed in IV.2.1.4.

Conditional Expectations with Invariant State

It is clear from II.6.10.4(ii) that conditional expectations onto subalgebras
are not unique in general. There are situations, however, where conditional
expectations (sometimes with additional natural properties) are unique. The
most important instance is when there is a faithful state commuting with
the expectation. In this case, there is a nice geometric interpretation of the
expectation.

II.6.10.6 Let A be a C*-algebra, B a C*-subalgebra, φ a faithful state on
A, ψ = φ|B . Then the GNS Hilbert space Hψ can be identified with a closed
subspace of Hφ. Let ι be the natural embedding of A into Hφ.

II.6.10.7 Proposition. Suppose θ : A → B is a conditional expectation
such that φ = φ ◦ θ. Then, if A is identified with ι(A), θ is the restriction to
A of the orthogonal projection from Hφ onto Hψ.
Proof: Let Θ be the operator on ι(A) defined by θ, i.e. Θ(ι(x)) = ι(θ(x)).
Since Θ is an idempotent map from ι(A) onto ι(B), it suffices to show that Θ
is bounded and ‖Θ‖ ≤ 1. But, if x ∈ A,

‖Θ(ι(x))‖2 = ‖ι(θ(x))‖2 = φ(θ(x)∗θ(x)) ≤ φ(θ(x∗x)) = φ(x∗x) = ‖ι(x)‖2

since θ(x)∗θ(x) ≤ θ(x∗x) by Kadison’s inequality (II.6.9.14).

In the above situation, φ is obviously completely determined by ψ and θ
as φ = ψ ◦θ. It is not quite so obvious, but follows immediately from II.6.10.7,
that θ is completely determined by φ:

II.6.10.8 Corollary. Let A be a C*-algebra, B a C*-subalgebra, and
φ a faithful state on A. Then there is at most one conditional expectation
θ : A → B with φ = φ ◦ θ.
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II.6.10.9 In the situation of the corollary, the θ does not always exist, even
if there is a conditional expectation from A onto B. For example, if A = M2

and B the C*-subalgebra of diagonal matrices, there is a unique conditional
expectation from A to B, the map which replaces the off-diagonal elements
with 0’s. [If θ is a conditional expectation, then

θ(e12)∗θ(e12) ≤ θ(e∗12e12) = e22

and also
θ(e12)∗θ(e12) = θ(e12)θ(e12)∗ ≤ θ(e12e

∗
12) = e11

so θ(e12) = 0.] If φ is a faithful state on M2 which does not vanish on e12 (cf.
II.6.3.5(i)), then there is no θ with φ = φ ◦ θ.

See III.4.7.7 for a criterion for existence in the von Neumann algebra set-
ting.

These results and arguments generalize to weights:

II.6.10.10 Proposition. Let A be a C*-algebra, B a C*-subalgebra, φ a
faithful weight on A with Nφ dense in A. Then

(i) There is at most one conditional expectation θ : A → B with φ = φ ◦ θ.
(ii) If θ is such a conditional expectation, then θ agrees on ι(Nφ) with the

orthogonal projection from Hφ onto the closure of ι(Nφ ∩ B).

Idempotent Maps Onto Subspaces

It is sometimes useful to consider idempotent completely positive contractions
whose range is not a C*-subalgebra. Such maps retain some properties of
conditional expectations:

II.6.10.11 Theorem. [CE77a, 3.1] Let A be a C*-algebra, θ : A → A an
idempotent (θ ◦ θ = θ) completely positive contraction. Then

(i) θ(xy) = θ(xθ(y)) = θ(θ(x)y) for all x, y ∈ A.
(ii) θ(A) is completely order isomorphic to a C*-algebra B; in fact, the mul-

tiplication x · y = θ(xy) makes θ(A) into a C*-algebra with its involution
and norm inherited from A.

There is a complementary result [CE76a, 4.1]:

II.6.10.12 Theorem. Let A and B be C*-algebras, ω a complete order
embedding of B into A, and C the C*-subalgebra of A generated by ω(B).
Then

(i) There is a *-homomorphism φ : C → B such that φ ◦ ω is the identity
map on B.

(ii) If θ is any idempotent completely positive contraction from A onto ω(B),
then (ω−1 ◦ θ)|C is a *-homomorphism.
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II.6.10.13 Finally, note that by II.6.9.12, if A and B are C*-algebras with
B finite-dimensional (or, more generally, injective), and ω is a complete order
embedding of B into A, then ω−1 : ω(B) → B extends to a completely positive
contraction φ : A → B, and θ = ω ◦ φ is an idempotent completely positive
contraction from A onto ω(B). By II.6.10.12(ii), if C is the C*-subalgebra of
A generated by ω(B), then φ|C is a *-homomorphism.

II.7 Hilbert Modules, Multiplier Algebras,
and Morita Equivalence

One of the most useful developments in modern operator algebra theory is
the notion of Hilbert module, which simultaneously generalizes Hilbert spaces
and C*-algebras and makes possible clean and unified treatments of sev-
eral important aspects of the subject. Hilbert modules were introduced by
I. Kaplansky [Kap53] in the commutative case and W. Paschke [Pas73] and
M. Rieffel [Rie74] in general (see also [Saw68]), and the theory was further
greatly developed by Kasparov [Kas80a].

General references: [Lan95], [RW98], [MT05].

II.7.1 Hilbert Modules

We will consider (left or right) B-modules over a C*-algebra B, which have
a B-valued “inner product”. All modules will be assumed to be vector spaces
under a compatible scalar multiplication. Unlike the case of Hilbert spaces
(C-modules), or more generally modules over commutative algebras, it will
be necessary to carefully distinguish between the “left theory” and the “right
theory,” although the two theories are formally identical with only a straight-
forward notational translation. We will concentrate our attention on right
modules with just the comment that all results have exact analogs in the left
module case. There are several reasons why right modules are the natural
ones to work with: for example, operators can be written on the left; and al-
most all the literature (except about Morita equivalence) uses right modules
exclusively.

II.7.1.1 Definition. Let B be a C*-algebra and E a right B-module. A
B-valued pre-inner product on E is a function 〈· , ·〉 : E × E → B with the
following properties for ξ, η, ζ ∈ E , b ∈ B, λ ∈ C:

(i) 〈ξ, η + ζ〉 = 〈ξ, η〉 + 〈ξ, ζ〉 and 〈ξ, λη〉 = λ〈ξ, η〉
(ii) 〈ξ, ηb〉 = 〈ξ, η〉b
(iii) 〈η, ξ〉 = 〈ξ, η〉∗
(iv) 〈ξ, ξ〉 ≥ 0 (as an element of B).

If 〈ξ, ξ〉 = 0 implies ξ = 0, then 〈· , ·〉 is called a B-valued inner product.
A right B-module with a B-valued pre-inner product is called a (right)

pre-Hilbert B-module.
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II.7.1.2 If E is a left A-module, there is an analogous definition of an A-
valued inner product with (i) replaced by linearity in the first variable and
(ii) by the condition 〈aξ, η〉 = a〈ξ, η〉. Conditions (iii) and (iv) remain the
same. A left A-module with an A-valued inner product in this sense is called
a left pre-Hilbert A-module. The term “pre-Hilbert module” without the word
“left” will always mean a right pre-Hilbert module.

II.7.1.3 It follows from II.7.1.1(ii) and (iii) that 〈ξb, η〉 = b∗〈ξ, η〉, i.e. 〈· , ·〉
is “conjugate-linear” in the first variable. (It is truly conjugate-linear with re-
spect to scalar multiplication.) The inner product in a left pre-Hilbert module
is “conjugate-linear” in the second variable.

Just as in the scalar case, there is a CBS inequality and an induced semi-
norm ‖ξ‖2 = ‖〈ξ, ξ〉‖ on a pre-Hilbert B-module:

II.7.1.4 Proposition. Let E be a pre-Hilbert B-module, ξ, η ∈ E , b ∈ B.
Then

(i) 〈ξ, η〉∗〈ξ, η〉 ≤ ‖〈ξ, ξ〉‖〈η, η〉 as elements of B [CBS Inequality]

(ii) ‖ξ + η‖ ≤ ‖ξ‖ + ‖η‖
(iii) ‖ξb‖ ≤ ‖ξ‖‖b‖.

These and similar results can be easily proved using the fact that if E is
a pre-Hilbert B-module and φ is a state on B, then (ξ, η)φ = φ(〈η, ξ〉) is an
ordinary pre-inner product on E . To prove the CBS inequality, it suffices to
show that

φ(〈ξ, η〉∗〈ξ, η〉) ≤ ‖〈ξ, ξ〉‖φ(〈η, η〉)
for every state φ on B (II.6.3.5(iii)). Given φ, use II.3.1.8 and the ordinary CBS
inequality |φ(〈ζ, η〉)|2 ≤ φ(〈ζ, ζ〉)φ(〈η, η〉) with ζ = ξ〈ξ, η〉. The inequality can
also be proved directly in a similar manner to the usual CBS inequality (cf.
[Lan95, 1.1]).

So the “seminorm” is a true seminorm, and is a norm if the pre-inner
product is an inner product. NE = {ξ : ‖ξ‖ = 0} is a submodule of E , and
the pre-inner product and seminorm drop to an inner product and norm on
the quotient module E/NE . E is called a Hilbert B-module if the seminorm is
a norm and E is complete.

Unlike the case of Hilbert spaces, we do not have equality in (iii) in general
(II.7.1.13).

A routine argument shows:

II.7.1.5 Proposition. The completion of a pre-Hilbert B-module (with
elements of norm zero divided out) is a Hilbert B-module.
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II.7.1.6 In some applications, one must consider pre-Hilbert modules over
an (incomplete) pre-C*-algebra B. The completion of such a module is a
Hilbert module over the completion of B.

II.7.1.7 Examples.

(i) A left pre-Hilbert C-module is just a vector space with a pre-inner prod-
uct in the ordinary sense. A left Hilbert C-module is a Hilbert space. A
pre-Hilbert C-module is a vector space with a “pre-inner product” which
is conjugate-linear in the first variable (and scalar multiplication written
on the right). There is an obvious identification with ordinary Hilbert
spaces: if H is a Hilbert space, define the conjugate Hilbert space H to
be H with its usual addition and inner product, but with right scalar
multiplication defined by ξα = ᾱξ for ξ ∈ H, α ∈ C.

(ii) B itself, regarded as a right B-module in the usual way, has a B-valued
inner product defined by 〈x, y〉 = x∗y, and is a Hilbert B-module. More
generally, any right ideal of B becomes a pre-Hilbert B-module in this
manner, and is complete if and only if it is closed. Similarly, if A is a
C*-algebra regarded as a left A module, then A (or any closed left ideal
of A) is a left Hilbert A-module with the inner product 〈x, y〉 = xy∗.

(iii) If V is a complex vector bundle over a compact Hausdorff space X with
a Hermitian structure (i.e. a locally trivial bundle of finite-dimensional
Hilbert spaces over X), then the set Γ(V ) of continuous sections has a
natural structure as a C(X)-module, and the pointwise inner product
makes it into a Hilbert C(X)-module. (The local triviality and finite-
dimensionality are not essential here.)

(iv) Any (algebraic) direct sum
⊕

Ei of [pre-]Hilbert B-modules becomes a
[pre-]Hilbert B-module with inner product

〈⊕ξi,⊕ηi〉 =
∑

i

〈ξi, ηi〉.

A finite direct sum of Hilbert B-modules is complete, but an infinite
direct sum will not be.

(v) If E is a Hilbert B-module, the completion of a direct sum of a sequence
of copies of E is denoted E∞ (we can also form En). B∞ is usually denoted
HB .

HB = {(x1, x2, · · · ) : xn ∈ B,
∑

x∗
nxn converges in B}

with inner product

〈(x1, x2, · · · ), (y1, y2, · · · )〉 =
∑

x∗
nyn.

(An important technical point: HB is more than just the sequences (xn)
for which

∑
‖xn‖2 < ∞ in general.)
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II.7.1.8 In many respects, Hilbert modules behave much like Hilbert spaces,
and constructions and arguments can be carried over almost verbatim. But
there is one dramatic exception: orthogonality. Orthogonality in a Hilbert
module can be defined in the same way as in a Hilbert space, but is relatively
rare in general: for example, it is easy to find examples of a proper closed
B-submodule F of a Hilbert B-module E such that F⊥ = {0}, and thus F⊥⊥

is strictly larger than F . (In fact, it is relatively rare that a closed submodule
has a complementary closed submodule or even a closed complementary vector
subspace.) Thus most arguments using orthogonality must be discarded in the
Hilbert module case.

Since B may be nonunital, it is not obvious that a Hilbert B-module E
satisfies E = EB = {ξb : ξ ∈ E , b ∈ B}, but is true:

II.7.1.9 Proposition. If E is a Hilbert B-module, then EB = E . If ξ ∈ E ,
then ‖ξ‖ = sup{‖〈ξ, ηb〉‖ : η ∈ E , b ∈ B, ‖η‖ = ‖b‖ = 1}.
Proof: By II.5.3.7, it suffices to show that if (hλ) is an approximate unit for
B, then for any ξ, ξhλ → ξ, so EB is dense in E . But

〈ξ − ξhλ, ξ − ξhλ〉 = 〈ξ, ξ〉 − hλ〈ξ, ξ〉 − 〈ξ, ξ〉hλ + hλ〈ξ, ξ〉hλ → 0.

One can alternatively show the following, which is strongly reminiscent of
II.3.2.1 (and, from the right point of view, essentially the same result):

II.7.1.10 Proposition. Let E be a Hilbert B-module, ξ ∈ E , ‖ξ‖ = 1.
Then for any α, 0 < α < 1/2, there is a η ∈ E with ‖η‖ = 1 and ξ = η[〈ξ, ξ〉]α.

The proof is very similar to the proof of II.3.2.1: η is the limit of the
norm-convergent sequence

ξ[(1/n) + b]−1/2b1/2−α

where b = 〈ξ, ξ〉.
See [RW98, 2.31] for a related result with a slick proof.

A significant fact is G. Kasparov’s Stabilization or Absorption Theorem
[Kas80a] (first proved in the commutative case by J. Dixmier and A. Douady
[DD63]; cf. also [Bro77]), which says that HB is the “universal” Hilbert B-
module:



II.7 Hilbert Modules, Multiplier Algebras, and Morita Equivalence 141

II.7.1.11 Theorem. [Stabilization or Absorption] Let B be a C*-
algebra, and E a countably generated Hilbert B-module. Then E ⊕HB

∼= HB .

The best proof, due to J. Mingo and W. Phillips [MP84], uses polar de-
composition; see [Bla98, 13.6.2] or [Lan95, 6.2].

Note, however, that HB is not itself countably generated unless B is
σ-unital (II.4.2.4). There are some technical complications in the theory of
Hilbert B-modules when B is not σ-unital, so in applications of the theory
we often restrict to the σ-unital case (which of course includes the case of
separable B).

II.7.1.12 There is another technical complication in Hilbert module theory
which turns out to be a blessing in disguise. If E is a Hilbert B-module, then
{〈ξ, η〉 : ξ, η ∈ E} is not generally closed under addition, and its closed linear
span JE is an ideal of B which is not all of B in general. If JE = B, then
E is said to be a full Hilbert B-module. E can be regarded as a full Hilbert
JE -module, and EJE = E by II.7.1.9. The Hilbert JE -module structure is the
natural one on E , and the B-module structure on E can be recovered from
the JE -module structure. In fact, if JE is an ideal in a C*-algebra D, then the
Hilbert JE -module structure extends uniquely to a Hilbert D-module structure
[by a calculation as in the proof of II.7.1.9, if (hλ) is an approximate unit for
JE , then for any ξ ∈ E and d ∈ D, (ξhλd) is a Cauchy net in E and its limit
can be called ξd.] This observation leads to the theory of multiplier algebras
via Hilbert modules (II.7.3).

II.7.1.13 Note that if E is a Hilbert B-module, ξ ∈ E , b ∈ B, then we do
not have equality in II.7.1.4(iii) in general (e.g. in example II.7.1.7(ii)). It is
not even true that if b ∈ B, then ξb = 0 for all ξ ∈ E implies b = 0; it only
implies that b is orthogonal to JE (cf. II.7.3). If E is a full Hilbert B-module
and ξb = 0 for all ξ ∈ E , then b = 0.

II.7.2 Operators

The appropriate analogs of bounded operators for Hilbert modules are the
adjointable operators.

II.7.2.1 Definition. Let B be a C*-algebra and E and F Hilbert B-
modules. A function T : E → F is an adjointable operator if there is a function
T ∗ : F → E such that

〈Tξ, η〉F = 〈ξ, T ∗η〉E
for all ξ ∈ E , η ∈ F . The operator T ∗ is called the adjoint of T . Denote by
L(E ,F) the set of adjointable operators from E to F . Write L(E) for L(E , E).

Some experts justifiably object to the term “adjointable” as a language
abomination, but the term is unfortunately now well established.
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An adjointable operator is automatically C-linear and even B-linear (a sim-
ple calculation using the linearity of the inner products) and bounded (by the
Closed Graph Theorem). Not every bounded module morphism is adjointable,
however; for example, the inclusion of a noncomplemented submodule is not
adjointable. L(E ,F) is a Banach space under the usual operator norm; and
it is easily checked that L(E) is a C*-algebra with this norm and involution
(the proof is essentially identical to the Hilbert space case).

Since the definition of L(E ,F) is given without explicit reference to the B-
module structure, the same set of adjointable operators is obtained no matter
which C*-algebra E and F are regarded as Hilbert modules over (cf. II.7.1.12)
so long as the inner products on E and F are unchanged.

By definition of the operator norm, if T ∈ L(E ,F) and ξ ∈ E , then ‖Tξ‖ ≤
‖T‖‖ξ‖. But there is a more precise inequality which follows from the fact that
L(E) is a C*-algebra:

II.7.2.2 Proposition. Let E be a Hilbert B-module, T ∈ L(E), and ξ ∈ E .
Then 〈Tξ, T ξ〉 ≤ ‖T‖2〈ξ, ξ〉 as elements of B.

Since S = ‖T‖2I − T ∗T ≥ 0 in L(E), we have

‖T‖2〈ξ, ξ〉 − 〈Tξ, T ξ〉 = 〈Sξ, ξ〉 = 〈S1/2ξ, S1/2ξ〉 ≥ 0.

This is also an easy corollary of II.7.1.10. We may assume ‖ξ‖ = 1; for
α < 1/2 let ηα ∈ E with ‖ηα‖ = 1 and ξ = ηαbα, where b = 〈ξ, ξ〉. Then

〈Tξ, T ξ〉 = bα〈Tηα, Tηα〉bα ≤ ‖T‖2b2α

and the inequality follows by letting α → 1/2. (This argument also works if
T is just a bounded module-homomorphism.)

II.7.2.3 Corollary. Let E be a Hilbert B-module, T ∈ L(E), and φ a
state on B. Define the pre-inner product (·, ·)φ on E as in II.7.1.4, and let Hφ

be the completion (Hilbert space). Then T extends to a bounded operator Tφ

on Hφ, with ‖Tφ‖ ≤ ‖T‖.

II.7.2.4 In analogy with the Hilbert space case, there are special “rank-
one” operators in L(E ,F). If η ∈ E , ξ ∈ F , define Θξ,η by Θξ,η(ζ) = ξ〈η, ζ〉.
Then Θ∗

ξ,η = Θη,ξ, so Θξ,η ∈ L(E ,F). If T ∈ L(F ,G), then TΘξ,η = ΘTξ,η;
and Θξ,ηT = Θξ,T∗η for T ∈ L(G, E). Let K(E ,F) be the closed linear span
of {Θξ,η : η ∈ E , ξ ∈ F}, and K(E) = K(E , E). The set K(E) is a closed
ideal in the C*-algebra L(E). The set K(E ,F) is often regarded as the set of
“compact” operators from E to F , although these operators will generally not
be compact in the sense of I.8.1.1. In fact, we can sometimes have I ∈ K(E)
(II.7.2.6(i)) (I of course denotes the identity map on E ; I ∈ L(E) and I∗ = I);
since K(E) is an ideal in L(E), this happens if and only if K(E) = L(E).

Note that the K(E)-valued inner product 〈ξ, η〉 = Θξ,η makes E into a full
left Hilbert K(E)-module (cf. II.7.6.5(ii)).

A simple but useful technical fact (cf. [Bla98, 13.6.3], [Lan95, 6.7]) is:
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II.7.2.5 Proposition. Let E be a Hilbert B-module. Then E is countably
generated if and only if K(E) is σ-unital.

II.7.2.6 Examples.

(i) If B is regarded as a Hilbert B-module, and x, y ∈ B, then

Θx,yz = x〈y, z〉 = xy∗z

for any z, so Θx,y is left multiplication by xy∗. It is easily checked that
‖Θx,y‖ = ‖xy∗‖. Since B = B2, we conclude that K(B) ∼= B, where
B acts on itself by left multiplication. If B is unital, then Θ1,1 = I, so
K(B) = L(B) ∼= B. (If B is nonunital, then of course K(B) �= L(B) since
I ∈ L(B) \ K(B).)

(ii) If E and F are Hilbert B-modules, then L(En,Fm) and K(En,Fm) can
be naturally identified with the set of m × n matrices over L(E ,F) and
K(E ,F) respectively, with the usual involution. So L(En) ∼= Mn(L(E))
and K(En) ∼= Mn(K(E)).

(iii) If E is a Hilbert B-module, then L(E∞) can be identified with an algebra
of infinite matrices over L(E), although it is difficult if not impossible
to characterize which matrices give elements of L(E∞). K(E∞) is the
closure of M∞(K(E)) (II.6.6.9), so is isomorphic to K(E) ⊗ K as defined
in II.6.6.11. In particular, K(HB) ∼= B ⊗ K.

(iv) If E , F are Hilbert B-modules, then K(E ,F) is a left K(F)-module by left
multiplication, and has a K(F)-valued inner product defined by 〈S, T 〉 =
ST ∗, making it a left Hilbert K(F)-module.

II.7.2.7 Unlike in L(H), operators in L(E) do not have support projections
or polar decomposition in general. In fact, since L(E) can be any unital C*-
algebra, these should not be expected. From a Hilbert module point of view,
the problem is that the closure of the range of an adjointable operator need not
have an orthogonal complement. Even an isometric B-module map need not be
adjointable (if the range is uncomplemented). It is true, although a nontrivial
result [Lan95, 3.5], that an isometric B-module map T from a Hilbert B-
module E onto a Hilbert B-module F is adjointable and unitary (T ∗T = IE ,
TT ∗ = IF ). There is also a result due to A. Mǐsčenko [Mǐs79] (cf. [Lan95,
3.2]):

II.7.2.8 Theorem. Let E and F be Hilbert B-modules, and T ∈ L(E ,F)
with closed range. Then T ∗ also has closed range; N (T )⊥ = R(T ∗), R(T ∗)⊥ =
N (T ) (and hence N (T ∗)⊥ = R(T ), R(T )⊥ = N (T ∗)), and T has left and right
support projections and polar decomposition.

Compare with II.3.2.10: an element of L(E) which is well-supported in
the sense of II.3.2.8 has closed range. Conversely, it follows from the Open
Mapping Theorem that if T has closed range, then T is bounded below on
N (T )⊥ and hence is well-supported.
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II.7.2.9 L(E) for a Hilbert B-module E (and, more generally, L(E ,F)) has
various other topologies analogous to the topologies on L(H): weak, σ-weak,
strong, σ-strong, strong-*, and σ-strong-*. The last two are the most impor-
tant. The strong-* topology on L(E) is the topology of pointwise *-convergence
on E , and is generated by the seminorms T �→ ‖Tξ‖ and T �→ ‖T ∗ξ‖ for ξ ∈ E ;
the σ-strong-* is the topology of pointwise convergence as left and right multi-
pliers of K(E), and is generated by the seminorms T �→ ‖TS‖ and T �→ ‖ST‖
for S ∈ K(E). The term strict topology is often used for these topologies; un-
fortunately, this term is used in the literature for both topologies, sometimes
even by the same author. The two topologies agree on bounded sets, so the
ambiguity is not too serious; but for consistency we will use the term “strict
topology” only to mean the σ-strong-* topology. (The term comes from the
theory of multiplier algebras (II.7.3), where it definitely means the σ-strong-*
topology.)

Just as in L(H), multiplication is separately strictly continuous, and jointly
strictly continuous on bounded sets.

It is easily shown that if (Hλ) is an approximate unit for K(E), then
Hλ → I strictly, and it follows that K(E ,F) is strictly dense in L(E ,F) for
any E ,F . There is also a version of the Kaplansky Density Theorem [Lan95,
1.4]: if A is a *-subalgebra of L(E) with strict closure D, then the unit ball of
A is strictly dense in the unit ball of D.

II.7.3 Multiplier Algebras

If A is a C*-algebra (especially a nonunital one), we now examine the ways
in which A can be embedded as an ideal in a unital C*-algebra D. If A =
Co(X) is commutative, this corresponds to the ways in which the locally
compact Hausdorff space X can be embedded as an open set in a compact
Hausdorff space Y . There is a minimal way to do this: let Y = X† be the
one-point compactification. The C*-analog is to take D = A† (II.1.2.1). In
the commutative case, there is a “maximal” compactification, the Stone-Čech
compactification βX. There is a C*-analog here, too, called the multiplier
algebra of A.

II.7.3.1 Theorem. Let A be a C*-algebra. Then there is a unital C*-
algebra M(A) containing A as an essential ideal (II.5.4.7), which is universal
in the sense that whenever A sits as an ideal in a C*-algebra D, the identity
map on A extends uniquely to a *-homomorphism from D into M(A) with
kernel A⊥ (II.5.4.7). (Thus M(A) is unique up to isomorphism over A.) M(A)
is called the multiplier algebra of A.

II.7.3.2 There are several ways of constructing M(A) and proving the the-
orem. The original construction and proof, due to R. Busby [Bus68], used
double centralizers. A double centralizer of a C*-algebra A is a pair (L,R) of
linear maps from A to A satisfying xL(y) = R(x)y for all x, y ∈ A [think of L
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and R as left and right multiplication by an element of M(A).] More generally,
a left centralizer of A is a linear map L : A → A satisfying L(xy) = L(x)y for
all x, y ∈ A. Right centralizers are defined analogously.

II.7.3.3 Proposition. [Ped79, 3.12.2] Every left (or right) centralizer of a
C*-algebra is bounded. Proof: Suppose not. Let L be an unbounded left
multiplier of A, and xn ∈ A with ‖xn‖ < 1/n but ‖L(xn)‖ > n. Let a =∑

xnx∗
n. Then xn = a1/3un for some un ∈ A with ‖un‖ ≤ ‖a1/6‖ (II.3.2.2),

so
‖L(xn)‖ = ‖L(a1/3)un‖ ≤ ‖L(a1/3)‖‖a1/6‖

for all n, a contradiction. The proof for right centralizers is similar.

II.7.3.4 If (L,R) is a double centralizer of A, then L is a left centralizer [if
(hλ) is an approximate unit for A, and x, y ∈ A, then hλL(xy) = R(hλ)xy =
hλL(x)y for each λ], and similarly R is a right centralizer. Thus L and R are
necessarily bounded; and it is automatic that ‖L‖ = ‖R‖. Let

(L1, R1)(L2, R2) = (L2L1, R1R2)

and (L,R)∗ = (R∗, L∗), where T ∗(x) = T (x∗)∗. Then the set of double cen-
tralizers with coordinatewise addition and this multiplication, and operator
norm, is a C*-algebra M(A). A embeds via a �→ (La, Ra), where La(x) = ax
and Ra(x) = xa. If A is an ideal of D, then in the same way an element d ∈ D
defines (Ld, Rd) ∈ M(A).

II.7.3.5 A second traditional approach is to take a faithful nondegenerate
representation π of A on H, and take M(A) to be the idealizer

{T ∈ L(H) : Tπ(A) ⊆ π(A), π(A)T ⊆ π(A)}.

This approach, whose proof follows easily from II.6.1.6, will be subsumed in
II.7.3.9. But there is an interesting consequence:

II.7.3.6 Proposition. [Ped79, 3.12.3] Let A be a concrete C*-algebra of
operators acting nondegenerately on a Hilbert space H. If L is a left centralizer
of A, then there is a unique x ∈ A′′ with L(y) = xy for all y ∈ A.
Proof: Let (hλ) be an increasing approximate unit for A. Then the net
(L(hλ)) is bounded (II.7.3.3), and hence has a weak limit point x ∈ A′′. If
y ∈ A, then L(hλ)y = L(hλy) → L(y) in norm, hence weakly; but xy is a
weak limit point of (L(hλ)y), so L(y) = xy. Uniqueness is obvious, since if
L(y) = zy for all y ∈ A, then (x − z)hλ = 0 for all λ. But hλ → 1 strongly.

II.7.3.7 Corollary. L(H) is σ-strongly complete.
Proof: Let (xi) be a σ-strong Cauchy net in L(H). Then for each y ∈ K(H),
(xiy) is a norm Cauchy net. Define L(y) to be the limit. Then L is a left
multiplier of K(H), so there is an x ∈ L(H) with L(y) = xy for all y ∈ K(H),
and xi → x σ-strongly.
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Multiplier Algebras Via Hilbert Modules

II.7.3.8 The most elegant approach to multiplier algebras is to use Hilbert
modules. If E is a Hilbert B-module, then a *-homomorphism π from a C*-
algebra A into L(E) is nondegenerate if π(A)E is dense in E . This is easily
shown to be equivalent to the statement that π(hλ) → I strictly for some
(hence every) approximate unit for A. (Actually, if π is nondegenerate, then
π(A)E = E (II.5.3.7).)

II.7.3.9 Theorem. Let E be a Hilbert B-module, D a C*-algebra with
closed ideal A, and π : A → L(E) a nondegenerate *-homomorphism. Then π
extends uniquely to a *-homomorphism from D into L(E). If π is faithful on
A, then the kernel of the extended map is A⊥. In particular, the idealizer of
π(A) in L(E) is isomorphic to the multiplier algebra of A.

The proof (cf. II.6.1.6) consists of observing that, if d ∈ D, a1, · · · , an ∈ A,
ξ1, · · · , ξn ∈ E , and (hλ) is an approximate unit for A, then

‖
∑

i

π(dai)ξi‖ = lim
λ

‖
∑

i

π(dhλai)ξi‖

= lim
λ

‖π(dhλ)
∑

i

π(ai)ξi‖ ≤ ‖d‖‖
∑

i

π(ai)ξi‖

so
∑

i π(ai)ξi �→
∑

i π(dai)ξi is well defined and bounded, and has an adjoint∑
i π(ai)ξi �→

∑
i π(d∗ai)ξi.

Applying the theorem to A = K(E), we get:

II.7.3.10 Corollary. If E is a Hilbert B-module, then L(E) is the multi-
plier algebra of K(E).

II.7.3.11 Theorem II.7.3.1 may be viewed as the special case of this where
E = A viewed as a Hilbert A-module and A is identified with K(A). The
strict topology on M(A) is the strict topology in the previous sense when
M(A) is identified with L(A) (actually, in this case the strong-* and σ-strong-*
topologies coincide, so there is no ambiguity.) The strict topology is generated
by the seminorms x �→ ‖ax‖ and x �→ ‖xa‖ for a ∈ A, i.e. xi → x strictly in
M(A) if and only if axi → ax and xia → xa in norm for all a ∈ A.

In fact, M(A) is the strict completion of A [Bus68], and in particular
is strictly complete. Thus, for example, L(H) is complete in the σ-strong-*
topology. The proof is almost identical to the one in II.7.3.7.
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II.7.3.12 Examples.

(i) If A is unital, then M(A) = A, and the strict topology is the norm
topology. M(A) is always unital, so M(A) �= A if A is nonunital. (In
fact, M(A) is much larger than A in general: it is always nonseparable if
A is nonunital.)

(ii) M(K) ∼= L(H). The strict topology is the σ-strong-* operator topology.
(iii) If X is a locally compact Hausdorff space, then M(Co(X)) ∼= C(βX),

which is isomorphic to the C*-algebra Cb(X) of bounded continuous com-
plex-valued functions on X (in fact, a good construction of βX is as the
primitive ideal space of this C*-algebra.) On bounded sets, the strict
topology is the topology of uniform convergence on compact subsets of
X.

(iv) [APT73, 3.4] Generalizing (ii), if B is any C*-algebra and X is a locally
compact Hausdorff space, then M(Co(X,B)) is isomorphic to the C*-
algebra of strictly continuous functions from βX to M(B).

II.7.3.13 The main statement of Theorem II.7.3.9 remains true in greater
generality: the *-homomorphism π is called strict if, for an approximate unit
(hλ) for A, the net (π(hλ)) converges strictly to an operator P ∈ L(E) (which
is necessarily a projection). The extended homomorphism from D goes into
PL(E)P . But the conclusion of Theorem II.7.3.9 does not hold for a general *-
homomorphism π from A to L(E). In general, a *-homomorphism from A to B
does not extend to a *-homomorphism from M(A) to M(B) (i.e. A �→ M(A)
is not functorial). The problems are that a *-homomorphism need not be
strictly continuous, and the submodule (π(A)E)− need not be complemented.
For example, the inclusion of a nonunital hereditary C*-subalgebra A of a
separable unital C*-algebra B does not extend to a *-homomorphism from
M(A) into M(B) = B.

II.7.3.14 If p is a projection in M(A), the hereditary C*-subalgebra pAp
of A is called a corner. Corners are the “nicely embedded” hereditary C*-
subalgebras. The corner pAp has a complementary corner (1−p)A(1−p). The
inclusion of pAp into M(A) is strict, so by the extended version of II.7.3.9 we
get that M(pAp) ∼= pM(A)p.

II.7.4 Tensor Products of Hilbert Modules

There is a way of tensoring Hilbert modules which generalizes the tensor
product of Hilbert spaces. In fact, there are two appropriate notions which
are both useful. Here we discuss the “internal tensor product”; there is also
an “external tensor product” (cf. [Bla98, 13.5] or [Lan95, §4]).
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II.7.4.1 If E is a Hilbert A-module and F a Hilbert B-module, and φ : A →
L(F) is a *-homomorphism, then F can be regarded as an A − B bimodule
via φ, and we can form the algebraic tensor product E �A F of E and F over
A as the quotient of the tensor product vector space E �C F by the subspace
spanned by

{ξa ⊗ η − ξ ⊗ φ(a)η : ξ ∈ E , η ∈ F , a ∈ A} .

Then E �AF is a right B-module in the obvious way: (ξ⊗η)b = ξ⊗ηb. Define
a B-valued pre-inner product on E �A F by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, φ(〈ξ1, ξ2〉A)η2〉B .

(One must check that this pre-inner product is well defined and positive; in
fact, it is actually an inner product. Note the similarity with the Stinespring
construction.) The completion of E �A F with respect to this inner product is
a Hilbert B-module called the (internal) tensor product of E and F , denoted
E ⊗φ F (or just E ⊗A F when there is no ambiguity about the map φ).

The tensor product is associative and distributive over direct sums in the
obvious way.

II.7.4.2 Examples.

(i) If F is any Hilbert B-module, then C
n ⊗C F ∼= Fn. If H is a separable

infinite-dimensional Hilbert space, regarded as a Hilbert C-module, then
H⊗CF ∼= F∞. (The homomorphism from C to L(F) is the obvious unital
one.) In particular, C

n ⊗C B ∼= Bn and H⊗C B ∼= HB .
(ii) If F is a Hilbert B-module and φ : A → L(F) is a nondegenerate *-

homomorphism, then A⊗φ F ∼= F . Similarly, An ⊗φ F ∼= Fn, HA ⊗φ F ∼=
F∞.

II.7.4.3 If S ∈ L(E), then there is a natural operator S ⊗ I ∈ L(E ⊗φ F),
defined by

(S ⊗ I)(ξ ⊗ η) = Sξ ⊗ η.

Thus there is a *-homomorphism from L(E) into L(E ⊗φ F). (Note that this
homomorphism does not send K(E) into K(E ⊗φ F) in general.) However,
unlike in the Hilbert space case, if T ∈ L(F), there is no reasonable definition
of I ⊗ T ∈ L(E ⊗φ F) in general unless T commutes with φ(A).

Correspondences

II.7.4.4 If A and B are C*-algebras and E is a Hilbert B-module, a homo-
morphism φ : A → L(E) can be regarded as a “generalized homomorphism”
from A to B. Such a tuple (A,B, E , φ) is called a correspondence (or C*-
correspondence) from A to B. An important example is a (not necessarily
strict) homomorphism from A to M(B). In fact, in general K(E) is a C*-
algebra which is a “rescaled” version of an ideal of B (a precise statement
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uses Morita equivalence; see II.7.6.5(ii) and II.7.6.13), and φ is a homomor-
phism from A to M(K(E)).

The correspondence (A,B, E , φ) is often abbreviated as the bimodule AEB ;
the Hilbert B-module structure is understood. Note that there is no left
Hilbert A-module structure in general. An A − B-imprimitivity bimodule
(II.7.6.1) is a special kind of correspondence.

Correspondences can be composed: if (A,B, E , φ) and (B,D,F , ψ) are cor-
respondences from A to B and B to D respectively, then

(A,D, E ⊗ψ F , φ ⊗ I)

is a correspondence from A to D which is the natural composition. This
composition generalizes ordinary composition of homomorphisms once certain
natural identifications are made. Imprimitivity bimodules are isomorphisms
under this composition.

Correspondences from A to B can also be added:

(A,B, E , φ) + (A,B,F , ψ) = (A,B, E ⊕ F , φ ⊕ ψ).

In order to obtain a well-behaved theory (e.g. to have associativity of
composition), one must identify isomorphic correspondences, where an iso-
morphism is an isometric bimodule isomorphism. For ordinary morphisms,
this amounts to identifying unitarily equivalent homomorphisms. There is
thus a category whose objects are C*-algebras and whose morphisms are iso-
morphism classes of correspondences.

Correspondences from A to B are closely related to the construction of
the group KK(A,B) (V.1.4.4) which is roughly a group of equivalence classes
of formal differences of correspondences from A to B; cf. [Bla98, 17.6.2,
18.4.2(c)].

Interesting C*-algebras, generalizing both Cuntz-Krieger algebras and
crossed products, can be associated with correspondences; see [Pim97] and
[Kat04b].

II.7.5 The Generalized Stinespring Theorem

II.7.5.1 There is a version of Stinespring’s Theorem for Hilbert modules,
which is perhaps the most general version of the GNS construction. The state-
ment and proof are nearly the same as for the original Stinespring theorem,
with the technical details handled through the general theory developed in
the last few sections. The statement must be slightly modified to avoid the
difficulty of uncomplemented submodules. The appropriate notion is that of
a strict completely positive map: if A and B are C*-algebras, E is a Hilbert
B-module, and φ : A → L(E) is completely positive, we say that φ is strict
if (φ(hλ)) converges strictly in L(E) for some (hence every) approximate unit
(hλ) for A (cf. II.7.3.13).
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II.7.5.2 Theorem. [Generalized Stinespring] [Kas80a] Let A and B
be C*-algebras, E a Hilbert B-module, and φ : A → L(E) be a strict com-
pletely positive map. Then there is a Hilbert B-module Eφ, a *-homomorphism
πφ from A to L(Eφ), and Vφ ∈ L(E , Eφ) such that φ(a) = V ∗

φ πφ(a)Vφ for all
a ∈ A, and πφ(A)VφE is dense in Eφ, and such that (Eφ, πφ, Vφ) are canonical
and minimal in the sense that if E ′ is another Hilbert B-module with a rep-
resentation ρ of A, and W ∈ L(E , E ′) with φ(a) = W ∗ρ(a)W and ρ(A)WE is
dense in E ′, then there is a unitary U ∈ L(Eφ, E ′) intertwining πφ and ρ, and
such that W = UVφ.

If φ is nondegenerate (in particular, if A and φ are unital), then E can be
identified with a complemented submodule of Eφ, and φ(a) = PEπ(a)PE .

Combining this result with the Stabilization Theorem, we obtain:

II.7.5.3 Corollary. Let A and B be C*-algebras, with A separable and B
σ-unital, and let φ : A → L(HB) be a completely positive contraction. Then

there is a faithful *-homomorphism π =
[

π11 π12

π21 π22

]

: A → M2(L(HB))

with π11 = φ. If φ is nondegenerate, π may be chosen nondegenerate.

II.7.6 Morita Equivalence

It sometimes happens that if A and B are C*-algebras, there are A − B-
bimodules which are simultaneously left Hilbert A-modules and right Hilbert
B-modules, and these lead to a very important equivalence relation on C*-
algebras called Morita equivalence. Such modules also appear in the theory of
induced representations of locally compact groups; in fact, this was the main
original motivation for the theory (cf. [Rie74], [RW98]).

II.7.6.1 Definition. Let A and B be C*-algebras. An A − B-imprimi-
tivity bimodule (or equivalence bimodule) is an A − B-bimodule E which is
simultaneously a full left Hilbert A-module under an A-valued inner product
A〈· , ·〉 and a full right Hilbert B-module under a B-valued inner product
〈· , ·〉B , satisfying

A〈ξ, η〉ζ = ξ〈η, ζ〉B
for all ξ, η, ζ ∈ E .

II.7.6.2 Proposition. Let A and B be C*-algebras, and E an A − B-
imprimitivity bimodule. Then, for all ξ, η ∈ E , a ∈ A, b ∈ B, 〈aξ, η〉B =
〈ξ, a∗η〉B and A〈ξb∗, η〉 = A〈ξ, ηb〉. Thus La, defined by Laξ = aξ, is an
adjointable operator on the right Hilbert B-module EB with L∗

a = La∗ , and
similarly for right multiplication Rb by b on the left Hilbert A-module AE ;
hence La and Rb are bounded, and 〈aξ, aξ〉B ≤ ‖a‖2〈ξ, ξ〉B and A〈ξb, ξb〉 ≤
‖b‖2

A〈ξ, ξ〉.
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Proof: If ζ ∈ E , then

ζ〈aξ, η〉B = A〈ζ, aξ〉η = A〈ζ, ξ〉a∗η = ζ〈ξ, a∗η〉B

and thus 〈aξ, η〉B = 〈ξ, a∗η〉B by II.7.1.13 since E is a full Hilbert B-module.
The argument for the other equality is similar. Thus La ∈ L(EB), L∗

a = La∗ ,
and a → La is a *-homomorphism from the C*-algebra A to the C*-algebra
L(EB); so ‖La‖ ≤ ‖a‖. The inequality 〈aξ, aξ〉B ≤ ‖a‖2〈ξ, ξ〉B then follows
from II.7.2.2, and the arguments for b and Rb are analogous.

II.7.6.3 The two inner products define norms ‖ · ‖A and ‖ · ‖B on E . For
any ξ ∈ E ,

‖ξ‖6
B = ‖〈ξ, ξ〉B‖3 = ‖〈ξ, ξ〉3B‖ = ‖〈ξ〈ξ, ξ〉B , ξ〈ξ, ξ〉B〉B‖

= ‖〈A〈ξ, ξ〉ξ, A〈ξ, ξ〉ξ〉B‖ ≤ ‖A〈ξ, ξ〉‖2‖〈ξ, ξ〉B‖ = ‖ξ‖4
A‖ξ‖2

B

and the symmetric argument shows ‖ξ‖6
A ≤ ‖ξ‖4

B‖ξ‖2
A, so ‖ξ‖A = ‖ξ‖B , i.e.

the two norms coincide.

II.7.6.4 One also sometimes needs to consider pre-imprimitivity bimodules
over pre-C*-algebras (e.g. in the theory of induced representations of groups).
For such incomplete modules, the conclusions of II.7.6.2 (especially the bound-
edness of La and Rb) are not automatic, and must be assumed as part of the
definition (in many references, some or all of these assumptions are also ex-
plicitly included in the definition of an imprimitivity bimodule). With these
assumptions, the completion is an imprimitivity bimodule over the comple-
tions of the algebras.

II.7.6.5 Examples.

(i) B is a B−B-imprimitivity bimodule under the inner products 〈x, y〉B =
x∗y and B〈x, y〉 = xy∗.

(ii) If E is a Hilbert B-module, then E becomes a full left Hilbert K(E)-module
with the natural left action and K(E)〈ξ, η〉 = Θη,ξ. If E is a full Hilbert
B-module, then E is a K(E) − B-imprimitivity bimodule. In particular,
HB is a B ⊗ K − B-imprimitivity bimodule and Bn is an Mn(B) −
B-imprimitivity bimodule. Conversely, if E is an A − B-imprimitivity
bimodule, then the map A〈ξ, η〉 �→ Θη,ξ extends to a *-isomorphism from
A onto K(EB).

(iii) Let p ∈ M(B) be a projection such that the ideal Span(BpB) is dense
in B; let E = pB and A = pBp (A is called a full corner in B.) Define
an A-valued inner product as in (i). Then E is an A − B-imprimitivity
bimodule. Bp has similar inner products making it a B−A-imprimitivity
bimodule.

(iv) Let B be a C*-algebra, E = Mm,n(B) the set of m × n matrices over
B. Then E has a natural structure as an Mm(B)−Mn(B)-imprimitivity
bimodule by the same formulas as in (i) and (iii).
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(v) If E is an A,B-imprimitivity bimodule, let E∗ be the “dual module”:
E∗ is {ξ∗ : ξ ∈ E} with ξ∗ + η∗ = (ξ + η)∗ and αξ∗ = [ᾱξ]∗, made
into a B − A bimodule by bξ∗a = [a∗ξb∗]∗. With the inner products
B〈ξ∗, η∗〉 = 〈η, ξ〉B(= 〈ξ, η〉∗B) and 〈ξ∗, η∗〉A = A〈η, ξ〉, the bimodule E∗

is a B − A imprimitivity bimodule. In example (i), B∗ ∼= B via x �→ x∗,
and similarly in (iii) (pB)∗ ∼= Bp, and in (iv) Mm,n(B)∗ ∼= Mn,m(B). In
(ii), E∗ ∼= K(E , B).

All these examples are basically the same. In fact, they are all special cases
of a general construction (II.7.6.9).

II.7.6.6 If E is an A−B-imprimitivity bimodule, F a Hilbert C-module, and
φ : B → L(F), then the Hilbert C-module E ⊗φ F has a natural left action
of A via adjointable operators. Similarly, if E is a left Hilbert A-module,
F a B − C-imprimitivity bimodule, and ψ : B → L(E), then C acts by
adjointable operators on the left Hilbert module E ⊗ψ F . If E is an A − B-
imprimitivity bimodule and F a B − C-imprimitivity bimodule, then these
actions are compatible and make E⊗φF ∼= E⊗ψF into an A−C-imprimitivity
bimodule, usually written E ⊗B F .

II.7.6.7 Proposition. Let E be an A − B-imprimitivity bimodule. Then
ξ∗⊗η �→ 〈ξ, η〉B gives an isomorphism of E∗⊗AE with B as Hilbert B-modules
(and, in fact, as B − B imprimitivity bimodules).

II.7.6.8 Definition. Let A and B be C*-algebras. A and B are Morita
equivalent if there is an A − B-imprimitivity bimodule.

Morita equivalence is symmetric and reflexive by II.7.6.5(i) and (v), and
transitive by the tensor product construction.

This relation was originally called “strong Morita equivalence” in [Rie74]
because it is not exactly the C*-analog of Morita equivalence in algebra
[Mor58]. But the word “strong” is now customarily omitted.

II.7.6.9 Theorem. Let A and B be C*-algebras. Then A and B are Morita
equivalent if and only if they are isomorphic to complementary full corners in
a C*-algebra C, i.e. if there is a projection p ∈ M(C) with Span(CpC) and
Span(C(1 − p)C) dense in C and pCp ∼= A, (1 − p)C(1 − p) ∼= B.

One direction is clear from II.7.6.5(iii): if there is such a C, then A and B
are Morita equivalent to C via pC and (1−p)C respectively (and pC(1−p) is
an A−B-imprimitivity bimodule). Conversely, if E is an A−B-imprimitivity
bimodule, we form the linking algebra of A and B with respect to E :

C =
[

A E
E∗ B

]

=
{[

a ξ
η∗ b

]

: a ∈ A, ξ, η ∈ E , b ∈ B

}

with involution
[

a ξ
η∗ b

]∗
=
[

a∗ η
ξ∗ b∗

]

and multiplication
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[
a1 ξ1

η∗
1 b1

] [
a2 ξ2

η∗
2 b2

]

=
[

a1a2 + A〈ξ1, η2〉 a1ξ2 + ξ1b2

η∗
1a2 + b1η

∗
2 〈η1, ξ2〉B + b1b2

]

.

C acts as a *-algebra of adjointable operators on the Hilbert B-module E ⊕B

via
[

a ξ
η∗ b

] [
ζ
z

]

=
[

aζ + ξz
〈η, ζ〉B + bz

]

, and the operator norm is equivalent

to
∥
∥
∥
∥

[
a ξ
η∗ b

]∥
∥
∥
∥ = ‖a‖ + ‖ξ‖ + ‖η‖ + ‖b‖, so C is complete (a C*-algebra)

with respect to the operator norm. The projection p =
[

I 0
0 0

]

defines a

multiplier of C. Fullness is a routine computation.
In general, the linking algebra C depends up to isomorphism on the choice

of E and not just on A and B. E can be recovered from C as pC(1 − p).

II.7.6.10 Since A is Morita equivalent to A ⊗ K, it is obvious that if A
and B are stably isomorphic, then A and B are Morita equivalent. The con-
verse is not true, however: if H is a nonseparable Hilbert space, then K(H) is
Morita equivalent to C, but not stably isomorphic (and much more compli-
cated examples exist: for example, if A is a simple unital C*-algebra with a
strictly increasing net of projections indexed by the first uncountable ordinal,
such as the quotient of L(H) for nonseparable H by a maximal ideal, there
is a hereditary C*-subalgebra B of A which is Morita equivalent to A but
A⊗K(H′) �∼= B⊗K(H′) for any Hilbert space H′.) However, the σ-unital case
(including the separable case) is very nice, due to the next theorem [BGR77]
(cf. [Bro77]):

II.7.6.11 Theorem. [Brown-Green-Rieffel] Let A and B be σ-unital
C*-algebras. Then A ⊗ K ∼= B ⊗ K if (and only if) A and B are Morita
equivalent.

Indeed, if E is an A − B-imprimitivity bimodule, it suffices to show that
HA ⊗A E ∼= HB (as Hilbert B-modules); for then, since HA ⊗A E ∼= E∞, we
have

A ⊗ K ∼= K(E∞) ∼= K(HB) ∼= B ⊗ K.

But since B is σ-unital, E∗ is a countably generated Hilbert A-module
(II.7.2.5), and thus E∗ ⊕HA

∼= HA by the Stabilization Theorem (II.7.1.11).
Thus

HA ⊗A E ∼= H⊗C HA ⊗A E ∼= H⊗C (HA ⊕ E∗) ⊗A E
∼= (H⊗C HA ⊗A E) ⊕ (H⊗C E∗ ⊗A E) ∼= (HA ⊗A E) ⊕ (H⊗C B) ∼= HB

by the Stabilization Theorem, since E∗ ⊗A E ∼= B (II.7.6.7) and HA ⊗A E is
countably generated (because HA and E are countably generated by II.7.2.5).

As a corollary of the proof, we obtain the following variation of the Stabi-
lization Theorem. This is essentially the version of the Stabilization Theorem
proved in [DD63] for B commutative; see [Bro77] and [MP84, 1.9] for the
general case.
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II.7.6.12 Corollary. If B is a σ-unital C*-algebra and E is a countably
generated full Hilbert B-module, then E∞ ∼= HB (as Hilbert B-modules).
Proof: E may be regarded as a K(E)−B-imprimitivity bimodule, and K(E)
is σ-unital (II.7.2.5), so E∞ ∼= HK(E) ⊗K(E) E ∼= HB.

This version of the Stabilization Theorem implies the usual version if B is
σ-unital: if E is a countably generated Hilbert B-module, then (E ⊕HB)∞ ∼=
HB , so

HB
∼= (E ⊕HB)∞ ∼= (E ⊕HB) ⊕ (E ⊕HB)∞ ∼= E ⊕HB ⊕HB

∼= E ⊕HB .

Morita Equivalence and Representations

II.7.6.13 One important feature of a Morita equivalence is that it gives a
functorial correspondence between representations of the algebras. If E is an
A−B-imprimitivity bimodule, F a Hilbert C-module, and φ : B → L(F) (i.e.
a representation of B on F), then E defines a representation of A on E ⊗φ F ;
and the process is reversible by tensoring on the left with E∗ (using II.7.6.7).
In particular, if C = C (i.e. φ is an ordinary Hilbert space representation), we
obtain an induced representation of A on the Hilbert space E ⊗φ F . This cor-
respondence sends irreducible representations to irreducible representations,
so one gets natural homeomorphisms between Â and B̂, and also Prim(A)
and Prim(B). (There is a more direct correspondence between closed ideals
of A and those of B: if I is a closed ideal of A, regard I as a right Hilbert
A-module and let F be the right Hilbert B-module I ⊗A E , and let J = JF
(the closed linear span of 〈F ,F〉B); then J is the ideal of B corresponding to
I, and F is an I − J-imprimitivity bimodule.) This is a precise formulation
of the statement (II.6.6.14) that Morita equivalent C*-algebras are “the same
up to ‘size’.”

II.8 Examples and Constructions

So far only the most elementary examples of C*-algebras have appeared. In
this section, we will discuss various constructions which will yield an enormous
number of interesting C*-algebras. Two other important constructions, tensor
products and crossed products, will be discussed in the next two sections.

The book [Dav96] has a much more detailed analysis of standard examples
and constructions in C*-algebra theory.

II.8.1 Direct Sums, Products, and Ultraproducts

II.8.1.1 If {A1, · · · , An} is a finite set of C*-algebras, there is a natural
notion of direct sum or direct product: A1 ⊕ · · · ⊕ An = A1 × · · · × An is the
ordinary algebraic direct sum with norm ‖(a1, · · · , an)‖ = max ‖ai‖.

If {Ai : i ∈ Ω} is an infinite set of C*-algebras, there are separate notions
of direct sum and product which do not coincide with the algebraic ones.
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II.8.1.2 Definition.

∏

i∈Ω

Ai = {(ai) : ‖(ai)‖ = sup
i

‖ai‖ < ∞}

⊕

i∈Ω

Ai = {(ai) : ‖ai‖ → 0 as i → ∞}

in the sense that for every ε > 0 there are only finitely many i for which
‖ai‖ ≥ ε.

⊕
Ai is the closure in

∏
Ai of the algebraic direct sum (Ω-tuples

with only finitely many nonzero entries).

II.8.1.3 It is easily checked that
∏

Ai is a C*-algebra, and
⊕

Ai is a closed
ideal in

∏
Ai. The quotient C*-algebra is an analog of the Calkin algebra

which is useful in various constructions. The multiplier algebra of
⊕

Ai can
be naturally identified with

∏
M(Ai) (cf. II.7.3.12).

Direct sums and products are useful in many arguments. For example,
approximate versions of exact results can sometimes be obtained. The next
result is an approximate version of Fuglede’s theorem (II.6.4.12), which is
interesting even in the self-adjoint case where Fuglede’s theorem is trivial.

II.8.1.4 Proposition. Let X be a compact subset of C and f : X → C a
continuous function. Then for any ε > 0 there is a δ > 0 such that, whenever
x, y are elements of a C*-algebra A with x normal, σ(x) ⊆ X, ‖y‖ ≤ 1, and
‖[x, y]‖ < δ, then ‖[f(x), y]‖ < ε (in Ã).

While a direct computational proof can be given (see e.g. [Arv77, p. 332]
for the self-adjoint case, and [Dav96, Exercises II.8–II.9] for other special
cases), it is more satisfying to give the following argument which entirely
avoids computations. Suppose the conclusion is false. Then there is an X,
f , and ε > 0 such that there exist unital C*-algebras An and xn, yn ∈ An

satisfying the hypotheses, with ‖[xn, yn]‖ < 1/n but ‖[f(xn), yn]‖ ≥ ε for all
n. Let A =

∏
An, J =

⊕
An, x = (· · ·xn · · · ) (note that {‖xn‖} is bounded

since xn is normal and σ(xn) ⊆ X), y = (· · · yn · · · ), and π : A → A/J the
quotient map. Then [π(x), π(y)] = 0, so [f(π(x)), π(y)] = 0 (II.6.4.12). But
f(π(x)) = π(f(x)) = π(· · · f(xn) · · · ), and

‖[π(· · · f(xn) · · · ), π(· · · yn · · · )]‖ = lim sup ‖[f(xn), yn]‖ ≥ ε,

a contradiction.

II.8.1.5 Corollary. Let J be a closed ideal in a C*-algebra A, and (hλ)
an approximate unit for J which is quasicentral for A. Then, for any α > 0,
(hα

λ) is an approximate unit for J which is quasicentral for A.
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Ultraproducts

II.8.1.6 If ω is a free ultrafilter on Ω, then

Jω =
{

(ai) ∈
∏

Ai : lim
ω

‖ai‖ = 0
}

is a closed ideal in
∏

Ai. The quotient is called the ultraproduct of the Ai with
respect to ω.

II.8.1.7 These constructions are frequently used with Ω = N and all Ai the
same A. The product of a sequence of copies of A is usually denoted l∞(A)
and the direct sum co(A). The ultraproduct with respect to a free ultrafilter
ω on N is denoted Aω.

II.8.2 Inductive Limits

II.8.2.1 One of the simplest and most useful constructions of C*-algebras
is the inductive limit (sometimes called direct limit). An inductive system
of C*-algebras is defined just as in the purely algebraic setting: a collection
{(Ai, φij) : i, j ∈ Ω, i ≤ j}, where Ω is a directed set, the Ai are C*-algebras,
and φij is a *-homomorphism from Ai to Aj with φik = φjk ◦φij for i ≤ j ≤ k.
Each φij is norm-decreasing, so there is a naturally induced C*-seminorm on
the algebraic direct limit defined by

‖a‖ = lim
j>i

‖φij(a)‖ = inf
j>i

‖φij(a)‖

for a ∈ Ai; the completion of the algebraic direct limit (with elements of
seminorm 0 divided out) is a C*-algebra called the inductive limit of the
system, written lim−→(Ai, φij), or just lim−→Ai if the φij are understood. There is
a natural *-homomorphism φi from Ai to the inductive limit.

If all the connecting maps are injective (and hence isometric), the algebraic
direct limit may be thought of as the “union” of the Ai, and the inductive limit
as the completion of this union. In general, the inductive limit of a system
(Ai, φij) may be naturally regarded as a C*-subalgebra of (

∏
Ai)/(

⊕
Ai).

II.8.2.2 Examples.

(i) An inductive system (Ai, φij) where each Ai = C(Xi) is unital and com-
mutative, and the connecting maps φij are unital, exactly corresponds
to an ordinary inverse system (Xi, fij) of compact Hausdorff spaces. The
inductive limit lim−→(Ai, φij) is naturally isomorphic to C(X), where X is
the usual inverse limit lim←−(Xi, fij).

(ii) Let I be a set and {Ai : i ∈ I} a collection of C*-algebras. Let Ω be the
collection of finite subsets of I, directed by inclusion, and for each F ∈ Ω
let BF =

⊕
i∈F Ai. If F ⊆ G ⊆ I, define φF,G : BF → BG by setting the

additional coordinates zero. Then lim−→(BF , φF,G) ∼=
⊕

i∈I Ai.
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(iii) Let φn,n+k : Mn → Mn+k be the (nonunital) *-homomorphism obtained
by adding k rows and columns of zeroes. Then lim−→(Mn, φn,n+k) is iso-
morphic to K.

(iv) Let An = M2n , and let φn,n+1 : An → An+1 be defined by φn,n+1(a) =
diag(a, a) (this is called an embedding of multiplicity 2). φn,n+1 is unital.
The inductive limit is called the UHF algebra of type 2∞, or the CAR
algebra (this C*-algebra also arises from representations of the Canonical
Anticommutation Relations of mathematical physics). Similarly, we could
take An = M3n and φn,n+1 an embedding of multiplicity 3 to obtain a
UHF algebra of type 3∞; more generally, the multiplicities could be varied
at each step. The structure of these UHF algebras will be discussed in
V.1.1.16(iv). More generally, we will consider the class of AF algebras,
inductive limits of sequences of finite-dimensional C*-algebras.

II.8.2.3 If A0 is a dense *-subalgebra of a C*-algebra A, there is no good
relationship between A0 and the (closed) ideals of A in general; A may have
nonzero ideals whose intersection with A0 is zero. But if A0 is a union of
C*-subalgebras of A (e.g. if A = lim−→Ai and A0 is the image of the algebraic
direct limit), then the relationship is very nice:

II.8.2.4 Proposition. Let A be a C*-algebra, {Ai} a collection of C*-
subalgebras such that A0 = ∪Ai is a dense *-subalgebra of A. If J is any
closed ideal of A, then J ∩ A0 = ∪i(J ∩ Ai) is dense in J .
Proof: Let K be the closure in A of J ∩ A0; then K is a closed ideal of A
contained in J , and K ∩ Ai = J ∩ Ai for all i. Let π : A → A/K be the
quotient map, and set Ā = A/K, Āi = π(Ai), J̄ = π(J). Let ρ : Ā → Ā/J̄
be the quotient map. Then ρ|Āi

is injective since J̄ ∩ Āi = {0} for all i; hence
ρ is isometric on each Āi and hence on all of Ā; so ρ is injective, J̄ = {0},
J = K.

II.8.2.5 Corollary. Let A = lim−→(Ai, φij). If each Ai is simple, then A is
simple.

In particular, the UHF algebras (II.8.2.2) are infinite-dimensional simple
unital C*-algebras.

Using II.8.2.4, many simple inductive limits of sequences of nonsimple C*-
algebras can also be constructed (cf. II.10.4.12(ii), IV.1.4.23). C*-algebras of
this sort are the basic objects of study in large parts of the classification
program [Rør02a].

II.8.2.6 There is a generalized inductive limit construction using inductive
systems in which the connecting maps are not necessarily *-homomorphisms
but are only asymptotically multiplicative, which is playing a role in the ad-
vanced theory (V.4.3).
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II.8.3 Universal C*-Algebras and Free Products

Universal constructions have been playing an increasingly important role in
the theory of C*-algebras in recent years. Many important C*-algebras can be
simply and naturally expressed as universal C*-algebras on sets of generators
and relations.

II.8.3.1 Suppose a set G = {xi : i ∈ Ω} of generators and a set R of
relations are given. The relations can be of a very general nature, but are
usually algebraic relations among the generators and their adjoints, or more
generally of the form

‖p(xi1 , · · · , xin
, x∗

i1 , · · · , x∗
in

)‖ ≤ η

where p is a polynomial in 2n noncommuting variables with complex coeffi-
cients and η ≥ 0. The only restriction on the relations is that they must be
realizable among operators on a Hilbert space and they must (at least im-
plicitly) place an upper bound on the norm of each generator when realized
as an operator. A representation of (G|R) has the obvious meaning: a set
{Ti : i ∈ Ω} of bounded operators on a Hilbert space H satisfying the rela-
tions. A representation of (G|R) defines a *-representation of the free *-algebra
A on the set G. For x ∈ A, let

‖x‖ = sup{‖π(x)‖ : π a representation of (G|R)}.

If this supremum is finite for all x ∈ A (it is enough to check this on the gen-
erators), it defines a C*-seminorm on A, and the completion (with elements of
seminorm 0 divided out) is called the universal C*-algebra on (G|R), denoted
C∗(G|R). We may also consider the universal unital C*-algebra on a set of
generators and relations by adding an additional generator 1 with relations
1 = 1∗ = 12 and x1 = 1x = x for each other generator.

This construction is extremely general; indeed, every C*-algebra can be
written (in an uninteresting way) as the universal C*-algebra on a suitable
set of generators and relations. But the interesting examples are, of course,
ones which come from simple (especially finite) presentations. Sometimes the
universal property is described informally when there is a straightforward
translation into a precise description.

II.8.3.2 Examples.

(i) There is no “universal C*-algebra generated by a single self-adjoint el-
ement,” since there is no bound on the norm of the element. But there
is a “universal C*-algebra generated by a single self-adjoint element of
norm one,” with G = {x} and R = {x = x∗, ‖x‖ ≤ 1}. This C*-algebra
is isomorphic to C0([−1, 1]), the continuous functions on [−1, 1] van-
ishing at zero, via functional calculus. Similarly, the “universal unital
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C*-algebra generated by a self-adjoint element of norm one” is isomor-
phic to C([−1, 1]). There is a “universal C*-algebra generated by a single
positive element of norm one,” isomorphic to Co((0, 1]), and a “universal
C*-algebra generated by a single normal element of norm one,” isomor-
phic to C0(D), where D is the unit disk in C.

(ii) There is a “universal C*-algebra generated by a single unitary,” since a
unitary automatically has norm one. We may take G = {u, 1},

R = {1 = 1∗ = 12, u1 = 1u = u, u∗u = uu∗ = 1}.

C∗(G|R) ∼= C(T), the continuous functions on the circle. Similarly, the
universal C*-algebra generated by n commuting unitaries is isomorphic
to C(Tn), continuous functions on the n-torus.

(iii) If G is a group, there is a “universal C*-algebra generated by a group of
unitaries isomorphic to G,” with generators and relations from any pre-
sentation of G and additional relations making each generator a unitary.
The corresponding C*-algebra is called the group C*-algebra of (discrete)
G, denoted C∗(G). The representations of C∗(G) are in canonical one-
one correspondence with the unitary representations of G. For example,
C∗(Z) ∼= C(T) and C∗(Zn) ∼= C(Tn). Another important example is Fn,
the free group on n generators; C∗(Fn) is the universal C*-algebra gen-
erated by n unitaries. To see that the group G actually embeds in the
unitary group of C∗(G), consider the left regular representation λ of G
on l2(G) induced by G acting on itself by left translation. The repre-
sentation λ extends to a representation of C∗(G), which is not faithful
in general; the quotient λ(C∗(G)) is called the reduced group C*-algebra
of G, denoted C∗

r (G). The group C*-algebra construction generalizes to
locally compact topological groups and will be discussed in detail in II.10.

(iv) Let G = {eij : 1 ≤ i, j ≤ n},

R = {e∗ij = eji, eijekl = δjkeil : 1 ≤ i, j, k, l ≤ n},

where δjk is the Kronecker symbol. The relations imply that each gener-
ator is a partial isometry, hence of norm 1, so the universal C*-algebra
exists. C∗(G,R) ∼= Mn. A set of nonzero elements {fij} in a C*-algebra
A satisfying the relations is called a set of matrix units of type Mn in
A, and generate a (possibly nonunital) C*-subalgebra isomorphic to Mn.
There is a similar description of K as the universal C*-algebra generated
by an (infinite) set of matrix units.
More generally, if D is a finite-dimensional C*-algebra, then D is isomor-
phic to a direct sum ⊕m

r=1Mnr
of matrix algebras (this can be proved by

noting that every C*-algebra is semisimple (II.1.6.4) and applying Wed-
derburn’s theorem, or by regarding D as a von Neumann algebra and
using either the central decomposition (III.1.6.4) or just some elemen-
tary linear algebra.) The natural matrix units

{e(r)
ij : 1 ≤ r ≤ m, 1 ≤ i, j ≤ nr}
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satisfy the relations e
(r)∗
ij = e

(r)
ji , e

(r)
ij e

(s)
kl = δrsδjkeil for all i, j, k, l, r, s.

Conversely, the universal C*-algebra generated by generators satisfying
these relations is isomorphic to D. Such a set of generators is called a set
of matrix units of type D.

(v) There is a “universal C*-algebra generated by a single isometry,” called
the Toeplitz algebra and denoted T . If v is the generator, then T has an
identity v∗v. If p = v∗v − vv∗, and eij = vi−1p(v∗)j−1, then it is easily
verified that the span of the eij is an essential ideal in T isomorphic to
K. Modulo this ideal v is unitary, so T /K ∼= C(T). T ∼= C∗(S), where S
is the unilateral shift (I.2.4.3(ii)).

In addition to these basic examples, here are some more classes which play
a very important role in the theory:

II.8.3.3 Examples.

(i) Let θ be a real number (usually in the unit interval), and let Aθ be the
universal C*-algebra generated by two unitaries u, v, with the relation
vu = e2πiθuv. Aθ is called a rotation algebra, and in the particularly
important case where θ is irrational, an irrational rotation algebra. An
irrational rotation algebra is simple. Rotation algebras can be alternately
described as crossed products (II.10.4.12). More generally, a noncommu-
tative torus is a universal C*-algebra generated by unitaries u1, · · · , un,
with ujui = e2πiθij uiuj for θij ∈ R. Noncommutative tori arise in appli-
cations (e.g. the quantum Hall effect in physics [Con94], and string theory
[CDS98]) and are a natural setting for noncommutative geometry.

(ii) Set G = {s1, · · · , sn},

R =





s∗i si = 1,

n∑

j=1

sjs
∗
j = 1 : 1 ≤ i ≤ n





.

C∗(G|R) is the Cuntz algebra On, the universal (unital) C*-algebra gen-
erated by n isometries whose range projections are mutually orthogonal
and add up to the identity. On is simple, and in fact is purely infinite:
if x ∈ On, x �= 0, then there are a, b ∈ On with axb = 1. There is also
an O∞, the universal C*-algebra generated by a sequence of isometries
with mutually orthogonal range projections; O∞ is also purely infinite
and hence simple. The simplicity of these algebras means that any set of
isometries satisfying the relations generates a C*-algebra isomorphic to
On.

(iii) As a generalization of (ii), let A be an n × n matrix of zeroes and ones,
and let OA be the universal C*-algebra generated by partial isometries
s1, · · · , sn with relations



II.8 Examples and Constructions 161

s∗i si =
n∑

j=1

Aijsjs
∗
j

and with sis
∗
i ⊥ sjs

∗
j for i �= j (the last relations are often automatic from

the first ones). The range projections of the si add up to an identity, so
OA is unital. If A has all ones, OA

∼= On. OA is simple (and purely
infinite) if and only if A is irreducible (the corresponding directed graph
is connected) and not a permutation matrix. The OA arise in the study of
topological Markov chains [CK80], and are called Cuntz-Krieger algebras.
More generally, if A is a row-finite infinite matrix of zeroes and ones
(every row has only finitely many ones), corresponding to a directed
graph in which every vertex is the source of only finitely many edges,
one can form a universal C*-algebra OA as above. If A is infinite, OA

is nonunital. Such graph C*-algebras have been extensively studied; see,
for example, [KPR98].

(iv) Let SU(2) =
{[

a −c̄
c ā

]

: a, c ∈ C, |a|2 + |c|2 = 1
}

be the special uni-

tary group. Topologically, SU(2) ∼= S3. Define two coordinate functions
α, γ by

α

([
a −c̄
c ā

])

= a , γ

([
a −c̄
c ā

])

= c .

Then G = {α, γ} generates C(SU(2)), and α and γ satisfy the relations

R = {α∗α + γ∗γ = 1, αα∗ + γγ∗ = 1, γ∗γ = γγ∗, γα = αγ, γ∗α = αγ∗}

(the relations are written deliberately in a less than optimal form for
this example, in preparation for (v); the last relation follows from the
previous ones in a C*-algebra by Fuglede’s theorem, and the first two
relations imply that α∗α = αα∗, so α and γ are commuting normal
elements). It is not difficult to see that C∗(G|R) is naturally isomorphic
to C(SU(2)) ∼= C(S3).

(v) Let q ∈ [−1, 1] \ {0}. Similarly to (iv), let G = {α, γ},

R = {α∗α+γ∗γ = 1, αα∗+q2γγ∗ = 1, γ∗γ = γγ∗, qγα = αγ, qγ∗α = αγ∗}

Then Aq = C∗(G|R) is a noncommutative C*-algebra if q �= 1. It has a
comultiplication ∆ : Aq → Aq ⊗ Aq defined by

∆(α) = α ⊗ α + qγ∗ ⊗ γ , ∆(γ) = γ ⊗ α + α∗ ⊗ γ

making it into a compact quantum group in the sense of Woronowicz
[Wor87] (II.10.8.21). Aq is a “quantization” of the group SU(2), often
denoted SUq(2).
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Free Products

II.8.3.4 If {Ai} is a collection of C*-algebras, the free product ∗Ai = ∗{Ai}
(write A∗B for ∗{A,B}) is the universal C*-algebra generated by copies of
the Ai with no additional relations. Free products tend to be “large” and
pathological (e.g. they are rarely nuclear). For example, C∗C is the infinite-
dimensional nonunital universal C*-algebra generated by two projections (this
example is actually nuclear, and can be explicitly described as a subhomoge-
neous C*-algebra (IV.1.4.2)). If the Ai are unital, one can also form the unital
free product ∗CAi generated by unital copies of the Ai. For example, C

2∗CC
2

is isomorphic to C∗C with unit adjoined; and if G and H are groups and G∗H
is their free product, then C∗(G∗H) ∼= C∗(G)∗CC∗(H).

II.8.3.5 More generally, if D is a C*-algebra, regarded as a C*-subalgebra
of each Ai via an embedding (or just *-homomorphism) φi, we may form
the amalgamated free product ∗DAi = ∗φi

Ai as the universal C*-algebra
generated by “copies” of the Ai with the copies of D identified, i.e. φi(d) =
φj(d) for all i, j and all d ∈ D. It is a somewhat nontrivial fact [Bla78,
3.1] that each Ai embeds in the amalgamated free product (if each φi is
injective). The group C*-algebra of an amalgamated free product of groups
can be constructed as an amalgamated free product of the group C*-algebras.

II.8.3.6 There is also a notion of reduced free product (or reduced amal-
gamated free product) of C*-algebras with respect to states. Reduced free
products are very important in free probability theory, and increasingly in
other aspects of operator algebra theory; see [Voi00].

Stable Relations and Semiprojectivity

The notions of projectivity and semiprojectivity are noncommutative analogs
of the topological notions of absolute retract (AR) and absolute neighborhood
retract (ANR) respectively. These notions were originally used in the devel-
opment of shape theory for C*-algebras, first introduced by E. Effros and J.
Kaminker [EK86]. Semiprojective C*-algebras have rigidity properties which
make them conceptually and technically important in several other aspects of
C*-algebra theory; this is reflected especially in the work of T. Loring and his
coauthors on lifting problems (see, for example, [Lor97]). It is not too easy
for a C*-algebra to be semiprojective, but there does seem to be a reasonable
supply of such algebras.

II.8.3.7 Definition. A separable C*-algebra A is semiprojective if, for any
C*-algebra B, increasing sequence 〈Jn〉 of (closed two-sided) ideals of B, with
J = [∪Jn]−, and *-homomorphism φ : A → B/J , there is an n and a *-
homomorphism ψ : A → B/Jn such that φ = π ◦ ψ, where π : B/Jn → B/J
is the natural quotient map.
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A φ for which such a ψ exists is said to be partially liftable. If there is a
ψ : A → B with φ = π ◦ ψ, then φ is liftable; if every homomorphism from A
is liftable, A is said to be projective.

The definition of semiprojectivity first appeared in this form in [Bla85b] (a
somewhat different, less restrictive, definition previously appeared in [EK86]).

This definition can be applied in various categories; we will use the category
of general C*-algebras and *-homomorphisms unless otherwise specified. For
comparison and motivation, we note:

II.8.3.8 Proposition. Let A = C(X) be a unital commutative C*-algebra,
with X a compact metrizable space. Then A is projective [resp. semiprojective]
in the category of unital commutative C*-algebras if and only if X is an AR
[resp. ANR].

The proof is a simple exercise. Note, however, that if X is an AR, C(X)
is not even semiprojective in general in the category of general C*-algebras
(or the general unital category) (II.8.3.16(x)). In fact, it is likely that if X is
a compact metrizable space, then C(X) is semiprojective in the general (or
unital general) category if and only if X is an ANR and dim(X) ≤ 1 (a proof
of this could probably be assembled from known results).

II.8.3.9 For convenience, we have only defined semiprojectivity for separa-
ble C*-algebras (although the same definition makes sense also for nonsep-
arable C*-algebras, it is probably not the appropriate one). Thus all semi-
projective C*-algebras will implicitly be separable. In the definition, B is not
required to be separable; however, it is easily seen that the definition of semi-
projectivity does not change if in II.8.3.7 we make any or all of the following
restrictions:

(i) B is separable.
(ii) φ is surjective.
(iii) φ is injective.

(II.5.1.3 is needed to prove (i) and (ii); for (iii), replace B by A ⊕ B and Jn

by 0 ⊕ Jn.)

II.8.3.10 Suppose A is projective (in the general category). Let B = CA,
π : CA → A evaluation at 0, and φ : A → A the identity. Then φ lifts
to ψ : A → CA, showing that A is contractible. If A is projective in the
unital category, a similar argument shows that A is homotopy equivalent to
C. (But not every contractible C*-algebra is projective or even semiprojective:
CA is always contractible, but is rarely semiprojective; a necessary, but not
sufficient, condition is that A be semiprojective.)

The prototype example of a projective C*-algebra is Co((0, 1]), the univer-
sal C*-algebra generated by a single positive element of norm 1. Projectivity
follows immediately from II.5.1.5.

We now list, mostly without proof, several simple facts about semiprojec-
tive C*-algebras.



164 II C*-Algebras

II.8.3.11 Proposition. [Bla85b, 2.18] Let B, Jn, and J be as in II.8.3.7,
and let q1, . . . , qk be mutually orthogonal projections in B/J . Then for suffi-
ciently large n, there are mutually orthogonal projections p1, . . . , pk in B/Jn

with π(pj) = qj for all j. If B (and hence B/J) is unital and q1 + · · ·+ qk = 1,
then we may choose the pj so that p1 + · · · + pk = 1.

The proof is a simple induction, with a functional calculus argument to
prove the case k = 1.

II.8.3.12 Corollary. [Bla85b, 2.16] If A is unital, then the definition of
semiprojectivity for A does not change if in II.8.3.7 B and φ are required to
be unital. In particular, C is semiprojective.

Thus a unital C*-algebra which is semiprojective in the unital category is
semiprojective in the general category.

Note that C is projective in the unital category. However, C is not projec-
tive in the general category: a *-homomorphism from C to B/J is effectively
just a choice of projection in B/J , and projections do not lift from quotients
in general.

II.8.3.13 Proposition. [Bla85b, 2.23] Let B, Jn, J be as in II.8.3.7. Let v
be a partial isometry in B/J , and set q1 = v∗v, q2 = vv∗. Suppose there are
projections p1, p2 ∈ B/Jn for some n with π(pj) = qj . Then, after increasing n
if necessary, there is a partial isometry u ∈ B/Jn with π(u) = v and p1 = u∗u,
p2 = uu∗.

II.8.3.14 Proposition. ([Bla85b, 2.19], [Lor97]) A finite direct sum of
semiprojective C*-algebras is semiprojective.

II.8.3.15 Proposition. ([Bla85b, 2.28-2.29], [Lor97]) If A is semiprojec-
tive, then Mn(A) is semiprojective for all n. If A is semiprojective, then any
unital C*-algebra Morita equivalent to A is also semiprojective.

The unital cases of II.8.3.14 and II.8.3.15 are simple consequences of
II.8.3.11 and II.8.3.13, but the nonunital cases are more delicate.

II.8.3.16 Examples. Simple repeated applications of II.8.3.11-II.8.3.15
show that the following C*-algebras are semiprojective:

(i) Mn = Mn(C), and more generally any finite-dimensional C*-algebra.
(Semiprojectivity of Mn was first proved, although not explicitly stated,
by J. Glimm [Gli60].)

(ii) C(T), where T is a circle (the universal C*-algebra generated by one
unitary).

(iii) Generalizing (ii), C∗(Fn), the full C*-algebra of the free group on n gen-
erators for n finite (the universal C*-algebra generated by n unitaries).
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(iv) The Toeplitz algebra T (the universal C*-algebra generated by an isom-
etry).

(v) The Cuntz-Krieger algebras OA for a finite square 0 − 1 matrix A
(II.8.3.3(iii)), and in particular the Cuntz algebras On (n �= ∞).

(vi) The universal unital C*-algebra Unc
n generated by elements {xij : 1 ≤

i, j ≤ n}, with the n × n matrix (xij) a unitary. Many variations of
this example are possible, including some which are interesting compact
quantum groups.

Some potential or actual non-examples are:

(vii) C∗(F∞), the universal C*-algebra generated by a sequence of unitaries.
The problem is that, in the setting of II.8.3.7 with B and φ unital,
the n might have to be increased each time an additional generator is
partially lifted. In fact, C∗(F∞) = lim−→(C∗(Fn)) violates the conclusion
of II.8.3.17, so is not semiprojective.

(viii) The Cuntz algebra O∞, the universal C*-algebra generated by a se-
quence of isometries with mutually orthogonal range projections, has
the same potential difficulty as C∗(F∞). However, it turns out that O∞
is semiprojective [Bla04b]. In fact, it seems likely that every (separa-
ble) purely infinite simple nuclear C*-algebra with finitely generated
K-theory is semiprojective (see [Bla04b] and [Spi01] for partial results),
and it appears possible that these and the finite-dimensional matrix
algebras exhaust the semiprojective simple C*-algebras.

(ix) K is not semiprojective. In fact, it follows easily from II.8.3.17 that no
infinite-dimensional AF algebra is semiprojective.

(x) C(Tn) for n ≥ 2 is the universal C*-algebra generated by n commuting
unitaries. Commutation relations are difficult to lift in general, and it can
be shown that C(Tn) (n ≥ 2) fails to satisfy the conclusion of II.8.3.17
and is thus not semiprojective. Similarly, C([0, 1]n) is not semiprojective
for n > 1.

Other interesting examples of semiprojective C*-algebras are given in
[Lor97].

One of the most important features of semiprojective C*-algebras is the
following approximate factorization property. The proof uses a mapping tele-
scope construction, and is a straightforward noncommutative adaptation of
the proof of the corresponding property for ANR’s.

II.8.3.17 Proposition. [Bla85b, 3.1] Let A be a semiprojective C*-algebra,
and (Bn, βm,n) be an inductive system of C*-algebras. Let

B = lim−→(Bn, βm,n).

If φ : A → B is a homomorphism, then for all sufficiently large n there are
homomorphisms φn : A → Bn such that βn ◦ φn is homotopic to φ and
converges pointwise to φ as n → ∞, where βn is the standard map from Bn

to B.
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II.8.3.18 This property can be phrased in terms of stable relations. Let
(G|R) be a set of generators and relations, which to avoid complications we
will take to be finite. If G = {x1, . . . , xk}, then a set {y1, . . . , yk} in a C*-
algebra A approximately satisfies the relations within δ > 0 if, whenever

‖p(xi1 , · · · , xin
, x∗

i1 , · · · , x∗
in

)‖ ≤ η

is a relation in R, we have

‖p(yi1 , · · · , yin
, y∗

i1 , · · · , y∗
in

)‖ < η + δ.

II.8.3.19 Definition. The finite set (G|R) is weakly stable (or has weakly
stable relations) if for any ε > 0 there is a δ > 0 such that, whenever A is
a C*-algebra and {y1, . . . , yk} ⊆ A approximately satisfy the relations within
δ, there are x1, . . . , xk ∈ A exactly satisfying the relations with ‖xj − yj‖ < ε
for 1 ≤ j ≤ k.

II.8.3.20 It is easily seen that if C∗(G|R) is semiprojective, then (G|R) is
weakly stable. The converse is not quite true.

The situation can be rephrased: for δ > 0, let Rδ be the set of relations in
R, “softened” by replacing each η by η +δ. Then there is a natural homomor-
phism πδ from C∗(G|Rδ) to C∗(G|R). The relations R are weakly stable if
there is an approximate right inverse for πδ for sufficiently small δ. It follows
easily from the definition that if C∗(G|R) is semiprojective, then there is an
exact right inverse for πδ for small δ. If there is an exact right inverse for πδ

for some δ, the relations are said to be stable. It turns out that if R is finite
and stable, then C∗(G|R) is semiprojective, so in the finitely presented case
semiprojectivity is equivalent to stable relations.

See [Lor97] for a complete discussion of these and related matters.

II.8.3.21 An important special case concerns approximate matrix units. If
D is a finite-dimensional C*-algebra and {æ(r)

ij } is a set of elements of a C*-
algebra A, indexed like a set of matrix units of type D (II.8.3.2(iv)), then
{æ(r)

ij } is a set of approximate matrix units of type D within δ if the æ
(r)
ij

approximately satisfy the matrix unit relations within δ. It then follows that

II.8.3.22 Proposition. Let D be a finite-dimensional C*-algebra. Then for
any ε > 0 there is a δ > 0 such that, whenever A is a C*-algebra and {æ(r)

ij }
is a set of approximate matrix units of type D within δ in A, then there is a
set {e(r)

ij } of exact matrix units of type D in A with ‖e(r)
ij − æ

(r)
ij ‖ < ε for all

i, j, r.
This result is used, for example, in the theory of AF algebras. Recall

(II.8.2.2(iv)) that an AF algebra is a C*-algebra which is isomorphic to an in-
ductive limit of a sequence of finite-dimensional C*-algebras. Here is a “local”
description:



II.8 Examples and Constructions 167

II.8.3.23 Definition. A C*-algebra A is an AF algebra in the local sense
(local AF algebra) if, for every x1, . . . , xn ∈ A and ε > 0, there is a finite-
dimensional C*-subalgebra B and elements y1, . . . , yn ∈ B with ‖xi − yi‖ < ε
for 1 ≤ i ≤ n.

An AF algebra is obviously an AF algebra in the local sense, but the
converse is not obvious since the finite-dimensional C*-subalgebras are not
nested in general. Using II.8.3.22, one can easily show:

II.8.3.24 Corollary. Every separable local AF algebra is an AF algebra.
In particular, any countable inductive limit of AF algebras is an AF algebra.

One could relax the definition of an AF algebra to allow inductive limits
of finite-dimensional C*-algebras over arbitrary (directed) index sets. An AF
algebra in this sense is an AF algebra in the local sense, and a separable AF
algebra in this sense is an AF algebra in the sense of II.8.2.2. The equivalence
of AF and local AF is unclear in the nonseparable case, and both definitions
have been used for nonseparable AF algebras. Nonseparable AF algebras are
somewhat mysterious, and separability is usually included in the definition of
an AF algebra.

II.8.4 Extensions and Pullbacks

The theory of extensions of C*-algebras should properly be regarded as a part
of K-theory; indeed, it is the starting point for “K-homology” and bivariant
K-theory, as will be described in V.1.4. But it is appropriate to discuss the
elementary aspects in this section, as a source of examples and also to serve
as an introduction to the use of homological algebra ideas in C*-algebras.

Extension theory is important in many contexts, since it describes how
more complicated C*-algebras can be constructed out of simpler “building
blocks”. Some of the most important applications of extension theory are:

(i) Structure of type I C*-algebras, group C*-algebras, and crossed products.
(ii) Classification of essentially normal operators.
(iii) Index theory for elliptic pseudodifferential operators.
(iv) Using associated homological invariants to distinguish between C*-algebras

(often simple C*-algebras).

Extensions

II.8.4.1 Definition. Let A and B be C*-algebras. An extension of A by
B is a short exact sequence

0 −→ B
j−→ E

q−→ A −→ 0

of C*-algebras (“exact” means j is injective, q is surjective, and ker(q) =
im(j)).
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One could simply regard the C*-algebra E as the extension, but the exact
sequence language gives a much better theory since it keeps track of how the
ideal B and the quotient A ∼= E/B are related to E.

There is some nonuniformity of terminology concerning extensions: some-
times such a sequence is called an extension of B by A. We have adopted
what seems to have become the dominant terminology (it is standard in ho-
mological algebra), especially since it matches up nicely with the notation of
bivariant K-theory.

The goal of extension theory is, given A and B, to describe and classify
all extensions of A by B up to a suitable notion of equivalence.

II.8.4.2 There is always at least one extension E = A⊕B. If B is unital, this
is the only extension (up to strong isomorphism; cf. II.8.4.12). Thus extension
theory is only interesting if B is nonunital. The most interesting case is when
B is stable.

It is most important to study essential extensions, ones where B is an
essential ideal in E (II.5.4.7). Essential extensions only occur if B is nonunital.

II.8.4.3 Examples.

(i) Let A = C, B = Co((0, 1)). There are four possible choices of E :
Co((0, 1)) ⊕ C, Co((0, 1]), Co([0, 1)), and C(S1). Each has an obvious as-
sociated exact sequence. The last three are essential. It is not clear at this
point whether we should regard the extensions corresponding to Co((0, 1])
and Co([0, 1)) as being the “same” or “different”.

(ii) Let T be the Toeplitz algebra (II.8.3.2(v)). Then T is an essential exten-
sion of C(T) by K.

The Busby Invariant

The key to analyzing extensions is the so-called Busby invariant. R. Busby
[Bus68] was the first to study extensions of C*-algebras. The Busby invariant
is based on an earlier, purely algebraic construction of Hochschild.

II.8.4.4 Given an extension 0 → B → E → A → 0, B sits as an ideal of E.
Hence there is an associated *-homomorphism σ from E into M(B) (II.7.3.1),
which is injective if and only if B is essential in E. If we compose σ with the
quotient map π : M(B) → Q(B) = M(B)/B, we obtain a *-homomorphism
τ from E/B ∼= A to Q(B). Q(B) is called the outer multiplier algebra of B.

II.8.4.5 Definition. τ is the Busby invariant of the extension 0 → B →
E → A → 0.

The Busby invariant τ is injective if and only if B is essential in A.
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II.8.4.6 Examples.

(i) In the situation of II.8.4.3(i), M(B) ∼= C(βR), and Q(B) ∼= C(βR \ R).
βR \ R has two components. The Busby invariant corresponding to the
four extensions is the map from C to Q(B) sending 1 respectively to 0,
the characteristic function of the component at +∞, the characteristic
function of the component at −∞, and 1.

(ii) In II.8.4.3(ii), if T = C∗(S), the Busby invariant is the map from C(T),
regarded as the universal C*-algebra generated by a single unitary u, to
the Calkin algebra Q = Q(K) sending u to the unitary π(S).

II.8.4.7 An extension can be recovered from its Busby invariant (II.8.4.10(i)).
We often identify an extension with its Busby invariant, so an extension is
frequently regarded as a *-homomorphism into an outer multiplier algebra
instead of as an exact sequence.

Pullbacks

We now discuss a useful general algebraic construction which works for C*-
algebras.

II.8.4.8 Suppose A1, A2, B are C*-algebras, and φi is a *-homomorphism
from Ai to B. We seek a C*-algebra P and *-homomorphisms ψi from P to
Ai making the following diagram commutative:

P
ψ2−−−−→ A2

ψ1



)



)φ2

A1
φ1−−−−→ B

and which is universal in the sense that if C is any C*-algebra and ωi : C → Ai

satisfies φ1 ◦ω1 = φ2 ◦ω2, then there is a unique *-homomorphism θ : C → P
such that ωi = ψi ◦ θ.

Any such P is obviously unique up to isomorphism commuting with the
ψi.

Such a P exists. One way of constructing P is as

{(a1, a2) | φ1(a1) = φ2(a2)} ⊆ A1 ⊕ A2.

II.8.4.9 Definition. P is called the pullback of (A1, A2) along (φ1, φ2).

II.8.4.10 Examples.

(i) Let 0 → B → E → A → 0 be a short exact sequence of *-algebras. Form
the Busby invariant τ : A → Q(B). Then E is naturally isomorphic to the
pullback of (A,M(B)) along (τ, π).
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(ii) Let φ : A → B be a *-homomorphism. Let π0 : Co([0, 1), B) → B be
evaluation at 0. Then the pullback of (A,Co([0, 1), B)) along (φ, π0) is
called the mapping cone of φ, denoted Cφ.

Mapping cones are an analog of the corresponding construction in topol-
ogy, and are important in deriving exact sequences in bivariant K-theory.

See [Ped99] and [ELP99] for more interesting examples, applications, and
generalizations of pullbacks.

II.8.4.11 The pullback construction shows that every *-homomorphism
from A to M(B) is the Busby invariant of an extension of A by B. In particu-
lar, if B is stable, then Q(B) contains a (unital) copy of Q and hence of L(H)
for separable H, and thus if A is separable there are essential extensions of A
by B.

Equivalence of Extensions

II.8.4.12 To have a reasonable classification of the extensions of A by B, we
need a suitable notion of equivalence. There are several obvious candidates.
Throughout, we fix A and B, and consider two extensions

0 −→ B
j1−→ E1

q1−→ A −→ 0

and
0 −→ B

j2−→ E2
q2−→ A −→ 0

with associated Busby invariants τ1 and τ2.

(i) Strong isomorphism (called “strong equivalence” in [Bus68] and [Ros82]):
there is a *-isomorphism γ making the following diagram commute:

0 −−−−→ B
j1−−−−→ E1

q1−−−−→ A −−−−→ 0

id



) γ



) id



)

0 −−−−→ B
j2−−−−→ E2

q2−−−−→ A −−−−→ 0

(ii) Weak isomorphism (called “weak equivalence” in [Bus68] and [Ros82]):
there are *-isomorphisms α, β, γ making the following diagram commute:

0 −−−−→ B
j1−−−−→ E1

q1−−−−→ A −−−−→ 0

α



) γ



) β



)

0 −−−−→ B
j2−−−−→ E2

q2−−−−→ A −−−−→ 0

(iii) Strong (unitary) equivalence: there is a unitary u ∈ M(B) such that
τ2(a) = π(u)τ1(a)π(u)∗ for all a ∈ A.
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(iv) Weak (unitary) equivalence: there is a unitary v ∈ Q(B) such that
τ2(a) = vτ1(a)v∗ for all a ∈ A.

(v) Homotopy equivalence: the homomorphisms τi : A → Q(B) are homo-
topic.

It follows from the uniqueness of pullbacks that two extensions are strongly
isomorphic if and only if their Busby invariants coincide. Thus the Busby
invariant exactly determines the strong isomorphism class of an extension.

It turns out that strong and weak isomorphism are not very tractable
equivalence relations on extensions in general; the other relations are much
more amenable to analysis by methods of noncommutative topology. The most
useful equivalence relation is actually a stabilized version of (iii)-(v) (II.8.4.18,
II.8.4.27).

Addition of Extensions

In this subsection, we assume B is stable. Then for any A there is an additive
structure on the set of strong (or weak) equivalence classes of extensions of
A by B. This additive structure is the C*-version of a standard notion from
homological algebra. An additive structure can also sometimes be defined even
if B is not stable, as long as B ∼= M2(B).

II.8.4.13 Fix an isomorphism of K with M2(K) (II.6.6.13); this isomor-
phism induces an isomorphism B ∼= M2(B) and hence isomorphisms M(B) ∼=
M2(M(B)), Q(B) ∼= M2(Q(B)). These isomorphisms are called standard iso-
morphisms and are uniquely determined up to unitary equivalence (and up
to homotopy).

II.8.4.14 Definition. If τ1, τ2 are extensions of A by B, then the sum
τ1 ⊕ τ2 is the extension whose Busby invariant is

τ1 ⊕ τ2 : A → Q(B) ⊕ Q(B) ⊆ M2(Q(B)) ∼= Q(B)

where the last isomorphism is a standard isomorphism.
We have cheated slightly here: the sum of two extensions is well defined

only up to strong equivalence. Thus we should really define the sum on strong
equivalence classes, giving a binary operation on the set of strong equivalence
classes.

II.8.4.15 Proposition. Addition is a well defined binary operation on the
set Ext(A,B) of strong equivalence classes of extensions of A by B, and is
associative and commutative. So Ext(A,B) is a commutative semigroup.

It is convenient to define Ext(A,B) for general B to be Ext(A,B ⊗ K).
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Split and Semisplit Extensions

II.8.4.16 Definition. An extension

0 −→ B
j−→ E

q−→ A −→ 0

is split if there is a *-homomorphism s : A → E such that q ◦ s = idA. The
map s is called a splitting, or cross section, for the extension.

It turns out to be natural to regard split extensions as “trivial” extensions.

II.8.4.17 If τ is the Busby invariant of an extension, then the extension is
split if and only if there is a *-homomorphism σ : A → M(B) such that τ =
π ◦σ. In particular, if B is stable, the set of split extensions is a subsemigroup
of Ext(A,B), which is nonempty since the extension A ⊕ B is split.

II.8.4.18 Definition. Ext(A,B) is the quotient semigroup of Ext(A,B)
by the subsemigroup of classes of trivial (split) extensions.

In other words, if τ1 and τ2 are extensions of A by B, then [τ1] = [τ2]
in Ext(A,B) if and only if there are trivial extensions τ ′

1 and τ ′
2 such that

τ1 ⊕ τ ′
1 and τ2 ⊕ τ ′

2 are strongly equivalent, i.e. the equivalence relation in
Ext(A,B), called stable equivalence, is the one generated by strong equivalence
and addition of trivial extensions.

Ext(A,B) is an abelian monoid (semigroup with identity) whose identity
is the class of trivial extensions.

II.8.4.19 For fixed B, Ext(A,B) is obviously contravariantly functorial in
A. It is less obvious, but true, that for fixed A, Ext(A,B) is covariantly
functorial in B (cf. [Bla98, 15.9]).

II.8.4.20 Not much is known in general about the semigroup Ext(A,B). It
can be very pathological. Even if A is separable, it is not known in general
whether the semigroup has cancellation. There is a separable C*-algebra A
such that Ext(A, K) is not a group [And78].

We can, however, give a nice description of the invertible classes. In good
cases it turns out that every class is invertible, i.e. Ext(A,B) is an abelian
group.

II.8.4.21 The key observation is as follows. Suppose B is stable and τ is an
invertible extension, i.e. there is an extension τ−1 such that τ ⊕ τ−1 is trivial.
(It is customary to write τ−1 instead of −τ for the inverse extension even
though the operation is written additively.) Then τ ⊕ τ−1 : A → M2(Q(B))
lifts to a *-homomorphism

φ =
[

φ11 φ12

φ21 φ22

]

: A → M2(M(B)).
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φ11 (and also φ22), being the compression of a *-homomorphism, must be a
completely positive contraction from A to M(B), and π ◦ φ11 = τ . So if τ is
invertible, then τ has a completely positive lifting to M(B).

The converse is true by the Generalized Stinespring Theorem (II.7.5.2) if
A is separable: if τ has a completely positive contractive lifting φ11 to M(B),
then φ11 can be dilated to a homomorphism

φ = (φij) : A → M2(M(B)).

π ◦ φ11 = τ is a homomorphism, so (it is easily checked) π ◦ φ22 is also a
homomorphism from A to Q(B). π ◦ φ22 is an inverse for τ . Thus we have
proved

II.8.4.22 Theorem. If A is separable and B is stable, an extension τ : A →
Q(B) defines an invertible element of Ext(A,B) if and only if τ (stably) lifts
to a completely positive contraction from A to M(B).

II.8.4.23 Definition. An extension

0 −→ B
j−→ E

q−→ A −→ 0

is semisplit if there is a completely positive contraction s : A → E such that
q ◦ s = idA. The map s is called a cp-splitting, or cp-cross section, for the
extension.

II.8.4.24 Corollary. An extension τ of A by B defines an invertible ele-
ment of Ext(A,B) if and only if τ ⊕ τ ′ is semisplit for some trivial τ ′.

II.8.4.25 If A is separable and nuclear (II.9.4), then every extension of A
by B is semisplit (IV.3.2.5), and hence Ext(A,B) is a group for all B.

II.8.4.26 Let A be separable and B stable. If we consider the group
Ext(A,B)−1 of invertible elements of Ext(A,B), we may express the ele-
ments as pairs (φ, P ), where φ is a *-homomorphism from A to M(B) and
P is a projection in M(B) which commutes with φ(A) mod B. A pair is
trivial if and only if P actually commutes with φ(A). Since φ and P are
only determined up to “compact perturbation” (modulo B), we must regard
two pairs which agree mod B as identical. Strong equivalence corresponds to
unitary equivalence of pairs, and sum to direct sum of pairs. Thus the group
Ext(A,B) is isomorphic to the quotient of the semigroup of equivalence classes
of such pairs, under the equivalence relation generated by unitary equivalence
and “compact perturbation”, with direct sum, modulo the subsemigroup of
classes of exact (trivial) pairs.

II.8.4.27 Using bivariant K-theory, it can be shown that the relation
of “stabilized homotopy” (the equivalence relation generated by homotopy
(II.5.5.6) and addition of trivial extensions) coincides with the relation in
Ext(A,B)−1 for A,B separable.
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II.8.4.28 An extension τ is absorbing if τ ⊕ τ ′ is strongly equivalent to τ
for any trivial extension τ ′. It turns out that if A and B are separable, and
at least one is nuclear, then there is an absorbing extension in each class
in Ext(A,B), which is unique up to strong equivalence. The existence and
uniqueness of absorbing extensions follows from the Weyl-von Neumann The-
orems of Voiculescu and Kasparov:

II.8.4.29 Theorem. [Noncommutative Weyl-von Neumann Theo-

rem] [Voi76] Let A be a separable C*-algebra, H a separable Hilbert space, π
and ρ faithful nondegenerate representations of A on H with π(A) ∩ K(H) =
ρ(A) ∩ K(H) = {0}. Then π and ρ are unitarily equivalent mod K(H): there
is a unitary U ∈ L(H) such that U∗π(x)U − ρ(x) ∈ K(H) for all x ∈ A. If
x1, . . . , xn ∈ A and ε > 0, such a unitary exists with the additional property
that ‖U∗π(xj)U − ρ(xj)‖ < ε for 1 ≤ j ≤ n.

This result generalizes the classical Weyl-von Neumann Theorem
(II.8.4.38), hence the name. Kasparov [Kas80a] further generalized the result
to Hilbert modules.

II.8.4.30 Corollary. If A is a separable C*-algebra, then all nonunital
split essential extensions of A by K are equivalent and absorbing.

There is also a version for unital extensions.

Essentially Normal Operators

Brown, Douglas, and Fillmore ([BDF73]; [BDF77]) made the first careful study
of Ext-groups in the case B = C; they were almost exclusively interested in
the case A = C(X) for a compact metrizable space X.

II.8.4.31 Definition. If X is a locally compact Hausdorff space, then

Ext(X) = Ext(Co(X), C) = Ext(Co(X), K).

Since Co(X) is nuclear (II.9.4.4), Ext(X) is a group for all X.

II.8.4.32 BDF proved that X �→ Ext(X) is a homotopy-invariant covariant
functor on the category of compact metrizable spaces, and proved Bott Peri-
odicity and the six-term cyclic exact sequence, along with the special case of
Voiculescu’s theorem (II.8.4.30) on absorbing extensions of C(X) by K. The
main theoretical consequence of these general results is that Ext(X) ∼= K1(X),
the first K-homology group of X. (See Chapter 5). Other important con-
sequences include the classification of essentially normal operators and the
structure of some naturally occurring C*-algebras.
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II.8.4.33 Let H be a separable Hilbert space. An operator T ∈ L(H) is
essentially normal if T ∗T − TT ∗ ∈ K. In other words, if t = π(T ) is the
image in the Calkin algebra, then T is essentially normal if t is normal. The
basic question studied by BDF was: under what conditions can T be written
as N + K, where N is normal and K compact? More generally, given two
essentially normal operators T1 and T2, under what conditions is T1 unitarily
equivalent to a compact perturbation of T2?

II.8.4.34 For the second question, one obvious necessary condition is that
T1 and T2 have the same essential spectrum (I.8.2.2). So the question may be
rephrased: given a compact subset X of C, denote by EN(X) the set of essen-
tially normal operators with essential spectrum X. Given T1, T2 ∈ EN(X),
under what conditions is T1 unitarily equivalent to a compact perturbation of
T2?

II.8.4.35 The problem is translated into an extension problem by noting
that if T ∈ EN(X), then C∗(t, 1) ∼= C(X); so if we set A(T ) = C∗(T, K, 1),
A(T ) corresponds naturally to an extension of C(X) by K. The question of
whether T1 is unitarily equivalent to a compact perturbation of T2 is exactly
the question of whether the corresponding extensions are strongly equivalent,
i.e. whether they represent the same element of Ext(X).

The main theorem in the classification of essentially normal operators is
the following:

II.8.4.36 Theorem. If X ⊆ C, Ext(X) ∼= [C \ X, Z], the group of homo-
topy classes of continuous functions of compact support from C \ X to Z.
Thus Ext(X) ∼=

∏
Z, with one factor for each bounded component of C \ X.

The isomorphism sends the class of T ∈ EN(X) to (· · · index(T − λn1) · · · )
(I.8.3.1), where λn is in the n-th bounded component of C \ X. (This index
is constant on connected components of C \ X (I.8.3.8) and vanishes on the
unbounded component.)

This is actually a special case of the Universal Coefficient Theorem
(V.1.5.8).

II.8.4.37 Corollary. An essentially normal operator T can be written
T = N +K, with N normal and K compact, if and only if index(T −λ1) = 0
for all λ not in σe(T ). If T1, T2 ∈ EN(X), then T1 is unitarily equivalent to
a compact perturbation of T2 if and only if index(T1 − λ1) = index(T2 − λ1)
for all λ /∈ X.

II.8.4.38 Corollary. If X is a compact subset of C with connected com-
plement, then any essentially normal operator with essential spectrum X can
be written as (normal) + (compact), and any two essentially normal operators
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with essential spectrum X are unitarily equivalent up to compact perturba-
tion. In particular, any T ∈ EN(X) is a compact perturbation of a diago-
nalizable normal operator (one with an orthonormal basis of eigenvectors).

In the case X ⊆ R (the case of essentially self-adjoint operators), II.8.4.38
applies and is the classical Weyl-von Neumann Theorem. D. Berg [Ber71]
later showed that any two normal operators with the same essential spectrum
are unitarily equivalent up to compact perturbation; Voiculescu’s theorem
(II.8.4.29) may be regarded as a generalization of this fact.

II.8.4.39 The surjectivity of the map from Ext(X) to [C \ X, Z] provides
many examples of essentially normal, nonnormal operators. For example, let
X be the “Hawaiian earring” formed as the union of all the circles of radius 1/n
centered at (1/n, 0). Then Ext(X) is the full direct product of a countable
number of copies of Z; thus Ext(X) is uncountable. To obtain an explicit
essentially normal operator corresponding to the sequence (kn) ∈

∏
N

Z, take⊕
1
n

(
I + Sdn

)
, where dn = kn − kn−1 (k−1 = 0), S is the unilateral shift,

Sd = S∗|d| for d < 0, and S0 = U , the bilateral shift.

II.8.5 C*-Algebras with Prescribed Properties

It is frequently useful to be able to construct examples of C*-algebras with
a prescribed set of properties. Sometimes there is a ready example which is
not separable, but it is worthwhile to have a general method for obtaining a
separable example.

In this section, we provide a general method for constructing separable
C*-subalgebras of C*-algebras with prescribed properties, so that the subal-
gebra inherits all of the properties. Thus if a nonseparable C*-algebra with a
prescribed set of properties of the proper type can be found, so can a separable
one.

Some of the properties mentioned here, for which this method is useful,
will only be carefully introduced in subsequent sections.

II.8.5.1 Definition. A property P of C*-algebras is separably inheritable
(SI) if

(i) whenever A is a C*-algebra with property P and B is a separable C*-
subalgebra of A, then there is a separable C*-subalgebra B of A which
contains B and which has property P .

(ii) whenever (An, φn) is an inductive system of separable C*-algebras with
injective connecting maps, and each An has property P , so does lim−→An.

This definition can be used either within the category of general C*-
algebras and homomorphisms, or the category of unital C*-algebras and unital
homomorphisms.
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II.8.5.2 Examples.

(i) Any property which is inherited by all subalgebras and inductive limits
is an (SI) property. For example:

“A is finite” (III.1.3.1).
(ii) Any property of the following forms is an (SI) property:

“A contains an element of the form . . . ”
“A contains a separable C*-subalgebra isomorphic to . . . ”
“A contains a separable C*-subalgebra which has (or does not have)
the property . . . ”

So, for example, the properties “A contains a separable nonnuclear C*-
subalgebra” and “A is infinite” (III.1.3.1) are (SI) properties.

(iii) The property “A is unital” is not an (SI) property in the general category,
since it is not preserved under inductive limits.

The idea of the proof of the following proposition can be used to prove
that many other more interesting properties are (SI) properties.

II.8.5.3 Proposition. Let P1, P2, . . . be a sequence of (SI) properties.
Then (P1 ∧ P2 ∧ · · · ) is an (SI) property.
Proof: Let A be a C*-algebra with properties P1, P2, . . . , and B a separable
C*-subalgebra. Define a sequence of separable C*-subalgebras

B ⊆ �1,1 ⊆ �2,1 ⊆ �2,2 ⊆ · · · ⊆ �n,1 ⊆ �n,2 ⊆ · · · ⊆ �n,n ⊆ �n+1,1 ⊆ · · ·
of A such that �n,k has property Pk, by successive application of the (SI)
property of each Pk. Set B = [∪�n,k]−. B is a separable C*-subalgebra of A,
and B has property Pk for each k since B = lim−→n≥k

�n,k.

A similar iteration argument is used in the following proof. We say that a
unital C*-algebra A has stable rank 1 if the invertible elements of A are dense
in A, and a general A has stable rank one if Ã does. A complete treatment of
the theory of stable rank for C*-algebras is found in V.3.1.

II.8.5.4 Proposition. The property “A has stable rank 1” is an (SI) prop-
erty.
Proof: Let A be a C*-algebra with stable rank 1; assume for simplicity that A
is unital (the nonunital case is an easy variation). Then the invertible elements
are dense in A. Let B be a separable C*-subalgebra of A. Choose a countable
dense set x1, x2, . . . in B. For each n, let (xnk) be a sequence of invertible
elements in A with xnk → xn, and let �1 be the C*-subalgebra of A generated
by {xnk}. Then �1 is separable, contains B, and has the property that the
closure of the invertible elements of �1 contains B. Similarly, construct a
separable �2 containing �1 such that the closure of the invertibles in �2

contains �1. Continue the construction inductively, and let B = [∪�n]−. B is
separable and has stable rank 1.

It is obvious that stable rank 1 is preserved under inductive limits.
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II.8.5.5 In an almost identical way, the following properties may be proved
to be (SI) properties:

“A has stable rank ≤ n” (V.3.1.2)
“A has real rank ≤ n” (V.3.2.1)
“A has connected unitary group” (in the unital category)
“Mn(A) has connected unitary group” (in the unital category)
“K1(A) = 0” (V.1.2.2)
“A has unique tracial state” (in the unital category)
“A has [strict] cancellation” (V.2.4.13)
“K0(A) is [weakly] unperforated” (V.2.4.15)
“K0(A) has the Riesz interpolation property” (V.2.4.20)
“A is an AF algebra” (II.8.2.2(iv))

As another example, we give a proof for “A has a unique tracial state.” (See
[Phi04] for a different proof.) If A is a unital C*-algebra with unique tracial
state τ0 and B is a separable unital C*-subalgebra with trace space T (B), let
τ1 = τ0|B ∈ T (B). If D is a separable C*-subalgebra of A containing B, let
TD(B) be the set of tracial states on B which extend to traces on D. Then
TD(B) is closed in T (B), and D �→ TD(B) reverses inclusion. If τ ∈ ∩DTD(B),
for each D let τD be a tracial state on D extending τ , and σD an extension
of τD to a state on A. Then any weak-* limit point of (σD) is a tracial state
on A extending τ . Thus ∩DTD(B) = {τ1}. Since T (B) is second countable
(compact and metrizable), there is a sequence (Dn) with ∩nTDn

(B) = {τ1}.
Let �1 be the C*-subalgebra of A generated by ∪Dn; then �1 is separable,
and the only tracial state on B which extends to a trace on �1 is τ1. Iterate
the process to get

B ⊆ �1 ⊆ · · · ⊆ �n ⊆ �n+1 ⊆ · · ·

such that the only tracial state on �n which extends to a trace on �n+1 is τ0

(restricted to �n). If B = [∪�n]−, then B is separable and has unique trace.

II.8.5.6 Theorem. [Bla78, 2.2] The property “A is simple” is an (SI) prop-
erty.

The proof of this theorem follows the same general scheme, but is slightly
more complicated technically. The proof uses the following fact, which is of
independent interest (and possibly somewhat surprising at first glance since
there can be uncountably many closed ideals in a separable C*-algebra):

II.8.5.7 Proposition. Let B be a separable C*-algebra. Then there is a
countable subset S of B such that if J is any closed ideal (not necessarily
proper) of B, then S ∩ J is dense in J .
Proof: First note that since Prim(B) is second countable (II.6.5.7), there is a
countable set {Un} of open sets, containing ∅ and Prim(B), closed under finite
unions and intersections, forming a base for the topology. Un corresponds to
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a closed ideal Jn, and the Jn have the property that if J is a (not necessarily
proper) closed ideal of B, then ∪{Jn : Jn ⊆ J} is dense in J . Thus we can
take a countable dense set Sn in Jn and let S = ∪Sn.
We now give the proof of II.8.5.6.
Proof: Let A be a simple C*-algebra, and B a separable C*-subalgebra. Let
S = {0, x1, x2, . . . } be a countable dense set in B as in II.8.5.7. Since A is
simple, for each i, j, n there is a finite set {y(n)

ijk , z
(n)
ijk : 1 ≤ k ≤ r} ⊆ A (where

r depends on i, j, n) such that

∥
∥
∥xj −

r∑

k=1

y
(n)
ijkxiz

(n)
ijk

∥
∥
∥ <

1
n

.

Let �1 be the C*-subalgebra of A generated by B and all the y
(n)
ijk , z

(n)
ijk . Then

�1 is separable, and if J is any closed ideal of �1, either J ∩ B is 0, or it
contains xi for some i, in which case it contains all the xj , so contains B.
Iterate the construction to get an increasing sequence (�n), where if J is
any closed ideal of �n+1, then J ∩ �n is 0 or �n. If B = [∪�n]−, then B is
separable, and simple by II.8.2.4.

The class of simple C*-algebras is closed under inductive limits by II.8.2.5.

II.8.5.8 There are many more (SI) properties. For example, nuclearity is an
(SI) property (IV.3.1.9).

II.8.5.9 Example. An example of an application of this theory is to show
that there exists an infinite-dimensional separable simple unital C*-algebra C
which has unique trace, stable rank 1, real rank 0, connected unitary group,
trivial K1, totally ordered K0, and which cannot be embedded in a nuclear C*-
algebra (hence is not exact; cf. IV.3.4.18). Let B be the full C*-algebra of the
free group on two generators (II.8.3.2(iii)); B cannot be embedded in a nuclear
C*-algebra by II.9.6.6. B is residually finite-dimensional (V.2.1.11), and hence
can be embedded in the full direct product of a sequence of matrix algebras,
which can in turn be embedded in a II1 factor A. Construct a separable B in
between which has all the above properties.

II.9 Tensor Products and Nuclearity

The theory of tensor products of C*-algebras is fraught with a surprising num-
ber of technical complications, but the theory ends up in a rather satisfactory
form, and behaves very nicely for a large and natural class of C*-algebras
called “nuclear C*-algebras,” which also perhaps surprisingly arise in several
other aspects of the subject. Tensor products of C*-algebras were first studied
by T. Turumaru [Tur52]; in this and some other early references they were
called “direct products.”
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II.9.1 Algebraic and Spatial Tensor Products

II.9.1.1 If A and B are C*-algebras, we can form their algebraic tensor
product A � B over C. A � B has a natural structure as a *-algebra with
multiplication

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2

and involution (a⊗b)∗ = a∗⊗b∗. We want to show the existence of a C*-norm
on A � B and determine the extent to which it is unique. If γ is a C*-norm
on A � B, we will write A ⊗γ B for the completion.

II.9.1.2 A � B has the usual universal property for bilinear maps. As
an algebra, it has the universal property that whenever πA and πB are *-
homomorphisms from A and B respectively, to a complex *-algebra C, such
that πA(A) and πB(B) commute, then there is a unique *-homomorphism π
from A � B to C such that π(a ⊗ b) = πA(a)πB(b) for all a ∈ A, b ∈ B.
Taking C = L(H), we get *-representations of A � B and hence induced
C*-seminorms.

The Minimal or Spatial Tensor Product

II.9.1.3 A standard way to generate such representations is via tensor prod-
ucts of Hilbert spaces: if πA and πB are representations of A and B on Hilbert
spaces H1 and H2 respectively, we can form the representation π = πA ⊗ πB

of A�B on H1 ⊗H2 by π(a⊗ b) = πA(a)⊗ πB(b) (I.2.5.2). If πA and πB are
faithful, then it is not difficult to show (cf. I.2.5.5) that πA ⊗πB is faithful on
A�B, so A�B has at least one C*-norm. Also, for any πA and πB we have
‖(πA ⊗ πB) (

∑n
i=1 ai ⊗ bi) ‖ ≤

∑n
i=1 ‖ai‖‖bi‖, so the norm

∥
∥
∥
∥
∥

n∑

i=1

ai ⊗ bi

∥
∥
∥
∥
∥

min

= sup

∥
∥
∥
∥
∥
(πA ⊗ πB)

(
n∑

i=1

ai ⊗ bi

)∥
∥
∥
∥
∥

(over all representations πA of A and πB of B) is finite and hence a C*-
norm, called the spatial norm on A � B; it is also called the minimal C*-
norm because it indeed turns out to be the smallest C*-norm on A � B
(II.9.5.1). (A consequence of the minimality of ‖ · ‖min is that if πA and πB

are any faithful representations of A and B respectively, and x ∈ A�B, then
‖(πA ⊗ πB)(x)‖ = ‖x‖min, i.e. the spatial norm is independent of the faithful
representations chosen.) The completion of A � B with respect to this norm
is written A ⊗min B and called the minimal or spatial tensor product of A
and B.

II.9.2 The Maximal Tensor Product

There is also a maximal C*-norm on A�B. Indeed, every *-representation of
A�B comes from a pair of commuting representations of A and B as above:
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II.9.2.1 Theorem. Let A and B be C*-algebras, and π a nondegenerate
representation of A � B on a Hilbert space H. Then there are unique non-
degenerate representations πA of A and πB of B on H such that π(a ⊗ b) =
πA(a)πB(b) = πB(b)πA(a) for all a, b. If π is a factor representation, then πA

and πB are also factor representations.
The first statement is obvious if A and B are unital (πA(a) = π(a ⊗ 1B),

πB(b) = π(1A⊗b)). In the general case, if (hλ) and (kµ) are approximate units
for A and B respectively, then for any a ∈ A and b ∈ B the nets π(a ⊗ kµ)
and π(hλ ⊗ b) converge in the strong operator topology to operators we call
πA(a) and πB(b) respectively, and these define representations with the right
properties (the proof is essentially an application of II.9.3.2 to vector states).
To prove the last statement, we have πA(A)′′ ⊆ πB(B)′, so

πA(A)′ ∩ πA(A)′′ ⊆ πA(A)′ ∩ πB(B)′ ⊆ π(A � B)′.

Also, by construction πA(A) ⊆ π(A � B)′′, so πA(A)′′ ⊆ π(A � B)′′,

πA(A)′ ∩ πA(A)′′ ⊆ π(A � B)′ ∩ π(A � B)′′ = CI.

II.9.2.2 Corollary. Let A and B be C*-algebras. Then every C*-seminorm
γ on A � B extends uniquely to a C*-seminorm on Ã � B̃, and satisfies
γ(a ⊗ b) ≤ ‖a‖‖b‖ for all a ∈ A, b ∈ B.

Thus most questions about tensor products can be reduced to the unital
case.

II.9.2.3 So ‖π (
∑n

i=1 ai ⊗ bi)‖ ≤
∑n

i=1 ‖ai‖‖bi‖ for any representation π of
A � B, and hence

∥
∥
∥
∥
∥

n∑

i=1

ai ⊗ bi

∥
∥
∥
∥
∥

max

= sup

∥
∥
∥
∥
∥
π

(
n∑

i=1

ai ⊗ bi

)∥
∥
∥
∥
∥

where the supremum is taken over all representations, is a (finite) C*-norm
on A � B which is the largest possible C*-norm. The completion is denoted
A ⊗max B, and called the maximal tensor product of A and B.

II.9.2.4 If X and Y are Banach spaces, the (semi)norm defined on X � Y
by

‖ξ‖∧ = inf
{∑

‖xi‖‖yi‖ : ξ =
∑

xi ⊗ yi

}

is obviously the largest possible subcross seminorm (‖x⊗ y‖ ≤ ‖x‖‖y‖ for all
x, y), and is in fact a cross norm [Gro55]. The completion, denoted X⊗̂Y, is
called the projective tensor product (it has a universal property analogous to
projectivity). If A and B are C*-algebras, we obviously have ‖ · ‖max ≤ ‖ · ‖∧;
equality rarely holds (i.e. ‖ · ‖∧ is rarely a C∗-norm).
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II.9.2.5 It is obvious that A ⊗max B and A ⊗min B are unital if (and only
if) both A and B are unital. In this case, there are natural embeddings A →
A⊗1B ⊆ A⊗γ B and B → 1A⊗B ⊆ A⊗γ B for any C*-norm γ on A�B. If A
and B are unital C*-algebras, then A⊗maxB can be described as the universal
unital C*-algebra generated by unital copies of A and B which commute; it is
harder to describe A ⊗max B as a universal C*-algebra in the nonunital case
since A and B do not naturally embed.

II.9.2.6 Both ⊗max and ⊗min are associative and commutative in the obvi-
ous senses: (a ⊗ b) ⊗ c �→ a ⊗ (b ⊗ c) gives isomorphisms

(A ⊗max B) ⊗max C ∼= A ⊗max (B ⊗max C)

(A ⊗min B) ⊗min C ∼= A ⊗min (B ⊗min C)

and a ⊗ b �→ b ⊗ a gives A ⊗max B ∼= B ⊗max A and A ⊗min B ∼= B ⊗min A.

II.9.3 States on Tensor Products

II.9.3.1 ‖ · ‖max and ‖ · ‖min can be alternately described using appropriate
positive linear functionals on A � B, where a positive linear functional on
A�B is a linear functional f such that f(x∗x) ≥ 0 for all x ∈ A�B. The set
of positive linear functionals on A�B is denoted (A�B)∗+. The set (A�B)∗+
is a cone in the algebraic dual (A � B)d which is closed in the topology of
pointwise convergence (weakd topology).

If A and B are unital, a state on A � B is an element φ ∈ (A � B)∗+ with
φ(1⊗1) = 1. The set of states, denoted S(A�B), is a weakd-compact convex
set.

II.9.3.2 Proposition. If A and B are C*-algebras and f ∈ (A�B)∗+, then
f extends to a positive linear functional f̃ on Ã � B̃.
Proof: Let (hλ) be an increasing approximate unit for A. If b ∈ B+, and
fb(a) = f(a ⊗ b), then fb is a positive linear functional on A and hence
bounded; thus lim(f(hλ⊗b)) = sup(f(hλ⊗b)) exists, and we may set f̃(1⊗b)
to be the limit. Writing a general b ∈ B as a linear combination of positive
elements, we then get a linear functional f̃ on Ã � B with the property that

f̃(x) = lim(f((hλ ⊗ 1)x) = lim(f((h1/2
λ ⊗ 1)x(h1/2

λ ⊗ 1))

for all x ∈ Ã�B. Positivity of f̃ follows from the fact that if x ∈ Ã�B, then

f̃(x∗x) = lim(f([x(h1/2
λ ⊗ 1)]∗[x(h1/2

λ ⊗ 1)])).

Then f̃ can be extended to Ã � B̃ in the same manner.
In particular, if f ∈ (A � B)∗+, then

sup{f(a ⊗ b) : a ∈ A+, b ∈ B+, ‖a‖ = ‖b‖ = 1}
is finite. We say f is a state of A � B if this supremum is 1; this definition
agrees with the previous one if A and B are unital.
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II.9.3.3 There is a GNS representation corresponding to a positive linear
functional. An element of (A � B)∗+ defines a pre-inner product on A � B,
and A�B acts by left multiplication. But there is a technicality in obtaining
a representation of A � B (and hence A ⊗max B) on the completion: it must
be shown that A � B acts by bounded operators. This follows immediately
from the next proposition (the nonunital case follows from the unital one
by II.9.3.2). We say x ∈ A � B is algebraically positive, written 0 ≤a x, if
x =

∑n
k=1 z∗kzk for some zk ∈ A � B. Write x ≤a y if 0 ≤a y − x. If x ≤a y,

then z∗xz ≤a z∗yz for any z ∈ A � B, and if xk ≤a yk (1 ≤ k ≤ n), then∑
xk ≤a

∑
yk.

II.9.3.4 Proposition. Let A and B be unital C*-algebras and x = x∗ ∈
A � B. Then there is a λ > 0 such that x ≤a λ(1 ⊗ 1).
Proof: First note that if a ∈ A+, b ∈ B+, then 0 ≤a a ⊗ b = (a1/2 ⊗ b1/2)2,
and

a ⊗ b + (‖a‖1 − a) ⊗ b + ‖a‖1 ⊗ (‖b‖1 − b) = ‖a‖‖b‖(1 ⊗ 1)

so a⊗ b ≤a ‖a‖‖b‖(1⊗ 1). Also note that (A�B)sa = Asa �Bsa: if x = x∗ =∑n
k=1 ak ⊗ bk, then

x =
1
4

(
n∑

k=1

[(ak + a∗
k) ⊗ (bk + b∗k) − i(ak − a∗

k) ⊗ i(bk − b∗k)]

)

.

Finally, if x =
∑n

k=1 ak ⊗ bk with ak = a∗
k, bk = b∗k, then

x ≤a

n∑

k=1

(ak+ + ak−) ⊗ (bk+ + bk−) ≤a

(
n∑

k=1

‖ak‖‖bk‖
)

(1 ⊗ 1).

Thus S(A � B) can be identified with S(A ⊗max B); the identification is
an affine homeomorphism for the weakd and weak-* topologies.

II.9.3.5 If φ and ψ are positive linear functionals on A and B respectively,
then it can be checked using the complete positivity of φ and ψ (II.6.9.6) that
the functional φ ⊗ ψ defined by

(φ ⊗ ψ)

(
∑

i

ai ⊗ bi

)

=
∑

i

φ(ai)ψ(bi)

is well defined and positive (this also follows easily by considering the repre-
sentation πφ ⊗ πψ and the vector ξφ ⊗ ξψ). Let (A � B)∗++ be the subset of
(A�B)∗+ of pointwise limits of convex combinations of such product function-
als (one can just use multiples of products of pure states). Then for x ∈ A�B
we have:

‖x‖2
max = sup

{
φ(y∗x∗xy)

φ(y∗y)
: φ ∈ (A � B)∗+, y ∈ A � B,φ(y∗y) �= 0

}
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‖x‖2
min = sup

{
φ(y∗x∗xy)

φ(y∗y)
: φ ∈ (A � B)∗++, y ∈ A � B,φ(y∗y) �= 0

}

= sup
{

(φ⊗ψ)(y∗x∗xy)
(φ⊗ψ)(y∗y)

: φ∈P(A), ψ ∈P(B), y ∈A � B, (φ ⊗ ψ)(y∗y) �= 0
}

.

II.9.3.6 So S(A⊗minB) [resp. (A�B)∗++] can be identified with the closure
of S(A�B)∩(A∗�B∗) in S(A�B) [resp. the closure of (A�B)∗+∩(A∗�B∗)
in (A�B)∗+.] More generally, if γ is any cross norm on A�B, then S(A⊗γ B)
can be identified with the set of states on A � B which are continuous for γ.
This subset completely determines γ by the Hahn-Banach Theorem.

II.9.3.7 There is a standard identification f ↔ Tf of (A�B)d with the set
Hom(A,Bd) of linear maps from A to Bd, where [Tf (a)](b) = f(a⊗ b). Recall
that B∗ has a structure as a matrix ordered space (II.6.9.20).

II.9.3.8 Proposition.

(i) Let f ∈ (A � B)d. Then f ∈ (A � B)∗+ if and only if Tf is a completely
positive map from A to B∗ ⊆ Bd.

(ii) The map f → Tf is an affine homeomorphism from (A � B)∗+ with the
weakd-topology onto CP (A,B∗) with the topology of pointwise weak-*
convergence.

II.9.4 Nuclear C*-Algebras

II.9.4.1 A C*-algebra A is called nuclear if, for every C*-algebra B, there
is a unique C*-norm on A � B. If A is nuclear, we often just write A ⊗ B for
A ⊗max B = A ⊗min B.

The term “nuclear” is in analogy with the notion of a nuclear space in
Grothendieck’s theory of tensor products of topological vector spaces [Gro55],
although an infinite-dimensional C*-algebra is never a nuclear space in the
sense of Grothendieck.

Section IV.3 contains a more detailed study of nuclear C*-algebras.

II.9.4.2 Examples. Let A be any C*-algebra. Then Mn �A can be identi-
fied with Mn(A) in the standard way: if {eij} are the standard matrix units
of Mn (II.6.6.8), then




n∑

i,j=1

eij ⊗ aij



 �→ (aij)

is an isomorphism. Since Mn(A) is a C*-algebra under the norm of II.6.6.2,
this norm is the unique C*-norm on Mn � A, and in particular agrees with
‖ · ‖max and ‖ · ‖min, and
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Mn ⊗max A = Mn ⊗min A = Mn � A

(written Mn ⊗A). So Mn is nuclear. Similarly, it is easily seen that A⊗ K in
the sense of II.6.6.11 agrees with A⊗maxK and A⊗minK in the tensor product
sense (although it is not the same as A � K in general), so K is nuclear.

II.9.4.3 There is a partial converse to this example. Let {eij : 1 ≤ i, j ≤ n}
be a set of matrix units of type Mn (II.8.3.2(iv)) in a C*-algebra A. Then
the eij generate a (possibly nonunital) C*-subalgebra isomorphic to Mn. If A
is unital and

∑
i eii = 1, then for a ∈ A set aij = e1iaej1 ∈ e11Ae11; then

a �→ (aij) is an isomorphism from A onto Mn(e11Ae11) ∼= Mn ⊗ e11Ae11.

Another important example is:

II.9.4.4 Theorem. [Tak64] Let A = Co(X) be commutative. Then A is
nuclear, and for any C*-algebra B, A ⊗ B can be identified with Co(X,B)
(II.1.1.3(ii)) under the map (f ⊗ b)(x) = f(x)b. In particular, if B = Co(Y ) is
also commutative, then Co(X)⊗Co(Y ) ∼= Co(X ×Y ) under the identification

(f ⊗ g)(x, y) = f(x)g(y) .

To show A is nuclear, we may assume for simplicity that A and B are
unital (II.9.2.1). Let φ be any pure state of A ⊗max B, and πA and πB the
restrictions to A and B (II.9.2.1) of the irreducible GNS representation πφ.
Since A is commutative, it follows from II.9.2.1 that πA(A) ⊆ CI, and so
πφ(a ⊗ b) = χ(a)πB(b) for all a ∈ A, b ∈ B, where χ ∈ P(A) = Â. Therefore
φ(a ⊗ b) = χ(a)ψ(b) for some ψ ∈ P(B) (ψ(b) = 〈πφ(1 ⊗ b)ξφ, ξφ〉), i.e.
φ = χ⊗ψ. Thus P(A⊗max B) ∼= X ×P(B), and every pure state of A⊗max B
factors through A⊗min B, so ‖ · ‖max = ‖ · ‖min on A�B. We also obtain that
Prim(A⊗max B) ∼= X ×Prim(B), and it is routine to verify the isomorphism
with Co(X,B). Now let γ be a C*-norm and π the quotient map from A⊗maxB
onto A⊗γ B. π corresponds to a closed set in Prim(A⊗max B); if this subset
is proper, since the topology is the product topology there are ideals I in A
and J in B such that π|I
J = 0. But if a and b are nonzero elements of I and
J respectively, γ(a ⊗ b) �= 0 since γ is a norm, a contradiction.

II.9.4.5 The class of nuclear C*-algebras is closed under most of the stan-
dard operations: extensions, inductive limits, tensor products (all elementary
observations) and quotients (a deep theorem, cf. IV.3.1.13). It is thus not
so easy to give examples of nonnuclear C*-algebras. The most elementary
examples are C∗(F2) and C∗

r (F2):

II.9.4.6 Theorem. Let λ and ρ be the left and right regular representations
of the free group F2, and π : C∗(F2) → C∗

r (F2) the quotient map (II.8.3.2(iii)).
Then
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(i) [Tak64] The representation of C∗
r (F2)�C∗

r (F2) on l2(F2) induced by (λ, ρ)
is not continuous for ‖ · ‖min, i.e. ‖ · ‖max �= ‖ · ‖min on C∗

r (F2)�C∗
r (F2).

(ii) The representation of C∗(F2)�C∗
r (F2) on l2(F2) induced by (λ ◦ π, ρ) is

not continuous for ‖ · ‖min, i.e. ‖ · ‖max �= ‖ · ‖min on C∗(F2) � C∗
r (F2).

(iii) [Was90] However, the representation of C∗(F2) � C∗(F2) on l2(F2) in-
duced by (λ ◦ π, ρ ◦ π) is continuous for ‖ · ‖min.

See [Was94, Chapter 3] for a discussion and proof.
It is also true that L(H) is nonnuclear if H is infinite-dimensional. In fact,

“most” C*-algebras are nonnuclear, as is clear from the characterizations of
IV.3.1.12.

II.9.4.7 A is nuclear if and only if (A � B)∗++ = (A � B)∗+ for every B.
This has an alternate description which motivates the connection between
nuclearity and completely positive approximations:

II.9.4.8 Proposition. Let π and ρ be representations of C*-algebras A
and B on H and H′ respectively, giving a representation π ⊗ ρ of A � B
(which extends to A ⊗min B) on H ⊗ H′. Let ξ be a unit vector in H � H′,
and φ the corresponding vector state on A � B. Then the map Tφ : A → B∗

of II.9.3.7 is a completely positive finite-rank contraction. Every completely
positive finite-rank contraction from A to B∗ arises in this manner.

II.9.4.9 Corollary. Let A and B be C*-algebras. Identify (A�B)∗+ with
CP (A,B∗) as in II.9.3.7. Then (A�B)∗++ is the closure in CP (A,B∗) (with
the topology of pointwise weak-* convergence) of the finite-rank completely
positive maps. In particular, A is nuclear if and only if the finite-rank maps
are dense in CP (A,B∗) for every B.

In fact, nuclearity can be characterized by certain identity maps being
approximable by completely positive finite-rank contractions; see IV.3.1.5.

II.9.5 Minimality of the Spatial Norm

II.9.5.1 The proof that ‖ · ‖min is the smallest C*-norm on A � B for ar-
bitrary A and B is similar to II.9.4.4, reducing the general problem to the
commutative case. Indeed, if A,B are unital and γ is a C*-norm on A � B,
and φ ∈ P(A), ψ ∈ P(B), by II.9.3.1 it suffices to show that φ ⊗ ψ extends
to a state on A ⊗γ B. Let Sγ be the subset of P(A) × P(B) of pairs which
can be extended; Sγ is weak-* closed. If φ ∈ P(A) and b ∈ B+, let C be the
commutative C*-subalgebra of B generated by b, and ω a pure state on C
with ω(b) = ‖b‖. Since ‖ · ‖γ = ‖ · ‖min on A ⊗γ C, φ ⊗ ω is a pure state on
A ⊗γ C, and extends to a pure state θ on A ⊗γ B. Then ψ = θ|1⊗B is a pure
state of B, and θ = φ ⊗ ψ [if y ∈ B, 0 ≤ y ≤ 1, then φ1(x) = θ(x ⊗ y) and
φ2(x) = θ(x ⊗ (1 − y)) are positive linear functionals on A, and φ = φ1 + φ2,
so by purity φ1 = ψ(y)φ.] Thus
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{ψ ∈ P(B) : φ ⊗ ψ ∈ Sγ}

is norming for B, and hence equals P(B) by the Hahn-Banach Theorem.

II.9.5.2 Thus, for any C*-norm γ on A�B, we have ‖ · ‖min ≤ γ ≤ ‖ · ‖max

and therefore γ satisfies
γ(a ⊗ b) = ‖a‖‖b‖

for all a ∈ A, b ∈ B (γ is a cross norm). In fact, ‖ · ‖min is the smallest
C*-seminorm γ on A�B satisfying γ(a⊗ b) �= 0 for all nonzero a ∈ A, b ∈ B.
A consequence of this minimality is:

II.9.5.3 Corollary. If A and B are simple C*-algebras, then A⊗min B is
simple.

II.9.6 Homomorphisms and Ideals

II.9.6.1 If φ : A1 → A2 and ψ : B1 → B2 are *-homomorphisms, there is a
natural induced *-homomorphism

φ ⊗ ψ : A1 � B1 → A2 � B2

which induces *-homomorphisms

φ ⊗max ψ : A1 ⊗max B1 → A2 ⊗max B2

φ ⊗min ψ : A1 ⊗min B1 → A2 ⊗min B2

(some details must be checked to show existence of these homomorphisms).
Both homomorphisms are usually written φ ⊗ ψ.

II.9.6.2 The maximal and minimal norms have some obvious permanence
properties. If A is a C*-subalgebra of A1, and B is any C*-algebra, then the
natural inclusion of A�B into A1⊗minB extends to an isometric embedding of
A⊗min B into A1⊗min B. The corresponding statement for ⊗max is false, how-
ever: since a C*-subalgebra of a nuclear C*-algebra is not necessarily nuclear
(IV.3.5.7), suppose A is a nonnuclear C*-subalgebra of a nuclear C*-algebra
A1, and B is a C*-algebra for which A⊗max B �= A⊗min B; then the induced
map from A⊗max B into A1 ⊗max B = A1 ⊗min B is not isometric. But if J is
a (closed) ideal of A, then from II.6.1.6 it follows that the natural map from
J ⊗max B to A⊗max B is isometric for any B. Hence, if A⊗max B = A⊗min B,
then J ⊗max B = J ⊗min B. In particular, we have:

II.9.6.3 Proposition. A closed ideal in a nuclear C*-algebra is a nuclear
C*-algebra.



188 II C*-Algebras

II.9.6.4 Definition.

(i) A C*-algebra A is quasinuclear if, whenever B ⊆ B1 are C*-algebras, the
“inclusion” map A ⊗max B → A ⊗max B1 is isometric.

(ii) A C*-algebra A is seminuclear if, whenever A ⊆ A1 and B are C*-
algebras, the “inclusion” map A ⊗max B → A1 ⊗max B is isometric.

Any nuclear C*-algebra is quasinuclear and seminuclear. It is clear from
the argument of the previous paragraph that a C*-subalgebra of a nuclear
C*-algebra is quasinuclear or seminuclear if and only if it is nuclear.

Actually, it is a (deep) fact that any quasinuclear C*-algebra is nuclear
(IV.3.1.12). But there are seminuclear C*-algebras which are not nuclear: for
example, any injective C*-algebra is seminuclear (use II.9.7.1).

II.9.6.5 Maximal tensor products commute with arbitrary inductive lim-
its, and minimal tensor products commute with inductive limits where the
connecting maps are injective. If A = lim−→(Ai, φij) is an inductive system
of C*-algebras, and B is any C*-algebra, then (Ai ⊗max B,φij ⊗ idB) and
(Ai ⊗min B,φij ⊗ idB) are inductive systems; the inductive limit of the first
system is isomorphic to A⊗max B, and if the φij are injective, then the induc-
tive limit of the second system is A⊗minB (some details need to be checked for
⊗max). If the φij are injective, then the connecting maps in the minimal tensor
product system are also injective, but the ones in the maximal tensor product
system need not be injective. Minimal tensor products do not commute with
inductive limits with noninjective connecting maps in general.

II.9.6.6 If J is a closed ideal in B, then the natural quotient map from
A � B to A � (B/J) extends to quotient maps

πmax : A ⊗max B → A ⊗max (B/J)

πmin : A ⊗min B → A ⊗min (B/J).

The kernel of πmax is exactly A ⊗max J (regarded as an ideal in A ⊗max B),
but the kernel of πmin can be strictly larger than A ⊗min J (II.9.4.6). In the
language of exact sequences, if

0 → J → B → B/J → 0

is an exact sequence of C*-algebras, and A is a C*-algebra, then

0 → A ⊗max J → A ⊗max B → A ⊗max (B/J) → 0

is exact (i.e. maximal tensor product with A is an exact functor), but

0 → A ⊗min J → A ⊗min B → A ⊗min (B/J) → 0

is not exact in general (i.e. minimal tensor product with A is not an exact
functor). If A has the property that minimal tensor product with A is an
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exact functor, then A is called an exact C*-algebra. Every nuclear C*-algebra
is exact, but not every exact C*-algebra is nuclear. A C*-subalgebra of an
exact C*-algebra is exact (IV.3.4.3); thus any C*-subalgebra of a nuclear C*-
algebra is exact (but not necessarily nuclear). A deep theorem of E. Kirchberg
(IV.3.4.18) says that every separable exact C*-algebra can be embedded as a
C*-subalgebra of a nuclear C*-algebra.

There are C*-algebras which are not exact, for example C∗(F2) and any
C*-algebra containing it (e.g. L(H) for infinite-dimensional H): if J is the
kernel of the quotient map π : C∗(F2) → C∗

r (F2), then the sequence

0 → C∗(F2) ⊗min J → C∗(F2) ⊗min C∗(F2) → C∗(F2) ⊗min C∗
r (F2) → 0

is not exact by II.9.4.6.
See IV.3 for more details about exact C*-algebras.

II.9.6.7 It is not easy to describe the ideal structure of A⊗min B, let alone
A⊗max B, in general. The map (I, J) �→ I ⊗B + A⊗ J gives a continuous in-
jective map from Prim(A)×Prim(B) onto a dense subspace of Prim(A⊗min B),
which is a bijective homeomorphism if A and B are separable and one is exact
(IV.3.4.25).

II.9.6.8 As a related matter, if A and B are C*-algebras and C, D are
C*-subalgebras of A and B respectively, then

C ⊗min D ⊆ (A ⊗min D) ∩ (C ⊗min B)

(as subsets of A⊗min B). It is a difficult and subtle question whether equality
holds in general, which turns out to have a negative answer. But if one of the
subalgebras is hereditary, it is true and elementary to prove:

II.9.6.9 Proposition. Let A and B be C*-algebras, C a C*-subalgebra of
A, J a hereditary C*-subalgebra of B (e.g. a closed ideal). Then

(A ⊗min J) ∩ (C ⊗min B) = C ⊗min J.

Proof: We have C⊗minJ ⊆ (A⊗minJ)∩(C⊗minB) ⊆ (Ã⊗minJ)∩(C⊗minB)
(as subsets of Ã ⊗min B). Let (hλ) be an approximate unit for J . If

x ∈ (Ã ⊗min J) ∩ (C ⊗min B)

then (1 ⊗ hλ)x(1 ⊗ hλ) → x. But

(1 ⊗ hλ)(C � B)(1 ⊗ hλ) ⊆ C � J

so
(1 ⊗ hλ)(C ⊗min B)(1 ⊗ hλ) ⊆ C ⊗min J.
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Thus (1 ⊗ hλ)x(1 ⊗ hλ) ∈ C ⊗min J , x ∈ C ⊗min J .
More generally, if D ⊆ B and (ψλ) is a net of completely positive contrac-

tions (or even uniformly completely bounded maps) from B to D such that
ψλ(x) → x for all x ∈ D, a virtually identical proof shows that

(A ⊗min D) ∩ (C ⊗min B) = C ⊗min D.

This condition is always satisfied if D is nuclear (IV.3.1.8).
If C is simple and exact, then for any A, B, and D ⊆ B it turns out that

(A⊗minD)∩(C⊗minB) = C⊗minD. Conversely, if C is simple and non-exact,
then there exist A, B, D such that equality fails. Details will be found in a
forthcoming book on exact C*-algebras by E. Kirchberg and S. Wassermann.
See [Hur79] or [Kye84, 3.1] for a counterexample to a closely related question,
the C*-analog of III.4.5.9.

II.9.7 Tensor Products of Completely Positive Maps

II.9.7.1 Using the Stinespring dilation, it is easily shown from the homo-
morphism result that if φ : A1 → A2 and ψ : B1 → B2 are completely positive
contractions, then the map φ ⊗ ψ from A1 � B1 to A2 � B2 given by

(φ ⊗ ψ)
(∑

xi ⊗ yi

)
=
∑

φ(xi) ⊗ ψ(yi)

is well defined and extends to a completely positive contraction, also denoted
φ⊗ψ, from A1⊗minB1 to A2⊗minB2. If φ and ψ are conditional expectations,
so is φ ⊗ ψ.

As an important special case, if φ is a state on A, then for any B the right
slice map Rφ from A ⊗min B to B defined by

Rφ

(∑
xi ⊗ yi

)
=
∑

φ(xi)yi

is a completely positive contraction; if A is unital, Rφ is a conditional expec-
tation from A ⊗min B to 1 ⊗ B. Similarly, if ψ is a state on B, there is a left
slice map Lψ : A ⊗min B → A.

There is an analogous maximal tensor product of completely positive maps.
We first state a tensor product version of Stinespring’s Theorem (cf. [Was94]).

II.9.7.2 Lemma. Let A and B be C*-algebras, and φ : A → L(H) and ψ :
B → L(H) be completely positive contractions with φ(a)ψ(b) = ψ(b)φ(a) for
all a ∈ A, B ∈ B. Then there is a Hilbert space H′, commuting representations
π of A and ρ of B on H′, and V ∈ L(H,H′), with ‖V ‖ ≤ 1, such that
φ(a) = V ∗π(a)V and ψ(b) = V ∗ρ(b)V for all a ∈ A, b ∈ B.

The proof is almost identical to the proof of II.6.9.7: put a pre-inner prod-
uct on A � B �H by

〈a1 ⊗ b1 ⊗ ξ, a2 ⊗ b2 ⊗ η〉 = 〈φ(a∗
2a1)ψ(b∗2b1)ξ, η〉H

and let π(a)(x ⊗ y ⊗ ξ) = ax ⊗ y ⊗ ξ, ρ(b)(x ⊗ y ⊗ ξ) = x ⊗ by ⊗ ξ.
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II.9.7.3 Corollary. If A1, A2, B1, B2 are C*-algebras and φ : A1 → A2

and ψ : B1 → B2 are completely positive contractions, then the map φ ⊗ ψ
from A1 � B1 to A2 � B2 given by

(φ ⊗ ψ)
(∑

xi ⊗ yi

)
=
∑

φ(xi) ⊗ ψ(yi)

extends to a completely positive contraction, also denoted φ⊗ψ, from A1⊗max

B1 to A2 ⊗max B2.
Proof: Represent A2⊗maxB2 faithfully on H, and regard φ and ψ as mapping
into L(H). Apply II.9.7.2; π and ρ define a representation σ of A1 ⊗max B1

on H′. Set φ ⊗ ψ(x) = V ∗σ(x)V for x ∈ A1 ⊗max B1.

II.9.8 Infinite Tensor Products

II.9.8.1 The definition of maximal or minimal tensor product can be ex-
tended in an obvious way to finite sets of C*-algebras. Infinite tensor prod-
ucts of unital C*-algebras can also be defined as follows. We describe the
infinite minimal tensor product, which is the one most frequently used; the
infinite maximal tensor product is formally identical. If {Ai : i ∈ Ω} is a set
of C*-algebras, then for every finite F = {i1, · · · , in} ⊆ Ω set

BF = Ai1 ⊗min · · · ⊗min Ain
.

If F ⊆ G, then there is a natural isomorphism BG ∼= BF⊗minBG\F . If all the Ai

are unital, there is a natural inclusion of BF into BG by x �→ x⊗1G\F . Thus the
collection of BF form an inductive system, and we define the infinite tensor
product

⊗min
i∈Ω Ai to be the inductive limit. The “min” is usually omitted,

especially if the Ai are nuclear, in which case
⊗

i∈Ω Ai is also nuclear. If each
Ai is simple, then

⊗
i∈Ω Ai is simple.

II.9.8.2 Example. Let Ω = N, Ai = M2 for all i. Then
⊗

i∈N
Ai =

⊗
N

M2

is isomorphic to the CAR algebra (II.8.2.2).
⊗

N
M3 is isomorphic to the UHF

algebra of type 3∞.

II.9.8.3 One can more generally form an infinite tensor product
⊗

(Ai, pi)
with respect to projections pi ∈ Ai, by embedding BF into BG by

x �→ x ⊗ (⊗i∈G\Fpi).

The resulting C*-algebra depends strongly on the choice of the pi. See [Bla77a]
for a description of the structure of such tensor products.
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II.10 Group C*-Algebras and Crossed Products

Groups arise widely in mathematics, physics and many applications, because
they are the mathematical structures which encode symmetries of the systems
under consideration. We examine here how to incorporate symmetries into the
context of operator algebras, via crossed products.

The crossed product construction, in its various forms and generalizations,
has proved to be one of the most important ideas in operator algebras, both
for internal structure theory and for applications.

The idea is: given a C*-algebra A, a (locally compact topological) group G,
and a (continuous) action α of G as *-automorphisms of A, construct a larger
C*-algebra A �α G, called the crossed product, containing A and a group of
unitaries isomorphic to G, so that the unitaries implement the action. (This
is strictly correct only if A is unital and G discrete; in general, A and G
sit in the multiplier algebra M(A �α G).) A �α G encodes the “dynamical
system” (A,G, α). In particular, the covariant representations of (A,G, α) on
Hilbert spaces are in natural one-one correspondence with the representations
of A �α G.

Two key cases, which have been historically important and which motivate
the usefulness of such a construction, are:

(i) Let (X,G,α) be an ordinary topological dynamical system, i.e. X is a
locally compact Hausdorff space, G a locally compact topological group,
and α a continuous action on X (continuous means the corresponding map
from X × G to X is continuous). The term “dynamical system” is most
often used when G is R or Z. Then there is a natural induced action of G on
the C*-algebra Co(X), and the crossed product Co(X) �α G encodes the
dynamical system (X,G,α). Important applications of operator algebras
in both mathematics and physics come from this construction.

(ii) If G is a locally compact group, let G act trivially on C. The crossed
product C �α G is called the group C*-algebra of G, denoted C∗(G),
and encodes the unitary representation theory of G. Group C*-algebras
have proved to be a powerful tool in representation theory, and group
representations have been one of the principal applications of operator
algebras since the early days of the subject.

Crossed products are not only important in applications, but are also
the source of very interesting examples of C*-algebras. In addition, some of
the fundamental structure of operator algebras, particularly von Neumann
algebras, involves the use of crossed products.

Various generalizations of the crossed product construction have also
turned out to be important, particularly the association of a C*-algebra to a
locally compact topological groupoid, and recently the notion of a “quantum
group.”

The structure of group C*-algebras and crossed products is enormously
complicated (it includes the entire theory of unitary representations of locally
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compact groups), and even some basic aspects of the theory are still not
completely understood and are the subject of active current research.

This is a vast subject, and we will be able to only hit the high points of
the basic theory. We will describe the particularly important case of crossed
products by abelian groups in somewhat more detail. In fact, the three most
important groups in the theory of crossed products are Z2, Z, and R (in
approximate increasing order of both difficulty and importance).

II.10.1 Locally Compact Groups

We briefly review the most important basic features of the theory of locally
compact topological groups. A full treatment can be found in many books on
topological groups and/or harmonic analysis, such as [HR63].

Haar Measure

II.10.1.1 If G is a locally compact (Hausdorff topological) group, then there
is a nonzero Radon measure µ on the Baire sets of G which is left invariant, i.e.
µ(tE) = µ(E) for every t ∈ G and Baire set E, where tE = {ts : s ∈ E}. The
measure µ is unique up to scalar multiple and is called (a) left Haar measure
on G. The measure µ has the properties that µ(U) > 0 for every nonempty
open set U , and µ(K) < ∞ for every compact set K, and µ is (inner and
outer) regular, so that Cc(G) ⊆ L1(G,µ) and is dense in L1(G,µ).

There is often a natural normalization for µ, e.g. when G is discrete (so µ
is just counting measure) or compact (where we usually take µ(G) = 1).

If G is a Lie group, left Haar measure is a Riemannian measure given by a
differential form of top dimension; hence C∞

c (G) is a dense subspace of L1(G).
The lack of a Haar measure for groups which are not locally compact is a

major obstacle to developing a unified representation theory for them.

II.10.1.2 Left Haar measure is not right invariant in general. However, if
t ∈ G is fixed, then the measure µt defined by µt(E) = µ(Et) is left invariant,
hence is ∆G(t)µ for some ∆G(t) ∈ R+. The function ∆G : G → R+ is a
continuous homomorphism called the modular function of G. The measure ν
defined by ν(E) =

∫
E

∆G(t) dµ(t) is right invariant, called right Haar measure

on G. (Thus ∆G is the Radon-Nikodym derivative
[

dν
dµ

]
.) Right Haar measure

is unique up to a scalar multiple, and has properties analogous to those of left
Haar measure.

G is unimodular if ∆G ≡ 1, i.e. µ = ν. The class of unimodular groups
includes all groups which are discrete, compact, or abelian.

Group Algebras

If G is a group, the group algebra of G, denoted CG, the algebra of formal
(finite) linear combinations of elements of G, with convolution as multiplica-
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tion, is an important tool, particularly when G is finite. When G is locally
compact, an analogous Banach *-algebra structure on L1(G) is most useful.

II.10.1.3 Let µ be a fixed left Haar measure on G. If f, g ∈ L1(G,µ), define
the convolution f ∗ g by

[f ∗ g](t) =
∫

G

f(s)g(s−1t) dµ(s).

L1(G,µ) becomes a Banach algebra under this multiplication. If f∗ is defined
by f∗(t) = ∆G(t−1)f̄(t−1), then f �→ f∗ is an involution on L1(G,µ) making
it into a Banach *-algebra.

If a different left Haar measure µ′ = αµ is chosen, L1(G,µ′) ∼= L1(G,µ)
by the map f �→ αf ; thus the group algebra L1(G) is (up to isomorphism)
independent of the choice of left Haar measure.

Cc(G) is a dense *-subalgebra of L1(G); if G is discrete, then Cc(G) = CG.
If G is finite, then L1(G) = CG. If G is a Lie group, then C∞

c (G) is also a
dense *-subalgebra.

II.10.1.4 L1(G) is unital if and only if G is discrete (the unit is the char-
acteristic function of the identity element). But L1(G) always has an approx-
imate unit. Let Λ be the net of compact neighborhoods of the identity in G,
directed by reverse inclusion, and for each λ ∈ Λ let hλ be a nonnegative func-
tion in Cc(G) supported in λ, with

∫
G

hλ = 1; then (hλ) is an approximate
unit of norm one in L1(G).

II.10.1.5 More generally, let M(G) be the set of finite complex Radon mea-
sures on G. Define convolution and adjoint on M(G) by identifying M(G) with
Co(G)∗ by the Riesz Representation Theorem and defining, for m,n ∈ M(G),
f ∈ Co(G), ∫

G

f(s) d(m ∗ n)(s) =
∫

G

∫

G

f(ts) dn(s)dm(t)

∫

G

f(s) d(m∗)(s) = [
∫

G

f̄(s−1) dm(s)]−

Then M(G) is a unital Banach *-algebra, and if L1(G) is identified via the
Radon-Nikodym theorem with the subset of M(G) consisting of measures
absolutely continuous with respect to µ, then L1(G) is an ideal in M(G)
(M(G) is the “multiplier algebra” of L1(G)). M(G) is called the measure
algebra of G.

Amenability

The notion of amenability for groups, and its generalizations to operator al-
gebras, is of fundamental importance. Here we give only the definition and
list some elementary properties; amenability will be further discussed in IV.3.3
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and IV.3.5. A full development of the theory of amenable groups can be found
in [Gre69] (see also [Ped79, 7.3]); see [Pie84] for a more modern treatment,
and [Pat88] for amenability in a broader context.

II.10.1.6 Let Cb(G) denote the C*-algebra of bounded continuous functions
on G (whose maximal ideal space is the Stone–Čech compactification of G).
Then G acts by left translation on Cb(G), though this action is often not
strongly continuous. By a mean on G is meant a state of Cb(G). G is amenable
if there is a left translation-invariant mean on G. (This use of means is the
origin of the term “amenable”.) There are actually several equivalent senses
in which an amenable group has an invariant mean.

II.10.1.7 A more concrete condition equivalent to amenability is Følner’s
condition: for every compact set C of G and every ε > 0 there exists a (“big”)
compact set D of G such that

µ(D ( (tD))
µ(D)

< ε

for every t ∈ C, where ( denotes “symmetric difference.”

II.10.1.8 Every compact group is amenable (take Haar measure), as is every
solvable locally compact group (hence all abelian ones). Important examples
of non-amenable groups are (discrete) free groups on two or more generators,
and SL(n, R) for n ≥ 2.

There are many equivalent characterizations of amenable groups, most of
which have to do with the existence of approximately invariant objects in
certain actions of the group. The next theorem summarizes some of the most
important ones for discrete groups; others will be given later using the group
C*-algebra.

II.10.1.9 Theorem. Let G be a (discrete) group. Then the following are
equivalent:

(i) There is a (left, right, etc.) invariant mean on Cb(G) (= l∞(G)).
(ii) There is a net µi of asymptotically invariant probability measures on G.
(iii) G satisfies the Følner condition.
(iv) G does not admit a paradoxical (Banach-Tarski) decomposition.
(v) The trivial representation of G is weakly contained in the (left) regular

representation λ.

II.10.1.10 Definition. A paradoxical decomposition of a (discrete) group
G is a collection

{A1, . . . , An, B1, . . . , Bm}
of disjoint subsets of G and elements t1, . . . , tn, s1, . . . , sm of G such that
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{t1A1, . . . , tnAn} and {s1B1, . . . , smBm}

are partitions of G.
The standard example of a group with a paradoxical decomposition is the

free group F2 on two generators a and b: let A1 be the set of (reduced) words
beginning with a, A2 the words beginning with a−1, B1 the words beginning
with b, and B2 the words beginning with b−1; set t1 = s1 = e, t2 = a, s2 = b.
Thus F2 is not amenable.

Paradoxical decompositions are closely related to the Banach-Tarski para-
dox, which was of great interest to many leading mathematicians of the twen-
tieth century, including von Neumann ([Neu28], [Neu29]), who observed (i)
=⇒ (iv) of II.10.1.9 (if G has a paradoxical decomposition, consider the char-
acteristic functions of the Ai and Bj to conclude that G cannot have a left
invariant mean). A full discussion of the Banach-Tarski paradox and related
matters can be found in [Wag93].

Pontrjagin Duality

II.10.1.11 Suppose G is a locally compact abelian group. Let Ĝ be the set of
all continuous homomorphisms from G to the circle group T (these are called
the characters of G). Then Ĝ is an abelian group under pointwise multiplica-
tion, and is a topological group under the compact-open topology (topology
of uniform convergence on compact sets). Ĝ is called the (Pontrjagin) dual
group of G.

II.10.1.12 Examples.

(i) Ẑ ∼= T via n �→ zn for fixed z ∈ T, and T̂ ∼= Z via z �→ zn for fixed n ∈ Z.
Similarly, (Zn)̂ ∼= T

n and (Tn)̂ ∼= Z
n.

(ii) R̂ ∼= R via s �→ γs, where γs(t) = eist.
(iii) If G is finite, then Ĝ ∼= G (but the isomorphism is not natural).

The next theorem summarizes the main results about Ĝ.

II.10.1.13 Theorem. Let G be a locally compact abelian group, and Ĝ its
dual group. Then

(i) Ĝ is locally compact.
(ii) Ĝ is second countable if and only if G is second countable.
(iii) Ĝ is compact [resp. discrete] if and only if G is discrete [resp. compact].

(iv) ˆ̂
G ∼= G; in fact, the natural map t �→ ˆ̂t, where ˆ̂t(γ) = γ(t), is a topological

isomorphism from G onto ˆ̂
G.

If γ ∈ Ĝ and t ∈ G, we often write γ(t) as 〈γ, t〉 (or 〈t, γ〉) to emphasize
the symmetry between G and Ĝ.
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There are many finer aspects to Pontrjagin duality: for example, if G is
discrete, then Ĝ is connected [resp. totally disconnected] if and only if G is
torsion-free [resp. torsion].

Pontrjagin duality can be generalized to nonabelian groups using Hopf
C*-algebras; see II.10.8.13.

Fourier-Plancherel Transform

II.10.1.14 We continue to let G be a locally compact abelian group. If
f ∈ L1(G) = L1(G,µ), we define the Fourier-Plancherel transform f̂ on Ĝ by

f̂(γ) =
∫

G

〈γ, t〉f(t) dµ(t).

It is easy to verify that (f ∗ g)̂ = f̂ ĝ, and (f∗)̂ = (f̂)− (complex conjugate).
More generally, if m ∈ M(G), define m̂ by m̂(γ) =

∫
G
〈γ, t〉 dm(t).

II.10.1.15 Theorem.

(i) [Riemann-Lebesgue Lemma] If f ∈ L1(G), then f̂ ∈ Co(Ĝ).
(ii) If f ∈ L1(G) ∩ L2(G), then f̂ ∈ L2(Ĝ).
(iii) [Plancherel Theorem] If Haar measure σ on Ĝ is suitably normalized,

then f �→ f̂ (f ∈ L1(G) ∩ L2(G)) extends to an isometry from L2(G,µ)
onto L2(Ĝ, σ).

II.10.2 Group C*-Algebras

II.10.2.1 Suppose π is a (strongly continuous unitary) representation of the
locally compact group G on a Hilbert space H, i.e. a homomorphism from G
to U(L(H)) which is continuous for the strong operator topology (or any of
the other operator topologies; cf. I.3.2.9). If f ∈ L1(G), the operator

π(f) =
∫

G

f(t)π(t) dµ(t)

(see e.g. [DS88a] for information about Banach space valued integrals) is well
defined and bounded, in fact ‖π(f)‖ ≤ ‖f‖1; and it is easy to check that
f → π(f) is a nondegenerate *-homomorphism from the Banach *-algebra
L1(G) to L(H) (a representation of L1(G)). This representation of L1(G) is
called the integrated form of π.

More generally, if m ∈ M(G), define π(m) =
∫

G
π(t) dm(t); then m �→

π(m) is a unital *-homomorphism from M(G) to L(H).
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II.10.2.2 Theorem. Every representation of L1(G) on a Hilbert space
arises from a (strongly continuous unitary) representation of G; thus there
is a one-one correspondence between the representation theories of G and
L1(G).

The proof uses the approximate unit (hλ) of II.10.1.4. If t ∈ G, let thλ ∈
L1(G) be defined by thλ(s) = hλ(t−1s); then it can be shown that if π is a
representation of L1(G) on H, then (π(thλ)) converges strongly to a unitary we
can call π(t), and that t → π(t) is a strongly continuous unitary representation
of G giving π.

One could try to use Cc(G) or M(G) in place of L1(G) in this corre-
spondence, but the result is not true in general since both Cc(G) and M(G)
can have additional representations: a representation of Cc(G) need not be
bounded, and a representation of M(G) need not be nondegenerate on L1(G).

II.10.2.3 Definition. Let G be a locally compact group. The (full) group
C*-algebra C∗(G) is the universal enveloping C*-algebra of the Banach
*-algebra L1(G). In other words, if f ∈ L1(G), define ‖f‖ = ‖f‖C∗(G) by

‖f‖ = sup{‖π(f)‖ : π a representation of L1(G)}

and let C∗(G) be the completion of (L1(G), ‖ · ‖).
It is easy to see that this definition agrees (up to an obvious isomorphism)

with the definition in II.8.3.2(iii) if G is discrete.

II.10.2.4 It follows immediately that there is a natural one-one correspon-
dence between the (strongly continuous unitary) representations of G and the
(nondegenerate) representations of C∗(G). If π is a representation of G and
therefore of C∗(G), then π(G)′′ = π(C∗(G))′′; hence, in particular, π is an
irreducible [resp. factor] representation of G if and only if it is an irreducible
[resp. factor] representation of C∗(G).

The Reduced Group C*-Algebra

II.10.2.5 To show that ‖ · ‖ is actually a norm on L1(G), consider the left
regular representation λ of G on L2(G) defined by

[λ(t)φ](s) = φ(t−1s).

It is not hard to see that if 0 �= f ∈ L1(G), then λ(f) �= 0.

II.10.2.6 Definition. The completion of L1(G) with respect to the norm
‖f‖r = ‖λ(f)‖ is called the reduced group C*-algebra C∗

r (G). C∗
r (G) is iso-

morphic to the closure of λ(L1(G)) in L(L2(G)). There is a natural quotient
map from C∗(G) onto C∗

r (G).
The quotient map from C∗(G) to C∗

r (G) is an isomorphism if and only
if G is amenable. C∗(G) is never a simple C*-algebra unless G is trivial; in
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fact, C∗(G) always has a one-dimensional quotient coming from the trivial
representation of G. But C∗

r (G) is sometimes simple, e.g. when G is a free
group on more than one generator ([Pow75], [PS79], [Ake81], [Avi82], [dlH85],
[BN88], [HR89], [Béd91]). See III.2.5.20.

II.10.2.7 Proposition. If G is a locally compact abelian group, then the
natural quotient map from C∗(G) to C∗

r (G) is an isomorphism, and the
Fourier-Plancherel transform extends to an isomorphism from C∗(G) onto
Co(Ĝ) (with its usual pointwise operations).

In fact, the characters of G are precisely the irreducible representations of
G, hence of C∗(G); and it is easy to check that the weak-* topology on the
set of characters from C∗(G)∗ agrees with the compact-open topology on Ĝ.

II.10.2.8 C∗(G) is unital if and only if G is discrete. In general, there is a
natural group {ut : t ∈ G} of unitaries in M(C∗(G)) isomorphic to G: ut is
the strict limit of (thλ). The map t → ut is strictly continuous.

II.10.2.9 C∗(G) is a separable C*-algebra if and only if G is second count-
able. Such a G is sometimes called “separable” in the literature, but this term
is inconsistent with standard terminology in topology, since a locally compact
group which is separable in the topological sense of having a countable dense
set is not in general second countable (countable base for the topology).

II.10.2.10 The C*-algebra structure of C∗(G) is not sufficient to recover G.
For example, if G is any finite abelian group with n elements, then C∗(G) is
isomorphic to C

n. But C∗(G) has additional structure making it into a Hopf
C*-algebra, which completely determines G (II.10.8.11).

II.10.3 Crossed products

In this subsection, we describe the construction and basic properties of covari-
ant systems and crossed products. We restrict attention to locally compact
groups for lack of a good theory which is broader (the existence of Haar mea-
sure is the fundamental tool needed).

Covariant Systems and Representations

II.10.3.1 Definition. A covariant system is a triple (A,G, α) consisting
of a C*-algebra A, a locally compact group G, and a homomorphism α of
G into Aut(A), which is continuous for the point-norm topology (continuous
action of G on A). Another term commonly used for covariant systems is
C*-dynamical system.

(A,G, α) is a separable C*-dynamical system if A is separable and G is
second countable.

The term “C*-dynamical system” comes from the fact that if (A,G, α) is
a covariant system with A ∼= Co(X) commutative, then (A,G, α) comes from
a topological dynamical system (X,G,α) as in II.10(i).



200 II C*-Algebras

II.10.3.2 If (A,G, α) is a covariant system, then α extends to a homomor-
phism from G to Aut(M(A)) such that t �→ αt(x) is strictly continuous for all
x ∈ M(A). However, (M(A), G, α) is not a C*-dynamical system in general
because the extended α is not generally point-norm continuous.

II.10.3.3 Proposition. Let (A,G, α) be a C*-dynamical system, and m ∈
M(G). Then the formula

αm(x) =
∫

G

αt(x) dm(t)

defines a norm-decreasing *-homomorphism from M(G) to L(A) with involu-
tion T �→ T ∗, where T ∗(x) = [T (x∗)]∗. If f ∈ L1(G), then

αf (x) =
∫

G

f(t)αt(x) dµ(t).

Just as representations of C*-algebras and unitary representations of
groups are of central importance in many applications, so representations
of covariant systems are of basic importance. Experience shows that the re-
quired property is that under the representation the action α should be given
by conjugation by unitary operators corresponding to the group elements.
Thus:

II.10.3.4 Definition. Let (A,G, α) be a covariant system. A covariant
representation of (A,G,α) is a pair of representations (π, ρ) of A and G re-
spectively on the same Hilbert space such that the “covariance relation”

ρ(t)π(a)ρ(t)∗ = π(αt(a))

holds for all a ∈ A and t ∈ G. We require that π be non-degenerate, and that
ρ be strongly continuous (as is normal for unitary representations).

The Covariance Algebra and (Full) Crossed Product

II.10.3.5 We now define the covariance algebra L1(G,A) of a C*-dynamical
system, the analog (generalization) of L1(G). To avoid the question of which
functions from G to A should be regarded as measurable (it turns out they
are what one would expect), it is convenient to begin with Cc(G,A) and then
complete.

Define a multiplication (convolution) and involution on Cc(G,A) by

[f ∗ g](t) =
∫

G

f(s)αs(g(s−1t)) dµ(s)

f∗(t) = ∆G(t−1)αt(f(t−1)∗)
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Then with ‖f‖1 =
∫

G
‖f(t)‖ dµ(t), Cc(G,A) becomes a *-normed algebra. Let

L1(G,A) be the completion.
Elements of L1(G,A) can be naturally identified with integrable functions

from G to A. In particular, if f ∈ L1(G), x ∈ A, then t �→ f(t)x can be
naturally identified with an element of L1(G,A), denoted f ⊗ x. The linear
span of such elements is dense.

II.10.3.6 If (π, ρ) is a covariant representation of (A,G, α) on H, then there
is an associated representation (nondegenerate *-homomorphism to L(H))
π � ρ of L1(G,A): if f ∈ L1(G,A), set

[π � ρ](f) =
∫

G

π(f(t))ρ(t) dµ(t).

We have that ‖[π � ρ](f)‖ ≤ ‖f‖1. The representation π � ρ of L1(G,A) is
called the integrated form of (π, ρ).

Just as in II.10.2.2, every representation of L1(G,A) arises from a covariant
representation of (A,G, α), which can be recovered using an approximate unit
(another argument is given below in II.10.3.11); thus there is a natural one-
one correspondence between the representation theory of L1(G,A) and the
covariant representations of (A,G, α).

We may also put a norm (cf. II.10.3.13) on L1(G,A) by

‖f‖ = sup{‖[π � ρ](f)‖ : (π, ρ) a covariant representation of (A,G, α)}

II.10.3.7 Definition. The completion of L1(G,A) with respect to this
norm (the universal enveloping C*-algebra of L1(G,A)) is the (full) crossed
product of (A,G,α), denoted A �α G or sometimes C∗(A,G, α).

The term “crossed product” without further qualification will always mean
“full crossed product.” Various other notations are also sometimes used for
the crossed product, such as C∗(G,A, α), G �α A, A ×α G.

If A ∼= Co(X) is commutative, A �α G is often called a transformation
group C*-algebra (II.10.4.1).

II.10.3.8 There is a natural one-one correspondence between the (nonde-
generate) representations of A �α G and the covariant representations of
(A,G, α). If (π, ρ) is a covariant representation of (A,G, α), then

[(π � ρ)(A �α G)]′′ = [π(A) ∪ ρ(G)]′′.

II.10.3.9 A �α G is unital if and only if A is unital and G is discrete. In
general, there is an embedding σ : A → M(A �α G) which maps into A �α G
if G is discrete: for any x ∈ A set

(xf)(t) = xf(t) and (fx)(t) = f(t)αt(x)

for f ∈ Cc(G,A). It is easily verified that in this way x determines an element
σ(x) of the multiplier algebra of A�α G, and we obtain a ∗-homomorphism of
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A into M(A�α G), which is seen to be injective, so isometric. If G is discrete,
this specializes to an embedding of A into A�α G itself, given by sending x to
the function which has value x at the identity element of G and 0 elsewhere.
(This motivates the formulas given above for non-discrete G.)

II.10.3.10 In much the same way, there is a group {ut} of unitaries in
M(A �α G) isomorphic to G: for any t ∈ G set

(tf)(s) = αt(f(t−1s)) and (ft)(s) = f(st−1)∆G(t−1)

for f ∈ Cc(G,A). It is easily verified that in this way t determines a unitary
element ut of M(A�αG), and we obtain an injective homomorphism of G into
the unitary group of M(A �α G) which is continuous for the strict topology
(II.7.3.11). If G is discrete and A is unital, this specializes to a homomorphism
from G into A�α G given by sending t ∈ G to the function which has value 1A

at t and 0 elsewhere. (This motivates the formulas given above for the more
general case.) It is easily checked that the homomorphisms of A and G into
M(A �α G) satisfy the covariance relation of II.10.3.8, suitably interpreted.

II.10.3.11 These embeddings give an alternate proof of the fact that repre-
sentations of A�αG arise from covariant representations of (A,G, α): suppose
that ω is a non-degenerate representation of A �α G. Then by II.6.1.6 it ex-
tends to a representation of M(A �α G), which can then be restricted to A
and G viewed as included in M(A �α G). This gives a covariant representa-
tion of (A,G,α), and one can check that the integrated form of this covariant
representation is exactly the original representation ω.

II.10.3.12 There is also an induced homomorphism ρ from C∗(G) to the
multiplier algebra M(A �α G) (into A �α G if A is unital) extending the map

f �→
∫

G

f(t)ut dµ(t)

for f ∈ L1(G); if x ∈ A, y ∈ C∗(G), then

σ(x)ρ(y) ∈ A �α G

and linear combinations of such elements are dense in A �α G.
The map ρ is, however, not injective in general. For example, in II.10.4.3,

the map ρ always factors through C∗
r (G).

The Reduced Crossed Product

The definition of the norm on a crossed product algebra does not give much
indication of how to compute it, since it is usually quite difficult to exhibit all
covariant representations. But there is an analog of the regular representation
and reduced group C*-algebra in the setting of crossed products. This reduced
crossed product construction can be used to show that ‖ · ‖ is a norm on
L1(G,A), and that the map t �→ ut from G to U(M(A �α G)) is injective.
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II.10.3.13 Suppose (A,G, α) is a C*-dynamical system. Let π be a (nonde-
generate) representation, usually assumed faithful, of A on a Hilbert space H.
Define a representations πα and λ of A and G, respectively, on L2(G,H) ∼=
H⊗ L2(G) by

([πα(x)]ξ)(t) = αt(x)(ξ(t))

[λ(t)ξ](s) = ξ(t−1s)

Then (πα, λ) is a covariant representation of (A,G, α), and it is easily seen
that the corresponding representation πα � λ of L1(G,A) is faithful. Define,
for f ∈ L1(G,A),

‖f‖r = ‖[πα � λ](f)‖ ≤ ‖f‖.
It is easy to show that ‖ · ‖r is independent of the choice of π, provided

only that it is faithful; thus ‖ · ‖r is a well-defined norm on L1(G,A).

II.10.3.14 Definition. The completion of L1(G,A) with respect to ‖·‖r is
called the reduced crossed product of (A,G,α), denoted A�

r
αG or C∗

r (A,G, α).
There is a natural quotient map from A �α G onto A �

r
α G. This map

is injective if G is amenable (or, more generally, if α is an amenable action
[AD02], which can occur even if G is not amenable (cf. II.10.4.3)).

II.10.3.15 Examples.

(i) Let ι be the trivial action of G on a C*-algebra A, i.e. ιt(x) = x for all
t ∈ G, x ∈ A. Then

A �ι G ∼= A ⊗max C∗(G) and A �
r
ι G ∼= A ⊗min C∗

r (G).

Thus it is sometimes useful to think of A �α G for non-trivial α as being
some kind of “twisted” tensor product, and there has been substantial
exploration of how properties of ⊗max extend to general crossed product
C*-algebras.

(ii) Crossed product algebras are closely related to semidirect products of
groups. Indeed if α is an action of a locally compact group H by auto-
morphisms of another locally compact group N , then H acts on C∗(N)
by transport of structure. Denote this action still by α. Then, if G is the
semidirect product N �α H, there are natural isomorphisms

C∗(G) ∼= C∗(N) �α H and C∗
r (G) ∼= C∗

r (N) �
r
α H.

The C*-algebra of a general group extension may be constructed as a
twisted crossed product (II.10.7.6).

(iii) Examples with A commutative will be discussed in more detail in
II.10.4.12, but one very simple example is fundamental. Let X be an
n-point space and G = Zn acting on X by cyclic permutations. Then
it is easily seen that C(X) �α G ∼= Mn. This example generalizes to
an arbitrary locally compact group acting on itself by left translation
(II.10.4.3).
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(iv) Fix n > 1. For each k ∈ Z, let Ak = Mn. For k ≥ 0, let pk = 1Mn
∈ Ak,

and for k < 0 let pk = e11 ∈ Ak. Let A =
⊗

Z
(Ak, pk) (II.9.8.3). Then

Z acts on A by shifting the tensor product factors. It is not difficult to
see that A �σ Z ∼= On ⊗ K. More generally, if A is any {0, 1}-matrix,
then OA ⊗ K is the crossed product of an AF algebra by a shift-type
automorphism [CE81].

Invariance Under Conjugacy

II.10.3.16 Different actions can produce isomorphic crossed products. If α
and β are conjugate actions of G on A, in the sense that there is an au-
tomorphism γ of A with βt = γ−1 ◦ αt ◦ γ for all t ∈ G, then the map
φ : Cc(G,A) → Cc(G,A) defined by (φf)(t) = γ(f(t)) extends to isomor-
phisms A �β G ∼= A �α G and A �

r
β G ∼= A �

r
α G.

Similarly, if θ is an automorphism of G, and βt = αθ(t) for all t ∈ G, then
the map ψ : Cc(G,A) → Cc(G,A) given by (ψf)(t) = λf(θ(t)), where λ ∈ R+

is the factor by which left Haar is multiplied under θ, gives isomorphisms
A �β G ∼= A �α G and A �

r
β G ∼= A �

r
α G.

II.10.3.17 There is a more important invariance. Suppose α and β are ac-
tions of G on A which agree up to inner automorphisms, i.e. for each t there
is a unitary wt in M(A) such that βt(x) = wtαt(x)w∗

t for all x ∈ A. Then, for
any s, t ∈ G,

wst = z(s, t)wsαs(wt)

for some unitary z(s, t) ∈ Z(M(A)).
To obtain an isomorphism between A �β G and A �α G, we need a little

more:

(i) The map t → wt is measurable.
(ii) For each s, t ∈ G, z(s, t) = 1, i.e. wst = wsαs(wt).

Then the map φ : L1(G,A) → L1(G,A) with (φf)(t) = f(t)wt extends to
isomorphisms A �β G ∼= A �α G and A �

r
β G ∼= A �

r
α G.

II.10.3.18 Definition. Actions α and β of a locally compact group G on a
C*-algebra A are outer conjugate if there is a γ ∈ Aut(A) such that γ−1◦βt◦γ
and αt agree modulo inner automorphisms for each t ∈ G.

The actions α and β are cocycle conjugate if there is a γ ∈ Aut(A) and
t �→ wt ∈ U(M(A)), satisfying II.10.3.17 (i) and (ii), such that

γ−1 ◦ βt ◦ γ(x) = wtαt(x)w∗
t

for all t ∈ G, x ∈ A.
As above, if α and β are cocycle conjugate, then A �β G ∼= A �α G and

A �
r
β G ∼= A �

r
α G. If α and β are outer conjugate, then A �β G is isomorphic

to a twisted crossed product of A by G under α (II.10.7.6).
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II.10.3.19 There is a slightly stronger equivalence on actions which is ex-
tremely important. If α and β are actions of G on A, and (wt) can be chosen in
U(M(A)) with βt = (Ad wt)◦αt, satisfying the cocycle condition II.10.3.17(ii),
and such that t �→ wt is strictly continuous, then α and β are exterior equiv-
alent.

The following characterization of exterior equivalence is known as Connes’
2 × 2 matrix trick (actually half of Connes’ trick – the other half is in the
proof of III.4.6.3), first used to show that the modular automorphism group
of a von Neumann algebra is unique up to exterior equivalence.

II.10.3.20 Proposition. Let α and β be actions of G on a C*-algebra A.
Then α and β are exterior equivalent if and only if there is an action γ of G
on M2(A) such that γt(diag(x, y)) = diag(αt(x), βt(y)) for all x, y ∈ A, t ∈ G.

Proof: If α and β are exterior equivalent via (wt), define γ by

γt

([
a b
c d

])

=
[

αt(a) αt(b)w∗
t

wtαt(c) βt(d)

]

.

Conversely, if γ exists, extend γ to M(M2(A)) ∼= M2(M(A)) as in II.10.3.2,

and for each t set mt = γt

([
0 0
1 0

])

. Since m∗
t mt = diag(1, 0) and mtm

∗
t =

diag(0, 1) for all t, mt must be of the form
[

0 0
wt 0

]

for some unitary wt

in M(A), and it is easily checked that the wt have the right properties (cf.
[Ped79, 8.11.2]).

II.10.4 Transformation Group C*-Algebras

II.10.4.1 We now consider the special case of covariant systems (A,G, α) in
which A is commutative, so that A ∼= Co(X) for some locally compact space
X. Then α gives an action as homeomorphisms of the pure state space of A,
which is X. We denote this action again by α, so that

(αtf)(x) = f(αt−1(x))

for f ∈ A, t ∈ G and x ∈ X. Then α is seen to be a jointly continuous
action, so that, by definition, (X,G,α) is a transformation group. Conversely,
if (X,G,α) is a transformation group, then α defines an action of G on A =
Co(X) such that (A,G, α) is a covariant system. In this case the crossed
product algebra A �α G is often called a transformation group C*-algebra.
It can be denoted by C∗(G,X,α). One also has the corresponding reduced
transformation group C*-algebra.
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II.10.4.2 Probably the most fundamental example comes from the action
of a locally compact group G on itself by left translation. An exact analog of
the left regular representation of G gives an action λ of G on Co(G): if t ∈ G,
f ∈ Co(G), set [λt(f)](s) = f(t−1s). Then

II.10.4.3 Theorem. For any locally compact group G, Co(G) �λ G is iso-
morphic to K(L2(G)).

This theorem is almost obvious if G is discrete, since there are obvious
matrix units in this case. In the general case, if {fi} is an orthonormal basis
for L2(G) contained in Cc(G), then the elements fi ⊗ fj form a set of matrix
units in the crossed product, whose linear combinations are dense.

The general result is a special case of Takai duality (II.10.5.2) and its
noncommutative generalization, although the result long predates the duality
theorem: the result for R (in the form of II.10.4.5) is known as the Stone-von
Neumann Theorem ([Sto30], [vN31]), and the general result was proved in
[Mac49] and [Loo52] (cf. [Rie72], [Ros04]).

Note that since K(L2(G)) is simple, the homomorphism from Co(G)�λG
onto the reduced crossed product must be an isomorphism, regardless of
whether G is amenable.

II.10.4.4 Suppose now that G is abelian. Then Co(G) ∼= C∗(Ĝ) (II.10.2.7),
and representations of Co(G) correspond to unitary representations of Ĝ. Thus
covariant representations of (Co(G), G, λ) correspond to pairs (ρ, U) of uni-
tary representations of G and Ĝ respectively which satisfy a version of the
covariance relation. It is easily seen that this version is

Uuρt = 〈t, u〉ρtUu

for t ∈ G and u ∈ Ĝ. This relation is exactly the Weyl form of the Heisenberg
commutation relations, especially when G = R

n.
It follows that representations of the Weyl form of the Heisenberg com-

mutation relations correspond to representations of Co(G) �λ G ∼= K(L2(G)).
Since every representation of the latter is unitarily equivalent to a direct sum
of copies of its canonical (irreducible) representation on L2(G) (IV.1.2.2), we
obtain:

II.10.4.5 Corollary. [Stone-Von Neumann Theorem] Every repre-
sentation of the Weyl form of the Heisenberg commutation relations for the
abelian group G is unitarily equivalent to a direct sum of copies of the canon-
ical representation on L2(G), for which G acts by translation and Ĝ acts by
pointwise multiplication by characters.
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II.10.4.6 One generalization of the above theorem concerns free proper ac-
tions. An action of G on X is said to be free if αt(x) = x for some x ∈ X
implies t = eG, the identity element of G.

Thus the action of G on the orbit of any point looks like the action of G on
itself by left translation. The action α is said to be proper if for any compact
subset C of G the set

{t ∈ G : αt(C) ∩ C �= ∅}
is compact (i.e. the map G×X → X×X sending (t, x) to (x, αt(x)) is a proper
map). Let X/α denote the space of orbits of points of X with the quotient
topology. When α is proper this quotient topology is Hausdorff and locally
compact. (The converse is not true in general.) The algebra Co(X/α) can be
viewed as a subalgebra of Cb(X) consisting of functions which are constant on
orbits. Thus Co(X), and in particular Cc(X), can be viewed as right modules
over Co(X/α). We turn Cc(X) into a pre-Hilbert Co(X/α)-module (II.7.1) by
defining on it a Co(X/α)-valued inner product given by

〈ξ, η〉(ẋ) =
∫

G

ξ̄(αt−1(x))η(αt−1(x))dt,

where ẋ denotes the orbit through x.

II.10.4.7 Now Co(X) acts on Cc(X) by pointwise multiplication, and the
corresponding operators are adjointable (II.7.2.1) for the above inner prod-
uct. The action of G on Cc(X) by α is also adjointable, and is “unitary”
once it is adjusted by the modular function. These actions satisfy the covari-
ance relation of II.10.3.8, and their “integrated form” gives a representation
of Cc(G,Co(X)) with its convolution product and involution defined earlier.
Once Cc(X) is completed to form a Hilbert Co(X/α)-module, E , this repre-
sentation extends to a homomorphism of Co(X) �α G into L(E).

II.10.4.8 The “rank-one operators” (II.7.2.4) are seen to be given by ele-
ments of Co(X) �α G, namely,

Θξ,η(t, x) = ∆(t)−1ξ(x)η̄(α−1
t (x)).

These rank-one operators generate an ideal in Co(X) �α G, which is Morita
equivalent (II.7.6.8) to Co(X/α). (For any proper action the full and reduced
crossed products coincide [Phi89].)

When α is free as well as proper, one finds that this ideal is all of
Co(X) �α G (and conversely). Thus we obtain:

II.10.4.9 Theorem. Let α be a free and proper action of G on X. Then
Co(X) �α G is Morita equivalent to Co(X/α).
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II.10.4.10 Example. Let α be the action of the two-element group Z2

on the unit sphere S2 in R
3 which takes each point to its negative (i.e. its

antipodal point), so that S2/α is the corresponding projective space. Then
C(S2) �α Z2 is Morita equivalent to C(S2/α). One can see that C(S2) �α Z2

is a continuous field (IV.1.6.1) of 2 × 2 matrix algebras over S2/α, and so
is a homogeneous (IV.1.4.1) C*-algebra, but that it is not isomorphic to
M2(C(S2/α)). This illustrates why the looser notion of Morita equivalence
is in many situations more useful than isomorphism in elucidating the struc-
ture of C*-algebras.

II.10.4.11 The above theorem points to another very important role for
crossed products and their generalizations. There are many situations in which
understanding the interaction between an action α on X and analytical or geo-
metrical structure on X is best seen in terms of features of X/α, for example
its algebraic topology. But suppose now that α, while free, is far from proper.

II.10.4.12 Examples.

(i) Irrational rotation algebras (cf. II.8.3.3(i)). Let α denote the action of
the group Z on the circle, T, by rotations through multiples of a fixed
angle 2πθ where θ is irrational. This action is free, but every orbit is
dense, and the quotient topology on the orbit space T/α has only two
open sets. Thus the quotient topology is useless for most purposes. But
the crossed product C(T)�α Z is still well-defined, and is a simple unital
C*-algebra called an irrational rotation C*-algebra. One can ask when
two irrational rotation C*-algebras are isomorphic. One sees easily that
each is isomorphic to one with θ in the interval [0, 1/2], and then by using
K-theoretic techniques [Rie81] one finds that different θ’s in that interval
give non-isomorphic algebras. Moreover, different θ’s give algebras which
are Morita equivalent exactly if the θ’s are in the same orbit under the
action of SL(2, Z) by linear fractional transformations.
This definition is equivalent to the one in II.8.3.3(i): if u is the unitary
u(z) = z in C(T), and v is the generator of Z ⊆ C(T) �α Z, then vu =
e2πiθuv, and C(T)�αZ is the universal C*-algebra generated by unitaries
satisfying this relation.

(ii) Bunce–Deddens algebras. Let {mk} be a strictly increasing sequence of
positive integers such that mk divides mk+1 for each k. Let Gk be the
subgroup of the circle group T consisting of the mk-th roots of unity. Note
that Gk ⊂ Gk+1 for each k. Let G = ∪Gk, with the discrete topology.
Then G is a dense subgroup of T consisting of torsion elements. Let α be
the action of G on T by translation. Again the action is free, but every
orbit is dense, so that the topology on T/α is useless. The crossed product
C(T) �α G is a simple unital C*-algebra called a Bunce–Deddens C*-
algebra. It is easily seen that C(T)�αG is the inductive limit (II.8.2) of the
C(T)�α Gk’s (cf. IV.1.4.23). The isomorphism classes of Bunce-Deddens
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algebras are classified just as the UHF algebras, using generalized integers
(V.1.1.16(iv)).
By taking Fourier-Plancherel transform, Ĝ is a compact totally discon-
nected torsion-free group (isomorphic to the additive group of p-adic in-
tegers if mk+1/mk = p for all k) containing a dense subgroup isomorphic
to T̂ ∼= Z, and the Bunce-Deddens algebra is isomorphic to C(Ĝ) �β Z,
where β is translation by Z ⊆ Ĝ.

(iii) The UHF algebras can similarly be described as transformation group C*-
algebras. For each k ∈ N let Gk be a finite cyclic group. Then G =

⊕
Gk

is a dense subgroup of Γ =
∏

Gk, and thus G acts on Γ by translation. If
G is given the discrete topology, then C(Γ)�α G is a UHF algebra whose
generalized integer is

∏
|Gk|. If each Gk is Z2, the crossed product is the

CAR algebra.

II.10.4.13 II.10.4.12(i) suggests that when α is a free action on X which is
not proper, so that X/α can be highly singular as in the above examples, the
crossed product Co(X) �α G may well carry much of the information which
one would have found on X/α if it were not singular. This turns out to be
true in practice. Thus crossed product algebras, and their generalizations, can
serve as “desingularizations” of “bad” spaces.

II.10.4.14 When the action α is not free matters are, of course, more com-
plicated. We give just one simple but important example, as a hint of what
might happen more generally. Let H be a proper closed subgroup of a locally
compact group G. Then the coset space G/H with the quotient topology is a
locally compact space, which carries an evident action, α, of G by left trans-
lation. This action is not free, but the orbit space has just one point. We
will construct a Morita equivalence of Co(G/H) �α G with another algebra,
namely C∗(H). As imprimitivity bimodule we take a completion of Cc(G).
For simplicity we assume that G and H are unimodular, but the general case
can be handled by inserting modular functions in various places below. We
let the convolution algebra Cc(H) act on the right on Cc(G) by convolution
(by using the Haar measure on H to view the elements of Cc(H) as finite
measures on G). We define a Cc(H)-valued inner product on Cc(G) by

〈f, g〉 = (f∗ ∗ g)|H .

The completion, E , of Cc(G) is then a right Hilbert C∗(H)-module. We view
functions in Co(G/H) as functions on G which are constant on cosets of H, so
that Co(G/H) acts by pointwise multiplication on Cc(G). This action together
with the action of G by left translation on Cc(G) satisfy the “covariance rela-
tion” (II.10.3.8), and their integrated form gives an injective homomorphism
of Co(G/H) �α G into L(E). The rank-one operators for the C∗(H)-valued
inner product are seen to be in the range of this homomorphism, and their
linear span is seen to be dense in it, so that Co(G/H) �α G ∼= K(E). Thus
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II.10.4.15 Theorem. Let H be a closed subgroup of the locally compact
group G. Then Co(G/H) �α G is Morita equivalent to C∗(H).

II.10.4.16 In particular, every unitary representation of H gives a repre-
sentation of Co(G/H) �α G, and so a unitary representation of G. These
representations of G are just those “induced” from H, and the above theorem
is just a C*-algebraic formulation of Mackey’s imprimitivity theorem which
says that a representation of G is induced from H exactly if it admits a “sys-
tem of imprimitivity”, that is, a representation of Co(G/H) which satisfies
the covariance relation with it.

Actions by Compact Groups

II.10.4.17 In the previous section we saw that if a transformation group
involves a proper action, then the corresponding crossed product has some
favorable properties. It is not clear how best to define “proper” actions on
non-commutative C*-algebras (cf. [Rie90]), but since the action of any compact
group on any space is proper, it is reasonable to expect that actions of compact
groups on non-commutative spaces should also always be “proper”, whatever
the right definition.

In line with this idea, we proceed in the following way which parallels
the situation for proper actions. Let (A,G, α) be a covariant system with G
compact. Because Haar measure is now finite, we can normalize it to give
G mass 1, and then we can average with it. Thus, as in II.6.10.4(v), we can
define a conditional expectation, φ, of A onto its fixed point algebra, AG, by

φ(a) =
∫

G

αt(a)dt.

Since φ is clearly faithful, AG is not trivial, though it may be one-dimensional.
Recall (II.7.3.14) that a corner of a C*-algebra B is a hereditary subalgebra
of form pBp for some projection p ∈ M(B). It is Morita equivalent to the
ideal BpB.

II.10.4.18 Theorem. [Ros79] Let (A,G, α) be a covariant system with G
compact. Then AG is naturally isomorphic with a corner of A �α G, and so
is Morita equivalent to an ideal in A �α G.
Proof: It suffices to let p be the function on G which has constant value 1,
viewed as an element of M(A �α G) as discussed in II.10.3.12. Simple calcu-
lations show that p(A �α G)p consists of functions with values in AG which
are constant on G, and that these form a subalgebra of A �α G isomorphic to
AG.
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II.10.4.19 When A is commutative, the ideal generated by p can be seen
to coincide with the ideal which entered into the discussion of proper actions
in II.10.4.8. As indicated there, this ideal is all of A �α G exactly when the
action is free. It is not clear how best to define freeness of an action on a
noncommutative C*-algebra. The above suggests that when G is compact one
possibility is to require that this ideal be all of A �α G. This possibility, as
well as others, have been extensively explored in [Phi87].

II.10.5 Takai Duality

II.10.5.1 We now consider what happens when G is commutative (but need
not be compact). In this case the dual group Ĝ is useful in understanding the
structure of A �α G. The reason for this is that there is a natural action, α̂,
called the dual action, of Ĝ on A �α G, defined at the level of functions by

(α̂γ(f))(t) = 〈t, γ〉f(t)

for γ ∈ Ĝ. It is then natural to ask about the structure of (A�α G)�α̂ Ĝ. The
answer was given by H. Takai [Tak75], following a corresponding theorem of
Takesaki about crossed products for von Neumann algebras (III.3.2.8).

II.10.5.2 Theorem. [Takai Duality] With notation as above, we have

(A �α G) �α̂ Ĝ ∼= A ⊗K(L2(G)).

Under this isomorphism the second dual action ˆ̂α of G becomes the action
α ⊗ λ on A ⊗ K(L2(G)), where λ is the action on K(L2(G)) consisting of
conjugating by the representation of left translation on L2(G).

In the case in which A = C we are back to the Heisenberg commutation
relations discussed in II.10.4.3.

II.10.5.3 Suppose that I is an ideal in A which is carried into itself by α.
Then I �α G is an ideal in A�α G, and for G abelian this latter ideal is carried
into itself by α̂. One can use the Takai duality theorem to prove the converse,
so that:

II.10.5.4 Theorem. Let (A,G, α) be a covariant system with G abelian.
Then passing from I to I �α G gives a bijection between the α-invariant ideals
of A and the α̂-invariant ideals of A �α G.

It takes more complicated techniques to get more information about the
general ideals of A �α G, and there are no completely general results known;
some of the known results are discussed in the next section.

II.10.5.5 There is a version of Takai duality for nonabelian groups and,
more generally, for actions of certain Hopf C*-algebras (II.10.8.14).



212 II C*-Algebras

II.10.6 Structure of Crossed Products

The structure of crossed product C*-algebras (and their generalizations) is
in general very complicated. There is by now a vast literature dealing with
various facets of this matter; see e.g. [GR79], [Kis80], [Ech93], [RW93], [Pac94].
To give the flavor we will simply state here one fundamental result, without
even giving full definitions, much less an indication of the fairly complicated
proof.

II.10.6.1 Let (A,G, α) be a covariant system. Then α determines an action
of G on Prim(A). We say that two points in Prim(A) are in the same quasi-
orbit if the closures of their G-orbits in Prim(A) coincide. (Recall that Prim(A)
is locally compact, but perhaps not Hausdorff.) Let J ∈ Prim(A), and let GJ

denote the stability subgroup of J in G. Then we can form A �α GJ . Using
A�αGJ there is a way of “inducing” J to a primitive ideal, Ind(J), of A�αG.
This inducing construction uses representations of A whose kernel is J , and
generalizes the construction of the regular representations given in II.10.3.13,
in a way which can be viewed as a special case of the construction in II.10.4.14.
Two elements in Prim(A) which are in the same quasi-orbit will induce to the
same element of Prim(A �α G).

II.10.6.2 Theorem. [Gre78] Assume that (A,G, α) is separable. If G is
amenable, then every primitive ideal of A �α G is an induced primitive ideal.
Moreover if G acts freely on Prim(A), then the inducing process establishes a
bijection between Prim(A�αG) and the quasi-orbits in Prim(A). In particular,
if G acts freely and every orbit is dense, then A �α G is simple.

II.10.6.3 In particular, we can conclude from this theorem that the irra-
tional rotation algebras and the Bunce–Deddens algebras are simple. But since
for both these examples A and G are commutative, the proof can be much
simplified.

II.10.7 Generalizations of Crossed Product Algebras

Driven by the needs of various mathematical situations, many generalizations
of crossed product C*-algebras have been developed and studied extensively.
We briefly indicate some of them here.

Cocycles

II.10.7.4 Let G be a locally compact group, and let c be a 2-cocycle on G
with values in the circle group T, that is, c is a function on G × G satisfying

c(r, st)c(s, t) = c(r, s)c(rs, t).
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These arise, for example, when dealing with projective representations of G —
so important in quantum physics. Then the definition of convolution of func-
tions on G can be generalized to

(f ∗c g)(t) =
∫

f(s)g(s−1t)c(s, s−1t)ds.

Some care must be taken due to the fact that in important situations it is
not possible to arrange that c be continuous—it is only measurable. But one
obtains a C*-algebra, C∗(G, c), as well as C∗

r (G, c), often called a “twisted”
group algebra.

II.10.7.5 Example. Noncommutative tori. Let θ be a skew-adjoint operator
on R

n for its usual inner product. Define a cocycle cθ on Z
n by

cθ(u, v) = exp(2πi〈θu, v〉).
The resulting C*-algebras, Aθ = C∗(Zn, cθ), are called noncommutative tori
(cf. II.8.3.3(i)). They arise in many situations. The irrational rotation algebras
can be put in this form with n = 2 by taking Fourier transforms in the T

variable.

Twisted Crossed Products

II.10.7.6 Given a covariant system (A,G, α), one can consider in addition
a 2-cocycle with values in the unitary group of M(A), satisfying suitable
relations with α. Then one can again define a twisted convolution of A-valued
functions to obtain C*-algebras C∗(G,A, α, c) and their reduced forms. Since
general 2-cocycles are closely related to group extensions, these twisted group
algebras can also often be defined (without mentioning the cocycle) in terms
of extensions of G [Gre78], as well as in a framework of C*-algebras “graded”
over G [Fel69].

Groupoids

II.10.7.7 Groups are effective in dealing with the global symmetries of
mathematical objects. But in recent years there has been rapidly increasing
use of groupoids for dealing with local symmetries, and for other purposes. A
groupoid, G, is like a group except that it has many units (i.e. identity ele-
ments). For each element there is a left unit and a right unit. The (associative)
product xy of x, y ∈ G is only defined when the left unit of y coincides with
the right unit of x. Each element is required to have an inverse. The elements
which have a given unit u as simultaneously both left unit and right unit form
a group, which can be considered to be the group of symmetries at u.

Groupoids which have a locally compact topology are of great importance,
as are groupoids which are manifolds (“Lie groupoids”). In both cases there
are important examples (such as holonomy groupoids) where the topology is
not Hausdorff, though in a specific sense there are many Hausdorff subsets.
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II.10.7.8 Unlike locally compact groups, groupoids do not automatically
have a “Haar measure”. One must include it as an axiom if needed (and check
its existence for examples being studied). To do analysis on groupoids it is
needed. A “Haar measure” is actually a field of measures, indexed by the
units. It is usually far from unique. The measure µu associated to a unit u is
supported on the set Gu of elements whose left unit is u. The field {µu} is
required to be continuous in the sense that for any f ∈ Cc(G) the function f0

defined on the space G0 of units by

f0(u) =
∫

Gu

f(y)dµu(y)

must be in Cc(G0). The field {µu} must also be left invariant in a natural
sense.

II.10.7.9 When all this is properly formulated (see [Ren80] for details), one
can again define convolution, by

(f ∗ g)(x) =
∫

Gr(x)
f(y)g(y−1x)dµr(x)(y),

where r(x) denotes the left unit (“range”) of x. There is then a C*-norm de-
fined in terms of representations of groupoids, and so one obtains the groupoid
C*-algebra C∗(G), and its reduced version, C∗

r (G).
One can then consider generalizations of the various variations of crossed

products considered above, so as to get, for example, groupoid C*-algebras
twisted by cocycles, and crossed products for groupoids acting on C*-algebras.

Many familiar C*-algebras which appear in other guises can also be use-
fully realized as groupoid C*-algebras. This is true, for example, of the Cuntz
algebras and, more generally, the graph C*-algebras (II.8.3.3(iii)).

II.10.8 Duality and Quantum Groups

Duality for Nonabelian Groups

There are two distinct, but related, types of duality for locally compact abelian
groups, Pontrjagin duality and the more recent Takesaki-Takai duality. Both
can be generalized to nonabelian groups, and farther.

II.10.8.10 The idea in generalizing Pontrjagin duality is to identify a “dual
object” to a nonabelian group. This was first done by T. Tannaka [Tan39]
and M. Krein [Kre49] for compact groups, and significant contributions to
the theory were made by many mathematicians, notably I. Segal [Seg50], W.
Stinespring [Sti59], G. Kac [Kac63], [Kac65], [VK74], P. Eymard [Eym64],
N. Tatsuuma [Tat67], J. Ernest [Ern67], M. Takesaki [Tak72], M. Enock and
J.-M. Schwartz [ES75], and E. Kirchberg [Kir77b]. We will not describe the
evolution and various points of view used in duality theory (see e.g. [HR70]
for a complete treatment of Tannaka-Krein duality); we will only outline one
modern point of view using operator algebras.
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II.10.8.11 If G is a finite group, then the finite-dimensional C*-algebra
C(G) has a structure as a commutative Hopf *-algebra, with comultiplication
∆ : C(G) → C(G) � C(G) ∼= C(G × G) defined by

[∆(f)](s, t) = f(st)

and counit ε : C(G) → C and antipode S : C(G) → C(G) given by

ε(f) = f(eG) , [S(f)](t) = f(t−1) .

The Hopf *-algebra C(G) with these operations is usually denoted K(G).
The group algebra CG, which coincides with C∗(G) and also L(G)

(III.3.3.1), has a natural structure as a cocommutative Hopf *-algebra via:

∆(ut) = ut ⊗ ut , ε(ut) = 1 , S(ut) = ut−1

for t ∈ G and ut the corresponding unitary in L(G), extended by linearity.
If G is abelian, then K(G) ∼= CĜ (so CG ∼= K(Ĝ)) as Hopf *-algebras.

II.10.8.12 A finite-dimensional Hopf *-algebra A which is not necessarily
either commutative or cocommutative can thus be regarded as a generalization
of a finite group. But there is another crucial ingredient present in the group
case: a Haar state, a state h : A → C satisfying (h ⊗ id)(∆(a)) = h(a)1 for
all a ∈ A. To insure existence of a Haar state (which is automatically unique,
tracial, and faithful, thus giving a C*-norm on A via the GNS representation),
it must be assumed that A satisfies a∗a = 0 =⇒ a = 0. Such a Hopf *-algebra
is now usually called a finite quantum group.

It is not hard to show using II.2.2.4 that a commutative finite quantum
group is of the form K(G) for a finite group G; it is similarly easy to show
that a cocommutative quantum group is of the form CG.

If A is a finite quantum group, then its dual space A∗ also has a natural
structure as a finite quantum group, denoted Â, and ˆ̂

A ∼= A. If A ∼= K(G)
as above, then Â ∼= CG. There is thus a duality theory for finite quantum
groups. See, for example, [KT99, §2].

II.10.8.13 If G is a general locally compact group, then L∞(G) and L(G)
can be made into coinvolutive Hopf-von Neumann algebras in more or less
the same way as for finite groups. (If G is infinite, these are technically not
Hopf algebras, since the comultiplication maps M into M⊗̄M and not into
M �M .) If G is abelian, then L(G) ∼= L∞(Ĝ) (so L∞(G) ∼= L(Ĝ)), so L∞(G)
and L(G) can be regarded as duals of each other.

These Hopf-von Neumann algebras also have a left Haar weight induced
by left Haar measure. A Hopf-von Neumann algebra with a left Haar weight
is called a Kac algebra. The left Haar weight on a Kac algebra is unique up
to a scalar multiple, and is faithful and semifinite; it is a trace if and only if
it is also a right Haar weight (for example, the left Haar weight on L(G) is a
trace if and only if G is unimodular).
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There is a duality theory for Kac algebras generalizing Pontrjagin duality
and the duality of II.10.8.12 [ES75]; under this duality L(G) is the dual of
L∞(G) (and vice versa) even if G is not abelian. See [ES92], [Tak73], or [Str81,
§18] for a more complete treatment, which is closely related to modular theory
for von Neumann algebras.

II.10.8.14 It is more delicate to obtain a duality at the group C*-algebra
level. One of the many technical difficulties is that the natural comultiplication
on Co(G) does not map into Co(G) ⊗ Co(G), but only into the multiplier
algebra. One is led to study “Hopf C*-algebras” (or, perhaps more correctly,
“C*-bialgebras”), where the comultiplication is a map from the algebra A to
M(A ⊗ A), with a Haar weight (Kac C*-algebras). It is not obvious which
cross norm to use on A � A; it turns out that the minimal cross norm is the
best choice for a duality theory. Hopf C*-algebras were first considered in
[Iór80] and Kac C*-algebras in [Val85].

A Kac C*-algebra has an enveloping Kac algebra obtained by taking the
weak closure in the GNS representation from the Haar weight. Conversely,
it was shown in [EV93] that every Kac algebra M contains a unique Kac
C*-subalgebra A such that M is the enveloping Kac algebra of A (A is char-
acterized by the properties that A is closed under the antipode, the comulti-
plication maps A into M(A⊗A), realized as the idealizer of A⊗A in M⊗̄M ,
and the restriction of the Haar weight to A is densely defined). There is thus a
natural one-one correspondence between Kac C*-algebras and Kac algebras.
In the cases above, the Kac C*-subalgebra of L∞(G) is Co(G), and the Kac
C*-subalgebra of L(G) is C∗

r (G).
From this correspondence, one can obtain a duality theory for Kac C*-

algebras.
See [VVD01] for an approach to defining Hopf C*-algebras without the

assumption of a Haar weight.

Crossed Products and Takesaki-Takai Duality

Takesaki-Takai duality can also be generalized to nonabelian groups and, even
more generally, to Kac algebras and Kac C*-algebras. We will describe how
this works for finite groups; the general group case is quite similar but with
topological and measure-theoretic technical complications. This duality the-
orem was first proposed in the case G compact by J. Roberts [Rob76] and
carried out in the general case by M. Landstad ([Lan79], [Lan77]), Y. Nak-
agami [Nak77], and S. Stratila, D. Voiculescu, and L. Zsido [SVZ77]. For the
general Kac algebra case, see [Eno77], [ES80], [SVZ76], [Zsi78]. See [CM84],
[BM85], and [VDZ00] for purely algebraic versions.

II.10.8.15 An action of a Hopf *-algebra (A,∆) on a *-algebra N is a
*-linear map δ : N → N �A such that (δ⊗ id)◦ δ = (id⊗∆)◦ δ as maps from
N to N � A � A. We similarly define an action if A is a Hopf-von Neumann
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algebra, N is a von Neumann algebra, and δ : A → N⊗̄A is bounded and
σ-weakly continuous, or if N is a C*-algebra, A is a Hopf C*-algebra, and
δ : N → M(N ⊗ A) is bounded.

The term “action” is conventionally used instead of “coaction”, but an
algebra N with an A-action in this sense is called an A-comodule. What may
be called a coaction of a Hopf algebra (A,∆) on a unital algebra N is a
map ψ : A � N → N making N a left A-module, with the properties that
ψ(a⊗xy) =

∑
j ψ(bj⊗x)ψ(cj⊗y) for a ∈ A, x, y ∈ N , and ∆(a) =

∑
j bj⊗cj ,

and ψ(a ⊗ 1) = ε(a)1, where ε : A → C is the counit. An algebra with an
A-coaction in this sense is called an A-module algebra. See [Swe69] for details.

II.10.8.16 If G is a finite group, then the actions of K(G) are in natural
one-one correspondence with the actions of G: if N is a *-algebra and σ is
a homomorphism from G into the group of *-automorphisms of N , then σ
induces an action δσ of K(G) on N by identifying N � K(G) with C(G,N)
in the standard way and letting [δσ(x)](t) = σt(x) for x ∈ N . It is easily seen
that every action of K(G) arises in this manner. If G is just locally compact,
there is a similar action of Co(G) if N is a C*-algebra with a G-action:

δ(x) ∈ Cb(G,N) ∼= N ⊗ Cb(G) ⊆ M(N ⊗ Co(G))

and there is also an analogous action of L∞(G) on a von Neumann algebra
N with a G-action as in III.3.2.2.

Returning to the case of G finite, if N is a C*-algebra we may regard K(G)
as represented on L2(G) by multiplication operators, and identify N �σG with
the subalgebra of N � L(L2(G)) generated by δ(N) ∪ (1 ⊗ K(G)).

II.10.8.17 There is an action γ of the Hopf *-algebra L(G) on L(L2(G))
defined as follows. The comultiplication on L(G) is defined by

∆(x) = W ∗(x ⊗ 1)W

where L(G) is regarded as a subalgebra of L(L2(G)) and W is the unitary on
L2(G)⊗L2(G) ∼= L2(G×G) defined by [Wf ](s, t) = f(s, st). It can be checked
that this formula for any x ∈ L(L2(G)) gives an element of L(L2(G))�L(G),
and defines an action of L(G). If G is abelian, it is not hard to see that this
coincides with the action of K(Ĝ) on L(L2(G)) coming from the action of Ĝ
dual to the action of G on L(L2(G)) by the left regular representation.

From this we get an action β = id⊗γ of L(G) on N�L(L2(G)) in the case
where G acts on N . It is easy to see that β maps the subalgebra N �σ G into
(N �σ G)�L(G) and hence induces an action of L(G) on N �σ G, called the
dual action and denoted δ̂. The Takesaki-Takai duality theorem then becomes:

II.10.8.18 Proposition. The subalgebra of N�L(L2(G))�L(L2(G)) gen-
erated by δ̂(N �σ G) and 1 ⊗ 1 ⊗ K(G) (where K(G) acts as multiplication
operators on L2(G)) is isomorphic to N � L(L2(G)).
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The same result holds true in the case of general locally compact G, if
the constructions are suitably interpreted; the technicalities are considerably
greater.

II.10.8.19 In the general case of a Kac algebra A acting via δ on a von
Neumann algebra N , there is a W*-crossed product N�̄δA, defined to be the
von Neumann subalgebra of N⊗̄A generated by δ(N)∪(1⊗A), and dual action
δ̂ of Â on N�̄δA; the second crossed product (N�̄δA)�̄δ̂Â is isomorphic to
N⊗̄L(H), where A acts on H in standard form (III.2.6). The second dual
action can also be nicely described. There is a C*-algebra (Takai duality)
version of this result.

Quantum Groups

II.10.8.20 Kac algebras (or Kac C*-algebras) are not the last word in gen-
eralizing locally compact groups via Hopf algebras, however. There are other
Hopf-algebra-type objects which are “quantizations” of groups; these objects
have come to be known as quantum groups. Many of these can be defined
and studied without reference to operator algebras. See, for example, [Dri87],
[Kas95], [KS97], and [Lus93].

Many of the interesting and important quantum groups, especially non-
compact ones, are formed by deforming a Lie group (i.e. deforming the mul-
tiplication in the associated commutative Hopf algebra) in the direction of a
Poisson bracket. These are called deformation quantizations.

While mathematicians seem to know a quantum group when they see one,
and there are many examples and constructions which everyone agrees give
quantum groups, coming up with a satisfactory definition of a quantum group
has been a slow and difficult process which has not yet reached a conclu-
sion. Operator algebraists, beginning with S. Woronowicz, have championed
a C*-algebra approach for the locally compact case. A recent article ([KT99],
[KT00]) surveys this approach in detail, so we will only hit a few selected high
points.

II.10.8.21 If Kac algebras (or Kac C*-algebras) are generalizations of lo-
cally compact groups, then a Kac algebra (or Kac C*-algebra) in which the
Haar weight is a state, such as L∞(G) or C(G) for G compact (a compact
group) or L(G) or C∗

r (G) for G discrete (the dual of a discrete group), should
correspond to a generalized compact group.

Woronowicz discovered that there are natural compact quantum groups
which do not correspond to Kac algebras in any reasonable sense. An exam-
ple is the quantum SU(2) (II.8.3.3(v)). The problem is that the counit and
antipode may be unbounded and not everywhere defined on the C*-algebra;
the antipode is invertible but not involutive in general. Woronowicz gave a
definition of a compact quantum group which is now generally accepted: a
unital C*-algebra A with a *-homomorphism ∆ : A → A⊗A (minimal tensor
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product), such that (id⊗∆)◦∆ = (∆⊗id)◦∆, and such that ∆(A)(A⊗1) and
∆(A)(1 ⊗ A) are dense in A. Every finite quantum group is a compact quan-
tum group. Every compact quantum group has a unique Haar state, which
is however not faithful or tracial in general. The commutative [resp. cocom-
mutative] compact quantum groups with faithful Haar state are precisely the
C*-algebras C(G) for G compact [resp. C∗

r (G) for G discrete] with the usual
structure.

The (co)representation theory of compact quantum groups can be studied
using the multiplicative unitaries of S. Baaj and G. Skandalis [BS93]. Baaj and
Skandalis associated quantum group-like objects to their multiplicative uni-
taries and obtained a duality theorem, although the theory must be extended
[Wor96] to cover (apparently) general quantum groups.

Woronowicz proved a generalization of the Tannaka-Krein duality theo-
rem (that a compact quantum group is effectively determined by its tensor
category of finite-dimensional unitary corepresentations), using tensor C*-
categories, which provide close connections between quantum groups and
quantum field theory, knots, and subfactors (cf. [Jon90], [Wen88]).

II.10.8.22 A discrete quantum group should be the “dual” of a compact
quantum group. P. Podles and Woronowicz [PW90] proposed a definition of
a discrete quantum group, and a different approach was proposed in [ER94]
and [VD96]. A. van Daele [VD98] then provided a general framework for uni-
fying the theories of compact and discrete quantum groups, a purely algebraic
version of multiplier Hopf algebras with invariant state, which essentially in-
cludes the theory of compact quantum groups, and in which there is a duality
theory. Van Daele’s category includes far more than just compact and discrete
quantum groups.

The connection is that within every compact quantum group A there is a
unique dense *-subalgebra A which is maximal with respect to the property
that the comultiplication ∆ maps A into A�A. This A is one of the objects
considered by van Daele.

II.10.8.23 E. Kirchberg proposed the first reasonable definition of a locally
compact quantum group. T. Masuda and Y. Nakagami [MN94] built on this
work and developed a duality theory in the von Neumann algebra setting;
however, the axiom scheme was very complex.

Only recently has an apparently satisfactory definition been given for a
general locally compact quantum group, by J. Kustermans and S. Vaes [KV00]
(see [MNW03] for another related attempt). In this definition, existence of left
and right Haar weights must be included as an axiom.

II.10.8.24 Recently, the notion of a “quantum groupoid” has been explored.
There are close connections with the theory of subfactors. See [Eno03] for a
survey.
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Von Neumann Algebras

Recall (I.9) that a von Neumann algebra is a *-subalgebra M of L(H) for
a Hilbert space H, satisfying M = M ′′. A von Neumann algebra is unital,
weakly closed, and contains an abundance of projections.

Every von Neumann algebra is, of course, a C*-algebra, and all the results
and techniques of Chapter II apply to von Neumann algebras; but it is not
usually useful to think of von Neumann algebras merely as C*-algebras. In
some respects, their C*-algebra structure is extremely well-behaved (e.g. com-
parison theory and ideal structure), while in other ways they are pathological
as C*-algebras (for example, an infinite-dimensional von Neumann algebra is
always nonseparable and almost always nonnuclear).

Even the predominant philosophy behind the theory of von Neumann alge-
bras is different. While it is common to view C*-algebras as “noncommutative
topological spaces,” it is usual to regard von Neumann algebras as “noncom-
mutative measure spaces.” For example, if (X,µ) is a locally finite measure
space, then M = L∞(X,µ) acts naturally as a von Neumann algebra of op-
erators on L2(X,µ) (in fact, M = M ′, i.e. M is a maximal abelian subalgebra
(masa) in L(L2(X,µ))). By II.2.2.4, M ∼= C(Y ) for some compact Hausdorff
space Y , but this is rarely the best way to view M (Y is a huge non-first-
countable extremally disconnected or Stonean space in general). Indeed, every
commutative von Neumann algebra looks like an L∞ algebra acting by multi-
plication on L2 of a locally finite measure space, with multiplicity (III.1.5.18).

There is a whole range of techniques which are special to von Neumann
algebras, many of which are motivated by ideas from measure theory. Most
fall into two general groups: (1) algebraic arguments using the fact that the
projections in a von Neumann algebra generate the algebra in a very strong
sense and form a complete lattice; and (2) analytic/topological arguments
using normal linear functionals and the σ-weak topology (which arise from
the algebra’s structure as a dual space). In this chapter, we will discuss the
basic structure of von Neumann algebras and the techniques for working with
them.
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Von Neumann algebras, originally called “rings of operators,” were the
first operator algebras to be systematically studied, in the seminal papers of
Murray and von Neumann [MVN36]-[MvN43]. The theory was already re-
garded as well developed when a series of spectacular advances, beginning
with the Tomita-Takesaki Modular Theory in the late 1960’s and culminating
in Connes’ classification of injective factors, ushered in the “modern era” of
the subject.

A word on notation: even though von Neumann algebras are concrete
algebras of operators, it is customary (but, unfortunately, far from universal)
to use lower-case letters to refer to elements of the algebra, and we will do so.
We will also use 1 to denote the identity element.

Besides the standard references listed at the beginning of Chapter 2, some
of which (especially [KR97a]–[KR97b] and [Tak02]–[Tak03b]) concentrate on
von Neumann algebras, other standard references for von Neumann algebras
are the classic [Dix69a] and [SZ79]. As in the C*-algebra case, there are also
numerous specialized volumes, some of which are cited below.

III.1 Projections and Type Classification

III.1.1 Projections and Equivalence

Recall (I.9.2.1) that the projections in a von Neumann algebra form a complete
lattice. The way this is most often used in the theory is:

III.1.1.1 Proposition. Let M be a von Neumann algebra on a Hilbert
space H, and let {pi} be a set of mutually orthogonal projections in M . Then
the net of finite sums of the pi converges strongly to

∨
i pi, which is usually

denoted
∑

i pi.

III.1.1.2 Recall also (II.3.3.3) that projections p, q in a von Neumann alge-
bra (or C*-algebra) M are (Murray-von Neumann) equivalent, written p ∼ q,
if there is a partial isometry u ∈ M with u∗u = p, uu∗ = q, and p is subor-
dinate to q (p � q) if p ∼ q′ ≤ q. (These relations depend, of course, on the
choice of the algebra M containing p and q.) Equivalence is additive in a von
Neumann algebra: if {pi, qi} is a set of projections in M with pi ⊥ pj and
qi ⊥ qj for i �= j and pi ∼ qi for all i, then

∑

i

pi ∼
∑

i

qi

(the partial isometries can be added in the strong operator topology); simi-
larly, if pi � qi for all i, then

∑
i pi �

∑
i qi. If x ∈ M and x = u|x| is its polar

decomposition, then u, |x| ∈ M and the source and range projections (right
and left support projections) px = u∗u and qx = uu∗ are equivalent in M . If
x is normal, then px = qx is the support projection of x, denoted s(x).
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III.1.1.3 Proposition. Let p, q be projections in a von Neumann algebra
M . Then

(p ∨ q) − p ∼ q − (p ∧ q).

In fact, (p ∨ q)− p and q − (p ∧ q) are the source and range projections of
q(1 − p) respectively.

III.1.1.4 Proposition. Let p, q be (nonzero) projections in a von Neumann
algebra M . If qMp �= 0, then there are nonzero projections p′ ≤ p and q′ ≤ q
with p′ ∼ q′.

If qxp �= 0, then the source and range projections of qxp do the trick.

III.1.1.5 Every projection p in a von Neumann algebra M has a central
carrier (or central support projection) zp, the smallest projection in the center
Z(M) containing p as a subprojection (zp exists since Z(M) is itself a von
Neumann algebra). By III.1.1.4,

1 − zp =
∨

{q ∈ M : qMp = 0}.

Projections p and q have nonzero equivalent subprojections if and only if
zpzq �= 0. In particular, if q � p, then zq ≤ zp.

III.1.1.6 Proposition. Let M be a von Neumann algebra, p, {qi : i ∈ I}
projections in M , with the qi mutually orthogonal and all orthogonal to p,
and qi � p for all i. If z = p +

∑
i qi is in Z(M), then z = zp.

Proof: We have p ≤ zp and qi ≤ zqi
≤ zp for all i, so z ≤ zp. On the other

hand, p ≤ z, and zp is the smallest central projection dominating p, so zp ≤ z.

III.1.1.7 Proposition. If M is a von Neumann algebra and x, y ∈ M with
yMx = 0, then there is a projection z in the center Z(M) such that x ∈ zM
(i.e. xz = x) and y ∈ (1 − z)M (i.e. yz = 0).

We can take z = zqx
; note that pyMqx = 0, so py ≤ 1 − zqx

.
From this, we get a quick proof of II.6.1.11:

III.1.1.8 Corollary. Let A be a concrete C*-algebra of operators on a
Hilbert space H. If M = A′′ is a factor, then A is prime.
Proof: We will use II.5.4.5. Let x, y ∈ A. If xAy = 0, then xMy = 0 by
separate weak continuity of multiplication; so III.1.1.7 implies that either x
or y is 0.

III.1.1.9 Proposition. [Schröder-Bernstein] Let p, q be projections in
a von Neumann algebra M . If p � q and q � p, then p ∼ q.

The proof is very similar to the usual Schröder-Bernstein Theorem of set
theory.



224 III Von Neumann Algebras

III.1.1.10 Proposition. [Generalized Comparability] Let p, q be pro-
jections in a von Neumann algebra M . Then there is a central projection
z ∈ Z(M) such that pz � qz and q(1 − z) � p(1 − z).

The proof is a typical maximality or exhaustion argument: let {pi, qi} be
a maximal family of projections such that pi ≤ p, qi ≤ q, pi ∼ qi for all i and
pi ⊥ pj , qi ⊥ qj for i �= j. Set

p′ =
∑

pi, q′ =
∑

qi, r = p − p′, s = q − q′.

By maximality and III.1.1.4 we have sMr = 0, so there is a central projection
z with rz = 0 and sz = s. Then

pz = p′z ∼ q′z ≤ qz

and similarly

q(1 − z) = q′(1 − z) ∼ p′(1 − z) ≤ p(1 − z).

III.1.1.11 Corollary. [Comparability] Let p, q be projections in a fac-
tor M . Then either p � q or q � p.

Compare the next result with III.1.1.6:

III.1.1.12 Proposition. Let p be a projection in a von Neumann algebra
M , and {qi : i ∈ I} a maximal set of mutually orthogonal projections in M
with qi � p for all i. Then

∑
i qi = zp.

Proof: Set q =
∑

i qi. Since qi ≤ zqi
≤ zp for all i, we have q ≤ zp. Set

r = zp − q. There is a central projection z ∈ zpM (i.e. z ≤ zp) with zr � zp
and (zp − z)p � (zp − z)r. Then (zp − z)p is equivalent to a subprojection of
(zp − z)r, hence of r, so (zp − z)p = 0 by maximality. But

(zp − z)p = zpp − zp = p − zp,

i.e. p = zp, p ≤ z, so z = zp. But then r = zr � zp = p, so r = 0 by
maximality.

Ideals in von Neumann Algebras

III.1.1.13 The ideal structure of a von Neumann algebra is relatively simple
compared to that of a general C*-algebra. In particular, the weakly closed
ideals are very easy to describe. If M is a von Neumann algebra on H and I
is an ideal which is closed in any of the standard operator topologies (weak,
σ-strong-*, etc.), then I is a von Neumann algebra on its essential subspace X ,
which is an invariant subspace for M ; thus p = PX is a projection in Z(M),
p ∈ I, and I = Mp (and thus is weakly closed). Thus the weakly closed ideals
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in M are precisely the principal ideals generated by central projections. The
ideal Mp has a complementary ideal M(1 − p) ∼= M/Mp, and

M ∼= Mp ⊕ M(1 − p).

If L is a weakly closed left ideal in M , and (hλ) is an increasing right
approximate unit in L, then (hλ) converges strongly to a projection p (which
is the supremum of the support projections of the hλ). Thus p ∈ L, and
L = Mp. Thus the weakly closed left ideals of M are precisely the principal
left ideals generated by projections in M . Similarly, every weakly closed right
ideal of M is of the form pM for a (unique) projection p ∈ M .

Norm-closed ideals in a von Neumann algebra are not necessarily weakly
closed (e.g. K(H) in L(H)), and their structure is more complicated, especially
if Z(M) is large. The structure of the norm-closed ideals in a factor can be
precisely described, however (III.1.7.11).

III.1.1.14 If L is a norm-closed left ideal in a von Neumann algebra M ,
with weak closure Mp, and (hλ) is an increasing right approximate unit in L,
then as above hλ → p strongly. If N is any left ideal in M with norm-closure
L, then by approximating hλ by an element of N of norm 1, we obtain a net
kλ in the unit ball of N converging strongly to p. If x ∈ Mp, then (xkλ) is
a bounded net in N converging strongly to x. Thus, using the joint strong
continuity of multiplication on bounded sets, we obtain a simple analog of the
Kaplansky Density Theorem:

III.1.1.15 Proposition. Let M be a von Neumann algebra, N a left ideal
in M with weak closure Mp. Then the unit ball of M(N) (II.5.3.13) is σ-
strongly dense in the unit ball of pMp.

III.1.1.16 More generally, suppose N1 and N2 are left ideals in a von Neu-
mann algebra M , with weak closures Mp and Mq respectively. By the same
argument, the σ-strong closure of

N∗
2N1 = Span{y∗x : x ∈ N1, y ∈ N2} ⊆ N1 ∩ N∗

2

is qMp (the Span is even unnecessary). In particular, if N1 and N2 are σ-
weakly dense in M , so is N∗

2N1.

III.1.2 Cyclic and Countably Decomposable Projections

III.1.2.1 We say a projection p in a von Neumann algebra is countably de-
composable if any collection of mutually orthogonal nonzero subprojections
of p is countable. Any subprojection of a countably decomposable projection
is countably decomposable. A von Neumann algebra M is countably decom-
posable if 1M is countably decomposable. Any von Neumann algebra on a
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separable Hilbert space is countably decomposable, but there are countably
decomposable von Neumann algebras not isomorphic to a von Neumann al-
gebra on a separable Hilbert space (III.3.1.5). Similarly, if ℵ is any cardinal,
we can define ℵ-decomposability in the obvious manner. More generally, we
say a von Neumann algebra M is locally countably decomposable if there is
a set {zi} of mutually orthogonal central projections in M with

∑
zi = 1M

and Mzi countably decomposable. Every commutative von Neumann algebra
is isomorphic to L∞ of a locally finite measure space (III.1.5.18), hence is
locally countably decomposable (see III.1.2.6 for a generalization).

III.1.2.2 The interplay and duality between a von Neumann algebra M on
H and its commutant M ′ is the heart of the spatial theory of von Neumann
algebras. The fundamental tool in analyzing this interplay is the notion of a
cyclic projection, a generalization of the idea of a cyclic vector or representa-
tion.

If S is a subset of L(H) and ξ ∈ H, write [Sξ] for the closed linear span
of {Sξ : S ∈ S}. Recall that if A is a *-algebra of operators on H and ξ ∈ H,
then ξ is cyclic for A (or cyclic under A) if [Aξ] = H. We also say that ξ is
separating for A if x ∈ A, xξ = 0 implies x = 0, i.e. x �→ xξ is injective.

III.1.2.3 Definition. Let M be a von Neumann algebra on H, and q a
projection in M ′. Then q is cyclic under M (or cyclic in M ′) if there is a
ξ ∈ H such that [Mξ] = qH (i.e. if the representation of M on qH is cyclic).
ξ is called a cyclic vector (or generating vector) for q (under M).
If p is a projection in M , a vector ξ ∈ H is separating for (p,M) if pξ = ξ and
x ∈ M , xξ = 0 implies xp = 0.

A vector ξ is cyclic [resp. separating] for M in the usual sense if and only
if it is cyclic for 1M ′ under M [resp. separating for (1,M)].

We most commonly consider a von Neumann algebra M and projection
p ∈ M ; p is cyclic in M if it is cyclic under M ′. Likewise, we sometimes consider
vectors which are separating for M ′. The application of these definitions at
will to both M and M ′ can be slightly confusing, but is the cornerstone of
the spatial analysis of von Neumann algebras.

III.1.2.4 Proposition. Let M be a von Neumann algebra on H, p a pro-
jection in M , and ξ ∈ H with pξ = ξ. Then ξ is separating for (p,M) if and
only if ξ is cyclic for p (under M ′). In particular, ξ is cyclic for M if and only
if it is separating for M ′.
Proof: Suppose ξ is cyclic for p under M ′, and x ∈ M . If xξ=0, then xyξ =
yxξ = 0 for all y ∈ M ′, so

x[M ′ξ] = xpH = {0}

and xp = 0. Conversely, if ξ is separating for (p,M), let q be the projection
from H onto [M ′ξ]. Then q ∈ (M ′)′ = M , and since p(yξ) = ypξ = yξ for all
y ∈ M ′, q ≤ p. (p − q)ξ = 0, so p − q = (p − q)p = 0, q = p.
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III.1.2.5 The following facts are nearly immediate:

(i) If p is cyclic in M with cyclic vector ξ, and q ∈ M with q ≤ p, then q is
cyclic in M with cyclic vector qξ.

(ii) If p is any nonzero projection in M , then there is a nonzero projection
q ∈ M , q ≤ p, which is cyclic in M [let 0 �= ξ ∈ H with pξ = ξ, and let q
be the projection onto [M ′ξ].] Thus by a simple maximality argument, p
is the sum of a set of mutually orthogonal cyclic projections.

(iii) A cyclic projection is countably decomposable [if p is cyclic in M with
cyclic vector ξ, and {qi : i ∈ I} is a set of mutually orthogonal nonzero
subprojections of p in M , then qiξ �= 0 for all i (III.1.2.4), and

∑

i

‖qiξ‖2 ≤ ‖ξ‖2,

so I is countable].
(iv) If (zn) is a sequence of mutually orthogonal central projections in M ,

and each zn is cyclic in M with cyclic vector ξn of norm one, then
∑

n zn

is cyclic in M (or under M) with cyclic vector
∑

n n−1ξn. Thus if Z(M)
is countably decomposable, then there is a largest projection in Z(M)
which is cyclic in M (or under M).

Note, however, that even a sum of two noncentral cyclic projections need
not be cyclic: for example, if M = L(H), then a projection in M is cyclic if
and only if it has rank ≤ 1.

Putting (ii) for p = 1 together with (iii), we get:

III.1.2.6 Proposition. If M is a von Neumann algebra, then there is a set
{pi} of mutually orthogonal, countably decomposable projections in M with∑

pi = 1.

III.1.3 Finite, Infinite, and Abelian Projections

III.1.3.1 Definition. A projection p in a C*-algebra A is

abelian if pAp is commutative.
finite if p ∼ p′ ≤ p implies p′ = p.
infinite if it is not finite.
properly infinite if p ∼ p1, p ∼ p2 with p1, p2 ≤ p and p1 ⊥ p2.

A unital C*-algebra A is finite [resp. infinite, properly infinite] if 1A is finite
[resp. infinite, properly infinite].

By this definition, 0 is properly infinite (it is also finite). Although counter-
intuitive, it is convenient for the statement of decomposition results to regard
0 as both finite and properly infinite.

Any projection equivalent to a finite [resp. abelian, infinite, properly infi-
nite] projection is finite [resp. abelian, infinite, properly infinite].
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An abelian projection is obviously finite. If p is finite [resp. abelian] and q �
p, then q is finite [resp. abelian]. The finite projections in L(H) are the finite-
rank projections, and the abelian projections are the rank one projections.

III.1.3.2 Proposition. If p is an infinite projection in a C*-algebra A, then
there is a sequence of mutually orthogonal equivalent nonzero subprojections
of p. The converse is true if A is a von Neumann algebra.
Proof: If p is infinite and u ∈ A with

u∗u = p, uu∗ = p1 � p,

let q1 = p − p1 and qn = uqn−1u
∗ for n > 1. Then (qn) is a sequence of

mutually orthogonal equivalent nonzero subprojections of p. Conversely, if A
is a von Neumann algebra and (qn) is such a sequence, set q =

∑∞
n=1 qn; then

p = q + (p − q) ∼
∞∑

n=2

qn + (p − q) � p,

so p is infinite.
The converse can fail in a C*-algebra, for example A = K̃, p = 1. It is,

however, true in a simple C*-algebra (V.2.3.1).

Properly Infinite Projections

We begin with a variation of III.1.3.2. See III.1.3.5 and V.2.3.1 for closely
related results.

III.1.3.3 Proposition. Let A be a properly infinite (unital) C*-algebra.
Then there is a sequence of isometries in A with mutually orthogonal ranges,
i.e. A contains a unital copy of O∞ (II.8.3.3(ii)).

If u and v are isometries with mutually orthogonal ranges (i.e. u∗v = 0),
then u, vu, v2u, . . . form such a sequence.

III.1.3.4 Proposition. If p is an infinite projection in a von Neumann
algebra M , then there is a central projection z ∈ Z(M) with pz nonzero and
properly infinite.
Proof: Let {qn} be as in III.1.3.2. Then this set can be expanded to a max-
imal set {qi : i ∈ Ω} of mutually orthogonal equivalent subprojections of p,
and if q =

∑
i∈Ω qi, then by breaking Ω into three disjoint subsets {i0},Ω′,Ω′′

with Card(Ω′) = Card(Ω′′) = Card(Ω) we get projections q′ =
∑

i∈Ω′ qi and
q′′ =

∑
i∈Ω′′ qi with q′ ⊥ q′′, q = qi0 + q′ + q′′,

q ∼ q′ ∼ q′′ ∼ q′ + qi0 .
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If p0 = p − q, then by III.1.1.10 and maximality there is a central projection
z with p0z �= 0 and p0z � qi0z, so

pz = qz + p0z � q′z + qi0z � qz,

pz � q′′z and pz is properly infinite.

III.1.3.5 It is then an easy consequence that a projection p in a von Neu-
mann algebra M is properly infinite if and only if for each central projection
z, pz is either 0 or infinite. It follows from the Schröder-Bernstein Theorem
that if p is properly infinite, then p = p1 +p2, where p1 ⊥ p2 and p1 ∼ p2 ∼ p,
i.e. a properly infinite projection can be “halved.” By continuing to subdivide,
p can be “divided by n” for any n. Also, we can generate a sequence (qn) of
mutually orthogonal subprojections of p each equivalent to p; if q =

∑
qn,

then q ∼ p by III.1.1.9. If u∗u = p and uu∗ = q, set pn = u∗qnu; then (pn)
is a sequence of mutually orthogonal projections, each equivalent to p, with∑

pn = p. Thus p can also be “divided by ℵ0.”

III.1.3.6 Proposition. Let M be a properly infinite, locally countably
decomposable von Neumann algebra, and p a projection in M with central
support 1. Then there is a sequence (pn) of mutually orthogonal projections
in M , each equivalent to p, with

∑
pn = 1.

Proof: Let {zi} be a maximal family of mutually orthogonal nonzero central
projections in M such that for each i, there is a sequence (pin) of mutually
orthogonal subprojections of zi, each equivalent to pzi, with

∑
n pin = zi.

It suffices to show that
∑

zi = 1M , for then pn =
∑

i pin does the trick.
If z = 1 −

∑
zi �= 0, then q = pz �= 0 since p has central support 1. By

replacing Mz by a direct summand, we may assume that N = Mz is countably
decomposable; q has central support 1 in N . Since 1N is properly infinite, then
by III.1.3.5 there is a sequence of mutually orthogonal projections in N each
equivalent to q. Choose a maximal family {qi} containing such a sequence;
then {qi} is countably infinite. Let r =

∑
qi. By generalized comparability,

there is a central projection z′ ∈ N with (1N − r)z′ � qz′ and q(1N − z′) �
(1N − r)(1N − z′). By maximality of {qi}, z′ �= 0. Fix an index i0. Then

z′ = (1N − r)z′ + rz′ ∼ (1N − r)z′ +
∑

i�=i0

qiz
′ � qi0 +

∑

i�=i0

qiz
′ = rz′ ≤ z′

so by III.1.1.9 rz′ ∼ z′, contradicting maximality of {zi}.
Combining the previous two results, we get:

III.1.3.7 Corollary. Let M be a locally countably decomposable von
Neumann algebra, and p a properly infinite projection in M with central
support 1. Then p ∼ 1.
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Finite Projections

We now turn our attention to finite projections.

III.1.3.8 Proposition. Let M be a von Neumann algebra and p a projec-
tion in M . Then the following are equivalent:

(i) p is finite.
(ii) Whenever q, r are subprojections of p with q ∼ r, then p − q ∼ p − r.
(iii) Whenever q, r are subprojections of p with q � r, then p − r � p − q.

Proof: (i) =⇒ (ii): If p− q �∼ p− r, then by generalized comparability there
is a nonzero central projection z such that pz − qz is equivalent to a proper
subprojection s of pz − rz (or vice versa). Then

p = (pz − qz) + qz + p(1 − z)

is equivalent to the proper subprojection s + rz + p(1 − z), so p is infinite.
(ii) =⇒ (iii): If q ∼ s ≤ r, then p − q ∼ p − s ≥ p − r.
(iii) =⇒ (i): If p is equivalent to a proper subprojection p1, set q = p, r = p1.
Then p − r �� p − q.

Note that (ii) =⇒ (iii) =⇒ (i) is valid in a general C*-algebra. But (i)
�=⇒ (ii) in a general C*-algebra, even in a matrix algebra over a commutative
C*-algebra. This is the cancellation question in nonstable K-theory, which
will be discussed in V.2.4.13.

III.1.3.9 Proposition. Let p, q be projections in a von Neumann algebra
M . If p and q are finite, then p ∨ q is finite.
Proof: Suppose p and q are finite and p ∨ q is infinite. Using III.1.1.3 and
replacing q by (p ∨ q) − p, we reduce to the case where p ⊥ q, and then using
III.1.3.4 we may assume p ∨ q = p + q is properly infinite. By halving there
are r, s with r ⊥ s, p + q = r + s, r ∼ s ∼ p + q. By generalized comparability
we may assume r ∧ p � s ∧ q. Then

r = (r − r ∧ p) + (r ∧ p) � (r ∨ p − p) + (s ∧ q) ≤ q,

so r is finite, a contradiction.
Note that in a general C*-algebra A, if p, q are finite projections in A with

p ⊥ q, then p + q is not necessarily finite (V.2.1.6).
A supremum of abelian projections (in a von Neumann algebra) is not

necessarily abelian, and an infinite supremum of finite projections is not finite
in general. An arbitrary supremum of finite [resp. abelian] central projections
is finite [resp. abelian].

III.1.3.10 If p is an abelian projection, then it follows easily from I.9.1.4
that p is a minimal projection among all projections with central carrier zp,
and every subprojection of p is of the form pz for some central projection z.
If q is any projection with zp ≤ zq, then p � q by generalized comparability.
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III.1.4 Type Classification

III.1.4.1 A consequence of III.1.3.4 and a simple maximality argument is
that if M is a von Neumann algebra and p is a projection in M , then there is a
central projection z ∈ M such that pz is finite and p(1−z) is properly infinite.
In particular, taking p = 1, there is a unique central projection zf ∈ M such
that zf is finite and 1 − zf is properly infinite. Mzf is called the finite part
of M and M(1 − zf ) the properly infinite part.

M ∼= Mzf ⊕ M(1 − zf ).

(Note, however, that Mzf does not contain all finite projections of M in
general; for example, if M = L(H), then zf = 0.)

III.1.4.2 Definition. Let p be a projection in a von Neumann algebra M .
Then p is semifinite if every nonzero subprojection of p contains a nonzero
finite subprojection, and p is purely infinite (or type III ) if p contains no
nonzero finite subprojections. M is semifinite if 1M is semifinite, and purely
infinite (or Type III) if 1M is purely infinite.

(For convenience, 0 is both semifinite and purely infinite.)

III.1.4.3 If p is a finite projection in a von Neumann algebra M , then by
generalized comparability any projection with the same central support is
semifinite, and in particular zp itself is semifinite. Then another maximality
argument shows that every von Neumann algebra M contains a central pro-
jection zsf such that zsf is semifinite and 1 − zsf purely infinite. Mzsf is
the semifinite part of M and MzIII the Type III part, where zIII = 1 − zsf .
zsf =

∨
{p : p is finite}. The finite part of M is contained in the semifinite

part; thus M is a direct sum of a finite part, a properly infinite semifinite
part, and a purely infinite part. (It is not yet obvious that the purely infinite
part can be nonzero; but examples will be given in III.3.)

Semifinite von Neumann Algebras

III.1.4.4 We will now examine the semifinite part more carefully. We say a
projection p in a von Neumann algebra is continuous if it contains no nonzero
abelian subprojection, and discrete if it contains no nonzero continuous sub-
projection (i.e. every nonzero subprojection contains a nonzero abelian sub-
projection). Any purely infinite projection is continuous, and it turns out that
some von Neumann algebras also have nonzero finite continuous projections.
(Again, for convenience, 0 is both discrete and continuous.)

III.1.4.5 If {pi} is a family of abelian projections which is maximal with
respect to the condition that the central carriers zpi

are pairwise orthogonal,
then zI =

∑
zpi

is a discrete central projection and 1 − zI is continuous.

zI =
∨

{p : p is discrete} =
∨

{p : p is abelian}.

MzI is called the discrete or Type I part of M .
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III.1.4.6 We then let zII = 1 − zI − zIII ; MzII is called the Type II part
of M . zII is the largest continuous semifinite projection. We can further de-
compose the Type II part of M into a finite and properly infinite part: set
zII1 = zIIzf and zII∞ = zII(1 − zf ); MzII1 and MzII∞ are called the Type
II1 and Type II∞ parts of M . zII1 is the largest finite continuous central
projection, and zII∞ the largest properly infinite semifinite continuous pro-
jection.

III.1.4.7 Thus M can be canonically written as

M = MzI ⊕ MzII1 ⊕ MzII∞ ⊕ MzIII .

Some of these central summands may be zero. If zI = 1, then M is called a
(pure) Type I von Neumann algebra; Type II1, Type II∞, and Type III von
Neumann algebras are defined similarly. Thus every von Neumann algebra is
a direct sum of von Neumann algebras of pure type. If M is a factor, then
M is either Type I, Type II1, Type II∞, or Type III. (L(H) is an example of
a type I factor; examples of factors of the latter three types will be given in
III.3).

We may further break up the Type I part of M into finite and infinite parts
as with the Type II part; the central projection corresponding to the properly
infinite Type I part is denoted zI∞ . There is a more refined decomposition
and structure description possible for Type I von Neumann algebras (III.1.5).
There is also a further decomposition of Type III factors into Type IIIλ,
0 ≤ λ ≤ 1 (III.4.6.13).

III.1.5 Tensor Products and Type I von Neumann Algebras

Matrix Units

III.1.5.1 We first discuss a generalization of II.9.4.3. Suppose {pi : i ∈ Ω}
is a set of mutually orthogonal equivalent projections in L(H), with

∑
pi = 1.

Fix an i0, and for each j let uj be a partial isometry from pj to pi0 . Set eij =
u∗

i uj . Then {eij} is a set of matrix units in L(H) of type Card(Ω), and the von
Neumann algebra N generated by {eij} is a subalgebra of L(H) isomorphic to
L(H1), where H1 has dimension Card(Ω). Furthermore, if {ηk : k ∈ K} is an
orthonormal basis for H2 = pi0H, and for each i, k we set ζi,k = eii0ηk, then
{ζi,k} is an orthonormal basis for H, and if {ξi} is an orthonormal basis for
H1, then ξi ⊗ ηk �→ ζi,k is a unitary from H1 ⊗H2 onto H carrying L(H1)⊗ I
onto N . The relative commutant N ′∩M is naturally isomorphic to piMpi for
any i.

III.1.5.2 A type I factor always has a set of matrix units. If N is a type I
factor and p is a nonzero abelian projection in N , let {pi} be a maximal set of
mutually orthogonal projections in N equivalent to p. (Actually {pi} is just
a maximal set of mutually orthogonal nonzero abelian projections in N since
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every nonzero abelian projection in N is equivalent to p by III.1.3.10; we also
have that pNp is one-dimensional by III.1.3.10.) By maximality, comparabil-
ity, and III.1.3.10,

∑
pi = 1, and, if {eij} is a corresponding set of matrix

units, it is not difficult to see that {eij} generates N as a von Neumann
algebra. So we have:

III.1.5.3 Proposition. Let N be a type I factor on a Hilbert space H.
Then there is an isomorphism H ∼= H1 ⊗ H2 such that N ∼= L(H1) ⊗ I. In
particular, every type I factor is isomorphic to L(H1) for some Hilbert space
H1.

Tensor Products of von Neumann Algebras

III.1.5.4 There is a notion of spatial tensor product of von Neumann al-
gebras. If Mi is a von Neumann algebra on Hi (i = 1, 2), then M1 � M2

acts naturally on H1 ⊗ H2, and the weak closure is a von Neumann algebra
denoted M1⊗̄M2 (this is larger than the norm closure M1 ⊗min M2 if M1,M2

are infinite-dimensional).
It follows easily from I.2.5.4 and the essential uniqueness of the repre-

sentation of a von Neumann algebra (III.2.2.8) that M1⊗̄M2 depends up to
isomorphism only on M1 and M2 and not on the way they are represented as
von Neumann algebras, i.e. if Mi

∼= Ni (i = 1, 2), then M1⊗̄M2
∼= N1⊗̄N2.

III.1.5.5 Proposition. If N is a type I factor on a Hilbert space H, and
H = H1 ⊗H2 as in III.1.5.3, then

L(H) ∼= L(H1)⊗̄L(H2).

If N is a subalgebra of a von Neumann algebra M , then

M ∼= L(H1)⊗̄(N ′ ∩ M) ∼= L(H1)⊗̄pMp

where p is a one-dimensional projection in N .
The first statement follows from I.2.5.4, since

[L(H1)⊗̄L(H2)]′ = (L(H1) ⊗ I) ∩ (I ⊗ L(H2)) = C(I ⊗ I)

and the other statement is a straightforward consequence.

III.1.5.6 Examples.

(i) Let L∞(Xi, µi) act on L2(Xi, µi) by multiplication (i = 1, 2). Then

L∞(X1, µ1)⊗̄L∞(X2, µ2) ∼= L∞(X1 × X2, µ1 × µ2)

acting on

L2(X1, µ1) ⊗ L2(X2, µ2) ∼= L2(X1 × X2, µ1 × µ2).
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(ii) If M is properly infinite, then there is a sequence (pn) of mutually orthog-
onal projections in M , each equivalent to 1, with

∑
pn = 1 (III.1.3.5).

Thus M is unitarily equivalent to L(H)⊗̄M , where H is a separable
infinite-dimensional Hilbert space.

(iii) Let M be a properly infinite locally countably decomposable von Neu-
mann algebra on H, and p a projection in M with central support 1.
Then by III.1.3.6, there is a sequence (pn) of mutually orthogonal pro-
jections in M which are all equivalent to p, with

∑
pn = 1. Let {eij}

be the corresponding set of matrix units (III.1.5.1). Then {eij} gener-
ates a type I factor N ⊆ M , with N ′ ∩ M naturally isomorphic to pMp.
If H = H1 ⊗ H2 is the decomposition corresponding to N , then H1 is
infinite-dimensional and separable, and H2 can be identified with pH,
and the corresponding decomposition of M is L(H1)⊗̄pMp.

The following rephrasing of I.5.1.8 is useful:

III.1.5.7 Proposition. Let M1, M2 be von Neumann algebras on H1 and
H2 respectively. Let {pi : i ∈ I} be a set of mutually orthogonal projections
in M1, and {qj : j ∈ J} a set of mutually orthogonal projections in M2. Then

{pi ⊗ qj : i ∈ I, j ∈ J}
is a set of mutually orthogonal projections in M1⊗̄M2, and

∑

i,j

(pi ⊗ qj) =
(∑

i

pi

)
⊗
(∑

j

qj

)
.

Combining this result with III.1.1.6, we obtain:

III.1.5.8 Corollary. Let M1, M2 be von Neumann algebras on H1 and
H2 respectively. Let p be projection in M1, and q a projection in M2. Then
the central support zp⊗q of p ⊗ q in M1⊗̄M2 is zp ⊗ zq.

III.1.5.9 If H = H1 ⊗H2, then

(L(H1) ⊗ I)′ = I ⊗ L(H2)

(I.2.5.4), and thus
(M⊗̄L(H2))′ = M ′⊗̄I

and therefore
(M ⊗ I)′ = M ′⊗̄L(H2)

if M is a von Neumann algebra on H1. If Mi is a von Neumann algebra on Hi

(i = 1, 2), then it turns out to be true that (M1⊗̄M2)′ = M ′
1⊗̄M ′

2. This is not
difficult to prove if the Mi are semifinite, but is a surprisingly deep theorem in
general (III.4.5.8). The original proof was one of the first major applications
of the Tomita-Takesaki theory (and the problem was one of the principal
motivations for developing the theory). There is now a more elementary proof
[KR97b, 11.2].

There is a simple proof of an important partial result:



III.1 Projections and Type Classification 235

III.1.5.10 Proposition. If Mi is a factor on Hi (i = 1, 2), then M1⊗̄M2

is a factor.
Proof: [(M1⊗̄M2) ∩ (M1⊗̄M2)′]′ contains both M1 ⊗ I and M ′

1 ⊗ I, hence
also

(M1 ∪ M ′
1)

′′ ⊗ I = L(H1) ⊗ I.

Similarly, it contains I ⊗ L(H2), and hence

[(M1⊗̄M2) ∩ (M1⊗̄M2)′]′ = L(H1 ⊗H2).

III.1.5.11 There are von Neumann algebra analogs of the maximal tensor
product (the binormal tensor product) and of nuclearity (semidiscreteness/
injectivity), which are discussed in IV.2.

Structure of Type I von Neumann Algebras

III.1.5.12 Now we can describe the structure of Type I von Neumann alge-
bras. If n is a cardinal, either finite or infinite, we say a Type I von Neumann
algebra is of Type In if 1 is a sum of n equivalent abelian projections. By the
above, if M is Type In, then M ∼= L(Hn)⊗̄Zn, where Hn is an n-dimensional
Hilbert space and Zn is a commutative von Neumann algebra. The Type I1
von Neumann algebras are precisely the commutative ones. A Type In factor
is isomorphic to Mn.

If M is a Type I von Neumann algebra, we will show that for each n, there
is a central projection zIn

in M such that MzIn
is type In and

∑
n zIn

= 1.
The key property of a Type I von Neumann algebra is that it contains an
abelian projection with central carrier 1.

III.1.5.13 Although a unified approach is possible, it is convenient to treat
the finite and infinite parts separately. First suppose M is finite and Type
I. Let p be an abelian projection of central carrier 1. Let zI1 be the largest
central projection in M such that zI1 ≤ p; then 1 − zI1 is the central carrier
of 1−p. If p2 is an abelian projection orthogonal to p and with central carrier
1−zI1 , let zI2 be the largest central subprojection of 1−zI1 with zI2 ≤ p+p2;
1−zI1 −zI2 is the central carrier of 1−p−p2. Let p3 be an abelian projection
orthogonal to p+p2 with central carrier 1−zI1 −zI2 , and define zI3 as before.
Continue inductively to get zIn

for all finite n. We must have
∑

n zIn
= 1, since

otherwise 1 −
∑

zIn
contains a sequence of mutually equivalent orthogonal

nonzero projections and is thus infinite by III.1.3.2 (or, alternately, by III.1.5.1
M(1 −

∑
zIn

) contains a copy of L(H) for an infinite-dimensional H).
Since non-Type-I von Neumann algebras contain matrix subalgebras of

arbitrarily large order, the last argument gives a useful characterization of
finite Type I von Neumann algebras of bounded degree:
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III.1.5.14 Proposition. Let M be a von Neumann algebra, and n ∈ N.
The following are equivalent:

(i) M is a direct sum of Type Im von Neumann algebras for m ≤ n.
(ii) M does not contain n+1 mutually equivalent, mutually orthogonal non-

zero projections.
(iii) M does not contain a (not necesarily unital) C*-subalgebra isomorphic

to Mn+1.

III.1.5.15 The properly infinite part is easy in the countably decomposable
case, but slightly trickier in general. Suppose M is properly infinite and Type
I. If M is locally countably decomposable and p is an abelian projection with
central support 1, then the result follows from III.1.3.6 and III.1.5.5. In the
general case, let {zi} be a maximal family of mutually orthogonal central pro-
jections such that every set of mutually orthogonal and equivalent projections
in Mzi is countable, and let zIℵ0

=
∑

zi. It is routine to show that MzIℵ0

contains a sequence (pn) of equivalent orthogonal abelian projections with∑
pn = zIℵ0

, and that if zIℵ0
�= 1, then M(1− zIℵ0

) contains an uncountable
set of mutually orthogonal equivalent projections with central carrier 1−zIℵ0

.
One can proceed transfinitely in a similar way to define zIℵ for uncountable
cardinals ℵ.

It is customary to use the term “Type I∞” to denote any properly infi-
nite Type I von Neumann algebra, even if not homogeneous. (This distinction
occurs only in the case of von Neumann algebras which are not locally count-
ably decomposable.) Thus a Type I∞ factor is one isomorphic to L(H) for
any infinite-dimensional H.

Commutative von Neumann Algebras

A commutative von Neumann algebra is Type I. We can give a measure-
theoretic description of commutative von Neumann algebras.

III.1.5.16 Proposition. Let Z be a commutative von Neumann algebra
on H with a cyclic and separating vector. Then there is a finite measure space
(X,µ) such that Z is unitarily equivalent to L∞(X,µ) acting by multiplication
on L2(X,µ), and Z is a masa (i.e. Z = Z ′).
Proof: Z ∼= C(X) for a compact Hausdorff space X. Suppose Z has a cyclic
and separating vector ξ of norm one. The state φ on Z given by ξ is faithful,
and corresponds to a probability measure µ on X by the Riesz Representation
Theorem, and the GNS representation of Z from φ is equivalent to the identity
representation. Since Z is weakly closed, it follows easily that the image of Z
under the GNS representation from φ is all of L∞(X,µ). To see that L∞(X,µ)
is a masa on L2(X,µ), let T ∈ L∞(X,µ)′ and χ ∈ L2(X,µ) the constant
function 1, and let f = Tχ ∈ L2. Then f is not obviously bounded, but Mf is
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a densely defined operator on L2 whose domain contains the dense subspace
L∞. If g ∈ L∞ ⊆ L2, then

Tg = T (gχ) = TMgχ = MgTχ = Mgf = gf = Mfg

so Mf is bounded and thus f is (essentially) bounded, and T = Mf on all of
L2.

III.1.5.17 Proposition. Let Z be a commutative von Neumann algebra
on H. Then Z ′ is Type I.
Proof: Break up H into a direct sum of cyclic subspaces under Z; on each
subspace a direct summand of Z acts faithfully and cyclically. If q is the
projection onto one of these cyclic subspaces, then q ∈ Z ′, and qZ ′q = Zq
since Zq is a masa on qH. Thus q is an abelian projection in Z ′.

Combining this with the previous structure results (decomposing Z ′ into
a direct sum of von Neumann algebras of Type In), we obtain:

III.1.5.18 Corollary. Let Z be a commutative von Neumann algebra on
H. Then H can be uniquely decomposed into

⊕
n Hn (1 ≤ n ≤ ∞) such

that each Hn is invariant under Z and there is a locally finite measure space
(Xn, µn) such that ZHn

is spatially isomorphic to the n-fold amplification
of L∞(Xn, µn) acting on L2(Xn, µn). In particular, Z ∼= L∞(X,µ) for some
locally finite measure space (X,µ).

A useful consequence is:

III.1.5.19 Corollary. Let Z be a countably decomposable commutative
von Neumann algebra on H. Then Z is a masa in L(H) if and only if Z has
a cyclic and separating vector.

III.1.5.20 An important consequence of these structure theorems, along
with III.1.5.3, is that if M is a Type I von Neumann algebra on a Hilbert
space H, then M ′ is also Type I. This is also true for Type II and Type III
von Neumann algebras (III.2.6.12).

III.1.6 Direct Integral Decompositions

There is a way of decomposing a general von Neumann algebra as a “measur-
able direct sum” of factors, generalizing the structure of Type I von Neumann
algebras (by III.1.5.12 and III.1.5.17, a Type In von Neumann algebra looks
like L∞(X,µ,L(Hn)) acting on L2(X,µ,Hn), where (X,µ) is a locally finite
measure space). The theory only works well on separable Hilbert spaces, so
for simplicity we will restrict to this case. The technical details of the theory
are considerable, and require some of the results from succeeding sections. We
only outline the construction, referring the reader to [KR97b], [Dix69a], or
[Sak71] for details.
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III.1.6.1 If (X,µ) is a standard measure space, let Hx be a separable Hilbert
space for each (or for almost all) x ∈ X, with inner product 〈· , ·〉x. A measur-
able field (or integrable field ; square-integrable field would be a better name)
is a vector subspace Γ ⊆

∏
x Hx, closed under multiplication by L∞(X,µ),

such that x �→ 〈ξ(x), η(x)〉x is measurable for all ξ, η ∈ Γ, and such that
∫

X

〈ξ(x), ξ(x)〉x dµ(x) < ∞

for all ξ ∈ Γ (so

〈ξ, η〉 =
∫

X

〈ξ(x), η(x)〉x dµ(x)

is a pre-inner product on Γ), which is generated as an L∞(X,µ)-module by
a countable subset {ξn} of Γ such that span{ξn(x)} = Hx for almost all x.
The completion of Γ (with sections agreeing a.e. identified) is a separable
Hilbert space H which can be identified with a space of equivalence classes of
measurable sections of the field (Hx); we write

H =
∫ ⊕

X

Hx dµ(x)

and call H the direct integral of the Hilbert spaces Hx.

III.1.6.2 If Tx ∈ L(Hx), then (Tx) is a measurable field of bounded op-
erators if (Txξ(x)) is a measurable section for each measurable section ξ. If
‖Tx‖ is uniformly bounded, then (Tx) defines an operator T ∈ L(H) in the
obvious way, and ‖T‖ is the essential supremum of ‖Tx‖. Such a T is called
decomposable and is written

T =
∫ ⊕

X

Tx dµ(x).

L∞(X,µ) acts via decomposable operators by the formula

f �→
∫ ⊕

X

f(x)Ix dµ(x).

The image is called the algebra of diagonalizable operators of the field.

III.1.6.3 Theorem. Let M be a von Neumann algebra on a separable
Hilbert space H, and let Z be a commutative von Neumann subalgebra of
M ′. Then there is a standard measure space (X,µ), a measurable field of
Hilbert spaces (Hx) over (X,µ), and a unitary

U : H →
∫ ⊕

X

Hx dµ(x)
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carrying Z onto the set of diagonalizable operators, and such that

UTU∗ =
∫ ⊕

X

Tx dµ(x)

is measurable for each T ∈ Z ′ ⊇ M . Furthermore, if, for each x, Mx is the von
Neumann subalgebra of L(Hx) generated by {Tx : T ∈ M}, then a measurable
operator

S =
∫ ⊕

X

Sx dµ(x)

satisfies U∗SU ∈ (M ∪Z)′′ if and only if Sx ∈ Mx a.e. (Note that (M ∪Z)′′ =
M if Z ⊆ Z(M).) We write

M =
∫ ⊕

X

Mx dµ(x).

If Z contains Z(M), then Mx is a factor for almost all x. If Z is a masa
in M ′, then Mx = L(Hx) a.e.

III.1.6.4 The most natural choice of Z is Z(M), for then not only is Mx a
factor a.e., but the operators in M ′ are also decomposable,

M ′ =
∫ ⊕

X

(M ′)x dµ(x)

and (M ′)x = (Mx)′ a.e. This is called the central decomposition of M and is
the sense in which every von Neumann algebra on a separable Hilbert space
is a direct integral of factors. Each central projection of M corresponds to a
measurable subset of X in the central decomposition. In particular, the finite,
semifinite, properly infinite, Type In, Type II1, Type II∞, and Type III parts
respect the central decomposition.

III.1.6.5 Direct integrals respect tensor products in the following sense: if
Mi is a von Neumann algebra on separable Hi (i = 1, 2), with commutative
Zi ⊆ M ′

i , and

Mi =
∫ ⊕

Xi

(Mi)x dµi(x)

is the corresponding decomposition, then the decomposition of M1⊗̄M2 with
respect to Z1⊗̄Z2 is

∫ ⊕

X1×X2

N(x,y) d(µ1 × µ2)(x, y)

where H(x,y)
∼= (H1)x⊗(H2)y and N(x,y)

∼= (M1)x⊗̄(M2)y a.e. If Zi = Z(Mi),
then

Z1⊗̄Z2 = Z(M1⊗̄M2)

(III.4.5.10), so the central decomposition respects tensor products.
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III.1.7 Dimension Functions and Comparison Theory

Comparison of projections in a von Neumann algebra is completely deter-
mined by the dimension functions (II.6.8.12) on the algebra. In this subsec-
tion, we will concentrate on the case of a factor, where the dimension function
is unique; the general case is similar but technically more complicated, and
can be described by a “center-valued dimension function.” The general case
is subsumed in the theory of traces (III.2.5).

Let M be a factor. The idea is that there is a dimension function d
(II.6.8.12) from Proj(M) to [0,∞] (plus other infinite cardinals in the non-
countably-decomposable case), unique up to normalization, such that p � q
if and only if d([p]) ≤ d([q]). The range of d has only a few possibilities, and
determines the type of M . Furthermore, d extends to all of M+ by setting
d(x) = d([px]), and the extension is lower semicontinuous.

It is simplest to describe the dimension function in the different cases
separately. First of all, we will have d([p]) < ∞ if and only if p is finite. If M
is not countably decomposable, to define d(p) for infinite p we need:

III.1.7.1 Proposition. Let p be a projection in a factor M . If p is not
countably decomposable, the cardinality of all maximal sets of mutually or-
thogonal countably decomposable nonzero subprojections of p is the same.

See [KR97b, 6.3.9] for a proof.
If p is infinite (and hence properly infinite since M is a factor), set

d([p]) = ℵ, where ℵ is the cardinal of an infinite set of mutually equivalent
and mutually orthogonal nonzero countably decomposable subprojections of
p. It is straightforward to check (using e.g. III.1.3.5) that this definition has
the right properties for properly infinite projections. This completes the defi-
nition of d if M is Type III. Of course, if M is countably decomposable, then
the only infinite cardinal appearing is ℵ0, usually denoted ∞, and all properly
infinite nonzero projections in M are equivalent (III.1.3.7).

III.1.7.2 If M is type I, then all nonzero abelian projections in M are
equivalent, and it is customary to normalize d so that d([p]) = 1 if p �= 0 is
abelian. The function d is then uniquely determined by orthogonal additivity:
if M ∼= L(H), then d([p]) is the rank of p, or, alternatively, d([p]) = n if and
only if pMp is Type In.

III.1.7.3 The Type II case requires more work. First consider the case where
M is Type II1. It is customary to normalize in this case so that d([1]) = 1. Since
M contains no abelian projections, every nonzero projection in M contains two
equivalent orthogonal nonzero subprojections. Thus, if {pi, qi} is a maximal
family of mutually orthogonal projections in M with pi ∼ qi for each i, and
p =

∑
pi, q =

∑
qi, then p ∼ q and p + q = 1. Set p1/2 = p. Similarly,

there is a p1/4 ≤ p1/2 with p1/4 ∼ (p1/2 − p1/4). If u∗u = p, uu∗ = q, set
q1/4 = up1/4u

∗; then
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q1/4 ∼ p1/4 ∼ (q − q1/4).

Set p3/4 = p1/2 + q1/4. Proceeding in this way, we get a chain (pα) for dyadic
rational α ∈ [0, 1], with p0 = 0, p1 = 1, and (pβ − pα) ∼ pβ−α for α < β. For
any α ∈ [0, 1], let pα be the supremum of the pβ as β runs over all dyadic
rationals ≤ α. Of course, pα ≤ pβ if α ≤ β; and by finiteness pα � pβ only if
α ≤ β. It is clear from the construction that any dimension function d on M
with d(1) = 1 must have d(pα) = α for all α.

III.1.7.4 Lemma. If p is any nonzero projection of M , then pα � p for all
sufficiently small positive α.
Proof: If not, by comparability p � pα for all α > 0. Then for each n there is
a subprojection of p2−n+1−p2−n equivalent to p, which by III.1.3.2 contradicts
finiteness of 1M .

III.1.7.5 Corollary. For any α < 1, pα =
∧
{pβ : β > α}.

Proof: If p′α =
∧
{pβ : β > α}, then

p′α − pα ≤ pβ − pγ ∼ pβ−γ

for any dyadic rational β, γ with γ < α < β.

III.1.7.6 Now let p be any projection in M , and set α = sup{β : pβ � p}.
By comparability, α = inf{β : p � pβ}. Then p ∼ pα; for either p � pα or vice
versa, and if q ≤ pα, q ∼ p, then by III.1.3.8 pα − q � pα − pβ ∼ pα−β for all
β < α, so pα − q = 0 by III.1.7.4, and the other case is similar. Thus we can
(and must) set d(p) = α. The function d is the unique real-valued function on
Proj(M) satisfying

d([p + q]) = d([p]) + d([q]) if p ⊥ q

and d([1]) = 1; and furthermore, d satisfies

d([∨pi]) = sup d([pi])

for any increasing net (pi) of projections in M .

III.1.7.7 We can then extend d to M+ by setting d(x) = d([px]). It is clear
that d(x + y) = d(x) + d(y) if x ⊥ y, and it is easily verified that d(x) ≤ d(y)
if x � y in the sense of II.3.4.3. It is also clear that d(x) = supε>0 d(fε(x))
(II.3.4.11) for all x ∈ M+; it then follows from II.3.4.15 that d is norm-lower
semicontinuous on M+, and in fact d is σ-weakly lower semicontinuous.
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III.1.7.8 Now suppose M is Type II∞. If p is any finite nonzero projection
in M , then pMp has a dimension function dp defined as above, with dp(p) = 1.
Fix a finite projection p0, and for any finite q set d(q) = dp0(r) if q ∼ r ≤ p0

and d(q) = dq(s)−1 if p0 ∼ s ≤ q. Then d is a dimension function on all of the
finite projections of M , normalized so that d(p0) = 1, and is the unique such
dimension function. The number d(q) can be characterized as

sup{m/n : m · [q] ≤ n · [p0]} = inf{m/n : n · [p0] ≤ m · [q]}

where n · [p] = [p1 + · · ·+pn], with pi ∼ p and pi ⊥ pj for i �= j. The dimension
function d can be extended to all positive elements of M as before.

We summarize the construction in a theorem. To avoid verbosity about
infinite cardinals, we state the theorem only for the countably decomposable
case.

III.1.7.9 Theorem. Let M be a countably decomposable factor. Then
there is a dimension function d, which is unique up to normalization, such
that p � q if and only if d([p]) ≤ d([q]). The range of d is

{0, 1, . . . , n} if M is Type In
{0, 1, 2, . . . ,∞} if M is Type I∞
[0, 1] if M is Type II1
[0,∞] if M is Type II∞
{0,∞} if M is Type III.

Furthermore, the associated dimension function on M+ defined by d(x) =
d([px]) is σ-weakly lower semicontinuous.

III.1.7.10 It turns out that if M is semifinite, then there is a trace τ on
M such that d([p]) = τ(p) for any projection p. The existence of a quasitrace
(II.6.8.15) τ corresponding to d is straightforward (II.6.8.14), and was first
proved by Murray and von Neumann [MVN36]; but the linearity of τ was
elusive and not proved until [MvN37]. We will discuss the trace in III.2.5.

Norm-Closed Ideals in Factors

An easy consequence of the existence of a dimension function on factors is a
description of the norm-closed ideals of a factor; the general case is almost
identical to the case of a Type I factor described in I.8.7.2.

First note that if I is an ideal in a von Neumann algebra M , and x ∈ I+,
then E[ε,∞)(x) ∈ I for all ε > 0. Thus, if I is norm-closed, it is the norm-
closed linear span of its projections. Also, if p and q are projections in M with
q � p, then q = upu∗ for some u ∈ M , so if p ∈ I, then q ∈ I. Since the
dimension function determines comparability of projections, if M is a factor
and d(1M ) = ℵα, every norm-closed ideal of M is of the form Kβ = Kβ(M)
for some β ≤ α, where Kβ is the closed linear span of the projections p ∈ M
with d(p) < ℵβ . So we obtain:
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III.1.7.11 Proposition. Let M be a factor. Then

(i) If M is finite (Type In or Type II1), then M is a simple C*-algebra.
(ii) If M is Type III and countably decomposable, then M is a simple C*-

algebra.
(iii) If M is Type I∞ or Type II∞ and countably decomposable, then M

has exactly one nontrivial norm-closed ideal K0, the closure of the set of
elements of finite trace.

(iv) If M is Type I∞ or Type II∞ and d(1M ) = ℵα, then the nontrivial
norm-closed ideals of M are {Kβ : 0 ≤ β ≤ α}.

(v) If M is Type III and d(1M ) = ℵα, α ≥ 1, then the nontrivial norm-closed
ideals of M are {Kβ : 1 ≤ β ≤ α}.

(vi) If M is properly infinite, then M ∼= N⊗̄L(H) for some infinite-dimensional
H and some N which is a simple C*-algebra; dim(H) is uniquely deter-
mined by M , and the ideals of M are in one-one correspondence with
those of L(H), with the exception of K0 if M is Type III.

In (vi), unless β = 0 and M is Type III, the ideal Kβ(M) is the ideal of
N⊗̄L(H) generated by N⊗Kβ(L(H)) (norm-closure of N�Kβ(L(H))), but is
in general larger than this C*-tensor product. For example, if M is a countably
decomposable Type II∞ factor, M ∼= N⊗̄L(H) with N Type II1 with tracial
state τ , and {eij} is a set of matrix units in L(H), let pn be a projection in
N with τ(pn) = 2−n for each n, and qn = pn ⊗ enn ∈ M . If q =

∑
n qn, then

q is a finite projection in M , hence in K0(M), but q /∈ N ⊗K(H).
Note also that the N in (vi) is not completely determined by M in the II∞

case since there are II1 factors with nontrivial fundamental group (III.3.3.14).

III.1.8 Algebraic Versions

Most of the arguments in this section are valid in much greater generality. An
attempt was begun in the early 1950’s, led by Kaplansky [Kap51a], to give an
algebraic characterization of which C*-algebras are isomorphic to von Neu-
mann algebras (such a C*-algebra is called a W*-algebra, where the W stands
for “weak”), postulating properties making the arguments of this section valid.

III.1.8.1 Definition. An AW*-algebra is a C*-algebra M such that every
maximal commutative C*-subalgebra of M is generated by projections, and
that the projections of M form a complete lattice.

There are several equivalent ways of phrasing this definition. One of the
most useful involves annihilators. If S is a subset of a C*-algebra (or ring) M ,
then the right annihilator of S in M is {y ∈ M : xy = 0 ∀x ∈ S}.

III.1.8.2 Theorem. A C*-algebra M is an AW*-algebra if and only if the
right annihilator of any subset of M is generated by a projection, i.e. is of the
form pM for a projection p. (One could similarly work with left annihilators.)
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III.1.8.3 Every W*-algebra is an AW*-algebra (the right annihilator of any
subset is a weakly closed right ideal). An example of a commutative AW*-
algebra which is not a W*-algebra was given by Dixmier [Dix51]: let M be
the *-algebra of bounded Borel functions on R, and define

‖f‖ = inf{α > 0 : {t : |f(t)| > α} is of first category}

(dividing out by the functions of seminorm 0). There are even “wild” (non-
W*) AW*-factors of Type III ([Tak78], [Sai79]); one of the outstanding open
questions of operator algebra theory is whether there exist wild AW*-factors
of type II1 (see II.6.8.16 for interesting reformulations of this problem).

III.1.8.4 In fact, W*-algebras can be abstractly characterized as AW*-
algebras with sufficiently many normal linear functionals (III.2.4.5) (the wild
AW*-algebras in the previous paragraph have no nonzero normal linear func-
tionals). W*-algebras also have an abstract characterization as C*-algebras
which are dual Banach spaces (III.2.4.2).

III.1.8.5 It is almost, but not quite, true that an AW*-algebra which acts
on a separable Hilbert space is a W*-algebra. Dixmier’s commutative example
(III.1.8.3) can be faithfully represented on a separable Hilbert space [Wri76].
But the commutative case is essentially the only exception:

III.1.8.6 Theorem. [Wri80] Let M be an AW*-algebra on a separable
Hilbert space. If Z(M) is a W*-algebra, then M is a W*-algebra. In par-
ticular, any AW*-factor which can be (faithfully) represented on a separable
Hilbert space is a W*-algebra.

In fact, an AW*-factor of type II1 with a faithful state must be a W*-
algebra [Wri76]. This is, however, false for Type III AW*-factors [Sai79].

III.1.8.7 All the arguments of III.1.1, III.1.3, III.1.4, and III.1.7 (except
III.1.7.10), and some of those in III.1.5, are valid for AW*-algebras. Many are
valid in the purely algebraic setting of Baer *-rings; see [Ber72].

III.2 Normal Linear Functionals and Spatial Theory

Let M be a von Neumann algebra on H. Since L(H) is the Banach space
dual of L1(H) (I.8.6.1) and M is weak-* (σ-weakly) closed, M is the Banach
space dual of L1(H)/M⊥, called the predual M∗ of M (the terminology is
justified since it turns out that M∗ is the unique Banach space X such that
X∗ ∼= M (III.2.4.1)). When M∗ is identified with a closed subspace of the dual
space M∗ = (M∗)∗∗, the linear functionals in M∗ are called the normal linear
functionals on M . In this section, we will describe these linear functionals and
the representations of M .
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III.2.1 Normal and Completely Additive States

There are several potentially different natural continuity conditions for linear
functionals on a von Neumann algebra. In this subsection we show that these
notions are all actually the same.

III.2.1.1 Definition. Let M be a von Neumann algebra on H, and φ a
state on M . Then φ is completely additive if, whenever {pi} is a collection of
mutually orthogonal projections of M ,

φ

(
∑

i

pi

)

=
∑

i

φ(pi).

III.2.1.2 Definition. Let φ be a (bounded) linear functional on a von Neu-
mann algebra M . Then φ is normal if, whenever (xi) is a bounded increasing
net in M+ with x = supxi, we have φ(x) = lim φ(xi).

III.2.1.3 The importance of complete additivity and normality are that
they are intrinsic to the algebraic structure and independent of the way M is
represented as an algebra of operators (it turns out that the σ-strong and σ-
weak topologies on M are also independent of the representation (III.2.2.12),
but the strong and weak operator topologies are not). A σ-strongly continuous
linear functional is obviously normal, and a normal state clearly completely
additive. A linear functional φ is normal if and only if, whenever (xi) is a
decreasing net in M+ converging to 0 strongly, lim φ(xi) = 0. It follows easily
that if φ is normal and y ∈ M , then yφ and φy, defined by yφ(x) = φ(yx)
and φy(x) = φ(xy), are normal; and that every normal linear functional is a
linear combination of normal states.

The fundamental technical result is:

III.2.1.4 Theorem. Let M be a von Neumann algebra on H and φ a
(bounded) linear functional on M . Then the following are equivalent:

(i) There are sequences (ξn), (ηn) of vectors in H with
∑

n ‖ξn‖2 < ∞ and∑
n ‖ηn‖2 < ∞, and φ(x) =

∑
n〈xξn, ηn〉 for all x ∈ M .

(ii) φ is σ-weakly continuous on M .
(iii) φ is σ-strongly continuous on M .
(iv) φ is weakly continuous on the unit ball of M .
(v) φ is strongly continuous on the unit ball of M .
(vi) φ is normal.

If φ is a state, these are also equivalent to:

(vii) There is an orthogonal sequence (ξn) of vectors in H with
∑

n ‖ξn‖2 = 1
and φ(x) =

∑
n〈xξn, ξn〉 for all x ∈ M .

(viii) φ is completely additive.
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Normal linear functionals are not weakly or strongly continuous on M
in general; in fact, the weakly continuous linear functionals and the strongly
continuous linear functionals are precisely the linear functionals as in (i) with
a finite sum. To prove that every strongly continuous linear functional φ has
such a representation (such a linear functional is obviously weakly continuous),
the inverse image of the unit disk in C under φ contains a strong neighborhood
of 0, so there are vectors ξ1, · · · , ξn ∈ H such that ‖xξi‖ ≤ 1 for all i implies
|φ(x)| ≤ 1. Set

ξ = ξ1 ⊕ · · · ⊕ ξn ∈ H(n)

and H̃ the closed span of {(x ⊗ I)ξ} in H(n), and define a bounded linear
functional ψ on H̃ by

ψ((x ⊗ I)ξ) = φ(x).

Apply the Riesz-Frèchet Theorem (I.1.3.1) to obtain η = (η1, · · · , ηn) ∈ H̃
with ψ(x) = 〈(x ⊗ I)ξ, η〉. The proof of (iii) =⇒ (i) is nearly identical.

The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (vi), and (vi) =⇒ (viii) and (vii)
=⇒ (i) if φ is a state, are trivial; (ii) =⇒ (iv) and (iii) =⇒ (v) follow from the
fact that the weak and σ-weak, and the strong and σ-strong, topologies agree
on bounded sets, and (iv) =⇒ (ii) and (v) =⇒ (iii) follow from an application
of the Krein-Smulian Theorem.

The next lemma is the key observation in the proof of (ii) =⇒ (vii).

III.2.1.5 Lemma. Let M be a von Neumann algebra on H, and φ be a
σ-weakly continuous state on M . Then φ extends to a σ-weakly continuous
state on L(H).
Proof: Choose (ξn), (ηn) in H as in (i). Let H′ be a separable infinite-
dimensional Hilbert space with orthonormal basis {ζn}, and set ξ =

∑
ξn⊗ζn,

η =
∑

ηn ⊗ ζn in H⊗H′; then, for x ∈ M , φ(x) = 〈(x ⊗ 1)ξ, η〉. If x ≥ 0, we
have

0 ≤ φ(x) = 〈(x ⊗ 1)ξ, η〉 = 〈(x ⊗ 1)η, ξ〉 ≤ 〈(x ⊗ 1)(ξ + η), ξ + η〉,

so by II.6.4.6 there is a T ∈ (M ⊗ 1)′ such that

φ(x) = 〈T (x ⊗ 1)(ξ + η), ξ + η〉 = 〈(x ⊗ 1)T 1/2(ξ + η), T 1/2(ξ + η)〉

for all x ∈ M . Define a linear functional ψ on L(H⊗H′) (and, in particular,
on L(H) ⊗ 1) by

ψ(S) = 〈ST 1/2(ξ + η), T 1/2(ξ + η)〉.

Then ψ is positive and σ-weakly continuous (in fact, weakly continuous).
Since ψ(1) = φ(1) = 1, ψ is a state. Since the restriction of the weak or σ-
weak topology on L(H⊗H′) to L(H) ⊗ 1 ∼= L(H) is the σ-weak topology on
L(H), the result follows.
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To show that (ii) =⇒ (vii) for a state φ, extend φ to a σ-weakly continuous
state ψ on L(H). By I.8.6.2 there is thus an S ∈ L1(H), S ≥ 0, such that
ψ(T ) = Tr(ST ) for all T ∈ L(H). Let (µ1, µ2, · · · ) be the characteristic list
(eigenvalue list) of S, with corresponding unit eigenvectors ζn, and set ξn =
µ

1/2
n ζn. Then, for x ∈ M ,

φ(x) = Tr(xS) =
∑

〈xSζn, ζn〉 =
∑

〈xµnζn, ζn〉 =
∑

〈xξn, ξn〉.

Thus to finish the proof of the theorem it suffices to show (viii) =⇒ (v)
since every normal linear functional is a linear combination of normal states.

The key technical lemma in the proof of (viii) =⇒ (v) is:

III.2.1.6 Lemma. Let φ be a completely additive state on a von Neumann
algebra M on a Hilbert space H. Then there is a nonzero projection p ∈ M
and a unit vector ξ ∈ H such that φ(x) ≤ 〈xξ, ξ〉 for all x ∈ (pMp)+ (and
hence φp is weakly continuous).
Proof: Let ξ be a unit vector in H, and set ψ(x) = 〈xξ, ξ〉. Let (qi) be a
maximal family of mutually orthogonal projections in M such that ψ(qi) <
φ(qi) for all i. If q =

∑
i qi, then ψ(q) < φ(q) since φ and ψ are completely

additive; hence q �= 1 since φ(1) = ψ(1) = 1. Set p = 1 − q. Then, for every
projection r ≤ p, φ(r) ≤ ψ(r), so φ(x) ≤ ψ(x) for all x ∈ (pMp)+ since every
such x is a norm-limit of nonnegative linear combinations of subprojections
of p.

III.2.1.7 Now to prove (viii) =⇒ (v), let φ be completely additive, and let
{pi : i ∈ Ω} be a maximal mutually orthogonal family of projections in M
such that there is a vector ξi such that φ(x) ≤ 〈xξi, ξi〉 for all x ∈ (piMpi)+.
If q = 1−

∑
i pi �= 0, apply III.2.1.6 to qMq on qH to obtain a contradiction.

Thus
∑

i pi = 1, and so
∑

i φ(pi) = 1. For each i and each x ∈ M , we have

φ(pix
∗xpi) ≤ 〈pix

∗xpiξi, ξi〉 = ‖xpiξi‖2.

Now let (xj) be a net in the unit ball of M converging strongly to 0. Given
ε > 0, choose a finite subset F of Ω such that φ(1 − p) < ε2/4, where p =∑

i∈F pi. If j is sufficiently large,
∑

i∈F ‖xjpiξi‖ < ε/2. Then, applying the
CBS inequality, we have:

|φ(xj)| ≤ |φ(xj(1 − p))| +
∑

i∈F

|φ(xjpi)|

≤ φ(x∗
jxj)1/2φ(1−p)1/2 +

∑

i∈F

φ(pix
∗
jxjpi)1/2 ≤ φ(1−p)1/2 +

∑

i∈F

‖xjpiξi‖ < ε.

III.2.1.8 It follows that M∗ consists precisely of the (bounded) linear func-
tionals on M satisfying the conditions of III.2.1.4. Note that M∗ depends only
on the C*-algebra structure of M and not on the way it is represented as an
algebra of operators.

Because K(H)∗ = L1(H) = L(H)∗, we obtain:
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III.2.1.9 Proposition. Every bounded linear functional ψ on K(H) ex-
tends uniquely to a normal linear functional φ on L(H), and ‖φ‖ = ‖ψ‖. If
ψ is a state, the normal extension is the unique state extension of ψ to L(H)
(II.6.4.16).

It is also worth noting the following immediate consequence of III.2.1.5:

III.2.1.10 Corollary. Let N ⊆ M be von Neumann algebras. Then every
normal state on N extends to a normal state on M .

Singular States

III.2.1.11 Definition. Let M be a von Neumann algebra, and φ a state
on M . Then φ is singular (on M) if there is no nonzero normal positive linear
functional ψ on M with ψ ≤ φ.

Note that if N ⊆ M are von Neumann algebras, φ is a state on M , and
φ|N is singular on N , then φ is singular on M (since N is a unital subalgebra
of M).

III.2.1.12 Proposition. Let φ be a state on L(H). Then the following are
equivalent:

(i) φ is singular on L(H).
(ii) φ|K(H) = 0.
(iii) φ(p) = 0 for every rank-one projection p ∈ L(H).

Proof: (ii) =⇒ (iii) is trivial, and (iii) =⇒ (ii) is nearly trivial since linear
combinations of rank-one projections are norm-dense in K(H). For (iii) =⇒
(i), suppose ψ is a nonzero normal positive linear functional on L(H) with
ψ ≤ φ, and let {pi} be a maximal family of orthogonal rank-one projections
in L(H). Then 0 < ψ(1) =

∑
i ψ(pi), so 0 < ψ(pi) ≤ φ(pi) for some i. For (i)

=⇒ (ii), suppose ω = φ|K(H) �= 0, and let ψ be the unique normal extension
of ω to L(H) (III.2.1.9). Then ψ ≤ φ by II.6.4.16.

III.2.2 Normal Maps and Isomorphisms of von Neumann Algebras

Normal Maps

III.2.2.1 If M and N are von Neumann algebras, then a *-homomorphism
(or, more generally, a positive map) φ : M → N is normal if, whenever (xi)
is a bounded increasing net in M+, then

φ(supxi) = supφ(xi).

It is obvious that a *-isomorphism from M onto N is a lattice-isomorphism
from M+ onto N+ and hence normal.
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III.2.2.2 Proposition. Let M and N be von Neumann algebras, and φ :
M → N a completely positive map. The following are equivalent:

(i) φ is normal.
(ii) φ is continuous for the σ-weak topologies on M and N .
(iii) φ is continuous for the σ-strong topologies on M and N .
(iv) φ|B1(M) is continuous for the σ-strong topologies on B1(M) and N .

Proof: (i) ⇐⇒ (ii): Since the σ-weak topology on N is the weakest topology
making all elements of N∗ continuous, φ is σ-weakly continuous if and only if
f ◦ φ ∈ M∗ for all f ∈ N∗; it is also obvious that φ is normal if and only if
f ◦ φ is normal for every normal state f on N . The result then follows from
III.2.1.4.
(ii) =⇒ (iii): By scaling we may assume ‖φ‖ ≤ 1. Suppose xi → 0 σ-strongly.
Then x∗

i xi → 0 σ-weakly. If φ is continuous for the σ-weak topologies, then
φ(x∗

i xi) → 0 σ-weakly. Since φ(xi)∗φ(xi) ≤ φ(x∗
i xi), φ(xi)∗φ(xi) → 0 σ-

weakly, so φ(xi) → 0 σ-strongly.
(iii) =⇒ (iv) is trivial.
(iv) =⇒ (i): If (xi) is a bounded increasing net in M with x = supxi, then
xi → x σ-strongly, so φ(xi) → φ(x) σ-strongly. Since φ(xi) → supφ(xi)
strongly, φ(x) = sup φ(xi).

III.2.2.3 Proposition. Let M be a von Neumann algebra, φ a normal state
on M , and πφ the GNS representation. Then πφ is a normal representation,
i.e. a normal *-homomorphism from M to L(Hφ).

In fact, πφ is continuous for the σ-weak and σ-strong topologies.

The Normal Stinespring Theorem

We have a normal version of Stinespring’s theorem (II.6.9.7):

III.2.2.4 Theorem. [Normal Stinespring Theorem] Let M be a von
Neumann algebra, and φ : M → L(H) be a normal completely positive map.
Then there is a Hilbert space Hφ, a normal representation πφ of M on Hφ,
and Vφ ∈ L(H,Hφ) with ‖Vφ‖2 = ‖φ‖, such that

φ(a) = V ∗
φ πφ(a)Vφ

for all a ∈ M , and such that (Hφ, πφ, Vφ) are canonical and minimal in the
sense that if H′ is another Hilbert space with a normal representation ρ of
M , and W ∈ L(H,H′) with φ(a) = W ∗ρ(a)W for all a ∈ M , then there is an
isometry U : Hφ → H′ onto a subspace invariant under ρ and intertwining πφ

and ρ, and such that W = UVφ.
If A and φ are unital, then Hφ can be chosen to contain H, and φ(a) =

PHπ(a)PH.
An examination of the proof of II.6.9.7 shows that if φ is σ-strongly con-

tinuous, then so is the representation πφ defined there.
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Tensor Products of Normal Completely Positive Maps

III.2.2.5 Using III.2.2.4, as in the C*-case we immediately deduce the
existence of tensor products of normal completely positive contractions: if
M1,M2, N1, N2 are von Neumann algebras and φ : M1 → M2 and ψ : N1 →
N2 are normal completely positive contractions, then the map φ ⊗ ψ from
M1 � N1 to M2 � N2 given by

(φ ⊗ ψ)
(∑

xi ⊗ yi

)
=
∑

φ(xi) ⊗ ψ(yi)

is well defined and extends to a normal completely positive contraction, also
denoted φ⊗ ψ, from M1⊗̄N1 to M2⊗̄N2. If φ and ψ are conditional expecta-
tions, so is φ ⊗ ψ.

III.2.2.6 As an important special case, there is also a normal version of
slice maps (II.9.7.1). Let M and N be von Neumann algebras on H1 and H2

respectively, and let φ be a normal state on M . Then the slice map Rφ defined
by

Rφ

(∑
xi ⊗ yi

)
=
∑

φ(xi)yi

extends to a normal conditional expectation from M⊗̄N to N (and similarly
for a left slice map Lψ for a normal state ψ on N).

III.2.2.7 Another important special case is, of course, the tensor product
of normal states: if φ and ψ are normal states on M and N , then there is a
corresponding normal state φ ⊗ ψ on M⊗̄N . In this case, there is an obvious
alternate way to view φ ⊗ ψ, as the vector state corresponding to ξφ ⊗ ξψ.

Other versions of Stinespring’s theorem and tensor products of normal
maps can be found in IV.2.3.3 and IV.2.3.4. Tensor products of normal semi-
finite weights are discussed in III.2.2.30.

Isomorphisms of von Neumann Algebras

The following corollary of III.2.1.4 shows that an algebraic isomorphism of von
Neumann algebras is “almost spatial.” An amplification of a representation π
of a C*-algebra A on H is a representation π⊗ 1 of A on H⊗H′ for some H′,
and a reduction of π is the restriction of π to in invariant subspace X such
that PX has central support 1 in π(A)′.

III.2.2.8 Theorem. Let M and N be von Neumann algebras on Hilbert
spaces H and H′. If π is an algebraic *-isomorphism from M onto N , regarded
as a representation of M (which is necessarily normal by III.2.2.1), then π is
equivalent to a reduction of an amplification of the identity representation of
M . Thus there is a Hilbert space H′′ such that M ⊗ 1 on H⊗H′′ is unitarily
equivalent to N ⊗1 on H′⊗H′′. If H and H′ are separable, H′′ may be chosen
separable.
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Proof: Since π is a direct sum of cyclic normal representations (countably
many if H′ is separable), i.e. GNS representations from normal states, it suf-
fices to show that if φ is a normal state of M , then πφ is equivalent to a
subrepresentation of a countable amplification of the identity representation
of M . Let {ξn} be as in III.2.1.4, and let H′′ be a separable Hilbert space with
orthonormal basis {ηn}. Then πφ is equivalent to the cyclic subrepresentation
of the amplification M ⊗ 1 on H⊗H′′ with cyclic vector

∑
ξn ⊗ ηn.

From III.1.3.7 we obtain:

III.2.2.9 Corollary. If M and N are isomorphic von Neumann algebras,
and M ′ and N ′ are properly infinite and locally countably decomposable, then
M and N are unitarily equivalent.

III.2.2.10 Definition. If π and ρ are normal representations of a von Neu-
mann algebra M , write π � ρ if π is equivalent to a subrepresentation of ρ. If
π(M) acts on H and z is a central projection in M , write πz for the subrep-
resentation of π on π(z)H.

III.2.2.11 Corollary. Let M be a von Neumann algebra, and π and ρ
normal representations of M . Then there is a central projection z ∈ Z(M)
such that πz � ρz and ρ1−z � π1−z.
Proof: Let σ be a faithful normal representation of M on H of sufficiently
high multiplicity that π � σ and ρ � σ, i.e. there are projections p, q ∈ σ(M)′

with σ|pH and σ|qH equivalent to π and ρ respectively. Apply generalized
comparability to p and q.

A more detailed discussion of when algebraic isomorphisms of von Neu-
mann algebras are spatial is in III.2.6.

III.2.2.12 Corollary. Let M and N be von Neumann algebras, and φ :
M → N an (algebraic) *-isomorphism. Then φ is a homeomorphism from M
to N for either the σ-weak topologies or the σ-strong topologies.

This is also a corollary of III.2.2.2.

III.2.2.13 A *-isomorphism φ : M → N of von Neumann algebras is not
weakly or strongly continuous in general, but it is if M ′ and N ′ are both
properly infinite, in which case the weak and σ-weak topologies coincide on
M and N , as do the strong and σ-strong. But we do have:

III.2.2.14 Proposition. Let M and N be von Neumann algebras, and
φ : M → N an (algebraic) *-isomorphism. Then φ is a homeomorphism from
B1(M) (closed unit ball) to B1(N) for either the weak, strong, or strong-*
operator topologies.
Proof: The result for the weak or strong topology follows immediately from
III.2.2.12 and the agreement of the weak and σ-weak topologies, and the strong
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and σ-strong, on bounded sets, and the result for the strong-* topologies
follows almost immediately. An alternate proof for the strong or strong-*
topologies can be based on I.3.2.8.

III.2.2.15 It should be noted that every infinite-dimensional von Neumann
algebra has non-normal representations, e.g. the GNS representation from a
nonnormal state, or an irreducible representation of a non-Type-I factor. Thus
a concrete C*-algebra of operators which is algebraically *-isomorphic to a
von Neumann algebra is not necessarily weakly closed. (Such representations
generally only occur on nonseparable Hilbert spaces.)

Characterization of Strong Topologies

III.2.2.16 We also obtain a useful characterization of the strong or σ-strong
topology on bounded sets. If φ is a state on a C*-algebra A, we can define a
seminorm ‖ · ‖2,φ on A by

‖x‖2,φ = φ(x∗x)1/2

(this is the seminorm induced by the GNS inner product 〈x, y〉φ = φ(y∗x)).

III.2.2.17 Proposition. Let M be a von Neumann algebra, and {φi :
i ∈ I} a separating family of normal states on M . Then the topology gener-
ated by {‖ · ‖2,φi

: i ∈ I} agrees with the strong (or σ-strong) topology on
bounded subsets of M . In particular, a bounded net (xj) in M converges to 0
(σ−) strongly if and only if φi(x∗

jxj) → 0 for all i.
This follows almost immediately from I.3.1.2, since π = ⊕iπφi

is a faithful
normal representation of M , and

{yξφi
: y ∈ π(M)′, i ∈ I}

is total. For each y and i, if (xj) is a net in M and φi(x∗
jxj)1/2 → 0, then

‖π(xj)yξφi
‖ = ‖yπ(xj)ξφi

‖ ≤ ‖y‖‖π(xj)ξφi
‖ = ‖y‖φ(x∗

jxj)1/2 → 0 .

Conversely, if xj → 0 strongly, then ‖π(xj)ξφi
‖ = φi(x∗

jxj)1/2 → 0 for each i.

Normal Weights

A weight φ on a von Neumann algebra M is normal if, whenever (xi) is an
increasing net in M+ converging strongly to x, φ(x) = lim φ(xi). A normal
weight is completely additive on projections, but the converse is not true for
unbounded weights in general.

The next theorem gives alternate characterizations of normality.
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III.2.2.18 Theorem. Let φ be a weight on a von Neumann algebra M .
Then the following are equivalent:

(i) φ is normal.
(ii) φ is σ-weakly lower semicontinuous.
(iii) φ is the supremum of a family of normal linear functionals on M .
(iv) φ is the supremum of an upward directed family of normal linear func-

tionals on M .
(v) φ is the sum of a family of normal linear functionals on M .

The implications (v) ⇐⇒ (iv) =⇒ (iii) =⇒ (ii) =⇒ (i) are obvious. (i) =⇒
(iii) was proved in [Haa75a], and (iii) =⇒ (iv) then follows from a result of F.
Combes [Com68]:

III.2.2.19 Theorem. Let φ be a normal weight on a von Neumann algebra
M . Then

{f ∈ M∗ : (1 + ε)f ≤ φ for some ε > 0}
is upward directed.

This result is closely related in spirit to the fact that if A is a C*-algebra,
then {x ∈ A+ : ‖x‖ < 1} is upward directed (II.4.1.3(i)). See [Str81] for details
of the proof of this theorem and III.2.2.18.

If φ is a weight on a von Neumann algebra M , then the σ-weak closure
of Nφ is of the form Mp for a projection p, and the σ-weak closure of Mφ is
then pMp (III.1.1.15).

III.2.2.20 Proposition. A normal weight φ on a von Neumann algebra M
is semifinite if and only if Nφ (and hence Mφ) is σ-weakly dense in M .
Proof: If Mφ is σ-weakly dense in M , and (hλ) is an increasing approximate
unit for Mφ, then hλ → 1 σ-strongly, so hλxhλ → x for any x ∈ M by joint
strong continuity of multiplication on bounded sets. Thus, if x ∈ M+,

φ(x) ≤ lim inf
λ

φ(hλxhλ)

by σ-strong lower semicontinuity of φ. Conversely, if φ is semifinite, and the
σ-weak closure of Mφ is pMp, then

M⊥
φ = (1 − p)M(1 − p) = {0}

(II.6.7.7).
The conclusion of this result is usually taken as the definition of a normal

semifinite weight.
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III.2.2.21 So if φ is a normal semifinite weight, Mφ (and hence Nφ ∩ N∗
φ)

is σ-strongly dense in M . Actually, if φ and ψ are normal semifinite weights
on M , then

N∗
ψNφ = Span{y∗x : x ∈ Nφ, y ∈ Nψ} ⊆ Nφ ∩ N∗

ψ

is σ-strongly dense in M (III.1.1.16).
Semifiniteness is very important for normal weights, but can be easily

arranged:

III.2.2.22 Proposition. Let φ be a normal weight on a von Neumann
algebra M . Then there is a normal semifinite weight ψ on M with Nψ ⊇ Nφ,
and such that the inclusion of Nφ into Nψ induces an isometry from Hφ onto
Hψ (and hence the GNS representations πφ and πψ are unitarily equivalent).
The formula for ψ is ψ(x) = φ(pxp) (where the σ-weak closure of Nφ is Mp),
and ψ agrees with φ on Mφ.
Proof: If ψ(x) = φ(pxp), then Nψ = Nφ⊕M(1−p) and Nψ = Nφ⊕M(1−p),
so ψ has the stated properties and is clearly normal and semifinite.

Support Projections of States and Weights

III.2.2.23 Let φ be a normal weight (e.g. a normal state) on a von Neumann
algebra M , and let C be the set of x ∈ M+ with φ(x) = 0. By normality, if
x ∈ C, then its support projection s(x) ∈ C. If p and q are projections in
C, then p ∨ q = s(p + q) ∈ C, so the set of projections in C is upward
directed. If q is the supremum, then q ∈ C by normality, and p = 1 − q
satisfies φ(x) = φ(pxp) for all x ∈ M+. This projection p is called the support
projection, or carrier , of φ, denoted s(φ).

III.2.2.24 Let
Nφ = {x ∈ M : φ(x∗x) = 0}.

Then Nφ is a left ideal of M . If φ is a state, from the CBS inequality x ∈ Nφ

if and only if φ(yx) = 0 for all y ∈ M . Thus Nφ is σ-weakly closed, and
hence Nφ = Mq for some projection q ∈ M . This is the same q as above, so
p = s(φ) = 1 − q. Since, for any x ∈ M , φ(qx) = φ(x∗q) = 0, it follows that

φ(x) = φ(px) = φ(xp) = φ(pxp)

for all x ∈ M ; and φ|pMp is faithful. If πφ is the GNS representation of M ,
then the kernel of πφ is M(1 − zs(φ)); thus πφ is faithful on Mzs(φ).
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III.2.2.25 More generally, if φ is a positive map from M to another von
Neumann algebra, we can define Nφ in the same way; Nφ is a norm-closed
left ideal of M which is σ-weakly closed if φ is normal; in this case φ has
a support projection s(φ) as above. If φ is completely positive, then by the
Kadison inequality we have φ(yx) = 0 for all x ∈ Nφ, y ∈ M , so if φ is normal
and p = s(φ), then, as above,

φ(x) = φ(px) = φ(xp) = φ(pxp)

for all x ∈ M ; and φ|pMp is faithful.

Faithful Weights and States

III.2.2.26 If M is a von Neumann algebra, let {φi : i ∈ Ω} be a fam-
ily of normal linear functionals which is maximal with respect to the condi-
tion that the supports pi are mutually orthogonal. On M+, let ψ =

∑
i φi.

Then ψ is a faithful normal semifinite weight on M , and Nψ ∩ N∗
ψ contains

∪F∈F(Ω)pF MpF , where F(Ω) is the directed set of finite subsets of Ω and
pF =

∑
i∈F pi. (Such a faithful normal semifinite weight is called strictly

semifinite; the condition is equivalent to the property that the restriction of φ
to Mφ (III.4.6.1) is semifinite (III.4.7.9). Not every faithful normal semifinite
weight is strictly semifinite.) Thus every von Neumann algebra has a faithful
normal semifinite weight.

If M is countably decomposable and {φn : n ∈ N} is a maximal family of
normal states on M with mutually orthogonal supports, set φ =

∑
n 2−nφn.

Then φ is a faithful normal state on M . Thus we obtain:

III.2.2.27 Proposition. Let M be a von Neumann algebra. Then the fol-
lowing are equivalent:

(i) M has a faithful state.
(ii) M has a faithful normal state.
(iii) M is countably decomposable.
(iv) The strong (or σ-strong) operator topology, restricted to the unit ball of

M , is first countable.
(v) The strong (or σ-strong) operator topology, restricted to the unit ball of

M , is metrizable.

The implication (iii) =⇒ (ii) results from the previous discussion, and (ii)
=⇒ (i) =⇒ (iii) and (v) =⇒ (iv) are trivial. To prove (ii) =⇒ (v), let φ be a
faithful normal state on M . Then by III.2.2.17 the norm

‖x‖2,φ = φ(x∗x)1/2

gives the strong operator topology on bounded subsets of M . For (iv) =⇒ (iii),
if {pi} is an uncountable set of mutually orthogonal nonzero projections in M ,
the net of finite sums of the pi converges strongly to

∑
pi, but no sequence

of finite sums converges strongly to
∑

pi, so the strong operator topology on
the unit ball of M is not first countable.
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III.2.2.28 The strong-* (or σ-strong-*) topology on the unit ball of a count-
ably decomposable M is also metrizable via the metric

d∗(x, y) = ‖x − y‖2,φ + ‖x∗ − y∗‖2,φ

where φ is a faithful normal state, and conversely.
The σ-weak topology on the unit ball of a countably decomposable von

Neumann algebra is not metrizable in general. In fact, it is metrizable if and
only if the von Neumann algebra has separable predual, a straightforward
consequence of the fact that a compact metrizable space is second countable.

Note that if M is infinite-dimensional, none of the weak, σ-weak, strong,
σ-strong, strong-*, σ-strong-* topologies are metrizable (or first countable)
on all of M : if {pn} is a sequence of mutually orthogonal nonzero projections
in M , then 0 is in the σ-strong-* closure of {√npn}, but no subsequence
converges weakly to 0 by Uniform Boundedness; cf. I.1.3.4.

States and Weights on Tensor Products

We can form tensor products of normal states. Let M and N be von Neumann
algebras, with normal states φ and ψ respectively. We can form the tensor
product state φ ⊗ ψ on M⊗̄N as in III.2.2.7.

III.2.2.29 Proposition. The support projection s(φ ⊗ ψ) is s(φ) ⊗ s(ψ).
In particular, if φ and ψ are faithful, so is φ ⊗ ψ.
Proof: We have that [(1−s(φ))⊗1] ⊥ s(φ⊗ψ) and [1⊗(1−s(ψ))] ⊥ s(φ⊗ψ),
so

s(φ ⊗ ψ) ≤ [s(φ) ⊗ 1] ∧ [1 ⊗ s(ψ)] = s(φ) ⊗ s(ψ).

So
zs(φ⊗ψ) ≤ zs(φ)⊗s(ψ) = zs(φ) ⊗ zs(ψ)

(III.1.5.8) [this also follows easily from III.2.2.24 and the fact that πφ⊗ψ =
πφ ⊗ πψ.] We may thus cut down to Mzs(φ) and Nzs(ψ), i.e. we may assume
that πφ and πψ are faithful. So πφ⊗ψ = πφ ⊗ πψ is also faithful, i.e. zs(φ⊗ψ) =
zs(φ)⊗s(ψ) = zs(φ) ⊗ zs(ψ).
It is easily seen that s(φ)Hφ = [πφ(M)′ξφ], and similarly s(ψ)Hψ = [πψ(M)′ξψ],

s(φ ⊗ ψ)Hφ⊗ψ = [πφ⊗ψ(M⊗̄N)′ξφ⊗ψ] = [(πφ(M)⊗̄πψ(N))′(ξφ ⊗ ξψ)]

⊇ [(πφ(M)′⊗̄πψ(N)′)(ξφ ⊗ ξψ)] = (s(φ) ⊗ s(ψ))(Hφ ⊗Hψ)

so s(φ) ⊗ s(ψ) ≤ s(φ ⊗ ψ).
Note that this proof can be streamlined by applying the (rather deep)

Commutation Theorem for Tensor Products (III.4.5.8).
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III.2.2.30 If φ and ψ are normal semifinite weights on M and N respec-
tively, then a tensor product weight can be constructed on M⊗̄N , which is
normal and semifinite and satisfies s(φ ⊗ ψ) = s(φ) ⊗ s(ψ). The details, in-
volving left Hilbert algebras, are rather delicate, however (cf. III.4.4.5); see
[Tak03a, VIII.4] for a complete treatment.

III.2.3 Polar Decomposition for Normal Linear Functionals
and the Radon-Nikodym Theorem

The next result, due to S. Sakai [Sak58], may be regarded as giving a po-
lar decomposition for normal bounded linear functionals on a von Neumann
algebra.

III.2.3.1 Proposition. Let M be a von Neumann algebra and ψ a normal
linear functional on M . Then there is a positive linear functional φ on M ,
with ‖φ‖ = ‖ψ‖, and a partial isometry u ∈ M , such that ψ(x) = φ(xu) and
φ(x) = ψ(xu∗) for all x ∈ M . The φ is uniquely determined, and denoted |ψ|;
u may be chosen so that u∗u is the support of φ, and such u is also unique.

We prove only the existence. We may assume ‖ψ‖ = 1. Let

K = {a ∈ M : ψ(a) = 1 = ‖a‖}.

Since ψ is σ-weakly continuous, K is a nonempty σ-weakly compact subset
of M . Let v be an extreme point of K; then v is an extreme point of the
unit ball of M , and therefore a partial isometry (II.3.2.17). Set φ = ψv, i.e.
φ(x) = ψ(xv) for all x. Then ‖φ‖ ≤ 1 = φ(1), so φ is a state. If q is the
support of φ, then q ≤ vv∗ since

φ(vv∗) = ψ(vv∗v) = ψ(v) = 1.

Set u = v∗q; u is a partial isometry with u∗u = q and

ψ(xu∗) = ψ(xqv) = φ(xq) = φ(x)

for all x. In particular, ψ(u∗) = 1. Set p = uu∗. To show that ψ(x) = φ(xu) for
all x, it suffices to show that ψ(x(1− p)) = 0 for all x. If ψ(x(1− p)) = β > 0
for some x, ‖x‖ = 1, then, for any n,

n + β = ψ(nu∗ + x(1 − p)) ≤ ‖nu∗ + x(1 − p)‖

= ‖[nu∗ + x(1 − p)][nu + (1 − p)x∗]‖1/2 = ‖n2q + x(1 − p)x∗‖1/2 ≤
√

n2 + 1

which is a contradiction for large n (cf. the proof of II.6.9.4).
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III.2.3.2 Proposition. Let φ be a normal positive linear functional on a
von Neumann algebra M , and b ∈ M . Then |φb| ≤ ‖b‖φ.
Proof: Let u be as in III.2.3.1, i.e. |φb|(x) = φb(xu∗) = φ(xu∗b) and φ(xb) =
φb(x) = |φb|(xu) for all x ∈ M . Set a = u∗b; then |φb| = φa is positive, and
thus, for all x ∈ M ,

φ(xa) = φa(x) = (φa)∗(x) = φa(x∗) = φ(x∗a) = φ((a∗x)∗) = φ(a∗x)

and hence φ(xa2) = φ(a∗xa) for all x, so φa2 ≥ 0. Similarly, φ(xa2n+1
) =

φ((a2n

)∗x(a2n

)) for all n. Then, if x ≥ 0, by the CBS inequality,

|φb|(x) = φ(xa) = φ(x1/2(x1/2a)) ≤ φ(x)1/2φ(a∗xa)1/2 = φ(x)1/2φ(xa2)1/2

≤ φ(x)1/2φ(x)1/4φ(xa4)1/4 ≤ · · · ≤ φ(x)1−2−n

φ(xa2n

)2
−n

≤ φ(x)1−2−n

(‖φ‖‖x‖‖a‖2n

)2
−n → ‖a‖φ(x) ≤ ‖b‖φ(x) as n → ∞.

Generalizing the classical Radon-Nikodym Theorem of measure theory to
the situation of weights on a von Neumann algebra has proved to be an im-
portant and difficult problem, intimately tied up with the deep structure of
the algebras. In this section, we will only prove the following special case, due
to Sakai [Sak65], which is a crucial technical result in the spatial theory of
von Neumann algebras. Compare this result to II.6.4.6 (which is used in the
proof).

III.2.3.3 Theorem. Let M be a von Neumann algebra, and φ and ψ normal
positive linear functionals on M , with ψ ≤ φ. Then there is a unique t ∈ M
with 0 ≤ t ≤ 1, such that ψ(x) = φ(txt) for all x ∈ M , and with the support
projection of t equal to the support of ψ.
Proof: By cutting down by the support of φ, we may assume φ is faithful,
and identify M with πφ(M). By II.6.4.6, there is an r ∈ M ′, 0 ≤ r ≤ 1, such
that

ψ(x) = 〈rxξφ, ξφ〉 = 〈xsξφ, sξφ〉
where s = r1/2. Let ω be the linear functional on M ′ defined by ω(y) =
〈ysξφ, ξφ〉. Then ω = (φ′)s, where φ′(y) = 〈yξφ, ξφ〉. By III.2.3.2, |ω| ≤ φ′, so
there is a t ∈ M , 0 ≤ t ≤ 1, such that |ω|(y) = 〈ytξφ, ξφ〉 for y ∈ M ′. Write
ω = |ω|u, |ω| = ωu∗ for u ∈ M ′ as in III.2.3.1. Then, for all y ∈ M ′,

〈tξφ, yξφ〉 = 〈y∗tξφ, ξφ〉 = |ω|(y∗) = ω(y∗u∗) = 〈y∗u∗sξφ, ξφ〉 = 〈u∗sξφ, yξφ〉

so since ξφ is cyclic for M ′ we have tξφ = u∗sξφ. Also,

〈uu∗sξφ, yξφ〉 = 〈y∗uu∗sξφ, ξφ〉 = |ω|(y∗u) = ω(y∗) = 〈y∗sξφ, ξφ〉 = 〈sξφ, yξφ〉



III.2 Normal Linear Functionals and Spatial Theory 259

for y ∈ M ′, and hence utξφ = uu∗sξφ = sξφ. Then, for x ∈ M ,

ψ(x) = 〈xsξφ, sξφ〉 = 〈xsξφ, utξφ〉

= 〈xu∗sξφ, tξφ〉 = 〈xtξφ, tξφ〉 = 〈txtξφ, ξφ〉 = φ(txt).

The result is often stated by letting h = t2, i.e. there is a unique h ∈ M
with 0 ≤ h ≤ 1, such that ψ(x) = φ(h1/2xh1/2) for all x ∈ M , and with the
support projection of h equal to the support of ψ. This h is an appropriate
“Radon-Nikodym derivative”

[
dψ
dφ

]
.

The analogous statement for weights is false in general. A version of the
Radon-Nikodym theorem for weights will be discussed in III.4.7.5.

III.2.4 Uniqueness of the Predual and Characterizations of
W*-Algebras

Suppose M is a von Neumann algebra, and X is a (complex) Banach space
such that X ∗ is isometrically isomorphic to M . Regard X as a subspace of
X ∗∗ ∼= M∗ in the usual way.

III.2.4.1 Theorem. Under this identification, X = M∗; so there is a unique
predual for every von Neumann algebra.

The proof of this theorem uses the weak-* topology on M as the dual of
X (sometimes called the σ(M,X )-topology). The first step is to prove that
Msa is weak-* closed. By the Krein-Smulian Theorem, it suffices to prove that
Msa ∩ B1(M) is weak-* closed, where B1(M) is the (norm-)closed unit ball
of M (which is weak-* compact by Alaoglu’s Theorem). If (xj) is a net in
Msa ∩ B1(M) converging weak-* to a + ib with a, b ∈ Msa, then, if b �= 0, for
suitably large positive or negative n we have

‖a + i(b + n1)‖ ≥ ‖b‖ + |n| >
√

1 + n2 ≥ ‖xj + in1‖

so (xj + in1) cannot converge to a + i(b + n1) since B√
1+n2(M) is weak-*

closed, a contradiction.

M+ ∩ B1(M) = (Msa ∩ B1(M)) ∩ (1 − Msa ∩ B1(M))

is also weak-* closed, so M+ is weak-* closed. It follows that X is the linear
span of the states in X , and the states in X are norming on Msa. By the
weak-* compactness of B1(M), every bounded increasing net in M+ has a
convergent subnet, and it follows that every state in X is normal; so X ⊆ M∗.
An application of the Hahn-Banach Theorem then shows that X = M∗.

Characterization of W*-Algebras

There is also an elegant characterization of W*-algebras, due to Sakai [Sak56]:
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III.2.4.2 Theorem. Let A be a C*-algebra. If there is a (complex) Banach
space X such that X ∗ is isometrically isomorphic to A, then A is a W*-algebra.

By a slight refinement of the argument in the proof of III.2.4.1, such a
C*-algebra has a representation as a concrete C*-algebra M of operators with
the property that every masa in M is monotone complete. The proof can then
be finished using the next theorem [Ped72], which is of independent interest:

III.2.4.3 Theorem. Let M be a unital C*-subalgebra of L(H) with the
property that every masa in M is monotone closed. Then M is a von Neumann
algebra.

In fact, it suffices to assume that M contains all spectral projections of
each of its self-adjoint elements and that the sum of every family of mutually
orthogonal projections in M is in M . The second condition is automatic from
the first if the Hilbert space is separable.

III.2.4.4 If φ is a normal state on an AW*-algebra A and πφ is the GNS
representation, then πφ(A) satisfies the hypotheses of III.2.4.3 and is thus a
von Neumann algebra. So an AW*-algebra with a separating family of normal
states is a W*-algebra, i.e. we get:

III.2.4.5 Theorem. Let A be a C*-algebra. Then A is a W*-algebra if and
only if every maximal commutative C*-subalgebra of A is monotone complete
and A has a separating family of normal states.

III.2.5 Traces on von Neumann Algebras

Perhaps the most crucial structure fact about a finite von Neumann algebra
M is the existence of a center-valued trace on M , from which it follows that
M has a separating family of normal tracial states.

III.2.5.1 Definition. Let A be a von Neumann algebra (or a unital C*-
algebra), with center Z = Z(A). A center-valued state on A is a conditional
expectation from A onto Z. A center-valued state θ on A is a center-valued
trace if θ(xy) = θ(yx) for all x, y ∈ A.

III.2.5.2 Proposition. Let M be a von Neumann algebra with center Z.
Then M has a normal center-valued state.
Proof: The von Neumann algebra Z ′ is type I (III.1.5.20), and contains M
(and also M ′). Let p be an an abelian projection in Z ′ with central support
1. Then the map ψ : Z → pZ = pZ ′p defined by ψ(x) = px is an algebraic
isomorphism and a σ-weak homeomorphism. Define φ : Z ′ → Z by φ(x) =
ψ−1(pxp); then φ is a normal center-valued state.

Compare this result to IV.2.2.10 (cf. also IV.2.1.8).
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A von Neumann algebra with a center-valued trace must be finite, and a
center-valued trace on a von Neumann algebra must be faithful (if x ∈ M+

and θ(x) = 0, then x = 0). This is most easily seen using the notion of a
monic projection:

III.2.5.3 Definition. Let M be a von Neumann algebra, z a central pro-
jection, and n ∈ N. A projection p ∈ M is (n, z)-monic if there are mu-
tually orthogonal projections p1, . . . , pn ∈ M , each equivalent to p, with
z = p1 + · · · + pn. The projection p is monic if it is (n, z)-monic for some
n and z.

A monic projection is also called fundamental in some references if the n
is a power of 2.

III.2.5.4 Examples.

(i) If M is Type In, then any abelian projection p ∈ M is (n, zp)-monic.
(ii) If p is properly infinite and zp is countably decomposable, then p is (1, zp)-

monic (and (n, zp)-monic for any n) by III.1.3.6.
(iii) If M is Type II1, then by an argument similar to the one in III.1.7.3,

for any n and z there is an (n, z)-monic projection, and any two are
equivalent.

In fact, for a given n and z, any two (n, z)-monic projections are equivalent.

III.2.5.5 Proposition. If M is a finite von Neumann algebra, then every
projection in M is a sum of a mutually orthogonal family of monic projections.

To prove this, it suffices to show that every nonzero projection p ∈ M
contains a nonzero monic subprojection; the result then follows from a maxi-
mality argument. One may furthermore assume that M is either Type In or
Type II1. The Type In case follows easily from III.2.5.4(i), and the argument
in the Type II1 case is similar to the one in III.1.7.4, using III.2.5.4(iii).

III.2.5.6 Proposition. Let M be a von Neumann algebra with center-
valued trace θ. Then M is finite, and θ is faithful.

For the proof, first note that if p � q, then θ(p) ≤ θ(q). Thus, if p is (n, z)-
monic, we must have θ(p) = 1

nz. If z is a properly infinite central projection
in M , then z is (2, z)-monic by III.1.3.5, so z = θ(z) = 1

2z, a contradiction
unless z = 0. Thus M is finite. If x is a nonzero element of M+, then there
is a nonzero projection p with p ≤ mx for some m, and a nonzero monic
projection q ≤ p; then 0 < θ(q) ≤ θ(p) ≤ mθ(x).
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The Main Theorem

III.2.5.7 Theorem. Let M be a finite von Neumann algebra. Then M has
a unique center-valued trace θ. Furthermore, θ has the following properties:

(i) θ is normal, and hence σ-weakly continuous (III.2.2.2).
(ii) θ is faithful, i.e. if x ∈ M+ and θ(x) = 0, then x = 0.
(iii) For any x ∈ M , θ(x) is the unique central element in the norm-closed

convex hull of {uxu∗ : u ∈ U(M)}.
(iv) Every tracial state on M is of the form f ◦θ, where f is a state on Z(M),

i.e. every state on Z(M) extends uniquely to a tracial state on M .

III.2.5.8 Corollary. Every semifinite von Neumann algebra has a faith-
ful normal semifinite trace. Every finite von Neumann algebra has a separat-
ing family of normal tracial states. Every countably decomposable finite von
Neumann algebra (in particular, every II1 factor) has a faithful normal tracial
state.
Proof: To prove the last statement, just note that if Z(M) is countably de-
composable, then it has a faithful normal state. For the first two statements,
every semifinite von Neumann algebra is a direct sum of algebras of the form
M⊗̄L(H), where M is a countably decomposable finite von Neumann alge-
bra (cf. III.1.5.6(iii)); such an algebra has a faithful normal semifinite tensor
product trace.

III.2.5.9 We now discuss the proof of III.2.5.7. Once a normal center-valued
trace θ is shown to exist, it must be faithful by III.2.5.6. Uniqueness of the
center-valued trace also follows easily from a similar argument: if θ′ is any
center-valued trace on M , and p any projection in M , write p =

∑
i pi, where

pi is (ni, zi)-monic; then, since θ(pi) = θ′(pi) = 1
ni

zi for all i, and since θ is
normal, we have

θ(p) =
∑

i

θ(pi) =
∑

i

θ′(pi) ≤ θ′(p).

Since also
1 − θ(p) = θ(1 − p) ≤ θ′(1 − p) = 1 − θ′(p)

we conclude that θ(p) = θ′(p). By spectral theory we then obtain that θ(x) =
θ′(x) for all x ∈ Msa.

The proof of (iv) is nearly identical, at least for normal tracial states (a bit
more argument is needed for non-normal traces): if τ is a normal tracial state,
then τ(p) = τ ◦ θ(p) for every monic projection p, hence for every projection
p by III.2.5.5, hence τ(x) = τ ◦ θ(x) for all x = x∗ by spectral theory.

There are several proofs of the existence of θ. Most are based on the
following approximate version. This result was proved by Murray and von
Neumann [MvN37] in the factor case, and Dixmier [Dix49] observed that the
argument works essentially verbatim in general.
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III.2.5.10 Lemma. Let M be a finite von Neumann algebra, and ε > 0.
Then there is a normal center-valued state ψ with the property that ψ(xx∗) ≤
(1 + ε)ψ(x∗x) for all x ∈ M .

The proof of the lemma proceeds in three steps. The first step, which
requires most of the work, is to show that if φ is any normal center-valued
state (such exist by III.2.5.2), then there is a projection p ∈ M with φ(p) �= 0
and

φ(xx∗) ≤ (1 + ε)φ(x∗x)

for all x ∈ pMp. To do this, first let q = 1 −
∑

qi, where {qi} is a maximal
family of mutually orthogonal projections with φ(qi) = 0; then φ is faithful on
qMq, and φ(q) = 1. Then let {ei, fi} be a maximal family of subprojections
of q such that ei ⊥ ej and fi ⊥ fj for i �= j and ei ∼ fi and φ(ei) > φ(fi)
for all i (where “>” means “≥ and not equal to” in C). If e = q −

∑
ei and

f = q−
∑

fi, then (unless φ is already a trace) φ(f) > φ(e) ≥ 0, so f �= 0, and
e �= 0 since e ∼ f (III.1.1.2), so φ(e) �= 0. If µ is the smallest number such that
φ(e′) ≤ µφ(f ′) whenever e′ ≤ e, f ′ ≤ f , e′ ∼ f ′, then 0 �= φ(e) ≤ µφ(f), so
µ > 0; and there is e′ ≤ e, f ′ ≤ f , e′ ∼ f ′, (1+ε)φ(e′) �≤ µφ(f ′), and by cutting
down by a suitable central projection we can make (1 + ε)φ(e′) > µφ(f ′).
Let {e′′i , f ′′

i } be a maximal family such that e′′i ≤ e′, f ′′
i ≤ f ′, e′′i ∼ f ′′

i ,
(1 + ε)φ(e′′i ) ≤ µφ(f ′′

i ). Then

0 �= p = e′ −
∑

e′′i ∼ f ′′ = f ′ −
∑

f ′′
i

and if p1, p2 ≤ p, p1 ∼ p2, there is g ≤ f ′′, g ∼ p1, and we have

φ(p2) ≤ µφ(g) ≤ (1 + ε)φ(p1).

By spectral theory this implies φ(xx∗) ≤ (1 + ε)φ(x∗x) whenever x ∈ pMp.
The second step is to show that there is a nonzero central projection z and

a normal center-valued state ψz on zM with ψz(xx∗) ≤ (1 + ε)ψ(x∗x) for all
x ∈ zM . Let p be as in the first part. We may assume p is monic by III.2.5.5;
let pi, . . . , pn be a set of mutually orthogonal projections with

∑
pi = z and

pi equivalent to p via ui. A simple computation shows that ψz defined by
ψz(x) =

∑n
i=1 φ(uixu∗

i ) is the desired center-valued state.
The third step is a straightforward exhaustion argument.

III.2.5.11 The first existence proof, in [MvN37], valid on its face only for
factors (although it can be modified for the general case), first constructs the
quasitrace τ as in II.6.8.14, and then it must be shown that τ is linear. If ψ is
as in III.2.5.10, then it follows from a simple argument that |ψ(p)− τ(p)| < ε
for every monic projection p, and thus (using normality of ψ and τ)

|ψ(x) − τ(x)| < ε‖x‖

for all x ∈ M+. Therefore τ is ε-linear for all ε.
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III.2.5.12 The second proof, by Dixmier [Dix49], was the first to handle
the non-factor case, and also established property (iii) of III.2.5.7. This proof
will be discussed in more detail in III.2.5.15.

III.2.5.13 The simplest existence proof using III.2.5.10 is due to Kadison
([Kad55], [Kad61]; see [KR97b, 8.2]). If (an) is a sequence of positive numbers
strictly decreasing to 1, and ψn is a center-valued state as in III.2.5.10 with
ε = an − 1, a simple computation shows that a2

mψm − ψn is a positive map
for m < n, hence completely positive by II.6.9.10, and so it follows from
II.6.9.4 that (ψn) is norm-convergent to a center-valued state θ which must
be a normal center-valued trace.

III.2.5.14 The most elegant existence proof, and the only standard proof
not using III.2.5.10, is the argument of F. Yeadon [Yea71]. It suffices to show
that every normal state on Z = Z(M) extends to a normal tracial state on
M ; then, by the above proof, the extension is unique, and the map ζ from Z∗
to M∗ sending a normal state to its tracial extension is a linear isometry; the
dual map θ = ζ∗ from (M∗)∗ = M to (Z∗)∗ = Z is a surjective idempotent
map of norm one, and hence a center-valued trace.

For each u ∈ U(M), let Tu : M∗ → M∗ be defined by

[Tu(f)](x) = f(u∗xu).

Then {Tu : u ∈ U(M)} is a group of isometries. Fix an f ∈ M∗, and let Kf

be the norm-closed convex hull of {Tu(f) : u ∈ U(M)}. Then each g ∈ Kf

satisfies g|Z = f |Z , and each Tu maps Kf onto itself. The crucial use of finite-
ness in the proof is in showing that Kf is weakly compact (the weak topology
is the topology of pointwise convergence on M). Thus the Ryll-Nardzewski
fixed-point theorem [RN67] applies (the “noncontracting” hypothesis is triv-
ial) to yield a τ ∈ Kf with Tu(τ) = τ for all u ∈ U(M), so τ is a tracial
state with τ |Z = f |Z . Since the restriction map from M∗ to Z∗ is surjective
(III.2.1.10), this completes the argument.

The Dixmier Property

III.2.5.15 We now outline the existence proof of Dixmier [Dix49], which
also establishes property (iii). It is worthwhile to name the relevant properties
since they are used not only in the study of von Neumann algebras, but also
for many C*-algebras such as certain reduced group C*-algebras.

III.2.5.16 Definition. Let A be a unital C*-algebra with center Z(A). A
has the Dixmier property if, for every x ∈ A, the norm-closed convex hull Kx

of {uxu∗ : u ∈ U(A)} has nonempty intersection with Z(A). A has the strong
Dixmier property if Kx ∩ Z(A) consists of exactly one point for all x ∈ A.
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III.2.5.17 Proposition. A C*-algebra with the strong Dixmier property
has a center-valued trace.

Indeed, x �→ φ(x) ∈ Kx∩Z(A) is a linear contraction which is the identity
on Z(A), and hence a center-valued state. If u ∈ U(A), then φ(uxu∗) =
φ(x) for all x, and it follows that φ(x∗x) = φ(xx∗) for all x (and hence by
polarization φ(xy) = φ(yx) for all x, y) by an argument nearly identical to
the proof of II.6.8.7.

III.2.5.18 Theorem. Every von Neumann algebra has the Dixmier prop-
erty.

The main step in the proof is to show that given x ∈ Msa, there is a
u ∈ U(M) and y ∈ Z(M) with ‖(x+uxu∗)/2− y‖ ≤ 3

4‖x‖. In fact, if ‖x‖ = 1
and p is the support projection of x+, choose a central projection z such that
pz � (1 − p)z and (1 − p)(1 − z) � p(1 − z) and partial isometries v, w with
v∗v = pz, vv∗ ≤ (1 − p)z, w∗w = (1 − p)(1 − z), ww∗ ≤ p(1 − z). Then the
element

u = v + v∗ + w + w∗ + ((1 − p)z − vv∗) + (p(1 − z) − ww∗)

is unitary, and it and y = (1 − 2z)/4 work. The proof is then finished by
iterating the construction.

III.2.5.19 Theorem. Every finite von Neumann algebra has the strong
Dixmier property.

Because of III.2.5.18, it is only necessary to show that if M is finite and
x ∈ Msa, then Kx cannot contain more than one point. But if y, z ∈ Kx and a
center-valued state ψ is chosen as in III.2.5.10 with ε < ‖y−z‖, a contradiction
is easily obtained.

III.2.5.20 It is shown in [HZ84] that every simple unital C*-algebra has the
Dixmier property and every simple unital C*-algebra with unique tracial state
has the strong Dixmier property. It has also been shown that C∗

r (G) has the
strong Dixmier property for certain G, and hence is simple with unique trace;
cf. [Pow75], [PS79], [Ake81], [dlH85], [BN88], [HR89], [Béd91]. See [Avi82] for
a related condition on reduced free products of C*-algebras.

Characterization of Finite Projections

We can use the existence of a center-valued trace to describe the σ-strong
topology on bounded subsets of a finite von Neumann algebra M and show
that the involution is σ-strongly continuous. The first result is an immediate
corollary of III.2.2.17 and III.2.5.8:
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III.2.5.21 Proposition. Let M be a finite von Neumann algebra, and
{τi : i ∈ I} be a separating family of normal tracial states on M (e.g. the
set of all normal tracial states on M). Then the topology generated by the
seminorms {‖ · ‖2,τi

: i ∈ I} (III.2.2.17) agrees with the σ-strong topology on
bounded subsets of M .

III.2.5.22 Corollary. If M is a finite von Neumann algebra, then the
involution is σ-strongly continuous on bounded subsets of M , and hence the
σ-strong and σ-strong-* topologies coincide on bounded subsets of M .
Proof: If (xj) is a bounded net in M converging σ-strongly to 0, then, for
each tracial state τ on M ,

‖x∗
j‖2,τ = τ(xjx

∗
j )

1/2 = τ(x∗
jxj)1/2 → 0

so x∗
j → 0 σ-strongly.

III.2.5.23 Proposition. Let M be a von Neumann algebra, and p a pro-
jection in M . The following are equivalent:

(i) p is finite.
(ii) The involution is σ-strongly continuous on bounded subsets of pMp.
(iii) The function x �→ px∗ is σ-strongly continuous on bounded subsets of

M .

Proof: (i) =⇒ (ii) is III.2.5.22. For (iii) =⇒ (i), suppose p is not finite. By
cutting down by a central projection, we can assume that p is properly infinite.
Then there is a sequence (qn) of mutually orthogonal subprojections of p, each
equivalent to p (III.1.3.5); let vn be a partial isometry with v∗

nvn = qn and
vnv∗

n = p. Then vn → 0 σ-strongly, but v∗
n = pv∗

n �→ 0 σ-strongly.
For (ii) =⇒ (iii), suppose (xj) is a bounded net in M converging σ-strongly
to 0. Since

px∗
j = pzpx

∗
j = zppx∗

jzp

by cutting down by zp we may assume p has central support 1. Choose a
maximal family {pi} of mutually orthogonal projections in M with pi � p for
all i; then

∑
pi = 1 (III.1.1.12). There is a partial isometry vi with v∗

i vi = pi

and viv
∗
i ≤ p, then pi = v∗

i pvi. It suffices to show that ‖px∗
jξ‖ → 0 whenever

ξ = piξ for some i by I.3.1.2. For such i and ξ, we have

‖px∗
jξ‖ = ‖px∗

jpiξ‖ = ‖px∗
jv

∗
i pviξ‖ = ‖(pvixjp)∗pviξ‖ .

We have that (pvixjp) is a bounded net in pMp converging to 0 σ-strongly as
j → ∞, so by (ii) we have (pvixjp)∗ → 0 σ-strongly and hence

‖(pvixjp)∗pviξ‖ → 0.

The next theorem will be useful in several contexts, including establishing
the type of a tensor product of von Neumann algebras.
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III.2.5.24 Theorem. Let N ⊆ M be von Neumann algebras, and θ a nor-
mal conditional expectation from M onto N . If N is Type III and p is a finite
projection in M , then θ(p) = 0.
Proof: Suppose θ(p) �= 0, and let q be a nonzero projection in N with
λq ≤ θ(p) for some λ > 0. Then there is a y ∈ N with yθ(p) = q. Let (xj) be
a bounded net in N converging σ-strongly to 0. Then px∗

j → 0 σ-strongly by
III.2.5.23, so θ(px∗

j ) → 0 σ-strongly (III.2.2.2). But then

qx∗
j = yθ(p)x∗

j = yθ(px∗
j ) → 0

(σ-strongly), so q is finite by III.2.5.23, a contradiction.

III.2.5.25 Corollary. Let N ⊆ M be von Neumann algebras.

(i) If there is a normal conditional expectation θ : M → N , and M is semifi-
nite, then N is semifinite.

(ii) If there is a a separating family {θi : i ∈ I} of normal conditional ex-
pectations from M to N (i.e. if x ∈ M+, x �= 0, then there is an i with
θi(x) �= 0), and N is Type III, then M is Type III.

Proof: (i): Suppose N is not semifinite, and let z be a central projection in
N with Nz Type III. Then θ restricts to a normal conditional expectation
from zMz to Nz, and zMz is semifinite. Thus, to obtain a contradiction, we
may assume that N is Type III. Let {pi} be a family of mutually orthogonal
finite projections in M with

∑
pi = 1. Then

1 = θ(1) =
∑

θ(pi) = 0,

a contradiction.
(ii) is immediate from the theorem.

One can also prove ([Tom59]; cf. [Str81, 10.21]):

III.2.5.26 Theorem. Let N ⊆ M be von Neumann algebras. If there is a
normal conditional expectation θ : M → N , and M is Type I, then N is Type
I.

See IV.2.2.3 for a related result.

Type of a Tensor Product

We can now establish the type of a tensor product of two von Neumann alge-
bras. Throughout this subsection, M and N will be von Neumann algebras.

First note that tensor products respect direct sums, so to establish the
type of M⊗̄N we may assume that M and N are of pure type.
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III.2.5.27 Theorem. Let M and N be von Neumann algebras of pure type.
Then

(i) M⊗̄N is finite if and only if both M and N are finite.
(ii) M⊗̄N is semifinite if and only if both M and N are semifinite.
(iii) M⊗̄N is Type I if and only if both M and N are Type I.
(iv) M⊗̄N is Type II if and only if both M and N are semifinite and one is

Type II.
(v) M⊗̄N is Type II1 if and only if both M and N are finite and one is

Type II1.
(vi) M⊗̄N is Type II∞ if and only if both M and N are semifinite, one is

Type II, and not both are finite.
(vii) M⊗̄N is Type III if and only if either M or N is Type III.

(There are, of course, redundancies in the statements of these parts.)
If {φi : i ∈ I} and {ψj : j ∈ J} are separating families of normal tracial

states on M and N respectively, then

{φi ⊗ ψj : i ∈ I, j ∈ J}

is a separating family of normal tracial states on M⊗̄N (III.2.2.29, I.5.1.8).
This shows that if M and N are both finite, then M⊗̄N is finite. The converse
direction of (i) follows from the fact that M and N embed in M⊗̄N , and a
subalgebra of a finite algebra is finite.

For (ii), if p and q are finite projections in M and N respectively with cen-
tral support 1, then p⊗ q is a finite projection in M⊗̄N (previous paragraph)
with central support 1 (III.1.5.8), giving one direction. The converse direction
of (ii) follows from (vii).

If M and N are Type I, and p and q are abelian projections in M and
N with central support 1, then p ⊗ q is an abelian projection in M⊗̄N with
central support 1 (III.1.5.8), so M⊗̄N is Type I. More specifically, it is easy
to see that (Type Im) ⊗̄ (Type In) is Type Imn. So to finish the proof of the
theorem it suffices to prove the following two lemmas:

III.2.5.28 Lemma. If M or N is Type III, then M⊗̄N is Type III.
Proof: This is almost an immediate corollary of III.2.5.25. Suppose N is
Type III. As φ ranges over all normal states of M , the left slice maps Lφ

(III.2.2.6) give a separating family of normal conditional expectations from
M⊗̄N to N : we have s(Lφ) = s(φ) ⊗ 1, so

∨

φ

s(Lφ) =
∨

φ

[s(φ) ⊗ 1] =
[∨

φ

s(φ)
]
⊗ 1 = 1 ⊗ 1

(I.5.1.8).
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III.2.5.29 Lemma. If M or N is continuous, then M⊗̄N is continuous.
Proof: If M or N is Type III, the result follows from III.2.5.28. Suppose M
and N are semifinite, and p and q finite projections in M and N respectively
with central support 1. Then p⊗ q is a finite projection in M⊗̄N with central
support 1. It suffices to show that the finite von Neumann algebra pMp⊗̄qNq
is Type II1 if M (and hence pMp) is Type II1. If pMp⊗̄qNq is not Type II1,
then there is a nonzero central projection z ∈ pMp⊗̄qNq with z(pMp⊗̄qNq)
Type In for some n ∈ N. But z(pMp⊗̄qNq) has a W*-subalgebra z(pMp⊗ 1)
which is isomorphic to a quotient of pMp by a weakly closed ideal and is
therefore Type II1, a contradiction since every W*-subalgebra of a Type In
von Neumann algebra is Type I.

III.2.6 Spatial Isomorphisms and Standard Forms

In this section, we elaborate on the essential uniqueness of the representation
of a W*-algebra as a von Neumann algebra established in III.2.2.8.

III.2.6.1 Definition. Let M be a von Neumann algebra, and ψ a faithful
normal semifinite weight on M . The ψ-standard form representation of M is
the GNS representation from ψ. A normal representation π of M is in standard
form if it is (unitarily equivalent to) a ψ-standard form representation for
some faithful normal semifinite weight ψ. A von Neumann algebra on H is in
standard form if its identity representation is in standard form.

III.2.6.2 Example. Let M be a type I factor, i.e. M = L(H) for some H,
and Tr the standard trace on M . The Tr-standard form representation of M
is the representation as left multiplication operators on the ideal of Hilbert-
Schmidt operators L2(H). In this representation, M ′ is also isomorphic to M ,
acting by right multiplication. In particular, M and M ′ are the same “size.”

The next two obvious observations are useful in decomposing and analyz-
ing representations.

III.2.6.3 Proposition. Let M be a von Neumann algebra on H, and {zi}
a set of mutually orthogonal central projections of M with

∑
zi = 1. Then

M is in standard form on H if and only if Mzi is in standard form on ziH for
all i.

III.2.6.4 Proposition. Let M1, M2 be von Neumann algebras on H1 and
H2 respectively. If M1 and M2 are in standard form, then M1⊗̄M2 is in
standard form on H1 ⊗H2.

The converse is false: if H1, H2 are separable, M1 is Type III, and M2 is
arbitrary, then M1⊗̄M2 is Type III (III.2.5.27) and hence in standard form
(III.2.6.16).
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III.2.6.5 Proposition. Every von Neumann algebra has a standard form
representation.

The existence of a standard form follows from the existence of a faithful
normal semifinite weight on any von Neumann algebra (III.2.2.26).

III.2.6.6 Theorem. Let M be a countably decomposable von Neumann
algebra. Then the standard form representation of M is unique up to spatial
isomorphism (i.e. any two standard form representations are unitarily equiv-
alent). If M is in standard form, M ′ is also in standard form.

This theorem is also true without the hypothesis that M be countably
decomposable, but the proof requires Modular Theory (III.4.5.7).

We first establish uniqueness of standard forms coming from faithful nor-
mal states, using III.2.3.3.

III.2.6.7 Theorem. Let φ and ψ be faithful normal states on a von Neu-
mann algebra M . Then πφ and πψ are unitarily equivalent.

This is almost an immediate corollary of III.2.3.3. Let ω = φ + ψ; then
φ ≤ ω, so there is an h ∈ M+ such that

φ(x) = ω(h1/2xh1/2)

for all x ∈ M ; since φ is faithful, the support projection of h is 1, so there
is a sequence (xn) in C∗(h) ⊆ M such that xnh1/2 ↗ 1 in M . Form the
GNS representations πφ and πω on Hφ and Hω with cyclic vectors ξφ and
ξω respectively. The map xξφ �→ xh1/2ξω extends to an isometry of Hφ onto
X = [Mh1/2ξω] intertwining πφ with πω|X . But if η ∈ Hω (e.g. η = ξω), then
xnh1/2η → η since πφ(xnh1/2) → 1 strongly, so η ∈ X , X = Hω and πφ is
unitarily equivalent to πω. Similarly, πψ is unitarily equivalent to πω.

Note that if M is in φ-standard form from a state φ, then M ′ is obviously
in standard form from the complementary state φ′ defined by ξφ.

We can now finish the proof of III.2.6.6. If M is countably decomposable
and ψ is a faithful normal semifinite weight on M , choose h as in the following
lemma, and define

φ(x) = ψ(h1/2xh1/2)

for x ∈ M+. Then φ defines a state on M , and exactly as in the previous proof
πφ is unitarily equivalent to πψ.

III.2.6.8 Lemma. Let M be a countably decomposable von Neumann al-
gebra, and ψ an unbounded normal semifinite weight on M . Then there is an
h ∈ Mψ, 0 ≤ h ≤ 1, with ψ(h) = 1 and the support projection of h equal to
1.
Proof: The unit ball of (Mψ)+ is σ-strongly dense in the unit ball of M+

by the Kaplansky Density Theorem, and the unit ball of M is σ-strongly
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metrizable by III.2.2.27, so there is a sequence (hn) of positive elements of Mψ,
of norm 1, converging σ-strongly to 1. Since ψ is unbounded, lim supψ(hn) =
∞, so we may assume ψ(hn) ≥ 1 for all n. Set

h =
∞∑

n=1

2−nψ(hn)−1hn.

(This h is in fact strictly positive in the norm-closure of Mψ.)

III.2.6.9 Corollary. Let M be a countably decomposable von Neumann
algebra on H. Then M is in standard form if and only if M has a cyclic and
separating vector. In particular, if M is in standard form, then M ′ is also
countably decomposable.

Recall that if M is a von Neumann algebra which has a representation with
a separating vector, or a faithful representation with a cyclic vector, then M
is countably decomposable. A representation with a cyclic vector is “small” in
the sense that any subrepresentation also has a cyclic vector (III.1.2.5(i)); a
representation with a separating vector is “large” in the sense that every larger
representation also has a separating vector. The standard form representation
is the only one which simultaneously has both properties:

III.2.6.10 Corollary. Let M be a (necessarily countably decomposable)
von Neumann algebra on H. If M has both a cyclic vector and a separating
vector, then M is in standard form.
Proof: Let ξ be a cyclic vector and η a separating vector; let ρ be the
identity representation of M , and σ the restriction of ρ to [Mη]. For x ∈ M ,
let φ(x) = 〈xξ, ξ〉 + 〈xη, η〉. Then, as in the proof of III.2.6.7, ρ and σ can be
identified with subrepresentations of πφ. Let p, q ∈ πφ(M)′ be the projections
onto the subspace of ρ and σ respectively; then q ≤ p ≤ 1. But σ is in
standard form, so q ∼ 1 in πφ(M)′, and hence p ∼ 1 in πφ(M)′ by the
Schröder-Bernstein Theorem (III.1.1.9).

III.2.6.11 Proposition. Let M be a countably decomposable von Neu-
mann algebra on H. Then there is a central projection z in M such that Mz
has a cyclic vector on zH (i.e. z is cyclic under M), and M(1 − z) has a
separating vector on (1 − z)H (i.e. 1 − z is cyclic under M ′).
Proof: This is a corollary of III.2.2.11, comparing the identity representation
of M with the standard form representation.
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Type of the Commutant

If a von Neumann algebra M is in standard form, there is an intimate relation
between the structure of M and M ′. The most precise result is the deep
theorem from modular theory (III.4.3.2) that M and M ′ are actually anti-
isomorphic. However, we can by much more elementary arguments obtain less
precise, but still useful information, such as that M and M ′ at least have the
same type; to some extent this is still true if M is not in standard form.

III.2.6.12 Theorem. Let M be a von Neumann algebra on H. If M is
Type I [resp. Type II, Type III], then M ′ is also Type I [resp. Type II, Type
III]. If M is in standard form, and M is type In [resp. Type I∞, Type II1,
Type II∞], then M ′ is also Type In [resp. Type I∞, Type II1, Type II∞].

The first statement for the Type I case has already been shown (III.1.5.20).
Thus it suffices to prove the result for a Type In or II1 von Neumann algebra
in standard form; for, then, if M is any Type II1 von Neumann algebra on a
Hilbert space, then the identity representation is a reduction of an amplifica-
tion of the standard form representation, and M ′ is thus Type II (it can have
a nontrivial Type II1 part and/or a nontrivial Type II∞ part in general). If
M is Type II∞ on H, and p is a finite projection in M with central support
1, then pMp is a Type II1 von Neumann algebra on pH, and (pMp)′ ∼= M ′,
hence M ′ is Type II. If M is in standard form, then M ′ cannot have a nonzero
Type II1 part by III.2.6.3, and hence is Type II∞ (the II∞ case also follows
from III.2.6.4). Finally, if M is Type III, it follows that M ′ cannot have a
Type I or Type II part and thus is Type III.

The result for general Type II1 von Neumann algebras in standard form
can be reduced to the countably decomposable case by III.2.6.3, so it suffices
to prove:

III.2.6.13 Proposition. Let τ be a faithful normal tracial state on a von
Neumann algebra M in τ -standard form on Hτ . Then the complementary
state τ ′ on M ′ defined by ξτ is also a (faithful normal) tracial state.

To prove this, note first that

〈xyξτ , ξτ 〉 = τ(xy) = τ(yx) = 〈yxξτ , ξτ 〉

for all x, y ∈ M and

‖xξτ‖2 = 〈x∗xξτ , ξτ 〉 = 〈xx∗ξτ , ξτ 〉 = ‖x∗ξτ‖2

for all x ∈ M . Now we show that M ′
saξτ ⊆ (Msaξτ )−. If x = x∗ ∈ M ′, there

is a sequence (xn) in M with xnξτ → xξτ . Since (xnξτ ) is a Cauchy sequence,
so is (x∗

nξτ ), i.e. x∗
nξτ → η for some η. If y ∈ M , then

〈η, yξτ 〉 = lim〈x∗
nξτ , yξτ 〉 = lim〈ξτ , xnyξτ 〉
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= lim〈ξτ , yxnξτ 〉 = 〈ξτ , yxξτ 〉 = 〈ξτ , xyξτ 〉 = 〈xξτ , yξτ 〉
and since ξτ is cyclic, it follows that x∗

nξτ → xξτ , so [(xn + x∗
n)/2]ξτ → xξτ .

Now suppose x, y ∈ M ′
sa. Choose a sequence (xn) in Msa with xnξτ → xξτ .

Then
τ ′(xy) = 〈xyξτ , ξτ 〉 = 〈yξτ , xξτ 〉 = lim〈yξτ , xnξτ 〉

= lim〈xnyξτ , ξτ 〉 = lim〈yxnξτ , ξτ 〉 = 〈yxξτ , ξτ 〉 = τ ′(yx)

so τ ′ is tracial.

III.2.6.14 Since the Type In factor case in standard form was done in
III.2.6.2, by III.2.6.4 to finish off the In case of III.2.6.12 it suffices to show
that a Type I1 (i.e. commutative) von Neumann algebra Z is in standard form
if and only if it is a masa. The countably decomposable case is III.1.5.19 and
III.2.6.9, and the general case reduces immediately to the countably decom-
posable case (using III.2.6.3) since a commutative von Neumann algebra is
locally countably decomposable (III.1.2.6).

Properly Infinite von Neumann Algebras

III.2.6.15 It follows from III.2.6.9, III.2.6.12, and III.2.2.9 that if M is
properly infinite and countably decomposable, then M is in standard form if
and only if M ′ is also properly infinite and countably decomposable. Thus,
for von Neumann algebras on a separable Hilbert space, we get:

III.2.6.16 Corollary. Let M be a properly infinite von Neumann algebra
on a separable Hilbert space. Then M is in standard form if and only if M ′ is
also properly infinite. In particular, every Type III von Neumann algebra on
a separable Hilbert space is in standard form.

The Coupling Function

III.2.6.17 If M is a finite von Neumann algebra, and Z(M) = Z(M ′)
is identified with L∞(X,µ) for some X, then there is a (locally) measurable
function γ(M,M ′) on X, taking values in (0,∞], which measures the deviation
of the identity representation of M from the standard form representation. The
function γ(M,M ′) is called the coupling function of M and M ′. (Of course,
γ(M,M ′) will only be defined locally a.e.)

If M ′ is properly infinite, define γ(M,M ′) to be ∞ everywhere. (If M ′

is not locally countably decomposable, it will be necessary to instead use
various infinite cardinals for the values of γ(M,M ′).) If M ′ is finite, and π
is the standard form representation of M , and the identity representation of
M is equivalent to a subrepresentation of π corresponding to a projection
p ∈ π(M)′, let γ(M,M ′) be the function corresponding to θ(p), where θ is
the center-valued trace on π(M)′. If π is equivalent to a subrepresentation of
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the identity representation of M corresponding to a projection q ∈ M ′, let
γ(M,M ′) be the reciprocal of the function corresponding to θ′(q), where θ′ is
the center-valued trace on M ′. (Since q has central support 1, this function
will be nonzero locally a.e.)

In general, there are three central projections z1, z2, z3 in M such that
z1 + z2 + z3 = 1, z1M

′ and z2M
′ are finite, z3M

′ is properly infinite, the
identity representation of z1M is equivalent to a subrepresentation of the
standard form representation, and the standard form representation of z2M is
equivalent to a subrepresentation of the identity representation. The coupling
function can be defined on each piece as above.

III.2.6.18 The coupling function has the following properties:

(i) γ(M,M ′) is finite locally a.e. (but not necessarily bounded) if and only
if M ′ is finite.

(ii) If M ′ is finite, then γ(M ′,M) is the reciprocal of γ(M,M ′) locally a.e.
(iii) M is in standard form if and only if γ(M,M ′) = 1 locally a.e.
(iv) If M ′ is finite with center-valued trace θ′, p is a projection in M ′ with

central support 1, and θ′(p) is identified with a measurable function from
X to (0, 1], then γ(pM, pM ′p) = θ′(p)γ(M,M ′) locally a.e.

(v) If π is a faithful normal representation of M , then π has an associated
coupling function γ(π(M), π(M)′). Two faithful normal representations
π and ρ are equivalent if and only if their coupling functions are equal
locally a.e. The representation π is equivalent to a subrepresentation of
ρ if and only if γ(π(M), π(M)′) ≤ γ(ρ(M), ρ(M)′) locally a.e.

III.2.6.19 If M is Type II1, then every locally measurable function from X
to (0,∞] occurs as the coupling function of a unique faithful normal repre-
sentation of M . In the type I case, there are restrictions: on a Type In piece,
the coupling function can only take the values {k/n : k ∈ N} and ∞.

III.2.6.20 If M is a factor, then X is reduced to a single point, and the
coupling function is just a number called the coupling constant. If M is type
II1, the coupling constant can be any positive real number (or ∞ if M ′ is
II∞). If M is Type In, the constant is ∞ or k/n for some k ∈ N.

Subfactors

III.2.6.21 Although it is rather off the subject of this volume, no modern
treatment of von Neumann algebra theory would be complete without mention
of the theory of subfactors.

If M is a factor, a subfactor (of M) is a factor N contained in M (with
the same unit); the subfactor is usually denoted (N,M) or (N ⊆ M). Then
M is a (left or right) N -module in the obvious way, and it is not hard to show
that M is a projective N -module. We say that N has finite index in M if M
is finitely generated as a (left or right) N -module. If N is of finite index, a
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numerical index [M : N ] can be defined as the “dimension” of M as a finitely
generated projective N -module. If M is Type II1 in standard form from its
trace, then [M : N ] is just the coupling constant γ(N,N ′). Subfactors of the
same index can have different “positions”, so the index is far from a complete
invariant.

The main goal of subfactor theory is to describe and, if possible, classify all
subfactors of a fixed factor M up to the obvious notion of isomorphism. The
theory is largely independent of the particular M chosen, and is perhaps most
interesting if M is the (unique) hyperfinite II1 factor R (III.3.1.4, III.3.4.3).
The theory is extremely rich: for example, it includes as a (rather small) special
case the classification of finite groups and, more generally, finite homogeneous
spaces [if G is a finite or even countable group and H is a subgroup, there
is a standard action α of G as outer automorphisms of R, namely writing R
as
⊗

t∈GR and letting G permute the entries of the tensors; then the pair
(R�̄αH ⊆ R�̄αG) is a subfactor of index [G : H], from which G/H can be
recovered]. It is remarkable that the theory is so complex, with connections
throughout a wide swath of mathematics and physics, and at the same time
is not completely intractable.

The first remarkable discovery, by V. Jones [Jon83], was that the values
taken by the index are precisely the numbers {4 cos2(π/n) : n ≥ 3} ∪ [4,∞).
Jones also discovered fascinating and unexpected connections with knot the-
ory [Jon85] and, later, topological quantum field theory and statistical me-
chanics [Jon89], which revolutionized these subjects, and received the Fields
Medal in 1990 for this work.

Subfactor theory has grown into a large industry with many applications.
See e.g. [JS97] for a more complete treatment.

III.3 Examples and Constructions of Factors

So far, we have not seen any examples of non-type-I von Neumann algebras. In
this section, we will give some of the most important constructions and exam-
ples of non-type-I factors. We will be most interested in factors on separable
Hilbert spaces, but the constructions are quite general.

III.3.1 Infinite Tensor Products

Perhaps the simplest construction of non-type-I factors is via infinite tensor
products.

III.3.1.1 Let {Hi : i ∈ Ω} be a set of Hilbert spaces, and ξi a specified unit
vector in Hi. Then the infinite tensor product of the Hi with respect to ξi,
denoted ⊗

i

(Hi, ξi)
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is constructed as follows. For each finite F ⊆ Ω, let HF =
⊙

i∈F Hi with
its natural inner product (I.1.4.2). If F ⊆ G, identify HF with the closed
subspace

HF ⊗ (
⊗

i∈G\F

ξi)

of HG. Then the inductive limit H0 has a natural structure as an inner product
space; elements of H0 are linear combinations of elementary tensors

⊗
ηi,

where ηi = ξi for all but finitely many i. Let
⊗

i(Hi, ξi) be the completion.⊗
i(Hi, ξi) has a distinguished unit vector ξ =

⊗
ξi. If each Hi is more than

one dimensional, then
⊗

(Hi, ξi) is separable if and only if each Hi is separable
and Ω is countable.

III.3.1.2 If Mi is a unital C*-subalgebra of L(Hi), then the infinite minimal
C*-tensor product

⊗
min Mi acts naturally as a C*-algebra of operators on⊗

i(Hi, ξi). If each Mi is a von Neumann algebra, we denote by

⊗

i
(Mi, ξi)

the von Neumann algebra generated by the image, called the infinite ten-
sor product of the Mi with respect to ξi. Although

⊗
min Mi is defined in

a space-free manner, it turns out that the structure of
⊗

i(Mi, ξi) depends
strongly on the choice of the ξi. There is a distinguished normal state on⊗

i(Mi, ξi) coming from inner product with the distinguished unit vector ξ.
The commutant of

⊗
i(Mi, ξi) is

⊗
i(M

′
i , ξi) (the general result requires the

Commutation Theorem for Tensor Products (III.4.5.8), but we will be almost
exclusively concerned with the case where each Hi is finite-dimensional, where
the Commutation Theorem is elementary).

If {Mi} is a collection of von Neumann algebras and φi is a normal state
on Mi (usually assumed faithful), then we can form

⊗

i
(Mi, φi) =

⊗

i
(Mi, ξφi

)

where ξφi
∈ Hφi

comes from the GNS representation. The corresponding
distinguished normal state on

⊗
i(Mi, φi) is denoted

⊗
i φi; the representation

of
⊗

i(Mi, φi) on
⊗

i(Hφi
, ξφi

) is the GNS representation from
⊗

i φi, and if
each φi is faithful, then

⊗
i φi is faithful. If each φi is a trace, then φ is a

trace.

III.3.1.3 Proposition. If each Mi is a factor, then M =
⊗

i(Mi, φi) is a
factor.
Proof: If F is a finite subset of Ω, write

MF =
⊗

i∈F
Mi and NF =

⊗

i∈Ω\F
(Mi, ξi).
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Then M = MF ⊗̄NF . Identify MF with MF ⊗ 1, and let θF be the slice
map (III.2.2.6) from M to MF defined by

⊗
i∈Ω\F φi; θF is a conditional

expectation. If H =
⊗

i(Hi, ξφi
) and ξ =

⊗
i ξφi

, and x ∈ M is identified with
xξ ∈ H, θF is the orthogonal projection from H onto

(
⊗

i∈F

Hi) ⊗ (
⊗

i∈Ω\F

ξφi
).

Thus, for any x ∈ M , θF (x)ξ → xξ in H as F → ∞.
Now suppose x ∈ Z(M). If y ∈ MF , we have yθF (x) = θF (yx) = θF (xy) =

θF (x)y; thus θF (x) ∈ Z(MF ). Since each MF is a factor (III.1.5.10), it follows
that θF (x)ξ is a scalar multiple of ξ for all F . Since θF (x)ξ → xξ, xξ is a
multiple of ξ and hence x ∈ C1 and M is a factor.

III.3.1.4 The simplest case is where each Mi (i ∈ N) is M2 and each φi the
(unique) tracial state. Then

⊗
i(Mi, φi) is a II1 factor, usually denoted R or

R1. If A is the CAR algebra (II.8.2.2(iv)) and φ is the unique tracial state on
A, then R ∼= πφ(A)′′.

III.3.1.5 Similarly, a tensor product
⊗

i(Mi, φi) as in III.3.1.4, but with an
uncountable index set, yields a II1 factor which cannot be represented on a
separable Hilbert space.

III.3.1.6 A Type II∞ factor can also be easily constructed: let M =
R⊗̄L(H) for a separable infinite-dimensional Hilbert space H. This factor
is usually denoted R0,1 (see III.3.1.13 for an explanation of the notation).

III.3.1.7 The next simplest case is the Powers factors. In a major advance,
R. Powers [Pow67] in 1967 exhibited uncountably many mutually noniso-
morphic type III factors on a separable Hilbert space; previously only three
isomorphism classes were known.

Again let Mi (i ∈ N) be M2. For 0 < λ < 1 let φλ be the state on M2

defined by
φλ((aij)) = αa11 + (1 − α)a22

where α = λ
1+λ (so λ = α

1−α ). Fix λ, and let φi = φλ for each i, and Rλ =
⊗

i(Mi, φi). (The construction also works for λ = 1 and gives the above II1
factor R1. The factors Rλ can also be constructed via the group measure
space construction (III.3.2.14)).

III.3.1.8 Theorem. The Rλ (0 < λ < 1) form a pairwise nonisomorphic
family of type III factors.
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III.3.1.9 The most efficient and elegant proof that the Rλ are mutually
nonisomorphic and Type III uses modular theory, and will be given in III.4.6.8.
Here we outline a direct argument, which leads to a generalization of the
Powers factors and useful invariants. (See [Ped79, 6.5.15] for another proof
that Rλ is Type III.)

First note that if φ is a state on Mn, then there is a unique positive a ∈ Mn

with Tr(a) = 1 and φ(x) = Tr(ax) for all x (cf. I.8.6.1). The eigenvalues
α1, . . . , αn of a, listed in decreasing order with multiplicity, are called the
eigenvalue list of φ and determine φ up to unitary equivalence. Since Tr(a) =∑

αk = 1, we have 0 ≤ αk ≤ 1 for all k. The state φ is faithful if and only if
all αk are nonzero. The set {αi/αj : 1 ≤ i, j ≤ n} is called the ratio set r(φ)
of φ. The eigenvalue list of φλ is (1 − α, α), and the ratio set is {1, λ, λ−1}.
The ratio set of φ1 ⊗ · · · ⊗ φk is

{λ1λ2 · · ·λk : λi ∈ r(φi)}.

Suppose M =
⊗

(Mi, φi) and N =
⊗

(Ni, ψi), where Mi = Ni = M2,
φi = φλ1 , ψi = φλ2 for all i, and λ1, λ2 ∈ (0, 1]. If M ∼= N , since they are in
standard form there is a spatial isomorphism σ from M onto N . Set A1 = M1

and n1 = 1. There will be a k = k1 such that σ(A1 ⊗ 1) is approximately
contained in (

⊗k
j=1 Nj) ⊗ 1; suppose for simplicity the containment is exact.

Then
k⊗

j=1

Nj = B1 ⊗ B2

where B1 = σ(A1) and B2 is the relative commutant. The state ψ1⊗· · ·ψk does
not decompose into a tensor product state ψ̃1 ⊗ ψ̃2 on B1 ⊗B2 in general; but
up to similarity it does so approximately. Repeating the process, there is an
n = n2 such that σ−1(B2) is (approximately) contained in (

⊗n2
i=n1+1 Mi)⊗ 1;

write
n2⊗

i=n1+1

Mi = A2 ⊗ A3

with A2 = σ−1(B2). In this way, we rewrite M as
⊗

(An, φ̃n) and N as⊗
(Bn, ψ̃n). It then follows that the ratio sets of φ̃n and ψ̃n must be “asymp-

totically” the same. But r(φ̃n) is a set of powers of λ1 and r(ψ̃n) powers of
λ2, so λ1 = λ2.

The fact that Rλ is Type III follows from III.3.1.12(iii).

III.3.1.10 A factor of the form M =
⊗

i∈N
(Mi, φi), where the Mi are (finite-

dimensional) matrix algebras and the φi faithful states, is called an ITPFI
factor (ITPFI= “infinite tensor product of finite Type I.”) A countably de-
composable Type I∞ factor in standard form is ITPFI (cf. III.3.1.12(i)), as is
Rλ (0 < λ ≤ 1). A tensor product (even countably infinite tensor product) of
ITPFI factors is ITPFI; thus the II∞ factor R1⊗̄L(H) (in standard form) is
ITPFI.
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After work of H. Araki, D. Bures, C. Moore, and L. Pukanszky charac-
terized the type of an ITPFI factor, Araki and E. J. Woods [AW69] made
a systematic study of ITPFI factors. They found an isomorphism invariant
r∞(M) called the asymptotic ratio set , and an additional invariant ρ(M). The
invariant r∞(M) is natural in light of the argument outlined above:

III.3.1.11 Definition. Let M =
⊗

i∈N
(Mi, φi) be an ITPFI factor. Then

r∞(M) is the set of all x ≥ 0 such that, for all k ∈ N and ε > 0, there is an n
and a λ in the ratio set of φk+1 ⊗ · · · ⊗ φk+n with |x − λ| < ε.

It is easy to see that r∞(M) is a closed subset of [0,∞), and that r∞(M)∩
R+ is a multiplicative subgroup of R+. Thus r∞(M) is one of the following
sets: {1}, {0, 1}, {0} ∪ {λn : n ∈ Z} for some 0 < λ < 1, or [0,∞). We have
r∞(R1) = {1} and r∞(Rλ) = {0} ∪ {λn : n ∈ Z} for 0 < λ < 1.

It follows from the argument outlined in III.3.1.9 (cf. [AW69]) that if M ∼=
N , then r∞(M) = r∞(N), i.e. r∞(M) is an algebraic invariant of M and
independent of the way M is written as an ITPFI factor. The technical details
of the argument are substantial.

The main results about ITPFI factors are:

III.3.1.12 Theorem. Let M =
⊗

i∈N
(Mi, φi) be an ITPFI factor, with

Mi = Mni
. Write α

(i)
k for the k’th element of the eigenvalue list of φi. Then

(i) ([Ara63], [Bur63]) M is Type I (I∞) if and only if
∑

i(1 − α
(i)
1 ) < ∞.

(ii) ([Bur63], [Puk56]) M is Type II1 if and only if
∑

i,k |(α
(i)
k )1/2−n

−1/2
i |2 <

∞.
(iii) [Moo67] If there is a δ > 0 with α

(i)
1 ≥ δ for all i (in particular, if the ni

are bounded), then M is Type III if and only if
∑

i,k

α
(i)
k inf{|α(i)

1 /α
(i)
k − 1|2, C} = ∞

for some (hence all) C > 0.

See III.3.2.14 for some comments on the proof.

III.3.1.13 Theorem. [AW69] Let M =
⊗

i∈N
(Mi, φi) and N =

⊗
i∈N

(Ni, ψi)
be ITPFI factors. Then

(i) If 0 < λ < 1, then λ ∈ r∞(M) if and only if M ∼= M⊗̄Rλ. In particular,
if there is a λ ∈ r∞(M), λ �= 0, 1, then M is Type III.

(ii) M is Type II1 if and only if r∞(M) = {1}.
(iii) There is a Type III ITPFI factor R∞ with r∞(R∞) = [0,∞).
(iv) If r∞(M) = {0, 1}, then M could be Type I∞, Type II∞, or Type III.

There are uncountably many mutually nonisomorphic Type III factors
in this class.

(v) If M and N are Type II∞, then M ∼= N .
(vi) If r∞(M) = r∞(N) �= {0, 1}, then M ∼= N .
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III.3.1.14 It follows from (iii) and (vi) that R∞ is the unique ITPFI factor
M with r∞(M) = [0,∞). This factor is called the ITPFI factor of Type
III1. (It might make sense to call this factor R1, but this name is normally
used, with good reason, for the hyperfinite II1 factor, since r∞(R1) = {1}.
The asymptotic ratio set also explains the notation R0,1 for the unique ITPFI
factor of Type II∞ (III.3.1.6), since r∞(R0,1) = {0, 1}.) The Powers factor Rλ,
which by (vi) is the unique ITPFI factor M with r∞(M) = {0}∪{λn : n ∈ Z},
is called the ITPFI factor of Type IIIλ.

It is easy to see that if 0 < λ1, λ2 < 1 and log λ1/ log λ2 is irrational, then
Rλ1⊗̄Rλ2

∼= R∞. (If log λ1/ log λ2 is rational, then Rλ1⊗̄Rλ2
∼= Rλ, where

− log λ is the largest number µ such that − log λ1 and − log λ2 are integer
multiples of µ.) R∞ absorbs all ITPFI factors: if M is any ITPFI factor, then
M⊗̄R∞ ∼= R∞.

The factors occurring in quantum field theory are “generically” isomorphic
to R∞ [Ara64].

III.3.1.15 The Type III ITPFI factors with asymptotic ratio set {0, 1} are
called the ITPFI factors of Type III0. An additional invariant ρ is useful here:

ρ(M) = {λ ∈ [0, 1] : M⊗̄Rλ
∼= Rλ}

(let R0 be the I∞ factor). The set ρ(M) is an algebraic invariant of M . We
have:

ρ(R0) = [0, 1)
ρ(R1) = (0, 1]
ρ(R0,1) = (0, 1)
ρ(Rλ) = {λ1/n : n ∈ N} if 0 < λ < 1
ρ(R∞) = ∅

Of course, by III.3.1.13(vi), ρ gives no additional information in these cases.
If M is Type III0, however, the set ρ(M) can be very interesting. It turns

out that
{−2π/ log λ : λ ∈ ρ(M) ∩ (0, 1)}

is the positive part of a group T (M) which is an invariant of M arising from
modular theory (III.4.6.5). Uncountably many different such groups arise for
ITPFI factors, including all countable subgroups of R [Con76] and many un-
countable groups [Woo73]. See III.3.2.19 for a further discussion of the classi-
fication of ITPFI factors of Type III0.

Historical comments on the theory of ITPFI factors and their connection
with the classification program for injective factors can be found in [Woo82].

III.3.2 Crossed Products and the Group Measure
Space Construction

The earliest construction of non-Type-I factors, first used by Murray and
von Neumann, is the group measure space construction, a special case of the
W*-crossed product.
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Continuity of Group Actions

III.3.2.1 Let G be a locally compact group, N a von Neumann algebra on
a Hilbert space H, and α : G → Aut(N) a homomorphism. To construct a
W*-analog of the C*-crossed product, the action α must be continuous for
an appropriate topology on Aut(N), and if G is not discrete, there are some
technical subtleties to consider.

The point-norm topology, used for the C*-crossed product, is too strong
for the W* case; the most obvious candidate for the correct topology is point-
wise weak, strong, σ-strong-*, etc., convergence (these topologies coincide on
Aut(N) by I.3.2.9 and II.3.2.12). However, Aut(N) is not a topological group
under this topology in general. It is sometimes useful to instead consider
a stronger topology, under which Aut(N) is always a topological group. If
α ∈ Aut(N), α induces an isometry α∗ on N∗ by

α∗(φ) = φ ◦ α.

This α∗ leaves N∗ invariant and thus induces an isometry α∗ on N∗. Thus
the topology of pointwise norm-convergence on N∗ can be placed on Aut(N),
i.e. αi → α in this topology if φ ◦ αi → φ ◦ α in norm for all φ ∈ N∗. This
topology is strictly stronger than the point-weak topology in general (e.g. for
L∞([0, 1])), although the topologies are the same for some infinite-dimensional
von Neumann algebras (e.g. a von Neumann algebra with a faithful normal
semifinite weight left invariant by all automorphisms, such as the trace on a
factor of Type I or Type II1). See [Haa75b] or [Str81, 2.23] for a description
of these topologies and various others on the automorphism group of a von
Neumann algebra.

Fortunately, for actions of locally compact groups, there is no ambiguity
in the choice of the notion of continuity, due to the following result of W.
Arveson [Arv74] (cf. [Str81, 13.5]):

III.3.2.2 Theorem. Let G be a locally compact group, N a von Neumann
algebra on a Hilbert space H, and α : G → Aut(N) a homomorphism. Then
the following are equivalent:

(i) α is continuous for the point-weak (point-strong, etc). topology.
(ii) α is continuous for the topology of pointwise norm-convergence on N∗.
(iii) The map (g, φ) �→ φ ◦ αg from G × N∗ to N∗ is norm-continuous.

A homomorphism α satisfying these conditions is called a (W*-)continuous
action of G on N , and (N,G,α) is called a W*-dynamical system.

III.3.2.3 If α is a (W*-)continuous action of G on a von Neumann algebra
N , then (N,G,α) is not in general a C*-dynamical system, i.e. α is not in
general point-norm continuous (it is, of course, if G is discrete). But we do have
the following result, which allows many results about W*-dynamical systems
and W*-crossed products to be deduced from the corresponding C*-theory
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(although this is generally the reverse of the historical development, since in
most cases the W* results were obtained first and the C*-theory developed
later, largely in analogy with the W*-theory).

III.3.2.4 Proposition. Let (N,G,α) be a W*-dynamical system. Set

N c = {x ∈ N : t �→ αt(x) is norm-continuous }.

Then N c is a σ-weakly dense α-invariant C*-subalgebra of N , and (N c, G, α)
is a C*-dynamical system.

If f ∈ L1(G), and x ∈ N , set

αf (x) =
∫

G

f(t)αt(x) dµ(t)

as in the C*-case; then it is easily seen that αf (x) is well defined and in N c,
and x is in the closure of {αf (x) : f ∈ L1(G)} (cf. [Ped79, 7.5.1]; in fact, N c

is the norm closure of {αf (x) : f ∈ L1(G), x ∈ N}.)

Spectral Analysis of Abelian Group Actions

There is an entire spectral theory for actions of locally compact abelian groups
on von Neumann algebras (and, more generally, on dual Banach spaces),
mostly due to W. Arveson. We will only give a few definitions; a more complete
treatment can be found in [Tak03a, XI.1].

If α is an action of the locally compact abelian group G on a von Neumann
algebra N , then for f ∈ L1(G) there is a map αf from N to N defined by
αf (x) =

∫
f(−t)αt(x) dt. If x ∈ N , set I(x) = {f ∈ L1(G) : αf (x) = 0}, and

I(α) = ∩xI(x).

III.3.2.5 Definition. The α-spectrum Spα(x) of x ∈ N is

{γ ∈ Ĝ : f̂(γ) = 0 ∀f ∈ I(x)}.

The Arveson spectrum Sp(α) of α is

{γ ∈ Ĝ : f̂(γ) = 0 ∀f ∈ I(α)}.

If p is a projection in the fixed-point algebra Nα, then α drops to an action
αp of G on pNp, and Sp(αp) ⊆ Sp(α). The set

Γ(α) = ∩{Sp(αp) : p �= 0 a projection in Nα}

is the Connes spectrum (or essential spectrum) of α.
If G is compact (so Ĝ is discrete), the subspaces

Nγ = {x ∈ N : Spα(x) = {γ}}

for γ ∈ Ĝ span N σ-weakly, and decompose N into “spectral subspaces.”
There is an analogous “continuous spectral decomposition” if G is not com-
pact.
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W*-Crossed Products

III.3.2.6 Let α be a continuous action of a locally compact group G on
a von Neumann algebra N . As in the case of reduced crossed products of
C*-algebras, realize N and G on the Hilbert space

L2(G,µ,H) ∼= L2(G,µ) ⊗H

(µ is left Haar measure on G) by

[π(x)f ](s) = αs(x)f(s)

for x ∈ N and
λ(t)f(s) = f(t−1s)

for t ∈ G. Then (π, λ) is a covariant representation of (N,G,α). Let

N�̄αG = {π(N), λ(G)}′′

be the generated von Neumann algebra. N�̄αG is called the W*-crossed prod-
uct of N by G.

It is easily seen using III.2.2.8 that up to isomorphism, N�̄αG depends
only on N and α and not on the way N is represented on H.

Strictly speaking, this crossed product should be called the reduced W*-
crossed product; but there is no obvious W*-analog of the full C*-crossed
product. The W*-crossed product is primarily used for amenable groups, usu-
ally abelian groups, where the full and reduced crossed products coincide.

Unlike the C*-case where multipliers must be considered, even if G is
nondiscrete there are embeddings σ : N → N�̄αG and t �→ ut ∈ �̄αG for
t ∈ G.

Note that L2(G,µ,H) is separable if H is separable and G is second count-
able. Thus, if N has separable predual and G is second countable, then N�̄αG
has separable predual.

III.3.2.7 N�̄αG contains a σ-weakly dense standard copy of the reduced
C*-crossed product N c

�
r
α G (III.3.2.4); the containment is proper even if

N = N c, e.g. when G is discrete, unless G is a finite group.

Takesaki Duality

The von Neumann version of duality is due to M. Takesaki [Tak73], and closely
resembles the C*-version (II.10.5). (As usual, the von Neumann version was
obtained first.)

If α is an action of an abelian group G on a von Neumann algebra M , there
is a dual action α̂ of Ĝ on M�̄αG, defined as in the C*-case: α̂γ(σ(x)) = σ(x)
for x ∈ M , and α̂γ(ut) = 〈t, γ〉ut for t ∈ G.
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III.3.2.8 Theorem. [Takesaki Duality] With notation as above, we
have

(M�̄αG)�̄α̂Ĝ ∼= M⊗̄L(L2(G)).

Under this isomorphism the second dual action ˆ̂α of G becomes the action α⊗λ
on M⊗̄L(L2(G)), where λ is the action on L(L2(G)) consisting of conjugating
by the representation of left translation on L2(G).

For a complete discussion and proof of this theorem, see [Tak03a]. For a
generalization to nonabelian groups via Hopf algebras, see II.10.8.19.

Dual Weights

III.3.2.9 If α is a W*-continuous action of a locally compact group G on a
von Neumann algebra M , then the *-algebra K(G,M) of σ-strong-* continu-
ous functions from G to M with compact support (with the usual convolution
product and adjoint) sits naturally as a σ-weakly dense subalgebra of M�̄αG.
Define θ : K(M,G) → M by θ(f) = f(eG). It turns out that θ extends to an
operator-valued weight (“unbounded conditional expectation”), also called θ,
from M�̄αG to M (regarded as a subalgebra). If G is abelian, then θ is just
“averaging” via the dual action α̂; if G is discrete (so Ĝ is compact), then
θ is a conditional expectation defined (at least on a dense subalgebra) as in
II.6.10.4(v), using the dual action. In general, θ is unbounded, but faithful,
normal, and “semifinite”.

If φ is a weight on M , then φ ◦ θ is a weight on M�̄αG, called the dual
weight of φ, denoted φ̂. If φ is faithful, so is φ̂; if φ is normal and semifinite,
so is φ̂.

The technical details are nontrivial, and require some modular theory; see
[Tak03a], or [Str81] for an alternate exposition.

The Group Measure Space Construction

The case where the group G acts on a commutative von Neumann algebra Z ∼=
L∞(X,B, µ) corresponds to an action of G on the measure space (X,B, µ). We
will be mostly interested in the case where (X,B) is a standard Borel space
and µ is a finite or σ-finite Radon measure; such an (X,B, µ) will be called a
standard measure space.

III.3.2.10 Definition. An automorphism of a (locally finite) measure
space (X,B, µ) is an invertible transformation T : X → X with T and T−1

measurable, such that T preserves the measure class of µ, i.e. µ◦T is equivalent
to µ.

An action of G on (X,B, µ) is a homomorphism α from G to the
group of automorphisms of (X,B, µ), which is continuous (as an action on
L∞(X,B, µ)). Write αg for the automorphism corresponding to g ∈ G. If T is
an automorphism of (X,B, µ), write αT for the corresponding Z-action.
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The continuity can be expressed in many equivalent ways on the space
level. One way is the requirement that µ(E(αg(E)) → 0 as g → e, for any
E ∈ B with µ(E) < ∞.

III.3.2.11 Definition. An action α of G on (X,B, µ) is ergodic if whenever
Y ⊆ X and Y is (globally) invariant under G, either µ(Y ) = 0 or µ(X\Y ) = 0.

The action α is essentially free if µ(F ) = 0, where

F = {x ∈ X : αg(x) = x for some e �= g ∈ G}.

III.3.2.12 Theorem. [MvN43] Let α be an action of a group G on a mea-
sure space (X,B, µ), and let M = L∞(X,B, µ)�̄αG. If α is ergodic and essen-
tially free, then M is a factor. Furthermore, in this case:

(i) M is finite if and only if there is a finite measure equivalent to µ and
invariant under G.

(ii) M is semifinite if and only if there is a semifinite measure equivalent to
µ and invariant under G.

(iii) M is Type I if and only if α is essentially transitive, i.e. there is an orbit
Y with µ(X\Y ) = 0.

Thus, if there is no semifinite invariant measure equivalent to µ, M is
a Type III factor. In older references, an action with no semifinite invariant
measure is called non-measurable, but this term has a different meaning today.

III.3.2.13 Examples. There are many examples with invariant measures.
For example, let X be a locally compact group and G a dense subgroup
with the discrete topology. G acts on X by (left) translation, and (left) Haar
measure is invariant. If X is compact, the corresponding factor is Type II1.
A simple example is Z acting on T by an irrational rotation. If X is second
countable and G is amenable, the resulting factor is approximately finite-
dimensional (III.3.4.1); in particular, L∞(T, µ)�̄αZ is isomorphic to R.

III.3.2.14 Another class of examples is the ITPFI factors (III.3.1.10). Any
ITPFI factor arises by the group measure space construction. Let Xi (i ∈ N)
be a finite space with ni points, regarded as a group Gi = Zni

, X =
∏

Xi,
G =

⊕
Gi. G acts on X by translation. Let µi be a measure on Xi with point

masses of weight α
(i)
k in decreasing order, 1 ≤ k ≤ ni, and µ =

∏
µi. We must

have all α
(i)
k > 0 for translation by elements of G to be automorphisms. Then

M = L∞(X,µ)�̄αG ∼=
⊗

(Mni
, φi)

where φi is a state on Mni
with eigenvalue list (α(i)

k ) (III.3.1.9).
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This construction sheds light on the proof of III.3.1.12. The measure µ
is either purely atomic or purely nonatomic; it is purely atomic if and only
if the condition of III.3.1.12(i) is satisfied. In this case, the atoms form an
orbit whose complement has measure 0, and hence the action is essentially
transitive and M is Type I (III.3.2.12(iii)); in the contrary case of nonatomic
µ, all orbits have measure 0. In addition, the only nonzero probability measure
on X invariant under G is Haar measure on X, with each α

(i)
k = n−1

i ; it can be
readily shown that this measure is equivalent to µ if and only if the condition
of III.3.1.12(ii) is satisfied.

III.3.2.15 If G is discrete and the action α is essentially free, the von Neu-
mann algebra L∞(X,B, µ)�̄αG depends only weakly on the group action;
the only really essential information is contained in the equivalence relation
with orbits as equivalence classes. It is easily seen using left Hilbert alge-
bras (III.4.4.1) that if β is an essentially free action of a discrete group H on
(X,B, µ) with the same orbits, then

L∞(X,B, µ)�̄βH ∼= L∞(X,B, µ)�̄αG.

Since L∞(X,B, µ)�̄αG also depends only on the measure class of µ, we con-
clude that

L∞(X,B, µ)�̄αG ∼= L∞(Y,A, ν)�̄βH

whenever (X,B, µ,G, α) and (Y,A, ν,H, β) are isomorphic in the following
sense:

III.3.2.16 Definition. Let (X,B, µ,G, α) and (Y,A, ν,H, β) be essentially
free transformation groups, with G, H discrete. Then (X,B, µ,G, α) and
(Y,A, ν,H, β) are orbit equivalent if there is a Borel bijection θ : X → Y
which sends G-orbits to H-orbits a.e., with θ(µ) equivalent to ν.

III.3.2.17 In fact, a group action is not necessary: a von Neumann algebra
can be defined directly from a measured equivalence relation (again via left
Hilbert algebras). If (X,B, µ) is a standard measure space and R is an equiv-
alence relation on X with countable orbits, then R is a measured equivalence
relation if R is a measurable subset of X × X (so the equivalence classes are
measurable subsets of X), and the saturation of a set of measure 0 has mea-
sure 0. A von Neumann algebra denoted L∞(R,µ) can then be constructed;
it depends on (R,µ) only up to isomorphism. Note that L∞(R,µ) is noncom-
mutative in general despite the L∞ notation: in fact, L∞(R,µ) is a factor if
R is ergodic in the sense that if E is a saturated measurable set, then either
µ(E) = 0 or µ(X \ E) = 0. If α is an essentially free action of a countable
discrete group G and Rα is the corresponding equivalence relation, then

L∞(Rα, µ) ∼= L∞(X,B, µ)�̄αG.

If T is an automorphism of (X,B, µ), write RT for the corresponding equiva-
lence relation. The definitive study of von Neumann algebras of measured
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equivalence relations was done by J. Feldman and C. Moore ([FM77a],
[FM77b]). The construction can be further generalized to measured groupoids,
which includes the case of group actions which are not essentially free, as well
as other examples such as the von Neumann algebra of a foliation (cf. [Con94]).

Krieger Factors

III.3.2.18 If T is an ergodic automorphism of a standard measure space
(X,B, µ), then the corresponding factor

L∞(RT , µ) = L∞(X,B, µ)�̄αT
Z

is called a Krieger factor. W. Krieger [Kri76] made an extensive study of such
factors.
Example. Every ITPFI factor is a Krieger factor. If an ITPFI factor M
corresponds to (X,B, µ,G, α) as in III.3.2.14, there is an “odometer transfor-
mation” T such that (X,B, µ,G, α) is isomorphic to (X,B, µ, Z, αT ): T acts
by “adding one” with appropriate carries. Thus M ∼= L∞(RT , µ) by III.3.2.15.

There are Krieger factors which are not ITPFI, but only ones of Type
III0. In fact, it turns out that every injective factor with separable predual is
a Krieger factor (IV.2.7.4).

Krieger proved a converse to III.3.2.15 (along with III.3.2.15 itself), yield-
ing:

III.3.2.19 Theorem. Let T and S be automorphisms of standard measure
spaces (X,B, µ) and (Y,A, ν) respectively. Then

L∞(RT , µ) ∼= L∞(RS , ν)

if and only if (X,B, µ, Z, αT ) and (Y,A, ν, Z, αS) are orbit equivalent (T and
S are weakly equivalent).

III.3.2.20 Earlier, H. Dye [Dye59] proved that any two ergodic transforma-
tions of a standard measure space with a finite invariant measure are weakly
equivalent. This result is very closely related to the uniqueness of the hyper-
finite II1 factor (III.3.4.3) (and follows from III.3.4.3 and III.3.2.19).

III.3.2.21 Krieger also generalized the Araki-Woods invariants r∞(M) and
ρ(M) to this context. By III.3.2.19, these are expressible in terms of (RT , µ).
For example, if λ > 0, then λ ∈ ρ(RT , µ) if and only if there is a measure ν

equivalent to µ such that the Radon-Nikodym derivative
[

d(ν◦T )
dν

]
has range

contained in λZ.
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III.3.2.22 In light of Krieger’s theorem, it is important to characterize
which equivalence relations are isomorphic to ones arising from a Z-action
on a standard measure space and which hence give Krieger factors. This was
definitively done in [CFW81]: an equivalence relation on a standard measure
space, with countable equivalence classes, is isomorphic to one arising from a
Z-action if and only if it is amenable in the sense of R. Zimmer [Zim77]. See
[CK77] and [OW80] for earlier partial results.

III.3.3 Regular Representations of Discrete Groups

A rather different instance of the crossed product construction, with N = C

but using highly nonabelian groups, yields a very interesting supply of factors.

III.3.3.1 Let G be a locally compact group with left Haar measure µ, and
λ the left regular representation of G on L2(G,µ). We have that λ = πψ,
the GNS representation from the weight ψ defined on Cc(G) ⊆ L1(G) by
ψ(f) = f(eG) (called the Plancherel weight). Let

L(G) = λ(G)′′.

L(G) is called the (left) von Neumann algebra of G. L(G) is in standard form,
and L(G)′ can be identified with the von Neumann algebra R(G) generated
by the right regular representation ρ of G (this is elementary if G is discrete,
but the nondiscrete case requires use of the basic theory of Hilbert algebras,
and left Hilbert algebras for the nonunimodular case). L(G) has separable
predual if and only if G is second countable (in the discrete case, if and only
if G is countable).

III.3.3.2 If G is unimodular, then ψ is a trace, so L(G) is semifinite. If G is
discrete, then ψ is a tracial state (provided µ is normalized), so L(G) is finite.

III.3.3.3 Suppose G is discrete. If ξ ∈ l2(G) is the trace vector (ξ is the
characteristic function of {eG}), then identifying x with xξ we may identify
elements of L(G) with L2-functions on G (i.e. square-summable sequences
indexed by G). The multiplication in L(G) corresponds to convolution in
l2(G).

III.3.3.4 Proposition. If G is discrete and x ∈ Z(L(G)), the correspond-
ing function on G is constant on conjugacy classes.

III.3.3.5 Definition. A (discrete) group G is an ICC group if every con-
jugacy class in G, other than {eG}, is infinite.

There is a large supply of interesting ICC groups. Here are some of the
most elementary examples:
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III.3.3.6 Examples.

(i) A free group on more than one generator is an ICC group.
(ii) The group SX of finite permutations of an infinite set X is a locally finite

ICC group.
(iii) Many “ax + b” groups are ICC groups: for example,

{[
a b
0 1

]

: a, b ∈ Q, a > 0
}

.

III.3.3.7 Proposition. If G is an ICC group, then L(G) is a II1 factor.
Indeed, by III.3.3.4 a central element of L(G) is a square-summable se-

quence constant on conjugacy classes, hence is a multiple of ξ, so L(G) is a
factor. It is infinite-dimensional and finite, and hence II1.

One can show that the L(G) for countable ICC G comprise numerous
isomorphism classes. Some of the most easily investigated properties used to
distinguish these factors concern central sequences:

III.3.3.8 Definition. Let M be a II1 factor. A central sequence in M is a
bounded sequence (xn) in M such that ‖[xn, y]‖2 → 0 for all y ∈ M , where
[x, y] = xy − yx is the usual commutator.

The central sequences form a σ-weakly dense C*-subalgebra of the W*-
algebra l∞(M), called the central sequence algebra of M .

III.3.3.9 The factor R of III.3.1.4 has Property Γ: it has a central sequence
consisting of unitaries of trace 0. In fact, it has a central sequence of self-
adjoint unitaries of trace 0, or alternatively a central sequence of projections
of trace 1/2 [let pn be the elementary tensor whose n’th component is e11 and
other components are 1.] It is easy to see that L(SN) (III.3.3.6(ii)) also has
this property (in fact, L(SN) ∼= R (III.3.4.3)).

III.3.3.10 Proposition. Let Fn (2 ≤ n ≤ ∞) be the free group on n
generators, and Fn = L(Fn). Then Fn does not have Property Γ; hence Fn is
not isomorphic to R.

III.3.3.11 Using variations and refinements of the notion of central sequence
and the arguments in III.3.3.10, by the late 1960’s nine isomorphism classes
of II1 factors with separable predual had been isolated ([MvN43], [Sch63],
[Chi69], [Sak69], [DL69], [ZM69]). Then in 1968, making more delicate and
sophisticated use of these ideas, D. McDuff [McD69] constructed an uncount-
able family Gi of countable ICC groups such that the L(Gi) were mutually
nonisomorphic.
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Free Group Factors

III.3.3.12 The factors Fn of III.3.3.10 are called the free group factors. One
of the outstanding open questions of von Neumann algebra theory, which is a
subject of much current research, is whether Fn

∼= Fm for m �= n. The Fn fit
into a natural one-parameter family {Ft : t > 1} of II1 factors with separable
predual, called the interpolated free group factors ([Dyk94], [Răd94]); it is
known that

(i) If p is a projection in Ft of trace λ, then pFtp ∼= Fs, where s = t−1
λ2 + 1.

(ii) Either all Ft for 1 < t ≤ ∞ are isomorphic, or they are mutually noniso-
morphic.

III.3.3.13 The idea from (i) is important, and can be systematized as fol-
lows. If N is an infinite semifinite factor with trace τ , and α ∈ Aut(N), then
τ ◦ α = λτ for some λ > 0, called the modulus of α. If N is type I, then λ is
necessarily 1, so this concept is only interesting for II∞ factors.

III.3.3.14 Definition. Let M be a II1 factor. The fundamental group of
M is

F (M) = {λ > 0 : ∃α ∈ Aut(M⊗̄L(H)) with modulus λ}

It is easy to see that F (M) is a multiplicative subgroup of R+, and that if
0 < λ < 1 and p is a projection in M with trace λ, then λ ∈ F (M) if and only
if pMp ∼= M . The group F (M) is sometimes written as an additive subgroup
of R by applying the logarithm function.

For “most” II1 factors M , e.g. M = R, F (M) = R+; the first example
where this was shown to fail was constructed in [Con80]. Every countable
subgroup of R+ occurs as the fundamental group of a II1 factor on a separable
Hilbert space [Pop04].

Property T

III.3.3.15 Factors with some unusual properties are obtained using ICC
groups with Property T, introduced by D. Kazhdan [Kaž67]. An infinite (dis-
crete) group G has Property T if the trivial representation is isolated in Ĝ in
its natural topology. A Property T group is nonamenable, and has very rigid
structure: for example, a Property T group cannot be written as a union of a
strictly increasing sequence of subgroups (in particular, a countable Property
T group is finitely generated). There is a corresponding notion of property T
for nondiscrete groups. See [dlHV89] for a good treatment of the theory.

There are many examples of property T groups, For example, SL(n, Z)
has property T for n ≥ 3. More generally, a lattice in any semisimple Lie
group of real rank ≥ 2 has property T. For more examples, see e.g. [Kir94],
[Gro87], and [CMS94]
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III.3.3.16 If G is an ICC Property T group, L(G) is a Property T factor . A
general definition of a Property T factor not necessarily arising from a group
can be made using correspondences (cf. [Con94, V.B.ε]).

III.3.3.17 Property T factors have unusual rigidity properties. For example,
if M is a property T factor, then:

(i) If (Mn) is an increasing sequence of von Neumann subalgebras of M with
M = [∪Mn]′′, then Mn = M for some n.

(ii) Out(M) = Aut(M)/Inn(M) is countable.
(iii) The fundamental group F (M) (III.3.3.14) is countable.

Nondiscrete Groups

III.3.3.18 While the method of this section has primarily been used with
discrete groups to construct II1 factors, there exist nondiscrete second count-
able groups G (e.g. restricted direct products of p-adic ax + b groups) such
that the L(G) are factors of Type I∞, II∞, and III (cf. [Bla77b], [Bla83b]).

III.3.4 Uniqueness of the Hyperfinite II1 Factor

One of the first significant classification results in the theory of operator al-
gebras (approximately contemporaneous with the Gelfand-Naimark classifi-
cation of commutative C*-algebras) was the proof of the uniqueness of the
hyperfinite II1 factor with separable predual by Murray and von Neumann
[MvN43]. This uniqueness result was later greatly expanded by Connes.

III.3.4.1 Definition. A von Neumann algebra M is approximately finite
dimensional, or hyperfinite, if there is a directed collection {Mi} of finite-
dimensional *-subalgebras with ∪Mi σ-weakly dense in M .

The Mi can be chosen to be unital subalgebras, hence W*-subalgebras. If
M is approximately finite dimensional with separable predual, {Mi} can be
chosen to be an increasing sequence.

In some references, the term “hyperfinite” is reserved for II1 factors, or
sometimes for finite von Neumann algebras, as it seems terminologically in-
consistent to have algebras which are hyperfinite but not finite.

III.3.4.2 Examples.

(i) It is easy to see that any Type I von Neumann algebra is approxi-
mately finite dimensional. If {Mi} is a directed collection of Type I
W*-subalgebras of M with dense union, then M is approximately finite
dimensional.

(ii) An infinite tensor product of finite-dimensional (or Type I) von Neu-
mann algebras is approximately finite dimensional. Thus the factor R
(III.3.1.4) is a hyperfinite II1 factor, and the ITPFI factors (III.3.1.10)
are approximately finite-dimensional factors, mostly of Type III.
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(iii) Let G be a locally finite group, a directed union of finite subgroups. If
G acts freely and ergodically on a measure space X, then L∞(X)�̄αG is
an approximately finite-dimensional factor by (i) and III.3.2.12.

(iv) If G is a locally finite ICC group, e.g. the group of finite permutations of
a countable set, then L(G) is a hyperfinite II1 factor (III.3.3.7).

It turns out that the conclusions of (iii) and (iv) hold if “locally finite” is
replaced by “amenable” (IV.2.2.15, IV.2.6.1).

The main result of this section is:

III.3.4.3 Theorem. Let M be a hyperfinite II1 factor with separable pre-
dual. Then M is isomorphic to R.

III.3.4.4 Corollary. The II1 factors of III.3.3.10 and III.3.3.11 are not
hyperfinite.

III.3.4.5 We will now outline the proof of the theorem. Say that a II1
factor M is of CAR type if M has an increasing sequence (An) of unital *-
subalgebras, with weakly dense union, with An

∼= M2n , i.e. if M has a weakly
dense unital C*-subalgebra isomorphic to the CAR algebra (II.8.2.2(iv)). It
is clear that R is of CAR type, and that a factor of CAR type is hyperfinite.

III.3.4.6 Proposition. Any II1 factor of CAR type is isomorphic to R.
Proof: Let M be a II1 factor of CAR type, with tracial state τ and weakly
dense unital C*-subalgebra A isomorphic to the CAR algebra. Represent M
in standard form using the GNS representation from τ . Then πτ |A can be
identified with the GNS representation of A from the tracial state σ = τ |A.
But σ is the unique tracial state of A, and πσ(A)′′ ∼= R.

III.3.4.7 The rest of the proof uses the “Hilbert-Schmidt” norm (2-norm)
on a II1 factor. If M is a II1 factor with tracial state τ , for x ∈ M define

‖x‖2 = ‖x‖2,τ = τ(x∗x)1/2

(III.2.2.16); ‖x‖2 is the norm of x regarded as a vector in Hτ . If (pn) is a
sequence of subprojections of p with τ(pn) → τ(p), then ‖p − pn‖2 → 0. The
2-norm topology agrees with the σ-strong topology on the unit ball of M (cf.
III.2.2.27).

A routine argument using the semiprojectivity of finite-dimensional matrix
algebras (II.8.3.16(i)) to nest the subalgebras yields:

III.3.4.8 Lemma. Let M be a II1 factor with separable predual. Then M
is of CAR type if and only if, for any x1, . . . , xk ∈ M and ε > 0, there is
an n and a unital C*-subalgebra B of M , isomorphic to M2n , and elements
y1, . . . , yk ∈ B, with ‖xi − yi‖2 < ε for 1 ≤ i ≤ k.

The proof of III.3.4.3 is then completed by applying the following theorem:
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III.3.4.9 Theorem. Let M be a II1 factor, A a finite-dimensional C*-
subalgebra of M , and ε > 0. Then there is a unital C*-subalgebra B of M ,
isomorphic to M2n for some n, such that for every a ∈ A there is a b ∈ B with
‖a − b‖2 < ε‖a‖.

To prove this theorem, first suppose

{eij : 1 ≤ i, j ≤ m}

is a set of matrix units in M (with
∑

eii not necessarily equal to 1), and
C = C∗({eij}). If p is a subprojection of e11 with τ(p) a dyadic rational
number almost equal to τ(e11) (within ε/m2 will do), and fij = ei1pe1j , then
{fij} is a set of matrix units for a (nonunital) matrix subalgebra D of M , and
for each c ∈ C there is a d ∈ D with ‖c − d‖2 < ε‖c‖.

Now let C1, . . . , Cr be the central direct summands of A, and for each Ci

choose pi and Di as above. Let qi be the unit of Di, and

qr+1 = 1 −
r∑

i=1

qi

and pr+1 = qr+1. There is an n such that τ(pi) = 2−nki for all i. Inside the II1
factor piMpi there is a unital copy of Mki

; thus there is a matrix subalgebra
Bi of M , with unit qi, which contains Di and in which the minimal projections
have trace 2−n. The minimal projections in the Bi are all equivalent in M , and
hence with a bit of care a set of matrix units for all the Bi can be expanded
to a set of matrix units for a unital copy of M2n in M .

III.4 Modular Theory

Modular theory is one of the most important and useful developments in the
history of von Neumann algebras, giving a very precise and intimate con-
nection between a von Neumann algebra and its commutant, along with a
canonical one-parameter group of outer automorphisms. Modular theory was
first developed by M. Tomita [Tom67a], and was refined and clarified and
given a careful and complete exposition by M. Takesaki [Tak70] (some de-
tails have since been further simplified). The basic framework had previously
been developed ([Nak50]; cf. [Dix69a]) in the much simpler case of semifinite
von Neumann algebras. This theory made possible the great advances in the
1970’s by Connes et al. on the classification of factors.

III.4.1 Notation and Basic Constructions

III.4.1.1 Let M be a von Neumann algebra in standard form (III.2.6) on
a Hilbert space H, i.e. the identity representation is the GNS representation
from a faithful normal semifinite weight φ; recall that (at least in the countably
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decomposable case; cf. III.4.5.7) such a standard form is unique up to spatial
isomorphism, and M ′ is also in standard form. The details are somewhat
simpler in the case where M is countably decomposable, i.e. the weight can
be taken to be a state, or alternatively, M has a cyclic and separating vector
ξ (which is also cyclic and separating for M ′), and we will concentrate on this
case in the exposition.

III.4.1.2 We define two closed conjugate-linear densely defined operators S
and F on H. Let S0 be the densely defined operator

xξ = η �→ η� = x∗ξ

for x ∈ M , where ξ is the cyclic and separating vector associated with the
faithful normal state φ, and F0 the densely defined operator

yξ = η �→ η� = y∗ξ

for y ∈ M ′. S0 and F0 are unbounded in general. If x ∈ M and y ∈ M ′, then

〈S0(xξ), yξ〉 = 〈x∗ξ, yξ〉 = 〈y∗x∗ξ, ξ〉 = 〈x∗y∗ξ, ξ〉 = 〈y∗ξ, xξ〉 = 〈F0(yξ), xξ〉
and thus S∗

0 ⊇ F0 and F ∗
0 ⊇ S0, so S0 and F0 are closable. Let S be the closure

of S0, and F = S∗ = S∗
0 . (It turns out that F is the closure of F0, and thus

the situation is completely symmetric in M and M ′ – this is obvious after the
fact using the main theorem, or see [Sak71, 2.8.2] for a direct proof. It is not
necessary to use this for the development of the theory.) Since S0 = S−1

0 , it
follows that S and F are one-one with dense range, and S = S−1, F = F−1.

In the general case, define S0 to be the operator whose domain is ι(Nφ ∩
N∗

φ), where ι is the canonical embedding of Nφ into H = Hφ, with S0(ι(x)) =
ι(x∗). It must then be proved that S0 is densely defined (a consequence of
III.2.2.21) and closable, and that its closure S and adjoint F = S∗ have the
right properties.

III.4.1.3 Set ∆ = S∗S = FS. Then ∆ is an invertible densely defined (in
general unbounded) positive operator with ∆−1 = SF (I.7.1.4). If

S = J∆1/2

is the polar decomposition, then J is an invertible conjugate-linear isometry,
and

S = S−1 = ∆−1/2J−1

but
S = (SS∗)1/2J = ∆−1/2J

so J = J−1, i.e. J is an involution. We have J∆J = ∆−1 and

F = J∆−1/2 = ∆1/2J.

Since Sξ = ξ, we have Fξ = ξ, Jξ = ξ, ∆ξ = ξ. ∆ is called the modular
operator for (M,φ), often denoted ∆φ to emphasize its dependence on φ.

The situation is vastly simpler if M is semifinite and φ is a trace. In this
case, S = F = J and ∆ = 1. This is the case considered in [Dix69a].
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III.4.1.4 Example. A key motivating example comes from group repre-
sentations. Let G be a locally compact nonunimodular group with left Haar
measure µ, λ the left regular representation on L2(G,µ), and L(G) = λ(G)′′

the left von Neumann algebra of G. Write λ also for the representation of
L(G). Then λ = πψ for the canonical Plancherel weight ψ (III.3.3.1). The
modular operator ∆ for this weight is exactly multiplication by the modular
function ∆G on L2(G,µ).

III.4.2 Approach using Bounded Operators

III.4.2.1 There is an alternate approach using bounded operators, due to M.
Rieffel and A. van Daele [RvD77] (cf. [Ped79, 8.13]). Let HR be H regarded as a
real Hilbert space under (·, ·) = Re〈·, ·〉. Let X and Y be the closures of the real
subspaces Msaξ and iMsaξ respectively. Then X and Y are complementary
subspaces of HR, although they are not orthogonal unless φ is a trace (in
fact, if x, y ∈ Msa, then xξ ⊥ iyξ if and only if φ(xy) = φ(yx)); however, X
is orthogonal to iM ′

saξ, from which it follows that X ∩ Y = {0}. Let P and
Q be the (real-linear) projections of HR onto X and Y respectively, and set
A = P + Q, C = P − Q. Then the following are easy to verify:

(i) A is complex-linear, C is conjugate-linear, and both are “self-adjoint”
(as operators on H).

(ii) A and 2 − A are one-one with dense range, and 0 ≤ A ≤ 2.
(iii) C2 is one-one with dense range, 0 ≤ C2 ≤ 4; if B = (C2)1/2 and C = JB

is the polar decomposition, then J is an involution and B =A1/2(2−A)1/2

is one-one with dense range.
(iv) B commutes with P , Q, A, and J .
(v) JP = (1 − Q)J , JQ = (1 − P )J , and JA = (2 − A)J .
(vi) If ∆ = A−1(2 − A), then ∆ is a (generally unbounded) densely defined,

self-adjoint, positive invertible operator, J∆J = ∆−1, Mξ ⊆ D(∆1/2),
and J∆1/2(xξ) = x∗ξ for x ∈ M .

(vii) J and ∆ agree with the J and ∆ previously defined via S.

III.4.3 The Main Theorem

III.4.3.1 For α ∈ C, we can define the closed operator ∆α as in I.7.4.7; in
particular, for t ∈ R, the operator ∆it is unitary, and t �→ ∆it is a strongly con-
tinuous one-parameter group of unitaries. Thus the automorphisms σt (often
denoted σφ

t ) defined by
σt(x) = ∆itx∆−it

define a strongly continuous one-parameter group of automorphisms of L(H).
Because of the conjugate-linearity of J , from J∆ = ∆−1J we obtain

J∆it = ∆itJ for all t ∈ R. Thus the automorphisms σt of L(H) commute
with the conjugate-linear automorphism j of L(H) defined by j(x) = JxJ .

Here is the main theorem of modular theory.
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III.4.3.2 Theorem. [Tomita-Takesaki] j(M) = M ′ (so j(M ′) = M)
and σt(M) = M , σt(M ′) = M ′ for all t ∈ R. If x ∈ Z(M), then j(x) = x∗

and σt(x) = x for all t.
We give an argument (cf. [vD82]) that “explains” why the theorem is true.

This argument as it stands is only valid in the relatively unusual case that S,
and hence also F and ∆, is bounded (this implies that M is semifinite); but
with considerable additional work it can be made rigorous in the general case
([Zsi75], [Kad78]; cf. [SZ79]).

If x, y, z ∈ M , then

SxSyzξ = Sxz∗y∗ξ = yzx∗ξ = ySxz∗ξ = ySxSzξ.

Since {zξ : z ∈ M} is dense in H, it follows that SxSy = ySxS for any y ∈ M ,
i.e. SxS ∈ M ′; so SMS ⊆ M ′. Similarly, FM ′F ⊆ M , and taking adjoints we
get SM ′S ⊆ M , so SMS = M ′ (and SM ′S = M , FMF = M ′, FM ′F = M).
Thus

∆M∆−1 = FSMSF = M.

Let B be the Banach algebra L(L(H)). For x ∈ L(H) and for α ∈ C, define
Φα ∈ B by Φα(x) = ∆αx∆−α. If A is the closed subalgebra of B generated
by Φ1 and 1, then since Φ1 leaves M invariant so does every element of A. If
L,R ∈ B are defined by L(x) = ∆x, R(x) = x∆−1, then LR = RL = Φ1, and
σB(L) = σL(H)(∆), σB(R) = σL(H)(∆−1), so

σB(Φ1) ⊆ σL(H)(∆)σL(H)(∆−1) ⊆ (0,∞)

by II.2.1.3. If f is the principal branch of the logarithm function, then f is
analytic in a disk containing σB(Φ1), and f(Φ1) can be defined by a power
series in Φ1−λ1 for some λ > 0. Thus Ψ = f(Φ1) ∈ A ⊆ B, and Φα = eαΨ ∈ A
for all α ∈ C. (If H = f(∆) ∈ L(H), then Ψ(x) = Hx − xH for x ∈ L(H).)

In particular, Φit = σt leaves M invariant. Also, Φ1/2 and Φ−1/2 leave M

invariant, i.e. ∆−1/2M∆1/2 = M ; thus

JMJ = S∆−1/2M∆1/2S = SMS = M ′.

The last statement follows from the fact that if u is a unitary in Z(M),
then uS0u = S0, so uSu = S, u∗Fu∗ = F , u∗∆u = ∆, uJu = J .

III.4.4 Left Hilbert Algebras

The original approach of Tomita-Takesaki proceeded somewhat differently. It
is convenient to abstract the situation.

III.4.4.1 A left Hilbert algebra (or generalized Hilbert algebra) is a complex
algebra A endowed with an inner product 〈·, ·〉 and an (in general unbounded)
involution x �→ x� (conjugate-linear anti-automorphism of period 2), with
the following properties (the topology on A is the one coming from the inner
product):
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(i) For any x, y, z ∈ A, 〈xy, z〉 = 〈y, x�z〉.
(ii) For each x ∈ A, the map y �→ xy is bounded.
(iii) A2 is dense in A.
(iv) The map x �→ x� is closable as a map on the completion H of A.

If � is isometric, then A is called a Hilbert algebra.
Hilbert algebras were first defined by H. Nakano in [Nak50] (a prelimi-

nary version appeared in [Amb49]). Left Hilbert algebras were introduced by
Tomita, following the notion of quasi-Hilbert algebra of J. Dixmier [Dix69a].

In our previous context, M (or any weakly dense *-subalgebra) becomes
a left Hilbert algebra with inner product 〈x, y〉 = 〈xξ, yξ〉 and x� = x∗; in
the general case, Nφ ∩ N∗

φ is a left Hilbert algebra with 〈x, y〉 = φ(y∗x) and
x� = x∗.

If S is the closure of x �→ x�, write D� for the domain of S and x� for Sx if
x ∈ D�. If F = S∗, write D� for the domain of F and x� for Fx if x ∈ D�. The
map x �→ x� is also an (in general unbounded) involution, called the adjoint
involution. The spaces D� and D� are Hilbert spaces under the inner products

〈x, y〉� = 〈x, y〉 + 〈y�, x�〉 and 〈x, y〉� = 〈x, y〉 + 〈y�, x�〉

respectively.

III.4.4.2 Each x ∈ A defines a bounded operator π(x) on H by π(x)y = xy.
Since π(x�) = π(x)∗, π defines a nondegenerate *-representation of A on H.
Let L(A) = π(A)′′ be the von Neumann algebra generated by π(A). L(A) is
called the left von Neumann algebra of A.

III.4.4.3 Each y ∈ H defines an operator Ry with domain A by Ryx =
π(x)y. If y ∈ D�, a simple calculation shows R∗

y ⊇ Ry� , so Ry has a closure
π′(y), and π′(y)∗ = π′(y�). As in the proof of III.4.3.2, π′(y) is permutable
with π(x) for all x ∈ A, i.e. π′(y) is affiliated with L(A)′.

Let A′ be the set of y ∈ D� such that π′(y) is bounded. If x ∈ H and
y ∈ A′, define xy = π′(y)x. It is easy to see that A′ is closed under this
multiplication and the involution y �→ y�; and π′ is a *-antihomomorphism of
A′ into L(A)′. A functional calculus argument shows that A′ and (A′)2 are
dense in the Hilbert space D�, and therefore in H. A simple calculation shows
that if y, z ∈ A′ and T ∈ L(A)′, then π′(y)Tz ∈ A′ and

π′(π′(y)Tz) = π′(y)Tπ′(z).

Then using an approximate unit for π′(A′) we obtain that π′(A′)′′ = L(A)′.

Full Left Hilbert Algebras

III.4.4.4 Repeating the process, for x ∈ H define Lx with domain A′ by
Lxy = π′(y)x. If x ∈ D�, then L∗

x ⊇ Lx� ; let π(x) be the closure of Lx, and
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A′′ the set of x ∈ D� such that π(x) is bounded. Then A ⊆ A′′, and π(x)
agrees with the previously defined π(x) for x ∈ A. A′′ becomes a left Hilbert
algebra with multiplication xy = π(x)y, and L(A′′) = L(A). (A′′)′ = A′, so
(A′′)′′ = A′′. A′′ is called the full (or achieved) left Hilbert algebra of A. Two
left Hilbert algebras A and B are equivalent if A′′ and B′′ are isometrically
*-isomorphic. Of course, A is equivalent to A′′ for any A.

It is easy to verify that a left Hilbert algebra arising from a faithful nor-
mal semifinite weight on a von Neumann algebra is full. Every full left Hilbert
algebra arises in this manner, and thus there is a natural one-one correspon-
dence between full left Hilbert algebras and von Neumann algebras with a
specified faithful normal semifinite weight:

III.4.4.5 Theorem. ([Com70]; cf. [Tak03a, VII.2.5]) Let A be a full left
Hilbert algebra. Then there is a unique faithful normal semifinite weight φ on
L(A) such that A ∼= Nφ ∩ N∗

φ with its usual left Hilbert algebra structure.

The definition of φ is clear: if a ∈ L(A)+, then φ(a) = ‖x‖2
A if a =

π(x)∗π(x) for some x ∈ A, and φ(a) = ∞ otherwise.
The full left Hilbert algebra point of view for weights is a very useful one.

For example, it gives a natural way to define the tensor product of two faithful
normal semifinite weights, or the dual weight on a W*-crossed product, both
of which would otherwise be obscure. For the tensor product, it suffices to
observe that the algebraic tensor product of two left Hilbert algebras is a left
Hilbert algebra.

Modular Hilbert Algebras

III.4.4.6 A left Hilbert algebra A is a modular Hilbert algebra, or Tomita
algebra, if it has a group {δα : α ∈ C} (i.e. δα+β = δα ◦ δβ) of automorphisms,
called modular automorphisms, satisfying, for all x, y ∈ A:

(i) (δαx)� = δ−ᾱ(x�) for all α ∈ C.
(ii) 〈δαx, y〉 = 〈x, δᾱy〉 for all α ∈ C.
(iii) 〈δ1x

�, y�〉 = 〈y, x〉.
(iv) α �→ 〈δαx, y〉 is an analytic function on C.
(v) For all t ∈ R, the set (1 + δt)A is dense in A.

Note that from (iii), if x ∈ A, then x ∈ D� and x� = δ1(x�) (= (δ−1x)�

by (i)). In fact, axiom (iv) of III.4.4.1 follows from the other axioms for a
modular Hilbert algebra; and A ⊆ A′.

A Hilbert algebra is a modular Hilbert algebra with δα = id for all α.
For any t ∈ R, the map

x �→ δt(x�) = (δ−tx)�

is a (generally unbounded) involution on A. The involution
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x �→ x� = δ1/2(x�)

is isometric; let J be the closure of x �→ x� on the completion H of A. Then
J is an involution on H. Then, since A ⊆ A′, π′(x) is defined for x ∈ A and
π′(Jx) = Jπ(x)J . Thus

JL(A)J = π′(A)′′ ⊆ L(A)′.

By (ii), δα is a closable densely defined operator on the completion H of
A, and δ∗α ⊇ δᾱ.

III.4.4.7 Proposition. Let A be a modular Hilbert algebra, with comple-
tion H. Then there is a (generally unbounded) positive self-adjoint operator
∆ on H such that ∆α is the closure of δα for all α ∈ C.

The existence of ∆ follows from Stone’s Theorem (I.7.4.10): if Ut is the
closure of δit, then {Ut} is a strongly continuous one-parameter unitary group,
and hence there is a self-adjoint operator H such that Ut = eitH for all t. Set
∆ = eH . It is nontrivial but routine to check that ∆α is the closure of δα for
all α.

∆ is called the modular operator of A. As before, we have J∆J = ∆−1,
S = J∆1/2 = ∆−1/2J , F = ∆1/2J = J∆−1/2. J maps the Hilbert space D�

isometrically onto D�. Since JA2 = A2 and A2 is dense in D�, A2 is also dense
in D�. Then by arguments as in III.4.4.3, one obtains:

III.4.4.8 Theorem. If A is a modular Hilbert algebra, then π′(A) generates
L(A)′ and JL(A)J = L(A)′. Also, the strongly continuous one-parameter
group σt = Ad ∆it of automorphisms of L(H) leaves L(A) and L(A)′ invariant.

Thus, to prove III.4.3.2, it suffices to show that every von Neumann algebra
M in standard form is isomorphic to L(A) for some modular Hilbert algebra
A. Since M ∼= L(A) for a left Hilbert algebra A, it suffices to prove:

III.4.4.9 Theorem. Every left Hilbert algebra is equivalent to a modular
Hilbert algebra.

Proving this theorem is, of course, the most difficult part of the theory. It is
clear where the J and ∆ come from for a left Hilbert algebra A: take the polar
decomposition S = J∆1/2 for the operator S. But a lot of work, including a
considerable amount of complex analysis, is involved in finishing the argument.
Even the specification of which elements of A′′ are in the modular Hilbert
algebra B equivalent to A is not obvious.

III.4.5 Corollaries of the Main Theorems

III.4.5.1 Corollary. Let M be a von Neumann algebra in standard form
on a Hilbert space. Then M is linearly *-anti-isomorphic to M ′ under a map
which is the identity on Z(M).
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In fact, the map x �→ j(x∗) is a linear anti-automorphism of L(H) carrying
M onto M ′.

There are examples of von Neumann algebras M (even II1-factors with
separable predual) such that M is not (linearly) *-isomorphic to M ′, i.e. M
is not (linearly) *-anti-isomorphic to itself ([Con75a], [Con75b]).

Symmetric and Standard Forms

III.4.5.2 Definition. Let M be a von Neumann algebra on H. M is in
symmetric form (sometimes called hyperstandard form) if there is an involu-
tion J of H such that JMJ = M ′ and JxJ = x∗ for all x ∈ Z(M). A normal
representation π is a symmetric form representation if π(M) is in symmetric
form.

III.4.5.3 Proposition. Let M be a von Neumann algebra on H, and z a
central projection in M . Then M is in symmetric form on H if and only if
zM and (1 − z)M are in symmetric form on zH and (1 − z)H respectively.

III.4.5.4 Theorem. Two symmetric form representations of a von Neu-
mann algebra are unitarily equivalent.

The countably decomposable case follows immediately from III.2.6.6 and
the following proposition. The general case can be derived from the countably
decomposable case by an elementary but moderately involved argument (cf.
[KR97b, 9.6.19-9.6.26]).

III.4.5.5 Proposition. Let M be a countably decomposable von Neumann
algebra in symmetric form on H. Then M has a cyclic and separating vector
and hence is in standard form.
Proof: By III.2.6.11, there is a central projection z such that Mz has a cyclic
vector on zH and (1 − z)M has a separating vector on (1 − z)H. But if ξ is
a cyclic [resp. separating] vector, then Jξ is a separating [resp. cyclic] vector.
Apply III.2.6.10 and III.4.5.3.

An immediate consequence of the Tomita-Takesaki Theorem is:

III.4.5.6 Corollary. A standard form representation of a von Neumann
algebra is in symmetric form.

Putting these results together, we obtain:

III.4.5.7 Theorem. Let M be a von Neumann algebra. Then a represen-
tation of M is in symmetric form if and only if it is in standard form. M has
such a representation, which is unique up to unitary equivalence.
Proof: M has a standard form representation (III.2.6.5), which is symmetric
(III.4.5.6); and any symmetric form representation is equivalent to this one
by III.4.5.4.
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The Commutation Theorem

The next theorem is the commutation theorem for tensor products:

III.4.5.8 Theorem. Let M1 and M2 be von Neumann algebras on H1 and
H2 respectively. Then

(M1⊗̄M2)′ = M ′
1⊗̄M ′

2

on H1 ⊗H2.
The modular Hilbert algebra formalism is especially suited to the proof

of this theorem, which was one of Tomita’s principal goals in developing the
theory; in fact, the result was previously proved in the same way ([God51],
[God54], [Seg53]) for semifinite von Neumann algebras, using Hilbert algebras
(see also [Dix69a] for the origins of the general case). By routine arguments
the result reduces to the case where M1 and M2 are in standard form, i.e.
there are modular Hilbert algebras A1 and A2 with Mi = L(Ai) (i = 1, 2).
Then A = A1 � A2, with inner product

〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉1〈x2, y2〉2,
product

(x1 ⊗ x2)(y1 ⊗ y2) = x1x2 ⊗ y1y2,

and involution (x⊗y)� = x�⊗y�, is a left Hilbert algebra with L(A) naturally
isomorphic to L(A1)⊗̄L(A2). A also has an obvious complex one-parameter
group of tensor product automorphisms. Actually A is a modular Hilbert
algebra (axiom (v) is not obvious, but can be proved), but this is not really
necessary for the proof; clearly A and A2 are contained in A′ and dense in D�,
and thus π′(A) generates L(A)′. But π′(A)′′ can be rather obviously identified
with

(π′(A1) � π′(A2))′′ = L(A1)′⊗̄L(A2)′.

Here is a useful variation of the Commutation Theorem. The proof uses the
obvious fact that if M,N are von Neumann algebras on H, then (M ∪N)′ =
M ′ ∩ N ′, and hence (M ∩ N)′ = (M ′ ∪ N ′)′′ (consider the commutants).

III.4.5.9 Corollary. Let Mi, Ni be von Neumann algebras on Hi (i =
1, 2). Then (M1⊗̄M2) ∩ (N1⊗̄N2) = (M1 ∩ N1)⊗̄(M2 ∩ N2).
Proof:

[(M1⊗̄M2) ∩ (N1⊗̄N2)]′ = [(M1⊗̄M2)′ ∪ (N1⊗̄N2)′]′′

= [(M ′
1⊗̄M ′

2) ∪ (N ′
1⊗̄N ′

2)]
′′ = [(M ′

1 ⊗ I) ∪ (N ′
1 ⊗ I) ∪ (I ⊗ M ′

2) ∪ (I ⊗ N ′
2)]

′′

= ([(M ′
1 ∪ N ′

1)
′′ ⊗ I] ∪ [I ⊗ (M ′

2 ∪ N ′
2)

′′])′′

= (M1 ∩ N1)′⊗̄(M2 ∩ N2)′ = [(M1 ∩ N1)⊗̄(M2 ∩ N2)]′.

On the other hand, III.4.5.9 implies III.4.5.8, since (M1⊗̄M2)′ is clearly
equal to [M ′

1⊗̄L(H2)] ∩ [L(H1)⊗̄M ′
2].

The C*-algebra version of III.4.5.9 is false ([Hur79], [Kye84, 3.1]).
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III.4.5.10 Corollary. Let Mi (i = 1, 2) be a von Neumann algebra on
Hi. Then Z(M1⊗̄M2) = Z(M1)⊗̄Z(M2).

III.4.5.11 Corollary. Let Mi (i = 1, 2) be a von Neumann algebra on
Hi. If Zi is a masa in Mi, then Z1⊗̄Z2 is a masa in M1⊗̄M2.

For the proof, note that if Z ⊆ M are von Neumann algebras, then Z is a
masa in M if and only if Z = Z ′ ∩ M .

III.4.6 The Canonical Group of Outer Automorphisms and
Connes’ Invariants

Centralizer of a Weight

Using the modular automorphism group, a sensible definition of centralizer
can be given for weights, and in particular for states:

III.4.6.1 Definition. Let φ be a faithful normal semifinite weight on a von
Neumann algebra M . The centralizer Mφ of φ is the centralizer (fixed-point
algebra) Mσφ

.
The centralizer Mφ of a weight φ is sometimes written Mφ, but this is

easily confused with Mφ.
Mφ is a von Neumann subalgebra of M which is, of course, invariant under

σφ. There is an alternate characterization of Mφ, due to G. Pedersen and M.
Takesaki [PT73] (cf. [Tak03a, VIII.2.6]):

III.4.6.2 Theorem. Let φ be a faithful normal semifinite weight on a von
Neumann algebra M , and a ∈ M . Then a ∈ Mφ if and only if

(i) a is a multiplier of Mφ, i.e. aMφ ⊆ Mφ and Mφa ⊆ Mφ.
(ii) φ(ax) = φ(xa) for all x ∈ Mφ.

The restriction of φ to Mφ is thus a trace; but it is not semifinite in general
(cf. III.4.7.9).

If φ is a state, then Mφ = M , and the condition in (ii) can be taken as
the definition of Mφ.

III.4.6.3 If h is a positive operator affiliated with Mφ, then the formula

ψ(x) = φ(hx) = φ(xh) = φ(h1/2xh1/2)

defines a normal semifinite weight on M , which is faithful if h is invertible. In
this case, we have

σψ
t (x) = hitσφ

t (x)h−it

for x ∈ M . This ψ is usually denoted φh.
A variation of this construction occurs if u is a partial isometry in M with

uu∗ ∈ Mφ. Then ψ(x) = φ(uxu∗) defines a normal semifinite weight on M
denoted φu. If φ is faithful, then s(φu) = u∗u.

Both constructions have a common generalization using polar decomposi-
tion; we omit details since we will only need these two versions.
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The Canonical Group of Outer Automorphisms

The modular automorphism group σφ depends on the choice of the weight
φ. However, it is a remarkable and fundamental fact that this dependence is
only up to inner automorphisms. The next theorem was proved by A. Connes
[Con73b], using his “2 × 2 matrix trick.”
Theorem. Let M be a von Neumann algebra, and φ and ψ faithful normal
semifinite weights on M with modular automorphism groups {σφ

t } and {σψ
t }

respectively. Then the R-actions σφ and σψ are exterior equivalent (II.10.3.19).
In particular, for each t ∈ R, σφ

t and σψ
t differ by an inner automorphism of

M .
Proof: Define a weight ω on M2(M) by

ω

([
a b
c d

])

= φ(a) + ψ(d)

called the balanced weight of φ and ψ. The weight ω is obviously faithful and

normal, and is also semifinite since Nω =
[

Nφ Nψ

Nφ Nψ

]

. Also, it is easy to see

that
σω

t (diag(x, y)) = diag(σφ
t (x), σψ

t (y))

for all x, y ∈ M , t ∈ R. Apply II.10.3.20.

III.4.6.4 If Out(M) = Aut(M)/Inn(M) is the “outer automorphism group”
of M , and δ(t) is the image of σφ

t in Out(M), then {δ(t)} is independent of
the choice of φ, and is called the canonical (one-parameter) group of outer
automorphisms of M . By [Con73b], δ(R) is contained in the center of Out(M).

Actually, any cross section of δ is a modular automorphism group, at least
if M has separable predual: if σ is any action of R on M whose image in
Out(M) is δ, there is a faithful normal semifinite weight ψ on M with σ = σψ

(cf. III.4.7.5(ii)).

The invariant T (M)

III.4.6.5 Thus, if M is a von Neumann algebra, the set

T (M) = ker(δ) = {t ∈ R : σφ
t is an inner automorphism of M}

is an invariant of M independent of the choice of φ. This is one of Connes’
two fundamental invariants.

If the spectrum of ∆φ is contained in {0} ∪ {λn : n ∈ Z}, then T (M)
contains every t for which λit = 1, i.e.

T (M) ⊇
{

2πn

log λ
: n ∈ Z

}

.

Thus, if φ is a trace, so that ∆φ = 1, T (M) = R. The converse is also true if
M has separable predual (but not in general):
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III.4.6.6 Theorem. If M is a von Neumann algebra with separable predual,
then T (M) = R if and only if M is semifinite.

The converse uses the nontrivial fact, a generalization of Stone’s theorem,
that if α is an action of R on a von Neumann algebra N with separable predual,
and αt is inner for all t, then there is a strongly continuous one-parameter
group {ut} in U(N) with αt = Ad ut for all t, i.e. there is a strongly continuous
cross section for the map

R → Inn(N) ∼= U(N)/U(Z(N)).

There is then an (in general unbounded) positive invertible h affiliated with
Nα such that ut = hit for all t. This result was obtained by Kadison [Kad65]
(cf. [Bar54], [Han77]) in the factor case and R. Kallman [Kal71] and C. Moore
[Moo76] in general.

If there is an invertible h ≥ 0 affiliated with Mφ such that ut = hit satisfies
σφ

t = Ad ut, then ψ(·) = φ(h·) defines a faithful normal semifinite trace on M
(some details need to be checked).

An interesting corollary of this result is:

III.4.6.7 Corollary. Every von Neumann algebra with separable predual
and a nonzero Type III part has an outer automorphism.

In fact, if M is a Type III factor with separable predual, then T (M) has
measure 0 in R [KR97b, 14.4.16]. There is a countably decomposable Type
III factor M (with nonseparable predual) with T (M) = R [KR97b, 14.4.20].

III.4.6.8 Proposition. Let Rλ (0 < λ < 1) be the Powers factor of type
IIIλ (III.3.1.7). Then

T (Rλ) =
{

2πn

log λ
: n ∈ Z

}

.

Proof: The argument is similar to the proof of III.3.1.3. Write (Rλ, φ) =⊗
i∈N

(M2, φλ) as in III.3.1.7. Set

M (n) =
[⊗n

i=1
(M2, φλ)

]

⊗1 , N (n) = 1⊗
[⊗∞

i=n+1
(M2, φλ)

]

= M (n)′∩Rλ

and let θn be the unique φ-invariant conditional expectation from Rλ onto
M (n). Suppose t ∈ R, and σφ

t = Ad u for some u ∈ U(Rλ). We have that
σφλ

t = Ad v for some v ∈ U(M2), and

u = v ⊗ · · · ⊗ v ⊗ w

in the decomposition Rλ
∼= M (n)⊗̄N (n), for some w ∈ U(N (n)); and hence

θn(u) = v ⊗ · · · ⊗ v ⊗ α1
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for some α ∈ C. We have that ‖θn(u) − u‖φ → 0; if 0 < ε < 1, choose n so
that ‖θn(u) − u‖φ < ε. Comparing θn(u) and θn+1(u), we get that

‖v − β1‖φλ
< 2ε/(1 − ε)

for some β ∈ C. This implies that v ∈ C1, σφλ
t = id, λit = 1.

Once the machinery of modular theory is set up, this is probably the
simplest argument to show that the Powers factors are Type III and mutually
nonisomorphic.

Essentially the same argument shows:

III.4.6.9 Proposition. Let M = ⊗i(Mi, φi) be an ITPFI factor, with
eigenvalue list {α(j)

k }. Then

T (M) =
{

t ∈ R :
∞∑

j=1

(
1 −

∣
∣
∣
∑

k

(α(j)
k )1+it

∣
∣
∣
)

< ∞
}

.

It follows easily for an ITPFI factor M , T (M) = { 2π
log λ : λ ∈ ρ(M)}

(III.3.1.15). More generally, if M is the von Neumann algebra of an equiva-
lence relation L∞(R,µ) (III.3.2.17), then T (M) = 2π/ log ρ(R), where ρ(R) is
Krieger’s invariant (III.3.2.21). It follows from [Con73b] that every countable
subgroup of R, and also many uncountable subgroups, occur as T (M) for an
ITPFI factor M .

The invariant S(M)

III.4.6.10 The results above show that the spectrum of ∆φ plays an impor-
tant role. However, this spectrum is not independent of φ; for example, if φλ

on M2 is as in III.3.1.7, then σ(∆φλ
) = {1, λ, λ−1}. The appropriate variation

is to define, for a factor M ,

S(M) =
⋂

φ

σ(∆φ)

where φ runs over all faithful normal semifinite weights (states suffice in the
countably decomposable case). This is Connes’ second fundamental invariant.
(In many cases, S(M) can be realized by a single faithful normal semifinite
weight; cf. III.4.8.6.)

There are several alternate descriptions of this invariant. Two of the most
useful are:

III.4.6.11 Theorem. Let M be a factor, and φ a faithful normal semifinite
weight on M . Then
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(i) S(M) = ∩pσ(∆φp
), where p runs over all nonzero projections in Mφ and

φp is the weight on pMp given by restricting φ.
(ii) If R̂ is identified with the multiplicative group R+ by 〈λ, t〉 = λit, then

S(M) ∩ R+ is the Connes spectrum (III.3.2.5) Γ(σφ).

An important corollary of (ii) is

III.4.6.12 Corollary. If M is a factor, then S(M) ∩ R+ is a (multiplica-
tive) subgroup.

Type Classification of Type III Factors

III.4.6.13 Since S(M) is a closed subset of [0,∞) and S(M) ∩ R+ is a
multiplicative group, there are only the following possibilities for S(M): {1},
{0, 1}, {0} ∪ {λn : n ∈ Z} for some λ, 0 < λ < 1, or [0,∞). M is semifinite if
and only if S(M) = {1}.

If M is a Type III factor, then we say

M is Type III0 if S(M) = {0, 1}.
M is Type IIIλ (0 < λ < 1) if S(M) = {0} ∪ {λn : n ∈ Z}.
M is Type III1 if S(M) = [0,∞)

III.4.6.14 It is easily seen from the results of this section that if M is a Type
III ITPFI factor, then S(M) = r∞(M), and hence these type definitions are
consistent with the ones in III.3.1.14.

III.4.7 The KMS Condition and the Radon-Nikodym Theorem
for Weights

There is an interesting and important connection between a weight φ and its
modular automorphism group σφ.

III.4.7.1 Let M be a von Neumann algebra, σ an R-action on M , φ a weight
on M , and β > 0. Then φ satisfies the KMS condition or modular condition
(or is a KMS weight) for σ at inverse temperature −β if φ = φ ◦ σt for all t
and, for all x, y ∈ Nφ, there is a function f , bounded and continuous on the
strip {z ∈ C : 0 ≤ Im(z) ≤ β} and analytic on {z ∈ C : 0 < Im(z) < β},
such that, for t ∈ R,

f(t) = φ(σt(x)y) , f(t + iβ) = φ(yσt(x)).

A KMS state is a KMS weight which is a state.
This condition was first introduced (for states) by mathematical physicists

R. Kubo [Kub57], P. Martin and J. Schwinger [MS59], and the connection
with von Neumann algebras and modular theory discovered by R. Haag, N.
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Hugenholtz, and M. Winnink [HHW67]. See the survey article [Kas76] for a
discussion of KMS states and their connection with physics.

By rescaling the action σ to σ′
t = σ−t/β , we may and will restrict to the

case β = 1, i.e. “KMS weight” will mean “KMS weight at inverse temperature
−1.”

The fundamental observation of Takesaki [Tak70] and Winnink (extended
to the case of weights) was:

III.4.7.2 Theorem. Let φ be a faithful normal semifinite weight on a von
Neumann algebra M . Then φ is a KMS weight for σφ, and σφ is the only
continuous R-action for which this is true.

If B is a modular Hilbert algebra with L(B) = M and modular operator
∆φ, and η, ζ ∈ B, then

f(z) = 〈∆−iz
φ η, ζ�〉 = 〈ζ,∆1−iz̄

φ η�〉

is entire and has the right values for η, ζ at z = t and z = t + i. A limiting
argument gives an f for arbitrary x, y ∈ Nφ.

To prove the uniqueness of σφ, suppose φ is a KMS weight for a one-
parameter automorphism group ρ. Then on the Hilbert space Hφ, there is
a strongly continuous one-parameter unitary group (U(t)) such that ρt =
Ad(U(t)) since φ is invariant under ρ; by Stone’s theorem, U(t) = Kit for a
self-adjoint operator K. If H = eK , it must be shown that H = ∆. This is a
lengthy argument, which we omit. See [Tak03a, VIII.1.2] for details of both
parts of the proof.

The Radon-Nikodym Theorem for Weights

The analog of III.2.3.3 for (normal semifinite) weights is false (see, for ex-
ample, [Str81, 6.6-6.8]), so a correct version of the Radon-Nikodym theorem
for weights requires considerable care. The definitive version comes out of the
proof of III.4.6.3.

III.4.7.3 Given two faithful normal semifinite weights φ and ψ on a von
Neumann algebra M , the proof of III.4.6.3 provides a strongly continuous
path (ut) of unitaries in M such that

σψ
t = (Ad ut) ◦ σφ

t

for all t. This ut is denoted (Dψ : Dφ)t, and is called the Radon-Nikodym
derivative of ψ with respect to φ at t. This Radon-Nikodym derivative satisfies
the cocycle identity:

ut+s = utσ
φ
t (us) (s, t ∈ R).

If x ∈ M , the element utσ
φ
t (x) = σψ

t (x)ut is denoted σψ,φ
t (x). We have
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σψ,φ
t+s(x) = σψ,φ

t (x)σψ,φ
s (x)

for t, s ∈ R (but note that

σψ,φ
t (xy) �= σψ,φ

t (x)σψ,φ
t (y)

for x, y ∈ M in general).
The definition of (Dψ : Dφ) also works if ψ is not faithful. In this case,

each ut is an isometry with utu
∗
t equal to the support projection of ψ.

III.4.7.4 By applying the KMS condition to the balanced weight, we also
have the analytic extension property : for each x ∈ Nφ ∩N∗

ψ and y ∈ Nψ ∩N∗
φ,

there is an f , bounded and continuous on {z ∈ C : 0 ≤ Im(z) ≤ 1} and
analytic on {z ∈ C : 0 < Im(z) < 1}, such that, for all t ∈ R,

f(t) = ψ(σψ,φ
t (x)y), f(t + i) = φ(yσψ,φ

t (x)) .

recovering ψ from φ
There is also a converse, obtained by extending ut to an analytic function

on the strip {z : 0 < Im(z) < 1}:

III.4.7.5 Theorem. [Connes-Radon-Nikodym Theorem for Weights]

[Con73a] Let φ be a faithful normal semifinite weight on a von Neumann al-
gebra M .

(i) If ψ is another faithful normal semifinite weight on M , then there is a
unique strongly continuous path (ut) = (Dψ : Dφ)t of unitaries in M ,
with the analytic extension property, with

σψ
t (x) = utσ

φ
t (x)u∗

t and ut+s = utσ
φ
t (us)

for all x ∈ M , t, s ∈ R.
(ii) Conversely, if (ut) is a strongly continuous path of unitaries in M with

ut+s = utσ
φ
t (us) for all t, s ∈ R, then there is a unique faithful normal

semifinite weight ψ on M with ut = (Dψ : Dφ)t for all t.

The Radon-Nikodym derivatives satisfy the expected rules: if φ, ψ, ω are
faithful normal semifinite weights on M , and h is an invertible positive oper-
ator affiliated with Mφ (III.4.6.3), then

(Dω : Dφ)t = (Dω : Dψ)t(Dψ : Dφ)t

(Dφ : Dψ)t = (Dψ : Dφ)−1
t

(Dφh : Dφ)t = hit .

The weights of the form φh for h ≥ 0 affiliated with Mφ can also be
characterized:
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III.4.7.6 Theorem. [PT73] Let φ and ψ be normal semifinite weights on
a von Neumann algebra M . The following are equivalent:

(i) ψ = ψ ◦ σφ
t for all t.

(ii) (Dψ : Dφ)t ∈ Mφ for all t.
(iii) There is an h ≥ 0 affiliated with Mφ with ψ = φh.

If the conditions of this theorem are satisfied, then ψ commutes with φ.
If ψ is also faithful and commutes with φ, then σφ and σψ are commuting
actions of R (the converse is false in general).

Weights and Conditional Expectations

There is a close connection between the modular automorphism group of a
weight and the existence of conditional expectations onto subalgebras which
preserve the weight:

III.4.7.7 Theorem. Let M be a von Neumann algebra and N a von Neu-
mann subalgebra, and let φ be a faithful normal semifinite weight on M such
that ψ = φ|N is semifinite. Then the following are equivalent:

(i) There is a conditional expectation θ : M → N with φ = φ ◦ θ.
(ii) There is a faithful normal conditional expectation θ : M → N with

φ = φ ◦ θ.
(iii) N is invariant under σφ, i.e. σφ

t (N) = N for all t.

[Recall from II.6.10.10 that a conditional expectation as in (i), if it exists, is
unique; (ii) asserts that such a conditional expectation is necessarily faithful
and normal.]

Let Hφ and Hψ be the GNS Hilbert spaces and A = ι(Nφ ∩ N∗
φ) and

B = ι(Nψ ∩N∗
ψ) the corresponding left Hilbert algebras, dense in Hφ and Hψ

respectively. Regard Hψ as a subspace of Hφ. Then by II.6.10.10 any θ as in
(i) is necessarily induced by the orthogonal projection P from Hφ onto Hψ.
To prove (i) =⇒ (iii), a simple computation shows that P is permutable with
∆φ, and hence ∆it

φ B = B since PA = B. To show (iii) =⇒ (ii), it must be
shown that PA = B and that πψ(x) = Pπφ(x)P for x ∈ M . The details can
be found in [Tak03a, IX.4.2].

III.4.7.8 Corollary. Let M be a semifinite von Neumann algebra, and τ
a faithful normal semifinite trace on M . Let N be von Neumann subalgebra
of M . If τ |N is semifinite, then there is a normal conditional expectation from
M onto N . In particular, if M is finite and countably decomposable, and N
is any von Neumann subalgebra of M , then there is a normal conditional
expectation from M onto N .

Since Mφ is invariant under σφ, we obtain:
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III.4.7.9 Corollary. ([Com71]; cf. [Str81, 10.9]) Let φ be a faithful normal
semifinite weight on a von Neumann algebra M . The following are equivalent:

(i) φ is strictly semifinite (III.2.2.26).
(ii) φ|Mφ is semifinite.
(ii) There is a normal conditional expectation θ : M → Mφ such that φ = φ◦θ.

III.4.8 The Continuous and Discrete Decompositions
of a von Neumann Algebra

The canonical group of outer automorphisms can be used to give a canonical
description of a general properly infinite von Neumann algebra as a crossed
product of a semifinite von Neumann algebra by a one-parameter group of
automorphisms. This decomposition is closely related in spirit to (and was
motivated by) the standard decomposition of a nonunimodular group as a
semidirect product of a unimodular group by a subgroup of R+. In the case
of a Type IIIλ factor, 0 ≤ λ < 1, the continuous decomposition can be re-
placed by a discrete decomposition (crossed product by Z). The continuous
and discrete decompositions allow many structural questions about Type III
factors to be reduced to a study of semifinite von Neumann algebras and their
automorphisms.

III.4.8.1 Let M be a von Neumann algebra, φ a faithful normal semifinite
weight on M . Set N = M�̄σφR. If ψ is another faithful normal semifinite
weight, then σψ is exterior equivalent to σφ, and hence up to a standard
isomorphism N is independent of the choice of φ.

III.4.8.2 Proposition. The dual weight φ̂ (III.3.2.9) is a faithful normal
semifinite trace on N ; thus N is semifinite.

III.4.8.3 If σ̂φ is the dual action of R̂ ∼= R, then by Takesaki duality
(III.3.2.8) N�̄σ̂φR is isomorphic to M⊗̄L(L2(R)), and hence to M itself if
M is properly infinite. This description of M as the crossed product of N by
R is called the continuous decomposition of M .

If ψ is another faithful normal semifinite weight on M , and M�̄σψ R is iden-
tified with N in the standard way, then σ̂ψ is seen to be exterior equivalent
to σ̂φ, and hence the crossed product of N by R is canonical in a sense. How-
ever, although the identification of this crossed product with M⊗̄L(L2(R))
by Takesaki duality is canonical, the isomorphism

M⊗̄L(L2(R)) ∼= M

if M is properly infinite requires choices; so the isomorphism N�̄σ̂φR ∼= M
is not natural. This decomposition of M is nonetheless well defined up to
isomorphism. In fact, the decomposition is unique up to conjugacy in a suitable
sense [CT77] (cf. III.4.8.8). The dual action σ̂φ is usually denoted θ in this
abstract setting to remove its notational dependency on φ.
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III.4.8.4 Proposition. The automorphism σ̂φ
t scales the trace φ̂ on N by

a factor of et.

The Discrete Decomposition of a Type III Factor

If M is a Type IIIλ factor, 0 ≤ λ < 1, then there is a closely related discrete
decomposition. We first consider the case 0 < λ < 1.

III.4.8.5 Definition. If M is a factor of Type IIIλ, 0 < λ < 1, a generalized
trace on M is a faithful normal semifinite weight φ such that S(M) = σ(∆φ)
and φ(1) = +∞.

III.4.8.6 Theorem. If M is a factor of Type IIIλ, 0 < λ < 1, then M has
a generalized trace. If φ and ψ are generalized traces on M , then there is an
inner automorphism α such that ψ is proportional to φ ◦ α.

III.4.8.7 Theorem. If M is a factor of Type IIIλ, 0 < λ < 1, with gener-
alized trace φ, then the centralizer Mφ of φ is a Type II∞ factor, and there
is an automorphism α of Mφ, unique up to conjugacy, scaling the trace of
Mφ by λ, such that M ∼= Mφ

�̄αZ. This decomposition is called the discrete
decomposition of M .

The situation with Type III0 factors is similar, but with an important
difference:

III.4.8.8 Theorem. If M is a factor of Type III0, then there is a von
Neumann algebra N of Type II∞, with diffuse center (no minimal central
projections), and an automorphism α of N , such that M ∼= N�̄αZ.

There is also a uniqueness statement in this case, but it is more compli-
cated to state since a decomposition can be “cut down” by a central projection
(the uniqueness statement says that two decompositions have isomorphic cut-
downs). The decomposition M ∼= N�̄αZ is called the discrete decomposition
of M .

III.4.8.9 In the IIIλ case (0 < λ < 1), there is a close connection between
the discrete and continuous decompositions. In this case, if t = −2π/ log λ,
then the action σφ of R is really an action ρ of T = R/tZ. The discrete
decomposition is then really (M�̄ρT)�̄ρ̂Z.

The connection between the continuous and discrete decompositions in
the III0 case is more complicated and less natural, made by building a “flow
under a ceiling function.” See [Tak03a] for details.

III.4.8.10 There is no discrete decomposition in the III1 case in general; in
fact, most III1 factors cannot be written as the crossed product of a semifinite
von Neumann algebra by a single automorphism.
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III.4.8.1 The Flow of Weights.

III.4.8.1 Consider the continuous decomposition M = N�̄θR. If

Z = Z(N) ∼= L∞(X,B, µ),

then the restriction of θ to Z gives a flow (R-action) on (X,B, µ) which is
canonically associated with M , called the flow of weights on M .

There is an important equivalent description of the flow of weights on
a von Neumann algebra which more clearly demonstrates the functoriality
of the construction and explains the name. Our description is brief, and we
limit discussion only to the case of separable predual; details can be found in
[Tak03a] or [Str81].

III.4.8.2 A normal semifinite weight φ on a properly infinite von Neumann
algebra M (with separable predual) is of infinite multiplicity if it is unitar-
ily equivalent to φ ⊗ Tr on M ∼= M⊗̄L(H). Equivalently, φ is of infinite
multiplicity if and only if Mφ is properly infinite. Since Tr ∼= Tr ⊗ Tr on
L(H) ∼= L(H)⊗̄L(H), any weight of the form φ ⊗ Tr is of infinite multiplic-
ity. Write W∞(M) for the set of normal semifinite weights on M of infinite
multiplicity.

III.4.8.3 Define an equivalence relation and a preorder on W∞(M) by set-
ting ψ � φ if there is a partial isometry u ∈ M with u∗u = s(ψ), uu∗ ∈ Mφ,
and ψ = φu, i.e. ψ(x) = φ(uxu∗) for all x ∈ M . If uu∗ = s(φ), then φ = ψu∗

and also φ � ψ; say then φ ∼ ψ. In fact, φ ∼ ψ if and only if φ � ψ and ψ � φ.
Denote the equivalence class of φ by [φ], and let B be the set of equivalence
classes. The preorder � drops to a partial order on B, also denoted �. There
is a natural addition on B:

[φ] + [ψ] = [φ′ + ψ′]

where φ′ ∼ φ, ψ′ ∼ ψ, and s(φ′) ⊥ s(ψ′). There is also a natural action of the
multiplicative group R+ on B: λ[φ] = [λφ].

III.4.8.4 The set B with its addition and partial order is order-isomorphic
to the lattice of countably decomposable projections in a commutative von
Neumann algebra A, and the action of R on B comes from automorphisms of
A. This group of automorphisms is, however, not continuous in general. If Z
is the subalgebra on which the action is continuous (i.e. x ∈ Z if λ �→ λx is
σ-weakly continuous), then the induced action of R on Z is exactly the flow
of weights. The action of R on all of A is called the global flow of weights; the
flow of weights is sometimes called the smooth flow of weights.

Integrable and Dominant Weights

III.4.8.5 A (normal semifinite) weight φ for which [φ] ∈ Z is called an
integrable weight . A weight φ is a dominant weight if it satisfies the equivalent
conditions of the next theorem:



III.5 Applications to Representation Theory of C*-Algebras 313

III.4.8.6 Theorem. Let φ be a normal semifinite weight on a properly
infinite von Neumann algebra M with separable predual. The following are
equivalent:

(i) s(φ) has central support 1 and λφ ∼ φ for all λ > 0.
(ii) φ is integrable and ψ � φ for every integrable weight ψ.
(iii) φ is equivalent to the second dual weight (III.3.2.9) of a faithful normal

semifinite weight.
(iv) Under the continuous decomposition M ∼= N�̄θR, φ is equivalent to the

dual weight of a faithful normal semifinite trace on N .

Note that (iii) =⇒ (iv) comes from III.4.8.2.
From characterizations (ii) and (iii), we obtain:

III.4.8.7 Corollary. Let M be a properly infinite von Neumann algebra
with separable predual. Then M has a faithful dominant weight, and any two
dominant weights on M are equivalent.

III.4.8.8 If φ is a dominant weight, then Mφ is semifinite and isomorphic
to the N of the continuous decomposition of M ; thus M ∼= Mφ

�̄θR for an
action θ of R which can be explicitly described. This concrete realization of
the continuous decomposition of M is used to prove the uniqueness of the
continuous decomposition up to conjugacy (III.4.8.3).

III.5 Applications to Representation Theory
of C*-Algebras

III.5.1 Decomposition Theory for Representations

The theory of von Neumann algebras allows a systematic study of the rep-
resentation theory of C*-algebras, associating to a representation π of a C*-
algebra A the von Neumann algebras π(A)′′ and π(A)′. Note that the subrep-
resentations (invariant subspaces) of π correspond exactly to the projections
in π(A)′. To avoid trivial complications which cause annoying verbosity in
statements, we will assume throughout this section that all representations
are nondegenerate.

Quasi-equivalence

III.5.1.1 Recall that two representations π and ρ of a C*-algebra A, on
Hilbert spaces Hπ and Hρ, are (unitarily) equivalent, denoted π ≈ ρ, if there
is a unitary U ∈ L(Hπ,Hρ) with ρ(x) = Uπ(x)U∗ for all x ∈ A.

There are some other useful related notions:
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III.5.1.2 Definition. Let π and ρ be two (nondegenerate) representations
of a C*-algebra A, on Hilbert spaces Hπ and Hρ.

(i) An intertwiner of π and ρ is an operator T ∈ L(Hπ,Hρ) with

Tπ(x) = ρ(x)T

for all x ∈ A. Denote by Int(π, ρ) the set of intertwiners of π and ρ.
(ii) The representations π and ρ are disjoint, written π ⊥ ρ, if no nonzero

subrepresentation of π is equivalent to a subrepresentation of ρ.
(iii) The representation π is subordinate to ρ, written π # ρ, if no nonzero

subrepresentation of π is disjoint from ρ (i.e. every nonzero subrepresen-
tation of π contains a nonzero subrepresentation equivalent to a subrep-
resentation of ρ).

(iv) The representations π and ρ are quasi-equivalent, written π ∼ ρ, if π # ρ
and ρ # π.

It is easily checked that ⊥ is symmetric, # is reflexive and transitive, and
∼ is an equivalence relation. Int(π, ρ) is a closed subspace of L(Hπ,Hρ), and

Int(ρ, π) = Int(π, ρ)∗ = {T ∗ : T ∈ Int(π, ρ)}.

We have that π ≈ ρ if and only if there is a unitary in Int(π, ρ). At the
other extreme, it is easily seen that π ⊥ ρ if, and only if, the only element
of Int(π, ρ) is 0 (if T ∈ Int(π, ρ) has polar decomposition T = U |T |, then
|T | ∈ π(A)′ and U ∈ Int(π, ρ)).

III.5.1.3 Proposition. Let π be a representation of A on H, and p, q pro-
jections in π(A)′, with central supports zp, zq. Let ρ, σ be the subrepresenta-
tions of π on pH and qH respectively. Then

(i) Int(ρ, σ) = qπ(A)′p.
(ii) ρ ⊥ σ if and only if zp ⊥ zq.
(iii) ρ # σ if and only if zp ≤ zq.
(iv) ρ ∼ σ if and only if zp = zq.

The proof of (i) is a simple calculation, and the other parts follow imme-
diately from (i) and III.1.1.4.

III.5.1.4 Corollary. If π is a factor representation of A, then any two
nonzero subrepresentations of π are quasi-equivalent, and in particular any
nonzero subrepresentation of π is quasi-equivalent to π. If ρ is another factor
representation of A, then either π ∼ ρ or π ⊥ ρ.

A straightforward maximality argument then shows:
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III.5.1.5 Proposition. Let π, ρ be representations of a C*-algebra A, on
Hπ and Hρ. Then there are unique central projections p and q in π(A)′′ and
ρ(A)′′ respectively, such that

(i) π|pHπ
and ρ|qHρ

are quasi-equivalent.
(ii) π|(1−p)Hπ

is disjoint from ρ.
(iii) ρ|(1−q)Hρ

is disjoint from π.

Combining this with III.2.2.8, we obtain:

III.5.1.6 Proposition. Let π, ρ be (nondegenerate) representations of a
C*-algebra A. Then the following are equivalent:

(i) π and ρ are quasi-equivalent.
(ii) Suitable amplifications of π and ρ are equivalent.
(iii) π and ρ have the same kernel J , and the identity map on A/J extends

to an algebraic *-isomorphism from π(A)′′ onto ρ(A)′′.
(iv) π and ρ have the same kernel J , and the restriction of the σ-weak [σ-

strong] topologies from π(A)′′ and ρ(A)′′ to A/J coincide.

Type of a Representation

III.5.1.7 A (nondegenerate) representation π of a C*-algebra A is said to be
(pure) Type I [resp. Type II, Type III, Type II1, Type II∞] if π(A)′′ is Type I
[resp. Type II, Type III, Type II1, Type II∞]. By III.2.6.12, π is Type I [resp.
Type II, Type III] if and only if π(A)′ is Type I [resp. Type II, Type III] (but
this is not true for Type II1 and Type II∞ representations); and if π is Type
I [resp. Type II, Type III, Type II1, Type II∞], so is every subrepresentation
of π. The type of a representation is invariant under quasi-equivalence.

Every representation π can be uniquely decomposed as

πI ⊕ πII1 ⊕ πII∞ ⊕ πIII

where the components are of pure type. Any factor representation is of pure
type, of course.

Every C*-algebra has many Type I representations, e.g. direct sums of
irreducible representations. Not every C*-algebra has Type II or Type III
representations; see IV.1 for a discussion.

III.5.1.8 It would be possible to say that a representation π is finite [resp.
semifinite, properly infinite, purely infinite] if π(A)′′ is finite [resp. semifinite,
etc.] However, it is customary, and more useful, to say that a representation π
of A is finite [resp. properly infinite], or of finite [resp. properly infinite] mul-
tiplicity, if π(A)′ is finite [resp. properly infinite]. (For “semifinite” or “purely
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infinite” it makes no difference whether π(A)′ or π(A)′′ is used.) This defini-
tion is more in line with standard terminology: π is of finite multiplicity if and
only if π is not equivalent to a proper subrepresentation, if and only if it does
not contain an infinite sequence of mutually orthogonal, equivalent nonzero
subrepresentations. A representation π is of properly infinite multiplicity if
and only if it is an infinite amplification of another representation; in fact,
a representation of properly infinite multiplicity is equivalent to a countably
infinite amplification of itself (III.1.3.5).

III.5.1.9 A representation π is multiplicity-free if any two subrepresenta-
tions of π on orthogonal subspaces are disjoint. Equivalently, π is multiplicity-
free if π(A)′ is commutative. A multiplicity-free representation is Type I. Con-
versely, every Type I representation is quasi-equivalent to a multiplicity-free
representation.

Similarly, we say that a representation π of A has uniform multiplicity n
if π(A)′ is of Type In. Such a representation is an n-fold amplification of a
multiplicity-free representation. Any Type I representation is canonically a
direct sum of representations of uniform multiplicity (III.1.5.12).

A Type II or Type III representation cannot be reduced down to a multiple
of a multiplicity-free representation; any subrepresentation can be written as
a multiple of a smaller subrepresentation. Even a Type II representation of
finite multiplicity is thus “infinite” in the sense that it is a direct sum of
infinitely many mutually quasi-equivalent representations.

C*-algebras having only Type I representations are particularly well-
behaved and important, and their structure will be analyzed in detail in IV.1.

Direct Integral Decompositions of Representations

From the results of III.1.6 we get a direct integral theory for representations
of separable C*-algebras on separable Hilbert spaces. As a result, we get a
canonical decomposition of a general representation as a direct integral of
mutually disjoint factor representations, and a non-canonical decomposition
as a direct integral of irreducible representations.

III.5.1.10 Let π be a (nondegenerate) representation of a C*-algebra A
on a separable Hilbert space H, and let Z be a commutative von Neumann
subalgebra of π(A)′. Then there is a corresponding standard measure space
(X,µ) and a direct integral decomposition

H ∼=
∫ ⊕

X

Hx dµ(x)

such that the operators in Z ′ are decomposable; in particular, for each a ∈ A,
the operator π(a) is decomposable and can be written

π(a) =
∫ ⊕

X

π(a)x dµ(x).
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III.5.1.11 If, for each (or almost all) x, we write πx(a) = π(a)x ∈ L(Hx),
it turns out that, if A is separable, then πx is a representation of A for almost
all x, and we may sensibly write

π =
∫ ⊕

X

πx dµ(x)

as a “direct integral of representations.”

III.5.1.12 If Z contains Z(π(A)′′), then almost all the representations πx

are factor representations. If Z is a masa in π(A)′, then almost all of the πx

are irreducible.

III.5.1.13 If E is a measurable subset of X, then

πE =
∫ ⊕

E

πx dµ(x)

is a subrepresentation of π. If Z is contained in Z(π(A)′′), and E,F are disjoint
subsets of X, then πE ⊥ πF .

The most natural choice for Z is Z(π(A)′′). We summarize the properties
of the corresponding direct integral decomposition, called the central decom-
position:

III.5.1.14 Theorem. Let π be a representation of a separable C*-algebra
A on a separable Hilbert space H. Then there is a canonical direct integral
decomposition

H =
∫ ⊕

X

Hx dµ(x), π =
∫ ⊕

X

πx dµ(x)

such that

(i) πx is a factor representation for almost all x.
(ii) πx ⊥ πy for almost all (x, y); if E,F are disjoint measurable sets, then

πE ⊥ πF .
(iii) Every subrepresentation ρ of π is of the form

ρ =
∫ ⊕

X

ρx dµ(x)

where ρx is a subrepresentation of πx.

III.5.1.15 The central decomposition of π respects the Type I, Type II1,
Type II∞, and Type III parts of π. In particular, a representation of pure type
centrally decomposes into a direct integral of (a.e.) factor representations of
the same type.
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III.5.1.16 If π is multiplicity-free, then the πx in the central decomposition
are almost all irreducible, so π has a canonical decomposition as a direct
integral of (a.e.) mutually inequivalent irreducible representations.

A general representation π can also be decomposed as a direct integral of
(a.e.) irreducible representations, but the decomposition requires the choice of
a masa in π(A)′ and is thus highly non-canonical, especially if π is not Type
I. The representations πx are also not necessarily mutually inequivalent, e.g.
when π is a multiple of an irreducible representation. It turns out that if π has
no Type I part, the πx are (a.e.) mutually inequivalent (cf. IV.1.5.1(iii)=⇒(v)).
However, in this case there is no natural relationship between the representa-
tion π and the irreducible representations πx; for example, a different masa
can yield a decomposition in which the irreducible representations appearing
are (a.e.) inequivalent to any of the πx.

III.5.1.17 There is an abstract (space-free) decomposition theory for states
(cyclic representations) of C*-algebras, valid also in the nonseparable case;
see [Sak71].

III.5.2 The Universal Representation and Second Dual

If A is any C*-algebra, then there is a “universal” representation ω of A,
which contains every cyclic representation of A as a subrepresentation, and
such that ω(A)′′ is isometrically isomorphic to the second dual A∗∗.

The Universal Representation

III.5.2.1 Definition. Let A be a C*-algebra. The universal representation
ω of A is ⊕

φ∈A∗
+

πφ

where A∗
+ is the set of positive linear functionals on A.

The universal representation of A is obviously faithful and nondegenerate.

III.5.2.2 The Hilbert space of the universal representation is highly non-
separable; in fact, its dimension is Card(A∗). If π is any cyclic representation
of A, then there are at least 2ℵ0 mutually orthogonal subrepresentations of ω
equivalent to π. The representation ω is not even quasi-equivalent to a repre-
sentation on a separable Hilbert space except in the unusual case where A∗ is
separable, which implies that A is separable and Type I [Tom63].

III.5.2.3 If A �= C, then it can be shown that ω is equivalent to the sub-
representation ⊕

φ∈S(A)

πφ
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where S(A) is the state space of A. [It is only necessary to show that each πφ

occurs 2ℵ0 times in this subrepresentation; but if φ is a convex combination
of φ1 and φ2, then πφ1 and πφ2 are equivalent to subrepresentations of πφ (cf.
the proof of III.2.6.7).]

III.5.2.4 Every cyclic representation of A is obviously equivalent to a sub-
representation of ω. Since every (nondegenerate) representation of A is a di-
rect sum of cyclic representations, every (nondegenerate) representation of A
is quasi-equivalent to a subrepresentation of ω. Any (nondegenerate) repre-
sentation of A on a Hilbert space of dimension ≤ 2ℵ0 is actually equivalent to
a subrepresentation of ω.

The Second Dual

III.5.2.5 Let A be a C*-algebra, and set M = ω(A)′′. Then M is a von
Neumann algebra containing ω(A) ∼= A as a σ-weakly dense *-subalgebra.
Any normal linear functional on M restricts to a bounded linear functional
on A; thus we obtain a linear map ρ : M∗ → A∗.

III.5.2.6 Proposition. The map ρ is an isometric isomorphism from M∗
onto A∗.
Proof: The Kaplansky Density Theorem (I.9.1.3) implies that ρ is isometric.
Every state on A is a vector state for ω(A), hence extends to a normal state
on M ; thus ρ is surjective.

III.5.2.7 Corollary. The dual map ρ∗ : (M∗)∗ = M → A∗∗ is an isomet-
ric isomorphism.

III.5.2.8 Thus there is a multiplication on A∗∗, extending the multiplication
on A (naturally identified with a subspace of A∗∗), making A∗∗ into a C*-
algebra (which is automatically a W*-algebra by III.2.4.2). This multiplication
can be alternately obtained as left or right Arens multiplication [Are51] on
A∗∗.

III.5.2.9 If π is an arbitrary (nondegenerate) representation of A, then π is
quasi-equivalent to a subrepresentation of ω, and hence π(A)′′ is isomorphic
to a direct summand of A∗∗. There is thus a normal *-homomorphism from
A∗∗ onto π(A)′′, which extends the map

π : ω(A) ∼= A → π(A)

i.e. the representation π extends to a normal representation of A∗∗. Since A is
σ-weakly dense in A∗∗, the extension is unique and does not depend on how
π is realized (up to quasi-equivalence) as a subrepresentation of ω.
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III.5.2.10 If φ : A → B is a bounded linear map between C*-algebras, then
by general considerations φ∗∗ : A∗∗ → B∗∗ is a normal linear map of the same
norm as φ. It is easily verified that

φ∗∗ is injective if and only if φ is injective (in general, we have that
ker(φ∗∗) = [ker(φ)]∗∗).
φ∗∗ is surjective if and only if φ is surjective.
φ∗∗ is positive if and only if φ is positive.
φ∗∗ is completely positive if and only if φ is completely positive.
φ∗∗ is a *-homomorphism if and only if φ is a *-homomorphism.
If B ⊆ A (so B∗∗ ⊆ A∗∗), φ∗∗ is a conditional expectation if and only if φ
is a conditional expectation.

III.5.2.11 If J is an ideal in A, then J∗∗ is a weakly closed ideal in A∗∗,
and is thus of the form pA∗∗ for some central projection p ∈ A∗∗. If A∗∗ is
identified with ω(A)′′, then p is the projection onto the essential subspace
of ω|J , and if (hλ) is an increasing approximate unit for J , then p is the
supremum (σ-strong limit) of (hλ). We can identify the quotient

A∗∗/J∗∗ ∼= (1 − p)A∗∗

with (A/J)∗∗, i.e. there is a natural isomorphism

A∗∗ ∼= J∗∗ ⊕ (A/J)∗∗.

III.5.2.12 If A is a C*-algebra, then (Mn(A))∗∗ is naturally isomorphic to
Mn(A∗∗). However, it is not true that (A⊗B)∗∗ ∼= A∗∗⊗B∗∗ in general if A,B
are infinite-dimensional. First of all, there are some rather subtle questions
about which cross norms are appropriate to make proper sense of such an
identification; these will be discussed in IV.2.3.1. And even if the right cross
norms are taken, the left side of the equation is much larger than the right
side in general.

Borel Functional Calculus Revisited

III.5.2.13 Let X be a compact Hausdorff space, and let B(X) be the set
of bounded Borel measurable functions on X. With pointwise operations
and supremum norm, B(X) becomes a commutative C*-algebra. Identify-
ing C(X)∗ with the set of Radon measures on X by the Riesz Representation
Theorem, each element f of B(X) defines a bounded linear functional on
C(X)∗ by µ �→

∫
f dµ, and hence an element of C(X)∗∗. It is easily checked

that this is an injective *-homomorphism from B(X) to C(X)∗∗. The W*-
algebra l∞(X) of all bounded functions on X is a quotient (direct summand)
of C(X)∗∗ [l∞(X) ∼= π(C(X))′′, where π is the sum of all irreducible repre-
sentations of C(X)], and the composite embedding of B(X) into l∞(X) is the
natural one. So the image of B(X) in C(X)∗∗ is not all of C(X)∗∗ unless X
is countable.
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If π is a unital representation of C(X) on a Hilbert space H, then π
extends to a representation of B(X) on H, and π(B(X)) ⊆ π(C(X))′′. If H is
separable, or more generally if π is quasi-equivalent to a representation with a
cyclic vector, then the image of B(X) in L(H) is all of π(C(X))′′, since then
π(C(X))′′ ∼= L∞(X,µ) for some Radon measure µ; but the image of B(X) in
L(H) is not all of π(C(X))′′ in general. In particular, if T is a normal operator
in L(H), and A = C∗(T, I) ∼= C(σ(T )), then the identity representation of A
extends to a *-homomorphism from B(σ(T )) to L(H) which coincides with
the Borel functional calculus described in I.4.3.2. If B is a Borel subset of
σ(T ), then the image of χB in L(H) is the spectral projection EB(T ).

The Universal Normal Representation and Second Dual
of a von Neumann Algebra

III.5.2.14 Definition. Let M be a von Neumann algebra. The universal
normal representation ν of M is

⊕

φ∈(M∗)+

πφ.

The universal normal representation of M is a direct summand of the
universal representation of M , and is faithful and normal; hence ν(M)′′ =
ν(M) ∼= M .

III.5.2.15 As with any representation, ν extends to a normal representation
of M∗∗, i.e. a *-homomorphism from M∗∗ onto ν(M). If ν(M) is identified
with M , we get a normal *-homomorphism θ : M∗∗ → M which is the identity
on M , i.e. a homomorphic normal conditional expectation. It is easily checked
that this map is the dual of the natural inclusion of M∗ into M∗.

Polar Decomposition in a C*-Algebra

Using representations, and in particular the universal representation, we can
obtain a simple result about polar decomposition related to those of II.3.2.

III.5.2.16 Proposition. Let A be a C*-algebra, x ∈ A, and x = u|x| its
polar decomposition in A∗∗. If B = x∗Ax is the hereditary C*-subalgebra of
A generated by |x|, and b ∈ B, then ub ∈ A, and (ub)∗(ub) = b∗b.
Proof: Suppose first that b = p(|x|) for a polynomial p without constant
term. Then p(|x|) = |x|q(|x|) for a polynomial q, and q(|x|) ∈ Ã ⊆ A∗∗, so

up(|x|) = u|x|q(|x|) = xq(|x|) ∈ A.

Next suppose f ∈ Co(σ(|x|)). Then f is the uniform limit on σ(|x|) of
a sequence (pn) of polynomials without constant term, and so uf(|x|) =
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limn upn(|x|) ∈ A. In particular, u|x|α ∈ A for all α > 0. Since (|x|α) is
an approximate unit for B, if b ∈ B we have ub = limα→0 u|x|αb ∈ A. Also,
u∗u is a unit for x∗x, and hence also for |x|α, in A∗∗; so

(ub)∗(ub) = lim
α→0

b∗u∗u|x|αb = lim
α→0

b∗|x|αb = b∗b.

An alternate proof of II.3.2.1 can be easily given using I.5.2.4 and the ar-
gument of III.5.2.16. In fact, we obtain a generalization (II.3.2.1 is the special
case y = aα, z = a1/2−α):

III.5.2.17 Proposition. Let A be a C*-algebra, x, y ∈ A, z ∈ Ay∗ =
Ayy∗ ⊆ A. If x∗x ≤ y∗z∗zy, then there is a u ∈ Ay∗, ‖u‖ ≤ ‖z‖, with x = uy.

Proof: By I.5.2.4 there is a w ∈ A∗∗ with x = wzy and ‖w‖ ≤ 1. We show
that u = wz ∈ Ay∗ ⊆ A. As in the proof of III.5.2.16 we have wzyy∗ = xy∗ ∈
Ay∗, so wzp(yy∗) ∈ Ay∗ for all polynomials p without constant term, and
hence wz(yy∗)1/n ∈ Ay∗ for all n. But z ∈ Ay∗, so z(yy∗)1/n → z, and hence
u(yy∗)1/n → u ∈ Ay∗.

III.5.2.18 We can also give a simple proof of II.3.2.3 using III.5.2.16. Let
x ∈ A, and let x = u(x∗x)1/2 be its polar decomposition in A∗∗. Then y =
u(x∗x)1/6 ∈ A, and y∗y = (x∗x)1/3, so

y(y∗y) = u(x∗x)1/6(x∗x)1/3 = u(x∗x)1/2 = x.

For uniqueness, if x = zz∗z, then x∗x = (z∗zz∗)(zz∗z) = (z∗z)3, so z∗z =
(x∗x)1/3, and similarly zz∗ = (xx∗)1/3. Thus, if z = v(z∗z)1/2 is the polar
decomposition, then the source and range projections of v are the same as for
u, and

x = z(z∗z) = v(x∗x)1/6(x∗x)1/3 = v(x∗x)1/2

so by uniqueness of polar decomposition v = u, z = y.

III.5.2.19 There is nothing magical about using the universal representa-
tion in III.5.2.16; any faithful representation π of A can be used instead. But
it is not transparent that the element ub of A is independent of the choice of
π. It is not difficult to prove this directly, but it follows immediately from the
universal representation construction: if π̄ is the canonical extension of π to
A∗∗, and π(x) = v|π(x)| is the polar decomposition of π(x) in π(A)′′, then by
uniqueness of polar decomposition we have v = π̄(u), so

vπ(b) = π̄(u)π(b) = π(ub).
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Further Structure

IV.1 Type I C*-Algebras

There is an important class of C*-algebras called the Type I C*-algebras,
which can be characterized in several apparently different ways, which is pre-
cisely the class of C*-algebras with “tractable” representation theory and
which therefore has traditionally been regarded as the class of “reasonable”
C*-algebras whose structure can be “understood.” Although in recent years
the structure theory of C*-algebras has been largely divorced from repre-
sentation theory and there is now a much larger class of C*-algebras whose
structure can be “understood” in the modern sense, Type I C*-algebras are
still very important; furthermore, the structure of Type I C*-algebras can be
rather precisely described, forming a model for the structure and classification
of more general classes of C*-algebras.

IV.1.1 First Definitions

A von Neumann algebra is Type I if it contains an abelian projection of central
support 1 (III.1.4), or equivalently if every central summand (W*-quotient)
contains a nonzero abelian projection. There are (at least) two reasonable
C*-analogs:

IV.1.1.1 Definition. Let A be a C*-algebra. An element x ∈ A is abelian
if the hereditary C*-subalgebra [x∗Ax]− is commutative.
A is internally Type I if every quotient of A contains a nonzero abelian ele-
ment.
A is bidual Type I if A∗∗ is a Type I von Neumann algebra, i.e. if π(A)′′ is a
Type I von Neumann algebra for every representation π of A.

These conditions, and several others, turn out to be equivalent, although
(bidual Type I) ⇒ (internally Type I) is a deep theorem (IV.1.5.7, IV.1.5.8);
a C*-algebra satisfying these conditions is called a Type I C*-algebra. Both
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definitions in IV.1.1.1 have been used in the literature as the definition of
a Type I C*-algebra; it will be convenient to give them separate provisional
names.

IV.1.1.2 Proposition. An internally type I C*-algebra is bidual Type I.
Proof: Let A be internally type I, and π a non-Type-I representation of
A. Passing to a subrepresentation corresponding to a central projection, we
may assume π(A)′′ has no Type I summand, i.e. contains no nonzero abelian
projections. Let J = ker(π). Then A/J is internally Type I, so replacing A
by A/J we may assume π is faithful and identify A with π(A). Let x be an
abelian element of norm 1 in A, and y = f1/2(x∗x) (II.3.4.11). If p is the
support projection for y in A′′, then z = f1/4(x∗x) is a unit for p, and hence
pA′′p is contained in the σ-weak closure of zAz, which is commutative. Thus
p is a nonzero abelian projection in A′′, a contradiction.

IV.1.1.3 Because of decomposition theory (III.1.6), a separable C*-algebra
A is bidual Type I if and only if π(A)′′ is a Type I factor, for every factor rep-
resentation π of A, or, alternatively, if and only if every factor representation
of A is a multiple of an irreducible representation.

This statement is also true if A is nonseparable, but is much harder to
prove, requiring the machinery of the proof of Glimm’s theorem (cf. IV.1.5.8).

IV.1.1.4 Every commutative C*-algebra is a Type I C*-algebra (by either
definition), and it turns out that the Type I C*-algebras are built up from
commutative C*-algebras by means of standard operations.

IV.1.1.5 Note that a Type I von Neumann algebra is not in general a Type
I C*-algebra. For example, L(H) is not a Type I C*-algebra if H is infinite-
dimensional (the Calkin algebra has no nonzero abelian elements). In fact,
the only von Neumann algebras which are Type I C*-algebras are finite Type
I von Neumann algebras of bounded degree, finite direct sums of matrix al-
gebras over commutative von Neumann algebras. This slight ambiguity of
terminology is unfortunate, but well established.

IV.1.1.6 Definition. Let A be a C*-algebra.
A is Type I0 if the abelian elements of A generate A as a C*-algebra.
A is antiliminal if A contains no nonzero abelian elements, i.e. if every nonzero
hereditary C*-subalgebra of A is noncommutative.

Any quotient of a Type I0 C*-algebra is Type I0. In particular, a Type I0

C*-algebra is internally Type I. A C*-algebra is internally Type I if and only
if it has no antiliminal quotients.

The next result follows immediately from II.6.1.9.

IV.1.1.7 Proposition. Let A be a C*-algebra, x ∈ A. Then x is abelian if
and only if rank (π(x)) ≤ 1 for every π ∈ Â.
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IV.1.1.8 It follows that x is abelian ⇔ x∗x is abelian ⇔ xx∗ is abelian,
and if x is abelian and y � x (II.3.4.3), then y is abelian. If A is a C*-algebra
and I0(A) is the C*-subalgebra of A generated by the abelian elements of A,
then it follows from II.3.2.7 that I0(A) is an ideal of A which is a Type I0

C*-algebra. (In fact, I0(A) is the closed linear span of the abelian elements of
A, since if x, y ∈ A and x is abelian, then xy and yx are abelian.)

IV.1.1.9 Examples. Let T = N ∪ {∞} (or T = [0,∞]). Define C*-
subalgebras C1, C2, C3 of M2 as follows:

C1 =
{[

λ 0
0 0

]

: λ ∈ C

}

C2 =
{[

λ 0
0 λ

]

: λ ∈ C

}

C3 =
{[

λ 0
0 µ

]

: λ, µ ∈ C

}

Then, for i = 1, 2, 3, let

Ai = {f ∈ C(T, M2) : f(∞) ∈ Ci}.
All three C*-algebras are internally Type I; A1 and A3 are Type I0, but A2

is not;
I0(A2) = {f ∈ C(T, M2) : f(∞) = 0}.

IV.1.1.10 Definition. Let A be a C*-algebra. A subcomposition series in
A is a set (Jα) of closed ideals of A, indexed by (all) ordinals α, such that
Jβ ⊆ Jα if β < α and such that Jα = [∪β<αJβ ]− if α is a limit ordinal. There
is a γ such that Jα = Jγ for all α > γ; Jγ is called the limit of the series. The
series is called a composition series for A if its limit is A.

IV.1.1.11 Proposition. If a C*-algebra A has a composition series (Jα)
such that Jα+1/Jα is internally type I for all α, then A is internally type I.
Proof: Let I be an ideal in A, and β be the largest α such that Jα ⊆ I. Then

(Jβ+1 + I)/I ∼= Jβ+1/(Jβ+1 ∩ I)

is a nonzero ideal of A/I which is isomorphic to a quotient of Jβ+1/Jβ and
thus contains an abelian element.

IV.1.1.12 Set I0 = I0(A), and inductively define Iα+1 to be the inverse
image in A of I0(A/Iα). For limit α set Iα = [∪β<αIβ ]−. Then (Iα) is a
subcomposition series in A with Iα+1/Iα of Type I0 for all α. Let I(A) be the
limit. Then I(A) is an ideal of A which is an internally Type I C*-algebra,
and A/I(A) is antiliminal. In particular, A is internally Type I if and only if
I(A) = A, i.e. A has a composition series in which successive quotients are
Type I0.
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IV.1.2 Elementary C*-Algebras

IV.1.2.1 Definition. A C*-algebra A is elementary if A ∼= K(H) for some
Hilbert space H.

The separable elementary C*-algebras are the finite-dimensional matrix
algebras and K. Elementary C*-algebras are simple C*-algebras and have the
most transparent structure of all C*-algebras. They are the “building blocks”
for all Type I C*-algebras. An elementary C*-algebra is Type I0.

An elementary C*-algebra has an obvious “identity representation,” which
is irreducible. It is often convenient to identify the C*-algebra with its image
under this representation.

IV.1.2.2 Proposition. Let A be an elementary C*-algebra. Then every
nondegenerate representation of A is unitarily equivalent to a multiple of
the identity representation. In particular, up to unitary equivalence A has
only one irreducible representation, and every representation of A is a factor
representation.
Proof: The argument is very similar to that of III.1.5.3 (and the result follows
immediately from III.1.5.3 if A is finite-dimensional). Let A ∼= K(H) and let
π be a nondegenerate representation of A on H̃. Let {eij : i, j ∈ Ω} be a set
of matrix units in A. Fix j ∈ Ω and ξj a unit vector in ejjH, and for each i

let ξi = eijξj . Then {ξi} is an orthonormal basis for H. Let H′ = π(ejj)H̃,
and {ηk : k ∈ Λ} an orthonormal basis for H′. For i ∈ Ω and k ∈ Λ, set
ζik = π(eij)ηk. Then {ζik} is an orthonormal basis for H̃ by nondegeneracy of
π, and ζik �→ ξi ⊗ ηk defines a unitary U : H̃ → H⊗H′ satisfying Uπ(x)U∗ =
x ⊗ 1 (it is enough to check this for x a matrix unit, where it is obvious).

IV.1.2.3 Conversely, a separable C*-algebra with only one irreducible repre-
sentation (up to unitary equivalence) must be elementary (IV.1.3.5, IV.1.5.1).
It was a long-standing open question whether this is true also for nonsepara-
ble C*-algebras (the Naimark problem). Recently, C. Akemann and N. Weaver
[AW04] constructed a nonelementary (non-Type I, unital, necessarily simple)
nonseparable C*-algebra with only one irreducible representation, using an
additional set-theoretic axiom (the “diamond principle”), at least showing
that a positive answer in the nonseparable case cannot be proved in ZFC.

A C*-algebra for which every representation is a factor representation is
simple and Type I, hence elementary.

IV.1.2.4 Proposition. Let A be a C*-subalgebra of K(H) acting irre-
ducibly on H. Then A = K(H).
Proof: If H is finite-dimensional, the result is obvious from the Bicommutant
Theorem (I.9.1.1) (or just by some elementary linear algebra). For the general
case, note that if x ∈ K(H)+, then fε(x) (II.3.4.11) is finite-rank for all ε > 0.
Thus the finite-rank operators in A are dense in A, and in particular A contains
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nonzero (finite-rank) projections. Let p be a minimal nonzero projection in A,
and ξ a unit vector in pH. Then pAp acts irreducibly on pH (II.6.1.9), so by
the first remark pAp = L(pH), and thus pH is one-dimensional by minimality
of p. Choose an orthonormal basis {ξi} for H with ξk = ξ for some fixed k,
and let {eij} be the corresponding matrix units in K(H) (so ekk = p). For
each i there is an x ∈ A with xξ close to ξi; then xp is close to eik. It follows
that A contains all the eij .

IV.1.2.5 Corollary. Let A be a C*-algebra, π an irreducible representa-
tion of A on H. If π(A) ∩ K(H) �= 0, then π(A) ⊇ K(H).
Proof: Let J = π−1(K(H)). Then J is a closed ideal of A, and π|J is irre-
ducible (II.6.1.6).

IV.1.2.6 Corollary. Let A be a simple C*-algebra. Then A is (internally)
Type I if and only if A is elementary.

Indeed, if x is a nonzero abelian element of A and π a (necessarily faithful)
irreducible representation of A on H, then π(x) ∈ K(H) (IV.1.1.7). Hence
π(A) ⊆ K(H) by simplicity, so π(A) = K(H).

IV.1.2.7 An argument similar to the proof of IV.1.2.4 shows that any C*-
subalgebra of an elementary C*-algebra is a C*-direct sum of elementary
C*-algebras.

IV.1.3 Liminal and Postliminal C*-Algebras

IV.1.3.1 Definition. Let A be a C*-algebra, π an irreducible representa-
tion of A on a Hilbert space H.
π is a CCR representation of A if π(A) ⊆ K(H) (and hence π(A) = K(H) by
IV.1.2.5).
π is a GCR representation of A if π(A) ∩ K(H) �= 0 (so π(A) ⊇ K(H) by
IV.1.2.5).
A C*-algebra A is CCR [resp. GCR] if every irreducible representation of A
is CCR [resp. GCR].
A is liminal if it is CCR; A is postliminal if it has a composition series (Jα)
such that Jα+1/Jα is liminal for all α.
A (primitive) ideal J of A is A-CCR [resp. A-GCR] if J is the kernel of a
CCR [resp. GCR] representation of A.

CCR stands for completely continuous representations, completely contin-
uous being an old synonym for compact ; GCR stands for generalized CCR.
The terms CCR and GCR were introduced by Kaplansky and Glimm (as well
as the term NGCR, synonymous with antiliminal); the original definition of
GCR was different from the one given here (identical with our definition of
postliminal). It is convenient for our exposition to have the different defini-
tions, which turn out to be equivalent (IV.1.5.7).
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The terms liminal [postliminal, antiliminal ], sometimes written liminary
[postliminary, antiliminary ], are English “translations” of the French terms
liminaire, meaning “prefatory,” postliminaire, and antiliminaire, used in
[Dix69b].

In some references such as [Sak71], GCR C*-algebras are called smooth
(cf. IV.1.5.12).

IV.1.3.2 Proposition. If a C*-algebra A is Type I0, then A is liminal. If
A is internally Type I, then A is postliminal.
Proof: The first statement follows immediately from IV.1.1.7, and the second
from IV.1.1.12.

A postliminal C*-algebra is internally Type I (IV.1.4.26), i.e. “internally
Type I” is the same as “postliminal.”

IV.1.3.3 Examples.

(i) Any elementary C*-algebra is liminal.
(ii) If every irreducible representation of A is finite-dimensional, then A is

liminal. In particular, any commutative C*-algebra is liminal, and the
examples of IV.1.1.9 are liminal. A2 is liminal but not Type I0.

(iii) K̃ is postliminal but not liminal.

IV.1.3.4 If J is a primitive ideal in a C*-algebra A, then J is an A-CCR
ideal if and only if A/J is elementary. In this case, J is a maximal ideal.
An A-GCR ideal is an A-CCR ideal if and only if it is maximal. Thus every
primitive ideal in a liminal C*-algebra is maximal, i.e. the primitive ideal
space of a liminal C*-algebra is T1. (By Example A3 (IV.1.1.9, IV.1.3.3(ii)),
it need not be Hausdorff.)

IV.1.3.5 Proposition. Let J be a primitive ideal in a C*-algebra A. Then
the following are equivalent:

(i) J is an A-GCR ideal.
(ii) There is an ideal K of A, containing J , such that K/J is elementary.
(iii) A/J is not antiliminal.

Proof: (i) ⇒ (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i): Let I be a closed ideal of A containing J , such that I/J is liminal.
Let π be an irreducible representation of A on H with kernel J . Then π|I is
irreducible, and hence π(I) ⊆ K(H).

Combining IV.1.3.5 with II.6.1.6 and IV.1.2.2, we obtain:

IV.1.3.6 Corollary. If J is an A-GCR ideal in a C*-algebra A, then any
two irreducible representations of A with kernel J are equivalent.

The converse is also true if A is separable (IV.1.5.1).
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IV.1.3.7 Corollary. Let A be a C*-algebra. Then A is CCR [resp. GCR]
if and only if every primitive ideal of A is an A-CCR [resp. A-GCR] ideal.

One direction is trivial, and the other follows from IV.1.3.5 and IV.1.2.2.

IV.1.3.8 Proposition. Let A be a C*-algebra.

(i) If A is postliminal, then A is GCR.
(ii) If A is separable and GCR, then A is bidual Type I.

(The conditions are actually all equivalent, even in the nonseparable case,
but (bidual Type I) ⇒ (postliminal) is hard (IV.1.5.7), as is GCR ⇒ (bidual
Type I) in the nonseparable case (IV.1.5.8)).
Proof: (i): Suppose (Jα) is a composition series for A with Jα+1/Jα liminal
for all α, and let π be an irreducible representation of A. Let β be the largest
α such that π|Jα

= 0. Then π|Jβ+1 is irreducible and defines an irreducible
representation of Jβ+1/Jβ , so the image contains a nonzero compact operator.
(ii): Let π be a factor representation of A, and J = ker π. Then J is primitive
(II.6.1.11, II.6.5.15), so there is an ideal K of A containing J , with K/J
elementary. Then π|K is a factor representation (II.6.1.6), hence is a multiple
of an irreducible representation by IV.1.2.2 and therefore Type I. By II.6.1.6,
π(K)′′ = π(A)′′.

IV.1.3.9 If A is any C*-algebra, let

J0(A) = {x ∈ A : π(x) is compact for all π ∈ Â}.

Then J0(A) is a closed ideal of A, and is the largest liminal ideal in A. Set
J0 = J0(A), and inductively define Jα+1 to be the preimage of J0(A/Jα) in
A. Then (Jα) is a subcomposition series in A; let J(A) be the limit. Then
J(A) is a closed ideal of A which is postliminal, and A/J(A) is antiliminal.
Because of IV.1.3.2 I0(A) ⊆ J0(A) for all A, and hence I(A) ⊆ J(A) for all
A. Actually I(A) = J(A) for all A by IV.1.4.26.

IV.1.3.10 If A is a liminal C*-algebra and B is a C*-subalgebra, then any
irreducible representation of B can be extended to an irreducible representa-
tion of A, whose image consists of compact operators; thus B is liminal. If A
is postliminal and B ⊆ A, and (Jα) is the liminal composition series for A,
then (B ∩ Jα) is a liminal composition series for B, so B is postliminal.

IV.1.4 Continuous Trace, Homogeneous,
and Subhomogeneous C*-Algebras

Homogeneous and Subhomogeneous C*-Algebras

Some of the most important “building block” C*-algebras are the homoge-
neous and subhomogeneous C*-algebras. Their structure will be examined in
more detail in IV.1.7.23.
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IV.1.4.1 Definition. Let n ∈ N. A C*-algebra A is n-homogeneous if every
irreducible representation of A is of dimension n. A is n-subhomogeneous if
every irreducible representation of A has dimension ≤ n. A is homogeneous
[resp. subhomogeneous] if it is n-homogeneous [resp. n-subhomogeneous] for
some n. A subhomogeneous C*-algebra is locally homogeneous if it is a (finite)
direct sum of homogeneous C*-algebras.

There are also ℵ0-homogeneous C*-algebras, which will be defined later
(IV.1.7.12).

The standard example of an n-homogeneous C*-algebra is C0(T, Mn),
where T is locally compact. In fact, every homogeneous C*-algebra looks
locally like one of these (IV.1.7.23).

The examples of IV.1.1.9 are 2-subhomogeneous. So a subhomogeneous
C*-algebra need not have Hausdorff primitive ideal space. A closely related
example is important:

IV.1.4.2 Example. Let A be the free product C∗C (II.8.3.4), isomorphic to
the universal C*-algebra generated by two projections p and q. We show that A
is 2-subhomogeneous. The corner pAp is generated by the commuting positive
elements p and pqp, and hence is commutative; so if π is any irreducible
representation of A on a Hilbert space H, II.6.1.9 implies that π(p)H is at
most one-dimensional. Similarly, dim(π(q)H) ≤ 1. Since π(p) ∨ π(q) = I, we
have dim(H) ≤ 2.

There are three one-dimensional irreducible representations of A, π0,p, π0,q,
and π1, where

π0,p(p) = 1, π0,p(q) = 0, π0,q(p) = 0, π0,q(q) = 1, π1(p) = π1(q) = 1.

Suppose dim(H) = 2. There is an orthonormal basis {ξ, η} for H with

respect to which π(p) =
[

1 0
0 0

]

. Then

π(q) =
[

t α
√

t − t2

ᾱ
√

t − t2 1 − t

]

for some t and α, 0 < t < 1, |α| = 1; by scaling η we may make α = 1.
Thus π is unitarily equivalent to πt for a unique t, 0 < t < 1, where πt is the
irreducible representation of A on C

2 with

πt(p) =
[

1 0
0 0

]

, πt(q) =
[

t
√

t − t2√
t − t2 1 − t

]

.

Then πt(p) and πt(q) vary continuously in t in M2; as t → 0, πt(p) and πt(q)

approach
[

1 0
0 0

]

and
[

0 0
0 1

]

respectively, and as t → 1, both approach
[

1 0
0 0

]

. Thus there is a homomorphism φ from A to the C*-subalgebra
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B =
{

f : [0, 1] → M2 : f(0) =
[

α 0
0 β

]

, f(1) =
[

γ 0
0 0

]

(α, β, γ ∈ C)
}

of C([0, 1], M2). It is easily checked using the Stone-Weierstrass Theorem that
φ is surjective, and every irreducible representation of A factors through φ, so
φ is an isomorphism. Thus Prim(A) ∼= [0, 1] with the point at 0 “doubled”.

Note that A is nonunital; Ã is isomorphic to the C*-subalgebra of
C([0, 1], M2) of functions for which f(0) and f(1) are diagonal.

Subalgebras of Homogeneous C*-Algebras

IV.1.4.3 Proposition. A C*-algebra [resp. unital C*-algebra] is subho-
mogeneous if and only if it is isomorphic to a C*-subalgebra [resp. unital
C*-subalgebra] of a unital homogeneous C*-algebra.
Proof: If A is a C*-subalgebra of an n-homogeneous C*-algebra B, then
every irreducible representation of A extends to an irreducible representation
of B, hence has dimension ≤ n. Conversely, suppose A is subhomogeneous.
We may assume A is unital since Ã is also subhomogeneous. Let n1, . . . , nr

be the dimensions of the irreducible representations of A. Set

k = n1 + · · · + nr

and let H be a k-dimensional Hilbert space, and identify L(H) with Mk.
Then for each x ∈ A there is a unital *-homomorphism φ from A to Mk with
φ(x) �= 0. Let T be the set of all unital *-homomorphisms from A to Mk. Give
T the topology of elementwise convergence. Then T can be identified with a
closed subset of ∏

x∈B1(A)

B1(Mk)

where B1(D) denotes the closed unit ball in D; thus T is compact and Haus-
dorff. For each x ∈ A define x̂ : T → Mk by x̂(φ) = φ(x). Then x �→ x̂ is an
injective unital *-homomorphism from A to C(T, Mk).

IV.1.4.4 The T constructed in the proof of IV.1.4.3 is rather complicated,
although it is metrizable if A is separable. (See [Bla93] for a description of T as
a stratified space in the homogeneous case.) In the separable case, as pointed
out in [Phi01b], one can take a surjective continuous function from the Cantor
set K to T , which induces an embedding of C(T ) into C(K) and hence from
C(T, Mk) into C(K, Mk). Thus every [unital] separable subhomogeneous C*-
algebra is isomorphic to a [unital] C*-subalgebra of a matrix algebra over
C(K).

The k in the proof is not the smallest possible in general. We only need
k to have the property that for each ni, k − ni is either 0 or a sum of not
necessarily distinct nj ’s. For example, if A has irreducible representations of
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dimensions 1, 2, and 3, instead of k = 6 we may take k = 3. (In fact, if A
has a one-dimensional representation, then we can always take k = max(ni).)
However, if (unital) A has all irreducible representations of dimensions 2 and
3 (e.g. A = C(X, M2) ⊕ C(Y, M3) for compact X,Y ), then k = 5 is the best
possible.

An alternate proof of IV.1.4.3 can be based on IV.1.4.6.

Algebraic Characterization of Subhomogeneity

IV.1.4.5 There is an algebraic characterization of n-subhomogeneous C*-
algebras. For r ∈ N, define a polynomial pr in r noncommuting variables
by

pr(X1, . . . , Xr) =
∑

σ∈Sr

εσXσ(1)Xσ(2) · · ·Xσ(r)

where Sr is the symmetric group on r elements and εσ = ±1 is the sign of σ.
For each n there is an r = r(n) (the smallest value of r(n) is 2n) such that,
for any x1, . . . , xr(n) ∈ Mn, pr(n)(x1, . . . , xr(n)) = 0 (we say Mn satisfies the
polynomial relation pr(n)), but that Mn+1 does not satisfy the relation pr(n),
i.e. there are x1, . . . , xr(n) ∈ Mn+1 with pr(n)(x1, . . . , xr(n)) �= 0 ([AL50],
[Ros76]; cf. [Dix69b, 3.6.2]). Then the next result follows easily:

IV.1.4.6 Proposition. Let A be a C*-algebra. The following are equiva-
lent:

(i) A is n-subhomogeneous.
(ii) A satisfies the polynomial relation pr(n).
(iii) A∗∗ satisfies the polynomial relation pr(n).
(iv) A∗∗ is a direct sum of Type Im von Neumann algebras for m ≤ n.

In particular, a subhomogeneous C*-algebra is bidual Type I.
Proof: If π(A) satisfies pr(n) for every irreducible representation π of A, then
A satisfies pr(n) (II.6.4.9), and thus (i) =⇒ (ii) by IV.1.4.5. For the proof of (ii)
=⇒ (iii), if π is a representation of A and π(A) satisfies the relation pr, then
so does π(A)′′, by the Kaplansky Density Theorem and joint strong continuity
of multiplication on bounded sets. (iii) =⇒ (iv) is III.1.5.14 (using IV.1.4.5),
and (iv) =⇒ (i) is trivial.

By a refinement of this argument, it can be readily shown that a C*-algebra
A is n-homogeneous if and only if A∗∗ is a Type In von Neumann algebra.

IV.1.4.7 From this one sees that if Ai is n-subhomogeneous for each i, then∏
Ai is n-subhomogeneous; and if (Ji) is a set of closed ideals in a C*-algebra

A with J = ∩Ji, and A/Ji is n-subhomogeneous for each i, then A/J is n-
subhomogeneous. Thus A has a smallest ideal J (often equal to A) such that
A/J is n-subhomogeneous.
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There is a useful reformulation. If A is a C*-algebra, let nÂ be the set of
equivalence classes of irreducible representations of A of dimension ≤ n, and
Ân the set of irreducible representations of dimension exactly n. Then nÂ is
closed in Â, and Ân = nÂ \ n−1Â is relatively open in nÂ. (But note that
nÂ = ∅ for “most” A and n.)

Continuous Trace C*-Algebras

IV.1.4.8 For any Hilbert space H, we denote by Tr the usual trace on L(H)
(i.e. the trace of a projection is its rank). If A is a C*-algebra and x ∈ A+,
let x̂ : Â → [0,∞] be the function with x̂(π) = Tr(π(x)). Then x̂ drops to
a well-defined function, also denoted x̂, from Prim(A) to [0,∞] (if π(x) �= 0,
then Tr(π(x)) < ∞ only if π is a GCR representation, in which case any
ρ ∈ Â with ker(ρ) = ker(π) is equivalent to π (IV.1.3.6)). We obviously have
(x∗x)̂ = (xx∗)̂ for any x ∈ A.

IV.1.4.9 Proposition. [Ped79, 4.4.9] For any A and x ∈ A+,

x̂ = sup(
n∑

i=1

x̌i)

(II.6.5.6), where the supremum is taken over all finite subsets {x1, . . . , xn} of
A+ with

∑n
i=1 xi ≤ x. Thus x̂ is lower semicontinuous.

IV.1.4.10 We say x ∈ A+ has continuous trace if x̂ is finite, bounded, and
continuous on Â.

IV.1.4.11 Proposition. Let A be a C*-algebra, and m+(A) the set of pos-
itive elements of A of continuous trace. Then m+(A) is a nonempty invariant
hereditary cone in A+, and thus the positive part of an ideal m(A).
Proof: It is clear that m+(A) is an invariant cone, and 0 ∈ m+(A). If
x ∈ m+(A) and 0 ≤ y ≤ x, then ŷ and (x − y)̂ are lower semicontinuous
functions whose sum is the bounded continuous function x̂, so ŷ is bounded
and continuous.

IV.1.4.12 Definition. A C*-algebra A has continuous trace (or is a con-
tinuous trace C*-algebra) if m(A) is dense in A.

IV.1.4.13 Examples. Any elementary C*-algebra has continuous trace. Of
the examples of IV.1.1.9, A1 has continuous trace but A2 and A3 do not.
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IV.1.4.14 Proposition. A locally homogeneous C*-algebra has continuous
trace.
Proof: This is obvious in the unital case, since if A is n-homogeneous, then
1̂ is the constant function n, and a (finite) direct sum of continuous trace C*-
algebras has continuous trace. A slightly more complicated functional calculus
argument is needed in the nonunital case.

IV.1.4.15 Conversely, a unital continuous trace C*-algebra is locally homo-
geneous (and it follows from IV.1.7.23 that a locally homogeneous C*-algebra
A is unital if and only if Â is compact). A subhomogeneous C*-algebra does
not have continuous trace in general (IV.1.4.13).

It is obvious that a continuous trace C*-algebra is liminal, and hence
Â ∼= Prim(A) is T1. One can say more:

IV.1.4.16 Proposition. If A is a continuous trace C*-algebra, then A is
Type I0 and Â is Hausdorff.
Proof: Let π, ρ be distinct points of Â. Since ker(π) �⊆ ker(ρ), there is an
x ∈ A+ with ‖π(x)‖ = 1 and ρ(x) = 0. If (yn) ⊆ m+(A) with yn → x, then,
replacing x by a continuous function of ynxyn for sufficiently large n (or by
fε(x) (II.3.4.11), which is in Ped(A) ⊆ m(A)), we may assume x ∈ m+(A) and
‖x‖ = 1. Thus x̂ is a continuous function separating π and ρ, so Â is Hausdorff.
The trace-class operator π(x) has a nonzero eigenspace H0 with eigenvalue 1
(I.8.4.1); and y = f(x) satisfies π(y) = PH0 for a suitable continuous function
f . Let P be a rank-one projection onto a subspace of H0; then by II.6.1.9 there
is a b ∈ [(yAy)−]+ with π(b) = P , and replacing b by xbx we may assume that
b ∈ m+(A). The continuous function b̌− b̌2 is small (≤ 1/8) in a neighborhood
U of π, and hence π′(c) is a projection for all π′ ∈ U , where c = f1/4(b). Since
ĉ is continuous and integer-valued on U , π′(c) is a rank-one projection for all
π′ ∈ U . Let z ∈ Z(M(A))+ with ‖π(z)‖ = 1 and σ(z) = 0 for all σ ∈ Â \ U
(II.6.5.10), and set a = zc. Then a is an abelian element of A not contained
in ker(π). Thus the ideal I0(A) is not contained in any primitive ideal of A,
so I0(A) = A, i.e. A is Type I0.

Local Rank One Projections

The proof of IV.1.4.16 shows that a continuous trace C*-algebra satisfies the
following condition (cf. [Fel61]):

IV.1.4.17 Definition. A C*-algebra A satisfies Fell’s condition if, for
every π ∈ Â, there is a neighborhood U of π in Â and an x ∈ A+ such
that ρ(x) is a rank-one projection for all ρ ∈ U .

A C*-algebra satisfying Fell’s condition must be GCR, and in fact CCR [if
ker(ρ) � ker(π), and x ∈ A+ with π(x) a rank one projection, then ρ(x) has



IV.1 Type I C*-Algebras 335

infinite rank, and ρ is in any neighborhood of π]. Of the examples of IV.1.1.9,
A1 and A3 satisfy Fell’s condition, but A2 does not.

A C*-algebra A of Type I0 satisfies Fell’s condition: if π ∈ Â, let x be
a positive abelian element of A with π(x) �= 0. If 0 < ε < ‖π(x)‖/2, then
ρ(fε(x)) is a rank-one projection for all ρ in a neighborhood of π. The converse
is unclear, but we have:

IV.1.4.18 Proposition. Let A be a C*-algebra. The following are equiv-
alent:

(i) A has continuous trace.
(ii) Â is Hausdorff and A is Type I0.
(iii) Â is Hausdorff and A satisfies Fell’s condition.

(i) ⇐⇒ (ii) is IV.1.4.16, (ii) =⇒ (iii) is the argument above, and (iii) =⇒
(i) by a partition of unity argument using II.6.5.10.

A C*-algebra with continuous trace thus has “local rank-one projections.”

IV.1.4.19 Corollary. The class of continuous trace C*-algebras is closed
under Morita equivalence.
Proof: Morita equivalent C*-algebras have homeomorphic primitive ideal
spaces (II.7.6.13), and it is easily seen that Fell’s condition is preserved under
Morita equivalence (cf. IV.1.7.8).

IV.1.4.20 Definition. Let A be a C*-algebra. A global rank-one projection
in A is a projection p ∈ A with π(p) rank-one for all π ∈ Â.

A C*-algebra with a full global rank-one projection must have continuous
trace. In fact:

IV.1.4.21 Proposition. If A is a C*-algebra with T = Â, and A has a full
global rank-one projection, then T is compact and Hausdorff (and hence A
has continuous trace), and A is Morita equivalent to C(T ).

T is compact by II.6.5.6, and if p is a full global rank-one projection in A,
then Ap is a A − C(T )-imprimitivity bimodule.

IV.1.4.22 Thus if A is a continuous-trace C*-algebra with T = Â compact,
for A to be Morita equivalent to C(T ) it is sufficient for A to have a global
rank-one projection. But this condition is not necessary: for example, let p be
a trivial rank-one projection and q the Bott projection in C(S2, M2); then

A = {f ∈ C([0, 1], C(S2, M2)) | f(0) ∈ Cp, f(1) ∈ Cq}

is a continuous-trace algebra with T = Â ∼= [0, 1] × S2, and A is Morita
equivalent to C(T ), but has no global rank-one projection. If A is separable
and stable, then existence of a global rank-one projection is necessary for A
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to be Morita equivalent to C(T ), since then A ∼= C(T ) ⊗ K by the Brown-
Green-Rieffel theorem (II.7.6.11).

If A is any continuous-trace C*-algebra (with T = Â not necessarily com-
pact), then A is “locally Morita equivalent” to Co(T ) (IV.1.7.8), but there are
global obstructions of a cohomological nature. Even if A is separable and sta-
ble, there is an obstruction in H3(T, Z) called the Dixmier-Douady invariant.
This will be discussed in IV.1.7.10.

Homomorphisms

IV.1.4.23 Note that even unital *-homomorphisms between matrix alge-
bras over commutative C*-algebras may relate in a complicated way to the
underlying topological spaces. For example, let σ be the action of Z2 on T

by σ(z) = −z. The embedding C(T) → C(T) �σ Z2
∼= M2(C(T)) is called

a twice-around embedding , and is conjugate to the following homomorphism
φ : C(T) → C(T, M2), where T is regarded as [0, 1] with 0 and 1 identified:

[φ(f)](t) =

[
cos πt

2 − sin πt
2

sin πt
2 cos πt

2

][
f
(

t
2

)
0

0 f
(

t+1
2

)

] [
cos πt

2 sin πt
2

− sin πt
2 cos πt

2

]

See [DNNP92] and [Bla93] for a description of a “classifying space” for
homomorphisms between unital homogeneous C*-algebras.

IV.1.4.24 The homomorphisms from A to B (homogeneous, or more gen-
erally of continuous trace) which relate well to the topology of the underlying
spaces Â and B̂ are the ones which “preserve rank.” The cleanest way to pre-
cisely define this condition is to require that the image of any abelian element
is abelian. If φ is such a homomorphism, and A, B, and φ are unital, then φ
induces φ∗ : B̂ → Â just as in the commutative case. In the nonunital setting,
φ is a proper continuous map from an open subset of B̂ to Â.

Continuous Trace Ideals

We now have enough machinery to clean up a loose end from the previous
section.

IV.1.4.25 Proposition. A liminal C*-algebra is internally Type I.
Proof: Since a quotient of a liminal C*-algebra is liminal, it suffices to show
that if A is liminal, then A contains a nonzero abelian element. Let x, y ∈ A+

with y �= 0 and xy = y. Then if π ∈ Â, since π(x) is compact it follows that
π(y) is finite-rank. Thus, if B = [yAy]− is the hereditary C*-subalgebra gen-
erated by y, then every irreducible representation of B is finite-dimensional.
Since (B̂ \nB̂) is a decreasing sequence of open sets in B̂ with empty intersec-
tion, II.6.5.14 implies that nB̂ has nonempty interior for some n, and hence
there is a closed ideal J of B such that
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n−1Ĵ �= nĴ = Ĵ .

Then Ĵn is a nonempty open subset of Ĵ , and hence there is an ideal I in J
which is an n-homogeneous C*-algebra. I has continuous trace by IV.1.4.14
and therefore contains an abelian element by IV.1.4.16.

IV.1.4.26 Corollary. A C*-algebra is postliminal if and only if it is in-
ternally Type I.
Proof: One direction is IV.1.3.2. The converse follows from IV.1.4.25 and
IV.1.1.11.

The proof of IV.1.4.25, combined with II.5.1.4(iii) and the fact that
the class of continuous-trace C*-algebras is closed under Morita equivalence
(IV.1.4.19), gives:

IV.1.4.27 Proposition. If A is a liminal C*-algebra, then A contains a
nonzero ideal K which is a continuous-trace C*-algebra.

IV.1.4.28 Corollary. Every postliminal C*-algebra has a composition
series (Kα) such that Kα+1/Kα has continuous trace for all α.

Unlike the composition series Iα and Jα (IV.1.1.12, IV.1.3.9), the com-
position series (Kα) depends on choices in the construction and thus is non-
canonical.

IV.1.4.29 There is a class of Type I C*-algebras called generalized continu-
ous trace C*-algebras (abbreviated GCT or GTC ) [Dix69b, 4.7.12], for which
the subcomposition series (Mα) is a composition series, where M0(A) = m(A)
and Mα+1(A) is the preimage of M0(A/Mα(A)). A GCT C*-algebra is nec-
essarily liminal (note, for example, that M0(K̃) = 0). Not every liminal C*-
algebra is GCT [Dix61], but every C*-algebra with Hausdorff spectrum is
GCT.

IV.1.5 Characterization of Type I C*-Algebras

The following fundamental theorem is a slight variation (cf. [BK01]) of a result
of J. Glimm [Gli61], which was probably the deepest theorem in the subject
of operator algebras when it was proved.

IV.1.5.1 Theorem. Let J be a primitive ideal in a separable C*-algebra
A. Then the following are equivalent:

(i) J is not an A-GCR ideal.
(ii) A/J is antiliminal.
(iii) J is the kernel of a non-type I factor representation of A.
(iv) There are two inequivalent irreducible representations of A with kernel

J .
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(v) There are uncountably many mutually inequivalent irreducible represen-
tations of A with kernel J .

Proof: (i) ⇔ (ii) is IV.1.3.5, (v) ⇒ (iv) is trivial, and (iv) ⇒ (i) is IV.1.3.6.
(iii) ⇒ (v)(Outline): By replacing A by A/J , we may and will assume that
J = 0, to simplify notation. If π is a faithful non-type-I factor representation
of A on a separable Hilbert space and Z is a masa in π(A)′, the direct integral
decomposition of π as ∫ ⊕

X

πx dµ(x)

with respect to Z has almost all πx faithful and irreducible. If, for a set E of
nonzero measure, each πx for x ∈ E is equivalent to a fixed representation π0,
then ∫ ⊕

E

πx dµ(x)

is a subrepresentation of π equivalent to a multiple of π0, a contradiction.
Thus, for each x, the set

Ex = {y : πy ∼ πx}

has measure 0, so there must be uncountably many such sets.

IV.1.5.2 It remains to prove (ii) ⇒ (iii). This is a complicated technical
construction and will not even be outlined here. The rough idea is that in
any hereditary C*-subalgebra of an antiliminal C*-algebra can be found a
nonzero element x such that x∗x and xx∗ are orthogonal (II.6.4.14). A delicate
bisection process then leads to a sequence of carefully embedded approximate
matrix units; as a consequence, one gets:

IV.1.5.3 Theorem. Let A be an antiliminal C*-algebra. Then there is a
C*-subalgebra B of A, and a closed ideal I of B, such that B/I is isomorphic
to the CAR algebra (II.8.2.2(iv)).

IV.1.5.4 If A is separable, the C*-subalgebra B can be constructed in such
a way that if τ is the tracial state on B/I, regarded as a state on B (so that
πτ (B)′′ is a II1 factor), and τ is extended to a state φ on A, then πφ(A)′′ is
a Type II factor. The final conclusion of the construction is:

IV.1.5.5 Theorem. Let A be a separable antiliminal C*-algebra, and (Jn)
a decreasing sequence of essential ideals of A. Then there is a Type II factor
representation π of A, such that π|Jn

is nonzero for all n.
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IV.1.5.6 To finish the proof of IV.1.5.1, note that if A is separable and
primitive, then there is a decreasing sequence (Jn) of nonzero (not necessarily
proper) ideals, which are automatically essential, such that every nonzero ideal
of A contains Jn for some n; this is an immediate consequence of the fact that
Prim(A) is a second countable T0-space and 0 is a dense point.

We also obtain Glimm’s original theorem:

IV.1.5.7 Theorem. Let A be a separable C*-algebra. Then the following
are equivalent:

(i) A is internally Type I.
(ii) A is bidual Type I.
(iii) A is postliminal.
(iv) A is GCR.
(v) Whenever π and ρ are irreducible representations of A with the same

kernel, then π and ρ are equivalent (i.e. the map Â → Prim(A) of II.6.5.13
is a bijection).

Proof: (iii) ⇒ (iv) ⇒ (ii) by IV.1.3.8, (i) ⇒ (iii) by IV.1.3.2, (iv) ⇒ (v) by
IV.1.3.5 and IV.1.2.2, and (v) =⇒ (ii) is IV.1.5.1[(iii) =⇒ (v)] (cf. IV.1.1.3).
So we need only prove (ii) ⇒ (i). If A is not internally Type I, let B = A/I(A)
(IV.1.1.12); then B is antiliminal. Applying IV.1.5.5 to B with Jn = B for all
n, we obtain a type II factor representation of B, and therefore of A.

IV.1.5.8 Note that separability is used in this proof only for (iv) =⇒ (ii),
(v) =⇒ (ii), and (ii) =⇒ (i); the implications (i) =⇒ (iii) =⇒ (iv) =⇒ (v)
are true in general (IV.1.3.2, IV.1.3.8, IV.1.3.6, IV.1.3.7). Also, by IV.1.4.26
and IV.1.1.2, (iii) =⇒ (i) =⇒ (ii) in general (these implications were not
needed for the proof of IV.1.5.7). Using IV.1.5.3 and injectivity of the bidual
of the CAR algebra, S. Sakai has shown that any antiliminal C*-algebra has a
Type III factor representation, and hence (ii) =⇒ (i) also in the nonseparable
case. He then showed, using (i) =⇒ (ii), that (iv) =⇒ (ii) in general, and
hence (i)–(iv) are equivalent even for a nonseparable A. (See [Sak71, 4.6] for
a complete discussion.) However, (v) does not imply the other conditions in
the nonseparable case (IV.1.2.3).

The same technique can be used to give the following version of O.
Maréchal’s refinement [Mar75] of Glimm’s result:

IV.1.5.9 Theorem. Let A be a separable unital primitive antiliminal C*-
algebra. Then there is a unital sub-C*-algebra B of A and ideal J of B, such
that:

(i) B/J is isomorphic to the CAR algebra D (write φ : B → D for the
quotient map)
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(ii) For any cyclic representation π of D, there is a faithful cyclic representa-
tion ρ of A, and a projection

P ∈ ρ(B)′′ ∩ ρ(B)′

of central support 1 in ρ(A)′′, such that the subrepresentation ρ1 of ρ|B
defined by P is equivalent to π ◦ φ and ρ1(B)′′ = Pρ(A)′′P .

IV.1.5.10 Corollary. Let A be a separable C*-algebra and J a non-A-
GCR primitive ideal of A. If M is any properly infinite injective von Neumann
algebra (in particular, any infinite injective factor) with separable predual,
then there is a representation π of A with kernel J , such that π(A)′′ ∼= M .

IV.1.5.11 An important consequence of Glimm’s Theorem (use IV.1.5.8 for
the nonseparable case) is the nonobvious fact that a C*-subalgebra of a Type
I C*-algebra is Type I (IV.1.3.10).

Separable Type I C*-algebras can also be characterized in terms of the
Borel structure of the dual:

IV.1.5.12 Theorem. [Gli61] Let A be a separable C*-algebra. Then the
following are equivalent:

(i) A is Type I.
(ii) The Mackey Borel structure (II.6.5.16) on Â is the Borel structure gen-

erated by the topology of Â.
(iii) The Mackey Borel structure on Â is countably separated.
(iv) Â with the Mackey Borel structure is a standard Borel space.

Because of this theorem, Type I C*-algebras are sometimes called “smooth.”
Thus, if A is separable and Type I, Â has a simple structure as a Borel

space. On the other hand, if A is separable and not Type I, then Â is not
countably separated; this is the technical sense in which the representation
theory of a (separable) non-Type-I C*-algebra “cannot be understood.”

IV.1.6 Continuous Fields of C*-Algebras

The notion of a continuous field of C*-algebras is a topological analog of
measurable fields of Hilbert spaces and von Neumann algebras (III.1.6).

IV.1.6.1 Definition. Let T be a locally compact Hausdorff space. A con-
tinuous field of C*-algebras over T consists of the following data:

(i) a C*-algebra A(t) for each t ∈ T .
(ii) a set Γ of sections a : T →

∐
T A(t) satisfying:

(1) a(t) ∈ A(t) for all a ∈ Γ, t ∈ T .
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(2) [t �→ ‖a(t)‖] ∈ Co(T ) for all a ∈ Γ.
(3) Γ is closed under scalar multiplication and under pointwise sum, prod-

uct, and adjoint.
(4) For all t0 ∈ T and all x ∈ A(t0), there is an a ∈ Γ with a(t0) = x.
(5) Γ is closed under local uniform limits: if b : T →

∐
A(t) is a continuous

section vanishing at infinity, i.e. b(t) ∈ A(t) for all t and

[t �→ ‖b(t)‖] ∈ Co(T ),

and for each t0 ∈ T and ε > 0 there is a neighborhood U of t0 and an
a ∈ Γ with ‖a(t) − b(t)‖ < ε for all t ∈ U , then b ∈ Γ.

We usually want to assume that A(t) �= {0} for all t. Such a continuous field
will be called full.

IV.1.6.2 If (T, {A(t)},Γ) is a continuous field of C*-algebras, then Γ be-
comes a C*-algebra under the norm

‖a‖ = sup
t

‖a(t)‖(= max
t

‖a(t)‖).

This is called the C*-algebra of the continuous field. Note that the continuous
field contains more structure than simply the C*-algebra Γ – it also specifies
how Γ is fibered over T .

IV.1.6.3 Isomorphism of continuous fields of C*-algebras over the same
base space is defined in the obvious way: isomorphism of the C*-algebras of
the continuous fields via a map respecting the fibers.

IV.1.6.4 It follows easily from the local uniform closure of Γ that Γ is closed
under pointwise multiplication by Co(T ) (or even by bounded continuous
functions on T ): if a ∈ Γ and f ∈ Co(T ), and b(t) = f(t)a(t) for t ∈ T ,
then b ∈ Γ. Thus, if U is an open subset of X, the set of sections vanishing
outside U forms a continuous field over U , called the restriction of Γ to U ,
denoted Γ|U . The C*-algebra of this field can be naturally identified with
a closed ideal of Γ, denoted ΓU . Similarly, the restriction of Γ to a closed
subset Z of T is a continuous field over Z, denoted Γ|Z ; the corresponding
C*-algebra, denoted ΓZ , can be identified with the quotient Γ/ΓT\Z .

If Γ is a nonfull field over T , then

U = {t ∈ T : A(t) �= {0}}

is open in T , and Γ defines a full continuous field Γ|U over U which is isomor-
phic to Γ as a C*-algebra.

IV.1.6.5 The simplest example of a (full) continuous field over a space T
is obtained by taking A(t) = A for all t and Γ = Co(T,A), for some fixed
C*-algebra A; such a field is called a constant field. A trivial field is one which
is isomorphic to a constant field. A field over T is locally trivial if each t ∈ T
has a neighborhood U such that Γ|U is trivial.
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IV.1.6.6 Theorem. Let A be a C*-algebra with T = Prim(A) Hausdorff.
For J ∈ Prim(A), let A(J) = A/J . Let πJ : A → A/J be the quotient map.
For x ∈ A, let ax(J) = πJ(x), and let Γ = {ax : x ∈ A}. Then (T, {A(J)},Γ)
is a full continuous field of simple C*-algebras, and the C*-algebra of the
continuous field is naturally isomorphic to A.
Proof: The function J �→ ‖ax(J)‖ is just x̌, which is continuous by II.6.5.8.
The local completeness follows from II.6.5.12 and a partition of unity argu-
ment. The isomorphism of Γ with A is obvious.

This result has a significant generalization. If A is a unital C*-algebra,
with center Z, set T = Prim(Z) ∼= Ẑ. If π ∈ Â, then π|Z consists of scalars,
and hence is a multiple of an irreducible representation of Z. Thus there is
a well-defined surjective map ζ from Â to T , which drops to a map from
Prim(A) to T , also called ζ, defined by ζ(J) = J ∩ Z. It follows easily that ζ
is continuous and open. If t ∈ T , let Jt be the ideal of A generated by t, and
let A(t) = A/Jt, πt : A → A/Jt the quotient map. Then

IV.1.6.7 Theorem. [DH68]

(i) The map ζ is the complete regularization of Prim(A), i.e. every continuous
function from Prim(A) to a completely regular Hausdorff space factors
through ζ.

(ii) For x ∈ A, let ax(t) = πt(x), and let Γ = {ax : x ∈ A}. Then (T, {A(t)},Γ)
is a full continuous field of C*-algebras, and the C*-algebra of the contin-
uous field is naturally isomorphic to A.

This result is also called the “Dauns-Hoffman Theorem,” and is closely
related to II.6.5.10. There is a version for nonunital C*-algebras. See [DG83]
for a simplified proof.

Note that Jt is not a primitive ideal of A in general, so At is not simple
or even prime in general.

IV.1.6.8 Examples.

(i) Let T = N ∪ {∞} (or T = [0,∞]). For t < ∞, let

A1(t) = A2(t) = A3(t) = M2.

Set A1(∞) = A2(∞) = C, A3(∞) = C
2. Identify Ai(∞) with the C*-

subalgebra Ci of M2 (IV.1.1.9). Then, for i = 1, 2, 3, let

Ai = Γi = {f ∈ C(T, M2) : f(∞) ∈ Ai(∞)}.

If U = T \ {∞}, then Γi|U is trivial for each i; but obviously none of the
Γi are locally trivial at ∞.
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(ii) For i = 1, 2, 3, let B(t) = A(t) ⊗ K, with Bi(∞) regarded as the obvious
subalgebra of M2 ⊗ K ∼= M2(K), e.g.

B1(∞) =
{[

x 0
0 0

]

: x ∈ K

}

,

∆i the obvious variation of Γi. Then ∆3 is not locally trivial at infinity
since B3(∞) ∼= K

2 �∼= B(t) for t < ∞. The field ∆2 is also not locally
trivial at ∞ even though B2(t) ∼= K for all t, since it does not satisfy Fell’s
condition at ∞. However, ∆1 is a trivial continuous field (IV.1.7.22), as
is not difficult to see directly.

(iii) Let C(t) = C for t < ∞, C(∞) = M2. Regard C as C1 ⊆ M2, and let

Θ = {f ∈ C(T, M2) : f(t) ∈ C(t) for all t}.

Then (T, {C(t)}, Θ) is not a continuous field since it violates IV.1.6.1(ii)(4)
(C(∞) is “too large”).

IV.1.6.9 A continuous field over T is frequently specified by giving a gen-
erating set Γ0 of sections, satisfying

(1) a(t) ∈ A(t) for all a ∈ Γ0, t ∈ T
(2) [t �→ ‖a(t)‖] is continuous (but not necessarily vanishing at infinity) for

all a ∈ Γ0

(3) Γ0 is closed under scalar multiplication and under pointwise sum, product,
and adjoint

(4) For all t0 ∈ T , {a(t0) : a ∈ Γ0} is dense in A(t0).

The continuous field Γ then consists of all sections which vanish at infinity
and which are local uniform limits of sections in Γ0 (thus Γ0 is not a subset
of Γ in general if the sections in Γ0 do not vanish at infinity).

IV.1.6.10 Example. Let T = T ∼= [0, 1] with 0 and 1 identified, and A(θ)
the rotation algebra Aθ (II.8.3.3(i)), with generators u(θ), v(θ). Let Γ0 be the
*-algebra generated by the sections u and v. Then Γ0 obviously satisfies (1),
(3), and (4). Property (2) is not obvious, but may be proved as follows (cf.
[Ell82]). On L2(T2), let U(θ) be defined for all θ by

[U(θ)f ](z, w) = zf(z, w)

and let V (θ) be defined by

[V (θ)f ](z, w) = wf(e2πiθz, w).

Then U(θ) and V (θ) generate a C*-subalgebra of L(L2(T2)) isomorphic to
A(θ); and if p is a polynomial in four noncommuting variables, then

θ �→ p(U(θ), U(θ)∗, V (θ), V (θ)∗)
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is strong-* continuous since θ �→ U(θ) and θ �→ V (θ) are strong-* contin-
uous. Thus the norm of a section is lower semicontinuous. To show upper
semicontinuity, suppose θn → θ, and let

π :
∏

n

A(θn) → (
∏

n

A(θn))/(
⊕

n

A(θn))

be the quotient map, and ũ = π(
∏

u(θn)) and ṽ = π(
∏

v(θn)); then there is
a homomorphism φ : A(θ) → C∗(ũ, ṽ) with φ(u(θ)) = ũ, φ(v(θ)) = ṽ. Then,
if p is as above, we have

‖p(u(θ), u(θ)∗, v(θ), v(θ)∗)‖ ≥ ‖φ(p(u(θ), u(θ)∗, v(θ), v(θ)∗))‖

= ‖p(ũ, ũ∗, ṽ, ṽ∗)‖ = lim supn‖p(u(θn), u(θn)∗, v(θn), v(θn)∗)‖.
Thus the rotation algebras form a continuous field over T via the generated
field Γ. The C*-algebra of this field is the group C*-algebra C∗(G) of the
discrete Heisenberg group

G =









1 x z
0 1 y
0 0 1



 : x, y, z ∈ Z






which has a presentation

{u, v, w : uvu−1v−1 = w, uw = wu, vw = wv}

(u has x = 1, y = z = 0; v has y = 1, x = z = 0; and w has z = 1, x = y = 0).

IV.1.6.11 There is a theory of C*-bundles and Hilbert bundles (bundles
of Hilbert spaces), developed primarily by J.M.G. Fell [Fel69] and M. Dupré
[Dup74]; see [FD88a]–[FD88b] for a comprehensive treatment. The set of con-
tinuous sections of a C*-bundle is a continuous field of C*-algebras, and con-
versely. Hilbert bundles will be discussed in more detail in the next section.

IV.1.7 Structure of Continuous Trace C*-Algebras

In this section, we will give a classification up to Morita equivalence (and a
partial description up to isomorphism) of the continuous trace C*-algebras
over a base space T , in terms of a cohomological invariant in the (Čech) co-
homology group H3(T, Z) called the Dixmier-Douady invariant. The theory
works well only for paracompact spaces, so throughout this section we will
for the most part assume the base space is paracompact. The case of sep-
arable continuous trace C*-algebras (where the base space is automatically
paracompact) can be described more cleanly, and will be emphasized. There
are many technicalities, particularly bundle- and sheaf-theoretic ones, which
we will gloss over; a full treatment can be found in [RW98], to which we refer
for definitions of sheaf-theoretic terms.
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IV.1.7.1 Recall that a Hausdorff space T is paracompact if every open
cover of T has a locally finite refinement. Every regular (Hausdorff) space
which is metrizable or σ-compact is paracompact (see, for example, [Kel75]
or [Mun75]), and every paracompact space is normal.

Sheaf Cohomology

Suppose T is paracompact.

IV.1.7.2 The Dixmier-Douady invariant actually is naturally an element
of the sheaf cohomology group H2(T,S), where S is the sheaf of germs of
continuous functions from T to T. If R is the sheaf of germs of continuous
functions from T to R, and Z denotes the constant sheaf with stalk Z, then
there is a short exact sequence of sheaves

0 −→ Z ι−→ R exp−→ S −→ 0

where exp denotes exponentiation. The sheaf R is fine, and hence Hn(T,R) =
0 for all n. The long exact sequence of sheaf cohomology then yields a natural
isomorphism H2(T,S) → H3(T,Z) ∼= H3(T, Z).

IV.1.7.3 There is another similar identification. Let H be a separable,
infinite-dimensional Hilbert space, and U the sheaf of germs of continuous
functions from T to U(H) with the strong operator topology. Also, let A be
the sheaf of germs of continuous functions from T to Aut(K(H)) with the
point-norm topology. Since Aut(K(H)) ∼= U(H)/T as topological groups, we
have an exact sequence of sheaves

0 −→ S −→ U −→ A −→ 0

and since U(H) is contractible (I.3.2.10), the sheaf U is soft. If the sheaves U
and A were sheaves of abelian groups, one would then obtain from the long
exact sequence an isomorphism H1(T,A) → H2(T,S). In fact, even though
the stalks are nonabelian and thus H1(T,A) does not have a natural group
structure, and H2(T,U) is not even defined, such an isomorphism (bijection)
from H1(T,A) to H2(T,S) can be constructed in this setting in the same
manner as for sheaves of abelian groups.

Hilbert and C*-Bundles

IV.1.7.4 The connection between sheaf cohomology and homogeneous C*-
algebras is made via Hilbert bundles (IV.1.6.11). For our purposes, a Hilbert
bundle over a base space T (locally compact Hausdorff) is effectively the same
thing as a Hilbert Co(T )-module E : H(t) is obtained from E using the inner
product

〈ξ, η〉t = 〈ξ, η〉Co(T )(t),
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dividing out by vectors of length 0 (it is not hard to see that this inner product
space is already complete). Thus from the Stabilization Theorem we get that
if E is countably generated (e.g. if each H(t) is separable and T is σ-compact)
and full, then E∞ is a trivial bundle, isomorphic to H× T .

IV.1.7.5 If E is a Hilbert Co(T )-module, then there is a natural induced
Co(T )-module structure on K(E) (which, if E is full, coincides with the Dauns-
Hoffman module structure when Prim(K(E)) is identified with T ). If A is a C*-
algebra with a specified identification of Prim(A) with T , E is full, and φ is an
isomorphism of A with K(E), then E is an A−Co(T )-imprimitivity bimodule.
The map φ induces a homeomorphism of Prim(A) with Prim(K(E)) ∼= T ; if
this homeomorphism agrees with the specified identification of Prim(A) with
T , then E is called an A −T Co(T )-imprimitivity bimodule, and A is said to
be Morita equivalent to Co(T ) over T .

IV.1.7.6 If E ∼= (H(t)) is a Hilbert bundle over T , then there is a naturally
associated C*-bundle whose fiber at T is K(H(t)), and the continuous sections
form a continuous field of elementary C*-algebras over T .

IV.1.7.7 Proposition. The C*-algebra A of a continuous field of elemen-
tary C*-algebras arising from a (full) Hilbert bundle over T satisfies Fell’s
condition (IV.1.4.17), i.e. A is a continuous trace C*-algebra with Â ∼= T .
Proof: Let E be an A −T Co(T ) imprimitivity bimodule, t0 ∈ T , and p0 a
rank-one projection in A(t0). Let ξ0 ∈ H(t0) be a unit vector in the range
of p0, so that p0 = Θξ0,ξ0 . Let ξ ∈ E with ξ(t0) = ξ0; then 〈ξ, ξ〉Co(T ) is
nonzero in a neighborhood of t0, so multiplying ξ by an element f ∈ Co(T )
with f(t0) = 1 we may assume 〈ξ, ξ〉Co(T )(t) = 1 for all t in a neighborhood
U of t0. But then A〈ξ, ξ〉(t) = Θξ,ξ(t) is a rank-one projection in A(t) for all
t ∈ U .

The converse is not true (globally) in general, but there is a local version:

IV.1.7.8 Proposition. Let A be a continuous trace C*-algebra with T =
Â. Then for each t ∈ T there is a compact neighborhood Z of t such that AZ

is Morita equivalent to C(Z) over Z.
To prove this, use Fell’s condition to cover T with open sets Ui with com-

pact closures Zi such that AZi has a full global rank-one projection pi.
Conversely, if A is a C*-algebra with Â Hausdorff, and A is locally Morita

equivalent to commutative C*-algebras in this sense, then A has continuous
trace.

The Dixmier-Douady Invariant

Suppose A is a continuous-trace C*-algebra with T = Â paracompact. Choose
a locally finite cover of T by open sets Ui with compact closures Zi such that
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AZi has a full global rank-one projection pi. Let Ei be the AZi −T Co(T )-
imprimitivity bimodule AZipi, regarded as a Hilbert bundle over Zi. If Uij =
Ui ∩ Uj , then the identifications of K(Ej |Uij

) and K(Ei|Uij
) with AUij

give an
isometric isomorphism Ej |Uij

∼= Ei|Uij
, i.e. a unitary uij in L(Ej |Uij

, Ei|Uij
).

For any i, j, k, let
Uijk = Ui ∩ Uj ∩ Uk.

Then, in L(Ek|Uijk
), the unitary uikuijujk commutes with the left action of

AUijk
∼= K(Ek|Uijk

), and hence it is easily seen that it is “central,” multiplica-
tion by a continuous function νijk from Uijk to T. A straightforward argument
shows:

IV.1.7.9 Proposition.

(i) The functions {νijk} form an alternating 2-cocycle: for any i, j, k, l,

νijk = νjklνiklνijl

on Uijkl = Ui ∩ Uj ∩ Uk ∩ Ul, and νσ(i)σ(j)σ(k) = νεσ

ijk on Uijk for any
permutation σ (εσ is the sign of σ).

(ii) The class of {νijk} in H2(T,S) depends only on A and not on the choice
of the Ui or the identifications.

IV.1.7.10 Definition. The class of {νijk} in H2(T,S) ∼= H3(T, Z) is called
the Dixmier-Douady invariant of A, denoted δ(A).

IV.1.7.11 Theorem. Let A,B be continuous-trace C*-algebras with T ∼=
Â ∼= B̂ paracompact. Then A and B are Morita equivalent over T if and only
if δ(A) = δ(B).

IV.1.7.12 Every element of H3(T, Z) occurs as the Dixmier-Douady invari-
ant of a continuous trace C*-algebra with spectrum T (if T is paracompact).
For the isomorphism classes of locally trivial bundles over T with fiber K

and structure group Aut(K) are naturally parametrized by the elements of
H1(T,A). Each such bundle is a continuous field of C*-algebras, and the
C*-algebra of the continuous field is a continuous-trace C*-algebra called an
ℵ0-homogeneous C*-algebra over T . Once the set H1(T,A) is identified with
H2(T,S) ∼= H3(T, Z) as in IV.1.7.3, it is straightforward to verify that the
Dixmier-Douady invariant of the corresponding ℵ0-homogeneous C*-algebra
is the element of H1(T,A) corresponding to the bundle.

Functoriality

IV.1.7.13 Since H3(·, Z) is (contravariantly) functorial, one would expect
the Dixmier-Douady invariant to be (covariantly) functorial. There is, how-
ever, a serious complication: a homomorphism from A to B does not induce
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a continuous function from B̂ to Â in general, even in the unital case, since
local rank need not be preserved (IV.1.4.23). Even if the homomorphism pre-
serves rank in the sense of IV.1.4.24, it does not induce a continuous function
from B̂ to Â if A and B are nonunital (there is a proper continuous map
from an open subset of B̂ to Â in general if A and B have continuous trace).
One cannot just avoid the problem by adding a unit since the unitization of
a continuous-trace C*-algebra rarely has continuous trace.

IV.1.7.14 Proposition. Let A and B be continuous-trace C*-algebras
with Â, B̂ paracompact, and φ : A → B a *-homomorphism such that φ
induces a proper continuous map φ∗ : B̂ → Â, and hence a homomorphism

φ∗ : H3(Â, Z) → H3(B̂, Z).

Then φ∗(δ(A)) = δ(B).
This condition will always hold if Â and B̂ are compact and φ is rank-

preserving (i.e. sends abelian elements to abelian elements).
We can then rephrase IV.1.7.11 as:

IV.1.7.15 Theorem. Let A,B be separable continuous-trace C*-algebras.
Then A and B are Morita equivalent if and only if there is a homeomorphism
φ : Â → B̂ with φ∗(δ(A)) = δ(B).

IV.1.7.16 If A and B are ℵ0-homogeneous C*-algebras with Â ∼= B̂ ∼= T ,
then A and B are isomorphic over T if and only if δ(A) = δ(B). But it can
happen that A ∼= B even if δ(A) �= δ(B): in fact, A ∼= B if and only if there
is a homeomorphism φ : T → T with φ∗(δ(A)) = δ(B).

There is an interesting consequence. Suppose T is a closed orientable 3-
manifold. Then H3(T, Z) ∼= Z. If α is a generator, then a homeomorphism φ
of T sends α to −α if and only if φ is orientation-reversing. Thus, for exam-
ple, if T is S3 or T

3, the ℵ0-homogeneous C*-algebras over T with Dixmier-
Douady invariants ±α are isomorphic. But there is a closed orientable 3-
manifold M (a suitable lens space) with no orientation-reversing homeomor-
phism ([Jac80], [Bon83], [Lu88]); the ℵ0-homogeneous C*-algebras over M
with Dixmier-Douady invariants ±α are not isomorphic.

If A is a continuous-trace C*-algebra over T with Dixmier-Douady invari-
ant δ, then the opposite algebra Aop, obtained from A by reversing multiplica-
tion, is also a continuous-trace C*-algebra over T , and it is easily verified that
the Dixmier-Douady invariant of Aop is −δ. So if M and α are as above, and
A is the ℵ0-homogeneous C*-algebra over M with Dixmier-Douady invariant
α, then A is not isomorphic to Aop. This is perhaps the simplest example of
a C*-algebra which is not anti-isomorphic to itself. (See [Phi01a] for other in-
teresting examples along this line.) It is an important open question whether
there exists a separable simple nuclear C*-algebra not anti-isomorphic to itself.
(There are II1 factors with this property, and a separable simple nonnuclear
example can be constructed from these by the method of II.8.5; cf. [Phi04].)
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Separable Continuous-Trace C*-Algebras

If A is a separable continuous-trace C*-algebra, then Â is second countable
and thus paracompact. Combining IV.1.7.15 with the Brown-Green-Rieffel
theorem (II.7.6.11), we obtain:

IV.1.7.17 Theorem. Let A,B be separable continuous-trace C*-algebras.
Then A and B are stably isomorphic if and only if there is a homeomorphism
φ : Â → B̂ with φ∗(δ(A)) = δ(B).

IV.1.7.18 If A is a separable continuous-trace C*-algebra with T = Â,
let {Ui} be an open cover as in IV.1.7.8. The local imprimitivity bimodules
(Hilbert bundles) Ei are countably generated, with separable fibers, and by
II.7.6.12 E∞

i is trivial. Thus the corresponding open cover for A⊗K represents
A⊗K as a locally trivial bundle with fiber K, i.e. A⊗K is an ℵ0-homogeneous
C*-algebra. Thus we obtain:

IV.1.7.19 Theorem. The stable separable continuous-trace C*-algebras
are precisely the separable ℵ0-homogeneous C*-algebras.

IV.1.7.20 Of course, if A is a separable stable continuous-trace C*-algebra
(or, more generally, a separable stable liminal C*-algebra), then the quotient
of A by any primitive ideal must be isomorphic to K, i.e. the corresponding
bundle of elementary C*-algebras has fiber K everywhere. The converse (that
if A is a separable continuous-trace C*-algebra and each fiber is K, then A is
stable) is not quite true, since IV.1.7.19 gives an additional necessary condi-
tion: the bundle must be locally trivial. This is not automatic: for example, if
T is a countably infinite product of copies of S2, then there is a bundle over
T with fiber K, satisfying Fell’s condition, which is not locally trivial at any
point [DD63]. However, we have:

IV.1.7.21 Theorem. [DD63], [Dix69b, 10.8.8] Let T be a second countable
locally compact Hausdorff space of finite (covering) dimension. Then every
bundle over T , with fiber K, satisfying Fell’s condition, is locally trivial.

IV.1.7.22 Corollary. Let A be a separable continuous-trace C*-algebra
with Â finite-dimensional. Then the following are equivalent:

(i) A has no finite-dimensional irreducible representations.
(ii) A is ℵ0-homogeneous.
(iii) A is stable.

Finite Homogeneous C*-Algebras

A finite homogeneous C*-algebra has continuous trace (IV.1.4.14), and thus
has a Dixmier-Douady invariant (if the base space is paracompact). This sit-
uation is special:
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IV.1.7.23 Theorem. Let A be an n-homogeneous C*-algebra over a para-
compact space T . Then

(i) The corresponding bundle of elementary C*-algebras (Mn-bundle) is lo-
cally trivial.

(ii) The Dixmier-Douady invariant δ(A) is an n-torsion element of H3(T, Z).

IV.1.7.24 Conversely, if δ is an n-torsion element of H3(T, Z), then there
is a k-homogeneous C*-algebra A over T with δ(A) = δ, for some k (which
may be much larger than n) [Gro68, 1.7].

IV.1.7.25 If A is a continuous-trace C*-algebra over T (assumed compact),
and p is a full projection in A, then pAp is a unital continuous-trace C*-
algebra over T , hence (locally) homogeneous. Thus δ(A) must be a torsion
element. So we obtain:

IV.1.7.26 Corollary. Let A be a continuous-trace C*-algebra whose base
space T is connected and compact, and such that δ(A) is not a torsion element
of H3(T, Z). Then A contains no nonzero projections.

If A is any continuous-trace C*-algebra whose base space T is connected
and noncompact, then A can contain no nonzero projections by II.6.5.6.

Structure of Type I C*-Algebras

IV.1.7.27 If A is a separable stable continuous-trace C*-algebra, then by
IV.1.7.19 A is built up from algebras of the form Co(T, K) by extensions,
finitely many if Â is compact but transfinitely (although countably) many in
general.

Since every Type I C*-algebra has a composition series in which the succes-
sive quotients have continuous trace (IV.1.4.28), the same can be said for any
separable stable Type I C*-algebra. Thus every separable Type I C*-algebra
can be built up out of commutative C*-algebras by successive applications of
the following operations:

Stabilization (tensoring with K).
Cutting down to a corner.
Taking extensions, perhaps transfinitely (but countably) many.

IV.2 Classification of Injective Factors

One of the greatest achievements so far in the subject of operator algebras is
the complete classification of injective factors with separable predual: up to
isomorphism, the examples constructed in III.3.2.18 are the only ones. This
technical tour de force was mostly accomplished by A. Connes [Con76] (his
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Fields medal was primarily for this work), building on important previous
work by several authors, with the final case settled by U. Haagerup [Haa87].
Some of Connes’ arguments have been simplified, but the overall results re-
main very deep.

There are close connections and analogies with the theory of nuclear C*-
algebras (IV.3). The two theories developed somewhat in parallel, and ideas
from each were influential in the other.

It is far beyond the scope of this volume to give a complete treatment of
the theory of injective factors. We will only outline the main results, mostly
without proof. For a comprehensive treatment, see the volume by Takesaki
[Tak03a].

The results fall naturally into two parts:

(i) Proof that several natural classes of factors (injective, semidiscrete, ap-
proximately finite dimensional, amenable) coincide;

(ii) Explicit description of all injective factors.

Because of the importance of this class of algebras, the fact that it can
be characterized in several different ways has led to discussion of what name
should be generically used for it. Some leading experts (e.g. in [Con94]) have
advocated using “amenable,” with considerable merit. A similar discussion
has taken place in the C*-algebra setting, concerning the equally important
class characterized by various conditions equivalent to nuclearity (cf. IV.3),
where the term “amenable” has been proposed with equal merit. There are
two drawbacks to adopting “amenable” as a generic term in either or both
cases, however:

(1) The same ambiguity which occurs with the term “Type I” would arise,
since an amenable von Neumann algebra is not in general an amenable
C*-algebra. It thus seems preferable to use separate terms in the two
situations.

(2) Other terms have come to be commonly used, particularly in the C*-
algebra case where the term “nuclear” is nearly universal. Terminology
in the von Neumann setting is less firmly established, but the term “in-
jective” is the most common. The next most common term is probably
“hyperfinite,” but this term has its own drawbacks (III.3.4.1).

We have chosen to use the terms “injective” and “nuclear” generically for
these reasons. Of course, in discussing the equivalence of the characterizing
conditions, the various names will be used and separately defined.

The classes of injective von Neumann algebras and nuclear C*-algebras
are the most important classes of operator algebras, at least in the present
state of the subject.
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IV.2.1 Injective C*-Algebras

IV.2.1.1 Definition. A C*-algebra M is an injective C*-algebra if, when-
ever A is a C*-algebra, B a C*-subalgebra of A, and φ : B → M a com-
pletely positive contraction, then φ extends to a completely positive contrac-
tion ψ : A → M (i.e. M is an injective object in the category of C*-algebras
and completely positive contractions).

IV.2.1.2 Examples.

(i) For any H, L(H) is an injective C*-algebra by the Arveson extension
theorem (II.6.9.12). In particular, Mn is injective (more generally, any
finite-dimensional C*-algebra is injective).

(ii) Any product (in particular, a finite direct sum) of injective C*-algebras
is injective.

(iii) If N is a C*-subalgebra of M , M is injective, and there is a conditional
expectation θ (projection of norm 1; cf. II.6.10.2) from M onto N , then
N is injective [if B ⊆ A and φ : B → N ⊆ M , extend φ to ψ : A → M ;
then θ ◦ ψ : A → N is an extension of φ.] In particular, if M is injective
and p is a projection in M , then pMp is injective.

IV.2.1.3 There is a “converse” to (iii): if N is a C*-subalgebra of a C*-
algebra M , and N is injective, then the identity map from N to N extends
to a completely positive idempotent contraction from M to N ; thus there is
a conditional expectation from M onto N .

Combining this with (iii), we get:

IV.2.1.4 Proposition. Let M be a C*-algebra. Then the following are
equivalent:

(i) M is injective.
(ii) There is a faithful representation π of M on a Hilbert space H, such that

there is a conditional expectation from L(H) onto π(M).
(iii) For every faithful representation π of M on a Hilbert space H, there is a

conditional expectation from L(H) onto π(M).
(iv) Whenever M is a C*-subalgebra of a C*-algebra A, there is a conditional

expectation from A to M .

IV.2.1.5 Corollary. A matrix algebra over an injective C*-algebra is in-
jective.
Proof: If M ⊆ L(H) and θ : L(H) → M is a conditional expectation, so is

θ ⊗ id : L(H) ⊗ Mn
∼= L(Hn) → M ⊗ Mn

∼= Mn(M).
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IV.2.1.6 By an argument similar to IV.2.1.3, if X is an operator system
which is an injective object in the category of operator systems and completely
positive contractions (the existence of an identity in these operator systems is
not essential, i.e. one can work in the category of closed positively generated
*-subspaces of C*-algebras), embed X into a C*-algebra A and extend the
identity map on X to an idempotent completely positive contraction from A
onto X. Then X is completely order isomorphic to an (injective) C*-algebra by
II.6.10.11. Conversely, if M is an injective C*-algebra, and Y ⊆ X are operator
systems and φ : Y → M is a completely positive contraction, embed M into
L(H), extend φ to ω : X → L(H) by the Arveson Extension Theorem, and
compose with a conditional expectation from L(H) to M to get an extension
of φ to ψ : X → M . Thus the injective C*-algebras are also precisely the
injective objects in the larger category of operator systems and completely
positive contractions.

IV.2.1.7 Proposition. An injective C*-algebra is an AW*-algebra. An in-
jective C*-algebra which can be faithfully represented on a separable Hilbert
space, whose center is a von Neumann algebra (W*-algebra), is a von Neu-
mann algebra.
Proof: Let M be an injective C*-algebra, faithfully represented on a Hilbert
space H, and let θ be a conditional expectation from L(H) onto M . Let S be
a subset of M . The right annihilator of S in L(H) is pL(H) for a projection
p. We have xθ(p) = θ(xp) = 0 for all x ∈ S, and if y ∈ M is in the right
annihilator of S, we have py = y, so

y = θ(y) = θ(py) = θ(p)y.

Thus, taking y = θ(p), θ(p) is a projection in M ; and the right annihilator of
S in M is θ(p)M . So M is an AW*-algebra by III.1.8.2. The last statement
follows from III.1.8.6.

In particular, every injective C*-algebra is unital (this can be seen more
easily: if A is nonunital, there cannot be a conditional expectation from Ã to
A by II.6.10.5).

IV.2.1.8 There are injective C*-algebras which are not W*-algebras. For
example, every commutative AW*-algebra is injective (see IV.2.2.10 for the
W*-case). In fact, a commutative AW*-algebra is injective in the larger cat-
egory of Banach spaces and linear contractions ([Nac50], [Goo49], [Has58];
the converse is also true [Kel52], [Has58]. See also [Lac74, §11].) There are
even wild injective AW*-factors [Ham86] (but only on nonseparable Hilbert
spaces).

IV.2.2 Injective von Neumann Algebras

From now on, we consider only injective von Neumann algebras.
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Normal Conditional Expectations

IV.2.2.1 If M is an injective von Neumann algebra on H, it is not true in
general that there is a normal conditional expectation from L(H) onto M , as
the next result shows. This fact creates considerable technical difficulties in
the theory of injective von Neumann algebras.

A von Neumann algebra M is purely atomic if M contains a set {pi} of
minimal projections with

∑
pi = 1. Since a minimal projection is abelian, a

purely atomic von Neumann algebra is Type I. But many Type I von Neumann
algebras are not purely atomic: for example, L∞(X,µ) is purely atomic if and
only if µ is purely atomic. In fact, a von Neumann algebra is purely atomic
if and only if it is a product of Type I factors. It is easily seen that a von
Neumann algebra is purely atomic if and only if it has a purely atomic masa.

IV.2.2.2 Theorem. [Tom59] Let M be a von Neumann algebra on H. Then
there is a normal conditional expectation from L(H) onto M if and only if M
is purely atomic.
Proof: If M is purely atomic, then Z(M) is purely atomic. If {zi} is a
family of minimal projections in Z(M) with

∑
i zi = 1, for x ∈ L(H) define

ω(x) =
∑

i zixzi; then ω is a normal conditional expectation from L(H) onto
∏

ziL(H)zi =
∏

L(ziH).

Since Mzi is a Type I factor on ziH, there is a normal conditional expectation
θi from L(ziH) onto Mzi; then (

∏
θi) ◦ω is a normal conditional expectation

from L(H) onto M .
Conversely, suppose first that A is a commutative von Neumann algebra

on H which is not purely atomic. If {pi} is a maximal family of mutually
orthogonal minimal projections in A, set q = 1 −

∑
pi. If there is a normal

conditional expectation θ : L(H) → A, then θ restricts to a normal conditional
expectation from

qL(H)q = L(qH)

to qA. Thus, to obtain a contradiction, we may assume A has no minimal
projections. If γ is a character (pure state) of A, and p is a nonzero projection
in A, then p = q + r for nonzero projections q, r. Since γ(q), γ(r), and γ(p) =
γ(q) + γ(r) are each either 0 or 1, either γ(q) or γ(r) (or both) is 0, i.e. p
dominates a nonzero projection p′ with γ(p′) = 0. Let {qi} be a maximal set
of mutually orthogonal nonzero projections in A with γ(qi) = 0 for all i; then∑

qi = 1. If ψ is a normal positive linear functional on A with ψ ≤ γ, then

‖ψ‖ = ψ(1) =
∑

ψ(qi) ≤
∑

γ(qi) = 0.

Thus γ is a singular state on A, and hence γ ◦ θ is a singular state on L(H).
So if p is a rank-one projection in L(H), then γ(θ(p)) = 0 (III.2.1.12). This
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is true for all pure states γ of A, so θ(p) = 0. If {pi} is a maximal family of
mutually orthogonal minimal projections in L(H), then

1 = θ(1) =
∑

θ(pi) = 0,

a contradiction. Thus there is no normal conditional expectation from L(H)
onto A.

Now suppose M is a general von Neumann algebra on H, and suppose there
is a normal conditional expectation θ : L(H) → M . Then M is semifinite by
III.2.5.25. If q is a finite projection in M of central support 1, then as above
θ induces a normal conditional expectation from L(qH) onto qMq. If M is
not purely atomic, neither is qMq. Thus, to obtain a contradiction, we may
assume M is finite. If M is not purely atomic, then M has a masa A which is
not purely atomic. There is a normal conditional expectation ω : M → A by
III.4.7.8. But then ω ◦ θ is a normal conditional expectation from L(H) to A,
contradicting the previous paragraph.

An almost identical argument shows more generally:

IV.2.2.3 Theorem. Let N ⊆ M be von Neumann algebras. If there is a
normal conditional expectation from M to N , and M is purely atomic, then
N is purely atomic.

Thus, if (X,µ) is a measure space, then there is always a conditional
expectation from L(L2(X)) onto L∞(X), but there is a normal conditional
expectation (if and) only if µ is purely atomic. If M is not Type I, there
is never a normal conditional expectation from L(H) onto M . See III.4.7.7–
III.4.7.8 for conditions under which normal conditional expectations exist on
more general von Neumann algebras.

A simple consequence of IV.2.2.2 is useful:

IV.2.2.4 Corollary. Let N ⊆ M be von Neumann algebras, with N
finite-dimensional. Then there is a normal conditional expectation from M
onto N .

This also follows easily from IV.3.2.16, or from III.1.5.3 and III.2.2.6.

Amplifications and Commutants

We now show that the class of injective von Neumann algebras is closed under
amplifications and commutants.

IV.2.2.5 Proposition. Let N ⊆ M be von Neumann algebras on H, θ a
conditional expectation from M onto N , and let H′ be another Hilbert space.
Then there is a conditional expectation Θ from M⊗̄L(H′) onto N⊗̄L(H′)
such that

Θ(x ⊗ y) = θ(x) ⊗ y

for all x ∈ M , y ∈ L(H′).
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Proof: The result is immediate from III.2.2.5 if θ is normal, but θ is not
necessarily normal (and there need not be any normal conditional expectation
from M onto N). We thus argue as follows. Let {eij |i, j ∈ Ω} be a set of
matrix units in L(H′), and F the set of finite subsets of Ω. If F ∈ F , let
pF =

∑
i∈F eii. Then pFL(H′)pF is a finite-dimensional matrix algebra, and

there is a conditional expectation φF from

M⊗̄pFL(H′)pF = M � pFL(H′)pF

onto
N⊗̄pFL(H′)pF = N � pFL(H′)pF

defined by
φF (

∑
xn ⊗ yn) =

∑
θ(xn) ⊗ yn.

From this we get a conditional expectation ΘF from M⊗̄L(H′) to
N⊗̄pFL(H′)pF defined by

ΘF (x) = φF ((1 ⊗ pF )x(1 ⊗ pF )).

Now let ω be a Banach limit (I.3.2.4) on F in L(H ⊗ H′), and for each
x ∈ M⊗̄L(H′) set Θ(x) = limω ΘF (x). Then Θ is a map from M⊗̄L(H′) into
N⊗̄L(H′) with ‖Θ‖ ≤ 1; and if y ∈ N⊗̄L(H′), then

(1 ⊗ pF )y(1 ⊗ pF ) ∈ N⊗̄pFL(H′)pF

so
ΘF (y) = (1 ⊗ pF )y(1 ⊗ pF )

for all F , and hence

Θ(y) = lim
ω

((1 ⊗ pF )y(1 ⊗ pF )) = y

since (1⊗pF )y(1⊗pF ) → y weakly (in fact strongly). Thus Θ is a conditional
expectation by II.6.10.2. (It is easy to prove directly that Θ is completely
positive.)

IV.2.2.6 Corollary. Let M be an injective von Neumann algebra on H,
and let H′ be another Hilbert space. Then M⊗̄L(H′) is injective.

IV.2.2.7 Theorem. Let M be a von Neumann algebra on H. Then M is
injective if and only if M ′ is injective.
Proof: By III.2.2.8, IV.2.2.6, and the last sentence of IV.2.1.2(iii), if π and ρ
are faithful normal representations of M , then π(M)′ is injective if and only
if ρ(M)′ is injective. But if M is in standard form, it is obvious from Modular
Theory that M is injective if and only if M ′ is injective.
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IV.2.2.8 Proposition.

(i) Let M be a von Neumann algebra on H. If there is an increasing net (Mi)
of injective von Neumann subalgebras of M , with ∪Mi σ-weakly dense in
M , then M is injective.

(ii) If (Mi) is a decreasing net of injective von Neumann algebras on H, then
M = ∩Mi is injective.

The second part follows easily from the fact that the set of unital com-
pletely positive maps from L(H) to L(H) is compact in the point-σ-weak
topology: if θi is a conditional expectation from L(H) onto Mi, then any
point-σ-weak limit of the θi is a conditional expectation from L(H) onto M .
The first part cannot be quite proved the same way because the conditional
expectations are not necessarily normal; but (i) follows from (ii) and IV.2.2.7
since (∪Mi)′ = ∩M ′

i .

IV.2.2.9 Corollary. Every approximately finite dimensional (III.3.4.1)
von Neumann algebra is injective.

Since every Type I von Neumann algebra is approximately finite-dimen-
sional, we obtain:

IV.2.2.10 Corollary. Every Type I von Neumann algebra (in particular,
every commutative von Neumann algebra) is injective.

The next result is an immediate corollary of III.4.7.8:

IV.2.2.11 Corollary. If M is an injective countably decomposable finite
von Neumann algebra, and N is any von Neumann subalgebra of M , then N
is injective.

Since the hyperfinite II1 factor R is injective, any von Neumann subalgebra
of R is also injective.

By arguments similar to those in IV.2.2.8, one can show:

IV.2.2.12 Proposition. Let M be a von Neumann algebra on a separable
Hilbert space, with central decomposition

∫ ⊕
X

Mx dµ(x). Then M is injective
⇐⇒ Mx is injective for almost all x.

Thus the study of injective von Neumann algebras can be effectively re-
duced to studying injective factors.

Nuclearity and Injectivity

There is a close relationship between nuclearity and injectivity, the most el-
ementary part being the next result, which gives many examples of injective
von Neumann algebras. The argument in the proof is due to E. C. Lance
[Lan73].
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IV.2.2.13 Theorem. Let A be a quasinuclear C*-algebra (II.9.6.4). If π is
any representation of A, then π(A)′′ is injective. In particular, A∗∗ is injective.

Proof: Let π : A → L(H) be a representation. Then π extends to a repre-
sentation ρ of A ⊗max π(A)′ on H. We have

A ⊗max π(A)′ ⊆ A ⊗max L(H)

since A is quasinuclear, so ρ extends to a representation σ of Ã⊗maxL(H) on a
larger Hilbert space H′. If P is the projection from H′ onto H, and x ∈ L(H),
set θ(x) = Pσ(1⊗x)|H. Then θ(x) ∈ L(H), and since P and σ(1⊗x) commute
with σ(a ⊗ 1) for a ∈ A, it follows that θ(x) ∈ π(A)′; and θ : L(H) → π(A)′

is a conditional expectation. Apply IV.2.2.7.
The converse of this result also holds (IV.3.1.12); in fact, if A∗∗ is injective,

then A is nuclear (so a quasinuclear C*-algebra is nuclear.) This is, however,
a deep result.

Injectivity and Amenable Group Actions

The next result, a close analog of II.6.10.4(v), provides additional examples
of injective von Neumann algebras.

IV.2.2.14 Proposition. Let α be an action of a locally compact group G
on a von Neumann algebra M . If G is amenable, then there is a conditional
expectation from M onto MG(= Mα).
Proof: Let m be an invariant mean on Cb(G). If x ∈ M , φ ∈ M∗, set

θx(φ) = m(g �→ φ ◦ αg(x)).

Then θx ∈ (M∗)∗, hence corresponds to an element θ(x) ∈ M . It is easy to
check that θ(x) ∈ MG, and θ : M → MG is a projection of norm 1.

IV.2.2.15 Corollary. Let π be a representation of an amenable locally
compact group G. Then π(G)′ and π(G)′′ are injective. In particular, L(G) is
injective.

IV.2.2.16 Corollary. Let α be an action of a locally compact group G
on a von Neumann algebra N . If N is injective and G is amenable, then
M = N�̄αG is injective.
Proof: Let M (and hence N) act on H. Inside M is a canonical group G of
unitaries, isomorphic to G, normalizing N and inducing α. G also normalizes
N ′, hence defines an action of G on N ′; and M ′ = (N ′)G. The conditional
expectation of IV.2.2.14 from N ′ to (N ′)G can be composed with a conditional
expectation from L(H) onto N ′ to get a conditional expectation from L(H)
onto M ′.
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IV.2.2.17 Combining IV.2.2.16 with Takesaki Duality (III.3.2.8) and either
the continuous or discrete decomposition (III.4.8), if M is a von Neumann al-
gebra of Type III and N ∼= N0⊗̄L(H) is the associated von Neumann algebra
of Type II∞, where N0 is Type II1, then M is injective if and only if N0 is
injective. This fact is used to reduce the proof that injective implies approx-
imately finite dimensional to the II1 case (and, using IV.2.2.12, to the II1
factor case).

IV.2.2.18 It is not true in general that if an amenable group G acts on a
C*-algebra A, that there is a conditional expectation from A onto AG, even if
G = Z and A is commutative (an example similar to the one in II.6.10.5 can
be constructed).

Property P

IV.2.2.19 Injectivity for von Neumann algebras was first discussed in
[HT67] (cf. [Tom57]), where it was called Property E. An apparently stronger
property, related to the Dixmier property (III.2.5.16), had been previously
considered by J. T. Schwartz [Sch63] (cf. [Sak71, 4.4.14-4.4.21]):

IV.2.2.20 Definition. A von Neumann algebra M on a Hilbert space H
has Property P if, for every T ∈ L(H), the σ-weakly closed convex hull C(T )
of

{uTu∗ : u ∈ U(M)}
contains an element of M ′.

It is easily proved using III.2.2.8 that Property P is independent of the
way M is represented on H, and hence is an algebraic invariant of M . So by
modular theory M has Property P if and only if M ′ does.

Schwartz proved that if M has Property P , then M ′ is injective, using a
Banach limit type argument (one must choose in a linear fashion one element
from C(T )∩M ′ for each T ), and that if G is a discrete group, then L(G) has
property P if and only if G is amenable.

It is easily seen using II.6.10.4(iv) and the σ-weak compactness of the unit
ball of L(H) that an approximately finite dimensional von Neumann algebra
has Property P . It is not obvious that an injective von Neumann algebra has
Property P ; however, since an injective von Neumann algebra is approximately
finite dimensional, it turns out that Property P is equivalent to injectivity.

Hypertraces

IV.2.2.21 Definition. If M is a von Neumann algebra on a Hilbert space
H, a hypertrace for M is a state φ on L(H) with the property that φ(xy) =
φ(yx) for all x ∈ M , y ∈ L(H).
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If φ is a hypertrace for M , the restriction of φ to M is a tracial state on
M . Thus if M is a factor, it must be finite.

A hypertrace for M is not a normal state on L(H) in general, although
the restriction to M is normal if M is a factor. In fact, if M is a von Neumann
algebra with a normal hypertrace whose restriction to M is faithful, then M
must be purely atomic and hence Type I.

If M is a finite injective von Neumann algebra, then M has a hypertrace:
if θ : L(H) → M is a conditional expectation and τ a tracial state on M , then
τ ◦ θ is a hypertrace for M . The converse also turns out to be true for factors
[Con76], i.e.

IV.2.2.22 Theorem. A II1 factor M has a hypertrace if and only if it is
injective.

More generally, a von Neumann algebra M with a family of hypertraces
whose restrictions to M are a faithful normal family must be injective (and
finite).

IV.2.3 Normal Cross Norms.

If one or both factors in a tensor product are von Neumann algebras, there
are interesting norms besides the maximal and minimal ones:

IV.2.3.1 Definition. Let A and B be C*-algebras.

(i) If A is a von Neumann algebra, and x =
∑n

k=1 ak ⊗ bk ∈ A � B, set

‖x‖lnor = sup{‖
n∑

k=1

π(ak)ρ(bk)‖}

where π, ρ range over commuting representations of A and B with π
normal.

(ii) If B is a von Neumann algebra, and x =
∑n

k=1 ak ⊗ bk ∈ A � B, set

‖x‖rnor = sup{‖
n∑

k=1

π(ak)ρ(bk)‖}

where π, ρ range over commuting representations of A and B with ρ
normal.

(iii) If A and B are von Neumann algebras, and x =
∑n

k=1 ak ⊗ bk ∈ A � B,
set

‖x‖bin = sup{‖
n∑

k=1

π(ak)ρ(bk)‖}

where π, ρ range over commuting normal representations of A and B.
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Write A ⊗lnor B, A ⊗rnor B, A ⊗bin B for the completions with respect to
these norms (when defined); these are called the left normal, right normal,
and binormal tensor product of A and B respectively.

Caution: although the notation does not reflect it, as with ‖ · ‖max, the
norms ‖ · ‖lnor, etc., depend on the choice of the C*-algebras A and B, i.e. if
A ⊆ A1, B ⊆ B1, then the restriction of ‖ · ‖lnor on A1 � B1 to A � B is not
‖ · ‖lnor on A � B in general, and similarly for ‖ · ‖rnor, ‖ · ‖bin.

Note that if A and B are C*-algebras, the restriction of ‖·‖rnor on A�B∗∗

to A�B is ‖ · ‖max on A�B (and hence the restriction of ‖ · ‖max on A�B∗∗

to A � B is ‖ · ‖max on A � B); and if A is a von Neumann algebra, then the
restriction of ‖ · ‖bin on A � B∗∗ to A � B is ‖ · ‖lnor on A � B.

The next result is an immediate corollary of III.1.5.3.

IV.2.3.2 Proposition. If B is any C*-algebra, then ‖ · ‖lnor = ‖ · ‖min on
L(H) � B (and ‖ · ‖rnor = ‖ · ‖min on B � L(H)). If M is a von Neumann
algebra, then ‖ · ‖bin = ‖ · ‖min on M � L(H) (or L(H) � M).

There are normal versions of II.9.7.2 and II.9.7.3 (cf. III.2.2.4):

IV.2.3.3 Lemma. Under the hypotheses of II.9.7.2, if A and/or B is a von
Neumann algebra and φ and/or ψ is normal, then π and/or ρ can be chosen
to be normal.

IV.2.3.4 Corollary. Let A1, A2, B1, B2 be C*-algebras and φ : A1 → A2

and ψ : B1 → B2 completely positive contractions.

(i) If A1, A2 are von Neumann algebras and φ is normal, then the map φ⊗ψ
from A1 � B1 to A2 � B2 given by

(φ ⊗ ψ)
(∑

xi ⊗ yi

)
=
∑

φ(xi) ⊗ ψ(yi)

extends to a completely positive contraction, also denoted φ ⊗ ψ, from
A1 ⊗lnor B1 to A2 ⊗lnor B2.

(ii) If A1, A2, B1, B2 are von Neumann algebras and φ and ψ are normal,
then the map φ ⊗ ψ from A1 � B1 to A2 � B2 given by

(φ ⊗ ψ)
(∑

xi ⊗ yi

)
=
∑

φ(xi) ⊗ ψ(yi)

extends to a completely positive contraction, also denoted φ ⊗ ψ, from
A1 ⊗bin B1 to A2 ⊗bin B2.

IV.2.3.5 Note that if M is a von Neumann algebra on H, then there is
a *-homomorphism from M ⊗max M ′ onto C∗(M,M ′), which is injective on
M � M ′ if (and only if) M is a factor [MvN43], and hence an induced C*-
seminorm ‖ · ‖σ on M �M ′ (which is a norm if M is a factor). C∗(M,M ′) ∼=
M ⊗σ M ′. From III.2.2.8 it follows easily that:



362 IV Further Structure

IV.2.3.6 Proposition. If M is a factor, then ‖ · ‖σ = ‖ · ‖bin on M �M ′.
The proof of (ii) =⇒ (i) in the next proposition is a slight variation of

Lance’s argument in the proof of IV.2.2.13.

IV.2.3.7 Proposition. Let M be a von Neumann algebra on a Hilbert
space H. Then the following are equivalent:

(i) M is injective.
(ii) The restriction of ‖ · ‖max on M � L(H) to M � M ′ dominates ‖ · ‖σ.
(iii) The restriction of ‖ · ‖lnor on M � L(H) to M � M ′ dominates ‖ · ‖lnor.

Proof: (i) =⇒ (iii): Let θ : L(H) → M ′ be a conditional expectation. Then
there is a conditional expectation id⊗ θ from M ⊗lnor L(H) onto M ⊗lnor M ′

(IV.2.3.4) which is the identity on M �M ′. Since id⊗ θ is a contraction, the
result follows.
(iii) =⇒ (ii) is trivial since ‖ · ‖σ ≤ ‖ · ‖lnor on M � M ′.
(ii) =⇒ (i): Let ‖ · ‖µ be the restriction of ‖ · ‖max on M �L(H) to M � M ′,
i.e. M ⊗µ M ′ is the closure of M � M ′ in M ⊗max L(H). Then

∑
xk ⊗ yk �→

∑
xkyk

yields a representation of M�M ′ on H, which extends to a representation π of
M⊗µM ′ by assumption. Then π extends to a representation ρ of M⊗maxL(H)
on a larger Hilbert space H′. Let P be the projection from H′ onto H, and
define θ : L(H) → L(H) by θ(x) = Pρ(1 ⊗ x)|H. Then θ|M ′ is the identity;
and θ(L(H)) is contained in M ′ since, for x ∈ M , ρ(x ⊗ 1) commutes with P
and ρ(1 ⊗ L(H)), and Pρ(x ⊗ 1)|H = x. Thus θ is a conditional expectation
from L(H) onto M ′. The result then follows from IV.2.2.7.

IV.2.4 Semidiscrete Factors

IV.2.4.1 One could also consider the following natural conditions on a von
Neumann algebra M in addition to conditions (i)–(iii) of IV.2.3.7:

(iv) If B ⊆ B1 are C*-algebras, then the restriction of ‖ · ‖lnor on M � B1 to
M � B is ‖ · ‖lnor on M � B.

(v) If N ⊆ N1 are von Neumann algebras, then the restriction of ‖ · ‖bin on
M � N1 to M � N is ‖ · ‖bin on M � N .

But by IV.2.3.2, condition (v) (with N1 = L(H)) implies (hence is equivalent
to)

(vi) If N is any von Neumann algebra, then ‖ · ‖bin = ‖ · ‖min on M � N .

Applying (vi) to B∗∗, we obtain

(vii) If B is any C*-algebra, then ‖ · ‖lnor = ‖ · ‖min on M � B.
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Conversely, (vii) =⇒ (vi); also, (vii) implies (iv), which in turn implies (iii),
and thus (v) ⇐⇒ (vi) ⇐⇒ (vii) =⇒ (iv) =⇒ (iii) ⇐⇒ (ii) ⇐⇒ (i).

Condition (v) would follow easily from (i) as in the proof of (i) =⇒ (ii) if
there were a normal conditional expectation from L(H) onto M ′. But such a
conditional expectation does not exist in general (IV.2.2.1).

It turns out that all of these conditions (i)–(vii) are in fact equivalent
(IV.2.4.9).

Since, by IV.2.3.2, L(H) and, more generally, any Type I (discrete) von
Neumann algebra satisfies (v)–(vii), it is natural to make the following defin-
ition:

IV.2.4.2 Definition. Let M be a von Neumann algebra. M is semidiscrete
if the natural map M �M ′ → C∗(M,M ′) extends to a *-homomorphism from
M ⊗min M ′ onto C∗(M,M ′) (i.e. ‖ · ‖σ ≤ ‖ · ‖min on M � M ′).

If M is a factor, then M is semidiscrete if and only if ‖ · ‖bin = ‖ · ‖min

on M � M ′ by IV.2.3.6. Obviously, M is semidiscrete if and only if M ′ is
semidiscrete.

Semidiscrete von Neumann algebras were first studied by Effros and Lance
in [EL77]; the original definition was different but equivalent (IV.2.4.4(ii)).
We have chosen the above form of the definition because it fits our exposition
better and also better justifies the name “semidiscrete.”

IV.2.4.3 Definition. If X and Y are matrix ordered spaces (II.6.9.20) and
φ : X → Y is a completely positive contraction, then φ approximately factors
through matrix algebras (in a specified topology) if there are ni and completely
positive contractions

αi : X → Mni
, βi : Mni

→ Y

such that βi ◦ αi → φ in the specified topology.

IV.2.4.4 Theorem. Let M be a von Neumann algebra on H. The following
are equivalent:

(i) M is semidiscrete.
(ii) The identity map on M approximately factors through matrix alge-

bras in the point-σ-weak topology.
(iii) The identity map on M∗ approximately factors through matrix al-

gebras in the point-norm topology.
(iv) The identity map on M is a point-σ-weak limit of completely positive

finite-rank maps.
(iv′) The identity map on M∗ is a point-norm limit of completely positive

finite-rank maps.
(v)–(vii) Conditions (v)–(vii) of IV.2.4.1.
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Proof: (Outline) (iii) =⇒ (ii) by dualization (using M
∗
n
∼= Mn), and (ii) =⇒

(iii) by a simple convexity argument. Similarly, (iv) ⇐⇒ (iv′). (iii) =⇒ (i) by
an application of II.9.4.8, and (i) =⇒ (ii), although more complicated, is also
based on II.9.4.8. The implications (vi) =⇒ (i) =⇒ (vii) are obvious ((i) =⇒
(vii) uses observation IV.2.4.5(i)).

IV.2.4.5 The following are simple corollaries of IV.2.4.4:

(i) The property of being semidiscrete is an algebraic property of M and
independent of the way M is represented as a von Neumann algebra.

(ii) A semidiscrete von Neumann algebra is injective.
(iii) If N ⊆ M are von Neumann algebras, M is semidiscrete, and there is a

normal conditional expectation of M onto N , then N is semidiscrete. In
particular, if M is semidiscrete and p is a projection in M , then pMp is
semidiscrete.

(iv) M⊗̄N is semidiscrete if and only if both M and N are semidiscrete.
(v)

∏
Mi is semidiscrete if and only if each Mi is semidiscrete.

IV.2.4.6 Generalizing (v), if M is a von Neumann algebra on a separable
Hilbert space, with central decomposition

∫ ⊕
X

Mx dµ(x), then M is semidis-
crete ⇐⇒ Mx is semidiscrete for almost all x. A direct proof is possible, but
messy: cf. [CE76b]. This result was originally needed (along with additional
arguments to handle the nonseparable case [CE77b]) to extend Connes’ equiv-
alence of injectivity and semidiscreteness for factors to general von Neumann
algebras, but there is now a direct proof of this equivalence (IV.2.4.9).

IV.2.4.7 It is not obvious that approximately finite dimensional von Neu-
mann algebras are semidiscrete. An argument which almost shows this, but
not quite, is to let (Mi) be an increasing net of finite-dimensional unital sub-
algebras of M with σ-weakly dense union; then there is a normal conditional
expectation θi : M → Mi (IV.2.2.4), which is a unital finite-rank completely
positive map from M to M . But it is not necessarily true that θi → id in
the point-σ-weak topology: if θ is a point-σ-weak limit of the θi, then θ is the
identity on the σ-weakly dense set ∪Mi; but θ is not normal in general.

This argument can be made to work for M finite:

IV.2.4.8 Proposition. The hyperfinite factor R is semidiscrete.
Proof: This follows almost immediately from II.6.10.7: if R = [∪Mk]− with
Mk a unital matrix subalgebra, and τ is the tracial state on R, then there is a
unique conditional expectation θk from R onto Mk commuting with τ , given
by orthogonal projection from L2(R, τ) onto the finite-dimensional subspace
L2(Mk, τ) [R ∼= Mk⊗(M ′

k∩R) respecting τ .] As maps from R to R, θk → idR
in the point-2-norm topology and hence in the point-σ-weak topology.

It follows that any approximately finite-dimensional von Neumann algebra
with separable predual is semidiscrete. The result reduces to the factor case
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by IV.2.4.6. The finite factor case is IV.2.4.8, and the semifinite case follows
from IV.2.4.5(iv). The result for the Type III case can then be obtained in-
directly using the discrete or continuous decomposition (III.4.8). This result
is subsumed in the next very important theorem, whose proof has the same
general outline (cf. [Tak03b, XV.3.1]):

IV.2.4.9 Theorem. ([Was77], [Con79]) Every injective von Neumann alge-
bra is semidiscrete. Thus a von Neumann algebra is semidiscrete if and only if
it is injective, and conditions (i)–(vii) of IV.2.3.7 and IV.2.4.1 are equivalent.

This result, while not easy, is not nearly as difficult as the equivalence of
approximate finite dimensionality with injectivity and semidiscreteness.

IV.2.5 Amenable von Neumann Algebras

Amenability for von Neumann algebras is defined in analogy with the notion of
C*-amenability, which is discussed in detail in IV.3.3. If M is a von Neumann
algebra and X ∗ is a dual Banach M -module, then X ∗ is said to be normal if
a �→ aφ and a �→ φa are continuous maps from M with the σ-weak topology
to X ∗ with the weak-* topology, for every φ ∈ X ∗.

IV.2.5.1 Definition. A von Neumann algebra M is amenable if every
(bounded) derivation from M into a dual normal Banach M -module is in-
ner.

The next result gives a connection with amenable groups and helps moti-
vate the term “amenable” for von Neumann algebras, and also gives half of
the equivalence between amenability and the other equivalent conditions of
this section. This result is due to B. Johnson, R. Kadison, and J. Ringrose
[JKR72] (cf. [KR97b, 12.4.38]).

IV.2.5.2 Theorem. Let M be a von Neumann algebra. If there is a sub-
group G of U(M) which is amenable as a discrete group, with G′′ = M , then
M is amenable.

For the proof, suppose X is a Banach M -module with X ∗ normal, and
δ : M → X ∗ a derivation. For x ∈ X , define fx ∈ l∞(G) by

fx(u) = [u∗δ(u)](x)

and φ ∈ X ∗ by φ(x) = m(fx), where m is an invariant mean on G. Then
δ(a) = φa − aφ for all a ∈ M . (There are some nontrivial details to be
checked.)

IV.2.5.3 Corollary. An approximately finite dimensional von Neumann
algebra with separable predual is amenable.
Proof: If A is a finite-dimensional C*-algebra with a fixed set of matrix units,
then the group of unitaries in A which are linear combinations of matrix units
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with coefficients 0, 1, or −1, form a finite group which generates A. If A is
contained in a larger finite-dimensional C*-algebra B, then a set of matrix
units for B can be found for which each of the matrix units for A is a sum of
matrix units for B; thus the generating finite group for A can be expanded to
a finite generating group for B. By repeating the process, any approximately
finite-dimensional von Neumann algebra with separable predual is generated
by a locally finite group of unitaries, which is amenable.

Using the argument of the proof and the deep fact that an amenable von
Neumann algebra is approximately finite dimensional, the converse of IV.2.5.2
is true: every amenable von Neumann algebra (with separable predual) is
generated by an amenable group of unitaries. (See [dlH79] and [Pat92] for
related results.)

The “converse” to IV.2.5.3, that an amenable von Neumann algebra is
injective, was proved by Connes [Con78] using a virtual diagonal argument
(cf. IV.3.3.2). This argument was simplified and placed in a more natural
context in [Eff88]. We outline a more elementary argument due to J. Bunce
and W. Paschke [BP78].

IV.2.5.4 Theorem. An amenable von Neumann algebra is injective.
To prove this, let M be an amenable von Neumann algebra on H. We

construct a bounded idempotent map ψ : L(H) → M ′ such that ψ(axb) =
aψ(x)b for all a, b ∈ M ′, x ∈ L(H). The map ψ is not quite a conditional
expectation since it may not have norm 1 (it is not necessarily positive),
but a conditional expectation can be made from ψ by a polar decomposition
argument.

Let X be the projective tensor product L(H)⊗̂L(H)∗ (II.9.2.4). X is a
Banach L(H)-module, and hence a Banach M -module, via a(x⊗φ) = x⊗aφ,
(x ⊗ φ)a = x ⊗ φa. The dual X ∗ is isometrically isomorphic to L(L(H)) via

T ∈ L(L(H)) ↔ (x ⊗ φ �→ φ(T (x))

and the M -actions become [aT ](x) = T (x)a, [Ta](x) = aT (x). Using the char-
acterization of III.2.1.4(i), it is straightforward to show that X ∗ is a normal
L(H)-module (hence a dual normal M -module).

Let
Y∗ = {T ∈ L(L(H)) : T (xc) = T (x)c, T (cx) = cT (x),

T (c) = 0 for all x ∈ L(H), c ∈ M ′}.
Then Y∗ is a weak-* closed submodule of X ∗, and is the dual of Y = X/Z,
where Z ⊆ X is the submodule spanned by

{xc ⊗ φ − x ⊗ cφ, cx ⊗ φ − x ⊗ φc, c ⊗ φ : c ∈ M ′, φ ∈ L(H)∗}.

The derivation δ : M → X ∗ defined by δ(a)T = aT − Ta, maps M into Y∗,
which is a dual normal M -module; hence there is an S ∈ Y∗ with δ(a) =
aS − Sa. Set ψ = I − S.
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IV.2.6 Approximate Finite Dimensionality

The deepest result in the theory of injective von Neumann algebras is:

IV.2.6.1 Theorem. Every injective von Neumann algebra with separable
predual is approximately finite dimensional.

Combining this with IV.2.2.9, IV.2.4.5(ii), IV.2.4.9, IV.2.5.3, and IV.2.5.4,
we obtain:

IV.2.6.2 Corollary. Let M be a von Neumann algebra with separable
predual. The following are equivalent:

(i) M is approximately finite dimensional.
(ii) M is injective.
(iii) M is semidiscrete.
(iv) M is an amenable von Neumann algebra.

IV.2.6.3 Theorem IV.2.6.1 was proved by Connes in [Con76]. The proof
was enormously complicated, and contained many important ideas. Connes’
proof concentrated on the II1 case, deducing the properly infinite case from it
by standard arguments. U. Haagerup [Haa85] gave a much simpler argument,
including a relatively easy direct proof of the properly infinite case. Then S.
Popa [Pop86] gave an alternate simplified argument for the II1 case, which
is still the most difficult of the cases. These arguments are given in detail in
[Tak03b].

IV.2.7 Invariants and the Classification of Injective Factors

The first classification consequence of the theorem of the last section is the
uniqueness of the injective II1 factor, using III.3.4.3:

IV.2.7.1 Corollary. Every injective II1 factor with separable predual is
isomorphic to R (III.3.1.4).

IV.2.7.2 One of the main long-standing open questions of the subject, which
motivated much of the early work on classification, was whether the approxi-
mately finite dimensional II∞ factor is unique, i.e. whether R0,1 = R⊗̄L(H)
(III.3.1.6) is the only one. If M is an injective II∞ factor with separable pre-
dual, and p is a nonzero finite projection in M , then

M ∼= pMp⊗̄L(H).

Since pMp is an injective II1 factor, the uniqueness follows from the previous
result.
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IV.2.7.3 Corollary. Every injective II∞ factor with separable predual is
isomorphic to R0,1.

Classification of injective Type III factors requires a detailed study of the
automorphism group of R and of R0,1. Connes carried out much of the nec-
essary analysis as part of his proof of IV.2.6.1. U. Haagerup [Haa87] finished
the III1 case. The intricate details are found in [Tak03b]; we only state the
deceptively simple conclusion.

IV.2.7.4 Theorem. Every injective factor with separable predual is a
Krieger factor (III.3.2.18). For 0 < λ ≤ 1, there is a unique injective Type IIIλ
factor with separable predual, the Powers factor Rλ (III.3.1.7) if 0 < λ < 1
and the factor R∞ (III.3.1.13(iv)-(vi)) if λ = 1. There are uncountably many
injective Type III0 factors with separable predual, classified by ergodic flows
(III.3.2.19).

IV.3 Nuclear and Exact C*-Algebras

In this section, we will give a detailed description of nuclear and exact C*-
algebras, and several important alternate characterizations of each class.
Roughly speaking, the nuclear C*-algebras turn out to be the C*-algebras
which are “approximately finite dimensional” in an appropriate order-theoretic
sense; there is a close analogy, and an intimate connection, with the theory
of injective von Neumann algebras (IV.2). See the introduction to IV.2 for a
discussion of terminology for the class of nuclear C*-algebras.

IV.3.1 Nuclear C*-Algebras

Recall (II.9.4) that a C*-algebra A is nuclear if ‖ ·‖max = ‖ ·‖min on A�B for
every C*-algebra B. The class of nuclear C*-algebras contains all commuta-
tive C*-algebras (II.9.4.4) and finite-dimensional C*-algebras (II.9.4.2), and
is closed under inductive limits (the case of injective connecting maps is ele-
mentary, but the general case is rather delicate (cf. IV.3.1.13)) and (minimal)
tensor products; in fact:

IV.3.1.1 Proposition. Let A and B be C*-algebras. Then A ⊗min B is
nuclear if and only if both A and B are nuclear.

For the proof, note that if B is nonnuclear and C is a C*-algebra for which
‖ · ‖max �= ‖ · ‖min on B � C, the natural homomorphism

(A⊗minB)⊗maxC →A⊗min(B⊗maxC)→A⊗min(B⊗minC)∼= (A⊗minB)⊗minC

has nontrivial kernel, so A ⊗min B is nonnuclear. Conversely, if A and B are
nuclear and C is any C*-algebra, then
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(A ⊗min B) ⊗max C ∼= (A ⊗max B) ⊗max C ∼= A ⊗max (B ⊗max C)

∼= A ⊗max (B ⊗min C) ∼= A ⊗min (B ⊗min C) ∼= (A ⊗min B) ⊗min C.

As a corollary, since K is nuclear, the class of nuclear C*-algebras is closed
under stable isomorphism.

IV.3.1.2 A closed ideal in a nuclear C*-algebra is nuclear (II.9.6.3); in fact,
a hereditary C*-subalgebra of a nuclear C*-algebra is nuclear (in the separable
case, every hereditary C*-subalgebra of A is stably isomorphic to the closed
ideal of A it generates; see IV.3.1.14 for the general case). The class of nuclear
C*-algebras is closed under extensions:

IV.3.1.3 Proposition. Let A be a C*-algebra and J a closed ideal in A.
If J and A/J are nuclear, then A is nuclear.
Proof: Let B be a C*-algebra. Consider the following diagram:

0 −−−−→ J ⊗max B −−−−→ A ⊗max B −−−−→ (A/J) ⊗max B −−−−→ 0


)πJ



)πA



)πA/J

0 −−−−→ J ⊗min B −−−−→ A ⊗min B −−−−→ (A/J) ⊗min B −−−−→ 0

where πC (C = J,A,A/J) denotes the quotient map from C ⊗max B to
C⊗minB. The diagram commutes, and the top row is exact (cf. II.9.6.6). Also,

(A � B)/(J � B) ∼= (A/J) � B,

and the quotient of ‖ · ‖min on A�B defines a C*-norm on (A/J)�B which
is the minimal cross norm on (A/J) � B because A/J is nuclear. Thus the
bottom row is also exact. Since πJ and πA/J are isomorphisms, πA is also an
isomorphism by the Five Lemma.

It follows that every Type I C*-algebra is nuclear, since every stable Type
I C*-algebra is built up from commutative C*-algebras by stabilization, ex-
tensions, and inductive limits (IV.1.7.27). (A more direct proof that Type I
C*-algebras are nuclear is to note that if A is Type I, then A∗∗ is semidiscrete
(cf. IV.3.1.12)).

It is also true that any quotient of a nuclear C*-algebra is nuclear, but
this is a surprisingly delicate result (IV.3.1.13). However, a C*-subalgebra of
a nuclear C*-algebra is not nuclear in general (IV.3.5.7).

Factorization Through Matrix Algebras

Nuclearity turns out to be characterized by the existence of completely posi-
tive finite-rank approximations of the identity (cf. II.9.4.9).



370 IV Further Structure

IV.3.1.4 Definition. If A and B are C*-algebras, a completely positive
contraction φ : A → B is nuclear if φ approximately factors through matrix
algebras in the point-norm topology (IV.2.4.3), i.e. if, for any x1, . . . , xk ∈ A
and ε > 0, there is an n and completely positive contractions

α : A → Mn, β : Mn → A

such that ‖xj − β ◦ α(xj)‖ < ε for 1 ≤ j ≤ k.

The Main Theorem

The principal theorem of the theory of nuclear C*-algebras is a combination
of several deep results:

IV.3.1.5 Theorem. Let A be a C*-algebra. The following are equivalent:

(i) A is nuclear.
(ii) The identity map on A is nuclear.
(iii) The identity map on A is a point-norm limit of completely positive finite-

rank contractions.
(iv) A∗∗ is injective.
(v) A is C*-amenable (IV.3.3).

IV.3.1.5 shows that the nuclear C*-algebras form an extremely natural
and well-behaved class; further evidence comes from the results in IV.3.5
about group C*-algebras and crossed products. Nuclear C*-algebras also have
additional nice structure properties; perhaps the most important of these is
the Choi-Effros Lifting Theorem (IV.3.2.4).

We now outline the proof of the equivalence of IV.3.1.5(i)–(iv). The equiv-
alence of (v) with the other conditions will be discussed in IV.3.3.

We first describe the equivalence between IV.3.1.5(i), (ii), and (iii). Re-
call that the equivalence between (i), (vii), and (viii) of the next lemma was
II.9.4.9.

IV.3.1.6 Lemma. Let A be a C*-algebra. The following are equivalent:

(i) A is nuclear.
(ii) The identity map on A is nuclear.
(iii) The identity map on A is a point-norm limit of completely positive

finite-rank contractions.
(iv) The identity map on A∗ approximately factors through matrix algebras

in the point-weak-* topology (IV.2.4.3).
(v) The identity map on A∗ is a point-weak-* limit of completely positive

finite-rank contractions.
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(vi) For any C*-algebra B, any completely positive contraction from A to
B∗ approximately factors through matrix algebras in the point-weak-*
topology.

(vii) For any C*-algebra B, any completely positive contraction from A to B∗

is a point-weak-* limit of completely positive finite-rank contractions.
(viii) For any C*-algebra B, any completely positive contraction from B to A∗

is a point-weak-* limit of completely positive finite-rank contractions.

For the proof, note first that (ii) =⇒ (iii), (iv) =⇒ (v), and (vi) =⇒ (vii)
are trivial, (v) =⇒ (viii) is virtually trivial, and (ii) =⇒ (iv) and (iii) =⇒
(v) are simple dualizations using the fact that M

∗
n
∼= Mn as matrix-ordered

spaces. (And (i) ⇐⇒ (vii) ⇐⇒ (viii) is II.9.4.9.)
The implication (i) =⇒ (vi) [in fact, (i) ⇐⇒ (vi) ⇐⇒ (vii)] was shown in

[CE78] by showing that every map of the form Tφ as in II.9.3.7 exactly factors
through a matrix algebra. The argument is nontrivial, but not difficult.

The remaining and most difficult implication is (i) =⇒ (ii). This was
proved independently in [CE78] and [Kir77a]; both proofs are straightfor-
ward in broad outline, but with subtle technicalities. The idea of the proof (cf.
[Lan82]) of [CE78], once (i) =⇒ (vi) was established, is to consider a (faithful)
representation π of A on H with a cyclic vector ξ of norm 1. Then, identify-
ing A with π(A), there is a completely positive contraction φ : A′′ → (A′)∗

given by [φ(x)](y) = 〈xyξ, ξ〉, which is injective since ξ is separating for A′.
Composing with the embedding of A into A′′ gives a completely positive con-
traction ψ : A → (A′)∗, which approximately factors through matrix algebras
in the weak-* topology by (vi). A perturbation argument (to make the range
of β contained in the range of φ) shows that the embedding of A into A′′

approximately factors through matrix algebras in the point-σ-weak topology.
The same is true for direct sums of cyclic representations, hence for the uni-
versal representation, so the embedding of A into A∗∗ approximately factors
through matrix algebras in the point-σ-weak topology. An application of the
Kaplansky Density Theorem (to make the range of β contained in A) and
a convexity argument (to obtain point-norm approximation) then show that
the identity map on A is nuclear.

IV.3.1.7 Conditions (ii)–(v) of IV.3.1.6 are collectively called the completely
positive approximation property or CPAP (this term has been used in the liter-
ature for various of the conditions, although logically it should most naturally
mean (iii)). A C*-algebra with the CPAP has the metric approximation prop-
erty of Banach space theory (see e.g. [LT77]); but there exist C*-algebras with
the metric approximation property (e.g. C∗(F2) [Haa79]) which do not have
the CPAP. (There are also C*-algebras which fail to have the metric approx-
imation property, e.g. L(H) [Sza81]; a separable example can be constructed
from this as in II.8.5.)

A simple but interesting consequence of the CPAP is the fact that nuclear
C*-algebras are “approximately injective:”
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IV.3.1.8 Proposition. Let D be a nuclear C*-algebra, A a C*-algebra, B
a C*-subalgebra of A, and φ : B → D a completely positive contraction. Then
there is a net (ψi) of completely positive contractions from A to D such that
ψi(x) → φ(x) for all x ∈ B (i.e. ψi|B → φ in the point-norm topology). The
ψi can be chosen to be of finite rank. In particular, if D ⊆ A, there is a net
(ψi) of (finite-rank) completely positive contractions from A to D such that
ψi(x) → x for all x ∈ D.
Proof: Choose completely positive contractions

αi : D → Mki
, βi : Mki

→ D

such that βi ◦αi → idD in the point-norm topology. Using injectivity of Mki
,

extend αi ◦ φ : B → Mki
to γi : A → Mki

, and set ψi = βi ◦ γi. The last
statement is the case B = D, φ = idD.

Using the tensor product definition of nuclearity, it is not obvious how
to show that nuclearity is an (SI) property (II.8.5.1), since it is not clear
that there are countably many “test algebras” to tensor with to check the
nuclearity of a separable C*-algebra. But using the CPAP characterization of
nuclearity, the proof is routine:

IV.3.1.9 Proposition. Nuclearity is an (SI) property.
Proof: Part (ii) of the definition (II.8.5.1) is satisfied by II.9.6.5. For part
(i), let A be a nuclear C*-algebra and B a separable C*-subalgebra. Let
{x1, x2, . . . } be a countable dense set in B. For each k ∈ N, let ψ1,k : A → A
be a finite-rank cp-contraction such that

‖xi − ψ1,k(xi)‖ ≤ 1
k

for 1 ≤ i ≤ k. If {y1, . . . , ym} ⊆ B and ε > 0, there is a k such that

‖yi − ψ1,k(yi)‖ < ε

for 1 ≤ i ≤ m. Let �1 be the C*-subalgebra of A generated by B and
∪kψ1,k(A). Since ψ1,k(A) is finite-dimensional for all k, �1 is separable. Re-
peat the construction with �1 in place of B to obtain ψ2,k : A → A, and let
�2 be the C*-subalgebra of A generated by �1 and ∪kψ2,k(A). Iterate the
construction to get an increasing sequence (�j) and maps ψj,k : A → A. Set
B = [∪�j ]−. Then B is separable. If {z1, . . . , zm} ⊆ B and ε > 0, choose j
and {y1, . . . , ym} ⊆ �j−1 with

‖yi − zi‖ < ε/3

for 1 ≤ i ≤ m. Then there is a k such that

‖yi − ψj,k(yi)‖ < ε/3

for 1 ≤ i ≤ m. Since the range of ψj,k is contained in �j , ψj,k(B) ⊆ B.
Thus, if φ = ψj,k|B, then φ is a finite-rank cp-contraction from B to B, and
‖zi − φ(zi)‖ < ε for 1 ≤ i ≤ m. Thus B is nuclear by IV.3.1.5(iii).
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IV.3.1.10 Corollary. Every nuclear C*-algebra is an inductive limit of a
system (with injective connecting maps) of separable nuclear C*-algebras.

IV.3.1.11 If A is a nuclear C*-algebra, it is interesting to consider the condi-
tions under which the maps α and β approximating the identity map through
a matrix algebra can be chosen to be almost multiplicative (on finite sets). It
is not hard to show that if the map β can be chosen almost multiplicative (in
a suitable sense), then A must be an AF algebra. It is much more interesting
to examine when the α can be chosen almost multiplicative. This cannot al-
ways be done, since there are infinite nuclear C*-algebras such as the Toeplitz
algebra (or the Cuntz algebras). We will return to this question in V.4.3.9.

Nuclearity and the Second Dual

We now turn to the equivalence of IV.3.1.5(i) and (iv). This crucial conse-
quence of IV.2.4.9 for C*-algebras was obtained by Choi and Effros [CE77b]
(some additional argument was needed for the nonseparable case):

IV.3.1.12 Theorem. Let A be a C*-algebra. The following are equivalent:

(i) A is nuclear.
(ii) A is quasinuclear (II.9.6.4).
(iii) A∗∗ is semidiscrete (IV.2.4.2).
(iv) A∗∗ is injective.

We have that (i) =⇒ (ii) is trivial, (ii) =⇒ (iv) is IV.2.2.13, and (iv)
=⇒ (iii) is IV.2.4.9. The implication (iii) =⇒ (i) follows from comparing
IV.2.4.4(iii) for A∗∗ with IV.3.1.6(iv).

IV.3.1.13 Corollary. A quotient of a nuclear C*-algebra is nuclear.
Proof: If J is a closed ideal in a C*-algebra A, then

A∗∗ ∼= J∗∗ ⊕ (A/J)∗∗

(III.5.2.11). If A is nuclear, then A∗∗ is injective, so (A/J)∗∗ is also injective.
A similar argument also shows that an ideal in a nuclear C*-algebra is

nuclear, and that an extension of nuclear C*-algebras is nuclear, but there are
elementary proofs of these facts (II.9.6.3, IV.3.1.3). (Interestingly, the result
about ideals was an early observation, but the extension result was first proved
using IV.3.1.12.) However, there is no known proof of IV.3.1.13 which does
not use IV.2.4.9.

Another corollary concerns hereditary C*-subalgebras:

IV.3.1.14 Corollary. A hereditary C*-subalgebra of a nuclear C*-algebra
is nuclear.

For the proof, note that if B is a hereditary C*-subalgebra of a C*-algebra
A, then B∗∗ ∼= pA∗∗p for a projection p (p is the supremum in A∗∗ of any
approximate unit for B).
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The Bootstrap Category

The most important unresolved general structural question about the class
of nuclear C*-algebras is whether the class can be described constructively
as the smallest class of C*-algebras closed under certain standard operations.
Many different sets of constructions can be considered, but it is particularly
important to consider sets under which K-theory is nicely behaved. A minimal
set of possibilities is:

IV.3.1.15 Definition. Let N be the smallest class of separable nuclear
C*-algebras with the following properties:

(i) N contains C.
(ii) N is closed under stable isomorphism.
(iii) N is closed under inductive limits.
(iv) N is closed under crossed products by Z.
(v) If 0 → J → A → A/J → 0 is an exact sequence, and two of J,A,A/J

are in N, so is the third.

The class N is called the small bootstrap class (or category); property (v) is
called the two-out-of-three property.

IV.3.1.16 Question. Is N the class of all separable nuclear C*-algebras?
The class N contains all known separable nuclear C*-algebras, including

all inductive limits of Type I C*-algebras and Cuntz-Krieger algebras. (It is
possible that (ii) is redundant; even without (ii) the class is closed under
stabilization, and if (vi) below is added, it is also closed under taking matrix
algebras.) However, it does not seem to be directly provable that N is closed
under homotopy equivalence, or even that A ⊕ B ∈ N implies A,B ∈ N. To
remedy the last defect, it is harmless (from the K-theory standpoint) to add

(vi) If 0 → J → A → A/J → 0 is a split exact sequence, and A ∈ N, so are
J and A/J .

A potentially larger class is obtained if it is required to be closed under
some type of homotopy equivalence. The weakest assumption is that the class
contain all contractible (separable nuclear) C*-algebras. In the presence of
(vi), this implies that the class is closed under homotopy equivalence (II.5.5.8).
Even (apparently) stronger assumptions, that the class be closed under shape
equivalence or KK-equivalence, give the large bootstrap class N , which will
be discussed in more detail in V.1.5.4.

IV.3.2 Completely Positive Liftings

One of the most useful consequences of nuclearity is the Choi-Effros lifting
theorem for completely positive maps into quotients. This result has important
applications in K-theory.
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IV.3.2.1 Let A and B be C*-algebras, and J a closed ideal of B. A com-
pletely positive contraction (cp-contraction) φ : A → B/J is liftable (to B) if
there is a cp-contraction ψ : A → B such that φ = π ◦ ψ, where π : B → B/J
is the quotient map. ψ is called a lifting of φ.

A has the lifting property if φ is liftable for every B, J , and φ.

IV.3.2.2 An important special case comes when A = B/J and φ is the
identity map. A lifting ψ is then a completely positive cross section for π,
so the extension 0 → J → B → B/J → 0 is semisplit (II.8.4.23). Semi-
split extensions are well behaved for many purposes related to K-theory (cf.
II.8.4.24).

IV.3.2.3 If A, B, and φ are unital and φ is liftable, then φ has a unital lift:
if ψ is any lift and ω a state on B/J , then ψ′ is a unital lift, where

ψ′(x) = ψ(x) + ω(φ(x))(1B − ψ(1A)).

A related observation is that if a cp-contraction φ : A → B/J lifts to a
completely positive map ψ : A → B, then it is liftable (i.e. lifts to a completely
positive contraction). This is easily seen if A is unital (the only case we will
use): if f is the continuous function on [0,∞) with f(t) = 1 for 0 ≤ t ≤ 1 and
f(t) = t−1/2 for t > 1, then

ψ′(x) = f(ψ(1))ψ(x)f(ψ(1))

defines a completely positive contractive lift of φ. The case of nonunital A is
trickier, and can be found in [CS86].

IV.3.2.4 Theorem.[Choi-Effros Lifting] Let A and B be C*-algebras,
and J a closed ideal of B. If A is separable and φ : A → B/J is a nuclear
completely positive contraction, then φ is liftable to B. In particular, every
separable nuclear C*-algebra has the lifting property.

Before giving the proof, we describe some consequences and variations.

IV.3.2.5 Corollary. If 0 → J → B → B/J → 0 is an extension of C*-
algebras, and B/J is separable and nuclear, then the extension is semisplit.

Using IV.3.1.13, it suffices that B is nuclear (and B/J separable). But see
IV.3.2.12.

The results can be generalized easily to the case where A is replaced by a
separable operator system. There is also a version in the exact case ([EH85];
cf. [Was94, 6.10]):

IV.3.2.6 Theorem. Let B be a C*-algebra, J a nuclear closed ideal of B.
Suppose that for every C*-algebra A, the sequence

0 −→ A ⊗min J −→ A ⊗min B −→ A ⊗min B/J −→ 0

is exact. If X is a separable operator system and φ : X → B/J is a completely
positive contraction, then φ is liftable to B.
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IV.3.2.7 Corollary. Let B be an exact C*-algebra, J a nuclear closed
ideal in B. If X is a separable operator system, and φ : X → B/J is a
completely positive contraction, then φ is liftable to B.

For the proof, combine IV.3.2.6 with IV.3.4.14 and IV.3.4.18.

IV.3.2.8 Corollary. If 0 → J → B → B/J → 0 is an extension of C*-
algebras, B is exact, J is nuclear, and B/J is separable, then the extension is
semisplit.

IV.3.2.9 The separability hypotheses in these results cannot be removed:
the exact sequence

0 −→ co −→ l∞ −→ l∞/co −→ 0

of commutative C*-algebras is not semisplit since there is not even a closed
subspace of l∞ complementary to co [LT77, 2.a.7]. However, there is an ap-
proximate result valid in the nonseparable case:

IV.3.2.10 Corollary. If 0 → J → B → B/J → 0 is an extension of C*-
algebras, and B/J is nuclear, then the extension is “approximately semisplit”
in the sense that if {x1, . . . , xn} ⊆ B/J and ε > 0, there is a cp-contraction
σ : B/J → B such that ‖xj−π◦σ(xj)‖ < ε for 1 ≤ j ≤ n, where π : B → B/J
is the quotient map. The map σ can be chosen of finite rank.
Proof: Let C = C∗({x1, . . . , xn}) ⊆ B/J , and B a separable nuclear C*-
subalgebra of B/J containing C (IV.3.1.9). If D = π−1(B), then J ⊆ D and
D/J ∼= B. Let ρ : D → D/J be the quotient map (i.e. ρ = π|D), and let
τ : D/J → D be a cp-splitting (IV.3.2.5). Since D/J is nuclear, there are cp-
contractions α : D/J → Mm and β : Mm → D/J such that ‖xj−β◦α(xj)‖ < ε
for 1 ≤ j ≤ n. Extend α to a cp-contraction γ : B/J → Mm (II.6.9.12), and
let σ = τ ◦ β ◦ γ.

IV.3.2.11 Actually, for the exact sequence

0 −→ co −→ l∞ −→ l∞/co −→ 0

one can do better: by a similar argument using injectivity of l∞, if {x1, x2, . . . }
is a sequence in l∞/co, there is a cp-contraction σ : l∞/co → l∞ such that
π(σ(xj)) = xj for all j, i.e. the exact sequence is “countably semisplit.”

IV.3.2.12 Note that the hypotheses of IV.3.2.5 involve nuclearity of B/J ,
not of B, and thus the result is useless for proving IV.3.1.13. If the hypothesis
were that B is nuclear, then the nuclearity of B/J would follow easily in the
separable case by taking a cp-splitting σ for π : B → B/J and considering
π ◦ φi ◦ σ, where (φi) is a net of finite-rank cp-contractions from B to B
converging to the identity in the point-norm topology. The nonseparable case
would then follow from IV.3.1.10. Such an argument is possible using IV.3.2.8,
but the proof of IV.3.2.8 via IV.3.4.14 even in the case where B is nuclear
uses IV.2.4.9 (in IV.3.4.8).
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Proof of the Lifting Theorem

Our proof of IV.3.2.4, following [Arv77] (cf. [Was94]), is based on the next
two facts.

IV.3.2.13 Proposition. Let φ1, φ2 : A → B/J be liftable cp-contractions,
x1, . . . , xn ∈ A, and ε > 0. If ψ1 is a lifting of φ1, then there is a lifting ψ2 of
φ2 such that

‖ψ2(xk) − ψ1(xk)‖ ≤ ‖φ2(xk) − φ1(xk)‖ + ε

for all 1 ≤ k ≤ n. If A, B, φ1, φ2, and ψ1 are unital, we may choose ψ2 to be
unital.
Proof: Let ψ be any [unital] lifting of φ2, and let (hλ) be an approximate
unit for J which is quasicentral for B (II.4.3.1). By II.8.1.5 we have that, for
all x ∈ A,

lim
λ→∞

‖(1 − hλ)1/2(ψ(x) − ψ1(x))(1 − hλ)1/2‖ = ‖φ2(x) − φ1(x)‖.

By II.8.1.5 we also have that, as λ → ∞,

‖ψ1(x) − h
1/2
λ ψ1(x)h1/2

λ − (1 − hλ)1/2ψ1(x)(1 − hλ)1/2‖

≤ ‖ψ1(x)hλ − h
1/2
λ ψ1(x)h1/2

λ ‖ + ‖ψ1(x)(1 − hλ)

−(1 − hλ)1/2ψ1(x)(1 − hλ)1/2‖→ 0.

Thus we can take ψ2(x) = (1 − hλ)1/2ψ(x)(1 − hλ)1/2 + h
1/2
λ ψ1(x)h1/2

λ for
sufficiently large λ.

IV.3.2.14 Proposition. Let A and B be C*-algebras, with A separable,
and J a closed ideal in B. Then the set of liftable cp-contractions from A to
B/J is closed in the point-norm topology.
Proof: Let Φ be the set of liftable cp-contractions from A to B/J , and φ a
point-norm limit point of Φ. Let (xn) be a dense sequence in the unit ball of
A. For each n choose φn ∈ Φ with

‖φn(xk) − φ(xk)‖ < 2−n−2

for 1 ≤ k ≤ n; then

‖φn+1(xk) − φn(xk)‖ < 2−n−1

for all n and all k ≤ n. Let ψ1 be any lifting of φ1, and inductively using
IV.3.2.13 choose a lifting ψn of φn such that

‖ψn+1(xk) − ψn(xk)‖ < 2−n

for all n and all k ≤ n. The sequence (ψn) converges in the point-norm
topology to a lift ψ for φ.
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IV.3.2.15 To prove IV.3.2.4, if φ is nuclear it can be approximated in the
point-norm topology by maps of the form β ◦ α, where α : A → Mn and
β : Mn → B/J are cp-contractions. If β is always liftable to B, so is β ◦ α,
and thus φ is liftable by IV.3.2.14. So the proof can be reduced to the case
where A = Mn.

IV.3.2.16 Lemma. Let B be a C*-algebra and φ : Mn → B a linear map.
Then φ is completely positive if and only if the element

∑
i,j φ(eij) ⊗ eij is

positive in B ⊗ Mn.
Proof: The necessity is obvious, since

∑
i,j eij⊗eij is positive in Mn⊗Mn (it

is a multiple of a projection). Conversely, we show that φ⊗ id : Mn ⊗ Mm →
B ⊗ Mm is positive for any m. If x1, . . . , xn ∈ Mm, then

∑
k,l ekl ⊗ x∗

kxl ≥ 0
in Mn ⊗ Mm (cf. II.6.9.8), so, in B ⊗ Mn ⊗ Mn ⊗ Mm,

∑

i,j,k,l

φ(eij) ⊗ eij ⊗ ekl ⊗ x∗
kxl = (

∑

i,j

φ(eij) ⊗ eij) ⊗ (
∑

k,l

ekl ⊗ x∗
kxl) ≥ 0

0 ≤
∑

r,s

(
∑

t

1⊗ert⊗est⊗1)(
∑

i,j,k,l

φ(eij)⊗eij⊗ekl⊗x∗
kxl)(

∑

t

1⊗ert⊗est⊗1)∗

=
∑

r,s

(
∑

i,j

φ(eij) ⊗ err ⊗ ess ⊗ x∗
i xj) =

∑

i,j

φ(eij) ⊗ 1 ⊗ 1 ⊗ x∗
i xj

So
∑

i,j φ(eij) ⊗ x∗
i xj ≥ 0 in B ⊗ Mm. If x =

∑
i,j eij ⊗ xij is an arbitrary

element of Mn ⊗ Mm, then

(φ ⊗ id)(x∗x) =
∑

k

(
∑

i,j

φ(eij) ⊗ x∗
kixkj) ≥ 0.

IV.3.2.17 Thus, if φ : Mn → B/J is a cp-contraction and yij = φ(eij), then
the element

∑
i,j yij ⊗ eij is positive in (B/J) ⊗ Mn

∼= (B ⊗ Mn)/(J ⊗ Mn),
so there is a positive preimage

∑
i,j xij ⊗ eij in B ⊗ Mn. The map ψ defined

by ψ(eij) = xij is completely positive by IV.3.2.16. Thus by IV.3.2.3, φ is
liftable. This completes the proof of IV.3.2.4.

IV.3.3 Amenability for C*-Algebras

Recall (II.5.5.17(iii)) that a C*-algebra A is amenable if every (bounded)
derivation from A to a dual Banach A-module is inner. The same definition
can be made for general Banach algebras.

Fundamental work on amenability for Banach algebras was done by B.
Johnson, individually [Joh72] and in collaboration with R. Kadison and J.
Ringrose [JKR72], who had begun the cohomology theory of Banach algebras
[KR71a], [KR71b]. Johnson [Joh72] proved the following theorem, justifying
the term “amenable” in the Banach algebra context. Many of the algebraic
ideas concerning amenability previously arose in the study of Hochschild ho-
mology [Hoc45].



IV.3 Nuclear and Exact C*-Algebras 379

IV.3.3.1 Theorem. If G is a locally compact group, then the Banach al-
gebra L1(G) is amenable if and only if G is amenable.

A C*-algebra version of this theorem will be discussed in IV.3.5.2 and
IV.3.5.5.

Virtual Diagonals

IV.3.3.2 An alternate characterization of amenability uses the notion of a
virtual diagonal. If {eij} is a set of matrix units in Mn, the element

d =
n∑

i=1

eii ⊗ eii

of Mn ⊗ Mn has the properties that ad = da when Mn ⊗ Mn is regarded as
an Mn-bimodule in the natural way, and π(d) = 1, where π : Mn ⊗Mn → Mn

is multiplication π(a⊗ b) = ab. If δ : Mn → X is a derivation, where X is any
Mn-bimodule, set

x =
n∑

i=1

eiiδ(eii).

Then a simple calculation shows that δ(a) = ax − xa for all a ∈ Mn.
If A is a C*-algebra (or Banach algebra), the same argument can be made

to work if there is just a d ∈ A⊗̂A (II.9.2.4), or even in (A⊗̂A)∗∗, satisfying
ad = da and aπ∗∗(d) = π∗∗(d)a = a for all a ∈ A (regarding (A⊗̂A)∗∗ and
A∗∗ as dual Banach A-modules in the obvious way), provided in the second
case that X is a dual Banach A-module. Such a d is called a virtual diagonal
for A. Thus, if A has a virtual diagonal, it is amenable. The converse is also
true [Joh72]:

IV.3.3.3 Theorem. A Banach algebra A is amenable if and only if it has
a virtual diagonal.

To obtain a virtual diagonal for an amenable A, let (hλ) be a bounded
approximate unit for A (for an amenable Banach algebra such an approximate
unit must be proved to exist). Then (hλ ⊗ hλ) converges weak-* to some
φ ∈ (A⊗̂A)∗∗. The derivation δ(a) = aφ − φa maps A into the dual Banach
A-module ker(π∗∗); by amenability there is a ψ ∈ ker(π∗∗) such that δ(a) =
aψ − ψa. Then d = φ − ψ is a virtual diagonal.

Permanence Properties

The first permanence property is virtually trivial, since if A is a Banach al-
gebra and J a closed ideal, any Banach A/J-module can be regarded as a
Banach A-module, and similarly with derivations:
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IV.3.3.4 Proposition. Any quotient of an amenable Banach algebra is
amenable.

Contrast this result with the depth of the corresponding statement for
nuclearity (IV.3.1.13).

IV.3.3.5 Proposition. Let A be an amenable Banach algebra, and J a
closed ideal of A. Then J is an amenable Banach algebra if and only if it has
a bounded approximate unit. In particular, if A is an amenable C*-algebra,
so is J .

In the C*-case, a dual Banach J-module extends to a Banach M(J)-
module, and hence to a Banach A-module; similarly, a derivation on J to
a dual Banach J-module extends to a derivation of M(J) and hence A.

IV.3.3.6 Proposition. Let 0 → J → A → A/J → 0 be an exact sequence
of Banach algebras. If J and A/J are amenable, so is A.

If δ : A → X ∗ is a derivation, δ|J is inner, so an inner derivation can be
subtracted from δ to obtain δ|J = 0. If XJ is the closed subspace of X spanned
by JX + XJ , then δ can be regarded as a derivation from A/J to the dual
Banach A/J-module (X/XJ )∗.

The next result is easily proved using virtual diagonals:

IV.3.3.7 Proposition. Let A and B be Banach algebras. Then A⊗̂B is
amenable if and only if A and B are amenable. If A and B are C*-algebras,
then A ⊗max B is amenable if and only if A and B are amenable.

IV.3.3.8 Theorem. An inductive limit of amenable C*-algebras is amen-
able.

This almost has a trivial proof: if A = lim−→Ai, X ∗ is a dual Banach A-
module, and δ : A → X ∗ is a derivation, choose φi ∈ X ∗ such that δ(a) =
aφi − φia for all a ∈ Ai. If (φi) is bounded, any weak-* limit point φ satisfies
δ(a) = aφ − φa for all a ∈ A. But it is nontrivial to prove that the φi can be
chosen bounded (in fact, φi can be chosen with ‖φi‖ ≤ ‖δ‖ [Haa83]).

Since Mn is amenable by the argument of IV.3.3.2, K is amenable. Com-
bining this with IV.3.3.7, we obtain:

IV.3.3.9 Corollary. The class of amenable C*-algebras is closed under
stable isomorphism.

Amenability of Type I C*-Algebras

Although the next two results will be subsumed in IV.3.3.15, it is worth giving
an elementary argument for them:
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IV.3.3.10 Proposition. Every commutative C*-algebra is amenable.
This is an immediate consequence of IV.3.3.4, IV.3.3.5, and IV.3.5.5, tak-

ing G to be U(A) with the discrete topology.
Combining IV.3.3.10 with IV.3.3.9 and IV.3.3.6, by the usual bootstrap-

ping we obtain:

IV.3.3.11 Corollary. Every Type I C*-algebra is amenable.

Amenability vs. Nuclearity

Both directions of the equivalence of amenability and nuclearity are nontrivial
and require some heavy machinery. The easier direction, and the earlier result
[Con78], is that amenability implies nuclearity. The first preliminary result is
nearly trivial, using the σ-weak density of A in A∗∗:

IV.3.3.12 Proposition. If A is an amenable C*-algebra, then A∗∗ is an
amenable von Neumann algebra.

IV.3.3.13 Theorem. Every amenable C*-algebra is nuclear.
This is an immediate consequence of IV.3.3.12 and IV.2.5.4, combined with

IV.3.1.12.
The converse proved elusive, and was finally proved by U. Haagerup in

[Haa83]:

IV.3.3.14 Theorem. Every nuclear C*-algebra is amenable.
There is a well-known fallacious argument for this result (cf. [BP80]). If

A is a C*-algebra and X a Banach A-module, then X ∗ can be made into
a Banach A∗∗-module as follows [Joh72]. If a ∈ A, x ∈ X , φ ∈ X ∗, define
aφ, φa ∈ X ∗ by

(aφ)(x) = φ(xa), (φa)(x) = φ(ax)

and then define (x, φ), [φ, x] ∈ A∗ by

(x, φ)(a) = φ(ax), [φ, x](a) = φ(xa).

If b ∈ A∗∗, φ ∈ X ∗, define bφ, φb ∈ X ∗ by

(bφ)(x) = 〈[φ, x], b〉, (φb)(x) = 〈(x, φ), b〉

where 〈·, ·〉 is the pairing between A∗ and A∗∗ It can be checked that this
action makes X ∗ into a normal Banach A∗∗-module.

The dual action of A∗∗ on X∗∗ thus makes X∗∗ a dual Banach A∗∗-module.
There is an alternate description of a Banach A∗∗-module structure on X∗∗,
obtained by applying the construction of the previous paragraph to the Ba-
nach A-module X ∗; this makes X∗∗ into a normal Banach A∗∗-module.
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Assuming that the two module structures always coincide (it is easy to
check that they coincide on A ⊆ A∗∗), at least if A is nuclear, making X∗∗

a dual normal Banach A∗∗-module, we could show that a nuclear C*-algebra
A is amenable as follows. Suppose X = Y∗ is a dual Banach A-module, and
δ : A → X is a derivation. Then δ∗∗ : A∗∗ → X ∗∗ is a derivation, and A∗∗

is injective and hence W*-amenable, so there is a z ∈ X ∗∗ = Y∗∗∗ with
δ∗∗(b) = bz − zb for all b ∈ A∗∗. The inclusion j : Y ↪→ Y∗∗ is an A-module
map, so the projection j∗ : Y ∗∗∗ → Y∗ is also an A-module map, and hence
if x = j∗(z) ∈ Y∗ = X , we have δ(a) = ax − xa for all a ∈ A.

Unfortunately, as pointed out in [BP80], the two module structures do not
coincide in general, even for A = K, and there is no natural way to make X ∗∗

into a dual normal Banach A∗∗-module.
The argument of Haagerup proceeds differently, showing the existence of

a virtual diagonal in a nuclear C*-algebra using his generalization of the
Grothendieck-Pisier inequality.

IV.3.3.15 Corollary. A C*-algebra is nuclear if and only if it is amenable.

Weak and Strong Amenability

There are two variations of amenability worth mentioning:

IV.3.3.16 Definition. A C*-algebra (or Banach algebra) A is weakly
amenable if every (bounded) derivation from A to A∗ is inner.
A unital C*-algebra A is strongly amenable if, whenever X is a unital Banach
A-module and δ : A → X ∗ is a (bounded) derivation, there is an x in the
weak-* closed convex hull of

{δ(u)u∗ : u ∈ U(A)}

with δ(a) = xa−ax for all a ∈ A. A general C*-algebra A is strongly amenable
if Ã is strongly amenable.

Obviously A strongly amenable =⇒ A amenable =⇒ A weakly amenable.
Neither implication can be reversed:

IV.3.3.17 Theorem. [Haa83] Every C*-algebra is weakly amenable.
Thus a C*-algebra such as C∗(F2) is weakly amenable but not amenable.

IV.3.3.18 Theorem. [Bun72] Let A be a unital C*-algebra. Then A is
strongly amenable if and only if, whenever X is a Banach A-module and
C ⊆ X ∗ is a weak-* compact convex subset such that uCu∗ ⊆ C for all
u ∈ U(A), there is a c ∈ C with ucu∗ = c for all u ∈ U(A).

Applying this result to the state space S(A) ⊆ A∗, we obtain:
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IV.3.3.19 Corollary. If A is a strongly amenable unital C*-algebra, then
A has a tracial state.

Thus an algebra such as On (II.8.3.3(ii)) is amenable but not strongly
amenable. Note the strong similarity, and close connection, between strong
amenability and the Dixmier property (III.2.5.16).

There is no analog of IV.3.3.19 for nonunital C*-algebras. In fact:

IV.3.3.20 Theorem. [Haa83] Let A be an amenable C*-algebra. Then
A ⊗ K is strongly amenable.

IV.3.3.21 Theorem. [Ros77] If α is an action of a discrete amenable group
G on a strongly amenable C*-algebra A, then A �α G is strongly amenable.
In particular, C∗(G) is strongly amenable.

Finally, one might wonder why only dual Banach modules are used in the
theory of amenability. Dual modules are natural in this theory, and are nice
because of the presence of the weak-* topology. But they are also necessary
as shown in [Hel93, VII.1.75] (cf. [Run02, 4.1.6]), using a virtual diagonal
argument (IV.3.3.2):

IV.3.3.22 Theorem. Let A be a C*-algebra. Suppose every (bounded)
derivation from A into a Banach A-module is inner. Then A is finite-
dimensional.

The converse is true: every derivation from a finite-dimensional C*-algebra
A into an A-(bi)module is inner (IV.3.3.2). The generalization of IV.3.3.22 to
general Banach algebras appears to still be open.

IV.3.4 Exactness and Subnuclearity

Recall (II.9.6.6) that a C*-algebra A is exact if tensoring a short exact se-
quence with A preserves exactness for the minimal cross norm. There is an
alternate characterization in terms of slice maps (II.9.7.1):

IV.3.4.1 Proposition. Let A and B be C*-algebras, J a closed ideal of
B, and π : B → B/J the quotient map. Then the kernel KJ of id ⊗ π :
A ⊗min B → A ⊗min B/J is

SJ = {x ∈ A ⊗min B | Rφ(x∗x) ∈ J ∀φ ∈ S(A)}

where Rφ : A⊗min B → B is the right slice map a⊗ b → φ(a)b. In particular,
if x ∈ SJ ∩ (A � B), then x ∈ A � J .
Proof: Regard states on B/J as states on B vanishing on J . The representa-
tions πφ ⊗πψ, as φ and ψ range over S(A) and S(B/J) respectively, separate
the points of A ⊗min B/J . If x ∈ SJ , then
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(φ ⊗ ψ)(x∗x) = ψ(Rφ(x∗x)) = 0

for all φ ∈ S(A), ψ ∈ S(B/J). If (πφ ⊗ πψ)(x∗x) �= 0 for some such φ, ψ,
then by I.2.6.16 there are vector states φ′ ∈ S(A), ψ′ ∈ S(B/J) with
(φ′ ⊗ ψ′)(x∗x) �= 0, a contradiction; so x∗x ∈ KJ , x ∈ KJ . Conversely, if
x /∈ SJ , there is a state φ on A with Rφ(x∗x) /∈ J , and for this φ there is a
state ψ on B, vanishing on J , with ψ(Rφ(x∗x)) �= 0. But

ψ(Rφ(x∗x)) = (φ ⊗ ψ)(x∗x)

so (πφ ⊗ πψ)(x∗x) �= 0, (πφ ⊗ πψ)(x) �= 0.

IV.3.4.2 Corollary. Let A be a C*-algebra. Then A is exact if and only
if, for every C*-algebra B and closed ideal J of B,

A ⊗min J = {x ∈ A ⊗min B | Rφ(x∗x) ∈ J ∀φ ∈ S(A)} .

The next corollary is an important property of exactness, proved indepen-
dently by E. Kirchberg (cf. [Kir95b]) and S. Wassermann (cf. [Was76]), which
is in contrast with the fact that a C*-subalgebra of a nuclear C*-algebra is
not nuclear in general:

IV.3.4.3 Theorem. A C*-subalgebra of an exact C*-algebra is exact. In
particular, every C*-subalgebra of a nuclear C*-algebra is exact.
Proof: Let A be an exact C*-algebra, and C a C*-subalgebra of A. If B is a
C*-algebra with closed ideal J , suppose x ∈ C ⊗min B and Rφ(x∗x) ∈ J for
all φ ∈ S(C). Then, if ψ ∈ S(A), and φ = ψ|C , then Rψ(x∗x) = Rφ(x∗x) ∈ J ,
and thus x ∈ A ⊗min J since A is exact. Thus

x ∈ (A ⊗min J) ∩ (C ⊗min B) = C ⊗min J

(II.9.6.9).

IV.3.4.4 Proposition. An inductive limit (with injective connecting maps)
of exact C*-algebras is exact.
This result is also true if the connecting maps are not injective, but this
requires the deep fact IV.3.4.19.
Proof: Let A = [∪Ai]−, with each Ai exact, and let 0 → J → B → B/J → 0
be an exact sequence. Then (A ⊗min J) ∩ (Ai ⊗min B) = Ai ⊗min J for all i
(II.9.6.9), so

(A ⊗min B)/(A ⊗min J) = [∪(Ai ⊗min B)/(Ai ⊗min J)]−

= [∪(Ai ⊗min (B/J))]− = A ⊗min (B/J) .

Combining the last two results, we obtain:
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IV.3.4.5 Corollary. A C*-algebra A is exact if and only if every separable
C*-subalgebra of A is exact.

Property C

We next discuss a property introduced by R. Archbold and C. Batty [AB80],
which implies exactness and turns out to be equivalent, at least in the sepa-
rable case (IV.3.4.18).

IV.3.4.6 Let A and B be C*-algebras, and ω the universal representation
of A ⊗min B. Then ω defines commuting representations ωA and ωB of A
and B, and hence commuting normal representations of A∗∗ and B∗∗, and
so a representation ρ of A∗∗ � B∗∗, which is easily seen to be faithful. Since
ρ(A∗∗ � B∗∗) ⊆ ω(A ⊗min B)′′ ∼= (A ⊗min B)∗∗, we get an embedding

ιA,B : A∗∗ � B∗∗ → (A ⊗min B)∗∗

and hence a C*-norm on A∗∗ �B∗∗, denoted ‖ · ‖C . We have ‖ · ‖C ≤ ‖ · ‖bin.

IV.3.4.7 Definition. A C*-algebra A has Property C if, for every C*-
algebra B, ‖ · ‖C = ‖ · ‖min on A∗∗ � B∗∗.

IV.3.4.8 Proposition. Every nuclear C*-algebra has Property C.
This is an immediate consequence of IV.2.4.4(vi), since A∗∗ is semidiscrete

if A is nuclear (IV.2.2.13, IV.2.4.9).

The C-norm has good permanence properties:

IV.3.4.9 Proposition. Let A and B be C*-algebras, D a C*-subalgebra
of B, and J a closed ideal in B.

(i) The restriction of the C-norm on A∗∗ � B∗∗ to A∗∗ � D∗∗ is the C-norm
on A∗∗ � D∗∗.

(ii) The embedding of A∗∗ � (B/J)∗∗ into (A∗∗ ⊗C B∗∗)/(A∗∗ ⊗C J∗∗) gives
an isometry of A∗∗ ⊗C (B/J)∗∗ onto (A∗∗ ⊗C B∗∗)/(A∗∗ ⊗C J∗∗).

Proof: (i): The diagram

A∗∗ � D∗∗ −−−−→ A∗∗ � B∗∗

ιA,D



)



)ιA,B

(A ⊗min D)∗∗ −−−−→ (A ⊗min B)∗∗

is easily seen to be commutative, and the sides and bottom are isometries.
(ii): J∗∗ = pB∗∗ for a central projection p ∈ B∗∗. If π : B → B/J is the
quotient map, the kernel of (id ⊗ π)∗∗ : (A ⊗min B)∗∗ → (A ⊗min (B/J))∗∗ is
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q(A⊗min B)∗∗ for a central projection q ∈ (A⊗min B)∗∗. It is straightforward
to check that q = ιA,B(1 ⊗ p), so that the homomorphism x → (1 − q)x from
A∗∗�B∗∗ to (A⊗minB)∗∗ extends to an isomorphism ψ from (A⊗min(B/J))∗∗
onto (1−q)(A⊗minB)∗∗ (although the kernel of (id⊗π)∗∗ cannot be identified
with q(A ⊗min B)∗∗ in general). It is also straightforward to check that the
diagram

A∗∗ � (B/J)∗∗
0⊕id−−−−−→ (A∗∗ � pB∗∗) ⊕ (A∗∗ � (1 − p)B∗∗) ∼= A∗∗ � B∗∗

ιA,B/J



)



)ιA,B

(A ⊗min (B/J))∗∗
0⊕ψ−−−−−→ q(A ⊗min B)∗∗ ⊕ (1 − q)(A ⊗min B)∗∗ ∼= (A ⊗min B)∗∗

is commutative. The result is then obvious.

IV.3.4.10 Corollary. If A has Property C, then every C*-subalgebra or
quotient of A has Property C. In particular, every subquotient of a nuclear
C*-algebra has Property C.

IV.3.4.11 Corollary. Let A and B be C*-algebras, and J be a closed
ideal of B. If ‖ · ‖C = ‖ · ‖min on A∗∗ � B∗∗, then the sequence

0 → A ⊗min J → A ⊗min B → A ⊗min (B/J) → 0

is exact.

IV.3.4.12 Corollary. A C*-algebra with Property C is exact.

Property C also leads to an interesting variation of the notion of exactness:

IV.3.4.13 Definition. Let B be a C*-algebra, J a closed ideal of B. (B, J)
is a coexact pair if, for every C*-algebra A, the sequence

0 → A ⊗min J → A ⊗min B → A ⊗min (B/J) → 0

is exact.
Perhaps a better term would be “exact pair” in retrospect, in light of the

next result and IV.3.4.18.

IV.3.4.14 Proposition. Let B be a C*-algebra, J a closed ideal of B.
Then (B, J) is a coexact pair under either of the following conditions:

(i) B has Property C.
(ii) B/J is nuclear.

Part (i) is an immediate corollary of IV.3.4.11, and (ii) is obvious.
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Exactness and Nuclear Embeddability

If A is a nuclear C*-algebra, then the identity map on A is nuclear (IV.3.1.4).
It is interesting to consider the more general property of a C*-algebra A
that there is a nuclear embedding of A into some larger C*-algebra D; any
subnuclear C*-algebra clearly has this property.

IV.3.4.15 Proposition. Let A be a C*-algebra. The following are equiv-
alent:

(i) There is a C*-algebra D and a nuclear embedding (nuclear injective *-
homomorphism) from A to D.

(ii) There is a nuclear embedding of A into L(H) for some Hilbert space H.
(iii) There is a C*-algebra D and a nuclear complete order embedding from

A to D.

A C*-algebra A satisfying these properties is nuclearly embeddable.

IV.3.4.16 Examples.

(i) Any nuclear C*-algebra is nuclearly embeddable.
(ii) Any C*-subalgebra of a nuclearly embeddable C*-algebra is nuclearly

embeddable. In particular, every subnuclear C*-algebra is nuclearly em-
beddable.

IV.3.4.17 Theorem. A C*-algebra is nuclearly embeddable if and only if
it is exact.

One direction of this theorem is relatively easy, that a nuclearly embed-
dable C*-algebra is exact; we give the argument. Suppose A is nuclearly em-
beddable, ι : A → D is a nuclear embedding, and 0 → J → B → B/J → 0
is an exact sequence of C*-algebras. By IV.3.4.2, it suffices to show that the
set SJ ⊆ A ⊗ B is just A ⊗ J . Let x ∈ SJ and ε > 0, and let α : A → Mn,
β : Mn → D be cp-contractions such that

‖[(β ◦ α) ⊗ id](x∗x) − [ι ⊗ id](x∗x)‖ < ε

(it is easily seen that such α, β exist by approximating x∗x by an element of
A � B). If φ ∈ S(Mn), then φ ◦ α ∈ S(A), so

Rφ((α ⊗ id)(x∗x)) = Rφ◦α(x∗x) ∈ J.

Thus

(α ⊗ id)(x∗x) ∈ {0 ≤ y ∈ Mn ⊗ B : Rφ(y) ∈ J ∀φ ∈ S(Mn)}.

Since Mn ⊗B = Mn �B, (α⊗ id)(x∗x) ∈ Mn ⊗J by IV.3.4.1. Thus [(β ◦α)⊗
id](x∗x) ∈ D ⊗ J ; since ε is arbitrary, (ι ⊗ id)(x∗x) ∈ D ⊗ J . So
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(ι ⊗ id)(x∗x) ∈ (ι(A) ⊗ B) ∩ (D ⊗ J) = ι(A) ⊗ J

(II.9.6.9), x ∈ A ⊗ J .
The converse, that an exact C*-algebra is nuclearly embeddable, is a tech-

nically difficult argument due to Kirchberg ([Kir95b, 4.1]; cf. [Was94, Theorem
7.3]).

Characterization of Separable Exact C*-Algebras

The deepest results about exact C*-algebras are due to Kirchberg, and are
summarized (along with IV.3.4.17) in the next theorem:

IV.3.4.18 Theorem. Let A be a separable C*-algebra. Then the following
are equivalent:

(i) A is exact.
(ii) A is subnuclear.
(iii) A embeds in the Cuntz algebra O2.
(iv) A is a subquotient of the CAR algebra B.
(v) There is a complete order embedding of A into the CAR algebra B.
(vi) A has Property C.

A is nuclear if and only if there is a complete order embedding φ : A → B
such that there is an idempotent cp-projection from B onto φ(A).
(iii) =⇒ (ii) is trivial, and (ii) =⇒ (vi) by IV.3.4.10. (vi) =⇒ (i) is IV.3.4.12. (i)
=⇒ (v) was proved (along with the last assertion of the theorem) in [Kir95b,
1.4] (cf. [Was94, 9.1]); the argument is complicated and we do not outline it
here. (v) =⇒ (iv) by II.6.10.12, and (iv) =⇒ (vi) follows from IV.3.4.10 since
the CAR algebra is nuclear.
(i) =⇒ (iii) is a difficult argument which will not be described here; see [KP00].

Note that (iii) =⇒ (iv) by the result [Bla85a] that O2 is a subquotient of
the CAR algebra; however, this is not needed for the proof of the theorem.

IV.3.4.19 Corollary. A quotient of an exact C*-algebra is exact.
This is actually only a corollary of IV.3.4.18 in the separable case (prop-

erty (iv) is clearly preserved under quotients); the general case can be easily
obtained from the separable case and IV.3.4.5.

The fact that the class of exact C*-algebras is closed under quotients, like
the corresponding property for nuclearity, is a deep result.

Kirchberg ([Kir93], [Kir95b]) has also proved:

IV.3.4.20 Theorem. An extension of exact C*-algebras is not exact in gen-
eral; however, a semisplit extension (II.8.4.23) of exact C*-algebras is exact.

See [Kir95a] or [Was94] for a more complete description of the theory of
exact C*-algebras.
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Primitive Ideal Space of a Tensor Product

Throughout this subsection, as is our usual convention, “⊗” will mean “⊗min”
unless otherwise specified.

If A and B are C*-algebras, we wish to describe the primitive ideal space
Prim(A ⊗ B) in terms of Prim(A) and Prim(B). In the commutative case, if
A = Co(X), B = Co(Y ), we have A ⊗ B ∼= Co(X × Y ), so

Prim(A ⊗ B) ∼= X × Y ∼= Prim(A) × Prim(B)

(II.9.4.4); in fact, in this case we have Â ⊗ B ∼= Â × B̂. We examine to what
extent these relations hold in general.

The results of this subsection are essentially due to J. Tomiyama [Tom67b,
Theorem 5] (cf. [Bla77a, 3.3]) and E. Kirchberg (cf. [BK04, §2.8]).

IV.3.4.21 If A and B are arbitrary C*-algebras, there is an injective map

Π : Â × B̂ → Â ⊗ B

given by Π(ρ, σ) = ρ ⊗ σ. This is a continuous map relative to the natural
topologies (II.6.5.13), and drops to a well-defined map, also denoted Π, from
Prim(A)×Prim(B) to Prim(A⊗B); this Π is injective, continuous (it preserves
containment in the appropriate sense), and its range is dense in Prim(A⊗B)
since the intersection of the kernels of the representations {ρ⊗ σ : ρ ∈ Â, σ ∈
B̂} is 0.

IV.3.4.22 If I = ker(ρ), J = ker(σ), then Π(I, J) is the kernel of the natural
map from A⊗B to (A/I)⊗ (B/J). Thus Π(I, J) contains I ⊗B + A⊗ J . In
general,

(A ⊗ B)/(I ⊗ B + A ⊗ J) ∼= (A/I) ⊗γ (B/J)

for some cross norm γ which is not the minimal cross norm in general.

IV.3.4.23 Proposition. Under any of the following conditions, we have
γ = min, so Π(I, J) = I ⊗ B + A ⊗ J :

(i) Either A/I or B/J is nuclear.
(ii) (A, I) is a coexact pair (IV.3.4.13) and A/I is exact.
(iii) (B, J) is a coexact pair and B/J is exact.
(iv) Either A or B is separable and exact.

Proof: (i) is obvious. For (ii), under the hypotheses we have exact sequences

0 → I ⊗ B → A ⊗ B → (A/I) ⊗ B → 0

0 → (A/I) ⊗ J → (A/I) ⊗ B → (A/I) ⊗ (B/J) → 0

so it follows that the kernel of the composite map A ⊗ B → (A/I) ⊗ B →
(A/I)⊗ (B/J) is exactly I ⊗B + A⊗ J . (iii) is similar, and (iv) follows from
IV.3.4.14, IV.3.4.18, and IV.3.4.10.
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IV.3.4.24 There is a way of generating an “inverse” for Π, at least in good
cases. If π is an irreducible representation of A⊗B, then πA and πB are factor
representations of A and B respectively (II.9.2.1). If I = ker(πA), J = ker(πB),
then I and J are closed prime ideals (II.6.1.11) and hence primitive if A and B
are separable (II.6.5.15) or if either A or B is Type I (since then both πA and
πB are Type I, and it follows easily from III.1.5.5 that π ∼= ρ⊗σ, where ρ and
σ are irreducible representations quasi-equivalent to πA and πB respectively).
The ideals I and J clearly depend only on ker(π), so we obtain a well-defined
map

∆ : Prim(A ⊗ B) → Prim(A) × Prim(B)

at least if A and B are separable. In fact, if K ∈ Prim(A⊗B), then ∆(K) =
(I, J), where I and J are the kernels of the composite maps

A → A ⊗ 1 ⊆ A ⊗ B̃ → (A ⊗ B̃)/K

B → 1 ⊗ B ⊆ Ã ⊗ B → (Ã ⊗ B)/K.

It is easy to check that ∆ is continuous, and that ∆ ◦ Π is the identity on
Prim(A) × Prim(B).

If K ∈ Prim(A⊗B), and ∆(K) = (I, J), then I⊗B+A⊗J ⊆ K. Also, the
natural map from (A/I) � (B/J) to (A ⊗ B)/K is injective (II.9.5.2), hence
K ⊆ Π(I, J). Thus, under any of the conditions in IV.3.4.23, we have

K = I ⊗ B + A ⊗ J = Π(I, J)

and therefore Π ◦ ∆(K) = K. The conclusion is:

IV.3.4.25 Theorem. If A and B are separable C*-algebras and either A
or B is exact, then Π is a homeomorphism from Prim(A) × Prim(B) to
Prim(A ⊗min B), with inverse ∆.

Note that the result also holds even if A and B are nonseparable if either
A or B is Type I (or if both are simple by II.9.5.3); in fact, it holds in general
in the nonseparable case (if A or B is exact) if primitive ideals are replaced
by closed prime ideals [BK04].

IV.3.4.26 The conclusion of IV.3.4.25 does not hold in full generality, even
for separable C*-algebras. Let A = B = C∗(F2). Then the left and right
regular representations of F2 are factor representations (III.3.3.7) and give an
irreducible representation π of A ⊗min B (II.9.4.6(iii)), whose kernel is not in
the image of Π(Prim(A) × Prim(B)).

IV.3.4.27 What about Â ⊗ B? If π ∈ Â ⊗ B, and πA or πB is Type I, then
as observed above, the other is also Type I and π ∼= ρ⊗ σ for ρ, σ irreducible
representations quasi-equivalent to πA and πB respectively. Thus, if A or B is
Type I (no separability necessary), the map Π : Â× B̂ → Â ⊗ B is surjective,
and it is easily verified to be a homeomorphism.
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Surjectivity of Π does not hold in general. For example, if M is an injective
factor on a separable H, which is not Type I, and C and D are σ-weakly dense
C*-subalgebras of M and M ′ respectively, then since M is semidiscrete the
identity representations of C and D define an irreducible representation of
C⊗D which does not decompose as a tensor product, i.e. is not in Π(Ĉ× D̂).

If M is Type III, and A and B are separable C*-algebras which are not
Type I, then by IV.1.5.10 there are representations ρ of A and σ of B on H,
such that ρ(A)′′ = M , σ(B)′′ = M ′. ρ and σ define an irreducible representa-
tion of A ⊗ B which is not in the range of Π, so Π : Â × B̂ → Â ⊗ B is not
surjective if A and B are separable and not Type I.

IV.3.5 Group C*-Algebras and Crossed Products

In this section, we discuss the relation between nuclearity and exactness for
group C*-algebras and crossed products by a locally compact group G and
structural properties of G, particularly amenability. An expanded version of
this discussion can be found in [Bla04a].

The first result has an easy and elementary proof:

IV.3.5.1 Proposition. Let A and B be C*-algebras, G a locally compact
group, and α an action of G on A. Write β for the action α⊗ id on A⊗max B
or A ⊗min B. Then there are natural isomorphisms

φmax : (A �α G) ⊗max B → (A ⊗max B) �β G

φmin : (A �
r
α G) ⊗min B → (A ⊗min B) �

r
β G

making the following diagram commute, where π is the quotient map from
the full to the reduced crossed product:

(A �α G) ⊗max B
φmax−−−−→ (A ⊗max B) �β G

π⊗id



)



)π

(A �
r
α G) ⊗min B

φmin−−−−→ (A ⊗min B) �
r
β G

Proof: To obtain φmax, both (A �α G) ⊗max B and (A ⊗max B) �β G are
isomorphic to the universal C*-algebra generated by

{π(f)ρ(a)σ(b) : f ∈ L1(G), a ∈ A, b ∈ B}

where π, ρ, and σ are representations of G, A, and B respectively on the
same Hilbert space, with π and ρ α-covariant and σ commuting with π and ρ.
The proof for φmin is similar, using the obvious natural isomorphism between
L2(G,H1) ⊗H2 and L2(G,H1 ⊗H2) for Hilbert spaces H1, H2.

Combining this result with II.10.3.14, we obtain:
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IV.3.5.2 Corollary. Let A be a nuclear C*-algebra, G an amenable lo-
cally compact group, and α an action of G on A. Then A �α G is nuclear. In
particular, if G is amenable, then C∗(G) is nuclear.

The last statement was first observed by A. Guichardet [Gui69], using
essentially the argument of IV.3.5.1.

IV.3.5.3 IV.3.5.2 implies that many standard C*-algebras are nuclear, for
example the noncommutative tori (II.8.3.3(i), II.10.4.12(i)) and the Cuntz and
Cuntz-Krieger algebras (II.8.3.3(ii)–(iii)).

IV.3.5.4 The converse of IV.3.5.2 is not valid in general for crossed prod-
ucts: a (full) crossed product by a nonamenable group can be an amenable
C*-algebra (e.g. II.10.4.3). Even the converse of the result about group C*-
algebras can fail if G is not discrete: there are nonamenable Lie groups (e.g.
SL2(R)) whose group C*-algebra is Type I [HC57]. In fact, the group C*-
algebra of any connected group is amenable (nuclear) [Con76, 6.9(c)].

The converse of the group C*-algebra part of IV.3.5.2 for discrete G is
true, but more difficult; however, it avoids the heaviest machinery of IV.2.6.2.
The next result was proved in [Joh72] and [Bun76]:

IV.3.5.5 Theorem. Let G be a discrete group. Then the following are
equivalent:

(i) C∗(G) is an amenable C*-algebra.
(ii) C∗

r (G) is an amenable C*-algebra.
(iii) G is an amenable group.

Proof: (i) =⇒ (ii) is IV.3.3.4, and (iii) =⇒ (i) is almost an immediate conse-
quence of IV.3.3.1, since a Banach C∗(G)-module can be regarded as a Banach
L1(G)-module.
(ii) =⇒ (iii): Let τ be the Plancherel trace on C∗

r (G), i.e. τ(f) = 〈λ(f)χe, χe〉.
Regard Y = C∗

r (G) as a C*-subalgebra of X = L(l2(G)), and extend τ to
L(l2(G)) by the same formula. X is a Banach C∗

r (G)-module and τ ∈ X ∗.
Define a derivation δ from C∗

r (G) to X ∗ by

δ(f) = λ(f)τ − τλ(f).

Then, for any f , δ(f) ∈ Y⊥ ∼= (X/Y)∗, so δ is a derivation from C∗
r (G) to

(X/Y)∗. Since C∗
r (G) is amenable, there is a ψ ∈ Y⊥ with δ(f) = λ(f)ψ −

ψλ(f). If φ = τ − ψ, then λ(f)φ = φλ(f) for all f ∈ C∗
r (G). If h ∈ Cb(G),

set µ(h) = φ(Mh), where Mh is the multiplication operator of h; then µ is a
right invariant mean on G.

This argument can be modified to show that if G is discrete and C∗
r (G)

is nuclear, then G is amenable, without using the deep result that a nuclear
C*-algebra is amenable: if C∗

r (G) is nuclear, then L(G) (III.3.3.1) is injective
and thus has a hypertrace (IV.2.2.21). The last part of the proof then shows
that G is amenable.

Putting this together with IV.3.5.2 and IV.3.1.13, we obtain:
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IV.3.5.6 Theorem. Let G be a discrete group. Then the following are
equivalent:

(i) C∗(G) is a nuclear C*-algebra.
(ii) C∗

r (G) is a nuclear C*-algebra.
(iii) G is an amenable group.

IV.3.5.5 was proved before either direction of the equivalence of nuclearity
and amenability was known. Then after Connes’ work on injective factors,
IV.3.5.6 was proved, providing evidence for the equivalence of nuclearity and
amenability.

Nonnuclear Subalgebras of Nuclear C*-Algebras

IV.3.5.7 From the preceding results, we can obtain an explicit example of
a nonnuclear C*-subalgebra of a nuclear C*-algebra, due to Choi [Cho79]. Let
G = Z2 ∗ Z3 with generators u and v, u2 = 1, v3 = 1; then G contains a copy
of F2, and is thus not amenable, so C∗

r (G) is not nuclear. Let C∗
r (G) act on

l2(G) via λ. There is a subset S of G such that S ∩ (uS) = S ∩ (vS) = ∅ and
S ∪ (uS) = S ∪ (vS)∪ (v−1S) = G (e.g. S is the set inductively defined as the
set of reduced words xy in {u, v, v−1} of length n ≥ 1 with x of length 1, y of
length n−1, x �= v−1, y /∈ S, i.e. S = {u, v, uv−1, uvu, uv−1u, vuv, . . . }). Let p
be the projection of l2(G) onto X = span(S), and let A be the C*-subalgebra
of L(l2(G)) generated by λ(C∗

r (G)) and p. Then A ∼= O2, which is nuclear.
See [Cho79, 2.6] for details.

Exactness in Group C*-Algebras

IV.3.5.8 In analogy with the C*-theory, there is a recent theory of exact
locally compact groups, initiated by Kirchberg and S. Wassermann [KW99].
If α is an action of a locally compact group G on a C*-algebra A, and J
is a (closed two-sided) ideal of A which is globally invariant under α, so
that α can be restricted to J , then there is also an induced action of G
on A/J , also denoted α, and quotient maps A �α G → (A/J) �α G and
A �

r
α G → (A/J) �

r
α G. It is routine to show that J �α G and J �

r
α G sit

naturally as ideals in A �α G and A �
r
α G respectively, and that the following

sequence is exact:

0 → J �α G → A �α G → (A/J) �α G → 0.

However, the reduced sequence

0 → J �
r
α G → A �

r
α G → (A/J) �

r
α G → 0

is not obviously exact in general. The locally compact group G is exact if the
reduced sequence is exact for every A, J , α. Every amenable group is exact.

There is a condition introduced by N. Higson, J. Roe, and G. Yu which
turns out to be closely related:
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IV.3.5.9 Definition. A locally compact group is amenable at infinity if it
has an amenable action on a compact space.

Since the trivial action of an amenable group on a point is amenable,
amenable groups are amenable at infinity.

IV.3.5.10 Theorem. Let G be a locally compact group. Consider the fol-
lowing conditions:

(i) G is amenable at infinity.
(ii) G is exact.
(iii) Whenever α is an action of G on an exact C*-algebra A, A�

r
α G is exact.

(iv) C∗
r (G) is an exact C*-algebra.

(v) There is a uniform embedding of G into a Hilbert space.

Then (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) and (i) =⇒ (v); if G is discrete, then (i)–(iv)
are all equivalent.

Parts of this theorem were proved in [KW99], [AD02], [Oza00], [HR00],
and [Yu00].

IV.3.5.11 It is unknown whether the conditions (i)–(iv) are equivalent for
nondiscrete groups. They are equivalent for almost connected groups; in fact,
they are always satisfied for almost connected groups. It is also unknown
whether (v) is equivalent to (i)–(iv) for discrete groups.

IV.3.5.12 An example was recently given by Ozawa [Oza00], using an un-
published construction of M. Gromov [Gro00], of a discrete group G not sat-
isfying the conditions of IV.3.5.10.

IV.3.5.13 The conditions of IV.3.5.10 are closely related to the Baum-
Connes Conjecture. The Baum-Connes Conjecture is discussed in detail in
[BCH94], [Hig98], and [Val02] (and a number of other references), and we will
not even state it precisely; roughly, it says that if G is a (discrete) group,
then the K-theory of C∗

r (G), and more generally of certain G-spaces, can be
described geometrically in a natural way. The Baum-Connes Conjecture for
a group G implies the Strong Novikov Conjecture on homotopy invariance of
higher signatures.



V

K-Theory and Finiteness

In this chapter, we give a discussion of the basics of K-theory for C*-algebras,
as well as properties related to finiteness in C*-algebras, including the impor-
tant notion of quasidiagonality, which may be regarded as a type of strong
finiteness. Another strong notion of finiteness, stable rank one, is included in
a general discussion of stable rank. K-Theory is a vast subject (other parts of
the theory are described more comprehensively in [CST04]), and we concen-
trate only on those aspects directly related to the structure and classification
of C*-algebras, most notably ordered K-theory for finite C*-algebras; thus
the topics treated in this chapter have a natural unity from this point of view.

V.1 K-Theory for C*-Algebras

One of the most profound developments in the subject of operator algebras
over the last thirty years has been the incorporation of ideas and techniques
from algebraic topology, to the extent that the whole subject is often thought
of as “noncommutative topology.” K-Theory and its sophisticated generaliza-
tions form the core of this aspect of the subject, and the language of K-theory
pervades almost all parts of the modern theory of operator algebras.

We will only give an overview of K-theory and its generalizations, with
very few proofs and even only modest explanation of the origin of the ideas and
the connections with topology. A much more complete treatment can be found
in [Bla98], [WO93], or [RLL00], and [Con94] contains an excellent description
of the uses of K-theory beyond those described here. The treatment here is
largely excerpted from [Bla98].

Topological K-theory is the study of vector bundles by algebraic means.
The first ideas are due to A. Grothendieck [Gro58], and K-theory as a branch
of algebraic topology was first developed by M. Atiyah and F. Hirzebruch
[AH59]. The notions of K-theory were translated into algebraic language,
leading to algebraic K-theory (the theory of projective modules) and a version
of K-theory suitable for Banach algebras. Good references are [Ati67] and



396 V K-Theory and Finiteness

[Kar78] for topological K-theory and [Ros94] and [Sri91] for algebraic K-
theory; these references give a complete historical account of the development
of the subject.

In this section, we describe the Banach algebra version of K-theory, spe-
cializing to C*-algebras.

V.1.1 K0-Theory

The goal of K0-theory is to associate to a C*-algebra (or pre-C*-algebra) A
an abelian group K0(A) whose elements are “formal differences of equivalence
classes of projections over A.” Most of the theory works equally well for an
arbitrary ring.

Equivalence of Projections

V.1.1.1 Recall (II.3.3.3) that projections p and q are equivalent in A, writ-
ten p ∼ q, if there is a partial isometry u ∈ A with u∗u = p, uu∗ = q. There
are two other natural notions of equivalence: p and q are unitarily equivalent
(in A), written p ∼u q, if there is a unitary v ∈ Ã with vpv∗ = q, and p and q
are homotopic (in A), written p ∼h q, if there is a norm-continuous path (pt)
(0 ≤ t ≤ 1) of projections in A with p0 = p, p1 = q.

p ∼u q =⇒ p ∼ q

(set u = vp), and
p ∼h q =⇒ p ∼u q

by II.3.3.4. The converse implications do not hold in general, but they are
true “stably”:

V.1.1.2 Proposition. If p ∼ q in A, then diag(p, 0) ∼u diag(q, 0) in
M2(A).
Proof: If u ∈ A is a partial isometry from p to q, then

v =
[

1 − q q
q 1 − q

] [
1 − p u∗

u 1 − q

]

is a unitary in M̃2(A) with v · diag(p, 0) · v∗ = diag(q, 0).

V.1.1.3 Proposition. If p ∼u q in A, then diag(p, 0) ∼h diag(q, 0) in
M2(A).
Proof: If vpv∗ = q, for 0 ≤ t ≤ 1 let

wt =
[

v 0
0 1

] [
cos(π

2 t)1 − sin(π
2 t)1

sin(π
2 t)1 cos(π

2 t)1

] [
v∗ 0
0 1

] [
cos(π

2 t)1 sin(π
2 t)1

− sin(π
2 t)1 cos(π

2 t)1

]

in M̃2(A), and set pt = wt · diag(p, 0) · w∗
t . Then p0 = diag(p, 0) and p1 =

diag(q, 0).
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The Semigroup V (A)

Recall (II.6.6.9) that M∞(A) is the algebra of all infinite matrices over A with
only finitely many nonzero entries. Whenever it is convenient, we will identify
Mn(A) with its image in the upper left-hand corner of Mn+k(A) or M∞(A).
The algebra M∞(A) has a natural norm, and the completion is the stable
algebra A ⊗ K of A (II.6.6.11).

V.1.1.4 Definition. V0(A) is the set of equivalence classes of projections
in A. We set V (A) = V0(M∞(A)).

There is a binary operation (orthogonal addition) on V (A): if [p], [q] ∈
V (A), choose p′ ∈ [p] and q′ ∈ [q] with p′ ⊥ q′ (this is always possible by
“moving down the diagonal,” as in the proof of V.1.1.3), and define

[p] + [q] = [p′ + q′].

This operation is well defined, and makes V (A) into an abelian semigroup
with identity [0].

V.1.1.5 If A is unital, V (A) can also be described as the set of isomorphism
classes of finitely generated projective right A-modules (one could equally
well use left modules instead). The binary operation on V (A) corresponds
to direct sum of modules. If A = C(X), then isomorphism classes of finitely
generated projective modules over A are in natural one-one correspondence
with isomorphism classes of (complex) vector bundles over X, the module
associated to a bundle being the set of continuous sections (II.3.3.4 is used to
show that every projective module comes from a bundle).

Because of V.1.1.2 and V.1.1.3, one obtains exactly the same semigroup
starting with ∼u or ∼h instead of ∼ as the equivalence, since the three notions
coincide on M∞(A).

V (A) depends on A only up to stable isomorphism: if M∞(A) ∼= M∞(B),
or more generally if A ⊗ K ∼= B ⊗ K (V.1.1.10), then V (A) ∼= V (B). In
particular, V (Mn(A)) ∼= V (A).

If A is separable, then V (A) is countable (this follows easily from II.3.3.4).

V.1.1.6 Examples.

(i) V (C) ∼= V (Mn) ∼= V (K) ∼= N ∪ {0}.
(ii) If A = L(H) with H separable and infinite-dimensional, then V (A) ∼=

{0} ∪ N ∪ {∞}. If A is a II1 factor, then

V (A) ∼= R+ ∪ {0}.

If A is a countably decomposable II∞ factor, then

V (A) ∼= {0} ∪ R+ ∪ {∞}.
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If A is a countably decomposable type III factor, then V (A) = {0,∞}.
In each case the operation is the ordinary one with ∞+ x = ∞ for all x.
(If A is not countably decomposable, then V (A) will have other infinite
cardinals.)

(iii) Let A = C(S2). There is an extremely important projection in M2(A),
called the Bott projection, which can be defined by identifying S2 with
CP 1 and identifying a point of CP 1 (a one-dimensional subspace of C

2)
with the projection onto the subspace (a projection in M2). In this way
a projection in

C(CP 1, M2) ∼= M2(C(S2))

is obtained. The corresponding line bundle on S2 is nontrivial. There are
countably many isomorphism classes of line bundles on S2, defined by
“clutching” over the equator, naturally parametrized by π1(U1(C)) ∼= Z.
Since every vector bundle on S2 is a sum of line bundles, V (A) ∼= N×Z,
with [1A] = (1, 0), and (1, 1) the class of the Bott projection.

Example (iii) shows the necessity of considering projections in matrix al-
gebras over A, since unexpected projections sometimes appear which have
nothing to do with projections in A. This can even happen in simple unital
C*-algebras [Bla81, 4.11] (but not in a factor). It turns out to be necessary
for K-theory to take such projections into account. Consideration of matrix
algebras is more natural if one associates projections with projective modules.

Example (ii) shows that the semigroup V (A) can fail to have cancellation.
Even V (C(X)) fails to have cancellation for many compact differentiable man-
ifolds X (e.g. S5 or T

5; cf. [Hus66]).

Properties of V (A)

V.1.1.7 Functoriality: If φ : A → B is a *-homomorphism, then φ induces a
map φ∗ : V0(A) → V0(B). Then φ extends to a homomorphism from M∞(A)
to M∞(B), which induces a semigroup homomorphism, also denoted φ∗, from
V (A) to V (B). So V is a covariant functor from the category of C*-algebras
to the category of abelian semigroups.

V.1.1.8 Homotopy Invariance: If φ, ψ : A → B are homotopic (II.5.5.6),
then φ(p) ∼h ψ(p) for any projection p ∈ M∞(A), and hence φ∗ = ψ∗, i.e. V
is a homotopy-invariant functor.

V.1.1.9 Direct Sums: If A = A1 ⊕ A2, then

M∞(A) ∼= M∞(A1) ⊕ M∞(A2)

and equivalence is coordinatewise; hence

V (A) ∼= V (A1) ⊕ V (A2).
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V.1.1.10 Inductive Limits: Suppose A = lim→(Ai, φij) (II.8.2.1). It is easy
to see that if A0 is the algebraic direct limit of (Ai, φij), then V (A0) is the
algebraic direct limit of (V (Ai), φij∗). However, since A is the completion of
A0, it is not obvious that the natural map from V (A0) to V (A) is either
injective or surjective. In fact, if B is a dense *-subalgebra of a C*-algebra
A, then the map from V (B) into V (A) is neither injective nor surjective in
general. But it is true in the inductive limit case, i.e. V (A) is the algebraic
direct limit of (V (Ai), φij∗). This is an immediate consequence of II.3.3.4 and
the next result, which follows from a functional calculus argument.

V.1.1.11 Proposition. Let A be the inductive limit of (Ai, φij), p a projec-
tion in A, and ε > 0. Then for sufficiently large i there is a projection p0 ∈ Ai

with ‖p − φi(p0)‖ < ε. If p, q ∈ A with p ∼u q, then there are projections p0

and q0 in Ai for sufficiently large i with ‖p−φi(p0)‖ < ε, ‖q−φ(q0)‖ < ε, and
p0 ∼u q0 in Ai.

V.1.1.12 Example. Let A be the CAR algebra (II.8.2.2(iv)). Then V (A) ∼=
D+, the nonnegative dyadic rational numbers.

The Grothendieck Group

V.1.1.13 If H is an abelian semigroup, then there is a universal enveloping
abelian group G(H) called the Grothendieck group of H. G(H) can be con-
structed in a number of ways. For example, G(H) may be defined to be the
quotient of H × H under the equivalence relation (x1, y1) ∼ (x2, y2) if and
only if there is a z with

x1 + y2 + z = x2 + y1 + z.

G(H) may be thought of as the group of (equivalence classes of) formal dif-
ferences of elements of H, thinking of (x, y) as x− y. The prototype example
of this construction is the construction of Z from N. G(H) may also be de-
fined by generators and relations, with generators {〈x〉 : x ∈ H} and relations
{〈x〉 + 〈y〉 = 〈x + y〉 : x, y ∈ H}.
V.1.1.14 There is a canonical homomorphism from H into G(H) which
sends x to [(x + x, x)]. This homomorphism is injective if and only if H has
cancellation. G(H) has the universal property that any homomorphism from
H into an abelian group factors through G(H). G gives a covariant functor
from abelian semigroups to abelian groups.

Definition of K0(A)

We might be tempted to define K0(A) to be the Grothendieck group of V (A);
but it turns out that this is not the proper definition for A nonunital. We
begin with the unital case.
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V.1.1.15 Definition. If A is a unital C*-algebra, K0(A) is the Grothen-
dieck group of V (A).

K0 is a covariant functor from unital C*-algebras (or even rings) to abelian
groups satisfying the properties of V.1.1.7-V.1.1.10. Elements of K0(A) may
be pictured as formal differences [p]− [q], where [p1]− [q1] = [p2]− [q2] if there
are orthogonal projections p′i, q

′
i, r in M∞(A) with p′i ∼ pi, q′i ∼ qi, and

p′1 + q′2 + r ∼ p′2 + q′1 + r.

This is the Standard Picture of K0 for unital A.

V.1.1.16 Examples.

(i) K0(C) ∼= K0(Mn) ∼= Z.
(ii) If A is a II1 factor, then K0(A) ∼= R. If A is an infinite factor, then

K0(A) = 0.
(iii) K0(C(S1)) ∼= Z; K0(C(S2)) ∼= Z

2.
(iv) Let A be the CAR algebra (II.8.2.2(iv)). Then K0(A) ∼= D, the dyadic ra-

tional numbers. Similarly, if B is the UHF algebra of type 3∞, then K0(A)
is the “triadic” rationals, rationals whose denominator is a power of 3.
(Thus in particular A and B are not isomorphic or even stably isomor-
phic.) More generally, the K0-groups of the UHF algebras are precisely
the dense subgroups of Q containing Z. These are in one-one correspon-
dence with the generalized integers (or supernatural numbers), formal
products

q = 2m23m35m5 · · ·
where an infinite number of primes and infinite exponents are allowed.
The subgroup of Q corresponding to q is the group, denoted Z(q), of all
rational numbers whose denominators “divide” q. If A = lim−→(An, φmn),
where An is a matrix algebra with A1 = C and φn,n+1 is a (unital)
embedding of multiplicity kn, then K0(A) = Z(q), where q =

∏
kn. It

turns out that two UHF algebras are isomorphic if (and only if) their
generalized integers are the same. This classification is due to J. Glimm
[Gli60], and is a special case of the classification of AF algebras (V.2.4.19).

If A is nonunital, there is a natural *-homomorphism µ : A† = Ã → C

with kernel A, and hence there is an induced homomorphism

µ∗ : K0(A†) → K0(C) ∼= Z.

V.1.1.17 Definition. If A is nonunital, then K0(A) = kerµ∗.
This definition is consistent with the previous one if A is unital; then

A† ∼= A⊕C, and µ is projection onto the second coordinate. Thus K0(A) may
be viewed as the set of formal differences [p]− [q], where p, q ∈ M∞(A†) with
p ∼ q mod M∞(A), with the usual notion of equivalence of formal differences
in K0(A†). In fact, any element of K0(A) may be written [p] − [qn], where
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qn = diag(1, . . . , 1, 0, . . . )

(with n ones on the diagonal) and p ≡ qn mod M∞(A): if n is large enough,
q ≤ qn, and

[p] − [q] = [p′ + (qn − q)] − [qn]

where p′ ∼ p and p′ ⊥ qn. This is the Standard Picture of K0(A) for general
A.

K0 is a covariant functor from C*-algebras (general rings) to abelian
groups which has the properties of V.1.1.7-V.1.1.10.

V.1.1.18 For any A, there is a homomorphism from V (A†) to K0(A), given
by [p] → [p] − [qn], where µ(p) is a rank n projection in M∞(C). Composing
this with the canonical map from V (A) to V (A†) yields a homomorphism
from V (A) to K0(A). If A is unital, or more generally stably unital (A ⊗ K

has an approximate unit of projections), then the image of V (A) generates
K0(A), but this is not true for general A.

V.1.1.19 Examples.

(i) K is stably unital, so K0(K) ∼= Z since V (K) ∼= N∪{0}.
(ii) K0(Co(R2)) ∼= Z because of V.1.1.16(iii); but V (Co(R2)) = 0.

Exactness

V.1.1.20 Theorem. If J is a (closed two-sided) ideal in A, then the se-
quence

K0(J) ι∗−→ K0(A) π∗−→ K0(A/J)

is exact in the middle, i.e. ker(π∗) = im(ι∗).
The proof is an easy calculation.
This theorem is one of the most important reasons for defining K0 the

way we did. If we instead had defined K0(A) to be the Grothendieck group of
V (A) in general, the result would fail for the exact sequence 0 → Co(R2) →
C(S2) → C → 0. Thus the more complicated definition of K0 is necessary to
make the desired exact sequences work.

V.1.1.21 It is important to realize that an exact sequence

0 −→ J
ι−→ A

π−→ A/J −→ 0

does not yield an exact sequence

0 −→ K0(J) ι∗−→ K0(A) π∗−→ K0(A/J) −→ 0

in general, i.e. ι∗ is not always injective (for example, A = L(H), J = K(H))
and π∗ not always surjective (for example, A = C([0, 1]), J = Co((0, 1))). The
problem with π∗ is that projections in a quotient do not in general lift to
projections. The exact sequence of V.1.1.20 can be expanded to a larger exact
sequence, but K1 and Bott periodicity are needed.
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V.1.2 K1-Theory and Exact Sequences

We now associate to a C*-algebra A another group K1(A), which is a stabilized
version of the group U(A)/U(A)o of connected components of the unitary
group of A. (This construction can only be done for Banach algebras, although
there is a related construction in algebraic K-theory for general rings.) There
are intimate connections between K0 and K1, using the notion of suspension.

Definition of K1(A)

V.1.2.1 Let A be a C*-algebra (or pre-C*-algebra). Define

Un(A) = {x ∈ U(Mn(A†)) : x ≡ 1n mod Mn(A)}

(if A is unital, then Un(A) is just isomorphic to U(Mn(A))). Similarly, we can
define

GLn(A) = {x ∈ GLn(A†) : x ≡ 1n mod Mn(A)}.
Un(A) [resp. GLn(A)] is a closed normal subgroup of Un(A†) [resp. GLn(A†)].
We embed Un(A) into Un+1(A) (and GLn(A) into GLn+1(A)) by x →
diag(x, 1). [This embedding is the “exponential” of the embedding of Mn(A)
into Mn+1(A) considered in V.1.1. This is the appropriate analog, since the
connection between K0 and K1 is given by exponentiation.]

Let U∞(A) = lim−→Un(A) and GL∞(A) = lim−→GLn(A). These are topologi-
cal groups with the inductive limit topology or the norm topology in M∞(A†).
U∞(A) and GL∞(A) can be thought of as the group of unitary or invertible in-
finite matrices which have diagonal elements in 1A† +A, off-diagonal elements
in A, and only finitely many entries different from 0 or 1A† . We will identify
elements of Un(A) or GLn(A) with their images in U∞(A) or GL∞(A).

The connected component of the identity Un(A)o is a path-connected open
subgroup of Un(A) (and similarly for GLn(A)o). The embedding of Un(A) into
Un+1(A) maps Un(A)o into Un+1(A)o, and U∞(A)o = lim−→Un(A)o. Similarly,
GL∞(A)o = lim−→GLn(A)o. There is a deformation retraction of GLn(A) onto
Un(A) given by polar decomposition, and hence GLn(A)/GLn(A)o is naturally
isomorphic to Un(A)/Un(A)o.

V.1.2.2 Definition.

K1(A) = U∞(A)/U∞(A)o = lim−→[Un(A)/Un(A)o]

or alternatively

K1(A) = GL∞(A)/GL∞(A)o = lim−→[GLn(A)/GLn(A)o].
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This is related to, but not the same as, the group Kalg
1 of algebraic K-

theory: Kalg
1 (A) is the quotient of GL∞(A) by its commutator subgroup. See

[Kar78, II.6.13] for the relationship.
It is easily seen that K1(A) is also isomorphic to U1(A ⊗ K)/U1(A ⊗ K)o.
K1(A) is countable if A is separable, since nearby invertible elements are

in the same component.

V.1.2.3 Examples.

(i) K1(C) = 0, and more generally K1 of any von Neumann algebra (or AW*-
algebra) is 0 (the unitary group of a von Neumann algebra is connected by
spectral theory). K1 of any AF algebra is also 0, since the path component
of any unitary is open and thus contains a unitary with finite spectrum.

(ii) If A = C(S1), then U1(A)/U1(A)o ∼= Z by sending a function to its
winding number around 0. The map from U1(A)/U1(A)o to K1(A) is an
isomorphism in this case, so K1(C(S1)) ∼= Z. We also have K1(Co(R)) ∼=
Z by the same argument.

(iii) Let Q be the Calkin algebra (I.8.2.1). Then K1(Q) ∼= Z, with the iso-
morphism being given by Fredholm index.

V.1.2.4 The map from Un(A)/Un(A)o to Un+1(A)/Un+1(A)o need not be
an isomorphism, and hence the map from Un(A)/Un(A)o to K1(A) need not
be an isomorphism. For example, let A = C(S3). Then U1(A)/U1(A)o is
trivial since every map from S3 to S1 is homotopic to a constant; but the
homeomorphism S3 ∼= SU(2) gives a unitary in C(S3, M2) ∼= M2(A) which is
not in the connected component of the identity.

The group Un(A) is almost never abelian. Even the group Un(A)/Un(A)o
need not be abelian in general (even if A is commutative). However, we have
the following. If u ∈ GLn(A), we write [u] for its image in K1(A).

V.1.2.5 Proposition. K1(A) is an abelian group; in fact,

[u][v] = [diag(u, v)].

Proof: If u, v ∈ Un(A), then by an argument similar to the proof of V.1.1.3,
we have that diag(uv, 1), diag(vu, 1), and diag(u, v) are all in the same con-
nected component of U2n(A).

V.1.2.6 The theory of stable rank (V.3.1) asserts that the map from the
group Un(A)/Un(A)o to K1(A) is an isomorphism for sufficiently large n if
sr(A) is finite, and gives some information on the smallest n for which this
is true. The question of when this map is injective or surjective is a typical
question of nonstable K-theory ; see V.3.1.26 for more details.
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V.1.2.7 If φ : A → B, then φ extends uniquely to a unital map from A†

to B†, and hence defines a homomorphism φ∗ : K1(A) → K1(B). Also, if
A = lim−→(Ai, φij), then it is easy to see that

K1(A) ∼= lim−→(K1(Ai), φij∗).

So K1 is a functor from C*-algebras to abelian groups which commutes with
inductive limits.

Suspensions

The connection with K0 uses the fundamental notion of suspension (II.5.5.10).
Since SA ∼= Co(R) ⊗ A (II.9.4.4), we have

S(Mn(A)) ∼= Mn(SA) and S(A ⊗ K) ∼= SA ⊗ K

and the map φ : A → B induces Sφ : SA → SB (suspension is functorial).
We have that (SA)† is isomorphic to

{f : [0, 1] → A† | f continuous, f(0) = f(1) = λ1, f(t) = λ1 + xt for xt ∈ A}
∼= {f : S1 → A | f continuous, f(z) = λ1 + xz, xz ∈ A, x1 = 0}.

V.1.2.8 There is a map θA : K1(A) → K0(SA) defined as follows. Let
v ∈ Un(A). Take a path wt from 12n to diag(v, v∗) in U2n(A) as in the proof
of V.1.1.3. Set pt = wtqnw∗

t . Then p = (pt) is a projection in M2n((SA)†).
Set θA([v]) = [p] − [qn] (where qn also denotes the corresponding element of
M∞((SA)†), i.e. the constant function qn).

V.1.2.9 Theorem. θA : K1(A) → K0(SA) is an isomorphism. Further-
more, the isomorphism is natural, i.e. θ gives an invertible natural transfor-
mation from K1 to K0 ◦ S.

The proof is quite straightforward and elementary, but rather long.

Long Exact Sequence

V.1.2.10 Corollary. If

0 → J
ι−→ A

π−→ A/J → 0

is an exact sequence of C*-algebras, then the induced sequence

K1(J) ι∗−→ K1(A) π∗−→ K1(A/J)

is exact in the middle.
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V.1.2.11 Just as with K0, we cannot make the sequence exact at the ends
by adding 0’s. For example, if A = C([0, 1]), J = Co((0, 1)), then the unitary
u(t) = e2πit in J† gives a nontrivial element of K1(J) which becomes trivial
in K1(A), so the map from K1(J) to K1(A) is not injective. Similarly, if
A = C(D̄), J = Co(D), where D is the open unit disk, then A/J ∼= C(S1).
K1(A) is trivial, but K1(A/J) ∼= Z, so the map from K1(A) to K1(A/J) is
not surjective.

Instead, we can define a connecting map ∂ : K1(A/J) → K0(A) which
makes a long exact sequence

K1(J) ι∗−→ K1(A) π∗−→ K1(A/J) ∂−→ K0(J) ι∗−→ K0(A) π∗−→ K0(A/J).

V.1.2.12 Definition. Let u ∈ Un(A/J), and let w ∈ U2n(A) be a lift of
diag(u, u−1) (II.1.6.8, V.1.2.5). Define

∂([u]) = [wqnw−1] − [qn] ∈ K0(J)

(we have ∂([u]) ∈ K0(J) because diag(u, u−1) commutes with qn, so wqnw∗ ∈
M2n(J†), and its image mod M2n(J) is qn).

The map ∂ is well defined (a straightforward calculation), and is obviously
a homomorphism since both operations are diagonal sum.

V.1.2.13 The map ∂ is called the index map. The reason is the following.
Suppose A is a unital C*-algebra and u is a unitary in Mn(A/J). If u lifts to
a partial isometry v ∈ Mn(A), then diag(u, u∗) lifts to the unitary

w =
[

v 1 − vv∗

1 − v∗v v∗

]

so

∂([u]) = [wqnw−1] − [qn] = [diag(vv∗, 1 − v∗v)] − [qn] = [1 − v∗v] − [1 − vv∗].

In the special case A = L(H), J = K(H), and K0(K(H)) is identified with Z

in the standard way, the map ∂ is exactly the map which sends a unitary in
the Calkin algebra to its Fredholm index.

Unitaries in a quotient do not lift to partial isometries in general, so the
definition of ∂ must be stated in the more complicated way given above.

V.1.2.14 Proposition. ∂ makes the sequence exact at K1(A/J) and at
K0(J).

The proof is a simple calculation.

V.1.2.15 We can also define higher K-groups by

K2(A) = K1(SA) = K0(S2A), . . . , Kn(A) = K0(SnA).

We then have connecting maps from Kn+1(A/J) to Kn(J) for each n by
suspension, and an infinite long exact sequence

· · · ∂−→ Kn(J) ι∗−→ Kn(A) π∗−→ Kn(A/J) ∂−→ Kn−1(J) ι∗−→ · · · π∗−→ K0(A/J).
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V.1.2.16 Proposition. If

0 −→ J −→ A −→ A/J −→ 0

is a split exact sequence of C*-algebras, then

0 −→ Kn(J) −→ Kn(A) −→ Kn(A/J) −→ 0

is a split exact sequence for all n. Thus

Kn(A) ∼= Kn(J) ⊕ Kn(A/J)

for all n.
Proof: All the connecting maps are 0 since everything in Kn(A/J) lifts.

V.1.2.17 Corollary. K1(A) ∼= K1(A†) for all A. More precisely, the in-
clusion of A into A† induces an isomorphism.
Proof: Use V.1.2.16 plus the fact that K1(C) = 0.

Bott Periodicity and the Six-Term Exact Sequence

In fact, K0(A) is naturally isomorphic to K1(SA), and hence to K2(A). As
a consequence, the long exact sequence of V.1.2.15 becomes a cyclic 6-term
exact sequence.

V.1.2.18 We have a split exact sequence

0 −→ SA −→ ΩA −→ A −→ 0

where ΩA = C(S1, A), which induces a split exact sequence

0 −→ K1(SA) −→ K1(ΩA) −→ K1(A) −→ 0

so K1(SA) = ker η∗, where η : ΩA → A is evaluation at 1. This will be
our standard picture of K1(SA). So K1(SA) may be viewed as the group of
homotopy equivalence classes of loops in U∞(A) with base point 1. The group
operation is pointwise multiplication, but may alternately be taken as the
ordinary concatenation multiplication of loops [Spa66, 1.6.10], i.e. K1(SA) ∼=
π1(U∞(A)).

If p is a projection in Mn(A†), write

fp(z) = zp + (1 − p) ∈ Un(Ω(A†)) ∼= C(S1,Un(A†)).

If p1 ≡ p2 mod Mn(A), then fp1f
∗
p2

∈ Un(ΩA), taking the value 1 at z = 1.
If p1 ∼h p2, then fp1 is homotopic to fp2 as elements of Un(Ω(A†)) taking the
value 1 at 1, i.e. as loops in Un(A†) with base point 1.
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V.1.2.19 Definition. The homomorphism βA : K0(A) → K1(SA) defined
by

βA([e] − [qn]) = [fef
−1
qn

]

is called the Bott map for A.
βA is well defined, and the Bott map construction is clearly functorial

(natural).

V.1.2.20 Theorem. [Bott Periodicity] βA is an isomorphism.
This theorem is probably the central result of K-theory. There are several

essentially different proofs known; all require nontrivial arguments and cal-
culations. Perhaps the most elegant proof is an argument of Cuntz [Cun81b],
using a “Toeplitz extension.” The first proof of the theorem in this form was
given by Atiyah [Ati68].

V.1.2.21 Combining V.1.2.20 with V.1.2.9, θSA ◦ βA gives an isomorphism
between K0(A) and K0(S2A) which is natural in A. In the case A = C, this
map provides an isomorphism from K0(C) to K0(Co(R2)). This isomorphism
can be described as the map which sends [1] to [p] − [q1], where p is the Bott
projection in M2(Co(R2)†) ∼= M2(C(S2)).

Combining V.1.2.20 with V.1.2.15, we obtain the most fundamental exact
sequence in K-theory:

V.1.2.22 Corollary. [Standard Six-Term Exact Sequence] Let 0 −→
J

ι−→ A
π−→ A/J −→ 0 be an exact sequence of C*-algebras. Then the fol-

lowing six-term cyclic sequence is exact:

K0(J) ι∗−−−−→ K0(A) π∗−−−−→ K0(A/J)

∂

�
⏐
⏐

⏐
⏐
�∂

K1(A/J) π∗←−−−− K1(A) ι∗←−−−− K1(J)

The map ∂ : K0(A/J) → K1(J) is the composition of the suspended index
map ∂ : K2(A/J) → K1(J) with the Bott map.

V.1.2.23 The connecting map ∂:K0(A/J) → K1(J) is called the exponen-
tial map. An explicit formula for this map is given by

∂([p] − [qn]) = [exp(2πix)]

where p is a projection in M∞((A/J)†) with p ≡ qn mod M∞(A/J) and
x ∈ M∞(A†)+ with π(x) = p. The derivation of this formula is an easy
exercise.

If p lifts to a projection in M∞(A†), then ∂([p]−[qn]) = 0. The exponential
map is the obstruction to (stably) lifting projections from quotients, just as
the index map is the obstruction to (stably) lifting unitaries.
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V.1.3 Further Topics

K-Theory of Crossed Products

It is not easy to determine the K-theory of a crossed product. However,
there are two fundamental results which allow computation of the K-theory
of crossed products by Z or R:

V.1.3.1 Theorem. [Pimsner–Voiculescu Exact Sequence] Let A be
a C*-algebra and α ∈ Aut(A). Then there is a cyclic six-term exact sequence

K0(A) 1−α∗−−−−→ K0(A) ι∗−−−−→ K0(A �α Z)

∂

�
⏐
⏐

⏐
⏐
�∂

K1(A �α Z) ι∗←−−−− K1(A) 1−α∗←−−−− K1(A)

where ι : A → A⊗αZ is the inclusion and α∗ : Kn(A) → Kn(A) is the induced
automorphism.

V.1.3.2 Theorem. [Connes’ Thom Isomorphism] If α : R → Aut(A),
then Ki(A �α R) ∼= K1−i(A) (i = 0, 1).

Connes’ Thom Isomorphism [Con81] is a generalization of Bott Periodicity
(the case of trivial action), and is an analog (though not a generalization) of
the ordinary Thom isomorphism, which says that if E is a K-oriented n-
dimensional real vector bundle over X, and E is itself regarded as a locally
compact Hausdorff space, then Ki(Co(E)) ∼= Ki+n mod 2(C(X)). The result is
a bit surprising at first glance, since it says that the K-theory of a crossed
product by R is independent of the action. An intuitive argument for this fact
is that any action of R can be continuously deformed to a trivial action, and
K-theory is insensitive to continuous deformations. This rough argument can
be used as the basis of a proof, using KK-theory ([FS81]; see also [ENN93]).
The Pimsner-Voiculescu (P-V) exact sequence can then be obtained rather
easily from the Thom isomorphism via a mapping torus construction (it is
just the six-term exact sequence of a suitable extension).

V.1.3.3 The P-V exact sequence [PV80], which predates Connes’ result,
shows that the K-theory of a crossed product by Z is not independent of the
action; but (roughly speaking) it depends only on the induced action on the
K-theory of A. The P-V exact sequence is not in general enough to completely
determine the K-theory of the crossed product, except in special cases (e.g.
when the K-groups of A are free abelian groups); but it is nonetheless a
powerful tool in determining the possibilities.
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V.1.3.4 Example. Let On be the Cuntz algebra (II.8.3.3). Write

On ⊗ K = B �σ Z

as in II.10.3.15(iv). Since K0(B) is Z(n∞), K1(B) = 0, and α∗ : K0(B) →
K0(B) is multiplication by n, we have

K1(On) = ker α∗ = 0

K0(On) ∼= Z(n∞)/(1 − n)Z(n∞)
∼= Zn−1.

(Cuntz’s original argument computing the K-theory of On was more elemen-
tary and did not use the P-V sequence.) In fact, [1On

] is a generator of K0(On);
if s1, . . . , sn are the generators of On and pk = sks∗k, then

[1] = [pk] = [p1] + · · · + [pn] = n[1]

so (n − 1)[1] = 0. A similar argument using the crossed product description
of OA ⊗K for an n× n matrix A shows that K1(OA) ∼= ker(I −A) ⊆ Z

n and
K0(OA) = Z

n/(I − A)Zn.

V.1.3.5 It is harder to describe the K-theory of crossed products by Zn or
T. There are six-term exact sequences [Bla98, 10.6,10.7.1], but they give much
less information than the P-V sequence. Computing the K-theory of crossed
products by most finite groups is harder yet! The P-V sequence generalizes to
reduced crossed products by free groups.

K-Theory as Cohomology

If X is a locally compact Hausdorff space, define K−n(X) = Kn(Co(X))
for n = 0, 1 (or n ∈ N). K∗(X) is called the complex K-theory of X (with
compact supports), and is sometimes written K∗

C
(X) or KU∗(X) (the U in

KU stands for “unitary.”) Because of the contravariant relationship between
X and Co(X), Kn is a contravariant functor, which is homotopy-invariant.
Relative K-groups can be defined by Kn(X,Y ) = Kn(Co(X \ Y )).

V.1.3.6 Theorem. Complex K-theory is an extraordinary cohomology the-
ory, that is, it is a sequence of homotopy-invariant contravariant functors
from compact spaces and compact pairs to abelian groups, with a long ex-
act sequence, and satisfying the excision and continuity axioms (but not the
dimension axiom).
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V.1.3.7 Theorem. [Chern Character] Let X be compact. Then there
are isomorphisms

χ0 : K0(X) ⊗ Q →
⊕

n even

Hn(X; Q)

χ1 : K−1(X) ⊗ Q →
⊕

n odd

Hn(X; Q)

where Hn(X; Q) denotes the n-th ordinary (Alexander or Čech) cohomology
group of X with coefficients in Q.

So, at least rationally, K0(X) is just the direct sum of the even cohomology
groups of X, and K−1(X) the sum of the odd ones. (The result is not always
true if the groups are not rationalized.)

See [Kar78] for a discussion of topological K-theory and proofs of these
theorems.

Additional Observations

V.1.3.8 It is sometimes useful to unify K0 and K1 by regarding K-theory
as a Z2-graded theory, writing K∗(A) = K0(A)⊕K1(A) with the K0 and K1

the even and odd parts respectively. A *-homomorphism φ : A → B gives a
homomorphism φ∗ : K∗(A) → K∗(B) of degree 0; the six-term exact sequence
V.1.2.22 becomes a triangular three-term exact sequence with ∂ : K∗(A/J) →
K∗(J) a homomorphism of degree 1.

V.1.3.9 There is an alternate way of viewing the groups K0(A) and K1(A)
using the outer multiplier algebra of A, which helps to motivate KK-theory
(V.1.4.4): Ki(A) is isomorphic to K1−i of the stable outer multiplier algebra
M(A⊗K)/(A⊗K) of A. The proof uses the six-term exact sequence and the
fact that the K-theory of the stable multiplier algebra M(A ⊗ K) is trivial.

V.1.3.10 Here are some considerations which help to motivate E-theory
(V.1.4.7). If A and B are C*-algebras, denote by [A,B] the set of homotopy
classes of *-homomorphisms from A to B (II.5.5.6).

(i) For any A and B, there is a notion of “orthogonal direct sum” on [A,B⊗K]
making it into an abelian semigroup [use an isomorphism M2(K) ∼= K].

(ii) A homomorphism from C into a C*-algebra B is just a choice of projec-
tion in B (the image of 1). So for any B, we may identify [C, B⊗K] with
V (B).

(iii) A homomorphism φ from S = Co(R) ∼= Co((0, 1)) into a C*-algebra B is
just a choice of unitary in B† which is 1 mod B (the image of f(t) = e2πit

under the extension of φ to φ̃ : C(T) → B†). Thus [S,B ⊗ K] may be
identified with K1(B).

(iv) Using Bott periodicity, [S, SB⊗K] may be identified with K0(B). If B is
unital, this identification agrees with the suspension of the identification
induced by the identification of (ii).
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V.1.4 Bivariant Theories

K-Theory is just one aspect of a large class of noncommutative homology/
cohomology theories on C*-algebras and more general topological algebras.
The most general theories are bivariant, i.e. bifunctors which are contravariant
in one variable and covariant in the other. These theories are discussed in
detail in [CST04], so we give only a very brief description here.

Extension Theory

V.1.4.1 The first bivariant theory is the theory of extensions of C*-algebras,
discussed in II.8.4. Given (separable) C*-algebras A and B, a semigroup
Ext(A,B) is defined. For fixed B, Ext(·, B) is a contravariant functor from
C*-algebras to abelian semigroups, and for fixed A, Ext(A, ·) is a covariant
functor. The group Ext−1(A,B) (which coincides with Ext(A,B) in many
cases, e.g. when A is nuclear) is of particular importance, and is a homotopy-
invariant bifunctor with six-term exact sequences and Bott Periodicity in each
variable separately (under mild hypotheses).

V.1.4.2 L. Brown, R. Douglas, and P. Fillmore [BDF77] showed that if X
is compact, then

Ext(C(X)) := Ext(C(X), C) ∼= K1(X),

the first K-homology group of X(K-homology is the homology theory which is
dual to complex K-theory). This result attracted great attention from topol-
ogists, and may fairly be regarded as the beginning of noncommutative topol-
ogy as a discipline (although work such as Murray-von Neumann dimension
theory, Fredholm index theory, and the Atiyah–Karoubi approach to topo-
logical K-theory can in retrospect be considered to be pioneering work in
noncommutative topology).

V.1.4.3 It turns out, and is not hard to see, that we have Ext(C, B) ∼=
K1(B) for any (separable) B, and hence by Bott Periodicity

K0(B) ∼= Ext(Co(R), B)

for any (separable) B. Thus the bivariant Ext theory includes K-theory for
separable C*-algebras, with a dimension shift.

In light of V.1.4.2, it makes sense to define

K1(A) = Ext(A) := Ext(A, C)

for a general separable (nuclear) C*-algebra, and by Bott Periodicity to
let K0(A) = Ext(A,Co(R)). These groups are sometimes called the “K-
homology” groups of A, but this terminology is misleading since K0 and K1

are actually contravariant functors from C*-algebras to abelian groups.
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KK-Theory

V.1.4.4 A very important advance in the development of operator K-theory
is the KK-theory of Kasparov [Kas80b]. Given a pair of C*-algebras (A,B),
with A separable and B containing a strictly positive element, we define an
abelian group KK(A,B). There are two standard ways of viewing the ele-
ments of KK(A,B), as Fredholm modules or as quasihomomorphisms; each
is useful in certain applications. The quasihomomorphism approach (due to J.
Cuntz) is perhaps more intuitive. A quasihomomorphism from A to B is a pair
(φ, φ) of homomorphisms from A to M(B ⊗ K) which agree modulo B ⊗ K.
Then KK(A,B) is the set of equivalence classes of quasihomomorphisms from
A to B, under a suitable notion of homotopy; the group operation, similar to
that on Ext, is essentially orthogonal direct sum. KK is a homotopy-invariant
bifunctor from pairs of C*-algebras to abelian groups, contravariant in the first
variable and covariant in the second. KK(C, B) ∼= K0(B).

V.1.4.5 The central tool in the theory is the intersection product (or Kas-
parov product), a method of combining an element of KK(A,B) with one
in KK(B,C) to yield an element of KK(A,C). In the quasihomomorphism
picture, the intersection product gives a way of “composing” quasihomomor-
phisms; if one of the quasihomomorphisms is an actual homomorphism, then
the intersection product is really just composition, defined in a straightforward
way. The technical details of establishing the properties of the intersection
product are formidable.

V.1.4.6 Armed with the intersection product, it is fairly easy to prove all the
important properties of the KK-groups. First, KK(SA,B) ∼= KK(A,SB);
call this KK1(A,B). Then we have Bott periodicity

KK1(SA,B) ∼= KK1(A,SB) ∼= KK(A,B) ∼= KK(SA, SB).

Moreover KK1(C, B) ∼= K1(B); more generally, if A is nuclear, then

KK1(A,B) ∼= Ext(A,B).

There are cyclic six-term exact sequences in each variable separately under
some mild restrictions. We have KK(C, B) ∼= K0(B), KK1(C, B) ∼= K1(B),
KK(A, C) ∼= K0(A), KK1(A, C) ∼= K1(A) for any (separable) A,B.

E-Theory

V.1.4.7 There are some situations where the six-term exact sequences do
not hold in KK-theory, however. This shortcoming and some important po-
tential applications led A. Connes and N. Higson [CH90] to develop E-theory,
which may be regarded as a “variant” of KK-theory in which the six-term
exact sequences hold in complete generality (for separable C*-algebras). The
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basic objects of study in E-theory are asymptotic morphisms, paths of maps
indexed by [1,∞) which become asymptotically *-linear and multiplicative.
E(A,B) is the set of homotopy classes of asymptotic morphisms from A to
B ⊗K. As with KK, there is a natural way of “composing” asymptotic mor-
phisms (well defined up to homotopy), giving a product in E-theory analogous
to the intersection product.

For any separable A,B, there is a natural map from KK(A,B) to E(A,B),
which is an isomorphism if A is nuclear.

Equivariant and General Bivariant K-Theory

V.1.4.8 These bivariant theories can be abstracted and axiomatized to ap-
ply to more general classes of topological algebras and classes of extensions
which will lead to six-term exact sequences.

All the theories can be adapted to incorporate actions of second countable
locally compact topological groups, giving equivariant theories.

V.1.4.9 Operator K-theory has led both to spectacular advances within the
subject of operator algebras and to deep applications to problems in geome-
try and topology. K-Theory, including the bivariant theories, has become a
standard tool in the subject of operator algebras. Perhaps the greatest achieve-
ment of K-theory within operator algebras has been to give some insight into
the previously mysterious (and still rather mysterious) internal structure of
crossed products and free products of C*-algebras. The two most notable
applications to geometry and topology so far have been the various gener-
alizations of the Atiyah–Singer Index Theorem due to Connes, Skandalis,
Kasparov, Moscovici, Miscenko, Fomenko, and Teleman, and the work on
the homotopy invariance of higher signatures of manifolds by Kasparov and
Miscenko and vanishing of “higher Â-genera” of manifolds of positive scalar
curvature by Rosenberg (parallel to work of Gromov and Lawson). It would
appear certain that the work so far has only scratched the surface of the pos-
sibilities. Until recently it would have been difficult to conceive of theorems
in differential topology whose proofs require the use of operator algebras in
an essential way.

V.1.5 Axiomatic K-Theory and the Universal Coefficient Theorem

Work of J. Cuntz, N. Higson, J. Rosenberg, and C. Schochet shows that
K-theory can be characterized (at least for suitably nice C*-algebras) by a
simple set of axioms analogous to the Steenrod axioms of cohomology, and
has established generalizations for KK-theory of the Universal Coefficient
Theorem and Künneth Theorem of topology, which provide powerful tools for
the calculation of the KK-groups of many C*-algebras (essentially reducing
the problem to calculation of K-groups).
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KK as a Category

V.1.5.1 The KK-groups can be regarded as the morphisms of a category.
Let KK be the category whose objects are separable C*-algebras, and for
which the set of morphisms from A to B is KK(A,B). Composition of mor-
phisms is via the intersection product.

One can similarly form a category E with the same objects, with E(A,B)
the morphisms from A to B.

KK-Equivalence and the Bootstrap Class

V.1.5.2 An isomorphism in the category KK is called a KK-equivalence.
KK-Equivalence is a fairly weak equivalence relation on (separable) C*-
algebras, with the following properties:

(i) If A is a separable C*-algebra, then A is KK-equivalent to A⊗K. Thus
stably isomorphic C*-algebras are KK-equivalent.

(ii) Homotopy-equivalent C*-algebras are KK-equivalent.
(iii) If 0 → J → A → A/J → 0 is a split exact sequence of C*-algebras, then

A is KK-equivalent to J ⊕ A/J .

One can also define E-equivalence, using isomorphisms in E. KK-equivalence
implies E-equivalence.

V.1.5.3 If A and B are KK-equivalent, then for any D we have

KK(A,D) ∼= KK(B,D) and KK(D,A) ∼= KK(D,B).

In particular,

K0(A) ∼= KK(C, A) ∼= KK(C, B) ∼= K0(B)

and similarly K1(A) ∼= K1(B).
It turns out that for suitably nice A and B, the converse is true (V.1.5.13).

V.1.5.4 The (large) bootstrap class is the smallest class N of separable
nuclear C*-algebras with properties (i), (iii), and (v) of IV.3.1.15, i.e. C ∈
N , N is closed under countable inductive limits, and N has the two-out-of-
three property, and in addition N is closed under KK-equivalence. Then N
also satisfies (ii) (N is closed under stable isomorphism) and (iv) (a Toeplitz
extension yields that N is closed under crossed products by Z), and in addition
N satisfies (vi) of IV.3.1.15 and N is closed under homotopy equivalence.

N contains the small bootstrap class N of IV.3.1.15, and in particular
contains all commutative C*-algebras. It is an important unsolved problem
whether N is the class of all separable nuclear C*-algebras; it certainly con-
tains all separable nuclear C*-algebras for which there is hope of a classifica-
tion via K-theoretic invariants.
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The Universal Coefficient Theorem and Künneth Theorems

We now state several results which allow computation of KK-groups of “nice”
C*-algebras. Among other things, KK-equivalence is completely determined
by isomorphism of the K0 and K1 groups for C*-algebras in the class N de-
fined in V.1.5.4, and consequently that any C*-algebra in N is KK-equivalent
to a commutative C*-algebra. The results of this section are due to J. Rosen-
berg and C. Schochet ([RS87]; [Sch82]), based on earlier work by L. Brown
[Bro84]. Cuntz had also previously obtained the Universal Coefficient sequence
for the OA.

All C*-algebras in this subsection will be separable. We will consider K-
theory and KK-theory to be Z2-graded theories in order to simplify notation:
KK∗(A,B) will denote KK(A,B) ⊕ KK1(A,B), and similarly

K∗(A) = K0(A) ⊕ K1(A), K∗(A) = K0(A) ⊕ K1(A).

If G and H are graded abelian groups, then Hom(G,H) is also graded by
degree-preserving/degree-reversing maps. A tensor product of abelian groups
is, of course, the ordinary tensor product over Z. A tensor product of graded
groups has a natural and obvious grading.

V.1.5.5 For any separable C*-algebras A and B, there are maps

α : K∗(A) ⊗ K∗(B) → K∗(A ⊗ B)

β : K∗(A) ⊗ K∗(B) → KK∗(A,B)

γ : KK∗(A,B) → Hom(K∗(A),K∗(B))

which are natural in A and B.
These maps are defined using the intersection product. α comes from the

pairing KK∗(C, A) × KK∗(C, B) → KK∗(C, A ⊗ B). More specifically, α is
induced by the four pairings

KK(C, A) × KK(C, B) → KK(C, A ⊗ B)

KK(Co(R), A) × KK(C, B) → KK(Co(R), A ⊗ B)

KK(C, A) × KK(Co(R), B) → KK(Co(R), A ⊗ B)

KK(Co(R), A) × KK(Co(R), B) → KK(Co(R2), A ⊗ B) ∼= KK(C, A ⊗ B)

The map β comes from the pairing KK∗(A, C)×KK∗(C, B) → KK∗(A,B).
Finally, γ is the adjoint of the pairing KK∗(C, A)×KK∗(A,B) → KK∗(C, B).

When A = B, KK∗(A,A) is a graded ring, and γ is a ring-homomorphism
(if the intersection product is written composition-style).

The surjectivity of β measures to what extent a general KK-element
factors through C or Co(R) (or through C(S1), which is KK-equivalent to
C ⊕ Co(R)).
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V.1.5.6 It is not necessary to use KK-theory to define α, β, or γ. α has
a straightforward K-theoretic definition (which actually defines a map from
K∗(A) ⊗ K∗(B) to K∗(A ⊗max B)), and for β everything may be rephrased
in terms of the pairing between K-theory and “K-homology”. γ has a nice
interpretation in terms of extensions, which could be taken as an alternate
definition. If τ ∈ KK1(A,B) is represented by the extension

0 −→ B −→ D −→ A −→ 0

then γ(τ) is given by the connecting maps in the associated six-term exact
sequence of K-theory.

V.1.5.7 One might hope that α, β, and γ would be isomorphisms, but
they cannot be in general for (essentially) homological algebra reasons. If the
sequences are modified in the appropriate way to incorporate the homological
algebra obstructions, sequences are obtained which are valid at least for C*-
algebras in N .

The additional ingredient is easiest to describe in the case of γ. If γ(τ) = 0
for an extension τ , then the six-term K-theory sequence degenerates into two
short exact sequences of the form

0 −→ Ki(B) −→ Ki(D) −→ Ki(A) −→ 0

and thus determines an element κ(τ) ∈ Ext1
Z
(K∗(A),K∗(B)) [this is the Ext1

Z
-

group of homological algebra, the derived functor of the Hom functor, not the
Ext-group of II.8.4.18.] Note that κ reverses degree. The maps γ and κ are
generalizations of the Adams d and e operations in topological K-theory.

The obstruction for α and β is an element of TorZ

1 , the derived functor of
the tensor product functor. It is natural to expect a TorZ

1 obstruction, since
TorZ

1 measures the deviation from exactness of the tensor product functor on
groups.

The statements of the theorems are as follows.

V.1.5.8 Theorem. [Universal Coefficient Theorem (UCT)] [RS87]
Let A and B be separable C*-algebras, with A ∈ N . Then there is a short
exact sequence

0 −→ Ext1
Z
(K∗(A),K∗(B)) δ−→ KK∗(A,B)

γ−→ Hom(K∗(A),K∗(B)) −→ 0

The map γ has degree 0 and δ has degree 1. The sequence is natural in each
variable, and splits unnaturally. So if K∗(A) is free or K∗(B) is divisible, then
γ is an isomorphism.

V.1.5.9 Theorem. [Künneth Theorem (KT)] [RS87] Let A and B be
separable C*-algebras, with A ∈ N , and suppose K∗(A) or K∗(B) is finitely
generated. Then there is a short exact sequence
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0 −→ K∗(A) ⊗ K∗(B)
β−→ KK∗(A,B)

ρ−→ TorZ

1 (K∗(A),K∗(B)) −→ 0.

The map β has degree 0 and ρ has degree 1. The sequence is natural in each
variable, and splits unnaturally. So if K∗(A) or K∗(B) is torsion-free, β is an
isomorphism.

V.1.5.10 Theorem. [KünnethTheorem forTensorProducts (KTP)]
[Sch82] Let A and B be C*-algebras, with A ∈ N . Then there is a short exact
sequence

0 −→ K∗(A) ⊗ K∗(B) α−→ K∗(A ⊗ B) σ−→ TorZ

1 (K∗(A),K∗(B)) −→ 0.

The map α has degree 0 and σ has degree 1. The sequence is natural in each
variable, and splits unnaturally. So if K∗(A) or K∗(B) is torsion-free, α is an
isomorphism.

The names given to these theorems reflect the fact that they are analogs
of the ordinary Universal Coefficient Theorem and Künneth Theorem of alge-
braic topology. The UCT can also be regarded as a theorem about K-theory
with coefficients.

The KT and especially the KTP can be stated and proved without refer-
ence to KK-theory. The proofs, however, are similar to and require some of
the same machinery as the proof of the UCT, so it is most efficient to consider
all three together.

V.1.5.11 The strategy of proof for all three theorems is the same. One first
proves the theorems by bootstrap methods for arbitrary A, with fixed B of a
form making α, β, γ isomorphisms. Then the general results are deduced by
“abstract nonsense”, using an appropriate exact sequence giving a resolution
of a general B into ones of the special form.

V.1.5.12 Let N ′ be the class of all separable nuclear C*-algebras A such
that the exact sequence in the statement of the UCT holds for every sepa-
rable C*-algebra B. The UCT then says that N ⊆ N ′. A straightforward
application of the Five Lemma yields:

V.1.5.13 Proposition. Let A,B ∈ N ′. If x ∈ KK∗(A,B) and γ(x) ∈
Hom(K∗(A),K∗(B)) is an isomorphism, then x is a KK-equivalence. Thus,
if Ki(A) ∼= Ki(B) for i = 0, 1, then A and B are KK-equivalent.

V.1.5.14 Given countable abelian groups G0 and G1, there is a standard
construction (using mapping cones) of a second countable locally compact
Hausdorff space X of dimension ≤ 3 such that Ki(Co(X)) ∼= Gi (i = 0, 1) (cf.
[Bla98, 23.10.3]). Since every separable commutative C*-algebra is in N , we
obtain:
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V.1.5.15 Corollary. Let A be a separable nuclear C*-algebra. The fol-
lowing are equivalent:

(i) A ∈ N .
(ii) A ∈ N ′.
(iii) A is KK-equivalent to a commutative C*-algebra.

V.1.5.16 There are many (separable) nonnuclear C*-algebras which are in
the class H of A such that the UCT sequence holds for any separable B. For
example, any separable C*-algebra KK-equivalent to an element of N is in
H; in particular, every (separable) contractible C*-algebra (e.g. CA for any
A) is in H. There are separable C*-algebras A which are not in H because
KK∗(A, ·) does not have exact sequences for arbitrary extensions (it does if
A is nuclear).

However, nonexistence of exact sequences is not the root cause of the
failure of the UCT in general. An analog of the UCT exact sequence can be
formulated using E(A,B) in place of KK(A,B). There are C*-algebras A,B
for which both the E-UCT and the KK-UCT fail to hold, e.g. A = B = C∗

r (G)
for Ozawa’s example of a countable discrete group G not satisfying the Baum-
Connes Conjecture [Oza00].

V.2 Finiteness

In this section, we discuss properties related to finiteness in C*-algebras, in-
cluding an order structure on the K-theory of a (stably) finite C*-algebra
which plays a crucial role in the classification program.

V.2.1 Finite and Properly Infinite Unital C*-Algebras

Recall the definitions of finite, infinite, and properly infinite projections and
unital C*-algebras from III.1.3.1. These properties behave somewhat differ-
ently for general C*-algebras than for von Neumann algebras. Throughout
this subsection, all C*-algebras will be unital unless stated otherwise.

V.2.1.1 A commutative C*-algebra is obviously finite (cf. V.2.1.13). A Type
I C*-algebra need not be finite: the Toeplitz algebra (II.8.3.2(v)) is a coun-
terexample. A properly infinite C*-algebra contains a copy of the non-Type-I
C*-algebra O∞ (III.1.3.3, IV.1.2.6); since a C*-subalgebra of a Type I C*-
algebra is Type I (IV.1.5.11), a Type I C*-algebra cannot be properly infinite.

V.2.1.2 A quotient of an infinite C*-algebra need not be infinite: C(S1)
(and also C) is a quotient of the Toeplitz algebra. Any quotient of a properly
infinite C*-algebra is properly infinite.



V.2 Finiteness 419

On the other hand, a quotient of a finite C*-algebra need not be finite; in
fact, every C*-algebra is a quotient of a finite C*-algebra. This is most easily
seen using cones (II.5.5.10): note that C1(A) is finite for all A. In fact, C1(A)
is projectionless (contains no nontrivial projections). If A is unital, then A is
a quotient of C1(A) via evaluation at 1.

V.2.1.3 Definition. A (unital) C*-algebra A is residually finite if every
quotient of A is finite.

V.2.1.4 There is a related condition. We say a (unital) C*-algebra A has the
unitary extreme property if every extreme point in the unit ball of A is unitary
(cf. II.3.2.17). A C*-algebra with the unitary extreme property is obviously
finite. A residually finite C*-algebra has the unitary extreme property: if x is
an extreme point in the unit ball of A, and 1 − xx∗ is nonzero, then 1 − xx∗

is not in the closed ideal J generated by 1 − x∗x by II.3.2.17, and hence the
image of x in A/J is a nonunitary isometry. In particular, a finite simple
C*-algebra has the unitary extreme property.

There are C*-algebras with the unitary extreme property which are not
residually finite: for example, if A is any unital C*-algebra, then the unital
cone C1(A) has the unitary extreme property. There are also finite C*-algebras
which do not have the unitary extreme property, e.g. C∗(S ⊕ S∗), where S is
the unilateral shift.

It turns out that the most useful and important notion of finiteness involves
matrix algebras:

V.2.1.5 Definition. A (unital) C*-algebra A is stably finite if Mn(A) is
finite for all n. A is residually stably finite if every quotient of A is stably
finite.

V.2.1.6 Example. Not every finite C*-algebra is stably finite. The first
explicit example, due to N. Clarke [Cla86], is the Toeplitz algebra on the 3-
sphere S3 [Cob74]. Let H2(S3) ⊆ L2(S3) be the “Hardy space” of functions
analytic on the open unit ball of C

2 with square-integrable boundary values.
If f ∈ C(S3), the compression of the multiplication operator Mf (I.2.4.3(i))
on L2(S3), to H2(S3), is called the Toeplitz operator with symbol f , denoted
Tf . Let A = T (S3) be the C*-subalgebra of L(H2(S3)) generated by {Tf :
f ∈ C(S3)}. Then A contains K(H2(S3)), and A/K ∼= C(S3). Since π1(S3) ∼=
π3(S1) = 0, the unitary group of C(S3) is connected. Every isometry in A
has unitary image in C(S3), hence has index 0, i.e. A contains no nonunitary
isometries. But M2(A) does contain a nonunitary isometry; in fact, the image
of the multiplication operator with symbol

f(z, w) =
[

z −w̄
w z̄

]

is a Fredholm operator of nonzero index.
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This example works because, although K1(C(S3)) is nontrivial, the non-
trivial elements first appear in the 2 × 2 matrix algebra.

By considering the Toeplitz algebra on the unit ball of C
n, one can make

the nonunitary isometries first appear in the n × n matrix algebra.
Note that this C*-algebra is Type I. M2(A) is thus not properly infinite

(V.2.1.1); in fact, if v is a nonunitary isometry in M2(A), then 1 − vv∗ is
contained in a proper ideal.

V.2.1.7 In an important advance, M. Rørdam [Rør03] recently constructed
an example of a finite simple unital nuclear C*-algebra C*-algebra A such that
M2(A) is infinite (and hence properly infinite by V.2.3.1). Rørdam previously
gave an example of a finite (non-simple) unital C*-algebra A such that M2(A)
is properly infinite [Rør98].

V.2.1.8 Proposition. Let (Ai, φij) be an inductive system of unital C*-
algebras (with the φij unital), and A = lim−→(Ai, φij). If each Ai is [stably]
finite, then A is [stably] finite.
Proof: Let u be an isometry in A, and x ∈ Ai with ‖x‖ = 1 and ‖φi(x)−u‖
small. Then φi(x∗x) is close to 1A, and by increasing i we may assume that
x∗x is close to 1Ai

. Thus, if v = x(x∗x)−1/2, then v is an isometry in Ai and
φi(v) is close to u. Since Ai is finite, vv∗ = 1Ai

, and thus uu∗ is close to 1 and
hence invertible. Thus u is invertible and therefore unitary.

As a corollary, several types of C*-algebras important in the classification
program are stably finite:

V.2.1.9 Definition. A (not necessarily unital) C*-algebra A is approxi-
mately homogeneous, or an AH algebra, if it is isomorphic to an inductive
limit of locally homogeneous C*-algebras (in the sense of IV.1.4.1). A is ap-
proximately subhomogeneous, or an ASH algebra, if it is isomorphic to an
inductive limit of subhomogeneous C*-algebras.

AH and ASH algebras are usually required to be separable.
Every AH algebra is an ASH algebra. Every ASH algebra is finite, and

since a matrix algebra or quotient of a locally homogeneous [subhomogeneous]
C*-algebra is locally homogeneous [subhomogeneous], a matrix algebra or quo-
tient of an AH [ASH] algebra is AH [ASH]. Thus an ASH algebra is residually
stably finite. If A is ASH, so is Ã. If A is AH, then Ã is not necessarily AH,
but it is if A has an approximate unit of projections (e.g. if A is an inductive
limit of unital locally homogeneous C*-algebras).

These acronym names are in analogy with the AF algebras (II.8.2.2(iv)).
Other similar names for classes of interesting C*-algebras are the AI-algebras
and AT-algebras, inductive limits of direct sums of matrix algebras over
C([0, 1]) and C(T) respectively; these classes are sometimes (rather mislead-
ingly) called “interval algebras” and “circle algebras” respectively.

Another interesting class of stably finite C*-algebras is:
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V.2.1.10 Definition. A (not necessarily unital) C*-algebra A is residually
finite-dimensional if it has a separating family of finite-dimensional represen-
tations (i.e. a separating family of finite-dimensional quotients).
[Note that the meaning of “residually” in this definition is not the same as in
V.2.1.3 or V.2.1.5.]

Any C*-subalgebra of a residually finite-dimensional C*-algebra is resid-
ually finite-dimensional. If A is residually finite-dimensional, so is Ã. A ma-
trix algebra over a residually finite-dimensional C*-algebra is residually finite-
dimensional.

Any C*-algebra, all of whose irreducible representations are finite-dimen-
sional (e.g. any subhomogeneous C*-algebra), is residually finite-dimensional.
A more interesting example is:

V.2.1.11 Theorem. [Cho80] If F is any free group, then C∗(F ) is residually
finite-dimensional.

V.2.1.12 Corollary. Every C*-algebra is a quotient of a residually finite-
dimensional C*-algebra.

In fact, every separable unital C*-algebra is a quotient of C∗(F ) for a free
group F .

V.2.1.13 Proposition. A unital residually finite-dimensional C*-algebra
is stably finite.
Proof: Let A be residually finite-dimensional. Since a matrix algebra over
A is also residually finite-dimensional, it suffices to show that A is finite. If u
is a nonunitary isometry in A, let J be a closed ideal in A with A/J finite-
dimensional and π(1 − uu∗) �= 0, where π : A → A/J is the quotient map.
Then π(u) is a nonunitary isometry in A/J , a contradiction.

In particular, every subhomogeneous C*-algebra (e.g. every commutative
C*-algebra) is stably finite.

V.2.1.14 A C*-algebra A with a separating family of tracial states (or,
more generally, normalized quasitraces (II.6.8.15)) must be finite: if x ∈ A
with x∗x = 1A, then τ(1A − xx∗) = 0 for every normalized quasitrace τ .
Since Mn(A) also has a separating family of normalized quasitraces, A must
be stably finite.

Even a residually stably finite C*-algebra need not have a separating fam-
ily of normalized quasitraces: K̃ is a counterexample. But there is a very
important partial converse to the previous paragraph:

V.2.1.15 Theorem. ([Han81], [BH82]) Let A be a stably finite unital C*-
algebra. Then A has a normalized quasitrace.

Combining this result with II.6.8.17, we obtain:
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V.2.1.16 Corollary. Let A be a stably finite unital exact C*-algebra.
Then A has a tracial state.

V.2.1.17 The proof of V.2.1.15 is not difficult given the proper framework
(the comparison theory of II.3.4), although there are some technical details
to be handled. The proof has a strong K-theoretic flavor.

The first step, done in [Cun78] in the simple case and [Han81] in general,
is to construct an ordered group K∗

0 (A) whose states (V.2.4.21) are exactly
the dimension functions on A. K∗

0 (A) is constructed in a manner very similar
to K0(A) except that one starts with all (positive) elements of M∞(A), using
the relation � of II.3.4.3. Since a dimension function on A measures the “size”
of the “support projections” of the elements of A, the correspondence between
dimension functions and states of K∗

0 (A) is natural.
Begin with a (not necessarily unital) C*-algebra A (or a somewhat more

general *-subalgebra such as a hereditary *-subalgebra of a C*-algebra). The
relations � and ≈ make sense on M∞(A)+ (II.6.6.9); the set W (A) of equiv-
alence classes of elements of M∞(A)+ has a binary operation (“orthogonal
addition”), well defined by II.3.4.7(ii), making it an abelian semigroup with
identity [0]. There is a natural partial order on W (A) induced by �. The
Grothendieck group (V.1.1.13) of formal differences from W (A) becomes a
preordered abelian group with the induced order; this preordered group is
denoted K∗

0 (A) in [Cun78] and D(A) in other references. The dimension func-
tions taking finite values on A are in natural one-one correspondence with
the order-preserving homomorphisms from K∗

0 (A) to R; if A is unital, the
normalized dimension functions are the homomorphisms taking the value 1
on [1]. In most reasonable cases, e.g. when A is σ-unital or simple, K∗

0 (A) will
contain an order unit. If K∗

0 (A) is nontrivial and contains an order unit, then
the Goodearl-Handelman theory (V.2.4.24) insures a nonzero order-preserving
homomorphism and thus a nonzero finite dimension function on A.

It is immediate from the construction that if a ∈ M∞(A)+, then [a] = [0]
in K∗

0 (A) if and only if there is a b ∈ M∞(A)+, b ⊥ a, with a + b � b. It
follows easily that if A is unital, then K∗

0 (A) = {0} if and only if [1A] = [0],
which occurs if and only if 1A + b � b for some b which has n ones on the
diagonal and zeroes elsewhere, for some n; this will be the case if and only
if Mn+1(A) is infinite. Thus, if A is unital, there is a normalized dimension
function on A if and only if A is stably finite.

V.2.1.18 The final step is the transition from a dimension function to a
quasitrace. This was first done in [Han81] for AW*-algebras using a ring-
theoretic argument, and the general C*-algebra case was reduced to the
AW*-case in [BH82]. A quicker argument was given in [BR92]: if D is a
dimension function on a C*-algebra A (or hereditary *-subalgebra), define
D′(a) = supε>0 D(fε(a)); then it is easily checked that D′ is a dimension
function, D′ ≤ D, and D′ is lower semicontinuous by II.3.4.15. Thus D′ corre-
sponds to a quasitrace by II.6.8.14. D′(p) = D(p) for any projection p, and in
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particular, if A is unital, D′ is normalized if D is normalized. (If A is nonuni-
tal, it can happen that D′ = 0 even if D �= 0, but only if D vanishes on
Ped(A).)

This completes the (outlined) proof of V.2.1.15.

V.2.1.19 As a byproduct of the construction used in the proof, it is easy to
see that if B is a full hereditary C*-subalgebra of a C*-algebra A contained in
Ped(A), then K∗

0 (B) is naturally isomorphic to K∗
0 (Ped(A)); thus there is a

finite nonzero dimension function on B if and only if there is one on Ped(A).
(But K∗

0 (A) can be quite different: K∗
0 (C(H)) ∼= Z, but K∗

0 (K(H)) = {0}. The
K∗

0 -group is much more sensitive to completion than the K-groups.)

V.2.2 Nonunital C*-Algebras

It is not straightforward to rephrase the definitions of finite, infinite, and
properly infinite C*-algebras in the nonunital case in an interesting and useful
way, and indeed there seems to be no completely satisfactory way to proceed
except in the stable simple case, where most reasonable finiteness conditions
coincide. In this subsection, we will discuss some of the alternatives; some are
of interest also in the unital case.

Finite Algebras

V.2.2.1 The most commonly used definition of a finite C*-algebra, which
is reasonably satisfactory, is to declare A [stably] finite if Ã is [stably] finite.
This definition is fairly broad: for example, the cone C(A) is stably finite by
this definition, for any A. Thus the nonunital version of V.2.1.15 is false: a
stably finite C*-algebra under this definition (e.g. C(O2)) need not have a
nondegenerate quasitrace (one taking values other than 0 and ∞) at all.

V.2.2.2 An even broader definition of finiteness for a C*-algebra A is to
simply require that A contain no infinite projections. A C*-algebra which is
finite in the sense of V.2.2.1 has this property, but the converse is not true
(V.2.2.14(i))(although it is true for simple C*-algebras (V.2.3.6)), and this
broader notion does not seem to be too useful. The problem is that general C*-
algebras have a dearth of projections, and unexpected projections and partial
isometries can appear from standard constructions, even adding a unit.

V.2.2.3 A far more restrictive notion of finiteness is to require the exis-
tence of a separating family of normalized quasitraces (or equivalently in the
separable case, a faithful normalized quasitrace). This notion of finiteness ex-
cludes such examples as K (which is arguably only “semifinite”, not finite).
One could relax this condition to just require a separating family of densely
defined (quasi)traces; this notion of finiteness would include K (but not K̃).

A closely related condition is the existence of nonnormal hyponormal ele-
ments:
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V.2.2.4 Definition. An element x in a C*-algebra A is hyponormal if
xx∗ ≤ x∗x.

Note that the hyponormality of an element is independent of the containing
C*-algebra. For a full discussion of hyponormality and related topics, see
[Con91].

V.2.2.5 A strong finiteness condition on a C*-algebra A is the requirement
that every hyponormal element in A is normal. A C*-algebra with a sepa-
rating family of tracial states has this property; it is unknown whether the
same is true for a separating family of normalized quasitraces, even for simple
unital C*-algebras. The converse is false: K does not contain a nonnormal
hyponormal element ([Con91], [Hal67, Problem 206]).

It is known [CP79] that a C*-algebra A has a separating family of tracial
states if and only if, whenever x1, . . . , xn ∈ A and

∑
xix

∗
i ≤ ∑

x∗
i xi, we have∑

xix
∗
i =

∑
x∗

i xi.

V.2.2.6 If Ã is infinite, then by multiplying an isometry by a suitable scalar
Ã contains a nonunitary isometry of the form 1 + x, where x ∈ A. From
(1 + x)∗(1 + x) = 1 we obtain x + x∗ = −x∗x.

(1 + x)(1 + x)∗ = 1 + x + x∗ + xx∗ = 1 + xx∗ − x∗x

is a nontrivial projection, and thus x∗x−xx∗ is a nonzero projection in A. So
x is a nonnormal hyponormal element in A (and actually has a much stronger
property). Thus a C*-algebra containing no nonnormal hyponormal element
is finite in the sense of V.2.2.1.

V.2.2.7 The property of containing no nonnormal hyponormal element is
much stronger than finiteness (in the sense of V.2.2.1), however: for example,
C(O2) is finite but does contain a nonnormal hyponormal. In fact, by [Spi88],
the suspension of the Toeplitz algebra can be embedded in an AF algebra, so
even an AF algebra can contain a nonnormal hyponormal. Even C(O2) can
be embedded in an AF algebra; in fact, the cone over any separable exact
C*-algebra is AF-embeddable [Oza03].

A nonnormal hyponormal element is a generalization of a partial isome-
try implementing an equivalence between an infinite projection and a proper
subprojection. A more restrictive generalization of such partial isometries is
a scaling element [BC82]:

V.2.2.8 Definition. Let x be an element of a C*-algebra A. Then x is a
scaling element if xx∗ �= x∗x and xx∗ � x∗x, i.e. (x∗x)(xx∗) = xx∗.

The condition xx∗ �= x∗x simply rules out the case where x∗x = xx∗ is a
projection; if x is a scaling element, then

‖x∗x − xx∗‖ ≥ 1/2.
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It is easily seen that the condition (x∗x)(xx∗) = xx∗ is equivalent to (x∗x)x =
x. The property of being a scaling element is independent of the containing C*-
algebra. If x is a scaling element in A, then xx∗ ∈ Ac

+ (II.5.2.4), so x ∈ Ped(A).

Simple functional calculus arguments show the following:

V.2.2.9 Proposition. Let A be a C*-algebra. Then

(i) If A contains a scaling element, then it contains a scaling element x and
a, b ≥ 0 such that ‖x‖ = ‖a‖ = ‖b‖ = 1 and a � x∗x, a ⊥ xx∗, b � a.

(ii) If A contains an element y such that ‖y‖ = 1, ‖y∗y − yy∗‖ > 3/4 and
‖(y∗y)(yy∗) − yy∗‖ < 1/4, then A contains a scaling element.

V.2.2.10 Corollary. Let A = lim→ Ai. If A contains a scaling element,
then some Ai contains a scaling element.

V.2.2.11 The existence of a scaling element in a C*-algebra is a useful
notion of infiniteness, but this notion is really only interesting in the nonunital
case: if A is a unital C*-algebra containing a scaling element, then A contains
an infinite projection. In fact, if x is a scaling element in A as in V.2.2.9, then
an easy calculation shows that u = x + (1− x∗x)1/2 is a nonunitary isometry.

So if A is finite (in the sense of V.2.2.1), then A does not contain a scaling
element. The converse is false (V.2.2.14(i)).

V.2.2.12 A C*-algebra containing a scaling element at least contains a
nonzero projection: if x is as in V.2.2.11, and u = x + (1 − x∗x)1/2 ∈ Ã,
then 1 − uu∗ is a nonzero projection in A. In fact, we have:

V.2.2.13 Proposition. Let x be a scaling element of norm one in a C*-
algebra A. Then there is a sequence (pn) of mutually equivalent, mutually
orthogonal nonzero projections in A with pn � x∗x for all n.
Proof: Note that y = x(xx∗)1/2 is also a scaling element: y∗y = xx∗, and

(xx∗)x2 = x(x∗x)x = x2

since (x∗x)x = x. Let

u = y + (1 − y∗y)1/2 ∈ Ã

and pn = un(1 − uu∗)u∗n. Since u ∈ C̃∗(y) and 1 − uu∗ ∈ C∗(y), pn ∈ C∗(y)
and x∗x is a unit for pn.
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V.2.2.14 Examples.

(i) Let S be the unilateral shift (I.2.4.3(ii)), and A = C∗(S − I). Then Ã ∼=
C∗(A, I) = C∗(S); thus Ã is not finite. However, A contains no scaling
element. For A contains K, and A/K ∼= Co(R). If π : A → Co(R) is the
quotient map, and x is a scaling element in A, then π(x∗x) = π(xx∗) is a
projection in Co(R), and thus π(x) = 0, x ∈ K. But K contains no scaling
elements.

(ii) Let B be the universal C*-algebra generated by a scaling element of norm
1. Then B contains three important essential closed ideals I (generated by
the element x∗x− (x∗x)2), J (generated by x∗x−xx∗), and K (generated
by x−x∗x). We have I ⊆ J ⊆ K, I ∼= Co(R)⊗K, B/I ∼= C∗(S), J/I ∼= K,
K/I ∼= C∗(S−I), B/K ∼= C. The extension 0 → I → K → C∗(S−I) → 0
is split: if u = x + (1 − x∗x)1/2, then u is an isometry in B̃ and S − I �→
y = u − 1 is a cross section. The extension 0 → K → B → C → 0 is
not split. Every projection in B is thus in K, and hence actually in J ;
it follows easily that B has no infinite projections. (B does have nonzero
projections (V.2.2.12).) Thus B is finite in the sense of V.2.2.2, but not
in the sense of V.2.2.1 (V.2.2.11). See [Kat04a] for details.

Note that both these examples are Type I C*-algebras.

We summarize most of the various notions in a theorem:

V.2.2.15 Theorem. Let A be a C*-algebra. Then the following are succes-
sively more restrictive notions of finiteness for A:

(i) A contains no infinite projections.
(ii) A contains no scaling element.
(iii) Ã is finite.
(iv) A contains no nonnormal hyponormal element.
(v) A has a separating family of tracial states.

All the conditions are distinct.

Properly Infinite Algebras

It is not obvious how to extend the definition of properly infinite C*-algebras
to the nonunital case. We can make the following definition for elements (cf.
[KR00]):

V.2.2.16 Definition. Let A be a C*-algebra, a ∈ A+. Then a is an infinite
element of A if diag(a, b) � diag(a, 0) in M2(A) (II.3.4.3) for some b ∈ A+,
b �= 0, and a is a properly infinite element of A if diag(a, a) � diag(a, 0) in
M2(A).

An infinite [resp. properly infinite] projection is an infinite [resp. properly
infinite] element.
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V.2.2.17 One could then say that a C*-algebra A is properly infinite if it
has a properly infinite strictly positive element. This would extend the unital
definition, but exclude some natural candidates which are not σ-unital. A
more inclusive definition would require just that the properly infinite positive
elements in A generate A as an ideal, i.e. that every quotient of A contains
a nonzero properly infinite positive element. However, it is unclear that this
definition is the same as the usual one in the unital case. An intermediate
possibility is to require A to have a full properly infinite positive element; but
both objections would arise with this definition.

None of these definitions seems satisfactory, since the property of contain-
ing a properly infinite element is quite weak. For example, even K contains a
properly infinite element; in fact, any infinite-rank positive element is properly
infinite.

V.2.2.18 Proposition. If A is a C*-algebra and a is properly infinite, then
for any b ∈ (Ja)+, b � a.

To prove this, note that by induction

diag(a, a, . . . , a) � diag(a, 0, . . . , 0)

in Mn(A) for all n, and apply II.5.2.12.
If A is a C*-algebra and a ∈ A+, set

I(a) = {x ∈ A : diag(a, |x|) � diag(a, 0) in M2(A)}.

V.2.2.19 Proposition. [KR00] I(a) is a closed ideal of A contained in
Ja = span(AaA); I(a) = {0} if and only if a is finite, and I(a) = Ja if and
only if a is properly infinite. The image of a in A/I(a) is finite.

V.2.2.20 Corollary. If A is a C*-algebra, a ∈ A+, then a is properly
infinite if and only if the image of a in any quotient of A is either 0 or infinite.

Purely Infinite Algebras

V.2.2.21 Definition. Let A be a C*-algebra. Then A is purely infinite
if A has no one-dimensional quotients and, whenever a, b ∈ A+, b ∈ Ja =
span(AaA) (the closed ideal of A generated by a), for every ε > 0 there is an
x ∈ A with ‖b − x∗ax‖ < ε.

In other words, if b can be approximated by a sum
∑

x∗
kaxk (II.5.2.13), it

can be approximated by a single such term.
Purely infinite C*-algebras were first defined in the simple unital case

([Cun77a], [Cun81a]; cf. V.2.3.3). The definition in V.2.2.21 is from [KR00].
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V.2.2.22 Proposition. Every quotient of a purely infinite C*-algebra is
purely infinite.
Proof: Let A be purely infinite, J a closed ideal, and π : A → A/J the
quotient map. Suppose c, d ∈ (A/J)+, with d in the closed ideal of A/J
generated by c. Then d =

∑∞
k=1 z∗kczk for some zk ∈ A/J (II.5.2.13). Let

yk ∈ A with zk = π(yk) for each k. If ε > 0, fix r with

‖d −
r∑

k=1

z∗kczk‖ < ε/2.

If a ∈ A+ with π(a) = c, then b =
∑r

k=1 y∗
kayk is in the ideal of A generated

by a, so there is an x ∈ A with ‖b − x∗ax‖ < ε/2. Then

‖d − π(x)∗cπ(x)‖ ≤ ‖d − π(b)‖ + ‖π(b) − π(x∗ax)‖ < ε.

V.2.2.23 Proposition. Every hereditary C*-subalgebra of a purely infinite
C*-algebra is purely infinite.
Proof: Let B be a hereditary C*-subalgebra of a purely infinite C*-algebra
A. Let a, b ∈ B+, ‖b‖ = 1, b in the closed ideal of B generated by a, and ε > 0.
Then b1/2 is in the closed ideal of A generated by a2, so there is an x ∈ A
with ‖b1/2 − x∗a2x‖ < ε. Then

‖b − (b1/4x∗a1/2)a(a1/2xb1/4)‖ < ε

and a1/2xb1/4 ∈ B.
It remains to show that B cannot have a one-dimensional quotient. But

a quotient of B is a hereditary C*-subalgebra of a quotient of A (II.5.1.6),
so it suffices to show that B cannot be one-dimensional, i.e. that A cannot
contain a projection p with pAp one-dimensional. If there were such a p, then
pAp could not be an ideal (direct summand) in A, so there is a y ∈ A with
y∗py /∈ pAp. Then p+y∗py can be approximated by x∗px for some x ∈ A, and
pxx∗p = λp for some λ > 0, so u = λ−1/2px is a partial isometry with uu∗ = p,
and p � u∗u. Then upu∗ is a proper subprojection of p, a contradiction.

V.2.2.24 Proposition.

(i) Every nonzero projection in a purely infinite C*-algebra is infinite.
(ii) Every full hereditary C*-subalgebra of a purely infinite unital C*-algebra

contains a (necessarily infinite) projection equivalent to the identity.

Proof: The proofs are nearly identical. For (i), by V.2.2.23 it suffices to
show that if A is purely infinite and unital, then 1 is an infinite projection.
Let a be a noninvertible full positive element in A (II.6.4.15). For (ii), let B
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be a full hereditary C*-subalgebra of A, and a a full positive element in B
(II.5.3.11). In either case, there is an x ∈ A with ‖1−x∗ax‖ < 1, so r = x∗ax
is invertible. Set u = a1/2xr−1/2; then u∗u = 1, so uu∗ is a projection which
is in the hereditary C*-subalgebra generated by a.

A purely infinite C*-algebra, even an ideal in a unital purely infinite C*-
algebra, need not contain any nonzero projections (V.2.2.31).

V.2.2.25 It can be shown easily using II.3.4.15 and II.3.4.17 that suitable
limits of properly infinite elements are properly infinite. From this we obtain:

V.2.2.26 Proposition. An inductive limit of purely infinite C*-algebras is
purely infinite.

It follows from V.2.2.19 that we have:

V.2.2.27 Theorem. A C*-algebra A is purely infinite if and only if every
nonzero positive element of A is properly infinite.

V.2.2.28 Theorem. [KR00] A C*-algebra stably isomorphic to a purely
infinite C*-algebra is purely infinite. In particular, if A is purely infinite, so is
A ⊗ K and Mn(A) for all n.

The last statement is proved first, and follows easily from V.2.2.27; the
rest then follows from V.2.2.23 and V.2.2.26.

V.2.2.29 Proposition. A purely infinite C*-algebra has no nondegenerate
lower semicontinuous trace.

V.2.2.30 Theorem. [KR02] Let O∞ be the Cuntz algebra (II.8.3.3(ii)). If
A is any C*-algebra, then A ⊗ O∞ is purely infinite.

This result follows easily from the fact (cf. [KP00]) that O∞ ∼= ⊗∞
1 O∞.

In fact, if B is any C*-algebra with B ∼= B ⊗ O∞ (e.g. any purely infinite
simple nuclear C*-algebra), and A is any C*-algebra, then A⊗min B is purely
infinite.

V.2.2.31 Examples. O∞ itself is purely infinite, as are the other Cuntz
algebras [Cun77a]. C([0, 1])⊗O∞ is purely infinite, as is its ideal Co((0, 1))⊗
O∞ which contains no nonzero projections.

V.2.2.32 It is not true in general that if A is purely infinite, then A ∼=
A ⊗ O∞, even if A is separable and simple. This is an open question for
separable nuclear C*-algebras; several variations of the definition of a purely
infinite C*-algebra were considered in [KR02] in an attempt to answer this
question.
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V.2.3 Finiteness in Simple C*-Algebras

The finiteness situation is considerably simpler for simple C*-algebras.

Simple Unital C*-Algebras

The first observation is that if a simple unital C*-algebra is infinite, it is
properly infinite. Compare the next result to III.1.3.2.

V.2.3.1 Proposition. Let A be a simple unital C*-algebra. Then the fol-
lowing are equivalent:

(i) A is infinite.
(ii) A is properly infinite.
(iii) There is a sequence of mutually orthogonal, mutually equivalent nonzero

projections in A.
(iv) There is a sequence of mutually orthogonal projections in A, each equiv-

alent to 1A, i.e. A contains a unital copy of O∞ (II.8.3.3(ii)).
(v) A contains a left [or right] invertible element which is not invertible.

Proof: (i) =⇒ (v), (ii) =⇒ (i), and (iv) =⇒ (ii) are trivial, and (i) =⇒ (iii)
is III.1.3.2. (Also, (ii) =⇒ (iv) is III.1.3.3, although this is not needed for this
proof.)
(v) =⇒ (i): If x is left invertible, say yx = 1, then 1 = x∗y∗yx ≤ ‖y‖2x∗x, so
x∗x is invertible, and u = x(x∗x)−1/2 is an isometry. We have that

uu∗ = x(x∗x)−1x∗ ≤ ‖(x∗x)−1‖xx∗

so if x is not invertible (i.e. xx∗ is not invertible), then uu∗ is not invertible.
The argument if x is right invertible is similar (or just note that if x is right
invertible, then x∗ is left invertible).
(iii) =⇒ (iv): Let (pn) be a sequence of mutually orthogonal nonzero equivalent
projections in A. Let p = p1, and un a partial isometry with u∗

nun = p and
unu∗

n = pn for each n; so p = u∗
npnun. Then, since A is algebraically simple,

there are elements xi with

1 =
n∑

i=1

x∗
i pxi =

n∑

i=1

x∗
i u

∗
i piuixi

for some n (II.5.4.3). If q =
∑n

i=1 pi and v =
∑n

1=1 uixi, then 1 = v∗qv, so qv
is an isometry with range projection qvv∗q ≤ q. Similarly, there is a projection
equivalent to 1 under

∑(k+1)n
i=kn+1 pi for every k.
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V.2.3.2 Corollary. Let A be a simple unital C*-algebra, and p an infi-
nite projection in A. Then p is properly infinite and contains a subprojection
equivalent to 1A.
Proof: Apply V.2.3.1 to pAp to conclude that p is properly infinite and con-
tains a sequence of mutually orthogonal, mutually equivalent subprojections.
Then exactly as in the proof of (iii) =⇒ (iv) we obtain a subprojection of
p equivalent to 1A (and, in fact, an entire sequence of mutually orthogonal
subprojections each equivalent to 1A).

Purely Infinite Simple C*-Algebras

Purely infinite simple unital C*-algebras have several equivalent character-
izations. Examples of purely infinite simple unital C*-algebras are (count-
ably decomposable) type III factors, the Calkin algebra, the Cuntz algebras
(II.8.3.3(ii)), and the simple Cuntz-Krieger algebras (II.8.3.3(iii)).

See V.2.3.13 for the nonunital case; a nonunital purely infinite simple C*-
algebra has many infinite projections, and a nonunital σ-unital purely infinite
simple C*-algebra is isomorphic to the stabilization of a simple unital C*-
algebra (V.3.2.14).

V.2.3.3 Proposition. If A is a simple unital C*-algebra, A �= C, then the
following are equivalent:

(i) A is purely infinite.
(ii) A �∼= C and, for every nonzero a ∈ A, there are x, y ∈ A with xay = 1.
(iii) Every nonzero hereditary C*-subalgebra of A contains an infinite projec-

tion.
(iv) Every nonzero hereditary C*-subalgebra of A contains a projection equiv-

alent to 1.

The equivalence (i) ⇐⇒ (iii) holds also for nonunital purely infinite simple
C*-algebras (V.2.3.12).
Proof: (i) =⇒ (ii): Let a ∈ A. Then 1 is in the ideal generated by a∗a, so
there is a z ∈ A with ‖1 − z∗a∗az‖ < 1. Then r = z∗a∗az is invertible, so
r−1z∗a∗az = 1.
(ii) =⇒ (i): Let a, b ∈ A+ with a �= 0, and let x, y ∈ A with xay = 1. Then
1 = y∗ax∗xay ≤ ‖x‖2y∗a2y, so r = y∗a2y is invertible, and we have

b = (b1/2r−1/2y∗a1/2)a(a1/2yr−1/2b1/2).

(i) =⇒ (iii) and (i) =⇒ (iv) are V.2.2.24; (iii) =⇒ (iv) is V.2.3.2.
(iv) =⇒ (ii): Let a be a nonzero element of A, and B the hereditary C*-
subalgebra generated by fε(a∗a) (II.3.4.11) for ε small enough that fε(a∗a) �=
0. Let u be an isometry in A with p = uu∗ ∈ B. Then a∗a ≥ (ε/2)p, so
z = u∗a∗au is invertible, and z−1u∗a∗au = 1.
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V.2.3.4 Proposition. A matrix algebra or stable algebra over a simple
unital purely infinite C*-algebra A is purely infinite.

This result is of course a special case of V.2.2.28, but has a simple direct
proof: 1A is properly infinite and hence contains a sequence of mutually or-
thogonal subprojections equivalent to 1A. Thus Mn(A) for any n and A ⊗ K

are isomorphic to hereditary C*-subalgebras of A. Apply V.2.2.23.

V.2.3.5 An infinite simple unital C*-algebra need not be purely infinite:
if A is Rørdam’s example (V.2.1.7), then M2(A) is infinite but not purely
infinite since it contains a finite projection.

It is conceivable that there is a simple unital C*-algebra in which every
nonzero projection is infinite, but in which there is a nonzero projectionless
hereditary C*-subalgebra. Such a C*-algebra would not be purely infinite.

Nonunital and Stable Simple C*-Algebras

The next theorem, the main result of this section, shows that most of the
notions of finiteness coincide for stable simple C*-algebras.

V.2.3.6 Theorem. [BC82] Let A be a simple C*-algebra. Then the follow-
ing are equivalent:

(i) A contains a scaling element.
(ii) A contains an infinite projection.
(iii) Ã is infinite (contains an infinite projection).

These conditions imply the following, which are equivalent:

(iv) There is no finite nonzero dimension function on Ped(A).
(v) There is no nondegenerate quasitrace (one taking values other than 0

and ∞) on A.

These imply:

(vi) A is algebraically simple.

If A is stable, then (i)–(vi) are all equivalent.
If A is exact, (iv) and (v) are also equivalent to

(vii) There is no nondegenerate trace on A.

Note that most of this theorem follows immediately from V.2.1.15 and
V.2.1.19 (and II.6.8.17 for (vii)) if A is assumed to contain a nonzero projec-
tion; but it is crucial to prove the result without this assumption.

The implications (ii) =⇒ (i), (ii) =⇒ (iii), and (iv) =⇒ (v) =⇒ (vii) are
trivial, (i) =⇒ (iii) is V.2.2.11, (v) =⇒ (iv) is V.2.1.18 (a nonzero dimension
function on Ped(A) is automatically faithful since Ped(A) is algebraically
simple), and (vii) =⇒ (v) for exact A is II.6.8.17. Also, (ii) =⇒ (v) is obvi-
ous, since if D is a (necessarily faithful) finite nonzero dimension function on
Ped(A), and p ∼ q � p, then D(q) = D(p) = D(q)+D(p−q), a contradiction.
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V.2.3.7 The proof of (iii) =⇒ (ii) is very similar to the proof of (iii) =⇒ (iv)
of V.2.3.1. Let 1 + x be a nonunitary isometry in Ã. Then (fε(x∗x)) is a right
approximate unit for x, and is also a left approximate unit since xx∗ ≤ x∗x
(V.2.2.6); thus fε(x∗x)xfε(x∗x) → x as ε → 0. Let y = fε(x∗x)xfε(x∗x) for
small enough ε that ‖y − x‖ < 1/6; then ‖y‖ ≤ 2, so a = (1 + y∗)(1 + y) is
invertible in Ã since

‖a − 1‖ = ‖(1 + y∗)(1 + y) − (1 + x∗)(1 + x)‖ < 1

but (1+y)(1+y∗) is not invertible (II.3.2.19). Set z = (1+y)a−1/2−1. Then z ∈
C∗(y), so b = fε/2(x∗x) is a unit for C∗(z), and 1+z is a nonunitary isometry
in Ã. Thus C∗(z) ∼= C∗(S − I), where S is the unilateral shift, and hence
there is a sequence (pn) of mutually orthogonal, mutually equivalent nonzero
projections in C∗(z). Let qm =

∑m
n=1 pn for each m. Since b ∈ Ped(A)+, there

is an m and elements yk with b =
∑m

k=1 y∗
kpkyk. Thus, if u =

∑m
k=1 pkykqm+1,

then u∗u = qm+1 and uu∗ ≤ qm, so qm+1 is an infinite projection.

V.2.3.8 We next show (vi) =⇒ (i) if A is stable. Let a, b ∈ A+ with ‖a‖ =
‖b‖ = 1 and b � a �= b. Set

c =
∞∑

k=1

2−ka ⊗ ekk ∈ A ⊗ K.

Then c ∈ Ped(A ⊗ K) = A ⊗ K, so by an argument identical to the proof of
V.2.3.1[(iii) =⇒ (iv)] there is an n and a y ∈ A⊗K with c = y∗(

∑n
k=1 b⊗ekk)y.

Let

z =
n∑

k=1

2nb ⊗ ekk

and set

x = (
n∑

k=1

b ⊗ ekk)1/2yz1/2.

Then x∗x =
∑n

k=1 a2 ⊗ ekk and xx∗ ≤ M(
∑n

k=1 b ⊗ ekk) for some M , so x is
a scaling element.

V.2.3.9 Now we show (i) =⇒ (vi). Let x, a ∈ A be as in V.2.2.9(i), and let
c ∈ A+. Write c =

∑∞
k=1 ck with ck ∈ Ped(A)+ and ‖ck‖ ≤ 2−k for k > 1

(II.5.2.6). Set an = xnax∗n; then ‖an‖ = 1 and an � x∗x for all n, an ⊥ am

for n �= m, am = xm−nanx∗m−n for m > n, and am = x∗n−manxn−m for
m < n. As in the proof of V.2.3.1, there are pairwise disjoint finite subsets
Fk ⊆ N and elements yk ∈ A with ck = y∗

k(
∑

j∈Fk
aj)yk. Set

z =
∞∑

k=1

yk(
∑

j∈Fk

aj)1/2.

Then zz∗ = c and z∗z � x∗x, so z∗z ∈ Ac
+ and thus c = zz∗ ∈ Ped(A).
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V.2.3.10 Next we prove (iv) =⇒ (i) if A is stable. We only outline the
argument. Let a, b ∈ Ped(A)+ with ‖a‖ = ‖b‖ = 1 and ab = b �= a. Since
K∗

0 (Ped(A)) = {0} (V.2.1.17), we have a + c � c for some c ∈ Ped(A)+,
c ⊥ a. In A⊗K, set d = c⊗ e11, ak = a⊗ ekk, bk = b⊗ ekk. Then, by iterating
c + a � c, we get that

n∑

k=1

ak � d +
n∑

k=1

ak � d

for all n. As in the proof of V.2.3.1, there is an n and y ∈ A with d =
y∗(

∑n
k=1 bk)y, and since

∑n
k=1 ak � d, there is a z ∈ A with z∗dz close to∑n

i=1 ak. Then, if

x = (
n∑

k=1

bk)1/2yz,

then x∗x is close to
∑n

k=1 ak and xx∗ ≤ M
∑n

k=1 bk for some M ; thus x is
an approximate scaling element and C∗(x) ⊆ A contains a scaling element by
V.2.2.9(ii).

V.2.3.11 Finally, we prove (iv) =⇒ (vi) for general simple A. If (iv) holds,
then there is no dimension function on Ped(A ⊗ K), and thus A ⊗ K con-
tains a scaling element and is therefore algebraically simple, by the last two
paragraphs. But then A is also algebraically simple by II.5.4.2.

This completes the proof of V.2.3.6.

V.2.3.12 Corollary. Let A be a purely infinite simple C*-algebra. Then
A contains an infinite projection.
Proof: There is no dimension function on Ped(A⊗K), so A⊗K contains an
infinite projection p, and is purely infinite by V.2.2.28. If x ∈ A is nonzero,
then

x∗Ax ⊗ K ∼= p(A ⊗ K)p ⊗ K

(II.7.6.11). Every hereditary C*-subalgebra of p(A ⊗ K)p ⊗ K contains an
infinite projection by V.2.2.24.

V.2.3.13 Corollary. A simple C*-algebra A is purely infinite if and only
if every hereditary C*-subalgebra of A contains a nonzero infinite projection.

V.2.4 Ordered K-Theory

V.2.4.1 Definition. A preordered group is an abelian group G with a
translation-invariant preorder (transitive relation) ≤. G+ = {x ∈ G : 0 ≤ x}
is the positive cone of G. If x, y ∈ G, x ≤ y if and only if y − x ∈ G+.
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V.2.4.2 If A is a C*-algebra, the semigroup V (A) really contains the essen-
tial information about the projections of M∞(A); however, semigroups (par-
ticularly ones without cancellation) can be nasty algebraic objects, and for
technical reasons it is necessary to pass to the group K0(A) in order to apply
techniques from topology and homological algebra to the study of projections
over A. But it is desirable to keep the original semigroup in the picture as
much as possible. One way to do this is to put a (pre)ordering on K0(A) by
taking the image K0(A)+ of V (A) in K0(A) to be the positive cone. (Even
at this point we may lose information, since the map from V (A) into K0(A)
will be injective only if V (A) has cancellation.) Just as the elements of K0(A)
determine the (stable) equivalence of projections in M∞(A), the ordering will
determine the (stable) comparability of projections.

The order structure on K0 seems to have played only a minimal role in
topological K-theory; the order on K0(C(X)) is usually either rather trivial
or else badly behaved. But the ordering is crucial in many of the applications
of K-theory to C*-algebras, particularly to the classification problem.

V.2.4.3 We also define the scale Σ(A) to be the image of Proj(A) in K0(A).
If A is unital, the scale is simply the elements of K0(A)+ which are ≤ [1A], so
the scale can be described by simply specifying [1A], and by slight abuse of
terminology we will frequently do so. We will mostly be concerned with the
unital case. The triple (K0(A),K0(A)+, Σ(A)) is called the scaled preordered
K0-group of A.

The preordered group (K0(A),K0(A)+) depends on A only up to stable
isomorphism; but the scale gives a finer invariant, which can be used to dis-
tinguish between algebras in the same stable isomorphism class (V.2.4.16).

If φ : A → B is a homomorphism, then φ∗ : K0(A) → K0(B) is a ho-
momorphism of scaled preordered groups, i.e. φ∗(K0(A)+) ⊆ K0(B)+ and
φ∗(Σ(A)) ⊆ Σ(B).

Ordered Groups

V.2.4.4 Definition. An ordered group (G,G+) is an abelian group G with
a distinguished subsemigroup G+ containing the identity 0, called the positive
cone of G, having these properties:

(1) G+ − G+ = G.
(2) G+ ∩ (−G+) = {0}.
G+ induces a translation-invariant partial ordering on G by y ≤ x if x − y ∈
G+. By y < x we will mean that y ≤ x and y �= x.

An element u ∈ G+ is called an order unit if for any x ∈ G there is an
n > 0 with x ≤ nu (in other words, the order ideal [hereditary subgroup]
generated by u is all of G). A triple (G,G+, u) consisting of an ordered group
(G,G+) with a fixed order unit u is called a scaled ordered group. We say G
is a simple ordered group if G has no proper order ideals, i.e. if every nonzero
positive element is an order unit.
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V.2.4.5 Examples.

(i) On Z
n or R

n, there are two standard orderings: the ordinary ordering,
with positive cone

{(x1, . . . , xn) | x1, . . . , xn ≥ 0}
and the strict ordering, with positive cone

{0} ∪ {(x1, . . . , xn) | x1, . . . , xn > 0}.
These orderings coincide for n = 1.

(ii) More generally, if X is a set and G is a positively generated additive
group of real-valued functions on X, then G can be given the ordinary
ordering with

G+ = {f : f ≥ 0 everywhere }
or the strict ordering with

G+ = {0} ∪ {f : f > 0 everywhere }.
The positive cone in the strict ordering is sometimes denoted G++. Even
more generally, if ρ is a homomorphism from G into the additive group
of real-valued functions on X whose image is positively generated, then
G may be given the strict ordering from ρ, with

G+ = {0} ∪ {a ∈ G : ρ(a) > 0 everywhere }.
There is no analog of the ordinary ordering if ρ is not injective.

(iii) If ρ is a homomorphism from G into an ordered group H whose range is
positively generated, then G can be given the strict ordering from ρ by
taking

G+ = {0} ∪ {x : ρ(x) > 0}.
A group G with the strict ordering in the sense of (ii), or in the sense of

(iii) with H simple, is a simple ordered group.

V.2.4.6 The set K0(A)+ does not satisfy (1) of V.2.4.4 in general. For ex-
ample, if A = Co(R2), then K0(A) ∼= Z and K0(A)+ = 0. However, if A is
(stably) unital, then K0(A)+ does satisfy condition (1).

From now on in this section, we will assume A is unital. Almost everything
carries through (with appropriate technical modifications) to the stably unital
case.

V.2.4.7 Example. The set K0(A)+ does not satisfy (2) of V.2.4.4 in gen-
eral. Let On be the Cuntz algebra (II.8.3.3, V.1.3.4); then

K0(On)+ = Σ(On) = K0(On) ∼= Zn−1.

Actually, we have K0(A)+ = Σ(A) = K0(A) whenever A is a properly infinite
C*-algebra (e.g. a simple unital C*-algebra containing a nonunitary isometry
(V.2.3.1)).
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V.2.4.8 Proposition. If A is stably finite, then (K0(A),K0(A)+) is an
ordered group.

V.2.4.9 Examples.

(i) The ordering on K0(C) and K0(Mn) is the ordinary ordering on Z.

Σ(Mn) = {0, . . . , n}.

(ii) If A is a II1 factor, then the ordering on K0(A) is the ordinary ordering
on R, and Σ(A) = [0, 1].

(iii) If A = C
2, then K0(A) ∼= Z

2 with the ordinary ordering.

Σ(A) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

(iv) K0(C(S2)) is Z
2 with the strict ordering from the first coordinate, i.e.

K0(C(S2))+ = {(0, 0)} ∪ {(m,n) | m > 0}

Σ(C(S2)) = {(0, 0), (1, 0)}.
Examples (iii) and (iv) show that K0(A) and K0(B) can be isomorphic as

groups without being isomorphic as ordered groups. Thus the order structure
can be used to distinguish between algebras.

K0(A) is frequently a simple ordered group. If p ∈ Mn(A) is a projection,
identify p with diag(p, 0) in Mn+m(A) for any m, and for k ∈ N write k · p for
diag(p, . . . , p) in Mk(Mn(A)) ∼= Mkn(A) (or in Mkn+m(A)).

V.2.4.10 Proposition. Let A be a C*-algebra, and p and q projections in
Mn(A), with q full (II.5.3.10). Then p � k · q for some k ∈ N.
Proof: [Cun77b] Since p is in Ped(Mn(A)), which is the ideal of Mn(A)
generated algebraically by q, there are elements x1, . . . , xk ∈ Mn(A) with
p =

∑k
i=1 x∗

i qxi (II.5.2.10). We may assume xi = qxip for all i. Let

X ∈ Mk(Mn(A)) ∼= Mkn(A)

be the matrix with x1, . . . , xk in the first column and zeroes elsewhere, P =
diag(p, 0, . . . , 0), Q = diag(q, q, . . . , q). Then X∗QX = P , so U = QX is a
partial isometry with U∗U = P . UU∗ is a projection, and Q is a unit for UU∗,
so UU∗ ≤ Q.

This result can also be deduced from II.7.6.11.

V.2.4.11 Corollary. If A is stably finite, and every nonzero projection in
M∞(A) is full, then K0(A) is a simple ordered group.
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V.2.4.12 Corollary. If A is a stably finite C*-algebra and Prim(A) con-
tains no nontrivial compact open subsets, then K0(A) is a simple ordered
group. So if Prim(A) is Hausdorff and connected, K0(A) is simple. In par-
ticular, if A is simple or if A = C(X), X connected, then K0(A) is simple.

Cancellation

V.2.4.13 The semigroup V (A) does not have cancellation in general. For
example, if u is a nonunitary isometry in A and p = uu∗, then [p] + [0] =
[p] = [1A] = [p] + [1A − p], and [1A − p] �= [0]. More interestingly, cancellation
in V (A) can fail even if A is stably finite: for example, V (C(S5)) does not
have cancellation [Hus66]. We say a C*-algebra A has cancellation if V (Ã)
has cancellation (if A is nonunital, this is strictly stronger than requiring just
that V (A) has cancellation). Since V (A) includes projections from all matrix
algebras over A, cancellation for A implies cancellation for Mn(A) and for
A ⊗ K. A von Neumann algebra has cancellation if and only if it is finite
(III.1.3.8).

A has cancellation if, whenever p, q, r are projections in Mn(Ã) for some
n, with p ⊥ r, q ⊥ r, and (p + r) ∼ (q + r), then p ∼ q. We say A has strict
cancellation if, for any such p, q, r, (p+r) ≺ (q+r) implies p ≺ q. Cancellation
implies strict cancellation (cf. III.1.3.8); the converse is unclear.

V.2.4.14 Proposition. let A be a unital C*-algebra. The following are
equivalent:

(i) A has cancellation.
(ii) If p, q are projections in Mn(A) for some n, and p ∼ q, then (1 − p) ∼

(1 − q).
(iii) If p, q are projections in Mn(A) for some n, and p ∼ q, then p ∼u q.

Proof: (iii) =⇒ (ii) and (i) =⇒ (ii) are trivial. (ii) =⇒ (i): suppose p, q, r
are projections in Mn(A) with p ⊥ r, q ⊥ r, and (p + r) ∼ (q + r). By (ii),
(1 − p − r) ∼ (1 − q − r), and hence

(1 − p) = (1 − p − r) + r ∼ (1 − q − r) + r = (1 − q)

so again by (ii) p ∼ q. (ii) =⇒ (iii): if u∗u = p, uu∗ = q, then there is a partial
isometry v ∈ Mn(A) with v∗v = 1−p, vv∗ = 1− q, and w = u+v is a unitary
with wpw∗ = q.

Perforation

One difficulty which can occur in ordered groups is perforation.
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V.2.4.15 Definition. An ordered group (G,G+) is unperforated if nx ≥ 0
for some n > 0 implies x ≥ 0; G is weakly unperforated if nx > 0 for some
n > 0 implies x > 0.

An unperforated group must be torsion-free. A weakly unperforated group
can have torsion: for example, Z ⊕ Z2 with strict ordering from the first co-
ordinate. If (G,G+) is weakly unperforated, H is the torsion subgroup of G,
and π : G → G/H the quotient map, then (G/H, π(G+)) is an unperforated
ordered group. Hence a weakly unperforated group is “unperforated up to tor-
sion.” Conversely, if (K,K+) is a (weakly) unperforated ordered group and
ρ : G → K is a homomorphism with positively generated image, then G is
weakly unperforated if given the strict ordering from ρ. A weakly unperforated
group is unperforated if and only if it is torsion-free.

V.2.4.16 Examples.

(i) Let G = Z, G+ = {0} ∪ {n : n ≥ 2}. Then (G,G+) is not weakly
unperforated.

(ii) K0(C(RP 2)) ∼= Z ⊕ Z2 with strict ordering from the first coordinate
[Kar78, IV.6.47]. K0(C(T4)) ∼= Z

8 is perforated, where T
4 is the 4-torus

[Bla98, 6.10.2]. There are stably finite simple unital C*-algebras A with
torsion in K0(A). There are even stably finite simple C*-algebras whose
K0 is not weakly unperforated [Vil98].

(iii) Perforation in K0 can be eliminated by “rationalizing”: if R is the
(unique) UHF algebra with K0(R) = Q, then for any A we have

K0(A ⊗ R) ∼= K0(A) ⊗ Q

with
K0(A ⊗ R)+ = K0(A)+ ⊗ Q+,

and K0(A ⊗ R) is unperforated.

Classification of Stably Isomorphic C*-Algebras

V.2.4.17 Suppose that A is a unital C*-algebra with cancellation. Then
the scale Σ(A) is a hereditary subset of K0(A)+; in fact, Σ(A) is the closed
interval

[0, [1A]] = {x ∈ K0(A)+ | x ≤ [1A]}.
Although Σ(A) does not always generate K0(A) as a group, [1A] is always an
order unit, so the order ideal generated by Σ(A) is K0(A). If B is a unital
C*-algebra stably isomorphic to A, then K0(B) is order-isomorphic to K0(A),
and the image of Σ(B) in K0(A) will be an interval [0, u] for some order unit
u. Conversely, if u is an order unit in K0(A), then there is a unital C*-algebra
B stably isomorphic to A with Σ(B) = [0, u]: let u = [p] for some projection
p ∈ Mn(A), and take B = pMn(A)p. So one can nearly classify all unital
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C*-algebras stably isomorphic to A by the order units in K0(A). The corre-
spondence is, however, not one-to-one in general: the algebras corresponding
to u and v may be isomorphic if there is an order-automorphism of K0(A)
taking u to v. (But the existence of such an order-automorphism does not
guarantee that the algebras are isomorphic; not every order-automorphism of
K0(A) is induced from an isomorphism on the algebra level in general.)

V.2.4.18 One can extend the above classification to certain nonunital C*-
algebras as follows. If u1, u2, . . . is an increasing sequence of elements of
K0(A)+, then one can find an increasing sequence of projections p1, p2, . . .
in A ⊗ K with [pn] = un. If {u1, u2, . . . } generates K0(A)+ as an order ideal,
then the C*-algebra

B =
(⋃

pn(A ⊗ K)pn

)−

is stably isomorphic to A and corresponds naturally to the interval
⋃

[0, un] ⊆
K0(A). A hereditary subset Σ of K0(A)+ is of this form if and only if it
generates G as an order ideal and is countably generated and upward directed,
i.e. if x, y ∈ Σ there is a z ∈ Σ with x ≤ z and y ≤ z. The C*-algebra
corresponding to Σ by the above construction depends up to isomorphism
only on Σ and not on the choice of the un or pn. Conversely, every C*-algebra
which is stably isomorphic to A and which has an approximate unit consisting
of a sequence of projections is obtained in this way. So if A is separable with
real rank zero (V.3.2.7), one obtains a complete classification (modulo the
possible identifications through order-automorphisms).

Classification of AF Algebras

This procedure works especially well for AF algebras (II.8.2.2(iv)), and leads
to a complete classification via ordered K-theory. This classification, due to
G. Elliott, was one of the first explicit appearances of K-theory in operator
algebras. It is the prototype of the more advanced classification results de-
scribed in [Rør02b], which also includes a full treatment of the AF case. See
also [Eff81] and [Bla98].

V.2.4.19 Theorem. [Ell76] Let A be an AF algebra. Then the scaled or-
dered K0-group (K0(A),K0(A)+, Σ(A)) (called the dimension group of A) is
a complete isomorphism invariant for A among AF algebras: if B is an AF
algebra and

(K0(B),K0(B)+, Σ(B)) ∼= (K0(A),K0(A)+, Σ(A)),

then B ∼= A.
The scaled ordered groups which can occur as dimension groups can also

be characterized abstractly, due to the Effros-Handelman-Shen Theorem:
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V.2.4.20 Theorem. [EHS80] Let (G,G+, Σ) be a scaled ordered group.
Then (G,G+, Σ) is the dimension group of an AF algebra if and only if it has
the following properties:

(i) (G,G+) is countable and unperforated (in particular, G is torsion-free).
(ii) (G,G+) has the Riesz Interpolation Property : if x1, x2, y1, y2 are in G

and xi ≤ yj for all i, j, then there is a z ∈ G with xi ≤ z ≤ yj for all i, j.
(iii) Σ is an upward directed hereditary subset of G+ which generates G.

States on Ordered Groups

The order structure on an ordered group is at least partially (and in good
cases completely) determined by the states, which in the K0 case are closely
related to the tracial states on the algebra.

V.2.4.21 Definition. A state on a scaled ordered group (G,G+, u) is an
order-preserving homomorphism f from G to R with f(u) = 1.

The set S(G,G+, u) (or just denoted S(G) when there is no confusion) of
all states on (G,G+, u) is a compact convex set in the topology of pointwise
convergence. S(G) is called the state space of G.

We now develop some properties of S(G) due to K. Goodearl and D.
Handelman [GH76], including a Hahn–Banach type existence theorem.

V.2.4.22 Lemma. Let (G,G+, u) be a scaled ordered group. Let H be a
subgroup of G containing u, and f a state on (H,H ∩ G+, u) (we do not
assume H is positively generated). Let t ∈ G+, and

p = sup{f(x)/m | x ∈ H,m > 0, x ≤ mt}

q = inf{f(y)/n | y ∈ H,n > 0, nt ≤ y}.
Then:

(i) 0 ≤ p ≤ q < ∞.
(ii) If g is a state on (H + Zt, u) which extends f , then p ≤ g(t) ≤ q.
(iii) If p ≤ r ≤ q, then there is a unique state g on (H + Zt, u) which extends

f with g(t) = r.

The proof is a simple calculation. The next theorem then follows from a
Zorn’s Lemma argument:

V.2.4.23 Theorem. Let (G,G+, u) be a scaled ordered group, and let H
be a subgroup of G containing u. If f is any state on (H,H ∩ G+, u), then f
extends to a state on (G,G+, u).
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V.2.4.24 Corollary. Let (G,G+, u) be a scaled ordered group, and let
t ∈ G+. Let f∗(t) = p, f∗(t) = q defined as in V.2.4.22 with H = Zu. Then:

(i) 0 ≤ f∗(t) ≤ f∗(t) < ∞.
(ii) If f is any state on G, then f∗(t) ≤ f(t) ≤ f∗(t).
(iii) If f∗(t) ≤ r ≤ f∗(t), then there is a state g on G with g(t) = r.

f∗(t) and f∗(t) can be more elegantly described as

f∗(t) = sup{n/m | nu ≤ mt}

f∗(t) = inf{n/m | mt ≤ nu}.

V.2.4.25 Theorem. Let (G,G+, u) be a simple weakly unperforated scaled
ordered group. Then G has the strict ordering from its states, i.e. G+ =
{0} ∪ {x | f(x) > 0 for all f ∈ S(G)}.
Proof: If x > 0, then x is an order unit, so u ≤ mx for some m > 0. Then
0 < 1/m ≤ f∗(x), so f(x) > 0 for all f ∈ S(G). Conversely, suppose f(x) > 0
for all f ∈ S(G). By compactness, we have

f∗(x) = inf
f∈S(G)

f(x) > 0

so there are positive integers n and m with 0 < nu ≤ mx, and therefore by
weak unperforation x > 0. (Note that this implication does not require G to
be simple.)

There is an alternate way to view V.2.4.25. If x ∈ G, then x induces
a continuous affine function x̂ on S(G) by x̂(f) = f(x). Thus there is a
homomorphism ρ from G to Aff(S(G)), the group of all continuous real-valued
affine functions on S(G). V.2.4.25 then says that G has the strict ordering from
ρ, in the sense of V.2.4.5(ii).

V.2.4.26 It is easy to identify at least some (in fact, all) of the states on
(K0(A),K0(A)+, [1A]). If τ is a tracial state on A, or more generally a qua-
sitrace on A (II.6.8.15), then τ induces a state on K0(A) in an obvious way.
Let T (A) and QT (A) denote respectively the tracial states and normalized
quasitraces on A. We have T (A) ⊆ QT (A); it is a very important and difficult
question whether T (A) = QT (A) for all A (II.6.8.16). It is at least true that
QT (A), like T (A), is always a Choquet simplex, which is metrizable if A is
separable [BH82, II.4.4]. For the ordering on K0(A) the set QT (A) is the more
natural and important set to consider, due to the fact that the quasitraces
on A are in one-one correspondence with the lower semicontinuous dimension
functions on A (II.6.8.14).
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V.2.4.27 The correspondence described above gives a continuous affine map

χ : QT (A) → S = S(K0(A)).

This map is not injective in general. For example, if A = C(S1), then QT (A) =
T (A) is the state space of A, while S is a singleton. Also, if A = C∗(Z2 ∗ Z2),
then S is a square and not even a simplex, so χ is not injective (there are sim-
ilar simple examples [ET94]). It is injective if A has real rank zero (V.3.2.19).
Under some mild additional hypotheses, a precise description can then be
given of the ordered group K0(A).

The map χ is always surjective [BR92]. In other words, if A is any C*-
algebra, then every state on K0(A) comes from a quasitrace on A; if A is
nuclear (or exact), then every state on K0(A) comes from a tracial state.
Thus there are enough tracial states on A to completely determine the order
structure on K0(A) (up to perforation).

So if A is a stably finite unital C*-algebra with real rank zero, then χ is a
bijection, hence a homeomorphism.

K0 of a Crossed Product

V.2.4.28 It is a highly nontrivial matter to determine the order structure
on K0(A �α G), even if G = Z. Even if the action is trivial, so that A �α Z ∼=
C(S1, A), there is no known way to calculate the order structure. For example,
if A = C(T3), then K0(A) ∼= Z

4 with strict ordering from the first coordinate;
but K0(C(T4)) ∼= Z

8 is perforated.
One can, however, obtain quite a bit of partial information: it is (at least

theoretically) possible to calculate the range of any state on K0(A�αZ) which
comes from a tracial state on the crossed product (by [BR92], every state on
K0 arises this way, at least if A is exact). In good cases this calculation can
be done rather easily and gives complete information on the order structure.

Using these results, one can fairly easily give examples of simple unital C*-
algebras with no nontrivial projections. The first such examples were given in
[Bla80] and [Bla81].

See [Bla98, 10.10] for details and references.

Order Structure on K∗(A)

For some purposes in classification theory, the ordering on K0(A) is not
enough; one needs a finer ordering on the Z2-graded group K∗(A) = K0(A)⊕
K1(A).

V.2.4.29 Definition. Let A be a unital C*-algebra. Set

K∗(A)+ = {([p], [u]) : p ∈ M∞(A), u ∈ U(pM∞(A)p)}
and Σ∗(A) = {([p], [u]) ∈ K∗(A)+ : p ∈ A}. (K∗(A),K∗(A)+, Σ∗(A)) is called
the scaled (pre)ordered K∗-group of A.
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V.2.4.30 In many cases, the ordering on K∗(A) just comes from the order-
ing on the K0 part. For example, if A is properly infinite, then K∗(A)+ =
Σ∗(A) = K∗(A). And if A is simple with sr(A) = 1, then K∗(A) has the strict
ordering from the K0 part, i.e.

K∗(A)+ = {(0, 0)} ∪ {(x, y) : 0 < x in K0(A)}
Σ∗(A) = {(0, 0), (1, 0)} ∪ {(x, y) : 0 < x < 1 in K0(A)}.

However, this is not always the case: for example, if A = C(S3), then K0(A) ∼=
K1(A) ∼= Z, so K∗(A) ∼= Z

2, and

K∗(A)+ = {(0, 0), (1, 0)} ∪ {(m,n) : m ≥ 2}.
There are examples of stably finite simple C*-algebras where the same phe-
nomenon happens [Vil02].

V.2.4.31 There is a clean alternate description of the ordering on K∗(A).
From the split exact sequence

0 −→ SA −→ C(S1) ⊗ A −→ A −→ 0

we obtain that
K∗(A) ∼= K0(C(S1) ⊗ A)

and under this isomorphism K∗(A)+ and Σ∗(A) just become K0(C(S1)⊗A)+
and Σ(C(S1) ⊗ A) respectively.

V.3 Stable Rank and Real Rank

An algebraic theory of stable rank in rings was developed by H. Bass [Bas64],
primarily to handle cancellation problems in algebraic K-theory. M. Rieffel
adapted the theory to C*-algebras (and more general topological algebras)
[Rie83]. This theory was formally modeled on dimension theory for compact
Hausdorff spaces, but it was quickly realized that stable rank does not re-
semble a dimension theory very closely in the noncommutative case. The
theory has nonetheless proved interesting and useful, particularly with regard
to nonstable K-theory questions. The principal reason that stable rank does
not behave like a dimension theory in the noncommutative case, and also the
reason it gives nonstable K-theory information, is its behavior under forming
matrix algebras ([Vn71], [Rie83, 6.1]): the stable rank sr(Mn(A)) is roughly
sr(A) divided by n (see V.3.1.16 for the precise formula).

L. Brown and G. Pedersen [BP91] developed an analogous theory of real
rank for C*-algebras. The base case of this theory, the case of real rank zero,
is the most important existence of projections property in the theory of C*-
algebras.

In this section, we briefly develop the general theories, with particular
emphasis on the base cases (stable rank one, real rank zero), which are both
the simplest and the most important aspects of the theories. Much of this
exposition (which largely follows [Rie83]) first appeared in [Bla04c].
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V.3.1 Stable Rank

Both stable rank and real rank are motivated by the following fact from topol-
ogy ([HW41, VI.1], [Pea75, 3.3.2]; cf. [Kat50] and [GJ76] for related results).

V.3.1.1 Theorem. Let X be a compact metrizable space. Then all dimen-
sion theories coincide on X, and dim(X) can be characterized as the smallest
n with the following property: any continuous function f : X → R

n+1 can be
uniformly approximated arbitrarily closely by g : X → R

n+1 such that g(X)
does not contain the origin in R

n+1.

V.3.1.2 Definition. Let A be a unital C*-algebra. Let Lgn(A) be the set of
(x1, . . . , xn) ∈ An such that there exists (y1, . . . , yn) ∈ An with

∑n
i=1 yixi = 1.

The stable rank of A, denoted sr(A), is the smallest n such that Lgn(A)
is dense in An. If there is no such n, set sr(A) = ∞.

If A is nonunital, then sr(A) is defined to be sr(Ã).

V.3.1.3 If A is unital, the elements of Lgn(A) are the n-tuples which gen-
erate A as a left A-module. It is easily seen that (x1, . . . , xn) ∈ Lgn(A)
if and only if

∑n
i=1 x∗

i xi is invertible. In particular, if A = C(X), then
(f1, . . . , fn) ∈ Lgn(A) if and only if for every t ∈ X there is an i such that
fi(t) �= 0. Thus, since (f1, . . . , fn) ∈ An can be regarded as a continuous
function from X to C

n ∼= R
2n, we obtain from V.3.1.1 that

sr(C(X)) =
⌊

dim(X)
2

⌋

+ 1

where �·� denotes “integer part of.”

V.3.1.4 The number sr(A) defined in V.3.1.2 is properly called the left
topological stable rank of A, denoted ltsr(A) in [Rie83]; Rgn(A) and rtsr(A)
can be defined analogously. Because of the involution, there is an obvious
correspondence between Lgn(A) and Rgn(A), and ltsr(A) = rtsr(A); this
number is called tsr(A) in [Rie83] to distinguish it from the Bass stable rank
Bsr(A). The topological stable rank of a C*-algebra was shown to coincide
with the Bass stable rank in [HV84]; thus we may use the term “stable rank”
and the notation sr(A) unambiguously.

Stable Rank One

We now examine the case of stable rank one more carefully. A has stable rank
one if and only if the left invertible elements of Ã are dense in Ã.
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V.3.1.5 Proposition. Let A be a unital C*-algebra of stable rank one.
Then every left or right invertible element of A is invertible (and, in particular,
the invertible elements of A are dense in A).
Proof: Because of the involution, it suffices to show that left invertible ele-
ments are invertible. Let x be left invertible with left inverse r. If y is a left
invertible element with ‖y−r‖ < ‖x‖−1, then ‖yx−1‖ < 1, so yx is invertible
and hence y is right invertible and thus invertible; therefore x is also invertible.

Thus a C*-algebra of stable rank one must be finite. By V.3.1.16, such a
C*-algebra must even be stably finite. Until fairly recently, no stably finite
simple C*-algebra was known to have stable rank greater than 1. Examples
have been constructed by Villadsen [Vil99].

The Generalized Matrix Picture

V.3.1.6 Elements of An may be regarded as n × 1 matrices over A, and
Lgn(A) becomes the set of left invertible n × 1 matrices, so stable rank can
be defined in terms of density of left invertible matrices.

V.3.1.7 If p and q are projections in a C*-algebra A, it is useful to think of
the subspace pAq of A as a space of “nonsquare matrices” with “p rows” and “q
columns”. If r and s are other projections orthogonal to p and q respectively,
then a “(p + r) × (q + s) matrix” (an element of (p + r)A(q + s)) may be
symbolically written as a 2 × 2 “block matrix”: write x ∈ (p + r)A(q + s) as[

pxq pxs
rxq rxs

]

. The algebraic operations in these sets (as subsets of A) can be

calculated by formal matrix algebra.
It is convenient to generalize the notion of left invertibility:

V.3.1.8 Definition. Let A be a C*-algebra, p and q projections in A. An
element x ∈ pAq is left invertible (in pAq or with respect to (p, q)) if there is
y ∈ qAp with yx = q. We write Lg(p,q)(A) for the set of left invertible elements
of pAq.

It is easily seen that x ∈ pAq is left invertible in pAq if and only if x∗x is
invertible in qAq. (Thus left invertibility with respect to (p, q) really depends
only on the q.)

If p ∼ p′, q ∼ q′, then there is an obvious isometric isomorphism from
pAq onto p′Aq′ sending Lg(p,q)(A) onto Lg(p′,q′)(A), given by x �→ uxv, where
u∗u = p, uu∗ = p′, vv∗ = q, v∗v = q′.

V.3.1.9 Recall (II.3.4.3) that q � p if there is a u ∈ A with u∗u = q and
uu∗ ≤ p. We will write n·q � p if there are mutually orthogonal subprojections
p1, . . . , pn of p, each equivalent to q.
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V.3.1.10 Proposition. Let A be a C*-algebra, p, q projections in A.

(i) There exists a left invertible element in pAq if and only if q � p.
(ii) If sr(qAq) = n < ∞ and n · q � p, then the left invertible elements of

pAq are dense in pAq.
(iii) If p is equivalent to a proper subprojection of q, then the left invertible

elements of pAq are not dense in pAq.

Proof: (i): if u∗u = q and uu∗ ≤ p, then u ∈ pAq and is left invertible.
Conversely, if x ∈ pAq is left invertible, with y ∈ qAp with yx = q, then

q = x∗y∗yx ≤ ‖y‖2x∗x

so x∗x is invertible in qAq. If r ∈ qAq with x∗xr = q, set u = xr1/2; then
u∗u = q and uu∗ is a projection in pAp.
(ii): if p1, . . . , pn are mutually orthogonal subprojections of p, and ui satisfies
u∗

i ui = pi and uiu
∗
i = q for 1 ≤ i ≤ n, set r = p − ∑

pi. If x ∈ pAq, write
xi = pix for 1 ≤ i ≤ n and xn+1 = rx. Set yi = uixi ∈ qAq for 1 ≤ i ≤ n.
By assumption, (y1, . . . , yn) can be approximated by (z1, . . . , zn) ∈ Lgn(qAq),
i.e. with

∑n
i=1 z∗i zi invertible in qAq. Set wi = u∗

i zi for 1 ≤ i ≤ n, and

w =
n∑

i=1

wi + xn+1.

Then w closely approximates x, and

w∗w =
n∑

i=1

z∗i zi + x∗
n+1xn+1

is invertible in qAq, so w is left invertible in pAq.
(iii): We may assume p � q. Suppose x = pxq ∈ pAq is left invertible and
approximates p closely enough that xp = pxp is invertible in pAp. Let y =
qyp ∈ qAp with yx = q. If r = q − p, then

[ryp][pxp] = ryxp = (q − p)p = 0

and since pxp is invertible in pAp, ryp = 0. But

[ryp][pxr] = ryxr = rqr = r �= 0,

a contradiction.
Part (iii) is a version of the fact (II.3.2.19) that a proper isometry in a

(unital) C*-algebra cannot be a limit of invertible elements. See [Rør88] for
more detailed results along this line.

V.3.1.11 Corollary. ([Rie83, 3.1,6.5], [Rob80]) Let A be a properly infi-
nite C*-algebra. Then sr(A) = ∞.

This follows from V.3.1.10(ii)–(iii), since if A is properly infinite, n · 1 is
equivalent to a proper subprojection of 1 for every n.
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V.3.1.12 Although a C*-algebra of stable rank 1 must be stably finite, an
infinite C*-algebra need not have infinite stable rank: if T is the Toeplitz
algebra (II.8.3.2(v)), then it is not difficult to show that sr(T ) = 2. This also
follows from V.3.1.5 and V.3.1.21.

Expanding and Contracting Matrices

The next two propositions can be used to establish the behavior of stable rank
for matrix algebras and full corners. Note that the elements of pAp act on pAq
by left multiplication, and left multiplication by an invertible element sends
Lg(p,q)(A) onto itself.

Recall that an element in a unital ring of the form 1 + x, x nilpotent, is
called unipotent . A unipotent element is invertible.

V.3.1.13 Proposition. (cf. [Rie83, 3.4]) Let A be a C*-algebra, p, q, r pro-
jections in A with p ⊥ r, q ⊥ r. If Lg(p+r,q+r)(A) is dense in (p + r)A(q + r),
then Lg(p,q)(A) is dense in pAq.
Proof: Let x ∈ pAq. Let 0 < ε < 1, and approximate x + r within ε by an
element y ∈ Lg(p+r,q+r)(A). Then ‖ryq‖ < ε, ‖pyr‖ < ε, and ‖r − ryr‖ < ε.
Thus there is an a ∈ rAr with ‖a‖ < (1− ε)−1 and a(ryr) = r. We then have

(p + r − pyra)y(q + r − aryq) = pyq − (pyr)a(ryq) + ryr.

Also, p + r − pyra and q + r − aryq are unipotent and hence invertible in
(p + r)A(p + r) and (q + r)A(q + r) respectively, and y is left invertible in
(p+ r)A(q + r), so pyq− (pyr)a(ryq)+ ryr is left invertible in (p+ r)A(q + r),
and hence pyq − (pyr)a(ryq) is left invertible in pAq. But

‖x − [pyq − (pyr)a(ryq)]‖ ≤ ‖x − pyq‖ + ‖pyr‖‖a‖‖ryq‖
< ε + ε2(1 − ε)−1 = ε(1 − ε)−1.

V.3.1.14 Proposition. Let A be a C*-algebra, p, q, r projections in A with
p ⊥ r, q ⊥ r, r � n · q for some n. If Lg(p,q)(A) is dense in pAq, then
Lg(p+r,q+r)(A) is dense in (p + r)A(q + r).
Proof: We may assume q ≤ p by V.3.1.10(i). It suffices to prove the result
for r ∼ q, for then the case where r ∼ (2n − 1) · q follows by induction, and
V.3.1.13 then gives the case r � n · q. Since s = p− q + r ∼ p, Lg(s,q)(A) and
Lg(s,r)(A) are dense in sAq and sAr respectively. If x ∈ (p + r)A(q + r) and
ε > 0, then x can be approximated within ε/2 by y ∈ (p+r)A(q+r) such that
a = syq ∈ Lg(s,q)(A). We will show there is an invertible z ∈ (p + r)A(p + r)
such that zyq = q. This will suffice to prove the statement, since by hypothesis
there will be w ∈ Lg(s,r)(A) approximating szyr within ε/2‖z−1‖, and then
q + w + qzyr will be an element of Lg(p+r,q+r)(A) approximating
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q + szyr + qzyr = zyq + (p + r)zyr = zy

within ε/2‖z−1‖, so

z−1(q + w + qzyr) ∈ Lg(p+r,q+r)(A)

approximates y within ε/2 and therefore approximates x within ε.
To find z, first note that if b ∈ qAs with ba = q, then u = p+r+(q−qyq)b

is unipotent and hence invertible in (p + r)A(p + r); if v = p + r − syq, then
v is unipotent in (p + r)A(p + r) and vuyq = q. Set z = vu.

The proofs of V.3.1.13 and V.3.1.14 are easier to follow and understand if
elements are written symbolically as matrices as in V.3.1.7.

Note that V.3.1.14 is not true in general if r is “too large” compared to q:
let A = L(H), p = q a finite-rank projection, and r = 1 − p.

V.3.1.15 Corollary. Let A be a unital C*-algebra and m ≥ 0. If the left
invertible (m + 1) × 1 matrices are dense in the (m + 1) × 1 matrices over
A, then the left invertible (m + k) × k matrices are dense in the (m + k) × k
matrices over A for all k. Conversely, if the left invertible (m+k)×k matrices
are dense for some k, then the left invertible (m + 1)× 1 matrices over A are
dense in Am+1.
Proof: Apply the previous two propositions to Mm+k(A) with p, q, and r
diagonal projections of rank m + 1, 1, and k − 1 respectively.

Matrix Algebras and Stable Algebras

V.3.1.16 Corollary. [Rie83, 6.1] Let A be a C*-algebra. Then, for any n,
we have

sr(Mn(A)) =
⌈

sr(A) − 1
n

⌉

+ 1

where �·� denotes “least integer ≥.” In particular, sr(Mn(A)) = 1 [resp. ∞]
if and only if sr(A) = 1 [resp. ∞].

Indeed, the r × 1 matrices over Mn(A) can be identified with the nr × n
matrices over A. Thus, if sr(A) = m + 1, Lgr(Mn(A)) is dense in (Mn(A))r

if and only if m + n ≤ nr. (In the nonunital case, one must also show that

sr(Mn(Ã)) = sr(M̃n(A)), which follows from the sharper form of V.3.1.21.)
Thus, if 1 < sr(A) < ∞, then sr(Mn(A)) = 2 for sufficiently large n. A

related result holds for stable algebras:

V.3.1.17 Proposition. [Rie83, 3.6–6.4] Let A be a C*-algebra. If sr(A) =
1, then sr(A ⊗ K) = 1; if 1 < sr(A) ≤ ∞, then sr(A ⊗ K) = 2.

Stable Rank of Full Corners

Another corollary of V.3.1.14 is:
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V.3.1.18 Corollary. Let A be a unital C*-algebra and p a full projec-
tion in A. Then sr(pAp) ≥ sr(A). If sr(A) < ∞, then sr(pAp) < ∞; and
sr(pAp) = 1 if and only if sr(A) = 1.
Proof: We have that 1 � n · p for some n (V.2.4.10), and hence 1− p � n · p.
If m = sr(pAp) < ∞, then Lg(m·p,p)(A) is dense in (pAp)m, and hence by
V.3.1.14 Lg(m·p+1−p,p+1−p)(A) is dense in the corresponding column space.
The same is then true for Lg(m·p+m·(1−p),1)(A) ∼= Lgm(A) in Am, i.e. sr(A) ≤
m. On the other hand, 1 is equivalent to a full projection in Mn(pAp), so

sr(A) ≥ sr(Mn(pAp)) =
⌈

sr(pAp) − 1
n

⌉

+ 1.

In particular, if sr(pAp) = ∞, then sr(A) = ∞. Also, if sr(pAp) = 1, then
sr(A) ≤ sr(pAp) = 1, and conversely if sr(A) = 1, then sr(Mn(pAp)) ≤
sr(A) = 1, and hence sr(pAp) = 1 by V.3.1.16.

Simple counterexamples show that the hypothesis that p be full is nec-
essary: for example, A = B(H) for infinite-dimensional H, p a finite-rank
projection; or A = C ⊕ O2, p = (1, 0).

What about the nonunital case? It is very plausible that if p is a full
projection in A, then sr(pAp) ≥ sr(A) even if A is nonunital; however, this
does not seem to follow from V.3.1.18 except in a special case:

V.3.1.19 Corollary. Let A be a C*-algebra with an approximate unit
(qi) of projections, and let p be a full projection in A. Then sr(pAp) ≥ sr(A).

Proof: We have sr(A) ≤ lim inf sr(qiAqi), and there is an i0 such that p � qi

for all i ≥ i0, so sr(pAp) ≥ sr(qiAqi) for i ≥ i0.

V.3.1.20 It is less clear whether a general full corner in a nonunital C*-
algebra A (II.7.6.5(iii)) also satisfies the inequality. As pointed out by N.
Elhage Hassan [EH93], the inequality fails for general full hereditary C*-
subalgebras: if A is a purely infinite simple unital C*-algebra, e.g. O2, and
B is a nonunital hereditary C*-subalgebra, then B is stable, so 2 = sr(B) <
sr(A) = ∞.

Other Properties of Stable Rank

V.3.1.21 Theorem. [Rie83, 4.3–4.4–4.12] Let 0 → J → A → B → 0 be an
exact sequence of C*-algebras. Then

max{sr(J), sr(B)} ≤ sr(A) ≤ max{sr(J), sr(B) + 1}.

A more precise statement can be made using the notion of connected stable
rank [Rie83, 4.11].
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The next proposition is obvious. The inequality cannot be replaced by
an equality: there are obvious commutative counterexamples, and also some
quite nonobvious noncommutative ones (cf. [BBEK92]).

V.3.1.22 Proposition. Let A = lim−→(Ai, φij). Then

sr(A) ≤ lim inf
i

sr(Ai).

V.3.1.23 Theorem. [Rie83, 7.1] Let A be a C*-algebra and α ∈ Aut(A).
Then sr(A �α Z) ≤ sr(A) + 1.

Nonstable K -Theory

One of the important applications of stable rank is to cancellation and related
questions. Cancellation questions are part of what is known as nonstable K-
theory, which is concerned with relating the K-theory data of A (which is
“stable” data) to the actual structure of A.

V.3.1.24 Proposition. Let A be a C*-algebra. If sr(A) = 1, then A has
cancellation.
Outline of Proof: We may assume A is unital. Let p and q be projections
in A, with p ∼ q, and let u be a partial isometry with u∗u = p, uu∗ = q.
Approximate u closely by an invertible element x ∈ A. Then x∗x ≈ p, so
σ(x∗x) consists of a small piece σ0 near 0 and a small piece σ1 near 1. Let
f(t) = t−1/2 on σ0 and f(t) = 0 on σ1, g(t) = 0 on σ0 and g(t) = t−1/2 on σ1,
and let v = xf(x∗x), w = xg(x∗x). Then v and w are partial isometries with
complementary support and range projections, v + w is the unitary in the
polar decomposition of x, and w ≈ x ≈ u, so p′ = w∗w ≈ p, q′ = ww∗ ≈ q. By
II.3.3.4, p′ ∼ p, q′ ∼ q, (1−p′) ∼ (1−p), (1−q′) ∼ (1−q). Since v∗v = 1−p′,
vv∗ = 1 − q′, we have (1 − p) ∼ (1 − p′) ∼ (1 − q′) ∼ (1 − q).

The exact general relationship between stable rank and cancellation is not
known. There are some significant generalizations of V.3.1.24, however; see,
for example, [Rie83] and [Bla83a]. Cancellation results are typically of the
form: if p⊕ r ∼ q ⊕ r, and p and q are “large enough” or r is “small enough,”
then p ∼ q. See [Hus66, Chapter 8] for some results of this sort for vector
bundles. We cite one example related to stable rank:

V.3.1.25 Theorem. ([Rie83, 10.13], [War80]) Let p, q, r be projections in a
unital C*-algebra A, and n ≥ sr(rAr). If p⊕n ·r⊕r ∼ q⊕r, then p⊕n ·r ∼ q.

Another nonstable K-theory question is: if A is a unital C*-algebra, for
which n (if any) is the natural map from Un(A)/Un(A)o to Un+1(A)/Un+1(A)o
(or to K1(A)) injective? surjective? The best result for C*-algebras is the
following [Rie87, 2.10]; the best results valid for general rings are weaker
([Bas74, 2.4], [Vas69]; cf. [Rie83, §10]).
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V.3.1.26 Theorem. Let A be a unital C*-algebra and n ≥ sr(A). Then
the map from Un(A)/Un(A)o to Un+1(A)/Un+1(A)o is an isomorphism. Hence
the map from Un(A)/Un(A)o to K1(A) is an isomorphism.

The condition is the best possible in general, but the conclusion also holds
under other circumstances, for example:

V.3.1.27 Proposition. Let A be a purely infinite simple unital C*-algebra.
Then the map from U1(A)/U1(A)o (or Un(A)/Un(A)o for any n) to K1(A) is
an isomorphism.

The proof basically consists of noting that A has a hereditary C*-subalgebra
B isomorphic to A⊗K, with each unitary in A homotopic (via functional cal-
culas) to a unitary in A ⊗ e11 ⊆ B.

V.3.2 Real Rank

The theory of real rank for C*-algebras, developed by Brown and Pedersen
[BP91], formally resembles the theory of stable rank, but there are important
differences under the surface.

V.3.2.1 Definition. Let A be a unital C*-algebra. Let slgn(A) be the set
of (x1, . . . , xn) in (Asa)n such that

∑n
i=1 x2

i is invertible.
The real rank of A, denoted rr(A), is the smallest n such that slgn+1(A)

is dense in (Asa)n+1. If there is no such n, set rr(A) = ∞.
If A is nonunital, then rr(A) is defined to be rr(Ã).

V.3.2.2 It follows easily from V.3.1.1 that rr(C(X)) = dim(X) for any
compact Hausdorff space X.

V.3.2.3 Note that there is a difference in numbering convention between
stable rank and real rank: real rank n corresponds (very roughly) to stable
rank n+1 (or, perhaps more accurately, stable rank [n/2]+1; cf. V.3.2.4). In
particular, “real rank zero” is the analog of “stable rank one.” This difference
in convention is somewhat unfortunate, but well established. Real rank is more
closely related to dimension than stable rank, and the convention in real rank
was chosen so that rr(C(X)) = dim(X); on the other hand, the convention
in stable rank was chosen to be consistent with the numbering in Bass stable
rank, which is natural from an algebraic standpoint.

There is one weak relation between stable rank and real rank:

V.3.2.4 Proposition. If A is a C*-algebra, then rr(A) ≤ 2sr(A) − 1.
For the proof, note that the natural map from An to (Asa)2n by taking

real and imaginary parts sends Lgn(A) into slg2n(A) by II.3.1.9(ii).
This inequality is the best possible in general, but equality often fails; if

A = C(X), then equality holds if and only if dim(X) is odd. In fact, there
is no general inequality in the opposite direction: there are C*-algebras with
real rank zero and stable rank infinity (V.3.1.11, V.3.2.12).
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V.3.2.5 The theory of real rank is not as well developed as the theory of
stable rank, and analogs of V.3.1.16 and V.3.1.23 are not known in general. In
fact, not much is known about the theory of real rank for C*-algebras of real
rank greater than zero. One of the few results is a partial analog of V.3.1.16:

V.3.2.6 Theorem. [BE91] If X is a compact Hausdorff space, then

rr(Mn(C(X)) =
⌈

dim(X)
2n − 1

⌉

.

Real Rank Zero

V.3.2.7 On the other hand, the real rank zero property is one of the most
significant properties that a C*-algebra can have. Many experts are of the
opinion that C*-algebras of real rank zero are the most appropriate noncom-
mutative analogs of zero-dimensional topological spaces.

A unital C*-algebra A has real rank zero if the invertible self-adjoint el-
ements of A are dense in Asa. This turns out to be a strong existence of
projections property, equivalent to several other important properties:

V.3.2.8 Definition. Let A be a C*-algebra.

(i) A has the (HP) property if every hereditary C*-subalgebra of A has an
idempotent approximate unit (approximate unit of projections).

(ii) A has the (FS) property if the self-adjoint elements of A of finite spectrum
are dense in Asa.

It follows from II.5.3.12 that if A is a C*-algebra with (HP), then any posi-
tively generated hereditary *-subalgebra of A has an idempotent approximate
unit.

The idempotent approximate unit in a hereditary C*-subalgebra of a C*-
algebra with (HP) is not assumed to be increasing. It can be shown that if
A is separable with (HP), then every hereditary C*-subalgebra of A has an
increasing sequential idempotent approximate unit.

V.3.2.9 Theorem. Let A be a C*-algebra. Then the following are equiva-
lent:

(i) A has (HP).
(ii) The well-supported (II.3.2.8) self-adjoint elements of A are dense in Asa.
(iii) A has real rank zero.
(iv) A has (FS).
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Outline of Proof: (i) =⇒ (ii): if x is self-adjoint, y = |x|1/2, and p is a
projection in yAy which is an approximate unit for y and hence for x, then
pxp is a well-supported self-adjoint element (II.4.2.6) closely approximating
x.
(ii) =⇒ (iii): if x is well-supported, then x+λ1 is invertible for all sufficiently
small nonzero λ.
(iii) =⇒ (iv): suppose x = x∗ is given. We may assume 0 ≤ x ≤ 1. Let
{λ1, λ2, . . . } be the rationals in [0, 1]. Set x1 = x. For each n, let yn be a
well-supported self-adjoint element closely approximating xn − λn1, and set
xn+1 = yn + λn1. Then xn approximates x and its spectrum has gaps around
λ1, . . . , λn; the approximate to x with finite spectrum can then be made from
xn by functional calculus.
(iv) =⇒ (i) is the trickiest part; see [Ped80].

V.3.2.10 It is obvious that (FS) is preserved in inductive limits, and it is not
hard to show that real rank zero passes to matrix algebras. (HP) obviously
passes to hereditary C*-subalgebras. Thus all the properties are preserved
under stable isomorphism (and even under Morita equivalence).

There are other interesting existence of projections properties for C*-
algebras; for example, the defining property of AW*-algebras, that the right
annihilator of any subset is generated by a projection, is a strong existence of
projections property. See [Bla94] for a complete discussion.

V.3.2.11 Proposition. If A has (HP) and p and q are projections of A,
then the well-supported elements of qAp are dense in qAp.
Proof: Let x ∈ qAp. Let r be a projection in ∪ε>0fε(|x|)Afε(|x|) which is
almost a unit for |x| = (x∗x)1/2, and set y = xr. Then y ∈ qAr ⊆ qAp, and
since r ≤ n(x∗x) for some sufficiently large n,

y∗y = rx∗xr ≥ (1/n)r

so y∗y is invertible in rAr. Thus y is well-supported, and closely approximates
x.

In particular, if rr(A) = 0, then the well-supported elements of A are
dense in A. The converse is not true in general: for example, if A is unital and
sr(A) = 1, the invertible elements (which are well-supported) are dense in A,
but A need not have real rank 0.

A C*-algebra with real rank zero need not have stable rank 1. For example,
any von Neumann algebra has real rank zero. Here is another interesting class
of examples:

V.3.2.12 Proposition. [Zha90] Every purely infinite simple C*-algebra
has real rank 0.
Proof: Let A be a purely infinite simple C*-algebra. We may assume A is
unital (V.2.3.12, V.3.2.10). Let x = x∗ ∈ A, and 0 < ε � 1. Set y = xfε(x2);
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then y approximates x and there is an h ∈ A+, h �= 0, h ⊥ y. Let s be
a projection in hAh which is equivalent to 1A, and set p = 1A − s. Then
y = pyp and p � s; let v be a partial isometry in A with v∗v = p, vv∗ = q ≤ s,
and set r = s − q. Then p + q + r = 1A, and

z = y + ε(v + v∗ + r)

is invertible, with

z−1 = −ε−2vyv∗ + ε−1(v + v∗ + r),

and z approximates x. [Using symbolic matrix notation (V.3.1.7) with respect

to {p, q, r}, z =

⎡

⎣
y ε 0
ε 0 0
0 0 ε

⎤

⎦ .]

V.3.2.13 Corollary. Let A be a simple C*-algebra. Then A is purely
infinite if and only if A has real rank zero and every nonzero projection in A
is infinite.
Proof: One direction follows immediately from V.3.2.12 and V.2.2.24. Con-
versely, if A has real rank zero, then A has (HP) and every nonzero hereditary
C*-subalgebra contains a nonzero projection. Then, if every nonzero projec-
tion in A is infinite, A is purely infinite by V.2.3.13.

V.3.2.14 Proposition. A σ-unital purely infinite simple nonunital C*-
algebra is stable.
Proof: Suppose A is separable, simple, nonunital, and purely infinite. Then
A has a strictly increasing approximate unit (pn) of projections, and pn+1−pn

is infinite for all n. It is routine using V.2.3.2 to construct a strictly increasing
sequence (qn) of projections such that pn ≤ qn ≤ pn+1 and (qn+1 − qn) ∼ q1

for all n. The sequence (qn) is then also an approximate unit for A, and the
isomorphism of A with q1Aq1 ⊗ K is then obvious.

In the presence of real rank 0, there is a “converse” to V.3.1.24 [BH82]:

V.3.2.15 Proposition. Let A be a C*-algebra. If rr(A) = 0 and A has
cancellation, then sr(A) = 1.
Outline of Proof: We may assume A is unital. Let x ∈ A, and let y be
a well-supported element closely approximating x. Let p and q be the source
and range projections of y. Then p ∼ q, so (1 − p) ∼ (1 − q) by cancellation.
Let v be a partial isometry in A with v∗v = 1 − p, vv∗ = 1 − q. Then y + εv
is invertible for any ε �= 0, and closely approximates x if ε is small.

There is no known example of a stably finite C*-algebra with real rank
zero which does not have cancellation (stable rank 1).
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V.3.2.16 If A has real rank zero and a, b ∈ A+ with b � a and ‖a‖ =
‖b‖ = 1, it would be very helpful to have an interpolating projection p with
b ≤ p ≤ a (hence b � p � a). This cannot be done in general (e.g. in C(K),
where K is the Cantor set); but if there is a little “room” between a and b it
can be:

V.3.2.17 Proposition. Let A be a C*-algebra with real rank zero, a, b ∈
A+. If there is a c ∈ A+ with b � c � a, then there is a projection p ∈ A
with b � p � a.
Proof: We may assume A is unital since Ã also has real rank zero and a
p ∈ Ã satisfying the conclusion is automatically in A. We have b � f1/2(c) �
f1/4(c) � a. Changing notation, we have

b � c � d � a

for some c, d ∈ A+. Replacing b by g(b), etc., where g(t) = min(t, 1), we may
assume a, b, c, d have norm 1; thus

1 − a � 1 − d � 1 − c � 1 − b.

Using (HP), let r be a projection in (1 − c)A(1 − c) which is almost a unit
for 1 − c, and let q = 1 − r. Since b ⊥ 1 − c, qb = b. Then d is almost a
unit for q, so qdq is approximately equal to q and thus invertible in qAq. So
x = d1/2q is well-supported. Let x = u|x| be the polar decomposition; u∗u = q
and p = uu∗ ∈ dAd and thus p � a. Since

d1/2b = bd1/2 = b = qb = bq

we have xb = bx = b and thus pb = b.

V.3.2.18 L. Brown and G. Pedersen [BP95] considered a variation of stable
rank 1, extremal richness, which is particularly interesting in the case of real
rank zero. A unital C*-algebra A is extremally rich if the set Aq of quasi-
invertible elements (II.3.2.21) of A is dense in A. If sr(A) = 1, then A is
extremally rich, but extremal richness is strictly weaker than stable rank 1 in
general. For example, a purely infinite simple C*-algebra is extremally rich.

Ordered K0-Group of a Real Rank Zero C*-Algebra

If A is a stably finite unital C*-algebra with real rank zero, then the map χ
of V.2.4.27 is a bijection, hence a homeomorphism.

V.3.2.19 Corollary. [BH82, III] If A is a stably finite simple unital C*-
algebra with real rank zero, such that K0(A) is weakly unperforated, then the
state space of K0(A) is the simplex QT (A), and K0(A) has the strict ordering
induced from ρ : K0(A) → Aff(QT (A)), i.e. [p] < [q] if and only if τ(p) < τ(q)
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for every quasitrace τ . If A has cancellation (i.e. stable rank 1), and p and q
are projections in M∞(A) with τ(p) < τ(q) for all τ , then p � q.

It is not true that τ(p) ≤ τ(q) for all τ implies p � q, even in a simple
unital AF algebra.

V.3.2.20 Theorem. [BH82, III] Let A be simple, unital, stably finite, with
real rank zero and cancellation, and with K0(A) weakly unperforated. Then
the range of ρ : K0(A) → Aff(QT (A)) is uniformly dense.

V.4 Quasidiagonality

It has become increasingly recognized in recent years that quasidiagonality is
a key notion in the structure and classification of C*-algebras, even though
it is still somewhat mysterious and far from completely understood. Quasi-
diagonality is a sort of approximate finite-dimensionality, and thus has close
connections with finiteness and nuclearity, although the exact relationships
between these concepts are not yet known.

The theory works best for separable C*-algebras and separable Hilbert
spaces, so we will concentrate on this case whenever convenient.

For a more complete discussion of quasidiagonality, see [Bro04].

V.4.1 Quasidiagonal Sets of Operators

V.4.1.1 Definition. Let H be a Hilbert space.
A block system in L(H) is a set {Qi} of mutually orthogonal finite-rank pro-
jections on H with

∑
i Qi = I.

An operator T ∈ L(H) is block diagonal with respect to the block system {Qi}
if T =

∑
i QiTQi, i.e. QiTQj = 0 for all i �= j. If each Qi is one-dimensional,

T is diagonal. An operator T is block-diagonalizable [resp. diagonalizable] if it
is block diagonal [resp. diagonal] with respect to some block system.
If H is separable, an operator T ∈ L(H) is quasidiagonal if it is block-diagonal-
izable up to compacts, i.e. it is a compact perturbation of a block-diagonal-
izable operator.

V.4.1.2 Examples.

(i) Any compact operator is quasidiagonal. In particular, if H is finite-
dimensional, every operator on H is quasidiagonal (in fact, block-diagonal-
izable).

(ii) An operator T ∈ L(H) is diagonalizable if and only if there is an ortho-
normal basis for H consisting of eigenvectors for T . Any diagonalizable
operator is normal. Conversely, by the Weyl-von Neumann-Berg Theorem
[Ber71], any normal operator on a separable Hilbert space is a compact
perturbation of a diagonalizable operator, hence is quasidiagonal.



458 V K-Theory and Finiteness

(iii) A block-diagonalizable semi-Fredholm operator clearly is Fredholm of in-
dex 0, and hence a quasidiagonal semi-Fredholm operator on a separable
Hilbert space is Fredholm of index 0. In particular, a nonunitary isometry
is not quasidiagonal. (See V.4.1.11 for the nonseparable case.)

Separable Quasidiagonal Sets and C*-Algebras of Operators

V.4.1.3 More generally, if H is separable and S ⊆ L(H) is norm-separable,
then S is a quasidiagonal set of operators if the operators in S are simulta-
neously block-diagonalizable up to compacts, i.e. if there is a block system
{Qi} such that each S ∈ S is a compact perturbation of an operator which is
block diagonal with respect to {Qi}. (See V.4.1.6 for the general definition of
a quasidiagonal set of operators.)

If S is a quasidiagonal set of operators, then so is C∗(S) + K(H) + CI.
Thus quasidiagonality is fundamentally a property of concrete C*-algebras of
operators.

If H is finite-dimensional, then L(H) (or any subset) is a quasidiagonal set
of operators.

V.4.1.4 Any subset of a quasidiagonal set of operators is quasidiagonal.
In particular, if S is a quasidiagonal set of operators, then any S ∈ S is
quasidiagonal. The converse is false: if S is the unilateral shift and S1, S2 are
its real and imaginary parts, then S1 and S2 are quasidiagonal (V.4.1.2(ii)),
but {S1, S2} is not quasidiagonal (V.4.1.2(iii)).

The proof of the next proposition is a straightforward exercise (II.3.3.5 is
needed to prove (iv) =⇒ (iii)). Recall that the commutator [S, T ] is ST − TS
for S, T ∈ L(H).

V.4.1.5 Proposition. Let H be a separable Hilbert space and S ⊆ L(H)
be norm-separable. Then the following are equivalent:

(i) S is a quasidiagonal set of operators.
(ii) There is an increasing sequence (Pn) of finite-rank projections on H, with∨

n Pn = I (i.e. Pn → I strongly), such that limn ‖[Pn, S]‖ = 0 for all
S ∈ S.

(iii) For every finite-rank projection Q ∈ L(H), Si, . . . , Sn ∈ S, and ε > 0,
there is a finite-rank projection P ∈ L(H) with Q ≤ P and ‖[P, Si]‖ < ε
for 1 ≤ i ≤ n.

(iv) For every finite-rank projection Q ∈ L(H), Si, . . . , Sn ∈ S, and ε > 0,
there is a finite-rank projection P ∈ L(H) with ‖Pξ − ξ‖ ≤ ε‖ξ‖ for all
ξ ∈ QH and ‖[P, Si]‖ < ε for 1 ≤ i ≤ n.
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General Quasidiagonal Sets of Operators

V.4.1.6 If H or S is not separable, then V.4.1.5(ii)–(iv) are still equivalent
(with “sequence” replaced by “net” in (ii)), but these conditions do not imply
that the operators in S can be simultaneously block-diagonalized up to com-
pacts. For example, if S = {S}, where S is an uncountable amplification of
a compact operator which is not block-diagonalizable (e.g. a weighted shift),
then S satisfies (ii)–(iv) but cannot be block-diagonalized up to compacts. See
[Bro04] for an example of a nonseparable S on a separable H, satisfying (ii)–
(iv), which cannot be simultaneously block-diagonalized up to compacts.

It is the consensus of experts that conditions (ii)–(iv) should be taken
as the definition of a general quasidiagonal operator or quasidiagonal set of
operators on a general Hilbert space, and we will do so. Thus, a set S of
operators is quasidiagonal if and only if each finite subset of S is quasidiagonal.

V.4.1.7 Corollary. Let A be a concrete C*-algebra of operators on H,
containing K(H). Then A is a quasidiagonal C*-algebra of operators if and
only if there is an approximate unit for K(H), consisting of projections, which
is quasicentral for A.

From V.4.1.5(iii) we obtain:

V.4.1.8 Corollary. Let (Ai) be a nested family of quasidiagonal C*-
algebras of operators on H. Then [∪Ai]− is a quasidiagonal C*-algebra of
operators.

V.4.1.9 Proposition. Let A be a quasidiagonal C*-algebra of operators
on H. Then, for any n, Mn(A) is a quasidiagonal C*-algebra of operators
on Hn, and A ⊗ K is a quasidiagonal C*-algebra of operators on H∞. More
generally, if Ai is a quasidiagonal C*-algebra of operators on Hi (i = 1, 2),
then A1 ⊗min A2 is a quasidiagonal C*-algebra of operators on H1 ⊗H2.

The proof is very simple and straightforward.

Combining V.4.1.9 with V.4.1.2(iii), we obtain:

V.4.1.10 Corollary. Let A be a quasidiagonal C*-algebra of operators.
Then Ã is stably finite.

Actually, V.4.1.2(iii) only gives this result on a separable Hilbert space.
For the general case, use:
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V.4.1.11 Proposition. A quasidiagonal isometry on any Hilbert space is
unitary.
Outline of Proof: Let T be a quasidiagonal isometry on H, ξ a unit vector
in H, and P a finite-rank projection on H almost commuting with T , such
that Pξ = ξ. Then PTP is almost an isometry on the finite-dimensional space
PH, hence invertible; so there is an η ∈ PH with

ξ = PTPη ≈ TPPη = Tη.

Thus ξ is in the closure of the range of T .

V.4.2 Quasidiagonal C*-Algebras

V.4.2.1 Definition. Let A be an (abstract) C*-algebra.
A representation π of A is quasidiagonal if π(A) is a quasidiagonal C*-algebra
of operators.
A is quasidiagonal if it has a faithful quasidiagonal representation.
A is inner quasidiagonal if it has a separating family of quasidiagonal irre-
ducible representations.
A is strongly quasidiagonal if every representation of A is quasidiagonal.

Any strongly quasidiagonal C*-algebra is inner quasidiagonal (and also
quasidiagonal).

V.4.2.2 It is easily seen that any sum of quasidiagonal representations is
quasidiagonal. In particular, any amplification of a quasidiagonal representa-
tion is quasidiagonal. Thus an inner quasidiagonal C*-algebra is quasidiagonal.
It also follows that every quasidiagonal C*-algebra A has a faithful quasidi-
agonal representation π on a Hilbert space H such that π(A) ∩ K(H) = {0}.

It can be easily shown using V.4.1.5(iii) that a separable quasidiagonal
C*-algebra has a faithful quasidiagonal representation on a separable Hilbert
space; in fact, any faithful quasidiagonal representation has a faithful quasi-
diagonal subrepresentation on a separable subspace.

The next theorem is an immediate corollary of Voiculescu’s Weyl-von Neu-
mann Theorem (II.8.4.29).

V.4.2.3 Theorem. Let A be a separable quasidiagonal C*-algebra. Then
any faithful representation π of A on a separable Hilbert space H such that

π(A) ∩ K(H) = {0}

is quasidiagonal.
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V.4.2.4 Examples.

(i) Any quasidiagonal concrete C*-algebra of operators is a quasidiagonal
(abstract) C*-algebra.

(ii) Every residually finite-dimensional C*-algebra (V.2.1.10) is inner quasi-
diagonal. In particular, every commutative C*-algebra is inner quasidiag-
onal, and C∗(F ) is inner quasidiagonal for any free group F (V.2.1.11). A
residually finite-dimensional C*-algebra is not necessarily strongly quasi-
diagonal: every unital C*-algebra is a quotient of C∗(F ) for a free group
F on suitably many generators.

(iii) Let S be the unilateral shift, and A = C∗(S ⊕ S∗). Since S ⊕ S∗ is a
compact perturbation of a unitary, A is quasidiagonal. But A has an ideal
isomorphic to K ⊕ K, and has precisely two irreducible representations
which are nonzero on this ideal (sending S⊕S∗ to S and S∗ respectively);
neither of these is quasidiagonal by V.4.1.2(iii), and so A is not inner
quasidiagonal.

(iv) Let A be as in (iii), and π : A → L(H) an infinite amplification of the
identity representation of A. Then π is quasidiagonal. Set B = π(A) +
K(H); then B is a quasidiagonal C*-algebra of operators on H, and the
identity representation of B is irreducible, so B is inner quasidiagonal.
But A is a quotient of B, and A has non-quasidiagonal representations,
so B is not strongly quasidiagonal.

Examples (iii) and (iv) are Type I.

The next two results are immediate corollaries of V.4.1.9 and V.4.1.10.

V.4.2.5 Proposition. If A and B are quasidiagonal [resp. inner quasidiag-
onal] C*-algebras, then A⊗min B is quasidiagonal [resp. inner quasidiagonal].

It is unclear whether the same result is true for strong quasidiagonality
unless A and B are separable and one is exact, in which case it can be routinely
proved using IV.3.4.25 and II.8.4.29. The situation with A ⊗max B is also
unclear in general.

V.4.2.6 Proposition. If A is a quasidiagonal C*-algebra, then Ã is stably
finite.

V.4.2.7 Proposition. A unital quasidiagonal C*-algebra has a tracial
state.
Proof: Let π be a unital quasidiagonal representation (not necessarily faith-
ful) of a unital C*-algebra A on H. Let (Pi) be a net of finite-rank projections
in L(H) for π(A) as in V.4.1.5(ii). For each i let τi be the normalized trace on
the matrix algebra L(PiH), and for x ∈ A define φi(x) = τi(Piπ(x)Pi). Then
φi is a state on A, and for x, y ∈ A,
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φi(xy) = τi(Piπ(x)π(y)Pi) ≈ τi(Piπ(x)Piπ(y)Pi)

= τi(Piπ(y)Piπ(x)Pi) ≈ τi(Piπ(y)π(x)Pi) = φi(yx)

for i large, so any limit of (φi) is a tracial state of A.
See V.4.3.8 for a generalization.

There is in important alternate characterization of quasidiagonal C*-
algebras, due to D. Voiculescu [Voi91, Theorem 1]:

V.4.2.8 Theorem. A C*-algebra A is quasidiagonal if and only if, for every
x1, . . . , xn ∈ A and ε > 0, there is a representation π of A on a Hilbert space
H and a finite-rank projection P ∈ L(H) with ‖Pπ(xj)P‖ > ‖xj‖ − ε and
‖[P, π(xj)]‖ < ε for 1 ≤ j ≤ n.

V.4.2.9 Corollary. A C*-algebra A is quasidiagonal if and only if every
finitely generated C*-subalgebra is quasidiagonal.

Homotopy Invariance of Quasidiagonality

An important consequence of V.4.2.8 is the fact that quasidiagonality is pre-
served under homotopy equivalence [Voi91, Theorem 5]:

V.4.2.10 Theorem. Let A and B be C*-algebras. If A is quasidiagonal and
A homotopically dominates B (II.5.5.8), then B is quasidiagonal.

V.4.2.11 Corollary. Any subcontractible C*-algebra (II.5.5.8) is quasi-
diagonal. In particular, if A is any C*-algebra, then CA and SA are quasidi-
agonal.
Indeed, a contractible C*-algebra is homotopy equivalent to the 0 C*-algebra.

Thus even such an “infinite” C*-algebra as SO2 is quasidiagonal. So
a nonunital quasidiagonal C*-algebra need not have a nonzero trace (cf.
V.4.2.7).

Quasidiagonality vs. Nuclearity

V.4.2.12 Quasidiagonality is more of a finiteness condition than an amen-
ability or nuclearity property (however, see V.4.2.13 and V.4.2.14). There are
nuclear C*-algebras which are not finite and hence not quasidiagonal, for ex-
ample the Toeplitz algebra or the Cuntz algebras. On the other hand, there
are many quasidiagonal C*-algebras which are not nuclear, or even exact: for
example, C∗(F2) is residually finite dimensional and hence quasidiagonal (or
just apply V.4.2.11). A quotient of a quasidiagonal C*-algebra is not quasi-
diagonal in general: in fact, every C*-algebra is a quotient of a quasidiagonal
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C*-algebra (this can be seen by applying V.4.2.11, or by noting that every
unital C*-algebra is a quotient of the full C*-algebra of a free group). Even
strong quasidiagonality does not imply nuclearity: there is a separable simple
unital C*-algebra which is quasidiagonal but not nuclear, in fact not subnu-
clear (exact) [Dad00].

However, there is no known example of a stably finite nuclear C*-algebra
which is not quasidiagonal. We will discuss this matter in more detail in
V.4.3.13.

Quasidiagonal Group C*-Algebras

Quasidiagonality does seem to have some flavor of the Følner condition, and
using this idea J. Rosenberg proved the following result [Had87, Appendix]:

V.4.2.13 Theorem. Let G be a discrete group. If C∗
r (G) is quasidiagonal,

then G is amenable.
(The statement of this result in [Had87, A1] is more restrictive, but Rosen-

berg’s argument works also with an infinite amplification of the left regular
representation to give the result stated here.)

Proof: [Was94, Prop. 4.2] Let λ be the left regular representation of G on
l2(G), π the representation of l∞(G) = Cb(G) on l2(G) by multiplication oper-
ators, and (Pi)i∈Ω a net of finite-rank projections in L(l2(G)) with limi Pi = 1
strongly and limi[Pi, λ(g)] = 0 for all g ∈ G. Let ω be a Banach Limit (I.3.2.3)
on Ω, and τi the normalized trace on the matrix algebra L(Pil

2(G)). For
φ ∈ l∞(G), set m(φ) = limω τi(Piπ(φ)Pi). Since, for fixed g ∈ G, φ ∈ l∞(G),

τi(Piπ(g · φ)Pi) = τi(Piλ(g)π(φ)λ(g)∗Pi) ≈ τi(Piλ(g)Piπ(φ)λ(g)∗Pi)

= τi(Piπ(φ)λ(g)∗Piλ(g)Pi) ≈ τi(Piπ(φ)λ(g)λ(g)∗Pi) = τi(Piπ(φ)Pi)

for i large, m(g · φ) = m(φ). Thus m is a left invariant mean on G.
This argument is almost identical to the one in V.4.2.7.

Combining this with IV.3.5.6, it follows that if G is discrete and C∗
r (G) is

quasidiagonal, then it is nuclear!
The case of F2 shows that C∗

r (G) cannot be replaced by C∗(G) in V.4.2.13.
The converse of V.4.2.13 is open.

Space-Free Characterization of Quasidiagonality

The next theorem, due to Voiculescu, gives an alternate space-free character-
ization of quasidiagonality which is reminiscent of the definition of nuclearity,
and variants of which characterize NF and strong NF algebras (V.4.3.13 and
V.4.3.19).
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V.4.2.14 Theorem. [Voi91, Theorem 1] Let A be a C*-algebra. Then A
is quasidiagonal if and only if, for every x1, . . . , xn ∈ A and ε > 0, there
is a finite-dimensional C*-algebra B and a completely positive contraction
α : A → B such that ‖α(xi)‖ ≥ ‖xi‖ − ε and

‖α(xixj) − α(xi)α(xj)‖ < ε

for 1 ≤ i, j ≤ n.

Quasidiagonal Extensions by K

V.4.2.15 A (separable) C*-algebra A has an essential quasidiagonal exten-
sion by K if there is a quasidiagonal C*-algebra of operators B ⊆ L(H) for
separable H, with K ⊆ B, and B/K ∼= A. A is a quasidiagonal C*-algebra if
and only if it has a split essential quasidiagonal extension by K. The prop-
erty of having an essential quasidiagonal extension by K is strictly weaker
than quasidiagonality in general: C∗

r (F2) is not quasidiagonal (V.4.2.13), but
does have an essential quasidiagonal extension by K [Was91]. The two notions
coincide for nuclear C*-algebras [DHS89].

V.4.2.16 Proposition. [BK97, 3.1.3] Let A be a separable C*-algebra.
Then A has an essential quasidiagonal extension by K if and only if A can be
embedded in (

∏
Mkn

)/(
⊕

Mkn
) for some sequence 〈kn〉.

In fact, if A has a quasidiagonal extension by K and B ⊆ L(H) is
as in V.4.2.15, let (Pn) be an increasing sequence of finite-rank projec-
tions as in V.4.1.5(ii); set Qn = Pn − Pn−1 (Q1 = P1), kn = rank(Qn);
then QnL(H)Qn

∼= Mkn
. To the element x ∈ B associate the sequence

(QnxQn) ∈ ∏
Mkn

. Modulo
⊕

Mkn
this set of sequences is isomorphic to

A. Conversely, if
A ⊆ [(

∏
Mkn

)/(
⊕

Mkn
)]

let H =
⊕

C
kn , and for each x ∈ (

∏
Mkn

)/(
⊕

Mkn
), let ρ(x) = (xn), where

(xn) is a sequence in
∏

Mkn
projecting to x, and

∏
Mkn

is regarded as
∏

(L(Ckn)) ⊆ L(H).

For fixed x, any two choices of (xn) differ by an element of
⊕

Mkn
⊆ K =

K(H). Then the C*-subalgebra B of L(H) generated by K and all the ρ(x)
for x ∈ A is a quasidiagonal extension of A by K.

V.4.3 Generalized Inductive Limits

In this subsection, we summarize some of the results of [BK97], [BK01], and
[BK]; cf. [BK00], [Bla04a].
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One of the principles coming out of the work on classification of C*-
algebras is that in considering inductive systems of C*-algebras, asymptotic
behavior is all that matters; exact good behavior at each step is not nec-
essary. (This is also very much in the spirit of the E-theory of Connes and
Higson (V.1.4.7), and of the characterization of quasidiagonality in V.4.2.14.)
In the classification work this principle is primarily applied to intertwinings
of inductive systems. However, it is also possible, and interesting, to relax the
requirements on the connecting maps themselves, requiring them only to be
asymptotically additive, *-preserving, and multiplicative. We therefore con-
sider generalized inductive systems of C*-algebras, where the connecting maps
only asymptotically preserve the structure of the algebras.

The algebras thus obtained from finite-dimensional C*-algebras have very
close connections with quasidiagonal C*-algebras.

We will primarily restrict attention to separable C*-algebras, although the
basic definitions can be made in general.

V.4.3.1 Definition. A generalized inductive system of C*-algebras is a
sequence (An) of C*-algebras, with coherent maps φm,n : Am → An for
m < n, such that for all k and all x, y ∈ Ak, λ ∈ C, and all ε > 0, there
is an M such that, for all M ≤ m < n,

(i) ‖φm,n(φk,m(x) + φk,m(y)) − (φk,n(x) + φk,n(y))‖ < ε
(ii) ‖φm,n(λφk,m(x)) − λφk,n(x)‖ < ε
(iii) ‖φm,n(φk,m(x)∗) − φk,n(x)∗‖ < ε
(iv) ‖φm,n(φk,m(x)φk,m(y)) − φk,n(x)φk,n(y)‖ < ε
(v) supr ‖φk,r(x)‖ < ∞.

A system satisfying (i) [resp. (iv)] is called asymptotically additive [resp.
asymptotically multiplicative]. A generalized inductive system in which all
φm,n are linear is called a linear generalized inductive system; if all the φm,n

also preserve adjoints, the system is called *-linear. A system is contractive if
all the connecting maps are contractions. Of course, any ordinary inductive
system (II.8.2.1) is a (contractive, *-linear) generalized inductive system.

At least if all the An are finite-dimensional, there is no loss of generality
in assuming that all the connecting maps are *-linear (V.4.3.5).

V.4.3.2 Suppose (An, φm,n) is a generalized inductive system of C*-alge-
bras. The inductive limit of the system can be defined abstractly, but it is more
useful to give a more concrete description of the construction of the inductive
limit as follows. Let

∏
An be the full C*-direct product of the An, i.e. the set

of bounded sequences 〈xn〉, with xn ∈ An, with pointwise operations and sup
norm; and let

⊕
An be the C*-direct sum, the set of sequences converging

to zero in norm. Then
∏

An is a C*-algebra and
⊕

An is a closed two-sided
ideal; let π be the quotient map from

∏
An to (

∏
An)/(

⊕
An). Each element

x of Am naturally defines an element

φm(x) = π(〈φm,n(x)〉)
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of (
∏

An)/(
⊕

An). The closure of the set of all such elements (for all m) is a
C*-subalgebra of (

∏
An)/(

⊕
An), which we may call lim→(An, φm,n). Thus

a C*-algebra which is an inductive limit of a generalized inductive system
(An, φm,n) can be embedded in (

∏
An)/(

⊕
An).

V.4.3.3 Proposition. Let (An, φm,n) be a generalized inductive system,
with A = lim→(An, φm,n). If each An is commutative [resp. finite, stably
finite], then A is commutative [resp. finite, stably finite].

In fact, it is a simple argument to show that (
∏

An)/(
⊕

An) is com-
mutative [resp. finite, stably finite] if all but finitely many of the An are
commutative [resp. finite, stably finite].

We will primarily consider three classes of generalized inductive limits:

V.4.3.4 Definition. A separable C*-algebra A is an MF algebra if it can
be written as lim→(An, φm,n) for a generalized inductive system with the An

finite-dimensional. If the connecting maps φm,n can be chosen to be completely
positive (*-linear) contractions, then A is an NF algebra, and A is a strong NF
algebra if the φm,n can be chosen to be complete order embeddings (completely
positive and completely isometric *-linear maps).

A generalized inductive system (An, φm,n) in which each An is finite-
dimensional and each φm,n is a completely positive contraction [resp. a com-
plete order embedding] is called an NF system [resp. a strong NF system].

If (An, φm,n) is an NF system [resp. strong NF system] and

A = lim→ (An, φm,n),

then the natural map φn : An → A is a completely positive contraction [resp.
complete order embedding].

An MF algebra is separable. It is obvious that (Strong NF) =⇒ (NF) =⇒
(MF), and from V.4.3.3 it follows that every MF algebra is stably finite. Every
AF algebra is a strong NF algebra, but the class of strong NF algebras is much
larger than just the AF algebras.

The study of these classes of C*-algebras, particularly of the strong NF al-
gebras, may be regarded as “noncommutative piecewise-linear (PL) topology”
(cf. V.4.3.41).

MF Algebras

We now give a number of characterizations of MF algebras, which show that
they are a natural and important class to consider.
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V.4.3.5 Theorem. [BK97, 3.2.2] Let A be a separable C*-algebra. Then
the following are equivalent:

(i) A is an MF algebra.
(ii) A is isomorphic to lim→(An, φm,n) for a *-linear generalized inductive

system of finite-dimensional C*-algebras.
(iii) A can be embedded as a C*-subalgebra of (

∏
Mkn

)/(
⊕

Mkn
) for some

sequence 〈kn〉.
(iv) A has an essential quasidiagonal extension by the compact operators K.
(v) There is a continuous field of C*-algebras 〈B(t)〉 over N ∪ {∞} with

B(∞) ∼= A and B(n) finite-dimensional for each n < ∞.
(vi) There is a continuous field of C*-algebras 〈B(t)〉 over N ∪ {∞} with

B(∞) ∼= A and B(n) ∼= Mkn
for each n < ∞, for some sequence 〈kn〉.

The key implication is (iii) =⇒ (ii); the rest of the implications are trivial
or routine ((iii) ⇐⇒ (iv) is V.4.2.16).

There is thus an intimate connection between MF algebras and quasidiag-
onality, and also with continuous fields ((vi) is the inspiration for the name
“MF algebra,” which stands for “matricial field” or “M. Fell,” who was the
first to consider such algebras and propose that they are interesting objects
for study).

Here are some simple consequences of the theorem; most are not obvious
from the definition of MF algebras, and some may even be a little surprising.

V.4.3.6 Corollary.

(i) Every C*-subalgebra of an MF algebra is MF.
(ii) Every separable residually finite-dimensional C*-algebra (V.2.1.10) is an

MF algebra.
(iii) If A is any separable C*-algebra, then CA and SA are MF algebras.
(iv) Every separable C*-algebra is a quotient of an MF algebra [A is a quo-

tient of CA].
(v) If A and B are MF algebras, then A ⊗α B is an MF algebra for some

cross norm α. If one of them is nuclear, then A ⊗ B = A ⊗min B is an
MF algebra.

(vi) If A is MF, then every separable C*-algebra Morita equivalent to A is
MF.

(vii) Let 〈B(t)〉 be a continuous field of separable C*-algebras over N∪ {∞}.
If each B(t) for t ∈ N is an MF algebra, then B(∞) is an MF algebra.

(viii) Let 〈An〉 be a sequence of MF algebras. Then any separable C*-
subalgebra of (

∏
An)/(

⊕
An) is an MF algebra.

(ix) Let (An, φm,n) be a generalized inductive system of C*-algebras, with
A = lim→(An, φm,n). If each An is an MF algebra, then A is an MF
algebra.
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V.4.3.7 Not every MF algebra is residually finite-dimensional - many AF
algebras are not residually finite-dimensional.

Every MF algebra is stably finite (V.4.3.3). So there are even type I C*-
algebras (e.g. the Toeplitz algebra) which are not MF. It is unknown whether
every stably finite type I C*-algebra is MF. Every residually stably finite type
I C*-algebra is MF [Spi88].

There are apparently no known examples of a stably finite separable C*-
algebra which is not MF, but C∗

r (G) for a property (T) group G which is not
residually finite dimensional (such groups have been constructed by Gromov
[Gro00]) is a good candidate.

An MF algebra can fail to be strongly quasidiagonal, e.g. C∗(S ⊕ S∗). An
MF algebra can even fail to be (weakly) quasidiagonal [Was91, Prop. 5].

V.4.3.8 Proposition. A unital MF algebra has a tracial state.
Proof: It suffices to note that (

∏
Mkn

)/(
⊕

Mkn
) has a tracial state. Let τn

be the tracial state on
∏

Mkn
obtained by applying the normalized trace on

Mkn
to the n’th coordinate. Then any weak-* limit of (τn) is a tracial state

on
∏

Mkn
which vanishes on

⊕
Mkn

.

NF Algebras

V.4.3.9 We now describe the structure of NF algebras. Of course, every
NF algebra is an MF algebra. The key observation in developing the fur-
ther properties of NF algebras is that NF algebras are also nuclear. Since a
strong NF algebra has an increasing sequence of finite-dimensional subspaces
completely order isomorphic to (finite-dimensional) C*-algebras, with dense
union, it follows easily from the injectivity of finite-dimensional C*-algebras
that every strong NF algebra is nuclear (and, in fact, the identity map can
be approximated in the point-norm topology by idempotent finite-rank com-
pletely positive contractions). Nuclearity of NF algebras then follows from the
next simple construction.

V.4.3.10 Proposition. Every NF algebra is a quotient of a strong NF
algebra.
Proof: Let (An, φm,n) be an NF system for an NF algebra A, and for each
n let Bn = A1 ⊕ · · · ⊕ An, ψn,n+1 : Bn → Bn+1 defined by

ψn,n+1(x1, . . . , xn) = (x1, . . . , xn, φn,n+1(xn)).

Then (Bn, ψm,n) is a strong NF system whose inductive limit is a strong NF
algebra having A as a quotient in an evident way.

See V.4.3.27 for a refinement of this result.

V.4.3.11 More generally, it can be shown by a very similar argument that
if (An, φm,n) is a generalized inductive system with each An nuclear and each
φm,n a completely positive contraction, then lim→(An, φm,n) is nuclear.
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V.4.3.12 So an NF algebra A = lim→(An, φm,n) is a separable nuclear C*-
algebra which can be embedded in (

∏
An)/(

⊕
An). The crucial consequence

of nuclearity is that there is a completely positive contractive lifting of the em-
bedding to σ : A → ∏

An (IV.3.2.4). Composing σ with the quotient map to
An yields a sequence γn : A → An of completely positive, asymptotically mul-
tiplicative contractions such that φn ◦ γn converges to idA in the point-norm
topology. This argument applies more generally to any nuclear C*-subalgebra
of (

∏
Mkn

)/(
⊕

Mkn
) for a sequence kn, i.e. for any nuclear MF algebra.

In fact, we have the following characterizations of NF algebras:

V.4.3.13 Theorem. [BK97, 5.2.2] Let A be a separable C*-algebra. The
following are equivalent:

(i) A is an NF algebra.
(ii) A is a nuclear MF algebra.
(iii) A is nuclear and can be embedded as a C*-subalgebra of (

∏
Mkn

)/(
⊕

Mkn
)

for a sequence kn.
(iv) A is nuclear and quasidiagonal.
(v) The identity map on A can be approximated in the point-norm topology

by completely positive approximately multiplicative contractions through
finite-dimensional C*-algebras, i.e. given x1, . . . , xn ∈ A and ε > 0, there
is a finite-dimensional C*-algebra B and completely positive contractions
α : A → B and β : B → A such that ‖xi − β ◦ α(xi)‖ < ε and

‖α(xixj) − α(xi)α(xj)‖ < ε

for all i, j.

Compare (v) to V.4.2.14.
(ii) ⇐⇒ (iii) ⇐⇒ (iv) follows from V.4.3.5 and [DHS89]. (i) =⇒ (ii) and

(iii) =⇒ (v) are described above. The remaining implication (v) =⇒ (i) takes
the most work and requires some perturbation results for completely positive
maps, but is fairly straightforward; it is similar in spirit to the proof that an
“AF algebra in the local sense” is an AF algebra (i.e. that finite-dimensional
C*-subalgebras can be nested).

V.4.3.14 So a separable C*-algebra is an NF algebra if and only if the iden-
tity map on A can be approximately factored by completely positive almost
multiplicative contractions through matrix algebras. Thus the NF algebras
form a very natural class of nuclear C*-algebras, the ones in which not only
the complete order structure but also the multiplication can be approximately
modeled in finite-dimensional C*-algebras.

Here are some consequences of the theorem, similar to the results of
V.4.3.6.
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V.4.3.15 Corollary.

(i) A nuclear C*-subalgebra of an NF algebra is NF (although a general C*-
subalgebra of an NF algebra need not be NF because it is not necessarily
nuclear).

(ii) Every separable nuclear residually finite-dimensional C*-algebra (in par-
ticular, every subhomogeneous C*-algebra) is an NF algebra.

(iii) If A is any separable nuclear C*-algebra, then CA and SA are NF alge-
bras.

(iv) Every separable nuclear C*-algebra is a quotient of an NF algebra.
(v) Let (An, φm,n) be a generalized inductive system of C*-algebras, with

each φm,n a completely positive contraction (e.g. an ordinary inductive
system). If each An is an NF algebra, then A is an NF algebra. In partic-
ular, every approximately subhomogeneous (ASH) C*-algebra (V.2.1.9)
is NF.

(vi) The class of NF algebras is closed under stable isomorphism (Morita
equivalence).

V.4.3.16 Not every NF algebra is ASH, since an ASH algebra is residually
stably finite and an NF algebra is not necessarily residually stably finite by
(iv). C∗(S⊕S∗) and the examples of [Bro84], [BD96], and [DL94] are residually
stably finite and NF, but not ASH; they are also not strongly quasidiagonal
C*-algebras.

V.4.3.17 An NF algebra must of course be stably finite. There is no known
example of a stably finite separable nuclear C*-algebra which is not NF. The
name NF stands for “nuclear MF,” but might also hopefully mean “nuclear
(stably) finite.”

V.4.3.18 Using the same types of perturbation theorems for completely
positive maps needed for the proof of V.4.3.13, one can show that any two NF
systems for an NF algebra are asymptotically equivalent in a certain natural
but technical sense [BK97, 2.4.1], via completely positive contractions [BK97,
5.3.9].

Strong NF Algebras

The difference between the classes of NF and strong NF algebras is a subtle
one; the fact that the classes are indeed different was not discovered until
[BK01], and the seemingly definitive description of the essential difference not
given until [BK].

The property of strong NF algebras described in V.4.3.9 turns out to be a
characterization (V.4.3.19(iv)). As in the case of MF and NF algebras, there
are several equivalent descriptions of strong NF algebras:
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V.4.3.19 Theorem. ([BK97, 6.1.1], [BK]) Let A be a separable C*-algebra.
The following are equivalent:

(i) A is a strong NF algebra.
(ii) There is an increasing sequence 〈Sn〉 of finite-dimensional *-subspaces

of A, each completely order isomorphic to a (finite-dimensional) C*-
algebra, with dense union.

(iii) Given x1, . . . , xn ∈ A and ε > 0, there is a finite-dimensional C*-algebra
B, a complete order embedding φ of B into A, and elements b1, . . . , bn ∈
B with ‖xi − φ(bi)‖ < ε for 1 ≤ i ≤ n.

(iv) The identity map on A can be approximated in the point-norm topology
by idempotent completely positive finite-rank contractions from A to A,
i.e. given x1, . . . , xn ∈ A and ε > 0, there is an idempotent completely
positive finite-rank contraction ω : A → A with ‖xi − ω(xi)‖ < ε for
1 ≤ i ≤ n.

(v) The identity map on A can be approximated in the point-norm topology
by completely positive approximately multiplicative retractive contrac-
tions through finite-dimensional C*-algebras, i.e. given x1, . . . , xn ∈ A
and ε > 0, there is a finite-dimensional C*-algebra B and completely
positive contractions α : A → B and β : B → A with α ◦ β =
idB (β is then automatically a complete order embedding), such that
‖xi − β ◦ α(xi)‖ < ε and ‖α(xixj) − α(xi)α(xj)‖ < ε for all i, j.

(vi) Same as (v) with the “approximately multiplicative” condition on α
deleted.

(vii) Given x1, . . . , xn ∈ A and ε > 0, there is a finite-dimensional C*-algebra
B and completely positive contractions α : A → B and β : B → A with
β a complete order embedding, such that ‖xi − β ◦ α(xi)‖ < ε and α
is approximately multiplicative, i.e. ‖α(xixj) − α(xi)α(xj)‖ < ε for all
i, j.

(viii) Same as (vii) with the “approximately multiplicative” condition on α
deleted.

(ix) A is nuclear and inner quasidiagonal.

For the proof, (i) =⇒ (ii) is obvious, and (ii) =⇒ (iv) was described in Sec-
tion V.4.3.8. (v) =⇒ (ii) is similar to the proof of (v) =⇒ (i) in V.4.3.13, but
is more subtle and requires a more sophisticated perturbation result for com-
pletely positive maps (V.4.3.42). The implication (ii) =⇒ (i) and the equiva-
lence of (iii)—(viii) are easy consequences of injectivity of finite-dimensional
C*-algebras and II.6.10.11. The equivalence of (ix) with the other conditions,
proved in [BK], is a difficult technical argument using ultraproducts of Hilbert
spaces.

V.4.3.20 Condition (iii) could be taken as the definition of a “strong NF
algebra in the local sense.” One then has that a strong NF algebra in the local
sense is a strong NF algebra. Similarly, one could define an AF [resp. AH,
ASH] algebra in the local sense to be a C*-algebra A with the property that,
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for any x1, . . . , xn ∈ A and ε > 0, there is a finite-dimensional [resp. locally
homogeneous, subhomogeneous] C*-algebra B, elements b1, · · · , bn ∈ B, and
a *-homomorphism φ : B → A with ‖xi − φ(bi)‖ < ε for 1 ≤ i ≤ n. A
(separable) AF algebra in the local sense is an AF algebra (II.8.3.24), but a
(separable) AH algebra in the local sense is not necessarily an AH algebra
[DE99]. It is not known in general whether a (separable) ASH algebra in the
local sense is an ASH algebra.

Some consequences of V.4.3.19:

V.4.3.21 Corollary. Every separable nuclear residually finite-dimensional
C*-algebra (in particular, every subhomogeneous C*-algebra) is a strong NF
algebra.

V.4.3.22 Corollary. Let (An, φm,n) be a generalized inductive system of
C*-algebras, with each φm,n a complete order embedding (e.g. an ordinary
inductive system with injective connecting maps). If each An is a strong NF
algebra, then A is a strong NF algebra. In particular, every ASH C*-algebra
is strong NF.

However, even an ordinary inductive limit of strong NF algebras need not
be strong NF if the connecting maps are not injective [BK01, 5.16].

Combining V.4.3.10 and V.4.3.15(iv), we obtain:

V.4.3.23 Corollary. Every separable nuclear C*-algebra is a quotient of
a strong NF algebra.

V.4.3.24 Not every strong NF algebra is ASH, since an ASH algebra is
residually stably finite and an NF algebra is not necessarily residually stably
finite by V.4.3.23.

The examples of [Bro84], [BD96], and [DL94] are residually stably finite
and NF, but not strong NF by V.4.3.19(ix). C∗(S ⊕ S∗) is also NF but not
strong NF for the same reason. For a rather different example, it follows
easily from V.4.3.19(ix) that if A is separable and nuclear, then CA and SA
are strong NF if and only if A is; thus, for example, SO2 is NF but not strong
NF.

It is somewhat easier to prove the following result than the equivalence of
V.4.3.19(i) and (ix):

V.4.3.25 Theorem. [BK01, 5.4] If A is separable, nuclear, and prime, then
A is a strong NF algebra if and only if some (hence every) faithful irreducible
representation of A is quasidiagonal.

V.4.3.26 Corollary. Every antiliminal prime NF algebra is a strong NF
algebra. Every simple NF algebra is a strong NF algebra.
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V.4.3.27 Corollary. Let A be any NF algebra, and let B be a split es-
sential extension of A by K. Then B is a strong NF algebra. So A can be
embedded as a C*-subalgebra of a strong NF algebra B with a retraction
(homomorphic conditional expectation) from B onto A.

V.4.3.28 Thus, in particular, a nuclear C*-subalgebra of a strong NF alge-
bra need not be strong NF. However, a hereditary C*-subalgebra of a strong
NF algebra is strong NF ([BK97, 6.1.7]; this can be proved more easily using
V.4.3.19(ix)). It is also easily seen from V.4.3.19(ix) that the class of strong
NF algebras is closed under stable isomorphism (Morita equivalence). We also
have:

V.4.3.29 Proposition. [BK01, 5.17] A tensor product of strong NF alge-
bras is strong NF.

Since an NF algebra can be embedded in a strong NF algebra, using
V.4.3.15(i) we obtain:

V.4.3.30 Corollary. A tensor product of NF algebras is NF.
Combining V.4.3.25 with Voiculescu’s Weyl-von Neumann Theorem

(II.8.4.29), we obtain:

V.4.3.31 Corollary. Let A be a separable nuclear C*-algebra. The fol-
lowing are equivalent:

(i) Every quotient of A is a strong NF algebra.
(ii) Every primitive quotient of A is a strong NF algebra.
(iii) Every irreducible representation of A is quasidiagonal.
(iv) A is strongly quasidiagonal.

V.4.3.32 We also have a stronger version of the existence of the cross sec-
tions discussed in V.4.3.12. If (An, φm,n) is a strong NF system for a strong
NF algebra A, then by injectivity of finite-dimensional C*-algebras there are
idempotent completely positive contractions

γn+1,n : An+1 → φn,n+1(An)

for each n, which may be thought of as going from An+1 to An. These induce
maps γn,m : An → Am for n > m, and thus maps γn : A → An, which are
completely positive contractions and coherent in the obvious sense, and for
which the maps φm,n and φn are cross sections. The γn,m and γn are also
asymptotically multiplicative.
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RF Algebras

V.4.3.33 Definition. A strong NF algebra is an RF algebra if it has a
strong NF system (An, φm,n) such that the γn,m of V.4.3.32 (and hence also
the γn) can be chosen exactly multiplicative.

An RF algebra is obviously nuclear and residually finite-dimensional. The
converse is true:

V.4.3.34 Theorem. [BK] A separable C*-algebra is an RF algebra if and
only if it is nuclear and residually finite-dimensional.

An interesting consequence of the above results is that every strong NF
algebra can be written as an ordinary inductive limit of RF algebras:

V.4.3.35 Theorem. [BK97, 6.1.6] Let A be a strong NF algebra. Then
there is an increasing sequence (Ck) of C*-subalgebras of A, with dense union,
such that each Ck is an RF algebra.
Proof: Let (An, φm,n) be a strong NF system for A. Fix k. For n ≥ k,
inductively define Ck,n by taking Ck,k = Ak and Cn,k the C*-subalgebra of
An generated by φn−1,n(Ck,n−1) for n > k. Then

Ck = [∪n>kφn(Ck,n)]−

is a C*-subalgebra of A which is a strong NF algebra. For k < n, the map
γn,n−1|Ck,n

is a homomorphism from Ck,n onto Ck,n−1 by II.6.10.12(ii); so by
composition, if k ≤ m < n, γn,m|Ck,n

is a homomorphism from Ck,n onto Ck,m.
Thus, by letting n → ∞, for k ≤ m, the map γm|Ck

is a homomorphism from
Ck onto Ck,m. So Ck is residually finite-dimensional. φk(Ak) ⊆ Ck ⊆ Ck+1

for all k, so ∪Ck is dense in A.
Note that Ck,n is strictly larger than Dk,n = C∗(φk,n(Ak)) in general,

so Ck is strictly larger than Dk = C∗(φk(Ak)). Dk is also residually finite-
dimensional (since it is a C*-subalgebra of Ck), but it is not obvious that it
is nuclear. If it is, it is an RF algebra by V.4.3.34. It appears that Dk should
be a generalized inductive limit of the Dk,n, where the connecting map from
Dk,n to Dk,n+1 is φn,n+1|Dk,n

followed by a conditional expectation of Ck,n+1

onto Dk,n+1.

V.4.3.36 One might hope that the conclusion of V.4.3.35 could be strength-
ened to replace “residually finite-dimensional” by “subhomogeneous” (i.e. to
show that every strong NF algebra is approximately subhomogeneous). But
this cannot be true. Since a quotient of an ASH algebra is ASH, a necessary
condition for a C*-algebra to be ASH is that it be residually strong NF, or
equivalently strongly quasidiagonal (V.4.3.31). Even then, there is an enor-
mous gap between RF algebras and subhomogeneous C*-algebras. Nonethe-
less, V.4.3.35 gives the beginnings of a connection between this theory and
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the part of Elliott’s classification program concerned with inductive limits of
subhomogeneous building blocks.

It is difficult to compute structural invariants of a (strong) NF algebra
from a (strong) NF system. In particular, the ideal structure, trace space, and
K-theory are all difficult to compute. But there is a nice combinatorial way
to compute the Čech cohomology of a compact metrizable space X in terms
of a strong NF system for C(X) as described in V.4.3.41, which suggests
that there could be a combinatorial approach to the invariants and, perhaps,
classification of (strong) NF algebras.

Commutative C*-Algebras and PL Topology

By V.4.3.21, every (separable) commutative C*-algebra is a strong NF algebra.
In this subsection, we give a direct proof of the essential part of this fact, and
describe the connection with PL topology.

We will show that commutative C*-algebras satisfy V.4.3.19(iii); the rest
of the proof that commutative C*-algebras are strong NF consists of applying
a perturbation result to show that the images of the finite-dimensional com-
mutative C*-algebras can be chosen nested (the perturbation results needed
are much simpler in the commutative case).

For simplicity, we will work only with unital C*-algebras; the general result
follows easily from the unital case.

V.4.3.37 Definition. Let X be a compact Hausdorff space. A weak trian-
gulation of X is a continuous function φ from X to the underlying space of a
simplicial complex K, such that every face of K contains an interior point in
the image (in particular, every vertex of K lies in the image).

A triangulation is a weak triangulation in which φ is a homeomorphism.

V.4.3.38 Proposition. Let X be a compact Hausdorff space. Then there
is a natural one-one correspondence between the following sets:

(i) Weak triangulations of X
(ii) Effective partitions of unity on X
(iii) Unital complete order embeddings of finite-dimensional commutative C*-

algebras into C(X).

(A partition of unity {f1, . . . , fn} is effective if max fi(x) = 1 for all i, i.e.
if there are points x1, . . . , xn ∈ X such that fj(xi) = δij .)

The correspondences go like this: if φ : X → K is a weak triangulation,
and (e1, . . . , en) are the vertices of K (in a fixed order), for x ∈ X write
φ(x) =

∑n
i=1 λiei, and set fi(x) = λi. Then {f1, . . . , fn} is an effective par-

tition of unity on X. The corresponding complete order embedding ψ of C
n

into C(X) sends (λ1, . . . , λn) to
∑n

i=1 λifi. There is a corresponding idempo-
tent completely positive contraction γ from C(X) onto the image: send g to∑n

i=1 g(xi)fi.
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Conversely, if {f1, . . . , fn} is an effective partition of unity of X, then there
are xi such that fj(xi) = δij . Let

Ui = {x ∈ X : fi(x) > 0}

and let K be a simplicial complex with vertices e1, . . . , en, such that if I =
{i1, . . . , ir} is a subset of {1, . . . , n}, then there is a face in K with vertices
ei1 , . . . , eir

if and only if Ui1 ∩ · · · ∩ Uir
�= ∅. Define a map φ : X → K by

φ(x) =
n∑

i=1

fi(x)ei.

Then φ is a weak triangulation.
Similarly, if ψ : C

n → C(X) is a unital complete order embedding, let vi

be the i’th standard basis vector in C
n, and set fi = φ(vi). Because ‖fi‖ = 1

for all i, {f1, . . . , fn} is an effective partition of unity of X.

V.4.3.39 By this correspondence, a strong NF system for C(X) can be
described as consisting of:

(i) A sequence 〈Ki〉 of simplicial complexes with underlying spaces Xi

(ii) An inverse system (Xi, φij), where the φij : Xj → Xi (i < j) are
piecewise-linear weak triangulations

(iii) A homeomorphism (identification) of X with lim←(Xi, φij) such that
the natural maps φi : X → Xi are weak triangulations, which become
“sufficiently fine” for large i in the sense that any g ∈ C(X) can be
uniformly approximated arbitrarily closely by a function of the form f◦φi,
where f is a piecewise-linear function from Xi to C, for some sufficiently
large i.

It is well known to topologists that every compact metrizable space can
be so written; proofs (which are essentially equivalent to the proof outlined
here) can be found in several topology books.

The next result is just a restatement of II.6.9.3(v).

V.4.3.40 Proposition. Let X be a compact Hausdorff space, g1, . . . , gm ∈
C(X), and ε > 0. Then there is an n, a unital complete order embedding
ψ of C

n into C(X), and w1, . . . , wm ∈ C
n, such that ‖gk − ψ(wk)‖ < ε for

1 ≤ k ≤ m.

V.4.3.41 To complete the argument that separable commutative C*-alge-
bras are strong NF, choose a sequence ψn of complete order embeddings of
C

kn into C(X) such that finite subsets of a dense sequence in C(X) can be
approximated more and more closely as n → ∞, with retractions γn : C(X) →
C

kn satisfying γn◦ψn = idCkn . By passing to a subsequence converging rapidly
enough, we may insure that for each n,
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‖ψn+1 ◦ γn+1 ◦ ψn − ψn‖ < 2−n.

Then for each n the sequence

(ψn, ψn+1 ◦ γn+1 ◦ ψn, ψn+2 ◦ γn+2 ◦ ψn+1 ◦ γn+1 ◦ ψn, . . . )

converges in the point-norm topology to a completely positive map θn : C
kn →

C(X), with ∪nθn(Ckn) dense in C(X).
However, θn will not be a complete order embedding in general. But if the

approximations are done closely enough, γn+1 ◦ ψn : C
kn → C

kn+1 will be
“almost” a complete order embedding, and we need to know that it can be
perturbed slightly to an actual complete order embedding. This perturbation
result requires a theorem (V.4.3.42) in general, but is almost obvious in the
commutative case: one needs only to perturb γn+1 ◦ψn to a map ω such that
‖ω(vi)‖ = 1 for all i (where vi is the i’th standard basis vector in C

kn). If
‖γn+1 ◦ ψn(vi)‖ ≥ 1 − ε for all i, for some ε, 0 < ε < 1/2, for each i choose a
coordinate mi such that the mi’th coordinate of γn+1 ◦ψn(vi) is at least 1− ε.
The mi are necessarily distinct. Let ω(vi) be the vector with mi’th coordinate
1, mj ’th coordinate 0 for j �= i, and m’th coordinate the same as the m’th
coordinate of γn+1 ◦ ψn(vi) for m not one of the mj . Extend ω by linearity;
then ω is a complete order embedding satisfying

‖ω(vi) − γn+1 ◦ ψn(vi)‖ < ε

for all i. So if the subsequence is chosen so that ‖γn+1◦ψn(vi)‖ ≥ 1−(2−n/kn)
and ωn is the approximant, then the sequence

(ψn, ψn+1 ◦ ωn, ψn+2 ◦ ωn+1 ◦ ψn, . . . )

converges in the point-norm topology to a complete order embedding φn :
C

kn → C(X), satisfying φn = φn+1 ◦ ωn for all n, with ∪nφn(Ckn) dense in
C(X). These give the desired coherent family.

Here is the perturbation result needed in general:

V.4.3.42 Theorem. [BK97, 4.2.7] Let d > 0 and ε > 0. Then there is a δ >
0 such that, whenever A is a finite-dimensional C*-algebra with dim(A) ≤ d
and matrix units {er

ij : 1 ≤ i, j ≤ kr}, B is a finite-dimensional C*-algebra (or
just a C*-algebra of real rank zero), and φ is a completely positive contraction
from A to B with

‖φ(er
12)φ(er

23) · · ·φ(er
kr−1,kr

)‖ > 1 − δ

for all r, then there is a complete order embedding ψ from A to B with
‖ψ − φ‖ < ε.

V.4.3.43 Thus a strong NF system for C(X) may be regarded as a piece-
wise-linear structure on X, and the piecewise-linear connecting maps can be
described by combinatorial data. So it is reasonable to think of a strong NF
system for a strong NF algebra A as giving a “piecewise-linear” structure on
A, or a “combinatorial description” of A.
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[CP79] Joachim Cuntz and Gert Kjaergȧrd Pedersen. Equivalence and traces˙
on C∗-algebras. J. Funct. Anal., 33(2):135–164, 1979.

[CS86] J. Cuntz and G. Skandalis. Mapping cones and exact sequences in KK-
theory. J. Operator Theory, 15(1):163–180, 1986.



References 485

[CST04] Joachim Cuntz, Georges Skandalis, and Boris Tsygan. Cyclic homology
in non-commutative geometry, volume 121 of Encyclopaedia of Mathe-
matical Sciences. Springer-Verlag, Berlin, 2004.

[CT77] Alain Connes and Masamichi Takesaki. The flow of weights on factors
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[Eym64] Pierre Eymard. L’algèbre de Fourier d’un groupe localement compact.
Bull. Soc. Math. France, 92:181–236, 1964.



488 References

[FD88a] J. M. G. Fell and R. S. Doran. Representations of ∗-algebras, locally
compact groups, and Banach ∗-algebraic bundles. Vol. 1, volume 125
of Pure and Applied Mathematics. Academic Press Inc., Boston, MA,
1988.

[FD88b] J. M. G. Fell and R. S. Doran. Representations of ∗-algebras, locally
compact groups, and Banach ∗-algebraic bundles. Vol. 2, volume 126
of Pure and Applied Mathematics. Academic Press Inc., Boston, MA,
1988.

[Fel61] J. M. G. Fell. The structure of algebras of operator fields. Acta Math.,
106:233–280, 1961.

[Fel69] J. M. G. Fell. An extension of Mackey’s method to Banach ∗ algebraic
bundles. Memoirs of the American Mathematical Society, No. 90. Amer-
ican Mathematical Society, Providence, R.I., 1969.

[Fil96] Peter A. Fillmore. A user’s guide to operator algebras. Canadian Math-
ematical Society Series of Monographs and Advanced Texts. John Wiley
& Sons Inc., New York, 1996.

[FM77a] Jacob Feldman and Calvin C. Moore. Ergodic equivalence relations,
cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc.,
234(2):289–324, 1977.

[FM77b] Jacob Feldman and Calvin C. Moore. Ergodic equivalence relations,
cohomology, and von Neumann algebras. II. Trans. Amer. Math. Soc.,
234(2):325–359, 1977.

[FS81] Thierry Fack and Georges Skandalis. Connes’ analogue of the Thom
isomorphism for the Kasparov groups. Invent. Math., 64(1):7–14, 1981.

[Fug50] Bent Fuglede. A commutativity theorem for normal operators. Proc.
Nat. Acad. Sci. U. S. A., 36:35–40, 1950.

[Fuk52] Masanori Fukamiya. On a theorem of Gelfand and Neumark and the
B∗-algebra. Kumamoto J. Sci. Ser. A., 1(1):17–22, 1952.

[Gar65] L. Terrell Gardner. On isomorphisms of C∗-algebras. Amer. J. Math.,
87:384–396, 1965.

[Gar84] L. Terrell Gardner. An elementary proof of the Russo-Dye theorem.
Proc. Amer. Math. Soc., 90(1):171, 1984.

[Gel41] I. Gelfand. Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S., 9 (51):3–
24, 1941.

[GH76] K. R. Goodearl and D. Handelman. Rank functions and KO of regular
rings. J. Pure Appl. Algebra, 7(2):195–216, 1976.

[GJ76] Leonard Gillman and Meyer Jerison. Rings of continuous functions.
Springer-Verlag, New York, 1976. Reprint of the 1960 edition, Graduate
Texts in Mathematics, No. 43.

[GKn69] I. C. Gohberg and M. G. Krĕı n. Introduction to the theory of linear
nonselfadjoint operators. Translated from the Russian by A. Feinstein.
Translations of Mathematical Monographs, Vol. 18. American Mathe-
matical Society, Providence, R.I., 1969.

[Gli60] James G. Glimm. On a certain class of operator algebras. Trans. Amer.
Math. Soc., 95:318–340, 1960.

[Gli61] James Glimm. Type I C∗-algebras. Ann. of Math. (2), 73:572–612,
1961.

[GN43] I. Gelfand and M. Neumark. On the imbedding of normed rings into
the ring of operators in Hilbert space. Rec. Math. [Mat. Sbornik] N.S.,
12(54):197–213, 1943.



References 489

[God51] Roger Godement. Mémoire sur la théorie des caractères dans les groupes´
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[God54] Roger Godement. Théorie des caractères. I. Alg`` ebres unitaires.` Ann. of
Math. (2), 59:47–62, 1954.

[Goo49] Dwight Benjamin Goodner. Projections in Normed Linear Spaces. Ab-
stract of a Thesis, University of Illinois, 1949.

[Goo82] K. R. Goodearl. Notes on real and complex C∗-algebras, volume 5 of
Shiva Mathematics Series. Shiva Publishing Ltd., Nantwich, 1982.

[Goo91] K. R. Goodearl. von Neumann regular rings. Robert E. Krieger Pub-
lishing Co. Inc., Malabar, FL, second edition, 1991.

[GR79] Elliot C. Gootman and Jonathan Rosenberg. The structure of crossed
product C∗-algebras: a proof of the generalized Effros-Hahn conjecture.
Invent. Math., 52(3):283–298, 1979.

[Gre69] Frederick P. Greenleaf. Invariant means on topological groups and their
applications. Van Nostrand Mathematical Studies, No. 16. Van Nostrand
Reinhold Co., New York, 1969.

[Gre78] Philip Green. The local structure of twisted covariance algebras. Acta
Math., 140(3-4):191–250, 1978.

[Gro55] Alexandre Grothendieck. Produits tensoriels topologiques et espaces
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et interprétations diverses. In´ Dix Exposes sur la Cohomologie des´
Sch´mas, pages 46–66. North-Holland, Amsterdam, 1968.

[Gro87] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of
Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.

[Gro00] Misha Gromov. Spaces and questions. Geom. Funct. Anal., (Special
Volume, Part I):118–161, 2000. GAFA 2000 (Tel Aviv, 1999).

[Gui69] Alain Guichardet. Tensor products of C∗-algebras. Aarhus University
Lecture Notes Series no. 12, 1969.

[Haa75a] Uffe Haagerup. Normal weights on W ∗-algebras. J. Functional Analysis,
19:302–317, 1975.

[Haa75b] Uffe Haagerup. The standard form of von Neumann algebras. Math.
Scand., 37(2):271–283, 1975.

[Haa83] U. Haagerup. All nuclear C∗-algebras are amenable. Invent. Math.,
74(2):305–319, 1983.

[Haa85] Uffe Haagerup. A new proof of the equivalence of injectivity and hy-
perfiniteness for factors on a separable Hilbert space. J. Funct. Anal.,
62(2):160–201, 1985.

[Haa87] Uffe Haagerup. Connes’ bicentralizer problem and uniqueness of the
injective factor of type III1. Acta Math., 158(1-2):95–148, 1987.

[Haa90] Uffe Haagerup. On convex combinations of unitary operators in C∗-
algebras. In Mappings of operator algebras (Philadelphia, PA, 1988),
volume 84 of Progr. Math., pages 1–13. Birkhäuser Boston, Boston, MA,¨
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C∗-algèbres.` C. R. Acad. Sci. Paris S´r. I Math.´ , 298(8):173–176, 1984.
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[Kir95b] Eberhard Kirchberg. On subalgebras of the CAR-algebra. J. Funct.
Anal., 129(1):35–63, 1995.

[Kir97] Eberhard Kirchberg. On the existence of traces on exact stably projec-
tionless simple C∗-algebras. In Operator algebras and their applications
(Waterloo, ON, 1994/1995), volume 13 of Fields Inst. Commun., pages
171–172. Amer. Math. Soc., Providence, RI, 1997.

[Kis80] Akitaka Kishimoto. Simple crossed products of C∗-algebras by locally
compact abelian groups. Yokohama Math. J., 28(1-2):69–85, 1980.

[KM46] Shizuo Kakutani and George W. Mackey. Ring and lattice characteri-
zation of complex Hilbert space. Bull. Amer. Math. Soc., 52:727–733,
1946.

[KP85] Richard V. Kadison and Gert K. Pedersen. Means and convex combi-
nations of unitary operators. Math. Scand., 57(2):249–266, 1985.

[KP00] Eberhard Kirchberg and N. Christopher Phillips. Embedding of exact
C∗-algebras in the Cuntz algebra O2. J. Reine Angew. Math., 525:17–53,
2000.

[KPR98] Alex Kumjian, David Pask, and Iain Raeburn. Cuntz-Krieger algebras
of directed graphs. Pacific J. Math., 184(1):161–174, 1998.

[KR71a] Richard V. Kadison and John R. Ringrose. Cohomology of operator
algebras. I. Type I von Neumann algebras. Acta Math., 126:227–243,
1971.

[KR71b] Richard V. Kadison and John R. Ringrose. Cohomology of operator
algebras. II. Extended cobounding and the hyperfinite case. Ark. Mat.,
9:55–63, 1971.

[KR97a] Richard V. Kadison and John R. Ringrose. Fundamentals of the theory
of operator algebras. Vol. I, volume 15 ofII Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, 1997. Elementary
theory, Reprint of the 1983 original.

[KR97b] Richard V. Kadison and John R. Ringrose. Fundamentals of the theory
of operator algebras. Vol. II, volume 16 ofII Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI, 1997. Ad-
vanced theory, Corrected reprint of the 1986 original.

[KR00] Eberhard Kirchberg and Mikael Rørdam. Non-simple purely infinite
C∗-algebras. Amer. J. Math., 122(3):637–666, 2000.

[KR02] Eberhard Kirchberg and Mikael Rørdam. Infinite non-simple C∗-
algebras: absorbing the Cuntz algebras O∞. Adv. Math., 167(2):195–
264, 2002.
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[Sak69] Shôichirˆ o Sakai. Asymptotically abelian IIˆ 1-factors. Publ. Res. Inst.
Math. Sci. Ser. A, 4:299–307, 1968/1969.

[Sak71] Shôichirô Sakai.ˆ C∗-algebras and W ∗-algebras. Classics in Mathematics.
Springer-Verlag, Berlin, 1971. 1998 Reprint of 1971 Original.
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Republicii Socialiste România, Bucharest, 1981. Translated from theˆ
Romanian by the author.
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AW*-algebra 243

B*-algebra 52
Baire space 115
Banach *-algebra 51
Banach algebra 51
Banach limit 15
Banach module 99

dual Banach A-module 99
right 90

Baum-Connes Conjecture 394
Berg’s theorem 176
bicommutant 10
Bicommutant Theorem 47
bidual Type I 323
block-diagonalizable operator 457

bootstrap class 414
large 374, 414
small 374

Bott map 407
Bott periodicity 407, 412
Bott projection 398
bounded operator 5
Brown-Douglas-Fillmore Theorem 175
Brown-Green-Rieffel Theorem 153
Busby invariant 168

C*-algebra 51
ℵ0-homogeneous 347
σ-unital 81
abstract 51
algebraically simple 93
amenable 100, 378
antiliminal 324
approximately homogeneous 420
approximately subhomogeneous 420
bidual Type I 323
CCR 327
concrete 47
continuous trace 333
contractible 96
elementary 326
exact 189, 383
extremally rich 456
finite 227
GCR 327
GCT 337
generalized continuous trace 337
group 159, 198
GTC 337
homogeneous 330
infinite 227
injective 129, 352
inner quasidiagonal 460
internally Type I 323
liminal 327
locally homogeneous 330
NGCR 327
nuclear 184, 368
nuclearly embeddable 387
postliminal 327
prime 94
projectionless 419
projective 163
properly infinite 227
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purely infinite 160, 427
quasidiagonal 460
quasinuclear 188
reduced group 159, 198
residually finite 419
residually finite-dimensional 421
residually stably finite 419
seminuclear 188
semiprojective 162
simple 93
smooth 328, 340
stable 118
stably finite 419
stably unital 401
strongly amenable 382
strongly quasidiagonal 460
subcontractible 96
subhomogeneous 330
transformation group 205
Type I0 324
Type I 323
universal 158
weakly amenable 382

C*-axiom 51
C*-bundle 344
C*-dynamical system 199
Calkin algebra 37
cancellation 438

strict 438
canonical group of outer automorphisms

303
CAR algebra 157
carrier

central 223
of a normal weight 254

Cayley transform 33
CBS inequality 1

for Hilbert modules 138
for states 104

CCR
C*-algebra 327
representation 327

central carrier 223
central decomposition

of a representation 317
of a von Neumann algebra 239

central sequence 289
centralizer

of a weight 302

characteristic list 41
characteristic number 41
Chern character 410
Choi-Effros Lifting Theorem 375
closable operator 29
closed

operator 29
Closed Graph Theorem 6
coisometry 57
commutant 10
Commutation Theorem 301
compact operator 36
complete contraction 131
complete order embedding 125, 130
complete order isomorphism 130
completely bounded map 131
completely continuous 36
completely hereditary 93
completely positive approximation

property 371
completely positive map 125
composition series 325
compression 125
conditional expectation 132
cone 64
cone over a C*-algebra 97
Connes spectrum 282
Connes’ Thom Isomorphism 408
continuous decomposition 310
continuous field of C*-algebras 340
continuous trace

C*-algebra 333
element 333

contractible C*-algebra 96
convolution 194
core (for unbounded operators) 28
corner 147
correspondence 148
coupling constant 274
coupling function 273
covariant representation 200
covariant system 199
CPAP 371
cross norm 187
crossed product

of C*-algebras 201
reduced 203

of von Neumann algebras 283
Cuntz algebra 160
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Cuntz-Krieger algebra 161
cyclic vector 107, 226

Dauns-Hoffman Theorem 114
densely defined operator 27
derivation 99

*-derivation 99
antihermitian 99
closed 99
inner 99

diagonalizable operator 457
dimension function 123
dimension group 440
direct integral

of Hilbert spaces 238
of representations 316–318
of von Neumann algebras 239

direct product of C*-algebras 154
direct sum

of C*-algebras 154, 155
of Hilbert modules 139
of Hilbert spaces 4

discrete decomposition 311
discrete Heisenberg group 344
Dixmier property 264–265

strong 264
Dixmier trace 47
Dixmier-Douady invariant 347
dominant weight 312
double centralizer 144
dual Banach A-module 99
dual group 196
dual weight 284

Effros-Handelman-Shen Theorem 440
eigenvalue list

of a compact operator 41
of a state 278

element with closed range 69
elementary C*-algebra 326
equivalence

of extensions 170–171
of projections 73
of representations 101

essential spectrum 37
essential subspace 101
essentially normal operator 175
exact C*-algebra 189, 383
exact group 393

exact sequence 167
exponential map (of K-theory) 407
extension of C*-algebras 167

absorbing 174
essential 168
semisplit 173
split 172
trivial 172

extremally rich C*-algebra 456

factor 48
approximately finite dimensional

291
free group 290
hyperfinite 291
injective 352
ITPFI 278
Krieger 287
Powers 277
Property T 291
semidiscrete 363
Type I 232
Type I∞ 236
Type In 235
Type II 232
Type II1 232
Type II∞ 232
Type III 232
Type III0 280, 306
Type III1 280, 306
Type IIIλ 280, 306
wild 244

factor representation 102
Fell’s condition 334
finite ascent 38
finite descent 38
flow of weights 312
Fourier-Plancherel transform 197
Fredholm Alternative 39
Fredholm index 37
Fredholm operator 37
free group factor 290
free product 162

amalgamated 162
reduced 162
unital 162

FS Property 453
Fuglede’s Theorem 26, 110

approximate 155



Index 511

full element 91
full group C*-algebra 198
full hereditary C*-subalgebra 91
functional calculus

Borel 19, 25
continuous

bounded operators 18–19
for C*-algebras 61–62

holomorphic 55–56
unbounded self-adjoint operators

34–35
fundamental group 290
Følner condition 195

GCR
C*-algebra 327
representation 327

Gelfand transform 60
Gelfand-Mazur Theorem 55
Gelfand-Naimark Theorem 60, 109
Generalized Comparability 224
generalized continuous trace 337
generalized inductive limit 466
generalized inductive system 465
generalized integers 400
generalized trace 311
Glimm’s Theorem 339
global rank-one projection 335
GNS construction

for positive linear functionals 107
for weights 119–120

GNS representation 107
Grothendieck group 399
group

amenable 195
amenable at infinity 394
discrete Heisenberg 344
exact 393
Grothendieck 399
ICC 288
locally compact 193
ordered 435
Pontrjagin dual 196
preordered 434
Property T 290
quantum 218
unimodular 193

group action
ergodic 285

essentially free 285
essentially transitive 285
on a C*-algebra 199
on a measure space 284
on a topological space 192
on a von Neumann algebra 281
orbit equivalence 286

group actions
cocycle conjugate 204
conjugate 204
exterior equivalent 205
outer conjugate 204

group algebra 193
group C*-algebra 159, 198
group measure space construction

284–288

Haar measure 193
Heisenberg commutation relations 206
hereditary C*-subalgebra 75
hereditary subalgebra

full 91
Hilbert algebra 297

generalized 296
left 296
modular 298

Hilbert bundle 344, 345
Hilbert module 138

full 141
Hilbert space 2

real 5
Hilbert-Schmidt operator 42
homogeneous C*-algebra 330

ℵ0-homogeneous 347
n-homogeneous 330

homomorphism 95
homotopy equivalent C*-algebras 96
homotopy of homomorphisms 96
HP property 453
hyperfinite 291
hypertrace 359
hyponormal 424

ICC group 288
ideal 53

A-CCR 327
A-GCR 327
essential 95
left 89
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Pedersen 86
primitive 111
strongly invariant 86
weakly closed 225
weighted 93

imaginary part
of an element of a C*-algebra 57

imprimitivity bimodule 150
A −T Co(T )-imprimitivity bimodule

346
index map 405
inductive limit 156

generalized 466
inductive system

generalized 465
infinite element 426
injective C*-algebra 129, 352
inner product 1

B-valued 137
inner quasidiagonal C*-algebra 460
integrable weight 312
internally Type I 323
intersection product 412
intertwiner 314
involution

Banach algebra 51
Hilbert space 8
unbounded 296

irrational rotation algebra 160, 208
isometry

in a C*-algebra 57
operator 8

ITPFI factor 278

Künneth Theorem 416
Künneth Theorem for Tensor Products

417
Kac algebra 215
Kadison Transitivity Theorem 103
Kadison’s inequality 129
Kaplansky Density Theorem 48
Kasparov product 412
KK-theory 412
KMS condition 306
Krieger factor 287

large bootstrap class 374, 414
left centralizer 145
left Hilbert algebra 296

full 298
lifting property 375
liminal C*-algebra 327
linear functional

normal 245
positive 104

linking algebra 152
local AF algebra 167

Macaev ideal 46
Mackey Borel structure 115
mapping cone 170
masa 221
matrix ordered space 131
matrix units 117, 159, 232

approximate 166
of type D 160

measurable field
of bounded operators 238
of Hilbert spaces 238

measure algebra 194
metric approximation property 371
MF algebra 466
modular condition 306
modular function 193
modular Hilbert algebra 298
modular operator 294, 299
Modular Theory 293–313
modulus 290
Morita equivalence 152
multiple

of a representation 101
multiplication operator 8
multiplier algebra 144
Murray-von Neumann equivalence 73

NF algebra 466
strong 466

NF system 466
noncommutative torus 160, 213
nondegenerate

homomorphism 146
representation 101

nonstable K-theory 403
normal

element of a C*-algebra 57
linear functional 245
map 248
operator 8
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weight 255
normal Stinespring theorem 249
nuclear C*-algebra 184, 368
nuclearly embeddable 387
numerical range 11

Open Mapping Theorem 6
operator

block-diagonalizable 457
bounded 5
bounded below 10
compact 36
diagonalizable 457
essentially normal 175
Fredholm 37
isometry 8
multiplication 8
normal 8
positive 11
projection 8
quasidiagonal 457, 459
self-adjoint 8
semi-Fredholm 40
unitary 8

operator algebra 47
operator space 106
operator system 106
opposite algebra 348
order embedding 125, 130
order unit 435
ordered group 435

simple 435
unperforated 439
weakly unperforated 439

ordinary ordering 436
orthogonality

in a C*-algebra 67
in Hilbert space 2

orthomodular law 20
orthonormal basis 3
outer multiplier algebra 168

paracompact space 345
paradoxical decomposition 195
partial isometry

in a C*-algebra 57
operator 22

partially defined operator 27
partially liftable homomorphism 163

Pedersen ideal 86
perforation 439
permutable operators 28
Pimsner–Voiculescu exact sequence

408
Plancherel Theorem 197
Plancherel weight 288
point-norm topology 95
polar decomposition

for an operator 21–23
for an unbounded operator 35
for normal linear functionals 257
in a C*-algebra 67–69, 321

polarization 1, 65
polynomial relation 332
Pontrjagin dual group 196
positive

element of a C*-algebra 63
linear functional 104
map 125
operator 11
unbounded operator 32

positively generated *-subalgebra 92
postliminal C*-algebra 327
Powers factor 277
pre-Hilbert module 137
pre-inner product 1
predual 244
preordered group 434
prime C*-algebra 94
primitive ideal 111
product

of C*-algebras 155
projection

abelian 227
continuous 231
countably decomposable 225
cyclic 226
discrete 231
final 22, 63
finite 227
full 91
global rank-one 335
in a C*-algebra 57
infinite 227
initial 22, 63
monic 261
operator 8, 20
orthogonal 67
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properly infinite 227
purely infinite 231
range 22, 63
semifinite 231
source 22, 63
subordinate 73
very orthogonal 67

projection-valued measure 24
projective C*-algebra 163
projective tensor product 181
proper

group action 207
properly infinite element 426
Property Γ 289
Property C 385
Property E 359
Property FS 453
Property HP 453
Property P 359
Property T 290
pullback 169
purely infinite C*-algebra 160, 427

quantum group 218
finite 215

quasi-equivalence 314
quasi-invertible element 72
quasidiagonal

C*-algebra 460
operator 457, 459
representation 460
set of operators 458, 459

quasitrace 124

Radon-Nikodym derivative 307
Radon-Nikodym Theorem

for normal positive linear functionals
258

for positive linear functionals 108
for weights 308

real part
of an element of a C*-algebra 57

real rank 452
real rank zero 453
reduced crossed product 203
reduced group C*-algebra 159, 198
reduction of a representation 250
regular representation 159, 198
representation 101

amplification 250
CCR 327
covariant 200
disjoint 314
factor 102
faithful 101
finite multiplicity 315
GCR 327
GNS 107
irreducible 101
multiplicity-free 316
nondegenerate 101
of a group 197
quasi-equivalence 314
quasidiagonal 460
reduction 250
standard form 269
subordinate 314
symmetric form 300
type 315
universal 318
universal normal 321

residually finite-dimensional C*-algebra
421

resolvent 55
RF algebra 474
Riemann-Lebesgue lemma 197
Riesz Decomposition Property 68
Riesz Interpolation Property 441
Riesz-Frèchet theorem 3
right Banach module 90
rotation algebra 160
Russo-Dye Theorem 70

scale 435
scaled ordered group 435
scaled preordered K0-group 435
scaling element 424
Schatten ideal 45
Schröder-Bernstein Theorem 223
self-adjoint

element of a C*-algebra 57
operator 8
unbounded operator 30

semi-Fredholm operator 40
semiprojective C*-algebra 162
semisplit extension 173
separably inheritable property 176
separating vector 226
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sesquilinear form 6
shape theory 162
SI property 176
simple C*-algebra 93
simple ordered group 435
six-term exact sequence 407
slice map

for C*-algebras 190
normal 250

small bootstrap class 374
space

paracompact 345
spectral projection 24
spectral radius 11, 54
Spectral Theorem

normal operators 25
self-adjoint operators 24
unbounded self-adjoint operators 33

spectrum
of a commutative Banach algebra

60
of an element of a Banach algebra

54
of an operator 10
of an unbounded operator 30

square root
for positive operators 19
in a C*-algebra 64

Stabilization Theorem 141
stable algebra 118
stable C*-algebra 118
stable rank 445
stable relations 166
stably finite C*-algebra 419
stably isomorphic C*-algebras 118
stably unital 401
standard form 269
standard measure space 284
state 104

center-valued 260
completely additive 245
normal 245
of a scaled ordered group 441
pure 105
singular 248
tracial 121
vector 104

state space 104, 441
Stinespring’s Theorem 127

for Hilbert modules 150
for normal tensor products 361
for tensor products 190
normal 249

Stone’s Theorem 35
Stone-von Neumann Theorem 206
strict cancellation 438
strict homomorphism 147
strict mapping 149
strict ordering 436
strict topology 144, 146
strictly positive element 81
strong NF algebra 466
strong NF system 466
strong operator topology 13

σ-strong operator topology 14, 44
strong-* operator topology 14

σ-strong-* operator topology 14, 44
strongly amenable C*-algebra 382
strongly quasidiagonal C*-algebra 460
subcomposition series 325
subcontractible C*-algebra 96
subfactor 274
subhomogeneous C*-algebra 330
subordinate 73

representation 314
subprojection 73
subrepresentation 101
sum

of C*-algebras 155
of representations 101

support projection
central 223
in a C*-algebra 69
of a normal weight 254
operator 21

suspension of a C*-algebra 97
symmetric form 300
symmetric operator 30
symmetrically normed ideal 45

Takesaki duality 283
tensor product

binormal 361
infinite

of C*-algebras 191
of Hilbert spaces 275
of von Neumann algebras 275–276

normal 361
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of C*-algebras 179–191
maximal 181
minimal 180
spatial 180

of completely positive maps 190
of Hilbert modules 148
of Hilbert spaces 4
of homomorphisms 187
of normal completely positive maps

361
of normal maps 250
of normal semifinite weights 257
of von Neumann algebras 233
projective 181

Toeplitz algebra 160
Tomita algebra 298
Tomita-Takesaki Theorem 296
trace

center-valued 260
generalized 311
of an operator 41
on a C*-algebra 121
semifinite 122

trace-class operator 42
transformation group C*-algebra 205
triangulation 475

weak 475
twice-around embedding 336
two-out-of-three property 374
Type I

C*-algebra 323
representation 315
von Neumann algebra 231

UCT 416
UHF algebra 157
ultraproduct 156
Uniform Boundedness Theorem 6
unilateral shift 9
unimodular group 193
unipotent 448
unitarily invariant cone 86
unitary

in a C*-algebra 57
operator 8

unitary extreme property 419
unitization 53
universal C*-algebra 158
Universal Coefficient Theorem 416

universal representation 318
unperforated group 439

very orthogonal 67
virtual diagonal 379
Voiculescu’s Weyl-von Neumann

Theorem 174
von Neumann algebra 47

amenable 365
approximately finite dimensional

291
continuous 231
continuous decomposition 310
countably decomposable 225
discrete 231
finite 227
hyperfinite 291
infinite 227
injective 352
locally countably decomposable 226
properly infinite 227
purely atomic 354
purely infinite 231
semidiscrete 363
semifinite 231
Type I 231
Type I∞ 236
Type In 235
Type II 232
Type II1 232
Type II∞ 232
Type III 231

von Neumann regular element 69

W*-algebra 243
W*-crossed product 283
W*-dynamical system 281
weak operator topology 13

σ-weak operator topology 14, 43
weak triangulation 475
weakly amenable C*-algebra 382
weakly unperforated group 439
weight 118

centralizer 302
dominant 312
faithful 118
integrable 312
normal 255
Plancherel 288
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semifinite 120
strictly semifinite 255

weighted ideal 93

well-supported element 69
Weyl-von Neumann Theorem 176

Voiculescu’s Noncommutative 174




